

Comparison of Multiobjective Memetic Algorithms

on 0/1 Knapsack Problems

Hisao Ishibuchi

Dept. of Industrial Engineering
Osaka Prefecture University

1-1 Gakuen-cho, Sakai, Osaka 599-8531, JAPAN
E-mail: hisaoi@ie.osakafu-u.ac.jp

Phone: +81-72-254-9350

Shiori Kaige

Dept. of Industrial Engineering
Osaka Prefecture University

1-1 Gakuen-cho, Sakai, Osaka 599-8531, JAPAN
E-mail: shiori@ie.osakafu-u.ac.jp

Phone: +81-72-254-9351

Abstract

This paper compares two well-known
multiobjective memetic algorithms through
computational experiments on 0/1 knapsack
problems. The two algorithms are MOGLS
(multiple objective genetic local search) of
Jaszkiewicz and M-PAES (memetic Pareto
archived evolution strategy) of Knowles & Corne.
It is shown that the MOGLS with a sophisticated
repair algorithm based on the current weight
vector in the scalar fitness function has much
higher search ability than the M-PAES with a
simple repair algorithm. When they use the same
simple repair algorithm, the M-PAES performs
better overall. It is also shown that the diversity
of non-dominated solutions obtained by the M-
PAES is small in comparison with the MOGLS.
For improving the performance of the M-PAES,
we examine the use of the scalar fitness function
with a random weight vector in the selection
procedure of parent solutions.

1. INTRODUCTION

Memetic algorithms are one of the most successful
metaheuristics in combinatorial optimization. Recently
memetic algorithms have been applied to multiobjective
optimization problems for efficiently finding their Pareto-
optimal or near Pareto-optimal solutions (Ishibuchi &
Murata (1998), Jaszkiewicz (2002a), Knowles & Corne
(2000b)). It was demonstrated in some comparative
studies (Jaszkiewicz (2001), Jaszkiewicz (2002b),
Knowles & Corne (2000c)) that MOGLS (multiple
objective genetic local search) of Jaszkiewicz (2002a) and
M-PAES (memetic Pareto archived evolution strategy) of
Knowles & Corne (2000b) have high search ability to
efficiently find near Pareto-optimal solutions of

multiobjective 0/1 knapsack problems. For example, it
was clearly shown in Jaszkiewicz (2002b) that the
MOGLS outperformed SPEA (strength Pareto
evolutionary algorithm), which is a well-known high-
performance evolutionary multiobjective optimization
algorithm (Zitzler et al. (2000), Zitzler & Thiele (1999)).
An interesting observation is that the final conclusions of
those comparative studies are somewhat different. While
Knowles & Corne (2000c) concluded that their M-PAES
was superior to the MOGLS, Jaszkiewicz (2001, 2002b)
concluded that his MOGLS outperformed the M-PAES.

In this paper, we try to find why such different
conclusions were derived with respect to the relative
performance of the two multiobjective memetic
algorithms. For this purpose, we compare the MOGLS
and the M-PAES with each other in the same manner as
Jaszkiewicz (2001) and Knowles & Corne (2000c)
through computational experiments on the nine
multiobjective 0/1 knapsack problems originally used in
the computational experiments of Zitzler & Thiele (1999).
Then we examine the effect of two important factors on
the relative performance of the two algorithms. They are
the implementation of greedy repair and the specification
of the population size. The importance of these factors
was pointed out by Jaszkiewicz (2001, 2002b). Our
experimental results partially support his claim.

As in the above-mentioned comparative studies, our
experimental results show that the M-PAES cannot find a
variety of non-dominated solutions over a wide range of
each objective. On the other hand, the MOGLS can find
non-dominated solutions over a much wider range of each
objective than the M-PAES. Based on these observations,
we try to improve the performance of the M-PAES by
incorporating the scalar fitness function with a random
weight vector of the MOGLS into the selection procedure
of the M-PAES. More specifically, we use tournament
selection based on the scalar fitness function with a

random weight vector. Whenever a pair of parents is to be
chosen, weight values are randomly updated. It was
shown in Ishibuchi et al. (2003) that the performance of a
simple MOGLS of Ishibuchi & Murata (1998) was
improved by increasing the selection pressure (i.e., using
the tournament selection instead of the roulette wheel
selection and increasing the tournament size).

This paper is organized as follows. In Section 2, we
briefly explain our computational experiments, which are
designed in the same manner as the existing comparative
studies (Jaszkiewicz (2001), Knowles & Corne (2000c)).
In Section 3, we point out the effect of the implementation
of greedy repair and the specification of the population
size on the relative performance of the MOGLS and the
M-PAES. In Section 4, the use of the scalar fitness
function with a random weight vector is examined.
Section 5 concludes the paper.

2. COMPUTATIONAL EXPERIMENTS

As test problems, we use the nine multiobjective 0/1
knapsack problems of Zitzler & Thiele (1999). Each test
problem has two, three or four objectives and 250, 500 or
750 items. We refer to each test problem as a k-n problem
where k is the number of knapsacks (i.e., the number of
objectives) and n is the number of items. The nine test
problems are denoted as 2-250, 2-500, 2-750, 3-250, 3-
500, 3-750, 4-250, 4-500 and 4-750. Those test problems
are written in a generic form as follows:

 Maximize))(...,),(),(()(21 xxxxf kfff= , (1)

 subject to �
=

≤
n

j
ijij cxw

1
, ki ...,,2,1= , (2)

where

 �
=

=
n

j
jiji xpf

1
)(x , ki ...,,2,1= . (3)

In this formulation, x is a binary vector of the length n
(i.e., n

nxxx }1,0{)...,,,(21 ∈), ijp is the profit of item j
according to knapsack i, ijw is the weight of item j
according to knapsack i, and ic is the capacity of
knapsack i. For details of the test problems, see Zitzler &
Thiele (1999). The same test problems were used in the
comparative studies of Jaszkiewicz (2001, 2002b) and
Knowles & Corne (2000c).

The MOGLS of Jaszkiewicz (2002a) uses the scalar
fitness function with a random weight vector:

 �
=

=Λ
k

i
ii ff

1
)(),(xx λ , (4)

where

 0≥∀ ii λ and 1
1

=�
=

k

i
iλ . (5)

When a pair of parents is chosen, first the weight vector is
randomly specified. Next the best K solutions are selected
from the current population (CS) with respect to the scalar
fitness function with the current weight vector. Then two
parents are randomly chosen from those K solutions. In
this manner, mating restriction is implemented in the
MOGLS where a pair of similar parents in the objective
space is selected for generating an offspring. A local
search procedure is applied to the generated offspring
using the scalar fitness function with the current weight
vector. In the original proposal of the MOGLS by
Jaszkiewicz (2002a), local search is iterated until a locally
optimal solution is found. On the other hand, no local
improvement procedure except for a greedy repair
algorithm is used in his recent comparative study (2002b).
In this paper, we use two parameters for terminating local
search for each solution as in Jaszkiewicz (2001) and
Knowles & Corne (2000c). One is the maximum number
of local search moves (i.e., l_opt) and the other is the
maximum number of consecutive fails of local search
moves (i.e., l_fails). We also use these two parameters in
the M-PAES. In both algorithms, a neighboring solution
is generated by applying a bit-flip mutation with a
probability of 4/n to each bit of the current solution as in
Jaszkiewicz (2001) and Knowles & Corne (2000c).

The M-PAES was proposed in Knowles & Corne (2000b)
by introducing a population and a recombination
operation to a multiobjective local search algorithm:
(1+1)-PAES (Pareto archived evolution strategy) of
Knowles & Corne (2000a). While each solution is
evaluated using the scalar fitness function in the MOGLS,
Pareto ranking is used in the M-PAES. The concept of
crowding is also utilized for evaluating each solution in
the M-PAES. Two secondary populations (i.e., a local
archive H and a global archive G) are stored separately
from the main population P. The local archive H is used
for evaluating each solution in local search while a pair of
parent solutions is randomly chosen from GP

�
 for

generating an offspring.

Some parameter values in our computational experiments
are summarized in Table 1. In this table, max_evals is the
total number of evaluated solutions, which is used as the
stopping condition of each algorithm in this paper. Our
parameter specifications in the M-PAES and the MOGLS
are almost the same as those in Knowles & Corne (2000b,
2000c) and Jaszkiewicz (2001), respectively.

As the performance measure, we use the coverage
measure),(⋅⋅C of Zitzler & Thiele (1999) for comparing
the two multiobjective memetic algorithms. This measure
mainly evaluates the relative convergence speed to the
Pareto front of the two algorithms. So we also visually
examine the diversity of obtained solutions. For various
performance measures and their characteristic features in
multiobjective optimization, see Knowles & Corne (2002).

Table 1: Parameter values in our computational experiments.

Initial population size K || CS l_fails l_opt max_evals
Problems

M-PAES MOGLS MOGLS MOGLS M-PAES & MOGLS

2-250 30 150 20 3,000 20 100 75,000

2-500 40 200 20 4,000 20 100 100,000

2-750 50 250 20 5,000 5 20 125,000

3-250 40 200 20 4,000 20 50 100,000

3-500 50 250 20 5,000 20 50 125,000

3-750 60 300 20 6,000 5 20 150,000

4-250 50 250 20 5,000 20 50 125,000

4-500 60 300 20 6,000 20 50 150,000

4-750 70 350 20 7,000 5 20 175,000

C(M-PAES, MOGLS)
C(MOGLS, M-PAES)

The number of items

C
ov

er
ag

e

250 500 750
0

0.2

0.4

0.6

0.8

1

C(M-PAES, MOGLS)
C(MOGLS, M-PAES)

The number of items

C
ov

er
ag

e

250 500 750
0

0.2

0.4

0.6

0.8

1

C(M-PAES, MOGLS)
C(MOGLS, M-PAES)

The number of items
C

ov
er

ag
e

250 500 750
0

0.2

0.4

0.6

0.8

1

Figure 1: Results on 2-objective problems. Figure 2: Results on 3-objective problems. Figure 3: Results on 4-objective problems.

3. EXPERIMENTAL RESULTS

3.1 EFFECT OF GREEDY REPAIR

Zitzler & Thiele (1999) used a simple greedy repair
algorithm where the items were removed in the increasing
order of the maximum profit/weight ratio over all
knapsacks. The same greedy repair algorithm was used in
Knowles & Corne (2000c). We first used this greedy
repair algorithm in the MOGLS and the M-PAES in our
computational experiments. Experimental results are
summarized in Figs. 1-3 where the average value of the
coverage measure over 30 runs is calculated for each test
problem. A solution set obtained by a single run of each
algorithm is depicted in Fig. 4 for the 2-500 problem. As
shown in those figures, the M-PAES outperformed the
MOGLS for the two-objective and three-objective
problems in terms of the coverage measure. The same
conclusion was derived in Knowles & Corne (2000c).

In the comparative studies of Jaszkiewicz (2001, 2002b),
a more sophisticated greedy repair algorithm was used in
the MOGLS where the items were removed in the
increasing order of the following ratio:

Total profit (knapsack 1)

T
ot

al
 p

ro
fi

t (
kn

ap
sa

ck
 2

)

M-PAES
MOGLS

17500 18000 18500 19000 19500

17500

18000

18500

19000

19500

20000

Figure 4: Results on the 2-500 problem.

 ��
==

k

i
ij

k

i
iji wp

11
λ , nj ,...,2,1= . (6)

That is, the current weight vector)...,,,(21 kλλλ was
taken into account. Note that this greedy repair algorithm
can be used only for the MOGLS with the scalar fitness
function. We executed computational experiments using

the MOGLS with this greedy repair algorithm. Then we
compared the MOGLS with the M-PAES where only the
MOGLS used the sophisticated greedy repair algorithm.
Experimental results are shown in Fig. 5 and Fig. 6. From
these figures, we can see that the MOGLS outperformed
the M-PAES. The same conclusion was derived in
Jaszkiewicz (2001, 2002b). It should be noted that the
MOGLS and the M-PAES did not use the same greedy
repair algorithm in Fig. 5 and Fig. 6.

C(M-PAES, MOGLS)
C(MOGLS, M-PAES)

The number of items

C
ov

er
ag

e

250 500 7500

0.2

0.4

0.6

0.8

1

Figure 5: Results on 2-objective problems. Different greedy
repair algorithms were used in the MOGLS and the M-PAES.

C(M-PAES, MOGLS)
C(MOGLS, M-PAES)

The number of items

C
ov

er
ag

e

250 500 7500

0.2

0.4

0.6

0.8

1

Figure 6: Results on 3-objective problems. Different greedy
repair algorithms were used in the MOGLS and the M-PAES.

3.2 EFFECT OF POPULATION SIZE

In Knowles & Corne (2000c), the population size (i.e., the
size of CS) in the MOGLS was specified as 100.
Jaszkiewicz (2001, 2002b) claimed that the poor
performance of the MOGLS in Knowles & Corne (2000c)
was due to this parameter specification and the use of the
simple greedy repair algorithm of Zitzler & Thiele (1999).
We examine the performance of the MOGLS with the
sophisticated greedy repair algorithm using various
specifications of || CS . Since || CS is determined by the

size of the initial population S and the value of K as
|||| SKCS ×= , we varied the size of S as =|| S 5, 10, 20,

50, 100, 200, 500 and used the constant value of K
(20=K). Experimental results are summarized in Fig. 7
and Fig. 8 where the M-PAES was executed under the
conditions of Table 1 as in the previous subsection. From
those figures, we can see that the performance of the
MOGLS was not so sensitive to the size of CS if it was
not too large. It should be noted that the MOGLS with the
sophisticated greedy repair algorithm was compared with
the M-PAES with the simple greedy repair algorithm.

C
ov

er
ag

e
The size of

C(M-PAES, MOGLS)

C(MOGLS, M-PAES)

CS

100 200 400 1000 2000 4000 100000

0.2

0.4

0.6

0.8

1

Figure 7: Results on the 2-250 problem. Different greedy repair
algorithms were used in the MOGLS and the M-PAES.

C
ov

er
ag

e

The size of

C(M-PAES, MOGLS)
C(MOGLS, M-PAES)

CS

100 200 400 1000 2000 4000 100000

0.2

0.4

0.6

0.8

1

Figure 8: Results on the 2-500 problem. Different greedy repair
algorithms were used in the MOGLS and the M-PAES.

We also performed computational experiments using the
same simple greedy repair algorithm in the MOGLS and
the M-PAES. Experimental results are summarized in Fig.
9 and Fig. 10. From these figures, we can see that the M-
PAES outperformed the MOGLS on the two-objective
test problems in terms of the convergence speed to the
Pareto front when they were compared under the same
greedy repair algorithm. As shown in Figs. 7-10, the
effect of greedy repair is much more significant than the
specification of the population size.

C
ov

er
ag

e

The size of CS

C(M-PAES, MOGLS)
C(MOGLS, M-PAES)

100 200 400 1000 2000 4000 100000

0.2

0.4

0.6

0.8

1

Figure 9: Results on the 2-250 problem. The same greedy repair
algorithm was used in the MOGLS and the M-PAES.

C
ov

er
ag

e

The size of CS

C(M-PAES, MOGLS)
C(MOGLS, M-PAES)

100 200 400 1000 2000 4000 100000

0.2

0.4

0.6

0.8

1

Figure 10: Results on the 2-500 problem. The same greedy
repair algorithm was used in the MOGLS and the M-PAES.

C
om

pu
ta

tio
n

tim
e

(s
ec

)

The size of CS

MOGLS with simple repair
MOGLS with sophisticated repair

M-PAES

100 200 400 1000 2000 4000 10000
10

15

20

Figure 11: Average CPU time for the 2-500 problem.

In Fig. 11, we show the average CPU time of the M-
PAES and the two versions of the MOGLS for the 2-500
problem (i.e., average CPU time in the computational
experiments in Fig. 8 and Fig. 10). It should be noted that
the M-PAES was executed under the conditions of Table
1 while the various values of the size of the current
population (i.e., || CS) were examined for the MOGLS.

From Fig. 11, we can see that the effect of || CS on the
average CPU time was not monotonic. We can also see
that the average CPU time did not strongly depend on the
implementation of greedy repair. In Fig. 11., the M-PAES
needed longer CPU time than the MOGLS in many cases.

4. MODIFICATION OF M-PAES

As shown in Fig. 4, the M-PAES cannot find a variety of
non-dominated solutions over a wide range of each
objective. Moreover, as shown in Figs. 1-3, the relative
performance of the M-PAES in comparison with the
MOGLS degrades as the problem size increases. Even
when they used the same simple greedy repair algorithm,
the MOGLS outperformed the M-PAES on the large test
problems in Fig. 2 and Fig. 3 (i.e., 3-750 and 4-750).

We try to improve the performance of the M-PAES by
using the scalar fitness function with a random weight
vector in its selection procedure. In the original M-PAES,
a pair of parent solutions is randomly chosen from GP �
for generating an offspring. We modify this selection
procedure as follows: A pair of parent solutions is chosen
by tournament selection from GP � based on the scalar
fitness function with a random weight vector. When
another pair of parent solutions is to be chosen, the weight
vector is randomly updated.

In Fig. 12, we compare our modified M-PAES with the
original M-PAES by depicting a single solution set
obtained by a single run of each algorithm for the 2-750
test problem. It should be noted that our modified M-
PAES is exactly the same as the original M-PAES when
the tournament size is one. By increasing the tournament
size, the selection pressure is increased and more similar
parents are likely to be selected (see Ishibuchi et al.
(2003)). Fig. 12 suggests a possibility that the use of the
scalar fitness function can improve the search ability of
the M-PAES on multiobjective 0/1 knapsack problems.

Tournament size 1
Tournament size 5

Total profit (knapsack 1)

T
ot

al
 p

ro
fi

t (
kn

ap
sa

ck
 2

)

27000 27500 28000 28500

26500

27000

27500

28000

Figure 12: Results by our modified M-PAES on the 2-750
problem. The simple greedy repair algorithm was used.

5. CONCLUDING REMARKS

We compared the MOGLS of Jaszkiewicz (2002a) and
the M-PAES of Knowles & Corne (2000b) with each
other through computational experiments on
multiobjective 0/1 knapsack problems. We showed that
the MOGLS with the sophisticated repair algorithm based
on the current weight vector in the scalar fitness function
clearly outperformed the M-PAES with the simple repair
algorithm. When they used the same simple repair
algorithm, the M-PAES performed better on two-
objective and three-objective test problems while the
MOGLS performed better on four-objective test problems.
We also tried to improve the performance of the M-PAES
by the use of the scalar fitness function in its selection
procedure. This modification improved the search ability
of the M-PAES on multiobjective 0/1 knapsack problems.
While we could not include experimental results due to
the page limitation, we observed the improvement in the
search ability of the M-PAES on multiobjective 0/1
knapsack problems by the introduction of mating
restriction schemes (Ishibuchi & Shibata (2003a, 2003b)).
In our computational experiments, we always used the
simple repair algorithm in the M-PAES as in the existing
comparative studies. We can, however, use the
sophisticated repair algorithm in the M-PAES as in the
MOGLS. As expected, its use significantly improved the
performance of the M-PAES on multiobjective 0/1
knapsack problems (see Fig. 13).

The authors would like to thank the financial support from
Japan Society for the Promotion of Science (JSPS)
through Grand-in-Aid for Scientific Research (B):
KAKENHI (14380194).

References

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A
Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II, IEEE Trans. on Evolutionary Computation 6
(2002) 182-197.

Ishibuchi, H., and Murata, T.: A Multi-Objective Genetic
Local Search Algorithm and Its Application to
Flowshop Scheduling, IEEE Trans. on Systems, Man,
and Cybernetics - Part C: Applications and Reviews 28
(1998) 392-403.

Ishibuchi, H., and Shibata, Y.: An Empirical Study on the
Effect of Mating Restriction on the Search Ability of
EMO Algorithms, Proc. of Second International
Conference on Evolutionary Multi-Criterion
Optimization (2003a) (in press).

Ishibuchi, H., and Shibata, Y.: A Similarity-Based Mating
Scheme for Evolutionary Multiobjective Optimization,
Proc. of 2003 Genetic and Evolutionary Computation
Conference (2003b) (in press).

Ishibuchi, H., Yoshida, T., and Murata, T.: Balance
between Genetic Search and Local Search in Memetic

Algorithms for Multiobjective Permutation Flowshop
Scheduling, IEEE Trans. on Evolutionary Computation
(2003) (in press).

Jaszkiewicz, A.: Comparison of Local Search-based
Metaheuristics on the Multiple Objective Knapsack
Problem, Foundations of Computing and Decision
Sciences 26 (2001) 99-120.

Jaszkiewicz, A.: Genetic Local Search for Multi-
Objective Combinatorial Optimization, European
Journal of Operational Research 137 (2002a) 50-71.

Jaszkiewicz, A.: On the Performance of Multiple-
Objective Genetic Local Search on the 0/1 Knapsack
Problem – A Comparative Experiment, IEEE Trans. on
Evolutionary Computation 6 (2002b) 402-412.

Knowles, J. D., and Corne, D. W.: Approximating the
Nondominated Front using Pareto Archived Evolution
Strategy, Evolutionary Computation 8 (2000a) 149-172.

Knowles, J. D., and Corne, D. W.: M-PAES: A Memetic
Algorithm for Multiobjective Optimization, Proc. of
2000 Congress on Evolutionary Computation (2000b)
325-332.

Knowles, J. D., and Corne, D. W.: A Comparison of
Diverse Approaches to Memetic Multiobjective
Combinatorial Optimization, Proc. of 2000 Genetic and
Evolutionary Computation Conference Workshop
Program (2000c) 103-108.

Knowles, J. D., and Corne, D. W.: On Metrics for
Comparing Non-Dominated Sets, Proc. of 2002
Congress on Evolutionary Computation (2002) 711-
716.

Zitzler, E., Deb, K., and Thiele, L.: Comparison of
Multiobjective Evolutionary Algorithms: Empirical
Results, Evolutionary Computation 8 (2000) 173-195.

Zitzler, E., and Thiele, L.: Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the
Strength Pareto Approach, IEEE Transactions on
Evolutionary Computation 3 (1999) 257-271.

Original M-PAES
Modified M-PAES

Total profit (knapsack 1)

T
ot

al
 p

ro
fi

t (
kn

ap
sa

ck
 2

)

26000 27000 28000 29000
26000

26500

27000

27500

28000

28500

29000

Figure 13: Results on the 2-750 problem. The original M-PAES
used the simple greedy repair algorithm while our modified M-
PAES with the tournament size 5 in Section 4 used the
sophisticated greedy repair algorithm for comparison.

