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encouraged many of the points which I developped in my thesis.

I am especially grateful for the fruitful environment in which discussions on the usage
of this formalism for writing grammars could flourish among all of us in the HPSG group
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Introduction

One of the most striking and, at the same time, most intriguing properties of language
is the harmonious interplay of regularity and irregularity. While in language these two are
as inseparable as two sides of a coin, different grammatical traditions emphasize either the
regularities of language or its irregularities. In either case, the “other side of the coin”
provides a rich source of counterexamples to the claims made by the respective theory.
Since it is obvious that both phenomena are part of natural language, any architecture of
grammar that ignores one of them is doomed to be empirically inadequate. To do justice
to regularity, the grammar must minimize the areas of irregularity and express as many
generalizations as possible. To acknowledge the irregularity of language, the tools used
to account for irregularity should fit in a natural way into the overall architecture. In
this thesis, we develop the framework of Head-Driven Phrase Structure Grammar (HPSG)
further in the direction of a theory that meets these two requirements.

In this thesis, we are concerned with the interaction of regularity and irregularity in
combinatorial semantics, i.e., in the way complex syntactic structures are interpreted. The
empirical domain of our study is the varying degree of syntactic and semantic regularity
attested in the continuum between free combinations, (more or less flexible) idiomatic ex-
pressions, and fully fixed expressions. We will explore in this introduction and, detail in
later chapters of this thesis that the sentences in (1) contain VPs which exhibit different
degrees of regularity and irregularities.

(1) a. John saw Mary.
b. Pat spilled the beans.
c. Pat tripped the light fantastic.

In this introduction, we give an intuitive outline of the problems and of the solution that
we are concerned with throughout this work.

Within formal grammar, it is assumed that the meaning of a syntactically complex entity
can be computed from the meaning of its parts and from knowledge about how to interpret
their specific way of combination. This underlying assumption is also called the Principle
of Compositionality or Frege’s Principle, which we quote in (2).1

1While it is uncontroversial that this principle is referred to as Frege’s Principle (Partee et al., 1993; Gamut,
1991a), Janssen 1997 (pp. 420f.) argues that it was not explicitly stated in Frege’s work. Janssen even claims

that

“The conclusion is that Frege rejected the principle of compositionality in the period
in which he wrote Grundlagen der Mathematik [= Grundlagen der Arithmetik, M.S.],
but may have accepted the principle later on in his life. It seems that nowhere in
his published works does he mention compositionality as a principle. It is, therefore,
inaccurate to speak of ‘Frege’s principle’. Compositionality is not Frege’s, but it might
be called ‘Fregean’ because it is in the spirit of his later writings.” (Janssen, 1997,
p. 421)
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4 INTRODUCTION

(2) The Principle of Compositionality (Janssen, 1997, p. 419)
The meaning of a compound expression is a function of the meanings of its parts.

According to the principle of compositionality, the meaning of the simple sentence in (1a)
can be computed given the syntactic structure in (3) and knowledge of the meaning of the
non-compound expressions that occur in this sentence, i.e., the words Peter, saw, and Mary.

(3) The syntactic structure of sentence (1a):

NP
Peter

V
saw

NP
Mary

VP

S

In this example, the non-compound expressions are the terminal nodes in the syntac-
tic tree, which correspond to words. The non-terminal nodes in the tree, the phrases, are
the compound expressions. Adopting the architecture of HPSG, we assume that a word
is licensed by some lexical entry. A phrase, on the other hand is licensed by some general
rule of syntactic combination, called Immediate Dominance Schema. There is a clear cor-
respondence between the syntactic and the semantic side of the sentence: it is precisely for
words that we must give an explicit interpretation, and it is precisely for phrases that we
can compute the interpretation according to a given rule.

HPSG is a sign-based framework, which means that words and phrases are considered
linguistic signs. A sign contains syntactic and semantic information. Thus, the lexical
entry of a word does not only contain its syntactic specification, but also some specification
of the meaning of the word. The meaning of a phrase is determined by some general
principle of the grammar. This division of labor is a direct incorporation of the principle of
compositionality.

The principle of compositionality contrasts with another principle, which, according to
Janssen 1997 (p. 420), was explicitly adopted by Frege: the Principle of Contextuality.

(4) The Principle of Contextuality:
One should ask for the meaning of a word only in the context of a sentence, and
not in isolation.

To illustrate the kind of contextuality that we are concerned with in this thesis, consider
the following sentence.

(5) Pat spilled the beans.

Sentence (5) is ambiguous. In one reading, it expresses that Pat caused some vegetables
to fall out of a container, in a second reading, Pat disclosed a secret. For both readings,
we can give an interpretation to the words spill and beans such that the meaning of the
sentence is a function of the meaning of its parts. We must, however interpret beans as a
secret exactly if we interpret spill as a telling. While in (5), the interpretation of the word
beans depends on the interpretation of the word spill, the meaning secret is not available in
the following context, i.e., the sentences in (6) are not synonymous.

(6) a. Pat didn’t like beans.
b. Pat didn’t like secrets.

What we illustrated so far is that the meaning of a phrase can be determined on the
basis of the meaning of its parts. In contrast to this, the meaning of words is not predictable
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in this sense and, furthermore, may depend in an idiosyncratic way on the meaning of the
overall sentence.

The system that results under such an interpretation of compositionality and contextu-
ality distinguishes clearly between the regular aspects of interpretation, attested for phrases,
and the irregular aspects, attributed to words. The regular assignment of meaning is done
by some function at the level of phrases, the irregular assignment of meaning is done at the
level of words in the lexicon. The irregularity, thereby, comes in two kinds: first, it is an
idiosyncratic property of a word what its meaning is, and second, it is another idiosyncratic
property of a word when it may occur with a particular meaning, i.e., in which contexts.

We can show, however, that this architecture of grammar cannot be maintained: there
are irregular phrases as well as regular words. Thus, if we assume that all phrases are
regular, we cannot account for the data, and if we assume that all words are irregular, we
risk missing generalization. We will first show the existence of irregular phrases. For this
purpose, consider sentence (7).

(7) Pat tripped the light fantastic. (= Pat danced.)

It is generally assumed (Wasow et al., 1983) that the string tripped the light fantastic
is syntactically complex, i.e., a phrase. However, it is not built according to the syntactic
rules of English. In addition, the meaning of this phrase cannot be computed from that of
its parts.

This indicates that neither the syntactic properties nor the meaning of the phrase trip
the light fantastic are licensed by some rule. In this respect, it is similar to the words that
we considered so far. Since the phrase must be licensed somehow by the grammar and since
this cannot be done by the regular principles of syntax and semantics, we must assume that
it is licensed by some lexical entry. To achieve this, we must extend our notion of lexical
elements to include irregular phrases.

Furthermore, there are also words with regular syntactic and semantic properties. This
can be illustrated with passive participles. In many HPSG analyses, including that of
Pollard and Sag 1994 (pp. 121f.) and the one assumed in this thesis, a passive participle
such as seen in (8a) is considered to be derived from an active participle as it occurs in (8b).
The relation between the active and the passive participle is expressed by some Lexical Rule.

(8) a. Mary was seen.
b. John had seen Mary.

There is no doubt that the passive participle is a word. On the other hand, its syn-
tactic properties are fully predictable on the basis of those of the active participle and the
knowledge which Lexical Rule is used to relate these two participles. The same is true of
the semantic properties of the passive participle. Given the meaning of the active participle
and the information that the word seen in (8a) is passive, we can predict the meaning of
the passive participle.

With trip the light fantastic we have found a phrase which is irregular. Passive partici-
ples, on the other hand, are words that are regular. Therefore, we can no longer maintain
the assumption that the regular/irregular-distinction can be reduced to the phrase/word di-
chotomy. In Table 0.1 we summarize this result, pointing to examples from above that show
that words and phrases can be cross-classified with respect to the criterion of regularity.

In this thesis, we propose some architectural changes to the theory of HPSG which will
enable us to account for the fact that all four slots in Table 0.1 are filled. These changes will
be conservative with respect to the presentation of HPSG in Pollard and Sag 1994, because
we adopt the same word/phrase distinction made there, and the same distinction between
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Table 0.1. The cross-classification of regularity/irregularity and word/phrase:

word phrase

irregular saw in (1a) tripped the light fantastic in (7)
spilled in (5)

regular seen in (8a) saw Mary in (1a)

derived and non-derived words. In addition, the system that we will present preserves the
lexicalism of Pollard and Sag 1994 in the sense that we locate all irregularity in the lexicon.
As we want to do justice to the empirical facts, we will introduce lexical entries not only
for non-derived words, but also for irregular phrases.

This means that the words and the phrase in the upper slots of Table 0.1 are licensed
by a lexical entry. We will, therefore, call them lexical elements. On the other hand, the
VP saw Mary as it occurs in (1a) is licensed by some syntactic rule, an ID-Schema, just as
all phrases are in Pollard and Sag 1994. Finally, the passivized verb seen in the last line in
the table is licensed by the output specification of some Lexical Rule as defined in Meurers
2000, which we will call Derivational Rule throughout this thesis.

With the introduction of the notion of a lexical element, we can re-state the principles
of compositionality and contextuality to cover the cases of irregular phrases and regular
words as well. For the computation of meaning, we assume a version of compositionality as
given above, but we speak of non-lexical elements instead of compound expressions. This
leads to the following reformulation of the principle:

(9) The Principle of Compositionality (adapted version):
The meaning of a non-lexical element is a function of the meaning of its parts.2

As pointed out before, in HPSG, syntactic and semantic properties are simultaneously
present in each sign. Thus, we cannot say that a word has different meanings, depending on
the context. Instead, we must say that a word may or may not occur in a certain context.
This perspective implies that it is not the context that restricts the interpretation of a
word, but the word that restricts the contexts in which it may occur. This leads us to a
re-formulation of the principle of contextuality.

(10) The Principle of Contextuality (adapted version):
A lexical element can impose idiosyncratic restrictions on the linguistic contexts
in which it may occur.

In the re-formulation of the principle of contextuality in (10) we have also changed the
domain of the principle from “words” to “lexical elements”. Towards the end of Part II of
this thesis, we will present evidence that irregular phrases impose contextual restrictions,
just as is done by non-derived words.

The principles of compositionality and contextuality apply to different domains: The
first is relevant to non-lexical elements, which are treated as fully predictable on the basis
of their parts and the general rules of the grammar. The second applies to lexical elements.
They have the freedom to have arbitrary syntactic and semantic properties and, further-
more, they can impose constraints on the linguistic contexts in which they occur. With
this architecture of grammar, we enable HPSG to express the interaction of regularity and
irregularity in a natural way. Yet, we preserve the original lexicalism of HPSG, as we locate
the source of all idiosyncrasies and irregularities in the lexical elements.

2In the case of a derived word, such as the passive participle loved in sentence (8a), we assume that the
base word, i.e., the active verb in this example, is the “part” of the non-lexical element.
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In the first part of this thesis, we will focus on those aspects of HPSG that are concerned
with regularity in combinatorial semantics, i.e., we will ignore irregular phrases and the
contextual restrictions on lexical elements. It is necessary to address the treatment of
regularity first, because it is only possible to identify what counts as “irregular” once we
have a precise notion of what is understood to be “regular”.

In addition, it is necessary to establish a clear understanding of the formal foundations
of HPSG and of the way meaning is represented in HPSG. While the formal foundations of
HPSG, as we adopt them in this work, have already been presented in Richter 2000, based on
King 1999, the relation between the HPSG analysis of a sentence and its truth-conditional
meaning has not yet been the topic of extensive research. In Part I we will discuss this issue
in detail. As a result of our exploration we will show that it is unproblematic to assume
standard semantic representations within an HPSG grammar and to interpret them in the
usual way. This result is highly desirable, because it allows HPSG grammars to incorporate
insights and analyses of formal semantics directly. Furthermore, without a clear notion
of how the words and phrases that are licensed by an HPSG grammar can be interpreted
semantically, the predictions of an HPSG grammar are hardly testable.3

The architecture for semantics that we will present is the following: we assume that
every word or phrase in the language has a logical form, which is a representation of its
meaning. For lexical elements, the logical form is given in the lexical entry; for non-lexical
elements, the logical form is a function on the logical forms of their parts.

The logical forms used in this thesis are terms of a well-studied semantic representation
language, Ty2 (Gallin, 1975). Using such terms as logical forms allows us to combine the
tradition of syntactic Logical Forms as assumed in the Chomskyan paradigm (May, 1977,
1985; von Stechow, 1993), with the tradition of direct semantic interpretation (Montague,
1974a; Cooper, 1983; Lappin, 1991). As the logical form of a word or a phrase is a term,
it is some syntactic representation that we can impose constraints on. In this sense, it is
similar to the LF proposals. On the other hand, the logical forms assumed in this thesis are
terms of a semantic representation language. Thus, they can be assigned a model-theoretic
interpretation in the standard way. This makes it possible to express constraints that rely
on the meaning of an expression directly.

Our semantic fragment is based on the semantic analysis in PTQ (Montague, 1974b).
The semantic fragment is combined with a syntactic analysis which is based on the grammar
in Pollard and Sag 1994. As both choices are relatively conservative within the respective
fields, formal semantics and HPSG, we put the emphasis on the presentation of the integra-
tion of these two fragments, not on the motivation of the particular analysis. Furthermore,
it should be clear that by combining these two fragments, we do not resolve any of their
fundamental problems: In the case of the semantic fragment these include the lack of a
treatment of dynamic effects (Kamp, 1981; Heim, 1982; Groenendijk and Stokhof, 1991) and
potential conceptual inadequacies of the possible-world approach to intensionality (Lappin
and Pollard, 1999). In the case of the syntactic fragment, we should mention at least the
lack of worked-out theories of phonology (Höhle, 1999) and morphology (Reinhard, 2001),
and word order (Reape, 1990, 1992, 1994; Kathol, 1995; Richter and Sailer, 1995; Richter,
1997; Penn, 1999a,b,c). It is nonetheless useful to start with these particular fragments,
since they are relatively well-studied and, as the references indicate, proposals of how to
overcome their shortcomings have been developed.

The fragment that results from the combination of the PTQ semantic analysis and the
Pollard and Sag 1994 syntactic analysis is defined in the chapters of Part I. It introduces the

3In this case, HPSG runs the risk of falling back to the mere representationalism of early generative semantics
such as Katz and Fodor 1964. There, the meaning of an expression was given as a collection of semantic
features, but it was not indicated how the features can be interpreted.
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necessary syntactic and semantic structures to enable us to give a formally precise account
of the irregularity phenomena studied in Part II.

The structure of this study is the following. Besides the introduction and a conclusion,
there are two main parts. As mentioned above, the first part is devoted to the definition
of a fragment which accounts for the syntax and semantics of words and regular phrases.
It consists of four chapters. In Chapter 1 we will give an overview of the first part of
this thesis and introduce the semantic fragment used throughout the later chapters. The
grammar formalism and our syntactic fragment are presented in Chapter 2. In Chapter 3,
we show that it is possible to use the terms of a semantic representation language, Ty2, as
parts of the objects in the denotation of an HPSG grammar. With this result, in Chapter 4,
we extend the syntactic fragment of Chapter 2 with the semantic fragment of Chapter 1.

Part II addresses the treatment of idiomatic expressions within formal grammar in gen-
eral and within the present fragment in particular. It starts with a short introduction
(Chapter 5) to the connection between idiomatic expressions and the two aspects of irregu-
larity that we are concerned with in this thesis, i.e., the irregularity of meaning assignment
and the irregularity of distribution. In Chapter 6 we present the data that we will use
to motivate our own analysis and to evaluate alternative proposals in Chapter 7. There
we consider the analysis of idiomatic expressions found in Generalized Phrase Structure
Grammar (Gazdar et al., 1985), in Tree Adjoining Grammar (Abeillé, 1995), and in a con-
structional approach to HPSG (Riehemann, 1997). In Chapter 8 we show how the fragment
of Part I can be extended to handle the irregularity attested in the domain of idiomatic ex-
pressions. Chapter 9 contains a comparison between our own approach and those discussed
in Chapter 7 and some remarks on applications of the Principle of Contextuality within the
grammar of Pollard and Sag 1994.

We close this work with a summary in which we reconsider the architecture of grammar
that emerges as a result of this study. We show that the new architecture for semantics
developed in Part I has considerable advantages over that of Pollard and Sag 1994, and that
the treatment of idiomatic expressions in Part II meets our requirement for a harmonious
and integrated account of regularity and irregularity in natural language.
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A Logical Form for HPSG





CHAPTER 1

content, Logical Form and Lexicalized Flexible Ty2

The present study is carried out in the framework of HPSG, starting with the version
of the theory presented in Pollard and Sag 1994. HPSG is a sign-based theory in a broader
sense, i.e., all properties of a linguistic sign are present in the sign itself: ranging from
its phonology, its syntactic category, its potentially complex syntactic structure, to its
meaning and its context of usage. This is witnessed by attributes which bear names such
as phonology, category, daughters, content and context. Pollard and Sag 1994
is mainly concerned with syntax, leaving aside most other aspects of linguistic signs. In
Chapter 8, however, we learn more about the authors’ assumptions on semantics. Just as
in Pollard and Sag 1987, Pollard and Sag 1994 assumes a version of situation semantics as
the underlying semantic theory. The authors do admit, though that

“[i]t will doubtlessly be a disappointment to some readers — and a relief
to others — that we will not attempt here to formulate in precise terms
the principles that relate our linguistic descriptions to any one version
of situation semantic analysis [. . . ] Our goal here will be rather to offer
examples of how certain familiar analytical insights of a semantic nature
can be integrated with the syntactic treatments of the earlier chapters.”

(Pollard and Sag, 1994, p. 318)

Our approach departs from this quote in two respects. First, we will characterize how
the content value of a sign is related to the sign’s meaning. Second, we do not assume
a situation semantic background, but rather we adopt the semantic tradition of Montague.
We agree, however, with Pollard and Sag 1994 in the assumption that whatever theory of
semantics is being proposed for HPSG, it should clearly be possible to account for certain
familiar analytical insights of semantic nature and be fully integrated with the other parts
of the theory, i.e., syntax and, if present, phonology.

Due to the different choice of the underlying semantic framework, the analytical insights
are necessarily different. The interaction of semantic and syntactic analysis will not play
a major role in this work, but it should become obvious how pertinent constraints can
be formulated. What will be central is the interaction between phrasal semantics and
semantic specification in the lexicon, i.e., how the particular choice of lexical items restricts
the possible interpretations of a sentence.

In this part of the thesis, we will examine how an HPSG grammar can be equipped with
a standard semantic analysis. This apparently simple program does, however, require some
explanation. First, we will have to show what kind of semantic treatment we envision. We
will adopt a Montague-style semantic analysis, but we will use the two-sorted extensional
language Ty2 (Gallin, 1975) as semantic representation language, instead of Montague’s
Intensional Logic. In addition, we will assume an adaptation of the flexible type shifting
system of Hendriks 1993 to account for scope ambiguities. The resulting semantic system
will be presented in Section 1.3. Second, we will indicate what we understand under an
HPSG grammar. We assume the formal foundations of HPSG as presented in Richter
2000, which are based on the work of King 1989, 1994, 1999 and allow us to formalize the
grammar presented in Pollard and Sag 1994. In Section 1.1 we will address some basic

11



12 1. CONTENT, LOGICAL FORM AND LEXICALIZED FLEXIBLE TY2

properties of what we assume to be an HPSG grammar and come back to this in more
detail in Chapter 2. Finally, we must provide the synthesis of these two, i.e., integrate the
semantic analysis explicitly into the HPSG grammar. This will be the issue of Chapter 3,
where we will present an HPSG encoding of the semantic representation language Ty2, and
of Chapter 4, where we will integrate the flexible semantic system of Section 1.3 into an
HPSG grammar for some fragment of English.

In the sections of this introductory chapter, we will give some conceptual motivation
for the semantic treatment conceived in this thesis. In Section 1.1 we will give a simple
HPSG grammar and indicate some of the formal assumptions about HPSG adopted in this
thesis. In Section 1.2 we will locate the approach that is going to be taken in this thesis
with respect to assumptions about logical form and semantic interpretation made within the
generative tradition. Finally, in Section 1.3 we will present the system of Lexicalized Flexible
Ty2 which is a combination of the efforts of Gallin 1975, Groenendijk and Stokhof 1982 and
Zimmermann 1989 to provide a technically simpler semantic representation language than
Montague’s Intensional Logic on the one side, and of the attempt of Hendriks 1993 to
simplify the way scope ambiguities are handled within Montague Grammar on the other.

1.1. What Is an HPSG Grammar?

We must distinguish two possible interpretations of this question. First, we can charac-
terize HPSG as a formal system. In this sense, an HPSG grammar is whatever grammar is
written within this formal system. Second, we can consider a particular linguistic analysis
which is expressed as a grammar in this formal system. In this thesis, we address both
issues. In the present section and in Section 2.1, we will examine HPSG as a formal frame-
work for writing grammars. There, we will choose an example grammar to illustrate the
definitions and properties of the formalism which is only loosely connected to a linguistic
analysis. In Section 2.3, we will consider a concrete syntactic analysis for a fragment of
English, which is a mildly modified version of the analysis in Pollard and Sag 1994.

For our purpose here it is important to provide a general description of both aspects
of HPSG, i.e., the formalism of HPSG and the concrete linguistic analysis. The first is
needed because, in Chapter 3, we will use the HPSG formalism, to write the “grammar”
of the semantic representation language Ty2. We can show that this grammar is an ade-
quate encoding of the semantic representation language. The understanding of a particular
syntactic analysis for English is also necessary, because in Chapter 4, we will enrich such
a syntactic analysis that with a semantic analysis based on the representation language of
Chapter 3. In Part II, the syntactic analysis will be augmented to allow for an account of
idiomatic expressions. In the present section, we will focus on the HPSG formalism and
give a first impression of the concepts that underlie it.

Our understanding of what the formalism of HPSG is, is primarily based on the assump-
tions made in King 1999, which provides a formal characterization of what it means for an
HPSG grammar, based on the paradigm of Pollard and Sag 1994, to be true of a natural
language. According to King, the idea of an HPSG grammar is to describe a particular
language, say English. In fact, for an HPSG grammar to be an adequate description of
English, the English language must be a model of that grammar. There are many concep-
tual and formal details related to this idea, some of which we will address in Chapter 2.
There we will present the formal language that we will use to throughout this thesis.1 The

1The position of King 1999 differs in some respect from that taken in Pollard and Sag 1994 and Pollard
1999. While these differences are not crucial for our purpose, the terminology that we are using in this
thesis is follows that of King rather than that of the other papers. For a detailed consideration of these
issues, see Richter 2000.
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formal language is called Relational Speciate Re-entrant Language (RSRL), which, as the
name suggests, is an extension of Paul King’s Speciate Re-entrant Logic (SRL) (King, 1989,
1999). RSRL extends the set of possible descriptions by providing relations and quantifi-
cation as part of the description language. The underlying model-theoretical assumptions
are basically the same. In this section, we will give a simple grammar which will serve to
illustrate the basic properties of RSRL. In Chapter 2 we will expand this grammar to make
it similar to the grammar given in Pollard and Sag 1994.

An HPSG grammar consists of two parts: a signature and a theory. In the signature,
the basic ontological assumptions about (the) language are expressed. In the theory, more
specific properties of the language are formulated.

Let us briefly turn to the signature. One of the basic ontological assumptions, made in
this thesis is that linguistic signs have a phonology and syntactic and semantic properties.
In addition, we assume that a linguistic sign is either a word or phrase. Moreover, phrases
have daughters. These assumptions are collected in the signature. We will usually express
these assumptions in graphs such as the following. The tree in (11) expresses what we call
technically the sort hierarchy and the appropriateness conditions below the sort sign.

(11) The sort hierarchy and appropriateness conditions below sign:

word phrase
daughters constituent-structure

sign
phonology list
synsem synsem

In an HPSG perspective, we are interested in interpretations of such signatures. An
empirically adequate grammar of a natural language will be such, that the natural language
is, inter alia, an interpretation of the signature of the grammar. An interpretation contains
a set of linguistic objects, which is usually called the (linguistic) universe. Each of these
objects is assigned a sort from the signature.

Let us consider the verb walks as a linguistic object with the label word. This linguistic
object is related via an attribute to another linguistic object which is the phonology of the
word. In this thesis, we are not concerned with phonology. We will, therefore, assume an
orthographic representation instead of a real phonological representation. In the case of the
word walks, we take its phon value to be a list which contains the string walks.2

In the sort hierarchy given in (11), it can be seen that the sort word appears below the
sort sign. This means that the sort word is a subsort of the sort sign. Parallel to this, we
assume that the sort list has two subsorts, empty-list (elist) and non-empty-list (nelist). In
an interpretation of a signature, the objects in the universe are always assigned sorts that
do not have subsorts, i.e., there will be objects that are assigned the sort word, but there
are no objects to which the sorts sign or list are assigned.

For the sort sign, we have declared two attributes as being appropriate: phonology
and synsem. This declaration has its reflex in the interpretations of the signature. In
the case of (11) this means that for every sign, there is some object with the label elist or
nelist which is related to this sign by the attribute interpretation function for the attribute
phonology. In our simple example of the word walks, this list would be 〈walks〉.

The part of the signature depicted in (11) also introduces a second subsort of sign: the
sort phrase. An example of a phrase would be the sentence Mary walks. By virtue of being
a subsort of sign, every phrase must have a phonology and some syntactic and semantic

2Höhle 1999 considers in detail what can and should be the value of the phonology attribute within the
formal framework assumed in this thesis.
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Figure 1.1. The word walks:_^]\XYZ[WVUTPQRSword
synsem





phon

��gfed`abcsynsem _^]\XYZ[nelist
first

��

rest

��_^]\XYZ[
walks

_^]\XYZ[elist

properties. In addition, the attribute daughters is declared appropriate for the sort phrase.
This means that every phrase is related to some object of the sort constituent-structure by
the attribute interpretation function for the attribute daughters.

In this thesis, we assume that the declarations made in the signature lead to a total
specification of the shape of the linguistic objects in an interpretation. This means that all
linguistic objects have a label of a maximally specific sort, i.e., there are no objects with
label sign in the denotation of the grammar, but objects with the labels word or phrase
may exist. In addition, the attribute interpretation function is such that if an attribute is
appropriate for a given sort, then all objects that are of this sort or of a subsort thereof,
are related to some other linguistic object by the attribute interpretation function for this
attribute. In more intuitive terms, this means that declaring the attribute phonology
appropriate for the sort sign has the consequence that every word object and every phrase
object is related to some list by the attribute interpretation function for phonology. On
the other hand, the fact that the attribute daughters is appropriate for the sort phrase
in (11), but not for the sort sign or word means that the attribute interpretation function
for daughters is undefined on every object of sort word.

In Figure 1.1 we see parts of an interpretation of our signature. Each bubble in the
figure depicts an object, the label inside the bubble states its sort. The arrows show which
attributes map which object to which object. In the figure, we have marked the object of
sort word with a double-lined bubble, because every other bubble can be reached via an
arrow from this bubble. In addition, the figure contains all objects that can be reached by
an attribute from the double-lined bubble. We also speak of parts of an interpretation that
have these two properties as a configuration of objects under an object. In our case, the
double-lined bubble is used for the object o, such that the figure shows a configuration of
objects under o. For ease of reference, we will often call this object o the matrix object. All
objects in the configuration are components of the matrix object.

It should also be noted, that we use an encoding of lists such as the one proposed in
Pollard and Sag 1994. As mentioned above, we assume that the list has two subsorts, elist
and nelist. For the latter sort, the attributes first and rest are appropriate. This can
also be seen in Figure 1.1. There, the matrix object is connected with a nelist object via
the attribute phon. From this nelist object, there are two arrows departing: one with the
name first which leads to an object labelled walks, and one with the name rest which
leads to an object labelled elist.

In graphs as the one in (11) we indicate (parts of) the sort hierarchy and the appro-
priateness function. In addition to these, we assume that a signature also provides names
for relations and an arity function that indicates the arity for the relation symbols. Usual
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relation symbols used in HPSG are for example “append” with arity three, or “member”
with arity two. As the interpretations of the signature must reflect all the properties of the
signature, they also contain the interpretation of the relation symbols. For each relation
symbol ρ with arity i, the interpretation contains a set of i-tuples that are built from the
objects in the universe.3

As interpretations contain the interpretation of the relation symbols, and as configura-
tions are parts of an interpretation, they must contain parts of the interpretation of the
relation symbols as well. In fact, we will assume that every configuration contains all the
n-tuples that are in the interpretation of a relation symbol and that are built only from
components of the matrix object. When we give configurations in figures such as Figure 1.1,
we will not, however, indicate those aspects that relate to relations.

Given the symbols for sorts, attributes and relations as provided by the signature, we
can write descriptions. Descriptions are normally given in the form of an AVM (Attribute
Value Matrix). In (12) we give a description of the word walks. In later AVMs, we will use
the usual list notation, i.e., we write 〈walks〉 as the description of the phon value in (12).

(12)

2

6

4

word

phon

"

first walks

rest elist

#

3

7

5

This AVM describes every object o that is of sort word and has the attribute phon
defined on o such that the attribute interpretation function maps this object to some other
object o′ such that the attribute first is defined on o′ and maps o′ to an object labelled
walks. Furthermore, the attribute rest is defined on o′ and maps it to an object labelled
elist. The matrix object in Figure 1.1 is described by this description. This shows that if
we want to verify whether an object is described by a given description, we must consider
the configuration under this object in the given interpretation.

In contrast to configurations, which are always total, descriptions of objects may contain
supersorts and need not mention all attributes defined on the objects it describes. Given
the sort hierarchy in (11), we know that the attribute interpretation function for synsem is
defined on every word. Therefore, we know that it is also defined on every element described
by the AVM in (12).

Descriptions can be a lot more complex than the AVM given in (12). In (13) we give
a description of the sentence Every man walks. In this description, we use the attributes
h-dtr and n-dtr which we have not yet introduced. We assume that these attributes are
defined on the sort constituent-structure and that the sort sign is appropriate for them.

(13)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phrase

phon 〈every, man, walks〉

dtrs

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h-dtr

"

word

phon 〈walks〉

#

n-dtr

2

6

6

6

6

6

6

6

6

6

4

phrase

phon 〈every, man〉

dtrs

2

6

6

6

6

4

h-dtr

"

word

phon 〈man〉

#

n-dtr

"

word

phon 〈every〉

#

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3As will be made precise in Chapter 2, these are i-tuples of objects of the universe or sequences of objects
of the universe. In the present section, however, it is enough to assume that they are i-tuples of objects of
the universe.
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Figure 1.2. The phrase every man:
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Figure 1.2 shows a configuration of objects under a phrase object. The matrix object is
described by the description of the nonhead daughter in the AVM in (13).

So far, we have only seen AVMs containing sort names and attribute names. In addition
to this, we will also use variables. These variables are usually called tags in HPSG and
are written as boxed integers ( 1 , 2 , . . . ). Alternatively, we will sometimes use lower case
letters (a, b, . . .x, y, z) for variables. Tags are used in HPSG to indicate identities. We can
modify the description of the sentence Every man walks in (13) so that we only describe
objects which are the matrix objects of configurations that do not contain more than one
object with label every, man or walks. Such a description is given in (14).

(14)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phrase

phon 〈 1 , 2 , 3 〉

dtrs

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h-dtr

"

word

phon 〈 3 walks〉

#

n-dtr

2

6

6

6

6

6

6

6

6

6

4

phrase

phon 〈 1 , 2 〉

dtrs

2

6

6

6

6

4

h-dtr

"

word

phon 〈 2 man〉

#

n-dtr

"

word

phon 〈 1 every〉

#

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

We can verify that the description of the nonhead daughter in (14) does not describe the
matrix object in Figure 1.2 (page 16): There, starting from the matrix object, the paths
phon first and dtrs n-dtr phon first lead to different objects. Consider, however, the
configuration in Figure 1.3 (page 17). The matrix object of this configuration satisfies the
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Figure 1.3. The phrase every man (as a slightly different configuration):
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description of the nonhead daughter in the AVM in (13), just as was the case of the matrix
object of the configuration in Figure 1.2. In contrast to the first configuration, however,
the matrix object of the second configuration also satisfiesthe description of the nonhead
daughter given in (14). As can be seen, the configuration in Figure 1.3 contains only one
object with label every and only one object with label man. For each of these objects,
there are two arrows pointing to it: Starting from the matrix object of the configuration,
the paths phon first and dtrs n-dtr phon first both lead to the single every object;
and the paths phon rest first and dtrs h-dtr phon first both lead to the single man
object in the configuration.

The use of the tags in AVMs indicates that the AVM describes an object o if the paths
that lead to the same tag in the AVM, denote the same linguistic object when applied
to o. As we treat tags formally as variables, we say that there is a variable assignment
function such that the paths that lead to some variable i , map the described object into
the linguistic object denoted by applying the variable assignment to i .

Under this interpretation of tags, the AVM in (14) contains three free variables, 1 ,
2 , and 3 . In order to bind variables, we can use quantifiers. Our description language
provides two quantifiers, an existential quantifier, written as E, and a universal quantifier,
written as A. In RSRL, we use a restricted quantification, in the sense that a quantifier
does not range over the entire universe. Instead its range is determined by the objects in
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the configuration under the described object.4 In (15) we quantify existentially over the
variables used in (14).

(15) E 1E 2E 3
2
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6

6

4
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dtrs

2

6
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»
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n-dtr

2
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4
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2

6

6

6

4

h-dtr

»
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–

n-dtr

»
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3

7
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7

5

3
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7
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7
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7

7

7

7
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7

7

7
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This description describes an object exactly if this object has three components o1, o2
and o3 such that interpreting the variables 1 , 2 and 3 as these components, the object
is described by the rest of the description. In our example configuration in Figure 1.3,
the variable 1 must be interpreted as the every object, variable 2 as the man object. In
the case of the earlier configuration in Figure 1.2, no such variable assignment is possible,
because the elements on the phon list of the nonhead daughter are distinct from those on
the phon lists of the words.

As said before, the signature also contains names for relations such as append and
member. We can give a description of the sentence Every man walks that contains relations.
The phon value of the phrases in the sentence can be characterized as the concatenations
of the phon values of their daughters. The following description makes this explicit.

(16) E 1E 2E 3 E 4 E 5
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and append( 1 , 2 , 4 )
and append( 4 , 3 , 5 )

The description in (16) contains the logical connective and, which expresses conjunction.
In RSRL we will use more connectives such as or for disjunction, not for negation, ⇒ for
implication. The description in (16) describes an object if and only if (iff ) there are five
components of this object, referred to by the variables 1 , 2 , 3 , 4 , and 5 , such that the
object is described by the description in the big square brackets and, in addition, the
objects referred to by the variables 1 , 2 and 4 are in the append relation, and the objects
referred to by the variables 4 , 3 and 5 are also in the append relation. In (17) we give
an informal characterization of the intended interpretation of the relation append. Such
a characterization means that we only want to consider interpretations of the signature in
which the triples that are in the relation append have the indicated properties.

4In Chapter 2 we will make this range more precise. We will define it in such a way that it contains
the components of the described object and all finite sequences thereof. For the purpose of the intuitive
characterization in this section, it is enough to consider the set of components as the range of the quantifiers.
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Figure 1.4. The phrase every man (as yet another configuration):
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(17) The relation append has in its interpretation all triples of lists l1, l2, and l3
such that

(i) if l1 is an empty list, then l2 and l3 are identical, and
(ii) else,

the first element of l1 is also the first element of l3, and
the rest list of l1, the list l2 and the rest list of l3 are in the interpretation
of the relation append.

Given this specification of the relation append, the matrix object of the configuration
in Figure 1.3 is not described by the description of the nonhead daughter together with the
relation call append( 1 , 2 , 4 ) in (16). In this description, the relation append is required to
hold between the three lists that are the phon value of the word every, the phon value of
the word man and the phon value of the phrase every man. Given our specification of the
relation append, for this to be the case, the first element of the phon value of the word every
must be the first element of the phon value of the phrase every man. So far, everything
is unproblematic, but, the remaining phon value of the word every, i.e., the relevant elist
object in the configuration, must stand in the relation append with the phon value of the
word man and the phon rest value of the matrix object of the configuration. As the first
of these three lists is empty, our specification of the relation append requires the other two
lists to be identical. It can be verified in the configuration in Figure 1.3 that the paths
phon rest and dtrs h-dtr phon lead to different objects. Therefore, the matrix object
of this configuration does not satisfy the description of the nonhead daughter and the first
call of the relation append in (16).
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In Figure 1.4 (page 19) we give a third configuration for a phrase with phonology every
man. This configuration differs slightly from the one given in Figure 1.3. In the new con-
figuration, the paths phon rest and dtrs h-dtr phon actually lead to the same object.
As for the rest, the two configurations are alike, the matrix object of the configuration in
Figure 1.4 is described by the description of the nonhead daughter and the first use of the
relation append in (16).

With the description in (16) we have given examples of all parts of the description
language used in this thesis. In Chapter 2, the formal definitions will be given. It should
be noted, though, that the signature not only specifies the shape of the linguistic objects,
it also provides the non-logical symbols (i.e., the names of sorts, attributes, and relations)
that we can use to write descriptions.

As we have seen, objects in an interpretation can be described by some description,
or can fail to be described by a certain description. There is one particularly interesting
case of objects: there may be objects o and o′ in an interpretation such that they are
described by exactly the same descriptions. It has been shown (King, 1999) (pp. 342ff.)
that this is the case exactly if the configurations under the objects are of the same shape,
i.e., they have the same sort label, the same paths are defined on them and lead, again,
to objects with the same sort label. In addition, whenever two paths have identical values
in the object o, these two paths also have identical values in the object o′.5 Such objects
(respectively the configurations under them) are called indiscernible as they cannot be
told apart by any description. Alternatively, such objects are called congruent, as the
configurations under them are of exactly the same shape. When we talk in an intuitive way
about indiscernible/congruent (configurations of) objects, we also say that they are copies
of each other.

For illustration, consider the configuration under the word walks as given in Figure 1.1
(page 14). The way we have set up the signature, all word objects with the phonology 〈walks〉
are indiscernible/congruent. Independent of this, we can easily assume an interpretation of
the signature which contains several such configurations of objects.

In the case of phrases, it is a different matter. Here we have seen that the three configu-
rations that we have given for the phrase every man in Figures 1.2, 1.3, and 1.4 are the same
with respect to the paths that are defined on them and with respect to the labels of the ob-
jects reached by these paths. The three configurations are, however, different with respect
to those paths that lead to the same objects, and with respect to the triples that stand in
the relation append. This configurational difference is reflected by the fact that the matrix
objects of these three configurations behaved differently with respect to the descriptions
in (13), (14), and (16). It was only the third configuration whose matrix object met the
description of the nonhead daughter in these cases, and it was only the first configuration
that failed to meet the description of the nonhead daughter in the AVM in (14).

Now that we have seen what a description is, we can address the second part of an
RSRL grammar, the theory. The theory is a set of descriptions which only use symbols
provided by the signature, i.e., the symbols introduced there for sorts and relation names,
and some “built-in” symbols, such as logical connectors, quantifiers and variables. Just as
the signature is meant to specify the general shape of every possible linguistic object, the
theory is meant to describe every object of the language. In (18) we give an example of a
description that could be part of a theory of natural language.

5As configurations in RSRL also contain relations, we must require that the correspondence also extends
to the relational part of the configurations. This extended notion of congruence is defined in Richter 2000
(p 184). In Section 3.2 we will address it in more detail.
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(18) phrase ⇒
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This description is met by every linguistic object that is either not a phrase at all, or
else, its phon value ( 3 ) is required to be the concatenation of the phon values of its
daughters ( 1 and 2 ). Clearly any phrase described by (16) satisfies this description, and
all its components do so as well. In particular, the matrix object of the configuration in
Figure 1.4 is described by (18), but, as we have seen, the matrix objects of the configurations
in Figures 1.2 and 1.3 are not. As the matrix object of the configuration in Figure 1.1 is a
word, it trivially satisfies the description in (18).

In descriptions which are part of the theory, we collect our specific generalizations about
the language. In order to relate our grammar to the language we need to interpret the
grammar with respect to an interpretation of its signature. To do this, we require that
an interpretation of the signature is a model of the grammar, if and only if every object is
described by every description in the theory.

Turning again to the concrete objects that we have considered so far, we can illustrate
the kind of model that will be used in this thesis. All the objects that occurred in the
configurations shown in Figures 1.1–1.4 are built according to the signature. Therefore, we
can assume that there is an interpretation of the signature which contains exactly those
configurations. However, if we assume that description (18) is part of the theory, then this
interpretation is not a model of the grammar, because the matrix objects of the configura-
tions in Figures 1.2 and 1.3 fail to satisfy this description.

We can, of course, consider the interpretation that contains only the configurations
in Figures 1.1 and 1.4. In this case, every object in the universe of the interpretation is
described by the description in (18). This interpretation is, then, a model of our grammar.
Let us call this particular model M .

As a further condition, we are only interested in certain kinds of models, called exhaus-
tive models. Exhaustive models are maximal, i.e., they contain at least one copy of each
configuration which can appear in a model of the grammar. Intuitively this means that,
if we have an exhaustive model of the grammar, then we are sure that we have collected
instances of all configurations that are licensed by the grammar. To consider a simple ex-
ample, the adequacy of a grammar for a given language should depend, inter alia, on the
question whether there is a configuration which has as its matrix object a word object with
the phonology 〈walks〉 in the model of the grammar or not. However, it is independent of
the question how many copies of such a configuration there are.6

As we have seen, M as characterized above is a model of our grammar, but it is not
an exhaustive model. To see this, we add the configuration in Figure 1.5 to the model
M to arrive at some model M ′. The configuration in Figure 1.5 clearly adheres to the
signature: all its objects are labelled with maximally specific sorts, nelist and elist. To the
sort nelist, two attributes are appropriate, which are both present in the configuration. The
values of these attributes are objects whose sorts follow the signature. Furthermore, all the
objects in the configuration trivially satisfy the description (18) in the theory, as they are
not phrases. Finally, we have implicitly added those triples of objects to the configuration
that occur in the configuration and stand in the relation append according to our intuitive
characterization. Thus, M ′ is a model of the grammar, as is M . The new configuration

6As elaborated in Richter 2000, this is the position taken in King 1999. In contrast to this, in Pollard 1999
copies are eliminated from the denotation of a grammar.
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Figure 1.5. One more configuration:
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that we have added to form M ′ is, however, not congruent with any of the configurations
already present in M . Therefore, M cannot be an exhaustive model of our grammar.

To take a more linguistic example, the model M does not contain a configuration whose
matrix object is of sort phrase and whose phonology is the list 〈every, man, walks〉. Such a
configuration would clearly be compatible with the grammar. Therefore, it will occur in an
exhaustive model of our grammar.

Using the notion of an exhaustive model, we can show that the small grammar of this
section is not a grammar of English. Assume that I is an exhaustive model of the grammar.
If our grammar is a grammar of English, then the English language would be an exhaustive
model of the grammar as well. But this means that for each configuration in I , we must be
able to find a congruent configuration in English, and for each configuration in English, there
must be a congruent configuration in I . We can show that the first of these requirements
is not satisfied:

In addition to configurations whose matrix objects are phrases with the phonology every
man or every man walks, any exhaustive model of the grammar will contain configurations
whose matrix objects are phrases with phonologies such as man every, walks walks walks,
etc, or any other permutation of the phonologies assumed for words. Clearly, there are no
configurations in English that are congruent to such configurations. We say that our little
grammar of this section overlicenses.

If the second requirement is not met, we can speak of underlicensing. In that case,
English contains configurations for which we cannot find congruent configurations in I . To
construct an example for underlicensing, let us add a constraint to the theory that requires
that the phonology of every phrase contains no more than two elements. English contains
a configuration that corresponds to the sentence every man walks, but this configuration
has a phonology with more than two elements. If we now consider an exhaustive model I
of this new grammar, then we cannot find such a configuration in I .

In this section, we have given a first characterization of our view of an HPSG grammar.
In the next chapter, we will provide the underlying definitions that we have glossed over in
this section. In the final section of Chapter 2 we will also indicate the syntactic analyses
that we base our semantic specification upon.

1.2. content and LF

The central point of Part I of this thesis is to provide the necessary architecture to
furnish syntactic analyses made within HPSG with a model-theoretic semantic analysis. In
Pollard and Sag 1994, every linguistic sign is built in such a way that a path synsem local
content is defined on it. Thus, for every sign object, there is another object that the sign
is related to by the interpretation of this path. Put differently, every sign has a component
which specifies its content. What then, is this component? In Pollard and Sag 1987, we are
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given the example of the linguistic sign cookie. Its content, or the signifié, is characterized
as either “a semantic representation, the psychological concept of cookiehood” (p. 2) or the
“thing described: the property of being a cookie” (p. 5). These different interpretations are
labeled conceptualist vs. realist respectively. Later in the text, the authors state:7

“In the interest of practicality, though, we will simply ignore such ques-
tions, and leave it to the reader to interpret the symbolism of SEMAN-
TICS values in a way that is consistent with his or her philosophical scru-
ples. As a matter of expository convenience, we will usually talk about
meaning in a realistic way; but the reader is urged to adopt a healthy
scepticism and remain alert to the possibility of linguistic evidence which
might help to resolve the conflict between realism and conceptualism one
way or the other.” (Pollard and Sag, 1987, p. 82)

This quote indicates that the authors do not give a clear indication as to how we should
interpret the semantic part of a sign. They suggest, however, that as far as they can see,
both perspectives should be compatible with their analysis.

In Pollard and Sag 1994, the authors are even more vague about the role of content:

“content, on the other hand, is concerned principally with linguistic
information that bears directly on semantic interpretation (and is there-
fore most closely analogous to GB’s level of LF (logical form)).”

(Pollard and Sag, 1994, p. 3)

GB’s level of LF is a syntactic level of representation, therefore, by definition, it can only
be a description of a situation or a concept and not be this concept itself. Towards the end
of this section, we will come back to this question, considering an example.

In order to be able to locate our own approach, it is first worth looking at several
alternatives that have been proposed within the GB tradition. We will confine ourselves
to three major alternatives. First, there is the mainly syntactically oriented conception of
LF as developed in May 1985, 1989, 1991. Second, von Stechow 1993 proposes a view of
LF which is called transparent Logical Form (TLF). This TLF is closer to semantics than
May’s LF. Finally, Lappin 1991 proposes an approach which makes LF, as a separate level
of representation, obsolete. Instead, he proposes to interpret S-structures directly. We will
summarize these three approaches and give a rough characterization of the similarities and
differences of our own approach in contrast to these.

For May 1991 (p. 334), the syntactic level of LF is distinct from a semantic logical form
(lf). The latter is “the representation of the form of the logical terms of the language”.
This lf is considered a syntactic level, but it represents the syntax of logical terms. May
assumes (p. 347) that the interpretation of, at least, the logical connectives and quantifiers
is universal. In contrast to this, LF is characterized as a component of the grammar of
natural languages.8 As LF is conceived as part of the derivation of a sentence — just like
its D-structure, S-structure and Phonological Form (PF) — LF has the form of a syntactic
tree which has words at its leaves, syntactic category labels at its nodes, etc. It is, then, at
the syntax-semantics interface that, for syntax, LF looks like a tree, but for semantics, the
LF is seen as the representation of a (set of) lf(s) which can, then, be interpreted.

7Note that in Pollard and Sag 1987 semantic information of a sign is indicated as the value of the attribute
SEMANTICS, not content as in Pollard and Sag 1994.
8Confusingly enough, though, May 1991 (p. 334) says that

“the grammars of natural languages have, as one of their components, a level of LF,
which represents the form of the logical terms”
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Figure 1.6. The Logical Form of the sentence (19a) according to May 1989:
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In order to substantiate his claim for the existence of LF, May shows that LF complies
principles which hold for other syntactic levels as well. Among these, there are the ECP,
the Theta Criterion and Binding Theory. In addition to these general principles, he argues
that LF differs from the other levels in that some movement operations are triggered by
semantic considerations. The prototypical type of movement at LF is Quantifier Raising
(QR). May 1991 shows that QR is necessary to determine the scope relations in a sentence,
i.e., to arrive eventually at the right lf. On the other hand, QR is restricted by Binding
Theory, just as movement from D-structure to S-structure.

As a concrete example, consider the following sentence from May 1989. According to
May, sentence (19a) has two readings, which are given in (19b) and (19c). In Figure 1.6,
we indicate the Logical Form for the sentence in (19a).

(19) a. Everyone loves someone.
b. ∀x∃ylove′(x, y)
c. ∃y∀xlove′(x, y)

In May’s view of Logical Form as a syntactic level of representation, both readings of the
sentence have the same Logical Form. May’s motivation for having a single LF for two
distinct readings is twofold: syntactic and semantic.

Let us first address the syntactic argument. May wants the principles of grammar that
hold for other levels of representation to be valid at the level of LF as well. In a LF
in which the NP everyone is higher in the tree than the NP someone at LF, the paths
that result from quantifier raising would cross each other. Such a crossing is, however,
excluded for wh-phrases in English. This is illustrated in May 1985 (p. 32) with the following
example. In (20) and (21), we give the relevant example sentence in (a) and indicate the
LF representation in (b).

(20) a. Who admired what?
b. [whatj [whoi[ ei admired ej ]]]

(21) a. * What did who admire?
b. [whoi [whatj [ did ei admire ej ]]]

In the LF for sentence (20), the object wh-phrase what is moved in such a way that
its path contains that of the subject wh-phrase. Sentence (21) is ungrammatical. This
is derived by a ban on crossing paths at the LF representation. The explanation of the
ungrammaticality of sentence (21) makes essential use of the fact that movement at LF
behaves just as movement in S-structure. As May also wants quantifier raising to be parallel
to wh-movement, he is forced to have a single LF representation for the sentence in (19a).
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In May 1985, 1989, there is also a semantic argument given in favor of a single LF for
sentences with multiple quantifiers. May points out that there are in general various possible
interpretations for sentences with multiple quantifiers. May assumes that all quantifiers that
adjoin to the same S node must be considered a unit whose interpretation is determined
independently. For illustration, consider the following ambiguous sentence:

(22) a. Nobody loves nobody.
b. ∀x¬∀y¬[love′(x, y)]
c. ∀x∀y¬[love′(x, y)]

The sentence can have the readings indicated in (b) and (c). Under the (b)-reading,
everyone actually loves someone, whereas under the (c)-reading, no-one loves anyone. Ac-
cording to May, the LF of sentence (22) contains two negative quantifiers adjoined to the
S node. The interpretation, then, has the possibility to interpret either quantifier indepen-
dently, which results in the (b)-reading, or to collapse the two negative quantifiers into a
single negative quantifier which binds two variables.9 With examples like these, May tries to
show that the different interpretations of sentences with multiple quantifiers are a semantic
property of such sequences of quantifiers and not due to structural differences.

From this short exposition of May’s concept of LF, we can extract the following points:
First, LF is needed as a syntactic level of representation, as it is needed to exclude sentences
as (21). Second, the LF of a sentence does not necessarily express a unique reading, it only
indicates the scope domain of a quantifier, i.e., within which clause the quantifier takes its
scope, but it is neutral with respect to the relative scope of quantifiers which are adjoined
to the same clause.

So far, we have seen that there are some arguments in favor of a syntactic level of LF,
i.e., a level that is quite close to semantics but still is the same kind of entity as the other
syntactic representations (D-structure, S-structure and PF). The theory of transparent LF
as presented in von Stechow 1993 shares exactly this perspective. There, however, it is
assumed that any transparent LF can be directly used as an lf, i.e., it can be directly
interpreted semantically.

“Wir verstehen hier unter den logischen Formen eines Satzes die Reprä-
sentationen, die seine Lesarten eindeutig festlegen, d.h. ein n-deutiger
Satz soll n logische Formen haben. [. . . ] Eine plausible Annahme ist es,
daß die Ebene der transparenten LF für diesen Fall genau n Strukturen
zuläßt, die diese Bedeutungen jeweils eindeutig kodieren.”10

(von Stechow, 1993, p. 54)

Consequently, Stechow excludes cases of too few LFs or LFs which are not entirely
motivated by the needs of semantics. The first situation arises with LFs which allows for
several interpretations such as the May-style LF given in Figure 1.6 for sentence (19a). The
second situation arises when there are certain movement operations assumed at LF which
do not have an impact on the semantic interpretation. We will not encounter this type of
an example in this thesis.11

9In the semantic representation, we should, then, give the (c)-reading as ∀x, y¬[love′(x, y)].
10“Here the logical forms of a sentence are understood as those representations which uniquely determine its
readings, i.e., an n-times ambiguous sentence should have n logical forms. [. . . ] It is a plausible assumption
that in this case, the level of transparent LF admits exactly n structures which unambiguously encode these
meanings.” (our translation)
11The theory of Progovac 1988 might provide such an example. Progovac assumes that some negative
polarity items in Serbo-Croatian move to a negation in an upper clause. By doing so, however, they do not
extend their own scope. Thus, this movement is not semantically driven and, the theory is not compatible
with a transparent LF.
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Figure 1.7. The transparent LF for sentence (19a) under reading (19b):
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The operations that von Stechow 1993 assumes at the level of LF are QR but also
reconstruction, i.e., some of the S-structure movement must be undone to achieve the right
LF. LFs also contain material that is not needed elsewhere in syntax, such as some implicit
arguments (a world index, a temporal index, an event variable, to name just a few) and also
some extra operations at phrasal nodes that influence the interpretation (lambda abstraction
and existential quantification over free variables). Let us consider again the ambiguous
sentence in (19a). For Stechow, this sentence has two transparent LFs, which correspond
to their two readings. In Figure 1.7 we give the transparent LF for the reading in which
the subject quantifier has wide scope over the direct object quantifier.12

The tree in Figure 1.7 reveals some of the above mentioned properties of Stechow’s
approach. Firstly, in the semantic representation we use the variable w, which is a world
index. It is an implicit argument which does not correspond to any overt syntactic argument
in the sentence. Secondly, the traces that Quantifier Raising effectuates, are translated
as variables xi and xj respectively. Thirdly, when we interpret a tree, we are allowed
to execute some semantic operations to the semantics of the daughters in order to make
them compatible with each other. In Figure 1.7 this is indicated by giving the semantic
representation of a node below its syntactic category, and giving the semantic representation
used further in the interpretation above the syntactic category label. As an example, see
the translation of the lowest S node is love′w(xi, xj). Before we can combine this formula
with the logical form of the raised quantifier someone in the next local tree, we must first
abstract over the variable xj . The semantic representation with which the lower S node is
associated in the next local tree is λxj .love′w(xi, xj). Analogously, for the next S node, the
translation is ∃xj .love′w(xi, xj). Before this formula can be combined with the translation
of everybody, we perform λ-abstraction over the remaining free variable xi. The translation
of the overall sentence is, then, the term given in (19b).

In his concluding remarks, von Stechow 1993 (pp. 83f.) admits that, even though he
considers LF a level of syntactic representation, its main mechanisms, reconstruction and
abstractions, are not readily found in syntax proper. In particular, reconstruction, being
downward movement, is not compatible with standard assumptions about movement. Thus,
even though all elements of a transparent LF are motivated by semantics, it seems to
be less certain whether they can be equally well motivated by syntax. This, of course,

12For the other reading, a different transparent LF would be assumed, in which the NP someone is attached
higher in the tree than the NP everyone.
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questions whether the tree structure representation is really appropriate. Under the working
hypothesis that syntactic trees are the only data type available, which seems to be shared
among the researchers within the Chomskian paradigm, this question does, however, not
arise, i.e., if some kind of LF is needed, it can only be a syntactic tree.

Beside the primarily syntactically motivated LF of May, and the primarily semantically
motivated transparent LF of von Stechow, there are also researchers claiming that an ad-
ditional level of representation such as LF is unnecessary. To pick out one proposal in this
direction, consider Lappin 1991. Lappin’s position is concisely summarized in the following
quote.

“. . . I propose that rules of model theoretic interpretation apply directly
to the S-structure of a sentence in order to yield its interpretation. [. . . ]
On this approach, S-structure is the input to semantic rules which define
the truth conditions (or appropriate analogue) of a sentence, and there
is no additional level of representation defined by QR (and wh-raising)
which stands between S-structure and the application of these rules. I
will refer to this view as “S-structure Interpretivism”.”

(Lappin, 1991, p. 310)

Lappin shows for a number of phenomena that an analysis can be given that makes no use
of a separate level of representation. Instead, he states interpretation rules for S-structure
representations directly.

Under the assumption of S-structure Interpretivism, a sentence must be interpreted as a
set of meanings, i.e., for a semantically ambiguous sentence such as (19a), there is a single
structure, S-structure, which can be interpreted. The interpretation of this structure is the
set of all readings of the sentence.

In order to handle scope ambiguities, Lappin 1991 assumes a storage mechanism along
the lines of Cooper 1983. In this approach, an NP is interpreted as a free variable together
with a store. A store, on the other hand, is a pair consisting of the denotation of the NP and
an index. Consequently, using such a storage mechanism introduces a further complexity
in the objects that are denoted by a sentence: an S-structure is interpreted as a set of
sequences of sequences of meanings (Cooper, 1975, p. 160).

This can best be illustrated with an example. In Figure 1.8 we give the S-structure of
sentence (19a). Working within the framework of GB, Lappin assumes an IP to be present
in the structure of simple sentences. Below the terminal nodes in the tree, we indicate
the translation of the words. The word loves is simply translated as the singleton set with
the sequence which contains the sequence which contains the denotation of the constant
love′ as its element. The use of sequences of meanings becomes clearer in the case of the
interpretation of the quantified NPs everyone and someone. In the case of the direct object
NP someone, the interpretation of the word is a singleton set which contains the sequence
consisting of 〈[[y]]〉 and the store 〈[[λP.∃y[P (y)]]], y〉. When these two meanings combine
to give the interpretation of the VP, the result is a singleton set whose first element is
the sequence containing the functional application of [[love′]] and [[y]], i.e., the functional
application of the elements in the first element of the sequences denoted by the daughters.
In addition, the sequence in the denotation of the VP also contains the store of the direct
object, 〈[[λP.∃y[P (y)]]], y〉.

For the node Infl, we can simply assume an empty semantics. Combining this with the
interpretation of the VP makes the interpretation of the I′ node identical to that of the
VP. The interpretation of the S node is more complicated. As the sentence is ambiguous,
it does not contain a single sequence, but several distinct sequences. In (23) we give the
sequences that appear as elements in the interpretation of the S node.
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Figure 1.8. The structure of sentence (19a):
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(23) a. No storage retrieval:
〈〈[[love′]]([[y]])([[x]])〉, 〈[[λP.∃y[P (y)]]], y〉, 〈[[λQ.∀x[Q(x)]]], x〉〉

b. everyone retrieved:
〈〈[[λQ.∀x[Q(x)]]]({x|[[love′]]([[y]])([[x]]) = 1})〉, 〈[[λP.∃y[P (y)]]], y〉〉

c. someone retrieved:
〈〈[[λP.∃y[P (y)]]]({y|[[love′]]([[y]])([[x]]) = 1})〉, 〈[[λQ.∀x[Q(x)]]], x〉〉

d. the ∀∃-reading:
〈〈[[λQ.∀x[Q(x)]]]({x|[[λP.∃y[P (y)]]]({y|[[love′]]([[y]])([[x]]) = 1}) = 1})〉〉

e. the ∃∀-reading:
〈〈[[λP.∃y[P (y)]]]({y|[[λQ.∀x[Q(x)]]]({x|[[love′]]([[y]])([[x]]) = 1}) = 1})〉〉

The sequence in (a) is obtained by combining the first elements of the sequences of the
daughters via functional application, i.e., [[love′]]([[y]]) is applied to [[x]]. In addition, the
sequence contains the store 〈[[λP.∃y[P (y)]]], y〉 of the VP and the store 〈[[λQ.∀x[Q(x)]]], x〉
of the subject NP.
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The following sequences are all shorter than the sequence in (a). This is achieved by
so-called retrieval. Intuitively, in the case of retrieval, a non-initial element of a sequence is
removed and integrated into the initial element of the sequence. Starting from a sequence
such as (a), retrieval can be characterized schematically as in (24).

(24) 〈〈φ〉, s1, . . . , si−1, 〈ψ, xi〉, si+1 . . . sn〉
7→ 〈〈ψ({xi|φ = 1})〉, s1 . . . , si−1, si+1, . . . sn〉

We can illustrate this with the relation between the sequences (a) and (b) in (23). φ
is [[love′]]([[y]])([[x]]), ψ is [[λP.∃y[P (y)]]], xi is simply the variable x, and there is just one
more store, 〈[[λP.∃y[P (y)]]], y〉. In the sequence in (b), the first store of the (a) sequence
is missing. Instead, [[λP.∃y[P (y)]]] appears as part of the first element of the (b) sequence,
just as indicated in the characterization of retrieval in (24).

The (c) sequence is derived just like the (b) sequence, but retrieving the quantifier
introduced by the direct object. The last two sequences contain a single element, i.e., there
are no quantifiers stored anymore. These sequences correspond to the two readings of the
sentence. In (d), the ∀∃-reading is expressed. To derive it, we start from the sequence in
(a) and, first, retrieve the existential quantifier, as indicated in (c). Then, the universal
quantifier is retrieved. For the ∃∀-reading, the inverse order of retrieval is required.

The interpretation of the S node in Figure 1.8 is the set that contains the two readings
and those interpretations which still have some unretrieved quantifier stores.

The advantage of S-structure Interpretivism is clear: we can avoid a further level of rep-
resentation such as LF. The question, however, arises whether all the constraints formulated
in terms of LF can be expressed within such a framework as well. Cooper 1983 (pp. 134ff.)
addresses some so called Island Constraints. Cooper quotes the following sentences from
Rodman 1976, which indicate that complex NPs form an island for scope.13

(25) a. Guinevere has [NP a bone in every corner of the house].
b. Guinevere has [NP a bone [S which is in every corner of the house]].

In sentence (25a) the most natural interpretation is such that every corner of the house
has wide scope over a bone, i.e., in every corner of the house there is a bone. The other
reading would require the same bone to be simultaneously in all corners of the house. Given
the normal size of bones and houses and the laws of physics, this reading is quite absurd.
Still, it is impossible to get the more natural reading in the case of (25b). The reason for this
restriction, it seems, is the fact that the quantifier every corner of the house is embedded
in a relative clause in (25b), but not in (25a). Cooper 1983 proposes to account for such
data by requiring that at certain nodes the interpretation set may not contain sequences
with certain elements. In our case, we would require that the set of interpretations of a
relative clause contain only sequences with a single element. This automatically forces the
quantifier every corner of the house to take scope inside the relative clause in (25b), while it
does not impose any restriction on the relative scopes of the quantifiers in the case of (25a).

This brief illustration indicates that some constraints on scope relations can be captured
easily with a storage technique. Lappin 1991 also addresses other cases of constraints which
have been used to support the existence of a level of representation such as LF. In (26) we
repeat the sentences given in (20) and (21).

13Notice that the fact that the Complex NP Constraint holds for quantifier scope as well as for wh-movement
has been one of the arguments for LF as a syntactic level of representation. In (i) and (ii) we give the
correspondent examples from Cooper 1983 (p. 135) with a wh-word.
(i) Which hat do you believe that Otto is wearing t?
(ii) * Which hat do you believe [NP the claim that Otto is wearing t]?
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(26) a. (= (20)) Who t admired what?
b. (= (21)) * What did who admire t?

Lappin 1991 (pp. 324f.) argues that the contrast can be reduced to a constraint on S-
structures and need not be considered an LF phenomenon. The concrete explanation of the
data given in Lappin 1991 goes back to the Connectedness Condition of Kayne 1983. The
basic effect of this explanation is that a non-moved subject blocks the connection between
the specifier of CP and material inside the IP. As such, Kayne intends to substitute the
ECP by some other principle which applies at S-structure rather than at LF.14

As could be seen in the discussion of the examples in (25), the storage mechanism
provides a useful tool to express scope islands. It has been illustrated furthermore with the
examples in (26) that for many alleged LF phenomena, an S-structure explanation might
be possible. When we consider S-structure Interpretivism, we must differentiate between
two aspects: First, the claim that S-structures can be interpreted directly, and second the
particular choice of the interpretation mechanism via Cooper storage.

Our own analysis will differ from Lappin 1991 in both respects: We will show in the
rest of this section, that the grammar of Pollard and Sag 1994, while using a similar in-
terpretation mechanism, assumes a translation into some logical form instead of a direct
interpretation. Our own analysis will follow Pollard and Sag 1994 in this respect. In the
next section, we will present the framework of Lexicalized Flexible Ty2 which is based on
Hendriks 1993. We will show that this system can do without the storage mechanism.

Having considered S-structure Interpretivism, we have reached a natural point to come
back to the treatment of the content value in Pollard and Sag 1994, where a Cooper
store mechanism is used for the determination of quantifier scope as well. Additionally,
the syntactic trees along which the semantics of a sentence is being combined resemble
S-structures more than any other level of representation assumed in GB.

In the introduction to this section, we have given some quotations from Pollard and Sag
1987 and Pollard and Sag 1994. The quotes from Pollard and Sag 1987 left it relatively open
whether the authors assume that some part of a linguistic sign is a semantic representation or
an interpretation, i.e., whether they take a conceptualist or a realistic view. Pollard and Sag
1994 make a direct link to GB’s level of LF. In the following, we will show that the semantic
system of Pollard and Sag 1994, while being technically similar to Lappin’s system, assumes
that content values are representations of meaning, not meanings themselves. We will
show that a non-ambiguous sentence is assigned two necessarily distinct content values
by the grammar of Pollard and Sag 1994.

Consider sentence (27a). Structurally this sentence is very close to example (19a). In
(b) and (c),we give two terms of our semantic representation language which are parallel to
the two readings given for example (19a), i.e., in (b) the quantifier that is contributed by
the subject has scope over the one contributed by the direct object. In (c) the inverse scope
relation holds. It is, however, a consequence of the interpretation of formulae of predicate
logic that the terms in (b) and (c) are necessarily equivalent.

(27) a. Everyone loves everyone.
b. ∀x∀ylove′(x, y)
c. ∀y∀xlove′(x, y)

It follows from the equivalence of the terms in (b) and (c) that under the S-structure
Interpretivism of Lappin 1991, this sentence has exactly one reading with an empty store.

14An alternative S-structure explanation of the contrast in (26) could be based on the assumption that the
wh-phrase in subject position works as a potential binder of the trace in direct object position.
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However, this reading can be derived through two different orderings of quantifier retrieval,
which correspond to the scope relations expressed in the terms in (27b) and (27c).

Let us consider how sentence (27a) would be analyzed in the grammar of Pollard and
Sag 1994. We do not want to discuss the full semantic analysis of Pollard and Sag 1994,
but informally consider the parts that are necessary for this particular sentence. In (28) we
give the relevant parts of the lexical entries of the words everyone and loves as needed for
the analysis of sentence (27a).

(28) a. The relevant parts of the lexical entry of everyone:
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b. The relevant parts of the lexical entry of loves:
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The Cooper store mechanism is implemented in Pollard and Sag 1994 using several
different attributes. First, the content value contains what we treated above as the first
element in a sequence. Second, the qstore value is a set which contains the stored NPs,
i.e., the non-initial members of the sequences considered above. The index value, i.e., the
object referred to by the tag 1 in (28a), is shared between the content value and the
single element in the qstore set of everyone.

In (28a) the content value of the quantifier contains the index 1 and the restriction
to humans, expressed by the person object. The qstore value contains a quantifier object.
In addition to the attributes content and qstore, the attribute retrieved is part of the
Cooper store mechanism as well: the retrieved value of a sign contains those quantifiers
that are retrieved at the sign. In the case of the word everyone, no such retrieval occurs.

Let us turn to the lexical entry of the verb loves as given in (28b). The lexical entry
specifies the word as being a verb with two elements on its subcat list. These elements are
NPs.15 The verb loves has an empty qstore and an empty retrieved value. This means

15We adopt the abbreviatory conventions of Pollard and Sag 1994 (p. 28) and write NP 1 as short form of

the description in (i).

(i) NP 1 :
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that it neither contains any stored quantifiers nor retrieves any quantifiers. Remember from
Lappin’s analysis, that the interpretation of the verb was a sequence which contained a single
element, and no stored quantifier. The content value of the verb is more interesting. It is
of sort psoa. It has two attributes, quant(ifier)s and nucl(eus). The quants value is
a list of quantifiers, the empty list in the case of the verb. The nucl value indicates some
semantic relation. The verb loves expresses the relation love which takes the indices of its
syntactic complements as semantic arguments, i.e., 1 and 2 .

In Figure 1.9 (page 33), we show the syntactic structure assumed for sentence (27a) in
Pollard and Sag 1994. In this figure, we do not describe the content values at the verbal
projections. These are constrained by the Semantics Principle (Pollard and Sag, 1994,
pp.4̇01f.), from which we quote the relevant parts in (29).

(29) The Semantics Principle of Pollard and Sag 1994:
(a) In a headed phrase, the retrieved value is a list whose set of elements is

disjoint from the qstore value set, and the union of those two sets is the
union of the qstore values of the daughters.

(b) If the semantic head’s synsem local content value is of sort psoa, then the
synsem local content nucleus value is token-identical with that of the
semantic head, and the synsem local content quants value is the con-
catenation of the retrieved value and the semantic head’s synsem local
content quants value; [. . . ]

For the structure in Figure 1.9, the semantic head is always identical to the syntac-
tic head. Furthermore, Pollard and Sag 1994 assume that all verbal projections have a
content value of sort psoa. As a consequence of part (b) of the Semantics Principle,
the nucl values of the VP and the S node are identical to that of the verb loves.

Let us, next, consider the quants, qstore and retrieved values at the VP and the S
node. The union of the qstore values of the daughters of the VP is a set that contains ex-
actly the quantifier contributed by the direct object NP. Let us assume that the retrieved
value of the VP is the empty list. In this case, part (a) of the Semantics Principle re-
quires the qstore value of the VP to be the union of the daughters’ qstore values. In
our case, this is the set that contains the quantifier contributed by the direct object. As
the retrieved value is assumed to be empty, the concatenation of the retrieved list to
the quants list of the verb results in the empty list. In (30) we give a description of the
VP in the tree in Figure 1.9.16
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At the S node, again, the content value is of sort psoa, and, thus, the nucl value is
identical to that of the VP. For the S node, we want to assume that the qstore value is

16Alternatively, we could, of course, retrieve the direct object quantifier at the VP. In this case, the qstore
value of the VP would be the empty set and the retrieved and the quants value would both be a list that
contains exactly the direct object quantifier. If we used such a VP to construct the rest of the sentence, the
overall sentence would be described by the AVM in (31a).
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empty. Since the union of the qstore values of the daughters contains the quantifier con-
tributed by the subject and the quantifier contributed by the direct object, both quantifiers
must appear in the retrieved list in order to satisfy part (a) of the Semantics Princi-
ple. As the retrieved value is a list, there are two possible orderings of these quantifiers:
one where the subject quantifier precedes the object quantifier, and one where the object
quantifier precedes the subject quantifier. According to part (b) of the Semantics Prin-
ciple, the quants list of the sentence is the concatenation of its retrieved list and the
quants list of its head daughter, the VP as described in (30) in our case. In (30) we have
assumed that the quants value is empty, but, as there are two possible retrieved values
for the sentence, the VP given above can occur as the head daughter in two different kinds
of sentences. In (31) we give descriptions of both sentences, depending on the order of the
elements in the retrieved list.

(31) a.
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What is crucial for our purpose is that the content values described in (31a) and (31b)
must be distinct objects in any model of the grammar. To show that they are distinct, it
is enough to find a single path identity which occurs in one but not in the other object.
For every psoa object that is described by description of the content value in (31a), the
quants first restind index value is identical to the nucl arg1 value. This identity is
expressed by the tag 3 . In the case of the psoa objects that meet the description given for
the content value in (31b), on the other hand, the quants first restind index value
is identical to the nucl arg2 value (indicated by tag 4 ).

This shows that there are at least two configurationally distinct psoa objects that occur
as the content value of a sign with phonology Everyone loves everyone. In Pollard and
Sag 1994, if one quantifier precedes another on the quants list of some sign, this is inter-
preted as the first quantifier having scope over the second quantifier. Therefore, the two
descriptions given for the S node in (31) encode the two scoping relations indicated in (27b)
and (27c). At the level of semantic interpretation, however, these two scopings lead to iden-
tical denotations. This shows that the content value of a sign in Pollard and Sag 1994
cannot be taken as the interpretation of the sign. It can only be seen as a representation of
this interpretation, i.e., as a logical form.

In this thesis, we want to stay within the overall architecture of grammar outlined in
Pollard and Sag 1994, but we will give a precise characterization of what the content value
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is supposed to be. It will, in fact, share properties of all the accounts just summarized. We
will assume that the content value of a linguistic sign is a configuration of linguistic
entities that stand in a one to one correspondence to terms of a semantic representation
language. Thus, by its very shape, the content value is a configuration of objects, i.e.,
it uses the same data structure that is used in HPSG to encode all linguistic information,
from phonology to constituent structure. In this respect, it resembles May’s LFs. But, as
we assume a direct correspondence between content values and semantic representations,
there obviously are distinct configurations for every reading of a given sentence, thus it is
actually closer to the transparent LFs of von Stechow 1993.

On the other hand, the configurations of entities can be understood as logical terms,
i.e, as an lf instead of an LF. Consequently, we can incorporate many of the analytic and
conceptual insights of S-structure Interpretivism. In particular, there is no claim being
made that the restrictions that hold on content values be of the same kind as those found
for movement or other syntactic processes.

To summarize, the general architecture of HPSG as presented in Pollard and Sag 1987
as well as in Pollard and Sag 1994 suggests that the authors assume some semantic repre-
sentation to be part of linguistic signs. Among the various potential candidates for such a
representation, terms of a semantic representation language are clearly the closest to actual
semantics, i.e., the closest to an S-structure Interpretivism. We, therefore, assume that the
content value is a logical form. Still, we are going to impose constraints on this lf which
are inspired by those used in the GB framework to constrain LFs.

1.3. Introduction to Lexicalized Flexible Ty2

1.3.1. The Choice of the Semantic Representation Language. As a consequence
of our decision to use logical forms as values of the attribute content, it is necessary to
address the question of the particular semantic representation language that provides these
logical forms. In Section 1.3.2, we will present an extensional typed language, Ty2 (Gallin,
1975), as the relevant semantic representation language. Obviously, this is not the only
possible choice. In this section, we will briefly comment on alternatives.

We have decided to adopt an HPSG-encoding of Ty2 because, as is with Montague’s
Intensional Logic (IL), Ty2 is a lingua franca among both semanticists and syntacticians
who are concerned with the syntax-semantics interface. Due to its technical advantages
shown in Zimmermann 1989 and its successful application to interrogatives in Groenendijk
and Stokhof 1982, Ty2 has gained ground among researchers. In contrast to IL, Ty2 makes
it possible to treat the world index and other implicit arguments as regular types and,
therefore, is more transparent than IL. Still, all the work done in IL can be directly
translated. By its inclusion of possible worlds and other implicit arguments, Ty2 allows
researchers to propose logical forms for all sorts of semantic problems, including tense,
aspect and modality. We, therefore, hope to have chosen a language that can be fruitfully
used for the study of many phenomena. More importantly, the choice of Ty2 enables us to
integrate directly into HPSG most of the standard techniques and insights that have been
developed within formal semantics over the last decades.

It is well known that there are problems with a language such as Ty2. As criticized in
Lappin and Pollard 1999, Ty2 is an extensional language and, therefore, all treatments of
intensionality have their limitations. As an alternative, they propose a so called hyperin-
tensional logic which is built on category theoretic rather than on set theoretic intuitions.
In their framework, two predicates can be told apart even if their denotation is identical
with respect to all indices.
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In this thesis, we do not make any attempt to address the question of what treatment
of hyperintensionality (in the Lappin-Pollard form or in another) should ultimately be
adopted to solve this problem of extensional languages. This is, in part, legitimate, as
the main body of this thesis addresses the question of possible logical forms of a certain
linguistic expression, and, thus, only indirectly touches upon the semantic denotation of an
expression. If, for example, it should turn out that the representation language proposed
in Lappin and Pollard 1999 is empirically more adequate for natural language semantics
than Ty2, then it is possible to apply the techniques used here to encode Ty2 within an
HPSG grammar for a similar HPSG-encoding of the new language. This shift will be further
facilitated by the fact that the syntax of the language of Lappin and Pollard 1999 is very
similar to the one used here. Therefore, only the semantic denotation of the terms needs
to be modified; the terms themselves, i.e., the logical forms of a given expression, can be
adopted largely unchanged.17

A second justified objection is that any sentence-based determination of logical form ig-
nores dynamic effects in meaning. Such effects have been extensively studied in frameworks
such as Discourse Representation Theory (DRT) (Kamp, 1981; Kamp and Reyle, 1993),
file change semantics (Heim, 1982), or dynamic predicate logic (DPL) (Groenendijk and
Stokhof, 1991). While we will not address dynamic phenomena in the following, it is shown
in Dekker 1993 that the system of Flexible Montague Grammar (FMG) of Hendriks 1993
can easily be extended to capture dynamic effects as well by adding another type shifting
rule. As the system of Lexicalized Flexible Ty2 that we are going to present in this sec-
tion is based on Hendriks’ FMG, the dynamic extension proposed in Dekker 1993 can be
integrated into our system as well.

It would, of course, require far more effort to change from Ty2 to a DRT-style repre-
sentation. There are some proposals of how to represent DRSs (or UDRSs) within HPSG
(Frank and Reyle, 1995; Eberle, 1997). The present proposal shares the assumption with
DRT that there should be a syntactic level of semantic representation. Furthermore, the
semantic representations used in DRT also contain quantifiers and logical constants as well
as variables for explicit and implicit arguments. Again, to a certain extent our choice of
Ty2 rather than DRT is motivated not so much by empirical considerations but by the fact
that our own approach is strongly influenced by research within the Montegovian tradition.

A further alternative to a truth-value based, possible-worlds semantics is situation se-
mantics (Barwise, 1989). In situation semantics, situations and relations are treated as
primitives, whereas truth is only a derived term. In Pollard and Sag 1987, 1994, the au-
thors intend to use a version of situation semantics. This program is further worked out
in Ginzburg and Sag 2000 for interrogatives and in Przepiórkowski and Kupść 1999 and
Przepiórkowski 1999b for negation. Lappin and Pollard 1999 (p. 2) call situation semantics
“the principle competitor to possible-world semantics as a mathematical theory of linguis-
tic meaning”. Within HPSG, however, there is not much work done within possible-world
semantics. As far as we can see, Nerbonne 1992 was a single attempt to furnish HPSG with
terms of predicate logic as content values. But, in that paper, issues of intensionality
are not addressed. We, therefore, consider it an important gap to be filled to show how a
possible-world semantics approach can be integrated into HPSG.18 Thus, the decision for a
particular kind of syntactic framework, be it GB or HPSG, should not automatically force
the linguist to abandon his or her favorite semantic framework.

To conclude, there are at present many promising semantic representation languages
whose adequacy is being tested on wide ranges of semantic phenomena. The particular

17This is due to the fact that Lappin and Pollard 1999 also use an explicit negation operator, a similar
representation of generalized quantifiers and some implicit arguments such as an event argument.
18Richter and Sailer 1996a sketch an HPSG integration of Montague’s Intensional Logic, and Richter and
Sailer 1999a,b,c,d, 2001 either sketch or presuppose an integration of Ty2.
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choice taken in this thesis represents just one of many standard representation languages
within the study of natural language semantics. Finally, if this represenation language
proves to be empirically inferior to some other language, it is very likely that the technique
of HPSG-encoding a semantic representation language can be adopted.

1.3.2. Ty2. In this section, we define the semantic representation language Ty2, which
Gallin 1975 (pp. 58f.) first presented. We will first define the syntax of Ty2 and then give
the semantics. We assume that the reader is familiar with Montague’s Intensional Logic (IL)
and will point out some of the differences between Ty2 and IL. Furthermore our definition
of Ty2 departs slightly from the usual definitions as given in Gallin 1975 or Zimmermann
1989. We will indicate the places where these differences occur.19

In Definition 1.1 we define the set of semantic types, Type. In Ty2 we use the atomic
types e, t and s. The set of semantic types is closed under pairs. The crucial difference
between the set of semantic types of Ty2 and IL is that in Ty2, s is an atomic type just
like t and e.

definition 1.1 (Type)

Let Type be the smallest set such that

e, t, s ∈ Type, and
for each τ, τ ′ ∈ Type, 〈τ, τ ′〉 ∈ Type.

We call each element of the set Type a (semantic) type. The set Type as defined above
contains the semantic types used in Montague Grammar such as 〈e, t〉 for intransitive verbs
or 〈s, t〉 for propositions. In addition, it also contains types such as s, 〈e, s〉 etc. which have
no direct counterpart in IL.

When we give semantic types, we usually use some common abbreviatory notation: for
complex types, we simply write ττ ′ or (ττ ′). Consequently, we write et instead of 〈e, t〉,
(se)t instead of 〈〈s, e〉, t〉, and s((se)t) instead of 〈s, 〈〈s, e〉, t〉〉.

In Definition 1.2 we define the set V ar as a countably infinite set of variables.

definition 1.2 (V ar)

Let V ar be the smallest set such that

for each τ ∈ Type and for each i ∈ IN, vτ,i ∈ V ar

We will call each element of the set V ar a variable. Usually, we will distinguish variables
by giving them distinct numbers or by using distinct letters. As will become clear in the
following, the variable vs,0 plays a special role in Lexicalized Flexible Ty2. We will introduce
the special symbol “@” for this variable.

In addition to variables, we also assume that there are constants in our semantic repre-
sentation language. This is made explicit in the next definition.

definition 1.3 (Const)

Let Const be a finite set of symbols.

We call each element of the set Const a constant. In the standard definitions of Ty2, the
set of constants is defined parallel to the set of variables, i.e., for each semantic type τ and

19The HPSG encoding of Ty2 given in Richter 2000 (Section 5.4) is more faithful to the standard definitions.
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for each natural number i, there is a constant cτ,i. In contrast, we assume that there are
only finitely many constants. The reason lies in the particular HPSG encoding of Ty2 that
we assume. There, we will introduce a linguistic sort for each semantic constant, and more
crucially, we will introduce a relation for each semantic constant. Our HPSG description
language requires the set of relations to be finite. Therefore, we cannot use an infinite
number of constants under this encoding.20

We assume that each constant is associated with a semantic type. This requirement is
expressed in the following definition.

definition 1.4 (Type assignment to constants)

Let C be a total function from Const to Type.

The function C assigns each constant a semantic type. As the set Type is non-empty,
there is such a function for each set Const. For example, the constant walk′ will be assigned
the semantic type s(et), the constant believe′ will be assigned the type s((st)(et)).

The semantic types assigned to these constants is slightly different from the types that
they bear in IL. In fact, when, in IL, a constant is of type et, it will typically be of type
s(et) in Ty2. This is the case, because in IL all terms are interpreted with respect to some
world index. In Ty2, this world index is an explicit part of the terms. In fact, we use
the variable vs,0 (written as @) for this index. This explicit occurrence of the world index
results in the requirement that all constants whose denotations vary with the world index
have one semantic argument more than their corresponding IL constants.

The only constants for which we do not assume such a dependence on the index are the
individual constants, i.e., constants of type e. They appear in the translations of proper
names such as je and me which are used for the logical form of John and Mary respectively.

In the next definition, we define the set of terms of Ty2. We write Ty2 for this set. Our
definition of the set Ty2 differs in two respects from the standard definition. First, as we
assume a finite set of constants with a particular type assignment function, the set of Ty2
terms is parameterized for the function C. For this reason, we can only give the definition
of the Ty2 terms under a particular function C, i.e., we define the set Ty2C for a concrete
C. In the following, we will assume a fixed set Const and a fixed function C and, in most
cases, ignore the relativization to C and simply write Ty2 instead of Ty2C.

The second difference between the following definition and the usual definitions of Ty2
lies in the fact that we assume the semantic type to appear explicitly as part of each term
of Ty2. In the standard definition, the set Ty2 is defined as the smallest family of sets Ty2τ

for each semantic type τ . Again, the difference has to do with the way we encode terms
of Ty2 in HPSG. In our HPSG encoding, each linguistic object that corresponds to some
term of Ty2 will be explicitly marked for its semantic type. For this reason, we require the
semantic type to be a part of each term of Ty2 as well.

In Definition 1.5 we give the resulting definition of Ty2 terms.

definition 1.5 (Ty2C)

Given a finite set Const and a function C from Const to Type, Ty2C is the smallest set
such that,

V ar ⊂ Ty2C,
for each c ∈ Const, cC(c) ∈ Ty2C,

20It is, of course possible to give an encoding of an infinite set of constants. This is done, for example in
Richter 2000 (Section 5.4), where constants are encoded the same way we encode variables.
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for each φττ ′ , ψτ ∈ Ty2C,
(φττ ′ψτ )τ ′ ∈ Ty2C,

for each vτ,i ∈ V ar, and for each φτ ′ ∈ Ty2C,
(λvτ,i.φτ ′)ττ ′ ∈ Ty2C

for each τ ∈ Type, and for each φτ , ψτ ∈ Ty2C
(φτ = ψτ )t ∈ Ty2C

Constants and variables are atomic terms. Complex terms are formed by functional
application, λ-abstraction or equation. Even though, according to our definition, each
term of Ty2 has its semantic type as a subscript, we will usually not write the semantic
types of complex expressions, because it can be computed from the semantic types of its
atomic subterms. In addition, we will deliberately alternate between curried and uncurried
notation. In (32) we indicate some terms in explicit and in shorthand notation.

(32) explicit notation shorthand
((walk′s(et)vs,0)etme)t walk′(m, vs,0)
(((love′s(e(et))vs,0)e(et)me)je)t love′(j,m, vs,0)

With Definition 1.5 we have introduced the syntax of the semantic representation lan-
guage Ty2. We can then proceed to give its semantics. Based on the semantic types, a
domain of individuals E, and some set of possible worlds W , we can define a frame F .

definition 1.6 (Frame) Let E be a set of individuals, and W be a set of possible worlds,
then F =

⋃
τ∈Type

DE,W,τ is a frame where,

DE,W,t = {1, 0},
DE,W,e = E, and
DE,W,s = W , and
for each τ, τ ′ ∈ Type,

DE,W,ττ ′ = D
DE,W,τ

E,W,τ ′ .

The definition of a frame in Definition 1.6 provides us with the necessary objects that
populate the denotation of Ty2 terms. Given a frame, we can say what a model of Ty2 is.

definition 1.7 (Model)

Given a set of constants Const, a type assignment function to constants C, a set of individ-
uals E and a set of possible worlds W ,

a Ty2 model is a pair M = 〈F, int〉, such that
F is a frame, and
int is a function from the set of constants to F such that

for each c ∈ Const,
int(c) ∈ DE,W,C(c).

A model consists of a frame F and an interpretation function int for constants. The
function int is chosen in a way that respects the semantic type of the constants, i.e., if a
constant is of type τ , then its interpretation is an element of DE,W,τ .

While the function int is an interpretation function for the constants of Ty2C, we still
need to give a definition of what a variable assignment is. This definition is given as follows.

definition 1.8 (Variable assignment)
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Ass is a subset of F V ar such that,

Ass =



a ∈ F V ar

∣∣∣∣∣∣

for each i ∈ IN,
for each τ ∈ Type,
a(vτ,i) ∈ DE,W,τ





We call each element of the set Ass a variable assignment. The way Ass is defined,
it is guaranteed that each variable assignment respects the type of each variable, i.e., if a
variable is of type τ , then each variable assignment will map it into an element in DE,W,τ .

We can now give the semantics of Ty2 terms. In Definition 1.9, we define the denotation
function [[ ]] with respect to a model and a variable assignment.

definition 1.9 (The semantics of Ty2C)

For each term φτ ∈ Ty2, for each model M and for each variable assignment a ∈ Ass,

[[φτ ]]M,a, the extension of a term φτ in a model M = 〈F, int〉 under a variable
assignment a ∈ Ass, is defined as follows:

for each c ∈ Const,

[[cC(c)]]
M,a

= int(c),
for each τ ∈ Type, and for each i ∈ IN,

[[vi,τ ]]
M,a

= a(vi,τ ) for variables vi,τ

for each φττ ′ ∈ Ty2C, and for each ψτ ∈ Ty2C,

[[(φττ ′ψτ )τ ′ ]]
M,a

= [[φττ ′ ]]
M,a

([[ψτ ]]
M,a

)
for each vτ,i ∈ V ar and for each φτ ∈ Ty2C,

[[(λvτ,i.φτ ′)ττ ′ ]]
M,a

= f ∈ D
DE,W,τ

E,W,τ ′ such that

for each d ∈ DE,W,τ : f(d) = [[φτ ′ ]]M,a[vτ,i/d],
for each φτ , ψτ ∈ Ty2C,

[[(φτ = ψτ )t]]
M,a

= 1 if [[φτ ]]
M,a

= [[ψτ ]]
M,a

, else 0.

The interpretation of atomic terms depends on the interpretation function int for con-
stants and on the variable assignment a for variables. Complex terms are interpreted in
the standard way: Applications are interpreted as functional application. λ-abstraction is
interpreted as a function from the domain determined by the type of the variable to the
domain determined by the type of the second term. An identity denotes 1 in case both
terms have identical denotation and otherwise it denotes 0.

In the definitions given so far, we have only included three kinds of complex terms in
Ty2. With the help of these, it is possible to define further constructs such as true, false,
negation, conjunction, disjunction, implication, existential and universal quantification as
syntactic sugar. The necessary definitions are given in (33), following Gallin 1975 (p. 15).

(33) a. true: [λxt.xt = λxt.xt]
b. false: [λxt.xt = λxt.true]
c. ¬φt: [false = φt]
d. φt ∧ ψt: [λftt[fφ = ψ] = λftt[f true]]
e. φt → ψt: [[φ ∧ ψ] = φ]
f. φt ∨ ψt: [¬φ → ψ]
g. ∀xτφt: [λxτφ = λxτ true]
h. ∃xτφt: ¬∀xτ¬φ

To see that this shorthand has the desired meaning, consider the case of true and false.
Independent of the model and the variable assignment, the term in (33a) denotes 1, because
the terms on either side of the equation symbol are identical. The term in (33b), on the
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other hand, denotes 0 independent of the model and the variable assignment. This is the
case, because the subterm λxt.xt is the identity function on the set {0, 1}, i.e., λxt.xt maps
0 into 0 and 1 into 1. The subterm λxt.true, however, is the constant function that maps
each element of {0, 1} into 1. Clearly these two functions differ, and therefore, the equation
in (33b) is always interpreted as 0.

Using the syntactic sugar introduced in (33), we also receive the standard interpretation
for the logical connectives and the quantifiers: Negation reverses the truth value of a term,
i.e., the negation of a term denotes 1 if and only if the term denotes 0.

Conjunction denotes 1 if and only if both conjuncts do so. To see that this is the
case, we must consider the term in (33d) in more detail. In (34), the first column gives
all the functions from t to t. In the second column, we indicate the value of the function
λftt.f(true) on the function in the first column. Similarly, in the next four columns, we give
the value of the function λftt.[f(φ) = ψ] for the functions in the first column, depending
on the interpretation of φ and ψ.

(34)
(λftt.[f(φ) = ψ])(ftt)

φ = 1, φ = 1, φ = 0, φ = 0,
ftt (λftt.f(true))(ftt) ψ =1 ψ = 0 ψ = 1 ψ = 0[

17→1
07→1

]
1 1 0 1 0

[
17→1
07→0

]
1 1 0 0 1

[
17→0
07→1

]
0 0 1 1 0

[
17→0
07→0

]
0 0 1 0 1

As the table shows, the two functions λftt.f(true) and λftt.[f(φ) = ψ] are only identical
if φ and ψ are both interpreted as 1, in all other cases, the two functions differ.

The definition of conjunction is used in the definition of implication: Implication denotes
1 if the conjunction of the antecedent and the consequent has the same denotation as the
antecedent alone. To define disjunction, we use implication and negation: a disjunction
denotes 1 if the negation of the first disjunct implies the second disjunct. To see that this
is the case iff at least one of the disjuncts denotes 1, consider the following two cases: First,
assume that φ denotes 1. In this case ¬φ denotes 0, and ¬φ → ψ denotes 1. Second, assume
that φ denotes 0 and ψ denotes 1. In this case ¬φ denotes 1 and ¬φ→ ψ also denotes 1.

Universal quantification denotes 1 if and only if for each entity d in the frame which is
of the appropriate type, the term in the scope of the quantifier denotes 1 if the variable
bound by the quantifier is interpreted as d. This is expressed by the λ-abstraction in (33g).

An existential quantification denotes 1 if and only if there is an entity d in the frame
such that the term in the scope of the quantifier denotes 1 if the variable bound by the
quantifier is interpreted as d. In (33h) this is expressed by a negation on the universal
quantifier.

With the definitions given so far, we have defined the language Ty2C for which we are
going to provide and prove an HPSG encoding in Chapter 3. Before we comment further
on the precise semantic representation language that we are going to assume for natural
language semantics, we will consider some terms of Ty2 as they occur in the fragment of
English that we will treat in the next subsection.
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Our fragment will be based on that of PTQ (Montague, 1974b) in the Ty2-rendered
form following the method given in Gallin 1975 (p. 61) and Groenendijk and Stokhof 1982
(p. 188). In (35) we give the definition of the function “∗” which maps each term of IL into
a translation in Ty2. The definition is adapted from Gallin 1975 (p. 61) and ignores the
parameterization with respect to the function C which is needed for Ty2C . In contrast to
Gallin, but following Groenendijk and Stokhof 1982, we translate IL constants of type e
as Ty2 constants of the same type, whereas, we choose an intensional type (sτ) for the
translate of other constants. With that we express the view that the interpretation of
individual constants does not vary with the world index.21

(35) For each term φτ of IL we define φ∗τ , the translate of φτ in Ty2, as follows:
v∗τ,i = vτ,i

c∗e = c∗e
c∗τ = (csτvs,0)τ , for τ 6= e,
(φττ ′ψτ )∗τ ′ = (φ∗ττ ′ψ∗

τ )τ ′

(λxτ,i.φτ ′)∗ττ ′ = (λxsτ,i.φ
∗
τ ′)ττ ′

(φτ = ψτ )∗t = (φ∗τ = ψ∗
τ )t

ˆφτ = (λvs,0.φ
∗
τ )sτ

ˇφsτ = (φ∗sτvs,0)τ

In the translate of formulae of the form ˆφ and ˇφ, we see a variable, vs,0, of type s.
In IL, the interpretation of a formula depends on the world index, i.e., it is given as an
extension with respect to a model, a variable assignment function and a world index. In
Ty2, world indices are part of the representation language. Therefore, if we want to express
that the interpretation of a formula may vary with some index, we can use a formula in
which a variable of type s is free. In this case, the interpretation of the formula depends on
the variable assignment and, in particular, on the assignment to the free variable of type s.
In the semantic analysis, we assume that the first variable of type s, i.e., vs,0, is used in the
way, the “current” index is used in IL. For this reason, we translate the IL term walk′(j) as
walk′(vs,0)(j). The result of the occurrence of the free variable vs,0 in this Ty2 term is that
the extension of this term depends on the variable assignment on the variable vs,0, i.e., it
depends on the current world index.

Because of the frequent occurrence of this particular variable, we introduce some short-
hand. We usually write @ instead of vs,0. In addition, we write φ@ instead of φ(@). In (36)
we indicate some example terms where we use this notation. The terms in (36) correspond
to the IL terms walk′(ˇx), love′(ˇx, ˇy), and λP.ˇP (ˆm) respectively.

(36) explicit notation short hand
((walk′s(et)vs,0)et(vse,0(vs,0))e)t walk′@(x@)
(((love′s(e(et))vs,0)e(et)(vse,1(vs,0))e)et(vse,0(vs,0))e)t love′@(x@, y@)
λvs((se)t),0.((vs((se)t),0(vs,0))(se)t(λvs,0.me))t λP.P@(λ@.m)

The semantic representation language Ty2 as defined in this subsection is expressive
enough to capture effects of intensionality in the way developed in Montague Grammar.
We will use the terms of Ty2 as the logical form of words or phrases in a grammar of a
fragment of English. We will sometimes refer to the logical forms of a sign as its translation.
The translations that we will propose in this thesis are close to the semantic analysis in
PTQ. In the following subsections, we will show how the right translations are associated
with the linguistic signs.

21Note that we follow Gallin 1975 (p. 61) in calling φ∗ the translate of φ, not the translation.
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For some semantic phenomena, it is convenient if the semantic description language
contains generalized quantifiers.22 As an example, consider the quantifier most in (37).

(37) Most students like wine.

This sentence is true if and only if the number of students that like wine is greater than
the number of students that do not like wine. While it is impossible to express this meaning
in first order predicate logic, Ty2 is powerful enough.

For the quantifiers ∀ and ∃, the truth of a term ∀xτ φ or ∃xτ φ depends on the cardinality
of the set λxτ .φ. In the first case, it is required to be the entire domain DE,W,τ , while in the
latter case, it is required to be a nonempty set. A generalized quantifier such as introduced
by the word most can express a more complex relation on the cardinality of two (or even
more) sets. In the example in (37), we are interested in two sets: the set of all students and
the set of wine-likers. The sentence is true if the cardinality of the intersection of these two
sets is greater than the cardinality of the first set minus the second set. This means that
there is a quantifier most which expresses a relation between two sets A and B such that
|A ∩ B| is greater than |A \B|.

In our linguistic examples in the second part of this thesis, we will use description
language which contains such quantifiers explicitly. For this purpose, we introduce some
more abbreviatory syntax to the semantic representation language: we use symbols such as
most, few, etc. In (38), we give the necessary definition for most.

(38) (most xτ : φt)[ψt]t =
∃Sτt ∃Tτt ∃R((τt)((τt)t))

[S = λxτ .[φ ∧ ψ] ∧ T = λxτ .[φ ∧ ¬ψ] (i)
∧∀x

[∃yR(x, y)] ↔ T (x) (ii)
∧∀y∀z[[R(x, y) ∧ R(x, z)] → y = z] (iii)
∧∀y[R(x, y) → S(y)] (iv)
∧∀z[∃y[R(x, y) ∧ R(z, y)] → x = z] (v)

∧∃y[S(y) ∧ ¬∃xR(x, y)]] (vi)

In line (i) of (38), the variable S is defined as exactly that element of DE,W,t
DE,W,τ that

denotes the intersection of the two sets provided in the restriction (φ) and the nucleus (ψ)
of the most-formula. Analogously, T denotes exactly the complement of these two sets.
The remaining lines express that the intersection of these two sets (S) is bigger than the
complement (T ). To express this cardinality requirement, we state that R is a function
from T to S (lines (ii)–(iv)), which is injective (line (v)) but not surjective (line (vi)).

In this subsection, we have introduced the semantic representation language Ty2 as we
are going to use it in the rest of this thesis. We have shown that each term of IL has a direct
counterpart in Ty2. Therefore, we can use a PTQ-style semantic analysis, while working
with Ty2 instead of IL. In the next subsection, we will show how words and phrases are
assigned some term of Ty2 as their translation.

In Chapter 3 we will make the link between the definitions of Ty2 in this subsection
and the grammar formalism for HPSG, i.e., the language RSRL. We will give an RSRL
grammar T Y2. We will prove that this grammar is an adequate account of the language
Ty2, because the language Ty2 is an exhaustive model of this grammar. As a result, we
will be able to use terms of Ty2 as content values of linguistic signs.

22See Barwise and Cooper 1981, Westerst̊ahl 1989, Gamut 1991b (Section 7.2), or Keenan and Westerst̊ahl
1997 for some introduction.
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1.3.3. Lexicalized Flexible Ty2. In the preceding subsection, we introduced the se-
mantic representation language that we will use throughout this thesis. The purpose of this
subsection is to show how we intend to address the assignment of semantic representations
to words and phrases. This semantic framework, called Lexicalized Flexible Ty2 (LF-Ty2),
is based on the Flexible Montague Grammar (FMG) of Hendriks 1993. In this framework,
we assume that every word is assigned a basic translation. In order to arrive at the trans-
lation of phrases, we assume that the translation of a phrase is the intensional functional
application of the translations of its daughters. In addition to these two fundamental spec-
ifications of the translation, it is the special property of flexible systems such as FMG and
LF-Ty2 that we can also apply a number of so-called shifting rules to translations. These
shifting rules will allow us to dispense with syntactic movement such as QR or semantic
storage mechanisms such as Cooper stores. In this subsection, we will present the basic
translations of the words of a small fragment of English. Then, we will show how inten-
sional functional application can be used to compute the translation of a phrase. Finally
we will define two shifting operations and show how they account for the different readings
of ambiguous sentences.

Table 1.1. Basic translations

word Ty2 term IL term (as used in FMG)
man λxse.man′@(x@) λx.man′(ˇx)
woman λxse.woman′

@(x@) λx.woman′(ˇx)
walks λxse.walk′@(x@) λx.walk′(ˇx)
Mary me me

every λPλQ.∀xse[P (@)(x) → Q(@)(x)] λPλQ.∀xse[ˇP (x) → ˇQ(x)]
some λPλQ.∃xse[P (@)(x) ∧Q(@)(x)] λPλQ.∃xse[ˇP (x) ∧ ˇQ(x)]
believes λpstλxse.believe′@(p)(x@) λpλx.believe′(p)(ˇx)
that λpst.p@ λp.ˇp

In Table 1.1 we indicated the basic translation of some words of our fragment. The first
column shows the word whose translation is given. The Ty2 term in the second column is
the assumed translation. In order to make the semantic type of the term clear, we write
the type of the variables at their first occurrence in a term. In the last column, we state an
IL term. This IL term is the basic translation of the word as put forth in the framework of
FMG in Hendriks 1993.

We will use the symbol “;” for the basic translation of a word. To express that the func-
tion “;” maps the word walks into the term λx.walk′@(x@), we write walks ;λx.walk′@(x@).

The semantic types of the translations in Table 1.1 are not those of PTQ, but those
assumed in FMG of Hendriks 1993. In the flexible system of Hendriks 1993 the basic trans-
lation of a proper name such as Mary is just a constant of type e. In contrast to this, in
PTQ, the name would translate into the IL term λPs((se)t).ˇP (ˆme), which corresponds
to the Ty2 term λPs((se)t).P (@)(λ@.me). We have also given a basic translation for the
complementizer that. In Montague 1974b and Hendriks 1993 the phonology of the comple-
mentizer is part of the terminal symbol used for verbs that take that-complements. Because
we will treat the complementizer as an independent word in syntax, it is necessary to assign
it some basic translation. We will see later that the particular assignment that we have
chosen results in an identity function under intensional functional application. For the other
examples given in Table 1.1, the basic translation of the words is the same as in PTQ.

It should be noted that the variable “@” occurs free in every basic translation in Ta-
ble 1.1. In fact, as we shall see later, this variable occurs free in every translation of a
sign. As pointed out below (35) this free variable accounts for the fact that Montague
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assumes that the denotation of a formula depends on the world index at which the formula
is interpreted.

Having introduced the basic translation of words, we can consider the translation of
syntactically complex entities, i.e., phrases. In PTQ, (intensional) functional application is
the basic semantic operation for constructing the translation of some syntactically complex
structure. The intensional functional application of two terms, φ(sτ)τ ′ and ψτ , is the term
φ(ˆψ) — or its Ty2 translate φ(λ@.ψ). This operation will play an important role in
Lexicalized Flexible Ty2, because we assume that the translation of the mother node in a
local tree is always the intensional functional application of the translation of the daughters.

The fragment that we consider in Part I of this thesis, is relatively small, and we will
concentrate on scope ambiguities such as those illustrated in the sentences in (39). In (39),
we give the relevant sentences together with the possible semantic representations that we
assume for these sentences.

(39) a. Every man walks.
∀xse[man′@(x@) → walk′@(x@)]

b. Every man loves some woman.
∀∃-reading:

∀xse[man′@(x@) → ∃yse[woman′
@(x@) ∧ love′@(x@, y@)]]

∃∀-reading:
∃yse[woman′

@(x@) ∧ ∀xse[man′@(x@) → love′@(x@, y@)]]
c. Every man believes that some woman walks.

de dicto reading:
∀xse[man′@(x@) → believe′@(x@, λ@.∃yse[woman′

@(y@) ∧ walk′@(y@)])]

∀∃-de re reading:
∀xse[man′@(x@) → ∃yse[woman′

@(y@) ∧ believe′@(x@, λ@.walk′@(y@))]]

∃∀-de re reading:
∃yse[woman′

@(y@) ∧ ∀xse[man′@(x@) → believe′@(x@, λ@.walk′@(y@))]]

As can be seen from these examples, we assume that sentences with more than one
quantifier can, in principle, be ambiguous. In (39b) the two quantifiers are clause mates.
In this case, we assume that either order of the quantifiers is possible in the translation
of the sentence. We refer to the two readings by the order of the quantifiers, i.e., we talk
about the ∀∃-reading in case the universal quantifier outscopes the existential quantifier,
and about the ∃∀-reading, if the inverse scope relation holds.

In (39c) the existential quantifier is part of the embedded clause. The first reading
given for this sentence will be referred to as the de dicto reading. Under this reading, the
existential quantifier is in the scope of the intensionality operator, λ@, which corresponds
to Montague’s “ˆ” operator. Sentences like (39c) are, however, assumed to have more read-
ings: The existential quantifier is able to take its scope outside the clause that it occurs in.
The second and the third readings given in (39c) are both so-called de re readings, i.e., the
existential quantifier is not in the scope of the intensionality operator, λ@. In the repre-
sentation of readings where the existential quantifier outscopes the intensionality operator,
it can either take wide or narrow scope with respect to the universal quantifier. To differ-
entiate between the two de re readings, we add the relative scope of the universal and the
existential quantifier, i.e., we write ∀∃-de re for the second reading given for sentence (39c),
and ∃∀-de re for the third reading.

In the following, we will derive the given semantic representations for these sentences in
a step by step manner, introducing thus the essential parts of the framework of Lexicalized
Flexible Ty2 (LF-Ty2).
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For LF-Ty2, we assume the following overall architecture: The basic translation of each
word is given by the function ;, which maps each word to a term of Ty2. In Table 1.1
we have given some values of this function. In addition to the basic translation, there are
derived translations. We assume that there is a small set of type shifting operations which
can be recursively applied to the basic translation of a word. In this thesis, we will only be
concerned with two such operations, argument raising (AR) and value raising (VR).23 Thus,
in LF-Ty2, we assume that the semantic representation of a word is its basic translation
or the result of a finite number of applications of the operations AR and VR to it. For
phrases, we simply assume that the semantic representation of the mother is the intensional
functional application of the semantic representations of the daughters.

It is the availability of type shifting operations that marks the major difference between
Hendriks’ flexible system and original Montague Grammar. As far as our examples in (39)
are concerned, the derivation of some readings does not involve any type shifting operation,
whereas we need the combination of AR and VR for others. The first is the case if we want to
derive the right representation for sentence (39a) and the de dicto reading of sentence (39c).
AR will be needed to derive the readings of example (39b). For the two de re readings of
example (39c), the operation VR is also required, in combination with AR.

This characterization explains why we call the resulting system Lexicalized Flexible
Ty2: Ty2 is the semantic representation language we are using. The translation of words
is flexible, due to the possibility of applying shifting operations, AR and VR in our case.
Finally, the flexibility is lexicalized, as type shifting operations may only be applied to the
semantic representation of words.

Having said all this, we can look at the derivation of sentence (39a) as given in Figure 1.10
(page 47). For the terminal nodes in the tree, we give the basic translation as provided by
the function ;, and as indicated in Table 1.1. At the phrasal nodes, we state the term
that represents the intensional functional application of the semantic representations of the
daughters and also the term that is derived from it by λ-conversion (β-reduction).24

Consider first the NP every man. The basic translation of the determiner is as given
in Table 1.1, λPs((se)t)λQs((se)t).∀xse[P@(x) → Q@(x)]. The basic translation of the noun
man is λxse.man′@(x@). To compute the translation of the NP, we combine these two ba-
sic translations by intensional functional application. To do this, we use the translation
of the determiner as the functor, and prefix the translation of the noun with the inten-
sionality operator λ@. The intensional functional application, thus results in the term
λPs((se)t)λQs((se)t).∀xse[P@(x) → Q@(x)](λ@λxse .man′@(x@)). This term is given as the
lower term at the NP node in the tree in Figure 1.10. To simplify this term, we can execute
a series of λ-conversions (also called β-reductions) to arrive at the upper Ty2 term given
for the NP node. We indicate the (recursive) application of λ-conversion in figures by the
symbol “↑ λ ”. In (40) we give the step by step application of λ-conversion needed to arrive
at this upper term.25

23In Hendriks 1993, a third operation, argument lowering (AL) is given to account for the de re readings
with intensional verbs, i.e., for the de re reading of sentences such as (i) (see Hendriks 1993 (pp. 83f.) for
further examples).
(i) A man is missing. ∃xse[man′@(x@) ∧ be-missing′@(λ@λPs((se)t).P@(x))]

In Dekker 1993 (p. 91), a further operation, devision of the i-th argument, is introduced to account for
dynamic effects, i.e., for the extension of scope across sentences.
24In the trees in this thesis, we use the label V for a verb or a verbal projection that needs a subject and

at least one further complement. The label VP is used for a verb or a verbal projection that is missing
the subject. S is the label used for saturated verbs or verbal projections. S̄ is used for saturated verbal
projections that contain a complementizer. This means that the labels indicate the degree of syntactic
saturation, not whether the node dominates a word or a phrase.
25Remember from (36) that we use a subscript notation for the variable @, i.e., the term P@(x) is short for
P (@)(x).
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Figure 1.10. The structure of the sentence Every man walks.:

Det
λPλQ.∀x[P@(x) → Q@(x)]

every

N
λx.man′@(x@)

man

NP
λQ.∀x[man′

@(x@) → Q@(x)]
↑ λ

[λPλQ.∀x[P@(x) → Q@(x)]](λ@.λx.man′
@(x@))

VP
λx.walk′@(x@)

walks

S
∀x[man′@(x@) → walk′@(x@)]

↑ λ
[λQ.∀x[man′

@(x@) → Q@(x)]](λ@λx.walk′@(x@))

(40) [λPs((se)t)λQs((se)t).∀xse[P (@)(x) → Q(@)(x)]](λ@λxse .man′@(x@))
= λQs((se)t).∀xse[(λ@λxse.man′@(x@))(@)(x) → Q(@)(x)]
= λQs((se)t).∀xse[(λxse.man′@(x@))(x) → Q@(x)]
= λQs((se)t).∀xse[man′@(x@) → Q(@)(x)]

To arrive at the translation of the S node, we must combine the basic translation of the
verb walk with the translation of the subject NP. The basic translation of the verb is a
term of type (se)t. As such, it is of the appropriate type to function as the argument to
the translation of the subject in functional application. In (41), we show the step by step
λ-conversion abbreviated by the symbol “↑ λ ” in Figure 1.10.

(41) [λQs((se)t).∀xse[man′@(x@) → Q(@)(x)]](λ@λxse .walk′@(x@))
= ∀xse[man′@(x@) → (λ@λxse.walk′@(x@))(@)(x)]
= ∀xse[man′@(x@) → (λxse.walk′@(x@))(x)]
= ∀xse[man′@(x@) → walk′@(x@))]

We can also derive the de dicto reading of sentence (39c) in a similarly straightforward
way. We assume that the basic translation of the complementizer that is the term λpst.p(@).
In Figure 1.11 on page 48 we show the derivation of this reading. In the figure, we have
abbreviated the derivation of the NP every man, as it is just like given in Figure 1.10.

The translation of the embedded S node is parallel to that of sentence (39a) as given in
Figure 1.10: The determiner some combines with the noun woman via intensional functional
application, and this NP combines with the basic translation of the verb walk via intensional
functional application. To compute the translation of the S̄ node, we apply intensional
functional application to the basic translation of the complementizer and the translation of
the embedded S node. As indicated in the figure, the basic translation of the complementizer
is chosen in such a way that it does not make any proper contribution to the translation,
rather, it expresses an identity function with respect to functional application.

The translation of the embedded clause is an expression of type t. Thus, it can serve
as an argument for the basic translation of the matrix believe. What is crucial in the
translation of the VP is that the intensionality operator which is introduced by intensional
functional application is conserved in the translation of the VP, i.e., the semantic argument
of the constant believe′@ that corresponds to the complement clause is of type st.

To obtain the translation of the overall sentence, the translation of the VP combines
with that of the subject NP every man in exactly the way we have seen in Figure 1.10.
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NP
λQ.∀x[man′

@(x@) → Q@(x)]

∆
every man

V
λpλx.believe′@(x@, p)

believes

Comp
λp.p@

that

Det
λRλS.∃y[R@(y) ∧ S@(y)]

some

N
λy.woman′

@(y@)
woman

NP
λS.∃y[woman′

@(y@) ∧ S@(y)]
↑ λ

[λRλS.∃y[R@(y) ∧ S@(y)]](λ@λy.woman′
@(y@))

VP
λy.walk′@(y@)

walks

S
∃y[woman′

@(y@) ∧ walk′@(y@)]
↑ λ

[λS.∃y[woman′
@(y@) ∧ S@(y)]](λ@λy.walk′@(y@))

S̄
∃y[woman′

@(y@) ∧ walk′@(y@)]
↑ λ

[λp.p@](λ@.∃y[woman′
@(y@) ∧ walk′@(y@)])

VP
λx.believe′@(x@, λ@.∃y[woman′

@(y@) ∧ walk′@(y@)])
↑ λ

[λpλx.believe′@(x@, p)](λ@.∃y[woman′
@(y@) ∧ walk′@(y@)])

S
∀x[man′@(x@) → believe′@(x@, λ@.∃y[woman′

@(y@) ∧ walk′@(y@)])]
↑ λ

[λQ.∀x[man′
@(x@) → Q@(x)]](λ@λx.believe′@(x@, λ@.∃y[woman′

@(y@) ∧ walk′@(y@)]))



1.3. INTRODUCTION TO LEXICALIZED FLEXIBLE TY2 49

For the second example, given in (39b), we assume the basic translation of the words as
in Table 1.1. The syntactic structure of the sentence is indicated by the bracketing in (42).

(42) [S [NP Every man] [V P loves [NP some woman]]].

It is clear that we cannot derive any interpretation of this sentence by the basic transla-
tions of the words and intensional functional application alone: The NP some woman is of
type (s((se)t))t just as the NP every man in Figure 1.10. The basic translation of the tran-
sitive verb, however, is of type (se)((se)t). These terms cannot be combined by intensional
functional application, because if the NP were the functor, the verb should be of type (se)t
— which it is not; and if the verb were the functor, the NP should be of type se. This
indicates that the basic translation of at least one of the words in the sentence needs to be
type-shifted. In fact, we will apply argument raising (AR) to the basic translation of the
verb to give it the representation λY(s((se)t))tλxse.Y@(λ@λyse.love′@(x@, y@)). As indicated
by the type of the variable Y , this term can be used as a functor which takes the translation
of the NP some woman as its argument.

In Definition 1.10 we define the operation argument raising after Hendriks 1993 (p. 75).
As for predicates which have more than one semantic argument, any of the arguments can
be raised, we define an operation ARi which raises the ith argument.

definition 1.10 (ARi)

For each i ∈ IN, ARi is a relation between two terms α and β such that

if α is of some type (a1(. . . ((sai)(. . . (anb) . . .)))))
then β is some term
λxa1 ,1 . . . λXs((s((sai)b))b),i . . . λxan,n.X(@)(λ@λxsai,i.α(x1) . . . (xi) . . . (xn))

In the following, we use operational terminology. If a pair 〈α, β〉 is in the relation ARi,
then we say that we obtain β from α by applying ARi. In this case, we write α−→ARi

β.

In the text before Definition 1.10 we have said that the basic translation of the verb
loves is mapped into the term λY(s((se)t))tλxse.Y@(λ@λyse.love′@(x@, y@)) by the operation
AR. To see that this is the case, we must take i = 1, i.e., we have an instance of AR1.
The type ai is the type e, b the type t, and n = 2, where an is the type se. As the basic
translation of the verb walk is of type (se)((se)t) (= (sai)an), the operation AR1 relates the
basic translation of the verb to some other term. In (43) we give the basic translation of
the verb in (a) and show the term obtained by applying AR1 to it in (b). As the obtained
term can be further reduced by λ-conversion, we give the conversion steps as well.

(43) a. α = λyseλxse.love′@(x@, y@)
b. −→AR1 λZs((s((se)t))t)λuse.Z(@)(λ@λzse.α(z)(u))

= λZs((s((se)t))t)λuse.Z(@)(λ@λzse.[λyseλxse.love′@(x@, y@)](z)(u))
= λZs((s((se)t))t)λuse.Z(@)(λ@λzse.love′@(u@, z@))

Having defined the operation AR, we can account for the different readings of exam-
ple (39b), repeated below.

(44) Every man loves some woman.
∀∃-reading: ∀xse[man′@(x@) → ∃yse[woman′

@(y@) ∧ love′@(x@, y@)]]
∃∀-reading: ∃yse[woman′

@(y@) ∧ ∀xse[man′@(x@) → love′@(x@, y@)]]

In Figure 1.12 (page 50), we show how the narrow scope reading of the existential quan-
tifier is derived. For convenience, we include the application of type shifting operations in
the figure. The result of applying AR to the first semantic argument of the basic translation
of the verb is a term which is able to combine with the translation of the NP some woman.
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Figure 1.12. The ∀∃ reading of the sentence Every man loves some woman:
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We indicate the application of AR to the first semantic argument by the annotation “↑AR1

” in the tree. The semantic annotation at the phrasal nodes, just as in Figure 1.10, con-
sists of two lines: the lower line is the intensional functional application of the semantic
representations of the daughters; the upper line is the fully β-reduced equivalent of this
term.

The two NPs every man and some woman are translated just as we have seen in the pre-
vious examples. The verb love is, however, type shifted in order to become compatible with
the semantic type of its direct argument. In (45) we show how the semantic representation
of the VP node is derived by intensional functional application of the derived translation of
the verb and the translation of the NP some woman.

(45) [λY λx.Y@(λ@λy.love′@(x@, y@))](λ@λS.∃y[woman′
@(y@) ∧ S@(y)])

= λx.(λ@λS.∃y[woman′
@(y@) ∧ S@(y)])(@)(λ@λy.love′@(x@, y@))
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= λx.(λS.∃y[woman′
@(y@) ∧ S@(y)])(λ@λy.love′@(x@, y@))

= λx.∃y[woman′
@(y@) ∧ (λ@λy.love′@(x@, y@))(@)(y)]

= λx.∃y[woman′
@(y@) ∧ (λy.love′@(x@, y@))(y)]

= λx.∃y[woman′
@(y@) ∧ love′@(x@, y@)]

Now that the translation of the VP is calculated, the translation of the entire sentence is
achieved by intensional functional application, taking the translation of the subject NP as
the functor. This example has illustrated that via the operation AR, we can make the verb
a functor that takes a quantified NP as its argument, i.e., we raise the type of an argument
of a verb from se (the intension of an individual) to the type s((s((se)t))((s((se)t))t)), the
intension of a quantified NP.

The same operation can be used to derive the other reading of sentence (39b), i.e., the
wide scope reading of the existential quantifier. In this case, we must apply AR to both
semantic arguments of the verb. This is indicated in Figure 1.13 (page 52).

In the derivation of this reading we apply AR first to the second semantic argument of
the verb and then to the first argument. As can be seen, the order of application of AR
determines which quantifier takes wide scope.26 To make the derivation more transparent,
we give the β-reduction steps for the VP node and the S node in (46).

(46) a. The VP node:
[λY λX.Y@(λ@λy.X@(λ@λx.love′@(x@, y@)))]

(λ@λS.∃y[woman′
@(y@) ∧ S@(y)])

= λX.(λ@λS.∃y[woman′
@(y@) ∧ S@(y)])(@)

(λ@λy.X@(λ@λx.love′@(x@, y@)))
= λX.(λS.∃y[woman′

@(y@) ∧ S@(y)])(λ@λy.X@(λ@λx.love′@(x@, y@)))
= λX.∃y[woman′

@(y@) ∧ (λ@λy.X@(λ@λx.love′@(x@, y@)))(@)(y)]
= λX.∃y[woman′

@(y@) ∧ (λy.X@(λ@λx.love′@(x@, y@)))(y)]
= λX.∃y[woman′

@(y@) ∧X@(λ@λx.love′@(x@, y@))]
b. The S node:

[λX.∃y[woman′
@(y@) ∧X@(λ@λx.love′@(x@, y@))]]

(λ@λQ.∀x[man′
@(x@) → Q@(x)])

= ∃y[woman′
@(y@) ∧ (λ@λQ.∀x[man′

@(x@) → Q@(x)])(@)
(λ@λx.love′@(x@, y@))]

= ∃y[woman′
@(y@) ∧ (λQ.∀x[man′

@(x@) → Q@(x)])
(λ@λx.love′@(x@, y@))]

= ∃y[woman′
@(y@) ∧ ∀x[man′

@(x@) → (λ@λx.love′@(x@, y@))(@)(x)]]
= ∃y[woman′

@(y@) ∧ ∀x[man′
@(x@) → (λx.love′@(x@, y@))(x)]]

= ∃y[woman′
@(y@) ∧ ∀x[man′

@(x@) → love′@(x@, y@)]]

The semantic representation of the VP is very illuminating: it can be seen that the
variable X occurs in the scope of the existential quantifier. As X is of the type of the
intension of a quantified NP, once the VP combines with such an NP, the quantifier of
this NP ends up in the scope of the existential quantifier. This is actually the case in the
translation of the S node, as indicated in (46b).

These examples should suffice to indicate that the operation AR allows us to derive all
hypothetical scope relations that exist between semantic co-arguments of a predicate. There
are, however, not only scopal interactions among co-arguments of the same predicate. An
example of this more complicated case was given in (39c). In (47) we repeat example (39c),
together with the two de re readings.

26In that sense, AR can be said to have the same effect we find for QR in the framework of transparent LF.
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Figure 1.13. The ∃∀ reading of the sentence Every man loves some woman:
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(47) Every man believes that some woman walks.
∀xse[man′@(x@) → ∃yse[woman′

@(y@) ∧ believe′@(x@, λ@.walk′@(y@)]
∃yse[woman′

@(y@) ∧ ∀xse[man′@(x@) → believe′@(x@, λ@.walk′@(y@)]

In these readings, the existential quantifer which originates in the embedded clause
interacts scopally with some argument of the matrix predicate. As these readings are



1.3. INTRODUCTION TO LEXICALIZED FLEXIBLE TY2 53

available, it is necessary to provide some means of allowing scope interaction between non-
co-arguments as well. In Hendriks 1993 the operation value raising (VR) is given for this
purpose. We can derive the de re readings by an interaction of VR and AR.

Before we can turn to the derivation of these readings, we define the operation VR.
Definition 1.11 is modelled after the definition given in Hendriks 1993 (p. 75).

definition 1.11 (VR)

For each type d ∈ Type,

V Rd is a relation between two terms α and β such that

if α is of some type a1(. . . (anb) . . .).
then β is some term λxa1,1 . . . λxan,nλus((sb)d).u(@)(λ@.α(x1) . . . (xn)).

Whereas AR only changes the semantic type of one argument of a predicate, VR adds
another argument. The simplest instance of VR is the mapping of an individual constant
such as me to the term λPs((se)t).P (@)(λ@.me), which is the Ty2 equivalent of the PTQ
translation of the name Mary (λP.ˇP (ˆm)). For this mapping, there is no xi, b is the type
e, and d is the type t. Thus, from the term me, we obtain the term λP.P@(λ@.m) by VRt.
Following our conventions for shifting operations, we write me−→V RλP.P@(λ@.m).

As indicated in Figure 1.14 (page 54), we must perform type shifting operations to
the basic translation of the verbs walks, believes, and of the complementizer that. The
application of VR to the basic translation of the verb walks creates a new semantic argument
slot for this verb. The new argument is of the type of a predicate that takes a sentential
complement. In effect, this new argument marks the place where the constant believe′@ is
going to appear. Now that we made the matrix predicate a semantic co-argument of the
embedded subject, we have created an escape hatch for the subject of the embedded clause.
By applying AR to the first semantic argument of the clause, we ensure that the matrix
predicate will end up in the scope of the embedded subject. This becomes clear in the
semantic representation of the embedded S node: there, the variable u occurs in the scope
of the existential quantifier.

The semantic representation of the embedded S node is of the type (s((st)t))t. The
basic translation the complementizer is λpst.p(@), i.e., a term of type (st)t. Intuitively, we
want the complementizer that to denote the identity function. To achieve this effect in our
architecture, the complementizer must undergo exactly the same type shifting operations,
which we performed on the main verb of the clause, i.e., we must first apply VR and then
raise the first semantic argument, just as shown in Figure 1.14.27 In (48) we indicate how
the translation of the S̄ node is achieved in a step by step manner, by using the derived
translation of the complementizer as the functor.

(48) [λPλu.P@(λ@λp.u@(λ@.p@))](λ@λu.∃y[woman′
@(y@) ∧ u@(λ@.walk′@(y@))])

= λu.(λ@λu.∃y[woman′
@(y@) ∧ u@(λ@.walk′@(y@))])(@)(λ@λp.u@(λ@.p@))

= λu.(λu.∃y[woman′
@(y@) ∧ u@(λ@.walk′@(y@))])(λ@λp.u@(λ@.p@))

27Alternatively, we could apply VR twice to the verb walks. In this case, the translation of the S node
would be the functor that takes the complementizer as its argument.
(i) walks ; λy.walk′@(y@)

−→V R λyλu′.u′
@(λ@.walk′@(y@))

−→V R λyλu′λu.u@(λ@.u′
@(λ@.walk′@(y@)))

−→AR1 λY λu′λu.Y@(λ@.u@(λ@.u′
@(λ@.walk′@(y@))))

Combining this with the embedded subject results in:
(ii) λu′λu.∃y[woman′@(y@) ∧ u@(λ@.u′

@(λ@.walk′@(y@)))]
This can take the basic translation of the complementizer as its argument and yields the term that we gave
as the translation of the S̄ node in Figure 1.14.
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Figure 1.14. The ∀∃-de re reading of the sentence Every man believes that some woman walks.:
S

∀x[man′@(x@) → ∃y[woman′
@(y@) ∧ believe′@(x@, λ@.walk′@(y@))]]

NP
λQ.∀x[man′

@(x@) → Q@(x)]

∆
every man

VP
λx.∃y[woman′

@(y@) ∧ believe′@(x@, λ@.walk′@(y@))]

V
λPλx.P@(λ@λp.believe′@(x@, p))

↑ AR1
λpλx.believe′@(x@, p)

believes

S̄
λu.∃y[woman′

@(y@) ∧ u@(λ@.walk′@(y@))]

Comp
λPλu.P@(λ@λp.u@(λ@.p@))

↑ AR1
λpλu.u@(λ@.p@)

↑ VR
λp.p@

that

S
λu.∃y[woman′

@(y@) ∧ u@(λ@.walk′@(y@))]

NP
λS.∃y[woman′

@(y@) ∧ S@(y)]

∆
some woman

VP
λY λu.Y@(λ@λy.u@(λ@.walk′@(y@)))

↑ AR1
λyλu.u@(λ@.walk′@(y@))

↑ VR
λy.walk′@(y@)

walks

= λu.∃y[woman′
@(y@) ∧ (λ@λp.u@(λ@.p@))(@)(λ@.walk′@(y@))]

= λu.∃y[woman′
@(y@) ∧ (λp.u@(λ@.p@))(λ@.walk′@(y@))]

= λu.∃y[woman′
@(y@) ∧ u@(λ@.(λ@.walk′@(y@))(@))]

= λu.∃y[woman′
@(y@) ∧ u@(λ@.walk′@(y@))]

The β-reduced term in (48) is identical (up to the names of bound variables) to the
translation of the S node. In this translation, the existential quantifier has scope over an
occurrence of the variable u. As this variable corresponds to the matrix predicate, we have
derived a de re semantic representation of the embedded clause.

The basic translation of the verb believe asks for a semantic argument of type st. How-
ever, the translation of the complement clause is, of a higher type. Therefore, we must apply
AR1 once more, now to the basic translation of believe. In the translation of the matrix VP,
the variable u from the embedded clause is finally replaced by the matrix predicate and it
can be seen that the existential quantifier has wide scope over the propositional argument
of believe′. The translation of the VP combines with that of the matrix subject NP by
intensional functional application to give the translation of the entire sentence.
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NP
λQ.∀x[man′

@(x@) → Q@(x)]

∆
every man V

λPλX.P@(λ@λp.X@(λ@λx.believe′@(x@, p)))

↑ AR1
λpλX.X@(λ@λx.believe′@(x@, p))

↑ AR2
λpλx.believe′@(x@, p)

believes

S̄
λu.∃y[woman′

@(y@) ∧ u@(λ@.walk′@(y@))]

∆
that some woman walks

VP
λX.∃y[woman′

@(y@) ∧X@(λ@λx.believe′@(x@, λ@.walk′@(y@)))]

S
∃y[woman′

@(y@) ∧ ∀x[man′
@(x@) → believe′@(x@, λ@.walk′@(y@))]]
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Figure 1.16. Alternative structure of the sentence Every man walks.:

NP
λQ.∀x[man′

@(x@) → Q@(x)]

∆
every man

VP
λX.X@(λ@λx.walk′@(x@))

↑ AR1
λx.walk′@(x@)

walks

S
∀x[man′@(x@) → walk′@(x@)]

↑ λ
[λX.X@(λ@λx.walk′@(x@))](λ@λQ.∀x[man′

@(x@) → Q@(x)])

In (47) we have seen that there are in fact two de re readings for the sentence. In
Figure 1.14 we have given the derivation of the reading in which the existential quantifier is
in the scope of the universal quantifier contributed by the matrix subject. The other de re
reading is such that the existential quantifier has wide scope over the universal quantifier
as well. In Figure 1.15 we give the derivation of this reading. We left out the structure of
the embedded clause in the figure, because the translation of the complement clause is the
same for both readings.

The derivations differ only with respect to the translation of the matrix verb. In the
case of the ∀∃ reading, the second semantic argument of the verb was not raised. To derive
the ∃∀ reading, we must raise the second semantic argument first and, then, raise the first
semantic argument, just as in the case of the ∃∀ reading of sentence (39b) in Figure 1.13.

With this brief consideration of the ∃∀ reading of sentence (39c), our presentation of
the mechanisms of LF-Ty2 comes to an end. We have confined our attention to scope
variation and it was shown how all the hypothetically possible readings can be derived. In
our presentation, we have left aside other type shifting operations such as argument lowering
(Hendriks, 1993) and operations needed to cover trans-sentential phenomena (Dekker, 1993).
Furthermore, we have not addressed coordination, which plays a central role in Hendriks
1993. For all these cases, it is, however, straightforward to extend the present system to
integrate the additional operations and the required basic translations for the coordinating
particles. In the remainder of this section, we will address the question of how we can
impose constraints in LF-Ty2. Within this framework, a constraint may either reduce the
number of derivations of a certain logical form, or it may reduce the number of distinct
logical forms that may be derived. In the latter case we will speak of a reduction of the
number of readings.28

Now that we have illustrated some derivations, we can address a property of flexible
systems such as FMG or LF-Ty2 which might be undesirable for many HPSGians: The
system LF-Ty2, just as FMG, generates a number of different derivations which lead to the
same readings. To see a simple example, let’s review sentence (39a), repeated in (49).

(49) Every man walks.

In the derivation of the translation of this sentence in Figure 1.10 (page 47), we have
simply combined the basic translations of the words. Instead, we could of course, have
applied AR to the semantic argument of the verb. The derived translation of the verb
would be λXs(s((se)t)).X@(λ@λxse .walk′@(x@)). This derived translation of the verb can

28We use “reading” as synonymous for logical form. As noted in the context of example (27), a sentence
may have several distinct logical forms which have the same denotation.
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combine with the translation of the subject NP. In Figure 1.16 the tree for this derivation
is given. The difference to the derivation that we have given in Figure 1.10 is that, now,
the verb is the functor, and the NP the argument. The resulting translation is of course
the same. In (50) the step-by-step λ-conversion is given for the type-shifted verb.

(50) [λXs(s((se)t)).X@(λ@λxse.walk′@(x@))]
(λ@λQs((se)t).∀x[man′@(x@) → Q@(x)])
= (λ@λQs((se)t).∀x[man′@(x@) → Q@(x)])(@)(λ@λxse .walk′@(x@))
= (λQs((se)t).∀x[man′@(x@) → Q@(x)])(λ@λxse .walk′@(x@))
= ∀x[man′

@(x@) → (λ@λxse.walk′@(x@))(@)(x)]
= ∀x[man′

@(x@) → (λxse.walk′@(x@))(x)]
= ∀x[man′

@(x@) → walk′@(x@)]

As can be seen in the final line of (50), the translation of the overall sentence is the
same, but the derivation of this translation is different. This is just one instance of what
Bouma 1994 calls spurious derivations, i.e., derivations that do not differ in the translation
that they ultimately lead to.

In much work within HPSG, an effort is made to avoid “spurious ambiguities”. An
example that is clearly related to the present one is the contrast between the analyses of
scope ambiguity in Pollard and Yoo 1998 and Przepiórkowski 1998. Pollard and Yoo 1998
provide an analysis for quantifier scope within HPSG. They use a storage mechanism, just
as done in Pollard and Sag 1994, but solve some of the empirical problems of the particular
analysis of Pollard and Sag 1994.29 The analysis of Pollard and Yoo 1998 introduces a large
amount of spurious ambiguity. Przepiórkowski 1998 optimizes this account: He introduces
severe restrictions on the nodes at which quantifier retrieval is possible (they must be words
whose content value is not identical with that of one of their complements) and, thus, he
eliminates the spurious ambiguities. These restrictions do not lead to an exclusion of some
readings, but simply reduce the number of distinct analyses for a sentence.

Similarly, it can be shown that we can, at least, reduce the number of possible derivations
in the flexible system considerably. Building on results from Hendriks 1993 (pp. 118–128),
Bouma 1994 (p. 34) imposes a number of restrictions on the applicability of type shifting
operations. These restrictions reduce the number of derivations, while leaving the number
of derivable readings untouched. In fact, in Bouma’s system there is only a finite number of
derivations for each sentence. Bouma had some independent reason for trying to reduce the
number of derivations, because he proposed a computer implementation that used FMG as
the underlying semantic analysis. For this particular application, it is vital that all readings
of a sentence can be found via a finite number of derivations.

One of Bouma’s restrictions is that the shifting operations may only be applied to
lexical items. We adopt this restriction, which makes our overall system lexicalized. Thus,
lexicalization only leads to a reduction of the number of derivations, not to a loss of readings.

While we do not consider the existence of spurious derivations to be a severe problem, the
result of Bouma 1994 is promising, as it indicates that the elimination of (some) spurious
derivations is possible. We leave it to further research to formulate the constraints that
would be needed to avoid spurious derivations for a particular grammar.

29The semantic analysis of Pollard and Sag 1994 fails to account for the de dicto-reading of sentence (i)
as given in (ia). The reason for this is that the semantic contribution of the quantified NP a unicorn is
introduced into the sentence by the nominative NP. Therefore, the quantifier must have scope over the
matrix predicate according to this analysis. Empirically, however, the sentence as both readings given in
(i).
(i) A unicorn appears to be approaching.

a. de dicto: appear′@(λ@.∃x[unicorn′@(x@) ∧ approach′@(x@)])
b. de re: ∃x[unicorn′@(x@) ∧ appear′@(λ@.approach′@(x@))]
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It was noted in Hendriks 1993 that his own system, FMG, licenses too many readings.
The same is, of course, true for our system as it stands. While the problem of “spurious
derivations” seems to be relevant only for practical applications, but not from a theoretical
point of view, the existence of too many readings must be excluded by the grammar. In the
following, we will discuss one example of a possible constraint on the numbers of readings.
As this thesis is more concerned with idiosyncratic constraints on the occurrence of lexical
items (see Part II), we will not discuss general constraints on possible logical forms in
much detail. Thus, this one example should be considered as an illustration of how such
constraints can be incorporated in principle.

It has been noted, among others, in Zimmermann 1993 and von Stechow 1993 that the
scope properties of expressions as every N differ considerably from that of expressions of
the form some N. This can be illustrated with the following example. We put the symbol
“$” in front of readings that are not available for a given sentence.

(51) Some man believes that every woman walks.
a. de dicto reading:

∃x[man′@(x@) ∧ believe′@(x@, λ@.∀y[woman′
@(y@) → walk′@(y@)])]

b. ∃∀-de re reading:
$ ∃x[man′

@(x@) ∧ ∀y[woman′
@(y@) → believe′@(x@, λ@.walk′@(y@))]]

c. ∀∃-de re reading:
$ ∀y[woman′

@(y@) → ∃x[man′
@(x@) ∧ believe′@(x@, λ@.walk′@(y@))]]

Structurally, sentence (51) is similar to example (39c). Our mechanism of shifting allows
us to derive the three readings indicated in (a)–(c), which are parallel to the readings
attested for sentence (39c). In (51a) we have a de dicto reading. In (b) and (c) we give
the logical forms of de re readings; in (51b), the universal quantifier has scope over the
intensionality operator λ@, but is in the scope of the existential quantifier contributed by
the matrix subject. In (51c) the universal quantifier contributed by the embedded subject
has wide scope over all other operators in the logical form. The derivations of these terms
are parallel to those indicated in Figure 1.11, Figure 1.14 and Figure 1.15 respectively.

The problem with the de re derivations is that these readings do not exist. In (51),
this is indicated by the symbol “$” in front of the term. The contrast between the possible
readings of (39c) and those of (51) is just one instance of the complicated interactions of
quantifiers. For the purpose of this section, we will make the simplifying assumption that a
universal quantifier cannot take scope outside the clause in which it is introduced, whereas
an existential quantifier is not subject to this constraint.

In the derivations of the de re readings of sentence (39c), we have shown that in the
logical form of the embedded clause, there is some variable u which corresponds to the
semantic contribution of the matrix predicate. In (52a) we repeat the logical form of the
S node in the derivation of the de re readings of sentence (39c). In (52b) we replace the
existential quantifier of (52a) by a universal quantifier as it appears in the de re derivations
for sentence (51).

(52) a. logical form for the de re reading of some woman walks:
λu.∃y[woman′

@(y@) ∧ u@(λ@.walk′@(y@))]
b. putative logical form for the de re derivation of every woman walks:

$ λu.∀y[woman′
@(y@) ∧ u@(λ@.walk′@(y@))]

It is our task to exclude a logical form as (52b), while allowing logical forms such as (52a).
As we have mentioned in the discussion of Figure 1.14, the de re reading is made possible by
the application of VR which introduces a new semantic argument, u in this case, and, the
subsequent application of AR. This combination of shifting rules results in a logical form
in which a quantifier contributed by a complement of the embedded verb has in its scope
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a free occurrence of the variable u. To exclude de re readings, it is, therefore, enough to
exclude free variables in the scope of a universal quantifier. In (53) we formulate a simple
constraint on logical forms that has this effect.

(53) A simple lf constraint:
For each node of category S,
the logical form of S does not contain a subterm of the form λx.ψ such that
ψ has a subterm ∀vφ which has a free occurrence of the variable x.

We can show that the logical form of the embedded S node of sentence (51) does not
satisfy this constraint in the case of the de re readings. The relevant logical form is given
in (52b). This term has a subterm λu.ψ such that ψ contains a universal quantifier, ∀y. In
the scope of this quantifier, there is a free occurrence of the variable u. Thus, the logical
form violates the lf constraint in (53).

The logical form given in (52a) satisfies the constraint, as this term does not contain
any universal quantifier. Similarly, the logical form of the embedded clause of sentence (51)
satisfies the constraint under the de dicto reading. In this case, the logical form of the
embedded clause is as given in (54).

(54) logical form for the de dicto reading of every woman walks:
∀y[woman′

@(y@) ∧ walk′@(y@)]

In this logical form, there is a universal quantifier. In addition, the variable @ does
occur freely in the scope of the universal quantifier, but it is not bound by a λ-abstractor
in the term. Therefore, the constraint is not violated.

The constraint in (53) is just one example of the kind of lf constraints that we expect in
the present approach. The constraint links some syntactic properties of a sign, its syntactic
category in this case, to some property of its logical form. Similarly, other constraints might
express restrictions between the phonology value of a sign and its logical form. Such
constraints would be used to account for the influence of word order on the availability of
certain readings.

The constraint in (53) can be expressed under the assumption of a Ty2 term as the
logical form of a linguistic sign. It is, however, less obvious how such a constraint can be
expressed within the frameworks presented in Section 1.2. Let us briefly consider why this
is the case. The basic reason is that the constraint in (53) restricts the scope potential of
the universal quantifier, while it leaves that of the existential quantifier untouched.

In a framework that assumes a level of LF, the scope of a quantifier is (at least partially)
determined by QR. As we have seen, in May 1985 it is assumed that a quantified NP attaches
to the S node of the clause which determines its scope domain. May assumes a single LF
for clauses with multiple quantifiers independent of the relative scope of the quantifiers.
However, in the case of the three readings of (39c), we would still need one LF for the de
dicto reading and one LF for the two de re readings, because in the latter case, it is the
matrix clause that constitutes the scope domain of the quantifier contributed by the subject
of the embedded clause. This means that the operation of QR must allow quantifiers to raise
over a clause boundary. If such a long QR is allowed, it remains uncertain how long QR
can be parametrized to allow it for an existential quantifier, but disallow it for a universal
quantifier. In order to express such parametrization, syntax must be able to have access to
the difference between some and every. Whereas such a difference is obvious if we operate
with terms of Ty2, it must be stipulated within an approach that uses syntactic categories
as the basic entities of LFs.

A similar argument could be made against the transparent LFs of von Stechow 1993.
There the issue of the differences in the scopal potential of quantifiers is addressed directly
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(pp. 63–65). Stechow claims that QR is always clause bound. He admits, though, that so far
this restriction must be stipulated and cannot be derived from any assumption made within
syntax proper. This, of course, weakens the argument for the existence of a level of LF
which is a syntactic tree considerably. Once long QR is excluded, it is not obvious how the
de re readings of sentences with existential quantifiers can be accounted for. In von Stechow
1993 the de re readings are related to the literature on indefinites, in particular to Fodor and
Sag 1982. Stechow speculates that indefinite NPs can be interpreted as names that point
to some specific individual. The difference between ordinary names and indefinites, then, is
that in the latter case, it is the speaker that is responsible for assigning such an individual
to the indefinite term. From such an account, it is predicted that the indefinite term must
have a wide scope with respect to other quantifiers in the sentence. Thus, Stechow’s account
would predict the de dicto reading of sentence (39c), in which the indefinite is QR-ed inside
the embedded clause, and the ∃∀-de re reading, under which the indefinite is interpreted as
a name. The approach does not predict the intermediate scope of the existential quantifier
as given by the ∀∃-de re reading of sentence (39c).

Stechow’s considerations correctly point out two things. First, we must distinguish
indefinites from elements that are always quantificational. Second, the explanation of the
contrast between the possible readings of (39c) and (51) will not be found in a syntactic
tree configuration LF, but in the semantics of the determiners.

Finally, let us consider the S-structure Interpretivism of Lappin 1991. We have shown
that it is possible to express the Complex NP Constraint as a constraint on the semantic
type of an NP. The CNPC was formulated so that the denotation of an NP does not contain
any stored quantifiers. The number of stored quantifiers is available from the denotation of
a node in a tree, as it can be read off from the length of the denoted sequence of meanings.
If we want to derive the constraint in (53), it is not enough to consider the length of the
sequence in the denotation of an S node. Remember that we want to allow an existential
quantifier to take scope outside the clause in which it is introduced. This means that we
must allow the translation of some S nodes to contain stored quantifiers. For the derivation
of the de re readings of sentence (39c), we must allow the denotation of the existential
quantifier as the second element in the denotation of the embedded S node. To exclude
a de re reading of sentence (51) we must, however, disallow the denotation of a universal
quantifier in this position.

Under S-structure Interpretivism we cannot access the difference between the two quan-
tifiers directly, but only via the difference in their denotation. In the case of our examples,
it is the difference between the denotation of the term λP.∃y[woman′

@(y@) ∧ P@(y)] and
λP.∀y[woman′

@(y@) ∧ P@(y)]. It is unclear what this difference could be.30 This indicates
that expressing the constraint in (53) as a constraint on possible denotations is not without
its complications. But a purely denotational formulation is exactly what is needed under
S-structure Interpretivism.

On the other hand, it is very likely that the constraint in (53) will disappear in the
present form, once we find an adequate analysis of indefinites. In this case, it might be
possible to differentiate between the NPs some woman and every woman purely on the
grounds of their denotation, for example by referring to their semantic types.

30Note that some woman and every woman do not differ in monotonicity. As the examples in (i) and (ii)
show, both NPs are upward monoton, i.e., if a set A is in the denotation of the NP, then so is every superset

of A.
(i) a. Some woman walks and talks → Some woman walks.

b. Some woman walks or talks 6→ Some woman walks.
(ii) a. Every woman walks and talks → Every woman walks.

b. Every woman walks or talks 6→ Every woman walks.
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To conclude this discussion, let us summarize that assuming a logical form as a semantic
term allows us to differentiate between an existential quantifier and a universal quantifier
and, thus, to impose constraints on possible logical forms that are based on this distinction.
The distinction is, however, not syntactic in nature, as both kinds of quantifiers appear as
part of NPs, i.e., inside elements of the same syntactic category. It is, furthermore, not
obvious how a universally quantified NP and an existentially quantified NP can be told
apart purely on the basis of their denotation, as they are both interpreted as objects of the
same semantic type, at least under the present analysis.

Clearly a refined system of syntactic categories, or, more adequately, a refined semantic
analysis, can put the LF proposals or the lf-less proposal in the situation to express the
effect of the constraint in (53). Still, it is worth noting that the assumption of an lf allows
us to treat the reported differences even within the simple semantic analysis of this section.

1.4. Summary

In this chapter, we have characterized an HPSG grammar as a theory of linguistic
objects. The grammar denotes a collection of linguistic objects. Some of these linguistic
objects are signs. These signs have components which represent their phonology, their
syntactic properties and, most importantly for us, a compontent which represents their
semantics. We call this particular component of a sign its logical form. In Section 1.2, we
summarized various concepts of grammar which differ in their assumptions on whether and
how a semantic representation should be part of the structures described by a grammar.
We came to the conclusion, that Pollard and Sag 1994 assume the existence of a semantic
representation as a component of every sign. Deviating from the further assumptions of
Pollard and Sag 1987, 1994, we decided to take as the semantic representation language the
language Ty2 (Gallin, 1975), in order to be able to link HPSG semantics to the Montegovian
tradition of formal semantics.

Based on the assumption that every linguistic sign has a component which is a term
of Ty2, we wanted to avoid the introduction of further components to linguistic signs.
This can be done if we adapt a flexible system in the spirit of Hendriks 1993 for the
derivation of the semantic representation of signs. Such a system is able to account for
scope ambiguities without necessitating the existence of a storage mechanism, as used for
example in Pollard and Sag 1994. Therefore, the adaptation of LF-Ty2 will enable us to
give a standard semantic representation to linguistic signs, but avoids the introduction of
otherwise unmotivated auxiliary compontents such as the qstore and retrieved values
in the case of the grammar in Pollard and Sag 1994.

In the following chapters of this part of the thesis, we will give a precise formalization
of the system of semantic representation sketched above. In Chapter 2, we will define the
description language that we use to write HPSG grammars. In Chapter 3 we will present
an HPSG grammar, T Y2, which will be shown to denote exactly the set of Ty2 terms of
Section 1.3.2. As a consequence, terms of Ty2 can be used in HPSG grammars. In Chapter 4
we integrate the grammar T Y2 into an HPSG fragment of English such that each sign has
a Ty2 term as its logical form. In addition, we provide the formal architecture for the use
of type shifting operations needed in LF-Ty2. With the integration of Ty2 into an HPSG
grammar, we can also formulate constraints between the syntactic properties of a sign and
its logical form as regular principles of grammar.





CHAPTER 2

RSRL

Throughout this thesis, the same underlying formal language will be assumed. The
language is called RSRL (Relational Speciate Re-entrant Language). RSRL was developed
as a formal language that fulfills the requirements of current HPSG theories. As a test
case, Richter 2000 shows that RSRL provides exactly the functionality that is needed to
formalize the grammar given in the appendix of Pollard and Sag 1994. RSRL has been
assumed as the formal foundation in a number of recent HPSG accounts of a variety of lin-
guistic phenomena, including scope (Przepiórkowski, 1997, 1998), case assignment and the
complement/adjunct dichotomy (Przepiórkowski, 1999a), linearization (Penn, 1999a,b,c),
phonology (Höhle, 1999), morphology (Reinhard, 2001), German clause structure (Richter,
1997; Richter and Sailer, 2001), tough movement (Calcagno, 1999), underspecified seman-
tics (Richter and Sailer, 1999d), and negation (Przepiórkowski, 1999b; Richter and Sailer,
1999a,c). In this thesis, we will add to this an integrated treatment of combinatorial se-
mantics, based on the system of Lexicalized Flexible Ty2 (Chapter 4), and an analysis of
idiomatic expressions (Chapter 8).

In the present chapter, we will give all the definitions of RSRL and illustrate them first
with the small example grammar introduced in Section 1.1. We will, then, provide the
syntactic fragment that we can use in Chapter 4 to build our HPSG version of LF-Ty2
on. Even though some understanding of the formal properties of RSRL is necessary to
see why and how our encoding of LF-Ty2 behaves in the intended way, we feel this thesis
is not the place to discuss the motivation behind RSRL and its place within competing
attempts to formalize HPSG. Fortunately, there are many presentations of RSRL which
focus on exactly those questions. Richter et al. 1999 explain the main motivation behind
those aspects of RSRL that differ from its predecessor Speciate Re-entrant Logic (SRL)
(King, 1989, 1994, 1999)) . In Richter 1999, the basic definitions are given and an AVM
language and some useful notational conventions are defined which provide a reader-friendly
description language. Parts of this will be integrated in Section 2.2. Additionally, as SRL
is a proper sublanguage of RSRL and as RSRL has adopted SRL’s model theory, King
1999 should be consulted for an extensive discussion of the relation between an (R)SRL
grammar and natural language. It is in this paper that the importance of exhaustive models
is emphasized. We have already pointed out in Section 1.1 that exhaustive models are used
to determine the denotation of a grammar.1 Finally, Richter 2000 subsumes all of the above
mentioned aspects and includes a comparative survey of the most prominent proposals for
formalisms for HPSG from Pollard and Sag 1987 to RSRL.

The present chapter consists of three sections. In Section 2.1, the formal language RSRL
is defined. To illustrate the definitions, we will exemplify them with the toy grammar that
we have already used in Section 1.1. Section 2.2 gives some simple examples of how the
notation used in the definitions of RSRL can be related to the notation which is more

1One might also consult Pollard and Sag 1994 and Pollard 1999 for different positions regarding the meaning
of HPSG grammars. According to King 1999, the denotation of a grammar is the set of tokens of the
language. In Pollard and Sag 1994 and Pollard 1999, on the other hand, the notion of types, or at least
some abstractions over tokens, is central to the interpretation of a grammar. In this thesis, we adopt King’s
position. As shown in Richter 2000, Pollard’s position is equally compatible with RSRL.
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commonly used within the HPSG literature: the AVM notation which we have already used
in Section 1.1 and in our discussion of the semantic framework used in Pollard and Sag
1994 in Section 1.2. In Section 2.3 we will present the syntactic analysis which we assume
throughout the rest of this thesis. This analysis is a slightly modified form of the grammar
given in the appendix of Pollard and Sag 1994.

2.1. Definitions

In this section, we repeat the definitions of RSRL, as they are given in the main presen-
tations of RSRL (Richter et al., 1999; Richter, 1999, 2000). See these papers for detailed
explanations of the definitions and their underlying motivation.

definition 2.1 Σ is a signature iff

Σ is a septuple 〈G,v,S,A,F ,R,AR〉,
〈G,v〉 is a partial order,

S =

{
σ ∈ G

∣∣∣∣
for each σ′ ∈ G,
if σ′ v σ then σ = σ′

}
,

A is a set,
F is a partial function from the Cartesian product of G and A to G,
for each σ1 ∈ G, for each σ2 ∈ G and for each α ∈ A,
if F〈σ1, α〉 is defined and σ2 v σ1

then F〈σ2, α〉 is defined and F〈σ2, α〉 v F〈σ1, α〉,
R is a finite set, and

AR is a total function from R to IN+.

Definition 2.1 defines what an RSRL signature is. The set G is the set of sorts. G has
a special subset, S of maximally specific sorts, also called species. The pair 〈G,v〉 is the
sort hierarchy. In addition to sorts, the signature also provides a set of attributes A, and
the appropriateness conditions, which are encoded in the function F . So far, an RSRL
signature does not differ significantly from an SRL signature as defined in King 1999 or
Richter and Sailer 1995.2 However, RSRL further includes relational symbols R in the
signature, combined with an explicit statement of the arity of the relations given by the
function AR.

In the following, we will illustrate the definitions with a grammar such as the one used
in Section 1.1. There, we have assumed a very small signature that differentiated between
words and phrases, and uses a list-valued representation of phonology. In (55) we give the
signature for this grammar.

(55) The signature of the grammar assumed in Section 1.1:

a. G =





top,
sign, word, phrase,
const-struc,
synsem,
list, elist, nelist,
phonstring, Mary, every, man, walks





2The definition of SRL given in Richter and Sailer 1995 differs from that in King 1999 in that it explicitly
includes the sort hierarchy in the signature. In addition, Richter and Sailer 1995 assume a finite set of sorts.
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b. v=





〈top, top〉,
〈sign, sign〉, 〈word,word〉, 〈phrase, phrase〉,
〈sign, top〉, 〈word, top〉, 〈phrase, top〉,
〈word, sign〉, 〈phrase, sign〉,

〈const-struc, const-struc〉,〈const-struc, top〉,

〈synsem, synsem〉, 〈synsem, top〉,

〈list, list〉,〈elist, elist〉, 〈nelist,nelist〉,
〈list, top〉, 〈elist, top〉, 〈nelist, top〉, 〈elist, list〉, 〈nelist, list〉,

〈phonstring, phonstring〉, 〈Mary,Mary〉, 〈every, every〉,
〈man,man〉, 〈walks,walks〉,
〈phonstring, top〉, 〈Mary, top〉, 〈every, top〉,
〈man, top〉, 〈walks, top〉,
〈Mary, phonstring〉, 〈every, phonstring〉,
〈man, phonstring〉, 〈walks, phonstring〉





c. S =





word, phrase,
const-struc,
synsem,
elist, nelist,
Mary, every, man, walks





d. A =





phon, synsem, dtrs,
h-dtr, n-dtr,
first, rest





e. F =





〈〈sign, phon〉 , list〉, 〈〈sign, synsem〉 , synsem〉,

〈〈word, phon〉 , list〉, 〈〈word, synsem〉 , synsem〉,

〈〈phrase, phon〉 , list〉, 〈〈phrase, synsem〉 , synsem〉,
〈〈phrase,dtrs〉 , const-struc〉,

〈〈const-struc,h-dtr〉 , sign〉, 〈〈const-struc,n-dtr〉 , sign〉,

〈〈nelist, first〉 , top〉, 〈〈nelist,rest〉 , list〉





f. R = {append}
g. AR = {〈append, 3〉}

The signature as given in (55) includes the sort hierarchy and the appropriateness con-
ditions as we have expressed them in the graph in (11) (page 13). In addition, we have
now introduced explicitly those sorts that were left implicit in Section 1.1, such as the top
sort top and the encoding of lists via the two sorts e(mpty-)list and n(on-)e(mpty-)list. It
can be seen in (55b) that the sort word is a subsort of the sort sign. As the sort word is
not a supersort of any other sort, it appear in the set of species, S. In (55e) we see that
the attributes defined on the sort word are exactly those defined on the sort sign, whereas
the sort phrase has a further attribute, dtrs (daughters), defined on it. Finally, we use
exactly one relation, append, which takes three arguments, as stated in (55g).

To keep the following definitions readable, we introduce some notational conventions in
Convention 2.2.

convention 2.2 For each set S,

(1) for each natural number n,
Sn is the set of n-tuples over elements of a set S,

(2) S∗ is the set of finite sequences or strings of over elements of a set S,
(3) S+ is the set of nonempty finite sequences or strings of elements of a set S,
(4) S is an abbreviation for S ∪ S∗.
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A signature structures the empirical domain. This is expressed in the following definition
of a signature interpretation.

definition 2.3 For each signature Σ, I is a Σ interpretation iff

I is a quadruple 〈U, S,A,R〉,
U is a set,
S is a total function from U to S,

A is a total function from A to the set of partial functions from U to U,
for each α ∈ A, for each u ∈ U,

if A(α)(u) is defined
then F〈S(u), α〉 is defined, and S(A(α)(u)) v F〈S(u), α〉,

for each α ∈ A, for each u ∈ U,
if F〈S(u), α〉 is defined then A(α)(u) is defined,

R is a total function from R to the power set of
⋃

n∈IN(U)n,

and for each ρ ∈ R, R(ρ) ⊆ (U)AR(ρ).

A signature interpretation has a number of properties. There is a universe U, which
contains all the objects of the domain. Each object in the universe is assigned exactly one
species by the function S. The attribute interpretation function A respects the appropri-
ateness conditions as specified in F .

The way we have defined the signature interpretation, the objects in the interpretation
of a signature are the way we have characterized them in Section 1.1, i.e., all objects have
some label, which is taken from the maximally specific sorts. Furthermore, all attributes
declared appropriate for a sort are defined on objects of that sort and take values which are
of an appropriate sort.

Finally, the relation symbols are interpreted by the function R. A relation symbol
relation with arity n denotes a set of n-tuples. In contrast to what one might expect,
these n-tuples are not necessarily n-tuples of objects, but n-tuples of elements of U, i.e., by
convention 2.2, n-tuples of elements of U ∪ U∗.

With these formal definitions, we can see that the configurations of objects given in
Section 1.1 (Figures 1.1–1.5) all obey the signature in (55). If we take the collection of
objects given in these configurations as our universe U, then the function S is the function
that assigns each of the objects its label. The function A is given by the arrows used in
the configurations. What is missing in the configurations is the relation interpretation.
In (17) on page 19 we have given an informal characterization of what should be in the
interpretation of the relation append. A set R(append) that meets this characterization is
compatiple with the requirements expressed in Definition 2.3, as such a set is a subset of

U3, which is a subset of U
3
, and AR(append) = 3.

In RSRL, elements of the set U∗ are of a particular importance. We refer to them as
chains. As chains are elements of U∗, they are finite sequences of objects in an interpretation.
While each element in such a sequence appears in the universe U of an interpretation, the
chain itself does not. In this sense chains are “virtual” objects. Chains are needed in an
RSRL grammar, whenever complex dependencies between components of an object must
be expressed. In Section 4.2 we will show that λ-conversion in Ty2 is such a relation: to
express λ-conversion in RSRL, we must either extend the ontology of our grammar, or use
these virtual entities instead. In the simple grammar that we will present in this section, we
will state a constraint in the theory that enforces that for each object in the denotation of
the grammar, the configuration under the object consists only of a finite number of objects.
There is no known method to impose such a constraint using the signature in (55) and not
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allowing for chains. If we use chains, the formulation of such a constraint is strainghtforward.
The reason for this is that chains are always finite and acyclic, by virtue of being elements
of U∗. In contrast to this, the configuration under a linguistic object can be infinite or cyclic
in principle.

Coming back to the interpretation of relations in RSRL, we, thus, can say that a relation
denotes an n-tuple of objects or chains.

The following definition gives us some special syntax to work with chains.

definition 2.4 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, we define

Ĝ = G ∪ {chain, echain, nechain,metatop},
v̂ = v

∪

{
〈echain, echain〉 , 〈nechain,nechain〉 ,
〈chain, chain 〉 , 〈echain, chain〉 , 〈nechain, chain〉

}

∪
{
〈σ,metatop〉

∣∣∣σ ∈ Ĝ
}
,

Ŝ = S ∪ {echain,nechain}, and

Â = A ∪ {†, .}.

Independent of the signature, RSRL provides the special symbols introduced in Defini-
tion 2.4. These symbols augment the signature specified by a linguist. The augmentation

introduces an extension of the sorts (Ĝ), including the species (Ŝ) and the sort hierarchy

(
〈
Ĝ, v̂

〉
). Note that

〈
Ĝ, v̂

〉
is a partial order. We call the new symbols chain, echain and

nechain quasi-sorts.

In addition, there is also an augmented set of attributes Â. The symbols that are

contained in Â but not in A, i.e., † and ., are called quasi-attributes.

Definition 2.4 gives us an augmented signature. In order to be able to interpret the
newly introduced symbols, we must, next, define an interpretation for them. This is done
in the following definition.

definition 2.5 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉,

Ŝ is the total function from U to Ŝ such that
for each u ∈ U, Ŝ(u) = S(u), for each u1 ∈ U, . . . , for each un ∈ U,

Ŝ(〈u1, . . . , un〉) =

{
echain if n = 0,
nechain if n > 0

, and

Â is the total function from Â to the set of partial functions from U to U such
that

for each α ∈ A, Â(α) = A(α), and

Â(†) is the total function from U+ to U such that

for each 〈u0, . . . , un〉 ∈ U+, Â(†)(〈u0, . . . , un〉) = u0, and

Â(.) is the total function from U+ to U∗ such that

for each 〈u0, . . . , un〉 ∈ U+, Â(.)(〈u0, . . . , un〉) = 〈u1, . . . , un〉.

Definition 2.5 introduces an augmented species interpretation function Ŝ. Regular ob-
jects, i.e., elements of the universe U are interpreted just as under S. For chains, i.e.,
elements of U∗, a special treatment is introduced. An empty chain is assigned the symbol

echain by Ŝ, a non-empty chain is assigned the symbol nechain.
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Similarly, the attribute interpretation is augmented. For ordinary attributes, the aug-

mented attribute interpretation function Â behaves just like A. For (non-empty) chains,

the symbol † is used to relate a non-empty chain to its first element via Â. The symbol .
relates a non-empty chain c to a chain c′, which is just like c with the first element removed.

From these definitions, we can see that chains have a list-like structure. If we have an
RSRL grammar such as that of Pollard and Sag 1994, or the toy grammar of Section 1.1,
both of which assume a sort list, then there is an intuitive correspondence between the
sort elist and the symbol echain. Similarly for the sort nelist and the symbol nechain, the
attribute first and the symbol †, and, finally, the attribute rest and the symbol ..

As shown in Richter et al. 1999 and in more detail in Richter 2000, chains have been used
implicitly throughout HPSG grammars. They are needed to encode principles of Pollard
and Sag 1994, such as the (a) clause of the Semantic Principle (see (29)), and many other
works in HPSG, such as linearization grammars which use shuffle (Kathol and Pollard,
1995). In (63b) we will augment our toy grammar by a principle that makes essential use
of chains to impose a finiteness restriction on linguistic objects.

Before we can turn to complex syntactic entities in RSRL, we must introduce yet another
set of basic symbols:

definition 2.6 VAR is a countably infinite set of symbols.

We call each element of VAR a variable. As we have seen in Section 1.1, we will use either
lower case letters (a, b, c, . . . ) or boxed integers ( 1 , 2 , . . . ) for variables. Furthermore, in
order to capture common HPSG terminology, we will often refer to variables as tags.

Now that we have defined the basic symbols that we want to use and their interpretation,
we can define larger syntactic units. We will start with terms.

definition 2.7 For each signature Σ, T Σ is the smallest set such that

: ∈ T Σ,
for each v ∈ VAR, v ∈ T Σ,

for each α ∈ Â and each τ ∈ T Σ, τα ∈ T Σ.

The set T Σ is called the set of Σ terms. A term starts with the symbol “: ” or a variable,

followed by a finite sequence of elements for Â, i.e., attributes or quasi-attributes. Using
our toy signature in (55), we can give some terms.

(56) a. : phon
b. : phon synsem
c. 2dtrs h-dtr synsem
d. a†synsem

In (a) and (b), we have terms that start with the special symbol “: ”, followed by
some attributes. In (c) and (d), the terms start with variables, a tag ( 2 ) in (56c), and a
lower case letter (a) in (56d). In (a)–(c), we use attributes from the signature, in (d), the
quasi-attribute “†” from the augmented set of attributes occurs.

As terms contain variables, we will introduce a variable assignment function, before
interpreting terms.

definition 2.8 For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉,

AssI = U
VAR

is the set of variable assignments in I.
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Each element of AssI is called a variable assignment. A variable assignment maps each
variable either into an element of the universe U or into a chain, i.e., an element of U∗. We
can now state how terms are interpreted.

definition 2.9 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉, for each ass ∈ AssI,

T ass
I is the total function from T Σ to the set of partial functions from U to U, to

the power set of U such that, for each u ∈ U,
T ass

I ( : )(u) is defined and T ass
I ( : )(u) = u,

for each v ∈ VAR,
T ass

I (v)(u) is defined and T ass
I (v)(u) = ass(v).

for each τ ∈ T Σ, for each α ∈ Â,
T ass

I (τα)(u) is defined iff

T ass
I (τ)(u) is defined and Â(α)(T ass

I (τ)(u)) is defined, and

if T ass
I (τα)(u) is defined then T ass

I (τα)(u) = Â(α)(T ass
I (τ)(u)).

T ass
I is called a term interpretation function. It maps every Σ term into a partial function

from U to U. The symbol “: ” is mapped into the identity function. Variables are mapped
into constant functions. The variable assignment ass determines the particular choice of the
constant function. The interpretation of complex terms of the form τα is a partial function,
because it is only defined if the attribute α is defined on the object T ass

I (τ)(u).

Now that we know how terms are interpreted, we can re-consider the terms in (56). The
term given in (56a) is defined on every object in the universe U on which the attribute phon
is defined. In our toy signature, the only species for which this attribute is appropriate are

the sorts word and phrase. Thus, if we take an object o with label word, i.e., Ŝ(o) = word,
then the term interpretation function is defined on the term : phon and on o and has as

value the phonology of the word o, i.e., the list that occurs as the the value of Â(o)(phon).
In the configuration under the word walks in Figure 1.1 (page 14) the term interpretation
of the term : phon is only defined on the matrix object, and yields the nelist object that
occurs in the configuration.

If we consider the term given in (56b), we can see that the term interpretation is not
defined for this term: Let us take again some object o which is of sort word. Then, as we
have seen above, the term interpretation is defined on that object and the term : phon, and
it yields an object of sort elist or nelist, as the appropriateness function F in (55e) contains
〈〈word, phon〉 , list〉. The attribute synsem, however, is not appropriate to either of these
sorts. This is indicated in the matrix object of the configuration in Figure 1.1: there is no
path that starts from the matrix object of this configuration and goes first via an arrow
with the name phon and then via an arrow with name synsem.

With the same reasoning, we can show that the term interpretation function on the
term :phon synsem is not defined on an object with label phrase. For objects with labels
other than word or phrase, the term interpretation function on the term :phon synsem is
not defined either, because the attribute phon is only appropriate to these two species.

For the term interpretation of the terms in (56c) and (56d), we must know the values of
the variable assignment function on the variables 2 and a respectively. Let us assume that
the term interpretation is defined on these terms. Note, however, that the first attribut in
the term in (56d) is taken from the augmented attribute set, i.e., it is a quasi-attribute.
According to the way the augmented attribute interpretation function is defined, this means
that the variable assigment must be chosen in such a way that the variable a is interpreted
as a chain, i.e., ass(a) ∈ U∗.



70 2. RSRL

We use terms to build larger syntactic units, descriptions:3

definition 2.10 For each signature Σ, DΣ is the smallest set such that

for each σ ∈ Ĝ, for each τ ∈ T Σ, τ∼σ ∈ DΣ,
for each τ1 ∈ T Σ, for each τ2 ∈ T Σ, τ1≈τ2 ∈ DΣ,
for each ρ ∈ R, for each x1 ∈ VAR, . . . , for each xAR(ρ) ∈ VAR,

ρ(x1, . . . , xAR(ρ)) ∈ DΣ,

for each x ∈ VAR, for each δ ∈ DΣ, Ex δ ∈ DΣ,
for each x ∈ VAR, for each δ ∈ DΣ, Ax δ ∈ DΣ,
for each δ ∈ DΣ, not δ ∈ DΣ,
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1and δ2] ∈ DΣ,
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1or δ2] ∈ DΣ,
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1⇒δ2] ∈ DΣ,
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1⇔δ2] ∈ DΣ.

Σ descriptions come in several forms. The following names will be helpful for further
reference. They are given in the order of the lines in Definition 2.10: sort assignments,
i.e., descriptions of the form τ∼σ, identities, relation calls, existentially quantified descrip-
tions, universally quantified descriptions, negated descriptions, conjunctions, disjunctions,
implications and equivalences.

One remark should be made about the choice of symbols in Definition 2.10. In other
presentations of RSRL such as Richter 1999, 2000 or Richter et al. 1999, the more standard
symbols ∃, ∀, ¬, ∧, ∨, → and ↔ are used for logical constants instead of E, A, not, and,
or, ⇒ and ⇔. As the former symbols are part of our semantic representation language Ty2
as introduced in Section 1.3.2, we use different symbols for RSRL to avoid confusion.

In (57) we find the formal equivalent of the AVM notations used in Section 1.1 and
indicate which AVM corresponds to which description. In Section 2.2 we will show how
AVMs as those used in Section 1.1 can be transformed into the format of descriptions
defined in Definition 2.10.

(57) a. = (12) on page 15:
: ∼word

and : phon first∼walks
and : phon rest∼elist

b. = (14) on page 16:
: ∼phrase and : phon first∼every

and : phon rest first∼man
and : phon rest rest first∼walks
and : phon rest rest rest∼elist

and : dtrs h-dtr∼word
and : dtrs h-dtr phon first ≈ : phon rest rest first
and : dtrs h-dtr phon rest∼elist

and : dtrs n-dtr∼phrase
and : dtrs n-dtr phon first ≈ : phon first
and : dtrs n-dtr phon rest first ≈ : phon rest first
and : dtrs n-dtr phon rest rest∼elist

and : dtrs n-dtr dtrs h-dtr∼word
and : dtrs n-dtr dtrs h-dtr phon first ≈ : phon rest first

3In Richter 2000 (pp. 165f.), the term descriptions is confined to elements of DΣ which do not contain free
variables. The set DΣ is called the set of formulae. In the present work, we do not follow this terminology.
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and : dtrs n-dtr dtrs h-dtr phon rest∼elist

and : dtrs n-dtr dtrs n-dtr∼word
and : dtrs n-dtr dtrs n-dtr phon first ≈ : phon first
and : dtrs n-dtr dtrs n-dtr phon rest∼elist

c. = (15) on page 18:
E 1E 2E 3

1∼every
and 2∼man
and 3∼walks

and : ∼phrase
and : phon first ≈ 1

and : phon rest first ≈ 2

and : phon rest rest first ≈ 3

and : phon rest rest rest∼elist

and : dtrs h-dtr∼word
and : dtrs h-dtr phon first ≈ 3

and : dtrs h-dtr phon rest∼elist

and : dtrs n-dtr∼phrase
and : dtrs n-dtr phon first ≈ 1

and : dtrs n-dtr phon rest first ≈ 2

and : dtrs n-dtr phon rest rest∼elist

and : dtrs n-dtr dtrs h-dtr∼word
and : dtrs n-dtr dtrs h-dtr phon first ≈ 2

and : dtrs n-dtr dtrs h-dtr phon rest∼elist

and : dtrs n-dtr dtrs n-dtr∼word
and : dtrs n-dtr dtrs n-dtr phon first ≈ 1

and : dtrs n-dtr dtrs n-dtr phon rest∼elist
d. = (16) on page 18:

E 1E 2E 3 E 4 E 5

1 first∼every
and 1rest∼elist

and 2first∼man
and 2rest∼elist

and 3first∼walks
and 3rest∼elist

and : ∼phrase
and : phon ≈ 5

and : dtrs h-dtr∼word
and : dtrs h-dtr phon ≈ 3

and : dtrs n-dtr∼phrase
and : dtrs n-dtr phon ≈ 4

and : dtrs n-dtr dtrs h-dtr∼word
and : dtrs n-dtr dtrs h-dtr phon ≈ 2

and : dtrs n-dtr dtrs n-dtr∼word
and : dtrs n-dtr dtrs n-dtr phon ≈ 1
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and append( 1 , 2 , 4 )
and append( 4 , 3 , 5 )

The descriptions in (a) only contains conjunctions and sort assignments. The description
in (b) furthermore also contains identities. Note that in the corresponding AVM in (14) we
have used tags to express these identities. This is due to the fact that the AVM language
does not provide means to express identities, except for variable identities. In (c) we have
added variables and quantifiers, and, finally, in (d) we also added relation calls.

We need two auxiliary definitions before we can interpret descriptions. These additional
definitions are, actually, only necessary for the interpretation of quantified descriptions.
Quantification and relation calls are, however, not independent of each other. As we will
see later, descriptions in a theory will never contain free variables. By definition 2.10,
relation calls must contain variables. Therefore, in a linguistic theory, all calls must occur
inside quantified descriptions.

definition 2.11 For each signature Σ, for each Σ interpretation

I = 〈U, S,A,R〉, for each ass ∈ AssI, for each v ∈ VAR, for each

w ∈ VAR, for each u ∈ U,

assu
v (w) =

{
u if v = w
ass(w) otherwise.

Definition 2.11 defines what it means to change a variable assignment at one place. The
following definition introduces the notion of a component.

definition 2.12 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉, for each u ∈ U,

Cou
I =




u′ ∈ U

∣∣∣∣∣∣∣∣

for some ass ∈ AssI,
for some π ∈ A∗,
T ass

I (:π)(u) is defined, and
u′ = T ass

I (:π)(u)





.

In Definition 2.12 the set of components is defined for objects, i.e., elements of U. A
component of an object u is an object u′ that is the value of the term interpretation of some
path : π, applied to u. Intuitively speaking, the set of components of an object contains all
objects that can be reached from this object by some sequence of attributes.

In the case of the configurations of objects given in Section 1.1, all (and only those)
objects that occurred in a configuration under a given matrix object are the components of
the matrix object. Thus, in the case of Figure 1.1, all objects in this figure are components
of the word object. It can be seen that each of these objects can be reached via a finite
series of arrows, starting from the matrix object of the configuration.

The next definition provides us with the interpretation of Σ descriptions as they were
given in Definition 2.10.

definition 2.13 For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉, for each ass ∈ AssI,

Dass
I is the total function from DΣ to the power set of U such that, for each u ∈ U,

for each τ ∈ T Σ, for each σ ∈ Ĝ,

Dass
I (τ ∼ σ) =

{
u ∈ U

∣∣∣∣
T ass

I (τ)(u) is defined, and

Ŝ(T ass
I (τ)(u)) v̂ σ

}
,
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for each τ1 ∈ T Σ, for each τ2 ∈ T Σ,

Dass
I (τ1 ≈ τ2) =



u ∈ U

∣∣∣∣∣∣

T ass
I (τ1)(u) is defined,
T ass

I (τ2)(u) is defined, and
T ass

I (τ1)(u) = T ass
I (τ2)(u)



,

for each ρ ∈ R, for each x1 ∈ VAR, . . . , for each xAR(ρ) ∈ VAR,
Dass

I (ρ(x1, . . . , xAR(ρ))) ={
u ∈ U

∣∣〈ass(x1), . . . , ass(xAR(ρ))
〉
∈ R(ρ)

}
,

for each v ∈ VAR, for each δ ∈ DΣ,

Dass
I (Ev δ) =

{
u ∈ U

∣∣∣∣∣
for some u′ ∈ Cou

I ,

u ∈ D
ass u′

v

I (δ)

}
,

for each v ∈ VAR, for each δ ∈ DΣ,

Dass
I (Av δ) =

{
u ∈ U

∣∣∣∣∣
for each u′ ∈ Cou

I ,

u ∈ D
ass u′

v

I (δ)

}
,

for each δ ∈ DΣ,
Dass

I (not δ) = U\Dass
I (δ),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,
Dass

I ([δ1and δ2]) = Dass
I (δ1) ∩Dass

I (δ2),
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

Dass
I ([δ1or δ2]) = Dass

I (δ1) ∪Dass
I (δ2).

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,
Dass

I ([δ1⇒δ2]) = (U \Dass
I (δ1)) ∪Dass

I (δ2).
for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

Dass
I ([δ1⇔δ2]) =

((U \Dass
I (δ1)) ∩ (U \Dass

I (δ2))) ∪ (Dass
I (δ1) ∩Dass

I (δ2)).

The interpretation function for Σ descriptions (Dass
I ) is defined according to the recursive

structure of Σ descriptions. A description denotes a set of objects, or, put differently, it
describes a set of objects. For example, a sort assignment τ∼σ describes an object, if the
term τ is defined on that object and the interpretation of τ on that object is an object that
is of a subsort of σ. Similarly for identities, the two terms must be defined on the object
and their interpretation on that object must be the same.

Negation, conjunction, disjunction, implication and equivalence are interpreted in the
classical way as set complement, set union, intersection, etc. Also the interpretation of
relation calls appears innocuous: a relation call describes an object iff the interpretation of
the variables yield a tuple which is in the interpretation of the relation symbol. There is,
however, an important caveat to this. As the term interpretation of a variable is a constant
function, it is independent of the particular object at which the variable is interpreted.
Therefore, for a given variable assignment, a call will always describe either all objects, i.e.,
the entire universe, or no object at all.

The interpretation of quantified expressions is formulated in term of the Definitions 2.11
and 2.12. In RSRL, a quantifier may only range over components or chains of components
of an object. This means, an existentially quantified description ∃vδ describes an object u
iff, there is some u′ which is either a component of u or a chain which consists of components
of u, such that δ describes u if the variable assignment is modified in such a way that the
variable v is mapped to u′. For a universally quantified description, all components and
all chains of components of an object must fulfill the corresponding requirement. It can be
seen that the interpretation of quantified descriptions is standard with the exception that
(i) it is not quantification over the entire universe U, and (ii) the range of the quantifier
contains components and chains of components.
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Richter et al. 1999 and Richter 2000 argue that this special kind of restricted quantifica-
tion is exactly what is needed to formalize Pollard and Sag 1994 and other work in HPSG.
To prove this strong claim, Richter 2000 gives an RSRL formalization of every principle
contained in the appendix of Pollard and Sag 1994 and a detailed explanation about why a
particular formalization is chosen. On a more general level, Richter et al. 1999 claims that
quantification over the entire universe contradicts the expectation that it should be possible
to determine the grammaticality of an object simply by considering the object itself and
its parts (i.e., the object and the configuration under it). If we restricted the range of the
RSRL quantifiers to components only (instead of allowing chains of components as well), we
would not be able to formalize linguistic principles in the way they were stated originally.
In particular, the possibility of using relation calls would be too limited. Below, we will
use chains to express a constraint that all configurations under a linguistic object contain
only a finite number of objects. Furthermore, in Section 4.2.2 we will use chains to encode
λ-conversion on terms of Ty2.

After these general remarks, we can turn again to our examples from Section 1.1. In that
section, we have already shown informally how the matrix objects of the given configurations
either match or don’t match (parts of) the descriptions given there in AVM form. For the
purpose of illustration, let us re-consider the description in (57a) and the matrix object of
the configuration in Figure 1.1. The object is described by the first line of the description,
because the term “: ” is defined on it (just as on every object) and maps the object to itself.
Furthermore, the matrix object is labelled word. Similarly, the matrix object also meets
the second line of the description: the path : phon first is defined on it and the object
arrived at via this path has the label walks. Finally, the third line is met, because the path
: phon rest is also defined on the object, and leads to an object with label elist.

Let us also consider a simple example of a quantified expression, such as the description
in (57c). Let us assume that we consider some object o whose : dtrs n-dtr value is the
object which serves as the matrix object in Figure 1.4 (page 19). In this case, the object o
can only satisfy the description if there is some variable assignment ass such that ass( 1 ) is
the object reached via the sequence of arrows named phon first from the matrix object
in the configuration, and such that ass( 2 ) is the object reached via the sequence of arrows
named phon rest first. In addition, these very same objects must also be reachable via
the paths dtrs n-dtr phon first and dtrs h-dtr phon first respectively.

In linguistic theories, we want to confine ourselves to descriptions whose interpretation is
independent of particular variable assignments. This is done by allowing only those descrip-
tions as elements of a linguistic theory which do not contain any unbound occurrences of
variables. We write D0

Σ for the set of Σ descriptions that satisfy this syntactic requirement.

definition 2.14 For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉,

DI is the total function from DΣ
0 to the power set of U, such that

for each δ ∈ DΣ
0 ,

DI(δ) =

{
u ∈ U

∣∣∣∣
for some ass ∈ AssI,
u ∈ Dass

I (δ)

}
.

Definition 2.14 works, because the denotation of a description which does not contain free
variables is independent of the choice of the variable assignment.

A Σ theory is nothing but a set of descriptions from DΣ
0 . In its explicit formalization, our

toy grammar of Section 1.1 contains three descriptions in its theory. The first description
constrains the possible word objects. It requires that the phonology of every word be either
empty, or contain exactly one phonstring object. The second constrains phrases and is
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simply a formally precise version of the description given in (18). The third element in the
theory constrains the interpretation of the relation append in the way indicated in (17).

(58) Theory of the grammar assumed in Section 1.1:
a. Constraint on the sort word:

: ∼word ⇒




( : phon∼elist)
or(

: phon first∼phonstring
and : phon rest∼elist

)




b. Constraint on the sort phrase (= (18) on page 20):

: ∼phrase ⇒




E 1 E 2 E 3

: phon ≈ 3

and : dtrs h-dtr phon ≈ 1

and : dtrs h-dtr phon ≈ 2

and (append( 1 , 2 , 3 ) or append( 2 , 1 , 3 ))




c. Constraint for the relation append:
A 1A 2 A 3




append( 1 , 2 , 3 ) ⇔


(
1∼elist
and 2 ≈ 3

)
or




E 4 E 5

1 first ≈ 3first
and 1rest ≈ 4

and 3rest ≈ 5

and append( 4 , 2 , 5 )










Notice that none of these descriptions contains a free variable. They are elements of
DΣ

0 and, therefore, may be elements of a theory. Using the function DI, we can define the
denotation of a theory.

definition 2.15 For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉,

ΘI is the total function from the power set of DΣ
0 to the power set of U such that

for each θ ⊆ DΣ
0 ,

ΘI(θ) =

{
u ∈ U

∣∣∣∣
for each δ ∈ θ,
u ∈ DI(δ)

}
.

The denotation of a theory is defined as the intersection of the denotation of all the
descriptions in the theory.

As we have mentioned in Section 1.1, a grammar consists of a signature and a theory.
This is reflected in the following definition of what an RSRL grammar is.

definition 2.16 Γ is a grammar iff

Γ is a pair 〈Σ, θ〉,
Σ is a signature and
θ ⊆ DΣ

0 .

In our example, the grammar consists of the signature in (55) and the theory in (58).

Given a grammar, a model of that grammar is taken to be an interpretation with the
special property given in Definition 2.17: all elements of the universe must be described by
all elements of the theory of the grammar.
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definition 2.17 For each signature Σ, for each θ ⊆ DΣ
0 , for each Σ interpretation I =

〈U, S,A,R〉,

I is a 〈Σ, θ〉 model iff ΘI(θ) = U.

Among the descriptions in (58), it is only the third that requires comment. Though it
is not an implication, it is of the form that we usually will find for the “definitions” of a
relation. In fact, the constraint in (58c) determines which triples appear in the interpretation
of the relation append. The description is met by each object such that for each triple of
components 〈o1, o2, o3〉, the triple is in the interpretation of append iff (i) o1 is labelled elist
and o2 and o3 are identical, or (ii) there are objects o4 and o5 such that the objects reached
by the interpretation of the attribute first on o1 and o3 are identical, o4 and o5 are the
objects reached by interpreting the attribute rest on o1 and o3 respectively, and o4, o2 and
o5 are in the interpretation of the relation append.

Through this summary of the description in (58c), it is clear that it has roughly the effect
of the informal characterization given in (17). There is, however, an important difference:
whereas in (17), we just talked about lists, these lists are, now, required to be components
of the described object.

Consider a trivial example to make the difference clear. Let us assume that we have an
interpretation that contains the objects of the configurations in Figure 1.1 and Figure 1.5.
In this case, we have two elist objects in the universe, one is a component of the word object,
and the other is a component of the matrix object in Figure 1.5. Let us call these two elist
objects o1 and o2 respectively. In (59), all possible triples are listed that consist only of the
objects o1 and o2.

(59) 〈o1, o1, o1〉, 〈o1, o1, o2〉, 〈o1, o2, o1〉, 〈o1, o2, o2〉,
〈o2, o1, o1〉, 〈o2, o1, o2〉, 〈o2, o2, o1〉, 〈o2, o2, o2〉

Under the characterization of the relation append, we would expect that all the triples
of (59) are part of the interpretation of the relation where the second and the third element
of the triple are identical, i.e., the triples given in (60).

(60) 〈o1, o1, o1〉, 〈o1, o2, o2〉,
〈o2, o1, o1〉, 〈o2, o2, o2〉

The constraint on the relation append in (58c), however, confirms that those lists are
in the relation append in the interpretation of the grammar that are all components a
particular object. As such, including the constraint in (58c) in our theory ensures that the
interpretation of the relation append contains the following triples:

(61) 〈o1, o1, o1〉,
〈o2, o2, o2〉

Let us extend the interpretation of the grammar to also contain the objects that occur
in Figure 1.4, and assume that this interpretation is a model of our grammar. The matrix
object of this configuration has two components of sort elist, one being reached by the path
dtrs n-dtr phon rest, and one being reached by the path phon rest rest. As both
these elist objects are components of the matrix object of this configuration, the relation
append must hold between them. Let us call them o3 and o4. In other words, the constraint
in (58c) ensures among other things that the following triples are part of the interpretation
of the relation append.

(62) 〈o3, o3, o3〉, 〈o3, o4, o4〉,
〈o4, o3, o3〉, 〈o4, o4, o4〉



2.1. DEFINITIONS 77

What all of this shows is that by the way in which we define a relation via a constraint in
the theory, we can assure that the intended objects are in the relation, given that the objects
are components of a larger object in the universe. This limitation is what is needed for the
purpose of a grammar writer who works under the assumption that the grammaticality of a
linguistic object depends on this object and its components alone. This assumption is also
built into the requirement that the descriptions in a theory may not contain free variables.

So far, we have not included chains in our example theory. Let us next consider a slightly
modified theory which makes use of chains. For this purpose, we assume a theory which
contains the descriptions (58a) and (58b). Instead of the description (58c), we assume the
constraint in (63a). In addition, we add a further constraint in (63b).

(63) a. Extension of the constraint for the relation append to include chains:

A 1A 2 A 3


append( 1 , 2 , 3 ) ⇔




(
( 1∼elist or 1∼echain)
and 2 ≈ 3

)

or


E 4 E 5

( 1 first ≈ 3first or 1 † ≈ 3 †)
and ( 1rest ≈ 4 or 1 . ≈ 4 )
and ( 3rest ≈ 5 or 3 . ≈ 5 )
and append( 4 , 2 , 5 )










b. Finiteness constraint:

Ea A 1




a∼chain

and 1∼top ⇒




Eb Ec
b† ≈ 1

and append(c, b, a)







When we introduced the quasi-sorts and quasi-attributes for chains in Definition 2.4, we
pointed out that we intend to use chains parallel to lists. This becomes obvious in the way
we have modified the constraint for append in (63a). There, we added that the relation
append should not only hold between components of the described object, but also between
the chains of components of the described object.

For illustration, we will consider the use of this definition of the relation append in the
description in (63b). If we add this constraint to our grammar, it has the effect of enforcing
that in each model of our grammar, each linguistic object only has a finite number of
components. In (63b), we have used a boxed integer ( 1 ) for a variable that is assigned an
object of the universe, and lower-case letters (a, b, c) for variables that are assigned chains.
The constraint describes an object iff there is some chain a formed of components of this
object and for each component 1 of this object, there are chains b and c such that 1 is the
first element on the chain b and c, b and a stand in the relation append.

Let us consider whether the matrix object of the configuration in Figure 1.1 matches
this description. The configuration consists of five objects. Let us refer to the matrix object
as m, the synsem object as s, the nelist object as n, the elist object as e and the walks
object as w. The quantification, then, is over the objects m, s, n, e and w as well as over
all the finite sequences that consist only of these objects. Let us assume that the chain a is
given as 〈m, s, n, e, w〉. Then, the object m is described by (63b) iff the consequent of the
implication is satisfied for each 1 , where 1 ranges over the components of m.

Let us assume an assignment ass such that ass( 1 ) = m. In this case, we chose an assig-
ment ass′ which is identical to ass, but assigns the variables b and c the chains 〈m, s, n, e, w〉
and 〈〉 respectively. Then, the triple 〈c, b, a〉, i.e., 〈〈〉, 〈m, s, n, e, w〉, 〈m, s, n, e, w〉〉, is in the
interpretation of the relation append by virtue of the constraint in (63a).
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Let us, next, assume an assignment ass such that ass( 1 ) = s. In this case, we chose
an assigments ass′ which again is like ass, but assigns the variables b and c the chains
〈s, n, e, w〉 and 〈m〉 respectively. Again, it is easy to see that the first element on b is 1 and
that c, b and a stand in the relation append. We can show this for the other components
of the matrix object m in a similar way.

The constraint given in (63b) is writen to ensure that the chain a contains at least one
instance of every component of the described object. As chains are elements of U∗, they
are required to be finite. This means that if there is a chain that contains all components
of some object, then this object must have a finite number of components.

Without a constraint such as (63b), our grammar would allow for infinite objects. Con-
sider for example a phrase object with the following property: all the paths dtrs h-dtr,
dtrs h-dtr dtrs h-dtr , . . . lead to distinct objects, all of which are labelled phrase. Such
an object has an infinite number of components, therefore there exists no chain containing
every component of this object. Thus, it is not described by the constraint in (63b).

After these illustrations of the way a theory is interpreted, and this example of the use
of chains in a theory, we can address a more general issue, the question of what should be
considered the denotation of a grammar.

King 1999 considers the relation between a grammar and the phenomenon it is intended
to capture, i.e., language. According to King, this relation should be one of denotation. In
particular, the language should be a model of the grammar a linguist writes. For a grammar
to be adequate, the language must be a particular kind of model, an exhaustive model as
defined in 2.18.

definition 2.18 For each signature Σ, for each θ ⊆ DΣ
0 , for each Σ interpretation I,

I is an exhaustive 〈Σ, θ〉 model iff
I is a 〈Σ, θ〉 model, and
for each θ′ ⊆ DΣ

0 , for each Σ interpretation I′,
if I′ is a 〈Σ, θ〉 model and ΘI′(θ

′) 6= ∅ then ΘI(θ
′) 6= ∅.

The notion of exhaustive model is taken over from SRL. Richter 2000 contains the proof,
due to Richter and King 1997, that a non-empty exhaustive model of the grammar exists
for every RSRL grammar whose theory has an non-empty model.

The definition of an exhaustive model implies that given a grammar Γ, every exhaustive
model of Γ contains at least one copy of every configuration that is licensed by Γ. For
linguistic purposes this means that the explored language should be an exhaustive model of
the proposed grammar. We consider a grammar with this property observationally adequate.

We will briefly show how the definition of an exhaustive model captures the basic idea
of observational adequacy. Assume a grammar Γ which has the English language as an
exhaustive model. Then, because English is a model, the grammar licenses all grammatical
sentences of English, i.e., it does not underlicense. We then have to show that Γ does not
overlicense either. For this purpose, take a description δ which describes only ungrammatical
sentences. Let us assume that Γ also licenses sentences described by δ, then there must
be a model M of Γ which contains some of the ungrammatical sentences described by δ,
i.e., the theory interpretation of {δ} would be a non-empty set in M . By Definition 2.18,
this means that δ must also describe some objects in the exhaustive model of Γ, English
in our example. But, as English does not contain ungrammatical sentences, we derived a
contradiction. Therefore, if English is an exhaustive model of Γ, then Γ does not overlicense.

Using the notion of an exhaustive model, it is easy to show that our toy grammar as
given by the signature in (55) and the theory in (58) is not an adequate grammar of English.
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First its ontology is not adequate, as there is no way to have objects that would correspond
to words of English other than every, man, Mary, and walks. Second, the grammar also
heavily overgenerates. Consider the configuration of objects given in Figure 1.4 and assume
a configuration which is just like that, but where the phonstrings are used in the reverse
order, i.e., the phonology of the phrase would be 〈man, every〉 instead of 〈every, man〉. In
English, there is no phrase with such a phonology. As such a configuration of objects would,
however, be compatible with the signature in (55) and respect all elements of the theory
in (58), it is necessarily part of each exhaustive model of this grammar.

Similarly, if we do not explicilty exclude objects with an infinite number of components
via a description as the one given in (63b), every exhaustive model of the grammar will
contain such infinite objects.

In Section 3.2, we will show for an RSRL grammar that the language that it is supposed
to describe really is an exhaustive model of the grammar. While this proof is hard to give
for natural languages, it is relatively simple for an RSRL grammar which describes a formal
language. In the case of Chapter 3 this is the semantic representation language Ty2.

2.2. AVMs and Other Conventions

RSRL as defined in the preceding section, has the functionality needed for HPSG gram-
mars. The descriptions do not, however, look like those used in most HPSG publications,
or like those that we have used in Section 1.1. This conflict is resolved in Richter 1999,
where an AVM language is defined which is equivalent to RSRL as defined above. In this
thesis, we do not repeat the definition of AVMs for RSRL, but we will use both the AVM
and the standard notation.

In (57) we have already seen a number of explicit RSRL descriptions that correspond
to AVMs as given in Section 1.1. There, we saw how the tags used in the AVMs are
interpreted as variables that are bound by quantifiers. Richter 1999 also introduces many
useful abbreviatory conventions. One of these conventions is that variables which are not
bound explicitly in a description, are interpreted as bound by an existential quantifier which
has scope over the entire description. Applying this convention, the two AVMs in (14)
(page 16) and (15) are interpreted the same way, as the free variables, 1 , 2 and 3 are
interpreted as being bound by a wide-scope existential quantifier, such as the quantifiers
added explicitly in (15).

As a further example, consider the following AVM version of the principle in (18)
(and (58b)) which constrains the phonology of a phrase to the concatenation of the phonolo-
gies of its daughters.

(64) a. phrase ⇒




2

6

4

phon 3

dtrs

»

h-dtr 1

n-dtr 2

–

3

7

5

and (append( 1 , 2 , 3 ) or append( 2 , 1 , 3 ))




b. E 1 E 2 E 3
 : ∼phrase ⇒




: phon ≈ 3

and : dtrs h-dtr phon ≈ 1

and : dtrs h-dtr phon ≈ 2

and (append( 1 , 2 , 3 ) or append( 2 , 1 , 3 ))







The AVM notation in (64a) contains the logical symbols that we also use in regular
RSRL, i.e., ⇒, and, or. In addition, it contains usual AVMs, i.e., large square brackets which
enclose lines that consist of a sequence of attributes followed by some (AVM) description.
In (64b) we have given the regular RSRL syntax that corresponds to the AVM notation in
(a). Comparing the two descriptions, it can be seen that the logical symbols are used in the
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same way in both syntaxes, the bracketed structure is, however, undone in regular RSRL
and corresponds to a sequence of conjuncted path identities or sort assignments. We also
see that there are free variables in (64a). Following the convention mentioned above, these
variables are existentially bound by quantifiers which have wide scope.4

In our RSRL definitions, we saw that terms may either start with the special symbol “: ”
or with a variable. For terms that start with variables, Richter 1999 allows AVMs which
are preceded by a variable. In (65), an example is given for a description which contains a
variable. The description denotes all those signs which have a component with an empty
phonological contribution.

(65) a. : ∼sign and E 1 ( 1phon∼elist)

b.
h

sign
i

and
1h

phon 〈〉
i

The example in (65) can also be used to illustrate the effect of restricted quantification.
For this purpose, we contrast the description in (65) with a corresponding description which
only uses the special symbol “: ”.

(66) a. : ∼sign and : phon∼elist

b.
h

sign
i

and

h

phon 〈〉
i

If we compare the (a) descriptions in (65) and (66), it is clear that syntactically, variables
(tags, in this case) are treated just as the symbol “: ” in the construction of terms. In the
AVM language, there is a difference: the symbol “: ” can be omitted, whereas a variable
must be stated explicitly. On the semantic side, the descriptions in (65) denote potentially
more non-isomorphic configurations of linguistic objects than the ones in (66). Assume
that we have an HPSG grammar like the one presented in Pollard and Sag 1994. In the
model of that grammar, the description in (66) denotes exactly all signs which have an
empty phonology, i.e., traces (pp. 161ff.), the null complementizer (pp. 126f.) and the null
relativizer (pp. 213ff.). In contrast to this, the description in (65) describes all signs which
are mapped by some path “: π” into a sign with empty phonology. Such a path can simply
be “: ”. Therefore, all signs described by (66) are in the denotation of (65) as well. Yet,
(65) additionally describes all signs which (non-reflexively) dominate some null element.

In our small toy grammar, given by the signature in (55) and the theory in (58), we
also have included the possibility of having words with an empty phonology (see the first
disjunct in the consequent of description (58a)). Such a word would be described by (65)
as well as by (66). The same is true for a phrase that dominates only words with empty
phonology. Given our toy grammar, this kind of phrase is not excluded. But the description
in (66) also describes phrases which do not have an empty phonology, but which dominate
a sign with empty phonology.

We should, next, turn to relations. Richter 1997 (p. 40) defines an abbreviatory conven-
tion for RSRL calls. According to this convention, relational calls may contain arbitrary
terms instead of just variables as in Definition 2.10. Such calls abbreviate complex expres-
sions with a series of existential quantifiers over some new variables. The quantifiers have
scope over a relational call that uses exactly these variables conjoined with identities that
equate these variables with the terms in the abbreviated description. This convention can
be illustrated with the constraint in (58b), i.e., a description that is met by phrases whose
phonology is the concatenation of the phonologies of their daughters. We have already
seen an AVM version of this constraint in (18), and an explicit RSRL encoding in (58b).

4Notice that the description in (64b) differs syntactically from the description in (58b). In the latter case the
existential quantifiers only take scope in the consequent of the implication. But, as there are no occurrences
of the variables in the antecedent of the implication, the two descriptions are logically equivalent.
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In (67), we re-state this constraint using the above mentioned abbreviatory convention and
its explicit expansion.

(67) a. phrase ⇒




(append(:dtrs h-dtr phon, :dtrs n-dtr phon, :phon)
or

append(:dtrs n-dtr phon, :dtrs h-dtr phon, :phon))




b. phrase ⇒




E 1 E 2 E 3


:dtrs h-dtr phon ≈ 1

and :dtrs n-dtr phon ≈ 2

and :dtrs phon ≈ 3

and append( 1 , 2 , 3 )




or

E 1 E 2 E 3


:dtrs h-dtr phon ≈ 1

and :dtrs n-dtr phon ≈ 2

and :dtrs phon ≈ 3

and append( 2 , 1 , 3 )







In the explicit RSRL encoding, each call is expanded separately, as indicated by the
two disjuncts in (67b). Since both disjuncts look alike, we will concentrate on the first. By
expanding the first relation call in (67a), existential quantifiers are introduced that bind
the variables 1 , 2 and 3 . These are new variables which do not occur in the abbreviated
description. The relation call, append( 1 , 2 , 3 ) uses exactly theses variables in the argu-
ment slots. In the full description, the relation call is conjoined with identities that specify
that in the scope of the existential quantifiers, the variables 1 , 2 and 3 should be inter-
preted in such a way that they have the same denotation as the interpretation of the terms
: dtrs h-dtr phon, : dtrs n-dtr phon and : phon on the described object respectively.

We have already seen in (58) that a relation such as append is defined by a description
in the theory. The way in which exhaustive models are defined, guarantees that in every
exhaustive model the set R(append) contains are components or chains of components of
an element of U, and (ii) z is the concatenation of x and y. A description that defines this
relation was given in (58c) (and (63a)).

Instead of stating an explicit principle to define a relation, it is often convenient to split
up the definition into clauses. For the relation append, this is done in (68), again for both

RSRL syntax and the AVM language. A special symbol “
∀

⇐=” is used to separate the head
from the body of a clause. The use of this symbol shows that a clause is not a regular RSRL
description but a notational convention.

(68) a. append( 1 , 2 , 3 )
∀

⇐=

(
1∼elist
and 2 ≈ 3

)

append( 1 , 2 , 3 )
∀

⇐=

(
1first ≈ 3 first
and append( 1rest, 2 , 3rest)

)

b. append( 1 , 2 , 3 )
∀

⇐=

(
1h

elist
i

and 2 ≈ 3

)

append( 1 , 2 , 3 )
∀

⇐=




1»

first 4

rest 5

–

and
3»

first 4

rest 6

–

and append( 5 , 2 , 6 )




The definition of the relation append is expressed in two clauses. The clause definition
of an n-ary relation ρ corresponds to an RSRL description that starts with n universal
quantifiers, one for each argument position of the relation. In the scope of these quantifiers,
there is an equivalence. At one side of the equivalence, there is a call to the relation ρ with
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the variables bound by the quantifiers in their corresponding argument slots. On the other
side of the equivalence arrow, there is a disjunction which contains the bodies of the clauses.
In the AVM notation in (68b), there are free variables ( 4 , 5 , 6 ) in the second clause. Such
free variables are interpreted as being existentially bound by a quantifier which has scope
over the body of the clause.

Finally, there are some conventions for lists and chains. As we have seen above, in (63a),
chains are used in a way very similar to lists. Therefore, we often do not want to give concern
to the distinction between lists and chains. This formal vagueness will usually not cause
any problems in understanding the descriptions used in this thesis.

In many cases, we want to equate a list and a chain. But, as lists and chains are
different kinds of entities, this cannot be done directly. Instead, we define a relation
list-chain-ident which expresses the intended identities. A pair 〈e1, e2〉 such that both

e1 and e2 are elements of U stands in the relation list-chain-ident if and only if the
following holds: if e1 and e2 are elements of U, then e1 = e2, otherwise, the first ele-
ment of e1 is identical to the first element of e2, and the rest of e1 stands in the relation
list-chain-ident with the rest of e2. This relation is defined in (69).

(69) list-chain-ident( 1 , 2 )
∀

⇐=




(not 1∼chain)
and (not 2∼chain)
and 1 ≈ 2




list-chain-ident( 1 , 2 )
∀

⇐=




( 1∼chain or 2∼chain)

and E 3

(
( 1 first ≈ 3 or 1 † ≈ 3 )
and ( 2first ≈ 3 or 2 † ≈ 3 )

)

and

E 4 E 5




( 1 rest ≈ 4 or 1 . ≈ 4 )
and ( 2rest ≈ 5 or 2 . ≈ 5 )
and list-chain-ident( 4 , 5 )







With the formal definitions given in the preceding section and the notational variant
sketched in the present section, we are now able to write HPSG grammars in the way
commonly used in the HPSG literature, i.e., using AVMs. We can augment these AVMs
with relations, quantification and chains. In the following section, we will depart from the
little toy grammar that we have used in the presentation of the formalism and give the
grammar that we want to use to build a semantic fragment on.

2.3. The Syntactic Analysis

In this section, we will provide the syntactic analysis that will be assumed throughout the
rest of this thesis. It will serve as a syntactic background for the integration of Lexicalized
Flexible Ty2 in Chapter 4 and for the analysis of idiomatic expressions in Chapter 8.

The point of departure for our syntactic analysis is the grammar presented in Pollard and
Sag 1994. We will adopt most parts of the signature assumed there and the principles used
there for extraction. Nonetheless, our analysis will differ in several respects: First, as we
want to use the semantic framework of LF-Ty2, we will introduce a new sort hierarchy below
the sort content, and we dismiss with the attributes qstore and retrieved.5 Second, we
assume an overall binary-branching syntactic structure. As a consequence, we will not use
the attributes c-dtrs, adj-dtr, filler-dtr etc. Instead, we will assume a h(ead)-dtr
and a n(on-head)-dtr attribute. Binary branching will make it easier to specify the
principles of grammar, but we do not claim that a binary branching structure is empirically

5For the use of these attributes within the grammar of Pollard and Sag 1994, see Section 1.2.
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superior to the syntactic structure assumed in Pollard and Sag 1994. Furthermore, as we
will mainly be concerned with transitive and intransitive verbs, there is not much of a
difference between our structures and those assumed in Pollard and Sag 1994. Third, we
will assume a traceless analysis of extraction, similar in spirit to the analysis sketched in
Section 9.5 of Pollard and Sag 1994, using the architecture for Lexical Rules defined in
Meurers 2000. Again, this move is primarily motivated to keep the principles needed for
combinatorial semantics as simple as possible, i.e., as sketched in Section 1.3.

In the first part of this section, we will give the signature assumed for the syntactic parts
of signs, being explicit only in those parts that differ from the definitions in the appendix
of Pollard and Sag 1994. After this, we will give the principles needed for the construction
of simple clauses. In Section 2.3.2, an analysis of passive and extraction will be presented,
which employs the technique of Meurers 2000 to encode Lexical Rules in HPSG.

2.3.1. General Architecture. Just as was the case for the toy grammar of Section 1.1,
the grammar that we define in this section is mainly concerned with objects of the sort sign.
We give the sort hierarchy and the appropriateness conditions for this sort in (70).

(70) Sort hierarchy and appropriateness conditions below the sort sign (as used through-
out the rest of Part I):

word
store list

phrase
dtrs const-struc

sign
phon list
synsem synsem

As can be seen, the toy sort hierarchy that we had defined in (11) on page 13 is almost
identical with the real signature given in (70). The only difference lies in the fact that in the
latter signature, we also declare a new attribute store appropriate for the sort word. This
attribute is taken from Meurers 2000 (p. 124) and is used to encode a mechanism that has
the effect of Lexical Rules. In the present subsection, we do not elaborate on this particular
attribute, but we will come back to it in Section 2.3.2.

Again, following our toy grammar of Sections 1.1 and 2.1, the phon value of a sign is a
list of phonstring objects. We are not explicit about all the subsorts of phonstring that we
assume, but they contain at least the phonology of the words of our semantic fragment of
Section 1.3, i.e., man, woman, Mary, walks, loves, every, some, believes, and that.

For the sort synsem, we follow the analysis of Pollard and Sag 1994. There are two
attributes appropriate to this sort: loc(al) and nonl(ocal). For the data analyzed in
this thesis, the non-local part is only needed for complement extraction, i.e., we will only
use the slash attribute. These declarations are given in (71).

(71) a. Appropriateness conditions on the sort synsem:
synsem local local

nonlocal nonlocal
b. Appropriateness conditions on the sort nonlocal:

nonlocal inherited nonlocal1
to-bind nonlocal1

c. Appropriateness conditions on the sort nonlocal1:
nonlocal1 slash set

Following Pollard and Sag 1994, the attribute slash is declared to be set-valued in (71c).
Richter 2000 (Section 4.4) shows how finite sets can be encoded in RSRL. For our purpose,
we simply assume the following list-like sort hierarchy and appropriateness conditions for
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the sort set and assume that the grammar is written in such a way that the order of the
elements in a set object does not matter.

(72) Sort hierarchy and appropriateness conditions for the sort set:

empty-set non-empty-set
element top
rest set

set

For the sort local, we restrict our attention to two attributes, cat(egory) and cont(ent).
The third attribute, context, assumed to be appropriate to this sort in Pollard and Sag
1994 will not be considered. In the present section, we are only concerned with the cat
values, the following chapters of Part I of the thesis will focus on the content value. For
the time being, we assume that the sort content does not have any subsorts nor attributes
defined on it. The cat value of a local object is a category object. In this thesis, we use
all three attributes that Pollard and Sag 1994 assume for this sort: head, subcat, and
marking, with the values as introduced there, i.e., the head value specifies the syntactic
category, the subcat value is a list of synsem objects that indicates the valence, and the
marking value is needed to differentiate between that-clauses (which are saturated verbal
projections with the marking value that) and that-less clauses, i.e., saturated verbal pro-
jections with the marking value unmarked. The parts of the signature just mentioned are
summarized in (73a).

(73) a. Appropriateness conditions on the sort local:
local category category

content content
b. Appropriateness conditions on the sort category:

category head head
subcat list
marking marking

So far, we have mentioned the ontology assumed below the phon and the synsem values
of a sign. Next, we must consider the dtrs value. Just as in the toy grammar, we assume
that the attribute dtrs is defined on the sort phrase and the sort constituent-structure is
appropriate for this attribute. In (74) we give the sort hierarchy and the appropriateness
conditions for the sort const-struc.

(74) Sort hierarchy and the appropriateness conditions for the sort const-struc:
const-struc
h-dtr sign
n-dtr sign

hd-comp-struc hd-adj-struc hd-mark-struc hd-fill-struc

As in our toy grammar, the attributes h(ead)-dtr and n(on-head)-dtr are appro-
priate to the sort const-struc, and the sort sign is appropriate for this attribute.6 We
use the subsorts of const-struc to differentiate between different possibilities to combine
signs in syntax. We assume that a syntactic head can combine with a complement in a
head-complement-struc (hd-comp-struc), with an adjunct in a hd-adj-struc, with a marker
in a hd-mark-struc and with a filler in a hd-fill-struc.

6In the grammar of Pollard and Sag 1994 most non-head daughters are assumed to be phrases. We allow
words as daughters as well to avoid non-branching phrases.
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Figure 2.1. The structure of sentence (75a):

Compl
that

NP
Mary

V
reads

Det
every

AP
good

N
book

adj head

N′

comp head

NP

head comp

VP

comp head

S

marker head

S̄

With the declarations in (74), we have introduced all the sorts and attributes that we
assume for the syntactic analysis and that differ from Pollard and Sag 1994. We can now
present some principles of the grammar. In this section, we show the principles needed to
analyze the sentences in (75).

(75) a. that Mary reads every good book.
b. John is loved.
c. John, Mary loved.

In (75a) we have a sentence which exhibits most of the kinds of constituent structures
assumed in this thesis. In Figure 2.1 the different subsorts of const-struc are indicated by
the labeling of the branches. The noun book combines in a head-adjunct structure with the
adjective good; this N′ combines with the determiner every in a head-complement structure.
Similarly, the resulting NP combines with the verb reads as a head-complement structure
and so does the resulting VP with the subject Mary. Finally, the complementizer that is
added to the sentence in a head-marker structure.

Tree structures like Figure 2.1 are descriptions of phrases. The description at the branch
with label head is a description of the dtrs h-dtr value of a phrase, the description at
the other branch is a description of the dtrs n-dtr value. The label of this other branch is
used to indicate the sort of the dtrs value of the described sign, i.e., in the case of the label
marker, the dtrs value of the described phrase is of sort hd-marker-struc. Analoguously
for the other lables.

In addition, we use syntactic category labels for the nodes and we indicate the phonology
of the words at terminal nodes. Later, we will also indicate the logical form of a node as a
term of Ty2, just as we did in Section 1.3.3. We will also often include AVM descriptions
in nodes to emphasize specific details of the HPSG encoding.

Sentence (75b) is a passive sentence. The structure of this sentence is indicated in
Figure 2.2. It only involves combinations of signs in head-complement structures. In (75c)
we have a topicalization structure. There, the topicalized constituent is combined with the
rest of the clause in a head-filler structure. The structure of this sentence is sketched in
Figure 2.3. In this subsection, we will only be concerned with the structure of sentence (75a).
In Section 2.3.2 we will come back to the other two example sentences.
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Figure 2.2. The structure of sentence (75b):
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Figure 2.3. The structure of sentence (75c):
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In order to write a grammar which licenses a fragment of English that consists of sen-
tences such as (75a), we must furnish the theory with a number of principles. One of the
central principles of an HPSG grammar is the Word Principle. It contains descriptions
of the possible words. In fact, the way we use the Word Principle, it only describes those
words that have an empty store value. We will see in Section 2.3.2 that having an empty
store value means for a word that it is not derived through a lexical rule.

(76) The Word Principle:
"

word

store elist

#

⇒
(
LE1 or . . . or . . . LEm

)

The Word Principle as given in (76) is an implication with a huge disjunction in its
consequent. We call each of the disjuncts in the consequent a lexical entry. A lexical entry is
a description of a word. In (77), we give some examples of lexical entries. The descriptions
given in (77) are not complete lexical entries. They only mention those parts of a lexical
entry that will be relevant for us. In (77) we give (such sketches of) lexical entries for the
words that occur in sentence (75a).

(77) a. Parts of the lexical entry of the word book:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 〈book〉

syns

2

6

6

6

6

6

6

6

6

4

loc

2

6

6

4

cat

2

6

6

4

head noun

subcat
Dh

loc cat head determiner
iE

marking unmarked

3

7

7

5

3

7

7

5

nonl

2

4

inher
h

slash eset
i

to-bind
h

slash eset
i

3

5

3

7

7

7

7

7

7

7

7

5

store elist

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5



2.3. THE SYNTACTIC ANALYSIS 87

b. Parts of the lexical entry of the word good:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 〈good〉

syns

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

6

6

4

cat

2

6

6

6

6

6

6

4

head

2

6

4

adj

mod

"

synsem

loc cat head noun

#

3

7

5

subcat elist

marking unmarked

3

7

7

7

7

7

7

5

3

7

7

7

7

7

7

5

nonl

2

4

inher
h

slash eset
i

to-bind
h

slash eset
i

3

5

3

7

7

7

7

7

7

7
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5

store elist

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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c. Parts of the lexical entry of the word every:
2
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phon 〈every〉
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2
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"

head noun

sbc
Dh

synsem
iE

#
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d. Parts of the lexical entry of the word reads:
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e. Parts of the lexical entry of the word Mary:
2
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f. Parts of the lexical entry of the word that:
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The lexical entries given in (77) are just like those assumed in Pollard and Sag 1994,
if we ignore the content specification. The lexical entry of the noun book in (77a) and
that of the proper name Mary in (77e) are almost alike, but there is one element on the
subcat list of the noun. The proper name, however, is saturated. We follow the analysis
of Pollard and Sag 1994 (p. 49), which assumes that nouns select their determiners through
the attribute subcat.

In the lexical entry for the verb reads given in (77d) we also specify a non-empty subcat
list. Just as in Pollard and Sag 1994 (p. 29), we assume that both the subject and the direct
object of a transitive verb are on the subcat list.

The lexical entry of the adjective good in (77b) specifies that the subcat list of the
adjective is empty. However, a synsem object is required to appear as the mod value. This
kind of selection is taken over from Pollard and Sag 1994 as well (p. 55).

In (77) we also have lexical entries of two functional words, the determiner every in (77c)
and the marker that in (77f). In both cases, there is a synsem-valued attribute spec appear-
ing inside the head value. For the determiner, the spec value specifies the synsem value
of the noun with which the determiner combines. In the case of the complementizer the
spec value indicates the verbal projection which the complementizer attaches to. Again,
we follow Pollard and Sag 1994 in the use of the spec value (p. 46 for complementizers and
p. 48 for determiners).

Now that we have seen the lexical entries needed for the analysis of sentence (75a),
we can turn to some principles for phrases. Most of these principles can be taken almost
directly from Pollard and Sag 1994, such as the Head Feature Principle (HFP), the
Marking Principle (MP), and the Spec Principle (SpP).7 Due to our assumption of
a strictly binary branching syntactic structure, we are forced to change the Immediate
Dominance Principle (IDP). In the analysis of Pollard and Sag 1994, all complements
of a head are realized as complement daughters within a single phrase. As an effect, Pollard
and Sag 1994 assume non-branching structures for heads that do not have complements,
and multiply branching structures for head with more than one complement. A second
difference between our system and that of Pollard and Sag 1994 is that we do not use a
separate Subcategorization Principle, but, instead, encode the inheritance of valence
information directly in the ID-Schemata.

We will first consider the IDP. Parallel to the Word Principle, the IDP takes the
form of an implication with a disjunction in its consequent. In contrast to the WP, however,
the consequent only contains a very small number of disjuncts. In our case, there is one
disjunct for each subsort of const-struc. The IDP is given schematically in (78).

7In Section 2.3.2 we adopt the Nonlocal Feature Principle of Pollard and Sag 1994.
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(78) The Immediate Dominance Principle (IDP):

phrase ⇒
(
HC or HA or HM or HF

)

Following the usual HPSG terminology, we call each disjunct in the consequent of the
IDP an ID Schema. We assume a Head-Complement Schema, indicated as HC in (78),
a Head-Adjunct Schema (HA), a Head-Marker Schema (HM), and a Head-Filler
Schema (HF). Let us first consider the HA Schema. It is needed to analyze the phrase
good book as it occurs in sentence (75a).

(79) The Head-Adjunct Schema:
2

6

6

6

6

6

6

6

6

6

4

phrase

syns loc cat subcat 2

dtrs

2

6

6

6

6

4

head-adj-struc

h-dtr

"

syns 1

"

loc cat subcat 2

nonl tb slash eset

##

n-dtr
h

syns loc cat head mod 1
i

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

The HA Schema specifies that the dtrs value of a phrase is an object of sort head-adj-struc.
Furthermore, the mod value of the nonhead daughter ( 1 ) is required to be identical to the
synsem value of the head daughter. In addition, the to-bind slash value of the head
daughter is empty and the subcat value is the same on the mother and the head daughter.
As mentioned above, the to-bind value of a sign is part of the analysis of extraction phe-
nomena. We will see in Section 2.3.2 that an empty to-bind value at the head daughter of
a phrase has the effect that nonlocal dependencies cannot be saturated at this phrase.

Using the lexical entries for the words book and good, we can give a description of the
phrase good book, in which we make the effect of the HA Schema explicit.

(80) Description of the phrase good book (1):

2

6

4

word

phon 〈good〉

syns loc cat head mod 1

3

7

5

2

6

6

6

6

4

word

phon 〈book〉

syns 1

"

loc cat sbc 2
D

3
E

nonl tb slash eset

#

3

7

7

7

7

5

adj head

"

phrase

syns loc cat sbc 2

#

In the following, we describe the phrase in more detail, i.e., we extend the description
so that it only describes objects that satisfy other principles on phrases as well. The most
famous principle of HPSG in the Head Feature Principle. It requires that the head
value be the same on a phrase and its head daughter. This principle is stated in (81).

(81) The Head Feature Principle (HFP):

phrase ⇒

"

syns loc cat head 1

dtrs h-dtr syns loc cat head 1

#

The description of the phrase good book in (82) is only met by objects that satisfy the
HA-Schema and the HFP.
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(82) Description of the phrase good book (2):

2

4

word

phon 〈good〉

syns loc cat head mod 1

3

5

2

6

6

6

6

6

6

4

word

phon 〈book〉

syns 1

2

6

4

loc cat

"

head 4 noun

sbc 2
D

3
E

#

nonl tb slash eset

3

7

5

3

7

7

7

7

7

7

5

adj head

2

6

4

phrase

syns loc cat

»

head 4

sbc 2

–

3

7

5

The tag 4 indicates that the head values on the mother and on the head daughter are
identical. Therefore, if a phrase is described by (82), it also satisfies the HFP.

We can introduce a further general principle on phrases: the Marking Principle.
According to this principle, the marking value of a phrase is identical to that of its head
daughter, except in a head-marker structure, in which case the marking value is identical
to that of the non-head daughter. Consider (83):

(83) The Marking Principle (MP):

phrase ⇒

2

6

4

syns loc cat marking 1

dtrs

»

not hd-mark-struc

h-dtr syns loc cat marking 1

–

3

7

5

or
2

6

4

syns loc cat marking 1

dtrs

»

hd-mark-struc

n-dtr syns loc cat marking 1

–

3

7

5

In the first AVM in this consequent of this principle, we use the logical symbol “not ”
inside the description of the dtrs value. This use has not been introduced in the previous
section. This AVM corresponds to the following explicit RSRL description:

(84) not :dtrs∼hd-mark-struc
and :syns loc cat marking ≈ :dtrs h-dtr syns loc cat marking

If we make the description in (82) even more specific to exclude phrases that do not
meet the MP, a further tag, 5 , appears that expresses the identity of the marking values
of the phrase and the head daughter.

(85) Description of the phrase good book (3):

2

4

word

phon 〈good〉

syns loc cat head mod 1

3

5

2

6

6

6

6

6

6

6

6

4

word

phon 〈book〉

syns 1

2

6

6

6

4

loc cat

2

6

4

head 4 noun

subcat 2
D

3
E

marking 5 unmarked

3

7

5

nonl tb slash eset

3

7

7

7

5

3

7

7

7

7

7

7

7

7

5

adj head

2

6

6

4

phrase

syns loc cat

2

4

head 4

sbc 2

marking 5

3

5

3

7

7

5

As indicated in Figure 2.1 (page 85), the nominal projection good book combines with
the determiner in a head-complement structure. To show how this is done, we must first
give the HC Schema. This is done in (86).
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(86) The Head-Complement Schema:
2

6

6

6

6

6

6

6

4

phrase

syns loc cat subcat 1

dtrs

2

6

6

4

head-comp-struc

h-dtr
h

syns
h

loc cat subcat 1 ⊕
D

2
Eii

n-dtr
h

syns 2
i

3

7

7

5

3

7

7

7

7

7

7

7

5

and
(

h

dtrs h-dtr phrase
i

⇒
h

dtrs h-dtr syns nonl tb slash eset
i

)

According to the HC Schema in (86), a phrase has a dtrs value of sort head-comp-struc.
The synsem value of the non-head daughter is the last element on the subcat list of the
head daughter. The subcat value of the head daughter is the concatenation of the subcat
list of the phrase and the list that contains only the synsem value of the nonhead daughter.

In addition, we have added an implication to the HC-Schema which relates the to-bind
slash value of the head daughter to its status as a word or a phrase. If the head-daughter
is a phrase, then its to-bind slash value is the empty set. If it is a word, then its
to-bind slash value is not constrained by this schema. For words, the to-bind slash
value is determined by the lexical entry. In the fragment that we are considering, it is al-
ways empty (see the lexical entries in (77)). In their analysis of tough-constructions, Pollard
and Sag 1994 (Section 4.3) assume words which have a non-empty to-bind slash value.

In (86) we use the symbol “⊕” as an informal functional notation of a description that
uses the relation append. To be formally precise, it is necessary to introduce another
variable, 3 , for the subcat value of the head daughter and impose the restriction that the
relation append holds between the subcat list of the phrase, a singleton list that contains
just the synsem value of the non-head daughter, and the subcat list of the head daughter.
We state the formally precise variant of the HC Schema in (87).

(87) Explict formalization of the HC Schema:
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6

6

6

4

phrase

syns loc cat subcat 3

dtrs

2

6

6

6

6

4

head-comp-struc

h-dtr

"

syns

»

loc cat subcat 1

nonl tb slash eset

–

#

n-dtr
h

syns 2
i

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

5

and
(

h

dtrs h-dtr phrase
i

⇒
h

dtrs h-dtr syns nonl tb slash eset
i

)

and E 4
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4

list

first 2

rest elist

3

5 and append( 3 , 4 , 1 )




In (88) we give a description of the phrase every good book as it occurs in sentence (75a).
Every phrase that is described by (88) satisfies the HC Schema, the HFP and the MP.

(88) Description of the phrase every good book (1):

"

phon 〈every〉

syns 3
h

loc cat head spec synsem
i

#

2

6

6

6

6

6

6

4

phrase

syns

2

6

6

6

6

4

loc cat

2

6

6

4

head 4

sbc
D

3
E

marking 5

3

7

7

5

nonl tb slash eset

3

7

7

7

7

5

3

7

7

7

7

7

7

5

comp head

2

6

6

6

4

phrase

syns loc cat

2

6

4

head 4

sbc 〈〉

marking 5

3

7

5

3

7

7

7

5
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In the description in (88), the head daughter has a single element on its subcat list.
The HC Schema has the effect that the synsem value of the non-head is identical to this
element. Finally, the subcat list of the phrase is just like that of the head daughter minus
the last element. In this case, this amounts to an empty subcat list on the phrase.

It was noted in connection with the lexical entry for every in (77c) that the determiner
has a synsem object as its spec value. Pollard and Sag 1994 assume a Spec Principle
which enforces that whenever the non-head daughter has a synsem-valued spec attribute
defined on it, then the synsem value of the head daughter is identical to the spec value of
the non-head daughter. This principle is expressed formally in (89).8

(89) The Spec Principle (SpP):
"

phrase

dtrs
h

n-dtr syns loc cat head spec synsem
i

#

⇒

"

dtrs

"

h-dtr syns 1

n-dtr syns loc cat head spec 1

##

In (90) we add a tag 6 to the tree in (88) to express the effect of the SpS, i.e., the identity
between the spec value of the determiner and the synsem value of the head daughter.

(90) Description of the phrase every good book (2):

"

phon 〈every〉

syns 3
h

loc cat head spec 6
i

#
2

6

6

6

6

6

6

4

phrase

syns 6

2

6

6

6

4

loc cat

2

6

4

head 4

sbc
D

3
E

marking 5

3

7

5

nonl tb slash eset

3

7

7

7

5

3

7

7

7

7

7

7

5

comp head

2

6

6

4

phrase

syns loc cat

2

4

head 4

sbc 〈〉

marking 5

3

5

3

7

7

5

Given the lexical entry for the verb reads in (77d), we can combine a word that is
described by this lexical entry with a phrase that is described by (90) in a head-complement
structure to form a VP. The resulting VP is described in (91).

(91) Description of the phrase reads every good book

2

6

6

6

6

6

6

6

6

4

word

phon 〈reads〉

syns

2

6

6

6

4

loc cat

2

6

4

head 9

sbc
D

8 , 7
E

marking 10 unmarked

3

7

5

nonl tb slash eset

3

7

7

7

5

3

7

7

7

7

7

7

7

7

5

»

phrase

syns 7

–

head comp

2

6

6

6

4

phrase

syns loc cat

2

6

4

head 9

subcat
D

8
E

marking 10

3

7

5

3

7

7

7

5

The head values of the phrase and its head daughter ( 9 ) are identical by virtue of the
HFP. The MP has the effect that the marking values ( 10 ) are identical as well. The HC
Schema guarantees that the synsem value of the nonhead daughter ( 7 ) is identical to the

8The formulation of the Spec Principle in Pollard and Sag 1994 (p. 400) looks more complicated, be-
cause the authors assume distinct attribute names for different kinds of nonhead daughters, and a list of
complement daughters.
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last element on the subcat list of the head daughter, and that the first element of this
subcat list ( 8 ) appears as the only element in the subcat list of the phrase.

We can, next, add the subject Mary, which results in the phrase described in (92).

(92) Description of the phrase Mary reads every good book:

2

6

4

word

phon 〈Mary〉

syns 8

3

7

5

2

6

6

6

6

4

phrase

syns loc cat

2

6

6

4

head 9

sbc
D

8
E

marking 10

3

7

7

5

3

7

7

7

7

5

comp head

2

6

6

6

4

phrase

syns loc cat

2

6

4

head 9

sbc 〈〉

marking 10

3

7

5

3

7

7

7

5

The phrase described in (92) is a saturated verb phrase. The identities expressed by the
tags 9 and 10 follow from the HFP and the MP, respectively. The HC Schema has the
effect that the synsem value of the non-head daughter ( 8 ) is identical to the single element
on the ’shead daughter subcat list, and that the subcat list of the phrase is empty.9

We have almost finished the analysis of sentence (75a). What remains to be shown is the
analysis of the highest local tree in Figure 2.1, i.e., how the complementizer that combines
with the saturated verbal projection described in (92). As indicated in Figure 2.1, the
complementizer is realized as a marker. Markers combine with heads according to the
Head-Marker Schema.

(93) The Head-Marker Schema:
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syns loc cat subcat 1

dtrs
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6

6

6

4

head-marker-struc

h-dtr
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syns
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loc cat subcat 1

nonl tb slash eset
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n-dtr
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7

7

7

5

The HM Schema requires that the dtrs value of the phrase be an object of sort
head-marker-struc. Furthermore, the subcat values of the phrase and its head daughter
are identical. The to-bind slash value of the head daughter is empty and the non-head
daughter is a marker. The way the HM Schema is stated, it seems as if there is no
selection happening in head-marker structures. This is, however, not the case: the MP and
the SpP have a non-trivial effect in head-marker structures. This is indicated in (94), which
is a description of the highest local tree in the structure of sentence (75a) as sketched in
Figure 2.1.

9The way we have stated the HC Schema, the subcat list is always reduced by its last element in a head-
complement structure. If we assume that the phonology of a phrase is the concatenation of the phonologies
of its daughters, as we did in the toy grammar of Sections 1.1 and 2.1, then this has consequences on the
order of the elements on the subcat list. As we are only concerned with transitive and intransitive verbs
in this thesis, this issue does not arise.
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(94) Description of the phrase that Mary reads every good book:
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6

6

6

6

6

6

4

word

phon 〈that〉

syns loc cat

2

6

4

head

"

marker

spec 11

#

marking 12 that
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5
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7

7

7

7

7

5

2

6

6

6

6

6

4

phrase

syns 11

2

6

6

6

4

loc cat

2

6

4

head 9

sbc 13 〈〉

marking 10

3

7

5

nonl tb slash eset

3

7
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7

5

3
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7

7

7

7

5

marker head

2

6

6

6

4

phrase

syns loc cat
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6

4

head 9

sbc 13

marking 12

3

7

5

3

7

7

7

5

In the description in (94) the tag 9 expresses the effect of the HFP, just as it did in (92).
The identity of the subcat values ( 13 ) on the phrase and its head daughter is enforced by
the HM Schema. As the dtrs value is of sort head-marker-struc, the MP in (83) requires
that the marking value of the phrase be identical with that of the non-head daughter ( 12 ).
Furthermore, as the non-head daughter has a synsem object in its spec value, the SpP
(given in (89)) ensures that the synsem value of the head daughter is identical with the
spec value of the non-head daughter ( 11 ).

In this subsection, we have provided a full analysis of sentence (75a). To achieve this,
it has been necessary to present adopted versions of the major principles of the grammar
of Pollard and Sag 1994. It should be emphasized, again, that our syntactic analysis is not
intended as a “serious” proposal; rather it provides the necessary syntax for showing how
the semantic framework of LF-Ty2 can be integrated into an HPSG grammar. The use of
strictly binary structures for phrases allows us to define the semantics of a phrase as simple
application of the semantics of one daughter to that of the other daughter, as proposed
in Section 1.3.3. Given this strictly binary branching structure, we have tried to give an
analysis that follows the grammar of Pollard and Sag 1994 as closely as possible.

2.3.2. The Analysis of Passive and Complement Extraction. In the preceding sub-
section, we have presented the general architecture of our syntactic analysis. In this sub-
section, we will address two more specific phenomena which we will need in our account of
idiomatic expressions in the second part of this thesis. The relevant phenomena are pas-
sive and complement extraction. We maintain the same reservations here as we did in the
previous subsection; the analysis should allow for a simple formulation of the semantics,
therefore syntactic motivation is only of secondary importance.

Our analysis of both phenomena relies on the availability of a mechanism to encode what
has often been called Lexical Rules (LR) in HPSG. It is discussed in great detail in Meurers
2000 that there are two basic concepts of LRs: under the traditional use of the term, an
LR is a relation between two lexical entries, i.e., between two descriptions. Alternatively,
one could view an “LR” as a relation between two words, i.e., between two objects. In this
thesis, we will use a mechanism that formalizes the second view. To avoid terminological
confusion, we will not refer to such rules as Lexical Rules but as Derivational Rules (DR).
In this thesis, we will exclusively use DRs.

As a simple example, in (95) we present the informal version of the DR for passivization.

(95) The Passive DR:
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4

word

syns loc
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4
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»
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E

⊕
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E
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5

3
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3
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7
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7→
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–
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3
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3

7

7

7
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In its informal notation, a DR consists of two descriptions separated by the symbol
“7→”. The description on the left side of the “7→” symbol is called the input specification,
the other description the output specification. A DR relates a word that meets the input
specification to a word that meets the output specification, while it is assumed that the
DR specification as given in (95) is automatically expanded so that the output word has all
the properties of the input word except for those explicitly mentioned explicitly in the DR.

Meurers 2000 (Section 5.3) defines such an expansion mechanism.10

The DR in (95) expresses the idea that there is a systematic relation between a transitive
verb (as licensed by the lexical entry in (77d)) and the passivized form of this word. In (96)
we describe a potential input word and a potential output word of this DR.

(96) a. Description of the active verb loved:
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6
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6

6

6

6

6

6

6

6

4
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phon 1 〈loved〉

syns

2

6

6

6

6

6

6

6

6

4
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2
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6

6

4
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»

verb
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–
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E

marking 3 unmarked

3

7
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5
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b. Description of the passive verb loved:
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6

6

6
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phon 1 〈loved〉

syns
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6

6

6

6

6

6

6

6

4
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2

6

6

6

4
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»
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–
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E
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7

7

7

5
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»
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–
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7

7

7
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We use tags in (96) to indicate which parts of the input word must be identical with
which parts of the output word. Given this input/output pair, we can illustrate the intended
effect of the Passive DR. The output word is just like the input word, with a small number
of differences: First the output word is passive, i.e., it has a vform value of sort pas(sive),
whereas the input is a past participle (psp). Second, on the subcat list of the output word,
the first element of the input’s subcat list has been removed, and the last element of the
input’s subcat list appears as the first element on the output’s subcat list.11

We follow the formalization of “Lexical Rules” proposed in Meurers 2000, but we use the
term derivational rule to refer to what Meurers calls description level lexical rules (DL-LR).
We introduce a sort der(ivational)-rule whose appropriateness conditions are stated in (97).

10By the existence of such a mechanism it follows that it is enough to state a DR in the form given in (95).
Since the notation leaves many details of the DR implicit and since we do not have the space to present
the expansion mechanism of Meurers 2000, we call the notation in of a DR as in (95) implicit or informal,
in contrast to the explicit notation as given in (98).
11Note that we stated the Passive DR so that the synsem object that appears as the first element on the
subcat list of the passivized verb is identical with the last element of the active verb. Because of this
identity, the case value of the subject of the passivized verb is identical to the case value of the direct
object of the input word of the DR. While this is unintuitive at first sight, it is compatible with theories of
structural case as developed for example in Przepiórkowski 1999a. Alternatively, we can refine the Passive
DR so that the values of all attributes except for case are identical on the two NPs. As we are not concerned
with case in this thesis, we will ignore this issue in what follows.
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(97) Appropriateness conditions on the sort derivational-rule:
der-rule in word

out word

According to (97), a derivational-rule object has two word-valued attributes: an attribute
in which contains the input word of the DR, and an attribute out which contains the output
word. For the DR sketched in (95), a der-rule object can be described the following way:

(98) Explicit description of the Passive DR:
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The der-rule object described in (98) expresses that the word in its in value, i.e., the
input word meets the requirements expressed by the input specification in (95), and that,
similarly, the word in the out value meets the output specification of the informal DR
specification given above. Stated as in (98), the tags used in (95) can be interpreted in the
regular way, i.e., as variables. To consider our example input and output words in (96), a
der-rule object which has the active verb loved as its in value and the passive verb loved as
its out value meets the description in (98).

In order to constrain the possible der-rule objects in the denotation of a grammar, we
must add a principle to the theory.

(99) The DR Principle:
der-rule ⇒

(
DR1 or . . . or DRn

)

Just as the Word Principle and the ID Principle, the DR Principle is an impli-
cation with a disjunction as its consequent. We call each disjunct in the consequent of the
DR Principle a derivational rule (DR). In this section, we will only consider two DRs,
the Passive DR, which we have already given in (98) and the Complement Extraction DR,
which will be presented in (102).

Now that we have assigned DRs a formally clear status, we can show how Meurers 2000
establishes the connection between the output of a derivational rule and an actual word.
For this purpose, the attribute store declared appropriate on the sort word in (70) plays a
crucial role. So far, we have only considered words with an empty store value. In case the
store value is not empty, it contains exactly one object of sort derivational-rule. We add a
principle in (100) to the grammar that requires identity between a word with a non-empty
store value and the out value of the der-rule object in the store list.
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Figure 2.4. The structure of sentence (75b):

NP
»

phon 〈John〉

syns 2

–

V
2

6

4

word

phon 〈is〉

syns loc cat sbc
D

2 , 3
E

3

7

5

V
2

6

6

6

4

word

phon 1

syns 3 loc cat

"

head pas

sbc
D

2
E

#

3

7

7

7

5

↑
Passive DR

⊥
2

6

4

word

phon 1 〈loved〉

syns loc cat sbc
D

NP, 2
E

3

7

5

head comp

VP
h

syns loc cat sbc
D

2
Ei

comp head

S
h

syns loc cat sbc 〈〉
i

(100) The Store Principle:
»

word

store nelist

–

⇒ 1

"

store

*

»

der-rule

out 1

–

+#

It is a crucial property of the DR approach to lexical generalizations that the output
word contains the input word as a component, i.e., we can reach the input word via the path
: store first in. In that respect, we can also think of a derived word as being a word
which dominates its input word in a unary branching syntactic structure. Such structures
differ, however, from the syntactic structures dominated by phrases, as we have met them
in Section 2.3.1: there, the mother is a phrase and there are always two daughters. In the
case of a derived word, there is a single daughter and the mother and the daughter are
both words. Still, when we sketch the structure of a sentence with a tree diagram, we will
include the application of a DR. We will do this, however, using a special symbol, “↑”.

In Figure 2.4 this notational convention is illustrated with a description of the passive
sentence in (75b). The active verb loved as described in (96a) is directly licensed by some
lexical entry in the Word Principle. It occurs as the in value in some der-rule object,
which, in turn, appears as the store element of some derived word. The out value of
the der-rule object meets the description in (96b). By the Store Principle in (100), the
derived word is identical to its store first out value. This connection is abbreviated
with the “↑” symbol in Figure 2.4.

Following Pollard and Sag 1994, the passive auxiliary is is treated as a subject raising
verb. As such, the first element on the subcat list of the auxiliary is identical to the
first element on the subcat list of the passivized verb. This verb occurs as the syntactic
complement of the passive auxiliary. In the highest local tree in Figure 2.4, the NP John
combines in a head-complement structure with the VP to yield a saturated verbal projection.

After the consideration of simple passive sentences, we can turn to complement extrac-
tion. In (75c) we have given an example with a topicalized NP which is repeated in (101).

(101) John, Mary loved.
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Within HPSG there is much debate on how sentences as (101) should be analyzed.
There is, however, also some agreement on certain aspects of the construction. First, the
pre-posed NP, John in our example, is called the filler and is introduced by a special ID
schema. Second, the local value of the filler is assumed to be identical with the local value
of the second element on the subcat list of the verb loved. Third, all phrases that dominate
the verb loved but not the filler are assumed to have a non-empty inherited slash value
which contains the local value of the filler.12

There is, however, no agreement on the question whether there should be an element
with empty phonology, i.e, a trace, appearing as the complement of the verb loved or not.
This controversy is already visible in the differences between the analyses of complement
extraction proposed in Chapter 4 and in Section 9.5 of Pollard and Sag 1994, where the
former assumes the presence of a trace, but the latter does not.

As has already been seen in Figure 2.3 on page 86, we assume an analysis of sen-
tence (75c) (= (101)) without a trace. Within HPSG, the argumentation of Sag and Fodor
1994 had great influence in promoting traceless analyses of extraction. As will be shown in
more detail in Section 4.3, we assume a traceless analysis, because it enables us to express
the Semantics Principle in a more uniform way and to maintain the assumption that
there are local objects in the slash values.13 Thus, again, this move is motivated by our
attempt to provide a simple account of combinatorial semantics and to follow the analysis
of Pollard and Sag 1994 as closely as possible.

Our analysis of sentence (101) builds on three ingredients: First, we assume a DR that
removes an element from the subcat list and “puts” it into the inherited slash set.
Second, we need a principle that ensures that the slash specification is mediated between
an extraction site and the filler. And third, a new ID schema, the Head-Filler Schema
will be given that allows us to introduce fillers into the syntactic structure.

In (102) we state the Complement Extraction DR (CEx-DR) in the form assumed in this
thesis. In (a) we give the informal specification as is common in HPSG literature, in (b) the
explicit description of the DR, i.e., the DR is stated as a disjunct in the DR Principle.
Just as was the case with the informal and the formal versions of the Passive DR in (95)
and (98), the informal and the formal version differ in two respects: First, the descriptions
on both sides of the “7→” symbol of the informal specification are re-stated as descriptions
of the in and the out values of a der-rule object. Second, in the description in (102b) we
explicitly state which properties of the input word are the same in the output.

(102) The Complement Extraction Derivational Rule (CEx-DR):
a. informal specification:
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12Of course, not all authors agree on all of these aspects. To pick out a very radical proposal, Richter 1997
does not assume a slash attribute altogether, nor is there a special ID schema for introducing fillers.
13The problem that we are facing is basically the following: If we assume a trace whose local value is
identical to that of its filler, then we will automatically have two signs within the same tree that have
identical content values. In the grammar of Pollard and Sag 1994 this does not cause any problems,
because there the semantic contribution of complement daughters and that of filler daughters is largely
ignored for combinatorial semantics. Within other linguistic frameworks such as GPSG (Gazdar et al.,
1985), or the generative tradition (von Stechow, 1993; Heim and Kratzer, 1997), the logical form of a trace
is a variable and, therefore, not identical to that of the filler.
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b. explicit specification:
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It is the advantage of the informal notation that it highlights those parts of the input
and the output word of a DR which differ. In the case of the CEx-DR, the difference is
found in the subcat and the inherited slash values. The subcat list of the output word
lacks one element, i.e., its subcat list is the concatenation of the two lists 1 and 3 , whereas
the input word has a subcat list which has one more element, described as [local 2 ] in
the input specification of the DR. While the subcat list of the output is shorter than that
of the input, the inherited slash set of the output has (potentially) more elements: The
inherited slash value contains the elements of the inherited slash value of the input
unioned with the singleton set which contains just 2 , i.e., the local value of the extra
element on the subcat list of the input.14

Let us turn back to the sentence in (101). In its analysis, the CEx-DR is applied to the
verb loved. In (77d) the lexical entry of the transitive verb reads was given. We can assume
that there is a similar lexical entry for the verb love. A word that is described by such a
lexical entry is also described by the input specification of the CEx-DR. To derive the form
of the verb needed in sentence (101), we must extract the second element of the subcat list
of this word. In (103a) the input word loved and the output of the CEx-DR are described.
To illustrate the effect of the DR, we use the same tags as in (102b).

(103) a. Description of the input word loved:
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14We put “potentially” here, because the same local object might already be in the set 4 . In this case, of
course, the union of 4 with the set which contains just 2 has exactly the same elements as the set 4 .
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Figure 2.5. The structure of sentence (101) (including the CEx-DR):

NP
John

NP
Mary

V
2

6

6

6

6

4

phon 3 〈loved〉

syns

2

6

6

4

loc cat sbc
D

1
E

nonl

"

inh slash
n

2
o

tb slash 4 {}

#

3

7

7

5

3

7

7

7

7

5

↑
CEx-DR

⊥
2

6

6

6

6

4

phon 3 〈loved〉

syns

2

6

4

loc cat sbc
D

1 ,
h

loc 2
iE

nonl

»

inh slash {}

tb slash 4 {}

–

3

7

5

3

7

7

7

7

5

comp head

S

filler head

S

b. Description of the output word loved with extracted direct object:
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The output verb in (103b) has a single element, the subject, on its subcat list. It also
has a single element in its inherited slash set: the local object referred to by the tag 2 .
In Figure 2.5 we have made the application of the CEx-DR and the special properties of
the output word explicit. The rest of the figure is as in Figure 2.3 (page 86).

The second ingredient of the analysis of sentence (101) is the mechanism of passing “up”
slash specifications. We have seen that the output verb loved in (103b) has a non-empty
inherited slash value. In the analysis of extraction in Pollard and Sag 1994, all phrases
that dominate this word but which do not dominate the filler are assumed to have the
extracted element in their inherited slash value as well. For our example structure in
Figure 2.5, this means that in addition to the V node, the local object referred to with the
tag 2 also appears in the slash value of the lower S node.

We follow Pollard and Sag 1994 in assuming a Nonlocal Feature Principle (NFP)
which enforces the right identities of slash values. The NFP uses a new relation, element,
which we have not defined so far. We assume that two objects o and s stand in the relation
element iff either (i) o is the element value of s or (ii) o stands in the relation element

with the rest value of s. This is defined formally by the following clauses.

(104) The relation element:

element( 1 , 2 )
∀

⇐=
2h

element 1
i

element( 1 , 2 )
∀

⇐=
(

2h

rest 3
i

and element( 1 , 3 )

)

Given the definition of the relation element, we can state the NFP in (105).
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Figure 2.6. The structure of (101) (including the nonlocal specification of the lower S node):
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(105) The Nonlocal Feature Principle (NFP):
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The NFP says that for each phrase the following applies: for each 5 : 5 is an element
of the inherited slash value of the head daughter ( 2 ) or of the non-head daughter ( 4 ),
but not of the to-bind slash set of the head daughter ( 3 ) if and only if 5 is also an
element of the inherited slash value of the phrase ( 1 ). As an effect of the NFP, the
inherited slash value of a phrase contains exactly those elements that appear in the
inherited slash values of its daughters, except those that appear in the to-bind slash
value of the head daughter.

Let us apply the NFP to our example sentence in (101). In the lexical entry for the name
Mary in (77e) we have specified that the inherited slash value of the noun is empty. In the
output of the CEx-DR, as given in (103b) and indicated in Figure 2.5, the inherited slash
value contains a single element, and the to-bind slash value is empty. As in Figure 2.5,
the verb loved and the NP Mary combine as a head-complement structure. The resulting
phrase, the lower S node in the figure, must respect the NFP. As the to-bind slash value
of the head daughter is empty, the NFP requires the element in the inherited slash of
the head daughter to appear also as element in the inherited slash value of the phrase.
In the structure in Figure 2.6 we have added the slash specification of the S node of our
example sentence.

The last ingredient of our analysis of complement extraction is a new ID schema, the
Head-Filler Schema, given in (106).
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(106) The Head-Filler Schema:
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The HF Schema is taken almost directly from Pollard and Sag 1994. It is the only
schema that explicitly enforces a non-empty to-bind slash value at the head daughter. It
requires a single element ( 2 ) in the to-bind slash value of the head daughter, which must
also be an element in the inherited slash set of the head daughter ( 1 ) and which must
be identical to the synsem local value of the non-head daughter.

In Figure 2.7 (page 103) we indicate the effect of the HF Schema and of the NFP at
the upper S node. The HF Schema ensures that there is an element in the to-bind slash
set of the head daughter ( 2 ). This element also occurs in the inherited slash value of the
head daughter and is identical with the synsem local value of the filler daughter. As the
local object referred to with the tag 2 in Figure 2.7 appears in the to-bind slash value of
the head daughter, the NFP prevents it from appearing in the inherited slash value of
the mother.

The tree in Figure 2.7 can be seen as a summary of our analysis of complement extraction
as it contains the effect of the CEx-DR, of the NFP, and of the HF Schema. With this
tree, our presentation of the syntactic fragment assumed in this thesis is complete. The
purpose of this presentation was twofold. First, we presented the syntactic fragment that
will be used in later chapters of this thesis. In particular, we will augment this fragment
with a semantic analysis in Chapter 4 and with an analysis of idiomatic expressions in
Chapter 8. Second, we have chosen a syntactic analysis which is relatively close to the
analysis proposed in Pollard and Sag 1994 for which we can assume some familiarity within
the HPSG community. What was new, however, was the RSRL formalization of parts of
this analysis. As such, we hope to have given some examples of how an RSRL grammar
is written, before we turn to the RSRL grammar for the semantic representation language
Ty2 of Section 1.3.2.
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3

7

7

5

3

7

7

7

7

5

↑
CEx-DR

⊥
2

6

6

6

6

4

phon 3 〈loved〉

syns

2

6

4

loc cat sbc
D

1 ,
h

loc 2
iE

nonl

»

inh slash {}

tb slash 4 {}

–

3

7

5

3

7

7

7

7

5

comp head

S
2

6

6

4

syns

2

6

6

4

loc cat subcat 〈〉

nonl

2

4

inh slash
n

2
o

tb slash
n

2
o

3

5

3

7

7

5

3

7

7

5

filler head

S
"

syns

»

loc cat subcat 〈〉

nonl inh slash {}

–

#





CHAPTER 3

Ty2 in RSRL

In the preceding chapter we have given the formal definitions of the description language
RSRL, and specified a syntactic fragment that will be used throughout the rest of this thesis.
Regarding AVM syntax, RSRL descriptions emulate the common notation used in the HPSG
literature. In this chapter, we will ignore the syntactic fragment defined in Section 2.3, and
define a new RSRL grammar, T Y2. Whereas the purpose of the grammar of Section 2.3
was to encode a syntactic fragment of English, the purpose of the grammar T Y2 will be to
encode the semantic representation language Ty2 as defined in Section 1.3.2 and prove the
adequacy of the given encoding. In addition, just as there is an AVM notation for RSRL
(given in Richter 1999, 2000), we will show that we can give a more standard notation for
descriptions that denote terms of the semantic representation language.

This chapter consists of five sections. In Section 3.1 we will define the RSRL grammar
T Y2. In the process of defining this grammar, we will give some examples to illustrate how
the structure of Ty2 is re-built with the technical means of RSRL. We will highlight those
aspects that are essential to prove that the grammar indeed describes language Ty2.

Section 3.2 contains this proof: we will show that an interpretation is possible, which
uses the language Ty2 as its universe and which is an exhaustive model of the grammar
T Y2. In the main text, we only sketch this proof, which is given in Appendix 1.1. We know
from this proof that the new grammar accounts for its “empirical” domain adequately, i.e.,
it neither underlicenses nor overlicenses.

Our ultimate goal is integrate the grammar T Y2 into a grammar of a fragment of
English, such as the fragment of Section 2.3. In this case, we cannot guarantee that the
terms of Ty2 are part of the intended exhaustive model. In Section 3.3 we show that even
if we consider an arbitrary exhaustive model of T Y2, instead of the exhaustive model of
Section 3.2, we can still regard the objects in the universe of this model as terms of Ty2.
In particular, we can assign these objects a denotation with respect to a semantic frame.
Thus, we show that, independent of the choice of the exhaustive model of T Y2, we can
treat the objects in the universe as if they were elements of the intended model.

In Section 3.4 we show that not only can we treat objects in the denotation of the
grammar T Y2 as terms of Ty2, we can also use terms of Ty2 as abbreviations of T Y2-
descriptions. From here, we will be able to use terms of Ty2 as descriptions inside AVMs,
consequently leading to a compact notation for linguistic objects that represent these terms.

Finally, in Section 3.5 we give a short summary of the results and show how we can
integrate the extensions to the semantic representation language Ty2 that have been pre-
sented in Section 1.3.2. There, we showed that the standard logical connectives (negation,
conjunction, disjunction, implication), the classical quantifiers (existential and universal)
and generalized quantifiers such as most can be treated as syntactic sugar. For the grammar
T Y2, however, we propose to integrate them as separate elements of the syntax. At the
end of this chapter, we give an example of how the integration of the grammar T Y2 into
some larger grammar such as the syntactic fragment of Section 2.3 can be accomplished.
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3.1. The RSRL grammar T Y2

In this section, we give an RSRL grammar, called T Y2. It is the purpose of this grammar
to make the terms of Ty2 available for an HPSG grammar. Just as the natural language
English is the target of an HPSG grammar as given in Pollard and Sag 1994, in this section,
our target is the language Ty2. In the following sections of this chapter, we will show that
we have reached this target.

In this section, we will state the grammar T Y2 in the same way we have stated the
grammar in Section 2.3. There, we have used some example sentences from English to
illustrate how the grammar works. In this section, as our “empirical domain” is the language
Ty2, we can use a term of Ty2 for illustration. Such a term is given in (107). In (a) we use
the short hand that we have been employing throughout Section 1.3, in (b) we present the
explicit form of the term as provided in Definition 1.5 (page 38).

(107) a. λx.walk′@(x@)
b. (λvse,0.((walk′s(et)vs,0)et(vse,0vs,0)e)t)(se)t

As can be seen, the term in (107) consists of (i) a natural number (0), (ii) semantic types
(t, e, s, et, s(et), (se)t), and finally, (iii) terms, built from variables and constants combined
via functional application and lambda abstraction. As none of these entities is part of the
RSRL grammars that we have presented so far, we will address these three kinds of entities
(natural numbers, semantic types, and terms) in following subsection.

3.1.1. Natural Numbers. In the definition of Ty2, we used natural numbers to count
the variables. Therefore, we must provide an equivalent to natural numbers in T Y2.

For this purpose, we define a sort number with two subsorts, zero and non-zero. There
is an attribute number defined on the sort non-zero whose value is of sort number. The
sort hierarchy and the appropriateness conditions for the sort number are given in (108).

(108) Sort hierarchy and appropriateness conditions for natural numbers:

zero non-zero
number number

number

number objects can be seen as strips. In our example term in (107b), there occurred just
one natural number: 0. Using the sort hierarchy and appropriateness conditions as given in
(108), we can describe this number as indicated in (109a). For illustration, we also describe
the number 3 in (109b).

(109) a. RSRL description of the number 0:
h

zero
i

b. RSRL description of the number 3:
2

6

6

6

6

4

non-zero

number

2

6

4

non-zero

number

"

non-zero

number zero

#

3

7

5

3

7

7

7

7

5

These descriptions show, that our RSRL encoding of natural numbers amounts to strips
which are of a certain length: The natural number i is encoded as a strip of length i, i.e.,
as a number object that is mapped to an object of sort zero by applying the attribute
interpretation of the attribute number i times.
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Due to the nature of RSRL objects, these strips can be of arbitrary length, but even
infinite and cyclic. However, only finite strips that correspond to natural numbers, so we
must exclude infinite and cyclic configurations of objects. The properties of RSRL allow us
to exclude these cases. A simple principle, the Number Principle (NP) fulfills both tasks.

(110) The Number Principle (NP):

number ⇒ E 1
1h

zero
i

It should be noted that RSRL quantification always is quantification over components
of the described object. By definition, a component is an object that can be reached from
the described object via finite path of attributes. As a result, we can express a constraint
that states that the configuration under every number object must contain a zero object.
Objects of sort zero trivially satisfy the constraint. For objects of sort non-zero, it means
that there can only be a finitely long path number. . . number, and that, at the end of this
path, there is a zero object.

This principle excludes a cyclic configuration under a number object, because in a cyclic
configuration, there is no object of sort zero at all. Similarly, in the case of an infinite
configuration under a number object, there either is no zero object at all or, at least, the
zero object cannot be reached by a finite path.

3.1.2. Types. The next kind of entity that occurs inside terms are semantic types. In
Definition 1.1 on page 37 we defined the set of semantic types as the smallest set that
contains the atomic types t, e and s and is closed under pairs. This is directly reflected in
our RSRL encoding of semantic types as given in (111).

(111) Sort hierarchy and appropriateness conditions for semantic types:

entity truth w-index

atomic-type complex-type
in type
out type

type

Objects of sort type correspond to the elements of Type as defined for Ty2. In our
example semantic term in (107b), we find the following semantic types: all the atomic
types t, e and s, and the complex types et, se, s(et) and (se)t. In (112) we give some AVM
descriptions of type objects that correspond to these types.

(112) a. Description of the atomic types:

t:
h

truth
i

e:
h

entity
i

s:
h

w-index
i

b. Description of the type et:
2

6

4

c-type

in entity

out truth

3

7

5

c. Description of the type se:
2

6

4

c-type

in w-index

out entity

3

7

5

d. Description of the type (se)t:
2

6

6

6

6

6

4

c-type

in

2

6

4

c-type

in w-index

out entity

3

7

5

out truth

3

7

7

7

7

7

5
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e. Description of the type s(et):
2

6

6

6

6

6

4

c-type

in w-idex

out

2

6

4

c-type

in entity

out turth

3

7

5

3

7

7

7

7

7

5

These examples illustrate how the encoding works: the atomic types are encoded as
atomic sorts. Types of the form 〈τ, τ ′〉 are encoded as objects of sort c-type, where the first
type (τ) appears as the in value, and the second type (τ ′) as the out value.

But, just as we saw with the encoding of natural numbers, it is not enough to provide a
signature for semantic types. In order to make objects of sort type fully look like semantic
types, we have to add three constraints to the grammar T Y2.

First, a principle is needed that ensures that in every complex type, all sub-types that
look alike are actually token identical. We call this principle the Type Identity Principle
(TyIP). We need a relation, same-type, to express what we mean by types that “look alike”.
For our purpose, two types look alike if (i), in case they are atomic, they are the same atomic
type, and, (ii), in case they are complex, their components are identical types. In (113) this
relation is defined.

(113) The relation same-type:

same-type( 1 , 2 )
∀

⇐=




(
1h

entity
i

and
2h

entity
i

)

or
(

1h

truth
i

and
2h

truth
i

)

or
(

1h

w-index
i

and
2h

w-index
i

)




same-type( 1 , 2 )
∀

⇐=




12

4

c-type

in 3

out 4

3

5 and

22

4

c-type

in 5

out 6

3

5

and same-type( 3 , 5 )
and same-type( 4 , 6 )




With the help of the relation same-type, we can state the TyIP:

(114) The Type Identity Principle (TyIP):
type ⇒ A 1 A 2 (same-type(x, y) ⇒ 1 ≈ 2 )

The TyIP exploits the fact that RSRL quantifiers quantify over the set of components
of the described object. Thus, the TyIP enforces identities only within a given object.

In our example types in (112) there was no type occurring twice within the same type.
Consider, however, the type (s((se)t))((s((se)t))t) which is the type of the basic translation
of the determiner every, i.e., the type of the term λPλQ.∀x[P@(x) → Q@(x)].

(115) Description of the type (s((se)t))((s((se)t))t):
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

c-type

in 1

2

6

6

6

6

6

6

6

6

6

6

4

c-type

in 2 w-index

out

2

6

6

6

6

6

4

c-type

in

2

6

4

c-type

in 2

out entity

3

7

5

out 3 truth

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

out

2

6

4

c-type

in 1

out 3

3

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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The description in (115) expresses that the type of the first semantic argument of the
quantifier s((se)t) is identical to that of the second semantic argument. In the AVM, we
use the tag 1 to express this identity. Furthermore, within this type, the type s occurs
twice. The tag 2 is used to indicate that in any object which is described by (115), every
path that leads to an object of the sort w-index, leads to the same object. Finally, the tag
3 refers to a truth object. Again, there is only one truth object that is a component of the
object described by (115).

It is the purpose of the TyIP to avoid the situation where the objects of sort type express
finer distinctions than the actual semantic types. For illustration, consider (116).

(116) Another description of the type (s((se)t)((s((se)t))t):
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

c-type

in 1

2

6

6

6

6

6

6

6

6

6

6

4

c-type

in 2 w-index

out

2

6

6

6

6

6

4

c-type

in

2

6

4

c-type

in 2

out entity

3

7

5

out 3 truth

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

5

out

2

6

4

c-type

in 1

out 4

3

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and not 3 ≈ 4

An object described by (115) differs from an object described by (116) only with re-
spect to the paths that lead to the same object. In the first case, the paths :in out out,
:out in out out, and :out out lead to the same object, referred to by the tag 3 . In
the second case, the path :out out leads to a different object. This is indicated by the
tag 4 and the requirement that 3 and 4 refer to different objects. Within our “empiri-
cal” domain, the set Type, such a differentiation is not attested. Therefore, we eliminate
the distinction from the denotation of the grammar T Y2 as well by imposing the maximal
number of identities possible.1

The second restriction that we impose on type objects in order to make them look like
“real” semantic types is a requirement that all types must be non-cyclic. To achieve this, we
state a constraint, the Type Non-Cyclicity Principle (TyNP). This principle requires
the relation component.

The relation component holds of two objects u and u′ iff u is a component of u′, i.e.,
either u and u′ are identical or there is an attribute α such that u is a component of the
α value of u′. The relation component can be defined for any signature with a finite set of
attribute names, by listing all the attributes defined in the signature.2 In (117) we define
the relation component for the signature of T Y2.3

(117) The relation component

component( 1 , 2 )
∀

⇐= 1 ≈ 2

1Alternatively, we could also have forbidden all identities within type objects. We have chosen to require
identities rather than non-identities because this makes the RSRL formalization easier.
2A general definition of the relation component for each signature with a finite set of attributes is given in
Section 3.1.4, number (129).
3In (117) we also mention those attributes that will not be introduced until Section 3.1.3. In (129), we show
how for an arbitrary set of attributes, a relation component can be defined.
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component( 1 , 2 )
∀

⇐=







2h

in 3
i

or
2h

out 3
i

or
2h

number 3
i

or
2h

arg 3
i

or
2h

arg1 3
i

or
2h

arg2 3
i

or
2h

func 3
i

or
2h

var 3
i




and component( 1 , 3 )




Using the relation component, we can formalize a ban on cyclic objects of sort type.
For atomic types, cyclicity cannot arise. To exclude cyclicity, we add a constraint to the
grammar which states that for each c-type, there is no path other than the trivial path “: ”
that leads back to the object itself.

(118) The Type Non-Cyclicity Principle (TyNP):

complex-type ⇒ A 1

((
h

in 1
i

or
h

out 1
i

)
⇒ not compontent(:, 1)

)

The way the TyNP is expressed in the TyNP, it says that for each object o of sort c-type,
o is not a component of its own in value, nor a component of its own out value.

Finally, we need a third constraint on objects of sort type to ensure that they are finite.
To achieve this goal, we use the same technique that we have employed in Section 2.1,
constraint (63b), to ensure that phrases have only a finite number of components, i.e., we
make use of the finiteness requirement imposed on chains in the definition of RSRL. The
Type Finiteness Principle (TyFP) states that for any type object, there is a chain,
a, such that exactly each component, 1 , of the objects described is a member of a. By
definition, chains are finite. As the chain required in the TyFP must contain all components
of the type object, the object itself must be finite.

(119) The Type Finiteness Principle (TyFP):

type ⇒ Ea

(
ah

chain
i

and A 1
(
component( 1 ,:) ⇒ member( 1 , a)

)
)

The TyFP uses a relation member which we have not defined so far. In (120), the
necessary definitions are given. An object o stands in the relation member with some list
object or some chain l provided (i) o is the first element of l, or (ii) o stands in the relation
member with the rest of l.

(120) The relation member:

member( 1 , 2 )
∀

⇐=
2h

first 1
i

member( 1 , 2 )
∀

⇐=
(

2h

rest 3
i

and member( 1 , 3 )

)

Note that the chain a may contain multiple occurrences of the same component of the de-
scribed object. An extra relation could be added to avoid this effect, but it is not necessary,
because we are only interested in finiteness, not in the actual number of components.

In this subsection we have given those parts of the signature and the theory of the
grammar T Y2 that are concerned with semantic types. In the definition of semantic types
in Definition 1.1 some properties of semantic types came for free, such as their finiteness and
non-cyclicity. These properties must, however, be explicitly stated in our RSRL encoding.
Note, furthermore, that we must make use of chains to encode the finiteness requirement.
With the TyIP we have furthermore guaranteed that the grammar T Y2 does not introduce
distinctions between type objects that are not relevant for the empirical domain, i.e., the
set of semantic types.
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In the next subsection, we will discuss the RSRL encoding of terms of Ty2. For that
encoding, we will also provide an identity principle, a non-cyclicity principle, and a finiteness
principle.

3.1.3. Terms. The availability of the signature and the necessary constraints for the
objects that correspond to natural numbers and to semantic types makes it possible to
address the RSRL encoding of terms of Ty2. For this purpose we introduce the sort
meaningful-expression (me). Just as with the sorts number and type, we intend that an
object of sort me corresponds to a term of Ty2.

An attribute type is defined on the sort me. The species below me mimic the syntactic
constructs of the language Ty2: variables, constants, application, abstraction, and equation.

(121) The sort hierarchy below me

me type type

var(iable) number number

const(ant)

const1

. . .

constn

appl(ication) func(tor) me
arg(ument) me

abstr(action) var(iable) variable
arg(ument) me

equ(ation) arg(ument)1 me
arg(ument)2 me

In (126) we will give the T Y2 description of the Ty2 term given in (107b). It can,
however, already be seen how the RSRL encoding of terms of Ty2 works. For illustration,
let us consider variables. In Ty2, a particular variable is fully specified, and distinguished
from all other terms of the language, if (i) we know that it is a variable, (ii) we know its
semantic type, and (iii) we know its number. These three characteristics are reflected in the
signature in (121). There, we have introduced a sort variable. Just as all subsorts of the
sort me, it has an attribute type defined on it which takes values of the sort type. Finally,
as stated in (121), a further attribute number is defined on the sort var whose values are
of sort number.

This indicates that the parts of the signature given in (121) express all the necessary
differences that exist between distinct terms of Ty2. We will add some principles to the
grammar T Y2 that will ensure that the me objects admitted by the grammar respect the
structure of Ty2 terms as given in Definition 1.5.

In the definition of Ty2 terms in Section 1.3.2, the semantic type of complex terms, such
as applications, abstraction and equation is fully predictable from the semantic types of their
subterms. For example, the definition of application guarantees that the combination of the
terms vse,0 and vs,0 in (107b) results in a term of type e. We impose a set of constraints to
restrict the type values of the recursive subsorts of me in the same way.
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(122) Type restrictions:

a. appl ⇒

2

6

6

6

4

type 2

func type

"

in 1

out 2

#

arg type 1

3

7

7

7

5

b. abstr ⇒

2

6

6

6

4

type

"

in 1

out 2

#

var type 1

arg type 2

3

7

7

7

5

c. equ ⇒

2

6

4

type truth

arg1 type 1

arg2 type 1

3

7

5

The first constraint enforces that for an application object, the type of the argument
value is identical to the type in value of the functor value. Furthermore, the type value
of the application object must be identical to the type out value of the functor value.

For objects of the sort abstraction, which correspond to lambda abstractions, the type in
value is identical to the type value of the variable value, and the type out value is iden-
tical to the arg type value. These identities reflect the fact that if we form the lambda
abstraction of a term φτ and a variable vτ ′,i, the resulting term, (λvτ ′,i.φτ )τ ′τ is of type
〈τ ′, τ〉.

For objects of the sort equation, we require that the type values of the argument1
and the argument2 values be identical. In addition, the type value of the equation object
is restricted to be of sort truth.

So far, we have addressed the type values of recursively built me objects, which are
fully predictable by the constraints in (122). What remains to be addressed is the type
value of variables and non-logical constants, i.e., of objects of sort constant.

In the case of variables, we do not want to impose any restrictions on the possible type
values, other than requiring that the type value be a type object. This will guarantee that
in the denotation of the grammar, we can find variables of each semantic type, just as the
set of variables of Ty2 contains variables of each semantic type.

For constants of Ty2, or more precisely of Ty2C, the function C restricts the semantic
type. To imitate this, there is a constraint for each species consti below const that fixes its
semantic type. In (123), such a constraint is given for a non-logical constant species of type
〈s, 〈e, t〉〉, like walk′ from example (107b), which we assume to be the species const127.

(123) const127 ⇒

2

6

4
type

2

6

4

in w-index

out

"

in entity

out truth

#

3

7

5

3

7

5

We collect the type restrictions for the subsorts of const and those in (122) in the set of
Type Restriction Principles (TRP). The TRP are part of the theory of T Y2.

For the sort type, we assumed three additional principles to guarantee (i) the maximal
number of identities (via the TyIP in (114)), (ii) that types are not cyclic (via the TyNP
in (118)), and (iii) that types are finite (via the TyFP in (119)). On terms, we must impose
the very same kinds of restrictions.

Let us first consider the equivalent of the TyIP for terms. For type objects we required
the maximal number of identities possible. To do the same for me objects, we, first, need a
characterization of the circumstances in which two me objects are the same in the relevant
sense. This is the case iff (i), they are both variables with the same type and the same
number value, or (ii), they are constant objects of the same species, or (iii) they are of the
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same species and have components which are the same in the relevant sense. To express
this characterization, we must first state what it means for two number objects to be the
same. This is done in the relation same-number in (124a). Then, we define the relation
same-term in (124b). This relation makes use of the previously defined relation same-type

(see (113) and of the relation same-number in its clause for var objects.

(124) a. The relation same-number:

same-number( 1 , 2 )
∀

⇐=
1h

zero
i

and
2h

zero
i

same-number( 1 , 2 )
∀

⇐=
1»

non-zero

number 3

–

and
2»

non-zero

number 4

–

and same-number( 3 , 4 )
b. The relation same-term:

same-term( 1 , 2 )
∀

⇐=
12

4

var

type 3

number 4

3

5 and

22

4

var

type 5

number 6

3

5

and same-type( 3 , 5 )
and same-number( 4 , 6 )

for each constivconst:

same-term( 1 , 2 )
∀

⇐=
1h

consti
i

and
2h

consti
i

same-term( 1 , 2 )
∀

⇐=
12

6

6

4

appl

type 3

func 4

arg 5

3

7

7

5

and

22

6

6

4

appl

type 6

func 7

arg 8

3

7

7

5

and same-type( 3 , 6 )
and same-term( 4 , 7 )
and same-term( 5 , 8 )

same-term( 1 , 2 )
∀

⇐=
12

6

6

4

abstr

type 3

var 4

arg 5

3

7

7

5

and

22

6

6

4

abstr

type 6

var 7

arg 8

3

7

7

5

and same-type( 3 , 6 )
and same-term( 4 , 7 )
and same-term( 5 , 8 )

same-term( 1 , 2 )
∀

⇐=
12

6

6

4

equ

type 3

arg1 4

arg2 5

3

7

7

5

and

22

6

6

4

equ

type 6

arg1 7

arg2 8

3

7

7

5

and same-type( 3 , 6 )
and same-term( 4 , 7 )
and same-term( 5 , 8 )

Given the relations same-number and same-term, we can define the Term Identity
Principle (TIP) in analogy to the TyIP in (114). The TIP enforces the maximal number
of identities possible within a me object.
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(125) The Term Identity Principle (TIP):
me ⇒ A 1 A 2 (same-term( 1 , 2 ) ⇒ 1 ≈ 2 )

As a consequence of the TIP, within a single me object, all const objects of the same
species are required to be identical. The same is true for all variable objects that have the
same number and type values. For larger me objects, these identities are rather rare in
natural examples.

Given the signature for me objects, the TRP and the TIP, we can describe an me object
that corresponds to the term in (107b).

(126) Description of the term (λvse,0.((walk′s(et)vs,0)(vse,0vs,0)e)t)(se)t:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

abstr

type

2

6

6

6

6

6

4

c-type

in 1

2

6

4

c-type

in 2 w-index

out 3 entity

3

7

5

out 4 truth

3

7

7

7

7

7

5

var 5

2

6

4

var

type 1

number 6 zero

3

7

5

arg

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

appl

type 4

func

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

appl

type 8

2

6

4

c-type

in 3

out 4

3

7

5

func

2

6

6

6

4

const127

type

2

6

4

c-type

in 2

out 8

3

7

5

3

7

7

7

5

arg 7

2

6

4

var

type 2

number 6

3

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

arg

2

6

6

6

4

appl

type 3

func 5

arg 7

3

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

As can be seen in (126), the overall term is a lambda abstraction, and therefore cor-
responds to an object of sort abstr. The type of the overall term, (se)t, is described as
in (112d). The variable bound by the lambda operator, vse,0, is described as being a var
object. It follows from the type restriction in (122b) that the type value of the var value
of the abstraction is identical to the type in value of the abstraction. This is expressed
with the tag 1 . The arg value of the overall abstraction is an application object. Again,
the type restriction in (122b) enforces the type of the arg type value ( 4 ) to be identical
to the type out value of the overall abstr object.

Let us, next, consider the appl object as it is described as the arg value in (126). Its
func value is, again, a appl object. The func value of this object is a constant of sort
const127. The part of the TRP given in (123) determines that this constant has a type
value that corresponds to the type s(et). We have said, that the species const127 should
correspond to the non-logical constant walk′ of Ty2. The arg value of this most embedded
appl object is a variable of type s, as required by the TRP. In fact, it is the special variable
vs,0, for which we often write “@”. In (126), it is described as a var object. Its type value
is the tag 2 which refers to an object of sort w-index, the sort that corresponds to the type
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s of Ty2. Furthermore, the number value is given as the tag 6 . This tag refers to an object
of sort zero, i.e., to a number object that corresponds to the natural number 0.

The arg value of the upper appl object (as reached with the path arg arg) is described
as being syntactically complex, i.e., of sort appl again. Its functor is the variable bound
by the lambda abstractor. In Ty2 this is expressed by using the same number and type
as subscript for the variable, in our RSRL encoding we actually use the same variable, as
indicated by the tag 5 . Finally, the argument of this variable is the special variable vs,0,
which occurred already within the most deeply embedded appl object (tag 7 ).

The me object that we described in (126) is finite and non-cyclic. For me objects with
this property, we can give a corresponding Ty2 term. So far the grammar does not provide
that all me objects in the denotation of the grammar have this property. Therefore, we will
add two more constraints to the grammar T Y2.

Given the relation component as defined in (117), we can express the Term Non-
Cyclicity Principle (TNP). The TNP requires all me objects to be acyclic. The TNP
says that an me object must not occur as a component of the value of any of its attributes.

(127) The Term Non-Cyclicity Principle (TNP):

me ⇒ A 1

((
h

func 1
i

or
h

arg 1
i

or
h

arg1 1
i

or
h

arg2 1
i

or
h

var 1
i

)
⇒ not component(:, 1)

)

Finally, parallel to the constraint on type, we want all me objects to be finite, i.e., to
contain only a finite number of components. This is expressed in the Term Finiteness
Principle (TFP).

(128) The Term Finiteness Principle:

me ⇒ Ea
(

ah

chain
i

and A 1
(
component( 1 , :) ⇒ member( 1 , a)

) )

The TFP is the last principle needed for our RSRL encoding of Ty2. We have shown
in the description in (126) that there is a clear correspondence between terms of Ty2 and
objects of sort me, just as there has been a correspondence between natural numbers and
objects of sort number and semantic types and objects of sort type. In the following sections,
we will make this correspondence formally precise.

Before we turn to the formal relation between the grammar T Y2 and the language Ty2,
we will devote some space to streamline the grammar T Y2.

3.1.4. Simplification of T Y2. For every kind of entities in the grammar of T Y2, namely,
number, type and me objects, a large number of principles is of the same shape. These are
the principles that require the objects to have as many token identities as possible (TyIP
and TIP), the non-cyclicity principles (TyNP, TNP) and the finiteness principles (TyFP and
TFP). Because numbers have a very simple ontology, no identities could possibly arise and
finiteness and non-cyclicity can be expressed in a single principle, the NP. In this subsection,
we provide general definitions of the relations component and are-copies, which are used
in the principles above. We can then reduce 7 principles to 3 basic principles.4

(129) The relation component

For each RSRL grammar with the signature Σ with A as the set of attributes,
if A is finite, then there is a relation component in R such that the following
description is in the theory of the grammar:

4Note that we also talk about components of a chain and copies of a chain in the definitions in (129)
and (130). This is done by using not only the attributes and species given by the signature, but also the
quasi-attributes and the quasi-species of definition 2.4.
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A 1 A 2(
component( 1 , 2 ) ⇔

(
1 ≈ 2 or

∨
α∈ bA

(component( 1 , 2α))
) )

In the description in (129), we use the symbol ”
∨

” as abbreviation of a disjunction,
i.e., for each attribute α in the augmented signature, there is a disjunct of the form
component( 1 , 2α).

The set of attributes is required to be finite, as otherwise the description given in (117)
would contain an infinite disjunction. The use of the relation component in this thesis is
unproblematic, as all the grammars proposed here assume a finite set of attributes.

(130) The relation are-copies:
For each RSRL grammar with S as the set of species and A as the set of at-
tributes as provided by the signature, if S and A are finite, then there is a relation
are-copies in R, and the following description is in the theory of the grammar:
A 1 A 2
are-copies( 1 , 2 ) ⇔




∨
σ∈ bS

( 1∼σ and 2∼σ)

and
∧

α∈ bA
( 1α ≈ 1α ⇒ are-copies( 1α, 2α))







In the definition of the relation are-copies, we use the symbol “
∨

” to express a big
disjunction, i.e., in this case, it is a disjunction such that for each species σ in the signature,
there is a disjunct of the form 1∼σ and 2∼σ. In the last line of the constraint in (130),
there is the symbol “

∧
”. Analogously to the symbol “

∨
”, the second symbol is used to

express a big conjunction. In each of the conjuncts, there is the description 1α ≈ 1α. This
describes an object iff the attribute α is defined on the object denoted by the variable 1 .

The relation are-copies can only be defined in this way for signatures that assume a
finite set of species and a finite set of attributes, because otherwise, the description in (130)
would be infinite. Again, the signatures proposed in this thesis have this property, so we
can safely use the relations defined in (129) and (130).

Given these general relations, we can give the three general principles instead of the
seven specific principles considered so far: the General Identity Principle (GIP), the
General Non-Cyclicity Principle (GNP) and the General Finiteness Principle.

(131) a. The General Identity Principle (GIP):
A 1 A 2

(
are-copies( 1 , 2 ) ⇒ 1 ≈ 2

)

b. The General Non-Cyclicity Principle (GNP):

A 1

( ∨
α∈A

(
( 1 ≈ :α) ⇒ not component(:, 1)

))

c. The General Finiteness Principle (GFP):

Ea
(

ah

chain
i

and A 1
(
component( 1 , :) ⇒ is-member( 1 , a)

) )

Thus we can assume that T Y2 contains the GIP instead of the TyIP and the TIP; the
GNP instead of the NP, the TyNP and the TNP; and the GFP instead of the TyFP and
the TFP. Of course, we still need the TRP.

The general relations and principles defined in this subsection are useful for linguistic
theories in general, as componenthood and copyhood must be expressed frequently. The
treatment of duplication in morphophonology of Höhle 1999 for example relies on copyhood
rather than token identity.5 Finiteness and acyclicity are requirements that are necessary
in order to restrict the phon list, as done in Richter and Sailer 1995 and Richter et al. 1999.

5In the grammar T Y2 we require that all copies be identical. Such a requirement is, of course, not used in
other RSRL grammars. As mentioned above, the phenomena reported in Höhle 1999 show that there is a
distinction between copyhood and identity in phonology. Similarly, the Binding Theory of Pollard and Sag
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3.2. Ty2 as a model of T Y2

Given the signature, and the Number Principle (110), the Type Identity Princi-
ple (114), the Type Non-Cyclicity Principle (118), the Type Finiteness Princi-
ple (119), the Type Restriction Principle in (122) and (123), the Term Identity
Principle (125), the Term Non-Cyclicity-Principle (127) and the Term Finiteness
Principle (128), or their generalized counterparts, the grammar T Y2 is complete. Fol-
lowing King 1999 and Richter 1999, 2000, (R)SRL grammars are used to describe certain
empirical domains. In our case the empirical domain is the set of Ty2 terms as defined
in Section 1.3.2. An (R)SRL grammar has achieved its goal iff it can be shown that the
empirical domain is an exhaustive model of the grammar. In the case of Ty2 we are in the
fortunate position to know exactly how the empirical domain is structured (in contrast to
what is the case in a grammar for, say, a natural language). We can show that the natural
numbers, the set of semantic types, Type, and the set of Ty2 terms together are the universe
of an exhaustive model of T Y2. All we have to add are the relations defined above with
their intended interpretation.

In this section, we will show that the grammar T Y2 describes the language Ty2. To
show this, we will prove the following proposition.

proposition 3.1

There is an exhaustive model ITy2 =
〈
UTy2, STy2,ATy2,RTy2

〉
of T Y2 such that

UTy2 = IN ∪ Type ∪ Ty2.

To show this proposition, we define the model ITy2, which we will call the intended
model of the grammar T Y2. The universe of ITy2 contains exactly the natural numbers,
the semantic types and the terms of Ty2.

definition 3.2 (intended model ITy2)

Let Const = {c1, . . . , cn} be a finite set of constant symbols,

let Type be the set of types generated over the atomic types e, t and s,

let V ar = {vτ,i|i ∈ IN, τ ∈ Type} be the set of variables,

and let C be a function from Const to Type.

Let Ty2C be the set of terms generated according to definition in Section 1.3.2.

We define the interpretation ITy2 =
〈
UTy2, STy2,ATy2,RTy2

〉
of the signature of T Y2 as

follows:

UTy2 = IN ∪ Type ∪ Ty2,
STy2 :

– STy2(0) = zero,
– for each i ∈ IN, STy2(i+ 1) = non-zero,

– STy2(e) = entity,
– STy2(t) = truth,
– STy2(s) = w-index,
– for each α, β ∈ Type, STy2(〈α, β〉) = complex-type,

– for each i ∈ IN, for each τ ∈ Type, STy2(vτ,i) = variable,

1994 relies on such a difference, i.e., in a sentence such as (i), the index values of the NPs he and Peter are
copies of each other, but the Binding Theory requires that they be distinct index objects.
(i) Hei likes Peterj,∗i
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– for each ci ∈ Const, STy2(ci) = consti,
– for each φ, ψ ∈ Ty2, for each v ∈ V ar, for each τ, τ ′ ∈ Type,

∗ STy2((φψ)τ ) = application
∗ STy2((λvτ .φ)τ ′) = abstraction,
∗ STy2((φτ = ψτ )t) = equation.

ATy2 :
– for each i ∈ IN, ATy2(number)(i+ 1) = i,
– for each α, β ∈ Type

ATy2(in)(〈α, β〉) = α and
ATy2(out)(〈α, β〉) = β,

– for each τ ∈ Type, for each φτ ∈ Ty2,
ATy2(type)(φτ ) = τ ,

– for each i ∈ IN, for each τ ∈ Type, for each vτ,i ∈ V ar,
ATy2(number)(vτ,i) = i,

– for each (φψ)τ ∈ Ty2,
ATy2(func)((φψ)τ ) = φ, and
ATy2(arg)((φψ)τ ) = ψ,

– for each (λv.φ)τ ∈ Ty2,
ATy2(var)((λv.φ)τ ) = v, and
ATy2(arg)((λv.φ)τ ) = φ, and

– for each (φ = ψ)t ∈ Ty2,
ATy2(arg1)((φ = ψ)t) = φ, and
ATy2(arg2)((φ = ψ)t) = ψ

RTy2 : is chosen in such a way that it contains the right tuples for each of the relations
defined above.

The interpretation ITy2 given in Definition 3.2 establishes the intuitive interpretation
of the objects in the universe, i.e., of natural numbers, semantic types and terms of Ty2,
under the signature of T Y2. As the grammar T Y2 is explicitly written for this particular
interpretation, we call the interpretation in Definition 3.2 the intended model.

We can illustrate that the interpretation given above interprets the objects in the em-
pirical domain in an intuitive way with a simple example from the set of semantic types.
The type 〈e, t〉 is in the set Types. By the definition of STy2, this type is assigned the
sort label complex-type. By the attribute interpretation function ATy2 as given for ITy2 in
Definition 3.2, the in value of the type 〈e, t〉 is the type e, and the out value of this type is
the type t. These two atomic types are assigned the species entity and truth respectively.

To prove the proposition, we must show the following two lemmata. The first lemma,
Lemma 3.3, states that the interpretation ITy2 is a model of T Y2. Being a model is a
necessary condition for being an exhaustive model.

lemma 3.3

ITy2 is a model of the grammar T Y2.

The second lemma specifies the further conditions that are imposed on exhaustive mod-
els, i.e., that an exhaustive model of a grammar contains at least one instance of every
possible configuration of objects that is a model of the grammar.

lemma 3.4

Let I ′ = 〈U ′, S′, A′, R′〉 be an interpretation of the signature of the grammar T Y2, then

if I ′ is an exhaustive model of T Y2,
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then for each u′ ∈ U ′,

there is an object u ∈ UTy2 such that 〈u′, I ′〉 and
〈
u, ITy2

〉
are congruent.

The proof of Lemma 3.3 proceeds by induction on the recursive structure of the objects
in the universe of ITy2. It suffices to show that each configuration of objects in the inter-
pretation ITy2 satisfies all constraints in the theory. We can prove the lemma by induction,
because the universe of ITy2 is recursively defined. The proof of Lemma 3.3 is given in
Appendix A.1.1.

With Lemma 3.3 we know that the natural numbers, the semantic types, and the terms
of Ty2 can actually be used as the universe of an interpretation of the grammar T Y2. In the
following, we must show that it is an exhaustive model, i.e., that it contains instances of all
configurations that are licensed by the grammar. Note that Lemma 3.3 would hold even if we
had assumed the signature of T Y2, but an empty theory. Then, however, the interpretation
ITy2 as given in Definition 3.2 would not be an exhaustive model. An exhaustive model
of the empty theory would, for example also contain cyclic or infinite configurarions under
objects of sort number. Such configurations are excluded in the grammar T Y2 by the
Number Principle (110). Infinite or cyclic configurations do not correspond to natural
numbers. In the previous section, we imposed a number of constraints on the entities in the
denotation of the grammar T Y2. The validity of Lemma 3.3 shows that that we did not
impose too many constraints. With the proof of Lemma 3.4, we will show, that we imposed
enough constraints.

To be able to prove Lemma 3.4, we must explain what we understand under congru-
ence. We have already introduced this notion together with the notion of indiscernibility in
Section 1.1. The definition of both notions relies on the notion of a configuration of objects.
Following Richter 2000, we write 〈u, I〉 for the configuration of objects under the object u in
the interpretation I . In the figures in Section 1.1 we have shown some such configurations.

The notion of indiscernibility is defined in King 1999 (p. 343) for SRL and adapted for
RSRL in Richter 2000 (p. 184). Given interpretations I and I ′, two configurations 〈u, I〉 and
〈u′, I ′〉 are indiscernible iff for each description δ, u is described by δ under interpretation I
iff u′ is described by δ under interpretation I ′. While the definition of indiscernibility looks
the same for SRL and for RSRL, there is, of course, a difference, as the set of descriptions is
different, and the interpretation of RSRL contains more structure. In RSRL, in contrast to
SRL, the set of descriptions contains quantified descriptions, relation calls and terms that
start with a variable. An RSRL interpretation contains a relation interpretation, which is
missing in SRL interpretations.

While indiscernibility is concerned with the description of objects, the notion congruence
refers to the shape of a configuration. For SRL two configurations 〈u, I〉 and 〈u′, I ′〉 are
congruent, iff there is a bijection f from the set of components of u to the set of components
of u′ such that f(u) = u′ and for each component o of u, (i) the species assigned to o under
I are the same as the species assigned to f(o) under I ′, and (ii) exactly the same attributes
are defined on the components of o and on f(o), and (iii) for each attribute α that is defined
on o, applying f to the α value of o is the same as taking the α value of f(o).

Put differently, two configurations are congruent, if every path that is defined on the
matrix object of one configuration is also defined on the matrix object of the other and
leads to an object of the same species. In addition, whenever two paths that are defined
on the matrix object of one configuration lead to the same object, so do these paths within
the other configuration.

As in SRL there are no quasi sorts, quasi attributes and no relations, this definition
is enough. For RSRL, Richter 2000 (p. 183) extends King’s definition to include the new
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concepts of RSRL as well. In his extension, Richter requires that for two configurations
〈u, I〉 and 〈u′, I ′〉 to be congruent, the bijection must also map each chain built from the
components of u to a corresponding chain built from the components of u′. In addition,
Richter adds a condition to ensure that the interpretation of relations is also the same
relative to this bijection. This condition says that for each relation symbol ρ with arity i,
for each i-tuple 〈o1, . . . oi〉 of components or chains from u that is in the interpretation of
the relation ρ in I , the i-tuple 〈f(o1), . . . , f(oi)〉 is in the interpretation of ρ in I ′.

When we will use the notion of congruence in our proof of Lemma 3.4, we will ignore
the two additional conditions imposed on congruent configurations in Richter 2000. We will
briefly show that we can safely do this. Let us first consider the case of chains. Assume
that there is a bijection g from the components of an object u in an interpretation I to the
components of an object u′ in an interpretation I ′ such that g meets King’s requirements
for congruence. We can extend g to a bijection g′ from the set of components and chains of
components of u to the set of components and chains of components of u′. The extension
is such that

g′(o) = g(o), if o is a component of u,
g′(o) = 〈〉, if o is the empty chain, and

g′(o) =
〈
g(Â(†)(o))

∣∣∣ g′(Â(.)(o))
〉

, if o is a non-empty chain.

It is clear that g′ meets the three condition on the bijection that is required for congruent
configurations: First, for every o which is a component or a chain of u, the (quasi-)species
of o is the same as that of g′(o). Second, exactly the same (quasi-)attributes are defined on
o and on g′(o). Third, whenever a (quasi-)attribute α is defined on o, then applying g′ to
the α values of o is the same as the α value of g′(o).

This indicates that once we found a bijection g between components which meets the
SRL requirements for congruence, we know that there is also a bijection g′ which includes
chains and meets the SRL requirements for congruence when applied to chains as well.

Let us next turn to the condition on the relation interpretation. As Richter defines
congruence on arbitrary interpretations, it is necessary for him to include in his definition the
requirement that the relation interpretations contain corresponding tuples. In Lemma 3.4,
we assume that the interpretation I ′ is an exhaustive model. Therefore, we know that
for each u′ in the universe of I ′, the interpretation of some i-ary relation symbol ρ in I ′

contains every i-tuple of components or chains of components of u′ that are allowed by
the grammar. This means that the set of components of an object u′ in the universe of
some exhaustive model I ′ and the grammar fully determine which i-tuples of components
or chains of components of u′ are in the interpretation of an i-ary relation in I ′.

Similarly, in our definition of the intended model ITy2 of T Y2 in Definition 3.2 we
simply stated that the interpretation of the relations contain all possible tuples. Therefore,
for each configuration

〈
u, ITy2

〉
in the intended model and for each configuration 〈u′, I ′〉

in some exhaustive model of T Y2, if there exists a bijection g between the components
of u and those of u′, then an i-tuple 〈o1, . . . , oi〉 of components or chains of components
of u′ is in the interpretation of an i-ary relation ρ in ITy2, iff 〈g′(o1), . . . , g′(oi)〉 is in the
interpretation of ρ in I ′, where g′ is the extension of g as given before.

This reasoning on chains and relation interpretation shows that, given an object u of
the universe of ITy2 and an object u′ of the universe of some exhaustive model I ′ of T Y2,

if there is a bijection g between the objects in a configuration
〈
u, ITy2

〉
of our intended

model and the objects in a configuration 〈u′, I ′〉 of some exhaustive model such that that
g meets the requirements of King’s notion of congruence, then there is also a bijection
that has all the properties of Richter’s notion. Thus, we need not consider those parts of
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a configuration that are concerned with the interpretation of the relation symbols in the
proof of Lemma 3.4.

The proof of Lemma 3.4 goes, again, by induction. This time, the induction is on
the structure of configurations of objects in an exhaustive model. The base cases are
constituted by objects of atomic sorts, i.e., by configurations that consist of a single object
and no attribute arrows. The recursive cases deal with configurations of objects whose
matrix object is of a non-atomic sort. Such an induction is possible, because the theory of
the grammar ensures that in every model of the grammar and in every finite and nonclyclic
configuration in this model, every path will ultimately lead to an object of an atomic sort.

Given this idea, in the proof, we assume an arbitrary exhaustive model I ′ of T Y2. For
each object u in the interpretation I ′, we consider the configuration of objects 〈u, I ′〉. We
then show that for each of these configurations, there is an object o in the interpretation
ITy2 such that the configurations

〈
o, ITy2

〉
and 〈u, I ′〉 are congruent. The full proof is given

in Appendix A.1.1.

With Lemma 3.3 and Lemma 3.4, Proposition 3.1 follows immediately, if we fill in the
definition of an exhaustive model as given in Definition 2.18. There, we have defined an
exhaustive model via indiscernibility classes. We proved with Lemma 3.4 that for every
configuration of objects in an arbitrary exhaustive model, the intended model has a con-
figuration which is congruent to that configuration. We can, then, use the equivalence of
congruence and indiscernibility to show the proposition.

It is a direct consequence of Proposition 3.1 that the grammar T Y2 is observationally
adequate for the language Ty2, as explained at the end of Section 2.1. It is interesting to see,
though, that the grammar T Y2 is a constraint-based definition of the language, in contrast
to the recursive definition given in Section 1.3.2. For simplicity, consider just the set Type
and those parts of T Y2 which we defined in Subsection 3.1.2. In Definition 1.5, the set of
semantic types is defined recursively, i.e., we are given some instructions of what the basic
types are and how we can build complex types from existing types. In an RSRL grammar,
the signature determines what the general shape of type objects is. The theory, then, is
used to impose finer constraints such as the restriction to finiteness and non-cyclicity. We
can now see that the set Type can be adequately described by both mechanisms, while
the recursive definition is admittedly more straightforward and natural as it automatically
includes finiteness and non-cyclicity.

3.3. The Equivalence of T Y2 and Ty2

So far, we focussed on a particular exhaustive model. We chose terms of Ty2 to be in
the denotation of the grammar T Y2, because we can interpret these terms with respect to a
semantic model as defined in Definition 1.9. In the present section, we show that even if we
consider a different exhaustive model, such a semantic interpretation can still be provided.
For this purpose, we define a function “{[ ]}” which assigns indiscernibility classes of me
objects an interpretation, just as the function “[[ ]]” does for terms of Ty2.

In the previous sections, the grammar T Y2 was defined and it was shown that the
intended model ITy2 is an exhaustive model of T Y2. Since the universe of the interpretation
ITy2 is exclusively populated by natural numbers, semantic types and terms of Ty2, it follows
from this that all other exhaustive models of T Y2 differ from ITy2 only with respect to the
number of indiscernible copies of the configurations under these objects.

Thus, instead of going via the interpretation of objects in the intended exhaustive model,
we can also define an interpretation of equivalence classes of indiscernible objects of an
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arbitrary exhaustive model. We write [u] for the equivalent class of objects which are
indiscernible from u under a given interpretation.

In the following definitions, we assume an arbitrary exhaustive model I. For this inter-
pretation, we assume a frame F as given by the following definition.

definition 3.5

Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2,

let E be a set of individuals, and

let W be a set of possible worlds, then

for each u ∈ U,

F is a frame F =
⋃

([u],S(u)vtype)DE,W,[u], where,

for each u ∈ U such that S(u) = truth,
DE,W,[u] = {1, 0},

for each u ∈ U such that S(u) = entity,
DE,W,[u] = E,

for each u ∈ U such that S(u) = w-index,
DE,W,[u] = W , and

for each u ∈ U such that S(u) = c-type with TI( : in)(u) = u′ and TI( : out)(u) =
u′′,

DE,W,[u] = D
DE,W,[u′]

E,W,[u′′] .

The way the frames of Ty2 and of the arbitrary exhaustive model of T Y2 are defined,
it can be shown that we can use the same frame for both.

lemma 3.6 Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2,

let E be the domain of individuals and

let W be a set of possible worlds, then

for each τ ∈ Type,
there is an indiscernibility class [u] ⊆ U such that

DE,W,τ = DE,W,[u],
and for each u ∈ U, with S(u)vtype,
there is a τ ∈ Type such that

DE,W,τ = DE,W,[u].

Lemma 3.6 shows, that if we assume identical E and W , the frame of T Y2 is identical
to that of Ty2, independent of the particular choice of the exhaustive model. The proof of
this lemma, given in Appendix A.1.1, goes by induction. The base cases are constituted by
the basic types t, e and s, and by the atomic subsorts of type, i.e., the species truth, entity
and w-index. For these cases, the identity of the frame follows directly from the definitions.
For the recursive case, i.e., types of the form 〈τ, τ ′〉 and indiscernibility classes of objects of
sort complex-type, the identity of the frame follows from the definition using the hypothesis.

The major definition that we are aiming for in this section is that of the interpretation,
or extension, of objects in the universe of an arbitrary exhaustive model of T Y2. We
will, however, not address these objects directly, but we will, instead, assign an extension
to indiscernibility classes of such objects. The indiscernibility class of an object o is the
equivalence class containing all objects of the universe that are described by exactly the same
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descriptions as o is. As there is no way to tell indiscernible objects apart, it is reasonable
to assume that we assign an extension only to equivalence classes of objects.

Before we can interpret indiscernibility classes of me objects, we must introduce two
auxiliary notions: a model and a variable assignment. Both definitions will be parallel to
the corresponding definitions for Ty2 as given in Section 1.3.2.

In the following definition, we state, what it is to be a semantic model.

definition 3.7

Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2,

let E be a set of individuals, and let W be a set of possible worlds, then

a semantic model is a pair M = 〈F, Int〉 such that
F is a frame and
Int is a function from the set species below const to F such that

for each species constivconst and
for each u ∈ U with S(u) = consti ,
and for some u′ ∈ U with and TI( : type)(u) = u′,

Int(consti) ∈ DE,W,[u′].

Notice that we call M a semantic model. It is not a model of the grammar T Y2, but a
semantic model of the terms in the denotation of the grammar T Y2. The function Int is
the interpretation of the const objects and respects their semantic types; parallel to the use
of int for the interpretation of constants of Ty2.

Before we can interpret (indiscernibility classes) of me objects, we must define what a
variable assignment is.

definition 3.8

Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2,

let V AR = {[u] ⊆ U|u ∈ U with S(u) = var},

and let F be a frame, then

ASS =

{
A ∈ F V AR

∣∣∣∣
for each [u] ∈ V AR,
A([u]) ∈ DE,W,[TI( : TYPE)(u)]

}

We call each element of ASS a variable assignment. Just as has been the case of
the variable assignments for variables of Ty2, as defined in Definition 1.8, the variable
assignments respect the type information of the variables. For the elements of ASS this
means that if a var object u has a type value t, then every element A of ASS is such
A([u]) ∈ DE,W,[t].

We can now define the denotation of (indiscernibility classes of) me objects. In Defini-
tion 3.9, we define the denotation function “{[ ]}” with respect to a semantic model M and
a variable assignment A ∈ ASS.

definition 3.9 (Extension of me objects)

Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2,

let M = 〈F, Int〉 be a semantic model,

let A ∈ ASS be a variable assignment, then
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for each u ∈ U,
{[[u]]}M,A, the extension of [u] in a model M under a variable assignment A,

is defined as follows:
if S(u)v const

{[[u]]}M,A = Int(S(u)),
if S(u)v var

{[[u]]}M,A = A([u]),
if S(u)v appl,

{[[u]]}M,A = {[[TI( : func)(u)]]}M,A({[[TI( : arg)(u)]]}M,A),
if S(u)vabstr such that

there are v, t, t′ ∈ U with
t = TI( : arg type)(u),
t′ = TI( : var type)(u), and
v = TI( : var)(u),

{[[u]]}M,A = f ∈ D
DE,W,[t′]

E,W,[t] such that

for each d ∈ DE,W,[t′]:

f(d) = {[[TI( : arg)(u)]]}M,A[v/d],
if S(u)v equ

{[[u]]}M,A = 1 if {[[TI( : arg1)(u)]]}M,A = {[[TI( : arg2)(u)]]}M,A, else 0.

It should be noted that the constant interpretation function actually assigns an interpre-
tation to species rather than to (indiscernibility classes of) objects. The extension function,
{[[u]]}, then, assigns an extension to the indiscernibility classes of objects of the various
species under const.

The extension function on var objects is given by the variable assignment. Objects of
sort appl are interpreted as functional application. Those of sort abstr are treated just
like λ-abstraction, i.e., as forming a complex functor. Note the use of the frame in this
definition. Finally, objects of sort equ receive the interpretation of equations.

With Definition 3.9, we are able to assign indiscernibility classes of me objects an ex-
tension. But before we can rely on me objects of an arbitrary exhaustive model, we must
show that the extension assigned to the me object is the same extension as that of the
corresponding Ty2 term.

proposition 3.10 (Equivalence of Ty2 and exhaustive models of T Y2)

Let I be an arbitrary exhaustive model of T Y2.

Then, for each indiscernibility class of me objects

there is a Ty2 term which is assigned the same extension.

For a comparison of Ty2 with a given grammar T Y2, it is necessary that the constants
are interpreted in the same way. In Definition 3.11 we define what is needed to guarantee
this identity of the constant interpretations.

definition 3.11 (corresponding constant interpretations)

Let F be a frame, and let C be be a total function from Const to Type, then

An interpretation function, int, from the set of constants of Ty2 (Const) to a
frame F and an interpretation function, Int, from the subsorts of const to F are
called corresponding iff

there is a bijection C from the set of species below const to Const such that
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for each species const′ with const′vconst,
int(C(const′)) = Int(const′), and

for each c ∈ Const and for some τ ∈ Type such that C(c) = τ ,
cτ ∈ Ty2, int(cτ ) = Int(C−1(cτ )).

Given this notion of correspondence for constants, we formulate a proposition that states
that there is a systematic semantic correspondence between the objects in an exhaustive
model of T Y2 and terms of Ty2: we can define a function that maps each indiscernibility
class of objects of the sort me to a term such that the extension of the indiscernibility classes
of objects and the extension of the term are identical.

In the following definition, we give a function SR which assigns a term φ of Ty2 to
an equivalence class [u] of me objects. We will show later that [u] and φ have the same
extension.

definition 3.12 (SR)

Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2.

Let C be a bijection from the species below const to the set Const as in Definition 3.11,
then

we define the function SR from Pow(U) to IN ∪ Type ∪ Ty2 such that

for each u ∈ U with S(u)vnumber
if S(u)vzero, then

SR([u]) = 0,
if S(u)vnon-zero, then

for some u1 ∈ U with TI(:number)(u) = u1,
SR([u]) = 1 + SR([u1]),

for u ∈ U with S(u)v type,
if S(u)v entity, then

SR([u]) = e,
if S(u)v truth, then

SR([u]) = t,
if S(u)v w-index, then

SR([u]) = s,
if S(u)v complex-type, then

for some u1, u2 ∈ U, with TI(:in)(u) = u1 and
TI(:out)(u) = u2,

SR([u]) = 〈SR([u1]), SR([u2])〉,
for each u ∈ U such that S(u)v me,
for each const′ that is a species below const,

if S(u)v const′,
then SR([u]) = C(const′),

if S(u)v var, then
for some u1, u2 ∈ U, with TI(:type)(u) = u1 and
TI(:number)(u) = u2,

SR([u]) = vSR([u1]),SR([u2])

if S(u)v appl, then
for some u1, u2, t ∈ U, with TI(:func)(u) = u1

TI(:arg)(u) = u2, and TI(:type)(u) = u3

SR([u]) = (SR([u1])SR([u2]))SR([u3 ]),
if S(u)v abstr, then
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for some u1, u2, u3 ∈ U, with TI(:var)(u) = u1

TI(:arg)(u) = u2, and TI(:type)(u) = u3

SR([u]) = (λSR([u1]).SR([u2]))SR([u3]),
if S(u)v equ, then

for some u1, u2, u3 ∈ U, with TI(:var)(u) = u1

TI(:arg)(u) = u2, and TI(:type)(u) = u3

SR([u]) = (SR([u1]) = SR([u2]))SR([u3]).

With the function SR we map an indiscernibility class of me objects to a correspond-
ing term of Ty2. To prove Proposition 3.10 we must show that the me objects and their
corresponding Ty2 terms have identical extensions. To ensure this, we must chose corre-
sponding variable assignments. We can use the function SR to define a correspondence
relation between variable assignments. This is done in Definition 3.13.

definition 3.13 (corresponding variable assignments)

Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2, let F be a frame, let V ar be the set of
variables,

then for each a ∈ ass and for each A ∈ ASS,

a and A are corresponding iff
for each u ∈ U with S(u) = var, for some u′, u′′ ∈ U with

TI( : number)(u) = u′ and TI( : number)(u) = u′′ ,
A([u]) = a(vSR([u′ ]),SR([u′′]))

With this definition, we can show that the function SR maps an indiscernibility class
[u] of me objects to a term of Ty2 φ such that [u] and φ have identical extensions under
corresponding variable assignment. This is expressed in the following lemma.

lemma 3.14

Given a frame F ,

an exhaustive model I = 〈U, S,A,R〉 of T Y2,

and corresponding interpretation functions int and Int, then

the function SR is such that
there are variable assignments a and A of Ty2 and I respectively, such that

for each u ∈ U,

S(u)vme, iff {[[u]]}M,A = [[SR([u])]]M,a

We are now ready to consider the proof of Lemma 3.14, which is given in Appendix A.1.1.
The proof goes by induction on the structure of configurations of objects. Ror objects of
the sorts const and var, the lemma follows from the correspondence of the interpretation of
constants and sorts below const and the correspondence of the variable assignments For the
other subsorts of me, we are in the recursive case of the proof. Here, the parallelism of the
extension of me objects with that of the corresponding syntactic constructs in Ty2 is used.

Given Lemma 3.14, Proposition 3.10 follows immediately. In fact, it is the existence of
the function SR that proves the proposition.

We have now achieved the second important result of this chapter: we are able to ab-
stract away from a concrete (intended) exhaustive model, the language Ty2, to an arbitrary
exhaustive model of the grammar T Y2. The proposition guarantees that when we consider
an arbitrary exhaustive model of T Y2, the me objects in the universe of this model can be
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assigned a model theoretic interpretation, i.e., an extension with respect to some model M
and some variable assignment A, just as if they were terms of Ty2.

Put differently, Proposition 3.10 states that (indiscernibility classes of) objects in the
denotation of the grammar T Y2 are semantically equivalent to natural numbers, semantic
types or terms of Ty2. In the next section, we will show that they are also structurally, i.e.,
syntactically, equivalent.

3.4. Terms as Descriptions

We can define a function that maps each Ty2 term φ to a description δ such that δ is
a description under the signature of T Y2 and in each exhaustive model of T Y2, δ denotes
exactly that indiscernibility class that corresponds to φ. For convenience, we will call a
description δ a T Y2 description iff δ is a description under the signature of T Y2.

proposition 3.15 (T Y2-describability)

Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2.

For each term φ of Ty2, there is a T Y2 description δ such that

DI(δ) = {u ∈ U|SR([u]) = φ}

To prove this proposition, we first define a function “∗” from numbers, types and terms to
T Y2 descriptions. This function can be seen as the mirror of the function SR: The function
SR mapped indiscernibility classes me objects to Ty2 terms with identical extension. The
function “∗” maps Ty2 terms to T Y2 descriptions that denote exactly these indiscernibility
classes.

First, we show that all elements denoted by the resulting description are indiscernible.
Then, we show that the resulting indiscernibility classes are the semantic representations
of the original number, type or term.

definition 3.16 (“∗”)

“∗” is a function from IN ∪ Type∪ Ty2 to the set of T Y2 descriptions such that,6

for each i ∈ IN,
if i = 0, then

i∗ = :∼zero,
if i = j + 1, then

i∗ =

(
:∼non-zero
and j∗[:number/:]

)
,

for each τ ∈ Type,
if τ = e, then

τ∗ = :∼entity,
if τ = t, then

τ∗ = :∼truth,
if τ = s, then

τ∗ = :∼w-index,
if τ = 〈τ1, τ2〉, then

τ∗ =




:∼complex-type
and τ∗1 [:in/:]
and τ∗2 [:out/:]


,

6Note that δ[π/π′] is a description that differs from δ in that, wherever there is an occurrence of the path

π′ in δ, there is an occurrence of the path π in δ[π/π′].
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for each φ ∈ Ty2,
if φ = vτ,i, then

φ∗ =




:∼var
and i∗[:number/:]
and τ∗[:type/:]


,

if φ = cτ , then

φ∗ =

(
:∼consti
and τ∗[:type/:]

)
,

if φ = (φ1φ2)τ , then

φ∗ =




:∼appl
and τ∗[:type/:]
and φ∗1[:func/:]
and φ∗2[:arg/:]


,

if φ = (λx.φ)τ , then

φ∗ =




:∼abstr
and τ∗[:type/:]
and x∗[:var/:]
and φ∗[:arg/:]


,

if φ = (φ1 = φ2)t, then

φ∗ =




:∼equ
and :type∼truth
and φ∗1[:arg1/:]
and φ∗2[:arg2/:]


.

T Y2 has an interesting property. The function “∗” can be used to identify indiscernibility
classes in arbitrary exhaustive models of T Y2. This is possible, because (i), all objects are
finite and acyclic, and (ii), there is a maximal amount of token identities in each object.

To illustrate the effect of the function “∗”, we can compute the description (walk′@(x@))∗,
i.e., the description that corresponds to a subterm of our example term in (107b). In (133)
the resulting description is given in AVM form.

(132) a. (walk′@(x@))∗

= (((walk′s(et)vs,0)et(vse,0vs,0)e)t)
∗

b. =




:∼appl
and t∗[:type/:]
and (walk′s(et)vs,0)∗et[:func/:]
and ((vse,0vs,0)e)∗[:arg/:]




c. =




:∼appl
and :type∼truth
and :func∼appl
and (et)∗[:func type/:]
and walk′

∗
s(et)[:func func/:]

and vs,0[:func arg/:]
and :arg∼appl
and e∗[:arg type/:]
and (vse,0)∗[:arg func/:]
and (vs,0)∗[:arg arg/:]
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d. =




:∼appl
and :type∼truth
and :func type∼c-type
and e∗[:func type in/:]
and t∗[:func type out/:]
and :func func∼const127
and s(et)∗[:func func type/:]
and :func arg∼var
and s∗[:func arg type/:]
and 0∗[:func arg number/:]
and :arg∼appl
and :arg type∼entity
and :arg func∼var
and (se)∗[:arg func type/:]
and 0∗[:arg func number/:]
and :arg arg∼var
and s∗[:arg arg type/:]
and 0∗[:arg arg number/:]




e. =




:∼appl
and :type∼truth
and :func type∼c-type
and :func type in∼entity
and :func type out∼truth
and :func func∼const127
and :func func type∼c-type
and s∗[:func func type in/:]
and (et)∗[:func func type out/:]
and :func arg∼var
and :func arg type∼w-index
and :func arg number∼zero
and :arg∼appl
and :arg type∼entity
and :arg func∼var
and :arg func type∼c-type
and s∗[:arg func type in/:]
and e∗[:arg func type out/:]
and :arg func number∼zero
and :arg arg∼var
and :arg arg type∼w-index
and :arg arg number∼zero
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f. =




:∼appl
and :type∼truth
and :func type∼c-type
and :func type in∼entity
and :func type out∼truth
and :func func∼const127
and :func func type∼c-type
and :func func type in∼w-index
and :func func type out∼c-type
and e∗[:func func type out in/:]
and t∗[:func func type out out/:]
and :func arg∼var
and :func arg type∼w-index
and :func arg number∼zero
and :arg∼appl
and :arg type∼entity
and :arg func∼var
and :arg func type∼c-type
and :arg func type in∼w-index
and :arg func type out∼entity
and :arg func number∼zero
and :arg arg∼var
and :arg arg type∼w-index
and :arg arg number∼zero




g. =




:∼appl
and :type∼truth
and :func type∼c-type
and :func type in∼entity
and :func type out∼truth
and :func func∼const127
and :func func type∼c-type
and :func func type in∼w-index
and :func func type out∼c-type
and :func func type out in∼entity
and :func func type out out∼truth
and :func arg∼var
and :func arg type∼w-index
and :func arg number∼zero
and :arg∼appl
and :arg type∼entity
and :arg func∼var
and :arg func type∼c-type
and :arg func type in∼w-index
and :arg func type out∼entity
and :arg func number∼zero
and :arg arg∼var
and :arg arg type∼w-index
and :arg arg number∼zero




In (132), the stepwise application of the function “∗” is given. Applying the function
to the term walk′@(x@), we first get a description that specifies that the described object
is of sort application and that we must apply the function “∗” to the type of the term (t),
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and to the two subterms (walk′@, and x@), where we must substitute the symbol “: ” in the
resulting descriptions by the paths :type, :func and :arg respectively.

Applying the function “∗” to the type t results in the description : ∼truth. If we replace
the symbol “: ” in this description by the path :type, we get the description :type∼truth.
This description appears as a conjunct in the description in (132c).

Similarly, applying the function “∗” to the subterm walk′@, results in a description that
specifies that the described object is of sort appl, i.e., we add the line :func type∼appl,
and we must further apply the function “∗” to the semantic type et, the constant walk′s(et),
and the variable vs,0.

In (132) all the derivation steps are shown. The resulting description is given in (132g).
In (133) we repeat it in the more convenient AVM form.

(133) (walk′@(x@))∗ =
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The function “∗” is of enormous practical use for us because it allows us to use terms of
Ty2 as descriptions of me objects. I.e., instead of the description in (132g), we can simply
write (walk′@(x@))∗.

When comparing the description (walk′@(x@))∗ in its AVM form in (133) with the de-
scription of this me object as it appears as the arg value in the AVM in (126), it is
striking that the identities are missing from (133). To consider just one case, there are
three paths that lead to an object of sort zero: :func arg number, :arg func number
and :arg arg number. Still, the description that results from the application of the func-
tion “∗” does not enforce any identities between those objects of the same sort.

When we use the function “∗”, we will always describe objects in a model of the grammar
T Y2. The grammar T Y2 contains the TIP (given in (125)). The TIP enforces all possible
identities to be realized within a me object. Therefore, we know that any me object in a
model of the grammar T Y2 that is described by the AVM in (133) will be such that the
paths mentioned above lead to the same object.
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In fact, we can show that the function “∗” interacts with the the grammar T Y2 in such
a way, that applying the function to some term of Ty2, results in a description which only
describes objects in the same indiscernibility class. This is expressed in the next lemma.

lemma 3.17

For each exhaustive model I = 〈U, S,A,R〉 of T Y2, the function “∗” is such that for each
element i ∈ (IN ∪ Type∪ Ty2), and for each u1, u2 ∈ U,

if u1, u2 ∈ DI(i
∗),

then 〈u1, I〉 and 〈u2, I〉 are congruent.

The proof of Lemma 3.17 is given in Appendix A.1.1. It proceeds by induction on the
natural numbers, the semantic types and the terms of Ty2. In each case, we will show
that the description given by the function“‘∗” is precise enough to single out a class of
objects which are the matrix objects of congruent configurations. For this proof to work,
it is important that we use objects in a model of T Y2. Thus, we know that the objects in
the universe of the considered interpretation satisfy the principles of the grammar T Y2. In
particular, for complex terms, the Term Identity Principle plays a crucial role. As can
be seen in the definition of the function “∗”, the resulting descriptions do not include any
path identities. Such identities are, however, enforced by the TIP and, thus, need not be
part of the resulting descriptions.

With the proof of Lemma 3.17, we have shown that given some x which is a natural
number, a semantic type or a term of Ty2, the description x∗ denotes exactly one indis-
cernibility class in the denotation of the grammar T Y2. This is an important result for the
proof of Proposition 3.15. In fact, all that remains to be shown is that the indiscernibility
class denoted by x∗ is mapped back to x by the function SR as given in Definition 3.12.

Given the validity of Lemma 3.17, we can now prove Proposition 3.15. Since we know
by the lemma that the function “∗” singles out indiscernibility classes, it is enough to show
that they actually single out the right indiscernibility classes, i.e., that for each i which is
a natural number, a semantic type of a term of Ty2, there is some u in the universe such
that i∗ identifies the class [u] iff SR([u]) = i. To ensure that the necessary objects in the
universe of the grammar exist, we consider only exhaustive models.

With the proof of this proposition, which is given in Appendix A.1.1, we have established
the third major result of this chapter: for each x which is a natural number, a semantic type
or a term of Ty2, the function “∗” gives us a description that singles out the indiscernibility
class, [u], of objects in the denotation of the grammar T Y2 such that the function SR maps
[u] back to x. As both functions, “∗” and SR are syntactic, we can say that x and the
elements in [u] are syntactically equivalent.

In Section 3.3 we showed that there is also a semantic equivalence: We can assign
indiscernibility classes of objects in the denotation of T Y2 an extension with respect to
some semantic model. Furthermore, we showed that given an indiscernibility class of me
objects, [u], the extension of [u] is the same as the extension of SR([u]).

Both kinds of equivalences were shown to hold for arbitrary exhaustive models of T Y2.
Therefore, we can use the grammar T Y2 independent from the particular choice of the
exhaustive model.

If we are in the special case of considering our “intended” model ITy2 of Definition 3.2,
the equivalence reduces to identity. This is expressed in the following corrolary:
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corollary 3.18 In the interpretation ITy2 as given in Definition 3.2,

for each x ∈ (IN ∪ Type ∪ Ty2),
SR([x]) = x, and
DI(x∗) = {x}

This corollary states that if we use the intended model, the function SR maps each object
in the universe to itself. Furthermore, for each object in the domain, the function “∗” yields
a description that describes exactly this object.

3.5. Extending and Integrating T Y2

In this final section of the present chapter we will first summarize the results of the
previous sections. Then, we show how the grammar T Y2 can be extended to account for an
extended semantic representation language. For this purpose, we show what additions to
the grammar T Y2 are needed to incorporate (i) logical constants (¬, ∧, ∨, and →), (ii) the
classical quantifiers (∃ and ∀), and (iii) generalized quantifiers such as the quantifier most
introduced in (38). Finally, we will add the grammar T Y2 to the grammar of our syntactic
fragment as given in Section 2.3.

In this chapter, we provided an RSRL grammar, T Y2, and showed that this grammar
denotes the semantic representation language Ty2. In particular, we could prove that the
semantic representation language is an exhaustive model of the grammar T Y2. We referred
to this particular model as the intended model. The major result of Section 3.3 is that we
are not forced to use the intended model. Instead, we can take any exhaustive model of
T Y2 and assign an interpretation (extension) to the objects in that model.

Furthermore, not only can we use objects in an arbitrary exhaustive model for semantic
interpretation, we also showed in Section 3.4 that these objects can be treated syntactically
as if they were objects of the intended model. This point is of particular importance,
because it allows us to use objects of the sort me as logical forms of linguistic signs. For
this use, we are mainly interested in the syntax of the terms of the semantic representation
language and not so much in their semantics.

As a practical result of Section 3.4, the definition of the function “∗” enables us to
use natural numbers, semantic types and terms of the semantic representation language as
shorthand for lengthy descriptions of complex entities.

Before we turn to the extension of Ty2, and to an integration of the grammar T Y2
into a larger grammar, we want to point once more to the intimate relationship that holds
between the empirical domain considered in this chapter, i.e., the language Ty2, and the
grammar that is used to describe this domain, i.e., the grammar T Y2.

It is worth noting that all species and attributes introduced by the signature of T Y2 are
motivated by the structure of the empirical domain, the semantic representation language.
The only additional thing introduced in T Y2 are relations. In addition, differences in con-
figurations of objects in the denotation of T Y2 always express differences that are actually
present in the empirical domain. We addressed this property in our discussion of the Type
Identity Principle (TyIP) in (114). There we saw that for semantic types, there is no
advantage of assuming that the type e(et) appears in two distinct forms; one where both
occurrences of the type e are the same type, and one where the occurrences express different
types. The TyIP, or alternatively the more general GIP, ensures that all configurations of
objects that correspond to the type e(et) are congruent.
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While it was relatively easy to establish this intimate relationship for the well-defined
empirical domain of the semantic representation language Ty2, we think that it should be
at least a methodological principle for RSRL grammars in general to try to introduce only
those attributes and sorts into the signature that are empirically motivated. We will see
in our formalization of Lexicalized Flexible Ty2 in Chapter 4 that the syntactic means of
RSRL allow us to adopt this methodological principle.

After these summarizing remarks, we can turn to extensions of the grammar T Y2 which
will be presupposed in the rest of this thesis. In the following, we will discuss two such ex-
tensions: the introduction of logical constants and classical quantifiers, and the introduction
of generalized quantifiers.

In Section 3.1 we presented a sort hierarchy below the sort me in (121) which did not
contain logical constants and quantifiers. We did not introduce these syntactic constructs,
because the corresponding constructs were missing from the definition of the terms of Ty2
in Definition 1.5. Instead, there, we defined them as abbreviations of terms that only use
application, abstraction and equation (see (33)).

If we want to use a representation language which provides an explicit encoding of
quantification, negation, disjunction etc, we must extend the definition of the syntax and
semantics of Ty2 terms and extend the sort hierarchy below the sort me to include logical
constants and quantifiers as well. In (134a) we add the necessary clauses to the syntax of
Ty2; in (134b) the corresponding additional clauses to the semantics of Ty2 are given.

(134) a. Additional clauses to Definition 1.5:
for each φt, ψt ∈ Ty2,
(¬φt)t ∈ Ty2,
(φt ∧ ψt)t ∈ Ty2,
(φt ∨ ψt)t ∈ Ty2,
(φt → ψt)t ∈ Ty2,

for each vτ,i ∈ V ar, and for each φt ∈ Ty2,
(∃vτ,i.φt)t ∈ Ty2, and
(∀vτ,i.φt)t ∈ Ty2.

b. Additional clauses to Definition 1.9:
for each φτ , ψτ ∈ Ty2,

[[(¬φt)t]]
M,a

= 1 if [[φt]]
M,a

= 0, else 0.

[[(φt ∧ ψt)t]]
M,a

= 1 if [[φt]]
M,a

= 1 and [[ψt]]
M,a

= 1, else 0.

[[(φt ∨ ψt)t]]
M,a

= 1 if [[φt]]
M,a

= 1 or [[ψt]]
M,a

= 1, else 0.

[[(φt → ψt)t]]
M,a

= 1 if [[φt]]
M,a

= 0 or [[ψt]]
M,a

= 1, else 0.

[[(∃vτ,i.φt)t]]
M,a

= 1 if there exists a d ∈ D =E,W,τ such that

[[φt]]
M,a[vτ,i/d]

= 1, else 0.

[[(∀vτ,i.φt)t]]
M,a

= 1 if for each d ∈ DE,W,=τ such that

[[φt]]
M,a[vτ,i/d]

= 1, else 0.

Corresponding to these extensions of the description language, we can also extend the
ontology of the grammar T Y2. In (135) we give those aspects of the signature of T Y2
that must be added. In particular, we introduce new sorts below the sort me: negation
for negation, logical-constant for the binary logical constants with a separate subsort for
each of these constants, and, finally the sort quantifier, which has a subsort for each of the
quantifiers. Note that we also introduce a new attribute, scope, which is only appropriate
for the sort quantifier and its subsorts.

(135) Extensions to the sort hierarchy below me
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:

me type type

neg(ation) arg me

l(ogical)-const(ant) agr1 me
arg2 me

dis(junction)

con(junction)

imp(lication)

quant(ifiers) var variable
scope me

uni(versal)

exi(stential)

In Section 3.1.3 we added a constraint on the type value of all me objects except for
variables. Clearly, such constraints must also be imposed on the newly introduced sorts.

(136) Extensions to the type restrictions in (122):

a. neg ⇒

"

type truth

arg type truth

#

b. l-const ⇒

2

6

4

type truth

arg1 type truth

arg2 type truth

3

7

5

c. quant ⇒

"

type truth

scope type truth

#

The additional principles in (136) ensure that the argument of a negation object is a me
object of the semantic type t, i.e., an object with a type value of sort truth. Analogously,
both terms that are combined by a binary logical constant must be of sort t, which is
expressed in (136b) by the requirement that the arg1 type and the arg2 type values of
an l-const object be of sort truth. Finally, the constraint in (136c) enforces that the scope
value of a quant object be an me object with a type value of sort truth as well.

If we assume the streamlined version of the grammar T Y2 as presented in Section 3.1.4,
nothing more must be added to the grammar to include the new syntactic constructs. In
case we stick to the TIP, the TNP and the TFP as given in Section 3.1.3, we must add
additional clauses to the relation same-term (defined in (124b)) for the new subsorts of me,
and we must change the definition of the relation component as given in (117) to take the
new attribute scope into account as well.

Now that we have extended the language Ty2 and the grammar T Y2 to contain logical
constants and quantifiers, we can also show that the correspondence that holds between the
original definitions is equally valid for the extended definitions. In Appendix A.1.2 these
extended definitions are listed. For illustration, let us consider the term in (137).

(137) ¬∃x[walk′@(x@)]

In Definition 3.2, we defined the intended model of the grammar T Y2. As we have
enriched the ontology, we must account for this in the specifications of the interpretation.
The extended definition of the intended model as given in Appendix A.1.2 specifies that the
term in (137) is assigned the species neg by the function S. The attribute interpretation
function A is specified in such a way that the value of A at the attribute arg is defined
on this term and is the term ∃x[walk′@(x@)]. Similarly, this term is assigned the species
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existential by the function S, the var value of this term is the variable x, and the scope
value of this term is the term walk′@(x@).

The next definition that needs to be extended is that of the function {[ ]}, i.e., Defi-
nition 3.9. For illustration, we will, again, restrict ourselves to the case of negation and
existential quantification, in Appendix A.1.2, number (550), all the required definitions are
given. The function {[ ]} is extended so that for each semantic model M , and for each
variable assignment A, if u is an object in the universe of an exhaustive model of T Y2,
such that u is of the sort neg, then {[[u]]}M,A = 1 if {[[TI( : arg)(u)]]}M,A = 0, and 0 else.
Similarly, if u is of sort exist and v is the var value of u, then {[[u]]}M,A = 1, if there exists
a d in the frame which is in the domain specified by the semantic type of the var value of
u, such that {[[TI( : scope)(u)]]}M,A[[v]/d] = 1, and 0 else.

It follows from the definition of the function “{[ ]}” that if we use the same frame F ,
corresponding constant interpretations int and Int, and corresponding variable assignments
a and A, then the term in (137) has the same extension independent of whether we interpret
it by the function [[ ]]<F,int>,a or by the function {[ ]}<F,Int>,A.

The last two definitions that must be considered are those of the function SR (Defini-
tion 3.12) and of the function “∗” (Definition 3.16). The function SR maps an indiscerni-
bility class of me objects to a term of Ty2. In the extended representation language, we
require that for an object u of sort negation, the indiscernibility class of u be mapped to a
term (¬φ)t, where φ is the term that the indiscernibility class of u’s arg value is mapped
to. Similarly, for an object u of sort existential, the indiscernibility class of u is mapped by
SR to a term (∃x.φ)t, where x is the variable that the indiscernibility class of u’s var value
is mapped to, and φ is the term that that the indiscernibility class of u’s scope value is
mapped to. The precise formulation of the extended definition of the function SR is given
in (551) in Appendix A.1.2.

Finally, we must consider the function “∗”, which maps a term of Ty2 to a description.
In (132), we have already shown to which description the term walk′@(x@) is mapped.
In (138), we illustrate the extended definition of this function with the term in (137).

(138) a. (¬∃x[walk′@(x@)])∗

b. =




:∼negation
and :type∼truth
and (∃x[walk′@(x@)])∗[:arg/:]




c. =




:∼negation
and :type∼truth
and :arg∼existential
and :arg type∼truth
and x∗[:arg var/:]
and (walk′@(x@))∗[:arg scope/:]




In (138b) we show that the function “∗”, when applied to a negated term (¬φ)t, yields
a description of a negation object whose type value is of sort truth and whose arg value
is described by applying the function “∗” to the term φ. Similarly, in (138c), we show
that applying the function “∗” to a term of the form (∃x.φ)t results in a description of
a existential object whose type value is of sort truth, whose var value is described by
applying “∗” to the variable x and whose scope value is described by applying “∗” to the
term φ.

With this brief illustration of the function “∗”, we close our exposition of the first
extension of the semantic representation language and the grammar T Y2. In the following
chapters, we will use this extended representation language.
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In Section 1.3.2 we have noted that we might want to use a special syntax for generalized
quantifiers such as most. Just as was the case with the existential quantifier and the universal
quantifier, quantifiers such as most can be defined within Ty2 as given in Definition 1.5 and
Definition 1.9. In (38) we provided such a definition for the case of most. There, we extended
the set of Ty2 descriptions to include terms of the form [most x : φt](ψt)t, where most is a
generalized quantifier, x is a variable and φ, ψ are terms of Ty2.

It is easy to make a similar extension to the grammar T Y2. We will briefly show
what needs to be done. First we extend the signature. The sort hierarchy should include
a sort generalized-quantifier (gen-quant) which is a subsort of quantifier. Below the sort
gen-quant we assume one species for each generalized quantifier that is needed in the se-
mantic representation language. For our example, it is enough to assume a single such
species, gen-quant-most. We also add a new attribute to the signature, restr(iction).
This attribute is declared appropriate for the sort gen-quant.

In (139) we state all the attributes that are appropriate for the sort gen-quant.

(139) Appropriateness conditions for the sort gen-quant:
gen-quant type type

var var
restr me
scope me

The attribute type is appropriate for the sort gen-quant, because this sort is a subsort
of me. By virtue of being a subsort of the sort quant, the attributes var and scope also
appear on the sort gen-quant. Finally, the new attribute restr is declared appropriate for
this sort.

In addition to the modifications in the signature, we must also add a principle to the
theory. In the definition of terms that contain a generalized quantifier in (38), we require
both the restriction and the scope of the quantifier to be of type t. As far as the scope value
is concerned, this is guaranteed by the principles collected in the TRP as given in (136c).
In order to ensure the same semantic type for the restr value, the TRP are extended by
one more principle, given in (140).

(140) gen-quant ⇒
h

restr type truth
i

Nothing more is necessary to include the generalized quantifier most. In order to main-
tain the equivalence between T Y2 and the version of Ty2 used in this thesis, we add a
clause for the generalized quantifier most to the syntax and semantics of Ty2, just as done
for the classical connectives and quantifiers in (134). Furthermore, we add a clause for the
generalized quantifier most to the definitions of the denotation function {[ ]} (Definition 3.9),
of the function SR (Definition 3.12), and of the function “∗” (Definition 3.16). All these
extensions are straightforward and are collected in (141).

(141) a. Additional clause to Definition 1.5:
For each x ∈ V ar, for each φt, ψt ∈ Ty2,
[most x : φt](ψt)t ∈ Ty2

b. Additional clause to Definition 1.9:
For each x ∈ V ar, for each φt, ψt ∈ Ty2,

[[[most x : φt](ψt)t]]
M,a

= 1
if the cardinality of

[[λx.φ]]
M,a ∩ [[λx.ψ]]

M,a

is greater than the cardinality of

[[λx.φ]]
M,a \ [[λx.ψ]]

M,a
,

else 0.
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c. Additional clause to Definition 3.9:
for each S(u) = gen-quant-most,
{[[u]]}M,A = 1 if the cardinality of
{x ∈ DE,W,T (:VAR TYPE)(u)|{[[[T (:scope)(u)]]]}M,A = 1}
is greater than the cardinality of

{x ∈ DE,W,[T (:VAR TYPE)(u)]|{[[[T (:restr)(u)]]]}M,A = 1}

\{x ∈ DE,W,[T (:VAR TYPE)(u)]|{[[[T (:scope)(u)]]]}M,A = 1}
else 0.

d. Additional clause to Definition 3.12:
if S(u) = gen-quant-most, then,
for some u1, u2, u3 ∈ U with TI(:var)(u) = u1,
TI(:scope)(u) = u2, and TI(:restr)(u) = u3,

SR([u]) = [most SR([u1]) : SR([u2])](SR([u3]))t

e. Additional clause to Definition 3.16:
if φ = [most x : φ](ψ)t, then

φ∗ =




:∼gen-quant-most
and :type∼truth
and x∗[:var/:]
and φ∗[:restr/:]
and ψ∗[:scope/:]




.

In (141c), we have added a clause to the definition of the function {[ ]} that ensures that
the extension of a gen-quant-most object is the same as the extension of a Ty2 description
that consists of a generalized quantifier together with its restriction and its scope.

The addition in (141d) shows how we have to extend the function SR. As an effect of this
definition, indiscernibility classes of gen-quant-most objects are mapped to Ty2 descriptions
of the form [most x : φ](ψ)t.

Finally, in (141e), we add a clause to the definition of the function “∗” that has the
effect of mapping a description of the form [most x : φ](ψ)t to a gen-quant-most object
whose type value is of sort truth, and whose var, restr, and scope values are described
by x∗, φ∗, and ψ∗, respectively.

With the example of the generalized quantifier most, we have indicated how an extension
of the semantic representation language can be accompanied by an extension of the grammar
T Y2. For the new grammar, the results of the preceding sections are equally valid.

So far, we were concerned with extending the grammar T Y2. In the following chapters,
we will address a different question: the integration of the grammar T Y2 into a grammar
of a natural language such as the grammar for a fragment of English given in Section 2.3.
In particular, we will declare objects of sort me appropriate for the attribute content.

In the process of integration, we do not want to lose any of the results of this chapter.
Our task is to integrate the grammar T Y2 into the grammar of Section 2.3. To achieve
this, we assume (i) that the sort top-ty2 is the top sort in the sort hierarchy of T Y2, and
(ii) that every principle δ in the theory of T Y2 re-appears in the integrated grammar in the
form top-ty2 ⇒ δ.

What remains to be done is to provide an interface between the grammar of Section 2.3
and the subgrammar T Y2. This interface consists of the appropriateness conditions of the
sort local. In (73a) we introduced the attributes category and content as appropriate
for the sort local. In Section 2.3 we gave all relevant constraints on the interaction of the
category value. For the content value, however, we preliminarily assumed values of an
atomic sort content. In (142) we change the appropriateness conditions of the sort local so
that the sort me is appropriate to the attribute content.
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(142) Appropriateness conditions for the sort local:
local category category

content me

Given this change in the appropriateness conditions, we can include descriptions of the
content value of a word in its lexical entry. For illustration, let us extend the sketch of
the lexical entry for the word every from (77c). The revised lexical entry is given in (143).

(143) Sketch of the lexical entry of the word every (including the content specification):
2
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6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 〈every〉

syns

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

6

6

6

6

6

6

6

6

4

cat

2

6

6

6

6

6

6

6

6

6

4

head

2

6

6

6

6

4

determiner

spec

2

6

6

4

synsem

loc cat

2

4

head noun

sbc
Dh

synsem
iE

3

5

3

7

7

5

3

7

7

7

7

5

subcat elist

marking unmarked

3

7

7

7

7

7

7

7

7

7

5

content (λPs((se)t)λQs((se)t).∀xse[P@(x) → Q@(x)])∗

3

7

7

7

7

7

7

7

7

7

7

7

7

5

nonl

2

4

inher
h

slash eset
i

to-bind
h

slash eset
i

3

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
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store elist
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7

5

It should be noted that we use the function “∗” to describe the content value of the
word. The term to which we apply this function is exactly the term that was given as the
basic translation of the word every in Table 1.1 (page 44).

In the following, we will normally not indicate the use of the function “∗” explicitly
when it occurs within a larger description. This means that if we write a term of Ty2,
φ, inside an RSRL description (usually in AVM notation) this is to be understood as the
RSRL description (φ)∗.

Analogously to the lexical entry of the word every as given in (143), we can extend all
the lexical entries given in (77) by specifying their content values as being described by
the application of the function “∗” to the basic translation of the words given in Table 1.1.

In our syntactic fragment of Section 2.3 we included some words for which there was no
basic translation given in that table. The relevant translations are given in (144).

(144) Some additional basic translations:
book ; λxse.book′s(et)(@)(x@)
good ; λPs((se)t)λxse.[P@(x) ∧ good′

s(et)(@)(x@)]

reads ; λyseλxse.read
′
s(e(et))(@)(x@, y@)

John ; je

With the indicated integration of the grammar T Y2 into the grammar of Section 2.3, we
have provided an RSRL formalization of the basic translations as needed for the semantic
framework LF-Ty2. In Section 1.3 we assumed that the logical form of a phrase is the result
of functional application of the logical forms of the daughters. In the following chapter, we
will formalize this as the Semantics Principle. The main mechanism of LF-Ty2, however,
was shown to be its flexible type shifting potential. We will give a formalization of the two
type-shifting rules, argument raising and value raising as defined above. Finally, we will
also show how the two additional constructions treated in the syntactic fragment, passive
and complement extraction, are accounted for within LF-Ty2.





CHAPTER 4

Lexicalized Flexible Ty2 in HPSG

In the preceding chapter we laid the formal ground for an integration of the semantic
representation language Ty2 into an HPSG grammar. In particular, we saw that there is
an RSRL grammar, T Y2, such that we can treat the objects in any exhaustive model of
this grammar to represent terms of Ty2. In the last section of the preceding chapter, we
extended the grammar of Section 2.3 so that it contains the grammar T Y2 as a subgrammar
and that the content values of linguistic signs are terms of Ty2, i.e., objects of the sort
meaningful-expression (me).

In Section 1.3 we presented the semantic framework of Lexicalized Flexible Ty2 (LFTy2).
This system is based on Hendriks 1993 and has the advantage that it accounts for scope
variation without requiring a storage mechanism such as Cooper Storage (Cooper, 1975,
1983) or movement operations such as Quantifier Raising (May, 1977, 1985).

In this chapter, we will combine the system LF-Ty2 with the syntactic fragment of
Section 2.3. In Section 4.1 we will present a first version of this integration. In the following
sections, we will address the concrete RSRL formalization of this integration in more detail.

In our presentation of LF-Ty2 in Section 1.3, we saw that this semantic framework relies
on three ingredients: (i) the basic translation of lexical elements, (ii) type shifting operations
such as argument raising (AR) and value raising (VR) which apply recursively to the basic
translations, and (iii) intensional functional application to compute the meaning/ the logical
form of the mother node from that of the daughters in a branching tree.

In Section 3.5 we illustrated that the basic translation of lexical elements can be in-
tegrated into lexical entries as the description of the content value. In Section 4.1, we
will see that this is also possible for the other two basic ingredients of LF-Ty2. The reason
for this is that we can consider type shifting operations as mappings from one term φ to
another term ψ such that φ is a subterm of ψ. Similarly, intensional functional application
is a mapping from two terms φ1 and φ2 to a term ψ, where φ1 and φ2 are subterms of ψ. It
is easy to illustrate this for intensional functional application, because there ψ is either the
term φ1(λ@.φ2) or the term φ2(λ@.φ1). In either case, the terms φ1 and φ2 are subterms
of ψ. For the shifting operations AR and VR this subterm relation is less obvious. But, it
can be seen from the definitions of these operations as given in Section 1.3.3, that in both
cases the original term is embedded in the resulting term.

In (145) we illustrate this subterm property of the shifting operation and of intensional
functional application with a simple example.

(145) a. Intensional functional application of λxse.walk′@(x@) and me:
[λxse.walk′@(x@)](λ@.m)

b. AR of λxse.walk′@(x@):
λY.Y@(λ@λy.[λxse .walk′@(x@)](y))

c. VR of λxse.walk′@(x@):
λyλu.u@(λ@.[λxse.walk′@(x@)](y))

In all the examples in (145), the input of the functions, intensional functional application,
AR and VR appears as a subterm of the output. In the introduction of the framework of

141



142 4. LEXICALIZED FLEXIBLE TY2 IN HPSG

LF-Ty2 in Section 1.3.3, we did not use the terms as they are given in (145), instead, we gave
terms that have the same meaning, but differ syntactically, i.e., we applied λ-conversion to
the terms. In (146) we give the fully λ-converted form of these terms:

(146) a. [λxse.walk′@(x@)](λ@.m) →λwalk′@(m)
b. λY.Y@(λ@λy.[λxse .walk′@(x@)](y)) →λλY.Y@(λ@λy.walk′@(y@))
c. λyλu.u@(λ@.[λxse .walk′@(x@)](y)) →λλyλu.u@(λ@.walk′@(y@))

There is an important difference between λ-conversion and the three operations exem-
plified in (145): while the latter preserve the input term(s) as subterm(s), but change the
meaning, the former preserves the meaning, but the result of a one-step λ-conversion does
not contain the input as a subterm in the output. In this thesis, we assume that the logical
forms of signs is fully reduced with respect to λ-conversion. Therefore, we must provide
the technical means to express λ-conversion within RSRL. In Section 4.2, we present two
alternative encodings.

These two formalizations of λ-conversion differ in their ontological assumptions. In the
first encoding, we are forced to extend the ontology of linguistic signs, i.e., we will introduce
new attributes and sorts which will be used to encode the step-wise λ-conversion explicitly
as components of a linguistic sign. The second encoding does not necessitate an extension
of the ontology of signs. Instead, we will show that we can use chains to represent terms of
Ty2 and that we can perform λ-conversion on these chains.

In Section 4.3 we will reconsider the derivational rules introduced for passive and comple-
ment extraction in Section 2.3.2. In that section, we did not specify effect of the derivational
rules on the logical form of a word. We will show that all that is needed to combine our
syntactic analysis of these phenomena with the semantic framework LF-Ty2 is to add a
content specification to the input and the output of the derivational rules. While this
extension is simple by itself, we will take it as a starting point to discuss the question at
what level the shifting operations AR and VR should be applied. In our presentation of
LF-Ty2 in Section 1.3 we have only considered non-derived words, to which the application
of shifting rules is allowed, and regular phrases, in the calculation of whose logical form,
we did not allow the application of shifting operations. With the introduction of derived
words, a third kind of sign needs to be considered. We will show that shifting operations
must be available for derived words as well as for non-derived words.

In Section 4.4 we will summarize the results of this chapter and provide a formalization
of the simple lf-constraint presented in (53). At the end of this chapter, we have added a
section in which we reflect on our use of RSRL in the encoding of LF-Ty2.

4.1. LF-Ty2 without λ-Conversion

In this section we will present all ingredients of LF-Ty2, but we will avoid λ-conversion.
Instead, we will use non-reduced terms as content values of signs, as those given in (145).
We will first reconsider the basic translations of words and, then, state a first version of
the Semantics Principle. Finally, we will discuss two alternatives for the encoding of
shifting operations.

In the presentation of LF-Ty2 in Section 1.3.3 we gave the basic translations of some
words in our fragment in Table 1.1. At the end of Section 3.5 we showed how such basic
translations can be integrated into lexical entries as those in (77). This was achieved by
taking the basic translation of a word as the content specification in the lexical entry of
the word. In (147) we give such lexical entries for the intransitive verb walks and for the
transitive verb loves.
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(147) a. Parts of the lexical entry of the word walks:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 〈walks〉

syns

2

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

4

cat

2

6

6

4

head verb

subcat
D

NP
E

marking unmarked

3

7

7

5

cont λxse.walk′@(x@)

3

7

7

7

7

5

nonl

"

inherited slash eset

to-bind slash eset

#

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

b. Parts of the lexical entry of the word loves:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 〈loves〉

syns

2

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

4

cat

2

6

6

4

head verb

subcat
D

NP, NP
E

marking unmarked

3

7

7

5

cont λyseλxse.love′@(x@, y@)

3

7

7

7

7

5

nonl

"

inherited slash eset

to-bind slash eset

#

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

In the presentation of the framework of LF-Ty2, we saw that we can derive the logical
form of some sentences without the application of shifting rules. A simple example was
sentence (39a), repeated in (148).

(148) Every man walks.

The principle that is responsible for determining the logical form of phrases in HPSG is
traditionally called the Semantics Principle (SP). In (29) in Section 1.2 we quoted the
Semantics Principle of Pollard and Sag 1994. As we have seen in that section, the SP of
Pollard and Sag 1994 incorporates the storage mechanism assumed there for the treatment
of quantifier scope. For LF-Ty2, the SP only expresses that the content value of a phrase
is the intensional functional application of the content values of the daughters. This
principle is stated in (149).

(149) The Semantics Principle (SP):

phrase ⇒




2

6

4

syns loc cont 1

dtrs

»

h-dtr syns loc cont 2

n-dtr syns loc cont 3

–

3

7

5

and intensional-functional-application( 1 , 2 , 3 )




The SP as given in (149) contains a relational call which uses the relation inten-

sional-functional-application (ifa). In (150) we give a preliminary definition of this
relation, which will be further refined, when we add the treatment of λ-conversion.

(150) The relation intensional-functional-application (ifa):

ifa( 1 , 2 , 3 )
∀

⇐=

12

6

6

6

6

6

4

appl

func 2

arg

2

6

4

abstr

var vs,0

arg 3

3

7

5

3

7

7

7

7

7

5

ifa( 1 , 2 , 3 )
∀

⇐=

12

6

6

6

6

6

4

appl

func 3

arg

2

6

4

abstr

var vs,0

arg 2

3

7

5

3

7

7

7

7

7

5

The two clauses in the definition of the relation ifa encode intensional functional appli-
cation. If we assume that the content value of the head daughter is the term φ1 and that
the content value of the nonhead daughter is the term φ2, then the first clause specifies
that the content value of the phrase is the term φ1(λ@.φ2). The second clause contains
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the option that the nonhead daughter is taken as the semantic functor. In this case, the
content value of the phrase is of the form φ2(λ@.φ1).

Given the lexical entries of the words every, man and walks, and the SP, we give the
structure of sentence (148), as it is predicted by our grammar in Figure 4.1 (page 145).

In the tree in Figure 4.1 we use a mixed AVM and term notation for the content values
of the signs in the tree. Doing this, we can see how the relation ifa constrains the content
values of phrases. For the three words in this sentence, the basic translation is given as
the content values. For the two phrases, the NP and the S node, the content value is
given as the intensional functional application of the logical forms of their daughters. In
both cases, the content value of the nonhead daughter appears as the functor, i.e., as the
func value in the content value of the phrase ( 5 in the case of the NP, and 6 at the S
node). The logical form of the head daughter is in both cases identical with the arg arg
value of the logical form of the phrase ( 4 at the NP and 3 at the S node).

The tree in Figure 4.1 should be compared with the structure of the sentence given in
Figure 1.10 on page 47. If the SP uses the relation ifa as given in (150), the semantic
interpretation of the me object in the content value of a phrase is the same as that of the
terms that we assigned the phrasal nodes in Figure 1.10. In the latter case, however, we
executed all possible λ-conversions. In (151) we indicate the terms that correspond to the
content values as determined by the SP in (149) in the first line, and the reduced forms
of these terms in the second line.

(151) a. NP (compare the step-by-step derivation in (40)):
(λPλQ.∀x[P@(x) → Q@(x)])(λ@λx.man′

@(x@))
→λλQ.∀x[man′

@(x@) → Q@(x)]
b. S (compare the step-by-step derivation in (41)):

((λPλQ.∀x[P@(x) → Q@(x)])(λ@λx.man′
@(x@)))(λ@λx.walk′@(x@))

→λ∀x[man′@(x@) → walk′@(x@)

The preliminary version of the SP as found in (149) guarantees that the semantic inter-
pretation of phrases is as defined in our initial presentation of LF-Ty2 in Section 1.3.3. As
we have not yet provided the technical means to express λ-conversion, the content values
of the phrases differ syntactically from the terms given as logical forms in Section 1.3.3.

The next component of the framework LF-Ty2 are the shifting rules AR and VR as
given in Definition 1.10 and Definition 1.11. In our exposition of the framework LF-Ty2,
we have restricted the application of these rules to words. Put differently, the logical form
of a word was said to be either the basic translation of a word or the (possibly) iterated
application of AR and VR to this basic translation. There are two possible formalizations of
this: as the application of the shifting rules is restricted to words, we can encode these rules
as derivational rules as introduced in Section 2.3.2. Alternatively, we could incorporate the
option of applying shifting operations as part of the lexical entry. For both formalizations,
we must encode AR and VR as relations. We will first define these two relations, and then
turn to the two possible integrations of the shifting operations into our overall grammar.
As VR is formally simpler than AR, we will discuss this shifting operation first. Below, we
repeat the definition of the operation VR from Section 1.3.3.

definition 1.11

For each type d ∈ Type,

V Rd is a relation between two terms α and β such that

if α is of some type a1(. . . (anb) . . .).
then β is some term λxa1,1 . . . λxan,nλus((sb)d).u(@)(λ@.α(x1) . . . (xn)).
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Det
2

6

4

phon 〈every〉

syns 2 loc

»

cat head spec 7

cont 5 λPλQ.∀x[P@(x) → Q@(x)]

–

3

7

5

N
2

6

4

phon 〈man〉

syns 7 loc

"

cat sbc
D

2
E

cont 4 λx.man′@(x@)

#

3

7

5

comp head

NP
2

6

6

6

6

6

4

syns 1

2

6

6

6

6

6

4

cont 6

2

6

6

6

6

4

appl

func 5

arg

2

4

abstr

var @

arg 4

3

5

3

7

7

7

7

5

3

7

7

7

7

7

5

3

7

7

7

7

7

5

V
2

6

4

phon 〈walks〉

syns loc

"

cat sbc
D

1
E

cont 3 λx.walk′@(x@)

#

3

7

5

comp head

S
2

6

6

6

6

6

6

6

4

syns loc

2

6

6

6

6

6

6

6

4

cat sbc 〈〉

cont

2

6

6

6

6

4

appl

func 6

arg

2

4

abstr

var @

arg 3

3

5

3

7

7

7

7

5

3

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

5
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As pointed out in Section 1.3.3, we use the operation VR to relate the basic translation of
a proper name such as Mary, which is simply the term me, to the more complex translation
assumed in Montague’s work, i.e., λP.P@(λ@.m). In addition, we need VR to derive the de
re readings of sentences such as (39c), repeated in (152).

(152) Every man believes that some woman walks.

In (153) we define the relation value-raising (vr) which relates two me objects if the
corresponding terms are related by the operation VR.

(153) The relation value-raising (vr):

vr( 1 , 2 )
∀

⇐=

22

6

6

6

6

6

6

6

6

6

6

6

6

6

4

abstr

var 3

arg

2

6

6

6

6

6

6

6

6

6

4

appl

func

2

4

appl

func 3

arg @

3

5

arg

2

4

abstr

var @

arg 1

3

5

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

vr( 1 , 2 )
∀

⇐=




32

4

appl

func 1

arg 4

3

5 and

22

4

abstr

var 4

arg 5

3

5 and vr( 3 , 5 )




The definition of the relation vr is given in two clauses. The first clause treats the case
where the term that we want to apply VR to is simply of some type b, instead of some
type a1(. . . (anb)). Applying value raising to the constant me is such a case. In (154) we
give an AVM description of the term me (in (a)) and of its value-raised correspondence (in
(b)). In (154b) we use the same tags as in the first clause of the definition of the relation
vr in (153). This makes clear that for each two objects o1 and o2, if o1 is described by the
AVM in (154a) and o2 is described by the AVM in (154b), then o1 and o2 also meet the first
clause in the definition of vr. As a consequence, o1 and o2 must be in the interpretation of
the relation vr.

(154) a. me:

"

mary

type entity

#

b. λPs((se)t).P (@)(λ@.m):

22

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

abstr

var 3 Ps((se)t)

arg

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

appl

func

2

6

4

appl

func 3

arg @

3

7

5

arg

2

6

6

6

4

abstr

var @

arg 1

"

mary

type entity

#

3

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

To illustrate the second clause in the definition of the relation vr, we must consider a
more complex example. For this purpose, reconsider example (152). In Section 1.3.3 we
showed that the derivation of the de re readings of this sentence requires the application of
VR to the basic translation of the verb walks. In (155) we indicate this basic translation
and its value-raised form.

(155) walks ; λxse.walk′@(x(@))
−→V R λyseλus((st)t).u(@)(λ@[(λx.walk′@(x(@)))(y)])
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According to the definition of vr, the basic translation of the word walks is value-raised
to the second term in (155) if the following two terms are also in the relation vr:

(156) a. (λxse.walk′@(x(@)))(y)
b. λus((st)t).u(@)(λ@[(λx.walk′@(x(@)))(y)])

The term in (156a) is the functional application of the basic translation of the word
walks, to the variable y. If we compare the term in (156b) to the output of the shifting
operation as indicated in the last line in (155), we see that the term in (b) is exactly the
argument of the outermost λ-abstractor, and that y is exactly the variable that is bound
by this abstractor.

It can be seen that the terms in (156) satisfy the requirements of the first clause of the
relation vr. For illustration, consider the following AVM description of the term in (156b),
where we use the same tags as in the first clause of the definition of the relation vr.

(157)

22

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

abstr

var 3 us((st)t)

arg

2

6

6

6

6

6

6

6

6

6

6

4

appl

func

2

6

4

appl

func 3

arg @

3

7

5

arg

2

6

4

abstr

var @

arg 1 (λxse.walk′@(x(@)))(y)

3

7

5

3

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

This example should suffice to show how the two clauses of the definition of the relation
vr in (153) achieve the effect of encoding the operation value raising.

The second shifting operation considered in Section 1.3.3, is argument raising (AR).
The relation AR is needed to derive scope ambiguities among co-arguments of the same
predicate. Below, we repeat the definition of the operation AR.

definition 1.10

For each i ∈ IN, ARi is a relation between two terms α and β such that

if α is of some type (a1(. . . ((sai)(. . . (anb) . . .)))))
then β is some term
λxa1 ,1 . . . λXs((s((sai)b))b),i . . . λxan,n.X(@)(λ@λxsai,i.α(x1) . . . (xi) . . . (xn))

We have used this operation to derive the two readings of the sentence in (39b), which
we repeat for convenience in (158).

(158) Every man loves some woman.

In (159) we give the basic translation of the verb love together with its argument-raised
versions. As the basic translation of the verb has two semantic arguments, we can apply AR
to either of them. In (159) we show the result of applying AR to the first semantic argu-
ment first (−→AR1), and then, the result of applying AR to the second semantic argument
(−→AR2).

(159) loves ; λx1λx2.love′@(x2(@), x1(@))
−→AR1 λY1λy2.Y1(@)(λ@λy1.[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])
−→AR2 λy1λY2.Y2(@)(λ@λy2.[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])

We can define the operation AR as a relation that holds between two me objects. The
relation argument-raising (ar) is defined in (160a). As can be seen, the definition of this
relation involves an auxiliary relation, ar-aux, whose definition is added in (160b).
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(160) a. The relation argument-raising (ar):

ar( 1 , 2 )
∀

⇐=




32

4

appl

func 1

arg 4

3

5 and

22

4

abstr

var 5

arg 6

3

5 and ar-aux( 3 , 6 , 4 , 5 )




ar( 1 , 2 )
∀

⇐=




32

4

appl

func 1

arg 4

3

5 and

22

4

abstr

var 4

arg 5

3

5 and ar( 3 , 5 )




b. The relation ar-aux

ar-aux( 1 , 2 , 3 , 4 )
∀

⇐=




2
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

appl

type 5

func

2

4

appl

func 4

arg @

3

5

arg

2

6

6

6

6

6

4

abstr

var @

arg

2

6

4

abstr

var 3

arg 1
h

type 5
i

3

7

5

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5




ar-aux( 1 , 2 , 3 , 4 )
∀

⇐=




52

4

appl

func 1

arg 6

3

5 and

22

4

abstr

var 6

arg 7

3

5 and ar-aux( 5 , 7 , 3 , 4 )




We can use the examples in (159) to illustrate how the definition of the relations ar and
ar-aux work. Let us first consider the basic translation of the verb loves and the application
of AR to the first semantic argument, as given in the second line in (159).

These two terms are in the relation ar if they satisfy one of the clauses in (160a). In
this particular case, it is the first clause that we should consider. In (161) we insert the
basic translation of the verb loves and the term that results from an application of AR1 as
the arguments of the relation. For the sake of clarity, we use the same tags as in the first
clause of the definition of the relation.

(161)

32

6

4

appl

func 1 λx1λx2.love′@(x2(@), x1(@))

arg 4 y1

3

7

5

and

22

6

4

abstr

var 5 Y1

arg 6 λy1.Y2(@)(λ@λy1 .[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])

3

7

5

and ar-aux( 3 , 6 , 4 , 5 )

In a next step, we must verify that the quadruple consisting of the term indicated by
3 in (161), the term indicated by 6 , and the variables indicated by 4 and 5 satisfies the
clauses of the relation ar-aux. In (162) we give these four me objects in term notation.

(162)

3 = (λx1λx2.love′@(x2(@), x1(@)))(y1)
6 = λy2.Y1(@)(λ@λy1.[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])
4 = y1
5 = Y1

To check whether this quadruple satisfies one of the clauses of the relation ar-aux as
given in (160b), let us consider the second clause.

(163)

52

6

4

appl

func 1 (λx1λx2.love′@(x2(@), x1(@)))(y1)

arg 6 y2

3

7

5
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and

22

6

4

abstr

var 6

arg 7 Y1(@)(λ@λy1 .[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])

3

7

5

and ar-aux( 5 , 7 , 3 , 4 )

To check whether this is the case, we must see whether the quadruple 〈 5 , 7 , 3 , 4 〉 satisfies
a clause of the relation ar-aux. In (164) we give the term notation of the me objects that
these tags point to.

(164)

5 = (λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)
7 = Y1(@)(λ@λy1.[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])
3 = y1
4 = Y1

Finally, we can show that this quadruple satisfies the first clause of the relation ar-aux.
For illustration, consider the AVM notation of the second argument of the relation, where
the same tags are used as in the first clause of the relation ar-aux.

(165)

2
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

appl

type truth

func

2

6

4

appl

func 4 Y1

arg @

3

7

5

arg

2

6

6

6

6

6

4

abstr

var @

arg

2

6

4

abstr

var 3 y1

arg 1 ((λx1λx2.love′@(x2(@), x1(@)))(y1)(y2))t

3

7

5

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

So far, we have illustrated the first clause of the relation ar and the two clauses of the
relation ar-aux. What remains is to show an instance of the second clause of the relation
ar, i.e., the recursive case. The application of AR to the second semantic argument of the
basic translation of the verb loves is suited to serve as such an example. In (167) we repeat
the basic translation of the verb together with the term that results from applying AR2.

(166) loves ; λx1λx2.love′@(x2(@), x1(@))
−→AR2 λy1λY2.Y2(@)(λ@λy2.[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])

In the following, we are going to show that the two terms in (166) stand in the relation
ar. This is the case, if they satisfy either of the clauses of this relation. If they satisfy the
second clause, the following must hold:

(167)

32

6

4

appl

func 1 λx1λx2.love′@(x2(@), x1(@))

arg 4 y1

3

7

5

and

22

6

4

abstr

var 4 y1

arg 5 λY2.Y2(@)(λ@λy2 .[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])

3

7

5

and ar( 3 , 5 )

To see whether this is the case, the terms referred to with the tags 3 and 5 must stand
in the relation ar as well. To check this, we use the first clause of this relation.

(168)

32

6

4

appl

func 1 (λx1λx2.love′@(x2(@), x1(@)))(y1)

arg 4 y2

3

7

5
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and

22

6

4

abstr

var 5 Y2

arg 6 Y2(@)(λ@λy2 .[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])

3

7

5

and ar-aux( 3 , 6 , 4 , 5 )

This is the case if the quadruple consisting of the terms referred to with the tags 3 , 6 ,
4 and 5 is in the interpretation of the relation ar-aux. For convenience, we repeat these
four terms in term notation.

(169)

3 = (λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)
6 = Y2(@)(λ@λy2.[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])
4 = y2
5 = Y2

In (170) we show that this is actually the case, as the terms meet the first clause in the
definition of the relation ar-aux.

(170)

2
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

appl

type truth

func

2

6

4

appl

func 4 Y2

arg @

3

7

5

arg

2

6

6

6

6

6

4

abstr

var @

arg

2

6

4

abstr

var 3 y2

arg 1 (λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)

3

7

5

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

With the AVM in (170) we have illustrated how the relation ar captures the effect of
the shifting operation AR2 on the basic translation of the verb loves as given in (166). We
have thus given examples for every clause of the definition of the relations ar and ar-aux.

Given the relations ar and vr, we can address the issue of how the basic translation of
a word is related to its shifted variants. In the present section, we will present and evaluate
two alternative methods for the integration of shifting rules into our fragment. As mentioned
above, one of these options is to encode shifting rules as derivational rules. We will call this
the DR-encoding of shifting operations. In the second encoding, we will incorporate the
possible applications of shifting rules in the lexical entries. This will be referred to as the
LE-encoding. In the following, we will first present the DR-encoding, then the LE-encoding,
and finally discuss which of these encodings seems to be more appropriate.

To integrate shifting operations into our grammar, we can define two derivational rules,
AR-DR and VR-DR, which relate an input word to an output word which differs from the
input only with respect to the content value. In the case of the AR-DR, the output’s
content value is the application of argument raising to the content value of the input.
For VR-DR, the relation between the two content values is that of value raising. In (171)
we give both derivational rules in the formally precise notation, i.e., as disjuncts in the
consequent of the DR Principle in (99).
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(171) a. The AR-DR:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

der-rule

in

2

6

6

6

6

6

4

word

phon 3

syns

2

6

4

loc

»

cat 4

cont 1

–

nonl 5

3

7

5

3

7

7

7

7

7

5

out

2

6

6

6

6

6

4

word

phon 3

syns

2

6

4

loc

»

cat 4

cont 2

–

nonl 5

3

7

5

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and ar( 1 , 2 )

b. The VR-DR:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

der-rule

in

2

6

6

6

6

6

4

word

phon 3

syns

2

6

4

loc

»

cat 4

cont 1

–

nonl 5

3

7

5

3

7

7

7

7

7

5

out

2

6

6

6

6

6

4

word

phon 3

syns

2

6

4

loc

»

cat 4

cont 2

–

nonl 5

3

7

5

3

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and vr( 1 , 2 )

Given this encoding, we can show the structure of a word whose content value is
shifted. In (172) we describe the word loves with AR1 applied to the logical form as
indicated in (159). Note that the tag 1 appears as the content value of the input word
and as a subterm of the content value of the output word.

(172) AR in the DR-encoding:

0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 3 〈loves〉

syns

2

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

4

cat 4

2

6

6

4

head verb

subcat
D

NP, NP
E

marking unmarked

3

7

7

5

cont 2 λY1λy2.Y1(@)(λ@λy1 .[( 1 )(y1)(y2)])

3

7

7

7

7

5

nonl 5

"

inher slash eset

to-bind slash eset

#

3

7

7

7

7

7

7

7

7

7

5

store

*

2

6

6

6

6

6

6

6

6

4

der-rule

in

2

6

6

6

6

4

phon 3

syns

2

6

4

loc

"

cat 4

cont 1 λx1λx2.love′@(x2(@), x1(@))

#

nonl 5

3

7

5

3

7

7

7

7

5

out 0

3

7

7

7

7

7

7

7

7

5

+

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and ar( 1 , 2 )

The derived word described in (172) has all the properties of its non-derived base, whose
lexical entry was sketched in (147b). This means that its phon value is the list 〈loves〉, it
is a verb with two elements on its subcat list and a marking value of sort unmarked,
and the nonlocal values are all empty. As a derived word, it has a non-empty store
value. The single element in this list is a der-rule object as described by the AR-DR.
Remember that the Store Principle in (100) ensures that the overall word be identical
to its store first out value. Just as expressed in the DR, the only difference between
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the input of the DR and the derived word lies in the content value. The logical form of
the derived word is the argument-raised form of the content value of the input word.

When we integrated DRs as part of our syntactic analysis in Section 2.3.2, we pointed out
that DRs should be considered as non-branching syntactic structures where both the mother
and the single daughter are of sort word. As a consequence, the derivational structure is an
explicit part of the configuration of objects that constitutes the derived word.

There is an alternative to the encoding of AR and VR as derivational rules: we can
express them directly in the lexical entries of words. This encoding is only possible at this
point because of the subterm property of shifting operations, i.e., because for each of the
shifting operations, the input term is a subterm of the output term. This encoding does,
however, lead to a change in the lexical entries of each word. In (173) we give the modified
lexical entry for the word loves.

(173) Parts of the lexical entry for the word loves, including shifting operations:
E 1 E 2
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 〈loves〉

syns

2

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

4

cat

2

6

6

4

head verb

subcat
D

NP, NP
E

marking unmarked

3

7

7

5

cont 2

3

7

7

7

7

5

nonl

"

inher slash eset

to-bind slash eset

#

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and
1h

λx1λx2.love′@(x2(@), x1(@))
i

and shifting( 1 , 2 )

The lexical entry given in (173) differs from that in (147b) only with respect to the
content specification. In (147b), we stated the content value directly as part of the
lexical entry. In the lexical entry in (173), the content value is described by a variable,
the tag 2 . Furthermore, there is the specification that the value of this variable must stand
in the relation shifting with the value of the variable 1 . The variable 1 is described to
be an object of the form λx1λx2.love′@(x2(@), x1(@)), i.e., the basic translation of the verb
according to Table 1.1.

In the lexical entry in (173) we have used the relation shifting. This relation expresses
the reflexive transitive closure over the relations ar and vr. In (174) the definitions for this
relation are given.

(174) The relation shifting:

shifting( 1 , 2 )
∀

⇐= 1 ≈ 2

shifting( 1 , 2 )
∀

⇐=

(
ar( 1 , 3 )
and shifting( 3 , 2 )

)

shifting( 1 , 2 )
∀

⇐=

(
vr( 1 , 3 )
and shifting( 3 , 2 )

)

The first clause in this definition expresses that a term o stands in the relation shifting

with itself. Furthermore, two terms o and o′ stand in this relation if there is a third term
o′′′ such that o and o′′′ are in the relation ar or in the relation vr, and o′′′ and o′′ are in
the relation shifting.

Given this definition, it can be seen that the lexical entry of the verb loves in (173)
licenses word objects that have the syntactic properties as described in the AVM. In addi-
tion, the content value can either be of the form

λx1λx2.walk′@(x2(@), x1(@)),
i.e., the basic translation of the verb, or a shifted form thereof.
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The content value of the verb is its basic translation if the variables 1 and 2 are
interpreted as the same object. As the relation shifting is reflexive (by the first clause),
every term stands in this relation with itself.

The lexical entry in (173) does, however, also license a verb whose the content value
is of the argument-raised form

λY1λy2.Y1(@)(λ@λy1.[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)]).
This is the case, because the relation ar holds between the basic translation of the verb,
i.e., the term referred to with the tag 1 , and the content value, indicated by the tag 2 .
As the relation vr holds between these terms, so does the relation shifting, which is the
reflexive transitive closure over the two shifting operations assumed for LF-Ty2. In (175)
we describe a word that is licensed by the lexical entry in (173), where the content is the
shifted form of the basic translation.

(175) AR in the LE-encoding:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 〈loves〉

syns

2

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

4

cat

2

6

6

4

head verb

subcat
D

NP, NP
E

marking unmarked

3

7

7

5

cont λY1λy2.Y1(@)(λ@λy1 .[(λx1λx2.love′@(x2(@), x1(@)))(y1)(y2)])

3

7

7

7

7

5

nonl

"

inherited slash eset

to-bind slash eset

#

3

7

7

7

7

7

7

7

7

7

5

store elist

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Under this encoding of shifting operations, the application of shifting operations is not
an explicit part of the words, i.e., there is a difference between shifting operations and
derivational rules in that the second are non-branching trees, whereas the first do not
feature explicitly in the structure at all.

It should be noted that this implicit encoding of the shifting operations is only possible
because the basic translation of the word is always a subterm of the shifted term. Suppose
that there were a shifting relation for which the subterm property did not hold. In that
case, the input of this shifting relation would not be a component of the output. The output
appears as the content value of the word described in the lexical entry, but the input does
not appear as the value of any attribute in the word. Therefore, the basic translation of the
word is not a component of the word. In the lexical entry, however, we require that there
be a component 1 of the described object that is the basic translation of this word.

Now that we have presented two different possibilities for integrating shifting operations
at the word level, the question arises which of these alternative encodings is to be preferred.
Prima facie, both encodings express the restriction to words, because both rely on mecha-
nisms that are only available for words, be it DRs or lexical entries. Still, the approaches
lead to different overall expectations. In the following, we will discuss three of them.

In the case of the DR-encoding, a word is seen as an object of sort word, whether or
not it is derived. As DRs can only take words as their input, it follows without further
stipulation that shifting operations cannot be applied to phrases. On the other hand, we
expect that shifting operations can be applied to the output of DRs. In Section 4.3 this
expectation will be confirmed, i.e., we will show that under our analysis of passive and
complement extraction as developed in Section 2.3.2 we must apply shifting to the output
of DRs to derive some readings.

The LE-encoding which we have exemplified in the lexical entry of loves in (173) leads
us to different expectations. this approach locates the applicability of AR and VR in the
lexical entries. Therefore, we might expect that these rules cannot be applied to the output
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of derivational rules, such as passivized predicates or lexical heads that miss complements.
We will show in Section 4.3 that this restriction cannot be maintained. While we can still
rescue this approach by changing the specification of the passive DR and the complement
extraction DR slightly to allow for the application of AR and VR on their output as well,
this shows that the second approach might not locate the restriction on the applicability of
shifting operations correctly.

On the other hand, in the second part of this thesis, we will introduce lexical entries
for irregular phrases, such as idiomatic expressions of the kind kick the bucket and trip the
light fantastic. For phrases that are licensed by a lexical entry, shifting operations must be
available as well. This shows that lexicalized phrases behave just like words with respect to
shifting operations. On the other hand, lexicalized phrases do not undergo derivational rules
such as the DRs for passivization or complement extraction. This suggests that shifting
operations have a different status in the grammar than derivational rules.

There is a further property of shifting operations that points to a difference between
DRs and shifting operations. Treating AR and VR as derivational rules we might expect to
find words where the application of a shifting operation has a reflect in the other properties
of the word, such as its phonological or syntactic properties. This is, however, not the case.
Instead, the shifting operations exclusively operate on the logical form of a sign, and we
must specify the shifting DRs so that all the remaining information is taken over from the
input to the output. Under the LE-encoding of shifting operations, we do not expect the
application of a shifting operation to have any consequences on the other properties of a
sign. As this is true, the LE-encoding imposes the right restrictions in this respect.

Finally, a DR- and a LE-encoding lead to different expectations with respect to the reg-
ularity of the availability of shifting operations. The two DRs given in (171) are applicable
to all words, i.e., we do not expect the existence of words to which these shifting operations
are not applicable. In the case of exceptions, i.e., words that do not allow any or at least not
the full range of shifting operations, we expect the exceptions to be systematic, i.e., to be
restricted to natural classes. Such a restriction to natural classes is necessary for delimiting
the range of the DR.

In contrast to this, under the LE-encoding, we must mention the applicability of shifting
operations explicitly in every lexical entry. Therefore, we expect that there might be lexical
entries that express the availability of shifting, and others that do not. In particular, it
would be quite natural if the restrictions to the applicability of shifting operations were
unsystematic, i.e., if they involved arbitrary, unpredictable elements in the language.

While this seems to be a promising and empirically testable difference, the data is not
all that clear. For example, it seems desirable to exclude complementizers from shifting
operations. We will show this for the complementizer that and for the phonological empty
lexical head of a relative clause, as it is assumed in the analysis of Pollard and Sag 1994.
As both examples are instances of functional words, it might be possible to generalize the
restriction to a natural class. In this case, the data would not decide between the two
alternative encodings.

Let us first address the case of the complementizer that. In our introduction of the
framework LF-Ty2 in Section 1.3.3, we assumed a basic translation of the complementizer
as given in (176). We mentioned that the intuition behind this translation was that the
complementizer that expresses an identity function.

(176) that ;λpst.p(@)

In our derivation of the de re readings of sentence (39c), repeated in (177), we saw
that the type of the embedded clause is changed to enable a wide scope reading for some
quantifier that occurs inside the that-clause.
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(177) Every man believes [S̄that [Ssome woman walks]].
a. de dicto:

∀xse[man′@(x@) → believe′@(x@, λ@.∃yse[woman′
@(y@) ∧ walk′@(y@))]]

b. ∀∃-de re:
∀xse[man′@(x@) → ∃yse[woman′

@(y@) ∧ believe′@(x@, λ@.walk′@(y@))]]
c. ∃∀-de re:

∃yse[woman′
@(y@) ∧ ∀xse[man′@(x@) → believe′@(x@, λ@.walk′@(y@))]]

The derivations of the three readings were given in Figures 1.11, 1.14 and 1.15. For all
readings, we assumed that the logical form of the S̄ node in (177) is identical to that of the
embedded S node. To achieve this in the case of the two de re readings, we applied the
same shifting rules to the complementizer that we applied to the main verb of the embedded
clause.

Using the HPSG integration of LF-Ty2, there is a simpler way to treat the complemen-
tizer that. In the syntactic analysis of the complementizer, following Pollard and Sag 1994,
we treated that as a marker. As such, it selects the clause that it attaches to by an attribute
spec. The value of the spec attribute is a synsem object. In particular, it is exactly that
synsem object that occurs as the synsem value of the clause that the marker combines
with. As the logical form of the clause is part of this synsem object, it is locally available
in the lexical entry of the marker. We can use this information to give the marker a logical
form which expresses the identity function under intensional functional application for an
arbitrary type.

In (178a) we give this idea in informal terms. In (178b), we incorporate this new logical
form into the lexical entry of the complementizer.

(178) a. New basic translation of the complementizer that:
that ;λpsτ .p(@),
where τ is the local cont type value of the spec value of the complemen-
tizer.

b. Revised lexical entry for the complementizer that:
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In the lexical entry, it suffices to specify that the type of the application p(@) is identical
to the type of the clause that the marker attaches to. Given that this is some type τ , it
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Figure 4.2. The derivation of the ∀∃-reading of sentence (177):

S
∀x[man′@(x@) → ∃y[woman′

@(y@) ∧ believe′@(x@, λ@.walk′@(y@))]]

NP
λQ.∀x[man′

@(x@) → Q@(x)]

∆
every man

VP
λx.∃y[woman′

@(y@) ∧ believe′@(x@, λ@.walk′@(y@))]

V
λPλx.P@(λ@λp.believe′@(x@, p))

↑ AR1
λpλx.believe′@(x@, p)

believes

S̄
λu.∃y[woman′

@(y@) ∧ u@(λ@.walk′@(y@))]

Comp
λp.p@

that

S
λu.∃y[woman′

@(y@) ∧ u@(λ@.walk′@(y@))]

NP
λS.∃y[woman′

@(y@) ∧ S@(y)]

∆
some woman

V
λY λu.Y@(λ@λy.u@(λ@.walk′@(y@)))

↑ AR1
λyλu.u@(λ@.walk′@(y@))

↑ VR
λy.walk′@(y@)

walks

follows from the restrictions on the type values of appl objects and abstr objects (given in
the TRP in (122)) that the variable p is of type 〈s, τ〉.

With this lexical entry, the derivation of the de re readings is simplified in that we do not
need to assume any shifting operations to be applied to the complementizer. In Figure 4.2
(page 156) we show the derivation of the reading in (177b). The tree in this figure should
be compared with that given for the same reading in Figure 1.14.

The new lexical entry shows that we can simplify our analysis of the marker considerably,
if we use the possibility of not fixing the semantic type of the marker in the lexical entry.
As a consequence, there is, strictly speaking, not a single basic translation for the marker,
but it is assigned a family of basic translations. This, however, makes it unnecessary to
apply shifting rules to the complementizer that. This indicates that the HPSG encoding of
LF-Ty2 can differ from the original proposal, as it may use mechanisms that are available
to HPSG, such as underspecification in the lexicon, which are not strictly part of LF-Ty2.

Let us turn again to what the modified lexical entry of the complementizer that means
for the two alternative encodings of shifting. For the LE-encoding, it is just what we would
expect to find: the lexical entry is simply as given in (178b), i.e., without allowing the
application of shifting operations.



4.1. LF-TY2 WITHOUT λ-CONVERSION 157

For the DR-encoding, we could also assume the lexical entry just in (178b), but would
be possible to apply shifting DRs to words licensed by this lexical entry. This does no harm,
when it comes to the available readings, but the original intention behind the more flexible
lexical entry of the marker would be lost. Alternatively, of course, we could specify the
input conditions of the shifting DRs in such a way as to exclude the marker that. This is
possible, because we can add to the input conditions of the DRs in (171) that the input
word must not have a marking value of sort that.

While the case of the marker that does not create a decisive argument for or against one
of the proposed encodings, it seems to us that the LE-encoding captures the generalization
about the semantic contribution of the marker more directly and simplifies the derivations
considerably. The argument is, however, relatively weak, because even under the assumption
of a fixed basic translation for the complementizer of the form λpst.p(@) as given in Table 1.1
and free application of shifting operations, all the readings can be derive. Therefore, the
point that has been made here is purely aesthetic.

Matters change, if we turn to a second example of a word for which we might want to
disallow the application of shifting operations. Hendriks 1993 (pp. 107f.) discusses how scope
islands can be accounted for within Flexible Montague Grammar (FMG). In Section 1.2
we have pointed out that the Complex NP Constraint (CNPC) seems to hold for quantifier
scope as well as for wh-movement. In (179) we repeat the data from (25).

(179) a. Guinevere has [NP a bone in every corner of the house].
b. Guinevere has [NP a bone [S which is in every corner of the house]].

It was noted that sentence (179b) cannot have a reading in which the quantifier every
corner takes scope over a bone, even if considering our world knowledge, this would be the
only sensible reading of this sentence. This is treated as an instance of the CNPC, because
the quantifier every corner cannot take its scope outside the clause in which it is contained.

For further discussion, let us consider the examples in (180a) which allow us to avoid
speculations on the correct representation of prepositions. But, just as has been the case
in example (179b), sentence (180a) only has a reading in which the quantifier every takes
scope inside the relative clause, i.e., the reading in (b), whereas the (c)-reading is excluded.
We indicate the unavailability of the wide-scope reading with the symbol “$”.

(180) a. Some native speaker who proofread every thesis, was exhausted.
b. ∃x[native-speaker′@(x@)

∧∀y[thesis′@(y@) → proofread′
@(x@, y@)] ∧ be-exhausted′

@(x@)]
c. $ ∀y[thesis′@(y@)

→ ∃x[native-speaker′@(x@) ∧ proofread′
@(x@, y@) ∧ be-exhausted′

@(x@)]]

Let us assume, following Pollard and Sag 1994 (Section 5.2.2), that there is a phonologi-
cally empty relativizer which occurs as the head of the relative clause in (179b). In (181) we
give the necessary lexical entries for this empty relativizer (a) and for the relative pronoun
who (b). These lexical entries differ from those given in Pollard and Sag 1994 in several
respects: First, and most importantly, we gave the content specification in accordance with
the framework of LF-Ty2, and not with the semantic analysis of Pollard and Sag 1994.
Second, we only mention one aspect of the nonlocal part of the analysis. In the analysis in
Pollard and Sag 1994 there are two nonlocal features involved: slash, as the relative pro-
noun is assumed to be extracted, and rel a feature which is used to provide the identity of
indices between the relative constituent and the noun that is modified by the relative clause.
In (181a) we give some slash specification, while we do not consider a rel specification.
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(181) a. Sketch of the lexical entry of the phonologically empty relativizer, after Pollard
and Sag 1994 (p. 218):
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b. Sketch of the lexical entry for the relative pronoun who:
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The empty relativizer as described in (181a) is used for wh-relative clause where the
relative pronoun is the subject of the relative clause. Following Pollard and Sag 1994, the
relativizer has two elements on its subcat list: the relative constituent as the first element,
and a finite VP as the second element. The first element of the subcat list is specified as
identical to the missing subject of the second element (see the use of the tag 1 ).

As we adopt the theory of extraction of Pollard and Sag 1994, we specify in the lexical
entry of the empty relativizer that it has a non-empty inherited slash value. This set
contains the local object which also appears as the loc value of the finite VP that is the
complement of the relativizer. In (181a), we use the tag 2 for this local object. Since
the “extracted” subject is realized as a complement of the relativizer, we must block the
percolation of the inherited slash value. This is done by requiring the to-bind slash
value of the relativizer to contain exactly this element. Then, the Nonlocal Feature
Principle given in (105) ensures that, given the nonlocal specification as in (181a), the
inherited slash value of a relative clause is the empty set.

While our adaptation of the empty relativizer preserves the slash specifications of
Pollard and Sag 1994, we do not mention the second nonlocal feature used in the analysis of
Pollard and Sag 1994, rel. The rel specification seems to be unnecessary in our account,
because of the way the logical form of the relativizer interacts with that of the N′ to
which the relative clause attaches. This will be exemplified in the derivation of the reading
in (180b) in Figure 4.3 (page 160).

In the lexical entry for the relativizer, we assert that its basic translation is the term
λPλQλRλx.[R@(x) ∧ Q@(x) ∧ P@(x)]. The relativizer has two elements on its subcat
list, the rest of the relative clause, and the relative pronoun. These two “complements”
correspond to the first two semantic arguments in this term. Once the relativizer has
combined with its complements, the logical form of the relative clause is of the form
λRs((se)t)λxse.[R@(x)∧φ]. As such, it is just like the logical form of an intersective adjective,
as given for good in (144), i.e., λPs((se)t)λxse[P@(x) ∧ good′

@(x@)].

The basic translation of the relative pronoun who is the term λPλx.[human′
@(x@) ∧

P@(x)], i.e., a translation which is just like that of the quantifier someone but where the
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variable x is not bound by a quantifier, but by a lambda operator. Thus, the relative
pronoun merely contributes the restriction to humans.1

In Figure 4.3 (page 160) we show the structure of relative clause of sentence (180a) and
the derivation of the narrow scope reading of the quantifier every. In this derivation, we use
the fully λ-converted forms of the terms, just as we did in the structures in Section 1.3.3.
Note that in the derivation of the (180b) reading, we only applied the shifting rule AR to
the first semantic argument of the embedded verb.

To block quantifiers which are inside the relative clause from taking scope over matrix
material, it suffices to block the application of shifting operations to the relativizer. As a
consequence, the logical form of the RelP will always be of the form λRs((se)t)λxse.[R@(x)∧
φ]. As mentioned above, this term is of exactly the same type as the basic translation
for other nominal modifiers. If we combine it with the basic translation of a noun, which
usually is of type (se)t, we get a logical form of the form λxse.φ

′
t If this term combines

via intensional functional application with some other term ψ of type s(((se)t)τ), such as
a quantifier, for example λPλQ.∃x[P@(x) ∧ Q@(x)], then it is excluded that a quantifier
which occurs in ψ ends up in the scope of a quantifier that occurs in φ′.

If we do not exclude the application of shifting operations to the relativizer, the empir-
ically unavailable reading in (180c) can be derived. In Figure 4.4 (page 161) we give the
hypothetical structure of the Rel′ as it would occur in the derivation of this reading. In
Figure 4.5 (page 162), we add the rest of the structure to form the entire NP some native
speaker who . . . . In the following, we will briefly comment on this derivation. In order to
derive the reading in (180c), we would be forced to use the shifting operations to the basic
translation of the empty relativizer.

To see how this derivation works, we should briefly consider the shifting operations that
are applied. Let us start with the verb proofread. We first apply VR to the basic translation
of this verb. Note, however, that in contrast to the previous examples, we do not choose
the newly introduced variable u to be of type s((st)t), but instead we assume it to be of
type s((s((se)t))t). This is the case, because a relative clause as a whole normally is of
the semantic type (s((se)t))((se)t). The variable u, then “indicates” the place where the
semantic contribution of the rest of the NP is supposed to occur. Next, we must apply
AR1 to the first semantic argument. This is done, because in the reading which we want
to derive, the universal quantifier that occurs inside the relative clause is supposed to take
scope outside the relative clause. After the application of AR1, the bound occurrence of
the variable u is in the scope of the universal quantifier. This becomes clear at the logical
form of the VP node.

We also apply shifting operations to the relativizer. In fact, just like with the verb, we
first apply VR to mark the position of the matrix quantifier some, then we apply AR to
the first semantic argument. Note that as the first argument of the relativizer is of sort
s((se)t), the raised form of this argument, the variable P is of sort s((s((s((se)t))t))t).
As the variable u is of type s((s((se)t))t), prefixing the logical form of the VP node with
the lambda abstractor λ@ results in a term which is of the same type as the variable P.
In the logical form of the Rel′ node, the universal quantifier now outscopes the semantic
contribution of the relativizer, among which we also find the occurrence of the variable v.

Nothing interesting happens at the RelP node and at the N′ node (shown in Figure 4.5
on page 162). At the determiner, some, however, we also must apply AR. This is necessary
because it must take the logical form of the N′ node as its semantic argument. The con-
stellation of types is the same as in the local tree Rel′, where the relativizer was combined
with the VP. The combination results in a logical form in which the universal quantifier

1In the case of more complex relative constituent, such as whose wife, the semantic contribution of the
relative clause is more complex as well.
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RelPron
who

λSλx.[hum′
@(x@) ∧ S@(x)]

Rel
e

λPλQλRλx.[R@(x) ∧Q@(x) ∧ P@(x)]

V
λY λx.Y@(λ@λy.pr′@(x@, y@))

↑ AR1
proofread

λyλx.pr′@(x@, y@)

NP
λQ.∀y[thesis′@(y@) → Q@(y)]

∆
every thesis

head comp

VP
λx.∀y[thesis′@(y@) → pr′@(x@, y@)]

head comp

Rel′

λQλRλx.[R@(x) ∧Q@(x) ∧ ∀y[thesis′@(y@) → pr′@(x@, y@)]]

comp head

RelP
λRλx.[R@(x) ∧ hum′

@(x@) ∧ ∀y[thesis′@(y@) → pr′@(x@, y@)]]
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Rel
λPλQλRλv.P@(λ@λP.v@(λ@λx.[R@(x) ∧Q@(x) ∧ P@(x)]))

↑ AR1
λPλQλRλv.v@(λ@λx.[R@(x) ∧Q@(x) ∧ P@(x)])

↑ VR
e

λPλQλRλx.[R@(x) ∧Q@(x) ∧ P@(x)]

V
λY λu.Y@(λ@λy.u@(λ@λx.pr′@(x@, y@)))

↑ AR1
λyλu.u@(λ@λx.pr′@(x@, y@))

↑ VR
proofread

λyλx.pr′@(x@, y@)

NP
λQ.∀y[th′@(y) → Q@(y)]

∆
every thesis

head comp

VP
λu.∀y[th′@(y@) → u@(λ@λx.pr′@(x@, y@))]

head comp

Rel′

λQλRλv.∀y[th′
@(y2) → v@(λ@λx.[R@(x) ∧Q@(x) ∧ pr′@(x@, y@)])]
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Det
λPλQ.P@(λ@λP.∃x[P@(x) ∧Q@(x)])

↑ AR1
some

λPλQ.∃x[P@(x) ∧Q@(x)]

N
native speaker
λx.n-s′@(x@)

RelPron
who

λSλx.[hum′
@(x@) ∧ S@(x)]

Rel′

∆
who proofread every thesis

(see Figure 4.4)

comp head

RelP
λRλv.∀y[th′

@(y2) → v@(λ@λx.[R@(x) ∧ hum′
@(x@) ∧ pr′@(x@, y@)])]

head adj

N′

λv.∀y[th′@(y2) → v@(λ@λx.[n-s′@(x@) ∧ hum′
@(x@) ∧ pr′@(x@, y@)])]

comp head

NP
λQ.∀y[th′@(y@) → ∃x[n-s′@(x@) ∧ hum′

@(x@) ∧ pr′@(x@, y@) ∧Q@(x)]]
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that was introduced inside the relative clause has scope over the existential quantifier that
appeared outside the relative clause.

To sum up the discussion, we have shown that we can incorporate the CNPC into LF-
Ty2 if we assume that the empty relativizer cannot undergo type shifting operations. In
contrast to the case of the complementizer that, this restriction is not motivated on purely
aesthetic grounds, it is crucial to implement the CNPC within the framework of LF-Ty2.
This means that we need this restriction to express one of the major restrictions on scope
which have been discussed in the literature.

Let us, finally turn back to the question whether the data in (179) can be used to decide
between the DR- and the LE-encoding of shifting rules. If our grammar was enriched to
contain more types of relative clauses, we might need several relativizers as well. The
CNPC is, however, valid for each of them. In that respect, the non-applicability of shifting
operations is valid for some natural class, i.e., all words with a head value of the sort
relativizer. Under the DR-encoding, we would, be forced to exclude all words with such
a head value from meeting the input conditions of the DRs. This can easily be done by
specifying the input as having a head value different from relativizer. In the LE-encoding,
the lexical entries of the relativizer(s) would simply lack the option of applying shifting
operations to the basic translation.

Again, both approaches are equally fit to incorporate the non-applicability of shifting
operations to relativizers. Nonetheless, our discussion of the complementizer that and of the
relativizer has revealed two things. First, we have seen that there may be conceptual and
empirical reasons to block the applicability of shifting operations from some words. Second,
if we want to decide between the two encodings on the ground of empirical reasoning, we
must discuss whether the words which cannot undergo shifting operations form a natural
class. At this point, we cannot come to a definitive conclusion.

In this thesis, we will favor the LE-encoding, because we find it useful to make a clear
distinction between shifting operations which only operate on the semantic representation
and DRs which potentially change all properties of a word. Furthermore, we will include
lexical entries for irregular phrases such as kick the bucket and trip the light fantastic in
Chapter 8. As mentioned above, we will apply shifting operations to phrases that are
licensed by such lexical entries, we will, however, not apply derivational rules to them.

In the tree structures in this thesis, we will use the symbol “↑” to indicate the appli-
cation of shifting operations, just as we did in Section 1.3.3. Note that the symbol “↑” is
distinct from the symbol “↑” which we have introduced in Section 2.3.2 for the application
of derivational rules. In Figure 4.6 contains an example structure for the ∀∃-reading of
sentence (39b), repeated for convenience in (182).

(182) Every man loves some woman.
∀∃: ∀xse[man′@(x@) → ∃yse[woman′

@(x@) ∧ love′@(x@, y@)]]
∃∀: ∃yse[woman′

@(x@) ∧ ∀xse[man′@(x@) → love′@(x@, y@)]]

In the tree in Figure 4.6 we have applied AR1 to the basic translation of the verb
love. Depending on whether this tree is interpreted under a DR-encoding or under a LE-
encoding of shifting operations, the “↑AR1 ” arrow means different things. In the case of
a DR-encoding, everything below the label V in the structure is an abbreviation of the
description in (172). The description below the arrow is understood as the content value
of the input word of the DR, the AVM above the arrow is a description of the output word.

Under the perspective of a LE-encoding, the AVM above the “↑AR1 ” arrow describes
a word as licensed by a lexical entry. The term below the arrow is merely indicates how the
content value of this word was derived starting from the basic translation. The structures
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Figure 4.6. The structure of sentence (158) in the ∀∃-reading:
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that we are going to draw in the following sections are, thus, neutral with respect to the
particular encoding chosen for shifting operations.

In this section, we have provided a first encoding of LF-Ty2 in RSRL. To do this, we
integrated the basic translation of a word in its lexical entry, we incorporated intensional
functional application into the Semantics Principle, and, finally, we provided two al-
ternative encodings for the application of shifting operations. The content values that
resulted from this first implementation of LF-Ty2 as the semantic part of the grammar
proposed in Section 2.3, have the same denotation with respect to a semantic model as the
terms given in our original presentation of LF-Ty2. The terms do, however, differ syntacti-
cally, as they are not λ-converted. We think that it is motivated to assume λ-conversion to
be part of the semantic system, i.e., we will assume a principle that states that the logical
form of every sign is such that it is redex-free, i.e., that it is closed under the application
of λ-conversion. The next section is devoted to the question of howλ-conversion can best
be integrated into the given system. In Section 4.3 we will extend our semantic analysis to
passive and complement extraction.

4.2. Formalization of λ-Conversion

The semantic system developped in the previous section is a direct implementation of
LF-Ty2 as presented in Section 1.3, i.e., we used the same basic translations, the same
shifting operations, and intensional functional application as the only operation available
at branching nodes. Still, the resulting terms differed from those given in Section 1.3.
The reason for this difference is that we had not introduced λ-conversion into the RSRL
encoding of LF-Ty2, while we used λ-conversion freely in Section 1.3. In this section, we
will ultimately provide the means to express λ-conversion formally within RSRL. Before



4.2. FORMALIZATION OF λ-CONVERSION 165

we turn to such a formalization, however, we will give some reasons for why we consider it
useful to integrate this operation into our grammar.

Logical forms to which λ-conversion cannot be applied are of great practical advantage.
First the terms are shorter and, therefore, of a better readability. For illustration, consider
the content value of the NP every man as given in Figure 4.1 and its λ-converted form as
it is given at the NP node in Figure 1.10. In (183) these two terms are repeated.

(183) every man
a. (λPλQ.∀x[P@(x) → Q@(x)])(λ@λx.man′

@(x@))
b. λQ.∀x[man′

@(x@) ∧Q@(x)]

Second, scope relations among quantifiers can be read off directly, whereas they are
harder to detect in a non-converted representation. To see this, reconsider the content
value of sentence (182) under the ∀∃-reading given in Figure 4.6. In (184) we give the
non-converted and the converted term.

(184) Every man loves some woman.
a. ((λPλQ.∀x[P@(x) → Q@(x)])(λ@λx.man′

@(x@)))
λ@.((λY λx.Y@(λy.[(λyλx.love′@(x@, y@))(y)(x)]))
λ@.((λRλS.∃y[R@(y) ∧ S@(y)])(λ@.λy.woman′

@(y@))))
b. ∀xse[man′@(x@) → ∃yse[woman′

@(x@) ∧ love′@(x@, y@)]]

In (b) it is easy to see that the existential quantifier is in the scope of the universal
quantifier. This relative scope of the two quantifiers is not transparent in the term in (a).

We will see in Section 4.4 that it is necessary to express scope relations in RSRL if
we want to formalize lf-constraints as the one in (53). If we assume fully λ-converted
logical forms then the formulation of such constraints is straightforward. This means that
it is reasonable from the point of view of grammar writing to include λ-conversion in the
semantic system.

In addition to these practical considerations, there is also a conceptual advantage. In
Section 1.3.3 we saw that there are in general, many distinct ways to derive a certain
reading. This was illustrated with the simple sentence in (39a), repeated in (185).

(185) Every man walks.
∀x[man′@(x@) → walk′@(x@)]

As shown in Figure 1.10 on page 47 it is possible to derive this reading without applying
any shifting operation. In the derivation in Figure 1.16 (page 56) an alternative derivation
was presented, where we applied AR to the first semantic argument of the verb and, then,
combined it with the quantified NP subject. The difference between the two derivations is
that in the first case, the quantified NP is taken as the semantic functor which combines
with the translation of the verb. In the second case, the basic translation of the verb is
shifted via AR so that it becomes a functor which takes the translation of the quantified
NP as its argument. Both derivations lead to the same reading, the reading given in (185).

If we do not apply λ-conversion then the two derivations lead to different logical forms,
which have, however, identical extensions. In (186) we give the translation of the NP, which
is the same in both derivations. As can be seen, the resulting term in (c) is the intensional
functional application of the basic translation of every to the basic translation of man.

(186) Translation of the NP every man:
a. Basic translation of man: man ;λx.man′

@(x@)
b. Basic translation of every: every ;λPλQ.∀x[P@(x) → Q@(x)]
c. Translation of every man: (λPλQ.∀x[P@(x) → Q@(x)])(λ@λx.man′

@(x@))
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In (187) we show the translation of sentence (185) under the first derivation. As indicated
in (b), the translation of the sentence is just the intensional functional application of the
the translation of the NP to the basic translation of the verb. This means, that in this
derivation, the quantified NP is the semantic functor.

(187) First derivation of a translation of sentence (185)
a. Basic translation of walks: walks ;λx.walk′@(x@)
b. Translation of the sentence:

((λPλQ.∀x[P@(x) → Q@(x)])(λ@λx.man′
@(x@)))(λ@λx.walk′@(x@))

In (188) the alternative derivation is show. Again we start from the basic translation of
the verb in (a). In (b), we apply AR1 to the basic translation. The resulting term is, then,
combined via intensional functional application with the translation of the NP. This time,
it is the translation of the verb that is the semantic functor.

(188) Second derivation of a translation of sentence (185)
a. Basic translation of walks: walks ;λx.walk′@(x@)
b. The result of applying AR1: λY.Y@(λ@λy.[(λx.walk′@(x@))(y)])
c. Translation of the sentence:

(λY.Y@(λ@λy.[(λx.walk′@(x@))(y)]))
(λ@(λPλQ.∀x[P@(x) → Q@(x)])(λ@λx.man′

@(x@)))

What is important here is that the translations differ depending on the derivation, i.e.,
we find distinct terms in (187b) and (188c). In the RSRL grammar presented so far, this
means that the sentence has (at least) these two logical forms. This indicates that without
λ-conversion, we are (i) confronted with hardly readable logical forms, and (ii) we also give
rise to a number of distinct logical forms which do not reflect distinct interpretations.2

In the following two subsections, we will show two ways to integrate λ-conversion into
the framework presented so far. As a result, we will posit the restriction that the logical
form of a sign be always redex free, i.e., fully λ-converted.

The two encodings can be seen parallel to the two alternative encodings of shifting
operations discussed in the last section. To indicate where the difference lies, consider the
following step-by-step λ-conversion that leads from the term in (183a) to the term in (183b).

(189) λPs((se)t)λQs((se)t).∀xse[P@(x) → Q@(x)](λ@λxse .man′@(x@))
= λQs((se)t).∀xse[(λ@λxse.man′@(x@))(@)(x) → Q@(x)]
= λQs((se)t).∀xse[(λxse.man′@(x@))(x) → Q@(x)]
= λQs((se)t).∀xse[man′@(x@) → Q@(x)]

The first formalization of λ-conversion includes the conversion steps into the structure of
the linguistic sign, i.e., the linguistic sign will have all the four terms of (189) as components.
This is similar to the DR-encoding of shifting operations, because there, the shifted and the
non-shifted term were both explicitly present in the structure of a word.

In contrast to this, under the second formalization of λ-conversion, it will only be the
last term in (189) that appears as a component of the NP every man. The initial term
as well as the intermediate terms are not explicitly present in the NP. In this sense, this
is parallel to the LE-encoding of shifting operations. There, the shifting steps were not
explicitly part of the content value of a word.

There is, of course, an important difference between shifting operations and λ-conversion.
The two shifting operations discussed in this thesis do not preserve the meaning of the

2Note that this is distinct from the spurious derivations discussed in Section 1.3.3. If a sentence has two
distinct derivations which lead to the same reading, i.e., to the same logical form for the root node, then,
still, the logical forms of the intermediate nodes differ in the two derivations.
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input, but they contain the input term as a subterm in their output. In contrast to this, λ-
conversion preserves the meaning of the input but does not contain the input as a subterm.
This can be seen in the λ-conversion steps given in (189). There, all four terms have the
same extension with respect to a semantic model. It is, however, not the case that a lower
term contains a higher term as a subterm. This formal difference between shifting and
λ-conversion requires completely different mechanisms of encoding.

In addition to this formal difference between shifting and λ-conversion, there is also a
difference with respect to the applicability of these operations within linguistic signs. In
LF-Ty2 we do not allow shifting operations to apply at the level of phrases. λ-conversion,
on the other hand, was taken to be freely available whenever possible in our presentation of
LF-Ty2 in Section 1.3. Because of this difference, we will not only find distinct mechanisms
for the encoding of shifting and λ-conversion, but we will also integrate the two operations
in different ways into the overall architecture of our grammar.

So far, we have presupposed some familiarity with the definition of λ-conversion. For
a better understanding of the RSRL encodings of this operation, it is useful to state a
standard definition as a point of reference. For this purpose. we adapt the definitions from
Hindley and Seldin 1986 (pp. 5–11). We cannot follow their definitions completely because
they discuss an untyped λ-calculus without constants. Since we use a typed representation
language with constants, we make the necessary adaptations. There is one further caveat:
Throughout this section we will only consider the definition of Ty2 from Section 1.3.2 and
the grammar T Y2 of Section 3.1. In Appendix A.1.3 the additional definitions are given
for the extended representation language which includes logical constants, and quantifiers.

For illustration, we will use the simple term in (190a), which is related to the term
in (190b) by one conversion step.

(190) a. (λxse.walk′(@)(x(@)))(yse)
b. walk′@(y(@))

The first definition of Hindley and Seldin 1986 is that of a subterm. The term in (190a)
contains the subterms in (191).

(191) (λxse.walk′(@)(x(@)))(yse)
(λxse.walk′(@)(x(@)))
xse

walk′(@)(x(@))
walk′(@)
x(@)
walk′

@
yse

definition 4.1 (Subterm)

The relation φ is a subterm of ψ is defined by induction on ψ, thus:

φ is a subterm of φ
if φ is a subterm of some φ1 or of some φ2, then
φ is a subterm of (φ1φ2),
if φ is a subterm of φ1 or φ is some variable x, then
φ is a subterm of (λx.φ1), and
if φ is a subterm of some φ1 or of some φ2, then
φ is a subterm of (φ1 = φ2).



168 4. LEXICALIZED FLEXIBLE TY2 IN HPSG

It can be seen that the terms in (191) are exactly the subterms of the term in (190a). The
term (λx.walk′@(x(@))(y) is a subterm of itself by virtue of the first line in the definition. In
terms (λxse.walk′@(x(@))) and yse are subterms of the overall term according to the second
line. The term xse is a subterm of (λxse.walk′@(x(@))) by virtue of the third line and as
such also a subterm of the overall term. Similarly, the term walk′@(x(@)) is a subterm of
the term in (190a). The further subterms of walk′@(x(@)) follow from the second line in the
definition of subtermhood.

The next definition is that of the notion of free and bound variables.

definition 4.2 (free and bound variables)

An occurrence of a variable x is bound in a term φ

iff it is a subterm of some subterm of φ of the form λx.φ′,

otherwise, it is free.

If x has at least one free occurrence in φ, it is called a free variable of φ.

The set of all free variables of φ is called FV (φ).

In the term in (190a), the variable x has only bound occurrences, because it occurs twice
in the subterm λx.walk′@(x(@)). The variables @ and y, on the other hand are free in the
term. In (192) we give the set of free variables of the term (190a).

(192) FV ((λx.walk′@(x(@)))(y)) = {@, y}

With this definition, we have the necessary prerequisites to define substitution. We write
[ψ/x]φ for a term that is the result of substituting every free occurrence of the variable x
in the term φ by the term ψ.

definition 4.3 (Substitution)

For each terms φ, ψ, and for each variable x, we define [ψ/x]φ by induction on φ, as

[ψ/x]x = ψ,
[ψ/x]a = a, for each variable and constant a 6= x,
[ψ/x](φ1φ2) = ([ψ/x]φ1[ψ/x]φ2),
[ψ/x](φ1 = φ2) = ([ψ/x]φ1 = [ψ/x]φ2),
[ψ/x](λx.φ) = λx.φ,
[ψ/x](λy.φ) = λy.[ψ/x]φ, if y 6= x and y 6∈ FV (ψ) or x 6∈ FV (φ),

The first four cases of Definition 4.3 are straightforward. The last two cases involve
substitution in abstractions and, therefore, we must be careful not to turn a free variable
of ψ or φ into a bound variable by substitution. In (193) we illustrate the last two cases.

(193) a. [y/x]λx.walk′@(x(@)) = λx.walk′@(x(@))
b. [z/x]λy.love′@(y(@), x(@)) = λy.love′@(y(@), z(@))
c. [y/x]λy.walk′@(m) = λy.walk′@(m)

In (193a), there is no free occurrence of the variable x in the term λx.walk′
@(x(@)).

Therefore, there is no occurrence that could be substituted by the term y. In the next
example, the variable x occurs freely in the term love′@(y(@), x(@)). Therefore, we can
substitute the variable z for x. Example (193c) is another instance of the last clause of
Definition 4.3. In this example, the variable y occurs freely in ψ, but the variable x is not
free in φ. Therefore, even if we carry out the substitution, the free variable y of ψ will not
be bound, because there is no occurrence of x in φ that would be replaced by the term ψ.
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Finally, consider example (194).

(194) [y/x]λy.love′@(y(@), x(@)) undefined

According to Definition 4.3 the indicated substituton is not defined. In this term, y is a
free variable in ψ and the variable x is free in φ, i.e., in the term λy.love′@(y@, x@). If
we substitute the variable x by the variable y, then this variable would be bound in the
resulting term λy.love′@(y(@), y(@)). To avoid this, substitution is undefined here.

The problematic situation illustrated with example (194) can be avoided if we change
the bound variable. Such a change of a bound variable does not change the meaning of a
term and should, therefore be possible. This change of a bound variable can be applied
inside complex terms and can be iterated. In this case, it is called α-conversion. Note that
α-conversion is an equivalence relation, i.e., it is transitive, reflexive and symmetric.

definition 4.4 (α-conversion)

Let φ be a term that contains an occurrence of a term λx.ψ, and let y 6∈ FV (ψ).

The act of replacing λx.ψ by
λy.[y/x]ψ

is called change of bound variable in φ.

For two terms φ, ψ,

φ α-converts to ψ (or φ≡αψ) iff
ψ has been obtained from φ by a finite (perhaps empty) series of changes of
bound variables.

To return to our example, the term in (190a) α-converts to the term in (195).

(195) (λz.walk′@(z(@)))(y)

As we have seen, the term in (190a) has a subterm of the form λx.walk′@(x(@)). The variable
z does not occur freely in the term walk′@(x(@). If we replace x by z, the resulting term is
λz.walk′@(z(@)). If we substitute this term for the occurrence of the term λx.walk′@(x(@)
in (190a), we get the term given in (195).

Finally, we can define λ-conversion, which is also referred to as β-reduction (Hindley
and Seldin, 1986). In our example in (190) the first term is related to the second by λ-
conversion/β-reduction. Generally speaking, a term of the form (λx.φ)ψ can be reduced to
a term [ψ/x]φ. This reduction is expressed in Definition 4.5.

definition 4.5 (β-reduction/λ-conversion)

A β-redex is a term of the form

(λx.φ)ψ
and its contractum is the corresponding term
[ψ/x]φ

A term χ β-contracts to a term χ′ (or χ→1βχ
′) iff

χ contains an occurrence of (λx.φ)ψ, and we replace that occurrence by [ψ/x]φ,
such that the result is χ′.

A term χ β-reduces/λ-converts to a term χ′ (or χ→λχ
′) iff

χ′ is obtained from χ by a finite (perhaps empty) series of β-contractions and
changes of bound variables.
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With this definition, we can show that the terms in (190) are related by β-contraction.
The term in (190a) is of the form of a β-redex. The term in (190b) is the result of substituting
the free occurrences of the variable x in the term walk′@(x(@)) by the term y:

(196) (λx.walk′@(x(@)))(y) →1β [y/x]walk′@(x(@))
= walk′@(y(@))

We can, now, return to the example in (194). There, we saw that substitution is not
defined in all cases. As β-contraction uses substitution, this means that some β-redices do
not have a contractum. In (197) we give an example of this.

(197) (λxλy.love′@(y(@), x(@)))(y)

The contractum of this term would be of the form [y/x]λy.love′@(y(@), x(@)). But this is
exactly (194), i.e., a situation where substitution is not defined.

While we cannot contract the term in (197) directly, we can still β-reduce it. For this
purpose, we first change the bound variable y to z. For the resulting β-redex, the contractum
is defined. In (198) we give the reduction steps.

(198) (λxλy.love′@(y(@), x(@)))(y) ≡α (λxλz.love′@(z(@), x(@)))(y)
→1β [y/x]λz.love′@(z(@), x(@))
= λz.[y/x]love′@(z(@), x(@))
= λz.love′@(z(@), y(@))

With the definition of β-reduction, we have established all the necessary ingredients for
the RSRL encoding of λ-conversion. In our definitions, we will rely heavily on a relation
replace which has the effect of substitution as given in Definition 4.3. Using this relation,
we will provide an encoding of α-conversion and β-reduction.

4.2.1. First Alternative. As pointed out in the introduction to this section, the first
encoding of λ-conversion assumes that the conversion steps are part of the linguistic sign
proper.3 In this subsection, we will first introduce a new sort, reduction which will be used
in the encoding of the conversion steps. In Section 4.2.1.1 we will present this sort and the
constraints that are necessary for this encoding of λ-conversion. In Section 4.2.1.2, we will,
then, show how objects of the sort reduction can be integrated into linguistic signs to make
fully reduced logical forms available in our grammar.

4.2.1.1. Formalization. We can now proceed with the RSRL rendering of the definitions
given above. In the particular formalization that we will give in this subsection, some of
the notions defined above will be expressed as relations, such as subterm, free variables and
substitution. For others, change of bound variable and β-contraction and β-reduction, we
will introduce new sorts in the signature.

For illustration, we will use again the terms in (190). In (199), we give an AVM descrip-
tion of these terms. In this description, we take the variable x to be vse,0, the variable y to
be vse,1, and following our conventions, the variable @ to be vs,0.

3The encoding proposed in this paragraph is based on the one given in Richter and Sailer 1999a (pp. 285–
288). A similar encoding is also presented in Richter 2000 (pp 363–369).
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(199) a. AVM description of the term (λx.walk′(@)(x(@)))(y):
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6

6

6

6

6

6

6

6

6
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6

6

6

6
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6

6

6

4

appl

func

2
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6
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6

6
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6

6

6

6
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abstr

var 1

2

6

4

var

type 2 〈s, e〉

num zero

3

7

5

arg

2

6
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6

6

6

6

6

6

6

6

6

6

6

4
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type 5 truth

func 3 walk′s(et)(@)
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6
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6

6

4
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func 1

arg 4
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b. AVM description of the term walk′@(@)(y(@)):
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type 5 truth

func 3 walk′s(et)(@)
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appl

func 6
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In Definition 4.1 we defined the notion subterm. In RSRL, we can define a simple relation
subterm that uses the relation component as defined in (117) or in (129). One me object is
a subterm of a second iff it is a component of the second. This is expressed in the definition
of the relation subterm in (200).

(200) The relation subterm:

subterm( 1 , 2 )
∀

⇐=

(
1h

me
i

and
2h

me
i

and component( 1 , 2 )

)

In Definition 4.2, we defined what a free occurrence of a variable in a term is. In (201)
we define a relation that holds of a pair consisting of a var object v and a me object u iff v
has a free occurrence in u.

(201) The relation free-variable:

free-variable( 1 , 2 )
∀

⇐=
1h

var
i

and are-copies( 1 , 2 )

free-variable( 1 , 2 )
∀

⇐=
22

4

appl

func 3

arg 4

3

5

and ( free-variable( 1 , 3 ) or free-variable( 1 , 4 ) )
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free-variable( 1 , 2 )
∀

⇐=
22

4

abstr

var 3

arg 4

3

5

and (not are-copies( 1 , 3 ))
and free-variable( 1 , 4 )

free-variable( 1 , 2 )
∀

⇐=
22

4

equ

arg1 3

arg2 4

3

5

and ( free-variable( 1 , 3 ) or free-variable( 1 , 4 ) )

The definition in (201) follows the recursive structure of me objects. A pair 〈v, o〉, where
v is a var object and o is a me object, is in interpretation of the relation free-variable iff
one of the following four conditions is met: o is a copy of v (clause 1); or o is of sort appl
and v is free in o’s func or in o’s arg value (clause 2); or o is of sort abstr, v is not a copy
of o’s var value and v is free in o’s arg value; or, finally, o is of sort equ and v is free in o’s
arg1 value or in o’s arg2 value.

As a consequence of this definition, the pair 〈v, o〉 is in the interpretation of the relation
free-variable iff the variable that corresponds to v has a free occurrence in the term that
corresponds to o. According to this definition, the variables referred to by the tags 4 (@)
and 6 (y) occur freely in the term described in (199a).

Having a notion of free variables defined for me objects, we can define a relation replace

which encodes the effect of substitution as given in Definition 4.3. The relation replace has
four arguments. In (202) we sketch the intuitive connection between the four arguments of
the relation and the substitution operation.

(202) Intuitive characterization of the relation replace:
〈m,x, p, n〉 ∈ R(replace) iff SR([p]) = [SR([n])/SR([x])]SR([m])

This intuitive characterization states that a quadruple 〈m,x, p, n〉 is in the interpretation
of the relation replace iff their corresponding terms M , X , P , N are such that P is the
result of substituting every free occurrence of X in M by N , i.e., P is [N/X ]M .

In (203) we give the definition of the relation replace as it occurs in the theory of our
grammar. The clauses of the definition correspond directly to the lines in Definition 4.3.
For the sake of clarity, we state the corresponding line always right above the clauses.

(203) The relation replace:

[ψ/x]x = ψ

replace(x, y, v, w)
∀

⇐=
xh

var
i

x ≈ y and v ≈ w

[ψ/x]a = a, for each variable and constant a 6= x

replace(x, y, v, w)
∀

⇐=(
xh

var
i

or
xh

const
i

)

and x ≈ v
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[ψ/x](φ1φ2) = ([ψ/x]φ1[ψ/x]φ2)

replace(x, y, v, w)
∀

⇐=
x2

6

6

4

appl

type 1

func 2

arg 3

3

7

7

5

and

v2

6

6

4

appl

type 1

func 4

arg 5

3

7

7

5

and replace( 2 , y, 4 , w) and replace( 3 , y, 5 , w)

[ψ/x](φ1 = φ2) = ([ψ/x]φ1 = [ψ/x]φ2)

replace(x, y, v, w)
∀

⇐=
x2

6

6

4

equ

type 1

arg1 2

arg2 3

3

7

7

5

and

v2

6

6

4

equ

type 1

arg1 4

arg2 5

3

7

7

5

and replace( 2 , y, 4 , w) and replace( 3 , y, 5 , w)

[ψ/x](λx.φ) = λx.φ

replace(x, y, v, w)
∀

⇐=
x»

abstr

var y

–

and v ≈ x

[ψ/x](λy.φ) = λy.[ψ/x]φ, if y 6= x and y 6∈ FV (ψ) or x 6∈ FV (φ)

replace(x, y, v, w)
∀

⇐=
(not 2 ≈ y)
and (not free-variable( 2 , w) or not free-variable(y, 3) )

and

x2

6

6

4

abstr

type 1

var 2

arg 3

3

7

7

5

and

v2

6

6

4

abstr

type 1

var 2

arg 4

3

7

7

5

and replace( 3 , y, 4 , w)

The me object v is obtained by substituting the me object w for every free occurrence
of the var object y in x. The result of this substitution is the me object v. There are two
base cases: if x is identical to y, then the reduced version of y, namely w, is identical to v.
If x is not identical to y, but an atomic term, i.e., either a variable or a constant, then x
is identical to v. In the recursive case, the structure of x is copied to v, and the relation
replace is applied to all recursive subterms of x.

The next definition is that of α-conversion, i.e., Definition 4.4. Before turning to it, we
have to specify a general architecture for expressing conversion operations. We introduce
a sort reduction which has two attributes term and aux defined on it, which take values
of sort me. We will have a constraint on this sort that guarantees that for each reduction
object, the aux value α-converts/β-reduces to the term value. In (204) we give the sort
hierarchy and the appropriateness conditions for the sort reduction.

(204) The sort hierarchies of reduction:
reduction
term me
aux me

no-reduction β-contraction
rec reduction

change-bound-var
rec reduction

As indicated in (204), the sort reduction comes in three species: either there is no
reduction, i.e., we have neither changed a bound variable nor executed β-contraction. In
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this case, we have an instance of a no-reduction object. Alternatively, there can be one
change of bound variable (Definition 4.4), i.e., we have an instance of a change-bound-var
object; or, there can be one β-contraction (Definition 4.5), which is expressed in objects of
the sort β-contraction. For these last two cases, an attribute rec is needed to account for
the possibly iterative application of bound variable changes and β-contractions.

The idea of the recursive structure of reduction is that the aux value always reduces to
the term value. If this relation holds, without performing a reduction step, the aux value
equals the term value. If there is a reduction, the aux value reduces to the rec aux value
by one change of a bound variable or one β-contraction. In addition, the term value and
the rec term value are identical. We can illustrate this with the following AVM.

(205)

2

6

6

6

6

6

6

6

6

4

change-bound-var

term 1

aux 2 (λx.walk′@(x(@)))(y)

rec

2

6

4

no-reduction

term 1

aux 1 (λz.walk′@(z(@)))(y)

3

7

5

3

7

7

7

7

7

7

7

7

5

The AVM in (205) describes a change-bound-var object, which has the me object de-
scribed in (199a) as its aux value. Its rec aux value is related to its aux value by one
change of a bound variable, changing x to z. The rec value is of sort no-reduction, there-
fore the rec aux and the rec term values are identical. Furthermore, the term value is
identical to the rec term value. We say that the aux value α-converts to the term value.

The intuition behind this encoding can be made explicit in the two constraints given
in (206) and (207), which we assume to be part of the grammar.

(206) The theory of no-reduction:

no-reduction ⇒

"

term 1

aux 1

#

(207) The theory of change-bound-var:

change-bound-var ⇒




2

6

6

4

term 1

aux 2

rec

»

term 1

aux 3

–

3

7

7

5

and

42

6

4

abstr

var 6
h

type 7
i

arg 8

3

7

5

and subterm( 4 , 2 )

and

52

6

4

abstr

var 9
h

type 7
i

arg 10

3

7

5

and not free-variable( 9 , 8 )
and replace( 8 , 6 , 10 , 9 )
and replace1( 2 , 4 , 3 , 5 )




The constraint on the sort no-reduction in (206) enforces the identities within the rec
value of the change-bound-var object described in (205) above. Similarly, in the second
constraint, the tag 1 is used to indicate that the term value of a change-bound-var object
is identical with its rec term value. The “real” conversion step relates the aux value of a
change-bound-var object with its rec aux value.

To illustrate the effect of the second constraint, it is useful to re-consider the example
in (205). In (208), we have indicated which subterms of the term and the aux value of the
object described in (205) correspond to which tags in the constraint.
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(208) 1 (λz.walk′@(z(@)))(y)
2 (λx.walk′@(x(@)))(y)
3 (λz.walk′@(z(@)))(y)
4 λx.walk′@(x(@))
5 λz.walk′@(z(@))
6 x
7 〈s, e〉
8 walk′@(x(@))
9 z
10 walk′@(z(@))

The tag 1 is the term value and also the rec term value of the object described
in (205). The tag 2 is its aux value, and the tag 3 is its rec aux value (which happens to
be identical to 1 in this simple example). As we said before, the change of bound variable
relates the aux value to the rec aux value, i.e., 2 is changed to 3 .

Following Definition 4.4, there is a term λv.φ which is a subterm of the aux value. The
tag 4 points to such a term, as indicated in (208), i.e., to the term λx.walk′@(x(@)). This
term consists of a variable x (tag 6 ) and some other term walk′@(x(@)) (tag 8 ). We can
now chose some variable z (tag 9 ) which is not free in 8 , and substitute the variable z
for every free occurrence of x in walk′@(x(@). The term that results from this substitution,
walk′@(z(@)), is indicated by the tag 10 . This substitution is enforced by the relation call
replace( 8 , 6 , 10 , 9 ).

The last step is to substitute the term λz.walk′@(z(@)) ( 10 ) for the term λx.walk′@(x(@))
( 4 ) in the original aux value ( 2 ). The resulting term is given the tag 3 . For this sub-
stitution, we cannot use the relation replace as defined in (203), because in the case of
the relation replace, the second argument must be a variable and we must replace all free
occurrences of this variable. The relation that we need here is slightly different: now, we
can replace an arbitrary subterm. Furthermore, we substitute only one occurrence of this
subterm by a new term. The relation that has this effect is called replace1. The constraint
in (207) requires that exactly one occurrence of the term 4 (i.e., λx.walk′@(x(@))) in the
aux value 2 is replaced by the term λz.walk′@(z(@)) (tag 5 ) in the resulting term 3 . This
substitution of one occurrence is expressed in the relation call replace1( 2 , 4 , 3 , 5 ).

As mentioned above, the theory of the sort change-bound-var uses a relation replace1

which we have not yet defined. The relation is similar to the relation replace as given
in (203). It is, however, also different in two respects. First, the term to be substituted
need not be a variable, but can be of arbitrary complexity. Second we replace exactly one
occurrence of this term. The definition of this new relation is given in (209).

(209) The relation replace1:

replace1(x, y, v, w)
∀

⇐=
x ≈ y and v ≈ w

replace1(x, y, v, w)
∀

⇐=
x2

6

6

4

appl

type 1

func 2

arg 3

3

7

7

5

and

v2

6

6

4

appl

type 1

func 4

arg 5

3

7

7

5

and

(
replace1( 2 , y, 4 , w)
and 3 ≈ 5

)
or

(
replace1( 3 , y, 5 , w)
and 2 ≈ 4

)
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replace1(x, y, v, w)
∀

⇐=
x2

6

6

4

equ

type 1

arg1 2

arg2 3

3

7

7

5

and

v2

6

6

4

equ

type 1

arg1 4

arg2 5

3

7

7

5

and

(
replace1( 2 , y, 4 , w)
and 3 ≈ 5

)
or

(
replace1( 3 , y, 5 , w)
and 2 ≈ 4

)

replace1(x, y, v, w)
∀

⇐=
(not 2 ≈ y)
and (not free-variable( 2 , w) or not free-variable(y, 3) )

and

x2

6

6

4

abstr

type 1

var 2

arg 3

3

7

7

5

and

v2

6

6

4

abstr

type 1

var 2

arg 4

3

7

7

5

and replace1( 3 , y, 4 , w)

The easiest way to understand this definition is to compare it with the corresponding
clauses in the definition of the relation replace. In the first clause, the actual substitution
takes place. It differs from the first clause in the definition of the relation replace in (203)
because in the case of the relation replace1 we do not require that x be a var object.

The second clause in (209) corresponds to the third clause of the relation replace, i.e.,
substitution within appl objects. In the case of the relation replace1 we do, however,
execute the substitution only in one of the subterms of the appl object, the other subterm
is taken over without changes. This is indicated by the disjunction at the end of the clause.
The clause of equ objects is parallel to that for appl objects.

For abstr objects, we must consider only one case, i.e., there is no clause that would
correspond to the fifth clause of the relation replace, i.e., to the case [ψ/x]λx.φ. The
fourth clause in (209) is exactly as the sixth clause in the definition of the relation replace

in (203), but using the relation replace1.

With these definitions, we have encoded α-conversion so that the following is true: for
two terms φ and ψ, φ≡αψ holds iff there is a configuration 〈u, I〉 in some exhaustive model
I of the grammar such that (i) u is of sort reduction, (ii) the configuration does not contain
an object of sort β-reduction, and (iii) u’s aux value corresponds to φ (by the functions SR
and “∗”) and u’s term value corresponds to ψ (by the functions SR and “∗”).

After α-conversion, we can address β-contraction. We will express a β-reduction step in
the form of a constraint in the theory. Parallel to the situation with the sort change-bound-var,
the aux value of a β-contraction object contains a β-redex, the rec aux value, then contains
the contractum of this redex as defined in Definition 4.5. In (210) we state the necessary
constraint on the sort β-contraction.

(210) The theory of β-contraction:

β-contraction ⇒




2

6

6

4

term 1

aux 2

rec

»

term 1

aux 3

–

3

7

7

5

and

4
2

6

6

6

6

4

appl

func

2

4

abstr

var 5

arg 6

3

5

arg 7

3

7

7

7

7

5

and subterm( 4 , 2 )
and replace( 4 , 5 , 8 7 )
and replace1( 2 , 4 , 3 8 )




In a β-contraction object, the term value is identical to the rec term value, just as
has been the case for change-bound-var objects. This is expressed with the tag 1 in (210).
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The aux value ( 2 ) reduces to the rec aux value ( 3 ) by one β-reduction (→1β). To achieve
this, we require that there be a me object 4 which is a subterm of the aux value. This
object has the form of a β-redex, i.e., it is of sort appl and its func value is of sort abstr.

Given this β-redex, we can find its contractum, which is referred to with the tag 8 .
The second relation call in (210) enforces this: the relation replace must hold for the
quadruple consisting of the func arg value ( 6 ) of the β-redex, its func var value ( 5 ),
the contractum ( 8 ) and the arg value ( 7 ) of the redex. Put differently, this means that
the term that corresponds to the me object 8 is the result of substituting the term that
corresponds to 7 for every free occurrence of the variable that corresponds to 5 in the term
that corresponds to 6 .

Once we are sure that 8 is the contractum of 4 , we must replace one occurrence of the
β-redex 4 in the initial term 2 by the contractum 8 . The me object that results from this
replacement is the rec aux value ( 3 ). This is expressed by the last line in (210). There,
the quadruple 〈 2 , 4 , 3 , 8 〉 is required to be in the relation replace1.

To illustrate the constraint on the sort β-contraction, consider the following description
of a β-contraction object, which shows how me objects described by the AVMs in (199) can
occur as components of a β-reduction object.

(211)

2

6

6

6

6

6

6

6

6

4

β-contraction

term 1

aux 2 (λx.walk′@(x(@)))(y)

rec

2

6

4

no-reduction

term 1

aux 1 walk′@(y(@))

3

7

5

3

7

7

7

7

7

7

7

7

5

To see that an object described by (211) satisfies the constraint in (210), we indicate
in (212) which subterms of the term and the aux value of this object correspond to which
tags in the constraint.

(212) 1 walk′@(y(@))
2 (λx.walk′@(x(@)))(y)
3 walk′@(y(@))
4 (λx.walk′@(x(@)))(y)
5 x
6 walk′@(x(@))
7 y
8 walk′@(y(@))

In the description in (211) the tag 1 expresses that the term and the rec term values
are identical, just as required in (210). The rec value of an object described by (211) is of
sort no-reduction. As this is a subsort of sort reduction, the appropriateness conditions on
the sort β-contraction are met.

Turning back to the constraint in (210), we must find a β-redex which is a subterm of
the aux value 2 . In the example that we have chosen, the aux value itself is a β-redex.
Therefore, the tags 2 and 4 refer to the same object. We can, then, verify that the term 8

is the contractum of the term 4 , i.e., it is the result of replacing every free occurrence of
the variable x (tag 5 ) in the term walk′@(x(@)) (tag 6 ) by the term y (tag 7 ). Finally, the
contractum 8 is substituted for the redex 4 in 2 . As 2 and 4 are the same, the first clause
of the relation replace1 applies, and the resulting term is identical to the contractum 8 .

In (213) and (214) we give more complex examples for β-reduction. In (a) we show the
reduction steps in term notation, in (b) we describe the corresponding reduction objects.
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In (213) we start out with the example term of (199a). We use α-conversion to replace
the bound variable x by z, which results in the term given in (195). Finally, we execute
β-contraction and are left with the term in (199b).

(213) a. (λx.walk′@(x(@)))(y)
≡α(λz.walk′@(z(@)))(y)
→1βwalk′@(y(@))

b.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

change-bound-var

term 3

aux 1 (λx.walk′@(x(@)))(y)

rec

2

6

6

6

6

6

6

6

6

4

β-contraction

term 3

aux 2 (λz.walk′@(z(@)))(y)

rec

2

6

4

no-reduction

term 3

aux 3 walk′@(y(@))

3

7

5

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

In the AVM in (213b) we use the tags 1 , 2 and 3 for the me objects that correspond to
these terms. The theory of change-bound-var in (207) states that the me object 1 converts
to the me object 2 via one change of bound variable. As the rec value of the object
described in (213b) is of sort β-contraction, the object 2 reduces to 1 by one β-contraction.
The rec rec value of the object described by the AVM is of sort no-reduction. Therefore,
by virtue of the constraint in (206), its aux and its term values are identical, i.e., we have
the result of one α-conversion and one β-contraction as the rec rec term value. By the
theories of the sorts change-bound-var and β-contraction, the term values of all reduction
objects that are components of one reduction object are identical.

Within each reduction object, we interpret the relation between the aux value and
the term value as β-reduction/λ-conversion, i.e., as a finite (possibly empty) sequence of
applications of α-conversion and β-contraction.

The example in (214), shows two applications of β-contraction, i.e., in (b), we give the
description of a reduction object that has two components of sort β-contraction.

(214) a. (λx.walk′@(x(@)))(λ@.m)
→1βwalk′@((λ@.m)(@))
→1βwalk′@(m)

b.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

β-contraction

term 3

aux 1 (λx.walk′@(x(@)))(λ@.m)

rec

2

6

6

6

6

6

6

6

6

4

β-contraction

term 3

aux 2 walk′@((λ@.m)(@))

rec

2

6

4

no-reduction

term 3

aux 3 walk′@(m)

3

7

5

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

The aux value of an object described by the AVM in (214b) is a β-redex, just as was the
case in our example in (211) above. In its rec value, however, the aux value ( 2 ) contains a
proper subterm which is a β-redex, i.e., the subterm (λ@.m)(@). Therefore, the rec value
of an object described by (214b) is of sort β-contraction. In the rec rec aux value, this
redex is replaced by its contractum, the term m. Since the rec rec aux value ( 3 ) does not
contain any bound variables nor β-redices, the rec rec value must be of sort no-reduction.
The theory of no-reduction enforces that the rec rec aux value and the rec rec term
value are identical, and the theory of β-contraction guarantees the identities of the term
value, the rec term value and the rec rec term value.
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With this illustration, we conclude our presentation of the first formalization of λ-
conversion. In the introduction to Section 4.2 we characterized this first formalization as
being similar in spirit to the DR-encoding of shifting operations. The parallelism lies in
the fact that we explicitly encode each step in the derivation of the reduced term within a
linguistic object, a reduction object in this case. This leads to the situation that if there are
n ways to reduce a term φ to a term ψ, then there are n distinct configurations 〈u, I〉 in each
exhaustive model of the grammar such that u is of sort reduction, and each configuration
encodes one derivation.

In (211) and (213b) we have such a case: In both AVMs, the aux value corresponds to
the term (λx.walk′@(x@)(y) and the term value corresponds to the term walk′@(y@). The
objects described by the two AVMs are, however, distinct, as they express different ways
to derive the term values from the aux value. The alternative formalization that we will
present in Section 4.2.2 does not have this property, i.e., there, β-reduction will be fully
expressed as a relation. This means that there is no additional kind of objects introduced
in the linguistic universe to express the reduction steps.

After this technical remark, we can turn to the integration of the encoding of β-reduction
into the RSRL formalization of LF-Ty2.

4.2.1.2. Integration. In our first presentation of LF-Ty2 in Section 1.3.3, we applied λ-
conversion whenever possible, i.e., we applied λ-conversion to the terms that resulted from
shifting operations and from intensional functional application. As shifting operations are
restricted to words in our framework, and intensional functional application is only used
to combine the semantic contributions of the daughters in a phrase, we must allow for λ-
conversion at the level of words and at the level of phrases. This has a consequence for the
formalization: since we want to apply λ-conversion to the logical form of phrases, we cannot
encode it as a derivational rule, the way we encoded the shifting operations. Instead, we
treat λ-conversion as an operation that is internal to the content value of a sign. As such,
its application does not depend on the word/phrase status of a sign.

In Section 4.2.1.1 we provided an encoding of λ-conversion by means of objects of sort
reduction. In the following integration of λ-conversion into our overall grammar, we must
first define some place within the feature geometry of a sign where reduction objects may
occur. We will also provide those principles that are needed to connect the newly introduced
components of a sign with its logical form. This will lead to a change in the structure of
the content value of signs. This change will have consequences for the definitions of the
relation ifa (originally defined in (150) and used in the Semantics Principle), and for
the encoding of shifting operations.

In order to make β-reduction available in the content value of every sign, we change
the signature in the way indicated in (215). First, we change the appropriateness conditions
of the sort local so that the attribute content is appropriate for the sort local, and that the
sort content is appropriate to the attribute content. While this is exactly as specified in
the appropriateness conditions of the sort local in (73a), we also change the appropriateness
conditions of the sort content.

(215) Revised sort hierarchy and appropriateness conditions:
a. Revised appropriateness conditions for the sort local:

local category category
content content

b. Appropriateness conditions for the sort content:
content logical-form me

reduction reduction
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In Section 2.3.1 we introduced the sort content as being atomic, i.e., as having no
attributes appropriate for it. In (215b), we introduce two attributes: logical-form (lf)
and reduction (red). The sort me is appropriate to the attribute lf, and the sort
reduction is appropriate to the attribute red. Intuitively, the value of the attribute lf
will express the logical form of a sign, i.e., it takes over the function attributed to the
content value in Section 4.1. We will enforce that the lf value of a content object is
always redex-free, i.e., that it does not contain any β-redex.

The second attribute introduced in (215b), red, is used to integrate reduction objects
as defined in Section 4.2.1.1 into linguistic signs. We enforce a straightforward connection
between the lf value and the red value of a content object: The lf value is identical with
the red term value. Furthermore, the lf value must be redex-free. These two conditions
are expressed in the Content Principle in (216).

(216) The Content Principle (for the first alternative):

content ⇒




»

lf 1

red term 1

–

and not E 2(
subterm( 2 , 1 ) and

2»

appl

func abstr

–

)




To illustrate this principle, consider the AVM in (217). The AVM describes only ob-
jects that satisfy the Content Principle. An object described by this AVM has a red
value as described in (214b), i.e., a red value which expresses the reduction of the term
(λx.walk′@(x@))(λ@.m) to the term walk′@(m). The latter term occurs as the red term
value of the content object. As an object described in (217) satisfies the Content Prin-
ciple, its lf value and its red term value must be identical. The term walk′@(m) is
redex-free. Thus, the second condition in the Content Principle is met as well.

(217)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

content

lf 3 walk′@(m)

red

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

β-contraction

term 3

aux 1 (λx.walk′@(x(@)))(λ@.m)

rec

2

6

6

6

6

6

6

6

6

4

β-contraction

term 3

aux 2 walk′@((λ@.m)(@))

rec

2

6

4

no-reduction

term 3

aux 3

3

7

5

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

So far, we have provided an integration of reduction objects into the grammar presented
in this thesis. As we have altered the overall feature geometry, we must adapt the Seman-
tics Principle and the encoding of shifting operations to the new feature geometry. We
will, first, re-consider the SP. In (218) we repeat the SP as given in (149) above.

(218) The Semantics Principle (SP):

phrase ⇒

2

6

4

syns loc cont 1

dtrs

"

h-dtr syns loc cont 2

n-dtr syns loc cont 3

#

3

7

5

and intensional-functional-application( 1, 2 , 3 )

The SP expresses that the logical form of a phrase is the intensional functional applica-
tion of the logical forms of its daughters. The way we have defined the relation ifa in (150)
we did not include β-reduction in functional application. Given the new architecture, it is
easy to re-define the relation ifa so that the content lf value of a phrase is the β-reduced
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Figure 4.7. The structure of the sentence Mary walks:
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form of the intensional functional application. The revised definition of the relation ifa is
given in (219).

(219) Revised definition of the relation ifa:
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If φ is the term that corresponds to the lf value of the head daughter and ψ is the term
that corresponds to the lf value of the nonhead daughter, then in this new definition of
the relation ifa, we assume that the content red aux value of a phrase is of the form
φ(λ@.ψ) or ψ(λ@.φ). The Content Principle, then, enforces that the lf value of the
phrase corresponds to some term χ which (i) is the result of applying β-reduction to the
term φ(λ@.ψ) or ψ(λ@.φ), and (ii) is redex-free.

In Figure 4.7 we illustrate this new definition with the example sentence in (220).

(220) Mary walks.

In the figure, the logical form of the head daughter is the basic translation of the verb walks,
i.e., λx.walk′@(x@). The logical form of the nonhead daughter is the basic translation of the
word Mary, i.e., m. At the phrase, the SP guarantees that the content red aux value is
the intensional functional application of these two terms, i.e. (λx.walk′@(x@))(λ@.m). The
content red value of the phrase is just as described in (214b) above, i.e., it expresses two
β-contractions, and the term value is the term walk′@(m). By the Content Principle,
this terms appears as the content lf value of the phrase.
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The example illustrates how the new definition of the relation ifa allows us to assume
fully reduced lf values for phrases, while still using intensional functional application to
combine the logical forms of the daughters,

In the framework LF-Ty2, we do, however, also use shifting operations. Applying a
shifting operation to the basic translation of a word leads to a term which contains β-redices.
For illustration, consider the application of the operation AR to the basic translation of the
verb walks, given in (221).

(221) walks ; λxse.walk′@et(x(@))
−→AR λXs((se)t).X(@)(λ@λy.[(λx.walk′@(x(@)))(y)])

The last term in (221) contains a β-redex, the term (λx.walk′@(x(@)))(y). Applying one
β-contraction to this term results in the term given in the last line of (222).

(222) walks ; λxse.walk′@et(x(@))
−→AR λXs((se)t).X(@)(λ@λy.[(λx.walk′@(x(@)))(y)])
→1β λXs((se)t).X(@)(λ@λy.walk′@(y(@)))

As we require in the Content Principle that the lf value be always redex-free, we
want the last term in (222) to be the logical form of the word walks. To achieve this, we
must adapt our formalization of shifting operations as given in Section 4.1 slightly. We will
first re-consider the DR-encoding and then address the LE-encoding of shifting operations
in the new architecture.

When we adjusted the definition of the relation ifa to the new signature, we basically
used the “old” specification of the content value as a specification of the content red
aux value. Similarly, we can change the AR-DR (or the VR-DR) in such a way that the
content lf value of the input word and the content red aux value of the output word
stand in the relation the relation ar (or vr). The constraints on the sort reduction and
the Content Principle will, then, guarantee that the content lf value is the fully β-
reduced version of the term that results from shifting the logical form of the input word.
In (223) we state the adapted form of the shifting DRs from (171).

(223) a. Revised description of the AR-DR:
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b. Revised description of the VR-DR:
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In Figure 4.8 (page 184) we show an alternative derivation of sentence (220) which
includes the application of shifting operations: we apply AR to the basic translation of the
verb walks and VR to the basic translation of the proper name Mary. Note that in the
figure, we indicate the application of the DRs by mentioning explicitly the store values of
the derived words.

Within the content value of the word walks, we execute β-reduction as discussed
in (222). Even though the basic translation of the word Mary is also shifted, there is
no redex, as VR maps the term m to the redex-free term λP.P@(λ@.m). Therefore, the
content red value of the derived word is of sort no-reduction. The SP then enforces that
the content red aux value of the S node corresponds to the first term in (224), which
reduces by six β-contractions to the second term in (224).

(224) (λXs((se)t).X(@)(λ@λy.walk′@(y(@))))(λ@λP.P@(λ@.m))
→λ walk′@(m)

As can be seen in the tree in Figure 4.8, a phrase described by this tree contains every
shifting step and every reduction step as a component. Therefore, the two alternative
derivations given for sentence (220) in Figure 4.7 and in Figure 4.8 describe distinct objects.

What remains to be shown is how the encoding of λ-conversion proposed in Section 4.2.1.1
can be connected with the LE-encoding of shifting operations presented in Section 4.1. In
the LE-encoding, the possibility for shifting is expressed as part of the lexical entry of a
word. In (173) we gave the lexical entry of the verb loves, which contained a relation call to
the relation shifting. The lexical entry described a word, if this word has a component 1

which is of the form λx1λx2.love′@(x2(@), x1(@)) and if the content value of this word
stands in the relation shifting with this term.

To include β-reduction, we must require that the relation shifting holds between the
term λx1λx2.love′@(x2(@), x1(@)) and the content red aux value of the word. Then, the
theory of the sort reduction and the Content Principle ensure that the content lf
value of the word is the fully β-reduced form of some term that results from applying
shifting operations to the basic translation of the word loves. In (225) we give the lexical
entry of the word loves which respects the new signature.
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When we compared the DR-encoding of shifting operations with the LE-encoding at the
end of Section 4.1, we saw that the major difference between the two approaches lies in
the fact that under the DR-encoding every application of a shifting operation is explicitly
present in the structure of a sign. The LE-encoding does not have this property, i.e., there,
it is only the resulting term that appears as the logical form of a sentence, while the single
steps that led to this term cannot be recovered.

If we were to give the structure of sentence (220) under the derivation where we apply
AR to the verb walks and VR to the proper name Mary, the result would be just like in
Figure 4.7, but the store values of the head daughter and the nonhead daughter in the
tree would be empty.

We have mentioned above that the encoding of λ-conversion in the form of reduction
objects leads to a similar explicit presence of the reduction steps inside linguistic signs. So,
even if we can “hide” the shifting steps in the LE-encoding, the reduction steps are explicitly
present if use the present formalization of β-reduction. In Section 4.2.2 we will present an
alternative formalization of λ-conversion that leaves the particular derivation steps outside
the components of a linguistic object. This “implicit” encoding of λ-conversion appears to
be more in the spirit of the LE-encoding of shifting operations. For this reason, we will not
discuss the combination of the LE-encoding and the formalization of β-reduction as given
in Section 4.2.1.1 in any more detail.

4.2.1.3. Summary. We provided a first formalization of λ-conversion in RSRL, and showed
how this formalization can be integrated into the RSRL encoding of LF-Ty2. With this
integration, we can say that we completed a rigorous RSRL-formalization of LF-Ty2 and
an integration into a particular RSRL grammar of a fragment of English.

The formalization showed that we can express the definitions needed for λ-conversion
in RSRL. Thus, not only can we use terms of Ty2 as semantic representations, but we can
actually perform computations on these terms. The fact that we can require the logical
form of a sign to be redex-free allows us for example, to express directly whether some term
is in the scope of a quantifier within a larger term. If this is the case, then the first term is
a subterm of the scope value of the quantifier. With this potential constraints on logical
forms can be expressed in a transparent way, such as the constraint in (53) which prevents
a universal quantifier from taking scope in a matrix clause.

In our RSRL formalization of the definitions needed for λ-conversion, we expressed some
definitions as relations, others (α-conversion and β-contraction) as sorts. The fact that a
β-redex is not a subterm of its contractum forced us to introduce new sorts to our linguistic
ontology. As a consequence of this new ontology, the content of a linguistic sign is not
only its logical form, but also contains every step of the reduction that leads to the logical
form. We consider this highly undesirable, because it introduces components to linguistic
objects for whose existence there is no linguistic motivation.

In the following subsection, we will show that such an extension of the linguistic ontology
is not necessary. Still, we think that the presentation of the encoding of λ-conversion given in
this subsection is useful for various reasons: First, the encoding developed in the following
subsection is far more abstract, but follows in the general line the present alternative.
Therefore, the “simpler” case given in the present subsection is useful for an understanding
of the following definitions. Second, the encoding of λ-conversion without chains provides a
good illustration of the limits of RSRL quantification and relations. In Section 4.5 we will
address some further issues in this direction.

4.2.2. Second Alternative. The second encoding of λ-conversion that we will present in
this thesis makes use of chains, i.e., the list-like auxiliary structure provided by RSRL. The
basic idea behind our second formalization is that we can provide an encoding of Ty2 terms
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Figure 4.9. An example derivation of the sentence Mary walks.:
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not only as me objects, but also as chains. This chain encoding will allow us to use refer
to arbitrary terms of Ty2, independent of the logical form of a sign. In this way, we will
be able to express λ-conversion as a relation, even though the input term to λ-conversion
is not a subterm of the output term.

Let us illustrate the structure of this proposal intuitively. In LF-Ty2, we want the
logical form of a phrase to be a redex-free term that results from applying λ-conversion to
the intensional functional application of the logical forms of the daughters. Let us, suppose
for a moment that the logical forms of the daughters are the me objects o and o′ that
correspond to some terms φ(sτ)τ ′ and ψτ respectively. As indicated by the semantic types,
we assume that φ is the functor, when these two terms combine. The logical form of the
phrase is some me object u that corresponds to a term χ such that χ is redex-free and
φ(λ@.ψ) β-reduces to chi (φ(λ@.ψ)→λχ).

We will provide relation chain2term with the following property: a pair 〈c,a〉 is in the
relation chain2term iff, c is a chain, o is a me object, and there is a Ty2 term φ such
that c is the chain encoding of φ and o corresponds to φ. Thus, c and o are different data
structures, but both correspond to the same term, φ. Furthermore, we will define a relation
reduction that holds for a pair of chains 〈c, c′〉 iff c is the chain encoding of some term φ,
c′ is the chain encoding of some term φ′, and φ β-reduces to φ′ (φ→λφ

′). These relations,
will be defined in Sections 4.2.2.1 and 4.2.2.2.

We can use these relations to carry out λ-conversion at the level of chains: Let us
assume that u, o, o′ are the me objects that appear as the logical form of a phrase and
its two daughters respectively, and let χτ ′ , φ(sτ)τ ′ and ψτ be the terms that correspond to
u, o and o′. We, then, consider the chains, a and b, where a is the chain encoding of the
term φ(λ@.ψ) and b is the chain encoding of the term χ. The last step is to require that
the pair 〈a, b〉 is in the relation reduction. By the definition of the relation reduction,
this means that φ(λ@.ψ)→λχ. As b is the chain encoding of the term χ, we know that the
pair 〈b, u〉 is in the relation chain2term. Thus, we have ensured that the logical form of
the phrase is a β-reduced form of the intensional functional application of the logical forms
of the daughters. In Section 4.2.2.3 we will integrate this way of expressing the relation
between the logical forms of the signs in a local tree into our grammar.

While the chain encoding of Ty2 terms is straightforward, it is a so far unexploited
potential of chains within RSRL. Therefore, it is of technical and conceptual interest. In
Section 4.5 we will give an overview over the uses of chains that have been proposed so far
within RSRL and try to locate the chain encoding of Ty2 among them.

As a result of the encoding of λ-conversion by the means of relations, the reduction steps
will not be components of linguistic signs, and we can simply assume that the content
value of a sign is an me object. In Figure 4.9 we give an example derivation of sentence (220),
where we assume that the logical forms of the words Mary and walks are just their basic
translations. As can be seen, the content value of the phrase is a fully β-reduced form
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Figure 4.10. A second derivation of the sentence Mary walks.:

NP
"

phon 〈Mary〉

syns 1
h

loc cont λP.P@(λ@.m)
i

#

V
2

6

4

phon 〈walks〉

syns loc

"

cat sbc
D

1
E

cont λX.X@(λ@λy.walk′@(y@))

#

3

7

5

comp head

S
"

syns loc

»

cat sbc 〈〉

cont walk′@(m)

–

#

of the intensional functional application of the logical forms of the daughters, even though
there is no me object occurring as a component of an object that is described by this tree
that corresponds to the term (λx.walk′@(x@))(λ@.m).

Similarly, in Figure 4.10, we describe an alternative derivation of sentence (220). In
Figure 4.10 we assume an LE-encoding of shifting operations. Therefore, the application of
AR to the basic translation of the verb and the application of VR to the basic translation
of the proper name are not explicitly encoded in the structure of the sentence.

The trees given in Figures 4.9 and 4.10 should be compared to Figures 4.7 and 4.8, which
show the same derivations, but use the encoding of λ-conversion presented in Section 4.2.1.
Clearly, the structures that will result from the chain-based encoding of λ-conversion are
more straightforward, as they avoid the conceptually problematic ontological commitment
that every β-reduction step is a component of the linguistic objects.

4.2.2.1. Terms of Ty2 as Chains. In this subsection, we will present a chain encoding of
terms of Ty2. To do this, we will define two things: First, a relation chain2term that holds
of a pair 〈c,o〉, where c is a chain and o is a me object iff there is a term φ of Ty2 such
that o corresponds to φ and c chain-encodes φ. This relation will be used to allow us to
change freely between me objects and chains in the representation of terms. Second, we will
define a function “#”. This function maps every term of Ty2 φ to some RSRL description
δ such that δ describes exactly those chains that are the chain-encoding of φ. This rough
characterization already indicates that the function “#” is similar to the function “∗” as
given in Definition 3.16, but has the description of a chain as its output, not that of a me
object. There is an intimate connection between the functions “∗” and “#” and the relation
chain2term: For each me object o and for each chain c: the pair 〈c, o〉 is in the relation
chain2term iff there is some term φ such that o is described by φ∗ and c is described by
φ#. Finally, we will define a third important relation, chain-term. This relation holds of a
chain c iff there is a term φ that is chain-encoded by c. This relation is important, because
it will allow us to single out exactly those chains which encode some term, without being
obliged to state which term (or me object) is being chain-encoded.

We will encode Ty2 terms as chains that contain only objects of two distinct sorts. It
is immaterial which sorts we choose, as long as none of them is a subsort of the other.
This means that we could use the sorts me and type, but not for example the sorts type
and entity. We know that each me object has at least two components, itself and its type
value. therefore, we consider it a reasonable choice to take the sorts me and type. Still we
want to remain neutral with respect to the particular choice and simply write s1 and s2 for
the two sorts. A chain encoding of a Ty2 term is a finite sequence of objects of the sorts s1
and s2. In (226) we give the example of the chain encoding of the semantic type 〈e, t〉.
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(226) The chain encoding of the semantic type 〈e, t〉:
〈 s2, s1, s1, s1, s1, s1, s1,
s2, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1,
s2, s1, s1, s1, s1,
s2, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1,
s2, s1, s1, s1 〉

While for the time being, this encoding is quite opaque, the example already indicates
that a chain used for encoding terms (and types and natural numbers) is internally struc-
tured: it consists of subsequences all of which start with an object of sort s2, followed by a
finite number of s1 objects. The chain encoding follows the encoding as linguistic objects
presented in Chapter 3 quite closely. In particular, we chose the subsequences of a term-
representing chain in a way that each of them represents some sort or attribute. For ease of
notation, we write s2s1i for a subsequence that start with a s2 object followed by i-many
s1 objects. In the example in (226), the subsequence s2s16, i.e., the first such subsequence,
represents the sort name complex-type. The next subsequence, s2s112, represents the at-
tribute name in. The third subsequence, s2s14, stands for the species entity. The fourth
subsequence, s2s113, is used to encode the attribute name out, and finally, the subsequence
s2s13 encodes the sort name truth.

In order to be able to refer to subsequences of the form s2s1i, we assume that the
signature contains a family of relations is-i-long for each 1 ≤ i ≤ n, with n being the
sum of the number of species and attributes given by the signature under consideration.4

For the encoding of terms of Ty2, it is enough to assume the relations is-i-long for the
number of species and attributes of the grammar T Y2. The relations are defined as follows:

(227) The family of relations is-i-long:

is-1-long(a)
∀

⇐=

(
a»

† s1

. echain

–

)

for each i, 2 ≤ i ≤ n,

is-i-long(a)
∀

⇐=

(
a»

† s1

. b

–

and is-(i− 1)-long(b)

)

The way we have defined terms of Ty2, semantic types and natural numbers (in the case
of variables) occur as parts of term. For this reason, we will define the relation chain2term

not only for chains and terms, but also for chains and numbers and for chains and semantic
types. In fact, there will be a clause of the relation chain2term for each species in the
signature of the grammar T Y2.

In (228) we give the two clauses needed for the chain encoding of natural numbers.

(228) The relation chain2term (c2t) as needed for natural numbers:

c2t(a, 1 )
∀

⇐=
a»
† s2

. b

–

and
1h

zero
i

and is-1-long(b)

4This is, of course, only possible if the number of species and the number of attributes are finite.
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c2t(a, 1 )
∀

⇐=
a»
† s2

. b

–

and
1»

non-zero

number 2

–

and append(c, d, b)
and is-2-long(c)

and
d»
† s2

. e

–

and append(f, g, e)
and is-11-long(f)
and c2t(g, 2 )

To illustrate the relation chain2term as defined so far, consider the chain in (229a) and
the description of a number object that corresponds to the number 1 in (229b).

(229) a. Chain encoding of the natural number 1:
〈 s2, s1, s1,
s2, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1,
s2, s1 〉

b. AVM description of a number object that corresponds to the natural number 1:
"

non-zero

number zero

#

To see that the chain in (229a) and an object described by (229b) stand in the relation
chain2term, we must first consider the second clause of (228): The first element on the
chain is of sort s2, the number object is of sort non-zero. The rest of the chain (b) can be
split into two subsequences c and d. d starts with an object of sort s2 and its rest (e) can
be split into two subsequences f and g. In (230) we give the four chains c, e, f and g.

(230) c = 〈s1, s1〉
e = 〈 s2, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1,

s2, s1 〉
f = 〈s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1〉
g = 〈s2, s1〉

As required, the chain c is in the relation is-2-long, i.e., it is a sequence that contains
exactly two s1 objects. f is a sequence that contains exactly eleven s1 objects. Therefore
it is in the relation is-11-long. Next, we must check whether the pair consisting of g and
the number value ( 2 ) of the object described by (229b) meets one of the clauses in (228).

We can show that this pair meets the first clause. The chain g as given in (230) starts
with an object of sort s2. The number value of an object described by the AVM in (229b)
is of sort zero. The remaining chain of g contains one s1 object, i.e., it is in the relation
is-1-long. Thus, the pair satisfies the first clause in (228), and, consequently, the pair
consisting of the chain given in (229b) and an object that is s described by (229b) satisfy
the second clause in (228).

The next kind of entities that occurs in terms of Ty2 are semantic types. Within the
grammar T Y2, semantic types are expressed by objects of the sort type. There are four
subsorts of type. In (231) we give the clauses of the relation chain2type that correspond
to these four subsorts.

(231) The relation chain2term (c2t) as needed for semantic types:

c2t(a, 1 )
∀

⇐=
a»
† s2

. b

–

and
1h

truth
i

and is-3-long(b)
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c2t(a, 1 )
∀

⇐=
a»
† s2

. b

–

and
1h

entity
i

and is-4-long(b)

c2t(a, 1 )
∀

⇐=
a»
† s2

. b

–

and
1h

w-index
i

and is-5-long(b)

c2t(a, 1 )
∀

⇐=

a»
† s2

. b

–

and

12

4

complex-type

in 2

out 3

3

5

and append(c, d, b)
and is-6-long(c)
and append(e, f, d)

and
e»
† s2

. g

–

and append(h, i, g)
and is-12-long(h)
and c2t(i, 2 )

and
f»

† s2

. j

–

and append(k, l, j)
and is-13-long(k)
and c2t(l, 3 )

The first three clauses in (231) relate chains to the atomic subsorts of type. They are
parallel to the first clause in (228). The last clause in (231) is relatively complex. It can be
seen to consist of three parts: the first part contains up to the relation call append(f, g, e).
The second and third parts correspond to the blocks below this relation call.

Intuitively the first block checks whether the initial s2s1i subsequence of a corresponds
to the sort c-type, the append relation, then, splits the rest of the chain a in such a way that
the first subsequence, f , corresponds to the in value of the type object 1 and the second
subsequence, g corresponds to the out value of 1 . In the second and the third part of
the clause e and f are checked with respect to these components of 1 . This can be seen,
because we take the sequence s2s112 to correspond to the in attribute, and the sequence
s2s113 to correspond the the out attribute. These sequences are the initial subsequences
of f and g respectively. The remaining sequences i and l, then, are required to stand in the
relation c2t with the in and the out value of 1 .

We can now turn back to our initial example of the chain encoding of the semantic type
〈e, t〉 in (226). If our specification of the relation chain2term given in (231) is correct,
then the chain in (226) should stand in the relation chain2term with a type object that is
described by the following AVM.

(232)

2

6

4

complex-type

in entity

out truth

3

7

5

To show that this is the case, we give in the subsequences of the chain in (226) as
required by the second clause in (231). We use the abbreviatory notation s2s1i.

(233) a =
〈
s2s16, s2s112, s2s14, s2s113, s2s13

〉

b =
〈
s16, s2s112, s2s14, s2s113, s2s13

〉

c =
〈
s16
〉

d =
〈
s2s112, s2s14, s2s113, s2s13

〉
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e =
〈
s2s112, s2s14

〉

g =
〈
s112s2s14

〉

h =
〈
s112

〉

i =
〈
s2s14

〉

f =
〈
s2s113, s2s13

〉

j =
〈
s113, s2s13

〉

k =
〈
s113

〉

l =
〈
s2s13

〉

The second clause in (231) contains two calls for the relation chain2term. Therefore,
we must check whether the chain i and the chain l stand in the relation chain2term with
the in and the out value of an object described by the AVM in (232). To verify this, we
can use the non-recursive clauses of the relation chain2term: The chain i is of the form
s2s14. By the second clause in (231), this chain is in the relation with a linguistic object
o iff o is of sort entity. This is the case for the in value of an object described by (232).
Parallel to this, the chain l is of the form s2s13, which corresponds to objects of the sort
truth according to the first clause in (231).

We have, thus, shown that the chain c given as our initial example in (226) and an object
o described by (232) are in the relation chain2type. There is a semantic type, 〈e, t〉, which
corresponds to o. Alternatively, we can consider c the chain encoding of the type 〈e, t〉.

With the clauses of the relation chain2term that we stated in (228) and (231), we
illustrated the chain encoding of atomic sorts (the first clause in (228) and the first three
clauses in (231)). The second clause in (228) is an instance of the chain encoding for a sort
for which one attribute is appropriate. The fourth clause in (231) can be considered an
instance of the chain encoding of a sort for which there are two attributes appropriate.

If we want to encode terms of Ty2 proper, we must write clauses for the species below me.
As can be seen from the sort hierarchy and the appropriateness conditions given for the sort
me in (121), there is no atomic subsort of me. The species below const have one attribute
appropriate (type). Thus, the clauses of the relation chain2term for these species are of
the same form as the last clause in (228). There are two attributes that are appropriate for
the sort var, type and number. The clause for the chain encoding of variables is, thus,
built after that for the encoding of complex semantic types, i.e., the last clause in (231).
The other subsorts of me — appl, abstr, and equ — all require three attributes. Therefore
the corresponding three clauses of the relation chain2term are all of the same structure,
but are slightly more complicated than the other clauses.

In (234) we give the necessary clauses for the chain encoding of terms of Ty2. For a
better overview over the encoding, Table 4.1 indicates which subsequence of the form s2s1i

corresponds to which species or attribute.

(234) The relation chain2term (c2t) as needed for terms of Ty2:
for each species consti vconst,

c2t(a, 1 )
∀

⇐=
a»
† s2

. b

–

and
1»

consti
type 2

–

and append(c, d, b)
and is-(i+ 21)-long(c)

and
d»
† s2

. e

–

and append(f, g, e)
and is-14-long(f)
and c2t(g, 2 )
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Table 4.1. Chart used for the chain encoding of me objects:

species number attribute number
zero 1 number 11
non-zero 2

truth 3 in 12
entity 4 out 13
w-index 5
complex-type 6

variable 7 type 14
application 8 functor 15
abstraction 9 argument 16
equation 10 var 17
const1 22 arg1 18

arg2 19
...

...
constn n+ 21

For the sort var:

c2t(a, 1 )
∀

⇐=

a»
† s2

. b

–

and

12

4

var

type 2

number 3

3

5

and append(c, d, b)
and is-7-long(c)
and append(e, f, d)

and
e»
† s2

. g

–

and append(h, i, g)
and is-14-long(h)
and c2t(i, 2 )

and
f»

† s2

. j

–

and append(k, l, j)
and is-11-long(k)
and c2t(l, 3 )

for the sort appl:

c2t(a, 1 )
∀

⇐=

a»
† s2

. b

–

and

12

6

6

4

appl

type 2

func 3

arg 4

3

7

7

5

and append(c, d, b)
and is-8-long(c)
and append(e, l, d)
and append(f,m, l)

and
e»
† s2

. g

–

and append(h, i, g)
and is-14-long(h)
and c2t(i, 2 )

and
f»

† s2

. j

–

and append(k, l, j)
and is-15-long(k)
and c2t(l, 3 )

and
m»

† s2

. n

–

and append(o, p, n)
and is-16-long(o)
and c2t(p, 4 )
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for the sort abstr: c2t(a, 1 )
∀

⇐=

a»
† s2

. b

–

and

12

6

6

4

abstr

type 2

var 3

arg 4

3

7

7

5

and append(c, d, b)
and is-9-long(c)
and append(e, l, d)
and append(f,m, l)

and
e»
† s2

. g

–

and append(h, i, g)
and is-14-long(h)
and c2t(i, 2 )

and
f»

† s2

. j

–

and append(k, l, j)
and is-17-long(k)
and c2t(l, 3 )

and
m»

† s2

. n

–

and append(o, p, n)
and is-16-long(o)
and c2t(p, 4 )

for the sort equ:

c2t(a, 1 )
∀

⇐=

a»
† s2

. b

–

and

12

6

6

4

equ

type 2

arg1 3

arg2 4

3

7

7

5

and append(c, d, b)
and is-10-long(c)
and append(e, l, d)
and append(f,m, l)

and
e»
† s2

. g

–

and append(h, i, g)
and is-14-long(h)
and c2t(i, 2 )

and
f»

† s2

. j

–

and append(k, l, j)
and is-18-long(k)
and c2t(l, 3 )

and
m»

† s2

. n

–

and append(o, p, n)
and is-19-long(o)
and c2t(p, 4 )

It is useful to introduce an abbreviatory notation for the chain encoding of terms. In
the following, we will use the number i as an abbreviation for a subsequence of the form
s2s1i. The chart in Table 4.1 lists which number corresponds to which species or attribute.
In (235) we give some examples for the chain encoding of some simple terms. The first term
is the variable vs,0, for which we usually write @, the second term is the variable v(se),0,
and the third term is the the functional application of these two terms.

(235) term chain encoding
vs,0 〈7, 14, 5, 11, 1〉
v(se),0 〈7, 14, 6, 12, 5, 13, 4, 11, 1〉
(v(se),0vs,0)e 〈8, 14, 4, 15, 7, 14, 6, 12, 5, 13, 4, 11, 1, 16, 7, 14, 5, 11, 1〉

To illustrate that the chain encoding is more straightforward then it might seem at the
first place, we can re-write the last chain of (235) as an indentation structure. Then, it looks
like the AVM description of an me object that corresponds to the encoded term, where the
sort and attribute names are replaced by the corresponding numbers from Table 4.1.
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(236) term chain encoding description of a me object

(v(se),0vs,0)e

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

8,

14, 4,

15,

2

6

6

6

6

4

7,

14,

2

4

6,

12, 5,

13, 4,

3

5

11, 1,

3

7

7

7

7

5

16,

2

4

7,

14, 5,

11, 1

3

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

appl

type entity

func

2

6

6

6

6

4

var

type

2

4

c-type

in w-index

out entity

3

5

number zero

3

7

7

7

7

5

arg

2

4

var

type w-index

number zero

3

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

With the definition of the relation chain2term we have established a relation between
me objects and chains. For terms of Ty2, we were able to give a function “∗” that maps every
term to a description of some indiscernibility class of me objects (see Section 3.4). Parallel
to this function from terms to T Y2 descriptions of me objects, we can give a function “#”
from terms T Y2 descriptions of chains.

The definition of the function “#” is similar to the clauses of the relation chain2term,
in particular, there are four different kinds of cases to distinguish: (i) the atomic cases, i.e.,
the way the function is defined for the number 0 and the types t, e and s; (ii) the “unary”
cases, i.e. the definition of the function on numbers of the form i + 1 and on non-logical
constants; (iii) the “binary” cases, i.e., the case of types of the form 〈τ, τ ′〉 and the case of
variables; and (iv) the “ternary” cases of terms of the form (φψ), λx.φ and (φ = ψ). In
Definition 4.6 we define the function “#” for each one of these cases, and indicate in what
respect the other parallel cases differ.

definition 4.6

“#” is a function from IN ∪ Type ∪ Ty2 to the set of T Y2 descriptions such that,

atomic cases:
if x = 0, then

i# =

(
a†∼s2
and is-1-long(a.)

)

for the other atomic cases, replace the call is-1-long(a.) as indicated in the
following table:

0 t e s
is-1-long(a.) is-3-long(a.) is-4-long(a.) is-5-long(a.)

unary cases:
if x = y + 1, then

x# =




Eb Ec Ed Ef Eg
a†∼s2
and append(c,d,a.)
and is-2-long(c)
and d†∼s2
and append(f, g, d.)
and is-11-long(f)
and y#[g/a]




for each c ∈ Const, where consti is the species that corresponds to c, the def-
inition of (cτ )# is just as given for y+1, but with the following replacements:
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y + 1 cτ
is-2-long(a.) is-(i+ 21)-long(a.)
is-11-long(f) is-14-long(f)
y#[g/a] τ#[g/a]

binary cases:
if x = 〈τ, τ ′〉, then

x# =




Eb Ec Ed Ef Eg Eh Ei Ej Ek El
a†∼s2
and append(c,d,a.)
and is-6-long(c)
and d†∼s2
and append(e, f, d)

and e†∼s2
and append(h, i, e.)
and is-12-long(h)
and τ#[i/a]

and f†∼s2
and append(k, l, f.)
and is-13-long(k)
and τ ′#[l/a]




For x = vτ,n, do the following replacements:

〈τ, τ ′〉 vτ,n

is-6-long(c) is-7-long(c)
is-12-long(h) is-14-long(h)
is-13-long(k) is-11-long(k)
τ ′#[l/a] n#[l/a]

ternary cases:
if x = (φψ)τ , then

x# =




Eb Ec Ed Ef Eg Eh Ei Ej Ek El Em Eo Ep
a†∼s2
and append(c,d,a.)
and is-8-long(c)
and d†∼s2
and append(e, l, d)
and append(f,m, d)

and e†∼s2
and append(h, i, e.)
and is-14-long(h)
and τ#[i/a]

and f†∼s2
and append(k, l, f.)
and is-15-long(k)
and φ#[l/a]

and m†∼s2
and append(o, p,m.)
and is-16-long(o)
and ψ#[p/a]




for the other two ternary cases, replace the indicated parts of the definition
of (φψ)τ :

(φψ)τ (λx.φ)τ (φ = ψ)τ

is-8-long(c) is-9-long(c) is-10-long(c)
is-15-long(k) is-17-long(k) is-18-long(k)
φ#[l/a] x#[l/a] φ#[l/a]
is-16-long(o) is-16-long(o) is-19-long(o)
ψ#[p/a] φ#[p/a] ψ#[p/a]

If one compares the lines in the definition of the function “#” to the clauses given for
the relation chain2term in (228), (231) and (234), there is an obvious correspondence. To
highlight this correspondence, we have used the same variables. The difference between the
two, then, amounts to two things: First, there is no me object involved in Definition 4.6.
Second, whenever there is a call chain2term(c, i) in the clauses of the relation, there is a
line x#[c/a] in the definition of the function “#”.
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It should also be noted that every description x# contains a free variable a, whereas
the description x∗ has no free variables. In the case of the function “∗” we can say that
x∗ describes a linguistic object u iff u ∈ DI(x∗). For the function “#” we would like to
say that the description x# describes a chain. For this purpose, however, we cannot use
the description interpretation function D directly, as the interpretation of a description
is always a set of linguistic objects, i.e., it does not contain chains in its denotation. In
Definition 4.7 we define what it means for a chain to be described by some description.

definition 4.7

For each interpretation I = 〈U, S,A,R〉, and for each description δ that contains exactly one
free variable i ,

A chain c ∈ U∗ is described by δ
iff for some ass ∈ AssI with ass( i ) = c,

Dass
I (δ) =

{
u ∈ U

∣∣c ∈ (Cou
I )∗

}
6= ∅.

Definition 4.7 states that a chain c can be described by some description δ if δ contains
exactly one free variable. For c to be described by such a description, there must be a
variable assignment that assigns the chain c to the free variable of δ and the interpretation
of δ under this variable assignment is the set of all objects u such that c contains only
components of u. Intuitively this means that a description δ describes some chain c if δ is
true of all objects that contain the chain c in their domain of quantification. Adding the
requirement that this set be not empty, we ensure that only those chains can be described
in the sense of Definition 4.7 whose elements are components of an object in the universe.

Given this definition, we can see what it means to say that the chain in (226) is described
by 〈e, t〉#. In (237) we re-state the chain given in (226), using our abbreviatory convention,
and the description 〈e, t〉#

(237) a. 〈6, 12, 4, 13, 3〉
b. 〈e, t〉# =


Eb Ec Ed Ef Eg Eh Ei Ej Ek El
a†∼s2
and append(c,d,a.)
and is-6-long(c)
and d†∼s2
and append(e, f, d)

and e†∼s2
and append(h, i, e.)
and is-12-long(h)
and i†∼s2
and is-4-long(i.)

and f†∼s2
and append(k, l, f.)
and is-13-long(k)
and l†∼s2
and is-3-long(l.)




The description in (237b) contains exactly one free variable, a. We can, therefore, ask
whether it describes the chain in (237a) according to Definition 4.7. A brief comparison of
the numbers in the abbreviated notation of c with the calls is-i-long in (237b) shows that
this is the case.

The description (et)# describes the chain in (237a) iff interpreting the variable a as this
chain makes the description true for every object in the universe which has every member
of the chain in (237a) as a component. The description in (237b) requires the chain referred
to by a to start with a s2 object, followed by six s1 objects. As the chains c starts with a
subsequence s2s16, it satisfies this requirement. Going through the rest of the chain c and
the other lines in (237b) in an analogous way shows that the chain c is described by (et)#.



4.2. FORMALIZATION OF λ-CONVERSION 197

The way we have we have defined the grammar T Y2 in Chapter 3, only congruent con-
figurations of objects correspond to the same entity in the semantic representation language.
For the chain encoding, we will require that two chains c1 and c2 correspond to the same
entity in the semantic representation language, if (i) they are of the same length, (ii) they
only contain elements of the sort s1 or s2, and (iii) the order of the s1 and s2 objects is the
same in c1 and c2. This connection is formally expressed by the definition of the relation
are-chain-copies:

(238) The relation are-chain-copies:

are-chain-copies(x, y)
∀

⇐=
(

xh

echain
i

and
yh

echain
i

)

are-chain-copies(x, y)
∀

⇐=




x»

† s1

. 1

–

and
y»
† s1

. 2

–

and are-chain-copies( 1 , 2 )




are-chain-copies(x, y)
∀

⇐=




x»

† s2

. 1

–

and
y»
† s2

. 2

–

and are-chain-copies( 1 , 2 )




Given this relation, it can be shown that for each me object o and for each two chains
c1 and c2, if both pairs 〈c1, o〉 and 〈c2, o〉 are in the relation chain2term, then the pair
〈c1, c2〉 is in the relation are-chain-copies. Furthermore, we can show that the function
“#” characterizes a chain up to copyhood, i.e., for each term x, and for each chains c1 and
c2, if x# describes c1 and c2, then the pair 〈c1, c2〉 is in the relation are-chain-copies.

We now have defined a relation, chain2term, that relates some chains to objects of sort
number, type and me. In addition, the function “#” expresses a relation between natural
numbers, semantic types and terms of Ty2 on the one side and chains on the other side.
The relation chain2term expresses the correspondence between some chain and some object
in the model of the grammar. The function “#” expresses a correspondence between the
entities of our semantic representation language and some chains. What we are missing, is
a characterization of the circumstances in which a chain is such that it corresponds to some
object in the linguistic universe or to some entity in the semantic representation language.

Such a characterization is encoded in the relations chain-number, chain-type and
chain-term. These relations are defined so that they mimic the signature and the theory of
the corresponding parts of the grammar T Y2. As chains are finite and acyclic by definition,
it is neither necessary to include a finiteness requirement such as the GFP in (131c) on term
encoding chains, nor are we forced to exclude cyclic chains explicitly.

In (239), we define a relation chain-number that holds for a chain iff this chain encodes
a number object (or, equivalently a natural number).

(239) The relation chain-number:

chain-number(x)
∀

⇐= x = 〈1〉

chain-number(x)
∀

⇐=

(
x = 〈2, 11〉 ⊕ n
and chain-number(n)

)

The two clauses of the relation chain-number correspond to the information of number
objects given by the grammar T Y2. In the first case, the chain is just the sequence s2s11.
According to Table 4.1, this corresponds to the species zero. The second clause describes a
chain c iff the first s2s1i subsequence of c has two s1 objects. In this case, it corresponds to
the sort non-zero according to Table 4.1. The next s2s1i sequence of c is required to contain
eleven s1 objects, i.e., to correspond to the attribute name number. Finally, the remaining
subsequence of c, indicated by n in the clause, must be in the relation chain-number as
well. This corresponds to the appropriateness conditions of the sort non-zero given in (108),
where the sort number is appropriate to the attribute number.
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In Section 3.1.1, where we introduced the sort number we imposed a constraint that
each number object has a component of sort zero. In the case of the chain-encoding, this
follows automatically, because chains are finite. Thus, the only way that a chain would be
in the relation chain-number is if its final s2s1i subsequence is s2s11.

The relation chain-type is parallel to the relation chain-number. A chain c is in the
relation chain-type iff it corresponds to a type object in an exhaustive model of T Y2, or,
equivalently, iff it corresponds to some semantic type. The relation is defined in (240). The
four clauses correspond to the four subsorts of type.

(240) The relation chain-type:

chain-type(x)
∀

⇐= x = 〈3〉

chain-type(x)
∀

⇐= x = 〈4〉

chain-type(x)
∀

⇐= x = 〈5〉

chain-type(x)
∀

⇐=



x = 〈6, 12〉 ⊕ i⊕ 〈13〉 ⊕ o
and chain-type(i)
and chain-type(o)




The first three clauses in (240) correspond to the three atomic subsorts of type. The
chains that meet these clauses are of the form s2s13, s2s14 or s2s15, which correspond to
the sorts truth, entity and w-index respectively according to Table 4.1.

In the last clause in (240), a chain c is described iff c’s initial s2s1i sequence contains
exactly six s1 objects, i.e., corresponds to the sort c-type. In addition, it must be possible
to split the rest of c in two chains c1 = 〈12〉 ⊕ i and c2 = 〈13〉 ⊕ o, where i and o are
in the relation chain-type as well. It can be seen in Table 4.1 that the numbers 11 and
12 represent the attribute names in and out respectively. This shows that the relation
chain-type mimics the appropriateness conditions of the sort type.

It is helpful for the reading descriptions that use chain encodings of elements of the
semantic representation language to see that a characterization of a chain as given in the
first line in the second clause of (240) can be rendered in a form which looks almost like an
AVM and, then, is parallel to a description of a me object. We have already used such a
notation in (236). The first line of the second clause would look as in (241):

(241) x = 〈6〉 ⊕
〈12〉 ⊕i⊕
〈13〉 ⊕o

Finally, we have to show that the relation also encodes the theory of the sort type. Just
as was the case with number-encoding chains, the nature of chains as being finite sequences
automatically captures the fact that semantic types are finite and acyclic. In the case of the
sort type, we have furthermore imposed the restriction that configurations under an object
of sort type must be such that they contain the maximally possible number of identities.
This was expressed with the Type Identity Principle in (114). This principle was
needed to ensure that non-congruent configurations always correspond to distinct semantic
types. In the chain encoding, we are more permissive, i.e., chains that encoded the same
semantic type need not be “congruent”, it is enough if they contain the same sequence of
s1 and s2 objects. For this reason, the conditions included in the definition of the relation
chain-type are enough.

We define the relation chain-term which has the following property: A chain c is in
this relation iff c corresponds to some me object, or, equivalently, iff c corresponds to some
term of Ty2. The definition of the relation chain-term in (242) contains one clause for
every species below me.
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(242) The relation chain-term:
for each constant c ∈ Const, such that c is assigned the type τ by C, and c
corresponds to the species consti,

chain-term(x)
∀

⇐=
x = 〈(i+ 21), 14〉 ⊕ t
and τ#[t/a]

chain-term(x)
∀

⇐=
x = 〈7, 14〉 ⊕ t⊕ 〈11〉 ⊕ n
and chain-type(t)
and chain-number(n)

chain-term(x)
∀

⇐=
x = 〈8, 14〉 ⊕ t⊕ 〈15〉 ⊕ f ⊕ 〈16〉 ⊕ a
and chain-type(t)
and chain-term(f)
and chain-term(a)
and find-type(f, t1)
and find-type(a, t2)
and t1 = 〈6, 12〉 ⊕ t2〈13〉 ⊕ t

chain-term(x)
∀

⇐=
x = 〈9, 14〉 ⊕ t⊕ 〈17〉 ⊕ v ⊕ 〈16〉 ⊕ a
and chain-type(t)
and chain-term(v) and v = 〈7〉 ⊕ v′

and chain-term(a)
and find-type(v, t1)
and find-type(a, t2)
and t = 〈6, 12〉 ⊕ t1〈13〉 ⊕ t2

chain-term(x)
∀

⇐=
x = 〈10, 14, 3〉 ⊕ 〈18〉 ⊕ f ⊕ 〈19〉 ⊕ a
and chain-term(a1)
and chain-term(a2)
and find-type(a1, t1)
and find-type(a2, t2)
and are-chain-copies(t1, t2)

The clause for a constant c makes reference to the particular type τ assigned to the
constant by the function C and to the species consti that corresponds to this constant. A
chain that meets the clause for the constant c, then, must start with a subsequence of the
form s2s1i+21, as the number (i + 21) represents the sort consti according to Table 4.1.
The next s2s1i sequence of this chain is required to contain exactly fourteen objects of sort
s1, i.e., it represents the attribute type. In order to impose the right semantic type, the
remaining subsequence of the chain, then, must be described by τ#.

The clause for variables is constructed following the final clause of the relation chain-type.
If it describes some chain c, then c has the following properties: c starts with a subsequence
of the form s2s17 (which corresponds to the sort var in Table 4.1), followed by a subsequence
s2s114, i.e., the representation of the attribute type. The remaining sequence starts with
some type-encoding chain t, followed by a subsequence s2s111. We have already seen that
this subsequence is the chain-encoding of the attribute number. Finally, the rest of the
chain c must be some sequence n which is in the relation chain-number.

The last three clauses in (242) encode the information on the other species below me,
appl, abstr and equ. In the first line, we always give the overall structure of the chain. In
the clause for application, the chain is of the form
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〈8, 14〉 ⊕ t⊕ 〈15〉 ⊕ f ⊕ 〈16〉 ⊕ a.
According to Table 4.1, the initial s2s18 subsequence represents the species appl. The
following s2s114 sequence corresponds to the attribute type. The sequence t is required to
be a type encoding chain by virtue of the line chain-type(t). Next on the chain, there is a
subsequence s2s115 (= func), followed by a term-encoding sequence f . Then, there comes
a sequence s2s116 (= arg) and, finally, another term-encoding sequence a.

The first four lines of the clause, thus, give us the information from the appropriateness
conditions of the sort appl as given in (121). In Section 3.1.3 we have, however, also imposed
some restrictions on the semantic types that occur within a appl object: The type value
of a appl object must be identical with its func type out value, and the arg type value
must be identical with its func type in value (see (122a)).

In order to encoded these restrictions in the clause of the relation chain-term, we use
an auxiliary relation find-type which has a pair 〈c,t〉 in its denotation iff the first s2s1i

sequence of c corresponds to a species below me, the second s2s1i sequence of c corresponds
to the attribute type (i.e., s2s114), and the rest of c starts with the sequence t, such that
t is chain encoding of a semantic type.5

(243) The relation find-type:

find-type(x, y)
∀

⇐=




x = 〈s2〉 ⊕ s⊕ 〈14〉 ⊕ y ⊕ r

and




is-1-long(s)
or . . .
or is-10-long(s)
or is-22-long(s)
or . . .
or is-(n+ 21)-long(s)




and chain-type(y)




With the relation find-term, we can access the subsequence of a term-encoding that
encodes its semantic type. In the clause that corresponds to the sort appl, we, now, include
the requirement that those subsequences of x, f and a that encode the semantic types, i.e.,
t, t1 and t2 stand in the right relation, i.e., that t1 corresponds to a complex type whose
input type is t2 and whose output type is t. Having integrated this type restriction into
the clause that corresponds to the sort appl, this clause encodes all the restrictions that we
impose on objects of sort appl.

The next clause in (242) expresses the restrictions on the sort abstr. As such, it is almost
like the previous clause, but uses different numbers, since the species and attribute names
differ. Furthermore, it requires that the chain that corresponds to the variable bound by
the lambda abstractor, the sequence v, be the encoding of a variable, i.e., v must be in the
relation chain-term and start with a subsequence s2s17. The constraint on the semantic
type of a lambda abstraction as given in (122b) for the sort abstr is given in the last three
lines of the clause.

The final clause in (242) corresponds to the sort equ. It is very similar to the preceding
two clauses. The main difference lies in the encoding of the constraint on the semantic
types. As we know that an equation is always of type t, we can directly require the initial
part of a chain that meets the last clause to be of the form

〈
s2s110, s2s114, s2s13

〉
, which

corresponds to the species equ, the attribute type and the species truth according to Ta-
ble 4.1. In addition, we require that the subsequences a1 and a2 which correspond to the
two subterms of an equation, be of the same type. For term-encoding chains, this means
that the subsequences that correspond to their semantic type be copies of each other.

5As the relation find-type does not have a recursive clause, we could, in principle, replace the relation
calls find-type(x, y) in (242) by the description in the body of the clause in (243). As this would turn the
clauses in (242) quite lengthy, we prefer to use the auxiliary relation for the convenience of the reader.
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The relation chain-term, as given in (242) provides the means to identify exactly those
chains that encode a term of Ty2. This will be necessary in our encoding of λ-conversion.
There, we must manipulate subsequences of term-encoding chains. We must be sure, how-
ever, that what we manipulate are actually term-encoding subsequences and not just arbi-
trary sequences of s1 and s2 objects.

We will use the relation chain2term in Section 4.2.2.2 to encode λ-conversion as a
relation, not as a new kind of linguistic object, as we did in Section 4.2.1. The function
“#” will be used in Section 4.2.2.3 to allow for a LE-encoding of shifting operations that
interacts with the chain encoding of λ-conversion.

4.2.2.2. λ-Conversion defined on Chains. In our formalization of λ-conversion in Section 4.2.1,
we introduced a sort, reduction with two attributes aux and term such that the term that
corresponds to the aux value reduces to the term that corresponds to the term value.
Instead of enriching the ontology with such a sort, we will, now, define λ-conversion as a
relation between two term-encoding chains. A pair 〈c1, c2〉 is in the relation reduction iff
there are terms φ1 and φ2 such that c1 is described by φ1

# and c2 is described by φ2
#,

and φ1 β-reduces to φ2. But before we can turn to λ-conversion, we must give the analogs
to the definitions of subterm, free variables, and substitution.

In the constraint on β-reduction objects, we could use the relation component to find a
redex within the input term. In the case of chains, however, a subterm of a term-representing
chain is not a component of that chain, but a string within it. In order to be able to identify
such term-representing sub-strings of chains, we define the relation chain-subterm in (244).

To keep the clauses in the definitions of the following relations readable, we will use the
symbol “⊕” in infix notation for the relation append. Furthermore, we will use the natural
number i as abbreviations for the description of a subsequence of the form s2s1i.

(244) The relation chain-subterm:

chain-subterm(x, y)
∀

⇐=
chain-term(y)
and are-chain-copies(x, y)

chain-subterm(x, y)
∀

⇐=
chain-term(y)
and y = 〈7,14〉 ⊕ t⊕ 〈17〉 ⊕ v ⊕ 〈16〉 ⊕ a
and (chain-subterm(x, v) or chain-subterm(x, a))

chain-subterm(x, y)
∀

⇐=
chain-term(y)
and y = 〈8,14〉 ⊕ t⊕ 〈15〉 ⊕ f ⊕ 〈16〉 ⊕ a
and (chain-subterm(x, f) or chain-subterm(x, a))

chain-subterm(x, y)
∀

⇐=
chain-term(y)
and y = 〈9,14〉 ⊕ t⊕ 〈18〉 ⊕ a1 ⊕ 〈19〉 ⊕ a2

and (chain-subterm(x, a1) or chain-subterm(x, a2))

The four clauses in the definition of the relation chain-subterm correspond to the four
cases of Definition 4.1. Notice that we must require that a chains c can only be a subterm of
a chain c′ if both are term-encoding chains. It is, however, sufficient to require this property
explicitly of the second argument of the relation, because if it is a term representing chain,
then the first argument must be term representing as well.
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We must be able to characterize a free variable, even if represented as a chain. This is
achieved in the relation chain-free-variable. A pair 〈c, c′〉 is in the relation chain-free-variable

iff c is the chain-encoding of some variable v and c′ is the chain encoding of some term φ
and v occurs freely in φ. We will follow the definition in (201) as closely as possible.

(245) The relation chain-free-variable:

chain-free-variable(x, y)
∀

⇐=
chain-term(x)
and x = 〈7〉 ⊕ a
and are-chain-copies(x, y)

(clause for application:)

chain-free-variable(x, y)
∀

⇐=
chain-term(y)
and y = 〈8,14〉 ⊕ t⊕ 〈15〉 ⊕ f ⊕ 〈16〉 ⊕ a

and

(
chain-free-variable(x, f)
or chain-free-variable(x, a)

)

(clause for abstraction:)

chain-free-variable(x, y)
∀

⇐=
y = 〈9,14〉 ⊕ t⊕ 〈17〉 ⊕ v ⊕ 〈16〉 ⊕ a
and not are-copies(x, v)
and chain-free-variable(x, a)

(clause for equation:)

chain-free-variable(x, y)
∀

⇐=
chain-term(y)
and y = 〈10,14〉 ⊕ t⊕ 〈18〉 ⊕ a1 ⊕ 〈19〉 ⊕ a2

and

(
chain-free-variable(x, a1)
or chain-free-variable(x, a2)

)

The relation chain-free-variable is needed for the formalization of the notion substi-
tution as given in Definition 4.3. In (246) we define a relation chain-replace parallel to
the definition of the relation replace in (203). Like in (203) we will indicate to which line
of Definition 4.3 the clauses correspond.

(246) The relation chain-replace:

[ψ/x]x = ψ

chain-replace(x, y, v, w)
∀

⇐=
chain-term(x)
and chain-term(v)
and x = 〈7〉 ⊕ a
and are-chain-copies(x, y)
and are-chain-copies(v, w)

[ψ/x]a = a, for each variable and constant a 6= x

chain-replace(x, y, v, w)
∀

⇐=
chain-term(x)

and




x = 〈7〉 ⊕ a
or x = 〈22〉 ⊕ a
or . . .
or x = 〈(n+ 21)〉 ⊕ a




and not are-chain-copies(x, y)
and are-chain-copies(x, v)



4.2. FORMALIZATION OF λ-CONVERSION 203

[ψ/x](φ1φ2) = ([ψ/x]φ1[ψ/x]φ2)

chain-replace(x, y, v, w)
∀

⇐=
chain-term(x)
and chain-term(v)
and x = 〈8, 14〉 ⊕ t⊕ 〈15〉 ⊕ f ⊕ 〈16〉 ⊕ a
and x = 〈8, 14〉 ⊕ t′ ⊕ 〈15〉 ⊕ f ′ ⊕ 〈16〉 ⊕ a′

and are-chain-copies(t, t′)
and chain-replace(f, y, f ′, w)
and chain-replace(a, y, a′, w)

[ψ/x](φ1 = φ2) = ([ψ/x]φ1 = [ψ/x]φ2)

chain-replace(x, y, v, w)
∀

⇐=
chain-term(x)
and chain-term(v)
and x = 〈10, 14〉 ⊕ t⊕ 〈18〉 ⊕ a1 ⊕ 〈19〉 ⊕ a2

and x = 〈10, 14〉 ⊕ t′ ⊕ 〈18〉 ⊕ a′1 ⊕ 〈19〉 ⊕ a′2
and are-chain-copies(t, t′)
and chain-replace(a1, y, a

′
1, w)

and chain-replace(a2, y, a
′
2, w)

[ψ/x](λx.φ) = λx.φ

chain-replace(x, y, v, w)
∀

⇐=
chain-term(x)
and x = 〈9, 14〉 ⊕ t⊕ 〈17〉 ⊕ u⊕ 〈16〉 ⊕ a
and are-chain-copies(u, y)
and are-chain-copies(x, v)

[ψ/x](λy.φ) = λy.[ψ/x]φ, if y 6= x and y 6∈ FV (ψ) or x 6∈ FV (φ)

chain-replace(x, y, v, w)
∀

⇐=
chain-term(x)
and chain-term(v)
and x = 〈9, 14〉 ⊕ t⊕ 〈17〉 ⊕ u⊕ 〈16〉 ⊕ a
and v = 〈9, 14〉 ⊕ t′ ⊕ 〈17〉 ⊕ u′ ⊕ 〈16〉 ⊕ a′

and

(
not chain-free-variable(u,w)
or not chain-free-variable(y, a)

)

and are-chain-copies(t, t′)
and are-chain-copies(u, u′)
and chain-replace(a, y, a′, w)

In Section 4.2.1.1 we saw that we need a relation replace1 that would encode the substi-
tution of a single occurrence of some subterm in addition to a relation replace that encodes
the substitution of all free occurrences of some variable. Similarly, for the chain encoding,
such a second relation is needed as well. In (247) we define this relation chain-replace1.

(247) The relation chain-replace1

chain-replace1(x, y, v, w)
∀

⇐=
chain-term(x)
and chain-term(v)
and x = 〈7〉 ⊕ a
and are-chain-copies(x, y)
and are-chain-copies(v, w)
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chain-replace1(x, y, v, w)
∀

⇐=
chain-term(x)
and chain-term(v)
and x = 〈8, 14〉 ⊕ t⊕ 〈15〉 ⊕ f ⊕ 〈16〉 ⊕ a
and x = 〈8, 14〉 ⊕ t′ ⊕ 〈15〉 ⊕ f ′ ⊕ 〈16〉 ⊕ a′

and are-chain-copies(t, t′)

and




(
chain-replace1(f, y, f ′, w)
and are-chain-copies(a, a′)

)

or(
chain-replace1(a, y, a′, w)
and are-chain-copies(f, f ′)

)




chain-replace1(x, y, v, w)
∀

⇐=
chain-term(x)
and chain-term(v)
and x = 〈10, 14〉 ⊕ t⊕ 〈18〉 ⊕ a1 ⊕ 〈19〉 ⊕ a2

and x = 〈10, 14〉 ⊕ t′ ⊕ 〈18〉 ⊕ a′1 ⊕ 〈19〉 ⊕ a′2
and are-chain-copies(t, t′)

and




(
chain-replace1(a1, y, a

′
1, w)

and are-chain-copies(a2, a
′
2)

)

or(
chain-replace1(a2, y, a

′
2, w)

and are-chain-copies(a1, a
′
1)

)




chain-replace1(x, y, v, w)
∀

⇐=
chain-term(x)
and chain-term(v)
and x = 〈9, 14〉 ⊕ t⊕ 〈17〉 ⊕ u⊕ 〈16〉 ⊕ a
and v = 〈9, 14〉 ⊕ t′ ⊕ 〈17〉 ⊕ u′ ⊕ 〈16〉 ⊕ a′

and

(
not chain-free-variable(u,w)
or not chain-free-variable(y, a)

)

and are-chain-copies(t, t′)
and are-chain-copies(u, u′)
and chain-replace1(a, y, a′, w)

The definition of the relation chain-replace1 follows that of the relation replace1

in (209), but uses the chain notions instead of descriptions of me objects.

After the definitions of the auxiliary relations, we can turn to the relation reduction. A
pair 〈x, y〉 of term-encoding chains is in the relation reduction iff either x and y are copies,
or there is a chain z such that the pair 〈x, z〉 stands in any of the relations change-bound-var
or β-contraction, and the pair 〈z, y〉 is in the relation reduce. Clearly, the three clauses
of the relation reduction mimic the sort-hierarchy below reduction in (204).

(248) The relation reduction:

reduction(x, y)
∀

⇐=
chain-term(x)
and are-chain-copies(x, y)

reduction(x, y)
∀

⇐=
chain-term(x)
and change-bound-var(x, z)
and reduction(z, y)
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reduction(x, y)
∀

⇐=
chain-term(x)
and β-contraction(x, z)
and reduction(z, y)

Of the three clauses in (248), the first, the case of an empty sequence of applications
of reduction operations uses the relation are-chain-copies as defined in (238). As chains
that are in this relation encode the same term, the first clause in (248) specifies the case
that for each term φ, it holds trivially that φ→λφ. The non-trivial cases of β-reduction are
encoded by the additional relations change-bound-var and β-contraction, used in the
second and the third clause of the definition of the relation reduction.

In (249) we give the definition of the relation change-bound-var. A pair 〈c1, c2〉 is in
this relation iff c1 encodes some term φ1 and c2 encodes some term φ2 and φ2 results from
changing a bound variable in φ1 according to Definition 4.4 above.

(249) The relation change-bound-var:

change-bound-var(x, y)
∀

⇐=
chain-subterm(u, x)
and u = 〈9,14〉 ⊕ t⊕ 〈17〉 ⊕ v ⊕ 〈16〉 ⊕ a
and w = 〈9,14〉 ⊕ t′ ⊕ 〈17〉 ⊕ v′ ⊕ 〈16〉 ⊕ a′

and not chain-free-variable(v′, a)
and find-type(v, tv)
and find-type(v′, t′v)
and are-chain-copies(tv, t

′
v)

and chain-replace(a, v, a′, v′)
and chain-replace(x, u, y, w)

This definition is parallel to the constraint on the sort change-bound-var in (207). For
illustration consider the following schematic example. Assume that the term φ contains an
occurrence of a term λx1.ψ, and let x2 be a variable that is not free in ψ. Let, then, χ be
the term that results from substituting λx2.[x2/x1]ψ for λx1.ψ in φ. In (250) we indicate
which variables in the definition of the relation change-bound-var correspond to which of
these terms:

(250) x = φ v = x1

y = χ v′ = x2

u = λx1.ψ a = ψ
w = λx2.[x2/x1]ψ a′ = [x2/x1]ψ

With these correspondences in mind, it is relatively easy to read the definition of the re-
lation change-bound-var. The chain x has a subsequence that corresponds to the chain u.
The chain u chain-encodes some term λx1.ψ, where v is the chain that encodes the Ty2-
variable x1, and a is the chain that encodes the term ψ. This is indicated in the characteri-
zation of u as given in the second line of the clause. In the third line, we get the character-
ization of the chain w. This chain encodes a term λx2.ψ

′, where ψ′ is just [x2/x1]ψ. The
variable x2 is encoded as the chain v′, which is a subsequence of w, the term ψ′ is encoded
as the chain a′. We use the relation chain-free-variable to state that the chain v ′ must
not be free in the chain a, which corresponds to the requirement that the variable x2 be
not free in ψ.

In addition, we require that the chains v and v′ encode terms of the same semantic
type. With the relation find-type we isolate the subsequences of v and v′ that encode
the semantic type, i.e., the subsequences tv and t′v . Consequently, we use the relation
are-chain-copies to state that these two subsequences encode the same semantic type,
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Finally, we state the substitution. The call chain-replace(a, v, a′, v′) specifies the same
as saying that ψ′ is the term [x2/x1]ψ. In the last line, we use the relation chain-replace1

to substitute the sequence w for one occurrence of the sequence u in x.

The third clause in the definition of the relation reduction in (248) uses the relation
β-contraction. In (251), we give the clause that is needed to define this relation. Again,
the parallelism to the constraint in (210) is obvious.

(251) The relation β-contraction:

β-reduction(x, y)
∀

⇐=
chain-term(x)
and chain-subterm(r, x)
and r = 〈8,14〉 ⊕ t⊕ 〈15〉 ⊕ f ⊕ 〈16〉 ⊕ s
and f = 〈9, 14〉 ⊕ t′ ⊕ 〈17〉 ⊕ v ⊕ 〈16〉 ⊕ a
and chain-replace(a, v, c, s)
and chain-replace1(x, r, y, c)

In this clause, we require the chain x to be a term-encoding chain. The chain x must
contain a sequence which is a subterm of the term represented by x. We use the variable r
to refer to this sequence. The sequence r is characterized as being the chain-encoding of
a β-redex, i.e., its initial s2s1i sequence contains exactly eight s1 objects which makes it
correspond to a term of the form (φ1φ2). The chain r is split up between its semantic
type t, its functor f and its argument s. The chain f is characterized as corresponding to
a λ-abstraction (as it starts with s2s19). This characterization makes r the encoding of a
β-redex. In the last two lines of the clause, we state that the usual substitutions are found
between x and y.

We have given the necessary details for a chain encoding for formula shifting operations
such as λ-conversion. We will, next, consider how this technique enables us to integrate
λ-conversion into a linguistic theory.

4.2.2.3. Integration. In the following, we will integrate the definitions of Section 4.2.2.2
into our grammar. Notice that while we introduced a number of relations in Section 4.2.2.2,
we did not introduce any new sorts or attributes. This means that we can still assume the
content value of a sign to be an object of sort me. We will first show how the Seman-
tics Principle, or more precisely the relation intensional-functional-application

(ifa), can be changed from the original formulation in (150) to a new formulation which
includes λ-conversion. Furthermore, we will impose a constraint on the content value of
signs requiring that the logical form of a sign be redex-free. Finally, we will show what
consequences the new approach to λ-conversion has for the encoding of shifting operations.

Given the encoding of λ-conversion via chains as presented in Section 4.2.2.2, we can
define the Semantics Principle in such a way that we require the content value of a
phrase to be a λ-converted form of the intensional functional application of the content
values of the daughters. In (252) we repeat the Semantics Principle from (149).

(252) The Semantics Principle (SP):

phrase ⇒

2

6

4

syns loc cont 1

dtrs

"

h-dtr syns loc cont 2

n-dtr syns loc cont 3

#

3

7

5

and ifa( 1 , 2 , 3 )
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What needs to be done, next, is to re-define the relation ifa in such a way that it
expresses that the intensional functional application of its second and its third argument
β-reduces to its first argument. This is done in the following definition.

(253) Revised definition of the relation ifa:

ifa( 1 , 2 , 3 )
∀

⇐=
chain2term(p, 1)
and chain2term(h, 2)
and chain2term(n, 3)
and chain-term(c)
and chain-term(a)
and c = 〈8, 14〉 ⊕ t⊕ 〈15〉 ⊕ h⊕ 〈16〉 ⊕ a
and a = 〈9, 14〉 ⊕ t′ ⊕ 〈17, 7, 14, 5, 11, 1〉⊕ 〈16〉 ⊕ n
and reduction(c, p)

ifa( 1 , 2 , 3 )
∀

⇐=
chain2term(p, 1)
and chain2term(h, 2)
and chain2term(n, 3)
and chain-term(c)
and chain-term(a)
and c = 〈8, 14〉 ⊕ t⊕ 〈15〉 ⊕ n⊕ 〈16〉 ⊕ a
and a = 〈9, 14〉 ⊕ t′ ⊕ 〈17, 7, 14, 5, 11, 1〉⊕ 〈16〉 ⊕ h
and reduction(c, p)

In the clauses of the relation ifa, the variables p, h and n refer to the chains that encode
the me objects which occur as the content values of a phrase, its head daughter and its
nonhead daughter respectively. We need two more chains, c and a both of which are term-
encoding chains, as stated in the calls chain-term(c) and chain-term(a). In the first clause
c is the chain that encodes the intensional functional application of the logical form of the
head daughter to the logical form of the nonhead daughter. The characterization of the chain
c says that c encodes an application (as it starts with s2s18), the functor of which is the chain
that encodes the logical form of the head daughter (h), the argument is some term-encoding
chain a. The chain a is characterized as a chain that encodes a λ-abstraction (s2s19). The
abstractor binds the variable encoded as the sequence 〈7, 14, 5, 11, 1〉. Remember from (235)
that this sequence represents the variable vs,0 (i.e., @). The scope of the abstraction is the
chain n that corresponds to the logical form of the nonhead daughter.

The second clause differs from the first clause of the relation ifa only in that it uses the
chain n as the functor in the chain c, instead of h.

In the final line in the first clause, we specify that the pair 〈c,m〉 be in the relation
reduction. This means that the chain c encodes a term which β-reduces to the term which
is encoded by the chain p. According to the first line of the clause, p is the chain encoding of
the logical form of the phrase. Thus, we know that the logical form of a phrase is a β-reduced
form of the intensional functional application of the logical forms of the daughters.

So far we have not enforced that the logical form of a phrase is redex-free. In Sec-
tion 4.2.1.2 we expressed this condition with the Content Principle in (216). In (254)
we re-state this constraint within the present architecture.
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Figure 4.11. An example derivation of the sentence Mary walks.:

NP
"

phon 〈Mary〉

syns 1
h

loc cont m
i

#

V
2

6

4

phon 〈walks〉

syns loc

"

cat sbc
D

1
E

cont λx.walk′@(x@)

#

3

7

5

comp head

S
"

syns loc

»

cat sbc 〈〉

cont walk′@(m)

–

#

(254) The Content Principle (for the second alternative):

local ⇒




h

content 1
i

and not E 2



subterm( 2 , 1 )

and
2»

appl

func abstr

–







Given the Semantics Principle which uses the relation ifa as defined in (253), and
the Content Principle, the content value of a phrase is a fully β-reduced me object.
In contrast to the encoding of λ-conversion presented in Section 4.2.1, the reduction steps
do not appear as components of the linguistic sign.

In the introduction to Section 4.2.2 we saw structures as they result from an architecture
which uses chain encodings. In Figure 4.9 (page 186) and in Figure 4.10 (page 187), we
gave the structure for two alternative derivations of the sentence Mary walks. For clarity,
let us illustrate the first of these derivations again. In Figure 4.11 we repeat Figure 4.9.

The logical form of the daughters is just their basic translation. As these do not contain
a β-redex, they satisfy the Content Principle in (254). The Semantics Principle
enforces that the logical form of the mother stands in the relation ifa with the logical
forms of the daughters. To check whether this is the case, we must see whether the triple of
terms 〈walk′@(m), λx.walk′@(x@),m〉 satisfies one of the clauses of the relation ifa as given
in (253). Let us check whether the triple is described by the first clause, i.e., the clause that
takes the head daughter as the semantic functor. In (255) we give the terms that correspond
to the content values of the signs in Figure 4.11 and the chain-encoding of these terms.
We assume that the constant m corresponds to the species const24, and that the constant
walk′ corresponds to the species const127. In order to make the chains more readable, we
set apart those subsequences that correspond to frequently used subterms, and indicate the
corresponding term below the subsequences.

(255) a. Chain encoding of the logical form of the phrase (walk′(vs,0)(m)):

p =
〈

8, 14, 3, 15, 8,14,6,12,4,13,3,15,148,14,6,12,5,13,6,12,4,13,3,16,7,14,5,11,1,

walk′@
16, 45,14,4

m

〉

b. Chain encoding of the logical form of the head daughter
([λv(se),0.walk′(vs,0)](vse,0(vs,0)):

h=〈
9, 14, 6, 12, 6, 12, 5, 13, 4, 13, 3, 17, 7,14,6,12,5,13,4,11,1,

vse,0
16,

8, 14, 3, 15, 8,14,6,12,4,13,3,15,148,14,6,12,5,13,6,12,4,13,3,16,7,14,5,11,1,

walk′@
16, 8, 14, 4, 15, 7,14,6,12,5,13,4,11,1,

vse,0
16, 7,14,5,11,1

vs,0

〉
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c. Chain encoding of the logical form of the nonhead daughter (me):

n =
〈

45,14,4
m

〉

Given these three chains, the first clause in (253) requires us to assume two more chains, c
and a where a contains the chain n as a subsequence and c contains h and a as subsequences.
In (256) we give these two chains, according to the characterization given in (253). Below
each chain, we indicate the term that this chain corresponds to.

(256) a. The term-encoding chain a:

a =
〈

9, 14, 6, 12, 5, 13, 4, 17, 7,14,5,11,1,
vs,0

16
〉
⊕ n,

i.e., λvs,0.me

b. The term-encoding chain c:
c = 〈8, 14, 4, 15〉 ⊕ h⊕ 〈16〉 ⊕ a,
i.e., (λvse,0.walk′@(vse,0vs,0))(λvs,0.me)

As can be seen from the term below the chain c, the chain is the encoding of term that
expresses the intensional functional application of the logical form of the head daughter
to that of the nonhead daughter. We can, then, take this chain as the starting point for
carrying out β-reduction. The term encoded by c is a redex. Its contractum is just like the
sequence in the second line of the chain h in (255), but with the sequence a substituted
for the subsequence sequence that corresponds to the variable vse,0. The resulting chain is
given in (257).

(257) c′ =
〈

8, 14, 3, 15, 8,14,6,12,4,13,3,15,148,14,6,12,5,13,6,12,4,13,3,16,7,14,5,11,1,

walk′@
16,

8, 14, 4, 15,
9,14,6,12,5,13,4,17, 7,14,5,11,1,

vs,0
16, 45,14,3

m

λ@.m 16, 7,14,5,11,1
vs,0

〉

The chain c′ as given in (257) contains a β-redex, which is given by the second line
in (257). This subsequence corresponds to the term (λvs,0.m)(vs,0). As the variable vs,0

does not have a free occurrence in the term m, the contractum of the redex is simply the
term m. Similarly, the chain c′ reduces to the chain c′′ by replacing the chain that encodes
the redex by the chain that encodes the constant m. The resulting chain is given in (258).

(258) c′′ =〈
8, 14, 3, 15, 8,14,6,12,4,13,3,15,148,14,6,12,5,13,6,12,4,13,3,16,7,14,5,11,1,

walk′@
16, 45,14,3

m

〉

The chain in (258), however, is nothing but the chain encoding of the logical form of
the phrase, given as p in (255a). Thus, we have shown that the triple consisting of the
content value of the phrase, the head daughter and the nonhead daughter of Figure 4.11
is in the relation ifa.

With this example, we have illustrated how the logical form of a phrase is determined
given the logical form of its daughters. We must, next, consider whether the approach to
λ-conversion presented so far is compatible with our treatment of shifting operations. When
we presented shifting operations in Section 4.1, the result of shifting the basic translation
of some word was shown to be a complex term which contains the basic translation of the
word as a subterm. While some of the resulting terms are redex free, such as the application
of VR to the basic translation of the proper name Mary (m −→V R λP.P (@)(λ@.m)), this is
not the case in general. In (221), we saw that the application of AR to the basic translation
of the verb walks results in a term that contains a β-redex. In (259) the basic translation
of the verb is repeated, together with the term that results from applying AR to it.

(259) walks ; λxse.walk′@et(x(@))
−→AR λXs((se)t).X(@)(λ@λy.[(λx.walk′@(x(@)))(y)])
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Figure 4.12. A second derivation of the sentence Mary walks. (no λ-conversion at the word
level):

NP
"

phon 〈Mary〉

s 1
h

l cont λP.P@(λ@.m)
i

#

↑ VR
m

V
2

6

4

phon 〈walks〉

s l

"

cat sbc
D

1
E

cont λX.X@(λ@λy.[(λx.walk′@(x@))(y)])

#

3

7

5

↑ AR
λx.walk′@(x@)

comp head

S
"

syns loc

»

cat sbc 〈〉

cont walk′@(m)

–

#

As the term in the second line of (259) is not redex-free, the Content Principle
in (216) excludes it from occurring as the logical form of a word. As a consequence, the
Content Principle as it stands, excludes the application of most shifting operations.
There are two ways out of this situation. First, we could require redex-freeness only for the
logical form of phrases, but allow redices in the logical form of words. Second, we could
include λ-conversion into the shifting operations, the same way we did this for intensional
functional application in (253).

Let us consider the first alternative. In this case, the requirement for redex-freeness could
be incorporated into the Semantics Principle, and there is no need for an additional
Content Principle. A revised form of the Semantics Principle is given in (260).

(260) The revised Semantics Principle (SP):

phrase ⇒

2

6

4

syns loc cont 1

dtrs

»

h-dtr syns loc cont 2

n-dtr syns loc cont 3

–

3

7

5

and intensional-functional-application( 1, 2 , 3 )

and not E 4



subterm( 4 , 1 )

and
4»

appl

func abstr

–




The last line in (260) is just like the last line in the formulation of the Content
Principle in (254). It expresses that the logical form of a phrase does not contain a
subterm 2 such that 2 is a β-redex.

Assuming this new formulation of the SP and removing the Content Principle from
the grammar, does not lead to any change with respect to the structure of the sentence
Mary walks as given in Figure 4.11.

We saw in Figure 4.8 and Figure 4.10 that there is an alternative derivation of the logical
form of the sentence. In this derivation, we apply VR to the basic translation of the proper
name Mary, and AR to the basic translation of the verb walks. The resulting structure
is given in Figure 4.12 where we use the “↑AR/VR ” notation to indicate the application
of shifting rules without committing ourselves to either the DR- or the LE-encoding. In
the tree in Figure 4.12, the content value of the head daughter contains a β-redex, the
term (λx.walk′@(x@))(y). As we do no longer require the content value of every sign to
be redex-free, but only that of phrases, this derivation is possible.

It seems unnatural to exclude λ-conversion from the logical forms of words, but to
enforce it for phrases. Therefore, we will show in the remainder of this subsection, how
such an encoding can be achieved.
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In Section 4.1, we have introduced the relations vr in (153) and ar in (160) that hold
between of a pair of me objects 〈o, u〉 iff o corresponds to some term φ and u corresponds
to some term ψ such that u results from o by applying a shifting operation as given in
Definition 1.10 or in Definition 1.11. Similar to these relations, we can give two relations
chain-ar and chain-vr that hold of a pair of term-encoding chains in the same circum-
stances. In (261) we give the functional specification of these relations. Their formalization
is given in Appendix 1.3.2, because it is just a transformation of the clauses for the relations
ar and vr into chain concepts.

(261) a. The relation chain-vr (see (556) in Appendix 1.3.2):
For each term-encoding chains c1, c2,
〈c1, c2〉 ∈ R(chain-vr) iff

there are terms φ1 and φ2 such that
c1 is described by φ1

#,
c2 is described by φ2

#, and
φ1 and φ2 are related via VR as given in Definition 1.11.

b. The relation chain-ar (see (557) in Appendix 1.3.2):
For each term-encoding chains c1, c2,
〈c1, c2〉 ∈ R(chain-ar) iff

there are terms φ1 and φ2 such that
c1 is described by φ1

#,
c2 is described by φ2

#, and
φ1 and φ2 are related via AR as given in Definition 1.10.

Given the relations chain-ar and chain-vr as specified in (261) and as defined in the
Appendix, we can incorporate λ-conversion into the encoding of shifting operations. We
will first consider the DR-approach to shifting operations. In (262) we give the revised
descriptions of the shifting DRs.

(262) a. Revised description of the AR-DR:
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and chain2term(a, 1)
and chain-ar(a, b)
and reduction(b, c)
and chain2term(c, 2)

b. Revised description of the VR-DR:
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and chain2term(a, 1)
and chain-vr(a, b)
and reduction(b, c)
and chain2term(c, 2)
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Figure 4.13. A second derivation of the sentence Mary walks. (assuming a DR encoding of
shifting and fully reduced logical forms for words):
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The description in (262a) states that the logical form of the input word is encoded as
a chain a. There is a second chain, b, such that the pair 〈a, b〉 is in the relation chain-ar.
The chain b, furthermore, β-reduces to a term-encoding chain c. Chain c is the encoding of
the logical form of the output word of the DR. The description of the DR for value raising
is analogous to this, but uses the relation chain-vr instead of the relation chain-ar.

With the shifting DRs as specified in (262), we can, again, include in the grammar the
requirement that the logical form of a sign must be redex-free. Assuming the DRs as just
given, the Semantics Principle in (252), and the Content Principle in (216), we can
re-consider the second derivation of the sentence Mary walks. In Figure 4.13, we give the
semantic analysis for this sentence under the assumption that both daughters have a shifted
logical form. The tree in Figure 4.13 differs from that in Figure 4.12 in two respects. First,
we indicate explicitly that we use a DR-encoding, and second, we have a redex-free terms
as the logical form of the head daughter.

The tree in Figure 4.13 is such that the logical form of each sign is fully β-reduced. Still,
there is no auxiliary structure inside the content value such as the reduction value of
Section 4.2.1.2. But, since we use a DR-encoding of shifting, the shifting steps are explicitly
part of the overall linguistic sign.

Finally, we can show that it is possible to include λ-conversion into the LE-encoding
of shifting operations as well. As the LE-encoding locates the applicability of shifting
operations in the lexical entry, we must include the application of β-reduction in the lexical
specification of words. Let us, again, consider the lexical entry of the word walks.

(263) Parts of the lexical entry for the word loves, including shifting operations:
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and (λx.walk′@(x(@)))#

and chain-shifting(a, b)
and chain2term(b, 1)

The AVM in the lexical entry in (263) specifies the phonology as being 〈walks〉. Further-
more, a word that is described by this lexical entry must be a verb with a single NP on its
subcat list. What is new in (263) is the description of the logical form of this word. In the
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lexical entry, we state that there is a chain a which is the encoding of the basic translation of
the verb walks. Note that the function “#” maps a term to a T Y2 description that contains
exactly one free variable, a, i.e., to description of the chain a. This chain, furthermore,
stands in the relation chain-shifting with some chain b. The relation chain-shifting

is the closure over the relations chain-ar, chain-vr and reduction. Finally, this shifted
and β-reduced chain b is considered a chain that encodes the logical form of the word.

In (264) we define the relation chain-shifting. A pair of term-encoding chains 〈c, c′〉
is in this relation iff the term that is encoded by c can be shifted to some term which is
β-reduced to the term encoded by c′.

(264) chain-shifting(x, y)
∀

⇐=
reduction(x, y)

chain-shifting(x, y)
∀

⇐=
chain-ar(x, z)
and chain-shifting(z, y)

chain-shifting(x, y)
∀

⇐=
chain-vr(x, z)
and chain-shifting(z, y)

Given this new lexical entry of the verb walks, we can show that the following AVM
describes a word that is licensed by the lexical entry in (263).
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A word described by (265) has the phonological and syntactic properties as specified in
the lexical entry in (263). We must, then, show that it also satisfies the conditions on its
content value. This is the case if there is some chain a that is the chain encoding of the
basic translation of the verb walks as given in Table 1.1, i.e., a chain that is described by
(λx.walk′@(x@))#. The existence of such a chain is guaranteed if we can ensure that the
word described in (265) contains at least one component of the sort s1 and one component
of the sort s2. If we chose these sorts to be me and type, this is the case. Next, we must find
a chain, b, such that the pair 〈a, b〉 is in the interpretation of the relation chain-shifting.

We can take a chain that is described by (λX.X@(λ@λy.walk′@(y@)))#. This chain is in
the relation chain-shiftingwith the chain a, because there is a chain b′ which is described
by (λX.X@(λ@λy.walk′@(y@)))# and which, therefore is in the relation chain-ar with a.
As the pair 〈b′, b〉 is in the relation reduction, it is also in the relation chain-shifting by
virtue of the first clause in (264). Thus, the pair 〈a, b〉 is in this relation as well.

In addition, the chain b is the term encoding of the content value of a word described
by the AVM in (265). Since this term is redex-free, the Content Principle is equally
met by every word that is described by (265).

With the LE-encoding of shifting operations, the structure of the second derivation of
the sentence Mary walks need not contain the application of DR. Instead, we can have a
structure as given above in Figure 4.10 (page 187). This structure accounts for the intuition
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that both shifting and β-reduction are automatic processes whose application need not be
explicitly visible in the linguistic objects.

The chain encoding of terms and me object enables us to work with the logical forms
of signs in a natural way, i.e., we can freely apply shifting operations and λ-conversion
without worrying about the question whether some input term is a subterm of the output
term of some operation. Such concerns are unavoidable in the case of the encoding given
in Section 4.2.1, they are, however, unnatural under a semanticists perspective. The chain
encoding of λ-conversion (and shifting operations) allows us to save the intuition that the
logical form should be a redex-free term, while the particular reduction steps are of no
linguistic significance. It is mainly because of this last point that we favor the second
encoding of λ-conversion, in combination with the LE-encoding of shifting operations.

With the chain-encoding of terms of Ty2 and of me objects, we have presented a so-
far unexplored use of chains in RSRL. Therefore, it useful to reconsider what properties
of RSRL made such an encoding possible in the first place and what further potential
might be hidden behind the concept of chains for the architecture of grammar. As such
principled considerations are not of direct relevance to the present enterprise of providing
an integration of LF-Ty2 into HPSG, we have added them in a short section, Section 4.5,
at the end of this chapter.

4.3. Interaction with DRs

In the preceding sections, we presented a fully formalized integration of LF-Ty2 into
HPSG. So far, we restricted our attention to the syntactic fragment presented in Sec-
tion 2.3.1. This fragment does not include passive and complement extraction, i.e., phe-
nomena which we analyzed in Section 2.3.2 by using Derivational Rules.

In the present section, we will address this remaining issue and show that it is straight-
forward to include a logical form specification in the formalization of the Passive DR and
the Complement Extraction DR. This will also give us the opportunity to reconsider at
what kind of signs we must allow the application of shifting rules. We will show that it is
necessary to allow the application of shifting rules to the output of the passive DR. On
the other hand, it less clear whether it is necessary to apply them to the output of the
Complement Extraction DR, though such an application is probably unproblematic.

In Section 2.3.2 we presented a DR to relate an active verb to its passivized form. The
passive verb was characterized as differing from the active verb with respect to (i) its vform
specification, and (ii) the length of the subcat list. For illustration, let us reconsider the
transitive verb love. In (266) we give a description of the output verb of the DR as presented
in Section 2.3.2.
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A word described by the AVM in (266) has a single element on its subcat list. As such,
it is incompatible with a semantic specification such as the basic translation of the verb
love, which we repeat in (267).

(267) love ;λyλx.love′@(x(@), y(@))

The basic translation of the verb indicates that it requires two semantic arguments.
As the syntax of the passivized form of this verb provides only one syntactic complement,
we must also reduce the semantic valence of the passivized form. In (268) we show the
translation that we want to assume for the passivized form.

(268) λy.∃x[love′@(x(@), y(@))]

This translation of the passivized verb has just one semantic argument, indicated by
the abstractor λy. The second semantic argument is bound by the existential quantifier ∃x.
Thus, the semantic valence of the term in (268) corresponds to the syntactic valence of the
output word of an application of the passive DR to an active word licensed by the lexical
entry of the word love. In (269) we enrich the Passive DR by a specification of the logical
form of its output.

(269) The Passive DR (informal, including the content specification):
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(where the list 2 has exactly n elements)

The content value of the input has the following schematic form:
λyλzn . . . λz1λxλum . . . λu1.φ

There, y is the variable that corresponds to the last element of the subcat list of the
input word, and x is the variable that corresponds to the first element of this subcat list.
The variables zi correspond to further complements, possibly none. The informally stated
condition that there be exactly as many further syntactic complements as there are variables
zi expresses this. Finally, we allow that the semantic valence of the input is greater than
its syntactic valence. As we have seen, such cases arise by the application of value raising,
a shifting operation that adds a further semantic valence, but has no effect on the syntactic
valence.

In the DR, the content of the output is specified in such a way that it has one semantic
argument less than the input (∃x in the output instead of λx). Furthermore, the order of
the remaining semantic arguments is changed in the same way the order of the complements
is altered on the subcat lists. This means that the first semantic argument of the input, λy,
re-appears after the other semantic arguments that correspond to syntactic complements
(λzn . . . λz1). Finally, the further semantic arguments (λum . . . λu1) are added without
changing the order.

It can be seen that the term in (268) is the logical form of the output word of the passive
DR, if we assume the basic translation of the input word as given in (267). Note that the
sequence λzn . . . λz1 is empty in the case of a transitive verb such as love.
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Figure 4.14. The structure of sentence (270):
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In Figure 4.14 we give the syntactic structure together with the logical forms of the
simple passive sentence (75b), repeated as (270).

(270) John is loved.

Figure 4.14 is just like Figure 2.4 (page 97), i.e., in both cases, the passive form of the
verb loved is derived via some Passive DR. This verb, then, combines with the passive
auxiliary is, which behaves like a raising verb. Finally the subject NP John is added.

At the semantic side, the basic translation of the verb love appears in the input to
the Passive DR. At the output, the term in (268) features. The semantics of the passive
auxiliary is that of the identity function, just as assumed for the complementizer that. At
the S node, the basic translation of the proper name John, the constant j, is added. This
results in the following logical form for sentence (270):

(271) ∃x[love′@(x@, j)]

We will next give an example that shows that we must allow the application of shifting
rules to the output of the Passive DR. This is the case if we want the subject of a passive
clause to take scope over material in some superordinate clause. A relevant example is
given in (272). In (272) we indicate the three readings below the example sentence. Notice
that these readings are parallel to the three readings attested for sentence (39c), i.e. for a
complex sentence with a finite complement clauses headed by an intransitive verb. For a
better comparison, we repeat example (39c) together with its readings in (273).

(272) Every man believes that some woman is loved.
a. de dicto reading:

∀x[man′@(x@) → believe′@(x@, (λ@.∃y[woman′
@(y) ∧ ∃z[love′@(z@, y@)]]))]

b. ∀∃-de re reading:
∀x[man′@(x@) → ∃y[woman′

@(y@) ∧ believe′@(x@, λ@.(∃z[love′@(z@, y@)]))]]
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c. ∃∀-de re reading:
∃y[woman′

@(y@) ∧ ∀x[man′
@(x@) → believe′@(x@, λ@.(∃z[love′@(z@, y@)]))]]

(273) Every man believes that some woman walks.
a. de dicto reading:

∀xse[man′@(x@) → believe′@(x@, λ@.∃yse[woman′
@(y@) ∧ walk′@(y@)])]

b. ∀∃-de re reading:
∀xse[man′@(x@) → ∃yse[woman′

@(y@) ∧ believe′@(x@, λ@.walk′@(y@))]]
c. ∃∀-de re reading:

∃yse[woman′
@(y@) ∧ ∀xse[man′@(x@) → believe′@(x@, λ@.walk′@(y@))]]

We can derive the first reading in (272), i.e., the de dicto reading without applying any
shifting rule, just as we could derive the logical form of the de dicto reading of sentence (273)
without applying any shifting operations (see Figure 1.11 (page 48)). In the case of the
two de re readings in (273b) and (273c), however, we showed that it is necessary to apply
first VR and then AR to the embedded verb. In our discussion of the de re readings
of sentence (39c), we gave the following derivation for the logical form of the embedded
intransitive verb walks.

(274) walks ; λy.walk′@(y@)
−→V R λyλu.u@(λ@.walk′@(y@))
−→AR1 λY λu.Y@(λ@λy.u@(λ@.walk′@(y@)))

Applying the Passive DR to a transitive verb such as love results in a word whose logical
form is very similar to that of the intransitive verb walks. Therefore, under the assumption
that we can apply shifting operations to the output of DRs, we can derive the logical form
of the embedded verb as required for the de re readings parallel to the derivation given
in (274). This derivation is indicated in (275). In the derivation, we also include the effect
of the Passive DR on the logical form.

(275) loved ; λyλz.love′@(z@, y@)
7→Pass DR λy.∃z[love′@(z@, y@)]
−→V R λyλu.u@(λ@.∃z[love′@(z@, y@)])
−→AR1 λY λu.Y@(λ@λy.u@(λ@.∃z[love′@(z@, y@)]))

In the derivation in (275) we start from the basic translation of the transitive verb loved.
Using the active word as an input to the Passive DR in (269), results in an output word
whose logical form is as given in the second line in (275). If we apply first VR to this
term, followed by AR1, then the we get the term that is required for the de re readings of
sentence (272). In Figure 4.15 (page 218) we show the derivation of the ∀∃-reading.

In the embedded clause, the logical form of the passivized verb loved is derived as
indicated in (275). The passivized verb combines with the passive auxiliary. As the passive
auxiliary is assumed to be just the identity function, the logical form of the resulting VP is
the same as that of the verb loved. This VP combines with the embedded subject. As we
applied AR after VR in the derivation of the logical form of the verb loved, the quantifier
contributed by the embedded subject has scope over an occurrence of the variable u in
the logical form of the embedded S node. To this S, we add the complementizer that. In
order to keep the structure simple, we use the lexical entry of the complementizer as given
in (178b), i.e., we assume that logical form of the complementizer is the identity function.

The logical form of the matrix verb believes is the result of applying AR to its first
semantic argument. When this derived logical form combines with the logical form of
the embedded clause, the quantifier contributed by the embedded subject has the matrix
predicate believe′ in its scope, i.e., we have an instance of a de re reading. Finally, the
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Figure 4.15. The structure of the ∀∃-de re reading of sentence (272):
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matrix subject is added. The quantifier that is part of its logical form takes widest scope
in the logical form of the sentence.

As shown in Figure 4.15, the assumption that we can apply shifting rules to the output
of a DR allows us to derive the de re readings of sentence (272). We can, now, show that
the opposite assumption will not lead to this result, i.e., that disallowing the application of
shifting rules to the output of the Passive DR will block the derivation of the de re readings.
In (276) we give the result of applying the shifting operations VR and AR1 in the same
order as in (275), but before the application of the Passive DR.

(276) loved ; λyλz.love′@(z@, y@)
−→V R λyλzλu.u@(λ@.love′@(z@, y@))
−→AR1 λY λzλu.Y@(λ@λy.u@(λ@.love′@(z@, y@)))
7→Pass DR λY λu.∃z[Y@(λ@λy.u@(λ@.love′@(z@, y@)))]

This derivation leads to a reading where the existential quantifier introduced in the DR
has wide scope over the variable u introduced by VR. Thus, if we use the resulting logical
form of the verb, the existential quantifier ∃z has wide scope over the matrix predicate
believe′, and, in fact, also over some woman, giving rise to the following reading.

(277) ∀x[man′
@(x@) → ∃z∃y[woman′

@(y@) ∧ believe′@(x@, λ@.love′@(z@, y@))]]

Even though such a reading might exist, the problematic aspect is that forbidding the
application of shifting to the output of the Passive DR makes the prediction that whenever
the subject of the passive clause has scope over the matrix predicate, so does the existentially
bound underlying active subject.

We conclude that the application of shifting operations to the output of the Passive DR
must be possible. In (278) we give a formally more precise version of the Passive DR. We
give the variant that uses the LE-encoding of shifting operations and the chain encoding of
λ-conversion presented in Section 4.2.2.
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(278) Formal specification of the Passive DR:
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and (λzn . . . λz1λyλum . . . λu1.∃xφ)#

and chain-shifting(a, b) and chain2term(b, 9)

The specification of the DR as given in (278) includes all the syntactic specifications
that were given in Section 2.3.2 already. In addition, it also contains the specification of
the logical form of the input word and the output word. The characterization of the input
is just as given in the informal version of this DR in (269) above. The output term that
appear in the informal version of the DR is, however, not taken directly to be the content
value of the output word. Instead, we say that there is a chain a that corresponds to this
output term by the function “#”. This chain can be shifted and β-reduced to another
chain b. The chain b is the chain encoding of the content value of the output word. This
shows that we have included the applicability of shifting operations and β-reduction in the
formulation of the DR.

It should be noticed that the formulation of the Passive DR in (278) is just more formal
than that in (269), it is, however, not a full formalization. This is indicated by the use
of “. . . ” in the logical form of the input and the characterization of the chain a. In a
fully formal version, we would need some new relation passive-lf that relates the logical
form of the input word to the chain a. The definition of the relation is given in (559) in
Appendix 1.3.3.

In the present section we remain neutral with respect to the particular encoding of
shifting operations and λ-conversion. Yet, in the version of the Passive DR in (278), we
encoded the possibility of applying shifting and λ-conversion to the output of the DR
directly as part of the DR. This indicates that we have given a version of the DR that
assumes an LE-encoding of shifting and a chain-encoding of λ-conversion. In (279) we give
the formalization of the Passive DR under the three alternative combinations of encodings.
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(279) Alternative Formalizations of the Passive DR:
a. DR-encoding of shifting, chain-encoding of λ-conversion:
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and (λzn . . . λz1λyλum . . . λu1.∃xφ)#

and reduction(a, b) and chain2term(b, 9)
b. LE-encoding of shifting, encoding of λ-conversion by the sort reduction:
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c. DR-encoding of shifting, encoding of λ-conversion by the sort reduction:
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The formalization given in (279a) assumes that shifting is done by some DRs as well, as
indicated in (171). Therefore, we do not need to include a call to the relation chain-shifting

in this version of the Passive DR. What is required, however, is a chain-description of the
output of the Passive DR, given as the result of the function “#”. A chain a that is described
by this chain-description is β-reduced to another chain b, which is the chain-encoding of the
final logical form of the output word.

In the next two encodings, we do not use chains, i.e., we assume an encoding of λ-
conversion as presented in Section 4.2.1. In (279b), we combine this with an LE-encoding
of shifting. This means that we include the application of shifting operations to the output
of the Passive DR directly in the DR. For this reason, we assume that there is some me
object 8 that meets the description that results from applying the function “∗” to the term
which was given as the output of the DR in the informal specification in (269). This me
object 8 stands in the relation shifting with the content aux value of the output word.
Since the content value of the output word is of sort content as introduced in (215b) in
Section 4.2.1, the term that corresponds to 8 reduces to some redex-free term φ, which
corresponds to the content lf value of the output word.

Finally, the encoding of the Passive DR as given in (279c) needs no relation calls. There,
the content aux value of the output word is the term that corresponds directly to the
characterization of the output semantics in the informal specification of the Passive DR.
This term reduces to the redex-free term that corresponds to the content lf value of the
output word. This means that in this formalization, the application of shifting operations
is not part of the formalization of the Passive DR, but is taken care of by other DRs, i.e.,
those given in (171).

These four alternative formalizations are equally capable of capturing the data. They
differ, however, in the ontological commitments they make. In fact, the choice between them
will largely depend on the encoding that has been chosen for shifting operations and for
λ-conversion independent of the Passive DR. Comparing the four encodings given in (278)
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and (279), it should, however, be clear how one formalization can be transformed into the
other, and how the information provided in the informal specification of this DR in (269)
re-appears in the formalizations.

The second DR that we introduced in Section 2.3.2 was the Complement Extraction
DR (CEx-DR), given in (102) on page 98. Remember from Section 2.3.2 that our analysis
of unbounded dependencies does not assume traces. Instead, the CEx-DR “removes” an
element from the subcat list of a word and “puts” its local value in the inherited slash
set of the output word. This slash specification also appears at signs that dominate
the output of the CEx-DR by the Nonlocal Feature Principle (NFP) in (105). For
topicalization structures, we assume a special ID Schema, the Head-Filler-Schema
in (106). This schema licenses phrases which have a head daughter with a single local object
in its to-bind slash value which is identical with some member of the inherited slash
value of the head daughter and with the local value of the nonhead daughter. In (280)
we repeat the informal specification of this DR.

(280) Informal specification of the Complement Extraction DR (ignoring content):
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The subcat list of the output word of this DR is one element shorter than that of
the input word. The local value of the missing element appears as a member in the
inherited slash set of the output, but not necessarily of the input.

In the present section, we want to consider the semantic side of our analysis of unbounded
dependencies. The basic intuition behind our semantic analysis is that a sign that has a
non-empty inherited slash value is not saturated semantically. For illustration, consider
the sentence in (281) which is given with its logical form.

(281) John, Mary loves.
love′@(m, j)

By the CEx-DR, the syntactic valence of the verb loves is changed in such a way that
it first combines with the subject NP, Mary, and then, in a head-filler structure, with the
filler John. Semantically, the filler has exactly the same function as the direct object in the
non-extracted case. Given these considerations, we assume that the basic translation of the
verb loves is changed by the application of the CEx-DR as indicated in (282).

(282) loves ; λyλx.love′@(x@, y@)
7→CEx-DR λxλy.love′@(x@, y@)

In Figure 4.16, we show the structure of sentence (281). Applying the CEx-DR to the
verb loves leads to a change on the subcat list, i.e., instead of having two elements on
the subcat list, the output word has a single element, 1 left. Since the second syntactic
complement is “removed” from the subcat list, we assume that it is also removed from
its position in the logical form. Therefore the first λ-abstractor in the logical form of the
output word binds the variable that corresponds to the subject (λx). The output word has a
nonempty inherited slash value. Since we treat elements in the inherited slash value
as semantic arguments, it is necessary to add another semantic argument to the logical form
of the output. This leads to the logical form of the output as given in the last line of (282),
i.e., to the term λxλy.love′@(x@, y@).
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Figure 4.16. The structure of sentence (281):
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At the S node, the subject NP Mary combines with the output of the CEx-DR. The S
node has an empty subcat list, but, as its inherited slash value is not empty. Therefore,
it must still have a semantic argument missing. Our logical form at this node indicates this
correctly, as it is the term λy.love′@(x@, y@). Finally, at the higher S node, the filler is
introduced into the structure. Now, the semantic argument indicated by the abstractor λy
is satisfied. The resulting logical form is just as that of a sentence without topicalization.

After this simple example, we can enhance the informal specification of the CEx-DR by
adding a content specification. This is done in (283). Semantically, the CEx-DR has the
effect of putting one of the semantic arguments to the end of the λ-abstractors.

(283) Informal specification of the Complement Extraction DR (including content):
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is the i-th element on the subcat list of the input word.)
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So far, we only considered an instance of extraction within the same clause. As the
following sentences show, topicalization can cross clause boundaries.

(284) a. John, Mary loves.
love′@(m, j)

b. John, Bill believes Mary loves.
believe′@(b, λ@.love′@(m, j))

c. John, Peter claims Bill believes Mary loves.
claim′

@(p, λ@.believe′@(b, λ@.love′@(m, j)))

The (a) example is just the sentence whose structure we indicated in Figure 4.16.
In (284b) the direct object of the verb loves, the NP John, appears as the filler one clause
higher than the verb loves. In (284c), the filler is realized even two clauses up.

For our semantic analysis to work in these cases as well, we must apply value raising
to the basic translation of the verb prior to applying the CEx-DR. In (285) we indicate
how the logical form of the verb loves as needed for example (284b) is derived. In (285) we
always indicate the semantic type of the variables introduced by VR.

(285) loves ; λyseλxse.love′@(x@, y@)
−→V R λyλxλus((st)((se)t)).u@(λ@.love′@(x@, y@))
−→V R λyλxλuλvs((s((se)t))t) .v@(λ@.u@(λ@.love′@(x@, y@)))

7→CEx-DR λxλuλvλy.v@(λ@.u@(λ@.love′@(x@, y@)))

Given the derivation of the logical form of the verb loves as needed for example (284b),
we indicate the structure of this example in Figure 4.17 (page 226). To keep the figure
smaller, we do not use the AVM notation for the nodes. Instead, we indicate the syntactic
category with the usual symbols, V, VP, S, and NP. In addition we write VP/NP for a
VP sign that has a local object that corresponds to an NP in its inherited slash set. We
write S/NP for an S node which has a single NP local in its inherited slash and in its
to-bind slash value.

In Figure 4.17, the embedded verb loves has a non-empty inherited slash value, as
indicated by the specification VP/NP. Its logical form is the result of the derivation given
in (285). This verb combines with the embedded subject, Mary. The resulting phrase is
syntactically saturated, i.e., it is an S node, but it inherits the slash specification from
its head daughter by the Nonlocal Feature Principle. Therefore we write S/NP at
this node. The logical form of this node is the result of combining the logical forms of
the daughters with intensional functional application, using the logical form of the head
daughter as the functor.

For the verb believe, we assume a logical form as given by its basic translation. This
is a term of sort ((st)((se)t)). As the variable u introduced by the first application of
VR is of sort s((st)((se)t)), we can use the logical form of the embedded clause as the
semantic functor in the calculation of the logical form of the matrix VP. The NFP, again,
determines that the inherited slash value of the matrix VP contains the same element
as the inherited slash set of the complement clause.

The matrix VP combines with the matrix subject. The subject NP, Bill, has as its
logical form the value-raised version of the basic translation. As such, it is of the semantic
type (s((se)t))t, i.e., the type of a quantified NP. But this is also the right semantic type
to combine with the logical form of the matrix VP by intensional functional application,
as we have introduced the variable v by the second application VR such that v is of type
s((s((se)t))t) (see (285)). As a result of this combination, we get a term of sort (se)t, i.e.,
a term whose remaining semantic argument corresponds to the extracted NP.



226 4. LEXICALIZED FLEXIBLE TY2 IN HPSG

Figure 4.17. The structure of sentence (284b):
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At the syntactic side, the inherited slash value of the matrix VP also appears at the
lower matrix S node, as indicated by the notation S/NP. At the higher matrix S node,
however, we have an instance of a head-filler construction. Therefore, the lower matrix S
node is required to have a non-empty to-bind slash set. As said above, we indicate this
by underlining in the category label, i.e., we write S/NP. The NFP then stops the NP from
occurring in the inherited slash value of the highest S node in Figure 4.17. Semantically,
in the highest local tree in the structure, the logical form of the filler daughter, i.e., the
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semantic constant j, combines with the logical form of the head daughter. The result is the
term given in (284b).

This example has illustrated that it is necessary to allow the application of shifting rules
before we apply the CEx-DR. With VR we have transformed the basic translation of the
verb in such a way that it becomes the semantic functor along the entire extraction path.

Because of the traceless syntactic analysis, we were able to maintain a simple and uniform
mode of semantic combination at the level of phrases, i.e., intensional functional application.
If we had proposed a trace, we would have been forced to make other assumptions which
would have been in need for motivation. Let us briefly sketch two options. First, we could
follow the analysis of Pollard and Sag 1994 and assume a trace and the identity of local
values between the trace and the filler. As the logical form is part of the local value of a
sign, this means that the logical form of the filler/trace would appear twice in the structure,
once as the content value of the trace, and once as that of the filler. We would, then,
be forced to introduce some mechanism to prevent the same semantic contribution from
occurring twice in the overall logical form. One such mechanism would be to change the
Semantics Principle in such a way that the logical form of the nonhead daughter is
ignored in the case of a head-filler structure.

Alternatively, it would have been possible to restrict the identity between filler and
trace to some structure smaller than local, which does not include the logical form. As
such, identities of category values would be a promising candidate. The logical form of
the trace could, then, be some complex semantic functor which has the same effect on the
logical form of the head that it combines with as the effect encoded in the CEx-DR above.6

Both alternatives, thus, require to make more decisions, none of which can be motivated
in this thesis and both would lead to more complicated semantic system. It is for this reason
that we have adopted a traceless analysis of extraction.

In the discussion of the Passive DR, we have seen that we need to apply this DR before
applying VR. The CEx-DR on the other hand was applied after VR. The question arises
whether it is necessary to apply shifting operations to the result of the CEx-DR. The answer
to this question depends on the judgments for sentences such as those in (286).

(286) a. Every man believes that John loves some woman.
b. Every man believes that some woman, John loves.

For a sentence such as (286a) we have followed the analysis of Montague in assuming
that the scope of the existential quantifier some woman can be wider than the clause in
which it appears. In particular, we have assumed that there are de re readings of this
sentence where the quantified NP some woman has scope over the matrix predicate believe′

and, possibly, even over the quantifier contributed the matrix subject every man, i.e., we
expect to find one de dicto reading, and two de re readings, which could again be called
∀∃-de re and ∃∀-de re.

Example (286b) is similar to the previous example, but the embedded direct object some
woman is topicalized inside the embedded clause. Sentence (286b) sounds admittedly odd
in isolation, but similar sentences are fine in some appropriate context. If one accepts this
sentence, it is at least possible to think of a reading in which there is a particular woman
such that every man believes that John loves that woman. This reading corresponds to the
∃∀-de re reading in previous examples.

6In the semantic analysis of Generalized Phrase Structure Grammar (Gazdar et al., 1985) which we will
present briefly in Section 7.1, the semantic contribution of the trace is different from that of the filler, and,
furthermore, the semantic combination in a head-filler structure is different from that in other structures.
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If such a reading is available, we must allow the application of shifting operations to the
output of the CEx-DR. In (287) we show the derivation of the logical form of the verb loves
as required for the ∃∀-de re reading of sentence (286b).

(287) loves ; λyλx.love′@(x@, y@)
7→CEx-DR λxλy.love′@(x@, y@)
−→V R λxλyλu.u@(λ@.love′@(x@, y@))
−→AR2 λxλY λu.Y@(λ@λy.u@(λ@.love′@(x@, y@)))

In (287), we first apply the CEx-DR to the verb love in its basic translation. This has
the effect of re-ordering the semantic arguments of the verb. Then, we apply VR to add a
further semantic argument, that corresponds to the material from the matrix clause. Finally,
we apply AR to achieve that the embedded direct object can have scope over material in
the matrix clause. In Figure 4.18 (page 229), we show how the wide scope reading of the
embedded direct object quantifier can be derived, using the logical form of the verb loves
as given in the last line in (287).

In Figure 4.18 we use the abbreviatory notation for the nonlocal values introduced above:
We write VP/NP for the output of the CEx-DR, i.e., for a verb which has one element on
its subcat list and an NP-local in its inherited slash value. We write S/NP for a verb
with an empty subcat value and the same NP-local in its inherited slash set and in its
to-bind slash set.

In the figure, we have left out the derivation of the logical form of the embedded verb
loves, as it is given in (287). We must, however, also apply some shifting operations to the
basic translation of the matrix verb. These are indicated in the structure. The shifting
operations applied are exactly those that we used for the derivation of the ∀∃-de re reading
in Figure 1.15 (page 55).

Given the considerations around the examples in (286), we assume that shifting opera-
tions may apply to the output of the CEx-DR. We can, then, state the DR in a more formal
way than we stated in (283). In (288) we give the CEx-DR as it is needed for a LE-encoding
of shifting operations with the approach to λ-conversion given in Section 4.2.2.

(288) Formal specification of the Complement Extraction DR (CEx-DR):
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logical form of the output word in the informal version of the DR. This chain is related via
shifting operations and λ-conversion to a chain b which is the chain-encoding of the logical
form of the output word.

Again, just as in (278) the version of the DR given in (288) is not a complete formal-
ization, as we use the “. . . ” notation in the characterization of the input and the output
term. It is, however, straightforward to define a relation cex-lf in analogy to the relation
passive-lf that relates the input word, its logical form and the chain a.

In this section, we extended the framework LF-Ty2 to include the analysis of passive
and complement extraction as presented in Section 2.3.2. In the syntactic analysis, we made
use of Derivational Rules (DRs). A DR establishes a link between two word objects. We
interpreted this kind of link as a unary tree with a word object, the output of the DR, as
the mother and another word, the input of the DR, as the single daughter. In the present
section, we have shown that both DRs of Section 2.3.2 are such that the logical form of
the output cannot, in general, be identical to that of the input. Therefore, we added some
content specification to the formulation of the DRs.

In our first presentation of the semantic framework LF-Ty2 in Section 1.3 we only
considered two kinds of signs: words and phrases, or lexical and non-lexical elements. At
that stage, it could be assumed that words and lexical elements are the same, and, similarly,
that phrases and non-lexical elements are the same. We defined the logical form of a word
as its basic translation or the result of a finite number of applications of shifting operations
to its basic translation. The logical form of a phrase, on the other hand, is simply the result
of intensional functional application of the logical forms of the daughters.

With the introduction of derived words, the notion of a word is no longer synonymous
to that of an element that is directly licensed by some lexical entry: the output of a DR is
a word, but this word is not licensed by some lexical entry. In this sense, it is a word but
not a lexical element. By looking at the possible readings for passive sentences and also
for topicalization structures, we came to the conclusion that shifting operations must be
applicable to all words, be they derived or non-derived.7

4.4. Summary

In this chapter, we combined the syntactic analysis presented in Section 2.3 with the
RSRL formalization of the semantic representation language Ty2 as provided in Chapter 3
to yield an RSRL grammar that fulfills the requirements expounded in Chapter 1. The
resulting grammar, thus, furnishes each linguistic sign with a content value that should
be considered its logical form. By the results of Chapter 3 we know that these logical forms
stand in direct correspondence to terms of Ty2 and, therefore, can be interpreted directly
with respect to a semantic model. Because of the choice of Ty2, we are in a position to
integrate the work carried out in the tradition of Montague Grammar in HPSG. In this
chapter, we showed that the analysis of quantifiers and intensional verbs as presented in
Montague 1974b can be used within an HPSG grammar.

While the semantic analysis of the sentences is as proposed in the work of Montague,
the syntactic fragment is a modified version of the grammar of Pollard and Sag 1994.
We also followed Pollard and Sag 1994 in the assumption that the content value of a
sign is its logical form, i.e., some representation of its meaning. We differ, however, with
respect to the semantic representation language, and, most importantly, with respect to the
mechanisms that we use to constrain the content value of a phrase with respect to those

7In Part II of this thesis, we will consider yet another new kind of entities, phrases that are licensed directly
by some lexical entry. We will show that the application of shifting operations must be possible for these
elements as well.
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of its daughters. In Section 1.2 we presented the semantic treatment of Pollard and Sag
1994, showing that it uses some storage mechanism to account for scope ambiguities. This
storage mechanism is implemented by stipulating additional components of linguistic signs
that lack independent motivation, such as the qstore and the retrieved values of a sign.

In contrast to this, it was shown that the semantic analysis provided in the preceding
sections does not introduce any additional components to a sign apart from a content
value which is a term of the semantic representation language. This was possible because
we used the flexible system LF-Ty2 that is based on Hendriks 1993. This system makes it
unnecessary to use explicit storage mechanisms. Instead, it allows us to shift from basic
translations of words to complex functors which encode the scoping possibilities. We, thus,
consider the approach to semantics presented in this chapter a progress in comparison to
the analysis given in Pollard and Sag 1994 in two respects: first, because it is clear that and
how the logical forms presented in this chapter are interpreted, and second, because we do
not assume structure for which there is no independent motivation.

After these general remarks on the architecture for semantics presented in this chapter,
one part of the analysis presented in Section 1.3.3 remains to be discussed: the formulation
of constraints on logical forms. This issue is central, because it is the existence or absence of
such constraints that will give the ultimate argument in the debate whether or not there is a
logical form as a level of representation. In Section 1.3.3 we presented a simple lf constraint.
In (53) we gave the following formulation:

(289) (= (53))
For each node of category S,
the logical form of S does not contain a subterm of the form λx.ψ such that
ψ has a subterm ∀v φ which has a free occurrence of the variable x.

This constraint was used to exclude a universal quantifier to take scope over material
which is outside the clause in which the quantifier is introduced. For illustration, we con-
sidered example (51) which is repeated as (290). This sentence does not have a reading in
which for each woman there is some man who believes that that woman walks.

(290) Some man believes that every woman walks.

The constraint in (289) is depicted in its formalization in (291).

(291) Formalization of the lf constraint in (53):
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The principle in (291) expresses the constraint in the following way: for each 1 , if 1

is the logical form of a saturated verb (i.e., of an S node), then there are no 2 , 3 , 4 such
that 2 is a subterm of 1 of the form λ 3 .ψ and 4 is a subterm of 2 and the variable 3 is a
free variable of the term 4 .

The formalization in (291) shows how the content value of a sign can be constrained
depending on some other properties of the sign. These mutual constraints are possible
because the logical form is a component of the sign just as all other properties of the sign.

When we first introduced the constraint in (289) in Section 1.3.3, we pointed out that it
is not obvious how the constraint could be expressed in frameworks that assume a syntactic
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LF (May, 1985; von Stechow, 1993) or frameworks that assume a direct interpretation of
syntactic structures (Lappin, 1991). As shown in (291), in our HPSG-rendering of LF-Ty2,
such a constraint is very natural. This indicates that the present proposal for a logical
form might make different predictions on the kinds of constraints on interpretation that are
available in a grammar.

With this short indication of how lf constraints can be expressed in LF-Ty2, we conclude
the presentation of this framework. Since, in the present chapter, we integrated the semantic
fragment of Section 1.3.3 and the syntactic fragment of Section 2.3, we achieved the goal of
Part I of this thesis: we presented a framework for combinatorial semantics which reflects
the high degree of regularity attested in the form-meaning correlation. In particular, we
have directly implemented the principle of compositionality, which we repeat in (292).

(292) The Principle of Compositionality

The meaning of a non-lexical element is a function of the meaning of its parts.

In the first part of this thesis, we encountered two classes of non-lexical elements: phrases
and derived words. In both cases, the meaning of these elements was characterized as a
function of the meaning of the parts. The meaning of a phrase is the intensional func-
tional application of the meaning of its daughters, and the meaning of a derived word is
a function of the meaning of the input word of a Derivation Rule. Thus, the principle of
compositionality is directly incorporated into our architecture of combinatorial semantics.

The only kind of lexical elements that we looked at so far are non-derived words. For
them, we simply assumed that the logical form is specified in the lexical entry. In Part II
of this study, we will show that there are also some phrases which must be considered
as lexical elements. Furthermore, we will investigate some requirements of words on the
linguistic context in which they may occur. Both these phenomena cannot be captured in
the framework developed so far. What both phenomena have in common is that they are
instances of idiosyncratic and irregular behavior of signs. Thus, we will present an extension
of the present architecture of grammar which incorporates a module of irregularity.

4.5. Excursion: The Potential of Chains and Quantification in RSRL

The language RSRL differs from its predecessor Speciate Re-entrant Logic (SRL) as
presented in King 1989, 1994, 1999 in several ways. The major innovation of RSRL consists
in the introduction of relations, quantification and chains. In Section 1.1 and in Chapter 2
we commented on some examples for the use of these innovations. In the following, we will
concentrate on the question of what chains contribute to the grammar. This question is
intimately linked to the interpretation of descriptions of the form Ev δ or Av δ. This is
the case, because the descriptions in the theory of a grammar do not contain free variables.
Therefore, the only possibility to use chains is if some quantified description introduces a
variable. Such a variable can, then, be assigned a chain by the variable assignment function.
As a consequence, if we want to explore the effect of chains in the grammar, it is useful to
see what happens if we give a different interpretation to descriptions of the form Ev δ or
Av δ, i.e., an interpretation which does not involve chains.

In (293) we give three possible interpretations for descriptions of the form Ev δ. First,
we could restrict the range of quantification to components of the described object, i.e., to
elements of Cou

I (293a). Second, we let quantifiers range over components and chains of
components, just as is done in Definition 2.13. This interpretation is repeated in (293b).
Third, we let quantifiers range over arbitrary objects of the universe, as indicated in (293c).



4.5. EXCURSION: THE POTENTIAL OF CHAINS AND QUANTIFICATION IN RSRL 233

(293) Conceivable interpretations of descriptions of the form Ex δ:
a. Quantification over components:

for each v ∈ VAR, for each δ ∈ DΣ,

Dass
I (Ev δ) =

{
u ∈ U

∣∣∣∣∣
for some u′ ∈ Cou

I ,

u ∈ D
ass u′

v

I (δ)

}
,

b. Quantification over components or chains of components:

for each v ∈ VAR, for each δ ∈ DΣ,

Dass
I (Ev δ) =

{
u ∈ U

∣∣∣∣∣
for some u′ ∈ Cou

I ,

u ∈ D
ass u′

v

I (δ)

}
,

c. Quantification over the universe:

for each v ∈ VAR, for each δ ∈ DΣ,

Dass
I (Ev δ) =

{
u ∈ U

∣∣∣∣∣
for some u′ ∈ U,

u ∈ D
ass u′

v

I (δ)

}
,

It has been demonstrated in Richter et al. 1999 and Richter 2000 that the first alterna-
tive is not satisfying from the point of view of the grammar writer, because linguists want
to express complex relations between parts of a linguistic object. In many cases, the objects
stand in these relations only indirectly. As an example, re-consider part (a) of the Seman-
tics Principle in Pollard and Sag 1994 (p. 401), which was illustrated in Section 1.2 and
which we repeat in (294).

(294) In a headed phrase, the retrieved value is a list whose set of elements is disjoint
from the qstore value set, and the union of those two sets is the union of the
qstore values of the daughters.

Even if we ignore the additional complications introduced by the set/list distinction, the
principle expresses a complex relation between (i) the retrieved value of a phrase, (ii)
its qstore value and (iii) the qstore values of its daughters. The relation is mediated
by some construct, namely the union of (i) and (ii) which is required to be the same as
the union of all values of (iii). This union is, however, not necessarily a component of the
described object.

For illustration, consider the example in (295a). We are interested in a reading as given
in (295b), i.e., a reading in which the quantifier that is contributed by the embedded direct
object some woman has wide scope over the matrix predicate believe, whereas the quantifier
contributed by the subject of the embedded clause takes scope inside the embedded clause.

(295) a. John believes [S every man [V P loves some woman]].
b. ∃y[woman′

@(y@) ∧ believe′@(j, (λ@.∀x[man′
@(x@) → love′@(x@, y@)]))]

If we want to derive this reading in the analysis of Pollard and Sag 1994, the two
quantifiers every and some have non-empty qstore values. Since the quantifier contributed
by the determiner some has wide scope over the matrix predicate, this quantifier must be
an element of the qstore value of the embedded S node. In contrast, the quantifier
contributed by the determiner every must be retrieved either at the embedded S node.
In (296) we describe the embedded S node, focusing on the qstore and retrieved values
of the phrase and its daughters.
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(296) Description of the embedded S node of example (295a) in the intended reading:

NP
2

6

6

6

6

6

4

phon 〈every, man〉

syns 3

qstore

(

2

»

quant

det forall

–

)

retrieved 〈〉

3

7

7

7

7

7

5

VP
2

6

6

6

6

6

6

4

phon 〈loves, some, woman〉

syns loc cat subcat
D

3
E

qstore

(

1

»

quant

det exists

–

)

retrieved 〈〉

3

7

7

7

7

7

7

5

comp head

S
2

6

6

6

6

4

phon 〈every, man, loves, some, woman〉

syns loc cat subcat 〈〉

qstore
n

1
o

retrieved
D

2
E

3

7

7

7

7

5

The S node as described in (296) satisfies the Semantics Principle of Pollard and Sag
1994 as given above in (294): the disjoint union of the qstore value of the phrase and the
set containing the elements of the retrieved list is the set { 1 , 2 }. This set is the same as
the union of the qstore values of the daughters.

The problem is, however, that the set { 1 , 2 } is not a component of the phrase described
in (296). Therefore, we cannot use an interpretation of quantification that uses only com-
ponents of the described object, i.e., the interpretation of quantification given in (293a) is
not sufficient for the grammar as envisaged in Pollard and Sag 1994.

The definitions in (293b) and (293c) can, however, capture the Semantics Principle
of Pollard and Sag 1994. In fact, in the formalization of all principles of the appendix
of Pollard and Sag 1994, Richter 2000 shows that whenever some additional structure is
required, it is sufficient to assume some list-like structure whose elements are components
of the described object. This is also the case in our example, i.e., the quantifiers 1 and 2

are components of the phrase, but the set { 1 , 2 } is not.

The difference between the interpretation of quantification given in (293b) and (293c)
is that in the first case, there is no other way for the auxiliary structure than to be list-like
and to contain components of the described object. In the second interpretation, it would
be a mere coincidence.

To sum up, Richter 2000 (Appendix C) shows that all of Pollard and Sag 1994 can be
formalized in RSRL by quantification over objects directly or, in the case of more complex
relations, by quantifying over “virtual” lists that can be used to express a relation between
components of an object.

In Sailer 1997 this use of quantification is extended to encode chunk structures in chains.
Building on Continuing from Abney’s (1991; 1992; 1996) line of thought, Sailer 1997 argues
that chunks should be considered the unit that is relevant for word order, instead of con-
stituents, as is done in many of the publications on word order in HPSG (Sag, 1987; Reape,
1994; Kathol, 1995; Richter and Sailer, 1995; Richter, 1997).

For illustration, consider the following German example, taken from Sailer 1997 (p. 302).
According to Abney’s theory of chunks, the NP in (297a) consists of two chunks, each of
which starts with a functional word, the determiner das (the) or the preposition von (of),
and ends with a substantive word, the noun Photo (picture) and the proper name Maria
respectively. The phonology of these chunks is indicated by the bracketing in (297a). The
syntactic structure of the NP is as given in (297b). What is important is that the chunk
das schöne Photo in (a) does not correspond to a constituent in the tree in (b).
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(297) a. [das
the

schöne
beautiful

Photo]
picture

[von
of

Maria]
Maria

b.
das

schöne

Photo

von Maria

PP

N1

N2

NP

In Sailer 1997, a chunk is characterized as a list that contains some nodes of a tree.
There are certain requirements for chunks, in particular, the nodes in a chunk must be a
partial order under the dominance relation. Chunk can be formalized as a chains which
contain signs.

The two chunks in (297a) can, thus, be represented as chains which contain subtrees of
the tree in (297b). In (298), the chunks are given by enumerating the root labels of the
subtrees of the overall structure which are part of the chunks. The first chunk contains all
subtrees of the NP except for those which are dominated by the PP node. These remaining
subtrees, on the other hand, belong to the second chunk. Clearly, the subtrees in each of
the chunks in (298) are a partial order under the dominance relation.

(298) The chunks of the NP:
〈NP, das, N2, schöne, N1, Photo〉
〈PP, Maria, von〉

A complication arises once the chunk structure of a clause is considered. As chunks
constitute the minimal units for linearization, the chunk structure of a clause consists of
several chunks. But, chunks are encoded as chains, so chunk structures should be a “chain
of chains”. This is not possible because an element of a chain must be an object from
the universe U and cannot be a chain again. The solution proposed in Sailer 1997 relied
on standard techniques of mapping a list of lists to a list. In the particular application, a
simple chain was used to represent a chain of chains: To combine the two chunks in (298)
to form the chunk structure of the NP in (297), the two chunks are concatenated and a
separation symbol is inserted between them. This is illustrated in (299).

(299) The chunk structure of the NP:
〈NP, das, N2, schöne, N1, Photo, elist, PP, Maria, von〉

In this example, we use an object of the sort elist as separation symbol. The separation
symbol must fulfill certain requirements: First, it must be a component of the described
object. Due to the way linguistic signs are defined — by the finiteness of the subcat list or
the phon list for example — we can safely assume that every linguistic sign has a component
of sort elist. Second, the separation element must be different from those elements that can
appear inside chunks. As chunks consist of sign objects, an object of sort elist cannot be a
proper part of a chunk.

Once such structures are defined, we need relations to operate on them. For chunk
structures, these are concatenation, permutation of chunks on a chunk structure, a relation
to determine whether a given chunk is on a chunk structure etc. Some of these relations
are given in Sailer 1997.
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This use of chains is essentially different from the “standard” use explained earlier: in
the case of the Semantics Principle, the chain contained only elements that were of
direct linguistic relevance and the only relevant aspect of the structure of the chain was
its capacity to store these elements. In chunk structures, we use special elements such as
the elist object in addition to those objects which are of real linguistic relevance, i.e., the
signs. Also, the structure of the chain becomes extremely important and we must access it
by specific relations.

If we allow such uses of chains, we have, indirectly, extended the range of quantification.
Now, we do not only quantify over components and virtual lists of components of an object,
but we also quantify over other data types which contain components of the object, such
as chunk structures.

After this brief overview of the uses of chains that have been proposed so far within
RSRL, we can show that the use of chains in Section 4.2.2 is even more abstract. We have
defined chains that encode terms of our semantic representation language. The elements
on these chains were not subterms of these terms, instead they were arbitrary objects of
two — almost arbitrary — sorts, s1 and s2. Thus, in the chain-encoding of terms, it is the
structure of the chain that relates to the term or to some me object, not the elements on
the chain. We could, for example assume two term-encoding chains that have the same s1
and s2 objects, but in a different order. In that case, the chains necessarily encode different
terms. On the other hand, two chains might use distinct objects of sort s1 and s2, but have
the same s2s1i sequences. In this case, the two chains express the same term.

We also defined some specific relations on term-encoding chains, such as the relations
chain-subterm, chain-replace etc. These relations allowed us to work with term-encoding
chains as if they were objects of sort me, or terms of Ty2. This encoding was possible because
objects of sort me and terms of Ty2 are of a relatively simple structure. In particular, they
are finite, acyclic, the constraints on semantic types are very local, and the distinction
whether some subterms are identical or merely “look alike” is not used in the grammar.

If we can give a chain encoding for all objects of a certain kind, independent of the
object that we are actually describing, a quantifier which binds a chain variable, then, can
be seen to range over all these virtual objects. To come back to our grammar of LF-Ty2,
let us assume that the sorts s1 and s2 that are used for the chain-encoding of terms/me-
objects are the sorts me and type. In this case, every object of sort me is such that for
each term φ, there is a chain c which consists only of components of this me object and
which encodes the term φ. This means that if the description of some me object contains a
sub-description of the form Ev δ, then the variable v implicitly ranges over all terms of the
semantic representation language.

We exploited this property in our formulation of the Semantics Principle in (252).
There the term that represents the unreduced intensional functional application of the
logical forms of the daughters does not appear as a component of the sign. Yet it is
available to us, because we can refer to a chain that encodes this term.

As a result, using the chain-encoding of me objects, we can use quantification in such a
way that we implicitly quantify over all me objects, whenever we describe an object that
has components of the sort s1 and s2. But, as this is the case, the question arises why we do
not quantify over the entire universe in the first place, i.e., why do we not use (293c) as the
definition of the interpretation of quantified descriptions? In Richter et al. 1999 (pp. 288f.)
and Richter 2000 (pp. 148f.) it is argued that the way the principles of grammar are stated
in Pollard and Sag 1994 and other HPSG sources implies that non-components are never
taken into consideration.
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In general, adopting an interpretation as given in (293c) would lead to a formal system
which is crucially different from RSRL. In particular the model theory of RSRL relies
on the particular type of quantification. For illustration, let us just mention one such
difference: In our presentation of RSRL in Section 1.1 and in Chapter 2 we pointed out
that we can determine what kinds of configurations of object we will find in the model of a
grammar, but we cannot determine how many copies of congruent configurations there are.
Under an interpretation of quantification as indicated in (293c), however, we can specify
the cardinality of the model. Consider the description in (300).

(300) A 1 A 2






1h

elist
i

and
2h

elist
i


 ⇒

(
1 ≈ 2

)



Under the regular RSRL interpretation, the description in (300) describes an object o iff
there is at most one component of this object which is of sort elist. Under an interpretation
as given in (293c) the description in (300) describes an object iff there is at most one object
of sort elist in the universe. This indicates that changing the interpretation of quantified
descriptions leads to major changes in the model theory and should, therefore, be avoided
unless there is massive evidence against the present model-theoretic assumptions.

Beside these general reasons, there is also a more concrete reason for us for not using
an interpretation of quantification as given in (293c). If we use (293c) then we do not have
chains as part of the denotation of descriptions. So far, there is no known way to express
the finiteness requirement on objects of sort me in RSRL without using chains (see the use
of chains in the General Finiteness Principle in (131c)). This means that giving up
chains would also lead to giving up the intimate correspondence between objects of sort me
and terms of Ty2.

In addition, there are some limitations as to which objects can be represented as chains.
As mentioned above, the chain-encoding of me objects is possible, because these objects
are finite. Had we chosen a different kind of linguistic objects for which we do not require
finiteness, the existence of a chain encoding would not be guaranteed. As a consequence,
the linguistic universe may contain configurations for which we cannot give a chain encod-
ing. This indicates that there is a difference in the range of quantification between (293c)
and the definition used in RSRL: in the first case, quantification ranges over all objects,
whereas in the second case it ranges over the components of some object and, implicitly,
over configurations for which we can give a chain encoding.

Let us, finally, consider yet another possible use of chains. This is a use which has, so
far, not been explored in practice within any RSRL grammar. Still, it is interesting from a
conceptual point of view, because it shows that using chains, we can also implicitly quantify
over chain-encoded structures which are not part of the linguistic universe. As such, this
shows that if we use quantification over chains, we may quantify over structures which do
not correspond to any configuration in the universe, i.e., over structures which we could not
access under the interpretation of quantified descriptions given in (293c).

So far we have taken chains to represent entities that are built in accordance with the
signature. It is, however, conceivable, to define chain encodings of structure that do not
exist at the object level. A simple example would be an RSRL grammar which uses a
signature that does not contain lists. In this case, chains would introduce a virtual list
structure, but there would not be an actual list structure in the model of the grammar. If
we put this in the context of quantification, this means that with (293b), we are able to
quantify over virtual structures, whereas under (293c) we can only quantify over concrete,
existing structures.
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To give an example for this use which is not completely implausible, we can re-consider
the chain encoding of terms of Ty2. Given the encoding of terms as presented above, we
can, in principle eliminate terms of Ty2 from our linguistic universe. To be more precise,
assume a signature as the one given in Section 2.3, but without the attribute content
and the sort content. In such a grammar, there are no objects of sort me that occur as
components of signs. This means that the signs in the denotation of this grammar do not
have an explicit logical form as one of their components. Still, we can use the chain encoding
of terms to relate these signs with a “virtual logical form”.

Under such an approach, we define a relation basic-translation that holds of a pair
〈w, c〉 iff w is a word and c is a term-encoding chain such that c encodes the basic translation
of the word w. To give an example, this relation holds between a word described by the
lexical entry for the word Mary and some chains described by m#, or between a word
described by the lexical entry for walks and some chains described by (λx.walk′

@(x@))#.

Given this relation, we can define a relation logical-form that holds of a pair 〈s,c〉
iff s is a sign and c is a term-encoding chain, and one of the following conditions is met:
First, if s is a word, then there is a term-encoding chain c′ such that the pair 〈s, c′〉 is
in the relation basic-translation and the pair 〈c′, c〉 is in the relation chain-shifting.
Or second, if s is a phrase than there are term-encoding chains c1 and c2 such that each
daughter of s stands in the relation logical-form with one of these chains, and c expresses
the intensional functional application of the terms encoded by c1 and c2. Without much
effort, we could require in addition that the chain c be fully β-reduced.

This can be illustrated with our simple example sentence Mary walks. A word described
by the lexical entry for Mary stands in the relation logical-form with the chains described
by m#, or with the value-raised form of m, i.e., (λP.P@(λ@.m))#, etc. Similarly, the
relation holds between a word described by the lexical entry for walks and some chains
described by (λx.walk′@(x@))#, its argument-raised form (λX.X@(λ@λx.walk′@(x@)))#, etc.
According to the second case, a phrase with the phonology Mary walks stands in the relation
logical-form with a chain described by (walk′@(m))#. We can say that if a pair 〈s, c〉 is
in the relation logical-form, then the chain c is a “virtual logical form” of the sign s.

Given these relations, for each sign in the denotation of the grammar, there will be a
set of its virtual logical forms. We can, then, define the model-theoretic interpretation of
a sign as the union of the extensions of the terms that correspond to the virtual logical
forms of the sign. To come back to our little example, the phrase Mary walks has as its
model-theoretic interpretation the extension of the term walk′@(m).

The difference between such a virtual logical form and the concrete logical form as we
will assume them throughout this thesis is difficult to grasp. One difference certainly lies
in the fact that it is easier to impose constraints on possible logical forms of a sign if the
logical form is an actual component of the sign, than if it is just a chain. On the other
hand, assuming virtual logical forms instead of content values is closer to the intuitions
behind S-structure Interpretivism as put forth in Lappin 1991.

The discussion in this section has revealed that the introduction of chains offers the
grammar writer possibilities which would not be available otherwise. Even if we allowed
quantifiers to range over the entire linguistic universe, the potential of chains is at the same
time more restricted and less restricted than such an extended quantification. It is more
restricted because we cannot give a chain encoding for infinite objects in general, it is less
restricted because we can encode structures that do not correspond to any configuration in
the denotation of the grammar.

As we have seen in this chapter, the integration of a semantic representation language
into an HPSG grammar offers many opportunities to investigate the formalism of RSRL,
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and especially, the use of chains within grammars. So far, in actual grammars, chains have
been used only to a limited extent. Mainly, this is due to the fact that we lack enough
experience with this formal tool, though the need for chains could be established already
based on the grammar of Pollard and Sag 1994. The novel uses of chains proposed in this
thesis will hopefully give rise to more discussion on the ontological status of chains and will
help to clarify the role that chains can and should play in the grammar of natural languages.





II

Idiomatic Expressions





CHAPTER 5

Introduction

In the first part of this thesis, we have established the means for building larger signs
from smaller signs. We assumed that such combinations underly a small set of very simple
rules. This became especially clear in the way we constructed the logical form of a phrase:
by simple functional application of the logical forms of the daughters. The resulting system
can be called compositional, in the sense given in the introduction. In Part II of this thesis,
we will address a class of phenomena that is problematic for the system assumed so far, and,
indeed, problematic for any system that assumes simple principles of regular combination.
The problematic empirical domain is that of irregularity.

It has often been observed that irregularity abounds in natural language. On the one
hand, irregularities are important in the discovery of rules, i.e., we can find cases of an
overgeneralized application of a rule, where an exception is appropriate. On the other
hand, irregularities are also a challenge for formal grammars, as it is far from clear how
the great diversity of irregularities should be incorporated into a precise description of the
language. In this part of the thesis, it is exactly this second question that we will be
concerned with. In particular, we will show how we can in principle integrate a module of
irregularity into a grammar that assumes strict principles of regular combination such as
the grammar presented in Part I.

In this part of the thesis, we will confine ourselves to a hand full of VPs which exhibit
a varying degree of irregularities. For lack of a beter term, we will refer to these VPs as
instances of idiomatic expressions (IE). It would be beyond the scope of this thesis, and
beyond its purpose, to try and achieve a full classification of idiomatic expressions. Instead,
we will focus on some concrete examples of idiomatic expressions, which we will distinguish
by certain semantic and syntactic properties. All the expressions that we will consider in
this chapter are VPs, at least in their most natural form. By looking at the differences that
exist among idiomatic VPs, we will see what fine-grained distinctions a formal theory of
idiomatic expressions must be able to cover.

It is not a priori clear what should count as an idiomatic expression. We use the
term idiomatic expression (IE) as a cover term for what might be considered an idiom, a
construction, an idiomatically combining expression, a collocation or a fixed combination.1

In all these cases, it is assumed that there is something “irregular” to these expressions.
Instead of providing a definition of the term, we will give examples that will be considered
here and explain in what respect these VPs exhibit irregular behavior. The idiomatic
expressions that will be treated in this chapter are listed in (301).

(301) a. trip the light fantastic (‘dance (nimbly)’)
b. kick the bucket (‘die’)
c. spill the beans (‘reveal information’)
d. make headway (‘make progress’)
e. pull the strings (‘use connections’)
f. make a decision (‘decide’)

1See van der Wouden 1997 for an overview over the terminology and its problems.
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As a tertium comparationes, we will consider regular freely combined VPs such as the
one in (302).

(302) Peter [VP read a book].

In our interpretation of the data, we will distinguish two kinds of irregularity: an internal
and an external irregularity. A given linguistic entity is internally irregular, if it is not built
or interpreted according to the ordinary rules of the language. The expression by and large
is a prototypical example of such an internally irregular linguistic entity, as its syntactic
shape does not occur elsewhere in English. As we will see, only the first two IEs in the list
in (301) (trip the light fantastic, kick the bucket) will be internally irregular in this sense.

The other type of irregularity has to do with the question of what constitutes a possible
linguistic context for a given expression. Outside the domain of IEs, such context sensitivity
is widely acknowledged. To consider a prominent example, an anaphor can only felicitously
occur in a sentence if it is bound, i.e., if there is another NP that stands in the right
syntactic constellation to the anaphor (be this c-command or (local) o-command) and that
is co-indexed with the anaphor. This externally irregular behavior of anaphora can be
illustrated with the following examples.

(303) a. Johni shaves himselfi.
b. * Johni shaves himselfj .

(304) a. Mary wants Johni to shave himselfi.
b. * Mary wants himselfi to shave Johni.

In (303b) the anaphor himself is not co-indexed with any other NP in the sentence,
therefore, the context requirements of the anaphor are not satisfied, which yields ungram-
maticality. In both examples in (304), the NP John is co-indexed with the anaphor. It is,
however, only in (304a) that John is in the required syntactic constellation. We can call this
the external irregularity of the anaphor, because, leaving aside the binding requirement, the
anaphor can be found in any linguistic context that is appropriate for an NP.

We will show that a similar point can be made for the parts that constitute IEs such as
spill the beans, make headway, pull strings and make a decision. We will show that these
IEs fulfill all the criteria of internal regularity. Because of this, we can give an analysis of
these IEs in terms of a regular combination of their parts. What makes them idiomatic
expressions is that these parts, while combining in a standard way, can only occur in a
constellation which also contains their IE-mates.

To give a concrete example which will be elaborated on in more detail below, consider
the IE spill the beans. We will assume that in this combination, the word beans occurs in a
meaning similar to that of information or secret. The word spill, as used in the IE, has the
meaning of uncover/reveal. Given this meaning assignment to the two major parts of the
IE, we can interpret the VP spill the beans in a regular, i.e. compositional, manner. We
must, however, prevent the noun beans from occurring in this meaning outside the IE, i.e.,
we must impose context restrictions on the occurrence of the word beans in the meaning of
information. Similar context restrictions must be made for the verb spill under the given
meaning.

The interpretation of the data and the resulting analysis stands in the tradition of the
work on regularity within idioms such as Fraser 1970 on the syntactic flexibility of certain
idioms and Ernst 1981, Wasow et al. 1983 and Nunberg et al. 1994, which emphasizes the
semantic flexibility of some idioms. Nonetheless the approach is novel in that it is the first
to draw an explicit borderline between internal and external aspects of irregularity and that
it integrates these notions into the architecture of a fully formalized grammatical framework
such as HPSG.
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In Chapter 6, we will provide data for some IEs and evaluate them according to a
set of criteria of regularity. As a result, we will substantiate the claim that of the above
mentioned IEs, only the first two are internally irregular, whereas the others are constructed
in a regular way. They are still IEs in the sense that they exhibit some irregularity, but this
irregularity is not to be found in the way the parts of the IE are combined, but in linguistic
contexts in which the parts of the IE can occur. Chapter 7 presents the analyses made
in other frameworks of formal grammar. We will discuss the approach of GPSG (Gazdar
et al., 1985) and TAG (Abeillé, 1995), as well as the HPSG proposal made in Riehemann
1997.These proposals can be considered the main sources that were used to develop the
present HPSG analysis. In Chapter 8, we will provide our own analysis that is based on
the distinction between internal and external irregularity. In Chapter 9, the results of this
part will be summarized.





CHAPTER 6

The Data

6.1. Criteria of Regularity

In this section, we use some tests to distinguish between several sorts of IEs. Before
we apply them to what we consider to be IEs, we first show how regular VPs as read a
book in (302) behave with respect to them. We distinguish semantic and syntactic aspects
of an expression. Let us, first, consider the semantic aspects. There, we can give four
characteristics of regularity.

1. Every element in the VP can be attributed some meaning with which it occurs
also outside the particular combination under consideration.

2. The meaning of the entire VP is arrived at by combining the meanings of its parts
in a regular way.

3. Parts of the VP can be semantically modified.
4. In a V-NP combination, it is in principle possible to have a pronoun referring to

the NP.

We can illustrate these criteria with the VP read a book. We can assign the elements in
the VP some regular meaning, such as the term λyλx.read′

@(x@, y@) for the word read, an
existential quantifier to the indefinite article and the term λx.book′@(x@) to the word book.
These words occur with the same meaning in other combinations, such as:

(305) a. Peter read the newspaper.
b. Peter wrote a paper.
c. Peter bought this book.

We apply this criterion, however, in a stronger way. For a VP to satisfy this criterion
means that all its parts can freely occur in other combinations, preserving their meaning.
Thus, the verb read appears in its meaning read′ not only with the NP a book as in (302)
or the NP the newspaper as in (305a), but it combines with anything that can be read.

Let us turn to the second criterion, which is not fully independent of the first: assigning
parts of a VP some meaning only makes sense if this assignment tells us something about
the meaning of the entire VP, i.e., the meaning assignment to parts happens under the
assumption that the overall meaning of the VP is arrived at compositionally.

In the case of the VP in (302), there is a compositional derivation of the meaning
of the entire VP. Without going into details of combinatorial semantics, which has been
the topic of Chapter 4, we can say that all common semantic frameworks such as the PTQ
framework of Montague 1974b or the framework sketched for HPSG in Pollard and Sag 1994
will treat the derivation of the meaning of this VP as an instance of regular combinatorial
(or compositional) semantics. In this thesis, we assume a semantic representation, i.e., a
logical form for the sentence in (302) of the kind in (306).

(306) ∃x[book′@(x@) ∧ read′@(p, x@)]

247
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Clearly, the logical form in (306) contains all the meaning components contributed by
all the elements in the sentence and only these, and combines them in a predictable way.
It is in this sense, that the second semantic criterion is met.

The third criterion is also related to compositionality. It concerns the question how
much the semantics of a VP is open to internal modification. For illustration, consider the
sentences in (307).

(307) a. Peter read a recent book.
b. Peter recently read a book.

Clearly, the two sentences are not equivalent: in (a), the modifier establishes the novelty
of the book, in (b) it refers to the time when Peter performed the act of reading a book.

In (307a) there is syntactic material added to the direct object, an adjective (a) which
leads to a further determination of the direct object. When a syntactically modified con-
stituent is also semantically modified, we speak of internal modification. Internal modifi-
cation is the rule when it comes to regular combinations, as would be expected under the
assumption of a compositional semantics. The notion internal modification contrasts with
external modification which is sometimes attested even with regular combinations.1

(308) a. An occasional sailor came into the bar.
= Occasionally, a sailor came into the bar. (Nunberg et al., 1994, fn. 15)

Apart from a small class of examples of external modification in freely combined VPs as
the one in (308), a modifier syntactically adjoins to the element whose semantics it modifies.

Our fourth semantic criterion can be illustrated with an example such as (309).

(309) Peter read [a book]i. Iti was very interesting.

The pronoun it in the second clause can refer to the NP a book in the preceding sentence.
The way we stated the criterion, we carefully added “in principle”, because independent
factors might block the possibility of anaphoric reference. A salient case of these is if we
negate the first sentence in (309). In that case, illustrated in (310), no binding across the
sentence is possible, as is well documented in the literature on dynamic binding (Kamp,
1981; Heim, 1982).

(310) Peter didn’t read [a book]i. * Iti was very interesting.

Another case which is relevant in the context of idiomatic expressions arises when the
NP is used non-referentially. Sentence (302) has a reading in which the NP is not used to
refer to a particular book but in which the entire VP expresses that Peter is doing some
“book-reading”. Under this interpretation, pronominal reference is excluded as well. As
we will see, for the direct object in IEs, a non-referential reading is often the only available
reading. Therefore, we consider it a sign of regularity that the NP can in principle also have
a referential reading, i.e., the criterion is met if pronominal reference is possible at least in
some reading of the VP.

Taken together, our semantic criteria give us a good characterization of the semantic
properties of a freely combined VP, and, as we will soon see, provides us with criteria to
differentiate between several classes of IEs.

In addition to the four semantic criteria given above, we will employ a series of syntactic
criteria as well. These are listed below:2

1The terminology internal and external modification was introduced by Ernst 1981. In his paper, however,
Ernst applies these terms only to idiomatic expressions.
2In this thesis, we are only concerned with IEs of a certain shape, i.e., with VPs that are of the form V NP.
For other IEs, different criteria of syntactic regularity are needed.



6.1. CRITERIA OF REGULARITY 249

1. Every element in the VP occurs in the same form in some other combination.
2. Syntactically, the VP is of a regularly built shape.
3. If it is a V-NP combination, the direct object can be modified syntactically.
4. If it is a V-NP combination, it can be passivized, (and further raised).
5. If it is a V-NP combination, the direct object can be topicalized.
6. If it is a V-NP combination, the direct object can have the shape of a relative

pronoun.

This is quite a long list of criteria, which can be ordered in two groups. The first three
criteria relate to the internal structure of the VP as such. These are the questions (i)
whether the words used in the VP have an independent life as items of the language or not,
(ii) whether the internal structure of the VP is regular and, (iii) whether it can be slightly
extended internally by adding a modifier. The next three of the criteria do some major
changes to the VP under consideration, i.e., they characterize the VP’s ability to undergo
processes that have been characterized as transformations or movement in Transformational
Grammar or GB respectively. Within these criteria, there are some that relate to A-
movement, such as passivization and raising, others relate to non-A-movement such as
topicalization and relativization.

Just as we did with the semantic criteria, we will illustrate the syntactic criteria with the
freely combined VP read a book to see that free combinations have all the properties listed
above. Consider, again sentence (302). All the words in this sentence appear independently
of each other in precisely the form they have in sentence (302).

(311) a. (= (302)) Peter read a book.
b. Peter read some journal.
c. Peter met a friend on the bus.
d. Peter took the green book from the shelf.

The sentences in (311) illustrate that all elements of the VP under consideration exist
independently in English. Albeit similar, our first syntactic criterion differs from our first
semantic criterion in that it only looks at the form of the words, not at their meaning.
So, homonyms will still count as one thing with respect to the criterion. For illustration,
consider the word band which has two basic meanings: a strip, or a group of some kind. As
we are only looking at the syntactic properties of the word in the first syntactic criterion,
the homonyms count as one: they are both singular nouns. The usefulness of this criterion
will become obvious, when we want to distinguish IEs which contain words which are not
present in the language outside the IE (example (301d)) form those which contain “normal
words” but with either no identifiable proper meaning (example (301b)) or with a meaning
that cannot be attributed to this word outside the IE (example (301c)).

The second syntactic criterion concerns the internal syntactic structure of the VP. For
the sake of concreteness, let us assume the following structure of the VP read a book:

(312)
V

read

Art
a

N
book

head

NP

head comp

VP

The same syntactic structure can be found with other VPs, such as those listed in (313).

(313) a. call the police b. drive a car
c. rejected my paper
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The VPs in (314), even though regular according to our criteria as well, have a different
syntactic structure.

(314) a. gave Mary a kiss b. run the entire day
c. read an interesting book d. read it.

In (a), there is a ditransitive VP, i.e., there would be one more complement NP in the
structure. In (b), the tree would actually be similar to the one given in (312). Still the NP
the entire day is an adjunct rather than a complement. In (c), the only difference concerns
the internal structure of the NP. Still, there is an adjunction which is not present in the
original structure. Finally, in (d), the NP consists of a single word, a personal pronoun in
the example. Thus, it is syntactically less complex than the NP in (312). Therefore, the
syntactic structure of the VPs in (314) is distinct from that in (312).

Let us now turn to the third and last of the “non-transformational” syntactic criteria.
This criterion is related to the third semantic criterion. On the syntactic side, we are only
interested in the question whether the structure of the NP in V-NP combinations can be
slightly extended. This is clearly the case for a VP such as read a book, as is illustrated
in (315).

(315) a. Peter read an interesting book.
b. Peter read a book from the library.

In these examples, the adjuncts to the direct object can be of different syntactic shape,
an adjective in (a), or a PP in (b).

The second group of syntactic criteria concerns the ability of a direct object to undergo
movement. For these criteria, we must require that the original meaning of the VP be
preserved. This is not a problem in the case of freely combined VPs, but, as we will see in
(343a), an idiomatic interpretation may be lost under passivization or topicalization. There
is an additional problem with the way we have formulated the remaining syntactic criteria.
We do not want to suggest a transformational analysis of the constructions, but we do find
it useful to see whether what appears with a certain meaning as a VP in an active clause
can also appear with the same meaning in a passive clause, or under topicalization.

Let us consider the different syntactic constellations in turn. The VP read a book can
undergo passivization.

(316) A book was read by Peter.

Once the NP a book appears as a subject, it can be further raised, be it by subject-to-
subject raising (a) or by subject-to-object raising (b).

(317) a. A book seems to be read by Peter (whenever he sits in the bus).
b. Mary expects a book to be read in every British school.

The last two syntactic criteria concern the question whether the direct object in a V-NP
combination can participate in an unbounded dependency or not. In the list of criteria, we
have elected topicalization as an instance of unbounded dependency. We did not chose the
possibility to form a wh-question as this would have required some change in the shape of
the NP, such as changing from a book to which book. As illustrated in (318), the NP a book
can be topicalized.

(318) A book, Peter read on Tuesday.

Another instance of unbounded dependency is the formation of a relative clause. There
are, in principle two kinds of relative clauses possible: the VP under consideration is in the
matrix clause and the relative clause modifies the NP, or the VP appears in the relative
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clause, with the NP taking the form of a fronted relative pronoun. The two possibilities are
shown in (319).

(319) a. Peter read a book [which he liked a lot].
b. Peter forgot the title of a book [which he read recently].

Of these two options for relative clause formation, we are mostly interested in the second,
because there the NP does not occur explicitly as a filler to something extracted from the
VP, as it does in topicalization. Instead, the relative pronoun functions as a filler and is
related to the explicit NP by some other means (index identity in Pollard and Sag 1994).

This concludes our traversal of the criteria of regularity used in this thesis. We have
shown that the VP read a book is regular with respect to all of these criteria. In Table 6.1 on
page 267, we have compiled the results of the application of these criteria to some idiomatic
expressions and to the regular combination read a book. As can be seen in the first row, the
regular combination passes all the tests.

6.2. Applying the Criteria to some IEs

After this overview of the semantic and syntactic criteria of regularity, we will now
present a number of less regular VPs. As mentioned above, we will use the cover term
idiomatic expression (IE) for every syntactically complex combination which exhibits some
irregularity. In the present work we will call a VP, and in particular a V-NP combination
an IE, if it fails to satisfy at least one of the criteria above.

In the introduction to this chapter, we listed the following VPs. We will show how they
behave with respect to our criteria. Table 6.1 summarizes the results of these tests.

(320) a. trip the light fantastic (‘dance (nimbly)’)
b. kick the bucket (‘die’)
c. spill the beans (‘reveal information’)
d. make headway (‘make progress’)
e. pull strings (‘use connections’)
f. make a decision (‘decide’)

trip the light fantastic. The idiomatic expression trip the light fantastic (dance) can be
illustrated by the following example.

(321) Let’s go out tonight and trip the light fantastic. (Ammer, 1997)

According to Ammer 1997, the IE goes back to a poem by John Milton, L’Allegro (1632):

Come and trip it as ye go,
On the light fantastick toe.

In this quote, the verb trip and the combination the light fantastic are separate from
each other. In particular, the light fantastic is part of the NP the light fantastic toe, and
this NP is not the direct object of trip (which is it), but rather part of an adjunct PP. The
expression has appeared in its present form in a song by James W. Blake, The Sidewalks of
New York (1894):

East Side, West Side, Boys and girls together,
All around the town, Me and Mamie O’Rorke,
The tots sang ‘Ring-a-Rosie‘, Tripped the light fantastic
‘London Bridge is Falling Down! On The Sidewalks Of New York.
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If we apply the first semantic criterion, we can assign the verb trip the meaning move
with light steps, which occurs independent of the particular IE.3

(322) The young lovers were tripping hand in hand through a meadow filled with wild
flowers.

Matters are different when it comes to the light fantastic. Here, the most plausible
assignment of meaning would be to say that the entire combination means a/some dance.
This interpretation is, however problematic, as a/some dance cannot be used with trip
(outside poetry).

(323) a. They tripped the light fantastic.
b. ?* They tripped some/a dance.

Finally, as the combination the light fantastic does not occur in other contexts at all, it
cannot replace the NP some/a dance in other contexts either (see (324)).

(324) a. They danced some dance/ *the light fantastic.
b. We really should practice some dance/ *the light fantastic for tonight’s party.
c. In some dance/ *the light fantastic, the partners are not supposed to look at

each other.

Thus, even though we can attribute to parts of the VP some meaning which participates
in the meaning of the whole, at least for the light fantastic this meaning does not occur
outside the IE. A further complication arises from the fact that, while we might assign
the combination the light fantastic a meaning, we cannot distribute this meaning in any
sensible way further over the words that constitute this part of the IE. Thus, the first
semantic criterion is not met by the IE.

With the meaning assignment proposed above, we can construct the meaning of the
VP from that of the verb and that of the rest of the combination. However, because of
the impossibility to give a meaning assignment to all words in the IE, the compositionality
criterion is not fully met.

The IE also fails on the third criterion. The only adjectival modifier that our informants
accepted was proverbial, but even with this modifier, the grammaticality of the sentence is
judged quite low. With the modifier proverbial, the external and internal modification yield
synonymous interpretations.

(325) a. ?* Let’s go out tonight and trip the proverbial light fantastic.
b. ?? Let’s go out tonight and proverbially trip the light fantastic.

Other adjectival modifiers were judged impossible.

(326) a. * Let’s go out tonight and trip the nimble light fantastic.
Let’s go out tonight and nimbly trip the light fantastic.

b. * They tripped the gay light fantastic.
They tripped the light fantastic with gaiety.

We conclude that there is no instance of real internal modification with this IE, i.e., if an
adjectival modifier is possible at all, it is always interpreted semantically as modifying the
entire VP. Therefore, the IE is not regular according to our third semantic criterion either.

To apply the fourth semantic criterion, we must construct a sequence of sentences which
in principle allows a pronominal reference to the direct object. Example (327a) gives such a
context using the NP a waltz instead of the light fantastic. If we use the IE in its full form,
as in (327b), such a pronominal reference is impossible.

3I am grateful to Jesse Tseng for this nice example and for references on the origin of this expression.
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(327) a. Mary danced [a waltz]i. Iti was the “Kaiserwalzer”.
b. Mary tripped [the light fantastic]i. * Iti was the “Kaiserwalzer”.

It should, however, be noted that the impossibility of pronominal reference might be
reduced to independent factors. In its most natural reading, the NP the waltz in (328) is
interpreted non-referentially. In this use, pronominal reference is impossible. In contrast to
example (327b), sentence (328) does have a reading with pronominal reference.

(328) Mary danced [the waltz]i. ?? Iti was the “Kaiserwalzer”.

To conclude, pronominal reference is not possible to the light fantastic, thus, the IE fails
on the fourth semantic criterion just as it did on the other three.

Let us, next, consider the six syntactic criteria given above. The IE does, in fact satisfy
the first syntactic criterion, as all of its words do occur outside the IE, even though not
necessarily with the same meaning. In (329) one such independent occurrence is given for
each word in the IE. In the case of light and fantastic, the syntactic category in which
they occur in the IE is not obvious. For this reason, we give an example for each of these
words as adjectives and nouns. In (329c) and (329e), the words light and fantastic occur as
adjectives, in (d) and (f), they are used as nouns.

(329) a. Mary tripped to New York last weekend.
b. John watched the movie.
c. Peter was looking for some light refreshment.
d. James turned off the light.
e. Everyone considers her a fantastic singer.
f. Peter prefers the fantastic to the real.

In contrast to all the semantic criteria, the IE meets the first syntactic criterion.

Matters are less clear when it comes to the second syntactic criterion, i.e., to the question
whether the IE has a syntactically regular shape. In Wasow et al. 1983 (p. 104), trip the
light fantastic is listed among expressions as by and large and Believe you me!, which are
not built according to the ordinary rules of English syntax.4 The fact that we were not
sure about the syntactic category of fantastic in the IE suggests that Wasow et al. 1983 are
indeed right in their claim that the IE is syntactically irregularly built.

It could, however, be argued that the syntactic shape of the IE is as indicated in (330).
In this structure, the IE is treated as a normal V-NP combination.

(330)
V

trip

Det
the

Adj
light

N
fantastic

N′

NP

VP

Even though this structure would be regular, it was not in line with the intuitions of
our informants. According to them, light is used as a noun in the IE, modified by the
adjective fantastic. There is a small number of constructions in English that would allow
such a post-nominal modification. The first, and intuitively most plausible is exemplified

4The expression Believe you me! shows that semantic regularity does not necessarily require syntactic
regularity, i.e., this expression satisfies the first and, possibly also the second semantic criterion, but, still,
is not built in a syntactically regular way.
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in (331a). This construction is, however limited to a certain class of nouns in English, such
as something, nothing, everyone, etc.

(331) a. She heard something interesting last night.
b. * She read the book interesting.

(332) a. She hammered the metal flat.
b. She ate the meat raw.

The second construction is a resultative construction which contains a small clause. Also
the third example, the so-called depictive construction, might be interpreted as combining
the noun and the adjective in a small clause. Even though my informants assigned the
words in the IE syntactic categories that would match with those in the examples in (331a)
and (332), none of these constructions seemed them applicable to the IE.5

If we assume either the structure in (330) or a structure parallel to the examples in (331),
then the IE meets the second syntactic criterion, if we follow Wasow et al. 1983 and the
intuitions of our informants, it does not. It is for this reason that we have put a question
mark in the relevant slot in the Table in figure 6.1 (page 267).

In example (325), we have seen that the adjective proverbial seems to be the only ad-
jectival modifier that is allowed inside the IE. The example with an adjectival modifier is
repeated in (333)

(333) ?* Let’s go out tonight and trip the proverbial light fantastic.

As the modification is relatively bad, even with this particular adjective, we are inclined
to say that the IE does not allow a VP internal modifier syntactically. Again, we must put
a question mark in Table 6.1.

The first three syntactic criteria gave some unclear results, which pointed to a non-
regular syntactic behavior of the IE. This will be confirmed by the second group of syntactic
criteria. In order to apply these criteria, we must assume that the combination the light
fantastic is an NP, even though we are not forced to make a commitment to a particular
internal structure for this NP. We continue the discussion on the assumption that the IE
is a V-NP combination.

It is impossible to form a passive with the present IE:6

(334) * The light fantastic was tripped in this hall from time to time.

The meaning of sentence (334) could be something like There was some dancing in this
hall from time to time. Still, the sentence is ungrammatical. Embedding the passive inside
a raising predicate does not yield a grammatical sentence either.

(335) a. * The light fantastic seems to be tripped in this hall from time to time.
b. * Mary expects the light fantastic to be tripped in this hall from time to time.

5Gazdar et al. 1985 (p. 244, fn. 33) give sentence (i), not (ii) as an example for a putative passive.
(i) * The light was tripped fantastic.
(ii) * The light fantastic was tripped.

This choice of example suggests that, to these authors as well, (330) is not the correct syntactic structure
for the IE.
6Whichever of the syntactic structures in (331a) or (332) we assume, passive and raising is possible in the
case of free combinations, but excluded for the IE:
(i) The metal was hammered entirely flat.
(ii) The meat is often eaten raw in this area.
(iii) * The light was tripped fantastic. (Gazdar et al., 1985, p. 244, fn. 33)
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In addition to the ungrammaticality of passive and raising, it is also impossible to
topicalize the light fantastic. Example (336) shows that the IE fails on the fifth of our
syntactic criteria.7

(336) * The light fantastic, she has always loved to trip.

With regards to the last criterion, the relativization criterion, it is already problematic
to construct examples, because, as we have seen in the discussion of the first semantic
criterion, the combination the light fantastic in the meaning some dance does not occur
independently of the verb trip. But, even if the IE occurs in the matrix clause and in the
relative clause, the resulting sentence is ungrammatical.

(337) a. * She tripped the light fantastic which she has learned in school.
b. She danced a dance which she has learned in school.

(338) a. * She tripped the light fantastic which her father had tripped when he was
younger.

b. She danced a dance which her father had danced when he was younger.

The ungrammaticality of the (a) examples clearly indicates that it is impossible to form
a relative cause that depends on the light fantastic.

If we contrast our findings about trip the light fantastic with those of read a book, we
see that the former is extremely irregular. In particular, it is irregular with respect to its
semantics and to its ability to appear in syntactic constructions other than its active VP
form. In that form, however, its internal structure is not entirely clear.

kick the bucket. The second example in the list of VP-IEs given in (320) is the VP kick the
bucket. In (339a), there is an example sentence with this IE.

(339) a. He said if he kicked the bucket his deputy could run the business as well as he
had. (McCaig and Manser, 1986)

b. All of my goldfish kicked the bucket while we were on vacation. (Ammer, 1997)

The IE kick the bucket has the meaning die. Even though all the words that appear
in the IE can appear independently, none of them does so in any meaning that could be
considered part of the meaning of the IE.8 Thus, it is not possible to assign the parts of the
IE a meaning which will both contribute to the overall meaning of the VP and will occur
independently. The IE kick the bucket does not meet the first semantic criterion.

As we cannot distribute the meaning of the IE over its components, it follows auto-
matically that the overall meaning cannot be computed by regular means from that of the
components. Therefore, the second semantic criterion fails as well.

As far as the third criterion is concerned, we find the following examples for syntactically
internal modification. In all instances, however, the parallel sentence with syntactically
external modification is equivalent.

(340) a. Pat kicked the proverbial bucket.
= Pat proverbially kicked the bucket. (Wasow et al., 1983, p. 110f.)

7Again, a different syntactic structure would not predict this ungrammaticality of topicalization, as it is
possible out of a small clause.
(i) The metal she hammered entirely flat, but the plastic she didn’t even touch.
(ii) The meat people in this area often eat raw, but they do cook the vegetables.
(iii) * The light she has always loved to trip fantastic.

8 According to Ammer 1997, the word bucket refers to some kind of beam form which pigs were suspended
by their heels after being slaughtered.



256 6. THE DATA

b. With that dumb remark at the party last night, I really kicked the social
bucket.
= Socially, I kicked the bucket. (Ernst, 1981, p. 51)

We can conclude from these examples that it is not possible to modify parts of the IE
semantically, even though a syntactic modification is possible. Thus, the third semantic
criterion is not met by the IE kick the bucket.

Checking the fourth semantic criterion, we observe that pronominal reference is not
possible to the NP-part of the IE either, as shown in example (341). This means that this
criterion fails for the present IE.

(341) * Pat kicked [the bucket]i and Harry kicked iti, too.

As noted in the table in Table 6.1, the IE kick the bucket fails to satisfy any of our
semantic criteria of regularity. It does, in fact, share this behavior with the previously
discussed IE trip the light fantastic.

We will, next, consider the syntactic criteria. As noted above, all words that occur in
the IE occur independently in other contexts, where they have a clear meaning. In (342),
we list an occurrence of each of the words that occur in the IE.

(342) a. Peter kicked a ball.
b. Mary read the book.
c. John carried the heavy bucket

Not only does the IE kick the bucket consist of ordinary words, it also combines them in
an ordinary way. The syntactic structure of the IE is exactly as that of the freely combined
VP read a book shown in (312). This is the reason why there is a literal meaning to the VP,
in addition to the idiomatic reading die. Thus, the second syntactic criterion is met as well.

In the discussion of the semantic properties, we have already seen that it is syntactically
possible to have an adjective as part of the NP in the IE. The relevant examples were given
in (340). It follows from these examples that the third syntactic criterion also applies.

So far, the IE kick the bucket patterns with trip the light fantastic with respect to the
semantic criteria, but it patterns with the free combination read a book with respect to
the first three syntactic criteria. Our further criteria will confirm the similarities of the
two IEs rather than that of the kick the bucket with a free combination: None of the
“transformational” criteria is met by kick the bucket.

Let us consider the relevant sentences, where a ‘*’ indicates ungrammaticality under the
idiomatic reading.

(343) a. * The bucket was kicked by Pat.
b. * The (social) bucket, Pat really kicked (with his dumb remark at the party

last night).
c. * The old lady kicked the bucket that the murderer had planned for her.
d. * The old lady wasn’t aware of the bucket that she would soon kick.

As indicated in (343a), passivization is not possible with the idiomatic reading, nor is
topicalization (343b). Thus, our fourth and fifth syntactic criteria fail to hold for the IE.
In addition, the NP the bucket is not a candidate for an attachment of a relative clause.
The sentences are ungrammatical independently of whether the verb kick is a clause-mate
of the bucket (343c), or whether it appears in the relative clause as in (343d). This shows
that the last syntactic criterion is not met either.

spill the beans. As a third IE, we will consider the VP spill the beans (reveal information/a
secret). In (344) we give some example sentences for this IE.
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(344) a. Pat spilled the beans. (Wasow et al., 1983, p 102)
b. That’s just like Marcia to spill the beans and tell Peter we’re having a party

for him! (McCaig and Manser, 1986)

The usual paraphrases of this IE are all of a syntactic shape which is very close to that
of the VP. Thus, we can give the following paraphrases for the sentence in (344a):

(345) a. Pat revealed a secret.
b. Pat divulged information.

Therefore, we can assign the verb spill the meaning reveal or divulge. In slang usage the
verb spill occurs in that meaning independent of the NP the beans.

(346) a. She spilled the story to the media.
b. He spilled all of the facts to the jury.

Under this interpretation, the beans must be assigned the meaning a secret. The NP the
beans does, however, not occur with this meaning outside the IE under consideration. Again,
the asterisk in the examples in (347) means ungrammaticality under the interpretation a
secret for the NP spill the beans.

(347) a. She divulged the story/ *the beans to the media.
b. He divulged all the facts/ *the beans to the jury.

As the NP the beans does not occur with the meaning a secret in environments other
than the IE under consideration, the IE does not meet the first semantic criterion.

When it comes to compositionality, however, we find ourselves in the position to attribute
the elements of the IE a meaning all of which will be combined to form the meaning of the
overall IE: The verb spill is used in its slang meaning divulge, the definite article is used in
a generic meaning and, finally beans is used in the meaning of secret. From these meaning
components, we can regularly derive the meaning of the IE. For this reason, the second
semantic criterion is met.

When we turn to the next semantic criteria, there is a great amount of divergence in
judgments among speakers and in the literature. On the one side, there is Schenk 1995
according to whom, the IE spill the beans does not allow modification. On the other hand,
the IE is claimed to pattern with other expressions that allow for modification in Wasow
et al. 1983. The behavior of this particular IE seemed to be not fully clear to the speakers
that we have consulted either. In this section, we present the data as given to us by two
relatively congruent informants. Being aware of the existing differences in judgments, we
will point to other judgment patterns found in the literature in footnotes and come back to
the picture that emerges from these alternative judgments in Section 6.3.

The IE spill the beans allows for semantic modification of the noun. Thus, syntactically
internal and syntactically external modification does not lead to the same interpretation.9

(348) a. Pat spilled the inadvertent beans.
6= Pat inadvertently spilled the beans.

b. Pat spilled the sordid beans.
6= Pat sordidly spilled the beans.

9 The data given in the main text agree with the empirical expectations of Wasow et al. 1983, Gazdar et al.
1985, Nunberg et al. 1994 and Abeillé 1995. According to Schenk 1995 (p. 262), however, the IE does not
allow modification. In (i), we give Schenk’s grammaticality indication:
(i) * Mary spilled the well-kept beans.

Thus, speakers that share the judgments in Schenk 1995, the IE does not meet the third semantic criterion.
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In addition, there are cases in which no external reading of the modifier would be
possible.

(349) a. Pat spilled the well-guarded beans.
b. Pat spilled the juicy beans.

In all of the examples in (348) and (349), the adjective semantically modifies only the
kind of information, not the telling thereof as a whole. Thus, the IE satisfies the third
criterion of semantic regularity.

The following example illustrates that pronominal reference is possible to the beans in
this IE. Thus, the IE is semantically regular with respect to the fourth criterion as well.

(350) I was worried that the beans might be spilled, but they weren’t.
(Wasow et al., 1983, p. 112)

Such a reference is, however only possible if the pronoun appears as part of the same
IE, at least semantically: in the second clause of (350), the elided verb corresponds to spill.
If this extra condition is not met, pronominal reference is impossible, as shown in (351).10

(351) * When Pat spilled the beans, she thought that they would shock her parents.

In summary, the IE spill the beans semantically deviates from complete regularity only
with respect to the first semantic criterion, i.e., the fact that the NP the beans does not
occur in its idiomatic reading in other contexts.

When we address the syntactic criteria, we find that all the words in the IE have an
independent existence in the language, satisfying the first syntactic criterion.

(352) a. Pat spilled some oil.
b. Mary took the picture from the wall.
c. The kids don’t like beans.

The second criterion is equally met, as the VP has the same syntactic structure as the
free combination read a book in (312). The third syntactic criterion is satisfied as well, since
the examples with adjectives given in (348) show that it is in principle possible to have a
modifier inside the NP without losing the idiomatic meaning of the expression.11

In contrast to the IEs that we have looked at so far, spill the beans can be passivized and
raised. As the reader might have noticed, example (350), repeated as (353b) is an instance
of a passive use of the IE, embedded under a modal auxiliary, i.e., a subject-to-subject
raising verb.12

(353) a. The beans were spilled in this article.
b. I was worried that the beans might be spilled, but they weren’t. (Wasow et al.,

1983, p. 112)
c. The beans tend to be spilled. (Schenk, 1995, p. 260)
d. John believes the beans to be spilled. (Schenk, 1995, p. 260)

10With respect to pronominalization, Schenk 1995 only considers examples of the type in (351). On page
262, Schenk gives the following example, which is also judged ungrammatical by all our informants.

(i) * Alexander spilled the beans, since he did not know they were secret.

It is not clear what Schenk’s judgments would be in cases such as (350).
11As pointed out in footnote 9, some speakers might reject modification of the noun beans. We do, however,
lack data whether this is a syntactic or a semantic restriction. As our informants did in any case accept
at least the modification by the adjective proverbial, the restriction seems to be more likely semantic in
nature, just as it had been attested for the IE kick the bucket.
(i) Pat spilled the proverbial beans.

12All references we found agreed on this property of the IE.
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When it comes to topicalization, however, the IE stops to show regular behavior. Ac-
cording to our informant and to Schenk 1995 (p. 259), topicalization is excluded with the
NP in this IE. Thus, as indicated by the asterisk in (354), topicalization is ungrammatical
under the idiomatic reading.13

(354) * The beans John spilled.

The last syntactic criterion involves relative clauses. In the case of spill the beans, no
instances of relative clauses can be found. This sharply contrasts with the clear grammati-
cality of the parallel examples using the paraphrase reveal the information in (356).

As relative clauses involve both modification and extraction, again, a mismatch in judg-
ments arises between the expectations of Schenk 1995, Wasow et al. 1983 and the judgments
of our informants. According to our informants, relative clauses with the IE are considerably
bad, as indicated in (355).

(355) a. * The alleged arms dealer spilled the beans [that made the party leader resign].
b. * The beans [that the alleged arms dealer spilled] made the party leader resign.
c. * The party leader resigned because of the beans that the alleged arms dealer

had spilled.

(356) a. The alleged arms dealer revealed the information [that made the party leader
resign].

b. The information [that the alleged arms dealer revealed] made the party leader
resign.

c. The party leader resigned because of the information that the alleged arms
dealer had revealed.

In the (a) sentence of (355), the entire IE is part of the matrix clause. In (b) and (c),
the noun beans is part of the matrix, whereas the verb spill appears in the embedded clause.
As can be seen, none of the sentences is grammatical.14

We conclude that the behavior of this particular IE seemed to be not fully clear either:
The IE spill the beans behaves almost like a free combination with respect to our criteria.
Following the judgments given in the main text, it has only one semantic irregularity, i.e.,
the fact that the noun beans does not occur in its idiomatic meaning outside this IE, and
two syntactic irregularity, the ban on topicalization and on relative clauses.

According to the judgments given in Schenk 1995, the IE would be less regular: it would
only be regular with respect to the second semantic criterion (regular combination of the
semantic contributions of its parts) and to the first four syntactic criteria.

If we followed the empirical classification given in Wasow et al. 1983, we would expect
the IE spill the beans to behave more regularly than indicated by the judgments in the
main text. In fact, the IE spill the beans should be parallel to the judgments we give for
the expression pull strings below. In Table 6.1 the results results are given for the three
grammaticality patterns that we found for this IE.

13While Wasow et al. 1983 or Gazdar et al. 1985 do not explicitly discuss topicalization data with this IE,
their presentation suggests that spill the beans belongs to those IEs that allow for topicalization in principle.
While all our informants judged sentence (354) ungrammatical, there is an increased acceptance if the direct
object contains more material:
(i) ?* The well-guarded beans John spilled.

Still, there seems to be a lot of context required to accept this sentence, which leads us to indicate it rather
as ungrammatical.
14While no relative clause data for this IE are given in Wasow et al. 1983, such data should be grammatical
in principle for these authors. In fact, the following sentences, while structurally parallel to (355b) are
considered less ungrammatical by our informants.
(i) ?* The beans Pat spilled weren’t so damaging as what Fred divulged.
(ii) ?* The beans (that) Pat spilled caused a scandal.
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make headway. The next IE that we want to address is the VP make headway (progress),
as exemplified in sentence (357).

(357) The government’s not making headway in the battle against inflation. (McCaig
and Manser, 1986)

Just as in the case of spill the beans, we can give a paraphrase which is syntactically
very close to the IE.

(358) The government is not making progress in the battle against inflation.

This suggests that we can assign the words in the IE some meaning: make appears in
the IE in its function to take a noun and express the action of achieving what is expressed
by the noun. This use of make occurs with several nouns. In these uses, the verb make is
called a light verb or a support verb.

(359) a. make progress (‘progress’)
b. make a difference (‘differentiate’)
c. make a decision (‘decide’)
d. make a move (‘move’)
e. make a speech

The way we interpret the first semantic criterion requires it to be possible to use a given
part of a VP freely in its meaning in other combinations as well. We show in the following
that the support verb make does not meet this criterion. For this purpose, we argue that
at least for some support verbs, we must list the nouns that they combine with. From this,
we conclude that the first semantic criterion is not satisfied.

For the verb make to meet the first semantic criterion, it should be able to co-occur
with nearly any noun which can occur in a light verb construction. This is, however, not
the case. In (360), we list some potential light verb constructions of English.

(360) a. do the laundry
b. wage war
c. commit a crime
d. take a shower

In (361), we show which of the nouns from this list can combine with the light verb make.
An asterisk indicates that the combination with make is not a light verb construction.

(361) a. * make the laundry
b. make war
c. * make a crime
d. * make a shower

For some of the light verbs, it seems possible to predict the kind of nouns that they
combine with on semantic grounds, i.e., we can restrict the nouns that occur as direct
objects of these light verbs by the regular means of semantic restrictions. For example, one
can only wage a war, a campaign or some other kind of fight. Similarly, in its light verb
use, commit can only combine with something illegal.

It is an open question whether such a semantic characterization can be given for all
support verbs. If we consider the nouns that combine with make in (359), there is no obvious
semantic class that would comprise these, but not the nouns of (360) that cannot combine
with the support verb use of make. The following considerations of support verbs in German
will show that some cases, there seems to be no hope that an appropriate semantic class can
be found. There are two papers within HPSG that address support verbs in German, Krenn
and Erbach 1994 and Kuhn 1995. In both papers, support verbs are assumed to select for
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certain lexemes rather than for semantic classes. Krenn and Erbach 1994 give the following
examples to suggest that in some cases nouns which might be considered synonyms are not
compatible with the same support verb.15

(362) a. eine
a

Entscheidung/
decision/

* einen
a

Beschluss
resolution

treffen
meet

b. eine
a

Entscheidung/
decision/

* einen
a

Beschluss
resolution

fällen
fell

c. * eine
a

Entscheidung/
decision/

einen
a

Beschluss
resolution

fassen
grasp

The examples in (362) show that the support verbs treffen (meet), fällen (fell) and
fassen (grasp) require different nouns as their complements and that, even though the nouns
Entscheidung (decision) and Beschluss (resolution) are semantically similar, the combina-
torial requirements of the support verbs must be able to differentiate between them.

A similar, but maybe even stronger, example is the following. The German verb einjagen
combines only with the noun Angst (fear) or the NP einen Schrecken (a scare).16 It forms a
support verb construction in the meaning of give somebody a fright/scare. This is indicated
in (363). We could, then, assume that Angst and Schrecken belong to one, very small,
semantic class, and that the verb einjagen selects for this class.

(363) Peter
Peter

hat
has

mir
me

Angst/
fear/

einen
a

Schrecken
scare

eingejagt.
??

‘Peter gave me a scare.’

In (364) we show that only the noun Angst can combine with the support verb machen
(make) to form a support verb construction which is synonymous to the example in (363).

(364) Peter
Peter

hat
has

mir
me

Angst/
fear/

* einen
a

Schrecken
scare

gemacht.
made

‘Peter gave me a scare.’

If the support verb machen selects a semantic class which contains all nouns compatible
with machen in a support verb construction, then this class contains Angst and for example
Vorschlag (proposal), but not Schrecken, while the latter is semantically very similar to
Angst. This is particularly strange, because we would be forced to say that Angst und
Schrecken form a semantic class on independent grounds, since they are the only nouns
that combine with einjagen (see (363))

Consequently, the data in (363) and (364) are better characterized in terms of selecting
particular lexical items. The verb einjagen selects two lexical items, Angst and Schrecken,
whereas the support verb machen selects a great variety of lexical items, but not Schrecken.

Under the assumption that at least some support verbs select single lexical items, the
question arises of whether the support verbs themselves are ambiguous, i.e., whether we
must assume multiple lexical entries for support verbs such as make. We think that there
is evidence that the support verb make must be distinct from a main verb make, but we
do not see a clear difference between several support verb uses of make. The following data
illustrate the contrast between the support verb uses and the main verb uses of make.

(365) a. * The making of progress/headway is a precondition for success.
b. The making of cars is an interesting topic for a documentary.

15As with all German examples in this thesis, we have adapted the examples of Krenn and Erbach 1994
(pp. 379f.) to the new spelling rules.
16In addition to these, the Deutsches Wörterbuch of Jacob and Wilhelm Grimm gives older quotes with
Schau(d)er (shudder) and Zorn (wrath). The combination Schauer einjagen might still be marginally
acceptable, but to us, the combination Zorn einjagen seems to be impossible in today’s German.
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Schenk 1995 (p. 267) points out that support verbs cannot appear as nominal gerunds,
i.e., as -ing-forms that take an of-PP as their syntactic complement. This is shown in (365a).
As indicated in (365b), nominal gerunds are possible with the main verb use of make.17Accor-
ding to Zwicky and Sadock 1975, if we can find such a difference in the linguistic construc-
tions in which an element can occur, we have some evidence to postulate ambiguity. Thus,
the contrast in (365) indicates that there are at least two verbs make that must be distin-
guished in English: a main verb in the sense of produce, and a support verb.

It is unclear, however, whether all support verb uses can be captured with a single lexical
entry. For the few support verb constructions that we consider in this study, this general
problem reduces to the question of whether the verb make in make headway and in make
a decision is licensed by the same lexical entry or by distinct lexical entries. As we will
not provide a detailed semantic analysis for support verbs, we cannot not give an answer
to this question. In the following, we assume that a single lexical entry is enough, but an
alternative assumption that there are two lexical entries which share many properties would
be equally compatible with our analysis.18

To conclude, the examples given above make it at least questionable whether we can
express the selectional requirements of support verbs fully in terms of semantic restrictions.
While there certainly exists some predictability within the distribution of support verbs,
there are also completely idiosyncratic cases. In this thesis, we will simply consider the
cases of make headway and, later in the text, make a decision as idiosyncratic in this sense.

The paraphrase in (357) suggests that we can assign the noun headway the meaning
progress. Nonetheless, the word headway does not occur in English outside the present IE.
Therefore, the first semantic criterion is not met for this part of the IE either.

(366) a. Everyone is in favor of progress/ *headway.
b. Her recent progress/ *headway impressed her boss.

As far as the second semantic criterion is concerned, however, we can easily compute
the meaning of the VP by assuming the indicated meaning assignment. This tells us, that
the IE satisfies the second semantic criterion.

Just as its paraphrase, the IE allows for semantic modification of the direct object in
some cases (367a). The semantic contribution of the verb make is quite weak, therefore it
is in most cases not clear whether there is an instance of internal or external modification,
as the two interpretations would mean the same (368).

(367) a. He is making interesting headway.
6= He is making progress in an interesting way.

b. He is making interesting progress.
6= He is making progress in an interesting way.

17See for example Abeillé 1988 for observations on differences in the potential of extraction between the
light verb constructions and other combinations. We have not included the ability to form nominal gerunds
in our syntactic criteria, because we will not give an account of gerunds in this thesis.
18A similar case is investigated in Lüdeling 1995 for the main verb uses of German haben (have). Lüdeling
formulates her analysis within the framework of two-level semantics of Bierwisch 1983, 1989. Bierwisch

assumes that there are two levels of interpretation: a level of Semantic Form (SF) and a level of Conceptual
Structure (CS). This distinction allows Lüdeling to assume a single SF — and therefore also a single lexical
entry — for the main verb haben as it appears for example in (i) and (ii). At the level of CS, this general
relation is made more specific depending on the context. Thus, in (i) the verb is contextually specified as
expressing a possession, in (ii) it relates an individual to its physical state.

(i) Chris

Chris
hat

has
eine

a
Villa

villa
in

in
Südfrankreich.

the South of France
(ii) Chris

Chris
hat

has
Fieber.

a fever

If Lüdeling’s approach can be applied support verbs then it is likely that we can assume a single semantic
specification for the support verb uses of make.
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(368) a. He is making considerable headway.
= He is making headway considerably.

b. He is making considerable progress.
= He is making progress considerably.

From these data we conclude that semantically internal modification is possible with the
IE make headway, i.e., the third semantic criterion is met.

When we consider pronominal reference, we observe that it is impossible to refer to the
noun headway by a pronoun, as evidenced by the following sentences. This contrasts with
the semantically equivalent progress in (370).

(369) a. * Mary made considerable headwayi and John made iti, too.
b. * I thought that considerable headwayi was made in the last 15 years, but iti

wasn’t made.

(370) a. Mary made considerable progressi and John made iti, too.
b. I thought that considerable progressi was made in the last 15 years, but iti

wasn’t made.

If we look at the results for the semantic criteria, we see that the IE is semantically less
regular than spill the beans, but more regular than kick the bucket.

Let us turn to the syntactic criteria. As mentioned above, the word headway does not
occur in the English language outside the present IE. Therefore, the first syntactic criterion
of regularity is not met.

Even though the word headway is special to the IE, we can treated it as a noun. This
makes the entire IE structurally regular, i.e., it has the same structure as any of the following
VPs with a bare noun direct object. Therefore it satisfies the second syntactic criterion.

(371) drink milk, read books, love children

As evidenced by the modification examples in (367), the IE allows for an adjectival
modifier to be part of the direct object, which shows that the third syntactic criterion is
met as well.

The IE make headway can also undergo passivization and raising, thus meeting the
fourth syntactic criterion.

(372) a. Considerable headway was made over the last 15 years.
b. Considerable headway seems to be made in this area of research.
c. The researchers expect considerable headway to be made in the near future.

The data are less clear with topicalization. In its bear form, the noun headway seems
not to be topicalizable. If headway is modified, however, the acceptability of topicalization
rapidly increases.

(373) a. ?* Headway our research makes constantly.
b. That much headway only a huge research institute like ours could make in a

single year.

(374) a. ?* Progress our research makes constantly.
b. That much progress only a huge research institute like ours could make in a

single year.

As the same pattern arises with the VP make progress in (374), we interpret this as an
indication that the oddness of sentence (373a) is due to independent constraints on what
kinds of elements can be topicalized in English.
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Relativization seems to be possible for the IE as well. This is unquestionably the case
if the entire IE is within the same clause and the relative clause is merely attached to the
noun headway, see example (375a). If the verb make is contained in the relative clause,
as in (375b), there is a slight decline in acceptability. This decline does not arise with the
noun progress.

(375) a. You have made considerable headway/progress that will be of tremendous use
for the entire project.

b. I admire the ?headway/progress that you have made since we met last time.

If we have the IE appear in both the matrix and the relative clause, the sentence is fine:

(376) She has made headway that nobody has ever made before in this area of research.

The discussion revealed that the IE make headway exhibits considerably regular be-
havior. Still, it is not a regular VP because the support verb make exhibits idiosyncratic
selectional properties and the word headway does not appear in other contexts.

pull the strings. The next IE that we want to consider exhibits even more regularity than
the others. It is illustrated by the following sentence.

(377) a. Pat pulled strings to get Chris the job.
b. You can often achieve more by pulling strings rather than writing letters or

trying to persuade people of your point of view. (McCaig and Manser, 1986)

The following paraphrase can be used as a rough correspondence.

(378) Pat used connections to get Chris the job.

Under the working assumption that the two sentences convey exactly the same meaning,
we can attribute the meaning use to the verb pull and interpret the noun strings as connec-
tions. Using this assignment, each element in the IE contributes to the meaning of the IE
in a compositional way. Nonetheless, neither the verb pull nor the noun strings freely occur
in this sense elsewhere. For the verb pull there is just one other combination in which it
takes the same meaning as in pull strings: the synonymous IE pull wires.

(379) Pat pulled wires to get Chris the job.

For all other combinations, the words pull and strings are not used in the meaning
use and connections respectively. This can be illustrated with the following examples. In
each case, replacing the words use or connections by pull or strings does not preserve the
meaning.

(380) a. Pat used strings to get Chris the job.
b. Pat pulled connections to get Chris the job.

(381) a. Pat used the bike to get to the department.
b. 6= Pat pulled the bike to get to the department.

(382) a. Pat has connections to a member of the parliament.
b. 6= Pat has strings to a member of the parliament.

These examples show that our first criterion is not met. Still, under the meaning as-
signment characterized above, the IE can be interpreted compositionally. We conclude that
the second semantic criterion is satisfied.
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The IE under consideration also allows for internal modification which is non-synonymous
to external modification. To see this, consider the following data.19

(383) a. Pat pulled official strings to help Chris.
6= Pat officially pulled strings to help Chris.

b. Pat pulled obvious strings to help Chris.
6= Pat obviously pulled strings to help Chris.

There are, of course instances of external modification with that IE as well.

(384) Pat pulled political strings to help Chris.
= In the political domain, Pat pulled strings to help Chris.

Because of the IE’s potential to allow for semantically internal modification, it satisfies
the third semantic criterion.

To test the fourth criterion, we can simply modify the sentence used for the IE spill the
beans in (350).

(385) I hoped that Pat would pull the strings to help Chris, but he didn’t even think of
pulling them.

As the example shows, the IE allows for pronominal reference, thus also satisfying the
last semantic criterion.

When we turn to the syntactic criteria, the regular properties of the IE become even
more obvious. First, all the words that appear in the IE also appear independently, although
with a different interpretation. Thus, the first syntactic criterion is met as well.

(386) a. Kim pulled a knife on the attacker.
b. Pat tied up the parcel with two strings.

Similarly, the IE syntactically has the same structure as the freely combined VP read a
book in (312). Therefore, the second syntactic criterion is equally satisfied.

Turning next to modification. As the IE allows semantically internal modification and
as the examples in (383) show, an adjectival modifier can appear inside the IE. Thus, the
third syntactic criterion is met.

The IE can also appear in all syntactic constructions used in our criteria. As such, it
can occur in passivized form, and with raising predicates.

(387) a. Those strings were pulled by Pat.
b. These strings seem to have been pulled by Pat.
c. Chris actually expected these strings to be pulled by Pat.

Topicalization is possible as well:

(388) Those strings, he wouldn’t pull for you. (Nunberg et al., 1994, p. 13)

When it comes to relative clauses, both types of relative clauses are possible.

(389) a. Pat pulled the strings [that got Chris the job].
b. The strings [that Pat pulled] got Chris the job.

If we compare the behavior of the IE pull the strings and that of the freely combined
VP read a book, it is obvious that pull the strings is entirely regular, except for the fact that
the words are used in a nonstandard interpretation.

19In fact, the IE pull strings is subject to very much the same variation attested for spill the beans above.
As the data that we got on this IE were more in line with those given in Wasow et al. 1983 than with the
pattern assumed in Schenk 1995, we do not repeat Schenk’s position here.



266 6. THE DATA

make a decision. The final IE that we want to consider in this thesis is the VP make a
decision, as in (390).

(390) After all this discussion, you must finally make a decision.

If we run our criteria on this VP, it appears to be extremely regular: The word decision
appears in its regular meaning, and the verb make has its light verb function, i.e., a relatively
vacuous meaning, serving the function of creating a verbal context for the noun (decision,
in this case). As such, both words appear in the given meaning independent of each other
within the language. As we have seen, however, in the case of the IE make headway, the
light verb use of make is not predictable and, thus, we must conclude that it violates the
first semantic criterion.

The word decision clearly appears in other VPs as well, some being even synonymous
to make a decision.

(391) a. They finally reached/took a decision.
b. I can only admire such a brave decision.

This indicates that it is only the verb make in this combination that exhibits irregularity.

As to combinatorial semantics, the meaning of the VP can be compositionally derived
from the meanings of its parts. Thus, the second semantic criteria is satisfied.

As the meaning contribution of the verb make is minor, modification of the nominal
part of the IE is often synonymous with modification of the entire VP. This can easily be
tested by replacing make a decision by the simple verb decide.

(392) a. She made the right decision.
= She decided the right way.

b. She made a difficult decision.
= She decided with great difficulties.

Still, we think that in all these cases, the adjectival modifier can be taken to semantically
modify the noun rather than the entire VP, because the Adj-N combinations can occur with
the same meaning in other contexts (393).20

(393) a. At first sight, this seemed to be the right decision.
b. It was a difficult decision to sell the house.

Finally, pronominalization is also possible, which means that the fourth criterion is met.

(394) a. Whenever the members of the party make [a decision]i, the party leader must
defend iti in the parliament.

b. While Pat makes [the decisions]i, Sandy just accepts themi as they are.

Turning to the syntactic criteria, we see that all the words contained in the VP occur
independently as well, and that the way they combine syntactically is just as that of the
freely combining VP read a book in (312). As seen in the modification example in (392), an
adjectival modifier can occur inside the NP.

Passivization and raising are both easily possible with the IE, satisfying the fourth
syntactic criterion.

(395) a. Obviously, this decision was made without asking those that will be affected
by it.

b. Sometimes unpleasant decisions must be made.
c. I don’t expect an important decision to be made before next Monday.

20Note that in the case of headway, we were not able to give such examples because the noun cannot appear
outside the IE make headway.
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Table 6.1. Regularity criteria and idiomatic expressions

Semantic criteria Syntactic criteria
1 2 3 4 1 2 3 4 5 6

read a book ok ok ok ok ok ok ok ok ok ok

trip the light fantastic * * * * ok ? ? * * *
kick the bucket * * * * ok ok ok * * *
spill the beans (Schenk, 1995) * ok * * ok ok ok ok * *
spill the beans (main text) * ok ok ok ok ok ok ok * *
spill the beans (Wasow et al., 1983) * ok ok ok ok ok ok ok ok ok
make headway * ok ok * * ok ok ok ok ok
pull the strings * ok ok ok ok ok ok ok ok ok
make a decision * ok ok ok ok ok ok ok ok ok

Also, topicalization is possible, if the noun is made prominent enough to meet the
constraints on topicalization.

(396) Such a decision, we will never make without asking for your approval.

Finally, relative clauses, both with the V- and the NP-part of the IE in the same clause
and separated are fine.

(397) a. Mary made a decision that affected the rest of her life.
b. The decision that Mary made affected the rest of her life.

We conclude that the VP make a decision satisfies all the syntactic criteria and only
fails on the first semantic criterion. As can be seen from Table 6.1, the result is the same
that we got for the IE pull strings.

There is a syntactic difference between pull strings and make a decision. As illustrated
in (365a), it is impossible to have a nominal gerund with the light verb use of make. Nominal
gerunds are, however, possible with other kinds of IEs. Fraser 1970 (pp. 38ff.) explicitly
mentions these gerunds to be possible with spill the beans and pull strings.

(398) a. I did not appreciate Pat’s spilling of the beans to the media.
b. Pat’s pulling of strings got Chris the job.
c. * I do not like his making of all decisions for our family.

6.3. Interpreting the Data

The results of our survey of the syntactic and semantic properties of some English VPs
are collected in Table 6.1. On the horizontal axes, we have put the semantic and syntactic
criteria as we have presented them above. The vertical axes lists the VPs whose regularity
we have investigated. For comparison, the behavior of the regularly combined VP read a
book is included as well. An “ok” in a slot of the table marks that the VP under consideration
satisfies the indicated criterion. As can be seen, the freely combined VP satisfies all the
regularity criteria. The other rows contain some “*” symbols which indicate that a certain
criterion is not met. In the case of trip the light fantastic, we also find a “?” symbol twice.
The occurrence of this symbol shows that it might be possible that the criterion is met, but
it is not entirely clear. In the discussion of this IE, the problematic status of its internal
structure was shown. In Table 6.1, we have not only indicated the results for the IE spill the
beans as used in the main text, but also the results for speakers that follow the judgments
in Schenk 1995, and the reconstructed judgments of Wasow et al. 1983.
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Now that we have gathered some differences between the VPs listed in (320), we can try
to interpret these data from a theory neutral perspective. This interpretation of the data
will prepare the reader for the particular analysis chosen in Chapter 8.

In this section, we will try to interpret the data collected above from a perspective which
is theory neutral as far as possible. Still, there are certain basic assumptions that we are
making. They should, however, be rather uncontroversial. Our interpretation of the data
will be particularly concerned with the distinction between what we have called internal
and external irregularity in the introduction to this part of the thesis.

In order to be able to work with these notions of irregularity, we must give at least
a tentative definition. In the introduction, we took the adverbial by and large as an ex-
ample of an internally irregular phrase. Our criterion for internal regularity of a complex
expression is twofold: Syntactically, the expression must have a structure which is regularly
attested in the language. Semantically, there must be a meaning assignment to the parts
of the expression such that the meaning of the entire expression can be computed from
this meaning assignment according to general principles of combinatorial semantics, such
as those illustrated in Part I. These two criteria correspond to the second syntactic and the
second semantic criterion of Section 6.1 respectively. The way the semantic part of internal
regularity is formulated, it is clear that an expression cannot be syntactically irregular but
semantically regular. This is a consequence of the standard notion of compositionality.

In Table 6.1, there are only two expressions that fail on the second semantic criterion,
trip the light fantastic and kick the bucket. For this reason, they are the only IEs from our
list in (320) that we consider to be internally irregular.

It is much harder to give a clear characterization of external irregularity, and, to some
extend, this characterization will depend on the particular theoretic perspective and the
amount of theoretical insight that is available in a particular empirical domain. Still, for
any theory and at any level of understanding of the data, we will find instances of external
irregularity. For the purpose of this thesis, we will offer a general characterization of external
irregularity and, then, show which of the regularity criteria introduced in Section 6.1 are
indicative of external (ir)regularity.

In its most general form, external irregularity can be characterized in the following
way: a linguistic entity is externally irregular, if its distribution cannot be predicted by its
internal properties and the principles of the grammar. In principle, there are two kinds of
deviations from the regular distributional pattern: An expression is banned from contexts
where one would expect it, given its meaning and its syntactic category. Alternatively, the
expression could be allowed in contexts where similar expressions do not occur. In this
thesis, we will only be concerned with externally irregular expressions that have a more
restricted distribution than what would be expected given the regular rules of grammar.

The syntactic and semantic criteria of regularity contain some that give us clear indica-
tion of external irregularity. Consider the first syntactic criterion: If a word such as headway
cannot be used outside a certain VP, this is a clear indication of its external irregularity.
The same is true for the first semantic criterion. If a word such as beans associated with
a certain meaning, such as the of secret/information is bound to occur as a direct object
of a certain verb, this indicates a very restricted distribution, which proves the external
irregularity of parts of this expression. As can be seen in Table 6.1, all the IEs of (320) fail
to satisfy the first semantic criterion. Restricting ourselves to those IEs that are internally
regular, this means that these IEs contain at least one word which does not occur freely in
the given meaning. For some words such as headway this means that they do not occur at
all outside the IE, for others, such as beans in the meaning of information, it is the special
form-meaning pairing that does not occur outside the IE. For others, like pull, occur in a
certain group of contexts, but not freely. Finally, in the case of make this group of contexts
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is considerably large. Still, it could be shown that, in its light verb meaning, make cannot
occur with every noun which is a candidate for a light verb construction.

Based on the notions of internal and external (ir)regularity, we can classify the data
summarized in Table 6.1. For each of the examined IEs, we will give a brief characterization
in what respect the entire VP or parts thereof are internally or externally (ir)regular.

In the case of a freely combined VP such as read a book, we have three words read, a, and
book which are all combined syntactically in a standard way and the meaning of the entire
VP results from a regular combination of the meanings of these words, given the syntactic
structure used to combine these words. In addition all these words freely occur with the
same meaning in other combinations. Thus, the entire VP is constructed in an internally
regular way from the words that it contains. All these words are externally regular.

In the discussion of the IE trip the light fantastic, we could not assign the VP a clear
syntactic structure, nor could we provide any sensible meaning assignment to its parts.
The only analytical option we can see is that the entire VP must be treated as internally
irregular. Still, there must be some internal structure to the VP, as the verb trip receives its
regular inflection. Therefore, we conclude that the VP as a whole is assigned the meaning
dance. The only thing that is known about the internal structure of the VP is that its head
is the verb trip. As the meaning assignment is done to the VP as a whole, it follows that
we cannot alter the VP syntactically under the same meaning. The IE, as a whole is, thus,
internally irregular.

The case of kick the bucket is very similar to this. Even though we can assign this
VP a regular syntactic structure, this structure cannot be used for semantic interpretation.
Instead, we must assign the meaning die to the VP as a whole. As the VP is of a regular
structure, we can allow for some syntactic modifiers to enter the structure. Parts of the IE
do not have a meaning that will participate in the overall meaning of the VP. Therefore,
the only way for an adjunct to make a semantic contribution is by being interpreted as an
external modifier. Such an interpretation has been shown to be possible, in principle, for
freely combined VPs as well. We can again, block greater syntactic flexibility by requiring
that the meaning assignment be made to the VP only if it is of the right shape.

These two IEs were the only ones in our list that were absolutely incapable of participat-
ing in syntactic operations, and, in fact, the only two whose meaning could not be spread
over the components of the IE. We took the noncompositionality (or non-decomposability)
of these IEs as a criterion to classify them as internally irregular. Eventually, this will lead
us to treat them as irregular complex entities.

Let us turn to the other extreme, the VP make a decision. We indicated in Table 6.1 that
this VP shows almost fully regular behavior, the only problem being that not all potential
candidates of English nouns can combine with the light verb make. As we want to assume
regularity wherever possible, we claim that make a decision really is built up in a regular
way from its components, the light verb make, the determiner a and the noun decision. It
is, however, a lexical property of the light verb make that it accepts only some NPs as its
complement. Such NPs are for example those headed by decision, but not those headed by
laundry. It is clear that this requirement need not be fulfilled locally, i.e., within the same
VP. In the data we have collected, the light verb make can also occur if its direct object
is extracted or takes the form of a relative pronoun. In both cases, however, there must
ultimately be a relation to a noun that falls into the class of elements that can be combined
with the verb make in its light verb reading.

To summarize, the VP make a decision is regularly built, but the light verb make comes
with the distributional requirement that its direct object be of a certain kind, i.e., be related
to an occurrence of a noun like decision. What makes us call the VP make a decision an IE
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is precisely the fact that, even though it is internally freely combined, it contains a word,
make, which is very restricted in its occurrence possibilities. This leads us to classify the IE
as internally regular, but one part of the IE, the verb make, exhibits external irregularities.

We have thus encountered two different sources of irregularity in the IEs considered:
a VP like trip the light fantastic is internally a fully irregular, but syntactically complex
entity. A VP like make a decision is internally fully regular, but part of it, the verb make
in its light verb use is restricted to co-occur with a noun like decision. We will see that
the other VPs considered in this chapter, while being internally regular, all consist of two
elements with particular distributional properties, i.e., with external irregularities.

Let us first reconsider the IE make headway . In this IE, as we have seen in the discussion
of the data, the verb make is used as a light verb, just as in the case of make a decision.
Headway can be considered a noun, whose meaning is roughly that of progress. As a light
verb, make has the distributional restrictions mentioned above. The noun headway combines
with this verb in a syntactically and semantically regular way. It is, however, irregular in
so far as it does not occur outside the given IE (the first syntactic criterion). This property
can be seen as a external irregularity of the noun headway, just as the restriction on the
light verb make.

The IE pull strings differs from make headway in two respects: first, it is more regular,
as all its parts occur independently in the language. On the other hand, it is less regular, as
none of its parts occurs with the meaning used in the IE outside this particular combination,
i.e., pull in the meaning of use and strings in the meaning of connections. Under this meaning
assignment, the syntactic structure and the meaning of the IE can be regularly derived. We
must, however, prevent the words from occurring in this meaning outside the IE. Treating
this case parallel to that of make headway, we can impose strong distributional requirements
on both elements of the IE, in this case, the verb pull is restricted to occur in its idiomatic
meaning only in the context of the word strings (and the word wires). The distributional
restrictions on strings in the idiomatic reading are parallel to those of headway, i.e., it must
occur as the direct object of a particular verb.

The last IE that we treated in the preceding section is the VP spill the beans. As our
criteria evidenced, we can treat the VP as regular, once we accept an exceptional meaning
assignment to its parts. Thus. the combination of words is regular, but the words exhibit
special distributional requirements, which ensures that the they occur in this particular
reading only when they are in combination with each other.

Treated under this perspective of internal and external irregularity, we would expect
there to be a clear distinction between the syntactic and semantic behavior of trip the light
fantastic and kick the bucket on the one hand and the rest of the IEs in (320) on the other
hand. Indeed, this distinction exists: as mentioned above, these IEs are the only VPs in
our collection that do not passivize, or participate in any of the other syntactic operation.

What is more surprising, is the difference in behavior between the more restricted IEs
spill the beans and make headway on one hand and the very flexible pull the strings and
make a decision on the other. Why is it that the former two have less syntactic freedom
than the latter? In the rest of this section we will try to derive this contrast from the
semantic properties of the NPs under consideration.

The IE make headway differs from the VP make a decision only in not allowing for
pronominal reference to the noun. The examples used to show this are repeated below.

(399) a. * Mary made considerable headwayi and John made iti, too.
b. * I thought that considerable headwayi was made in the last 15 years, but iti

wasn’t made.
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(400) a. Mary made considerable progressi and John made iti, too.
b. I thought that considerable progressi was made in the last 15 years, but iti

wasn’t made.

Our judgment was motivated by the contrast between make headway and the synony-
mous expression make progress. The pattern can, however, be explained if we consider what
kind of entity is denoted by the noun headway. Headway clearly denotes a mass. The data
in (399) are, indeed, parallel to what we find with an ordinary mass noun such as milk.

(401) a. * Mary drank (a lot of) milki and John drank iti, too.
b. Mary drank (a lot of) milki and John drank somei, too.

In (401a), the personal pronoun it cannot refer to the mass noun milk. The indefinite
term some in (401b), on the other hand can. Changing it to some in the case of headway
will also result in a grammatical sentence.

(402) Mary made considerable headwayi and John made somei, too.

This shows that we can account for the pronominalization data, by assuming that the
noun headway has only a mass noun reading. In this respect, it is special, because most
nouns, even if they have a mass noun reading, can also occur as count nouns.

(403) There is still one milk in the fridge, please put it on the table for breakfast.

This brief discussion shows that, while the fact that the noun headway cannot be pronom-
inalized is irregular, it can be reduced to a general property of mass expressions. Thus, all
that must be assumed is that the noun denotes mass expressions.

Matters are different in the case of the IE spill the beans. There, we gave three slightly
different patterns with respect to our criteria of regularity: In the main text, we observed
that this IE satisfies all the syntactic criteria except for the last two, i.e., the NP the beans
cannot be topicalized (criterion 5) nor can there be a relative clause attached to the beans
(criterion 6). The relevant examples are repeated in (404) and (405).

(404) * The beans John spilled.

(405) a. * The alleged arms dealer spilled the beans [that made the party leader resign].
b. * The beans [that the alleged arms dealer spilled] made the party leader resign.

Following the way other authors such as Schenk 1995 treat topicalization, we might
assume that the distinction follows from more general restrictions on what kinds of entities
can be topicalized.21 These restrictions have to do with the degree of meaningfulness of
a certain term. Schenk assumes that topicalization is only possible if the topicalized con-
stituent contains some “non-idiomatic” part. It may, as well, contain idiomatic material
which is seen to be “pied-piped” together with the non-idiomatic material. To see his point,
consider the following data.22

(406) a. Pete pulled Mary’s leg.
b. Mary’s leg Pete pulled.

21Note, however, that Schenk 1995 assumes that beans in spill the beans is basically meaningless, and, thus,
has trouble to account for the difference in flexibility between the passivizable spill the beans and the fully
fixed IE kick the bucket.
22Schenk 1995 (p. 260) states:

Because Mary is a free argument in [(406)], it is possible to topicalize constituents
containing an idiomatic subpart, whereas it is impossible to topicalize constituents
that do not contain a meaningful subpart, as in the earlier examples.
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The IE pull someone’s leg allows the direct object to be topicalized. In the examples
in (406), the direct object contains the proper name Mary, which is taken to be a non-
idiomatic part. In Schenk’s perspective, as Mary is a non-idiomatically interpreted word,
it should be possible to topicalize it. Due to syntactic constraints of English, captured for
example in the Left Branch Condition, it is impossible to extract a possessive NP out of
the NP which contains it. This is illustrated in (407).23

(407) a. John bought Pete’s book.
b. Pete’s book John bought.
c. * Pete’s John bought book.
d. * Pete John bought ’s book.

In the case of the IE pull strings, topicalization of the direct object is possible if it
contains some element other than strings, i.e., some non-idiomatic bit. This includes a
determiner, an adjective etc. As can be seen in (408), there is the demonstrative those in
the topicalized NP.

(408) Those strings, he wouldn’t pull for you. (Nunberg et al., 1994, p. 13)

There is, however, a problem with Schenk’s explanation. In contrast to Schenk’s judg-
ments, our informants allowed for internal modification in the case of the IE spill the beans
(see the examples in (348)). Thus, there may be semantically non-vacuous material occur-
ring inside the NP the beans. Still, topicalization is far from grammatical for our informants.

(409) a. Pat spilled the well-guarded beans.
b. ?* The well-guarded beans Pat spilled.

The ungrammaticality of (409b) is unexpected under Schenk’s generalization. In prin-
ciple, the explanation offered in Schenk 1995 points to the possibility to link the extraction
data to general constraints on topicalization. The existence of such constraints cannot be
denied, even though they are still poorly understood. Some of these restrictions certainly
have to do with the content of a topicalized constituent. Still, we think that under Schenk’s
explanation the contrast in (409) would not be expected.24

It must be noted that according to the judgments in Schenk 1995, both sentences in (409)
are ungrammatical. Such a grammaticality pattern is in line with Schenk’s generalization,
as the NP the well-guarded beans is considered ungrammatical in the first place. Similarly,
if we accept the data pattern assumed in Wasow et al. 1983, Schenk’s generalization seems
to make the right predictions. According to Wasow et al. 1983, both sentences in (409)
are grammatical: the (b) sentence, i.e., the topicalization should be possible, as it contains
non-idiomatic material.

23Examples (406) and (407) are taken from Schenk 1995 (p. 260).
24It should be noted that there are more exceptions to Schenk’s generalization. As pointed out in Nunberg
et al. 1994, in German, there are some IEs such as ins Gras beißen (bite the dust) (literally: bite into
the grass) or den Vogel abschießen (to steal the show) (literally: shoot of the bird) whose parts cannot be
assigned a compositional meaning. Still, many speakers allow the PP or the NP part of these IEs to be
fronted in verb second clauses. This fronting is usually analyzed by a slash mechanism just as the one used
for topicalization in English (see Uszkoreit 1987 for such an analysis within GPSG, and Pollard 1996 or
Kiss 1995 for HPSG).

(i) Er

He
hat

has
[ins

into the
Gras]

grass
gebissen.

bitten ‘He died.’

(ii) [Ins Gras] hat er gebissen.
(iii) * [gebissen] hat er ins Gras.

Surprisingly, in the light of the generalization of Schenk 1995, the “meaningless” PP ins Gras can be fronted.
Schenk’s generalization is, however, met with respect to the verb gebissen which may not be fronted if the
idiomatic meaning is to be conserved. But note that sentence (iii) is grammatical under the literal meaning,
i.e., when the verb gebissen is ”contentful”.
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In this part of the thesis, we will assume the data to be as given in the main text.
Speakers for whom the IE spill the beans is more regular, would simply have to assume an
analysis as the one given for the IE pull strings. For speakers that are more restrictive than
we have indicated, i.e., speakers that share the judgments of Schenk 1995, we will point out
in footnotes those places in the analysis that need to be changed to be adapted to their
judgments.

This discussion of the IEs make headway and spill the beans has shown that some of the
syntactic irregularities of IEs might be reducible to other properties of certain parts of the
IE. For example, in the case of make headway, we could predict its non-pronominalizability
by a general property of mass terms. In the case of spill the beans, however, we could not
reduce the absence of topicalization to any general restriction. This shows that while both
IEs are classified as internally regular, there is still a lot of idiosyncratic variation within
this class of IEs to account for.





CHAPTER 7

Existing Approaches

With the discussion of some VPs with irregular behavior, we have presented a data
space which must be accounted for in a linguistic theory. An account of irregularities is
particularly challenging for frameworks that try to achieve a fully formalized, or at least fully
formalizable, description of natural language, because formal systems usually emphasize
their potential of expressing generalizations and regularities. In this chapter, we will discuss
three different approaches to IEs, formulated in three different frameworks: The analysis of
Gazdar et al. 1985 carried out in the framework of Generalized Phrase Structure Grammar
(GPSG), the Tree Adjoining Grammar (TAG) account of Abeillé 1995, and finally the
approach of Riehemann 1997, which is stated within a version of HPSG that we will call
constructional HPSG.

As all three frameworks differ significantly from the version of HPSG adopted in this
thesis, we will in all cases first present how the free combination read a book is accounted for.
Then, we will discuss the different IEs which we have considered in the previous chapter.
We will show whether and how the approaches can handle the diversity that these IEs
exhibit with respect to our criteria of regularity. It will turn out that the GPSG account
is best suited for internally regular IEs such as spill the beans, although the mechanism
assumed there is relatively complicated and unintuitive. The TAG approach, on the other
hand, seems to be ideal for internally irregular IEs such as kick the bucket. The approach
given in constructional HPSG appears to be equally well-suited for both internally regular
and internally irregular IEs and it avoids some of the problems of the GPSG-account. It
will be shown, however, to be problematic from the point of view of its formal architecture,
as HPSG is less construction-oriented than TAG.

As a result of the survey in this chapter and from the tension between regularity and
irregularity, a clearer picture emerges of what an HPSG theory of the IE data should look
like. Such a theory will then be presented in the following chapter.

7.1. IEs in GPSG

Gazdar et al. 1985 (pp. 236–242) provide a formal account of the empirical insights
gained in Wasow et al. 1983 within the famework of Generalized Phrase Structure Grammar
(GPSG). The authors explicitly address the two IEs spill the beans and pull strings. Their
analysis of these IEs is based on two assumption: (i), that the combinations are basically
regularly built and interpreted; and (ii), that the interpretation of a term is a partial
function, i.e., it need not be defined on all arguments.

Gazdar et al. 1985 treat IEs as a basically semantic phenomenon. For this reason,
we do not need to present the details of the syntactic aspects of GPSG. The syntactic
structure that the authors assume for a VP such as read a book is similar to the one given
in (312).1 What is important to notice, however, is that the authors assume two basic
kinds of trees: First, terminated local trees, i.e., local trees whose (single) leaf is a terminal
symbol and second, local trees that are admitted by some rule of the grammar and by the

1Technically, the syntactic labels used in (312) are considered to be sets of featue-value pairs in GPSG.

275
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Figure 7.1. The GPSG analysis of the VP read a book:

read

head

V, read′

a

Det, a′

book

N, book′
head

NP, a′(book′)

head

VP, read′(a′(book′))

(universal and language-specific) principles. Larger trees are composed from local trees and
the grammaticality of a larger tree is fully derivable from that of all the local trees that it
is composed of.

Gazdar et al. 1985 provide an explicit model-theoretic semantic system along with the
syntax of GPSG.2 Following Montague, the authors assume that the meaning of an expres-
sion can be captured as the interpretation of some term of Intensional Logic (IL). Thus,
every syntactic category is associated with some term of IL. In the case of terminated
local trees, it is just the mother that is a syntactic category and, therefore, has an IL term
associated with it. For local trees that are admitted by a rule, the IL term associated with
the mother is the result of applying functional application to the IL terms associated with
the immediate daughters.3

To give a concrete example, the word read is associated with the following terminated
local tree:

(410)
read

V, read′〈NP, 〈NP, S〉〉

This indicates that the word read enters a syntactic tree with the category V and the
IL term read′ which is of the semantic type 〈NP, 〈NP, S〉〉, which is the type assumed in
Gazdar et al. 1985 for transitive verbs. The type S abbreviates the type 〈s, t〉, and NP
abbreviates the type 〈s, 〈〈s, 〈e, t〉〉, t〉〉 (Klein and Sag, 1985, p. 170).

The authors explicitly allow the same phonological string to be associated with several
terminated local trees, and, in particular, with several IL terms. For raising verbs and
passive verb forms, the authors assume operators fr and fp respectively that alter the
order of the arguments, i.e., if read′ is the semantic constant associated with the active
verb read, then fp(read′) is the term associated with the passive form. The effect of the
operator becomes clear, once the verb is combined with its arguments. Let φ be the IL term
associated with the active subject and ψ be the term associated with the direct object, then,
a meaning postulate is evoked to ensure that read′(ψ)(φ) is equivalent to fp(read′)(φ)(ψ).4

In local trees whose leaves are non-terminals, the IL term associated with the mother
is the functional application of the IL terms on the daughters. To illustrate this, consider
Figure 7.1 which shows the tree for the VP read a book, enriched with IL terms.

2This semantic system is presented in more detail, but with fewer phenomena in Klein and Sag 1985.
3The final formulation of Semantic Interpretation Schema is explicitly fine-tuned to the syntactic analysis.
See below for the treatment of extracted constituents.
4It is not strictly necessary to do this by a meaning postulate. Instead, the functor fp could be spec-
ified as indicated in (i), where β is either the type NP or the type S, and V is a variable of type
〈α1, 〈. . . 〈αn, 〈β, 〈NP,S〉〉〉 . . .〉〉.
(i) λV λxNP λa1,α1 . . . λan,αnλyβ .V (a1) . . . (an)(y)(x)
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Figure 7.2. The GPSG analysis of sentence (411b):

a

Det, a′

book

N, book′
head

NP, the′(book′)

was

V, Id

read

V, fp(read′)

by

P, Id

Peter

NP, Peter∗
head

PP, Id(Peter∗)

head

VP, fp(read′)(Id(Peter∗))

head

VP, Id(fp(read′)(Id(Peter∗)))

head

S, Id(fp(read′)(Id(Peter∗)))(a′(book′))

We can now understand the derivation of the VP in Figure 7.1: The noun book is
associated with a term book′ of type s(et), abbreviated as Nom in Gazdar et al. 1985 and
Klein and Sag 1985. The determiner a is associated with a term a′ of type 〈Nom,NP 〉, i.e.,
it combines with a term of type Nom (a noun) to yield a term of type NP (an NP). Thus,
in the local tree whose mother is the NP, the term associated with the syntactic category is
a′(book′), which is of type NP . In the highest local tree, this term combines via functional
application with the constant read′ to yield the given semantic term for the entire tree.

In Gazdar et al. 1985, it is assumed that passive and topicalization do not change the
meaning of a sentence. Thus, all sentences in (411) have the interpretation given in (412).5

(411) a. Peter read a book.
b. A book was read by Peter.
c. A book, Peter read.

(412) read′(a′(book′))(Peter∗)

In Figure 7.1, we have shown the structure of the VP in the active sentence (411a). For
the passive sentence in (411b), the structure can be seen in Figure 7.2.

The semantics of passive sentences is accounted for through the special operator fp. In
addition, there are two lexical elements in this tree that we have not considered so far: the
passive auxilliary was and the preposition by. Klein and Sag 1985 (p. 199 fn. 33) assume
that the passive auxiliary be is interpreted as the identity function. For this reason, we have
given the node that dominates the verb was the identity function, Id, of the appropriate
type as semantic term. Similarly, selected PPs such as the PP headed by passive by or
for in the case of the verb wait for NP are considered to be of the same semantic type
as NP complements, i.e. 〈s, 〈〈s, 〈e, t〉〉, t〉〉. The underlying prepositions are, thus, of type
〈NP,NP 〉 and are interpreted as the identity function (Klein and Sag, 1985, p. 167).

Given the semantic types and the terms at the terminal local trees, the term that is
associated with the top S node can be computed. The following equations prove that this
semantic term is equivalent to that in (412).

(413) Id(fp(read′)(Id(Peter∗)))(a′(book′))
= fp(read′)(Peter∗)(a′(book′)) (leaving out Id)

5 The constant Peter∗ is of type NP and is interpreted as λP.ˆP (ˇp), where P is a variable of type 〈s, 〈e, t〉〉
and p is a constant of type 〈s, e〉 which denotes for each index w the individual referred to as Peter in w.
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Figure 7.3. The GPSG analysis of the sentence A book Peter reads:

a

Det, a′

book

N, book′
head

NP, a′(book′)

Peter

NP, Peter∗

read

head

V, read′

t

NP/NP,
λPNP .P

head

VP/NP,
λP .read′(P)

head

S/NP,
λP .read′(P)(Peter∗)

head

S,
read′(a′(book′))(Peter∗)

= [λV λxλy.V (y)(x)](read′)(Peter∗)(a′(book′)) (replacing fp)
= [λxλy.read′(y)(x)](Peter∗)(a′(book′)) (λ-conversion)
= [λy.read′(y)(Peter∗)](a′(book′)) (λ-conversion)
= read′(a′(book′))(Peter∗) (λ-conversion)

In the case of unbounded dependencies, a variable of type NP is introduced. Syntacti-
cally, unbounded dependencies are analyzed using a trace, which introduces a slash, i.e.,
the syntactic category of the trace is α ∪ {〈slash, α〉}, where α is some syntactic category,
i.e., a set of feature-value specifications. In local trees, the slash value percolates from the
daughter(s) to the mother, up to the point where a special Immediate Dominance Rule
introduces a “filler” which, then, blocks further percolation of the slash value.

Semantically, a trace is analyzed as a variable of type NP . In order to be able to
eliminate this variable at some stage, the semantic interpretation schema of Gazdar et al.
1985 is a little bit more complex than we presented it above. The semantics of the mother
node in a local tree is arrived at by functional application alone just in the case that
none of the nodes in the local tree has a slash specification. If, however, there is such a
specification, it is first ignored in the computation of the resulting term, but then added
as a lambda abstraction. This can best be seen in the analysis of a simple sentence with
topicalization as indicated in Figure 7.3, where we give the syntactic category together with
the semantic term in the notation used in Gazdar et al. 1985.

To illustrate this extra effect of the semantics principle, consider the terminated local
tree that contains the trace. Neglecting the slash specification, the term associated with
the syntactic category of the trace is simply the variable P . As the node contains a slash
specification, its semantics must be added as a lambda abstractor to the IL term at the
node in the tree, resulting in the term λP .P . In the next local tree, whose mother node
is the VP, we see that the semantic term of the head daughter (read′) combined with the
basic semantics of the nonhead to yield read′(P). To this term, we must add, again, the
slash specification, which gives us the term λP .read′(P). We proceed in this way until we
finally reach the top local tree. There, the slash value is stopped from percolating higher
up in the tree by a special Immediate Dominance Rule. This rule, or more precisely the
feature specifications that it induces, also triggers the effect that the lambda abstractor
is not ignored in the calculation of the resulting semantic term this time. Therefore, at
the upper S node, we calculate the semantic term of the mother by applying the functor
λP .read′(P)(Peter∗) to the term a′(book′), which results in the term read′(a′(book′))(Peter∗)
as shown in the tree.
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Figure 7.4. The analysis of sentence (415):

Pat

NP, Pat∗

spilled

head

V, spill′′

the

Det, the′

beans

N, beans′′
head

NP, the′(beans′′)

head

VP, spill′′(the′(beans′′))

head

S, spill′′(the′(beans′′))(Pat∗)

After these general remarks on the way semantic interpretation is handled in Gazdar
et al. 1985, we can turn explicitly to their treatment of IEs. As mentioned above, the
authors are mainly concerned with the IEs spill the beans and pull strings. Based on the
fact that both IEs can take internal modifiers (our third semantic criterion), that both can
passivize (our fourth syntactic criterion), and that, at least with the IE pull strings, the
direct object can be topicalized, the authors argue that the meaning of the IEs should be
distributed over its parts and, furthermore, that one should assume a regular syntactic and
semantic combination for these IEs.

To achieve such an analysis, Gazdar et al. 1985 introduce separate non-logical constants
for the idiomatic reading of spill and beans, spill′′ and beans′′:

“To illustrate, the verb spill might be assigned two senses . . . , which
we can represent as two distinct expressions of intensional logic: spill′

(representing the literal sense) and spill′′ (representing the idiomatic sense
— roughly (but not exactly) the sense of divulge). Similarly, beans is
assigned two senses: beans′ and beans′′, the latter of which has roughly
(but not exactly) the sense of information.” (Gazdar et al., 1985,
p. 238)

They propose the following two terminated local trees for the words spill and beans.

(414) a.
spill

V, spill′〈NP, 〈NP, S〉〉

spill

V, spill′′〈NP, 〈NP, S〉〉

b.
beans

V, beans′Nom

beans

V, beans′′Nom

Once new semantic constants are introduced for the idiomatic reading of parts of an IE,
it is easy to derive the regular effects of the IE. A sentence such as (415) receives the literal
interpretation, if the first terminated local trees in (414a) and (414b) are used, but it will
get the idiomatic reading, in case the second terminated local trees are used.

(415) Pat spilled the beans.

In Figure 7.4 we show the structure of sentence (415), where we chose to take the
idiomatic interpretation of the words spill and beans.
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Under this analysis, the question of how we can block the use of the beans′′ reading
arisis, when the noun beans combines with verbs other than spill, but synonymous with
its spill′′ sense. Gazdar et al. 1985 achieve this by two assumptions: First, there are no
absolute synonyms in the language, i.e., there are no two constants whose intensions are
identical. Second, the interpretation of a constant is a partial function, i.e., it may not be
defined on some functor-argument pairs, even if the combination is semantically well-typed.
Combining these two assumptions, Gazdar et al. 1985 claim that the interpretation of the
constant spill′′ is such that it is only defined on the denotation of beans′′, but not on that
of information′.6 This restriction prevents the idiomatic use of spill from being completely
interchangable with the verb divulge.

Analogously, as also noted in Pulman 1993, we must impose a restriction on all other
constants: the application of any other constant to the denotation of beans′′ must not be
defined. This extra assumption, which is not made explicit in Gazdar et al. 1985, is needed
to prevent the idiomatic use of beans from freely occurring in places where information can
occur (compare the examples in (347) above).

(416) a. She divulged the story/ *the beans to the media.
b. We were hoping to have information/ *the beans on this dramatic incident

soon.

The object NP the beans consists of the idiomatically interpreted noun beans and the
definite article. In their own brief discussion, Gazdar et al. 1985 (p. 238) state that

“the normal principles of compositional semantics will thus assign an
idiomatic interpretation to the beans (we will represent this interpretation
informally as the-beans′′), which serves as the argument of spill′′.”

In the tree given above, we have not used the term the-beans′′, because, under the
assumption of a regular combination, as expressed in the quote, the resulting term should
be the′(beans′′) (whatever the sense of the′ is). In either case, the semantic term associated
with the object NP combines with that of the finite verb.

The elegance of the analysis of IEs in Gazdar et al. 1985 comes from the simple assump-
tion of only partially defined interpretation. This assumption enables them to treat the IE
as a regular combination, i.e., the syntactic and semantic flexibility of the IE follows. As
we saw, in order to achieve the idiomatic reading for sentence (415), we took the idiomatic
terminated local trees for spill and beans and applied the regular means of syntactic and
semantic combination. To illustrate that this account is equally capable of capturing the
syntactic freedom of the IE, we will show the analysis of this IE, when used in the passive,
as in sentence (417). The analysis of this sentence is given in Figure 7.5. This figure shows
that the structure of the passive sentence is just like that in Figure 7.2 above.

(417) The beans were spilled by Pat.

Under the IE reading, the second terminated local trees of (414) are used for the words
spill and beans. In the case of spill, when used in the passive, the passive operator fp
appears as part of the semantic term associated with the mother node in the local tree. In
the lower VP, this term combines with that of the by-PP whose semantics is that of its NP
complement, Pat∗ in this example. In the upper VP, the VP spilled by Pat appears as the
nonhead daughter. The head daughter in this VP is the finite passive auxiliary verb were.
As noted above, the semantics of this verb is the identity function.

6This is, of course, only needed, if we ignore the slang use of spill, otherwise, no such restriction is needed
for spill′′. We do, however, need such a restriction in the case of other IEs such as pull strings or keep tabs
on someone.
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Figure 7.5. The analysis of sentence (417):

the

Det, the′

beans

N, beans′′
head

NP, the′(beans′′)

were

V, Id

spilled

V, fp(spill′′)

by

P, Id

Pat

NP, Pat∗
head

PP, Id(Pat∗)

head

VP, fp(spill′′)(Id(Pat∗))

head

VP, Id(fp(spill′′)(Id(Pat∗)))

head

S, Id(fp(spill′′)(Id(Pat∗)))(the′(beans′′))

The next step is to show that the first argument of the constant spill′′ is in the denotation
of the constant beans′′. Otherwise, the entire sentence could not be assigned a denotation.
In the term associated with the S node, it is not immediately clear that the required
constellation is found: The constant spill′′ does not appear as a functor at all, but as an
argument of the passive operator fp. The term the′(beans′′) occurs as the second argument
to the identity function of type 〈V P, V P 〉.7

But, as shown in (413), the term that is associated with a passive sentence is equivalent
to that associated with the corresponding active sentence. The reason for this is that
the passive auxilliary and the preposition by denote the identity function and that the
passive operator fp has the effect of reordering the arguments of the verb. In the case in
Figure 7.5, the operator has the same form as for the verb read, i.e., λV λxλy.V (y)(x). We
can, therefore, show that in the interpretation of the sentence, the constant spill′′ is in fact
interpreted with respect to the right domain, i.e., the denotation of the′(beans′′).

(418) Id(fp(spill′′)(Id(Pat∗)))(the′(beans′′))
= fp(spill′′)(Pat∗)(the′(beans′′))
= [λV λxλy.V (y)(x)](spill′′)(Pat∗)(the′(beans′′))
= [λxλy.spill′′(y)(x)](Pat∗)(the′(beans′′))
= [λy.spill′′(y)(Pat∗)](the′(beans′′))
= spill′′(the′(beans′′))(Pat∗)

The term that we receive after having performed lambda conversion shows that in the
case of a passive, the constant spill′′ combines with the intension of beans′′, which is the
only kind of argument on which the interpretation of spill′′ is defined.

This analysis accounts in a natural way for the syntactically and semantically regular
behavior of the IE. It attributes all the idiosyncrasies of the combination to some unusual
semantic properties of the constants that are involved, i.e., the restricted domain on which
the interpretation of the relation denoted by the verb is defined.

Given this approach, we would expect the IE reading to be possible in all syntactic
environments whose semantics is that of the active sentence Pat spilled the beans. In (411)
we listed some of these contexts: passive and topicalization. In (417), we have seen how
this result is achieved for the passivized form of the IE. For topicalization, we can have a
tree like that in Figure 7.3, but using the constants spill′′, the′ and beans′′ instead of read′,

7V P abbreviates the type 〈NP,S〉.
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a′ and book′. Such a tree would be accepted by the grammar and would also be assigned
a denotation. It is semantically equivalent to a sentence which contains the topicalized
constituent in the place of the trace.

Our empirical overview in Section 6.2, however, revealed that — at least for some speak-
ers — the IE spill the beans does not allow topicalization of the NP the beans, whereas such
topicalization is readily available with the IEs pull strings, make headway and make a deci-
sion. This observation brings us to a discussion of the problematic aspects of the analysis
of IEs in Gazdar et al. 1985. Our criticism will concern three points: (i) the treatment
is too coarse to allow for a differentiation in the behavior of several apparently composi-
tional IEs such as spill the beans and pull strings, (ii) the use of partial meaning functions
to express the occurrence restrictions of parts of IEs is problematic, and (iii) there is no
straightforward way to include IEs of the type trip the light fantastic and kick the bucket
into the overall architecture of GPSG.

Let us address the first point. As mentioned above, the IEs spill the beans and pull strings
differ in their ability to conserve the idiomatic reading if the direct object is topicalized.
The relevant examples from Section 6.2 are repeated below.8

(419) a. = (354) * The beans John spilled.
b. = (388) Those strings, he wouldn’t pull for you.

Since both IE can be passivized, they must be analyzed as basically regular, only ex-
hibiting some irregularity in the interpretation of the constants. Gazdar et al. 1985 treat
all such IEs alike and predicts that they behave the same with respect to all syntactic oper-
ations that are semantically neutral, which include topicalization. Therefore the difference
in (419) cannot be captured in their framework as part of the grammar.

As this particular problem is not addressed in Gazdar et al. 1985, we can only speculate
in what direction a solution should be sought. In Section 6.3 we have argued that there
is no principled reason why topicalization is allowed for pull strings, but not possible with
the IE spill the beans. Under the assumption that this contrast really is an idiosyncrasy of
the IEs, the distinction cannot be expressed with the means given in Gazdar et al. 1985,
because in their system any combination of a V and an NP that can be combined to form
an active VP should also appear in a passive clause and in a topicalization construction.9

Let us address the second problematic aspect of the approach to IEs in Gazdar et al.
1985. It has to do with the notion of partial function which is taken as the basis for the
entire treatment of IEs. Pulman 1993 (pp. 257–261) tries to show the consequences of the
partial function approach to the possible semantic models. To see his argument, let us take
the two IEs spill the beans and pull strings.10 Pulman first shows that in cases such as that
of the IE spill the beans, it is not enough to restrict the domain of the interpretation of the
constant spill′′ to the denotation of the constant beans′′. One must also restrict the domain
of the interpretation of all other semantic constants in such a way that they cannot combine
in an interpretable way with the denotation of the constant beans′′. If this is not done, we
will find the idiomatic reading of beans freely occurring.

8The judgments in (419) are those given above in the main text. In footnotes, we have pointed out that
for Wasow et al. 1983 both sentences should be grammatical. Under this assumption, of course, there is
no problem for the GPSG account. The problem remains, however, if we want to give an account of the
judgments as referred in Schenk 1995. There passive is assumed to be possible with most IEs, whereas
topicalization should be excluded.
9Technically, we can solve this problem, if we introduce a new feature, extractable, with values + or −.
All ID-rules that mention a slash specification must be changed to include the specification +extractable.
The idiomatic word beans would inherit the feature specification −extractable from the lexicon. Even if
such an ad hoc modification works, it is still true that the difference between the two IEs cannot be directly
expressed in the grammar, i.e., with the inventory of features, rules and principles in Gazdar et al. 1985.
10Pulman actually uses the IEs axe to grind (point to make) and break the ice (ease the tension).
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The system of restrictions does, however, get still more complicated, as Pulman 1993
(p. 259f.) shows. Compare the following two sentences:

(420) a. * The strings got Chris the job.
b. The strings [that Pat pulled] got Chris the job.
c. Pat pulled the strings [that got Chris the job].

Sentence (420a) is ungrammatical under an idiomatic reading of the noun strings. This
means that the interpretation of the constant associated with the verb get must be such
that it does not have the intension of the constant strings′′ in its domain. Under this inter-
pretation, however, we would expect the sentences in (420b) and (420c) to be equally un-
grammatical under an idiomatic interpretation. Such an interpretation is, however, clearly
available. As Pulman 1993 points out, this problem can be solved if we are willing to assume
further lexical ambiguity. In the case of (420c), we would have to consider the verb in the
relative clause as being idiomatic in such a way that its interpretation is only defined if it
combines with a relative pronoun whose denotation is that of the idiomatic interpretation
of strings. Similarly, in (420b), there must be an idiomatic interpretation of the verb get
which takes as its domain the intension of idiomatically pulled idiomatic strings.

As such an additional interpretation must be available for every verb and for every IE
which allows for these types of relative clause, there is an explosion of semantic constants
and a complex system of domain restrictions. We conclude with Pulman that

“This is technically possible, of course (though the resulting adjustments
to the model theory of Intensional Logic are not trivial), but is beginning
to seem a somewhat less than elegant solution.” (Pulman, 1993, p. 261)

Finally, we address a third shortcoming of the proposal. Beside the IEs classified as
internally regular above, there are also some which are internally irregular. Gazdar et al.
1985 (p. 244, fn. 33) mention the cases of trip the light fantastic and kick the bucket:

“Certain idioms are of course semantically unanalyzable, e.g. kick the
bucket and trip the light fantastic. These are to be analyzed as syntac-
tically complex lexical items associated with a single, undecomposable
semantic interpretation. From this it follows that their parts are never
distributed in complex syntactic constructions . . . ”

As we can see from this quote, Gazdar et al. 1985 basically assume the same distinction
between internal and external (ir)regularity that we introduced in the preceding section.
For them, the IEs kick the bucket and trip the light fantastic are semantically unanalyzable
and should therefore be considered syntactically complex lexical items.

It is, however, far from clear how the system of Gazdar et al. 1985 could be extended
to handle syntactically complex lexical entries. The problem stems from the fact that in
GPSG the grammaticality of a tree should be decidable on the basis of the local trees that
it is composed of alone. As there is arguably some internal structure at least to the IE
kick the bucket, this IE cannot be encoded as a single local tree. Under the reasonable
assumption that the internal structure of the VP kick the bucket is just like that of other
transitive VPs such as that of read a book in Figure 7.1, there are three terminated local
trees and two non-terminated local trees. For that reason, probably, Gazdar et al. 1985
speak about a “syntactically complex lexical item”. It is unclear how the grammar should
differentiate formally between those five local trees which need not obey the regular criteria
of well-formedness of complex expressions and regular combinations of local trees. Further-
more, under the assumption of complex lexical items, it remains surprising that the IE kick
the bucket allows adjectival modifiers inside the NP, as attested in the examples in (340),
repeated below.
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(421) a. Pat kicked the proverbial bucket.
= Pat proverbially kicked the bucket. (Wasow et al., 1983, p. 110f)

b. With that dumb remark at the party last night, I really kicked the social
bucket.
= Socially, I kicked the bucket. (Ernst, 1981, p. 51)

We conclude that the approach to IEs in Gazdar et al. 1985 builds on the observation
that some IEs are internally regular. These are analyzed as regular combinations of words.
The system of Gazdar et al. 1985 is not fine-grained enough to account for the differences
in the behavior of internally regular IEs such as spill the beans and pull strings. In addition,
accounting for the limited distribution of the idiomatic reading of parts of a regularly
combining IE by a partial meaning function leads to a serious complication in the way
semantic denotation is defined. Finally, it is unclear how internally irregular IEs (kick the
bucket and trip the light fantastic) could be handled.

In Chapter 8 we will see that our own proposal will have many similarities to that
of Gazdar et al. 1985. In particular, we will make the same distinction between internally
regular IEs, which are handled by regular means of syntactic and semantic combination and
internally irregular IEs which will be treated as complex lexical entities. We will provide
a precise formalization of this notion which is fully integrated into the overall formalism
of HPSG. For the internally regular IEs, we will introduce a mechanism to restrict the
occurrence of the elements that the IE consists of, such as beans and spill. While we will
follow Gazdar et al. 1985 in assuming new semantic constants for the idiomatic uses of these
words, we will not impose restrictions on the interpretation of these constants but on their
occurrence within the content value of a clause. In addition, we will be able to account
for the difference between the IEs spill the beans and pull strings by incorporating syntactic
notions into our theory of distributional restrictions.

We will now turn to a proposal made within the framework of Tree Adjoining Grammar.
There, the opposite perspective on IEs is taken: in general there is no problem with the
notion of a syntactically complex lexical entity, as the theory takes all lexical entities to be
tree-like. Thus, all IEs are modelled similar to the internally irregular IEs.

7.2. IEs in TAG

Whereas GPSG has made an attempt to capture as much as possible of the behavior of
IEs in terms of regular combination, the analysis within the framework of Tree Adjoining
Grammar (TAG) (Joshi, 1987; Schabes et al., 1988) proposed in Abeillé 1995 takes exactly
the opposite perspective.11 As we will see, TAG takes potentially complex trees as the
basic building blocks of linguistic analysis. From this point of view, internally irregular IEs
such as kick the bucket are just extreme cases of such complex trees. Abeillé 1995 then
tries to show how the semantically more transparent and syntactically more flexible IEs can
be handled in TAG as well. Her proposal, thus, reduces external irregularity to a special
instance of internal irregularity.

Before we can present her proposal in more detail, a short outline is necessary of the
framework of TAG and the variant thereof used in Abeillé 1995, synchronous Tree Adjoin-
ing Grammars (Shieber and Schabes, 1990). In our brief introduction, we will first give
an example of a simple TAG for the syntactic analysis of a sentence and then demonstrate
how this can be complemented with a second TAG that is used to derive a semantic rep-
resentation. As the syntactic analysis and the semantic representation of a sentence are
derived simultaneously, this framework is called synchronous TAG. The possibility to have

11We are grateful to Laura Kallmeyer for knowledgeable advice and comments on this section.
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non-parallel syntactic and semantic derivations will play a crucial role in t he analysis of
IEs presented in Section 7.2.2.

7.2.1. A Brief Introduction to Synchronous TAG. A Tree Adjoining Grammar
(TAG) is a set of trees. The trees in the grammar are called the elementary trees. They
can be combined by two operations (substitution and adjunction) to form larger trees. The
elementary trees come in two varieties: a set of intial trees and a set of auxiliary trees.12

We will take the sentence in (422a) as a concrete example. It will eventually be assigned
the syntactic structure in (422b).

(422) a. Peter read a good book

b.

Peter

NP

read

V

a

Det

good

AP

book

N

N

NP

VP

S

In (423), we give the elementary trees that are needed to analyze the sentence in (422a).

(423) a. Initial trees:

Peter

NP

NP↓

read

V NP↓

VP

S

Det↓

book

N

NP

a

Det

b. Auxiliar tree:

good

AP N∗

N

Starting with these elementary trees, we can perform the operations substitution and
adjunction to derive the syntactic structure of sentence (422a). Both operations combine
two trees γ1 and γ2 in such a way that one node in γ1 is replaced with the tree γ2. The
difference between the two operation lies in the choice of the node which is going to be
replaced: in the case of substitution this node is a leaf of γ1, in the case of adjunction it is
an intermediate node of γ1.

12For an introduction to the formal properties of TAG, see Joshi 1987.
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Some of the initial trees in (423) contain no-terminal leaves, such as the node labelled
Det in the initial tree for the noun book. Nodes like this are called substitution nodes. To
make it easier to identify the substitution nodes, they are conventionally marked with a
downarrow (↓). Given a tree γ with some substitution node n with label X, we can take
some initial tree α from the grammar whose root node is also labelled X and replace the
node n in the tree γ with the initial tree α.

This can be illustrated with our toy grammar in (423). The initial tree for the noun book
contains one substitution node, i.e., a leaf which has a nonterminal label: the node labelled
Det. In the grammar, there is one initial tree whose root has the label Det: the initial tree
for the determiner a. We can now combine these two trees by substitution. To do this, we
substitute the initial tree of the determiner for the node labelled Det in the initial tree of
the noun. This substitution gives us the derived tree in (424).

(424)

a

Det

book

N

NP

The second way to combine trees is by adjunction. Here, auxiliary trees come into play.
Auxiliary trees have the special property that they contain one designated leaf. The label of
this leaf must be the same as the label of the root node of the auxiliary tree. The designated
node is called the foot node of the auxiliary tree and it is conventionally indicated by a star
(*) following the label of the node. In the grammar in (423), we have just one auxiliary
tree, the elementary tree for the adjective good. The leaf with the non-terminal label N is
the designated node of this tree, as indicated by the star. The label of this foot node is the
same as the label of the root node of the auxiliary tree.

We can combine some tree γ with an auxiliary tree β by adjunction. Adjunction proceeds
the following way: We need some tree γ which contains a node n which has the label X,
and some auxiliary tree β whose root node is also labelled X. We can now replace the node
n in γ by the auxiliary tree β and put the structure that was dominated by the node n in
γ below the foot node of α.

For illustration, consider the tree for the NP a book in (424), which serves as our γ. It
contains a node with label N. This node corresponds to the n in our abstract characteriza-
tion. The node n dominates the leaf with the terminal label book. The node n has the label
N, which is also the top label of the root node of the auxiliary tree for good (i.e., the tree
β). We can, now, combine these two trees by adjunction. The result is depicted in (425).

(425)

a

Det

good

AP

book

N (= foot node of β)

N (= root node of β)

NP

The tree shows that the node n has been replaced with the auxiliary tree of good. The
foot node of this auxiliary tree, now, dominates whatever was dominated by the node n in
the tree for the book, i.e., the terminal symbol book.
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Given the derivation of the NP a good book, it is straightforward to derive the structure
of the entire sentence in (422a): We take the initial tree for the verb read. It has two
substitution nodes, both labelled NP. We can substitute the elementary tree of book for the
lower NP node in the initial tree of read. We will, then add the initial tree for the determiner
a and the auxiliary tree for good to this, in the way illustrated in (424) and (425). The
result of these three operations is shown in (426).

(426)
NP↓

read

V

a

Det

good

AP

book

N

N

NP

VP

S

Finally, all that remains to be done is to substitute the initial tree of the name Peter
for the remaining NP↓ node. This substitution results in the tree given in (422b) above.

In our little example, we have presented all elements needed for a TAG: two kinds
of elementary trees and two operations for combining trees. Before we can present the
treatment of IEs within this framework, there are two more issues that must be addressed:
First, we will briefly show how syntactic constructions such as passive and topicalization
are accounted for within TAG. This is needed for a treatment of the syntactic flexibility
of some IEs (and the lack thereof of others). Second, we present how the syntax-semantics
interface is handled within TAGs. This latter point needs more discussion as it will involve
the extension from simple TAG to synchronous TAG.

In order to account for a larger variety of phenomena without changing the simplicity
of the underlying formalism, we introduce more elementary trees. Our study is mainly
interested in passive and topicalization. We will also be concerned with relative clauses to
a certain degree, as these constructions appeared in the syntactic criteria for regularity of
Chapter 6. Let us first consider the derivation of the following three sentences.

(427) a. Peter read a good book.
b. A good book was read by Peter.
c. A good book, Peter read.

Our little grammar in (423) can easily be extended to account for these sentences. Since
in TAG a grammar is nothing but a set of elementary trees, adding two initial trees to the
grammar is enough. In (428a) we give an elementary tree for the passive use of the verb
read. The elementary tree in (428b) encodes a structure in which the direct object of read
has been extracted.
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(428) a. Initial tree for passivized read:

NP↓

was

V

read

V

by

P NP↓

PP

VP

VP

S

b. Initial tree for read with extracted direct object:

NP↓

NP↓

read

V

VP

S

S′

In order to derive the passivized sentence in (427b), we must take the initial tree
in (428a). This tree expresses the structure of a passive sentence. As can be seen, ini-
tial trees can contain more than one terminal node. In the case of a passive initial tree,
we usually find terminal symbols for (i) the passivized verb (read in our example), (ii) the
passive auxiliary be and (iii) the preposition by. Given this initial tree, we substitute its
upper NP node, i.e., the subject node, by the elementary tree for book, to which we can,
then, add the trees for a and good just as illustrated above. Substituting the lower NP
node (the NP embedded in the by-PP) by the initial tree for Peter results in a derivation
of sentence (427b).

Similarly, to derive sentence (427c), we start from the initial tree in (428b). This tree
need not contain any terminal nodes except read. It differs from the initial tree for read
given in (423) by lacking an NP node in direct object position. Instead, there is an S′

node which dominates the S node. The S′ node immediately dominates the position of the
extracted direct object, the S node dominates the VP and the subject position, as usual.
Again, if we generate the structure of a good book below the upper NP node and substitute
the initial tree of Peter for the lower, we achieve a derivation of sentence (427c).

As we can see, passive and topicalization are all handled by distinct elementary trees. In
general, there must be a distinct elementary tree for every construction in which a given word
may occur. Abeillé 1995 calls the set of elementary trees that are associated with a word
its Tree family. In addition to the trees for the verb read given in (423), (428a) and (428b),
there will be further trees, expressing the use of read in topicalization structures with a
fronted subject, in infinitival constructions, in a relative clause, etc. As relative clauses are
among the environments included in our syntactic criteria for IEs, we give a relative clause
elementary tree for read.
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(429) Auxiliary tree for read as a relative clause:

NP∗

NP↓

NP↓

read

V

VP

S

S′

NP

It should be noted that, in contrast to the other elementary trees for read, the tree
in (429) is an auxiliary tree, as it will be adjoined to an NP. The internal structure of the
relative clause itself is parallel to that of the topicalization structure given in (428b), i.e.,
the S′ node dominates an S node and the extracted direct object. Further details of the
grammar will insure that only NPs which can serve as relative constituents are possible in
the upper NP position, and that there is some agreement between the relative constituent
and the NP that the relative clause attaches to.

We have discussed four out of numerous elementary trees that are part of the Tree family
of the word read. As the Tree families of other transitive verbs certainly contain the same
kinds of elementary trees that we find for read, it seems that there are some regularities in
the language that need to be expressed. Work such as Vijay-Shanker and Schabes 1992 has
provided some means to avoid the need to state every member of a Tree family for every
word separately in a TAG. We do not want to discuss these kinds of generalizations over
elementary trees at this point.13 Instead, we simply assume that there are some techniques
to generate the right Tree family to a given expression. In our discussion of IEs in the
following section, we will give one elementary tree and note what other kinds of trees are
available for a certain expression.

So far we have shown how syntactic structures can be derived given a set of (construction-
specific) elementary trees. We did not mention how the appropriate semantics can be associ-
ated with the syntactic derivation. The analysis in Abeillé 1995 makes use of the formalism
of synchronous TAG as presented in Shieber and Schabes 1990. This formalism can be
used to achieve a semantic representation built parallel to the syntactic derivation. The
underlying idea of synchronous TAG is that two structures are constructed simultaneously.
In the present context, these will be a syntactic structure and a semantic representation,
i.e., a logical form.

To return to our example in (422a), we now want the grammar to derive not only the
syntactic structure in (422b), but also the semantic representation given in (430).14

13We will address a related issue in our discussion of the HPSG approach to IEs in Riehemann 1997.
14Note that the star in Peter∗ is part of the terminal symbol of our semantic representation language (see
footnote 5), and does not indicate that the node is a foot node.
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(430)

read′

R

Peter∗

T

a′

Q

good′

R

book′

P

P

T

F

In order to avoid complications with quantifier scope, we assume semantic representa-
tions as those given for GPSG in Section 7.1, i.e., we assume that verbs take quantified
NPs as arguments. Thus, we depart in various respects from the examples given in Shieber
and Schabes 1990, but not from the formalism they introduce. We assume that, with the
exception of the symbol R, each nonterminal in a semantic tree is a semantic type. We take
F(ormula) to be the type 〈s, t〉 (or S in Gazdar et al. 1985). The label T(erm) is used for
quantified NPs, i.e., expressions of the type abbreviated as NP in GPSG. For quantifiers
(type Det in GPSG), we use the symbol Q. Finally, we use the label P(roperty) for the
semantic type of nouns, i.e. 〈s, 〈e, t〉〉 (or Nom in Gazdar et al. 1985). The label R(elation)
is a functor which is assumed to have just the right semantic type to combine with the
semantic types of its sisters to yield an expression of the type required by the mother node.
With these assumptions, the semantic representation in (430) is just a notational variant
of that used in GPSG; it is straightforward to rewrite it as read′(a′(good′(book′)))(Peter∗).

The semantic representation can be derived via a TAG which contains the following
elementary trees.

(431) a. Initial trees:

Peter∗

T

read′

R T↓ T↓

F

Q↓

book′

P

T

a′

Q

b. Auxiliary trees:

good′

R P∗

P

Taken alone, this set of elementary trees can derive the semantic representation given
in (430): starting from the initial tree for the constant read′, we can substitute the intial
tree of Peter∗ for the first T node from left. Consequently, we replace the second T node by
the tree for book′. In the resulting tree, there is a substitution node Q↓ which we replace
by the initial tree of the quantifier a′. Finally, we adjoin the auxiliary tree of the modifier
good′ to the P node that dominates book′.

This derivation of the semantic term is parallel to the derivation of the syntactic structure
as shown above. Building on this parallelism, it is the basic idea of synchronous TAG to
synchronize these two derivations, i.e., to derive the syntactic and the semantic structure
simultaneously. In order to achieve this, a synchronous TAG consist of pairs of elementary
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trees, instead of single elementary trees. Each of these pairs contains a syntactic and a
semantic elementary tree. In our case, clearly, the elementary tree for the terminal symbol
read in (423) and that for the terminal symbol read′ in (431) would be paired together. The
other pairings are also made in the intuitive way.

In a synchronous TAG nodes in two paired trees may also be linked to each other.
In (432), we state the synchronous TAG that arises under the intuitive combination of the
syntactic TAG in (423) and the semantic TAG in (431). Following the convention of Shieber
and Schabes 1990, we indicate links between nodes by boxed integers.15

(432) a.

〈

Peter

NP

,
Peter∗

T 〉

b.

〈

2 NP↓

read

V 3 NP↓

1 VP

S

,

read′

R 2 T↓ 3 T↓

1 F 〉

c.

〈

5 Det↓

book

4 N

NP

,
5 Q↓

book′

4 P

T 〉

d.

〈

a

Det

,
a′

Q 〉

e.

〈

good

AP N∗

6 N

,

good′

R P∗

6 P 〉

The new set of pairs of elementary trees is a synchronous TAG. The boxed integers
show which nodes on the syntactic side correspond to which nodes on the semantic side.
For example, the highest NP in the elementary tree for read corresponds to the first semantic
argument of the relation read′ in the semantic tree. This is expressed by the boxed integer
2 which precedes the linked nodes in both trees in this pair.16

Given this grammar, we can execute the synchronous derivation of the syntactic and
semantic representation of example (422a). Links are crucial in the derivation, as tree-
combining operations must be executed on both trees in a pair. Assume that there is a pair
of trees 〈α1, α2〉 which we want to combine with a pair of elementary trees 〈β1, β2〉, then
we can only substitute/adjoin β1 for/to a node n1 in α1, if there is a node n2 in α2 which is

15Note that in synchronous TAG, boxed integers are used to express links, not identity (or description
language variables) as in HPSG.
16For a larger fragment, it might be necessary to add more links to the elementary trees in (432). For
example, to allow for the attachment of relative clauses to the NP node, we would need another link from
the NP node in the syntactic tree in (432c) to the P node in the semantic tree.
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linked to n1 and for/to which we can substitute/adjoin the tree β2. The derivation of our
example sentence will make clear how this works.

Let us first take the pair of initial trees given in (432b). In this pair, there are substitution
nodes that are linked to each other by the boxed integer 2 . The root nodes of the trees in
the pair (432a) have the right labels to be substituted for the substitution nodes in (432b).
This substitution results in the tree given in (433)

(433)

〈

Peter

NP

read

V 3 NP↓

1 VP

S

,

read′

R

Peter∗

T 3 T↓

1 F 〉

Note that in the resulting pair of trees, all links are preserved except for the one that
has been used for the combination of the trees. In the next step, we choose the nodes linked
by the boxed integer 3 in the trees in (433) and substitute for them the trees contained in
the pair (432c). The result of this substitution is given in (434).

(434)

〈

Peter

NP

read

V

5 Det↓

book

4 N

NP

1 VP

S

,

read′

R

Peter∗

T

5 Q↓

book′

4 P

T

1 F 〉

After this substitution, there is one more pair of substitution nodes in the resulting pair
of trees: the nodes linked by the boxed integer 5 . We can use the pair of elementary trees
given in (432d) to execute the substitution. The result is shown in (435).

(435)

〈

Peter

NP

read

V

a

Det

book

4 N

NP

1 VP

S

,

read′

R

Peter∗

T

a′

Q

book′

4 P

T

1 F 〉

Finally, we can add the auxiliary trees in (432e) to this pair of trees by adjunction to
the nodes linked by the boxed integer 4 .



7.2. IES IN TAG 293

(436)

〈

Peter

NP

read

V

a

Det

good

AP

book

N

6 N

NP

1 VP

S

,

read′

R

Peter∗

T

a′

Q

good′

R

book′

P

6 P

T

1 F 〉

When we combine the trees in (435) with those in (432e), we use the link 4 . But, as the
trees in (432e) contain the link 6 , this link appears in the overall structure in (436). Thus,
in the resulting structure, there are still two links, 1 and 6 , which indicate that this pair of
trees may be further used for adjoining other modifiers to the N node that dominates good
book or to the VP.

The treatment of passivization and topicalization in synchronous TAG is straightfor-
ward; we need only introduce pairs of elementary trees for passive, topicalization and rela-
tive clause formation. On the syntactic side, we take the trees specified in (428) and (429).
Under the assumption that both passive and topicalization do not contribute any meaning,
the elementary semantic tree for both syntactic trees in (428) will be the tree given for read′

in (431). For the relative clause it is necessary to introduce a new semantic tree: Since the
elementary tree of the relative clause construction is an NP, the semantic tree is labelled
T and merely embeds the formula that contains the predicate read′. We will not specify
the details of the semantic treatment of relative clauses, but briefly consider the pairs of
elementary trees needed for passive and topicalization.

(437) a. Initial tree for passivized read:

〈

3 NP↓

was

V

read

V

by

P 2 NP↓

PP

1 VP

VP

S

,

read′

R 2 T↓ 3 T↓

1 F 〉
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b. Initial tree for read with extracted direct object:

〈

3 NP↓

2 NP↓

read

V

1 VP

S

S′

,

read′

R 2 T↓ 3 T↓

1 F 〉

In both trees, there are three links: the VP node is linked to the semantic F node by 1 .
In the passive tree, the NP inside the by-PP is linked to the first semantic argument of the
predicate read′ by 2 . Finally, there is a link between the passive subject and the second
semantic argument of read′, indicated with the boxed integer 3 .

In the pair of trees in (437b), the highest NP, i.e., the topicalized constituent is linked
to the second argument of the semantic predicate, and the subject NP is linked to the first
argument of read′ at the semantic side.

With these brief remarks on passive and topicalization within synchronous TAG, we
want to close the introduction to the framework used in Abeillé (1995). We did not present
all aspects of her framework, but concentrated rather on those that will be relevant for
the following discussion. In particular, we did not address the fact that Abeillé assumes
that the nodes in the syntactic trees are enriched with feature structures which serve to
determine agreement and case government as well as other phenomena.17

7.2.2. A TAG Analysis of IEs. We can now discuss the specific analysis of IEs presented
in Abeillé 1995. There are, however, two ways in which we will depart from Abeillé’s
analysis. The analysis of IEs in Abeillé 1995 is presented on the basis of French examples.
In the present section, we will stick to the English IEs introduced in Chapter 6 and try to
apply Abeillé’s approach to these data as truthfully as possible. In addition, Abeillé 1995
is neutral with respect to a particular semantic representation language. We will simply
assume the language that we have used in the presentation of synchronous TAG, i.e., a tree
structure representation of IL terms.

Our presentation of the framework of synchronous TAG has revealed the following prop-
erties which are important for the analysis of IEs in Abeillé 1995: (i) Within TAG, trees
are the basic (and only) available data structure. This has two consequences: first, a given
lexical entry will not specify a terminal node in a tree, but an entire tree; and second, there
are no phrase structure rules. (ii) There is a Tree family of elementary trees associated with
every word which specifies all the constructions in which the word may appear.

In contrast to the approach of Gazdar et al. 1985, Abeillé 1995 focusses on the irregular
aspects of IEs. For her, independent of any alledged regularity that can be found within
IEs, all IEs are treated as units.18 For such an approach, an IE such as kick the bucket is
an ideal example. In (438), we give the pair of elementary trees for this IE.19

17In fact, each node has two such feature structures: an “upper” and a “lower” feature structure. See
example (439c) and footnote 20 for an application of this idea.
18With the exception of light verb constructions. See below for details.
19The trees in (438) are taken from Shieber and Schabes 1990 (p. 256). We have only added the links 1

and 3 to account for the modification data, incorporating the analysis of French idioms in Abeillé 1995.
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(438)

〈

2 NP↓

kick

V

the

Det

bucket

3 N

NP

1 VP

S

,

die′

R 2 T↓

1 3 F 〉

The pair of trees in (438) expresses all the properties of the IE kick the bucket. To
illustrate this, we check the list of criteria applied in the previous chapter. First, the parts
of the IE cannot be attributed a meaning. This is achieved by the fact that the IE is
stated as a whole instead of putting it together from smaller elementary trees. Second, the
meaning is not derived in a combinatorial way, because it is given in an elementary tree,
i.e., a tree which is not the result of a derivation. Crucially, in synchronous TAG, nothing
forces the syntactic tree and the semantic tree in a pair to be of a similar structure. Thus,
the syntactic tree in (438) is that of a sentence headed by a transitive verb, whereas the
semantic structure has the form normally associated with intransitive sentences.

Third, there cannot be any internal modification of the nominal part of the IE. This is
achieved by the fact that the N node, which would host syntactic adjunction, is linked to the
F node in the semantic structure. Adopting the example of Abeillé 1995 (p. 36), we assume
the elementary tree for social in (439a) to adjoin to the noun bucket in syntax, as attested
in sentence (439b). In the pair of initial trees for kick the bucket, there is a link, 3 , between
the N node in the syntactic structure and the F node in the semantic representation. The
semantic effect of external modification is achieved by using this link for the adjunction of
the auxiliary tree for social. The resulting pair of trees is shown in (439c).

(439) a.

〈

social

AP N∗

4 N

,

socially′

R F∗

4 F 〉

b. With that dumb remark at the party last night, I really kicked the social
bucket. (Ernst, 1981, p. 51)

c.

〈

2 NP↓

kick

V

the

Det

social

AP

bucket

N

4 N

NP

1 VP

S

,

socially′

R

die′

R 2 T↓

F

1 4 F 〉
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In the pair of trees in (439c), the link 3 does not re-occur as it was used for the
adjunction. Instead, the link 4 now links the upper N node in the syntactic structure to
the upper F node in the semantic representation. The link 1 re-appears on the upper F
node in the semantic structure.20 The adjective social, while syntactically attached inside
the NP, semantically modifies the entire expression.

While Abeillé 1995 contains explicit suggestions for how to account for the behavior
of the IE with respect to the first three semantic criteria, she does not elaborate on the
fourth semantic criterion, pronominalizability, (Abeillé, 1995, p. 24). For this reason, we
will ignore this criterion in the present section.

Let us turn to the syntactic criteria. Since all the terminal nodes are explicitly given in
the syntactic structure in (438), it is not clear whether the word kick as it appears in the
IE has anything in commun with the normal word kick.21 Even though the first syntactic
property of the IE is not fully accounted for, the syntactic structure in (438) is exactly
that found in other sentences with a transitive verb, i.e., the second syntactic observation
is captured. The fact that there is a link ( 3 ) at the N node makes it open for syntactic
modification, thus accounting for the IE’s behavior with respect to the third criterion.

The fourth, fifth and sixth syntactic criteria involve the possibility of undergoing pas-
sivization, extracting the NP part of the IE, and having the nominal part of the IE occur
as a term that is modified by a relative clause which contains the rest of the IE. As we
have seen in the discussion of these three constructions in TAG, the availability of a passive,
a topicalization or a relative clause depends on whether a certain elementary tree is part
of the grammar or not. All that is needed to block the IE from occurring in any of these
constructions, is to assume that there are no such additional elementary trees in the Tree
family of this IE. Thus, as indicated by the asterisk, the sentence in (440) cannot have
an idiomatic interpretation, simply because there is no initial tree in the grammar that it
could possibly be built from.

(440) * The bucket he kicked.

Of course, the literal meaning can be derived by starting with an elementary tree for the
verb kick that, in all relevant respects, looks like the topicalization structure given in (437b).

Note also that the analysis does not run the risk of an idiomatic kick or bucket to occur
outside the IE, because these words do not exist independently in the grammar, i.e., they
do not have a Tree family of their own, but occur exclusively in the Tree family of the
idiomatic expression kick the bucket.

After having considered the IE kick the bucket in some detail, we can now turn to the
syntactically more flexible and semantically more transparent IE spill the beans. The pair of
elementary trees for the canonical use of this IE, i.e., in active voice and a simple tense form,
is given in (441a). In (441b), we indicate which further elementary trees will be needed to
account for its syntactic behavior.22

20 We have not explained in detail how this is achieved. But, in general, each node has “upper” properties
and “lower” properties. If a node is doubled by an adjunction, just as the F node in (438), the “lower”
properties stay with the lower node, whereas the “upper” properties appear at the higher copy of the node.
Assuming that the link 1 is part of the “upper” properties of the F node ensures that it will appear at the
top node in (439c).
21In the case of the word bucket, this lack of a connection to the normal word bucket might be etymologically
correct (see footnote 8).
22The trees in (441) reflect the judgments given in Section 6.2. For more permissive speakers, as those
assumed in Wasow et al. 1983, the Tree family contains auxiliary trees for topicalization and relative
clauses as well. For less permissive speakers (Schenk, 1995), the link 4 would be missing, and, possibly,
even the link 3 .
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(441) a.

〈

2 NP↓

spill

V

the

Det

beans

3 4 N

NP

1 VP

S

,

devulge′

R 2 T↓

the′

Q

information′

4 P

T

1 3 F 〉

b. Further elementary trees: passive yes
topicalization no
relative clause no

The elementary trees for spill the beans differ from those of kick the bucket in various
respects: First, the semantic tree expresses a two-place relation, which makes it look like
the semantic tree normally found in the case of a transitive verb. In addition, there is a link
( 4 ) from the N node that dominates the noun beans to the P node dominating information′.
This link is used in cases of semantically internal modification. For semantically external
modification, the link 3 can be used in the way we illustrated in (439). In (441b) it is
indicated that a corresponding passive elementary tree exists, which accounts for the greater
syntactic flexibility of the IE. There are, however, no trees for topicalized or relative clause
structures.

Given the elementary tree for spill the beans, we can compare this Abeillé-style analysis
to that of Gazdar et al. 1985 presented in Section 7.1. Treating the entire IE as one entity
makes it possible (but not necessary) to assume the regular semantic constants divulge′ and
information′ instead of the highly restricted constants spill′′ and beans′′. More generally,
Abeillé’s proposal is free of the problematic assumption of restricting the domain of the
interpretation of some semantic constants in such a way that only the right constants are
successfully combined. To achieve this, however, the entire IE must be stated as a unit and
the compositional aspects of the combination are lost.

Next, we want to address the expression pull strings. Again, we give one pair of elemen-
tary trees (442a) and indicate which additional elementary trees are available (442b).

(442) a.

〈

2 NP↓

pull

V

5 Det↓

strings

3 4 N

NP

1 VP

S

,

use′

R 2 T↓

5 Q↓

influence′

3 P

T

1 4 F 〉

b. Further elementary trees: passive yes
topicalization yes
relative clause yes

The elementary trees in (442a) have more non-terminal leaves than those of the IE spill
the beans. In particular, the determiner is not fixed, but given as a substitution node which
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is linked to the quantifier node in the semantic tree by 5 . This additional substitution node
accounts for the greater freedom of this IE with respect to the determiners that may occur.

As can be seen in (442b), the Tree family of the IE contains an elementary tree for a
relative clause in which the direct object takes the form of a relative pronoun. The resulting
elementary tree does, however, differ from that given in (429). In the case of the verb read,
the resulting tree is an auxiliary which attaches to an NP. For the IE, we must give the
full form of the NP to which the relative clause attaches, since the terminal element strings
would otherwise be lost. In (443) we give the relevant syntactic tree.

(443)

Det↓

stings

N

NP

NP↓

NP↓

pull

V

VP

S

S′

NP

This elementary tree is not an auxiliary tree, as it does not contain any foot node.
Thus, it lacks one of the most important properties of the elementary tree for regular
relative clauses. For this reason, a relative clause made from an IE is different from a
relative clause that is part of the Tree family of a regular verb. We conclude that while
this approach accounts for the distribution of the IE, it fails to treat the relative clause
formation potential as part of the regular behavior of the IE.

However, this problem is specific to relative clauses and does not arise with other syn-
tactic constructions such as passive, topicalization or clefts (Abeillé, 1995): in all these
constructions, there still is one node that directly corresponds to the direct object node in
the tree in (442), i.e., the relevant information about the direct object node simply occurs
at a different place in the structure. Only in the case of a relative clause, a foot node
appears instead of a substitution node. Thus, the kind of node is changed. This does no
harm in the case of free combinations, but it leads to a difference between the analysis of
free combinations and IEs.23

Next we can consider the two IEs, make headway and make a decision. Both IEs are
instances of light verb constructions. Abeillé 1988 (section 3) presents an analysis of French
light verb constructions in terms of elementary trees. As Abeillé 1988 is only concerned
with the syntax, no semantic trees are given.

Abeillé 1988 assumes that for every noun that can appear in a light verb construction,
there is a special elementary tree for the light verb construction, in addition to the regular
elementary tree for the noun. In (444) we give these trees for the English noun decision.

23This difference disappears if one assumes a substitution node for ordinary relative clauses as well, i.e.,
the highest branching in such a relative clause would be like in (i) instead of being like in (ii).

(i)
NP↓ S′

NP

(ii)
NP∗ S′

NP
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(444) a.
Det↓

decision

N

NP

b.
NP↓

V↓

Det↓

decision

N

NP

VP

S

The interesting feature of this analysis is that the verb in a light verb construction is
introduced via a substitution node, i.e., the elementary tree in (444b) is not that of a verb
but that of a noun. Therefore, the class of light verbs can be identified by special elementary
trees: verbal trees that do not project up to an S node. In (445), some such trees are given.

(445)
make

V

,
do

V

,
take

V

This ingenious treatment of light verbs runs the risk of overgeneration: Even if we
consider just the three light verbs in (445), the proposal is unable to account for the fact
that the noun decision allows only the verbs make and take in a light verb construction,
but not the verb do.24

Beside this overgeneration problem, we think that the elementary trees for the support
verbs are not in line with the basic concept of elementary trees. Abeillé 1995 (p. 26) lists
some criteria that must be satisfied by elementary trees. Among these there are the require-
ment for predicate-argument co-occurrence and the requirement for semantic consistency.
She formulates these requirements as follows:

“Predicate-argument co-occurrence: Elementary trees must corre-
spond to complete argument structures. The elementary tree(s) associ-
ated with a given predicate must comprise one node (a foot node or a
sustitution node) for each of its arguments. Subjects and complements
both belong to the elementary trees of their predicate, as do both fillers
and gaps.
Semantic consistency: Each elementary tree corresponds to one non-
vacuous semantic unit. This principle excludes functional elements such
as case-marking prepositions as autonomous lexical anchors, if they are
semantically vacuous: They are thus defined as coanchors and belong to
the same elementary tree as the corresponding predicate(s) . . . .”

According to the second requirement, if there are elementary trees for the light verbs,
these verbs must be non-vacuous semantic units. It is very likely that the light verbs
are interpreted as semantic functors that transform a noun-like semantics into a verb-like

24The grammar presented in Abeillé 1988 is intended for parsing. Thus, the problem of overgeneration
might not be relevant for the purpose of that paper.
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semantics. If they are functors, the first requirement forces their arguments to be present
as a substitution or a foot node in the elementary tree. However, this is not the case in the
elementary trees in (445).

On the other hand, we could assume that the semantic functor is part of the light-verb
construction tree of the noun. In this case, the predicate-argument co-occurrence condition
would be satisfied, but there would be no semantic unit expressed by the light verb. Thus,
the elementary trees for the light verbs would violate semantic consistency. We conclude
that the treatment of light verb constructions in Abeillé 1988 is conceptually problematic,
given the standard assumptions about elementary trees made in TAG.

This problem can be avoided, if the light verb construction as a whole is treated in the
way proposed for idioms in Abeillé 1995. In this case, we will find the pair (446a) of elemen-
tary trees in the grammar. For simplicity, we assume a semantic constant s(upport)-op(erator)′

which is an operator that turns a noun-like semantics into a verb-like semantics.

(446) a.

〈

2 NP↓

make

V

4 Det↓

decision

3 N

NP

1 VP

S

,

s-op′

R 2 T↓

4 Q↓

decision′

3 P

T

1 F 〉

b. Further elementary trees: passive yes
topicalization yes
relative clause yes

This idiomatic analysis captures the behavior of the light verb construction. In partic-
ular, the idiosyncratic selection of the light verb is no longer a problem.

There is a fundamental conceptual difference between this analysis of light verb con-
structions and the one that was originally conceived in Abeillé 1988: for Abeillé 1988, the
light verb construction tree would be automatically generated for every noun in the lexi-
con.25 Under an IE analysis such as the one proposed in (446), we are forced to assume that
for every light verb-noun combination a separate elementary tree must be stated explicitly
in the grammar. We cannot generate the elementary trees for the light verb construction
automatically, because it is not predictable which noun will demand which light verb.26

25In Abeillé 1988 the basic motivation for this analysis comes from the fact that extraction out of an NP
is only possible if the NP appears in a light verb construction. As she needs the structure merely for the
purposes of extraction, there is no need to assume it in cases where the noun takes no complements.

“We consider all nouns taking complements as having corresponding support verbs
that they subcategorize.” (Abeillé, 1988, p. 11).

In that case, however, the overgeneralization problem is even stronger because certain verb-noun combina-
tions would not be recognized as a light verb construction. To consider a concrete example, take the noun
shower. It certainly does not take arguments. Still it requires the light verb take to appear in a light verb
construction (take a shower). If this combination is not analyzed as a light verb construction, we must
assume a regular verb take with a light verb meaning. In that case, we would have a similar ambiguity for

the light verb do because of the combination do the dishes. Then, again, we are not able to exclude a light
verb construction reading for combinations such as *do a shower and *take the dishes.
26 Laura Kallmeyer (p.c.) points out that there are ways to avoid the overgeneralization problem. For
example, it is possible to give every noun an attribute whose value indicates which particular light verb it
requires. Given such an attribute, it is possible to generate elementary trees as those in (446) automatically,
where the particular choice of the terminal symbol dominated by the V node is determined by the value
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We can now address another of the IEs discussed in Chapter 6: make headway. This IE
clearly shares the properties of a light verb construction. In addition, it is irregular in so
far as the noun headway does not occur in the language outside this construction. We can
propose an analysis which is just like that of make a decision in (446a), the only difference
being that, whereas there exists an elementary tree for an NP headed by the word decision,
there is no such elementary tree for the noun headway.

The discussion of light verb constructions is particularly enlightening as the proposal
in Abeillé 1988 assumes more regularity for these constructions than for idioms. Still, as
we have shown, this regularity must be given up to avoid overgeneration and to avoid the
violation of basic conceptual principles that underly the idea of what an elementary tree
should be.

So far, we have not discussed the IE trip the light fantastic. All the expressions considered
in Abeillé 1995 are built according to a regular syntactic pattern of the language. This
is certainly not an oversight, as Abeillé 1995 (p. 31) explicitly assumes that “idiomatic
elementary trees follow the regular syntactic rules of the language”. As we have argued
above, this need not be the case for trip the light fantastic.

It is fairly unclear how IEs of this kind can be handled in TAG. Certainly, the entire IE
would be expressed with a single elementary tree. But what exactly should be the structure
of this tree? It can of course be very idiosyncratic, as nothing excludes a particular structure
from being found in only one elementary tree in the entire langugage. Still, we are forced to
decide which structure should be assigned to the IE in question. For practical reasons, any
structure would do. Such an assignment would, however, fail to acknowledge the fact that
English native speakers have no intuition on the internal structure of this IE. Alternatively,
we could assume a syntactic tree which contains a leaf which has a sequence of terminal
symbols instead of a single terminal symbol.27 Under such an analysis, the pair of elementary
trees for the IE would be as in (447).

(447) a.

〈

2 NP↓

trip

V

the light fantastic

NP

1 VP

S

,

dance′

R 2 T↓

1 F 〉

b. Further elementary trees: passive no
topicalization no
relative clause no

In the elementary trees in (447a), there are only links for adding an adjunct to the VP
(the link 1 ) and the subject (the link 2 ). Thus, the IE is even less regular than the IE
kick the bucket, as we do not allow for external modification. Furthermore, as indicated
in (447b), there are no other elementary trees in the Tree family of this IE. So far, all is in
line with the analysis of Abeillé 1995 for IEs which are not flexible but built in a regular
syntactic way. We do, however, consider it a problematic aspect of any TAG analysis that
we are forced to assign the VP a particular structure, even if the structure is as indicated

of this attribute. A solution along these lines, certainly captures the regularity of the construction better
than the fully idiomatic analysis given in the main text. Its adequacy depends, however, on the question
how well-motivated such an attribute is.
27We are grateful to Laura Kallmeyer (p.c.) for suggesting this solution to us.
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in (447a). This does not match with the perception of native speakers, who seem to have
no clear intuitions about the internal syntactic structure of this IE.

After our hypothetical application of the TAG analysis of French IEs in Abeillé 1995 to
the English data of the preceding chapter, it is time for some summarizing remarks.

As trees are the smallest syntactic units in a TAG, it is a natural assumption that some
elementary trees are less flexible than others, i.e., more specific than others. In addition, the
framework of synchronous TAG, while providing a simultaneous construction, is not forced
to assume a parallel structure in both the syntactic and the semantic derivation. This
leads to an extremely elegant account of IEs such as kick the bucket where the syntactic
material is fixed and the semantic structure is considerably different from the syntactic
tree. Furthermore, the analysis shows that there is a gradual difference in the flexibility of
IEs which can be easily seen by the number of substitution nodes and links available in an
elementary tree and the size of the Tree family.

This approach encounters conceptual problems once an IE cannot be captured within
a regular syntactic structure. In the preceding discussion, we have seen three instances of
this problem: First, certain IE such as trip the light fantastic are not constructed according
to the general rules of English syntax. Second, relative clauses in which part of an IE
takes the form of a relative pronoun require a different kind of elementary tree than normal
relative clauses. Third, in cases where expressions seem to be more flexible such as light
verb constructions, the TAG architecture forces them into the same structure that is found
in more irregular expressions.

We want to elaborate this third point a little further. The problematic aspect of the
analysis was evidenced by the more compositional treatment of light verb constructions in
Abeillé 1988. As we have shown, such a freer treatment cannot be maintained. Yet, Abeillé
1995 (p. 39) states in her concluding remarks:

“Although the TAG formalism itself does not require all idioms to be
noncompositional, it offers a natural representation for the flexibility of
noncompositional idioms.”

While Abeillé is certainly right in the second part of this quotation, we have doubts
about the first part. We certainly must understand the term “compositional” in this quote
to refer to the way the parts of an IE combine. In this sense, IEs which have substitution
nodes and links in their elementary trees are treated more compositionally than IEs which
contain all the terminal symbols. As we have shown for light verb constructions, the TAG
approach is forced to give a noncompositional analysis, i.e., including a substitution node
for the light verb leads to overgeneration problems, because the particular light verb that
is required cannot be explicitly selected.

In our own HPSG analysis of IEs in Chapter 8 we will combine the techniques and
insights of both the GPSG and the TAG approach to IEs. The most important insight that
we are going to adopt from the TAG approach is that, at least in some cases, the basic unit
of description cannot be the word, but must be the entire phrase. We will adopt from the
GPSG approach to stick to words as minimal entitities in the lexicon as far as possible. In
order to do this, we will provide some mechanism to express the special kind of occurrence
restrictions found within the syntactically and semantically freer IEs. In sum, this means
that our treatment of IEs such as kick the bucket will follow the TAG analysis, whereas
we will give an account similar to that of Gazdar et al. 1985 for those IEs that show a
fair amount of syntactic and semantic flexibility. Before we can turn to our own approach,
however, we will first address the HPSG proposal of Riehemann 1997.
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7.3. IEs in Constructional HPSG

In the present section, we discuss the approach of Riehemann 1997 and Riehemann and
Bender 2000.28 Riehemann’s theory of idiomatic expressions is expressed within HPSG, but
builds on basic architectural assumptions which differ significantly from those that underly
our own proposal. In general, Riehemann takes all IEs as units and, thus, patterns with
the TAG analysis presented in the previous section. As IEs are not words, but phrases,
Riehemann treats them as special instances of constructions, i.e., as special subsorts of the
sort phrase. In addition, Riehemann relies on a particular approach to semantic composi-
tion, called Minimal Recursion Semantics (Copestake et al., 1995, 1997). All parts of the
basic architecture of grammar which underlies Riehemann’s analysis were proposed on in-
dependent grounds to account for phenomena not related to IEs, or should be useful for the
account of other phenomena. As we will see, Riehemann uses this machinery to achieve a
local treatment of all IEs, i.e., an IE can be fully described in its relevant properties without
considering its internal syntactic structure.

In this section, we will first introduce the necessary technical notions that Riehemann
presupposes and then describe her treatment of IEs in more detail. As the kind of HPSG
theory that Riehemann proposes differs significantly from the one used in this thesis, we
will refer to it with the term constructional HPSG. In our presentation of constructional
HPSG, we will point out where these differences are. When we discuss the approach to
IEs of Riehemann 1997, we will see that her focus on the constructional aspects leads to
problems in the account of the distributional constraints of parts of an idiom.

7.3.1. A Brief Introduction to Constructional HPSG. In this section, we will point
out three major differences between the approach to HPSG taken in Riehemann 1997 and
in the present thesis. The differences lie in the overall architecture of the grammar. First
Riehemann assumes a constructional perspective on HPSG. Second, Riehemann proposes a
new attribute on each phrase that collects all the words dominated by the phrase. Finally,
the semantic formalism assumed in Riehemann 1997 is very different from the one presented
in Chapter 4 of this thesis and requires some explanation. In this section, we will address
these differences in turn. Although we think that in most cases it is not an empirical
question whether the architecture proposed in this thesis or the one followed in Riehemann
1997 is more adequate, we want to explain where the differences lie.

The main difference between Riehemann’s perspective on HPSG grammars and the one
taken in this thesis is that Riehemann assumes most generalizations to be captured in
elaborate hierarchies of signs. In Pollard and Sag 1994, the sort sign has two subsorts, word
for non-recursive signs and phrase for phrasal signs, i.e., signs which embed other signs
via a syntactic dominance relation as expressed by some sign-valued attribute(s). In the
HPSG stream of research which Riehemann 1997 is part of, both these subsorts of sign have
received a huge number of subsorts. The sort hierarchy below word can be called the lexical
hierarchy, the subsorts below phrase are usually referred to as constructions.29 In order to
be able to differentiate terminologically between the approach to HPSG taken in this thesis
and that in Riehemann 1997, we have introduced the term constructional HPSG for the

28At the time of writing, Riehemann (2001) was still in preperation. We confine our discussion to the papers
mentioned in the main text, but see footnote 42 for a short discussion.
29In this exposition, we simplify considerably, as it is not clear whether it is adequate to treat the lexical
hierarchy as a sort hierarchy. Such an interpretation is possible for the hierarchy proposed in Davis 1997.
Alternatively, and more in the spirit of Pollard and Sag 1987, the lexical hierarchy is sometimes considered
a hierarchy of descriptions. Unfortunately, there is no extension of any HPSG formalism that includes the
concept of a hierarchy of descriptions. Therefore, such an interpretation of the lexical hierarchy would fall
outside the HPSG grammar proper. For the purpose of this thesis, we can assume that the lexical hierarchy
is just the sort hierarchy below word. Under this interpretation, it has a formally clear status.
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latter. The constructional approach to HPSG goes back to Pollard and Sag 1987 for the
lexicon, and to Sag 1997 for phrasal constructions.

Sag 1997 provides an elaborate sort hierarchy below phrase. Part of this sort hierarchy
is given in (448). In this hierarchy, the sort phrase has subsorts which correspond to the
ID-Schemata of Pollard and Sag 1994 and the subsorts of constituent-structure found there.

(448) Sort hiearchy below phrase, cited after Sag 1997, p. 439, nr. (9):

non-hd-ph

hd-adj-ph

hd-fill-ph hd-comp-ph hd-subj-ph hd-spr-ph

hd-nexus-ph

hd-ph

phrase

The sorts non-headed-phrase (non-hd-phrase) and headed-phrase (hd-ph) are the imme-
diate subsorts of phrase. The latter is a supersort of all phrases with a syntactic head, i.e.,
with a head daughter, whereas the former covers all phrases without a head. Sag 1997 does
not give an example of a non-headed phrase. The sort hd-ph has a number of subsorts: one
for the combination of a head with an adjunct (hd-adj-ph), one for the introduction of a
filler in an unbounded dependency (hd-fill-ph), and one for the realization of a subject, a
complement and a specifier (the sorts hd-subj-ph, hd-comp-ph and hd-spr-ph respectively).

An effect of this sort hierarchy is that many principles of grammar are stated as impli-
cational constraints with a single sort in the antecedent. This can be illustrated with the
Head Feature Principle, which is a constraint on objects of the sort hd-ph in Sag 1997.

(449) The Head Feature Principle in Sag 1997:30

hd-ph ⇒

"

synsem loc cat head 1

head-dtr
h

synsem loc cat head 1
i

#

The principle in (449) ensures the identity of head values between a phrase and its head
daughter. As this principle is a constraint on the sort hd-ph, it is obeyed by all headed
phrases. This version of the Head Feature Principle differs from that of Pollard and
Sag 1994 — and from that introduced for our syntactic fragment in Section 2.3.1 — by
having a sort as its antecedent, whereas the latter has a complex description. In (450), we
formalize the Head Feature Principle of Pollard and Sag 1994 (p. 399) in RSRL.

(450) The Head Feature Principle in Pollard and Sag 1994:

"

phrase

dtrs headed-structure

#

⇒

"

synsem loc cat head 1

dtrs head-dtr
h

synsem loc cat head 1
i

#

Similarly, equivalents to the ID-Schemata of Pollard and Sag 1994 are stated as con-
straints on the respective subsorts of phrase. For example, while the Head-Adjunct
Schema of Pollard and Sag 1994 (p. 403) is a disjunct in the ID-Principle, it appears as
a simple constraint on the sort hd-adj-ph in the grammar of Sag 1997.

The sort hierarchy given in (448) is not the entire sort hierarchy below phrase. In par-
ticular, none of the sorts that occur in the hierarchy in (448) is maximally specific. This
comes as a surprise, considering that in RSRL, the sort hierarchy could be eliminated en-
tirely — in fact, there is no sort hierarchy in the works of Paul King (King, 1989, 1994,

30Note that the attribute head-daughter is defined on objects of the sort hd-ph. The signature of Sag
1997 does not have an attribute daughters at all.
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1999), which underlie the basic ontological assumptions of RSRL. In the sort hierarchies
in the previous chapters of this thesis, the leaves stood for maximally specific sorts. This
is different in the hierarchies normally given in papers written in the framework of con-
structional HPSG: there, the authors usually indicate just some small bits of the assumed
hierarchy and normally leave out the most specific sorts.

The hierarchy in (448) captures only the partition of phrases with respect to their
headedness, i.e., whether or not there is a head and what the relation between the head
and the nonhead is in case there is a head. Sag assumes that there are other aspects with
respect to which one can partition the sort phrase. In Sag 1997 the second aspect considered
is that of clausality. Sag assumes subsorts of phrase for different kinds of clauses: first, a
phrase need not be a clause at all, this is the case for NPs and VPs, for example. In that
case, they are phrases of sort non-clause. If a phrase is a clause, then it can be either an
imperative clause (imp-cl), a declarative clause (decl-cl), an interrogative clause (inter-cl)
or a relative clause (rel-cl). We can add the clausality sorts to the sort hierarchy in (448).
The resulting hierarchy is given in Figure 7.6. We follow Sag 1997 in indicating the different
kinds of partitioning below phrase by so called “boxed types” in the sort hierarchy. The
purpose of such a boxed type is to indicate that every phrase must be a subsort of each of
the boxed types in the sort hierarchy.

As said above, every phrase must be of a subsort of some sort below each of the boxed
types. In Figure 7.6 (page 306), however, there are no sorts that would satisfy this condition,
i.e., in this hierarchy, there is no common subsort of clausality and headedness. This shows,
that the hierarchy in Figure 7.6 is just the tip of an iceberg: for an actual phrasal sign
to be of a subsort of both headedness and clausality, Sag 1997 must introduce many more
subsorts of phrase. For illustration, consider the relative clause in (451).

(451) (a person) [who left]

It is assumed to be of the sort wh-subj-rel-cl. This sort is a subsort of rel-cl, as it is a
relative clause, and of hd-subj-ph as the nonhead daughter in the relative clause takes the
function of a subject with respect to the verb left.31

This example already indicates that in a constructional approach to HPSG such as Sag
1997, the sort hierarchy below phrase contains a subsort for every single type of construction.
In his discussion of the sort hierarchy below word, Meurers 2000 notes that such hierarchies
lead to a duplication of information rather than to the expression of generalizations. His
critisism can be applied validly to the sort hierarchy below phrase: the sort wh-subj-rel-cl
expresses that the phrase is a relative clause which is finite and has a wh-constituent which
is the subject at the same time. All this information is already expressed within the phrase
itself: there is a vform feature whose value is finite, the nonhead daughter’s synsem value is
identical to the element in the subject list of the head daughter, and the nonhead daughter
is clearly identifyable as a wh-relative constituent by its rel value. The fact that such a
combination of specifications is possible in English is expressed in constructional HPSG by
introducing a sort such as wh-subj-rel-cl. In case a certain combination of specifications is
not possible in a given language, such as infinite relative clauses in German for example,
the sort hierarchy lacks the sorts that would characterize and license this construction.

In this sense, constructional HPSG can be considered more “constructive” than a non-
constructional approach. A non-constructional approach, on the other hand, is in some
intuitive sense more constraint-based, as it is necessary to exclude non-well-formed objects
by principles of the grammar which exclude certain combinations of feature specifications.

31In addition, it is a subsort of the sorts wh-rel-cl and fin-subj-ph, as the relative clause contains a wh-
constituent and is finite.
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Figure 7.6. Sort hiearchy below phrase, cited after Sag 1997, p. 443, nr. (16):
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The main practical difference between the constructional approach to HPSG and the
one taken in this thesis and many other works within HPSG is that we assume a fixed
signature, including the sort hierarchy, which should be as small as possible. All variation
is, therefore, expressed by the principles of the grammar. This means that we want to
impose as little ontological restrictions as possible. As a result, we assume that we often
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can improve a grammar simply by adding or changing some principles in the theory, while
leaving the signature intact.

In a constructional approach, on the other hand, the sort hierarchy below the sort phrase
is a vital part of the linguistic analysis. As a consequence, we can never be given the full
sort hierarchy of a language, as every new word will potentially lead to the creation of new
sorts. Furthermore, as all principles of grammar “live” on sorts in this approach, nearly
every adjustment of the theory will lead to a modification in the sort hierarchy as well.

In short, we hope to have emphasized how different a constructional approach to HPSG
is from the approach taken in this thesis. We cannot see whether there are empirical criteria
to favor one approach over the other. We will show that it is enough to add a single attribute
to the appropriateness conditions of the sort sign to express constructional effects under
our view of HPSG as well.

A discussion of the differences between constructional and non-constructional HPSG
was necessary to understand the context of the approach in Riehemann (1997). As we will
see, Riehemann assumes a particular subsort of phrase for each IE. Thus, each IE has its
own sort (with possibly additional subsorts).

In addition to the constructional aspect of her analysis, Riehemann 1997 assumes that
each phrase has a set-valued attribute words defined on it.32 The words set contains all
words that are dominated by the phrase. The words set assumed in Riehemann 1997 has
the effect of providing local access to all words that occur in a phrase, without being forced to
look into the syntactic structure. In the case of our simple example sentence (302), repeated
as (452a), this means that the overall phrase can be described by the AVM in (452b).

(452) a. Peter read a book.

b.

2

6

6

6

6

4

decl-fin-subj-cl

phon 〈Peter read a book〉

words

("

word

phon 〈Peter〉

#

,

"

word

phon 〈read〉

#

,

"

word

phon 〈a〉

#

,

"

word

phon 〈book〉

#)

3

7

7

7

7

5

Riehemann 1997 acknowledges that the words set is not proposed elsewhere in the
literature, but suggests that it can be used in an account of word order facts. Concerning
the attribute words, she says:

“This attribute might also be useful for Linearization approaches to syn-
tax, although it is distinct from the dom attribute used in the approach
developed at OSU and elsewhere, which does not contain all words indi-
vidually.” (Riehemann, 1997, footnote 5)

The following remarks demonstrate that this particular attribute is quite distinct from
those used in linearization approaches to the extend that they would conceptually reject
such an attribute.

Linearization approaches such as Reape 1990, 1994, Kathol 1995, Richter and Sailer
1995, Richter 1997, Penn 1999b,a, Donohue and Sag 1999 assume that word order cannot
be determined within local trees. Instead, there are larger domains that must be consid-
ered. This can be illustrated with the relatively free word order in the German Mittelfeld
(Uszkoreit, 1986; Jacobs, 1988). In the following examples, the relative order of the direct
object den Schläger (the racket) and the indirect object einem Fan ((to) a supporter) is
free. Note that furthermore, there is an adjunct nach dem Spiel (after the game) which
intervenes between the two complements.

32Note that sets are not part of RSRL as defined in Chapter 2. Richter 1999 and Richter 2000 show how
finite sets can be handled within RSRL. Finite sets are sufficient for the purpose of Riehemann 1997.
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(453) a. Boris
Boris

hat
has

den
the

Schläger
racket

nach
after

dem
the

Spiel
game

einem
a

Fan
supporter

gegeben.
given

‘After the game Boris gave his racket to a supporter.’
b. Boris hat einem Fan nach dem Spiel den Schläger gegeben.

Under the standard HPSG assumptions of Pollard and Sag 1994, none of the sentences
in (453) can be analyzed. The reason for this lies in two assumptions which impose con-
tradictory demands on these example sentences. First, adjuncts appear in the syntactic
structure higher than the complements. Second, the phonology of a phrase is the concate-
nation of the phonologies of its daughters. With these two assumptions there is no way to
have the phonology of the adjunct appear between that of the complements.

To overcome this problem, at least one of these assumptions must be dropped (or weak-
ened). Some authors drop the first assumption, while sticking to the second: in the analyses
of Kasper 1994 and Kiss 1995, 1997 data as those in (453) are accounted for in a theory
which does not require the extension of the linearization domain from local trees. To achieve
this, they must allow adjuncts to be introduced into the syntactic structure together with
complements. Linearization approaches, on the other hand, drop the second assumption.
Thus, they allow for word order to be determined within a domain as big as a clause.

The technical implementation of this simple idea varies a lot in the papers mentioned
above. Some approaches assume an attribute such as domain that contains those bits of
the daughters of the phrase that are necessary to determine the right ordering. In almost
all analyses, these “bits” do not have all the information of a sign (in general, at least
daughters information is absent), but might contain information of units larger than words
(such as some representation of an entire NP). For the example in (453a), Kathol 1995
would assume the following value for the attribute dom.33

(454)

〈
"

phon 〈Boris〉

synsem NP

#

,

"

phon 〈hat〉

synsem V

#

,

"

phon 〈den Schläger〉

synsem NP

#

,

"

phon 〈nach dem Spiel〉

synsem PP

#

,

"

phon 〈einem Fan〉

synsem NP

#

,

"

phon 〈geschenkt〉

synsem V

#
〉

This list is different from a set that contains all the words of the sentence: First of all,
it is a list whose order reflects that of the surface string. Second, the list contains only six
elements, whereas there are ten words in the sentence. Third, the elements in the list are
not of sort sign but of sort dom-obj. This sort has the attributes phon and synsem, but
does not have a dtrs attribute. The motivation for having six instead of ten elements on
this list stems from the fact that the word order of the sentences in (453) can be determined
by considering just the permutations of these six elements, i.e., in German, the string
den Schläger may not be seperated by phonological material that belongs to a different
constituent in the clause. All linearization approaches, including Donohue and Sag 1999 for
Warlpiri, are based on the observation that it is not necessary to consider the permutation
of all words in a phrase, but that some words cluster together in an inseparable way.

Penn 1999a,b is perhaps the most radical linearization approach within HPSG. In Penn’s
approach, the dom list of sentence (453a) would actually contain ten domain objects. In
that respect, it is closer to Riehemann’s proposal, at least from the point of view of the
number of basic entities. Yet, these domain objects are not words. They are units which
contain phonological and word order information, but no semantic information and at most
very little syntactic information.

33As far as we know, there is just a single workshop handout, Richter and Sailer 1996b, which proposes
a word order component in which the linearization rules operate on a list of words. This proposal has,
however, never been pursued further.
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As we will see below, the treatment of IEs in Riehemann 1997 crucially relies on a
words value which contains an element for every word in the phrase and for each of these
elements bears at least phonological, semantic and subcategorization information. Under
these conditions, Riehemann’s words list cannot be reduced to an attribute present in any
of the currently available approaches to linearization in HPSG. Furthermore, such a words
set is incompatible with the aim of linearization approaches to restrict the information that
is available in the linearization component to the minimum.34

Another difference between the approach of Riehemann 1997 and the one taken in this
thesis is concerned with the treatment of semantics. In Part I of this thesis, we showed
how an HPSG grammar such as that of Pollard and Sag 1994 can be furnished with a
traditional architecture for combinatorial semantics. In contrast to this, Riehemann assumes
the framework of Minimal Recursion Semantics (MRS) as presented in Copestake et al. 1995
and Copestake et al. 1997.

It would lead us too far astray to present the framework of MRS in detail. The main
intuition behind MRS is that the semantic representation should be as flat as possible, i.e.,
the semantic representation of a sentence is not a single term which potentially consists
of many subterms, but a list of some of these subterms. Let us consider a concrete ex-
ample. According to the semantic system introduced in Chapter 4, the content value of
sentence (302) (=(452a)) would be the following term:

(455) Peter read a book.
∃x[book′@(x@) ∧ read′@(p, x@)]

This term has a complex internal structure as it contains many subterms such as
[book′@(x@)∧ read′@(p, x@)], book′@(x@), read′@(p, x@) etc. The semantic representation cho-
sen for in MRS avoids recursively structured terms, hence the name Minimal Recursion
Semantics. Instead of having terms embedding other terms, the semantic representation is
a list of subterms of a certain kind, called relations. The mutual embeddings/dependencies
between these relations are indicated by special attributes. To see how this is done, we can
augment the AVM in (452b) with a description of the semantic representation assumed in
Copestake et al. 1997. This more detailed description of the sentence is given in Figure 7.7.35

Figure 7.7 needs some comments: The sorts book-rel, read-rel etc. stand for constants of
the semantic representation language.36 These constants are in part parallel to the analysis
given in chapter 9 of Pollard and Sag 1994. For example, the constant book-rel has one
argument which is given in the inst(ance) attribute. For verbs, the arguments are called
act(or) and und(ergoer), following a proposal of Davis 1997. In addition, Copestake
et al. 1997 also assume an event variable for verbs, which is expressed as the value of
the event attribute. For a quantifier such as a-rel, the attribute b(ound-)v(ariable)
indicates which variable is being bound. Further attributes, restr(iction) and scope
specify the restriction and the scope of the quantifier respectively.

The values of the attributes used for the semantic argument slots come in two sorts: some
of them are indices, i.e., of sort index, others are what Copestake et al. 1997 call handles.
The sort index is known from Pollard and Sag 1994 and used in MRS in roughly the same

34Within an RSRL reformulation of Riehemann’s theory, it would be possible to use a chain instead of an
attribute. A chain would also make the words dominated by the idiomatic phrase locally available. In order
to construct this chain it would, however, be necessary to traverse the syntactic structure dominated by
this phrase recursively. This introduces a kind of non-locality which is avoided in Riehemann 1997.
35In Figure 7.7, s, l and ct abbreviate the attribute names synsem, local and content, respectively.
36Copestake et al. 1997 (p. 12) state that they want to treat names as predicates. They do not give an
explicit HPSG encoding of this proposal, but suggest the following two representations for the name Sandy:
Sandy′(x), or name′(x, Sandy). In Figure 7.7 we have incorporated the first proposal, because it can be
encoded more straightforwardly.
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Figure 7.7. A description of the sentence Peter read a book.
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way, with the difference that verbs are assumed to have an index as well. Handles are
objects of sort handel. A handle corresponds to a formula. In the example, the restriction
and the scope of the quantifier are given as handles, and furthermore, every constant has an
attribute handel. The restriction of the quantifier a-rel is given as the handle 6 . This very
same handle appears as the handel value of the book-rel object. This is interpreted in such
a way that the book-rel object is the restriction of the quantifier. The scope value of the
quantifier is the handle 5 . In the liszt value of the sentence, there are two relations which
have this handle as their handel values: the relation read-rel and the relation peter-rel. In
this case, the interpretation of the handle 5 is the conjunction of the two relations.

So far, we have mainly considered the liszt value of the sentence, but its content
value has more attributes: as mentioned above, verbs and verbal projections are assumed
to have an index in Copestake et al. 1997. Therefore, there is an index attribute defined
on the content value of the sentence. This index is identical to the event value of the
relation read-rel. Another attribute in the content value is key. The key value expresses
the major semantic contribution of the lexical head of a sign. In the case of the sentence in
Figure 7.7, this clearly is the read-rel object ( 7 ). Finally, the content value has a handel
attribute defined on it. This handle indicates which of the relations in the liszt value is
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the semantics of the sign. In our case, this is the handel value of the quantifier, 4 . Thus,
the meaning of the sentence is identical to the meaning of this relation.37

In MRS, the content value of a phrase is the result of appending the liszt values of
the daughters and possibly adding construction specific relations. The key and the index
values are identical on the mother and on the head daughter in a headed phrase. There are
additional principles that take care of assigning scope bearing elements the right scope.

For our discussion of IEs it is important to note all the words that occur in a phrase and
the semantic contribution they make, are locally available at that phrase. This is indicated
in Figure 7.7 by the fact that every element on the liszt list of the sentence is identical
to the key value of some word on the words list. We will see in the next subsection that
Riehemann 1997 uses this to require for an idiomatic phrase the presence of a particular set
of words with a particular meaning.

Now that we have presented the constructional HPSG, the words set and the framework
of MRS, we are ready to consider treatment of IEs proposed in Riehemann 1997.

7.3.2. A Constructional HPSG Analysis of IEs. In Riehemann 1997 the theoretical
assumptions presented in the preceding subsection are put together to achieve an analysis
of IEs which shares many aspects with the TAG analysis of Abeillé 1995. Riehemann’s
analysis has the following attractive properties: (i) in cases of semantically regular IEs, the
overall semantics is constructed in a regular combinatorial way; (ii) yet it is not necessary
to have lexical entries for words such as beans in their idiomatic reading of beans′′; (iii) (lim-
ited) syntactic flexibility is achieved by specifying as many properties as necessary for the
syntactic relations that must hold between the parts of the IE.

As Riehemann’s account is constructional, she enriches the sort hierarchy below the
sort sign: below word, Riehemann introduces a subsort i(diomatic)-word, below phrase,
there is a subsort idioms which has an immediate subsort for each idiomatic phrase in the
language. In our case, the subsorts of idioms contain the sorts spill-beans-i(diom)-ph(rase),
kick-bucket-i-ph, and pull-strings-i-ph. The new part of the sort hierarchy is given in (456).

(456)

i-word . . .

word

spill-beans-i-ph kick-bucket-i-ph pull-strings-i-ph . . .

idioms . . .

phrase

sign

Riehemann’s analysis can best be illustrated with the IE spill the beans. In (457), we
give the description of this IE as found in Riehemann 1997 (p. 8).

(457)
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6

6
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6
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spill-beans-idiom-phrase

words

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

2

6

4

i-word

s l ct key

"

i-spill-rel

und 1

#

3

7

5

<
u

h

spill
i

,

2

6

4

i-word

s l ct key

"

i-bean-rel

inst 1

#

3

7

5

<
u

h

bean
i

, . . .

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

3

7

7

7

7

7

7

7

7

7

7

7

5

37See Egg 1998 for an explicit translation from an MRS-like system to predicate logic, or Richter and Sailer
2001 for an MRS-style treatment of the semantic representation language Ty2.
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The AVM in (457) describes a phrase of sort spill-beans-i-ph which has two idiomatic
words in its words set. One of these words has a key value of sort i-spill-rel in its content,
the other has a key value of the sort i-bean-rel. These special relations correspond to
the semantic constants spill′′ and beans′′ of Gazdar et al. 1985, though they need not be

interpreted as partial functions. In (457), a new symbol,
<
u, is used. It is explained as follows:

“. . . the idiomatic word . . . on the left side of the
<
u symbol is just like

the literal word on the right, except for the properties that are explicitly
changed.” (Riehemann and Bender, 2000, p. 9)

The precise formal interpretation of the
<
u symbol is rather hard to grasp, but if we see

this symbol as an abbreviatory convention to make the basic idea behind (457) clearer, there
are no problems.38 What is expressed by a description such as that of the first-mentioned
element in the words set in (457) is the following: the described word has a key value as
given and is described by the lexical entry of spill with respect to all aspects except of the
key value. A formal explication of this idea would raise many questions and depend on
details of the way inflection, passive and other lexical processes are handled. It seems to
us, however, that whatever the approach to lexical generalizations, there is always a way

to eliminate the
<
u symbol by an explicit description. As these issues are independent of

Riehemann’s analysis, the
<
u symbol gives her a useful abbreviation.

In the following, we describe how Riehemann 1997 analyzes several IEs in this framework.
We will show why in the form it is presented in Riehemann 1997, the approach heavily
overgenerates, allowing idiomatic words to appear everywhere in the language and not
ensuring that an idiomatic phrase is present whenever the right idiomatic words occur.

But, before we detail our critique, we should first consider the way the analysis of
Riehemann 1997 is intended to work. Consider the following two sentences.

(458) a. Pat spilled the beans.
b. I was worried that the beans might be spilled.

These sentences illustrate the syntactic flexibility of the IE: in (458a), the noun beans
appears as the direct object, in (458b), the noun is the subject and appears in a raising con-
struction. In Figure 7.8, we give the syntactic structure of the that-clause of sentence (458b).

In the description of the sort spill-beans-i-ph in (457), only the semantic relation between
the two idiomatic words is mentioned. This leaves open how these two words combine
syntactically. In the case of (458a), the noun beans is the head of the direct object; in the
case of (458b), the syntactic relation is mediated through a series of raising verbs.39

The analysis of the IE pull strings is parallel to that of spill the beans. We can see that
also the topicalization and relative clause data of this IE are easily accounted for under
Riehemann’s approach.

(459) a. Those strings, he wouldn’t pull for you.
b. The strings that Pat pulled got Chris the job.

In (459a), the topicalized NP has the index of its head noun, strings. The local value
of this NP appears as the direct argument on some list of the idiomatic verb pull, probably
on the arg(ument)-st(ructure) list. There the NP is linked to the undergoer value
of the verb. Thus, again, the required semantic relation holds.

38Riehemann 1997 (footnote 6) explicitly states that the
<
u symbol is interpreted as an instruction to some

compiler of a parsing system and is not part of the HPSG grammar proper.
39Similarly, internal modification is possible because all that is required is that the index of the noun beans
appear as the undergoer value of the verb spill. Modification does not change the index.



7.3. IES IN CONSTRUCTIONAL HPSG 313

Figure 7.8. The structure of the that-clause in (458b)
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The same is true in the case of the relative clause. Here, the idiomatic phrase must
dominate at least the entire relative clause and the head noun of the NP, beans. Under
both the relative clause analysis of Pollard and Sag 1994 and that of Sag 1997, the relative
pronoun has the same index as the head noun to which the relative clause attaches. In the
case of the relative clause in (459b), the UDC mechanism together with the assumptions
about argument linking will further provide the identity of this index with the undergoer
value of the idiomatic verb pull, parallel to what happens in topicalization.

To exclude topicalization and relative clause formation in the case of the IE spill the
beans, Riehemann would have to assume that there is no common subsort of spill-beans-i-ph
and the sort hd-fill-ph, nor is there a common subsort of the sort spill-beans-i-ph and the
sort rel-cl. This indicates the close similarity between Riehemann’s constructional HPSG
analysis and the TAG analysis of Abeillé 1995: in those cases where Abeillé 1995 assumes
the absense of some elementary trees in the Tree family, Riehemann 1997 would assume
the absense of a common subsort of a particular IE and a certain constructional sort. Such
cases are discussed in detail in Riehemann and Bender 2000.
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Next, let us briefly consider yet another type of IEs whose existence is taken as a clear
indication for the necessity of a constructional approach: the IE kick the bucket. In (460), we
state the description of a kick-bucket-idiomatic-phrase as given in Riehemann 1997 (p. 10).40
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The description of this IE is much more complex than that of the semantically and
syntactically more regular IEs such as spill the beans and pull strings. In the words set,
we find the verb kick, the determiner the and the noun bucket. For all three of them, the
key value is given as empty-rel. This is a special relation which Riehemann must introduce
for those parts of an IE to which one cannot attribute a meaning. The description of
the verb further specifies that the element in the comps list be some NP headed by the
idiomatic noun bucket. This noun must take as its specifier the idiomatic determiner the,
which follows from the spr value of the noun in (460). By these details on the syntactic
relations that hold among the three idiomatic words of the IE, Riehemann accounts for the
lack of syntactic flexibility of the expression kick the bucket.

In the AVM in (460), there is one attribute that we have not discussed before, the
attribute cxcont (construction-content). This attribute is part of the MRS semantic
theory. Under a constructional HPSG, it is assumed that constructions may make semantic
contributions of their own, i.e., the meaning of a construction can contain elements that are
not present in the words that the construction is built from. In combinatorial semantics,
Copestake et al. 1997 assume that the liszt value of a phrase is the union of the liszt
values of all its daughters and its own cxcont liszt value.

For the example of kick the bucket this has the effect that while all the words in the
IE have an empty semantic contribution, i.e., they have a key value of sort empty-rel,
the overall idiomatic phrase has the intended meaning as the relation i-kick-bucket-rel is
contributed by the phrase itself.

After this presentation of the analysis in Riehemann 1997, we will consider a major
problem of the approach. Certainly, there are ways to solve this problem within Riehemann’s
account41, but we think that it points to a basic misconception in the constructional account.
We will take the IE spill the beans for illustration.

It is actually the first semantic criterion that goes to the heart of the problem: as we
have noted in Chapter 6, the words spill and beans do not occur in their idiomatic meaning
outside the IE spill the beans. Riehemann wants to achieve this by not assuming special

40We have eliminated a typo from Riehemann 1997, as in the AVM given there, the subj value of the

idiomatic word kick is described as
D̂

. . . key 1
Ẽ
. This cannot be intended as the key value is of the sort

relation, whereas the actor attribute of the i-kick-bucket-rel takes an index as its value.
41See Riehemann (2001) and the short discussion in footnote 42.
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lexical entries for these words. As we have seen in (456), however, there are objects of the
sort idiomatic-word. Every idiomatic part of an IE will be of this sort, thus, there will at
most be a very vague description of the objects of sort idiomatic-word in the grammar. As
the idiomatic word spill is certainly part of the English language, there is an idiomatic word
that can be described by the following AVM.
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The AVM in (461) describes the word spill as it occurs in sentences like those in (458)
above, repeated in (462).

(462) I was worried that the beans might be spilled.

Clearly, the idiomatic word spill need not be directly dominated by a spill-beans-i-ph.
In (462), there is a number of VPs that dominate the idiomatic verb spill before the idiomatic
word beans is introduced. This can be seen in the constituent structure of the that clause
of sentence (462) which was sketched in Figure 7.8 (page 313).

In the tree in Figure 7.8, there are at least three phrases which have the idiomatic word
spill on their words set but which are not of the sort spill-beans-i-ph. These are the three
VPs which are indicated as being of the sort hd-comp-ph. Still, the sentence is grammatical.
This indicates that Riehemann’s system must allow for phrases which are not idiomatic but
contain idiomatic elements. If this is the case, then there is nothing in the grammar that
prevents sentences which do not contain an occurrence of a spill-beans-i-ph at all, but which
do contain an idiomatic word such as the idiomatic word spill in (461). The grammar, thus,
cannot exclude the following sentence in which the word spill is used as an idiomatic word.

(463) * Pat spilled the secret.

Neither does the grammar enforce that whenever the idiomatic verb spill is combined
with the idiomatic noun beans, there is also an instance of a spill-beans-idiomatic-phrase.
This means that sentence (462) has an analysis which contains the idiomatic words spill
and beans and, thus has the idiomatic reading, but the analysis differs from that given in
Figure 7.8 in that the S node would not be of sort spill-beans-i-ph but of the subtype of
hd-subj-ph used for regular, i.e., non-idiomatic, combinations.

To prevent this, a constraint could be added, saying that whenever there is a phrase
which has the idiomatic words spill and beans in its words set, this phrase must be a
spill-beans-i-ph. Clearly, such an ad hoc constraint would not solve the problem, because
it would require that in the case of sentence (462), all phrases which dominate the NP the
beans be of sort spill-beans-i-ph. This would include the S′ node in the tree in Figure 7.8 as
well as the phrase which dominates the entire sentence. Even if this were acceptable, which
we think it is not, it does not offer a solution to the overgeneration problem.

The problem indicated here, is, however, more general still: in fact, we could have
any idiomatic word occurring almost anywhere in the language. As there is no particular
restriction on the shape of an idiomatic word in the grammar, an idiomatic word could be
of any shape compatible with the rest of the principles of grammar. In particular, we could
have idiomatic words, which do not have anything in common with the ordinary words of
English. Thus, instead of the idiomatic word spill, we could also have an idiomatic word
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with an arbitrary phonology (bace) and an arbitrary meaning (snore-rel). The following
sentence would then be a regular sentence which happens to contain an idiomatic word.
The meaning would be that of the sentence “Pat snores.”.

(464) * Pat baces.

The problem that we have just illustrated arises from the fact that in Riehemann 1997
only the restrictions on the idiomatic phrases are provided, i.e., whenever there is a certain
idiomatic phrase, it must be composed of the right idiomatic words. What is missing in
this proposal is a constraint that a certain idiomatic word must occur as part of a certain
idiomatic phrase. In our example, a restriction must be added that states that the idiomatic
word spill may only occur if it is dominated by some spill-beans-i-ph within an appropriate
syntactic domain. The same is true for the idiomatic word beans. Therefore, what we need
are constraints on the distribution of idiomatic words in larger contexts.

Another way to explain this basic problem of Riehemann’s approach is to compare it
with the TAG analysis of Abeillé 1995. In both approaches, the IE spill the beans is treated
as a unit, but the same basic idea has different consequences in the two frameworks. In TAG,
the idiomatic use of the verb spill cannot occur outside the IE, because it only exists as part
of the elementary tree that belongs to the IE. In HPSG, complex signs have components
which must be licensed by the grammar independently. Therefore, Riehemann is forced
to introduce the sort i-word. If these signs exist independently, their distribution must be
accounted for. This is not done in Riehemann 1997. Thus, Abeillé is right in pointing out
that the notion of locality in TAG is wider than in HPSG. In the case of IEs, this makes a
difference with respect to the analytic alternatives that are available.

The basic problem of the account in Riehemann 1997 is that while an attempt is made
to treat idioms locally at the level of a construction, the analysis is not able to constrain
appropriately neither the distribution of the idiomatic words nor the distribution of the
idiomatic phrases. The approach that we will present in the next chapter, will expand on
means of expressing distributional constraints for lexical items. Thus, it will be possible
to attach to the idiomatic word spill the restriction that it only occurs in clauses which
also contain the relevant parts of the idiomatic word beans, and the other way around. In
addition, we will show that once we can express restrictions on the distribution of lexical
items, there is no need for particular constructions in the analysis of internally regular IEs.42

7.4. Summary

In this chapter we have discussed three formal theories whose purpose is to account for
the IE data presented in the previous chapter. The approaches were formulated in different
linguistic frameworks, GPSG, TAG and constructional HPSG respectively. The choice of
the framework had an enormous influence on the particular analysis:

42 The probem of overgeneralization is explicitly addressed in Riehemann (2001, Section 5.2.1). To solve
it, additional sorts, attributes and constraints are introduced to collect the idiomatic words that occur in
a sentence, and to keep track of which idiomatic words are needed for the idioms in the sentence. At the
level of a root clause, it is then ascertained, whether or not the clause contains all the idiomatic words,
and respectively only those idiomatic words required by the idioms in the given clause. While this solves
the problem at a technical level, the solution requires a massive apparatus that is not motivated or needed
for the description of other linguistic phenomena. This shows that the constructional approach is genuinly
problematic for an account of IEs in HPSG.
Furthermore, there are at least two remaining issues. The first issue is that this analysis is inconclusive
about which phrasal node should be considered a spill-beans-i-ph in Figure 7.8. Second, as noted by
Riehemann (2001, p. 207) herself, certain pronominalization data remain unaccounted for. Riehemann gives
the following example:
(i) Eventually she spilled all the beans. But it took her a few days to spill them all.

The problem is that the but-clause contains an idiomatic spill, but no idiomatic beans.
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The GPSG approach of Gazdar et al. 1985 emphasized the regular aspects of IEs, pro-
viding a technique to avoid free occurrences of idiomatic readings of particular words. This
approach, however, had no obvious way to account for more irregular IEs such as kick the
bucket and trip the light fantastic.

The TAG account given in Abeillé 1995 was forced to rely on an analysis that emphasized
the irregular aspects of IEs, because in TAG trees are the only available data structure.
Thus, the paradigm examples of the approach was the IE kick the bucket. In case of more
regular combinations such as light verb constructions, the TAG architecture was forced to
adopt an idiomatic approach, even though Abeillé 1988 claimed that a more combinatorial
account could be possible.

Finally, we discussed the approach of Riehemann 1997, which is formulated within con-
structional HPSG. In spirit, this approach was very close to the TAG analysis and tried
to account for the data similarly. The fundamental formal differences between TAG and
HPSG led to problems which remained unsolved within constructional HPSG.

Let us reconsider these results in the light of the classification of the data that we have
given in Section 6.3. There, we made a distinction between internally irregular IEs and
IEs which are internally regular but may contain parts which show external irregularities.
Of the list of IEs which we are considering in this thesis, only two are internally irregular:
trip the light fantastic and kick the bucket. In both cases, the meaning of the IE cannot be
arrived at by regular combination of the semantic contribution of their parts.

All other IEs have been shown to be internally regular. Still, some parts of the IEs were
shown to have distributional, i.e., what we call external, irregularities: in the case of the
IE spill the beans the irregularity is that none of the words spill or beans occurs in their
idiomatic meaning outside the IE. In most light verb constructions, the light verbs could be
classified as showing external irregularity. The IE make headway is a special case as there,
in addition to the usual irregularity of the light verb make, we have the noun headway which
does not exist at all outside the IE.

In the light of this classification of the data, the approach of Gazdar et al. 1985 can
be considered successful for internally regular IEs, but lacks any formal means to account
for internally irregular IEs. An analysis of these IEs requires integration of syntactically
complex lexical items into the theory.

The TAG analysis provided an elegant account of the internally irregular IE kick the
bucket as TAG is exactly the kind of theory that has syntactically complex lexical items
at its disposal. As these are the only lexical items there are, the approach seems to miss
generalizations in the case of internally regular IEs. Still, it must be acknowledged that the
TAG approach is the only one presented in this chapter in which we were able to give an
account for all IEs under consideration and to describe all the data given in Chapter 6.

As the strengths of the GPSG approach and the TAG appproach complement each other,
it is desirable to combine insights of both approaches into an HPSG theory. Riehemann
1997 addresses the basic problem of Gazdar et al. 1985, and the framework of construc-
tional HPSG is used to provide a theory of syntactically complex entities with idiosyncratic
properties. HPSG being, however, too close in spirit to GPSG withstands a simple con-
structional approach. For this reason, we must seek an analysis of IEs which incorporates
more of the ideas of the GPSG account. In the following chapter, such an analysis will be
presented. While adopting the analytic approach of GPSG, we will combine this with the
logical form representations introduced in Part I. As a result, we will be able to substi-
tute the complicated mechanism of partially defined denotations by simple restrictions on
semantic representations.





CHAPTER 8

The Analysis

After the presentation of the data in Chapter 6 and the discussion of previous analyses in
Chapter 7, we can now present our own approach. This approach is based on the distinction
between internally regular and internally irregular idiomatic expressions. For the treatment
of internally irregular IEs, we will need a notion of a syntactically complex lexical element.
Thus, in our approach, IEs such as kick the bucket and trip the light fantastic are treated
as phrases which are listed in the lexicon. For the treatment of internally regular IEs, we
will present a mechanism that will allow us to state exactly in which linguistic structures
a given word may occur. From this characterization, it can be seen that our approach falls
in the middle between the TAG analysis for internally irregular IEs and the GPSG analysis
for internally regular IEs.

Technically, we will use a non-constructional approach to HPSG, i.e., we will not assume
a different subsort of phrase for idiomatic expressions. Instead, we will introduce a new
attribute that will be useful for the account of both internally regular and internally irregular
IEs. On the one hand, we will use this attribute to differentiate between regularly built
phrases and phrases with internal irregularities. For example, this attribute can be used to
differentiate between the literal and the non-literal use of the VP kick the bucket. On the
other hand, the value of this attribute will indicate the precise context in which an element
is required to occur. Thus, in the case of the idiomatic use of beans as it occurs in the IE
spill the beans, the value of this attribute will indicate that the idiomatic use of beans is
only possible if there is an occurrence of the non-logical constant spill′′ in the same clause
such that the idiomatic beans are an argument of the idiomatic spilling.

As this short preview of our account already demonstrates, the new attribute will play
a crucial role in our analysis. We will call it coll, which is an abbreviation for Context
Of Lexical Licensing. The assumption behind this name is that all and only those elements
that are licensed by some lexical entry (of a word or of an irregular phrase) can in principle
impose distributional restrictions on their linguistic contexts. Put differently, a lexical
element (word or phrase) can only occur in a linguistic context that is compatible with
the distributional requirements of this lexical element. The coll attribute will be used to
specify these requirements.1

The name coll might also be associated with the term collocation. Unfortunately, this
term is used in many different ways, to refer to combinations such as commit a crime or
to refer to the fact that most texts that have an occurrence of the word cow also have an
occurrence of the word milk. What most of the uses of the term have in common, is that they
assume that the presence of a certain lexical element suggests/requires/enables/triggers the
presence of a particular second lexical element. There are at least some authors (Krenn
and Erbach, 1994; van der Wouden, 1997) that call the phenomena treated in the present

1This attribute was first introduced in the analysis of negative concord in Polish in Richter and Sailer 1999c,
and used subsequently for an analysis of negative concord in French (Richter and Sailer, 1999a). In both
papers no further motivation was given for this attribute. We implicitly assumed the analysis of idiomatic
expressions to be the basic motivation for this attribute. This motivation is, finally being presented in this
thesis.

319



320 8. THE ANALYSIS

part of this work collocational phenomena. We have, however, preferred to use the term
idiomatic expression which seems to be less theoretically charged.

In this chapter, we will extend the use of the coll feature step by step, until we finally see
its full functionality in Section 8.3. In our analysis of internally irregular IEs in Section 8.1
we will only use it to establish the notion of a syntactically complex lexical element. In the
analysis of internally regular IEs in Section 8.2, we will use the attribute only to specify the
licensing context for words. In Section 8.3, finally, we will show that it is useful to assume a
non-trivial context of licensing for all lexical elements. Section 8.4 should be understood as
an appendix to this chapter. There, we will take up the issue of how semantically external
modification can be handled in our framework.

8.1. Internally Irregular IEs

In this section, we will examine how the two internally irregular IEs of our list (trip
the light fantastic and kick the bucket) can be handled within (non-constructional) HPSG.
Our discussion of the previous analyses revealed that it is desirable to treat these IEs as
internally complex lexical items. In contrast to the approach of Riehemann 1997, however,
we will not use an elaborate sort hierarchy below phrase for this purpose. Instead, we will
introduce a new attribute, coll (Context Of Lexical Licensing). In the first instance, this
attribute will merely serve to tell regular and irregular phrases apart, but, as the name
suggests, it will also be of great importance in our analysis of the more flexible IEs.

For the purpose of internally irregular IEs, it is enough to declare this attribute appro-
priate for the sort phrase. We assume, for the time being, that it takes boolean values. This
leads to a change in the appropriateness conditions of the sort phrase as given in (70) and
used throughout Part I. The modified sort hierarchy and appropriateness conditions below
the sort sign are given in (465).

(465) Sort hierarchy and appropriateness conditions below the sort sign (preliminary):

word
store list

phrase
dtrs const-struc
coll boolean

sign
phon list
synsem synsem

As can be seen in (465), the attribute coll is defined on the sort phrase. We assume
that regular phrases have a coll value of sort minus, whereas irregular phrases have a coll
value of sort plus. As an example, consider the literal and the idiomatic interpretation of
the phrase kick the bucket. In its literal interpretation, the VP has a coll value minus, as
an IE, its coll value is plus.

In a second step, we change all principles of grammar that are concerned with the
regular combination of signs in such a way that they only constrain phrases with a [coll
−] specification. This effects all the principles discussed in Section 2.3, i.e., the Immediate
Dominance Principle in (78), the Head Feature Principle in (81), the Marking
Principle in (83), the Spec Principle in (89), and the Nonlocal Feature Principle
in (105). In addition, the Semantics Principle, in any of its versions given in Chapter 4,
is equally effected.2 In (466) we state the revised version of the Head Feature Principle.

2The list of principles must also include a principle for the regular combination of the phon values such as
the Constituent Ordering Principle of Pollard and Sag 1987.
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(466) The Head Feature Principle (HFP), relativized to regular phrases:
2

6

4

phrase

dtrs headed-struc

coll minus

3

7

5
⇒

"

syns loc cat head 1

dtrs h-dtr
h

syns loc cat head 1
i

#

The new version of the HFP only differs from that given in Pollard and Sag 1994 (for-
malized as (81) on page 89) by an additional specification in the antecedent of the principle.
This new HFP says that the identity of head values is only required for regular phrases.
Applying similar trivial changes to the other principles of the grammar results in a grammar
in which phrases with a [coll +] specification are exempt from all requirements of regular
combination. But this is exactly what we wanted to achieve.

In Figure 8.1, we give the structure of a simple sentence with the IE kick the bucket. At
the phrasal nodes, we indicate the syntactic category, the logical form and the coll value.

The tree in Figure 8.1 shows that we assume only one phrase in the structure of the
sentence to be internally irregular: the VP. For all the other nodes in the tree, we assume
a regular behavior. Thus, the words bucket and kick appear with their normal meaning
bucket′ and kick′. At the VP node, however, these meanings are not combined in the usual
way, i.e., we do not have the content λx.[the y : bucket′@(y@)](kick′@(x@, y@)). Instead,
the irregular phrase introduces a semantic constant which is not present in the daughters
and even completely ignores the semantic contribution of the daughters. As the VP has a
[coll +] specification, it is exempt from the Semantics Principle. Thus, the principles
of grammar are not violated in a tree as the one in Figure 8.1.

So far, we have not said how we can avoid arbitrary phrases from bearing the specifi-
cation [coll +]. This is done by a principle which we call the Internal Irregularity
Principle (IIP). In (467), we give the general form of the IIP. As can be seen, the IIP is
an implication with a big disjunction in the consequent. Each disjunct in the consequent de-
scribes an internally irregular sign. We can assume that one of the disjuncts is a description
of the IE kick the bucket.

(467) The Internal Irregularity Principle (IIP):
h

coll plus
i

⇒
(
PLE1 or . . .or PLEn

)

Following Pollard and Sag 1994 in Section 2.3, we introduced two principles which take
the form of an implication with a disjunction in the consequent: the Word Principle and
the ID Principle. The first contains a description of all words, the latter a description
of all phrases. Due to our modification of the appropriateness for the sort phrase, i.e., the
introduction of the attribute coll, and the subsequent relativization of the ID Principle,
the IIP fills a systematic gap in the principles that apply to signs. For the sake of com-
pleteness, we give the Word Principle and the ID Principle schematically, similar to
the IIP above.3

(468) a. The Word Principle: (from (76))
"

word

store elist

#

⇒
(
LE1 or . . . or . . . LEm

)

b. The ID Principle: (from (78))
"

phrase

coll minus

#

⇒
(
HC or HA or HM or HF

)

3The Word Principle differs from that in Meurers 2000 (p. 124). We assume that all the lexical entries
LEi contain the specification [store elist], i.e., that lexical entries are given only for words which are not
the output of a derivational rule. For those words that are the output of such a rule, we assume the Store
Principle given in (100), and repeated below:
(i) The Store Principle:»

word

store nelist

–
⇒ 1

»
store

fi»
lexical-rule

out 1

–fl–
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Figure 8.1. The structure of the sentence Pat kicked the bucket.
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Traditionally, the disjuncts in the Word Principle are called lexical entries (LE), the
disjuncts in the ID Principle are referred to as Immediate Dominance schemata. We will
refer to the disjunct in the IIP as phrasal lexical entries (PLE), following the idea of Gazdar
et al. 1985 that certain IEs are treated as complex lexical entities. The comparison of these
two principles with the IIP shows that we assume a similar principle for all kinds of signs.4

4In the Section 8.3, we will simplify this approach even further by integrating the Word Principle and
the IIP into a single Lexicon Principle.
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In the present section, we will only be concerned with two disjuncts of the IIP, the one
needed for the IE kick the bucket and the one for the IE trip the light fantastic. In the tree
in Figure 8.1 we have already seen the structure of a sentence which contains the IE kick
the bucket. In (469), we give a first version of the the necessary disjunct of the IIP.5

(469) The phrasal lexical entry for the IE kick the bucket (first version):

E 1 E 2 E 3 E 4 E 5
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phrase
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2
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2
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subcat
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ct λP [the y : bucket′@(y@)](P@(y))

3

7

5

3
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2
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6

4

h-dtr. . .

"

h-dtr

"

phon 〈bucket〉

syns N
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n-dtr

"

phon 〈the〉

syns Det
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7
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7

5

coll minus
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The AVM in (469) describes a phrase which has a couple of regular properties and a
number of irregular properties. Let us first consider the regular properties: The phrase is
a VP and its head value is identical to that of its head daughter (tag 1 ). As the phrase
has a [coll +] specification, this identity is not a consequence of the Head Feature
Principle, but must be stated explicitly in the description of the IE. The phon value of
this phrase is just the concatenation of the phon values of its daughters (the tags 3 and 4 ).
The phrase also shows regular behavior with respect to the realization of complements: the
synsem value of the nonhead daughter is identical to the second element in the subcat list
of the head daughter (the tag 5 ). The first element of this subcat list appears as the only
element in the subcat list of the phrase (tag 2 ). In regular phrases, these identities would
follow from the Head Complement Schema in (86).6

Beside these regular properties of the phrase as a whole, all of its daughters are assumed
to be regular as well: the head daughter is an instance of a regular verbal word. Even
though the word is regular, the overall phrase does not allow arbitrary normal words to
occur as its head daughter but imposes certain requirements: (i) the word must have the
phonology kick, (ii) it must be a transitive verb, (iii) it must be in an active voice form.

Similarly, the complement daughter is required to be regular (thus the [coll −] specifi-
cation on the complement daughter). In addition, it must be an NP with a determiner with
phonology the and a lexical head with the phonology bucket. The notation “h-dtr. . . ” is

5Throughout this work, we ignore inflectional morphology, i.e., in the lexical entries we indicate some base
form of the phonology.
6Note that we adopt a syntactic structure as introduced in Section 2.3, i.e., all subsorts of const-struc have
the same two attributes, h-dtr and n-dtr.
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meant to indicate that the lexical head need not be directly dominated by this NP, but can
be further embedded in a path which contains only the attribute h-dtr. Such embedding
is attested in the case of modification (kick the proverbial bucket).

In addition to these regular aspects, the phrase also contains an irregular property: so
far, we have seen how the effects of several principles of regular combination are incorporated
into the description in (469). We did, however, not mention the Semantics Principle.
Instead of obeying this principle, the phrase introduces the semantic constant die′ and does
not specify any relation between its own content value and those of its daughters.

Before we proceed in the discussion of the properties of the proposal made in (469), we
should notice that the “. . . ”-notation used in the AVM above is quite informal, but it is
easy to make it explicit, using a two-place relation lexical-head that holds between a sign
and its lexical head. This relation is defined in (470).

(470) The relation lexical-head:

lexical-head( 1 , 2 )
∀

⇐=
(

1h

word
i

and 1 ≈ 2

)

lexical-head( 1 , 2 )
∀

⇐=




E 3

1»

phrase

dtrs h-dtr 3

–

and lexical-head( 3 , 2 )




The relation lexical-head holds between a sign 1 and a word 2 either if 1 is a word
and 1 and 2 are identical, or if 1 is a phrase and the word 2 stands in the relation
lexical-head with the head daughter of the phrase 1 . If we use this relation, we can
replace the informal description of the complement daughter in (469) by a formally precise
notation. In (471) we repeat the description of the IE kick the bucket, using this relation.

(471) The phrasal lexical entry for the IE kick the bucket (second version):
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In the formally explicit notation in (471), we replaced the description of the head daugh-
ter of the NP by a tag 6 . Below the AVM, we added a relation call. This call specifies that
the head daughter of the NP, i.e., the sign referred to by the tag 6 stands in the relation
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lexical-head with a word that satisfies the description of the object referred to by the tag
7 , i.e., this word must be a noun with the phonology bucket.

With these explications, it can be seen that the VP node in the tree structure given in
Figure 8.1 is described by the AVM in (471). Below the VP node, there is a regular transitive
verb with the phonology kicked. In English, there is such a verb, and its content value
contains the constant kick′. Furthermore, the VP has a complement daughter which is an
NP. This NP has the determiner the and a lexical head with phonology bucket. In English,
the regular definite article and the normal word bucket fulfill these requirements. Thus,
there is an NP with the regular meaning of the bucket as the complement daughter of the
VP. As indicated in Figure 8.1, the VP itself contributes the semantic constant die′. This
property is also encoded in the description in (471). Thus, the VP in Figure 8.1 satisfies
the description of the IE kick the bucket as given in (471). Above the VP node, everything
combines in a regular way: The subject Pat is realized via the Head-Subject Schema
and its semantics combines with that of the VP via functional application, i.e., according
to the Semantics Principle. Note that in the highest local tree in Figure 8.1, it is only
the head daughter that is specified as [coll +]. The mother is [coll −] and, therefore, all
the regular principles of grammar apply.

This analysis results in the following picture: the phrases that are dominated by the
irregular VP are regular combinations, and the phrases that dominate the VP are regular,
too. It is just the VP that is capable of blocking material from its daughters from appearing
higher in the structure or of introducing new material.

We can show that the description in (471) accounts for the semantic and syntactic
properties of the IE kick the bucket as collected in Chapter 6. According to the first and the
second semantic criteria, the overall meaning of the IE cannot be arrived at by a regular
combination of the meanings of its parts. This property follows from the fact that the
content value of the phrase introduces material which is not present in the daughters.

We consider it an advantage of the present proposal that, as indicated by the content
specifications in the tree in Figure 8.1, the words that constitute the IE appear in their
regular meaning. Still this meaning is blocked from appearing as parts of the overall logical
form of the sentence, as the VP is an irregular phrase and specifies its content value
independently of that of the daughters. In that respect, our approach differs from Riehe-
mann 1997 and Abeillé 1995. As we saw in (460) on page 314, Riehemann assumes special
idiomatic versions of the words kick, the and bucket to constitute the IE. These idiomatic
words differ from their regular counterparts, as they make an empty semantic contribution.
In the TAG approach of Abeillé, given in (438) on page 294, there is also nothing that would
indicate that the words used in the IE kick the bucket are regular words of English.

According to the observations concerning semantic modification, we have seen that the
IE kick the bucket does not allow for semantically internal modification of the noun bucket.
In the description of the nonhead daughter of the VP this is accounted for by the full
specification of the logical form of the restriction of the generalized quantifier the. Thus,
as the nonhead is required to have a logical form as given in (472), there cannot be any
semantic material intervening between the semantic contribution of the lexical head of the
NP (i.e., the noun bucket and that of the determiner the).

(472) λP.[the y : bucket′@(y@)](P@(y))

Consider the sentence with an adjective inside the NP. In (473b) we give the logical form
of the NP that would arise if the adjective is interpreted as an internal modifier. Clearly,
this logical form does not have the shape required by the idiomatic VP, i.e., it is different
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from the term given in (472). This shows that we successfully exclude internal modification
by a precise specification of the VP, without introducing internal irregularity into the NP.

(473) a. . . . I kicked the social bucket.
b. λP.[the y : social′@(y@) ∧ bucket′@(y@)](P@(y))

We have shown how internal modification can be excluded in the case of the IE kick the
bucket. It remains, however, to be shown how we can handle the fact that an adjectival
modifier can be interpreted as modifying the entire VP, i.e., the fact that sentence (473a) is
not ungrammatical but is synonymous to sentence (474). The description of the content
value of the IE given in (469) does not allow such an interpretation.

(474) Socially, I kicked the bucket.

We will demonstrate that the phrasal lexical entry for the IE can be changed to make
so called external modification possible. To do this, however, we will first have to provide
a sketch of an account of external modification in general. As external modification does
not directly concern our treatment of internally irregular IEs, we will devote a special short
section at the end of this chapter (Section 8.4) to this topic.

The analysis that we are going to present in Section 8.4 is in two significant respects
similar to the account in Abeillé 1995. There, an IE which allowed for semantically external
modification contained a link from an N node in its syntactic tree to an F node in its
semantic tree. In addition, a special kind of adjective was postulated that has the potential
of attaching syntactically to a noun (an N node), but semantically to a formula (an F
node).7 Similarly, we will weaken the description of the content value of the VP kick the
bucket and the NP the bucket in the phrasal lexical entry for the IE in such a way that the
semantic contribution of an adjectival modifier can be applied to the semantic contribution
of the IE. This is our analogy to the link in the TAG analysis. In addition, we will assign
some adjectives a semantic type that allows them to take the VP instead of an N as their
semantic arguments. This, of course, is parallel to the assumption of special auxiliary trees
for the adjectives in Abeillé 1995

The phrasal lexical entry of the IE given in (471) provides a direct account of the ban
on semantically internal modification. We have to be more vague, however, in the way we
address the behavior of the IE with respect to the fourth semantic criterion, the question on
pronominalizability. This is due to the fact that, within HPSG, we lack a general theory of
pronominalizability which we could build our analysis on. In Chapter 6 we have seen that
it is not possible to refer to the NP the bucket by a pronoun and at the same time preserve
the idiomatic meaning. In (475), we repeat the relevant example.

(475) * Pat kicked [the bucket]i and Harry kicked iti, too.

In Pollard and Sag 1994, nothing is said on the conditions under which discourse entities
are introduced that may be referred to by a personal pronoun. For our purposes it is enough
to mention that, if a discourse entity is introduced by the NP the bucket, it can always be
eliminated at the level of the idiomatic VP kick the bucket.

We have now seen how the present approach accounts for the behavior of the IE kick
the bucket with respect to the semantic criteria of regularity. Next, we will consider the
syntactic criteria. We can show that the description of the IE given in (471) captures all
the syntactic observations of Chapter 6.

7See the pair of elementary trees for the IE kick the bucket in (438) on page 294 and the elementary trees
for the adjective social in (439a).
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In Chapter 6 we have classified the IE kick the bucket as regular with respect to the
first syntactic criterion, because it only consists of words which occur independently in the
language. The description of the IE in (471) is only a description of the VP, therefore all of
its daughters must be licensed by some other principle. In the case of the words, the only
principle available is the Word Principle. As we have encoded a regular combination of
the phon values of the daughters in the description of the IE, the words which compose the
IE make their regular phonological contribution.

Our analysis, thus, appears to account for this syntactic regularity in a more adequate
way than the approaches in Abeillé 1995 and Riehemann 1997. In Abeillé 1995, there was
no relation at all between the normal words kick, the, and bucket and their occurrence in
the IE. In Riehemann 1997 there is such a relation, but it is a relation between the lexical
entries of the normal words and some idiomatic words which occur as parts of the IE. The
idiomatic words do, however, differ significantly from their non-idiomatic counterparts as
they have a different content value.

The IE kick the bucket is also regular with respect to the second syntactic criterion.
In (471) the VP kick the bucket is specified in such a way that it dominates a syntactic
structure which is just like that of a regular transitive VP, i.e., its head daughter is a verbal
word which has two elements on its subcat list, and its nonhead is an internally regular
NP ([coll −]) whose synsem value is identical to the second element on the verb’s subcat
list. The similarity to regular transitive VPs is enforced for the highest local tree by an
explicit incorporation of the effect of the Head-Complement Schema. In that respect
our proposal is similar to that of Abeillé 1995, where the entire syntactic structure of the
IE is stipulated in the elementary tree. The difference between our approach and that of
Abeillé is that the internally regular shape of the NP follows from the principles of the
grammar. Thus, while we do impose quite strong requirements on the phonological and
semantic contribution of the NP, it still counts as regular for the grammar.

The third syntactic criterion has to do with the syntactic aspects of modification, i.e.,
with the question of whether a modifier is allowed to appear inside the NP at all, independent
of its interpretation. As shown in Chapter 6 and as illustrated again in example (473a), the
IE kick the bucket allows modifiers to occur inside the NP. In our account, this is possible
because all that we require, is that the NP start with the determiner the and have the noun
bucket as its lexical head. The further syntactic details are left unexpressed. Therefore, an
adjective such as social can occur inside the NP. It should, be noted though that the strong
requirements on the content of the NP will exclude most adjectives from this position.

The fourth syntactic criterion concerns the possibility of an IE to occur in the passive.
As we have seen in Chapter 6, the IE kick the bucket cannot be passivized. In the description
of the IE in (471), we require the presence of an NP complement daughter in the VP. Thus,
there is no way the IE can occur in passive. This specification indicates that a passivized
form of the VP does not satisfy the description of the IE and, thus, sentence (476) cannot
have the idiomatic meaning, which we indicate by the asterisk.

(476) * The bucket was kicked by Pat.

Similarly, we exclude topicalization (the fifth syntactic criterion) by the structural re-
quirements imposed on the nonhead daughter. We require this daughter to be an NP headed
by some word with the phonology bucket. Clearly, if the direct object is extracted, there
is no such phonology. In the traceless analysis of extraction that we assume in this thesis,
there is no NP complement at all, and, therefore, the entire syntactic structure would not
have a VP that is compatible with the requirements of the idiomatic VP.8

8In an analysis with traces, such as the one in Pollard and Sag 1994, the complement daughter would be
an NP with an empty phonology, thus equally violating the requirements on the phonology.
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(477) * The bucket Pat kicked.

From this point on, it follows directly that relative clauses cannot be formed. The di-
rect object NP cannot be extracted and, thus, it cannot take the form of a fronted relative
pronoun (see example (478a)). Additionally, due to the ban on semantically internal modi-
fication, there may not be a relative clause attached to the noun bucket, i.e., sentence (478b)
is equally excluded under a non-literal meaning.

(478) a. * The old lady wasn’t aware of the bucket that she would soon kick.
b. * The old lady kicked the bucket that the murderer had planned for her.

This overview of the criteria of regularity has shown that our analysis accounts for the
behavior of the IE.

In this section, we also want to provide an analysis of the second internally irregular
IE from our list, the IE trip the light fantastic. In the discussion of the data, this IE was
shown to be even more irregular than kick the bucket, because its internal syntactic structure
appears to be unclear and it does not allow for modifiers to occur inside the expression.
In our account, the IE will be treated as just another disjunct in the IIP, i.e., we will
not introduce any new sorts or attributes to account for this IE. In (479) we indicate the
disjunct in the IIP needed for this IE.

(479) The phrasal lexical entry for the IE trip the light fantastic:
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Interestingly, even though this IE is the most irregular in our collection, it can be
described be a relatively simple AVM. In (479), we specify that the overall semantic con-
tribution is that of dance′. As the entire phrase is given the specification [coll +], it is
identified as internally irregular. Therefore, the overall content need not stand in a combina-
torial relation to the contents of the daughters. The specification of the daughters in (479)
is much more vague than what we had to assume for the IE kick the bucket in (471). In the
case of trip the light fantastic, it suffices to specify that the head daughter is the verb trip
and that the nonhead daughter has the phonology the light fantastic. The phonologies are
combined by simple concatenation ( 2 ⊕ 3 ).

The effect of the phrasal lexical entry in (479) can best be illustrated if we go through
the criteria of regularity. In Chapter 6 we have seen that the IE trip the light fantastic fails
all semantic criteria of regularity, as does the IE kick the bucket. This is accounted for in the
same way in our treatment of these IEs: in both cases, the content value of the idiomatic
VP does not combine the content values of its daughters, but introduces completely new
material into the logical form of the sentence, while preventing the semantic contributions
of its daughters from being part of the logical form of the sentence.

The two IEs differ, however, with respect to their syntactic regularity. The only uncon-
troversially regular syntactic aspect of the IE trip the light fantastic is that all the words
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that it is composed of also occur in free combinations. But, as we have pointed out in
Chapter 6, the syntactic category of the words light and fantastic cannot be determined.
The description in (479) captures this by specifying that its daughters are a verb trip and
some phrase with the phonology the light fantastic. Any phrase that provides exactly this
phonology can serve as a nonhead daughter for the idiomatic VP, i.e., we are not forced to
make a commitment to a particular syntactic structure of this complex. We know from the
discussion in Chapter 6, page 254, that English provides some constructions which would
generate exactly this phonology.

Whereas the IE kick the bucket has the internal structure of an ordinary transitive
VP, the syntactic structure of trip the light fantastic is unclear. This is reflected by the
“underspecified” characterization of the nonhead daughter in (479). This means, however,
that the IE trip the light fantastic has some fully specified syntactic structure in every
concrete utterance which contains the IE. The syntactic structures that the IE takes will,
however, differ largely from one utterance to the other. This accounts quite nicely for the
fact that, as indicated in Table 6.1, we are not certain on whether the IE is of a syntactically
regular shape or not.

The third syntactic criterion of Chapter 6 concerns the question of whether a modifier
is permitted to occur inside the IE. In our discussion of the data, we have seen that only
the modifier proverbial can be used in this way, but, even in this case the sentence is judged
relatively low on the grammaticality scale. In (480), we repeat the relevant example.

(480) ?* Let’s go out tonight and trip the proverbial light fantastic.

As it stands, the phrasal lexical entry for trip the light fantastic does not allow for any
modification inside the complex the light fantastic because we have fixed the phonology of
the nonhead daughter. To make the grammar admit sentence (480), we can simply make
the adjective proverbial an optional part of the IE, i.e., the phon specification in for the IE
would have to be changed to be as in (481).

(481)

2

6

6

4

. . .

dtrs

"

. . .

n-dtr
h

phon 3 〈the (proverbial) light fantastic〉
i

#

3

7

7

5

This is of course ad hoc. For a more adequate solution, more must be known about the
special status of the adjective proverbial. In particular, we would have to know whether
the adjective has any effect on the truth-conditional meaning of an utterance or whether it
only contributes meta-linguistic information. In the latter case, there is no hope of a more
adequate solution until a theory of meta-linguistic use has been proposed for HPSG.

With respect to the other syntactic criteria (passivizability, extractability, and the ability
of having a relative pronoun as the nonhead daughter), the IE behaves like the IE kick the
bucket, i.e., it is fully fixed. This is accounted for, as in the case of kick the bucket, by the
fact that we have specified the phonology of the nonhead daughter.

This discussion of our account of the behavior of trip the light fantastic with respect to
the criteria of regularity has shown that the phrasal lexical entry in (479) captures the fact
that the IE is irregular in nearly all respects. In particular, the syntactic irregularity which
is not present in the case of the IE kick the bucket has received a straightforward account by
simply leaving the internal syntactic structure of the IE unspecified, but by fully specifying
the resulting phonologies.

In this section, we have provided an HPSG analysis of two internally irregular IEs.
Building on the empirical insights of Wasow et al. 1983 and the analytic proposal of Abeillé
1995, we have provided an architecture for HPSG that allows for syntactically complex
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lexical items, i.e., internally irregular phrases. These irregular phrases are licensed by what
we have called phrasal lexical entries (PLE).

PLEs license signs which share properties of both words and phrases: just like words,
they do not have a regular internal structure and the principle that licenses these signs, the
IIP, contains many disjuncts like the Word Principle, not just a handful as in the case of
the ID Principle. On the other hand, signs licensed by a PLE are syntactically complex,
just like phrases, i.e., in contrast to words, they have a dtrs attribute. Moreover, as they
are phrases, derivational rules cannot be applied to them.

When we introduced the semantic framework LF-Ty2 in Section 1.3.3, we provided
shifting operations that are needed to account for scope phenomena in natural language
semantics. In our integration of these shifting rules into our RSRL grammar in Chapter 4,
we have shown that we must allow the application of these rules on derived and non-derived
words (see in particular Section 4.3). So far, we did not apply these rules to phrases.

In (482) and (483) we indicate that there are de dicto and de re readings for the subject
NP of the IEs kick the bucket and trip the light fantastic.

(482) John believes that a goldfish kicked the bucket (while he was on vacation).
a. de dicto reading: believe′@(j, λ@.∃y[goldfish′

@(y@) ∧ die′@(y@)])
b. de re reading: ∃y[goldfish′

@(y@) ∧ believe′@(j, λ@.die′@(y@))]

(483) John believes that some woman trips the light fantastic.
a. de dicto reading: believe′@(j, λ@.∃y[woman′

@(y@) ∧ dance′@(y@)])
b. de re reading: ∃y[woman′

@(y@) ∧ believe′@(j, λ@.dance′@(y@))]

In the discussion of the framework LF-Ty2 we have seen that to derive a de re reading
as those indicated in (482b) and (483b), we must apply value raising in combination with
argument raising to the logical form of the main semantic functor of the embedded clause.
In the cases that we studied so far, the main semantic functor of the embedded clause was
the embedded verb. In the idiomatic cases, the main semantic functor of the embedded
clause cannot be the embedded verb, kick or trip, because the idiomatic VPs block the
semantic contribution of these verbs from occurring in the logical form of the embedded
clause. Instead, the logical form of the idiomatic VPs must be considered the main semantic
functors of the embedded clause.

To derive the de re readings it must be possible to apply shifting operations to the logical
form of idiomatic VPs. In Figure 8.2 (page 331) we give the derivation of the embedded
clause of sentence (482) under the de re reading. In Figure 8.3 (page 332) we indicate how
this combines with the matrix clause to yield the overall logical form given in (482b).

As shown in Figure 8.2, the embedded VP of sentence (482) is irregular, i.e., it has
the specification [coll plus]. It dominates the verb kick and the regular NP the bucket.
So far, everything is just as discussed for Figure 8.1 (page 322). The logical form of the
VP is, however, not λy.die′@(y@), but a shifted form thereof. In the derivation of the de
re reading of this sentence, we apply exactly the same shifting operations that we used in
the derivation of the de re readings of sentence (39c) in Section 1.3.3 above. In (484a), we
repeat this sentence, together with the logical form of the embedded verb walks (b), and
that of the embedded clause (c), as needed for the de re readings. The derivation of the de
re readings was given in Figures 1.14 and 1.15.

(484) a. Every man believes that some woman walks.
b. Logical form of the embedded verb under the de re readings:

λY λu.Y@(λ@λy.u@(λ@.walk′@(y@)))
c. Logical form of the embedded clause under the de re readings:
λu.∃y[woman′

@(y@) ∧ u@(λ@.walk′@(y@))]
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Figure 8.2. The embedded clause in the derivation of the de re reading of sentence (482):
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As can be seen in Figure 8.2, the logical form of the embedded VP for the de re reading
of sentence (482) is of the same shape as the logical form given in (484b).

The irregular VP combines with its subject in a regular way to yield a logical form that
is of the same shape as the logical form in (484c). For the complementizer that we assume
a logical form as given in (178b), i.e., an identity function. Therefore, the logical forms of
the embedded S node and of the embedded S̄ node are the same.

In Figure 8.3 it is shown how the embedded S̄ node is integrated into the matrix clause.
For this purpose, we must execute some shifting operation on the matrix verb, just as we
did in the derivation of the ∀∃-de re reading of sentence (484a) in Figure 1.14. The shifted
logical form of the matrix verb combines with the logical form of the embedded clause
which leads to a logical form in which the constant believe′ is in the scope of the quantifier
contributed by the embedded subject. This combines with the logical form of the matrix
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Figure 8.3. The matrix clause in the derivation of the de re reading of (482):
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subject, John, by intensional functional application to yield the logical form of the de re
reading of the sentence.

The derivation of the de re reading of sentence (482) has shown that we must allow
shifting operations to apply to irregular phrases just as they are applicable to simple and
derived words. For our architecture of grammar, this has the consequence that we cannot
encode shifting operations as derivational rules. Thus, we can no longer maintain the
DR-encoding to shifting operations as presented in Section 4.1, but we must adopt the
LE-encoding developed in the same section. Thus, even though we could not find empirical
arguments in favor of either encoding of shifting operations in Section 4.1, the combination
of LF-Ty2 with our analysis of internally irregular IEs forces us to chose for a LE-encoding.
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Under the LE-encoding, we include the availability of shifting operations in the lexical
entry. For phrasal lexical entries of irregular VPs such as kick the bucket or trip the light
fantastic, this means that we should change the PLEs given so far to allow for the application
of shifting operations. In (485) this is done for the PLE of trip the light fantastic.

(485) The phrasal lexical entry for the IE trip the light fantastic, including the availability
of shifting operations:

E 1 E 2 E 3 E 4 E 5
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λx.dance′@(x@)
i

and shifting( 5 , 4 )

The PLE in (485) differs from that in (479) in the way the logical form is specified.
In (479), the term λx.dance′@(x@) appeared as the description of the content value of the
VP directly, whereas in (485) it is the description of some me object 5 . This me object
stands in the relation shifting with some other me object, 4 , which is the content value
of the VP. We consider the term λx.dance′@(x@) the basic translation of the VP.

In (485) we have chosen the format of the LE-encoding as exemplified in (173), i.e., the
PLE in (483) includes shifting operations, but not λ-conversion. It is straightforward to
change this PLE to take one of the formats discussed in Section 4.2. To avoid complications
in further sections of this chapter, we will usually indicate the basic translations of non-
derived words and internally irregular phrases as the content specification in the lexical
entries. This is to be understood as a shorthand for some LE-encoding of shifting operations.

This discussion shows that our analysis of internally irregular IEs interacts in a natural
way with the semantic framework LF-Ty2 as developed in Part I of this study.

In this section, we have considered the PLEs for two internally irregular idiomatic ex-
pressions. Surprisingly enough, while we introduce internally irregular phrases into HPSG,
this does not mean that whatever is dominated by such an internally irregular phrase is
irregular as well. Instead, we claim that an internally irregular phrase normally dominates
fully regular signs. The irregularity lies in the fact that the internally irregular phrase need
not combine the properties of its daughters in the usual, i.e., regular way. In the exam-
ples that we have considered in this section, in particular, the semantic contribution of the
irregular phrase was not a combination of the semantic contributions of its daughters.

The proposed analysis of internally irregular IEs is inspired by the proposals made in
Abeillé 1995 and Riehemann 1997, but it also differs from them significantly.

Like Abeillé 1995, we assume that the logical form of an IE need not be composed of the
regular semantic contributions of its parts. In addition, internally irregular IEs are treated
as a unit in both approaches. Yet, we differ from her approach in various respects. In
Abeillé’s account, the IEs that we considered in this section are fully specified elementary
trees. In our approach, the PLEs that license the IEs do specify large parts of the properties
of the components of the IE, these component, however, are realized as regular signs. Thus,
in our analysis of a sentence such as Pat kicked the bucket in Figure 8.1 on page 322, there is
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just one node in a tree that is idiomatic: the VP. In Abeillé’s account, everything dominated
by this VP would be part of the elementary tree of the idiomatic expression.

The approach in Riehemann 1997 shares the last mentioned property with our approach.
In contrast to our analysis, however, Riehemann assumes that internally irregular IEs are
composed of idiomatic words. Riehemann is forced to this assumption, because she applies
the regular Semantics Principle to all idioms. In our approach, all internally irregular
phrases are liberated from the Semantic Principle and can, therefore, ignore the semantic
contribution of the daughters. As a final consequence of this, we can allow the daughters
of irregular phrases to be fully regular.

In the following section, we will extend our analysis to internally regular IEs. This
extension will reveal further similarities between our account and that of Gazdar et al.
1985. Still, while the overall architecture of the analysis is similar, we will see that the
concrete technical solution adopted here is new.

8.2. Internally Regular IEs

In the summarizing remarks on the data in Section 6.3 we made a clear distinction
between IEs that we classified as internally irregular and those, classified as internally
regular. In the presentation of the account of IEs in Gazdar et al. 1985 the very same
distinction was made. While the authors did not provide an explicit account of internally
irregular IEs, they showed that it is in principle possible to treat internally regular IEs very
much like free combinations, provided one has some mechanism at one’s disposal which
permits the expression of contextual restrictions. In Gazdar et al. 1985 such a mechanism
was the use of partial functions for the interpretation of semantic constants.

In the preceding section, we presented an analysis of internally irregular IEs as phrases,
licensed by a special principle, the IIP. For internally regular IEs we will follow the assump-
tion of Gazdar et al. 1985 and treat the VPs as regular combinations which do, however,
contain elements that are subject to strict occurrence restrictions. Our analysis differs from
the GPSG approach in the kind of mechanism that we assume for expressing the occurrence
restrictions. The mechanism that we are going to propose is based on an extension of the
use of the coll feature: we will allow the coll feature to take as value a specification of
the linguistic context within which a certain word is allowed to occur.

The idiomatic expressions that we are going to analyze here are spill the beans, pull
strings, make headway and make a decision. For them, our syntactic criteria of regularity
in Chapter 6 have shown that they are of a syntactically regular internal structure and that
there is some range of syntactic environments in which the parts of the IEs may occur while
conserving the meaning of the IE. Similarly, our semantic criteria have revealed that for all
these IEs, we can assign some meaning to their parts and that we can calculate the meaning
of the overall expression by combining the meaning of its parts in a regular way.

In the present section, we will first concentrate on one particular IE, spill the beans.
In Section 8.2.1, we give an informal sketch of our analysis. Following this, we present a
formalization of this analysis based on the coll feature in Section 8.2.2. The remaining
IEs are then addressed in Section 8.2.3.

8.2.1. An Informal Outline of the Analysis. The basic difference between internally
irregular and internally regular IEs lies in the fact that the latter seem to obey more
principles of regular combination than the former. In addition, internally regular IEs are
more flexible with respect to semantic modification and the syntactic constructions that
they can occur in. In the first two parts of this section, we will restrict our attention to a
single, internally regular IE spill the beans.
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In (486) we sketch lexical entries for the words spill and beans as they occur in the IE.
Note that these lexical entries basically differ from those of the normal words by introducing
a different semantics. For ease of exposition, we choose the constants spill′′ for the idiomatic
meaning of spill and beans′′ for the idiomatic meaning of beans, just as assumed in Gazdar
et al. 1985.9 Just as in Gazdar et al. 1985, we assume that the interpretation of the constant
spill′′ is more or less like that of disclose, and the interpretation of beans′′ is more or less
that of information. We are, however, not forced to assume a partial interpretation function
nor to assume that there are any two constants with different interpretations.

(486) a. Lexical entry for the idiomatic use of spill (preliminary):
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b. Lexical entry for the idiomatic use of beans (preliminary):
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Given these two lexical entries, we can see how the idiomatic reading of the IE is derived
as a regular syntactic and semantic combination of the words licensed by these lexical entries.
In Figure 8.4 we give the structure for a simple example sentence.

The tree given in Figure 8.4 has the same structure as the sentence containing the IE
kick the bucket (Figure 8.1 on page 322). The crucial difference between the two structures
is, however, that in Figure 8.4 all phrases have the specification [coll −], whereas in the
case of the IE kick the bucket, the VP node was assumed to be [coll +]. As a consequence
of the [coll −] specification in the case of Figure 8.4, all principles of regular combination
apply to the VP. In the tree in Figure 8.4 we have indicated the content values of the
signs. As can be seen, the normal Semantic Principle is satisfied, i.e., the content
value of the VP is the result of applying the content value of the head daughter to that
of the nonhead daughter.10

Before we consider what is still missing in this proposal, let us first see the effect that it
already has as it stands. So far, all we did was stipulate two new lexical entries for the words
spill and beans. As these words can combine freely, and as each of them makes its own se-
mantic contribution, we arrive at the idiomatic VP by regular syntactic combination and at
the idiomatic meaning by regular semantic combination. As there is no internally irregular
phrase involved, we expect a certain degree of syntactic and semantic flexibility, which is
actually attested: adjectival modifiers are interpreted as modifying the noun beans (487a),
and the noun beans need not be realized as the syntactic direct object, but it can appear as
a grammatical subject in passive and raising (487b).

(487) a. He spilled the sordid beans to his parents.
b. I was worried that the beans might be spilled.

So far, the approach is able to cover those observations that confirmed the regular
character of the IE. If we assume just the two lexical entries in (486), we fail to account for

9See the terminated local trees assumed in Gazdar et al. 1985, given in (414) on page 279.
10Note that we had to raise the semantic type of the verb in order to make the types of the verb and the
direct object compatible with each other. In the structure in Figure 8.4, we have explicitly stated the logical
form of the verb before and after the application of the shifting rule Argument Raising of Section 1.3.3.



336 8. THE ANALYSIS

Figure 8.4. The structure of the sentence Pat spilled the beans.:
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the irregular properties of the IE. Among these irregular properties, we listed the following
in Chapter 6: (i) the idiomatic reading of the words spill and beans is not possible outside
the particular IE, (ii) the NP the beans cannot be topicalized, and (iii) the NP cannot take
the form of a fronted relative pronoun.
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The first irregular property has been demonstrated by the absence of the idiomatic
interpretation of the noun beans in sentences where we replace the idiomatic spill by a
near synonym. Similarly, replacing the noun beans renders the sentence ungrammatical in
non-slang uses.

(488) a. She divulged the story to the media.
b. * She divulged the beans to the media.
c. * She spilled the story to the media.

The examples in (488) seem to indicate that the idiomatic words spill and beans require
the presence of each other within the same sentence. What kind of requirement is this? In
the approach of Gazdar et al. 1985 this was expressed as a restriction on the interpretability
of semantic constants. While we agree with Gazdar et al. 1985 that the restriction should
be formulated in terms of the semantic constants, we state the restriction as a condition on
the possible logical forms in which the two constants spill′′ and beans′′ can occur. Before
we present the RSRL formalization of this idea, we will work with an informal formulation
of the distributional requirements of the idiomatic uses of spill and beans. Such an informal
statement is given in (489):

(489) a. The word spill with the meaning spill′′ can only occur in a sentence if, in the
logical form of this sentence, the constant spill′′ occurs in the following constel-
lation:

[the y : . . . beans′′@(y@) . . .](. . . spill′′@(xe, y@) . . .)

b. The word beans with the meaning beans′′ can only occur in a sentence if, in
the logical form of this sentence, the constant beans′′ occurs in the following
constellation:

[the y : . . . beans′′@(y@) . . .](. . . spill′′@(xe, y@) . . .)

Clearly the logical forms of the sentences in Figure 8.4 and (487) satisfy these two
occurrence conditions. In (490) we indicate the content values of the relevant sentences.

(490) a. Pat spilled the beans.
[the y : beans′′@(y@)](spill′′@(p, y@))

b. He spilled the sordid beans (to his parents).
[the y : sordid′

@(y@) ∧ beans′′@(y@)](spill′′@(x@, y@))
c. (I was worried that) the beans might be spilled.

∃x([the y : beans′′@(y@)](�spill′′@(x@, y@)))

The logical form in (490a) is that of the clause in Figure 8.4. The two idiomatic words
satisfy the occurrence restrictions in (489): both words occur in a sentence whose logical
form matches the required pattern.

In the logical form of sentence (490b) there is additional semantical material in the
restriction of the quantifier the. Still, the logical form of the sentence is just as required
in (489). As both idiomatic words occur in this sentence, the distributional requirements
stated above are satisfied.

Finally, in sentence (490c) there is additional material in the nuclear scope of the quan-
tifier, the modality operator contributed by the modal verb might. Following the tradition
of GPSG and Pollard and Sag 1994, we assume that a passive sentence has basically the
same logical form as its active counterpart. The only difference between the active and the
passive sentence that can be seen in the example is that we assume an existential quantifier
to bind the unexpressed first semantic argument. All these changes, however, do not effect
the fact that the logical form of the clause which contains the words spill and beans is as
required by the distributional requirements in (489).
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Let us, next, consider the logical forms of the ungrammatical sentences in (488). There,
only one of the constants spill′′ and beans′′ is present. Thus, the requirements given above
are not satisfied.

(491) a. * She divulged the beans (to the media).
[the y : beans′′@(y@)](divulge′@(x@, y@))

b. * She spilled the news (to the media).
[the y : news′@(y@)](spill′′@(x@, y@))

In sentence (491a), the word spill does not occur at all. Therefore, the constant spill′′ is
absent from the logical form of this sentence. Thus, clearly the distributional requirements
of the idiomatic use of beans are not satisfied.

Similarly, in the case of sentence (491b), the idiomatic word spill occurs. But, as there is
no occurrence of the idiomatic word beans, the constant beans′′ is not present in the logical
form of the sentence. Thus, the requirements for the idiomatic word spill are not met.

This discussion shows that adopting the distributional restrictions in (489) we achieve
an effect similar to that of the partial function approach in Gazdar et al. 1985: the idiomatic
uses of the words spill and beans are restricted to sentences in which both occur. Still, we
think, that expressing these conditions in terms of the content values of a particular form
has an important advantage over the partial function approach.

In our presentation of the partial function approach in Section 7.1 we discussed the
objections of Pulman 1993. Pulman has pointed out that the GPSG account necessitates
the assumption of a huge number of idiomatic semantic constants in order to allow parts
of an IE to occur separated by other material. In the simplest example, Pulman argues, at
least a special quantifier the′′ would be needed to mediate the combination of the idiomatic
spill′′ and the idiomatic beans′′. In our logical form approach, no such additional idiomatic
constants are needed, i.e., the only special constants that we must introduce are those
needed for the words that constitute the given idiomatic expression. For all other words,
we can assume the usual semantic representation.

This illustration of the effect of the informally stated distributional requirements of the
words spill and beans in (489) has, so far, focussed on the shape of the logical form of some
constituent that dominates a given word. This allowed us to account for the first of the
three mentioned irregular properties of the IE spill the beans, the fact that the idiomatic use
of one word must co-occur with the idiomatic use of the other word. Without argument, we
considered the content value of the smallest clause that dominates the idiomatic use of
the word spill or beans to be the relevant logical form. Next, we will next discuss whether
this was the right assumption. We will use the other two irregular aspects of the IE for this
argument, i.e., the observation that the NP the beans can neither be topicalized nor given
the shape of a fronted relative pronoun. We will first consider the case of topicalization.

In Chapter 4 we presented how topicalization structures are interpreted in the frame-
work of LF-Ty2. We assumed a traceless analysis. We defined a derivational rule, the
Complement Extraction DR (CEx-DR) that removes an element from the subcat and has
the effect of altering the order of the semantic arguments of the verb in such a way that the
lambda operator that binds the variable associated with the argument slot of the extracted
argument appears as the last lambda operator. As a consequence, the semantics of the filler
constituent will not be present until the filler is overtly realized. For illustration, consider
the tree in Figure 8.5 which gives the hypothetical syntactic structure of the ungrammatical
sentence in (492).

(492) * The beans Pat spilled.
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(493) Informal specification of the Complement Extraction DR as given in (283):
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h
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is the i-th element on the subcat list of the input word.)

The input to the DR is a word as licensed by the lexical entry of the idiomatic use of spill
in (486a), i.e., it is a transitive verb with a content value of the form λyλx.spill′′@(x@, y@).
The lexical rule removes the second element from the subcat list and introduces an element
into the inherited slash set whose local value is identical with that of the removed
element. In addition, the order of the semantic arguments is changed, i.e., the lambda
operator λy which corresponds to the second element on the subcat list is put to the end
of the lambda operators in the output content value. Thus, the verb enters the syntactic
structure with a subcat list with a single element on it, with a content value of the form
λxλy.spill′′@(x@, y@) and with a non-empty inherited slash set.

This verbal word combines directly with its subject, the NP Pat. The mother node
inherits the slash specification of the head daughter according to the Nonlocal Feature
Principle. The resulting phrase has an empty subcat list, but is not yet saturated
semantically, i.e., it has a content value of the form λy.spill′′@(p, y@).

In the highest local tree in Figure 8.5 the slash value of the head daughter gets bound.
Following the analysis in Pollard and Sag 1994, this is done by introducing a to-bind slash
specification at the S node. The Nonlocal Feature Principle, then, blocks the inher-
ited slash value of the head daughter from appearing at the mother, and the Filler-Head
Schema guarantees that an appropriate filler is realized as the nonhead daughter.

Having considered the structure of sentence (492), the question arises why it is that this
sentence is ungrammatical: it contains the idiomatic uses of the words spill and beans, and
the S′ node has a logical form which satisfies the distributional requirements of these two
words as stated in (489): as we assume that topicalization does not change the logical form
of a sentence, the content value of the overall sentence is identical to that of the normal
sentence given in Figure 8.4.

There is, however, a difference between the two structures. In the topicalization structure
in Figure 8.5, the logical form of the S node does not satisfy the distributional requirements
of the word spill: the content value of this node is simply λy.spill′′@(p, y). Thus, there is
no occurrence of the non-logical constant beans′′@ in the content of the S node.

This gives us a clear indication of which syntactic node must be considered to determine
whether the logical form of this node is as required by the word spill: the lowest S node
that contains this word. For the purpose of this thesis, we can define the lowest S node as
the first sign that dominates the word under consideration and whose head is of sort verb
and whose subcat list is empty. We will use the term minimal clause of a word w for the
phrase that satisfies this description. This definition is stated in a more precisely in (494).

(494) For two signs x and y, such that x 6= y, x is the minimal clause for y iff,
(i) x dominates y, and

(ii) x has a subcat value of sort empty-list and a head value of sort verb, and
(iii) there is no sign z which is dominated by x and satisfies (i) and (ii).
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In our example in Figure 8.5, the S node is the minimal clause of the word spill, the S′

node is the minimal clause of the noun beans. The S node does not count as the minimal
clause for the word beans, because it does not dominate this word. The S′ node, on the
other hand, is not the minimal clause for the word spill, because it dominates the S node
and the S node already satisfies the first two criteria of the definition in (494).

We can now use the notion of minimal clause to account for the ungrammaticality of
sentence (492). All that needs to be done is to assume that the distributional requirements
of the word spill must be satisfied by the content value of the minimal clause of this word.
Using the notion of minimal clause, we can re-state the distributional requirements for the
idiomatic use of spill and beans. In (495) we bold face the change made with respect to the
formulation in (489).11

(495) a. The word spill with the meaning spill′′ can only occur in a sentence if, in the
logical form of the minimal clause of the word, the constant spill′′ occurs
in the following constellation:

[the y : . . . beans′′@(y@) . . .](. . . spill′′@(xe, y@) . . .)

b. The word beans with the meaning beans′′@ can only occur in a sentence if, in
the logical form of the minimal clause of the word, the constant beans′′@
occurs in the following constellation:

[the y : . . . beans′′@(y@) . . .](. . . spill′′@(xe, y@) . . .)

With this more precise formulation of the distributional requirements of the words spill
and beans, we can account for the fact that the topicalization of the NP the beans is excluded.
As we have seen above, the S node is the minimal clause for the verb spill in Figure 8.5. As
the word spill occurs with the meaning spill′′, its occurrence must satisfy the requirement
in (495a). This requirement demands a logical form of the S node of the form [the y :
. . . beans′′@(y@) . . .](. . . spill′′@(xe, y@) . . .). The S node, however, has a content value of the
form λy.spill′′@(p, y@). Thus, the condition in (495a) is not met.

It is, thus the word spill whose distributional conditions are not satisfied. As far as the
word beans is concerned in sentence (492), everything is fine: its minimal clause is the S′

node. The logical form of this node is [the y : beans′′@(y@)](spill′′@(xe, y@)), just as required
by the distributional restriction in (495b).

The distributional requirements in (495) also allow us to account for the other aspect of
irregular behavior found with the IE spill the beans: it is impossible for the NP to take the
form of a fronted relative pronoun. In (496), we repeat the relevant sentences.

(496) a. * The beans [that the alleged arms dealer spilled] made the party leader resign.
b. * The party leader resigned because of the beans [that the alleged arms dealer

had spilled].

For our purpose, it is enough to consider the verb spill in the relative clauses in (496a)
and (496b). In both cases, the direct object has been extracted, i.e., we have a situation
parallel to that in Figure 8.5 where the semantic contribution of the direct object is still
absent from the minimal clause of the verb spill.

11The restrictions given in (495) account for the data as presented in the main text in Section 6.2. For
speakers that allow topicalization of the NP the beans in principle (Wasow et al., 1983), the syntactic domain
within which the right logical form must be found can be larger. For speakers that share the judgments of
Schenk 1995, i.e., speakers that do not allow internal modification in the case of this IE, the logical form
requirement must be formulated in a more restrictive way. As indicated in (i), for these speakers, the logical
form of the minimal clause may not contain any (internal) modification of the noun beans.
(i) [the y : beans′′@(y@)](. . . spill′′@(xe, y@) . . .)
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The final property of the IE that we have not yet addressed is the question of pronomi-
nalizability. In Chapter 6 we found the following contrast:

(497) a. I was worried that the beans might be spilled, but they weren’t.
(Wasow et al., 1983, p. 112)

b. * When Pat spilled the beans, she thought that they would shock her parents.

In the discussion of the data, we concluded that pronominal reference was only possible
if the pronoun appears as part of the same idiomatic expression. Thus, pronominalization
is possible in the case of (497a), because in the elliptic but-clause the idiomatic expression is
indirectly present. This is not the case in the clause that contains they in sentence (497b).
There, the pronoun must refer to some particular secret(s) that Pat had disclosed. To
account for this data, again, we would need a theory of discourse entities which is not
available in HPSG. But, roughly speaking, we can assume that the NP the beans does not
introduce a discourse entity that can be referred to by a pronoun in another sentence. Thus,
we can exclude the (b) sentence in (497).

Matters are different in the (a) sentence, however. The sentence is elliptic, i.e., the main
verb spill is not overtly present in the but-clause. Unfortunately, we lack a theory of elliptic
constructions in HPSG. Still, it is clear that there is a difference between the two sentences
which is independent of the IE. For the time being we can do nothing but hope that the
different ability of pronominalization of the beans can be reduced to this independently
present distinction.12

To sum up the discussion: We propose to handle the IE spill the beans as a free combina-
tion which contains words with very strict occurrence restrictions. The kind of restrictions
that we assume are different, though, from those used in Gazdar et al. 1985. We have
replaced their restrictions on the interpretation function for semantic constants by a re-
striction on logical forms. In doing this, we reduce the number of semantic constants that
must be stipulated. In addition, we have introduced a syntactic boundary node, the minimal
clause, at which the logical form restriction must hold. This gave us the means to constrain
the syntactic flexibility of the IE in the desired way, i.e., while we do allow for passive and
raising, we successfully exclude topicalization and relative clause formation with this IE.
Remember from our discussion of the GPSG approach, that topicalization, like passive, is
assumed to have no effect on the interpretation of the sentence. This led to a serious prob-
lem because within the interpretive account of the distribution of the semantic constants
there is no way to account for the impossibility of topicalization.

So far, the distributional requirements of the words spill and beans were merely stated in
an informally. In the next subsection, we will provide a rigid RSRL formalization of these
restrictions. To do this, we extend the functionality of the coll that we have used in our
account of internally irregular IEs.

8.2.2. Formalization of the Analysis. In the previous subsection, we have argued that
we can account for the behavior of the internally regular IE spill the beans if we assume the
existence of words spill and beans which differ from the normal words in two respects: First,
they contribute a different non-logical constant (spill′′ and beans′′). Second these words may
only occur in very restricted contexts.

12Compare (497b) to (i), the example that was problematic for Riehemann (2001) (see footnote 42):
(i) Eventually she spilled all the beans. But it took her a few days to spill them all.

In (i), the idiomatic spill needs to be licensed. Whatever accounts for the restricted pronominalizability of
the beans in (497a) will make the special constant beans′′ available in (i), too. Thus, the required logical
form is present to allow for an occurrence of spill′′. Such an analysis is not possible in Riehemann’s account,
because she relies on the presence of particular idiomatic words.



8.2. INTERNALLY REGULAR IES 343

In the lexical entries in (486a), we encoded the special semantic contribution made by
these words. In (495) we expressed the distributional requirements of the words informally.
The HPSG theory developed in Pollard and Sag 1994 does not provide the necessary means
to express conditions as those in (495).

The distributional restrictions given for the words spill and beans in their idiomatic use
are idiosyncratic properties of the particular words, because there are no other words in
English that have exactly these distributional restrictions. As idiosyncratic properties, they
should be part of the information expressed in the lexical entries for these words. Thus, the
lexical entry for the idiomatic word spill for example should contain both the information
in (486a) and in (495a). In (498) we have compiled these two kinds of information.

(498) Lexical entry for the idiomatic use of spill (preliminary):
2

6

6

6

6

6

6

4

word

phon 〈spill〉

s l
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cat

"

head verb

subcat
D

NP, NP, (PP[to])
E

#

cont λyλx.spill′′@(x@, y@)
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and

this word can only occur in a sentence if, in the logical form of the
minimal clause of the word, the constant spill′′ occurs in the following
constellation:

[the y : . . . beans′′@(y@) . . .](. . . spill′′@(xe, y@) . . .)

In (498) we have collected all the idiosyncratic information needed for the idiomatic word
spill. This information consists of two parts: First, internal properties of the word spill, i.e.,
its phonology, its semantics, its syntactic category and its subcategorization requirements.
These bits of information are those given already in (486a). The second kind of information
is information about the linguistic context in which the word may occur, i.e., it is information
which is external to the word itself. This information was given in (495a) and expresses the
distributional requirements of the word.

If we try to formalize the distributional properties of the word spill, we need to make
the linguistic context in which the word occurs an internal property of the word itself.
While this sounds paradoxical, it is a consequence of the way HPSG works: all that can
be constrained is the interaction of the components of a given object. We have already
discussed this property in Chapter 2. It follows from the fact that RSRL formulae are
interpreted with respect to a given object. It is enough to consider this object and its
components to determine whether a formula describes this object or not. Thus, an RSRL
formula can only refer to properties of the object itself.

As a consequence, we must make the linguistic context of the word spill locally available
at the word level in order to be able to impose occurrence constraints on this word. So far,
there is no attribute defined on the sort word that we could use for this purpose. In the
preceding section, we have introduced the attribute coll on the sort phrase. Now that we
need a special attribute for words, we can simply define the attribute for all subsorts of the
sort sign. For phrases, it seemed to be enough to assume boolean values for this attribute,
as we only needed the attribute to differentiate between phrases which are built in a regular
way and phrases which are exempt from the principles of regular combination of signs. For
words, it is not sufficient to make a difference between idiomatic and non-idiomatic words.
Here, in the case of an idiomatic word, we need to have the possibility of having a sign
occur as the coll value. In the case of the idiomatic use of the word spill this sign is the
minimal clause which contains the word.
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In the table in (499) we have given the coll values as assumed so far. The first column
consists of example expressions. The second column indicates the subsort of sign of the
examples. In the third column, we specify the sort of the coll value. As examples we
use three VPs and their three verbal heads. The VPs are: the regular VP read a book, the
internally irregular VP kick the bucket and the internally regular IE spill the beans.

(499)
example sort coll value
read a book phrase minus
kick the bucket phrase plus
spill the beans phrase minus
read word ??
kick word ??
spill word sign

Following the specification in the last section, we assume that the internally irregular
IE kick the bucket has a coll value of sort plus, and the freely combined VP read a book
has the specification [coll −]. As we have indicated in the tree for the IE spill the beans
in Figure 8.4, the VP node is also assumed to be a regular combination, i.e., to have a
[coll −] specification.

For the verbal heads of these VPs we make the following assumptions: In the case of
the idiomatic use of the word spill, the coll value must specify the minimal clause which
dominates the word. For the words read and kick, we put question marks in the table. We
will address the question of their coll values in Section 8.3 below. For the time being, we
will assume the following sort hierarchy and appropriateness conditions for the sort sign.

(500) Sort hierarchy and appropriateness conditions below the sort sign (preliminary)

word
store list
coll sign-or-minus

phrase
dtrs const-struc
coll boolean

sign
phon list
synsem synsem

In this new sort hierarchy, we have declared the attribute coll appropriate for the sort
word. On the sort word, the coll feature does, however, not take boolean values but it
takes either a sign as its value or minus.13 We assume that words that are licensed by some
lexical entry, i.e., by some disjunct in the Word Principle have a sign as their coll value.
Words that are licensed by some derivational rule, on the other hand, have the coll value
minus. This distribution is ensured by the following principle.

(501) The Store-Coll Principle:
"

word

store elist

#

⇔

"

word

coll sign

#

The principle in (501) has the effect that exactly those words have sign-valued coll
specification that have an empty store value, i.e., those words that are not the output of a
derivational rule. For words with a non-empty store value, we require a coll value of sort
minus. The fact that we assume the value [coll −] for derived words indicates that we treat
derivational rules parallel to internally regular phrases. Put differently, we conceptualize

13In RSRL the appropriateness function is defined in such a way that we must assume a sort sign-or-minus
which is a supersort of the sorts sign and minus. It would not be possible to allow values of these two sorts
without introducing a common supersort for them.
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derivational rules as kinds of unary branching trees. This point of view is justified, because
a derivational rule allows us to predict all the properties of the output word from the
properties of the input word. In that respect, the output word of a derivational rule is
parallel to the regular combination of signs in syntactic structures. For the time being, we
will concentrate on the coll specification for non-derived words. But, as we treat passive
and topicalization via derivational rules, we will come back to the issue of derived words
later in this subsection.

For non-derived words, the Store-Coll Principle enforces a sign-valued coll spec-
ification. In the case of the words that constitute internally regular IEs this sign will be
some larger bit of structure which satisfies the distributional requirements of this word. For
words which do not have any particular distributional restrictions, we simply allow an arbi-
trary sign to occur in the coll value.14 It is obvious that while we use the same attribute
on phrases and words, the coll feature seems to fulfill completely different tasks in both
cases. In Section 8.3, we will show that there is an intimate relation between the two uses.

With the modified sort hierarchy below sign, we can give an account of the distributional
restrictions of the idiomatic use of the word spill. For this purpose, we consider the coll
value of this word. Under the assumption of a sign-valued coll feature, we can now
incorporate the distributional requirements into the lexical entry for the word spill formally.

(502) Lexical entry for the idiomatic use of spill:
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and minimal-clause( 2, 1 )

This new lexical entry specifies that there is a coll value 2 . This value is a sign which
has the content value which contains the constants spill′′ and beans′′ in the constellation
specified above in the distributional requirements for the word spill. In addition, the rela-
tional call at the bottom of the lexical entry specifies that the sign in the coll value is the
minimal clause of the word spill.

To express this condition, we make use of a binary relation minimal-clause which
holds between two signs iff the first sign is the minimal clause of the second sign as defined
above in (494). For the sake of clarity, we state which line of the formal definition in (503)
corresponds to which line in the informal characterization given above.

(503) The relation minimal-clause:

minimal-clause( 1 , 2 )
∀

⇐= (i) dominate( 1 , 2 )

(ii) and

1"

syns loc cat

»

head verb

subcat elist

–

#

(iii) and not E 3




dominate( 1 , 3 )
and not 1 ≈ 3

and dominate( 3 , 2 )

and

3"

s l c

»

head verb

subcat elist

–

#




14In (505) we present a principle which imposes some constraints on the possible coll values. As an effect
of this principle, it is guaranteed that even if the coll value is not restricted in the lexical entry of a word,
it can only contain a sign which is part of the same syntactic structure that this word is contained in.
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As specified above, two signs x and y stand in the relation minimal-clause iff x dom-
inates y and is a fully saturated verbal projection. In addition, x is required to be the
smallest sign that satisfies these two conditions, i.e., x does not dominate a sign z which
satisfies the first two conditions.

Parallel to the lexical entry for the idiomatic use of the word spill in (502), we can now
state the lexical entry for the noun beans which contains all the information given in (486b),
together with the coll specification that occurs in the lexical entry of the verb spill. The
entire lexical entry for the noun is given in (504).

(504) Lexical entry for the idiomatic use of beans:
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and minimal-clause( 2, 1 )

Given the lexical entries in (502) and (504), we can consider the structure of a sentence
which contains the IE. In Figure 8.6 (page 347), we have added the coll value of the words
spill and beans to the tree from Figure 8.4. As indicated, the overall sentence is the minimal
clause for both words, i.e., their coll value. The content value of this sign satisfies the
condition imposed on the coll value in the lexical entries of the two words.

The coll specification of the word spill guarantees that there is some minimal clause for
the word which has a logical form of the right shape. What remains to be done, however, is
to ensure that the sign in the coll value is the actual structure in which the word occurs.
This means that so far, nothing in the grammar ensures that the coll value of the words
spill and beans is actually identical to some node in the tree in Figure 8.6.

To solve this problem, we assume the Coll Principle given in (505). This principle
enforces that for each sign, and for each word that is dominated by this sign, the coll
value of this word either dominates the sign or is dominated by it.

(505) The Coll Principle:

sign ⇒ A 1 A 2





dominate( : , 1 )

and
1»

word

coll 2 sign

–


 ⇒

(
dominate( : , 2 )
or dominate( 2 , : )

) 


In order to check that the Coll Principle is satisfied, let us first consider the words
spill and beans. As we use a reflexive definition of the dominance relation, the word spill
dominates itself. Its coll value is the overall sentence. This sentence does contain the word
spill. Thus the Coll Principle is satisfied by this word. Similarly, the principle is true of
the word beans. In a slightly less trivial way, the principle also holds for the phrases that
occur in the sentence in Figure 8.6. The NP the beans dominates the word beans. This word
has the sentence 1 as its coll value. Clearly, this sentence dominates the NP. Similarly, in
the case of the VP, there are the words spill and beans that are dominated by this phrase.
Both have the sentence 1 as their coll value. Again, this sentence dominates the VP, thus,
the Coll Principle is satisfied. Finally, the S node reflexively dominates itself.

If we embed the sentence in Figure 8.6 further, as indicated in sentence (506), every
node of the matrix clause that dominates the words spill and beans also dominates their
minimal clause. Again, the requirements expressed in the Coll Principle are met.

(506) Mary thought [Pat spilled the beans.]
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So far, we have ignored the coll values of the other words in the sentence, i.e., the coll
specification of the words Pat and the. As indicated above, as these words do not seem to
have distributional restrictions, we do not assume that these words impose any restrictions
on their coll values. Thanks to the Coll Principle, however, the coll values of these
words are not arbitrary. Instead, the coll values must be signs which dominate these words
as they occur in the sentence in Figure 8.6, i.e., the words themselves, the direct object NP
or the VP (in the case of the), or the overall S node, or any sign which dominates the S
node of the example sentence (such as the matrix clause in example (506)).

This simple example has shown that we can account for the distributional restrictions
of the idiomatic uses of the words spill and beans if we introduce the coll feature on words
and postulate the Coll Principle.

It should be noted at this point that the coll feature is notably different from valence
features such as subcat or non-local features such as slash.

One difference is that the coll value of a word is a sign, whereas we find synsem objects
on the subcat list and local objects in the slash values (see Section 2.3). We must require
an entire sign as the coll value, because we want to express (i) that the element in the coll
value of a word dominates this word and (ii) that it stands in a certain tree-configurational
relation to this word: In the case of the idiomatic use of spill, the coll value is the smallest
clause that dominates the word. In the following subsection, we will show that the syntactic
domain within which the occurrence restrictions of the word must be satisfied differs from
IE to IE. Both requirements can only be expressed inside the lexical entry of the idiomatic
word spill if we assume a sign-valued coll attribute.

Another difference lies in the fact that the coll value does not “percolate”. We have
seen in the presentation of the syntactic fragment in Section 2.3 that in a phrase an element
from the subcat list of the head daughter re-occurs on the subcat list of the phrase if it is
not realized as the nonhead daughter. Similarly, an element in the inherited slash set of
a daughter re-occurs in the inherited slash set of the phrase unless it is retrieved. The
coll specification of a word, on the other hand does not appear in the coll value of any
phrase that dominates it. The motivation for this is twofold. First, as we saw in the analysis
of internally irregular IEs in Section 8.1, we also use the coll specification to distinguish
phrases that obey the regular principles of syntax and semantics from those that may
violate them. If the coll value of a word could percolate, we would need another attribute
to indicate the regularity status of a phrase. Second, even if we percolated the coll value
of a word we would still be forced to express how far up in the tree this percolation may go.
Thus, we would still have to assume a sign-valued coll attribute, and we would still need
the relation minimal-clause in the lexical entries of the idiomatic word spill. This indicates
that percolating the coll value would not lead to any simplification in the analysis and is,
therefore, better avoided.

We think that these two differences between the coll value on one side and valence or
slash values on the other side is fully justified because the coll value is designed for a very
special class of phenomena: for irregularities that cannot be captured within the regular
apparatus of the grammar. Since we assume a sign-valued attribute, we have chances to
capture even the most exotic context restrictions; and since the coll specification of a
word does not percolate, we keep our analysis of irregularities separate from the rest of
the grammar. As we will see in Section 8.3, a non-trivial coll value will, ultimately, be
confined to lexical elements, and, thus, it will not interact directly with those principles of
the grammar that express the regular combination of complex signs.
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Figure 8.7. The structure of the sentence The beans were spilled.:
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The example sentence that we have used to illustrate our analysis was admittedly simple.
Turning next to passive and topicalization, we will show that our theory captures the
distribution of the IE in these constructions as well.

In Figure 8.6, there was no instance of an application of a derivational rule. In Figure 8.7,
we show the structure of the passive sentence (507) that contains the IE spill the beans.

(507) The beans were spilled.

As shown in Chapter 4, we follow the analysis of passive in Pollard and Sag 1994 and
assume a derivational rule that relates a non-passive verb form to a passive participle with
altered valence requirements. For ease of reference, we state the Passive Derivational Rule
in (508). Notice that we have added the coll specification to the output of the DR.
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(508) Informal specification of the Passive DR, as given in (269):
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(where the list 2 has exactly n elements)

We can observe the effect of this derivational rule in Figure 8.7: The transitive verb
spill is related to its passive form. This passive verb has just one element left on its subcat
list, the synsem object referred to by the tag 2 . Also, semantically the passive verb is of a
lower valence than its active counterpart, because the lambda operator λx in the input is
replaced by an existential quantifier ∃x in the output of the DR. Finally, the coll value of
the output word is minus, as enforced by the Store-Coll Principle in (501).

We treat the passive auxiliary as a raising verb, following Pollard and Sag 1994, i.e.,
the first element on its subcat list is identical to the remaining element on the subcat list
of the passivized verb. The content of the passive auxiliary is just the identity function. In
addition, the content of the finite VP is identical to that of the passive verb. The NP the
beans is combined just as shown in Figure 8.6. This NP is realized as the syntactic subject
in the passive. As indicated by the tag 2 , the synsem value of this NP appears as the first
element on the subcat lists of the passive auxiliary and of the passivized verb spilled, but
also as the second argument on the subcat list of the non-passive form of the verb.

If we are to check now whether the distributional requirements of the words in Figure 8.7
are met, this can be done for the noun beans just as we had seen in the case of the active
sentence: it is realized as the syntactic subject and its minimal clause is the S node. The
logical form of this node is as required in the lexical entry of the noun.

Since the IE spill the beans contains two elements with strict distributional requirements,
it is not enough to check that the requirements of the word beans are met. We must also
verify those of the word spill. In the structure in Figure 8.7 there are two words that have
the phonology spilled: the input and the output of the Passive DR. The output word has
a coll value of sort minus, thus, it does not express distributional restriction. The input,
however, is the word spill as licensed by the lexical entry in (502). It has a sign-valued coll
specification. Under the usual understanding of the dominance relation in syntactic trees,
the input of a derivational rule is not really part of the syntactic structure, and, therefore,
not dominated by any node in this structure. As we have pointed out before, we take a
slightly different position on derivational rules. We see them as unary branching trees at
word level. From this perspective, it is very natural to extend the dominance relation so
that the output word of a derivational rule is said to dominate the input word.

With this small extension of the definition of the dominance relation, we can account
for the use of parts of internally regular IEs in syntactic structures that involve derivational
rules. To illustrate this, reconsider the tree in Figure 8.7. We assume that in addition to
the dominance relation among the phrases and their daughters in the structure, the output
of the Passive DR (and every node that dominates the output word) also dominates the
input word. As indicated in the figure, the coll value of the input verb is the S node (tag
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1 ). This node is the minimal clause of the input word: it is a saturated verbal projection
and dominates the input word under the extended notion of domination. The content
value of the S node is exactly as required in the lexical entry of the verb spill in (502).

We can also show that the Coll Principle is met under the extended dominance rela-
tion: since we assume a reflexive dominance relation, the input word of the DR dominates
itself. Its coll value is the S node. As shown above, the S node dominates the input word.
Thus, the input of the DR satisfies the Coll Principle. Similarly, all nodes that dominate
the input word also meet the requirements of this principle with respect to this word.

We have seen that the simple extension of the dominance relation allows us to account
for the distribution of IEs in constructions involving derivational rules. In (509) we state
the full definition of the relation dominate as we assume it to occur for example in the
Coll Principle and in the definition of the relation minimal-clause in (503).

(509) Revised definition of the relation dominate:
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∀
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Two signs x and y stand in the relation dominate iff either the two signs are identical
(first clause), or there is a sign z which is one of the daughters of the sign x and stands in
the relation dominate with the sign y (second and third clause). So far, the definition of
the relation dominate expresses just domination in syntactic structures.

The difference between the extended definition in (509) and a more traditional one lies
in the fourth clause. According to this clause, x and y also stand in the relation dominate

if there is a word 1 which is the input word of a derivational rule which has the sign x as
its output and this sign 1 stands in the relation dominate with y.

Using this definition of the relation dominate, we can show the S node “dominates” the
input word of the derivational rule in Figure 8.7: The input word of the DR dominates itself
by the first clause of the definition. The input is the in value of the store element of the
passive verb. Thus, this verb dominates the input by the fourth clause. This passive verb is
the nonhead daughter of the VP. As a consequence of the third clause, the VP dominates
the input word. Finally, the VP is the head daughter of the S node. By the second clause
of the definition in (509), the S node and the input verb stand in the relation dominate.

We have shown that with the dominance relation as defined in (509), the lexical entries
and the Coll Principle given above allow for the syntactic freedom attested for the IE
spill the beans. For the sake of completeness, we will show that the behavior of this IE
with respect to topicalization is also accounted for. In Figure 8.5 on page 339 we gave
the syntactic structure of a sentence which contains the IE spill the beans but where the
direct object has been moved outside the minimal clause of the verb by topicalization. In
Figure 8.8 we repeat this structure, enriched by the coll values. As indicated above, the
sentence is ungrammatical because the distributional requirements of the verb are not met
within its minimal clause, which is the S node with tag 3 in Figure 8.8. Notice that, like
with passive, we have to consider the input word of the derivational rule, not the output.
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Figure 8.8. The structure of the sentence *The beans Pat spilled.:
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With this discussion of the most prominent syntactic configurations we have shown that
via a simple extension of the feature geometry, i.e., allowing a sign-valued attribute coll
for non-derived words, and a simple principle, the Coll Principle, we provided a system
that enables us to formulate distributional restrictions for words as parts of their lexical
entries. In the present subsection, we have concentrated on a single IE, spill the beans. In
the following subsection, we will show how this mechanism can be used to account for the
other internally regular IEs.

8.2.3. The Other IEs. In Section 8.2.2 we have used the IE spill the beans to illustrate
and motivate our extended use of the attribute coll. In this subsection, we will present
an analysis of the remaining IEs within the framework developed above. The discussion of
these other IEs will reveal the flexibility of the present approach. We will turn to the IEs
pull strings, make headway and make a decision.

pull strings. In the preceding chapters, we have pointed out that this IE is very similar to
the IE spill the beans but shows even more signs of regularity. In (510), we give the lexical
entries for the words pull and strings as they occur in the IE pull strings.



8.2. INTERNALLY REGULAR IES 353

(510) a. The lexical entry for the idiomatic use of pull:
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b. The lexical entry for the idiomatic use of strings:
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and minimal-clause( 2 , 1 )

The overall shape of the lexical entries for the words pull and strings strongly resembles
those of the words spill and beans above: The words have a content which introduces a new
constant, pull′′ in the case of the verb and strings′′ for the noun. In addition, the coll value
is a sign whose logical form must be of a certain kind. In the lexical entry for the noun
strings we also require that the coll value stand in some specific syntactic relation to the
word. The sign in the coll value is referred to with the tag 2 in the lexical entry of the
noun. In the case of strings, the sign 2 must be the minimal clause of the word licensed by
the lexical entry, just as it was above for beans.

For the verb pull, we specify the logical form of the sign in the coll value, but we do not
restrict the syntactic relation between this sign and the word pull. The Coll Principle
ensures that the sign in the coll value dominates the word. Thus, all that is required in
the case of pull is that the coll value is a sign that dominates the word and has a certain
content specification. This can be any sign, in particular the overall utterance.

Parallel to the case of the components of the IE spill the beans, the logical form of the
sign in the coll value is further specified. For both words, we require the logical form of
the element in the coll value to contain an occurrence of the semantic constants pull′′ and
strings′′ such that the second argument of pull′′ is identical to the argument of strings′′. In
contrast to the case of spill the beans, however, the logical form required for the words pull
and strings is less constrained. In particular, no special quantifier is given, nor is it required
that the semantic constants be in the restriction and the scope of some quantifier.15

With the lexical entries in (510) we can go through the syntactic and semantic properties
of the IE pull strings as collected in Chapter 6.

According to the first semantic criterion, the components of the IE do not occur with
their idiomatic meaning outside the IE. This property is directly accounted for by the fact
that the coll values of the words pull and strings impose the restriction that whenever one
of these words occurs in a sentence, the other must be present as well.

As noted in the discussion of the second semantic criterion, we can, however, assign
each element in the IE some meaning such that the meaning of the IE as a whole can be
calculated by combining the semantic contributions of its parts in a regular way. Again,
this property is accounted for if we assume that the IE is internally regular, i.e., that the

15In fact, the requirements on the logical form of the coll value is very similar to those specified in the
words set in the analysis of Riehemann 1997. This is the case because we refer to subterms, where, in
MRS, reference is made to an object of sort rel in the liszt list.
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IE is not listed directly in the Word Principle or the IIP, but only comes into existence
by the free combination of the words that compose it.

According to the third semantic criterion, internal modification of the noun strings is
possible. In (511) we repeat the relevant example from Chapter 6 with its logical form.

(511) Pat pulled official strings (to help Chris).
∃y[strings′′@(y@) ∧ official′@(y@) ∧ pull′′@(p, y@)]

Clearly, the logical form of the sentence (511) meets the distributional requirements ex-
pressed in the lexical entries in (510).

According to the fourth semantic criterion, the IE allows for pronominal reference. This
indicates that the noun strings must be able to introduce a discourse referent.

Let us next consider the behavior of this IE with respect to the syntactic criteria.
According to the first criterion, all words that occur in the IE also occur independently
within the language. The way we have formulated the lexical entries of the idiomatic uses
of the words pull and strings, there is no relation between the idiomatic use of the words
and their non-idiomatic uses, i.e., we must assume distinct lexical entries for the idiomatic
use of pull and for the non-idiomatic use of this verb. This clearly misses a generalization as
in most cases the components of an internally regular IE occur outside the IE, albeit with
a different meaning. Among the formal accounts of IEs that we considered in Chapter 7,
only Riehemann 1997 made an attempt to capture this fact. As our analysis of internally
regular IEs is very much like that of Gazdar et al. 1985, we also inherit the problem that
there is no way we could relate the idiomatic use of a word such to its non-idiomatic uses.

The second and third syntactic properties are accounted for in a straightforwardly. Since
we only specify the words that are contained in the IE, these words must combine in a regular
way to form the IE as a whole. This also accounts for the syntactic flexibility to allow other
material such as modifiers to occur inside the NP.

The same is true for passivization and raising. As we have seen in the discussion of
the IE spill the beans, these two phenomena do not introduce a minimal clause boundary
between the verb and its direct object, i.e., for both words the minimal clause is the same
node. As such, the minimal clause of the noun strings also dominates the word pull, and,
therefore, the logical form of the minimal clause is already of the required shape.

In the case of topicalization such as in sentence (512), the minimal clause of the noun
is different from that of the verb. It should be remembered from the discussion of the
topicalization data of the IE spill the beans that the minimal clause of the topicalized
constituent is the lowest node that dominates the filler. In the case of example (512) this
is the entire sentence. The logical form of this sentence contains both constants pull′′ and
strings′′ in the right constellation. Thus, the requirements of the word strings are met.

(512) Those strings, he wouldn’t pull for you. (Nunberg et al., 1994, p. 13)

Let us, next, turn to the requirements of the verb pull. In the case of the IE spill
the beans, topicalization was excluded. We derived the ungrammaticality of topicalization
structures by making the distributional restrictions of the verb spill a requirement of the
minimal clause of the verb. For the idiomatic use of pull it is sufficient if the distributional
requirements are satisfied by any sign in the structure, not necessarily the minimal clause
of the verb. As the overall utterance in (512) contains the necessary semantic material, we
can assume that the coll value of the verb is the overall utterance.16

16Note that in sentence (512) the coll values of the words pull and strings are identical, as the minimal
clause of the noun co-indices with the utterance that contains the verb. This need not be the case in general:
(i) Mary thinks that [those strings he wouldn’t pull for you].

In the sentence in (i), the minimal clause for the noun is the bracketed constituent, whereas the overall
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The last syntactic criterion involves the possibility of the IE to occur in relative clauses.
The relevant examples are repeated in (513).

(513) a. Pat pulled the strings [that got Chris the job].
b. The strings [that Pat pulled] got Chris the job.

In both cases the minimal clause of the noun strings is the entire sentence. The verb
occurs in the matrix clause in (513a) and in the relative clause in (513b). Since the relevant
syntactic domain for the occurrence restriction of the verb is not delimited, this difference
does not play a role. Thus, for both words and in both sentences in (513), the overall
utterances are the relevant syntactic domains. In the logical forms of these sentences, the two
constants pull′′ and strings′′ occur in the right constellation. Therefore, the distributional
requirements of the two words are met.

The presentation above has shown that the lexical entries in (510) account adequately
for the behavior of the IE pull strings. We also captured the differences between the IEs
spill the beans and pull strings. In that respect our approach is more flexible than the
GPSG account: the GPSG account did not have any syntactic aspects, but assumed that
topicalization is semantically without influence. Therefore, it was unable to account for
the fact that not all IEs which allow passive also allow topicalization. Furthermore, our
approach is also more elegant than the TAG analysis, because we do not have to state all
the syntactic constructions in which the IE can occur, but we can influence the range of
syntactic constructions by the requirements on the linguistic context. Finally, in contrast
to Riehemann 1997, the overgeneralization problem does not arise in our account.

make headway. The next IE we will address is the expression make headway. As pointed
out above, this IE is an instance of a support verb construction. The IE shows regular
behavior with respect to most of the criteria in Chapter 6, with two exceptions. First, the
word headway does not occur in English outside this expression. Second, the verb make
in its support verb meaning is restricted to an (arbitrary) group of nouns, which contain,
inter alia, the nouns headway and decision. We do not intend to make any commitments
with respect to the right semantic analysis of support verb constructions. For the sake of
concreteness, though, we make the simplified assumption that the support verb make con-
tributes a semantic constant make′′ which takes two individuals as its semantic arguments.

In (514) we depict the lexical entry of the noun headway. It is very similar to the entries
of the nouns beans and strings, shown in (504) and (510b). It introduces a semantic constant
headway′ which will be interpreted as roughly synonymous to the constant contributed by
the noun progress. Furthermore, the coll value is a sign which is the minimal clause of the
noun and requires the presence of a support verb construction in its logical form.

(514) The lexical entry for the word headway:
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and minimal-clause( 2, 1 )

utterance is the entire sentence. The distributional requirements are, nonetheless, met. The coll value of
the verb could be any node that dominates the clause in brackets.
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While the lexical entry for headway is similar to the one for strings, the lexical entry
for the support verb make is slightly different from those that we have seen so far. In the
previous cases, we could always characterize the linguistic context in terms of the logical
form of some node in the structure. For support verbs, it might not be enough to require the
presence of some specific non-logical constant in the content value, but we must require a
concrete word to occur as (the lexical head of) the direct object of the support verb.17 For
this reason, we assume that the support verb imposes a restriction on the phonology of the
lexical head of the NP that functions as its second semantic argument. This is expressed in
the following lexical entry for the support verb make.

(515) The lexical entry for the support verb make:
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Let us examine this lexical entry in detail. The word make is described as a verb with
two NPs on its subcat list. The first NP is the subject, the second is the direct object.
As we will need the direct object for later reference, we have put the tag 3 on its local
value. The content value of the verb is that of a regular transitive verb, i.e., it is of the
type (se)((se)t). As noted above, this is a simplification of the facts.

The coll value of the verb is marked with the tag 2 . We do not specify the syntactic
relation between this sign and the verb. This is parallel to the specification on the verb
pull in (510a) and motivated by the fact that in the IE pull strings and in support verb
constructions, the direct object may be absent from the minimal clause of the verb.

The first relational call in the lexical entry states that the sign 2 dominates a sign 4 .
The sign 4 is further specified as having the same local value as the second element on
the verb’s subcat list, indicated by the tag 3 .

In the second relational call, we establish that the tag 5 is used to refer to the lexical
head of the sign 4 . This lexical head must be a noun and it must have one of the phonologies
compatible with the support verb. In the case of the English verb make, the disjunction in
the phon specification contains the strings headway and decision, but not the string shower,
as the VP make a shower is not a grammatical support verb construction in English, in
contrast to the VP take a shower.

The relation between the verb make and the sign which has the required phonology is
quite indirect, i.e., we need the sign 4 to mediate between the coll value and the sign 5 .
This is due to two complicating factors: First, the support verb construction allows for the
extraction of its direct object. In our theory of extraction, all we know is that the filler has
the same local value as the element which (originally) occurred on the subcat list of the
verb. Thus, we know that the sign 4 has the local value 3 . Second, the direct object may
be syntactically complex. Therefore, the lexical head of the sign 4 need not have the local

17See the discussion in Section 6.2 and especially examples (359) to (364).
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value 3 . The support verb, however, imposes a restriction on the lexical head of the direct
object. When we go through the criteria of regularity, we will see how the specifications in
the lexical entry interact to achieve the required distribution of the IE.

The IE make headway is irregular with respect to the first semantic criterion simply due
to the fact that the noun headway does not occur at all in English outside the particular IE.
This observation is captured adequately if we assume that there is no other lexical entry in
the grammar with the phonology specification 〈headway〉. The IE is, however, regular with
respect to the second semantic criterion, i.e., under the meaning assignment made in the
lexical entries above, the meaning of the IE is simply the result of combining the semantic
contributions of the words in a regular way.

Being an internally regular IE, the expression make headway allows for internal modifi-
cation. We have pointed out in Chapter 6 that, because the semantic contribution of the
support verb is very limited in support verb constructions, it is sometimes hard to make
a difference between semantic modification of the noun and semantic modification of the
entire VP. In the analysis of support verb constructions as internally regular IEs, allowing
for semantically internal modification is the default case. Consider the example in (367a)
which is a repeated in (516a). In (516b) we have sketched a logical form for this sentence.

(516) a. He is making interesting headway.
b. ∃y[headway′@(y@) ∧ interesting′@(y@) ∧ make′′@(x@, y@)]

Let us first consider the noun headway. The minimal clause of the noun is the entire
sentence. Within the logical form of this sentence as given in (516b), the constant headway′

stands in the right relation to an occurrence of the constant make′′. Thus, the minimal
clause of the noun is its coll value and satisfies the description attached to it.

Matters are slightly more complicated for the verb make. The coll value of the verb
is not syntactically restricted. We can therefore assume that it is the overall sentence
in (516a). The verb is transitive, and, thus, has a second element on its subcat list. As the
sentence is in the active voice, the direct object is realized syntactically as the sister of the
verb. The direct object has a synsem value which is identical to the second element on the
verb’s subcat list and its phonology is interesting headway. The overall sentence, i.e., the
coll value of the verb, dominates this NP. Thus, it dominates an NP whose local value
is identical to that of the second element on the verb’s subcat list. This NP has a lexical
head, the noun headway. The phonology of this lexical head is among those specified as
compatible with the support verb make. These considerations show that the distributional
requirements of the verb make are met in the sentence (516a).

As far as pronominalization is concerned, we have observed in Chapter 6 that the noun
headway does not allow for pronominal reference by a personal pronoun, but does allow the
indefinite some. We have argued that this behavior is parallel to that of mass nouns and
that, therefore, the noun headway should simply be analyzed parallel to other mass nouns.
The logical forms used in this thesis do not express the count/mass distinction. We assume
that once our semantic analysis is enriched by this distinction, the pronominalization data
for the noun headway will follow automatically.

We can, next, address the syntactic criteria. Not much needs to be said about the
first three syntactic criteria. The fact that the noun headway does not occur outside the
support verb construction follows from its coll specification in the lexical entry. The words
that occur in the IE further combine according to general ID schemata. As there are no
restrictions on the syntactic complexity of the direct object, an adjectival modifier can occur
inside the NP. See the discussion of sentence (516a) above.

Similarly to modification, passive is also possible. Consider the following sentences,
repeated from Chapter 6.
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Figure 8.9. The structure of sentence Considerable headway was made:
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(517) a. Considerable headway was made over the last 15 years.
b. Considerable headway seems to be made in this area of research.
c. The researchers expect considerable headway to be made in the near future.

In Figure 8.9 we have sketched the structure of a simplified version of sentence (517a). In
this tree, we only use those tags which occur in the lexical entry of the verb make in (515).
We have abbreviated the semantic constant headway′ by h′ and the constant considerable′

as c′. To simplify the structure, we have not specified the AP in detail, nor have we given
any indication where the existential quantifier that binds the variable y comes from. This
quantifier will be provided by whatever treatment of mass nouns is assumed.

We can, now, go through the requirements in the lexical entry to see that all these
requirements are met by the verb made that is the input to the derivational rule in the
given structure. The tag 1 refers to this verb itself. As required, this verb has two elements
on its subcat list, the last one’s local value being referred to with the tag 3 . The coll
value of the verb is the sign with the tag 2 . This sign dominates the verb 1 , since we
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Figure 8.10. The structure of sentence Considerable headway Pat made.:
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interpret dominance as reaching into the input of a derivational rule. Therefore, the sign 2

fulfills the requirements of the Coll Principle.

The sign 2 further dominates a sign 4 . This sign is the subject of the passive sentence.
Under the standard analysis of passive and raising in HPSG, the synsem value of the subject
in the passive is identical to the second element on the subcat list of the active counterpart
of the passivized verb. Due to this synsem identity, the local value of the subject, i.e.
of the sign 4 in Figure 8.9, is identical to the local value of the second element on the
subcat list of the verb that is the input to the passive DR. This local value is referred
to by the tag 3 . Consequently, the sign 4 is as described in the lexical entry of the verb
make. The subject NP 4 has the noun 5 as its lexical head. This noun has the phonology
headway which is among the disjunction of possibilities in the description of the sign 5 in
the lexical entry of the support verb. Thus, the word make as it occurs as the input to the
derivational rule is described by the lexical entry in (515).

As we have seen in the empirical chapter, the direct object may also be topicalized in the
IE make headway. Again, the account of topicalization is straightforward. In Figure 8.10
we give the structure of a simple sentence with topicalization. We add the tags that are
mentioned in the lexical entry of the verb make. As before, the requirements of the word
that serves as input to the extraction DR need to be considered.

What is crucial in the syntactic structure in Figure 8.10 is the way the topicalized NP
considerable headway ( 4 ) is related to the verb 1 which is the input to the derivational rule.
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The second element on this verb’s subcat list has the local value 3 . This value re-appears
in the output of the complement extraction DR in the inherited slash value. By the
Nonlocal Feature Principle this slash value also appears on the S node. Finally, the
Head Filler Schema requires the local object 3 to be the loc value of the filler daughter
( 4 ). As a consequence, the filler daughter is the only sign in the utterance whose local
value is identical to that of the second element on the subcat list of the verb 1 . Finally, as
the lexical head of the filler is a noun whose phonology is compatible with the requirements
of the support verb make, the verb’s distributional restrictions are all met in this sentence.

After the rather detailed discussion of passive and topicalization structures with support
verbs, we can turn to the next criterion of syntactic regularity: relative clauses. In (518)
we repeat the sentences from (375) in Chapter 6.

(518) a. You have made considerable headway/progress that will be of tremendous use
for the entire project.

b. I admire the ?headway/progress that you have made since we met last time.

We can account for sentence (518a) without any changes: the noun headway is the lexical
head of the direct object of the support verb make. Matters are more difficult in the case of
sentence (518b). There, the support verb is inside the relative clause, but the noun headway
is not. In this thesis, we have not presented an analysis of relative clauses. In the analysis
of relative clauses in Pollard and Sag 1994 (chapter 5) and Sag 1997 the local value of
the noun to which a relative clause is attached is not required to be identical to the local
value of any sign inside the relative clause. As a consequence, the local value of the noun
headway in sentence (518b) is not identical to the element in the slash value of the verb
make in the relative clause. The only identity that is assumed in these two analyses is index
identity. As the attribute index is part of the content in Pollard and Sag 1994 and Sag
1997, but not defined on the kind of content values assumed in this thesis, we cannot take
over any of these approaches directly in the present framework.

In an account of the relative clause data, we basically have two options: either we try to
build our account of relative clauses in such a way that identity of local values is achieved,
or we change the lexical entry of the verb make in such a way that it does not require the
identity of local values, but of some smaller structure within a local object. We leave the
decision to further research.

In short, in our analysis of the IE make headway, we assumed that the verb make is just
the normal support verb make which also occurs with other nouns such as decision. The
distributional requirements of the support verb express a restriction of the words that may
appear as the lexical head of their direct object. The noun headway, on the other hand, is
very similar to the idiomatic uses of the nouns beans and strings as they occur in the other
IEs discussed in this section. The distributional requirements of this noun constrain the
logical form of the clause which contains the word.

make a decision. In the last paragraph of this section, we address the IE make a decision.
As we have seen in the discussion of the data, this IE shows hardly any signs of irregularity.
In this paragraph, we will not go through all the criteria of regularity, instead, we will
concentrate on the differences between the expressions make headway and make a decision.

The only irregular aspect is that the verb make cannot combine with all nouns to form
a support verb construction. In the lexical entry for the support verb make in (515), the
noun decision was included in the list of possible direct objects for this support verb. It
will, however, not be included in the similar lists that are part of the lexical entries for the
support verbs do, wage and commit. Thus, in the combination make a decision, the noun
decision is licensed by the same lexical entry that licenses it in free contexts as well.
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It follows that this combination is also regular with respect to the first syntactic criterion.
A further difference between make headway and make a decision lies in the fact that the
noun headway cannot be pronominalized. In the preceding paragraph, we have taken this
fact to follow from the mass term properties of the noun headway. As the noun decision is
not a mass noun, the attested contrast is expected.

In this section, we have completed the presentation of the analysis of internally regular
IEs. It has been shown that the data collected in Chapter 6 can be captured in the presented
architecture. For many properties we have pointed to advantages of our approach over the
accounts presented in Chapter 7.

In the next section, we will attempt to streamline the use of the coll feature. So far,
we have assumed boolean values on phrases and either a sign or a minus as possible values
on words. We will present a more uniform feature geometry where the attribute coll is
list-valued on all subsorts of sign. We will motivate this extension with an example that
indicates that not only words, but also internally irregular phrases can have idiosyncratic
distributional restrictions.

8.3. A Unified Treatment of the coll Attribute

In this section we reconsider the appropriateness conditions for the sort sign. We will
optimize our treatment of the coll feature across the subtypes of sign by making the
coll feature list-valued. We will demonstrate that with this change, we can preserve the
distinctions that were assumed in the previous sections. We will provide and discuss discuss
additional data in support of this new architecture.

In the previous sections of this chapter, we worked with the sort hierarchy and appro-
priateness for the sort sign presented in (500) which we repeat in (519) for convenience.

(519) Sort hierarchy and appropriateness conditions below the sort sign (from (500)):

word
store list
coll sign-or-minus

phrase
dtrs const-struc
coll boolean

sign
phon list
synsem synsem

As pointed out above, while we assume a single attribute, coll, for our treatment of IEs,
the coll specifications assumed for words and phrases do not indicate a unified concept of
the function of this attribute. In Section 8.1, we used the +/− distinction to differentiate
between regular and irregular phrases. IEs such as kick the bucket were treated as irregular
phrases. In Section 8.2, we differentiated between words that are licensed by a lexical entry
and those that are licensed by some derivational rule. For the former we postulated a sign-
valued coll specification, for the latter the coll value minus was assumed. The fact that
we use the attribute coll for both internally irregular phrases such as kick the bucket and
the words that constitute internally regular IEs such as the words spill and beans makes it
necessary to have a coll specification for all phrases and for all words.

In the following, we will not discuss all conceivable alternatives, but present one concrete
proposal and its advantages. In (520), the final version of the sort hierarchy and the
appropriateness conditions of the sort sign are given as assumed in this thesis.
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(520) Sort hierarchy and appropriateness conditions below the sort sign (final version):

word
store list

phrase
dtrs const-struc

sign
phon list
synsem synsem
coll list

In this new sort hierarchy, the sort sign is still assumed to have just two subsorts, word
and phrase. The treatment of the coll value is, however, quite different from what we have
defined in (500) in the preceding section. Instead of assuming a boolean value for phrases
and a sign value for some words, we make the attribute list-valued for all signs.

The sort list has two subsorts, empty-list and nonempty-list. We can use these two
subsorts to take over the function of the boolean values minus and plus that we used in
Section 8.1, i.e., we replace the specification [coll −] used so far by the specification
[coll elist]. For internally irregular phrases such as the VP kick the bucket, we assume the
specification [coll nelist], instead of [coll +].

Analogously, we replace the [coll −] specification on derived words (which is enforced
by the Store-Coll Principle in (501)) by the specification [coll elist]. For non-derived
words, on the other hand we use the value nelist instead of having a sign in the coll feature.

This has the desirable effect that internally irregular phrases and non-derived words are
considered as a natural class with respect to their coll specification: both have the value
nelist. Empirically, they also form a natural class that contains all elements whose internal
properties are not fully predictable from their parts.

This can best be illustrated with combinatorial semantics. For regular phrases, the Se-
mantics Principle defines the way we combine the semantic contribution of the daughters
to form that of the phrase. Similarly in the case of derived words: Given the content of the
input word of a derivational rule and the specification of the derivational rule, the content
of the output is fully predictable. There are two cases where the content value of a sign
is not predictable in this way: First, obviously, if the sign is a non-derived word, then it
does not contain any smaller signs whose semantic contribution could be used as the basis
for the logical form of the word. Second, if the sign is a phrase, but internally irregular.
Then, its logical form need not stand in a transparent relation to that of its daughters.
Thus, in the case of non-derived words and internally irregular phrases, the content value
is not predictable. Similarly for the other properties of a sign: while they are predictable
for regular phrases and derived words, they are arbitrary in the case of non-derived words
and internally irregular phrases.

All in all, this similarity between non-derived words and internally irregular phrases is
captured in the same coll specification. This specification also enables us to combine the
Word Principle and the Internal Irregularity Principle into a single principle
which lists descriptions of all signs that have a coll value of sort nelist. We call this
combined principle the Lexicon Principle (LexP).

(521) The Lexicon Principle (LexP):

"

sign

coll nelist

#

⇒
(
LE1 or . . . LEm or PLE1 or . . . PLEn

)

The consequent of the LexP in (521) is a big disjunction of all the lexical entries (LEi) from
the old Word Principle and all the phrasal lexical entries from the old IIP (PLEi).
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After this re-ordering of the principles on phrases, we finally address the question of what
is on the coll list of words and internally irregular phrases. We assume that the coll value
contains at most one sign. To consider a concrete example, the lexical entry of the word read
as it occurs in the free combination read a book contains the following coll specification.

(522)

2

6

6

6

4

word

.

..

coll
Dh

sign
iE

3

7

7

7

5

As a consequence of this extremely vague specification, any sign may occur in the coll
value. There is, however, a restriction, imposed by the Coll Principle in (505). This
principle requires that in every sign s, the signs in the coll value of the words dominated
by s must either dominate s or be dominated by s. Thus, whatever is in the coll value of
the normal word read is a sign which contains a grammatical occurrence of this word. For
utterances, this means that whatever is in the coll values of the words that the utterance
is composed of is, again, a subpart of this utterance. In this way, the Coll Principle
guarantees that the coll value does not introduce undesired material.

The reader will have noticed that our formulation of the Coll Principle in (505) is
not adapted to the new feature geometry below the sort sign: it assumes a sign-, instead
of a list-valued coll attribute on words and does not consider the coll values of phrases.
In (523) we give the final version of the Coll Principle.

(523) The Coll Principle (final version):

sign ⇒




A 1 E 3 A 2

dominate( : , 1 )

and
1h

coll 3
i

and member( 2 , 3 )


 ⇒

(
dominate( : , 2 )
or dominate( 2 , : )

)




This new version of the Coll Principle fits the revised sort hierarchy below sign.
Just as in the earlier formulation, the consequent of this principle contains an implication.
In the antecedent of this implication, the tag 1 is used for the signs (words or phrases)
that are dominated by the described sign. The tag 3 denotes the coll list of the sign
referred to by 1 . The tag 2 then is used to pick out the elements on the coll lists of all
the signs dominated by the considered sign. The consequent of the embedded implication,
then, requires for every coll element 2 that the described sign either dominate 2 or be
dominated by 2 .

Having adjusted the Coll Principle to the new feature geometry, we can consider
the coll values for the four classes of signs, i.e., internally regular phrases, derived words,
non-derived words and internally irregular phrases. In regularly combined signs, i.e., regular
phrases and derived words, the coll list is empty. In the case of non-derived words we
assumed a single sign as the coll value in Section 8.2. Thus, it is most natural to assume
that the coll list is at most a singleton list which contains exactly the sign that appeared
as the coll value in earlier sections. This assumption is fully unproblematic in the case
of words, but the following question arises: is there motivation for having a sign inside the
coll value of irregular phrases? We think that there is evidence supporting that there are
some irregular phrases for which we must assume idiosyncratic distributional requirements.
But, before we turn to these examples, we should briefly indicate how the lexical entries
given in the previous section must be changed to accommodate the new feature geometry.

In (502) we gave the lexical entry of the idiomatic use of the word spill. There, we
indicated a sign in the coll value. Now that we have altered the appropriateness conditions
for the coll feature, we must modify this lexical entry as well.
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(524) The lexical entry for the idiomatic use of spill:

E 1 E 2 E 3

1

2

6

6

6

6

6

6

6

6

6

6

4

word

phon 〈spill〉

s l

2

6

6

4

cat

"

head verb

subcat
D

NP, NP, (PP[to])
E

#

cont λyλx.spill′′@(x, y)

3

7

7

5

coll
D

2
E

3

7

7

7

7

7

7

7

7

7

7

5

and

2"

sign

s l cont . . . [the v : . . . beans′′@(v@) . . .](. . . spill′′@(we, v@) . . .) . . .

#

and minimal-clause( 2, 1 )

In (524) we have simply changed the coll specification from a sign to a singleton list that
contains a sign.

In the new architecture, we have a non-empty coll value for internally irregular phrases.
This leads us to the expectation that we find internally irregular phrases with idiosyncratic
distributional properties. This expectation, we think, is actually born out, even though none
of the IEs in our investigation is of this kind. Consider, however, the following idiomatic
expression in German.

(525) Hans
Hans

weiß,
knows,

wo
where

(der)
the

Barthel
??

den
the

Most
??

holt.
gets

‘Hans knows every trick in the book.’

As indicated by the “??” in the glosses the meaning of the words Barthel and Most in
these expressions is not transparent to most speakers of German. And, in addition, the
overall meaning of the expression does not help to assign these words a meaning.

This lack of transparency can be illustrated with the information given for this expres-
sion in the Deutsches Wörterbuch von Jacob und Wilhelm Grimm. There, it is speculated
that the noun Bart(h)el might be related to the name Bartholomäus. The word Most is
uncommented, which might be an indication that it is taken to be cider, as there is a
word Most with this meaning in German. This dictionary entry ends with the remark “der
ursprung dieser sprichwörter liegt im dunkel” (the origin of these proverbs is unknown).
According to Wolf 1956, the noun Barthel is related to the Hebrew word for iron, which
is used in the meaning of crowbar. The word Most, then, is related to the Hebrew word
for money which also appears in the slang term Moos (cash) in today’s German. Thus, the
expression originally meant to know where to get cash with a crowbar.18

The complement clause wo (der) Barthel den Most holt seems to be internally irregular:
First, as pointed out before, the words Barthel and Most do not occur in the meaning that
they have in this expression elsewhere in German. Second, the meaning of the clause cannot
be computed by combining the meanings of its parts, even under the etymologically correct
interpretation of the words Barthel and Most. Third, the syntactic form of the embedded
clause is frozen. As the following examples show, the sentence cannot be used in passive
(a), nor with a past tense form of the verb (b), nor may it contain any other lexical material
(c,d). In the examples, we use the nouns crowbar and cash to gloss Barthel and Most.

(526) a. * Er
he

weiß,
knows,

wo
where

der
the

Most
cash

vom/
by the/

mit
with

(dem)
the

Barthel
crowbar

geholt
got

wird.
is

b. Er
he

wusste,
knew

wo
where

(der)
the

Barthel
crowbar

den
the

Most
cash

holt/
gets/

?? holte
got

18I am grateful to Martin Engelhard and Michael Kaschek for pointing me to references for the origin of
this expression.
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c. * Er
he

weiß,
knows

wo
where

(der)
the

Barthel
crowbar

morgen/
tomorrow/

gerade
right now

den
the

Most
cash

holt.
gets

d. * Er
he

weiß,
knows

wo
where

(der)
the

Barthel
crowbar

viel
a lot of

Most
cash

holt.
gets

These data indicate, that we must assume an internally irregular phrase with the phonol-
ogy wo (der) Barthel den Most holt and the meaning every trick in the book. While this
phrase is internally irregular, it is also bound to occur as the complement clause to the
verb wissen (know). In (527) we give several matrix verbs that take embedded interrogative
clauses as complements. As indicated, only the combination with the verb wissen (know) is
possible. As we are no longer concerned with the internal structure of the phrase wo (der)
Barthel den Most holt, we gloss it as every trick in the book in the following examples.

(527) a. Er
he

weiß,
knows

wo (der) Barthel den Most holt.
every trick in the book

b. * Er
he

ahnt,
suspects

wo (der) Barthel den Most holt.
every trick in the book

c. * Er
he

fragt
asks

sich,
himself

wo (der) Barthel den Most holt.
every trick in the book

d. * Er
he

wundert
wonders

sich
himself

darüber,
about

wo (der) Barthel den Most holt.
every trick in the book

The combination of the verb wissen with the phrase wo (der) Barthel den Most holt is,
however, regular. In particular, the complement clause can be topicalized (a). In addition,
the complement clause must establish some discourse referent which can be referred to by
a personal pronoun (b,c).

(528) a. [Wo (der) Barthel den Most holt],
every trick in the book

weiß
knows

Peter
Peter

schon
already

lang.
for a long time

b. Peter
Peter

weiß,
knows

wo (der) Barthel den Most holt,
every trick in the book

aber
but

Hans
Hans

weiß
knows

es
it

nicht.
not

‘Peter knows every trick in the book, but Hans doesn’t.’
c. Peter

Peter
weiß,
knows

wo (der) Barthel den Most holt,
every trick in the book

und
and

Hans
Hans

ahnt
suspects

es.
it

‘Peter knows what’s what, and Hans suspects it.’

But note that the full form of the complement clause cannot occur with the matrix
predicate ahnen (suspect/guess)

(529) * Hans
Hans

ahnt,
suspects

wo (der) Barthel den Most holt,
every trick in the book

und
and

Peter
Peter

weiß
knows

es.
it

From these data we conclude that the irregular phrase wo (der) Barthel den Most holt
combines with the verb wissen (know) in a regular way. But the irregular phrase has an
idiosyncratic distributional property that it cannot combine with any other verb. In the
new feature geometry, we can account for this fact: as the phrase wo (der) Barthel den
Most holt is internally irregular, it has a non-empty coll list. By the Coll Principle, we
know that whatever is in the coll list, must be a sign that dominates the irregular phrase.
We can, now, impose a further restriction on the coll element: we require it to dominate
an occurrence of the verb wissen (know) on whose subcat list we find the synsem value of
the irregular phrase.

In (530), we sketch the phrasal lexical entry for the irregular phrase wo (der) Barthel
den Most holt. We only state the information that is necessary to express the distributional
requirements of the phrase. We leave out its semantics or other syntactic properties.
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(530) The PLE for the internally irregular phrase wo (der) Barthel den Most holt:

E 1 E 2 E 3
2

6

6

6

6

4

phrase

phon 〈wo, (der), Barthel, den, Most, holt〉

synsem 1

coll
D

2
E

3

7

7

7

7

5

and dominate( 2 , 3 )

and

32

6

6

4

word

phon 〈wissen〉

syns loc cat sbc
D

synsem, 1
E

3

7

7

5

It should be stressed that within the the architecture of the coll specification presented
in Section 8.1 we would not have been able to express the distributional requirements of
the irregular phrase. In Section 8.1 phrases only had boolean values in their coll feature.
Thus, we could only indicate whether a phrase is regular or not. With the new architecture
we can not only specify the (ir)regularity of a phrase, but, additionally, we can restrict the
distribution of irregular phrases if necessary.

The expression wissen, wo (der) Barthel den Most holt is an example which clearly shows
that irregular phrases can in principle also have distributional restrictions. Therefore it gives
empirical support to the changes in the sort hierarchy that we propose in this section. Our
point would certainly be stronger, if we could give a whole list of expressions which show
similar behavior. We leave it to further research to gather more examples.

To show that the architecture presented in this section is not merely a stipulation, we
would also be forced to prove that there are no regular phrases or derived words that have
idiosyncratic distributional properties which are not predictable from properties of their
components. I.e., we must justify the assumption that signs which have predictable inter-
nal properties also have a free (or at least predictable) distribution as expressed by the
empty coll list assumed in this section. Although we were not confronted with any coun-
terexamples, we cannot prove that this assumption is correct. We present our assumption
in the form of an hypothesis which still remains to be proven in (531).

(531) The Predictability Hypothesis:
For every sign whose internal properties are fully predictable, the distributional
behavior of this sign is fully predictable as well.

Further research might show that the Predictability Hypothesis is a methodological prin-
ciple rather than an empirically testable hypothesis, just as was shown for compositionality
in semantics (Janssen, 1997).

In this section we have presented a unified account of the coll feature. We use the
value of this attribute to differentiate between signs whose properties are fully predictable
from the properties of the signs that compose them, i.e., derived words and regular phrases,
and signs whose properties are not, i.e., non-derived words and irregular phrases. For the
first group of signs, we have proposed an empty coll value, for the second group, the coll
value is non-empty. Every sign that has a non-empty coll value is listed in the lexicon, i.e.,
as a disjunct in the Lexicon Principle. We have further assumed that lexical signs can
impose distributional requirements on the linguistic contexts in which they may occur. To
formalize these requirements, we have made the linguistic context locally available for lexical
signs in their coll element. We have shown that there are instances of such requirements
attested for both non-derived words and irregular phrases.
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8.4. Appendix: External Modification

After the presentation of our analysis of internally irregular and internally regular id-
iomatic expressions, we will briefly return to an issue that is peripheral to our approach,
but normally arises in the context of idiomatic expressions: the question of how external
modification can be accounted for. In (532), we repeat the two examples of semantically
external modification that we have encountered in previous sections and chapters.

(532) a. An occasional sailor came into the bar.
= Occasionally, a sailor came into the bar. (Nunberg et al., 1994, fn. 15)

b. With that dumb remark at the party last night, I really kicked the social
bucket.
= Socially, I kicked the bucket. (Ernst, 1981, p. 51)

The special property of these sentences is that the adjectival modifier, while occurring
inside an NP, seems to modify some verbal projection. It has been observed in Ernst 1981
that this phenomenon is quite common for idiomatic expressions such as kick the bucket.
Wasow et al. 1983 point out that it is, however, not restricted to idiomatic expressions but
also attested in free combinations, as can be seen in the example in (532a).

In the presentation of our account of internally irregular IEs in Section 8.1, we mentioned
that the phrasal lexical entry given for kick the bucket in (471) excludes such modification,
because the idiomatic phrase disallows semantic material in the NP complement which does
not stem from either the determiner the or the head noun bucket. In this section, we will
moderately change the PLE for this IE in order to allow for modification as illustrated in
the example in (532b).

The aim of this section is quite modest. We will not provide a discussion of the empirical
phenomenon of external modification, all that we want to achieve is to propose some analysis
within the framework of LF-Ty2 which works for externally interpreted modification in the
examples in (532). We assume that the logical form of these sentences is as given in (533).
It is, thus, our goal to provide a system that assigns these logical forms to the sentences.

(533) a. The logical form of (532a):
occasionally′@(λ@.∃x[sailor′@(x@) ∧ come-into-the-bar′@(x@)])

b. The logical form of (532b);
socially′@(λ@.die′@(i))

We will first concentrate on the example in (532a), i.e., we will show how we can allow
an adjectival modifier to out-scope the NP in which it is contained. To do this, as we will
see, it is enough to assign the adjective occasional a slightly more complex logical form than
that used for internal modification.

In the semantic framework introduced in Chapter 4, an adjectival modifier normally has
the semantic type s((s(et))(s(et))), i.e., it takes the intension of a property as input type
and returns a property as its output type. To account for the reading in (533a), we assume
that the adjective occasional has a logical form which is of a more complex semantic type.
In (534), we give the lambda term which we assume in the derivation of this reading: here,
the first semantic argument is the restrictor of a quantifier, its second semantic argument
is the quantifier and, finally, its third semantic argument is the scope of the quantifier.

(534) The logical form of the adjective occasional:
λPλQλQ.occ′@(Q(P )(Q))

This specification is, in fact, all that is needed to account for the external modification
interpretation in sentence (532a). To see how we achieve this interpretation, consider the
structure of sentence (532a) as given in Figure 8.11. The adjective combines with the noun



368 8. THE ANALYSIS

Figure 8.11. The structure of sentence (532a):

Det
λRλS∃x[R@(x) ∧ S@(x)]

an

Adj
λPλQλQ.occ′@(Q(P )(Q))

occasional

N
λx.s′@(x@)

sailor

adj head

N′

λQλQ.occ′@(Q(λ@λx.s′@(x@))(Q))

head

NP
λQ.occ′@(λ@.∃x[s′@(x@) ∧Q@(x)])

VP
λx.c′@(x@)

∆
came . . .

comp head

S
occ′@(λ@.∃x[s′@(x@) ∧ c′@(x@)])

sailor and forms a functor which takes the quantifier a as its argument. Internally, the
semantic contribution of the noun is taken to be the first argument of the variable Q, which
is of the semantic type of a quantifier.

The tree in Figure 8.11 shows the adjective, while combining with the noun sailor,
introduces a non-logical constant which out-scopes the rest of the semantic material in the
sentence. Technically this is achieved mainly by making the adjective a functor which takes
the determiner as its semantic argument, instead of being the argument of the determiner
as in the case of semantically internal modification.

We can apply this analysis of external modification to our treatment of the IE kick the
bucket. For this purpose, we must assume first that the adjective social has a logical form
similar to that of the adjective occasional.19 This logical form is given in (533b).

(535) The logical form of the adjective social as needed for external modification:
λPλQλQ.socially′@(Q(P )(Q))

Using this logical form for the adjective social in the analysis of sentence (532b), we
arrive at the following logical form for the NP the social bucket.

(536) The logical form of the NP the social bucket:
λQ.socially′@(λ@.[the y : bucket′@(y@)](Q@(y)))

Note that the logical form in (536) is that of a regular NP, i.e., it is derived in exactly
the same way as the logical form of the NP an occasional sailor in the tree in Figure 8.11.

In order to allow for semantically external modification of the IE kick the bucket, we
must create the possibility for the predicate socially′ to scope over the semantic contribution
of the idiomatic VP, i.e., the term die′@(x@) instead of over the semantic contribution of the
determiner the. In (537), we compare the logical form of the NP the social bucket in (536)
with that of the VP, which is just like the logical form of the entire sentence in (533b), but
still needs to combine with the subject NP.

(537) the social bucket λQ.socially′@(λ@.[the y : bucket′@(y@)](Q@(y)))
kicked the social bucket λx.socially′@(λ@.die′@(x@))

We achieve the desired logical form if we ignore the lambda abstractor in the two terms,
and replace the subterm φ of socially′@(λ@.φ) with the term die′@(x@). Then, socially′ has

19In the discussion of the TAG analysis in Abeillé 1995 we have seen that the same assumption was needed.
There, we considered a pair of elementary trees for the adjective social such that the syntactic tree adjoined
to an N node, whereas the semantic tree adjoined to an F node (cf. number (439a) on page 295).



8.4. APPENDIX: EXTERNAL MODIFICATION 369

the rest of the logical form of the sentence as its argument. In the formalization of the
semantic framework of LF-Ty2, we have introduced a relation replace which can be used
for the term replacement necessary in the case of the idiomatic expression as well.

In order to allow for semantically external modification in the case of the IE kick the
bucket, we modify the content specification in the description of the IE as indicated
in (538) and add some more relation calls. The crucial change made in comparison to the
PLE in (471) is that we add the replacement operation. The description given in (538) is
the final version of the phrasal lexical entry of the IE kick the bucket, as we assume it to
occur as a disjunct in the LexP.

(538) The phrasal lexical entry for the IE kick the bucket (final version):

E 7 E 10 E 11
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phrase

phon 3 ⊕ 4

s l

2

6

4

cat

"

head 1

subcat 〈 2 〉

#

cont λx. 8

3

7

5

dtrs

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

head-compl-struc

h-dtr

2

6

6

6

6

6

6

6

4

word

phon 3 〈kick〉

s l

2

6

6

4

cat

2

6

6

4

head 1

"

verb

vform not pas

#

subcat
D

2 , 5
E

3

7

7

5

3

7

7

5

3

7

7

7

7

7

7

7

5

n-dtr

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

phon 4

syns 5

2

6

4
l

2

6

4

c

"

head noun

subcat elist

#

ct λQ. 9

3

7

5

3

7

5

dtrs

2

6

4

h-dtr 6

n-dtr

"

phon 〈the〉

syns Det

#

3

7

5

coll 〈〉

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

coll
Dh

sign
iE

3

7
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7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and

7"

phon 〈bucket〉

syns N

#

and lexical-head( 6 , 7 )

and
10h

the y : bucket′@(y@)](Q@(y))
i

and component( 9 , 10 )

and
11h

die′@(x@)
i

and replace( 8 , 11 , 9 , 10 )

Even though the description in (538) looks admittedly complicated, it is a direct encod-
ing of the effect of semantically external modification. Let us consider the changes made
to the description in (471) above. First, the content value of the VP is not given as the
term λx.die′@(x@). Instead, we allow for further semantic material to intervene between the
lambda operator and the term die′@(x@). This is done in the following way: the content
value of the VP as given in (538) is given as λx. 8 , i.e., it is an abstraction object with
the variable x as its var value and the tag 8 as its arg value. The term 8 contains as a
subterm the term referred to with the tag 11 . In the last line in (538), this tag is described
as referring to the term die′@(x@).

Similarly, the content value of the NP is not given as λQ[the y : bucket′@(y@)](Q@(y))
as in (471). Instead, an external modifier is allowed to occur between the lambda operator
λQ and the term [the y : bucket′@(y@)](Q@(y)). We can state the content of the NP as
having the form λQ. 9 , where the tag 9 stands for a term which contains a subterm of the
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form [the y : bucket′@(y@)](Q@(y)), i.e., the term referred to by the tag 10 in (538). The
second relational call in (538) guarantees that the term 10 is a subterm of the term 9 .
Remember in LF-Ty2, one term is a subterm of the second, in case it is a component of the
second. We can, therefore, use the relation component to express subtermhood.

Because of the fact that the term 10 is enforced to be a subterm of the term 9 and
because of the way we have defined the relation replace in Chapter 4, the term 11 must
be a subterm of 8 . The relation replace holds of a quadruple of me objects 〈x, v, y, w〉 if
and only if x is just like y, except that it contains the term v as a subterm where y has
the subterm w. We can illustrate this with the sentence in (532b). In (536) we saw the
content value of the NP the social bucket. We repeat this logical form in (539), showing
that it is exactly of the form required in (538).

(539) a. The logical form of the NP the social bucket:
λQ.socially′@(λ@.[the y : bucket′@(y@)](Q@(y)))

b. . . . in AVM form:
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6
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4

abstr

var Q

arg 9

2

6
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4
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arg 10 [the y : bucket′@(y@)](Q@(y))
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Similar to this, we can give the content value of the VP in the case of the example
sentence in (532b). In (540), we first give a term notation in (a) of the logical form of the
VP, followed by an AVM notation in (b) which includes the tags used in (538).

(540) a. The logical form of the VP kick the social bucket:
λx.socially′@(die′@(x@))

b. . . . in AVM notation:
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6

6

6

6

6

6

6
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6

4

abstr

var x

arg 8

2
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4
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4
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var @

arg 11 die′@(x@)
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It is easy to see that the terms referred to by the tags 8 , 11 , 9 and 10 stand in the
relation replace: The terms 8 and 9 are of the same species, application. Their functor
values are of the same species as well, socially. The arg value of 8 is the intension of the
term 11 . As this is the subterm that is replaced, the arg value of 9 is correctly given as
the intension of the term 10 .20

It should be noted that the new version of the description of the IE kick the bucket
does not influence the ban on semantically internal modification: the term referred to with
the tag 10 still specifies that there may not be any semantic contribution occurring in the
restriction of the quantifier except of the contribution of the noun bucket.

20If there is no modifier occurring inside the NP, then, trivially the terms referred to by the tags 9 and 10

are identical, and, by virtue of the definition of the relation replace, the terms referred to by the tags 8

and 11 are also identical.
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Let us summarize the treatment of modification. We have excluded semantically internal
modification in the case of the IE kick the bucket by imposing a very strict logical form on
the NP. In the case of semantically external modification, we have first shown how this
phenomenon could be handled within the framework of LF-Ty2 in general. We have, then,
formulated the restrictions on the logical form of the NP in the IE kick the bucket so that
external modifiers are allowed. Furthermore, the specification of the content value of the
idiomatic VP is such that any external modifier to the NP will apply as modifier to the VP.

This approach to semantically external modification is very similar to the solution pro-
posed in Abeillé 1995: We must assume that there are certain adjectives which are functors
of a higher type as they take a quantifier as their argument. Second, an internally irregular
IE which allows for an external interpretation of an adjectival modifier must specify this
possibility explicitly. In TAG this was done by a link between the N node in the syntactic
structure and the F node in the semantic structure. In our case this is achieved by allowing
external modifiers to appear in the logical form of the VP, whereas internal modifiers are
excluded. However, our proposal differs from Abeillé’s, in the case of free combinations, the
external modification reading comes for free, whereas such reading would require far more
encoding in Abeillé’s analysis.21

21Note that in Abeillé’s analysis, the necessary link goes from the N node to the F node. In the case of an
elementary tree for transitive verbs, however, there would just be an NP substitution node. Thus, in TAG,
one is forced to postulate new elementary trees for every possible case of external modification.





CHAPTER 9

Conclusion

In Part II, we provided an account of idiomatic expressions in HPSG. We consider it
important to have such an account in order to show that the semantic framework developed
in the first part of the thesis, and especially in Chapter 4, is empirically robust. The frame-
work of LF-Ty2 is robust in the sense that notorious counterexamples against a regular
combinatorial combination of logical forms are captured by the newly introduced mecha-
nism, whose core element is the attribute coll. In the present concluding chapter to the
second part of this thesis, we will address several issues that enable us to put our analysis in
Chapter 8 into a broader perspective. First, we will compare the analysis with the proposals
presented in Chapter 7. This discussion will take into account only the analyses of IEs in
the different frameworks. Second, we will demonstrate that the coll feature can equally
well be used for other linguistic phenomena. We will sketch how, in principle, constructions
other than IEs can be captured in a way parallel to the treatment of internally irregular
IEs in Section 8.1. Furthermore, we address some other words that show idiosyncratic dis-
tributional properties which might be accounted for with coll specifications in the lexical
entry instead of with general principles. As an example of such words, we will come back
to the case of anaphora which was already mentioned in the introduction.

9.1. Comparison to the Other Approaches

In the preceding chapters, we have already tried to indicate what similarities and differ-
ences we see between the approach developed in Chapter 8 and the approaches referred in
Chapter 7. In this section we will compile these remarks to a coherent overall picture.

The basis of our approach is the distinction between IEs that are internally regular
and those that are internally irregular. The empirical foundation of this distinction goes
back to Wasow et al. 1983 and served as the basis for the approach in Gazdar et al. 1985
as well. While the analysis of Gazdar et al. 1985 is silent with respect to the treatment
of internally irregular IEs, internally regular IEs are analyzed as regular combinations of
words that underlie idiosyncratic distributional restrictions. In our discussion of the GPSG
analysis, we pointed to three problems: (i) the account cannot differentiate between the IEs
spill the beans and pull strings. (ii) the partial function approach to semantic interpretation
causes very complicated restrictions on the interpretation of the semantic constants, which,
so far, have not been fully spelled out in detail. And (iii), in GPSG, there is no notion of a
syntactically complex lexical item, which is needed to account for internally irregular IEs.

As far as the first problem is concerned, we must keep in mind that the semantic analysis
of extraction is quite similar in GPSG and in our proposal. In both cases, the semantics of
the extracted constituent is introduced into the logical form of the sentence only at the node
that dominates the filler. Still, once the semantic contribution of the filler has been intro-
duced, the overall logical form of a sentence with extraction does not differ from a sentence
without a topicalization structure. In the case of GPSG, this fact caused the problem that
a purely interpretive account of the distributional restrictions of lexical elements cannot
make reference to a particular syntactic configuration. In our approach, on the other hand,
we included a syntactic component into the mechanism for distributional restrictions. As
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shown in the lexical entry of the idiomatic word spill in (502), we can impose the restriction
that the particular distributional requirements must be met at some syntactic node, i.e.,
the minimal clause in the case of the verb spill. This node does not include the filler, and,
thus, does not contain the filler’s semantic contribution in its logical form.

Let us next turn to the second point of criticism. It would, in principle, have been
possible for us to simply adopt the model-theoretic assumptions of Gazdar et al. 1985 as far
as the interpretation of semantic constants is concerned. Under such an analysis, however,
we would not only have encountered the same problem as Gazdar et al. 1985 regarding the
fine-grained differences among IEs, we would further have been led to the assumption that
the mutual restrictions of parts of an IE should not be captured within the HPSG grammar.
This claim needs some explanation.

The semantic framework of LF-Ty2, as presented in Part I, provides terms of Ty2 as
content values of signs. Principles such as the Semantics Principle enable us to com-
bine the semantic contributions of the daughters in a phrase to form the semantic contribu-
tion of the phrase. The content values are, however, terms of the semantic representation
language, not the interpretation of these terms. Put differently, the content values of
signs are conceived as logical forms of the signs, not as their semantic interpretation.

In Chapter I we defined the function {[ ]} which assigns me objects a model theoretic
interpretation. It is doubtlessly the case that there are some semantic relations that hold
between the model theoretic interpretation of semantic constants, such as antonymy, hy-
ponymy etc. These relations are part of the world knowledge and, as such, part of the
restrictions on the way we can possibly interpret semantic constants. Within the HPSG
grammar, we have no way to impose a restriction on the actual semantic interpretation of
constant objects. The logical forms are all we can restrict, i.e., the terms which can occur
as content values of signs under which conditions.

In our perspective, the fact that the idiomatic use of beans always has to co-occur with
the idiomatic use of spill is not a restriction on the possible semantic models. Instead, it
should be captured as a restriction on the distribution of the two idiomatic words. The way
we have expressed this distributional requirement is as a restriction on the possible logical
forms of sentences that contain an idiomatic word.

It should be noted that the logical form treatment of the distribution of idiomatic words
makes the restrictions on the semantic interpretation of the constants spill′′ and beans′′

superfluous, i.e., these constants might even be real synonyms to the constants divulge′

and secret′. This leads to an architecture with fewer limitations on the possible semantic
models. While we consider this already a strong advantage of our system, the real difference
between the two approaches can be seen once we take into account the further consequences
of the partial function analysis as sketched in the criticism of Pulman 1993, which we have
outlined in Section 7.1. Pulman shows that the approach of Gazdar et al. 1985 has as its
consequence a duplication of semantic constants. As an example, the definite article in the
IE spill the beans must be a special semantic constant, different from the normal definite
article, but also different from the definite article which occurs in the case of other IEs such
as bite the bullet, break the ice, etc. Such a duplication is avoided under our logical form
account. It follows that the logical form treatment of the distributional restrictions leads to
a smaller inventory of semantic constants. Specifically, special semantic constants are only
necessary for the words whose distribution we must constrain, not for all the constants that
can co-occur with these constants in the same clause.

Finally, we can address the third criticism to the GPSG account. In our analysis of in-
ternally irregular IEs we introduced phrases which are exempt from all principles of regular
combination. These phrases are identifiable by their coll specification and they must be
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listed in the lexicon. Normally, the components of such irregular phrases are themselves
regular, and the irregular phrases are not fully fixed with respect to their internal struc-
ture. This was illustrated for the internally irregular VP kick the bucket in Section 8.1 and
Section 8.4. There, we saw that the NP may contain free syntactic material and that the
semantics of this material re-appears in the semantics of the VP as a whole. Due to the
fact that the syntactic rules of licensing in GPSG work strictly on local trees, it is very dif-
ficult to envisage an extension of GPSG that would actually allow for syntactically complex
lexical elements. In Section 8.3 we unified our treatment of the coll feature to arrive at
a lexicon which comprises both the lexical entries for words and the phrasal lexical entries
for internally irregular IEs.

We conclude that our approach avoids the problematic properties of the GPSG analysis,
while it maintains its major empirical and analytical insights. In particular, we are strongly
influenced by the distinction between internally regular and internally irregular IEs and the
insight that some mechanism is needed to account for idiosyncratic distributional properties.

The analysis of Abeillé 1995 expressed within the framework of TAG provided a very
natural account of internally irregular IEs such as kick the bucket. The reason why it is easy
to incorporate this type of IEs into a TAG grammar comes from the notion of locality that
TAG assumes: There, the smallest structural entities in grammar are not nodes or local
trees, but trees that are complete with respect to all obligatory dependencies, i.e., trees that
contain nodes for all arguments and, if necessary, for semantically vacuous material or fillers.
In HPSG, however, every single linguistic object must satisfy all principles of the grammar.
Therefore, we cannot consider complex syntactic structures as basic entities of the language,
as it is done in TAG. In our account we managed to include complex lexical entries into our
grammar, while still preserving the stronger locality notion of HPSG. This was achieved
by introducing a special kind of phrases which trivially satisfy all the principles of regular
combination. As a result, we allow for individual non-terminal nodes in the structure of a
sentence whose internal properties are not predictable from those of its parts, but which
are licensed by a phrasal lexical entry. Still, these nodes being phrasal, they dominate some
structure on whose form the phrasal lexical entry may impose constraints.

Another difference between the TAG approach and our HPSG analysis lies in the way we
encode the syntactic flexibility of an IE. In TAG, the syntactic flexibility is a consequence
of the number of trees present in the Tree family of the particular IE. In the HPSG account,
we encoded the syntactic flexibility of an IE indirectly. First, we used internal properties of
the elements that constitute an IE. For internally irregular IEs such as kick the bucket, we
specified in the phrasal lexical entry that this IE always be a VP with the NP the bucket
being realized as the direct object. This automatically excluded the option of extracting
the NP or realizing it as the syntactic subject, as in both cases there would not be a direct
object NP node with the required phonology.

In the case of the syntactically more flexible, internally regular IEs, we have used certain
locality restrictions within which all elements that constitute the IE must be found. An
example of this would be that for restrictive speakers, we have assumed that the contextual
requirements of the verb spill in the IE spill the beans must be satisfied within the minimal
clause of the verb. For more flexible IEs, or more permissive speakers, these requirements
must only be satisfied in some larger syntactic domain. This domain restriction has the
effect of excluding certain syntactic configurations, such as extraction, because in extraction,
the filler is realized outside the minimal clause of the verb.

To sum up, the TAG approach of Abeillé 1995 and our approach both seem to be flexible
enough to account for the great diversity found in the empirical area of IEs. The differ-
ences between the analyses are due to fundamental differences between the grammatical
frameworks.
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Finally, we shall compare our analysis to the approach of Riehemann 1997. Again,
many differences simply lie in the fact that Riehemann assumes a constructional approach
to HPSG, whereas we do not. In addition, while Riehemann collects all the properties of a
syntactically complex IE locally in a phrase (in the words set and the liszt list), we allow
the use relations which refer to elements deeper in the syntactic and the semantic structure.

The main architectural change proposed in Chapter 8 is that signs may have an attribute
whose value contains some larger sign which dominates the sign under consideration. We
used this attribute, coll, to indicate that a sign is licensed by some lexical entry (phrasal
or not) and to specify the idiosyncratic distributional restrictions of the particular sign.
In Riehemann 1997, no mechanism is assumed that would allow encoding these distribu-
tional properties. Instead, the approach assumes that the necessary restrictions can be
incorporated into the construction that contains elements with idiosyncratic distributional
properties. As we showed, however, having constructions that allow for the occurrence
of distributionally constrained elements is not sufficient to prevent these elements from
occurring in other constructions.

What is particularly remarkable in the contrast between our approach and that of Riehe-
mann 1997 is that for each IE, Riehemann assumes a special subsort below phrase but still
needs idiomatic words for the crucial elements that constitute the IE. In our approach, we
either have a phrasal lexical entry for the IE as a whole, as is the case with kick the bucket,
or we have lexical entries for the parts of the IE. In the latter case, however, the IE as a
whole comes to existence by the combination of its parts. Thus, the number of idiomatic
entities assumed in the grammar is smaller in our approach than it is in Riehemann 1997.

In the following subsection, we will briefly address the general role that the coll feature
can play in the architecture of grammar. In particular we show that phrasal lexical entries
can be used to encode constructions in general, and that there are more lexical elements
that show distributional irregularities such as those we found in the case of the elements
that constitute internally regular IEs.

9.2. The Role of the coll Feature

In this section, we will emphasize the fact that IEs are not the only elements in the
language that show internal and external irregularity. As such, as such we can assume that
constructions in general are instances of internally irregular phrases. Furthermore, words
such as anaphora or personal pronouns can equally well be considered elements that exhibit
idiosyncratic distributional properties. We will not go into these issues in great detail, but
we would like to outline what picture of grammar emerges once the coll feature is taken
into consideration.

Other Internally Irregular Phrases. In Section 8.1 we presented our use of the coll feature
to allow for phrases which are exempt from the principles of regular syntactic and semantic
combination. Doing this, we opened the door for the treatment of irregularities at the
phrasal level. It is natural that the treatment of internally irregular IEs is just the first step
towards a broader investigation of constructions in general. In fact, one of the contributions
of this work is to incorporate phrases with internal idiosyncrasies into the architecture of
HPSG, by extending the lexicon to contain phrasal lexical entries as well as lexical entries for
non-derived words. Something similar has already been done, in principle, in constructional
HPSG (Sag, 1997; Riehemann, 1997). However, it has never been proposed under a non-
constructional perspective on HPSG.

Given this new architecture, we should ask what would be the analogue of constructions.
In (541) we give such a characterization.



9.2. THE ROLE OF THE coll FEATURE 377

(541) A construction is a phrase whose internal properties cannot be derived by com-
bining its daughters in a regular way (i.e., a phrase with [coll nelist]).

As this characterization indicates, we need a notion of “regularity” before we can identify
exceptions. This means that it is, ultimately, a theory-internal distinction that should be
made between internally regular and internally irregular phrases, i.e., constructions. There
are clear cases of constructions, such as the internally irregular IEs explored in this part of
the thesis. For other phenomena, the classification is not as straightforward. Consider, for
example, the treatment of relative clauses in Pollard and Sag 1994 and Sag 1997. In Pollard
and Sag 1994, an analysis is assumed that relies on the existence of a phonologically empty
relativizer. Using this special word, all properties of a relative clause can be derived by
means of regular combination. In contrast to this Sag 1997 does not use a phonologically
empty functional head for relative clauses, but assumes special phrases, i.e., what he calls
constructions, which may have properties that differ from those of other phrases. To name
just one of these properties, the relative clause is a verbal projection with a noun in its mod
value, whereas regular verbal projections do not have a synsem object as their mod value.

It is beyond our objectives to take a position in the debate whether there is empirical
motivation for an empty relativizer, or for verbs with non-trivial mod values in English.
Our goal is merely to emphasize that we have provided a formal integration of internally
irregular phrases into non-constructional HPSG. Thus, the linguist can express his or her
insights or intuitions about the distinction between regular and irregular aspects of language
in a formally explicit way. This has the important advantage that we are not forced to adopt
a particular analysis, such as the assumption of an empty relativizer which was unavoidable
within the theory of Pollard and Sag 1994. Instead, we can simply declare certain kinds of
phrases exceptional and define their properties in terms of phrasal lexical entries.

The reader should also be warned that our analogue to constructions as characterized
in (541) will not identify the same entities that are called construction in Construction
Grammar (Kay, 1997). The case of IEs illustrates this. In Construction Grammar, like in
TAG and constructional HPSG, internally regular IEs as spill the beans are treated as units,
i.e., as a construction. In our approach, following GPSG, we located the irregularity of this
IE in the distributional restrictions on the words spill and beans. This difference is due to
the fact that in Construction Grammar, just as in TAG and constructional HPSG, there is
no theory of external irregularities, i.e., of distributional idiosyncrasies.

We should finally expand on another distinction between the present approach to con-
structions and the one taken in constructional HPSG. As we have seen in the treatment
of the IE kick the bucket in Riehemann 1997, Copestake et al. 1997 introduce an attribute
cxcont (constructional-content). The semantics principle is given so that the liszt
value of a phrase contains exactly the elements in the liszt values of the daughters and
those in the cxcont liszt value of the mother. This means that constructions can only
add semantic content but not remove relations that are present in the daughters. The con-
sequences of this can be seen in the treatment of the IE kick the bucket. In the description
of the kick-bucket-idiom-phrase in (460) on page 314, Riehemann 1997 assumes idiomatic
words kick, the and bucket which make an empty semantic contribution. In our own analy-
sis, these words occur with their regular semantics as parts of the irregular phrase kick the
bucket, and it is just one of the signs of internal irregularity of this phrase that it does not
integrate the semantic contributions of its daughters into its own logical form.

To conclude, the introduction of the coll feature creates the necessary architecture
for an analysis of special constructions within non-constructional HPSG. Such a non-
constructional HPSG perspective on phenomena treated as constructions will certainly re-
veal interesting insights because we will have to address questions which are not in the
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focus within the other frameworks, namely: what are the minimal parts of a particular
“construction” for which we must assume internal irregularity? What are the distributional
requirements of these parts of the “construction”? These questions were asked for idiomatic
expressions in the framework of GPSG for example, but, to our knowledge, they have not
been addressed in other cases of constructions.

Other Words with Idiosyncratic Distributional Properties. In the section on internally regu-
lar IEs such as spill the beans, we introduced a formalization of distributional restrictions on
non-derived words. In Section 8.3, we argued that there are also some internally irregular
phrases that show idiosyncratic distributional properties. Finally, we have presented an
architecture where, in principle, every sign that is licensed by some lexical entry (phrasal
or not) can, in principle, impose idiosyncratic distributional requirements. We think that
there are at least some prominent cases of signs which have such a idiosyncratic distribution.
If we consider the grammar of Pollard and Sag 1994, we can take the following two cases:
traces and signs that are subject to binding conditions.

Since traces are the simpler case, we consider them first. Remember that, contrary to
our analysis, the grammar in the appendix of Pollard and Sag 1994 assumes an analysis of
complement extraction which contains traces. A trace is a sign that has an empty phon
value and a single element in its inherited slash set which is identical to the loc value
of the trace. Assuming such a sign, there must be a mechanism to prevent it from freely
occurring in the language. In Pollard and Sag 1994 this is done in the Trace Principle,
which is repeated in (542).

(542) The Trace Principle (Pollard and Sag, 1994, p. 400):

The synsem value of any trace must be a (noninitial) member of the subcat list
of a substantive word.

The intention of this principle is to enforce that traces only occur as complement daugh-
ters. As pointed out in Richter et al. 1999, such a principle must be interpreted as a re-
striction on the structures that may contain a trace. As it is an idiosyncratic distributional
property of some lexical element, it is most naturally re-expressed as a restriction on the
coll value of a trace inside the trace’s lexical entry. In (543), we give the revised lexical
entry for the trace, which incorporates the effect of the Trace Principle.

(543) Lexical entry for the trace (including the Trace Principle):
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The first AVM in the lexical entry of the trace contains exactly the information given in
the lexical entry for the trace in Pollard and Sag 1994: The phon value is an empty list and
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the local value of the trace ( 2 ) is identical to the single element in the inherited slash
set, while all other nonlocal values are empty. In (543) we have augmented this lexical entry
with the coll specification. The conditions on the coll value ( 3 ) encode the Trace
Principle: every trace must have a coll value of a certain form. Due to the Coll
Principle, this means that every trace must occur in a structure that has certain properties.
In the case of traces, the structure must be such that it dominates some sign 4 such that 4

is (i) a word, (ii) has a head value of sort substantive, and (iii) contains the synsem value
of the trace ( 1 ) as a non-initial member on its subcat list.

Other words which have idiosyncratic distributional properties are pronouns or anaphora.
These elements are, however, identifiable via a certain content value in the feature geome-
try of Pollard and Sag 1994, i.e., anaphora have a content of sort anaphor, for pronouns it
is of sort personal-pronoun, and for referential expressions it is of sort nonpronoun. Binding
Theory expresses a generalization of the contexts in which these three classes of elements
may occur. Again, as pointed out in Richter et al. 1999, the principles of Binding Theory
are constraints on the structures that contain signs with certain content values.

In our new architecture, we can express the conditions of Binding Theory as distribu-
tional properties. For illustration, consider Principle B of Binding Theory in Pollard and
Sag 1994 (p. 401), repeated in (544).

(544) Principle B:

A personal pronoun must be locally o-free.

The details of the definitions of the HPSG Binding Theory are not important in this
context. We simply assume that an element is locally o-free iff there is no element in the
structure that locally o-binds it.1 We can, therefore, restate Principle B as a restriction
on the coll element of all words that are personal pronouns.

(545) A formalization of Principle B:
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In this formalization of Principle B, it is obvious that the principle is a constraint
on the distribution of personal pronouns: the antecedent of the principle is satisfied by all
(non-derived) words whose content value is of sort personal-pronoun.2 For these words
( 1 ), it is then required in the consequent of the principle that they occur in a context in
which it is true for every sign 3 that occurs in this context ( 2 ) as well, that 3 does not
locally bind the personal pronoun.

This reformulation of Principle B is slightly different from the way we have integrated
the Trace Principle into the grammar. In the case of the Trace Principle, we have

1For an RSRL formalization of the Binding Theory of Pollard and Sag 1994, see Richter 2000 (pp. 252–258).

2Note that this captures the fact that in the grammar of Pollard and Sag 1994 case marking prepositions
that occur with a pronoun as their complement, such as the PP to her in (i), are considered pronouns with
respect to Binding Theory.
(i) Maryi didn’t talk to her∗i,j anymore.
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simply included the distributional restriction of the trace in its lexical entry. In the case
of Principle B, we have conserved the fact that it is a generalization. It is, however, a
generalization about the distributional requirements of some lexical elements. Alternatively,
of course, we could have stated the principle explicitly as part of every lexical entry of a
personal pronoun. What we want to illustrate with the encoding chosen in (545) is, however,
that we can easily generalize distributional restrictions for larger classes of words.

We want to conclude this discussion with the observation that even though the gram-
mar of Pollard and Sag 1994 does not address idiomatic expressions, it still needs to give
distributional restrictions for certain words. As the grammar is not given in a fully formal-
ized way, we can only guess what mechanisms the authors have in mind to express these
constraints. In Richter et al. 1999, it was shown that the constraints are restrictions on
the structures in which particular words may occur. Still, the distributional restrictions are
presented in the book as if they were properties of these words. In our new architecture,
assuming the coll feature, we can formalize these distributional restrictions in a way that
shows that they are both, idiosyncratic properties of the particular words, and restrictions
on the structures which may contain these words.

9.3. Compositionality?

In Part II we complemented the analysis of regular combinations from Part I with an
account of irregularity phenomena as attested in the domain of idiomatic expressions. We
presented the data on idiomatic expressions so that there are two classes of problems for
the grammar of Part I. First, we considered the case of IEs such as kick the bucket that
seem to show that the meaning of a complex expression is not related to the meaning of its
parts. Second, we considered IEs such as spill the beans for which we can assume a regular
combination of the meanings of their parts, but under such an assumption, the system
presented in Part I cannot capture the distributional restrictions of parts of the IE.

In Part I we were only concerned with the regular combination of smaller signs to form
larger signs. We presented a semantic architecture which has the effect of also combining
the semantic representations of the smaller signs in a regular way to arrive at the logical
form of the larger sign. We chose a semantic framework which was based on flexible type
shifting operations as those introduced in Hendriks 1993 combined with Ty2 (Gallin, 1975)
as the underlying semantic representation language.

Idiomatic expressions constitute an extreme case of potential counterexamples to such
a regular treatment of semantic combination. In the chapters of this part of the thesis, we
encountered two basic questions. The first question arises from the observations made about
internally irregular IEs: How can it be that the VP kick the bucket means something like
die? The second critical question for our architecture of regular combination is concerned
with internally regular IEs: Why is it that the noun beans means something like secret only
in combination with the verb spill (in the meaning of divulge)?

Both of these questions received an answer in Chapter 8. The answer given there located
the idiosyncrasies in both cases in the lexicon. This had the effect of leaving our architecture
of combinatorial semantics untouched. We argued that in the case of kick the bucket, we
come across internally irregular properties. To account for them, we assumed that the VP
is not the result of regular combination of smaller signs, but that it is directly licensed by
some (phrasal) lexical entry. As such, the VP is naturally freed from being forced to obey
the regular principles of semantic combination. We used the coll feature to identify lexical
entities such as this IE.

Thus, we solved the first problem by introducing phrasal lexical entities: Semantic
combination is only regular for non-lexical signs. This assumption is in fact very natural.
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It is, however, not in all cases obvious to decide what should count as a lexical sign and
what should not. As an analogy, consider the theory of formal languages. In any formal
language, the basic entities of combination, usually called the members of the alphabet,
are not assumed to be internally structured, i.e., to obey the construction rules of the
formal language. Similarly for the non-recursive cases of signs, i.e., non-derived words, it
would be unmotivated to postulate a predictable form-meaning relation. What is new in
our architecture is that we assume the existence of elements that are recursively built, i.e.,
which are composed out of smaller bits of the same data structure, but which must still be
considered lexical in the sense of being idiosyncratic. To come back to our analogy with
formal languages, we are in a position where we assume an alphabet which contains not only
elements such as a and b, but also elements of the form ab.3 For the purposes of semantic
and syntactic combination the internal structure of the basic entities is of no importance.
Thus, in the light of the analysis in Chapter 8, we claim that simple principles of regular
combination hold for all elements in the language with the exception of elements that are
directly licensed by some (possibly phrasal) lexical entry.

This re-adjustment of what should be considered the basic entities of regular combina-
tion, provides an answer to our first question. Still, we must address the second problem
mentioned above. In our discussion of internally regular IEs we observed that the distri-
bution of some lexical entities cannot be predicted on the basis of the distribution of other
entities that are of the same syntactic category or that have the same meaning. As an
example, we saw that the distribution of the noun beans in the meaning of secret is neither
parallel to the distribution of the noun beans in its regular meaning nor to the noun secret.
In fact, the noun occurs with this particular semantics only in combination with the verb
spill in the meaning of divulge. This distributional property of the noun beans is not shared
by any other noun in the language. It was this observation that led us to the claim that
distributional idiosyncrasies are lexical properties, i.e., they should not (and cannot) be
captured anywhere else but in the lexicon.

In our analysis in Chapter 8 we proposed a relatively simple extension of the HPSG
feature geometry: we introduced a single new attribute, coll, whose value is a list with
at most one sign on it. The coll value of a sign specifies the possible contexts in which
it can occur. If the coll value is empty then this sign does not have any distributional
restrictions. If it is non-empty, however, the sign can in principle have such restrictions.
Technically, the Coll Principle ensures that the occurrence restrictions imposed on the
coll value are actually met in every structure that contains a certain sign.

In the discussion of IEs, we showed that the distributional restrictions of signs can greatly
vary: in the case of the idiomatic use of beans and spill, the restrictions concerned the logical
form of some clause, in the case of the light verb make, the restriction required the presence
of some particular word within the sentence. We gave examples of (non-derived) words
that have idiosyncratic distributional properties, but also, in Section 8.3, of an internally
irregular phrase which is distributed idiosyncratically.

All these entities, non-derived words and irregular phrases are treated as lexical in
our architecture. Thus, we formulated the hypothesis that only lexical entities can, in
principle, have idiosyncratic distributional properties. Again, we achieved a reduction of
apparent problems for the assumption of strong regularity to idiosyncratic properties of
lexical entities. As a consequence, signs that show distributional idiosyncrasies are combined
in a regular way, but the constraints on their occurrence possibilities will exclude some
combinations from occurring in the language. It is in this sense that we restored the
assumption that complex signs are built in a regular way: To form phrases, there is a

3For analogy, consider the Spanish spelling system. While it uses symbols from the latin alphabet, until
recently (1994), the multi-letter combinations ch and ll were considered basic entities for alphabetic ordering.
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small number of syntactic possibilities of combination, the ID-Schemata, and just two
possibilities to combine the semantics (taking either the head daughter or the non-head
daughter as the functor and the other as the argument). For derived words, Derivational
Rules specify exactly what the syntactic and semantic properties of the output word are in
relation to those of the input. For signs that are licensed by a lexical entry, on the other
hand, we allow a high degree of internal and external idiosyncrasy.

The major difference between our approach and previous analysis is that we located
all idiosyncrasy in the lexical entry, even the distributional idiosyncrasy. Among the ap-
proaches considered in Chapter 7, Abeillé 1995 and Riehemann 1997 did not acknowledge
the existence of distributional idiosyncrasies. In Gazdar et al. 1985 the existence of dis-
tributional idiosyncrasies was accepted, but these idiosyncrasies were built into the model
theoretic interpretation of semantic constants, and they were not part of the lexical entries
(or the terminal local trees) of the words. In our approach, we did not impose any condi-
tions on the way the non-logical constants are interpreted, but formulated the distributional
constraints in terms of properties of the larger structures in which the words can occur.

To conclude this chapter, we briefly recall the motivation for choosing the particular
name coll for the attribute that is in the center of our analysis. As mentioned earlier,
this name suggests two things: First, it can be seen as an abbreviation of collocation,
because the phenomenon of idiomatic expressions is sometimes referred to as a collocational
phenomenon. Second, and more correctly in the light of the role that we attribute to this
feature, it is the acronym for Context Of Lexical Licensing. We showed that only lexical
entities, i.e., non-derived words and irregular phrases, have a non-empty coll list. This
means that the coll value indicates whether a sign is licensed by a lexical entry or not. In
addition, in the case of a non-empty coll list, the element on the list specifies the linguistic
context in which the sign occurs. We tried to show in the last chapter and in Section 9.2
that the coll feature is of central importance in the grammar, once irregularities are taken
into account. As such, the coll feature and the Coll Principle is an irregularity module
that can, in principle, be added to any HPSG grammar to make it capable of coping with
irregularity as well.4

4This is true, at least, for any HPSG grammar that assumes the Derivational Rule approach of Meurers
2000. For other approaches to lexical generalizations, further adaptations of the Coll Principle might be
necessary.



Summary

In this thesis, we expanded the architecture of grammar of Pollard and Sag 1994 with
a model-theoretic semantics and with an irregularity module. The first was located in
the content value of a linguistic sign, the second in its coll value. In this summary,
we focus on two general points. First, we argue that the architecture for combinatorial
semantics presented in Part I has several conceptual and practical advantages over the way
combinatorial semantics is done in Pollard and Sag 1994. Second, we show how our use
of the coll feature introduced in Part II relates to the principles of compositionality and
contextuality to which we referred in the introduction.

In Part I, we presented an interpretation of HPSG which is sign-based, in the sense that
the signs in the denotation of a grammar contain both phonological and semantic informa-
tion. We did not assume that a linguistic sign contained its interpretation directly as its
content value. Instead, we assumed that the content value of a sign is a representation
of its interpretation, i.e. a term of a semantic representation language. The introduction of
such a logical form has a number of advantages over the semantic analysis found in Pollard
and Sag 1994.

First, the terms are taken from a semantic representation that is familiar to most lin-
guists working within formal linguistics, in contrast to the rather idiosyncratic data struc-
ture employed for semantic representations in Pollard and Sag (1994). While this is just
a practical advantage, it has the consequence that the work done within the framework of
HPSG semantics as presented in this thesis should be directly accessible to a large commu-
nity of linguists.

Second, all parts that are relevant to the semantic representation are located in the
content value. This increases the modularity of the grammar. Remember from Section 1.2
that in Pollard and Sag 1994 there are also the attributes qstore and retrieved which
are appropriate for the sort sign and which are needed to encode the particular storage
mechanism. In later proposals (Pollard and Yoo, 1998; Przepiórkowski, 1998), it was shown
that this distribution of semantic information over different parts of a sign leads to incorrect
predictions and must be given up. Still, none of these proposals is as radical in including
all semantic information in a single term as the present one.

Third, we took a clear position about the ontological status of the content value.
This makes it possible to evaluate whether a logical form of this kind is really necessary,
or whether it at least facilitates the account of natural language phenomena. The simple lf
constraint introduced in (53) and integrated into our grammar in (291) is a typical example.
The constraint accommodates the fact that the scope of a universal quantifier is clause
bound, whereas an existential quantifier appears to be able to take scope outside the clause
in which it is introduced. As we have argued at the end of Section 1.3, such a constraint can
be formulated easily within the present framework, while it is not clear how to express it
under the assumption of an LF along the lines of May 1985 or without any level of semantic
representation as in Lappin 1991. The explicit formulation of such a constraint is, however,
only possible if one has a clear concept of the way semantics is treated within the grammar.
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Fourth, not only have we taken a clear position in the question of the ontological status
of the content value, we have also chosen a concrete semantic representation language,
Ty2. This choice was motivated by the facts that (i) every term of Intensional Logic
can be translated into a term of Ty2 (Gallin, 1975), (ii) Ty2 is a technical improvement
over Montague’s Intensional Logic (Zimmermann, 1989), and (iii) Ty2 has been used in
semantic work such as in Groenendijk and Stokhof 1982 and in work concerned with the
syntax/semantics interface (von Stechow, 1993; Beck, 1996). While we fully acknowledge
that Ty2 has its deficiencies, we have not yet encountered an alternative that would allow
us to substitute it for Ty2 in the way Ty2 can replace Intensional Logic. The semantic
representation language used in Pollard and Sag 1994 is left relatively vague. Therefore it
is not possible to evaluate its strengths and weaknesses as precisely as for Ty2.

Fifth, which is actually a point related to the previous one, by choosing Ty2 as the
semantic representation language, we automatically get the link between the logical form
of a sign and its model theoretic meaning through the definition of the extension function
for Ty2. This means that our HPSG grammars do not only have an interpretation as a set
of linguistic objects, but they make empirically falsifiable predictions about meaning. We
can, thus, test whether a certain semantic relation holds between two signs, based on the
interpretation of their logical forms. As long as such a connection to “real” interpretation is
not made, all claims about such relations are mere plausibility arguments. The descriptions
of the content values of signs as they are given in Pollard and Sag 1994 are very suggestive,
but for the lack of a clear relation to semantic interpretation, we are ultimately not able to
verify whether the right meanings are accounted for.

Finally, our adaptation of a flexible system allows us to account for scope ambiguity
without assuming syntactic movement (such as QR) or storage mechanisms. This flexible
system is extremely appealing, because it is a simple and direct way to account for scope
phenomena and, in combination with the fact that we use explicit semantic representations
inside the grammar, the resulting terms can be easily constrained to exclude unavailable
readings. The system of Pollard and Sag 1994 relies on a storage mechanism which is
technically at least as complex as the flexible system. Furthermore, shifting operations
have been proposed for other phenomena in natural language.5 Thus, a flexible account
only extends the application of techniques that have been proposed independently.

These six arguments in favor of our approach over that of Pollard and Sag 1994 might
be considered unfair, because it was not the purpose of Pollard and Sag 1994 to make
any definite decisions on the status and the structure of the content value. While the
position of Pollard and Sag 1994 is justified, we hope to have shown that it is equally
useful to explore a concrete proposal about the way semantics should be approached within
HPSG. It was necessary to make some concrete assumptions before we developed a formal
theory of idiomatic expressions because the licensing conditions of (the element of) idiomatic
expressions rely on the existence of a Ty2-based logical form as part of every linguistic sign.

This brings us to the summary of the crucial points of our account of irregularity as it
was illustrated with the analysis of idiomatic expressions in Chapter 8. Our discussion of
the data in Chapter 6 confirmed the claim put forth in the introduction of this thesis that
we must assume the existence of syntactically complex lexical elements, i.e., the existence
of irregular phrases. To account for these, we have, ultimately, changed the definition of
the lexicon. In the first part of the thesis, we assumed that the lexicon licenses exactly the
non-derived words, i.e., the words that have an empty store value. In the new architecture,
developed in Part II, the lexical elements are exactly those signs that have a non-empty
coll value. Since signs may be either words or phrases, it follows that we allow for both

5See Hendriks 1993 (pp. 43–56) for discussion.
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kinds of signs to appear as lexical elements. The coll value of a sign indicates its status as
a lexical ([coll nelist]) or as a non-lexical element ([coll elist]). Therefore the coll value
is also directly relevant for the principle of compositionality.

(546) Principle of Compositionality

The meaning of a non-lexical element is a function of the meaning of its parts.

In the grammar of this thesis, we used the coll value to implement this “principle”:
We changed all principles on phrases introduced in Part I in such a way that they only
express non-trivial restriction on phrases with an empty coll value. In particular, as far as
the meaning of a sign is concerned, we assume that the meaning of a non-lexical element is
either the intensional functional application of the meaning of the daughters, in the case of
a regular phrase, or as specified in a Derivational Rule, in the case of a derived word. Thus,
for all signs that have an empty coll value, the logical form is a function of the logical
forms of their parts.

In Part I we defined the lexical elements as those elements that have an empty store
value. In Section 8.3 we proposed a new characterization of lexical elements in terms of
the coll value. In the coll value, the contextual requirements of a sign are expressed.
Following the principle of contextuality, we assume that, in principle, each lexical element
has contextual requirements. These requirements should be observable, i.e., we can test
whether a certain element occurs only in certain contexts. In this sense, the new charac-
terization of lexical elements is more empirical than the old one: it is fully theory-internal
whether a word is considered derived or non-derived, but, at least for some lexical elements,
an investigation of their occurrence contexts delivers clear restrictions. In Chapter 6, we
carried out exactly this kind of context investigation for the parts that constitute syntac-
tically flexible idiomatic expressions. In addition, in Chapter 9 we showed that Binding
Theory can be characterized as the study of such contextual requirements for particular
words, pronouns and anaphora.

With the assumption of a non-empty coll list for every lexical element and the Coll
Principle, we provided a direct implementation of the principle of contextuality.

(547) The Principle of Contextuality:

A lexical element can impose idiosyncratic restrictions on the linguistic contexts
in which it may occur.

This formulation of the principle of contextuality raises the question of how many lexical
elements there are in a language that do not have restrictions on their context of occurrence.
The answer to this question certainly differs depending on the framework and the interest
of investigation. If one includes, for example, socio-linguistic considerations, it may be
possible to find a large number of contextual restrictions. Under such a perspective, it is
likely that one will find contextual restrictions for almost every lexical element. If one stays
within a single register of the language, the distributional restrictions on lexical items are
different and, maybe, fewer.

We consider it inappropriate to evaluate the use of the principle of contextuality on the
basis of the sheer quantity of lexical elements with contextual restrictions versus those for
which there are no obvious restrictions attested. Therefore, we provide a theory in which
every lexical element can, in principle, be contextually restricted, but need not be so. If a
lexical element seems to underlie no co-occurrence restrictions, then the lexical entry that
licenses such a non-restricted lexical element contains a maximally underspecified coll
specification ([coll nelist]). In this sense, we can also see the difference between the
“idiomatic” use of the word spill as it occurs in the IE spill the beans and the “normal”
use of the word: We assume two lexical entries. The coll specification in the lexical



386 SUMMARY

entry for the normal use is maximally underspecified, whereas the coll specification of
the idiomatic word is highly specific. Thus, by looking at the lexical entry, we can see
how “regular” a lexical element is, and we expect to find a continuum of restrictiveness
for lexical elements. Thus, while we assume that all lexical elements can express context
requirements, in practice, they do so only to a certain degree. This degree can be seen from
the coll specification in the lexical entries.

For non-lexical elements, on the other hand, our architecture makes different predictions.
Since we postulate that the coll value is the empty list for all non-lexical elements, we
have implemented the Predictability Hypothesis in the grammar (see (531)):

(548) The Predictability Hypothesis:

For every sign whose internal properties are fully predictable, the distributional
behavior of this sign is fully predictable as well.

This hypothesis is the mirror image of the principle of contextuality: whereas the prin-
ciple of contextuality expresses the observation that lexical elements have idiosyncratic
distributional properties, the predictability hypothesis says that for non-lexical elements
there are no idiosyncratic contextual effects.

The predictability hypothesis is central for the present approach. It enables us to treat
both aspects of irregularity studied here as lexical phenomena. In fact, we can use the
availability of contextual restrictions as the defining criterion of a lexical element, i.e., with
the introduction of a single new attribute, coll, we capture both phenomena of irregularity.
We are, thus, preserving the lexicalism of HPSG.

At least in principle, the predictability hypothesis is stated in such a way that we know
what would constitute a potential counterexample: a sign that cannot be considered lexical
on the basis of its internal properties, but which shows idiosyncratic occurrence restrictions.
If such signs can be found, then we must seriously re-consider our architecture of grammar.

In this work, we addressed two fundamental issues of formal grammar: the relation
between form and meaning and the relation between rules and exceptions. While these
issues touch the basics of linguistic theory, we have not dealt with them in an abstract
way. Instead, we chose a particular linguistic framework and implemented very specific
assumptions. With HPSG, we chose a framework which is based on clear and precise
mathematical foundations. Yet so far, none of these two issues received a treatment or
an extensive discussion within this framework. With the present work, we hope to fill
this gap to a certain extent. This means two things. For research within HPSG that is
not concerned with any of these issues, the existence of the present work guarantees some
empirical robustness of the framework. For research that explicitly addresses theses issues,
our proposal is precise enough to raise interesting questions, to develop alternatives and to
discuss their consequences in a constructive way.



APPENDIX A

Proofs and Additional Definitions

1.1. Proofs for Chapter 3

In this section of the appendix, we give the proofs of the lemmata and propositions
of Sections 3.2–3.4. In the main text, we already highlighted the important parts of the
proofs. For this reason, we will only repeat the lemmata and propositions and give their
proofs without comment.

proposition 3.1
There is an exhaustive model ITy2 =

〈
UTy2, STy2,ATy2,RTy2

〉
of T Y2 such that

UTy2 = IN ∪ Type ∪ Ty2.

lemma 3.3
ITy2 is a model of the grammar T Y2.

proof of lemma 3.3

For each i ∈ IN,

n is acyclic and finite by definition, thus the NP is satisfied.

For each τ ∈ Type,

τ is acyclic and finite by definition, thus is satisfies the TyNP and the TyFP.
As Type is a set, there is just one occurrence of each type. Thus, several occur-
rences of the same type within a larger type are necessarily identical. So, TyIP is
satisfied.

For each φ ∈ Ty2,

By definition, the elements of Ty2 are acyclic and finite (satisfying TNP and TFP).
As Ty2 is a set, each term is contained only once. Thus, atomic terms trivially
satisfy the TIP.
Complex terms are always constructed form simpler terms which are also in Ty2.
Therefore, if a term contains to subterms of identical shape, these are necessarily
identical. Thus, the TIP is satisfied.
For each τ ∈ Type, for each φτ ∈ Ty2,

φτ ∈ UTy2 with STy2(φτ )vme,
type is defined on φτ and
STy2(ATy2(type)(φτ ))vtype.

For each i ∈ IN and for each τ ∈ Type,
vτ,i ∈ UTy2.
The appropriateness condition on the sort var is satisfied, as there are two
attributes, type and number with values of the appropriate sort.

387
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For each ci ∈ Const,
ci,C(ci) ∈ Ty2, therefore, ci,C(ci) ∈ UTy2.
T Y2 contains a type restriction on the constant consti which is only satisfiable
by consti objects whose type value is the type object C(ci).

Let τ, τ ′ ∈ Type and φ〈τ ′, τ〉, φ
′
τ ′ ∈ Ty2C satisfy all constraints of T Y2, then

u = (φ〈τ ′, τ〉φ
′
τ ′) ∈ UTy2. and

STy2(u) = appl,
ATy2(func)(u) = φ〈τ ′, τ〉 and ATy2(arg)(u) = φ′τ ′ .

u satisfies the appropriateness conditions and the TRP on appl objects.
Thus, by induction, u satisfies all constraints of T Y2.

Let i ∈ IN, and let τ, τ ′ ∈ Type and φτ ∈ Ty2, and vτ ′,i ∈ V ar satisfy all
constraints of T Y2, then u = (λvτ ′,i.φτ )τ ′τ ∈ UTy2. and

STy2(u) = abstr,
ATy2(var)(u) = vτ ′,i and ATy2(arg)(u) = φτ .
u satisfies the appropriateness conditions and the TRP on abstr objects.
Thus, by induction, u satisfies all constraints of T Y2.

Let τ ∈ Type and φτ , φ
′
τ ∈ Ty2C satisfy all constraints of T Y2, then u = (φτ =

ψτ )t ∈ UTy2, and
STy2(u) = equ,
ATy2(type)(u) = t,
ATy2(arg1)(u) = φτ and
ATy2(arg2)(u) = φ′τ .
u satisfies the appropriateness conditions.
As ATy2(type)(u) = t and
ATy2(type)(ATy2(arg1)(u)) = ATy2(type)(ATy2(arg1)(u)) = τ ,
the TRP is satisfied.
Thus, by induction, u satisfies all constraints of T Y2.

lemma 3.4
Let I ′ = 〈U ′, S′, A′, R′〉 be an interpretation of the signature of the grammar T Y2, then

if I ′ is an exhaustive model of T Y2,

then for each u′ ∈ U ′,

there is an object u ∈ UTy2 such that 〈u′, I ′〉 and
〈
u, ITy2

〉
are congruent.

proof of lemma 3.4

Let I ′ = 〈U ′, S′, A′, R′〉 be an exhaustive model of T Y2.
For each u ∈ U ′, consider the configuration 〈u, I ′〉,

if S′(u)vnumber, then
S′(u) = zero.

In UTy2, there is just one zero object, o. as there are no attributes

defined on the sort entity, 〈u, I ′〉 and
〈
o, ITy2

〉
are congruent.

S′(u) = number.
By hypothesis, there is an object o ∈ UTy2 such that the configurations

〈A′(number)(u), I ′〉 and
〈
o, ITy2

〉
are congruent.

By the definition of IN, then, there is also an object o+ 1 ∈ UTy2. o+ 1
is of sort non-zero and its number value, 〈A′(number)(u), I ′〉 and
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〈
o, ITy2

〉
are congruent. Thus, 〈u, I ′〉 and

〈
o+ 1, ITy2

〉
are congruent

as well.
If S′(u)vtype, then

S′(u) = entity.
In UTy2, there is just an entity object, o. as there are no attributes

defined on the sort entity, 〈u, I ′〉 and
〈
o, ITy2

〉
are congruent.

Analogically for the other subsorts of atomic-type.
S′(u) = complex-type.

By hypothesis, there are objects o′, o′′ ∈ UTy2 such that the configura-

tions 〈A′(in)(u), I ′〉 and
〈
o′, ITy2

〉
are congruent and 〈A′(out)(u), I ′〉

and
〈
o′′, ITy2

〉
are congruent.

The TyIP requires token identities within type objects wherever possi-
ble.
Thus, we know that there is an object o ∈ UTy2 which is of sort
complex-type and has in and out values which are congruent with
〈A′(in)(u), I ′〉 and 〈A′(out)(u), I ′〉 respectively.
Thus, this object and u are of the same species, have congruent compo-
nents and, by the TyIP, all possible token identities among components
must be there. Thus, 〈u, I ′〉 and

〈
o, ITy2

〉
are congruent.

If S′(u)vme, then
S′(u) = var.

By hypothesis, there are objects i, t ∈ UTy2 such that the configura-

tions
〈
i, ITy2

〉
and 〈A′(number)(u), I ′〉 are congruent and

〈
t, ITy2

〉
and

〈A′(type)(u), I ′〉 are congruent.
For every type t and for every number i, there is a var object v ∈ UTy2
such that ATy2(type)(v) = t and ATy2(number)(v) = a.

Thus, 〈u, I ′〉 and
〈
v, ITy2

〉
are congruent as well.

S′(u) = consti.
Due to the type restrictions on the species of const, there is only one
possible type for each species. Thus, the congruence is derived analog-
ically to the previous case.

S′(u) = appl.
By hypothesis, there are objects o′, o′′ ∈ UTy2 such that the configura-

tions 〈A′(func)(u), I ′〉 and
〈
o′, ITy2

〉
are congruent and 〈A′(arg)(u), I ′〉

and
〈
o′′, ITy2

〉
are congruent.

The TIP on the sort me requires token identities within me objects
wherever possible.
The definition of Ty2C guarantees the existence of an appl object with
the indicated components, and the TIP ensures that the identities in u
and in this object are the same.
Thus, 〈u, I ′〉 and

〈
o, ITy2

〉
are congruent.

S′(u) = abstr.
By hypothesis, there are objects o′, o′′ ∈ UTy2 such that the configura-

tions 〈A′(var)(u), I ′〉 and
〈
o′, ITy2

〉
are congruent and 〈A′(arg)(u), I ′〉

and
〈
o′′, ITy2

〉
are congruent.

The TIP on the sort me requires identities within me objects wherever
possible.
The definition of Ty2 guarantees the existence of an abstr object o with
the indicated components, and the TIP ensures that the identities in u
and in this object are the same.
Thus, 〈u, I ′〉 and

〈
o, ITy2

〉
are congruent.
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S′(u) = equ.
By hypothesis, there are objects o′, o′′ ∈ UTy2 such that the configura-

tions 〈A′(arg1)(u), I ′〉 and
〈
o′, ITy2

〉
are congruent and 〈A′(arg2)(u)〉

and
〈
o′′, ITy2

〉
are congruent.

The TIP on the sort me requires identities within me objects wherever
possible.
The definition of Ty2 guarantees the existence of an equ object with
the indicated components, and the TIP ensures that the identities in u
and in this object are the same.
Thus, 〈u, I ′〉 and

〈
o, ITy2

〉
are congruent.

proof of proposition 3.1
Let ITy2 be the interpretation of the grammar T Y2 as given in Definition 3.2, then

ITy2 is a model of T Y2 by Lemma 3.3, and
for each interpretation I = 〈U, S,A,R〉 and for each θ ⊆ D0 if I is a model of

T Y2, then
if ΘI(θ′) 6= ∅,
then there exists some u ∈ U such that u ∈ ΘI(θ′).
By Lemma 3.4, we know that in this case, there is also some o ∈ UTy2 such

that 〈u, I〉 and
〈
o, ITy2

〉
are congruent.

As congruent configurations are always indiscernible, it follows that o ∈
ΘITy2

(θ′), and, therefore, ΘITy2
(θ′) 6= ∅.

This means, that ITy2 is an exhaustive model of T Y2.

lemma 3.6
Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2,

let E be the domain of individuals and

let W be a set of possible worlds, then

for each τ ∈ Type,
there is an indiscernibility class [u] ⊆ U such that

DE,W,τ = DE,W,[u],
and for each u ∈ U, with S(u)vtype,
there is a τ ∈ Type such that

DE,W,τ = DE,W,[u].

proof of lemma 3.6
(by induction)

First part of the lemma:

Base

DE,W,t = {0, 1}.
For u ∈ U with S(u) = truth,
DE,W,[u] = {0, 1}

analogously for DE,W,e and DE,W,s.
Hypothesis

Assume that we have shown for each τ, τ ′ ∈ Type that
there are u, u′ ∈ U with S(u)vtype and S(u)vtype, such that
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DE,W,τ = DE,W,[u] and DE,W,τ ′ = DE,W,[u′].
Step

Then, DE,W,(ττ ′) = D
DE,W,τ

E,W,τ ′ .
By virtue of U being the universe of an exhaustive model of T Y2,

there exist some u′′ ∈ U with S(u′′) = c-type such that TI( : in)(u′′) = u
and TI( : out)(u′′) = u′.

By Definition 3.5, DE,W,[u′′] = D
DE,W,[u]

E,W,[u′] .

But, by application of the hypothesis, this is identical to

D
DE,W,τ

E,W,[u′] = DE,W,(τ,τ ′).

Second part of the lemma:

analogously.

proposition 3.10
(Equivalence of Ty2 and exhaustive models of T Y2)

Let I be an arbitrary exhaustive model of T Y2.

Then, for each indiscernibility class of me objects

there is a Ty2 term which is assigned the same extension.

lemma 3.14
Given a frame F ,

an exhaustive model I = 〈U, S,A,R〉 of T Y2,

and corresponding interpretation functions int and Int, then

the function SR is such that
there are variable assignments a and A of Ty2 and I respectively, such that

for each u ∈ U,

S(u)vme, iff {[[u]]}M,A = [[SR([u])]]
M,a

proof of lemma 3.14

Let int and Int be corresponding constant interpretations, and
let a and A be corresponding variable assignments.

The proof then goes via induction on the recursive structure of me objects.

Base

Take u ∈ U with S(u) = const′ for some species below const, then,
{[[u]]}M,A = Int(const′) (by Definition 3.9)
= int(C(const′)) (because int and Int are corresponding)

= [[C(const′)]]
M,a

(by Definition 1.9)

= [[SR([u])]]M,a (by Definition 3.12)
Take u ∈ U with S(u) = var and u′ = TI( : number)(u) and u′′ = TI( : type)(u),
then
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{[[u]]}M,A = A([u]) (by Definition 3.9)
= a(vSR([u′]),SR([u′′])) (because a and A are corresponding)

= [[vSR([u′]),SR([u′′])]]
M,a

(by Definition 1.9)

= [[SR([u])]]
M,a

(by Definition 3.12)

Hypothesis

Assume that we have shown the lemma for each u.

Step

Take u ∈ U with S(u) = appl and u′ = TI( : func)(u) and u′′ = TI( : arg)(u), and
t, t′, t′′ as their respective type values, then

{[[u]]}M,A = {[[u′]]}M,A({[[u′′]]}M,A) (by Definition 3.9)

= [[SR([u′])]]
M,a

([[SR([u′′])]]
M,a

) (by hypothesis)

= [[SR([u′])(SR([u′′]))SR([t′])SR([t′′])]]
M,a

(by Definition 3.12)

= [[(SR([u′])(SR([u′′])))SR(t)]]
M,a

(by hypothesis)

= {[[SR([u])]]}M,A

Take u ∈ U with S(u) = abstr and u′ = TI( : var)(u) and u′′ = TI( : arg)(u), and
t, t′, t′′ as their respective type values, then

{[[u]]}M,A = f such that for each d,

f(d) = {[[TI( : arg)(u)]]}M,A[[u′]/d], (by Definition 3.9)

then, f(d) = [[SR([u′′])]]
M,a[SR([u′])/d]

(by hypothesis)
therefore,

{[[u]]}M,A = [[(λSR([u′]).SR([u′′]))(SR([t′])SR([t′′]))]]
M,a

(by Definition 1.9)

= [[(λSR([u′]).SR([u′′]))SR([t])]]
M,a

(by hypothesis)

= [[SR([u])]]
M,a

(by Definition 3.12)
Take u ∈ U with S(u) = equ and u′ = TI( : arg1)(u) and u′′ = TI( : arg2)(u), and
t, t′, t′′ as their respective type values, then

{[[u]]}M,A = 1 if {[[u′]]}M,A = {[[u′′]]}M,A, else 0. (by Definition 3.9)

Thus, {[[u]]}M,A = 1 if [[SR([u′])]]
M,a

= [[SR([u′′])]]
M,a

, else 0. (by hypothesis)

Thus, {[[u]]}M,A = 1 if [[SR([u′]) = (SR([u′′]))]]
M,a

= 1, else 0. (by Defini-
tion 3.12)

Thus, {[[u]]}M,A = [[SR([u′]) = SR([u′′])SR([t])]]
M,a

(by hypothesis)

Thus, {[[u]]}M,A = {[[SR([u])]]}M,A

proof of proposition 3.10
Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2,
let int and Int be corresponding constant interpretation functions,
let a and A be corresponding variable assignments,
then for each u ∈ U with S(u)vme,

SR([u]) ∈ Ty2, and

{[[u]]}M,A = [[SR([u])]]
M,a

(by Lemma 3.14).

proposition 3.15
Let I = 〈U, S,A,R〉 be an exhaustive model of T Y2.

For each term φ of Ty2, there is a T Y2 description δ such that

DI(δ) = {u ∈ U|SR([u]) = φ}
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lemma 3.17
For each exhaustive model I = 〈U, S,A,R〉 of T Y2, the function “∗” is such that for each
element i ∈ (IN ∪ Type∪ Ty2), and for each u1, u2 ∈ U,

if u1, u2 ∈ DI(i
∗),

then 〈u1, I〉 and 〈u2, I〉 are congruent.

In the following proof, we only consider a single exhaustive model I of the grammar T Y2.
For convenience, we will say that two objects u1 and u2 in the universe of I are congruent
iff the configurations under these objects, i.e. 〈u1, I〉 and 〈u2, I〉 are congruent.

proof of lemma 3.17

For S(u1)vnumber:

i = 0, then DI(i
∗) = DI(:∼zero).

As the sort zero is atomic, all configurations of objects under an object of
sort zero are congruent.

i = j + 1,
then DI(i

∗) = DI(:∼non-zero ∧ j∗[:number/:]).
Each u1, u2 ∈ DI(i

∗) is of species non-zero.
By hypothesis, we know that the configurations 〈A(number)(u1), I〉 and 〈A(number)(u2), I〉
are congruent.
Thus, so are 〈u1, I〉 and 〈u2, I〉.

For S(u1)vtype:

if τ = e, then
DI(τ

∗) = DI(:∼entity).
As the sort entity is atomic, all configurations of objects under an objects of
sort zero are congruent.

analogously for the atomic types t and s.
if τ = 〈τ1, τ2〉, then

DI(τ
∗) = DI(:∼complex-type ∧ τ∗1 [:in/:] ∧ τ∗2 [:out/:]).

Each u1, u2 ∈ DI(τ
∗) is of species complex-type.

By hypothesis, we know that the in and out values of u1 and u2 are congru-
ent.
The TyIP enforces on both, u1 and u2, the maximal number token identities
possible, thus, the two objects are congruent as well.

For S(u1)vme:

if φ = vτ,i, then
DI(φ

∗) = DI(:∼var ∧ i∗[:number/:] ∧ τ∗[:type/:] ).
Each u1, u2 ∈ DI(φ

∗) is of species var.
We have already shown that the type and number values of u1 and u2 are
congruent.
The TIP enforces on both, u1 and u2, the maximal number token identities
possible, thus, the two objects are congruent as well.

analogously for the species below const.
if φ = (φ1φ2)τ , then

DI(φ
∗) = DI(:∼appl ∧ τ∗[:type/:] ∧ φ∗1[:func/:] ∧ φ∗2[:arg/:] ).

Each u1, u2 ∈ DI(φ∗) are of sort appl.
We know by hypothesis that the func and arg values are congruent.
It follows from the TRP that u1 and u2 also have congruent type values.
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The TIP guarantees that u1 and u2 show the same structure sharings.
Thus, u1 and u2 are congruent as well.

analogously for the other subsorts of me.

proof of proposition 3.15
Given Lemma 3.17, it suffices to show that

for each for each x ∈ IN ∪ Type ∪ Ty2, and for each u ∈ U , u ∈ DI(x∗) iff
SR([u]) = x.

The proof proceeds by induction on the recursive structure of u.

Let us first consider the case S(u)vnumber:

Base

Take S(u) = zero and x = 0.
Then, u ∈ DI : ∼zero = DI(0

∗) = DI(x
∗).

In addition, SR([u]) = 0 = x.
Assume that x 6= 0.

Then DI(x
∗) 6= DI : ∼zero, and

because DI(x
∗) describes an indiscernibility class, u 6∈ DI(x

∗).
In addition, SR([u]) = 0 6= x.

Thus, S(u) = 0 iff x = 0.
Hypothesis

Assume that we have shown the proposition for all u′ and for all y.
Step

Take S(u) = non-zero, and x = y + 1.
let u′ be the number value of u.

Then, u ∈ DI(x
∗)

iff u ∈ DI( : ∼non-zero and y∗[ : number/ : ]),
iff TI( : number)(u) ∈ Di(y

∗),
iff SR([TI( : number)(u)]) = y,
iff SR([u′]) = y
But this holds by hypothesis.

Let us next consider the case S(u)vtype:

Base

For the sort entity:
Take S(u) = entity and x = e.

Then, u ∈ DI : ∼entity = DI(e
∗) = DI(x

∗).
In addition, SR([u]) = e = x.

Assume that x 6= 0.
Then DI(x

∗) 6= DI : ∼entity, and
because DI(x

∗) describes an indiscernibility class, u 6∈ DI(x
∗).

In addition, SR([u]) = e 6= x.
Thus, S(u) = entity iff x = e.

analogously for the sorts truth and w-index.
Hypothesis

Assume that we have shown the proposition for each u1, u2 of sort type, and
for each y1, y2 ∈ IN ∪ Type∪ Ty2.

Step

Let S(u) = c-type, and TI(:in)(u) = u1, and TI(:out)(u) = u2,
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u ∈ DI(x
∗)

iff x ∈ Type and there are y1, y2 ∈ Type such that
x = 〈y1, y2〉, and
u1 ∈ DI(y

∗
1) and u2 ∈ DI(y

∗
2)

But then, u ∈ DI(x
∗)

iff u ∈ DI( : ∼c-type and y∗1 [ : in/ : ]and y∗2 [ : out/ : ])
and u1 ∈ DI(y

∗
1) and u2 ∈ DI(y

∗
2)

As S(u) = c-type,
u ∈ DI( : ∼c-type and y∗1 [ : in/ : ]and y∗2 [ : out/ : ])
iff u1 ∈ DI(y

∗
1) and u2 ∈ DI(y

∗
2).

By hypothesis, this holds iff
SR([u1]) = y1 and SR([u2]) = y2
which is the same as
SR([TI(:in)(u)]) = y1 and SR([TI(:out)(u)]) = y2

But as SR([u]) = 〈SR([TI(:in)(u)]), SR([TI(:out)(u)])〉
this holds iff
SR([u]) = 〈y1, y2〉 = x

For the case of S(u)vme the proof is analogous.

1.2. Extended Definitions

In Section 3.5 we extended the description language Ty2 and the grammar T Y2 to
contain logical constants and quantifiers explicitly.

(549) Extensions to Definition 3.2:
STy2 :

– for each φ, ψ ∈ Ty2, for each v ∈ V ar,
∗ STy2((¬φ)t) = negation,
∗ STy2((φ ∧ ψ)t) = conjunction,
∗ STy2((φ ∨ ψ)t) = disjunction,
∗ STy2((φ → ψ)t) = implication,
∗ STy2((∀v.φ)t) = universal,
∗ STy2((∃v.φ)t) = existential,

ATy2 :
– for each φ, ψ ∈ Ty2, for each v ∈ V ar,

∗ for each (¬φ)t ∈ Ty2,
ATy2(arg)((¬φ)t) = φ

∗ for each (φ ∧ ψ)t ∈ ty,
ATy2(arg1)((φ ∧ ψ)t) = φ, and
ATy2(arg2)((φ ∧ ψ)t) = ψ,

∗ for each (φ ∨ ψ)t ∈ ty,
ATy2(arg1)((φ ∨ ψ)t) = φ, and
ATy2(arg2)((φ ∨ ψ)t) = ψ,

∗ for each (φ → ψ)t ∈ ty,
ATy2(arg1)((φ → ψ)t) = φ, and
ATy2(arg2)((φ → ψ)t) = ψ,

∗ for each (∀v.φt)t ∈ Ty2,
ATy2(var)((∀v.φ)t) = v, and
ATy2(scope)((∀v.φ)t) = φ,

∗ for each (∃v.φt)t ∈ Ty2,
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ATy2(var)((∃v.φ)t) = v, and
ATy2(scope)((∃v.φ)t) = φ.

(550) Extension to Definition 3.9:
if S(u)v neg,
{[[u]]}M,A = 1 if {[[TI( : arg)(u)]]}M,A = 0, else 0.

if S(u)v con,
{[[u]]}M,A = 1 if

{[[TI( : arg1)(u)]]}M,A = 1 and {[[TI( : arg2)(u)]]}M,A = 1,
else 0.

if S(u)v dis,
{[[u]]}M,A = 1 if

{[[TI( : arg1)(u)]]}M,A = 1 or {[[TI( : =)(uarg2)]]}M,A1,
else 0.

if S(u)v imp,
{[[u]]}M,A = 1 if

{[[TI( : arg1)(u)]]}M,A = 0 or {[[TI( : arg2)(u)]]}M,A = 1,
else 0.

if S(u)v existential,
for some v ∈ U with v = TI( : var)(u),

{[[u]]}M,A = 1 if
there exists a d ∈ DE,W,[TI( : type)(u)]

such that {[[TI( : scope)(u)]]}M,A[[v]/d] = 1,
else 0.

if S(u)v universal,
for some v ∈ U with v = TI( : var)(u),

{[[u]]}M,A = 1 if
for each d ∈ DE,W,[TI( : type)(u)]

{[[TI( : scope)(u)]]}M,A[[v]/d] = 1,
else 0.

(551) Extension to Definition 3.12:
for each u ∈ U such that S(u)v me,
if S(u) = neg, then,

SR([u]) = ¬SR([TI(:arg)(u)])
if S(u) = con, then,

SR([u]) = (SR([TI(:arg1)(u)]) ∧ SR([TI(:arg2)(u)]))t,
if S(u) = dis, then,

SR([u]) = (SR([TI(:arg1)(u)]) ∨ SR([TI(:arg2)(u)]))t,
if S(u) = imp, then,

SR([u]) = (SR([TI(:arg1)(u)]) → SR([TI(:arg2)(u)]))t,
if S(u) = univ, then,

SR([u]) = (∀SR([TI(:var)(u)]).SR([TI(:arg)(u)]))t

if S(u) = exist, then,
SR([u]) = (∃SR([TI(:var)(u)]).SR([TI(:arg)(u)]))t

(552) Extensions to Definition 3.16:
for each φ ∈ Ty2,
if φ = (¬ψ)t, then

φ∗ =




:∼neg
and :type∼truth
and ψ∗[:arg/:]


,

if φ = (ψ1 ∧ ψ2)t, then
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φ∗ =




:∼con
and :type∼truth
and ψ∗

1 [:arg1/:]
and ψ∗

2 [:arg2/:]


,

if φ = (ψ1 ∨ ψ2)t, then

φ∗ =




:∼dis
and :type∼truth
and ψ∗

1 [:arg1/:]
and ψ∗

2 [:arg2/:]


,

if φ = (ψ1 → ψ2)t, then

φ∗ =




:∼imp
and :type∼truth
and ψ∗

1 [:arg1/:]
and ψ∗

2 [:arg2/:]


,

if φ = ∀x.ψ, then

φ∗ =




:∼univ
and :type∼truth
and x∗[:var/:]
and ψ∗[:scope/:]


, and

if φ = ∃x.ψ, then

φ∗ =




:∼exist
and :type∼truth
and x∗[:var/:]
and ψ∗[:scope/:]


.

1.3. Additional Definitions for Chapter 4

1.3.1. Additional Definitions for Section 4.2.1.

(553) Additional clauses for the relation free-variable in (201):

free-variable( 1 , 2 )
∀

⇐=

(
2»

neg

arg 3

–

and free-variable( 1 , 3 )

)

free-variable( 1 , 2 )
∀

⇐=




22

4

l-const

arg1 3

arg2 4

3

5

and

(
free-variable( 1 , 3 )
or free-variable( 1 , 4 )

)




free-variable( 1 , 2 )
∀

⇐=




22

4

exi or uni

var 3

scope 4

3

5

and (not are-copies( 1 , 3 ))
and free-variable( 1 , 4 )




free-variable( 1 , 2 )
∀

⇐=




22

6

6

4

gen-quant

var 3

restr 4

scope 5

3

7

7

5

and (not are-copies( 1 , 3 ))

and

(
free-variable( 1 , 4 )
or free-variable( 1 , 5 )

)
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(554) Additional clauses for the relation replace of (203):

[ψ/x](¬φ) = ¬[ψ/x]φ

replace(x, y, v, w)
∀

⇐=




x»

neg

arg 1

–

and
v»

neg

arg 2

–

and replace( 1 , y, 2 , w)




For each species σ below l-const:
[ψ/x](φ1 ∧ φ2) = ([ψ/x]φ1 ∧ [ψ/x]φ2)

replace(x, y, v, w)
∀

⇐=




x2

6

6

4

σ

type 1

arg1 2

arg2 3

3

7

7

5

and

v2

6

6

4

σ

type 1

arg1 4

arg2 5

3

7

7

5

and replace( 2 , y, 4 , w)
and replace( 3 , y, 5 , w)




For each species σ below quant:
[ψ/x](∃x.φ) = ∃x.φ

replace(x, y, v, w)
∀

⇐=




x»

σ

var y

–

and v ≈ x




For each σ ∈ {exist, univ}:
[ψ/x](∃y.φ) = ∃y.[ψ/x]φ, if y 6= x and y 6∈ FV (ψ) or x 6∈ FV (φ)

replace(x, y, v, w)
∀

⇐=




(not 2 ≈ y)

and

(
not free-variable( 2 , w)
or not free-variable(y, 3)

)

and

x2

6

6

4

σ

type 1

var 2

scope 3

3

7

7

5

and

v2

6

6

4

σ

type 1

var 2

scope 4

3

7

7

5

and replace( 3 , y, 4 , w)




For each species σ below gen-quant:
[ψ/x]([most y : φ](φ′)) = [most y : [ψ/x]φ]([ψ/x]φ′)
if y 6= x and y 6∈ FV (ψ) or x 6∈ FV (φ) ∪ FV (φ′)

replace(x, y, v, w)
∀

⇐=




(not 2 ≈ y)

and




not free-variable( 2 , w)
or not free-variable(y, 3)
or not free-variable(y, 4)




and

x2

6

6

6

6

4

σ

type 1

var 2

restr 3

scope 5

3

7

7

7

7

5

and

v2

6

6

6

6

4

σ

type 1

var 2

restr 4

scope 6

3

7

7

7

7

5

and replace( 3 , y, 4 , w)
and replace( 5 , y, 6 , w)




(555) Additional clauses for the relation replace1 of (209):

For each species σ below l-const:

replace1(x, y, v, w)
∀

⇐=
x2

6

6

4

σ

type 1

arg1 2

arg2 3

3

7

7

5

and

v2

6

6

4

σ

type 1

arg1 4

arg2 5

3

7

7

5

and

(
replace1( 2 , y, 4 , w)
and 3 ≈ 5

)
or

(
replace1( 3 , y, 5 , w)
and 2 ≈ 4

)
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For each σ ∈ {exist, univ}:

replace1(x, y, v, w)
∀

⇐=
(not 2 ≈ y)
and (not free-variable( 2 , w) or not free-variable(y, 3) )

and

x2

6

6

4

σ

type 1

var 2

scope 3

3

7

7

5

and

v2

6

6

4

σ

type 1

var 2

scope 4

3

7

7

5

and replace1( 3 , y, 4 , w)

For each species σ below gen-quant:

replace1(x, y, v, w)
∀

⇐=
(not 2 ≈ y)
and (not free-variable( 2 , w) or not free-variable(y, 3) )

and

x2

6

6

6

6

4

σ

type 1

var 2

scope 3

restr 5

3

7

7

7

7

5

and

v2

6

6

6

6

4

σ

type 1

var 2

scope 4

restr 5

3

7

7

7

7

5

and replace1( 3 , y, 4 , w)

For each species σ below gen-quant:

replace1(x, y, v, w)
∀

⇐=
(not 2 ≈ y)
and (not free-variable( 2 , w) or not free-variable(y, 3) )

and

x2

6

6

6

6

4

σ

type 1

var 2

scope 5

restr 3

3

7

7

7

7

5

and

v2

6

6

6

6

4

σ

type 1

var 2

scope 5

restr 4

3

7

7

7

7

5

and replace1( 3 , y, 4 , w)

1.3.2. Additional Definitions for Section 4.2.2. The definitions of the chain-encoding
of λ-conversion follow the model given in Section 4.2.2. For the species and attributes that
are not part of the signature used there, the relevant numbers that are needed for the
encoding are given in Table 1.1 on page 400. Notice that the species neg, having two
attributes defined on it (type, arg), follows the pattern of the species c-type, but with the
s2s1i-subsequences determined by the numbers in Table 1.1. Similarly, the species below
l-const follow the pattern of appl. The pattern for the generalized quantifiers is a bit more
complicated, as they have four attributes. But, apart from this, the definitions have the
same structure.

In (556) we define the relation chain-vr which is used to perform value raising on
term-encoding chains. The functional specification of this relation is given in (261a) in
Section 4.2.2.3. The clauses of the relation follow those of the relation vr given in (153).
The difference between the relations vr and chain-vr is that the former holds of pairs of
me objects, whereas the latter holds of pairs of term-encoding chains.
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Table 1.1. Chart used for the chain encoding of me objects, including logical connectives,
classical quantifiers and generalized quantifiers:

species number attribute number
zero 1 number 11
non-zero 2

truth 3 in 12
entity 4 out 13
w-index 5
complex-type 6

variable 7 type 14
application 8 functor 15
abstraction 9 argument 16
equation 10 var 17
const1 22 arg1 18

arg2 19
...

...
constn n+ 21

negation n+ 22 scope 20
disjunction n+ 23
conjunction n+ 24
implication n+ 25
existential n+ 26
universal n+ 27
most n+ 28 restr 21
...

...

(556) The relation chain-vr

chain-vr(x, y)
∀

⇐= y = 〈9〉 ⊕
〈14〉 ⊕t⊕
〈17〉 ⊕v⊕
〈16, 8〉 ⊕

〈14〉 ⊕t1⊕
〈15, 8〉⊕

〈14〉 ⊕t2⊕
〈15〉 ⊕v′⊕
〈16〉 ⊕@#⊕

〈16, 9〉 ⊕
〈14〉 ⊕t3⊕
〈17〉 ⊕@#⊕
〈16〉 ⊕x
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chain-vr(x, y)
∀

⇐=




a = 〈8〉 ⊕
〈14〉 ⊕t⊕
〈15〉 ⊕x⊕
〈16〉 ⊕v

and y = 〈9〉 ⊕
〈17〉 ⊕v′⊕
〈16〉 ⊕b⊕

and are-chain-copies(v, v′)
and chain-vr(a, b)




In (557a) we define the relation chain-ar which is used to perform argument raising
on term-encoding chains. The functional specification of this relation is given in (261b) in
Section 4.2.2.3. The clauses of the relation follow those of the relation ar given in (160a).
The difference between the relations ar and chain-ar is that the former holds of pairs of me
objects, whereas the latter holds of pairs of term-encoding chains. Just as with the relation
ar, we need an auxiliar relation to encode argument raising. This relation, chain-ar-aux
is specified in (557b).

(557) a. The relation chain-argument-raising (chain-ar):

chain-ar(x, y)
∀

⇐= a = 〈8〉 ⊕
〈14〉 ⊕t
〈15〉 ⊕x
〈16〉 ⊕v

and y = 〈9〉 ⊕
〈14〉 ⊕t′⊕
〈17〉 ⊕v′⊕
〈16〉 ⊕b

and chain-ar-aux(a, b, v, v′)

chain-ar(x, y)
∀

⇐= a = 〈8〉 ⊕
〈14〉 ⊕t⊕
〈15〉 ⊕x⊕
〈16〉 ⊕v⊕

and y = 〈9〉 ⊕
〈14〉 ⊕t′⊕
〈17〉 ⊕v′⊕
〈16〉 ⊕b⊕

and are-copies(v, v′) and chain-ar(a, b)
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b. The relation chain-ar-aux:

ar-aux(x, y, v, u)
∀

⇐= y = 〈8〉 ⊕
〈14〉 ⊕t⊕
〈15, 8〉 ⊕

〈15〉 ⊕u⊕
〈16〉 ⊕@#⊕

〈16, 9〉 ⊕
〈14〉 ⊕t1⊕
〈17〉 ⊕@#⊕
〈16, 9〉 ⊕

〈14〉 ⊕t2⊕
〈17〉 ⊕v⊕
〈16〉 ⊕x

and find-type(x, t′) and are-chain-copies(t, t′)

ar-aux(x, y, v, u)
∀

⇐= a = 〈8〉 ⊕
〈14〉 ⊕t⊕
〈15〉 ⊕x⊕
〈16〉 ⊕z⊕

and y = 〈9〉 ⊕
〈14〉 ⊕t′⊕
〈17〉 ⊕z′⊕
〈16〉 ⊕b

and are-chain-copies(z, z′)
and chain-ar-aux(a,b,v,u)

1.3.3. Additional Definitions for Section 4.3.

(558) Formal specification of the Passive DR:

E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10 Ea Eb Ec
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

derivation-rule

in 10

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 3

syns

2

6

6

6

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

6

6

6

6

6

6

4

cat

2

6

6

6

6

6

6

6

6

4

head

2

6

6

4

verb

vform not pas

inv 5

aux 6

3

7

7

5

subcat
D

NP— 2
E

⊕
D

1
E

marking 7

3

7

7

7

7

7

7

7

7

5

cont 8 λyλzn . . . λz1λxλum . . . λu1.φ

3

7

7

7

7

7

7

7

7

7

7

5

nonl 4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

out

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

word

phon 3

syns

2

6

6

6

6

6

6

6

6

6

6

6

6

4

loc

2

6

6

6

6

6

6

6

6

6

6

4

cat

2

6

6

6

6

6

6

6

6

4

head

2

6

6

4

verb

vform pas

inv 5

aux 6

3

7

7

5

subcat
D

1 — 2
E

marking 7

3

7

7

7

7

7

7

7

7

5

cont 9

3

7

7

7

7

7

7

7

7

7

7

5

nonl 4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

and passive-lf( 10 , 8 , a) and chain-shifting(a, b)
and reduction(b, c) and chain2term(c, 9)
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The relation passive-lf relates the input word of the DR 10 , its logical form 8 and
the term-encoding chain a iff the following conditions are met: (i) the subcat list of the
input word is of length n + 2, (ii) the logical form of the input word corresponds to a
term of the form λyλzn . . . λz1λxλum . . . λu1.φ, and (iii) the chain a encodes the term
λzn . . . λz1λyλum . . . λu1.∃xφ. The relation passive-lf takes care of the first abstractor
of the input term (λy). The relation passive-lf-aux1 is responsible for the part of the
input and the output term, i.e., for λzn . . . λz1λx and λzn . . . λz1λy respectively. Finally,
the relation passive-lf-aux2 treats the final part of the input term, i.e., the subterm
λum . . . λu1.φ, and that of the output term, i.e., λum . . . λu1.∃xφ.

(559) a. The relation passive-lf:

passive-lf( 1 , 2 , x)
∀

⇐=




1h

syns loc cat subcat rest 3
i

and

22

4

abstr

var 4

arg 5

3

5

and passive-lf-aux( 3 , 5 , x, 4 )




b. The relation passive-lf-aux1:

passive-lf-aux1( 1 , 2 , x, 3 )
∀

⇐=




1»

nelist

rest 4 nelist

–

and

22

4

abstr

var 5

arg 6

3

5

and x = 〈9〉 ⊕
〈14〉 ⊕t⊕
〈17〉 ⊕v⊕
〈16〉 ⊕a

and chain2term(v, 5)
and passive-lf-aux1( 4 , 6 , a, 3 )




passive-lf-aux1( 1 , 2 , x, 3 )
∀

⇐=




1»

nelist

rest elist

–

and

22

4

abstr

var 4

arg 5

3

5

and x = 〈9〉 ⊕
〈14〉 ⊕t⊕
〈17〉 ⊕v⊕
〈16〉 ⊕a

and chain2term(v, 3)
and passive-lf-aux2( 5 , a, 4 )




c. The relation passive-lf-aux2:

passive-lf-aux2( 1 , x, 2 )
∀

⇐=




12

4

abstr

var 3

arg 4

3

5

and x = 〈9〉 ⊕
〈14〉 ⊕t⊕
〈17〉 ⊕v⊕
〈16〉 ⊕a

and chain2term(v, 3)
and passive-lf-aux2( 4 , a, 2 )
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passive-lf-aux2( 1 , x, 2 )
∀

⇐=




1»

me

type truth

–

and x = 〈26〉 ⊕
〈14, 3〉⊕
〈17〉 ⊕v⊕
〈20〉 ⊕s

and chain2term(v, 2)
and chain2term(s, 1)
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Pollard, Carl and Sag, Ivan (1987). Information Based Syntax and Semantics. Vol.1: Fun-
damentals. CSLI Lecture Notes 13.

Pollard, Carl and Sag, Ivan A. (1994). Head-Driven Phrase Structure Grammar. University
of Chicago Press.

Pollard, Carl J. (1996). On Head Non-Movement. In H. Bunt and A. van Horck (Eds.),
Discontinuous Constituency, Number 6 in Natural language processing, pp. 279–305.
Mouton de Gruyter, Berlin, New York.

Pollard, Carl J. (1999). Strong Generative Capacity in HPSG. In G. Webelhuth, J.-P.
Koenig, and A. Kathol (Eds.), Lexical and Constructional Aspects of Linguistic Explana-
tion, pp. 281–297. CSLI Publications.

Pollard, Carl J. and Yoo, Eun Jung (1998). A Unified Theory of Scope for Quantifiers and
wh-Phrases. Journal of Linguistics 34, 415–445.

Progovac, Ljiljana (1988). A Binding Approach to Polarity Sensitivity. Ph. D. thesis,
University of Southern California.
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