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Abstract

The parsing of natural language relies on the syntactic characteristics of
words. The part of speech category is one of the most common sources
of information in parsing. In the parsing of highly inflectional languages,
morphological information, such as case, number and gender, also plays an
important role. It helps to resolve syntactic ambiguity in shallow parsing
and is particularly useful in dependency parsing of languages with free word
order, since it partly determines the argument structure of the sentence.

For German, a highly inflectional language with partially free word or-
der, the problem of assigning morpho-syntactic categories, such as part of
speech, case, number, gender, person, tense and mood, i.e. the problem of
morpho-syntactic annotation, is complicated by the high ambiguity inherent
in tokens. Moreover, the partially paradigm-dependent case syncretism of
this language makes the problem particularly intricate.

This thesis is concerned with the automatic morpho-syntactic annotation
of German. Different approaches to the task are investigated in this the-
sis. A hybrid system with rule-based and statistical modules that combines
the relative strengths of the rule-based and statistical methods involved is
presented. The rule-based module is based on the Xerox Incremental Deep
Parsing System and provides a novel constraint-based framework that inte-
grates phrase-internal concord rules and phrase-external syntactic heuristics
into one uniform architecture. The rule-based module successfully reduces
the candidate analyses provided by a morphological analyzer. The statistical
module is based on a novel use of probabilistic phrase-structure grammars
for morpho-syntactic annotation. The module resolves the remaining cases
of ambiguity, providing unambiguous and highly accurate output.

The usefulness of morpho-syntactic information is evaluated empirically
in the creation of a dependency parser for German. The input to the parser
is limited to tokens and their morpho-syntactic characteristics. The parser
reaches state-of-the-art performance.
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Chapter 1

Introduction

The focus of this thesis is the morpho-syntactic annotation of German and
its application in the dependency parsing of German.

Morpho-syntactic annotation is the process of assigning each word in a
text a tag from a previously defined set of morpho-syntactic labels, such as
part of speech (POS) together with the appropriate morphological charac-
teristics: case, number, gender, person, tense and/or mood. This process is
often referred to as morpho-syntactic tagging.

The problem of the morpho-syntactic annotation of German was largely
disregarded in the literature. With a few exceptions (Wothke et al. (1993),
Steiner (1995), Lezius et al. (1998)), work in this area concentrated on pure
POS-tagging. However, for other languages, particularly for languages with
rich inflectional morphology, a substantial amount of research on morpho-
syntactic annotation has been produced (see, among others, Oflazer and
Tir (1996), Erjavec et al. (1999), Dienes and Oravecz (2000), Tufig (2000),
Hajic et al. (2001)). The aim of this thesis is to explore different approaches
to the task of morpho-syntactic annotation of German and to provide a
state-of-the-art morpho-syntactic tagger for German.

The current chapter introduces the problem of morpho-syntactic an-
notation and motivates its importance in the context of natural language
applications. The difficulties associated with the problem are demonstrated
in the chapter and the standard approaches and their drawbacks are briefly
discussed. The chapter outlines the main ideas of the thesis. The overview
of the thesis is given in the end of the chapter.



1.1 Statement of the problem

1.1.1 Motivation for morpho-syntactic annotation

Many natural language applications benefit from a deep analysis of the text.
Thus, in current state-of-the-art machine translation and question answering
systems, parsing has become a common module contributing to the success-
ful realization of the task. Parsing has also found successful applications
in Information Extraction, Speech Recognition and Text Summarization,
among other areas.

For languages with a fixed word order, such as English, the POS charac-
teristics of tokens together with their linear organization provide an adequate
basis for parsing. Consider a sentence in (1):

(1) The father told his children a story.
DET NOUN VERB POSDET NOUN DET NOUN

In English, the first noun phrase (NP) corresponds to the subject of
the verb, whereas the second and the third NPs have functions of indirect
and direct objects, correspondingly.

For languages with a (partially) free word order, however, POS infor-
mation proves insufficient. The English sentence in (1) can (with different
focus variations) be translated into German into the following forms:

(2) a. Der Vater erzihlt seinen Kindern eine Geschichte.
b. Eine Geschichte erzdhlt der Vater seinen Kindern.
¢. Seinen Kindern erzahlt der Vater eine Geschichte.

Unlike English, where only the subject can take the initial position
in a sentence, in German any argument or adjunct of the verb, including
subject, direct or indirect object, is grammatical in this position. In
the field following the finite verb, the order of NPs is fixed but differs depend-
ing on whether the NPs are nominal or pronominal. Thus, the identification
of grammatical functions in German sentences given only the word order
and POS information is problematic.

The free word order of German is (partly) compensated by the inflec-
tional morphology information of the tokens. This information helps to re-
solve the ambiguity created by possible permutations of NPs in the sentence:
grammatical functions such as subject, direct object, and indirect
object are strongly correlated with nominative, accusative and dative case,
respectively. Therefore, the inclusion of case information into the set of word
characteristics is crucial for the correct parsing of a sentence. Example 3



demonstrates the analysis of the German sentence given the POS and case
values.

(3) Der Vater erziahlt seinen Kindern eine Geschichte.
DET NOUN VERB PRON NOUN DET NOUN

nom nom dat dat acc acc
NP-nom VP NP-dat NP-acc
subject ind. object direct object

Traditionally, the set of morpho-syntactic characteristics also includes
such features as number and gender for nouns, adjectives, determiners, pro-
nouns and verbs, person for pronouns and verbs, and tense and mood for
verbs. This information finds applications in many areas including query
answering, machine translation, speech synthesis, speech recognition, text
summarization and the searching of large text data bases.

Apart from application-driven grounds for expanding the tagset with
these features, there is an important practical reason: due to the inter-
dependence between morpho-syntactic features, incorporation of them into
a tagset helps annotation tools, taggers, to identify the case and POS values.
Consider an example of German NP “der Vater’.

The article “der” can be (a) feminine, singular, dative or genitive, (b)
any gender, plural, genitive or (c) masculine, singular, nominative. Since
German determiners and nouns have to agree in case, number and gender,
number and gender information on the following noun, “Vater”, which is
masculine, singular', helps to resolve the case ambiguity.

1.1.2 Problematic issues in morpho-syntactic annotation

The morpho-syntactic annotation of German is complicated by high am-
biguity inherent in German tokens. Consider the ambiguity of the above
example sentence in (4):2

!The word “Vater” can have any case value, except for genitive
2The analyses for tokens are provided by the XRCE morphological analyzer for
German.



(4)

Der
Der
Der
Der
Der
Der
Der

Vater

erzahlt
erzahlt
erzahlt
erzahlt
erzahlt

seinen
seinen
seinen
seinen
seinen
seinen
seinen
seinen
seinen
seinen
seinen
seinen
seinen
seinen
seinen

Kindern

eine
eine
eine
eine

Geschichte

Det+Def+Fem+Sg+DatGen
Det+Def+FMN+Pl+Gen
Pron+Rel4+Fem+Sg+Dat
Pron+Dem+Fem+Sg+Dat
Det+Def+Masc+Sg+Nom
Pron+Dem-+Masc+Sg+Nom
Pron+Rel+Masc+Sg+Nom

Noun+Masc+Sg+NomAccDat

Verb+Indc+2P+P1+Pres+VVFIN
Verb+Indc+3P+Sg+Pres+VVFIN
Verb+PPast+VVPP
Verb+Imp+2P+PI14+VVFIN
Adj+PPast+Pred+ADJD

Pron+Poss+Pl+FMN+Dat+POSPRO
Pron+Poss+Sg+Masc+Acc+POSPRO
Det+Poss+Pl+FMN+Dat+St+POSDET
Det+Poss+Sg+Masc+Acc+St+POSDET
NAdj+Poss+Pl+FMN+Nom+Wk+NOUN
NAdj+Poss+Pl+FMN+Gen+Wk+NOUN
NAdj+Poss+Pl+FMN+Acc+Wk+NOUN
NAdj+Poss+Pl+FMN+Dat+Wk+NOUN
NAdj+Poss+Sg+Masc+Gen+Wk+NOUN
NAdj+Poss+Sg+Masc+Acc+Wk+NOUN
NAdj+Poss+Sg+Masc+Dat+Wk+NOUN
NAdj+Poss+Sg+Neut+Gen+Wk+NOUN
NAdj+Poss+Sg+Neut+Dat+Wk+NOUN
NAdj+Poss+Sg+Fem+Gen+Wk+NOUN
NAdj+Poss+Sg+Fem+Dat+Wk+NOUN

Noun+Neut+Pl+Neut+Dat

Det+Indef+Fem+Sg+NomAcc
Pron+Indef+Fem+Sg+NomAcc
Adj+Indef+FMN+Sg+Nom
Adj+Indef+FN+Sg+NomAcc

Noun+Common+Sg+Fem+NGDA+NOUN

Punct+Sent+SENT



The tokens are not only ambiguous in respect to their POS category
(determiner — Det, pronoun — Pron, adjective — Adj), but also as to their
morphological characteristics. Beside separate morphological tags, the ana-
lyses include joint morphological tags, such as NomAccDatGen standing for
any case and FMN standing for any gender. Each joint tag, thus, expands
into several distinct analyses.

Case syncretism, i.e. the phenomenon that one and the same form may
express two or more cases, makes the problem even harder. Compared
to other languages where case syncretism tends to conflate the same cases
across different nominal paradigms, German case syncretism is particularly
intricate since it is often paradigm-dependent. Table 1.1 represents an ex-
ample of different nominal paradigms in German.

Nominative Genitive Dative Accusative

Blume ~ ~ ~
Bar ~en ~en ~en
Bilder ~ ~n ~
Vater ~S ~ ~
Name ~ns ~n ~n

Table 1.1: An example of German nominal case syncretism

Table 1.2 presents ambiguity rates for German estimated on the data in
the thesis experiments. The average number of analyses is counted as the
ratio between the number of analyses assigned to the tokens in the text and
the total number of tokens in the text. The percentage of ambiguous tokens
in the data is provided in column 3.

For comparison, ambiguity rates reported in the literature for other lan-
guages, as well as for the pure POS tagging of German, are included in the
figure.?

What this comparison shows is that the morpho-syntactic annotation of
German constitutes a much harder task than the same problem for other
languages or for the pure POS tagging of German. The tagset for anno-
tation is the largest tagset used in the experiments with morpho-syntactic
annotation. The average number of analyses is almost double that of Czech
and is at least by a factor of 3 higher than for the other languages. This

3The Czech data have been described by Haji¢ and Hladka (1997), Turkish — by Oflazer
and Tiir (1996), English — by Tapanainen and Voutilainen (1994), Romanian — by Tufig
(2000), and Hungarian — by Tufig et al. (2000).



average # |ambiguous tagset
language analyses tokens size
German 5.80 66.61% 1317
Czech 3.65 not available |1171

2.36 not available | 882
Turkish 1.83 50.66% not available
English 1.77 not available | 139
German (POS) | 1.77 39.57% 54
Romanian 1.71 38.17% 410
Hungarian 1.33 31.90% > 1265

Table 1.2: Ambiguity of German data in comparison to other languages

is reflected in the percentage of ambiguous tokens, which is almost twice as
big compared to Romanian, English, Turkish and Hungarian.

1.1.3 Previous approaches to morpho-syntactic annotation

The tagging problem, i.e. the problem of identifying the (morpho-)syntactic
class of a word, was first explored for English by Harris (1962) and Klein
and Simmons (1963). They employed rule-based methods that rely on hand-
crafted constraints about sentence grammaticality. Such methods imply
disambiguation of tokens on the basis of the surrounding context: a reading
can be eliminated if it creates an ungrammatical construction, as in (5):

(5) He opens a can.

A verbal reading of word “can” can be eliminated, since a sequence of
an article and a following verb is ungrammatical in English.

Rule-based methods are still commonly used: rule-based systems were
developed, among others, for English by Voutilainen (19955), French by
Chanod and Tapanainen (1995), Turkish by Oflazer and Kurudz (1994),
and Swahili by Hurskainen (1996). Rule-based methods usually provide high
annotation accuracy and enable the reflection of linguistic insights, such as
subject-verb agreement, in the rules. A widely admitted drawback of such
systems is that their creation is time- and labor-consuming. An automatic
rule-based tagger was developed by Brill (1992). The tagger automatically
acquires its rules and tags from training data.

An alternative to rule-based methods are probabilistic methods, on which
the majority of currently used taggers are based (to mention only a few, com-



monly used taggers were developed and described by Church (1988), Cutting
et al. (1992), Brants (1998)). Such taggers are trained on ambiguously or
unambiguously tagged texts to learn the lexical and contextual probabili-
ties of tokens, i.e. the probability of observing a word given a tag and the
probability of observing a tag given a context (usually one or more preced-
ing tags), correspondingly. The tag sequence that maximizes the product
of lexical and contextual probabilities provides analyses for tokens in the
sentence.

Another probabilistic framework applied to tagging is the Maximum
Entropy framework. In this framework, information about a token and its
context is incorporated in the form of features. An argument that maximizes
the product of weighted features corresponds to a tag for the token.

Tagging systems based on symbolic machine learning techniques have
also become one of the dominant paradigms for the task (Daelemans, Zavrel,
Berck and Gillis (1996), Magerman (1995), Benello et al. (1989), Schmid
(1994b)). They include memory-based learning, decision trees and neural
network based methods.

With a few notable exceptions (Dienes and Oravecz (2000), Haji¢ and
Hladka (1997), Tufis (2000)), most tagging approaches have focused on tag-
ging with fairly small tagsets, distinguishing only between parts of speech,
but not taking into account more fine-grained distinctions of morphology.
Designing tagging systems for languages with rich inflectional morphology,
such as German, Czech, Hungarian and Romanian, encounters difficulties
that are comparatively harmless for pure POS tagging but constitute a ma-
jor obstacle for morpho-syntactic annotation. These difficulties concern the
size of a tagset required for such languages and the non-local nature of the
contextual cues which have to be taken into account for morphological dis-
ambiguation.

Thus, the best morpho-syntactic tagging system for German developed
by Lezius et al. (1998) is based on the trigram algorithm described by Church
(1988). While the system achieves state-of-the-art performance for the task
of POS-tagging of German (95.9%), the results for the task of morpho-
syntactic tagging are much lower: 84.7%.

The limitation of n-gram models that creates such notable difference in
model performance for the two tasks lies in the following: n-gram taggers
consider only sequences of n words and their candidate tags, i.e. very local
contexts, as the basis for determining the most likely sequence of tags for
the sentence. This Markovian assumption proves harmful for decisions that
crucially require larger context windows. Case, person and number informa-
tion is precisely of this nature, since successful disambiguation needs to rely



on genuinely syntactic phenomena such as subject-verb agreement, valency
of main verbs, and morphological features of other nominal elements in the
sentence.

Machine learning methods, which hold on the same principle of using a
small context window, encounter the same problems. Increasing the win-
dow size unavoidably leads to the sparse-data problem: a sequence of n+1
tokens occurs less often than a sequence of n tokens, and thus, more data is
needed for reliable estimation of the probabilities. For languages with lim-
ited data resources, methods requiring vast amounts of annotated data are
inapplicable. Due to the difficulty of the task of automatic morpho-syntactic
annotation, the necessary resources have not been yet created for German.
A vicious circle arises: existing automatic methods require vast amounts of
data for successful realization of the task, while the data are not available.
Quick and accurate annotation of data is, on the other hand, impossible
without automatic taggers. New methods which would solve the problem
are needed.

1.1.4 Main ideas of this thesis

In this thesis, alternative methods to the morpho-syntactic annotation of
German are explored. The power of the rule-based approach is re-assessed
and the ability of the rule-based approach to convey fine-grained morpho-
syntactic disambiguation with high precision is demonstrated. A novel
constraint-based framework that integrates phrase-internal concord rules
and phrase-external syntactic heuristics into one uniform architecture is de-
scribed.

Different statistical approaches to morpho-syntactic tagging are further
explored and the main obstacle to successful application of the n-gram based
methods to the task is demonstrated. The thesis presents a novel statisti-
cal approach to tagging, which utilizes probabilistic phrase-structure gram-
mars (PCFGs) for the problem at hand. Due to their ability to incorporate
global structural information, PCFGs provide a suitable alternative to n-
gram models and yield acceptable results even for moderate amounts of
training data. It is also shown that tree transformations of the training
data constitute a crucial step in optimizing the performance of the PCFG
model for the task of morpho-syntactic annotation.

Finally, a hybrid tagging system for German is presented. The system
combines the powers of rule-based and statistical methods.



1.2 Overview of the thesis

Following this introduction, Chapters 2 and 3 present the theoretical back-
ground of research reported in the thesis. Chapter 2 discusses different
approaches to morpho-syntactic annotation and provides a comprehensive
literature review for the current task. Moreover, the chapter demonstrates
problematic issues in the application of the existing methods to German.
Chapter 3 provides a necessary background for one of the possible areas of
application for the use of morpho-syntactic information: dependency pars-
ing. The main ideas and principles of dependency syntax, as well as existing
German models are discussed in this section.

Chapter 4 presents the Xerox Incremental Parsing System — a formal
framework which has served as a basis for creation of the rule-based model
of morpho-syntactic annotation, as well as an underlying formalism of the
implementation of a German dependency parser. The general architecture
of the system, its functionality and different types of rules present in the
system are described.

Chapter 5 introduces the TiBa-D/Z treebank: a data source for the ex-
periments and the evaluation of the designed morpho-syntactic annotation
system and the dependency parser of German reported in the thesis. Apart
from providing the data for the research, the treebank partly determined
decisions in the development of the dependency parser, since the underlying
principles of the treebank annotation scheme guided the annotation pro-
duced by the parser. Concepts, principles and structures of the treebank
are discussed in this chapter.

The core chapter of the thesis, Chapter 6, describes different models for
morpho-syntactic annotation of German. This chapter is based on previ-
ously published work co-authored with Erhard Hinrichs. Section 6.1 presents
a rule-based model based on constraint satisfaction techniques: sequential
disambiguation of tokens by sophisticated hand-written rules that leads to
high accuracy of annotation. In Section 6.2, statistical methods to morpho-
syntactic annotation are discussed. It is shown that standard techniques of
n-gram taggers such as TnT are inadequate for this task, but that prob-
abilistic context-free grammars provide a suitable alternative that yields
acceptable results even for moderate amounts of training data. Section 6.3
compares the rule-based and statistical methods and discusses their advan-
tages and drawbacks. Section 6.4 presents a hybrid model of rule-based
and statistical modules that combines the relative strengths of the methods
involved. Section 6.5 concludes the chapter.

In Chapter 7, the use of morpho-syntactic information is demonstrated in



its application in dependency parsing. The chapter considers the German
dependency parser developed on the basis of Xerox Incremental Parsing
System. A thorough description of the parser and its different modules
together with the detailed evaluation of parser performance is provided.

In Chapter 8, the German Incremental Parsing System (GRIP) is pre-
sented. It consists of the morpho-syntactic tagger described in Chapter 6
and the dependency parser described in Chapter 7. The architecture of the
system is presented and the evaluation of the system is provided.

Chapter 9, finally, summarizes the research reported in the thesis and
sketches directions for future work.
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Chapter 2

State of the art in
morpho-syntactic annotation

The broad application of tagging in natural language processing (NLP) gave
rise to widespread interest in the task. Various methods have been explored
in the literature and numerous successful tagging systems have been re-
ported. This chapter aims at supplying a survey of the state of the art for the
task of morpho-syntactic tagging. Section 2.1 provides a general overview of
different approaches to POS and morpho-syntactic tagging. In sections 2.2
and 2.3, the main ideas of existing methods are presented more thoroughly
and each method is exemplified with a detailed description of one or several
taggers based on the methodology discussed. Section 2.4 examines the ad-
vantages and drawbacks of the approaches and discusses the applicability of
the methods to the task of morpho-syntactic annotation. Section 2.5 follows
this discussion by a description of hybrid methods which aim at combin-
ing the strengths of different techniques and presents extensions of methods
relevant for the task of morpho-syntactic annotation. Section 2.6 summa-
rizes the state of the art in tagging of German and section 2.7 concludes the
chapter.

2.1 General overview of the approaches

Two main methodologies in tagging can be distinguished. They differ with
respect to the kinds of information they are based on.! Approaches of the
first methodology rely on linguistic knowledge which is either recorded by a

!The distinction is based on the dichotomy presented in Voutilainen (19955).
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linguist or automatically extracted from corpora. This knowledge is incor-
porated in the form of constraint rules which capture regularities between
possible analyses of a token and its surrounding context. Serial applica-
tion of rules allows for the resolution of the ambiguity. A basic example
of techniques of this methodology is the disambiguation of a token “play”
in the phrase “the play”. The token has a nominal and a verbal readings.
The verbal reading, however, can be eliminated, since a sequence of a deter-
miner and a following verb is ungrammatical for English. Approaches of this
kind are called rule-based or constraint-based approaches. Depending on the
source of the rules, hand-crafted and automatic rule-based approaches are
distinguished. In the former, rules are designed by a linguist. In the latter,
a tagger acquires rules automatically in an iterative way by comparing its
own output to a correctly annotated text.

Approaches of the second methodology rely on frequency-based infor-
mation automatically derived from corpora. Two essential sources of infor-
mation are used (Manning and Schiitze (1999)): (a) tags and/or lexemes in
the surrounding context (contextual, or syntagmatic, information) and (b)
set of possible tags for the token being tagged (lexical information). Con-
textual information allows the selection of a tag which is more likely in a
given context. Thus, in the context “they play jazz’, the verbal reading is
preferred over the nominal reading for “play’, since a pattern Pron Verb
Noun is more common than a pattern Pron Noun Noun. Lexical informa-
tion accounts for the fact that possible analyses of a token are usually not
equally distributed. For example, “jazz” has a verbal reading along with a
nominal reading, but the nominal reading is much more frequent. All ex-
isting approaches to automatic data-driven tagging in some way make use
of a combination of these two types of information. They collect statistics
about lexical and contextual information from the corpora and use them to
assign tags to tokens in a sentence.

Frequency-based data-driven approaches differ in the way frequency in-
formation is used. Probabilistic (also called statistical or stochastic) meth-
ods are based on calculation of statistics of the events and maximizing the
probabilities in creation of a model and in tagging. Markov model taggers
maximize the product of lexical and contextual probabilities, where context
is restricted to preceding tokens (usually 2, maximally 3). Maximal entropy
taggers incorporate lexical and contextual information in a set of binary
features, where each feature specifies a condition on the characteristics of
the focus word/tag and the surrounding words/tags. Probability of a tag is
calculated as a product of weighted feature values.

Symbolic machine learning approaches, on the other hand, do not explic-
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Tagging

Rule-Based Frequency—Based
Hand-Crafted Automatic Probabilistic Symbolic
/ M ethods\ Machine Learnin\g
Markov Maximum Memory—Based Decision Neural
Models Entropy Learning Trees Networks

Figure 2.1: Approaches to tagging

itly use probabilities in the hypothesis and differ in the way of representation
of the information collected from corpora (instance memory-bases, decision
trees or neural networks) and in the procedure of the assigning tags to new
data.

The diagram in Figure 2.1 represents relations between the approaches
to tagging mentioned above. In reality, the diversity of tagging approaches
is more complex, since many tagging systems unify aspects of different ap-
proaches. A typical example of such a system is the Transformation-Based
Tagger (Brill (1995a)), which can be assigned to both rule-based approaches,
as its tagging procedure is based on rule application, and to symbolic ma-
chine learning approaches, since it acquires its transformations by learning
from corpora. Moreover, for many of the types in the figure, further distinc-
tion into supervised and unsupervised tagging is possible. This distinction
concerns the amount of prior knowledge provided to the tagger. Supervised
approaches rely on pre-tagged corpora. The task is then to create a model
that most accurately predicts tags in the training corpus. Unsupervised ap-
proaches, on the other hand, do not require a pre-tagged corpus. They make
use of unannotated data and a lexicon which contains possible tags for each
token to induce the regularities needed for tagging: context rules for auto-
matic rule-based approach and probabilistic information for frequency-based
approaches.

The remainder of this chapter provides a more detailed discussion of the
approaches, as well as their comparison.
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2.2 Rule-based approaches

Pioneering work in tagging done in the 1960’s employed the hand-crafted
rule-based method (Harris (1962), Klein and Simmons (1963)). A tagger
TAGGIT described by Greene and Rubin (1971) and based on the same
method was used to automatically pre-tag the Brown corpus, the first of the
modern computer readable corpora. However, performance of rule-based
taggers was rather low: for example, TAGGIT provided correct analyses
only for 77% of tokens. This non-optimal performance lead to a decreased
interest in the rule-based approach.

Interest in rule-based approaches reemerged in the 1990’s with the devel-
opment of the Constraint Grammar formalism for English (Karlsson (1990),
Karlsson et al. (1995)). The formalism demonstrated high performance
and stimulated the development of rule-based taggers for other languages
(Oflazer and Kuruéz (1994), Chanod and Tapanainen (1995), Hurskainen
(1996)). Later on, the EngCG (English Constraint Grammar) morphologi-
cal disambiguator based on the Constraint Grammar framework was created
(Voutilainen (1995b)). The EngCG is currently one of the best taggers for
English.

The main drawback of the hand-crafted rule-based taggers lies in a great
amount of labor and time required for the development of such taggers. The
rule-based tagger described by Brill (1992) overcomes this limitation: the
rules are automatically acquired from corpora.

Below, the two types of the rule-based method are described on the
example of the EngCG tagger and the Transformation-Based Learning Tag-
ger, also known as Brill Tagger (Brill (19954)), a later version of the tagger
presented by Brill (1992).

2.2.1 The EngCG Tagger: A Hand-Crafted Rule-Based Tag-
ger

The EngCG Tagger was developed in 1989-1993 at Helsinki University pri-
marily as a tagger for standard written English. It consists of the following
sequential modules:

1. a tokeniser
2. a morphological analyser

3. a rule-based disambiguator
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The tokeniser represents a rule-based system that identifies words, punc-
tuation marks, document markers and multiword expressions — idioms and
modifier-head expressions. Thus, the tokeniser divides a string into process-
ing units — tokens, which are then further processed by the morphological
analyser.

The morphological analyzer contains a two-level lexicon of approximately
90,000 entries and a rule-based heuristic analyzer of unknown words (gues-
ser). The analyses for tokens are first looked up in the lexicon. If no entry
is available for the token in the lexicon, the guesser tries to identify the
morpho-syntactic characteristics of the token based on the heuristics about
derivational morphological features of the token. For example, if a token
ends with the suffix “-ously”, the guesser provides an adverbial analysis for
this token. If the analyses cannot be identified by heuristics, a nominal
reading is given to the token. Experiments of Tapanainen and Voutilainen
(1994) have shown that 5% of all word-form tokens are not present in the
lexicon, but the guesser provides a correct analysis for 99.5% of those tokens.

The tagset of the morphological analyzer includes 139 tags mainly for
POS, case, number, tense and mood values, as well as some more sub-
tle syntactic subcategorizations (e.g. relative vs. demonstrative pronouns).
Analyses for tokens are represented as tag combinations. Altogether, the
morphological analyzer produces about 180 different tag combinations. The
average number of analyses after the application of the morphological ana-
lyzer ranges between 1.7-2.2 analyses per token.

In the second version of the EngCG (Voutilainen (1997)), an additional
post-analyzer module has been built. This module introduces missing appro-
priate readings to the tokens by context-sensitive replacement mechanism.
For example, such module replaces all readings containing the infinitival tag
INF with the tag sequence <CMH> N NOM SG (standing for common noun,
nominative, singular) if all four conditions on the context are satisfied:

1. the first word to the left is an unambiguous determiner, or genitive,
or preposition, or title-word (such as Mr, Mrs or Dr.);

2. the first word to the left does not contain the tag Rel (for relative pro-
nouns and relative determiners) or the tag INDEP (for certain genitives
acting as a noun phrase head, e.g. “theirs”);

3. the word itself is not a form of “let’, nor does it contain tags from
the set OPEN-NOMINAL (e.g. nouns), or the set AUX-MOD (e.g. auxiliary
verbs), nor is it a preposition or a conjunction;
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4. the first word to the right does not contain readings of an article or a
genitive pronoun, nor does it have a value accusative for case.

Such a heuristic corrects, for example, the set of analyses for the token
“wrestle” in the context “a wrestle with gravitation” .

After introducing the ambiguity on the tokens, the last module of the
system is activated to disambiguate tokens in the text. The disambiguation
module is a system of pattern-action rules which specify a context of rule
application and an action produced if the context constraints are specified.
The rules are able to delete or select a specific reading on a token. An
example rule presented in Voutilainen (1997) is shown in (6):

(6) SELECT (INF)
(-1 DO)
(NOT -1 PTCPL)
(NOT 0 PROPER OR DO-OBJ-NOUN) ;

This example rule selects an infinitival reading if the token is preceded
by a non-participial form of “do”. Additional constraints are specified on
the token itself: it should not be a proper noun, nor a noun that typically
occurs as object of “do”, e.g. “credit’.

The rule in (6) exemplifies a lexicalized rule, i.e. a rule in which at least
one of the constraints directly refers to a word-form of a token. However,
Voutilainen (1995b) claims that the majority of rules in the system are based
on a small number of essentially syntactic generalizations about the form of
the phrases (nominal, prepositional etc.) in a sentence. 71% of constraints
are reported to be global: i.e. they operate on a context that extends beyond
the neighboring words.

The rule-based disambiguator consists of 5 sequentially applied subgram-
mars. First 3 subgrammars contain highly reliable “grammar-rules” which
avoid risky predictions. Application of these subgrammars results in high
precision (99.7%) but leaves 3-7% of all tokens ambiguous, which corre-
sponds to 1.04-1.08 alternative analyses per output token. The application
of other 2 subgrammars is optional and leads to further disambiguation of
tokens at the expense of decrease in precision. The constraints of these 2
subgrammars represent powerful syntactic heuristics which resolve approx-
imately 50% of remaining ambiguity, increasing the overall error rate to
about 0.5%.

2The example taken from Voutilainen (1997) is provided here in a shortened form.
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2.2.2 The Brill Tagger: An Automatic Rule-Based Tagger

The Brill tagger is based on a transformation-based error-driven learning
method. The general idea of the method consists of the following: at first,
a text is tagged with a simple initial-state annotator; during the next stage,
the output of the annotator is compared to a standard provided by a manu-
ally annotated corpus; based on the comparison, transformational rules are
learned which correct the errors of the initial-state annotator. New text
can be tagged by sequential application of the initial-state annotator and
of the acquired transformations. The pre-requisite for transformation-based
tagging consists of a pre-tagged training corpus and templates of admissible
transformations. For the unsupervised version of the tagger (Brill (19955)),
an unannotated corpus and a dictionary are required, as well as templates
of admissible transformations.

The complexity of the initial-state annotator can range from random
assignment of tags to sophisticated procedures based on probability distri-
butions of tags and morphological characteristics of tokens. The initial-state
annotator described in Brill (1995a) assigns each word its most likely tag as
indicated in the training corpus.

The transformation templates that the tagger uses to learn real trans-
formational rules are of the form:

1. If a word is tagged a and it is in context C, then change that tag to
b, or

2. If a word is tagged a and it has lexical property P, then change that
tag to b, or

3. If a word is tagged a and a word in region R has lexical property P,
then change that tag to b.

The context C and the region R are restricted to context window of
length 3, i.e. maximally three words in the immediate neighborhood of the
token can be taken into account.

Example rules learned by the tagger for English are listed in Table 2.1.
The first rule re-tags common nouns (NN) as verbs (VB) in a position after a
modal verb (MD). The second rule applies to non-capitalized common nouns,
changing them to proper nouns. The last rule states that if a word is tagged
as a past participle (VBN) and is preceded by a capitalized word, then it
should be re-tagged as a past tense verb form (VBD).

For each rule created from a set of templates, its performance is evaluated
as the improvement on the tagging accuracy after the rule application. This
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Source tag Target tag Condition

NN VB previous tag is MD
NP NN current word is not capitalized
VBN VBD previous word is capitalized

Table 2.1: Example rules learned by a transformation-based tagger.

Left to Right | Right to Left
Immediate |a b ab abbb
Delayed abbb abbb

Table 2.2: Tagger output depending on the application of transformations.

improvement is counted as a difference between the number of corrected
errors and the number of new errors caused by the rule. The rule with the
best performance is added to the final list of rules of the tagger and the
procedure is repeated until there is no rule that reduces the error rate by
more than a pre-specified threshold. Such a learning algorithm selects the
list of rules and predefines the order of their application as the order in
which rules were added to the list.

Two decisions have to be made about the application of the rules. First,
in which direction the transformations are applied to a corpus: right to left
or left to right. Second, whether a transformation is applied immediately or
only after the whole corpus has been examined. Consider a sequence “a a
a a” and a rule “Change tag a to b if preceded by a”. As Table 2.2 show,
the output of the tagger differs depending on the decisions made.

An unsupervised version of a transformation-based tagger is described in
Brill (19956). Both the initial-state annotator and the learning algorithm,
as well as the set of rule templates, are different from those of the supervised
model.

The initial-state annotator assigns each token all possible tags as spec-
ified for the token in the dictionary. The template rules indicate a set of
source tags (as opposed to a single source tag in the supervised model). The
template set is additionally restricted to templates with the context window
of size 1. Unlike the learning algorithm of supervised tagging that needs
gold tags from the pre-tagged corpus as a basis for comparison, the learning
algorithm of unsupervised tagging relies on the tags currently assigned to
the tokens by the tagger. The algorithm takes advantage of the fact that
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many words in the corpus are initially unambiguous. Instead of comparing
a candidate tag to a gold tag from a pre-tagged corpus, the candidate tag
is compared to tags of unambiguous words occurring in the same context.
A rule is considered reliable if one of the source tags appears much more
frequently as a tag of unambiguous words in the specified context than the
others. This difference in frequency of source tags serves as a basis for the
scoring function that evaluates the rule performance.

The tagger was originally designed for English and evaluated on the
Brown corpus. The performance of the supervised and unsupervised tag-
gers reaches 96.3% and 95.6%, correspondingly. Volk and Schneider (1998)
applied the supervised version of the tagger to the task of pure POS-tagging
of German. They report an achieved accuracy of 94.75%.

2.3 Frequency-based approaches

Frequency-based approaches to tagging rely on frequency information ex-
tracted from data. The popularity of this type of approach lies in the gen-
eral applicability of the methods: given the data, a tagger can be easily
retrained for a different domain or a different language. Depending on the
way the frequency information is used by a tagger, probabilistic methods
and symbolic machine learning methods are distinguished. In probabilistic
methods, probabilities of events are calculated and the most likely output
is chosen. In symbolic machine learning methods, classification of objects
is pursued in a non-probabilistic fashion. The two types of approaches are
discussed below.

2.3.1 Probabilistic Methods
Markov Modeling

Markov Models taggers dominate the field: they are easy to build, they
are fast and accurate. Both supervised and unsupervised Markov model
taggers are widely used. Below, a short introduction into Markov models is
given, and their application to tagging is discussed. A Markov model tagger
is exemplified by the Trigrams’n’Tags tagger (TnT), one of the best POS
taggers currently available.

Markov Models
A Markov model is a probabilistic model based on Markov chains. A
Markov chain is defined as a stochastic process with the Markov Property,
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i.e. as a sequence of random variables in which the probability distribution
of possible values of the next variable depends only on the value of a current
variable and is independent of the values of previous variables. The Markov
Property is formally stated as

P(XH_] :Sit+1 |X1 :37}1,---;Xt :Sit) :P(XH_] :Sit+1 |Xt:3it)

where X = (X4,...,Xr) is a sequence of variables which take discrete
values in some finite set S = {s7,...,sn}, a state space.
A Markov chain can be described by a stochastic transition matrix A:

aij :P(XH_] :Sj ‘Xt :Si)

where a;; represent transition probabilities from state X; to state X;. The
probabilities are non-negative and for each state X;, the sum of the outgoing
transition probabilities equals 1:

n
=1

Additionally, the probabilities of possible initial states are needed: m; =
P(X; = s;). However, if an extra initial state sy is added and if it is
specified that the model always starts at this state, probabilities 7; can be
incorporated into the transition matrix A.

In many applications, including natural language applications, Markov
chains are restricted to homogeneous or time invariant Markov chains, in
which for all 4, j, transition probabilities

a5 :P(Xt+1 =85 ‘Xt :Si)

are independent of ¢.3

Figure 2.2 shows an example of a Markov chain. Here, the states are
represented as circles with state labels inside the circles and transitions are
depicted as arrows connecting the states, with transition probabilities on
the arrows. The initial state of the model is indicated by an incoming start
arrow. Zero probability transitions are omitted from the picture.

A Markov model is a generalization of a Markov chain where each state
is associated with a probabilistic output function. More formally, a Markov
model consists of:

1. a finite set of states S = sy, ..., s, with a unique initial state sy;

3For non-homogeneous Markov chains a;; are not discrete values, but functions.
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Figure 2.3: An example of a Markov model.

2. an (n+ 1) x (n + 1) transition matrix A = [a;;],
where a;; = P(X41 = s | Xy = s4), aij > 0,Vi,j € S and

n
Zai]’ =1,Vi € S;
j=1

3. an output alphabet K =k;,..., ky;
4. an n X m symbol emission matrix B = [b;x],
where by, = P(Oy =k | X; = s;), bj; > 0,Vi € S,k € K and
m
b =1,Vi € S.
k=1

An example of a Markov model is presented in Figure 2.3.

Two types of Markov models are distinguished: wvisible (or observable)
Markov models and hidden Markov models. The distinction is made based
on whether states of the model are observable or hidden. An example of a
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visible Markov model is a model of sequences of tagged words: tuples word-
tag correspond to states and the emitted symbols. A sequence of words
with unknown tags can be modeled by a hidden Markov model: the output
symbols, words, are observable, but the states, i.e. tags of the words, are
hidden.

Given annotated training data, a (visible) Markov model learns the tran-
sition and emission probabilities by calculating relative frequencies of the
events:

Pk | k) = Lgfk’!;z)
P(s' | k) = 70((;22])

Here, k' and k/ are elements in the output alphabet, s is a state, C(k7, k)
is the number of occurrences of k/ was followed by k¢, C(#) is the number of
occurrences of &/ in the training data and C(s?, k%) is the number of times
k! was emitted by s’.

A problem arises if &/ did not occur in the training data. First, the
quotients in the equations are undefined. This is solved by defining zero
divided by zero to be zero. However, it still means that P(k* | k) and
P(s' | k7) equal zero for all k%, which has an undesirable effect: a string of
tags containing a substring &/ k* will have a zero probability. The problem
can be solved by smoothing the probabilities. One way to do so is by adding
further terms to the equation:

C (K, kY)
C(k?)
where V is a term added and As are the weights given to each term.

If no annotated training data is available, there is no straightforward way
of empirically deriving parameters of a Markov model.* However, parame-
ters can be estimated with the Baum- Welch or Forward-Backward algorithm
(Baum et al. (1970)). The algorithm starts with making an initial guess of
the parameters and proceeds by estimating the use of each parameter. By re-
calculating the probabilities of the parameters on the basis of the expected
number of transitions among states and the expected number of symbol
emissions for a given state, given the training data, a revised model is re-
ceived which gives a higher probability of the given data. The re-estimation
is repeated until a new model is no longer improving the approximation.

P(E' | k) = X + AV

“In this case one deals with a hidden Markov model.

22



Once a model is trained, the most likely output sequence of the model
can be calculated with the Viterbi algorithm (Viterbi (1967)). For each
state in a model, the algorithm finds an incoming transition with the highest
probability and keeps track of this probability and the state from which the
transition comes (a “backtrace”). The mostly likely sequence is found by
choosing a final state with the highest probability and back-tracking the
most likely path to the initial state through the stored backtraces.

The amount of history encoded in the state space defines the order of
a Markov model. In first-order Markov models, a state incorporates infor-
mation about one category. Alternatively, a state can represent a list of
categories of n previous states plus a category of the state itself. In such
case, a model is called m' order Markov model, where m is a number of
previous states used to predict the next state. Markov models of order (n-1)
are equivalent to n-gram models.

Markov Model Tagging

In Markov model tagging, a sequence of tags is viewed as a Markov
chain, i.e. an assumption is made that a word’s tag only depends on tags
of the n preceding words and that this dependency does not change over
time, i.e. the position in the sequence. Although the assumption does not
strictly correspond to the reality®, Markov model taggers have demonstrated
a convincing success in the domain: the best Markov model taggers perform
with an accuracy of 96-97% on the task of POS-tagging of English.

When a Markov model is applied to tagging, the states correspond to
tags, a transition probability a;; reflects a conteztual probability P(t; | ;) of
a sequence of tags t;t;. States emit words with lezical probabilities P(w | t).
The task is to find the most likely sequence of tags t; ; for a string wy g,
i.e. a tag sequence that maximizes the conditional probability P(t; ; | ws x):

P(t; ;)P t
argmaa:P(tI’k | ’LUI,k) = argmazx ( I;k) (wl,k ‘ I,k)
tl,k tl,k P(wl,k)

P(w;y 1) is constant for all ¢; j, so it is sufficient to find

argmazP(t; ) P(wy g | t1 k)

t1,k

Making the Markov assumptions, this formula can be rewritten as®

SUnder such assumption, long-distance dependencies cannot be caught.
5Full derivation is presented in Appendix F
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k
argma;cHP(t1 | ti—1)P(w; | t;)
tre =)

The formula describes a first order Markov model, or a bigram model.
It combines contextual and lexical probabilities. When a model is trained,
the probabilities are known and the most likely tag sequence is found with
the Viterbi algorithm.

For tagging purposes, Markov models are treated as hidden Markov mod-
els, since only words and not tags are known. For training purposes, how-
ever, the use of visible Markov models and HMMs differs. When tagged
training data is available, both tags and words are known and a visible
Markov model is used. Parameter estimation of a visible Markov model
tagger (often called an n-gram tagger) is straightforward: the probabilities
are at first derived from relative frequencies of sequences of tags and word-
tag pairs and then smoothed. If only untagged data are available, HMMs
are used to learn the probabilities with the Baum-Welch algorithm.

Markov models are one of the most widely used techniques in NLP and
are one the most popular approaches in tagging, as the amount of Markov
model-based taggers shows (Jelinek (1985), Church (1988), DeRose (1988),
Kupiec (1989), Cutting et al. (1992), Kempe (1993), Merialdo (1994), Brants
(2000)).

Trigrams’n’Tags tagger (TnT)

Trigrams’n’Tags (TnT) is a trigram tagger developed by Brants (2000).
The states of the model represent tags, outputs represent words, transition
probabilities depend on the states, i.e. pairs of tags. The main smoothing
technique implemented by default is linear interpolation. Thus, a trigram
probability is estimated as follows:

P(ts | ti,te) = A1 P(ts) + Ao P(ts | t2) + s P(ts | t1,1t2)

where P are maximum likelihood estimates of the probabilities, and A; +
A2 + Ag = 1. The values of the As are determined by deleted interpolation
(Brown et al. (1992)).

Unknown words are handled by the method proposed by Samuelsson
(1993) which is based on the suffix analysis. The information about capital-
ization of words is also added to the tagging scheme as an indicator function
c(w;) with the value 1 if the word is capitalized and 0 otherwise. The in-
formation is incorporated into the contextual probability distributions. For
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example, instead of P(ts | t1,t2), P(ts,cs | t1,c1,t2,c2) is used. Unigrams
and trigrams are updated accordingly.

The tagger is evaluated on English and German data (Penn-Treebank
(Marcus et al. (1993) and Negra (Skut et al. (1997)) corpora, correspond-
ingly). The results of the experiments on both corpora amount to 96.7%.

Maximum Entropy

Maximum entropy modeling is a framework for combining statistical evi-
dence from heterogeneous sources for classification. The basic idea of the
framework consists in choosing the distribution with the highest possible en-
tropy such that it satisfies all the constraints given by the present evidence.
Maximizing the entropy aims at preserving as much uncertainty as possible,
which inherently serves as regularization to avoid overfitting.

The Maximum Entropy Tagger (MXPOST) described by Ratnaparkhi
(1996) is a classification-based tagger based on a maximum entropy prob-
ability model. The tagger assigns a word to one of the pre-defined classes
(parts of speech). The classification function implemented with maximum
entropy probability models maximizes the joint probability of a tag a and
a context b based on binary features that are “active” for the pair (a, b)
(i.e. are equal 1). Formally, this probability p(a|b) is defined as

k
plafb) = mu ] a;/ ("
7j=1

where 7 is a normalization constant, {u, ay,...,a;} are the positive model
parameters and each parameter «; corresponds to a feature f;. Moreover,
given a sequence of words {w;,...,w,} and tags {a;,...,a,} as training
data, b; is defined as a context available when predicting a;.

Features encode the information which can help the model to correctly
identify the class of a token. They can refer to the tokens and tags in the
context, to the lexical characteristics of the token being tagged or any other
information that contributes to correct assignment of a tag. For example,
the following feature is active if the word ends with “-ing” and is tagged as
a verb gerund:’

1 if suffix(w;) = “ing” & a = VBG
0 otherwise

fj(a’b) = {

"Example is taken from Ratnaparkhi (1996).
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The corresponding model parameter «; will contribute to the joint prob-
ability p(alb) if the conditions are satisfied.

The model is provided with a set of feature templates which incorporate
conditions on (a) the current word, the following and preceding two words
and two tags, for frequent words and (b) the first and last four letters of the
current word, as well as the information whether the current word contains
numbers, uppercase characters and hyphens, for rare words. The instantia-
tions for variables in the feature templates (tags, words, suffixes, etc.) are
obtained automatically from the training data. The model parameters for
the distribution p are obtained via Generalized Iterative Scaling described
by Darroch and Ratcliff (1972). Once trained, the model tags tokens by
choosing a tag with the highest probability.

The tagger was trained and tested on the Penn-Treebank corpus. It
demonstrated the state-of-the-art performance, achieving an accuracy of
96.6%.

Haji¢ and Hladka (1998) applied the tagger for morpho-syntactic anno-
tation of Czech, a highly inflective language whose tagset size exceeds three
thousand tags. The experiments show a significant improvement of results
over an HMM-based n-gram model and provide an accuracy of 93.8%.

2.3.2 Symbolic Machine Learning
Memory-Based Learning

Memory-based learning is a type of supervised, inductive learning. It is
also known as similarity-based, example-based, instance-based, case-based or
exemplar-based learning. In this learning approach, examples from the train-
ing data are stored in the memory without modification and new examples
are classified by comparing them to previously seen instances. In this regard
memory-based learning is a type of lazy learning: no abstraction is made
over the training data.

Examples provided for a memory-based learning model are represented
as a vector of feature values. One of the features stands for the category
to which the example is assigned. This feature has an empty value in test
examples.

When a test example is provided to the model for classification, relevant
instances are extracted from the memory. To avoid errors caused by the
noise in the training data, each test example is compared to several instances
from the memory base. The classification is, thus, based on the k-nearest
neighbor algorithm. The relevant instances are extracted from the memory
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n
distance(X,Y) = 25(%’,%)
i=1

% if the values are numeric, else
5(5527291) = 0 if x; = Vi
1 if x; #yi

Table 2.3: Querlap metric: equations for instance and feature distances.

n
distance(X,Y) = | Y _6(z4,y:)
i=1

(x; — yi)? if the values are numeric, else
6(zi,yi) =4 0 ifx; =y;
1 ifx; #y;

Table 2.4: FEuclidean distance: equations for instance and feature distances.

on the basis of a similarity metric. The performance of the model crucially
depends on the choice of a similarity metric. Two basic metrics are generally
used: the overlap metric and the Fuclidean distance. Both of them compute
the similarity (distance) between instances X and Y based on the similarity
(distance) of pairs of corresponding features of the examples. In the overlap
metric, the contributions of the feature distances of all pairs is summed
up. Fuclidean distance is a square root of the sum of the feature distances.
The metrics also differ in the way the distance between numeric features is
calculated. The equations for the instance and feature distances for both
metrics are presented in Tables 2.3 and 2.4.

Features should be provided to the model by an experimenter. Since
features represent the basis for classification, the performance of a memory-
based model to an extreme degree depends on the feature selection. Weight-
ing of the features helps moderating the problem by introducing a bias to-
wards essential features and discounting irrelevant and redundant features.
Many feature weighting methods are described in the literature. Among
them, Information Gain (Quinlan (1986)), Gain Ratio (Quinlan (1993)),
Chi-squared weighting and its normalized version Shared Variance (White
and Liu (1994)).

Memory-based learning has been successfully applied to tagging (Daele-
mans, Zavrel, Berck and Gillis (1996), Cardie (1993)). Features in memory-
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based taggers usually refer to the focus word itself, its morphology and a
local context of two-three neighboring words. Words are assigned one of the
pre-defined POS or morpho-syntactic classes.

A tagger described by Daelemans, Zavrel, Berck and Gillis (1996) is one
of the most well-known memory-based taggers. It is part of the TiMBL sys-
tem, developed at Tilburg University. One of the novelties of the tagger is
the employment of the IGTree algorithm to compress the memory base into
trees, which allows for optimized retrieval speeds (100 to 200 times faster
than normal memory-based retrieval) and the memory storage of the model
(over 95% less memory). Instances in the model contain information about
(a) the focus word, the preceding and following word forms, the two pre-
ceding (already disambiguated) tags and the one following (still ambiguous)
tag for known words and (b) the first letter and the three last letters of the
focus word, the preceding and following word forms, the one preceding (al-
ready disambiguated) and one following (still ambiguous) tags for unknown
words. Information Gain is used for feature weighting. Instance distance is
calculated with the weighted overlap metric:

n
distance(X,Y) = Zwi6(xi,yi)
i=1
where w is a weighting function.

The tagger has been trained and evaluated on the Penn-Treebank corpus
and has achieved the state-of-the-art performance of 96.4%. The tagger has
also been used in the experiments with POS-tagging of Dutch, a language
close in its characteristics to German. The experiments are described by
Daelemans, Zavrel and Berck (1996). In the experiments, the tagset was re-
stricted to 13 main categories. The results shown in the experiments (95.7%)
are reported to be as good or better than the results achieved by state-of-
the-art rule-based and statistical approaches to POS-tagging of Dutch.

Decision Trees

Decision tree learning is one of the most widely used methods for inductive
inference. It is based on the use of decision trees for classification tasks. A
decision tree represents a predictive model which incorporates observations
about an object in terms of attribute-values pairs and allows for the induc-
ing of the target class of the object from these observations. An example
decision tree is shown in Figure 2.4. The tree makes decisions about a tagger
based on its characteristics and identifies it as one of the following taggers:
Transformation-Based Tagger (TBT), English Constraint Grammar Tagger
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Figure 2.4: An example of a decision tree.

(EngCQ), Trigrams’n’Tags Tagger (TnT), Maximum Entropy Tagger (ME),
Memory-Based Tagger (MBT), Decision Tree Tagger (TreeTagger) or Neural
Network Tagger (NetTagger).

Each node in a tree specifies a test on some attribute of the object,
whereas the branches leading from the node correspond to possible values
of the attribute. Leaves of a tree are instantiated as elements of a discrete
set of possible categories to which the object can be assigned. The object
is classified by starting at the root node, testing its question, following the
branch with the appropriate answer to a daughter node and repeating the
process until a leaf node is reached.

Decision trees are built by at first constructing a large tree and then
pruning it. Most algorithms used for construction of a decision tree are
based on a core algorithm that can be exemplified by the ID3 algorithm
(Quinlan (1983)). With this algorithm, the tree is constructed recursively
from the training examples. At each recursion step, an attribute is found
that splits the examples into maximally distinct groups. At first, this is
done for the whole set of examples. The attribute is encoded as a root
node, descending branches correspond to the values of the attribute. The
procedure is repeated for each new node until all the training examples are
classified.

The attribute that splits the examples best is found by maximizing the
information gain — an information-theoretic metric defined as the difference
of the entropy of the mother node and the weighted sum of the entropies of
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the child nodes:

S
Gain(S, A) = Entropy(S) — Z | S’U |Entr0py(5’v)
vEValues(A) | |

where Values(A) is the set of all possible values for the attribute A, and S,
is the subset of S for which attribute A has value v.

After a tree has been constructed, it is pruned. Pruning is the process
of removing a subtree rooted at a node and making the node a leaf with the
category that is most common for the leaves dominated by the node. Prun-
ing allows for avoidance of overfitting which results from basing decisions on
coincidental regularities in the training data.

The application of decision tree learning in tagging have been explored
by many researchers: Schmid (1994b), Magerman (1995), Marquez (1999),
Orphanos et al. (1999). Magerman (1995) uses decision trees for a number
of simultaneous decision-making problems, such as assigning POS labels to
words, determining the constituent boundaries in a sentence, determining
the constituent labels, etc. The reported results on Penn-Treebank data
(96.6%) demonstrate the high competitiveness of the approach.

Orphanos et al. (1999) apply the approach to POS-tagging of Modern
Greek. The POS disambiguator is built as a “forest” of decision trees for
each ambiguity class in Modern Greek. For each ambiguous token in a
text, its ambiguity class is determined and the corresponding decision tree
is selected. Tests in the trees represent conditions on the context. Typical
tests are the POS label of the previous token, the gender value of the next
token, etc. Traversing the tree returns the contextually appropriate POS
label for the token being tagged. The reported accuracy ranges between
92.52% and 95.19%.

Neural Networks

A rather new approach to tagging is based on artificial neural networks.
A neural network is a collection of simple processing units. The units are
organized in layers and weighted connections exist between all units in the
adjacent layers. The information is fed to the units of the bottom layer,
called an input layer. Each unit then passes its given value through the
connections to the units on the next layer. A value received by a unit on the
next layer, called an activation value, is computed as a sum of values from
the incoming connections multiplied by a weight number of the connection,
with a threshold value subtracted. A simple computation is then performed
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on the received value in order to restrict the value to a certain range. Usually,
the sigmoid function is used to map the values into the interval [0,1]:

_ 1
where net; is a received value and a;; is a resulting output value.

The output value is then further passed through the connections leading
out of the unit to the units of the next layer. This process is repeated until
the top layer, called an output layer, is reached. Initially, the weights on
connections are set to small random values. The network learns by adapting
the connection weights and thresholds so that the correct output is produced.
The backpropagation algorithm is usually used for this adaptation.

When artificial neural networks are applied to tagging, the input infor-
mation represents possible tags for a given token and the information about
the context of the token. Each unit of the output layer corresponds to one
of the tags of the tagset. During the training phase, the network learns to
activate the output unit that corresponds to the correct tag of the token
and to deactivate all other output units. In the trained network, the output
unit with the highest activation value corresponds to the tag for a currently
processed token.

The taggers based on artificial neural networks differ in respect to the
type of the network used. Taggers based on networks with different num-
ber of intermediate (hidden) layers were reported in the literature (Schmid
(19944a), Marques and Lopes (1996)), as well as taggers based on recurrent
networks (Pérez-Ortiz and Forcada (2001)) and tagging systems that com-
bine several networks (Ma and Isahara (1997)).

Schmid (1994a) describes a tagger based on one of the simplest kinds of
networks, a two-layer perceptron. This network does not have any hidden
layers: the inputs are fed directly to the outputs via a series of weights.
The input to the network represents probability distributions of all tags for
the token being tagged and for three preceding and two following tokens.
The tagger was trained and evaluated on the Penn-Treebank corpus. The
performance of the tagger was compared to the performance of a trigram
based tagger (Kempe (1993)) and a Hidden Markov Model tagger (Cutting
et al. (1992)) which were trained and evaluated on the same data. The
neural network-based tagger is reported to perform as well as the trigram-
based tagger and better than the HMM-tagger, achieving the accuracy of
96.22%. Additional experiments were performed to estimate the influence
of the size of the input context and of the additional hidden layer in the
network. The additional layer turned out to deteriorate the performance,

aij
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EngCG |Brill |TnT |ME  |MBT |TreeT |NetT
99.7% [96.3% |96.7% [96.6% |96.4% |96.6% |96.2%

Table 2.5: Performance of the taggers on Penn-Treebank data.

as well as restricting the context to two preceding and one following words.
Increasing the context window did not lead to any improvement.

2.4 Comparison of the approaches

Many characteristics can serve as a basis for comparison of the approaches.
The most obvious and the most important aspect concerns tagging perfor-
mance. Another crucial question is whether and to which extent a tagging
method relies on linguistic knowledge and existing corpora. This is partic-
ularly important for less thoroughly explored languages and for languages
with limited data resources. For languages which have been in a research
focus for an extended period of time, such as English, technical character-
istics of taggers are of a bigger concern. Thus, for English, most taggers
show a similar high performance of 95-97% and the value of taggers is also
evaluated on their complexity, speed and storage requirements. For morpho-
syntactic annotation, the sensitivity of a tagger to the size of the tagset is
one of the most important features. Since incorporation of the morpho-
logical information into the tagset leads to a significantly explosion of the
tagset, performance of a tagger can drastically differ when the tagger is
applied to the tasks of pure POS annotation and of morpho-syntactic tag-
ging. Context sensitivity is another characteristic important for the task of
morpho-syntactic annotation, since clues necessary for successful morpho-
syntactic disambiguation are often of non-local nature. A comparison of the
approaches based on these aspects is presented below.

2.4.1 Performance

All the taggers described above have been evaluated on the Penn-Treebank
data, which partially simplifies the comparison of their performance.® Ta-
ble 2.5 summarizes results achieved by the taggers reported in correspond-

8Basing experiments on the same corpus does not eliminate such complicating factors
affecting performance comparison as size of the training data, smoothing method used
and quality of the guesser.
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ing publications.® The best performance which significantly exceeds perfor-
mance of any other tagger is demonstrated by the hand-crafted rule-based
EngCG tagger. However, a comparison of the results of the EngCG tag-
ger and of other taggers is complicated by the fact that the EngCG tagger
leaves an ambiguity on 3-7% of tokens. At the same time, Schmid (1994a)
mentions that the accuracy of the NetTagger can be raised to 97.69% if
4.6% of tokens are left ambiguous. Since remaining ambiguity corresponds
to keeping more than one tag, such relieving of conditions raises a chance of
correct tagging for the other methods as well.

A relevant experiment comparing the performance of the EngCG tagger
to the performance of a trigram tagger on the same data is described by
Samuelsson and Voutilainen (1997). The error rate of both taggers has been
presented as a function of remaining ambiguity on tokens. For all values
of the tags/token correspondence in the reported range of 1.026-1.093, the
error rate of the EngCG tagger is several times lower.

A similar experiment has been performed for French by Chanod and
Tapanainen (1995). The experiment compares a hand-crafted rule-based
tagger and an (unsupervised) HMM tagger. Full disambiguation has been
required for both taggers. Additionally, a time limit on amount of time
spent on development and tuning of both taggers (one man-month) has
been imposed. This time constraint has been designed to empirically check
the general believe that development of rule-based taggers is much more
time-consuming than tuning of statistical taggers. The results achieved by
Chanod and Tapanainen (1995) show that even with the limited time spent
on rule development, the rule-based tagger has yielded an accuracy of 97.5%
which corresponds to an improvement of 2.5% over the accuracy of the HMM
tagger.

These experiments provide more evidence supporting the statement that
hand-crafted rule-based taggers outperform in accuracy the best taggers of
the competing approaches, namely probabilistic taggers.

All the taggers included in Table 2.5 are supervised taggers. Merialdo
(1994) presents experiments aimed at the comparison of supervised and
unsupervised probabilistic taggers. The experiments have shown that su-
pervised taggers outperform unsupervised taggers and the quality of the
performance is directly connected to the amount of hand-tagged training
data available. Training on untagged data improves the performance if only

®Taggers described in Table 2.5 are: English Constraint Grammar Tagger (EngCG),
Brill Tagger (Brill), Trigrams’n’Tags (TnT), Maximum Entropy Tagger (ME), Memory-
Based Tagger (MBT), decision tree based tagger (TreeT) described by Magerman (1995)
and a neural network tagger (NetT) described by Schmid (1994a).
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a very restricted pre-tagged corpus is available.

Megyesi (2001) describes experiments which aim at the comparison of
the performance of four of the data-driven taggers described above, namely,
the Memory-Based tagger (MBT), the Maximum Entropy tagger (ME), the
Brill tagger and the Trigrams’n’Tags tagger (TnT), on Swedish data. From
a syntactic and morphological point of view, Swedish can be placed between
English and German, as it is characterized by a richer morphology than
the morphology of English and by a relatively flexible word order. The
findings of Megyesi (2001) demonstrate the same performance distribution
between the taggers as the distribution shown on English data. The spread
in accuracy is more distinct, though: 4.49% (89.06% — 93.55%) as compared
to a spread of 0.4% in experiments with the English data, which can be
explained by the characteristics of Swedish which make the language more
difficult for tagging and by a bigger size of the tagset (139 tags as compared
to the 36 tags of the Penn-Treebank data).

2.4.2 Need for linguistic knowledge and corpora

A choice of a tagging method is often guided by the availability of resources
for the focus language. Supervised methods cannot be applied unless enough
annotated data are accessible for the language. In this regard unsupervised
approaches represent a suitable alternative, since they do not rely on pre-
tagged training data. Most data-driven tagging approaches provide both
supervised and unsupervised versions for tagging. The most well-known
and widely used unsupervised taggers are HMM taggers and unsupervised
transformation-based taggers. However, Merialdo (1994) has demonstrated
that unsupervised taggers yield a lower performance compared to supervised
versions.

Supervised approaches can be compared on the basis of their perfor-
mance on restricted training data sets. Such an experiment has been per-
formed by Megyesi (2001) for the Memory-Based tagger, the Maximum En-
tropy tagger, the Brill tagger and the Trigrams'n’Tags tagger (TnT), on
Swedish data. The taggers were trained on different portions of data in the
range of one thousand to one million tokens. The Brill tagger has demon-
strated the smallest spread in the error rate (50% error rate reduction) and
the Maximum Entropy tagger the largest spread (88%). The overall result
has shown that TnT provides the best results when the training data con-
tain more than ten thousand tokens, otherwise the Brill tagger outperforms
the three other taggers. Additionally, experiments of Schmid (1994a) and
Schmid and Kempe (1996) have demonstrated that the NetTagger outper-
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forms a trigram tagger (Kempe (1993)) on small amounts of training data
(up to approximately 80 thousand tokens).

A tagging approach that does not require training data and provides a
high accuracy is the hand-crafted rule-based approach. Creation of a suc-
cessful hand-crafted rule-based tagger relies, however, on linguistic knowl-
edge introduced to the system by a linguist. Although this hand-crafted ap-
proach is regarded as the most dependent on manually incorporated linguis-
tic knowledge, for feature-based approaches, such as memory-based learning
and maximum entropy framework, such knowledge is also required in the
feature selection process.

2.4.3 Technical characteristics

Technical characteristics of taggers mostly concern the speed of training and
testing and the complexity of taggers, often seen as storage requirements.

Rule-based methods incorporate information in the form of constraints
which are usually simple and small. Together with the decision trees they
represent the most compact systems. Rule-based methods are additionally
easy to check and correct, which makes them attractive from the main-
tenance and tuning point of view. Probabilistic taggers incorporate large
numbers of lexical and contextual probabilities, which makes them more
massive than the rule-based taggers. The highest storage requirements are
imposed by memory-based taggers, since all the training instances are kept
in the memory.

The complexity of the taggers is, however, not reflected in their speed.
Megyesi (2001) reports a speed required for learning 100 thousand tokens as
approximately one second for TnT, a minute for the Memory-Based tagger,
and one day for the Brill tagger and the Maximum Entropy tagger. Tagging
the same amount of data takes the same time as for training in case of TnT
and the Memory-Based tagger, and is approximately as fast for the Brill
tagger as for the Memory-Based tagger.

The corresponding numbers for other taggers are not available.

2.4.4 Sensitivity to the size of the tagset

This characteristic is particularly important for the task of morpho-syntactic
tagging, since the morphological information, such as case, number and gen-
der, has to be included into the tagset. This complicates the tagging task,
since the system has to choose a correct analysis from a much bigger set.
As numerous experiments described in the literature show (Wothke et al.
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EngCG | Brill | TnT |ME | MBT | TreeT  |NetT
unrestr. ‘ < 3(f+p) ‘2p ‘ < 2p+-2f ‘2p+1f ‘ < 2p+-2f ‘3p+2f

Table 2.6: Context window utilized by the taggers.

(1993), Steiner (1995), Haji¢ and Hladka (1997), Tufig (2000)), expansion of
the tagset leads to a significant decrease in performance. The experiments
of Megyesi (2001) have demonstrated that TnT is the least sensitive to the
tagset expansion from the four taggers which were explored. Adding more
training data can help to lower the error rate.

Hand-crafted rule-based taggers also suffer, though to a lesser degree,
from expanding the tagset. More fine-grained category distinction requires
a larger set of constraints and full disambiguation is harder to achieve with
big tagsets. Thus, for hand-crafted rule-based taggers, tagset expansion
concerns first of all a decrease in recall.

2.4.5 Context sensitivity

For POS tagging, most taggers utilize a context window of 2-6 surrounding
tokens for successful realization of the task. Table 2.6 summarizes context
window values for the taggers described in sections 2 and 3. Letters p and
f stand for preceding and following tokens, correspondingly. Thus, “2p +
1£” should be read as “2 tokens in the left and 1 token in the right contexts”
and “< 3(f+p)” as “up to 3 tokens in the surrounding context”.

Constraints of the EngCG tagger are in 71% cases non-local (Voutilainen
(19950)), i.e. they incorporate a context extending beyond the neighboring
words. The rule formalism does not restrict the context to any particular
length and, since the tagger does not require training, the development speed
is independent of the context window used. However, the such non-locality
of the rules can lead to a lower annotating speed.

The TnT, the Memory-Based Tagger and the NetTagger incorporate
the context as a unit, i.e. it cannot be broken into features, as it is done
in the Brill tagger, the Maximum Entropy tagger and in the Magerman’s
decision tree tagger, and has to be processed together (e.g., a bigram ART
NOUN). Thus, including more tokens in the context would increase the data
sparseness problem: longer sequences of tags occur in the data less often
than short sequences and the tagger would suffer from insufficient training
data, which would result in a decrease in tagging accuracy.

For the Brill tagger, the Maximum Entropy tagger and the Decision
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Tree tagger, the problem is less severe, since decisions are made on the
basis of distinct features, such as “a tag of a second token in the right
context”. However, expanding the context results in significant slow-down
of the training phase of these taggers, since the feature space is considerably
increased.

2.4.6 Summary of the comparison

Different tagging approaches and taggers have been compared on the basis
of different characteristics. Which of the approaches and taggers are more
suitable depends to a high degree on the intended application, the amount
of time set up for development, tuning and training of the tagger and on
the availability of resources for the focus language. If a sufficient amount
of pre-tagged training data is available and the need for a tagger is urgent,
n-gram models provide the best alternative, since they can be trained in
several minutes and since they achieve a high accuracy. However, n-gram
taggers are less suited for the tasks which require taking a broad context
into account for the successful realization. Maximum entropy taggers incor-
porate information in distinct features and are able to capture broad context
in a better way. They, however, are more time-consuming and require large
amounts of data for training. The development of a hand-crafted rule-based
tagger is the optimal solution if no or only very restricted training data exist
and high accuracy is demanded. They also are best suited for disambigua-
tion which relies on a broad context. These characteristics make them an
ideal candidate for morpho-syntactic annotation of German, given that large
annotated corpora are not accessible for this language.

A common obstacle for successful tagging with all the existing methods is
a significant expansion of a tagset. For approaches that produce only one tag
for each token, such an expansion results in a lower accuracy. If remaining
ambiguity is allowed, adding information to the tagset leads to a lower recall.
Combining techniques of the approaches and extending the methods have
been presented in the literature as a means for the improvement of tagging
accuracy. Such hybrid and modified methods are discussed in the next
section.
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2.5 Hybrid methods and extensions to the appro-
aches

2.5.1 Combining rule-based and probabilistic methods

Haji¢ et al. (2001) describe a hybrid rule-based and statistical tagging sys-
tem for Czech. The combination of the components is serial and aims at
bringing together the strengths of hand-crafted rule-writing and of proba-
bilistic learning: the rule-based module performs initial disambiguation of
the text. It aims at keeping the recall close to 100% and at accurate re-
duction of the search space for the subsequent application of a probabilistic
component. The probabilistic component is based on a trigram model. It
resolves remaining ambiguity by choosing the most likely analysis given the
context. The final system outperforms other Czech taggers described in the
literature and reaches an accuracy of 95.38%.

A similar hybrid tagging system was successfully designed for English
Tapanainen and Voutilainen (1994). The obtained results amount to 98.5%
accuracy.

2.5.2 Combining n-grams and decision trees

Schmid (1994b) has used a decision tree formalism for estimating the tran-
sition probabilities in n-gram taggers. A decision tree incorporates tests on
the context and the probability of an n-gram is determined by following a
corresponding path in the tree. Leaf nodes of the tree contain probability
distributions for different tags.

The TreeTagger was originally designed for English (Schmid (1994b)).
The performance of the tagger was tested on data from the Penn-Treebank
corpus. An achieved accuracy of 96.36% demonstrates a small improvement
over the results received by a trigram tagger on the same data (96.06%).
Applying the tagger to German demonstrated less satisfying results due to
the smaller amounts of training data available (Schmid (1995) reports that
about 50% of tokens in the test data did not occur in the training data).
An extended version of the tagger which aimed at improving poor lexical
probability estimates has been developed and described in Schmid (1995).
The extensions concerned smoothing lexical probabilities with equivalence
class based probabilities and a more sophisticated treatment of sentence-
initial words. Further improvement was obtained by incorporating a prefix
lexicon and expanding the full form lexicon. The performance of the new
version of the TreeTagger yielded a 37% improvement over the first version
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and achieved an accuracy of 97.5%.

The TreeTagger is robust with respect to the size of the training data.
Its accuracy deteriorates slower than the accuracy of a trigram tagger when
the amount of training data is being reduced. The processing speed of the
TreeTagger is also higher than the speed of a trigram tagger.

2.5.3 Reduced tagset approaches

A very promising approach to deal with issues of data-sparseness for large
tagsets has been suggested by Tufig (2000) and Tufig et al. (2000). They have
advocated the methodology of Tiered Tagging with Combined Language
Models (TT-CLAM).

Central to the TT-CLAM approach is an algorithm for automatically
reducing large tagsets into a hidden tagset that is used for training the
language model for POS tagging proper and that is manageable in size for
current tagging technology. This hidden tagset is designed in such a way
that the full tagset can be recovered almost deterministically on the basis of
lexical information associated with a given token. The words that become
ambiguous after mapping reduced tags back to the full tagset (less than
10% in the experiments of Tufig) are further disambiguated by a small set of
contextual rules. TT-CLAM has been successfully applied to a number of
languages, including Romanian and Hungarian. For Romanian Tufig (2000)
reports a tagging accuracy of between 97% and 99% and a mapping accuracy
of almost 99% when the hidden tagset is mapped back to the full tagset.

A similar approach based on a reduced tagset is described by Dienes and
Oravecz (2000) for Hungarian. The two approaches differ in the methods
used for tagset compaction. The TT-CLAM approach of Tufig (2000) suc-
cessively reduces the size of the original tagset (allowing for a 10% loss of in-
formation) while the bottom-up tagset design of Dienes and Oravecz (2000)
maximally reduces the original tagset without loss of information and then
re-introduces morpho-syntactic features to expand the reduced tagset to a
set of tags that exhibit sufficient distributional cues for the tagger.

2.6 State of the art in tagging of German

Numerous taggers have been reported in the literature for German. The
best results for pure POS tagging are achieved by the TreeTagger described
by Schmid (1995) (97.50%) and by the TnT tagger (96.7%). These results
are comparable to the performance of the state of the art taggers applied to
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IBM Miinster | Stutt- Stutt- Stutt- Pader-
gart gart gart born

method bi- & tri- | bi- bi- tri- decision | tri-

grams grams grams grams trees grams
training 20 k 200 k 1822k | 1822k | 18-22 k | 20.000
data tokens tokens tokens tokens tokens tokens
tagsets 689 143 855 855 855 456
large/small | 33 54 51 51 51 51
accuracy 77.70 81.50 33.81 64.91 58.98 84.70
large/small | 93.40 92.80 85.38 87.18 95.14 95.90

Table 2.7: Comparison of German Taggers.

annotation of English data. The morpho-syntactic tagging of German has
also been explored. However, for this task less success has been achieved.

Table 2.7 describes German taggers which have been applied to morpho-
syntactic annotation (tagging with the expanded tagsets) along with pure
POS tagging. The taggers included in the table have been presented by
Wothke et al. (1993) (IBM), Steiner (1995) (Minster), Schmid and Kempe
(1996) (Stuttgart) and Lezius et al. (1996) (Paderborn). As Table 2.7 shows,
the best results are yielded with a trigram model developed by Lezius et al.
(1996). An achieved accuracy of 84.70% is lower than the results reported
for probabilistic morpho-syntactic annotation of other languages: compare,
for example, with an accuracy of 93% reported for Czech by Haji¢ and
Hladka (1998). These results are also considerably lower than the results of
hybrid and extended methods: cp. 95.16% for Czech (Haji¢ et al. (2001))
and 97%-99% for Romanian (Tufig (2000)).

The reason for such difference in performance on the data of different
languages lies in a higher ambiguity of German data, a more intricate case
syncretism and a relatively free word order of German. Alternative meth-
ods for successful realization of the task of morpho-syntactic annotation of
German are explored in Chapter 6.

2.7 Conclusion

In this chapter, the standard approaches to tagging have been presented. A
detailed description of different techniques together with the survey of some
of the well-known modern taggers for each approach has been provided. The
described taggers have been compared on the basis of different parameters
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and their applicability to the task of morpho-syntactic tagging has been
highlighted. Additionally, hybrid and extended systems relevant for the task
have been described. The state of the art of German tagging presented in
the chapter demonstrated a need for new methods for successful realization
of the task of morpho-syntactic annotation of German. Such methods are
explored in Chapter 6.
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Chapter 3

Dependency Parsing

One of the possible areas of application for morpho-syntactic taggers is pre-
processing of data for dependency parsing. Providing unambiguous morpho-
syntactic information in the input of a dependency parser considerably sim-
plifies the task of the parser, since in many languages the grammatical func-
tions of tokens are closely connected to their morphological values. Thus,
Reis (1982) explores the status of a category of a subject in German and
argues that this category is irrelevant for the language in question, i.e. there
is no language regularity that cannot be described without reference to the
notion of subject if a simpler notion of a nominative NP is available. This
claim of Reis (1982) supports the argument of importance of morphological
information, in particular morphological case, in syntactic analysis.

Dependency analysis has a long history in linguistic theory and lately,
a renewed interest has been shown to dependency analysis in theoretical,
computational and corpus linguistics: new theories, parsing models and
treebanks based on the dependency framework are being developed and
explored.

Dependency theory has been particularly popular in research of lan-
guages with flexible word order, such as Czech and Russian, since it provides
the means for a more elegant modeling of word order variations than the
constituency analysis. In German linguistics, dependency theory received
broad support soon after the publication of the first detailed description of
the theory presented by Tesniére (1959): studies of Heringer (1970), Engel
(1972) and Kunze (1975) have established rich traditions of German depen-
dency syntax.

The current chapter aims at providing the theoretical background for the
application of morpho-syntactic information to dependency parsing that will
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be described in Chapter 7. This chapter is organized as follows: after short
preliminaries in section 3.1, section 3.2 introduces the classical model of
dependency theory by sketching the basic notions and principles shared by
most current dependency frameworks. The introduction is based on the
work of the originator of the theory, Lucien Tesniére (Tesniere (1959)), as
well as on the work of Mel’¢uk (1988) and on course materials of Hudson
(2000) and Kruijff and Duchier (2002). In Section 3.3, the introduction
is followed by a discussion of various issues of dependency theory which
represent points of divergence among current dependency frameworks. Sec-
tion 3.4 examines the role of dependency theory in computational linguistics
in and Section 3.5 provides a survey of current German dependency parsing
models. The chapter is concluded in section 3.6.

3.1 Preliminaries

The theory of dependency analysis represents one of the two major the-
ories of linguistic analysis. Unlike the competing theory of constituency,
or phrase-structure, analysis, which is a relatively recent development!, de-
pendency theory can be traced to the ancient Greek and Indian linguistic
traditions (Fraser (1994)).

The first linguistic theory based on dependency has been developed by
Tesniére (1953, 1959). It has become a classical model of dependency the-
ory and has since been extended to numerous theories, just to mention a
few, Case Grammar (Anderson (1971)), Constraint Dependency Grammar
(Maruyama (1990)), Functional Dependency Grammar (Tapanainen and
Jarvinen (1997)), Functional-Generative Description (Sgall et al. (1986)),
Meaning-Text Model (Mel’¢uk (1988)), Word Grammar (Hudson (1984)).

Below, a classical model is outlined, and current issues in dependency
theory are discussed.

3.2 Classical Model

3.2.1 Basic notions

The theory is based on the notion of dependency — a binary asymmetric,
irreflexive, transitive relation between linguistic units. Dependencies can
be established on different levels of linguistic analysis. Figure 3.1 exem-
plifies morphological, semantic and syntactic dependencies for sentence (7).

1t was first introduced in early 1930s (Bloomfield (1933)).
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For example, on morphological level, a dependency between “Mann” and
“dieser” is established, since the morphological characteristics of the token
“dieser”, such as its gender and number, are dictated by the morphological
characteristics of the noun.

(7) Dieser Mann hat eine schone  Frau.
‘This man has a  beautiful wife.’

Since the emphasis of the current chapter is on dependency parsing, the
exposition below is restricted to the syntactic level of dependency analysis.
Elements connected by a dependency are called a head and a dependent.?
Several criteria have been proposed in the literature for the identification of
the head of a dependency. Fraser (1994) distinguishes the following criteria:

e the head determines whether a dependent is optional or obligatory,
and not vice versa;

e the head subcategorizes for its dependents, and not vice versa;

e the head determines in which inflectional form of a dependent occurs,
and not vice versa;

e the head identifies the semantic object which a dependent further spec-
ifies, and not vice versa.

Dependency relations between elements of a linguistic object, such as
words in a sentence or morphemes in a word, constitute a dependency graph.
The classical model further restricts dependency graphs to trees by imposing
the following constraints:

e only one node in a graph is independent;

all other nodes have a head;

each node has at most one head;

head and dependent are adjacent.

According to Tesniére (1959), the basic syntactic unit which corresponds
to a node in a dependency tree is a nucleus. A nucleus always contains both
the structural and the semantic centers and consists of one or more, possibly

2Other terms used in the literature are: governor or regent, for the head, and modifier,
for the dependent.
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Morphology:

hat

(@]
vam [agr” g gy
O O

Dieser CONE cong cong
o . O .
eine schéne
agr: agreement,
cong: congruence,
gov: government

Syntax:
hat
o
Mann Frau
o o
Diese
o . O .
eine schéne
Semantics:

hat

o
Mann Frau
®) o

Figure 3.1: Different types of dependencies
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discontinuous, words or parts of words. An example of a nucleus in English
is a verbal phrase which consists of an auxiliary verb and a participle, such
as “be eating”, “have eaten”. The syntactic center of such a nucleus is an
auxiliary verb, whereas the semantic center is contained in a participle.

An ordered set of nodes of a complete subtree of a particular node repre-
sents a projection of the node. An important property of dependency trees
is based on the notion of projection: a dependency tree is said to have a
property of projectivity, or is called projective, if projections of all nodes of
the tree fill continuous intervals.

3.2.2 Comparison of dependency analysis to constituency

analysis

Constituency Dependency
structure is based on constituency relations
main logical operation | set inclusion establishing

binary relations

phrases explicit implicit
relations implicit explicit
head marking optional obligatory
nodes in trees mostly non-terminal terminal only
linear order of nodes obligatory not required
labeling syntactic roles | no yes

Table 3.1: Constituency analysis vs. dependency analysis

Table 3.1 summarizes the main differences between dependency and con-
stituency analyses.

Dependency structures are based on relations between linguistic units,
i.e. the structures show which units relate to each other and in which way.
Two units are considered to belong together if one is dependent on the other.
In constituency analysis, on the other hand, structures reveal how linguistic
units combine to form a unit of a higher order. Two units are considered
to belong together if they both are a part of a larger whole. The main
logical operation of constituency approach is, thus, set inclusion, whereas in
dependency approach it is the establishment of binary relations.

Constituency analysis provides explicit identification of phrases as groups
of elements. In dependency analysis, phrases are not explicit but can be de-
rived from the structure: a phrase corresponds to a projection of a node
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Figure 3.2: Correspondence of a projection of a node to a phrase

together with the complete subtree under the node. In Figure 3.2, projec-
tions are presented as horizontal lines under the nodes.

Relations are, on the other hand, explicit in dependency structures but
can not be identified in constituency analysis, unless head elements are
marked in the constituency structures. Such head marking is optional in
constituency theory and is present in only few theories, such as X-bar the-
ory (Jackendoff (1977)) and HPSG (Pollard and Sag (1994)).

Dependency relations are defined directly on linguistic units, so that
dependency structures consist of terminal nodes exclusively. Constituency
structures are, on the other hand, built of primarily non-terminal nodes.
Mel’¢uk (1988) provides an example of both types of structures for a sentence
which consists of eighteen nodes (“She loved me for the dangers I had passed,
and I loved her that she did pity them”) and shows that while the dependency
structure uses exactly the number of nodes equal to the number of words in
the sentence (i.e. eighteen nodes), the constituency structure employs sixty
one nodes which are filled mostly with non-terminal categorization symbols.

In constituency analysis, the linear order of nodes plays a crucial role.
The constituent trees are inseparable from word order. In dependency anal-
ysis, linear organization of nodes in a structure is not required. Tesniére
(1959) distinguishes between the linear order and a structural order and ex-
cludes word order phenomena from his structural consideration. Similarly,
Mel’¢uk (1988) argues that word order does not belong to the syntactic level
but rather is a means of the deep-morphological level. Most modern formal
dependency frameworks also separate a level of syntactic dependency anal-
ysis from a level of surface ordering of tokens (Gerdes and Kahane (2001),
Jarvinen and Tapanainen (1998), Broker (1998)).
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In constituency structures, the syntactic roles of units are not specified.
In dependency structures, explicit marking of the type of relation between
nodes is provided.

3.2.3 Motivation

Two kinds of arguments have been used in the literature for motivation
of dependency theory. Arguments of the first kind compare dependency
structures to constituency structures and advocate a better suitability of
dependencies for the analysis of natural language. The second kind of ar-
guments considers dependency analysis in terms of its plausibility. Below,
both kinds of argument are considered.

Advantages of dependency structures as compared to constituency trees
can be generally summarized by the following claims:

¢ dependency structures are more succinct, explicit and expressive;

e dependency structures provide a more elegant means for description
of languages with a less fixed word order.

The first claim regards syntactic descriptions of the dependency theory.
Unlike constituency trees, dependency trees do not have an intermediate
level of non-terminal nodes. Relations are established directly between lin-
guistic units and are marked. At the same time, constituents can be easily
derived from the dependency trees. This makes dependency structures more
succinct, explicit and expressive in terms of presentation of the information.

The second claim is based on the classical axiom of dependency syntax:
dependency trees are invariant with respect to the word order. This ax-
iom makes dependency syntax more attractive for the analysis of languages
with a flexible word order, since various linearizations of a sentence can be
represented with the same dependency structure. Consider an example of
a dependency tree shown in Figure 3.33. This dependency tree corresponds
to the following linearizations:

(8) a. Niemand hat diesem Mann das Buch zu lesen versprochen.
b. Diesem Mann hat das Buch niemand zu lesen versprochen.
c. Das Buch zu lesen hat diesem Mann niemand versprochen.
d. Diesem Mann hat niemand versprochen, das Buch zu lesen.
e. Diesem Mann hat, das Buch zu lesen, niemand versprochen.
f. Zu lesen hat diesemm Mann das Buch niemand versprochen.

3The example is proposed by Gerdes and Kahane (2001).
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hat 'has’

e O\
suhj N
versprochen
= < 'promised'
niemand / \
'nobody'-NOM iohj int
zu lesen
) < 'toread'
diesem Mann
'this man'-DAT e
dobj
o
das Buch

'the book'-ACC

Figure 3.3: Dependency tree of the sentences in (8)

g. Das Buch hat niemand diesem Mann versprochen zu lesen.
‘Nobody promised this man to read the book.’

In constituency theory, each sentence in (8) has a separate analysis,
although they are syntactically equivalent.*

Another advantage of dependency analysis in regard to languages with
a variable word order is the unproblematic treatment of discontinuous con-
stituents, such as “das Buch zu lesen” in sentence (8g).

The second type of motivation of dependency theory has been presented
by Hudson (2003) who argues that dependency structures are plausible from
a psychological point of view. The claim is supported by various kinds of
evidence which include dependency distance, dependency direction, depen-
dency classification, dependency prototypes, dependency parsing, depen-
dency lexicalization and dependency learning. Thus, Hudson (2003) points
out, for example, that dependency structures provide a natural means for
estimating the structural difficulty of a sentence calculated in terms of a
dependency distance, i.e. the number of words between each word and the
word on which it depends.

4The sentences convey different information structures as to what is considered focused
and what is considered given.
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e

sa gaité et son accent étonnant

Figure 3.4: Dependency structure provided for a modification construction
with coordination

3.2.4 Criticism

Mel’¢uk (1988) has addressed criticisms found in literature that concern
some of the basic assumptions underlying dependency formalism. The criti-
cisms are related to phenomena, of natural language which supposedly cannot
be described by the dependency theory. The critiques can be grouped under
four headings:

e double dependency: a wordform simultaneously depends on two dif-
ferent wordforms, as in a resultative constructions such as “wash the
dish clean”, where “clean” is claimed to depend on both the noun and
the verb;

e mutual dependency, such as between a verb and its grammatical sub-
ject, where not only the verb governs its subject, but also the subject
controls the form of the verb: “The children are playing” vs. “The
child is playing”;

e no dependency, as between conjoined items in coordinated phrases,
where absence of dependency is proven by a presumed symmetry of
coordination: “John and Mary’ is identical to “Mary and John” and
both conjuncts have the same weight in the construction;

e insufficient dependency: using dependency syntax, two different struc-
tural descriptions cannot be supplied for a modification structure such
as “sa gaieté et son accent étonnant”’, since both readings “his cheer-
fulness and his astonishing accent” and “his astonishing cheerfulness
and accent’ are described with the same structure (see Figure 3.4).
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Mel’cuk (1988) points out various factors that lead to the inadequacies of
criticisms. They include confusion of different types of dependencies (mor-
phological, semantic and syntactic), such as in the case of double and mutual
dependencies, as well as in case of “no dependency” criticism. Another fac-
tor is ignoring dependency relation names. Attaching a special name to a
dependency can prevent the confusion of different readings.

Another natural solution for the problem of dependency insufficiency is
introduction of a notion of grouping, i.e. treatment of a construction as one
unit and separate analysis of the inner and internal dependencies of the
construction.

3.2.5 Dependency inventory

There has been no agreement established on a single inventory of depen-
dency labels common for all dependency theories. Three types of dependen-
cies used in different theories can be distinguished according to the level of
representation of a theory:

e grammatical functions, such as subject, object, etc. (Mel’¢uk (1988));

e functional relations, such as agent, patient, etc. (one of the levels in
the Functional Generative Description of Sgall et al. (1986));

e conceptual relations, such as agentive, objective, etc. (Fillmore (1968)).

The tradition of syntactic dependency labeling comes from the syntactic
theory of Tesniére (1959), who distinguishes between two types of depen-
dencies: actants, which are described as entities participating in the process
described by the verb and which correspond to verbal complements, and
circonstants, which are described as circumstances of the process and which
correspond to verbal adjuncts.

Actants discussed by Tesniere (1959) include a subject, an object and a
third actant which is traditionally called indirect object, but which does not
receive a special name in the theory of Tesniere (1959). Actants are not
defined formally, but are described indirectly via their structural meaning,
morphological characteristics and examples from different languages.

In the consequent dependency theories concerned with syntax, depen-
dency relations have been usually based on grammatical functions of tokens
and include, apart from Tesniere’s actants:

e other complements of verbs, such as a predicative object;

51



e relations between verbs in a verbal complex, such as an infinitival
object;

e adverbial functions, such as a temporal adjunct;
e determinative functions, such as a determiner;

e modification functions, such as an attribute.

3.3 Issues in current dependency theory

The exposition presented above comprises the basic principles of dependency
syntax. However, various issues of dependency theory have received different
interpretations in modern dependency frameworks. Hudson (1993) discusses
areas in which current dependency frameworks deviate from the classical
model or disagree among each other. Below, the issues that have influenced
the development of the German dependency parser presented in Chapter 7
are briefly stated.

As shown above, constituency structures can be easily derived from de-
pendency structures in any framework. However, the disagreement among
different frameworks concerns the role of constituent structure in de-
pendency grammar. The opinions range between independent and deriva-
tive nature of constituents in the grammar. Thus, Hudson (1976) and
Matthews (1981) argue that certain generalizations, such as assignment of
mood categories to clauses, can be expressed satisfactory only if reference to
constituents is possible. Others (Starosta (1988)) consider phrases strictly
redundant, but allow usage of sparse constituency structures in restricted
cases. An extreme position of viewing constituent structures as a clear hin-
drance in grammatical analysis is taken by Sgall et al. (1986) and Hudson
(1984).

Treatment of coordinate structures has been a long standing prob-
lem in linguistic theory. In dependency paradigms, the difficulty arises from
the nature of the structures which lack a head-modifier distinction of ele-
ments. As was mentioned above, the introduction of a notion of grouping
which treats the coordinate structure as one unit has been proposed by
Mel’¢uk (1988) to resolve the problem. A similar approach to coordination
has been advocated by Hudson (1990) who characterizes coordinate struc-
tures as word strings. The difference between words strings and groupings
concerns the internal structure of conjuncts. According to Hudson (1990),
conjuncts are organized as (possibly disconnected) dependency structures
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and each conjunct root holds a dependency relation to some element outside
the coordination. Mel’¢uk (1988), on the other hand, advocates the analysis
according to which one of the conjuncts is the head of the construction and,
thus, denies the coordination symmetry at the syntactic level.

Current theories also disagree on the role of features in the gram-
mar. In order to incorporate information about subclassification of parts of
speech, about valency and inflectional morphology of tokens on nodes, some
theories introduce syntactic features (Hudson (1976), Starosta (1988)). This
position is not shared by Hudson (1984) who does not allow usage of features
and argues that all generalizations should be stated in terms of hierarchy of
atomic word-types.

The treatment of control and raising constructions, such as “Fred
wants to work”, has recently been one of the questions widely discussed in
linguistics. The problematic issue with such constructions is the relation of
the noun and the non-finite verb. According to the classical model, each
token should have no more than one head, and therefore, the noun cannot
depend on the non-finite verb, since it is dependent on the finite verb. Sgall
et al. (1986) solve the problem by introducing an empty category which
serves as the subject of the non-finite verb and requires coreference with
the preceding noun. Other dependency theories, on the other hand, choose
to relax the principle that creates the problem and allow tokens to have
multiple heads (Anderson (1979), Hudson (1984)).

3.4 Dependency theory in Computational Linguis-
tics

The formal properties of dependency grammar were first investigated by
Hays (1964), Gaifman (1965) and Robinson (1970). They have shown that
all dependency grammars of the given type have weakly equivalent context-
free phrase structure grammars and vice versa. The constraints imposed on
the dependency grammar concern dependency structures and the form of
dependency rules. The structures are restricted to dependency trees (see
the four constraints described in subsection 3.2.1). The rules are required
to take one of the following forms:

1)
2) )
3) *(X)

ol

*

(Xl,'",*,"',Xn)
(
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An element outside a set of brackets represents the head of the construc-
tion. In rule type (1), the asterisk marks the position of the head relative
to its dependents in the string. In rule type (2), it specifies that X occurs
without dependents. In rule type (3), it means that X does not depend on
any other element.

Recently, an increasing attention and interest to dependency theory have
been shown in computational linguistics. Dependency parsers have been im-
plemented in different frameworks for various languages. Carroll and Char-
niak (1992), Eisner (1996) and Yamada and Matsumoto (2003) have devel-
oped probability models of dependency grammar for English. Stochastic
dependency models have been also presented for Japanese (Matsubara et al.
(2002)) and Korean (Chung (2004)). Oflazer (1999) has employed finite-
state techniques for dependency parsing of Turkish and Elworthy (1999) has
used the same methodology for English. Nivre et al. (2004) have presented a
memory-based dependency parser of Swedish. Constraint-based dependency
parsers have been proposed for English by Tapanainen and Jarvinen (1997)
and Maruyama (1990), and for Japanese by Germann (1999).

Although dependency grammars have been thoroughly investigated and
successfully implemented in many different frameworks, phrase-structure
grammars still dominate the field. It is instructive therefore to research the
interaction of the two theories and, particularly, the influence of the depen-
dency theory on the more a widely-used competing theory of constituency.

Various researchers have pointed out a shift to more dependency-like
formalisms in the phrase-structure community. Hudson (1993) discusses
three dominating linguistic theories of the 80s, Government-Binding theory
(GB — Chomsky (1981)), Generalized Phrase-Structure Grammar (GPSG
— Gazdar et al. (1985)) and Lexical-Functional Grammar (LFG — Bresnan
(1982)). He shows that these phrase-structure theories demonstrate explicit
trends to dependency in their syntax which involve:

e recognition of the notion of a head together with the principle stating
that features of the head are projected up onto the mother phrase
(GB, GPSG),

e recognition of relational categories, such as subject (LFG),

e recognition of dependency-like relations (government in GB).

More recently, a significant interest in dependency representations has
been shown in statistical parsing. Thus, Collins (1996) describes a statistical
parser based on probabilities of dependencies between head-words in the
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parse tree. Collins (1999) and Charniak (2000) use dependency relations for
statistical disambiguation in constituency-based parsing.

Another important problem in computational linguistics in which de-
pendency analysis have proven to be highly appropriate, namely evalua-
tion of broad-coverage parsers, has been addressed by Lin (1995). The au-
thor has demonstrated the deficiency of evaluation methods based on phrase
boundaries and proposed dependency-based evaluation which avoids prob-
lems common to phrase boundary evaluation and additionally has several
desirable properties missing from other evaluation schemes. These proper-
ties include:

e ignoring the inconsequential differences between parser-generated parse
trees and manually constructed parse trees,

e selective evaluation of given types of syntactic phenomena,

e 3 simpler diagnosis of incorrect parses.

In the proposed dependency-based evaluation, dependency relations are
used in comparison of a parser output to a gold standard. The evaluation
method is not restricted to dependency grammars: Lin (1995) additionally
presents an algorithm for transforming constituency structures into depen-
dency trees.

3.5 German dependency parsing

Three German dependency parsing models are described below: Topologi-
cal Dependency Grammar developed in Saarland University, Weighted Con-
straint Dependency Grammar developed in Hamburg University and Con-
current Lexicalized Dependency Parser designed and implemented in Frei-
burg University.

3.5.1 Topological Dependency Grammar

Topological Dependency Grammar presented by Duchier and Debusmann
(2001) is a constraint-based framework for dependency parsing of German.
Dependency parsing is regarded in the framework as a constraint satisfac-
tion problem with valid parse analyses being solutions of the problem. Ini-
tially, an input string is assigned all possible dependency parse analyses.
A dependency analysis represents a dependency tree, nodes of which corre-
spond to tokens of the string. The nodes are connected by labeled directed
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edges which indicate dependencies between tokens. The grammar formu-
lates constraints on the grammaticality of parse analyses and outputs all
parse analyses that satisfy the stated constraints.

The grammar represents a modular system with immediate dependency
(ID) and linear precedence (LP) components. The immediate dependency
component provides an input string with a syntactic dependency tree (ID
tree) which is syntactically well-formed but which ignores issues of word
order. The component is described in detail by Duchier (1999). The linear
precedence component applies to a syntactic dependency tree and outputs an
ordered, projective topological dependency tree (LP tree) which characterizes
linear order of tokens in the input string.

Formally, Duchier (1999) defines a dependency grammar G as a 7-tuple:

< Words, Cats, Agrs, Comps, Mods, Rules, Lexicon >
where
e Words is a finite set of strings representing word forms,
e Cats is a finite set of POS categories,
e Args is a finite set of agreement tuples such as < masc sing nom >,
e Comps is a finite set of complement role types such as subject,
e Mods is a finite set of modifier role types, such as adj for adjectives,
e Lexicon is a finite set of lexical entries, and

e Rules is a family of binary predicates, indexed by role labels, express-
ing local grammatical principles.

A union of Comps and M ods sets represents a set of all role types Roles
which are used in the grammar for labeling dependencies.

A lexical entry is represented by an attribute value matrix which contains
information about a token, its category, arguments and roles.

ID and LP trees consist of nodes and labeled edges. In an ID tree, edges
are labeled with syntactic roles, such as subject or vinf (bare infinitival argu-
ment). In an LP tree, the edge labels represent topological fields markers,
such as mf (middle field) or vc (verbal complex). Additionally, each node is
assigned a lexical entry.

Figures 3.5 and 3.6 provide examples of an ID and LP trees for sen-
tence (9), correspondingly. Since ID trees are unordered, an arbitrary linear
arrangement is picked for expository purposes.
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O
(daB) Maria einen Mann zu lieben versucht

Figure 3.5: An ID tree in Topological Dependency Grammar

(daB) Maria einen Mann zu lieben versucht

Figure 3.6: An LP tree in Topological Dependency Grammar

(9) (daB) Maria einen Mann zu lieben versucht.
(that) Maria a man to love tries

(that) Maria tries to love a man.’

Various kinds of constraints, such as lexical constraints, valency con-
straints, role constraints, constraints on the form of the tree, node yield
constraints and word-order constrains are stipulated by the grammar. The
constraints restrict the form of the trees.

The parser and a German grammar fragment have been implemented us-
ing the constraint programming language Oz. Both parsing and generating
modes are available.
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3.5.2 Weighted Constraint Dependency Grammar

Similar to Topological Dependency Grammar, Weighted Constraint Depen-
dency Grammar developed by Schrdder et al. (2000) is based on constraint
satisfaction techniques. However, it expands the formalism to a new di-
mension. While an ordinary constraint dependency grammar (CDG) does
not allow the violation of constraints, a framework proposed by Schroder
et al. (2000) introduces weakening, or softening, of constraints. Therefore,
Weighted Constraint Dependency Grammar regards parsing as a constraint
optimization problem rather than a constraint satisfaction problem. Using
soft constraints provides valuable advantages over strict conditioning. First,
a CDG with soft constraints allows for better modeling of performance as-
pects of natural language, since it encodes preferences rather than strict
conditions and, therefore, is more robust. Soft constraints also provide an
advantage of ranking parses and incorporating preferences into the analysis.

Weighted Constraint Dependency Grammar augments a pure CDG with
a weighting function over the set of constraints. Thus, constraints are made
dynamic in a sense that they are assigned different weights depending on
the context. A second major difference between Topological Dependency
Grammar and Weighted Constraint Dependency Grammar concern number
of levels present in the grammars. While Topological Dependency Grammar
deals exclusively with syntax, Weighted Constraint Dependency Grammar
additionally provides a specification of functor-argument structure, where
deep roles such as agent, patient, theme are annotated.

Formally, Schréder (2002) defines a weighted constraint dependency gram-
mar as a 5-tuple:

< LEV,LAB,«a,C,¢ >

where
e LEYV is a finite set of level symbols,
e LAB is a finite set of label symbols,

e « is a function that assigns a subset of label symbols to each level
symbol,

C is a set of constraints, and

¢ is a function that assigns weights to each constraint.
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Fritz sah Eva mit einem Fernrohr.

Figure 3.7: Structure provided by Weighted Constraint Dependency Gram-
mar

A lexicon which associates a word form with additional morpho-syntactic,
syntactic and semantic information is defined as a quadruple:

<W,ANAYV >
where

e W is a finite set of word symbols,

e A is a finite set of attribute symbols,

V is a finite set of value symbols, and

e )\ is a function that assigns a attribute-value matrices to words.

Example structures of sentence (10) provided by Weighted Constraint
Dependency Grammar are presented in Figure 3.7.

(10) Fritz sah Eva mit einem Fernrohr.
‘Fritz saw Eva with a telescope’.
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3.5.3 Concurrent Lexicalized Dependency Parser

A Concurrent Lexicalized Dependency Parser has been developed and de-
scribed by Broker et al. (1994), Schacht et al. (1994) and Hahn et al. (2000).
It represents a radically lexicalized object-oriented model of natural language
parsing.

The main principle of the model is the organization of all grammati-
cal knowledge in lexical items which are treated as active lexical processes
communicating with each other and dynamically establishing dependency
relations between each other.

A lexical item contains information about the lexical and morpho-syntactic
features of a token, its conceptual representation, valency constraints and,
after successful parsing events, about governed lexical items and other gram-
matical relations, such as adjacency. Valency constraints stipulate the values
of categorial, morpho-syntactic, conceptual and ordering features of the pos-
sible modifiers of the token. The lexicon of the model is organized as a lexical
hierarchy where lexical items are represented as leaves and the intermediate
nodes stand for generalized word classes.

The model is based on an object-oriented paradigm that assumes a col-
lection of independent objects, the actors, which communicate via asyn-
chronous pairwise message passing. Adapting the paradigm to the task
of natural language processing, the actors are represented by lexical units.
Dependency relations are established dynamically based on constraints for-
mulated in the lexical units. A unit is searching for its head by checking
for valency constraints of the other units. If the active unit satisfies the
constraints of an addressed lexical unit, a head-modifier relation is built be-
tween them and the grammatical information about the units is updated
correspondingly. In case of ambiguity, the structure is duplicated.

The described procedure results in incremental generation of dependency
parse analyses for an input string. Similar to the parsers described above,
Concurrent Lexicalized Dependency Parser is non-deterministic.

3.6 Conclusion

In this chapter, the theory of dependency has been presented. After in-
troduction of a classical model of the theory, various issues in current de-
pendency analysis have been discussed. The chapter has touched base on
the computational aspects of the theory and provided a survey of German
dependency parsing models.
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Chapter 4

Xerox Incremental Parsing
System

The Xerox Incremental Deep Parsing System (XIP) is a rule-based frame-
work for robust syntactic analysis. The system has been developed at the
Xerox Research Centre Europe in Grenoble and has been successfully ap-
plied for implementation of grammars for different languages. In the present
thesis, the system is used for the creation of the German Incremental Parser
(GRIP) described in Chapter 7 and for development of a rule-based morpho-
syntactic tagger presented in Chapter 6.

The current Chapter represents a gentle introduction to the system. The
purpose of the Chapter is to provide the reader with enough background
for easier understanding of the structure and the potential of the morpho-
syntactic tagger and of the GRIP parser described in the thesis. A more
detailed description of the system is provided by Ait-Mokhtar et al. (2002).

Below, a general introduction to the XIP system and a description of
the architecture of the system are given in Section 4.1. Section 4.2 describes
the data representation in XIP. The kinds of rules used in the system are
discussed in detail in Section 4.3. Section 4.4 concludes the Chapter.

4.1 Overview of the system

The XIP system is designed for the syntactic analysis of unrestricted text and
can be used to provide analysis on any level of syntactic annotation ranging
from morpho-syntactic annotation through chunking to deep parsing. The
scope of analysis is not restricted to elements of a sentence and can be
extended to establishing relations between elements of different sentences

61



(such as pronouns and their antecedents) or between sentences themselves.

The underlying principle of the system is incrementality. The developers
of the system Ait-Mokhtar et al. (2002) have argued that incrementality is
a key to the robustness of syntactic analysis. They point out two major
properties of incremental parsing systems which assure robustness and broad
coverage: self-containment and descriptive decomposition.

The self-containment of rules in an incremental parsing system allows to
avoid such side-effects of parsing as combinatory explosion, spurious ambi-
guity and parse failure. Descriptive decomposition provides means to tackle
complex phenomena: higher levels of annotation rely on the output of the
lower levels and are, therefore, less sensitive to the complexity and variabil-
ity of the input string. Thus, the system preserves the robustness of shallow
parsers and provides a deeper level of linguistic analysis.

The incrementality of the XIP formalism is ensured by the modular
architecture of the system and by the layered organization of rules inside
each module. An input string passes through rule layers and with each rule
application, the analysis of the string is refined. In this regard, the XIP
system is similar to cascaded finite-state parsers.

The XIP formalism offers an advantage of using feature lists, which pro-
vide a means for specification of fine-grained regularities in the rules.

4.1.1 XIP architecture

The XIP system consists of two optional pre-processing modules and four
proper XIP modules.

The first pre-processing module is a Normalization, Tokenization and
Morphology (NTM) module. The module provides the normalized form and
all potential lexical information for each token. The morphological compo-
nent of the module is represented by the Xerox Morphological Analyzer.

The second pre-processing module is a Hidden Markov Model (HMM)
disambiguator. The disambiguator uses the HMM algorithm for providing
the most likely analysis for each token based on the context. The standard
package for German includes the HMM module. However, in the GRIP
system described in the thesis, the module is substituted by a rule-based
disambiguator, since it proves to provide a better performance.

The first proper XIP module is an input control module which pre-
treats the input text before it is processed by other modules. Among other
tasks, the module defines a processing unit of the system (clause, sentence,
paragraph, etc.) and determines the mechanism of feature percolation.

The following disambiguation module is based on disambiguation rules
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Figure 4.1: Architecture of the XIP system
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which select valid readings for tokens given the context. The module can be
used in conjunction with the HMM module or separately.

The chunking module applies next. Rules of the chunking module create
phrase structures over the input string.

The final dependency module produces dependency relations between
tokens. Such relations include, but are not restricted to, function argument
dependencies, such as subject and object. Further relations that can be
built into the module may extend beyond sentence boundaries.

The system can be used for the creation of separate syntactic analyzers:
taggers, chunkers, constituent parsers and dependency parsers. Any num-
ber of XIP modules can be combined in the system. Thus, a dependency
module can be built directly on the output of the rule-based morphological
disambiguator, without additional pre-structuring of the input into syntactic
trees.

Moreover, the system allows for any kind of input: raw input, mor-
phologically analyzed input, morphologically disambiguated input and even
syntactically annotated text. A XIP grammar maps categories of the input
into its own categories and features. Thus, no pre-processing of the data is
needed. External components, such as a tagger or a chunker, can also be
plugged into the XIP architecture.

Additionally, a XIP grammar may contain a lexicon with category- and
feature-value pairs for tokens, which provides a means for adding or re-
defining analyses supplied in the input.

A general scheme of the XIP architecture is presented in Figure 4.1.

4.2 XIP data representation

An elementary unit in data representation of the XIP system is a node. It
is defined by:

e a category,
e feature-value pairs,
e pointers to sister nodes,

¢ pointers to daughter nodes (in case of constituent nodes).

Categories and features should be pre-defined by a grammar developer.
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4.2.1 Operations on nodes

Nodes can be combined into sequences, compared to each other and explored
as to their inner structure. Table 4.1 provides a list of possible operations
that define node sequences.

Operator Description
Concatenation

) Optionality
Kleene star
Kleene plus
Any category
Disjunction
Negation

\3_'_ X~

2

Table 4.1: Operators for defining node sequences in XIP

All operators except for negation can be combined. An example sequence
of nodes “det, 7%, nounj;card” stands for all sequences that start from a
determiner and end with a noun or a cardinal. The disjunction operator
functions in situ: i.e. a template “det;adj, noun” means “det OR adj,
noun”. The negation operator specifies that a category cannot exist in a
particular context. Thus, “~noun” means any category except for a noun.
Operators for comparing nodes are presented in Table 4.2.

Operator Description

equivalence
~: difference
< precedence
> following

Table 4.2: Operators for comparing nodes in XIP

The inner structure of a tree can be explored with the {} operation.
Thus, an expression NP{det,?*,noun} describes a noun phrase, the left-
most daughter of which is a determiner and the right-most daughter of which
is a noun. The node can have other daughters which are placed between a
determiner and a noun.

Another useful characteristic of the system is the possibility to asso-
ciate nodes with variables. Use of variables provides a necessary basis for
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comparing nodes and testing their feature values.

4.2.2 Operations on features and categories

The XIP system allows for instantiation, creation, deletion and comparison
of features and categories. Additionally, values of features and categories
can be tested. Advanced operations on features include, among others,
modifying features and percolating features to mother nodes.

Table 4.3 summarizes possible basic operations on features and cate-
gories.

Operator Description

[feature:value]  presence of the feature and the value
[feature:~value] absence of the value on the feature
[feature] the feature is instantiated

[feature:~] the feature is not instantiated

| Boolean OR

& Boolean AND

Table 4.3: Operators on features and categories in XIP

Table 4.4 describes operations on feature values allowed in XIP.

Operator Description

: features have a common subset of values
sets of values of two features are identical

~: features have no common subset of values

<, >, <, > comparison of feature values,
operators also specify a domain over which the value
for a given feature should be valid

Table 4.4: Operators on features values in XIP

4.3 Different types of rules in XIP

In the XIP system, different types of rules are available. Disambiguation
rules serve for restricting sets of possible analyses of lexical nodes. Chunk-
ing rules combine nodes in phrase structures. With reshuffling rules, phrase-
structure subtrees can be re-organized. Marking rules can be used to mark
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specific node configurations with feature-value pairs. Dependency rules es-
tablish relations between nodes.
The general format of rules includes:

o a filter,

e (optional) context fields,

e (optional) conditions,

e specification of a rule action.

A filter determines a set of units to which the rule applies. For exam-
ple, in case of disambiguation rules, a filter can represent a set of possible
readings of a lexical node. A rule will apply to all nodes that have readings
specified in its filter. In case of chunking rules, a filter is defined as a list or a
set of nodes. All sequences of nodes specified in the filter will be considered
and if contextual constraints and conditions on feature values are satisfied,
the nodes will be combined under a common root. A more detailed descrip-
tion of a filter field, as well as other fields, specifically for each kind of rules
is given in corresponding subsections below.

A contextual environment of units to which a rule applies can be spe-
cified in the right and left context fields. The context fields are delimited
by pipe signs (||) and are defined as sequences of nodes. Specification of an
empty context, as well as negation of a context, is also possible.

Further constraints on features across different nodes in a rule can be
specified in the condition field. This is made possible by the use of variables
in the rule. An example of the condition which requires identity of agreement
values on a determiner and a noun is shown in (11):

(11) det#1, adj*, noun#2, where (#1[agreement] :: #2[agreement]).

A rule applies only if its contextual constraints and constraints stipulated
in the condition field are satisfied. Formal specification of the rule action
depends on the type of rule and is described for each rule type independently
in corresponding subsections below.

4.3.1 Disambiguation rules

Two types of rules can be used for disambiguation in the XIP system: ordi-
nary disambiguation rules and double reduction rules.
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Ordinary disambiguation rules (ODRs) apply to lexical nodes with mul-
tiple readings and select readings that are valid in a given context. The
general format of ODRs is presented in (12):

(12) readings filter = |left_context| selected readings |right_context|.

The readings filter determines the domain of application of an ODR. It
is defined by a set of categories with possible specification of feature values.
Left and right context fields restrict the context of rule application. As the
name suggests, the set of readings selected by the rule is specified in the
field selected readings.

The second type of disambiguation rules, namely double reduction rules,
have been designed specifically for the development of the morpho-syntactic
tagger for German in the XIP system. The German language is notorious
for its morphological ambiguity. Consider an example phrase “Die schonen
Blumen” (“the beautiful flowers”) and its analyses in (13):

(13) Die +Det+Art+P1+FMN+Acc+St+ART
Die +Det+Art+Pl+FMN+Nom+St+ART
Die +Det+Art+Sg+Fem+Acc+St+ART
Die +Det+Art+Sg+Fem+Nom+St+ART

schonen +Adj+Pos+Pl+FMN+NGDA+Wk+ADJA
schonen +Adj+Pos+Pl+FMN+Dat+St+ADJA
schonen +Adj+Pos+Sg+FMN+Dat+Wk+ADJA
schonen +Adj+Pos+Sg+FMN+Gen+Wk+ADJA
schonen +Adj+Pos+Sg+Masc+Acc+St+ADJA
schonen +Adj+Pos+Sg+Masc+Acc+Wk+ADJA
schonen +Adj+Pos+Sg+Masc+Gen+St+ADJA
schonen +Adj+Pos+Sg+Neut+Gen+St+ADJA

Blumen +4+Noun+Common+Pl4+Fem+NGDA+NOUN

The disambiguation of lexical nodes in such a phrase with ordinary dis-
ambiguation rules is possible but would require a statement of multiple rules
for the comparison of readings on the nodes. An example of a rule of this
kind is given in (14). It disallows singular number readings on a noun if the
preceding adjective is not singular. Similar rules for other features and fea-
ture values have to be present in the grammar for successful disambiguation,
as well as similar rules with instantiations of different categories, such as a
determiner instead of an adjective, for example. Altogether, 18 rules need
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to be included in the grammar to ensure the strict identity of agreement for
the feature values of the three nodes.

(14) noun = |adj[sg:~]| noun[sg:~].

Double reduction rules provide a simple mechanism for eliminating non-
shared readings among categories. For computational efficiency, features on
only two categories can be compared at a time. The general format of a
double reduction rule is presented in (15):

(15) |node_sequence| = boolean_constraints.

The node_sequence field serves to specify the context in which the rule
applies, and with which lexical nodes they are to be considered. These nodes
are represented as part of the context and are associated with variables. The
boolean_constraints field contains constraints on the feature values of the
nodes considered.

An example rule (17) instantiates the general format of double reduction
rules to the disambiguation of lexical nodes inside a phrase, such as in (13):

(16) |adj#1l,noun#2| = (#1[agr] :: #2[agr]).

The rule checks agreement values (such as case, number and gender) on
a noun and a preceding adjective and selects only those readings which bear
the same values. Application of the rule leads to disambiguation of two
lexical nodes simultaneously.

Joint application of the rule together with two other double reduction
rules which compare readings on a determiner and a following adjective
and on a noun and a preceding determiner will guarantee that only shared
readings are kept on a determiner, an adjective and a noun following each
other. The context of nodes in the node_sequence field of a double reduction
rule can be expanded so that it allows for an intermediate material:

(17)  |det#1,(adv),adj* noun#2| = (#1[agr] : : #2[agr]).

If no shared readings are present on the nodes compared in the rule, the
rule does not change the sets of analyses of the nodes. This strategy ensures
that no node is deprived of all its readings.

Disambiguation rules are organized in layers. A layer can contain an
unrestricted number of either ODRs or double reduction rules, but not rules
of both type at the same time. Rules with the most specific filter apply
first. If several rules have the same filter, the order of rule application is
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determined by the order of rules in the grammar file. Once the rules of a
layer have applied, the input string is passed to the next layer. To insure
the serial application of a rule, it should be stated repetitively in different
layers. This property distinguishes XIP system from context free grammars,
in which the presence of a rule in a grammar enables multiple application
of the rule.

4.3.2 Chunking rules

Chunking rules can be used for grouping nodes into trees. No restriction on
depth or tree complexity is imposed by the XIP formalism, so that complete
phrase-structure trees can be created in the chunking module.

Similar to disambiguation rules, chunking rules are organized in layers.
The rules are of a deterministic nature: once a structure has been assigned,
it is never dismissed. The resulting structure is passed to the next layer.
Embedded and recursive structures can be created by the repetitive state-
ment of rules in different layers. Thus, for the correct analysis of a noun
phrase with embedded prepositional phrase, such as “ein auf Sidamerika
spezialisiertes Reiseunternehmen” presented in (18), the following rules are
required:

e NP -> (det), AP*, noun.
e PP -> prep, NP.
o AP -> PP, adj.

e NP -> (det), AP*, noun.

(18) ein auf Stidamerika  spezialisiertes Reiseunternehmen
a on South America specializing travel company

‘a travel company specializing on South America’

Three types of chunking rules are present in the system: immediate
dominance (ID) rules, linear precedence (LP) rules and sequence rules. ID
rules define a set of nodes to be combined under the same root. LP rules
cooperate with ID rules to determine a linear order of nodes to be combined.
ID and LP rules are the only types of rules that can and should be defined
on the same layer.

ID rules have the following format:

(19) new._node -> |left_context| list_of lexical nodes |right_context|.
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Here, the new node field determines a mother node which will be created
to combine the lexical nodes specified in the 1ist _of lexical nodes field.

LP rules impose constraints of the order of lexical nodes in the corre-
sponding rule layer. The format of the LP rules is the following:

(20) [set of features| < [set of features]

The rule defines that nodes with a set of features in the left-hand side of
the rule should precede nodes with a set of features in the right-hand side
of the rule. Thus, rule (21) requires that determiners precede nouns in ID
rules:

(21) [det:+] < [noun:+]

Another possibility to restrict the order of lexical nodes in an ID rule is
by using the features [first] and [last] on those lexical nodes that begin
and end a node sequence to be combined under a common mother node.
Rule (22) exemplifies the use of these features:

(22) NP -> det[first], AP*, nounlast].

In a given layer, the first rules that apply define the longest sequence of
nodes. If several rules compete for the longest match, the order of rules in
the layer specifies the order of rule application.

The third type of chunking rules, sequence rules, perform in the same
manner as ID rules: they group a sequence of nodes together. The difference
between the two rule types lies in the fact that sequence rules define a list
of lexical nodes to be combined, i.e. sequence rules determine an order of
nodes. Sequence rules are also flexible as to the direction of processing of
an input string (left to right or right to left) and as to the choice between
the longest and the shortest match.

The general format of sequence rules is presented in (23):

(23) new._node = |left_context| list_of lexical nodes |right_context|.

The equivalence sign = can be substituted for another operation. The
semantics of different operations possible in sequence rules is defined in
Table 4.5:

4.3.3 Marking and reshuffling rules
Marking and reshuffling rules are advanced rules for modifying structures

created by chunking rules. Marking rules add features to a node based on
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direction of processing
an input string
left to right ‘ right to left
shortest match = <=
longest match ‘ Q= ‘ Q<=

Table 4.5: Operations available for XIP sequence rules.

the node’s inner structure. Thus, a subtree can be marked with feature
passive, if it consists of the auxiliary verb “be” and a past participle.

With reshuffling rules, a chunk structure can be reorganized: a subtree
is re-assigned to a different mother node. The use of reshuffling rules can be
illustrated on the example of an analysis of a noun phrase with an embedded
prepositional phrase, presented above in (18). Grammar rules relevant for
the analysis are:

e AP -> (adv), adj[last].
NP -> (det), AP*, noun[last].

PP -> prep, NP|[last].
e AP -> PP, adjlast].
e NP -> (det), AP*, nounl[last].

A very careful and intricate specification of context in the rules is re-
quired so that a correct phrase structure presented in (24) can be build:

(24) NP{ein AP{PP{auf NP{Studamerika} spezialisiertes}} Reiseunter-
nehmen}

If the rules given above are applied without any context specification or
if the context constraints are not elaborate enough, the following structure
will be produced:

(25) ein PP{auf NP{Siidamerika}} NP{AP{spezialisiertes} Reiseunter-
nehmen}

A simple reshuffling rule can be stated that re-assigns the prepositional
phrase under the AP node and includes the determiner into the second NP,
resulting in the correct structure. Statement of such a rule allows for avoid-
ance of the definition of complicated context constraints in the chunking
rules and for the elimination of the second rule for adjectival phrase (AP).
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4.3.4 Dependency rules

Dependency rules are designed for establishing relations between nodes.
They also can establish unary relations, assign features to nodes and delete
or rename a previously defined relation.

The general format of dependency rules is the following:

(26) |pattern| if <conditions> <dependency_terms>.

The pattern field combines a filter and a context fields. It specifies a
node sequence and associates one or more nodes with variables. Reference
to the feature values of nodes and exploration of the inner structure of nodes
is possible.

The dependency_terms field defines a new dependency to be created. It
consists of a name for dependency relation and an n-ary set of variables.

The conditions field is an optional field that represents a Boolean ex-
pression over dependencies. In this field, the existence of other dependency
relations and their inter-connections can be checked. If a rule is used for
modifying or deleting a previously defined dependency relation, the relation
to be modified or to be deleted is marked in the conditions field and the
dependency terms field determines whether the relation is to be deleted
(with a ~ sign) or to be renamed (with a new dependency term).

4.4 Conclusion

The current Chapter has introduced the Xerox Incremental Deep Parsing
System, which is used for the development of a morpho-syntactic tagger and
a dependency parser in the thesis. Section 4.1 has described the underlying
principles and the general architecture of the system. Data representation of
the system and the types of rules available in the system have been discussed
in Section 4.2 and Section 4.3, correspondingly.
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Chapter 5

The TiiBa-D/Z treebank

The TuBa-D/Z treebank (Telljohann et al. (2003)) has supplied data for all
of the experiments with statistical taggers described in this thesis. Addi-
tionally, the annotation scheme adopted for the German dependency parser
presented in this thesis is based on the TiiBa-D/Z annotation scheme. Fi-
nally, TiiBa-D/Z data have been used for the evaluation of the taggers and
the dependency parser described in this thesis. The current chapter aims at
familiarizing the reader with the treebank.

General information, including a brief summary of principles which have
guided the treebank annotation and a description of the structure of the tree-
bank, is introduced in Section 5.1. Sections 5.2 — 5.4 describe different an-
notation levels of the treebank: morpho-syntactic information, constituency
structure and dependency relations between constituents. Section 5.5 con-
cludes the chapter.

5.1 General information on the treebank

The name of the treebank, TiiBa-D/Z, represents an abbreviation of the
full name, die Tibinger Baumbank des Deutschen / Schriftsprache (the
Tiibingen Treebank of Written German). The treebank material consists
of data taken from the German newspaper ’die tageszeitung’ (taz (1999)),
editions from May 3rd to May 7th 1999.

Together with the Tiibingen Treebank of Spoken German (TiBa-D/S),
formerly called the Verbmobil German Treebank, TiBa-D/Z constitutes the
Tibingen Treebank of German.

The annotation principles of Verbmobil conform to the annotation scheme
adopted in the Verbmobil project (Hinrichs et al. (2000), Stegmann et al.
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(2000)). Additionally, systematic extensions of the Verbmobil scheme have
been introduced to accommodate annotation of TiBa-D/Z to the charac-
teristics of written texts.

In the inventory of categories design, the TiBa-D/Z principles have been
based on considerations of linguistic adequacy, of theory-neutrality and on
processing considerations. In line with these considerations, the following
decisions about the annotation scheme have been made:

e empty categories and crossing branches are avoided in the treebank;

e sets of node and edge labels used in the treebank reflect empirical
generalizations identified by syntacticians as characteristic of German;

e the annotation is based on the notion of topological fields;

e constituents are grouped together based on the following three com-
mon principles:

— the flat clustering principle,
— the longest match principle,

— the high attachment principle.

Absence of empty categories and of crossing branches in the treebank
ensures the usability of the treebank data for parsers that rely on context-
freeness of the underlying grammar.

The topological fields framework adopted in the treebank has a rich
tradition in descriptive studies of German syntax (Herling (1821), Erdmann
(1886), Drach (1937), Hohle (1985)). It aims at capturing the fundamental
word-order regularities of German sentence structure and provides a theory-
neutral inventory for description of word regularities.

The flat clustering principle guarantees the minimal number of hierar-
chy levels possible in the syntactic structure. The longest match principle
ensures the combination of a maximally possible number of daughters under
the same mother node. According to the high attachment principle, ambigu-
ous modifiers are attached to the highest possible level in a tree structure.
In the annotation process, satisfaction of the principles have been imposed
unless resulting constructions are syntactically or semantically ill-formed.

In the treebank, grammatical information is annotated on three lev-
els: morpho-syntactic level, constituency level and dependency level. The
morpho-syntactic level represents the annotation of lexical nodes with POS
information and inflectional morphology. The constituency level comprises

75



]
IR CD
[Fo]
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meinte , Magath .
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Figure 5.1: An example tree from the TiBa-D/Z treebank

phrase structure information. Grammatical functions of individual phrases
and syntactic dependencies between phrases are annotated on the depen-
dency level.

An example tree from the TiBa-D/Z treebank is demonstrated in Fig-
ure 5.11. The tree provides a syntactic analysis for sentence (27). Relevant
morpho-syntactic information is presented under the lexical nodes. The syn-
tactic tree consists of a set of labeled nodes and a set of labeled edges which
connect nodes. Node labels are enclosed in ovals and are (optionally) marked
with node numbers. Edge labels encode dependency relations and are given
in rectangular forms. A detailed description of the TiiBa-D/Z annotation
levels is provided in corresponding sections below.

(27) “Wir mussen uns selbst  helfen”, meinte Magath.
“we must us ourselves help”, meant Magath

“‘We must help ourselves”, said Magath.’

As the example tree demonstrates, neither sentence-final nor sentence-
internal punctuation is annotated in TiBa-D/Z. The only exception to this

!The tree diagram, as well as all tree diagrams in the current chapter, has been gener-
ated with the aid of the Negra Annotate tool (Plachn (1998)).
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Figure 5.2: A TiBa-D/Z tree with annotated punctuation

decision represent punctuation with semantic meaning, such as, for exam-
ple, a hyphen in “15.30 — 17.30 Uhr”, which stands for “bis” (“till’), or
in “K¢ln - Frankfurt” (consider an example tree in Figure 5.2 which cor-
responds to sentence (28)). Semantically marked punctuation also receives
a different POS tag: APPR (preposition) or KON (coordinate conjunction)
instead of $( (parenthetic punctuation).

(28) Auf den ICE-Neubaustrecken Koln — Frankfurt und Nirnberg —
on the newly built ICE lines K6ln — Frankfurt and Niirnberg —
Miinchen werde es “Planungsanpassungen” geben.
Miinchen will it “plans adjustments” give
‘The plans will be adjusted on the newly built ICE lines Ko6ln — Frankfurt
and Niirnberg — Miinchen.’

In line with the considerations of most syntactic theories, a segmentation
unit of syntactic annotation in TiBa-D/Z is assumed to be a complete
sentence, i.e. a syntactic unit delimited by punctuation marks {. ! ? ;
- ... /}. However, due to a number of phenomena specific for newspaper
texts, a segmentation unit may be extended to incomplete sentences, phrases
and to combinations of sentences and/or phrases. Phenomena that lead
to such extensions include headlines, titles, parentheses, discourse markers
and sentence conjunction by a colon. An example segmentation unit which
represents a headline is demonstrate in Figure 5.3.

(29) Die etwas andere Boulevardkomédie: Oliver Bukowskis derbes
The slightly other boulevard comedy: Oliver Bukowski’s rough
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Die etwas andere  Boulevardkomodie Oliver  Bukowskis  derbes . Bis Denver " feierte im Altonaer  Theater  Premiere

PIAT ADJA NN $. NE NE ADIA $( APPR NE % VVFIN  APPRART  ADJA NN NN
- nst nst - gsm gsm nsn - a asn - asit dsn - dsn ast

Figure 5.3: A TiBa-D/Z segmentation unit representing a headline

“Bis Denver” feierte im Altonaer Theater Premiere
“Bis Denver” celebrated in the Altonaer Theater premiere

‘A slightly different boulevard comedy: Oliver Bukowski’s rough “Bis
Denver” celebrated the premiere in the Altonaer Theater.’

Discourse markers, such as “sagt einer” (“says somebody”) in sentence (30),

represent a separate tree in TtiBa-D/Z analysis, even if they occur inside a
complete sentence. A segmentation unit which contains a discourse marker
is shown in Figure 5.4.

$(

In Serbien " B sagt einer N " werden auch Chemiearbeiter umgebracht
APPR NE $( $, VVFIN PIS $, $( VAFIN ADV NN VVPP $. $(

d dsn - - asis nsm - - 3pis - npm - - -

Figure 5.4: A TiiBa-D/Z segmentation unit with a discourse marker

(30) “In Serbien”, sagt einer, “werden auch Chemiearbeiter
“in Serbia”, says somebody, “get also chemical workers
umgebracht.”
murdered”
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“In Serbia”, says somebody, “chemical workers are also murdered”.’

The TiBa-D/Z treebank currently consists of 15 260 segmentation units
(approximately 270 000 tokens). Table 5.1 presents statistics over the length
of segmentation units in TiBa-D/Z.

Minimum Maximum Mean Mode
1 104 17.5 14

Table 5.1: Length of TiiBa-D/Z segmentation units

5.2 Morpho-syntactic level of annotation

On the morpho-syntactic level, lexical nodes are annotated with POS infor-
mation and with markers of inflectional morphology.

The POS tagset used in TuBa-D/Z is the Stuttgart-Tiibingen Tagset
(STTS, Schiller et al. (1995)), a widely accepted tagset for German. The
tagset distinguishes 51 tag for lexical tokens and 3 punctuation tags. A full
list of STTS tags together with their description is provided in Appendix A.

Morphological features employed in the treebank include case, number,
gender, person, mood and tense. All lexical tokens which exhibit inflectional
morphology are assigned a cluster of feature-value pairs. Thus, nouns, ad-
jectives, determiners and non-personal pronouns are annotated with case,
number and gender information. Finite verbs are provided with person,
number, mood and tense information. A complete list which describes fea-
ture combinations for each STTS tag is presented in Appendix C.

The values of morphological features are presented in the treebank ex-
plicitly. Features that correspond to the values can be uniquely identified by
the position of a value in a cluster, provided the POS tag. Thus, a cluster
3sis assigned to verb “sagt” in Figure 5.4 stands for “3rd person, singular
number, indicative mood, present tense”.

In total, 433 distinct morphological value clusters can be generated. To-
gether with POS value, they result in a tagset of 1 317 tags. The actual
number of tags which occur in the treebank amounts to 555.

The process of morphological annotation of TiiBa-D/Z was initiated at
the beginning of the current dissertation project. At the completion of
the project experiments, the number of annotated segmentation units in
TiBa-D/Z amounted to 11 000, which corresponds to approximately 200 000
tokens.
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5.3 Constituency level of annotation

The constituency level of annotation corresponds to syntactic analysis in
terms of constituency structure. Three sublevels of constituency annotation
are distinguished in TuBa-D/Z: sentence sublevel, field sublevel and phrase
sublevel.

On the sentence sublevel, root nodes are marked as different types of
clauses or as a discourse marker. The types of clauses distinguished in
TuBa-D/Z are simplex clause, relative clause and a paratactic construction
of simplex clauses.

Immediately below the sentence nodes, the nodes of topological fields
are located. Depending on the position of a finite verb in a clause, three
types of German clauses are distinguished: wverb-initial (V-1), verb-second
(V-2) and verb-final (V-end). While in verb-final clauses a finite verb consti-
tutes a continuous unit with non-finite verbal elements, in verb-initial and
verb-second clauses, a verbal complex represents a discontinuous structure
(consider examples in Figures 5.1, 5.2 and 5.4). According to the theory
of topological fields, a German clause is structured into fields. Verbal ele-
ments form sentence brackets and divide a clause into an initial field (VF),
a middle field (MF) and a final field (NF). A finite verb represents a left sen-
tence bracket (LK), whereas a verbal complex (VC) serves as a right sentence
bracket. Additional fields are:

e KOORD for clause-initial coordinating particles,
e PARORD for clause-initial non-coordinating particles,
e LV for resumptive constructions,

e C for complementizers.

Topological schemes for the three types of German clauses are presented
in Table 5.2. In practice, any of the fields can be omitted. Sentence (31)
provides an example of a verb-initial clause. Examples of a verb-second and
a verb-final clause are presented by sentences (32) and (33), correspondingly.

(31) Habe ich nicht schlecht gedacht tiber dieses und jenes?
‘Have I not badly thought about this and that’
LK MF Ve NF

Haven’t I thought badly about this and that?
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V-1 KOORD - LV - LK - MF - VC - NF
V-2 KOORD/PARORD - LV - VF - LK - MF - VC - NF
V-end | KOORD - C - MF - VC - NF

Table 5.2: Topological schemes for German clauses

(32) Das mufl man spielen als Deutscher.
“This must one play as German’
VF LK MF VC NF

One should play it as a German.

(33) Jemand, der sein Studium ordentlich abgeschlossen hat.
Someone, who his studies properly finished has
C MF \U¢

‘Someone who has finished his studies properly’.

On the phrase level, phrasal constituents are annotated. Maximal phrasal
categories are identified by the character X in the node label, preceded by
the abbreviation for the type of phrase. E.g. PX is the TiBa-D/Z tree-
bank equivalent of the more traditional label PP. Two types of noun phrases
are distinguished in TiBa-D/Z: NCX and NX. The former stands for a non-
recursive noun phrase, whereas the latter represents a noun phrase of a
higher level that includes an NCX node in it. An example of a subtree that
contains both NCX and NX nodes is presented in Figure 5.5. The example
additionally illustrates the use of the node label EN-ADD which is introduced
in the treebank to mark proper nouns and named entities.

(34) “Gleichstellung statt Barrieren”
“equal opportunities instead of barriers”

“Equal opportunities instead of barriers”.’

A complete list of TiBa-D/Z node labels is presented in Appendix D.1.

5.4 Dependency level of annotation

The syntactic relations between constituent nodes are annotated on the
dependency level. The relations distinguished in TiiBa-D/Z include verbal
complements, such as subject, direct object, and modifiers, such as wverbal
modifier, modifier of a dative object. Additionally, constituents are identified
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Gleichstellung statt Barrieren
$( NN APPR NN $(

— nsf g gpf -

Figure 5.5: A TiBa-D/Z subtree for a named entity

with a head marker (HD) in case they perform a function of a head in a phrase,
or with a non-head marker (-), otherwise. In coordination constructions,
each conjunct depends on the head of the whole construction and is marked
as KONJ. The head of a clause is a finite verb.

Syntactic relation information is encoded as labels on edges in syntactic
trees. Long-distance dependencies are marked in the treebank by special
edge labels that encode information both about the type of a relation and
about the head constituent. Thus, to mark a modifier relation between a
prepositional phrase and its head in sentence (35), a label 0A-MOD (modifier
of the accusative object) is used. The label refers to a accusative object
constituent present in the same tree. By such a reference, the label unam-
biguously identifies the dependent-head relation. The TiBa-D/Z analysis
for sentence (35) is given in Figure 5.6.

(35) Widerspriichliche Angaben  gab es iiber ein angebliches
contradictory information gave it about a alleged
Teilgestindnis  des  mittlerweile entlassenen Prifekten.
partial confession theg., meanwhile dismissed prefects
‘There was a contradictory information about an alleged partial confes-
sion of the prefects dismissed in the meanwhile. ’

In addition, the treebank employs a set of secondary edge labels for
ambiguity resolution in the following cases:
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Widersprichliche  Angaben es iber ein angebliches  Teilgestandnis des mitterweile  entlassenen  Préfekten
ADJA NN VVFIN PPER APPR ART ADJA NN ART ADV ADJA NN

apf apt 3sit nsn3 a asn asn asn gsm - gsm gsm

Figure 5.6: A TiBa-D/Z tree with a long-distance dependency

e [f the primary edge label needs further disambiguation, e.g. if there
are two OAs in a clause.

e If the dependency relation exists between two nodes, at least one of
which is phrase internal and therefore carries only head or non-head
information.

e If there is a dependency relation outside of a clause (SIMPX) in control
verb constructions.

Information encoded in syntactic trees in TiiBa-D/Z, namely constituency
bracketing, dependency relations markers and head markers, supplies a re-
liable basis for transforming a TiiBa-D/Z tree into a dependency structure
tree (Kiibler and Telljohann (2002)). Figure 5.7 provides an example of such
transformation.

A complete list of edge labels of TiiBa-D/Z is provided in Appendix D.2.

5.5 Conclusion

The current chapter has introduced the TiBa-D/Z treebank which repre-
sents the main data source for the research of the thesis. The main char-
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Die wollten die BLG schonen
$( PDS VMFIN ART NE VVINF $. B(
- np* 3pit asf asf - - -
B.
" Dic wollten dic BLG schonen "

Figure 5.7: Transformation of a TiBa-D/Z tree into a dependency structure
tree

acteristics of the treebank are the topological fields based annotation and
absence of empty categories and of crossing branches.
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Chapter 6

Morpho-syntactic tagging of
German

The previous chapters have motivated the task of morpho-syntactic anno-
tation in the context of natural language applications. A survey of ex-
isting taggers for German given in Chapter 2 has demonstrated that the
morpho-syntactic annotation of German represents a particularly difficult
problem. When applied to this task, state-of-the-art taggers yield results
which are 10-20% lower than the results obtained with the same taggers on
pure POS tagging of German. This performance is also considerably lower
than the state-of-the-art performance on morpho-syntactic tagging of other
languages.

The characteristics which make the task particularly difficult are the
high ambiguity of the German language, a large size of the tagset used for
morpho-syntactic annotation and a rather restricted data set available as
training data for German.

This chapter investigates different methods for morpho-syntactic anno-
tation of German and presents a hybrid model which achieves high per-
formance on the given task even when trained on a restricted data set.
Section 6.1 describes the development of a novel constraint-based frame-
work that incorporates phrase-internal concord rules and phrase-external
syntactic heuristics for successful resolution of morpho-syntactic ambigu-
ity. Section 6.2 concentrates on statistical tagging approaches. First, it
discusses experiments with reduced tagset techniques applied to German
data. Next, it investigates the application of probabilistic phrase structure
grammars (PCFGs) to the task. Section 6.3 compares the discussed models
and section 6.4 presents a combined system with the rule-based and statis-
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tical modules which aims at bringing together the strengths of the methods
involved. Section 6.5 concludes the chapter.

6.1 Rule-based method

Rule-based methods have been successfully applied to the tagging of different
languages. Particular interest in rule-based taggers has been shown by re-
searchers involved in tagging of highly inflectional languages, among others,
Slavic languages (Haji¢ and Hladka (1997), Petkevi¢ (2001)) and Turkish
(Oflazer and Kurudz (1994)). The advantages of rule-based methods that
contribute to such interest consist of the ability of the rules to easily catch
linguistic regularities and to incorporate a large context window, which is
crucial for the correct annotation of morphological features.

The rule-based morpho-syntactic tagger described in this section is im-
plemented as a morpho-syntactic disambiguation module based on the Xerox
Incremental Deep Parsing System. The tagger is provided with ambiguously
annotated text which includes all possible analyses for each token. Sequen-
tial application of constraint rules of the tagger leads to disambiguation of
the input.

Below, the description of the tagger starts with the discussion of the tag-
ger input. Next, the procedure undertaken by the tagger is illustrated by the
sequential disambiguation of an example sentence. A detailed description
of the two modules of the tagger, a POS disambiguator and a morpholog-
ical disambiguator, follows the example. Finally, the evaluation, the error
analysis and a general discussion of the tagger performance are presented.

6.1.1 Providing initial analyses with the Xerox morpholo-
gical analyzer

An initial set of possible analyses for all tokens is provided to the tagger by
the morphological analyzer for German developed by the Xerox Research
Centre Europe (XRCE). ! The analyzer is based on two-level morpholog-
ical rules (Karttunen et al. (1992)) which are compiled into a finite-state
transducer.

The analyses given by the analyzer for each token include a lemma, a
POS tag and a set of relevant features. The POS tagset of the analyzer

! An on-line demo of an updated version of the XRCE morphological analyzer is avail-
able at http://www.xrce.xerox.com/competencies/content-analysis/demos/german.
In the experiments described in this thesis, an earlier version of the analyzer has been
used.
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is based on the STTS tagset. However, some differences in the tagsets are
present. These differences mainly concern pronouns and adjectives: while in
the STTS tagset a distinction is made between attributive and substituting
pronouns, the XRCE tagset differentiates pronominal adjectives, pronomi-
nal determiners and proper pronouns. These differences involve the closed
class of lexemes and a mapping table that can be composed to provides a
correspondence between the tags for tokens based on the lexemes. The list
of POS tags of the analyzer together with their counterparts in the STTS
tagset are presented in Appendix B.1.

Along with POS tags, the analyzer provides more fine-grained features
for the analyzed tokens. Such features include morphological information
(case, number, gender, declension type, tense, mood and person) and sub-
categories of POS (such as country, city, first name, family name for nouns,
degree of comparison for adjectives, etc.). In some cases, these finer dis-
tinctions in a POS category provide useful information which allows for
the precise delineation of the applicability of highly specific disambiguation
rules. A full list of features used in XRCE tagset is given in Appendix B.2.

An example of a set of analyses provided by the morphological analyzer
is presented in (36). It supplies analyses for tokens of sentence (37).

(36) Der die +Det+Art+Pl+FMN+Gen+St+ART
Der die +Det+Art+Sg+Masc+Nom+St+ART
Der die +Det+Art+Sg+Fem+Dat+St+ART
Der die +Det+Art+Sg+Fem+Gen+St+ART
Der die +Pron+Dem+Sg+Fem-+Dat+DEMPRO
Der die +Pron+Dem+Sg+Masc+Nom+DEMPRO
Der die +Pron+Rel+Sg+Fem+Dat+RELPRO
Der die +Pron+Rel+Sg+Masc+Nom+RELPRO

Fahrer Fahrer +Noun+Common+Sg+Masc+Dat+NOUN
Fahrer Fahrer +Noun+Common+Sg+Masc+Acc+NOUN
Fahrer Fahrer +Noun+Common+Sg+Masc+Nom+NOUN
Fahrer Fahrer +Noun+Common+Pl+Masc+Gen+NOUN
Fahrer Fahrer +Noun+Common+Pl+Masc+Acc+NOUN
Fahrer Fahrer +Noun+Common+Pl+Masc+Nom+NOUN

konnte koénnen +Verb+Indc+1P+Sg+Past+VMFIN
konnte koénnen +Verb+Indc+3P+Sg+Past+VMFIN

nicht  nicht +Ptkl+Neg+PTKNEG
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mehr mehr +Adj+Indef+Invar+INDADJ
mehr mehr +Adv+Common+ADV
mehr mehren  +Verb+Imp+2P+Sg+VVFIN

bremsen bremsen +Verb+Indc+1P+Pl4Pres+VVFIN
bremsen bremsen +Verb+Indc+3P+PIl+Pres+VVFIN
bremsen bremsen +Verb+Inf+VVINF

bremsen bremsen +Verb+Subj+1P+PIl4Pres+VVFIN
bremsen bremsen +Verb+Subj+3P+PIl+Pres+VVFIN

+Punct+Sent+SENT

(37) Der Fahrer konnte nicht mehr ~ bremsen.
the driver could not anymore break

“The driver could not break anymore’.

The following subsection discusses the disambiguation procedure of the
tagger on the example of sentence (37).

6.1.2 Disambiguation procedure

The ambiguity introduced by the morphological analyzer is reduced by a
sequential application of the rules of the two modules of the tagger: a POS
disambiguator and a morphological disambiguator. Two types of disam-
biguation rules are used in the XIP system: syntactic heuristics and con-
cord rules. They jointly provide an effective way to reduce morpho-syntactic
ambiguity.

Concord rules are based on mutual agreement constraints between lexical
nodes within one phrase, e.g. between articles and nouns within one noun
phrase. They are, therefore, best suited for morphological disambiguation
of lexical nodes that make up phrasal categories. Syntactic heuristics rely
on constraints that a surrounding context imposes on the set of possible
analyses for a given token and can, therefore, be used for both POS and
morphological disambiguation.

The POS disambiguation module applies its rules in sequential order,
eliminating readings that violate constraints stated in the rules. First, the
relative pronoun reading (RELPRO) can be eliminated in sentence-initial po-
sition. The demonstrative pronoun reading (DEMPRO) is also ungrammat-
ical in sentence-initial position followed by an unambiguous noun (NOUN)
and a finite verb (VMFIN), since it cannot construct a phrase with the noun.
This constraint relies on the theory of topological fields (Hohle (1985)), ac-
cording to which only one element or phrase can occupy a Vorfeld position
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(i.e. the position between a clause boundary and a finite verb) in a German
sentence. A finite verb reading (VVFIN) of “bremsen” in clause-final posi-
tion can be eliminated since there is a preceding unambiguous finite verb.
An imperative verb reading (VVIMP) is ungrammatical in non-clause-initial
position and can also be deleted.

All the constraints mentioned above eliminate ungrammatical readings.
Another possible operation of the disambiguation rules is to identify the
correct analysis among the set of legitimate readings and to delete all the
others. A heuristic of this type chooses an adverbial reading for “mehsr” if
the immediate left context contains a negation particle (PTKNEG).

After the application of POS disambiguation rules the sentence is fur-
ther processed by the morphological disambiguation module. Example (38)
demonstrates the remaining morphological ambiguity for each token of the
sentence.

Concord rules in the morphological disambiguation module rely on the
fact that lexical nodes within the same NP mutually constrain each other as
to the set of possible readings. Application of such rules leads to elimination
of all non-shared readings on tokens “Der Fahrer”, reducing the set of pos-
sible analyses to +P1+Masc+Gen+St and +Sg+Masc+Nom+St for both tokens.
Further disambiguation of the tokens “Der Fahrer” is performed by a syn-
tactic heuristic that restricts the use of genitive NPs to positions preceded
by a preposition or another NP. Resolution of person ambiguity of the finite
verb is based on the absence of a nominative pronoun with first person value
in the clause, which allows for the elimination of the first person reading of
the verb.

(38) Der die +Det+Art+Pl+FMN+Gen+St+ART
Der die +Det+Art+Sg+Masc+Nom+St+ART
Der die +Det+Art+Sg+Fem+Dat+St+ART
Der die +Det+Art+Sg+Fem+Gen+St+ART

Fahrer Fahrer +Noun+Common+Sg+Masc+Dat+NOUN
Fahrer Fahrer +Noun+Common+Sg+Masc+Acc+NOUN
Fahrer Fahrer +Noun+Common+Sg+Masc+Nom+NOUN
Fahrer Fahrer +Noun+Common+Pl+Masc+Gen+NOQUN
Fahrer Fahrer +Noun+Common+Pl4+Masc+Acc+NOUN
Fahrer Fahrer +Noun+Common+Pl4+Masc+Nom+NOUN

konnte koénnen +Verb+Indc+1P+Sg+Past+VMFIN
konnte koénnen +Verb+Indc+3P+Sg+Past+VMFIN

nicht nicht +Ptkl+Neg+PTKNEG
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mehr mehr +Adv+Common+ADV
bremsen bremsen +Verb+Inf+VVINF
+Punct+Sent+SENT

Application of the rules described above leads to complete disambigua-
tion of the example sentence:

(39) Der die +Det+Art+Sg+Masc+Nom+St+ART
Fahrer Fahrer +Noun+Common+Sg+Masc+Nom+NOUN
konnte  konnen  +Verb+Indc+3P+Sg+Past+VMFIN
nicht nicht +Ptkl4+Neg+PTKNEG
mehr mehr +Adv+Common+ADV
bremsen bremsen +Verb+Inf+VVINF

+Punct+Sent+SENT

Below, a detailed discussion of the POS and morphological disambigua-
tion modules is presented.

6.1.3 POS disambiguation

Constraints of the POS disambiguation module are formulated as ordinary
disambiguation rules (ODRs). The general ODR format presented and ex-
plained in detail in Chapter 4 is restated in (40):

(40) readings filter = |left_context| selected_readings |right_context|.

The readings filter of a POS constraint represents a set of analyses. A
constraint will apply to any node which contains a set of analyses specified
in the reading filter of the constraint. The set may include any number of
POS values, as well as values of other features, such as case or subcategory.
References to the lemma of a token and to capitalization of a token are also
possible.

Depending on the form of the readings filter, two kinds of POS disam-
biguation rules can be distinguished. Rules of the first kind have a single
category in their readings filter. They represent general constraints about
the contextual environment of tokens of a particular POS class or a subcate-
gory. For example, infinitival particles require an infinitive in the immediate
right context and the occurrence of an infinitival particle in any other con-
text is ungrammatical.
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Rules of the second type list two or more categories in their readings
filter and, therefore, specify an ambiguity class to which they apply rather
than a single category. Such rules describe a regularity about the contextual
behavior of tokens of a particular ambiguity class and are based on differ-
ences in the distribution of analyses of tokens rather than on a regularity
about the contextual environment of a single analysis. Therefore, rules of
the second kind are more effective in disambiguation, but at the same time
they are more prone to over-application. An example of a rule of the second
kind is given in (41):

(41) conj<sub>,prep = ?[sub:~]| |?[prepart]|.

The presented rule applies to tokens with readings of a preposition and
a subordinate conjunction, such as “bis” (= “till, until’) and eliminates
subordinate conjunction readings if the token is followed by a preposition
with an article, such as “zum” (= “zu dem”). The elimination of readings
is possible, since in such a context, tokens of this ambiguity class almost
exclusively have a prepositional reading. However, if a token belongs to a
different ambiguity class which contains either a subordinate conjunction or
a prepositional reading but not both readings together, the regularity stated
in the rule does not hold. Thus, subordinate conjunctions such as “wenn”
(= “if’) or “ob” (= “whether”) can be followed by a preposition with an
article:

(42) Wenn zum Leben keine Kraft  bleibt.
if for life no  strength remains

‘If no strength remains for living.’

Also, for tokens which have a prepositional reading and which are fol-
lowed by a preposition with an article, the prepositional reading is not nec-
essarily the correct one. Example (43) demonstrates a sentence in which
the word “an”, which is originally ambiguous between a preposition and a
circumposition, belongs to the former POS category:

(43) Die Suchmaschine gehérte von Anfang an zum Internet.
the search engines belonged from beginning - to the Internet

‘From the outset, search engines belonged to the Internet’.

The combination of the two types of rules leads to the most efficient
disambiguation: at first, general constraints about contextual distribution
of POS categories eliminate readings which are ungrammatical in the given
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syntactic environment and then rules which refer to ambiguity classes choose
a more likely analysis, given the context.

A readings filter often requires the absence of an analysis or negates a
value of a feature, which further narrows down a class of considered to-
kens. Such extended narrowing down facilitates cautious rule application.
Consider an example rule in (44):

(44) det,pron<indef:~> = ~|punct[comma|,(prep)| ?[pron:~]
|adv*[prep:~],(punct[skip]),adj+[det:~],noun|[pron:~]|.

The rule applies to tokens that have readings of a determiner and a
pronoun and eliminates pronominal readings if the contextual constraints are
satisfied. However, elimination of indefinite pronoun reading in this case is
erroneous, since the occurrence of indefinite pronouns in the context specified
by the rule does not result in an ungrammatical construction. Therefore, the
readings filter determines that pronominal readings should have a negative
value for the feature indefinite.

While a readings filter restricts the application of a rule to tokens that
have analyses identified by the filter, fields left_context and right_context
further limit the set of tokens to be considered to those tokens that occur
in the environment described in the context fields. Both ambiguous and
disambiguated contexts are used in POS disambiguation rules.

In the field selected readings, a set of readings to be output by the rule
is defined. Although the selection of a single correct reading is much more
efficient than the deletion of incorrect readings, it is also more insecure,
since tokens in German text are highly ambiguous (5.8 analyses per token
on average) and, hence, the reliable identification of a single correct reading
among several possible readings based only on the context is problematic.
Therefore, most rules of the POS disambiguation module operate by deleting
analyses that are ungrammatical in the context specified by the rule, and
only 14% of all rules disambiguate tokens by selecting contextually valid
readings. A big part of that 14% of the rules rely on reference to the lemma
of a token in the readings filter, which enables the additional restriction of
the set of tokens. Alternatively, such selective rules apply to tokens which
belong to a small ambiguity class with a complementary distribution of
analyses, i.e. to tokens which have 2 or 3 possible analyses that tend to
occur in different contexts.

Consider, for example, rules in (45)—(48) for the disambiguation of tokens
with prepositional and postpositional readings. The first three rules (45-47)
eliminate prepositional readings if the token is preceded by a noun and if
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the immediate right context contains a verb or a punctuation mark. Such
an environment is impossible for prepositions, but is typical and necessary
for postpositions. After the application of rules (45)—(47), all of the tokens
that remain ambiguous between prepositions and postpositions receive a
prepositional reading by rule (48).

(45) prep,postp = |noun,(punct[skip])| ?[prep:~] |(punct[skip]),
verb[noun:~,adj:~,adv:~,det:~];punct[skip:~]|.

(46) prep,postp = |noun,(punct[skip])| ?[prep:~] |(punct[skip]),
verb[adj,pred,noun:~,fin],?[adj:~,noun:~ card:~]|.

(47) prep,postp = |?[noun|,(punct[skip])| ?[prep:~] |(punct|skip]),
?[adj,pred,noun:~ partpas|,(?[verb]),?[adj:~,noun:~ card:~]||.

(48) prep,postp = ?[prep].

The rules of the POS disambiguation module are organized in layers
which dictate the order of rule application. First, those rules are applied
that resolve the most frequent cases of ambiguity. In this way, subsequent
rules are provided with more reliable context for disambiguation.

The first layers include constraints for the disambiguation of tokens that
are ambiguous between pronouns and determiners. Such constraints mostly
rely on the identification of noun phrase structure for selecting determiner
readings or else on the absence of a noun in the right context for eliminating
determiner readings. Next, the residual ambiguity of tokens with pronom-
inal and determiner readings is handled. For pronouns, the appropriate
constraints are largely based on the contextual regularities of subclasses of
pronouns, such as the ungrammaticality of a relative pronoun in sentence-
initial position. For determiners, the strategy of verifying the noun phrase
structure mentioned above is undertaken.

The second cluster of constraints is designed for the disambiguation of
auxiliary parts of speech, such as appositions, particles and conjunctions.
Since these categories belong to closed word classes, tokens are usually of
a small ambiguity class and, therefore, the selection of readings instead of
readings elimination is very frequent for this rule cluster. Disambiguating
appositions has been partly presented above in rules (45)—(48). Appositional
ambiguities further include the ambiguity between pre- and circumpositions.
This ambiguity is resolved by constraints based on the left context of tokens:
circumpositional readings are deleted if the token is not preceded by another
preposition that can serve as a first part of a circumposition, for example,
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prepositions “von”, “zum”, “dber”. Prepositions can also be confused with

different kinds of particles, such as separable verbal particles and compara-
tive particles, with adverbs and with subordinative conjunctions. Constraint
rules based on the regularities concerning the syntactic behavior of the cat-
egories involved resolve these ambiguities.

The last big group of rules deals with the disambiguation of tokens which
have readings of major POS classes, such as nouns, adjectives and verbs.
Among the most common ambiguities of this type are ambiguities between:

e finite verbs, infinitives and participles,
e verbs and adjectives,

e common and proper nouns,

e attributive and predicative adjectives,

e nouns and adjectives.

Intra-verbal ambiguities and verb/adjective ambiguities are resolved by
constraints which check a position of the token in a clause with regard to
other verbal forms and to clause boundaries.

In the disambiguation of nominal ambiguities, proper noun readings are
preferred if the token is preceded by another unambiguous proper noun
or by a title word, such as “Herr’, “Frau”, “Professor”, etc. A proper
noun reading is also chosen if the preceding word is a finite verb and if the
immediate right context contains a clause-boundary punctuation. Common
noun readings are preferred if the token is preceded by a cardinal, an article,
a demonstrative or a possessive pronoun and is not followed by a noun.
Although proper nouns can occur in such context, the majority of ambiguous
words in this environment are common nouns.

Attributive and predicative adjectives ambiguities, as well as ambigu-
ities between nouns and adjectives, are resolved by constraints based on
identification of the noun phrase structure.

The order of rules in the POS disambiguation module is largely reflected
by the order in which they are described above. However, for a more effective
disambiguation, rules of different groups are interleaved in some cases. Such
a strategy allows for a more thorough and at the same time more careful
application.

The POS disambiguation module consists of approximately 400 rules.
These rules are mostly unlexicalized, only 10% of them refer to lemmas in
the readings filter and/or in the context fields.
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6.1.4 Morphological disambiguation

The main focus of the morphological disambiguation module is on the disam-
biguation of the lexical nodes that make up noun phrases: nouns, determin-
ers, adjectives and pronouns. These parts of speech represent particularly
high morphological ambiguity.

The principle method that contributes to the disambiguation of NP ma-
terial is based on intra-phrasal agreement: lexical nodes within the same
phrase mutually constrain each other as to the set of possible readings.
Consider an example in (49):

(49) den die +Det+Art+PI+FMN+Dat+St+ART
den die +Det+Art+Sg+Masc+Acc+St+ART

politischen politisch +Adj+Pos+PIl+FMN+NGDA+Wk+ADJA
politischen politisch +Adj+Pos+Pl+FMN+Dat+St+ADJA
politischen politisch +Adj+Pos+Sg+FMN+Dat+Wk+ADJA
politischen politisch +Adj+Pos+Sg+FMN+Gen+Wk+ADJA
politischen politisch +Adj+Pos+Sg+Masc+Acc+St+ADJA
politischen politisch +Adj+Pos+Sg+Masc+Acc+Wk+ADJA
politischen politisch +Adj+Pos+Sg+Masc+Gen+St+ADJA
politischen politisch +Adj+Pos+Sg+Neut+Gen+St+ADJA

Direktoren Direktor +Noun+Common+Pl4+Masc+NGDA+NOUN

Each token in the phrase is many times ambiguous: note that the tags
FMN and NGDA stand for any gender and any case, correspondingly, and are to
be expanded into a set of four analyses with different gender values (FMN, Fem,
Masc, Neut), for FMN, and into a set of five analyses with different case values
(NGDA, Nom, Gen, Acc, Dat), for NGDA.2 The union of the sets of analyses of the
tokens covers all possible readings except for +Sg+Masc+Nom, +Sg+Masc+Dat
and +Sg+Neut any case but genitive. However, the distribution of analyses
differs between tokens. Imposing a constraint that requires identical values
of gender, number and case for all tokens which belong to the same noun
phrase leads to the complete disambiguation of the determiner and the noun:

2The analyses FMN and NGDA are left after the expansion of the tags, since some lexical
tokens have underspecified values for these features. For example, a noun “Gehdrlose”
(“deaf people”) is unspecified as for the gender value, and there are contexts that do not
provide sufficient information for the resolution of case value, in which case the value is
left underspecified.
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(50) den die +Det+Art+P1l+Masc+Dat+St+ART

politischen politisch +Adj+Pos+Pl+Masc+Dat+Wk+ADJA
politischen politisch +Adj+Pos+Pl+Masc+Dat+St+ADJA

Direktoren Direktor +Noun+Common+Pl4+Masc+Dat+NOUN

An ambiguity concerning the declension type of the adjective still re-
mains. In German, word forms for adjectives and determiners can be clas-
sified as belonging to either weak or strong declension types.? For example,
all forms of the definite determiner “der” belong to the strong declension
type, while the paradigm of the indefinite determiner “ein” is split between
weak and strong forms. In addition, some nouns, in particular those derived
from adjectives such as “Gehorlose”, also exhibit a distinction between weak
and strong forms.

If determiners co-occur with adjectives and nouns in the same NP, ad-
jective and noun agree in declension class, whereas the declension value
of the determiner is the opposite. Thus, the adjective in the phrase “den
politischen Direktoren” must be of a weak declension type (Wk), since the
determiner “den” has a value strong (St) for this feature. This constraint
disambiguates the tokens in the noun phrase completely.

The intra-phrasal agreement constraints discussed above are incorpo-
rated in the concord rules of the morphological disambiguator module. Such
rules are implemented as double reduction rules (DRRs) discussed in Chap-
ter 4.

Example (51) illustrates a concord rule stated in the form of a DRR. This
rule eliminates all readings of adjectives and nouns that do not match. The
pattern matching algorithm of the XIP System ensures the non-deterministic
application of the rule to each adjective that precedes a noun in a left-to-
right fashion.

(51) |adj*, a-mod*, adj#1, a-mod*, adj*, noun#2| = (#1[agr| : : #2[agr]).

The category a-mod in the rule stands for optional AP material such as
adverbs and cardinal numbers. For readability, the category is omitted in
the following rules; however, in the actual rules of the morphological module,
a-mod material always precedes adj.

The condition on the right-hand side of the rule (with the identity op-
erator “::”) enforces strict identity of agreement features between the ad-
jective and the noun, with agreement consisting of the gender, number and

3For a comprehensive study of distributional properties of weak and strong forms in
German NP see Zwicky (1986).
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case features for each node. Therefore, the rule has the effect of eliminating
all readings of adjective and noun sequences with conflicting agreement fea-
tures. However, if the nodes in question have no common readings to start
with, then no readings are eliminated.

The rule in (52) accounts for the distinct declension type values required
for the contextually valid patterns of determiners and adjectives that have
been discussed above.

(52) |det#1, adj*, adj#2, adj*, noun| = (#1[agr| : : #2[agr]) & (#1[dec]]
~: #2[decl]).

If there is no determiner in front of a sequence of an adjective and a noun,
then all weak readings of the adjective and the noun should be eliminated.
This is handled by rule (53):*

(53) |?[det: ~,a-mod: ~], adj*, adj#1, adj*, noun#2| = (#1[agr] ::
#2[agr]|) & (F#1[decl: St]) & (#2[decl: St]).

Rules (52) and (53) illustrate another feature of the expressivity of DRRs:
the constraint on the right-hand side of the DRR may contain any combina-
tion of Boolean operators (disjunction, conjunction and negation of features)
that can be expressed in the system. To force distinctness of declension val-
ues the negated equality operator ~: is used.

The full expressivity of DRRs makes it possible to state conditions on
contextually valid morphological readings as succinctly as possible. This
is one of the main advantages of the present approach over previous frame-
works for morphological disambiguation.®> While the framework of constraint
grammar used by Voutilainen (19954) permits Boolean constraints, it lacks
an equality operator and the use of variables over features on adjacent nodes.
This, in turn, means that constraints cannot be generalized, but have to be
stated in a case by case fashion. While this may be tolerable for languages
like English, it will lead to an explosion of rules for languages like German
with richer morphological paradigms.

Haji¢ et al. (2001) and Oflazer and Tiir (1997) do not consider agreement
phenomena of the sort treated here. Therefore, it is difficult to tell whether
the syntax of their disambiguation rules is rich enough to accommodate the
same level of generality provided by the DRRs.

“For readability the rule has been simplified by leaving out optional NP/AP material,
such as adverbs and cardinal numbers.

5 Petkevic (2001) seems to envisage rules similar to the ones used in the described tagger.
However, he does not provide any formal specification or semantics for disambiguation
rules, which makes a precise comparison difficult.
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A wide range of intra-phrasal agreement regularities is covered by con-
cord rules: prenominal agreement (with determiners, adjectives, cardinals,
measure phrases, participial premodifiers, etc.), determiner-noun agreement
in noun phrases with embedded constructions, case agreement with preposi-
tions and agreement in complex proper names. Moreover, such regularities
as subject-verb agreement and simple nominal coordinations are also stated
in concord rules.

However, concord rules do not provide sufficient ground for resolving
the ambiguity completely. Since case syncretism is a usual phenomenon
for German, many noun phrases retain more than one valid analysis after
the application of concord rules. Moreover, intra-phrasal concord rules only
apply to noun phrases which consist of more than one lexical node that
exhibits inflectional morphology. These rules, therefore, do not apply to
single-element NPs such as relative or personal pronouns. In order to dis-
ambiguate such single-element NPs and to further disambiguate complex
NPs, the morphological disambiguator employs syntactic heuristics stated
in the form of ordinary disambiguation rules (ODRs)®. One of the most
effective syntactic heuristics of the disambiguator is to retain only the no-
minative case reading for an NP if that NP is the only candidate for being
the subject (i.e. it is the only NP in a finite clause or the only NP with a
nominative reading in a finite clause). Table 6.1 provides an overview of
some of the more effective heuristics implemented in the rule-based tagger.
For each heuristic, Table 6.1 shows which case value is retained or elimi-
nated. The numbers in Table 6.1 indicate the approximate percentage of
ambiguous NPs that received a unique reading after the application of the
heuristic.” For expository purposes, the informal rendering of the heuristics
in Table 6.1 leaves out many of the necessary contextual restrictions. A
more detailed discussion of the contextual restrictions for these heuristics is
provided in the Appendix E.

Syntactic heuristics and concord rules are freely mixed in the tagging
system. In fact, interleaving of the two rule types as well as cyclic appli-
cation of rules is often necessary. For example, as a result of an earlier
application of concord rules, there often remains only one head noun that
can be nominative (but does not necessarily have only one possible analysis
for case). Since every finite clause requires a subject, i.e. a noun phrase in
nominative case, the non-nominative readings for this one noun can then be

5For a description of the format of ordinary disambiguation rules, see Chapter 4.

"Such approximation is very hard to provide for large test data sets. Numbers in
Table 6.1 are estimated on a smaller test data set used in the experiments described by
Hinrichs and Trushkina (2002).
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Description of a Syntactic Heuristic Case value Percentage

The NP is the only one in a finite clause Nom 16.57%
(then it is a single candidate for subject).

A noun with feature City or Country is Dat 4.07%
preceded by a preposition “in”.

Eliminate Nom reading on ambiguous NPs = Nom 3.66%

if there is a non-ambiguous Nom NP in a
clause (with no coordination or comparison).

The NP is an argument of a copula verb. Nom 3.26%
A nominative reading does not agree with a - Nom 2.16%
finite verb in number.

The NP is preceded neither by a preposition - Gen 1.62%
nor by another NP.

The NP is a non-initial NP in a Vorfeld Gen 1.21%
position in a wverb-second clause.
The NP is a complement of a zu-infinitive. - Nom 1.09%

Table 6.1: Syntactic Heuristics

eliminated by a syntactic heuristic. This reduction of readings on the head
noun can, in turn, lead to the further reduction of the other lexical nodes
(e.g. preceding determiners and adjectives) that belong to the same noun
phrase.

The morphological disambiguation module consists of approximately
1000 rules. This count includes the repetitive application of rules. About
250 of the tagger rules are concord rules. Such a large amount of rules is
due to the contextual differences stated in the constraints. Similar to the
disambiguation system of Voutilainen (1995b), the tagger described above
employs a rather small set of syntactic generalizations. What makes the rule
set expand significantly is the specification of the context and the internal
structure of phrases which can be rather heterogeneous.

6.1.5 FEvaluation

Performance of the tagger has been evaluated on 8949 manually annotated
tokens from the TiiBa-D/Z treebank. For the evaluation, the analyses pro-
vided by the tagger have been mapped into the corresponding tags of the
treebank format.

Table 6.2 provides the evaluation of the rule-based disambiguation mo-
del. The first line represents a baseline for the model performance: it is
calculated as the performance of the morphological analyzer. The next
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preci- F-me- ambiguity
module sion recall asure LE DE tokens | R1 R2
Analyzer | 16.90% | 98.06% | 18.84% | 100% 0% 66.61% | 8.21 | 5.8
POS 23.19% | 97.56% | 37.47% | 78.42% | 21.58% | 56.33% | 6.69 | 4.21
Morph. 48.27% | 96.45% | 64.34% | 53.70% | 46.30% | 29.27% | 4.41 | 2.60
+ adding
analyses | 50.54% | 96.59% | 66.36% | 47.69% | 52.31% | 29.06% | 4.14 | 1.91

Table 6.2: Evaluation of the rule-based disambiguation model

two lines stand for the POS and morphological disambiguation modules,
respectively.

The table contains numbers for precision, recall and f-measure, as well
as the percentage of ambiguous tokens in the test data together with 2 am-
biguity rates. Column R1 presents the average ambiguity rate of ambiguous
tokens only, whereas column R2 provides the average ambiguity rate for
all tokens. To simplify comparison with the results obtained by other re-
searchers, the formulas described in the earlier literature (see Haji¢ et al.
(2001)) are used:

#Tokens with a correct tag

Precision —
recision # Analyses generated

#Tokens with a correct tag
#Tokens in data

Recall =

2 x Precision * Recall

F — measure = —
Precision + Recall

Following Volk and Schneider (1998), the errors made by the tagger
are split into lexical errors (LE; column 5) and disambiguation errors (DE;
column 6). Lexical errors are caused by the morphological analyzer: the
correct analysis is not present among the set of analyses assigned by it.
Disambiguation errors are proper errors of the model: the correct analysis
has been deleted during rule application.

As column 5 (LE) of Table 6.2 shows, the majority of the errors are
lexical errors which are due to the deficiency of the morphological analyzer.
A big part of such errors concerns foreign material and proper names —
these lexemes do not contain necessary morphological clues for successful
identification of correct analyses and are often confused with other parts of
speech: common nouns, adjectives and verbs.
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An attempt was made to decrease the initial error rate caused by the
morphological analyzer. Unknown words were looked up in the external list
of foreign material words and proper names extracted from the training data,
as well as in the list of personal names extracted from the online newspapers
of the period of 2001-2003. If the lists contained the unknown word, the
analyses provided by the morphological analyzer were replaced with the
analyses from the lists.® The performance of the rule-based disambiguation
model run on such an extended input is shown in the last line of Table 6.2.

Another major source of lexical errors is the confusion between adverbs
and predicative adjectives, the annotation of which is often guided by seman-
tic criteria and constitutes a difficult case for the morphological analyzer.
Together with errors caused by rule over-application, lexical errors lead to
decreased recall.

The tagger successfully reduces the ambiguity of tokens, leading to full
disambiguation of 70% of tokens. Evaluation of the tagger performance on
only fully disambiguated tokens has demonstrated an accuracy of 97.62%.
The overall ambiguity rate of tokens decreased from 5.8 analyses to 1.91
analyses per token, whereas the drop in accuracy amounts to only 1.5%.
However, the remaining ambiguity of 29.06% of tokens results in a decrease
in the precision of the model (50.54%). The disambiguation rules are mostly
eliminative in nature and in many cases the surrounding context does not
provide enough evidence for the deletion of an analysis as ungrammatical.

Manual analysis of the rule-based model’s output has shown that a big
part of the remaining ambiguity cases represent ambiguity which is hard or
impossible to resolve based only on the context and ambiguity class evidence
and which requires knowledge of semantic and/or pragmatic information for
successful resolution. Such cases include, among others:

¢ Nominative/accusative ambiguity of tokens which constitute noun phra-
ses:

(54) In spektakuliren Fillen haben gefeuerte Altere in den USA
In sensational  cases have fired seniors in the USA
ihr Unternehmen wegen Altersdiskriminierung verklagt.
their companies against age discrimination  sued
‘In the USA, fired seniors sued in sensational cases their com-
panies against age discrimination’.

& Analyses were added to 1.74% of tokens in test data.
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If after the application of concord rules and heuristics described above,
two (or more) NPs remain ambiguous between nominative and ac-
cusative cases, other syntactic characteristics, such as word order, can-
not provide sufficient evidence for the disambiguation of the NPs and
semantic criteria are needed. Therefore, such cases are left ambiguous
by the tagger.

e Accusative/dative ambiguity of tokens which constitute prepositional
phrases:

(55) In Plattenldden hangt ihr Plakat.
In record shops hangs her poster.

The case value of a prepositional phrase depends on semantic char-
acteristics of the governing verb: verbs with a movement component
in the meaning, such as “hang up”, require an accusative PP, whereas
static verbs, such as “dangle”, take dative PPs. Since such informa-
tion about verbs is unavailable for the tagger, the accusative/dative
ambiguity of prepositional phrases is kept unresolved.

e Ambiguity between adjectives and adverbs:

(56) Essoll  zum Wochenende sogar teilweise Schauer
It should at weekend even partial/partly rains
geben.
be.

‘It will be partly rainy over the weekend’.
e Ambiguity between subjunctive and indicative mood of verbs:

(57) Starke Ménner weinen.
Strong men  cry/would cry.

The last two cases represent other kinds of ambiguity that cannot be
resolved based on contextual information.

Table 6.3 demonstrates the distribution of errors made by the rule-based
tagger among the morpho-syntactic features. In the second column (POS)
the percentage of errors involving POS categories is presented. Columns 3—6
provide the distribution of errors that occur (only) in one of the morpholog-
ical feature values, while the values of the other morphological features and
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module POS case number | gender | person | tense | mood
Analyzer | 53.63% | 3.52% | 7.27% 2.72% | 0.90% | 7.27% | 0.90%

POS 65% 3.26% | 5.711% 2.14% | 0.711% | 5.71% | 0.71%
Morph. 44.93% | 17.39% | 5.80% 2.41% | 1.45% | 3.86% | 0.48%
+ adding

analyses | 42.21% | 18.09% | 5.02% 4.52% | 0.51% | 4.02% | 0.50%

Table 6.3: Error analysis for the performance of the rule-based tagger

of the POS category are correct. Errors involving more than one morpho-
logical feature are not considered in the error analysis of Table 6.7, since in
such cases it is unclear which feature is ultimately responsible for the error.

6.2 Statistical methods

Statistical taggers currently represent the most widely used tool for POS
annotation. The popularity of statistical taggers has to do with their high
performance and speed as well as with the simplicity of their application.
In this section, the application of statistical methods to morpho-syntactic
tagging is investigated.

In all the experiments with statistical taggers reported here, the TuBa-
D/Z treebank data has been used. The tagset of the treebank has been
described in Chapter 5. It includes 1317 distinct tags and uses STTS tags
combined with morphological features for case, number, gender, tense, mood
and person.”

The experiments have been performed on three data sets of different
size. The data sets include training data, tuning data and test data. Tuning
set is the same for all experiments, whereas the training and testing data
of smaller sets represent a subset of training and testing data of the larger
sets. Table 6.4 provides statistics for the three data sets.

No. ‘ Name ‘ train ‘ tune ‘ test
1. 50k 51288 | 5854 | 8949
2. 100k | 104 049 | 5854 | 11 361
3 150k | 155042 | 5854 | 17179

Table 6.4: Data sets used in the experiments with statistical models

9A list of TiiBa-D/Z tags is presented in Appendix C.
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6.2.1 Trigram models

Among different statistical taggers, trigram model taggers have been shown
to provide the optimal trade-off between accuracy and the size of the training
set involved. Since the amount of available morphologically annotated data
for German is rather restricted, trigram models represent the best alterna-
tive for supervised morpho-syntactic tagging of this language. Below, the
experiments with the morpho-syntactic tagging of German with a trigram
model are described.

It is well known that significant expansion of the tagset leads to decrease
in performance for all tagging frameworks. Therefore, the application of
methods which aim at alleviating the undesirable effect of the incorporation
of morphological information into the tagset is also discussed.

TnT experiments

In the trigram experiments, the TnT tagger has been used. Brants (2000)
has shown that the tagger achieves the same state-of-the-art performance
of 96.7% accuracy when applied to pure POS tagging of both English and
German data. Given that the German language has a more flexible word-
order and a higher ambiguity than English, the fact that TnT provides equal
results for both languages demonstrates a high suitability of the tagger for
German. This makes TnT a particularly appropriate choice in the experi-
ments with morpho-syntactic tagging of German.

When trained and tested on the three TiiBa-D/Z data sets, TnT achieves
a baseline accuracy of 74.97%, 80.27% and 82.68%, correspondingly.

data H full tagset ‘ POS only
50k || 74.97% 93.39%
100k || 80.27% 95.79%
150k || 82.68% 96.50%

Table 6.5: Evaluation of the pure TnT model

As compared to the accuracy of TnT reported by Brants (2000), the
achieved accuracy is rather low. This difference in performance is due to ex-
pansion of the tagset and to a smaller amount of training data. To estimate
the influence of the training data size reduction, experiments with pure POS
tagging have been performed on the same data. As Table 6.5 demonstrates,
for the STTS tagset, the tagger achieves a maximum accuracy of 96.50%.
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This number is comparable to the accuracy of 96.70% reported by Brants
(2000), who trained TnT with the STTS tagset on the NeGRA newspaper
corpus with approximately 320 000 tokens, i.e. a training corpus more than
twice as big as the largest TiBa-D/Z training corpus used here.

data H accuracy
50k | 80.61%
100k || 86.88%
150k || 87.48%

Table 6.6: Evaluation of the TnT model with a back-up lexicon

The first improvement in the performance of TnT on morpho-syntactic
annotation can be gained if TnT is provided with a back-up lexicon which
contains the set of all possible morpho-syntactic analyses for unknown words.
This restricts the search space of the tagger and avoids errors caused by
assigning invalid tags to tokens. The back-up lexicon has been produced by
mapping the analyses provided by the Xerox morphological analyzer into the
treebank tagset format. The obtained improvement is presented in Table 6.6.
On different data sets it amounts to 4.8-6.61%.

Table 6.7 demonstrates the distribution of errors among the morpho-
syntactic features for the experiments with TnT augmented with the back-up
lexicon. Isolating the errors of morphological features in this way demon-
strates that the main source of errors made by TnT are case and POS
categories.

Further improvements to the performance of TnT can be obtained by
either increasing the size of the training data or by reducing the tagset.
Considering the amount of manual effort necessary, the former strategy is
not feasible in practice. The latter strategy has been advocated by Tufig
(2000) and by Dienes and Oravecz (2000). Below, experiments with the
tagging method based on the reduction of the tagset are described.

data H POS ‘ case ‘ number ‘ gender ‘ person ‘ tense ‘ mood
50k || 35.85% | 37.00% | 1.90% | 6.51% | 0.75% | 0.86% | 0.40%
100k || 28.79% | 43.02% | 1.81% | 5.70% | 1.28% | 0.34% | 1.41%
150k || 31.47% | 41.05% | 1.63% | 5.58% | 0.79% | 0.09% | 1.02%

Table 6.7: Error analysis for the performance of TnT with a back-up lexicon
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Experiments with a reduced tagset

Several experiments in line with the ideas of Tufis (2000) and Dienes and
Oravecz (2000) have been performed on German data. The main goal of
tagset reduction approaches consists of optimizing the balance between the
size of the tagset used for tagging and the size of the training data set.
Tufig (2000) has shown that for Romanian, values of many features used in
tags are easily recoverable from the lexical information and can therefore be
omitted from the original tagset for the intermediate tagging. In the same
manner, some values of a feature can be merged together if the information
is recoverable. For example, the original tagset used in the experiments
of Tufis (2000) includes a feature object on verbs with values I (no object
or indefinite object), D (definite object) and 2 (incorporated second person
object). However, the distinction between classes I and 2 is recoverable,
since the relevant information is contained in the form of the lexemes: no
token in Romanian is ambiguous between these two classes and therefore,
the value can be reconstructed by a simple procedure of looking up the
lexeme analyses in a lexicon. Moreover, lexemes of these classes behave in
the same way syntacticly and thus do not provide any contextual clues for
the disambiguation of other tokens. Hence, the classes can be merged, which
results in collapsing those tags that differ only in the value of this feature
in one generalized tag.'® Applying this procedure recursively to all features
of the tags, the tagset size can be significantly reduced.

A formal description of the algorithms of Tufig (2000) and Dienes and
Oravecz (2000) is presented in Appendix G.1 and Appendix G.2, correspond-
ingly. Informally, they differ in the direction of the tagset reduction: the
tiered tagging (T-tagging) approach of Tufig (2000) sequentially reduces the
original tagset top down, whereas the bottom-up tagset design (BUTD) of
Dienes and Oravecz (2000) maximally reduces the original tagset without
loss of information and then re-introduces morpho-syntactic features to ex-
pand the reduced tagset to a set of tags that exhibit sufficient distributional
cues for the tagger.

Both algorithms have been implemented for application to the German
data. Table 6.8 shows the results of applying these two algorithms to the
data set 1 (50k). A straightforward implementation of the BUTD approach
fails to reach the baseline set by TnT with the maximally reduced tagset
(72.33%). Experiments with expanded tagsets whose classes respect differ-
ences in major word classes yield a maximal, but still below baseline, result
of 78.19%.

0The example is taken from Tufig (2000).
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tune set test set
pure back-up  pure back-up

TnT 75.09 80.74 74.97 80.61
BUTD
straightforward 72.51 72.53 72.15 72.33
expanded tagsets 76.23 78.49 75.43 178.19
T-tagging

straightforward (10% info loss) 82.71 83.58 81.84 83.13

Case, Number and Person only 83.59 83.02 83.26 83.01
no Case, Number and Person 85.39 85.58 84.03 84.94

Table 6.8: Experiments with reduced tagsets

The T-tagging approach is able to outperform the TnT baseline. The
standard margin of 10% information loss set by the algorithm of Tufig (2000)
yields 83.13% for German data. However, this higher result is achieved at
the cost of losing information contained in the original tagset. The algo-
rithm described by Tufis (2000) leaves out an attribute from all the tags
in the reduced tagset if the elimination results in limited percentage (less
than 10%) of words becoming ambiguous after recovering the original tags.
The recovering process is lexicon driven: it is equivalent to computing the
intersection between the set of original tags that map into the reduced tag
assigned to the token and the set of analyses specified for the token in the
lexicon. For resolving the remaining 10% ambiguity, the algorithm relies
on hand-crafted rules. However, for German this strategy turns out not to
work: 10% information loss results in the elimination of all morphological
features on major word classes, e.g. finite auxiliary verbs, articles, proper
nouns as well as personal, demonstrative and relative pronouns and deter-
miners. This type of information is not recoverable by hand-crafted rules,
thus limiting the utility of the tagged output.

It is important to note that Tufig (2000) reports a much lower ambiguity
rate for Romanian — approximately 1.7 readings per token — compared to ap-
proximately 5.8 readings per token prior to part-of-speech-tagging and mor-
phological disambiguation for the German test corpus that has been used for
evaluation. Moreover, compared to German, case syncretism in Romanian
seems to follow much more systematic patterns across nominal paradigms:
nominative forms consistently coincide with accusative forms, whereas cor-
responding forms of two other cases, dative and genitive, represent another
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identical pair. Romanian, therefore, lends itself to a straightforward reduc-
tion of the full tagset. The same is true for Hungarian: the ambiguity rate
is even lower than for Romanian — approximately 1.3 readings per token —
and case values are easily recoverable from lexical information, as collapsing
of 21 original cases to 3 case distinctions (nominative, accusative and other)
has shown (Tufis et al. (2000)). For German, such a compact merging of
cases does not seem possible, since case syncretism varies from paradigm to
paradigm so that only a set of subregularities can be induced. Table 1.1 from
the introduction repeated here in Table 6.9 demonstrates that conflation of
nominal case forms follows different patterns depending on the paradigm: all
case forms are identical for nouns like “Blume”, nominative form is opposed
to all other case forms for nouns like “Bar”, dative form is opposed to all
other case forms for nouns like “Bilder”, etc. Additionally, case syncretism
represents a different picture for pronominal forms, for adjectival forms and
for determiner forms, which leads to a further complication. This lack of
strong regularities in the German case system violates the requirements of
the T-Tagging compaction algorithm, which results in the poor performance
of the reduced tagset approaches on German data.

Nominative Genitive Dative Accusative

Blume ~ ~ ~
Bar ~en ~en ~en
Bilder ~ ~n ~
Vater ~$ ~ ~
Name ~nSs ~n ~n

Table 6.9: An example of German nominal case syncretism

It is instructive to profile the T-tagging approach by comparing the re-
tention of different sets of crucial morphological features. If only case and
number information is retained on nominal categories and only number and
person information is retained on finite verbs, the result is a lower accuracy
(83.01%) than if only these features are deleted from the tagset and all other
morphological features are retained on these and on all other word classes
(84.94%). Case, number and person are generally regarded as the most basic
morphological features to be included in any tagset with inflectional infor-
mation. The fact that this feature set is more difficult to accommodate than
all other morphological features combined points at a crucial deficiency in
the underlying model for the task at hand.
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Limitations of n-gram models

N-gram taggers such as TnT consider only sequences of n words and their
candidate tags, i.e. very local contexts, as the basis for determining the most
likely sequence of tags for the sentence. This Markovian assumption proves
harmful for decisions that crucially require larger context windows. Case,
person and number information is precisely of this nature, since successful
disambiguation needs to rely on genuinely syntactic phenomena such as
subject-verb agreement, valency of main verbs, and morphological features
of other nominal elements in the sentence. While at first sight it seems that
case and nominal number can be resolved within a small context window via
phrase-internal agreement, experiments with the rule-based tagger described
in the previous section show that in a lot of cases use of syntactic heuristics
which take into account distant features is necessary. The most prominent
example of this kind is illustrated in (58). The example is taken from the
error analysis of TnT performance on test data.

(58) Die Frage mnach der Form beantwortet er dann auch so:
The question about the form answers he then also in this way

‘He answers the question about the form in this way:’

The sentence contains an unambiguous nominative pronoun “er” and a
noun phrase “die Frage”. The latter NP represents a common nominative-
accusative ambiguity. TnT wrongly assigned nominative case to the tokens
“die Frage” even though the combination of the nominative and accusative
NPs in a clause is much more likely than a pattern of two nominative NPs.
This deficiency in the statistical model used by the TnT tagger is due to its
extremely local context window.

The most widely used probabilistic models that can incorporate more
global structural information are probabilistic context-free grammars (PCFGs).
The conjecture that PCFGs yield better results is confirmed by experiments
with the PCFG-parser LoPar designed by Schmid (2000). These experi-
ments are described in the following section.

6.2.2 PCFG model

Probabilistic Phrase Structure Grammars!!

A Probabilistic Phrase Structure Grammar is an extension of a context-free
grammar, in which each rule is associated with a probability. Formally, a

"' The introduction into PCFGs presented here is based on the introduction of Manning
and Schiitze (1999).
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PCFG grammar G is a five-tuple < W, N, S, R, P >, where

e W is a set of terminal symbols w’, ..., w?,

e N is a set of non-terminal symbols N7/, ..., NV,

S is a start symbol, S € N,

R is a set of rules, each of which is of the form N* — (7, where (7 is
a string over W U N,

e P is a corresponding set of probabilities on rules such that

Vi > P(N* = ¢) =1
J

The probability of a parse is computed as the product of the probabilities
of all rules applied in the parse. The probability of a sentence is the sum of
probabilities of all possible parses of the sentence:

P(wlm): Zp(t)

twym

where t,,,,. is a parse of the sentence wj .

Since the calculation of the probabilities of all possible parses for a sen-
tence is very inefficient, the total probability of a sentence can be calculated
by dynamic programming algorithms.

The inside algorithm is based on the inside probabilities. The probability
of a string wy , is calculated as the inside probability of the root node:

Pwim|G)=P(S=Swipm|G)=Pwim|SimG) = B:(1,m)

where notation S = wy,, stands for generating a string wy,, starting from
node S. S;,, means that S spans positions 1 through m. Bg is the inside
probability of the root node.

The inside probability of a node N7 that spans positions p through ¢ is
defined as

Bj(paq) = P(wpq ‘ ijan)

and is calculated inductively as

g—1
Bi(pa) =Y Y P(N/ = N"N*) B,(p,d) Bs(d+1,q)

T8 d=p
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The base for the induction is the probability of a leaf node ;(k, k) which
is equal to the probability of a rule NV — wy:

ﬂj(k,k) = P(wk | Njkk,G) = P(Nj — Wk | G)

The probability of a string can be also found with the outside algorithm
using the outside probabilities of pre-terminal nodes:

Plwim | G)= Za]kk (N7 = wy,)

where «; is the outside probability of N7,
The outside probability of the root node S that spans the whole string
is
(%] (1,m) =1
aj(l,m) =0 forj#1

The outside probability of an internal node is defined inductively as

) =1[>. Y as(p,e) P(N/ = NINY) By(q+1,e)]
fL9#je=q+1

p—1
+D- D ap(e.q) P(NF = NIN) By(e,p - 1)]
fg e=1
The inside-outside algorithm computes the joint probability of a sentence
and a node spanning from position p to position ¢ as

P(wim,Npq | G) = ZO‘] p.q) Bj(p,1)

This formula describes the probablhty of a sentence, analyses of which
use a constituent N7 covering words p through g.

The most likely parse of a sentence can be found with slight modifications
of the algorithms described above. The algorithms are adapted to find the
arguments that provide the maximum of functions instead of the sums of
the function values. The rule that yielded this maximum is recorded. The
most likely path can be identified by backtracking the recorded values.

111



Tagging with PCFGs

The PCFG parser LoPar is a particularly suitable tool for the experiments
on morpho-syntactic tagging since it provides dedicated Viterbi parsing and
tagging modes. The corresponding modes give different results when applied
to the task of morpho-syntactic annotation with large tagsets. In Viterbi
parsing mode, LoPar computes the most probable tree structure for a given
input string. This mode can be used for part-of-speech tagging by outputting
the sequence of part-of-speech tags that appear as preterminal nodes of
the most likely tree. In tagging mode, the best tag sequence is computed
independently of the most likely parse tree. In this mode the best tag
sequence is defined as the sequence of those tags that yield the maximal
product of the inside and outside probabilities among the candidate tags for
a given word. A more formal comparison between the two modes is given
below.

As has been pointed out above, the joint probability of a string wy,, and
a node N, spanning from string position p to q, given a grammar G, can be
computed by the formula in Al.

P(wim; Npq | G) = 3_a;(p,)B;(p, ) (A1)
J

In LoPar tagging mode, the best tag sequence is defined as the sequence
of those tags that yield the maximal product of the inside and outside prob-
abilities among the candidate tags for a given word. Each tag is therefore
computed by the following formula:

arg max «; (k, k)P(N7 — wy) (A2)
J

A2 is an instantiation of A1 for preterminal nodes spanning from k to
k with the sum operator replaced by argmaz. P(N/ — w;) denotes the
inside probability of the tag.

In Viterbi parsing mode, LoPar computes the sequence of part-of-speech
tags that appear as preterminal nodes of the most likely parse tree. What
makes a direct comparison to the computation of tag sequence with the
Viterbi parsing mode difficult is that computation of the most likely parse
tree is usually performed in terms of inside probabilities only. This amounts
to instantiating p and q in formula Al to 1 and m and to a Viterbi-style
computation of maxima, rather than sums, for inside probabilities. Below,
the probabilities of the best inside analyses computed this way are referred
to as vit_3. The probability of the best parse tree is then computed as
Uit_ﬁ1 (1, m)
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Alternatively, one can instantiate p and q in A1 to shorter subsequences
of the input string and determine the most likely tree by a Viterbi-style
computation of both inside and outside probabilities. In particular, one can
instantiate p and q to a single k and dynamically compute maxima (rather
than sums) for outside probabilities of a preterminal node. Below, the prob-
abilities of the best outside analyses computed in this way are referred to as
vit_a. The probability of the best parse tree is then computed as vit_a; (k, k)
P(N’ — wy). The best tag N’ for a given word wy, inside the best parse tree
can be computed by the following formula:

arg max vit_o; (k, k) P(N? — wy) (A3)
J

Formula A3 for Viterbi parsing constitutes a specification in terms of out-
side probabilities that directly parallels the main components of the formula
in A2 which is used in LoPar’s tagging mode. Stating the relevant formulas
in this way should help clarify the similarities and differences between the
two LoPar modes.

Since LoPar’s tagging mode computes the most likely tag sequence in-
dependently of the most likely parse tree, the best tag for a given word will
be identified as that tag which provides the best balance between the likeli-
hood of the tag itself and the likelihood of the surrounding syntactic context.
Since this choice is determined for each tag independently of all the others,
the resulting tag sequence may well differ from the tag sequence of the most
likely parse tree. Viterbi parsing has as its goal the construction of a single
tree that provides the best balance between the individual probabilities of
the candidate structures of its parts. In order to arrive at this balance, the
most likely analysis of an individual phrase or word may not be incorpo-
rated into the most likely tree if the outside probability for that analysis
is much inferior to the outside probabilities of other candidate analyses for
the same word or phrase. Thus, Viterbi parsing optimizes global structure,
not individual substructures. Since part-of-speech tagging is of a more local
nature compared to full sentential analysis, it should therefore be expected
that independent maximization of tags for individual words should perform
better than global maximization of full sentential structures.

The experiments with both Viterbi parsing and tagging modes demon-
strate an average improvement of the tagging mode performance over the
performance of the parsing mode that amounts to 0.9%. This difference in
results stresses the independent nature of the tagging task in PCFG appli-
cation. Tagging is viewed not as a subtask of full parsing, but as a separate
problem and represents a challenge of a different kind for a PCFG. What
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is usually assumed as the input for parsing — a sequence of part-of-speech
tags — is to be found in the tagging problem, and the main emphasis is put
on identification of those regularities of syntactic structure that are highly
predictive for the assignment of the correct tag sequence.

LoPar experiments

Training, tune and test sets in LoPar experiments have been compiled of
Tiiba-D/Z data for the same manually annotated tokens which were used in
the TnT experiments.

The initial grammar and lexicon for LoPar has been extracted from the
training data: the rules have been read off the parsed sentences and each
rule has been associated with a number of occurrences of this rule in the
training data. To accommodate the data to the experiments with LoPar,
the modifications discussed below have been introduced.

The Tiiba-D/Z segmentation units may contain more than one sentence
and/or phrase, which results in disconnected trees in some cases. To avoid
disconnected trees in the LoPar grammar files and input, a root node VROOT
is added to all treebank segmentation units.

In the treebank, punctuation marks are not attached to trees. However,
punctuation often provides useful information for correct morpho-syntactic
annotation. For example, assignment of a subcategory relative or demon-
strative to pronouns crucially relies on preceding tags: relative pronouns are
usually preceded by a comma. To supply the tagger with this information,
the punctuation is included into the rules in LoPar grammar. A sentence-
internal punctuation mark is attached to the nearest node that spans tokens
in both right and left context of the mark. A sentence-final punctuation
mark is attached to the root node.

The tree in Figure 6.1 exemplifies the type of structures and categories
used in the baseline LoPar experiment.'? The tree structure represents the
label bracketing of the original TiBa-D/Z treebank format but leaves out
function argument information represented as edge labels in the TuBa-D/Z
treebank.

The baseline performance of 66.40% is obtained by training LoPar on
the treebank data as is.!® Adding a back-up lexicon with candidate morpho-
syntactic analyses for unknown words improves accuracy to 77.65%. Further
improvements are achieved by redefinition of non-terminal nodes and tree

12The sentence-final punctuation is left out for expository purposes.
13The initial experiments are performed on the data set 1 (50k). Final results are
summarized for all data sets in the evaluation subsection below.
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VROOT

SIMPX
T~
VF LK MF VC

N
NCX VXFIN ADVX PX PTKVZ
0\
NE.nsm VVFIN.3sis ADV APPR.a NCX suriick
Yaguchi  greift nie auf ART.apf ADJX NN.apf
die  ADIAaPE gonpentionen

gangigen

Figure 6.1: Example of an original tree

transformations compared to the original treebank. This confirms the find-
ings of Johnson (1998) who showed that the performance of PCFG parsing
varies considerably depending on the choice of non-terminal symbols and
the tree transformations performed on the Penn treebank.

The transformations performed on the treebank data are described be-
low.

Treebank transformations

Enriching the set of non-terminal nodes and tree transformations both have
the goal of optimizing the treebank structure for training a model that best
predicts the correct morpho-syntactic tag sequence.

Enriching the set of non-terminal nodes aims at weakening the
independence assumption inherent in PCFGs. The percolation of relevant
morphological and functional information between lexical and phrasal nodes
allows the model to better capture regularities in syntactic structure for
correct assignment of tags:

1. Passing morphological information (case, number and gender) on
phrasal categories that constitute an NP (nouns, adjectives, determiners
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NCX NCX.apf

ART.apf ADJX NN.apf ART.apf ADJX.apf NN.apf
die ADJA.npf Konwventionen die ADJA.npf Konventionen
gangigen gangigen

Figure 6.2: NP subtree without and with percolation of morphological fea-
tures

etc.) facilitates the recognition of intra-phrasal agreement.

Consider as an example the tree in Figure 6.2. If no morphological in-
formation is encoded on the node ADJX, the formation of a subtree with an
accusative article and a noun and a nominative adjective would be possible,
since expansion of the adjectival phrase is independent of its sisters. Per-
colating morphological information from the adjective to its mother node
makes the structure more rigid: the probability of a noun phrase expanding
to categories with different morphological values is very low, as well as the
probability of expanding an accusative ADJX to a non-accusative adjective.

2. The percolation of function labels -OA and -ON (accusative object
and subject) up to SIMPX (clause) nodes helps to prevent the formation
of two-subject as well as subject-less clauses, which are less frequent in the
treebank.'* In a way this information reflects the subcategorization frame
of the verb. It is interesting to note, though, that inclusion of dative and
genitive objects in the treebank structure hurts tagger performance.

3. Passing the FIN-label of finite verbs up to SIMPX nodes allows for
the tracing of regularities between the finiteness of a clause and the morpho-
logical cases of NPs in a clause: a finite verb in a clause requires the presence
of the subject, whereas the absence of a finite verb is more probable for a
subject-less clauses.

4. Introducing a feature for number on -FIN and -ON nodes makes the
capturing of subject-verb agreement possible.

Both -ON and -FIN labels are passed to SIMPX nodes. Trained on a
treebank with correct structures, the model will consider a clause where the
subject and the finite verb have different number less probable than a clause

4 These function labels are present in the TiiBa-D/Z treebank and are encoded there
as edge labels between tree nodes.
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VROOT

SIMPX-ON.s-FIN.s

NCX-ON.s SIMPX-FIN.s
NE.nsm VXFIN.3sis SIMPX
Yaguchi VVFIN.3sis ADVX SIMPX
greift ADV PX SIMPX
N\
nie APPR.a NCX.apf VC

auf ART.apf ADJX.apf NN.apf PTKVZ

die ADJA.apf Konventionen zurick

gangigen

Figure 6.3: Example of a transformed tree

in which the subject and the finite verb agree in number.

The transformation of trees aims at two goals: to facilitate the tracing
of the relevant information in the sentence structure and to overcome the
data-sparseness problem created by encoding detailed information on the
nodes.

1. Topological fields such as VF, MF, NF are present in the original tree-
bank as an intermediate layer of syntactic structure. The elimination of
all topological field information except C and VC proved advantageous since
retention of only these two fields turned out to be sufficient for determining
the syntactic macrostucture across different clause types. The C field (short
for “complementizer field”) and the -FIN marking on the verbal complex
node reliably identify (verb final) subordinate clauses. By contrast, verb-
first and verb-second clauses can be identified by the position of the finite
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# of

preci- unparsed

sion sentences

1. baseline: 66.40 5
2.  back-up lexicon added 77.65 5
3. topological fields (except for VC and C) deleted 77.58 5
4. case passed up to NX and NCX 84.23 6
5. grammatical functions (-ON and -OA) added

and passed up to SIMPX + rules binarized 84.98 5
6. morph. info passed up to NXs and VXFINs 87.62 7
7. FIN label with number passed up to SIMPX 88.21 9
8. results on test data 87.69 11

Table 6.10: LoPar PCFG experiments

verb (without retention of the LK topological field) together with the absence
of a -FIN specification on the verbal complex.

2. Encoding morphological and functional information on the nodes
leads to a severe increase in the size of the rule set with an accompanying
drop in recall (i.e. an increase in the number of unparsed sentences). This
can be counterbalanced by the binarization of tree structures, which makes
the grammar more flexible by allowing for structures not present in the
training data to be created in the tagging phase.

Changes to the treebank were introduced in the order in which they
are presented in Table 6.10. The tree in Figure 6.3 exemplifies the type of
structures and categories used in the transformed treebank.

Evaluation

Table 6.10 summarizes the LoPar experiments on the tune set and the final
result on the test data set 1. The baseline of 66.40% is obtained by training
LoPar on the treebank data in the original format. The first improvement
to 77.65% is received by adding a back-up lexicon with candidate morpho-
syntactic analyses for unknown words. Further improvements are obtained
by enriching the set of non-terminal nodes and by tree transformations.
These improvements are summarized in lines 3 to 7 of Table 6.10.

Table 6.11 provides an evaluation of LoPar performance trained on data
sets of different size. Precision, recall and f-measure are calculated in the
same way as for the rule-based module. The additional metric no tag rep-
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data H precision ‘ recall ‘ F-measure ‘ no tag ‘ LE ‘ DE

50k | 87.69% 84.50% | 86.07% 3.41% | 9.15% | 90.85%
100k || 89.05% 87.78% | 88.41% 1.38% | 12.72% | 87.28%
150k || 89.48% 88.52% | 89.00% 1.08% | 6.44% | 93.56%

Table 6.11: Evaluation of the PCFG model

data H POS ‘ case ‘ number ‘ gender ‘ person ‘ tense ‘ mood
50k || 34.56% | 38.35% | 1.11% | 7.21% | 1.76% | 1.20% | 0.46%
100k || 36.70% | 37.77% | 1.55% | 5.14% | 0.65% | 0.24% | 0.49%
150k || 28.79% | 43.02% | 1.81% | 5.70% | 1.28% | 0.34% | 1.41%

Table 6.12: Error analysis for the PCFG model

resents the percentage of tokens for which no tag was assigned. The tagger
is unable to assign a tag to a token if the PCFG cannot provide any parse
for a sentence due to data sparseness.'®

In case of the PCFG model, errors are considered lexical if the correct
tag is not present in the lexicon of the tagger. Otherwise they are viewed
as disambiguation errors.'® Table 6.12 shows the error distribution among
the morpho-syntactic features for the PCFG model.

As compared to the performance of the TnT model without the loss of
information in the underlying tagset, the performance of the PCFG model
represents an improvement of 2-5%, which amounts to a significant error
rate reduction: 15.97-36.51%. It is also worth noting that the size of train-
ing corpus required to achieve acceptable results for the PCFG model is
rather modest (50k). The fact that the model can be trained successfully on
manually annotated treebanks of such modest size highlights the feasibility
and applicability of the overall approach.

Discussion

Some of the changes introduced to the treebank data improve performance
only in conjunction with others, such as the cluster of transformations de-
scribed in line 5 of Table 6.10. These transformations include adding and
percolating grammatical functions in conjunction with rule binarization.

15This adverse effect on recall is clearly due to the modest size of the training data and
should be alleviated as more training data are added.
18Distribution of errors is given only for tagged tokens.
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NCX.apf NCX.apf

ART.apf ADJX.apf  NN.apf ART.apf NCX.apf

die ADJA&pf Konventionen die ADJXapf NCXapf

gangigen  Konventionen

Figure 6.4: An original and a binarized structure of an NP

When introduced independently of the others, any of these three changes
turn out to deteriorate performance. The introduction of grammatical func-
tions on the nodes aims at capturing clausal structure regularities. If the
grammatical function information is not passed to parent nodes, the cap-
turing of regularities is complicated. Therefore, the introduction of the
information without passing it to parent nodes leads to the effect opposite
to the desired. The percolation of the information, however, results in a
significant expansion of the rule set. To alleviate the arising data sparse-
ness problem, binarization of the rules is required. The union of the three
changes yields an improvement in performance and reduces the number of
unparsed sentences.

The binarization of tree structure decreases performance unless it is ac-
companied by the expansion of the rule set. The reason for this lies in the
nature of the operation: it is oriented onto reducing the data sparseness
problem and is not based on linguistic intuitions. Often this transformation
leads to the creation of ungrammatical syntactic structures. Consider, for
example, an original and a binarized structure of the same noun phrase pre-
sented in (6.4). Table 6.13 lists rules used in the derivation of the binarized
structure. This set of rules authorizes the ungrammatical structuring of NPs
with more than one article.

To avoid such problems, only clausal nodes but not phrasal nodes are
binarized in the experiments with LoPar. This is justified from the point of
view of how enriching node labels with grammatical function and morpho-
logical information influences the size of the rule sets for clausal and phrasal
categories. The number of rules used in the derivation of the phrases in
the treebank does not increase significantly when morphological informa-
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NCX.apf — ART.apf NCX.apf
NCX.apf — ADJX.apf NCX.apf
ADJX.apf - ADJA.apf
NCX.apf — NN.apf

Table 6.13: Rules used in the derivation of the binarized structure in Fig-
ure 6.4

tion is introduced to the nodes. This is due to the fact that daughters in a
phrase agree in their morphological characteristics, and therefore, the vari-
ety of possible morphological values for the nodes in a phrase is restricted
to those that are incorporated on other nodes in the phrase. Consider, for
example, an original NP structure in Figure 6.4. Given noiseless training
data, the rule “NCX -> ART.apf ADJX NN.apf” will have only one equiva-
lent, “NCX.apf -> ART.apf ADJX.apf NN.apf”, after enriching NCX and
ADJX nodes with morphological information.

Clausal nodes are different in this regard. Consider a rule “SIMPX ->
NCX VVFIN NCX” which sanctions the derivation of many clauses with dif-
ferent case values of noun phrases. Some of such clauses are presented in
(59)-(63):

(59) Er  ist mein Bruder.
henom is mynem brother,om

(60) Mein Bruder hat viele  Kinder.
mMYnem brother,,, has many,.. childreng,.,

(61) Viele Kinder  hat mein Bruder.

manygee childreng.. has my, ., brother,m,

(62) Mein Bruder hilft mir.
mypom brother,q, helps megq;

(63) Mir hilft mein Bruder.
megq; helps my,,o,, brother,, .,

The enrichment of the NCX nodes with morphological and grammatical
function information will result in several rules instead of one. Therefore,
binarization of clausal nodes is necessary.

Apart from the transformations described above, other transformations
on the treebank data have been tested in the experiments. Error analysis has
shown that the tagger often marks arguments of copula verbs as nominative
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and accusative objects, which suggests that the tagger has not been able to
detect prototypicality of two nominative arguments for such verbs. To facili-
tate the capture of this regularity, a grammatical function Pred standing for
predicative object and a marker Cop for copula verbs have been introduced
to the tree structures and percolated to parent nodes. However, neither
together, nor separately, did these transformations manage to improve per-
formance. This could be due to the fact that such constructions rarely occur
in the data as compared to the constructions with two arguments bearing
different case value. Other experiments have shown that introduction and
percolation of information which is comparatively rare in the data, such as
grammatical functions dative and genitive objects tend to lead to a decrease
in performance.

No improvement has been obtained by marking non-finite verbs in the
same manner as finite verbs, as well as by percolating morphological infor-
mation on VC nodes and passing VC marker to parent nodes. Apparently,
this indicates that the morpho-syntactic values of tokens are rather inde-
pendent of the information contained in the verbal complex of a clause.

6.3 Comparison of the rule-based and statistical
models

The experiments described in the previous sections have demonstrated the
successful application of rule-based and statistical taggers to the task of
morpho-syntactic annotation of German.

The rule-based tagger significantly reduces the number of analyses of
tokens and provides a high accuracy of annotation: 70% of all tokens re-
ceive a single analysis and in 97.62% of cases the analysis is correct. The
statistical models provide full disambiguation of tokens. The PCFG model
achieves precision that is 4.8% higher than the best result reported in the
literature for the morpho-syntactic tagging of German, which corresponds
to a substantial error rate reduction of 31.37%.

Comparison of the error analysis of the taggers suggests that the rule-
based model performs better on morphological disambiguation: the per-
centage of errors made by it in morphological features is rather small as
compared to the same statistics for the statistical model.

The main difference in the performance of the rule-based and the statis-
tical models concerns, however, the ambiguity of tokens after model appli-
cation. While the statistical models resolve the ambiguity completely, the
rule-based model allows for multiple analyses in the output. This suggests
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different application of the models in tasks which require morphological dis-
ambiguation. If a unique analysis for every word in the input is required,
then the PCFG or TnT model will be more appropriate. However, the more
cautious rule-based model will be preferable if partially ambiguous input
is acceptable which can be further disambiguated by subsequent processing
modules.

The powers of the rule-based and the statistical models can be combined
in a uniform hybrid tagging system in line with ideas of Hajic et al. (2001).
Design and implementation of a hybrid tagging system with a rule-based
and a PCFG components is described below.

6.4 Combined model

6.4.1 Architecture

The model has a layered and sequential architecture consisting of morpholog-
ical analysis, rule-based disambiguation and statistical tagging. The order of
these modules reflects the relative strengths of the rule-based and statistical
methods involved.

The morphological analyzer provides all of the possible analyses for a
given sequence of tokens. This highly ambiguous output is then fed to the
rule-based module. Its task is to reduce the number of candidate analyses
to be considered by the statistical module. If used cautiously, the rule-
based method will rule out only those candidates for which it has sufficient
evidence and will retain all those that are contextually plausible. The task of
the statistical module is to disambiguate the remaining cases of ambiguity.
Statistical disambiguation is made considerably easier by the rule-based pre-
filtering module, since the remaining set of hypotheses is greatly reduced.
This reduction in search space corresponds to a gain in precision compared
to purely statistical disambiguation.

6.4.2 Implementation

Two experiments have been performed with the combined model. In the
first experiment all analyses left after application of the rule-based module
are provided as input to the statistical module. The search space of the
statistical module is thus restricted to the readings that the rule-based com-
ponent considers grammatical. In the case where there is a single analysis
for a token available, it remains unchanged. The main advantage of such a
strategy is the elimination of ungrammatical readings prior to probabilistic
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processing. This helps to avoid errors made in cases that are traditionally
hard for statistical models and are comparatively easy for rule-based ap-
proaches (such as long distance dependencies among tags). The drawback
of the strategy, however, consists in carrying all the errors of the rule-based
component into the final model performance, which mainly concerns un-
known words: the rule-based module will produce an error if the lexicon or
the guesser of the morphological analyzer provides a set of hypotheses that
does not include the correct analysis.

In the second experiment the input to the statistical model was limited to
the categories that are most reliably tagged by the rule-based module. This
provides the intended division of labor between the two modules according
to their strengths: the rule-based component eliminates analyses in sure
cases and performs disambiguation based on long-distance relations, whereas
the statistical module resolves the remaining ambiguity and assigns tags to
unknown tokens.

The input to the statistical model in the second experiment was prepared
in the following way: all unambiguous analyses produced by the rule-based
module are included in the input, except for the analyses of predicative
adjectives (the morphological analyzer often mistakens them for adverbs), of
imperative verbs (these are often erroneous analyses that are actually foreign
material), and of proper nouns without morphology. In addition, all analyses
that have unambiguous POS readings of article, attributive adjective, finite
verb, demonstrative, relative or personal pronoun are included in the input
for the statistical module, since these parts of speech in most cases are
tagged correctly by the rule-based module and since resolution of remaining
morphological ambiguity for them does not usually constitute a problem for
the statistical module. Due to the unreliable treatment of unknown words
by the rule-based component, the statistical module is used as its own pre-
processor to identify the categories that most often correspond to unknown
words. These categories include foreign material (FM), special symbols (XY)
and pronominal adverbs (PROP). The tags for these categories are then
included into the input to the combined model, replacing the analyses of
the rule-based module.

In both experiments, after application of the statistical module, tokens
of unparsed sentences are provided with (possibly ambiguous) analyses as-
signed by the rule-based module.
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data | input preci- recall F-mea- | no tag | LE RBE SE
sion sure

50k | full 90.05% | 80.68% | 85.11% | 10.40% | 0% 32.33% | 67.67%
partial | 89.49% | 81.58% | 85.35% | 8.84% | 6.88% | 16.50% | 76.62%

100k | full 90.13% | 84.75% | 87.36% | 6.03% | 0% 42.37% | 57.63%
partial | 90.47% | 86.52% | 88.45% | 4.45% | 8.99% | 17.87% | 73.14%

150k | full 89.53% | 86.93% | 88.21% | 2.90% | 0% 45.76% | 54.24%
partial | 90.60% | 88.54% | 89.56% | 2.27% | 11.78% | 18.05% | 70.17%

Table 6.14: Evaluation of the combined model

6.4.3 Evaluation

Table 6.14 presents the performance of the combined model. The first line
demonstrates the performance of the model that takes the full input from
the rule-based module. The second line provides statistics for the model
that takes a partial input of the most reliable categories from the rule-based
component. To reflect the impact of the errors by the rule-based component
on the error rate of the model, the disambiguation errors are split into errors
of the rule-based module (RBE; column 7) and errors of the statistical mo-
dule (SE; column 8). Table 6.15 demonstrates the distribution of errors
among the morpho-syntactic features.

€rTors ‘ POS ‘ case ‘ number ‘ gender ‘ person ‘ tense ‘ mood
SE 24.07% | 43.33% | 0.74% | 9.81% | 0.37% | 0.18% | 1.11%
RBE | 43.42% | 21.00% | 1.78% | 2.13% | 0.71% | 5.34% | 0.00%
all 30.69% | 35.69% | 1.10% | 7.18% | 0.49% | 1.95% | 0.73%

Table 6.15: Error analysis for the combined model with full input

The combined model achieves an accuracy of 90.60%, beating the pure
PCFG model by 1.12%. Although the final result of the model is lower than
the state-of-the-art results for morpho-syntactic tagging of other inflectional
languages, such as Czech, Romanian or Hungarian, it is worth noting that
the amount of data provided for the model is rather small in comparison to
the size of training sets in the experiments with other languages (consider,
for example, the training data of 1.8M tokens used by Haji¢ et al. (2001) as
compared to 50-150K of tokens used for the training of the current model).
Moreover, the German language represents a particularly challenging prob-
lem for morpho-syntactic annotation due to its morphological characteris-
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tics, such as high ambiguity rate and paradigm-dependent case syncretism.
The size of the tagset used in the experiments also exceeds the size of tagsets
reported for other languages. The fact that the model performs successfully
when trained on restricted amount of German data highlights the feasibility
and applicability of the overall approach.

6.5 Conclusion

This chapter has described the application of two different methods, a rule-
based method and a statistical method, to the morpho-syntactic annotation
of German. The methods have been chosen that provide the optimal trade-
off between the amount of pre-tagged data required for implementation of a
method-based model and the accuracy of annotation yielded by the model.

The implementation of two models based on these methods has been
presented and the performance of the models has been evaluated. It has
been shown that the rule-based model designed as a morpho-syntactic dis-
ambiguation module of the Xerox Incremental Deep Parsing System achieves
a high accuracy of annotation and successfully reduces data ambiguity.

Experiments with statistical models have demonstrated the limitations
of n-gram taggers to the task and a suitable alternative has been presented
as a PCFG-based tagger. It has been shown how the performance of the
PCFG model can be drastically improved by systematic transformations of
the training data. The PCFG model has been successfully trained on a
small amount of data and achieved results which outperform the current
state-of-the-art results for the morpho-syntactic tagging of German.

Finally, a combined model with a rule-based and a PCFG modules has
been presented. The model profits from the strengths of the methods in-
volved and demonstrates performance exceeding the performance of the
modules used independently.
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Chapter 7

Application in dependency
parsing

7.1 Motivation

The current chapter presents a dependency parser of the GeRman Incre-
mental Parsing system (GRIP), a major project on the analysis of German.

One of the main distinctions of the GRIP parser from other German
parsers described in the literature concerns the kinds of information which
provide a basis for the analysis. Most standard dependency parsing models
rely in a significant way on subcategorization information, such as verbal
subcategorization frames, in the parsing process. Thus, the three Ger-
man parsers described in Chapter 3, i.e. Topological Dependency Gram-
mar, Weighted Constraint Dependency Grammar and Concurrent Lexical-
ized Dependency Parser, incorporate such information in the lexical entries
of tokens and employ valency constraints to ensure the correct assignment
of arguments to verbs. Subcategorization information significantly simpli-
fies the parsing task, since necessary clues about obligatory and possible
dependency relations of tokens are provided to the parser. However, such
information needs to be collected and included in the parser lexicon, which
is time and labor consuming.

In the GRIP parser, on the other hand, such complex external knowledge
is reduced to a minimum and the main information source on which the pars-
ing process is based is represented by the morpho-syntactic characteristics
of tokens and by the linear order of tokens in a sentence. Development of
such a parser aims at demonstrating that high parsing performance does not
necessarily involve the incorporation of a rich lexicon into the grammar and
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Hat Beckmeyer als BLG-Aufsichtsratsvorsitzender nur BLG-Interessen verteidigt ?
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Figure 7.1: Analysis provided by the GRIP parser

that state-of-the-art results can be achieved if a reliable morpho-syntactic
tagger is used as a pre-processor of the parser.

7.2 Introduction

The GRIP parser is a robust deterministic parser implemented in the XIP
system described in Chapter 4 above. The parser is a part of the GRIP
system and is composed of two modules — a chunker, which provides shal-
low constituency analysis for German sentences, and a dependency module,
which establishes dependency relations between tokens in the input.

The ultimate goal of the parser is the assignment of dependency struc-
tures to German sentences. In the current version, the parser concentrates
on the annotation of the frame of a sentence: the parser identifies the main
element of the sentence and its arguments, i.e. a verbal group and its com-
plements. Figure 7.1 exemplifies kind of analysis provided by the parser.

Constituency analysis plays a supporting role in the dependency analysis.
By grouping lexical tokens in phrases, it pre-defines the possible domains
of dependencies, which significantly simplifies the process of dependency
assignment. Thus, for example, a direct object relation can possibly be
established between any verb and any noun in accusative case. With a
preprocessing constituency analysis which identifies phrases and topological
fields, the search space is easily restricted to the heads of nominal phrases
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in the initial and the middle fields relevant for the verb. This excludes from
consideration all nouns in other clauses, nouns occurring in prepositional
and adjectival phrases and non-head nouns in nominal phrases.

The general annotation scheme provided by the parser follows the princi-
ples adopted for annotation of the Tiiba-D/Z treebank. Minor modifications
introduced to the treebank scheme are discussed in the relevant sections.

7.3 Constituency analysis

7.3.1 Constituents inventory of GRIP

The output structures of the chunker are based on the TuBa-D/Z tree-
bank structures. However, the purpose of the chunker (providing a basis
for the dependency module) has determined systematic changes to the orig-
inal treebank style of annotation. The changes have lead to a more shallow
annotation.

Table 7.1 lists phrasal and topological field constituents annotated by
the chunker. Both the GRIP and the corresponding Tiiba-D/Z constituency
labels are given, as well as a short description of the constituency.

GRIP Tiiba-D/Z description

NP NCX non-recursive noun phrase

PP PX prepositional phrase

AP ADJX adjectival phrase

VF VF initial field

LK LK left sentence bracket

MF MF middle field

VC Ve verb complex

NF NF final field

CF C complementizer field

KOORD  KOORD field for coordinating particles
PARORD PARORD field for non-coordinating particles

Table 7.1: Constituents annotated by the GRIP parser

Some of the phrasal nodes present in the treebank represent an inter-
mediate layer of syntactic structure which makes dependency assignment
more complicated. To prevent this complication, the following nodes are
not annotated in the chunking module:
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e phrasal nodes: ADVX, FX, VXFIN, VXINF;
e coordinated fields: FKONJ, FKOORD;

e others: DM, DP, EN, EN-ADD, LV.

Moreover, the chunker is not oriented to the annotation of deep struc-
tures and leaves this task for the dependency module of the grammar. Rele-
vant nodes of the treebank which include NX, R-SIMPX, SIMPX are ignored
at this stage. Furthermore, the treebank style does not make a distinction
between prepositional chunks and prepositional phrases (both are annotated
as PX). The chunker annotates only prepositional chunks, i.e. it leaves out
annotation of recursive prepositional phrases.

A virtual root node TOP is added to every GRIP analysis automatically.
Other auxiliary nodes have been introduced in the chunker analysis to sim-
plify the process of annotation. Such nodes are used for the combination
of tokens under the same part-of-speech category, such as the grouping of
tokens “jede, (, r, )’ under a single node “jede(r)” with a label PRON, or the
grouping of adjacent cardinal tokens under the same node with a label CARD,
which is useful for the identification of telephone numbers. The annotation
of auxiliary nodes also serves for the correction of a part-of-speech tag as-
signed in the input, as it is done, for example, in the case of a shortened form
“ne” of the article “eine”, which receives a wrong analysis. The auxiliary
nodes include ADJ, ADV, CARD, DET, FM, NOUN, PRON, VERB and a node
for a subordinate clause SCL.

Figure 7.2 illustrates a tree annotated in the chunker style as compared
to the treebank annotation style in Figure 7.3.

7.3.2 GRIP chunking rules

GRIP chunking rules represent constraints on part-of-speech categories of
the tokens, on limited lexical information and on a linear order of tokens
in the input string. The rules identify a set of nodes to be combined under
the same mother node and specify a context in which the creation of such
new structure is valid. The context can extend as far as sentence boundaries
but in practice is usually limited to a small window of adjacent tokens. The
application of rules is deterministic: once a node has been created, it is not
reconsidered on the later stages of analysis.
The chunking grammar consists of the following components:

!For expository purposes, the tree in Figure 7.3 leaves out argument function informa-
tion which is annotated in the treebank on edge labels.
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Figure 7.2: A tree annotated in GRIP
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Hat Beckmeyer als BLG-Aufsichtsratsvorsitzender nur BLG-Interessen verteidigt ?

Figure 7.3: A Tiiba-D/Z counterpart of the GRIP tree in Figure 7.2
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e 3 preprocessing component,
e a component for annotation of phrasal nodes, and

e a component for annotation of topological fields.

The preprocessing component is used for the correction of POS cate-
gories of input tokens, for grouping tokens under a common mother node
with an appropriate POS category and for the preliminary structuring of set
phrases into phrasal nodes. An example rule (64) of the preprocessing com-
ponent is designed for identification of nouns which include a truncated part
in parentheses, such as “(Musik-)Geschichte” (“history (of music)”). Using
features first and last, the rule specifies the first and the last elements of
the node sequence to which it applies. Additionally, a linear order of inter-
mediate elements is determined, which restricts the area of rule application
to sequences in which a truncated element precedes a right parenthesis. If
the constraints on the order of tokens are satisfied, the tokens are combined
under a common mother node with the category NOUN.

(64) noun -> punct[lpar,first], trunc#1, punct#2[rpar|, noun(last], where
(#1<#2).

The proper chunking is performed by the component for annotation of
phrasal nodes. The component consists of constraint rules for the annota-
tion of adjectival phrases, noun phrases and prepositional phrases. Apart
from annotation of simple phrases consisting of standard elements, such as
a prepositional phrase “in einer internen Kontrolle” (“in an internal con-
trol”), the chunker provides annotation of recursive phrases, such as a phrase
presented in example (65):

(65) in der am vergangenen Montag abgesegneten rot-griinen
’in the on last Monday approved red-green
Neufassung
new version”

in the red-green version approved last Monday

The annotation of recursive phrases is ensured by the repetitive state-
ment of rules.

Additionally, complex adjectival phrases with prepositional phrase mod-
ification, such as the phrase “rechtzeitig zum Muttertag” (“in time for the
Mother’s Day”), are annotated by the chunker if the context provides enough
evidence for an unambiguous analysis. Thus, since only one phrase can occur
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in the initial field position, a complex adjectival phrase with prepositional
phrase modification is annotated in the example sentence (66):

(66) Rechtzeitig zum  Muttertag ~ kommen am  Wochenende
'in time for the Mother’s Day come on the weekend
Rosen mit dem neuen Label “Aus menschen- und
roses with the new label “from people- and
umweltschonender Produktion” in  deutsche Blumenliden.
environment caring production” into German flower shops’

In time for the Mother’s Day, roses with the new label “From produc-
tion which takes care about people and environment” come to German
flower shops during the weekend.

Example (67) provides rules that ensure the correct annotation of com-
plex adjectival phrases with prepositional phrase modification in the initial
field position. The rules refer to the node sequence of an adjectival phrase,
a prepositional phrase and optional adverbs and commas. These nodes are
combined together under an AP label if they are followed by a finite verb or
by a sentence-final punctuation and if they are preceded by a sentence-final
punctuation, by a hyphen or by a sentence-initial quotation mark. Another
possibility for the left context represents beginning of a sentence.

(67) AP -> || adv*, AP, PP, punct*[comma] |(punct[skip]), verb[fin];
punct[sent]|.
AP ->  |punct[skip,start]; punct[sent]; punct[spec]| adv*, AP, PP,
punct*[commal] |(punct[skip]), verb[fin]; punct[sent]].

After the application of the phrasal nodes annotation rules, an input
string receives an analysis which includes marking of adjectival phrases,
noun phrases and prepositional phrases. The following component provides
further annotation of the string in terms of topological field categories. The
fields are annotated in the following order: CF, VC, LK, KOORD, PARORD,
NF, VF, MF. This order simplifies the process of annotation, since identi-
fication of consequent fields can rely on previously annotated categories.
For example, in complicated cases, the correct assignment of verbal com-
plexes requires reference to a complementizer field. The annotation of the
left bracket of a sentence (LK) is considerably simplified if verbal complexes
have already been recognized: in this case, all finite verbs which have not
been assigned a VC mother node receive a left bracket analysis.

After the first round of the annotation of topological fields, subordinate
clauses SCL are recognized as sequences of topological fields. The linear
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order of topological fields in a clause is fixed. This characteristic makes
sequence rules of the XIP system particularly well suited for the task of
clause annotation, since the rules explicitly identify a linear order of elements
to be grouped together. Example (68) illustrates a kind of sequence rules
for the annotation of subordinate clauses. The rule is designed for the
annotation of subordinate clauses with the coordination of verbal complexes.

(68) SCL @= CF, (MF), (conj[neben]), (CF), (MF), (punct[skip]), VC,
punct[commal, (MF), VC, punct[commal, (MF), VC,
conj[neben], (adv[fauch]), (MF), VC, (punct[comma]), NF.

The annotation of subordinate clauses allows for the easier recognition
of recursive topological fields, such as final fields which are represented by a
clause, or middle fields with an embedded clause. The repetitive application
of rules guarantees the correct annotation of recursive topological fields.

In total, GRIP constituency module comprises 1328 rules, which include
77 preprocessing rules, 464 rules for the annotation of phrasal nodes and
787 rules for the annotation of topological fields and subordinate clauses.

7.3.3 Evaluation

The performance of the GRIP chunker has been evaluated against the tree-
bank data. A gold standard file in a bracketed format has been generated
from the tree structures of the treebank. To bring the treebank and chun-
ker structures into the same format for evaluation purposes, the following
changes to the gold standard and the test file have been made:

1. Sentence-internal punctuation (i.e. " , ( ) - ?) has been deleted
from both gold and test files.

In the treebank all the punctuation is attached to the root node.
Bracketed format of the chunker output does not allow to follow this
style - in the chunker output the punctuation is attached to the rele-
vant phrasal nodes. To make the comparison possible, the sentence-
internal punctuation is deleted.

2. Systematic treebank transformations have been performed:
e Nodes that are not present either in the treebank or the chunker

output format have been deleted (for the list of such non-shared
nodes see discussion above);

134



NX A\

165.000 Mark aus der bundesweiten Geldsammlung fUr die Flutopfer in SUdpolen

Figure 7.4: Treebank annotation with recursive prepositional phrases

e Prepositional phrases have been split to prepositional chunks (see
Figures 7.4 and 7.5 for illustration).

3. Treebank categories have been renamed as shown in Table 7.2:

ADJX -> AP
C -> CF
ENX -> NP
NCX -> NP
PX -> PP

Table 7.2: Renaming of Tiiba-D/Z constituents for the evaluation

The test data used in the evaluation of the chunker comprises 12 020
tokens.? The average sentence length in the data set is 14.9 tokens per

2This test data set differs from the test data sets used in the experiments with the
morpho-syntactic tagging described in Chapter 7, since part of the tagging test data has
been seen during the development of the GRIP chunker. The new test data set for the
evaluation of the GRIP system has therefore been compiled from the largest test data set
used in the tagging experience by eliminating those sentences that have been seen during
development of the GRIP system.
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Figure 7.5: Flattening of the treebank recursive prepositional phrases

sentence.

The evaluation of the chunker performance is based on the phrase bound-
aries. Metrics of precision, recall and f-measure, both labeled and unlabeled,
have been used. For labeled metrics, not only correct spanning of a con-
stituent is required, but also a correct labeling of the constituent.

#matched brackets

Labeled) Precision =
(Labeled) Precision #brackets in test data

#matched brackets

L =
(Labeled) Recall #brackets in gold data

2 x Precision * Recall

F — measure =
Precision + Recall

Table 7.3 presents results of the experiments with the chunker when part-
of-speech tags are provided in the input. The table additionally provides an
average number of constituents in gold and test data (first two columns,
Brackets gold and test).

Brackets Labeled Unlabeled
gold test ‘ Recall Prec. F-meas. ‘ Recall Prec. F-meas.
139 13.6 [ 9531  96.43 9587 | 95.71  96.78 96.24

Table 7.3: Evaluation of the GRIP chunker
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7.3.4 Error analysis

The most common types of errors made by the chunker can be grouped
under four categories:

e clause boundaries errors;
e coordination errors;
e errors due to complex sentence structures;

e errors due to conscious differences in annotation style.

The first type of errors concerns erroneous annotation of topological
fields. After a complementizer field CF and sentence brackets LK and VC are
annotated, other topological fields are recognized as sequences of nodes be-
tween the brackets. Thus, the initial field is found between the initial clause
boundary and the left bracket, the middle field is limited to nodes between
(a) a complementizer field or a left sentence bracket and (b) a verbal complex
or a final clause boundary, and the final field usually represents a sequence
of nodes after the verbal complex. However, embedded clauses considerably
complicate the annotation of fields. If a sentence contains coordination, it
is often difficult to state without reference to the meaning of a sentence,
whether a verbal complex belongs to the embedded clause or to the main
clause, as in the case of sentence (69):

(69) Schlieflich kann jeder Mittelstufenschiiller —des  ortlichen

"finally can every middle school student theye, localge,
Vorstadtgymnasiums nachfithlen, da abhingen, sein Ding
suburbge, gymnasiumg,,, feel, that to hang out, his thing
durchziehen, kiffen, Autos, Anlagen und Computer zu
to do, to smoke pot, card, investments and computer to
besitzen und sich ab und zu mal zu verknallen
own and oneself now and then to fall in love the
die Sache mit der Pubertat ein  wenig leichter macht.
matter with the puberty a little easier makes’
Finally, every middle school student can feel that hanging out, doing
one’s own thing, smoking pot, owning cars, investments and comput-
ers and falling in love every now and then makes the matter with the
puberty a little easier.
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Moreover, when several clauses follow each other in a sentence, the final
field of a clause can be confused with the initial field of a following clause.
A failure to identify clause boundaries leads to erroneous analysis of several
fields, and ultimately results in additional wrong annotation of dependencies.

The second type of errors concerns coordination constructions. The
errors arise if possible structural ambiguity prevents a chunker from grouping
nodes correctly. Such errors are specific for phrasal nodes. An example
of such an error is an error in the annotation of a prepositional phrase
in example (70). The prepositional phrase spans for all the tokens in the
example. However, a chunker has erroneously analyzed only first four tokens
as a prepositional phrase and has not included last two NPs in the structure.

(70) mit seinen skurrilen Gestalten, grandiosen Gesichtern und
'with his  bizarre shapes, terrific faces and
unbezahlbarem Witz
invaluable wit’

Errors of the third type arise in sentences with a complex structure
and/or unusual phenomena. Texts of a newspaper style contain many sen-
tences with heavily embedded clauses, parenthetical constructions, unex-
pected punctuation and other phenomena difficult for automatic processing.
An example of such a complicated sentence is presented in (71):

(71) Die halbe Hundertschaft  deutscher Talkmaster — doch, doch,
"The half group of hundred Germang,, Talkmaster — yes, yes,
so viele gibt es wirklich! — hatte der Diplomand von der Kolner
so many gives it really! —had the graduand from the Cologne
Kunsthochschule fiir Medien angeschrieben, damit sie fiir ihn
art college for media written down, so that they for him
und seine Abschlularbeit vor  laufender Kamera letztlich
and his final paper before working camera ultimately
nichts anderes tun als in einer gewohnlichen Talkshow: dasitzen
nothing else do than in a usual Talkshow: sit
eben, sich rauspern, vielleicht ein Schliickchen Wein  trinken
evenly, hem, perhaps a sip wineg,, drink
usw. — nur dafl sie dabei, so Wilkes’ Einfall, kein Wort reden
etc. — only that they there, so Wilkes’ idea, no word to say
sollten.
should.’
The graduand from the Cologne art college for media had written
down half a hundred of German talkmasters — yes, yes, there are so
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many indeed! — so that they ultimately do nothing else for him and
his final paper in front of a camera than in a usual talk-show: sit
evenly, hem, perhaps drink a sip of wine etc. — only that they should
not, according to Wilkes’ idea, say a single word.

The last type of errors include errors which are due to conscious dis-
crepancies of the annotation style of the chunker and the treebank. They
mainly concern treatment of nodes that are unattached in the treebank, such
as discourse markers of the kind presented in Figure 7.6. The bracketed for-
mat of the GRIP output does not allow for unattached nodes. Therefore,
a discourse marker is included in the structure of the sentence. Such dis-
crepancies between the annotation styles lead to a decreased number in the
evaluation.

In Serbien
$( APPR NE $( $,

d dsn - - 3sis nsm - - 3pis - npm

werden auch Chemiearbeiter umgebracht

$, $( VAFIN ADV NN VVPP 3.

Figure 7.6: A TiBa-D/Z segmentation unit with a discourse marker

(72) “In Serbien”, sagt einer, “werden auch Chemiearbeiter
“in Serbia”, says somebody, “get also chemical workers
umgebracht.”
murdered”

“In Serbia”, somebody says, “chemical workers are also murdered”.’

7.4 Dependency assignment

7.4.1 Dependency inventory of GRIP

The dependency inventory and the principles of dependency assignment of
the parser are based on the annotation scheme of the Tiiba-D/Z treebank.
Table 7.4 lists dependency relations currently annotated by the parser. The
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first column represents the name of the dependency assigned by the parser,
the second column provides the corresponding name of the dependency in
the treebank and the last column contains a description of the dependency.

GRIP Tiiba-D/Z description

SUBJ oN subject

DOBJ 0A direct object

0D 0D indirect (dative) object
0G 0G genitive object

0s 0s sentential object

ov ov verbal object

PRED PRED predicative object

VPT VPT separable verbal particle

Table 7.4: Dependency relations annotated by the GRIP parser

The first three dependencies in the table correspond to the classical de-
pendencies of subject, direct object and indirect object. Subject relation
includes the expletive subject “es” as in (73) and sentential subject as in

(74):

(73)

(74)

Es regnet.
Tt rains.’

Dafl die Ordnungsmuster ein wenig durcheinandergeraten sind, ist
That the order samples a bit mixed up are, is
heute Standard.
today standard.

The sentential object, as in (75), represents a dependency distinct from
the direct object and is marked with the label 0S:

(75)

Ob die Bomben tatsichlich etwas bewirken, weify ich
Whether the bombs actually  something bring, know I
nicht.

not.

"Whether the bombs actually bring something, I don’t know.’

If a dependency relation involves a sentence, as in sentential subject and
object relations, the dependency is established between the main element of
a sentence and its governor. Thus, in sentence (74), a relation is established
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between the verbs “sind” and “ist”. In sentence (75), a relation connects
the verbs “bewirken” and “weiff”.

Genitive object relations marks a dependency between a verb and its
object in the genitive case, such as “eines Nachtrags bedirfen” (“to require
an addition”).

Verbal object dependency is established between the elements in a verbal
chain, as, for example, between the verbs “werden” and “soll” and between
the verbs “gemacht” and “werden” in sentence (76):

(76) Durch eine Spezialschiene soll ~ sein Mitwirken doch  noch
through a  special splint should his participation however still
moglich gemacht werden.
possible made  become.

"His participation should however be made possible through by the
use of a special splint.’

With predicative object relations, verbs and their predicates are con-
nected:

(77) Das Altenheim sei “ein Prestigeobjekt von ihr und
The retirement home be “a  object of prestige of hers and
anderen”.
others

‘The retirement home is claimed to be an object of prestige of hers
and others.’

A dependency marked as separable verbal particle is established between
two parts of a separable verb:

(78) Und die Méanner machen mit.
And the men take part.

Additionally, the GRIP analysis identifies the root of the dependency
tree and marks it with label ROOT.

7.4.2 Decisions

In the treebank, dependency relations are encoded indirectly in a form of
argument functions assigned to nodes. For example, a subject relation be-
tween the finite verb “missen” and the noun “Anbieter” in the sentence
“Private Anbieter mussen der Telekom Schadenersatz bezahlen” pictured in
Figure 7.7 is identified as an edge label ON above the noun phrase node
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Figure 7.7: An example TtuBa-D/Z tree

“Private Anbieter”. A governor of the constituent can be found with a
heuristic that searches for a head sister of the constituent and extracts the
lexical head of the head sister as a governor of the constituent in question.
However, in the case of non-headed constructions, such as a sentence or a
coordination phrase, the treebank style of annotation leaves a choice as to
the establishment of a dependency relation.

In the case of sentential nodes, the question arises about the possible
attachment of verbal arguments, the alternatives being a finite verb and a
main verb. According to the GRIP style of annotation, subjects and verbal
objects are assigned to the finite verb of a sentence, whereas all the other
verbal arguments are attached to the main verb. This decision is guided by
the following reasons: since morphological relation (expressed in agreement
of features) connects the finite verb and a subject, it is sensible to establish
a syntactic relation between these two elements as well. However, it is the
main verb rather than the auxiliary verb that subcategorizes for the nominal
arguments. Therefore, all other arguments are assigned to the main verb.
In general, a verbal group (a main verb together with an auxiliary) can
be seen as a nucleus, since it contains both a semantic and a syntactic
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Private Anbieter mussen der Telekom Schadenersatz bezahlen

Figure 7.8: A dependency structure for the tree in Figure 7.7

center. Thus, all the arguments in the sentence, such as subject, direct and
indirect objects, etc., can be treated as dependent on the verbal nucleus but
attached to different parts of the nucleus in the output of the parser due to
morphological reasons.

For illustration purposes, a dependency structure of the “Private Anbi-
eter missen der Telekom Schadenersatz bezahlen” is presented in Figure 7.8.

Another case in which a decision had to be made externally of the tree-
bank annotation style concerns the treatment of coordinate structures. Since
in the treebank such structures do not have a head, in this case the mapping
of a constituency tree into a dependency structure is not straightforward.
Following Hudson (1990), the GRIP system treats a coordinate structure as
a “word string”, i.e. as a syntactic unit without an internal head-modifier dis-
tinction. To reflect the decision in a dependency annotation, each conjunct
of the structure is connected to the governor of the coordinate structure. In
the same manner, a modifier of the coordinate structure holds a dependency
relation to each conjunct of the construction. The conjunction is attached
to the last conjunct of the construction.

Figures 7.9 and 7.10 illustrate the treatment of coordinate structures in
the treebank and the GRIP system, correspondingly.

The last deviation of the GRIP annotation style from the treebank style
concerns the orientation of dependency in prepositional phrases. According
to the Tuba-D/Z style, the head of a prepositional phrase is a noun. The
GRIP system adopts a different view and marks the preposition as the head
of a phrase.
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Figure 7.9: A TiBa-D/Z tree with coordination

Siemens und debis kamen schlieBlich in die engere

Wahl
NN

asf

Wahl

Figure 7.10: A dependency structure for the tree in Figure 7.9
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7.4.3 GRIP dependency rules

The GRIP dependency module assumes a pre-chunked input in the bra-
cketed format, as provided by the GRIP chunker. Nodes in the input are
associated with relevant (possibly ambiguous) morphological and categorial
information. Dependency annotation also relies on restricted information
contained in the GRIP lexicon: when appropriate, the lexicon assigns one
or more of the features listed in Table 7.5 to high frequency verbs:

Feature Example

ditransitive fragen (“to ask”)

with genitive object bediirfen (“to require”)

reflexive sich bedienen (“to help oneself”)
separable aussehen (“to look”)
performative berichten (“to report”)

with predicative object bleiben (“to remain”)

Table 7.5: Features assigned to verbs in the GRIP lexicon

The lexicon has been compiled based on the training data and contains
approximately 150 verbs.

In the GRIP system, dependency relations are annotated sequentially,
so that annotation on later stages can rely on previously assigned dependen-
cies. Apart from the set of dependency relations listed in Table 7.4 above,
the auxiliary dependencies APP for apposition and KONJ for conjunction are
assigned by the parser. The order of dependency annotation is the following:
ROOT, APP, KONJ, SUBJ, 0V, VPT, DOBJ, PRED, 0D, 0S, O0G.

In total, the dependency parser of GRIP comprises 1176 rules.

Morphological information, such as case information, represents a ne-
cessary basis for assignment of grammatical relations in German. Thus, if
a clause contains a transitive verb, and a nominative and an accusative NP,
it is safe to assume that a subject relation holds between the verb and the
nominative NP and a direct object relation holds between the verb and the
accusative NP. However, in real texts, the linkage between a case value and
a function of a token is not always straightforward. Consider, for example,
the sentence in (79):

(79) Julianne Kdhler aber ist als sture, treue Musterdeutsche
Julianne Kohler however is as stubborn, loyal model German
eine Entdeckung.

a  discovery.
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‘However, as a stubborn loyal model German, Julianne Kohler is a
discovery.’

The sentence contains three nominative NPs, but only one of them is a
subject of the verb: “Julianne Kohler”. The noun phrase “eine Entdeckung’
plays the role of a predicative object, whereas the noun phrase “als sture,
treue Musterdeutsche” is a subject modifier.

For efficient and accurate dependency assignment, the following strategy
is undertaken in the grammar: first, a dependency relation is established
between any two nodes that can be connected by the relation. At this stage,
the conditions only have reference to the following information:

e the categorial values of the nodes;
e the case value of the nodes (optionally);

e and what other nodes occur in the same clause.

For the example sentence (79), subject relations would be established
between the verb and every nominative noun.

Next, more specific constraints on the context and the feature values of
the tokens are stated in the grammar. According to these constraints, pre-
viously established dependencies can be eliminated or renamed. Thus, for
example, since the first NP in sentence (79) agrees with the verb in number,
all subject relations which involve other nominative NPs in the same sen-
tence are renamed into predicative object relations. Next, the comparative
NP “als sture, treue Musterdeutsche” is renamed from predicative object
to subject modifier, since non-comparative predicative objects are preferred
over comparative predicative objects.

Such a strategy of dividing the annotation process into two stages allows
for the minimization of the set of dependency rules involved in parsing and
for taking maximum advantage of the constraint-based nature of GRIP.

An example of a general rule which establishes relations of the first stage
is provided in (80):

(80) | VE{7*, NP{?* noun#1[acc|; pron#1[personal,refl,dat:~];
pron#1[attr:~,acc]}}, 7*[lk:~,vf:~ sent:~, paren:~ spec:~,vc:~],
LK{?* #2[verb,laux:!]} | if (~DOBJ(#1,#2) & ~OV(#3,#2))
DOBJ(#1,#2).

In the rule, a context for the rule application is described between the
pipe lines. It includes a sequence of nodes which starts with an initial
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topological field (VF) and ends with a left sentence bracket (LK). Between
these two topological fields, any number of nodes can occur, unless the nodes
bear features of topological fields LK, VF or VC, or features of either sentence-
final punctuation, or parentheses, or a hyphen. The internal structure of the
nodes VF and LK is explored and variables are assigned to the accusative head
of a noun phrase and to a non-auxiliary finite verb. Thus, constraints are
stated on the context, on the internal structure of the nodes and on features
of lexical nodes. Moreover, constraints on previously established relations
are imposed: nodes #1 (an accusative head of the NP in the initial field)
and #2 (a finite verb occurring in the left sentence bracket) are required not
to stand in a direct object relation with each other. Additionally, node #2
(a finite verb) is required not to have a verbal object. If all the constraints
are satisfied, a direct object relation is established between nodes #1 and
#2. An example sentence to which the rule would apply is provided in
(81) below. A direct object relation would be established between the noun
“Kritik” and the verb “guferten”.

(81) Kritik  &uBerten hingegen die Bremer Griinen.
Criticism expressed however the Bremen greens.

‘However, the Bremen greens expressed a criticism.’

On the following stages, more specific constraints on the context and
on other dependencies of the nodes are stated and relations violating the
constraints are deleted or renamed. Thus, a rule in (82) insures that no
node of a comparative construction participates in a direct object relation
with a verb which has another direct object.

(82) | NP{conj[comparative],?*,?#1} | if (ADOBJ(#1,#2) &
DOBJ(#3,#2)) ~.

The rule (82) explores NPs which start with a comparative conjunction.
It states that if any node inside such an NP participates in a direct object
relation with some other node which has a second direct object, then the
former direct object relation should be eliminated.

The strategy of establishing relations with general rules and the conse-
quent elimination or renaming of relations with more specific constraints is
used for the annotation of all dependencies in GRIP. Below, more details on
the dependency annotation process are given for each dependency relation
separately.
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Figure 7.11: The treebank analysis for sentence (83)

Subject

As has been shown above, not all nominative NPs have the grammatical
role of subject. Nominative NPs also serve as predicative objects (“eine
Entdeckung’ in sentence (79) above), as subject modifiers (“als sture, treue
Musterdeutsche” in sentence (79) above), and as predicative object modifiers
(“der Manager des Berliner Tabellendritten” in sentence (83)3).

(83)

Nein, ein euphorischer Mensch ist er ganz gewifl nicht, der

No, an euphoric man is he quite surely not, the
Manager des  Berliner Tabellendritten.

manager theg., Berlinge, third in the table

‘No, he is definitely not an euphoric man, the manager of the Berlin
team that placed third in the competition.’

Moreover, often apposition terms are expressed by a nominative form
regardless of the function of the apposition NP, such as in sentence (84):

(84)

Im  Rahmen des  von der Burgerschaft beschlossenen

in the frame  theg., by the township determinedges,
“Aktionsplans Alkohol” fand im  Zentralkrankenhaus Ost
“action plange, alcohol,,,,” took in the central hospital east
eine Fachtagung zum Thema “Frauen und Alkohol”  statt.

a  symposium on the topic “women,,,,, and alcohol,,,” place.
‘Within the scope of the determined by the township “Alcohol action
plan”, a symposium on the subject “Women and alcohol” took place
in the East central hospital.’

3The treebank analysis of (83) is presented in Figure 7.11.
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Figure 7.12: The treebank analysis for sentence (85)

Annotation of subject relations is further complicated by the presence of
discourse markers and constructions that are analyzed as unattached sub-
trees in the treebank, such as in sentence (85) and its corresponding treebank
analysis in Figure 7.12:

(85)

Ein ostdeutscher Ruf nach einem Ende der  Gewalt — ist
an FEastern German call for an end thege, violencege, — is
das die Tradition der = DDR-Oppositionsbewegung?

it the tradition theg., GDR opposition movementg,?

‘An Eastern German call for an end to the violence — is that the
tradition of the GDR opposition movement?’

The following constraints have been formulated on subject relations re-
gardless of the presence of competing subject relations:

e if a modifier of the subject relation occurs in a comparative construc-

tion, the relation is renamed into a predicative object relation;

if a noun phrase which contains the modifier of a subject relation
expressed by a proper noun occurs immediately after a comparative
NP, the relation is deleted;

if a noun phrase which contains the modifier of a subject relation
expressed by a proper noun is preceded by a coordinating conjunction
and a comparative NP, the relation is deleted.

Further constraints apply if a verb participates in more than one subject
relation as a head and if the modifiers of the corresponding subject relations
are not connected by a coordination or an apposition relation. Among such
constraints are:
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e if one of the modifiers is an interrogative pronoun or a quantitative
pronoun, the corresponding relation is renamed into a predicative ob-
ject relation;

e in other cases, subject relation preference is given to personal pronouns
and indefinite pronouns; other subject relations with the same head
are renamed into predicative object relations;

e in cases of remaining ambiguity, subject relation preference is given to
a relation whose modifier occurs in the leftmost position and agrees
with the head verb in number; other relations are renamed into pre-
dicative object relations.

Subject relations can additionally involve as modifiers elements which
are not marked with morphological case. Such elements include:

e foreign material: “Ein paar Running Gags werden zwar arg stra-
paziert.” (“A couple of Running Gags get seriously over-used.”);

e cardinals: “20 000 ist genug.” (“20 000 is enough.”);

e invariable pronouns: “Mehr werden es kaum.” (“There hardly will be
more.”);

e subordinate clauses: “Dafl die Ordnungsmuster ein wenig durcheinan-
dergeraten sind, ist heute Standard.” (“It is standard today that the
order samples get a bit mixed up.”)

e infinitival constructions: “Es ware wahrscheinlich leichter, den debis-
Mitarbeitern zu kiindigen.” (“To fire the debis employees would be
probably easier.”);

e prepositional phrases: “Uber 20 000 ist besser.” (“Above 20 000 is
better.”).

Annotation of relations which include invariable elements as modifiers
is pursued if no morphologically marked subject has been found for a verb.
The order in which the elements are presented above reflects preferences for
choosing an invariable element as a subject if a clause contains more than
one element of this kind: thus, invariable pronouns are preferred over subor-
dinate clauses, infinitival constructions and prepositional phrases, whereas
cardinals and foreign material tokens are preferred over invariable pronouns.
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Direct object

Accusative noun phrases are as frequent, if not more frequent, than no-
minative noun phrases in German texts. Apart from playing the role of
direct objects, accusative NPs serve as predicative objects (“als “Boule-
vardkomddien™ in sentence (86) and “vier Punkte” in sentence (87)) and
different kinds of modifiers (0S-MOD “es” in sentence (88), V-MOD “ndchste
Woche” in sentence (89)).

(86) Autor Oliver Bukowski, 1961 in Cottbus geboren, bezeichnet seine
author Oliver Bukowski, 1961 in Cottbus born,  describes his
Stiicke selbst als “Boulevardkomodien”.
pieces himself as “boulevard comedies”

‘Author Oliver Bukowski, born in Cottbus in 1961, describes his pieces
himself as “boulevard comedies”.’

(87) Der VB war nur noch vier Punkte von einem Abstiegsplatz
The V{B was only yet four points from a relegation place
entfernt.
away

“The VB was only four more points away from the relegation place.’

(88) Ich finde es gut, daB das Aktionsprogramm nun in einer breiten
I find it good, that the action program  now in a wide
Offentlichkeit diskutiert wird.
publicity discussed is.

‘I find it good, that the action program is being widely discussed now.’

(89) Die SPD wird nédchste Woche tiber das Thema beraten.
The SPD will next  week about this subject discuss.

“The SPD will discuss this subject next week.’

An established direct object relation is renamed into a predicative object
relation if a modifier of a direct object relation occurs in a comparative
construction.

Examples of contexts in which an established direct object relation is
eliminated are:

e a modifier of a direct object relation is a part of an NP which occurs
in an initial topological field after a prepositional phrase (which means
that the NP modifies the PP, since only one element can occur in the
initial field);
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e a modifier of a direct object relation has characteristics of time (such
as the words “Jahr” (“year”) or “Montag” (“Monday”)) or frequency
(such as “Mal’ (“time”));

e a modifier of a direct object relation occurs in a passive clause.

Invariable tokens such as foreign words, cardinals, invariable pronouns
and prepositional phrases can also play the role of direct objects. However,
in the case of direct objects, identification of all contexts in which a relation
with an invariable token should be established is more difficult than in the
case of subjects. To avoid over-generation, grammar rules for establishing
direct object relations with an invariable token are restricted to a small set
and apply if an invariable token occurs in the final position of an accusative
noun phrase (i.e., if it is a head of a noun phrase and if it has a preceding
accusative determiner or modifier).

Dative object

Similar to the case of subject relation and direct object relation, com-
parative dative object relations are not allowed and are deleted by grammar
constraints. Also, if a modifier of a dative object relation has characteristics
of time or frequency, such as in the case of the token “Ende April® (“at
the end of April”) in sentence (90), the relation is renamed into a verbal
modifier relation.

(90) Der 19. Zivilsenat des  Diisseldorfer
The 19th civil court of appeal they,, Diisseldorfy.,
Oberlandesgerichts befreite Ende April den

Higher Regional Courtge,, released end April the
Mannesmann-Konzern von dieser Regelung.

Mannesmann combine from this regulation

“The 19th civil court of appeals of the Higher Regional Court of
Diisseldorf released the Mannesmann combine from this regulation
at the end of April.’

The main two difficulties in the annotation of dative object relations are
illustrated by sentences (91) and (92):

(91) Endlich nun kam der Frankfurter “Guru” Berthold Kilian nach
Finally now came the Frankfurt “Guru” Berthold Kilian to
Bremen, um iber das aktuell diskutierte Thema
Bremen, in order about the currently discussed subject
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Co-Abhingigkeit zu sprechen.
co-dependency to talk

‘The Frankfurt “Guru” Berthold Kilian finally came to Bremen to
talk about the currently discussed subject Co-dependency.’

(92) “Wir miissen uns selbst  helfen”, meinte Magath.
“we must us ourselves help”, meant Magath

““We must help ourselves”, said Magath.’

In the first case, the dative noun “Co-Abhdangigkeit’ is an apposition term
and belongs to the noun phrase “das aktuell diskutierte Thema Co-Abhangig-
keit”. Such cases of a dative NP being an apposition term or a conjunct of
a noun phrase included in a prepositional phrase are rather frequent in the
newspaper texts used in the experiments. Therefore, the grammar should be
able to identify such cases and avoid incorrect assignment of dative object
relations to such dative NPs.

However, there are also cases in which a dative object relation should
be assigned to a noun phrase in a similar context. Consider, for example,
sentence (93) in which the noun phrase “Besserem” is a dative object of the
verb “weichen”:

(93) Sondern eher, weil der spieBige “Bienenkorb” von Susi
But rather, because the narrow-minded “beehive” of Susi
Besserem weichen mufte.

the bettery,; give way had to.

‘But rather because the narrow-minded “beehive” of Susi had to give
way to something better.’

Structures like the one in sentence (93) are much less frequent than
the structures similar to the one in sentence (92). Therefore, the following
constraints apply in the GRIP grammar:

¢ if a modifier of a dative object relation stands in a coordination or an
apposition relation with a token in a prepositional phrase, the dative
object relation is deleted;

e if a modifier of a dative object relation is a part of a non-personal
NP which occurs immediately after a prepositional phrase, the dative
object relation is deleted.
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Although the second heuristic constraint may lead to the elimination of
correct relations, the overall performance of the system with such a heuristic
is considerably higher than without it.

The second difficulty in the annotation of dative object relations concerns
reflexive pronouns, such as “sich”. German reflexive pronouns are invariable
and are not assigned case information in the treebank analyses. Therefore, a
distinction between the accusative and dative object uses of such pronouns
is sometimes difficult to draw. The following heuristic constraints are used
in GRIP for this problem:

e initially all relations involving a reflexive pronoun as a modifier are
given a direct object name;

e if a head of the relation is an auxiliary verb, the relation is renamed
into a dative object relation;

e if there is another direct object relation with the same head and if the
verb is not a ditransitive verb, the reflexive direct object relation is
renamed into a dative object relation.

To resolve residual cases, a list of verbs which take only a dative object
and not a direct object is required.

Predicative object

During the annotation of subject and direct object relations, some of sub-
ject and direct object relations are renamed into predicative object relations.
This renaming concerns in the first place relations which involve compar-
ative constructions. However, not all comparative constructions play the
role of predicative objects: consider a comparative construction “als ehre-
namtliche Vorsitzende” in sentence (94) which modifies pronoun “sie” and
is not a predicative object:

(94) Ute Wedemeier hilt es fiir “selbstverstandlich”, da sie als

Ute Wedemeier takes it for “granted”, that she as
ehrenamtliche Vorsitzende ein dienstliches Handy hat.
volunteering chairperson an office mobile phone has.

‘Ute Wedemeier takes it for “granted”, that she as a volunteering
chairperson should have an office mobile phone.’

The following heuristics of the GRIP grammar eliminate erroneous pre-
dicative object relations which involve comparative constructions:
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e eliminate a relation if the NP which contains the modifier of the rela-
tion immediately follows the first NP in a field and if this first NP is
marked as subject (this heuristic will eliminate an incorrect predicative
object relation in sentence (94));

e climinate a relation if the modifier of the relation is a nominative
personal pronoun;

e climinate a relation if the NP which contains the modifier of the rela-
tion immediately follows a predicative adjective or one of the follow-
ing pronouns: “mehr” (“more”), “weniger” (“less”), “anders” (“dif-
ferent”).

Apart from heads of comparative construction, predicative object rela-
tions can involve many other elements. Examples include:

e nominative nouns and pronouns: “Entdeckung” in sentence (79);

e accusative nouns and pronouns: “Locken” in sentence (95);

e dative nouns: “Meinung” in sentence (96);

e pronominal adverbs: “dagegen” in sentence (97);

e standard adverbs: “so” in sentence (98);

e prepositional phrases: “in Ordnung” in sentence (99);

e predicative adjectives: “erreichbar” in sentence (100);

e attributive adjectives: “ndchste” in sentence (101);

e infinitival constructions: “Ein Angebot formulieren” in sentence (102);
e subordinate clauses: “wie es ist” in sentence (103).

(95) Und warum nennt er sie “Locken”?
And why calls he her “Curls”?

‘And why does he call her “Curls”?’

(96) Ich bin deshalb immer noch der = Meinung, dafiir einen
I am therefore still thegq+ opiniong,;, instead a
speziellen Fonds zu haben.
special  fund to have.
‘Therefore, I am still of the opinion that it would be better to have a
special fund instead.’
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(100)

(101)

(102)

(103)

Sein Kollege ist “strikt dagegen”.
‘His colleague is “strictly against it”’.

Es ist so wie es ist.
It is soas it is.

‘It is the way it is.’

Das ist nicht in Ordnung.
It is not in order.

‘It is unacceptable.’

Sie ist nicht erreichbar.
She is not reachable.

Wer wird die oder der nachste sein?
Who will thefen, or  theyqsc next  be?

‘Who will be the next one?’

“Ein Angebot formulieren” nennt Hertwig dieses Vorgehen.
“an offer formulate” calls Hertwig this procedure.

b

‘Hertwig calls this procedure “formulating an offer”.

Methadonprogramm bleibt, wie es ist.
Methadone program remains as it is.

“The methadone program remains as it is.’

These examples show that tokens of almost any part of speech can theo-
retically play the role of predicative object. To avoid massive over-generation
in the grammar, heuristic constraints which restrict the context are formu-

lated

in the grammar. Among them:

predicative object relations which involve adjectives, prepositional phra-
ses, adverbs, infinitival constructions and subordinate clauses are al-
lowed only with auxiliary verbs and copula verbs, such as “bleiben”
(“remain”);

predicative object relations which involve accusative tokens of non-
comparative noun phrases are allowed only with “naming” verbs, such
as “nennen” (“call”, “name”);

if the modifier of a predicative object relation occurs after pronouns
“nichts” (“nothing”) or “etwas” (”something”) then the relation is
deleted, since in such cases the token tends to modify the pronoun:
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(104) TIhre Kandidatur sei nichts Ungewdhnliches.
Her candidature be nothing unusual.

‘Her candidature is claimed to be nothing unusual’.

e in the case of two predicative object relations with the same head, the
one whose modifier occurs first in the sentence is deleted if:

— it is an adjective and the second modifier is a pronominal adverb,
an adjective, a head of a non-comparative noun phrase, or the
last element in a field;

— it is an adverb or an element of a prepositional phrase and the
second modifier is a head of a non-comparative noun phrase;

e delete a predicative object relation if its modifier is followed by a mo-
difier of a direct object relation with the same head, by a modifier of
a subject relation with the same head, or by an adverb.

Genitive object

A genitive object relation is initially established between verbs which
can take a genitive object, such as “achten” (“respect”), “sich erinnern’
(“remember”), “anklagen” (“accuse”), “bedirfen” (“require”), “versichern”
(“ensure”) etc., and genitive nouns.

At the second stage, grammar constraints consider verbs which are as-
signed two genitive object relations and eliminate one of them if:

e an NP containing a genitive noun immediately follows another NP, or

e an NP containing a genitive noun immediately follows a genitive prepo-
sitional phrase, or

e an NP containing a genitive noun is preceded by a coordinating con-
junction and a genitive prepositional phrase, or

e an NP containing a genitive noun occurs in a non-initial position in
the initial field.

In all these situations the genitive NP tends to be a genitive modifier
rather than a genitive object.

Further constraints are stated on reflexive and separable verbs which take
genitive objects. Such verbs can participate in a genitive object relation only
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if a reflexive pronoun or a separable prefix, respectively, occurs in the same
clause. The reason for stating such constraints can be illustrated with the
example of the German verb “sich annehmen” (“take care”, “look after”),
which is both separable and reflexive. Consider sentence (105):

(105) Nach Angaben  Naumanns nehmen sich bereits
According to information Naumanng,,, take themselves already
heute privat  organisierte Einrichtungen verfolgter Kiinstler an.
today privately organized institutions persecuted artists on
‘According to Naumann’s information, already today privately orga-
nized institutions are taking care of persecuted artists.’

Here, a genitive object relation holds between the verb “nehmen” and the
noun “Kinstler”. Since neither a non-reflexive separable verb “annehmen”
nor a non-reflexive non-separable verb “nehmen” take a genitive object,
constraints are needed that ensure that a genitive object relation cannot be
assigned to the verb “nehmen” unless both a prefix “an” and a reflexive
pronoun occur in the clause.

Verbal object

A verbal object relation holds between elements in a verbal chain. Ini-
tially, a set of rules determines the context in which two verbs or a verb
and a particle “zu” can be connected by such relation: either the elements
of the relation belong to the same verbal complex, or one of the elements is
a finite verb in the left sentence bracket while the second element occurs in
the verbal complex of the same clause.

However, not only a verbal object relation can hold between two such
elements. Compare, for example, sentences (106) and (107):

(106) Meine Aussage im  Interview ist nur im Zusammenhang mit
my  statement in the interview is only in connection with
dem Inhalt der  gestellten Fragen zu verstehen.
the content they., askedge, questionsge, to understand.

‘My statement in the interview should be understood only in connec-
tion with the content of the questions asked.’

(107) Jamal beginnt zu verstehen.
Jamal begins to understand.

In sentence (106), a verbal object relation connects the verbs “ist” and
“verstehen”. In sentence (107), the verbs “beginnt’ and “verstehen” are

158



linked by a sentential object relation. The general strategy for distinguishing
these two types of relations relies on the notion of coherency and on the
type of the finite verb in terms of coherency. Three types of verbs are
distinguished according to Bech (1955-57):

1. verbs constructing coherently and incoherently, e.g. “versprechen”
(“promise”), “versuchen” (“try”);

2. verbs constructing only coherently, e.g. “wollen” (“want”), “mdchten”
(“like”);

3. verbs constructing only incoherently, e.g. “idberreden” (“persuade”),
“tberzeugen” (“convince”).

Verbs constructing only coherently always build a verbal object relation
with other verbs, whereas verbs constructing incoherently take a sentential
object as an argument. Based on this regularity and a list of incoherently
constructing verbs in the grammar lexicon, constraints are formulated for
differentiating 0S and OV relations.

Sentential object

Sentential object (0S) relations are initially established between a finite
verb of a main clause and a finite verb of a subordinate clause or a main verb
in a verbal complex. Subordinate clauses are restricted to clauses of non-
adverbial meaning, i.e. purpose, time, condition, and reason subordinate
clauses are excluded from consideration.

Sentential object relations can be mixed with verbal object relations (see
above in the description of the rules for verbal object relations), subject rela-
tions between a subordinate clause and a verb (see sentence (108)) and with
different kinds of modification relations (e.g. OPP-MOD in sentence (109)).

(108) Deshalb bleibt es sein Geheimrezept, wie er es schafft.
Therefore remains it his secret recipe, how he it manages.

‘Therefore how he manages it remains his secret recipe.’

(109) Denn auch die gehen davon aus, da8 sie ohne das
because also those go therefrom, that they without the
BLG-Monopol preiswerter arbeiten konnten.
BLG monopoly less expensive work could.
‘Because they also assume that without the BLG monopoly they could
work more cheaply.’
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Since verbal objects and subjects are annotated prior to annotation of
sentential objects, a constraint is stated in the grammar that prohibits estab-
lishing a sentential object relation between two tokens if they are connected
by a subject or a verbal object relation.

To distinguish sentential objects from modifiers, the following heuristics
are used:

e if a subordinate clause is preceded by an adverbial pronouns, the 0S
relation is deleted; the constraint does not apply if the adverbial pro-
noun has a form “trotzdem” or “daraufhin”;

e if the head of an 0S relation is an auxiliary verb, the relation is deleted.

Separable verbal prefix

Due to the fact that separable verbal prefixes have a specific categorial
tag, annotation of this dependency relation is rather simple. The relation
is established between a rightmost finite non-auxiliary verb in a left bracket
field and a separable verbal prefix in a verbal complex. The main difficulty
in this case is to assign a relation between a correct pair of tokens, since
the verbal complex can occur both after and in front of the left bracket.*
Consider, for example, sentence (110) which presents an example of a verbal
complex preceding the finite verb:

(110) Dem Schmutz gegentiber steht in polnisch-katholischer Manier
thegqt scumg,: opposite stands in Polish Catholic manner
das Engelsgesicht von Antonina.
the angelic face of Antonina
‘The angelic face of Antonina confronts the scum in a Polish Catholic
manner.’

The analysis of sentence (110) is presented in Figure 7.13.

7.4.4 Extraction of dependency information from Tiiba-D/Z

For the evaluation of the parser, dependency relations have been extracted
from the treebank and presented in a form compatible with the parser out-
put, i.e. as a set of triples < M, H,L >, where H is a head element, M is
a modifier and L is a dependency label. Since in the treebank dependency

4 Although, of course, the latter case is rather rare.
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DemJ Schmutz gegeniiber steht in polnisch-katholischer Manier das Engelsgesicht von Antonina
ART NN PTKVZ VVFIN APPR ADJA NN ART NN APPR NE

dsm dsm - 3sis d dsf dsf nsn nsn d dsf

Figure 7.13: The treebank analysis for sentence (110)

relations are encoded indirectly, i.e. as edge labels in a constituency tree,
the procedure for dependency extraction is described below.

Extraction of dependency relations is equivalent to identification of a
head (HEAD) and a dependency label (DEP-LABEL) for each lexical token.
The procedure differs for lexical nodes which are marked as head elements
in a phrase (i.e. nodes, whose ascending edge is marked with “HD”, like that
of a node “Arbeit” in Figure 7.14) and for lexical nodes which play the role of
a modifier (their ascending edge is marked either with a label of a non-head
daughter “-” or with a name of a grammatical function, such as “ON”).

For a non-head lexical node, the head element HEAD is identified as a
lexical head of its head sister. Thus, in Figure 7.14, HEAD of node “Die” is a
lexical node “Arbeit”. The label of the dependency relation that connects a
non-head lexical token and its head (DEP-LABEL) is encoded in the function
of the node, i.e. in the label of the ascending edge of the node (label “-” for
node “Die” in Figure 7.14).

To establish a dependency of a lexical node which plays the role of the
head in a phrase, the first step is to find the lowest non-head ancestor of the
node. For node “zu” in Figure 7.14 such an ancestor is the SIMPX node with
the function 0S (node number 509). The function of the ancestor contains a
dependency label for the lexical node. HEAD of the lexical node corresponds
to a lexical head of a head sister of the lowest non-head ancestor of the node.

A special case is represented by constructions which do not contain a
head element, such as coordination and apposition, as well as sentential
nodes. In the procedure described above, all conjuncts and apposition terms
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Figure 7.14: An example TiBa-D/Z tree

are treated as head elements. In a sentential node, the head element is
identified as a lexical head of LK node, which stands for the left bracket of
the sentence and contains a finite verb. If the sentence does not contain a
left bracket, the sentential head is identified as a lexical head of a verbal
complex VC.

A lexical node which does not have a governing element is marked as the
root of the sentence (ROOT).

Table 7.6 lists dependencies extracted from the tree presented in Fi-
gure 7.14.

7.4.5 Evaluation

The performance of the dependency module run on the data with cor-
rect morpho-syntactic tags is presented in Table 8.1. Prior shallow con-
stituency analysis of the data is provided to the dependency module by the
GRIP chunker. The metrics of labeled and unlabeled precision, recall and
f-measure described above have been used for the evaluation.

(Labeled) Precision — #matched dependencies

#dependencies in test data
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Dependency Modifier Head

- Die Arbeit

- gemeinsame  Arbeit

ON Arbeit hilft

ROOT hilft

- den anderen
0A anderen verstehen
0s zu hilft

- verstehen zu

Table 7.6: Dependencies extracted from the tree in Figure 7.14

(Labeled) Recall =

F — measure =

#matched dependencies

2 x Precision * Recall

Precision + Recall

#dependencies in gold data

Dep. Labeled Unlabeled
label | Recall Prec. F-meas. | Recall Prec. F-meas.
total | 94.91 94.55  94.73 95.95 95.57  95.76
ROOT | 98.12 97.71  97.91 98.16 97.76  97.96
SUBJ | 96.28 95.50  95.89 96.36 95.56  95.96
DOBJ | 93.08 91.38 92.22 93.08 91.38  92.22
0D 83.69 83.15 83.42 83.69 83.15 83.42
0G 100 100 100 100 100 100
0s 70.74 71.27  71.00 71.27 71.63 71.45
ov 97.29 97.11  97.20 97.29 97.11  97.20
PRED | 69.58 70.83  70.20 69.58 70.83  70.20
VPT 98.46 98.46  98.46 98.46 98.46  98.46

Table 7.7: Evaluation of the GRIP dependency parser

7.4.6 FError analysis

The current subsection describes the most frequent errors made by the de-
pendency parser in the assignment of dependencies.
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In the annotation of a subject relation, the most frequent error is failure
to identify the relation due to a complicated sentence structure. Often such
complicated structures involve complex named entities, such as the citation
of a statement “Diskussionen um Menschenrechtsverletzungen spielen weder
bei den Spendern noch bei den Hilfsangeboten eine Rolle” in sentence (111),
the occurrence of sentence-final punctuation inside a clause, such as the
occurrence of an exclamation mark in sentence (112), or complex embedded
constructions.

(111) Meine Aussage im  Interview “Diskussionen um

my  statement in the interview “discussions about
Menschenrechtsverletzungen spielen weder bei den Spendern noch
violations of human rights play neither by the donators nor
bei den Hilfsangeboten eine Rolle” ist nur im Zusammenhang mit
by the help offers a role” is only in connection with
dem Inhalt der  gestellten Fragen zu verstehen.
the content they., askedge, questionsg., to understand
‘My statement in the interview “Discussions about violations of hu-
man rights play no role either for the donators or for the help offers”
should be understood only in connection with the content of the ques-
tions asked.’

(112) Man mag kaum glauben, dafi die Hauptdarstellerin Naomi (!)
One could hardly believe, that the leading actress ~ Naomi (!)
Nishida in Japan ein gefeiertes Fotomodell ist.
Nishida in Japan a famous photographic model is

‘One could hardly believe, that the leading actress Naomi (!) Nishida
is a famous model in Japan.’

Another source of errors is failure to annotate subjects that do not have
any morphological features, such as foreign material tokens, cardinals or
prepositional phrases. Errors are also caused by incorrect chunking analysis
provided for the dependency parser and by confusion of the relations which
usually involve nominative lexemes: subjects, predicative objects and the
modifiers of subjects.

The last prominent group of subject errors concerns annotation of sub-
jects which represent apposition terms. According to the annotation style
of the parser, if an apposition group participates in a dependency relation,
then all terms of apposition are assigned the dependency relation in question.
However, in some cases correct identification of the apposition construction
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is complicated by the complex structure of the sentence. In such cases, only
one of the apposition terms is assigned a dependency relation, since multiple
subjects are ungrammatical in German.

Errors in the annotation of a direct object relation partly coincide
with the errors made in subject relations. Complicated sentence structures
and apposition constructions, chunking errors and absence of morphological
features lead to problems in assignment of direct object relations. An error
which is specific for the annotation of this dependency is a confusion of the
grammatical function of the reflexive pronoun “sich” which does not inflect
and, therefore, has the same form when used as a direct and indirect object.
To annotate the pronoun correctly, subcategorization information is needed.

The same problem leads to decreased precision in the annotation of da-
tive objects. Together with the problem of erroneous chunking it represents
the main source of errors for the annotation of a dative object dependency.

Genitive objects are rather rare in the Tiiba-D/Z data. The parser
has captured all the genitive object relations in the test data and scored
100% accuracy.

A rather frequent error in the annotation of sentential object occurs
when a parser is unable to recognize the coordination of clauses without a
conjunction, such as in sentence (113):

(113) Tegeler bestitigt den Vorgang der Provisionszahlungen, meint
Tegeler confirms the procedure of the provision payments, thinks
allerdings, es miisse ein “Buchungsfehler” gewesen sein.
however, it must a “booking error” been  be
‘Tegeler confirms the procedure of provision payments, but thinks that
there must have been a booking error.’

Another common error in the annotation of sentential objects concerns
the treatment of discourse markers. They represent unattached nodes in
the treebank but are part of the structure provided by GRIP. Consider the
Tiba-D/Z analysis of sentence (114) provided in Figure 114. In the GRIP
analysis, the discourse marker “raunte ein Zuschauer” is annotated as a part
of the initial field of the sentence “maissen wir jetzt aufstehen?,” which leads
to the erroneous establishment of a dependency relation between the verb
“raunte” and the verb “missen”.

(114) “Das ist ja wie vor Gericht”, raunte ein Zuschauer, “miissen
“Thisis - as in court”, murmured a spectator, “must
wir jetzt aufstehen?”
me now stand up?”
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Figure 7.15: An example TiBa-D/Z tree with a discourse marker

“Is this as in court”, murmured a spectator, “do we have to stand up
now‘?”’

The same problem of the erroneous treatment of discourse markers causes
one of the most frequent errors in the annotation of the root elements.
According to the Tiiba-D/Z treebank, sentence (114) has three roots: verbs
“ist”, “raunte” and “maissen”. GRIP has assigned a single root “maissen”
to this sentence. Other errors in the annotation of this dependency are also
due to incorrect constituency analysis provided by the chunker.

The annotation of verbal objects is also highly influenced by the con-
stituency analysis of data. A verbal object dependency is usually established
between the finite verb of a sentence and a verb in a verbal complex. Errors
in the constituency analysis complicate the annotation of the dependency.
Another source of errors in this category concerns the confusion of verbal
and sentential objects.

The main source of errors which leads to a decreased precision in anno-
tation of predicative objects concerns comparative constructions. Com-
parative constructions often have the function of predicative objects in a
sentence, such as in example (115). However, they also can serve as modi-
fiers of other phrases, such as in example (116). Since the predicative object
function is more frequent, the parser annotates comparative construction as
such. To avoid the errors, semantic information would have to be taken into
account.

(115) Doch dann wurde die Erstplazierte
but then became the one who took the first place
iiberraschenderweise als mutmafliche Hetera enttarnt.
surprisingly as probable Hetera exposed

‘But then the winner was surprisingly exposed as a probable Hetera.’
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(116) Ich hatte keine Lust, auf den Lesungen als Alphaménnchen eine
I had no desire, on the readings as little alpha-man an
Ayse-Fibel darzubieten.
Ayse-primer to present

‘T had no desire to present as a little alpha-man an Ayse-primer on
the readings.’

Errors which leads to a decreased recall in the annotation of predicative
objects include failures to establish a relation between adjectives and non-
auxiliary verbs, such as in case of a phrase “schlecht denken” (“to think
bad”) and failures to establish a relation between prepositional phrases and
verbs, such as in case of “sich in guter Verfassung fihlen” (“to feel oneself
in a good state”). The introduction of corresponding rules into the grammar
leads to a significant drop in precision, since relations between such elements
are rather rare.

Errors in the annotation of separable verb suffixes are caused exclu-
sively by the wrong annotation of subordinate clauses. In cases where a
verbal complex is included in a wrong clause, the correct establishment of a
separable verb suffixes relation is problematic.

7.5 Conclusion

The current chapter has introduced the GRIP dependency parser, a robust
rule-based deterministic parser for annotation of German. Unlike standard
dependency parsers which incorporate a rich lexicon with detailed subca-
tegorization and semantic information into the grammar, the GRIP parser
relies mainly on morpho-syntactic information for the annotation of depen-
dency structures, limiting the use of subcategorization information to a few
features for high frequency verbs.

The parser has been evaluated against the Ttuba-D/Z treebank data. It
has demonstrated state-of-the-art performance of 95.74% labeled f-measure.
These high results indicate that correct annotation of morpho-syntactic in-
formation can serve as a sufficient basis for a successful dependency analysis.
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Chapter 8

The GRIP system

The current chapter provides an overview of the complete GRIP system.

8.1 GRIP architecture

The complete GRIP system counsists of a morphological analyzer, a morpho-
syntactic disambiguator, a chunker and a dependency parser for German.
All modules except for the morphological analyzer have been developed in
the current dissertation project and are described in the relevant chapters
above. The system can be used for the tasks of tagging, chunking and/or
dependency parsing and allows for external input of different structure on
any level of annotation.

The system is robust and deterministic: for every input sentence, at
most one analysis is output. If no complete analysis can be provided due to
unknown phenomena occurring in the input, the system supplies a partial
analysis.

Figure 8.1 schematizes a general architecture of the system.

In GRIP, all possible morphological analyses for input tokens are pro-
vided by the Xerox morphological analyzer for German developed at the
Xerox Research Centre Europe. The analyzer is described in more detail in
Section 6.1.1. The analyses are then passed to the morpho-syntactic tagging
module.

The disambiguation procedure starts with the resolution of part-of-speech
ambiguity by a rule-based module (see section 6.1.3) and is followed by a
rule-based module for the disambiguation of morphological values (see sec-
tion 6.1.4). The residual ambiguity left by the rule-based modules is resolved
by a statistical module based on PCFGs (see section 6.2.2).
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Figure 8.1: Architecture of the GRIP system
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The GRIP chunker provides a shallow syntactic analysis for the input
string based on the part-of-speech categories of tokens. Apart from the iden-
tification of the phrasal categories AP (adjectival phrase), NP (noun phrase)
and PP (prepositional phrase), it also analyzes topological fields and subor-
dinate clauses. The chunker is described in section 7.3.

The dependency module of GRIP expects a pre-chunked input with (pos-
sibly ambiguous) morpho-syntactic characteristics of tokens. The module
provides annotation for verbal complements. More details on the module
can be found in section 7.6.

8.2 GRIP evaluation

The complete system performance has been evaluated on 12 020 tokens from
the treebank. The system has been provided with the tokenized input.
Table 8.2 presents the results of the evaluation of the system. Statistics on
labeled precision, recall and f-measure are provided for each module.

Module ‘ Precision Recall F-measure
Tagger | 89.33 %  91.29 % 90.30 %
Chunker | 9290 % 91.79 % 92.34 %
Parser 86.05 %  85.06 % 85.55 %

Table 8.1: Evaluation of the GRIP dependency parser

Error analyses for each module are provided in the corresponding sec-
tions above: section 6.4.3 for the tagger, section 7.3.4 for the chunker and
section 7.4.6 for the dependency parser. Since errors are cumulative in case
of the complete system, chunking and parsing performance is lower than
when the chunker and the parser are run on gold input. New chunking and
parsing errors arise from errors in tagging.

Table 8.2 provides evaluation of the speed of the system. Two metrics
are used for the evaluation. The first metric estimates number of tokens
processed by the system per second. This estimate is presented in column
2 (tokens/sec) of the table. The second metric evaluates the speed of the
system in terms of sentences and represents the amount of time which is
required by the system for the analysis of one sentence. The results for this
metric are presented in column 3 (sec/sent) of the table.

The system performance was evaluated on a Sun SunBlade 100.
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The table provides an evaluation of each separate module of the sys-
tem as well as of the performance of the complete system. Since the GRIP
morpho-syntactic tagger itself has a modular architecture with components
of different nature, it is instructive to consider the speed of each compo-
nent separately. The line “Rule-Based” stands for the performance of the
GRIP rule-based disambiguator. The line “Mapping” represents results for a
Perl-based mapping component which brings data output by the rule-based
component in the format required by the following PCFG-based tagging
module. Speed of the PCFG tagger is provided in line “PCFG”.

Module Speed
(tokens/sec) | (sec/sent)
Tagger 6.26 2.65
Rule-Based 212.93 0.08
Mapping 485.48 0.03
PCFG 6.85 2.4
Chunker 418.52 0.04
Parser 713.94 0.02
Total 6.11 2.71

Table 8.2: Speed of the GRIP dependency parser

As Table 8.2 shows, the PCFG module represents the slowest module of
the system. However, it should be noted that the speed of the PCFG tagger
varies greatly depending on the length of the sentence. Thus, tagging a
sentence of an average test data length of 15 tokens with the PCFG module
takes less than a second, whereas some sentences may take as long as 30-50
seconds. An example of such a sentence is provided in (117) below:

(117) Laura Marina Mit seinen skurrilen Gestalten, grandiosen

Laura Marina with his  bizarre shapes, terrific
Gesichtern und unbezahlbarem Witz erzahlt Regiseur Kirk Jones
faces and invaluable wit tells  director Kirk Jones

eine Geschichte aus dem Leben, voller Herz und natiirlich mit
a  story from the life,  full of heart and of course with
einem tiefen Blick in menschliche Abgriinde.

a deep look at human abysses.

Apart from the sentence length (34 tokens), three phenomena make the
sentence complicated for the PCFG module to parse. First, the sentence
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includes a proper name “Laura Marina” which should belong to a separate
sentence. Secondly, the sentence contains a misspelled word “Regiseur”?.
Lastly, five words in the sentence (“Laura”, “Marina”, “Regiseur”, “Kirk’
and “Jones”) represent unknown words and are therefore initially assigned
the rather extensive set of all possible analyses.

As compared to the speed of the best tagger for German, TnT, which
tags the sentence in less than a second, the PCFG module is much slower.
However, this drawback is compensated by a clear advantage in qualita-
tive results: whereas TnT reaches an accuracy of only 79.41%, the PCFG
module provides an accuracy 94.12%, the only tagging mistakes being incor-
rect analyses for the misspelled token and for the adjective “voller” (ADJA.d
instead of ADJD).

'Correct form: “Regisseur” .
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Chapter 9

Conclusion

The current thesis has been concerned with a problem of morpho-syntactic
annotation of German.

Different approaches to tagging have been reviewed in the thesis. Two of
the approaches have been selected for the development of a German tagger
based on the characteristics of the approaches and their applicability to
the specific task of morpho-syntactic annotation of German. The selected
approaches are a rule-based approach and an n-gram-based approach.

A rule-based tagger has been developed and evaluated on German data.
It has been shown that the rule-based tagger provides high accuracy of
annotation and significantly reduces massive ambiguity of tokens. However,
for 30% of tokens, the tagger fails to resolve the ambiguity completely.

Experiments with an n-gram tagger performed in the dissertation project
have demonstrated insufficiency of the n-gram method for the task in ques-
tion. The main problem of the method concerns a restricted context win-
dow taken into account in the annotation process, which turns insufficient
for correct annotation of morphological features. A probabilistic method
which takes a more global context into account, namely probabilistic phrase-
structure grammars (PCFGs), has been chosen as a basis for an advanced
tagging model. In order to take the best advantage of the strengths of
the PCFG-based tagger, systematic transformations have been introduced
to the structure of the training data, which has significantly improved the
tagger performance.

Finally, a combined tagging model with a rule-based and a PCFG-based
modules has been developed. The model brings together the powers of the
two methods involved: based on the context, the rule-based module reduces
lexical ambiguity and provides high accuracy of annotation. The subsequent
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PCFG module resolves ambiguity completely based on statistics collected
from training data.

The evaluation of the combined model has demonstrated the high per-
formance of the model which beats the performance of the modules used
independently and also exceeds the results of the best morpho-syntactic
tagger for German described in the literature.

For a task-oriented evaluation of the combined tagging model, the model
has been incorporated into a parsing system. A rule-based dependency
parser which relies mainly on morpho-syntactic characteristics and on the
linear order of input tokens has been developed. The parser has demon-
strated high performance.

Experiments with the parser run on input with correctly annotated
morpho-syntactic information have shown the state-of-the-art performance
of the parser and confirmed the claim about the importance of morpho-
syntactic information in parsing.

9.1 Contributions
The main contributions of the thesis are summarized below:

e A morpho-syntactic tagger which provides state-of-the-art performance
even when trained on modest sets of data has been developed and
described in the thesis. The tagger outperforms the best morpho-
syntactic tagger for German described in the literature by 5.9%.

e A novel method of tagging with probabilistic phrase-structure gram-
mars has been described together with techniques which lead to a
significant improvement of the performance of a PCFG-based tagger.

e A rule-based dependency parser for German has been developed.

e Evaluation of the parser has demonstrated that state-of-the-art pars-
ing performance can be achieved if a parser is provided with morpho-
syntactic information for tokens. Such a parser does not require de-
tailed information about subcategorization frames and semantic fea-
tures of tokens and, therefore, avoids the bottleneck problem of knowl-
edge acquisition.

e Experiments with the parser have confirmed the claim about impor-
tance of morpho-syntactic information in parsing.
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9.2 Future Research

Two main areas of future research can be identified according to the two
foci of the thesis: morpho-syntactic annotation and dependency parsing.

In the area of morpho-syntactic annotation, one of the possible re-
search directions is to separate the annotation process into two steps: a
part of speech annotation step and a consequent step of morphological an-
notation. This strategy seems intuitive, since the search space on each step
is restricted to subsets of the possible analyses, which simplifies the task
of the tagger. Moreover, annotation of POS categories hardly depends on
morpho-syntactic information, which means that no clues would be lost for
the tagger in case of a split process. Therefore, such strategy should lead to
an improved tagging performance. The strategy has already been applied
in the GRIP rule-based tagger and proved successful.

In the dependency parsing area, an interesting question continuing the
research line of the thesis would be to investigate the issue of chunking as a
pre-processing step to the parsing module. In the GRIP system described
in the thesis, annotation of dependencies relies on prior chunking analysis
provided for the input string. However, in classical dependency theory, no
reference to constituencies is made and the analysis is based exclusively on
the characteristics of tokens. It would be instructive to research whether a
successful dependency parser which does not require any subcategorization
or semantic information and relies only on morpho-syntactic characteristics
of tokens and a linear order of tokens can be built without the incorporation
of a preprocessing chunking module.

Another obvious way to proceed would be to extend the scope of the
dependency parser to the annotation of other dependencies, such as verbal
adjuncts and non-verbal arguments.
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Appendix A

Stuttgart-Tibingen Tagset
(STTS)

No. Tag Description

1 ADJA attributive adjective

2 ADJD predicative or adverbial adjective

3 ADV adverb

4 APPR preposition; circumposition, left part

5 APPRART preposition with an article

6 APPO postposition

7 APZR circumposition, right part

8 ART article

9 CARD cardinal

10 FM foreign material

11 1TJ interjection

12 KOUI subordinating conjunction with zu and infinitive
13 KOUS subordinating conjunction with a clause

14 KON coordinating conjunction

15 KOKOM particle of comparison, no clause

16 NE proper noun

17 NN common noun

18 PDS substituting demonstrative pronoun

19 PDAT attributive demonstrative pronoun

20 PIS substituting indefinite pronoun

21 PIAT attributive indefinite pronoun without determiner
22 PIDAT attributive indefinite pronoun with determiner
23 PPER irreflexive personal pronoun
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No. Tag Description

24 PPOSS substituting possessive pronoun
25 PPOSAT attributive possessive pronoun
26 PRELS substituting relative pronoun

27 PRELAT attributive relative pronoun

28 PRF reflexive personal pronoun

29 PWS substituting interrogative pronoun
30 PWAT attributive interrogative pronoun
31 PWAV adverbial interrogative or relative pronoun
32 PROP pronominally used preposition
33 PTKZU “zu” with infinitive

34 PTKNEG  negation particle

35 PTKVZ separated verb particle

36 PTKANT  answer particle

37 PTKA particle with adjective or adverb
38 TRUNC truncated word, first part

39 VVFIN finite main verb

40 VVIMP imperative, main

41 VVINF infinitive, main

42 VVIZU infinitive with “zu”, main

43 VVPP past participle, main

44 VAFIN finite auxiliary verb

45 VAIMP auxiliary imperative

46 VAINF auxiliary infinitive

47 VAPP auxiliary past participle

48 VMFIN finite modal verb

49 VMINF modal infinitive

50 VMPP modal past participle

51 XY non-word containing special characters
52 $, comma

53 $. sentence-final punctuation

54 §( sentence-internal punctuation
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Appendix B

XRCE morphological
analyzer

B.1 POS tags

No. Tag Description Corresponding
STTS tag
1 ADJA (positive) attributive adjective ADJA
2 ADJA2 comparative attributive adjective ADJA
3 ADJA3 superlative attributive adjective ADJA
4 ADJD (positive) predicative or adverbial
adjective ADJD
5 ADJD2 comparative predicative or adverbial
adjective ADJD
6 ADJD3 superlative predicative or adverbial
adjective ADJD
7 ADV non-adjectival adverb ADV
8 ART article ART
9 CARD cardinal CARD
10 CIRCP circumposition, right part APZR
11 CM comma $,
12 COADV adverbial conjunction KON
ADV
13 COALS conjunction “als” KOKOM
KOUS
14 COINF infinitival conjunction KOUI
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No. Tag Description Corresponding
STTS tag

15 COORD coordinating conjunction KON
KOKOM

16 COP1 coordination 1st part KON

17 COP2 coordination 2nd part KON

18 COSUB subordinating conjunction KOUI
KOUS

19 COWIE conjunction “wie” KOKOM
KOUS

20 DATE date CARD

21 DEMADJ  demonstrative adjective PDS
PDAT
ADJA
PIDAT
PIS

22 DEMDET  demonstrative determiner PDAT

23 DEMINV invariant demonstrative PIDAT

24 DEMPRO demonstrative pronoun PDS

25 FM foreign material FM

26 INDADJ indefinite adjective PIS
PIDAT
PIAT

27 INDDET indefinite determiner PIAT
PIDAT

28 INDINV invariant indefinite PIDAT

29 INDPRO indefinite pronoun PID

30 ITJ interjection 1TJ

31 NOUN noun NN
NE

32 ORD ordinal NN
ADJA

33 PERSPRO personal pronoun PPER

34 POSDET  possessive determiner PPOSAT

35 POSPRO  possessive pronoun PPOSS

36 POSTP postposition APPO

37 PREP preposition APPR

38 PREPART preposition with an article APPRART

39 PROADV  pronominal adverb PROP
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No. Tag Description Corresponding
STTS tag

40 PTKANT  sentential particle PTKANT

41 PTKCOM comparative particle PTKA

42 PTKINF particle: infinitival “zu” PTKZU

43 PTKNEG  particle: negation “nicht” PTKNEG

44 PTKPOS  positive modifier PTKA

45 PTKSUP superlative modifier PTKA

46  PUNCT sentence internal punctuation $(

47 REFLPRO reflexive “sich” PRF

48 RELPRO relative pronoun PRELS
PRELAT

49 REZPRO reciprocal “einander” PRF

50 SENT sentence final punctuation $.

51 SYM symbol XY

52 TRUNC truncated word (first part of a

compound or verb prefix) TRUNC

53 URL URL XY

54 VAFIN finite auxiliary verb form VAFIN
VAIMP

55 VAINF auxiliary infinitive VAINF

56 VAPP auxiliary past participle VAPP

57 VMFIN finite modal verb form VMFIN

58 VMINF modal infinitive VMINF

59 VMPP modal past participle VMPP

60 VPREF separated verbal prefix PTKVZ

61 VVFIN finite verb form VVFIN
VVIMP

62 VVINF infinitive VVINF

63 VVIZU infinitive with incorporated “zu” VVIZU

64 VVPP past participle VVPP

65 WADV interrogative adverb PWAV

66 WDET interrogative determiner PWAT

67 WINV invariant interrogative PIDAT
PWAT

68 WPRO interrogative pronoun PWS
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B.2 Additional features

No. Tag Description Type

1 1P first person

2 2P second person

3 3P third person

4 Abk abbreviation additional

5 Adj adjective main category
6 Adpos pre- or postposition main category
7 Adv adverb main category
8 Acc accusative case

9 Art article main category
10 Attr attributive adjective

11 Bracket bracket punctuation
12 Card cardinal numeral

13 Circ circumposition main category
14 City city proper name type
15 Colon colon punctuation
16 Comma, comma, punctuation
17 Common common noun

18 Comp comparative degree

19 Conj conjunction main category
20 Coord coordinating conjunction
21 Country country proper name
22 Cpl coordination, 1st part conjunction
23 Cp2 coordination, 2nd part conjunction
24 Dash dash punctuation
25 Dat dative case

26 Dem demonstrative pronoun

27 Det determiner main category
28 Dig digital numeral

29 Dots dots punctuation
30 Dte date main category
31 FMN any gender gender

32 Famname family name proper name
33 Fem feminine gender

34 Fract fractal numeral

35 Gen genitive case

36 Imp imperative mood

37 Indc indicative mood
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No. Tag Description Type

38 Indef indefinite pronoun

39 Inf infinitive verb

40 Init initial proper name
41 Invar invariant additional

42 Ttem item numeral

43 Itj interjection main category
44 Izu infinitival zu particle

45 Lang language noun

46 Left left bracket or parenthesis
47 Masc masculine gender

48 Math mathematical symbol

49 NAdj nominalized adjective noun

50 NGDA any case case

51 Neg negative particle

52 Neut neutral gender

53 Nom nominative case

54 Noun common noun main category
55 Num spelled out numeral numeral

56 Ord ordinal numeral

57 PPast past participle participle

58 PPres simple present participle participle

59 PPrzu present participle with “zu” participle

60 Paren parenthesis punctuation
61 Past past tense

62 Pers personal pronoun

63 P1 plural number

64 Pos positive degree

65 Poss possessive pronoun

66 Post postposition adposition

67 Pred predicative or adverbial adjective

68 Prep preposition adposition

69 Pres present tense

70 Pron pronoun main category
71 Prop proper name main category
72 Ptkl particle main category
73 Punct punctuation main category
74 Quote quotation mark punctuation
75 Refl reflexive pronoun
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No. Tag Description Type

76 Rel relative pronoun

77 Rez reciprocal pronoun

78 Right right bracket or parenthesis
79 Rom Roman numeral

80 Semicolon semicolon punctuation
81 Sent sentence final punctuation main category
82 Sg singular number

83 Slash slash punctuation
84 Spec special symbol URL

85 St strong declension

86 Subj subjunctive mood

87 Subord subordinating conjunction
88 Sup with superlative particle

89 Symbol special symbol main category
90 Trunc truncated word main category
91 Unit physical unit noun

92 Verb verb main category
93 Vorname  first name proper name
94 Wh interrogative or relative pronoun, adverb
95 Wk weak declension
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Appendix C

TiBa-D/Z treebank tags

C.1 Feature combinations for STTS tags in TtuiBa-

D/Z
No. STTS-Tag Feature Combination
1 ADJA case, number, gender
2 ADJD -
3 ADV -
4 APPR case
5 APPRART case, number, gender
6 APPO case
7 APZR -
8 ART case, number, gender
9 CARD -
10 FM -
11 ITJ -
12 KOUI -
13 KOUS -
14 KON -
15 KOKOM -
16 NE case, number, gender
17 NN case, number, gender
18 PDS case, number, gender
19 PDAT case, number, gender
20 PIS case, number, gender
21 PIAT case, number, gender
22 PIDAT case, number, gender
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No. STTS-Tag Feature Combination

23 PPER case, number, gender, person
24 PPOSS case, number, gender

25 PPOSAT case, number, gender

26 PRELS case, number, gender

27 PRELAT case, number, gender

28 PRF -

29 PWS case, number, gender

30 PWAT case, number, gender

31 PWAV -

32 PROP -

33 PTKZU -

34 PTKNEG -

35 PTKVZ -

36 PTKANT -

37 PTKA -

38 TRUNC number, gender

39 VVFIN person, number, mood, tense
40 VVIMP person, number

41 VVINF -

42 VVIZU -

43 VVPP -

44 VAFIN person, number, mood, tense
45 VAIMP person, number

46 VAINF -

47 VAPP -

48 VMFIN person, number, mood, tense
49 VMINF -

50 VMPP -

51 XY -

52 $, -

53 $. -

54 §( -
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C.2 Set of feature values in TiiBa-D/Z

Features in Values
TuBa-D/Z
case

n (nominative),

g (genitive),

d (dative),

a (accusative),

* (underspecified)

gender m (masculine),

(feminine),
(neutral),
(underspecified)
(singular),
(plural),
(underspecified)

(indicative),
subjunctive)

(
(first),
(
(

f
n
*

number

*R3 @

mood

person
second),
third)

(present),

(past)

1
k
1
2
3
tense S
t
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Appendix D

TiBa-D/Z treebank labels

D.1 Node labels

Node Label Description
Phrase Node Labels

NCX non-recursive noun phrase

NX recursive noun phrase

PX prepositional phrase

ADVX adverbial phrase

ADJX adjectival phrase

VXFIN finite verb phrase

VXINF infinite verb phrase

FX foreign language phrase

DP determiner phrase (e.g. gar keine)

EN-ADD proper noun or named entity
Topological Field Node Labels

LV resumptive construction (Linksversetzung)

VF initial field (Vorfeld)

LK left sentence bracket (Linke (Satz-)Klammer)

MF middle field (Mittelfeld)

VC verb complex (Verbkomplex)

NF final field (Nachfeld)

C complementizer field (C-Feld)

KOORD field for coordinating particles

PARORD field for non-coordinating particles
FKOORD coordination consisting of conjuncts of fields
MFE middle field between VCE and VC
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Node Label Description

VCE verb complex with the split finite verb
of Ersatzinfinitiv constructions
FKONJ conjunct consisting of more than one field
Root Node Labels
SIMPX simplex clause
R-SIMPX relative clause
P-SIMPX paratactic construction of simplex clauses
DM discourse marker
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D.2 Edge labels

Edge Labels Description
Edge Labels denoting Heads and Conjuncts

HD head
- non-head
KONJ conjunct

Complement Edge Labels
ON nominative object
OD dative object
OA accusative object
oG genitive object
OS sentential object
OPP prepositional object
OADVP adverbial object
OADJP adjectival object
PRED predicate
oV verbal object
FOPP optional prepositional object
VPT separable verb prefix
APP apposition

Modifier Edge Labels

MOD ambiguous modifier
ON-MOD, OA-MOD, OD-MOD, modifiers modifying
0OG-MOD, OPP-MOD, OS-MOD, complements or modifiers
PRED-MOD, FOPP-MOD, e.g. V-MOD = modifier of the verb

OADJP-MOD, V-MOD, MOD-MOD

Edge Labels in Split-up Coordinations

ONK, ODK, second conjunct (K) in

OAK, FOPPK, split-up coordinations
OADVPK, PREDK, e.g. ONK = second conjunct
MODK, V-MODK of a nominative object (subject)

Secondary Edge Labels

dependency relation between:

EN two parts of a proper noun
REFVC two verbal objects in VC
REFMOD two ambiguous modifiers
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Edge Labels Description

REFINT a phrase internal part and its modifier
REFCONTR  control verb and its complement
across clause boundaries

190



Appendix E

Syntactic heuristics

1. The NP is the only one in a finite clause

The heuristic will apply in two cases: either if a given NP is the only one
in a finite clause, as in (118), or if a given NP is the only one that has a
nominative reading in a finite clause, as in (119).

(118) Oder ist Bremerhaven nicht gilinstiger?
or i1s Bremerhaven not more cost-efficient

‘Or isn’t Bremerhaven more cost-efficient?’

(119) Fiir ein “barrierefreies Bremen” gingen deshalb gestern
for a Dbarrier-free  Bremen went therefore yesterday
mehrere hundert behinderte Menschen auf die Strafe.
several hundred handicapped people into the street

“Therefore, several hundred handicapped people took to the street for
a barrier-free Bremen yesterday.’

In (118), the only noun “Bremerhaven” will keep only one reading out of
three candidates, shown in (120), after application of the heuristic. In exam-
ple (119), the nominative readings for the nouns “Bremen” and “Strafe” will
be ruled out by prior application of a double reduction rule which requires
the identity of case values between a noun and a preceding preposition. So
only the noun “Menschen” can be the subject in this sentence. The heuristic
deletes five readings out of the seven candidates in (121).

(120) Bremerhaven +Noun+City+Sg+Neut+Dat
Bremerhaven +Noun+City+Sg+Neut+Acc
Bremerhaven +Noun+City+Sg+Neut+Nom
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(121) Menschen +Noun+Common+Sg+Masc+Gen

Menschen +Noun+Common+Sg+Masc+Dat
Menschen +Noun+Common+Sg+Masc+Acc
Menschen +Noun+Common+Pl4+Masc+Nom
Menschen +Noun+Common+Pl+Masc+Gen
Menschen +Noun+Common+Pl4+Masc+Dat
Menschen +Noun+Common+PIl+Masc+Acc

The heuristic is stated in a number of ODRs. The rules check whether
there are any nominative lexemes in the right and left contexts (up to the
clause boundaries) of the noun to which they apply and, if no nominative
lexemes were found, delete all non-nominative readings of the noun. Possible
modifiers of the noun (both pre- and post-) are not considered as competing
for the subject position.

For reasons explained in Chapter 6 above, the rules have to be applied
repeatedly: successive elimination of nominative readings for one or more
NPs by other heuristics can make the present heuristic applicable more than
once until no further disambiguation is possible.

2. A noun with feature City or Country is preceded by a

preposition “in”

(122) Behinderte Menschen veranstalteten Protesttag in Bremen.
handicapped people organized day of protest in Bremen

‘Handicapped people organized a day of protest in Bremen.’

As shown in (123), both the preposition “in” and the noun “Bremen” are
ambiguous in case. The nominative reading of the noun will be eliminated in
this context, since a noun preceded by a preposition cannot be nominative.
The remaining ambiguity can be resolved due to the fact that the preposition
“in” takes a dative complement if it refers to a city or country.! Presence of
the features City and Country in the inventory of the Xerox morphological
analyzer enables implementation of the heuristic, which otherwise would be
impossible.?

'Tn general, the preposition “in” requires either dative or accusative case. If “in” takes
an accusative NP, then “in” has the directional meaning of “into”. With dative case “in”
has locative meaning. For city and country nouns only the locative meaning of “in” is
possible, since the directional case has to be expressed by the preposition “nach” for this
class of NPs.

%For the full inventory of features see http://www.xrce.xerox.com/competencies/

content-analysis/demos/doc/mor-ger-2.txt.
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(123) in +Adpos+Prep+Acc

in +Adpos+Prep+Dat

Bremen +Noun+City+Sg+Neut+Dat
Bremen +Noun+-City+Sg+Neut+Acc
Bremen +Noun+City+Sg+Neut+Nom

3. Eliminate nominative readings on ambiguous NPs if there
is a non-ambiguous nominative NP in a clause

(124) Es ist wichtig, dal wir die Sangerin gut finden.
it is important that we the singer  good find

‘It is important that we like the singer.’

In the second clause, the pronoun “wir” is unambiguously nominative
and the main verb is not a copula (which would require two Nom argu-
ments), so the nominative reading of the noun phrase “die Sangerin” can
be eliminated.?

(125)  wir +Pron+Pers+1P+Pl4+Fem+Nom
wir +Pron+Pers+1P+Pl4+Masc+Nom
wir +Pron+Pers+1P+P14+Neut+Nom

(126) die +Det+Art+Sg+Fem+Acc+St
die +Det+Art+Sg+Fem+Nom+St
Sangerin +Noun+Common+Sg+Fem+Nom
Sangerin +Noun+Common+Sg+Fem+Acc

4. The NP is an argument of a copula verb

(127) Das Altenheim sei ein Prestigeobjekt ~ von ihr und
the retirement home be an object of prestige of hers and
anderen.
others

“The retirement home is claimed to be an object of prestige of hers
and others.’

3This heuristic may over-apply in some cases, for example if a nominative pronoun is
followed by an appositive NP with the same case, as in “wir mide Krieger” (“we tired
warriors”).
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A copula verb requires two nominative arguments.
biguated by a preceding preposition and, in its turn, allows for the ap-
plication of the coordination heuristic to the indefinite adjective “anderen”.
Thus, “Das Altenheim” and “ein Prestigeobjekt” are the two arguments of
the copula verb “sei” and receive the feature nominative, which reduces the

output of DRRs to one reading.

The original set of analyses is shown in (128)-(129), the output of
DRRs - in (130)-(131), and the sets of analyses for the two NPs after ap-

plication of the heuristic — in (132)—(133).

(128)

(129)

(130)

(131)

(132)

(133)

Das
Das

Altenheim
Altenheim
Altenheim

ein

ein

ein
Prestigeobjekt

Prestigeobjekt
Prestigeobjekt

Das
Das
Altenheim
Altenheim
ein
ein
Prestigeobjekt
Prestigeobjekt
Das
Altenheim
ein

Prestigeobjekt

+Det+Art+Sg+Neut+Acc+St
+Det+Art+Sg+Neut+Nom-+St

+Noun+Common+Sg+Neut+Dat
+Noun+Common+Sg+Neut+Acc
+Noun+Common+Sg+Neut+Nom

+Det+Art+Sg+Masc+Nom+Wk
+Det+Art+Sg+Neut+Acc+Wk
+Det+Art+Sg+Neut+Nom+Wk

+Noun+Common+Sg+Neut+Dat
+Noun+Common+Sg+Neut+Acc
+Noun+Common+Sg+Neut+Nom

+Det+Art+Sg+Neut+Acc+St
+Det+Art+Sg+Neut+Nom+St
+Noun+Common+Sg+Neut+Acc
+Noun+Common+Sg+Neut+Nom
+Det+Art+Sg+Neut+Acc+Wk
+Det+Art+Sg+Neut+Nom+Wk
+Noun+Common+Sg+Neut+Acc
+Noun+Common+Sg+Neut+Nom
+Det+Art+Sg+Neut+Nom+St
+Noun+Common+Sg+Neut+Nom

+Det+Art+Sg+Neut+Nom+Wk
+Noun+Common+Sg+Neut+Nom
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5. A nominative reading does not agree with a finite verb in
number

(134) Staatsanwaltschaft muss AWO-Konten priifen.
The prosecutor’s office must AWO accounts verify

‘The prosecutor’s office must verify the AWO accounts.’

Both “Staatsanwaltschaft’ and “AWO-Konten” have a nominative read-
ing:

(135)  Staatsanwaltschaft +Noun+Common+Sg+Fem+Nom
Staatsanwaltschaft +Noun+Common+Sg+Fem+Gen
Staatsanwaltschaft +Noun+Common+Sg+Fem+Dat
Staatsanwaltschaft +Noun+Common+Sg+Fem+Acc

(136) AWO-Konten +Noun+Common+Pl+Neut+Nom
AWO-Konten +Noun+Common+Pl+Neut+Gen
AWO-Konten +Noun+Common-+Pl+Neut+Dat
AWO-Konten +Noun+Common+Pl+Neut+Acc

The finite verb, though, is unambiguously singular:

(137) muss +Verb+Indc+1P+Sg+Pres
muss +Verb+Indc+3P+Sg+Pres

There is no coordination in the sentence. Nor is “AWO-Konten” a part
of a comparative construction, which would enable it to keep the nomina-
tive reading even though it does not agree with the finite verb in number.*
So the nominative reading should be eliminated. Once this heuristic has
been applied, the previously discussed heuristic (namely, the heuristic for
the only candidate for subject) may become applicable and may lead to
further disambiguation — the only noun that has a nominative reading is
“Staatsanwaltschaft’. Therefore the other readings can be eliminated.

“These two cases have to be guarded against by contextual constraints. Otherwise
the nominative readings for conjoined NPs, as in “Karel und Mates mégen sich sehr”
and for the plural NP in “Zulia singt schéner als ihre Freudinnen” would be mistakenly
eliminated.
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6. The NP is preceded neither by a preposition nor by another
NP

(138) In einer anonymen Anzeige werden der  Bremer
in an anonymous complaint were  they,; Bremen
Staatsanwaltschaft Details iber dubiose finanzielle
prosecutor’s officegq+ details about dubious financial
Transaktionen mitgeteilt.
transactions  disclosed

‘In an anonymous complaint, the city of Bremen’s prosecutor’s office
was given details about dubious financial transactions.’

In German, genitive is mostly used as the case of nominal modifiers
and complements of prepositions. But, with a few exceptions, genitive case
does not mark verb complements. This fact provides a reason for deleting
a genitive reading of a noun that is neither a postmodifier of an NP nor
preceded by a preposition, which is the case in the above sentence. The
original set of readings (139) will be reduced by DRRs to the two analyses
shown in (140). The heuristic will disambiguate the phrase completely by
eliminating genitive readings.

(139) der +Det+Art+Pl4+Fem+Gen+St
der +Det+Art+Pl4+Masc+Gen+St
der +Det+Art+Pl+Neut+Gen+St
der +Det+Art+Sg+Masc+Nom+St
der +Det+Art+Sg+Fem-+Dat+St
der +Det+Art+Sg+Fem+Gen+St
Bremer +Adj+Invar+Attr

Staatsanwaltschaft +Noun+Common+Sg+Fem+Nom
Staatsanwaltschaft +Noun+Common+Sg+Fem+Gen
Staatsanwaltschaft +Noun+Common+Sg+Fem+Dat
Staatsanwaltschaft +Noun+Common+Sg+Fem+Acc

(140) der +Det+Art+Sg+Fem+Dat+St
der +Det+Art+Sg+Fem+Gen+St
Bremer +Adj+Invar+Attr

Staatsanwaltschaft +Noun+Common+Sg+Fem+Gen
Staatsanwaltschaft +Noun+Common+Sg+Fem+Dat
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The rule will cause errors in the case of a small class of verbs that require
genitive complements, like “gedenken” (“commemorate”). Note, however,
that the heuristic can be modified in such a way that it does not apply to
nouns if such a verb is present in a clause. In the test corpus on which the
grammar was evaluated the rule did not make any errors.

7. The NP is a non-initial NP in a Vorfeld position in V2
clause

(141) Die Wahrheitsseite dieser Zeitung scheint das letzte
the truth page thisge, newspaperge, seems the last
Refugium der  Pazifisten zu sein.
refuge thegen pacifistsgen to be
“The “truth page” of this newspaper seems to be the last refuge of the
pacifists.’

The Vorfeld is the first constituent in a verb-second clause. This position
can be occupied by only one element or phrase. Thus, if it contains more
than one phrase, all but the first phrase are modifiers of the preceding ele-
ments. Since in German a postmodifying NP with no preceding preposition
has to be genitive, readings with all other case values can be eliminated.

The original analyses of the NP “dieser Zeitung” are as in (142).

(142)  dieser +Det+Dem+Sg+Fem+Dat+St
dieser +Det+Dem+Sg+Fem+Gen+St
dieser +Det+Dem+Sg+Masc+Nom+St
dieser +Det+Dem+Pl+4+Fem+Gen+St
dieser +Det+Dem+PIl+Masc+Gen+St
dieser +Det+Dem+Pl4+Neut+Gen+St
Zeitung +Noun+Common+Sg+Fem+Nom
Zeitung +Noun+Common+Sg+Fem+Gen
Zeitung +Noun+Common+Sg+Fem+Dat
Zeitung +Noun+Common+Sg+Fem+Acc

After the application of DRRs only two readings will be left:

(143)  dieser +Det+Dem-+Sg+Fem-+Dat+St
dieser +Det+Dem+Sg+Fem+Gen+St
Zeitung +Noun+Common+Sg+Fem+Gen
Zeitung +Noun+Common+Sg+Fem+Dat
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The heuristic will further eliminate dative readings, thus resulting in an
unambiguous output.

8. The NP is a complement of a zu-infinitive

(144) Klarer Regelverstof und Grund genug, die ehemalige Siegerin zu
clear rule violation and reason enough, the former  winner to
disqualifizieren.
disqualify
‘A clear rule violation and sufficient grounds for disqualifying the for-
mer winner.’

A zu-infinitive is a non-finite clause, so that the nominative reading can
be eliminated. The set of original analyses for the NP, as shown in (145), will
decrease to two analyses (146) after the application of DRRs. The heuristic
for zu-infinitive then helps to disambiguate the phrase completely.
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(145)

(146)

die
die
die
die
die
die
die
die
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige
ehemalige

Siegerin
Siegerin
Siegerin
Siegerin

die
die
ehemalige
ehemalige

Siegerin
Siegerin

+Det+Art+Pl4+Fem+Acc+St
+Det+Art+Pl+Masc+Acc+St
+Det+Art+PIl+Neut+Acc+St
+Det+Art+Pl+Fem+Nom+St
+Det+Art+Pl4+Masc+Nom+St
+Det+Art+Pl+Neut+Nom+St
+Det+Art+Sg+Fem+Acc+St
+Det+Art+Sg+Fem+Nom+St

+Adj+Pos+Pl+Fem+Acc+St
+Adj+Pos+Pl+Masc+Acc+St
+Adj+Pos+Pl+Neut+Acc+St
+Adj+Pos+Pl4+Fem+Nom+St
+Adj+Pos+Pl4+Masc+Nom+-St
+Adj+Pos+P14+Neut+Nom+St
+Adj+Pos+Sg+Fem+Nom+Wk
+Adj+Pos+Sg+Masc+Nom+Wk
+Adj+Pos+Sg+Neut+Nom+Wk
+Adj+Pos+Sg+Fem+Acc+St
+Adj+Pos+Sg+Fem+Acc+Wk
+Adj+Pos+Sg+Fem+Nom+St
+Adj+Pos+Sg+Neut+Acc+Wk

+Noun+Common+Sg+Fem+Nom
+Noun+Common+Sg+Fem+Gen
+Noun+Common+Sg+Fem+Dat
+Noun+Common+Sg+Fem+Acc

+Det+Art+Sg+Fem+Acc+St
+Det+Art+Sg+Fem+Nom+St

+Adj+Pos+Sg+Fem+Nom+Wk
+Adj+Pos+Sg+Fem+Acc+Wk

+Noun+Common+Sg+Fem+Nom
+Noun+Common+Sg+Fem+Acc
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Appendix F

Derivation of the formula for
tagging with Markov models

When a Markov model is applied to tagging, the states correspond to tags
and the output symbols correspond to words. The task is to find the most
likely sequence of tags t; ; for a string wy j, i.e. a tag sequence that maxi-
mizes the conditional probability P(t; | wy k):

P(t P t
argmazP(t; | wy ) = argmaz (t1,6) P(wrk | t1.1)
tik tik P(wl,k)

P(wy ) is constant for all ¢; 3, so it is sufficient to find

argmazxP(t; x)P(wy g | t1 k)

tik

1. P(t;4) = P(t)P(t2 | t)P(ts | tsts) ... Pty | t1 .. tx1)
= P(tJ)f

7

2P(ti |t1 ---ti—I)

= P(tI)fIQP(ti | timt)

The last simplification of the equation is received by making a Markov
assumption P(ti | ty1... tifl) = P(ti ‘ tifl)-

2. P(wyg | t1x) = Pwy |ty x)P(we |ty g, we)... Plwg | t1 g, wek—1)

k
= P(wy | t1,k)H2P(wi | 15wy, 1)
1=
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k
= P(wy | tz,k)H2P(wi | i)
1=

The last simplification of the equation is received by making a Markov
assumption P(w; |ty g, wy,i—1) = Plw; | t;).

k
3. P(t1p)P(wig | t1r) = P(ts)Plwy | t1,k),H2P(ti | ti1)P(w; | )
1=
Introducing the initial state ¢y,

= .]E[IP(t,- | ti—1)P(wi | ;)

1=

Thus,
k
argmaa:P(tI,k)P(ka |ti1k) = argmamHP(h | ti—1)P(w; | t;)
1,k 1,k =1

The formula describes a first order Markov model, or a bigram model.
By making a more general Markov assumption:

P(ti | iy ---ti—I) :P(ti | ti—n—|—1 ---ti—I)

a general formula for (n — 1)*order Markov model, or an n-gram model
can be received:

k
argmazrP(t; ) P(wig | t1 k) = argma:cHP(t1 | ticptrtiog)P(w; | t;)

tik trk =1
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Appendix G

Algorithms for reducing a
tagset

G.1 T-Tagging approach of Tufis (2000)

Notation

MSD Morpho-syntactic description codes: tags of the initial
large tagset.

MSD-lexicon Lexicon which provides MSDs for each token.

C-tag Reduced tagset: a tagset used for an intermediate tagging.

The algorithm

1. extract all ambiguity classes from the MSD-lexicon

2. normalize all MSD ambiguity classes (i.e. mark all the attributes that
take all possible values as irrelevant for the ambiguity class in case)
3. for each ambiguity class AC;

preserve only intra-categorial ambiguities: ICA;

4. for each ICA; repeat
for each MSD;; repeat
for each attribute A; in MSD;; repeat
if eliminating Ay does not reduce the cardinality of any of ICAs

then remove Ay from all tags in all ICAs
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else if eliminating A does not reduce the cardinality of more
than 10% of ICAs

then mark A, as removable

5. for all A; marked as removable
compute the maximal set of attributes that minimally reduces
the cardinality of all ICAs (not unique solution)

6. for each Ctag-set obtained in step 5 evaluate the performance

An example

MSD-AC; = (Afpms-n Nems-n Vmp-sm) ==> no ICAs.
MSD-AC; = (Ncfp-n Nefson Vmis3s Vmm-2s Vmnp) ==> 2 ICAs:
(Ncfp-n Nefson) and (Vmis3s Vmm-2s Vmnp).
Eventually, the algorithm will lead to:
Ctag-AC; = (ASN NSN VP)
Ctag-AC; = (NPN NSPN V3 V2 VN)
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G.2 BUTD approach of Dienes and Oravecz (2000)

Algorithm

1. Establish graph G whose nodes are the tags of the initial tagset. Con-
nect two nodes if they occur in the same ambiguity class.

2. Order the nodes of the graph in any way.

3. Establish a set of classes (= resulting tagset). Order the classes in any

way.

4. For each i = 1,2,... assign the i-th node to a class with the small-
est available number. Make this class unavailable for all neighboring
nodes.

An example

L. AL ADV PREP
| |
NOUN —— VERDB
2. ADI1T ——— ADV> PREP:
| |
NOUN: VIERBs

O -

- — [aove] — @Reed
\ |
NOUN4 —

Resulting classes: 1) ADJ, PREP, VERB; 2) ADV, NOUN.
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