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Abstract

Existing multivariate GARCH models either impose strong restrictions on
the parameters or do not guarantee a well-defined (positive definite) covariance
matrix. We focus on the multivariate GARCH model of Baba, Engle, Kraft and
Kroner (BEKK) and show that the covariance and correlation is not adequately
specified. This implies that any analysis of the persistence and the asymme-
try of the correlation is difficult and potentially biased. We illustrate this by
the use of Monte-Carlo simulations for different correlation processes and pro-
pose a new Bivariate Dynamic Correlation (BDC) model that parameterizes the
conditional correlation directly and eliminates the shortcomings of the BEKK
model. Empirical results for correlations of the German stock market index
with three international stock market indices reveal that correlations exhibit
different degrees of persistence and different asymmetric reactions than vari-
ances. In addition, we find that correlations do not necessarily increase with
variances implying a justification for international portfolio diversification.
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The knowledge of the time-varying behavior of correlations and covariances be-
tween asset returns is an essential part in asset pricing, portfolio selection and
risk management. However, correlations are considerably less frequently analyzed
than the variances (i.e. volatilities) of asset returns. We mainly explain this with
the higher difficulty in estimating such time-varying correlations and the larger
number of parameters to estimate. Consequently, studies comparing the existing
multivariate GARCH models are rare as opposed by the existing studies that com-
pare univariate time-varying volatility models (see Pagan and Schwert (1990) and

Engle and Ng (1993) among others).

For multivariate GARCH models we are only aware of the work of Kroner and Ng
(1998), Engle (2000) and Engle and Sheppard (2001). While Kroner and Ng (1998)
compare the main existing models by the use of real data, Engle (2000) and En-
gle and Sheppard (2001) use Monte-Carlo simulations to analyse different models
than Kroner and Ng (1998) with a focus on the Dynamic Conditional Correlation

(DCC) estimator.

The univariate GARCH model proposed by Bollerslev (1986) was extended by Boller-
slev, Engle and Wooldridge (1988). This model uses the vech operator and is thus
referred to as VECH-model. It does not guarantee a positive-definite covariance
matrix and the number of parameters is relatively large. Baba, Engle, Kroner and
Kraft (1991) proposed a multivariate GARCH model, called BEKK (named after
the names of the authors), that guarantees the positive definiteness of the covari-

ance matrix. Restricting the BEKK model to be diagonal reduces the number of



parameters that must be estimated. The Factor GARCH model also reduces the
number of parameters but can be transformed to a BEKK model. Interestingly, it
seems that even the restricted BEKK model has too many parameters since com-
monly bivariate models have been estimated (see Bekaert and Wu, 2000, Engle,
2000, Karolyi, 1995, Kroner and Ng, 1998, Longin and Solnik, 1998 and Ng, 2000).
In addition, we are not aware of any multivariate GARCH model that has been

estimated with a higher lag order than GARCH(1,1).

The Constant Correlation Model of Bollerslev (1990) does also circumvent the prob-
lem of possible non-positive definiteness of the covariance matrix but is very re-

strictive since it does not allow correlations to be time-varying.

Kroner and Ng (1998) proposed the general asymmetric dynamic covariance (ADC)
model that nests the VECH, the Factor GARCH, the BEKK model and the Con-
stant Correlation Model and extended these models to include asymmetries in the
reaction to shocks as proposed by Glosten et al. (1993) in a univariate context.
However, their nested model requires further restrictions to guarantee a positive-

definite covariance matrix.

Recently, Tse and Tsui (2000) proposed a new multivariate GARCH model that
parameterizes the conditional correlation directly by using the empirical correla-
tion and Engle (2000) proposed a time-varying correlation model, called Dynamic
Conditional Correlations (DCC) that also parameterizes the conditional correlation
directly but uses a two-stage estimation strategy. The Bivariate Dynamic Corre-

lations (BDC) estimator proposed in this paper can be assumed to be in the same



class as the models by Tse and Tsui (2000) and Engle (2000) but is different in

various aspects which we discuss later on.

We briefly review the existing multivariate GARCH models and focus on the BEKK
model since it is the only one that guarantees a positive definite covariance matrix.
Then we introduce a new bivariate model that parameterizes the conditional corre-
lation directly and guarantees positive definite covariance matrices with fewer pa-
rameters than the full BEKK model and more flexibility than the restricted BEKK
model. The fact that this model does only exist in bivariate form is theoretically
very restrictive. However, we will argue that an adequate bivariate model has not
been introduced so far and usually bivariate models are estimated as mentioned

above.

We focus on the persistence and the asymmetry of time-varying correlations since
these characteristics are important for portfolio diversification, i.e. it is important
to know whether correlations are equally persistent as volatilities and whether
there is any difference in the reaction of correlations to positive and negative

shocks.

The remainder of this paper is as follows: Section 1 discusses existing multivariate
GARCH models and focusses on the full and restricted BEKK model and its asym-
metric extensions. We also discuss the Constant Correlation Model of Bollerslev
(1990) and use this model as a benchmark for volatility estimates. Section 2 in-
troduces a new bivariate dynamic correlations model that has various advantages
over existing bivariate GARCH models. Section 3 shows results of Monte-Carlo

simulations for all discussed models. Section 4 estimates the BDC model for em-
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pirical data and section 5 concludes.

1 Multivariate GARCH Models

We use a simple specification for the mean equation since our interest is the time-

varying covariance matrix. Thus, returns are modeled as follows:

'rt = ,1, —+ €; € | Qt—l ~ N(O, Ht) (1)

where r; is a vector of appropriately defined returns and p is a (N x 1) vector of
parameters. The residual vector is ¢; with the corresponding conditional covariance

matrix H, given the available information set Q;_;.

We focus on the BEKK model since it is the only time-varying covariance model
that guarantees a positive-definite covariance matrix. We also discuss the Con-
stant Correlation Model (CCM) of Bollerslev (1990) and a zero correlation model

(ZCM) that are used as benchmark models.

1.1 The BEKK Model

The BEKK model was introduced by Baba, Engle, Kraft and Kroner (1991) and can
be seen as an improvement to the VECH model (introduced by Bollerslev, Engle
and Wooldridge, 1988). First, the number of parameters is reduced and second, the

positive-definiteness of the covariance matrix is guaranteed.

We initially present the full (unrestricted) BEKK model and its asymmetric exten-
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sion and then restrict this model to the diagonal BEKK. The covariance matrix of

the unrestricted BEKK model is

Ht = AIA -+ BIGt_IG:&_lB -+ CIHt_IC (2)

A, B and C are matrices of parameters with appropriate dimensions. It is obvious
from the equation above that the covariance matrix is guaranteed to be positive def-
inite as long as A’ A is positive definite. Furthermore, the parameters are squared
or cross-products of themselves leading to variance and covariance equations with-
out an univariate GARCH counterpart. Note that this is not true for the vech
model which is a simple extension of univariate GARCH models to a multivariate
form.

To clarify the difficulties in interpreting the parameters of the covariance matrix
we consider the general BEKK model in bivariate form. h;; and hyy denote the

variances of the return series and h,y their covariance:

2
hll,t h12,t , bir by €lt—1 €—1€2,¢t—1 bir bio
=AA+ +
2
h21,t h22,t bia by €1,t—1€2,6—1 €1 bar by
(3)
€11 C2a hll,t—l h12t—1 €11 Ci12
+
Ci2 Ca2 h12,t—1 h22,t—1 Ca1 Ca2



Without using matrices, we get the following form:

_ 2 2 2 2 2 2
hiis=aj; + b1151,t—1 + 2b11bar€r 16241 + 52162,,5_1 + cithiig—1 + 2cticaihigg—1 +
2
+ ¢y hoog1

2 2
hias = arpan + b11b1261,t_1 + (bigbar + bi1ban)€r 16241 + b21b2262,t_1 +

(4)

+ 011012h11,t—1 + (012021 + 011022)h12,t—1 + 021022h22,t—1 = h21,t
hoss = iy + a3y + 532637,5_1 + 2b12bog€rg_1€241 + b§263,t_1 + Eohing-1 +

+ 2ci9¢22h12,0—1 + C§2h22,t—1
The latter formulation clarifies that even for the bivariate model the interpretation
of the parameters may be misleading since there is no equation that does possess
its own parameters, i.e. parameters that exclusively govern an equation. Hence, it
is possible that a parameter is biased by the fact that it influences two equations
simultaneously or by the sole number of regressors (see also Tse, 2000), e.g. the
regressors fg,t_1 and the regressor hqs;_1 in the first variance equation (h;1,) could
both be viewed as a volatility spillover from the second return. In addition, the
statistical significance of the parameters is also unclear due to the combinations of

different parameters serving as new coefficients for particular regressors.

These critics do not all apply to the diagonal BEKK model where both parameter
matrices are diagonal. Thus, the off-diagonal elements are all equal to zero (apart
from the constant term A’A). The number of parameters to be estimated is sig-
nificantly lower while maintaining the main advantage of this specification, the
positive definiteness of the conditional covariance matrix. Instead of equation (4)

we have



hll,t = a‘%l + b%leit—l + C%1h11,t—1
h22,t = a‘%l + a§2 + b§26§,t—1 + Cg2h22,t—1
5)

higy = hopy = G11G22 + b11bag€r s 16241 + Cr1022h12,41

h21,t = h12,t
This model exhibits essentially the same problems as the Full BEKK model since
there is no parameter in any equation that exclusively governs a particular covari-
ance equation. Hence, it is not clear whether the parameters for i, are just the

result of the parameter estimates for 4., and h,, or if the covariance equation alters

the parameter estimates of the variance equations.

In addition, the model can be severely misspecified. For example, assuming that
the persistence of shocks to volatility is relatively high for both return series, say
b; + ¢;; = 0.05+ 0.90 = 0.95 for ¢ = 1, 2, then the persistence of the covariance must
be almost equally high, b;;b;; + ciic;; = 0.05-0.05+0.9-0.9 = 0.0025+ 0.81 = 0.8125 for
1 =1 and j = 2. Supposed that covariances are less persistent or equally persistent

as volatilities it is clear that either volatilities or the covariance is misspecified.

1.2 Constant Correlation Model and Zero Correlation Model

The Constant Correlation Model (CCM) of Bollerslev (1990) does model time-varying
covariances more parsimoniously than the models discussed above. The bivariate

model is given by



_ 2
hll,t =an + b1161,t—1 + Cllhll,t—l
_ 2
h22,t = Q2 + b2262,t—1 + C22h22,t—1
h12,t =p hll,th22,t (6)

h21,t = h12,t

where p is a parameter that can be estimated almost freely (p must be in the range
[—1,1]) and is equal to the empirical correlation coefficient (see Bollerslev, 1990).
In contrast to the BEKK model there is a parameter in the CCM (p) that exclu-
sively governs the covariance equation. Note that the CCM exhibits time-varying

covariances but only constant correlations.

To guarantee positive variances we use the variance equations of the diagonal
BEKK model for the variance equations of the CCM as suggested by Kroner and
Ng (1998).

Setting p to zero implies a model that we call Zero Correlation Model (ZCM).

We will use both the CCM and the ZCM to analyse in which respect covariances do

affect variance estimates.

1.3 Asymmetric Extensions

While it is straightforward in the diagonal BEKK Model to analyze whether the
covariance exhibits the same degree of persistence as the variances, the relevant

parameter estimates measuring the persistence of shocks are potentially biased by



each other. This is also true for the full BEKK Model and possibly more severe due

to the larger number of parameters.

The same problem arises for the asymmetric extensions of the models. To illustrate
this, we analyse the asymmetric extensions proposed by Kroner and Ng (1998) and

focus on the diagonal BEKK model.

For the bivariate case the asymmetric extension is

hll,t =..t d%lnit—l
hopy = ... + d§277§,t—1 0

higy = o + dirdogm 172,61

where 7; ; = min; :(€;+,0) and 5, = (7¢, 2, --)"-

Here, the covariance reacts to negative shocks 7;; as determined by the asymme-
try implied by the variance equations or vice versa. For example, assuming that
variance one (h;) does not react asymmetrically to positive and negative shocks
(d;; = 0) and variance two (hy) does (dyy = 0.2), then the asymmetric effect for the
covariance would be zero (d;1ds2 = 0). Assumed that there is an asymmetric effect
of the covariance either the variance equation or the covariance equation will be
misspecified. Another example is the case where the asymmetry of the covariance
is equal to 0.2. Then, the parameters d;; or dy; would have to be very large to

capture this covariance asymmetry (e.g. di; = dye = v0.2) 1.

The asymmetric extension of the CCM introduced by Kroner and Ng (1998) has
TAng and Chen (2001) report misspecifications of an asymmetric GARCH-M model by the inter-

pretation of the resulting asymmetry.
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the variance equations of the diagonal BEKK model and the covariance equation
as given in the original model (see equation 6). Again, we could use this model
to analyze how variance estimates change when correlations are modeled time-

varying. This question is further examined in the simulation study in section 3.

2 Bivariate Dynamic Correlations (BDC)

We propose a new bivariate model that is more flexible than the discussed models
and parameterizes the conditional correlations directly. In contrast, the conditional
correlations in the BEKK model are derived from the ratio of the covariance with

the product of the roots of the conditional variances (see equations (3) and (5)).

We write the covariance matrix H; in the following form:

Ht = DthDt (8)

where D, is a diagonal matrix with the roots of the variances on the main diagonal

and R; is a correlation matrix. In a bivariate form R; is

R, = 9)

with p; denoting the correlation between two series. H; is positive definite if R; is
positive definite. This is guaranteed as long as |p;| < 1. Thus we restrict |p;| to be

smaller than one by using the following transformation:
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Pt (10)

= N
where p} is the correlation restricted to be in the interval (—1;1). This restriction
allows to use own parameters for the correlation (covariance) equation and to in-
clude additional regressors without risking semi-definite or indefinite covariance

matrices.

Hence, the Bivariate Dynamic Correlations model (BDC) is specified by the follow-

ing equations:

_ 2 2 2 2

hiie = afy + b1161,t—1 + Cllhll,t—l
_ 2 2 2 2

hooy = a5y + b2262,t—1 + 022h22,t—1

Pt = 12 + bia€1 s 16241 + Crapr—1 (11)

Pt

P = —F——e
T+ (p)?
h12,t = P: Y4 hll,th22,t

The BDC Model is a dynamic correlation model since p; and thus h;o; are time-
varying. The covariance does possess its own parameters and the covariance ma-
trix is always guaranteed to be positive-definite. The specification allows to com-
pare the parameter estimates and therefore the degree of persistence for the vari-

ance equations and the correlation equation.

We use the cross product €;;_1€2;,—1 to model the correlation equation and addi-
tionally the cross product of the standardized residuals z;;_122;1 to analyze the
different behavior of the correlation process. Tse (2000) points out that there is
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no a priori reason to expect the standardized residuals to be a better specification.
Contrary to this statement we expect the results to be different due to the fact that
2z 1s corrected for volatility movements. In addition, the use of z is a more natural

specification for the conditional correlations (see Engle, 2000 and Tse, 2000).

We refer to the model using the raw residuals ¢; as BDC, and to the model using
the standardized residuals z; as BDC,. The correlation equation for the BDC,

model is given by:

pr = 12 + biaz1 12241 + Crape—1 (12)

The next subsection introduces the asymmetric extension of the BDC model.

2.1 Asymmetric BDC Model

An extension of the presented BDC models can also capture asymmetric effects of

the time-varying correlation. Thus, hy; and hoe and p; are specified as follows:

_ 2 2 2 2 2 . 2
hll,t =ajp + b1151,t—1 +cihig— + d11771,t—1
_ 2 2 2 2 2 .2
h22,t = ay + b2262,t—1 + cphoot—1 + d22772,t—1 (13)
13

Pt = 012 + big€i 16241 + Cr2pe—1 + diaMig—172,0—1

Again, 1, ; = min,(e;4,0) with n, containing only the negative shocks of the returns
at t. Note, that this specification does not require an asymmetric extension for the
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variance equations which is necessary for all other multivariate GARCH models.
Hence, this feature can also be used to include additional regressors in the corre-
lation equation without risking an indefinite covariance matrix, e.g. thresholds or

spillover effects are easily includable

Note that the model is different to the Dynamic Conditional Correlation (DCC)
Estimator of Engle (2000) in various respects. First, we estimate all variance and
covariance equations simultaneously. Second, the BDC model can differentiate
between the use of the raw residuals € and the standardized residuals z and third,
the BDC model is flexibly extendable, e.g. asymmetric extensions as presented

above or a threshold as suggested by Longin and Solnik (1998) can be included.

2.2 Estimation

The estimation of the models based on a sample of T' observations of the returns
vector r; is done through numerical maximization of a likelihood function assuming

normally distributed returns:

log L(0; 71, ... ,7p) = =T/2 log(27w) — 1/2 log(|H4|) — 1/2€,H; 'e; . (14)

The standard errors and associated t-values reported in this article are calculated
using the quasi-maximum likelihood methods of Bollerslev and Wooldridge (1992),

i.e. the standard errors are robust to the density function underlying the residuals.

The next section introduces a new bivariate model that reduces the number of

parameters compared to the full BEKK model and extends the flexibility compared
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to the restricted BEKK model.

3 Simulations

In this section, we compare the covariance estimates of the full BEKK, the diagonal
BEKK, the BDC model, the CCM and Zero Correlation Model (ZCM). We use the
CCM and the ZCM to compare the variance estimates and to analyse the impact of
the covariance specification on the variance estimates (T'se (2000) suggested such
an analysis 2).

The simulations and tests are partially similar to the ones undertaken by Engle
(2000)3.

We simulate bivariate GARCH models 200 times with 1000 observations with dif-
ferent time-varying correlations. We first generate 1000 Gaussian random num-
bers €; for i = 1,2 with mean zero and variance one and a given (time-varying)

correlation. Then we generate the variance equations:

hire = 0.1 4 0.04€},_; + 0.95h11 4
(15)

hoot = 0.1 4 0.20€5,_; + 0.50h0

h1; is highly persistent and hy; is less persistent. Given these variances we simulate

different correlation processes:

2In other words, Are the estimates of the parameters in the conditional-variance estimates ro-

bust with respect to the constant correlation assumption ? (page 109)
3Engle did compare the DCC model with the scalar BEKK, the diagonal BEKK, a moving average

process, an exponential smoother and a principle components GARCH. He did not include the full

BEKK model, the Factor GARCH model and any asymmetric extensions.
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(1) constant correlations: p, = 0.5, (ii) highly persistent time-varying correlations
(0 = a+ Bsin(t/50 = f) with a fast sine function given by « = 0, 8 = 0.5, f =1
and a slow sine given by a = 0, 8 = 0.9, f = 5) and (iii) a step function (p; = 0.5 *
round(t/900)). For the asymmetric extensions of the models we use the following

variance equations:

hiig = 0.1+ 0.04€%,_, + 0.85h11—1 + 0.17%,_,
(16)

hass = 0.1+ 0.10€3,_; + 0.50h92, 1 + 0.275,_,
The correlation process is assumed to be the same as for the non-asymmetric mod-

els.

We compare the estimates of h11 4, heo ; and p; with the true variance and covariance
series by (i) the mean absolute deviation (MAD), (ii) the means of the correlations
of the true covariance series (h;;; for i, j = 1, 2) with the estimated covariance series
and (iii) a F-test of a regression of the squared standardized residuals on the first
four lagged values and a constant to detect remaining autocorrelation.

The means of the correlations are computed since they provide a measure of the fit

of the estimated model compared to the simulated one.

3.1 Simulation Results

Table 1 present the results for the six different models (full BEKK, diagonal BEKK,
BDC,, BDC,, CCM and ZCM) in its non-asymmetric specification. The table con-
tains the results for the mean absolute deviation (MAD), the mean of the correla-
tion of the estimated process (variances and correlations) with the true simulated

series and the number of rejections of F-tests. The values denoted with a star do
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indicate the minimum value among the estimated models and among the different
correlation processes (constant correlations, fast sine function, sine function and

step function).

Constant correlations are best estimated by the CCM and time-varying correla-
tions are best estimated by the BDC Model. The fast sine function is an exception.
Here, the diagonal BEKK model performs best. However, the difference to the BDC
Model is rather negligible. In addition, we believe that the fast sine is economically

not a relevant case.

The results for the variances show that the CCM, the ZCM and the diagonal BEKK
perform best for the variance of series 1. For the variance of series 2 the BEKK
model and the ZCM perform best. All models do provide rather poor estimates for
has which is mostly due to the different variance process generated with more noise

than the first variance series.

The table where the mean of correlations is tabulated shows that the general re-
sults do not change considerably. For the variance 1 the CCM and the Diagonal
BEKK model perform best and for the variance 2 the Diagonal BEKK model and

the BDC model have the highest values.

The lower part of the table presents the number of cases where F-tests pointed to
remaining autocorrelations of the squared standardized residuals. Engle (2000)
showed for a bivariate model that only 22 is dependent on the estimated time-
varying correlations while z? is not. Panel 1 tabulates the results for 22 and 22.
Stars denote the minimum value of the number of remaining autocorrelations.
Here, the CCM and the ZCM perform best.
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For the asymmetric models results do not change considerably. Consequently, we

do not report our results due to space considerations.

We conclude from our simulation results that correlation estimates are closest to
the true values in the BDC model for time-varying correlations and the CCM is
best for constant correlations. The BDC', model does perform better than the BDC,
model which we attribute to the variance correction that potentially leads to less

noise in the correlation process.

The relatively good performance of the CCM and the ZCM with respect to the vari-
ances indicates that the correlation specification does not have any effect on the

variance estimates.

4 Empirical Results

We estimate the simple (non-asymmetric) and the asymmetric versions of the BDC

and the asymmetric diagonal BEKK model.

We use daily (close-to-close) continuously compounded returns of the German DAX
stock index, the DOW Jones Industrial Average, the FTSE100 and the NIKKEI225.
The indices span a time-period of 10 years from January, 1990 until December,
2000 with T' = 2580 observations for each stock index. Non-trading days are in-
cluded to synchronize the data. Dummy variables to account for these days are not
used since this would further augment the number of parameters and not change

the estimation results.

Tables 2 and 3 present the results for the correlation estimates for the BDC, model
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and the BDC, model in its non-asymmetric specification, respectively. Comparing
the values by» + ¢12 indicating persistence shows that the use of the standardized
residuals implies higher persistence for the (DAX, NIKKEI) and the (DAX, FTSE)

but lower persistence for the (DAX, DOW) correlations.

Table 4 gives results for the asymmetric BDC, Model of the variance and corre-
lation estimates of the DAX with the NIKKEI (second column), the FTSE (third
column) and the DOW (fourth column), respectively. The estimated volatilities are
highly persistent indicated by the sums of the parameters b2, + ¢?, and b2, + c2,.
These volatilities do all react asymmetrically to positive and negative shocks, i.e.

negative shocks do augment volatilities by more than positive shocks.

The correlation estimates do not give such a homogeneous picture: The correlation
between the DAX and the NIKKEI is constant and shocks are not persistent. The
correlation between the DAX and the FTSE is time-varying and shocks are highly
persistent. Finally, the correlation between the DAX and the DOW appears to be
constant and shocks are not persistent. The graphs of these estimated correlations

are plotted in figure 2.

The use of the standardized residuals z; for the correlation process in the BDC
model leads to different results. Table 5 shows that the parameter values are con-
siderably different to the ones obtained from the estimation of the BDC model with
the raw residuals ¢;: all correlations are highly persistent and jointly negative
shocks do increase conditional correlations in all cases. We attribute this differ-

ence to the fact that the shocks z; are corrected for the conditional variance.

Summarizing the results for the BDC model in its different specifications, we
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find that correlations do exhibit a lower persistence when the raw residuals are
used and approximately the same persistence as volatilities when the standard-
ized residuals are used. The asymmetric effect of the time-varying correlation is
smaller than for volatilities and even negative for the (DAX, DOW) correlations.
The lower asymmetry is independent of the type of shock (raw or standardized)

that is used.

Table 6 presents results for the diagonal BEKK model estimated with the same
return pairs as above. Comparing the parameter estimates for the variance equa-
tions of the DAX (a;1, bi1, ¢11) among the three estimations shows that parameters
vary substantially for the same return series (DAX) which clarifies that the vari-
ance estimates are influenced by the second return series and by the estimated
covariance. This is clear evidence that parameter estimates are biased since this
variation is not apparent in the BDC model. However, it seems that the bias is

mainly in the variance parameters.

Since the BEKK model does not estimate the correlation process directly but is the
ratio of the covariance and the squared root of the product of the variances, we can
only analyze the persistence and asymmetry of the variances and the covariance
and conclude that there is covariance asymmetry as indicated by the product of the
parameters dy; and dy,. A direct comparison of parameters with the BDC model is

not possible.

The constancy and non-persistence of shocks for the correlation process in two
cases estimated with the BDC Model is unique since it could not be revealed by

the single use of any standard multivariate GARCH model.
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4.1 The Asymmetry of Correlations

Asymmetric effects of volatilities to positive and negative shocks are well docu-
mented in the literature and explained with the leverage effect (Black, 1976 and
Christie, 1982) and the volatility feedback effect (Campbell and Hentschel, 1992).
However, little is known about the temporal behaviour of stock return correlations
(see Andersen et al., 2000 and Andersen et. al., 2001) and even less of the potential

asymmetric effects of positive and negative shocks.

Theoretically, correlations should increase if shocks of two time series have the
same sign and decrease if shocks have opposite signs. In addition, correlations
should increase by the same value for jointly positive and jointly negative shocks,

i.e. there is no asymmetric effect.

In contrast, the estimation results of the asymmetric BDC model show that there
is an asymmetric effect of correlations and that this asymmetry is not similar to
the one observed for volatilities.

Focussing on the parameters b, and d;» in Table 4 reveals that correlations in-
crease with jointly positive shocks for the (DAX, FTSE) and (DAX, DOW) returns
and slightly decrease for the (DAX, NIKKEI) correlation. Correlations increase
with negative shocks for the (DAX, NIKKEI) and (DAX, FTSE) series and decrease

for the (DAX, DOW) return series.

To clarify these findings we plot news-impact surfaces for the correlations given by
Figure 3 and by figure 4 (frontal views). These functions show how correlations

react to different combinations of shocks of two different time-series. We set the
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range of positive and negative shocks to [—5, +5].

Due to the construction of the correlation process, all news-impact surfaces exhibit
a symmetric behaviour for the residuals of opposite signs, i.e. negative shocks of
one stock index do not have a larger influence on the correlation than negative
shocks of the other stock index. The same is true for positive shocks. Such a sym-
metric picture is not existent if both shocks do have the same sign since we account

for such differences in the correlation equation (equation (13)).

The asymmetry of correlations is closely related to the empirical finding that corre-
lations increase with volatility. More precisely, it was often stated that correlations
increase in bear markets thus calling into question the desirability of international
portfolio diversification (see De Santis and Gerard, 1997, Longin and Solnik, 1998,
Longin and Solnik, 2001, Ng, 2000, Ramchand and Susmel, 1998 and Susmel and

Engle, 1993).

Interpreting simultaneously high positive and negative values of ¢; and ¢ as a

high-volatility state, we can answer this question.

The results for the correlation of the DAX with the NIKKEI and the FTSE do
replicate the findings in the literature, i.e. international portfolio diversification is
not effective whenever it is needed most. The result for the correlation of the DAX
and the DOW is counter to the findings in the literature and further encourages

international portfolio diversification between Germany and the US.
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5 Conclusions

We have shown that the existing multivariate GARCH models do not adequately
model constant or time-varying correlations. The same is true for the asymmetric
extensions of these models. The Bivariate Dynamic Correlations Model introduced
here performs clearly better in this regard. Taking into account that usually mul-
tivariate GARCH models are estimated only for two asset returns, the BDC model

is empirically not so restrictive.

We have estimated the BDC model for the DAX with three international stock mar-
ket indices and found that correlations do exhibit a different temporal behaviour
as volatilities, i.e. correlations are less persistent than volatilities and the asym-
metry of shocks on volatility is more pronounced than the asymmetric effects of

jointly positive or negative shocks on correlations.

Furthermore, we find that correlations do not always increase with volatilities. It
is necessary to differentiate between jointly positive and negative shocks. This re-
veals that correlations increase with jointly negative shocks for the (DAX, NIKKEI)
and (DAX, FTSE) portfolio but not for the (DAX, DOW) portfolio where correlations
decrease with jointly negative shocks. This result shows that international portfo-
lio diversification is at least effective for an equally weighted portfolio composed of

the DAX and the DOW,.
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Figure 1: Simulated Correlation processes
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Table 1: Simulation Results
Mean of MAD

FBEKK D.BEKK BDC. BDC, CCM ZCM

correlations

constant 0,0629 0,1945 0,0290 0,0319 0,0176*  0,5000
fast sine 0,1646 0,1600* 0,2061 0,1771 0,5655 0,5662
sine 0,1658 0,1950 0,1287 0,1232* 0,2184 0,2931
step 0,1650 0,2017 0,1446 0,1300*  0,2473 0,2745
variance 1

constant 0,8508 1,0084 0,6328*  0,6922 0,7100 0,6572
fast sine 1,7981 1,7833 0,8517 1,0445 0,7087*  0,7193
sine 0,8904 0,7062 0,7471 0,7007 0,6531 0,6247*
step 0,8526 0,8326 0,6754*  0,7760 0,7300 0,6896
variance 2

constant 0,0841 0,0596* 0,0739 0,0714 0,0736 0,0746
fast sine 0,0974 0,0901 0,0735 0,0774 0,0725 0,0716*
sine 0,0643*  0,0696 0,0703 0,0718 0,0741 0,0741
step 0,0652*  0,0698 0,0701 0,0713 0,0714 0,0736

Mean of correlations

FBEKK D.BEKK BDC. BDC . CCM ZCM

correlations

constant 0,1971 0,0757 0,4426* 00,4381 -0,0010

fast sine 0,9433 0,9448%* 0,9142 0,9337 -0,0199

sine 0,6054 0,5000 0,7715 0,7815*  0,0715

step 0,6233 0,4800 0,6857 0,7626*  -0,0286

variance 1

constant 0,9356 0,9674 0,9676 0,9652 0,9722* 00,9717

fast sine 0,8929 0,9181 0,9567 0,9372 0,9671*  0,9663

sine 0,9401 0,9764* 0,9550 0,9607 0,9730 0,9713

step 0,9400 0,9718 0,9685 0,9729 0,9643 0,9735*

variance 2

constant 0,5434 0,7779* 0,6673 0,6806 0,6452 0,6627

fast sine 0,7476 0,7776* 0,7398 0,7311 0,6690 0,6754

sine 0,6920 0,6895 0,7011*  0,6960 0,6483 0,6500

step 0,6821 0,7092 0,6961 0,7243* 00,6682 0,6731
F-tests

FBEKK D.BEKK BDC. BDC, CCM ZCM

variance 1

constant 14 8 6% 8 6* 6*
fast sine 44 30 12 16 6* 6*
sine 18 16 6 8 4% 4%
step 14 14 1* 4 8 1*
variance 2

constant 14 24 2 2 0* 0*
fast sine 52 42 132 76 6* 6*
sine 18 6* 10 6* 6* 6*
step 8 22 4 8 14 1*

a star denotes the minimum or maximum value in a row
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Table 2: BDC. MODEL Estimation Results

Parameters DAX, NIKKEI DAX, FTSE DAX, DOW

ais 0,0720% 0,0609%**  0,0018
(0,0498) (0,0234) (0,0018)

bio 0,0125%* 0,0208%*  0,0017**
(0,0061) (0,0070) (0,0010)

C12 0,7230%%* 0,8846%**  (,9918%**
(0,1758) (0,0403) (0,0067)

Correlation equation:

Pt = Q12 + bia€1 16241 + Crapr—1

Table 3: BDC, MODEL Estimation Results

Parameters DAX, NIKKEI DAX, FTSE DAX, DOW

ais 0,0247* 0,0331%* 0,0089
(0,0189) (0,0160) (0,0197)

bio 0,01971%#* 0,0318%%*  0,0061
(0,0072) (0,0078) (0,0050)

C12 0,8943%#* 0,9228%%*  (0,9626%**
(0,0656) (0,0282) (0,0704)

Correlation equation:

pr = Q12 + b2z 412241 + Crapr—1
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Table 4: BDC. MODEL Estimation Results

Parameters DAX, NIKKEI DAX, FTSE DAX, DOW

i 0,0430 ** 0,0507 ** 0,0440 **
(0,0236) (0.0238) (0,0231)
o -0,0426 ** 0,0357 ** 0,0432 *#*
(0,0245) (0,0163) (0,0147)
ai 0,3344 % 0,3331 *#*  (,3514 ***
(0,0831) (0,0802) (0,0831)
22 0,2642 *** 0,1170 *#*  0,113] ***
(0,0491) (0,0181) (0,0252)
bi1 0,2764 *** 0,2868 *#*  (,2727 ***
(0,0436) (0,0410) (0,0454)
bao 0,1681 *** 0,1424 =+ (0,1332 ***
(0,0371) (0,0324) (0,0338)
11 0,8937 s 0,8971 ***  (,8875 ***
(0,0302) (0,0288) (0,0308)
Co2 0,9344 % 0,9649 ***  (,9661 ***
(0,0144) (0,0065) (0,0105)
dit 0,3047 0,2558 ##%  (,3179 ***
(0,0867) (0,0835) (0,0834)
dao 0,3655 ¥ 0,2527 % (,2483 ***
(0,0436) (0,0287) (0,0537)
a2 0,1697 0,0665 ** 0,2565 ¥
(0,1958) (0,0395) (0,0644)
bio -0,0090 0,0222 0,0131 *
(0,0198) (0,0248) (0,0097)
C12 0,3301 0,8726 ***  0,1606
(0,7458) (0,0694) (0,2114)
dio 0,0444 0,0022 * -0,0456 ***
(0,0431) (0,0269) (0,0115)
F-stat. 2% 0.1383 0.1611 0.1623
F-stat. 23 0.5080 1.4352 0.5647
mean p 0.2599 0.5289 0.2831

kwk k% denote significance at the 1, 5, 10 percent level, respectively
standard errors in parenthesis

Covariance Equations:
_ 2 2 2 2 2,2
hie = afy + b1151,t—1 + Cllhll,t—l + d11771,t—1
_ .2 2 2 2 2,2
hooy = a5y + b2262,t—1 + 022h22,t—1 + d22772,t—1
Pr = Q12 + bia€i_1€241 + Cropr—1 + di2M1 - 172,01
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Table 5: BDC, MODEL Estimation Results

Parameters DAX, NIKKEI DAX, FTSE DAX, DOW

i 0,0409 ** 0,0490 ** 0,0677 %
(0,0241) (0.0237) (0,0237)
Lo -0,0425 ** 0,0369 ** 0,0489
(0,0257) (0,0164) (0,0147)
ai 0,3290 % 0,3396 ***  (0,3424 ***
(0,0813) (0,0804) (0,0811)
22 0,2657 ¥ 0,1207 % 0,1172 ***
(0,0489) (0,0175) (0,0274)
bi1 0,2873 0,2762 %  (,2778 ***
(0,0423) (0,0407) (0,0470)
b2 0,1705 0,1369 *#*  0,1331 ***
(0,0371) (0,0329) (0,0374)
11 0,8946 *** 0,8959 ##%  (,8892 ***
(0,0294) (0,0297) (0,0302)
C2 0,9336 *** 0,9644 ***  (,9633 ***
(0,0142) (0,0065) (0,0121)
di1 0,2914 *#* 0,2707 *¥*  0,3116 ***
(0,0871) (0,0836) (0,0853)
dao 0,3676 *** 0,2589 *#*  (,2644 ***
(0,0427) (0,0280) (0,0544)
a2 0,0174 * 0,0268 ** 0,0002
(0,0119) (0,0142) (0,0011)
bio 0,0106 0,0128 -0,0031
(0,0113) (0,0125) (0,0027)
C12 0,9174 *** 0,9346 ***  (,9949 ***
(0,0439) (0,0266) (0,0039)
dio 0,0125 0,0260 ** 0,0090 **
(0,0146) (0,0145) (0,0048)
F-stat. 2% 0.3309 0.3809 0.3519
F-stat. 23 0.6944 1.3277 1.4649
mean p 0.2650 0.5307 0.2631

kwk k% denote significance at the 1, 5, 10 percent level, respectively
standard errors in parenthesis

Covariance Equations:
_ 2 2 2 2 2,2
hiy = a%l + b1151,t—1 + Cllhll,t—l + d11771,t—1
_ 2 2 2 2,92
hooy = a5y + b2262,t—1 + 022h22,t—1 + d22772,t—1
pr = 2+ biaz1 12011 + Cropr—1 + di2n(2)1,4-11(2)2,6-1
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Table 6: Diagonal BEKK MODEL Estimation Results

Parameters DAX, NIKKEI DAX, FTSE DAX, DOW
1 0.0559 *** 0.0534 ***  (0.0576 ***
(0.0201) (0.0205) (0.0197)
Lo -0.0458 ** 0.0327 ***  (.0401 ***
(0.0242) (0.0154) (0.0143)
a1 0.2479 *** 0.1767 ***  (0.1644 ***
(0.0418) (0.0375) (0.0325)
29 0.0598 *#* 0.0860 ***  (.0588 ***
(0.0277) (0.0298) (0.0233)
by 0.2796 *** 0.2173 ***  (,2328 #**
(0.0302) (0.0414) (0.0469)
bao 0.1097 *** 0.1836 ***  (.1217 ***
(0.0490) (0.0421) (0.0586)
i1 0.9294 *** 0.9550 ***  (.9605 ***
(0.0156) (0.0122) (0.0123)
Co2 0.9445 *** 0.9342 ***  (,9405 ***
(0.0111) (0.0209) (0.0182)
di1 -0.1693 ** 0.1809 ***  -0.0817
(0.0849) (0.0410) (0.0752)
doo -0.3589 #** 0.3068 ***  -(0,3522 ***
(0.0375) (0.0392) (0.0554)
(d11d22) 0.0608 0.0555 0.0288
F-stat. 22 0.2806 0.2721 0.2545
F-stat. 22 2.3377 *%* 4.6050 ***  1.6418 *
mean p 0.3365 0.4199 0.2420

Rk wE ¥ denote significance at the 1, 5, 10 percent level, respectively
standard errors in parenthesis

Covariance Equations:
_ 2 2 2 2 2,2

hig = a%l + b1151,t—1 + Cllhll,t—l + d11771,t—1
_ 2 2 2 2 )

hooy = aiy + ax + b2262,t—1 + 022h22,t—1 + d22772,t—1

hi2t = anage + biibagers—1€2:1 + cricaehiog—1 + dirdom —1m2,6-1
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