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Chapter 1

Introduction

When Garman (1976) coined the term ”market microstructure”, a new research direction

in the broad field of finance and capital market research was born. In recent years, there

was a surge in financial market microstructure research. Due to the new dimensions of

computer technology and availability of data, especially, empirical studies are sprouting up.

Also new trading platforms and trading mechanisms have evolved and gain more and more

influence. Fully electronic limit order books play a very important role in today’s stock

exchange design. They differ from a traditional specialist market in terms of transparency,

anonymity and the wide variety of order types from a traditional specialist market. While

the classical capital market theory deals with equilibrium prices and equilibrium quantities,

market microstructure rather tries to shed light on the path to equilibrium. How can agents

benefit from not only watching the outcome of the trading process (e.g daily closing prices)

but the trading process itself (e.g when and how much is traded on a transaction level)? How

fast are prices reacting to news events? What is the probability that a market event was

triggered by private information? How large is the impact of private information compared

to pure noise trading on prices? What is the best market design to facilitate a profitable

trading platform? All those important questions demand a more detailed look through the

microscope at the trading process itself.

Referring to Madhavan (2000), one could say:

”Market microstructure is the area of finance that studies the process by which

investors’ latent demands are ultimately translated into prices and volumes.”

1



CHAPTER 1. INTRODUCTION 2

When talking about empirical market microstructure we usually talk about large data sets

representing the fast-paced trading process. Compared to traditional daily or weekly data,

high-frequency data poses an enormous challenge for the researcher. Generally spoken, the

notion that the more information, i.e. the more data, the better the results has been found

to be wrong in several respects. A famous example is measuring volatility more accurately

by using intra-day data of price changes. Even though it was shown that using a finer time

grid for the data could substantially enhance short-term forecasts there was a drawback.

Naturally, seeing the aforementioned improvement we would suggest to make the time grid

even finer and eventually take every available data point. The negative phenomenon related

to this issue is well known as microstructure noise. If microstructure noise is left unaccounted

for, increasing the frequency beyond a certain point can lead to serious flaws concerning the

estimated parameters of interest (compare Aı̈t-Sahalia, Mykland, and Zhang (2005)). On

the other hand, if agents act rationally, prices of financial assets should adjust very quickly

to their true values. Hence, it is desirable to use data on its highest frequency, so-called

tick-by-tick data to learn something about price discovery.

Broadly speaking, one could say that from a theoretical microstructure perspective, each

market event is informative. From a statistical point of view an irregularly spaced tick-by-tick

data series is a marked point process. The time stamps of the events are the points and the

realizations are the marks. Traditionally, time intervals were equally spaced and thus, did

not convey additional information. When modeling high-frequency time series not only are

the realizations of the variables of specific interest but their timing as well. Obviously, if the

timing of market events is not purely random, it is desirable to find an adequate modeling

approach describing the ”timing process”. Engle and Russell (1998) showed that the waiting

time between market events is predictable and proposed to model the waiting times as an

autocorrelated conditional duration (ACD) process. Since then, a plethora of econometric

models has been proposed to account for the irregularly spaced time occurrence of market

events. For example, Ghysels and Jasiak (1998) find that volatility has an impact on the time

between transactions and that the persistence in GARCH models drops when trade durations

are taken into account. Dufour and Engle (2000) analyze the price impact of trades taking

into account the trade duration.

The vast amount of literature on the topic comprises, among others, the book of Harris
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(2003) which focusses on the different trading and exchange mechanisms. Excellent surveys

about theoretical and empirical models brought forward in market microstructure are O’Hara

(1995), Madhavan (2000) and, more recently, Biais, Glosten, and Spatt (2005). A good share

of the methodologies used in empirical market microstructure is summarized in Hasbrouck

(2007).

How to measure information on financial markets in a microstructure setting

The traditional microstructure view explained price discovery mainly in the context of

inventory models (see for example Ho and Stoll (1981) and Ho and Macris (1984)) meaning

that the specialist who faces order flow uncertainty determines his quotes in order to optimize

his inventory holdings. The last two decades, however, strengthened the view that informa-

tion related trading is far more important for price formation (see Glosten and Harris (1988),

Huang and Stoll (1997) or Madhavan, Richardson, and Roomans (1997) to name a few). A

common basic assumption of the latter models is that there are two categories of traders,

informed traders who possess superior information about the fundamental asset value and

uninformed traders who merely trade for liquidity needs. The first significant contribution in

empirically measuring the informational content of a trade has been provided by Hasbrouck

(1991a). In his bivariate VAR approach he quantified the impact of a trade on the instan-

taneous quote revision after the trade. Further, Hasbrouck (1991b) derives an information

measure based on a variance decomposition of the VAR allowing to compare the degree of

information for different stocks.

In this thesis, I will focus on two types of microstructure models. The first model class

comprises spread decomposition models, relating the price process to order flow (or trade

direction) in order to decompose the bid-ask spread into an adverse selection component re-

lated to private information and into a component due to order processing costs. The second

model class are sequential trade models, using order imbalances determined by aggregated

order flow over a fixed time interval to estimate the probability of informed trading (PIN).

Spread Decomposition Models
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Two views about the constituents of the bid-ask spread have dominated the literature in

the past decades. In the late 1970’s (e.g. Stoll (1978a) and Stoll (1978b)) and early 1980’s

(e.g. Amihud and Mendelson (1980) and Ho and Stoll (1981)), most studies dealing with

microstructure theory pursued the view that, beside the institutional costs of order processing,

the spread is the result of inventory optimizing behavior of the specialist. However, in the

last 20 years, more and more exchanges have evolved running a fully electronic limit order

book where liquidity is provided voluntarily via the submission of limit orders. For this type

of exchange, inventory costs should play at best a minor role since nobody is obliged to take

inventory. Bagehot (1971) was the first to distinguish between liquidity traders and informed

traders and noted that the bid-ask spread consists of three components: order processing

costs (including costs of exchange infrastructure etc.), inventory costs (to compensate for the

risk of holding a sub-optimal portfolio) and adverse selection costs (to compensate for the

risk of losing to a superior informed trader). In a newer study, Flood et al. (1998) find

that in multiple dealer markets, search costs related to finding price quotes should be taken

into account as an additional component. Drawing on the information asymmetry approach,

several models have been proposed to disentangle and estimate those components. Some

of the most popular and widely used models are Glosten and Harris (1988), George, Kaul,

and Nimalendran (1991), Huang and Stoll (1997) and Madhavan, Richardson, and Roomans

(1997).

In chapter 2, I will present an extension of the spread decomposition model of Madhavan,

Richardson, and Roomans (1997). The novelty is to measure the impact of trade duration

shocks extracted from an ACD model on the information content of a transaction. While

Dufour and Engle (2000) find that transactions with short durations have a higher price im-

pact and thus, are more informative, the results of Grammig, Theissen, and Wünsche (2007)

indicate the opposite relationship.

Sequential Trade Models

Another strain of market microstructure literature does not focus on tick-by-tick event

data but on aggregated order flow. Some famous models belonging to the class of sequential
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trade models are Copeland and Galai (1983), Kyle (1985)1, Glosten and Milgrom (1985),

Glosten (1987) and Easley, Kiefer, O’Hara, and Paperman (1996). The central assumption of

this model class is that two types of agents, informed and uninformed, trade with a specialist

who does not know the trader type he deals with. The specialist is therefore not only exposed

to inventory costs but additionally to the risk of an adverse price movement when dealing

with an informed trader. But she can infer information about the proportion of informed

traders in the market by observing the order flow and adjust transaction costs accordingly.

Chapter 3 and 4 deal with extensions of the sequential trade model proposed by Easley, Kiefer,

O’Hara, and Paperman (1996). Chapter 3 provides an application of the EKOP model with

time varying arrival rates proposed by Easley, Engle, O’Hara, and Wu (2002). In contrast to

Easley et al., I apply the model to intra-day data, i.e. buys and sells are aggregated for each

five minute interval of the trading day. This allows the estimation of an intra-daily pattern of

the probability of informed trading together with intra-daily arrival rate dynamics. From an

economic perspective, the model specification allows for strategic behavior of the two trader

groups.

In chapter 4, I show that the traditional EKOP specification lacks empirical fit concern-

ing the joint distribution of buy and sell counts. Venter and de Jongh (2004) propose to

use a bivariate Poisson Inverse Gaussian mixture to model the joint process instead of an

independent bivariate Poisson distribution. Although the empirical fit can be enhanced sub-

stantially, their model is rather intractable concerning the computational effort to compute

the likelihood function. Therefore, I present the bivariate negative binomial distribution as a

viable alternative. It not only delivers a very good empirical fit but can be easily computed

and converges almost as rapidly as the traditional Poisson specification. Further, I show in a

simulation study, if and how the estimated parameters, especially the probability of informed

trading, are affected when the underlying count distribution is misspecified. The results show

that the commonly used Poisson model tends to overestimate the PIN if the buy and sell

counts are realizations of a mixed Poisson process.

1Kokot (2004) pointed out that the Kyle model is a Walrasian batch model rather than a sequential trade
model because the market maker sets a single price (not a bid and an ask) for which all trades are executed.
However, the model design is very similar.



Chapter 2

Revisiting the Role of Time for the

Price Impact of a Trade

Dufour and Engle (2000) have shown that the duration between subsequent trade events car-

ries informational content with respect to the evolution of the fundamental asset value. Their

analysis supports the notion that ”no trade means no information” derived from Easley and

O’Hara’s (1992) microstructure model. This paper revisits the role of time in measuring the

price impact of trades using a structural model and provides challenging new evidence. For

that purpose we extend Madhavan et al.’s (1997) model to account for time varying trading

intensities. Our results confirm predictions from strategic trading models put forth by Parlour

(1998) and Foucault (1999) in which short durations between trades are not related to the

processing of private information. Instead, they are caused by strategic trading of impatient

non-informed agents who use market orders more intensively when order book liquidity is high.

Chapter is based on the article Time and the Price Impact of a Trade - A Structural Approach

by J. Grammig, E. Theissen and O. Wuensche (2007)

6
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2.1 Introduction

Why do security prices change? What is the amount of price-relevant information contained

in a trade event? And in which way is the phenomenon that the time intervals between trade

events exhibit idiosyncratic patterns associated with information processing? The availability

of financial markets transaction level data allows to address those questions. Valid answers

are interesting for both academia and decision making of investors and designers of trading

venues. It is thus not surprising that a vast literature has evolved, theoretical and empiri-

cal, in which these questions are addressed. Bringing together the empirical microstructure

literature originating in the seminal papers by Hasbrouck (1991a,b) who introduced vector

autoregressive models (VARs) in microstructure, and recent contributions to modeling the

properties of financial duration processes (Engle and Russell (1998), Engle (2000)), Dufour

and Engle (2000) investigate the role of time varying transaction intensities in measuring the

informational content of trades. Their paper made a strong point for the ”no trade means no

information” prediction derived from Easley and O’Hara’s (1992) microstructure model.

This paper revisits the role of time in measuring the price impact of trades using a struc-

tural framework and provides challenging new evidence. Instead of employing an agnostic

VAR, we extend Madhavan et al.’s (1997) seminal model (MRR) to account for time varying

trading intensities. To model the duration process we combine the MRR model and Engle

and Russell’s (1999) ACD framework. We estimate both the Dufour/Engle VAR and the

extended MRR model for a cross section of stocks traded on one of the largest Continental

European Markets and also, for robustness checks, on NYSE data. The results challenge the

”no trade means no information” interpretation. Rather, our analysis corroborates predic-

tions from strategic trading models put forth by Parlour (1998) and Foucault (1999), in which

short durations between trades are not related to the processing of private information.

This paper connects to various streams in the literature which investigate the role of time

in the trading process. The empirical analysis provides an empirical test of the predictions

of theoretical microstructure models involving the role of time in the trading process. Due

to their different inherent assumptions, these models deliver conflicting predictions. For

instance, Diamond and Verrecchia (1987) predict that in the case of short sale constraints

long intervals of trade inactivity are evidence for bad news. On the other hand, in absence of

such restraints, the model put forth by Easley and O’Hara (1992) implies that long no-trade
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intervals indicate that there is no new information. In their model informed traders split up

their orders in smaller chunks in order to disguise their trading motive. The order splitting

strategy increases trading intensity, and leads to shorter durations between trades which then

tend to be more informative w.r.t. the evolution of the asset price. Another classic reference

is Admati/Pfleiderer (1988). In their model, non-informed liquidity traders cluster during

periods of the trading day. This implies that high trading intensity would be associated with

less informed trading. Although traders with private information may hide in the crowd

of liquidity traders, the price impact of their trades is ”cushioned” by the trading of the

uninformed liquidity traders. Recent strategic trading models (Parlour (1998) and Foucault

(1999)) provide more elaborate explanations for such a clustering process. In Parlour’s (1998)

model, large depth on the bid side increases buyer ”aggressiveness”, in other words: more buy

market orders, more (buyer initiated) trading activity. The reasoning is symmetric for the

sell side. Arguably, periods of high liquidity (measured as the depth at the best quotes) in

limit order markets are associated with a lesser degree of private or public information in the

market. Specifically, patient limit order traders, who are not trading for reasons of exploiting

their superior information, and who are not afraid of being ”picked off” by an informed order

or adverse price movement, will supply ample liquidity. Thus, high liquidity in the order

book emerges during non-informative periods. As liquidity traders gather together (via limit

order submission, they supply liquidity) during non-informative periods, trading becomes

more aggressive (more market orders triggering trades) when impatient traders strive to get

priority over standing limit orders.

The second stream in the literature to which this paper connects to is the statistical mod-

eling of time varying transaction intensities in financial markets. Engle and Russell’s (1998)

seminal contribution triggered a growing literature that proposes statistical methodologies to

account for the idiosyncratic time series properties of financial duration processes (e.g. Engle

(2000), Zhang, Russell, and Tsay (2001) Bauwens and Giot (2001), Fernandes and Grammig

(2006)). Dufour and Engle (2000) linked this literature to a classical empirical microstruc-

ture methodology introduced by Hasbrouck (1991a, 1991b) who proposed to measure price

impacts of trades via a VAR framework. Hasbrouck’s VAR approach does not explicitly take

into account the fact that the time between trades and quote updates is varying. The poten-

tial information contained in these no-trade intervals is neglected. Dufour and Engle (2000)
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showed that accounting for the time between trades does matter in measuring trade informa-

tiveness in a Hasbrouck-VAR framework. Dufour and Engle (2000) estimate their model on

a cross section of stocks using the 1991 TORQ data base. Their study made a strong case

for the ”no trade means no information” prediction derived from Easley and O’Hara (1992).

They found that trades after short durations have a significantly higher price impact than

trades after long durations.

The third stream in the literature with which our contribution is connected, is the class

of structural models introduced by Glosten and Harris (1988), Madhavan, Richardson, and

Roomans (1997) and Huang and Stoll (1997). In contrast to Hasbrouck’s VAR framework,

these models contain structural equations for the evolution of the latent asset price which

depends on the informational content of trade events. Furthermore, the anticipatory be-

havior of liquidity suppliers who take into account price impacts of trades (due to informed

trading), order processing costs, and possible costs of holding unwanted inventory, is explic-

itly accounted for. As in Hasbrouck’s VAR methodology, however, the information allegedly

contained in no-trade intervals is not taken into account.

This paper contributes to the literature in the following way. We extend the Madhavan

et al. (1997) (MRR) model to account for time-varying trade intensities, and revisit the role

of time in measuring the informational content of a trade. To account for time varying trade

intensities in a structural model we combine the MRR model with the autoregressive con-

ditional duration (ACD) model introduced by Engle and Russell (1998). To our knowledge

this paper is the first to provide a link of the structural models of market microstructure to

the literature that deals with the modeling of dynamic duration processes. We show how

structural parameters and the parameters of the ACD can be conveniently and simultane-

ously estimated using the Generalized Method of Moments (GMM). We estimate both the

Dufour/Engle VAR and our extended MRR model on a cross section of stocks traded on one

of the large European Stock markets, the Frankfurt Stock Exchange (FSE) which is operated

as an automated auction market. For a robustness check the model is also estimated on

a matched sample of NYSE traded stocks. One advantage of using the FSE data is their

excellent quality. Problems that arise from misclassified trades, which can have severe conse-

quences (see Boehmer, Grammig, and Theissen (2007)), are avoided. Furthermore, as open

order book markets become increasingly important, it seems interesting to estimate these
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models using recent data generated within these market structures.

The main results are as follows. Estimating the extended MRR model on European and

NYSE data we find that trades occurring after periods of inactivity (long durations between

trades) are more informative than trades during active periods (short durations), a result

that is also confirmed for the NYSE control sample. The adverse selection component of the

spread is higher for trades after long durations. We also find that adverse selection costs of less

actively traded stocks are more severely affected by the time between transactions than more

actively traded stocks. These results challenge the ”no trade means no information” result of

Dufour and Engle (2000). Rather than supporting the predictions of the Easley and O’Hara

(1992) model, our findings are more in accord with the models of strategic trading in limit

order markets (Parlour (1998), Foucault (1999)). As noted above, a high trading intensity

in those models is caused by the submission of market orders by impatient, yet uninformed

traders who strive aggressively for priority for their orders when the liquidity on their own

market side is high (small spread, large depth). However, liquidity supply is ample when limit

order traders are not afraid of being picked off by an adverse price movement (be it induced

by public or private information processing). These results emphasize the relevance of the

Admati/Pfleiderer (1988) explanation that through clustering of liquidity-induced trading,

short durations between trades are associated with a smaller price impact of trades.

Estimating Dufour and Engle’s extended Hasbrouck-VAR on our data we broadly con-

firm their main conclusions. The contradictory results must therefore be attributable to the

methodology used to measure the informational content of trade. Investigating this issue

in greater detail we conjecture that the differences are caused by the way the economet-

ric methodologies deal with partially filled market-to-limit orders which are a quite popular

instrument used by traders and partially filled marketable limit orders.

The remainder of this chapter is organized as follows. Section 2.2 describes the data used

for the analysis and the market structure. The empirical methodology employed in our study

is presented in section 2.3. In section 2.4 we discuss the empirical results and section 2.6

concludes.
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2.2 Market Structure and Data

In our empirical analysis, we use data from the automated auction system Xetra which is

operated at various European trading venues, like the Vienna Stock Exchange, the Irish

Stock Exchange, the Frankfurt Stock Exchange (FSE) and the European Energy Exchange.1

Specifically, our data are the 30 DAX stocks traded at the FSE in the first quarter, 2004. In

chapter 2, we also use TAQ data for a matched sample of NYSE traded stocks as a robustness

check. Since the NYSE trading process has been outlined in many papers and textbooks (see

e.g. Bauwens and Giot (2001) and Harris (2003) for lucid surveys), we refrain from adding

another description. The Xetra trading system, however, warrants some explanations.

Xetra is a pure open order book system developed and maintained by the German Stock

Exchange. It has operated since 1997 as the main trading platform for German blue chip

stocks at the FSE. Since the Xetra/FSE trading protocol is the data generating process for

this study we will briefly describe its important features.2

Between an opening and a closing call auction - and interrupted by another mid-day

call auction - Xetra/FSE trading is based on a continuous double auction mechanism with

automatic matching of orders based on the usual rules of price and time priority. During pre-

and post-trading hours it is possible to enter, revise and cancel orders, but order executions

are not conducted, even if possible. During the year 2004, the Xetra/FSE hours extended

from 9 a.m. C.E.T to 5.30 p.m. C.E.T. For blue chip stocks there are no dedicated market

makers like the Specialists at the New York Stock Exchange or the Tokyo Stock Exchange’s

Saitori. For some small capitalized stocks listed in Xetra there may exist so-called Designated

Sponsors - typically large banks - who are required to provide a minimum liquidity level by

simultaneously submitting competitive buy and sell limit orders.

In addition to the traditional limit and market orders, traders can submit so-called iceberg

(or hidden) orders. An iceberg order is similar to a limit order in that it has pre-specified

limit price and volume. The difference is that a portion of the volume is kept hidden from

the other traders and is not visible in the open book.

Xetra/FSE faces some local, regional and international competition for order flow. The

1The Xetra technology was recently licensed to the Shanghai Stock Exchange, China’s largest stock exchange.
2The Xetra trading system resembles in many features other important limit order book markets around the
world like Euronext, the joint trading platform of the Amsterdam, Brussels, Lisbon and Paris stock exchanges,
the Hong Kong stock exchange described in Ahn et al. (2001), and the Australian stock exchange, described
in Cao et al. (2004).
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FSE maintains a parallel floor trading system, which bears some similarities with the NYSE,

and, like in the US, some regional exchanges participate in the hunt for liquidity. Furthermore,

eleven out of the thirty stocks we analyze in our empirical study are also cross listed at the

NYSE, as an ADR or, in the case of DaimlerChrysler, as a globally registered share. However,

the electronic trading platform clearly dominates the regional and international competitors

in terms of market shares, at least for the blue chip stocks that we study in the present work.

The Frankfurt Stock Exchange granted access to a database containing complete infor-

mation about Xetra open order book events (entries, cancelations, revisions, expirations,

partial-fills and full-fills of market, limit and iceberg orders) which occurred during the first

three months of 2004 (January, 2nd - March, 31st). The sample comprises the thirty German

blue chip stocks constituting the DAX30 index. Based on the event histories, we use a real

time reconstruction of the sequences of best bid and ask prices and associated depths, and

record a time stamped series of transactions (with transaction price and volume) initiated by

market order or marketable limit order traders.3 The resulting data are comparable to the

Trade and Quote (TAQ) data supplied by the New York Stock Exchange. Contrary to the

TAQ data set, we know the correct trade direction identifier and do not have to apply trade

classification algorithms, e.g. Lee and Ready (1991).

Table 2.2.1 reports descriptive statistics for the thirty stocks that constitute the DAX30

index. The table also displays the sorting of the thirty stocks into four groups. The stocks

are grouped according to their trading frequency (measured as the average number of trades

per day). Group one contains the most frequently traded stocks, while group four the least

frequently traded stocks. The table contains the market capitalization, the daily turnover

and the average daily number of trades as well as the average midquote price, the quoted

spread and the average relative quoted spread.

3We are indebted to Stefan Frey and Helena Beltran who performed the reconstruction of the order book.
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Ticker Company Name

Daily Market Daily nb. Avg. Effective Effective Realized Realized Price Price Trade
Turnover cap. trades Price Spread Spread Spread Spread Impact Impact Activity

(Mill.) (Mill.) (e) (e) (%) (e) (%) (e) (%) Quartile

ALV ALLIANZ 289.98 33805 4523 100.1 0.049 0.049 0.010 0.010 0.039 0.039

1

DTE DEUTSCHE TELEKOM 350.63 34858 4445 15.7 0.011 0.072 0.005 0.031 0.006 0.041
SIE SIEMENS 321.70 52893 4418 64.0 0.026 0.041 0.004 0.006 0.022 0.035
DBK DEUTSCHE BANK 309.28 38228 3961 67.2 0.030 0.044 0.003 0.004 0.027 0.039
MUV2 MUENCH. RUECKVERS. 207.35 16396 3425 93.9 0.046 0.049 0.005 0.005 0.042 0.045
DCX DAIMLERCHRYSLER 187.74 30316 3309 36.4 0.020 0.055 0.004 0.010 0.016 0.044
EOA E.ON 160.63 33753 2871 52.5 0.025 0.048 0.001 0.003 0.024 0.046
SAP SAP 184.63 27412 2806 131.5 0.065 0.049 0.002 0.001 0.063 0.048

2

IFX INFINEON 146.46 4790 2799 11.6 0.012 0.104 0.005 0.040 0.007 0.064
BAS BASF 124.43 25425 2580 43.3 0.022 0.051 0.001 0.002 0.021 0.049
VOW VOLKSWAGEN 104.25 9688 2545 39.2 0.022 0.056 0.002 0.004 0.020 0.052
BAY BAYER 88.78 15911 2400 23.1 0.017 0.076 0.003 0.012 0.015 0.064
RWE RWE 97.66 12653 2314 33.8 0.021 0.062 0.001 0.002 0.020 0.060
BMW BMW 87.85 12211 2110 34.7 0.021 0.060 0.001 0.003 0.020 0.057
HVM HYPO-VEREINSBANK 98.35 6629 1937 18.7 0.018 0.098 0.003 0.019 0.015 0.079
SCH SCHERING 51.41 7055 1523 40.8 0.029 0.071 0.002 0.004 0.027 0.067

3

CBK COMMERZBANK 53.17 7569 1450 15.4 0.015 0.100 0.004 0.023 0.012 0.077
LHA LUFTHANSA 43.95 4548 1352 14.2 0.016 0.111 0.003 0.022 0.012 0.088
DPW DEUTSCHE POST 43.84 6806 1315 18.2 0.018 0.097 0.003 0.018 0.014 0.079
TKA THYSSENKRUPP 37.89 6450 1262 15.9 0.018 0.111 0.005 0.029 0.013 0.083
MEO METRO 38.87 5018 1235 35.0 0.031 0.089 0.000 0.000 0.031 0.090
ALT ALTANA 30.99 3338 1095 48.6 0.039 0.079 0.004 0.008 0.035 0.071
TUI TUI 26.28 2025 1063 18.7 0.023 0.125 0.003 0.015 0.020 0.109
MAN MAN 27.69 2434 1057 27.7 0.027 0.096 0.001 0.003 0.026 0.094

4

CONT CONTINENTAL 25.63 4060 1002 31.6 0.029 0.092 -0.003 -0.011 0.032 0.103
DB1 DEUTSCHE BOERSE 35.70 4847 982 46.9 0.035 0.075 0.001 0.003 0.034 0.072
ADS ADIDAS-SALOMON 31.98 4104 980 92.6 0.065 0.070 -0.002 -0.002 0.067 0.072
LIN LINDE AG 22.38 3448 896 43.6 0.035 0.080 -0.004 -0.009 0.039 0.090
HEN3 HENKEL 18.17 3682 702 65.9 0.050 0.077 0.003 0.005 0.047 0.072
FME FRESENIUS MEDICAL CARE 12.85 1944 621 54.0 0.053 0.098 0.006 0.010 0.047 0.088

Average 108.68 14076 2099 44.5 0.030 0.076 0.002 0.009 0.027 0.067

Table 2.2.1: Characteristics of the stocks in the sample (Xetra/DAX stocks). The table reports characteristics of the stocks constituting the
DAX30 index and our sample. The statistics are computed based on the data on the market events during the sample period January 2, 2004 to March 31,
2004 except for the column Market cap. which gives the market capitalization of the respective stock in million euros at the end of December 2003. Daily
turnover is the total average turnover (in mill. euros) per trading day and Daily nb. trades is the average daily number of trades. Price, denotes the average
midquote. Effective Spread (in euros) and Effective Spread (%) report the average effective spread and the average relative effective spread. Realized Spread
(in euros) and Realized Spread (%) report the average realized spread and the average relative realized spread. Price Impact (in euros) and Price Impact (%)
report the average price impact and the average relative price impact over the 3 months sample period.. The price impact was obtained by subtracting the
realized spread from the effective spread. The stocks are sorted into four groups according to their trading frequency, i.e. by the column Daily nb. trades.
The horizontal lines separate the four trading activity quartiles.
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2.3 Empirical Methodology

2.3.1 The Dufour/Engle Approach

Before introducing the structural framework that we use to investigate the role of time and the

price impact of trades let us briefly review Dufour and Engle’s (2000) extension of Hasbrouck’s

(1991a,b) bivariate vector autoregressive model. To measure the price impact of trades and

the role of duration between trade events, Dufour and Engle set up a VAR that contains two

equations, one that accounts for the dynamics of the midquote revision process and one that

models the evolution of the direction of trades:

Ri =

5
∑

j=1

ajRi−j + γopenDiQi +

5
∑

j=0

bjQi−j + v1,i (2.1)

Qi =
5

∑

j=1

cjRi−j + γopenDi−1Qi−1 +
5

∑

j=1

djQi−j + v2,i (2.2)

where bj = γj + δj ln(Ti−j). (2.3)

Qi is an indicator of the side of the trade taking the value 1 for a buyer initiated trade and -1

for a seller initiated trade. The counter-party of the trade is the liquidity supplier, either a

dedicated market maker or the open limit order book. Ri denotes the instantaneous midquote

revision after a trade. Ti measures the time interval (in seconds) between the ith and the i−1th

trade. Note that the ith trade in time affects the midquote revision contemporaneously while

Qi is only affected by lagged midquote revisions. The model ticks in event time. A new trade

increases i by one. The extension of Dufour and Engle (2000) to the Hasbrouck (1991a,b)

model is the parameterization of the price impact bj as a function of time between trades

(duration) Ti.

The parameter b0 is a raw measure of the informational content of the trade. The higher

b0, the larger the instantaneous price impact of a trade. Whether a longer duration between

trades Ti leads to an increasing or decreasing price impact depends on the parameter δ0. If

δ0 is negative a longer trade duration would be associated with a reduced price impact and

hence, a less informative trade. In other words, a low trading frequency would be related to

less informative trades if δ0 is negative. Estimation of the model can be straightforwardly

conducted via equation by equation OLS. The role of the price impact of trades can be
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assessed by the size of the parameter estimates of δj and, more sophisticated, by an impulse

response analysis which, requires simulating future trade durations (see Dufour and Engle

(2000) for details).

2.3.2 A Structural Approach

As an alternative to measuring the role of time in measuring the price impact of trades we

resort to an alternative class of structural models which are extensively used in market mi-

crostructure. The most popular examples are the models proposed by Glosten and Harris

(1988), Madhavan et al. (1997) and Huang and Stoll (1997). These models consist of struc-

tural equations for the evolution of the fundamental asset value and the behavior of liquidity

suppliers (market makers or limit order traders) which post bid and ask quotes anticipating

the price impact of trades and demand compensation for involuntary inventory taking and

order processing costs. One of the advantages of these models is the clear theoretical back-

ground that allows to give the parameter estimates a structural interpretation and allows

for an economically meaningful decomposition of the spread. Let us briefly review the basic

contents of the Madhavan et al (1997) model that we will extend below to account for a time

varying trade intensity.

In the MRR model there are two factors driving the fundamental value of a stock. First,

we have the public news factor. The second factor is private information which can be inferred

from order flow and consists of the surprise in order flow multiplied with a measure for the

degree of asymmetric information. For the post-trade expected value of a stock, µi, results

the following expression:

µi = µi−1 + θ(·) · (Qi − E[Qi|Qi−1]) + εi (2.4)

where Qi − E[Qi|Qi−1] measures the surprise in order flow and θ(·) the degree of trade

informativeness conveyed through a surprise in the order flow. εi denotes the public news

impact which is assumed to be an i.i.d random variable with zero mean and variance σε.

Liquidity providers know µi−1 and εi (public news accrued from i− 1 to i) but not Qi. But

they can anticipate the effect of Qi and set bid and ask prices accordingly. Bid and ask prices

are set to reflect the expected value of the stock plus a fixed component φ(·) which can be
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interpreted as a compensation for order processing or possible inventory holding:

ask price: P ai = µi−1 + θ(·)(1 − E[Qi|Qi−1]) + φ(·) + εi (2.5)

bid price: P bi = µi−1 − θ(·)(1 + E[Qi|Qi−1]) − φ(·) + εi (2.6)

Contrary to a market with a specialist where some transactions may be executed inside

the spread, all buys (sells) with a smaller or equal volume than the best depth are executed

at the prevailing best ask (bid) price. Trades inside the spread are not possible. It can easily

be shown that E[Qi|Qi−1] = ρQi−1 where ρ is the first order autocorrelation of the trade

indicator series. The equation for the transaction price can be expressed as

Pi = µi + φ(·) ·Qi + ξi (2.7)

where ξi is an i.i.d mean zero disturbance term which accounts for possible rounding errors due

to price discretion. Combining (2.4) and (2.7) yields the following equation for transaction

price changes:

∆Pi = θ(·)(Qi − ρQi−1) + φ(·)(Qi −Qi−1) + εi + ξi − ξi−1. (2.8)

We extend the basic MRR model in the following way. In the spirit of Dufour and Engle

(2000), we specify the MRR model parameters φ(·) and θ(·) as a function of time and the

duration between trades. Both parameters are assumed to depend on time of day dummies

dm,i which accounts for the stylized fact that the spread has a pronounced deterministic time

of day pattern. Following Dufour and Engle (2000), we also allow the log-duration between

the last and the current trade to determine the parameter θ(·) which measures the price

impact of a trade. Specifically, we write

φ(ti) = γφ +
M
∑

m=1

λφmdm,i (2.9)

θ(Ti, ti) = γθ +

M
∑

m=1

λθmdm,i + δ lnTi (2.10)
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where ti is the time of event i and Ti denotes the duration between the trade in ti−1 and time ti.

As in Dufour and Engle (2000), we add one second to each duration before taking logarithms

in order to avoid negative values. Incorporating a deterministic time of day pattern in the

objective function directly instead of estimating the model separately for different periods of

the day has the advantage that we can easily check for statistical significance of the estimated

parameters λφm and λθm. Since the price in t− 1 is Pi−1 = µi−1 +φ(ti−1)Qi−1 + ξi−1, equation

(2.8) can now be written as:

∆Pi = θ(Ti, ti)(Qi − ρQi−1) + φ(ti)Qi − φ(ti−1)Qi−1 + εi + ξi − ξi−1 (2.11)

Moment conditions can be derived as follows. Denoting ui = εi + ξi − ξi−1, we can write

ui = ∆Pi −
[(

γφ +

M
∑

m=1

λφmdm,i

)

Qi −
(

γφ +

M
∑

m=1

λφmdm,i−1

)

Qi−1

+
(

γθ +

M
∑

m=1

λθmdm,i + δ lnTi

)

· (Qi − ρQi−1)
]

(2.12)

Together with a vector of time-of-day dummy variables di = ( d1,i, · · · , dM,i )′ and zi =

( Qi, Qi−1 )′, the resulting moment conditions are given by
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= 0 (2.13)

The first three moment conditions are the same as in the standard MRR model. The next

two moment conditions result from the inclusion of the time-of-day dummies and the last one

is due to the inclusion of the duration.

Madhavan, Richardson, and Roomans (1997) have argued that the surprise in order flow

rather than order flow itself affects the fundamental value of an asset. If order flow is pre-

dictable, using raw order flow would imply that the fundamental value µi depends on infor-
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mation of time ti−2. Otherwise the fundamental asset value is not a martingale any longer.

Engle and Russell (1998) have shown that trade durations are also predictable. They have a

strong time-of-day (diurnal) component, but beyond that even diurnally adjusted durations

exhibit a strong serial correlation. It thus seems sensible to account for predictability of trade

durations. Instead of modeling the evolution of the fundamental asset value as a function of

raw trade durations, we assume that duration shocks have an impact (via the trades) on the

evolution of the asset value. This requires a decomposition of the trade duration sequence

into a predictable and an unpredictable component. Following Engle and Russell (1998), we

split up trade durations into three components, a diurnal time-of-day dependent component,

a predictable component and a duration shock. Specifically, we have

Ti = Φ(ti) · ψi · νi (2.14)

where Φ(ti) is the diurnal pattern of durations and ψi evolves as

ψi = ω + αT̃i−1 + βψi−1 (2.15)

where T̃i = Ti/Φ(ti). Φ(ti)ψi is the conditional expected duration E(Ti|Fi−1) and νi is an

i.i.d. duration shock with E(νi) = 1.

The alternative specification for the trade informativeness parameter θ(·) is then written

as:

θ(ν̃i, ti) = γθ +
M
∑

m=1

λθmdm,i + δ ln ν̃i (2.16)

where ν̃i = T̃i/ψi + 1.

Two step estimation of the ACD model parameters is feasible by first estimating the

intra-day pattern Φ(ti) with polynomial trigonometric regression (see Eubank and Speckman

(1990)). The seasonally adjusted durations can then be computed as T̃i = Ti/Φ̂(ti). In the

second step, the parameters of the ψi equation can be estimated by Maximum Likelihood.

Joint estimation of ACD and structural parameters is also feasible. Grammig and Wellner

(2002) show how estimation of ACD model parameters can be performed in a GMM frame-

work. Drawing on their analysis, the moment conditions that estimate the extended MRR
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model parameters along with the ACD parameters are as follows:
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The first set of moment conditions are the same as in equation (2.13) except that Ti is

now substituted with ν̃i. The other moment conditions identify the ACD parameters. They

make use of the assumption that E(νi) = 1 and that the covariance between νi and νi−j for

all j > i is assumed to be zero.

2.4 Results

Table 2.4.1 report the estimation results of the extended MRR model. We focus on the

results obtained from the model in which the price impact of trades depend on duration

shocks. The model in which raw durations are assumed to affect the price impact of trades

delivers qualitatively the same results and supports the same conclusions (results are available

upon request). To account for diurnal effects the time-of-day dummies in equations 2.10 and

2.16 are chosen to indicate the following six periods of the trading day: 9:00a.m - 9:30a.m;

9:30a.m - 11:00a.m; 11:00a.m - 2:00p.m; 2:00p.m - 3:30p.m; 3:30p.m - 5:00p.m, 5:00p.m -

5:30p.m. When constructing the time-of-day dummies, the reference period is the mid-day

period ranging from 11:00a.m - 2:00p.m..



Table 2.4.1: Estimation results of the extended MRR model with ACD shocks. The first two columns report the first stage GMM estimates
and p-values based on Newey-West standard errors averaged across all stocks. The third column reports the number of significant (α = 1%) parameters.
The remaining columns show the same results for the four sub-samples sorted by trading activity. The spread components of the extended MRR model are
specified as a function of the time of day. Additionally, the adverse selection component depends on the duration between the trade in ti and ti−1:

φ(ti) = γφ + ΣM
m=1λ

φ
mDm,i

θ(ν̃i, ti) = γθ + ΣM
m=1λ

θ
mDm,i + δ ln ν̃i

We included five dummy variables to capture the deterministic time of day pattern. The period from 11:00 a.m. to 2:00 p.m. is the reference for both
equations.

Overall 1st Quartile (most active) 2nd Quartile 3rd Quartile 4th Quartile (least active)
Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig
est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg]

δ 0.0043 (0.00) [30, 0] 0.0040 (0.00) [7, 0] 0.0034 (0.00) [8, 0] 0.0031 (0.00) [8, 0] 0.0069 (0.00) [7, 0]
γφ 0.0052 (0.00) [30, 0] 0.0063 (0.00) [7, 0] 0.0048 (0.00) [8, 0] 0.0045 (0.00) [8, 0] 0.0056 (0.00) [7, 0]

λφ
1

0.0030 (0.01) [28, 0] 0.0020 (0.00) [7, 0] 0.0017 (0.00) [8, 0] 0.0024 (0.00) [7, 0] 0.0060 (0.03) [6, 0]

λφ
2

0.0003 (0.23) [12, 0] 0.0003 (0.26) [4, 0] 0.0004 (0.12) [5, 0] 0.0004 (0.14) [3, 0] 0.0002 (0.45) [0, 0]

λφ
4

-0.0003 (0.29) [3, 4] -0.0002 (0.32) [1, 1] -0.0001 (0.32) [2, 1] -0.0005 (0.17) [0, 1] -0.0006 (0.37) [0, 1]

λφ
5

-0.0005 (0.23) [1, 7] -0.0008 (0.34) [0, 3] -0.0002 (0.21) [1, 1] -0.0006 (0.05) [0, 3] -0.0004 (0.33) [0, 0]

λφ
6

0.0007 (0.16) [14, 2] 0.0003 (0.20) [4, 1] 0.0006 (0.02) [6, 0] 0.0001 (0.28) [0, 1] 0.0018 (0.13) [4, 0]
γθ 0.0040 (0.00) [30, 0] 0.0033 (0.00) [7, 0] 0.0033 (0.00) [8, 0] 0.0031 (0.00) [8, 0] 0.0066 (0.00) [7, 0]
λθ

1
0.0051 (0.03) [28, 0] 0.0032 (0.03) [6, 0] 0.0029 (0.09) [7, 0] 0.0043 (0.00) [8, 0] 0.0103 (0.00) [7, 0]

λθ
2

0.0012 (0.15) [14, 2] 0.0011 (0.02) [4, 1] 0.0004 (0.37) [1, 1] 0.0009 (0.17) [4, 0] 0.0024 (0.01) [5, 0]
λθ

4 0.0002 (0.23) [3, 5] 0.0003 (0.12) [2, 1] 0.0000 (0.23) [0, 1] 0.0002 (0.10) [1, 3] 0.0003 (0.47) [0, 0]
λθ

5
0.0002 (0.29) [5, 4] 0.0009 (0.14) [3, 1] -0.0001 (0.34) [0, 2] 0.0002 (0.36) [1, 1] 0.0000 (0.32) [1, 0]

λθ
6

-0.0003 (0.28) [1, 11] -0.0003 (0.08) [0, 5] -0.0008 (0.09) [0, 5] 0.0003 (0.40) [1, 1] -0.0005 (0.55) [0, 0]
ρ 0.2204 (0.00) [30, 0] 0.2203 (0.00) [7, 0] 0.2067 (0.00) [8, 0] 0.2113 (0.00) [8, 0] 0.2465 (0.00) [7, 0]
ω 0.0721 (0.00) [30, 0] 0.0842 (0.00) [7, 0] 0.0714 (0.00) [8, 0] 0.0641 (0.00) [8, 0] 0.0700 (0.00) [7, 0]
α 0.1252 (0.00) [30, 0] 0.1544 (0.00) [7, 0] 0.1354 (0.00) [8, 0] 0.1121 (0.00) [8, 0] 0.0994 (0.00) [7, 0]
β 0.8050 (0.00) [30, 0] 0.7659 (0.00) [7, 0] 0.7960 (0.00) [8, 0] 0.8248 (0.00) [8, 0] 0.8320 (0.00) [7, 0]
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The estimation results confirm some well known stylized facts of financial market mi-

crostructure. The adverse selection component is significantly higher in the first half hour of

the day, a result that is consistent with previous research studying the intra-day pattern of

the spread. Furthermore, the order processing cost component is significantly higher at the

end of the day for the vast majority of stocks. This indicates that liquidity providers demand

a compensation for holding inventory overnight.

The vast majority of the dummy variables for the remaining time periods are not signif-

icantly different from the mid-day reference period. The ∪-shaped pattern of the effective

spread in Xetra is therefore due to higher adverse selection costs as well as higher order

processing costs in the morning and higher order processing costs shortly before closing.

Let us now focus on what the results imply regarding an effect of a duration shock on

trade informativeness. The results reported in table 2.4.1 show that the estimates of the key

parameter δ are positive and significantly different from zero for all 30 stocks. This implies

that longer no-trade intervals are associated with increasing information related costs of a

trade. As such this results stands in sharp contrast with the results reported by Dufour and

Engle (2000). We will discuss the reasons and provide explanations for the contradicting

results in the next section. Let us first focus on assessing the economic importance of the

results beyond statistical significance.

For the purpose of assessing the economic significance of our results, we split the adverse

selection component θ(Ti, ti) into a deterministic part

θ(ti) = γθ +

M
∑

m=1

λθmdm,i

and a part explained by the duration shock of the subsequent no-trade interval

θ(ν̃i) = δ ln ν̃i.

Both terms constitute the complete adverse selection component, θ(ν̃i, ti) = θ(ti)+ θ(ν̃i). We

can then compute for each stock the adverse selection share of the spread

asr(ν̃i, ti) =
θ(ν̃i, ti)

θ(ν̃i, ti) + φ(ti)
,
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Table 2.4.2: Adverse selection in percent of the spread. The
table reports several average adverse selection shares for each trade
activity quartile. In the first column, asr(ν̃i, ti) = θ(ν̃i,ti)

θ(ν̃i,ti)+φ(ti)
× 100

denotes the average adverse selection share of the spread. Additionally,
in the second column, asr(ν̃i) = θ(ν̃i)

θ(ν̃i,ti)+φ(ti)
×100 denotes the average

adverse selection share of the spread explained by trade duration.
dasr denotes the average fraction of the adverse selection component
which can be explained by trade duration or dasr = θ(ν̃i)

θ(ν̃i,ti)
×100. The

three ratios are averaged over all trades for each trade activity quartile
and for the whole sample. Note, that the adverse selection component
θ(ν̃i, ti) is the sum of the deterministic time of day component θ(ti)
and the duration dependent component θ(ν̃i).

Trading Activity Quartile asr(ν̃i, ti) asr(ν̃i) dasr

1st Quartile (most active) 45.0 13.4 26.4
2nd Quartile 48.2 14.1 26.6
3rd Quartile 50.7 14.0 25.3
4th Quartile (least active) 63.8 18.0 26.5

Overall 48.8 14.2 26.3

the adverse selection share of the spread due to duration

asr(ν̃i) =
θ(ν̃i)

θ(ν̃i, ti) + φ(ti)
,

and the share of adverse selection explained by duration to the total adverse selection com-

ponent

dasr =
θ(ν̃i)

θ(ν̃i, ti)
.

Table 2.4.2 shows that the information related share of the implied effective spread is

highest (63.8%) for the least actively traded Xetra stocks. In contrast, the average adverse

selection share of trade activity quartile 1 only amounts to 45.0%.4.

Table 2.4.2 also shows that the effect of trade durations on trade informativeness is also

stronger for less frequently traded stocks. We focus our attention on the indicator asr(ν̃i)

which measures the importance of the duration component relative to the complete spread.

The mean of the indicator asr(ν̃i) ranges from 13.4% for Xetra trade activity quartile 1 to

18.0% for Xetra trade activity quartile 4. Averaged across stocks, the share of the duration

component relative to the spread amounts to 14.2%.

4Note, that this number is strongly influenced by the stock DTE which has an asr(ν̃i, ti) of 22.4% while all the
other stocks in the quartile have an asr(ν̃i, ti) of 46.3% and higher. However, compared to trade activity 4,
the information related component of the spread is substantially smaller.
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Figure 2.4.1: Intra-day patterns for the estimated standardized adverse selection com-
ponents. The dotted line depicts the average standardized adverse selection component due to
duration θ(ν̃i). The dashed line depicts the deterministic part of the average standardized adverse
selection component θ(ti). The solid line depicts the sum of θ(ν̃i) and θ(ti), the complete adverse
selection component θ(ν̃i, ti). Top left: Intra-day patterns for the trade activity quartile 1. Top
right: Intra-day patterns for the trade activity quartile 2. Lower left: Intra-day patterns for the
trade activity quartile 3. Lower right: Intra-day patterns for the trade activity quartile 4.

Figure 2.4.1 provides a graphical illustration of the intra-day pattern of the adverse se-

lection component. As above, we eliminate the price level effect by dividing the spread

components by the average mid-quote of the respective stock. While the deterministic pat-

tern was estimated for six periods of the day, the duration component varies with every trade.

To capture any possible systematic intra-day variation in the duration component, but not

overload the figure, we compute ten minute means for the duration component. One can see

that the standardized duration component does not vary substantially throughout the day

but rather floats around a constant mean. In contrast, the deterministic portion resembles

the well known L-shaped intra-day pattern of the adverse selection component. Adding up

the two parts yields the complete adverse selection component.
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Table 2.4.3: Correlations of the estimated standardized spread compo-
nents with several relative spread measures, market capitalization and
the daily number of trades. The table reports the Pearson correlation coefficients
of the estimated standardized spread components with several relative spread
measures, market capitalization and the daily number of trades. φ̃(ti) is the stan-
dardized order processing component, θ̃(ν̃i, ti) is the standardized adverse selection
component, θ̃(ν̃i) is the standardized adverse selection component due to duration

and ĨSi = 2[θ̃(ν̃i, ti) + φ̃(ti)] denotes the implied spread. asr(ν̃i, ti) = θ(ν̃i,ti)
θ(ν̃i,ti)+φ(ti)

denotes the average adverse selection share of the spread computed for each stock.
asr(ν̃i) = θ(ν̃i)

θ(ν̃i,ti)+φ(ti)
denotes the average adverse selection share of the spread

explained by trade duration computed for each stock. dasr = θ(ν̃i)
θ(ν̃i,ti)

denotes the
average fraction of the adverse selection component which can be explained by trade
duration. Correlations were computed across the sample of the 30 stocks constituting
the DAX30. P-values for the correlation coefficients are in parentheses.

Variable Effective Realized Price Market cap. Daily nb.
Spread (%) Spread (%) Impact (%) (Mill.) trades

φ̃(ti) 0.763 0.881 0.373 -0.351 -0.153
(0.000) (0.000) (0.043) (0.057) (0.419)

θ̃(ν̃i, ti) 0.782 -0.144 0.965 -0.802 -0.893
(0.000) (0.448) (0.000) (0.000) (0.000)

θ̃(ν̃i) 0.624 -0.320 0.884 -0.786 -0.890
(0.000) (0.085) (0.000) (0.000) (0.000)

ĨSi 0.996 0.505 0.845 -0.730 -0.653
(0.000) (0.004) (0.000) (0.000) (0.000)

asr(ν̃i, ti) -0.044 -0.827 0.410 -0.334 -0.565
(0.816) (0.000) (0.024) (0.071) (0.001)

asr(ν̃i) -0.286 -0.855 0.152 -0.191 -0.367
(0.125) (0.000) (0.422) (0.311) (0.046)

dasr -0.436 -0.486 -0.223 0.072 0.053
(0.016) (0.006) (0.237) (0.707) (0.782)

Table 2.4.3 reports further evidence for the negative relationship between the duration

effect and trading frequency. The correlation coefficient is approximately -0.5 and significant.

Moreover, the correlations of the estimated standardized spread components with their ob-

served ”counterparts”, the relative quoted spread, the relative effective spread, the relative

realized spread and the relative price impact as well as the market capitalization, and the

trading frequency measured in daily number of trades have the expected signs and are sig-

nificant. For example, the adverse selection component is positively correlated with the price

impact while the correlation of the estimated order processing cost component is, if at all,

only weakly related to the price impact. Another expected result is that order processing

costs, mainly consisting of institutional fees, are not related to size or trading frequency of
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Figure 2.4.2: Time between trades versus adverse selection component. We sort (in
ascending order) the trade duration shocks into deciles and compute the mean, 0.25, 0.75 and
0.9 quantile of the adverse selection component θ(ν̃i, ti) in each decile and graphically display the
results. The 0.25-quantiles are connected with dashed lines. The 0.75-quantiles are connected
with dotted lines. The 0.9-quantiles are connected with dash-dotted lines. The decile means are
connected with solid lines. All trade events of the stocks belonging to the same trading activity
quartile are pooled. The top left panel displays the results for the group of most frequently trades
stocks. The top right panel shows the results for the second and the lower left panel depicts the
result for the third trading activity quartile. The lower right panel presents the results for the least
frequently traded stocks.

the stock. In contrast, adverse selection is strongly negatively correlated with both, size and

trading frequency.

The importance of trading intensity for the information content of a trade is further

illustrated in figures 2.4.2 and 2.4.3. To produce these plots we have sorted all trade durations

for groups of stocks into deciles. Decile 1 contains the smallest duration shocks while decile 10

contains the largest duration shocks. For each decile, we calculate the average standardized

adverse selection component θ̃(ν̃i, ti) and the average raw adverse selection component θ(ν̃i, ti).

The figures depict averages for each trade activity quartile. As can be seen in figure 2.4.3,

even in the quartile with the most actively traded stocks the adverse selection component
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Figure 2.4.3: Time between trades versus standardized adverse selection component.
We sort (in ascending order) the trade duration shocks into deciles and compute the mean, 0.25,
0.75 and 0.9 quantile of the standardized adverse selection component θ̃(ν̃i, ti) in each decile and
graphically display the results. The 0.25-quantiles are connected with dashed lines. The 0.75-
quantiles are connected with dotted lines. The 0.9-quantiles are connected with dash-dotted lines.
The decile means are connected with solid lines. All trade events of the stocks belonging to the
same trading activity quartile are pooled. The top left panel displays the results for the group of
most frequently trades stocks. The top right panel shows the results for the second and the lower
left panel depicts the result for the third trading activity quartile. The lower right panel presents
the results for the least frequently traded stocks.

doubles from trade intensity decile 1 to decile 10. A much stronger effect can be observed

for the fourth quartile containing observations of the least actively traded stocks. Here, the

adverse selection component more than triples when comparing the shortest trade durations

in decile 1 with the longest trade durations in decile 10. In all four trade activity quartiles

especially very large duration shocks have a large impact on the asset price. The slope of the

line connecting the mean of decile 9 with the mean of decile 10 is steeper in every quartile.

Note, that this result is not due to cross section or time-of-day variations of the trade

durations. We have argued above that stocks traded less frequently tend to have higher

adverse selection costs. To confirm that the upward sloping curve in figure 2.4.3 is not an
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Figure 2.4.4: Time between trades versus standardized adverse selection component
for individual stocks. We sort (in ascending order) the trade duration shocks into deciles and
compute the mean, 0.25, 0.75 and 0.9 quantile of the adverse selection component θ(ν̃i, ti) in each
decile and graphically display the results. The 0.25-quantiles are connected with dashed lines. The
0.75-quantiles are connected with dotted lines. The 0.9-quantiles are connected with dash-dotted
lines. The decile means are connected with solid lines. The top left panel displays the results
for a representative stock of trade activity quartile 1. The top right panel shows the results for
a representative stock of trade activity quartile 2. The lower left panel depicts the result for a
representative stock of trade activity quartile 3 and the lower right panel presents the results for a
representative stock of trade activity quartile 4. All trade events of the particular stock are pooled.

artefact caused by intra-group variation of trading frequency in each trade activity quartile,

we provide additional figures for a selected representative stock in each trade activity quartile

in figure 2.4.4. We find for individual stocks the same relation between duration and adverse

selection.

Note that the duration effect can also not be ascribed to co-movements in the intra-daily

pattern of the trade duration and the adverse selection component. We have seen in figure

2.4.1 that the information induced part of the spread is high in the first half hour and lower

for the rest of the day.

Figure 2.4.5 shows that trade durations rather have an inverted ∪-shaped intra-day pat-
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Figure 2.4.5: Intra-day pattern of trade durations. We compute for each ten minute interval
of the day the average trade duration and plot the means against time of day. All trade events of
the stocks belonging to the same trading activity quartile are pooled. The top left panel displays
the results for the group of most frequently trades stocks. The top right panel shows the results for
the second and the lower left panel depicts the result for the third trading activity quartile. The
lower right panel presents the results for the least frequently traded stocks. The dashed lines are
the 95% confidence intervals for the ten minute means.

tern. At the beginning of the trading day, when adverse selection costs are high, trade

durations tend to be short. Hence, we would rather expect a dampening of the positive dura-

tion effect through the intra-day variation. Therefore, we conclude that neither intra-group

variation in the average trading frequency of the stocks nor the intra-day pattern in the de-

terministic part of the adverse selection component is responsible for the strong impact of

trade durations.

As a robustness check we also estimate the model for a matched sample of NYSE traded

stocks. The matching variable is the daily trading volume. The NYSE stocks included in the

matched sample and their Xetra counterparts are reported in Table 2.4.4.
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Daily Daily

Ticker Company Name (Xetra) Turnover Ticker Company Name (NYSE) Turnover
(Mill.e) (Mill. e)

DTE DEUTSCHE TELEKOM 350.63 XOM EXXON MOBIL 375.45
SIE SIEMENS 321.70 JPM J.P. MORGAN CHASE 334.96
DBK DEUTSCHE BANK 309.28 JNJ JOHNSON & JOHNSON 309.25
ALV ALLIANZ 289.98 AIG AMERICAN INT’L. 288.35
MUV2 MUENCH. RUECKVERS. 207.35 MWD∗ MORGAN STANLEY 205.98
DCX DAIMLERCHRYSLER 187.74 MDT MEDTRONIC 188.80
SAP SAP 184.63 WYE WYETH 183.87
EOA E.ON 160.63 ABT ABBOTT LABS 160.45
IFX INFINEON 146.46 KSS KOHL’S 146.28
BAS BASF 124.43 LMT LOCKHEED MARTIN 123.88
VOW VOLKSWAGEN 104.25 CAH CARDINAL HEALTH 105.51
HVM HYPO-VEREINSBANK 98.35 STJ ST. JUDE MEDICAL 98.50
RWE RWE 97.66 A AGILENT TECHNOLOGIES 97.45
BAY BAYER 88.78 ALL ALLSTATE 88.28
BMW BMW 87.85 HDI∗ HARLEY DAVIDSON 88.26
CBK COMMERZBANK 53.17 CVS CVS 53.02
SCH SCHERING 51.41 MHS MEDCO HEALTH SOLUTIONS 51.30
LHA LUFTHANSA 43.95 BDX BECTON, DICKINSON 43.99
DPW DEUTSCHE POST 43.84 RTN RAYTHEON 43.83
MEO METRO 38.87 JBL JABIL CIRCUIT 38.76
TKA THYSSENKRUPP 37.89 JCI JOHNSON CONTROLS 37.93
DB1 DEUTSCHE BOERSE 35.70 BBT BB & T 35.68
ADS ADIDAS-SALOMON 31.98 DOV DOVER 31.97
ALT ALTANA 30.99 BNI BURLINGTON NORTH. SANTA FE 30.93
MAN MAN 27.69 MBI MBIA 27.63
TUI TUI 26.28 BCR BARD (C.R.) 26.33
CONT CONTINENTAL 25.63 BDK BLACK & DECKER 25.68
LIN LINDE AG 22.38 CBE COOPER INDUSTRIES 22.32
HEN3 HENKEL 18.17 DYN DYNEGY 18.09
FME FRESENIUS MEDICAL CARE 12.85 TMK TORCHMARK 12.92

Table 2.4.4: Matched sample of NYSE traded stocks For each DAX stock we compare the daily average traded volume to each NYSE
traded stock of the S&P 500. We select the stock minimizing the absolute difference as a matching stock. ∗ Both firms changed their ticker
symbols in 2006. Here, we use the old ticker symbols available in our data set.



CHAPTER 2. TIME AND THE PRICE IMPACT OF A TRADE 30

Figure 2.4.6: Results for the NYSE traded matched sample. We sort (in ascending order)
the trade duration into deciles and compute the mean, 0.25, 0.75 and 0.9 quantile of the adverse
selection component θ(ν̃i, ti) (right panel) and the standardized adverse selection component θ̃(ν̃i, ti)
(left panel) in each decile and graphically display the results. The 0.25-quantiles are connected with
dashed lines. The 0.75-quantiles are connected with dotted lines. The 0.9-quantiles are connected
with dash-dotted lines. The decile means are connected with solid lines. All trade events of the 30
NYSE traded stocks are pooled.

Table A.1.1 shows that the conclusions for the Xetra/DAX stocks also hold for the NYSE

sample: The adverse selection parameter δ is positive and significant for 22 of the 30 stocks.

The plots in figure 2.4.6 show the same upward sloping curve that suggests that the infor-

mational content of trades is higher after relatively long no-trade periods. However, from an

economic point of view, the informational importance of trade durations for the spread seems

smaller for the NYSE stocks compared to the Xetra/DAX stocks.

2.5 Interpretation and Discussion

The statistical and economic significance of these results challenge the ”no trade means no

information” result of Dufour and Engle (2000) that is part of financial market microstruc-

ture’s conventional wisdom. Rather than supporting the predictions of the Easley and O’Hara

(1992) model, our findings are more in accord with the models of strategic trading in limit

order markets (Parlour (1998), Foucault (1999)). Their contributions relate to a classic pa-

per by Admati/Pfleiderer (1988). In the Admati/Pfleiderer model non-informed liquidity

traders cluster during periods of the trading day which implies that high trading intensity

would be associated with reduced trade informativeness. Traders with private information
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Figure 2.5.1: Average duration shock for different trade categories. The graph depicts
the average duration shock for four different trade categories. We denote with ’within best’ the
trades with a volume smaller than the best depth. With ’exact best’ we denote the trades consuming
exactly the best depth. Trades consuming exactly the depth up to the second, third or fourth best
quote are categorized as ’exact 2/3/4’ and trades with a volume higher than the best depth but
within any higher order quote are denoted as ’beyond best’.

may hide in the crowd of liquidity traders, the price impact of their trades is ”cushioned” by

the trading of the uninformed liquidity traders. The models by Parlour (1998) and Foucault

(1999) provide more elaborate explanations for such a clustering process. In Parlour’s (1998)

model, large depth on the bid side increases buyer ”aggressiveness”, in other words: more

buy market orders, more (buyer initiated) trading activity. The reasoning is symmetric for

the sell side. Arguably, periods of high liquidity (measured as the depth at the best quotes)

in limit order markets are associated with a lesser degree of private information present in

the market. Patient limit order traders, who are not trading for reasons of exploiting their

superior information, and who are not afraid of being ”picked off” by an informed order or

adverse price movement, will then supply ample liquidity. Thus, high liquidity in the order
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book emerges during non-informative periods. As liquidity traders gather together (via limit

order submission, they supply liquidity to the market) during non-informative periods, trad-

ing becomes more aggressive (more market orders triggering trades) when impatient (yet not

superiorly informed) traders strive to get priority over standing limit orders.

As a matter of fact, when estimating the Dufour/Engle model on our data, we find results

that are, at least qualitatively, in line with their results (see table A.1.2) in that short trade

durations are associated with informed trading. Hence, the difference must be due to the

empirical methodology, i.e. the way these models process the data and not the differences

of trading processes in a pure limit order market and a hybrid market. In the following we

will offer an explanation for the differences. A convenient way to implement a strategy that

aggressively strives for price priority a’la Parlour (1998) are so-called market-to-limit orders or

limit orders with a limit price equal or better than the best quote (marketable limit orders).

As a matter of fact, those order types are very popular and frequently used instruments.

Both a partially filled buy market-to-limit order and a partially filled marketable limit order

consumes the volume at the best ask and the volume that exceeds the depth at the best ask

is entered, at the limit price, on top of the queue of the limit orders standing on the bid side.

As figure 2.5.1 shows, those trades that exactly consume the volume at the best quotes

(from which roughly 45% are partially filled market-to-limit-orders or partially filled mar-

ketable limit orders) indeed have significantly smaller durations than trades that consume

only part of the depth at the best quote. Note that in a basic MRR model framework, a

market-to-limit order would be deemed uninformative while in a Hasbrouck-VAR setting the

events triggered by a market-to-limit order would be regarded as highly informative. The

numerical example depicted in table 2.5.1 makes that point clear: While the transaction price

(P ) in the sequence of events does not change at all, the midquote changes ∆MQ is dramatic.

A market-to-limit order is a perfect tool for an impatient trader to gain price priority when

own side liquidity is high. However, as the market-to-limit trader also immediately supplies

liquidity (during times when liquidity is already high) it is hard to ascribe such a behavior

to the exploitation of superior private information. It is rather the crowding-out effect in

liquid markets described by Parlour (1998) and Foucault (1998) that we observe. In that

perspective it seems more reasonable to view market-to-limit order trade events as a way to

implement an aggressive trading strategy (without private information processing involved)
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Table 2.5.1: Numerical Example.

t0 t1 t2 t3

book state at t0 book state after
small transaction
(P=105)

book state af-
ter market-to-
limit buy order
with limit price
P = 105 that
takes best ask
and improves the
best bid

state of book af-
ter best bid is
snatched (P =
105)

110 110 110
105 105 110 110

MQ 102.5 102.5 107.5 105
100 100 105 100
90 90 100 90

90

∆ MQ 0 4.9% -2.3%

∆P 0 0 0

than deem these trades as highly informative with respect to the fundamental asset value.

2.6 Conclusion and Outlook

This paper provides new evidence regarding the role of time in measuring the informational

content of trades. Two novelties characterize our contribution. First, instead of the vector

autoregressive methodology employed by Dufour and Engle (2000), we advocate the use of

a structural model and extend Madhavan et al’s (1997) model to account for a time varying

trade intensities. For that purpose we employ Russell and Engle’s (1998) ACD model. We

estimate the model on a cross section of stocks traded in an automated open order book

market, the Xetra system maintained by the German Stock Exchange. For robustness checks,

the models are also estimated on NYSE data. Xetra and NYSE trading processes are quite

different. In Xetra there are no dedicated market makers, trading is anonymous, and a fully

computerized trading protocol matches liquidity supply and demand using an open limit order

book trading platform. As a matter of fact, these are the characteristic features of all large

Continental European stock markets. One of the advantages of using data from an automated

auction system is the excellent data quality. Misclassification of trades that haunts empirical

microstructure analysis is not an issue.
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Dufour and Engle’s (2000) paper made a strong case for the argument that trading in-

tensity carries informational content with respect to the price impact of a trade. Specifically,

their results provide evidence for the notion that ”no trade means no information” one of the

key predictions implied by Easley and O’Hara’s (1992) microstructure model and arguably

part of the conventional wisdom of financial market microstructure. The results reported in

this paper provide quite contrasting evidence. As in the Dufour/Engle paper we also find

that ”time matters”, both from a statistical and an economic point of view. However, our

results imply that the informational content of a trade increases with the duration since the

last trade. Our analysis suggests that in an automated order book market, but also in an

hybrid framework like the NYSE, the role of time in measuring trade informativeness is more

in accord with the predictions derived from the Admati/Pfleiderer (1988) model, and mod-

els of strategic trading in limit order markets (Parlour (1998), Foucault (1999)). In these

models, high trading intensity is caused by the submission of market orders by impatient yet

uninformed traders who strive aggressively for priority of their orders when the liquidity on

their own market side is high (small spread, ample depth). Liquidity supply is high, however,

when limit order traders are not afraid of being picked of by an adverse price movement (be

it induced by public or private information processing). These results revive the relevance of

the Admati/Pfleiderer (1988) model’s prediction that through clustering of liquidity-induced

trading, short durations between trades are associated with smaller trade informativeness. We

outline that the reason why the different methodologies (extended Hasbrouck-VAR and ex-

tended MRR model) deliver contradicting results is mainly rooted in the way market-to-limit

orders are treated in the two econometric frameworks.

Besides providing an additional note to answer the question ”Why do securities prices

change and what is the role of trading intensity in the process?” our results have interesting

policy implications for the design of trading systems. One could argue for the need of circuit

breakers during high trading intensities as processing of (private) information may harm

uninformed market participants. However, our results indicate that circuit breaking via a call

auction mechanism or additional liquidity supply by a dedicated market maker, say, would

rather be advisable after long non-trading intervals.



Appendix A

A.1 Tables

Table A.1.1: Estimation results of the extended MRR model with ACD
shocks for a matched sample of NYSE traded stocks. The first two columns
report the first stage GMM estimates and p-values based on Newey-West standard
errors averaged across all stocks. The third column reports the number of significant
(α = 1%) parameters. The spread components of the extended MRR model are spec-
ified as a function of the time of day. Additionally, the adverse selection component
depends on the duration between the trade in ti and ti−1:

φ(ti) = γφ + ΣM
m=1λ

φ
mDm,i

θ(ν̃i, ti) = γθ + ΣM
m=1λ

θ
mDm,i + δ ln ν̃i

We included four dummy variables to capture the deterministic time of day pattern.
The period from 11:30 a.m. to 2:00 p.m. is the reference for both equations.

Overall

Avg. Avg. # sig
est. p-val [pos, neg]

δ 0.0009 (0.06) [25, 0]

γφ 0.0021 (0.00) [30, 0]

λφ1 0.0007 (0.05) [19, 0]

λφ2 0.0001 (0.20) [13, 1]

λφ4 0.0001 (0.20) [7, 2]

λφ5 0.0005 (0.09) [19, 2]
γθ 0.0029 (0.00) [30, 0]
λθ1 0.0018 (0.03) [25, 0]
λθ2 0.0006 (0.05) [19, 1]
λθ4 -0.0001 (0.31) [2, 6]
λθ5 -0.0006 (0.05) [0, 24]

ρ 0.2731 (0.00) [30, 0]

ω 0.0457 (0.03) [26, 0]
α 0.0468 (0.01) [28, 0]
β 0.9077 (0.00) [30, 0]
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Table A.1.2: Estimation results of the DE quote revision equation. The first two columns report the p-values based on Newey-West standard errors
averaged across all stocks. The third column reports the number of significant (α = 1%) parameters. The remaining columns show the same results for the
four sub-samples sorted by trading activity. For convenience, we report only the parameters capturing the duration impact and the time of day dummy.

Rt =
5

∑

j=1

ajRt−j + γopenDtQt +
5

∑

j=0

bjQt−j + v1,t

where bj = γj + δj ln(Tt−j)

For convenience, we report only the parameters capturing the duration impact δj and the time of day dummy γopen.

Overall 1st Quartile (most active) 2nd Quartile 3rd Quartile 4th Quartile (least active)
Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig
est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg]

δ0 -0.0010 (0.00) [0, 30] -0.0009 (0.00) [0, 7] -0.0009 (0.00) [0, 8] -0.0010 (0.00) [0, 8] -0.0011 (0.00) [0, 7]
δ1 0.0002 (0.16) [15, 0] 0.0003 (0.03) [6, 0] 0.0003 (0.00) [7, 0] 0.0002 (0.23) [2, 0] 0.0001 (0.40) [0, 0]
δ2 0.0002 (0.14) [16, 0] 0.0002 (0.00) [7, 0] 0.0002 (0.09) [5, 0] 0.0002 (0.13) [3, 0] 0.0001 (0.35) [1, 0]
δ3 0.0001 (0.17) [9, 0] 0.0001 (0.03) [5, 0] 0.0002 (0.06) [4, 0] 0.0001 (0.32) [0, 0] 0.0001 (0.27) [0, 0]
δ4 0.0001 (0.15) [10, 0] 0.0001 (0.07) [5, 0] 0.0002 (0.03) [3, 0] 0.0001 (0.22) [0, 0] 0.0002 (0.30) [2, 0]
δ5 0.0002 (0.14) [17, 0] 0.0002 (0.13) [5, 0] 0.0002 (0.14) [5, 0] 0.0003 (0.06) [5, 0] 0.0002 (0.22) [2, 0]

γopen 0.0128 (0.00) [30, 0] 0.0055 (0.00) [7, 0] 0.0083 (0.00) [8, 0] 0.0159 (0.00) [8, 0] 0.0218 (0.00) [7, 0]
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A.2 Additional Results

This part of the appendix provides some additional results and presents a comparison of Xetra

estimation results of the basic MRR model with their sample from NYSE.

Following MRR, we have been particularly interested in the intra-day patterns of spreads

and its components. We refer to θ as the information asymmetry parameter as it gives the

revision of the fundamental price due to a surprise in the order flow. φ is referred to as

the non-informational related transaction cost element. It represents economic (opportunity)

costs of market making. From the parameters φ and θ one can compute two indicators of

interest. First, the implied (effective) spread s = sE = 2(φ + θ) and second, the share of

the spread that is attributable to asymmetric information r = θ
φ+θ . Table A.2.1 contains the

first stage GMM estimates of θ and φ and ρ. As in MRR we report the cross sectional mean,

median and standard deviation of the parameter estimates. The estimates are computed

for six periods of the trading day, 9:00-9:30; 9:30-11:00; 11:00-14:00; 14:00-15:30;15:30-17:00,

17:00-17:30. The length and timing of these intervals is inspired from MRR’s study and

adapted to the Xetra trading hours.

Extending the MRR’s aggregate view (who report only the aggregated results for their

sample of 274 stocks), we also report the estimation results disaggregated for four groups with

stocks sorted according to their trading intensity (see table 2.2.1 for the assignment of stocks

into the trading frequency quartiles). We report the group mean and median as well as the

within group standard deviation of the respective parameter estimate. This allows checking

the homogeneity of the groups. Table A.2.2 reports the corresponding results for the implied

spread s = sE = 2(θ + φ) as well as the share of the adverse selection component r = θ
φ+θ .
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Table A.2.1: Estimation results for MRR for different periods of the

day.The table presents the mean coefficient estimate across stocks (first stage GMM)
in the respective trade size quartile and across all thirty stocks, as well as standard
deviation and median of the estimates within the respective group and across all
thirty stocks. The estimates for θ and φ were multiplied with 100 in order to ex-
press the spread components in euro cents.
Trade Size

9:00-9:30 9:30-11:00 11:00-14:00 14:00-15:30 15:30-17:00 17:00-17:30
Quartile

θ

1
Mean 0.91 0.67 0.57 0.61 0.65 0.57
Median 0.91 0.67 0.55 0.56 0.59 0.52
Std 0.49 0.34 0.29 0.31 0.35 0.29

2
Mean 0.83 0.58 0.50 0.53 0.52 0.47
Median 0.76 0.51 0.44 0.47 0.47 0.45
Std 0.60 0.44 0.38 0.40 0.33 0.30

3
Mean 0.90 0.57 0.50 0.51 0.51 0.53
Median 0.66 0.45 0.42 0.40 0.44 0.44
Std 0.51 0.30 0.24 0.27 0.24 0.26

4
Mean 2.02 1.26 1.06 1.07 1.03 1.02
Median 1.67 1.25 0.94 1.05 1.07 0.99
Std 0.77 0.40 0.38 0.33 0.32 0.30

all
Mean 1.15 0.76 0.65 0.67 0.66 0.64
Median 0.90 0.64 0.54 0.56 0.58 0.53
Std 0.75 0.45 0.39 0.39 0.36 0.35

φ

1
Mean 0.70 0.60 0.56 0.54 0.49 0.59
Median 0.61 0.53 0.51 0.48 0.45 0.49
Std 0.36 0.26 0.22 0.21 0.17 0.20

2
Mean 0.53 0.45 0.44 0.42 0.40 0.47
Median 0.42 0.38 0.35 0.34 0.32 0.42
Std 0.36 0.26 0.27 0.24 0.24 0.21

3
Mean 0.58 0.44 0.38 0.36 0.35 0.40
Median 0.49 0.44 0.36 0.35 0.33 0.38
Std 0.27 0.13 0.10 0.09 0.09 0.10

4
Mean 0.92 0.54 0.46 0.47 0.49 0.70
Median 0.78 0.53 0.49 0.48 0.52 0.65
Std 0.35 0.21 0.19 0.26 0.19 0.19

all
Mean 0.67 0.50 0.46 0.44 0.43 0.53
Median 0.54 0.43 0.38 0.36 0.35 0.46
Std 0.35 0.22 0.21 0.21 0.18 0.21

ρ

1
Mean 0.21 0.22 0.22 0.22 0.24 0.20
Median 0.20 0.22 0.22 0.22 0.23 0.19
Std 0.03 0.02 0.01 0.01 0.02 0.02

2
Mean 0.19 0.21 0.20 0.21 0.22 0.19
Median 0.20 0.21 0.20 0.21 0.22 0.18
Std 0.03 0.02 0.02 0.02 0.02 0.03

3
Mean 0.19 0.20 0.22 0.20 0.23 0.20
Median 0.19 0.20 0.21 0.21 0.22 0.20
Std 0.03 0.01 0.02 0.02 0.01 0.02

4
Mean 0.24 0.24 0.25 0.25 0.25 0.22
Median 0.24 0.23 0.25 0.27 0.25 0.22
Std 0.03 0.02 0.02 0.03 0.02 0.02

all
Mean 0.21 0.22 0.22 0.22 0.23 0.20
Median 0.20 0.22 0.22 0.22 0.23 0.20
Std 0.03 0.02 0.02 0.03 0.02 0.03
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Table A.2.2: Implied spread and adverse selection share of MRR for differ-

ent periods of the day. The table presents the mean coefficient estimate across
stocks (calculated from the first stage GMM estimates) in the respective trade size
quartile and across all thirty stocks, as well as standard deviation and median of the
estimates within the respective group and across all thirty stocks. The estimates
for sE were multiplied with 100 in order to express the spread components in euro
cents. The adverse selection share r is expressed in percent.
Trade Size

9:00-9:30 9:30-11:00 11:00-14:00 14:00-15:30 15:30-17:00 17:00-17:30
Quartile

sE = 2(θ + φ)

1
Mean 3.24 2.54 2.27 2.30 2.28 2.31
Median 2.90 2.27 2.06 2.08 2.07 2.03
Std 1.65 1.15 0.97 1.02 1.02 0.99

2
Mean 2.73 2.05 1.88 1.91 1.83 1.87
Median 2.35 1.77 1.54 1.58 1.59 1.73
Std 1.88 1.39 1.29 1.26 1.13 1.01

3
Mean 2.95 2.03 1.75 1.75 1.72 1.86
Median 2.36 1.78 1.56 1.52 1.54 1.62
Std 1.49 0.78 0.61 0.65 0.60 0.71

4
Mean 5.87 3.60 3.04 3.07 3.04 3.42
Median 4.68 3.09 2.58 2.75 2.73 3.02
Std 2.12 1.13 1.09 1.10 0.96 0.92

all
Mean 3.64 2.52 2.21 2.23 2.19 2.33
Median 2.79 2.23 1.94 1.90 1.94 2.02
Std 2.11 1.25 1.09 1.10 1.04 1.07

r = θ
θ+φ

1
Mean 54.3 50.6 47.9 50.6 53.8 46.5
Median 55.5 54.2 52.5 53.8 57.4 51.2
Std 11.7 12.9 12.8 12.6 12.9 10.6

2
Mean 58.9 53.3 51.3 53.8 55.0 48.0
Median 62.3 57.1 54.9 57.9 56.4 51.5
Std 10.9 10.6 10.2 10.5 10.5 8.8

3
Mean 59.4 54.3 54.6 55.6 57.1 55.1
Median 57.1 53.9 53.7 53.1 54.9 55.8
Std 6.9 9.2 9.7 10.7 8.5 7.8

4
Mean 68.3 69.8 69.5 70.6 68.2 59.1
Median 67.5 68.5 69.3 71.1 66.6 57.7
Std 5.7 6.5 6.0 6.7 6.7 4.6

all
Mean 60.1 56.8 55.6 57.5 58.4 52.1
Median 60.3 56.9 55.4 57.9 60.5 53.1
Std 10.0 12.1 12.5 12.4 10.9 9.4
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Table A.2.2 shows that the mean implied (effective) spread s = sE in Xetra exhibits a

U-shape broadly comparable to the results reported for s by MRR. However, the drop after

the first half hour of trading is more pronounced in our application. While s in MRR drops

only by 10%, the decrease amounts to 31% in our application. The drop is largest for groups

three and four containing the less frequently traded stocks. For group four, the implied spread

drops by 39% after the initial half hour of Xetra trading. On the other hand, the increase of

the implied spread during the final half hour of the trading process, is much less pronounced

and in relative terms smaller than in the MRR study. MRR report an increase of the mean

implied spread by 10% during the final half hour. The corresponding value in our application

amounts to 6%. Again the the intra-day pattern is more pronounced for the group of least

frequently traded stocks for which the average mean implied spread increases by 13% . Given

these results, it may be more appropriate to describe the intra-day pattern of the implied

spread in Xetra as a twisted U-shape or a ”smirk”. This is the main first difference between

MRR and our study: A more pronounced intra-day pattern with a sharp decline of the implied

spread after the initial half hour of the trading process with an even more distinct pattern

for less frequently traded stocks.

We turn now to the explanations behind the intra-day pattern of the implied spread (s).

By definition, s is composed of the information asymmetry parameter θ and the transaction

cost parameter φ which is associated with opportunity costs market making. Table A.2.1

shows that, as in the MRR paper, the information asymmetry parameter θ drops sharply

after the first half hour trading interval. The L-shape of the time of day pattern of the

adverse selection cost component is broadly comparable to the MRR paper. The drop after

the initial half hour of trading is somewhat more pronounced in our application. While MRR

report a decrease of the mean θ of 23%, in our application the decrease amounts to 34%

averaged across all stocks. The decrease is most pronounced for the group of least frequently

traded stocks (38%) and smallest for the group of most frequently traded stocks (26%).

Our application allows comparing the level of the adverse selection costs measured in θ

across stock groups that we sorted according their trading intensity. Table A.2.1 shows that,

throughout the day, the information asymmetry parameter θ is higher for less frequently

traded stocks. For example, the mean θ for the group of most actively traded stocks during

the first half hour of the trading day amounts to 0.9 euro cent. The value for the group of least
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frequently traded stocks is more than double (2 euro cents). This pattern does not change

during the trading day. For the last half hour, the adverse selection cost component averaged

for the stocks in group one equals .57 euro cents while the value for group four amounts to

1.02 euro cents.

Although the levels of the adverse selection cost components are not directly comparable

across the MRR study and ours, the overall adverse selection costs on the Xetra system appear

considerably smaller in absolute terms. For example the mean θ across all DAX30 stocks for

the first half hour amounts to 1.2 euro cent, while in the MRR study the average for their

sample of 274 stocks amounts to 4 dollar cent. Of course, due to exchange rate effects, stock

prices and the broader sample used by MRR these figures are not directly comparable, but

the difference seems considerable anyway. These differences remain stable throughout the

trading day.

In our application the serial autocorrelation of the trading indicator ρ is smaller than in

MRR. Across the groups of stocks, and throughout the trading day, the correlation varies

between 0.19 and 0.25, while for the MRR stocks the average correlations varies between 0.41

and 0.37.

While the time of day patterns regarding the adverse selection cost parameters are broadly

comparable between the MRR study and ours, the differences concerning the non-informational

related transaction cost component φ are more striking. MRR report an increase of φ during

the day, with an increase of about 34% from the first half hour of the trading day to the

final half hour. The jump of transaction costs reported by MRR is sharpest after the first

half hour of the trading process (17% increase). As discussed above, φ can be interpreted

as the (opportunity) costs of market making aside from adverse selection effects, a similar

interpretation as the realized spread. In our application the intra day pattern of the costs

of market making (here maybe better: opportunity costs of supplying liquidity) exhibit a

symmetric U-shape which is most pronounced for the group of least frequently traded stocks.

We start with a high level of transaction costs during the first half hour of the trading day and

a subsequent 25% decrease (averaged across all stocks, 41% for the group of least frequently

traded stocks) onto a level that remains roughly constant over the trading day, until the costs

increase again during the final half hour (averaged across stocks by 23%, for the group of

least frequently traded stocks by 43%).
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The top right panel of figure A.2.1 depicts the pattern of the standardized φ̃. The pattern

is quite different in the MRR application. The Xetra pattern seems much more interesting and

more pronounced. One could argue that the voluntary liquidity suppliers on Xetra demand

a higher compensation for their market making efforts during the initial trading phase. The

explanation for this compensation, though, cannot be found in adverse selection effects (these

are captured by θ). The increase of the costs of liquidity supply during the final half hour

could well be interpreted as an inventory cost effect. Liquidity suppliers (the limit order

traders) demand a compensation for the risk (not adverse selection risk, but non-trading

opportunity-risk) to carry the inventory overnight.

The possibly most important issue is the comparability of the absolute euro cent figures

and the aggregation and averaging of parameter estimates and spreads and price impacts

within the groups. Up to now, we followed MRR who also simply averaged the parameters

over their 274 stocks. Although the differences in Xetra stock prices are less than they have

been some years ago (SAP has the highest per share price of 131.5 Euro, Infineon with 11.6

is the smallest.) we could contemplate controlling for the price level. One possibility would

be to divide θ and φ (both are in euro cent) by the average price of the respective stock

before averaging within the group. In order to control for the price effect we have computed

standardized MRR spread components φ̃ = φ/P̄ , θ̃ = θ/P̄ and a standardized implied spread

s̃E = 2(φ + θ)/P̄ , where P̄ is the average stock price (sample average). As can be seen in

table A.2.3 the intra-daily pattern does not change for the standardized parameters.

We still observe an L-shape for the adverse selection component, a U-shape for the order

processing cost component and a twisted U-shape for the implied spread (the rise of the

implied spread at the end of the trading day is more pronounced for stocks in group 3 and

4). However, the advantage of standardizing can be seen by comparing the levels of the

different groups. While for the unstandardized coefficients the second highest level of the

implied spread and the adverse selection component occurs for group 1, the largest and most

frequently traded stocks, standardized coefficients are ordered as we would expect. Group 3

and 4 exhibit a substantially higher level for the adverse selection component compared to

group 1 and 2. The same is true for the implied spread. The differences in the ordering are

due to a price effect in the unstandardized coefficients. Larger stocks are more likely to have

a higher price which translates into a higher level of the spread and, hence, into a higher level
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Table A.2.3: Standardized adverse selection component, standardized or-

der processing cost component and standardized implied spread. The
table presents the mean coefficient estimate standardized with the price level across
stocks (calculated from the first stage GMM estimates) in the respective trade size
quartile and across all thirty stocks, as well as standard deviation and median of the
estimates within the respective group and across all thirty stocks.
Trade Size

9:00-9:30 9:30-11:00 11:00-14:00 14:00-15:30 15:30-17:00 17:00-17:30
Quartile

θ̃ (%)

1
Mean 0.014 0.011 0.009 0.010 0.010 0.009
Median 0.015 0.011 0.009 0.010 0.010 0.009
Std 0.003 0.002 0.002 0.002 0.002 0.001

2
Mean 0.021 0.015 0.013 0.014 0.014 0.012
Median 0.022 0.014 0.012 0.013 0.014 0.012
Std 0.004 0.002 0.002 0.002 0.002 0.002

3
Mean 0.034 0.023 0.020 0.020 0.020 0.021
Median 0.034 0.022 0.019 0.019 0.020 0.021
Std 0.005 0.004 0.004 0.004 0.005 0.004

4
Mean 0.040 0.025 0.021 0.021 0.021 0.021
Median 0.042 0.027 0.022 0.023 0.022 0.020
Std 0.004 0.004 0.003 0.003 0.003 0.003

all
Mean 0.027 0.018 0.016 0.016 0.016 0.016
Median 0.028 0.018 0.015 0.016 0.016 0.016
Std 0.011 0.007 0.006 0.005 0.005 0.006

φ̃ (%)

1
Mean 0.012 0.011 0.011 0.010 0.010 0.011
Median 0.012 0.010 0.009 0.008 0.007 0.009
Std 0.005 0.006 0.006 0.006 0.005 0.005

2
Mean 0.016 0.014 0.014 0.013 0.012 0.015
Median 0.012 0.011 0.010 0.010 0.009 0.012
Std 0.008 0.007 0.007 0.007 0.007 0.007

3
Mean 0.024 0.019 0.017 0.016 0.016 0.018
Median 0.025 0.021 0.020 0.019 0.017 0.020
Std 0.005 0.006 0.005 0.005 0.005 0.005

4
Mean 0.019 0.011 0.009 0.009 0.010 0.014
Median 0.017 0.010 0.009 0.010 0.010 0.014
Std 0.006 0.003 0.002 0.002 0.003 0.004

all
Mean 0.018 0.014 0.013 0.012 0.012 0.015
Median 0.015 0.011 0.010 0.010 0.010 0.012
Std 0.007 0.006 0.006 0.006 0.006 0.006

s̃E (%)

1
Mean 0.054 0.044 0.040 0.040 0.040 0.040
Median 0.055 0.042 0.037 0.036 0.037 0.039
Std 0.008 0.009 0.010 0.009 0.009 0.009

2
Mean 0.074 0.057 0.053 0.053 0.052 0.054
Median 0.070 0.052 0.045 0.046 0.046 0.051
Std 0.018 0.016 0.016 0.016 0.016 0.017

3
Mean 0.116 0.084 0.073 0.072 0.072 0.077
Median 0.115 0.083 0.074 0.072 0.072 0.077
Std 0.015 0.015 0.014 0.013 0.014 0.013

4
Mean 0.117 0.072 0.060 0.061 0.061 0.070
Median 0.109 0.071 0.061 0.059 0.060 0.069
Std 0.017 0.010 0.007 0.005 0.008 0.012

all
Mean 0.091 0.065 0.057 0.057 0.057 0.061
Median 0.095 0.064 0.057 0.058 0.057 0.061
Std 0.031 0.020 0.017 0.016 0.017 0.019
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of the spread components.

The level of transaction costs for the Xetra traded stocks is considerably smaller than

in the MRR study. Even for group four, the group of least frequently traded stocks, our φ

estimates are much smaller than the estimates reported in table 2 in Madhavan et al (1997).

For example, the average transaction cost estimate for group four during the first half hour

amounts to 0.9 euro cent (all stock average: 0.67 euro cent) while the corresponding average

φ estimate in MRR is equal to 3.4 dollar cent. At least for the non-informational related

transaction costs containing a compensation for taking unwanted inventory, we would expect

smaller costs on Xetra since liquidity provision is voluntary. Therefore, limit order submitters

providing liquidity should demand a smaller compensation for inventory risk.

Generally, the relative importance of the adverse selection cost component for the spread

is higher for the Xetra traded stocks compared to the MRR stocks. Averaged across stocks,

the ratio r = θ
θ+φ ranges from 0.6 (first half hour) to 0.52 (final half hour). Differences

across stock groups are quite pronounced. For the group of least frequently traded stocks,

the information component accounts for about 70% of the spread throughout the day until

the ratio drops to 0.6 during the final half hour. The information component of the spread is

considerably smaller and the intra-day pattern of r is more L-shaped for the more frequently

traded stocks. For example, the relative importance of the adverse selection component is

about 54% during the first half hour and drops to 46% during the final trading hour for stock

group one containing the most frequently traded stocks.

However, the information component share ratios are considerably larger than in MRR’s

application. They report average ratios of about 0.38 (excluding the first half hour where

the ratio is 0.51). Although the level of the adverse selection costs in Xetra seems to be

smaller, the share of the spread attributable to the information component is higher. We

can offer two explanations for this result. First, one could argue that the the anonymity

of the trading system aggravates adverse selection effects. However, this concerns only the

relative importance of adverse selection effects and not the level. Second, the smaller non-

informational related transaction costs in the electronic trading system may render adverse

selection costs relatively more important.

It seems also worth discussing further the intra-day pattern of the share of the information

component as we have some striking differences compared to the MRR application. MRR
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report an L-shape of the intra-day pattern of θ
θ+φ . Given the discussion it is not surprising

that our pattern is somewhat different, but well explainable (see lower right picture in figure

A.2.1). Although we also observe, averaged across all stocks, the initial drop of the information

component share, but we also observe a further sharp decrease during the final half hour.

This decrease can be explained by the time-of-day pattern of the non-informational related

transaction costs which increase (allegedly due to inventory effects) during the final half Xetra

hour, thus reducing the relative importance of the information component.

Another extension underpinning our argument in section 2.5 is the estimation of the

standard MRR model for different trade categories. As in figure 2.5.1, trades are categorized

according to how far they ”walk up the book”. In category 1, we include all trades with a

volume smaller than the best depth, category 2 includes those trades consuming exactly the

best depth, in category 3 we collect all trades larger than the best volume but within any

higher order quote and finally, trades in category 4 consume exactly the volume behind the

second, third or fourth quote. Very similar to Huang and Stoll (1997) who define different

volume categories, we introduce a dummy variable for each trade category. The MRR model

given in equation 2.8 can then be written as:

∆Pi =

4
∑

k=1

Dkθk(Qi − ρQi−1) + φ(Qi −Qi−1) + εi + ξi − ξi−1. (A.18)

where

Dk =







1 if trade of category k

0 else

The estimation results of model A.18 are reported in table A.2.4. Not surprisingly, large

volume trades of category 3 and 4 have a larger adverse selection component than smaller

trades of category 1 and 2. An interesting result is that trades consuming exactly the best

depth (category 2) have a lower information component than trades within the best depth.

This result holds for the overall sample and for each trade activity quartile and even for every

single stock.
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Figure A.2.1: Intra-daily Patterns for the estimated standardized spread

components. The dotted line depicts trade size quartile 1, the straight line depicts
trade size quartile 2, the dashed line depicts trade size quartile 3 and the dash-dotted
line depicts trade size quartile 4. Top left: Intra-daily pattern for the standardized
adverse selection component for each trade size quartile. Top right: Intra-daily
pattern for the standardized order processing cost component for each trade size
quartile. Lower left: Intra-daily pattern for the standardized implied spread for
each trade size quartile. Lower right: Intra-daily pattern for the adverse selection
share of the implied spread for each trade size quartile.



Table A.2.4: Estimation results for MRR taking into account different trade types. The table reports the estimation results for the standard
MRR model including dummy variables for different trade types. θ1 denotes the average price impact for trades within the best quote. θ2 denotes the average
price impact for trades hitting exactly the best quote. θ3 denotes the average price impact for trades hitting exactly the second, third or fourth quote and θ4
denotes the average price impact for trades beyond the best quote but within any other quote. Average p-values for the parameter estimates are in parentheses.

Overall 1st Quartile (most active) 2nd Quartile 3rd Quartile 4th Quartile (least active)

Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig Avg. Avg. # sig
est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg] est. p-val [pos, neg]

θ1 0.0055 (0.00) [30, 0] 0.0047 (0.00) [7, 0] 0.0041 (0.00) [8, 0] 0.0043 (0.00) [8, 0] 0.0092 (0.00) [7, 0]
θ2 0.0030 (0.00) [28, 2] 0.0021 (0.00) [6, 1] 0.0022 (0.00) [7, 1] 0.0022 (0.00) [8, 0] 0.0056 (0.00) [7, 0]
θ3 0.0195 (0.00) [30, 0] 0.0178 (0.00) [7, 0] 0.0140 (0.00) [8, 0] 0.0160 (0.00) [8, 0] 0.0316 (0.00) [7, 0]
θ4 0.0212 (0.00) [30, 0] 0.0194 (0.00) [7, 0] 0.0168 (0.00) [8, 0] 0.0174 (0.00) [8, 0] 0.0324 (0.00) [7, 0]
φ 0.0062 (0.00) [30, 0] 0.0071 (0.00) [7, 0] 0.0056 (0.00) [8, 0] 0.0051 (0.00) [8, 0] 0.0073 (0.00) [7, 0]
ρ 0.2204 (0.00) [30, 0] 0.2203 (0.00) [7, 0] 0.2067 (0.00) [8, 0] 0.2113 (0.00) [8, 0] 0.2465 (0.00) [7, 0]
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In figure 2.5.1 we have seen that trades of category 2 tend to occur when trading activity is

higher (durations are shorter). Together with the results of model A.18 this finding supports

our previous hypothesis that non-informed liquidity traders herd together when trading costs

are low. Due to the increase in trading activity they increase their order aggressiveness, for

example by using market-to-limit orders or marketable limit orders. If those orders are only

partially filled the remaining order size is entered on the other side of the market as a limit

order with the respective limit price. Further, we have seen in an example in section 2.5

that this order type can yield a different assessment of the information content depending on

the model specification. Specifically, the chosen variable to analyze the informational content

(Dufour/Engle: instantaneous midquote revision, MRR: bid-ask spread) plays a major role. If

this order type constitutes a considerable share of all transactions (see figure A.2.2), different

results concerning the role of time for the informational content of a trade are not surprising.

Figure A.2.2: Frequencies of different order types. The graph depicts the frequencies of transac-
tions for four different trade categories. We denote with ’within best’ the trades with a volume smaller
than the best depth. With ’exact best (partially)’ we denote the trades consuming exactly the best depth
but are only partially filled. Fully filled orders consuming exactly the best depth are categorized as ’exact
best (full)’ and trades with a volume higher than the best depth ’beyond best’.



Chapter 3

Modeling Time Varying Arrival

Rate Dynamics of Informed and

Uninformed Traders

The dynamic EKOP model of Easley, Engle, O’Hara, and Wu (2002) which allows for time

varying trading intensities can be used to reveal some insights about the strategic behavior

of informed as well as uninformed traders. While my results for German intra-day trade

data confirm that informed traders try to hide their status by trading more heavily when

uninformed traders are present, the behavior of uninformed traders seems to be dependent

on the trading frequency of the stock. For frequently traded stocks uninformed traders try

to avoid informed traders while for infrequently traded stocks uninformed traders herd when

informed traders are present. Generally, the reaction of uninformed traders is weaker. Fur-

thermore, I perform a cross-sectional analysis in order to shed light on the relation between

the probability of informed trading and various microstructure variables.

Chapter is based on the article Modeling Time Varying Arrival Rate Dynamics of Informed

and Uninformed Traders by O. Wuensche (2005)

49
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3.1 Introduction

In recent years the availability of high-frequency data has increased dramatically. As a con-

sequence, empirical tests of hypotheses in the field of financial market microstructure play

a vital role in modern economic research. The idea is that every single transaction contains

valuable information. One strain of the empirical literature copes with the question when a

trade takes place whilst another strain asks how many trades arrive in a certain interval of

time. Although those two questions are closely related, modeling the trade process differs

because of the different data structure. The latter question is important when dealing with

a sequential trade model belonging to the class of EKOP models first introduced by Easley,

Kiefer, O’Hara, and Paperman (1996). In those models information about the amount of in-

formed and uninformed trading can be inferred from the daily number of buys and sells. This

information can be combined in a single measure, the probability of informed trading (PIN).

Since then numerous studies have focussed on calculating the PIN to answer questions con-

cerning market microstructure. For example, Grammig, Schiereck, and Theissen (2001) use

the PIN measure to test if informed traders prefer to trade on markets providing anonymity

and Odders-White and Ready (2004) explain some portion of a firms credit rating with the

firms PIN.

The vast majority of the literature (e.g. Easley, Kiefer, O’Hara, and Paperman (1996),

Easley, Engle, O’Hara, and Wu (2002)) has used daily numbers of buys and sells to estimate

the EKOP model and calculate the PIN. Further, in most applications the estimated PIN and

the estimated arrival rates of informed and uninformed traders have no time dimension and

are calculated as constant numbers. Although the cross-sectional difference in size might be

interesting in various respects it is also important not to neglect the time varying structure.

One exception is the work of Easley, Engle, O’Hara, and Wu (2002) who allow for time

varying arrival rates but they also use only daily aggregated numbers of buys and sells.

Hence, a potentially existing intra-day pattern of the arrival rates and/or the PIN cannot be

revealed. Moreover, the arrival rates are closely related to the number of trade events and

the order imbalance in a certain interval. But order imbalances as well as the overall number

of transactions have been shown to be autocorrelated (see Chordia, Roll, and Subrahmanyam

(2002) or Chordia, Roll, and Subrahmanyam (2005)). Thus, models neglecting this time

dependence deliver questionable results. Lei and Wu (2005) have recently proposed a Markov
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switching EKOP model to capture the dynamics of arrival rates. In a different structural

framework, Nyholm (2002) uses a modified trade indicator model based on Huang and Stoll

(1997) to estimate an intra-day pattern of the PIN. The following questions could be addressed

when having a time varying PIN: Does the opening of the NYSE have an effect on domestic

trading? Is the spread and the overall trading activity after the opening so high because of

overnight information? Are large or small orders more likely to stem from informed traders?1

With additional information of dynamic interaction between informed and uninformed

traders I can find answers to the following questions: Do informed traders time their trades

to hide behind high liquidity?2 Do uninformed traders avoid informed traders or is there

any evidence for herding? My results indicate that the reaction of uninformed traders to

informed trading is generally weaker than the reaction of informed traders to uninformed

trading. Additionally, I find evidence that the reaction of uninformed traders to informed

trading depends on the trading frequency of the traded stock. In all cases where uninformed

trading declines as a reaction to informed trading the stocks were rather frequently traded.

Informed traders on the other hand tend to enter the market in times of high liquidity and

follow the uninformed to cover their informational advantage. I will test if some important

market microstructure theories hold for XETRA trade data. First, it can be confirmed by

comparing the average PIN for a cross-section of stocks that smaller stocks are more exposed

to informed trading than larger stocks (e.g. Easley, Kiefer, O’Hara, and Paperman (1996)).

Further, I find that the PIN decreases with increasing average volume per trade, thus, there

is evidence that informed investors tend to split their trades. On the other hand, the PIN is

positively related to overall trading activity measured as the total volume traded. Moreover,

my results indicate that the beginning of US trading has a significant positive effect on the

PIN of most of the stocks traded on XETRA. I also observe that informed traders hide behind

liquidity since the PIN is lower when liquidity is low.

The remainder of this chapter is organized as follows. In section 3.2, I will provide a

brief review of the basic EKOP model followed by a critical assessment presenting some

caveats of the basic model. Then, an extended model is presented taking into account the

autocorrelation and the cross-correlation of arrival rates of informed and uninformed market

1For example, Brown, Thomson, and Walsh (1999) find that informed traders are more likely to choose smaller
orders than uninformed traders.

2Kyle (1985) and Admati and Pfleiderer (1988) brought forward the argument that informed traders make use
of the camouflage noise traders provide.
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participants. Section 3.4 introduces an application of this model to the DAX30 stocks of the

fully electronic trading system XETRA. First, I present the arrival rate dynamics and second,

I perform a cross-sectional study relating the PIN to various microstructure variables in order

to address some of the questions formulated above. Finally, section 3.6 provides a summary

of the results and concludes.

3.2 Modeling Trade Arrival Rates

3.2.1 Reviewing the EKOP Model

The traditional approach of modeling the arrival rates of informed and uninformed traders

is based on a sequential trading model, the EKOP model, first introduced by Easley, Kiefer,

O’Hara, and Paperman (1996). They assume that traders, trading with a market maker, are

split into two subgroups, informed traders and uninformed traders. The market maker does

not know the type of the trader but she can infer some information from the trading process.

At the beginning of the day an information event occurs with the probability α. Given an

information event has occurred, δ denotes the probability that it was a bad news event and

1− δ the probability that it was a good news event. Only the informed traders know if there

is good, bad or no information, hence, they are not expected to buy on a bad news day or sell

on a good news day. In contrast, uninformed traders do not have such superior information.

Therefore, one would expect them to trade in every information state. The resulting buy

and sell trading intensities for this simple trading process, λi, for each possible state are as

follows. Denoting the trading intensity of the informed traders with µ and for uninformed

traders with ε one gets the trading intensities λi as depicted in figure 3.2.1. In the most

basic model it is assumed that the trading intensity of uninformed traders as well as informed

traders is the same for buys and sells. Furthermore, it is assumed that the trading intensity

of both groups is equal across all possible types of information events.3 This assumption can

easily be relaxed by introducing different arrival rates for buyer and seller without loss of

generality.

The number of buys and sells per pre-specified time interval is sufficient to estimate the

parameters of the model via straightforward Maximum Likelihood techniques. Assuming

3It has already been mentioned that informed traders only trade in two states. They buy when there are good
news and they sell when there are bad news.
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Figure 3.2.1: Tree representation of the EKOP model.

the number of buys and sells to be independently Poisson distributed, the likelihood con-

tribution of interval t can be constructed as follows. It consists of three products of two

independent Poisson distributions where each product represents one possible state of nature.

Consequently, the intensity parameter of buys and sells is different for each product. Those

products are weighted with the respective probability for each information state. The prob-

ability of observing a specific sequence {Bt, St}Tt=1 of buys and sells is simply the product of

all individual likelihood contributions, i.e.

LEKOP (θ) =
T

∏

t=1

αδe−(2ε+µ) ε
Bt(ε+ µ)St

Bt!St!
+ α(1 − δ)e−(2ε+µ) ε

St(ε+ µ)Bt

Bt!St!

+(1 − α)e−2ε ε
BtεSt

Bt!St!
, (3.1)

where θ denotes the parameter vector and T is the number of time intervals (e.g. days) in

the sample. However, in empirical applications it is often more convenient to use a slightly

modified version of equation (3.1). For example, Venter and de Jongh (2004) suggest the

following log-likelihood:
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lEKOP (θ) =
T

∑

t=1

−2ε+ (B + S) ln ε− lnB! − lnS!

+ ln {(1 − α) + αδ exp[S ln(1 + µ/ε) − µ] (3.2)

+α(1 − δ) exp[B ln(1 + µ/ε) − µ]} (3.3)

The advantage of using equation (3.2) instead of just taking the log of equation (3.1) is

that numerical problems, occurring frequently from large numbers of buys and sells, can be

circumvented.

Note, that all terms involving the factorial have been dropped. This is possible because

the exclusion of the factorials does not alter the the location of the parameters maximizing

the likelihood function. Instead, it only shifts the value of the likelihood function for any

value of θ.4

3.2.2 Critical Assessment

Unfortunately, the EKOP model in its simplest form has various drawbacks. Probably the

most important problem is that it does not fit empirical data very well. This is partly due to

a) the strict assumptions concerning the independence of µ and ǫ, meaning that there is no

interaction between the arrival of informed and uninformed traders and b) the time invariance

of µ and ǫ.

The first assumption seems to be quite unrealistic since from finance theory we know that

uninformed traders try to avoid informed traders because they ”lose” when they trade against

superior informed agents (see Foster and Viswanathan (1990)). On the other hand, one could

also imagine some kind of herding behavior (see Froot, Scharfstein, and Stein (1992)) which

would imply more uninformed trading when informed trading is high. Imagine a case where

informed traders received a bad news signal and sell extensively. As a consequence, the

stock price drops. Now, either the noise traders conclude that there is bad information and

sell themselves or they conclude that the lower price is a speculative buying opportunity.

Even if it is not clear which of the above hypotheses is true, there is theoretical evidence for

4The likelihood value for any choice of θ resulting from the modified likelihood in equation 3.2 cannot be directly
compared with the likelihood value resulting from the log of equation 3.1. A derivation of equation 3.2 is given
in Appendix B.1.
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interdependence between the trading intensities of the two trader groups.

The second assumption of time invariant arrival rates is also problematic with regard to

observed data. The number of trades, and hence, the number of buys and sells in a certain

time interval, is not independent of the number of trades in the previous interval. For example,

Engle and Russell (1998) introduce the autoregressive conditional duration (ACD) model to

capture the autoregressive structure of the trade process. If the time between trades exhibits

strong autocorrelation, the number of trades in a certain period will also not be independent

from past observations. In the next section I will show that the order imbalance drives the

arrival rate of the informed traders whilst the number of balanced trades drives the arrival

rate of the uninformed traders. As was already mentioned above, order imbalances have been

shown to be autocorrelated. From our earlier argumentation it follows that balanced trades

are also expected to be autocorrelated.

Table 3.2.1 reports the Ljung-Box statistic for autocorrelations of order imbalances and

balanced trades for the DAX30 stocks. The large values of the Ljung-Box statistics confirm

the presence of autocorrelation also for the German stock exchange. Additionally, in the

fourth column I find evidence for the interdependence between the order imbalance and the

balanced trades. Hence, if the arrival rates are driven by those variables it might be useful to

allow for interdependence when estimating the arrival rates. In the following section, I will

present a model capable of allowing for time dependence and interacting behavior of informed

and uninformed traders.

3.3 The EKOP Model with Time Varying Trading Intensities

In the previous section I presented some main caveats of the basic EKOP model. In order to

relax the rather strict assumptions Easley, Engle, O’Hara, and Wu (2002) have developed an

extended model which allows for interaction between the arrival rates and takes into account

the observed autocorrelation in the sequence of buys and sells.

Let us first reconsider some implications from section 3.2.1. I can obtain the expected

number of total trades (hereafter TT ) from

E(TT ) = αδ(µ + 2ε) + α(1 − δ)(µ + 2ε) + (1 − α)(2ε) = αµ+ 2ε (3.4)
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Table 3.2.1: Ljung-Box statistics for the order imbalance and
the number of balanced trades. The second column presents the
Ljung-Box statistic for the order imbalance (|OI |) of the individual
stocks as listed in column 1. The third column contains the Ljung-Box
statistic for the number of balanced trades (BT ). ρ(OI,BT ) is the
Pearson correlation coefficient for the correlation between order imbal-
ance and the number of balanced trades. The last column classifies the
stocks according to their trade activity into quartiles.

Ticker LB(OI) LB(BT ) ρ(OI,BT )
Trade activity

quartile

ALV 1685.22 24983.43 0.21

1

DBK 2082.59 25165.88 0.20
SIE 1247.51 21261.75 0.20
DCX 935.56 14942.15 0.20
MUV2 1059.46 17656.79 0.18
EOA 990.20 15189.23 0.16
DTE 1383.02 23718.59 0.13

SAP 1166.62 13927.71 0.21

2

RWE 1249.97 16790.25 0.19
IFX 6140.95 21223.48 0.17
HVM 2404.28 20000.01 0.17
BAS 1216.64 10863.51 0.16
VOW 1052.12 9900.30 0.16
BAY 1768.04 18902.90 0.16
BMW 903.45 11441.34 0.08

MEO 777.39 7658.01 0.13

3

SCH 1531.71 14045.07 0.13
TUI 2923.62 25895.53 0.11
ALT 1393.03 12006.63 0.10
LHA 1357.08 15910.20 0.09
CBK 1175.05 10484.18 0.07
TKA 807.49 9905.73 0.07
DPW 947.34 9886.71 0.03

LIN 876.65 5314.55 0.06

4

MAN 828.35 6630.81 0.06
ADS 757.71 8052.39 0.06
DB1 1060.65 6630.06 0.05
CONT 1314.62 8777.95 0.05
HEN3 661.68 3635.70 0.04
FME 478.69 3959.90 0.01

Further, I define the order imbalance |OI| as |S − B|. Since the observed order imbalance

stems from one of the three possible states of nature, one can write:

E|OI| = αδE|OIbn| + α(1 − δ)E|OIgn| + (1 − α)E|OInn|.5 (3.5)

Since OI is the difference between two Poisson variables, the analytical computation of

the expected value E|OI| is a rather non-trivial task. Katti (1960) has derived analytical

5The index bn stands for bad news, gn for good news and nn for no news.
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Figure 3.3.1: Analytical vs. simulated expected order imbalance. The left panel
shows the analytical expected value of |OI | depending on αµ and different values for ε. The
right panel shows the simulated expected value of |OI | depending on αµ and ε. In both
graphs the underlying numerical values are α = 0.9 and δ = 0.5.

expressions for the moments of the absolute value of the difference between, inter alia, two

Poisson variables. I forbear from presenting those expressions and will instead show some

simulation results and compare them with the analytical results in figure 3.3.1.

Both graphs show that at least for large values of µ the approximate relation

E|OI| .= αµ (3.6)

holds. Further, it even holds for small values of µ if ε is small. Looking at previous empirical

studies, a combination of a small µ and a large ε is not observed, so, overall this is a quite

good approximation. Using this result together with equation (3.4) it is easy to see that

E(TT − |OI|) = E(BT )
.
= 2ε (3.7)

where BT are the balanced trades. Now I have established two observable variables, the

order imbalance and the balanced trades, as the driving force for the process of the two

unobservable arrival rates µ and ε. The next step is using this relation to model the arrival

rates as a bivariate vector process instead of assuming that they are constant. After collecting

the two arrival rates in a vector ζt = (αµt, 2εt)
′, Easley, Engle, O’Hara, and Wu (2002) suggest
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the following model:

ζt = ω +

p
∑

k=1

Φkζt−k +

q−1
∑

j=0

ΓjZt−j (3.8)

where Zt = (|OI|t, BTt)′. The expression in (3.8) is very similar to GARCH or ACD type

models. As for the latter models arrival rates can only take on values greater than zero which

is not guaranteed in the above model specification. In order to take this fact into account a

logarithmic version of (3.8) could be used which reads as:

ln ζt = ω +

p
∑

k=1

Φk ln ζt−k +

q−1
∑

j=0

Γjg(Zt) (3.9)

where g is any suitable function of Zt. For example, one could use lnZt as suggested by

Geweke (1986) in his GARCH specification or Zt
ζt−1

as suggested by Bauwens and Giot (2000)

in their Log-ACD2 model. I use a slightly modified version of the latter function resembling

the EGARCH model of Nelson (1991). Defining g(Zit) = Mit = Zit
ζi(t−1)

− 1 and plugging this

into (3.9), one can write:

ln ζt = ω +

p
∑

k=1

Φk ln ζt−k +

q−1
∑

j=0

ΓjMt. (3.10)

In order to control for overnight dynamics I extend the model in (3.10) by introducing a

dummy variable for the first five minute interval of each day. Hence, the estimated model

with p = 1 and q = 1 now looks like:

ln ζt = ω + (1 − dt)Φ ln ζt−1 + dtΦ̃ ln ζt−1 + (1 − dt)ΓMt + dtΓ̃Mt (3.11)

where

dt =







1 if first observation of the day

0 else

Estimation of the parameters is accomplished by using the log-likelihood function given in

(3.2).
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3.4 Time Varying Arrival Rates on XETRA

The data set used for the empirical analysis is extensively described in section 2.2. For this

specific model, I counted the buy and sell transactions for each five minute interval on each

trading day. From the aggregated numbers of buys and sells for each five minute interval, I

calculate the order imbalance |OI|t and the balanced trades BTt.

3.4.1 Intra-day Behavior of Different Types of Traders

Figure B.2.1 plots the estimated arrival rates for the uninformed traders εt and figure B.2.2

depicts the estimated arrival rates for the informed traders µt throughout a trading day.

Therefore, I compute averages of both trading intensities for each five minute interval across all

trading days. Both types of traders tend to enter the market predominantly at the beginning

and at the end of the trading day. Not surprisingly, the estimated arrival rate patterns are

closely related to the average number of balanced trades and the average order imbalance.

The PIN for each five minute interval can be calculated as

PINt =
αµt

αµt + 2εt
. (3.12)

As can be seen in figure 3.4.1, the PIN is roughly constant throughout the day. In contrast

to Nyholm (2002) I do not observe a higher PIN shortly after the opening.6 This finding

supports the theory that much of the high trading activity at the beginning and at the end

of the trading day stems from portfolio-rebalancing activities and does not reflect specific

information.7 Although the order imbalance and hence, the arrival rate of informed traders

is higher at the beginning and the end of the trading day, this is compensated by an increase

in uninformed trading at the same time. Overall, the similar intra-day behavior of informed

and uninformed traders yields a roughly constant probability of informed trading throughout

the day. To shed light on the simultaneous appearance of informed and uninformed trading,

I have to explore the dependency structure of the arrival rates.

6The results of Nyholm (2002) are mainly driven by the typical L-shaped intra-day spread pattern. In our
model, the trading activity throughout the day drives the results.

7Brock and Kleidon (1992) and Gerety and Mulherin (1992) argue that investors with different risk aversion
profiles exchange the exposure to overnight uncertainty prior to the periodical market closure. Symmetrically,
investors trade at the opening of the following day in order to reacquire their assets, resulting in volume that
is mainly unrelated to unanticipated overnight information.
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Figure 3.4.1: Intra-day pattern of the PIN. The estimated PINt values are averaged across
all stocks in the particular trade activity quartile for each five minute interval. The probability of
informed trading is calculated as PINt = αµt

αµt+2εt
. The solid line depicts the median PINt. The

dotted line depicts the 25% percentile and the dashed line depicts the 75% percentile. The upper left
panel depicts the intra-day pattern of the PIN for trade activity quartile 1. The upper right panel
depicts the intra-day pattern of PIN for trade activity quartile 2. The lower left panel depicts the
intra-day pattern of PIN for trade activity quartile 3. The lower right panel depicts the intra-day
pattern of PIN for trade activity quartile 4.

3.4.2 Arrival Rate Dynamics

One main advantage of using the model specification proposed by Easley, Engle, O’Hara, and

Wu (2002) is that conclusions about the strategic behavior of informed as well as uninformed

traders can easily be drawn. The Φ matrix in equation (3.11) contains the dynamics of the

arrival rates for informed and uninformed traders. While the diagonal elements capture the

autoregressive part, φ12 measures the reaction of informed traders to the arrival of uninformed

traders and φ21 measures the reaction of uninformed traders to the arrival of informed traders.

From table 3.4.1 it can be seen that for all stocks informed traders try to enter the market

when noise trading is higher.
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Table 3.4.1: Estimation results of the arrival rate dynamics. The table reports Maximum Likelihood estimates of the arrival rate
dynamics for each of the 30 stocks constituting the DAX30:

ln ζt = ω + (1 − dt)Φ ln ζt−1 + dtΦ̃ ln ζt−1 + (1 − dt)ΓMt + dtΓ̃Mt

The dummy variable dt is 1 for the first observation of each day and 0 otherwise. To conserve space we will not report the results for the
matrices Γ̃ and Φ̃. P-values based on robust standard errors are reported in parentheses.

Stock ω1 ω2 γ11 γ12 γ21 γ22 φ11 φ12 φ21 φ22 α δ
ALV 6.3401 6.2584 3.8075 3.6642 0.2789 5.7670 0.4734 0.4842 0.0811 0.8109 0.8551 0.3782

(0.000) (0.000) (0.000) (0.000) (0.051) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
DBK 7.8530 6.2277 3.6534 4.9539 0.7349 5.6758 0.5444 0.3529 -0.0685 0.9870 0.8908 0.5303

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
DCX 7.5634 3.5844 3.0757 5.1399 0.4333 3.2910 0.5186 0.3565 -0.1118 1.0544 0.7903 0.5631

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
DTE 9.2570 5.2786 4.2339 5.8848 0.8843 4.6809 0.4540 0.4273 -0.0368 0.9934 0.9512 0.4582

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.217) (0.000) (0.000) (0.000)
EOA 6.0174 6.7784 3.8583 2.6981 0.6288 6.0945 0.4987 0.3866 0.0967 0.8001 0.8754 0.4643

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
MUV 7.3461 6.6833 3.6246 4.6427 0.8870 5.8023 0.4714 0.4450 0.0195 0.8802 0.9170 0.4179

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.696) (0.000) (0.000) (0.000)
SIE 7.2720 6.1015 3.6200 4.0453 0.6553 5.6042 0.5803 0.2726 -0.0076 0.9381 0.8517 0.4895

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.776) (0.000) (0.000) (0.000)
BAS 5.6433 6.2859 3.5365 2.7949 0.7335 5.2889 0.5411 0.3816 0.1430 0.7344 0.8549 0.5032

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
BAY 7.9369 5.7469 3.4382 5.2912 0.7753 5.0169 0.5414 0.3504 -0.0465 0.9482 0.9212 0.4425

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.272) (0.000) (0.000) (0.000)
BMW 6.9218 6.6307 4.0265 3.6465 0.7504 5.3498 0.5331 0.3856 0.0429 0.7528 0.9375 0.4430

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.494) (0.000) (0.000) (0.000)
HVM 6.9135 6.3440 4.1144 3.3617 0.7282 5.6488 0.4044 0.4393 0.0559 0.8474 0.9237 0.4173

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000)
IFX 8.2982 3.8646 4.3173 4.8028 0.3564 3.6624 0.6281 0.2982 -0.0241 0.9820 0.9300 0.3957

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
RWE 5.5575 6.4454 3.6215 2.7697 0.5649 5.6999 0.4588 0.4716 0.1121 0.7678 0.8684 0.5570

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table 3.4.1: (continued)

Stock ω1 ω2 γ11 γ12 γ21 γ22 φ11 φ12 φ21 φ22 α δ
SAP 8.9713 4.0554 3.7285 6.0648 1.0532 3.2733 0.4303 0.4260 -0.1112 1.0651 0.9119 0.5117

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
VOW 8.9421 5.0823 3.9494 5.2341 1.2906 3.8535 0.7289 0.0891 -0.1209 1.0169 0.9055 0.4895

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ALT 5.5484 6.4803 3.7976 2.4403 0.8731 5.2985 0.5261 0.4051 0.1523 0.6722 0.9177 0.4791

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
CBK 7.1304 5.7543 3.8345 3.4004 0.8127 4.9123 0.5178 0.2618 0.0306 0.8595 0.9429 0.4799

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.443) (0.000) (0.000) (0.000)
DPW 6.3120 6.7590 3.8860 2.8965 0.8276 5.6589 0.5509 0.3233 0.1083 0.7234 0.9491 0.5027

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
LHA 6.8650 6.0072 3.9847 3.3345 0.8672 5.0654 0.3553 0.4719 0.0695 0.8091 0.9460 0.5220

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.014) (0.000) (0.000) (0.000)
MEO 5.9689 6.0911 3.7885 2.8443 0.7002 4.8007 0.4531 0.4518 0.1489 0.6340 0.9033 0.5063

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
SCH 5.3659 6.3771 3.6200 2.6733 0.6174 5.4168 0.4461 0.5157 0.1588 0.6831 0.9165 0.4750

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
TKA 5.0790 6.8978 3.7730 1.6848 0.6735 6.0136 0.5294 0.3396 0.1229 0.7203 0.9569 0.4839

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
TUI 5.7392 5.6898 3.7037 2.7829 0.4788 4.8437 0.5097 0.4258 0.0795 0.7395 0.9115 0.4221

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.003) (0.000) (0.000) (0.000)
ADS 5.8916 6.4861 3.9644 2.1912 0.7065 5.2454 0.5190 0.3185 0.0350 0.7179 0.9610 0.4693

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.060) (0.000) (0.000) (0.000)
CON 5.6035 5.7469 3.9557 2.3996 0.7425 4.7195 0.5699 0.3864 0.0651 0.7626 0.9364 0.5214

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
DB1 5.8716 6.4169 3.9534 1.8640 1.1273 4.8208 0.4919 0.2931 0.0891 0.6792 0.9455 0.5107

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.006) (0.000) (0.000) (0.000)
FME 5.7157 5.5229 3.6933 1.8230 0.8683 4.2558 0.4370 0.2795 0.1220 0.6600 0.9771 0.4944

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
HEN 4.7804 5.7811 3.5394 1.6652 0.6617 4.1764 0.6420 0.2839 0.2030 0.4575 0.9057 0.5043

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
LIN 5.8298 5.8094 3.8072 2.2643 0.8347 4.5959 0.5359 0.3085 0.0970 0.6999 0.9308 0.5275

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
MAN 5.7710 6.3798 3.8804 2.1857 0.8594 5.0788 0.4765 0.3747 0.1580 0.6326 0.9346 0.5283

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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This supports the aforementioned theory that informed traders make use of the camouflage

noise trading provides. In contrast the reaction of noise traders to the arrival of informed

traders is ambiguous. While for some of the large stocks noise traders seem to delay their

trades when informed agents enter the market (φ21 is negative), for small stocks a herding

effect prevails (φ21 is positive). This result supports the model of Foster and Viswanathan

(1990). Private information about smaller companies is likely to be revealed much slower

than information about larger ones. Hence, for small companies, the informed traders will

carry on a portion of their information in order not to reveal their type via a too conspicuous

order flow. If this is anticipated by the noise traders they will follow the signals they observe

to participate in the remaining information. However, for large companies, informed traders

try to exploit their advantage immediately. If noise traders enter the market they would lose

to the informed and cannot expect to participate in any remaining information. Thus, they

try to avoid the informed traders.

3.5 Cross-Sectional Analysis

The second part of my empirical analysis relates the estimated PIN to some common mi-

crostructure variables in a pooled regression. First, I choose the market capitalization to take

into account that larger stocks are expected to have a lower PIN.8 Then, I include the sum of

the traded volume and the volume per trade.9 I expect a positive sign for the total volume

traded and a negative sign for volume per trade. Further, I include the effective spread and

the realized spread. I calculate the effective spread as

EFFSPREAD =







2 · (TP −MQt) if buy

2 · (MQt − TP ) if sell

where TP is the transaction price and MQt denotes the prevailing bid-ask midpoint. The

index t is the time of the trade in minutes. The realized spread is calculated as

REALSPREAD =







2 · (TP −MQt+5) if buy

2 · (MQt+5 − TP ) if sell

8Market capitalization only varies across stocks but not over time.
9Some authors use the term volume for the number of traded shares times the transaction price. Here, I refer
to volume as the number of traded shares.
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Since our estimation results concerning the dynamics of the arrival rates suggest that informed

traders try to exploit the camouflage of high liquidity I also include a measure for liquidity

as an explanatory variable. Therefore, I use the XETRA liquidity measure which is very

similar to the Cost of Round Trip measure developed by Irvine, Benston, and Kandel (2000).

For a given buy or sell order size V one can calculate a weighted average price P with the

information a limit order book provides. The buyer and seller XLM(V ) measures are defined

as10

XLMB,t(V ) = 10000
PB,t −MQt

MQt
and XLMS,t(V ) = 10000

MQt − PB,t
MQt

.

To obtain the cost of a roundtrip the two components are simply added up to obtain

XLM(V ) = XLMB,t(V ) +XLMS,t(V ).

When comparing two XLM measures with the same order size it can be stated that a higher

XLM implies less liquidity since the price impact is larger. If there is a camouflage strategy

I would expect a negative relationship between the PIN and the XLM measure.

To control for some interesting time of day effects I introduce three dummy variables to

the model. The first dummy concerns the period shortly after continuous trading begins

(9:00-9:30). Nyholm (2002) finds a higher PIN for this period in his intra-day pattern. But if

the trading activity at the open is high predominantly due to portfolio-rebalancing I should

expect no effect at all. Furthermore, a dummy for the interval beginning at 2:30 p.m. and a

dummy for the interval beginning at 4:00 p.m. are included.11

All time-varying variables are averaged across all stocks belonging to the respective trade

size quartile for each five minute interval to estimate the following equation.

PINi,t = β0 + β1MKTCAPi + β2DUM230 + β3V OLSUMi,t (3.13)

+β4V OLPERTRADEi,t + β5XLMi,t−1 + β6REALSPREADi,t

+β7EFFSPREADi,t−1 + β8DUM400 + β9DUMOPEN

The effective spread and the realized spread are expressed in percent of the midquote to

10More details about the XLM measure can be found in Gomber, Schweickert, and Theissen (2004).
11Note, that index futures trading starts at 2:20 p.m. and the NYSE starts trading at 3:30 p.m.. Gomber,

Schweickert, and Theissen (2004) report the same pattern for their XLM measure.
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eliminate the level effect of the stock price. Since the variables V OLSUM , V OLPERTRADE,

XLM and EFFSPREAD exhibit a distinct intra-day pattern, they are standardized by sub-

tracting their mean and dividing by their standard deviation for each five minute interval.

Estimation results are presented in table 3.5.1. Market capitalization has the expected nega-

tive sign in every trade activity quartile confirming the results of Easley, Kiefer, O’Hara, and

Paperman (1996). The two dummy variables for the opening of U.S. trading are all positive,

although for the less frequently traded stocks in quartile 3 and quartile 4 they are smaller.

But overall the beginning of US trading seems to have a positive effect on informed trading.

The dummy controlling for the first half hour of the trading day is hardly significant for the

smaller stocks but negative for the larger stocks. Heavier trading measured as total volume

traded also indicates more informed trading. This is in line with the findings of Engle and

Russell (1998). In contrast, there is evidence that informed traders rather submit smaller

orders because the parameter for volume per trade is negative in any case. This supports

the findings of Brown, Thomson, and Walsh (1999) and the results of a more recent study

by Beltran, Grammig, and Menkveld (2005). Furthermore, the sign of the effective spread

is somewhat counterintuitive since one would expect that larger spreads are associated with

a higher PIN which is only true for the stocks in trade activity quartile 4. However, the

effect seems to be rather small anyway. On the other hand, the realized spread always has

the expected negative sign. Since the realized spread is the counterpart of the price impact

of a trade this result is quite intuitive. The higher the price impact the lower the realized

spread and the higher the probability of informed trading. From the size of the parameters I

conclude that the realized spread is a better indicator of informed trading than the effective

spread. In the above presentation of the XLM measure I argue that a higher XLM measure

stands for less liquidity. The negative sign in all four regressions supports the theory that

less liquidity is not preferred by informed investors because they are less able to hide their

informed status. In general, except for the effective spread, all variables have the expected

influence on the probability of informed trading. Even for the less frequently traded stocks

the results are robust though some effects like the start of US trading play a minor role in

explaining the PIN.
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Table 3.5.1: Estimation results for pooled regressions. We perform OLS regressions with the pooled series PINi,t as dependent variable. The
regressions are conducted separately for each trade activity quartile. The effective spread and the realized spread are expressed in percent of the
midquote to eliminate the level effect of the stock price. The variables V OLSUM , V OLPERTRADE, XLM and EFFSPREAD are standardized
by subtracting their mean and dividing by their standard deviation for each five minute interval. The test statistics are based on heteroscedasticity
consistent standard errors.

Parameter Coefficient Std Err t-value Pr > |t| Parameter Coefficient Std Err t-value Pr > |t|
1st Quartile 3rd Quartile

CONST. 0.2520 0.0016 158.58 < .0001 CONST. 0.3452 0.0015 238.37 < .0001
MKTCAP -2.63E-7 4.62E-8 -5.70 < .0001 MKTCAP -5.84E-6 2.59E-7 -22.54 < .0001
DUM230 0.0333 0.0055 6.04 < .0001 DUM230 0.0129 0.0049 2.62 0.0089
VOLSUM 0.0166 0.0009 18.44 < .0001 VOLSUM 0.0066 0.0008 8.64 < .0001

VOLPERTRADE -0.0107 0.0006 -18.86 < .0001 VOLPERTRADE -0.0027 0.0005 -5.39 < .0001
XLM -0.0028 0.0004 -6.55 < .0001 XLM -0.0023 0.0004 -5.35 < .0001

REALSP -5.6550 0.5544 -10.20 < .0001 REALSP -1.8968 0.3676 -5.16 < .0001
EFFSP -0.0003 0.0005 -0.64 0.5228 EFFSP -0.0012 0.0004 -2.65 0.0081

DUM400 0.01169 0.0051 2.27 0.0231 DUM400 0.0170 0.0053 3.21 0.0013
DUMOPEN -0.0104 0.0019 -5.34 < .0001 DUMOPEN -0.0033 0.0020 -1.68 0.0939

2nd Quartile 4th Quartile
CONST. 0.2824 0.0013 223.38 < .0001 CONST. 0.3805 0.0023 168.62 < .0001

MKTCAP -1.24E-6 6.824E-8 -18.19 < .0001 MKTCAP -3.73E-6 6.349E-7 -5.87 < .0001
DUM230 0.0411 0.0056 7.36 < .0001 DUM230 0.0147 0.0060 2.45 0.0144
VOLSUM 0.0173 0.0009 19.24 < .0001 VOLSUM 0.0065 0.0009 7.28 < .0001

VOLPERTRADE -0.0110 0.0006 -18.76 < .0001 VOLPERTRADE -0.0010 0.0006 -1.71 0.0868
XLM -0.0020 0.0005 -4.13 < .0001 XLM -0.0023 0.0005 -4.15 < .0001

REALSP -3.2700 0.6563 -4.98 < .0001 REALSP -3.7167 0.4208 -8.83 < .0001
EFFSP -0.0020 0.0005 -4.35 < .0001 EFFSP 0.0017 0.0005 3.10 0.0019

DUM400 0.0193 0.0049 3.91 < .0001 DUM400 0.0104 0.0063 1.65 0.0990
DUMOPEN -0.0108 0.0022 -4.94 < .0001 DUMOPEN 0.0006 0.0027 0.24 0.8110
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3.6 Conclusion

In this chapter I used an extended EKOP model developed by Easley, Engle, O’Hara, and

Wu (2002) to estimate a time-varying probability of informed trading. The specification

allows us to take into account the autocorrelation and cross-correlation of the arrival rates of

informed and uninformed agents on the market. An application of the model for the DAX30

stocks traded on the German fully electronic trading system XETRA reveals evidence for the

strategic timing of trades for the informed investors in order to make use of the camouflage

provided by noise traders.

Our results indicate that the reaction of uninformed traders to informed trading is gener-

ally weaker than the reaction of informed traders to uninformed trading. Additionally, I find

evidence that the reaction of uninformed traders to informed trading depends on the trading

frequency of the traded stock. Noise traders try to avoid informed traders when trading in

large and more frequently traded stocks while they exhibit herding behavior when trading in

less frequently traded stocks. When constructing an intra-day pattern for the PIN the pic-

ture differs from former studies especially at the beginning of the day. In contrast to Nyholm

(2002), I do not find a high and decreasing PIN after the opening but a rather constant PIN

throughout the day. In the next step I relate the PIN to various microstructure variables

and find that the PIN is positively related to the total volume traded and the opening of US

trading. Further, it is negatively related to market capitalization, the volume per trade, the

realized spread and the XETRA liquidity measure.

To explore the intra-day arrival rates in greater detail it would be desirable to allow for a

time varying probability that an information event occurs. This probability might be roughly

constant if daily aggregated numbers are used but certainly not if five minute intervals are

used. Letting α depend on time-of-day dummies might be a possible improvement.



Appendix B

B.1 Derivation of Stable Likelihood

The likelihood function of the EKOP model with an independent bivariate Poisson distribu-

tion for buys and sells is given by:

LEKOP (θ) =
T

∏

t=1

αδe−(2ε+µ) ε
Bt(ε+ µ)St

Bt!St!
+ α(1 − δ)e−(2ε+µ) ε

St(ε+ µ)Bt

Bt!St!

+(1 − α)e−2ε ε
BtεSt

Bt!St!
,

where θ is a vector of parameters and t the index of time intervals.

Factoring out yields:

LEKOP (θ) =
T

∏

t=1

e−2ε ε
BtεSt

Bt!St!

×
[

(1 − α) + αδe−µ(1 + µ/ε)S + α(1 − δ)e−µ(1 + µ/ε)B
]

Applying exp and log to the power terms inside the brackets and taking the logarithm of

the whole function, we receive the log-likelihood function (denoting ln LEKOP := lEKOP ):

lEKOP (θ) =

T
∑

t=1

−2ε+ (B + S) ln ε− lnB! − lnS!

+ ln {(1 − α) + αδ exp[S ln(1 + µ/ε) − µ] + α(1 − δ) exp[B ln(1 + µ/ε) − µ]}

68
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Note, that the terms including the factorials can be dropped if necessary, since they only

shift the level of the likelihood value but not the location of the maximum. �
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B.2 Intra-day Pattern of Arrival Rates

Figure B.2.1: Intra-day pattern for the arrival rate of the uninformed traders. The
arrival rates εt are averaged across all stocks in the particular trade size quartile for each five minute
interval. The solid line depicts the median εt. The dotted line depicts the 25% percentile and the
dashed line depicts the 75% percentile. The upper left panel depicts the intra-day pattern of the
average uninformed arrival rate for trade activity quartile 1. The upper right panel depicts the
intra-day pattern of the average uninformed arrival rate for trade activity quartile 2. The lower left
panel depicts the intra-day pattern of the average uninformed arrival rate for trade activity quartile
3. The lower right panel depicts the intra-day pattern of the average uninformed arrival rate for
trade activity quartile 4.
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Figure B.2.2: Intra-day pattern for the arrival rate of the informed traders. The arrival
rates µt are averaged across all stocks in the particular trade size quartile for each five minute
interval. The solid line depicts the median µt. The dotted line depicts the 25% percentile and
the dashed line depicts the 75% percentile. The upper left panel depicts the intra-day pattern of
the informed arrival rate for trade activity quartile 1. The upper right panel depicts the intra-day
pattern of the informed arrival rate for trade activity quartile 2. The lower left panel depicts the
intra-day pattern of the informed arrival rate for trade activity quartile 3. The lower right panel
depicts the intra-day pattern of the informed arrival rate for trade activity quartile 4.



Chapter 4

Using Mixed Poisson Distributions

in Sequential Trade Models

The standard sequential trade model of Easley, Kiefer, O’Hara, and Paperman (1996) (EKOP)

lacks to fit empirical data. Specifically, the counts of buys and sells exhibit overdispersion,

are serially correlated and cross-correlated. Hence, making use of independent Poisson distri-

butions to model the trade data does not seem to be appropriate. Instead, I propose to use

mixed Poisson distributions, specifically the bivariate negative binomial, in order to capture

the stylized facts of the data. I show in a simulation study that estimating the probability

of informed trading with the standard Poisson model when the true data generating process

comes from a more flexible distribution yields misleading results. An empirical study for

DAX30 stocks traded on the Xetra platform confirms the simulation results.

Chapter is based on the article Using Mixed Poisson Distributions in Sequential Trade Models

by O. Wuensche (2007)
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4.1 Introduction

The model of Easley, Kiefer, O’Hara, and Paperman (1996) (henceforth EKOP) has been

widely used by researchers to estimate the probability of informed trading. The measure

stems from a simple and intuitive sequential trading model based on the number of buys and

sells traded in a certain time interval.

Unfortunately, recent research has shown that several problems are associated with the

standard model. For example, Boehmer, Grammig, and Theissen (2007) show that trade

misclassification as proposed in Lee and Ready (1991) can lead to seriously biased estimates

of the EKOP model. If one is merely interested in estimating the PIN, this problem can be

circumvented by using aggregate trade data instead of disaggregated buy and sell data (Kokot

2004). But even for data where trade classification is not necessary, the EKOP model has

various drawbacks. To understand those problems we have to go back to the basic assumptions

of the model. In the EKOP model, buys and sells are assumed to be independently Poisson

distributed conditional on a certain information regime. This implies that buys and sells are

neither cross-correlated nor serially correlated. Further, one important characteristic of the

Poisson distribution is that the mean of the distribution is equal to its variance. All three

features of the model seem questionable when looking at empirical order flow data. As a

result, the standard Poisson-EKOP model lacks empirical fit. Venter and de Jongh (2004)

successfully proposed a bivariate Poisson inverse Gaussian mixture to enhance the empirical

fit.

Drawing on the latter approach, this chapter provides a new distributional specification

which improves the empirical fit drastically and is less demanding concerning the computa-

tional effort than comparable specifications. Further, it shows via a simulation study that if

the data generating process of buys and sells comes from a more complex distribution than

the Poisson, the standard EKOP model cannot estimate the PIN as well as the other struc-

tural parameters of the EKOP model consistently. Additionally, we show that the posterior

classification in news and no news days of the new model confirms results that two-sided trade

clustering is not associated with asymmetric information (Sarkar and Schwartz (2006)).

Several papers utilized the standard EKOP model addressing questions in microstructure

research. Easley, Kiefer, and O’Hara (1997a) analyze the informational content of different

trade sizes and Easley, Kiefer, and O’Hara (1997b) estimate the informational content of no
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trade intervals. Brown, Thomson, and Walsh (1999) and Easley, O’Hara, and Saar (2001)

extend the basic model to allow for different order types, i.e. market versus limit order.

Other noticeable applications were contributed by Easley, Kiefer, and O’Hara (1996) and

Grammig, Schiereck, and Theissen (2001) who analyze stocks traded on different markets.

The latter find that a stock traded in a market with trader anonymity, for example an open

limit order book market, has a higher probability of informed trading (henceforth PIN) than

the same stock on a non-anonymous market. Generally, a plethora of structural extensions

and interesting applications has found its way to the literature. Any thinkable extension of

the model is mainly restricted by the lack of appropriate data.

The already mentioned, mainly statistical, problem of interdependence between buys and

sells as well as serial dependence has been dealt with in several ways. Easley, Engle, O’Hara,

and Wu (2002) propose a bivariate vector autoregressive scheme for the conditional mean

of buys and sells, thus capturing the time series dynamics of the trading process and the

interaction between trading groups. However, they still use the Poisson distribution with

time varying parametrization. Lei and Wu (2005) use a Markov Switching approach to obtain

time varying parameters and induce a dependence between the trade intensities of informed

and uninformed traders resulting in a dependence for the data generating process of buys and

sells. Another possibility to tackle the problem of independence is to replace the standard

Poisson distribution with a mixed Poisson distribution where the bivariate Poisson for buys

and sells is mixed with the same distribution. Venter and de Jongh (2004) proposed the

bivariate Poisson Inverse Gaussian (BPIG) and showed that the empirical fit of the model

could be enhanced substantially. Kokot (2004) suggested a Negative Binomial (or Negbin)

distribution to account for overdispersion. However, the Negbin model has not been applied

to trade data thus far.

An introduction to the basic EKOP model has already been provided in section 3.2.1. In

the next section I proceed with presenting a model taking into account unobserved hetero-

geneity within the trading groups and provide some distributional extensions and their im-

plications. Section 4.3 reviews simulation results for the estimated EKOP parameters when

the true data generating process comes from different mixed Poisson distributions. Then, in

section 4.4, I apply the new bivariate Negbin model to 30 blue chips traded on the Xetra

trading platform and assess the implications of the different outcomes. A short summary is
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given in section 4.5.

4.2 Heterogeneity Within the Trading Group and Mixed Pois-

son Distributions

From a theoretical point of view, making use of a mixed Poisson distribution can be justified

by assuming not only heterogeneity between groups of traders, i.e. informed and uninformed

traders, but additionally within a given group (see Kokot (2004)). Heterogeneity between

groups is already accounted for in the standard Poisson specification by assuming different

trading intensities of the two distinct trading groups. For an illustration of modeling intra-

group heterogeneity, consider, as an example, the distribution of the random variable y with

intensity λ. If we replace the constant conditional mean with the random variable λ̃, then:1

λ̃k = λwk

with E(wk) = 1 such that

E(λ̃k) = E(λwk) = λE(wk) = λ

Note, that the distribution conditioned on wk is still Poisson. But by definition, we cannot

observe wk. Hence, we have to integrate out the unobservable variable:

f(y;λ) =

∫ ∞

0
f(y|w;λ) · g(w; θ)dw (4.1)

where f and g denote the pdf’s of y and w, respectively.

Additionally, one could assume different characteristics for buyers and sellers in general

by allowing the parameter of the mixing distribution to differ for buyer and seller such that:

f(B;λB) =

∫ ∞

0
f(B|wB;λB) · g(wB ; θB)dw (4.2)

f(S;λS) =

∫ ∞

0
f(S|wS ;λS) · g(wS ; θS)dw (4.3)

1The example is analogous to the more general discussion about Poisson regression with unobserved hetero-
geneity in Long (1997) or Cameron and Trivedi (1998).



CHAPTER 4. USING MIXED POISSON DISTRIBUTIONS 76

From a statistical point of view, Mixed Poisson distributions usually allow for different vari-

ance structures than the simple Poisson model where the mean is equal to the variance.

Translated to the EKOP model it could be sensible to allow for different variances for the

number of buys and sells in different news regimes (see for example Ranaldo (2006)). Thus,

the parameter of the mixing distribution could be allowed to be regime dependent.

If the joint process of buys and sells is affected by the same factor, we can model the

bivariate process of buys and sells as:

f(B,S;λB , λS , θ) =

∫ ∞

0
f(B|w;λB)f(S|w;λS) · g(w; θ)dw (4.4)

From a theoretical perspective, this common factor could be anything which affects both

trader groups in the same fashion, e.g. important macro news, analyst reports (see Venter

and de Jongh (2004)) or simply a common sentiment towards the market situation (see Henke

(2004)). From a statistical point of view, the model described by equation (4.4) imposes the

desired (because frequently observed) positive dependence of buys and sells. Note, that buys

and sells are still Poisson distributed with expectation λ̃B = λBw and λ̃S = λSw. Thus,

the constant trading intensity for buyer and seller is now multiplied with the same stochastic

factor. The dependence of buys and sells is a stylized fact when looking at aggregate buy and

sell data and is left unaccounted for in the standard EKOP model. In fact, it will be shown

in section 4.4 that more general models as the one in equation (4.4) are capable of generating

data very similar to observed data while the standard model fails to produce a good empirical

fit.

4.2.1 The Bivariate Poisson Inverse Gaussian Model

Depending on the choice of the mixing distribution g, one receives a corresponding Mixed

Poisson distribution.2 Venter and de Jongh (2004) proposed the bivariate Poisson Inverse

Gaussian (BPIG) mixture as a possible alternative to the standard model. The BPIG uses

as a mixing distribution the unit inverse Gaussian3 with density function

g(w) =
ψeψ

2

√
2π

w− 3
2 exp

[

−1

2
ψ2(w−1 + w)

]

, w > 0 (4.5)

2An extensive overview of mixed Poisson distributions can be found in Karlis and Xekalaki (2005).
3The distribution is also known as the standard form of the Wald distribution (see Johnson and Kotz (1970)).
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As above for the Gamma distribution, we have E(w) = 1. The resulting joint distribution of

buys and sells can be written as:

fBPIG(B,S;λB , λS , ψ) =
λBB
B!

λSS
S!

[

ψ2

ψ2 + 2(λb + λS)

]

B+S
2

eψ
2−ψ√z (4.6)

×KB+S− 1
2
(ψ

√
z)/K 1

2
(ψ

√
z)

where z = ψ2 + 2(λb+λS) and Kn(·) denotes the modified Bessel function of the third kind.4

Because E(w) = 1, the expectation of buys and sells in the jth information regime are

still, as in the standard Poisson case, Ej(B) = λj,B and Ej(S) = λj,S. But the variance is

now quadratic in the mean:

V arj(B) = λj,B +
1

ψ2
λ2
j,B V arj(S) = λj,S +

1

ψ2
λ2
j,S (4.7)

For ψ → ∞, we receive a standard independent bivariate Poisson model.

Although neglecting possible serial correlation in the time series of trades, the BPIG has

been shown to fit empirical data quite well. however, a drawback is the rather complex

likelihood function. Especially for large values of buys and sells, numerical maximization can

be quite time consuming since the modified Bessel function is computed recursively.

4.2.2 The Bivariate Negbin Model

As an alternative to the BPIG presented above, we propose a bivariate Negbin distribution

(BNB) for buys and sells. It has very similar features concerning the mean and the variance.

The main advantage over the BPIG is that maximum likelihood estimation is hardly slower

than estimation of the standard EKOP model.

Consider the case, that instead of a unit inverse Gaussian, w has a Gamma density with

parameter ν:

g(w) =
νν

Γ(ν)
wν−1e−wν (4.8)

where Γ(ν) =
∫ ∞
0 uν−1e−udu denotes the Gamma function. Note, that this is a special case

of the two parameter Gamma distribution w ∼ G(ν, β) where β = ν to ensure that E(w) = 1.

4For a comprehensive understanding of the function and useful hints for a convenient computation, see
Abramowitz and Stegun (1972).
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Then the joint distribution of buys and sells according to equation (4.4) can be written as:

fBNB(B,S;λB , λS , ν) =
Γ(B + S + ν−1)

B!S!Γ(ν−1)

(

ν−1

ζ

)ν−1
(

λB
ζ

)B (

λS
ζ

)S

(4.9)

where ζ = ν−1 + λB + λS . We follow Marshall and Olkin (1990) who derived this model

first and refer to (4.9) as the bivariate Negbin model. This model has already been applied

in labor market research (see Bauer et al. (1998))5 and in marketing research to model joint

purchasing decisions (see Miles (2001)).

The marginals of buys (B) and sells (S) are univariate Negbin with density:

f(y|j) =
Γ(y + ν−1)

Γ(y + 1)Γ(ν−1)

(

ν−1

ν−1 + λj,y

)ν−1
(

λj,y
ν−1 + λj,y

)y

(4.10)

where y ∈ {B,S} and j denotes the information regime. As for the BPIG, the expectation

of buys and sells is equal to Ej(B) = λj,B and Ej(S) = λj,S. The variance results as

V arj(B) = λj,B + νλ2
j,B V arj(S) = λj,S + νλ2

j,S (4.11)

such that the first two moments of the BPIG and the BNB are equal if ν = 1/ψ2.

Note, that the variance of buys (sells) in the good (bad) news regime is substantially

higher than in the no news regime since the mean is increased by the trading intensity of the

informed traders. As the BPIG, the BNB nests the Poisson model if ν → 0.

4.3 Simulation of PIN Under Different Distributions

Which consequence has a possible misspecification of the joint distribution of buys and sells

for the estimation of the PIN? To answer this question, we conduct a simulation study. First,

we simulate trade data assuming that the true data generating process (DGP) comes from

an independent Poisson, a BNB and a BPIG. Then, we estimate the EKOP parameters for

the simulated data, again with different distributional assumptions (Poisson, BNB, BPIG).

The parameter calibration for the simulation of buy and sell data is as follows: for all three

5Guo (1996) refers to the distribution given in equation (4.9) as the negative multinomial and Bauer et al.
(1998) call it a bivariate Poisson although the marginals are Negbin. In their paper, the bivariate Negbin
consists of two Negbin distributions mixed with a Beta distribution.
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specifications, we set ε = 100, µ = 150, δ = 0.5 and let 1.) α and 2.) µ vary such that the true

PIN ranges from 0.02 to 0.4 with an increment of 0.02.6 For the simulation of BNB data we

let the additional distribution parameter ν vary from 0.05 (close to being Poisson) to 1 (far

from being Poisson) with an increment of 0.05. Remember that a higher ν allows for a higher

variance of the buy and sell data. For the BPIG data we choose the additional distributional

parameter such that the variance structure is equal to the BNB data. Therefore, we use the

relationship ψ = 1/
√
ν. For each combination of ν-PIN (ψ-PIN) we simulate 100 data series,

estimate the three models and compute means of the estimated parameters.7 The results

are shown in table 4.3.1. As one can see for both mixture distributions, if the true PIN

is small the Poisson model systematically delivers upward biased PIN estimates. This bias

vanishes or is even slightly reversed if the true PIN gets large. As expected, the bias is more

severe, the larger the deviation of the generating mixture distribution from the Poisson. The

larger (smaller) the dispersion parameter for the BNB (BPIG), i.e. a larger deviation from

the Poisson distribution, the heavier is the bias of the PIN estimates. A good impression of

the inaccurate estimation of the PIN can be gained by looking at figure 4.3.1. If the true

PIN gets smaller and the dispersion parameter larger, the gap between true and estimated

PIN widens. In contrast, the lower panel of figure 4.3.1 shows that, both the BPIG and

the BNB, can accurately estimate the PIN resulting from independent Poisson distributed

buys and sells regardless of the true PIN value. This is no big surprise since the Poisson is

nested in each of the two mixture distributions. The corresponding table 4.3.2 shows that

the dispersion parameter is estimated near zero for the BNB case and relatively large for the

BPIG case. Hence, the two mixture distributions approach the bivariate Poisson.

To get a more detailed impression of the origin of the PIN bias, we take a closer look at

the estimated parameter values of the EKOP model.8 Figure C.2.1 shows surface plots of the

estimated structural parameters α (the probability that an information event happens) and µ

(the trading intensity of informed traders). In case 1 (upper panel), we let the true α vary to

obtain a range of PIN values. We can see that both parameters are not accurately estimated

by the Poisson-EKOP model.

6I refer to section 3.2.1 and figure 3.2.1 to recall the structural interpretation of α, δ, ε and µ.
7In Appendix C.1, I provide the derivation of a numerically stable and ”easy-to-compute” likelihood function
for the BNB-EKOP.

8To conserve space, we only report results when the true data generating process is BNB. For the BPIG, the
results are qualitatively the same.
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Table 4.3.1: True model BNB\BPIG - estimated model Poisson. In the left panel we
report the estimates of the Poisson-EKOP averaged across 100 replications when the true data
generating process comes from a BNB. The data were generated with ν ranging from 0.05 (upper
panel) to 1 (lower panel) and the true PIN ranging from 0.02 (left column) to 0.4 (right column).
To vary the PIN, we fix µ and vary α. Instead of a BNB, we also used the BPIG for data
generation. The results are reported in the right panel.

Simulated: BNB - Estimated: Poisson Simulated: BPIG - Estimated: Poisson

True PIN True PIN
0.02 0.1 0.2 0.3 0.4 0.02 0.1 0.2 0.3 0.4

ν = 0.05 ψ = 1/
√

0.05

α
0.122 0.164 0.311 0.506 0.784 0.118 0.168 0.313 0.508 0.793
(0.05) (0.03) (0.03) (0.03) (0.02) (0.05) (0.03) (0.03) (0.03) (0.02)

ε
96.29 98.45 99.67 101.03 103.00 96.04 99.02 99.77 101.21 103.15
(2.15) (1.89) (1.79) (1.77) (1.91) (2.04) (1.91) (1.75) (1.85) (2.00)

δ
0.499 0.502 0.498 0.495 0.497 0.495 0.506 0.500 0.499 0.504
(0.11) (0.06) (0.05) (0.04) (0.03) (0.10) (0.06) (0.04) (0.03) (0.03)

µ
109.73 155.94 162.14 165.35 162.28 110.76 155.21 162.52 164.08 161.20
(33.18) (13.50) (7.95) (5.91) (4.07) (31.29) (13.16) (8.75) (6.54) (4.08)

PIN
0.058 0.114 0.201 0.293 0.382 0.057 0.115 0.203 0.292 0.382

(0.02) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01)

ν = 0.5 ψ = 1/
√

0.5

α
0.242 0.237 0.260 0.322 0.405 0.189 0.199 0.230 0.283 0.362
(0.02) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

ε
82.11 86.75 91.84 97.93 106.39 85.22 89.19 95.12 101.86 111.65
(2.97) (3.23) (3.96) (3.59) (3.83) (3.13) (3.22) (3.51) (4.18) (4.36)

δ
0.500 0.502 0.504 0.502 0.501 0.506 0.503 0.502 0.493 0.498
(0.06) (0.05) (0.04) (0.04) (0.04) (0.07) (0.06) (0.05) (0.04) (0.03)

µ
161.09 207.22 254.91 283.82 301.43 177.98 224.05 268.06 294.48 305.89
(13.79) (21.32) (25.44) (18.18) (16.00) (19.18) (28.96) (30.75) (27.81) (23.47)

PIN
0.191 0.219 0.263 0.317 0.364 0.163 0.198 0.242 0.288 0.330

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01)

ν = 1 ψ = 1

α
0.224 0.220 0.234 0.265 0.329 0.178 0.177 0.189 0.223 0.273
(0.02) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

ε
76.93 81.41 86.61 91.76 100.75 80.51 85.72 91.47 99.06 108.01
(4.24) (3.63) (4.11) (5.05) (5.37) (4.01) (3.65) (4.08) (4.88) (4.84)

δ
0.499 0.499 0.503 0.506 0.497 0.501 0.499 0.505 0.503 0.504
(0.05) (0.05) (0.04) (0.04) (0.04) (0.07) (0.06) (0.06) (0.05) (0.05)

µ
221.61 276.19 330.68 381.66 413.10 236.92 300.42 361.52 404.02 424.58
(20.87) (29.73) (33.80) (36.11) (31.09) (28.97) (44.42) (49.86) (52.58) (42.05)

PIN
0.243 0.270 0.306 0.354 0.401 0.205 0.234 0.268 0.310 0.347

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02)

The probability α (upper left panel) is overestimated when the true PIN and thus, the

true α, is small but heavily underestimated when the true PIN gets large. In contrast, the

trading intensity µ (upper right panel) is overestimated for most of the different simulation
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Figure 4.3.1: PIN bias when the data generating process is BPIG\BNB\Poisson. In the
upper left panel, we plot the PIN estimated with the Poisson model when the true data generating
process is a BPIG. In the upper right panel, we plot the PIN estimated with the Poisson model when
the true data generating process is a BNB. The x-axis shows the range of values for the additional
distributional parameter ν (BNB) and ψ (BPIG). For convenience, we use the ν-notation in both graphs
since we make use of the relationship ψ = 1/

√
ν. In the lower panel we plot the PIN estimated with the

BPIG (left) and the BNB (right) when the true data generating process comes from a Poisson.

calibrations. Overall, this results in an overestimated PIN especially if the true PIN is small.

When the true PIN gets large, the downward bias of α and the upward bias of µ seem to

compensate each other. In case 2 (lower panel), we vary the true µ in order to receive the

desired range of PIN values. α (lower left panel) is now biased downward for every calibration

except for large values of the true PIN together with small values of the distribution parameter

ν. The parameter µ (lower right panel) is biased upward for every calibration getting worse

when ν is large. The upward bias of µ overcompensates the downward bias of α such that

for the PIN the same picture evolves as in case 1. In both cases, δ is estimated accurately

and not affected by the misspecification. The trading intensity of the uninformed traders ε
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Table 4.3.2: True model Poisson - estimated model BNB\BPIG. In the left panel
we report the estimates of the BNB-EKOP (left panel) and the BPIG-EKOP (right panel)
averaged across 100 replications when the true data generating process comes from a Poisson.
The data were generated with the true PIN ranging from 0.02 (left column) to 0.4 (right
column). To vary the PIN, we fix µ and vary α.

Simulated: Poisson - Estimated: BNB Simulated: Poisson - Estimated: BPIG

True PIN True PIN
0.02 0.1 0.2 0.3 0.4 0.02 0.1 0.2 0.3 0.4

α
0.027 0.149 0.339 0.572 0.891 0.027 0.149 0.345 0.587 0.901
(0.01) (0.02) (0.03) (0.03) (0.02) (0.01) (0.02) (0.03) (0.03) (0.01)

ε
99.84 99.99 99.92 99.77 99.79 100.31 100.22 99.92 99.37 99.50
(1.10) (1.15) (1.33) (1.53) (1.65) (1.09) (1.21) (1.41) (1.52) (1.51)

δ
0.49 0.50 0.50 0.50 0.49 0.50 0.49 0.50 0.50 0.50

(0.20) (0.07) (0.04) (0.03) (0.02) (0.17) (0.06) (0.04) (0.03) (0.02)

µ
153.69 148.61 149.70 149.70 150.19 155.56 149.40 147.74 147.60 148.90
(22.93) (9.06) (5.76) (3.83) (3.18) (19.70) (8.54) (5.58) (4.23) (3.27)

ν\ψ 0.00 0.00 0.00 0.00 0.00 7.98 8.09 8.46 9.37 11.70
(0.00) (0.00) (0.00) (0.00) (0.00) (0.55) (0.72) (0.70) (0.75) (1.02)

PIN
0.020 0.100 0.202 0.300 0.401 0.020 0.100 0.203 0.303 0.403

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

is slightly underestimated for most simulation designs but the PIN bias is clearly steered by

the failure to estimate α and µ.

4.4 Empirical Application

In order to verify the simulation results, I apply the standard Poisson EKOP, the BNB-EKOP

and the BPIG-EKOP to stocks of the German blue chip index DAX30 traded on the Xetra

trading platform. Xetra operates as a fully electronic open order book system as described

in section 2.2. For the analysis, I use daily aggregated numbers of buys and sells from the

1st quarter of 2004 corresponding to 64 trading days. Selected descriptive statistics of the

30 stocks can be found in table 2.2.1. Before we compare the estimated PIN values for the

three specifications, let us first assess the empirical fit by comparing the original data with

simulated data using the estimated parameter values. In the left panel of figure 4.4.1 we plot

the original buy and sell data for a representative stock9 (SAP) in a scatter plot.

To classify the days in no news, good news and bad news days, we use the estimation

9The choice of the stock is irrelevant since the figures look qualitatively the same for every stock.
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results of the respective model and compute posterior probabilities in the following fashion:

P (jt|Bt, St) = p(j)fi(Bt, St;θi|j)/Li (4.12)

where i ∈ {EKOP,BNB,BPIG}, p(j) is the unconditional probability for being in information

regime j and θ is a parameter vector depending on the model specification i and the news

regime j. Note, that the standard model (upper left panel) tends to classify days with larger

combinations of buys and sells as information days even if the number of buys and sells is

relatively balanced, i.e. the absolute difference |B− S| is small. This is inconsistent with the

notion that two sided trade clustering, i.e. an increase in trading activity on both sides of

the market is not associated with asymmetric information but rather with public information

and a heterogeneous trading crowd with a strong divergence in beliefs. In contrast, using

estimates of any of the two mixture distributions, only days with strong order imbalances are

classified as information days, thereby confirming the notion of Sarkar and Schwartz (2006)

that only heavier order imbalances are evidence for informed trading. Avramov, Chordia,

and Goyal (2006) found that enhanced volatility stems from uninformed traders who herd

together while informed traders reduce volatility. Computing the daily realized volatility10

for my sample, we find that it is strongly positively correlated with the total number of trades

(ρ = 0.65) but only weakly correlated with absolute order imbalance and uncorrelated with

relative order imbalance. Hence, also from that perspective the new classification makes more

sense than the classification obtained when estimating the standard model.

In the right panel, we use the respective estimated model parameters to simulate 64 buy-

sell combinations. As can be easily seen, the standard EKOP model performs worst by far in

generating data that resembles the true data. This result holds for every stock in the sample.

Venter and de Jongh (2004) provide very similar results concerning the lack of empirical fit.

The generated data coming from the other two specifications can hardly be distinguished by

visual inspection and look very similar to what we observe on real markets. The multivariate

distributions are able to capture the positive dependence between buys and sells in each

information regime while the standard model builds separate clusters.

The simulation results can be confirmed when we compare the estimated PIN’s and the

10I use the VARHAC estimator for daily realized volatility proposed in Bollen and Inder (2002).
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Figure 4.4.1: Original vs. simulated data. In the left panel, we plot the original buy and sell
combinations of SAP. The days were classified as no news (triangle), good news (square) and bad news
(circle) days. In the upper left days were classified using estimates of the standard EKOP, in the middle,
days were classified using estimates of the BNB-EKOP and on the lower left, days were classified using
estimates of the BPIG-EKOP. The right panel shows the corresponding simulated buy and sell data.

estimated structural parameters under different distributional assumptions.11 For the BNB-

EKOP, the estimated PIN’s are smaller for each stock (except Henkel) when compared to the

11To conserve space, we only report the results of the BNB-EKOP. The results for the BPIG model are qualita-
tively the same.
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Poisson-EKOP (see the upper left panel of figure 4.4.2).

Of special economic importance is that not only the value of the PIN changes system-

atically but also the PIN ranking of the 30 stocks is shuffled. In most applications of the

EKOP model it is of minor importance if the PIN of stock A has a value of 0.05 or 0.07. It

is rather important if the PIN of stock A is higher than the PIN of stock B. Computing rank

correlation coefficients between the PINs and other information indicators such as market

capitalization, Beltran, Grammig and Menkveld’s α (see Beltran, Grammig, and Menkveld

(2005)) and Madhavan, Richardson, Roomans θ12 (see Madhavan, Richardson, and Roomans

(1997)) reveals that the ranking of the BNB-EKOP might be more reasonable. The BNB-PIN

is stronger negatively correlated with market capitalization (Poisson: -0.29 vs. BNB: -0.35)

and stronger positively correlated with Beltran et al’s α (Poisson: 0.16 vs. BNB: 0.20) than

the Poisson-EKOP PIN across stocks. The correlation coefficient with Madhavan et al’s θ,

however, is almost equal.

Further, in the upper right panel of figure 4.4.2 we can see that the Poisson-EKOP tends to

estimate a higher intensity of informed trading µ than the BNB-EKOP. The simulation results

would predict that if the true statistical specification is BNB, the Poisson model overestimates

µ for all true values of µ (compare with the lower right panel in figure C.2.1). In contrast,

the unconditional probability that an information event happens, α, is predominantly lower

in the Poisson model than in the BNB model as can be seen in the lower left panel of figure

4.4.2. Again, the simulation results can be confirmed. According to the upper right panel of

figure C.2.1, we would predict a higher α using the Poisson model when the true α is very

small and a much lower α when the true α gets large. Assuming the BNB specification to

be the correct specification, this is exactly what we observe when using empirical data. The

estimates for ε (lower right panel of figure 4.4.2) are quite similar in both models and aligned

along the bisecting line. This is no big surprise since the simulation results did not reveal

any severe deviation from the true value using the Poisson model. The same is true for the

parameter δ.

12Instead of the raw θ estimate I use a standardized θ̃ = θ/P̄ where P̄ is the average stock price.
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Figure 4.4.2: BNB-EKOP Estimates vs. Poisson-EKOP Estimates. The estimated parameters
of the BNB-EKOP are contrasted with the estimated parameters of the Poisson-EKOP in a scatter plot.
The upper left panel shows the estimated PIN, the upper right panel the α, the lower left panel the µ and
the lower right panel the ε.
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4.5 Conclusion

This chapter provides a new distributional specification for the EKOP model. It has been

shown that the commonly used Poisson distribution lacks empirical fit. Therefore, we intro-

duce a bivariate negative binomial distribution which takes into account not only heterogene-

ity between the two groups of informed and uninformed traders but also within the two trader

groups. The specification is similar to the computationally time consuming bivariate Poisson

inverse Gaussian model proposed by Venter and de Jongh (2004) but much more tractable.

From a statistical point of view, we take into account the positive correlation between the

number of buys and sells in a certain time interval. This correlation is a well documented

stylized fact but unaccounted for in the standard Poisson-EKOP model where buys and sells

are by construction negatively correlated. We have further shown in a simulation experiment

that if the data generating process comes from such a mixture distribution, using the Poisson

yields biased parameter estimates. Especially the PIN, a widely used measure for the degree

of informed trading, is systematically upward biased.

Eventually, we applied the new model to the DAX30 stocks traded on the Xetra trading

platform and compared the results with the classic Poisson-EKOP. We find that the empirical

estimation results closely resemble the simulation results and provide further evidence that

the Poisson assumption yields misleading results. Not only the parameter estimates but also

the posterior classification of days in news or no news days is quite different. While the

Poisson-EKOP tends to classify all days with a large number of trades as information days,

the BNB-EKOP only reacts to a large order imbalance. This is in accord with the notion

that high volatility caused by a high trading intensity on both sides of the market is mainly

due to public information and a divergence of beliefs rather than private information.



Appendix C

C.1 Derivation of Stable Bivariate Negbin Likelihood

The likelihood function of the EKOP model with a bivariate Negative Binomial distribution

for buys and sells is given by:

LBNB(θ) =

T
∏

t=1

(1 − α)
Γ(Bt + St + ν−1)

Bt!St!Γ(ν−1)

(

ν−1
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(
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(

ε
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)St

Defining a = µ/ε and b = µ/(2ε+ ν−1) and and factoring out yields:

LBNB(θ) =

T
∏

t=1

Γ(Bt + St + ν−1)

Bt!St!Γ(ν−1)

(

ν−1

2ε+ ν−1
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(
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(
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×
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1

1 + b

)ν−1 (
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}
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Rearranging terms yields:

LBNB(θ) =

T
∏

t=1

Γ(Bt + St + ν−1)

Bt!St!Γ(ν−1)
ε(Bt+St)ν−1ν−1

(

1

2ε+ ν−1

)(Bt+St+ν−1)

×
{

(1 − α) +
[

αδ(1 + a)St + α(1 − δ)(1 + a)Bt
]

(

1

1 + b

)(Bt+St+ν−1)
}

Applying exp and log to the power terms inside the curly brackets and taking the logarithm

of the whole function, we receive receive the log-likelihood function (denoting lnLBNB :=

lBNB):

lBNB(θ) =

T
∑

t=1

ln Γ(Bt + St + ν−1) − lnBt! − lnSt! − ln Γ(ν−1)

+(Bt + St) ln ε+ ν−1 ln ν−1 − (Bt + St + ν−1) ln(2ε+ ν−1)

× ln {(1 + α) + [αδ exp(St ln(1 + a))

+α(1 − δ) exp(Bt ln(1 + a)) exp(−(Bt + St + ν−1)) ln b

(C.14)

Note, that the terms including the factorials can be dropped if necessary, since they only

shift the level of the likelihood value but not the location of the maximum. �
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C.2 Parameter Bias

Figure C.2.1: Parameter bias when µ or α are varied. In the left panel, we plot the estimated
α versus the true α. In the right panel, the estimated µ is plotted against the true µ. The x-axis shows
the range of values for the additional distributional parameter ν (BNB). In the upper panel, we vary the
true α to obtain the range of PIN values shown on the y-axis and in the lower panel we vary the true µ
to obtain the range of PIN values shown on the y-axis. The true data generating process comes from a
BNB-EKOP and a Poisson-EKOP is estimated.



Chapter 5

Summary and Outlook

In this thesis I present extensions of two famous models measuring information in the context

of financial market microstructure. In the first part I present an extension of the spread

decomposition model of Madhavan, Richardson, and Roomans (1997) taking into account the

role of time for the informational content of a trade. The chapter is based on an article of

Grammig, Theissen, and Wünsche (2007). The basic model splits the bid-ask spread in a

non-information related share due to institutional order processing costs and an information

related share depending on the surprise in order flow. Our extension consists of letting

the information related part depend on the waiting time between the current and the last

transaction. This extension is inspired by the finding of Dufour and Engle (2000) that high

trading activity is associated with more information in the market. While challenging their

results we find that for the DAX30 stocks traded on the FSE and a matched sample of NYSE

stocks a negative relationship exists between trading activity measured as durations between

transactions and the informational content of a trade. Further, we argue that the different

results might be due to the modeling approach. While we measure information as the adverse

selection share of the bid-ask spread, Dufour and Engle (2000) use the impact of a trade

on the midquote revision following the trade. Specific trade types such as partially filled

market-to-limit orders or partially filled limit orders with a limit price equal or better than

the current best quote change the midquote substantially by shifting the bid and ask price in

the same direction. Hence, they are by construction very informative in the VAR approach

of Dufour/Engle. In our framework, however, this is not necessarily the case. It would be

desirable for future research to further analyze different order types with respect to their

91
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informational content in greater detail.

The second part of this thesis deals with another type of microstructure model which

allows to measure the probability of informed trading of any exchange traded asset. The

model class of sequential trade models like the EKOP model make use of transaction counts

to estimate the trading intensity of informed and uninformed traders, the probability that an

information event occurred as well as the probability of the signal type (good or bad news). In

empirical applications the cross correlation and the serial dependence of the count data series

of buys and sells is often neglected. Instead, it is assumed that aggregated buys and sells in

a predefined time interval are independently Poisson distributed. In chapter 3 I make use of

an extended version of the EKOP model proposed by Easley, Engle, O’Hara, and Wu (2002)

which allows for time varying arrival rates. The dynamics of the trading intensities of informed

and uninformed traders are modeled as a bivariate vector process. In contrast to Engle et al

(2004) I use five minute intervals to count buys and sells instead of daily aggregates. First,

the strategic behavior of the two trader groups can be better measured on a higher frequency

and second, intra-day trading patterns can be revealed. The results indicate that informed

traders try to enter the market when uninformed trading activity is high. The behavior of

the uninformed traders is more ambiguous and depends on the size of the traded company.

For larger stocks, uninformed traders tend to avoid informed traders while for smaller stocks

they follow the informed. This is consistent with the theory that for stocks with a very fast-

paced information flow (presumably large stocks) informed traders immediately exploit all

their information before it becomes worthless. For smaller stocks where information is not

revealed that rapidly it might be preferable to exploit superior information more slowly in

order to avoid adverse price effects. A further improvement of the empirical analysis would

be taking into account the intra-daily seasonal pattern of the trade intensities, though adding

additional complexity to the model might severely hamper a stable convergence.

Another way of dealing with the problem of independent buys and sells could be a modifi-

cation of the distributional assumption. In chapter 4 I have shown that buy and sell combina-

tions generated with estimates from an independent bivariate Poisson model do not resemble

observed data. This lack of empirical fit has already been addressed by Venter and de Jongh

(2004). They propose to use a bivariate Poisson Inverse Gaussian distribution which intro-

duces dependence between the number of buys and sells in a given time interval. In order to
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decrease complexity in the numerical optimization I propose the bivariate negative binomial

distribution. The latter model is much less time consuming in the estimation process but

fits the data as well as the Poisson Inverse Gaussian model. I further analyze how structural

model parameters are affected when estimating the standard Poisson model, assuming the

class of Poisson mixture distributions to be the true data generating process. It is shown in a

simulation study that in this case, the probability of informed trading is systematically biased

upward. The bias is more severe when the true PIN is very small. This could lead to serious

problems when using the estimated PIN in cross sectional regressions. Moreover, I show in

an empirical study that the PIN ranking of different stocks changes as well whenever the dis-

tributional assumption is altered. This is even more problematic since it is often the ranking

which constitutes evidence in favor of or against a theoretical hypothesis. Overall, there is

great potential in using the class of mixed Poisson distributions for the empirical analysis

of sequential trade models since it describes the data fairly well and is not necessarily more

technically demanding than the standard Poisson model.



Bibliography

Abramowitz, M., and I. Stegun (1972): Handbook of Mathematical Functions. Dover

Publications, Inc.

Admati, A., and P. Pfleiderer (1988): “A Theory of Intraday Patterns: Volume and

Price Variability,” Review of Financial Studies, 1, 3–40.

Ahn, H., K. Bae, and K. Chan (2001): “Limit Orders, Depth and Volatility: Evidence

from the Stock Exchange of Hong Kong,” Journal of Finance, 56, 767–788.

Aı̈t-Sahalia, Y., P. Mykland, and L. Zhang (2005): “How Often to Sample a

Continuous-Time Process in the Presence of Market Microstructure Noise,” Review of Fi-

nancial Studies, 18(2), 351–416.

Amihud, Y., and N. Mendelson (1980): “Dealership Market: Market Making with Inven-

tory,” Journal of Financial Economics, 8, 31–53.

Avramov, D., T. Chordia, and A. Goyal (2006): “The Impact of Trades on Daily

Volatility,” Review of Financial Studies, 19(4), 1241–1277.

Bagehot, W. (1971): “The Only Game in Town,” Financial Analysts Journal, 27, 12–14,

22.

Bauer, T., A. Million, R. Rotte, and K. Zimmermann (1998): “Immigrant Labor And

Workplace Safety,” IZA Discussion Paper No. 16.

Bauwens, L., and P. Giot (2000): “The Logarithmic ACD Model: An Application to the

Bid-Ask Quote Process of Three NYSE Stocks,” Annales d’Économie et de Statistique, 60,
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