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1 Introduction

Large stock market movements capture investors’ attention. This can be seen in Figure 1,

which depicts a strong co-movement between volatility of four leading stock market indices

(Dow Jones, FTSE, CAC and DAX) and Google search queries for their name in their

home country. For example, when volatility of the Dow Jones spiked at an almost record

high of over 150% annualized on October 10, 2008, the number of submitted searches for

Dow Jones rose to more than eleven times the average.

Internet search queries can be interpreted as a measure for retail investors’ attention

to the stock market as recently suggested by Da, Engelberg and Gao (2011). While

professional investors monitor the leading index all the time, retail investors are likely not

to do so. Once the latter perceive an increased demand for information about the stock

index, they are likely to use the internet as a source of information.

In this paper we study in detail the dynamics of retail investor attention for the

aggregate stock market, proxied by internet searches, and stock market volatility. The key

finding of this paper is that there exists bi-directional Granger causality between realized

volatility of the stock market indices Dow Jones, FTSE, CAC and DAX and search activity

for their respective names. Most importantly, search query data have predictive power for

future volatility of the stock market. We exploit this finding and augment various models

of realized volatility with search query data. The forecasting precision can be significantly

improved when data on search queries enter the prediction equation. The improvement is

evident both for in-sample as well as for out-of-sample forecasts. The longer the forecast

horizon, the more efficiency gains are apparent. Furthermore, the data on internet search

queries help to predict volatility more accurately in periods of high volatility, i.e. when a

precise prediction is vital.
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These findings contribute to our knowledge of stock market volatility and its long

memory characteristics documented for example by Andersen and Bollerslev (1997). In

particular, the findings are consistent with agent-based models of stock market volatility

(e.g. Lux and Marchesi 1999, Alfarano and Lux 2007). In the model by Lux and Marchesi

(1999) noise traders are seen as a source of additional volatility in the stock market.

A fundamental shock in volatility triggers noise trading, which in turn causes volatility.

Taking internet searches as a measure of retail investors’ attention, we observe exactly this

pattern of high volatility followed by high retail investor attention, which is then followed

by high volatility. Our results are also in line with recent empirical evidence by Foucault,

Sraer and Thesmar (2011), who - drawing on a natural experiment in France - find that

retail investors’ trading activity leads to a higher level of volatility in individual stocks.

A natural question which arises is how much of a stock market’s volatility is driven

by noise traders and how much is fundamental. In a long-run variance decomposition we

find that log search queries account for 9% to 23% of the variance of log stock market

volatility.1 However, this share has to be interpreted with caution. Although, internet

search queries are most likely a proxy for retail investors’ attention we do not observe

whether the individuals searching for the index are the same that actually trade and

cause the higher volatility. Still, irrespective of the link between search queries and noise

traders, the fact that retail investor attention contains information about future volatility

can be used to improve volatility forecasts, which is the main focus of this paper.

In a forecasting context, other recent studies have successfully used Google search

volume data. For example Ginsberg et al. (2009) use search query data to predict influenza

epidemics and Choi and Varian (2009a) and Choi and Varian (2009b) employ Google

search data to forecast unemployment rates and retail sales, respectively. In the field of

1A similar share is found by Foucault et al. (2011) even though using a different sample period. They
estimate that retail investors contribute to about 23% of the volatility in stock returns.
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finance search query data are used to measure retail investor attention (Bank, Larch and

Peter 2011, Da et al. 2011, Jacobs and Weber forthcoming) and to predict earnings (Da,

Engelberg and Gao 2010a, Drake, Roulstone and Thornock 2011). Da, Engelberg and Gao

(2010b) use search queries related to household concerns to measure investor sentiment.

We proceed as follows. In Section 2 we describe our data set of realized volatilities

and search engine data. Section 3 presents standard models for predicting volatility

and highlights the contribution of search query data in the modeling process. Section 4

evaluates in- and out-of-sample forecasts of realized volatility and Section 5 concludes.

2 Data and descriptive statistics

Our analysis focuses on the US stock market index and three major European indices

from July 2006 to June 2011: the Dow Jones Industrial Average (DJIA), the FTSE 100,

the CAC 40 and the DAX. European intraday market index prices are obtained from Tick

Data while US intraday prices are provided by RC Research Price-Data.

We construct a time series of daily realized volatilities RVi,t as introduced by Andersen,

Bollerslev, Diebold and Labys (2003) for the four stock indices i the following way:

RVi,t =

√√√√
n∑

j=1

r2i,t,j, (1)

where r2i,t,j are squared intraday log-price changes of index i on day t during interval j and

n is the number of such intraday return intervals. We compute these price changes over

10 minute intervals in order to circumvent the well-documented microstructure effects

(see e.g. Andersen et al. 2003, Andersen, Bollerslev and Meddahi 2011, Ghysels and Sinko

2011).2

2To exclude the possibility that our results are driven by the sampling frequency, we also compute
realized volatility over 5 and 15 minute intervals. Our results are robust to this alteration.

3



Descriptive statistics of the realized volatilities are presented in the upper panel of

Table 1. As is evident from the skewness and kurtosis measures, the volatility time series

are heavily skewed and far from being normally distributed. We therefore resort to the log

of the realized volatility as, amongst others, suggested by Andersen, Bollerslev, Diebold

and Ebens (2001) and Andersen et al. (2003). The lower panel of Table 1 shows that,

even though normality of the data still has to be rejected, the data are by far better be-

haved than before the transformation; in particular excess kurtosis is significantly reduced.

Figure 2 holds the autocorrelation functions for realized volatilities of the indices DJIA,

FTSE, CAC and DAX. The plots reveal the well known pattern that autocorrelations of

realized volatility are only slowly decaying (compare e.g. Andersen et al. 2001).

The data on Google search queries are obtained through Google Trends.3 We use

daily data on search volume from July 2006 to June 2011 for the keywords “Dow” (US

search queries), “FTSE”(UK search queries), “CAC”(search queries in France) and“DAX”

(search queries in Germany) within the respective countries. Before July 2006 search

volume data at daily frequency exhibit many missing values. We therefore start our

sample in the second half of 2006.4 To match searches to the respective time series of

realized volatility we only consider trading days of the stock markets in question.

An important issue when measuring the investors’ attention for a certain index is that

stock indices often go by many names. The question which search term individuals use

when looking for information about the stock market is answered most easily for the UK,

France and Germany, since the leading indices’ names are only few. In general, the short

name of the index is preferred. The number of search queries of “FTSE 100” amounts to

approximately 45% of the searches for “FTSE”, and queries for “CAC 40” to about 77%

3Source: http://www.google.com/trends.
4For the CAC there are still 4 missing values, which we interpolate using the average of the past five

observations. All missing values lie at the beginning of the sample period in August 2006, a month calm
in both search queries and stock market volatility.
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of queries for “CAC”. The term “DAX 30” is less commonly used in Germany and search

volumes are negligible. Correlations between the different search terms are high with 0.95

for “FTSE 100” and “FTSE”, and 0.998 for “CAC” and “CAC 40”.

In the US, the picture is similar even though the Dow Jones is known under a variety

of names and acronyms. We find that the most widely used search term is simply “Dow”,

followed by “Dow Jones” which amounts to approximately 45% of the search volume of

“Dow”. Searches of the full name “Dow Jones Industrial Average” amount to 10% when

compared to“Dow”, search queries for ticker symbols such as“DJIA”and“DJI”to 17% and

7% respectively. Even though the magnitude of searches is quite different, the correlation

between the search queries is remarkably high. The pairwise correlation of the named

terms is in all cases above 0.97.5 Since the correlation between the various index names

is consistently very high, we use the search term that is mostly used.

For the US we use the Dow Jones as leading index. An alternative index would be

the S&P 500, which is commonly modeled in the realized volatility literature. However,

the S&P 500 is less suited for our purposes, because it is less followed by retail investors.

We find that the S&P 500 overall attracts less attention than the Dow Jones. In our

sample period the search term “Dow” has been submitted to Google approximately ten

times as often as the term“S&P 500”. Moreover, the acronym“S&P” is less univocal than,

for example, “DJI”, as “S&P” is first and foremost an abbreviation for the rating agency

Standard & Poor’s.

The advantage of using Google search data, in contrast to other search engines, is that

Google maintains a very high market share in all countries considered. Therefore the data

represent almost the entire internet searches, notably in Europe. Google’s market share

is around 67.1% in the US, 91.5% in the UK, 91.2% in France and 92.7% in Germany.6

5Source: Google Correlate ( http://www.google.com/trends/correlate/).
6Figures refer to June 2011. Sources: Hitwise (US), AT Internet Search Engine Barometer (Europe).
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The data which are provided by Google are relative in nature. This means that Google

does not provide the effective total number of searches, but a search volume index only.

We standardize the search queries, such that the average search frequency over the sample

period of 5 years equals one, allowing for an easy interpretation.

Table 1 also holds summary statistics for the data on search queries. Just as the

realized volatility time series, the data on searches exhibit distinctive levels of skewness

and kurtosis. We therefore also take logarithms of the search data (cp. Da et al. 2011).

This procedure reduces both skewness and excess kurtosis, however, it is not as successful

as in the case of the realized volatility. Figure 3 plots the autocorrelations of search queries.

These are decaying fairly geometrically and much faster compared to autocorrelations of

realized volatility depicted in Figure 2.

As already apparent from Figure 1, search queries and realized volatility exhibit a

strong co-movement over time. The contemporary correlation of search queries and re-

alized volatility in our sample is high and quite similar across indices. The correlation

coefficients are: 0.83 (DJIA), 0.80 (FTSE), 0.80 (CAC) and 0.72 (DAX).

3 The dynamics of volatility and searches

3.1 A vector autoregressive model

In the following we study the dynamics between realized volatility and search queries.

For every stock index we estimate a vector autoregressive model of order three, VAR(3),

which is specified as follows:

log-RVt = c1 +
3∑

j=1

β1,jlog-RVt−j +
3∑

j=1

γ1,jlog-SQt−j + ε1,t (2a)

log-SQt = c2 +
3∑

j=1

β2,jlog-RVt−j +
3∑

j=1

γ2,jlog-SQt−j + ε2,t. (2b)
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Panel A of Table 2 presents the results of the four VAR models for the DJIA, FTSE,

CAC and DAX. Throughout all models we find significant autoregressive estimates for

the realized volatility at all included lags. Search queries show significant autoregressive

terms of order one, and depending on the index also significant autoregressive coefficients

up to lag three.

The VAR estimation results and the Granger causality test in Panel B of Table 2 also

reveal that in general past volatility positively influences present search queries. This

effect is concentrated to the first lag β2,1. One exception is the Dow Jones, where the

first lag of log-SQ is slightly lower than the other indices and marginally insignificant

with a p-value of 0.13. A possible explanation is that investors in the US react faster to

volatility than those in Europe, which is supported by the fact that the contemporaneous

correlation between searches and volatility is the highest of the four countries.

The focus of our interest is how past search activity influences present volatility. For

all four indices the Granger causality F-test indicates that past searches provide signifi-

cant information about future volatility. Past search activity influences future volatility

positively and this effect is concentrated on the first lag γ1,1. This coefficient is significant

(on a 1% significance level) in the models of DJIA, FTSE and DAX. In the CAC model

the respective p-value is slightly above 10%, but the Granger causality F-statistic shows

that past values of log-SQ are jointly significant.

Figure 4 provides the impulse response functions for one selected index, the FTSE.

Impulse response functions of the other indices are alike, since the VAR estimates are very

similar across indices as well. They are not reported for reasons of brevity, but available

from the authors upon request.

For the calculation of impulse response functions we use a Cholesky decomposition

with the economically meaningful restriction of volatility being contemporaneously ex-

ogenous, i.e. volatility can affect search queries immediately, but search queries do not
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contemporaneously affect volatility. The intuition behind this ordering is that there is first

a fundamental volatility shock that in turn triggers retail investor attention and, thus,

search queries. Search queries, on the other hand, would not rise without a preceding

event on the market (see also the argumentation in Lux and Marchesi 1999).

The two top Figures present the response of log-RV and log-SQ, respectively, to a one

standard-deviation shock in log-RV. As is evident from the slowly decaying function, a

volatility shock is highly persistent and only dies out after 30 to 40 days. The response

of log-RV and log-SQ to a one standard-deviation shock in log-SQ is depicted in the two

bottom figures, going from left to right. In both cases, the impact declines slightly faster

than in the case of volatility shocks.

Panel C of Table 2 holds the long-run variance decomposition of log realized volatility

and log searches. Log-RV determines a considerable amount of variance of log-SQ, ranging

from 20% for the DAX to 34% for the FTSE. More importantly, the long run variance

decomposition provides an answer to the question, how much of volatility can be explained

by retail investors’ attention. Throughout all models, the contribution of log-SQ to the

variance of log-RV is significant and non-negligible: it ranges from 9% in case of the FTSE

to 23% in case of the CAC.

These shares are calculated assuming that, as discussed before, volatility is contem-

poraneously exogenous. Of course, it could also be the case that retail investors react

even faster to volatility shocks, i.e. at the same day, and thus contribute immediately to

volatility. The model does not allow for this by restricting this channel. Permutating the

ordering in the Cholesky decomposition, i.e. letting search queries be contemporaneously

exogenous, naturally increases the contribution of log-SQ to the variance of log-RV. The

estimated share of searches contributing to realized volatility is thus a conservative one

and can be seen as a lower bound. Overall, these results are consistent with the interpre-
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tation that volatility triggers search activity which in turn raises the volatility level (Lux

and Marchesi 1999).

3.2 Do search queries add information for modeling volatility?

The key result of the VAR estimation is that search queries help to predict future volatility

in addition to its own lags. One might wonder, however, whether the specific lag choice

is the driver of this result. In order to rule out this explanation we turn to several other

models of realized volatility. In this section we focus only on the equation of interest, the

volatility equation. We use different modeling approaches which are commonly used to

capture the time series properties of realized volatility and include lagged search queries in

each model, testing whether searches add information. As the results of the VAR model

estimation in Equation (2) show no significance of higher order lags we only include

searches at one lag.

In particular, following Andersen, Bollerslev, Christoffersen and Diebold (2006) as well

as Bollen and Inder (2002) we estimate autoregressive models with different lag length

and augment these with lagged search queries log-SQt−1:

log-RVt =

p∑

j=1

βjlog-RVt−j + γ1log-SQt−1 + εt. (3)

We consider the lag lengths one and three. In addition to these autoregressive models we

estimate Corsi’s (2009) heterogeneous autoregressive (HAR) model. The HAR model has

been found to capture the long-memory properties of realized volatility very well and has

recently been used for example by Andersen, Bollerslev and Diebold (2007), Chen and
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Ghysels (2011) and Chiriac and Voev (2011). The HAR model augmented with lagged

search queries reads as follows:

log-RVt = c+ βdlog-RVt−1 + βwlog-RV w
t−1 + βmlog-RV m

t−1 + γ1log-SQt−1 + εt, (4)

where log-RV w
t = 1

5

∑4
j=0 log-RVt−j and log-RV m

t = 1
22

∑21
j=0 log-RVt−j.

As a final robustness check, we also estimate an AR(22), which includes all lags up to

one month (i.e. 22 business days), in order to exclude the possibility that the aggregation

of realized volatility favors the predictive power of lagged searches. This model is ad-

mittedly over-parameterized and not desirable from a parsimonious modeling perspective

(Corsi 2009) and merely serves as a robustness check. In the forecast evaluation analysis

that follows we will only consider the parsimonious model specifications.

In all four models data on the previous day’s searching activity enter as an exogenous

variable. We perform an exclusion F-test with H0 : γ1 = 0 in Equations (3) and (4) to

evaluate whether lagged log-SQ indeed add valuable information to the model.

Test statistics and p-values of the exclusion tests are presented in Table 3. As can

be seen, lagged search queries enter significantly in all models for all indices under con-

sideration. The findings are unambiguous and independent of the significance level as

all p-values are below 1%. Even after including 22 lags search queries still contain sig-

nificant information about future volatility. This result supports the proposition that

search queries contain additional information about future volatility above and beyond

the information of past volatility.

4 Forecast evaluation

In the following we compare the forecasting ability of the three realized volatility models

AR(1), AR(3) and HAR(3) with and without search queries. We evaluate the forecasting
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ability of these models in- and out-of-sample as well as for multiple horizons. In order

to assess the forecasting performance we consider two loss functions which are robust to

possible noise in our volatility measure (see Patton 2011). These are the mean squared

error (MSE) and the quasi-likelihood loss function (QL) which are defined as follows:

MSE = (RVt+1 − R̂V t+1|t)
2, (5)

QL =
RVt+1

R̂V t+1|t

− log
RVt+1

R̂V t+1|t

− 1, (6)

where R̂V t+1|t is the respective forecast of realized volatility based upon information

available up to and including time t. We also use the R2 of a Mincer and Zarnowitz

(1969) regression of the actual realized volatilities on their predicted values as follows:

RVt+1 = b0 + b1R̂V t+1|t + et. (7)

Following the literature (e.g. Aı̈t-Sahalia and Mancini 2008, Andersen et al. 2003,

Ghysels, Santa-Clara and Valkanov 2006) we model log realized volatility, but evaluate

the forecast by comparing realized volatility and its prediction.7

4.1 In-sample forecasts

Table 4 holds the results of the in-sample forecast evaluation of one-step ahead forecasts of

realized volatility. The models we consider are the univariate AR(1), AR(3) and HAR(3)

models and the respective augmented models including lagged search queries.

Looking only at the univariate models, we see that the AR(3) is generally better than

the AR(1) and the HAR(3) is the best amongst the univariate models. These findings

7When reversing the log transformation the forecasts are formally not optimal (Granger and Newbold
1976). However, Lütkepohl and Xu (2010) show by means of an extensive simulation study that this
näıve forecast performs just as well as an optimal forecast.
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are in line with the literature (Corsi 2009). One exception is the CAC, where the AR(3)

model seems to do reasonably well in-sample and is slightly better than the HAR(3).

Comparing the univariate models (AR(1), AR(3), HAR(3)) to the SQ-augmented models

(AR(1)+SQ, AR(3)+SQ, HAR(3)+SQ), we observe for all models and across all indices

an improvement in performance.

Overall, the HAR model augmented with search queries, shows the best fit. Only for

the CAC the AR(3) has a better (in-sample) fit than the HAR in terms of a slightly lower

MSE (0.004) and a slightly higher R2 (0.28%). However, it still holds that the model

including search queries outperforms the univariate model.

4.2 Out-of-sample forecast evaluation

We now turn to the out-of-sample forecasts and provide 1 day, 1 week and 2 week volatility

forecasts. For our initial out-of-sample forecast we estimate the models using the first two

years (500 trading days) of our sample, i.e. from July 2006 to June 2008. We then re-

estimate the model for every subsequent day in the sample using all past observations

available, i.e. we increase the estimation window. The estimation period of the very first

run ends in June 2008. Thus, we are able to compare the forecasting performance of

volatility models during the near record-high in volatility which started in October 2008.

The initial two year estimation period is still long enough and has enough variation in

both volatility and search activity as to allow us to reliably estimate model parameters

(compare Figure 1).

One-step ahead predictions can be done using the static models discussed before. For

multi-step forecasts, however, we need to forecast log-SQ as well. For this reason we also

have to model the time series properties of search queries.
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Starting with the simplest model we extend the univariate AR(1) to a VAR(1) which

is given as:

log-RVt = c1 + β1,1log-RVt−1 + γ1,1log-SQt−1 + ε1,t (8a)

log-SQt = c2 + β2,1log-RVt−1 + γ2,1log-SQt−1 + ε2,t. (8b)

The model of log-SQ presented in Equation (8b) includes searches with one autoregressive

term, but also allows for lagged log-RV to influence present log-RV. The AR(3) model is

extended to a VAR(3) model the following way:

log-RVt = c1 +
3∑

j=1

β1,jlog-RVt−j + γ1,1log-SQt−1 + ε1,t (9a)

log-SQt = c2 + β2,1log-RVt−1 +
3∑

j=1

γ2,jlog-SQt−j + ε2,t. (9b)

Note that the model of Equation (9) is a restricted version of the VAR presented earlier

in Equation (2). Considering the results of the VAR(3) estimation in Subsection 3.1 we

restrict the cross-influence of lagged log-RV and log-SQ on log-SQ and log-RV, respectively,

to lag-order 1 in the VAR(3). That way the results are comparable to the AR(3) structure

of the univariate RV-model in Subsection 3.2 where log-SQ entered only at lag 1 in the

volatility equation (cp. Eq. (3)).

Finally, we augment the HAR to a Vector-HAR(3) model as follows

log-RVt = c1 + βdlog-RVt−1 + βwlog-RV w
t−1 + βmlog-RV m

t−1 + γ1,1log-SQt−1 + ε1,t (10a)

log-SQt = c2 + β2,1log-RVt−1 +
3∑

j=1

γ2,jlog-SQt−j + ε2,t. (10b)
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The search queries Equation (10b) is the same as Equation (9b), since we find that the

time series properties of searches are well described by three autoregressive terms and one

lag of realized volatility.

We contrast the multivariate models with the univariate realized volatility models

described before. That is, we compare the VAR(1) to the AR(1), the AR(3) to the VAR(3)

and the HAR(3) to the VHAR(3). The univariate models AR(1), AR(3) and HAR(3) are

simply equations (8a), (9a) and (10a) with γ1,1 equal to zero. For the evaluation of weekly

and biweekly forecasts of realized volatility we consider aggregated volatility over the

respective time span.

Results of the out-of-sample prediction are summarized in Table 5. For the univariate

models our results are consistent with the findings of Corsi (2009). The HAR(3) model

is better at predicting realized volatility compared to the AR(3) or AR(1) model. The

advantage of the HAR modeling again emerges particularly when predicting volatility at

longer horizons of one or two weeks.

Turning to the multivariate models, we find that the multivariate models where searches

are used as an explanatory variable always outperform the univariate, pure realized volatil-

ity models. This means that across all indices, these models have lower MSE, a lower

value of the QL loss function and a higher R2 in the Mincer-Zarnowitz regression. Adding

searches is most beneficial for longer-horizon forecasts. For example in the FTSE model,

the Mincer-Zarnowitz R2 is higher by 3.6 percentage points in the multivariate VHAR(3)

than in the univariate HAR(3). Also for the remaining indices, the R2 of the VHAR(3)

is higher by more than 3 percentage points compared to the HAR(3). When considering

the AR-models, this difference can even be higher.

Overall, the best performing univariate model for realized volatility ist the HAR model.

Augmenting the HAR model with search query data further improves the forecasting per-

formance in particular at longer horizons. What is the intuition behind this? The VHAR
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model benefits from modeling the dynamics of retail investors’ searches and volatility and

their bi-directional Granger causality. The VHAR gains from the fact that a shock in

searches has a significant impact on volatility that is persistent (compare the impulse-

response function of Figure 4). Thus, searches can improve long-run predictions. Further-

more, search queries are well described by the autoregressive time-series model allowing

for good predictions of searches when the system is iterated forward.

4.3 Out-of-sample forecast performance over time

A further and equally important aspect in the forecasting context is the question how

different volatility models behave over time. In particular, it is of interest how the models

perform during high volatility phases compared to calmer periods. In this context we

investigate in which phases internet search queries improve volatility forecasts. In order

to do this we compare the best univariate model, the HAR(3) model, to the best bi-variate

model including search activity, the VHAR(3) model.

To evaluate the gains of including search queries into the volatility model, we calculate

the cumulative net sum of squared prediction errors (Net-SSE) over time. The Net-SSE

compares the difference between squared prediction errors of two models. This concept was

introduced by Goyal and Welch (2003) and recently used to evaluate volatility forecasts

by Christiansen, Schmeling and Schrimpf (2011). The Net-SSE at time τ is given by:

Net-SSE(τ) =
τ∑

t=1

(ê2HAR,t − ê2V HAR,t), (11)

where ê2HAR,t is the squared prediction error of the benchmark HAR(3) model, and ê2V HAR,t

is the squared prediction error of the model of interest, the VHAR(3). If the Net-SSE is

positive, the VHAR(3) outperforms the benchmark HAR(3) model.
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Figure 5 displays the Net-SSE over the out-of-sample period (July 2008 - June 2011)

for all indices. The first thing to note is that for all indices and over the whole out-of-

sample period the Net-SSE is positive, i.e. the VHAR with search queries outperforms

the univariate HAR. This, of course, is equivalent to the results of Table 5, where the

1-day ahead prediction MSE of the VHAR model is smaller than that of the HAR model

throughout all indices. Thus, the overall cumulative Net-SSE corresponds to the difference

in MSE between the VHAR and HAR model presented in Table 5.

We now turn to the question in which periods search queries add an improvement

in volatility forecasts. A better forecast performance at a particular point in time is

represented by an increase in the slope of the Net-SSE graph. For all four indices there is

a sharp surge in Net-SSE during the high volatility phase starting in October 2008. For the

DJIA there is a slight reversal during that phase, but overall there are prediction gains in

this high volatility phase. When comparing Figure 5 to the realized volatilities of Figure 1

additional (smaller) rises in Net-SSE can be associated with increases in volatility. Thus,

the gains of the search query data model mainly originate from turbulent times.

Figure 6 gives a detailed look at the volatility forecast during the financial crisis of

2008. It shows daily realized volatilities (dashed lines) for the four indices along with one-

step-ahead predictions based on the HAR(3) (solid gray line) and the VHAR(3) models

(solid black line) over the second half of 2008.

The plots start in July 2008, slightly before the huge increase in volatility. As can be

seen, until September 2008, predictions based on the HAR(3) and the VHAR(3) models

are very similar. During this calm period both models perform equally well. The ad-

vantage of using search queries in predicting realized volatility becomes apparent when

volatility surges, i.e. after August 2008. We find that the univariate HAR(3) model of-

ten underestimates volatility. Furthermore, the model seems to take longer until it can

finally capture the change in the realized volatility dynamics. If the model includes search
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queries, the predictions are closer to the actual volatility. This is particularly the case for

the turbulent period of October 2008 where the VHAR(3) is clearly better able to predict

the spikes in volatility than the pure HAR(3) model.

The cascading structure of the HAR(3) model seems to capture the long-memory prop-

erties or realized volatility very well. However, in a crisis period retail investors’ attention

is an important component and predictor of volatility. If we interpret the HAR model as

a model of agents with different time horizons (namely daily, weekly and monthly), we

can understand retail investors as a fourth investor group that adds to volatility in very

turbulent times.

5 Concluding Remarks

Internet search data can describe the interest of individuals (Choi and Varian 2009a, Da

et al. 2011). In this paper we use daily search query data to measure the individuals’

interest in the aggregate stock market. We find that investors’ attention to the stock

market rises in times of high market movements. Moreover, a rise in investors’ attention

is followed by higher volatility. These findings are consistent with agent-based models of

volatility (Lux and Marchesi 1999, Alfarano and Lux 2007).

Exploiting the fact that search queries Granger-cause volatility, we incorporate searches

in several prediction models for realized volatility. Augmenting these models with search

queries leads to more precise in- and out-of-sample forecasts, in particular in the long run

and in high volatility phases.

Thus, search queries constitute a valuable source of information for future volatility

which could essentially be used in real time. Up to now, Google Trends publishes search

volume with a lag of only one day. Thus, long-run volatility predictions can already be

improved using search query data. In principle, it would be possible to publish search
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volume even faster, as Google publishes the search volume for the fastest rising searches

in the US through Google Hot Trends with only a few hours delay.8

8Google Hot Trends: http://www.google.com/trends/hottrends
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Figure 1: Realized volatility and search activity
This figure displays daily realized volatilities (gray) and search queries (black) of the stock
indices DJIA, FTSE, CAC and DAX from July 1, 2006 to June 30, 2011. Search queries are
standardized, such that the sample average equals one.
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Figure 2: Autocorrelations of realized volatility
This figure displays the autocorrelations of realized volatility of the stock indices DJIA,
FTSE, CAC and DAX in the sample period. Shaded areas indicate 95% confidence bounds.

23



−
0

.2
0

0
.0

0
0

.2
0

0
.4

0
0

.6
0

0
.8

0
1

.0
0

A
u

to
c
o

rr
e

la
ti
o

n
s

0 20 40 60 80
Lag

ACF: DJIA Search queries

−
0

.2
0

0
.0

0
0

.2
0

0
.4

0
0

.6
0

0
.8

0
1

.0
0

A
u

to
c
o

rr
e

la
ti
o

n
s

0 20 40 60 80
Lag

ACF: FTSE Search queries
−

0
.2

0
0

.0
0

0
.2

0
0

.4
0

0
.6

0
0

.8
0

1
.0

0
A

u
to

c
o

rr
e

la
ti
o

n
s

0 20 40 60 80
Lag

ACF: CAC Search queries

−
0

.2
0

0
.0

0
0

.2
0

0
.4

0
0

.6
0

0
.8

0
1

.0
0

A
u

to
c
o

rr
e

la
ti
o

n
s

0 20 40 60 80
Lag

ACF: DAX Search queries

Figure 3: Autocorrelations of search queries
This figure displays the autocorrelations of search queries for the stock indices DJIA, FTSE,
CAC and DAX in the sample period. Shaded areas indicate 95% confidence bounds.
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Figure 4: Impulse response functions (FTSE)
The table displays the impulse response functions of the VAR(3) estimated in Table 2 for
the FTSE. Shaded areas indicate 95% confidence bounds.
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Figure 5: Out-of-sample performance over time
The graph shows the time variation of the out-of sample forecast measured by the cumulative
sum of squared prediction error difference: Net-SSE(τ) =

∑τ

t=1
(ê2HAR,t − ê2V HAR,t). If

the Net-SSE is positive, the model including internet searches outperforms the benchmark
HAR(3) model. An increasing slope of the graph represents a better forecast performance
of the VHAR(3) model (including internet searches) at this particular point in time.
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Figure 6: Stock market volatility during the financial crisis
These graphs depict the realized volatilities along with predictions in the second half of 2008.
The dashed lines are the realized volatility, the solid gray lines are the out-of-sample one
step ahead predictions of an HAR(3) model, the solid black line the prediction of a VHAR(3)
model including search queries.
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Table 1: Summary statistics
This table provides descriptive statistics of realized volatility (RV) and search queries (SQ)
of the DJIA, FTSE, CAC and DAX. The upper panel holds statistics for the untransformed
series, the lower panel for the series after log-transformation.

DJIA FTSE CAC DAX

RV SQ RV SQ RV SQ RV SQ

Mean 0.009 1.000 0.012 1.000 0.013 1.000 0.011 1.000

Std. Dev. 0.007 0.714 0.008 0.535 0.009 0.689 0.007 0.566

Skewness 4.01 5.54 4.07 5.97 3.79 6.11 3.01 6.81

Kurtosis 31.24 56.02 32.13 54.38 27.26 54.25 18.22 66.77

Min. 0.002 0.302 0.002 0.523 0.002 0.414 0.002 0.437

Max. 0.096 11.593 0.113 8.257 0.116 9.698 0.067 8.675

log-RV log-SQ log-RV log-SQ log-RV log-SQ log-RV log-SQ

Mean -4.891 -0.128 -4.598 -0.067 -4.463 -0.106 -4.691 -0.069

Std. Dev. 0.568 0.453 0.525 0.318 0.517 0.406 0.508 0.318

Skewness 0.65 1.26 0.58 2.30 0.48 1.46 0.42 2.38

Kurtosis 3.71 5.67 3.87 11.26 3.96 7.96 3.51 12.88

Min. -6.375 -1.197 -6.022 -0.648 -6.203 -0.883 -6.147 -0.829

Max. -2.341 2.450 -2.176 2.111 -2.157 2.272 -2.699 2.160
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Table 2: VAR Model Estimation Results
This table displays the estimation results of a Vector Autoregressive Model (VAR(3)) for
log realized volatility (log-RV) and log search queries (log-SQ) for the indices DJIA, FTSE,
CAC and DAX. Panel A provides coefficient estimates, Panel B the results of a Granger
causality test and Panel C the long run forecast error variance decomposition. P-values
testing that coefficients or forecast error decompositions are different from zero are given in
parentheses.

Panel A: VAR estimation

DJIA FTSE CAC DAX

log-RVt log-SQt log-RVt log-SQt log-RVt log-SQt log-RVt log-SQt

log-RVt−1 0.45 0.03 0.36 0.04 0.35 0.05 0.45 0.05

(0.000) (0.132) (0.000) (0.015) (0.000) (0.000) (0.000) (0.000)

log-RVt−2 0.21 -0.00 0.26 0.00 0.25 0.00 0.17 -0.01

(0.000) (0.915) (0.000) (0.905) (0.000) (0.747) (0.000) (0.492)

log-RVt−3 0.17 -0.00 0.18 0.01 0.11 -0.03 0.20 -0.01

(0.000) (0.868) (0.000) (0.502) (0.000) (0.048) (0.000) (0.326)

log-SQt−1 0.22 0.79 0.26 0.73 0.10 0.61 0.25 0.72

(0.000) (0.000) (0.000) (0.000) (0.109) (0.000) (0.000) (0.000)

log-SQt−2 -0.10 -0.05 -0.17 -0.00 0.03 0.14 -0.08 0.09

(0.139) (0.217) (0.025) (0.918) (0.663) (0.000) (0.290) (0.013)

log-SQt−3 0.01 0.18 0.08 0.12 0.08 0.19 -0.04 0.07

(0.925) (0.000) (0.180) (0.000) (0.237) (0.000) (0.459) (0.014)

Constant -0.84 0.09 -0.93 0.21 -1.23 0.12 -0.83 0.13

(0.000) (0.153) (0.000) (0.001) (0.000) (0.037) (0.000) (0.014)

Panel B: Granger causality test

Equation: log-RV log-SQ log-RV log-SQ log-RV log-SQ log-RV log-SQ

Excluded lags: log-SQ log-RV log-SQ log-RV log-SQ log-RV log-SQ log-RV

F-statistic 27.83 3.62 26.62 14.23 37.58 18.02 26.57 17.60

p-value (0.000) (0.305) (0.000) (0.003) (0.000) (0.000) (0.000) (0.001)

Panel C: Variance decomposition

DJIA FTSE CAC DAX

log-RV log-SQ log-RV log-SQ log-RV log-SQ log-RV log-SQ

log-RV 0.86 0.28 0.91 0.34 0.77 0.22 0.90 0.20

(0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

log-SQ 0.14 0.72 0.09 0.66 0.23 0.78 0.10 0.80

(0.047) (0.000) (0.035) (0.000) (0.001) (0.000) (0.042) (0.000)
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Table 3: Is search activity a helpful predictor of future volatility?
The table provides the test statistic of an F-test evaluating whether lagged search queries
enter significantly in the univariate models described in the first column (H0 : γ1 = 0).
p-values are given in parentheses.

Estimated Models:

AR(p): log-RVt =
∑p

j=1
βj log-RVt−j + γ1log-SQt−1 + εt

HAR(3): log-RVt = βdlog-RVt−1 + βwlog-RV w
t−1

+ βmlog-RV m
t−1

+ γ1log-SQt−1 + εt

Model: DJIA FTSE CAC DAX

AR(1) 53.77 65.78 121.21 55.87

(0.000) (0.000) (0.000) (0.000)

AR(3) 17.65 21.39 34.24 22.58

(0.000) (0.000) (0.000) (0.000)

HAR(3) 10.56 26.09 19.16 28.45

(0.001) (0.000) (0.000) (0.000)

AR(22) 9.41 21.35 16.10 24.88

(0.002) (0.000) (0.000) (0.000)
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Table 4: In-sample forecast evaluation
The table compares the in-sample forecasts of the models described in the first column.
AR(1), AR(3) and HAR(3) are univariate models of realized volatility only, AR(1)+SQ,
AR(3)+SQ and HAR(3)+SQ are the models augmented with lagged search queries. Perfor-
mance measures are the mean squared error (MSE,×104), the quasi-likelihood loss function
(QL, ×102) and the R2 (in percent) of the Mincer-Zarnowitz regression. The preferred
model (minimum of QL loss function and MSE, maximum of R2) is indicated through bold
numbers.

DJIA FTSE

Model: MSE QL R2 MSE QL R2

AR(1) 0.176 5.378 66.67 0.355 6.296 50.85

AR(1) + SQ 0.169 5.093 67.18 0.337 5.863 52.77

AR(3) 0.156 4.680 70.26 0.302 5.221 58.09

AR(3) + SQ 0.151 4.580 70.82 0.290 5.084 59.31

HAR(3) 0.149 4.503 71.47 0.293 4.990 59.23

HAR(3) + SQ 0.144 4.439 72.10 0.274 4.832 61.50

CAC DAX

Model: MSE QL R2 MSE QL R2

AR(1) 0.429 6.644 50.61 0.157 5.086 67.09

AR(1) + SQ 0.370 5.947 56.36 0.145 4.817 68.11

AR(3) 0.362 5.563 58.02 0.147 4.474 68.08

AR(3) + SQ 0.338 5.355 60.21 0.142 4.343 68.64

HAR(3) 0.362 5.349 57.82 0.144 4.326 68.76

HAR(3) + SQ 0.342 5.223 59.77 0.134 4.180 70.53
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Table 5: Out-of-sample forecast evaluation
The table compares the 1 day, 1 week and 2 weeks out-of-sample forecasts of the mod-
els described in the first column. AR(1), AR(3) and HAR(3) are univariate models of
realized volatility only, VAR(1), VAR(3) and VHAR(3) are bivariate models of realized
volatility (RV) and search queries (SQ). Performance measures are the mean squared error
(MSE,×104), the quasi-likelihood loss function (QL, ×102) and the R2 (in percent) of the
Mincer-Zarnowitz regression. The preferred model (minimum of QL loss function and MSE,
maximum of R2) is indicated through bold numbers.

1 day 1 week 2 weeks

Model: MSE QL R2 MSE QL R2 MSE QL R2

DJIA

AR(1) RV 0.258 5.436 65.14 7.279 6.219 63.70 37.591 9.400 52.77

VAR(1) RV, SQ 0.241 4.807 65.43 5.145 4.756 66.59 25.842 6.662 59.16

AR(3) RV 0.223 4.479 69.06 4.543 3.799 72.18 22.352 5.078 66.22

VAR(3) RV, SQ 0.214 4.227 69.25 3.943 3.328 72.66 17.653 4.256 67.94

HAR(3) RV 0.207 4.228 70.59 3.683 3.149 74.67 15.979 3.711 70.66

VHAR(3) RV, SQ 0.204 4.067 71.09 3.555 2.932 76.17 14.929 3.346 73.78

FTSE

AR(1) RV 0.478 6.785 48.15 10.40 6.263 53.01 49.905 8.608 42.91

VAR(1) RV, SQ 0.452 6.386 51.27 8.59 5.482 63.35 41.807 7.151 58.72

AR(3) RV 0.401 5.422 56.01 6.16 3.572 66.51 27.349 4.167 63.20

VAR(3) RV, SQ 0.391 5.339 57.19 5.72 3.448 69.08 25.099 3.988 66.83

HAR(3) RV 0.379 5.036 58.09 5.17 2.818 69.78 20.449 3.037 67.79

VHAR(3) RV, SQ 0.360 4.929 60.24 4.71 2.713 72.79 18.552 2.866 71.36

CAC

AR(1) RV 0.579 6.930 46.19 13.902 7.056 44.34 64.848 9.700 29.67

VAR(1) RV, SQ 0.486 5.502 53.30 6.623 3.875 65.38 31.010 4.748 60.03

AR(3) RV 0.472 5.423 55.32 8.219 3.849 61.82 37.735 4.815 56.54

VAR(3) RV, SQ 0.430 4.926 57.85 6.083 2.915 67.85 25.308 3.360 63.64

HAR(3) RV 0.449 5.013 56.42 6.524 2.962 66.23 26.096 3.355 63.51

VHAR(3) RV, SQ 0.425 4.709 58.61 5.947 2.512 69.86 25.222 2.743 66.76

DAX

AR(1) RV 0.213 5.030 63.97 7.000 5.922 51.42 34.793 8.372 36.52

VAR(1) RV, SQ 0.191 4.788 67.36 5.689 5.192 61.58 27.743 6.725 55.23

AR(3) RV 0.183 4.164 67.23 4.271 3.511 65.25 20.345 4.434 59.54

VAR(3) RV, SQ 0.176 4.084 68.25 3.967 3.403 67.42 18.000 4.165 64.66

HAR(3) RV 0.168 3.899 68.90 3.236 2.724 70.72 13.231 3.024 68.11

VHAR(3) RV, SQ 0.160 3.820 70.40 3.101 2.656 72.43 12.140 2.842 71.42
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