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Abstract

The aim of this study is to provide a comprehensive description of the dependence

pattern of stock returns by studying a range of quantiles of the conditional return

distribution using quantile autoregression. This enables us in particular to study

the behavior of extreme quantiles associated with large positive and negative re-

turns in contrast to the central quantile which is closely related to the conditional

mean in the least-squares regression framework. Our empirical results are based on

30 years of daily, weekly and monthly returns of the stocks comprised in the Dow

Jones Stoxx 600 index. We find that lower quantiles exhibit positive dependence

on past returns while upper quantiles are marked by negative dependence. This

pattern holds when accounting for stock specific characteristics such as market cap-

italization, industry, or exposure to market risk.
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1 Introduction

A widely studied time series property of stock returns is their autocorrelation which is a

particularly important feature as it implies, if present, predictability of stock returns. In

empirical studies a wide range of results is reported including: positive (and possibly sig-

nificant) autocorrelation, no autocorrelation, as well as negative (and possibly significant)

autocorrelation. Campbell et al. (1997), for example, report significant positive auto-

correlation for daily, weekly and monthly stock index returns calculated from the CRSP

dataset (Center for Research in Security Prices, comprising all NYSE, AMEX and NAS-

DAQ common stocks) for a sample period spanning from 1962 to 1994. They find daily

autocorrelations to be slightly higher (around 0.2 for a value-weighted index and around

0.3 for an equally-weighted index) than weekly and monthly return autocorrelations. Lo

and MacKinlay (1990) also find mostly positive autocorrelation in daily stock returns

which they attribute to non-synchronous trading or non-trading. Campbell et al. (1993)

investigate the relationship between trading volume and serial correlation in daily returns

of individual stocks and indices. When controlling for volume they find stock returns to

be negatively autocorrelated. Lewellen (2002) studies momentum and autocorrelation of

stock returns based on the CRSP database for a sample period from 1941 to 1999 on a

monthly basis and finds that stock returns are generally negatively autocorrelated, albeit

the correlation is not statistically significant in most cases.

A common feature of all these studies is that they confine the analysis to the conditional

mean of the return distribution to examine the influence of a lagged return on the current

return. In contrast to this, we intend to provide a comprehensive description of the full

return distribution conditioned on a lagged return. For this purpose, we use the quantile

regression framework as introduced by Koenker and Bassett (1978) and examine the

influence of a lagged return on all quantiles of the current return. Quantile regression has

been successfully applied in various fields of empirical finance. An early contribution is

Engle and Manganelli (2004) who develop a quantile regression based method for Value-

at-Risk estimation. Feng et al. (2008) and Ma and Pohlman (2008) introduce quantile

momentum measures to construct momentum portfolios in asset management. Chuang

et al. (2009) examine the dynamic relationship of the quantiles of stock market index
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returns and trading volume and find causal effects of volume to be heterogeneous across

quantiles.

This paper proposes a novel approach to investigate the predictability of the various

parts of the conditional return distribution in a linear, autoregressive framework. In

particular, we expect the autoregression to be different over the various quantiles. Our

expectation is based upon various findings in the theoretical as well as the empirical

finance literature. For example, Campbell et al. (2008) have provided empirical evidence

that cross-correlations between stock return indices vary systematically across quantiles.

Veronesi (1999) develops an intertemporal, rational expectations equilibrium model of

asset pricing. He finds that stock markets overreact to bad news in good times and

underreact to good news in bad times. This state dependence could be captured by

the different quantiles of the conditional return distribution: a good (bad) state can be

associated with upper (lower) quantiles. This suggests that the impact of lagged returns

is different across quantiles. The behavioral finance literature has developed models which

explain the empirical phenomena of “momentum” and “reversal” which are attributed to

under- and overreaction of stock prices to good or bad news (see, for example, Barberis

et al., 1998; Lewellen, 2002). As the consequences of under- and overreaction for the

stock price are different, this may lead to differing dependence patterns across the return

distribution.

Our empirical findings are based on a sample of daily, weekly and monthly returns of

600 major European stocks comprised in the Dow Jones Stoxx 600 index from 1979 to

2009 and support the conjectures outlined above. We find a distinctive, s-shaped dynamic

pattern across quantiles of the conditional stock return distribution. In particular, we find

lower quantiles to exhibit positive dependence with past returns while upper quantiles are

marked by negative dependence. Typically, we find no or only very weak dependence for

central quantiles. This pattern is robust with respect to different data frequencies (daily,

weekly, monthly) and is found to be the same for individual stocks as well as the Dow

Jones Stoxx 600 index and portfolios sorted according to size, market risk and industry,

respectively. We also investigate the importance of the sign and the size of a previous

period’s return on the current return distribution. When conditioning on extreme past

returns we find that positive dependence is more pronounced in lower quantiles while

it disappears in upper quantiles. With respect to the sign of past returns we find that
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positive previous day’s returns lead to strong positive correlation with today’s positive

returns and marked negative correlation with today’s negative returns. The opposite

pattern is visible for past negative returns.

The remainder of the paper is structured as follows. Section two provides a brief intro-

duction to the quantile regression method and describes the data used for the analysis.

Section three presents the estimation results and discusses the findings while Section four

summarizes the findings.

2 Models and Data

2.1 The Quantile Autoregressive Model

Ordinary least squares (OLS) regression based on the linear model y = β′x+ ε focuses on

the estimation of the conditional mean of the dependent variable y given the explanatory

variable(s) x. In contrast, quantile regression as introduced by Koenker and Bassett (1978)

provides a technique to estimate conditional quantiles of y given one or more explanatory

variables. Inter alia, it allows for a more precise description of the tails of the distribution

of y. Moreover, it is robust to heteroskedasticity, skewness and leptokurtosis which are

common features of financial data.

For the purpose of this study we fit three different quantile regression models. The basic

model is simply a first-order quantile autoregressive model (QAR(1), see Koenker and

Xiao, 2006). The second and the third models are extensions thereof designed to capture

possible asymmetric influences of lagged returns in the spirit of threshold GARCH models

(see, for example, Glosten et al., 1993).

More precisely, we fit the following QAR(1) model:

Q(τ |Ft−1) = αi(τ) + βi(τ)rt−1,i (1)

where rt,i is the return of stock i on day t, Q(τ |Ft−1) denotes the τ -th conditional quan-

tile of stock i’s return and Ft−1 is the lagged past return of the respective stock. The
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coefficients βi(τ) may be interpreted as quantile specific autoregressive parameters which

are the focus of this study.

We extend the basic model specification in Equation (1) to specifically account for the

size of the lagged return. The model is specified as

Q(τ |Ft−1) = αi(τ) + βi(τ)rt−1,i + γi(τ)rt−1,iI(|rt−1,i| > rq) (2)

where the indicator variable I(|rt−1,i| > rq) is equal to one if the return of stock i in period

t−1 exceeds a certain threshold rq and zero otherwise. rq is chosen to be the 95% quantile

of the unconditional distribution of absolute returns of the respective stock. We will refer

to this specification as ’Size Model’. Its purpose is to assess the influence of both extreme

positive as well as extreme negative previous day’s returns (measured by γi(τ)).

Another extension of the basic model seeks to capture the role of the sign of the previous

period’s return (henceforth ’Sign Model’). It reads as follows:

Q(τ |Ft−1) = αi(τ) + βi(τ)rt−1,i + δi(τ)rt−1,iI(rt−1,i < 0). (3)

The indicator variable I(rt−1,i < 0) is equal to one if the previous day’s return is negative

and zero otherwise.

It is straightforward to estimate all three models using the standard optimization routine

of Koenker and Bassett (1978) as implemented, for example, in R. Asymptotic standard

errors are estimated using bootstrap methods. As we use time series data, we perform a

block bootstrap with fixed block length of 25 observations and 600 replications (see, for

example, Chernick, 2008, ch. 5).

We seek to contrast the autoregressive parameter estimates of the quantile autoregression

models with those implied by a standard conditional mean approach. We therefore also

estimate linear regression models corresponding to Equations (1), (2) and (3) using OLS.

2.2 Data - Summary and Descriptive Statistics

Our data cover closing prices of 600 European stocks which are used as of March 2009

to construct the Dow Jones Stoxx 600 index, as well as the index itself. The individual
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companies which make up the index are based in Austria, Belgium, Denmark, Finland,

France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway,

Portugal, Spain, Sweden, Switzerland and the United Kingdom. The sample period spans

roughly 32 years from January 1, 1987, to March 18, 2009. The maximum number of

observations is T = 5794 for daily data, T = 1158 for weekly data and T = 265 for

monthly data. The sample size for individual stocks may, however, be lower due to the

fact that they were only listed after January 1987.

Returns used in this study are calculated as logarithmic stock price differences or logarith-

mic stock index differences. Daily returns are calculated as close to close returns. Weekly

returns are measured from Wednesday close to Wednesday close the following week. If

on Wednesday the market was closed for trading, we use the last available closing value

to construct the weekly return. Monthly returns are calculated as the return between

the last closing prices in two consecutive months. Key statistics of the return data are

summarized in Table 1. The average return across all stocks considered is close to zero

for daily, weekly as well as monthly data. Extreme negative returns are found to be larger

in absolute value compared to positive ones. This may not be surprising, however, due

to the fact that our sampling period covers various crisis periods, in particular the global

financial crisis which started in 2007.

<Insert Table 1 about here>

3 Empirical Results

3.1 Results for the Basic QAR(1) Model

The first model studied is the basic QAR(1) model given in Equation (1) for daily, weekly

and monthly data. The parameter estimates β̂i(τ) for all stocks i using daily data are

summarized by means of box-plots for selected quantiles in the top left panel of Figure 1.

For lower quantiles, we find in general positive autoregressive parameter estimates whereas

for the upper quantiles, parameter estimates tend to be negative. Coefficient estimates

for central quantiles as well as the OLS estimate are close to zero.

<Insert Figure 1 about here>
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We find that in general lower and upper quantiles are significantly different from zero

while central quantiles tend not to be. More precisely, autoregressive coefficient estimates

for very extreme (1 and 99%) quantiles are less likely to be statistically different from zero

than the remaining quantiles (2, 5, 10, and 90, 95, 98%).

We also perform various t-tests for each stock to test whether the estimated parameters

in selected quantiles τ are different from those in the median and from those in the

corresponding (1− τ)-quantile. It turns out that due to the high variance in the 1 percent

quantile, the autoregressive parameter estimate in the 1% quantile is only significantly

different from the one in the 99% quantile in 20 out of 600 cases or different from the

median estimate in 9 cases. The variation in the 99% quantile is only slightly lower such

that the estimates are different from the median estimate in 12% of all cases. The 2

and 98 percent quantiles are statistically different for 24% of all stocks and different from

the median in 21% or 15% of all cases, respectively. The 5 and 95 percent quantiles are

statistically different for 34% of all stocks and different from the median in 21% or 25% of

all cases, respectively. The 10 and 90 percent quantiles are statistically different for 31%

of all stocks and different from the median in 5% or 38% of all cases, respectively.

As is also evident from Figure 1, the average estimated autoregressive parameter is de-

creasing from lower to upper quantiles. A possible explanation for this pattern is that

the reaction of today’s return on its most recent history changes with respect to the state

of the individual stock, i.e. which side of the return distribution is affected. In order to

illustrate the different impact of lagged returns on the current return, consider Figure 2

which shows the average regression lines of all individual daily stock returns for three

different τ values (τ = 0.02, τ = 0.50, and τ = 0.98) together with the OLS regression

line.

<Insert Figure 2 about here>

The Figure shows that the regression line for τ = 0.50 is virtually flat and almost identi-

cal with the OLS regression line. This implies that on average yesterday’s return has no

impact on today’s return irrespective of its sign and size. However, as we move away from

the 50% quantile towards estimates in the tails of the return distribution, the impact of

lagged returns changes markedly. Consider the on average upward sloping regression line

which corresponds to the positive autoregressive parameter for τ = 0.02. Low quantiles of
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today’s return distribution contain negative returns which we associate with a bad state.

If the stock is in a bad state today the dependence of today’s return on yesterday’s re-

turn is positive. Consider the following two situations: if yesterday’s return was negative,

today’s negative return is even lower due to the positive autoregressive coefficient. Cor-

respondingly, previous day’s positive returns alleviate today’s bad state to some extent.

In contrast, the on average downward sloping regression line corresponds to the negative

autoregressive parameter for τ = 0.98. Upper quantiles of today’s return distribution

which are marked by positive returns are associated with a good state of the stock. So

there is some reversal effect if the previous day’s return was negative while a positive

previous day’s return dampens an extreme positive return today.

For weekly and monthly data the dependence patterns across quantiles are similar to the

one found in daily data as is evident from the graphs in the top right and bottom left

panels of Figure 1. Significance of the autoregressive parameters of the different quantiles

is in the same range for weekly data as found for daily data while for monthly data

significance is in general weaker.

As can be seen from Figure 1 (top right), for weekly data autoregressive coefficient es-

timates in the lower quantiles are similar to the ones obtained for daily data. In the

upper quantiles, however, the average autoregressive coefficients are clearly lower than

those based on daily data. Moreover, the dispersion across stocks of the estimated au-

toregressive parameters is considerably larger than that for daily data, in particular in the

very extreme quantiles. With respect to monthly data, the autoregressive estimates are

even more pronounced (larger coefficients in lower quantiles and even smaller coefficients

in upper quantiles). The variation of cross-sectional (stock) estimates increases further

with coefficients exceeding 0.6 in the lower tail and −0.3 in the upper tail. This may

be attributed to the fact that with lower sampling frequencies less and less observations

are available for the quantile regression of the individual time series. Estimation of the

extreme quantiles is particularly affected by this fact.

The results described so far indicate a pronounced s-shaped pattern of the autoregressive

coefficient estimates which is stable across return frequencies. For daily as well as weekly

or monthly data we find varying autoregressive parameters across different quantiles of the

conditional return distribution: lower quantiles exhibit on average positive dependence on

past returns while upper quantiles are marked by negative dependence. Our results for
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the upper quantiles are in line with the findings of Lewellen (2002) who finds negative

autocorrelation for monthly returns. He attributes the negative autocorrelation to an

overreaction of investors to macroeconomic news in a good state. In this sense, our

results would suggest an underreaction to macroeconomic news if the stocks are in a bad

state. This interpretation is in line with the theoretical results of Veronesi (1999).

In contrast to the quantile regression method, OLS estimation of a linear autoregres-

sive model corresponding to Equation (1) delivers a single autoregressive parameter only

which is of course constant across all quantiles. For daily data, the OLS estimate of the

autoregressive parameter is found to be slightly positive on average (see Figure 1, top

left panel), albeit usually not (individually) statistically significant. For weekly data, we

find that the average OLS autoregressive parameter has a negative sign (see Figure 1,

top right panel), but is still not significant for most stocks. For monthly data, we find

autoregressive parameter estimates to be on average positive (see Figure 1, bottom left

panel) and significantly different from zero in more than 50% of all stocks considered.

A sensible question to ask when considering the pattern of the parameter estimates for

the individual stocks is whether idiosyncratic factors determine its shape. To answer this

question we consider a broad portfolio such that individual factors are diversified away.

We therefore estimate the QAR(1) model for the Dow Jones Stoxx 600 index which is a

value-weighted portfolio of 600 stocks. Our quantile regression results based on daily data

are displayed in the top left panel of Figure 3. We find a pattern which is very similar to

the (average) estimates of the individual stocks presented in Figure 1.

In Figure 3 the dots represent estimates of the slope coefficients βi(τ) in the QAR(1) model

for τ ranging from 0.01 to 0.99. The shaded area characterizes 95% confidence bands for

the estimates for all quantiles. Clearly, the lower quantiles are marked by positive (and

significant) dependence while the upper tail exhibits significantly negative dependence on

past returns. For the central quantiles estimated autoregressive coefficients are small and

in general not significant. OLS estimation on the other hand would suggest that there is

no autoregression in the returns of the Dow Jones Stoxx 600 index for daily data.

The correspondence of the dynamic patterns found for individual stocks and for the index

suggests that idiosyncratic factors seem not to be the driving force behind these results.

This finding is also supported by additional quantile regression results based on a QAR(1)
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model in Equation (1) augmented by the market return, represented by the return of the

Dow Jones Stoxx 600 index.1

<Insert Figure 3 about here>

The top right and bottom left panels of Figure 3 present the autoregressive coefficient

estimates for the index returns based on weekly and monthly data, respectively. The

graphs depict a pattern which is very similar to the one found for the average individual

stock return estimates.

3.2 Robustness of the dependence pattern

So far we have analyzed the autoregressive structure without accounting for the charac-

teristics of individual stocks. In order to differentiate the results obtained, we proceed

in two different ways. First, we construct five or ten equally-weighted portfolios of firms

sorted according to size, market beta and industry, respectively, and estimate the QAR(1)

model for the various portfolios. Second, we sort the stock specific quantile regression re-

sults βi(τ) according to size, market beta and industry, respectively, in five or ten groups.

The first strategy is intended to provide information about the average development of

a group of stocks with similar characteristics and allows for comparison with the results

obtained for the Dow Jones Stoxx 600 index as well as with the results found by other

studies which generally focus on portfolios. With the second strategy we seek to reveal

the variation of the dynamic pattern within the different groups. These results will be

represented in boxplots which allows for easy comparison with the unsorted estimation

results as represented in Figure 1. The set of results presented below is restricted to daily

data due to the fact that for weekly and monthly data qualitatively similar results are

obtained.

We construct the five equally-weighted portfolios according to market capitalization (MCAP)

distinguishing companies with an MCAP less than 1,000 million Euro (57 companies), be-

tween 1,000 and 2,000 million Euro (182 companies), 2,000 and 10,000 million Euro (256

companies), 10,000 and 50,000 million Euro (90 companies) and companies with an MCAP

1Detailed results are available from the authors upon request.
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exceeding 50,000 million Euro (15 companies). Figure 4 summarizes the estimation results

obtained from the QAR(1) model for the five portfolios.

It clearly emerges from all panels of Figure 4 that the autoregressive pattern found above

holds also true for the sorted MCAP portfolios. We find only a slight decrease of the

autoregressive estimates in the lower quantiles when moving from low MCAP to large

MCAP portfolios. The autoregressive estimates decrease roughly by one half for quantiles

lower than 5%. In contrast upper quantiles are less sensitive to MCAP.

Sorting the individual autoregressive coefficient estimates of the QAR(1) model according

to MCAP into five groups of 120 stocks each leads to the boxplots in Figure 5. It is evident

that overall a similar pattern as for the unsorted data is (as depicted in the top left panel

of Figure 1) is present. We therefore conclude that the identified dynamic pattern is not

related to the market capitalization of the individual stocks. Moreover, as the stocks

contained in these five groups are homogeneous with respect to their MCAP, we can seek

to interpret the width of the boxes in the various panels of Figure 5. Moving from the

top left panel down to the bottom left panel it seems that autoregressive estimates for

companies with high MCAP are more homogeneous, i.e. the variation of the estimates is

lower than for companies with low MCAP.

<Insert Figure 4 about here>

<Insert Figure 5 about here>

A second way to sort the coefficient estimates is by industry. We use SIC Industry

Sector Codes on the highest level to group our findings. Figure 6 presents five selected

industry groups: Oil & Gas, Industrials, Consumer Services, Financials, and Technology.

The results for the remaining industries (Basic Materials, Consumer Goods, Health Care,

Financials, and Technology) are qualitatively similar and therefore not reported here.

Again, the dependence pattern seems to be unaffected by affiliation of the individual

stock to a certain industry.

<Insert Figure 6 about here>

A third factor considered here is the market risk of a stock as captured by its beta-

coefficient. We estimate the individual stock’s exposure to the market in a basic market
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model framework. We then sort the individual stocks into five equal groups with different

beta. Average beta for these groups ranges from 0.42 to 1.25, i.e. the first group exhibits

only weak exposure to market risk while the fifth group strongly reacts to the market.

Again, the pattern of decreasing autoregressive parameter estimates across quantiles is not

altered. However, it seems that the dispersion within each of these groups is somewhat

more pronounced for lower betas.

<Insert Figure 7 about here>

Finally, we investigate the role of fat tailed distributions or GARCH-type effects (or their

combination) on our quantile autoregression model2. Campbell et al. (2008) analyze the

impact of fat tails on cross-country stock market return correlations and find that there

is less support for an increase in conditional correlations under alternative distributional

assumptions accounting for fat tails like a bivariate Student-t distribution. We therefore

conducted a Monte Carlo simulation to gain insight into the effects of these time series

properties on quantile autoregression. For this purpose, we generated data from an AR(1)-

GARCH(1,1) model using different parametrizations and either normal or Student-t dis-

tributed innovations. Quantile regression estimation of these data revealed no deviations

from the simulated autoregressive parameter across the entire range of quantiles.3 We

therefore conclude that neither fat tails nor conditional heteroskedasticity per se generate

significant differences across quantiles and are thus not causal to the asymmetric pattern

we document.

3.3 Results for the Extended QAR(1) Models

In this section we consider the extensions of the QAR(1) model as proposed in Equa-

tions (2) and (3) analyzing the influence of the size and the sign, respectively, of a lagged

return on the conditional return distribution.

The first extension as given in Equation (2) explicitly considers the impact of the size of a

previous period’s return. Figure 8 presents the estimation results of the ’Size Model’ based

on daily data. The estimation results for the autoregressive coefficients βi(τ) are presented

2We thank an anonymous referee for this suggestion.
3The simulation study is performed in R and can be obtained from the authors upon request.
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in the upper panel of Figure 8. In comparison to the top left panel of Figure 1 we find

the average autoregressive coefficient to be about twice as high as in the basic QAR(1)

model in the lower quantiles. In the upper quantiles average autoregressive estimates are

close to zero. Consequently, their s-shaped pattern disappears. The estimation results

for the γi(τ) coefficients are presented in the lower panel of Figure 8. The additional

impact of large (positive or negative) returns on the conditional return distribution is

found to be inverted u-shaped. When considering the combined effect of lagged returns,

i.e. the sum of the estimates for βi(τ) and γi(τ) for each quantile, again the s-shaped

pattern as documented for the basic QAR(1) model emerges. We therefore conclude that

this particular shape is driven mainly by extreme, lagged returns. Results for weekly and

monthly data are qualitatively similar and therefore not reported, but can be obtained

from the authors upon request.

<Insert Figure 8 about here>

The ’Sign Model’ as given in Equation (3) considers the possibility that lagged positive

and negative returns exhibit a different impact on the conditional return distribution.

Estimation results based on daily data are presented in Figure 9 where the top panel

contains βi(τ) and the bottom panel δi(τ) estimates.

As Figure 9 illustrates, the inclusion of negative returns as a second explanatory variable

completely alters the pattern of autoregressive estimates. Instead of an s-shaped pattern

we find a pronounced inverted s-shaped pattern for the βi(τ) estimates. Considering

only negative returns, however, retains the previously documented s-shaped pattern. The

results imply that investors react differently to positive and negative lagged returns and

that the reaction also depends on the state of the return, i.e. the quantile. For example,

positive lagged returns and positive current states (upper quantiles), and negative lagged

returns and negative current states (lower quantiles) display positive dependence while

positive lagged returns and negative states, and negative lagged returns and positive states

display negative dependence on past returns. In other words, when the lagged return and

the current state are aligned (both positive or negative), returns are positively correlated

across time while the opposite is true if the lagged returns and current states are not

aligned. The former is consistent with the notion of investor underreaction at t− 1 while

the latter is consistent with investor overreaction at t− 1. Again, results for weekly and
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monthly data are qualitatively similar and therefore not reported, but can be obtained

from the authors upon request.

<Insert Figure 9 about here>

3.4 Specification Issues

The estimation results presented above are based on a sample period of more than 30

years. To test for the stability of the regression parameters over time we split the sample

in various ways. The results obtained hold qualitatively for different sampling periods.

For example, for daily data restricted to the time span January 2000 to March 2009,

we obtain the following results for the basic QAR(1) model. The size of the estimated

βi(τ) parameters are almost unchanged in the lower quantiles of the conditional return

distribution while in the upper quantiles the parameter estimates are slightly more pro-

nounced. The OLS estimation results on the other hand now shows on average a negative

autoregressive coefficient which is in contrast to the previous findings. This would suggest

a fundamental change of the dynamic structure. Employing quantile regression, however,

reveals that the relationship did not change systematically as the pattern of the estimated

parameters remains stable. It is the extremes in the distribution which are affected by

changing the time span while the median seems to be unswayed.

4 Summary

We employ quantile regression analysis to investigate the predictability of different parts

of the distribution of stock returns. We find that the autoregressive parameters in a

first order quantile autoregressive model in general follow a decreasing pattern over the

quantiles of the conditional return distribution: negative returns (i.e. lower quantiles)

are generally marked by positive dependence while positive returns (i.e. upper quantiles)

exhibit in general negative dependence on past returns. We find such a pattern to hold

when accounting for market capitalization, industry classification and exposure to market

risk. A more detailed analysis accounting for the marginal effect of negative returns in

the previous period shows that negative returns exhibit a stronger influence across the
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whole distribution than positive returns. In addition, large negative returns are found to

be the driving force behind the s-shaped pattern of autoregressive parameter estimates.

We hope that the results in this paper will revive the investigation of the predictability

of stock returns.
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Table 1: Descriptive Statistics

Stock Returns Daily Weekly Monthly

Max Number of Observations 5794 1157 265
Median Number of Observations 4744 949 217
Min Number of Observations 148 29 6

Average Return 0.0001 0.0004 0.0015
Average Return Std. Dev. 0.0228 0.0509 0.1010
Minimum -1.7635 -1.7635 -1.6449
Avg. 5% Quantile -0.0335 -0.0774 -0.1609
Avg. Median 0.0000 0.0001 0.0064
Avg. 95% Quantile 0.0341 0.0752 0.1449
Maximum 1.3683 1.3683 1.2656

Index Returns

Number of observations 5794 1157 265
Average Index Return 0.0001 0.0006 0.0026
Index Return Std. Dev. 0.0112 0.0247 0.0498
Minimum -0.0888 -0.2425 -0.3040
Maximum 0.0941 0.1243 0.1353

The table provides summary descriptive statistics for the individual stocks
(upper panel) and the Dow Jones STOXX 600 index (lower panel) for the
sample period 1987 to 2009.
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Figure 1: Basic QAR(1) Estimation Results

Boxplots of the estimated βi(τ) parameters for
the 1%, 2%, 5%, 10%, 50%, 90%, 95%, 98%
and 99% quantiles of the basic QAR(1) model
in Equation (1). The upper left panel holds
estimates for daily data, the upper right for
weekly data, and the lower left for monthly
data. The solid line represents the correspond-
ing average OLS estimate together with their
5% and 95% quantiles (dashed lines).
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Figure 2: Basic QAR(1) Model Regression Quantiles (Daily Data)
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Average regression lines for three different quantiles (τ = 0.02, τ = 0.50 and τ =
0.98) of the basic QAR(1) model in Equation (1) along with the corresponding
average OLS regression line.
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Figure 4: MCAP Portfolio Estimation Results (Daily Data)

Results of the estimated βi(τ) param-
eters for quantiles 1 to 99 of the basic
QAR(1) model in Equation (1) for port-
folios of stocks sorted according to mar-
ket capitalization. Small MCAP compa-
nies are depicted in the top left image,
MCAP increases to the right and down.
The solid line represents the correspond-
ing OLS estimate together with its 95%
confidence interval (dashed lines).

21



Figure 5: Basic QAR(1) Estimation Results (Daily Data) sorted by MCAP

Boxplots of the estimated βi(τ) parame-
ters for the 1%, 2%, 5%, 10%, 50%, 90%,
95%, 98% and 99% quantiles of the ba-
sic QAR(1) model in Equation (1). Re-
sults are sorted into MCAP quintiles.
The solid line represents the correspond-
ing average OLS estimate together with
their 5% and 95% quantiles (dashed
lines).
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Figure 6: Basic QAR(1) Estimation Results (Daily Data) sorted by industries

Boxplots of the estimated βi(τ) parame-
ters for the 1%, 2%, 5%, 10%, 50%, 90%,
95%, 98% and 99% quantiles of the basic
QAR(1) model in Equation (1). Results
are sorted according to industries (IS0
9000 categories). The solid line repre-
sents the corresponding average OLS es-
timate together with their 5% and 95%
quantiles (dashed lines).

23



Figure 7: Basic QAR(1) Estimation Results (Daily Data) sorted by beta

Boxplots of the estimated βi(τ) param-
eters for the 1%, 2%, 5%, 10%, 50%,
90%, 95%, 98% and 99% quantiles of the
basic QAR(1) model in Equation (1).
Results are sorted according to mar-
ket beta. The solid line represents the
corresponding average OLS estimate to-
gether with their 5% and 95% quantiles
(dashed lines).
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Figure 8: ’Size Model’ Estimation Results (Daily Data)

Boxplots of the estimated βi(τ) (upper panel) and γi(τ) (lower panel)
parameters for the 1%, 2%, 5%, 10%, 50%, 90%, 95%, 98% and 99%
quantiles of the extend QAR(1) model in Equation (2) measuring the im-
pact of extreme past returns. The solid line represents the corresponding
average OLS estimate together with their 5% and 95% quantiles (dashed
lines).
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Figure 9: ’Sign Model’ Estimation Results (Daily Data)

Boxplots of the estimated βi(τ) (upper panel) and δi(τ) (lower panel)
parameters for the 1%, 2%, 5%, 10%, 50%, 90%, 95%, 98% and 99%
quantiles of the extend QAR(1) model in Equation (3) measuring the im-
pact of negative past returns. The solid line represents the corresponding
average OLS estimate together with their 5% and 95% quantiles (dashed
lines).
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