
The same technical report is also published at
Institute of Computer Graphics, Technical University Braunschweig, TUBSCG-1999-6-1

ISSN 0946-3852
WSI/GRIS

University of Tübingen
Auf der Morgenstelle 10/C9 D-72076 Tübingen, Germany

Institute of Computer Graphics
Technical University of Braunschweig,

Rebenring 18, D-38106 Braunschweig, Germany

Email: {meissner, bartz, thuettne, jeinigh}@gris.uni-tuebingen.de,
gordon.mueller@tu-bs.de

WWW: http://www.gris.uni-tuebingen.de
http://www.cg.cs.tu-bs.de

(C), WSI, 1999

Generation of Subdivision
Hierarchies for Efficient

Occlusion Culling of Large
Polygonal Models

Michael Meißner, Dirk Bartz, Tobias Hüttner,
Gordon Müller, and Jens Einighammer

WSI-99-13

ABSTRACT

Efficient handling of large polygonal scenes has always been a challenging
task. In recent years, view-frustum and occlusion culling have drawn a lot of
attention for reducing the complexity of those scenes. The problem of how to
efficiently organize such scenes for fast image synthesis is widely neglected,
although the answer heavily affects the overall performance.

In this paper, we present three novel algorithms for efficient scene subdivision
and compare those with another already available algorithm for subdividing
general polygonal models into a hierarchy of sub-models for an occlusion cull-
ing application. While the latter is available as a commercial product, the three
other approaches introduce new algorithms for scene subdivision which
achieve significant better results.

CR Categories:
E.1 [Data Structures]: Trees
I.3.5 [Computer Graphics]: Visibility Culling, Occlusion Culling
I.3.7 [Three-Dimensional Graphics and Realism]:
Hidden Line/Surface Removal

Keywords:
Large Polygonal Models, Hierarchical Scene Organization, Occlusion Culling.

1 Introduction

Hierarchical methods are crucial for the efficient handling of large
computer graphics scenes. Several approaches address the problem
of generating scene hierarchies, such as subdivision surfaces[5, 20,
19], multi-resolution frameworks[13, 18], scene databases[29], or
regular subdivision schemes such as BSP-trees[7] or octrees[24].
An important application field of scene organization is view-
frustum and occlusion culling, which specifically requires appro-
priate subdivision schemes. However, most available approaches
lack either flexibility or efficient handling.

In this paper, we present three novel approaches to organize
polygonal scenes hierarchically. Starting from general polygonal
models, spatial coherence and a set of heuristics is exploited for
this purpose. No special assumptions on the topology or the align-
ment are made in order to provide a robust subdivision scheme.
The goal of these model hierarchies is to ensure good occlusion
culling performance, and hence better render performance. Con-
sequently, we compare the generated hierarchies with an already
available method, the spatialization technique provided in SGI’s
OpenGL Optimizer[16], and a regular subdivision, such as BSP-
trees or Octrees. We use the generated hierarchies in an occlusion
culling algorithm based on the Hewlett-Packard Occlusion Culling
Flag[25]. Although our focus is on hierarchical and efficient ren-
dering using occlusion culling, these algorithms can be applied to
some hierarchical global illumination approaches as well[6].

This paper is organized as follows: In the next Section, we briefly
outline previous approaches for the hierarchical organization of
polygonal scenes. Section 2 introduces basic terminology and the
occlusion culling algorithm used to evaluate the different subdivi-
sion approaches discussed in Section 3. In Section 4, we compare
the results of the discussed approaches with respect to their render
performance using occlusion culling. Finally, we present a conclu-
sion and briefly describe future work.

1.1 Related Work

Several previous papers on visibility and occlusion culling touch
the topic of scene organization. Generally, we observed that sub-
division schemes for arbitrary polygonal models are difficult to de-
rive. Hong et al.[12] used a technique which subdivides a CT-based
colon volume dataset along its skeleton. The size of the different
subdivision entities depends on how many voxels belong to this en-
tity. While this scheme produced good results for a tube-like colon
model, it is not efficient for general models.

Snyder and Lengyel[26] proposed that the designer of the scene
needs to provide the subdivision. Similarly, Zhang et al. used a pre-
defined scene database[29, 14]. Models built in large Computer-
Aided-Design (CAD) systems might already include appropriate
subdivision information, due to the design process which uses hier-
archical notions like grouping and replication. Besides approaches
which use a building floor plan for this purpose[1, 2, 28, 21], no
other methods for deriving subdivision hierarchies from CAD mod-
els are known to us.

A more general approach is to organize a polygonal model into
regular spatial subdivision schemes, such as BSP-trees[7, 23, 10]
or Octrees[9, 11, 3, 4, 27]. While these subdivision schemes pro-
duce good results on polygonal models extracted by the Marching
Cubes algorithm from uniform grid volume datasets — which pro-
vide a “natural” subdivision on Marching Cubes cell base —, these
schemes run into numerous problems on general models. If a poly-
gon of the model lies across a subdivision boundary, it must be
either split into several parts, in order to produce a disjunct rep-
resentation of the bounding entities, or handled in another special
way. Splitting polygons however, can increase the number of small
and narrow polygons tremendously.

In previous approaches for occlusion culling[15], we used the
spatialization functionality of SGI’s Optimizer package[16] — now
part of the Fahrenheit Large Model Visualization API — which
generates scene hierarchies automatically. However, these subdi-
vision hierarchies needed to be tuned manually in order to get suf-
ficient performance and motivated the work described in this paper.

2 Model Subdivision and Occlusion
Culling

Although we focus in this paper on efficient hierarchical rendering
using occlusion culling, there are several other applications where
spatial coherence can be exploited to speed-up the respective pro-
cessing. Specifically, a hierarchical scene organization can be used
for global illumination approaches, collision detection, and many
more.

2.1 Model Subdivision

Generally, a polygonal scene can be subdivided into smaller
parts, where this subdivision can be either hierarchical or non-
hierarchical. We call each part of this subdivision asubdivision
entity. If information at different multi-resolution levels are re-
quired, usually a hierarchical organization is chosen, where differ-
ent subdivision entities are combined into one parent entity which
contains the whole information of the associated subdivision enti-
ties, or only information with less detail (a lower level-of-detail).
This subdivision can be represented as a tree which we will call a
subdivision treeor subdivision graph. We use anOpenInventor-
based icon graph representation which consists of different kinds
of nodes;geometry nodes, subdivision nodes, and leaf nodes(see
Fig. 1). A geometry node only contains the geometry of the ac-
tual model with respect to the used subdivision method. In con-
trast, a subdivision node does not contain any geometry of the ac-
tual dataset; it only contains the spatial boundaries of the associated
geometry nodes, thus the subdivision node is the implementation of
the abstract subdivision entity. Finally, the leaf node is build of a
subdivision node with exactly one geometry node as child.

 leaf node subdivision node

geometry node

Figure 1: Possible nodes in a subdivision tree.

We test the suitability of the subdivisions for occlusion culling
on three different polygonal datasets, which are described in Ta-
ble 1. Due to grid limitations of the Octree-based Regular Space
Decomposition approach (ORSD) (see Section 3.3), we test this
subdivision approach only on a Marching Cubes-generated model
(ventricle dataset).

2.2 Occlusion Culling

We evaluate the subdivision quality of these four approaches with
a standard hierarchical occlusion culling algorithm based on the
HP-Occlusion-Culling-Flag[25] and a basic view-frustum culling
algorithm[8].

The subdivision tree hierarchy is processed top-down, left-right.
First, each subdivision node of the tree is tested for intersection with
the view-frustum (view-frustum culling). All the nodes which have
a non-empty intersection, are located within the view-frustum and

Dataset Grid Type/ #Triangles FR
Source

Ventricle Uniform/ 270,882 4.6
System MRI
Cathedral Unstructured/ 416,763 3.8

CAD
City Unstructured/ 1,408,152 0.9

Modeler

Table 1: Models; as gold standard for the speed-up due to occlusion
culling, we show the frame rate for the datasets without any culling
mechanism.

(a)

(b)

(c)

Figure 2: General Algorithm — not occluded nodes are shown with
dark contrast, culled nodes are shown with bright contrast: Subdi-
vision tree (a) after View-Frustum Culling and (b) after Occlusion
Culling. The not occluded, and therefore rendered geometry nodes,
are shown in (c).

may contain visible sub-structures. Consequently, we proceed with
the view-frustum test, until we reach the leaf levels of the subdivi-
sion tree (see Fig.2a).
In the second step, all the remaining subdivision nodes are depth-
sorted according to their associated bounding boxes and tested for
occlusion using the HP flag. The actual geometry of the leaf node
closest to the eye is rendered into the empty framebuffer. All further
rendering is performed in an interleaved fashion. First, we render
the bounding box of the next-closest subdivision node in a special
occlusion mode which does not contribute to the framebuffer. If
this bounding box would have a visible contribution to the frame-
buffer, the HP-Occlusion-Culling-Flag is set TRUE by the graphics
hardware, and we proceed with the child nodes of the node; in case
that it is a leaf node, we render the content of the geometry node in
the standard render mode (see Fig. 2c). If the bounding box does
not have any contribution (flag is set FALSE), this box and all the
associated geometry are not visible and therefore, they are culled
(see Fig. 2b).

3 Generating Subdivision Hierarchies

Generating hierarchical subdivisions of very large models can be
done in numerous ways. In this Section, we will present three re-
search algorithms and one commercial tool which generate a sub-
division hierarchy starting from given models:D-BVS, p-HBVO,

ORSD, andSGI.
The last is part of SGI’s OpenGL Optimizer toolkit (opoptimize),
while the other three novel algorithms have been developed and im-
plemented by the authors. All approaches subdivide general poly-
gonal models, whereas the octree-based ORSD only subdivides uni-
form grid datasets.

3.1 Dimension-oriented Bounding Volume Subdi-
vision (D-BVS)

The goal of the volume oriented D-BVS subdivision algorithm is
to generate evenly-sized, cube-shaped bounding boxes, hence min-
imizing the area of the screen projection of these bounding boxes.
This goal is approached by splitting the bounding boxes multiple
times in the largest dimension. The size of the bounding boxes and
the associated sub-models is controlled by user-specified parame-
ters, such as the minimal number of polygons.

Starting with the root subdivision entity — which contains the
whole model — the associated bounding volume is splitnsplit times
along its largest dimension such that each fraction is approximately
of the same size as the second largest dimension.

nsplit =
largest bounding volume dimension

second largest bounding volume dimension
(1)

This process continues recursively until the termination criteria are
met. These criteria give lower bounds for the number of polygons
of the subdivision entities or the size of the dimensions of the as-
sociated bounding boxes, in order to avoid undersized subdivision
entities which increase the occlusion culling overhead without im-
proving the cull rate sufficiently. Occasionally, the split-operation

Figure 3: Moving subdivision planes to reduce polygon splits. The
other planes are already calculated.

of the subdivision process splits a polygon which lies across the
subdivision boundary into two new polygons (this is usually not
the case for uniform grid datasets). This can tremendously increase
the number of polygons and frequently, these polygons are small
and narrow, thus resulting in numerical problems. To compensate
this, we apply two techniques. First, the subdivision plane is moved
along the subdivision dimension so as to reduce the number of addi-
tional polygons (Fig. 3). The direction and value of the movement
is controlled by user-specified parameters. Nevertheless, very large
polygons can not be handled by moving the subdivision planes, be-
cause they cover several high-level subdivision entities (i.e., a single
polygon factory hall floor). Therefore, we apply our second tech-
nique, where those polygons arepulled upinto a leaf node close to
the tree root. The associated geometry is no longer affected by split
operations in lower tree levels and is rendered, while the renderer
traverses that part of the subdivision tree.

In general, this algorithm can handle all types of polygonal
scenes without producing significantly more polygons. It optimizes
shape and size of the subdivision entities, hence their bounding
boxes. However, the polygon load is not evenly distributed to the

subdivision entities, possibly resulting in a less balanced subdivi-
sion tree.

3.2 Polygon-based Hierarchical Bounding Volume
Optimization (p-HBVO)

The polygon-oriented Hierarchical-Bounding-Volume-
Optimization (p-HBVO) method subdivides recursively a set
of polygons into two subdivision entities. Instead of arbitrarily
selecting possible subdivision planes, these planes are given
by the barycenter of each polygon (triangle). By evaluating a
cost-function, an optimal subdivision plane is established. At each
subdivision level, the individual polygons are assigned to exactly
one subdivision entity of that level. Consequently, no polygons are
split, hence no new polygons are generated by this method.

Starting from the root node, at each subdivision step, we sort
the polygons along all coordinate axes, where the barycenter of
each polygon serves as sorting key. Based on these three ordered
lists, we evaluate the potential subdivision planes along each axis
for each entry in the respective list by splitting the sorted list of
polygons into aleft andright part. In contrast to pre-defined sub-
division planes of the median cut scheme[17], we evaluate for
each possible subdivision plane — defined by the entries in the
lists — a cost function which approximates the costs of rendering
the polygons of one of the two subdivision entities, generated by
the respective subdivision plane. By minimizing this cost-function
over all possible subdivision planes, we obtain an optimal subdivi-
sion plane which generates two new subdivision entities; one con-
tains allleft�polygons, the other one contains allright�polygons.
The subdivision process terminates when either the number of
polygons, or the subdivision depth exceeds one of the two pre-
defined parameters:Max_Triangles_Per_Subdivision_Entityor
Max_Subdivision_Depth. These parameters are specified by the
user and supplied at the start of the subdivision process.
In most cases, our cost function is identical to one which has already
been successfully applied in ray tracing environments[22]. Adopt-
ing this cost function is possible since the objective is the same;
both algorithms traverse the scene graph in a similar way to deter-
mine visibility. The costs of a subdivision entityH, with children
Hle f t andHright , is given by:

CH (axis) =
S(Hle f t)

S(H)
� jHle f tj+

S(Hright)

S(H)
� jHright j

where

� jHj is the number of polygons within hierarchyH,

� S(H) the surface area of the bounding box associated to sub-
sceneH, and

� axis2 fX;Y;Zg.

Overall, this algorithm generates well balanced subdivision tree
with respect to their polygon load. Furthermore, polygons of in-
dividual objects are detected and clustered together (see Section 4,
city dataset). Optimal performance was achieved with finer subdi-
visions, which usually leads to higher cull costs, but also enables
lower render rates.

3.3 Octree-based Regular Space Decomposition
(ORSD)

As mentioned earlier, regular subdivisions are well suited for uni-
form grid datasets, such as generated by MRI or CT scanners (i.e.,
ventricle dataset). Uniform grid datasets consist of a set of sam-
ple values (voxels), arranged on a uniform grid. A cube of eight

neighboring voxels is called a cell, where cells with a non-empty
intersection with the selected isosurface are called relevant cells.

We discuss such a subdivision scheme, based on an Octree-based
Regular Space Decomposition method (ORSD). In contrast to the
other approaches, ORSD uses a cell-based (voxel-based) evalua-
tion criterion, where the number of relevant cells (relevant cell load
or RCL) controls the subdivision process. This criterion is only a
rough approximation of the actual number of extracted polygons,
considering that each relevant cell represents between one and five
triangles. In our experiences however, RCL turned out to be pre-
cise enough. Figure 9 visualizes a subset of the generated subdivi-
sions. Note that the shown bounding boxes are bounding the actual
geometry, not the respective octant volume. Consequently, they are
of different sizes. After the construction of the entire octree, the

superblock

Figure 4: Octree-based subdivision tree.

RCL of each octant is already calculated. Subsequently, the octree
is traversed recursively, starting with the superblock. If the RCL is
above a user-specified threshold, the block is classified as a subdi-
vision node, thus being further subdivided into its child blocks. In
the other case, the block is considered as a leaf node. The associ-
ated relevant cells — at the bottom level of the octree — contain
the polygons of the isosurface, which are assigned to that leaf node.
This subdivision process results in a hierarchy of blocks, where the
leaf nodes contain the actual geometry (see Fig. 4 and Section 2.1).

Overall, ORSD is a simple but efficient subdivision scheme. As
shown in the results (see Section 4), the indirect evaluation method
(RCL instead of number of polygons) does not affect the occlu-
sion culling performance adversely. Furthermore, bounding box
size and polygon load balance were adequate. However, ORSD is
limited to uniform grid datasets.

3.4 SGI’s opoptimize (SGI)

SGI’s OpenGL Optimizer is a C++ toolkit for CAD applications
that provides scene graph functionality for handling and visualiza-
tion of large polygonal scenes. It includes mechanisms for subdi-
vision of databases as well as for tessellation, simplification, and
others.

Opoptimize(depicted in the following sections as “SGI”), which
is part of the toolkit, provides functionality for the subdivision of
model databases. The subdivision method realized in SGI is similar
to the construction of an octree; each subdivision entity is split into
eight equally sized subdivision entities. This process is repeated
recursively, until a certain threshold criteria for the iterated subdi-
visions is reached.
Octree-based spatial subdivision is a simple and efficient subdivi-
sion scheme. However, the SGI subdivision mechanism subdivides
space not by simply bisecting edges of a cube, as in an octree, but
by choosing subdivision planes so that the rendering loads of the
resulting parts are similar. As a result, the amount of geometry in
each subdivision on each side of the cutting plane is approximately
the same. Polygons which are split due to the subdivision are dis-
tributed to the respective subdivision entities.
The main parameters that can be used to control the subdivision are
hints for the lowest and highest amount of triangles(trimin;trimax)

0

5

10

15

20

25

40 60 80 100 120 140

fp
s

Frames of path

Ventricle frame rate

p-HBVO
D-BVS
ORSD

SGI

(a)

10

15

20

25

30

35

40 60 80 100 120 140

%

Frames of path

Ventricle final geometry drawn

p-HBVO
D-BVS
ORSD

SGI

(b)

Figure 5: Ventricle dataset; window of frames 40 to 140 of the total
path of 150 frames: (a) frame rate, (b) render rate.

in each subdivision entity at the leaf-level of the subdivision hier-
archy. However, the subdivision algorithm only tries to meet these
criteria but is not bound to it. Note, that this tool usually produces
triangle strips to achieve better render performance.

In general, SGI generates subdivision hierarchies with a well-
balanced polygon load. However, the bounding boxes of the sub-
division entities are less suited for occlusion culling applications,
because the cost function determining the subdivision entities is ob-
viously not optimized with respect to the volume of the bounding
boxes. We observed that the right-most branch of the subdivision
tree frequently contained large subsets (bounding box volume size)
of the model, even in the lower tree levels.

4 Results

In this Section, we discuss the efficiency of our three novel al-
gorithms and opoptimize of SGI’s OpenGL Optimizer (SGI) with
respect to their occlusion culling-based render performance. All
measurements are performed on a HP B180/fx4 graphics worksta-
tion. The three different polygonal datasets (see Table 1) represent
typical scenarios of different application areas. Their subdivision
trees are constructed in the same way, where the geometry is built
of individual polygons (triangles) without any triangle strips. SGI
usually generates triangle strips. In order to obtain a comparable
model, we converted these strips into individual triangles. Further-
more, we removed redundant tree nodes. During our evaluation,
we measured the time spent for view-frustum culling (vfc), occlu-
sion culling (occ), and rendering of the not occluded geometry (ren)
(see Tables 2, 3, and 4) of different subdivision granularities. For

the evaluation, we took the subdivision with the best culling-based
render performance. Furthermore, we show frame rate of walk-
throughs of the datasets and the respective render rate, which mir-
rors the percentage of the geometry of the scene which was ren-
dered (this is reciprocal to the cull rate, which represents the per-
centage which was not rendered due to culling). The success of the
occlusion culling can be seen as well in the tables; the frame rate is
shown for walk-throughs with vfc and occ, and vfc only.

Ventricle Dataset

The first dataset is a polygonal model of the ventricular system of
the human brain extracted from a MRI scan. We explore the dataset
by moving through the lower part (Cisterna Magna) of the poly-
gonal model. Most of the model structures through-out the walk-
through are located within the view-frustum, while the structures
with the largest number of polygons (located in the upper part or
lateral ventricles) were not visible due to occlusion. All polygons
of this model are aligned on the uniform cell grid and are of ap-
proximately the same size. All three novel algorithms were able
to detect this “natural” subdivision boundaries; only SGI generated
approximately 15% additional polygons due to splitting operation
in-between the grid points.

Figure 5 shows frame rate and render rate of the four evaluated
algorithms; Table 2 shows the time measurements. The most inter-
esting detail is the low amount of time consumed by view-frustum
and occlusion culling by ORSD, due to its coarse subdivision. The
render rate of p-HBVO and D-BVS was approximately 25% bet-
ter than the render rate of the ORSD approach. However, the finer
subdivision (see Fig. 9) introduced additional culling costs twice as
much as for ORSD, resulting in a lower frame rate.

Cathedral Dataset

This dataset represents the interior of a gothic cathedral, designed
with a CAD system (see Table 1). Occlusion is limited to small
parts of the model, because a large share of the polygons are vis-
ible from most view points within the model. Figure 7 shows a
very fine granular subdivision of the cathedral model. Especially
the p-HBVO approach (a) adapts very nicely to the structures of the
model, such as pillars and arcs. In contrast, the subdivision gener-
ated by SGI (c) introduces very large bounding boxes, which do not
adapt properly to the actual geometry.

The p-HBVO approach performed best on this dataset (see
Fig. 6). This is due to the low culling costs, compared to SGI and
D-BVS (see Table 3). The bounding boxes of D-BVS and SGI are
not really suited for occlusion culling; especially their occlusion
culling time is significantly higher compared to p-HBVO, thus re-
ducing the frame rate severely. Consequently, view-frustum culling
only is faster than occlusion culling for those approaches.

City Dataset

The city dataset is an artificial model of 400 basic building models
with some interior, which contains most of the polygonal complex-
ity. Consequently, most of the polygons of this model are occluded.
However, only the p-HBVO approach was able to subdivide all the
interior into individual subdivision entities, hence resulting in very
low render rates (see Table 4 and Fig. 8). In contrast, the D-BVS
approach did not detect the interior objects. The optimal computed
subdivision was of coarser granularity (10% of the subdivision en-
tities of p-HBVO), resulting in less time spent for culling (vfc and
occ), but a higher render rate of 41 times larger than the render rate
of p-HBVO. Similar, the SGI approach did not detect the interior
objects as well. It used a coarse granular subdivision, which con-

(a) (b) (c)

Figure 7: Cathedral dataset — subdivided by (a) p-HBVO, (b) D-BVS, and (c) SGI; the arts and pillars of the cathedral are well detected by
p-HBVO and D-BVS. SGI only used a regular spatial subdivision.

sequently increased the culling time (vfc and occ) in comparison to
p-HBVO.

Summary

Overall, two of our three novel model subdivision approaches were
able to generate subdivisions with faster rendering due to higher
cull performance. This was achieved by reducing culling costs or
by reducing the render rate of the dataset. On uniform grid datasets,
the basic ORSD approach produced a model subdivision which per-
formed best, mostly due to the low time spent to establish occlusion
or non-occlusion.

Generally, we observed that models with high occlusion do not
require very fine subdivision (ventricle dataset, D-BVS vs. ORSD).
On the other hand, a fine subdivision pays off if interior (thus com-
pletely occluded) objects are clustered in a subdivision entity (city
dataset, p-HBVO vs. SGI). In contrast, models with low occlu-
sion (cathedral dataset) can benefit from finer subdivisions if the
culling costs loss is only a fraction of the rendering costs gain (see
city dataset, p-HBVO). However, this was not true of the cathedral
dataset (D-BVS).

Note that the p-HBVO approach builds a binary subdivision tree.
This usually results in deeper trees, hence more intermediate subdi-
vision entities. This increases the time spent for occlusion culling
significantly. Once this binary tree was re-build into a quad tree
representation, we achieved a frame rate increase of approximately
20%.

To summarize, we always achieved a speed-up due to occlu-
sion culling-based rendering. Especially with the city dataset, we
achieved a speed-up of 15.6 after culling of 99.9% of the model
geometry with the p-HBVO algorithm. The other approaches ob-
tained a similar speed-up, while culling less polygons.
On the ventricle dataset, the ORSD approach accomplished the best
results; 77.6% of the geometry were culled, due to view-frustum
and occlusion culling. This culling performance resulted in a frame
rate speed-up of 3.3.

5 Conclusion and Future Work

In this paper, we discussed four different approaches for hierar-
chical subdivisions of large polygonal models. One of the candi-
dates of the discussion is a commercially available product (SGI’s
OpenGL Optimizer), while the other approaches are still research
projects.

Overall, the former approaches achieved similar (D-BVS) or bet-
ter performance — evaluated with an occlusion culling application
— than the tool of SGI’s OpenGL Optimizer. It turned out that a
simple octree-based scheme (ORSD) suits very well to uniform grid
datasets; bounding box size as much as polygonal load balance was
handled well. However, this scheme does not work on unstructured
grid datasets because of the missing “natural” subdivision on cell-
base.
Especially the p-HBVO approach performed well on all datasets.
Whereas the D-BVS approach optimized the size and shape of the
bounding boxes, the p-HBVO approach was able to generate good
bounding boxes, while balancing the polygon load as well.

In the future, we will look into optimal subdivision tree traversal
strategies. Usually, geometry of a model which is closest to the eye
is not occluded. Consequently, if we assign a culling budget only
to the rear geometry, the culling costs can reduced significantly.
So far, only spatial coherence information is exploited in order to
combine raw triangles into subdivision entities. If neighborhood
connectivity information —, i.e., semantic information which de-
scribes what kind of object should be combined (like the roof of a
house in the city dataset) — is used, we expect subdivisions which
perform better than the current ones. This will be a major future
research focus.
Finally, hierarchical subdivision schemes can be used for numerous
other fields in computer graphics. In the future, we will look into
some of these fields, such as collision detection.

6 Acknowledgements

This work has been supported by German Research Foundation
(DFG) Project SFB 382, the MedWis program of the German Fed-
eral Ministry for Education, Science, Research and Technology, the
State of Baden-Württemberg, and by the DFG grant Fe 431/4-1 and
Fe 431/4-2.

We would like to thank Tom Malzbender at HP Labs, Palo Alto,
CA and Alan Ward at HP Workstation Systems Lab, Ft. Collins,
CO for providing us with a HP B180 system with fx4 graphics.
Furthermore, we thanks Michael Doggett for proof-reading.

References

[1] J. Airey, J. Rohlf, and F. Brooks. Towards Image Realism
with Interactive Update Rates in Complex Virtual Building

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90

fp
s

Frames of path

Cathedral frame rate

p-HBVO
D-BVS

SGI

(a)

5
10
15
20
25
30
35
40
45
50
55

10 20 30 40 50 60 70 80 90

%

Frames of path

Cathedral final geometry drawn

p-HBVO
D-BVS

SGI

(b)

Figure 6: Cathedral dataset; all frames of the path are shown: (a)
frame rate, (b) render rate.

Environments. InProc. of ACM Symposium on Interactive
3D Graphics, pages 41–50, 1990.

[2] J.M. Airey. Increasing Update Rates in the Building Walk-
through System with Automatic Model-Space Subdivision and
Potentially Visible Set Calculations. PhD thesis, Department
of Computer Science, University of North Carolina, Chapel-
Hill, 1990.

[3] S. Coorg and S. Teller. Temporally Coherent Conservative
Visibility. In Proc. of ACM Symposium on Computational
Geometry, 1996.

[4] S. Coorg and S. Teller. Real-Time Occlusion Culling for Mod-
els with Large Occluders. InProc. of ACM Symposium on
Interactive 3D Graphics, pages 83–90,189, 1997.

[5] T. DeRose, M. Kass, and T. Truong. Subdivision Surfaces in
Character Animation. InProc. of ACM SIGGRAPH, pages
85–94, 1998.

[6] Andrew Glassner (Ed.).An Introduction to Ray Tracing. Aca-
demic Press, London, 4th edition, 1993.

[7] H. Fuchs, Z. Kedem, and B. Naylor. On Visible Surface Gen-
eration by a Priori Tree Structures. InProc. of ACM SIG-
GRAPH, pages 124–133, 1980.

[8] B. Garlick, D. Baum, and J. Winget. Interactive Viewing of
Large Geometric Databases Using Multiprocessor Graphics
Workstations. InSIGGRAPH’90 course notes: Parallel Algo-
rithms and Architectures for 3D Image Generation, 1990.

0
2
4
6
8

10
12
14
16
18
20

10 20 30 40 50 60 70 80 90

fp
s

Frames of path

City frame rate

p-HBVO
D-BVS

SGI

(a)

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90

%

Frames of path

City final geometry drawn

p-HBVO
D-BVS

SGI

(b)

Figure 8: City dataset; window of frames 10 to 90 of the total path
of 200 frames: (a) frame rate, (b) render rate.

[9] N. Greene. Hierarchical Rendering of Complex Environ-
ments. PhD thesis, Computer and Information Science, Uni-
versity of California, Santa Cruz, 1995.

[10] N. Greene. Hierarchical Polygon Tiling with Coverage
Masks. InProc. of ACM SIGGRAPH, pages 65–74, 1996.

[11] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Vis-
ibility. In Proc. of ACM SIGGRAPH, pages 231–238, 1993.

[12] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual
Voyage: Interactive Navigation in the Human Colon. InProc.
of ACM SIGGRAPH, pages 27–34, 1997.

[13] H. Hoppe. Progressive Meshes. InProc. of ACM SIGGRAPH,
pages 99–108, 1996.

[14] T Hudson, D. Manocha, J. Cohen, M. Lin, Kenneth E. Hoff,
and H. Zhang. Accelerated Occlusion Culling Using Shadow
Frusta. In Proc. of ACM Symposium on Computational
Geometry, 1997.

[15] T. Hüttner, M. Meißner, and D. Bartz. OpenGL-assisted Vis-
ibility Queries of Large Polygonal Models. Technical Re-
port WSI-98-6, ISSN 0946-3852, Dept. of Computer Science
(WSI), University of Tübingen, 1998.

[16] Silicon Graphics Inc. Optimizer Manual. Technical report,
1997.

[17] T. L. Kay and J. T. Kajiya. Ray Tracing Complex Scenes. In
Proc. of ACM SIGGRAPH, pages 269–78, 1986.

[18] R. Klein. Multiresolution Representation for Surface Meshes
Based on the Vertex Decimation Method.Computer &
Graphics, 22(1), 1998.

[19] L. Kobbelt, S. Campagna, J. Vorsatz, and H. Seidel. Interac-
tive Multi-Resolution Modeling on Arbitary Meshes. InProc.
of ACM SIGGRAPH, pages 105–114, 1998.

[20] A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin.
MAPS: Multiresolution Adaptive Parametrization of Sur-
faces. InProc. of ACM SIGGRAPH, pages 95–104, 1998.

[21] D. Luebke and C. Georges. Portals and Mirrors: Simple, Fast
Evaluation of Potentially Visible Sets. InProc. of ACM Sym-
posium on Interactive 3D Graphics Conference, 1995.

[22] G. Müller and D. Fellner. Hybrid Scene Structuring with Ap-
plication to Ray Tracing. InProc. of ICVC’99 (to appear),
1999.

[23] B. Naylor. Partitioning Tree Image Representation and Gen-
eration From 3D Geometric Models. InProc. of Graphics
Interface’92, pages 201–212, 1992.

[24] H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, Reading, 1994.

[25] N. Scott, D. Olsen, and E. Gannett. An Overview of the VI-
SUALIZE fx Graphics Accelerator Hardware.The Hewlett-
Packard Journal, (May):28–34, 1998.

[26] J. Snyder and J. Lengyel. Visibility Sorting and Compositing
without Splitting for Image Layer Decompositions. InProc.
of ACM SIGGRAPH, pages 219–230, 1998.

[27] O. Sudarsky and C. Gotsman. Output-Sensitive Visibility Al-
gorithms for Dynamic Scenes with Applications to Virtual
Reality. InProc. of Eurographics’96 conference, pages 249–
258, 1996.

[28] S. Teller and C.H. Sequin. Visibility Pre-processing for In-
teractive Walkthroughs. InProc. of ACM SIGGRAPH, pages
61–69, 1991.

[29] H. Zhang, D. Manocha, T. Hudson, and Kenneth E. Hoff. Vis-
ibility Culling Using Hierarchical Occlusion Maps. InProc.
of ACM SIGGRAPH, pages 77–88, 1997.

Appendix A: Walk-through Measurements

Approach: p-HBVO D-BVS ORSD SGI
#Subdiv nodes 80 41 6 29
#Leaf nodes 81 41 28 36
Time for vfc [s] 0.0075 0.0065 0.0029 0.0041
Time for occ [s] 0.03 0.0232 0.0111 0.0163
Time for ren [s] 0.0506 0.0564 0.06 0.06
Render rate [%] 16.0 19.7 22.4 19.7
Frame rate [fps] 12.3 13.4 15.3 13.6
Render rate
of vfc only [%] 70.6 78.7 83.0 78.9
Frame rate
of vfc only [fps] 5.5 5.3 5.3 5.3

Table 2: Ventricle dataset: subdivision granularity, average render
rates, frame rates, and time consumed by occlusion culling based
rendering.

Approach: p-HBVO D-BVS SGI
#Subdiv. nodes 9 59 51
#Leaf nodes 10 67 52
Time for vfc [s] 0.0021 0.0077 0.0089
Time for occ [s] 0.0041 0.0322 0.027
Time for ren [s] 0.1361 0.1239 0.1426
Render rate [%] 30.0 25.9 30.1
Frame rate [fps] 12.4 8.8 7.8
Render rate
of vfc only [%] 33.1 25.9 32.2
Frame rate
of vfc only[fps] 12.4 10.8 9.5

Table 3: Cathedral dataset: subdivision granularity, average render
rates, frame rates, and time consumed by occlusion culling based
rendering.

Approach: p-HBVO D-BVS SGI
#Subdiv nodes 2722 266 420
#Leaf nodes 2723 495 420
Time for vfc [s] 0.0189 0.0111 0.0124
Time for occ [s] 0.0541 0.0318 0.0332
Time for ren [s] 0.0073 0.0831 0.0787
Render rate [%] 0.1 4.1 3.6
Frame rate [fps] 14.0 10.9 11.8
Render rate
of vfc only [%] 47.0 50.7 50.4
Frame rate
of vfc only [fps] 1.0 1.4 1.4

Table 4: City dataset: Subdivision granularity, average render rates,
frame rates, and time consumed by occlusion culling based render-
ing.

Sample Hierarchies

50000� (SGI) 10000� (SGI) (*) 5000� (SGI) 1000� (SGI)

10000 (ORSD) (*) 5000 (ORSD) 1000 (ORSD) 500 (ORSD)

50000 (D-BVS) 10000 (D-BVS) (*) 5000 (D-BVS) 1000 (D-BVS)

50000 (p-HBVO) 10000 (p-HBVO) 5000 (p-HBVO) (*) 1000 (p-HBVO)

Figure 9: Different bounding box levels of the discussed subdivision methods. The asterisk (*) marks the used subdivision hierarchy, which
provided the highest frame rate of this occlusion culling approach.

(a) (b)

Figure 10: Cathedral dataset: (a) Overview, (b) Inside view.

(a) (b)

Figure 11: Ventricle dataset: (a) Overview, (b) Inside view.

(a) (b)

Figure 12: City dataset: (a) Overview, (b) Inside view.

