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Dekan: Prof. Dr. Wolfgang Knapp
1. Berichterstatter: Prof. Dr. Harry Yserentant
2. Berichterstatter: Prof. Dr. Ralf Hiptmair



To Katharina



iv



v

Acknowledgment

First of all, I thank my supervisor Prof. H. Yserentant for his valuable direc-
tion. My best thanks go to Prof. R. Hiptmair for his support, encouragement
and fruitful discussions.

I thank the German Research Foundation (DFG), Sonderforschungsbere-
ich 382 “Verfahren und Algorithmen zur Simulation physikalischer Prozesse
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Abstract

The aim of this work is to generalize the idea of the discretizations on sparse
grids to discrete differential forms. The extension to general l-forms in d
dimensions includes the well known Whitney elements, as well as H(div; Ω)-
and H(curl; Ω)-conforming mixed finite elements.

The formulation of Maxwell’s equations in terms of differential forms
gives a crucial hint how they should be discretized. The focus is on discrete
differential forms of lowest order, i.e. Whitney elements. Taking the cue
from Lagrangian finite elements on sparse grids, we present the hierarchical
decomposition of the Whitney spaces. The tensor product structure and the
hierarchical multilevel principle give rise to hierarchical basis for Whitney
l-forms in d dimensions.

Relying on the hierarchical basis, we define the sparse grid interpolation
operator and we prove the commuting diagram property as well as the exis-
tence of discrete potentials in sparse grid spaces. The interpolation estimates
generalize the known results for Lagrangian finite elements. Approximate in-
terpolation is needed for the Galerkin method for boundary value problems
on sparse grids. The combination technique and a two point quadrature rule
ensure that similar error estimate as for the exact interpolation hold.

Discrete inf-sup conditions are shown theoretically and experimentally for
mixed second order problems. The focus is on the stability of the discretiza-
tion of the primal and of the dual mixed problem by sparse grid Whitney
forms. The existence of stable potentials is a sufficient condition. We prove
it in particular cases, completely covering the three dimensional case. Nu-
merical results give evidence for d = 4, too. The results show that discrete
differential forms on sparse grids give rise to viable numerical schemes for
the discretization of both H(d,Ω)-elliptic variational problems and second
order mixed problems.

The algorithms involved are presented both in a general form and with
particular design solutions. They mirror the two pervasive ideas in the theory
of the sparse grids, namely the hierarchical decomposition and the reduction
to the one dimensional case via tensor product. We give examples for smooth
and no-smooth forms, where we compute numerically the interpolation error
on the full grid. Algorithmic details are given for the the multiplication
with the mass and the stiffness matrix. The last chapter is confined to the
the multigrid scheme and the needed automatic construction of stencils on
anisotropic full grids.
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Zusammenfassung

Das Ziel der vorliegende Arbeit ist, Dünngitter-Verfahren für diskrete Dif-
ferentialformen zu verallgemeinern. Die Erweiterung auf l-Formen in d Di-
mensionen schließt die bekannten Whitney Elemente und die H(div; Ω)- und
H(curl; Ω)-konformen gemischten Finite Elemente ein.

Die Darstellung der Maxwellgleichungen im Differentialformenkalkül fuhrt
auf geeignete Diskretisierung. Es werden nur diskrete Differentialformen
niedrigster Ordnung, dass heißt Whitney-Formen, behandelt. Die hierar-
chischen Basisfunktionen für Whitney-Formen lassen sich mit der Multiska-
lentechnik unter Verwendung eines Tensorproduktansatzes herleiten.

Der Dünngitter-Interpolationsoperator wird auf Grundlage der hierarchi-
schen Basis definiert. Die kommutierende-Diagram-Eigenschaft und die Exis-
tenz diskreter Potentiale werden im Rahmen der Dünngitter-Diskretisierung
bewiesen. Die Abschätzung des Interpolationsfehlers entspricht im Spezial-
fall l = 0 den bekannten Ergebnissen für Lagrange Finite Elemente.

Im Rahmen eines Galerkin-Ansatzes für die Lösung elliptischer Differ-
entialgleichungen muss man eine Approximation des Interpolationsoperators
benutzen. Die Kombinationsmethode und die Trapezregel mit zwei Punk-
ten liefern die algorithmische Realisierung des approximierten Interpolations-
operators. Der Interpolationsfehler behält dieselbe Ordnung wie im Fall des
“exakten” Operator.

Diskrete inf-sup–Bedingungen für gemischte Formulierungen elliptischer
Probleme zweiter Ordnung werden sowohl theoretisch als auch numerisch un-
tersucht. Der Schwerpunkt liegt auf der Stabilität der Dünngitter-Diskretisie-
rung des primalen und des dualen Problems mit Whitney-Formen. Die Exis-
tenz stabiler Potentiale ist eine hinreichende Bedingung, die in verschiedenen
Einzelfällen bewiesen wird. Der praktisch interessante drei dimensionale Fall
wird vollständig untersucht. Numerische Ergebnisse liefern Hinweise auf Sta-
bilität im Falle d = 4 und lassen uns eine allgemeinere Aussage vermuten.
Die Ergebnisse zeigen, dass diskrete Differentialformen streng begründbare
Berechnungsverfahren sowohl für H(d,Ω)-elliptische als auch für gemischte
Probleme zweiter Ordnung zur Verfügung stellen.

Die algorithmischen Aspekte werden ausführlich dargestellt, sowohl in
einer allgemeinen Form, als auch mit konkreten Implementierungslösungen.
Die Algorithmen spiegeln die zwei grundliegenden Ideen in der Dünngitter-
Theorie wieder: die hierarchische Zerlegung und die Zurückführung auf den
eindimensionalen Fall mit Hilfe eines Tensorproduktansatzes. Die hierarchi-
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schen Transformationen verdeutlichen dieses unidirektionale Prinzip. Beispiele
für die Interpolation glatter und nicht-glatter Differentialformen werden be-
trachtet. Desweiteren werden die Algorithmen für die Steifigkeits- und Massen-
matrix Multiplikationen, die automatische Konstruktion der Operatorsterne
auf anisotropen vollen Gitter und das Mehrgitterverfahren detailiert beschrieben.
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Chapter 1

Introduction

For a successful numerical simulation, reality must be modelled correctly, for
Nature cannot be fooled. Hence, reality is an imperative in the discretization
of the physical laws. But how much of the continuous model can we preserve
in the discrete one? Consider Maxwell’s equations, which offer an universal
theory. Yet, concrete problems need practical solutions, so we must reduce
the general model to an adequate and solvable one. Attention has to be paid
to avoiding undue simplifications. It took a lot of time to refute the idea
that one can cope with electromagnetics once one knows to solve Laplace
equation numerically [48]. Now we know that (discrete) differential forms
afford a discrete model better than conventional Lagrangian finite elements.
Another source of error in the solution is the discretization level. We can
rarely compute exactly the continuous solution by means of analytical meth-
ods. What we usually do, is to increase the resolution of the discretization,
until the numerical solution satisfies some a-priori criteria. In this point,
we encounter the curse of the dimensionality: for problems posed in spaces
of dimension d ≥ 3, we cannot manage the amount of data, if we resort to
standard discretization strategy. Only through highly efficient methods it
becomes possible to obtain in a reasonable time a satisfactory solution by
means of a storable data set.

Sparse grids, sometimes called “hyperbolic cross approximations”, have
been introduced to provide efficient approximations of smooth functions
[23, 92]. More precisely, they provide a device to describe a function up
to a prescribed accuracy with very few degrees of freedom. If conventional
Sobolev-norms are used to measure accuracy, sparse grids can be shown to
be optimal or near optimal. In any case a tremendous reduction of the

1



2 Chapter 1. Introduction

amount of data is achieved compared to standard schemes of multivariate
approximations that rely on low-order polynomials. For an introduction into
the fundamentals of approximation on sparse grids the reader is referred to
[23, 64, 92]. Here, we only mention that the crucial idea is to drop certain in-
significant contributions of hierarchical representations of functions. In this
respect there is a close link between sparse grids and wavelet schemes (cf.
[26, 75]).

The classical sparse grid approximation is based on piecewise linear con-
tinuous functions with respect to special meshes of a tensor product structure.
This immediately gives rise to H1(Ω)-conforming finite element spaces and
renders sparse grids useful for devising generalized finite element discretiza-
tions of boundary value problems. The history of the sparse grids is long,
and I mention here only that Ch. Zenger’s ideas [92] catalyzed the research
in this domain. Provided that the solutions are smooth, a tremendously
reduced number of unknowns yields almost the same asymptotic rates of
approximation as for standard grids.

Meanwhile, there are plenty of applications of sparse grids in the dis-
cretization of partial differential equations: Poisson’s equation [20, 21, 70],
the Helmholtz equation [8], parabolic problems [7], general linear elliptic op-
erator of second order in two dimensions [30] were treated. Adaptive sparse
grid techniques were investigated, too [20, 38, 43, 72]. Research has also fo-
cused on the parallelization [36, 62] of sparse grid finite element methods and
on the efficient multilevel solution of the resulting linear systems [38, 39, 65].

Thus far, the focus in all these works has been on H1(Ω)-conforming
approximations. However, the scope of finite elements reaches far beyond
H1(Ω). Prominent examples are so-called mixed schemes that target varia-
tional problems set in the spaces H(div; Ω) and H(curl; Ω). They are used
for flux-conserving discretizations of second order elliptic boundary value
problems [18], provide stream functions in fluid dynamics [31] and are indis-
pensable for viable discretizations of the Maxwell equations [9, 58].

Well known mixed finite element schemes are those introduced by Raviart
and Thomas in 2D [68] for H(div; Ω) and Nédélec in 3D for H(curl; Ω) [59].
At first glance they have little in common, but a closer scrutiny reveals that
they are all specimens of discrete differential forms [11, 46]. As such they
are members of a family of finite element schemes that also includes the
conventional Lagrangian H1(Ω)-conforming elements (as discrete 0-forms).
Up to now, sparse grid schemes have been confined to generalizing exactly
these Lagrangian finite elements. If one is aware of the close relationship
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of the above-mentioned finite element schemes it is natural to believe that
they can all be fit into a sparse grid framework. This motivated the research
leading to the current work.

The integral formulation of the Maxwell equations is the best starting
point for their discretization [48]. The reason is that differential forms prop-
erly describe the geometric character of the electromagnetic laws [13]. Their
discrete counterparts, the Whitney forms in the lowest order case, preserve
as much as possible of the physical properties of the electromagnetic fields
[55, 86, 87]. As Whitney elements are for differential forms what finite ele-
ments represent for functions [12], the avenue to suitable discretizations is
open. A short justification of the usage of differential forms (pointing to
the applications in view) precede the exposition of the Whitney forms on
the hypercube. Taking the cue from the sparse grids for Lagrangian finite
elements, the treatment of the hierarchical decomposition of the Whitney
spaces follows.

Two main ideas are pervasive in the world of sparse grids: the hierarchical
multilevel representation of functions and the reduction to one-dimensional
considerations thanks to a tensor product structure. Selection of particular
hierarchical basis functions yield sparse grids spaces and operators. The com-
muting diagram property and the existence of discrete sparse potentials are
proved. These are issues specific to discrete differential forms, and have no
parallels in the theory of sparse grids for Lagrangian finite elements. Then,
estimates for the hierarchical contributions of detail spaces are given. The
error estimate for the interpolation justifies the choice of the sparse grid.
Approximate interpolation is needed for the Galerkin scheme in partial dif-
ferential equations. The combination technique and a two point quadrature
rule ensure that a similar error estimate holds as for the exact interpolation.

With sparse grid interpolation operators for Whitney l-forms in d dimen-
sions and their approximation properties at our disposal, we focus on two
problems from the theory of mixed discretizations of second order elliptic
PDEs. We are concerned with the stability conditions of the discretization
(by sparse Whitney forms) of the primal and of the dual mixed problem. The
existence of stable potentials is a sufficient condition, which we can establish
for particular cases. The three dimensional case is complete covered by the
proofs. Numerical results reveal stability for d = 4, too. The complexity
of the exterior derivative operator has so far stymied efforts to prove the
existence of discrete potentials in the most general formulation.

The last two chapters deal with the general form of some algorithms
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involved in sparse grid problems and with particular design options and im-
plementation details. The unidirectional paradigm underlies the multilevel
transformations. The combination technique is the key to the approximate
interpolation. As the hierarchical representation lead to dense the system
matrices, the clever ways to realize the multiplication of a vector with the
mass matrix are essential and need particular attention. The stiffness matrix
multiplication combines the exterior derivative operator and the algorithm
for mass matrix. The multigrid method for Whitney forms on sparse grids
appears as a multiplicative Schwarz method based on semicoarsening. For
the multigrid solver, one needs stencils for mass and stiffness matrices on
general anisotropic full grids. The generality is given by three parameters:
the dimension of the space, the order of the differential form, and the multi-
dimensional resolution of the grid.

When I started research on Whitney forms on sparse grids I hoped for quick
progress and fast implementation. These were illusions, as the sophisticated
algorithms were poorly documented in the literature. [6, 19, 23]. I confess,
I felt very uncomfortable knowing that efficient algorithms existed, but ac-
tually to not be able to write them down. I had to re-discover the tricks
of implementation. This yielded, as expected, new ideas, new solutions and
new algorithms. Meanwhile, other papers appeared [72, 93] with different
approaches. The detailed description of the algorithms and the extensively
documented C++-code effect my experience that implementation is a scientific
challenge peer to theoretical developments.

While writing this thesis, I imagined a reader with my knowledge at the
beginning of the work. This is why I have decided to dwell on elementary as-
pects, as well. However, familiarity with finite element techniques is required.
I elaborated on this subject starting from my related previous publications
[32–35], but most of the results in Chapter 5 are entirely new, as well as the
most of the explanations of the algorithms. Let me end this introduction by
quoting R.P. Feynman on scientific writing:

We have a habit in writing articles published in scientific journals
to make the work as finished as possible, to cover up all the tracks,
to not worry about the blind alleys or describe how you had the
wrong idea first, and so on. So there isn’t any place to publish,
in a dignified manner, what you actually did in order to get to
do the work.



Chapter 2

Discrete Differential Forms

The integral formulation of the Maxwell equations is the best starting point
for their discretization [48]. The reason is that differential forms properly
describe the geometric character of the electromagnetic laws [13]. Their
discrete counterparts, the Whitney forms in the lowest order case, preserve
as much as possible of the physical properties of the electromagnetic fields
[55, 86, 87]. In the context of the finite element method [16, 17] it has been
realized that discrete differential forms supply excellent choices for finite
element approximation spaces [11]. They immediately supply conforming
finite elements, for instance, in H(div; Ω) and H(curl; Ω). This insight
accounts for the popularity of so-called edge elements [1, 10, 47, 54, 58, 80, 85].
They are representatives of discrete 1-forms and the natural discrete space
for electric and magnetic fields. In this chapter, we shortly justify the use
of differential forms in the context of electromagnetics and we present the
Whitney forms on hypercube.

2.1 Differential Forms in Electromagnetics

The usual mathematical formulation of Maxwell’s equations in terms of vec-
tor fields is not suitable for their approximation [11–13]. Denoting by E the
electric field, B the magnetic induction, H the magnetic field and D the
displacement current, it reads in the frequency domain at frecquency k > 0

curlE = −ikB (Faraday’s law)

curlH = ikD + j (Ampère’s law).
(2.1)

5



6 Chapter 2. Discrete Differential Forms

The fields E,H andB,D have entirely different nature, as Maxwell remarked
in his “Treatise on Electricity and Magnetism” [56]:

Physical vector quantities may be divided into two classes, in one
which the quantity is defined with reference with respect to a
line, while in the other the quantity is defined with reference to
an area.

Physics suggests an integral formulation∫
∂Σ

E · d−→s = −ik
∫
Σ

B · ndS (Faraday’s law)∫
∂Σ

H · d−→s = ik
∫
Σ

D · ndS +
∫
Σ

j · ndS (Ampère’s law),
(2.2)

for any bounded, oriented, two-dimensional, piecewise smooth sub-manifold
Σ of A(R 3), equipped with oriented unit normal vectorfield n.
The local point of view, “field at a point in space” is more comfortable to
think about, and the measurement procedures rely on it: The electric field is
measured by determining the virtual work for the infinitesimal displacement
δx of a test charge q at x

δw = qE · δx .
The magnetic induction is measured through the Lorenz force, i.e. the work
required for the infinitesimal shift of a test charge q at x moving with velocity
v

δw = q (B× v) · δx .
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Figure 2.1: Electromagnetic Fields

From this point of view, E and B are classical (continuous) differential
forms of degree 1 and 2, as showed in Fig 2.1. The duality between E, B
and H, D appear as a consequence of the material laws [13].
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An l-form in R
d (0 ≤ l ≤ d) is a mapping of R d into the

(
d
l

)
-dimensional

vector space of alternating l-multilinear forms on R
d. After a basis of R d

has been chosen, there is a canonical way to identify differential forms with
vector fields, their “vector proxies” [14]:

ω =
∑

(i1,...,il)⊂{1,...,d}
ui1,...,il dxi1 ∧ . . . ∧ dxil , (2.3)

where ui1,...,il (with an ordered tuple i1 < i2 < · · · < il) are the components of
the “vector proxies” and {dx1, . . . , dxd} form some dual basis of (R d)′. Actu-
ally, the choice of this dual basis is arbitrary and will affect the representation
through vector proxies. However, it is perfectly legal to fix one basis and work
with the resulting vector proxies of the forms. In particular, we will rely on
the canonical basis of R d. Then for instance, in the tree-dimensional case, a
0-form is a function, a 1-form ω = u1dx1+u2dx2+u3dx3 has the vector proxy
(u1, u2, u3)

T , a 2-form ω = u12dx1 ∧ dx2 + u23dx2 ∧ dx3 + u13dx1 ∧ dx3 has
the vector proxy (u12, u23, u13)

T , and a 3-form ω = u123dx1 ∧ dx2 ∧ dx3 again
corresponds to a function u123. The usual identification in R

3 is depicted
in Table 2.1. Using this identification, the exterior derivative d of differen-
tial forms spawns the familiar differential operators of vector analysis: grad,
curl and div for 0–forms, 1–forms and 2–forms, respectively. For further
details on the calculus of differential forms see [24, 52]. For details on the
interpretation of the electromagnetic fields as differential forms, we refer to
[48] and the citations quoted there. We synthesize the main equations of the
electromagnetics in the language of the differential forms in Fig. 2.2. The
material laws link the primal and the dual diagrams building the Maxwell
house, in the parlance of Bossavit [13]. Apart from the unification of the
classical differential calculus, the geometrical point of view has one more ad-
vantage. Passing a material interface, E and H feature tangential continuity,
whereas D and B have normal continuity. This is automatically ensured by
the continuity of the l-form at a surface traversal.

Differential form Related function u/vector field u

x 7→ ω(x) ω(x) = u(x)

x 7→ {v 7→ ω(x)(v)} ω(x)(v) = 〈u(x),v〉
x 7→ {(v1,v2) 7→ ω(x)(v1,v2)} ω(x)(v1,v2) = 〈u(x),v1 × v2〉

x 7→ {(v1,v2,v3) 7→ ω(x)(v1,v2,v3)} ω(x)(v1,v2,v3) = u(x) det(v1,v2,v3)

Table 2.1: Relationship between differential forms and vector fields in 3D
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Figure 2.2: Electomagnetics equations in the language of differential forms

Essentially, the calculus of differential forms is coordinate-free. However,
owing to the underlying tensor product structure, the choice of Cartesian
coordinate directions is inherent to sparse grid schemes. They will never
achieve invariance with respect to transformations of coordinates anyway.
Thus, there is no point in sticking to a coordinate free setting and we will
always rely on the Euclidean structure of R d. Hence, we do not distinguish
between forms and their vector representatives. Based on the latter we in-
troduce L2-norms for l-forms. Further, Sobolev spaces of differential forms
H(d,Ω) can be defined (see [52]) for a bounded domain Ω ⊂ R

d as the Hilbert
space

H(d,Ω) := {l − forms ω, ‖ω‖L2(Ω) + ‖dω‖L2(Ω) <∞} .

The corresponding norm involves the exterior derivative d:

‖ω‖2H(d,Ω) := ‖ω‖2L2(Ω) + ‖dω‖2L2(Ω) .

Recalling the incarnations grad, curl, div of the exterior derivative in the
case of vector proxies in three dimensions, the spaces H(d,Ω) are easily
identified as generalization of H1(Ω), H(curl; Ω), and H(div; Ω). The cor-
responding spaces of functions with zero traces on the boundary Γ := ∂Ω
can also be generalized and yield the spaces

H0(d,Ω) := {ω ∈ H(d,Ω), ω|∂Ω = 0} .

They are required for imposing Dirichlet boundary conditions.
For a given square integrable l-form ξ, consider the following H(d,Ω)-

elliptic variational problem with constant real coefficients α, β: seek the l-
form ω ∈ H0(d,Ω) such that

(αdω,dη)L2(Ω) + (βω, η)L2(Ω) = (ξ, η)L2(Ω) ∀η ∈ H0(d,Ω) , (2.4)
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This is the generalization of the second order elliptic boundary value problem
with constant real coefficients and right hand side f ∈ L2(Ω) : seek the
function u ∈ H1

0 (Ω) such that

(α grad u, grad v)L2(Ω) + (βu, v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω) , (2.5)

which arises from (2.4) for l = 0. Moreover, in 3D we also get the following
two variational problems from (2.4). For l = 1: seek

u ∈ HΓ(curl; Ω) := {u ∈ H(curl; Ω), u× n = 0 on Γ}

such that

(α curl u, curl v)L2(Ω) + (βu,v)L2(Ω) = (f ,v)L2(Ω) ∀v ∈ HΓ(curl; Ω) .
(2.6)

For l = 2 we end up with: seek

u ∈ HΓ(div; Ω) := {u ∈ H(div; Ω), u · n = 0 on Γ}

such that

(α divu, div v)L2(Ω) + (βu,v)L2(Ω) = (f ,v)L2(Ω) ∀v ∈ HΓ(div; Ω) , (2.7)

where the right hand side f ∈ L2(Ω) is given and n is the normal to the
boundary Γ oriented towards the exterior of the domain Ω.

Before we present the discretizaton of differential forms, we give the vari-
ational formulations of Maxwell’s equations. The material laws come into
play by the sequi-linear forms aµ, a1/µ, aε, a1/ε. We do not delve into techni-
cal details, rather we refer to [48]. The first is the “E-based” formulation, or,
by analogy to the weak formulations of second order elliptic problems [18],
the primal variational formulation

a1/µ(dE,dη)− k2aε(E, η) = −ik
∫
Ω

j ∧ η + ik

∫
∂Ω

H ∧ η for all 1-forms η .

The second is the “H-based” formulation, or the dual variational formulation

a1/ε(dH,dη)− k2aµ(H, η) = a1/ε(j, η)− ik

∫
∂Ω

E ∧ η for all 1-forms η .



10 Chapter 2. Discrete Differential Forms

In the case of an eddy current model, the E-based formulation gives the
problem

a1/µ(dE,dη) + ikaσ(E, η) = −ik
∫
Ω

j ∧ η ,

or, in the time domain we get the degenerate parabolic problem

a1/µ(dE,dη) + aσ(∂tE, η) = −
∫
Ω

∂tj ∧ η .

Implicit time discretizations of the above problem lead to elliptic formulations
as in equation (2.4).

2.2 Whitney Forms on the Hypercube

Discrete differential forms should preserve as much as possible of the prop-
erties of their continuous counterparts. In light of the previous section, it
is mandatory to consider vector valued finite elements with partial continu-
ity. The discretization relies on integral degrees of freedom corresponding
to currents and flows [13] and in the lowest order case yields the Whitney
forms. The discrete differential forms are built upon triangulations and pro-
vide parametric equivalent families of finitele elements [46]. Their construc-
tion by interpolation is presented in [15] and was used in [33] to construct
Whitney forms on pyramids.

Now, we focus on the essential properties of discrete differential forms.
As we aim at conforming finite element spaces, the traces of discrete

differential forms onto any interelement boundary (a (l− 1)-face) have to be
unique and they have to be fixed by the degrees of freedom associated with
that face. This makes the vector proxies fulfill the patching condition: C0-
continuity for discrete 0-forms, tangential and normal continuity for 1-forms
and, respectively, 2-forms. This guarantees that they provide finite elements
conforming in H1(Ω), H(curl; Ω), and H(div; Ω), respectively.

Following the lines of [46], the construction of conforming finite element
spaces for differential forms must provide some more properties than the
unisolvence of degrees of freedom.

First, an “exact sequence property” must hold for the spaces of discrete
differential forms, if Ω is contractible: The exterior derivative of a discrete
l-form is to yield a valid discrete (l + 1)-form. In addition, any discrete
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(l + 1)-form with vanishing exterior derivative should have a representation
as the exterior derivative of some discrete l-form.

Finally, discrete differential forms have to possess approximation prop-
erties, in order to be useful for Galerkin discretizations. It is a standard
insight in finite elements that satisfactory approximation properties are di-
rectly linked to the fact that all polynomials of a certain degree are contained
in the spaces on the reference elements [17]. The components of discrete dif-
ferential forms are multilinear polynomials. In the case of Whitney-forms
that provide only first order schemes, we have to make sure that all constant
forms can be represented.

We summarize the essential algebraic properties demanding that the fol-
lowing diagram commutes and that the horizontal sequences are exact:

DF0 d−−−→ DF1 d−−−→ DF2 d−−−→ · · · d−−−→ DFdyI0
yI1

yI2 · · ·
yId

V0(Th)
d−−−→ V1(Th)

d−−−→ V2(Th)
d−−−→ · · · d−−−→ Vd(Th)

Here, DF l represents the space of continuous differential l-forms on the do-
main Ω, and V l(Th) is the space of discrete l-forms on a triangulation Th of the
domain, whereas I0, . . . , Id are the corresponding approximation operators.

In the one dimensional case, the Whitney 0-forms and 1-forms have plain
functions as vector representatives. To 0-forms correspond the continuous,
piecewise linear finite elements. The degrees of freedom are values of func-
tions in the nodes of the triangulation, and the interpolation is linear. For
1-forms, the degrees of freedom are integrals of the function along intervals.
In this case, we interpolate by piecewise constants.

In general d dimensions, we define the space of Whitney l-forms on the
hypercube T̂ :=]0; 1]d in R

d (cf. [59] as main reference). Denote by Pk the
space of polynomials of degree k and by dxI = dxi1 ∧ . . . ∧ dxil, the ordered
tuple I = {i1, . . . , il}. For a multi-index I, the I-component of the vector
representative of a Whitney form is tensor product of linear (for j /∈ I) and
constant functions (for j ∈ I).

Definition 2.2.1. The space of Whitney l-forms on the reference element is

V l(T̂ ) := span{ω(x) = pI(x)dxI , I ⊂ {1, . . . , d}, |I| = l,

where pI(x) = p1(x1) . . . pd(xd),

pj ∈ P1(]0, 1]), if j /∈ I and pj ∈ P0(]0, 1]), if j ∈ I} .



12 Chapter 2. Discrete Differential Forms

After the local spaces have been fixed we have to specify local degrees
of freedom. For Whitney forms, these are integrals over the l-dimensional
“faces” of T̂ . We point out that integration over l-dimensional surfaces is
the most natural operation for differential l-forms. Unisolvence of these local
degrees of freedom is established by a straightforward counting argument. It
goes without saying that the corresponding global degrees of freedom involve
integrals over all l-dimensional faces of the tensor product grid. Then, the
global space V l of discrete l-forms on a tensor product grid Ωh can be defined
by demanding that on each d-dimensional brick Def. 2.2.1 applies and that
the global degrees of freedom have to be uniquely defined.

Let us consider the example of the unit cube T̂ =]0; 1]3 in three dimensions
(d = 3). The Whitney 0-forms are just polynomials ω(x) = (a1x1+b1)(a2x2+
b2)(a3x3 + b3), so

V0(T̂ ) = span{u1, u2, u3, u4, u5, u6, u7, u8} ,

where

u1 = (1− x1)(1− x2)(1− x3) , u2 = x1(1− x2)(1− x3) ,
u3 = (1− x1)x2(1− x3) , u4 = (1− x1)(1− x2)x3 ,
u5 = x1x2(1− x3) , u6 = (1− x1)x2x3 ,
u7 = x1(1− x2)x3 , u8 = x1x2x3 .

The corresponding degrees of freedom are the values of the function in the ver-
tices of the cube (nodal values). We have recovered the classical Lagrangian
finite elements.

Denoting

u11 = (1− x2)(1− x3) , u12 = (1− x2)x3 ,
u13 = x2(1− x3) , u14 = x2x3 ,
u21 = (1− x3)(1− x1) , u22 = (1− x3)x1 ,
u23 = x3(1− x1) , u24 = x3x1 ,
u31 = (1− x1)(1− x2) , u32 = (1− x1)x2 ,
u33 = x1(1− x2) , u34 = x1x2 ,

the 1-forms are generated by

V1(T̂ ) = span{ u11dx1 , u
1
2dx1 , u

1
3dx1 , u

1
4dx1 ,

u21dx2 , u
2
2dx2 , u

2
3dx2 , u

2
4dx2 ,

u31dx3 , u
3
2dx3 , u

3
3dx3 , u

3
4dx3} ,
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This is Nédélec’s H(curl; Ω)-conforming space [59], and the degrees of free-
dom are given by path integrals along the edges. The local space of Whitney
2-forms is

V2(T̂ ) = span{ u121 dx1 ∧ dx2, u122 dx1 ∧ dx2, u231 dx2 ∧ dx3,
u232 dx2 ∧ dx3, u311 dx3 ∧ dx1, u312 dx3 ∧ dx1} ,

where
u121 = 1− x3 , u122 = x3 ,
u231 = 1− x1 , u232 = x1 ,
u311 = 1− x2 , u312 = x2 .

This is the Raviart-Thomas space [68] in three dimensions. In this case, the
degrees of freedom are integrals of normal components over surfaces (fluxes).
For completeness we give the local discrete 3-forms, which are just constants

V3
0 (T̂ ) = span{dx1 ∧ dx2 ∧ dx3}

with the integrals over elements as degrees of freedom. The location of the
degrees of freedom for Whitney 0, 1, and 2-forms are depicted in Figure 2.3.
It turns out that the traces onto l-faces of the local discrete l-forms according

a1 a2

a3

a4

a5

a6

a7

a8

a11

a12

a13

a14

a21 a22

a23 a24

a31

a32

a33

a34

a121

a122

a231 a232

a311

a312

Figure 2.3: Degrees of freedom ai, a
i
j, a

ij
k correspond to ui, u

i
j, u

ij
k , respectively

to Def. 2.2.1 are already fixed by prescribing the value of the integrals of the
form over these faces. As explained in [46], this ensures conformity of the
spaces of discrete differential forms in the corresponding Sobolev spaces of
continuous differential forms.
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For the concrete case of d = 3, continuity of the traces across interelement
faces boils down to the conventional conformity conditions for finite elements.
These are C0-continuity for discrete 0-forms, tangential and normal conti-
nuity for 1-forms and, respectively, 2-forms. This guarantees that discrete
differential forms provide finite elements conforming in H1(Ω), H(curl; Ω),
and H(div; Ω), respectively.

Let us mention two more essential properties of discrete differential forms.
The first is the so-called commuting diagram property, which means that the
nodal interpolation operators commute with the exterior derivative. What
we call nodal interpolation is the projection onto the space of discrete differ-
ential forms defined via the global degrees of freedom. If we denote the local
interpolation for discrete l-forms by I l, we find

d ◦ I l = I l+1 ◦ d , (2.8)

for sufficiently smooth differential forms. For details consult [46].
The second important feature of discrete differential forms is the existence

of discrete potentials: if the domain triangulated by Ωh is homeomorphic to
a ball, and dωh = 0 for some ωh ∈ V l(Th), then there exists ηh ∈ V l−1(Th)
such that ωh = dηh. A thorough discussion is provided in [46, Sect. 6].

Remark 2.2.1. Discrete differential forms exist for higher polynomial or-
ders. In general, the space of discrete differential l-forms of polynomial degree
k on the unit hypercube is defined as

V lk := span{ω(x) = pI(x)dxI , I ⊂ {1, . . . , d}, |I| = l,

where pI(x) = p1(x1) . . . pd(xd),

pj ∈ Pk+1(]0, 1]), if j /∈ I and pj ∈ Pk(]0, 1]), if j ∈ I}.

The formulation of the Maxwell equations in terms of differential forms
makes the discretization task easier. As Whitney elements are for differen-
tial forms in H(d,Ω) what finite elements represent for functions in H1(Ω),
the avenue to suitable discretizations is open. Taking the cue from the sparse
grid variant of Lagrangian finite elements, we present the hierarchical decom-
position of the Whitney spaces in the next chapter.



Chapter 3

Hierarchical Decompositions

Two main ideas are pervasive in the world of sparse grids: the hierarchical
multilevel representation of functions and the reduction to one-dimensional
considerations thanks to a tensor product structure. Selection of particular
hierarchical basis functions yields sparse grids spaces. In this chapter, we
explain the hierarchical multilevel principle and give examples in the one
dimensional case. Along the way, we supply essential prerequisites for the
general construction. We handle the case of the l-forms in d-dimensions by
the tensor product technique.

3.1 Concept and Examples

The interaction between different scales of discretization provides some of
the most successful numerical schemes, for example the multigrid method.
One of the principal ingredients in the derivation of the sparse grids is the
hierarchical decomposition of spaces. First, we present the general framework
which leads (through multiresolution) to wavelets [76, 78], too. Then, we give
essential examples in the one dimensional case.

Consider an increasing sequence of nested finite-dimensional subspaces
(equipped with their nodal base)

V0 ⊂ V1 ⊂ · · · ⊂ Vν ⊂ Vν+1 ⊂ · · · ⊂ X

meant to approximate the space X. A function f in the whole space X has
a component fν in each subspace Vν . These components fν contain more
and more of the full information on f . One requirement on the sequence of

15
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subspaces is completeness:

fν −→ f as ν −→ ∞ .

The crucial fact is that more information is hidden in the whole scale of
spaces that in one space alone: from a level ν to the next, new details are
revealed. Pieces of f from each subspace give finer and finer details of f .
The space Wν contains the new information ∆fν = fν+1 − fν , the “detail”
at level ν:

fν +∆fν = fν+1 Vν ⊕Wν = Vν+1

Recognizing how W ’s add to V , we can see Vν as a partial sum. Start from

V0 ⊕W0 = V1 and V1 ⊕W1 = V2.

Successive substitution gives

V0 ⊕W0 ⊕W1 = V2 V0 ⊕W0 ⊕W1 · · · ⊕Wν = Vν+1

For functions in those subspaces

f0 +∆f0 +∆f1 + · · ·+∆fν = fν+1

which is nothing but the “telescopic” sum

f0 + (f1 − f0) + (f2 − f1) + · · ·+ (fν+1 − fν) = fν+1.

It is convenient (but not essential) ifWν is orthogonal to Vν in a Hilbert space
X. Each Wν is then automatically orthogonal to all Wν′ . The completeness
condition can be restated, for instance, as

V0 ⊕
∞∑
ν=0

Wν = X.

Any nonorthogonal basis b0, b1, . . . in X gives a nonorthogonal example:

Sum up to ν: fν =
∑ν

0 ckbk is in Vν

Next detail: ∆fν = cν+1bν+1 is in Wν .

Multilevel representations have a naturally built-in adaptivity though
their ability to directly express and separate components living on differ-
ent scales. At a fixed level ν,

V0 ⊕W0 ⊕W1 · · · ⊕Wν = Vν+1,



3.1 Concept and Examples 17

we have two kinds of bases in Vν+1: the nodal and the hierarchical, where
the latter are obtained from basis functions of V0,W0, . . . ,Wν . The basis
transformation is called the hierarchical transform. It maps the nodal coef-
ficients (degrees of freedom for the nodal basis) onto the hierarchical coeffi-
cients (for the hierarchical basis). Concrete hierarchical bases are specified
by the requirement that the basis functions lie in the kernel of degrees of
freedom on all coarser levels.

Now, let us consider two examples of the hierarchical decomposition in
the one dimensional case. They address the case of 0-forms and 1-forms on
[0, 1].

Discrete 0-forms in 1D

We begin with the Lagrangian finite elements. The interpolation functions
fν are determined by nodal values of f . Then, fν+1−fν vanishes at all nodes
corresponding to level ν and therefore can be represented by values of f only
in the new nodes at level ν + 1. The hat function

ϕ(t) =




1 + t, if t is in ]− 1, 0]
1− t, if t is in ]0, 1]

0, otherwise

is in the following the “mother” of the scale functions:

ϕνi = ϕ(2νt− i), ϕ̄νk(t) = −2−(ν+1)ϕνk(t). (3.1)

Note their orthogonality with respect to the bilinear form a(f, g) =∫ 1

0
f ′g′dt. There is no orthogonality with respect to the L2-scalar prod-

uct. Prewavelets [27, 40, 41, 61, 66] can be an alternative, since they are
L2-orthogonal at different levels, but we do not adopt this approach in the
following.

We reserve the symbol ν for levels, Θν is the corresponding set of odd
indices from 1 to 2ν − 1, and Θ0 := {0, 1}. The nodal spaces are defined as

Vν = span{ϕνk, k = 0, 1, . . . , 2ν} ,

and the detail (hierarchical surplus) spaces for ν ≥ 1 are

Wν = span{ϕνk, k ∈ Θν} , for ν ≥ 1

W0 = V0 .
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x1O

1

y

1O

1

y

1O

1

y

Figure 3.1: Nodal Basis
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Figure 3.2: Hierarchical Basis

The nodal representation of a function u is

uν(t) =

2ν∑
k=0

uνkϕνk(t) , uνk = u(k2−ν) , (3.2)

and the hierarchical representation is

uν(t) =

ν∑
m=0

uWm (t) =

ν∑
m=0

∑
k∈Θm

vmkϕmk(t). (3.3)

We display the nodal basis functions in Figure 3.1, and the hierarchical bases
for surplus spaces in Figure 3.2.

We use the values of the norm of the hat functions:

‖ϕν q‖L2(Ω) = 3−1/22−(ν−1)/2 . (3.4)
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Discrete 1-forms in 1D

Now, let us focus on Whitney 1-forms on an equidistant grid on Ω = [0, 1]. As
pointed out in the preceding section, we interpolate by piecewise constants.
The degrees of freedom are integrals over the grid cells. This leads to the
box functions for the nodal representation

Bνk(t) = 2νB(2νt− k), k = 0, 1, . . . , 2ν ,

where B(t) is the characteristic function of the interval ]0, 1]. Note that

∫
R

Bνk(t)dt =

∫ (k+1)2−ν

k2−ν

Bνk(t)dt = 1 .

The approximation of a function u at level ν is

uν(t) =
2ν−1∑
k=0

aνkBνk(t), (3.5)

where the (scaling) coefficients are

aνk =

(k+1)2−ν∫
k2−ν

u(t)dt =

∫
[0,1]

u(t)B(2νt− k)dt = 2−ν
∫

[0,1]

u(t)Bνk(t)dt. (3.6)

It is easy to see that the hierarchical basis is comprised of the Haar-wavelets
[78]: w(t) = B(2t)−B(2t−1). In order to comply with the classical notations
in the sparse grid theory, let the “mother” function be

ψ(t) = 2−1/2




1, if t is in ]− 1, 0]
−1, if t is in ]0, 1]
0, otherwise

= 2−1/2w(
1

2
t+

1

2
),

which generates the hierarchical basis functions

ψν k(t) = 2ν/2ψ(2νt− k) , k ∈ Θν .

We reuse the symbols for the spaces in order to stress that the construction
concept applies in both cases: 0-forms and 1-forms. The scale spaces are now

Vν = span{Bν k, k = 0, 1, 2, . . . , 2ν − 1}
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and the detail (Haar-wavelet) spaces are

Wν = span{ψν k, k ∈ Θν} for ν ≥ 1

W0 = V0 = span{B00} .
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Figure 3.3: Scale functions
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Figure 3.4: Basis for wavelet spaces

From the nodal representation (3.5) we arrive at the hierarchical

uν(t) = a00B00(t) +

ν∑
m=1

∑
k∈Θm

bmkψmk(t) = a00B00(t) +

ν∑
m=1

uWν (t) , (3.7)

with

bmk =

∫
[0,1]

u(t)ψmk(t) dt , m ∈ {1, . . . , ν}, k ∈ Θm . (3.8)

We adopt the notation ψ00 = B00. The hierarchical transform is just the
Haar-wavelet transform, recursively done by the pyramid algorithm [76, 78].
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Finally, we summarize some elementary properties:
The Haar-wavelet basis is L2-orthogonal and it holds:

‖ψν q‖L2(Ω) = 1 . (3.9)

The derivative of a hat function is a Haar-wavelet:

ϕ′
νk = 2(ν+1)/2ψνk , (3.10)

and it can be written in terms of box functions:

ϕ′
νk = Bνk −Bνk−1 . (3.11)

The Haar-wavelet coefficients bνk can be represented as

bνk = 2−(ν+1)/2

∫
Ω

ϕνk(t)u(t)
′dt = 2(ν+1)/2

∫
Ω

ϕ̄νk(t)u(t)
′dt . (3.12)

The Haar-wavelet coefficients decay according to

|bνk| ≤
2

3
2−ν ‖u′‖L2(Ω) . (3.13)

3.2 Hierarchical Interpolation

The tensor product is the natural way to pass to the general d-dimensional
case. The functions of one variable fj(t) for j = 1, . . . , d build the function
of d variables f1 ⊗ · · · ⊗ fd = ⊗d

j=1fj defined as

⊗d
j=1fj(x1, . . . , xd) =

d∏
j=1

fj(xj).

Similarly, the closed subspaces Xj ⊂ L2(R ) for j = 1, . . . , d form a closed
subspace of L2(R d) denoted by ⊗d

j=1Xj = X1 ⊗ · · · ⊗Xd and defined as the
closed linear span in L2(R d) of all functions of the form f1(x1) · . . . · fd(xd)
where fj ∈ Xj for all j = 1, . . . , d. It is easy to check that the tensor product
of orthonormal bases gives an orthonormal basis.

This construction leads to sparse grids for Lagrangian finite elements [23],
which are just the discrete differential 0-forms. Clearly, the Haar-wavelet
approximation is the Whitney d-form. For intermediate orders 1 ≤ l ≤ d−1,
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Figure 3.5: Degrees of freedom for components of an 1-form (d = 2, n = 2)

we have to resort to tensor products of hat and box functions, as pointed out
in Section 2.2.
Denote the domain

Ω := [0, 1]d

and use a multi-index for the level

ν = (ν1, . . . , νd) ∈ N
d.

The (possibly anisotropic) grid Ω� with mesh size

h� := (hν1 , . . . , hνd) = (2−ν1, . . . , 2−νd)

contains the interior points

x�q = (q1hν1 , . . . , qdhνd), with 1 ≤ qj ≤ 2νj − 1 (for j = 1, . . . , d)

and the boundary points

x�q = (q1hν1 , . . . , qdhνd), with qi = 0, 1 for νi = 0.

Consider now an l-form in d-dimensions

ω =
∑
I

uIdxI

with the ordered multi-index I = {i1, i2, . . . , il} ⊂ {1, 2, . . . , d} of length l,
and dxI = dxi1 ∧ dxi2 ∧ . . . ∧ dxil .
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According to Sect. 2.2, the (nodal) basis function corresponding to
the l-face F := [x�q; ~ei1 , ~ei2, . . . , ~eil] is

ΦIF :=
∏
i∈I

Bνiqi

∏
j /∈I

ϕνjqj (3.14)

with allowed indices

q ∈ {q = (q1, . . . , qd), 0 ≤ qj ≤ 2νj , j /∈ I, 0 ≤ qi ≤ 2νi − 1, i ∈ I}.

The tensor product grid allows us to work on components in order to
define the nodal interpolation operator:

I�ω =
∑
I

(
II�uI

)
dxI , II�uI =

∑
F ‖ eI

αFΦ
I
F (3.15)

where the last sum runs over all grid faces parallel to the space generated
by directions of interpolation eI = span{~ei1 , ~ei2 , . . . , ~eil}. As mentioned in
the previous chapter, we mainly deal with differential forms through the
components of their vector proxies. In a sense, a Whitney l-form ωn ∈
V l
n arises by discretizing each of the

(
d
l

)
components of the vector proxies

separately.

Definition 3.2.1. The space V l
� of the Whitney l-forms on the anisotropic

full grid Ω� of resolution ν is the range of the nodal interpolation operator
I� . The function space for the I-component of the vector proxy V I,l

� is the
range of the corresponding nodal interpolation operator II� .

The degrees of freedom αF from (3.15) are integrals on corresponding
faces (see Figure 3.5)

αF :=

∫
F

ω. (3.16)

For an arbitrary fixed face F0 parallel to the space generated by directions
from I0, that is F0 ‖ eI0 = span{~ei1 , ~ei2 , . . . , ~eil}, we have:∫

F0

I�ω =

∫
F0

II0� uI0dxI0 =
∫
F0

∑
F ‖ eI0

αFΦ
I0
F dxI0 .

The hat functions selects the face F0 from the sum:∫
F0

I�ω =

∫
F0

αF0

∏
i∈I0

BνiqidxI0
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and our definition of box functions gives∫
F0

I�ω = αF0 :=

∫
F0

ω .

Hence, the interpolation operator introduced in (3.15) is the correct nodal
interpolation operator.

The commuting diagram property (2.8) reads here

d ◦ I� = I� ◦ d , (3.17)

where the last operator interpolates (l + 1)-forms on the full grid. Let us
prove it. By the definition of the exterior derivative operator, we have

d (I�ω) =
∑
I

∑
k 6∈I

∂

∂xk
II�uI dxk ∧ dxI ,

whereas

I�(dω) =
∑
I

∑
k 6∈I

II∪k�

(
∂

∂xk
uI

)
dxk ∧ dxI .

It remains to show that

∂

∂xk
II�uI = II∪k�

(
∂

∂xk
uI

)
,

which follows from the definition (3.15) of II�uI , with the degrees of freedom
given by (3.16) and using (3.11).
Note that II�uI can be seen as compound of one-dimensional interpolation

operators: Iconstνi
— piecewise constant in directions from I and Ilinνj —

piecewise linear for the other directions:

II� = ◦
i∈I

Iconstνi
◦
j 6∈I

Ilinνj . (3.18)

For 0-forms (Lagrangian finite elements) we have the nodal representation

un(x) =

2n∑
q1=0

. . .

2n∑
qd=0

unqΦ
∅
nq(x), unq = u(xnq) (3.19)
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and the hierarchical

un(x) =
∑

|�|∞≤n
uW� =

∑
|�|∞≤n

∑
q∈Θn

vνqΦ
∅
�q(x) (3.20)

where n = (n, . . . , n) and

Θ� = {q = (q1, . . . , qd), qi = 1, 3, . . . , 2νi − 1 if νi > 0, and

qi = 0, 1 if νi = 0}

(at level 0 we consider the indices corresponding to points sitting on the
boundary). Bungartz ([23, Lemma 2.4], [21, Lemma 2.2]) investigated this
case and showed the representation formula

v�q =

∫
Ω

d∏
j=1

ϕ̄νjqj(x)
∂2du(x)

∂x21 . . . ∂x
2
d

dx , (3.21)

as well as estimates for hierarchical coefficients. The resulting hierarchical
contributions satisfy

∥∥uW� ∥∥L∞(Ω)
≤ 2−d2−2|�|1 ·

∥∥∥∥ ∂2du

∂x21 . . . ∂x
2
d

∥∥∥∥
L∞(Ω)

, (3.22)

∥∥uW� ∥∥L2(Ω)
≤ 3−d2−2|�|1 ·

∥∥∥∥ ∂2du

∂x21 . . . ∂x
2
d

∥∥∥∥
L2(Ω)

, (3.23)

which yields (see [23, Lemma 3.1]) error estimates for the interpolation on a
full grid:

‖u− un‖L∞(Ω) = O(2−2n), ‖u− un‖L2(Ω) = O(2−2n). (3.24)

For the interpolant on sparse grids defned by

ũn :=
∑

|�|1≤n+d−1

uW�

it can be proved (see [23, Theorem 3.1]Theorem 3.1):

‖u− ũn‖L∞(Ω) = O(2−2n · nd−1), ‖u− ũn‖L2(Ω) = O(2−2n · nd−1). (3.25)
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Bungartz showed that the sparse grid interpolation operator is even optimal
for the energy semi-norm in H1

0 (Ω) (order 2−n). We will obtain all these
results as the particular case l = 0.

Now, let us illustrate the hierarchical decomposition technique in the case
of 1-forms in two dimensions. Consider the continuous 1-form

ω = u1(x)dx1 + u2(x)dx2

with the interpolant

I�ω =
(
I1
�u1(x)

)
dx1 +

(
I2
�u2(x)

)
dx2.

The vector representative u1 (corresponding to the direction 1) is approxi-
mated on level ν by

I1
�u1(x) =

2ν1−1∑
k1=0

2ν2∑
k2=0

α�kBν1k1(x1)ϕν2k2(x2)

with the scaling coefficients

α�k = α(xν1k1 , xν2k2) =

(k1+1)hν1∫
k1hν1

u1(x1, k2hν2)dx1.

Change the order of summation

I1
�u1(x) =

2ν2∑
k2=0

(
2ν1−1∑
k1=0

α�kBν1k1(x1)

)
ϕν2k2(x2)

and apply the Haar-wavelet transform to the interior representations (see
equations (3.5) and (3.7)):

I1
�u1(x) =

2ν2∑
k2=0


 ν1∑
m1=0

∑
q1∈Θm1

α̃(m1,ν2)(q1,k2)ψm1q1(x1)


ϕν2k2(x2).

Change again the order of summation:

I1
�u1(x) =

ν1∑
m1=0

∑
q1∈Θm1

(
2ν2∑
k2=0

α̃(m1,ν2)(q1,k2)ϕν2k2(x2)

)
ψm1q1(x1)
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and apply the hierarchical transformation to the interior representations (see
equations (3.2) and (3.3)):

I1
�u1(x) =

ν1∑
m1=0

∑
q1∈Θm1


 ν2∑
m2=0

∑
q2∈Θm2

β(m1,m2)(q1,q2)ϕm2q2(x2)


ψm1q1(x1).

Tersely speaking, the hierarchical representation is obtained from the wavelet
transform in one direction followed by the hierarchical transformation in the
other. Let us examine how the hierarchical coefficients βmq, with m =
(m1, m2), and q = (q1, q2), can be represented. The “nodal” coefficients are
the degrees of freedom

α�k =

(k1+1)hν1∫
k1hν1

u1(x1, k2hν2)dx1.

After the wavelet transform in the first direction, we obtain cf. (3.8)

α̃(m1,ν2)(q1,k2) =

∫ 1

0

u1(x1, k2hν2)ψm1q1(x1)dx1.

The function
∫ 1

0
u1(x1, x2)ψm1q1(x1)dx1 is smooth in x2, so we may apply the

hierarchical transformation in the second direction, as well as the represen-
tation formula (3.21):

βmq =

∫ 1

0

∂2

∂x22

(∫ 1

0

u1(x1, x2)ψm1q1(x1)dx1

)
ϕm2q2(x2)dx2 .

As the Haar-wavelet is the derivative of a hat function, by (3.12) we have
(using integration by parts)

βmq =

∫ 1

0

∂2

∂x22

(
2−(ν1+1)/2

∫ 1

0

∂u1(x1, x2)

∂x1
ϕm1q1(x1)dx1

)
ϕm2q2(x2)dx2 ,

which yields

βmq = 2−(ν1+1)/2

∫
Ω

ϕm1q1(x1)ϕm2q2(x2)
∂3

∂x1∂x22
u1(x)dx .
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We proceed with the same steps in deriving the hierarchical representation
for the general case of l-forms in d-dimensions. Take I = {i1, . . . , il} ⊂
{1, . . . , d}, the complement index set J = {1, . . . , d} \ I and denote by kI =
{ki : i ∈ I} the indices corresponding to I. The interpolant of the I-
component of a smooth differential form can be written as

II�uI =
∑
kJ

(∑
kI

α�k
∏
i∈I

Bνiki(xi)

)∏
j∈J

ϕνjkj(xj)

with the degree of freedom corresponding to the face F = [x�k; eI ]

α�k =

∫
[0,1]l

uI(xI ,xνJkJ )
∏
i∈I

Bνiki(xi)dxI .

The wavelet transform in l dimensions for the interior representations gives

II�uI =
∑
kJ

(∑
mI

∑
qI

α̃(mI�J )(qIkJ)

∏
i∈I

ψmiqi(xi)

)∏
j∈J

ϕνjkj(xj).

Change the order of summation and apply the hierarchical transform, in
order to obtain

II�uI =
∑
mI

∑
qI

(∑
mJ

∑
qJ

β(mImJ)(qIqJ)

∏
j∈J

ϕmjqj(xj)

)∏
i∈I

ψmiqi(xi).

The coefficients α̃ are given by

α̃(mI�J )(qIkJ ) =

∫
[0,1]l

uI(xI ,xνJkJ )
∏
i∈I

ψmiqi(xi)dxI .

The function
∫
[0,1]l

uI(xI ,xJ)
∏

i∈I ψmiqi(xi)dxI being smooth in xJ , we ob-

tain by means of (3.21)

β(mImJ )(qIqJ ) =

∫
[0,1]d−l

∏
j∈J

∂2

∂x2j


 ∫
[0,1]l

uI(x)
∏
i∈I

ψmiqi(xi)dxI


∏

j∈J
ϕmjqj(xj)dxJ .

Integrating by parts, we get the representation formula for the hierarchical
coefficients βmq.
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Lemma 3.2.1. The hierarchical coefficients of the I-component of a Whitney
l-form in d dimensions are

βmq = 2−(|m|1+l)/2
∫
Ω

∏
i∈I

ϕmiqi(xi)
∏
j /∈I

ϕ̄mjqj (xj)D
IuI(x)dx , (3.26)

where the operator DI is

DI =
∏
i∈I

∂

∂xi

∏
j /∈I

∂2

∂x2i
=

∂l+2(d−l)

∂xi1 . . . ∂xil∂x
2
j1
. . . ∂x2jd−l

,

and the indices mi and qi satisfy

0 ≤ mi ≤ νi, for i = 1, 2, . . . , d

qi ∈ Θmi
, for i = 1, 2, . . . , d .

The above construction provides the hierarchical basis functions

ΨI
�q :=

∏
i∈I

ψνiqi
∏
j /∈I

ϕνjqj , q ∈ Θ� := Θν1 × · · · ×Θνd . (3.27)

Thus, the hierarchical surpluses (detail approximation functions) belong-
ing to uI are

HI
�uI :=

∑
q∈Θ�

β�qΨ
I
�q . (3.28)

The coefficients β�q arise from Haar-wavelet transform in directions from I
followed by hierarchical transform in the other directions. The detail spaces
are

W I
� := Range(HI

�).

Then, the hierarchical interpolation operator is defined as

H�ω :=
∑
I

(
HI

�uI
)
dxI .

For the resolution n ∈ N , denote n = (n, . . . , n), |ν|∞ = max{ν1, . . . νd},
|ν|1 =

∑
i

νi. The above construction means for the full grid interpolation

operator

IIn =
∑

|�|∞≤n
HI

� , In =
∑

|�|∞≤n
H� .
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Figure 3.6: Hierarchical basis functions for the first component of an 1-form
(d = 2, n = 3)
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The hierarchical decomposition of the full grid interpolation space cor-
responding to the I-component is

V I,l
n =

⊕
|�|∞≤n

W I
� . (3.29)

By virtue of the tensor product approach, it is easy to see (cf. Figure 3.7) that
the hierarchical interpolation operator is a combination of nodal interpolation
operators on anisotropic full grids

HI
� =

∑
�∈{0,1}d

(−1)|�|1II�−� , H� =
∑

�∈{0,1}d
(−1)|�|1I�−�. (3.30)

In detail, this means

HI
� = II� − II�−(1,0,...,0) − II�−(0,1,...,0) − . . .− II�−(0,...,0,1) +

+II�−(1,1,0,...,0) + II�−(1,0,1,...,0) + . . .+ (−1)dII�−(1,1,...,1).

Together with the commuting diagram property for the “nodal” interpo-
lation operator on anisotropic tensor product meshes (2.8), this yields, for
sufficiently smooth forms:

d ◦ H� = H� ◦ d , (3.31)

i.e. the commuting diagram property holds for the hierarchical interpolation
operator. This is important for the estimation the interpolation error in
H(d,Ω).

In the figure 3.7 we sketch some scale and detail spaces together with
basis functions corresponding to the first component of differential 1-forms
in two dimensions.

Equations (3.4) and (3.9) provide estimates of the norms of basis functions

∥∥ΨI
�q

∥∥2
L2(Ω)

=

(
2

3

)d−l
2−|�I′ |1 (3.32)

where |νI |1 :=
∑

i∈I νi and |νI′ |1 :=
∑

i/∈I νi.
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Figure 3.7: Scale and detail spaces for first component of a 1-form (d = 2,
n = 3,I = {1}). Each box function is identified with the grid point sitting at
the right end of its support (edge). Each Haar-wavelet and each hat function
is associated with the grid point located in the middle of its support.

We have seen how the hierarchical multilevel principle gives rise to hierar-
chical base for Whitney l-forms in d dimensions. Selecting particular basis
functions, we obtain the sparse grid spaces in the next chapter. Then, we
investigate the properties of the sparse grid interpolation operator.



Chapter 4

Interpolation on Sparse Grids

Based on the hierarchical basis, we define the sparse grid interpolation opera-
tor. We prove the commuting diagram property and the existence of discrete
sparse potentials. Then, we estimate the hierarchical contributions of detail
spaces. The error estimate for the interpolation justifies the choice of the
sparse grid. Approximate interpolation is needed for the Galerkin scheme in
partial differential equations. The combination technique and a two point
quadrature rule ensure that a similar error estimate as for the exact interpo-
lation holds.

4.1 Interpolation Operator

In the previous chapter we have introduced the hierarchical basis for Whit-
ney l-forms in d dimensions. We established the hierarchical decomposition
of the full grid interpolation space (3.29). Now, we are in a position to define
the sparse grid interpolation space and the associated interpolation opera-
tor. This is done in full analogy with the sparse grid interpolation space for
Lagrangian finite elements.

As mentioned in the previous section, we mainly deal with differential
forms through the components of their vector proxies. In a sense, a sparse
Whitney l-form ωn ∈ V l

n will arise by discretizing each of the
(
d
l

)
components

of the vector proxies separately.

Definition 4.1.1. The space for the I-component of the vector proxy corre-

33
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sponding to sparse Whitney l-forms at resolution n is defined by

V I
n :=

⊕
|�|1≤n+d−1

W I
� , (4.1)

where |ν|1 = ν1 + ν2 + · · ·+ νd.

Definition 4.1.2. The sparse grid interpolation operator is defined by

IIn :=
∑

|�|1≤n+d−1

HI
� , In :=

∑
|�|1≤n+d−1

H� . (4.2)

Definition 4.1.3. We call V l
n := Range(In) the space of Whitney-l-forms

on a sparse grid of resolution n in d dimensions.

..

x

y

n=2

n=3

Figure 4.1: Supports of basis functions generating sparse grid spaces (d = 2,
n = 2, 3 and l = 1)

In Figure 4.1 we sketch the detail spaces together with basis functions
corresponding to the first component of differential 1-forms in two dimen-
sions.

Firstly, the combination formula for the Lagrangian elements on sparse
grids can be easily extended to the Whitney forms. The idea is to represent
any sparse grid function as a linear combination of its interpolants on the
regular (anisotrop) full grids Ω� with |I|1 = n+ d− s, for s = 1, . . . , d.
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Proposition 4.1.1. The sparse grid interpolation operator can be written
over the combination formulas:

IInuI =
d∑
s=1

(−1)s−1

(
d− 1

s− 1

) ∑
|�|1=n+d−s

II�uI (4.3)

and

In =

d∑
s=1

(−1)s−1

(
d− 1

s− 1

) ∑
|�|1=n+d−s

I� . (4.4)

Proof. These formulas are consequences of the definition of the sparse grid
interpolation operator and of the remark that

HI
� =

∑
�∈{0,1}d

(−1)|�|1II�−� and H� =
∑

�∈{0,1}d
(−1)|�|1I�−� . (4.5)

Indeed, (4.5) means in detail

H� = I� − I�−(1,0,...,0) − I�−(0,1,...,0) − . . .− I�−(0,...,0,1) +

+I�−(1,1,0,...,0) + I�−(1,0,1,...,0) + . . .+ (−1)dI�−(1,1,...,1) .

We replace it in the definition of the sparse grid interpolation operator (4.2)
and rearrange the summation terms

In =
∑

|�|1≤n+d−1

H� =

d∑
s=1

∑
|�|1=n+d−s

H�

=
d∑
s=1

∑
|�|1=n+d−s

∑
�∈{0,1}d

(−1)|�|1I�−� =
d∑
s=1

c(s)
∑

|�|1=n+d−s
I� .

The coefficient c(s) is

c(s) = (−1)s−1

(
d

s− 1

)
+ (−1)s−2

(
d

s− 2

)
+ . . .+ (−1)

(
d

1

)
+

(
d

0

)
,

that is, by a known identity for binomial coefficients [53],

c(s) =
∑
k≤s−1

(−1)k
(
d

k

)
= (−1)s−1

(
d− 1

s− 1

)
.

In conclusion, the identities (4.4) and (4.3) hold.
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Fig. 4.2 shows the involved grids in the case of an 1-form in two dimen-
sions on a sparse grid of resolution n = 3:

I3 = I(1 3) + I(2 2) + I(3 1) − I(1 2)− I(2 1) .
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Figure 4.2: Grids involved in combination technique for d = 2, l = 1, n = 3,
I = {1}

Secondly, we show that the two principal properties of the Whitney ele-
ments, i.e. the commuting diagram and the exact sequence properties, still
hold in the sparse grid case.

Proposition 4.1.2. The commuting diagram property

d ◦ In = In ◦ d (4.6)

and the exact sequence property

V l
n ∩ ker{d} = dV l−1

n (4.7)

hold true for the sparse grid interpolation operator and sufficiently smooth
differential forms.
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Proof. The first assertion follows from the definition of the sparse grid inter-
polation operator (4.2) and the commuting diagram property for the hierar-
chical interpolation operator (3.31).

We focus on the second assertion. As the derivative of the hat function is
a Haar-wavelet, the definitions of V l

n and of the exterior derivative d instantly
provide

V l
n ∩ ker{d} ⊃ dV l−1

n .

We prove the reverse inclusion. Consider a closed Whitney l-form ωn, that
is dωn = 0. We construct a discrete potential ηn on the sparse grid, that is
ηn ∈ V l−1

n and dηn = ω. Using the combination formula (4.4), we can wite
ωn as

ωn = Inωn =
d∑
s=1

(−1)s−1

(
d− 1

s− 1

) ∑
|�|1=n+d−s

I�ωn .

The commuting diagram for anisotrop full grids (3.17) gives

d (I�ωn) = I�(dωn) = 0 ,

so, by the existence of the discrete potentials for the full grids, there is
η� ∈ V l−1

� such that dη� = I�ωn. We construct the discrete (l − 1)-form η
on the sparse grid by means of the combination technique and the obtained
η� :

ηn :=
d∑
s=1

(−1)s−1

(
d− 1

s− 1

) ∑
|�|1=n+d−s

η� .

Clearly ηn ∈ V l−1
n and dηn = ωn, which completes the proof.

Thirdly, the representation formula of hierarchical coefficients (3.26) al-
lows us to estimate the hierarchical contributions of detail spaces.

Lemma 4.1.1. The hierarchical coefficients decay according to

|β�q| ≤ 2−l3−
d
2 · 2−(|�I |1−l) · 2−(3|�I′ |1−d+l)/2

∥∥DIuI
∥∥
L2(supp(ψI

�q))
. (4.8)

Proof. Equations (3.27), (3.32) and the definition of ϕ̄νjqj , (3.1) lead to (4.8).

Proposition 4.1.3. The L2-norms of details are bounded by∥∥HI
�uI
∥∥
L2(Ω)

≤ 3−(d−l/2) · 2−2|�I′ |1−|�I |1 ·
∥∥DIuI

∥∥
L2(Ω)

. (4.9)
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Proof. The hierarchical basis functions corresponding to a fixed level have
disjoint supports, and equation (3.32) gives:

∥∥HI
�uI
∥∥2
L2(Ω)

=

∥∥∥∥∥
∑
q∈Θ�

βI�qΨ
I
�q

∥∥∥∥∥
2

L2(Ω)

=
∑
q∈Θ�

|βI�q|2 ·
∥∥ΨI

�q

∥∥2
L2(Ω)

=

=
∑
q∈Θ�

|βI�q|2 ·
(
2

3

)(d−l)
2−|�I′ |1

≤
∑
q∈Θ�

3−l9−(d−l) · 2−4|�I′ |1−2|�I |1 ·
∥∥∥DIuI |supp(ψI

�q)

∥∥∥2
L2(Ω)

,

where we used (4.8). So∥∥HI
�uI
∥∥2
L2(Ω)

≤ 3−l9−(d−l) · 2−4|�I′ |1−2|�I |1 ·
∥∥DIuI

∥∥2
L2(Ω)

,

which proves the inequality (4.9).

The commuting diagram property and the error estimates for the L2-norm
are all the tools needed to derive error estimates in other norms:

‖ω − Inω‖2H(d,Ω) = ‖ω − Inω‖2L2(Ω) + ‖d(ω − Inω)‖2L2(Ω) =

= ‖ω − Inω‖2L2(Ω) + ‖dω − Indω‖2L2(Ω) .

We emphasize the role of the commuting diagram property in the derivation
of the error estimate in H(d,Ω).

The rationale behind the definition of the sparse grid interpolation (4.1)
and (4.2) is the fast decay of the hierarchical coefficients. The bulk of detail
spaces do not contribute much to the approximation. We may dispose of
many details without letting the convergence rate deteriorate too much. Each
component of the vector field could be discretized on its optimal sparse grid
in the sense of Bungartz [23]. But our aim is conforming finite elements
in H(d,Ω), so we must discretize all components on the same grid. It is
not difficult to see that a suitable grid to work on is the classical sparse grid
[23, 92]. We take into account only the detail spacesW I

� with |ν|1 ≤ n+d−1.
The following estimates of the interpolation error justify this.
For the L2-norm we have by definition

‖ω − Inω‖2L2(Ω) =
∑
I

∥∥uI − IInuI
∥∥2
L2(Ω)

,
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and the triangle inequality gives∥∥uI − IInuI
∥∥
L2(Ω)

≤
∑

|�|1≥n+d

∥∥HI
�uI
∥∥
L2(Ω)

.

Using the estimates of the hierarchical contributions (4.9), we obtain∥∥uI − IInuI
∥∥
L2(Ω)

≤
∑

|�|1≥n+d
3−(d−l/2) · 2−2|�I′ |1−|�I |1 ·

∥∥DIuI
∥∥
L2(Ω)

≤ 3−(d−l/2) ·
∥∥DIuI

∥∥
L2(Ω)

∑
|�|1≥n+d

2−2|�|1+|�I |1 . (4.10)

All depends on the evaluation of the sum

S(n, l, d) =
∑

|�|1≥n+d
2−2|�|1+|�I |1 =

∞∑
k=n+d

2−2k
∑

|�|1=k
2|�I |1 , (4.11)

which we intend to estimate. To this end, we present three lemmata.

Lemma 4.1.2. For 1 ≤ n < m it holds

n∑
k=0

(
m

k

)
≤ 2n!

(
m

n

)
.

Proof. Induction on n. For n = 1 we have(
m

0

)
+

(
m

1

)
= 1 +m < 2m

and the assertion is true.
Suppose that the proposition is true for n−1 and prove it for n ≥ 2. Indeed,

n∑
k=0

(
m

k

)
=

n−1∑
k=0

(
m

k

)
+

(
m

k

)
≤ 2(n− 1)!

(
m

n− 1

)
+

(
m

k

)
,

by the induction hypothesis, so

n∑
k=0

(
m

k

)
≤ 2

(
m

k

)(
n!

m− n+ 1
+

1

2

)
,

which is less than 2
(
m
k

)
· n!, since n ≥ 2 and m − n + 1 ≥ 2. Hence, the

assertion is true for n. By induction on n, we conclude that the lemma
holds.
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Lemma 4.1.3. It holds

∑
ν1+...+νd=k
0≤νi,i=1,...,d

1 =

(
d+ k − 1

d− 1

)
.

Proof. The lemma is equivalent to a known problem from combinatorics: in
how many ways can you place k objects in d boxes, allowing void boxes ?
First, remember the answer for the same problem with the requirement that
there is no void box, which is just the definition of the combinations with
repetitions: ∑

ν1+...+νd=k
1≤νi,i=1,...,d

1 =

(
k − 1

d− 1

)

If we allow void boxes, then we can leave p, with 0 ≤ p ≤ d − 1, void boxes
and distribute the k objects in the remaining d− p boxes as before:

∑
ν1+...+νd=k
0≤νi,i=1,...,d

1 =
d−1∑
p=0

(
d

p

)(
k − 1

d− p− 1

)
,

which is just the Vandermonde convolution [53, vol. 1, p. 58].

In the following lemma, the conditions on running indices arise by setting
the degrees of freedom from the boundary to zero.

Lemma 4.1.4. For 1 ≤ l ≤ d, it holds

Sk(l, d) :=
∑

ν1+...+νd=k

2ν1+...+νl ≤ 2k
(
k + l − 1

l − 1

)
,

where 0 ≤ νi, for i = 0, . . . , l, and 1 ≤ νj, for j = l + 1, . . . , d.

Proof. We use a backward induction argument, beginning with l = d. Indeed,
using Lemma 4.1.3, we obtain:

Sk(d, d) =
∑

|�|1=k
2k = 2k

(
d+ k − 1

d− 1

)
,
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and Sk(d− 1, d− 1) ≤ 2k
(
d+k−2
d−2

)
. Now, the next term is

Sk(d− 1, d) =
k∑

νd=1

Sk−νd(d− 1, d− 1) ≤
k∑
s=1

2k−s
(
d− 2 + k − s

d− 2

)

≤
(
d− 2 + k − 1

d− 2

)
2k

k∑
s=1

2−s ≤ 2k
(
d− 2 + k − 1

d− 2

)
.

By induction, it is easy to see that

Sk(d− t, d) ≤ 2k
(
d− t− 1 + k − t

d− t− 1

)
for 1 ≤ t ≤ d− 1

so

Sk(l, d) ≤ 2k
(
l − 1 + k − d+ l

l − 1

)
≤ 2k

(
k + l − 1

l − 1

)
,

since l ≤ d.

Let us turn now to the crucial sum (4.11). We distinguish three cases: l = 0,
l = 1, and 2 ≤ l ≤ d.

We begin by the particular case l = 0, when the sum (4.11) is

S(n, 0, d) =
∞∑

k=n+d

2−2k

(
k − 1

d− 1

)
.

Using the trick from the proof of Lemma 3.3 in [23, pp. 27-28], we get

S(n, 0, d) ≤ 2−2n2−2d2
d−1∑
k=0

(
n+ d− 1

k

)
. (4.12)

Apply Lemma 4.1.2 for the last sum:

S(n, 0, d) ≤ 2−2n2−2d4(d− 1)!

(
n+ d− 1

d− 1

)
=

4 · 2−2d2−2n(n+ 1)(n+ 2) · · · (n + d− 1).

In the second case, when l = 1, Lemma 4.1.4 gives Sk(1, d) ≤ 2k, and
hence S(n, l, d) ≤ 2−(n+d).
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Finally, for the case 2 ≤ l, we use Lemma 4.1.4 and the same trick from
[23]:

S(n, l, d) ≤
∞∑

k=n+d

2−k
(
k + l − 1

l − 1

)
= 2−(n+d)

∞∑
i=0

2−i
(
n+ d+ i+ l − 1

l − 1

)

≤ 2−(n+d)2

l−1∑
j=0

(
n + d+ l − 1

j

)
.

Lemma 4.1.2 tells us then that the sum (4.11) can be estimated by

S(n, l, d) ≤ 4 · 2−(n+d)(n+ d+ 1) · · · (n+ d+ l − 1) . (4.13)

As a consequence of equations (4.10), (4.11), (4.12), and (4.13), we obtain
the estimation of interpolation error.

Theorem 4.1.1. If the smoothness conditions for the differential l-form ω
are met, then the upper bound for the L2-norm of the interpolation error
holds:

‖ω − Inω‖0 ≤ gd,ln ·
(∑

I

∥∥DIuI
∥∥2
0

)1/2

, (4.14)

where

gd,ln = 3−(d−l/2) ·




2−2(n+d) · (n+ 1) · · · (n+ d− 1) for l = 0
2−(n+d) for l = 1
2−(n+d)(n + d+ 1) · · · (n+ d+ l − 1) for 2 ≤ l ≤ d

and DI is defined in Lemma 3.2.1.

For 0-forms we obtained the same error estimation as for Lagrange fi-
nite elements (see [23] p.28). For d-forms we have a purely scalar case again
and approximation based on Haar-wavelets. For the L∞-norm, this corre-
sponds to a known error estimate (see [64] p.25). From the result for 1-forms
we obtain an estimate of the error in the H1

0(Ω)-norm (see [23] p.28) as a
consequence of the commuting diagram property.

For fixed dimension, the convergence is the best for the 0-forms and
slowly deteriorates with the increase of the order of the differential forms.
Denoting hn = 2−n, we have for l forms with l ≥ 2 convergence of order
O
(
hn| log(hn)|l−1

)
, whereas for the 0-forms we have convergence of order
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O
(
h2n| log(hn)|d−1

)
. At a first glance, it seems that the approximation would

be better for increasing dimension. This is not the case, since we demand
n ≥ d and generally, we have in the formula for gd,ln a sort of factorial.

Due to the commuting diagram property (4.6), we obtain automatically
the corresponding result for the H(d,Ω)-norm.

Theorem 4.1.2. If the smoothness conditions for the differential l-form ω
are met, then the upper bound for the H(d,Ω)-norm of the interpolation error
holds:

‖ω − Inω‖H(d,Ω) ≤
((
gd,ln
)2

+
(
gd,l+1
n

)2)1/2 ·
(∑

I

∥∥DIuI
∥∥2
0

)1/2

. (4.15)

Denote the total number of the sparse grid points by bd,n and the number
of the interior points by ad,n. Bungartz showed in [23] that

ad,n =

n−1∑
i=0

2i
(
d− 1 + i

d− 1

)

= (−1)d + 2n
d−1∑
i=0

(
n+ d− 1

i

)
· (−2)d−1−i

= 2n ·
(

nd−1

(d− 1)!
+O(nd−2)

)
.

and

ad,n
bd,n

→ 1 , for n→ ∞ and fixed d.

Note that the number of points in the full grid of resolution n is (1 + 2n)d.
We refer to [23, p.25-31] for a detailed comparison between the number of
points in the full and in the sparse grid. Fig. 4.3 illustrates the curse of
dimensionality and the remedy proposed by the sparse grid approach.
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Figure 4.3: Number of full and sparse grid points for d = 2 and d = 3

4.2 Approximate Interpolation

In the course of a Galerkin approximation of a partial differential equation,
we usually need to evaluate some right hand side (ω, η)L2(Ω), with ω an l-
form, for test forms η. For instance, consider the H(d,Ω)-elliptic variational
problem (2.4) from Sect. 2.2 for constants coefficients α = β = 1: Seek
l-form ξ such that

(dξ,dη)L2(Ω) + (ξ, η)L2(Ω) = (ω, η)L2(Ω) ∀l-forms η . (4.16)

When performing a Galerkin-discretization based on the space of Whitney-
l-forms on sparse grids, only the inner product of two discrete forms is algo-
rithmically available. This suggests to replace the l-form ω by its interpolant
I(1)
n ω first [21]. However, in general, for l > 0, it is impossible to determine

the exact interpolant, because of the integrals that occur in the definition
(3.16) of the degrees of freedom. This is an important new aspect that crops
up when moving from 0-forms to general l-forms. We have to resign to the
use of approximate interpolation.

Strang’s lemma (see [77, Sect. 4.3] or [25, Sect. 4.1]) tells us what the
approximate interpolation has to satisfy: in order to preserve the overall order
of convergence that we get from (4.14) via Cea’s lemma, the approximate
interpolation has to fulfill an estimate that is at least as strong as (4.14).

Given the smooth differential l–form ω by its components uI (which are

smooth functions), we aim to compute an appropriate replacement for I(1)
n ω
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with minimal effort, i.e. with a number of operations proportional to the
dimension of the sparse grid space. The naive application of an (adaptive)
quadrature rule for the direct evaluation of the degrees of freedom (integrals
over l–faces) is too expensive [33]. We introduce an approximate interpo-
lation operator with optimal complexity in terms of evaluations. To this
end, we prove the error estimates directly, based on estimates for the norms
of the detail functions (hierarchical surpluses) and not for the hierarchical
coefficients.

Recalling (4.2), our task can be reduced to devising suitable approxima-
tions for the hierarchical surplus operators HI

� , |ν|1 ≤ n + d − 1. Induction
with respect to the dimension d and equation (3.30) together with (3.18)
show that

HI
� = ◦

i∈I
(Iconstνi

− Iconstνi−1 ) ◦
j /∈I

(Ilinνj − Ilinνj−1) .

We replace the “exact” interpolation operators Iconstνi
with those based on

the two point trapezoidal rule Ĩconstνi

ũν(t) = Ĩconstν u(t) :=
2ν−1∑
k=0

ãνkBνk(t), ãνk =
u(k2−ν) + u((k + 1)2−ν)

2
·2−ν

and we get

H̃I
� := ◦

i∈I
H̃νi ◦

j /∈I
Hνj := ◦

i∈I
(Ĩconstνi

− Ĩconstνi−1 ) ◦
j /∈I

(Ilinνj − Ilinνj−1).

This operator was already treated in [29, 64]. Note that for the resulting
approximate interpolation operator H̃� , the commuting diagram property
(3.31) is no longer ensured.

We prove that the interpolation error estimates on sparse grids (4.14) hold
for this approximate interpolation operator only with a different dependence
on dimension d. The main tool for the derivation of the estimates in the
previous two sections was Prop. 4.1.3 concerning the norms of details. An
equality similar to (4.9) for the approximate interpolation operator is instru-
mental in getting the interpolation estimates. Taking the cue from [64, page
24], by an induction argument with respect to the dimension of the space d,
we have ∥∥∥H̃I

�uI

∥∥∥
L2(Ω)

≤ 3l · 2−|�I |1 · 5d−l · 2−2|�I′ |1
∥∥DIuI

∥∥
L2(Ω)

,
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that is ∥∥∥H̃I
�uI

∥∥∥
L2(Ω)

≤ C · 2−2|�I′ |1−|�I |1 ∥∥DIuI
∥∥
L2(Ω)

.

Following the steps of the preceding two sections, it is easy to prove that
the error estimates (4.14) hold for the approximate interpolation operator,
only with a different dependence on dimension d. Indeed, instead of the term
3−(d−l/2) in the expression of gd,ln , we have 5d(̇3/5)l.

Theorem 4.2.1. If the smoothness conditions for the differential l-form ω
are met, then the upper bound for the L2-norm of the error involving approx-
imation holds:

∥∥∥ω − Ĩnω
∥∥∥
0
≤ g̃d,ln ·

(∑
I

∥∥DIuI
∥∥
0

)1/2

, (4.17)

where

g̃d,ln = 3l · 5d−l ·




2−2(n+d) · (n+ 1) · · · (n + d− 1) for l = 0
2−(n+d) for l = 1
2−(n+d)(n+ d+ 1) · · · (n+ d+ l − 1) for 2 ≤ l ≤ d

and DI is defined in Lemma 3.2.1.

This means that the l-dimensional trapezoidal rule with 2l points can be
used to compute the degrees of freedom for any l-face. This is remarkable,
as for large faces the quadrature error can be considerable. In sum, the
number of evaluations of uI is only a small multiple of the dimension of V I

n .
Note that, in terms of implementation, this approach forces us to make use
of the combination technique [42, 64] for the evaluation of the approximate
interpolation operator. We give further details in Chapter 6.2.

Figure 4.5 presents the behavior of the L2-error for 0-, 1- and 2-forms in
the two and three dimensional case, together with the theoretically estimated
convergence curves. The interpolated differential form ω has all components
3π2 · sin(πx) · sin(πy) · sin(πz). The reference curves show the constants g̃d,ln
from Theorem 4.2.1. Figure 4.6 illustrates the importance of the smooth-
ness of the interpolated form. Here, the interpolated differential form ω has

the components ui = xi · e−|
1
2
−||x|||. Convergence still holds, but the order

deteriorates.
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We end this section by some considerations on the visualization on sparse
grids, since this subject is close related to the interpolation. It is known (see
also Fig. 4.3) that data sets on sparse grids at fine resolutions cannot be
handled on uniform grids any more. There are visualization toolkits that
work directly on sparse grids [51, 81–83]. The sparse grid data set of level

n = 12, corresponding to the previous 0-form ω = x1 · e−|
1
2
−||x||| in d = 3

dimensions was rendered by Mathias Hopf1 in Fig. 4.4 with an X-ray shading
method (left) and with multiple semitransparent shaded ISO-surfaces (right).
The computations were done on the PC cluster “Kepler” of the University
of Tübingen. This cluster consists of 96 dual PIII nodes connected with
Myrinet, and two additional front-end nodes.

The computations were done on the PC cluster “Kepler” of the University
of Tübingen with a visualization toolkit that works directly on sparse grids.
The cluster consists of 96 dual PIII nodes connected with Myrinet, and two
additional front-end nodes.

Figure 4.4: A sparse grid data set rendered with an X-ray shading method
(left) and with multiple semitransparent shaded ISO-surfaces (right)

1Mathias Hopf is at the Visualization and Interactive Systems Group, IfI, University
of Stuttgart
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Figure 4.5: Behavior of L2-error for 0-, 1- and 2-forms with enough smooth-
ness: ui = 3π2 · sin(πx) · sin(πy) · sin(πz), left for d = 3 and right for d = 2
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Figure 4.6: Behavior of L2-error for 0-, 1- and 2-forms for a differential form

that is not smooth enogh: ui = xi · e−|
1
2
−||x|||, left for d = 3, right for d = 2
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Selecting particular basis functions, we constructed the sparse grid spaces.
Then, we defined and investigated the properties of the sparse grid interpo-
lation operator. We considered approximate interpolation in order to handle
Galerkin schemes in partial differential equations. In the next chapter we
will deal with the discretization of second order mixed problems by means of
Whitney forms on sparse grids



Chapter 5

Second Order Mixed Problems

Sparse grid interpolation operators for Whitney l-forms in d dimensions and
their approximation properties are at our disposal. Now, we focus on two
problems from the theory of the mixed discretization of second order elliptic
PDEs. We are concerned by the stability conditions of the discretization (by
sparse Whitney forms) of the primal and of the dual problem below. The
existence of stable potentials is a sufficient condition, which we can establish
for particular cases. Rigorous results could be obtained for three dimensions.

5.1 Formulation and Stability Conditions

In light of the theory of the mixed discretization of second order elliptic PDEs
we deal with the following two problems:
The primal variational problem:

Find an l-form ω and an (l − 1)-form η such that:

(dω,dζ)0 + (dη, ζ)0 = f(ζ) for all l-forms ζ
(ω,dξ)0 = 0 for all (l − 1)-forms ξ ,

(5.1)

The dual variational problem:

Find an l-form ω and a closed (l + 1)-form η such that:

(ω, ζ)0 + (η,dζ)0 = f(ζ) for all l-forms ζ
(dω, ξ)0 = g(ξ) for all closed (l + 1)-forms ξ .

(5.2)

We consider only zero Dirichlet boundary conditions in this chapter. We just
write formal the right hand side in the above formulations f(ζ), g(ξ) with
functionals f , g, since we concentrate in the following only on the stability

51
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of the discretization of these problems. Sufficient conditions for the stability
of the discretization are well known [18, 68]. For the primal problem, it is
enough to prove the so-called “ellipticity on the kernel”.

Proposition 5.1.1 (Ellipticity on the kernel). Denoting

V l
n⊥ :=

{
ζ ∈ V l

n, with (ζ,dη)L2(Ω) = 0 ∀η ∈ V l−1
n

}
,

there is a constant C depending on d and l, but not on the resolution of the
sparse grid n, such that

‖ζ‖0 ≤ C ‖dζ‖0 for all ζ ∈ V l
n⊥ .

For the dual problem, the stability is ensured by the so called LBB-condition.

Proposition 5.1.2 (LBB-condition). There is a constant β depending on
d and l, but not on the resolution of the sparse grid n, such that

sup
(dω, η)0
‖ω‖H(d)

≥ β ‖η‖0 , for all η ∈ V l+1
n closed

ω ∈ V l
n .

In the next section, we prove the LBB-condition in the case l = d − 1.
Then, we prove the ellipticity on the kernel in the particular case d = 3 and
l = 1.
The crucial tool is a conjecture on the existence of stable potentials:

Conjecture 5.1.1 (Existence of stable potentials). Given a sparse Whit-
ney (l+1)-form ω ∈ V l+1

n that is closed,i.e. dω = 0, there is a sparse Whitney
l-form η ∈ V l

n with dη = ω such that

‖η‖0 ≤ C ‖ω‖0 ,

and the constant C does not depend on the discretization level n or on ω.

We show that this condition ensures the ellipticity on the kernel. Indeed,
take ζ from V l

n⊥ and consider its exterior derivative, which is a sparse Whitney
(l + 1)-form, ω = dζ ∈ V l+1

n . The conjecture gives then a stable potential
η ∈ V l

n, that is dη = ω and ‖η‖0 ≤ C ‖ω‖0. It is enough to prove that the
potential η has a larger norm than the original ‖ζ‖L2(Ω), that is ‖η‖L2(Ω) ≥
‖ζ‖L2(Ω). But dη = ω = dζ , and the exact sequence property tells us that the
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difference ζ−η is the derivative of a sparse Whitney (l−1)-form: ζ−η = df ,
with f ∈ V l−1

n . Now, we can write

‖ζ‖2L2(Ω) = (ζ, ζ)L2(Ω) = (ζ, η)L2(Ω) + (ζ,df)L2(Ω) .

The last term in sum is zero, because ζ belongs to V l
n⊥. Hence,

‖ζ‖2L2(Ω) = (ζ, η)L2(Ω) ≤ ‖ζ‖L2(Ω) ‖ζ‖L2(Ω) ,

which ends the proof.
The existence of the stable potentials in the space of Whitney forms

on sparse grids in the general case is still open. In the next section, we
establish it for l = d−1, see Theorem 5.2.1. In the proof of this theorem, we
illustrate how the existence of stable potentials implies the LBB-condition,
too. In Sect. 5.3, we prove Proposition 5.1.1 in the three dimensional case
for l = 1. In the last section of this chapter, we show the existence of the
stable potentials for l = 0 in general d dimensions.

5.2 LBB-condition for d− 1 forms

We concentrate on the proof of the discrete LBB condition in the case l =
d − 1, for general dimension d. All d-forms in d dimensions are closed, and
in order to emphasize that the d-form is in fact a function, we change the
notation, writing fn instead of η in the LBB formula:

sup
(dωn, fn)L2(Ω)

‖ωn‖H(d)

≥ β ‖fn‖L2(Ω) for all discrete d-forms fn ∈ V d
n .

ωn ∈ V d−1
n

(5.3)
Here, V d

n is used as notation for the space of the Whitney d-forms living
on the sparse grid of resolution n, according to definition 4.1.3. If d = 3,
then d stands for the divergence operator in (5.3). We prove the existence
of the discrete LBB-constant β depending neither on n, nor on fn in an
entirely discrete setting. Conversely, the usual technique [18, Sect. II.2], [69,
Sect. 10] relies on lifting properties of the continuous Laplacian along with
interpolation estimates.

Our approach is much simpler, because we have at our disposal two spe-
cial tools: the existence of discrete potentials for Whitney forms and the
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orthogonality of the Haar-wavelets. The first means that given fn in V d
n ,

there exists ωn in V d−1
n such that

dωn = fn . (5.4)

The second tool can be employed to show the stability of the potential

‖ωn‖L2(Ω) ≤ (3d)−1 ‖fn‖L2(Ω) . (5.5)

Then the left hand side of (5.3) is greater than

‖fn‖2L2(Ω)√
‖ωn‖2L2(Ω) + ‖fn‖2L2(Ω)

≥ 1√
1 + (3d)−1

‖fn‖L2(Ω) ,

so there exists an LBB-constant β ≥
√

3d
3d+1

. It remains to prove the following

theorem:

Theorem 5.2.1. For each fn from the space of Whitney d-forms on the
sparse grid of resolution n, there exists a corresponding Whitney (d − 1)-
form ωn such that (5.4) and (5.5) hold.

Proof. Consider a sparse Whitney d-form fn from V d
n , that is, cf. (4.2) and

(3.28),

fn =
∑

|�|1≤n+d−1

∑
q∈Θ�

β�qΨ
{1,...,d}
�q .

Thanks to the orthonormality of the Haar-wavelets Ψ
{1,...,d}
�q , we have

‖fn‖2L2(Ω) =
∑

|�|1≤n+d−1

∑
q∈Θ�

|β�q|2. (5.6)

Now, we define the sparse Whitney (d − 1)-form ωn :=
d∑
i=1

vindxi′ , with i
′ =

{1, . . . , d} \ {i}, and the components of the vector proxy

vin(x) :=
1

d

∑
|�|1≤n+d−1

∑
q∈Θ�

β�q2
−(νi+1)/2ϕνiqi(xi)

∏
j 6=i

ψνjqj (xj). (5.7)

As the derivative of the hat function is a Haar wavelet, equation (3.10) en-
sures that ωn is a potential for fn, that is dωn = fn. In the following, we
prove the inequality (5.5).
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Denoting ν ′ = ν \ νi and q′ = q \ qi, we can rewrite the i-th component
of the vector proxy (for a fixed i):

vin(x) =
1

d

∑
|�′|1≤n+d−1

∑
q′∈Θ

�
′

v�′q′(xi)
∏
j 6=i

ψνjqj (xj),

where

v�′q′(xi) :=

n+d−1−|�′|∑
νi=0

∑
qi∈θνi

β�q2
−(νi+1)/2ϕνiqi(xi).

Using again the orthonormality of the Haar-wavelets Ψ
{1,...,d}\{i}
�′q′ , we obtain

∥∥vin∥∥2L2(Ω)
=

1

d2

1∫
0

∑
|�′|1≤n+d−1

q′∈Θ
�
′

|v�′q′(xi)|2dxi =
1

d2

∑
|�′|1≤n+d−1

q′∈Θ
�
′

‖v� ′q′‖2L2(0,1) .

Now, we consider ‖v�′q′‖2L2(0,1) and use the Cauchy-Schwarz inequality for
the sum:

‖v�′q′‖2L2(0,1) =

1∫
0



n+d−1−|�′|1∑

νi=0
qi∈θνi

β�q2
−(νi+1)/2ϕνiqi(xi)



2

dxi ≤

≤



n+d−1−|�′|1∑

νi=0
qi∈θνi

|β�q|2





n+d−1−|�′|1∑

νi=0
qi∈θνi

2−(νi+1) ‖ϕνiqi‖
2
L2(0,1)


 .

Replace the norm of the hat by its concrete value (3.4) and obtain

‖v�′q′‖2L2(0,1) ≤



n+d−1−|�′|1∑

νi=0
qi∈θνi

|β�q|2




1

3

n+d−1−|�′|1∑
νi=0

1
2
2−νi




≤ 1
3

n+d−1−|�′|1∑
νi=0
qi∈θνi

|β�q|2 .
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Together with equation (5.6), this gives for the components of the vector
proxy

∥∥vin∥∥2L2(Ω)
≤ 1

3d2

∑
|�′|1≤n+d−1

q′∈Θ
�
′

|β�q|2 ≤
1

3d2
‖fn‖2L2(Ω) ,

so the norm of the sparse potential is

‖ωn‖2L2(Ω) =
d∑
i=1

∥∥vin∥∥2L2(Ω)
≤ 1

3d
‖fn‖2L2(Ω) ,

from which we conclude that the estimate (5.5) holds.

By Lagrange multipliers technique, the LBB-constant β can be numer-
ically computed as

√
λ, where λ is the smallest solution of the generalized

eigenvalue problem BA−1Btx = λMx. The matrices A and M are the dis-
crete counterparts of the scalar products in H(div; Ω) and L2(Ω), respec-
tively, and B = MD, where D represents the exterior derivative opera-
tor. We solved numerically this eigenvalue problem by the power method
for µu = (BA−1Bt)−1Mu, with µ = 1/λ. The termination criterion was
|µold−µnew|/|µnew| ≤ 10−4. For the solution of the inner system BA−1Btx =
y, we used the Uzawa method, where a few cg-steps were enough for approx-
imately inverting A.

We present in table 5.1 the results for the two, three and four dimensional

case together with the lower bound βd =
√

3d
1+3d

. The numerical results

confirm that the LBB-constant β stay upon the obtained lower bound βd.

n 5 6 7 8 9 10 11 12 βd
d = 2 0.978 0.978 0.978 0.978 0.978 0.978 0.978 0.978 0.926
d = 3 0.989 0.987 0.987 0.987 0.987 0.987 0.987 0.946
d = 4 0.997 0.995 0.995 0.961

Table 5.1: Approximation of the LBB constant β
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5.3 Ellipticity on Kernel in three Dimensions

Now, we restrict ourselves to the case d = 3 and l = 1. In light of the
last observation in Sect. 5.1, it is enough to prove the existence of stable
potentials.

Theorem 5.3.1. For d = 3, given the sparse Whitney 2-form ω ∈ V 2
n with

dω = 0, there is a sparse Whitney 1-form η ∈ V 1
n with dη = ω such that

‖η‖0 ≤
1√
6
‖ω‖0

Proof. Let us begin by some notations. Consider the closed Whitney 2-form

ω = v1,2dx1 ∧ dx2 + v2,3dx2 ∧ dx3 + v3,1dx3 ∧ dx1

with the components of the vector proxy

v1,2 =
∑

|�|1≤n+d−1
q∈Θ�

β1,2
�qΨ

{1,2}
�q ,

v2,3 =
∑

|�|1≤n+d−1
q∈Θ�

β2,3
�qΨ

{2,3}
�q ,

v3,1 =
∑

|�|1≤n+d−1
q∈Θ�

β3,1
�qΨ

{3,1}
�q .

In order to simplify the notation, we drop the upperscripts in the lengthy
formulas. Denote

β1,2
�q = a�q , 2(1+ν3)/2 = γν3 ,

β2,3
�q = b�q , 2(1+ν1)/2 = αν1 ,

β3,1
�q = c�q , 2(1+ν2)/2 = βν2 .

Note that a, b, c varies with ν and q, but α, β, γ depend only on ν1, ν2, ν3,
respectively. The condition that ω is closed, dω = 0, gives then

γν3a�q + αν1b�q + βν2c�q = 0. (5.8)

for all admissible ν, q.
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We have to construct the potential of ω, that is a Whitney 1–form

η = u1dx1 + u2dx2 + u3dx3 .

Consider the components of the vector proxy corresponding to the potential
η

ui =
∑

|�|1≤n+d−1
q∈Θ�

βi�qΨ
{i}
�q ,

and denote (remembering the preceding convention)

β1
�q = t�q , β2

�q = y�q , β3
�q = z�q .

The potential condition dη = ω shows that, at least for all ν1, ν2, ν3 ≥ 1 and
all q, we have to demand

αν1y�q − βν2t�q = a�q

βν2z�q − γν3y�q = b�q

γν3t�q − αν1z�q = c�q .

Together with equation (5.8), this tells us that we have a parameter at our
disposal. Let us set t�q = 0 for all ν and q. Remark that imposing Dirichlet
zero boundary conditions eliminates a lot of sum terms corresponding to the
boundary.

With the last notations we have:

u1 = 0 , v2,3 =
∑
�q

(βν2z�q − γν3y�q)Ψ
{2,3}
�q ,

u2 =
∑
�q

y�qΨ
{2}
�q , v1,2 =

∑
�q

αν1y�qΨ
{1,2}
�q ,

u3 =
∑
�q

z�qΨ
{3}
�q , v3,1 =

∑
�q

(−αν1)z�qΨ{3,1}
�q .

If we prove that ‖u2‖2L2(Ω) ≤ C ‖v1,2‖2L2(Ω) and ‖u3‖2L2(Ω) ≤ C ‖v3,1‖2L2(Ω), then
the theorem holds. Consider the second component of the potential

u2(x) =

n+d−1∑
ν2=1,
q2∈Θν2


 ∑
ν1+ν3≤n+d−1−ν2

q1, q2

y�qϕν1q1(x1)ϕν3q3(x3)


ψν2q2(x2) .
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The orthogonality of ψν2q2 gives

∥∥u2∥∥2
L2(Ω)

=

1∫
0

1∫
0

n+d−1∑
ν2=1,
q2∈Θν2


 ∑
ν1+ν3≤n+d−1−ν2

q1, q2

y�qϕν1q1(x1)ϕν3q3(x3)




2

dx1dx3

=
n+d−1∑
ν2=1,
q2∈Θν2

1∫
0

1∫
0


 ∑
ν1+ν3≤n+d−1−ν2

q1, q2

y�qϕν1q1(x1)ϕν3q3(x3)




2

dx1dx3 .

Consider the integrand and use the Cauchy-Schwarz inequality for sums:


 ∑
ν1+ν3≤n+d−1−ν2

q1, q2

y�qϕν1q1ϕν3q3




2

=



n+d−1−ν2∑

ν1=1
q1∈Θν1


αν1

n+d−1−ν2−ν1∑
ν3=0
q3∈Θν3

y�qϕν3q3


 1

αν1
ϕν1q1




2

≤

≤
n+d−1−ν2∑

ν1=1
q1∈Θν1

α2
ν1



n+d−1−ν2−ν1∑

ν3=0
q3∈Θν3

y�qϕν3q3




2

n+d−1−ν2∑

ν1=1
q1∈Θν1

1

α2
ν1

ϕ2
ν1q1


 .

Hence, the squared norm of the second component of the potential is

∥∥u2∥∥2
L2(Ω)

≤
n+d−1∑
ν2=1,
q2∈Θν2



n+d−1−ν2∑

ν1=1
q1∈Θν1

α2
ν1

1∫
0



n+d−1−ν2−ν1∑

ν3=0
q3∈Θν3

y�qϕν3q3(x3)




2

dx3

·
n+d−1−ν2∑

ν1=1
q1∈Θν1

1

α2
ν1

‖ϕν1q1‖
2
L2(0,1)


 .
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But we can compute the last sum

n+d−1−ν2∑
ν1=1
q1∈Θν1

1

α2
ν1

‖ϕν1q1‖
2
L2(0,1) =

n+d−1−ν2∑
ν1=1

1

α2
ν1

2

3
2−ν12ν1−1 =

1

3

n+d−1−ν2∑
ν1=1

2−(ν1+1)

≤ 1

6
, (5.9)

and consequently

∥∥u2∥∥2
L2(Ω)

≤ 1

6

∑
ν1+ν2≤n+d−1
q1∈Θν1 ,q2∈Θν2

α2
ν1

1∫
0



n+d−1−ν2−ν1∑

ν3=0
q3∈Θν3

y�qϕν3q3(x3)




2

dx3 .

Taking into account again the orthogonality of Haar wavelets ψν1q1ψν2q2 for
the expression of v1,2, we get exactly the previous sum:∥∥v1,2∥∥2

L2(Ω)
=

∫
Ω


 ∑
ν1+ν2≤n+d−1
q1∈Θν1 ,q2∈Θν2


αν1

n+d−1−ν2−ν1∑
ν3=0
q3∈Θν3

y�qϕν3q3(x3)


ψν1q1(x1)ψν2q2(x2)



2

dx

=

1∫
0

∑
ν1+ν2≤n+d−1
q1∈Θν1 ,q2∈Θν2

α2
ν1



n+d−1−ν2−ν1∑

ν3=0
q3∈Θν3

y�qϕν3q3(x3)




2

dx3 .

Hence, ∥∥u2∥∥2
L2(Ω)

≤ 1

6

∥∥v1,2∥∥2
L2(Ω)

.

Analogous manipulations provide the inequality ‖u3‖2L2(Ω) ≤ 1
6
‖v3,1‖2L2(Ω).

This amounts to the contention of the theorem

‖η‖0 ≤ C ‖ω‖0 ,

with the stability constant C satisfying

C ≤ 1√
6
= 0.4082 .
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Remark that C could be even smaller, because of the remaining term ‖v2,3‖2L2(Ω).

Now, we aim at a numerical evaluation of C. Denote A = 1/C2. The
Lagrange multipliers technique for the problem

inf
{
(dη,dη)L2(Ω) ; η ∈ V 1

n⊥, (η, η)L2(Ω) = 1
}
= A

instantly gives{ 1
2
(dη,dζ)L2(Ω) + (ζ,df)L2(Ω) − λ (η, ζ)L2(Ω) = 0 for all ζ ∈ V 1

n

(η,dg)L2(Ω) = 0 for all g ∈ V 0
n .

Set ζ = df in the first equation, then df = 0. Hence, we have to approximate
the first non-zero eigenvalue of the generalized eigenvalue problem for the
curl operator with zero Dirichlet boundary conditions:

(dη,dη)L2(Ω) = λ (η, ζ)L2(Ω) , η, ζ ∈ V 1
n .

This was done using the PPINVIT–algorithm of Hiptmair and Neymeyr [50]
with a CG-solver obtaining

A ' 19.7393 and C ' 0.2251.

5.4 Existence of stable potentials

In the previous sections we proved Prop. 5.1.1 for the particular cases l =
d − 1 or d = 3 and l = 1. We focus now on the case l = 0 in d dimensions
and we finish this chapter with a discussion on possibilities to complete the
proof for general l, d.

For the sake of simplicity, we consider again Dirichlet zero boundary con-
ditions. The next theorem is the Friedrich’s inequality. New is the depen-
dence on the dimension, known that the constant in the traditional Friedrich’s
inequality C ≈ diam(Ω).

Theorem 5.4.1. Given the sparse Whitney 1-form ω ∈ V 1
n with dω = 0,

there is a sparse Whitney 0-form η ∈ V 0
n with dη = ω such that

‖η‖0 ≤
1√
6d

‖ω‖0
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Proof. Consider a Whitney 1-form ω ∈ V 1
n , that is, cf. (4.2) and (3.28)

ω =
d∑
i=1

wi(x)dxi ,

with the components of the vector proxy

wi(x) =
∑

|�|1≤n+d−1

∑
q∈Θ�

β�qΨ
i
�q(x) .

Denote λi = (νi qi) and λ = (ν q). In order to simplify the notations, we
omit the summation limits in the following. Hence, the components are

wi(x) =
∑
�

βi�ψλi(xi)
∏
j 6=i

ϕλj(xj) .

Prop. 4.1.2 ensures the existence of the discrete potential η ∈ V 0
n , η = u(x),

such that dη = ω. The potential

u(x) =
∑
�

γ�

d∏
j=1

ϕλj(xj) ,

has the gradient

dη =
d∑
i=1

∑
�

γ�ϕ
′
λi
(xi)

∏
j 6=i

ϕλj (xj)dxi

=

d∑
i=1

∑
�

γ�2
(νi+1)/2ψλi(xi)

∏
j 6=i

ϕλj (xj)xi ,

as the derivative of the hat is a Haar-wavelet (3.10). Denoting aλi = aνi =
2(νi+1)/2, the equality dη = ω reduces to

aλi · γ� = βi� for all i and λ . (5.10)

Remark that the norm of the form is determined by the norm of the compo-
nents

‖ω‖2L2(Ω) =

d∑
i=1

∥∥wi∥∥2
L2(Ω)

,
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and rewrite the components of the vector proxy as

wi(x) =
∑
λi

(∑
�′
βi�
∏
j 6=i

ϕλj (xj)

)
ψλi(xi) ,

where λ′ = λ \ λi for fixed i. The orthogonality of the Haar-wavelets gives

∥∥wi∥∥2
L2(Ω)

=
∑
λi

∫ 1

0

· · ·
∫ 1

0

(∑
�′
βi�
∏
j 6=i

ϕλj (xj)

)2∏
j 6=i

dxj . (5.11)

Consider now the squared norm of the potential

‖η‖2L2(Ω) =

∫
Ω

(∑
�

γ�

d∏
j=1

ϕλj (xj)

)2

.

Fix i ∈ {1, 2, . . . , d}, rewrite the previous interior sum, and use the Cauchy-
Schwarz inequality:[∑

λi

(∑
�′
γ�
∏
j

ϕλj(xj)

)
ϕλi(xi)

]2
≤

∑
λi

(∑
�′
aλi · γ�

∏
j

ϕλj (xj)

)2

·
∑
λi

(
1

aλi
ϕλi(xi)

)2

.

Hence, the squared norm of the potential ‖η‖2L2(Ω) is less than∫ 1

0

· · ·
∫ 1

0

∑
λi

(∑
�′
aλi · γ�

∏
j 6=i

ϕλj(xj)

)2∏
j 6=i

dxj ·
∫ 1

0

∑
λi

(
1

aλi
ϕλi(xi)

)2

dxi .

We have seen in the previous section, inequality (5.9), that the last integral
is less than 1/6. Using the equality (5.10), we get

‖η‖2L2(Ω) ≤
∫ 1

0

· · ·
∫ 1

0

∑
λi

(∑
�′
βi�
∏
j 6=i

ϕλj(xj)

)2∏
j 6=i

dxj ·
1

6
. (5.12)

The relations (5.11) and (5.12) show that

6 ‖η‖2L2(Ω) ≤
∥∥wi∥∥2

L2(Ω)
.

As i was arbitrary fixed, this concludes the proof.
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The general case of l-forms in d dimensions is much more complex. Con-
sider a sparse Whitney (l + 1)-form ω ∈ V l+1

n , with dω = 0, that is

ω =
∑

|J |=l+1

wJdxJ ,

where
wJ(x) =

∑
λ

βJλΨ
J
�q(x) .

The existence of the discrete potentials ensures the solvability of the system

l+1∑
t=1

(−1)t+1aλjtγ
J\{t}
λ = βJλ , (5.13)

for the coefficients γIλ of the potential. In the previous particular cases we
could write down the solution. Then, we used some computational tricks on
it. In the general case, this approach is thwarted by the generality of the
exterior derivative operator d.

The challenge resides exactly from the description of the solution of
system (5.10) and not in the instability of the hierarchical hat functions.
Biorthogonal spline-wavelets systems on intervals are known [26, 27]. There
is the possibility of the construction of such systems on sparse grids, as in
[75]. For the full grid case, Urban [28, 84] constructed stable wavelet bases
in H(div; Ω) and H(curl; Ω). This construction is close related to the so-
lution of the system (5.13), such that it is not clear how to convey it to the
general case. However, we computed numerically the stability constant C,
as described in the final of Sect. 5.3. The results for d = 4 give existence of
stable discrete potentials in the general case.

n 5 6 7 8 9 10 11 12

l = 1 0.2247 0.2251 0.2251 0.2251 0.2251 0.2251 0.2251 0.2251

l = 2 0.3182 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183

n 4 5 6 7 8

l = 1 0.1834 0.1837 0.1838 0.1838 0.1838

l = 2 0.2247 0.2247 0.2251 0.2251 0.2251

l = 3 0.3178 0.3183 0.3183 0.3183 0.3183

Table 5.2: Numerically computed stability constant C in the cases d = 3
(top) and d = 4 (bottom)



Chapter 6

Algorithms and Data
Structures

The two pervasive ideas in the theory of the sparse grids, namely the hi-
erarchical decomposition and the reduction to the one dimensional case via
tensor product, feature prominently in the algorithms. The unidirectional
scheme is the basis of the multilevel transformations. The combination tech-
nique is the key to the approximate interpolation. As the hierarchical bases
lead to dense system matrices, the mass matrix multiplication is intricate
and needs particular attention. The stiffness matrix multiplication combines
the exterior derivative operator and the mass matrix. Then we present in
the next chapter the multigrid method for the Whitney forms on sparse grids
as a multiplicative scheme from the family of the semicoarsening techniques.
For the multigrid solver we need stencils for mass and stiffness matrices cor-
responding to the most general case of the anisotropic full grids. Generality
refers to three parameters: the dimension d of the space, the order l of the
differential form, and the multi-dimensional resolution n of the grid. In the
final section we examine the computational costs of the multigrid algorithm
and study its convergence empirically.

First, we describe and motivate the algorithms in a general form. and
avoid any consideration on programming language and data structure. We
postpone technical and implementation details until the last two sections of
this chapter. However, we use some C++-terminology, as “container” and
“iterator”, but their meaning will be clear in the context. They should be
understood rather as general concepts than in the strict C++ sense.

65
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Figure 6.1: Hierarchical Coefficients
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Figure 6.2: Hierarchical Data Structure

6.1 Multilevel Transforms

The hierarchical decomposition is reflected in the algorithms as the natural
tree structure of data. The tensor product mirrors as the unidirectional
scheme.

For the theory, the advantage of the hierarchical representation is the
quick decay (depending on the local smoothness of the function to interpo-
late) of the hierarchical coefficients (Fig. 6.1). This property can be used for
the adaptive representation of functions. In this context, the data structure
is naturally hierarchical, see Fig. 6.2. We may think the data structure in
terms of trees, independently of the concrete data organization.

The tensor product enables us to reduce the algorithms to one-dimensional
considerations. Consider first that we have to represent hierarchically an l-
form in d-dimensions on an anisotropic full grid of resolution n. With the
notations from Sect. 3.2, we identify each face F = [x�q; ~ei1 , ~ei2 , . . . , ~eil] with
its corresponding (nodal) degree of freedom αF :=

∫
F

ω. As suggested in Sect.

3.2, we must work on the components of the Whitney form and we must first
perform the wavelet transform and then the hierarchical transform. Both
steps follow the unidirectional principle developed in [6, 8, 19, 23, 29]: reduce
the task to the one dimensional case by recursion. In order to describe
such an algorithm, we use two main tools: a container keeping the relevant
points, and an iterator which runs over points in the hierarchical order. In
the tree terminology, this means the level-order traversal [73]. Moreover,
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given a point of the current grid, we can extract a (d − 1)-dimensional and
an 1-dimensional orthogonal subgrids containing that point. Imagine that
we just cut the grid over a line parallel to one of the coordinate axes or over
the corresponding orthogonal (d − 1)-plane. The set of all points forms a
container, and each of the sections is a container similar to the original one,
adapted to its dimension. Starting from an initial point, we can iterate over
the points on the line (the “right” loop in the following) or over the points
on the (d− 1)-plane (the “left” loop).

Whatever the multilevel transformation is, it follows the unidirectional
scheme. We describe this scheme intuitively as a traversal of the data struc-
ture, before we give a formal description in Fig. 6.4.
if (d == 1)

• one dimensional transform;

else

• run over the ‘‘right’’ loop (last coordinate is varying):

for each point on this line take the orthogonal (d−1)-section
and apply recursion (d := d− 1);

• run over the ‘‘left’’ loop (first d−1 coordinates are varying):

for each point on this (d−1)-plane take the orthogonal one

dimensional section and apply recursion (d := 1);

In the last two steps, we run over the same points but we look at the
grid from different perspectives. As example, we present the history of the
algorithm in the case d = 2, and n = (2, 3) only with interior points (νq) =
(level index). Compare to Fig. 6.3.

• (1, 1)(1, 1) run on line parallel to Ox: (1, 1)(1, 1), (2, 1)(1, 1), (1, 1)(3, 1)
• (1, 2)(1, 1) run on line parallel to Ox: (1, 2)(1, 1), (2, 2)(1, 1), (1, 2)(3, 1)
• (1, 2)(1, 3) run on line parallel to Ox: (1, 2)(1, 3), (2, 2)(1, 3), (1, 2)(3, 3)
• (1, 3)(1, 1) run on line parallel to Ox: (1, 3)(1, 1), (2, 3)(1, 1), (1, 3)(3, 1)
• (1, 3)(1, 3) run on line parallel to Ox: (1, 3)(1, 3), (2, 3)(1, 3), (1, 3)(3, 3)
• (1, 3)(1, 5) run on line parallel to Ox: (1, 3)(1, 5), (2, 3)(1, 5), (1, 3)(3, 5)
• (1, 3)(1, 7) run on line parallel to Ox: (1, 3)(1, 7), (2, 3)(1, 7), (1, 3)(3, 7)

Now, change perspective:

• (1, 1)(1, 1) run on line parallel to Oy: seven points
• (2, 1)(1, 1) run on line parallel to Oy: seven points
• (2, 1)(3, 1) run on line parallel to Oy: seven points
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Figure 6.3: First (y) and second (x) perspective for d = 2,n = (2, 3)

In the pseudocode description of the unidirectional scheme (Fig. 6.4), we
denote the grid extraction functions by subgrid2() and subgrid1() for the
(d−1)- and the 1-dimensional variants, respectively. More precisely, starting
from a point P which corresponds to (νq), subgrid2() extracts the subgrid
in the (d− 1)-dimensional plane containing the point P and being parallel to
the first d−1 directions. In the traversal of this subgrid, the ν1, . . . , νd−1 and
q1, . . . , qd−1 vary, whereas νd and qd are fixed. On the contrary, the function
subgrid1() extracts the subgrid in the line containing the point P and being
parallel to the last direction. In the traversal of this subgrid, the ν1, . . . , νd−1

and q1, . . . , qd−1 are fixed, whereas νd and qd vary. The point P indicated
by an iterator y may be obtained by y→P. The beginning of a container is
returned by begin() function, while end() points immediately after the last
entry in the container.

Hence, we have to provide the implementation of the hierarchical, the
wavelet, the transpose and the inverse transforms only for the one di-
mensional case.

In the description of the hierarchical transforms, we follow the guiding
lines of [90] and [6]. The hierarchical neighbors of a node i are the two
geometrical nearest grid points higher situated in the hierarchy (at a lower
discretization level). Suppose that we have two functions left and right that
provide the hierarchical neighbors. Then the hierarchical coefficients are
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transform(int d, container u)

{
if(d == 1) { . . . // 1D transform }
else

{
container right = u.subgrid1(u.begin()→P)
iterator rit = right.begin()
while( rit != right.end() ) {

container left = u.subgrid2(rit→P)
transform(d − 1, left)
++rit

}
container left = u.subgrid2(u.begin()→P)
iterator lit = left.begin()
while( lit != left.end() ) {

container right = u.subgrid1(lit→P)
transform(1, right)
++lit

}
}

}

Figure 6.4: Unidirectional scheme

computed from the nodal coefficients by

vi = ui −
1

2
(uleft(i) + uright(i)) , (6.1)

whereas the backward transformation is

ui = vi +
1

2
(uleft(i) + uright(i)) . (6.2)

With an iterator which traverses the tree data structure in level-order, we
copy the nodal values in a vector u. That is, we transform the hierarchical
structure to a linear one. Now, the hierarchical neighbors of the element
i (at level l less than the resolution n) are just the i − 2n−l and i + 2n−l

elements. The hierarchical representation arises from the nodal coefficients
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over the bottom-up loop:

for l from n by 1 downto 1 do

for i from 2n−l by 2n−l+1 to 2n − 1 do

u[i] := u[i]− 1
2
(u[i− 2n−l] + u[i+ 2n−l]) .

The back transformation is the top-down loop:

for l from 1 by 1 to n− 1 do

for i from 2n−l−1 by 2n−l+1 to 2n − 1 do

u[i] := u[i] + 1
2
(u[i− 2n−l−1] + u[i+ 2n−l−1]) .

The Haar-wavelet transform follows the known pyramid algorithm [76,
78], schematically presented in Fig. 6.5. At the bottom of a pyramid reside
the scale coefficients, and at the top sit the wavelet coefficients. The wavelet
transform acts bottom-up, whereas the reverse transform goes top-down. In

+1

+1 +1

−1

a11

a21 a23

a31 a33 a35 a37

a41 a43 a45 a47 a49 a4 11 a4 13 a4 15

b11

b21 b23

b31 b33 b35 b37

Figure 6.5: Pyramid algorithm

order to avoid rounding error, we do not norm the Haar-wavelets. For a
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vector u, the wavelet transform reads

for l from n by 1 downto 1 do

for i from 2n−l by 2n−l+1 to 2n − 1 do

a := u[i]
u[i] := 1

2
(u[i]− u[i+ 2n−l])

u[i+ 2n−l] := 1
2
(a + u[i+ 2n−l]) ,

whereas the scale transform is:

for l from 1 by 1 to n do

for i from 2n−l by 2n−l+1 to 2n − 1 do

a := u[i]
u[i] := u[i] + u[i+ 2n−l]
u[i+ 2n−l] := −a + u[i+ 2n−l] .

The Haar-wavelets are orthogonal, so the scale and the wavelet transform
are transposed to each other, up to a scaling due to the use of the not normed
basis functions. We finish this section by the transpose (with respect to the
Euclidian inner product) of the hierarchical and the nodal transformations.
The transpose of the hierarchical transform is:

for l from 1 by 1 to n do

for i from 2n−l by 2n−l+1 to 2n − 1 do

u[i− 2n−l] := u[i− 2n−l]− 1
2
u[i]

u[i+ 2n−l] := u[i+ 2n−l]− 1
2
u[i]

and the transpose of the nodal transform is:

for l from n by 1 downto 1 do

for i from 2n−l by 2n−l+1 to 2n − 1 do

u[i− 2n−l] := u[i− 2n−l] + 1
2
u[i]

u[i+ 2n−l] := u[i+ 2n−l] + 1
2
u[i].

6.2 Interpolation

In the previous section, we used containers corresponding to full grids, as
we were concerned by anisotrop full grids. Now, we deal with the interpo-
lation on sparse grids, so the containers and the iterators correspond to the
sparse grids, as in Fig. 6.6. The general unidirectional scheme (Algorithm
transform) applies to the sparse grid in the case of 0-forms. In the case of
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Figure 6.6: First (y) and Second (x) Perspective for d = 2, n = 3

general l-forms (1 ≤ l ≤ d), the degrees of freedom are integrals over l-faces.
If we have all this “nodal” coefficients at our disposal, we can apply the
wavelet transform for the directions from I and the hierarchical transform
for the other directions, obtaining the “hierarchical” coefficients. But this al-
gorithm needs the storage of all degrees of freedom corresponding to the full
grid. If we refer only to the sparse grid, we drop out essential information.
The nodal coefficients are not details, they are necessary. Let us explain in
detail this new aspect that crops up when moving from 0-forms to general
l-forms.

We are analytically given an l-form ω in d dimensions, for instance the
right hand side of some partial differential equation, as in Sect. 4.2. The task
is to represent ω hierarchically on the sparse grid. In the case of 0-forms, the
nodal coefficients from the sparse grid are enough for the interpolation. The
degrees of freedom are in this case just the values of the function in the grid
points. Replacing the degrees of freedom for l-forms (l > 0) by these nodal
values of functions leads to an extreme wavelet crime (in the sense of Strang
[78]), which destroys the convergence. Indeed, since the degrees of freedom
are integrals over faces, we are not allowed to approximate them only by the
value in one point. The elements have different dimensions, so a naive one
or two point quadrature rule cannot work. Bluntly speaking, if we do so, we
squander essential information.

A solution may be an adaptive quadrature rule: for larger faces, employ
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more evaluations points. As proved in [33], for 1-forms at level m, the trape-
zoidal rule with 2n−m points on each edge of length 2−m is enough for the
convergence. We do not present here this approach, since its computational
complexity is a major drawback. Let us see why.

For 0-forms we need 2n
(
nd−1

(d−1)!
+O(nd−2)

)
function evaluations, as showed

in [23]. For one coordinate of the vector representative of an l-form (1 ≤ l ≤
d − 1), we need a number of function evaluations equal with 2ln times the
number of points in the sparse grid in a (d− l)-dimensional cube, that is

2ln × 2n
(

nd−l−1

(d− l − 1)!
+O(nd−l−2)

)
.

For l = d, we need 2dn function evaluations, as for the full grid. The values
or the points are not stored, so no extra memory is required.

Suppose that we perform a Galerkin-discretization of the equation (4.16)
from Sect. 4.2, based on the space of Whitney-l-forms on sparse grids, and
we have at our disposal some efficient solver, as the multigrid method. In
this case, the adaptive quadrature rule, used for the evaluation of the right
hand side would destroy the rapid convergence in the multilevel algorithm.
This is the reason of looking for another way to evaluate the interpolation
operator.

In Sect. 4.2, we presented the approximate interpolation and we proved
that the convergence order from Theorem 4.1.1 holds for this operator, too.
We mentioned that the implementation relies on the combination technique
[42, 63, 64, 70].

The combination formula (4.3) tells us that the interpolant IInuI of uI
into the sparse grid space V I

n is just a linear combination of the interpolants
of uI into full anisotropic spaces V I

� = Range(II�), with |ν|1 = n + d − s.
The dimension of these spaces is of order O(2n). For each component II�uI ,
we perform the wavelet transform in directions from I and the hierarchical
transform for the other directions. In this way, we obtain the hierarchical
representation of II�uI . The addition of two functions defined on different
grids is now just the addition of single coefficients. This is due to the fact that
the hierarchical basis functions that are associated with the grid points which
belong to both grids agree. We simply add the hierarchical representations,
in order to construct the interpolant of uI in the hierarchical basis. Remark
that we collect only the hierarchical coefficients corresponding to sparse grid
points. But the others can be dropped, because they are indeed details,
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yet. We stress that the use of combination technique avoids the premature
elimination of details and the squander of information.

The approximate interpolation operator from Sect. 4.2 emerges by replac-
ing the “exact” interpolation operators Iconstν with those based on the two

point trapezoidal rule Ĩconstν . Hence, for the computation of ĨI�uI , we need
only the values of uI in the sparse grid points. On each anisotropic mesh,
we apply the two point trapezoidal rule, using an unidirectional scheme. We
present an example in Fig. 6.7, where the focus is on the 2-form in 2 dimen-
sions given by the vector proxy u(x, y) = 4x(1− x) · 4y(1− y).

We pursue the example presenting in Fig. 6.8 the steps of the interpo-
lation algorithm based on the combination technique. For each interpolant
II�uI we apply first the wavelet transform in the x-direction and then in the
y-direction. Finally, we simply add the coefficients. The hierarchical coef-
ficients corresponding to points not belonging to the sparse grid are just 0,
because the associated basis functions are not in the sparse grid space. The
computation of the nodal coefficients on the sparse grid is not as simple as
for the hierarchical coefficients. It needs another interpolation, from low to
high level grids. Dropping the nodal coefficients corresponding to points not
existing in the sparse grid is not allowed: they are not details, as the bottom
line of Fig. 6.8 clearly illustrates. This is the reason to exploit the implicit
form of the nodal representation, given by the combination formula (4.4).

We want to describe the interpolation algorithm via combination tech-
nique as pseudocode. In order to represent a Whitney form on a sparse grid
in a computer code, we have to store the coefficients of some kind of basis rep-
resentation. The most sensible choice is the hierarchical basis representation.
For a discrete l-form on the sparse grid ωn ∈ Sn it reads

ωn =
∑
I


 ∑

|�|1≤n+d−1

∑
q∈Θ�

βI�qΨ
I
�q


 dxI . (6.3)

The βI�q are the hierarchical coefficients and they uniquely determine ω.
Assuming a sequential ordering of the index sets, the hierarchical coefficient
can be lumped into a vector ~ω = (βI�q)�,q,I . In fact, the arrow ~ can be
regarded as an operator that maps the Whitney l-form ωn to its hierarchical
coefficients.
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Figure 6.7: Interpolation on sparse grids of 2-forms in two dimensions
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Definition 6.2.1. By Sn and A� we refer to the spaces of coefficient vectors
corresponding to the sparse grid and the anisotropic full grid discretization
of resolutions n and ν, respectively.

We don’t discuss here the data structure used to store the coefficients βI�q.
Rather, we take for granted that such a data structure is available and offers
an interface in the form of the function access(I,P), which accesses the
value corresponding to the index I and grid point P = (νq). As discussed in
Sect. 3.2, by a grid point we mean a tuple (νq) of a level index ν and a posi-
tion index q ∈ Θ� . A crucial assumption is that it takes a constant amount
of time to retrieve any coefficient from the data structure. For instance, hash
tables come close to meeting this requirement [71, Sect. 6.2]. We present our
particular choice in Sect. 6.4.

Suppose that a reading procedure provides us with the values of the
components of the (continuous) differential form in the grid points. Then, for
the construction of the Whitney forms living on anisotropic full grids from the
combination formula (4.4), we need an extraction procedure extract that
amounts to mere copying of certain components of the coefficient vectors .

extract(~ρ ∈ Sn, ~λ ∈ A�)

{
for each point P in the grid of A� and each index I

~λ.access(I,P) = ~ρ(I,P)
}

Figure 6.9: Extraction of the hierarchical coefficients corresponding to an
anisotropic full grid

For a Whitney form on an anisotropic full grid declarated simply by
A� λ(~λ), we have the function trap 2p(), which follows the unidirectional
scheme and which, for the directions with constant interpolation, uses the
two point trapezoidal rule. The transformation to the hierarchical coefficients
to wh() follows the unidirectional scheme, too (as discussed in the previous
section). In the one dimensional case, it uses the wavelet transform for
the directions with interpolation by constants and the hierarchical transform
otherwise. In Fig. 6.10 we describe the combination technique in pseudocode.
Note that the addition of Whitney forms living on a sparse grid and an
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underlying anisotropic full grid is done in such a way that the added degrees
of freedom agree. The vector ~ω ∈ Sn is initialized by zero, and ~ρ ∈ Sn
contains the values of the components of the continous differential form in
the grid points.

combin tech(const &~ρ ∈ Sn, &~ω ∈ Sn)

{
for each s = 1, 2, . . . , d {

for each level ν such that |ν|1 = n+ d− s:

extract(~ρ,~λ); A� λ(~λ)
λ.trap 2p()
λ.to wh()
ω += (−1)s−1

(
d−1
s−1

)
λ

}
}

Figure 6.10: Combination technique procedure

interp to full(const ~ρ ∈ Sn, &~ω ∈ An)

{
for each s = 1, 2, . . . , d {

for each level ν such that |ν|1 = n+ d− s:

extract(~ρ,~λ); A� λ(~λ)
λ.trap 2p()
λ.an to is()
ω += λ

}
}

Figure 6.11: Procedure for the interpolation from the sparse to the full grid

We finish this section by the computation of the error produced by the
approximate interpolation operator. In order to evaluate numerically the
interpolation error, we compute first by interp to full the values of the
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Whitney form in the full grid points. This can be done directly, using the
implicit form of the nodal representation (4.4). We start again from the
values of the component of the (continuous) differential form in the grid
points and we write in a vector corresponding to a Whitney form on the full
isotropic grid of resolution n. In Fig. 6.11, an to is() interpolates from the
anisotropic to the isotropic full grid. This can be easily done by recursion.
For simplicity, we give here only a crude description:

• for each point in the (d−1)-dimensional anisotropic full grid

perform 1D-interpolation (fill in the d-direction)
• if d > 1, for each point in the obtained 1D full structure

apply recursion to the (d− 1)-dimensional case.

Once we know the Whitney form on the full grid, we employ a 2-point Gauss
quadrature formula in order to obtain the L2-norm of error: ‖ω − Inω‖L2(Ω).
We rely on the tensor product structure for a recursive unidirectional algo-
rithm.

�� ��
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valuesfromvalues

= required values

(1D)

values
= stored values

1. compute 

2. store them to corners: 
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x x

x x

x

x

Figure 6.12: Algorithm schema for interpolation in Gauss points

We don’t need supplementary storage space for the Gauss quadrature
points. Compute first the local error, that is the corresponding integral on
each hyper-cube, and then simply sum over all elements in the grid. For
one hyper-cube, we compute by the unidirectional scheme the values of all
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coordinate functions of Inω in the 2d Gauss points and we store them in the
vertices (see figure 6.12 for the two dimensional case).
In the next run over the vertices of the hyper-cube, we apply the Gauss
quadrature rule with 2d points for d-dimensions. We obtain an order O(2−4n)
approximation of the error ‖ω − Inω‖L2(Ω). Working with the full grid means
that we cannot perform the previous computations for very fine resolutions
n. For reasons of storage capacity and computational time, we obtained the
estimations only for n = 12 in the two dimensional case and for n = 8 in the
three dimensional case. see Fig. 4.5, 4.6. This clearly illustrates the curse
of dimensionality and the remedy proposed by the sparse grid approach (see
Fig. 4.3).

6.3 Mass and Stiffness Matrix Multiplications

We want to discretize (2.4) by means of conforming finite elements on sparse
grids, e.g. by means of sparse Whitney forms at a resolution n. Here, by
resolution we mean the discretization level n in the definition 4.1.1 of the
spaces of sparse Whitney forms. For the sake of simplicity we only consider
the coefficients α = β = 1 as in Sect. 4.2. Abbreviate the bilinear form in
the variational problems by

a(ω, η) := (dω,dη)L2(Ω) + (ξ, η)L2(Ω) and b(η) := (ξ, η)L2(Ω) .

The homogeneous Dirichlet boundary conditions can easily be taken into
account: since the degrees of freedom for a Whitney l-form are defined as
integrals over the corresponding l-faces (see Sect. 2.2), all we have to do is
to set the degrees of freedom located on the boundary to zero. Thus, finite
element subspaces of H0(d,Ω) can be obtained.

Plugging the representation (6.3) into the variational problem (5.1) and
testing with all hierarchical basis functions, we obtain a large linear system

Al ~ω = ~η . (6.4)

Here Al is the matrix arising from plugging the hierarchical basis functions
into the bilinear form a(·, ·). As a(·, ·) is the sum of two contributions, Al
can be split into a mass matrix Ml, corresponding to (ω, η) 7→ (ω, η)L2(Ω),
and a stiffness matrix Sl arising from (ω, η) 7→ (dω,dη)L2(Ω). As we use
the hierarchical representation, these matrices not sparse. However, as we
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use iterative schemes for the solution of (6.4), we need not to compute them
explicitly, but only need to multiply them with a vector of degrees of freedom.

To perform the multiplication of a vector with Al in the case of general
dimension d, we must apply the so-called uni-directional strategy as described
for 0-forms (Lagrangian finite elements) in [23]. Let us first consider the mass
matrix multiplication. Denoting v�,r,I := ΨI

�rdxI , we have to compute the
L2-scalar product

(M~ω)�,r,J = (ωn, v�,r,J) =
∑

|�|1≤n+d−1

∑
q∈Θ�

βJ�q
(
ΨJ
�q,Ψ

J
�r

)
L2(Ω)

,

because only the components belonging to the same multi-index I are cou-
pled. The tensor product structure enables us to write each scalar product
in the above sum as(

ΨJ
�q,Ψ

J
�r

)
L2(Ω)

=
∏
j∈J

(
ψνjqj , ψηjrj

)
L2([0,1])

·
∏
i 6∈J

(ϕνiqi, ϕηiri)L2([0,1]) .

As the Haar-wavelets are orthogonal, the first terms in the above product are
1 if νj = ηj and qj = rj, and 0 otherwise. Hence, the directions in which the
I-component is constant causes no difficulties as far as multiplication with
the mass matrix Ml is concerned. For each component of the vector proxy of
the l-form, the problem reduces to a mass matrix multiplication for 0-forms
in d − l dimensions. Consequently, we can apply the well known algorithm
for Lagrangian finite elements [6, Sect. 3.1] to the case of general Whitney
l-forms.

Let us recall the fundamental idea [6, 19, 23] for the mass matrix multi-
plication in the one dimensional case. Test a Whitney 0-form uh with a fixed
hierarchical basis function ϕk j

(uh, ϕk j) = (
∑
l i

ul iϕl i , ϕk j)

and decompose the last expression into a sum over the hat functions ϕl i,
whose support contain the support of ϕk j, and a sum over the hat functions
ϕl i, whose support is contained by the support of ϕk j.

(uh, ϕk j) = (
∑

(l i)⊃(k j)

ul iϕl i , ϕk j) + (
∑

(l i)⊆(k j)

ul iϕl i , ϕk j) . (6.5)
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By (l i) ⊃ (k j) we mean the set of those (l i) such that supp(ϕl i) ⊃ supp(ϕk j),
and (l i) ⊆ (k j) is the set of those (l i) such that supp(ϕl i) ⊆ supp(ϕk j).
Remark that the sums correspond to the hierarchical predecessors and, re-
spectively, successors of the actual node (k j). Note also, it is not important
which sum the “middle” term (ϕk j , ϕk j) joins.
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Figure 6.13: Nodes involved by upper and under

We present an example in Fig. 6.13 for k = 2 and j = 1: (2 1), (3 1),
(3 3) ⊆ (2 1), whereas (1 1) ⊃ (2 1). Balder [6, p. 26] observed that for the
L2 scalar product it holds

 ∑
(l i)⊃(k j)

ul iϕl i , ϕk j


 = hk

1

2
(uleft(k,j) + uright(k,j)) ,

which remembers the backward transformation (6.2). Hence, the first sum
can be computed during a top-down pass through the data structure in hier-
archical order. It is named upper because it accumulates terms from the
upper part of actual node. The second sum can be computed during a
bottom-up pass through a copy of the data structure. It is named under

because it accumulates terms sitting under the actual node. Afterwards, the
two structures are added. Clearly, the data structure contains now the result
of the mass matrix multiplication.

The same idea emerges in the d-dimensional case. We follow the guiding
lines of [6, 8]. Test the sparse Whitney 0-form uh with the d-dimensional hat
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function ϕkj:

(uh, ϕkj) =

∫
[0,1]d

uhϕk j =
∑

|l|1≤n+d−1
l∈Nd

∑
i∈Il

ul i

d∏
ν=1

1∫
0

ϕlν iν · ϕkνjν . (6.6)

First, apply the unidirectional idea, that is the idea of the reduction to the one
dimensional case. We isolate the terms corresponding to the last coordinate

(uh, ϕk,j) =

∑
|l′|1≤n+d−2
l′∈Nd−1 i′∈Il′


n+d−1−|l′|1∑

ld=1

∑
id∈Ild

u(l′,ld)(i′,id)

1∫
0

ϕldid · ϕkdjd


 d−1∏

ν=1

1∫
0

ϕlνiν · ϕkνjν

=
∑

|l′|1≤n+d−2
l′∈Nd−1

∑
i′∈Il′

v(l′,kd)(i′,jd)

∫
[0,1]d−1

ϕl′ i′ · ϕk′ j′ , (6.7)

where we denoted

v(l′,kd)(i′,jd) =

n+d−1−|l′|1∑
ld=1

∑
id∈Ild

u(l′,ld)(i′,id)

1∫
0

ϕldid · ϕkdjd .

This means that we sum first over the terms of an 1-dimensional case, and
then over the terms corresponding to a (d−1)-dimensional case. Why should
we prefer this order of summation? In fact, we can also sum in the reverse
order. That is, we can write the formula (6.6) in another way:

(uh, ϕk,j) =

n+d−2∑
ld=1

∑
id∈Ild




∑
|l′|1≤n+d−1−ld
l′∈Nd−1 i′∈Il′

u(l′,ld)(i′,id)

∫
[0,1]d−1

ϕl′ i′ · ϕk′ j′




1∫
0

ϕldid · ϕkdjd =

=
n+d−2∑
ld=1

∑
id∈Ild

w(k′,ld)(j′,id)

1∫
0

ϕldid · ϕkdjd , (6.8)
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where we denoted the sum corresponding to the first d− 1 coordinates

w(k′,ld)(j′,id) =
∑

|l′|1≤n+d−1−ld
l′∈Nd−1

∑
i′∈Il′

u(l′,ld)(i′,id)

∫
[0,1]d−1

ϕl′ i′ · ϕk′ j′ .

Unfortunately, we can not use directly neither (6.7) nor (6.8). The prob-
lem is that it is possible to have |(l′, kd)|1 > n + d − 1 for the first case, or
|(k′, ld)|1 > n+ d− 1 for the second. This means that the implementation of
one of the two representation would need more storage points than actually
existing, such that the sparse grid would degenerate in a full one, see [6,
pp. 29-30].
The solution is to mix the two representations and to exploit the idea pre-
sented for the one dimensional case:

(uh, ϕk,j) = T1 + T2 .

The first term T1 corresponds to the first order of summation, but restricting
the one dimensional sum only to the hat functions ϕldid whose support is
contained in the support of ϕkdjd

T1 = (6.9)

∑
|l′|1≤n+d−2

l′∈Nd−1 i′∈Il′




∑
1≤ld≤n+d−1−|l′|1

id∈Ild
(ld id)⊆(kd jd)

u(l′,ld)(i′,id)

1∫
0

ϕldid · ϕkdjd




d−1∏
ν=1

1∫
0

ϕlνiν · ϕkνjν .

The second term T2 corresponds to the second order of summation, restricting
the one dimensional sum only at hat functions ϕldid whose support contains
in the support of ϕkdjd

T2 = (6.10)

∑
1≤ld≤n+d−2

id∈Ild
(ld id)⊃(kd jd)




∑
|l′|1≤n+d−1−ld
l′∈Nd−1 i′∈Il′

u(l′,ld)(i′,id)

∫
[0,1]d−1

ϕl′ i′ϕk′ j′




1∫
0

ϕldidϕkdjd .
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The difficulty encountered before does not arise anymore: if (ld id) ⊃ (kd jd),
then ld < kd, so |k′|1 + ld < |k′|1 + kd ≤ n + d − 1 (just what we wanted
for the second sum), and if (ld id) ⊆ (kd jd), then ld ≥ kd, so |l′|1 ≤ n +
d − 1 − ld ≤ n + d − 1 − kd, that is |k′|1 + kd ≤ n + d − 1 (appropriate
for the first sum). We can therefore use a recursion schema in order to
compute separately (6.9) and (6.10) once for the whole vector u. As the
formulas show, the recursion schema should act differently on two copies
of the vector, as presented in Figure 6.14, where ‘‘under’’ computes the

d D

"under"

"upper"(d-1) D massmult

(d-1) D massmult

add

Figure 6.14: Recursion schema for mass matrix multiplication

interior sum in (6.9) and ‘‘upper’’ computes the exterior sum in (6.10).
They are procedures that refer only to one dimensional grids. We sketch the
data modification during the algorithm for the case d = 2, n = 3. Remark
“changing perspective” in descending the tree. The recursion acts in following
way for the first sum (see figure 6.6):

• (1, 1)(1, 1) ‘‘under’’ in direction y : write to positions

(1,1)(1,1)
(1,2)(1,1) (1,2)(1,3)
(1,3)(1,1) (1,3)(1,3) (1,3)(1,5) (1,3)(1,7)

• (2, 1)(1, 1) ‘‘under’’ in direction y : write to positions

(2,1)(1,1)
(2,2)(1,1) (2,2)(1,3)

• (2, 1)(3, 1) ‘‘under’’ in direction y : write to positions

(2,1)(3,1)
(2,2)(3,1) (2,2)(3,1)

• (3, 1)(1, 1) ‘‘under’’ in direction y : write to position (3,1)(1,1)
• (3, 1)(3, 1) ‘‘under’’ in direction y : write to position (3,1)(3,1)
• (3, 1)(5, 1) ‘‘under’’ in direction y : write to position (3,1)(5,1)
• (3, 1)(7, 1) ‘‘under’’ in direction y : write to position (3,1)(7,1)
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Now change perspective, in order to do recursion:

• (1, 1)(1, 1) massmult in direction x: write to positions

(1,1)(1,1)
(2,1)(1,1) (2,1)(3,1)
(3,1)(1,1) (3,1)(3,1) (3,1)(5,1) (3,1)(7,1)

• (1, 2)(1, 1) massmult in direction x: write to positions

(1,2)(1,1)
(2,2)(1,1) (2,2)(3,1)

• (1, 2)(1, 3) massmult in direction x: write to positions

(1,2)(1,3)
(2,2)(1,3) (2,2)(3,3)

• (1, 3)(1, 1) massmult in direction x: write to position (1,3)(1,1)
• (1, 3)(1, 3) massmult in direction x: write to position (1,3)(1,3)
• (1, 3)(1, 5) massmult in direction x: write to position (1,3)(1,5)
• (1, 3)(1, 7) massmult in direction x: write to position (1,3)(1,7)

The second sum is computed in a similar way. The only difference is that it
applies first recursion and then ‘‘upper’’. Changing the perspective may
provide difficulties when the working structure is a tree. In that case, one
should add a tree with the other perspective (it points to the same addresses
corresponding to grid points, of course). Our version uses associative arrays
or hash tables instead of trees and avoids this problem. We describe the mass
matrix multiplication algorithm in pseudocode in Fig. 6.15. The parameters
are a (sparse grid )container u and three integers: d and n refer to the
dimension and resolution of the actual sparse grid, whereas s is related to
the memory management. The latter will be explained in detail in Sect.
6.5. Also related to the memory management are the vectors of degrees of
freedom p[i] which appear in Fig. 6.15 as a global parameter in the addition
step. Moreover, we use an auxiliary function get1n(), which returns the
| · |1-norm of the fixed elements in the level of the actual container; the aim
is to pass the correct resolution to the corresponding subgrid in recursion.

It is noteworthy that only the substructure to be used has to be copied,
otherwise, the linear complexity of the algorithm is lost.

Concerning the multiplication by the stiffness matrix, there are new as-
pects that come into play because of the generality of l-forms. For the rest
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massmult(container u, int d, n, s)

{
container v(u)
container lu = u.subgrid2(u.begin()→P)
iterator lit = lu.begin()
while( lit != lu.end() ) {

container ru = u.subgrid1(lit→P)
under(ru, n+ d− 1− ru.get1n(d), s)
++lit

}
if(d > 1) {

container ru = u.subgrid1(u.begin()→P)
iterator rit = ru.begin()
while( rit != ru.end() ) {

container lu = u.subgrid2(rit→P)
massmult(lu, d−1, n+1−lu.get1n(d), s−1)
++rit

}
container rv = v.subgrid1(v.begin()→P)
iterator rit = rv.begin()
while( rit != rv.end() ) {

container lv = v.subgrid2(rit→P)
massmult(lv, d− 1, n+ 1− lv.get1n(d), s)
++rit

}
}

container lv = v.subgrid2(v.begin()→P)
iterator lit = lv.begin()
while( lit != lv.end() ) {

container rv = v.subgrid1(lit→P)
upper(rv, n+ d− 1− rv.get1n(d), s− d+ 1)
++lit

}
p[s− d] += p[s− d+ 1] // addition step

}

Figure 6.15: Algorithm for the multiplication by the mass matrix
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of this section we concentrate on the multiplication by the stiffness matrix.
We want to compute the L2-scalar product

(dωn, dv�,r,I) =: (S~ω)�,r,I .

As dV l
n ⊂ V l+1

n , we can write D for the matrix of the exterior derivative on
the sparse grid, and we have obviously

S~ω = DTMl+1D~ω .

As proved in [6] for the case of Lagrangian finite elements, the mass matrix
multiplication algorithm needs a number of operations proportional to the
number of grid points. Hence, it remains to design an algorithm with the
same property for the computation of the exterior derivative of a Whitney
form.

We begin by clarifying the ordering of the components of an l-form ω =∑
I uIdxI . Each component uI is associated with the index I = {i1, . . . , il} ⊂

{1, . . . , d} with i1 < i2 < · · · < il. By the definition of the exterior derivative

dω =
∑
I

(duI) ∧ dxI =
∑
I

(
d∑

k=1

∂

∂xk
uI dxk

)
∧ dxI ,

so we have to insert k at its appropriate place in I, such that I ∪ {k} is a
valid index. As dxk∧dxI = 0 if k ∈ I, for the Whitney l-from ωn the exterior
derivative is

dωn =
∑
I

∑
k 6∈I


 ∑

|�|1≤n+d−1

∑
q∈Θ�

βI�q
∂

∂xk
ΨI
�q


 dxk ∧ dxI .

As the derivative of a hat function is a Haar-wavelet, we have

dωn =
∑
I

∑
k 6∈I


 ∑

|�|1≤n+d−1

∑
q∈Θ�

βI�q · 2(νk+1)/2ΨI∪{k}
�q


 dxk ∧ dxI .

Hence, we compute the vector of degrees of freedom S~ω corresponding to an
(l + 1)-form by the above sum. The conclusion is that we obtain the exte-
rior derivative and the multiplication by the stiffness matrix in a number of
operations that is proportional to the number of sparse grid points. In pseu-
docode notation, the algorithm for the computation of the discrete exterior
derivative ~µ = D~ω is depicted in Fig. 6.16.



88 Chapter 6. Algorithms and Data Structures

for each point P = (ν,q) and index I

for each t ∈ {1, . . . , d} \ I {
sgn = card{i ∈ I; i < t}
s := (−1)sgn; J = I ∪ {t}
ct = s * 2(νt+1)/2

~µ.access(J,P) = ct * ~ω.access(I,P)
}

Figure 6.16: Algorithm for the evaluation of the exterior derivative

6.4 Software Abstractions

So far, we have examined theory and general algorithms for sparse Whitney
forms. But the way from these concepts to an efficient code is still long.
Now, we explain our choice of the data structure together with different
details of the code design. We stress that the efficiency of the mass matrix
multiplication algorithm can be destroyed if we do not pay attention to the
data management. We describe a solution to this problem, in the context of
our data abstraction.

The theory of the sparse grids is reflected in the algorithms through the
intuitive hierarchical structure of data and the recursivity. The complex
algorithms from the previous chapter need a flexible and modular design.
Abstract data types and object oriented programming lend themselves as
proper tools in this context [93]. Of course, we must be careful about the
over-use of design features, as the overloading the arithmetic operators “+”
and “∗”. As emphasized, the natural data structure for sparse grids are
trees. Some codes used trees directly and incorporated numerical schemes
into the algorithms that manipulate data structures [72, 92]. In the object
oriented style, there is a separation of the tree traversal and the arithmetic
operation. We adopt an approach closed to the ideas presented in [93]. We
split the abstractions in six main building blocks of concepts: vector, grid,
form, container, iterator, and operator. Apart from those, we have some
other minor entities to describe points, stencils, and the pool of memory.

Design. The two main ideas are to separate the data storage from the
algorithm and to get rid of pointers.
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Vectors store large amounts of numerical data. They can be efficiently
handled in the linear algebra operations. We used a C++-expression tem-
plates library for dense linear algebra [57]. A lot of time is spent in the
compilation of the code, due to the use of the templates, but the resulting
code is as fast as if we had directly called BLAS routines [57].

Grids refer to the geometry, they contain points without numerical data.
In the tree version, we need 3d pointers per node and procedures for the tree
traversals. Hence, a lot of memory and time are spent for administration.
Difficulties arise from the organization of the pointers (remember the change
of the perspective in the algorithm for the mass matrix multiplication) and
from the efficiency of the cache (the nodes sit away from each other in mem-
ory). The alternative to the pointers is the key-based addressing in terms of
associative arrays or of hash tables [19, 38, 43, 71, 93]. The former at our dis-
posal in the C++ Standard Template Library (STL), see [79]. For efficiency,
our data structure is built upon a hash table. The implementation of a hash
table as hash map was realized by SGI in public domain [74] and may be
added to a future revision of the C++-standard. A hash table (see [53] or [73]
for details) is a linear array of cells or buckets. The key is used as address
in the hash table where the set of data is stored. If different sets of data
have the same key, collisions occur and buckets appear. The hash function
links the data and the key. A hash function is a unary function and must
be deterministic (that is, it must always return the same value whenever it
is called with the same argument), but return values of the hash function
should be as uniform as possible. Ideally, no two keys will hash to the same
value, which is not possible, since the hash table has fever cells than there
are possible keys.

Each node has a position in space. Its local coordinates correspond to a
level and index. Both of them build an Index that is a key entry in the
hash table. Hence, we map each point to the value stored in the hash table,
which is an integer. This integer gives the corresponding position in a vector
(see Figure 6.17).

The hash table, together with auxiliary functions (as begin, end, find)
is stored in the class Grid. The pure virtual class AdGrid (adaptive grid)
inherits the Grid. The adaptation can yield an anisotropic full grid AFGrid

or a sparse grid SpGrid.
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hash table vector

Figure 6.17: Acces to coefficients of a sparse grid function: the points are
mapped to values in the hash table; these integers give the position in the
data vector.

Grid

AdGrid

AFGrid SpGrid

Form

AFForm SpForm

Forms bring together the geometry stored in the corresponding grid as a
reference and the discretization vector as a handle. The class Form imple-
ments a general Whitney l-form, AFForm on an anisotropic grid, and SpForm

on a sparse grid. Each of them posses the corresponding hierarchical trans-
formations, too.

The containers and the corresponding iterators are fundamental in the
algorithms presented in the previous chapter. They are tailored to the grids:
sparse grid containers (SPG) and iterators (SPG iterator) or anisotropic full
grid containers (AFG) and iterators (AFG iterator).

An SPG is the abstraction of a part of the tree of grid points. The set of
elements in container is actually not stored once again, but only the address
of the map with the data, the first element (offspring), the current resolution
and a mask. These ellemnts allow the traversal of the container by the
corresponding iterator, which selects the particular elements from the hash-
table. The mask offer the possibility to extract subgrids of the SPG, namely
sparse grids in lower dimensions. The tree traversing is done in a levelwise
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fashion. This means that the corresponding iterator will run over the points
in lexicographic order. Reaching the end of the SPG means that the next
index is the origin (offspring) of the SPG. We represent the end of the SPG

by the end of the map, that is SPG::end() returns an SPG iterator that
points at the end of the map. The corresponding SPG iterator inherits the
class iterator traits and it is only a forward iterator. The anisotropic
counterparts of SPG and SPG iterator are implemented analogously.

The operators are designed for the corresponding discretisations, too.
They stand for matrices and act only by means of their operator() . They
receive two arguments: a constant handle to the input vector and a handle
to the result vector. The sparse operator class SpOp is pure virtual, inher-
ited from the linear operator class LinOp. In the class hierarchy, SpOp is the
father of the class Mass, which implements the mass matrix multiplication
algorithm. The other main son of SpOp is the class ExOp, which refers to
the exterior operators on sparse grids. Being pure virtual, it gives rise to the
exterior derivative operator ExD, the transpose ExDt, and the stiffness matrix
operator Stiff.

SpOp

LinOp< DOFs >

DtM DtMD ExOp Mass MD MpS

ExD ExDt Stiff

The operators corresponding to the anisotropic grid are similarly devel-
oped. Having the very general stencils at our disposal, we can perform
the mass and the stiffness matrix operations on anisotropic full grids more
efficiently. These operators are implemented in the classes NAFMass and
NAFStiff. Moreover, the exterior derivative operator on anisotropic full
grids and its transpose can be directly subordinated to the linear operator
class LinOp.
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AFOp

LinOp< DOFs >

AFExOp AFMass NAFMass NAFMpS NAFStiff

AFExD AFExDt AFStiff

We refer to comments contained in the code for more documentation on
the classes.

Hash Statistics Essential for the performance of the code is the quality
of the hash table, that is, the quality of the hash function. The hash table
implementation of the STL uses linked lists for the resolution of collisions
and automatic resizing. We rely on the hash function proposed by Griebel
[38] and Schiekofer [71], which has been proved appropriate in the context of
the adaptive sparse grids. Denoting as usual, the d dimensional level by ν
and the index by q, the hash function is defined as

H(ν,q) =
d∑
i=1

(2νi + qi) · P (i) · P (43 + (d− 2) · 10− i) ,

where P (i) is the i-th prime number. Now, we want a measurement of the
quality of the hash table. First, we can look at the length bj of the buckets
j. Suppose that we access the data records randomly. Then, the probability
to encounter a list of length m is

p(m) = card{j, bj = m} ·m/N ,

where N is the total number of data records. With this notations, we can
compute the average computational effort for accessing an entry as

E =

n∑
m=1

m+ 1

2
p(m) .

The next tables present the statistics for d = 4, 3, and 2, respectively. For
different levels, we give the number of buckets of length |B| and the corre-
sponding effort.
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l\|B| 1 2 3 4 5 N effort
2 21 0 0 0 0 21 1
3 49 0 0 0 0 49 1
4 107 3 0 0 0 113 1.02655
5 236 9 1 0 0 257 1.04669
6 571 3 0 0 0 577 1.0052
7 1231 25 0 0 0 1281 1.01952
8 2635 88 2 0 0 2817 1.03337
9 6027 59 0 0 0 6145 1.0096
10 12927 193 0 0 0 13313 1.0145
11 28163 255 0 0 0 28673 1.00889
12 59999 721 0 0 0 61441 1.01173
13 126915 2079 0 0 0 131073 1.01586
14 268707 4911 0 0 0 278529 1.01763
15 556109 16855 2 0 0 589825 1.02859
16 1116085 63575 650 0 0 1245185 1.05262
17 2208381 204587 1294 1 0 2621441 1.07953
18 4237286 533139 66455 524 0 5505025 1.13363

Table 6.1: Number of buckets of different length for d = 2

l\|B| 1 2 3 4 5 6 7 N effort
3 219 3 0 0 0 0 0 225 1.01333
4 528 31 1 0 0 0 0 593 1.05734
5 1414 44 1 0 0 0 0 1505 1.03123
6 3633 40 0 0 0 0 0 3713 1.01077
7 8605 178 0 0 0 0 0 8961 1.01986
8 20093 578 0 0 0 0 0 21249 1.0272
9 44786 2414 17 0 0 0 0 49665 1.04963
10 94246 9551 443 3 0 0 0 114689 1.09502
11 189632 29018 4336 351 13 0 0 262145 1.16885
12 366677 67581 23158 5022 486 15 0 593921 1.29006

Table 6.2: Number of buckets of different length for d = 3
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l\|B| 1 2 3 4 5 6 7 N effort
4 2703 33 0 0 0 0 0 2769 1.01192
5 7147 255 8 0 0 0 0 7681 1.03632
6 17464 1390 79 0 0 0 0 20481 1.07944
7 39000 5873 687 44 2 0 0 52993 1.15508
8 79339 18310 4581 907 107 4 0 133889 1.28849

Table 6.3: Number of buckets of different length for d = 4

6.5 Data Management in Mass Matrix Mul-

tiplication

The copy process in the mass matrix multiplication algorithm needs partic-
ular attention, otherwise it can destroy the complexity. We mention that we
have to copy only a part of the vector, that is, only the values to be used
later in the recursion. We present here our solution to this problem. We
need exactly d+ 1 copies. We show here the construction and the proof will
be evident by induction.

We denote by N the length of the vector keeping the degrees of freedom.
In the pictures, we figure a copy process by a vertical line with a bullet on
top. Arrows and “+” signifies there an addition step. Copy and addition
refer each time only to the degrees of freedom corresponding to the actual
sparse grid, which can be t dimensional, with 1 ≤ t ≤ d, the other vector
entries being idle. The steps under and upper of the algorithm are denoted
by “n” and “p”, respectively.

First, consider the one dimensional case. We allocate two vectors v[0]
and v[1] of length N , and suppose that the degrees of freedom are contained
in v[1]. Following the algorithm, we make a copy of (in this case) the whole
vector v[0] := v[1]. Then, we apply under on v[0] and upper on v[1]. Finally,
we add the two vectors, v[0] := v[0] + v[1].
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n

p

+
v[0]

v[1]

Figure 6.18: Map of the data modification for d = 1

Remark that the step upper reads and writes on the same vector. The
procedure under can be considered to read from a vector and to write to
the previous one.We express the application of upper to v[s] by upper(s),
and we use under(s), for the step under reading from v[s] and writing to
v[s− 1]. The one dimensional mass procedure reads from v[1] and writes in
v[0]. In general, the block mass(d,s), with d ≤ s, reads from v[s] and writes
to v[s− d].

Next, consider the two dimensional case. By recursion, we have two
blocks of one dimensional mass acting on different vectors, connected by an
application of under at the beginning, and a step of upper, followed by an
addition at the end. With the previous notations, mass(2,2) perform first
under(2), then mass(1,1) and mass(1,2), followed by upper(1), and ends
with the addition v[0] := v[0] + v[1].

p

n

+

p

n

+ p

n

+
v[0]

v[1]

v[2]

Figure 6.19: Map of the data modification for d = 2

Finally, we display in Fig. 6.20 the data modification for d = 3. By
induction, we see at a glance that we copy each degree of freedom exactly
d+ 1 times.
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+ p

n

+
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n

+ p

n

+

p

n

+

p

+
v[0]

v[1]

v[2]

v[3]

Figure 6.20: Map of the data modification for d = 3

In this chapter, the focus was on the general form of some algorithms in-
volved in the sparse grid problems. The multilevel transformations illustrate
the unidirectional principle. In the case of the general forms, the interpola-
tion boils down to the approximate interpolation, done by the combination
technique. We computed numerically the interpolation error on the full grid
and we gave examples for smooth and not smooth forms, together with visu-
alization links. Particular attentions wins the mass and the stiffness matrix
multiplication algorithms. We presented in detail the multigrid scheme on
sparse grids. Then, we addressed the automatical construction of stencils on
anisotropic full grids in the most general setting. At the beggining, freedom
was left in many aspects, as the choice of the data structure. In the last two
sections, we explained our particular option, together with other implemen-
tation details. In the next chapter, the focus is on the multigrid method for
sparse grid discretizations.



Chapter 7

Multigrid Solver

From the very beginning of the application of sparse grid schemes for the
solution of elliptic boundary value problems, the fast solution of the result-
inglinear systems of equations was an important issue. For standard finite
element discretizations multigrid methods are known to provide the most ef-
ficient iterative solvers. The idea, in the form of multilevel Schwarz methods
[88], instantly carries over to sparse grids, but it takes profound considera-
tions to devise an efficient implementation. The latter is discussed in[38, 65],
whereas a theoretical framework was provided in [39].

Second order elliptic boundary value problems represent a special case of
boundary value problems for differential forms, namely the case of 0-forms.
This indicates that it is possible to state a generic “elliptic” boundary value
problem fitting any order of differential form as we described in 6.3 When
using discrete differential forms on standard grids for the sake of Galerkin
discretization, the guideline put forth above proved invaluable. Variants of
the classical multigrid idea could be found that yield iterative solvers with
a performance matching that of standard multigrid. These methods were
presented in [3, 45] for the case of 2-forms, that is, H(div; Ω)-conforming
finite elements, and in [4, 47] for discrete 1-forms, which are conforming in
H(curl; Ω). Now, we set out to rely on these ideas in the case of discrete
differential forms on sparse grids.

97
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7.1 Multigrid Method

The multigrid method for sparse grid discretizations of (2.4) uses the semi-
coarsening technique [22, 64]. It was implemented for the Lagrangian finite
elements in the two and three dimensional case (see [64, 72], respectively).

The iterative scheme starts with an initial guess of solution ω0. The
residual is then ρ0(η) := b(η) − a(ω, η), η ∈ V l

n. The multigrid method
can be viewed as a successive subspace correction scheme [37] with inexact
subspace solvers on the subspaces V l

� corresponding to anisotropic full grids
of resolution ν. This gives rise to an outermost loop as described in Fig. 7.1.

For different V l
� ⊂ V l

n:

• Solve approximately ζ ∈ V l
�:

a(ζ, η) = ρi(η), for all η ∈ V l
� ⊂ V l

n
• update(ω ∈ V l

n, ρ ∈ V l
n, ζ ∈ V l

�):

* ωi+1 = ωi + ζ
* ρi+1(η) = b(η)−a(ωi+ζ, η) = ρi(η)−a(ζ, η)

Figure 7.1: Exterior loop in multigrid

Note that the update of the solution renders the multigrid method a
multiplicative scheme in the sense of Yserentant [89, 91]. The question is
how to chose the spaces V l

� and the ordering of the steps. Pflaum proposed
the so-called Q-cycle for Lagrangian finite elements in two dimensions [64, 65]:
it involves the spaces V l

� ⊂ V l
n on those anisotropic full subgrids that are not

contained in any other anisotropic subgrid. They constitute the diagonal in
the level scheme (see Fig. 7.2), i.e. the grids Ω� that come into play satisfy
|ν|1 = n+ d− 1.

Then, at each step of the exterior loop approximately solve the residual
equation for the correction by V-cycles based on semicoarsening in one di-
rection. Schneider proposed in [72] to consider only one direction (S-cycle),
whereas the Q-cycle of Pflaum involves all directions. Remember from Def.
6.2.1 that Sn and A� refer to the spaces of coefficient vectors corresponding
to the sparse grid and the anisotropic full grid discretization of resolutions n
and ν, respectively.

We give in Fig. 7.3 the formal description of the Q-cycle.
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Figure 7.2: Q-cycle: one direction for d = 2, n = 3, l = 1 (left) and both
directions for d = 2, n = 5, l = 1(right)

For each direction j = 1, 2, . . . , d

For levels ν such that |ν|1 = n+d−1:

extloop step(~ω, ~ρ ∈ Sn, ν, j)

Figure 7.3: Pseudocode for the Q-cycle

Let us study the the approximate correction on a single anisotropic full
grid Ω� that forms the body of the exterior loop. This means that the
solution ω and the residual ρ are updated with respect to the subspace V l

� .
The computations can be split into three main steps (cf. Fig. 7.4): transfer
of residual, approximate solve of residual equation, and transfer of correction
back to the sparse grid.

In order to obtain the residual on the anisotropic grid in the nodal ba-
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extloop step(~ω, ~ρ ∈ Sn, ν, j)

{
extract(~ρ, ~λ)
~λ = HT~λ // to nodal representation
MGV(νj, ~ζ, ~λ) // semicoarsening on full grid
~ζ = H~ζ // to hierarchical representation
update(~ω, ~ρ, ~ζ)

}

Figure 7.4: One step in the exterior loop

sis we need two operations: the extraction of the hierarchical coefficients
corresponding to the current anisotropic full grid and the transformation to
the nodal coefficients of the residual on the anisotropic full grid. The first
step, the extraction of the residual on an anisotropic full grid included in the
sparse grid, is trivial in the hierarchical representation. This is due to the
fact that the hierarchical basis functions that are associated with grid points
that belong to both grids agree. Thus, extract amounts to mere copying of
certain components of the coefficient vectors as in Fig. 6.9.

The local solve is the multigrid method based on semicoarsening in the
fixed direction j on the anisotropic full grid of resolution ν. The semicoars-
ening merely acts on the anisotropic full grid and uses the nodal basis. As
the residual is a functional, after the V-cycle has been conducted, we employ
the transpose of the hierarchical transform. This poses no difficulties, since
we have a full grid at our disposal: for the corrections on the anisotropic
grids we have to implement a standard V-cycle based on semicoarsening. It
targets a linear system of equations arising from a nodal discretizations of
the bilinear form a(·, ·) on anisotropic full grids.

Meanwhile it has become clear how to device an efficient multigrid solver
for such discrete problems [4, 44, 45, 47, 49]. The main insight is that plain
point smoothers will fail. The culprit is the large kernel Ker(d) of the d
operator in the case of l-forms (1 ≤ l ≤ d − 1), because the performance
of standard multilevel schemes for linear discrete variational problems es-
sentially depends on the ellipticity of the bilinear form. But a(·, ·) behaves
utterly differently on Ker(d) and its orthogonal complement! If restricted to
Ker(d), it agrees with the L2-scalar product. Hence, in the subspace Ker(d)
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no amplification of highly oscillatory functions occurs, which renders point
smoothing ineffective. On the other part, on the L2-orthogonal complement
Ker(d)⊥ the (d·,d·) part prevails. This can be taken into account in terms
of the L2(Ω)-orthogonal Helmholtz decomposition

H(d,Ω) = Ker(d)⊕Ker(d)⊥ .

This decomposition is useful for actual computations, because discrete po-
tentials furnish a representation of Ker(d) by means of localized basis func-
tions. This paves the way for enhancing the standard smoother by additional
smoothing steps in potential space. The resulting scheme is called hybrid
smoothing.

Let us illustrate the considerations in the case of 1-forms in three dimen-
sions. In this case Ker(curl) is provided by the space of gradients. Hence, the
vector-fields in its complement are divergence free. Using norm equivalences
on convex domains [2], we can loosely state

A1 ≈ Id + ∆ on Ker(curl)⊥ .

On the other hand, using the representation Ker(curl) = gradH1
0 (Ω) di-

rectly, we can formulate the equivalence

a(·, ·)|Ker(curl) ⇐⇒ (grad ·, grad ·)L2(Ω) ,

with the right hand side living in H1
0 (Ω). In short, we can write

gradT ◦A1 ◦ grad = ∆ in H1
0 (Ω) .

This offers a clue how smoothing in potential space can be realized: after
lifting into potential space, we can resort to fast standard multigrid for the
Laplacian.

In the general case of l-forms, the hybrid smoother is a combination
between the classical smoothing (Gauss-Seidel) for l-forms and the system
matrix Al, and point smoothing for (l − 1)-forms and the corresponding
stiffness matrix. In figure 7.5 we give a flow-chart for one step of hybrid
smoothing step, where D is the matrix of the exterior derivative.
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(~ζ, ~σ)
GS(Al) ~ζ ~δ = ~σ −Al~ζ

Dt
~r = Dt~δ

GS(Sl−1) ~c D

~τ = D~c ~ζ = ~ζ + ~τ

Figure 7.5: Hybrid Smoothing Step

The algorithm for the hybrid smoothing of l-forms (1 ≤ l ≤ d−1) is described
in Fig. 7.6, where Sl−1 is the stiffness matrix for (l−1)-forms and Al = Sl+Ml

is the system matrix for l-forms.

Algorithm HS(~ζ ∈ A, ~σ ∈ A)

{
Gauß-Seidel sweep on Al~ζ = ~σ
~δ = ~σ −Al~ζ
~r = DT~δ
Gauß-Seidel sweep on Sl−1~c = ~r
~τ = D~c
~ζ = ~ζ + ~τ
return ~ζ

}

Figure 7.6: Hybrid smoother

Beside a smoother, the V-cycle comprises transfer operators between dif-
ferent levels of semicoarsened anisotropic full grids. The elements of the
restriction matrix are the degrees of freedom on faces belonging to the fine
mesh, computed for basis functions defined on the coarse mesh. In the one
dimensional case at level n, we have for the box functions

Bnk(t) =
1

2
Bn+12k−1(t) +

1

2
Bn+12k(t) .

Hence, the degrees of freedom on faces belonging to the fine mesh are

2−n(k−2−1)∫
2−n(k−1)

Bnk(t)dt =
1

2
,

2−nk∫
2−n(k−2−1)

Bnk(t)dt =
1

2
,
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whereas for the hat functions we have

ϕnk(t) =
1

2
ϕn+12k−1(t) + ϕn+12k(t) +

1

2
ϕn+12k+1(t) .

Remark first that the transfers do not mix components. Then, we distinguish
two cases for the I-component of the form. If the direction of restriction j
belongs to I, then the faces corresponding to the significant degrees of free-
dom are parallel to the direction j. In this case, we employ the stencil [1

2
, 1

2
],

given by the box functions. If j is not in I, then the faces are orthogonal to
the direction j, and the hat functions are now relevant.

Denote the index corresponding to the restriction in the direction j by
ν ′, that is ν ′

i = νi for i 6= j and ν ′
j = νj − 1. Note that in the case of the

nodal representation on anisotropic full grids, the data structure is simple. It
involves merely arrays. For analogy with the sparse grid case, suppose that
we access the value corresponding to a point (fixed by k, with 0 ≤ ki ≤ 2ni

for 0 ≤ i ≤ d) and an index I over the function access(I,k). We refer to
Fig. 7.8 for the restriction and to Fig 7.7 for the prolongation algorithm.

We are now able to describe in Fig. 7.9 the algorithm for the V-cycle
by semicoarsening in direction j for l-forms on anisotropic full grids in the
nodal representation starting from level ν.

7.2 Stencils on Anisotropic Full Grids

A core component of the multigrid method presented in the previous section
is point smoothers for the nodal discretization of a(·, ·) on anisotropic full
grids. To that end we need information about the mass and the stiffness
matrices for different resolutions n and dimensions d.

Consider the nodal representation of an l-form on an anisotropic full
grid Ωn. As the supports of the basis functions are small, the mass and
the stiffness matrices are sparse. Thus, since the bilinear form has constant
coefficients, the matrices can be expressed through difference stencils (for
the case of 0-forms see e.g. [5, 77]). For fixed dimension d and resolution n,
we can analytically compute the constant stencil entries and store them as
constants. But the preceding algorithm requires the evaluation of stencils for
a whole range of different resolutions n and dimensions d. Hence, we decided
to compute the stencil entries numerically, having d and n as input data.

First, let us clarify the idea of a stencil in the case of a general l-form.
In fact, we associate a stencil to each component of the differential form.
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prolongate(const ~τ ∈ A�′, ~δ ∈ A� , j ∈ {1, . . . , d})

{
for each k with (0 ≤ ki < 2�i, i = 1, . . . , d) and for each

index I

if (j ∈ I)

if (kj%2 == 0)
{
point p = k
pj = kj/2
~δ.access(k,I) = ~τ.access(p,I)

}
else

{
point q = p = k
pj = (kj − 1)/2, qj = (kj + 1)/2
~δ.access(k,I) = 0.5*~τ.access(p,I)
~δ.access(k,I) += 0.5*~τ.access(q,I)

}
else

if (kj%2 == 0)
{
point p = k
pj = kj/2
~δ.access(k,I) = 0.5*~τ.access(p,I)

}
else

{
point p = k
pj = (kj + 1)/2
~δ.access(k,I) = 0.5*~τ.access(p,I)

}
}

Figure 7.7: Prolongation operator
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restrict(const ~δ ∈ A� , ~τ ∈ A�′, j ∈ {1, . . . , d})

{
for each k with (0 ≤ ki < 2�

′
i, i = 1, . . . , d) and

for each index I

if (j ∈ I)

{
point r = q = p = k
pj = 2kj, qj = 2kj − 1, rj = 2kj + 1
~τ.access(k,I) = 0.5*~δ.access(q,I)
~τ.access(k,I) += 0.5*~δ.access(r,I)
~τ.access(k,I) += ~δ.access(p,I)

}
else

{
point q = p = k
pj = 2kj, qj = 2kj − 1
~τ.access(k,I) = 0.5*~δ.access(q,I)
~τ.access(k,I) += 0.5*~δ.access(p,I)

}
}

Figure 7.8: Restriction operator

Algorithm MGV(νj ≥ 1, ~ζ ∈ A�, ~σ ∈ A�)

{
HS(~ζ, ~σ)
~δ = ~σ −Al~ζ
restrict(~δ, ~τ, j)
if (νj == 1) solve Al~γ = ~τ
else MGV(νj − 1, ~γ, ~τ)
prolongate(~γ, ~ε, j)
~ζ = ~ζ + ~ε
HS(~ζ, ~σ)

}

Figure 7.9: Semicoarsening with hybrid smoother
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Consider the basis form associated to the face

FkI = [xnk; ~ei1 , ~ei2 , . . . , ~eil] ,

with 0 ≤ ki < 2ni, i = 1, . . . , d

ηIk(x) = ΦIk(x)dxI =
∏
i∈I

Bki(xi)
∏
j /∈I

ϕkj(xj)dxI .

Here, for simplicity, we dropped out the indices for the fixed level n. Then,
consider all the d-cubes in the anisotropic full mesh which have FkI as face.
We call each l-face belonging to those cubes a neighbor of FkI . Because of
the small support of ΦI

k, each component of the stencil is exactly determined
by the interaction between ηIk and the basis forms living on neighbors of the
face FkI . Hence, each component of the stencil can be represented on a small
anisotropic full grid of resolution δ, with δj = 1 for j /∈ I and δi = 0 for
i ∈ I.

In the particular case of the mass matrix, the definition of the L2(Ω)
scalar product gives(

ΦIk(x)dxI ,Φ
J
r (x)dxJ

)
L2(Ω)

= 0 for I 6= J .

For the faces parallel to FkI , the normed box functions yield(
ΦIk(x)dxI ,Φ

I
r(x)dxI

)
L2(Ω)

=
∏
i∈I

2niδkiri
∏
j /∈I

2−njθkjrj ,

where the stencils δ and θ are

δkiri =

{
1, if ki = ri
0, otherwise

, and θkjrj =




1/6, if kj = rj ± 1
2/3, if kj = rj
0, otherwise.

In Fig. 7.10, we present the stencil for the mass matrix in the case of 1-forms
in two dimensions.

In the case of the stencil for the stiffness matrix, we use the same idea
as for the evaluation of Sl~ω. For the I-component of the stencil, consider
the corresponding small anisotropic full grid of resolution δ. On this grid,
construct an Whitney l-form ηI having all degrees of freedom 0, excepting the
interior one (corresponding to I), which is 1. Employ the discrete exterior
differential and the mass matrix multiplication:

~ξI = DTMl+1D~η
I .



7.3 Complexity and Numerical Results 107

0 0

000 0

00

2
3
· h2
h1

1
6
· h2
h1

1
6
· h2
h1

2
3
· h1
h2

1
6
· h1
h2

1
6
· h1
h2

h1h1

h2
h2

Figure 7.10: Example of stencil for mass matrix: d = 2, l = 1

The implementation of the discrete exterior differential operator is simple in
the case of nodal representation on anisotropic full grids, see [13]. As the
derivative of the hat function is the Haar-wavelet, the incidence relations
(see Fig. 7.11) between l- and (l + 1)-faces determine the algorithm. Then

+1
−1

+1

−1

Figure 7.11: Incidence stencil for l = 0

the pseudocode algorithm for the computation of ~η = D~ω in the nodal rep-
resentation on an anisotropic full grid of fixed resolution n is presented in
Fig. 7.12.

7.3 Complexity and Numerical Results

7.3.1 Complexity

Regarding the complexity of the multigrid solver, we face the same situation
as for the Q-cycle for Lagrangian finite elements. The computational cost is
dominated by the multiplication with the system matrix in the update step.
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for each point k and each index I

for each t 6∈ I do {
sgn = card{i ∈ I; i < t}; s := (−1)sgn; J =
I ∪ {t}
~η.access(J,k) += s * ~ω.access(I,k)
point k′ = k; k′t = kt + 1
~η.access(J,k′) -= s * ~ω.access(I,k)

}

Figure 7.12: Exterior derivative operator

For fixed dimension d and order l of the differential form, denote by Nd,l
n the

number of degrees of freedom for a sparse grid discretization at resolution n.
As the multiplication with the system matrix needs O(Nd,l

n ) operations, the
complexity of a multigrid step is then

O
((

n+ 2d− 2

d− 1

)
Nd,l
n

)
.

Denote the total number of the sparse grid points by bd,n and the number of
the interior points by ad,n. Bungartz showed in [23] that

ad,n = 2n
[

nd−1

(d− 1)!
+O

(
nd−2

)]

and
ad,n
bd,n

→ 1 , for n→ ∞ and fixed d.

As Nd,l
n ≤

(
d
l

)
bn,d, we conclude that for d and l fixed, the computational

complexity of the multigrid step is given by(
d

l

)
2n
[

n2d−2

((d− 1)!)2
+O

(
n2d−3

)]
.

Denoting hn := 2−n, this is

O
(
h−1
n | log hn|d−1 · | log hn|d−1

)
,
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whereas the number of degrees of freedom is

O
(
h−1
n | log hn|d−1

)
.

As on the case of the Lagrangian finite elements on sparse grids, the problem
of finding the multigrid algorithm with optimal computational complexity is
still open [60, 64, 67].

7.3.2 Numerical results

In the numerical experiments, Q-cycles with one pre- and one post-(hybrid)
smoothing step were applied to the variational problem (5.1) with zero right
hand side for d = 2, 3, 4 and 0 ≤ l ≤ d − 1 with exact solution 0. The
initial guess had all the interior degrees of freedom set to 1 and the rate of
convergence was determined from the reduction of the discrete counterpart
of the H(d,Ω)-seminorm of the error in the final of 10 multigrid iteration
sweeps. The measured convergence rates are listed in Tables 7.1 to 7.3.

n l=0 l=1 l=2 l=3
4 1.1e-05 4.4e-05 0.00011 0.00014
5 0.00028 0.00026 0.00012 0.00016
6 0.00059 0.00056 0.00017 2.2e-05
7 0.0021 0.0033 0.00056 0.0003
8 0.0052 0.0063 0.0011 0.00049

n l=0 l=1 l=2 l=3
4 0.0066 0.0098 0.011 0.026
5 0.017 0.0068 0.012 0.026
6 0.023 0.013 0.013 0.027
7 0.052 0.019 0.014 0.028
8 0.089 0.028 0.014 0.028

Table 7.1: Convergence rates (d=4) for Q-cycle (top) and S-cycle (bottom)

In general we observe very fast convergence. The rates on coarser meshes
are so close to zero that the measurements are rather sensitive to the choice
of the initial vector and round-off. This accounts for the somewhat erratic
behavior of the recorded rates. Nevertheless, even for very fine resolutions
the rates do not deteriorate significantly. This suggests that the multigrid
methods may, indeed, be asymptotically optimal, that is, its rate of conver-
gence is bounded away from 1 even as n→ ∞.
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n l=0 l=1
2 0.004 0.0049
3 0.0043 0.0037
4 0.0028 0.0044
5 0.005 0.0047
6 0.002 0.0064
7 0.015 0.014
8 0.0068 0.006
9 0.017 0.017
10 0.0064 0.0072
11 0.018 0.018
12 0.0073 0.0087
13 0.018 0.018
14 0.0079 0.0095
15 0.018 0.018
16 0.0084 0.0097
17 0.018 0.018

n l=0 l=1
2 0.00048 0.0023
3 0.0013 0.0039
4 0.0041 0.0039
5 0.00041 0.0038
6 0.003 0.004
7 0.0037 0.0041
8 0.008 0.0066
9 0.011 0.01
10 0.012 0.012
11 0.015 0.014
12 0.017 0.016
13 0.017 0.016
14 0.018 0.017
15 0.019 0.017
16 0.019 0.017
17 0.019 0.017

Table 7.2: Convergence rates (d=2) for the Q-cycle (left) and S-cycle (right)

n l=0 l=1 l=2
3 0.00011 0.00034 0.00036
4 0.00018 0.00051 0.00053
5 0.00024 0.00077 0.00087
6 0.0011 0.0011 0.00032
7 0.0031 0.003 0.00071
8 0.0056 0.0055 0.0014
9 0.011 0.011 0.0017
10 0.026 0.025 0.0018
11 0.033 0.032 0.0019
12 0.035 0.035 0.0019

n l=0 l=1 l=2
3 0.0024 0.0025 0.013
4 0.008 0.0099 0.013
5 0.0033 0.0059 0.013
6 0.011 0.013 0.014
7 0.019 0.014 0.014
8 0.028 0.0096 0.015
9 0.05 0.014 0.015
10 0.074 0.051 0.015
11 0.088 0.038 0.015
12 0.098 0.023 0.015

Table 7.3: Convergence rates (d=3) for the Q-cycle (left) and S-cycle (right)



Chapter 8

Conclusion

The problem of creating something which is new, but consistent with
everything which has been seen before, is one of extreme difficulty.

R.P. Feynman

This work is a breakthrough of the sparse grid techniques in a special field.
So far, sparse grids schemes have been based on linear and higher order
Lagrange polynomials for H1 conforming finite elements. The current work
generalizes the discretization on sparse grids to discrete differential forms.
The extension to general l-forms in d dimensions includes the well known
Whitney elements.

The construction is based on one-dimensional differential forms, related
wavelet representations and their tensor products. In addition to the con-
struction of spaces, interpolation estimates are given. They display the typ-
pical efficiency of approximations based on sparse grids.

There are aspects of discrete differential forms not paralleled in the theory
of Lagrangian finite elements, as the commuting diagram property or the
existence of discrete potentials. Another pronounced difference resides in the
interpolation procedure, which needs imperatively an approximation step.
On the contrary, the classical interpolation by Lagrangian elements on sparse
grids is done using directly function values. A computationally cheap and
sufficiently accurate approximate interpolation operator is presented.

As core results, discrete inf-sup conditions are shown theoreticaly and
experimentaly for mixed second order problems. The existence of stable
sparse potentials is a sufficient condition. The proof is made in various in
particular cases, completely covering the three dimensional case. Numerical

111



112 Chapter 8. Conclusion

results evidenced stability for d = 4, too. The proof of the existence of stable
discrete potentials in the most general formulation could not be achieved
by the generality of the exterior derivative operator. The results show that
the discrete differential forms give rise to viable numerical schemes for the
discretization of both H(d,Ω)-elliptic variational problems and second order
mixed problems.

Particular attention was given to the explanation of the involved algo-
rithms, filling a gap in the literature. Details on the multilevel transforms,
approximate interpolation operators, mass and stiffness matrix multiplica-
tions are given. The construction of general stencils on anisotropic full grids
completes the detailed description of the multigrid solver based on semicoars-
ening.

Some inherent limitations of the proposed method are given by the fact
that only tensor product domains have been successfully investigated. Fur-
ther, no techniques for boundary value problems with variable coefficients are
available yet. As for Lagrangian finite elements on sparse grids, the problem
of finding the multigrid algorithm with optimal computational complexity is
still open.

In the light of the remaining open questions, the foundation is laid for
further investigations, for instance on Whitney-forms on adaptive sparse grid
and on applications to problems set in H(div; Ω) and H(curl; Ω). I strongly
believe that this work will foster a new branch of sparse grid research into
mixed discretization or even Maxwell’s equations.

L’avenir est un lieu commode pour y mettre des songes1.
Anatole France Les Opinions de Jérome Coignard

1The future is a comfortable place for placing the dreams.
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159, SFB 382, Universität Tübingen, Tübingen, Germany, 2001. To appear in SIAM
J. Sci. Comp.

[51] M. Hopf and T. Ertl, Parallelizing sparse grid volume visualization with implicit
preview and load balancing, tech. rep., University of Stuttgart., 2001.

[52] T. Iwaniec, Nonlinear differential forms., international summer school 1998, lec-
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