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Abstract

Like the sequence of the classes of the dot-depth hierarchy the sequence of classes given by

the n-fold iterated block product of DA has the class of starfree regular languages as its limit. It

is shown that this DA-block-product hierarchy grows more slowly than the dot-depth hierarchy:

in fact already ΣL

2 of the dot-depth hierarchy contains properness witnesses for all levels of the

DA-block-product hierarchy.

1 Introduction

The dot-depth hierarchy is a way to classify the complexity of starfree regular languages: the lower
a starfree language sits in the dot-depth hierarchy the less complex it is supposed to be. But there
exist alternative ways to classify the starfree languages which are only partially comparable with the
dot-depth hierarchy, for example the until/since depth from temporal logic [TW04].

Another classification of the starfree languages is considered here: the hierarchy given by the n-fold
iterated block product of DA. DA is the set of monoids corresponding as syntactic monoids to the lan-
guages in ∆L

2 of the the dot-depth hierarchy, a very robust class with many characterizations [TT02].
The block product � is also coming from the algebraic side and is the two-sided version of the wreath
product on finite monoids, resp. on classes of monoids, see [RT89, ST02, TW04]. In this paper, DA
and block products of DA will be identified with their corresponding language classes.

It is easy to see that the iterated block product DAn� of DA, defined strongly bracketed as

DAn� := DA � (. . . (DA � DA)),

is a subset of ∆L
n+1 of the dot-depth hierarchy, so the two hierarchies are in one direction comparable.

It is also known that ∆L
n+1 contains languages from DAn� which are not in the full level DDL

n of
the dot-depth hierarchy – this fact can be interpreted in the way that some parts of the DA-block-
product hierarchy are growing as fast as the dot-depth hierarchy. The main result of this note is
that other parts of the DA-block-product hierarchy are growing slowly compared with the dot-depth
hierarchy: it is shown that already ΣL

2 contains for every n ≥ 1 witnesses of the properness of the

inclusion DAn� ⊂ DA(n+1)�. A graphical summary of the results is sketched in Figure 2.
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Figure 1: The dot-depth hierarchy

2 Preliminairies

The dot-depth of a starfree regular language counts the minimal nesting depth of concatenations (=
“dot products”) one needs to represent the language by a starfree regular expression. There are two
versions of the dot-depth hierarchy: the classical one by Cohen & Brzozowski [CH71] and the variant
by Straubing and Thérien [St81, The81]. They only differ slightly, see [St94], i.e. the level n + 1 of
one contains the level n of the other. We consider in this paper only the second version, and we
will use a logical characterization of its levels [Tho82, PP86]. The dot-depth hierarchy consists for
every n ≥ 0 of the classes Σn, Πn, DDn, and ∆n, each of which is formally a mapping from the sets
of finite alphabets to a set of regular languages over this alphabet. The class Σn is, according to a
characterization of Thomas [Tho82] and Perrin & Pin [PP86], the set of languages definable with a
Σn alternation prefix in first-order logic on words with the signature [<] plus a unary predicate for
each letter of the respective alphabet, see [St94, PW97]. Πn is the set of complements of languages
in Σn, DDL

n (usually called Ln) is the Boolean closure of Σn, and ∆n is defined as Σn ∩Πn. It hold
the proper inclusions as depicted in Figure 1, see for example [St94, PW97].

The syntactical monoid ML of a language L over alphabet A consists of the equivalence classes [u]
for u ∈ A∗ defined by the the equivalence relation

[u] = [v] ⇐⇒ ∀w, z ∈ A∗ : wuz ∈ L ⇐⇒ wvz ∈ L. (1)
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The monoid operation can be defined by [u][v] := [uv], especially it holds for all words u, v, w, z from
Σ∗:

if [u] = [v] then [wuz] = [wvz]. (2)

A language is regular iff its syntactical monoid is finite, and it is starfree iff moreover there exists a
number ω such for all x ∈ A∗ it holds

[xω] = [xωxn] for every n ≥ 0. (3)

The class of monoids DA, which naming letters stand for the algebraic notions “D-classes” and
“aperiodic”, is the algebraic pendant of the language class ∆L

2 from the dot-depth hierarchy, in
the sense that a language A is in ∆L

2 if and only if its syntactical monoid MA is in DA, see for
example [PW97, TT02]. By this correspondence, and because this paper tries to stay on the language
side only, DA will stand for ∆L

2 from now on. The following characterization of DA, which is very
close to the algebraic definiton of DA, see [TT02], will be used extensively.

Lemma 1 (DA) A language L over alphabet Σ belongs to DA iff for all words x, y, z ∈ Σ∗ it holds
in ML:

[(xyz)ωy(xyz)ω] = [(xyz)ω]. (4)

For the definition of the block product we also stay on the language side (besides a little dip into
the syntactic monoid), see [TW04].

Definition 1 (block product) The block product K � J of a language J over alphabet Σ and a
language K ∈ DA over alphabet MJ × Σ × MJ (where MJ is the syntactic monoid of J) is the
language over alphabet Σ consisting of all words x = x1 · · ·xn in Σ∗ such that the following word
τ(x) is in K:

τ(x) := ([ε], x1, [x2 · · ·xn]) ([x1], x2, [x3 · · ·xn]) · · · ([x1 · · ·xn−1], xn, [ε]). (5)

The block product K � J of two classes of languages K and J is the set of block products K � J
such that K ∈ K and J ∈ J

The block product is in general not associative, see for example [ST02]. Therefore, we have two
extrem cases (and many in between) concerning the bracketing: The strongly iterated block product
of n languages Kn, . . . , K1 (we prefer them to be numbered from the right) is defined as

Kn � (Kn−1 � (. . . (K2 � K1) . . .))

while the n-fold weakly iterated block product is defined as

((. . . (Kn � Kn−1) . . .) � K2) � K1.

Let DAn� be the set of all n-fold strongly iterated block products of DA languages. It holds that
every weakly iterated block product of DA languages is in DAn�, see for example [ST02], likewise
every other bracketing of an n-fold block product of DA languages results in a language contained
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in DAn�. This justifies that we speak of DAn� as the n-fold iterated block product of DA, without
mentioning the strong bracketing.

The class DA and every block product expression built on it, like DAn�, is a variety of languages,
i.e. it is closed under Boolean operations, under left and right quotients and under inverse homomor-
phic images, see [Pin86, ST02].

We state the following facts about the relation of DAn� and the dot-depth hierarchy. They can be
derived from results in the literature, the proofs below are only sketched.

Theorem 1 Let n ≥ 1.

(a) DAn� ⊆ ∆L
n+1,

(b) DAn� contains languages in ∆L
n+1 − DDL

n ,

(c)
⋃

n≥1 DAn� equals the class of starfree languages.

Proof. (a) For n = 1 this holds by definition. For the induction consider a language L in DA(n+1)�,

i.e. L = L1 � L0 with L1 ∈ DA and L0 ∈ DAn�. In order to get a Σn+2 expression for L take the Σ2

expression for L0 and plug the Πn+1 expression for L1, which exists by induction hypothesis, into it.
The two ∀ levels collapse and in total it is a Σn+2 expression. In order to get a Πn+2 expression for
L plug the Σn+1 formula for L1 into the Π2 expression for L0. This shows L ∈ ΣL

n+2∩ΠL
n+2 = ∆L

n+2.

(b) Consider for n ≥ 2 the following language Dn on alphabet {0, 1, . . . , 2n − 2}, see [BL+04]:
D2 = 0∗1{0, 1, 2}∗, and for n ≥ 3 Dn consists of the words w such that the occurences of the letters
2n− 3 and 2n− 2 in w are considered as markers, and w is in Dn iff the marker after the first factor
between two such markers which is in Dn−1 is 2n−1. Dn is not only in ∆n, as it is argued in [BL+04],

but even in DA(n−1)�. And moreover (thanks to Klaus Wagner, Würzburg, for this hint), Dn can
be shown to be not in DDL

n by the result of [Tr02, BL+04] that LeafP (Dn) = ∆p
n, together with

the oracle result separating the levels of PH and the relativizable result that PH collapses if BH
collpases.

(c) Part (a) above verifies that each DAn�, and therefore the limit of this sequence, consists of

starfree languages only. On the other hand every starfree language L is covered by some DAn�: let
φ be a first order formula for L, which exists by the classical result starfree = first-order definable
of McNaughton & Papert [MP71]. Then the quantifier depth (n.b.: not the quantifier alternation
depth) of φ is such an n: each nested quantifier can be simulated by a DA � . . . operation (actually,
by a DDL

1 � . . . operation). q.e.d.

Note that by the results of Theorem 1 it still could be the case that for example DAn� = ∆L
n+1 for

all n ≥ 1, or that DAn� is a class in between ∆L
n and ∆L

n+1, or that a similar close relation to the
dot-depth hierarchy holds. In the following section it is shown that this is not the case.

3 ΣL
2 is not contained in an iterated block product of DA

The following languages Ln, for n ≥ 2, over alphabet Σn := {1, . . . , n} are from ΣL
2 and will be

shown to be witnesses for the properness of the inclusion DA(n−1)� ⊂ DAn�.

L2 = {1, 2}∗11{1, 2}∗, (6)
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Ln+1 := Σ∗
n+1LnLnΣ∗

n+1. (7)

where Ln is considered as a language over the larger alphabet Σn+1. For example,

L3 = {1, 2, 3}∗11{1, 2}∗11{1, 2, 3}∗

(because {1, 2, 3}∗{1, 2}∗ = {1, 2, 3}∗ etc.), and

L4 = {1, 2, 3, 4}∗11{1, 2}∗11{1, 2, 3}∗11{1, 2}∗11{1, 2, 3, 4}∗.

(With some fantasy the reader can see overlapping waves in these languages.) These examples show
that Ln can also described as Ln = Σ∗

nMnΣ∗
n where Mn is defined via the following recursion:

M2 = 11, (8)

Mn = Mn−1Σ
∗
n−1Mn−1. (9)

Theorem 2 (Main) For every n ≥ 2 it holds: The language Ln is an element of ΣL
2 ∩ DAn� but

not of DA(n−1)�.

This theorem is the conjunction of the following Lemma 2, Corollary 1, and Lemma 6, which will be
proven now, using more sub-lemmata.

A marked product of sub-alphabets over an alphabet A is a regular expression

A0a1A1 . . . anAn

with n ≥ 0, a0, . . . , an “markers” = letters from A, and A0, . . . , An sub-alphabets, i.e. subsets of A.
Example: {0, 1, 2}∗20∗2{0, 1, 2}∗ expressing “there exists two 2’s with no 1’s between them”. It is
easy to see that a language described by a marked product of sub-alphabets is in ΣL

2 , and in fact,
by the results of Arfi [Ar87], ΣL

2 equals the set of all finite unions of them.

Lemma 2 For every n ≥ 2 it holds: The language Ln is an element of ΣL
2 .

Proof. Every Ln (for n ≥ 2) is by the representation Σ∗
nMnΣ∗

n a marked product of sub-alphabets:
M2 = 1∅∗1 is a marked product of sub-alphabets with two outmost markers 1, and Mn+1 = MnΣ∗

nMn

keeps its two outmost markers 1. q.e.d.

Lemma 3 For every n ≥ 1 it holds: Any language described by a marked product of sub-alphabets
with at most 2n − 1 markers is in DAn�.

Proof. Induction start n = 1. A marked product A0a1A1 is in ΣL
2 , see above. On the other hand,

A0a1A1 can be expressed by the following Π2 expression “there exists a position carrying letter a1,
and all positions carry letters from A0 ∪ A1 ∪ {a1}, and it never occurs that a position has a letter
from A1 − (A0 ∪{a1}) and larger position has a letter from A0 − (A1 ∪{a1}), and between every two
positions with a letter from A0 − (A1 ∪ {a1}) and a letter from A1 − (A0 ∪ {a1}) there is a position
in between carrying letter a1”. This shows that A0a1A1 is in ΣL

2 ∩ ΠL
2 = ∆L

2 .

Induction step for n ≥ 2. Given a marked product L = A0a1A1 . . . amAm over alphabet A with
m ≤ 2n − 1, let ak be the marker in the middle of the expression, i.e. k = m/2 if m is odd and k =
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(m + 1)/2 if m is even. Then L = L0akL1 with L0 = A0a1A1 . . . ak−1Ak−1 and L1 = Ak . . . amAm,
and both L0 and L1 are marked products of sub-alphabets with not more than 2n−1 − 1 markers.
Therefore, the induction hypothesis applies to L0 and L1, i.e. both L0 and L1 are in DA(n−1)�. Let
P := L0 × L1 be their product language which is by the variety closure properties still an element
of DA(n−1)�. Let Q be the ΣL

1 language consisting of the union of the languages B∗(p, ak, q)B∗ on
the alphabet B = MP ×A×MP such that p stands for acceptance of L0 and q for acceptance of L1.
The language Q � P is by this representation from DAn� and equals L. q.e.d.

Because Ln has 2n−1 markers (the 1’s) we have the following corollary.

Corollary 1 For every n ≥ 2 it holds: Ln is in DAn�.

It remains to prove that Ln is not in DA(n−1)�. Assume that Ln equals a language K from DA(n−1)�,
i.e.

K := Kn−1 � (. . . (K2 � K1).) (10)

where each Ki is in DA. We will specify two words un, vn such that un 6∈ Ln and vn ∈ Ln but un

and vn are indistinguishable by K, i.e. un ∈ K ⇐⇒ vn ∈ K.

Define un and vn for 2 ≤ n by induction:

u2 = (21)ω (11)

v2 = (21)ω1(21)ω (12)

where ω is the constant from Lemma 1 for K1. For n ≥ 3 define the abbreviation wn, and un, vn the
following way:

wn = un−1nun−1vn−1 (13)

un := wω
n

︸︷︷︸

I

wω
n

︸︷︷︸

II

wω
n

︸︷︷︸

III

wω
n

︸︷︷︸

IV

(14)

vn := wω
n

︸︷︷︸

I

wω
n

︸︷︷︸

II

vn−1
︸︷︷︸

IIa

wω
n

︸︷︷︸

III

wω
n

︸︷︷︸

IV

(15)

where ω is the constant from Lemma 1 for Kn−1 (no indexing of ω necessary, it will be clear from
context which one is meant).

We show that un 6∈ Ln and vn ∈ Ln via the following stronger invariant.

Lemma 4 Consider a word g = g1 · · · gm where each gi is either un or vn. The factors of g which
are elements of Mn are the following: exactly one such factor within each of the gi for which gi = vn.
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Proof. For n = 2 the lemma can be checked easily. Let n ≥ 3 und consider a word g from
{un, vn}

∗. Because Mn does not use the letter n, a potential factor of g which is in Mn can only
be found in the parts un−1vn−1un−1 and un−1vn−1vn−1un−1, the latter occuring within the vn’s of
g. The parts un−1vn−1un−1 contain by induction hypothesis only one factor which is from Mn−1.
By Mn = Mn−1Σn−1Mn−1 we need two factors from Mn−1 for a word in Mn. Therefore, these
parts un−1vn−1un−1 do not contain a factor from Mn, what proves one part of Lemma 4 for this
n. The parts un−1vn−1vn−1un−1 contain by induction hypothesis exactly 2 factors of a word from
Mn−1. Therefore these two factors together with the word in between build a factor belonging to
Mn = Mn−1Σn−1Mn−1, and this is the only such factor. The parts un−1vn−1vn−1un−1 are the parts
corresponding to the the occurrences of vn in g. Therefore, Lemma 4 holds also for this n. q.e.d.

Corollary 2 For every n ≥ 2 it holds: un 6∈ Ln, vn ∈ Ln.

Proof. From Lemma 4 it follows that for g = g1 = un there is no occurrence of a factor from Mn,
therefore un is not contained in Ln = Σ∗MnΣ∗, while for g = g1 = vn is there an (actually, exactly
one) occurrence of a factor from Mn, therefore vn is contained in Ln = Σ∗MnΣ∗. q.e.d.

We will proof by induction the following crucial invariant.

Lemma 5 For n ≥ 2 it holds in the syntactic monoid of K = Kn−1 � (. . . (K2 � K1) . . .) the
following:

[vn] = [un] = [unun] = [vnvn] = [unvn] = [vnun]. (16)

Proof. Induction start: In case n = 2 the block product K = K1 is a single DA language. In order
to verify the first of the equations in 16 note that [v2] = [(21)ω1(21)ω] = [(21)ω(21)ω] = [u2u2] by
equation 4 in Lemma 1 setting x := 2, y := 1 z := ε. Moreover, [u2] = [(21)ω] = [(21)ω(21)ω] = [u2u2]
by equation 3. The other equations follow immediately from these two by equation 2.

Induction step for n ≥ 3: Define J := Kn−2 � (. . . (K2 � K1).), this way K = Kn−1 � J . We go to
the definition of the block product Kn−1 � J , and will analyze the words τ(zunz′) and τ(zvnz′), see
equation 5 in Definition 1. z and z′ are two arbitrary words from Σn, we need them later in order to
show that from [τ(zunz′)] = [τ(zvnz′)] in the syntactic monoid of Kn−1 it follows [un] = [vn] in the
syntactic monoid of Kn−1 � J . Note that τ(zunz′) and τ(zvnz′) are words on alphabet MJ ×Σ×MJ

which have the same length as zunz′ and zvnz′, respectively, so we can keep the partition of the
positions of un and vn into the parts I to IV, as in equations 14 and 15, plus two parts 0 and V
for the positions of z and z′, respectively. We will show that there exist words p0, p, x, y, s, s0 over
alphabet MJ × Σ × MJ such that τ(un) and τ(vn) can be written the following way:

τ(zunz′) = τ( z
︸︷︷︸

0

wω
n

︸︷︷︸

I

wω
n

︸︷︷︸

II

wω
n

︸︷︷︸

III

wω
n

︸︷︷︸

IV

z′
︸︷︷︸

V

) = p0
︸︷︷︸

0

p
︸︷︷︸

I

(xy)ω

︸ ︷︷ ︸

II

(xy)ω

︸ ︷︷ ︸

III

s
︸︷︷︸

IV

s0
︸︷︷︸

V

(17)

τ(zvnz′) = τ( z
︸︷︷︸

0

wω
n

︸︷︷︸

I

wω
n

︸︷︷︸

II

vn
︸︷︷︸

IIa

wω
n

︸︷︷︸

III

wω
n

︸︷︷︸

IV

z′
︸︷︷︸

V

) = p0
︸︷︷︸

0

p
︸︷︷︸

I

(xy)ω

︸ ︷︷ ︸

II

y
︸︷︷︸

IIa

(xy)ω

︸ ︷︷ ︸

III

s
︸︷︷︸

IV

s0
︸︷︷︸

V

(18)

To verify the above three equations 17 and 18 we have to show the following:

7



(a) τ(zunz′) and τ(zvnz′) coincide on parts 0, I, II, III, IV and V.

(b) There exists a word h (= xy) such that the two restrictions of τ(zunz′) to parts II and III are
of the form hω

(c) This periodic pattern h from (b) has a suffix y which equals τ(zvnz′) restricted to part IIa.

ad (a): We show that the words τ(zunz′) and τ(zunz′) coincide on parts 0, I, II, III, IV, and V: Let i
be a position in part 0, I, or II of the words zunz′ = b1 . . . bm and zvnz′ = b′1 . . . b′m′ . The two triples
([b1 . . . bi−1], bi, [bi+1 . . . bm]) at position i of τ(zunz′) and ([b′1 . . . b′i−1], b

′
i, [b

′
i+1 . . . bm′ ]) at position

i of τ(zvnz′) will of course coincide on their left and middle component because zunz′ and zvnz′

are identical up to that position. But moreover they also coincide on the right component of the
triple: The two words bi+1 . . . bm and b′i+1 . . . b′m′ only differ by the extra factor vn−1 in b′i+1 . . . b′n′

from part IIa. But this vn−1 is immediately left to a un−1 (un−1 is a prefix of part III), and by
induction hypothesis we have [vn−1un−1] = [un−1] in the syntactic monoid of J . Therefore, by
equation 2, [bi+1 . . . bm] = [b′i+1 . . . b′m′ ], i.e. the third components of the two tripels are also equal.
By symmetrical arguments and [vn−1vn−1] = [vn−1] by induction hypothesis we have that τ(zunz′)
and τ(zvnz′) also coincide on parts III, IV, and V.

ad (b): Let i be a position in the j-th factor wn (1 ≤ j ≤ ω) of part II of zunz′. Then the triple of
τ(zunz′) at that position i has the form

([zwω
nwj−1

n f ], a, [gwω−j
n wω

nz′])

where f and g are the prefix and the suffix of the factor wn left and right of that position i,
respectively, i.e. fag = wn. Note that by equation 3 it holds [zwω

nwj−1
n ] = [zwω

n ] in the syntactic
monoid of J , so we can by equation 2 rewrite the left component as [zwω

nf ]. Likewise (now via
adding wj−1

n instead of dropping it) the right component can be rewritten as [gwω−1
n wω

nz′]. This way
we have at the position i in the j-th factor wn of part II of τ(zunz′) the triple

([zwω
nf ], a, [gwω−1

n wω
nz′]).

But this is exactly the same triple as the triple at the i-th position of the first factor wn in part II
of τ(zunz′). By setting h to be the suffix of length |wn| of part II of τ(z′unz) we get the desired
property (b) for part II. By symmetrical arguments (b) also holds for part III.

ad (c): Consider a position i in part IIa, i.e. vn = b1 · · · bi−1bibi+1 · · · bm. The triple at the i-th
position in part IIa of τ(zvnz′) will be

([zwω
nwω−1

n un−1nun−1vn−1b1 · · · bi−1], bi, [bi+1 · · · bmun−1nun−1vn−1w
ω−1
n wω

nz′]).

By induction hypothesis it holds [un−1vn−1] = [vn−1] in the syntactic monoid of J , therefore the
first component the factor un−1vn−1 left of b1 can be rewritten by un−1, and likewise in the third
component the factor un−1 right of bm can be rewritten by vn−1un−1, as this is indicated by the
underlinings in the triples above and below. This way the above triple equals

([zwω
nwω−1

n un−1nun−1b1 · · · bi−1], bi, [bi+1 · · · bmvn−1un−1nun−1vn−1w
ω−1
n wω

nz′]).

But this is exactly the triple which one gets by looking at the i-th position in the suffix vn−1 of part
II of the word τ(zvnz′).
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We have shown (a), (b), and (c), i.e. τ(zunz′) and τ(zvnz′) can be written in the form of equations 17
and 18. This gives the following equation 19 in the syntactic monoid of Kn−1:

[τ(zunz′)] = [ p0
︸︷︷︸

0

p
︸︷︷︸

I

(xy)ω

︸ ︷︷ ︸

II

(xy)ω

︸ ︷︷ ︸

III

s
︸︷︷︸

IV

s0
︸︷︷︸

V

] = [ p0
︸︷︷︸

0

p
︸︷︷︸

I

(xy)ω

︸ ︷︷ ︸

II

y
︸︷︷︸

IIa

(xy)ω

︸ ︷︷ ︸

III

s
︸︷︷︸

IV

s0
︸︷︷︸

V

] = [τ(zvnz′)]

(19)

The middle equation symbol above holds by the following equality in the syntactic monoid of Kn−1

which is a case of equation 4 (no renaming of the variables x, y necessary, z := ε):

[(xy)ω

︸ ︷︷ ︸

II

(xy)ω

︸ ︷︷ ︸

III

] = [(xy)ω

︸ ︷︷ ︸

II

y
︸︷︷︸

IIa

(xy)ω

︸ ︷︷ ︸

III

] (20)

We have shown [τ(zunz′)] = [τ(zvnz′)] in the syntactic monoid of Kn−1 for all words z, z′ ∈ Σ∗
n.

From this it follows τ(zunz′) ∈ Kn−1 ⇐⇒ τ(zvnz′) ∈ Kn−1 for all z, z′ ∈ Σ∗
n. This means, by the

definition of block product: zunz′ ∈ Kn−1 � J ⇐⇒ zvnz′ ∈ Kn−1 � J for all z, z′ ∈ Σ∗
n. By the

definition of the elements of the syntactic monoid we have the equality

[un] = [vn] (21)

in the syntactic monoid of Kn−1 � J .

This shows that the first equation in Lemma 5 holds. Now we show the second equation [unun] = [un].
Let z, z′ be again some words from Σ∗

n. Let τ again be the function in equation 5 in the definition
of block product. It holds for τ(zununz′) the following:

τ(zununz′) = τ( z
︸︷︷︸

0

wω
n

︸︷︷︸

I

w3ω
n

︸︷︷︸

IIb

w3ω
n

︸︷︷︸

IIIb

wω
n

︸︷︷︸

IV

z′
︸︷︷︸

V

) = p0
︸︷︷︸

0

p
︸︷︷︸

I

(xy)3ω

︸ ︷︷ ︸

IIb

(xy)3ω

︸ ︷︷ ︸

IIIb

s
︸︷︷︸

IVa

s0
︸︷︷︸

V

(22)

The first equality is the definition of un, the second equality holds by the same argumentation like
for claim (a) above. In the syntactic monoid of Kn−1 it holds by equation 3 [(xy)3ω] = [(xy)ω].
Therefore, and by equations 22 and 17 together with equation 2, it holds in the syntactic monoid of
Kn−1:

[τ(zununz′)] = [ p0
︸︷︷︸

0

p
︸︷︷︸

I

(xy)3ω

︸ ︷︷ ︸

IIb

(xy)3ω

︸ ︷︷ ︸

IIIb

s
︸︷︷︸

IVa

s0
︸︷︷︸

V

] = [ p0
︸︷︷︸

0

p
︸︷︷︸

I

(xy)ω

︸ ︷︷ ︸

II

(xy)ω

︸ ︷︷ ︸

III

s
︸︷︷︸

IVa

s0
︸︷︷︸

V

] = [τ(zunz′)]

(23)

From [τ(zununz′)] = [τ(zunz′)] in the syntactic monoid of Kn−1 for all z, z,∈ Σ∗
n we can like above

conclude that in the syntactic monoid of Kn−1 � J it holds:

[unun] = [un] (24)

We have shown [un] = [vn] and [un] = [unun] in the syntactic monoid of Kn−1 � J . The other
equations follow immediately from these two by equation 2. q.e.d.

Lemma 6 For every n ≥ 2 it holds: Ln is not an element of DA(n−1)�.
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Proof. Let n ≥ 2 and consider Ln as a language over alphabet Σn. Assume that Ln is in
DA(n−1)�. Then there exist n − 1 languages Kn−1, . . . , K1 all of them from DA such that for
K = Kn−1 � (. . . (K2 � K1) . . .) it holds Ln = K. By Corollary 2, un ∈ Ln and vn 6∈ Ln. But on
the other hand, by Lemma 4, it holds [un] = [vn] in the syntactic monoid of K, from which it follows
un ∈ K ⇐⇒ vn ∈ K, i.e., un and vn are indistinguishable in K. Therefore, Ln cannot be equal to
K. It follows that Ln cannot be from DA(n−1)�. q.e.d.

From Theorems 1 and 2 we can conclude:

Corollary 3 Let n ≥ 1 and k ≥ 2. If n < k then each of the four classes ΣL
k , ΠL

k , DDL
k , and ∆L

k+1

contains DAn� properly. If n ≥ k then each of these four classes is incomparable with DAn�.

Figure 2 gives a visual summary of the results in Theorems 1 and 2, and Corollary 3.

4 Open Questions and Acknowledgements

A problem left open is whether the weakly and the strongly bracketed n-fold iterated block product of
DA coincide. Another interesting question is whether the class DA � DA or at least (DA � DA)∩ΣL

2

is decidable. By the results of Arfi [Ar87] the latter question can be reduced to the decidability of
the following computational problem: Given a marked product A0a1A1 . . . anAn of sub-alphabets,
does it belong to DA � DA?

The author is grateful to Pascal Tesson for many discussions on the subject.
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