The Dot-Depth Hierarchy v. Iterated Block Products of DA

Bernd Borchert

WSI-2004-09

Universität Tübingen Wilhelm-Schickard-Institut für Informatik Arbeitsbereich Theoretische Informatik/Formale Sprachen Sand 13 D-72076 Tübingen

borchert@informatik.uni-tuebingen.de

© WSI 2004 ISSN 0946-3852

The Dot-Depth Hierarchy v. Iterated Block Products of DA

Bernd Borchert Universität Tübingen, Germany

email: borchert@informatik.uni-tuebingen.de

Abstract

Like the sequence of the classes of the dot-depth hierarchy the sequence of classes given by the *n*-fold iterated block product of DA has the class of starfree regular languages as its limit. It is shown that this DA-block-product hierarchy grows more slowly than the dot-depth hierarchy: in fact already Σ_2^L of the dot-depth hierarchy contains properness witnesses for all levels of the DA-block-product hierarchy.

1 Introduction

The dot-depth hierarchy is a way to classify the complexity of starfree regular languages: the lower a starfree language sits in the dot-depth hierarchy the less complex it is supposed to be. But there exist alternative ways to classify the starfree languages which are only partially comparable with the dot-depth hierarchy, for example the until/since depth from temporal logic [TW04].

Another classification of the starfree languages is considered here: the hierarchy given by the *n*-fold iterated block product of DA. DA is the set of monoids corresponding as syntactic monoids to the languages in Δ_2^L of the the dot-depth hierarchy, a very robust class with many characterizations [TT02]. The block product \Box is also coming from the algebraic side and is the two-sided version of the wreath product on finite monoids, resp. on classes of monoids, see [RT89, ST02, TW04]. In this paper, DA and block products of DA will be identified with their corresponding language classes.

It is easy to see that the iterated block product $DA^{n\Box}$ of DA, defined strongly bracketed as

$$\mathrm{DA}^{n\sqcup} := \mathrm{DA} \Box (\dots (\mathrm{DA} \Box \mathrm{DA})),$$

is a subset of Δ_{n+1}^L of the dot-depth hierarchy, so the two hierarchies are in one direction comparable. It is also known that Δ_{n+1}^L contains languages from $\mathrm{DA}^{n\Box}$ which are not in the full level DD_n^L of the dot-depth hierarchy – this fact can be interpreted in the way that some parts of the DA-block-product hierarchy are growing as fast as the dot-depth hierarchy. The main result of this note is that other parts of the DA-block-product hierarchy are growing slowly compared with the dot-depth hierarchy: it is shown that already Σ_2^L contains for every $n \geq 1$ witnesses of the properness of the inclusion $\mathrm{DA}^{n\Box} \subset \mathrm{DA}^{(n+1)\Box}$. A graphical summary of the results is sketched in Figure 2.

Figure 1: The dot-depth hierarchy

2 Preliminairies

The dot-depth of a starfree regular language counts the minimal nesting depth of concatenations (= "dot products") one needs to represent the language by a starfree regular expression. There are two versions of the dot-depth hierarchy: the classical one by Cohen & Brzozowski [CH71] and the variant by Straubing and Thérien [St81, The81]. They only differ slightly, see [St94], i.e. the level n + 1 of one contains the level n of the other. We consider in this paper only the second version, and we will use a logical characterization of its levels [Tho82, PP86]. The dot-depth hierarchy consists for every $n \ge 0$ of the classes Σ_n, Π_n, DD_n , and Δ_n , each of which is formally a mapping from the sets of finite alphabets to a set of regular languages over this alphabet. The class Σ_n is, according to a characterization of Thomas [Tho82] and Perrin & Pin [PP86], the set of languages definable with a Σ_n alternation prefix in first-order logic on words with the signature [<] plus a unary predicate for each letter of the respective alphabet, see [St94, PW97]. Π_n is the set of complements of languages in Σ_n, DD_n^L (usually called L_n) is the Boolean closure of Σ_n , and Δ_n is defined as $\Sigma_n \cap \Pi_n$. It hold the proper inclusions as depicted in Figure 1, see for example [St94, PW97].

The syntactical monoid M_L of a language L over alphabet A consists of the equivalence classes [u] for $u \in A^*$ defined by the equivalence relation

$$[u] = [v] \iff \forall w, z \in A^* : wuz \in L \iff wvz \in L.$$
(1)

The monoid operation can be defined by [u][v] := [uv], especially it holds for all words u, v, w, z from Σ^* :

if
$$[u] = [v]$$
 then $[wuz] = [wvz]$. (2)

A language is regular iff its syntactical monoid is finite, and it is starfree iff moreover there exists a number ω such for all $x \in A^*$ it holds

$$[x^{\omega}] = [x^{\omega}x^n] \text{ for every } n \ge 0.$$
(3)

The class of monoids DA, which naming letters stand for the algebraic notions "D-classes" and "aperiodic", is the algebraic pendant of the language class Δ_2^L from the dot-depth hierarchy, in the sense that a language A is in Δ_2^L if and only if its syntactical monoid M_A is in DA, see for example [PW97, TT02]. By this correspondence, and because this paper tries to stay on the language side only, DA will stand for Δ_2^L from now on. The following characterization of DA, which is very close to the algebraic definiton of DA, see [TT02], will be used extensively.

Lemma 1 (DA) A language L over alphabet Σ belongs to DA iff for all words $x, y, z \in \Sigma^*$ it holds in M_L :

$$[(xyz)^{\omega}y(xyz)^{\omega}] = [(xyz)^{\omega}]. \tag{4}$$

For the definition of the block product we also stay on the language side (besides a little dip into the syntactic monoid), see [TW04].

Definition 1 (block product) The block product $K \Box J$ of a language J over alphabet Σ and a language $K \in DA$ over alphabet $M_J \times \Sigma \times M_J$ (where M_J is the syntactic monoid of J) is the language over alphabet Σ consisting of all words $x = x_1 \cdots x_n$ in Σ^* such that the following word $\tau(x)$ is in K:

$$\tau(x) := ([\varepsilon], x_1, [x_2 \cdots x_n]) \quad ([x_1], x_2, [x_3 \cdots x_n]) \quad \cdots \quad ([x_1 \cdots x_{n-1}], x_n, [\varepsilon]). \tag{5}$$

The block product $\mathcal{K} \Box \mathcal{J}$ of two classes of languages \mathcal{K} and \mathcal{J} is the set of block products $K \Box J$ such that $K \in \mathcal{K}$ and $J \in \mathcal{J}$

The block product is in general not associative, see for example [ST02]. Therefore, we have two extrem cases (and many in between) concerning the bracketing: The *strongly iterated block product* of n languages K_n, \ldots, K_1 (we prefer them to be numbered from the right) is defined as

$$K_n \Box (K_{n-1} \Box (\dots (K_2 \Box K_1) \dots))$$

while the n-fold weakly iterated block product is defined as

$$((\ldots (K_n \Box K_{n-1}) \ldots) \Box K_2) \Box K_1.$$

Let $DA^{n\Box}$ be the set of all *n*-fold strongly iterated block products of DA languages. It holds that every weakly iterated block product of DA languages is in $DA^{n\Box}$, see for example [ST02], likewise every other bracketing of an *n*-fold block product of DA languages results in a language contained in $DA^{n\square}$. This justifies that we speak of $DA^{n\square}$ as the *n*-fold iterated block product of DA, without mentioning the strong bracketing.

The class DA and every block product expression built on it, like $DA^{n\square}$, is a variety of languages, i.e. it is closed under Boolean operations, under left and right quotients and under inverse homomorphic images, see [Pin86, ST02].

We state the following facts about the relation of $DA^{n\square}$ and the dot-depth hierarchy. They can be derived from results in the literature, the proofs below are only sketched.

Theorem 1 Let $n \ge 1$.

(a) $\mathrm{DA}^{n\square} \subseteq \Delta_{n+1}^L$,

(b) $\mathrm{DA}^{n\Box}$ contains languages in $\Delta_{n+1}^{L} - \mathrm{DD}_{n}^{L}$,

(c) $\bigcup_{n>1} \mathrm{DA}^{n\Box}$ equals the class of starfree languages.

Proof. (a) For n = 1 this holds by definition. For the induction consider a language L in $DA^{(n+1)\Box}$, i.e. $L = L_1 \Box L_0$ with $L_1 \in DA$ and $L_0 \in DA^{n\Box}$. In order to get a Σ_{n+2} expression for L take the Σ_2 expression for L_0 and plug the Π_{n+1} expression for L_1 , which exists by induction hypothesis, into it. The two \forall levels collapse and in total it is a Σ_{n+2} expression. In order to get a Π_{n+2} expression for L plug the Σ_{n+1} formula for L_1 into the Π_2 expression for L_0 . This shows $L \in \Sigma_{n+2}^L \cap \Pi_{n+2}^L = \Delta_{n+2}^L$. (b) Consider for $n \ge 2$ the following language D_n on alphabet $\{0, 1, \ldots, 2n - 2\}$, see [BL+04]: $D_2 = 0^* 1\{0, 1, 2\}^*$, and for $n \ge 3 D_n$ consists of the words w such that the occurences of the letters 2n-3 and 2n-2 in w are considered as markers, and w is in D_n iff the marker after the first factor between two such markers which is in D_{n-1} is 2n-1. D_n is not only in Δ_n , as it is argued in [BL+04], but even in $DA^{(n-1)\Box}$. And moreover (thanks to Klaus Wagner, Würzburg, for this hint), D_n can be shown to be not in DD_n^L by the result of [Tr02, BL+04] that Leaf^P(D_n) = Δ_n^p , together with the oracle result separating the levels of PH and the relativizable result that PH collapses if BH collapses.

(c) Part (a) above verifies that each $DA^{n\Box}$, and therefore the limit of this sequence, consists of starfree languages only. On the other hand every starfree language L is covered by some $DA^{n\Box}$: let ϕ be a first order formula for L, which exists by the classical result starfree = first-order definable of McNaughton & Papert [MP71]. Then the quantifier depth (n.b.: not the quantifier alternation depth) of ϕ is such an n: each nested quantifier can be simulated by a DA \Box ... operation (actually, by a $DD_1^L \Box$... operation). **q.e.d.**

Note that by the results of Theorem 1 it still could be the case that for example $DA^{n\square} = \Delta_{n+1}^{L}$ for all $n \ge 1$, or that $DA^{n\square}$ is a class in between Δ_n^{L} and Δ_{n+1}^{L} , or that a similar close relation to the dot-depth hierarchy holds. In the following section it is shown that this is not the case.

3 Σ_2^L is not contained in an iterated block product of DA

The following languages L_n , for $n \ge 2$, over alphabet $\Sigma_n := \{1, \ldots, n\}$ are from Σ_2^L and will be shown to be witnesses for the properness of the inclusion $\mathrm{DA}^{(n-1)\square} \subset \mathrm{DA}^{n\square}$.

$$L_2 = \{1, 2\}^* 11\{1, 2\}^*, \tag{6}$$

$$L_{n+1} := \sum_{n+1}^{*} L_n L_n \sum_{n+1}^{*}.$$
(7)

where L_n is considered as a language over the larger alphabet Σ_{n+1} . For example,

$$L_3 = \{1, 2, 3\}^* 11\{1, 2\}^* 11\{1, 2, 3\}^*$$

(because $\{1, 2, 3\}^* \{1, 2\}^* = \{1, 2, 3\}^*$ etc.), and

$$L_4 = \{1, 2, 3, 4\}^* 11\{1, 2\}^* 11\{1, 2, 3\}^* 11\{1, 2\}^* 11\{1, 2, 3, 4\}^*.$$

(With some fantasy the reader can see overlapping waves in these languages.) These examples show that L_n can also described as $L_n = \sum_{n=1}^{\infty} M_n \sum_{n=1}^{\infty} W_n$ is defined via the following recursion:

$$M_2 = 11,$$
 (8)

$$M_n = M_{n-1} \Sigma_{n-1}^* M_{n-1}.$$
(9)

Theorem 2 (Main) For every $n \ge 2$ it holds: The language L_n is an element of $\Sigma_2^L \cap DA^{n\square}$ but not of $DA^{(n-1)\square}$.

This theorem is the conjunction of the following Lemma 2, Corollary 1, and Lemma 6, which will be proven now, using more sub-lemmata.

A marked product of sub-alphabets over an alphabet A is a regular expression

$$A_0a_1A_1\ldots a_nA_n$$

with $n \ge 0, a_0, \ldots, a_n$ "markers" = letters from A, and A_0, \ldots, A_n sub-alphabets, i.e. subsets of A. Example: $\{0, 1, 2\}^* 20^* 2\{0, 1, 2\}^*$ expressing "there exists two 2's with no 1's between them". It is easy to see that a language described by a marked product of sub-alphabets is in Σ_2^L , and in fact, by the results of Arfi [Ar87], Σ_2^L equals the set of all finite unions of them.

Lemma 2 For every $n \ge 2$ it holds: The language L_n is an element of Σ_2^L .

Proof. Every L_n (for $n \ge 2$) is by the representation $\Sigma_n^* M_n \Sigma_n^*$ a marked product of sub-alphabets: $M_2 = 1 \emptyset^* 1$ is a marked product of sub-alphabets with two outmost markers 1, and $M_{n+1} = M_n \Sigma_n^* M_n$ keeps its two outmost markers 1. **q.e.d.**

Lemma 3 For every $n \ge 1$ it holds: Any language described by a marked product of sub-alphabets with at most $2^n - 1$ markers is in $DA^{n\square}$.

Proof. Induction start n = 1. A marked product $A_0a_1A_1$ is in Σ_2^L , see above. On the other hand, $A_0a_1A_1$ can be expressed by the following Π_2 expression "there exists a position carrying letter a_1 , and all positions carry letters from $A_0 \cup A_1 \cup \{a_1\}$, and it never occurs that a position has a letter from $A_1 - (A_0 \cup \{a_1\})$ and larger position has a letter from $A_0 - (A_1 \cup \{a_1\})$, and between every two positions with a letter from $A_0 - (A_1 \cup \{a_1\})$ and a letter from $A_1 - (A_0 \cup \{a_1\})$ there is a position in between carrying letter a_1 ". This shows that $A_0a_1A_1$ is in $\Sigma_2^L \cap \Pi_2^L = \Delta_2^L$.

Induction step for $n \ge 2$. Given a marked product $L = A_0 a_1 A_1 \dots a_m A_m$ over alphabet A with $m \le 2^n - 1$, let a_k be the marker in the middle of the expression, i.e. k = m/2 if m is odd and k =

(m+1)/2 if m is even. Then $L = L_0 a_k L_1$ with $L_0 = A_0 a_1 A_1 \dots a_{k-1} A_{k-1}$ and $L_1 = A_k \dots a_m A_m$, and both L_0 and L_1 are marked products of sub-alphabets with not more than $2^{n-1} - 1$ markers. Therefore, the induction hypothesis applies to L_0 and L_1 , i.e. both L_0 and L_1 are in $\mathrm{DA}^{(n-1)\square}$. Let $P := L_0 \times L_1$ be their product language which is by the variety closure properties still an element of $\mathrm{DA}^{(n-1)\square}$. Let Q be the Σ_1^L language consisting of the union of the languages $B^*(p, a_k, q)B^*$ on the alphabet $B = M_P \times A \times M_P$ such that p stands for acceptance of L_0 and q for acceptance of L_1 . The language $Q \square P$ is by this representation from $\mathrm{DA}^{n\square}$ and equals L. **q.e.d.**

Because L_n has 2^{n-1} markers (the 1's) we have the following corollary.

Corollary 1 For every $n \ge 2$ it holds: L_n is in $DA^{n\square}$.

It remains to prove that L_n is not in $DA^{(n-1)\square}$. Assume that L_n equals a language K from $DA^{(n-1)\square}$, i.e.

$$K := K_{n-1} \square (\dots (K_2 \square K_1)).$$

$$\tag{10}$$

where each K_i is in DA. We will specify two words u_n, v_n such that $u_n \notin L_n$ and $v_n \in L_n$ but u_n and v_n are indistinguishable by K, i.e. $u_n \in K \iff v_n \in K$.

Define u_n and v_n for $2 \le n$ by induction:

$$u_2 = (21)^{\omega} \tag{11}$$

$$v_2 = (21)^{\omega} 1(21)^{\omega} \tag{12}$$

where ω is the constant from Lemma 1 for K_1 . For $n \ge 3$ define the abbreviation w_n , and u_n, v_n the following way:

$$w_n = u_{n-1} n u_{n-1} v_{n-1} \tag{13}$$

$$u_n := \underbrace{w_n^{\omega}}_{\mathbf{I}} \underbrace{w_n^{\omega}}_{\mathbf{II}} \underbrace{w_n^{\omega}}_{\mathbf{III}} \underbrace{w_n^{\omega}}_{\mathbf{IV}} \underbrace{w_n^{\omega}}_{\mathbf{IV}} \tag{14}$$

$$v_n := \underbrace{w_n^{\omega}}_{\mathrm{I}} \underbrace{w_n^{\omega}}_{\mathrm{II}} \underbrace{v_{n-1}}_{\mathrm{IIa}} \underbrace{w_n^{\omega}}_{\mathrm{III}} \underbrace{w_n^{\omega}}_{\mathrm{IV}}$$
(15)

where ω is the constant from Lemma 1 for K_{n-1} (no indexing of ω necessary, it will be clear from context which one is meant).

We show that $u_n \notin L_n$ and $v_n \in L_n$ via the following stronger invariant.

Lemma 4 Consider a word $g = g_1 \cdots g_m$ where each g_i is either u_n or v_n . The factors of g which are elements of M_n are the following: exactly one such factor within each of the g_i for which $g_i = v_n$.

Proof. For n = 2 the lemma can be checked easily. Let $n \ge 3$ und consider a word g from $\{u_n, v_n\}^*$. Because M_n does not use the letter n, a potential factor of g which is in M_n can only be found in the parts $u_{n-1}v_{n-1}u_{n-1}$ and $u_{n-1}v_{n-1}u_{n-1}$, the latter occuring within the v_n 's of g. The parts $u_{n-1}v_{n-1}u_{n-1}$ contain by induction hypothesis only one factor which is from M_{n-1} . By $M_n = M_{n-1}\sum_{n-1}M_{n-1}$ we need two factors from M_{n-1} for a word in M_n . Therefore, these parts $u_{n-1}v_{n-1}u_{n-1}$ do not contain a factor from M_n , what proves one part of Lemma 4 for this n. The parts $u_{n-1}v_{n-1}v_{n-1}u_{n-1}$ contain by induction hypothesis exactly 2 factors of a word from M_{n-1} . Therefore these two factors together with the word in between build a factor belonging to $M_n = M_{n-1}\sum_{n-1}M_{n-1}$, and this is the only such factor. The parts $u_{n-1}v_{n-1}u_{n-1}$ are the parts corresponding to the the occurrences of v_n in g. Therefore, Lemma 4 holds also for this n. **q.e.d.**

Corollary 2 For every $n \ge 2$ it holds: $u_n \notin L_n, v_n \in L_n$.

Proof. From Lemma 4 it follows that for $g = g_1 = u_n$ there is no occurrence of a factor from M_n , therefore u_n is not contained in $L_n = \Sigma^* M_n \Sigma^*$, while for $g = g_1 = v_n$ is there an (actually, exactly one) occurrence of a factor from M_n , therefore v_n is contained in $L_n = \Sigma^* M_n \Sigma^*$. **q.e.d.** We will proof by induction the following crucial invariant.

Lemma 5 For $n \ge 2$ it holds in the syntactic monoid of $K = K_{n-1} \Box (\dots (K_2 \Box K_1) \dots)$ the following:

$$[v_n] = [u_n] = [u_n u_n] = [v_n v_n] = [u_n v_n] = [v_n u_n].$$
(16)

Proof. Induction start: In case n = 2 the block product $K = K_1$ is a single DA language. In order to verify the first of the equations in 16 note that $[v_2] = [(21)^{\omega}1(21)^{\omega}] = [(21)^{\omega}(21)^{\omega}] = [u_2u_2]$ by equation 4 in Lemma 1 setting $x := 2, y := 1 z := \varepsilon$. Moreover, $[u_2] = [(21)^{\omega}] = [(21)^{\omega}(21)^{\omega}] = [u_2u_2]$ by equation 3. The other equations follow immediately from these two by equation 2.

Induction step for $n \geq 3$: Define $J := K_{n-2} \Box (... (K_2 \Box K_1).)$, this way $K = K_{n-1} \Box J$. We go to the definition of the block product $K_{n-1} \Box J$, and will analyze the words $\tau(zu_n z')$ and $\tau(zv_n z')$, see equation 5 in Definition 1. z and z' are two arbitrary words from Σ_n , we need them later in order to show that from $[\tau(zu_n z')] = [\tau(zv_n z')]$ in the syntactic monoid of K_{n-1} it follows $[u_n] = [v_n]$ in the syntactic monoid of $K_{n-1} \Box J$. Note that $\tau(zu_n z')$ and $\tau(zv_n z')$ are words on alphabet $M_J \times \Sigma \times M_J$ which have the same length as $zu_n z'$ and $zv_n z'$, respectively, so we can keep the partition of the positions of u_n and v_n into the parts I to IV, as in equations 14 and 15, plus two parts 0 and V for the positions of z and z', respectively. We will show that there exist words p_0, p, x, y, s, s_0 over alphabet $M_J \times \Sigma \times M_J$ such that $\tau(u_n)$ and $\tau(v_n)$ can be written the following way:

$$\tau(zu_nz') = \tau(\underbrace{z}_{0},\underbrace{w_n^{\omega}}_{\mathrm{I}},\underbrace{w_n^{\omega}}_{\mathrm{II}},\underbrace{w_n^{\omega}}_{\mathrm{III}},\underbrace{w_n^{\omega}}_{\mathrm{IV}},\underbrace{z'}_{\mathrm{V}}) = \underbrace{p_0}_{0},\underbrace{p}_{\mathrm{I}},\underbrace{(xy)^{\omega}}_{\mathrm{II}},\underbrace{(xy)^{\omega}}_{\mathrm{IV}},\underbrace{s}_{\mathrm{V}},\underbrace{s_0}_{\mathrm{V}},$$
(17)

To verify the above three equations 17 and 18 we have to show the following:

- (a) $\tau(zu_n z')$ and $\tau(zv_n z')$ coincide on parts 0, I, II, III, IV and V.
- (b) There exists a word h (= xy) such that the two restrictions of $\tau(zu_n z')$ to parts II and III are of the form h^{ω}
- (c) This periodic pattern h from (b) has a suffix y which equals $\tau(zv_n z')$ restricted to part IIa.

ad (a): We show that the words $\tau(zu_nz')$ and $\tau(zu_nz')$ coincide on parts 0, I, II, III, IV, and V: Let *i* be a position in part 0, I, or II of the words $zu_nz' = b_1 \dots b_m$ and $zv_nz' = b'_1 \dots b'_{m'}$. The two triples $([b_1 \dots b_{i-1}], b_i, [b_{i+1} \dots b_m])$ at position *i* of $\tau(zu_nz')$ and $([b'_1 \dots b'_{i-1}], b'_i, [b'_{i+1} \dots b_{m'}])$ at position *i* of $\tau(zv_nz')$ will of course coincide on their left and middle component because zu_nz' and zv_nz' are identical up to that position. But moreover they also coincide on the right component of the triple: The two words $b_{i+1} \dots b_m$ and $b'_{i+1} \dots b'_{m'}$ only differ by the extra factor v_{n-1} in $b'_{i+1} \dots b'_{n'}$ from part IIa. But this v_{n-1} is immediately left to a u_{n-1} (u_{n-1} is a prefix of part III), and by induction hypothesis we have $[v_{n-1}u_{n-1}] = [u_{n-1}]$ in the syntactic monoid of *J*. Therefore, by equation 2, $[b_{i+1} \dots b'_m] = [b'_{i+1} \dots b'_{m'}]$, i.e. the third components of the two triples are also equal. By symmetrical arguments and $[v_{n-1}v_{n-1}] = [v_{n-1}]$ by induction hypothesis we have that $\tau(zu_nz')$ and $\tau(zv_nz')$ also coincide on parts III, IV, and V.

ad (b): Let *i* be a position in the *j*-th factor w_n $(1 \le j \le \omega)$ of part II of $zu_n z'$. Then the triple of $\tau(zu_n z')$ at that position *i* has the form

$$([zw_n^{\omega}w_n^{j-1}f], a, [gw_n^{\omega-j}w_n^{\omega}z'])$$

where f and g are the prefix and the suffix of the factor w_n left and right of that position i, respectively, i.e. $fag = w_n$. Note that by equation 3 it holds $[zw_n^{\omega}w_n^{j-1}] = [zw_n^{\omega}]$ in the syntactic monoid of J, so we can by equation 2 rewrite the left component as $[zw_n^{\omega}f]$. Likewise (now via adding w_n^{j-1} instead of dropping it) the right component can be rewritten as $[gw_n^{\omega-1}w_n^{\omega}z']$. This way we have at the position i in the j-th factor w_n of part II of $\tau(zu_nz')$ the triple

$$([zw_n^{\omega}f], a, [gw_n^{\omega-1}w_n^{\omega}z'])$$

But this is exactly the same triple as the triple at the *i*-th position of the first factor w_n in part II of $\tau(zu_nz')$. By setting *h* to be the suffix of length $|w_n|$ of part II of $\tau(z'u_nz)$ we get the desired property (b) for part II. By symmetrical arguments (b) also holds for part III.

ad (c): Consider a position *i* in part IIa, i.e. $v_n = b_1 \cdots b_{i-1} b_i b_{i+1} \cdots b_m$. The triple at the *i*-th position in part IIa of $\tau(zv_n z')$ will be

$$([zw_n^{\omega}w_n^{\omega-1}u_{n-1}n\underline{u_{n-1}}v_{n-1}b_1\cdots b_{i-1}], b_i, [b_{i+1}\cdots b_n\underline{u_{n-1}}nu_{n-1}v_{n-1}w_n^{\omega-1}w_n^{\omega}z']).$$

By induction hypothesis it holds $[u_{n-1}v_{n-1}] = [v_{n-1}]$ in the syntactic monoid of J, therefore the first component the factor $u_{n-1}v_{n-1}$ left of b_1 can be rewritten by u_{n-1} , and likewise in the third component the factor u_{n-1} right of b_m can be rewritten by $v_{n-1}u_{n-1}$, as this is indicated by the underlinings in the triples above and below. This way the above triple equals

$$([zw_n^{\omega}w_n^{\omega-1}u_{n-1}nu_{n-1}b_1\cdots b_{i-1}], b_i, [b_{i+1}\cdots b_m v_{n-1}u_{n-1}nu_{n-1}v_{n-1}w_n^{\omega-1}w_n^{\omega}z']).$$

But this is exactly the triple which one gets by looking at the *i*-th position in the suffix v_{n-1} of part II of the word $\tau(zv_nz')$.

We have shown (a), (b), and (c), i.e. $\tau(zu_n z')$ and $\tau(zv_n z')$ can be written in the form of equations 17 and 18. This gives the following equation 19 in the syntactic monoid of K_{n-1} :

$$[\tau(zu_nz')] = [\underbrace{p_0}_{0} \underbrace{p}_{\mathrm{II}} \underbrace{(xy)^{\omega}}_{\mathrm{II}} \underbrace{(xy)^{\omega}}_{\mathrm{III}} \underbrace{s}_{\mathrm{IV}} \underbrace{s_0}_{\mathrm{V}}] = [\underbrace{p_0}_{0} \underbrace{p}_{\mathrm{II}} \underbrace{(xy)^{\omega}}_{\mathrm{II}} \underbrace{y}_{\mathrm{IIa}} \underbrace{(xy)^{\omega}}_{\mathrm{III}} \underbrace{s}_{\mathrm{IV}} \underbrace{s_0}_{\mathrm{V}}] = [\tau(zv_nz')]$$
(19)

The middle equation symbol above holds by the following equality in the syntactic monoid of K_{n-1} which is a case of equation 4 (no renaming of the variables x, y necessary, $z := \varepsilon$):

$$\underbrace{[(xy)^{\omega}(xy)^{\omega}]}_{\mathrm{II}} = \underbrace{[(xy)^{\omega}}_{\mathrm{II}} \underbrace{y}_{\mathrm{IIa}} \underbrace{(xy)^{\omega}}_{\mathrm{IIa}}]$$
(20)

We have shown $[\tau(zu_n z')] = [\tau(zv_n z')]$ in the syntactic monoid of K_{n-1} for all words $z, z' \in \Sigma_n^*$. From this it follows $\tau(zu_n z') \in K_{n-1} \iff \tau(zv_n z') \in K_{n-1}$ for all $z, z' \in \Sigma_n^*$. This means, by the definition of block product: $zu_n z' \in K_{n-1} \square J \iff zv_n z' \in K_{n-1} \square J$ for all $z, z' \in \Sigma_n^*$. By the definition of the elements of the syntactic monoid we have the equality

$$[u_n] = [v_n] \tag{21}$$

in the syntactic monoid of $K_{n-1} \Box J$.

This shows that the first equation in Lemma 5 holds. Now we show the second equation $[u_n u_n] = [u_n]$. Let z, z' be again some words from Σ_n^* . Let τ again be the function in equation 5 in the definition of block product. It holds for $\tau(zu_n u_n z')$ the following:

The first equality is the definition of u_n , the second equality holds by the same argumentation like for claim (a) above. In the syntactic monoid of K_{n-1} it holds by equation 3 $[(xy)^{3\omega}] = [(xy)^{\omega}]$. Therefore, and by equations 22 and 17 together with equation 2, it holds in the syntactic monoid of K_{n-1} :

$$[\tau(zu_nu_nz')] = \underbrace{[p_0]}_{0} \underbrace{p}_{\mathrm{I}} \underbrace{(xy)^{3\omega}}_{\mathrm{IIb}} \underbrace{(xy)^{3\omega}}_{\mathrm{IIIb}} \underbrace{s}_{\mathrm{IVa}} \underbrace{s_0}_{\mathrm{V}} = \underbrace{[p_0]}_{0} \underbrace{p}_{\mathrm{I}} \underbrace{(xy)^{\omega}}_{\mathrm{II}} \underbrace{(xy)^{\omega}}_{\mathrm{III}} \underbrace{s}_{\mathrm{IVa}} \underbrace{s_0}_{\mathrm{V}} = [\tau(zu_nz')]$$

$$(23)$$

From $[\tau(zu_nu_nz')] = [\tau(zu_nz')]$ in the syntactic monoid of K_{n-1} for all $z, z, \in \Sigma_n^*$ we can like above conclude that in the syntactic monoid of $K_{n-1} \square J$ it holds:

$$[u_n u_n] = [u_n] \tag{24}$$

We have shown $[u_n] = [v_n]$ and $[u_n] = [u_n u_n]$ in the syntactic monoid of $K_{n-1} \square J$. The other equations follow immediately from these two by equation 2. **q.e.d.**

Lemma 6 For every $n \ge 2$ it holds: L_n is not an element of $DA^{(n-1)\square}$.

Proof. Let $n \geq 2$ and consider L_n as a language over alphabet Σ_n . Assume that L_n is in $\mathrm{DA}^{(n-1)\square}$. Then there exist n-1 languages K_{n-1}, \ldots, K_1 all of them from DA such that for $K = K_{n-1} \square (\ldots (K_2 \square K_1) \ldots)$ it holds $L_n = K$. By Corollary 2, $u_n \in L_n$ and $v_n \notin L_n$. But on the other hand, by Lemma 4, it holds $[u_n] = [v_n]$ in the syntactic monoid of K, from which it follows $u_n \in K \iff v_n \in K$, i.e., u_n and v_n are indistinguishable in K. Therefore, L_n cannot be equal to K. It follows that L_n cannot be from $\mathrm{DA}^{(n-1)\square}$. **q.e.d.**

From Theorems 1 and 2 we can conclude:

Corollary 3 Let $n \ge 1$ and $k \ge 2$. If n < k then each of the four classes Σ_k^L , Π_k^L , DD_k^L , and Δ_{k+1}^L contains $\text{DA}^{n\square}$ properly. If $n \ge k$ then each of these four classes is incomparable with $\text{DA}^{n\square}$.

Figure 2 gives a visual summary of the results in Theorems 1 and 2, and Corollary 3.

4 Open Questions and Acknowledgements

A problem left open is whether the weakly and the strongly bracketed *n*-fold iterated block product of DA coincide. Another interesting question is whether the class DA \Box DA or at least (DA \Box DA) $\cap \Sigma_2^L$ is decidable. By the results of Arfi [Ar87] the latter question can be reduced to the decidability of the following computational problem: Given a marked product $A_0a_1A_1 \dots a_nA_n$ of sub-alphabets, does it belong to DA \Box DA?

The author is grateful to Pascal Tesson for many discussions on the subject.

References

- [Ar87] M. ARFI: Polynomial Operations on Rational Languages, STACS 1987: 198-206
- [BL+04] B. BORCHERT, K.-J. LANGE, F. STEPHAN, P. TESSON, D. THÉRIEN: The dot-depth and the polynomial hierarchy correspond on the Delta levels, DLT 2004
- [CH71] R. S. COHEN, J. A. BRZOZOWSKI: Dot-Depth of Star-Free Events, J. Comput. Syst. Sci. 5(1): 1-16 (1971)
- [MP71] R. MCNAUGHTON, S. PAPERT: Counter-Free Automata, MIT Press, Cambridge MA, 1971.
- [Pin86] J.-E. PIN: Varieties of Formal Languages, Plenum, London, 1986.
- [PP86] D. PERRIN, J.-E. PIN: First-Order Logic and Star-Free Sets, J. Comput. Syst. Sci. 32(3): 393-406 (1986)
- [PW97] J.-E. PIN, P. WEIL: Polynominal Closure and Unambiguous Product, Theory Comput. Syst. 30(4): 383-422 (1997)
- [RT89] J. RHODES, B. TILSON: The kernel of monoid morphism, J. Pure Appl. Algebra 62: 227-268 (1989)

- [St81] H. STRAUBING: A Generalization of the Schützenberger Product of Finite Monoids, Theor. Comput. Sci. 13: 137-150 (1981)
- [St94] H. STRAUBING: Finite Automata, Formal Logic, and Circuit Complexity, Birkhäuser, Boston, 1994.
- [The81] D. THÉRIEN: Classification of Finite Monoids: The Language Approach, Theor. Comput. Sci. 14: 195-208 (1981)
- [Tho82] W. THOMAS: Classifying Regular Events in Symbolic Logic, J. Comput. Syst. Sci. 25(3): 360-376 (1982)
- [Tr02] S. TRAVERS: Blattsprachen-Komplexitätsklassen: Über Turing-Abschluss und Counting-Operatoren, Studienarbeit, Universität Würzburg, 2002.
- [ST02] H. STRAUBING, D. THÉRIEN: Weakly Iterated Block Products of Finite Monoids, LATIN 2002: 91-104
- [TT02] P. TESSON, D. THÉRIEN: Diamonds are forever: the Variety DA, in Semigroups, Algorithms, Automata and Languages, WSP, 2002, 475–499.
- [TW04] D. THÉRIEN, T. WILKE: Nesting Until and Since in Linear Temporal Logic, Theory Comput. Syst. 37(1): 111-131 (2004)