The Dot-Depth Hierarchy

V.

 Iterated Block Products of DA

 Iterated Block Products of DA}

Bernd Borchert

WSI-2004-09

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik
Arbeitsbereich Theoretische Informatik/Formale Sprachen Sand 13
D-72076 Tübingen

borchert@informatik.uni-tuebingen.de

The Dot-Depth Hierarchy v. Iterated Block Products of DA

Bernd Borchert
Universität Tübingen, Germany
email: borchert@informatik.uni-tuebingen.de

Abstract

Like the sequence of the classes of the dot-depth hierarchy the sequence of classes given by the n-fold iterated block product of DA has the class of starfree regular languages as its limit. It is shown that this DA-block-product hierarchy grows more slowly than the dot-depth hierarchy: in fact already Σ_{2}^{L} of the dot-depth hierarchy contains properness witnesses for all levels of the DA-block-product hierarchy.

1 Introduction

The dot-depth hierarchy is a way to classify the complexity of starfree regular languages: the lower a starfree language sits in the dot-depth hierarchy the less complex it is supposed to be. But there exist alternative ways to classify the starfree languages which are only partially comparable with the dot-depth hierarchy, for example the until/since depth from temporal logic [TW04].
Another classification of the starfree languages is considered here: the hierarchy given by the n-fold iterated block product of DA. DA is the set of monoids corresponding as syntactic monoids to the languages in Δ_{2}^{L} of the the dot-depth hierarchy, a very robust class with many characterizations [TT02]. The block product \square is also coming from the algebraic side and is the two-sided version of the wreath product on finite monoids, resp. on classes of monoids, see [RT89, ST02, TW04]. In this paper, DA and block products of DA will be identified with their corresponding language classes.
It is easy to see that the iterated block product $\mathrm{DA}^{n \square}$ of DA , defined strongly bracketed as

$$
\mathrm{DA}^{n \square}:=\mathrm{DA} \square(\ldots(\mathrm{DA} \square \mathrm{DA})),
$$

is a subset of Δ_{n+1}^{L} of the dot-depth hierarchy, so the two hierarchies are in one direction comparable. It is also known that Δ_{n+1}^{L} contains languages from $\mathrm{DA}^{n \square}$ which are not in the full level DD_{n}^{L} of the dot-depth hierarchy - this fact can be interpreted in the way that some parts of the DA-blockproduct hierarchy are growing as fast as the dot-depth hierarchy. The main result of this note is that other parts of the DA-block-product hierarchy are growing slowly compared with the dot-depth hierarchy: it is shown that already Σ_{2}^{L} contains for every $n \geq 1$ witnesses of the properness of the inclusion $\mathrm{DA}^{n \square} \subset \mathrm{DA}^{(n+1) \square}$. A graphical summary of the results is sketched in Figure 2.

Figure 1: The dot-depth hierarchy

2 Preliminairies

The dot-depth of a starfree regular language counts the minimal nesting depth of concatenations (= "dot products") one needs to represent the language by a starfree regular expression. There are two versions of the dot-depth hierarchy: the classical one by Cohen \& Brzozowski [CH71] and the variant by Straubing and Thérien [St81, The81]. They only differ slightly, see [St94], i.e. the level $n+1$ of one contains the level n of the other. We consider in this paper only the second version, and we will use a logical characterization of its levels [Tho82, PP86]. The dot-depth hierarchy consists for every $n \geq 0$ of the classes $\Sigma_{n}, \Pi_{n}, \mathrm{DD}_{n}$, and Δ_{n}, each of which is formally a mapping from the sets of finite alphabets to a set of regular languages over this alphabet. The class Σ_{n} is, according to a characterization of Thomas [Tho82] and Perrin \& Pin [PP86], the set of languages definable with a Σ_{n} alternation prefix in first-order logic on words with the signature [$<$] plus a unary predicate for each letter of the respective alphabet, see [St94, PW97]. Π_{n} is the set of complements of languages in Σ_{n}, DD_{n}^{L} (usually called L_{n}) is the Boolean closure of Σ_{n}, and Δ_{n} is defined as $\Sigma_{n} \cap \Pi_{n}$. It hold the proper inclusions as depicted in Figure 1, see for example [St94, PW97].
The syntactical monoid M_{L} of a language L over alphabet A consists of the equivalence classes [u] for $u \in A^{*}$ defined by the the equivalence relation

$$
\begin{equation*}
[u]=[v] \Longleftrightarrow \forall w, z \in A^{*}: w u z \in L \Longleftrightarrow w v z \in L \tag{1}
\end{equation*}
$$

The monoid operation can be defined by $[u][v]:=[u v]$, especially it holds for all words u, v, w, z from Σ^{*} :

$$
\begin{equation*}
\text { if }[u]=[v] \text { then }[w u z]=[w v z] . \tag{2}
\end{equation*}
$$

A language is regular iff its syntactical monoid is finite, and it is starfree iff moreover there exists a number ω such for all $x \in A^{*}$ it holds

$$
\begin{equation*}
\left[x^{\omega}\right]=\left[x^{\omega} x^{n}\right] \text { for every } n \geq 0 \tag{3}
\end{equation*}
$$

The class of monoids DA, which naming letters stand for the algebraic notions "D-classes" and "aperiodic", is the algebraic pendant of the language class Δ_{2}^{L} from the dot-depth hierarchy, in the sense that a language A is in Δ_{2}^{L} if and only if its syntactical monoid M_{A} is in DA, see for example [PW97, TT02]. By this correspondence, and because this paper tries to stay on the language side only, DA will stand for Δ_{2}^{L} from now on. The following characterization of DA, which is very close to the algebraic definiton of DA, see [TT02], will be used extensively.

Lemma 1 (DA) A language L over alphabet Σ belongs to DA iff for all words $x, y, z \in \Sigma^{*}$ it holds in M_{L} :

$$
\begin{equation*}
\left[(x y z)^{\omega} y(x y z)^{\omega}\right]=\left[(x y z)^{\omega}\right] \tag{4}
\end{equation*}
$$

For the definition of the block product we also stay on the language side (besides a little dip into the syntactic monoid), see [TW04].

Definition 1 (block product) The block product $K \square J$ of a language J over alphabet Σ and a language $K \in \mathrm{DA}$ over alphabet $M_{J} \times \Sigma \times M_{J}$ (where M_{J} is the syntactic monoid of J) is the language over alphabet Σ consisting of all words $x=x_{1} \cdots x_{n}$ in Σ^{*} such that the following word $\tau(x)$ is in K :

$$
\begin{equation*}
\tau(x):=\left([\varepsilon], x_{1},\left[x_{2} \cdots x_{n}\right]\right) \quad\left(\left[x_{1}\right], x_{2},\left[x_{3} \cdots x_{n}\right]\right) \cdots\left(\left[x_{1} \cdots x_{n-1}\right], x_{n},[\varepsilon]\right) \tag{5}
\end{equation*}
$$

The block product $\mathcal{K} \square \mathcal{J}$ of two classes of languages \mathcal{K} and \mathcal{J} is the set of block products $K \square J$ such that $K \in \mathcal{K}$ and $J \in \mathcal{J}$

The block product is in general not associative, see for example [ST02]. Therefore, we have two extrem cases (and many in between) concerning the bracketing: The strongly iterated block product of n languages K_{n}, \ldots, K_{1} (we prefer them to be numbered from the right) is defined as

$$
K_{n} \square\left(K_{n-1} \square\left(\ldots\left(K_{2} \square K_{1}\right) \ldots\right)\right)
$$

while the n-fold weakly iterated block product is defined as

$$
\left(\left(\ldots\left(K_{n} \square K_{n-1}\right) \ldots\right) \square K_{2}\right) \square K_{1} .
$$

Let $\mathrm{DA}^{n \square}$ be the set of all n-fold strongly iterated block products of DA languages. It holds that every weakly iterated block product of DA languages is in $\mathrm{DA}^{n \square}$, see for example [ST02], likewise every other bracketing of an n-fold block product of DA languages results in a language contained
in $\mathrm{DA}^{n \square}$. This justifies that we speak of $\mathrm{DA}^{n \square}$ as the n-fold iterated block product of DA, without mentioning the strong bracketing.
The class DA and every block product expression built on it, like $\mathrm{DA}^{n \square}$, is a variety of languages, i.e. it is closed under Boolean operations, under left and right quotients and under inverse homomorphic images, see [Pin86, ST02].
We state the following facts about the relation of $\mathrm{DA}^{n \square}$ and the dot-depth hierarchy. They can be derived from results in the literature, the proofs below are only sketched.

Theorem 1 Let $n \geq 1$.
(a) $\mathrm{DA}^{n \square} \subseteq \Delta_{n+1}^{L}$,
(b) $\mathrm{DA}^{n \square}$ contains languages in $\Delta_{n+1}^{L}-\mathrm{DD}_{n}^{L}$,
(c) $\bigcup_{n \geq 1} \mathrm{DA}^{n \square}$ equals the class of starfree languages.

Proof. (a) For $n=1$ this holds by definition. For the induction consider a language L in $\mathrm{DA}^{(n+1) \square}$, i.e. $L=L_{1} \square L_{0}$ with $L_{1} \in \mathrm{DA}$ and $L_{0} \in \mathrm{DA}^{n \square}$. In order to get a Σ_{n+2} expression for L take the Σ_{2} expression for L_{0} and plug the Π_{n+1} expression for L_{1}, which exists by induction hypothesis, into it. The two \forall levels collapse and in total it is a Σ_{n+2} expression. In order to get a Π_{n+2} expression for L plug the Σ_{n+1} formula for L_{1} into the Π_{2} expression for L_{0}. This shows $L \in \Sigma_{n+2}^{L} \cap \Pi_{n+2}^{L}=\Delta_{n+2}^{L}$. (b) Consider for $n \geq 2$ the following language D_{n} on alphabet $\{0,1, \ldots, 2 n-2\}$, see [BL+04]: $D_{2}=0^{*} 1\{0,1,2\}^{*}$, and for $n \geq 3 D_{n}$ consists of the words w such that the occurences of the letters $2 n-3$ and $2 n-2$ in w are considered as markers, and w is in D_{n} iff the marker after the first factor between two such markers which is in D_{n-1} is $2 n-1 . D_{n}$ is not only in Δ_{n}, as it is argued in [BL+04], but even in $\mathrm{DA}^{(n-1) \square}$. And moreover (thanks to Klaus Wagner, Würzburg, for this hint), D_{n} can be shown to be not in DD_{n}^{L} by the result of $[\operatorname{Tr} 02, \mathrm{BL}+04]$ that $\operatorname{Leaf}^{P}\left(D_{n}\right)=\Delta_{n}^{p}$, together with the oracle result separating the levels of PH and the relativizable result that PH collapses if BH collpases.
(c) Part (a) above verifies that each $\mathrm{DA}^{n \square}$, and therefore the limit of this sequence, consists of starfree languages only. On the other hand every starfree language L is covered by some $\mathrm{DA}^{n \square}$: let ϕ be a first order formula for L, which exists by the classical result starfree $=$ first-order definable of McNaughton \& Papert [MP71]. Then the quantifier depth (n.b.: not the quantifier alternation depth) of ϕ is such an n : each nested quantifier can be simulated by a DA $\square \ldots$ operation (actually, by a $\mathrm{DD}_{1}^{L} \square \ldots$ operation). q.e.d.
Note that by the results of Theorem 1 it still could be the case that for example $\mathrm{DA}^{n \square}=\Delta_{n+1}^{L}$ for all $n \geq 1$, or that $\mathrm{DA}^{n \square}$ is a class in between Δ_{n}^{L} and Δ_{n+1}^{L}, or that a similar close relation to the dot-depth hierarchy holds. In the following section it is shown that this is not the case.

$3 \quad \Sigma_{2}^{L}$ is not contained in an iterated block product of DA

The following languages L_{n}, for $n \geq 2$, over alphabet $\Sigma_{n}:=\{1, \ldots, n\}$ are from Σ_{2}^{L} and will be shown to be witnesses for the properness of the inclusion $\mathrm{DA}^{(n-1) \square} \subset \mathrm{DA}^{n \square}$.

$$
\begin{equation*}
L_{2}=\{1,2\}^{*} 11\{1,2\}^{*} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
L_{n+1}:=\Sigma_{n+1}^{*} L_{n} L_{n} \Sigma_{n+1}^{*} . \tag{7}
\end{equation*}
$$

where L_{n} is considered as a language over the larger alphabet Σ_{n+1}. For example,

$$
L_{3}=\{1,2,3\}^{*} 11\{1,2\}^{*} 11\{1,2,3\}^{*}
$$

(because $\{1,2,3\}^{*}\{1,2\}^{*}=\{1,2,3\}^{*}$ etc.), and

$$
L_{4}=\{1,2,3,4\}^{*} 11\{1,2\}^{*} 11\{1,2,3\}^{*} 11\{1,2\}^{*} 11\{1,2,3,4\}^{*}
$$

(With some fantasy the reader can see overlapping waves in these languages.) These examples show that L_{n} can also described as $L_{n}=\Sigma_{n}^{*} M_{n} \Sigma_{n}^{*}$ where M_{n} is defined via the following recursion:

$$
\begin{gather*}
M_{2}=11 \tag{8}\\
M_{n}=M_{n-1} \Sigma_{n-1}^{*} M_{n-1} \tag{9}
\end{gather*}
$$

Theorem 2 (Main) For every $n \geq 2$ it holds: The language L_{n} is an element of $\Sigma_{2}^{L} \cap \mathrm{DA}^{n \square}$ but not of $\mathrm{DA}^{(n-1) \square}$.

This theorem is the conjunction of the following Lemma 2, Corollary 1, and Lemma 6, which will be proven now, using more sub-lemmata.
A marked product of sub-alphabets over an alphabet A is a regular expression

$$
A_{0} a_{1} A_{1} \ldots a_{n} A_{n}
$$

with $n \geq 0, a_{0}, \ldots, a_{n}$ "markers" $=$ letters from A, and A_{0}, \ldots, A_{n} sub-alphabets, i.e. subsets of A. Example: $\{0,1,2\}^{*} 20^{*} 2\{0,1,2\}^{*}$ expressing "there exists two 2 's with no 1 's between them". It is easy to see that a language described by a marked product of sub-alphabets is in Σ_{2}^{L}, and in fact, by the results of Arfi [Ar87], Σ_{2}^{L} equals the set of all finite unions of them.

Lemma 2 For every $n \geq 2$ it holds: The language L_{n} is an element of Σ_{2}^{L}.
Proof. Every $L_{n}($ for $n \geq 2)$ is by the representation $\Sigma_{n}^{*} M_{n} \Sigma_{n}^{*}$ a marked product of sub-alphabets: $M_{2}=1 \emptyset^{*} 1$ is a marked product of sub-alphabets with two outmost markers 1 , and $M_{n+1}=M_{n} \Sigma_{n}^{*} M_{n}$ keeps its two outmost markers 1. q.e.d.

Lemma 3 For every $n \geq 1$ it holds: Any language described by a marked product of sub-alphabets with at most $2^{n}-1$ markers is in $\mathrm{DA}^{n \square}$.

Proof. Induction start $n=1$. A marked product $A_{0} a_{1} A_{1}$ is in Σ_{2}^{L}, see above. On the other hand, $A_{0} a_{1} A_{1}$ can be expressed by the following Π_{2} expression "there exists a position carrying letter a_{1}, and all positions carry letters from $A_{0} \cup A_{1} \cup\left\{a_{1}\right\}$, and it never occurs that a position has a letter from $A_{1}-\left(A_{0} \cup\left\{a_{1}\right\}\right)$ and larger position has a letter from $A_{0}-\left(A_{1} \cup\left\{a_{1}\right\}\right)$, and between every two positions with a letter from $A_{0}-\left(A_{1} \cup\left\{a_{1}\right\}\right)$ and a letter from $A_{1}-\left(A_{0} \cup\left\{a_{1}\right\}\right)$ there is a position in between carrying letter a_{1} ". This shows that $A_{0} a_{1} A_{1}$ is in $\Sigma_{2}^{L} \cap \Pi_{2}^{L}=\Delta_{2}^{L}$.
Induction step for $n \geq 2$. Given a marked product $L=A_{0} a_{1} A_{1} \ldots a_{m} A_{m}$ over alphabet A with $m \leq 2^{n}-1$, let a_{k} be the marker in the middle of the expression, i.e. $k=m / 2$ if m is odd and $k=$
$(m+1) / 2$ if m is even. Then $L=L_{0} a_{k} L_{1}$ with $L_{0}=A_{0} a_{1} A_{1} \ldots a_{k-1} A_{k-1}$ and $L_{1}=A_{k} \ldots a_{m} A_{m}$, and both L_{0} and L_{1} are marked products of sub-alphabets with not more than $2^{n-1}-1$ markers. Therefore, the induction hypothesis applies to L_{0} and L_{1}, i.e. both L_{0} and L_{1} are in $\mathrm{DA}^{(n-1) \square}$. Let $P:=L_{0} \times L_{1}$ be their product language which is by the variety closure properties still an element of $\mathrm{DA}^{(n-1) \square}$. Let Q be the Σ_{1}^{L} language consisting of the union of the languages $B^{*}\left(p, a_{k}, q\right) B^{*}$ on the alphabet $B=M_{P} \times A \times M_{P}$ such that p stands for acceptance of L_{0} and q for acceptance of L_{1}. The language $Q \square P$ is by this representation from $\mathrm{DA}^{n \square}$ and equals L. q.e.d.
Because L_{n} has 2^{n-1} markers (the 1's) we have the following corollary.
Corollary 1 For every $n \geq 2$ it holds: L_{n} is in $\mathrm{DA}^{n \square}$.
It remains to prove that L_{n} is not in $\mathrm{DA}^{(n-1)} \square$. Assume that L_{n} equals a language K from $\mathrm{DA}^{(n-1) \square}$, i.e.

$$
\begin{equation*}
K:=K_{n-1} \square\left(\ldots\left(K_{2} \square K_{1}\right) .\right) \tag{10}
\end{equation*}
$$

where each K_{i} is in DA. We will specify two words u_{n}, v_{n} such that $u_{n} \notin L_{n}$ and $v_{n} \in L_{n}$ but u_{n} and v_{n} are indistinguishable by K, i.e. $u_{n} \in K \Longleftrightarrow v_{n} \in K$.
Define u_{n} and v_{n} for $2 \leq n$ by induction:

$$
\begin{gather*}
u_{2}=(21)^{\omega} \tag{11}\\
v_{2}=(21)^{\omega} 1(21)^{\omega} \tag{12}
\end{gather*}
$$

where ω is the constant from Lemma 1 for K_{1}. For $n \geq 3$ define the abbreviation w_{n}, and u_{n}, v_{n} the following way:

$$
\begin{gather*}
w_{n}=u_{n-1} n u_{n-1} v_{n-1} \tag{13}\\
u_{n}:=\underbrace{w_{n}^{\omega}}_{\text {I }} \underbrace{w_{n}^{\omega}}_{\text {II }} \underbrace{w_{n}^{\omega}}_{\text {III }} \underbrace{w_{n}^{\omega}}_{\text {IV }} \tag{14}\\
v_{n}:=\underbrace{w_{n}^{\omega}}_{\text {I }} \underbrace{w_{n}^{\omega}}_{\text {II }} \underbrace{v_{n-1}}_{\text {IIa }} \underbrace{w_{n}^{\omega}}_{\text {III }} \underbrace{w_{n}^{\omega}}_{\text {IV }} \tag{15}
\end{gather*}
$$

where ω is the constant from Lemma 1 for K_{n-1} (no indexing of ω necessary, it will be clear from context which one is meant).
We show that $u_{n} \notin L_{n}$ and $v_{n} \in L_{n}$ via the following stronger invariant.
Lemma 4 Consider a word $g=g_{1} \cdots g_{m}$ where each g_{i} is either u_{n} or v_{n}. The factors of g which are elements of M_{n} are the following: exactly one such factor within each of the g_{i} for which $g_{i}=v_{n}$.

Proof. For $n=2$ the lemma can be checked easily. Let $n \geq 3$ und consider a word g from $\left\{u_{n}, v_{n}\right\}^{*}$. Because M_{n} does not use the letter n, a potential factor of g which is in M_{n} can only be found in the parts $u_{n-1} v_{n-1} u_{n-1}$ and $u_{n-1} v_{n-1} v_{n-1} u_{n-1}$, the latter occuring within the v_{n} 's of g. The parts $u_{n-1} v_{n-1} u_{n-1}$ contain by induction hypothesis only one factor which is from M_{n-1}. By $M_{n}=M_{n-1} \Sigma_{n-1} M_{n-1}$ we need two factors from M_{n-1} for a word in M_{n}. Therefore, these parts $u_{n-1} v_{n-1} u_{n-1}$ do not contain a factor from M_{n}, what proves one part of Lemma 4 for this n. The parts $u_{n-1} v_{n-1} v_{n-1} u_{n-1}$ contain by induction hypothesis exactly 2 factors of a word from M_{n-1}. Therefore these two factors together with the word in between build a factor belonging to $M_{n}=M_{n-1} \Sigma_{n-1} M_{n-1}$, and this is the only such factor. The parts $u_{n-1} v_{n-1} v_{n-1} u_{n-1}$ are the parts corresponding to the the occurrences of v_{n} in g. Therefore, Lemma 4 holds also for this n. q.e.d.

Corollary 2 For every $n \geq 2$ it holds: $u_{n} \notin L_{n}, v_{n} \in L_{n}$.
Proof. From Lemma 4 it follows that for $g=g_{1}=u_{n}$ there is no occurrence of a factor from M_{n}, therefore u_{n} is not contained in $L_{n}=\Sigma^{*} M_{n} \Sigma^{*}$, while for $g=g_{1}=v_{n}$ is there an (actually, exactly one) occurrence of a factor from M_{n}, therefore v_{n} is contained in $L_{n}=\Sigma^{*} M_{n} \Sigma^{*}$. q.e.d.
We will proof by induction the following crucial invariant.
Lemma 5 For $n \geq 2$ it holds in the syntactic monoid of $K=K_{n-1} \square\left(\ldots\left(K_{2} \square K_{1}\right) \ldots\right)$ the following:

$$
\begin{equation*}
\left[v_{n}\right]=\left[u_{n}\right]=\left[u_{n} u_{n}\right]=\left[v_{n} v_{n}\right]=\left[u_{n} v_{n}\right]=\left[v_{n} u_{n}\right] . \tag{16}
\end{equation*}
$$

Proof. Induction start: In case $n=2$ the block product $K=K_{1}$ is a single DA language. In order to verify the first of the equations in 16 note that $\left[v_{2}\right]=\left[(21)^{\omega} 1(21)^{\omega}\right]=\left[(21)^{\omega}(21)^{\omega}\right]=\left[u_{2} u_{2}\right]$ by equation 4 in Lemma 1 setting $x:=2, y:=1 z:=\varepsilon$. Moreover, $\left[u_{2}\right]=\left[(21)^{\omega}\right]=\left[(21)^{\omega}(21)^{\omega}\right]=\left[u_{2} u_{2}\right]$ by equation 3 . The other equations follow immediately from these two by equation 2 .
Induction step for $n \geq 3$: Define $J:=K_{n-2} \square\left(\ldots\left(K_{2} \square K_{1}\right)\right.$.) , this way $K=K_{n-1} \square J$. We go to the definition of the block product $K_{n-1} \square J$, and will analyze the words $\tau\left(z u_{n} z^{\prime}\right)$ and $\tau\left(z v_{n} z^{\prime}\right)$, see equation 5 in Definition 1. z and z^{\prime} are two arbitrary words from Σ_{n}, we need them later in order to show that from $\left[\tau\left(z u_{n} z^{\prime}\right)\right]=\left[\tau\left(z v_{n} z^{\prime}\right)\right]$ in the syntactic monoid of K_{n-1} it follows $\left[u_{n}\right]=\left[v_{n}\right]$ in the syntactic monoid of $K_{n-1} \square J$. Note that $\tau\left(z u_{n} z^{\prime}\right)$ and $\tau\left(z v_{n} z^{\prime}\right)$ are words on alphabet $M_{J} \times \Sigma \times M_{J}$ which have the same length as $z u_{n} z^{\prime}$ and $z v_{n} z^{\prime}$, respectively, so we can keep the partition of the positions of u_{n} and v_{n} into the parts I to IV, as in equations 14 and 15 , plus two parts 0 and V for the positions of z and z^{\prime}, respectively. We will show that there exist words p_{0}, p, x, y, s, s_{0} over alphabet $M_{J} \times \Sigma \times M_{J}$ such that $\tau\left(u_{n}\right)$ and $\tau\left(v_{n}\right)$ can be written the following way:

$$
\begin{align*}
& \tau\left(z u_{n} z^{\prime}\right)=\tau(\underbrace{z}_{0} \underbrace{w_{n}^{\omega}}_{\text {I }} \underbrace{w_{n}^{\omega}}_{\text {II }} \underbrace{w_{n}^{\omega}}_{\text {III }} \underbrace{w_{n}^{\omega}}_{\text {IV }} \underbrace{z^{\prime}}_{\text {V }})=\underbrace{p_{0}}_{\text {I }} \underbrace{p}_{\text {II }} \underbrace{(x y)^{\omega}}_{\text {III }} \underbrace{(x y)^{\omega}}_{\text {IV }} \underbrace{s}_{\mathrm{V}} \underbrace{s_{0}}_{\text {I }} \underbrace{w_{n}^{\omega}}_{\text {II }} \underbrace{v_{n}}_{\text {IIa }} \underbrace{w_{n}^{\omega}}_{\text {III }} \underbrace{w_{n}^{\omega}}_{\text {IV }} \underbrace{z^{\prime}}_{\text {V }})=\underbrace{p_{0}}_{0} \underbrace{p}_{\text {I }} \underbrace{(x y)^{\omega}}_{\text {II }} \underbrace{y}_{\text {IIa }} \underbrace{(x y)^{\omega}}_{\text {III }} \underbrace{s}_{\text {IV }} \underbrace{s_{0}}_{\text {V }} \tag{17}\\
& \tau\left(z v_{n} z^{\prime}\right)=\tau(\underbrace{z} \underbrace{\omega}_{n} \tag{18}
\end{align*}
$$

To verify the above three equations 17 and 18 we have to show the following:
(a) $\tau\left(z u_{n} z^{\prime}\right)$ and $\tau\left(z v_{n} z^{\prime}\right)$ coincide on parts 0 , I, II, III, IV and V.
(b) There exists a word $h(=x y)$ such that the two restrictions of $\tau\left(z u_{n} z^{\prime}\right)$ to parts II and III are of the form h^{ω}
(c) This periodic pattern h from (b) has a suffix y which equals $\tau\left(z v_{n} z^{\prime}\right)$ restricted to part IIa.
ad (a): We show that the words $\tau\left(z u_{n} z^{\prime}\right)$ and $\tau\left(z u_{n} z^{\prime}\right)$ coincide on parts 0 , I, II, III, IV, and V: Let i be a position in part 0 , I, or II of the words $z u_{n} z^{\prime}=b_{1} \ldots b_{m}$ and $z v_{n} z^{\prime}=b_{1}^{\prime} \ldots b_{m^{\prime}}^{\prime}$. The two triples $\left(\left[b_{1} \ldots b_{i-1}\right], b_{i},\left[b_{i+1} \ldots b_{m}\right]\right)$ at position i of $\tau\left(z u_{n} z^{\prime}\right)$ and $\left(\left[b_{1}^{\prime} \ldots b_{i-1}^{\prime}\right], b_{i}^{\prime},\left[b_{i+1}^{\prime} \ldots b_{m^{\prime}}\right]\right)$ at position i of $\tau\left(z v_{n} z^{\prime}\right)$ will of course coincide on their left and middle component because $z u_{n} z^{\prime}$ and $z v_{n} z^{\prime}$ are identical up to that position. But moreover they also coincide on the right component of the triple: The two words $b_{i+1} \ldots b_{m}$ and $b_{i+1}^{\prime} \ldots b_{m^{\prime}}^{\prime}$ only differ by the extra factor v_{n-1} in $b_{i+1}^{\prime} \ldots b_{n^{\prime}}^{\prime}$ from part IIa. But this v_{n-1} is immediately left to a u_{n-1} (u_{n-1} is a prefix of part III), and by induction hypothesis we have $\left[v_{n-1} u_{n-1}\right]=\left[u_{n-1}\right]$ in the syntactic monoid of J. Therefore, by equation $2,\left[b_{i+1} \ldots b_{m}\right]=\left[b_{i+1}^{\prime} \ldots b_{m^{\prime}}^{\prime}\right]$, i.e. the third components of the two tripels are also equal. By symmetrical arguments and $\left[v_{n-1} v_{n-1}\right]=\left[v_{n-1}\right]$ by induction hypothesis we have that $\tau\left(z u_{n} z^{\prime}\right)$ and $\tau\left(z v_{n} z^{\prime}\right)$ also coincide on parts III, IV, and V.
ad (b): Let i be a position in the j-th factor $w_{n}(1 \leq j \leq \omega)$ of part II of $z u_{n} z^{\prime}$. Then the triple of $\tau\left(z u_{n} z^{\prime}\right)$ at that position i has the form

$$
\left(\left[z w_{n}^{\omega} w_{n}^{j-1} f\right], a,\left[g w_{n}^{\omega-j} w_{n}^{\omega} z^{\prime}\right]\right)
$$

where f and g are the prefix and the suffix of the factor w_{n} left and right of that position i, respectively, i.e. $f a g=w_{n}$. Note that by equation 3 it holds $\left[z w_{n}^{\omega} w_{n}^{j-1}\right]=\left[z w_{n}^{\omega}\right]$ in the syntactic monoid of J, so we can by equation 2 rewrite the left component as $\left[z w_{n}^{\omega} f\right]$. Likewise (now via adding w_{n}^{j-1} instead of dropping it) the right component can be rewritten as $\left[g w_{n}^{\omega-1} w_{n}^{\omega} z^{\prime}\right]$. This way we have at the position i in the j-th factor w_{n} of part II of $\tau\left(z u_{n} z^{\prime}\right)$ the triple

$$
\left(\left[z w_{n}^{\omega} f\right], a,\left[g w_{n}^{\omega-1} w_{n}^{\omega} z^{\prime}\right]\right)
$$

But this is exactly the same triple as the triple at the i-th position of the first factor w_{n} in part II of $\tau\left(z u_{n} z^{\prime}\right)$. By setting h to be the suffix of length $\left|w_{n}\right|$ of part II of $\tau\left(z^{\prime} u_{n} z\right)$ we get the desired property (b) for part II. By symmetrical arguments (b) also holds for part III.
ad (c): Consider a position i in part IIa, i.e. $v_{n}=b_{1} \cdots b_{i-1} b_{i} b_{i+1} \cdots b_{m}$. The triple at the i-th position in part IIa of $\tau\left(z v_{n} z^{\prime}\right)$ will be

$$
\left(\left[z w_{n}^{\omega} w_{n}^{\omega-1} u_{n-1} n \underline{u_{n-1} v_{n-1}} b_{1} \cdots b_{i-1}\right], b_{i},\left[b_{i+1} \cdots b_{m} \underline{u_{n-1}} n u_{n-1} v_{n-1} w_{n}^{\omega-1} w_{n}^{\omega} z^{\prime}\right]\right)
$$

By induction hypothesis it holds $\left[u_{n-1} v_{n-1}\right]=\left[v_{n-1}\right]$ in the syntactic monoid of J, therefore the first component the factor $u_{n-1} v_{n-1}$ left of b_{1} can be rewritten by u_{n-1}, and likewise in the third component the factor u_{n-1} right of b_{m} can be rewritten by $v_{n-1} u_{n-1}$, as this is indicated by the underlinings in the triples above and below. This way the above triple equals

$$
\left(\left[z w_{n}^{\omega} w_{n}^{\omega-1} u_{n-1} n \underline{u_{n-1}} b_{1} \cdots b_{i-1}\right], b_{i},\left[b_{i+1} \cdots b_{m} \underline{v_{n-1} u_{n-1}} n u_{n-1} v_{n-1} w_{n}^{\omega-1} w_{n}^{\omega} z^{\prime}\right]\right)
$$

But this is exactly the triple which one gets by looking at the i-th position in the suffix v_{n-1} of part II of the word $\tau\left(z v_{n} z^{\prime}\right)$.

We have shown (a), (b), and (c), i.e. $\tau\left(z u_{n} z^{\prime}\right)$ and $\tau\left(z v_{n} z^{\prime}\right)$ can be written in the form of equations 17 and 18. This gives the following equation 19 in the syntactic monoid of K_{n-1} :

$$
\begin{equation*}
\left[\tau\left(z u_{n} z^{\prime}\right)\right]=[\underbrace{p_{0}}_{0} \underbrace{p}_{\text {I }} \underbrace{(x y)^{\omega}}_{\text {II }} \underbrace{(x y)^{\omega}}_{\text {III }} \underbrace{s}_{\text {IV }} \underbrace{s_{0}}_{\text {V }}]=[\underbrace{p_{0}}_{0} \underbrace{p}_{\text {I }} \underbrace{(x y)^{\omega}}_{\text {II }} \underbrace{y}_{\text {IIa }} \underbrace{(x y)^{\omega}}_{\text {III }} \underbrace{s}_{\text {IV }} \underbrace{s_{0}}_{\text {V }}]=\left[\tau\left(z v_{n} z^{\prime}\right)\right] \tag{19}
\end{equation*}
$$

The middle equation symbol above holds by the following equality in the syntactic monoid of K_{n-1} which is a case of equation 4 (no renaming of the variables x, y necessary, $z:=\varepsilon$):

$$
\begin{equation*}
[\underbrace{(x y)^{\omega}}_{\text {II }} \underbrace{(x y)^{\omega}}_{\text {III }}]=[\underbrace{(x y)^{\omega}}_{\text {II }} \underbrace{y}_{\text {IIa }} \underbrace{(x y)^{\omega}}_{\text {III }}] \tag{20}
\end{equation*}
$$

We have shown $\left[\tau\left(z u_{n} z^{\prime}\right)\right]=\left[\tau\left(z v_{n} z^{\prime}\right)\right]$ in the syntactic monoid of K_{n-1} for all words $z, z^{\prime} \in \Sigma_{n}^{*}$. From this it follows $\tau\left(z u_{n} z^{\prime}\right) \in K_{n-1} \Longleftrightarrow \tau\left(z v_{n} z^{\prime}\right) \in K_{n-1}$ for all $z, z^{\prime} \in \Sigma_{n}^{*}$. This means, by the definition of block product: $z u_{n} z^{\prime} \in K_{n-1} \square J \Longleftrightarrow z v_{n} z^{\prime} \in K_{n-1} \square J$ for all $z, z^{\prime} \in \Sigma_{n}^{*}$. By the definition of the elements of the syntactic monoid we have the equality

$$
\begin{equation*}
\left[u_{n}\right]=\left[v_{n}\right] \tag{21}
\end{equation*}
$$

in the syntactic monoid of $K_{n-1} \square J$.
This shows that the first equation in Lemma 5 holds. Now we show the second equation $\left[u_{n} u_{n}\right]=\left[u_{n}\right]$. Let z, z^{\prime} be again some words from Σ_{n}^{*}. Let τ again be the function in equation 5 in the definition of block product. It holds for $\tau\left(z u_{n} u_{n} z^{\prime}\right)$ the following:

$$
\begin{equation*}
\tau\left(z u_{n} u_{n} z^{\prime}\right)=\tau(\underbrace{z}_{0} \underbrace{w_{n}^{\omega}}_{\text {I }} \underbrace{w_{n}^{3 \omega}}_{\text {IIb }} \underbrace{w_{n}^{3 \omega}}_{\text {IIIb }} \underbrace{w_{n}^{\omega}}_{\text {IV }} \underbrace{z^{\prime}}_{\text {V }})=\underbrace{p_{0}}_{0} \underbrace{p}_{\text {I }} \underbrace{(x y)^{3 \omega}}_{\text {IIb }} \underbrace{(x y)^{3 \omega}}_{\text {IIIb }} \underbrace{s}_{\text {IVa }} \underbrace{s_{0}}_{\text {V }} \tag{22}
\end{equation*}
$$

The first equality is the definition of u_{n}, the second equality holds by the same argumentation like for claim (a) above. In the syntactic monoid of K_{n-1} it holds by equation $3\left[(x y)^{3 \omega}\right]=\left[(x y)^{\omega}\right]$. Therefore, and by equations 22 and 17 together with equation 2 , it holds in the syntactic monoid of K_{n-1} :

$$
\begin{equation*}
\left[\tau\left(z u_{n} u_{n} z^{\prime}\right)\right]=[\underbrace{p_{0}}_{0} \underbrace{p}_{\mathrm{I}} \underbrace{(x y)^{3 \omega}}_{\mathrm{IIb}} \underbrace{(x y)^{3 \omega}}_{\text {IIIb }} \underbrace{s}_{\mathrm{IVa}} \underbrace{s_{0}}_{\mathrm{V}}]=[\underbrace{p_{0}}_{0} \underbrace{p}_{\mathrm{I}} \underbrace{(x y)^{\omega}}_{\text {II }} \underbrace{(x y)^{\omega}}_{\text {III }} \underbrace{s}_{\mathrm{IVa}} \underbrace{s_{0}}_{\mathrm{V}}]=\left[\tau\left(z u_{n} z^{\prime}\right)\right] \tag{23}
\end{equation*}
$$

From $\left[\tau\left(z u_{n} u_{n} z^{\prime}\right)\right]=\left[\tau\left(z u_{n} z^{\prime}\right)\right]$ in the syntactic monoid of K_{n-1} for all $z, z, \in \Sigma_{n}^{*}$ we can like above conclude that in the syntactic monoid of $K_{n-1} \square J$ it holds:

$$
\begin{equation*}
\left[u_{n} u_{n}\right]=\left[u_{n}\right] \tag{24}
\end{equation*}
$$

We have shown $\left[u_{n}\right]=\left[v_{n}\right]$ and $\left[u_{n}\right]=\left[u_{n} u_{n}\right]$ in the syntactic monoid of $K_{n-1} \square J$. The other equations follow immediately from these two by equation 2. q.e.d.

Lemma 6 For every $n \geq 2$ it holds: L_{n} is not an element of $\mathrm{DA}^{(n-1) \square . ~}$

Proof. Let $n \geq 2$ and consider L_{n} as a language over alphabet Σ_{n}. Assume that L_{n} is in $\mathrm{DA}^{(n-1) \square}$. Then there exist $n-1$ languages K_{n-1}, \ldots, K_{1} all of them from DA such that for $K=K_{n-1} \square\left(\ldots\left(K_{2} \square K_{1}\right) \ldots\right)$ it holds $L_{n}=K$. By Corollary $2, u_{n} \in L_{n}$ and $v_{n} \notin L_{n}$. But on the other hand, by Lemma 4, it holds $\left[u_{n}\right]=\left[v_{n}\right]$ in the syntactic monoid of K, from which it follows $u_{n} \in K \Longleftrightarrow v_{n} \in K$, i.e., u_{n} and v_{n} are indistinguishable in K. Therefore, L_{n} cannot be equal to K. It follows that L_{n} cannot be from $\mathrm{DA}^{(n-1) \square}$. q.e.d.
From Theorems 1 and 2 we can conclude:

Corollary 3 Let $n \geq 1$ and $k \geq 2$. If $n<k$ then each of the four classes $\Sigma_{k}^{L}, \Pi_{k}^{L}, \mathrm{DD}_{k}^{L}$, and Δ_{k+1}^{L} contains $\mathrm{DA}^{n \square}$ properly. If $n \geq k$ then each of these four classes is incomparable with $\mathrm{DA}^{n \square}$.

Figure 2 gives a visual summary of the results in Theorems 1 and 2, and Corollary 3.

4 Open Questions and Acknowledgements

A problem left open is whether the weakly and the strongly bracketed n-fold iterated block product of DA coincide. Another interesting question is whether the class DA $\square \mathrm{DA}$ or at least ($\mathrm{DA} \square \mathrm{DA}$) $\cap \Sigma_{2}^{L}$ is decidable. By the results of Arfi [Ar87] the latter question can be reduced to the decidability of the following computational problem: Given a marked product $A_{0} a_{1} A_{1} \ldots a_{n} A_{n}$ of sub-alphabets, does it belong to DA $\square \mathrm{DA}$?
The author is grateful to Pascal Tesson for many discussions on the subject.

References

[Ar87] M. Arfi: Polynomial Operations on Rational Languages, STACS 1987: 198-206
[BL+04] B. Borchert, K.-J. Lange, F. Stephan, P. Tesson, D. Thérien: The dot-depth and the polynomial hierarchy correspond on the Delta levels, DLT 2004
[CH71] R. S. Cohen, J. A. Brzozowski: Dot-Depth of Star-Free Events, J. Comput. Syst. Sci. 5(1): 1-16 (1971)
[MP71] R. McNaughton, S. Papert: Counter-Free Automata, MIT Press, Cambrigde MA, 1971.
[Pin86] J.-E. Pin: Varieties of Formal Languages, Plenum, London, 1986.
[PP86] D. Perrin, J.-E. Pin: First-Order Logic and Star-Free Sets, J. Comput. Syst. Sci. 32(3): 393-406 (1986)
[PW97] J.-E. Pin, P. Weil: Polynominal Closure and Unambiguous Product, Theory Comput. Syst. 30(4): 383-422 (1997)
[RT89] J. Rhodes, B. Tilson: The kernel of monoid morphism, J. Pure Appl. Algebra 62: 227268 (1989)

Figure 2: Σ_{2}^{L} v. iterated block products of DA Z
[St81] H. Straubing: A Generalization of the Schützenberger Product of Finite Monoids, Theor. Comput. Sci. 13: 137-150 (1981)
[St94] H. Straubing: Finite Automata, Formal Logic, and Circuit Complexity, Birkhäuser, Boston, 1994.
[The81] D. Thérien: Classification of Finite Monoids: The Language Approach, Theor. Comput. Sci. 14: 195-208 (1981)
[Tho82] W. Thomas: Classifying Regular Events in Symbolic Logic, J. Comput. Syst. Sci. 25(3): 360-376 (1982)
[Tr02] S. Travers: Blattsprachen-Komplexitätsklassen: Über Turing-Abschluss und CountingOperatoren, Studienarbeit, Universität Würzburg, 2002.
[ST02] H. Straubing, D. Thérien: Weakly Iterated Block Products of Finite Monoids, LATIN 2002: 91-104
[TT02] P. Tesson, D. Thérien: Diamonds are forever: the Variety DA, in Semigroups, Algorithms, Automata and Languages, WSP, 2002, 475-499.
[TW04] D. Thérien, T. Wilke: Nesting Until and Since in Linear Temporal Logic, Theory Comput. Syst. 37(1): 111-131 (2004)

