Searching Paths of Constant Bandwidth

Bernd Borchert
Klaus Reinhardt

WSI-2004-10

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik
Arbeitsbereich Theoretische Informatik/Formale Sprachen Sand 13
D-72076 Tübingen

borchert@informatik.uni-tuebingen.de

Searching Paths of Constant Bandwidth

Bernd Borchert Klaus Reinhardt
Universität Tübingen, Germany
\{borchert,reinhard\}@informatik.uni-tuebingen.de

Abstract

As a generalization of paths, the notion of paths of bandwidth w is introduced. We show that, for a given constant $w \geq 1$, the corresponding search problem for such a path of length k in a given graph is NP-complete and fixed-parameter tractable in the parameter k, like this is known for the special case $w=1$, the LONGEST PATH problem. We state the FPT algorithm in terms of a guess and check protocol which uses witnesses of size polynomial in the parameter.

1 Introduction

A path within a graph is one of the most elementary notions of graph theory and its applications. The LONGEST PATH is the computational problem which asks for a given graph G and an integer k whether there is a path of length k in G which is simple, i.e. all vertices are different from each other. The LONGEST PATH is NP-complete [GJ97]. Moreover, the LONGEST PATH problem is fixed-parameter tractable in the parameter k. This was shown by Monien [Mo85] and improved with respect to running time by Alon, Yuster, Zwick [AYZ95], using randomization techniques.
In this paper we generalize the notion of a path: a path of bandwidth w, or short w-path, in a graph G is a sequence $\left(v_{1}, \ldots, v_{n}\right)$ of vertices such that for all v_{i}, v_{j} with $1 \leq j-i \leq w$ the pair $\left(v_{i}, v_{j}\right)$ is an edge in G, see Fig. 1 for an example of a 2-path. 1-paths are paths in the usual sense. It will be easy to show that for every $w \geq 1$ the corresponding computational problem BANDWIDTH-w-PATH, which asks for a given graph G and an integers k whether there exists a simple w-path of length k in G, is NP-complete.
The BANDWIDTH-w-PATH problem for every w is fixed-parameter tractable in the parameter k, this will be shown according to the characterization of FPT \cap NP by Cai, Chen, Downey \& Fellows [CCDF95] via an "FPT guess and check protocol" using witnesses of size only dependent on the parameter. The runtime obtained for our guess and check protocol, for the case $w=1$, which is the LONGEST PATH problem, and seen as a deterministic exhaustiv search algorithm, is worse than the algorithms of Monien [Mo85] and Alon, Yuster, Zwick [AYZ95]. On the other hand, our algorithm is more easily stated and can immediately be applied to the BANDWIDTH-w-PATH problem. Moreover, the algorithms of [Mo85, AYZ95] do not seem to give better FPT guess and check protocols.

Figure 1: Two drawings of the same 2-path of length 5, vertex-disjoint and deterministic

2 Paths of constant bandwidth

Let G be a digraph and let $w, k \geq 1$. A path of bandwidth w and length k in G is a sequence of $k+w$ vertices $\left(v_{1}, \ldots, v_{k+w}\right)$ such that the pair (v_{i}, v_{i+j}) is an edge of G for every i with $1 \leq i \leq k$ and every j with $1 \leq j \leq w$. A path of bandwidth w and length k will also be called w-path of length k or, even shorter, (w, k)-path. A 1 -path of length k is a path of length k in the usual sense. (For a path of length k some authors count the number of vertices while others count the number of edges - what is one less. In this paper we count the number of edges.) In Figures 1, 2, and 3 some 2-paths and 3 -paths are shown. Note that a $(w, 1)$-path is a $(w+1)$-clique: every two nodes are connected by an edge. A (w, k)-path can actually be seen as a sequence of $k(w+1)$-cliques with two subsequent cliques "glued" together by their common w elements.
A (w, k)-path $\left(v_{1}, \ldots, v_{k+w}\right)$ is vertex-disjoint if all v_{i} are different from each other, it is simple if all k w-tupels $\left(v_{1}, \ldots, v_{w}\right),\left(v_{2}, \ldots, v_{w+1}\right), \ldots,\left(v_{k}, \ldots, v_{k+w}\right)$ are different from each other. A vertex-disjoint (k, n)-path is simple, but not vice versa for $k \geq 2$, see Figure 3. A vertex-disjoint (w, k)-path, as a graph on its own, is the graph with $k+w$ vertices having bandwidth w and a maximal set of edges, that is why we choose the name "bandwidth" for the number w (see [PT99, GJ97] for the definition of bandwidth of a graph).
Though the notion of w-paths within a graph G is a rather natural generalization of paths the authors could not find references for it in the literature. The closest concept found is the w-ray from Proskurowski \& Telle [PT99], corresponding to a vertex-disjoint w-path (as a graph on its own).

Figure 2: A 3-path of length 5, vertex-disjoint and deterministic

Figure 3: A 2-path of length 10, deterministic and simple but not vertex-disjoint

A (w, k)-path $\left(v_{1}, \ldots, v_{k+w}\right)$ is deterministic in G if for every $1 \leq i \leq k v_{i+w}$ is the only vertex in the graph G having the property that all edges $\left(v_{i}, v_{i+w}\right), \ldots,\left(v_{i+w-1}, v_{i+w}\right)$ are edges of the graph. For example, a deterministic 1-path has the property that every vertex of it - besides the last one - has exactly one outgoing edge in G.
For $w<k$, a (w, k)-path $\left(v_{1}, \ldots, v_{k+w}\right)$ is a cycle of bandwidth w and length k, short w-cycle of length k or (w, k)-cycle, if $\left(v_{k+1}, \ldots, v_{k+w}\right)=\left(v_{1}, \ldots, v_{w}\right)$. The cycle is vertex-disjoint if v_{1}, \ldots, v_{k} are different from each other, it is simple if $\left(v_{1}, \ldots, v_{k+w-1}\right)$ is a simple w-path, see Fig. 4 for an example.
For undirected graphs the definitions can be transfered literally.
For a fixed w let BANDWIDTH-w-PATH be the set of pairs $\langle G, k\rangle$ such that the digraph G contains a simple (w, k)-path. BANDWIDTH-1-PATH $=$ LONGEST-PATH. Let BANDWIDTH-PATH be the double-parameterized problem consisting of the triples $\langle G, w, k\rangle$ such that the digraph G contains a simple (w, k)-path.
Some variations of these problems: Let the prefixes UNDIRECTED- and DISJOINT- in front of these problem names indicate that the input graph is undirected, or, independently, that the path to be found has to be not only simple but vertex-disjoint, respectively. Let CYCLE instead of PATH in a problem name denote that the path to be found has to be a cycle. Call these further 7 problems the variations of the BANDWIDTH-w-PATH, resp. BANDWIDTH-PATH, problem.

Figure 4: A 2-cycle of length 8, deterministic and vertex-disjoint

Proposition 1 (a) BANDWIDTH-PATH is NP-complete, likewise its variations.
(b) For every $w \geq 1$ the problem BANDWIDTH-w-PATH is NP-complete, likewise its variations.

Proof. Obviously all problems are in NP. BANDWIDTH-PATH is NP-complete because LONGEST PATH is a subproblem. In order to show NP-completeness of BANDWIDTH-w-PATH we reduce LONGEST PATH to it. Let some directed graph G be given. Let the graph $\phi(G)$ consist of w copies G_{1}, \ldots, G_{w} of G, and let an edge from u in G_{i} to v in G_{j} only exist if $i<j$ and in G there is a simple path of length $j-i$ from u to v. It holds: G has a simple path of length k iff $\phi(G)$ has a simple w-path of length k. q.e.d.
We mention that for fixed w the problem of searching for a deterministic simple w-path of a given length k can be done in PTIME by a straightforward marking algorithm.

3 Fixed-Parameter Tractability

The following notion is from Downey \& Fellows [DF92] though it can already be found - without giving it a name - in Monien [Mo85][p. 240, the two paragraphs before and after Th. 1, resp.].

Definition 1 (fixed-parameter tractability [Mo85, DF92]) A computational problem consisting of pairs $\langle x, k\rangle$ is fixed-parameter tractable in the parameter k if there is a deciding algorithm for it having run-time $f(k) \cdot|x|^{c}$ for some recursive function f and some constant c.

We use the following characterization of FPT \cap NP by Cai, Chen, Downey \& Fellows [CCDF95]:
Theorem 1 (Cai et al. [CCDF95]) A language $L \in$ NP consisting of pairs $\langle x, k\rangle$ is fixed-parameter tractable in the parameter k iff there exists a recursive function $s(k)$ and a PTIME computable language C such that $\langle x, k\rangle \in L \Longleftrightarrow \exists y \leq s(k):\langle x, k, y\rangle \in C$.

We call the function s the witness size function, and the language C the witness checker, and we say that these two together form an FPT guess and check protocol for L.

Theorem 2 For every $w \geq 1$ the problem BANDWIDTH-w-PATH is fixed parameter tractable in the parameter k, likewise its variations. More specifically, there exists an FPT guess and check protocol for it with a witness size function $s(k)=\binom{k}{2} \cdot \log k$ and a witness checker having runtime $O\left(w \cdot k^{2} \cdot|E|^{w} \cdot|V|^{w}\right)$.

Proof. We first consider the case $w=1$, i.e. the LONGEST PATH problem. Afterwards we will see that the algorithm is generalizable to the BANDWIDTH-w-PATH problem for $w>1$. We state an FPT guess and check protocol for LONGEST PATH with the witness size function $s(k)=\binom{k}{2} \cdot \log k$ and a witness checker with runtime $O\left(k^{2} \cdot|E| \cdot|V|\right)$.
Let a digraph G with n vertices be given. We want to find out whether the graph contains a simple path $p=\left(v_{1}, \ldots, v_{k+1}\right)$ of length k. We will work with witnesses. The intention of a witness is to tell the algorithm in the moment when it is trying to build an initial segment $\left(v_{1}, \ldots, v_{i}\right)$ of the simple path of length k which are the future vertices v_{i+1}, \ldots, v_{k+1} of the simple path - so that the algorithm does not pick one of these future vertices as a part of the initial segment. Unfortunately,

Figure 5: Witness table for a simple path of length 4
we cannot use the tuple $\left(v_{1}, \ldots, v_{k+1}\right)$ as a witness, because that way we would have n^{k+1} potential witnesses, so that we would need at least $(k+1) \log (n)$ bits to encode them, a number growing in n. But for the FPT guess and check protocol we need some witness size function $s(k)$ only dependent on k.
We choose the following kind of witnesses. A witness for such a simple path of length k consists of $k(k+1) / 2=\binom{k+1}{2}$ numbers $a_{i, j} \in\{0,1, \ldots, k\}$, for $2 \leq i \leq k+1$ and $j \in\{1, \ldots, k-i+2\}$. The witness can be visualized as a half-matrix a, see Figure 5. Let a_{i} for $2 \leq i \leq k+1$ be the tupel $\left(a_{i, 1}, \ldots, a_{i, k-i+2}\right)$. We can restrict the witnesses to have these properties: a_{i} contains only numbers $\leq i-1$ and at least one 0 . There is some redundancy, for example $a_{k+1,1}$ will always be 0 . Nevertheless, the order of magnitude of the witness size function $s(k)$ does not seem to be improvable by these "little savings".
For every witness a the main algorithm C does the following: In every of the k steps $i=2,3, \ldots, k+1$ it computes for every vertex v a value $f_{a, i}(v)$, defined further below, which is either a vertex or has the value nil (standing for "not existing"), and stores this function for use in the following steps. The following pseudo code shows the main structure of the algorithm.

Main algorithm C

Input: graph G, number $k \leq|G|$, and a witness a
for every vertex v set $f_{a, 1}(v):=v$;
for $i=2, \ldots, k+1$ do
for every vertex v in G do
compute $f_{a, i}(v)$ and store it;
if $i=k+1$ and $f_{a, i}(v) \neq$ nil ACCEPT and STOP;
REJECT and STOP;

The computation of the value $f_{a, i}(v)$ - which is either nil or a vertex - is described in the pseudo code below. Assume w.l.o.g. that for each vertex there is a list of incoming edges (ending with the nil list element) in which the edges appear according to the order on the vertices. As a useful
abbreviation let $f_{a, i}^{d}(v)$ for a vertex v and d with $1 \leq d \leq i+1$ be defined via

$$
f_{a, i}^{1}(v):=v, \quad f_{a, i}^{2}(v):=f_{a, i}(v), \text { and } f_{a, i}^{d+1}(v):=f_{a, i-1}^{d}\left(f_{a, i}(v)\right)
$$

with this value being nil in case $f_{a, i}(v)$ or $f_{a, i-1}^{d}\left(f_{a, i}(v)\right)$ equals nil. Intuitively, $f_{a, i}^{d}(v)$ follows starting in v - for growing $d=1, \ldots, i+1$ the "backward path" given by the $f_{a, i-d}$-functions, see Figure 6. The upper index d numbers the vertices of this path, and the witness elements $a_{i, j} \geq 0$ will refer to this numbering.
By easy induction on i, the following invariant will be guaranteed for every witness a, every i with $2 \leq i \leq k+1$, and every vertex v :
(Inv1) If $f_{a, i}(v) \neq$ nil then the "backward path" $\left(f_{a, i}^{i}(v), \ldots, f_{a, i}^{2}(v), f_{a, i}^{1}(v)\right)$ is a simple path of length $i-1$.

Computing $f_{a, i}(v)$
Input: i, a, and v. Already computed: $f_{a, 1}, \ldots, f_{a, i-1}$.
set $F:=\{v\}$;
set $j:=1$;
if there are no incoming edges for v set $f_{a, i}(v):=$ nil and STOP;
set $e=(u, v)$ to be the first edge incoming to v;
while $e \neq$ nil do

```
            if \(f_{a, i-1}(u) \neq\) nil and none of the vertices \(f_{a, i-1}^{1}(u), f_{a, i-1}^{2}(u), \ldots, f_{a, i-1}^{i}(u)\) is in \(F\) do
                set \(c:=a_{i, j}\);
                if \(c=0\)
                    set \(f_{a, i}(v):=u\) and STOP;
```

otherwise
set $F:=F \cup\left\{f_{a, i}^{c}(u)\right\}$;
set $j:=j+1$;
set $e=(u, v):=$ next edge going into v;
set $f_{a, i}(v):=$ nil and STOP;

Verification of the main algorithm C : If the algorithm accepts then it has found for this witness a a vertex v such that $f_{a, k+1}(v) \neq$ nil. By invariant (Inv1), case $i=k+1$, the backward path starting in v is a simple path of length k.
On the other hand assume that there is a simple path of length k in G. Let $s=\left(s_{1}, \ldots, s_{k+1}\right)$ be the lexicographically smallest among them (largest weight on s_{k+1}, unlike, for example, with decimal numbers). With the knowledge of this path and its vertices we will construct a witness b such that the main algorithm will accept for witness b.

Figure 6: A "backward path", starting in v

Constructing b

Input: s_{1}, \ldots, s_{k+1}.
for every vertex v set $f_{b_{1}, 1}(v)=v$;
for $i=2$ to $k+1$ do
set $e=\left(u, s_{i}\right):=$ first edge going into s_{i};
set $F=\left\{s_{i}\right\}$;
set $j:=1$;
repeat
while $f_{b_{i-1}, i-1}(u)=$ nil or some of the vertices $f_{b_{i-1}, i-1}^{1}(u), \ldots, f_{b_{i-1}, i-1}^{i}(u)$ is in F set $e=\left(u, s_{i}\right):=$ next edge going into s_{i};
if there is a $c \in\{1, \ldots, i\}$ such that $f_{b_{i-1}, i-1}^{c}(u) \in\left\{s_{i+2}, \ldots, s_{k+1}\right\}$
set $b_{i, j}:=c$ for the smallest such c;
set $F:=F \cup\left\{f_{b_{i-1}, i-1}^{c}(u)\right\} ;$
set $j:=j+1 ;$
until there is no such c;
$b_{i, j}:=0$
compute $f_{b_{i}, i}(v)$ for all vertices v;

The crucial invariant kept by this construction is the following:
(Inv2) For every i with $2 \leq i \leq k+1$ it holds: $f_{b, i}\left(s_{i}\right)=s_{i-1}$.
The invariant holds via induction on i : the construction of b_{i} prevents $f_{b, i}\left(s_{i}\right)$ from choosing one of the vertices s_{i+1}, \ldots, s_{k+1} which will be needed in the future but which would be - without
the witness - unknown at step i. Because there are at most $k-i+1$ such vertices the repeat loop will always terminate and, moreover, the part b_{i} of the witness has sufficient size. For every $2 \leq i \leq k+1$ it is guaranteed that the computation of $f_{b, i}\left(s_{i}\right)$ will terminate, i.e. will be not-nil, because at least $\left(s_{i-1}, s_{i}\right)$ is a suitable edge, and this will be the first suitable edge which $f_{b, i}\left(s_{i}\right)$ will find, i.e. $f_{b, i}\left(s_{i}\right)=s_{i-1}$, because otherwise $s=\left(s_{1}, \ldots, s_{k+1}\right)$ would not be lexicographically minimal.
Invariant (Inv2) implies for $i=k+1$ that the back path $\left(f_{b, k+1}^{k+1}\left(s_{k+1}\right), \ldots, f_{b, k+1}^{2}\left(s_{k+1}\right), f_{b, k+1}^{1}\left(s_{k+1}\right)\right)$ at s_{k+1} equals $s=\left(s_{1}, \ldots, s_{k+1}\right)$, i.e. the main algorithm C will accept the input graph for this witness b via a non-nil value of $f_{b, k+1}$ at vertex s_{k+1}. This finishes the correctness proof for the FPT guess and check protocol.
The running time of all $f_{a_{i}}(v)$ for a fixed i is $O(k \cdot|E|)$ (we ignore some $\log (k)$ factors for the comparison algorithms). Therefore, the main algorithm C has runtime $O\left(k^{2} \cdot|V| \cdot|E|\right)$. Representing all witnesses can be done with $\binom{k}{2} \cdot \log k$ bits, i.e. the witness size function can be chosen this way (note that the diagonal of the half matrix does not need to be stored - it can be assumed to consist of 0's). This finishes the proof that an FPT guess and check protocol exists for LONGEST PATH.
Cases $w>1$. We first do a graph transformation. From the given graph G construct the following graph G^{\prime} : Consider all w-tuples $\left(v_{1}, \ldots, v_{w}\right)$ of vertices of G. Make such a tuple a vertex of G^{\prime} if the tuple represents a directed w-clique in G, i.e. $\left(v_{i}, v_{j}\right)$ is an edge in G for $1 \leq i<$ $j \leq w$. The edges in G^{\prime} are defined to consist of the pairs of such w-cliques of the special form $\left(\left(v_{1}, \ldots, v_{w}\right),\left(v_{2}, \ldots, v_{w}, v_{w+1}\right)\right)$ such that also $\left(v_{1}, v_{w+1}\right)$ is an edge in G. We have the property: G contains a simple w-path of length k iff G^{\prime} contains a 1-path of length k. The witness checker consists therefore of this graph transformation and subsequently the checking algorithm C for $w=1$ running on G^{\prime}. In total the checking takes $O\left(w \cdot|V|^{w} \cdot|E|^{w}\right)$ time, the first w stems from a slightly higher comparison time for tuples. The witnesses size function does not change.
Variants: For the vertex disjoint case with $w>1$ it is not enough to do the graph transformation, one has to go inside the checking algorithm C and maintain the vertex lists appropriately. q.e.d.
It should be mentioned that, when given k as a constant, the problem whether a given graph has a (w, k)-path does not seem to be fixed-parameter tractable in the parameter w because the $\mathrm{W}[1]$ complete CLIQUE problem is obviously reducible to it, see for example [CCDF95] for the definition of W[1].

4 Conclusions and Open Questions

We introduced for every $w \geq 1$ the NP-complete problem BANDWIDTH-w-PATH and showed that it is fixed-parameter tractable in the length parameter k by presenting an FPT guess and check protocol for it, according to the characterization of Cai et al. [CCDF95].
As an open problem we suggest to study whether the witness size function, especially for the case LONGEST PATH, can be improved from the quasi-quadratic function $\binom{k}{2} \log k$ to some quasi-linear function, for example by the methods of Monien [Mo85] or Alon, Yuster \& Zwick [AYZ95].

References

[AYZ95] N. Alon, R. Yuster, U. Zwick: Color-Coding, J. ACM 42(4): 844-856 (1995).
[CCDF95] L. Cai, J. Chen, R. G. Downey, M. R. Fellows: On the Structure of Parameterized Problems in NP, Inf. Comput. 123(1): 38-49 (1995).
[DF92] R. G. Downey, M. R. Fellows: Fixed-Parameter Intractability, Structure in Complexity Theory Conference 1992: 36-49.
[GJ97] M. R. Garey, D. S. Johnson: Computers and Intractability, Freeman, Ney York, 1979.
[Mo85] B. Monien: How to find long paths efficiently, Annals of Discrete Mathematics 25, 239254 (1985).
[PT99] A. Proskurowski, J. A. Telle: Classes of graphs with restricted interval models, Discrete Mathematics \& Theoretical Computer Science 3(4), 167-176 (1999).

