
Searching Paths of Constant Bandwidth

Bernd Borchert
Klaus Reinhardt

WSI-2004-10

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Arbeitsbereich Theoretische Informatik/Formale Sprachen
Sand 13

D-72076 Tübingen

borchert@informatik.uni-tuebingen.de

c© WSI 2004
ISSN 0946-3852

Searching Paths of Constant Bandwidth

Bernd Borchert Klaus Reinhardt

Universität Tübingen, Germany

{borchert,reinhard}@informatik.uni-tuebingen.de

Abstract

As a generalization of paths, the notion of paths of bandwidth w is introduced. We show

that, for a given constant w ≥ 1, the corresponding search problem for such a path of length k

in a given graph is NP-complete and fixed-parameter tractable in the parameter k, like this is

known for the special case w = 1, the LONGEST PATH problem. We state the FPT algorithm

in terms of a guess and check protocol which uses witnesses of size polynomial in the parameter.

1 Introduction

A path within a graph is one of the most elementary notions of graph theory and its applications.
The LONGEST PATH is the computational problem which asks for a given graph G and an integer
k whether there is a path of length k in G which is simple, i.e. all vertices are different from each
other. The LONGEST PATH is NP-complete [GJ97]. Moreover, the LONGEST PATH problem is
fixed-parameter tractable in the parameter k. This was shown by Monien [Mo85] and improved with
respect to running time by Alon, Yuster, Zwick [AYZ95], using randomization techniques.

In this paper we generalize the notion of a path: a path of bandwidth w, or short w-path, in a graph
G is a sequence (v1, . . . , vn) of vertices such that for all vi, vj with 1 ≤ j− i ≤ w the pair (vi, vj) is an
edge in G, see Fig. 1 for an example of a 2-path. 1-paths are paths in the usual sense. It will be easy
to show that for every w ≥ 1 the corresponding computational problem BANDWIDTH-w-PATH,
which asks for a given graph G and an integers k whether there exists a simple w-path of length k
in G, is NP-complete.

The BANDWIDTH-w-PATH problem for every w is fixed-parameter tractable in the parameter
k, this will be shown according to the characterization of FPT ∩ NP by Cai, Chen, Downey &
Fellows [CCDF95] via an “FPT guess and check protocol” using witnesses of size only dependent
on the parameter. The runtime obtained for our guess and check protocol, for the case w = 1,
which is the LONGEST PATH problem, and seen as a deterministic exhaustiv search algorithm, is
worse than the algorithms of Monien [Mo85] and Alon, Yuster, Zwick [AYZ95]. On the other hand,
our algorithm is more easily stated and can immediately be applied to the BANDWIDTH-w-PATH
problem. Moreover, the algorithms of [Mo85, AYZ95] do not seem to give better FPT guess and
check protocols.

1

v1

v2

v3 v7v5

v4 v6

v1 v2 v3 v4 v5 v6 v7

Figure 1: Two drawings of the same 2-path of length 5, vertex-disjoint and deterministic

2 Paths of constant bandwidth

Let G be a digraph and let w, k ≥ 1. A path of bandwidth w and length k in G is a sequence of k +w
vertices (v1, ..., vk+w) such that the pair (vi, vi+j) is an edge of G for every i with 1 ≤ i ≤ k and
every j with 1 ≤ j ≤ w. A path of bandwidth w and length k will also be called w-path of length k
or, even shorter, (w, k)-path. A 1-path of length k is a path of length k in the usual sense. (For a
path of length k some authors count the number of vertices while others count the number of edges
– what is one less. In this paper we count the number of edges.) In Figures 1, 2, and 3 some 2-paths
and 3-paths are shown. Note that a (w, 1)-path is a (w+1)-clique: every two nodes are connected by
an edge. A (w, k)-path can actually be seen as a sequence of k (w + 1)-cliques with two subsequent
cliques “glued” together by their common w elements.

A (w, k)-path (v1, ..., vk+w) is vertex-disjoint if all vi are different from each other, it is simple if all k
w-tupels (v1, ..., vw), (v2, ..., vw+1), . . . , (vk, ..., vk+w) are different from each other. A vertex-disjoint
(k, n)-path is simple, but not vice versa for k ≥ 2, see Figure 3. A vertex-disjoint (w, k)-path, as a
graph on its own, is the graph with k + w vertices having bandwidth w and a maximal set of edges,
that is why we choose the name “bandwidth” for the number w (see [PT99, GJ97] for the definition
of bandwidth of a graph).

Though the notion of w-paths within a graph G is a rather natural generalization of paths the
authors could not find references for it in the literature. The closest concept found is the w-ray from
Proskurowski & Telle [PT99], corresponding to a vertex-disjoint w-path (as a graph on its own).

v1

v2

v3 v5

v4 v6

v7

v8

Figure 2: A 3-path of length 5, vertex-disjoint and deterministic

2

v1 v3 v5

v4

v7v9v11

 = v10
v2 v6

 = v8

Figure 3: A 2-path of length 10, deterministic and simple but not vertex-disjoint

A (w, k)-path (v1, ..., vk+w) is deterministic in G if for every 1 ≤ i ≤ k vi+w is the only vertex in the
graph G having the property that all edges (vi, vi+w), . . . , (vi+w−1, vi+w) are edges of the graph. For
example, a deterministic 1-path has the property that every vertex of it – besides the last one – has
exactly one outgoing edge in G.

For w < k, a (w, k)-path (v1, ..., vk+w) is a cycle of bandwidth w and length k, short w-cycle of length
k or (w, k)-cycle, if (vk+1, . . . , vk+w) = (v1, . . . , vw). The cycle is vertex-disjoint if v1, ..., vk are
different from each other, it is simple if (v1, ..., vk+w−1) is a simple w-path, see Fig. 4 for an example.

For undirected graphs the definitions can be transfered literally.

For a fixed w let BANDWIDTH-w-PATH be the set of pairs 〈G, k〉 such that the digraph G contains
a simple (w, k)-path. BANDWIDTH-1-PATH = LONGEST-PATH. Let BANDWIDTH-PATH be
the double-parameterized problem consisting of the triples 〈G, w, k〉 such that the digraph G contains
a simple (w, k)-path.

Some variations of these problems: Let the prefixes UNDIRECTED- and DISJOINT- in front of
these problem names indicate that the input graph is undirected, or, independently, that the path to
be found has to be not only simple but vertex-disjoint, respectively. Let CYCLE instead of PATH
in a problem name denote that the path to be found has to be a cycle. Call these further 7 problems
the variations of the BANDWIDTH-w-PATH, resp. BANDWIDTH-PATH, problem.

Figure 4: A 2-cycle of length 8, deterministic and vertex-disjoint

3

Proposition 1 (a) BANDWIDTH-PATH is NP-complete, likewise its variations.

(b) For every w ≥ 1 the problem BANDWIDTH-w-PATH is NP-complete, likewise its variations.

Proof. Obviously all problems are in NP. BANDWIDTH-PATH is NP-complete because LONGEST
PATH is a subproblem. In order to show NP-completeness of BANDWIDTH-w-PATH we reduce
LONGEST PATH to it. Let some directed graph G be given. Let the graph φ(G) consist of w copies
G1, . . . , Gw of G, and let an edge from u in Gi to v in Gj only exist if i < j and in G there is a
simple path of length j − i from u to v. It holds: G has a simple path of length k iff φ(G) has a
simple w-path of length k. q.e.d.

We mention that for fixed w the problem of searching for a deterministic simple w-path of a given
length k can be done in PTIME by a straightforward marking algorithm.

3 Fixed-Parameter Tractability

The following notion is from Downey & Fellows [DF92] though it can already be found – without
giving it a name – in Monien [Mo85][p. 240, the two paragraphs before and after Th. 1, resp.].

Definition 1 (fixed-parameter tractability [Mo85, DF92]) A computational problem consist-
ing of pairs 〈x, k〉 is fixed-parameter tractable in the parameter k if there is a deciding algorithm for
it having run-time f(k) · |x|c for some recursive function f and some constant c.

We use the following characterization of FPT ∩ NP by Cai, Chen, Downey & Fellows [CCDF95]:

Theorem 1 (Cai et al. [CCDF95]) A language L ∈ NP consisting of pairs 〈x, k〉 is fixed-parameter
tractable in the parameter k iff there exists a recursive function s(k) and a PTIME computable lan-
guage C such that 〈x, k〉 ∈ L ⇐⇒ ∃y ≤ s(k) : 〈x, k, y〉 ∈ C.

We call the function s the witness size function, and the language C the witness checker, and we say
that these two together form an FPT guess and check protocol for L.

Theorem 2 For every w ≥ 1 the problem BANDWIDTH-w-PATH is fixed parameter tractable in
the parameter k, likewise its variations. More specifically, there exists an FPT guess and check
protocol for it with a witness size function s(k) =

(

k

2

)

· log k and a witness checker having runtime
O(w · k2 · |E|w · |V |w).

Proof. We first consider the case w = 1, i.e. the LONGEST PATH problem. Afterwards we will see
that the algorithm is generalizable to the BANDWIDTH-w-PATH problem for w > 1. We state an
FPT guess and check protocol for LONGEST PATH with the witness size function s(k) =

(

k

2

)

· log k
and a witness checker with runtime O(k2 · |E| · |V |).

Let a digraph G with n vertices be given. We want to find out whether the graph contains a simple
path p = (v1, . . . , vk+1) of length k. We will work with witnesses. The intention of a witness is
to tell the algorithm in the moment when it is trying to build an initial segment (v1, . . . , vi) of the
simple path of length k which are the future vertices vi+1, . . . , vk+1 of the simple path – so that the
algorithm does not pick one of these future vertices as a part of the initial segment. Unfortunately,

4

a

a

a a

a

a

a

a

a

a

1 1 0

2

a

a

a

a

=

=

=

=

=

=

=

=

0

0

2,1 2,2 2,3 2,4 2

3,1 3,2 2,3
3

4,1 4,2
4

5,1
5

0

021

Figure 5: Witness table for a simple path of length 4

we cannot use the tuple (v1, . . . , vk+1) as a witness, because that way we would have nk+1 potential
witnesses, so that we would need at least (k + 1) log(n) bits to encode them, a number growing in n.
But for the FPT guess and check protocol we need some witness size function s(k) only dependent
on k.

We choose the following kind of witnesses. A witness for such a simple path of length k consists
of k(k + 1)/2 =

(

k+1

2

)

numbers ai,j ∈ {0, 1, . . . , k}, for 2 ≤ i ≤ k + 1 and j ∈ {1, . . . , k − i + 2}.
The witness can be visualized as a half-matrix a, see Figure 5. Let ai for 2 ≤ i ≤ k + 1 be the
tupel (ai,1, . . . , ai,k−i+2). We can restrict the witnesses to have these properties: ai contains only
numbers ≤ i− 1 and at least one 0. There is some redundancy, for example ak+1,1 will always be 0.
Nevertheless, the order of magnitude of the witness size function s(k) does not seem to be improvable
by these “little savings”.

For every witness a the main algorithm C does the following: In every of the k steps i = 2, 3, . . . , k+1
it computes for every vertex v a value fa,i(v), defined further below, which is either a vertex or has
the value nil (standing for “not existing”), and stores this function for use in the following steps.
The following pseudo code shows the main structure of the algorithm.

Main algorithm C

Input: graph G, number k ≤ |G|, and a witness a

for every vertex v set fa,1(v) := v;

for i = 2, . . . , k + 1 do

for every vertex v in G do

compute fa,i(v) and store it;

if i = k + 1 and fa,i(v) 6= nil ACCEPT and STOP;

REJECT and STOP;

The computation of the value fa,i(v) – which is either nil or a vertex – is described in the pseudo
code below. Assume w.l.o.g. that for each vertex there is a list of incoming edges (ending with
the nil list element) in which the edges appear according to the order on the vertices. As a useful

5

abbreviation let fd
a,i(v) for a vertex v and d with 1 ≤ d ≤ i + 1 be defined via

f1
a,i(v) := v, f2

a,i(v) := fa,i(v), and fd+1

a,i (v) := fd
a,i−1(fa,i(v))

with this value being nil in case fa,i(v) or fd
a,i−1(fa,i(v)) equals nil. Intuitively, fd

a,i(v) follows –
starting in v – for growing d = 1, . . . , i + 1 the “backward path” given by the fa,i−d-functions, see
Figure 6. The upper index d numbers the vertices of this path, and the witness elements ai,j ≥ 0
will refer to this numbering.

By easy induction on i, the following invariant will be guaranteed for every witness a, every i with
2 ≤ i ≤ k + 1, and every vertex v:

(Inv1) If fa,i(v) 6= nil then the “backward path” (f i
a,i(v), . . . , f2

a,i(v), f1
a,i(v)) is a simple path of

length i − 1.

Computing fa,i(v)

Input: i, a, and v. Already computed: fa,1, . . . , fa,i−1.

set F := {v};

set j := 1;

if there are no incoming edges for v set fa,i(v) := nil and STOP;

set e = (u, v) to be the first edge incoming to v;

while e 6= nil do

if fa,i−1(u) 6= nil and none of the vertices f 1
a,i−1(u), f2

a,i−1(u), . . . , f i
a,i−1(u) is in F do

set c := ai,j ;

if c = 0

set fa,i(v) := u and STOP;

otherwise

set F := F ∪ {f c
a,i(u)};

set j := j + 1;

set e = (u, v) := next edge going into v;

set fa,i(v) := nil and STOP;

Verification of the main algorithm C: If the algorithm accepts then it has found for this witness a a
vertex v such that fa,k+1(v) 6= nil. By invariant (Inv1), case i = k + 1, the backward path starting
in v is a simple path of length k.

On the other hand assume that there is a simple path of length k in G. Let s = (s1, . . . , sk+1) be the
lexicographically smallest among them (largest weight on sk+1, unlike, for example, with decimal
numbers). With the knowledge of this path and its vertices we will construct a witness b such that
the main algorithm will accept for witness b.

6

(v)

f (v)

2

3

f (v)4

v = f

u = f

(v)1

a,4

a,4

a,4

a,4

Figure 6: A “backward path”, starting in v

Constructing b

Input: s1, . . . , sk+1.

for every vertex v set fb1,1(v) = v;

for i = 2 to k + 1 do

set e = (u, si) := first edge going into si;

set F = {si};

set j := 1;

repeat

while fbi−1,i−1(u) = nil or some of the vertices f 1
bi−1,i−1

(u), . . . , f i
bi−1,i−1

(u) is in F

set e = (u, si) := next edge going into si;

if there is a c ∈ {1, . . . , i} such that f c
bi−1,i−1

(u) ∈ {si+2, . . . , sk+1}

set bi,j := c for the smallest such c;

set F := F ∪ {f c
bi−1,i−1

(u)};

set j := j + 1;

until there is no such c;

bi,j := 0

compute fbi,i(v) for all vertices v;

The crucial invariant kept by this construction is the following:

(Inv2) For every i with 2 ≤ i ≤ k + 1 it holds: fb,i(si) = si−1.

The invariant holds via induction on i: the construction of bi prevents fb,i(si) from choosing one
of the vertices si+1, . . . , sk+1 which will be needed in the future but which would be – without

7

the witness – unknown at step i. Because there are at most k − i + 1 such vertices the repeat
loop will always terminate and, moreover, the part bi of the witness has sufficient size. For every
2 ≤ i ≤ k + 1 it is guaranteed that the computation of fb,i(si) will terminate, i.e. will be not-nil,
because at least (si−1, si) is a suitable edge, and this will be the first suitable edge which fb,i(si)
will find, i.e. fb,i(si) = si−1, because otherwise s = (s1, . . . , sk+1) would not be lexicographically
minimal.

Invariant (Inv2) implies for i = k+1 that the back path (f k+1

b,k+1
(sk+1), . . . , f

2
b,k+1

(sk+1), f
1
b,k+1

(sk+1))
at sk+1 equals s = (s1, . . . , sk+1), i.e. the main algorithm C will accept the input graph for this witness
b via a non-nil value of fb,k+1 at vertex sk+1. This finishes the correctness proof for the FPT guess
and check protocol.

The running time of all fai
(v) for a fixed i is O(k · |E|) (we ignore some log(k) factors for the

comparison algorithms). Therefore, the main algorithm C has runtime O(k2 · |V | · |E|). Representing
all witnesses can be done with

(

k

2

)

· log k bits, i.e. the witness size function can be chosen this way
(note that the diagonal of the half matrix does not need to be stored – it can be assumed to consist
of 0’s). This finishes the proof that an FPT guess and check protocol exists for LONGEST PATH.

Cases w > 1. We first do a graph transformation. From the given graph G construct the fol-
lowing graph G′: Consider all w-tuples (v1, . . . , vw) of vertices of G. Make such a tuple a vertex
of G′ if the tuple represents a directed w-clique in G, i.e. (vi, vj) is an edge in G for 1 ≤ i <
j ≤ w. The edges in G′ are defined to consist of the pairs of such w-cliques of the special form
((v1, . . . , vw), (v2, . . . , vw, vw+1)) such that also (v1, vw+1) is an edge in G. We have the property:
G contains a simple w-path of length k iff G′ contains a 1-path of length k. The witness checker
consists therefore of this graph transformation and subsequently the checking algorithm C for w = 1
running on G′. In total the checking takes O(w · |V |w · |E|w) time, the first w stems from a slightly
higher comparison time for tuples. The witnesses size function does not change.

Variants: For the vertex disjoint case with w > 1 it is not enough to do the graph transformation,
one has to go inside the checking algorithm C and maintain the vertex lists appropriately. q.e.d.

It should be mentioned that, when given k as a constant, the problem whether a given graph has
a (w, k)-path does not seem to be fixed-parameter tractable in the parameter w because the W[1]-
complete CLIQUE problem is obviously reducible to it, see for example [CCDF95] for the definition
of W[1].

4 Conclusions and Open Questions

We introduced for every w ≥ 1 the NP-complete problem BANDWIDTH-w-PATH and showed that
it is fixed-parameter tractable in the length parameter k by presenting an FPT guess and check
protocol for it, according to the characterization of Cai et al. [CCDF95].

As an open problem we suggest to study whether the witness size function, especially for the case
LONGEST PATH, can be improved from the quasi-quadratic function

(

k

2

)

log k to some quasi-linear
function, for example by the methods of Monien [Mo85] or Alon, Yuster & Zwick [AYZ95].

8

References

[AYZ95] N. Alon, R. Yuster, U. Zwick: Color-Coding, J. ACM 42(4): 844-856 (1995).

[CCDF95] L. Cai, J. Chen, R. G. Downey, M. R. Fellows: On the Structure of Parameterized
Problems in NP, Inf. Comput. 123(1): 38-49 (1995).

[DF92] R. G. Downey, M. R. Fellows: Fixed-Parameter Intractability, Structure in Com-
plexity Theory Conference 1992: 36-49.

[GJ97] M. R. Garey, D. S. Johnson: Computers and Intractability, Freeman, Ney York, 1979.

[Mo85] B. Monien: How to find long paths efficiently, Annals of Discrete Mathematics 25, 239-
254 (1985).

[PT99] A. Proskurowski, J. A. Telle: Classes of graphs with restricted interval models,
Discrete Mathematics & Theoretical Computer Science 3(4), 167-176 (1999).

9

