
Integral pumping tests for the 
characterization of groundwater 

contamination  

 

 

 

 

Dissertation 

zur Erlangung des Grades eines Doktors der Naturwissenschaften 

 

 

 

der Geowissenschaftlichen Fakultät der 

Eberhard-Karls-Universität Tübingen 

 

 

 

 

 

vorgelegt von  

Martí Bayer-Raich 

aus Barcelona 

 

2004 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag der mündlichen Prüfung: 29. Oktober 2004 

Dekan: Prof. Klaus G. Nickel, Ph.D. 

1. Berichterstatter: Dr. Thomas Ptak 

2. Berichterstatter: Dr. Rudolf Liedl 



Summary 
 

Where cities are located above productive aquifers and are far from surface water supplies, 
groundwater is usually the primary freshwater source. However, groundwater pollution in 
industrialized sites is a general problem in a variety of European cities. Most of them are located at 
river basins and use groundwater for water supply from local aquifer systems. The investigation of 
groundwater contamination, given the relative inaccessibility of the subsurface, is typically restricted 
by the number of monitoring wells and therefore detailed characterization, using conventional 
approaches, is economically not feasible at many sites. 

 

A new integral approach for the investigation of groundwater contamination has been recently 
developed at the Center of Applied Geosciences, University of Tübingen. Using this integral approach, 
the concentration in a pumping well is measured as a function of time. This procedure increases the 
sampling volume and reduces the effect of small scale variability that may bias point measurements. 
This method is therefore capable of reaching the aquifer volume located between monitoring wells, 
avoiding the risk of missing narrow contaminant plumes. Average concentrations and total mass flow 
rates are obtained through an inversion procedure, providing reliable estimates of water quality and 
source strength, respectively.  

 

This thesis is entirely focused on the development and application of analytical and numerical tools for 
the inversion of data obtained through integral pumping tests. A derivation of the fundamental 
equation, partially based on previous results, is provided here and generalized to account for advective 
transport and linear retardation within 3D heterogeneous aquifers. Both existing analytical and 
numerical approaches have been further developed, tested and applied to a wide range of field scale 
conditions. Within the analytical approach, the existing solutions have been generalized to fully 
account for the groundwater velocity, i. e. without assuming perfect radial flow during pumping. 
Additionally, the integral approach is further analysed through the classical theory of integral 
equations by means of Abel´s integral transform providing a new closed-form solution. The novel 
results are then compared, yielding a general methodology for dimensioning the optimal pumping 
duration. Within the numerical framework, less restrictive conditions are considered (e. g. 
heterogeneous aquifers, multiple-well pumping tests). A new numerical algorithm (an updated version 
of the original code C1, extensively rewritten) is developed, implemented (in the code CSTREAM), 
tested and applied to real data. A number of field-scale applications have been evaluated, in 
cooperation with our partners in the projects SAFIRA and INCORE yielding consistent results. Within 
the project SAFIRA, the integral approach is applied for the first time to a multi-layer aquifer system. 
In a more theoretical framework, CSTREAM is also used to quantify the effects of heterogeneity and 
variability of boundary conditions.  

 

The results of this Thesis show that this approach has a great potential within both applied framework 
for evaluation and investigation of real contaminated aquifers and theoretical or basic research to 
further develop conceptual models for the evaluation of concentration-time data obtained in pumping 
wells. 



Zusammenfassung  
 

Städte, die keinen unmittelbaren Zugang zu oberflächigen Wasserreservoirs haben, decken häufig 
einen erheblichen Teil ihres Bedarfs an Trink- und Gebrauchswasser mit Grundwasser, das lokal von 
meist ergiebigen Aquiferen gefördert wird. Ein typisches Problem an urbanen industriellen Standorten 
in Europa bilden jedoch Verunreinigungen im Grundwasser. Davon sind besonders oberflächennahe 
Aquifere betroffen, die vorrangig für die Wassergewinnung in Frage kommen. Die Untersuchung von 
Grundwasserverunreinigungen erfolgt wegen der Unzugänglichkeit des gesamten Untergrunds 
konventionell nur grob über lokale Messungen an wenigen Überwachungsbrunnen. Detaillierte 
Untersuchungen allein mithilfe von Punktmessungen sind an vielen Standorten ökonomisch oder 
technisch nicht durchführbar. Als Alternative zur gängigen punktuellen Probennahme wurde vor 
kurzem am Zentrum für Angewandte Geowissenschaften (ZAG) der Universität Tübingen ein neues 
integrales Verfahren entwickelt. Dabei wird an einem Brunnen kurze Zeit Grundwasser gefördert und 
währenddessen die Veränderung der Schadstoffkonzentration über die Zeit gemessen. Verglichen mit 
Punktmessungen beprobt man mit diesem Verfahren ein deutlich größeres Volumen des Untergrunds. 
Zudem verliert die kleinmaßstäbliche Variabilität von Schadstoffkonzentrationen, die an 
Punktmessungen schwer zu interpretieren ist, durch die räumliche Betrachtung an Bedeutung. 
Während bei ausschließlich punktuellen Messungen Schadstofffahnen bei grobem Beprobungsraster 
leicht übersehen werden können, werden nun auch kleinräumliche Schadstoffausdehnungen im 
Untergrund erreicht.  

Bei der integralen Probenahme erhält man über ein Inversionsverfahren Durchschnittskonzentrationen 
und Massenflussraten. Sowohl Wasserqualität als auch Schadstoff-Quellstärke lassen sich verlässlich 
abschätzen. Die vorliegende Dissertation widmet sich der Entwicklung und Anwendung analytischer 
und numerischer Werkzeuge für die Invertierung der durch die integrale Probennahme gewonnenen 
Daten. Der hierzu grundlegende Algorithmus wird erläutert und zur Anwendung auf advektiven 
Transport unter Berücksichtigung von Schadstoffretardation in dreidimensionalen heterogenen 
Aquiferen umformuliert. Sowohl bestehende analytische als auch numerische Ansätze werden 
weiterentwickelt und in einer Reihe von Untersuchungen unter Feldbedingungen getestet. Das 
analytische Lösungsverfahren wird zur Berücksichtigung von Hintergrundströmung erweitert. 
Zusätzlich wird mithilfe der Integraltransformation nach Abel eine neue Lösung in geschlossener 
Form ermittelt. Die neuentwickelten analytischen Lösungen werden gegenübergestellt und liefern 
zusammen eine allgemeine Methodik zur Abschätzung der optimalen Pumpdauer beim Pumpversuch.  

Für das numerischen Verfahren werden weniger restriktive (Rand-)Bedingungen angenommen, so 
zum Beispiel ein heterogener Grundwasserleiter und Pumptests mit mehreren Brunnen. Ausgehend 
von dem numerischen Verfahren im bisher bestehenden Programm „C1“ wurde ein neuer Algorithmus 
entwickelt, dieser als Software implementiert („CSTREAM“) und getestet. Die Anwendung des 
Programms auf Felddaten aus einer Reihe von Anwendungen zeigte Konsistenz mit den bisherigen 
Ergebnissen von Projektpartnern (SAFIRA, INCORE). Innerhalb des SAFIRA-Projektes wurde der 
integrale Ansatz erstmals auf einen mehrschichtigen Aquifer angewandt. Schließlich dienten 
theoretische Studien mit CSTREAM zu Sensitivitätsanalysen der Ergebnisse bei variabler 
Aquiferheterogenität und veränderlichen Randbedingungen. Die Ergebnisse deuten auf eine breite 
Anwendbarkeit der entwickelten Verfahren hin, sowohl zum Feldeinsatz als auch zur 
Grundlagenforschung konzeptioneller Modelle für die Bewertung zeitlich variabler Konzentrationen, 
die bei Pumptests gemessen werden. 
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List of symbols: 

 

∇     Nabla operator 

( )yxb ,  [L]    Saturated thickness of the aquifer layer 

( )zyxC ,,0  [M L-3]  Initial concentration distribution before pumping 

( )xC0  [M L-3]   Initial concentration distribution, left-right arithmetic average 

( )tCw  [M L-3]   Time-dependant concentration  measured at the pumping well 

( )zyxj ,,
r

 [M T-1 L-2]  Contaminant mass flux  

( )zyxK ,,  [L T-1]  Hydraulic conductivity 

CPl      Length of the control plane (width of the capture zone) 

CPml     Width of the capture zone considering linear retardation mR  

( )tIl     Isochrone length assuming 2D-flow fields 

( )tI
+l      The half of the isochrone ( )tIl  located at 0>x  

( )txY ,l  [L] Distance separating upstream and downstream intersections of the 
isochrone and a straight line at x  parallel to the y axis. 

CPM  [M T-1]   Mass flow rate across the control plane 

nr     Outward unit normal vector. 

( )zyxne ,,    Effective porosity 

Q  [L3T-1]   Pumping rate 

( )zyxq ,,0
r

 [L T-1]  Initial Darcy’s flow field before pumping 

( )zyxqw ,,r
 [L T-1]   Convergent Darcy´s flow field during pumping 

mR  [-]    Linear retardation, 1=mR  indicates advective transport 

( )tR     Half of the width of capture zone volume at time t  

( )tr     Radius of the well capture zone (assuming perfect radial flow) 

( )trm      Radius of the “contaminant mass capture zone” considering mR  

CPS     Lateral surface of the control plane 

( )tSI     Lateral surface of the isochrone 

t  [T]    Pumping time, 0=t  is the  beginning of the pumping test 



Dt  [-]    Dimensionless pumping time 

( )zyxvw ,,r
 [L T-1]  Particle velocity during pumping 

( )tVI     Volume of the well capture zone at time t  

( )tVR    Initial location of the volume of the contaminant mass captured at the 
pumping well up to time t  

x , y  [L]   Cartesian spatial coordinates 

Dx , Dy  [-]   Cartesian spatial dimensionless coordinates 
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Chapter 1 
 
INTRODUCTION 
 
 
 
This thesis is entirely focused on the 
Integral Approach (IA) (Teutsch et al., 
2000; Ptak et al., 2000; Schwarz, 2002), a 
new approach for cost-effective reliable 
investigation of groundwater 
contamination. 
 
 
1.1. Motivation 
 
 
The rapid shift of populations to urban 
areas is causing great demands on 
groundwater resources, particularly in the 
developing world. Where cities are located 
above productive aquifers and are far from 
surface water supplies, groundwater is 
usually the primary freshwater source 
(United Nations Environment Programme, 
2002) 
 
The UN have expressed their concern 
about three principal gaps in groundwater 
management, which have enormous 
implications for sustainable development 
(International Water and Sanitation Centre, 
2003). These are: 
 
-The accelerated degradation of 
groundwater systems, through pollution of 
aquifers.  
 
-The lack of both professional and public 
awareness about the sustainable use and 
economic importance of groundwater 
resources generally.  
 
-The economic implications of not 
resolving groundwater demand and supply 
management. 
 
In particular, groundwater pollution in 
industrialized sites is a general problem in 
a variety of European cities. Most of them 

are located in river basins and use 
groundwater for water supply from local 
aquifer systems. Within the last decades 
changes in land use and ownership have 
resulted in complex contamination 
patterns, such as heterogeneous 
distribution of contaminants, different 
contaminants and large subsurface areas. 
Industrial development and the need for 
groundwater conservation are in acute 
conflict (INCORE, INtegrated COncept 
for Groundwater REmediation, 5th 
Framework Programme of the European 
Community for Research, Technological 
Development and Demonstration 
activities) 
 
 
1.2. Objectives 
 
 
The major objective of this thesis is to 
further extend the concepts originally 
developed in Teutsch et al. (2000), Ptak et 
al. (2000) and Schwarz (2002), for  
systematical application of the Integral 
Approach under a variety of field scale 
conditions, using both analytical and 
numerical approaches. Specifically, three 
objectives are addressed within this thesis:  
 
1- Provide a formal derivation of the 
governing equations describing the Integral 
Approach, extending the results given in 
(Teutsch et al., 2000; Ptak et al., 2000; 
Schwarz, 2002). 
 
2- Develop an analytical solution to fully 
account for the natural groundwater flow, 
by coupling the integral approacg with the 
formulation given by Bear & Jacobs 
(1965). 
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3- Test and develop the numerical 
algorithm originally described in Ptak et al. 
(2000) and Schwarz (2002) for application 
in highly heterogeneous environments and 
additionally in multi-layered systems. 
 
1.3 Structure 
 
This thesis describes the Integral 
Approach, from a conceptual model to  
site-specific field-scale applications at 
contaminated sites. The basics of the 
Integral Approach are described in chapter 
2, providing a derivation of the 
fundamental equations, extending the 
results given in Teutsch et al. (2000); Ptak 
et al. (2000) and Schwarz (2002). First, in 
section 2.1, a description of the previous 
work is given. In Section 2.2 the 
mathematical derivation of the 
fundamental equation is presented and 
finally, section 2.3 gives a discussion on 
the methodology employed in the Integral 
Approach, by using a numerically 
simulated example of an Integral Pumping 
Test (IPT) in a virtual aquifer. 
 
Chapter 3 describes the analytical solutions 
for the basic equations. Two novel 
solutions are presented and compared to 
the results given in previous work.   
 
In sections 3.1 and 3.2 the basic equations 
are particularized for the case of 
homogeneous media expressing Volterra 
integral equations of the first type and the 
basic assumptions of the analytical 
approach are presented. In section 3.3, a 
new analytical solution (following ideas of 
Bear & Jacobs, 1965) is derived, giving 
also a detailed algorithm for performing 
the numerical integration. Section 3.4 gives 
a new non-recursive approximate solution 
derived through Abel´s integral transform. 
Both solutions are compared in section 3.5, 
and the range of validity of the 
approximate solution is established. 
 
Sections 3.6 and 3.7 discuss how to apply 
the analytical approach in 2D-
heterogeneous aquifers and in multi-

layered systems, respectively. Verification 
examples developed through numerical 
simulations are described to test the 
accuracy of the solutions presented in 
sections 3.3 and 3.4. Finally, section 3.8 
further analyses the analytical solutions for 
investigating the issue of dimensioning 
IPT. A methodology for dimensioning 
pumping durations and distances between 
wells is given, based on data from IPTs 
already conducted within the projects 
SAFIRA (SAnierungsForschung In 
Regional kontaminierten Aquiferen, 
framework of the German Ministry of 
Education and Science, BMBF), and 
INCORE (INtegrated COncept for 
Groundwater REmediation, 5th 
Framework Programme of the European 
Community for Research, Technological 
Development and Demonstration 
activities). 
 
Chapter 4 describes the numerical 
algorithm implemented in the code 
CSTREAM, and gives test verification 
examples as well as real field scale 
applications developed in the context of 
this thesis and within the framework of the 
projects SAFIRA and INCORE. 
 
Section 4.1 gives a brief description of the 
codes MODFLOW (McDonald & 
Harbaugh, 1988) and MODPATH 
(Pollock, 1994), used within the numerical 
inversion algorithm CSTREAM. In section 
4.2, a detailed description of the algorithm 
is given, including all steps of the 
computation: streamtube discretization, 
isochrone definition, concentration 
inversion and mass flow rate integration. In 
Sections 4.3 and 4.4 provide verification 
test examples, in homogeneous and 
heterogeneous aquifers, respectively. 
Finally the last three sections describe 
application examples developed in 
cooperation with partners in the SAFIRA 
and INCORE projects.  
 
In chapter 5, the conclusions of this 
research are presented, as well as a 
discussion of possible lines of future work. 
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Chapter 2 
 
THE INTEGRAL GROUNDWATER INVESTIGATION APPROACH 
 
 
The integral groundwater investigation 
approach (IGIA) provides a new 
methodology to quantify the impact of 
groundwater contamination based on 
sampling large volumes of groundwater 
through integral pumping tests. The IGIA, 
was originally developed by Teutsch et al. 
(2000), Ptak et al. (2000) and Schwarz 
(2002). After the first field demonstration 
application in the Rhine Valley (Schwarz 
et al., 1997) the IGIA has been applied to 
several sites, both before (e.g. Schwarz et 
al., 1998; Holder et al., 1998; Bockelmann 
et al., 2001) and during the framework of 
this thesis (e. g. Bayer-Raich et al., 2001; 
Jarsjö et al., 2002; Bauer et al., 2002). This 
chapter explains the basis of the IGIA 
providing a detailed derivation of the 
governing equations and discussing the 
methodology through a numerically 
simulated synthetic example. 
 
 
2.1. Relationship to previous work  
 
 
Groundwater risk assessment is generally 
performed on the basis of point-scale 
contaminant concentration measurements. 
Recent protocols however (LfU, 1996; 
EPA OSWER Directive, 1999) propose to 
quantify the impact of a source through the 
contaminant mass flow rate (i. e. 
contaminant mass leaving the source zone 
per unit of time) rather than the 
contaminant concentration. It has been 
shown through a field scale experiment 
with DNAPL that narrow plumes might be 
easily missed or poorly delineated by 
conventional groundwater monitoring well 
spacing (Rivett et al., 2001). The goal of 
the IGIA is to capture the total contaminant 
mass flow rate across a given control plane  
without the requirement of regionalising 
point concentration measurements 
(Teutsch et al., 2000).  

  
Figure 2.1 illustrates the problem of source 
zone characterization within a 
heterogeneous aquifer environment. It is 
assumed that the exact position of the “hot 
spot” cannot be identified a priori. 
Consequently, the plume position and 
extent cannot be identified with sufficient 
certainty using groundwater samples from 
a few unpumped monitoring wells or point 
measurements (Holder et al., 1998). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When using the IGIA, one or more 
pumping wells are installed along a control 
plane perpendicular to the mean 
groundwater flow direction and operated 
simultaneously or sequentially. Well 
positions, pumping rates, and pumping 
times are optimised to allow the well 
capture zones to cover the entire 
groundwater flow downstream of the 
(potentially) contaminated site. During 
well operation, concentrations of target 

Figure 2.1: Concentration distribution 
in a heterogeneous aquifer with 
random position of the “hot spot” 
(Holder et al., 1998). 

monitoring wells

monitoring wells

monitoring wells

unknown
point sourceheterogeneous transport
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substances are measured as a function of 
time in the discharge of each of the 
pumping wells. Four typical contaminant 
scenarios are displayed in Figure 2.2 
showing the concentration–time series at a 
pumping well and the interpreted 
subsurface plume location (Holder & 
Teutsch, 1999). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The interpretation (or inversion) of the 
concentration-time signal obtained at the 
pumping well can be performed using an 
analytical solution (for homogeneous 
aquifers) or a numerical algorithm based 
on particle back-tracking (considering 
heterogeneity through a numerical 
groundwater model). Both analytical and 
numerical approaches were proposed in 
Teutsch et al. (2000) and Ptak et al. (2000). 
The development of the analytical solution 

and the numerical implementation of the 
particle tracking algorithm were described 
in Schwarz et al. (1998) and have been 
expanded in the framework of this thesis as 
will be shown in chapters 3 and 4 
respectively. 
 
 
The analytical approach, described in 
detail in chapter 3, is based on a discrete 
formula derived for (1) homogeneous and 
confined aquifers, (2) perfect radial flow 
during the pumping test, and (3) no 
gradient of concentration in the flow 
direction within the capture zone (Schwarz 
et al., 1998). This solution has been 
applied at several sites, e. g. the Neckar 
Valley in Stuttgart by Holder et al. (1998) 
and Bockelmann et al. (2001). A new 
solution that does not require assumption 
(2) will be given in chapter 3.  
 
 
The numerical approach, described in 
chapter 4, is based on the geometrical 
definition of streamlines and isochrones 
with particle tracking through the 
potentially heterogeneous model domain. 
In this case, assumptions (1) and (2) are 
not necessary, as opposed to the analytical 
approach, but (3) (i. e. the absence of 
concentration gradient along the flow 
direction) is still required. The basics of 
the numerical inversion were given in Ptak 
et al. (2000) and implemented in a C++ 
code called C1 (Schwarz, 2002). The 
numerical approach was evaluated at the 
well instrumented demonstration site of the 
Landesanstalt fur Umweltschutz (LfU) – 
the state environmental protection agency 
– in Eppelheim (Baden Württemberg, 
Germany) by Schwartz et al. (1997). The 
existing code C1 was verified, modified 
and expanded in a new C++ code: 
CSTREAM, enabling the interpretation of 
integral pumping tests in highly 
heterogeneous environments and multi-
layered aquifers.  
 
 
 

Figure 2.2: Four characteristic plume 
scenarios together with the expected 
concentration – time series (Holder 
& Teutsch, 1999). 
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2.2. Governing equations  
 
 
The basic equations necessary for the 
formulation of the integral groundwater 
investigation approach are derived in this 
section. The expressions given in chapter 2 
of Schwarz (2002) for perfect radial flow 
are generalized for heterogeneous 
conditions. These general equations are 
solved analytically in chapter 3 (for the 
particular case of homogeneous media) and 
numerically in chapter 4 (for the general 
case of heterogeneous aquifers). 
 
 
2.2.1. Contaminant mass flow rate 
across a control plane 
 
 
A variable of interest for characterizing the 
impact of a source zone or for quantifying 
natural attenuation is the mass flow rate 
across a given control plane CPM  [M T-1].  
When only one control plane is used, the 
mass flow rate gives the total contaminant 
mass passing the control plane per unit of 
time (source strength). When more than 
one control plane is used, the differences in 
mass flow rates let us quantify the 
occurrence of Natural Attenuation (e.g. the 
Neckar Valley study performed in 
Bockelmann et al., 2001, where two 
control planes at 140 m and 280 m 
dawnstream of the source were used). 
Figure 2.3 illustrates the problem of plume 
characterization through mass flow rate. 
 
The mass flow rate may be obtained by 
integrating the contaminant mass flux j

r
 

[M T-1 L-2] over the surface area of a 
control plane. The initial concentration 
distribution ( )zyxCC ,,00 =  [M L-3] in 
combination with the Darcian flow field 

( )zyxqq ,,00
rr

=  [L3 T-1] (fixed by the 
regional boundary conditions and the 
heterogeneous transmissivity field) give 
the contaminant mass flux 000  qCj rr

=  [M 

T-1 L-2].  

Setting the y-coordinate parallel to the 
mean flow direction and defining the 
control plane by y=0, we get 
 

( ) ( )∫ ⋅=
CPS

CP dSnzxqzxCM    ,0, ,0, 00
rr  

(2.1) 
with CPS  being the surface of the control 
plane, and nr  the unit vector perpendicular 
to the control plane (i. e. parallel to the y-
axis). 
 
In 2D problems or multilayered aquifers 
where the vertical components of the flow 
velocities may be neglected, equation (2.1) 
may be formulated as 
 

( ) ( ) ( )∫=
CP

dxxbxqxCM yCP
l

 0, 0, 0, 00   

(2.2) 
 
where ( )yxb ,  [L] is the saturated thickness 
of the aquifer, and ( )yxq y ,0  [L T-1] is the y 
component of the Darcy velocity. 
 
In general, the mass flow rate is time 
dependant if 0qr  or 0C  depend on time. 
However, if the initial concentration 0C  is 
the solution of the transport equation under 
steady-state flow conditions 0qr  (and the 
contaminant plume had sufficient time to 
develop), then both 0C  and CPM  become 
independent of time (steady-state plumes). 
  
If dispersion and degradation are small in 
the vicinity of the control plane (advection 
dominated transport), 0C  also satisfies the 

condition 000 =∇⋅ Cq
rr  (i. e., the 

concentration is constant along a 
streamline).  
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Figure 2.3: Plume characterization through the mass flow rate. 
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2.2.2. Mass Flux Integral Equation 
 
The main goal of the IGIA is to obtain 
information on the spatial variability of the 
initial concentration distribution ( )zyxC ,,0  
through the temporal variability of 
concentrations at the pumping well ( )tCw . 
The integral pumping test (operating at 
constant rate Q  [L3 T-1]) temporarily 
changes the (steady-state) natural flow 
conditions leading to a transient 
convergent flow towards the pumping 
well.  In confined aquifers, neglecting 
elastic storativity, the time-dependent 
concentration   ( )tCw     measured    at   the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pumping well is related to the initial spatial 
concentration distribution ( )zyxC ,,0  
through the integral equation: 
 

( ) ( ) ( )
( )
∫ ⋅−=

tS
ww

I

dSnzyxqzyxCtCQ   ,, ,,   0
rr

     (2.3) 
 
where integration is along the lateral 
surface of the isochrone ( )tSI  (i. e. the 
boundary of the capture zone at time t ), 

( )
( )
∫ ⋅−=

tS
w

I

dSnzyxqQ   ,,   rr  is the pumping 

rate and nr  is the outward unit normal 
vector. Equation (2.3) expresses a Volterra 
Integral Equation.  
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Figure 2.4: Concentration distribution before, and at the end of, an integral pumping test 
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In 2D problems or multilayered aquifers 
where the vertical components of the flow 
velocities may be neglected, equation (2.3) 
may be formulated as: 
 

( ) ( ) ( ) ( )
( )
∫ ⋅−=

t
ww

I

dyxbnyxqyxCtCQ
l

l
rr  ,  , ,   0  

     (2.4) 
 
where integration is along the isochrone 
length ( )tIl . Equation (2.4) may be further 
simplified under the assumption of 
homogeneous conditions and radially 
convergent flow (equation 2.18 in 
Schwarz, 2002). 
  
 
 
To prove equation (2.3), let m  [M] be the 
total mass of contaminant discharged at the 
well up to time t  (pumping test started at 

0=t ), which may be expressed as: 
 

( ) ττ dCQm
t

w∫=
0

    (2.5) 

 
On the other hand, m  can be also 
computed as  
 

( ) ( )
( )
∫=

tV
e

I

dVzyxnzyxCm  ,, ,,0

    (2.6) 
 
which is the total mass of contaminant 
located within the capture zone volume 

( )tVI  limited by the surface ( )tSI . 
( ) ee nzyxn =,,  is the effective porosity. 

Equalling the right-hand sides of the above 
relationships and differentiating with 
respect to time, we get 
 

( )

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )[ ]
( )
∫

∫

∫

∂
∂

+

+⋅−=

=
∂
∂

=

==
∂
∂

tV
e

tS
we

tV
e

w

I

I

I

dVzyxnzyxC
t

dSnzyxvzyxnzyxC

dVzyxnzyxC
t

tQC
t
m

 ,, ,,

   ,, ,, ,,

 ,, ,,

0

0

0

rr

     (2.7) 
 
where ( )zyxvw ,,r  is the particle velocity 
during pumping at location ( )zyx ,,  
(independent of time if elastic storativity is 
neglected) ds  is the surface boundary of 
the capture zone and nr  is the outward unit 
normal vector. In this step we have used 
the general conservation law (also known 
as the Reynolds Transport Theorem, e.g. 
equation 1.11 Kolditz, 2002) particularized 
for the capture zone volume ( )tVI . 
 
Since both ( )zyxC ,,0  and ( )zyxne ,,  are 
independent of time, the last integral in 
(2.7) is zero, and using wew vnq rr  =  we get 
(2.3). 
 
It should be noted that (2.3) gives a 
relationship between “the concentration 
distribution before the pumping test 
started: ( )zyxC ,,0 ” and “the concentration 
observed during the pumping test ( )tCw ”. 
As indicated in Figure 2.4, the 
concentration distribution at the end of the 
pumping     test  will generally be different 
from      the     initial concentration 

( )zyxC ,,0 . 
 
However, under the same steady-state 
boundary conditions, the concentration 
distribution will lead to the same steady-
state solution and, eventually, ( )zyxC ,,0  
will be reached again. 
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2.2.3. Mathematical statement of the 
inversion problem: Analytical and 
numerical approaches 
 
 
The interpretation (or inversion) of an 
integral pumping test may be formulated 
as: 
 
We seek the mass flow rate CPM  [M T-1] 
across the control plane CPl , given the 
equations 
 

( ) ( ) ( )

( ) ( ) ( ) ( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

⋅−=

=

∫

∫

t
ww

yCP

I

CP

dyxbnyxqyxCtCQ

dxxbxqxCM

l

l

l
rr  ,  , ,   

 0, 0, 0,

0

00

     (2.8) 
where  

( )yxq ,0
r  [L T-1] is the Darcy flow 

field  under natural conditions  
( )yxb ,  [L] is the saturated 

thickness  
( )yxqw ,r  [L T-1] is the convergent 

flow field  during the pumping test,  
( )tCw  [M L-3] is the observed 

concentration during pumping  
Q  [L3 T-1] is the pumping rate 
( )tIl  is the isochrone location at 

time t  
nr  is the outward unit normal vector 

CPl  is the length of the control 
plane (defined by the capture zone, 
and perpendicular to the mean flow 
direction). 

 
and ( )yxC ,0  being the initial concentration 
distribution, assumed to fulfil the condition 

000 =∇⋅ Cq
rr  (i. e. constant in the flow 

direction). 
 
In homogeneous aquifers, assuming a 
perfect radial flow during pumping 

( )yxqw ,r , the equations in (2.8) simplify to: 
 

( )

( ) ( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

=

=

∫

∫

t
w

CP

I

CP

dyxCtC

dxxCbqM

l

l

l ,   

 0, 

0

00

  

     (2.9)  
 
with the isochrone ( )tIl  defined by the 
cylinder of radius ( ) enbtQtr    π= . 
 
Equation (2.9) is a simplified version of 
equation (2.8) where the term 

( ) ( ) Qyxbnyxqw ,  , rr
⋅  is one. A recursive 

solution of (2.9) was derived by Schwarz 
et al. (1998; 2002), furthermore a closed-
form solution (i. e. non recursive) for (2.9) 
is given in chapter 3. 
 
The resolution of (2.8) may also be 
approached analytically (without the 
assumption of perfect radial flow) using 
superposition of the radial flow solution 
and the parallel flow solution (after Bear & 
Jacobs, 1965), leading to a more general 
analytical expression, derived in chapter 3. 
 
In the general case, heterogeneous flow 
fields are not known through analytical 
expressions but through discrete solutions 
over the model grid (e. g. finite differences 
or finite elements). In this case, isochrone 
geometry ( )tIl  may be defined by particle 
back tracking to obtain an interpretation of 
the integral pumping test (Ptak et al., 
2000). The numerical resolution of the 
equation (2.9) using particle locations was 
implemented in the C++ code C1 
(Schwarz, 2002). The numerical algorithm 
was expanded and modified in order to 
consider the additional term 

( ) ( )yxbnyxqw ,  , rr
⋅  in the numerical 

integration along the isochrone, in the C++ 
code CSTREAM (see further details in 
chapter 4). 
 
In general, analytical approaches are only 
possible for simple parametrizations of the 
problem domain while numerical 
approaches can be applied to more 
arbitrary geometries. However, when the 
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explicit analytical expressions are known, 
they provide valuable information on the 
behaviour of the solutions (while 
numerical approaches require series of 
simulations to display the influence of 
variations within the input parameters). 
Advantages and disadvantages of both 
approaches as summarized in Tab. 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Permits to consider heterogeneous 
aquifers explicitly. 

  
 
Permits to consider the influence of 

multiple well interpretations. 

It does not require a numerical 
model of the aquifer, only effective 
values of 0q  , b  and en  (confined 
conditions and small storativity) 

 
The analytical expression of the 

solution informs about the influence 
of the input parameters (e. g. linear 

dependencies) 

 

ANALYTICAL APPROACH 
 

NUMERICAL APPROACH 

A
D

V
A

N
TA

G
ES

 
D

IS
A

D
V

A
N

TA
G

ES
  

Can not consider heterogenity. 
 
 

When using multiple wells, 
sufficient time lag is necessary 
between successive pumping. 

 
Requires a numerical model. 

 
 

Does not provide qualitative 
information on the behaviour of the 

solutions. 
 

Table 2.1: Analytical and numerical approaches: advantages and disadvantages. 
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2.2.4. Accounting for linear retardation: 
simplified formulation 
 
 
The assumption of purely advective 
transport is known not to be appropriate for 
some compounds (which may be 
significantly retarded). A relatively simple 
way for expanding the governing equation 
is to account for linear retardation (i. e. the 
mass velocity is assumed to be linearly 
related to the groundwater velocity through 
a constant factor mR  [-]). With 
 

0

011
C
S

n
k

n
R

e

b
d

e

b
m

ρρ
+=+=   (2.10) 

 
where 00 CSkd =  is the sorption or 
distribution coefficient, 0S  is the 
contaminant mass sorbed per unit of mass 
of aquifer material and bρ  is the bulck 
density. Under these conditions, the 
velocity of a specific particle of 
contaminant ( )yxm ,ν  and the velocity of a 
specific particle of water ( )yxw ,ν  are 
related through 
 

( )
( )yx

yx
R

m

w
m ,

,
ν
ν

=   (2.11) 

 
A consequence of (2.11) is that after 
pumping for time t  the aquifer volume of 
water removed is ( )tVI  but the aquifer 
volume of mass removed is ( )mI RtV . To 
generalize equation (2.6) for the case of 
linearly retarded transport, the total 
contaminant mass within the volume 
( )mI RtV  is the sum of the mass dissolved 

in the water and the mass sorbed in the 
aquifer material, that is 
 

    
( ) ( )

( )

( ) ( )dVzyxzyxS

zyxnzyxCm

b

RtV
e

mI

,, ,,

 ,, ,,

0

0

ρ

∫ +=
     (2.12) 

 
Equation (2.10) yields  
 

( ) 001 SCnR
b

e
m =−

ρ
    (2.13) 

And introducing (2.13) in (2.12) 
 

( ) ( )
( )

( ) ( ) ( )
( ) ( )

( )
∫

∫

=

=−

+=

mI

mI

RtV
em

em

RtV
e

dVzyxnzyxCR

dVzyxCzyxnR

zyxnzyxCm

,, ,,

 ,,,,1

 ,, ,,

0

0

0

       (2.14) 

 
Finally we can compute the derivative with 
respect time using equation (2.7) and 
applying the chain rule leading to 
 

( )

( ) ( )
( )

( ) ( )
( )
∫

∫

⋅−=

=
∂
∂

=

==
∂
∂

mI

mI

RtS
w

RtV
em

w

dSnzyxqzyxC

dVzyxnzyxCR
t

tQC
t
m

   ,, ,,

 ,, ,,

0

0

rr

(2.15) 

 
And the generalized form for equation 
(2.4) is therefore 
 

( ) ( ) ( ) ( )
( )
∫ ⋅−=

mI Rt
ww dyxbnyxqyxCtCQ

l

l
rr  ,  , ,   0

     (2.16) 
 
The problem statement defined in section 
2.2.3. provides the methodology to 
estimate both mass flow rate CPM  and 
average concentration avC , given ( )tCw , 

( )yxqw ,r , ( )yxq ,0
r , ( )yxb ,  and ( )yxne , , i. 

e. mass flow rate and average 
concentration can be computed as 

( )ewwavav nbqqtCCC ,,,,, 0
rr

=  and  
( )ewwCPCP nbqqtCMM ,,,,, 0

rr
= . To obtain 

the estimates accounting fro linear 
retardation the same problem 2.2.3 is to be 
solved (through the analytical or numerical 
approaches described in chapters 3 and 4) 
but using the following transformation 
 

( )ewmwav
R
av nbqqRtCCC ,,,,, 0

rr
=  

( )ewmwCP
R
CP nbqqRtCMM ,,,,, 0

rr
=  

     (2.17) 
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where R

avC  and R
CPM  are the average 

concentration and mass flow rate 
accounting for linear retardation. 
 
Retardation can be accounted for, within 
both the numerical and analytical 
approaches, by simply transforming the 
input measured data ( )tCw  to ( )mw RtC . 
 
 
2.3 Numerical simulation and discussion 
of methodology 
 
 
A numerically simulated verification 
example was developed in (Bayer-Raich et 
al. 2001) to discuss the methodology of the 
IGIA and to point out the differences 
between the analytical and the numerical 
approaches.  
 
 
2.3.1. Forward simulation: plume 
development and integral pumping tests 
 
 
The development of a contaminant plume 
in a heterogeneous 500 x 500 m2 domain is 
simulated using the code MT3D (Zheng, 
1999). Figure 2.5 shows the heterogeneous 
K-field, generated using the Turning Bands 
Method with the code TUBA (Zimmerman 
& Wilson, 1990): geometric mean  

001.0K G =  m/s, variance 25.02
K =Lnσ , 

correlation length m 20=λ , porosity 
1.0=φ  and thickness 5=b m. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: Heterogeneous K-field. 
 
After a 1 year forward simulation under 
steady-state flow conditions, a 60 m long 
plume was obtained downstream of the 
source zone, shown in figure 2.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Contaminant plume. Contour 
lines for concentrations 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7 and 0.8. 
 
At this stage the plume is fully developed 
around the pumping well, i. e. 
concentrations remain constant in time. 
Then a (numerically simulated) integral 
pumping test is performed in wells 1 and 2, 
as indicated in Figure 2.7. 
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Figure 2.7 Location of the pumping wells 
and control plane.  
 
In pumping well 1, at a constant rate of 
Q=2 l/s during 43h, 7 samples were taken 
at different times. Figure 2.8 shows the 
obtained concentration-time series in well 
1 and the plume position after the 
pumping. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8: Plume position and 
concentration-time data after integral test 
in well 1. 
 
55 h after the end of this first test, pumping 
well 2 operated at a constant rate of Q= 4 
l/s for a period of 10,2h. Figure 2.9 shows 

the obtained concentration-time series in 
well 2 and the plume position after the 
pumping. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9: Plume position and 
concentration-time data after integral test 
in well 2. 
 
2.3.2. Inverse problem: Analytical and 
numerical approaches 
 
The analytical and numerical inversion 
methods are now applied to the data 
obtained in the numerical experiment 
performed in the previous section, pointing 
out the differences between both methods. 
 
In the analytical interpretation a 
homogeneous equivalent aquifer is used, 
obtained by applying a constant estimate of 
the average conductivity, porosity and 
thickness throughout the domain. In 
general, the analytical solution is a 
simplified estimation tool, which can be 
applied to homogeneous or moderately 
heterogeneous field sites to estimate 
contaminant mass flow rates using a 
relatively small number of monitoring 
wells and without the need for a detailed 
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groundwater flow and transport model 
(Teutsch et al. 2000). 
 
The forward transport simulation results 
(see previous section) on concentration-
time data for well 1 are used to obtain the 
mass flow rate with the analytical formula 
derived by Schwarz et al. (1998), further 
explained and expanded in chapter 3. 
Through the analytical formula, several 
possible plume positions are obtained as 
shown in Figure 2.10. 
 
The final estimation of the mass flow rate 
is obtained by multiplying the average 
concentration times the groundwater flow 
rate. Several estimations of the equivalent 
transmissivity were used for this example 
leading to errors in mass flow rate 
estimates varying from –16% to 32% 
depending on the estimate of equivalent 
hydraulic conductivity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.10: Possible plume positions 
obtained analytically (after Bayer-Raich et 
al., 2001). 
 
The main limitations of the analytical 
interpretation are: (1) We can only use it if 
there is no perturbation of the plume 
position previous to the integral pumping 
test, caused for instance by other pumping 
tests, (2) we have to assume homogeneous 
conditions, and (3) unique solutions cannot 
be obtained for the plume position (a 
consequence of limitation (1) above that 
multiple pumping tests cannot be 
evaluated). The numerical interpretation 
overcomes these limitations using data 
from both pumping wells 1 and 2. In 
addition to the concentration-time data 
observed in the two different pumping 
wells, both natural (no pumping) and 
convergent (during pumping) flow fields in 
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the heterogeneous aquifer are used as 
input.  
 
When using multiple pumping wells, the 
isochrones described by the second and 
successive wells can not be approximated 
by circles anymore because of the 
influence of the previous pumping wells, 
unless there is a sufficient time lag 
between the pumping tests. The particle 
tracking algorithm CSTREAM (originally 
developed in the code C1 by Schwarz, 
2002 and expanded in Bayer-Raich et al. 
2002b; see chapter 4) is used to define the 
isochrones and streamtubes through 
particle backtracking. The influence of 
heterogeneity and boundary conditions is 
taken into account through the flow model 
used for the particle tracking. Streamlines 
and isochrones are shown in Figure 2.11 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11: Streamlines and isochrones 
defined numerically through particle 
tracking. 
 
Figures 2.10 and 2.12 show how the 
simplifications performed for the analytical 
inversion lead to straight streamlines and 
circular isochrones, while the numerical 
algorithm considers the heterogeneity of 
the flow field. 
 
The concentration distribution is computed 
numerically for well 1 considering several 
possible plume positions, as shown in 
Figure 2.12.   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.12: Possible plume positions 
obtained numerically (after Bayer-Raich et 
al., 2001). 
 
Since well 2 detected no contaminant 
(figure 2.9), we can conclude that the 
region captured by well 2 was clean at the 
beginning of the pumping tests. Hence, one 
can reject the scenarios in which the plume 
intersects the well 2 isochrones (two upper 
graphs in figure 2.12). This indicates that 
no contaminant was present at the left hand 
side of well 1, leading to a unique solution 
for the plume position (figure 2.13). In 
general, more than two wells may be 
needed to obtain a unique solution. For 
instance, at least one more pumping well is 
needed when the plume is located in 
between the two first pumped wells. 
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Numerical evaluation methods are 
generally needed for relevant multiple well 
interpretations, as well as for a more 
detailed consideration of heterogeneity in 
aquifer properties and field-scale transient 
flow conditions.  
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Figure 2.13: Unique plume position obtained numerically (left) and actual plume (right). 
Open lines in the left figure indicate the region where well 2 detected no contaminants Error 
in mass flow rate estimate: 14% (after Bayer-Raich et al., 2001) 
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Chapter 3 
 
ANALYTICAL APPROACH FOR HOMOGENEOUS AQUIFERS 
 
 
 
3.1 Introduction 
 
 
This chapter further expands the analytical 
work presented in Teutsch et al. (2000) and 
Schwartz (2002) for the inversion of 
integral pumping tests. The previous 
analytical solution, based on the 
assumption of radial flow during pumping 
is generalized to account for the effect of 
the natural velocity field 0q  during the 
pumping test. Both approaches are 
compared in a homogeneous aquifer as a 
function of the (dimensionless) duration of 
the pumping test Dt , using the definition 
given in Bear & Jacobs (1965). The results 
show that, under the condition 

2
0  2   qbnQt e π<  (where t  is the duration 

of the pumping test), both approaches lead 
to similar estimates of the mass flow rate 

CPM  (relative errors < 10%). Further, the 
simplified approach (i. e. based on the 
cylinder formula) is studied using the 
classical theory of Volterra integral 
equations, providing a closed-form 
solution for the computation of the mass 
flow rate. Both approaches are tested under 
heterogeneous conditions (using the 
concept of the equivalent homogeneous 
aquifer). The analytical approach is 
expanded and tested in a multi-layered 
aquifer, providing depth-differentiated 
estimates of the mass flow rate. Finally, the 
analytical solutions are used for 
investigating the issue of dimensioning 
IPTs. A methodology for dimensioning 
pumping durations and distances between 
wells is given, based on data from IPTs 
already conducted within the projects 
SAFIRA and INCORE. 
 
 

3.2. Problem formulation for 
homogeneous aquifers: Volterra integral 
equation 
 
 
In homogeneous aquifers (i. e.  hydraulic 
conductivity ( ) KyxK =, , porosity 
( ) ee nyxn =,  and thickness ( ) byxb =,  for 

all ( )yx, ) a parallel flow field in the y 
direction is given by Darcy’s 
equation hKq ∇=

r
  0 . The natural parallel 

flow field is therefore: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
0

0
,

q
yxqr  

    (3.1) 
 
Because the concentration, by assumption, 
is constant along streamtubes that are 
parallel to the y-axis (i.e. constant in the 
flow direction), the initial concentration 
distribution for homogeneous conditions 
becomes a function of x only, i. e. 

( ) ( )xCyxC 00 , = . We then introduce 
 

  ( ) ( ) ( )
2

00
0

xCxCxC −+
=   

     (3.2) 
 
and consider only 0>x . The reason for 
considering such an average concentration 
is physical - during a pumping test in a 
homogeneous aquifer, equal proportions of 
the sampled water will be drawn from the 
left ( 0<x ) and the right ( 0>x ) of the 
well. Introducing the definition of ( )xC0  
into equation (2.2) we get 
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( ) ( ) ( )

( )∫

∫

=

==
−

R

R

R
yCP

dxxCbq

dxxbxqxCM

0
00

00

   2                 

 0, 0, 0,
 

     (3.3) 
 
Equation (3.3) shows that the mass flow 
rate CPM  may be uniquely identified from 

( )xC0  (i. e. the mass flow rate may be 
precisely computed from ( )xC0 , even if 

( )xC0  is unknown). In a homogeneous 
aquifer the mass flow rate is independent 
of the plume position (Teutsch et al., 
2000).  
 
We may introduce the definition of ( )xC0  
in the integral equation (2.4), and then 
perform the integration along ( )tI

+l  (the 
half of the isochrone ( )tIl  located at 

0>x ). 
 

( ) ( ) ( )
( )
∫

+

⋅−=
t

ww
I

dnyxqxC
Q
btC
l

l
rr   ,   2 0  

     (3.4) 
 
The equation of the convergent flow field 
during pumping ( )yxqw ,r  may be obtained 
by superposition of radial flow and parallel 
flow. Using the (dimensionless) 
coordinates defined in Bear & Jacobs 
(1965), the Darcy flow during pumping 
can be expressed as:  
 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
−

+
−

=

22
0

0

22
0  

,

DD

D

DD

D

w

yx
yqq

yx
xq

yxqr   

 

with x
Q

qbxD
0   2π

=  ;  y
Q

qbyD
0   2π

=

     (3.5) 
 
From equation (3.5) the parametric 
equation of the isochrones ( )tIl  at time Dt  

was derived by Bear & Jacobs (1965), 
providing the result 
 

     ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−−−= D

D

D
DDD x

x
yxyt sin cosln  

with t
nQ
qbt
e

D  
   2 2

0π
=  

     (3.6) 
 
and the equation of the steady-state water 
divide (as indicated in Figure 3.1): 
 

( )D

D
D x

xy
tan

=  

     (3.7) 
 
Figure 3.1 show the solutions to equation 
(3.6) for 5,4,3,2,1=Dt  in dimensionless 
coordinates, when the groundwater flow 
moves in the direction of the y axis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Isochrone geometry 
(dimensionless coordinates) with 
groundwater flow moving in the direction 
of the y axis. Water divide at the 
discontinuous line (Bear & Jacobs, 1965). 
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To express equation (3.4) in Cartesian 
coordinates, we introduce the function 

( )txY ,l  as the distance between the 
upstream and the downstream intersections 
of the isochrone and a straight line located 
at x  and parallel to the y axis (Fig 3.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Integration of the volume 
limited by the isochrone: definition of 

( )txY ,l   
 
 
Although the function ( )txY ,l  is not 
known explicitly, it is given implicitly by 
the equation of the isochrone (equation 
3.6), by setting ( ) updwY yytx −=,l  where 

dwy  and upy  are the two solutions of 
equation (3.6) for a given ( )tx,  pair. 
 
The total volume captured by the isochrone 
up to time t  can be obtained by 
integrating: 
 
 

               ( )
( )

∫=
tR

Ye dxtxbntQ
0

 ,   2 l  

(3.8) 
 
In figure 3.3. the capture width ( )tR  is 
introduced as (half) the width of the set of 
streamtubes captured by the isochrone t . 
Developing equation (3.6) in cartesian 
coordinates and finding the location where 
the isochrone is parallel to the y axis leads  
to: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

D

D

D

D
D R

R
R

Rt
sin

ln
tan

1    

with  t
nQ
qbt
e

D  
   2 2

0π
= ; R

Q
qbRD

0   2π
=  

(3.9) 
 
Further, the total mass captured at the 
pumping well up to time t  equals the total 
mass of contaminant within the volume 
limited by the isochrone of time t .  
 

( ) ( ) ( )
( )

∫ ∫=
t tR

Yew dxtxbnxCdttCQ

0 0
0  ,       

2
l  

(3.10) 
 
Differentiating with respect to time leads 
to 
 

( ) ( ) ( )
( )

=
∂
∂

= ∫
tR

Yw
e

dxtxxC
t

tC
bn

Q

0
0  ,     

  2
l  

( ) ( )( )

( )( ) ( )
t
tRttRdx

t
txxC Y

tR
Y

∂
∂

+
∂

∂
= ∫  ,   ,  

0
0 l

l  

(3.11) 
 
Where ( )( ) 0, =ttRYl , therefore equation 
(3.11)  may be written in the usual notation 
of the Volterra integral equations, in 
Cartesian coordinates ( )yx, , as 
 

( ) ( ) ( )( )

∫ ∂
∂

=
tR

Ye
w dx

t
txxC

Q
bntC

0
0  ,     2 l  

(3.12) 
 

( )txY ,l

dwy  

upy  

( )tR  
x  

dx  
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which gives an alternative expression for 
equation (3.4), where the integration is 
performed along the x direction (while in 
(3.4) the integration is along the isochrone 
length). Combining both equations leads to 
the identity 

 

 
( ) ( )( )

( ) ( )
( )
∫

∫

+

⋅−

=
∂

∂

t
w

tR
Y

e

I

dnyxqxC

dx
t

txxCn

l

l
rr

l

  , 

  ,  

0

0
0

 (3.13) 

 
Equation (3.13) gives two alternative 
expressions for the Volterra integral 
equation. Analytical solutions are usually 
formulated in Cartesian coordinates (left 
hand side of equation (3.13), or equation 
(3.12)) however, equation (3.12) is a 
weakly singular integral (the function 
within the integral is not bounded) and the 
numerical integration of equation (3.12) is 
performed by using the right hand side of 
equation (3.13), i. e. using the more 
general expression (3.4) (in which the 
integrand is bounded and therefore is 
easier to evaluate numerically). 
 
The solution for the general case expressed 
by equation (3.12) is obtained by 
numerical integration of equation (3.4) 
(method of quadratures). The description 
of this methodology may be found, for 
example, in Polyanin & Manzhirov (1998) 
pages 487-488. 
 
 
3.3. Solution for the Volterra Integral 
equation by numerical integration 
 
 
3.3.1. Discrete solution 
 
 
The discretization of a Volterra integral 
equation leads to a linear system of 
equations with a lower triangular matrix 
(Polyanin & Manzhirov, 1998). In order to 
apply the “method of quadratures” we 
assume that a limited number of samples 

( )( )iwi tCt ,  for ni ..,2,1=  are taken during 

the pumping test, and use these isochrones 
to define N streamtubes as indicated in 
Figure 3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3:  Discretization of 8 streamtubes 
based on the geometry of 8 isochrones. 
 
Now we can discretize equation (3.12) by 
assuming that the initial concentration 

( )xC0  is constant within a streamtube.  
 
Then ( )xC0  can be written as: 
 

( ) ( )∑
=

=
N

j
jj xCxC

1
0  ξ  

with ( ) ( )
( )⎩

⎨
⎧

∉
∈

=
−

−

ii

ii
i RRx

RRx
x

,         0
,         1

1

1ξ  

     (3.14) 
 
with jC  being the concentration of the j-th 
streamtube, N  the number of samples and 

( )jj tRR =  the maximum width of the j-th  
isochrone in the x  direction, as shown in 

( )itr ,θ

( )itR

( )itisochrone 

( )jtisochrone 

θ

( )jtR
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Figure 3.3. Introducing the definition 
(3.14) into (3.12) we get 
 

   

( )
( )

∑

∑ ∫

=

= =

=

=⎥⎦
⎤

∂
∂

=

=

−

N

j
ijj

N

j

R

R tt

Ye
j

iw

gC

dx
t

tx
Q

bnC

tC
j

j i

1

1

                 

 ,   2 

                

1

l  

     (3.15) 
 
From the previous expression we get 
recursive formula to obtain the 
concentration iC  at the streamtubes and 
the mass flow rate CPM  
 

       ( )∑
=

−−=
N

i
iiiCP RRCbqM

1
10    2  

     (3.16) 

with  
( )

ii

i

j
ijjiw

i g

gCtC
C

∑
−

=

−
=

1

1
 

   

( )
∫
− =∂
∂

=
j

j i

R

R tt

Ye
ij dx

t
tx

Q
bng

1

 ,   2 l  

 
( )ii tRR =  is given by the (non-linear) 

equation (3.9).  
 
 
3.3.2. Numerical implementation in 
CSTREAM 
 
 
The computation of the matrix ijg  through 
equation (3.16) involves the evaluation of a 
weakly singular integral (that is the area 
limited by a function that tends to infinity 
within the integration interval). To 
simplify the numerical integration we 
introduce a change of variables to perform 
the integration along the isochrone length, 
using constant increments of the angle θ .  
 
We seek to introduce the expressions given 
by (3.5) and (3.6) in (3.4). Since the vector 
nr  is perpendicular to the isochrone, we 

may describe it as ttn ∇∇=
rrr , where t  is 

given by equation (3.6). The geometrical 
relationships shown in Figure 3.4 lead to 

( )    2 rtdrtd rrr
l ⋅∇∇= θ . Then the integral 

equation in (3.4) may be particularized as: 
 

( ) ( )( ) ( )( )∫=
π

θθ
0

0  , sin dθ,tθ,trgθ,trCtCw  

with 

( ) ( )
tr

trq
Q

brθ,trg w

∇⋅
∇⋅

−
= rr

rr  ,   2,
2 θ

     (3.17) 
 
where ( )trr ,θ=  is given implicitly by 
equation (3.6) transformed to polar 
coordinates: 
 

( ) ( )[ ]θθθ
θ

 sin sin cotan  sin cosln
 cos 

DD

DD

rr
rt

−−
−−=

 

 

with r
Q

qbrD
0   2π

= . 

     (3.18) 
 
Using these equations, ijg  is computed by 
numerical integration using the formula  
 

( )( ) ( )( )∫=
π

θθξ
0

 , sin dθ,tθ,trgθ,trg iiijij  

     (3.19) 
 
The integral appearing in the term ijg  is 
evaluated by numerical integration 
performed along the i-th isochrone. The 
quadrature of Newton-Cotes (trapezoidal 
rule) is used along the isochrone with a 
constant increment of the angle θ . The 
evaluation of the function ( )( )iθ,ttrg ,,θ  at 
each “base point” ( )( )θθ ,,tr  of the 
numerical integration requires solving the 
non-linear equations (3.6) for ( )tr ,θ  and 
(3.9) for ( )tR . Therefore a zero-finding 
Newton-Raphson algorithm has been 
implemented. The algorithm used to 
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evaluate ijg  and produce the graphical 
output with the geometry of the isochrones 
is detailed in figure 3.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

nrα

  θ

ld

  θdr

αθ −  

r
rr  

t
t

∇

∇
r

r

dx

αθ −

dy

Figure 3.4: Detail of the relative position of the isochrone length ld  and vector 
ttn ∇∇=
rrr  perpendicular to the isochrone. 

zoom 
 

( )
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r
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d
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∇
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1=i                     first isochrone i  

Find iR  solving equation (3.9) with it        capture zone width of isochrone i

θN  is number of points for  
the numerical integration 

1=k              first base point k  of the quadrature

Find ikr  solving equation (3.18) with kθ and it   (point k  isochrone i ) 

Evaluate the function ( )ikik ,tθrg ,                 (point k  isochrone i )

1=j                    isochrone j  with ij ≤  

( )ikikijij ,tθrggg ,+=

θNk =

θπθ Nkk  =                  angle kθ  of the point k  

no 1+= jj  

no 1+= kk  

Ni =
no 1+= ii  

jkikj RrR ≤<− θsin1

N  is number of samples and 
isochrones 

End of the computation of ijg  for all ij ≤ .  

Figure  3.5: Algorithm for the computation of ijg  
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The Newton-Raphson iterative algorithms 
for solving the non-linear equations (3.18) 
and (3.9) (for ( )tr ,θ  and ( )tR ) require the 
definition of objective functions and their 
derivatives.   
 
For equation (3.6), we seek to find the 
solutions of the objective function 
( ) 0=DrF  with derivative ( )DrF ' : 

 
( )

( ) ( )[ ] 0 sin sin cotan  sin cosln
   cos             

=−+
++=

kDkkD

kDD

rr
rtrF

θθθ
θ

 

     

( )
( )

( ) ( )
k

kD
kD

kkD

kD

rr

r
crF

θ
θθ

θθ
θ

tan 
 sin sin  sin cos

 sin cos
  os'           

−

−
−

−=

 

     (3.20) 
 
And for equation (3.9), the objective 
function is: 

 ( ) 0
sin

log
tan

1 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= D

D

D

D

D
D t

R
R

R
RRF  

      ( )
DDD

D
D RRR

RRF 1
tan

2
sin

' 2 +−=  

     (3.21) 
 
In both cases, the iterative algorithm for 
finding the iteration m  as a function of the 
iteration 1−m  is given by 
 

            ( )
( ))1(

)1(
)1()(

' −

−
− −= m

m
mm

rF
rFrr  

 
     (3.22) 
 
Since the solutions of both (3.20) and 
(3.21) are simple, the Newton-Raphson 
algorithm convergences with order 2.  
 
In the equation of the water divide, 
equation (3.7), given the angle θ , the 
radius location is obtained explicitly (no 
iterations are necessary) 
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3.4. Approximate solution: Abel’s 
integral transform 
 
 
Although the closed-form solution to the 
general Volterra equation (3.12) is not 
known (only a discrete solution was 
obtained by the method of quadratures) 
some simplifications allow us to derive a 
closed-form solution for a simplified 
version of equation (3.12). This solution is 
based on a generalized Abel integral 
transform, and is simpler (i. e. non 
recursive) than the previous existing 
solution derived by Schwarz et al. (1998). 
 
 
3.4.1. Problem formulation: simplifying 
assumptions 
 
 
The natural groundwater velocities before 
the (integral) pumping test 0q  influences 
the shape of the isochrones as shown in 
Figure 3.6: as the (dimensionless) duration 
of the pumping test increases, the 
isochrones extend to infinity in the 
upstream direction but are limited in the 
downstream direction by the water divide. 
Early isochrones are (almost) circular 
while late isochrones are extended in the 
upstream direction.  
 
If the natural velocity is zero ( 00 =q ) the 
flux towards the well is given by Thiem’s 
equation (Moragas, 1896; Thiem, 1906) 
 

( )rbQqw    2 π−=   
    (3.23) 

 
In the problem that we are studying, the 
natural groundwater flow is never zero, 
however in some cases we may use 
equation (3.23) to give an approximate 
description of the isochrone geometry.  
 
The equation of the isochrones for the 
Thiem problem descrived above is given 
by the cylinder formula: 
 

( )
enb

tQtr
  
 

π
=  

     (3.24) 
 
which may be written in dimensionless 
coordinates as (see equation (3.6) for the 
definition of Dt  and Dr ): 
 

2

2
D

D
rt =   

     (3.25) 
 
We will use equation (3.25) as an 
approximation to equations (3.6) and (3.9) 
(i. e. under this approximation 
( ) ( ) ( )tRtrtr ==,θ ).  

 
Figure 3.6 shows both the geometry of the 
isochrones (equation 3.6) and the 
approximation given by the cylinder 
formula for dimensionless times 

1 0. ,08.0  ,06.0  ,04.0  ,02.0=Dt  (with 
larger isochrones corresponding to higher 

Dt ) . 
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As shown in Figure 3.6 the isochrone 
geometry becomes (almost) circular for 
early (dimensionless) times, therefore 
considering perfect radial flow during the 
pumping test is justified for small values of 

Dt . This approximate solution corresponds 
to the solution of the problem summarized 
by equation (2.6); its range of validity is 
quantified in section 3.4.3. 
 
 
To particularize the Volterra integral 
equation for this simplified approach we 

introduce ( ) ( ) 222, xtrtxY −=l  in 
equation (3.12) obtaining 
 

( ) ( )
( )

( )

∫
−

=
tr

w dx
xtr

xCtC
0

22
0  2 

π
 

     (3.26) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Which may be also found from the more 
general equation (3.4) particularized by 

( )rbQnqw    2 π−=⋅
rr  and transforming 

coordinates to  θsin)(trx = . 
 
This equation has appeared before in the 
literature of integral equations (e.g. 
Volterra, 1894) and an exact solution may 
be formulated by means of the Abel 
inverse transform (Abel, 1823). A discrete 
solution based on the method of 
quadratures was also provided in Schwarz 
et al. (1998) and Teutsch et al. (2000). 
 
 
 
 
 
 
 
 
 
 

Figure  3.6: Influence of the natural gradient on the shape of the isochrones. 
Solid line: actual isochrone,  Dotted line: approximation (cylinder formula) 
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3.4.2. Discrete solution, Schwarz et al. 
(1998) 
 
 
A solution based on the discretization of 
equation (3.26) was provided by Schwartz 
et al. (1998) and Schwarz (2002). This 
solution may be obtained from equation 
(3.19) or (3.16) where ijg  is integrated for 
( ) ( ) iii rtrθ,tr ==  given by the cylinder 

formula and ( )( ) πθ 1,, =iθ,ttrg . In this 
case,  
 

           ( ) == ∫
2

0

 sin2
π

θθξ
π

drg ijij  

   
⎥
⎥
⎦

⎤

⎢
⎢
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⎡

⎟
⎟
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⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= −

i

j

i

j

t
t

t
t

arccosarccos2 1

π
 

      
     (3.27) 
 
which may be also derived by 
particularizing equation (3.16) for 

( ) ( ) 222, xtrtxY −=l . Therefore, 
equation (3.16) leads to the result provided 
in Schwarz et al., (1998)  
 

        ( )∑
=

−−=
N

i
iiiCP rrCbqM

1
10    2  

with 

( )

i

i

i

j i

j

i

j
jiw

i

r
r

r
r

r
r

CtC
C

1

1

1

1

arccos

arccosarccos 
2

 
−

−

=

−∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=

π

     (3.28) 
 
This solution is the first equation that was 
used in field investigations for estimation 
of the mass flow rate from an integral 
pumping test. All integral pumping tests 
performed in Holder et al. (1998), 
Bockelmann et al., (2001;2003), Bayer-
Raich et al. (2002) and Béland-Pelletier et 
al. (2003) where interpreted using this 
solution.  
 

Figure 3.7 shows the graph of ( )tCw  for a 
single plume ( )xC0 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7.  Discrete solution obtained by 
analytical integration (Schwarz, 2002) 
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3.4.3. Continuous solution: Abel’s 
transform  
 
 
Exact (closed-form) solutions of integral 
equations play an important role in the 
proper understanding of features of many 
phenomena and processes in various areas 
of natural science (Polyanin & Manzhirov, 
1998). The Norwegian mathematician 
Niels Henrik Abel (1802-1829) discovered 
integral equations in his third paper 
Solutions of some problems by means of 
definite integrals (Abel, 1823). A 
generalized form of Abel’s integral 
transform is (Porter & Stirling, 1990):  
 

( ) ( )
( ) ( )( )∫ −

=
r

dx
xhrh

xgrf
0

  α      (3.29a) 

 
for given functions ( )xg , ( )xh  and 

10 <<α . If ( )rf , ( )xh  are given in the 
above equation, the function ( )xg  is 
obtained by the inverse transform as 
 

   ( ) ( ) ( )
( ) ( )( )∫ −−

=
x

dr
rhxh
rfrh

dx
dxg

0
1  'sin απ

απ  

               (3.29b) 
 
Abel (1823) derived these relationships for 
the particular case of ( ) xxh = . The 
solution (3.29) for the case 5.0=α  and 
( ) 2xxh =  was given in Volterra (1894). 

Equation (3.29) applies to the integral 
equation (3.26), therefore the interpretation 
of an integral pumping test may be 
formulated by means of the generalized 
Abel  integral transform with 
( ) ( ) πxCxg 02=  ( ) ( )( )rtCrf w= , 5.0=α  

and ( ) 2xxh = : 
 

( )( ) ( )
∫

−
=

r

w dx
xr

xCrtC
0

22
0   2 

π
 

 
which is exactly (3.26), therefore the 
inverse transform is then given by equation 
(3.29) as 

 

( ) ( )( )
∫

−
=

x
w dr

rx
rtCr

dx
dxC

0
220     

     (3.30) 
 
Using this result within equation (3.3) we 
integrate the mass flow rate as 
 

        ( ) == ∫
R

CP dxxCbqM
0

00    2  

    ( )( )
=

−
= ∫ ∫

R x
w dxdr

rx
rtCr

dx
dbq

0 0
220      2  

        ( )( )
∫

−
=

R
w dr

rR
rtCrbq

0
220     2   

     (3.31) 
 
Performing the integration along 

( ) ( ) maxmax
2     trttQnbr e == πξ  with 

( )max      2 tQdrnbrd eπξ = , yields: 
 

        ( )
∫ −

=
1

0

max
0  

1
   ξ
ξ

ξ dtCRbqM w
CP  

     (3.32) 
 
Equation (3.32) provides a simple explicit 
solution for the computation of the mass 
flow rate, which may also be written in the 
form avCP CRbqM     2 0=  with  
 

( )
∫ −

=
1

0

max  
1 2
 ξ
ξ

ξ dtCC w
av  

     (3.33) 
 
Note that (3.33) is independent of aquifer 
thickness, porosity and pumping rate. 
Assuming perfectly radial flow, the 
average concentration avC  is determined 
by a weighted  average of ( )tCw  along the 
time. As shown in Figure 3.8, the later 
times give a higher contribution. This 
equation is valid only for 1<<Dt . In 
general, the weighting function shown in 
Figure 3.8 depends on the (dimensionless) 
duration of the integral pumping test. 
Porosity and thickness only affect the mass  
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flow rate because of their influence on the 
area of the control plane (given by the term 

Rb  2 ) and they do not influence the 
average mass flux or the average 
concentration avC . 
 
Taking as an approximation ( ) ( )iww tCtC =  
for all t  within ii ttt <<−1  we may 
integrate the previous expression yielding  
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⎥
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∑

n

i
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i
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t
t
ttCbRqM 11   2 1

1
0

 

 
     (3.34) 
 
which may be used as an alternative to the 
recursive solution (3.28). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Equations (3.28) and (3.34) may be 
compared to equation (3.16) to test the 
effect of the simplifying assumptions. The 
mass flow rate is expressed in all cases, as 
a weighted sum of the concentration values 
sampled at the well, in general defining the 
normalized time maxtt=ξ  and with Dt  
being the dimensionless duration of the 
pumping test we may write 
 

( ) ( )∫=
1

0
max0  ,   2  ξξξ dtwtCRbqM DwCP   

     (3.35) 
 
which, for short pumping tests, simplifies 
to  

( ) ( )
ξ

ξξ
−

==→
12
10, wtw D  

     (3.36) 
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Figure 3.8 Averaging of the concentration at the pumping well. Area of the shaded region = 1.
 

maxtt=ξ

( )ξw  

discrete solution (3.34) 

discrete solution (3.28) 
with N=30 
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yielding to the closed-form solution (3.32). 
 
 
 
3.5. Verification and comparison of 
approaches 
 
 
In this section I address the question: 
“When may we use the approximate 
solutions (3.28) or (3.34) for the 
interpretation of integral pumping tests?”. I 
show this question can be reduced to check 
the inequality 2

0  2   qbnQt e π<  , leads to 
errors < 10% in the mass flow rate 
estimate. For integral tests longer than 

2
0  2 qbnQ e π , the more general solution 

(3.16) should be used. The effect of 
heterogeneity and depth integration will be 
quantified in sections 3.6 and 3.7 
respectively. This section quantifies the 
errors due to the influence of the natural 
gradient during pumping. 
 
 
3.5.1 A trivial case: ( ) plumew CtC =  
 
 
At first, we consider the (trivial) case of an 
aquifer with constant concentration 

( ) plumeCxC =0 . Under these conditions the 
concentration obtained at the pumping well 
is also constant ( ) plumew CtC =  and the mass 
flow rate reduces to 

( ) plumeCP CtRbqM   2  0= . 
 
In Figure 3.9, the isochrones given by Bear 
& Jacobs (1965) (equation (3.6) and the 
cylinder formula (3.25) ) are compared for 
increasing (dimensionless) time. 
Furthermore, the figure shows the size of 
the control plane obtained from ( )tR  in 
equations (3.9) and (3.25). The simplified 
approach leads to an overestimation of the 
mass flow rate because the width of the 
control plane ( )tr  is always greater than 
the actual width ( )tR  (as shown in Figure 

3.9). The captured radius predicted by the 
cylinder formula is 6% larger than the 
actual radius for 1>Dt  and is 100% larger 
if 17>Dt . Figure 3.10 gives the error 
(overestimation) of the cylinder formula in 
terms of mass flow rates for several values 
of Dt .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Width of the capture zone.  
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It is remarkable that the actual mass flow 
rate is bounded by plumeCQ   but the 
estimation provided by the cylinder 
formula never reaches a limit (may grow 
infinitely with increasing duration of the 
integral pumping test). 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Those errors are quantified for the trivial 
case ( ) plumeCxC =0  ; ( ) plumew CtC = . In the 
next section we check some simple 
distributions of ( )xC0  to estimate the 
errors of the cylinder formula for variable 

( )tCw . 
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Figure 3.10: Top: Estimation of the mass flow rate using the simplified approach 
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3.5.2 Simple plumes 
 
 
A simplified scenario with several plume 
distributions was used to perform an 
integral pumping test of duration 3.2=Dt . 
Six different plumes at different 
(dimensionless) distances from the well are 
considered as shown in figure 3.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The concentration at the pumping well 

( )tCw  was obtained by numerical 
integration of equation (3.17), with 600 
isochrones and 10000 “base points” along 
each isochrone using the trapezoidal rule 
and constant increments of the angle 

10000πθ =∆ (quadrature of Newton-
Cotes). 
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Figure 3.11: Left: plume(s) position Upper right: Concentration profiles along x . Lower 
right: Concentrations obtained at the pumping well. 
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The previous figure summarizes the 
functions that will be used to test the 
simplified approach based on the cylinder 
formula. The bottom-right ( )tCw -curves 
are used as input for both formulae: eq. 
(3.28) for the simplified approach and eq. 
(3.16) for the general approach.  
 
A constant increment of the capture width 

RRR ii ∆=− −1  was selected using 
dimensionless increments of 1000π=∆R  
and a total of 600 isochrones shown in 
Figure 3.12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The output of both approaches is compared 
to the plume concentrations ( )xC0  shown 
in the top-left figure 3.11, and to the total 
mass flow rate, which equals to 

10 plumeCQ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12: Isochrones used for the 
computation of ( )tCw  shown in Figure 
3.11 
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The mass flow rate is computed by 
integrating the (inverted) concentrations 

( )xC0 . Therefore, the errors in the 

estimated ( )xC0  will lead to errors in the 
estimated mass flow rate. 
 
Figure 3.13 shows the result of the 
inversion in terms of ( )xC0 , namely that 
the simplified approach leads to an 
underestimation of the concentration and 
an overestimation of the capture width. 
The error, in general, depends on the 
observed ( )tCw . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.13: ( )xC0  inversion. Solid line: 
general approach (equation 3.16). Dotted 
line: simplified approach (equation 3.28) 
 
 
Figure 3.13 shows how the general 
approach leads to the original 
concentrations ( )xC0  (compare to Figure 
3.11 top-right) while the simplified 
approach provides an approximation. The 
differences observed in Figure 3.13 lead to 
differences in the mass flow rate estimates 
(obtained from formula (3.28) in the 
simplified approach; and formula (3.16) in 
the general approach). The different mass 
flow rate estimates are compared as a 
function of the (dimensionless) time in 
Figure 3.14, the relative error of the 

simplified approach is shown in Figure 
3.15. 
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3.5.3 Applicability of the simplified 
approach 
 
 
The simplified approach based on the 
cylinder formula lead to relative errors of 
up to 14% for the trivial case 

( ) plumeCxC =0  and ( ) plumew CtC = . For the 
plumes described in figure 3.11 and 
dimensionless pumping test durations 

25.2<Dt  and errors range between 3% 
and 19% (and 25.2<Dt ). Generally, the 
relative errors increase with increasing Dt .  
 
These results suggest that pumping tests of 
(dimensionless) duration smaller than 1 
may be inverted using the simplified 
approach (equation 3.28), however longer 
pumping tests should be inverted through 
the general approach (equation 3.16). Most 
field scale applications (e.g. Holder et al., 
1998; Bockelmann et al., 2001; 2003 and 
Jarsjö et al., 2003 in the Neckar Valey in 
Stuttgart, Germany; Bayer-Raich et al., 
2002 in Bitterfeld, Germany; Béland-
Pelletier et al. (2003) in Borden, Canada) 
were performed through pumping tests of 
duration 1<Dt . However, some of the 
pumping tests did not fulfill this condition. 
 
 
 
 
 

 
 
 
 

Table 3.1 shows the duration of the 
pumping tests performed in Bockelmann et 
al. (2001 ; 2003): in 4 of the wells the 
dimensionless pumping test duration was 
longer than 1. It should be noted also than 
the condition 1<Dt  is necessary but not 
sufficient to perform adequate inversions 
when ( ) 0≠tCw  (the trivial case ( ) 0=tCw  
leads to ( ) 00 =xC  and )0=CPM : other 
processes (e.g. heterogeneity or influence 
of previous pumping tests) may be sources 
of error when using the analytical 
approach. The condition 1<Dt  only 
guarantees that the isochrone geometry is 
not strongly influenced by the natural 
parallel flow. However when multiple 
wells are used (simultaneously or 
sequentially) the isochrone geometry of 
each well is influenced by previous 
pumping tests. The effect of heterogeneity 
will be a main source of error (quantified 
in the next section). When the isochrone 
geometry may not be assumed to be 
circular the best method to perform the 
inversion is the numerical algorithm 
CSTREAM (based on particle tracking and 
described in the next chapter).  
 
 
 
 
 
 
 

 
 
 
 

Well 
Porosity 

en  [-] 
Thickness 

b [m] 
Hydr.Cond. 

K [m/s] 
Gradient

h∇  [-]
0q  

[m/s] 

Pumping rate 
Q  [m3/s] 

( )maxtr
[m] 

maxt  
[h] 

( )maxtR  
[m] Dt  

B42 0.15 4 1.95E-03 2.00E-03 3.90E-06 4.08E-03 33.5 144 262 0.324
P2 0.15 3.8 8.42E-04 1.20E-03 1.01E-06 1.44E-03 16.7 96 375 0.039

B41 0.15 2.96 1.05E-02 1.50E-03 1.57E-05 4.16E-03 32.1 96 89.5 2.541
P1 0.15 3.35 8.36E-03 1.30E-03 1.09E-05 4.85E-03 32.6 96 133 1.182

NT01 0.15 0.9 5.78E-03 1.30E-03 7.51E-06 2.95E-03 39.4 62 436 0.161
NT01* 0.15 0.9 5.78E-03 1.30E-03 7.51E-06 3.46E-03 59.4 120 512 0.266
B73 0.15 0.8 5.00E-03 1.60E-03 8.00E-06 2.33E-03 40.3 73 364 0.241
B72 0.15 0.3 2.00E-02 6.50E-04 1.30E-05 1.03E-04 11.3 49 26.4 3.614
2069 0.15 1.5 1.40E-02 3.60E-03 5.04E-05 2.52E-03 39.2 120 33.3 27.299

Table 3.1. Dimensionless duration of the integral pumping tests performed in Bockelmann 
et al. 2001;2002.  
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3.6 Applicability in heterogeneous 
aquifers: effective parameters of the 
equivalent homogeneous aquifer 
 
 
The approaches described in the previous 
sections of this chapter require 
homogeneous aquifers for their 
applicability. However, they can still be 
used in heterogeneous aquifers by 
assigning effective parameters (porosity, 
thickness, hydraulic conductivity and 
natural gradient) to an equivalent 
homogeneous aquifer in the surroundings 
of each pumping well. For verification 
purposes, a numerically simulated example 
was developed in Bayer-Raich et al. (2003) 
using the groundwater model of the Neckar 
Valley (Holder et al., 1998). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.6.1. Plume development under 
heterogeneous conditions and integral 
pumping tests 
 
 
A 200-day forward simulation was 
performed with a source zone of constant 
concentration 0c  using the Method of 
Characteristics (MOC) within the code 
MT3D (Zheng, 1990). Independent 
pumping tests (i. e. with sufficiently long 
time lag between the pumping events) 
were performed in each well. Figure 3.16 
shows the concentration time series 
obtained at each well and the plume 
position before pumping. 
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developed under steady-state flow and advective conditions (bottom). After Bayer-Raich et al. 
(2003).  Noisy line: Method of characteristics. Dots: “samples” used for inversion. 
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3.6.2. Effective parameters of the 
equivalent homogeneous aquifer 
 
 
As mentioned earlier, the application of the 
analytical approach in heterogeneous 
aquifers requires effective values of the 
following parameters: direction (azimuth) 
of the mean flow direction, mean gradient 
of the piezometric head, mean hydraulic 
conductivity, porosity and aquifer 
thickness. 
 
For the estimation of the mean flow 
direction and the gradient of the water 
table, several measures of the hydraulic 
head at different locations may be used to 
fit the effective gradient and azimuth 
through the following formulae (obtained 
from the best fit of a plane by the least 
squares method) 
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     (3.37) 
 
where ( )iii hyx ,,  are the coordinates of the 
i-th well location and its piezometric head, 
and n is the number of observation wells 
(minimum 3, not all contained on the same 
straight line). 
 
 
 

 
 
 

The mean hydraulic conductivity may be 
obtained through the drawdown observed 
during the pumping test (e.g. Jacob’s 
method). Alternatively, when a numerical 
flow model is available, the effective 
hydraulic conductivity may be obtained 
from the groundwater flow rate across the 
control plane. Porosity and aquifer 
thickness may be measured at the wells (or 
taken from the numerical model). 
 
The isochrone geometry is compared in 
Figure 3.17. It can be observed that the 
“circularity” of the isochrones decreases 
with increasing Dt , however the influence 
of heterogeneity is the more important 
factor that leads to “non circular” 
isochrones. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Well 
Porosity 

en  [-] 
Thickness 

b [m] 
Hydr.Cond. 

K [m/s] 
Gradient

h∇  [-]
0q  

[m/s] 

Pumping rate 
Q  [m3/s] 

( )maxtr
[m] 

maxt  
[h] 

( )maxtR  
[m] Dt  

9 0.1 3.6 0.00834 1.17E-03 9.76E-06 7.01E-03 80.3 289 67.3 3.19 
10 0.1 4.27 0.00685911 8.60E-04 5.90E-06 9.07E-03 48.1 95 47 0.35 
13 0.1 2.6 0.00760918 7.66E-04 5.83E-06 3.95E-03 56.0 180 53.3 0.91 
16 0.1 5.14 0.02308126 3.40E-04 7.85E-06 1.0 E-02 44.0 87 42.5 0.62 
17 0.1 3.85 0.01797874 3.17E-04 5.71E-06 7.9E-03 48.0 98 47.1 0.35 

Table 3.2. Effective parameters used for the analytical evaluation. 
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3.6.3. Mass flow rate estimates 
 
 
Using the parameters given in Table 3.2 
and the ( )tCw -curves of figure 3.16, I 
obtain the mass flow rate estimate for both 
the general and the simplified approach 
(evaluating equation (3.16) and (3.28) 
respectively). The estimated mass flow 
rates obtained in each well may be 
compared to the actual mass flow rate 
( 1=CPM ) simulated in the numerical 
model (Figure 3.18).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.18: CPM  estimates for both 
analytical approaches, to be compared with 
the actual value 1=CPM . (left bars: 
general approach eq. 3.16; right bars: 
simplified approach eq. 3.18) 
 
The overall relative errors in the mass flow 
rate estimates for wells 9, 10, 13 and 17 are  
1%, -35%, -16% and 20% (general 
approach) and 21%, -33%, -13% and 22% 
(simplified approach). In wells 10, 13 and 
17 the duration of the integral test fulfilled 
the condition 1<Dt , and the estimates 
provided by both approaches are almost 
the same: the errors of 20 – 30 % are due 
to the heterogeneity (neglecting the natural 
gradient does not lead to additional errors). 
However, in well 9, the duration of the 
pumping test is considerably longer 
( 2.3=Dt ) and the isochrone geometry is 
influenced by the natural gradient (rather 

developing towards the upstream direction, 
top figure 3.17). The relative homogeneity 
of the transmissivity field around well 9 
(isochrones appear to be rather symmetric) 
is the explanation for the good 
performance of the general approach (error 
1%), the overestimation observed for the 
simplified approach (error 21%) can be 
explained from the overestimation of the 
length of the control plane (circular 
isochrones result in a larger control plane, 
leading to a larger mass flow rate, see 
further section 3.5.1.).  
 
The heterogeneous aquifer (mean 
transmissivity T = 6.85×10-3 m2s-1, 
standard deviation (of ln T) = 1.6, mean 
saturated thickness = 3.5m) consists of 
poorly sorted sand and gravel deposits. The 
wells analysed in this section were also 
used to quantify mass flow rates of 
benzene and chlorinated hydrocarbons in 
Jarsjoe et al. (2003) in the Neckar Valley 
 
In summary, this section gives a 
quantitative study of CPM  errors in a 
heterogeneous example (variance of ln T 
2.6). Two conclusions may be extracted:  
 

- Neglecting the heterogeneity 
(variance of ln T 56.2=LnTσ ) leads to 
errors of %30± . 
 

- For long pumping tests ( 1>Dt ) 
the simplified approach leads to  
overestimations of the actual mass flow 
rate (in the case 2.3=Dt  lead to a error of 
+20%, witch is consistent with the 
predictions summarized in Figure 3.10) 
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3.7 Depth differentiated vs. depth 
integrated approaches 
 
 
In this section, we use the integral 
investigation approach to analyze a 
numerical realization of a contaminant 
plume in a heterogeneous, multi-layered 
aquifer, relevant for field-scale conditions. 
The objective is to expand the analytical 
approach to enable the interpretation of 
multi-level integral measurements, and to 
test the applicability of both the depth 
integrated and depth differentiated 
approaches. This verification example was 
developed in Bayer-Raich et al. (2002). 
 
 
3.7.1. Numerical model and forward 
simulations 
 
 
In the framework of the SAFIRA project a 
regional groundwater flow and transport 
model was developed by Borkert (1999) 
for transient flow conditions. The 
application of the integral investigation 
approach was carried out employing an 
adapted version of this transient 
groundwater flow and transport model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The model was created using the graphical 
interface Visual MODFLOW for the 
numerical program code MODFLOW 
(McDonald & Harbaugh, 1988).  
 
The model area is located between the 
Gauss-Krüger coordinates 4519000 and 
4525000 (West-East direction) and 
5724000 and 5717500 (North-South 
direction) and covers 39 km2 (Figure 3.19 
left). The model grid is discretized by cell 
widths between 25 and 200 m. At the 
pumping well locations, a grid refinement 
down to 0.5 m was introduced. The aquifer 
thickness of about 45 m is represented by 8 
layers. Layer 1 corresponds to an artificial 
fill, layers 2 to 4 represent the Quaternary 
so-called “aquifer 110”, and layers 5 to 8 
the Tertiary so-called “aquifer 500” in the 
vicinity of the test site. The mean 
groundwater recharge amounts to about 3.1 
l/(s km2). The detailed distribution of the 
hydraulic parameters and the boundary 
conditions are documented in Borkert 
(1999). Figure 3.19 shows the geological 
units and a cross section of the numerical 
model where these units are represented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.19: SAFIRA test site, geological units and Finite Differences 

flow model. The rectangle within the model domain was used to perform 
the numerical experiment (after Bayer-Raich et al., 2001) 

Numerical 
experiment 
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The first step in the numerical experiments 
was the generation of a plume. Therefore I 
introduced a contaminant source with a 
length (North-South direction) of 30 m and 
a width (East-West direction) of 5 m into 
the model domain. The source was placed 
in layers 2, 3 and 4, with different fixed 
contaminant concentrations (Figure 3.20). 
Concentrations of 0.5 mg/l in layer 2, 0.1 
mg/l in layer 3 and 1 mg/l in layer 4 were 
used. The distance from the source to the 
pumping well was about 160 m. For the 
generation of the plume a transient 
simulation over a time period of 10 years 
was performed. During this simulation the 
contaminant source acted as a constant 
concentration boundary condition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The second step dealt with simulating the 
pumping test employed in the integral 
investigation approach. For this pumping 
test a well location outside the generated 
plume was selected (see Figure 3.20). The 
well was represented by a column of model 
cells with high hydraulic conductivity. A 
constant pumping rate of 10 l/s and a 
pumping time of 14 days were chosen.  
 
Two different numerical experiments 
where carried out. In the depth-integrated 
experiment I 10 ‘samples’ (c(t)-values) of 
the groundwater pumped at the well were 
collected at the ‘pump inlet’ (model cell 
where discharge is applied), i.e. only one 
depth-integrated c(t)-curve was generated. 
In the multi-layered numerical experiment 
II, 8 ‘samples’ were taken from layer 2, 
another 8 ‘samples’ from layer 3, and 10 
from layer 4. In the field, a new multi-level 
sampling technique allowing to obtain 
multi-level groundwater samples out of 
pumped wells was applied within 
measurements at the SAFIRA site (see 
further in chapter 4). 
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3.7.2. Depth integrated approach 
 
 
When there is no information about the 
multi-layered nature of an aquifer, it is 
common to assume homogeneous 
conditions. In this section we apply the 
depth-integrated approach using the c(t)-
curve arising from numerical experiment I 
in an equivalent homogeneous aquifer. The 
aquifer is characterized by a constant 
estimate of the effective value for porosity, 
transmissivity, natural gradient and 
saturated thickness.  
 
Figure 3.21a summarizes the upscaled 
values used for the characterization of the 
aquifer (considering a constant aquifer 
thickness of 11 m). The position of the 
plume when the pumping test started is 
shown in Figure 3.21b, where a steady-
state mass flow rate of M=8.8 g/d is 
crossing the control plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As a result of the (numerical) pumping 
test described in the previous section the 
depth-integrated c(t)-curve shown in 
Figure 3.21c is obtained. Both the Method 
of Characteristics (MOC) and Finite 
Differences (FD) were used in the 
numerical experiment. The 10 c(t)-values 
used for the inversion are shown in Figure 
3.21c as dots (estimates between the 
numerically generated c(t)-curves). The 
result of the inversion, i.e. the 
concentration distribution along the control 
plane, is shown in Figure 3.21d in 
comparison with the concentration along 
the cross section of the depth-integrated 
actual plume. The total (dimensionless) 
duration of the pumping test is 02.0=Dt , 
therefore both the general and the 
simplified approaches (equations (3.16) 
and (3.28)) lead to the same mass flow rate 
estimate of  M*=12.1 g/d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ) ( ) /sm 105.7,,, 23−×== ∫
top

bottom

z

z

dzzyxKyxT

( ) ( ) 22.0,,1, == ∫
top

bottom

z

z

dzzyx
b

yx φφ  

(a) (b) 

(d)

0 4 8 12 16
time (days)

0

0.1

0.2

0.3

0.4

0.5

co
nc

en
tra

tio
n 

(m
g/

l)

0 10 20 30 40 50
distance (m)

0

0.2

0.4

0.6

0.8

1

co
nc

en
tra

tio
n 

(m
g/

l)MOC 

FD 

Used data actual plume estimated  
plume 

100 m 

control 
plane 

well 

0

0.2
0.4
0.6

0.8
1

co
nc

en
tra

tio
n 

(m
g/

l)

Figure 3.21 Application of the depth-integrated integral investigation approach.  
(a) Characteristic aquifer parameters.  (b) 2D plume and position of the control plane. 

(c) Depth-integrated c(t)-curve arising from the pumping test. 
(d) Estimated and actual values of concentration along the control plane. 

after Bayer-Raich et al. (2001) 
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3.7.3. Depth differentiated approach 
 
 
The main limitation of the depth-integrated 
approach, when considering stratified 
aquifers, is that it cannot indicate at which 
aquifer level the contamination is situated. 
In this section, I present a new multi-
layered approach that overcomes this 
limitation. To account for the multi-layered 
nature of the aquifer, the total thickness of 
11 m was divided into three homogeneous 
layers. Different capture zones and 
pumping rates are considered to perform 
independent inversions in each layer. Since 
the dimensionless duration of the integral 
tests is very small ( 05.0<Dt in all cases) 
both approaches (simplified eq. 3.28 and 
general eq. 3.16) lead to the same mass 
flow rate estimate (differences smaller than 
1 %) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.22(a) shows the position of the 
plume in each layer (before the pumping 
starts), with steady-state mass flow rates of 
ML2=0.3 g day-1; ML3=0.6 g day-1 and 
ML4=7.5 g day-1, observed at the control 
plane. The c(t)-curves, Fig. 3.22 (b), 
obtained from numerical experiment II 
(independent sampling in each layer 
employing both the MOC and FD 
methods) are inverted with equation (3.28), 
yielding the estimated concentrations (Fig. 
3.22 (c)) and the mass flow rates in the 
individual layers: M*L2=0.9 g day-1; 
M*L3=1.6 g day-1 and M*L4 = 10.3 g day-1. 
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Figure 3.22. (a) plume position at the beginning of the pumping  (b) ( )tCw  used for the 
inversion. (c) ( )xC0 Concentration along the control plane 
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The parameters used for the inversion are 
given in table 3.3 
 
 
 

 
 
 
 
3.7.4. Comparison of depth 
differentiated and integrated 
approaches 
 
 
In this section I tested both the depth-
integrated and the multi-layered versions 
of the integral investigation approach 
employing a contaminant plume generated 
in a 3D advective transport model. The 
simulation time was 10 years with a 
constant emission of the contaminant. The 
mass flow rate was estimated at a control 
plane (located 160 m downstream of the 
source) through a (numerical) pumping test 
with both the depth-integrated (method I) 
and the new multi-layered (method II) 
integral investigation approaches. Figure 
3.23 summarizes the mass flux estimates 
arising from both methods. 
 
Both the depth-integrated and multi-
layered approaches lead to acceptable 
results.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
The numerical experiment shows that it is 
possible to estimate the contaminant mass 
flow rate in each layer. The multi-layered 
approach is applicable in real aquifers 
when the (geological) layers are practically 
continuous within a zone around the 
pumping well, being large enough to avoid 
significant vertical gradients in the vicinity 
of the pumping well. The depth integrated 
approach has already been applied in 
practice at several sites (e.g. Holder et al. 
(1998), Ptak et al (2000), Bockelmann et 
al. (2001)).  
 
The new multi-layered version of the 
integral investigation approach was applied 
for the first time under field conditions in 
Bitterfeld, using a new multi-level 
sampling technique allowing to obtain 
multilevel c(t)-curves during pumping. The 
detailed description of the multi-level 
integral tests and the inversion is given in 
chapter 4. 
 
 
 
 
 
 
 
 
 
 
 

Layer 
Porosity 

en  [-] 
Thickness 

b [m] 
Hydr.Cond. 

K [m/s] 
Gradient

h∇  [-]
0q  

[m/s] 

Pumping rate 
Q  [m3/s] 

( )maxtr  
[m] 

maxt  
[h] Dt  

2 0.2 4 0.000235 1.1E-03 2.58E-07 4.56E-03 52.0 310 0.0015
3 0.2 3 0.000464 1.1E-03 5.10E-07 1.22E-03 25.2 273 0.020
4 0.25 4 0.001 1.1E-03 1.10E-06 6.0E-03 48.0 335 0.025
all 0.22 11 0.00068 1.1E-03 7.48E-07 1.0 E-02 40.0 338 0.021

Table 3.3 Parameters used for the analytical inversion in each layer (last row gives the 
parameters used for the depth integrated approach) 

Model 

Method I 

g/d8.84.05.70.6 3.0Flux Mass Total 84432 =+++=+++= LtoLLLL MMMM

Method II 

g/d2.12*FluxMassTotalEstimated == M

g/d 8.123.106.19.0***Fluxes Mass Estimated 432 =++=++= LLL MMM  

Fig. 3.23. Mass fluxes (M) in each layer and estimations of the mass fluxes (M*) for both 
methods I and II 
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3.8. Dimensioning of Integral Pumping 
Tests 
 
 
In this section, we investigate the 
dimensioning of integral pumping tests by 
analysing real data of already conducted 
pumping tests through the solutions 
derived in this chapter. We use the derived 
solution given in section 3.3 (valid for any 
dimensionless duration Dt  of the IPT) as 
well as two limiting analytical solutions for 
both short pumping duration 0→Dt  
(given in section 3.4) and long pumping 
duration ∞→Dt . 
 
 
3.8.1. Analytical solution for indefinitely 
long pumping tests 
 
 
If (dimensionless) pumping is indefinitely 
long ( ∞→Dt ) the pumping well captures 
all contaminant located within a capture 
zone extension ( )bqQCP   0=l , (Bear & 
Jacobs, 1965) and the concentration 
measured at the well becomes time-
independent ( ) ww CtC → . The mass flow 
rate is (Teutsch et. al., 2000) 
 

wCP CQM  =    (3.38) 
 
To compare this limiting solution with the 
solution derived in section 3.3 we espress 
(3.38) in the form 

( ) ( ) ( )
( )

∫=
tR

w dxtxgxCtC
0

0  ,    yielding, 

 

( ) ( ) ( ) ( )∫∫ ==∞→
RR

Dw dxxC
R

dxtxgxCtC
0

0
0

0   1 ,    

(3.39) 
 
where ( )bqQR   2 0=  is half the extent of 
the capture zone leading to 

( )
R

txg 1, =∞→ . 

 

3.8.2. Simple analytical solutions versus 
exact solution 
 
 
To compare the limiting analytical 
solutions for 0→Dt  and ∞→Dt  to the 
general solution for any Dt  we express 
them as  
 

avCP CRbqM   2  0=  
(3.40) 

 
where R  is half of the width of the capture 
zone and avC  is the average concentration. 
 
 
3.8.2.1. Average concentration 
 
 
To compare average concentrations given 
by the analytical and numerical approaches 
in a general way (i. e. valid for all ( )tCw ), 
we compare the approaches in terms of the 
kernel of the integral equation ( )txg ,  as 
written in eq. (3.26) (3.39) and (3.19). 
Physically, ( )txg ,  is the contribution of 
the streamtube located at a distance x  to 
the concentration sampled at the pumping 
well ( )tCw .  ( )txg ,  is defined only for 

( )tRx <<0  since only the streamtubes 
located in ( )tRx <<0  contribute to the 
sample taken at time t . Figure 3.24 shows 
( )txg ,  solved numerically for 

30 , 15 , 5 , 1 , 1.0=Dt  together with the 
limiting analytical solutions 
( ) ( )( ) 21221 2,

−− −= xtRtxg π  (equation 
3.26) and ( ) ( )tRtxg 1, =  (equation 3.39) 
for 0→Dt  and ∞→Dt , respectively. The 
general solution ( )txg ,  is obtained through 
numerical integration with 100 isochrones, 
constant ( ) 210 −=∆ tRx  and 1 million base 
points with constant 610 −=∆ πθ  for each 
isochrone. 
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Figure 3.24: Comparison of approaches for 30 , 15 , 5 , 1 , 1.0=Dt .  
Dotted lines: limiting analytical solutions 0→Dt  and ∞→Dt . 
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In all cases the kernel has the property 

( )
( )

1 ,
0

=∫
tR

dxtxg , therefore the area under all 

curves is equal to one. It is clear from Fig. 
3.24 that the differences between the 
limiting case  0→Dt  and the general 
solution for 1.0=Dt  are relatively small 
(both curves overlap), and even for 1=Dt  
the averaging function is relatively close to 
the analytical solution 0→Dt . In the other 
extreme, the general solution for the case 

30=Dt  is very close to the analytical 
solution ∞→Dt , except at locations close 
to ( )tR , where the general approach 
displays a steep increase. This increase is 
confined to a very small portion of the 
domain, since the total area under both 
curves is one, and ( )txg ,  for 30=Dt  
remains above ( )tR98.0  within the whole 
domain ( )tRx <<0 . In the case of 

15=Dt , the same reasoning holds for 
( )txg ,  being above ( )tR97.0  within 

( )tRx <<0 . 
 
The above comparison is general in the 
sense that it does not depend on ( )tCw  but 
solely quantifies the differences in the 
kernel functions ( )txg , . One should note 
that these quantified core differences may, 
or may not, contribute to overall 
differences in the ( )tCav  predictions of the 
different methods, depending on the actual 

( )tCw  observations.  For instance, for the 
trivial case ( ) CtCw == constant , the two 
limiting assumptions 0→Dt  and ∞→Dt  
both yield the correct average 
concentration ( ) CtCav = , despite the large 
difference between the respective kernels 
(Fig. 3.24). 
 
 
3.8.2.2. Mass Flow Rate 
 
 
Generally, the mass flow rate in our 2D-
case can be expressed as: 

 
( ) ( ) ( )DavDCPDCP tCtbqtM    0 l=  

              (3.41) 
 
The proportionality between ( )tM CP  and 

( )tCav  implies that the limiting assumption 
effects on the predicted ( )tCav , shown in 
section 3.8.2.1., also influence analytical 

( )tM CP -estimations. The linearity in eq. 
(3.41) furthermore implies that the relative 
magnitude of this influence is the same for 
both concentrations and mass flow rates. 
However, the limiting assumptions also 
affect estimates of the capture zone 
extension ( ) ( )tRtCP 2=l , which in turn 
influences mass flow predictions through 
equation (3.41); this is in contrast to the 

( )tCav -estimates which are independent of 
the estimated ( )tCPl . For the limiting cases 

0→Dt  and ∞→Dt , ( )tCPl  is explicitly 
given by ( ) ( )trtCP 2=l  with ( )tr  from the 
cylinder formula, and ( )bqQR   2 0= , 
respectively. For the general case, we have 

( ) ( )tRtCP 2=l , where ( )tR  is given 
implicitly through equation (3.9). 
Predictions of ( )tCPl  by analytical 
expressions for the two limiting cases are 
shown as a function of Dt  in Figure 3.25(a) 
(dotted lines), and are also compared to the 
exact, numerical, expression (solid line). 
Furthermore, the error introduced by these 
two limiting assumptions is shown as a 
function of Dt  in Figure 3.25(b). The 
figure shows that the 0→Dt  solution 
yields errors smaller than 10% for Dt  
smaller than 1.7, and the ∞→Dt  solution 
yields errors smaller than 10% for Dt  
larger than 13. Even though the errors 
hence are relatively small for early and late 
times, they are larger than 10% for all Dt -
values between 1.7 and 13, and I can 
conclude that analytical solutions for CPl  
resulting from these two assumptions are 
often not as useful as the corresponding 
solutions for ( )tCav  were shown to be in 
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the previous section. However, whereas 
numerical solutions for ( )tCav  are 
relatively cumbersome, corresponding 
solutions for CPl  (equation (3.9)) are 
easily obtained, and can hence be used for 
estimating mass flows through Equation 
(3.41), in combination with a relevant 
analytical solution for ( )tCav . In addition, 
more accurate and explicit polynomial 
expressions for ( )DCP tl  can be obtained 
through series expansion of equation (3.9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.25: Comparison of capture zone 
width for the three approaches. 
 

3.8.3. Analytical expressions versus field 
test conditions 
 
 
In the definition of dimensionless time 
(equation 3.6), we recognise that there is 
one component that is fully determined by 
the aquifer properties, hereafter denoted 
the aquifer property term A : 

 
enbqA 2

0=    (3.42) 
 
Furthermore, there is one component that 
is determined by the pumping rate and the 
pumping time: 
 

QtEw =    (3.43) 
 
The dimensionless pumping time tD can 
now be expressed as a function of 
Equations (3.42) and (3.43): 
 

wD AEt π2=    (3.44) 
 
In contrast to A , the extraction well term 

wE , can to a large extent be controlled 
through the way the pumping test is 
designed. In the following, we will 
investigate the relevance and accuracy of 
the two analytical solutions more 
generally, considering the range of field 
conditions that were reported for 55 
already conducted integral pumping tests at 
Stuttgart, Germany (Holder et al. 1998; 
Bockelmann et al. 2001, 2003; Jarsjö et al. 
2003), Milano, Italy (Alberti et al., 2003), 
Strasbourg, France (Schäfer et al. 2003), 
Linz, Austria (Kolesar et al. 2003; Bauer 
et. al. 2003), Bitterfeld, Germany (Bayer-
Raich et al., 2003) and Osterhofen, 
Germany (Rügner et. al., 2003). 
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The dimensionless duration Dt  varies 
within 0.00089 << Dt  27.36 in these 55 
tests, as shown in Fig. 3.26. Both A  and 

wE  vary by approximately two orders of 
magnitude. In 42% of the tests 1<Dt , 
while 5<Dt  in 84%. However, these 
ranges are site dependent, for example, for 
the site in Osterhofen (Rügner et al., 2003; 
Maier et al., 2003) only 1 out of 15 tests 
had duration 1<Dt  (crosses in figure 
3.26). In Osterhofen, nitrate mass flow 
downstream a land fill is strongly 
influenced by a steep slope of the aquifer 
bottom (up to 2%) leading to a high 
discharge 0q  ( and Dt  is proportional to 

2
0q ) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the analysed data, both the Neckar 
Valley data (Holder & Teutsch, 1999) and 
the Testfeld Süd data (obtained further 
downstream in the same valley, see 
Bockelmann et al. 2001, 2003) display the 
highest variability of the aquifer property 
term A . Data from 185 wells with 
withdrawal, recovery and slug tests 
indicate a variance (of T  ln ) as high as 

6.22
ln =Tσ .  

 
The minimum value of A is found in the 
Neckar Valley data set where the aquifer 
parameters are as follow: thickness 2.1=b  
m, specific discharge 9

0 10  33.8 −⋅=q  m/s 
and porosity 1.0=en  leading to 

1310  63.1 −⋅=A  m3 s-2. The very low 
hydraulic conductivity ( =K 8.33 10-5 m/s) 
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limits the extraction Q  to 0.6 l/s (at this 
site, the mean value is 4.6 l/s) and 
therefore a relatively long pumping period 
of t =6 days was required (mean value at 
the site: 5 days). This resulted in a 
dimensionless pumping duration as low as 

0009.0=Dt . 
 
The maximum values of A are found in 
wells 2069 in (Bockelmann et al. 2001, 
2003) with parameters (A=2.5 10-8) B60 in 
Rügner et al. 2003 with (A=3.7 10-8) and 
well IPT2 in Schäfer et al. 2003 (A = 7.5 
10-8). Although the values of A are similar, 
the aquifer parameters are significantly 
different, as shown in Table 3.4.  
 
Table 3.4: Parameters of the IPTs with 
high values of enbqA 2

0=  [s2m-1] 
 

 
Both wells B60 and 2069 were 
characterized by a very high Darcy flux 0q  
and a relatively small thickness, which 
limited the possible extraction rates. For 
these wells the dimensionless time is the 
highest of the study. In the case of IPT1 
and IPT2 in Strasbourg, high pumping 
rates were possible in the thick aquifer, 
thereby reducing QtEw =  by two orders 
of magnitude, compared to the pumping 
rates in Bockelmann et al. (2001) and 
Rügner et al. (2003), yielding Dt -values of 
1.2 and 1.6  (one order of magnitude 
smaller).  
 
 
 
 
 
 

 
3.8.4. Dimensioning the duration of 
integral pumping tests 
 
 
I here express the conclusions in terms of a 
dimensionless pumping time 

eD nQtqbt      2 2
0π= . The reason for the 

focus on Dt  is that each Dt  yields unique 
problem characteristics, for instance in 
terms of the shape of the well capture-zone 
border, in contrast to other influential 
parameters such as Q , t  or 0q , for which 
one can find a very large number of 
relevant parameter combinations that still 
yield the same overall characteristics. Two 
different limiting analytical solutions were 
obtained considering the 2D problem, 
corresponding to short and long Dt . In 
addition I obtained a general, numerical, 
solution relevant for any Dt . 
 
 
A comparison between the general 
numerical solution for avC  and the limiting 
analytical solution for short Dt  showed that 
the approximate, analytical solution was 
accurate, at least, for 1≤Dt . A 
corresponding comparison showed that the 
analytical solution for long Dt  is accurate, 
at least, for 30≥Dt . This conclusion is 
general in the sense that it holds for any 
physically feasible variability of the 
concentration observations (samples) in the 
well. Moreover, mathematical analysis of 
the derived expressions also shows that, 
and in which way, their accuracy generally 
increases with decreasing variability. 
Specifically, deviations caused by the 
limiting assumption will be averaged out 
through integration, which takes place to a 
larger degree if the concentration 
variability is smaller. For instance, this 
implies that the limiting assumption for 
short Dt  can be accurate for Dt -values up 
to 5 or more (for the trivial case of constant 
concentration, both the limiting solution 
for short Dt  and the one for long Dt  yield 

Well b  
[m] 

0q  
[m/s] 

en  
[-] 

Q  
[l/s] 

t  
[h] 

   Dt  
[-] 

2069 1.5 5 10-

5 
0.15 2.52 120 27.4 

B60 11.2 2 10-

5 
0.12 4.49 96 18.06

IPT2 49.7 1.4 
10-5 

0.13 77.5 72 1.6 
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the same and correct result, regardless of 
the actual Dt -value). 
 
Furthermore, we formulate expressions for 
mass flow rates across control planes 
(perpendicular to the flow direction with 
their extent being defined through the 
capture-zone extent). The limiting 
analytical solutions for avC  are also 
directly relevant for the CPM -expressions, 
however the latter expressions require, in 
addition, quantification of the control plane 
length, which can be determined exactly 
through relatively limited numerical effort, 
or even analytically using a power series 
expansion. Note that this is in contrast to 
the numerical solution of the equations for 

avC  (also developed here), which is 
generally non-trivial, providing motivation 
for our further development of accurate 
limiting analytical expressions. 
 
An assessment of Dt -values using field 
data from throughout Europe, for 55 
conducted Integral Pumping Tests (IPTs, 
in which the contaminant concentration 
was measured as a function of time in 
pumping wells) showed 1≤Dt  in 42% of 
the cases, 5≤Dt  in 84% of the cases, and 

305 << Dt  for the last 16% of the cases, 
indicating that the limiting analytical 
solution for short Dt  is relevant for a vast 
majority of the cases. Furthermore, even 
though aquifer properties influence Dt , we 
show through relatively simple analyses 
that the Dt -values can be considerably 
adjusted (by an order of magnitude or 
more) in the design of the pumping test, 
enabling relevant application of the 
solution for short Dt  in many aquifers. The 
solution for long Dt  on the other hand, is 
primarily relevant if the pumping is of 
more permanent nature (e.g., for 
establishing hydraulic barriers). 
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Chapter 4 
 
NUMERICAL APPROACH FOR HETEROGENEOUS AQUIFERS 
 
 
 
 
This chapter describes the numerical 
approach for the interpretation of integral 
pumping tests in heterogeneous aquifers. 
To solve the governing equations in 
heterogeneous media, the flow field and 
the aquifer geometry have to be 
represented in a numerical groundwater 
model. The numerical approach for the 
interpretation of integral pumping tests was 
first proposed in Ptak et. al. (2000) and 
implemented in the C++ code C1 
(Schwarz, 2002). The code C1 has been 
rewritten and extended in a newly 
implemented algorithm called CSTREAM. 
The code CSTREAM has been tested using 
numerical simulations and applied to a 
total of 5 different real sites during the 
framework of this thesis: Bitterfeld 
(Germany) for the project SAFIRA and 
Stuttgart (Germany), Strasbourg (France), 
Linz (Austria) and Milano (Italy) for the 
project INCORE. 
 
 
4.1 Groundwater modeling with 
MODFLOW and MODPATH 
 
 
To enable numerical interpretation of 
concentration time data in heterogeneous 
flow fields I use the finite-difference code 
MODFLOW96 (McDonald & Harbaugh, 
1988) for solving the groundwater flow 
and the particle-tracking code MODPATH 
3.0 (Pollock, 1994) for describing 
streamlines and isochrones through particle 
tracking. For the development of the 
MODFLOW-MODPATH model, graphical 
pre- processors may be used (the programs 
VISUAL MODFLOW 3.0.0 (Waterloo 
Hydrogeologic Inc., 2002) and Processing  
 
 
 

 
 
 
MODFLOW  5.1.7 (Chiang & Kinzelbach, 
1999) have been tested explicitly). Future 
versions of MODFLOW and MODPATH 
will require to updating CSTREAM to 
correctly write/read the MODPATH 
input/output files to perform the particle 
tracking. 
 
 
4.2 Code CSTREAM 
 
 
Within the code CSTREAM, both the 
analytical approach (described in chapter 
2) and the numerical approach have been 
implemented. In addition, a module for 
producing SURFER files out of 
MODPATH simulations has been 
included. The structure of the program is 
diagrammed in Figure 4.1: 
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CLASS CSTREAM: Numerical inversion 

CLASS VOLTERRA: Analytical inversion 

CLASS SPLOTS: Graphical pre- and post-processor for SURFER  
 

1- Plot streamlines. 

1- Inversion based on the cylinder formula*. 

2- Inversion based on the Bear & Jacobs equation.

Main operations Internal modules 

1- Start_Cstream* 

2- isochrone_definition 

3- streamtube_definition 

4- concentration_inversion 

5- mass_flux_integration 

CLASS MODPATH* 

CLASS WELL* 

CLASS DATA* 

Main operations Internal modules 

Newton-Raphson solver 

2- Plot model cross-section. CLASS MODPATH* 

Main operations Internal modules 

Figure 4.1: Main modules of the code CSTREAM. The modules marked with * were 
originally developed for the code C1 (Schwartz, 2002). All other modules have been 
developed and tested in the framework of this thesis. 
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4.2.1. History of CSTREAM: the code 
C1 
 
 
The original code C1 (Schwarz, 2002) was 
used, modified and finally rewritten in the 
framework of this Thesis. The object 
oriented structure of the code C1 was very 
useful for implementing both new and old 
algorithms in C++. The newly developed 
code CSTREAM is divided in 5 steps to 
perform the numerical inversion: 
 

Initialization 
Isochrone definition 
Streamtube definition 
Concentration inversion 
Mass flow rate integration 

 
Only the first step (initialization) is based 
on the previous work developed by 
Schwarz (2002) in the code C1. The object 
oriented structure of the code C1 made 
possible to analyze each internal module 
independently. After testing, the classes 
“modpath” and “well”, originally 
implemented in C1, were modified and 
implemented in the new code CSTREAM. 
The following four steps (Isochrone 
definition, streamtube definition, 
concentration inversion & mass flow rate 
integration) are newly written: a 
description of each is given in the 
following sections. 
 
 
4.2.2. Initialization 
 
 
During the initialization of Cstream, the 
codes MODFLOW and MODPATH are 
executed, the geometry of the MODFLOW 
grid as well as the flow velocities in all 
grid cells are read from the ASCII and 
binary input/output files using the module 
“class modpath”, originally developed 
within the code C1 (Schwarz, 2002). A 
first MODPATH run is used to find the 
limits of the capture zone for each well. 
Based on the geometry and extent of the 
capture zone, a uniform grid is created, the 

so-called “CSTREAM grid”, which defines 
the sub-domain of the MODFLOW model. 
The CSTREAM grid is uniform (constant 
DX=DY) and is defined by the coordinates 
of the bottom left (OX,OY) and the number 
of cells in x and y directions (NX,NY). 
Given the top, bottom, left and right limits 
(max_y, min_y, max_x, min_x) of the 
capture zone defined through partickle 
tracking, the Csteam grid is automatically 
defined using the formulas: 
 

        ( )
2

min_max_min_ xxxOX −
−=  

        ( )
2

min_max_min_ yyyOY −
−=  

        ( )
DX

xxNX min_max_ 2 (int) −
=  

        ( )
DX

yyNY min_max_ 2 (int) −
=  

     (4.1) 
 
where max_y, min_y, max_x, min_x are 
obtained from the coordinates of the 
particles (read from the MODPATH output 
files) and DX must be input by the user 
(int) indicates integer part (i. e. closest 
natural number). The CSTREAM Grid 
may be defined by the user by setting (OX, 
OY, NX, NY and DX). The CSTREAM grid 
is placed “on the top” of the MODFLOW 
grid, as indicated in Figure 4.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: Definition of the limits of the 
CSTREAM grid. 
 
In order to define the control plane 
perpendicular to the mean flow direction 
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CSTREAM uses the hydraulic heads 
obtained at the end of the first stress 
period, which represent the steady-state 
flow field before the integral pumping test 
started. In order to obtain a representative 
mean flow direction for the area 
surrounding the integral pumping tests, 9 
“observation points” are used to fit the 
hydraulic heads ( )yxh ,0  to a linear 
equation ( ) cbyaxyxh ++=,*

0 . The 
location of these 9 observation points is 
defined as a function of max_y, min_y, 
max_x, min_x as indicated in Figure 4.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3. Location of the 9 points used to 
fit a linear equation. Curved lines: Steady-
state hydraulic heads (extracted from the 
MODFLOW model), Streaight lines: best 
fit of the linear equation. Thick line: 
Control plane. 
 
Fitting a linear equation 
( ) cbyaxyxh ++=,*

0  to the 9 sets of values 
( )iii hyx ,,  for i=1 to 9 using the least 
squares method, reduces to solving the 
following system of linear equations: 
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     (4.2) 
 
From the solution (a,b,c), both the average 
hydraulic gradient and the mean flow 
direction are obtained through: 
 

            
22

)arctan(

bagradient
b
aazimuth

+=

=
  (4.3) 

 
Azimuth and gradient will be used in the 
last step of the computation “mass flow 
rate integration”: the azimuth provides the 
direction of the control plane, and the 
mean gradient is used to estimate an 
effective value of the mean hydraulic 
conductivity. 
 
During the initialization, the hydraulic 
head, Darcy velocities, and aquifer 
thicknesses are read at all cells of the 
MODFLOW grid. The concentration-time 
data are read from the well information 
ASCII file and all relevant variables that 
will be used in the program are allocated in 
the memory and initialized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

200 210 220 230 240 250 260 270 280

230

240

250

260

270

9.954515

9.953035

9.950841

9.953692

9.951188

9.948766

9.952242

9.949729

9.947335



56                                                                                                                                                  . 

4.2.3. Isochrone definition 
 
 
The objective of this phase is the definition 
of the isochrones for each sample taken 
during the integral pumping test. The 
isochrone at the sampling time t is defined 
here as the initial location (i. e. t=0) of the 
volume of water sampled at the pumping 
well between the times ii tt ∆−  and it  
(taking the limit at 0→∆ it ), therefore we 
get  
 

( )
( )

( )
( )

∑

∫∫

=

∆−

∆=

=−=

=∆

NPART

k
ik

ttV
e

tV
e

i

V

dVzyxndVzyxn

tQ

iiIiI

1

 ,, ,,  

 (4.4) 
 
where ( )tVI  is the aquifer volume captured 
up to time t. The numerical implementation 
of equation (4.4) requires the discretization 
of the isochrone length by NPART 
backtracked particles. Two MODPATH 
runs with NPART = 3600 particles each 
(NPART = 3600 is the default value, but 
may be changed by the user) are 
performed, both ending at the time when 
the well starts pumping (i. e. t = 0) but 
starting at times t and itt ∆− . The NPART 
particles are located along a circle 
inscribed in the well cell. The isochrone 
volume is then defined through NPART 
cells ikV∆  (for each isochrome i ), each 
cell defined with a 4-vertex polygon of 
area ( )ikArea x  (defined by 2 particles of 
the “inner” isochrone and two particles of 
the “outer” isochrone as shown in Figure 
4.4. Then the final volume is computed as 
the sum of ikV∆  for all k, defied as 
 

( ) ( ) ( )ikikikeik AreabnV xxx=∆  
 (4.5) 

 
where ( )iken x  is the porosity and ( )ikb x  is 
the aquifer thickness (the thickness of the 

considered layer as set in the MODFLOW 
GRID geometry) at the location ikx . 
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Figure 4.4. Detail of the volume 
defined by the isochrone. 
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it∆  is computed for each isochrone as a 
function of both it  and NPART, with the 
formula: 
 

NPART
tt i

i
  8π

=∆  (4.6) 

 
which was derived by imposing a 
condition on the shape of ikV∆ : the 
distance between particles in the “inner” 
and “outer” isochrones is twice the 
distance between both isochrones for 
perfectly radial flow. This algorithm was 
also tested under heterogeneous conditions, 
as will be shown later in this chapter. 
 
The numerical computation of the 
isochrones opens the possibility to define 
irregular capture zones in homogeneous 
and heterogeneous media. Even if the 
heterogeneity is not known in detail (and 
therefore an equivalent homogeneous 
aquifer is assumed) it is clear that when 
using multiple well interpretations, the 
integral tests may influence each other. 
The mass flow rate estimates may be 
affected by the way we perform the 
integral tests: sequential and/or 
simultaneous pumping and the order the 
wells are pumped. Figure 4.5 shows 
different possibilities for the computation 
of the isochrones and compares the 
geometry to the analytical isochrones. A 
homogeneous aquifer with a natural 
Darcy’s flow field 2169.00 =q m/day, 
porosity 25.0=en  and thickness 4=b  m 
was used to perform 5 integral pumping 
tests of 1 day duration each, at a constant 
pumping rate of 10=Q  l/s. The first 
possibility for the computation of the 
isochrones is called here independent 
isochrones, and consists in neglecting the 
influence of previous integral tests in other 
wells. Under this assumption, the 
isochrones may be computed analytically, 
which is easier and cheaper since no 
numerical modeling is involved. The 
numerical approach is capable of 
considering the actual position of the 

capture zone of each well (accounting for 
the order the wells were pumped in). A 
numerical experiment with 3 different 
sequences of pumping show how the 
overlapping in this case is virtually zero.  
 
The second sub-figure in 4.5 shows the 
shape of the isochrones when all 5 wells 
where pumped simultaneously: what is 
called here simultaneous isochrones. In 
practice, this approach is limited by the 
total number of pumps available.  
 
The last two sub-figures in 4.5 show the 
isochrones obtained by sequential pumping 
tests: sequential isochrones. Many 
possibilities could be designed here, 
including a combination of sequential 
pumping of groups of wells pumped 
simultaneously.  
 
It is interesting to observe that 
simultaneous or sequential pumping of 
wells located along the same control plane 
does not produce significant overlapping of 
the well capture zones (therefore is not 
capable to resolve the left-right uncertainty 
for each well), however the total length of 
the control plane is captured and any 
potential plume located between the wells 
would be detected in such a test. Here, the 
analytically derived isochrones show a 
fictitious overlapping, since the size of the 
capture zone is overestimated. If the 
position of the plume relative to the wells 
needs to be resolved, the control plane 
could be divided in two rows of wells 
better than locating all wells along the 
same line. The reason why the isochrones 
computed numerically do not overlap is 
that 0=t  is the start of pumping of the 
first well. The location of the capture zones 
are obtained for all wells at 0=t  since this 
is the latest time where the flow field and 
the plume position corresponded to natural 
undisturbed conditions 000 =∇⋅ Cq

rr . The 
interpretation time has to be 0=t  since 
after this time, pumping leads to a 
displacement of the plume leading to 

000 ≠∇⋅ Cq
rr . 
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Figure 4.5: Comparison of numerical and analytical isochrones: independent isochrones (top), 
simultaneous isochrones (below) and two different possibilities for sequential isochrones 
(bottom). The numbers indicate the order of pumping, all pumping tests were 1 day long. 
Analytical geometry of the isochrones (Bear & Jacobs, 1965) shown in thick lines. 
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4.2.4. Streamline definition 
 
The inversion of the concentrations 
requires partitioning of the domain into a 
finite number of streamtubes. The steady-
state flow field (before the integral tests 
start) is used to track particles in the 
direction of the flow. The pathlines 
correspond exactly to the streamlines 
(since the flow field is steady-state). The 
natural flow field 0qr  is read from the 
MODPATH CBF binary file at the center 
of each cell of the CSTREAM GRID. The 
methodology used to perform the particle 
tracking is shown in Figure 4.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: Definition of the streamlines 
along the CSTREAM GRID 
 
The (x,y) position of the particle is 
calculated and the corresponding cell (i,j) 
is marked with an integer index. This 
particle tracking algorithm is started from 
all cells which belong to the boundaries of 
the CSTREAM GRID, i. e. cells of the 
bottom boundary (i,1) for i=1,NX; cells of 
the left hand side boundary (1,j) for 
j=1,NY; cells of the right hand side 
boundary (NX,j) for j=1,NY; cells of the 
top boundary (i,NY) for i=1,NY.  
 
The necessary conditions for a streamline 
to be considered well defined are: 
 
1- The streamline quits the domain without 
intersecting previously defined streamlines 

2- The streamline contains a minimum of 
MIN_NUM_CELLS cells. 
 
The variable MIN_NUM_CELLS is set by 
default to the smaller of NX/2 and NY/2, 
but can be modified by the user. The field 
of streamlines must be such that one 
streamline (and only one) is at the left 
extreme, and one streamline (and only one) 
is at the right extreme (were left and right 
are considered with respect to the flow 
direction, Figure 4.7). The reason is that in 
the next step, all streamlines will be re-
numbered from left to right (and therefore, 
only one streamline must be at the left 
extreme and also one streamline must be to 
the right). The algorithm for defining the 
streamtubes is described in figure 4.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Field of streamlines generated 
with DX=0.1 m 
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value(i,j)=0 for all (i,j) 
tube=1 

try_Stream=-1 

value(i,j)<=0 
&& 

(i,j) ∈ boundary 

(x,y)=center of cell (i,j) 
cell=1 
flag=0 

(neu_i,neu_j)=(i,j) 

(x,y) = next (x,y) position 

(neu_i,neu_j) = cell which contains (x,y) 

IF     value(neu_i,neu_j) > 0 
THEN         flag=1 

value(neu_i,neu_j)= try_Stream 

flag==0 
 && 

(i,j) ∈ domain 

IF (neu_i,neu_j)∈ “inside” the domain 
THEN         cell++ 

 IF   cell > 5 &&  flag==0 
THEN  { 

FOR all cells (i,j) 
{ IF   value(i,j)= try_Stream 

THEN  value(i,j)=tube } 
tube++} 

(i,j)==last cell 

next(ij)

STREAMLINE RENUMBERING 

yes 

no 

yes 

no 

yes 

no 

 try Stream--

Figure 4.8: Flow diagram of the algorithm implemented in CSTREAM for the definition of the 
streamlines. 
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As a result of the previous phase, a matrix 
of size NX×NY was partially filled with 
numbers identifying the streamlines. 
However, many cells of the domain do not 
belong to any streamline (i. e. white cells 
in figure 4.9). To renumber the streamlines 
from left to right, four different 
possibilities are considered depending on 
the mean flow direction: North-East, 
South-East, South-West and North-West. 
 
In the example shown in Figure 4.9, the 
mean flow direction is to the North-East, 
therefore the renumbering of the 
streamlines starts at the top-left cell 
moving in the direction of the rows and 
ending at the bottom-right cell.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the mean flow direction is to the 
South-East, South-West or North-East, the 
algorithm is the same but only the direction 
of the re-numbering changes. If the flow is 
to the South-East the renumbering starts at 
the top-right cell and moves along columns 
until the bottom-left corner. If the flow is 
to the South-West the renumbering starts at 
the bottom-right cell and moves along 
rows until the top-left corner. If the flow is 
to the North-West the renumbering starts at 
the bottom-left cell and moves along 
columns until the top-right corner. 
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Figure 4.11 gives an example of the 
renumbering algorithm for the case of 
North-East flow. The first cell (top-left) is 
set with the value 0 and all successive cells 
(moving from left to right) are also set to 0 
until the first streamline is encountered (in 
this case, streamline number 56). At this 
point the cell is set to 1, from this point all 
successive cells are marked with a 1 until 
the next streamline is encountered 
(streamline number 54). The cell 
containing the streamline 54 is set to 2. 
Figure 4.11 shows the values at the matrix 
both before and after the renumbering. At 
the end of this process all cells belong to 
one (and only one) streamline, and the 
streamtube number increases from left to 
right in the flow direction. 
 
At the end of this phase, a single matrix is 
printed in a SURFER grid file, which 
allows to plot the streamtubes as a contour 
lines. As shown in Figure 4.12 the flow 
lines are perpendicular to the piezometric 
lines. 
 
 
 
 
 
 
 
 
 

Figure 4.9. Direction of the 
renumbering when the mean flow is to 
the North-East. 
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Figure 4.10. Streamlines after 
renumbering. 
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Figure 4.11 A portion of the TOP-LEFT corner of a matrix (Nx=100 Ny=100 ) 
before (left) and after (right) renumbering. 
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Figure 4.12 Streamlines and head contours. 
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4.2.5. Concentration inversion 
 
 
The inversion of concentrations requires 
the discretization of the flow domain by 
streamtubes, accounting for the geometry 
of the isochrones. A streamtube is the 
region limited by two streamlines. Each 
isochrone captures a certain width of the 
flow field, defining a streamtube. Given 
the number of isochrones n the flow 
domain is discretized into 2n-1 streamtubes 
as indicated in figure 4.13.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.13. Discretization of the flow 
domain by streamtubes, given the 
geometry of the isochrones. Example with 
n=14 isochrones and 2n-1=27 
streamtubes. 
 
 
Discretizing the problem assuming that the 
concentration is constant within a 
streamtube consists in simplifying the 
initial concentration distribution  ( )x0C  as 
 

( ) ( ) ( )xx j

NSTUBE

j
jxCC ξ  

1
00 ∑

=

=  

     (4.7) 
 
where ( )jxC0  is the concentration in 
streamtube j , NSTUBE is the number of 
streamtubes and ( )xjξ  is defined as 
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⎩
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j x
x
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     (4.8) 
 
Inserting equation (4.7) in the integral 
equation (2.4) using the discretization of 
the isochrones defined in (4.4) leads to 
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The definition of the matrix ijg  is 
completely analogous to the definitions 
given for the analytical approach in 
homogeneous media (equations (3.16) and 
(3.27)). The physical interpretation may be 
written as 
 
 
 
     (4.10) 
 
However, a fundamental difference 
between the analytical and numerical 
approaches here is that equation (4.9) 
considers the concentration at each 
streamtube (that is 2n-1 values of ( )jxC0  
instead of considering n values of 

( ) ( ) ( )( ) 2000 xCxCxC −+=  as in the 
analytical approach). Writing equation 
(4.9) in matrix notation for a case with n=7 
samples leads to 
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In equation (4.11) we can clearly identify 
the non-uniqueness of the solution: we 
have only 7 equations (given by each 
sample ( )iw tC ) but 13 unknowns (given by 
the concentration at each streamtube 

( )jxC0 ). However, our ultimate intention is 
to estimate the mass flow rate CPM  and 
therefore we may introduce additional 
assumptions, obtain the mass flow rates for 
each case and finally compare the mass 
flow rates: in this manner we are 
quantifying the uncertainty introduced by 
these (necessary) additional assumptions.  
 
Three different possibilities are considered:  
 

1- All contaminant was initially 
located at the right hand side of the 
well: ( ) njxC j <=  allfor   0 0  

2- The initial contaminant distribution 
was symmetrical about the well: 

( ) ( ) 0 allfor   00 >= +− jxCxC jnjn  
3- All contaminant was initially 

located at the left hand side of the 
well: ( ) njxC j >=  allfor   0 0  

 
Being non-realistic, these assumptions 
provide extreme cases and therefore are 
useful to quantify the final uncertainty in 
the mass flow rate estimate. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introducing these additional equations in 
(4.11) we obtain three linear systems of 
equations with a lower triangular matrix 
and get the three solutions ( )j

left xC0 , 

( )j
sym xC0  and ( )j

right xC0  by forward 
substitution. The three solutions for the 
initial concentration distribution are 
printed into SURFER GRID files for 
graphical output. (Figure 4.14.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.14: Left, symmetrical and right 
solutions. 
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4.2.6. Mass Flow Rate integration 
 
 
When the concentration has been estimated 
at all cells of the CSTREAM grid, the total 
mass flow rate crossing the control plane is 
computed by integrating the contaminant 
mass flux along the control plane. The 
concentration is obtained as finite sum, 
where the Darcy flow and thickness are 
read from the MODFLOW grid, while the 
concentration is read from the CSTREAM 
grid. The integration is performed for each 
solution ( )j

left xC0 , ( )j
sym xC0  and ( )j

right xC0 , 
and therefore, three mass flow rates are 
obtained: left

CPM , sym
CPM  and right

CPM . 
 
Each mass flow rate is computed as 
 
 ( ) ( ) ( )∫ ⋅=

CP

dyxbyxyxCM CP
l

l , , , CP0 nq0  

     (4.12) 
 
by replacing ( )yxC ,0  with the (discrete) 
solutions ( )j

left xC0 , ( )j
sym xC0  and ( )j

right xC0 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Additionally, the total groundwater flow 
rate across the control plane is also 
obtained as: 
 
 ( ) ( )∫ ⋅=

CP

dyxbyxFCP
l

l , , CPnq0  

     (4.13) 
 

CPF  is used to compute the effective 
hydraulic conductivity by applying 
Darcy´s law with the mean gradient of the 
hydraulic heads (as computed in phase 1): 
 
 

 
areagradient

FK CP
eff   ×
=  

     (4.14) 
 
where ( )∫=

CP

dyxbarea
l

l ,  is the cross 

sectional area of the control plane. 
 
 
The effective average concentration is also 
computed as CPCP FM , for each solution 

left
CPM , sym

CPM  and right
CPM . The computations 

take place within the considered layer of 
the MODFLOW model. 
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Figure 4.15: Mass flow rate integration for Left, Symmetrical and Right 
solutions. 
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4.3. 2D verification in homogeneous 
media 
 
 
In this section, we compare the results of 
CSTREAM with the analytical solutions 
derived in chapter 3 for homogeneous and 
confined aquifers. The homogeneous case 
is simple, and therefore is very useful for 
verification purposes. At first we study the 
simplest case, that is the isochrones are 
considered to be circular ( 1<Dt ). In this 
case, a continuous analytical solution (i. e. 
mass flow rate as a function of a 
continuous ( )tCw  function) can be used for 
comparison. The second homogeneous 
problem is more general, and considers  
unlimited pumping test duration. In this 
case, the discrete analytical solution 
(instead of the continuous one) is used for 
comparison. 
 
 
4.3.1. Verification for short pumping 
tests 
 
 
A simple homogeneous aquifer with 
thickness  mb  4= , porosity  14.0=en  and 
natural Darcy flux 0086.00 =q m/day was 
used to simulate an integral pumping test 
of 3 days duration at rate s

l3Q = . Under 

these conditions, the dimensionless 
duration of the pumping test is 0002.0=Dt  
and therefore, the isochrones can be 
considered to be circular. For the case of 
radial flow, the integral equation governing 
the problem is (Schwarz, 2002) 
 

 ( ) ( )
( )∫

−
=

ir

w dx
xtr

xCtC
0

22
0  2 

π
 

     (4.15) 
 
which gives the relationship between 

( ) tCw  and ( )xC0 . To verify CSTREAM, 

we need a pair of functions ( )xC0 , ( )tCw  
being a solution of equation (4.15).  

The plume with concentration ( )xC0  
indicated in Figure 4.16 was used. It is 
continuous and with continuous derivative, 
and therefore yields a smooth ( ) tCw (i. e. 
continuous with continuous derivative). 
The function ( )xC0  is defined by 3 
parabolical splines with continuous 
derivative: 
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where 

( )( )apab
sm

−−
=  ;  bpb −= 2´  

( )
( ) sabm

abmm
−−

−
= 2

22

2     ;   apa −= 2´   

 
 
 
 
 
 
 
 
 
 
Figure 4.16: Plume cross section. 
 
Introducing equation (4.16) in equation 
(4.15) we obtain an explicit equation for 

( ) tCw , in which the integration can be 
performed analytically. The integration of 
(4.15) for the particular case of (4.16) is 
obtained by parts, leading to a rather long 
solution (but explicit, continuous and with 
continuous derivative!):  
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where, in equation (4.17), h  is the 
saturated thickness and n  is the porosity. 
 
 
Figure 4.17 shows ( )tCw  and ( )xC0  for 
plumes characterized by 

, 16, 14, 12, 10, 8, 6, 4, 2 mmmmmmmma =
mmm  22, 20, 18 mab  3+= , map  8+=  

and 3
g 1000 ms =   
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Figure 4.17: Plume cross section ( )xC0  
and ( ) tCw measured at the well. 
 
Using the ( ) tCw  for ma  12= , 16 
“samples“  were extracted as ( )( )iwi tCt , , 
for i=1,2,..,16. These samples, together 
with the aquifer parameters and the 
pumping rate, where used to perform the 
inversion by using: 1: Schwarz analytical 
solution, 2: New analytical solution 
accounting for 0q  and 3: CSTREAM. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.18: Example of ( )( )iwi tCt ,  data 
used for the inversion with 32 “samples”. 
 
 
The actual mass flow rate is obtained by 
integrating (4.14), and equals 299.52 
g/day. The inversion using Schwarz 
formula provides an estimate of 299.7 
g/day (error +0.06%). The new analytical 
solution was integrated with 1000 points 
along the isochrone, with a constant 
increment of the angle, provides an 
estimate of 299.8 g/day (error +0.09%). 
CSTREAM, with a grid of DX=0.1m, 
gives an estimate of 295 g/day (error -
1.5%). All three approaches lead to a very 
reasonable estimate of the mass flow rate. 
In this case, Schwarz’ analytical solution is 
the fastest and most accurate choice since 
no numerics are involved and the 
dimensionless duration of the pumping test 
( 0002.0=Dt ) can be neglected without 
introducing significant errors. The plume 
cross sections for all inversion methods are 
shown in Figure 4.19. The isochrone 
geometry obtained from CSTREAM is also 
compared to the analytically computed in 
Figure 4.20. 
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4.3.2. Verification for long pumping 
tests 
 
 
In this section, we also use a homogeneous 
confined aquifer, however in this case we 
want to emphasize the effect of the natural 
Darcy flux 0q , which can only be 
neglected under the condition 1<<Dt . 
Realistic aquifer parameters taken from a 
field scale application in the Neckar 
Valley, south Germany (Holder et al. 1998; 
Jarsjoe et al., 2002; Bayer-Raich et 
al.,2002) for thickness mb  59.3= , porosity  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.0=en  and natural Darcy flux of 
85.00 =q m/day where used to simulate the 

integral pumping test performed in well 9, 
which had a duration of 12=t  days at rate 

01.7=Q  l/s. The dimensionless time in 
this case is 24.3=Dt . The objectives are to 
compare the numerical and analytical 
results in terms of isochrone geometry and 
mass flow rate estimates.  
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Figure 4.19. Verification in homogeneous medium. Left: Schwarz formula , Center New 
solution based on Bear & Jacobs equation, right: CSTREAM (with DX=0.1) 

Figure 4.20. Verification in homogeneous medium for radial flow. Comparison of the 
isochrone geometry. Line: Bear & Jacobs equation, Dots: location of the backtracked 
particles with MODPATH. 
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Fixed head 100 =h m 

Fixed head 5859.100 =h m 

Figure 4.21. Comparison of numerical and analytical isochrones. Lines: Bear & Jacobs 
equation (1000 points in each isochrone with constant θ∆ ), dotted line: water divide. 
Dots: Isochrones obtained by particle backtracking with MODPATH: 3600 particles. 
Grid: Finite differences grid used in the MODFLOW model. 
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In addition to the aquifer parameters given 
above, a specific storage of 10-4 m-1, was 
(arbitrary) selected and the specific yield 
(or drainable porosity) was set equal to the 
porosity (0.1). 
 
The geometry of the numerical isochrones 
shows an excellent agreement with Bear & 
Jacobs equation (Figure 4.21), despite the 
coarse discretization and the fact that the 
analytical solution is only strictly valid for 
steady state pumping (or specific 
storage=0) 
 
To verify the mass flow rate estimates 
provided by CSTREAM, the (arbitrary) 

)(tCw  shown in figure 4.22 was selected: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The inversion of the )(tCw  given in figure 
4.22 was performed with: 1: Schwarz 
analytical solution, 2: New analytical 
solution accounting for 0q  and 3: 
CSTREAM. 
 
Figure 4.23 shows the plume cross section 

( )xC0 , obtained by assuming that the 
plume is located at the right hand side of 
the well (one-side solution). 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 4.23, the solutions given by the 
new analytical solution and CSTREAM 
show a similar behavior, in terms of 
concentrations and distance to the well. In 
this case, Schwarz’ solution displays a 
overestimation of the capture radius (line 1 
in Figure 4.23 extends up to x=330 m, 
while the new analytical solution and 
CSTREAM extend to x=317 m and 
x=315.5 m, respectively). However the 
average concentration provided by the 
simplified analytical solution is still an 
excellent approximation of the effective 
Cav. The three inversion methods lead to 
Cav=0.406 Cav=0.411 and Cav=0.403 
(Schwarz, new solution and CSTREAM 
respectively) 
 
Finally the mass flow rate estimate for the 
three methods amount to M=199 g/day 
M=168 g/day and M=162 g/day. The 
overestimation of the simplified approach 
may be predicted by the results shown in 
figure 3.10 in chapter 3: for tD=3.24 the 
expected error of Schwarz solution is 
+19.4%, and the error observed here is 
+18.4%. 

Figure 4.22: )(tCw  used for the 
verification example 
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the inversion. 1: Schwarz’ solution; 
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CSTREAM 
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4.4. 2D verification in heterogeneous 
media 
 
 
The verification of the isochrone geometry 
and the mass flow rate estimates performed 
in the previous sections of this chapter for 
the case of homogeneous media could be 
performed by comparison with analytical 
solutions. However, in the heterogeneous 
case, no analytical solutions are available 
for comparison of the CSTREAM output. 
Therefore, we use the code MT3D (Zheng, 
1990) to perform forward transport 
simulations for the plume development 
(under steady-state conditions) and the 
integral pumping tests. The output of the 
forward simulation (i. e. the )(tCw  
measured at the pumping well) is used as 
input for CSTREAM. The mass flow rate 
estimates obtained with CSTREAM are 
then compared to the actual mass flow 
rates of the forward MT3D simulation.  
 
 
4.4.1. Verification through a 
Multigaussian K-field 
 
 
The first verification example for 
heterogeneous media was developed in 
collaboration with Jerker Jarsjoe (see 
further details in Bayer-Raich et. al., 
2001). For simplicity, thickness and 
porosity are set constant within the aquifer, 
and the hydraulic conductivity field was 
generated using a Multigaussian 
distribution. This numerically simulated 
example is also described in section 2.3, 
where the differences between analytical 
and numerical approaches are pointed out. 
However, in this section we focus on the 
performance of CSTREAM by comparing 
in more detail the actual mass flow rate 
and concentration distribution to the 
inversion output obtained with 
CSTREAM.   
 
The development of a contaminant plume 
in a heterogeneous 500x500m2 domain is 
simulated using the code MT3D (Zheng, 

1998). The heterogeneous conductivity 
field was generated using the Turning 
Bands Method with the code TUBA 
(Zimmerman & Wilson, 1990): geometric 
mean  001.0K G =  m/s, variance 

25.02
ln = Kσ , correlation length m 20=λ , 

porosity 1.0=φ  and thickness 5=b m. 
Other details of the numerical experiment 
are given in chapter 2 and Bayer-Raich et 
al. (2001). The concentration values used 
for the inversion were obtained from the 
MT3D forward simulation of the integral 
pumping test. Both Finite Differences (FD) 
and the Method of Characteristics (MOC) 
were used, as shown in Figure  4.24 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.24. )(tCw  from the MT3D 
simulation. Solid line: FD. Dotted line: 
MOC. Dots: values used for the inversion.  
 
Here, I study the influence of the total 
duration of the pumping test by obtaining 
the mass flow rate estimate for increasing 
number of samples and increasing duration 
of the test. In general, both mass flow rate 
and average concentration depend on the 
total duration of the pumping test, 
however, the mass flow rate becomes 
constant when the plume is completely 
captured by the integral pumping test. The 
numerical inversion of the concentration 
was performed using a CSTREAM gird 
with DX=0.05 m for the definition of the 
streamtubes, and 3600 particles for the 
definition of the isochrones. The mass flow 
rate estimates are shown in Figure 4.25 as 
a function of the total duration of the 
integral pumping test.  
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Figure 4.25. Estimates of average concentration ( )tCav  and mass flow rate across the 
control plane ( )tM CP  for increasing test duration t . ( )tQ0  is the groundwater flow rate 
(under natural steady-state conditions) across the control plane (i. e. within the 
streamtube indicated by the black lines). ( ) ( ) ( )tQtCtM avCP 0=  
The triangles, circles and squares indicate the left, symmetrical and right solutions 
respectively the dotted line is the arithmetic average of these three (the expected value 
for average concentration and mass flow rate for unknown plume position).  
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The length of the control plane ( )tCPl  (line 
across the plume in Figure 4.25) is defined 
by the width of the streamtube (black open 
lines) included within the well capture 
zone (with increasing number of 
isochrones from n=1 to 14). The mass flow 
rate across the control plane under 
transient conditions is given by 

( ) ( ) ( )tQtCtM avCP 0= , where ( )tCav  and  
( )tQ0  are defined for the control plane 
( )tCPl   defined along the x-coordinate as 

   

( ) ( ) ( ) ( ) ( )
( )
∫=

t
yav

CP

dxxbxqxC
tQ

tC
l

 0, 0, 0,1
00

0

      

     (4.18) 
 
with  
 
 ( ) ( ) ( )

( )
∫=

t
y

CP

dxxbxqtQ
l

 0, 0,00  

     (4.19) 
 
A steady-state pumping situation (i. e. 
pumping duration +∞→t  leads to 

( ) wt
QtQlim    0  

=
∞+→

. Under transient pumping 

( ) ( ) ( )tQtCtM avCP 0= , the mass flow rate 
depends on the duration of the pumping, 
unless the plume is fully captured at t= t*. 
For t>t* (fully captured plume) then 

( ) TOTCP MtM =  (independent of t !). In 
figure 4.25, the plume is fully captured at 
t*=90000 s, where ( ) TOTCP MtM =  
becomes time independent. 
 
 
4.4.2. Neckar model, high variance: the 
new flow-weighted averaged approach  
 
 
The next verification example for 
heterogeneous media was developed by 
performing a numerically simulated 
example within the Neckar Valley model 
(Holder et al., 1998), a  preliminary 
verification was presented in Bayer-Raich 
et. al. (2002) using a simplified version of 
CSTREAM that did not fully account for 
the flux averaged mixing to perform the 

inversion. It was speculated then that 
further development of CSTREAM 
(implementation of the new equations) 
would lead to smaller errors: this 
speculation will be shown to be consistent 
with the results obtained here. 
 
 
This numerical verification example was 
already described in section 3.6, where it 
was used to test the applicability of the 
analytical solutions in heterogeneous 
aquifers. Here, we compare the 
performance of the simplified approach 
used in Bayer-Raich et al. (2002) to the 
new approach accounting for flow mixing. 
 
 
Figure 4.26 shows the set up of the 
numerical experiment: The source was 
located upstream of the wells 9, 10, 13, 16 
and 17 as (see further description of the 
model and the pumping tests in Jarsjö et al. 
2003). A 200-day forward simulation was 
performed with a source zone of constant 
concentration 0c  using the Method of 
Characteristics (MOC) within the code 
MT3D (Zheng, 1990). Independent 
pumping tests (i. e. with sufficiently long 
time lag between the pumping events) 
were performed in each well. Figure 4.26 
shows also the concentration time series 
obtained at each well and the plume 
position before pumping. 
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The necessary input for the inversion of 
average concentrations and mass flow rates 
was extracted from the numerical flow 
model (for 0q , b , en , wq ), the pumping 
rate Q  and the )(tCw  measured at the 
pumping well. In this example, the 
estimates of the mass flow rate and average 
concentration depend on the considered 
solution (left, symmetrical, right) because 
the groundwater flow is highly non-
uniform within the capture zone of the 
pumping wells. To quantify this 
uncertainty, the left-right ratio LRR was 
defined as 
 

( ) ( )rightleftrightleft MMMMLRR ,min,max=  
     (4.20) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where leftM  and rightM  are the mass flow 
rate estimates for left and right positions. 
 
 
Both the simplified and the new approach 
are compared in this section. The new 
approach considers flow averaged mixing 
when performing the integration along the 
isochrone, based on equation (4.21): 
 
 

( ) ( ) ( )
( )
∫ ⋅−=

t
ww

I

dyxbnyxqyxCtCQ
l

l
rr  ),(  , ,   0  

     (4.21) 
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Figure 4.26: Heterogeneous model domain indicating the capture zone of each well (top). Plume 
developed under steady-state flow and advective conditions (bottom). After Bayer-Raich et al., 2003. 
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Figure 4.27 shows the estimates for both 
average concentration ( )tCav  and mass 
flow rates across the control plane ( )tM CP  
for increasing test duration t . Since all 
wells captured the whole plume at the end 
of the tests, the mass flow rate becomes 
time independent and the average 
concentration decreases due to dilution. 
The triangles, circles and squares indicate 
the left, symmetrical and right solutions 
respectively. The heterogeneous conditions 
within the capture zone of each well lead 
to considerable differences between the 
different solutions (left, right, 
symmetrical).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The LRR (given in equation 4.20) amounts 
to 1.1, 2.8, 3.3 and 1.2 for the wells 9, 10, 
13 and 17, respectively. These differences 
can be observed in Figure 4.27: the mass 
flow rate estimate for different plume 
positions (triangles for left and squares for 
right) becomes asymptotic at different 
values.  For example in well 13, the mass 
flow rate amounts to 56.1 g/d if the plume 
is located to the left (triangles in figure 
4.27) while the estimate corresponding to 
the right hand side is 17.2 g/d (this leads to  
LRR=56.1/17.2=3.26). The actual mass 
flow rate simulated with MT3D is 55 g/d 
and the plume is located to the left of well 
13. 
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Figure 4.27: Estimates of average concentration ( )tCav  and mass flow rate across the 
control plane ( )tM CP  for increasing test duration t . The triangles, circles and squares 
indicate the left, symmetrical and right solutions, respectively. The location of the 
plume (as shown in Figure 4.26) is to the left for wells 13 and 10 and the right for 
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The simplified approach used in Bayer-
Raich et. al. (2002) and in all 
interpretations of integral tests performed 
before August 2002 neglect the influence 
of the term ( ) ),(  , yxbnyxqw

rr
⋅ , leading to 

the equation (4.22) 
 

           ( )
( )

( )
( )
∫=

tI
w

I

dyxC
t

tC
l

l
l

 ,~
1

0  

      (4.22) 
 
With ( )

( )
∫=

t
I

I

dt
l

ll  ~ . Equation (4.22) is 

strictly valid only under homogeneous 
conditions and perfect radial flow. In the 
general (heterogeneous) case the flow 
mixing considered in equation (4.21) leads 
to more accurate results (maximum error is 
reduced from 64% to 13%, observed in 
well 10, see Figure 4.27) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using the same numerical model of the 
Neckar Valley, the uncertainties related to 
the plume position for the case of real 
integral pumping tests were quantified in 
Jarsjö et. al. (2002) using the simplified 
approach (i. e. equation 4.22) and later 
with the more general approach (i.e. 
equation 4.21) in Jarsjö et. al. (in 
preparation). While the former version of 
CSTREAM based on equation 4.22 leads 
to LRR>10 for some wells, this uncertainty 
has been reduced to LRR<4 with the newly 
implemented formulation based on 
equation (4.21). For more details, compare 
Jarsjö et al. (2002) and Bayer-Raich et. al. 
(2002) with Jarsjö et. al. (in preparation).  
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4.4.3. Bitterfeld, multi-level 
 
 
For the numerical inversion of the integral 
pumping tests performed in Bitterfeld, 
CSTREAM has been adapted to enable 
interpretation of depth-differentiated 
concentration-time series in multi-layered 
aquifers.  
 
 
A regional 8-layer groundwater flow 
model was developed by Borkert (1999) to 
simulate the transient flow conditions of 
the SAFIRA-Bitterfeld site. As a 
verification example for the multi-layered 
analytical inversion, Bayer-Raich et. al. 
(2001) developed a numerically simulated 
contaminant scenario through a forward 
simulation of advective transport, using the 
code MT3DMS (Zheng & Wang, 1999). In 
this section, we will apply CSTREAM to 
the same verification example in order to 
compare analytical and numerical 
inversions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The first step in the numerical experiments 
was the generation of a plume. Therefore I 
introduced a contaminant source with a 
length (North-South direction) of 30 m and 
a width (East-West direction) of 5 m into 
the model domain. The source was placed 
in layers 2, 3 and 4, with different fixed 
contaminant concentrations. 
Concentrations of 0.5 mg/l in layer 2, 0.1 
mg/l in layer 3 and 1 mg/l in layer 4 were 
used. The distance from the source to the 
pumping well was about 160 m. For the 
generation of the plume, a transient 
advective transport simulation over a time 
period of 10 years was performed with 
MT3DMS (Zheng & Wang, 1999). During 
this simulation the contaminant source 
acted as constant concentration boundary 
condition. The simulated plumeis shown in 
Figure 4.28 (see further details in Bayer-
Raich et al. 2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5720680 5720720 5720760 5720800
50

60

70

80

90

5720680 5720720 5720760 5720800
50

60

70

80

90

5720680 5720720 5720760 5720800
50

60

70

80

90

5720680 5720720 5720760 5720800
50

60

70

80

90

5720680 5720720 5720760 5720800
50

60

70

80

90

H H'

G G'

W

corss sections showing plume position in depth

E E'

I I'

F F'

4521000 4521100 4521200 4521300 4521400 4521500 4521600 4521700 4521800 4521900 4522000 4522100 4522200 4522300 4522400 4522500
5719500

5719600

5719700

5719800

5719900

5720000

5720100

5720200

5720300

5720400

5720500

5720600

5720700

5720800

5720900

5721000

hydraulic heads in layer 4 of the numerical model (May 1999)

C

C´ D´

D

chemie park

CC´

DD´

4521500

4521550

4521600

4521650

4521700

4521750

4521800

4521850

4521900
5720600 5720650 5720700 5720750 5720800 5720850

E E'

F F'

G G'

H H'

I I'

W
W'

depth integrated actual plume
numerical simulation performed with MOCstreets railways

cross-sections
investigation well

A A´
70
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model for verification of CSTREAM. 
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To obtain the input for the application of 
the integral investigation approach we 
simulated a pumping test through the 
numerical model. The well was 
represented by a column of model cells 
with high hydraulic conductivity. A 
constant pumping rate of 10 l/s and a 
pumping time of 14 days were chosen, and 
the concentration-time series of Figure 
4.29 were obtained. 
 
I use these ( )tCw  data to quantify the total 
relative error of the estimations, the mass 
flow obtained from the inversion is 
compared to the actual mass flow rate 
(forward MT3D simulation).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This numerically simulated example was 
used to demonstrate the applicability of the 

depth-differentiated analytical approach 
(Bayer-Raich et al. 2001). In this section, 
we perform the same comparison with the 
numerical estimations provided by 
CSTREAM.  
 
Figure 4.30 shows the mass flow rate 
estimates provided by both the analytical 
approach and the numerical inversion. The 
numerical inversion could not be applied to 
layer 2, as this layer falls dry at the 
location of the well during the pumping 
test. Figure 4.31 gives the numerically 
computed isochrones as well as the plume 
obtained with CSTREAM in layer 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 4 8 12
Time (days)

0
0.1
0.2
0.3
0.4
0.5
0.6

co
nc

en
tra

tio
n 

(m
g/

l)

0 4 8 12
Time (days)

0
0.1
0.2
0.3
0.4
0.5
0.6

0 4 8 12
Time (days)

0
0.1
0.2
0.3
0.4
0.5
0.6

100 m 

LAYER 2 LAYER 3 LAYER 4 

MOC 

FD 

used data 
MOC

FD

used data MOC

FD 

used data 

0

0.2
0.4
0.6

0.8
1

co
nc

en
tra

tio
n 

(m
g/

l)

Figure 4.29: Numerical pump test with concentration-time series in layer 4 
obtained through different numerical methods. FD: Finite differences; MOC: 
Method of Characteristics. 

Figure 4.30: Numerical Comparison of results of numerical and analytical 
inversion in layers 4 and 3. 
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4.5. Application example: Depth 
integrated application in the Nekar 
Valley, Stuttgart (Germany): 
Quantifying model uncertainties 
 
 
In this section I describe an application 
example performed in the context of the 
project INCORE described in more detail 
in Jarsjö et al. (2003; 2004). We used the 
same deterministic groundwater model as 
in the verification examples described in 
section 4.4.2. and in Bayer-Raich et al. 
(2003). 
 
This section tackles the problem of 
quantifying model uncertainties in the 
estimations of average concentration, mass 
flow rate and possible source locations 
upstream the control plane. Since 
uncertainties related to point sample grid 
dimensions are avoided using integral 
measurements, the problem reduces mainly 
to a quantification of the effect of 
uncertainties related to the flow and 
transport properties of the aquifer. In 
particular, uncertainties in the estimation 
of the well capture zone border as a 
function of time (for the convergent flow 
field during pumping) and the streamlines 
(for the natural flow field before and after 
pumping) will affect integral estimations 
(Jarsjö et al. 2004). 
 
We use the terminology introduced in 
Jarsjö et al (2004) where the term direct 
integral measurement (IM) predictions is 
used to refer to the range of possible values 
for mass flow rate and average 
concentration. In addition, complex IM 
predictions refer to delimiting possible 
source zones upstream of locations where 
contaminant was detected, where other 
measurements and/or model uncertainties 
(for instance, in biogeochemical models) 
need to be considered. 
 
Also, Jarsjoe et al. (2004) used the term 
contamination model uncertainty to refer 
to the uncertainty related to the position of 
the plume with respect to the pumping well 

(i. e. the left-right uncertainty described in 
previous sections) as well as the 
groundwater model uncertainty to reflect 
that the numerical model used for 
simulating the flow may be inaccurate with 
regard to some aspects, for instance, 
transmissivity field and boundary 
conditions. The groundwater model 
uncertainty is quantified here by using 
different MODFLOW models with 
different boundary conditions, as shown in 
Figure 4.32. 
 
 

(a)

 

(b)

 
 
Figure 4.32: Control plane, streamlines at 
natural flow conditions (before pumping, 
thin lines) and isochrones (well capture 
zone borders, bold closed lines) defined at 
different pumping times, for two 
deterministic models (a) and (b) differing 
only by their boundary conditions. 
 
 
 
 

FLOW 
DIR.

FLOW 
DIR. 



82                                                                                                                                                . 

4.5.1. Direct integral measurement 
predictions: left-right uncertainty 
 
 
As introduced in the previous section, the 
contamination model uncertainty is related 
to the position of the plume with respect to 
the well. Figure 4.33 shows the differences 
in average concentrations and mass flow 
rates depending on the location of the 
plume. In the case of using a homogeneous 
model to perform the interpretation, then 
the average concentration is independent 
on the plume position.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, if the heterogeneity is 
considered, the local conditions of the 
transmissivity field at left and right of the 
well lead to an uncertainty in terms of 
average concentration. In other words, if 
the contaminant is located at the place with 
highest groundwater velocities (choosing 
from left and right), then the mass flow 
rate will he higher than in the other case 
(contaminant located where the water flow 
rate is lower) 
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Figure 4.33: Influence of the plume position on the ( )tM CP  and ( )tCav  estimates for the 
analytical and numerical approaches (numerically simulated example with multigaussian 
T field with low degree of heterogeneity 25.02

K ln =σ , m 20=λ ). Actual values from 
forward simulation: ( ) g/d 1=tM CP , ( ) 3g/m 46.0=tCav . 
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4.5.2. Complex integral measurement 
predictions: model uncertainty and 
possible source locations 
 
 
Complex IM predictions are concerned 
with the delineation of source presence 
zones and source absence zones. The 
delineation of these areas is done here by 
defining the region upstream of CP by 
means of particle back-tracking with 
MODPATH. A specific deterministic 
groundwater model is used here for the 
delineation of the area upstream the CP. 
 
The area to be investigated is then limited 
to the streamtube captured by integral 
pumping. In general, the source of the 
contaminat detected at the CP may be 
anywhere upstream the CP within the 
streamtube. In the case of reactive 
compounds, plume lengths are known to be 
limited (hundreds of meters). This could be 
considered in order to limit the possible 
source zone in the upstream direction by 
accounting for a reaction model that 
provides, for example, maximum possible 
plume lengths. We study this here by 
means of plume length statistics obtained 
from a large number of cases described in 
the literature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Further, the investigated area defined by 
the captured streamtube (dotted lines in 
Figure 4.34) is defined through a 
deterministic groundwater model, and 
therefore is subject to the quality and 
robustness of the model: different 
groundwater models lead to different 
geometries of the captured streamtube. The 
general methodology here presented for 
quantifying uncertainty enables the 
estimation of the robustness of the model 
by introducing variability in the uncertain 
parameters of the model and then 
considering a number of deterministic 
models to repeat the processes for each 
considered groundwater model.  This 
methodology was applied and described in 
more detain in Jarsjö et al.,  
(2004). 
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Figure 4.34: Principle of the complex IM predictions for investigating possible source zones (or 
source absent zone). Solid bold line: CP. Dotted bold line: limits of the streamtube captured by 
the IPT, limiting the source present zone (or source absent zone) 500 m upstream the CP. Thin 
lines: streamlines under natural conditions (no pumping) 
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4.5.3. Results of site application, 
analyses of real IPT 
 
The measured ( )tCw  for all 19 wells are 
shown in Figure 4.35, together with the 
corresponding regulatory limits. These 
values of concentration-time, together with 
two groundwater numerical models (+30% 
and –30% hill slope inflow), were used to 
perform the numerical interpretation with 
CSTREAM and the uncertainty analyses 
(Jarsjö et al., 2004). In Table 4.1, we list 
the minimum value, the maximum value 
and the average value of the six mass flow 
estimates and the six concentration 
estimates obtained in the uncertainty 
analysis for each contaminant and well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The interval between the minimum and 
maximum values reflects the combined 
effect of the considered groundwater 
model uncertainty and contamination 
model uncertainty. An omitted 
contaminant in Table 1 implies that its 
concentration was below the detection 
limit, and in the omitted well 359, the 
concentrations of acenapthene, benzene 
and the CHCs were all below the 
corresponding detection limits. 
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2202

NT2

Benzene Acenapthene CHC

Figure 4.35a:  Measured Cw(t) curves in CP 2 and 3 for Benzene, Acenaphthene and sum 
CHC. Reference mark (horizontal line): Detection limit: Benzene=1microg/L, Ace.=1 
microg/L, sum CHC=10 microg/L. (omited Cw(t) means contaminant not detected) 
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Figure 4.35a:  Measured Cw(t) curves in CP 1 and 2 for Benzene, Acenaphthene and sum 
CHC. Reference mark (horizontal line): Detection limit: Benzene=1microg/L, Ace.=1 
microg/L, sum CHC=10 microg/L  (omited Cw(t) means contaminant not detected) 
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Well Contaminant Mass Flow Rate (g/day) Concentration (mg/l) 
  Min Max Average Min Max Average 
        
NT20 Acenapthene 3.99E-03 6.73E-03 4.88E-03 6.47E-05 1.16E-04 8.19E-05 
 Benzene 7.97E-03 1.25E-02 1.01E-02 1.23E-04 1.88E-04 1.56E-04 
 ΣCHC 3.40E-01 5.05E-01 4.25E-01 5.16E-03 7.61E-03 6.60E-03 
        
NT64 Acenapthene 2.23E-03 4.77E-03 3.17E-03 3.85E-05 8.17E-05 5.49E-05 
 Benzene 4.36E+00 9.99E+00 6.37E+00 7.51E-02 1.71E-01 1.11E-01 
 ΣCHC 2.81E+00 5.94E+00 3.86E+00 4.94E-02 1.02E-01 6.70E-02 
        
2058 Acenapthene 1.16E-01 1.31E-01 1.23E-01 1.06E-03 1.27E-03 1.15E-03 
 Benzene 5.76E+00 8.10E+00 6.83E+00 4.80E-02 6.79E-02 5.76E-02 
 ΣCHC 2.17E+00 3.68E+00 2.83E+00 1.70E-02 2.86E-02 2.21E-02 
        
NT62 Acenapthene 2.54E-05 1.81E-02 1.40E-02 1.18E-07 8.20E-05 6.42E-05 
 Benzene 4.03E+00 5.82E+00 4.61E+00 1.79E-02 2.27E-02 1.95E-02 
 ΣCHC 1.07E+01 1.52E+01 1.22E+01 4.75E-02 5.90E-02 5.16E-02 
        
NT19 Benzene 1.41E-02 2.75E-02 2.10E-02 1.32E-04 2.57E-04 1.94E-04 
 ΣCHC 9.30E-02 1.91E-01 1.43E-01 8.70E-04 1.78E-03 1.33E-03 
        
NT17 ΣCHC 4.11E-01 1.39E+00 8.86E-01 2.22E-03 8.50E-03 5.11E-03 
        
NT16 ΣCHC 1.45E+00 1.82E+00 1.63E+00 5.32E-03 5.79E-03 5.56E-03 
        
NT66 ΣCHC 7.51E-01 1.48E+00 1.09E+00 5.88E-03 1.03E-02 8.01E-03 
        
NT15 ΣCHC 1.45E-01 2.35E-01 1.89E-01 3.28E-03 3.78E-03 3.52E-03 
        
NT13 Acenapthene 6.69E-06 1.78E-03 5.00E-04 5.87E-08 1.70E-05 4.69E-06 
 ΣCHC 4.74E-02 5.98E-01 3.29E-01 4.52E-04 5.25E-03 3.00E-03 
        
NT10 Acenapthene 5.10E-03 3.11E-02 1.87E-02 1.85E-05 1.15E-04 6.87E-05 
 Benzene 1.57E-01 6.49E-01 4.57E-01 5.71E-04 2.38E-03 1.67E-03 
        
NT9 Acenapthene 2.62E-02 2.97E-02 2.80E-02 8.78E-05 9.55E-05 9.17E-05 
 Benzene 5.22E+00 5.71E+00 5.51E+00 1.74E-02 1.88E-02 1.81E-02 
 ΣCHC 4.81E-01 5.24E-01 5.06E-01 1.61E-03 1.70E-03 1.66E-03 
        
NT74 Acenapthene 3.33E-03 4.01E-03 3.64E-03 3.67E-04 4.12E-04 3.94E-04 
        
NT5 Benzene 1.19E-02 1.82E-01 8.13E-02 6.57E-05 9.89E-04 4.44E-04 
        
NT32 Acenapthene 6.25E-02 7.49E-02 6.85E-02 3.50E-03 3.56E-03 3.52E-03 
 Benzene 1.69E-02 2.12E-02 1.92E-02 9.48E-04 1.01E-03 9.87E-04 
        
NT3 Acenapthene 2.04E-01 2.86E-01 2.49E-01 4.53E-04 6.35E-04 5.31E-04 
 ΣCHC 2.09E-01 3.06E-01 2.59E-01 4.64E-04 6.60E-04 5.52E-04 
        
2202 Benzene 1.18E-01 1.75E-01 1.45E-01 1.15E-03 1.64E-03 1.35E-03 
 ΣCHC 2.43E-01 3.04E-01 2.79E-01 2.37E-03 2.87E-03 2.59E-03 
        
NT2 ΣCHC 3.60E-01 5.00E-01 4.36E-01 1.44E-03 1.90E-03 1.70E-03 

 
Table 4.1. The direct IM results from the Stuttgart-Neckartalaue field site. 
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The average values of Table 4.1 show that 
benzene mass flow rates and 
concentrations are high in the CPs of the 
upgradient part of the model area 
(particularly in wells NT64, 2058 and 
NT62). However, following the flow 
direction approximately 300 metres to the 
next row of CPs (wells NT17, NT16, NT66 
and NT15), there are no traces of benzene. 
Further downstream, there are CPs again 
with relatively high benzene concentration, 
e.g., well NT9, indicating multiple benzene 
sources. For CHCs, Table 4.1 shows that 
they are present throughout the aquifer, 
with exception of the upper-left corner (of 
Figure 4.36), containing wells NT3, 359, 
NT32, NT5, NT 74 and NT10. Generally, 
the CHC concentrations and mass flow 
rates decrease along the flow direction. 
The acenaphthene concentrations are 
relatively low in comparison with benzene 
and CHC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regarding prediction uncertainty, Table 
4.1 indicates that the interval between the 
minimum and maximum predicted mass 
flow (and concentration) values may be 
relatively large for all contaminants found 
in a particular well (e.g., for NT10). There 
are also wells where these ranges are small 
for all contaminants (e.g., NT32). The 
origin of these ranges (i. e. groundwater 
model uncertainty and contamination 
uncertainty) is analyzed in Jarsjö et al. 
(2004). It was found that the range in both 
average concentration and mass flow rate 
depends on the standard deviation of the 
natural logarithm of transmissivity within 
the well capture zone, σlnT, For this 
specific site and numerical model, wells 
located in heterogeneous regions of the 
aquifer (σlnT>1.5 within the well capture 
zone) may lead to ranges of maximum 
value being 3 times the minimum value 
(Jarsjö et al. 2004). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.36. Predicted zones delimiting contaminant source, and zones absent of source, at the 
Stuttgart –Neckartalaue site, for (a) benzene and (b) ΣCHC. (Jarsjoe et al, 2004) 
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4.6. Application example: Depth 
integrated application in Linz (Austria) 
 
 
In this section we describe an application 
example performed in the context of the 
project INCORE also described in Bauer et 
al. (2004). Mass flow rates of PCE and 
TCE were quantified at an industrialized 
urban area in Linz, Austria. In this 
application, the numerical code 
CSTREAM was used to consider the 
influence of several wells pumping 
sequentially along a CP. If the influence of 
previous pumping is not considered, then 
each pumping well can be treated 
independently, resulting in so-called 
independent isochrones (see further 
description in section 4.2.3 and Figure 
4.5). In contrast, if the influence of several 
wells needs to be accounted for (e.g. if 
there is not sufficient lag time between 
successive pumping events), then the 
interpretation needs to be done by 
considering sequential isochrones (see 
section 4.2.3. for detailed explanation on 
types of isochrones) as we did in this 
application example. 
 
The investigated area is located within a 
bend of the Danube river. It is bounded by 
the Danube river in the south and the 
valley boundaries on the other sides, which 
are formed by smoothly rising crystalline 
rocks of the variszic mountains. It is part of 
a sedimentary basin of the Danube river, 
the “Linzer Bucht”. 
 
The contaminated aquifer is composed of 
highly permeable fluvial Quaternary 
gravels and sands. Based on the pumping 
tests performed in this study, the mean 
hydraulic conductivity is 0.0063 m s-1. The 
saturated thickness of the aquifer varies 
spatially between 5 and 10 m, and the 
aquifer is unconfined. Below these coarse 
clastic aquifer sediments, layered Tertiary 
marine sands and clays form the aquifer 
base. The flow regime is dominated by the 
Danube river, which provides most of the 
water flowing into the aquifer by bank 

infiltration. Additional recharge stems 
from precipitation (average of 0.770 m a-1) 
and flow from the hills. The main 
identified pollutant is PCE with maximum 
concentrations up to 60 µg l-1, and TCE in 
some wells with maximum concentrations 
of about 2 µg l-1. 
 
 
4.6.1. Performance of the integral 
pumping tests 
 
 
A total of 10 integral pumping tests were 
performed to investigate the groundwater 
downstream of the suspected source zones. 
Well locations are shown in Figure 4.37. 
About 40 days of pumping, with pumping 
durations of 5 to 7 days in each well were 
required. The pumping scheme is given in 
figure 4.38. To avoid the influence of 
previous integral pumping tests, wells 
where pumped from downstream first and 
then moving to the upstream direction.  
 
As concentrations were expected to be low, 
i.e. near drinking water limits, the Austrian 
authorities gave permission to dispose of 
the pumped water directly into the sewage 
system. Thus no treatment of the pumped 
water was necessary. 
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2004).  
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Figure 4.37: Field site in Linz, Austria. Shown is the Danube river to the south, piezometric 
heads, pathlines,  locations of the wells, potential source zones and control planes. Black 
dots denote wells used for the integral pumping method, black triangles denote potential 
source zones, grey dots denote the wells BR 1 and BR 2 and bold grey lines indicate the 
control planes. Piezometric heads and pathlines are taken from the calibrated model, the 
pathlines represent the capture zone of BR 1. (after Bauer et al., 2004) 
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The measured concentration-time series 
are given in Figure 4.38. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.38: Measured PCE concentration 
time series: a) at CP2, b) at CP3 and c) at 
CP4. d) shows the concentration-time 
series measured for TCE at P2-1 and P3-1. 

 
4.6.2. Interpretation of the integral 
pumping tests 
 
 
The measured concentration time series 
shown in Figure 4.38 where used to 
perform the numerical inversion with the 
code CSTREAM. The numerical flow 
model was developed from a regional, 
coarse model of the whole “Linzer Bucht” 
(Gierlinger, 1999). The model area extends 
3400 m in East-West and 3500 m in 
North–South direction and is represented 
by one model layer of varying thickness. 
Grid resolution varies from 50·50 m2 cells 
down to 0.3·0.3 m2 at the pumping wells. 
In the areas of the isochrones, the cell size 
is smaller than 5·5 m2. The Danube river is 
represented by a river boundary with a 
river water level of 251.5 m and a leakage 
coefficient of 2·10-5 m s-1. Inflow from the 
hills to the North and West is modelled as 
a constant inflow boundary. The western 
boundary is the 248.8 m isoline taken from 
the regional flow model, set as a general 
head boundary. A drainage channel is also 
included in the model, which drains a large 
part of the infiltrating river water from the 

aquifer. This channel runs parallel to the 
Danube river for about 1 km and serves to 
limit river infiltration to the aquifer along 
its length. 
 
 
The code CSTREAM was used to perform 
the inversion at each control plane 
independently, i. e. the IPTs conducted at 
each CP are assumed not to affect the 
intepretation at the other CPs. Therefore, 3 
different CSTREAM runs where used, one 
for each CP. The isochrones of each well at 
a CP influence the geometry of the 
isochrones of the other wells at the CP. 
Figure 4.39 shows the geometry of the 
isochrones at each CP, with the obtained 
average concentration from the numerical 
inversion. The pumping scheme shown in 
figure 4.38 influences the isochrone 
geometry, since the interpretation time is 
not at the beginning of pumping for each 
well, but at the start of the IPTs at each CP. 
In CP2, the well P2-1 was pumped first, 
therefore the second well P2-2 shows a 
deviation of the isochrone towards the 
upstream direction (note that the well 
location is outside the capture zone). This 
effect can be seen also in CP3, where the 
order of pumping was P3-1, P3-3 and 
finally P3-2, that is why the “centers” of 
isochrones are not at the well locations for 
wells P3-2 and P3-3. Finally, at CP4 the 
order of pumping was P4-5, P4-2, P4-4, 
P4-1 and P4-3. In figure 4.39 the isochrone 
geometry shows that the location of well 
P4-5 is at the “center” of the isochrone 
while for well P4-3 the iscochrone is 
displaced to the upstream direction and the 
well is outside the capture zone. 
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Figure 4.39: Well locations, isochrones and inverted mean concentration of PCE for 
control planes CP2, CP3 and CP4 (after Bauer et al., 2004) as determined by 
CSTREAM.  
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The average concentrations and mass flow 
rates were computed by using both the 
analytical solution based on the cylinder 
formula (Schwarz et al., 1998, see also 
chapter 3 for a detailed description) and the 
numerical inversion using CSTREAM 
(described at the beginning of this chapter).  
 
A more detailed comparison of the 
analytical/numerical results is given in 
Bauer et al. (2004). Here I limit myself to 
show the final values of PCE and TCE 
average concentrations and mass flow rates 
in Tables 4.2 and 4.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition, Figure 4.40 shows a 
comparison of the isochrone geometry 
computed through the cylinder formula for 
control plane 2 (neglecting the influence of 
previous pumping for well P2-2) and using 
CSTREAM (accounting for both 
heterogeneity and influence of previous 
pumping). See also section 4.2.3. for a 
discussion on different ways of computing 
the isochrone geometry with CSTREAM. 
A detailed discussion on the practical 
results of the IPT application in Linz is 
given in Bauer et al. (2004) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2: Results of the integral pumping tests for PCE (after Bauer et al., 2004) using CSTREAM.  

Well Maximum 
diameter [m] 

Water flow across 
well capture zone 

[m3 s-1] 

Mean 
concentration 

[µg l-1] 

Analytical over 
numerical mean 

concentration  [-]

Maximum 
concentration 

[µg l-1] 

Mass flow 
rate  

[g d-1] 

Analytical over 
numerical mass 

flow rate [-] 
P2-1 49.87 3.47E-03 19.50 0.99 25.34 5.84 0.54 
P2-2 55.22 2.08E-03 10.90 1.08 15.70 1.96 1.72 

        
P3-1 70.25 2.21E-03 34.30 1.01 57.59 6.55 0.84 
P3-2 51.51 7.75E-04 11.80 1.00 12.82 0.79 1.64 
P3-3 49.62 2.96E-03 24.90 1.03 48.12 6.36 1.06 

        
P4-1 55.47 1.13E-03 1.02 0.97 1.62 0.10 1.28 
P4-2 65.62 2.37E-03 5.37 0.98 9.04 1.10 1.74 
P4-3 90.32 3.18E-03 1.02 0.95 1.68 0.28 0.96 
P4-4 73.87 2.06E-03 4.43 1.12 8.00 0.79 0.58 
P4-5 70.43 2.25E-03 4.27 0.99 6.94 0.83 2.09 

Table 4.3: Results of the integral pumping tests for TCE (after Bauer et al., 2004) using CSTREAM.   

Well Maximum 
diameter [m] 

Water flow across 
well capture zone 

[m3 s-1] 

Mean 
concentration 

[µg l-1] 

Maximum 
concentration 

[µg l-1] 

Mass flow 
rate [g d-1] 

Analytical over 
numerical mass 

flow rate [-] 
P2-1 49.87 3.47E-03 0.35 0.54 0.10 0.55 
P3-1 70.25 2.21E-03 0.30 0.43 0.06 0.84 
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Figure 4.40: Comparison of isochrone geometry for the analytical and numerical 
approaches. Closed lines: Isochrones computed by particle back-tracking. Circles: 
Isochrones computed by the cylinder formula. Open lines: streamlines before pumping 
(natural uniform flow field towards NE). Black thick line: Control plane defined 
numerically (width of the captured streamtube) 
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4.7. Application example: Depth 
differentiated application in Bitterfeld, 
Germany. 
 
 
This section provides the results of the 
interpretation of the multi-level integral 
pumping tests performed in the SAFIRA 
Bitterfeld test site, the first application of 
the integral approach with depth 
differentiated measurements. The 
numerical groundwater model was 
developed by Borkert (1999) and has been 
adapted to integrate specific information in 
the surroundings of the pumping wells and 
refine the discretization in the vertical and 
horizontal directions. The numerical 
interpretation was performed with the code 
CSTREAM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.7.1. Update and model cut of the 
regional SAFIRA MODFLOW model 
 
 
The numerical interpretation of the integral 
pumping tests was done using a model cut 
of the regional model developed by 
Borkert (1999). The original model had 8-
layers representing the regional geology of 
the Bitterfeld site, as shown in Figure 4.41. 
 
For the numerical interpretation performed 
here we extracted the model cut shown in -
figure 4.42.  
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Figure 4.41. Vertical discretization of the Modflow model. 
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The discretization was refined in the 
horizontal and vertical directions. The 
horizontal grid was refined up to 2m within 
the surroundings of the pumping wells and 
the vertical discretization was refined from 
8 to 14 layers. The flowmeter 
measurements obtained during the 
pumping tests provided new information 
on the variability in depth of the hydraulic 
conductivity. The hydraulic conductivities 
where modified in the surroundings of the 
wells in order to reproduce the depth-
differentiated flow measured during the 
pumping tests. Figure 4.43 shows the 
refined vertical discretization up to 14 
layers and figure 4.44 shows the values of 
hydraulic conductivity for the 14 layers. 
 
For the validation of the modifications 
introduced in the model, the depth-
differentiated flow during the pumping 
tests (obtained in the field using the flow 
meter measurements) is compared to the 
computed values extracted from the 
MODFLOW model as shown in figure 
4.45. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The objective of the numerical model is to 
enable the numerical interpretation of the 
integral pumping tests, i. e. estimation of 
average concentrations and mass flow 
rates. Since the model can be considered 
homogeneous within each layer (in the 
vicinity of each well) and the isochrone 
geometry (as it will be shown below) 
displays a regular shape, the average 
concentration becomes independent of the 
aquifer parameters (i. e. hydraulic 
conductivity, thickness and porosity) and 
the mass flow rate is the product of 
average concentration and groundwater 
flow rate (i. e. linearly related to the 
hydraulic conductivity).  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.42. Model cut extracted from the regional model. 

4519000 45250004520000 4520800 4521600 4522400 4523200 4524000

57
17

50
0

57
24

00
0

57
18

60
0

57
19

50
0

57
20

40
0

57
21

30
0

57
22

20
0

57
23

10
0

IPT _3

S AFB IT41 / 01
20 /9 7

19 /9 7

2 1/ 97
18 /9 7

17 /9 7

1 5/ 97 K B 28
Lo

be
r

Stre ng
b ac

h

2 6/9 8

382
381

3 80 /70

KB8

19 /9 1

1230

12 40

1/ 94

25/ 98

4/94

3 3/9 8

34 /9 8

3 5/ 98

3 04 0

30 70

3 060

3050

K B2 7

34

X2

37/ 98

X1

X 3

4519000 45250004520000 4520800 4521600 4522400 4523200 4524000

57
17

50
0

57
24

00
0

57
18

60
0

57
19

50
0

57
20

40
0

57
21

30
0

57
22

20
0

57
23

10
0

63
.7

6 6. 2

6 6 .3

66
. 6

6 7
.0

67 .3

6 7. 7
6 7.7

67
.9

67
.9

68. 0

68
.2

6 8
.3

68
.4

6 8. 4

6 8
. 6

6 8.7

6 8.
8

68
.8

68.96 9.0

69
.1

69
.3

6 9
. 6

69
.7

69
.8

7 0
.0

7 0
. 3

70
.5

7 0
.7

70
.8

70 . 9

71
.0

71
. 3

71
. 5

71
. 8

72
. 27 2.7

73. 1

73
. 1

73 .2
73.4

73 .6

7 3.7
73.8

73
.9

7 3 .9 73.9
74.1

74. 2

74 . 4 7 4. 6

74.8

74
.9

74
.9

75. 1

75
.1

75 .2

75
.3

7 5. 3

75 .3

75
.4

75 .4

75. 5

75
. 5

75
.7

75
.9

75
.9

75. 9

76.0
76.1

76. 1

76
.3

76 .3

7 6.
4

7 6
.5

76
.7

7 6. 876 .9

7 6.9

7 7.0

77
. 1

77.2

77. 3

77. 3

7 7 .3

77. 4

77.5
77

.5

77 .5

77.7
77

.7

77 .9

77
.9

7 7
. 9

7 8.
0

78
.0

7 8
.0

78. 1

7 8. 1

78. 3

78
.4

4519000 4520000 4521000 4522000 4523000 4524000 4525000 4526000

5718000

5719000

5720000

5721000

5722000

5723000

5724000

5725000

4520500 4520600 4520700 4520800 4520900 4521000 4521100 4521200 4521300 4521400 4521500 4521600 4521700 4521800 4521900 4522000 4522100 4522200 4522300 4522400 4522500
5719000

5719100

5719200

5719300

5719400

5719500

5719600

5719700

5719800

5719900

5720000

5720100

5720200

5720300

5720400

5720500

5720600

5720700

5720800

5720900

5721000



96                                                                                                                                                . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4521300 4521400 4521500 4521600 4521700 4521800 4521900 4522000 4522100 4522200 4522300 4522400
5719800

5719900

5720000

5720100

5720200

5720300

5720400

5720500

38/98
40/01

41/01

A

A'

B
B´

C

C´
well 41 well 40 well 38

CC´

5720140 5720160 5720180 5720200 5720220 5720240
50

55

60

65

70

75

80

85

90

Top of aquifer 110

Base of aquifer 110

Tertiary aquifer

{
{
{
M

Layer 1

Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12
Layer 13
Layer 14

Figure 4.43: Model cut extracted from the regional model, position of the pumping 
wells and vertical discretization. 
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Figure 4.44: Values of hydraulic conductivity for the 14 layers of the model. 
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4.7.2. Numerical evaluation of the 
integral pumping tests 
 
 
The multi-level samplers used during the 
integral tests were located at the depths 
indicated in Figure 4.46. The numerical 
inversion was performed for model layers 
4 to 10, using the concentration time series 
measured at each level, as indicated in 
Table 4.4 
 
Table 4.4: Modflow layers for each depth 
level at the tree pumping wells 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The code CSTREAM was used for the 
evaluation of the integral pumping tests in 
each layer.  Figure 4.47 shows the head 
iso-lines under natural conditions (before 
the pumping tests). The groundwater flow 
direction is mainly towards east and the 
natural gradient is of the order of 0.0002, 
except for layer 4 where the flow direction 
is towards the northeast with a higher 
gradient of about 0.001. 
 
Figure 4.48 and 4.49 show the isochrones 
obtained numerically in each layer. The 
influence of previous pumping tests leads 
to non-circular isochrones for wells 40 and 
38; well 41 started pumping in the first 
place and has no influence of previous 
pumping tests. 
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Figure 4.45. Measured and computed Darcy velocities at the pumping wells. Dotted 
line: modelled. Solid line: Flow meter measurement 
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Figure 4.49: Isochrones in each layer, 
depth-differentiated 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The inverse reconstruction of the initial 
concentration distribution from the 
measured concentration-time series leads 
to an estimation of the average 
concentration within each depth 
differentiated level. Using the data from 
the three wells and the 4 depth-levels it 
was possible to localize the contaminant 
distribution and identify changes in 
concentration in both vertical and 
horizontal directions for all the analysed 
contaminants (Benzene; Chlorobenzen; 2-
C6H4ClCH3; 1,2-DCB and 1,4-DCB). 
Figures 4.50 and 4.51 show the depth-
differentiated results of the numerical 
inversion, in terms of average 
concentration. 
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Figure 4.50: Depth differentiated contaminant distribution at the Control Plane 
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The total contaminant mass flow rate is 
obtained by integrating the contaminant 
mass flux along the control plane. Table 
4.5 gives the output of the numerical  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
evaluation in terms of average 
concentration and mass flow rates. 
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 average concentration mg/l mass   flow   rate   g/day 
        
C6h6 W38  w40 w41 W38 w40 w41 TOTAL M 
layer 4 0.35   0.98    
layer 5 0.35 0.05  0.54 0.12   
layer 6 0.35 0.06 0.06 0.73 0.11 0.09  
layer 7 0.72 0.05 0.05 3.34 0.32 0.15  
layer 8 2.49 0.05 0.04 18.84 0.37 0.27  
layer 9 13.62 0.47 0.12 3.54 1.20 0.15  
layer 10 13.33  0.12 28.77  0.27  
    56.74 2.12 0.92 59.77 
Chlorbenzen        
layer 4 7.34   20.66    
layer 5 7.42 4.88  11.40 12.12   
layer 6 7.46 5.90 5.96 15.46 11.41 9.38  
layer 7 14.50 6.48 6.66 66.98 42.61 18.12  
layer 8 22.97 6.53 6.79 173.49 49.91 44.90  
layer 9 42.38 10.94 10.11 11.03 27.84 12.27  
layer 10 41.61  9.87 89.79  22.58  
    388.81 143.89 107.25 639.95 
2-c6h4clch3        
layer 4 0.09   0.24    
layer 5 0.09 0.05  0.13 0.13   
layer 6 0.09 0.06 0.06 0.18 0.12 0.10  
layer 7 0.16 0.06 0.07 0.72 0.37 0.18  
layer 8 0.29 0.06 0.07 2.16 0.43 0.45  
layer 9 0.52 0.13 0.10 0.13 0.32 0.12  
layer 10 0.51  0.10 1.11  0.22  
    4.68 1.37 1.08 7.13 
1,2-DCB        
layer 4 0.55   1.55    
layer 5 0.56 0.13  0.85 0.32   
layer 6 0.56 0.15 0.11 1.16 0.30 0.17  
layer 7 1.08 0.16 0.12 5.01 1.08 0.34  
layer 8 1.48 0.17 0.13 11.20 1.27 0.84  
layer 9 1.86 0.28 0.08 0.49 0.71 0.10  
layer 10 1.83  0.08 3.94  0.18  
    24.20 3.68 1.63 29.51 
1,4-DCB        
layer 4 1.17   3.30    
layer 5 1.18 0.72  1.82 1.80   
layer 6 1.19 0.83 0.77 2.46 1.60 1.21  
layer 7 2.17 0.76 0.80 10.00 5.01 2.18  
layer 8 3.34 0.76 0.86 25.26 5.83 5.71  
layer 9 1.88 1.46 1.30 0.49 3.71 1.58  
layer 10 1.84  1.25 3.96  2.86  
    47.29 17.94 13.53 78.77 

Table 4.5: average concentration and mass flow rate computed with CSTREAM 
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The mass flow rate is an integrated 
quantity and therefore depends of the size 
of the considered control plane. Since each 
depth level represents its own control 
plane, we use the mass flux (mass flow per 
unit of area perpendicular to the flow) to 
compare the results for different levels. 
 
The average mass flux representing the 
control plane defined by all wells can be 
computed by dividing the total mass flow 
rate by the total area of the control plane, 
estimated to be 1500 m2 (length of the 
control plane = 100 m; thickness = 15 m). 
Using the values of Table 4.5 for the total 
mass flow rates, we obtain the average 
mass flux for each compound. To show the 
spatial variability within the control plane, 
minimum and maximum mass fluxes are 
also given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.6 shows the overall results of the 
inversion, representing average values for 
the whole control plane. The most 
contaminated areas are at the lower part of 
well 38 and the cleanest zone is located at 
the upper part of well 41. The differences 
between maximum, minimum and average 
mass fluxes indicate that Benzene is 
mainly located at the highly contaminated 
area (mass fluxes being 3 orders of 
magnitude higher) while Chlorobenzene is 
more regularly distributed within the 
control plane surface. The distribution of 
2-Chlorotoluene, 1,2 Dichlorobenzene and 
1,4 Dichlorobenzene leads to mass fluxes 
that are one order of magnitude higher at 
the most contaminated area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Average 
Concentratio

n 
[g/m3]  

Total Mass 
Flow Rate 

[g/day] 

Average 
Mass Flux 
[g/day/m2]

Max mass flux 
(well,layer) 
[g/day/m2] 

Min mass flux 
(well,level) 
[g/day/m2] 

Benzene 1.06 59.77 0.037 0.245 (38,1) 0.001 (40,3) 
Monochlorobentzene 11.31 639.95 0.392 1.025 (38,2) 0.109 (41,4) 

2-Chlorotoluene 0.13 7.13 0.004 0.013 (38,2) 0.001 (41,4) 
1,2 Dichlorbenzene 0.52 29.51 0.018 0.066 (38,2) 0.002 (41,1) 
1,4 Dichlorbenzene 1.39 78.77 0.048 0.149 (38,2) 0.014 (41,4) 

Table 4.6. Overall results of the numerical inversion for all 4 levels and 3 wells. 
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Chapter 5 
 
SUMMARY AND CONCLUSIONS 
 
 
 
At many polluted sites, irregularly 
distributed source zone locations as well as 
preferential transport paths within the 
aquifer cause an irregular distribution of 
contaminants in the groundwater, which can 
be difficult to quantify using a limited 
number of monitoring wells. The Integral 
Pumping Test (IPT) method complements 
(and provides an alternative to) 
conventional monitoring grids, where the 
mass flow and concentration of 
contaminant plumes may be misinterpreted 
or even missed under certain conditions. 
 
This method has been proved to be very 
useful at large scale contaminated sites in 
industrial and/or urban areas, where the 
presence of buildings constrain the density 
of the well monitoring network. Five large-
scale applications of IPTs, in the context of 
the EU project INCORE, have been 
conducted in Stuttgart (Germany), Linz 
(Austria), Milano (Italy) and Strasbourg 
(France), reported in Ptak et al. (2003). In 
such sites, the separation between wells is 
typically tens of meters and the risk for 
contaminant plumes to remain unsampled 
between wells is avoided through 
pumping. The integral approach is capable 
of reaching aquifer regions that can not be 
investigated using conventional methods.  
 
Further, in order to quantify natural 
attenuation (NA) processes, Griebler et al. 
(2004) revealed conclusive evidence for in 
situ biodegradation of benzene, toluene, o-
xylene, m/p-xylene, naphthalene and 1-
methylnaphthalene using 13C/12C 
fractionation data. Further, combination of 
the IA with such methods based on 
compound-specific isotope analysis has 
been applied to quantify field-scale 
biodegradation processes of BTEX 
compounds (Peter et al., 2004). 
 

5.1. Integral approach, integral equation 
 
 
The governing equation describing the 
relationship between measured data and  
estimated variables during an IPT is a 
Volterra integral equation of the first type. 
Such equations are not frequently used in 
subsurface hydrology. However, integral 
formulations of the flow equation have 
been used, recently, based of the Fourier 
transform (Vasco & Karaski, 2001) and on 
the Laplace transform (Ginn & Cushman, 
1992). When studying transport, integral 
equations are applied in the context of 
probability theory to describe solute 
transport in the vertical direction through 
the unsaturated zone (Jury and Roth, 1990) 
using “Solute Transfer Functions” which 
give the probability density function of the 
BTC. Dagan & Cvetkovic (1996) 
presented a Lagrangian framework where 
the BTC under parallel heterogeneous flow 
is expressed as a Fredholm integral 
equation, with a kernel termed “reaction 
function”. Finkel (1999) extend the 
reaction function model to vertical 
transport for saturated conditions and Bold 
(2004) considered unsaturated media. Ginn 
(2001) expresses the BTC of a non reactive 
tracer under natural parallel flow as a flow-
weighted sum using Volterra and Fredholm 
integral equations.  
 
 
Integral equations are typically ill-posed, i. 
e., their solution is non-unique. For a long 
time mathematicians felt that ill-posed 
problems cannot describe real phenomena 
and objects. However, the class of ill-
posed problems includes many classical 
mathematical problems and, most 
significantly, such problems have 
important applications (Tikhonov & 
Arsenin, 1977). A classical ill-posed 
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problem typically studied in hydrology is 
the inverse problem for parameter 
estimation (extensively discussed in the 
literature, e. g. Carrera & Neuman, 1986a; 
b ;c ) 
 
The derivation of the fundamental 
equations presented here partially follows 
the results given in previous work 
(equations 2.16 to 2.17, figures 2.2 and 2.3 
in Schwarz, 2002). As described in chapter 
2, the previous work is  generalized 
through introducing the Reynolds transport 
theorem and building up the mathematical 
proof by accounting for 3-D heterogeneous 
conditions and advective (or linearly 
retarded) transport. 
 
 
5.2. Analytical solutions: averaging 
measured data and dimensioning  
integral pumping tests. 
 
 
The analytical framework developed in 
chapter 3 provides some novel 
relationships that are useful for both 
understanding the interpretation of IPTs 
and dimensioning the optimal pumping 
duration. 
 
The analytical solution derived in Schwarz 
et al. (1998) (described also in chapter 3), 
written as a recursive equation, provided 
the first basic tool for the interpretation of 
IPTs. Theoretically, this solution is only 
valid for perfect radial flow during 
pumping (i. e. 00 =q ). A new analytical 
solution for the general case of any 0q  was 
derived (after Bear & Jacobs, 1965) also as 
a recursive equation. This novel solution 
enables quantification of the influence of 

0q  on the prediction, providing a range of 
applicability of the simplified approach (as 
discussed at the end of chapter 3). It is 
shown that radial flow is a reasonable 
approximation for pumping tests of 
duration 2

0  2   qbnQt e π< . Within the 
same comparison and using the general 
recursive solution (valid for any pumping 

duration), it was found that IPTs of 
duration longer than 2

0max    3 qbnQt e=  do 
not provide new information on the initial 
concentration distribution at the control 
plane, since after 2

0max    3 qbnQt e=  the 
isochrone shape extends towards the 
upstream direction and does not 
significantly increase the width of the 
capture zone volume. Although this 
conclusion is drawn from a homogeneous 
conceptual model, it still applies to 
heterogeneous conditions, since long IPTs 
(i. e. duration close to 2

0max    3 qbnQt e= ) 
yield very elongated isochrone shapes 
(with a regular geometry in a 
homogeneous aquifer and with an irregular 
shape in heterogeneous media, but 
extending towards the upstream direction 
in any case and therefore not leading to 
new information). 
 
 
Further, under the same assumptions as in 
Schwarz et al. (1998) a novel closed-form 
solution has been derived by means of 
Abel´s integral transform (yielding a non-
recursive solution). Although a more 
general numerical solution (non-radial 
flow) is now available, this solution brings 
fundamental knowledge on the 
representatives of samples, since it 
provides a weighting function for the 
measured data ( )tCw . The field-scale 
representative average concentration 

( )tCav  is then expressed as a weighted 
average of ( )tCw  in an integral of the form 

( ) ( ) ( ) τττ dtfCtC
t

wav ,
0
∫=  where the 

weighting function ( )tf ,τ  increases for 
increasing τ . Physically, this means that 
“late samples are more important”, in the 
sense that they contain more information 
on the overall ( )tCav  average, compared to 
early samples. In other words, the IA 
provides a methodology for estimating an 
average concentration avC , representative 
for a large aquifer volume. The estimate 



105                                                                                                                                                . 

avC  is just a weighted average of the 
measured concentrations at the pumping 
well ( )tCw . A simple formulation of the 
inversion problem is “how shall we 
average the measured ( )tCw  to obtain a 
representative estimate of avC ?” or in other 
words “how does ( )tf ,τ  depend on 
pumping time, heterogeneity, sorption, 
degradation, dispersion or linear 
retardation?” 
 
Within a stochastic framework, the effects 
of heterogeneity can be accounted for in a 
systematic way, by introducing 
probabilities for spatial capture zone 
extents (van Leeuwen et al. 1998, 2000). 
Recently, methods for quantifying 
heterogeneity based on the analyses of 
draw-down observed in a pumping well 
have been proposed (Karami & Younger, 
2002). Such methods provide a valuable 
tool for estimating uncertainty of the 
estimates of average concentration and 
mass flow rate. 
 
 
5.3. Numerical algorithm: CSTREAM 
 
 
The computer program CSTREAM has 
been developed, tested and applied within 
the context of this thesis, as described in 
chapter 4. It has been applied within 
several field scale studies for the 
intepretation of site-specific data in, for 
instance, Bayer-Raich et al. (2001), Jarsjö 
et al. (2002), Bauer et al. (2002), Tunturi 
(2003), Rügner et al. (2004) and Ptak et al. 
(2003). 
  
In order to verify the accuracy of the 
algorithms, intensive testing has been 
made for both homogeneous conditions (by 
comparison of the output  with the 
analytical solutions derived in chapter 3) 
and heterogeneous conditions (by 
performing virtual IPTs through numerical 
simulations of advective transport in 
heterogeneous models using the code 
MT3D (Zheng, 1990). 

In general, CSTREAM may be used in two 
different ways: (1) dimensioning and 
evaluating real IPTs through measured data 
obtained in the field and (2) as a basic tool 
for performing theoretical studies in order 
to quantify, for instance, the influence of 
(unknown) heterogeneity (e. g. within a 
stochastic framework). 
 
With regard to (1) (i. e., the practical 
usefulness), CSTREAM has been 
implemented under a wide range of 
different conditions. A highly 
heterogeneous model of the Neckar Valley  
was used for testing (Bayer-Raich et al., 
2002) and quantifying uncertainties related 
to heterogeneous conditions and variability 
of boundary conditions (Jarsjö et al. 2002). 
In a more homogeneous model of the 
urban area in the city of Linz (Austria), 
Bauer et al., (2004) and Tunturi (2003) 
applied CSTREAM analyzing IPTs at 
several control planes by accounting for 
the actual sequence of pumping. In 
Osterhofen (Germany), difficult hydraulic 
conditions due to a steep slope of the 
aquifer bottom and very high Darcy 
velocities could be considered within 
CSTREAM leading to consistent results 
(Rügner et al., 2004).  
 
The first field-scale application of IPTs in 
multi-layered aquifers was also evaluated 
by extending the numerical algorithms to 
consider depth-differentiated 
measurements of ( ) ( )tzCtC iww ,= . Using 
a new sampling technique, depth 
differentiated average concentration and 
mass flows were estimated in the industrial 
area of Bitterfeld (Germany), as described 
in section 4.7. 
 
Using stochastic simulations within a geo 
statistical framework is a challenging field 
for future use of CSTREAM. Open 
questions that may be tackled usind 
deterministic models or stochastic 
simulations are, for instance, “How do 
integral pumping tests influence each other 
when performing sequential or 
simultaneous pumping along series of 
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wells at a given CP?” “Which is the best 
order to pump the wells?” “How long shall 
we wait between successive pumping 
events?” “In what cases can we neglect the 
influence of successive/simultaneous 
pumping?” “In what cases is this influence  
critical?” 
 
Future work for extending the numerical 
algorithms may be focused on considering 
3-dimensional aquifers, without the 
restriction to multi-layered systems. 
Presently, the interpretation is based on the 
assumption that the vertical components of 
the flow field can be neglected, i. e. 

( )zyxq ,,0
r  and ( )zyxqw ,,r  are dependent 

on all ( )zyx ,, , but the vertical component 
is zero. In other words, no vertical mixing 
between layers is considered and the 
hydraulic conductivity field is assumed to 
be ( ) ( )zKzyxK =,, . The multi-layered 
model implemented here is realistic and 
capable of accounting for the typical 
information available in field experiments: 
number of layers and hydraulic parameters 
of each layer (obtained in the field using, 
for instance, flow meter measurements 
yielding an estimate of the hydraulic 
conductivity ( )zK  at the well). Actual 3D 
scenarios would be of interest mainly in 
the context of theoretical studies, i. e. by 
considering virtual aquifers where all 
aquifer parameters are known at all 
( )zyx ,,  locations of the aquifer. 
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