
JCell
A Java Framework for Inferring

Genetic Networks
- Manual and Documentation -

Christian Spieth
WSI-2005-07

ISSN 0946-3852
Centre for Bioinformatics Tübingen (ZBIT),

Eberhard-Karls-University Tübingen,
Sand 1, 72076 Tübingen, Germany

c©WSI, 2005

2

JCell User Guide

JCell: A Java based framework to reconstruct genetic interactions

Dipl.-Ing., MSc Christian Spieth

Published $ Date: 2004/07/07 09:16:14 $

Updated $ Date: 2005/04/26 14:08:41 $

http:\\www.jcell.de

License

So far, no final decision was made for a license model for

JCell. The framework can be downloaded and used as it is without any

fees or restrictions. However, we would like to ask for feedback and

comments.

Contents

1 Preface 5

2 Introduction 7

2.1 Motivation . 7

2.2 Inference . 8

2.3 Cell Simulation and Morphogenesis 8

2.4 Limited Growth . 9

2.4.1 Ability of Self-Repair . 9

3 Biology 11

3.0.2 DNA . 11

3.0.3 From DNA to Proteins . 12

3.0.4 Gene Regulation . 14

4 Algorithms 17

4.1 Inference . 17

4.2 Mathematical Models . 19

4.2.1 Random Boolean networks (RBN) 20

4.2.2 Qualitative models . 21

4.2.3 Weight matrices . 21

4.2.4 Pseudolinear weight matrices 22

4.2.5 Bayesian Networks . 22

4.2.6 H-Systems . 23

1

2 Contents

4.2.7 S-Systems . 23

4.2.8 Arbitrary differential equations 23

4.3 Inference Strategies . 24

4.4 Evolutionary Algorithms . 26

4.5 Genetic Algorithms . 26

4.6 Evolution Strategy . 27

4.7 Genetic Programming . 27

4.8 Memetic Algorithm . 27

5 Menu Descriptions 29

5.1 The File Menu . 29

5.1.1 Open . 29

5.1.2 Export . 29

5.1.3 Quit . 30

5.2 The Data Menu . 30

5.2.1 Create Artificial Data . 30

5.3 The Topology Menu . 30

5.3.1 Edit Graph . 30

5.3.2 Map Expression . 31

5.3.3 Query Database . 31

5.4 The Analysis Menu . 31

5.4.1 Inference . 31

5.4.2 Exploration . 32

5.5 The Preferences Menu . 32

5.5.1 Program Settings . 32

5.5.2 Inference Settings . 33

5.6 The Help Menu . 34

5.6.1 About... 34

Contents 3

6 Command Line Options 35

6.0.2 General Syntax . 35

6.0.3 Command Line Options and Parameter 35

4 Contents

Chapter 1

Preface

JCell is a Java based application to simulate intra-cellular processes based on gene
regulatory mechanisms. The project is aiming to model and reconstruct genetic
interactions in silico, and helps researchers to gain new insights in the organizational
structure of an organism.

This manual is aimed to give an overview over the features of JCell. It is di-
vided into several chapter as follows: ” Chapter Introduction briefly introduces the
problem of inferring regulatory systems and artificial embryology. Further on, a
motivation is given. ” An overview over the biological background can be found in
chapter Biology. This chapter will introduce the basic concepts of genetics together
with a brief historical digression. ” Detailed information about each menu item of
JCell can be found in chapter Menu description. ” The mathematical founding of
the implemented algorithms and inference strategies are explained in chapter Al-
gorithms. ” And the last chapter (Command Line Options) lists all command line
parameters for JCell, which can be used for running the program in batch mode.

JCell project is developed at the Centre for Bioinformatics of the University of
Tübingen (ZBIT). The main project website is www.jcell.org (http://www.jcell.de)

5

6 Chapter 1. Preface

Chapter 2

Introduction

2.1 Motivation

In the past few years, DNA microarrays have become one of the key techniques
in the area of gene expression analysis. This technology enables the monitoring of
thousands of genes in parallel and can therefore be used as a powerful tool to un-
derstand the regulatory mechanisms of gene expression in a cell. Gene regulatory
networks (GRNs) represent the dependencies of the different actors in a cell oper-
ating at the genetic level. They dynamically determine the level of gene expression
for each gene in the genome by controlling whether a gene will be transcribed into
RNA. A simple GRN consists of one or more input signalling pathways, several
target genes, and the RNA and proteins produced from those target genes. In ad-
dition, such networks often include dynamic feedback loops that provide for further
regulation of network regulation activities and output. In order to understand the
underlying structures of activities and interactions of intra-cellular processes one has
to understand the dependencies of gene products and their impact on the expres-
sion of other genes. Therefore, finding a GRN for a specific biological process would
explain this process from a logical point of view. However, due to the huge number
of components within the regulatory system, a large amount of experimental data is
needed to infer genome-wide networks. This requirement is almost impracticable to
meet today, because of the high costs of these experiments and due to the fact that
the investigated processes are too short and do not allow for more sampling points
in time. To bypass this problem, additional data has to be acquired like knock-out,
over-expression experiment data or data sets with different starting conditions that
decrease the uncertainties in the system. JCell is a framework for simulating GRNs.
It is completely implemented in Java and can be used for two different applications:

• reverse-engineering and inferring regulatory mechanisms based on the eval-
uation of given biological and medical data coming from DNA microarray
experiments, and

7

8 Chapter 2. Introduction

• simulating cell growth and mitosis by finding GRNs suitable for a given prob-
lem (e.g. limited growth).

2.2 Inference

Researchers are interested in understanding the mechanisms of gene regulatory
processes and therefore in inferring the underlying networks. This has recently
become one of the major topics in bioinformatics due to the increased amount of
data available. Gene regulatory network analysis exploits massively parallel mea-
surements of interacting biochemicals, namely with DNA microarray techniques.
The measurements at different states of the cell can be used for studying the rela-
tionships between each component of cellular processes by mathematical modeling of
the dependencies in the data set. There are different types of mathematical methods
implemented in JCell for simulating GRNs like

• Random boolean networks (RBN),

• quantitative Models,

• Weight matrices,

• pseudolinear weight matrices,

• S-Systems,

• H-Systems, and

• arbitrary differential equations.

The parameters of each model are evaluated either by optimization with evolu-
tionary algorithms or by straight-forward heuristics, if available. The main focus
of the current research is on GRNs related to immune-specific diseases, as JCell is
developed as part of the TuebinGENome (http://www.tuebingenome.de) project of
the NGFN - German National Genome Research Network (http://www.ngfn.de) in
cooperation with the University Hospital of Tübingen.

2.3 Cell Simulation and Morphogenesis

The translation of the dynamics of gene regulatory networks in terms of pattern
and form is a central problem, not only for biology, but also for Artificial Life. The
translation of genetic information into shapes and patterns is what links genetics to
morphology. Our goal is to use gene regulatory networks as genotypic representation
for phenotypic shapes that are subject to evolution. We want to evolve the para-
meters of the gene regulatory networks to optimize shapes for design optimization
through Evolutionary Algorithms.

2.4. Limited Growth 9

2.4 Limited Growth

A basic property of an organism is that although it originates from a single cell and
needs to grow and multiply, it finally needs to stop growing and to remain stable.
Therefore we performed experiments to evolve the behavior of limited growth by
optimizing the gene regulatory genotype of the organism by the use of Evolutionary
Algorithms. We could show that a gene regulatory network producing continuous
metabolites, controlling the behavior of the cells in the organism, together with
diffusion between cells, was able to show the desired behavior, even if only two
genes were simulated.

2.4.1 Ability of Self-Repair

In another experiment we wounded the organisms and tried to evolve the ability
of self-repair. With an additional metabolite generated by dying cells we were also
able to evolve the behavior of self-repair. In some experiments the organisms were
severed by the random wounding. Nevertheless, both parts grew to the original size.
A behavior that can also be observed for some organisms in nature like hydras or
flatworms. In this experiment also cell differentiation occurs, although this was not
an objective in the evolutionary process. In the stable configuration of the organism
there are cells in two distinct states: 1. Low activity of all metabolites and 2. High
activity of metabolites a and c. Cells of type 2 are usually splitting and generating
new cells but by diffusion the cells of type 1 control the cells of type 2 and prevent
them from actually growing. When the cell is wounded, the additional metabolite
d causes the cells of type 1 to change into cell type 2 and the organism grows new
cells until a new equilibrium is reached.

10 Chapter 2. Introduction

Chapter 3

Biology

From the 1950’s onwards, several advances in the field of genetics were made to the
understanding of the function of DNA, as there were

• the replication of DNA,

• protein synthesis and the role of messenger RNA (mRNA), transfer RNA
(tRNA) and ribosomes

• and the regulation of gene activities.

These important steps lead to the image of DNA functionality we have today. It
is interesting to note that Mendel’s laws about heredity from 1866 and the theories
of Watson and Crick from the 50’s are still valid these days, although genetics is a
fast developing area that is subject to quickly changes.

3.0.2 DNA

The famous double helix of the DNA is the foundation of all life on this planet.
As we know today, organisms use DNA as their genetic material. An exception to
this general rule are viruses, which use RNA (ribonucleic acid) instead of DNA for
inheritance. The complete copy of the DNA in an organism is called the organism’s
genome. The genome of a diploid, i.e. having two sets of chromosomes1, organism
is its set of chromosomes and all the genes of which it consists of. The DNA is
a polymer of repeating units called nucleotides. A generic nucleotide has three
components: a deoxyribose sugar joined to a phosphate group and to a nitrogenous
base. The sugar and the phosphate group have mainly structural purposes. Only

1A chromosome is a self-replicating molecule in the cell nucleus of all plants and animals through
which characteristics are inherited. Each organism of a species normally has a characteristic number
of chromosomes in its cells, 46 being the number normally present in a human being, including the
two (XX or XY) which determine the sex of the organism.

11

12 Chapter 3. Biology

the bases are of interest in this thesis, therefore the other parts and functions of the
DNA will not been explained.

Four different nitrogenous bases are found in DNA: Two are derivatives of purine
[adenine (A) and guanine (G)] and two of the chemical class of pyrimidine [cytosine
(C) and thymine (T)]. The two strands in the double helix are formed by the
chemical interaction between bases. These bases exhibit hydrogen bonding and thus
serve as the rungs on the twisted ladder of DNA that hold the strands together.
Nitrogenous bases interact in a specific way. G only bonds with C, whereas A
only bonds with T (or U in RNA2). Because of this specific behavior of the bases,
one strand in the DNA is the reverse of the second strand; hence they are called
complementary. Furthermore, the doublestranded DNA has two grooves, the major
and minor grooves, that twist around its exterior. The major groove is larger than
the minor because of the chemical nature of the sugar-phosphate-structure.

3.0.3 From DNA to Proteins

In molecular genetics we call the part of DNA that carries the information about
a single protein a gene. The sequence of nucleotide bases of this gene leads to the
production of specific amino acids and thus to a specific protein. Each amino acid
is specified by a triplet of nucleotide bases, a so called codon. With four different
base pairs (A, C, G and T) and three bases at a time we get 43 = 64 possible
combinations for amino acids. Many of these combinations are synonyms, i.e. more
than one codon represents the same acid. AGA, AGG, AGT, AGC, TCA and TCG
all stand for the same amino acid: Serine (Ser). In this example, there are six
combinations expressing serine, other acids are represented by fewer codons (e.g.
methionine (Met) is only represented by the single combination TAC). In addition
to the 20 amino acids, there are three combinations which can be interpreted as
termination sequences that stop the evaluation of the base sequence. A table of all
protein codons can be found in 3.1.

DNA is not translated into proteins directly, however. Genes are rather expressed
through the production of messenger RNA (mRNA). mRNA is an intermediate prod-
uct in building proteins. It is synthesized in the same way as DNA replicates, with
two important differences: It copies only one strand of the DNA and T (thymine)
is replaced by U (uracil). This process is called transcription.

To produce a protein from mRNA, the mRNA has to be transported to the sites
of protein synthesis which are in the cytoplasm of a cell. Hence the RNA is called
messenger RNA. This is common to both types of cells, it happens in eucaryotic3 as
well as in prokaryotic4 cells. The difference is that in eucaryotes, mRNA has to pass

2RNA is different from DNA in the chemical formula, i.e. RNA contains the five carbon sugar
ribose instead of deoxyribose found in DNA.

3Eucaryotes are organisms whose DNA is enclosed in a nucleus.
4Procaryotes are organisms with no enclosed nucleus.

13

Table 3.1: Table of all 20 amino acids.

Alanine (Ala — A) Glycine (Gly — G) Proline (Pro — P)
Arginine (Arg — R) Histidine (His — H) Serine (Ser — S)

Asparagine (Asn — N) Isoleucine (Ile — I) Threonine (Thr —T)
Aspartic acid (Asp — D) Leucine (Leu — L) Tryptophan (Trp — W)

Cysteine (Cys — C) Lysine (Lys — K) Tyrosine (Tyr — Y)
Glutamic acid (Glu — E) Methionine (Met — M) Valine (Val — V)

Glutamine (Gln — Q) Phenylalanine (Phe — F)

the membrane around the nucleus. Ribosomes are cytoplasmic organelles found in
procaryotes and eukaryotes. They are large complexes of proteins and three (pro-
caryotes) or four (eucaryotes) rRNA (ribosomal ribonucleic acid) molecules called
subunits made in the nucleolus. Once mRNA is bound to ribosomes in the cyto-
plasm, the actual conversion into a protein begins. Transfer RNA (tRNA) brings
the correct amino acids in the proper sequence to the synthesis site, where they
combine to form a protein.

UACAAGGUAUCGGUAUACACGCGAUAA

ATGTTCCATAGCCATATGTGCGCTATTTATGTGAGCGTT

cis-regulatory elements gene

dna
transcription

translation

ykvsvytr

rna

proteins

Figure 3.1: From DNA to protein

Figure 3.1 shows the sequence of actions in the synthesis of proteins, where
DNA is transcribed into RNA and then translated into a protein. A more detailed
explanation can be found in [7].

14 Chapter 3. Biology

3.0.4 Gene Regulation

Since every gene contains information about a specific protein and this gene could
be transcribed at any time, there must be a mechanism that controls the gene
expression. Otherwise proteins would be produced whether or not they were required
and in random quantity. This is especially important in multicellular organisms
where cells take on specialized tasks. Every cell in a human being carries the gene
for producing insulin5, but only cells in the pancreas actually do it. Each cell in our
body therefore produces different proteins because different genes are switched on
or off in each case. Another case of gene regulation can be found in the different
stages of the development of an organism. A seed of a plant needs special enzymes to
metabolize its food reserves while germinating. Later, proteins for photosynthesis
become more important which are of no use in the first phase of growing. This
means that the right genes have to be switched on or off the appropriate time to
control development.

But how does a gene know when it has to be expressed? The transcription process
starts, when a ribosomal unit binds at special regions at the beginning of a gene.
This region is called a promoter. To enable the ribosomal unit to bind, some other
proteins have to form a complex molecule (a so called transcription factor), which
itself docks to transcription sites on the DNA. Thus, these transcription factors
trigger the expression of the corresponding gene.

Figure 3.2 shows schematically the process of transcription, translation, and
regulation. As one can see, a gene is expressed and translated into a protein due
to the signals reaching the cell (Signal A and B). The new protein performs the
biological tasks within the cell by reacting with other proteins or biochemicals.
However, the protein might also serve as a signal itself, regulating the expression
of other genes. Therefore, genes regulate other genes with their expressed proteins.
This is in general known as a gene regulatory system. The entirety of all gene
regulating dependencies is called a gene regulatory network.

5Insulin is a polypeptide hormone secreted by the beta cells of the islets of Langerhans, a specific
groups of cells in the pancreas.

15

TATGTGAGCGTT

cis-regulatory elements target gene

dna

transcription/

translation

protein

signal Bsignal A

transcription

factor Btranscription

factor A

signaling

cascade

signaling

cascade

activation

of target gene

ATGTTCCATAGCCATATGTGCGCTATT

activation/

inhibitation

Figure 3.2: Schematic view of genetic regulation.

16 Chapter 3. Biology

Chapter 4

Algorithms

This chapter briefly introduces the problem of inferring dynamic systems. The in-
terested user will find descriptions of the implemented algorithms and mathematical
models to simulate regulatory networks.

4.1 Inference

Goal of the inference is to determine the topological structure of the regulatory
network as well as the kinetic parameters of the underlying mathematical model.
The topology shows the dependencies between the components (for example genes)
of the system. This graph represents the qualitative view of the regulatory network.
The mathematical model on the other hand represents the quantitative view of the
system. With the parameters of the model a researcher is able to simulate the
whole system or only parts of it to understand the interactions and to find ways to
modify the system to reach a desired state or behavior. The main idea behind the
whole process is to explain the experimental data ba finding a mathematical model,
which results in a similar data set or time dynamics, respectively. In general, this is
done by simulating the artificial model to get a set of time series data. After that,
this data set is compared to the experimental data set to determine the differences.
These differences are then incorporated into a second iteration of the process to
modify the system in such a way that it better fits the experiment data. The
actual computational inference process is divided into several phases, which are
performed successively and might require to go back to a previous state to gain
optimal solutions.

• Preprocess expression data. In most cases the experimental expression data
has to be preprocessed to reduce the dimensionality of the problem, i.e. of
the solution space. This can be done by statistical methods, where compo-
nents (for example genes) are filtered that do not seem to participate in the
regulatory process of interest. For example, a gene that does not change its

17

18 Chapter 4. Algorithms

expression level over time is not very likely to be involved in the biological
process that is under investigation. Another way to preprocess data is to clus-
ter the time series, i.e. to group similar time dynamics. The underlying idea is
that genes that show similar expression profiles are likely to be co-regulated,
i.e. depending on the same regulatory mechanisms. To reduce the dimen-
sionality, each group can then be replaced by a representative of the group
(cluster). Thus, the number of components is reduced drastically.

• Import additional biological data. The problem of finding the correct topol-
ogy together with determining the correct model parameters is very difficult.
The solution space of the problem grows very fast with the number of com-
ponents (depending on the mathematical model). Therefore, it is important
to incorporate additional knowledge to reduce the complexity of the problem.
This can be done by including information about the network structure or by
incorporating known dependencies between components of the system. The
information can be retrieved from public databases or from the researchers
themselves. An example for a public database is KEGG, which lists known
pathway topologies. This can be done within JCell, which has interfaces to
public databases.

• Select appropriate model. The choice of the mathematical model is a crucial
part of the whole inference process. Each model has advantages as well as dis-
advantages as described in the next section. For example, Boolean Networks
show a low computational complexity, which makes them perfect to simulate
huge systems. Unfortunately, they show the same time a very high level of
abstraction, i.e. they do not really resemble biological systems. In ”plain
vanilla” Boolean Networks there are only two states in which a gene can be in:
on (true) or off (false). Obviously, this is not the case for real gene expression.
On the other side, arbitrary differential equations (DE) are the closest approx-
imation of regulatory networks, for many biological process have differential
equations been found describing correctly the dependencies between the com-
ponents. But DEs are very difficult to handle with computational algorithms.
One class of algorithms able to examine DEs is Genetic Programming.

• Initialize model parameters. The parameters of the system have to be ini-
tialized before starting the actual inference process. This can be done either
randomly or by incorporating the additional biological knowledge imported
before. In the latter case the internal matrices representing the structure of
the network and the corresponding parameters are initialized with the values
of the imported information.

• Find correct parameters. In the solution phase the program tries to determine
the correct topology and the corresponding model parameters. This is either

4.2. Mathematical Models 19

done by using optimization algorithms like Evolutionary Algorithms or by
direct solving using special heuristics. To evaluate the quality of a solution
found in the inference process, the fitness of this model is determined. This
can be for example done by calculating the euclidian difference between the
time series vectors of the experimental data and the vectors of the simulated
data.

• Hypothesize a network topology. After the parameters have been found –
either by finding the correct values or by hitting a termination criterion like
the maximum number of fitness evaluations in case of EAs – the model has to
be ”translated” into a network hypothesis. This is easy for simple model like
RBNs or weight matrices, where the dependencies can be directly transferred
into a graph.

• Verification. The last phase of the inference is the verification and validation
of the results with biological or medical ”wet” experiments. This phase is very
important because the user will find multiple set of parameters in almost every
in silico inference process and needs to determine the true system by testing
the hypothesis with real world experiments.

4.2 Mathematical Models

Researchers are interested in understanding the mechanisms of gene regulatory
processes and therefore in simulating the underlying networks. This has recently
become one of the major topics in bioinformatics due to the increased amount of
data available. The following section briefly describes the different mathematical
models that can be used to simulate regulatory systems.

On an abstract level, the behavior of a cell is represented by a gene regulatory
network of N genes. Each gene gi produces a certain amount of RNA xi when
expressed and therefore changes the concentration of this RNA level over time:

~x(t + 1) = h(~x(t)) , ~x(t) = (x1, · · · , xn) (4.1)

where h is a function that describes the changing.
There are different types of mathematical methods for simulating GRNs like

• Random boolean networks (RBN),

• quantitative Models,

• Weight matrices,

• pseudolinear weight matrices,

20 Chapter 4. Algorithms

• S-Systems,

• H-Systems, and

• arbitrary differential equations.

The following sections describe the mentioned models and lists corresponding
publications if available.

4.2.1 Random Boolean networks (RBN)

One kind of model to simulate regulatory systems found in the literature are Boolean
or Random Boolean Networks (RBN) [5, 18]. In Boolean Networks gene expression
levels can be in one of two states: either 1 (on) or 0 (off). The quantitative level of
expression is not considered.

According to this model the network is represented as an oriented graph G =
(V, F), whose nodes V represent element of the network, and F defines a topology of
edges between the nodes and a set of boolean functions. A node may represent either
a gene or a biological stimulus, where a stimulus is any relevant physical or chemical
factor which influences the network and is itself not a gene or gene product. A node
has an associated steady-state expression level x, representing the amount of gene
product or the amount of stimulus present in the cell. This level is approximated
as high or low and represented by the binary value 1 or 0, respectively. Network
behavior over time is modeled as a sequence of discrete synchronous steps. The set
of boolean functions assigned to the nodes defines the value of a node on the next
step depending on values of other nodes, which influence it. The functions f are
uniquely defined using truth tables. An edge directed from one node to another
represents the influence of the first gene or stimulus on that of the second, so that
the expression level of a node v is a Boolean function f of the levels of the nodes in
the network which connect (have a directed edge) to v.

Figure 4.1: Boolean Network.

Figure 4.1 gives an example of a simple boolean network and associated truth
table. This example shows a network of three nodes – a, b and c, respectively. As one
can see, expression of c directly depends on expression of b, which directly depends

4.2. Mathematical Models 21

on a. However, influence of b and c on a is more complex. For example, high level
of expression of both b and c leads to inhibition of a.

4.2.2 Qualitative models

In contrast to discrete methods like RBNs, qualitative network models allow for
multiple levels of gene regulation. An example for this kind of approach is given by
Thieffry and Thomas in [15].

Qualitative models are not implemented in JCell and are therefore not discussed
here.

4.2.3 Weight matrices

Quantitative models like the weighted matrix model by Weaver et al. [17] consider
the continuous level of gene expression. Inference methods based on linear models
for gene regulatory networks are given for example in [1] and [3].

Weight matrices are well known in bioinformatics in the field of sequence align-
ment. Several papers have been published on this topic. They main idea of weight
matrices is having a matrix of values representing numerical relationships between
genes. They have the form of the following equation:

ri(t) =
∑

j

wijxj(t) (4.2)

The example from above is modeled with weight matrices as shown in the fol-
lowing figure. Note that there are negative values whenever a gene is inhibited by
another gene. Weight matrices have the advantage of modeling interactions quanti-
tative in comparison to Boolean Networks where only qualitative relationships are
considered. However, weight matrices are of linear type, i.e. there are only linear
dependencies between components in the system.

Figure 4.2: Weight Matrix.

22 Chapter 4. Algorithms

4.2.4 Pseudolinear weight matrices

Weaver et al. enhanced the standard weight matrix that it resembles artificial neural
networks with sigmoidal activation functions in the nodes (genes) to overcome the
problem of linearity. To further improve the model, we extended the model of Weaver
et al. in such a way that not only nodes have sigmoidal activation functions but
also the connecting edges. Thus, we created a flexible model without the limitation
of linearity.

4.2.5 Bayesian Networks

Bayesian networks or belief networks are a type of models for representing uncer-
tainty in our knowledge. They are stochastically, i.e. they use probability theory
to manage uncertainty by explicitly representing the conditional dependencies be-
tween the different knowledge components. The network is modeled with a directed
acyclic graph of dependence structure between multiple interacting quantities where
the nodes represent random variables and the edges indicate conditional dependen-
cies.

For a directed model, we must specify the Conditional Probability Distribution
at each node. To give a simple example, we consider only discrete variables in the
following. If the variables are discrete they can be represented as a table, which
lists the probability that the child node takes on each of its different values for each
combination of values of its parents. Consider the following example, in which all
nodes are binary, i.e., have two possible values, which are denoted by T (true) and
F (false), respectively. The following graph shows the simple case for modeling the
trivial example of a meadow.

Figure 4.3: Bayesian Network.

Looking at the graph it is obvious that the event ”grass is wet” (W=true) has two
possible causes: either the water sprinkler is on (S=true) or it is raining (R=true).

4.2. Mathematical Models 23

The strength of this relationship is shown in the tables. For example, we see that
P(W=true — S=true, R=false) = 0.9, and hence, P(W=false — S=true, R=false)
= 1 - 0.9 = 0.1, since each row must sum to one.

4.2.6 H-Systems

H-Systems are another type of enhanced weight matrices, where an additional term
ensures non-linearity in the model. They have the form of:

dxi(t)

dt
= ci +

∑

k

aikxk(t) + xi(t)
∑

k

bikxk(t) (4.3)

4.2.7 S-Systems

S-Systems employ a general formalism, which allows for capturing the non-linearity
and general dynamics of the gene regulation. S-Systems are a type of power-law for-
malism, which has been suggested by [10] and can be described by a set of nonlinear
differential equations:

dxi(t)

dt
= αi

N∏
j=1

xj(t)
Gi,j − βi

N∏
j=1

xj(t)
Hi,j (4.4)

where Gi,j and Hi,j are kinetic exponents, αi and βi are positive rate constants
and N is the number of equations in the system. The equations in Eqn. 4.4 can be
seen as divided into two components: an excitatory and an inhibitory component.
The kinetic exponents Gi,j and Hi,j determine the structure of the regulatory net-
work. In the case Gi,j > 0, gene gj induces the synthesis of gene gi. If Gi,j < 0, gene
gj inhibits the synthesis of gene gi. Analogously, a positive (negative) value of Hi,j

indicates that gene gj induces (suppresses) the degradation of the mRNA level of
gene gi. Since the modeling of genetic networks involves abstraction and mapping
of interactions, the generality of this formula is essential. However, they suffer from
the high number of model parameters (2N2 +2N). And although high performance
computing has made significant progress over the last decade, this is still a major
issue for larger biological systems.

4.2.8 Arbitrary differential equations

Arbitrary differential equations are the most flexible way to model biological sys-
tems. Unfortunately, they are hard to create with algorithms. They can be handled
with a special type of Evolutionary Algorithms namely Genetic Programming (see
section Genetic Programming).

24 Chapter 4. Algorithms

4.3 Inference Strategies

This section is aimed to give a brief overview over different strategies for inference.
The following list shows the algorithms that are implemented in JCell and for which
publications are available.

• Standard inference

• Separated inference

• BitSet inference

• Island strategy

• Virtual Knockouts

• Singleton inference

• Skeletalizing

The references and details are given in the subsections for each inference strategy.

Standard Inference

The standard inference strategy. Straightforward modeling of the system together
with an exhaustive parameter search. Using this algorithm it is very likely to find
a solution to the problem, which does not correspond to the biological system, due
to the flexibility of the models.

Tominaga et al. [16] used a GA to infer regulatory systems of very low complex-
ity using an algorithm, which corresponds to a standard inference strategy in our
notation.

Separated Inference

The separated approach is the standard algorithm enhanced with a preprocessing
phase, in which all components of the system are inferred separately. This is done by
modeling the system such that only the component of interest has free parameters
to determine, all the other components are ”simulated” by using the corresponding
experimental data. The resulting parameters for each single component are then
used in the actual inference computation as an initial solution. Having a better
initialization, it is more likely to find the global optimal solution.

So far, there are no publications using this method.

4.3. Inference Strategies 25

BitSet Inference

The bitset algorithm is a representative of the class of Memetic Algorithm. This
method separates the inference problem into two subproblems. It uses a global algo-
rithm to determine the optimal topology, i.e. the optimal structure of the unknown
network, together with a local algorithm, searching for the best parameters for a
topology.

This method was published for example in [13].

Island Strategy

The idea of the island strategy is to preserve the diversity of solutions within the
optimization population Secondly, it reduces the chance of premature convergence.
The general principle of an island strategy is a set of l EA populations, which evolve
independently for m generations. Then migration occurs and the best individu-
als (possible networks) are exchanged between the independent EA populations to
”inject” good solutions into each other.

The idea was tested and verified in [14].

Virtual Knockouts

Due to the limited number of available data the inferring problem is under-determined
and ambiguous. Further on, the problem often is multi-modal and therefore appro-
priate optimization strategies become necessary. A large number of different sets of
model parameters fit the given data with comparably good fitness values (in respect
to the fitness function mentioned above) but with only small resemblance to the
true system. Virtual Knockouts are one way to avoid finding solutions with good
fitness values but bad parameter distances. In virtual knockout this is successively
done by optimizing the parameters of systems of differential equations modeling the
interactions in the network for the given data, followed by a second phase, aimed to
reduce the ambiguities by suggesting subsequent knockout experiments. Informa-
tion gained by these follow-up experiments are incorporated into the first phase to
increase the probability of finding the correct network model.

Virtual Knockouts have been successfully used in [12].

Singleton Inference

This strategy is aimed to determine the dependencies between a single gene of inter-
est and all other genes within the data set. This question becomes interesting in the
case of examination of only a special gene, which is in the focus of the current re-
search project. The algorithm works analogous to the separated strategy and infers
a gene with the experimental data of the other genes as input for the mathematical
model.

26 Chapter 4. Algorithms

So far, no publications are available.

Skeletalizing

This method is for comparison only. It was inspired by an inference strategy of
Tominaga et al. and introduces a special threshold value tskel, which determines
the minimum absolute value of model parameters. Each parameter less then tskel
(absolutely) is forced to 0 and is fixed until the end of the inference process. It is
used as a benchmark function to compare algorithms like the bitset inference against
it with our bitset method resulting in better networks in less fitness evaluations.

The original implementation of this algorithm can be found in [16].

4.4 Evolutionary Algorithms

Evolutionary Algorithms have proved to be a powerful tool for solving complex
optimization problems. Three main types of evolutionary algorithms have evolved
during the last 30 years: Genetic Algorithms (GA), mainly developed by J.H. Hol-
land [4], Evolutionary Strategies (ES), developed by I. Rechenberg [9] and H.-P.
Schwefel [11] and Genetic Programming (GP) by J.R. Koza [6]. Each of these uses
different representations of the data and different operators working on them. They
are, however, inspired by the same principles of natural evolution. Evolutionary
Algorithms are a member of a family of stochastic search techniques that mimic the
natural evolution as proposed by Charles Darwin of mutation and selection. Evolu-
tionary Algorithms are one of the research area of the Computer Architecture group
at the University of Tübingen (see Evolutionary Algorithms for more details).

4.5 Genetic Algorithms

Genetic Algorithms (GA) imitate the evolutionary processes with emphasis on geno-
type based operators (genotype/phenotype dualism). The GA works on a population
of artificial chromosomes, referred to as individuals. Each individual is represented
by a string of L bits. Each segment of this string corresponds to a variable of the
optimizing problem in a binary encoded form. The population is evolved in the op-
timization process mainly by crossover operations. This operation recombines the
bit strings of individuals in the population with a certain probability Pc. Mutation
is secondarily in most applications of a GA. It is responsible to ensure that some
bits are changed, thus allowing the GA to explore the complete search space even if
necessary alleles are temporarily lost due to convergence.

4.6. Evolution Strategy 27

4.6 Evolution Strategy

The second type of Evolutionary Algorithms is the Evolution Strategy (ES). ES
differ from GAs mainly in respect to the representation of solutions and the selection
operators. They mainly rely on sophisticated mutation operators, smaller population
sizes and an increased selection pressure. The selection of the individuals forming
a population is deterministic, as in contrast to GAs, where a stochastic method
is used. In case of the (µ, λ)-ES selection strategy, the µ best individuals from a
population of µ offsprings are selected to create the next population. An alternative
implementation is the (µ+λ)-strategy, which selects the µ best individuals from the
population of the λ offsprings joined with the old population of µ parents.

4.7 Genetic Programming

The idea of Genetic Programming (GP) is to introduce a new data type to evolve and
optimize computer programs. In the first experiments, the computer programming
language LISP was used to encode problems. For example, the algebraic term
(x− 1)− x3 is represented in LISP as:

(- (- x 1) (* x (* x x)))

The GP representation for the problems that have to be encoded are trees. These
tree structure use a directed acyclic graph with functions as nodes and terminals as
leaves. The execution order is given by evaluating the left child before evaluating
the right child.

Most commonly, GP programs use the following operators:

• Arithmetic operators: +, -, *, /, sin, cos, exp,

• Boolean operators: AND, OR, XOR, NOT, NAND

• Problem specific operators: Max, Min, Variance,...

With GP, Evolutionary Algorithms are able to model dynamic systems using
arbitrary differential equations because with the presented encoding, any equation
can be created.

4.8 Memetic Algorithm

The combination of an Evolutionary Algorithm with a local search heuristic is called
Memetic Algorithm (MA) [8]. MAs are inspired by Dawkin’s [2] notion of a meme.
A meme is a ”cultural gene” and in contrast to genes, memes are usually adapted
by the people who transmit them before they are passed to the next generation.

28 Chapter 4. Algorithms

From the optimization point of view, it is argued that the success of an MA is
due to the tradeoff between the exploration abilities of the underlying EA and the
exploitation abilities of the local searchers used. This means that during variation,
the balance between disruption and information preservation is very important: on
the one hand the escape of local optima must be guaranteed, but on the other hand
disrupting too much may cause the loss of important information gained in the
previous generation. Memetic Algorithms combine the features of EA to explore
the solution space of combinatorial problems and the ability of exploiting of local
search heuristics.

Chapter 5

Menu Descriptions

5.1 The File Menu

5.1.1 Open

Open files in JCell. There are three different types of input files. The first is a
data file, containing gene expression data or metabolic concentrations. Second, a
topology can be imported to be used in the inference process to incorporate known
biological dependencies. And third, a reference model can be provided, which is
used as the true system
JCell can read files of the following types:

• Affymetrix: Expression data files exported by Affymetrix Microarray Suite

• ASCII: Tab-delimited ASCII files containing gene expression data

• XML: Expression Data formatted in XML (SGML, JCell)

5.1.2 Export

Data Saves the time course expression data. The user can choose between two
following file formats. Both file types can be read in again.

• ASCII: Tab-delimited ASCII files

• XML. Expression Data formatted in XML

Variables Exports the parameter of the model representing the regulatory net-
work. Like for the data, the user has the choice between XML and plain ASCII.
The model type and the dependencies are additionally to the parameters exported
to the file.

29

30 Chapter 5. Menu Descriptions

Results This menu item exports the statistics of the inference process, i.e. the
computation time, fitness error, key configuration values, and distance to the true
system if specified.

5.1.3 Quit

Quits this JCell session.

5.2 The Data Menu

5.2.1 Create Artificial Data

Opens the window for data creation. Here, the user is able to create artificial time
course data for a selected model, depending on the specified maximum connectivity,
dimensionality, ...
The user has the choice to

• a) create a new model
To create a model, the user has to provide some parameters, which are used
to build a model. This model is then evaluated. for this, it is simulated the
number of time steps given by the user and tested for stability, i.e. whether
the dynamics of the system are chaotic or not. In case that a new model
is to be created, several parameters can be adjusted. First, the type of the
mathematical model has to be specified. Currently, there are five models im-
plemented. Secondly, the dimensionality (number of genes in the system) and
the cardinality (maximum number of connections) can be chosen together with
the maximum number of different runs, i.e. how many systems are evaluated.
Further on, the user has to enter the number of time steps to simulate and the
time step size, i.e. the time difference between two sampling points.

• b) import a reference model
In the case of importing an existing model, the user can specify a file by
browsing the file system. The knockout-checkbox determines whether to create
a time series with corresponding knock-out time series. This forces JCell to
simulate the model knockout each gene and therefore creating (n+1) different
data files.

5.3 The Topology Menu

5.3.1 Edit Graph

Currently, only a rudimentary graph editor is available to model gene dependencies.
However, it is powerful enough to capture all relevant biological interactions between

5.4. The Analysis Menu 31

genes. With the editor, the user can model the influences on the synthesis and on the
degradation of a gene, symbolized by the two lines linked to the circles representing
a gene. For each edge between genes, the user can specify the type of the interaction,
for example activating, inhibiting or unknown. In the last case, the algorithm tries
to determine the relationship.

5.3.2 Map Expression

Data With this function, gene expression data or metabolic concentrations can be
mapped onto pathways that have been either created with the editor or imported
from databases. While mapping the genes, JCell tries to find corresponding genes
in the data set together with its counterpart in the pathway. If the mapping is
successful, the data set is assigned to the pathway and the inference process can
rely on a known topology.

5.3.3 Query Database

To incorporate known biological information into the inference process, the user can
import pathways from databases. There a few databases worldwide, which provide
information about pathways and interactions among system components like gene-
gene interactions.

KEGG

For the KEGG database we have implemented an interface, which enables the user to
browse the data in KEGG and to select a specific pathway. The import shows the list
of all available pathways for the selected organism (homo sapiens). There is a toolbar
on the right of the pathway-window to show the graph of the selected pathway and
to list all genes participating in this system. After importing a pathway, the graph
is shown in the JCell GUI, with all possible inputs highlighted. With importing a
pathway, the mapping function becomes available. If a data set is mapped onto the
imported pathway, only the successfully mapped genes are highlighted.

5.4 The Analysis Menu

5.4.1 Inference

This is the main method of JCell. This menu items starts the inference process. It
will become available if at least one data file was loaded or a data set was created.
The inference process depends on the data files, the Configuration, which can be
loaded or entered via the Inference Settings (see Inference Settings). Additionally,
a Topology – describing the logical dependencies between genes – or a Reference

32 Chapter 5. Menu Descriptions

Model, which represents the true model, i.e. having the correct parameters, can be
loaded to be incorporated in the inference computation.

The Topology is used for building a structure of the regulatory system. Depen-
dencies between genes can be modeled either as activating, inhibiting or unknown.
In the later case, the algorithm tries to infer the relationship. By using a Topology,
researchers can input known information about the system that they want to infer.

The Reference Model is just for verification purposes. It is not used in the
inference computation, but after the process has terminated to calculate statistical
values, for example quality of the solution, positive and negative trues and false,
respectively, and so on.

5.4.2 Exploration

After the inference process has terminated, this method enables the user to explore
the fitness landscape of the solution space. The user has to specify two dimensions of
the solution space to be displayed in a three-dimensional graph. For this method to
work, MatLab has to be installed. The exploration method performs a grid search on
all possible combinations of the two selected dimensions and displays them together
with the achieved fitness value. This is interesting to learn more about the properties
of the underlying problem.

5.5 The Preferences Menu

The options of JCell are divided between the general settings of the application and
the options to be used in the inference process.

5.5.1 Program Settings

General options

The first part of the program settings is shown in the figure below. The user can
specify the maximum number of CPUs to use for the inference computation. Further
on, this option window lets the user enter the details about the network connection
like the proxy settings or whether the inference is run on the local system or on a
remote server.

GUI options

In the second part, so far only the font size of the GUI can be adjusted. The user
can choose between font size 24 or 32.

5.5. The Preferences Menu 33

5.5.2 Inference Settings

Inference Strategy The inference settings are more important. Here, the user
specifies the type of algorithm to use in the inference process. Currently, seven
different strategies are implemented in JCell:

• Standard inference,

• Separated inference,

• BitSet inference,

• Virtual Knockouts,

• Singleton inference,

• Skeletalizing inference

A detailed description of each strategy can be found in section Inference Strate-
gies.

Processor Settings The next option panel shows the configuration for the para-
meter determination algorithms. There are several methods to solve the inference
process. The first type are Evolutionary Algorithms, which are stochastic optimiza-
tion techniques that mimic the natural evolution process of repeated mutation and
selection as proposed by Charles Darwin. They are inspired by the same princi-
ples of natural evolution and have proved to be a powerful tool for solving complex
optimization problems and in particular combinatorial problems. For details see
section Evolutionary Algorithms. The second type are direct heuristics, which can
be selected if they are appropriate for the current model.

Problem Settings The next configuration window lists global and local problem
settings. Here, one can set the maximum number of fitness evaluations, the number
of multi-runs for statistical purposes, the fitness and penalty functions to use, the
number of hidden metabolites in the system, and the boundaries for the parameter
values of the model, if they are known. The local options are only available, if an
inference strategy is selected, which provides a local search... Additional or hidden
metabolites are useful, if there are additional components in the system, which play
intermediate roles or cannot be measured and have therefore be treated separately.
The boundaries of the parameter values represents the range, which is used by the
inference processor, for example an Evolutionary Algorithm, to limit the possible
values of the optimization variables. Otherwise, the combinatorial problem would
take infinitive time or is not likely to find an optimum.

34 Chapter 5. Menu Descriptions

Model Settings The user can specify the type of mathematical model for the
inference process in this configuration window. The figure below shows the settings
for the global and the local search. Local search options are only available, if the
inference strategy allows for a local search.
Currently, there are six mathematical models to simulate regulatory networks im-
plemented:

• Random boolean networks (RBN),

• Weight matrices,

• pseudolinear weight matrices,

• S-Systems,

• H-Systems, and

• arbitrary differential equations.

Detailed descriptions can be found in section Mathematical Models.

Solver Settings For simulation, the model has to be integrated. There are two
solver implemented in JCell:

• Simple Euler-Cauchy solving

• Runge-Kutta fourth order

For both solver types, integration step size can be adjusted. Additionally, an
enhancement for the Runge-Kutta can be selected, which regulates the step size
adaptively.

Get Token

This method is only useful for researchers working on remote computers, which
require to obtain tokens. The Get Token command obtains a token and updates it
regularly.

5.6 The Help Menu

5.6.1 About...

The About menu item shows the credits of the applications.

Chapter 6

Command Line Options

6.0.2 General Syntax

The program JCell has a command line option to run with or without scripts. The
general syntax is:

java -jar jcell.jar {-option parameter} {-...}

The following command starts JCell in interactive mode, displaying the GUI on
the current display:

java -jar jcell.jar

6.0.3 Command Line Options and Parameter

-HELP

This option displays the syntax and to states some comments on the usage of JCell.

-NOGUI

Using the [-NOGUI] option, JCell will be started without displaying the GUI.

-KEEPALIVE

This option forces the application to ask for login information to keep a AFS-token
alive.

-CPU n

This option specifies the maximum number of cpus to be used.

35

36 Chapter 6. Command Line Options

-EMAIL

This option forces JCell to send an email containing the most important information
after finishing the inference process.

-EXPORT

The [-EXPORT] option specifies whether JCell outputs the results to a file.

-OUT file

This file name will be used, if JCell outputs results.

-CONFIG file

With this option, a user can specify a file containing configuration details for the
inference process.

-TOPOLOGY file

This option can be used to include topological information into the inference. This
makes it possible to include known biological information.

-REFERENCE file

This option specifies a file with information about the ”true” system. This feature
can be used to evaluate the efficiency of the implemented algorithms.

-DATA files

files is a list of data files, which are to be incorporated in the computation. This
could be, for example, different knockout data files.

-FORMAT format

The [-FORMAT] option determines the format of the output files. At this moment
the following formats are supported: plain ASCII text and XML.

Acknowledgments

This work was supported by the National Genome Research Network (NGFN) of
the Federal Ministry of Education and Research in Germany under contract number
0313323.

37

38 Chapter 6. Command Line Options

Bibliography

[1] T. Chen, H. L. He, and G. M. Church. Modeling gene expression with differ-
ential equations. In Proceedings of the Pacific Symposium on Biocomputing,
1999.

[2] R. Dawkins. The selfish Gene. Oxford University Press, 1976.

[3] P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of
mRNA expression levels during CNS development and injury. In Proceedings
of the Pacific Symposium on Biocomputing, volume 4, pages 41–52, 1999.

[4] J. H. Holland. Adaption in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Systems. The
University Press of Michigan, Ann Arbor, 1975.

[5] S. A. Kauffman. The Origins of Order. Oxford University Press, New York,
1993.

[6] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[7] B. Lewin. Genes VII. Oxford University Press, 2000.

[8] P. Moscato. On evolution, search, optimization, genetic algorithms and martial
arts: Toward memetic algorithms. Technical Report C3P Report 826, California
Institute of Technology, 1989.

[9] I. Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.

[10] M. A. Savageau. 20 years of S-systems. In E. Voit, editor, Canonical Nonlin-
ear Modeling. S-systems Approach to Understand Complexity, pages 1–44, New
York, 1991. Van Nostrand Reinhold.

[11] H.-P. Schwefel. Numerical optimization of computer models. John Wiley and
Sons Ltd, 1981.

39

40 Bibliography

[12] C. Spieth, F. Streichert, N. Speer, and A. Zell. Iteratively inferring gene regula-
tory networks with virtual knockout experiments. In Proceedings of the 2nd Eu-
ropean Workshop on Evolutionary Bioinformatics (EvoWorkshops 2004), vol-
ume 3005 of LNCS, pages 102–111, 2004.

[13] C. Spieth, F. Streichert, N. Speer, and A. Zell. Optimizing topology and pa-
rameters of gene regulatory network models from time-series experiments. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2004), volume 3102 (Part I) of LNCS, pages 461–470, 2004.

[14] C. Spieth, F. Streichert, N. Speer, and A. Zell. Utilizing an island model for
ea to preserve solution diversity for inferring gene regulatory networks. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004),
pages 146–151, 2004.

[15] D. Thieffry and R. Thomas. Qualitative analysis of gene networks. In Proceed-
ings of the Pacific Symposium on Biocomputing, pages 77–87, 1998.

[16] D. Tominaga, N. Kog, and M. Okamoto. Efficient numeral optimization tech-
nique based on genetic algorithm for inverse problem. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 00), pages 251–
258, 2000.

[17] D. Weaver, C. Workman, and G. Stormo. Modeling regulatory networks with
weight matrices. In Proceedings of the Pacific Symposium on Biocomputing,
volume 4, pages 112–123, 1999.

[18] A. Wuensche. Genomic regulation modeled as a network with basins of at-
traction. In Proceedings of the Pacific Symposium on Biocomputing, volume 3,
pages 89–102, 1998.

