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ABSTRACT

Volume data is usually generated by measuring devices (eg.
CT scanners, MRI scanners), mathematical functions (eg.,
Marschner/Lobb function), or by simulations. While all these
sources typically generate 12bit integer or floating point represen-
tations, commonly used displays are only capable of handling 8bit
gray or color levels. In a typical medical scenario, a 3D scanner
will generate a 12bit dataset, which will be downsampled to an 8bit
per-voxel accuracy. This downsampling is usually achieved by a
linear windowing operation, which maps the active full accuracy
data range of 0 up to 4095 into the interval between 0 and 255.

In this paper, we propose a novel windowing operation that is
based on methods from high dynamic range image mapping. With
this method, the contrast of mapped 8bit volume datasets is signif-
icantly enhanced, in particular if the imaging modality allows for
a high tissue differentiation (eg., MRI). Henceforth, it also allows
better and easier segmentation and classification. We demonstrate
the improved contrast with different error metrics and a perception-
driven image difference to indicate differences between three dif-
ferent high dynamic range operators.

CR Categories: I.4.3 [Enhancement]: Filtering, Gray-scale ma-
nipulation, Sharpening and deblurring; I.4.7 [Feature Measure-
ment]: Feature representation; I.4.8 [Scene Analysis]: Intensity;

keywords: Volume Data, Non-Linear Data Mapping, High Dy-
namic Range Mapping, Windowing

1 INTRODUCTION

There are numerous sources for volumetric data. Among the most
frequent ones are measuring devices – such as CT scanners, MRI
scanners, etc. –, simulations of natural phenomena, or voxelization
and implicit function schemes. Almost all volumetric data sources
have in common that they generate voxel data with a float or in-
teger data type. Very rarely, the original data is only an one-byte
integer, the common data format of many volume rendering sys-
tems. Furthermore, most displays (gray-level or color), as they are
used with virtually every computer, provide only an 8bit data fi-
delity per color channel. Therefore, the float and integer data types
need to be mapped into the smaller data range, if only one color
channel (eg., for gray-level representations) is used. This is in par-
ticular true in most medical applications, where a high dynamic
range display is often prohibitively expensive to be used at every
workplace. Up to now, the common remedy is a linear windowing
operation, which maps a usually interactively selected data range
into 8bits. This, however, means that the data has been downsam-
pled to fit into 8bits, or lower and higher data values are clamped.
Usually, the data is windowed by a combination of downsampling
and clamped, based on standardized settings for specific imaging
protocols.

In this paper, we present a new approach for a volume data win-
dowing operator that employs techniques from high dynamic range
imaging to map volume data from the original voxel size, usually
12bits1, into a target voxel size, usually 8bit. 12bit voxels cannot

13D medical image scanners usually generate data that requires up to
12bits per voxel. While the resulting data range of 0 to 4095 (translating

really be considered representing a truly high dynamic range. Nev-
ertheless, we exploit the algorithms to enhance the contrast in the
8bit representation, but we do not require techniques that specifi-
cally address very high intensities. Note that this approach can also
be used to increase contrast in native 8bit datasets (mapping an 8bit
data range into a different 8bit data range), or in representations
where the full data range is lost or not available for other reasons.

In contrast to the original image tone mapping operators, our op-
erator examines the whole volume dataset and is therefore volumet-
ric in nature. Although we have only explored datasets obtained by
medical 3D scanners, we believe that this method is equally appli-
cable to other scalar data types, such as single and double precision
floats (of possibly truly high dynamic range), since the algorithm is
already based on float numbers.

The operator is based on the Photographic Tone Reproduction
operator (PTR) introduced by Reinhard et al. [16], but required sev-
eral significant functional modifications for medical imaging. Fur-
thermore, the volumetric nature of medical data required different
processing strategies in order to cope with the increased space and
time complexity.

In the remainder of the paper, we will discuss related work and
introduce Reinhard’s PTR operator (Section 2). In Section 3, we
describe our approach and its contributions to extend the PTR op-
erator for volumetric data. Afterwards, we demonstrate the new
windowing operator in Section 4. Finally, we draw conclusions and
provide perspectives for future work.

2 RELATED WORK

Manual or automatic selection of an intensity window is a common
step in the processing pipeline of medical visualization systems.
Windowing is described in [5] and, in more detail, in [14]. Classical
intensity windowing consists of selecting maximum and minimum
intensities of interest. The values in this intensity range, which is
usually defined within the 10 or 12bit pixel depth provided by typ-
ical medical scanners, are then mapped linearly to the gray-scale
resolution of the display device. Thus the acquired medical images
are normally converted to 8bit gray-scale images. Only expensive
specialized display systems are capable of displaying images with
higher pixel depths [4]. Consequently, intensity windowing is de-
scribed as an integral part of a medical visualization system [12].

The linear mapping of pixel or voxel intensities from medical
scanner measurements to 8bit gray values often does not produce
satisfactory contrast. The intensities of certain types of tissue can
be clustered within a very narrow range of values, making them
difficult to distinguish on the display. The standard approach to
improve contrast in images is histogram equalization [11], where
the intensities of an image are transformed such that their distance
in the intensity range depends on the respective weight in the image
histogram. Although this non-linear mapping is based on the image
data, it is a global operation and does not take local features into
account.

More general mapping strategies and further improvements have
been proposed in recent years, in order to maximize the quality ob-
tained when displaying high dynamic range images. In computer
graphics, this windowing process is usually known as tone repro-
duction, tone mapping, or high dynamic range image mapping.

Next to the global tone mapping operators (also known as spa-
tially uniform or single-scale), like the previously referenced his-

CT Hounsfield units into the positive range) is almost fully exploited by CT
data, MRI data require only 9-10bits per voxel.



togram equalization, one can also find local operators (also known
as spatially varying or multi-scale). While global operators perform
the same mapping operation over the whole image, local operators
can act distinctly over different regions in the image providing fur-
ther control over the final result. Since the algorithm that we pro-
pose works on a multi-scale basis, we concentrate here on the most
recent and relevant methods presented on local tone reproduction
operators. A general survey of tone mapping techniques is given
in [8].

Since the early work of Chiu et al. [7], the advantage of analyz-
ing different parts of a high dynamic range image has been proven
to establish a visually satisfactory tone mapping. Many different
local operators for this purpose have been derived afterwards. They
exploit the characteristics of the human visual system so that the
necessary reduction of the dynamic range and its inherent detriment
of accuracy lead to a minimum loss of visible quality. In [10] for
instance, an attenuation of large luminance gradients is performed
to compress these large gradients, while preserving fine details.

A different approach is presented in [9], which is based on the
previous work by Tumblin et al. [18, 19]. In this case an edge-
preserving filter (bilateral filter) is employed to decompose the im-
ages into two layers, a base layer and a detail layer. The contrast is
reduced in the base layer, which contains the large-scale variations,
while visibility is preserved in the detail layer.

Ashikhmin presented a multi-pass strategy for tone reproduc-
tion [3]. In a first stage, an estimation of the local adaptation lu-
minance is performed at each point in the image. Then a com-
pression function is applied to the values obtained during the first
step in order to adapt to the required dynamic range of the dis-
play. In the third and final stage, relevant details are restored by a
post-processing pass over the image. Each of these stages can be
performed for a voxel at a time, thus the whole algorithm can be
computationally combined into one pass.

Another tone mapping operator (PTR) has been proposed by
Reinhard et al, in [16]. Their work is based on a classical method
widely employed in photography to correctly reproduce real world
high dynamic range scenes, called the Zone System [1]. In this
technique, the scene is divided into print zones mapping the values
from pure black to white. A subjective middle brightness region of
the scene is taken and assigned to the middle gray print zone. Next,
luminance readings are taken for light and dark regions to deter-
mine the dynamic range of the scene. It must be noted that the term
dynamic range is used here in the photographic sense, that is, the
ratio of the highest to the lowest luminance regions with visible de-
tails. This is not the typical computer graphics meaning as ratio of
the highest to the lowest scene luminance. Using this method, it is
assured that the maximum possible detail is retained, whenever an
appropriate middle gray is found. Reinhard et al. propose a double
pass strategy composed of an initial luminance mapping and a pos-
terior automatic dodging-and-burning process. The initial mapping
is a spatially uniform transformation where the tonal range of the
output image is set in relation to the log-average luminance of the
scene and a user-specified value for middle gray. During this map-
ping, high luminances are compressed. Then, in a second stage a
local tone reproduction algorithm that applies dodging-and-burning
is employed. This technique mimics the photographic dodging-
and-burning process, where the portions of the print might receive
a different exposure time from the negative, controlling the contrast
on every region. In a similar way, contrast can be controlled locally
over an entire region bounded by large contrast changes. These re-
gions are determined using a center-surround function derived from
the brightness perception model by Blommaert et al. [6].

3 VOLUMETRIC HIGH DYNAMIC RANGE WINDOWING

Until now, tone mapping has only been used for two-dimensional
images. We present a straightforward, but novel variation of this
method suitable to enhance a full volumetric dataset. Since we fo-
cus here on gray-level medical images, we will use the terms lumi-
nance and intensity interchangeably.

We modified the tone mapping method presented by Reinhard et
al. [16] such that it provides a more comprehensible representation
of radiological 2D images. In this course, we have implemented
two variations of the original algorithm. One method performs high
dynamic range windowing on individual slice images of the data
volume. A second, significantly different approach works on the en-
tire volume dataset. Since the volumetric variation performs com-
putationally only somewhat more expensive than the slice-based
version, we will only discuss the volumetric variation. The slice-
based variation can also be seen as the volumetric variation with a
constant z parameter. The visual differences of the volumetric and
slice-based approach are shown in Figure 4e and f.

In Sections 3.1 and 3.2, we will give a summary of the modified
(but largely similar) intensity mapping (which we call zone inten-
sity mapping) and of the extended volumetric dodging-and-burning
approach, based on the formulas presented by Reinhard et al. [16].
Note that while the theoretical basis of the algorithm largely follow
Reinhard’s approach – we use a slightly different and easier nota-
tion –, our implementation varies significantly to achieve the nec-
essary computational performance. Unless noted otherwise, most
of the parameter settings are tuned the same way as suggested by
Reinhard et al. in [16]. In particular a, s, α , and ε are specified
identical, since these values produced good results for medical im-
age data as well. Therefore, we will not specifically mention this
fact in the following sections.

3.1 Zone Intensity Mapping

In a first step the intensity of an input voxel is scaled, so that a cer-
tain mean intensity is achieved. This scaled intensity is obtained by
the computation of the log-average intensity Īw as shown in Equa-
tion 1. Please note that not all volumetric datasets use the full 12bit
data range ([0;4095]). In those cases, the mapping takes only the
actively used bit range (eg., 11bits for [0;2047]).

Īw = exp(
1
N

· ∑
x,y,z

log(δ + Iw(x,y,z))) (1)

In Equation 1, Iw denotes the intensity of the original voxel
(world intensity). N is the total number of voxels, and δ is a small
number used for ensuring that the logarithm in the sum can be com-
puted for possible voxels with intensity 0. The log-average intensity
Īw is computed over all three-dimensions of the volume and repre-
sents the geometric mean of δ + Iw(x,y,z). In contrast to Rein-
hard [16], who focuses on images from photography, we focus on
medical scanned data which consists of significantly larger num-
bers of black (zero) voxels that contain no or only little information.
Using a δ close to zero like Reinhard would overemphasize these
black voxels, hence we use δ = 1.0 and compensate by subtracting
δ = 1.0 from Īw, resulting in Equation 2:

Īw = exp(
1
N

· ∑
x,y,z

log(1+ Iw(x,y,z)))−1 (2)

The voxel intensities are adapted using the calculated log-
average intensity and a target key value a. The key value a deter-
mines the overall brightness of the resulting image. As suggested
in the original article, we have found a key value of 0.18 to produce
good results in most cases [16]. This key value is essentially moti-
vated by the human visual system, which perceives 18% reflectance



Table 1: Computation time (s) of logarithms in Equation 2. An
upper bound of 0 represents the log-computation for every voxel.

Dataset, Resolution Time (s) for Upper Bound
0 10100 10300

CT Head, 512 x 512 x 324 18.15 4.38 4.12
CT Thorax, 512 x 512 x 168 9.49 2.28 2.14
CT Angiography, 512 x 512 x 194 10.81 2.61 2.44
MRI CISS, 512 x 512 x 54 3.01 0.72 0.69
CT Backpack, 512 x 512 x 373 18.93 4.84 4.31

as middle gray. This concept of a “normal key” works also for med-
ical data, since it does usually not exceed 12bit data values (and
hence can be considered neither high nor low key). Each of the
voxels is scaled according to Equation 3.

I(x,y,z) =
a
Īw

· Iw(x,y,z) (3)

Using this adaptation, a comparable mean intensity is achieved
for any given volume dataset. The scaled voxel intensity I(x,y,z) is
used as input for the following steps of the algorithm.

If we use only zone-intensity mapping (without the subsequent
dodging-and-burning), we use Equation 4 with IMAX as the max-
imum intensity found in the original input volume. This operator
provides a general increased intensity and a slightly improved con-
trast.

Ic(x,y,z) =
I(x,y,z)

(

1+ I(x,y,z)
I2
MAX

)

1+ I(x,y,z)
(4)

In terms of computational costs, the computation of the log val-
ues for the individual voxels is the single most expensive opera-
tion. Fortunately, Equation 2 can be reformulated as logarithm
of the product of the argument of the logarithms: log(a · b · c) =
log(a)+ log(b)+ log(c). Albeit, the product over all voxels would
quickly pass the accuracy bounds of 64bit floats, we can still com-
bine a significant number of products, before we are getting close
to this bound. We use 10100 as bound – which is still significantly
below the upper bound of 64bit floats – and gain a speedup of four
to five times compared to the direct implementation of Equation 2,
as it can be seen in Table 1. It also shows that an increase to 10300

as upper bound does not significantly reduce the computing time.

3.2 Volumetric Dodging-and-Burning

The term dodging-and-burning was originally coined in photogra-
phy and relates to a specific exposure technique that lightens or
darkens regions in the final print [2]. While dodging-and-burning
in photography is largely depending on the individual choice of
the photographer, Reinhard’s dodging-and-burning is an automatic
process. Its purpose is essentially to treat regions with similar con-
trast (a mostly homogeneous region) identical. In this process, the
original algorithm tries to identify these regions by computing the
convolution of the intensity with a Gaussian filter of a specific size,
which is called the scale of the filter. The largest filter that still
covers a region, which has a similar contrast, is selected for further
processing.

We have devised a volumetric extension of this dodging-and-
burning operator for the direct application in three-dimensions. Un-
like the original algorithm, it does not work on a per-slice basis.
Rather, both the filter kernels and the convolutions used for deter-
mining the correct scale are defined in 3D.

In contrast to global tone mapping, dodging-and-burning works
on local regions. As mentioned above, in a first step, the size of this

local region is determined for each voxel. This size depends on the
area around the voxel in which no large contrast changes occur.

In order to measure the contrast around a given voxel, we fol-
low Reinhard et al., who used a center-surround function based on
Blommaert’s model for brightness perception [6], which is based
on spherical symmetric Gaussian filter kernels:

Ri(x,y,z,s) = exp

(

− x2 + y2 + z2

(αsi)2

)

(5)

Note that Ri(x,y,z,s) is not yet normalized, which is done im-
plicitly during processing later on. Also, we are using a slightly
different notation than Reinhard et al. uses in Equations 5-8, which
are, however, equivalent, since we iterate s instead of α .

For each of these kernels, the scale at which it is supposed to
operate is given as si. Here s is the so-called center-surround ratio,
which is the factor between two consecutive scales (Note that s0 =
1, s1 = 1.6, s2 = 1.6 · 1.6, etc.). The currently relevant scale is
determined by the index i. We have chosen a fixed parameter value
of α = 1/

√
2 ≈ 0.35 in our experiments to ensure that the smallest

scale essentially covers only the voxel itself. Although this value
can be changed by the user, this fixed α generated satisfying results
for medical datasets.

We can now obtain the three-dimensional convolution of the
intensities of the volume data with these Gaussians, as shown in
Equation 6, whereas we are using only n×n×n filter kernel, where
n is by default 5.

Vi(x,y,z,s) = I(x,y,z)⊗Ri(x,y,z,s) (6)

Since Gaussian kernels are separable, we can compute the con-
volution in three 1D passes, in contrast to one 3D pass [16, 13].
Thus, the computational complexity per-voxel is O(n + n + n), in
contrast to O(n×n×n), resulting in only four-times of the compu-
tational costs for n = 5, instead of 48-times higher.

The computation of the 3D convolutions requires accessing
voxel data from different slices. This significantly degrades mem-
ory access efficiency, resulting in considerably longer processing
times. Unfortunately, not all participating slices fit into the L1-
cache for fast processing. However, the separated convolution
scheme as described above allows a much more compact memory
representation. This way, the actual convolution fits easily into the
L1-cache.

Please note that the frequency-based convolution – suggested by
Reinhard et al. as convolution approach – has various other draw-
backs compared to our truncated Gaussian filtering, since it requires
the full (Fast) Fourier Transformation (FFT) of the data volume into
frequency space. Furthermore, it would require this transformed
data volume at several scales i, which would be prohibitive expen-
sive for volumetric data, not only in computational costs, but also
in memory requirements. Nevertheless, we tested this frequency
space-based convolution and compared the voxel differences to our
n× n× n Gaussian filter convolution, with n = 5,11,21. The dif-
ferences for n = 5 were largely negligible and for n = 21 not de-
tectable. A similar result can be expected, if we compare the Gaus-
sian filter matrix with a full-volume (full-image in 2D) sized filter.
Therefore, we consider this matrix based convolution as an accept-
able and significantly cheaper solution.

Now the center-surround function can be evaluated, which gives
a measure for the activity (dynamics) at a given scale around the
voxel (see Equation 7). Note that the center-surround ratio s is here
already considered a (user specifiable) constant.

acti(x,y,z) =
Vi−1(x,y,z,s)−Vi(x,y,z,s)

2φ a/(si−1)2 +Vi−1(x,y,z,s)
(7)

The algorithm stops at the first scale index i for which
|acti(x,y,z)| is larger than ε = 0.05, and picks the previous scale



index i−1. Choosing the respective convolution result Vi−1, a new
intensity for the given voxel can be computed according to Equa-
tion 8. The operator specified in this equation overall provides a
compression of high intensities. While this is not necessary for
most medical image data, it can be used to compensate very high
intensities caused by metal artifacts in CT data (eg., by metal tooth
fillings in Fig. 1).

Ic(x,y,z) =
I(x,y,z)

1+Vi−1(x,y,z,s)
(8)

A further improvement of the intensity mapping in Equation 8
is achieved by adapting the computed output Ic to the maximum
intensity (IMAX ) that is present in the volume (Equation 9), similar
to Equation 4 of the zone intensity mapping.

(a) (b)

Figure 1: Metal artifacts in CT Head dataset. (a) Linearly mapped
slice, (b) y-log-scale gradient magnitude (top) and voxel value his-
togram (bottom) of slice. The high intensities of the metal artifacts
can be seen on the far right end of the histogram.

Ic(x,y,z) =
I(x,y,z)

(

1+
I(x,y,z)
I2
MAX

)

1+Vi−1(x,y,z,s)
(9)

Since Ic(x,y,z) generates intensities in the [0;1] interval, it must
be scaled into the target 8bit range by scaling (and truncating) it
with (2b −1) with b = 8.

The described method is a local tone mapping operator, because
the scale index i that is used for the actual mapping computation
in Equation 9 is computed separately for every voxel and the re-
spective filter has a limited local support. This has of course conse-
quences for the data analysis, classification, and rendering, that we
are going to discuss in Section 4.3.

4 RESULTS

The major achievement of volumetric high dynamic range (VHDR)
windowing is a contrast enhancement in comparison to a standard
linear windowing operation. In this section, we will discuss the
use of the new windowing operators. Although we implemented
also a slice-based variation of this operator, we will focus only on
the volumetric version. While the computational costs per-voxel of
the slice-based version are about 30% lower than of the volumetric
variation (O(n + n + n) vs. O(n + n)), the latter takes into account
the full spatial information of the voxel surroundings.

In the course of this section, we will discuss Computed Tomogra-
phy (CT) and Magnetic Resonance Imaging (MRI) as two different
imaging modalities. Unfortunately, no ultrasound or PET datasets
were available at the time of the experiments. Hence, we cannot
provide information on these modalities.

4.1 Computed Tomography

Figure 6a-c shows the same slice from a CT scan of a thorax, show-
ing the lungs, the heart, the trachea, parts of the backbone, the ribs,
and the sternum. In Figure 6a, the full active bit range of 12bits is
mapped linearly to 8bits. However, the full data range is not used
by the CT dataset; all voxels are located in the data value range of
[0;2700] (or [−1023;1677] Hounsfield units (HU)). Furthermore,
an upper interval of 1000 HU does not contain useful information.
If we add a clip operation to remove unused voxel value ranges at
the windowing operation, the upper end (in this case) of the new
value range will show a significant increase in the histogram, sug-
gesting that there is a material interface or another feature.

In contrast, VHDR windowing provides an adaptive correction
of the voxel values (see Fig. 6b), depending on the overall inten-
sity of the image and a correction that takes into account the lo-
cal neighborhood (dodging-and-burning, see Section 3.2). At first
glance, we can see that the overall image is brighter than the one
with linear mapping. Pixel by pixel comparison actually revealed
that the contrast between darker tissue areas and brighter bone ar-
eas increased. Figure 6c exposes this difference between linear and
the VHDR windowing operator. While there is a general shift of
intensity, higher differences are in areas with a high contrast (eg.,
between bone and dark tissue). This is of course what could be ex-
pected, since these areas are exactly those which are supposed to be
enhanced by the method.

The second examined CT dataset is a scan of a backpack filled
with a variety of objects. The dataset occupies the full 12bit range
of [0;4095] (or [−1023;3071] Hounsfield units (HU)), whereas the
metal artifacts caused by some of the objects ensure a rather dark
intensity distribution for most objects (Fig. 6j). With VHDR win-
dowing, the intensity contrast is significantly improved and con-
siderably more structures – which were virtually invisible before –
become visible (Fig. 6k). Figure 6l shows the voxels of one slice
where the intensity changed most by our operator. Note that for
this VHDR windowing, the key value a has been changed to 0.05
(default is a = 0.18).

4.2 Magnetic Resonance Imaging

(a) (b)

Figure 2: Histograms of 3D CISS MRI scan of a head. (a) shows the
standard histogram of the (stretched) linear (top) and VHDR win-
dowing (bottom) result and (b) shows the respective gradient mag-
nitude histograms. The windowing results are shown in Figure 6d-e.

Our second examined modality is MRI. In contrast to CT, MRI
provides a whole zoo of different image acquisition protocols that
generate image data focusing on different organs and tissue types.
Furthermore, MRI generally provides more material (or tissue) dif-
ferentiation than CT, thus making it an imaging modality with a
good potential for contrast improvements. However, the differ-
ent MRI image acquisition protocols generate data with limited 9-



10bits per voxel accuracy. Therefore, the data has a smaller dy-
namic range than datasets from CT.

In our first example, we examine a 3D CISS MRI imaging se-
quence, which is a T2-weighted protocol that emphasizes on the
cerebro spinal fluid (CSF) filled cavities of the head. In contrast to
our previous CT dataset, this MRI dataset has only 10 active bits
and only the active value interval of [0;850]. Hence, we only map
10bits to 8bits for all windowing methods (Fig. 6d-e).

Figure 2 shows the standard (voxel value) and gradient magni-
tude histograms. We stretched the histograms of the linear window-
ing (top histograms) to the full range, thus allowing an easier com-
parison. Overall, we can observe that the histograms of the VHDR
windowing (bottom) are less affected by a small number of high
intensity noise values (upper/right ends of linear histograms) and
relevant regions have a smoother development of histogram values.
In particular peaks are more spread out, thus enabling a better data
analysis, segmentation, or classification of the data.

Also with the 3D CISS MRI sequence, the contrast differences
are quite obvious between VHDR windowing and the linear win-
dowing (Fig. 6f). Beside the general brightness shift between the
dark background and the head, edges are again emphasized, since
they represent high contrast differences. We can also observe the
enhanced intensity of the soft brain tissue (gray and white matter)
after VHDR windowing.

In our last example, we examine another MRI dataset. This
dataset was acquired by T1-weighted flash sequence that mapped
CSF-filled cavities to black (Fig. 6g-i). Similar to the previous 3D
CISS MRI dataset, only 9bits are active in a voxel value interval of
[0;350], hence only 9bits are mapped into 8bits by all windowing
operators (Fig. 6g-i).

Again, we can observe a general brightness shift between the
VHDR and linear windowing, and in addition a contrast enhance-
ment on the edges and the enhanced soft brain tissue (Fig. 6h) in-
tensity.

(a) (b)

Figure 3: Image slice from MRI CISS dataset. (a) Original 8bit image
slice, (b) VHDR enhanced 8bit image slice.

An interesting application of VHDR is contrast enhancement in
low-fidelity datasets. Figure 3 demonstrates an example, where an-
other 3D CISS MRI sequence dataset is only available in 8bit fi-
delity. Due to the low voxel fidelity, the appearance of the MRI
image slice is very dark (Fig. 3a). After VHDR windowing (from
8bit to 8bit), the contrast is significantly enhanced (Fig. 3b), while
the noise level is kept at a much lower level than with histogram
equalization (see Fig. 5 for the MRI CISS example).

4.3 Discussion

In the past two sections, we presented the application of volumetric
high dynamic range (VHDR) windowing to three different volu-
metric datasets of different modalities. We could observe a general
contrast enhancement with VHDR windowing methods, compared
to linear windowing. At the same time however, VHDR windowing
can also increase the noise level, if high-intensity noise is present,

Table 2: Timings for the various windowing methods on five different
volume datasets.

Dataset Windowing Method Time (s)
CT Head Linear 2.94
512 x 512 x 324 Zone Intensity 4.27

VHDR Windowing 30.49
CT Thorax Linear 0.17
512 x 512 x 168 Zone Intensity 0.21

VHDR Windowing 16.31
CT Angiography Linear 0.57
512 x 512 x 194 Zone Intensity 0.98

VHDR Windowing 12.49
MRI CISS Linear 0.06
512 x 512 x 54 Zone Intensity 0.09

VHDR Windowing 7.09
CT Backpack Linear 1.06
512 x 512 x 373 Zone Intensity 2.07

VHDR Windowing 31.95

eg., with metal artifacts in CT data. For most practical aspects
though, this increased artifact noise is negligible.

The increased contrast quality does not come for free; the full
accuracy datasets need to be mapped using the linear or VHDR
windowing operations in a pre-process. Not surprisingly, the re-
quired time depends on the size of the dataset and on the chosen
windowing methods. In our experiments (see Table 2) with the var-
ious datasets discussed above, we measured timings between less
than a second for linear windowing of the smallest datasets and up
to 32 seconds for the full volumetric HDR windowing of the largest
dataset. All measurements were performed on a PC, equipped with
2GB of main memory and an Intel P4 CPU running at 3GHz. We
consider the increased computational costs for VHDR windowing
as modest and easily affordable for the increased quality.

The VHDR windowing operators logically perform two process-
ing passes to enhance the contrast in the datasets (in the actual im-
plementation, both passes are integrated into one processing pass).
While the first pass uses a global, logarithmic scaling of the datasets
– thus transforming the histogram of the data –, the second pass ap-
plies a filter of the local voxel region around every voxel. This how-
ever, takes into account the local spatial neighborhood of the dataset
and not only their voxel values, resulting in a spatially varying op-
eration. As a consequence, previously available mapping methods
based on the voxel value (eg., transfer functions) will affect a differ-
ent set of voxels. Fortunately, the number of these voxels is small
and they almost always belong to an edge area with a now increased
contrast. Most changes have been introduced by the global zone in-
tensity mapping, thus the transfer functions – based on the original
histogram – can be adapted to the new voxel values, according to
the transformation of the histogram. The changes introduced by the
local dodging-and-burning are limited to areas with high contrast
(edges) and only emphasize the material interfaces (see Fig. 4a-d).
Therefore, the consequences for a previously known classification
are manageable.

Figure 4c-f shows the visual differences based on a visual dif-
ference predictor (VDP). Figure 4e-f also indicates the differences
between the slice-based and the volumetric HDR windowing oper-
ator.

We also compared the performance of VHDR windowing with
other high dynamic range operators. In particular, we also tested
Ashikhmin’s tone reproduction operator [3] and Durand et al.’s op-
erator that is based on bilateral filtering [9]. As it turns out, both
operators are less suited for windowing than Reinhard et al.’s PTR
operator [16]. Both operators in particular focus on high dynamic
range images with high image luminances, which are not really
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Figure 4: Visual differences between different windowing operators
for CT Thorax (a,c,e) and 3D CISS MRI (b,d,f) datasets. The first
row shows the relative intensity between zone intensity mapping and
VHDR windowing (images are darkened for printing contrast). The
other rows show a percepted intensity difference between zone inten-
sity mapping and VHDR windowing (2nd row), and between slice-
based HDR and VHDR windowing (3rd row) based on a Visual Differ-
ence Predictor [15]. (g) shows its color-coded scale of the detection
probability.

present in medical image data. Figure 5c and d shows absolute in-
tensity differences mapped to a hue colormap (blue no difference,
red large differences). Most differences are located on the contrast
edges of the dataset, with some differences also in the higher inten-
sity areas of the CSF-filled ventricular system. This is not very sur-
prising for Durand’s approach, since it is based on edge-preserving
bilateral filtering. Our experience indicates that an operator which
focuses more on the intermediate luminance values, like PTR, per-
forms better for our application. Furthermore, Ashikhmin’s oper-
ator expects real luminance values for processing which cannot be
substituted by the intensity values of the voxels, as it can be done
with PTR. Finally, both operators are more costly to compute. Es-
pecially Durand’s bilateral filtering requires many costly exp oper-
ations, which considerably slow the algorithm down.

(a) (b)

(c) (d)

Figure 5: Other windowing operator applied to the MRI CISS dataset.
(a) Original image slice, (b) histogram equalized image slice with in-
creased background noise. (c) Absolute intensity difference between
VHDR windowing (Fig. 6e) and after Ashikhmin’s tone reproduction
operator and (d) Durand’s bilateral filtering.

4.4 Error Metrics

An important question is how we can measure if our VHDR win-
dowing method is actually improving the image quality compared
to the traditional linear windowing. The question which metric to
use is quite complex. While most high dynamic range mapping
methods can be evaluated by esthetics (“Is the mapped image more
pleasing? Does it convey the information?”) or psycho-physical
metrics, this is not straight-forward for volumetric medical imaging
datasets. Linear windowing translates the intensities of the origi-
nal data directly into the lower range. A simple error metric based
on the normalized intensities would not detect contrast improve-
ments achieved by our algorithms. Therefore, we decided to use an
entropy-based metric, assuming that VHDR windowing will main-
tain more information of the original data than linear windowing.
The entropy itself is calculated by H = −∑

i
(pi · log2(pi)), with pi

as the probability of intensity i in a voxel.
Table 3 shows the results of the measured entropy of five datasets

with our three different windowing methods, compared to the orig-
inal volume dataset. For all three datasets, the entropy is monotoni-
cally increasing with the quality of the windowing method. Gen-
erally, the entropy of an image would be maximized in a com-
pletely (histogram) equalized dataset, but this would in particular
enhance the low intensity background noise, since a large number
of background voxels occupies only a small number of low inten-
sity histogram buckets. Figure 5a and b shows a histogram equal-
ized slice from the MRI CISS dataset with such an increased noise
level, demonstrating why it is not suitable for the enhancement of
scanned volume data. This example also clearly shows that the
entropy-based metric is not a perfectly suitable metric. VHDR does
some kind of equalization of the voxel values, since it redistributes
the intensity values to enhance the intensity range representation.

As an alternative, we also adopted a contrast measuring metric
that is used in multimedia texture analysis [17]. This contrast met-
ric, described in Equation 10, represents the overall contrast in a



Table 3: Computed entropy for all windowing methods.
Dataset Wind’ Method Entropy H Contrast C
CT Head Original 12bits 9.81 30331.20
512 x 512 x 324 Linear 5.97 117.58

Zone Intensity 6.33 148.94
VHDR Wind’ 6.52 266.77

CT Thorax Original 12bits 9.76 2772.43
512 x 512 x 168 Linear 5.76 10.92

Zone Intensity 6.33 21.28
VHDR Wind’ 6.35 25.34

CT Angiography Original 12bits 9.42 5126.89
512 x 512 x 194 Linear 5.41 20.01

Zone Intensity 6.29 30.98
VHDR Wind’ 6.35 43.69

MRI CISS Original 10bits 8.01 921.27
512 x 512 x 54 Linear 5.02 14.50

Zone Intensity 6.92 123.91
VHDR Wind’ 7.00 208.55

CT Backpack Original 12bits 4.55 8637.52
512 x 512 x 373 Linear 2.43 33.44

Zone Intensity 4.15 584.02
VHDR Wind’ 4.31 881.05

data volume. g[i, j] represents the gray-level co-occurence matrix,
which enumerates the voxels with value i that have a neighbor with
voxel value j, with H as the maximum voxel value of the respec-
tive histogram (eg., 255 for 8bit datasets), and N as the number of
voxels. Note, that g[i, j] 6= g[ j, i], since different voxels have differ-
ent neighborhoods. Table 3 provides also the results of the contrast
metric for the different datasets. The significantly higher contrast
values for the original dataset are due to the higher voxel depth of
12bits (10bits).

C = ∑
i=0..H

∑
j=0..H

(i− j)2g[i, j]
N

(10)

Similar to the entropy metric, the calculated contrast C for the ex-
amined datasets is always significantly higher for the VHDR win-
dowing methods, indicating an improved contrast.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a new windowing operator that is based
on a recently introduced tone mapping method. This operator can
map any data item size (eg., 12bit integer values) into any other data
item size (eg., 8bit integer values) and optimizes its range represen-
tation to enhance contrast. The operator can also be used to map
8bit data into an 8bit data range, in order to enhance the intensity
contrast.

We evaluated the performance of our operator with an entropy
metric and with a contrast-based metric from video-encoding. Both
metrics clearly showed a significant improvement with our opera-
tor. Furthermore, we employed a perception-driven visual differ-
ence predictor to expose areas of perceptually largest differences
between different HDR operators.

Still, more research needs to be done to consider psycho-physical
aspects of the human visual systems into an error metric. Another
aspect of future work will look into the application of VHDR win-
dowing for other data domains in medicine (eg., DTI datasets) or
scientific visualization (eg., CFD). We believe that the methodol-
ogy can also help here to map high dynamic range data into a more
feasible range.
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Figure 6: Dataset overview: The left column shows the result from the linear windowing (a,d,g,j), the middle columns shows the results from
the volumetric high dynamic range (VHDR) windowing (b,e,h,k), and the right column shows the relative voxel intensity difference between
linear and VHDR windowing (c,f,i,l), where the occurring difference is mapped to the full hue range (blue no difference, red largest difference).
The top row shows the CT thorax, the second row shows the MRI CISS dataset, the third row shows a dataset from an MRI flash dataset, and
the bottom row shows results for the CT backpack dataset. The actual slice size of the flash MRI dataset is smaller, than the image size in
Fig. 6g-i. This can be seen on the left and right side of the images.


