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Abstract

This thesis addresses the problem of finding robust, fast andprecise learning methods for
noisy, incomplete high-dimensional biological data by means of so-called kernel meth-
ods. Kernel methods are at the heart of many modern machine learning techniques. The
intuitive idea behind kernel methods is that the data are nonlinearly mapped into a higher
dimensional feature space, related to a nonlinear kernel function. In general, such a pro-
cedure has the advantage that inseparable data becomes linearly separable. A kernel func-
tion represents a computational trick, which makes it possible to represent linear patterns
efficiently in high–dimensional spaces, to ensure adequaterepresentational power.

We begin with a short overview over the basic theoretical concepts, which are neces-
sary to understand the kernel-based algorithms employed inthis work. We present some
elements of statistical learning and regularization theory and introduce the concept of
kernel functions. Then, we derive the Support Vector Machine (SVM) algorithm from
Tikhonov regularization and geometric perspectives.

After this we turn our attention to applications of kernel methods for some problems
of high-dimensional biological data: To develop an accurate method for the classification
of (G-Protein Coupled receptors) GPCRs families, especially at the sub-subfamily level,
where we have a low number of protein sequences, we develop a new approach of over-
sampling,SyntheticProteinSequenceOversampling (SPSO), in which the minority class
in the data space is oversampled by creating synthetic protein sequences, considering the
distribution of the minor and major classes. SPSO can be usedfor protein classification
problems and remote homology detection, where classifiers must detect a remote relation
between unknown sequence and training data with an imbalance problem.

Another problem from neurobiology of bats, which is surveyed in the content of this
thesis, is the pattern recognition and classification of biosonar signals by means of kernel
methods. We study the classification of biosonar signals as an example of random process
signals which contain local similarities. Inspired by the solutions for remote homology
detection in protein families, we suggest a similar kernel to string kernels which measures
the similarity of two time series. The more time series sharesimilar subsequences, the
more similar they are. We also implement a more general kernel, which considers warping
in the subsequences. It measures the whole similarities of all warped non contiguous sub-
sequences of the two time series, independent of their positions. Furthermore, having a set
of the kernels for similarity extraction in time-series fordifferent sizes of subsequences,
we find the optimal linear combination of kernels. We then usethose kernels directly in

3



4

a SVM-based classifier. The results show that those kernels allow for a very reliable dis-
crimination of reflected sonar echoes from different objects. We also present an algorithm
based on gradient boosting for biosonar data classification. We present two kinds of base
learners for the gradient boosting: Ordinary Least Squares(OLS) and kernel-based base
learners. The main point of the signal preprocessing in our method, for biosonar classifi-
cation, is using a filter bank like that of the hearing system of bats. With this filter bank,
the one-dimensional sonar echoes are converted into shorter length but more informative
multi-dimensional signals. We get efficient and accurate results with the newly proposed
kernel based boosting method.

As a last application of kernel methods in this thesis, we deal with classification of bi-
ological data, having additive unknown noise. Activity profiles in the Forced Swimming
Test (FST) for animal behavior classification are examples of those signals. We imple-
ment FIR-based classifiers for animal behavior classification in which a Finite Impulse
Response (FIR) filter is used to filter out the additive noise from activity profiles. The
parameters of the FIR filter are obtained via maximizing the accuracy of a classifier that
tries to make a discrimination between two classes of the activity profiles. Our proposed
behavior classification method provides a reliable discrimination of different classes of
antidepressant drugs (imipramine and desipramine) administered to rats versus a vehicle-
treated group.



Zusammenfassung

Diese Disseration befasst sich mit dem Problem, robuste, schnelle und pr̈azise Lernmetho-
den f̈ur verrauschte und unvollständige hochdimensionale biologische Daten durch Kern-
methoden (engl. kernel methods) zu finden. Die intuitive Idee hinter diesen Verfahren ist,
dass die Daten mithilfe nicht-linearer Kernoperatoren in einen ḧoherdimensionalen Merk-
malsraum eingebettet werden. Ein Kernoperator stellt einen rechnerischen Trick dar, der
es erm̈oglicht, lineare Muster wirkungsvoll in hochdimensionalen Räumen abzubilden.

Zu Beginn soll ein kurzer̈Uberblick über die grundlegenden theoretischen Konzepte
der kernbasierten Algorithmen gegeben werden, die in dieser Arbeit zur Anwendung
kommen. Darin werden auch einige Elemente des statistischen Lernens und der Reg-
ularisierungstheorie sowie das Konzept der Kernoperatoren vorgestellt. Anschließend
wird die Support-Vektor-Maschine, d. h., der SVM-Algorithmus, aus der Tikhonov-
Regulasierung und geometrischen Perspektiven hergeleitet.

Nach dieser Einf̈uhrung liegt das Augenmerk auf Anwendungen von Kernmethoden
für einige Probleme mit hochdimensionalen biologischen Daten: Es wird eine genaue
Methode f̈ur die Klassifizierung von G-Protein-gekoppelten Rezeptor Familien, (eng. G-
Protein Coupled Receptor ,GPCR), entwickelt, insbesondere für die Unterunterfamilie,
in der nur eine geringe Anzahl von Proteinsequenzen zur Verfügung steht. Dazu wird
ein neuer Ansatz zur̈Uberabtastung der Stichprobe vorgestellt, dieÜberabtastung syn-
thetischer Proteinsequenzen (engl. Synthetic Protein Sequence Oversampling, SPSO).
Die Minderheitenklasse im Datenraum wird dabei unter Berücksichtigung der Verteilung
der Mehr- und Minderheitenklassenüberm̈aßig abgetastet, indem SPSO künstliche Pro-
teinsequenzen erzeugt. SPSO kann für Proteinklassifikationsprobleme und zur Erkennung
entfernter Verwandtschaften (engl. remote homology) genutzt werden, wobei Klassifika-
toren eine entfernte Homologie zwischen einer unbekanntenSequenz und Trainingsdaten
in ungleich verteilten Stichproben erkennen müssen.

Eine weitere Fragestellung, die in dieser Arbeit untersucht wird, stellt die Anwen-
dung von Kernmethoden zur Mustererkennung und Klassifikation von Biosonarsignalen,
die in der Neurobiologie der Fledermäuse bedeutsam sind, dar. Die Klassifikation der
Biosonarsignale wird als Beispiel für zuf̈allige Prozesssignale, die lokalëAhnlichkeit
aufweisen, angeführt.

Inspiriert durch die Ergebnisse für die Detektion entfernter Homologien in Protein-
familien empfiehlt sich ein den Kernoperatoren für Zeichenketten̈ahnlicher Kernoperator,
der dieÄhnlichkeit zweier Zeitreihen misst. Zwei Zeitreihenähneln sich umso mehr, je
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mehrähnliche Teilsequenzen sie aufweisen. Weiterhin wird ein allgemeinerer Kernoper-
ator implementiert, der Verzerrungen der Teilsequenzen berücksichtigt. Dieser misst die
gesamteÄhnlichkeit aller verzerrten, nicht zusammenhängenden Teilsequenzen der bei-
den Zeitreihen unabhängig von ihren Positionen. Darüber hinaus l̈asst sich die optimale
Linearkombination von Kernoperatoren identifizieren, wenn eine Menge von Kernopera-
toren zurÄhnlichkeitsextraktion in Zeitreihen verschiedener Größen von Teilsequenzen
zur Verfügung steht.

Diese Kernoperatoren werden dann direkt in einem SVM-basierten Klassifikator ver-
wendet. Die Ergebnisse zeigen, dass diese Kernel eine sehr zuverl̈assige Unterschei-
dung reflektierter Sonarechos verschiedener Objekte erlauben. Zur Klassifikation von
Biosonardaten wird ein auf Gradientverstärkung (engl. gradient boosting) basierender
Klassifikationsalgorithmus vorgestellt. Zwei Arten von Basislernverfahren f̈ur die Gradi-
entversẗarkung werden angewendet: Die Methode der gewöhnlichen kleinsten Quadrate
(engl. Ordinary Least Squares, OLS) und kernbasierte Lernverfahren. Der Schwerpunkt
der hier dargelegten Methode zur Signalvorverarbeitung zum Zwecke der Biosonarklas-
sifikation besteht in der Anwendung einer Filterbank in Analogie zum Ḧorsystem der
Flederm̈ause.

Mit dieser Filterbank werden die eindimensionalen Sonarechos in ihrer Dauer verk̈urzt,
aber in informativere multidimensionale Signale konvertiert. So lassen sich effizient
genaue Ergebnisse mit dem neu vorgeschlagenen Kernoperator, der auf der Verstärkungs-
methode (engl. boosting method) basiert, gewinnen.

Abschließend werden die Kernmethoden zur Klassifikation biologischer Daten einge-
setzt, die ein unbekanntes additives Rauschen aufweisen. Ein Beispiel solcher Signale
sind Aktivitätsprofile im erzwungenen Schwimmtest (engl. Forced Swimming Test, FST)
für die Klassifikation des Tierverhaltens. Auf beschränkten Impulsantworten (engl. Fi-
nite Impulse Response, FIR) basierend, werden in dieser Arbeit Klassifikatoren f̈ur das
Tierverhalten implementiert, in denen das additive Rauschen durch einen Filter f̈ur be-
schr̈ankte Impulsantworten (FIR-Filter) von den Aktivitätsprofilen entfernt wird. Die
Parameter der FIR-Filter werden ermittelt, indem die Genauigkeit maximiert wird, mit
der ein Klassifikator zwei Klassen des Aktivitätsprofiles zu separieren versucht. Die
hier vorgestellte Methode zur Klassifikation von Verhaltensmustern f̈uhrt zu einer zu-
verlässigen Unterscheidung verschiedener Klassen von Antidepressiva (Imipramine und
Desipramine).
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Chapter 1

Introduction

1.1 Motivation

1.1.1 High-Dimensional Biological Data

The emergence of various new application domains, such as bioinformatics, underscores
the need for analyzing high-dimensional data, specially when there are more variables (or
features) than observations. In a gene expression microarray data set, there could be tens
or hundreds of dimensions showing the expression level of exons or genes, each of which
corresponds to an experimental condition, or in biosonar data classification, there are a
limited number of echoes with thousands of data points to be classified.

In high-dimensional data analysis, one is often facing the problem that real data is
noisy, and in many cases, features that are not informative for understanding the data
structure itself or for performing later tasks, such as clustering, classification and regres-
sion. The combination of noise and very high dimensions (> 1000) presents challenges
for data analysis and calls for efficient machine learning methods that take the inherent
specifications and structure of natural data into account.

Mathematically, the learning problem can be described as finding a general rule or
estimating a functional dependency that explains data given only a sample of limited size,
and the learning process is a process of choosing an appropriate function from a given set
of functions.

In this thesis, the main task for high-dimensional biological data is to find robust,
fast and precise learning methods for noisy and incomplete data while considering the
structure and dimension of the data.

The range of natural science topics addressed in this thesisis relatively broad and
touches different areas from natural science such as genomebiology, neuroscience and
neurophysiology. We here present a brief overview over the main problem of each of
them:

Imbalance Problem in Protein Data ClassificationMany classifiers are designed with
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14 Chapter 1. Introduction

the assumption of well-balanced data sets. But in real problems, like protein classifica-
tion and remote homology detection, when using binary classifiers like support vector
machines (SVM) and kernel methods, we are facing imbalanceddata in which we have
a low number of protein sequences as positive data (minor class) compared with nega-
tive data (major class). With imbalanced data, the classifiers tend to classify almost all
instances as negative. There have been two types of solutions for coping with imbalanced
data sets. The first type, as exemplified by different forms ofre-sampling techniques, tries
to increase the number of minor class examples (oversampling) or decrease the number of
major class examples (undersampling) in different ways. The second type adjusts the cost
of error or decision thresholds in classification for imbalanced data and tries to control the
sensitivity of the classifier [100, 69, 68, 131].

G-protein coupled receptors (GPCRs) are a large superfamily of integral membrane
proteins that transduce signals across the cell membrane. Because of that important prop-
erty and other physiological roles undertaken by the GPCR family, they have been an
important target of therapeutic drugs. The function of manyGPCRs is not known and
accurate classification of GPCRs can help us to predict their function. In our study we
want to classify GPCRs at the subfamily and sub-subfamily level. At this level in some
sub-subfamilies, we have only a very low number of protein sequences as positive data
(minor class) compared with others (major class). Then in this problem we are not only
faced with high-dimensional protein sequences but also with the imbalance number of
proteins in each class.

Biosonar Data ClassificationBats can distinguish objects by emitting a series of ultra-
sound signals (chirps) that generally sweep covering frequencies from 22 to 100 kHz. To
unravel the mechanism of echolocation, inspired by the bat biosonar system, researchers
have utilized biosonar head and ultrasonic sensing techniques similar to that of bats for
mobile robots (biomimetic robots) and tried to classify different textures and landmarks
through their received echo signals [91, 82]. From our experiments and the work of other
researchers [91, 82, 97, 48], we conclude that finding robustfeature for classification is
not trivial. For example, the orientation of trees as landmarks can result in large changes
in the reflected echoes. Hence, in this case the only temporalbased features can be in-
efficient, and the local temporal similarities between different echoes of one object as
an indication of its texture is a significant issue that should be considered. Here, the
reflected echo contains subsequence similarities, at random positions, representing the
texture of an object (tree). Machine learning based approaches capable of extracting the
sub-similarities are therefore an option to address this problem.

Animal Behavior classification in Forced Swimming TestThe Forced Swimming Test
(FST) is a behavioral test used frequently to evaluate the potential efficacy of drugs affect-
ing the central nervous system (CNS) in rats or mice [104]. In this experiment, rats are
exposed to a 15-min pretest swim period and followed the nextday by a 5-min test swim.
Immersion of rodents in water for an extended period of time produces a characteristic
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behavior called immobility, in which the rat makes only those movements necessary to
keep its head above the water. When antidepressant drugs are administered between the
pretest and test periods, usually three times within 24 hours, the behavioral immobility is
selectively decreased [24]. Depending on the type of drug, rats show a mixed behavior of
activities such as immobility, struggling/climbing (the rat tries to escape from the water)
and swimming. Researchers have tried to conclude the effect of drugs from the above
three states (immobile, struggling and swimming). Typically, tricyclic antidepressants
and drugs with selective effects on noradrenergic transmission increase struggling/climb-
ing behavior, while selective serotonin reuptake inhibitors increase swimming behavior
versus the control group [42, 36, 37]. In an automated classification method, we aim
to classify animals treated with known antidepressants andthe control group. However,
our experiments show that the response of the rats to drugs istoo complex to only con-
sider those states (immobile, struggling and swimming) as indicator of the drug efficacy.
Furthermore, those activity profiles (signals) inherentlycontain undesired and interfer-
ence noise that should be removed before feature extractionand classification. Thereby,
a learning method which allows the removal of the noise seemsto be well suited.

1.1.2 Kernel Methods

The success of machine learning methods depends on their ability to solve pattern recog-
nition and regression problems. The kernel methodology, founded on strong theoretical
grounds, provides a powerful and unified framework for many disciplines. The intuitive
idea behind kernel methods is that the data are nonlinearly mapped into a higher dimen-
sional feature space, related to a nonlinear kernel function. In general, such a procedure
has the advantage that data, which is linearly inseparable in the original space may be-
come linearly separable in feature space. A kernel functionrepresents a computational
trick, which makes it possible to represent linear patternsefficiently in high–dimensional
spaces, to ensure adequate representational power. It can also be considered as a measure
of similarity; different kernels correspond to different notions of similarity. The structure
of the data and our knowledge of the particular type of data suggest a way of comparison
that we consider in our kernel function.

Any kernel methods solution comprises two parts: a module that performs the map-
ping into the feature space and a learning algorithm, designed to discover linear pattern
in that space. The first class of methods that implemented thetheory were Support Vec-
tor Machines (SVMs). They are general approximators (depending on the kernel) for
the (nonlinear) relation that underlies the given sample pairs. Their successful perfor-
mance have been drawing the attention of many researchers. Among other paradigms
(like neural networks, Gaussian Processes) they became a worthy competitive with strong
capabilities. They are conceptually simple, very transparent, and less sensitive to high
input dimensionality.
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1.2 Own Contributions

Since we believe that kernel methods offer a good possibility to tackle the above described
problems, the main goal of this thesis is to find a practical way to extend and improve
those methods for the problems at hand. As kernels methods created a new playground
with room for extensions and improvements, this thesis is anattempt to contribute in that
matter. Thereby, in summary we see our contributions to the individual topics as follows:

Imbalanced Problem in Protein DataTo increase the accuracy of remote homology de-
tection by discriminative methods, researchers also focused on finding new kernels, which
measure the similarity between sequences, as main part of SVM based classifiers. So, af-
ter choosing an appropriate feature space, and representing each sequence as a vector in
that space, one takes the inner product between these vector-space representations. For
GPCRs classification, we use the local alignment kernel (LA kernel) that has been shown
to have better performance compared with other previously suggested kernels for remote
homology detection when applied to the standard SCOP test set[64, 109]. It represents
a modification of the Smith-Waterman score to incorporate sub-optimal alignments by
computing the sum (instead of the maximum) over all possiblealignments.

In this work, we propose an oversampling technique for protein sequences.Synthetic
ProteinSequenceOversampling (SPSO) involves creating synthetic protein sequences of
the minor class, considering the distribution of that classand also of the major class, and
it operates in data space instead of feature space. We show that in our method the infor-
mation of the minor class increases. To show the efficiency ofour methods, we use the
G-protein coupled receptors (GPCRs) family and create artificial data based on it and then
use our algorithm for both real and artificial data. Furthermore, we see how our algorithm
can be used along with a different error cost method to increase the sensitivity and stabil-
ity of the classifier.

Biosonar Data ClassificationWe study the classification of biosonar signals as an exam-
ple of random process signals which contain local similarities. Inspired by the solutions
for remote homology detection in protein families and the string kernel proposed by Lodhi
et al. [90], we suggest a similar kernel to measure the similarity of two time series. The
p-length subsequence of that kernel simply measures the occurrences of fixedp-length
subsequences for each of the time series in consideration. The more time series share
similar p-length subsequences, the more similar they are. We also implement a more
general kernel, which considers warping in the subsequences. It measures the whole sim-
ilarities of all warped non-contiguous subsequences of thetwo time series, independent
of their positions.

Kernel Selection in Time-series KernelsHaving a set of the kernels for similarity ex-
traction in time-series for different sizes of subsequences, we propose a method to find an
optimal linear combination of the kernels. We find the optimal kernel selection via max-
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imizing the Kernel Fisher Discriminant (KFD) criterion [92] to build the optimal linear
combination of kernels. Given that criterion, to solve the optimization problem, we use a
search method called Mesh Adaptive Direct Search (MADS).

Boosting method for Biosonar Data classificationGradient boosting is a machine learn-
ing approach, which builds one strong classifier from many base learners. Originally,
boosting has been proposed in the 90’s (Freund and Schapire,1996 [45]) as a method
for classification and regression, in which a fitting method or estimator, called the base
learner, is fitted multiple times on re-weighted data and thefinal boosting estimator is
then constructed via a linear combination of those base learners. We present two kinds of
base learners for the gradient boosting: Ordinary Least Squares (OLS) and kernel-based
base learners. Compared with our previous works, in which we presented a time resolved
spectrum kernel to extract the similarities between echoes, we get more efficient and ac-
curate results with the newly proposed boosting method. We compare the methods in
terms of sensitivity, specificity, accuracy and Matthew’s correlation coefficient and also
the runtime of training and testing.

Animal Behavior classification in Forced Swimming TestIn our work, we consider
that the activity profiles (signals) inherently contain undesired and interference noise that
should be removed before feature extraction and classification. We use a Finite Impulse
Response (FIR) filter to filter out that additive noise from the activity profile. The param-
eters of the FIR filter are obtained via maximizing the accuracy of a classifier that tries
to make a discrimination between two classes of the activityprofiles (e.g. drug vs. con-
trol). We use the kernel Fisher discriminant criterion as a criterion for the discrimination,
the DIviding RECTangles (DIRECT) search method for solving the optimization problem
and Support Vector Machines (SVMs) for the classification task. We also consider the ac-
tivity profiles as outputs of a black box and all-pole model and use system identification
methods to find the parameters of that model, and show that Autoregressive (AR) coef-
ficients are suitable features for the extraction of the dynamic behavior of rats and also
the classification of activity profiles. Our proposed behavior classification method pro-
vides a reliable discrimination of different classes of antidepressant drugs (imipramine
and desipramine) administered to rats versus a vehicle-treated group.

1.3 Organization of this Thesis

The organization of this thesis is as follows: To make this work more self contained,
in the next chapter we begin with a short overview over the basic theoretical concepts
that are necessary to understand the kernel-based algorithms employed in this work. We
present some elements of statistical learning and regularization theory and introduce the
concept of kernel functions. In chapter 3, we present kernel-based learning algorithms,
including SVMs for classification, which are utilized in this thesis, from two perspectives:
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regularization theory, and the more common geometric perspective.
Beginning from chapter 4 we present our own work: In chapter 4 theSyntheticProtein

SequenceOversampling (SPSO) method is explained. We evaluate the efficiency of our
method for both artificial and real data.

In chapter 5 we present time-series kernels to measure the similarity of echoes as time
series. We then use those kernels directly in a SVM-based classifier. The results show
that those kernels allow for a very reliable discriminationof reflected sonar echoes from
different objects.

In chapter 6 we propose a new method to find an optimal linear combination of the
time-series kernels. We formulate the optimal kernel selection via maximizing the Kernel
Fisher Discriminant criterion (KFD) and use the Mesh Adaptive Direct Search (MADS)
method to solve the optimization problem.

In chapter 7 we study the efficiency of boosting methods for our classification task.
We use the gradient boosting method with two kinds of base learners. The first one uses
the Ordinary Least Squares (OLS) regression and the other one uses the kernel function
as base learner.

In chapter 8 we propose FIR-based classifiers for animal behavior classification. Our
proposed behavior classification method provides a reliable discrimination of different
classes of antidepressant drugs (imipramine and desipramine) administered to rats versus
a vehicle-treated group.

Finally, in chapter 9 we draw the conclusions from this work.



Chapter 2

Mathematics of Learning

2.1 Introduction

Mathematically, the learning problem can be described as finding a general rule or esti-
mating a functional dependency that explains data given only a sample of limited size,
and the learning process is a process of choosing an appropriate function from a given set
of functions.

We learn from experience, this is commonplace. But we can be more specific: we
learn by perceiving patterns and extrapolating them to other cases. In this sense, the
learning process rests on generalization and works by generalizing perceived regularities.

Generalization, an important aspect of machine learning, is the ability of correctly
classifying unseen data, which are not present in the training examples. Precisely, it is
not sufficient for the algorithm to be consistent with only the training data, but also the
algorithm must show the property of correctly classifying new examples. The case when
a function becomes too complex in order to be consistent, is called overfitting. We should
try to optimize the generalization and not the fitting on training data; in other words, there
is a tradeoff between complexity and accuracy on training data and various methods have
been proposed for choosing the optimal compromise [129, 130].

In supervised learning, we are given a sample ofm training data,x = (x1, ..., xm) ∈
X , together with a sample of corresponding outputs,y = (y1, ..., ym) ∈ Y, and the collec-
tion of the labelled training sample,Dm = {(xi, yi)}m1 , used for training, and testing is a
set of independently and identically distributed (i.i.d.) examples drawn by an unknown but
fixed distributionρ on (x, y) ∈ X × Y. Using the decompositionρ(x, y) = ρ(x)ρ(y|x),
the sampling can be interpreted as a two steps process where first the inputx according
to ρ(x) is sampled and then a corresponding outputy is sampled with probabilityρ(y|x).
While the first step can be totally random, the second step usually models the sampling of
a noisy functionf . So the relation between input and output spaces is probabilistic and
not functional, and for a given inputx, there is a distributionρ(y|x) on possible outputs.
The goal is to learn a functionf ∈ H, f : X 7→ Y which models the probabilistic relation
betweenX andY in a way thatf(x) ≈ y.

19
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The hypothesis spaceH represents the set of admissible functions the learning algo-
rithm looks for; it is a subset of a larger spaceT called target space, which contains a
broader class of functions fromX to Y; putting some constraints on the elements ofT
leads to the hypothesis spaceH.

Common learning tasks are regression, whereY = R, and classification, in whichY
is a set ofc classes. For example, in binary classificationY = {+1,−1} andc = 2.

In this chapter, we briefly review the statistical learning theory, followed by an outline
of the mathematical foundations of kernels. Precisely, theconcepts of loss function, risk
functional, Bayes function, regularization theory, Mercerkernel and reproducing kernel
Hilbert space from Vapnik [129, 130], Hastie et al. [56] , Cucker and Smale [38], Pog-
gio and Smale [103], are revised and some theorems such as Mercer’s theorem and the
Representer theorem are reported.

2.2 Loss Function and Expected Risk

A learning algorithm is a map from a data setD to a functionf . We considerf : X 7→ Y,
which may be any function fromX toY [103].

Definition 2.1 (Loss function)A loss functionl : R×R 7→ R
+ is a non negative function

that measures the errorl(f(x), y) between the predicted outputf(x) and the actual output
y.

Common loss functions can be defined depending on the problem.For example, in
regression problems the loss is usually a function of the difference between the target and
the predicted valuel(f(x), y) = l(y − f(x)). A typical example is thequadratic, or L2

loss:

l(f(x), y) = (y − f(x))2 (2.1)

another example is theabsolute, or L1, loss:

l(f(x), y) = |f(x)− y| (2.2)

and in the case of binary classification, withy ∈ Y = {+1,−1} the typical examples for
themisclassification lossareindicator loss

l(f(x), y) = θ(−yf(x)) =

{

1 if − yf(x) ≤ 0
0 othewise

(2.3)

andHinge loss:

l(f(x), y) = (1− f(x)y)+ =

{

1 if − yf(x) ≤ 0
1− f(x)x othewise

(2.4)

The aim of statistical learning theory [129, 130] is to definea risk functional, which
measures the average amount of error of a hypothesis, and to look for a hypothesis among



2.3. Learning by Risk Minimization 21

the ones with lowest risk. Ifl(f(x), y) is a loss function, measuring the error between the
predictionf(x) and the actual outputy, then the average error is called the expected risk
[103].

Definition 2.2 (Expected Risk)Given a functionf ∈ T and a loss functionl(f(x), y),
the expected riskerrρ(f) of f with respect to distributionρ is the expected loss

errρ(f) =

∫

X×Y

l(f(x), y)ρ(x, y)dxdy (2.5)

Note that the expected error can almost never be precisely computed since we almost
never know the distributionρ. Nevertheless, we are looking for the minimizerfρ in some
target spaceT such that:

fρ = arg min
f∈T

errρ(f) (2.6)

This minimizer is called theBayes functionand its expected risk, calledBayes risk,
is a lower bound on the error that depends only on the intrinsic difficulty of the problem.
As the distributionρ on X × Y is unknown and the expected risk cannot be explicitly
computed, we approximate the expected risk by theempirical error (or sample error or
empirical risk) on the data collectionD.

Definition 2.3 (Empirical Error) Given a functionf ∈ T and a loss functionl(f(x), y),
the empirical errorerrDm

(f) of f with respect to the dataDm is the average loss

errDm
(f) =

1

m

m
∑

i=1

l(f(xi), yi) (2.7)

The empirical error is a random variable depending on the random selection of the
dataDm. Sinceρ is unknown, we can learnf by minimizing the empirical error (2.7).
The essential question is whether the expected risk of the minimizer of the empirical error
is close to the one offρ.

2.3 Learning by Risk Minimization

Given a hypothesis spaceH and a training setDm, the Empirical Risk Minimization
(ERM) is the method that finds the function

fDm
= arg min errDm

(f)
f∈H

(2.8)

A nice property calledconsistency, which we would like to be valid, is that the ex-
pected risk offDm

tends to the expected risk offρ, independently from the distributionρ,
when the number of training data tends to infinity:
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∀ρ ∀ε > 0 lim
m→∞

Pr{|errρ(fDm
)− errρ(fρ)| > ε} = 0

When the consistency is valid, the ERM algorithms should find the best function in
the hypothesis space. The following theorem guarantees theconsistency over allf :

Theorem 2.1(Vapnik and Chervonenkis, 1971)ERM is consistent if and only if

∀ε > 0 lim
m→∞

Pr{sup
f∈T
|errρ(fDm

)− errρ(fρ)| > ε} = 0

Another set of desirable properties for ERM is that the mapping defined by ERM be
well–posed. The mathematical term well-posed problem stems from a definition given
by Hadamard [55]. He believed that mathematical models of physical phenomena should
have the properties that:

Definition 2.4 (Well–posed Problem (Hadamard, 1902))A problem is well–posed if (1)
a solution exists, (2) the solution is unique and (3) the solution depends continuously on
the data. A problem is ill–posed if it is not well–posed.

In general, the solution to ERM does not exhibit generalization, and because of the
lack of uniqueness and stability, it is anill–posedproblem. It can be made well–posed by
an appropriate choice ofH.

2.4 Regularization Theory

The regularization theory is a framework in which ill–posedproblems can be solved by
adding appropriate constraints on the solution. A general approach is to choose the hy-
pothesis spaceH to be a convex set in a Hilbert space (see section 2.5):

H = {f : Ω(f) ≤ R2} (2.9)

whereΩ(f) is a convex function. For example,Ω(f) = ||f ||2 where||f || is the norm of
f in the Hilbert space. So the well–posedness of the ERM problem can be recovered by
adding constraints on the target spaceT to obtain the hypothesis spaceH. There are two
main approaches:
Ivanov regularization: The direct approach to restrict the hypothesis space such that the
solution becomes unique and to find the solution of ERM consists in putting the constraint
thatf must be bounded [129, 130]:

min
f∈H

1
m

m
∑

i=1

l(f(xi), yi)

subject to ||f ||2 ≤ R2
(2.10)
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Tikhonov regularization: The indirect approach adds a term estimating the complexity
of the solutionf to the empirical risk:

min
f∈H

1

m

m
∑

i=1

l(f(xi), yi) + µφ(f) (2.11)

The parameterµ > 0 controls the tradeoff between the empirical error and the com-
plexity of the functionf . φ represents our prior knowledge about the functionf . We
considerφ(·) = || · ||H = ||f ||2:

min
f∈H

1

m

m
∑

i=1

l(f(xi), yi) + µ||f ||2 (2.12)

2.5 Mathematical Foundations of Kernels

In this section some useful concepts which represent the mathematical foundations of
kernel machines will be introduced. We will characterize valid kernels and feature spaces,
interpreting a kernel as the inner product in some feature space.

We follow two equivalent approaches: the first one uses Mercer’s theorem to interpret
the feature space as a Hilbert space ofreal sequences; the other one uses Reproducing
Kernel Hilbert Spaces (RKHS) to interpret the feature space as a Hilbert space of func-
tions. The section ends up with showing the general form of the solution of a Tikhonov
regularized learning problem, which minimizes a cost functional composed by the error
on training data and the complexity of the learned function.

2.5.1 Euclidean and Hilbert Spaces

At first, we define Euclidean (or inner product or pre–Hilbert) and Hilbert spaces, which
represent an extension of Euclidean spaces from [38] and [103].

Definition 2.5 (Euclidean Space)A Euclidean spaceE is a vector space with a bilinear
map〈·, ·〉 : E × E 7→ R such that∀f, g, h ∈ E , a ∈ R

1. 〈f, g〉 = 〈g, f〉

2. 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉 and 〈af, g〉 = a〈f, g〉

3. 〈f, f〉 ≥ 0 and if〈f, f〉 = 0⇔ f = 0

A Euclidean space is also a normed space with the norm inducedby the inner product:
||f || =

√

〈f, f〉.
Before we define the Hilbert space, we need the following definitions.
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Definition 2.6 (Completeness)A Euclidean spaceE is complete with respect to the norm
induced by the inner product if:
∀(f1, f2, ...) : fn ∈ E and lim

n→∞
sup ||fn − fm|| = 0⇒ lim

n→∞
fn = f ∈ E

Definition 2.7 (Denseness)A setA is dense in a setB if A intersects every nonempty
open set inB.

Definition 2.8 (Separability) An inner product space is separable if it contains a count-
able dense subset.

Finally, a Hilbert space is defined as a Euclidean space with some more properties:

Definition 2.9 (Hilbert Space) A Hilbert space is an Euclidean space that is also (1)
complete and (2) separable.

Note that Hilbert spaces are generally infinite dimensional. We require the space to
have a countable basisφ. We can write

f =
∞
∑

n=1

αnϕn

for a basis{ϕn}∞n=1.
As an example letE be the space of2π–periodic functions with

∫ π

−π
|f(x)|2dx < ∞

andφn(x) = exp(nxi) (the symbol i stands for the imaginary unit) then:

f(x) =
∞
∑

n=−∞

cn exp(nxi) (2.13)

〈f, g〉 =
1

2π

∫ π

−π

f(x)g(x)dx (2.14)

and

||f || =
√

1

2π

∫ π

−π

|f(x)|2dx (2.15)

A more general example of a Hilbert space is the set of square integrable functions on
a compact setX ⊆ R

d, d ∈ N

L2(x) =

{

f : X 7→ R :

∫

X

f 2(x)dx <∞
}

(2.16)

with the following inner product

〈f, g〉 =

∫

X

f(x)g(x)dx (2.17)

and also another example of a Hilbert space is the set of square convergent real sequences
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l2 =

{

(x1, x2, ...) :
∞
∑

i=1

x2
i <∞

}

(2.18)

with the inner product

〈x, z〉 .
=

∞
∑

i=1

xizi (2.19)

2.5.2 Mercer’s Theorem

In this subsection, we first explain a valid kernel, then define an integral operator on valid
kernels and also the feature space of that. At the end, we willsee that the hypothesis space
is a Hilbert space [103].

Definition 2.10 (Mercer Kernel): A function K : X × X 7→ R is a Mercer kernel if

1. K is continuous

2. K is symmetric, i.e for allx, y ∈ X , K(x, y) = K(y, x)

3. K is positive definite, i.e., for all finite setx1, ..., xm ⊂ X them ×m matrix with
entriesK(xi, xj) is positive definite

∀m ∈ N,∀ c1, ..., cm ∈ R

∑

i=1

∑

j=1

cicjK(xi, xj) ≥ 0

and a symmetric matrix is positive definite if all its eigenvalues are nonnegative

Definition 2.11 (Gram Matrix) Given a Mercer kernelK and a set of objects{x1, ..., xm},
them×m matrixK such thatKij = K(xi, xj) is called the Gram matrix ofK with re-
spect to{x1, ..., xm}.

Theorem 2.2 (Integral Operator on Mercer Kernel) The linear operatorLK : L2(X ) 7→
L2(X ) on a Mercer kernelK defined by

LKf(x)
.
=

∫

X

K(x, z)f(z)dz (2.20)

is

1. well–defined:LK is continuous for allf

2. bounded:||LKf || ≤ a||f ||, a ∈ R

3. positive definite:
∫

X

∫

X
K(x, z)f(x)f(z)dxdz ≥ 0
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The proof is based on the spectral theorem for compact linearoperators on a Hilbert
space (Cucker and Smale [38]).

Theorem 2.3 (Mercer’s Theorem, 1909)Given a Mercer kernelK on X × X , let
{λk, ϕk}∞k=1 be a system of the eigenvalue/eigenfunctions ofLK with λK ≥ λK+1 ≥ 0.
Then for allx, z ∈ X

K(x, z) =
∞
∑

k=1

λkϕk(x)ϕk(z) (2.21)

where the convergence is uniform onX × X and absolute.

The following theorem from Cucker and Smale [38] shows what the feature map of a
Mercer kernel is.

Theorem 2.4 (Feature Space of a Mercer Kernel)The feature mapφ : X 7→ l2 defined
as

φ(x) = {
√

λϕk(x)}∞k=1 (2.22)

is well–defined, continuous, and satisfies

K(x, z) =
∞
∑

k=1

λkϕk(x)ϕk(z) = 〈φ(x), φ(z)〉 (2.23)

An important consequence is that a Mercer kernel can be interpreted as an inner prod-
uct in the Hilbert spacel2 of real sequences. In addition, the Hilbert spacel2 of real
sequences constitutes thefeature spaceof our Mercer kernel. Note that if we are given
a feature mapφ(x) which we know to be inl2 for all x ∈ X , we can immediately build
a valid kernel by settingK(x, z) = 〈φ(x), φ(z)〉 [38]. Now we define the set of square
integrable functions on a compact set X associated with a Mercer kernel and show that it
is a Hilbert space.

Definition 2.12Given a Mercer kernelK and its linear operatorLK defined in Equation
2.20,define

HK
.
=

{

f ∈ L2(X) : f =
∞
∑

k=1

akϕk with

(

ak√
λk

)

∈ l2

}

(2.24)

whereλk, ϕk are the eigenvalues and the eigenfunctions ofLK and define an inner prod-
uct 〈·, ·〉HK

: HK ×HK 7→ R as

〈f, g〉HK

.
=

∞
∑

k=1

akbk

λk

(2.25)
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The elements ofHK are continuous functions and for allf ∈ HK the series

f =
∞
∑

k=1

akϕk

converges uniformly and absolutely.

Theorem 2.5 (HK is a Hilbert space)[103]The hypothesis spaceHK induced by a Mer-
cer kernelK associated with its linear operatorLK defined in Equation2.20 and with
an inner product〈·, ·〉HK

defined in Equation2.25is a Hilbert space.

Consequently given a Mercer kernelK, HK is the Hilbert space generated by the
eigenfunctions of the integral operatorLK . The setHK of square integrable functions
L2(X ) on a compact setX is the hypothesis space of akernel machine, which is a learning
algorithm that deals with the data only through Mercer kernels. The general form of the
solution of a supervised learning algorithm with kernel machines is

f(x) =
m
∑

i=1

aiK(xi, x) (2.26)

for some coefficientai ∈ R. By the definition ofHK , we mathematically characterized
the hypothesis space of kernel machines.

2.5.3 Reproducing Kernel Hilbert Spaces

In the above, we characterized valid kernels and feature spaces, interpreting a kernel as an
inner product in some feature space. It exploits Mercer’s theorem to describe the feature
space as a Hilbert space of real sequences. Another alternative approach uses the Repro-
ducing Kernel Hilbert Spaces (RKHS) to interpret the featurespace as a Hilbert space of
functions. Both approaches are equivalent.

Definition 2.13 (Reproducing Kernel Hilbert Space)A Reproducing Kernel Hilbert
SpaceHK is a Hilbert space of functions on a compact setX . These functions have the
properties that for eachx ∈ X the evaluation functionalsFx defined as

Fx[f ] = f(x), ∀ f ∈ H (2.27)

are linear and bounded.
some properties of RKHS are:

• Fx[f + g] = Fx[f ] + Fx[g] = f(x) + g(x)

• ∀x, z ∈ X , |K(x, z)| ≤
√

K(x, x)
√

K(z, z)
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• ∀x ∈ X , |f(x)| ≤ ||f ||Hk

√

K(x, x)

• HK is made of continuous functions

• f =
∑

k akϕk; the series converges absolutely and uniformly inX

Theorem 2.6 (Reproducing Property of a Hilbert Space)Given a Mercer KernelK,
we define a functionKx : X 7→ R as

Kx(z) = K(x, z) (2.28)

Then we have:

• Kx ∈ H,∀x ∈ X

• for each RKHS there exists a unique Mercer kernel K called reproducing kernel

• conversely, for each Mercer kernel K there exist an unique RKHS that has K as its
reproducing kernel [38]

The reproducing property means:

Fx[f ] = 〈Kx, f〉HK
= f(x) (2.29)

Now we show thatHK in 2.24 andHK are the same. For that, we define an inner
product inH0 (2.24) and assume:

f =
∞
∑

i=1

αiKxi
and g =

∞
∑

j=1

βjKzj

then

〈f, g〉HK
=

∞
∑

i=1

∞
∑

j=1

αiβjK(xi, zj) (2.30)

LetHK be the the completion ofH0 with the associated norm. Considering

〈Kxi
, Kzj
〉HK

= K(xi, zj)

Then
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〈f,Kx〉HK
= 〈

∞
∑

i=1

αiKxi
, Kx〉HK

=
∞
∑

i=1

αi〈Kxi
, Kx〉HK

=
∞
∑

i=1

αiK(xi, x)

= f(x)

While before the data was mapped into series of real numbers, now they are mapped into
functions which sit onx that generate the Hilbert space:

x
φ−→ φ(x) = Kx

and each point is represented in the feature space by a function that measures its similarity
with the other points.

On the other hand, from Mercer’s theorem, sincef ∈ HK (Eq. 2.24):

f(x) =
∞
∑

k=1

akϕk(x)

It follows that:

〈f,Kx〉HK
=

∞
∑

k=1

ak〈ϕk, Kx〉HK
=

∞
∑

k=1

ak

λk

∫

ϕk(z)K(x, z)dz

=
∞
∑

k=1

ak

λk

(LKϕk)(x) =
∞
∑

k=1

ak

λk

λkϕk(x)

= f(x)

Finally, after introducing the above results, we reach the following theorem from
Cucker and Smale (2001) :

Theorem 2.7 (HK and HK are equal) The Hilbert spacesHK andHK are the same
space of functions onX with the same inner product:

HK ≡ HK and 〈·, ·〉HK
≡ 〈·, ·〉HK

In summary, Mercer’s theorem provides a concrete way to construct a RKHS. In
essence, Mercer’s theorem provides a coordinate basis of anRKHS.
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2.5.4 Representer Theorem

Using the results derived in the previous sections, now it can be shown that the general
solution of the Tikhonov regularized learning problem

min
f∈HK

1

m

m
∑

i=1

l(f(xi), yi) + µ||f ||2K

is

f(x) =
m
∑

i=1

aiK(xi, x)

whereµ > 0 is a parameter that controls the tradeoff between the empirical error and
the complexity of the functionf and the problem of finding anf ∈ H that minimizes the
above regularized risk functional is turned into the problem of finding the best coefficients
ai, i = 1, ...,m.

Proof of Representer TheoremThe proof is given in a simplified case when the loss
function l(f(xi), yi) is convex and also differentiable with respect tof (Kimeldorf and
Wahba [80]). Define

H(f) =
1

m

m
∑

i=1

l(f(xi, yi) + µ||f ||2K (2.31)

Sincef ∈ HK , then

f =
∞
∑

k=1

bkϕk and ||f ||2K =
∞
∑

k=1

b2
k

λk

(2.32)

We set the first derivative ofH(f) with respect tobk to zero, then

0 =
∂H(f)

∂bk

=
1

m

m
∑

i=1

∂l(f(xi), yi)

∂bk

ϕk(xi) + 2µ
bk

λk

⇒ bk = λk

m
∑

i=1

− 1

2µm

∂l(f(xi), yi)

∂bk

ϕk(xi)

So

bk = λk

m
∑

i=1

aiϕk(xi) (2.33)

where
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ai = − 1

2µm

∂l(f(xi), yi)

∂bk

(2.34)

if we put Equation 2.33 into Equation 2.32 and use Mercer’s theorem:

f(x) =
∞
∑

k=1

bkϕk(x) =
∞
∑

k=1

λk

m
∑

i=1

aiϕk(xi)ϕk(x)

=
m
∑

i=1

ai

∞
∑

k=1

λkϕk(xi)ϕk(x) =
m
∑

i=1

aiK(xi, x)

In the case of a regression problem, if we use the quadratic lossl(f(x), y) = (y− f(x))2,
from Equation 2.34 we have:

ai = − 1

2µm

∂l(f(xi), yi)

∂bk

=
yi − f(xi)

µm
=

yi −
m
∑

j=1

ajK(xj, xi)

µm

⇒ yi = µmai +
m
∑

j=1

ajK(xj, xi) (2.35)

that in the matrix form becomes:

(µmIm + K)a = y (2.36)

So, by means of the representer theorem, the problem of finding f ∈ HK is turned into
finding coefficientsai, i = 1, ...,m. Whenµ→ 0, f(x)→ 0; but settingµ not too small
guarantees an unique solution of representer problem (2.31), because the matrix(µmIm +
K) has full rank, and a stable solution for the linear system (2.35) is well conditioned. In
this thesis we use the representer theorem to bring the concept of the kernel function in a
booting classifier.

2.5.5 Examples of Kernel Families

Until now we have seen that there are two methods to map the input data space:

1. Choose a mapφ whichexplicitlygives us a Mercer Kernelk, or

2. Choose a Mercer kernelK which implicitly corresponds to a fixed mappingφ

Mathematically, kernels are often much easier to define and have the intuitive meaning
of serving as a similarity measure between objects and structured data. Moreover, there
exist simple rules for designing kernels on the basis of given kernel functions.
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Basic Kernels

The most simple kernel between two vectorsx, z is the inner product

K(x, z) = 〈x, z〉

More complex kernel may be constructed using simpler ones. The polynomial kernel is
defined as

Kpol(x, z) = (〈x, z〉+ b)d =
d
∑

s=0

(

d
i

)

bd−s〈x, z〉s

The feature space of〈x, z〉s is indexed by all monomialsi of degrees

φi(x) = xi1
1 xi2

2 ..xim
m subject to

m
∑

j=1

ij = s

Another commonly used class of kernels is the class of Radial Basis Functions:

KRBF (x, z) = exp

(

−||x− z||
2σ2

)

in which the parameterσ controls the flexibility of the kernel in a similar way to the
degreed in the polynomial kernel.

Kernels for structured data

A particular and interesting property of kernel functions is that they are closed under ad-
dition, multiplication with a positive constant and exponentiation [113, 117]. This allows
the construction of new kernels from existing ones, which isespecially interesting for the
definition of kernels for structured objects. Some examplesare as follows:

• Convolution kernels [57]: The basic idea behind convolutionkernels is that the
similarity between composite objects can be captured by a relation between the
object and its parts. It defines the kernel function between input objects as the
convolution ofsub-kernels, i.e, the kernels for the decompositions of the objects.
Convolution kernels are very general and can be applied in a various problems.

• Graph kernels: A graph is defined as a set of vertices and a set of edges. Graph
kernels compare the structure of graphs such as the number ofsubgraphs they have
in common. [86, 50, 49, 75].

• Diffusion kernels: The main idea behind diffusion kernels is that it is easier to
describe the local neighborhood of an instance than describing the whole instance
space [81, 132]. The neighborhood might be defined as instances that differs only
by one property.
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• Generative model kernels: The first prominent kernel based on generative models
is the Fisher kernel [66, 67]. It is based on the gradient of log-likelihood of the gen-
erative model (a posteriori probability) with respect to the parameter. The Fisher
kernel is defined from the information Fisher matrix deducedfrom the generative
model. A general framework of defining generative-model kernels has been pre-
sented in [128]. The Fisher kernel comes as a particular caseof the marginalized
kernels.

• String kernels: The traditional kernel for text classification is simply the inner prod-
uct of two words into the text space representation. A stringkernel consists of
comparing common subsequences in the two words. The gaps between the subse-
quences are penalized. This can be done using the total length in the two strings.
The p-spectrum kernel [85, 109] counts how many contiguous sub-strings of length
p the strings have in common. In this thesis we use this kerneland extent it for
time series. We present time-series spectrum kernels to measure the similarity of
biosonar signals as time series.

2.6 Summary

In this chapter, we presented the basic theoretical tool andmathematics of learning needed
to understand the algorithms employed in this thesis. We explained the concepts of loss
function, risk functional and regularization theory. We characterized valid kernels and
features spaces, interpreting a kernel as the inner productin some feature spaces. We
interpreted the feature space based on Mercer’s theorem, asa Hilbert space of real se-
quences and based on Reproducing Kernel Hilbert Spaces (RKHS), as Hilbert spaces of
functions and saw that both approaches are equivalent. We presented the general form
of the solution of a Tikhonov regularized learning problem which minimizes a cost func-
tional composed by the error on the training data and the complexity of the learnt function
based on the representer theorem. The represent theorem guarantees that each function
minimizing the regularized risk functional can be written down in a closed form as a lin-
ear combination of kernels evaluated at the training data only. In the next chapter we
derive the SVM algorithm from two perspectives: Tikhonov regularization and the more
common geometric perspective.

At the end we presented some important examples of kernel functions in vector spaces
such as polynomial and RBF kernels and we saw that using a property of kernels functions
that they are closed under addition, multiplication and exponentiation allows construction
of new kernels from existing ones such as kernels for structured objects. Some examples
were convolution kernels, Graph kernels, diffusion kerneland string kernels. Kernels can
also be defined over more complex structures such as trees.
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Chapter 3

Support Vector Machines and Kernel
Methods

3.1 Introduction

Support Vector Machines (SVMs), originally developed by Vapnik and co–workers [25],
are the most widespread kernel–based machine learning algorithms nowadays. They rep-
resent a very specific class of algorithms, characterized bythe use of kernels, the absence
of local minima, the sparseness of the solution and the capacity control obtained by acting
on the margin or on other dimension independent quantities such as the number of sup-
port vectors. They provide a new approach to the problem of pattern recognition based on
the statistical learning theory. SVMs are based directly onthe results from the previous
chapter and realize the principle of risk minimization. SVMs minimize the empirical risk
simultaneously with a bound on the complexity, namely the margin. They always find a
global optimum because of their formulation as a Quadratic Programming (QP) optimiza-
tion problem with box constraints. Their simple geometric interpretation provides fertile
ground for explaining how they work in a very easy manner.

SVMs are largely characterized by the choice of kernel whichmaps the inputs into a
feature space in which they are separated by a linear hypothesis. Often the feature space is
a very high dimensional one but the so–called curse of dimensionality problem is cleverly
solved by turning to the statistical learning theory. The statistical learning theory tells us
that learning in a very high dimensional feature space can besimpler if one uses a low
complexity, i.e. simple class of decision rule [89]. All thevariability and richness that
one needs to have a powerful function class is then introduced by the mappingφ through
the kernel function. In short, not the dimensionality but the complexity of the function
matters. In addition, for certain feature spaces and corresponding mappingsφ, there is a
highly effective trick for computing scalar products in a high dimensional feature space
using kernel functions. So SVMs represent a complete framework where several concepts
are combined together to form a powerful theory: dimension independent generalization
bounds, Mercer kernels and RKHS, regularization theory and QP optimization represent

35
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therefore the foundations of SVMs.
SVMs are the best performing methods in various domains. They have been used

frequently in different applications of systems biology and bioinformatics. For example,
SVMs are used for prognosis or therapy outcome prediction based on microarray data.
Golub et al. [51] and Mukherjee et al. [95, 96] applied SVMs toleukemia microarray
data. Brown et al [27]. classified yeast genes into functionalcategories based on SVMs.
Degroeve et al. [41] recognized the starts of introns by SVMs. Carter et al. [30] identi-
fied functional RNAs on genomic DNA by SVMs. In most Bioinformatics applications
support vector machines improved previous results.

After their introduction in the mid 90s, the soft margin classifier was introduced by
Cortes and Vapnik in 1995 [34] then the algorithm was extendedto the regression case
by Vapnik [129] and to clustering problems ([126], [112] and[20]). Two books written
by Vapnik ([129], [130]) provide a very extensive theoretical background of the field.
Other references can be found in Cristianini and Shawe-Taylor [35]; Shawe-Taylor and
Cristianini [114]; Hastie et al. [56].

In this chapter, at first, we derive the SVM algorithm from twoperspectives: Tikhonov
regularization from the previous chapter, and the more common geometric perspective.
Then, we will discuss the regression and clustering applications of the SVMs and also the
optimization algorithms used in SVMs.

3.2 SVMs and Regularization theory

We start with Tikhonov regularization

min
f∈HK

1

m

m
∑

i=1

l(f(xi), yi) + µ||f ||2K

whereK andHK are the Mercer kernel and hypothesis space respectively, and l(f(x), y)
is the hinge loss function [129]

l(f(x), y) = |1− yf(x)|+ (3.1)

which is non-differentiable at(1 − yif(xi)) = 0, and we cannot follow the approach in
the proof of the representer theorem (chapter 2). But it is a convex function and so the
representer theorem is still applicable. We introduce non negative slack variablesξ as
follows

ξi = |1− yif(xi)|+
and so

ξi ≥ 1− yif(xi)

then the problem is converted to [114]:
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min
f∈HK

1
m

m
∑

i=1

ξi + µ||f ||2K
subject to yif(xi) ≥ 1− ξi

ξi ≥ 0 i = 1, ...,m

(3.2)

The SVMs contain an unregularized bias termb so the Representer theorem results in
a function

f(x) =
m
∑

j=1

cjK(xj, x) + b (3.3)

By the Representer theorem we can rewrite the above constrained optimization prob-
lem as a constrained quadratic programming problem. Plugging f(x) into the Equation
3.2 results in theprimal SVM[35]:

min 1
m

m
∑

i=1

ξi + µcT Kc

subject to yi(
m
∑

j=1

ajK(xi, xj) + b) ≥ 1− ξi

ξi ≥ 0 i = 1, ...,m

(3.4)

Using Lagrange multiplier techniques, we derive the Wolfe dual quadratic program:

L(c, ξ, b, α, ζ) =
1

m

m
∑

i=1

ξi+µcT Kc−
m
∑

i=1

αi

(

yi

{

m
∑

j=1

cjK(xi, xj) + b

}

− 1 + ξi

)

−
m
∑

i=1

ξiζi

(3.5)
We want to minimizeL with respect toc, b, ζ, ξ andα subject to the constraints of the
primal problem and nonnegativity constraints onα andζi. We first take partial derivatives
with respect tob andξ:

∂L

∂b
= 0⇒

m
∑

i=1

αiyi = 0

∂L

∂ξi

= 0⇒ 1

m
− αi − ζi = 0⇒ 0 ≤ αi ≤

1

m

This results in a reduced Lagrangian:

LR(c, α) = µcT Kc−
m
∑

i=1

αi

(

yi

m
∑

j=1

cjK(xi, xj)− 1

)

and after derivation with respect toc:

∂LR

∂c
= 0⇒ 2µKc−KY α = 0⇒ ci =

αiyi

2µ
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whereY is a diagonal matrix whosei-th diagonal element isyi; Y α is a vector whose
i-th element isαiyi. Substituting in the reduced Lagrangian forc, we are left with the
following dualprogram:

max
α∈Rn

m
∑

i=1

αi − 1
4µ

αT Qα

subject to
n
∑

i=1

αiyi = 0

0 ≤ αi ≤ 1
m

i = 1, ...,m

(3.6)

whereQ is the matrix defined by

Q = yKyT ⇔ Qij = yiyjK(xi, xj) (3.7)

In most SVM applications, instead of the regularization parameterµ, regularization is
controlled via a parameterC, defined using the relationship

C =
1

2µm

Like µ, the parameterC also controls the trade-off between between fitting the data
(empirical error) and the model complexity: a large value ofC favors the empirical error,
while a small value leads to a more regularized prediction function.

Using this definition and after multiplying our objective function by the constant1
2m

the basis regularization problem becomes

min
f∈HK

C
m
∑

i=1

l(f(xi), yi) + µ||f ||2K (3.8)

and the primal and dual problems become, respectively:

min
c∈Rn,ξ∈Rn

m
∑

i=1

ξi + 1
c
cT Qc

subject to : yi(
m
∑

j=1

ajK(xi, xj) + b) ≥ 1− ξi

ξi ≥ 0 i = 1, ...,m

(3.9)

max
α∈Rn

m
∑

i=1

αi − 1
2
αT Qα

subject to
n
∑

i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, ...,m

(3.10)
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Figure 3.1: Optimal separating hyperplane in a two dimensional space. Two hyperplanes
perfectly separate the data. However, the optimal one has a larger margin and intuitively
would be expected to the more accurate on new observations.

3.3 SVMs from a geometric perspective

The traditional approach to developing the mathematics of SVMs is to start with the con-
cept of separating hyperplane and margin. The theory is usually developed in a linear
space, beginning with the idea of a perceptron that separates the positive and the negative
examples. Defining the margin as the distance from the hyperplane to the nearest exam-
ple, the basic observation is that intuitively, we expect a hyperplane with larger margin to
generalize better than one with smaller margin (Fig. 3.1).

We denote our hyperplane byw and linear separating function as classification func-
tion by sign(wTx + b) (Fig. 3.1). It means that all positive examples are on one side
of the boundary functionwT x + b = 0, and all negative examples are on the other side.
At least one point exists for whichwT x + b = 1 and at least one point exists for which
wT x + b = −1. As the problem is linearly separable, there exists a weightvectorw andb
such thatyi(w

T xi + b) > 0 (i = 1, ..., n). Rescalingw andb such that the point(s) closest
to the hyperplane satisfy|wT xi + b| = 1, we obtain a canonical form of the hyperplane
satisfyingyi(w

T xi +b) ≥ 1. That means the margin in this case equalsγ = 1
||w||

. This can
be seen by considering two pointsx1, x2 on the opposite sides of the hyperplane which
exactly satisfy|wT xi + b| = 1, projecting them onto the hyperplane normal vectorw

||w||
:
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wT x1 + b = 1

wT x2 + b = −1

⇒ wT (x1 − x2) = 2

⇒ 〈w/||w||, x1 − x2〉 =
2

||w||

To maximize the marginγ, we have to maximize1
||w||

which means we have to mini-

mize ||w|| or equivalentlywT w = ||w||2. To realize the risk minimization principle, we
maximize the margin. This leads to the support optimizationproblem [118].

min
w∈Rn

||w||2

subject to yi (〈w, xi〉+ b) i = 1, ...., n
(3.11)

In addition, we need to work with data sets that are not linearly separable, so we
introduce slack variablesξi, just as before. With the slack variables the primal SVM
problem becomes

C
m
∑

i=1

ξi + 1
2
||w||2

yi (〈w, x〉+ b) > 1− ξi i = 1, ...,m
ξi > 0 i = 1, ...,m

(3.12)

Using Lagrange multipliers we can derive the same dual form as in the previous section
(Equation 3.10).

3.3.1 Optimality conditions

The primal and dual are both feasible convex quadratic programs. They both have the
same optimal and objective values. All optimal solutions obtained through the partial
derivation with respect to parameters in Equation 3.5 must satisfy the Karush-Kuhn-
Tucker (KKT) conditions [114]:
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m
∑

j=1

cjK(xi, xj)−
m
∑

j=1

yiαjK(xi, xj) = 0 i = 1, ...,m

m
∑

i=1

αiyi = 0

C − αi − ξi = 0 i = 1, ...,m

yi

(

m
∑

j=1

yjαjK(xi, xj) + b

)

− 1 + ξi > 0 i = 1, ...,m

αi

[

yi

(

m
∑

j=1

yjαjK(xi, xj) + b

)

− 1 + ξi

]

= 0 i = 1, ...,m

ζiξi = 0 i = 1, ...,m

ζi, ξi, αi > 0 i = 1, ...,m

Typically the number of non zeroαi is much smaller than the numberm of training
examples, and so the Equation 3.3 can be computed efficientlyby summing only on exam-
plesxi for whichαi > 0. These examples are called Support Vectors (SVs) and represent
the critical elements of the training set; they summarize all the information contained in
the data set.

The KKT complementary conditions permit to find the value ofξi for SVs. Ifαi = C,
the correspondingxi is calledboundedSV andξi has an arbitrary value, while for0 <
αi < C it is calledunboundedSV and stays on the geometric margin, which measures
the Euclidean distance of the points from the decision boundary in the input space. The
KKT conditions also permit to compute the offsetb

b = yi −
m
∑

j=1

yiαiK(xi, xj)

So if we know the optimalαi, we can determineb. For a better computational stability,
we can take the average on unbounded SVs.

b =
1

|{i : 0 < αi < C}|
∑

i:0<αi<C

{

yi −
m
∑

j=1

yiαiK(xi, xj)

}

A proposition from Cristianini and Shawe–Taylor [35] shows the relation between the
optimum solution ofαi and the geometric margin, which measures the Euclidean distance
of the points from the decision boundary in the input space.

γ =

√

√

√

√

∑

i:α∗
i

α∗
i
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Figure 3.2: SVM classification with an RBF kernel. Support vectors are circled. From
Scḧolkopf and Smola [113]
.

3.4 Support Vector Regression

Now we want to apply the support vector technique to regression. For the first time,
in Vapnik [129], SVMs for regression problem withY = R were introduced. In his
proposal, SVMs are the solution of the Tikhonov regularizedproblem but with a different
loss function

l(f(x), y) = |y − f(x)|ε = max {0, |y − f(x)| − ε}
whereε > 0. In ε–SV regression the goal is to find a functionf(x) that has at mostε
deviation from the actually obtained targetsyi for all the training data, and at the same
time is as flat as possible [117]. Introducing slack variables ξi, ξ∗i to penalize points that
are above or below theε–tube and considering the regression functionf = 〈w, φ(x)〉+ b,
the underlying optimization problem can be formulated as quadratic program:

min
w,b,ξ,ξ∗

1
2
〈w,w〉+ C

m
∑

i=1

(ξi + ξ∗i )

subject to (〈w, φ(xi)〉+ b)− yi 6 ε + ξi

yi − (〈w, φ(xi)〉+ b) 6 ε + ξ∗i
ξi, ξ

∗
i > 0, i = 1, ...,m

(3.13)

where the constraints provide that the prediction will be close to the regression value

−ε− ξ∗i 6 (〈w, φ(xi)〉+ b)− yi 6 ε + ξi
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Figure 3.3: Support vector regression. A regression function is found such that a tube
with radiusε around the regression function contains most of the data. Points outside the
tube are penalized byξi. Those penalties are traded off against the complexity given by
||w||, which is represented by the slope of a linear function (FromScḧolkopf and Smola
[113]).

In analogy to SVM classification, minimizing||w2|| can also be understood as max-
imizing the so–calledε–margin, which is defined as the minimal distance between two
patternsφ(x), φ

′
(x) in feature space with|f(x)− f(x

′
)| > 2ε.

Similar to the SVM the above primal optimization problem(3.14), is a convex problem
and applying the Kuhn–Tucker theory leads to its dual formulation

min
α,α∗∈Rm

yT (α∗ − α)− εeT (α∗ + α)− 1
2
(α∗ − α)T K(α∗ − α)

subject to 0 6 αi, α
∗
i 6 C, i = 1, ...,m

eT (α∗ − α) = 0

(3.14)

whereα, α∗ ∈ R
m are vectors of dual variables ande is the vector of all ones. The

resulting weight vector can be written as

w =
m
∑

i=1

(αi−α∗
i )φ(xi)

and the prediction function for regression is

f(x) =
m
∑

i=1

(αi−α∗
i )K(xi, x) + b

The Karush-Kuhn-Tucker (KKT) complementary conditions permit to find the values
of ξi andξ∗i for SVs. The data pointsxi with αi = C or α∗

i = C are outside theε–tube.
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Data points with0 < αi < C or 0 < α∗
i < C are on the tube-border. Thus, the regression

function only depends on the points lying outside or exactlyon theε–tube. The KKT
conditions also permit to compute the value ofb:

b = yi − 〈w, φ(xi)〉+ ε (3.15)

Considering the generalization performance of the SVR, Shawe–Taylor and Cristian-
ini [114] considered an upper bound on the expectation that the difference between the
true function valuey and the estimated onêy at some pointx exceeds a thresholdγ:

Theorem 2.1 (Shawe–Taylor and Cristianini) . Let R be the smallest sphere enclosing
the data in feature space. With probability at least1−δ over the random draw of the data
setD, we have:

E [δ(|y − ŷ| > γ)] 6
1

n(γ − ε)

∑

i

(ξi + ξ∗i ) + 4

√

R2||w||2
n(γ − ε)2

+ 3

√

log(2/δ)

2n

3.5 Support Vector Clustering

Support Vector Clustering (SVC) also called one class SVMs, described in Tax and Duin
[126] and [20], is an extension of basic SVMs. In this algorithm, one computes a set of
contours which enclose the data points in terms of support vectors. These contours are
interpreted as cluster boundaries. The outliers can be handled by relaxing the enclosing
constraints and allowing some points to stay out of the contours. The primal problem of
the SVC can be formulated as

min
R,c,ξ

R2 + C
m
∑

i=1

ξi

subject to ||φ(x)− c|| 6 R2 + ξi

ξi > 0, i = 1, ...,m

(3.16)

whereR is the radius of the sphere,c is the center of the sphere,ξi are slack variables
and C as regularization constant is a control parameter. TheparameterC can be used
to control the portion of examples separated by the sphere. Again, introducing Lagrange
multipliers and applying the Kuhn-Tucker theory leads to the dual formulation

max
α∈Rm

m
∑

i=1

αiK(xi, xi)−
m
∑

i=1

m
∑

j=1

αiαjK(xi, xj)

subject to 0 < αi < C, i = 1, ...,m
(3.17)

At each point, we define the distance of its image in feature space from the center of the
sphere
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Figure 3.4: The sphere and SVs found by Equation 3.18 using a linear kernel on an
example of data set.
.

R2 = ||φ(x)− c||2

then, the KKT complementary conditions are satisfied by the optimal solutionα∗, c∗ and
R∗:

α∗
i

[

||φ(xi)− c||2 −R∗2
]

= 0, i = 1, ....,m (3.18)

This implies that only training examplesxi that lie on the surface of the optimal hy-
persphere have their correspondingα∗

i non–zero (support vectors) while for the remaining
examplesα∗

i = 0. Furthermore, the distance of a point to the center of the sphere can be
written as:

R2(x) = K(x, x)− 2
m
∑

i=1

αiK(xi, x)+
m
∑

i=1

m
∑

j=1

αiαjK(xi, xj) (3.19)

Therefore based onR(x) andR∗ one can decide whetherx belongs to an inlier or an
outlier of the data set.

3.6 Solving the SVM Optimization Problem

The SVM problem (3.9,3.10) is a Quadratic Programming (QP) optimization problem.
The dual problem is easier to solve than the primal problem. We can solve the QP problem
using standard software. HoweverQ is am by m dense matrix which can be hardly stored
in memory for common problems with thousands of training data.
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A lot of work has been done for finding efficient methods to solve the QP optimization
for SVMs. Among them, decomposition strategies are commonly applied to solve the
QP task associated with SVMs learning. The idea is to decompose the problem into a
sequence of smaller problems. Then, the reduced problems can be solved by standard QP
solvers. Examples of decomposition techniques and implementations have been discussed
by Kaufmann [76], Joachims [72], Platt [101, 102], Osuna et al. [99], Keerthi et al. [77],
Shevade et al. [115], Steinwart [119] and Bakir et al. [9].

The algorithm has an iterative nature and in each iteration,the variableα ∈ R
m is split

into a working spaceW and a fixed setF . Let TW denote the indices of the working set
andTF be the indices of the fixed set such thatTW ∪ TF = {1, ...,m} andTW ∩ TF = 0.
We can rewrite the dual problem (3.10) as:

max
αW∈R|w|,αF∈R|F |

∑m

i=1 αi
i∈W

+
∑m

i=1 αi
i∈F

−1
2

[

αW αF

]

[

QWW QWF

QFW QFF

] [

αW

αF

]

subject to
∑

i∈W yiαi+
∑

i∈F yiαi = 0
0 < αi < C, i = 1, ...,m

(3.20)
Then we treatαW as variable andαF as constant. Now we can solve the reduced dual
problem:

max
αW∈R|w|

(1−QWF αF )αW − 1
2
αW QWW αW

subject to
∑

i∈W yiαi = −∑i∈F yiαi

0 < αi < C, i = 1, ...,m

(3.21)

The reduced problem is of fixed size and can be solve using a standard QP solver. An
important issue in the decomposition algorithm is the way ofselecting the working set.
The basic idea is to examine points which are not in the working set and add the points
which violate the reduced optimality to the working set. We remove points which are in
the working set but far from violating the optimality conditions. Provided that the method
for selecting of the working set satisfies those elementary conditions, the decomposition
algorithm ultimately converges to the optimal solution. The convergence proof of various
modifications of the decomposition algorithms can be found in [78, 88]. Two important
decomposition algorithms include:

1-Decomposition algorithms with fixed size of working set, proposed by Osuna [99].
The working set size is fixed. In each iteration, a part of variables from the working set
is replaced by previously fixed variables which violate the KKT conditions. This idea is
used for instance inSVMlightby Joachims [72].

2-Sequential Minimal Optimizer (SMO) by Platt [101, 102]. The SMO is an extreme
case of the general decomposition algorithm in which the working set contains just two
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variables. The SMO approach has become very popular due to its implementational sim-
plicity and a fast convergence. It is implemented for instance in the popular LIBSVM
software package by Chang and Lin [31].

3.7 Summary

In this chapter, we introduced SVMs as a kernel–based machine learning algorithm based
on the regularization theory which minimizes the empiricalrisk simultaneously with a
bound on the complexity, namely the margin. We derived the SVM algorithm from two
prospectives: Tikhonov regularization and a geometric perspective.

In the geometric representation, SVMs for classification rely on the idea of maximum
margin hyperplane in feature space. The optimal hyperplaneis uniquely obtained by QP
optimization programming techniques. The solution is sparse and relies on examples
called support vectors.

In support vector regression, the support vector techniqueis applied to regression and
the Tikhonov regularization problem with a different loss function. It utilizes a special
loss function, theε–insensitive loss function. The regression function only depends on
the points lying outside or exactly on theε–tube.

In support vector clustering one can compute a set of contours which enclose the data
points in terms of support vectors. Again, the data points that lies on the surface of the
optimal hypersphere are called support vectors. This approach results in a state–of–the–
art method for novelty detection.

At the end, we discussed methods for solving the SVM optimization. Decomposition
strategies are commonly applied to solve the QP task; These decompose the problem into
a sequence of smaller problems. We discussed some of the decomposition techniques,
used in popular implementations of the SVMs.

In next chapters we will discuss the application of support vector machines and kernel
methods for some biological problems. Beginning from the next chapter, we consider the
imbalance data in a protein classification problem, when we use kernel methods. We will
see how an oversampling technique can increase the accuracyof a kernel-based classifier.
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Chapter 4

Kernel Methods for Imbalanced Protein
data Classification

4.1 Introduction

4.1.1 Classification of G-protein Coupled receptors families

G-protein coupled receptors (GPCRs) are a large superfamily of integral membrane pro-
teins that transduce signals across the cell membrane [4] (Fig. 4.1). Through their ex-
tracelluar and transmembrane domains they respond to a variety of ligands, including
neurotransmitters, hormones and odorants. They are characterized by seven hydropho-
bic regions that pass through the cell membrane (transmembrane regions), as shown in
Fig. 4.1. Each GPCR has an amino terminal (NH2 or N-terminal) region outside of the
cell, followed by intracellular and extracellular loops, which connect the seven transmem-
brane regions, and also an intracellular carboxyl terminal(COOH- or C-terminal) region.
GPCRs are involved in signal transmission from the outside to the interior of the cell
through interaction with heterotrimeric G-proteins, or proteins that bind to guanine (G)
nucleotides. The receptor is activated when a ligand that carries an environmental signal
binds to a part of its cell surface component. A wide range of molecules is used as the
ligands including peptide hormones, neurotransmitters, pancrine mediators, etc., and they
can be in many forms:e.g., ions, amino acids, lipid messengers and proteases [4, 60].

The function of many GPCRs are unknown and understanding the signaling pathways
and their ligands in laboratory is expensive and time-consuming. But the sequence of
thousands of GPCRs are known [21]. Hence, if we can develop an accurate predictor of
the class (and so function) of GPCRs from their sequence it can be of great usefulness for
biological and pharmacological research. According to thebinding of GPCRs to different
ligand types they are classified into different families. Based on GPCRDB (G protein
coupled receptor data base) [21] all GPCRs have been divided into a hierarchy of ‘class’,
‘subfamily’, ‘sub-sub-family’ and ‘type’ (Fig. 4.2).

We want to classify GPCRs at the family, subfamily and sub-subfamily level. Because
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Figure 4.1: Schematic representation of GPCR shown as seven transmembrane helices
depicted as cylinders along with cytoplasmic and extracellular hydrophilic loops.

Figure 4.2: GPCR family tree according to GPCRDB nomenclature.
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of the divergent nature of GPCRs it is difficult to predict the classification of GPCRs
by means of sequence alignment approaches. The standard bioinformatics approach for
function prediction of proteins is to use sequence comparison tools such as PSI-BLAST
[3] that can identify homologous proteins based on the assumption of low evolutionary
divergence, which is not true for GPCRs families. Here, we are facing a more difficult
problem of remote homology detection, where classifiers must detect a remote relation
between unknown sequence and training data.

There have been several recent developments to the classification problem specific
to the GPCR superfamilies. Moriyama and Kim [79] developed a classification method
based on discriminant function analysis using compositionand physicochemical proper-
ties of amino acids. Elrod and Chou [43] suggested a covariantdiscriminant algorithm
to predict GPCRs’ type from amino acid composition. Qian et al.[106] suggested a
phylogenetic tree based profile hidden Markov model (T-HMM)for GPCR classification.
Karchin et al. [74] developed a system based on support vector machines built on profile
HMMs. They generated fisher score vectors [65] as feature vectors for SVM classifier
form those profile HMMs. They showed that classifiers like SVMs that are trained on
both positive and negative examples can increase the accuracy of GPCRs classification
compared with only HMMs as generative method.

To increase the accuracy of remote homology detection by discriminative methods,
researchers also focused on finding new kernels, which measure the similarity between
sequences as main part of SVM based classifiers. So after choosing an appropriate feature
space and representing each sequence as a vector in that space, one takes the inner product
between these vector-space representations.The Spectrumkernel [85], Mismatch kernel
[84] and Local alignment kernel [64] are examples of those kernels and it has been shown
that they have outperformed previous generative methods for remote homology detection.

Another important problem in classification of GPCRs is the number of proteins at
the sub-subfamily level. At this level in some sub-subfamilies we have only a very low
number of protein sequences as positive data (minor class) compared with others (ma-
jor class). Some researchers have not considered those GPCRs families, or if they have
included them in their classifier they did not get as good results for them as for other
families with enough data [63].

4.1.2 Imbalanced dataset

Many classifiers are designed with the assumption of well-balanced datasets. But in real
problems, like protein classification and remote homology detection, when using binary
classifiers like support vector machines (SVMs) and kernel methods, we are facing imbal-
anced data in which we have a low number of protein sequences as positive data (minor
class) compared with negative data (major class).

A dataset is imbalanced if the classes are not equally represented and the number
of examples in one class (major class) greatly outnumbers the other class (minor class).
With imbalanced data, the classifiers tend to classify almost all instances as negative. This
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problem is of great importance since it appears in a large number of real domains, such
as fraud detection, text classification, medical diagnosisand protein classification [84, 2].
There have been two types of solutions for coping with imbalanced datasets. The first
type, as exemplified by different forms of re-sampling techniques, tries to increase the
number of minor class examples (oversampling) or decrease the number of major class
examples (undersampling) in different ways. The second type adjusts the cost of error or
decision thresholds in classification for imbalanced data and tries to control the sensitivity
of the classifier [100, 69, 68, 131]. Undersampling techniques involve loss of information
but decrease the time of training. With oversampling we do not loose the information
but instead it increases the size of the training set and so the training time for classifiers.
Furthermore, inserting inappropriate data can lead to overfitting. Some researchers [2]
concluded that undersampling can better solve the problem of imbalanced datasets. On
the other hand, some other researchers are in favor of oversampling techniques. Wu and
Chang [137] showed that with imbalanced datasets, the SVM classifiers learn a boundary
that is too close to positive examples. Then if we add positive instances (oversampling),
they can push the boundary towards the negative data, and we have increased the accuracy
of the classifier.

To decide the question of oversampling vs. undersampling, two parameters should
be taken into consideration: theimbalance ratioand the distribution of data in imbal-
anced datasets. Theimbalance ratio(NumberOfMinorityData

NumberOfMajorityData
) is an important parameter

that shows the degree of imbalance. In undersampling we should be sure of the existence
of enough information in the minor class and also of not loosing the valuable information
in the major class. We found out that the oversampling technique can balance the class
distribution and improve that situation. But the distribution of inserted positive instances
is of great importance. Chawla et al. [32] developed a method for oversampling named
Synthetic Minority Oversampling Technique (SMOTE). In their technique, between each
positive instance and its nearest neighbors new synthetic positive instances were created
and placed randomly between them. Their approach proved to be successful in different
datasets.

On the other hand Veropoulos et al. [131] suggested using different error costs (DEC)
for positive and negative classes. So the classifier is more sensitive to the positive in-
stances and gets more feedback about the orientation of the class-separating hyperplane
from positive instances than from negative instances.

In protein classification problems the efficiency of that approach (Veropoulos et al.
[131]) has been accepted. In kernel based protein classification methods [85, 109, 84] a
class-depending regularization parameter is added to the diagonal of the kernel matrix:

K ′(x, x) = K(x, x) + λn/N , wheren andN are the number of positive (or negative)
instances and the whole dataset, respectively. But, based onour experiments, if the dataset
is highly imbalanced and has overlapping data, choosing a suitable ratio of error costs for
positive and negative examples is not always simple and sometimes the values near the
optimum value of the error cost ratio give unsatisfying results.
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4.1.3 Proposed Method for Imbalanced Protein Dataset

In this chapter, we show that a combination of the DEC method and our suggested over-
sampling method for protein sequences can increase the sensitivity and also stability of
the classifier. We propose an oversampling technique for protein sequences in which the
minority class in the data space is oversampled by creating synthetic examples. Working
with protein data in data space instead of feature space allows us to consider the prob-
ability distribution of residues of the sequence using a HMM(Hidden Markov Model)
profile of the minority class and also one of the majority class and then synthesize protein
sequences which can push precisely the boundary towards thenegative examples. So we
increase the information of the minor class.

SyntheticProteinSequenceOversampling (SPSO) [12, 15] involves creating synthetic
protein sequences of the minor class, considering the distribution of that class and also
of the major class, and it operates in data space instead of feature space. Our method
of oversampling (SPSO) can cause the classifier to build larger decision regions for the
minor class without overlapping with the major class.

Kernel methods have widely been used for string classification. Examples of those
kernels for text classification and remote homology detection in protein families include
the spectrum kernel [86], mismatch kernel [84], and the string kernel proposed by Lodhi
et al. [90]. For GPCR classification, we use the local alignment kernel (LA kernel)[11]
that has been shown to have better performance compared withother previously suggested
kernels for remote homology detection when applied to the standard SCOP test set [64,
109]. It represents a modification of the Smith-Waterman score to incorporate sub-optimal
alignments by computing the sum (instead of the maximum) over all possible alignments.
Using that kernel along with our oversampling technique we could get better accuracy
and Matthew’s correlation coefficient for the classification of GPCRs at the subfamily
and sub-subfamily level than other previously published method.

In this work, we also create artificial data with different degrees of overlapping and
imbalance ratio to show the efficiency of our methods. For that, we use the G-protein
coupled receptors (GPCRs) family and create artificial data based on it. Furthermore, we
see how our algorithm can be used along with DEC methods to increase the sensitivity
and stability of the classifier.

In the following section, we explain the local alignment kernel. In section 4.3, we
present the SPSO algorithm in details. In section 4.4, we explain the materials and dataset
used in our study. The experimental results are given in section 4.5. Finally, we conclude
in section 4.6.

4.2 Kernel function

In protein classification, variable length protein sequences must be converted to fixed
length vectors to be accepted as input to a SVM classifier. These vectors should exploit
prior knowledge of proteins belonging to one family and enable us to have maximum
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discrimination for unrelated proteins. So the kernel function is of great importance for
SVM classifiers in learning the dataset and also in exploiting prior knowledge of pro-
teins and mapping data from input space to feature space. TheSmith Waterman (SW)
alignment score between two protein sequences tries to incorporate biological knowledge
about protein evolution by aligning similar parts of two sequences but it lacks the positive
definiteness as a valid kernel [109]. The local alignment kernel mimics the behavior of the
Smith Waterman (SW) alignment score and tries to incorporatethe biological knowledge
about protein evolution into a string kernel function. But unlike the SW alignment, it has
been proven that it is a valid string kernel. We used this kernel for our classification task,
so we give a brief introduction to that algorithm:
If K1 andK2 are two string kernels then the convolution kernelK1 ?K2 is defined for any
two stringsx andy by:

K1 ? K2(x, y) =
∑

x1x2=x,y1y2=y

K1(x1, y2)K2(x2, y2) (4.1)

Based on work of Haussler [57] ifK1 andK2 are valid string kernels, thenK1 ? K2

is also a valid kernel. Vert et al. [64] used that point and defined a kernel to detect lo-
cal alignments between strings by convolving simpler kernels.The local alignment kernel
(LA) consists of three convolved string kernels. The first kernel models the null contribu-
tion of a substring before and after a local alignment in the score:

∀(x, y) ∈ χ2, K0(x, y) = 1 (4.2)

The second string kernel is for alignment between two residues:

K(β)
α (x, y) =

{

0 if |x| 6= 1 or |y| 6= 1
exp[βs(x, y)] otherwise,

(4.3)

whereβ ≥ 0 controls the influence of suboptimal alignments in the kernel value and
s(x, y) is a symmetric similarity score or substitution matrix, e.g. BLOSUM62.
The third string kernel models affine penalty gaps:

K(β)
g (x, y) = exp {β [g (|x|) + g (|y|)]} (4.4)

g(n) is the cost of a gap of lengthn given by:

{

g (0) = 0 if n = 0,
g (n) = d + e (n− 1) if n ≥ 1,

(4.5)

whered ande are gap opening and extension costs. After that the string kernel based on
local alignment of exactlyn residues is defined as:

K
(β)
n (x, y) = K0 ∗

(

K
(β)
α ∗K

(β)
α

)(n−1)

∗K
(β)
α ∗K0. (4.6)
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This kernel quantifies the similarity of two stringsx andy based on local alignments of
exactlyn residues. In order to compare two sequences through all possible local align-
ments, it is necessary to take into account alignments with different numbersn of aligned
residues:

K
(β)
LA =

∞
∑

i=0

K
(β)
(i) . (4.7)

The implementation of the above kernel can be done via dynamic programming [64].

4.3 SPSO: Synthetic Protein Sequence Oversampling

Given a set of positive training sequences (minor class)S+ and a set of negative train-
ing sequences (major class)S− we want to create synthetic protein sequencesSsynthetic

as mutated replicas of each sequence of the minor class, provided that those synthetic se-
quences are created by an HMM profile (Hidden Markov Model profile) of the minor class
and are phylogenetically related to that class and far away from the major class. For this,
at first we build a multiple alignment of the sequences of the minor class using ClustalW
[127] and then we train a hidden Markov model profile with length of the created multi-
ple alignment sequences for each class (positive data and every family belonging to the
negative data). For every sequence in the minor class we create another mutated sequence
synthetically. For that, we consider an arbitraryNm as number of start points for mutation
in that sequence. We suppose theHMMp+ ( hidden Markov model profile of positive
instances) has emitted another sequence identical to the main sequence until the first point
of mutation. From that point afterward we assume thatHMMp+ emits new residues until
the emitted residue is equal to a residue in the same positionin the main sequence. From
this residue, all residues are the same as residues in the original sequence until the next
point of mutation (Fig. 4.3).

In this way, if the point of mutation belongs to a low entropy area of the HMM profile
the emitted residue will be very similar to the main sequence(will have few mutations).
We expect the emmitance probability of the synthesized sequence withHMMp+ to be
higher than withHMMp−, if not (very rarely), we synthesize another one or we de-
crease the value ofNm. TheNm parameter can adjust the radius of the neighborhood of
the original sequences and the synthesized sequences. Withlarger values ofNm, the al-
gorithm creates sequences that are phylogenetically fareraway from main sequences and
vice versa. We used another routine to find a suitable value ofNm. At first, in the minor
class, we find the protein sequence which has the highest emission probability with the
HMM profile of the minor class and consider it as root node. Then, we suppose the root
node has been mutated to synthesize all other sequences in the minor class through the
newSequence procedure of our algorithm. It means each sequence is a mutated replica
of the root node sequence which is emitted by the HMM profile ofthe minor class. We
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Algorithm SPSO(S+,S− )
Input : S+, set of sequences of minority class;S−, set of sequences of majority

class
Output : Ssynthetic, set of synthetic protein sequences from the minority class

Create HMM profile of setS+, call it HMMp+ ;1

Create array of HMM profiles consisting of all families belonging toS−, call it2

HMMp−[];
Choose an arbitrary number as number of start points for mutation, call it Nm;3

for i← 1 to |S+| do4

s = S+[i] ;5

repeat6

Create an array of sorted non-repeating random numbers with sizeNm as7

array of start points for mutation, call itPm ;
Ssynthetic[i]= newSeq (s,HMMp+,Pm);8

p+ = Pe(Ssynthetic[i], HMMp+) ; / * emittance probability of9

synthesized sequence by HMMp+ * /
p−[] = Pe(Ssynthetic[i], HMMp−[]) ;10

until p+ < max p−[] ;11

end12

return Ssynthetic13

Function newSeq( s,HMMp+,Pm)
Input : s, original sequence;HMMp+, HMM profile of setS+ to whichs

belongs;Pm, array of start points for mutation
Output : ssynthetic, synthetic sequence froms

ssynthetic = s ;1

for i← 1 to |Pm| do2

p = Pm[i] ; / * assume that HMMp+ in position p has3

emitted s[p] * /
repeat4

ssynthetic[p + 1]= emitted residue in positionp + 1 by HMMp+ ;5

p = p + 1 ;6

until (newres 6= s[p]) && (p < |HMMp+|) ;7

end8

return ssynthetic9
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Figure 4.3: The phylogenetic tree of the original and the synthesized sequences from
the “vasoactive intestinal polypeptide” family of GPCRs (upper) and an example of the
SPSO algorithm for sequences from the above family (lower). a. Multiple sequence
alignment and low entropy area of that familyb. A part of sequences1. c. Synthetic
sequence ofs1 with Nm=50. d. Synthetic sequence ofs1 with Nm=100 (Pm: array of
start points, shown byM , for mutations).
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gain the value ofNm for each sequence. Then, we get the average of all those values as
Nm entry for the SPSO algorithm.

With each call of the SPSO algorithm, we double the minor class. As an example
of random synthesizing of sequences, Fig. 4.3(upper) showsthe phylogenetic tree of the
original sequences and the synthesized sequences for the vasoactive intestinal polypeptide
family of class B (9 out of 18 sequences were randomly selected). It is shown that the
synthesized sequences of most original sequences have lessdistance to them than to other
sequences. In that figure (lower) we see two synthetic sequences ofs1 with different
values ofNm. In the low entropy area of the HMM profile of that family we have less
mutations.

4.4 Datasets

To evaluate the performance of our algorithm, we ran our experiments on a series of both
real and artificial datasets, whose specification covers different complexity and allows
us to fully interpret the results. We want to check its efficiency with different ratio of
imbalance and complexity. Fig. 4.4 shows the pictorial representation of our datasets.
In the first one, the distribution of the positive and negative data are completely different
and they are separate from each other. With that distribution, we want to see, how the
imbalance ratio affects the performance of the classifier byitself. The second one shows
datasets in which positive data are closer to negative data and there is an overlap between
the minor and major classes. With this distribution, we can consider both the ratio of
imbalance and overlap of the datasets in our study. The thirdone is a case where the
minor class completely overlaps with the major class and we have fully overlapping data.

We used the G-protein coupled receptors (GPCRs) family as realdata and then created
artificial data based on it.

The dataset of this study was collected from GPCRDB and we used the dataset June
2005 release [21]. The six main families are: Class A (Rhodopsin like), Class B (Se-
cretin like), Class C (Metabotropic glutamate/pheromone),Class D (Fungal pheromone),
Class E (cAMP receptors) and Frizzled/Smoothened family. The sequences of proteins in
GPCRDB were taken from SWISS-PROT and TrEMBL [8]. All six families of GPCRs
(5300 protein sequences) are classified in 43 subfamilies and 99 sub-subfamilies.

If we want to classify GPCRs at the sub-subfamily level, mostlywe have only a very
low number of protein sequences as positive data (minor class) compared with others
(major class). We chose different protein families from that level to cover all states of
complexity and imbalance ratio discussed above (Fig. 4.4).In some experiments we
made artificial data using those families and synthesized sequences from them (discussed
later). We used numbers to show the level of family, subfamily and sub-subfamily. For
example 001-001-002 means the sub-subfamily Adrenoceptors that belongs to subfamily
of Amine (001-001) and class A (001).
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Figure 4.4: Pictorial representation of the minor (shaded circle) and major classes of our
datasets.

4.5 Experiments

4.5.1 Artificial Data

We selected the peptide subfamily (001-002) of Class A (Rhodopsin-like) to classify its
32 families (or sub-subfamily level of class A). We built HMMprofiles of all families and
measured the probability of emission of sequences belonging to each one by all HMM
profiles. We saw that the emission probability of each sequence generated by the HMM
profile of its own family is higher than that of almost all other families. So we can con-
clude that the distribution of the peptide subfamily in a suitable feature map can be con-
sidered as in Fig. 4.4.a. We built a kernel matrixK for the training data. Each cell of
the matrix is a local alignment kernel score between proteini and proteinj (Fig. 4.5).
Then we normalize the kernel matrix viaKij ← Kij/

√

KiiKjj. Each family is consid-
ered as positive training data and all others as negative training data. After that the SVM
algorithm with RBF kernel is used for training. For testing, wecreated feature vectors
by calculating a local alignment kernel between the test sequence and all training data.
The number of sequences in the peptide subfamily is in the range of 4 to 251, belonging
to (001-002-024) and (001-002-008), respectively. Thus the imbalance ratiovaries from

4
4737

to 251
4737

. Fig. 4.6.a shows the result of SPSO oversampling for classification of some
of those families. We see that this method can increase the accuracy and sensitivity of
the classifier faced with highly imbalanced data without decreasing its specificity. The
minority class was oversampled at 100%, 200%, 300%,..., 800% of its original size. We
see that the more we increase the synthetic data (oversample) the better result we get,
until we get the optimum value. It should be noted that after oversampling, the accuracy
of classifiers for the major class didn’t decrease.

We compared our method with two other methods. The first one was SMOTE (Syn-
thetic Minority Oversampling Techniques) [32] that operates in the feature space rather
than in data space, so it works with all kind of data. The second comparison was done
with randomly oversampling, in which we create random sequences by the HMM profile
of each family. For this, like our method, we build a multiplealignment of the minor class
sequences using ClustalW and then train a hidden Markov modelprofile with length of
the created multiple alignment sequence. Then, we create random sequences by the HMM
profile of each family. In this method we don’t have enough control over the distribution
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Figure 4.5: Calculating the kernel matrix of the training data.
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The graph plots the total number of families for which a givenmethod exceeds an ROC
score threshold.
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of created random sequences. We call this method rHMMp.
In our study, we use the Bioinformatics Toolbox of MATLAB to create the HMM

profiles of families and the SVMlight package [71], to perform SVM training and classi-
fication.

We used the Receiver Operating Characteristic (ROC) graphs [105] to show the qual-
ity of the SPSO oversampling technique. An ROC graph characterizes the performance of
a binary classifier across all possible trade-offs between the classifier sensitivity (TPrate)
and false positive error rates (FPrate) [124]. The closer the ROC score is to 1, the better
performance the classifier has. We oversampled each minority class with the three differ-
ent methods noted above, until we got the optimum performance for one of them. At that
point, we calculated the ROC score of all methods.

Fig. 4.6.b shows the quality of classifiers when using different oversampling methods.
This graph plots the total number of families for which a given method exceeds an ROC
score threshold. The curve of our method is above the curve ofother methods and shows
better performance. In our method and in SMOTE, the insertedpositive examples have
been created more accurately than random oversampling (rHMMp). Our method (SPSO)
outperforms the other two methods especially for families in which we have a low number
of sequences, although the quality of SMOTE is comparable tothe SPSO method.

To study the second and third representation of the dataset shown in Fig. 4.4 we need
to create some sequences synthetically. At first, we built the HMM profile of each family
of the peptide families and then computed the probability score of each sequence when
emitted not only by the HMM profile of its own family but also from all other families.
The average of those scores for sequences of each family whenemitted by each HMM
profile can be used as a criterion for the closeness of the distribution of that family to
other families and how much it can be represented by their HMMprofiles. In this way
we can find the nearest families to each peptide family. Afterthat we synthesized se-
quences for each family through thenewSeq procedure of the SPSO algorithm, provided
that it is emitted by the HMM profile of another near family andnot by its own HMM
profile. So after each start position for mutation (Fig.4.3 (lower)) we have residues that
are emitted by another HMM profile (we want to have overlap with) instead of its own
HMM profile and there is an overlap for the distribution of synthesized sequences between
those two families. The degree of overlapping can be tuned bythe value ofNm (number
of mutations). This dataset (original and new synthesized sequences) can be considered
as partially overlapping dataset (Fig. 4.4.b). If we create more sequences using other
HMM profiles the distribution of the dataset is fully overlapping (Fig. 4.4.c). To study
the partially overlapping datasets, we selected 10 families of peptide families and built
the synthesized sequences as noted above. To create the fully overlapping dataset, we
performed that routine for each family using the HMM profile of three families near to
the original family, separately.

We compare our oversampling technique with the SMOTE oversampling technique
and the different error cost (DEC) method [131]. Tables 4.1 and 4.2 show the results.
We see that in general SPSO outperforms the SMOTE and DEC methods, and the perfor-
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mance of the classifier with the SPSO oversampling techniquein fully overlapped datasets
is more apparent. When there is more overlapping between the minor and major classes,
the problem of imbalanced data is more acute. So the positionof the inserted data in
the minor class is more important and in our algorithm it has been done more accurately
than in SMOTE method. With regard to the time needed for each algorithm, DEC has
an advantage compared to our method, because in the oversampling technique the mi-
nor class, depending on the number of its instances, is oversampled up to 10 times (in
our experiments) which increases the dimension of the of kernel matrix. In contrast, in
the DEC method choosing the correct cost of error for minority and majority classes is
an important issue. One suggested method is to set the error cost ratio equal to the in-
verse of the imbalance ratio. But, based on our experiments that value is not always the
optimum, and especially in partially and fully overlapped datasets we had instability of
performance even with values near the optimal value. Based onour experiments in the
well-separated imbalanced data the quality of DEC is very near to the SPSO method and
for some experiments, even better, and we could find the optimum value for error cost
ratio simply. So perhaps with this kind of datasets one should prefer the DEC method.
But with partially and fully overlapping data, we found that our oversampling method in
general has better performance, and if it is used along with the DEC method, it not only
increases the performance of the classifier but it also makesfinding the value for the error
cost ratio simpler. We also have more stability with values close to the optimum value
of the error cost ratio. The graphs in Fig. 4.7.a and Fig. 4.7.b show the value of the
ROC score of the classifier for partially overlapped artificial sequences from the family
of 001-002-024 (001 − 002 − 024

′
) when the DEC method and DEC along with SPSO

(400% oversampling) were applied. We see that when SPSO oversampling is used we
have stability in ROC score values and after the optimum value, the ROC score does not
change. The drawback is, that we again have to find the best value for the error cost ratio
and the rate of oversampling through the experiment by checking different values, but in
less time compared to only the DEC method, because of the stability that was shown in
Fig. 4.7.b. We used that method for all partially and fully overlappingartificial data (Ta-
ble 4.1 and 4.2). For each experiment we oversampled data in different rates and selected
different values of error cost ratio until we got the best result. The results in Fig. 4.7.c
show that for those kind of data the ROC scores of SPSO and DEC +SPSO are nearly the
same. But in the second method (DEC + SPSO), we need to oversample data less than in
the SPSO only method and we could find the best value of the error cost ratio sooner than
in DEC only. With less rate of oversampling in SPSO we get lessaccurate results but we
can compensate that with DEC.

4.5.2 GPCRs Families Classification Results

We used our oversampling technique in classification all GPCRsfamilies at subfamily and
sub-subfamily level (mostly we have a low number of sequences). In subfamily classifi-
cation we randomly partitioned the data in two non-overlapping sets and used a two-fold
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Figure 4.7: The ROC score at different error cost ratios for artificial sequences of001 −
002 − 024

′
in (a) classifier with the DEC method and (b) classifier with DEC + SPSO

methods (400% oversampled). (c) Comparison of DEC, SPSO and DEC+SPSO methods
for imbalanced data. The graph plots the total number of experiments of partially and
fully overlapped imbalanced artificial data for which a given method exceeds an ROC
score threshold.



64 Chapter 4. Kernel Methods for Imbalanced Protein data Classification

Partially overlapping classes- ROC scores
minority class # of sequences SMOTE DEC SPSO

001− 002− 015
′

16 0.863 0.943 0.951
001− 002− 016

′
122 0.821 0.912 0.929

001− 002− 017
′

68 0.854 0.892 0.884
001− 002− 018

′
74 0.912 0.871 0.891

001− 002− 020
′

86 0.972 0.975 0.984
001− 002− 021

′
40 0.695 0.739 0.723

001− 002− 022
′

44 0.725 0.762 0.751
001− 002− 023

′
48 0.965 0.982 0.996

001− 002− 024
′

8 0.845 0.834 0.865
001− 002− 025

′
10 0.945 0.972 0.987

overall ROC-score 0.859 0.882 0.896

Table 4.1: ROC scores obtained on the partially overlappingclasses created from peptide
families of GPCR dataset, by various methods. DEC = differenterror cost;

cross validation protocol. The training and testing was carried out twice using one set for
training and the other one for testing. To compare with the results of other researchers,
the prediction quality was evaluated by Accuracy (Acc), Matthew’s correlation coefficient
(MCC), and also overall Accuracy (Acc) and overall MCC (MCC) as follows:

Acc =
N
∑

i=1

Acc(i)

N
(4.8)

MCC =
N
∑

i=1

MCC(i)

N
(4.9)

where

Acc. =
TP + TN

(TN + FN + TP + FP )
(4.10)

MCC. =
TP × TN − FN × FP

√

(TN + FN)(TP + FN)(TN + FP )(TP + FP )

(4.11)

(TP = number of true positives,TN = number of true negatives,FP = number of false
positives ,FN = number of false negatives,N=number of subfamilies or sub-subfamily)

Tables 4.5.2, 4.4 and 4.5 show the results of subfamily classification for classes A, B
and C of GPCRs. We see that even when the number of sequences is low, the accuracy of
our method is high. The overall accuracy for families A, B andC is 98.94%, 99.94% and
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Fully overlapping classes- ROC scores
minority class # of sequences SMOTE DEC SPSO

001− 002− 015” 32 0.673 0.680 0.724
001− 002− 016” 244 0.753 0.775 0.821
001− 002− 017” 136 0.672 0.652 0.643
001− 002− 018” 148 0.591 0.624 0.672
001− 002− 020” 172 0.763 0.821 0.858
001− 002− 021” 80 0.632 0.689 0.681
001− 002− 022” 88 0.615 0.812 0.854
001− 002− 023” 96 0.912 0.942 0.968
001− 002− 024” 16 0.716 0.768 0.819
001− 002− 025” 20 0.908 0.902 0.921

overall ROC-score 0.723 0.766 0.796

Table 4.2: ROC scores obtained on the Fully overlapping classes created from peptide
families of GPCR dataset by various methods.

96.95%, respectively, and overall MCC for families A, B and C is 0.98, 0.99 and 0.91,
respectively. The results show that almost all of the subfamilies are accurately predicted
with our method. At the subfamily level we compared our method with that of Bhasin
et al. [22]. They used an SVM-based method with dipeptide composition of protein
sequences as input. The accuracy and MCC values of our method outperform theirs. For
example in classification of subfamily A, the overall accuracy and MCC of their method
were 97.3% and 0.97 but ours are 98.4% and 0.98, respectively. They did a comparison
with other previously published methods like that of Karchin et al. [74] and showed that
their method outperformed the others.

For sub-subfamily classification we used 5-fold cross validation. Table 4.6 shows the
results for the sub-subfamily level. We see that in this level also the accuracy is high and
we could classify most of GPCRs sub-subfamilies. We could obtain an overall accuracy
of 97.93% and a MCC of 0.95 for all sub-subfamilies. At this level we could increase the
accuracy, especially when the number of sequences in the positive training data was less
than 10, and there was no example in which with our oversampling method the accuracy
decreases.

To the best of our knowledge there is only one study which has been done for sub-
subfamily classification [63] in GPCRs families. Their approach is based on bagging
a classification tree and they achieved 82.4% accuracy for sub-subfamily classification,
which is less accurate than ours (97.93% with MCC of 0.95) despite the fact that they had
excluded families with less than 10 sequences (we only excluded families with less than
4 sequences). We think our oversampling technique can be widely used for other appli-
cations of protein classification with the problem of imbalanced data and it can be used
along with the different error cost (DEC) method to overcome the problem of imbalanced
data for protein data.
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Class A subfamilies Accuracy (%) MCC
Amine 99.9 0.99
Peptide 97.8 0.97
Hormone protein 100.0 1.00
(Rhod)opsin 99.6 0.99
Olfactory 99.9 0.99
Prostanoid 99.9 0.98
Nucleotide-like 100.0 1.00
Cannabinoid 100.0 1.00
Platelet activating factor 100.0 1.00
Gonadotropin-releasing hormone 100.0 1.00
Thyrotropin-releasing hormone 100.0 1.00
Melatonin 100.0 1.00
Viral 87.0 0.80
Lysosphingolipid 100.0 1.00
Leukotriene 100.0 1.00
Overall 98.4 0.98

Table 4.3:The performance of our method in GPCRs subfamily classification (Class A).

4.6 Conclusion

GPCRs family classification enables us to find the specificity for ligands that bind to the
receptor and also to predict the function of GPCRs. Our aim in this study was to develop
an accurate method for classification of GPCRs at the sub-subfamily level, at which we
have the problem of imbalanced data. We chose the local alignment kernel (LA kernel) as
a suitable kernel for our classification task. Compared with HMMs, the LA kernel takes
more time during the training phase, but according to results of other researchers, the ac-
curacy of discriminative methods with that kernel is higherthan with a generative method
like HMMs. To solve the problem of imbalance, we suggested a new approach of over-
sampling for the imbalanced protein data in which the minority class in the data space is
oversampled by creating synthetic protein sequences, considering the distribution of the
minor and major classes. This method can be used for protein classification problems and
remote homology detection, where classifiers must detect a remote relation between un-
known sequences and training data with an imbalance problem. We think that this kind of
oversampling in kernel-based classifiers not only pushes the class separating hyperplane
away from the positive data to negative data but also changesthe orientation of the hyper-
plane in a way that increases the accuracy of classifier. We developed a systematic study
using GPCRs as a set of real and artificially generated datasetsto show the efficiency of
our method and how the degree of class overlapping can affectclass imbalance. The re-
sults show that our SPSO algorithm outperforms other oversampling techniques. In this
chapter, we also presented evidence suggesting that our oversampling technique can be
used along with DEC to increase its sensitivity and stability.
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Class B subfamilies Accuracy (%) MCC
Calcitonin 100.0 1.00
Corticotropin releasing factor 100.0 1.00
Glucagon 100.0 1.00
Growth hormone-releasing hormone 100.0 1.00
Parathyroid hormone 100.0 1.00
PACAP 100.0 1.00
Secretin 100.0 1.00
Vasoactive intestinal polypeptide 100.0 1.00
Diuretic hormone 99.1 0.91
EMR1 100.0 1.00
Latrophilin 100.0 1.00
Brain-specific angiogenesis inhibitor 100.0 1.00
Methuselah-like proteins (MTH) 100.0 1.00
Cadherin EGF LAG (CELSR) 100.0 1.00
Overall ≈ 100 0.99

Table 4.4:The performance of our method in GPCRs subfamily classification (Class B).

Class C subfamilies Accuracy (%) MCC
Metabotropic glutamate 92.1 0.84
Calcium-sensing like 94.2 0.82
Putative pheromone receptors 98.7 0.93
GABA-B 100.0 1.00
Orphan GPRC5 97.1 0.96
Orphan GPRC6 100.0 1.00
Taste receptors (T1R) 97.2 0.81
Overall 96.95 0.91

Table 4.5:The performance of our method in GPCRs subfamily classification (Class C).
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Class A subfamilies Overall Accuracy (%) Overall MCC
Amine 97.1 0.91
Peptide 99.9 0.93
Hormone protein 100.1 1.00
(Rhod)opsin 96.6 0.95
Olfactory 98.9 0.92
Prostanoid 98.0 0.94
Gonadotropin-releasing hormone 96.1 0.93
Thyrotropin-releasing hormone 91.2 0.94
Lysosphingolipid 98.4 1.00

Class B Latrophilin 100.0 1.00
Class C Metabotropic glutamate 98.1 0.96

Calcium-sensing like 97.2 0.93
GABA-B 100.0 1.00

Overall 97.93 0.95

Table 4.6:The performance of our method in GPCRs sub-subfamily classification for Class A, B
and C.



Chapter 5

Time series Kernels for Biosonar Data
Classification

5.1 Introduction

Time series are an important type of data occurring in many scientific disciplines. A
common task with time series is to compare one sequence with another. In some domains,
a very simple distance method measure, such as Euclidian distance, will suffice. In the
case that two time series have similar parts but not at similar positions, we use a more
efficient method for similarity extraction known as DynamicTime Warping (DTW), in
which the time of one (or both) sequences is “warped” before an alignment. Dynamic
programming is used to measure the similarity score in DTW.

Kernel methods have also been used as a popular method to extract the similarity.
Different kernels correspond to different notions of similarity. As we explained in chapter
2, a kernel function implicitly defines a feature space whichin many cases we do not need
to construct explicitly. The structure of the data and our knowledge of the particular time
series suggest a way of comparison that we can consider in ourkernel function. Then, the
kernel function can be used directly in Support Vector Machines (SVMs) based classifiers.

There have been methods proposed to embed the time alignmentoperation and DTW
into a kernel function [116, 39]. These methods especially are useful in speech recogni-
tion, in which the information lies in the whole time series.

However, in some time series the information lies in a fixed (or not very varied) size
window of time events (subsequence), independent of the actual time. So we have sub-
sequences at random positions whose similarities should bemeasured. Those repetitive
parts may occur in speech, musical pieces and sonar signals.Therefore, the algorithms
for finding similar time series should not consider the wholetime series but look for in-
formative subsequences. Then, in kernel based methods for similarity extraction, we need
kernels which can extract similarities between all subsequences. Hence, the main task is
to find a map that reflects the suitable and common features of those time series and gives
a good indiction of the sub similarity we would like to capture. On the other hand, we

69
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should be able to calculate those inner products efficiently.
In this chapter, we study the classification of biosonar signals as an example of the

random process signals which contain those local similarities.
Bats can distinguish objects by emitting a series of ultrasound signals (chirps) that

generally sweep covering frequencies from 22 to 100 kHz [94]. Despite the similarity
between the process of analysis of reflected echoes in bats and that of the hearing system
in human beings, it is difficult for us to understand the process, because we have never
explored the environment with echolocation.

To unravel the mechanism of echolocation, inspired by the bat biosonar system, re-
searchers have utilized biosonar heads and ultrasonic sensing techniques similar to that
of bats for mobile robots (biomimetic robots) and tried to classify different textures and
landmarks through their received echo signals [91, 82].

McKerrow used a CTFM (Continuous Transmission Frequency Modulated) system
and modelled the echoes with the acoustic density profiles, used the frequency compo-
nents and energy spectra and found features, which characterize the acoustic density pro-
files of plants in a classification task [91]. Kuc [82] suggested a transformation of echo
to pseudo-action potential as a temporal point process to understand how bats recognize
landmarks in the field. M̈uller [97] presented a neuro-spike representation of echoes in
which each echo is transcribed into a spike code using a parsimonious model, and clas-
sified four foliages using three features derived from interspike intervals. Gao et. al [48]
presented a template matching algorithm for classificationof several types of brick walls,
picket fences and hedges using sonar echoes. M. Wang et al. [134, 135] used different
structural features in the frequency domain and also template matching for the classifica-
tion task.

We used a Biosonar–based robot and ultrasound signals (chirps) and simulated echoes
of the bat while using different trees as landmarks (Fig. 5.4). By comparing the return-
ing echoes (which are individually the superposition results of the reflected echoes) and
pattern recognition methods, we aim at recognizing the objects with emphasis on under-
standing and exploiting the characteristics of bat sonar system. From the study of works
of the researchers noted above [91, 82, 97, 48] and also our experiments, we concluded
that finding robust feature for classification is not trivial. For example, the orientation of
objects can result in large changes in the reflected echoes. Hence, in this case features
which are only temporally based can be inefficient. But on the other hand, the local tem-
poral similarities between different echoes of one object as an indication of its texture is
a significant issue that should be considered.

Our approach is a combination of system neurobiology with sonar signal processing
and pattern recognition to learn how bats process echoes andperceive objects.

We develop an efficient method for our classification task andconsider both local
temporal similarity and the power spectrum of echoes and propose a kernel based classi-
fication method considering those parameters.

We suggest a kernel calledtime-resolved spectrum kernelto measure the similarity
of echoes as time series. Thep-length subsequence of that kernel simply measures the
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occurrences of fixedp-length subsequences for each of the time series in consideration.
The more time series share similarp-length subsequences, the more similar they are.

We also implement a more general kernel calledwarped time-resolved spectrum ker-
nel, which considers warping in the subsequences. The warped time-resolved spectrum
kernel measures the whole similarities of all warped non contiguous subsequences of the
two time series, independent of their positions. We then usethose kernels directly in a
SVM-based classifier. The results show that those kernels allow for a very reliable dis-
crimination of reflected sonar echoes from different objects.

This chapter is organized as follows: In the next section we begin by illustrating the
echolocation and biosonar systems. In section 5.3 we explain the main parts of a biosonar
based robot. In sections 5.4 and 5.5, we discuss the time-resolved spectrum kernel, and
the results are given in section 5.6. At last, we conclude ourwork in section 5.7.

5.2 Echolocation and Biosonar

Vision and audition are close phenomena in that both can process reflected waves of
energy. Vision processes photons (waves of light) as they travel from their source, bounce
off surfaces throughout the environment, and enter the eyes. In fact, the visual system is
able to perceive its surrounds by its ability to process the complex patterns of photons of
visible light as they reflect into the eye from surfaces in those surroundings. If all one
could see were sources of light and not reflected light, our eyes would give us very little
awareness of the nature of our surroundings. By perceiving and interpreting patterns of
reflected light, extremely rich and detailed information can be gathered about the layout
and characteristics of surrounding space and objects therein.

Similarly, the auditory system can process phonons (waves of sound), reflected from
their source, bounce off surfaces, and enter the ears. The auditory system then can extract
a great deal of information about the environment by interpreting the complex patterns
of reflected energy that they receive. Echo information can be perceived and processed
by the auditory system to enable many determinations about surrounding space and one’s
physical relationship to it.

Echolocation, the sonar ‘sight’ of bats, is similar to the “SOund NAvigating and Rang-
ing” or sonar used by the military. Because it is produced by living organisms rather than
by machines, it is often called ‘biosonar’. The term echolocation was first coined by
Donald Griffin in 1938 [52], who discovered that bats navigate with the aid of high fre-
quency sounds bouncing off obstacles in their environment.It is an aspect of auditory
perception which may be broadly defined as the ability to perceive echoes. Echolocation
makes it possible for species to decrease their dependence on the visual system; such in-
dependence confers advantages to the echolocator for navigation and hunting under poor
lighting conditions.

Numerous investigations such as those concerning by bats, nocturnal birds, and ma-
rine animals [7, 53] clearly demonstrate that echoes can provide detailed and consistent
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information about the surrounding environment. With this information, sightless animals
perform all essential functions of productive living similar to those with sight.

Such studies of echolocation may be of great value to blind people by making available
the knowledge needed to improve nonvisual competence in spatial awareness and travel.
A thorough understanding of the nature of this skill could have valuable implications
for training and rehabilitation. In [120] possible uses of echolocation by humans are
discussed and it is argued that echolocation may be a basic perception–action ability of
humans.

Some simple and accurate examples conducted by [53, 110, 111] lead us to a compre-
hensive and practical understanding of the processes behind echolocation and its utility
in human while suggesting that both blind and sighted humansare capable of substantial
precision in the perception of properties of distal objects, such as distance, size, shape,
substance, and relative motion by echolocation.

Inspired by bat echolocation research, the human echolocation study was undertaken
in the hopes of acquiring a more intimate knowledge about human echolocation ability.
Findings demonstrate the ability of blind humans to use echolocation to actively seek out
objects in their vicinity and thus to exert more control overperceiving the qualities of
objects in their environment. Echolocation may in fact be a tool for the blind to perceive,
not just the presence of objects, but such dimensions of the objects as size and distance.

Bats can distinguish objects and their prey by emitting a series of ultrasound sig-
nals (chirps) that generally sweep covering frequencies from 22 to 100 kHz. Lie et al.
[83] point out that certain species of bats can use echoes elicited by their own ultrasonic
chirps can perceive obstacles as thin as 0.65 mm. These authors further indicate that some
echolocating bats can develop a precise spatial memory of previously explored environ-
ments to an accuracy within 2 centimeters and resolve reflecting points as close together
as 0.3 mm in range. The acoustic image of a sonar target is apparently derived from
time-domain or periodicity information processing by the nervous system.

The bat has a sonar transmitter (mouth) and two sonar receivers (part of its auditory
system) which it uses to receive and analyze echoes reflectedfrom targets in the envi-
ronment. It emits short high-bandwidth clicks in a forward focused beam, and listens for
reflected echoes. During this process, the animal gathers useful information about the in-
sonified targets. These pulses are usually frequency modulated (FM), constant frequency
(CF) or combinations of both [83].

5.3 Biosonar based robot

5.3.1 Hardware

The implementation of the whole system consists of a mobile robot (Robin) with two
PCs, a digital signal processing package, and a biosonar system (Fig. 5.1). The biosonar
system includes a National Instruments NI6110 analog I/O card, a mini servo controller
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Figure 5.1: Biosonar system configuration

(module SSCII), a BNC2110 connector, and the biosonar head. TheNI6110 card and the
BNC2110 connector transfer chirp signals and receive the reflected echoes. The biosonar
head (Fig. 5.3) consists of 3 Polaroid sensors in a triangular layout, similar to the layout of
a bat’s mouth and ears: two Polaroid 600 sensors spaced 12.5 cm apart asears, a Polaroid
7000 sensor asmouth in the middle between two ears. Each of the two ears has two
degrees of angular freedom provided by two servo motors. These can be finely rotated to
acquire local support. The Polaroid ultrasonic ranging system is most commonly used by
the robotics research community.

The maximum sampling speed of the NI6110 card is 5 MHz. We utilized 1 MHz in
our research. The NiMH charger box provides the sensors witha 150V power supply. The
mobile robot Robin is an autonomous mobile service robot thathas two PCs inside, one
is in charge of navigation control, the other one is responsible for signal data processing,
feature extraction and decision making.

5.3.2 Chirp Design

Bats utilize many different types of echoes depending upon whether they are hunting,
flying in a densely forested area, or flying in an open space [122]. Some bats use brief,
broadband, frequency modulated (FM) calls, while others emit more prolonged, constant
frequency (CF) calls. CF chirps are more suitable for detection than for tracking. But in
FM chirps, the frequency changes with its duration and it consists of several modulated
FM components. It closely resembles a radar’s chirp signal and lends itself well to range
finding. Furthermore, it yields a spectral signature that isuseful for determination of an
object’s size, shape and surface detail and discriminationbetween object types. Some
bats have developed nonlinear frequency modulation too.

CF–FM bats can switch between waveforms. They employ CF and FM type wave-
forms during a single engagement and for example use CF pulseswhen looking for prey
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(a) The biological bat

(b) Biosonar head

Figure 5.2: The biosonar head consists of one emitter (mouth) and two receivers (ears).

in a stationary position but switch to a CF–FM signal once theyare tracking a target.
Considering the task of our research – natural landmark classification – we used the

FM chirp with amplitude adaptation, which means the frequency sweeps linearly in a
range and the amplitude varies in an oval form. It resembles the chirp form of most bats
in nature.

In our experiments, the emitted pulse was a linearly frequency modulated chirp sweep-
ing from 20kHz to 120kHz in 1 ms (Fig.5.3).

5.3.3 Landmarks and Sensing Strategy

Through echolocation in darkness, a bat can perceive not only the position of an object,
but also its 3D structure [54]. The recognizable target in nature works as a landmark
for its navigation. For our sensory task, these landmarks should be rich and easy to be
found there. The criteria for selecting natural landmarks include observability, frequent
occurrence, uniqueness, temporal stability, easy classification, and lateral compactness
[107]. Considering those aspects, we selected three artificial trees with similar height of
1.7 m as shown in Fig. 5.4.

Compared with other researchers [97, 82], we used a differentmethod for sensing the
objects. We used a 0.5 degree angular stepsize for our scans,each tree was scanned 360
degrees in a circular movement of the robot and we collected echoes from all orientations
of leaves and tree. The reflected echo contains the information about the geometry of the
tree and is the superposition of all reflections [134, 135].
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Figure 5.3: Emitted chirp signal and its frequency content.

Figure 5.4: Three different trees as biosonar landmarks. From left to right: Ficus, Bam-
boo, Schefflera.
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Figure 5.5: Block diagram of the preprocessing steps for reflected echoes.

5.3.4 Data Processing

Fig. 5.5 shows the block diagram of the data acquisition and preprocessing procedure of
reflected echoes. We passed the reflected echoes through a bank of 10 gammatone filters
between 20 kHz and 120 kHz. In order to extract the envelope ofthe filtered signals, they
were delivered to half-wave rectifiers.

The next step isframe blocking. In this step the signal blocked to frames ofN sam-
ples, is separated from adjacent frames byM (M < N) samples and hasN−M overlaps.
Considering the sampling frequency of the data acquisition part (1 MHz) and the mini-
mum width of leaves of trees and axial resolution of transducers, we selectedN = 32
and 50% overlap for frames. The next step in the data preprocessing is to window each
individual frame so as to minimize the signal discontinuities at the beginning and end of
each frame. We used aHamming windowfor this purpose. The last step is to calculate
the average energy of each band of gammatone filter bank in each frame. The result is a
feature matrix, where each column is a vector showing the average energy of each channel
in one time frame. Fig. 5.7 shows the examples of the preprocessed reflected echoes from
Ficus, Bamboo and Schefflera trees. We use this feature matrixfor our classification task.

After the preprocessing steps for each echo (Fig. 5.5), we have a matrix of time series
in which each cell is a time frame and its value is the average energy of each channel of
gammatone filter. Furthermore we have

A = C × S (5.1)

whereA is the number of features,C is the number of channels andS the number of
samples in each channel.
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Figure 5.6: Features: examples of the energy spectrum (output of gammatone filter cen-
tered around 50 kHz) for Ficus, Bamboo and Schefflera trees.
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Figure 5.7: The energy spectrum in each time frame for Ficus and Schefflera trees (output
of gammatone filter centered around 50 kHz). The time-resolved spectrum kernel tries to
find the local similarities in window of sizep in echoes of one object.
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Fig. 5.7 shows the examples of the preprocessed echoes of Ficus and Schefflera trees.
We use those feature matrices for our classification task.

As noted before, the biosonar signals are random and nonstationary in the temporal
dimension and small changes in the orientation of the plant result in changes in the po-
sition of energy features along the time series. For example, the location of leaves in
the plant determines the acoustic energy throughout the frames, and small changes in the
orientation of the plant result in changes in those featuresalong the frames of time. But,
as we see in Fig. 5.7, despite the seemingly randomness of those signals, there are some
local similarities (shown byp) in echoes from one tree. Then, if we can find the sizes of
windows in which we have maximum similarity between data of one object, it can help
us to classify that object from others. We consider the output of the block diagram shown
in Fig. 5.5, a time series, in which each point is a time frame and its value is a vector of
features (the average energy of each channel of gammatone filter bank). We should find
the subsequences of the time seriesindependent of the positions of occurrencesthat have
maximum similarities in echoes of each object. The intuition behind our idea is that the
structure of objects and, as an example, the size of leaves orbranches, should be consid-
ered in the classification task. The size of the subsequence that we are looking for, can
be related to the size of the leaves or branches of the tree. Inanother way, the energy
reflected by the leaves or branches of the tree can be related to the size of those similar
subsequences of the time series.

A similar situation happens in text classification and also remote homology detection
in protein families, where we must detect a remote relation between an unknown sequence
and a family of proteins. Those proteins contain domains whose positions are not similar
in proteins of a family. There again we should measure the local similarities between all
subsequences as an indication of similarity between two sequences.

Similar to the remote homology detection in proteins, wherea classifier must detect
a remote relation between an unknown sequence and a family ofproteins, in our classi-
fication task, the algorithms for finding similar time seriesshould not consider the whole
time series but look for informative subsequences, and we need kernels, which can extract
similarities between subsequences.

Inspired by the solutions for remote homology detection in protein families and the
string kernel proposed by Lodhi et al. [90], we re–implementthe spectrum kernel algo-
rithm for time series and suggest a kernel calledtime-resolved spectrum kernelto measure
the similarity of two time series [10, 14]. Thep-length subsequence of that kernel simply
measures the occurrences of fixedp-length subsequences for each of the time series in
consideration, independent of their positions. Then, we implement a more general kernel
calledwarped time-resolved spectrum kernel[14], which considers warping in the sub-
sequences. The warped time-resolved spectrum kernel measures the whole similarities
of all warped non contiguous subsequences of the two time series, independent of their
positions.
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Figure 5.8: Thep–spectrum kernel counts the commonp–length subsequences between
two strings (herep=3).

5.4 Time-resolved Spectrum Kernel

A kernel function can often be considered as a measure of similarity. Different kernels
correspond to different notions of similarity. The structure of the data and our knowledge
of the particular time series suggest a way of comparison that we can consider in our
kernel function. The use of a kernel makes it possible to perform the mapping into that
feature space and to calculate the inner product between those maps. But the main task
here is to find a mapφ that reflects the suitable and common features of those time series
and gives a good indication of the similarity we would like tocapture.

p–spectrum is an efficient sequence–similarity kernel, proposed by Lesli et al. [85],
which counts the common fixed length subsequences between two strings.

Definition 5.1 (p–spectrum)Given a numberp ≥ 1, thep–spectrum of a string is the set
of all thep–length contiguous subsequences that it contains.

In a spectrum kernel, the feature spaceF is indexed by all the subsequencesu from
the alphabetΣ and its elements count the number of times ap–meroccurs in the sequence.
Foru ∈ Σp, the implicit embedding mapφ bringss to F :

φ : s→ (φu(s)) ∈ F

where

φu(s) = number of timesu ∈ Σp occurs ins

then thep–spectrum kernel between stringss and t is the inner product in the feature
space:

Kp(s, t) = 〈φp(s), φp(t)〉
Figure 5.8 and table 5.1 show an example of a 3-spectrum kernel of s andt. We see

that the more common substrings two strings have, the largeris the kernel value and so
the more the two strings are similar.
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Table 5.1: 3-spectrum kernel betweens andt in Fig. 5.8,K3(s, t) = 〈φ3(s), φ3(t)〉 =
2× 1 + 1× 1 = 3.

φ KEM GHJ
s 1 1
t 2 1

Similar to the abovep–spectrum kernel for strings, the time-resolved spectrum kernel
simply measures the whole similarities of all subsequencesof the time series in considera-
tion, independent of their positions. The more two time series share similar subsequences,
the more similar they are.

A time sequences = s1...sn is a sequence of data points at successive times with
si ∈ R

d, where1 ≤ i ≤ n andd is the dimension of data points. we denote|s| the length
of s ands(i− p + 1 : i) thep-length subsequence ofs from positioni− p + 1 to position
i.

Definition 5.2. We denoteI |s|p the set of indices, defining all thep-long contiguous subse-
quences ofs:

I s
p = {i : i ∈ Np, 1 ≤ i1 < ... < ip ≤ |s|}

andsi is a subsequence ofs in positions given byi = (i1, i2, ..., ip).

For u ∈ Σp×d, the infinite set of all subsequences with sizep and dimensiond, the
implicit embedding mapφ bringss to vector spaceF , φ : s → (φu(s)) ∈ F . Theu
component of our feature vector is defined as:

φp
u(s) =

∑

i∈Is
p, u∈Σp×d

ϕu(si)

whereϕ is an implicit map that satisfies:

κp(si, tj ) =< ϕu(si), ϕu(tj ) > , for i ∈ I s
p, j ∈ I t

p (5.2)

in which κp is a valid kernel function that measures the similarity between twop-length
contiguous subsequencessi and tj of the time series in consideration. In words,φp

u(s)
is a sum over all similarities betweenp-long subsequences ofs andu. The dot product
of those feature vectors represents the time resolvedp-spectrum kernel (spectrum kernel
with subsequence size ofp):
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Figure 5.9: The time-resolvedp–spectrum kernel adds the similarities of allp–length
contiguous subsequences between two time series (herep=3).

Kp(s, t) = 〈φp
u(s), φ

p
u(t)〉 =

∫

Rd×p

φp
u(s)φ

p
u(t)du

=
∑

i∈Is
p

∑

j∈I t
p

∫

Rd×p

ϕu(si)ϕu(tj )du

=
∑

i∈Is
p

∑

j∈I t
p

κp(si, tj )

The above equation says that the spectrum kernel is a summation of all subsequences
similarities. Considering the definitions ofI s

p andI t
p, we can say:

Kp(s, t) =

|s|
∑

i=p

|t|
∑

j=p

κp(s(i− p + 1 : i), t(j − p + 1 : j)) (5.3)

Needless to say, the computation cost of that kernel is high.The evaluation ofκp re-
quiresO(p) computations, and the cost for computation ofKp(s, t) is of orderO(p|s||t|).
In stringp-spectrum kernels, a very fast method for computation ofKp(s, t) is to use an
efficient data structure known as ’trie’ (retrieval tree) inwhich we build a suffix tree for
the collection ofp-length subsequences ofs andt, obtained by moving ap-length sliding
window across each ofs andt, and then calculate the kernel by traversing the tree. But
because of an infinite subsequence set, that method is not applicable for the time series
spectrum kernel unless the time series is quantized, symbolized and converted to a string.
In this case we are faced with the quantization errors and themethod for quantization and
symbolization can affect the efficiency of the kernel method. Instead of that we use dy-
namic programming to calculate the time-resolved spectrumkernel while accepting some
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constraints. We accept a constraint on choosing the kernel functionκp(si, tj ), we suppose:

κp(si, tj ) =

p
∏

i=1

κ∗(si i, tj i) (5.4)

in whichκ∗ is an arbitrary function (discussed later) that measures the similarity between
two data points. Considering Equations 5.4 and 5.3, we define an auxiliary kernel,p-
suffix kernelKS

p (s′, t′) as:

KS
p (s′, t′) =

{

κp(s′(|s′|−p+1:|s′|),t′(|t′|−p+1:|t′|)) if min(|s′|,|t′|)≥p

0 otherwise.

=







p−1
∏

i=0
κ∗(s′

|s′|−i
,t′
|t′|−i

) if min(|s′|,|t′|)≥p

0 otherwise. (5.5)

(5.6)

wheres′ = s(1 : |s′|), t′ = t(1 : |t′|), 1 ≤ |s′| ≤ |s| and1 ≤ |t′| ≤ |t|. Then we express
thep-spectrum kernel in terms of its suffix version as:

Kp(s
′, t′) =

|s′|
∑

i=1

|t′|
∑

j=1

KS
p (s′(1 : i), t′(1 : j)) (5.7)

If we add a new data pointx to the time seriess′, using the above equation we can
calculateKp(s

′x, t′):

Kp(s
′x, t′) =

|s′x|
∑

i=1

|t′|
∑

j=1

KS
p (s′x(1 : i), t′(1 : j))

=

|s′|
∑

i=1

|t′|
∑

j=1

KS
p (s′(1 : i), t′(1 : j)) +

|t′|
∑

j=1

KS
p (s′x, t′(1 : j))

= Kp(s
′, t′) +

|t′|
∑

j=1

KS
p (s′x, t′(1 : j)) (5.8)

On the other hand, if we add another new data pointy to the time seriest′, considering
equation 5.4 and the above definition ofKS

p , we can say:

KS
p (s′x, t′y) = κ∗(x, y)KS

p−1(s
′, t′) (5.9)

It is clear that:Kp(s, t) = Kp(s
′, t′) if s = s′, t = t′. Now, we define a recursive compu-

tation forKp:



5.4. Time-resolved Spectrum Kernel 83

Figure 5.10: The time-resolved kernel is calculated using the suffix kernels and the recur-
sion over prefixes continues untilx = s|s| and|t′| = |t|

Definition 5.3: Recursive computation of the time resolved spectrum kernel.

Kp(s
′x, t′) = Kp(s

′, t′) +

|t′|
∑

k=1

KS
p (s′x, t′(1 : k)) (5.10)

KS
p (s′x, t′(1 : k)) = κ∗(x, t′k)KS

p−1(s
′, t′(1 : k − 1)) (5.11)

KS
0 (s′, t′) = 1 for all s′, t′,

KS
i (s′, t′) = 0, if min(|s′|, |t′|) < i,

Ki(s
′, t′) = 0, if min(|s′|, |t′|) < i,

The computation of the kernel follows a dynamic programmingtechnique. We have
recursions over the prefixes of the time series and the lengths of the subsequences and we
do the routine above untilx = s|s| and|t′| = |t|. Table 5.2 shows the steps for calculation
of KS

p usingKS
p−1 whenp = 3.

To prevent that with larger sizes of subsequences the kernelachieves a higher similar-
ity score we normalize the kernel:

Knorm
i (s, t) =

Ki(s, t)
√

Ki(s, s)Ki(t, t)

This operation scales the similarities in the range [0,1].
As we see from the above pseudo-code, the evaluation of theKnorm

i is of order
O(|s||t|) and the overall complexity of our algorithm to calculate a linear combination
of all p-spectrum kernels isO(p|s||t|) while if Equation 5.3 is used the complexity is of
orderO(p2|s||t|).
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Algorithm Time resolved spectrum kernel
Input : Time seriess andt of lengthn andm, max subsequence lengthl;
Output : Array of spectrum kernelK[] with different sizes of subsequence-length

from 1 tol);

KPS(0 : n, 0 : m, 0) = 1; / * KPS(i, j, p) stores KS
p (s(1 : i), t(1 : j))1

* /
KP (0 : n, 0 : m) = 0; / * KP(i, j) stores Kp(s(1 : i), t(1 : j)) * /2

for p← 1 to l do3

KPS(0 : n, 0, p) = 0;4

KPS(0, 0 : m, p) = 0;5

for i← 1 to n do6

P (0)=0; / * P(k) stores the second term on the right7

side in Eq. 5.10 * /
for k ← 1 to m do8

KPS(i, k, p) = κ∗(si, tk)KPS(i− 1, k − 1, p− 1);9

P (k) = P (k − 1) + KPS(i, k, p); KP (i, k) = KP (i− 1, k) + P (k);10

end11

end12

K[p] = KP (n,m); / * Kp(s, t) * /13

end14

return K[]15
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KPS(:, :, 1) = KS
1 ε t′ = t1 t′ = t1t2 t′ = t1t2t3

ε 0 0 0 0
s′ = s1 0 k∗(s1, t1) k∗(s1, t2) k∗(s1, t3)
s′ = s1s2 0 k∗(s2, t1) k∗(s2, t2) k∗(s2, t3)
s′ = s1s2s3 0 k∗(s3, t1) k∗(s3, t2) k∗(s3, t3)

KS
2 ε t′ = t1 t′ = t1t2 t′ = t1t2t3

ε 0 0 0 0
s′ = s1 0 0 0 0
s′ = s1s2 0 0 k∗(s2, t2)k

∗(s1, t1) k∗(s2, t3)k
∗(s1, t2)

s′ = s1s2s3 0 0 k∗(s3, t2)k
∗(s2, t1) k∗(s3, t3)k

∗(s2, t2)

KS
3 ε t′ = t1 t′ = t1t2 t′ = t1t2t3

ε 0 0 0 0
s′ = s1 0 0 0 0
s′ = s1s2 0 0 0 0
s′ = s1s2s3 0 0 0 k∗(s3, t3)k

∗(s2, t2)k
∗(s1, t1)

Table 5.2:Calculation ofKS
p usingKS

p−1 for s = s1s2s3, t = t1t2t3 andKS
0 = 1. K3(s, t) =

3
∑

i=1

3
∑

j=1
KS

p (s(1 : i)t(1 : i)).

We consideredκp(si, tj ) (Equation 5.2) as a product of similarities between data points
(5.4). Different choices of that function allow different methods of comparing sub simi-
larities. As a suitable selection we consider:

κ∗(si i, tj i) = exp
−(si i − tj i)

2

2σ2

to measure the similarity between two data points, then:

κp(si, tj ) =

p
∏

i=1

κ∗(si i, tj i) = exp

(

−||si − tj ||2
2σ2

)

(5.12)

κp(si, tj ) is the gaussian kernel of widthσ and suitable for measuring the similarity of
subsequences in the time series.

In practice and specially in our classification task, it makes sense to consider the sim-
ilarity of subsequences having different sizes and calculate a linear combination of differ-



86 Chapter 5. Time series Kernels for Biosonar Data Classification

1
s
 2
s
 3
s
 1
n
s
 
 n
s
 x


1
t
 2
t
 3
t
 1
m
t
  
 m
t
 y


p=3


p=3


s


t


p=3, g=2


p=3, g=1
 p=3, g=1


Figure 5.11: The warped time-resolvedp–spectrum kernel adds the similarities of all
possibly warpedp–length subsequences between two time series (herep=3).

enti-spectrum kernels with different weightingθi ≥ 0. The weighted kernel is:

K(s, t) =
l
∑

i=1

θiKnorm
i (s, t) (5.13)

The parameterθi shows the weight of eachi-length kernel and the optimum selection
of those parameters extracts maximum similarities in the signals in consideration.

5.5 Warped Time-resolved Spectrum Kernel

In this section, we implement a more general kernel calledwarped time-resolved spec-
trum kernel, which considers warping in the subsequences. The warped time-resolved
spectrum kernel measures the whole similarities of all warped non contiguous subse-
quences of the two time series, independent of their positions. Again, the more two time
series share similar subsequences, the more similar they are.

In p-length warped time resolved spectrum kernel, we add the similarities of all (pos-
sibly warped)p-length subsequences of times seriess andt.

Definition 5.4. We denoteI |s|p the set of indices, defining all thep-long bothcontiguous
and non–contiguous subsequence ofs:

I s
p = {i : i ∈ Np, 1 ≤ i1 < ... < ip ≤ |s|}

andu = si is a subsequence ofs in positions given byi = (i1, i2, ..., i|u|). The number of
gaps in the subsequence isgi = (i|u| − i1 + 1)− |i|.

For example, if we considers = s1s2s3s4s5, u = s1s3s5 is a subsequence ofs in the
positionsi = (1, 3, 5) of length|i| = 3 andgi = 2.
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For u ∈ Σp×d, the set of all subsequences with sizep and dimensiond, the implicit
embedding mapφ bringss to a vector spaceF (φ : s→ (φu(s)) ∈ F ) and theu compo-
nent of our feature vector is:

φp
u(s) =

∑

i∈I |s|p , u∈Σp×d

ϕu(si)γ
gi

whereγ ∈ (0, 1) is a decay factor as a cost for warping (non-contiguousity) in the time
series andϕ is an implicit map that satisfies:

κp(si, tj ) =< ϕu(si), ϕu(tj ) > i ∈ I s
p, j ∈ I t

p, u ∈ Σp×d (5.14)

in which κp is a kernel function that measures the local similarity between twop-length
subsequencessi andtj of the time series in consideration. In words,φp

u(s) is a sum over
all similarities betweenp-long subsequences ofs andu. The dot product of those feature
vectors ofs andt represents thewarped time resolvedp-spectrum kernel:

Kp(s, t) = 〈φp
u(s), φ

p
u(t)〉 =

∫

Rd×p

φp
u(s)φ

p
u(t)du

=
∑

i∈Is
p

∑

j∈I t
p

γgiγgj

∫

Rd×p

ϕu(si)ϕu(tj )du

Regarding the above kernel definition for local similarity (Eq. 5.14), we conclude:

Kp(s, t) =
∑

i∈Is
p

∑

j∈I t
p

κp(si, tj )γ
gi+gj (5.15)

As we see from the above equation, the kernel adds all similarity scores between sub-
sequences, considering all possible degrees of warping. Needless to say, the calculation of
that kernel has a very high computational cost. We use dynamic programming to calculate
it in an efficient manner and justifiable time.

Considering the definitions ofI s
p andI t

p, we can rebuild the Eq. 5.15:

Kp(s, t) =

|s|
∑

i=1

|t|
∑

j=1

∑

(i,j)∈Is(1:i)
p ×I

t(1:j)
p

κp(si, tj )γ
gi+gj

To express the kernel using a suffix version of that, we define the suffix kernel as:
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KS
p (s(1 : i), t(1 : j)) =

∑

(i,j)∈Is(1:i)
p ×I t(1:j)

p

κp(si, tj )γ
gi+gj (5.16)

So we have:

Kp(s, t) =

|s|
∑

i=1

|t|
∑

j=1

KS
p (s(1 : i), t(1 : j) (5.17)

If we add a new data pointx to the time seriess′, using the above equation we can
calculateKp(s

′x, t′):

Kp(s
′x, t′) =

|s′x|
∑

i=1

|t′|
∑

j=1

KS
p (s′x(1 : i), t′(1 : j))

=

|s′|
∑

i=1

|t′|
∑

j=1

KS
p (s′(1 : i), t′(1 : j)) +

|t′|
∑

j=1

KS
p (s′x, t′(1 : j))

Then,

Kp(s
′x, t′) = Kp(s

′, t′) +

|t′|
∑

j=1

KS
p (s′x, t′(1 : j)) (5.18)

Similar to the time–resolved spectrum, we accept a constraint on choosing the kernel

function κp(si, tj ) (Equation 5.14) and considerκ∗(si i, tj i) = exp
−(si i−tj i)

2

2σ2 to measure
the similarity between two data points, then:

κp(si, tj ) =

p
∏

i=1

κ∗(si i, tj i) = exp

(

−||si − tj ||2
2σ2

)

(5.19)

That, κp(si, tj ) is a gaussian kernel of widthσ and suitable for measuring the local
similarity of subsequences in the time series. This also ensures the positive definiteness
of our suggested kernel (Eq. 5.15).

If we add another new data pointy to the time seriest′, considering the assumption
for κp and the above definition ofKS

p (Eq. 5.17), we have:

KS
p (s′x, t′y) = κ∗(x, y)

|s′|
∑

i=1

|t′|
∑

j=1

γ|s′|−i+|t′|−jKS
p−1(s

′(1 : i), t′(1 : j)) (5.20)

It means when new points are added, to measure the newp-suffix kernel, we must
calculate similarities ofp− 1 length subsequences in the suffixes considering all possible
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degrees of warping. To evaluateKS
p recursively, we define:

KSw
p (k, l) =

k
∑

i=1

l
∑

j=1

γk−i+l−jKS
p−1(s

′(1 : i), t′(1 : j)) (5.21)

Then equation 5.20 becomes:

KS
p (s′x, t′y) = κ∗(x, y)KSw

p (|s′|, |t′|) (5.22)

to express the above kernel recursively, we use the relation:

a
∑

i=1

b
∑

j=1

f(i, j) = f(a, b) +
a−1
∑

i=1

b
∑

j=1

f(i, j) +
a
∑

i=1

b−1
∑

j=1

f(i, j)−
a−1
∑

i=1

b−1
∑

j=1

f(i, j)

Let f(i, j) = γk−i+l−jKS
p−1(s

′(1 : i), t′(1 : j)) , a = k andb = l, we have the following
algorithm:

Algorithm : Recursive computation of the warped time resolved spectrum kernel.

KSw
p (k, l) = KS

p−1(s
′(1 : k), t′(1 : l)) + γKSw

p (k, l − 1) + γKSw
p (k − 1, l)− γ2KSw

p (k − 1, l − 1)

KS
p (s′x, t′y) = κ∗(x, y)(x, y)KSw

p (|s′|, |t′|) (5.23)

Kp(s
′x, t′) = Kp(s

′, t′) +

|t′|
∑

j=1

KS
p (s′x, t′(1 : j)) (5.24)

KS
0 (s′, t′) = 1 for all s′, t′,

KS
i (s′, t′) = 0, if min(|s′|, |t′|) < i,

Ki(s
′, t′) = 0, if min(|s′|, |t′|) < i,

The computation of the kernel follows a dynamic programmingtechnique with the
order ofO(p|s||t|). We have recursions over the prefixes of the time series and the lengths
of the subsequences and we do the routine above untilx = s|s| and|t′| = |t|. As we see
from the following pseudo-code, the evaluation of theKnorm

i is of orderO(|s||t|) and the
overall complexity of our algorithm to calculate a linear combination of allp-spectrum
kernels isO(p|s||t|).

This operation scales the similarities in the range [0,1]. Fig. 5.12 plots the kernel
score of two samples of echoes reflected by a Ficus tree with different values of warping
cost. We see that as the gamma parameter gets closer to 1 we letsubsequences of two
time series warp more and the similarity score (kernel score) increases. When gamma is
equal to zero, the kernel is equal to the time-resolved spectrum kernel.
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Algorithm Warped Time resolved spectrum kernel
Input : Time seriess andt of lengthn andm, max subsequence lengthl and

warping costγ;
Output : Array of spectrum kernelK[] with different sizes of subsequence-length

from 1 tol;

KPSw(0 : n, 0 : m) = 0;1

for i← 1 to n do2

for j ← 1 to m do3

KPS(i, j) = κ∗(si, tj);4

K[1] = K[1] + KPS(i, j);5

end6

end7

for p← 2 to l do8

for i← 1 to n do9

for j ← 1 to m do10

KPSw(i, j) = KPS(i− 1, j − 1) + γKPSw(i, j − 1) +11

γKPSw(i− 1, j)− γ2KPSw(i− 1, j − 1);
KPS(i, j) = κ∗(si, tj)KPSw(i− 1, j − 1);12

/ * Equation 5.23 * /
K[p] = K[p] + KPS(i, j);13

/ * Equation 5.24 * /
end14

end15

end16

return K[]17



5.6. Classification and Results 91

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

subsequence size

ke
rn

el
 s

co
re

gamma=0.1
gamma=0.5
gamma=1

Figure 5.12: Kernel score between two echoes of Ficus tree with different warping costs

5.6 Classification and Results

We gathered the sonar data,720 echoes for each tree (Figure 5.4), as explained before.
After the preprocessing steps for each echo (Fig. 5.5), we have a time series in which
each point is a time frame and its value is an array of features(the average energy of each
channel of gammatone filter). Using the spectrum kernel method told in the previous
section, we want to extract the similarities between the echoes for our classification task.

5.6.1 Time–resolved spectrum kernel

As we told in the above, the time–resolved kernel is a specialcase of the warped time-
resolved spectrum kernel which the warping costγ = 0. According to Equation 5.12 and
5.13, we need to find the parametersθi andσ.

Finding the parametersθi is a case of more general problem known as optimal kernel
selection. In the next chapter we will discuss our method forselection of the optimal
kernels. However, here for simplicity, we consider equal values ofθi in the range[p1, p2]
as follows:

θi =
{

1 p1≤i≤p2

0 otherwise

p1 andp2 are the minimum and maximum sizes of subsequences used to extract the sim-
ilarities in each tree. To find suitable values for those parameters, we used a simplegrid
searchon p1 andp2. We selected randomly 100 echoes of each tree and then calculated
Knorm

i (s[m], s[n]) for i ∈ [1, l], m,n ∈ [1, 100] andσ ∈ {1, 10, 100, 1000} wheres[m]
ands[n] are them-th andn-th of pre-processed echoes andl is the length of the time
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series (in our experiment 90). Then we found the optimum valuesp1 andp2 in the range
[1,l] for eachσ, by maximizing the average value of the kernels:

max K =
p1,p2

100
∑

m=1

100
∑

n=1









p2
∑

i=p1

Knorm
i (s[m], s[n])

p2 − p1









We found that a suitable value forσ is in the range [10,100] for all trees. Table 5.6.1
shows the optimum values forp1 andp2 with σ = 10. We see that for ficus and bamboo,
which have smaller leaves thep1 has lower value. Again, for simplicity, we considered
equal values ofp1 andp2 for all trees in our classification method.

Tree p1 p2

Ficus 5 25
Bamboo 8 23
Schefflera 11 32

Table 5.3:Optimum Values forp1 andp2.

To measure the robustness of our algorithm, we randomly selected 100 echoes of each
tree (total 300 echoes) to train the classifier. Considering the sameσ, p1 andp2 (σ = 10,
p1=5,p2=30) for all trees, we calculated the kernel matrixK:

K(i, j) = K(s[i], s[j]) =

p2
∑

l=p1

Knorm
l (s[i], s[j])

in which i, j ∈ [1, 300] and s[i] is i-th echo, where for Ficus echoes,i ∈[1,100], for
Bambooi ∈ [101,200] and for Schefflerai ∈[201,300].

After calculation of the kernel matrixK, we used the LIBSVM package for Support
Vector Machines (SVMs) regression and classification [31].It lets us use our own kernel
matrix to train the classifier. We used the remaining data (1860 echoes) for test.

The prediction quality was then evaluated by specificity (Spec.), sensitivity (Sen.) and
accuracy (Acc.) as follows:
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Sen. =
TP

(TP + FN)

Spec. =
TN

(TN + FP )

Acc. =
TP + TN

(TN + FN + TP + FP )

(5.25)

whereTP = number of true positives,TN = number of true negatives,FP = number
of false positives andFN = number of false negatives.

Table 5.6.1 shows the average performance of the classifier.It should be noted that
the classifier decides based on only one observation. If we use more observations and
decide based on the average of the probability that an observation belongs to a class, the
accuracy increases (discussed in the next chapter).

Tree Specificity (%) Sensitivity (%) Accuracy (%)
Ficus 85.2 87.5 86.3
Bamboo 87.1 90.1 89.3
Schefflera 92.8 94.5 93.8

Table 5.4: Performance of time-resolved spectrum kernel in biosonar landmarks classification
with 100 randomly selected echoes for training.

5.6.2 Warped time–resolved spectrum kernel

We find the parametersp1 andp2 with different values of warping costγ in the warped
time–resolved spectrum kernel and then calculate the kernel matrix. Table 5.6.2 shows
the performance of the classifier for different values ofγ when it decides based on only
one observation.

We see that by changing the parameterγ the accuracy of classifier changes. The best
accuracy for Ficus, Bamboo and Schefflera trees are gained with γ = 0.1, γ = 0.3 and
γ = 0.2, respectively. This parameter lets the kernel consider a warping (with a cost) for
the subsequences of the time series and extract their similarity. Considering that parameter
in our classification task is justifiable, because the echoesreflected by the adjacent leaves
of each tree can have somehow similar patterns but not exactly the same, so we need to
have a parameter (γ) that can let the kernel capture those similarities, too. The optimal
value of that parameter for each tree can be related to the physical specification of each
tree.
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Tree Specificity (%) Sensitivity (%) Accuracy (%)
Ficus (γ=0.1) 86.3 88.2 87.1
Ficus (γ=0.2) 85.1 82.1 84.3
Ficus (γ=0.3) 81.1 83.4 82.7
Bamboo (γ=0.1) 85.9 87.8 86.6
Bamboo (γ=0.2) 86.1 91.1 89.1
Bamboo (γ=0.3) 88.6 90.4 89.8
Schefflera(γ=0.1) 91.7 89.1 90.6
Schefflera(γ=0.2) 92.8 94.4 93.7
Schefflera(γ=0.3) 92.6 94.1 93.1

Table 5.5:Performance of warped time-resolved spectrum kernel in biosonar landmarks classifi-
cation with 100 randomly selected echoes for training.

5.7 Conclusion

We considered the problem of biosonar landmark classification as an example of random
and non stationary signal classification in which finding robust features for classification
is not trivial. We regarded both the local temporal similarity and the power spectrum of
echoes and suggested a kernel based classification method that extracts those local simi-
larities, independent of the position of occurrences in echoes of each object. We suggested
a kernel calledtime-resolved spectrum kernelto measure the similarity of echoes as time
series and made a relation between that kernel and geometricspecification of the ob-
jects. Thep-length subsequence of that kernel simply measures the occurrences of fixed
p-length subsequences for each of the time series in consideration. The more time series
share similarp-length subsequences, the more similar they are.

We also proposed a more general kernel calledwarped time-resolved spectrum kernel,
which considers warping in the subsequences. We then used those kernels directly in a
SVM-based classifier. We think this kind of kernel is suitable for pattern recognition in
signals with inherent self similarity and for estimating periodicity in arbitrary time series
like speech and biomedical signals. In our method, to keep the problem simple, we made
a not very accurate assumption for theθi parameters of the kernel with an equal value
for all θi. But that parameter, the weight of the similarity (kernel score) of thep-size
subsequences, can represent the self similarity of one partof the object, for example the
size of leaves, and also can show the geometric characteristics of that object. In the next
chapter, we will try to find the optimum value of those parameters while maximizing the
accuracy of the classifier using an optimization algorithm.



Chapter 6

Kernel Selection in Time series Kernels

6.1 Introduction

In the previous chapter, we considered a class of random process signals and time–series
which contain sub similarities at random positions representing the texture of an object.
Those repetitive parts may occur in speech, musical pieces and sonar signals. We sug-
gested a time–resolved spectrum kernel for extracting the subsequence similarity in time
series in general, and as an example in biosonar signals. In our classification task, we
considered the similarity of subsequences having different sizes and a linear combination
of differenti-spectrum kernels with different weightingθi ≥ 0 :

K(s, t) =
l
∑

i=1

θiKnorm
i (s, t) (6.1)

The parametersθi show the weight of eachi-length kernel and the optimum selection
of those parameters extracts maximum similarities in the signals in consideration. We
then proposed a non–optimal and simple method to find a combination of those kernels.

The kernel selection problem has been studied using different methods. Fung et al.
[47] formulated an optimal kernel selection based on the quadratic programming formula-
tion of the Fisher linear discriminant. They developed an iterative method that alternates
between optimizing the weight vector and the Gram matrix. Kim et al. [108] considered
the kernel selection in terms of maximization of the Fisher discriminant ratio and showed
that the kernel selection can be formulated as a tractable convex optimization problem,
and hence the globally optimal kernel can be found with efficiency.

The kernel Fisher discriminant analysis is a non-linear extension of the linear Fisher
discriminant analysis. It finds the direction in a feature space, defined implicitly by a
kernel, onto which the projections of positive and negativeclasses are well separated in
terms of the Fisher discriminant ratio. This criterion ascertains that the obtained kernel
maximizes the similarity score between signals of one classand minimizes the similarity
score between signals of two different classes.

95
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In this chapter, we find the optimal kernel via maximizing theKernel Fisher Discrim-
inant criterion (KFD) [92] to build the optimal linear combination of kernels. Given that
criterion, to solve the optimization problem, unlike to thework of Kim et al. [108] we use
a faster search method called Mesh Adaptive Direct Search (MADS). MADS as defined
by Audit and Dennis [6] is a class of algorithms for nonlinearoptimization. It computes
a series of points that get closer and closer to the optimal point. The algorithm searches
a set of randomly selected points, called a mesh, around the current point–the point com-
puted at the previous step of the algorithm. The mesh is formed by adding the current
point to a scalar multiple of a set of vectors called a patternand the point in the mesh that
improves the objective function becomes the current point at the next step. The routine
continues until a stopping criterion is fulfilled.

We use this method [13, 18] to find the optimum value of the parameterθi (equation
6.1) as an optimum weight of the kernel in the kernel selection problem. Using the ob-
tained kernel, we then use the SVMs classifier to classify different classes of biosonar
signals. We get more accurate results compared with the results of the previous chapter,
where we used a simple method for the kernel selection.

This chapter organized as follows: section 6.2 contains theoptimal kernel selection
using the Fisher discriminant criterion. In section 6.3, the mesh adaptive direction search
method is described. The experimental results are presented in section 6.4, and section
6.5 draws the conclusion of the work.

6.2 Fisher Discriminant based Optimal Kernel Selection

Having two classes of labelled data, Fisher’s idea was to look for a directionv that sep-
arates the class means well (when projected onto the found direction) while achieving a
small variance around these means. The hope is that, using this projection a classifier
can classify the unlabelled data with a small error. The quantity measuring the difference
between the means is called between class variance and the quantity measuring the vari-
ance around these class means is called within class variance, respectively. Then, in linear
Fisher discriminant analysis, the goal is to find a directionthat maximizes the inter–class
variance while minimizing the intra–class variance at the same time (Fig. 6.1).

Given a set ofn+ positive training dataχ+ ⊂ R
d (positive class), a set ofn− negative

dataχ− ⊂ R
d (χ = χ+ ∪ χ−, all data) and binary labelsyi ∈ {−1, 1} indicating the two

classes, the class separability in a directionv ∈ R
d is defined as:

J(v) =
< v.SBv >

< v.SW v >
(6.2)

whereSB is the inter–class scatter matrix

SB = (m+ −m−)(m+ −m−)T

in which
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Figure 6.1: Linear Fisher projection. a) Projection axis (green) and decision boundary
between means of both classes (black bold). b) Linear discriminant function

m+ =
1

n+

∑

x∈χ+

x, m− =
1

n−

∑

x∈χ−

x,

andSW is the intra–class scatter matrix defined as:

SW = S+ + S−

whereS− =
∑

x∈χ

(x−m−)(x−m−)T andS+ =
∑

x∈χ

(x−m+)(x−m+)T .

In signal processing, this criterion (class separability)is known as the signal-to-interference
ratio.

In the case of the Fisher Linear Discriminant (FLD), the parameter vectorv of the
linear discriminant functionf(x) = sgn(< v.x > +b) is determined to maximize the
class separability (signal-to-interference ratio). Thenthe problem is to find:

vopt = arg max
v

J(v) = arg max
v

< v.SBv >

< v.SW v >
(6.3)

The classical solution from linear algebra to the above problem is:

vopt = S−1
W (m+ −m−) (6.4)

It can also be solved using quadratic programming. Fig. 6.1 shows an example of the
linear Fisher projection and its decision function on a sample data set.

Linear discriminants are not always optimal for classification, especially in nonlinear
feature space, where we need nonlinear decision functions.Using the kernel trick, the



98 Chapter 6. Kernel Selection in Time series Kernels

KFDA first maps the data via a non-linear mappingφ into the high dimensional feature
spaceF and then optimizes the Fisher criterion.

Given a mapφ : u → φ(u) ∈ F , the aim is to find a directionv =
n
∑

i=1

αiφ(ui) in

the feature spaceF given by weightsα = [α1, ..., αn], that maximizes the separation of
the mean scaled in the feature space and minimizes the variance in that direction (KFD
criterion). Considering the kernel matrixK:

Ki,j = k(xi, xj) =< φ(xi), φ(xj) > (6.5)

For the directionv, the criterion shown in Eq. 6.2 will be in the form of ([92]):

J(α) =
αT Mα

αT (N + λI)α
(6.6)

The parameterλ is a regulation factor andM andN (defined in [92]) are gained in terms
of the kernel matrixK:

M = (µ+ − µ−)(µ+ − µ−)T

whereµ+ = 1
n+

∑

x∈χ+

Kx, andµ− = 1
n+

∑

x∈χ−

are scaled means in the feature space, and:

N = KDKT (6.7)

where

D =

[

In+ − 1
n+

1n+1T
n+

0

0 In− − 1
n−

1n−1T
n−

]

n×n

in which 1n andIn denote the vector of all ones and the identity operator inR
d, respec-

tively.
Comparing to the solution of the linear Fisher discriminant (Eq. 6.4), the parameterα

that maximizes Eq. 6.6 is obtained via:

αmax = (N + λI)−1(µ+ − µ−) = (KDKT + λI)−1Ky (6.8)

where:

y =

[

(1/n+)1n+

(−1/n−)1n−

]

n×1

which results in:

Jmax(K) = αT
maxKy = yT K(KDT K + λI)−1Ky (6.9)

If we consider the variableK as a linear combination of a set of kernel matrices, in the
next step we try to find the matrixK, which maximizes the above equation. Considering
equations 6.1 and 6.9, the problem of finding the optimal kernel in terms of maximizing
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the Fisher discriminant ratio can be written as:

min f(
l
∑

i=1

θiKnorm
i ) = −Jmax(

l
∑

i=1

θiKnorm
i )

subject to θ ≥ 0, 1T θ = 1

It is easy to prove the convexity of the above objective function. We supposef(x, y) =
x′y−1x, h(K) = Ky andg(K) = KD′K + λI, considering the convexity off , h andg,
we conclude the convexity off(h, g) and so the above objective function. Then, any local
optimum answer for the objective function is a global one of that, too. One suggested
method (Kim et. al [108]) was to use the convex optimization and bring the objective
function in the form of Semi-Definite Programming (SDP) via the Schur complement
technique [26]. In their method, the SDP solver of SeDuMi [121] was used to solve the
SDP.

Instead of that method we use a newly suggested method for local optimization known
asMesh Adaptive Direct Searchmethod that needs less run time (approximately one third
in our experiments) on a PC with an Intel Core Duo processor (1.83GHz and 1GB RAM)
while coded in Matlab 7.0.

6.3 Mesh Adaptive Direct Search

MADS (defined by Audit and Dennis [6]) is a class of algorithmsfor nonlinear optimiza-
tion. It is a modification of the generalized pattern search (GPS [5]) algorithm for local
optimization. In summary, this algorithm computes a seriesof points that get closer and
closer to the optimal point. It searches a set of randomly selected points, called amesh,
around thecurrent point–the point computed at the previous step of the algorithm. The
mesh is formed by adding the current point to a scalar multiple of a set of vectors called
the mesh size(pattern). (The GPS algorithm uses fixed direction vectors,whereas the
MADS algorithm uses a random selection of vectors to define the mesh). The point in the
mesh that improves the objective function becomes the current point at the next step. The
value of the objective function either decreases or remainsthe same from each current
point to the next. The routine continues until a stopping criterion is fulfilled. The formal
definitions and algorithm from [6] follow:

Suppose thatf : R
n → R ∪ {+∞} is a given function under general constraint

x ∈ Ω ⊆ R
n, Ω 6= 0. If Ω 6= R

n (constraint optimization), the algorithm attempts to
locate a minimizer of functionf overΩ by means of abarrier function:

fΩ =

{

+∞ if p /∈ Ω
f otherwise.

The algorithm does not require the use of the approximationsor derivatives off (free-
derivative method). This is useful (especially in our case)when∇f is not available or
can not be accurately estimated.
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MADS is an iterative algorithm where at each iterationk a finite number of trial points
are generated and their objective function values are compared with the current incumbent
valuefΩ(x) as the best objective function value found so far. Each of these trial points lies
on thecurrent mesh, constructed from a finite fixed set ofnD directionsD ⊂ R

n scaled
by amesh sizeparameter∆m

k ∈ R+. The mesh size parameter controls the coarseness or
fineness of search at iterationk. ∆m

k+1 is adjusted from∆m
k depending on the success of

that iteration.
Dn×nD

must be a positive spanning set,i.e., nonnegative linear combinations of its
elements must spanRn, and each directiondj ∈ D (j ∈ [1, nD]) must be the product of
some fixed nonsingular generating matrixG ∈ R by an integer vectorzj ∈ Z

n. We con-
siderZ a matrix whose columns arezj, for j = 1, 2, ..., nD, and use matrix multiplication,
D = GZ. If Sk is the set of points where the objective functionf had been evaluated at
the start of iterationk, at iterationk, the current mesh is defined as:

Mk =
⋃

x∈Sk

{x + ∆m
k Dz : z ∈ NnD}

The above definition ensures that all previously visited points lie on the mesh, and that
new trial points can be selected around any of them.

Each iteration consists of SEARCH and POLL steps. In the SEARCH step the value
of fΩ at any finite number of mesh points is evaluated. When a improved mesh point,
at whichfΩ is less that minx∈Sk

fΩ, is generated, the iteration may stop, or it may con-
tinue to find a better improved mesh point. Otherwise the POLLsteps begins and the
algorithm generates and evaluatesfΩ around the current incumbentxk, wherefΩ(xk) =
minx∈Sk

fΩ(x). The poll size parameter∆p
k limits the distance betweenxk and the new

trail points. The set of new trail points is called aframeandxk is theframe center. This
frame is generated usingxk, ∆p

k, ∆m
k , andD to obtain a setDk of positive spanning

directions.
At iterationk, theMADS frameis defined to be the set:

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂Mk

in whichDk is a positive spanning set (0 /∈ Dk) and for eachd ∈ Dk:

• d 6= 0 is nonnegative integer combination of the directions inD,

• ∆m
k d, the distance from the frame center, is bounded by a constanttimes the poll

size parameter:∆m
k ‖d‖ ≤ ∆p

k max
{∥

∥d
′
∥

∥ : d
′ ∈ D

}

,

• limits of the normalized setDk are positive spanning sets [33].

To ensure the convergence, the radii of successive frames must converge to zero at a
slower rate than the mesh size parameter. It means∆m

k+1 ≤ ∆p
k+1 and it must satisfy

lim
k→∞

inf ∆p
k = lim

k→∞
inf ∆m

k = 0
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The algorithm evaluatesfΩ at points in the framePk until it finds an improved pointt
with fΩ(t) < fΩ(xk) or until it has evaluatedfΩ at all of the points inPk. When the POLL
step fails to generate an improved mesh point then the frame is called aminimal frame,
and the fame centerpk is said to be a minimal frame center and the poll size parameter
should be updated.

At iterationk, the mesh size parameter is updated according to:

∆m
k+1 =







∆m
k /4, if pk is a minimal frame center

4∆m
k , if an improved mesh point is found, and ∆m

k ≤ 1
4

∆m
k , Otherwise.

and the poll size parameter as:
∆p

k =
√

∆m
k

These rules guarantee that∆m
k is always a power of 1/4 and less than or equal to one,

and∆m
k ≤ ∆p

k for all k. We can select a default minimum value of mesh size as stopping
criterion to be fulfilled.

In summary, the MADS algorithm is described as follows:

Algorithm Mesh Adaptive Direct Search Algorithm

step 0 [Initialization] Givenx0, ∆m
k ≤ ∆p

k andDn×nD
a positive spanning set. Set

∆m
0 = 1, and the iteration counter k:=0

step 1 [SEARCH step] EvaluatefΩ on a finite subset of trial points on the meshMk as
defined above. If an improved trail pointt with fΩ(t) < fΩ(xk) is found, declarek
successful and go to step 3.

step 2 [POLL step] EvaluatefΩ at points from the framePk until anxk+1 with
fΩ(xk+1) < fΩ(xk) is found. If no such point exists, declarek unsuccessful.

step 3 [Parameter update] If iterationk was declared unsuccessful, then setpk+1 = pk

(minimal frame center). Otherwisepk+1 is an improved mesh point. Update∆m
k+1

and∆p
k+1. If an appropriate stopping criteria has not been met, set k:=k+1 and go

to step 1.

6.4 Experiment and Results

Similar to the experiment explained in the previous chapter, we gathered the sonar data,
720 echoes for each tree. After the preprocessing steps for each echo (Fig. 5.5), we
selected randomly 100 echoes of each tree and then calculated Knorm

i (s[m], s[n]) for
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i ∈ [1, l], m, n ∈ [1, 100], wheres[m] ands[n] are them-th andn-th of pre-processed
echoes andl is the length of the windowed time series (here 90). Using theoptimal kernel
selection noted above, we found the optimal value forθi in Eq. 6.1 and calculated the
matrixK:

K(i, j) = K(s[i], s[j]) =
l
∑

k=1

θopt
i Knorm

l (s[i], s[j]) (6.10)

in which i, j ∈ [1, 300] ands[i] is i-th echo. For Ficus echoesi ∈[1,100], for Bambooi ∈
[101,200] and for Schefflerai ∈[201,300]. For that we needed to fix parametersσ andγ.
In our experiments, we found the suitable value ofσ (Eq. 5.12) in the range [10,100].

Figure 6.2 shows the accuracy of the classifier for those trees with the optimum pa-
rameters ofθi, different warping costs (γ) andσ = 100, based on the number of echoes as
observation. It shows a high accuracy even for a low number ofechoes. We see that the
parameterγ can affect the accuracy of the classifier and the accuracy of the time-resolved
spectrum kernel (γ=0, without warping) increases in each tree by changing the parameter
γ.

Table 1 shows the accuracy of the classifier when it decides based on only one ob-
servation. The best accuracies for Ficus, Bamboo and Schefflera trees are gained for
γ = 0.1, γ = 0.3 andγ = 0.2, respectively. We see ifγ gets closer to 1 (no cost for warp-
ing) the accuracy decreases. Comparing the above results with the results in the previous
chapter (table 5.6.2), in which we used a simple method for kernel selection, it shows an
improvement in the accuracy of classification.

γ Ficus Bamboo Schefflera
γ = 0.0 86.2 89.5 90.2
γ = 0.1 89.1 90.1 91.3
γ = 0.2 88.6 91.4 93.8
γ = 0.3 87.6 93.1 91,1
γ = 0.5 80.1 81.3 82.1
γ = 1.0 59.2 67.4 58.1

Table 6.1: Classification rate based on different values ofγ and optimum kernel selection

Comparing with the previous works of our group (Wang et al. [135, 134]), the new
classifier shows a notable improvement in accuracy. The bestresult for classification
gained before was through template matching in 2D biosonar acoustic images (using a
2D Discrete Cosine Transform). The classification was made via extracting the maximum
normalized cross correlation between the acoustic templates (Fig. 6.4). As shown in Fig.
6.3, we could get higher accuracy in both single and repeatedobservations (even with
fewer echoes) compared with Fig. 6.4 (note the different horizontal and vertical axes).
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Figure 6.2: The accuracy of the classifier using our suggested kernel with different warp-
ing costs (σ = 100) for a) Ficus, b) Bamboo and c) Schefflera. Forγ = 0, the kernel is
similar to the time-resolved spectrum kernel [10].
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6.5 Conclusion

In this chapter, we presented a method to extract an optimal linear set of time-resolved
spectrum kernel based on the Fisher criterion in kernel space. With this criterion, the ob-
tained kernel ensures the maximum similarity score of signals of one object and the mini-
mum similarity score between signals of two different objects. We used a Mesh Adaptive
Direct Search method (MADS) to solve our optimization problem. This optimization
method needs less run time than another suggested method [108] that brings the objec-
tive function in the form of Semi-Definite Programming (SDP)via the Schur complement
technique. Compared with other matching methods for biosonar signals [135, 134], we
obtained better results with our suggested kernel based method. Despite the accurate rate
of classification, the main drawback of the time-resolved spectrum kernel is the low speed
of both training and testing procedures. The problem is moreacute when we want to op-
timize the kernel selection. It prevents us to use the methodfor real-time applications,
although this was not our main aim. In the next chapter we willsee how the boosting
method, when it is used with the kernel functions, can resolve this problem.
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Chapter 7

A Kernel Based Boosting method for
Biosonar Data classification

7.1 Introduction

In chapters 5 and 6 we suggested a kernel namedTime-resolved spectrum kernelfor
matching the subsequences of time series (sonar echoes) andextracting the local simi-
larities of echoes. The results outperformed other matching techniques [135, 134]. The
time-resolved spectrum kernel simply measures the whole similarities of all subsequences
of the time series in consideration. The more two time seriesshare similar subsequences,
the more similar they are. An optimal linear combination of kernels with different sub-
sequence size (p-spectrum kernels) was a measure of similarity between two time series
(chapter 6). Despite the accurate rate of classification, both training and testing were slow
and the method was not applicable for real applications.

In this chapter, we implement a simple, yet powerful, methodfor the problem at hand
using gradient boosting [16]. Gradient boosting is a machine learning approach, that
builds one strong classifier from many base learners. Originally, booting has been pro-
posed in the 90’s (Freund and Schapire, 1996 [45]) as a methodfor classification and
regression in which a fitting method or estimator, called thebase learner, is fitted multiple
times on re-weighted data and the final boosting estimator isthen constructed via a linear
combination of those base learners. In different works, it has been shown that boosting
outperformed other machine learning methods for high-dimensional data. It is empiri-
cally illustrated in B̈uhlmann and Yu [28] that boosting has mainly an advantage fordata
with high-dimensional predictors. Hoffmann et al. [61] used gradient boosting to classify
high dimensional EEG signals in brain-computer interfacesand Jiao et al. [70] used this
method for high dimensional protein classification and obtained satisfying results.

Similar to the above researches, we are also facing high-dimensional data in classifica-
tion of sonar signals reflected by different kinds of trees. After the preprocessing steps for
each echo (Fig. 5.5), we had a matrix of time series in which each cell was a time frame
and its value was the average energy of each channel of gammatone filter. Furthermore,
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we had:

A = C × S (7.1)

whereA was the number of features, withC the number of channels andS the number of
samples in each channel. Now, the problem is very similar to amultichannel EEG clas-
sification in which the state of brain or a special event is recognized and classified using
a multichannel recording of EEG signals. So we can use the gradient boosting algorithm
for the sonar classification task as Hofmann et al. [61] did for the event classification from
EEG signals.

In this chapter, we study the efficiency of boosting methods for our classification task.
We use the gradient boosting method with two kinds of base learners. The first one uses
Ordinary Least Squares (OLS) regression and the other one uses the kernel function as
base learner.

Compared with our previous works in chapters (5 and 6), in which we presented a time
resolved spectrum kernel to extract the similarities between echoes, we get more efficient
and accurate results with the newly proposed boosting method. We compare the methods
in terms of sensitivity, specificity, accuracy and Matthew’s correlation coefficient and also
the runtime of training and testing.

The content of the rest of this chapter is as follows: In the following section, we
describe the gradient boosting in details. In section 7.3, we present two base learners for
gradient boosting. The experimental results are presentedin section 7.4, and section 7.5
draws the conclusion of this work.

7.2 Gradient Boosting Algorithm

We here give a summary of the gradient boosting algorithm from [46]. Given a set of
random input variablesx = {x1, ..., xn} and a random output variabley and some samples
{yi, xi}Ni=1, we want to find an approximation functionF ∗ that can predicty from x such
that over the joint distribution ofy, x values, the expected value of a specific loss function
l(y, F (x)) is minimized:

F ∗(x) = arg min
F (x)

Ey,xl(y, F (x)) (7.2)

= arg min
F (x)

Ex[Eyl(y, F (x))|x]

Examples of different loss functions include squared error(y − F )2 and absolute
error |y − F | for regression, and negative binomial log-likelihood,log(1 + e−2yF ), when
y ∈ {−1, 1} for classification.

F (x) is a member of parameterized class of functionsF (x;p), wherep = {p1, p2, ...}
is a finite set of parameters whose joint values identify individual class members. In the
gradient boosting method, we have the additive expansions of the form
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F (x; {βm, am}Mm=1) =
M
∑

m=1

βmh(x; am) (7.3)

in which p = {βm, am}. The generic functionh(x; a) is called a base or weak learner
and is a simple function ofx with parametersa = {a1, a2, ..., aM}. The task is to find
the parameters of weak learners through solving Eq. 7.2. Forthat, a typical parameter
optimization method “greedy-stagewise” is used in which weoptimize{βm, am} after all
of the{βi, ai}(i = 1, ..., m− 1)} are optimized. Then, the recursive representation of the
optimization method is as follows:

{βm, am} = arg min
β,a

N
∑

i=1

l(yi, Fm−1(xi) + βh(xi; a)) (7.4)

where the joint distribution of (x,y) is estimated by a finitedata sample{yi, xi}N1 , and we
have

Fm = Fm−1 + βmh(x; am) (7.5)

βmh(x; am) is an incrementalboostand the best greedy direction step towards the data-
based estimate ofF ∗(x). Friedman [46] suggested a steepest-descent method to find that
direction:

−gm(xi) = −
[

∂l(yi, F (xi))

∂F (xi)

]

F (x)=Fm−1(x)

(7.6)

It gives the best steepest-descent step direction atFm−1. We find the parametersam

that produceshm = {h(xi; am)}Ni=1 most parallel to−gm ∈ R
N . So we have:

am = arg min
a,ρ

N
∑

i=1

[−gm(xi)− ρh(xi; a)]2 (7.7)

and then Eq. 7.4 is converted to:

βm = arg min
β

N
∑

i=1

l(yi, Fm−1(xi) + βh(xi; am)) (7.8)

We consider a regularization term to avoid the resulting overfit problem by a large
number of weak learners. This can be done by adding ashrinkage factor0 < ν ≤ 1 to
the Eq. 7.5:

Fm = Fm−1 + νβmh(x; am) (7.9)

This can greatly improve the generalization performance ofthe algorithm. The general
framework of the gradient boosting is as follows:
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Algorithm A general gradient boosting framework

F0(xi) = 0, ∀i ;1

for m← 1to M do2

gm(xi) =
[

∂l(yi,F (xi))
∂F (xi)

]

F (x)=Fm−1(x)
;

3

am = arg min
a,ρ

N
∑

i=1

[−gm(xi)− ρh(xi; a)]2 ;
4

βm = arg min
β

N
∑

i=1

l(yi, Fm−1(xi) + βh(xi; am));
5

Fm = Fm−1 + νβmh(x; am);6

end7

In our classification task, we convertF (xi) into a randomized predictor by using the
soft-max function :

p(yi = 1|xi) =
eF (xi)

eF (xi) + e−F (xi)

and use the Bernoulli log-likelihood for the loss function:

l(y, F ) = log(
N
∏

i=1

p(yi = 1|xi)
yip(yi = 0|xi)

1−yi)

=
N
∑

i=1

[

2yiF (xi)− log(1 + e2F (xi))
]

=
N
∑

i=1

l(yi, F (xi))

which results in:

l(yi, F (xi)) = 2yiF (xi)− log(1 + e2F (xi)) (7.10)

andgm in Eq. 7.6 is obtained with:

gm(x
i
) = 2(yi − pm(yi = 1|xi)) (7.11)

and Eq. 7.8 is converted to:

βm = arg min
β

{

N
∑

i=1

2yi (Fm−1(xi) + βh(xi; am))

−
N
∑

i=1

log
(

1 + e2(Fm−1(xi)+βh(xi;am))
)

}
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The pseudocode for the gradient boosting algorithm is givenin the following.

Algorithm Gradient boosting with Bernoulli log-likelihood loss function

p0(yi = 1|xi) = 0.5, F0(xi) = 0, ∀i ;1

for m← 1to M do2

gm(x
i
) = 2(yi − pm−1(yi = 1|xi)), ∀i ;3

h = arg min
ĥ,a

N
∑

i=1

(−gm(xi)− ĥ(xi; am))2 ;
4

5

βm = arg min

{

N
∑

i=1

2yi (Fm−1(xi) + βh(xi; am))

−
N
∑

i=1

log
(

1 + e2(Fm−1(xi)+βh(xi;am))
)

}

Fm = Fm−1 + νβmh(x; am);6

pm(yi = 1|xi) = eFm(xi)

eFm(xi)+e−Fm(xi)
, ∀i;7

end8

After initialization, we calculateh andβ to update the newF . This procedure is
continued until a certain number of iterationsM is reached. To prevent the overfitting or
underfitting problems, we select optimum values ofM andν in a cross-validation test.

7.3 Selection of the Base Learner

The functionh can have any form that can be optimized over the parametera to fit the
training data. In this paper we consider two kinds of base learner as follows:

7.3.1 Ordinary Least Squares (OLS) Base Learner

The simplest function to use here forh is the OLS regressor as:

h(x) = α1x + α2 = aX

where

a =

[

α1

α2

]

, X =

[

x
1

]

By solving the Ordinary Least Squares (OLS) regression, we find the parametera= [α1; α2]
in Eq. 7.7:
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a = (XXT)−1XTg

7.3.2 Kernel-based Base Learner

Kernel based regression methods are considered as the problem of finding the functionf
that minimizes the objective function

min
f∈H

1

m

m
∑

i=1

l(f(xi), yi) + µ||f ||2 (7.12)

As we explained in chapter 2,H is the Reproducing Kernel Hilbert Space (RKHS)
generated by the kernelk(., .) and µ is a parameter that trades off the quality of the
regression function and the regularization term. According to the representer theorem
(Kimeldorf et al. [80]), explained in chapter 1, the optimalf(x) has the form:

f(x) =
N
∑

i=1

αik(xi, x) (7.13)

Recently different research has been done to use the idea of kernel in the boosting
procedure [123, 23, 40] based on the representer theorem.

Similar to Eq. 7.5 in whichF (x) is a summation of base learners,f(x) (Eq. 7.13) is
also a summation of kernel functions. Compared with the otherworks [123, 23], we use a
simple base learner to bring the concept of the kernel function in the boosting procedure.
We consider:

h(x, γ) = α1k(x, xγ) + α2 = aK

where

a =

[

α1

α2

]

, K =

[

k
1

]

and again we use OLS regression to find the parametersa andγ.

(h, γ) = arg min
ĥ,a,γ

N
∑

i=1

(

−g(xi)− ĥ(x, γ, a)
)

Optimizing the parameterγ means that each kernel function is selected once at most,
and this increases the run time of the algorithm. This also guarantees that the effect of
some kernel functions is not excessively magnified and so prevents over-fitting in the
boosting procedure.
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Method TREE Spec. (%) Sen. (%) Acc. (%) MCC.
OLS regression Ficus 93.0 87.5 86.3 0.77
OLS regression Bamboo 97.1 95.0 96.1 0.91
OLS regression Schefflera 84.0 94.0 91.0 0.80
Kernel regression (σ = 0.1) Ficus 88.1 93.0 91.1 0.81
Kernel regression (σ = 0.1) Bamboo 99.1 80.0 86.6 0.80
Kernel regression (σ = 0.1) Schefflera 75.0 95.0 88.6 0.75
Kernel regression (σ = 10) Ficus 92.1 96.0 95.1 0.79
Kernel regression (σ = 10) Bamboo 99.1 93.0 95.3 0.93
Kernel regression (σ = 10) Schefflera 84.0 96.0 92.9 0.82

Table 7.1: The Performance of classification in sonar signals using the gradient boosting
method

7.4 Experiment and Results

We gathered the sonar data, 720 echoes, each one 10000 data points, for each tree shown
in Fig. 5.4. After preprocessing, those echoes were converted to 720 matrices of features,
where in Eq. 7.1,K = 1980 (number of features),C = 20 (number of channels) and
S = 99 (number of data points or frames in each channel). So, in our boosting procedure,
N , the number of examples, is 720 and the number of features is 1980. But in training and
in each boosting step, instead of using all features at once,we use only the features in each
channel (S = 99) and find the regressorh for that and repeat the boost step for all chan-
nels. Then, in testing we use the corresponding regressor (base learner) of all channels
to estimate the finalF (x). In all experiments the maximum number of iterations of the
boosting algorithm,M , and the shrinkage factor,ν, were set to 100 and 1, respectively.
For the kernel regression we chose the Radial Basis Function (RBF) kernel with different
values ofσ. After using 5-fold cross validation, the prediction quality was then evaluated
by specificity (Spec.), sensitivity (Sen.), accuracy (Acc.) and also Matthew’s correlation
coefficient (MCC.). Table 7.4 shows the results of the classifier. As we see from that
table, the gradient boosting with kernel-based base learner shows a slight improvement in
accuracy and MCC. compared with the one that uses the OLS base learner, and also the
value ofσ in RBF kernels affects the performance of the classifier.

In the previous chapter, we used the optimal selection of time-resolved spectrum ker-
nels (table 6.1) and it was shown an improvement compared with the previous work of
our group (Wang et al. [135, 134]), in which the classification was made through template
matching in 2D sonar acoustic image using a 2D Discrete CosineTransform. Comparing
the Tables 7.4 and 6.1 one sees that the boosting method couldimprove the performance
of classification.

The other point is the running time of the boosting method. Table 7.4 shows the
running time of the boosting and spectrum kernel methods on aPC with an Intel Core
Duo processor (1.83GHz and 1GB RAM) while coded in Matlab 7.0 and in a 5-fold
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cross validation test. From this table, we see that the boosting approach is more efficient
than the spectrum kernel for the classification of sonar dataand needs much less time for
training.

Training time Testing time
Spectrum kernel 6 hours 2 mins
OLS regression Boosting 6 mins 10 seconds
Kernel regression Boosting 10 mins 20 seconds

Table 7.2: Running time of the proposed boosting method and Time-resolved spectrum
kernel in a 5-fold cross validation test.

7.5 Conclusion

In this chapter, we proposed a kernel based boosting method for biosonar object clas-
sification. We used a regression approach in the gradient boosting which proved to be
both more accurate and efficient than other previously proposed methods such as spec-
trum kernels and template matching using acoustic images. We suggested a simple base
learner in the boosting method using the kernel matrix and showed that it outperformed
the simple OLS regression. The main point of the signal preprocessing in our method, for
biosonar classification, is using a filter bank like that of the hearing system of bats. With
this filter bank, the one-dimensional sonar echoes are converted into shorter length but
more informative multi-dimensional signals. After this conversion, the features are more
distinguishable and the boosting method was able to classify them efficiently and to get
satisfying results. Without this filter bank, the boosting method can not classify the raw
echoes accurately.



Chapter 8

FIR–based Classifiers for Animal
Behavior Classification

8.1 Introduction

The Forced Swimming Test (FST) is a behavioral test used frequently to evaluate the po-
tential efficacy of drugs affecting the central nervous system (CNS) in rats or mice [104].
In this experiment, rats are exposed to a 15-min pretest swimperiod and followed the
next day by a 5-min test swim. Immersion of rodents in water for an extended period of
time produces a characteristic behavior called immobility, in which the rat makes only
those movements necessary to keep its head above water. When antidepressant drugs are
administered between the pretest and test periods, usuallythree times within 24hr, the
behavioral immobility is selectively decreased [24]. Depending on the type of drug, rats
show a mixed behavior of activities such as immobility, struggling/climbing (the rat tries
to escape from the water) and swimming. Researchers have tried to conclude the effect
of drugs from the above three states (immobile, struggling and swimming). Typically,
tricyclic antidepressants and drugs with selective effects on noradrenergic transmission
increase struggling/climbing behavior, while selective serotonin reuptake inhibitors in-
crease swimming behavior versus the control group [42, 36, 37].

Fig. 8.1 shows examples of activity profiles, which are gained from successive images
of rat movement in FST test. Considering predefined thresholds for the immobility, strug-
gling and swimming states, and depending on the amplitude ofthe activity profile, the
average period of time in each state can be measured. By comparing those parameters for
the animals treated with an antidepressant against the control group, which was treated
with the vehicle, it can be observed, for example, whether the swimming behavior of rats
with an antidepressant drug has increased.

In an automated classification method, we aim to classify animals treated with known
antidepressants and the control group. However, our experiments show that the response
of the rat to drugs is too complex to only consider those states as indicator of the drug ef-
ficacy. For example, consider predefined thresholds in an activity profile with an arbitrary
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Figure 8.1: FST test as a behavioral test. The successive images of rat movement are
converted to activity profile signals. a) activity profile (arbitrary unit) for tylose as control
and b) Imipramine 40mg as antidepressant.

unit for the amplitude as follows:

• If amplitude of the activity profile< 15 then immobility state.

• If amplitude of the activity profile> 40 then struggling state.

• If amplitude of the activity profile∈ [15, 40] then swimming state.

It means that we have quantized the activity profile only in three states, in which
the other values of the activity profile are not considered. This means, we have lost the
information hidden in the signal and so the accuracy of classification. Even if we increase
the number of states (quantization levels), the value of threshold at those states may affect
the concluded results.

The detection of the behavior of rats depends on recognizingchanges in some charac-
teristics of movement and we are interested in features which represent also the dynamic
behavior of rats.

System identification is a vital problem in many fields of biological modelling. It is
mainly concerned with the determination of an input-outputmapping of the system. It is
the experimental approach to the modelling of a process or a plant of unknown parame-
ters. Once the mathematical model is chosen, it can be characterized in terms of suitable
descriptions such as transfer function, impulse response or power series expansions.

Here, we consider the activity profiles as outputs of a systemand select a suitable
model which extracts the dynamic behavior of those activityprofiles [17]. One possible
representation of the local dynamic behavior in the activity profile is using an Autoregres-
sive (AR) model, in which future values are predicted from a combination of previous
sample values. A few tens of seconds of a profile activity can normally be described by
using up to ten AR coefficients and then the value of these AR coefficients as features can



8.2. Autoregressive models 117

be used in a classifier to classify those activity profiles. Inthis paper we show that these
features are suitable for the automated classification.

Another issue in the automated classification is the presence of noise in activity pro-
files. We consider the activity profile,x(n), as the total of the inherent response of a rat
to a drug at a certain dose,s(n), and the undesired and interference noise,N(n), so we
have:

x(n) = s(n) + N(n) (8.1)

N(n) is the undesired part, which affects the accuracy of classifier. The presence of
this noise can be due to the experimental setup, the difference between the physiological
behavior of rats, and so on. One method to remove this noise isto use a suitable filter
based on its frequency content. But the frequency content of this noise is unknown. To
resolve this problem, we use the fact that when a suitable filter is added to a classifier, it
should increase the signal to noise ratio and so the accuracyof the classifier. For this, we
use a general model of filters known as FIR (Finite Impulse Response):

Wn = [wn(0), wn(1), ..., wn(p− 1)]T (8.2)

and the output of that filter is the estimation ofs(n):

ŝ(n) = WT
nx(n) (8.3)

where the coefficients of the FIR filter are obtained via optimizing a criterion showing the
accuracy of a classifier which tries to classify two different classes of signals.

As we explained in chapter 6, Kernel Fisher Discriminant Analysis (KFDA) has been
used for classification and also for optimal kernel selection [92, 13, 14, 108]. In this study
we use the Fisher discriminant criterion in the kernel spaceas a criterion for the accuracy
of the classifier and try to find the optimal coefficient of the FIR filter that maximizes that
criterion. To solve the optimization problem, we use the DIviding RECTangles (DIRECT)
search method as an algorithm for global nonlinear optimization. We use Support Vector
Machines (SVMs) for the classification task. Our proposed behavior classification method
provides a reliable discrimination of different classes ofantidepressant drugs (tricyclic
imipramine and desipramine) administered to rats versus a vehicle-treated group [17].

In the following sections we discuss the autoregressive model and the suggested FIR
based classifier in detail and then we explain the experimental setup and results of classi-
fication. At last, we show our conclusions.

8.2 Autoregressive models

Autoregressive modelling utilizes the time history of a signal to extract important informa-
tion hidden in the signal. AR modelling is an alternative to the Discrete Fourier Transform
(DFT) in the calculation of a power spectrum density function and frequency content of
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Figure 8.2: AR analysis filter.x[n] andε[n] represent input and output sequences, respec-
tively anda1...ap are predictor coefficients.

a time series. In biomedical applications, AR modelling is notably used in the dynamic
behavior analysis of heart rate [98] and electroencephalogram recordings [44]. A review
of classification algorithms for EEG-based brain-computerinterfaces [44] also shows that
the AR modelling has been widely used by researchers of this field, e.g., mental tasks
classification [29] and brain–computer interface design [62].

Basically, the AR modelling of a time series is based on an assumption that the most
recent data points contain more information than the other data points, and each value of
the time series can be predicted as a weighted sum of the previous values plus an error
term. The model is defined by :

x[n] =

p
∑

i=1

aix[n− i] + ε[n] (8.4)

wherex[n] is the current value of the time series,a1...ap are predictor (weighting)
coefficients,p is the model order (the number of previous points to be considered for
the prediction of the new data point), andε[n] represents a one-step prediction error. It
determines an analysis filter, through which the time seriesis filtered (Fig. 8.2). The pre-
dictor coefficients are usually estimated using the least-squares minimization technique
such that the sum of squares ofε[n] is minimized. Two solutions to AR modelling are the
Yule-walker equation [138, 133] (autocorrelation method)and the recursive implementa-
tion of that [87].

Fig. 8.3 shows an example of activity profiles (Imipramine 40mg) and its estimation,

x̂(n) =
p
∑

i=1

aix[n− i], through the AR model. AR coefficients are used as features inour

classification task.

8.2.1 Selecting the Model order

If the order of the AR model is selected to be small, the spectrum will be smoothed,
resulting in resolution loss. In contrast, if the order is selected to be large, the spectrum
will contain spurious peaks. The solution is to increase theorderp until the modelling
error is minimized. Thus, in order to overcome this problem,a penalty functionC(p),
which increases linearly with the model, is introduced:
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Figure 8.3: AR coefficients of an activity profile of imipramine 40 mg. p = 5 is the
model order anda = [−0.6551,−0.014698,−0.13442,−0.045845,−0.13416] are AR
coefficients. a) The original signal. b)-f) Reconstructed signals and effect of each coeffi-
cient on estimated̂x(n).
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Figure 8.4: Akaike’s Information Criterion (AIC) values for model orders of 1 to 12 for
an instance of activity profile (Fig. 8.3). The optimum valueof the order ispopt = 5.

C(p) = N log εp + f(N)p (8.5)

whereεp is the modelling error;N is the length of the data record, andf(N) is a
function of N . The key idea is then to select the value ofp that minimizesC(p). one
proposed selection criteria is Akaike’s Information Criterion (AIC) [1]:

AIC(p) = N log εp + 2p (8.6)

This criterion represents a trade-off between the estimated prediction error and the size
of the model. Fig. 8.6 plots the AIC value vs. model order for the activity profile shown
in Fig. 8.3. For this example, we see that the optimum value ofthe order ispopt = 5.

8.3 Algorithms

8.3.1 FIR filter based classifier

We consider the problem of classification of signals that contain additive unknown or
undesired parts interference (noise). If we can not find suitable features representing the
desired part of signals or if we can not deduce the interference signal from the original
signal, the classifier may face overfitting and so a decrease of the accuracy.

FIR filters are designed to filter out the undesired part from the signal based on its
frequency specification. Because of its stability and simplicity in implementation, they
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Figure 8.5: Adaptive filter for noise cancellation

are used frequently in different applications. However, insome applications (such as
forced swim test classification), we do not have the frequency specification of the noise,
needed to design the FIR filter.

Fig. 8.5 shows the block diagram of an adaptive filter which isused for noise (in-
terference) cancellation. As we know, if the reference noise is uncorrelated to the signal
s(n), the output of the FIR filter is an estimation of the interference (N̂(n)) and the filter
readjusts itself continuously to minimize the error between N andN̂ . The coefficients of
the FIR filter can be obtained through the Least Mean Square (LMS) algorithm. But in
our task the stationary and uncorrelatedness conditions for s andN are not met and we
can not estimates(n) using the adaptive filter.

To cope with the problem, we suggest a new solution. We propose a FIR filter based
classifier, in which the FIR filter tries to remove undesired parts by getting feedback from
the accuracy of a following classifier. Fig. 8.6 shows our proposed solution. Consider
x1(n) = s1(n)+N1(n) andx2(n) = s2(n)+N2(n) as two signals that contain undesired
partsN1(n) andN2(n). Our aim is to estimates1(n) ands2(n) as outputs of the added
FIR filter. If we consider thel-length coefficient of the FIR filter as:

Wn = [wn(0), wn(1), ..., wn(l − 1)]T

we have:

ŝ1(n) = WT
nx1(n), (8.7)

ŝ2(n) = WT
nx2(n) (8.8)

The classifier should discriminatês1(n) from ŝ2(n). The coefficients of the FIR filter
that increase the accuracy of the classifier also increase the signal to noise ratio. Then, the
task is to find optimum values of the coefficients that maximize a criterion showing the
accuracy of the classifier. We select the Kernel Fisher discriminant criterion as a suitable
objective for our optimization problem.
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Figure 8.6: Optimal FIR filter based classifier. The coefficients of FIR filters are gained
via optimization of a criterion showing the accuracy of the classifier

8.3.2 Kernel Fisher discriminant based optimal FIR filter

We want to find the coefficients of the FIR filter that maximizesthe performance of the
classifier. Here, we select Fisher discriminant criterion in the kernel space as a criterion
for the performance of the classifier. As we discussed beforein chapter 6, the kernel
Fisher discriminant analysis is a non-linear extension of the linear Fisher discriminant
analysis. It finds the direction in a feature space, defined implicitly by a kernel, onto which
the projections of positive and negative classes are well separated in terms of the Fisher
discriminant ratio. The more two classes are separated, thehigher the performance of the
classifier is. Then, we make a relation between that criteriaand the FIR filter coefficients
and find the coefficients that maximize that criterion. The kernel Fisher discriminant
based optimal FIR filter tries to find the coefficients of the FIR filter that results in a
vectorv in feature space, on which projections of points give the maximum separation
of the mean scaled in the feature space and the minimum variance in that direction (Fig.
8.7).

In chapter 6, we saw that the Fisher criterion in the kernel space can be represented in
terms of a kernel matrixK, as:

Jmax(K) = yT K(KDT K + λI)−1Ky (8.9)

where:

y =

[

(1/n+)1n+

(−1/n−)1n−

]

n×1

(8.10)

in which λ is a regularization factor and1n andIn denote the vector of all ones and the
identity operator inRd, respectively.

The next step is to represent the kernel matrix in terms of theFIR coefficients. In Fig.
8.7, if we consider thel-length coefficient of the FIR filter as:

Wn = [wn(0), wn(1), ..., wn(l − 1)]T

we have:
ŝ1(n) = WT

nx1(n), ŝ2(n) = WT
nx2(n)
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Figure 8.7: Kernel Fisher discriminant based optimal FIR filter tries to find the coefficients
of the FIR filter that result in a vectorv in feature space, on which projections of points
give the maximum separation of the mean scaled in the featurespace and the minimum
variance in that direction.

We extract the features (AR parameters)u1 andu2 from ŝ1(n) andŝ1(n) resp. and then:

K(u1, u2) =< φ(u1) ∗ φ(u2) >

From the above equation and equation (8.9) we can say that when the coefficients of the
FIR filter vary, the KFD criterion varies, too. However, the task is to find the optimum
coefficients of the FIR filter that maximize the KFD criterion, i.e., maximize the signal
to interference ratio. For this, we use a method of global optimization, by which we can
search for the optimum global value of the FIR coefficients ina given range.

8.3.3 Direct search

The DIRECT algorithm as an effective pattern search method wasproposed by Jones et
al. [73] for bound constrained global optimization. It deals with problems on the form

min
x

f(x)

s.t. xL ≤ x ≤ xU,

wheref ∈ R andx, xL, xU ∈ R
n.

The DIRECT algorithm is one of a class of deterministic direct search algorithms
that does not require gradients. The objective functionf must only be continuous in the
neighborhood of a global optimum. It works by iteratively dividing the search domain
into boxes that have exactly one function value at the box’s center. At first, it transforms
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the search space to be the unit hypercube. The function is then sampled at the center point
of this cube. The hypercube is then divided into smaller hyperrectangles whose center-
points are also sampled. In each iteration, through evaluation the objective function at
those centers, the algorithm determines which boxes are most likely to have a better point
than the current optimal one. A box is considered potentially optimal, if it has the po-
tentially best function value for a given Lipschitz constant. The process continues after a
prespecified number of function evaluations. The definitionof potentially optimalfrom
[73] follows:

Definition 8.1: Suppose that the unit hypercube has been partitioned intom hyperboxes.
Let ci denote the center point of theith hyperrectangle, anddi denote the distance from
the center to the vertices. Letε > 0 be a positive constant. A hyperrectanglej is said to
be potentially optimal if there exists somêK > 0 such that:

f(cj)− K̃dj ≤ f(ci)− K̃di, for all i = 1, ...,m,

f(cj)− K̃dj ≤ fmin − ε|fmin|

The formal steps of the DIRECT algorithm from [59] are given in the following. A
detailed example of the search domain in the DIRECT algorithm was given in [136]. The
serial and the parallel implementations of the algorithm have been discussed in [59] and
[58], respectively.

8.4 Methods

8.4.1 Experimental setup

The experiments have been performed at the site of an industrial cooperation partner.

Animal and Drug specifications

Male Wistar rats (Charles-River Germany), weighing 180-220g, were used. They were
housed in groups of 4 in an animal room with standard conditions (20 − 22◦C, 50-55%
relative humidity, 12h light/dark cycle with light on at 6.00a.m.). The rats, with freely
available food and water, were left in the animal room for a minimum of 5 days to adapt
to the new environment. Vehicle (0.5 %Tylose) or clinicallyused antidepressants of dif-
ferent classes suspended in vehicle were administered orally using a volume of 4ml/kg:
imipramine (40mg/kg) and desipramine (30mg/kg; both tricyclic and antidepressants)
[93, 125, 19]. For this work, 218 rats treated with vehicle, 72 treated with imipramine
and 112 treated with desipramine were used. Drugs or vehiclewere applied immediately
after the pre-test session, 5hrs before the test session, and 1hr before the test session.
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Algorithm DIRECT search method

Step 1 Normalize the search space to be the unit hypercube. Letc1 be the center-point
of this hypercube and evaluatef(c1), m = 1, andt = 0 (iteration counter).

Step 2 Identify the setS of potentially optimal rectangles [73].

Step 3 Select any rectanglej ∈ S.

Step 4 Divide the boxj as follows:

• Identify the setI of dimensions with the maximum side length. Letδ equal
one-third of this maximum side length.

• Sample the function at the pointsc± δei for all i ∈ I, wherec is the center of
the box andei is theith unit vector.

• Divide the boxj containingc into thirds along the dimensions inI, starting
with the dimension with the lowest value ofwi =min{f(c + δei), f(c− δei)}
and continuing to the dimension with the highestwi. Updatefmin andm

Step 5 SetS = S − {j}. If S 6= 0 go to Step 3.

Step 6 Sett = t + 1. If iteration limit or evaluation limit has been reached, stop.
Otherwise, go to Step 2.
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(a) Vehicle-treated (b) Desipramine-treated

Figure 8.8: Activity images of two representative rats treated with a) vehicle (0.5% tylose,
p.o.) and b) desipramine (30mg/kg, p.o.)

Forced swimming test procedure

The forced swimming test procedure is as described in [104].Briefly, each animal is
placed to swim for 15min in a cylinder (height: 40cm; diameter:18cm) containing 18cm
of water at25◦C (pretest session). They are then taken out and allowed to dry for 20min
in a cage placed below an infrared lamp. Twenty-four hours after the pre-test session,
they are again placed in the cylinder for 5min (test session), and the behavior of rats is
recorded with a camcorder while it is assured that the cameralens and water line are on
a horizontal line in order to minimize the area of distortiondue to reflections on water
surface.

Calculation of activity profiles

The image analysis software Halcon 7.0 (MVTec Software GmbH, Munich, Germany)
was used to analyze the video tapes of rat movements. To extract the activity profile
showing the movement of a rat, for five consecutive frames, the difference between the
previous and the next image was calculated and binarized with a fixed threshold and then
totalized into one gray level image. Within each activity image all non-zero pixels were
summed up in the vertical direction to obtain one activity profile of the whole animal. Fig.
8.9 shows the corresponding activity profiles of Fig. 8.8.

8.4.2 Computational setup

We considered the FIR filter coefficients (W in Fig. 8.7) in the range of [-1,1] and the
length of 10 for that. In order to reduce the dimension for ourclassification problem,
we computed the AR parameters of each activity profile via therecursive solution of the
Yule-Walker equation (Levinson method [87]). The optimum value of the order of the AR
model,popt (EQ. 8.5), was gained though Akaike’s Information Criterion(EQ. 8.6). In our
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Figure 8.9: Calculated activity profiles for two representative rats treated with a) vehicle
(0.5% tylose, p.o.) and b) desipramine (30mg/kg, p.o.).

experiment, the average value of 5 was gained forpopt. In the next step, we considered an
RBF (Radial Basis Function) kernel for the Kernel fisher discriminant analysis withγ=1
([31]). Then, we used the optimization method told above, tofind the optimum values of
the FIR filter coefficients,Wopt. In the next step, we used a SVM classifier with a linear
kernel. We found the optimumC parameter of the SVM classifier using a simple grid
search in the range of[2−2, 215] in terms of the maximum accuracy of the classifier.

We used a 5-fold cross validation for our classification task, i.e., the whole dataset
was split into 5 sets, of which 4 sets were used for finding the FIR filter coefficients and
training the SVM classifier, and one set left out for testing.The procedure was repeated
such that each set was used once for testing. The obtained results from the 5 folds then
were averaged to produce a single estimation.

8.5 Results and discussion

We used the computational methods described above to classify rats treated with antide-
pressants of two different classes, tricyclic antidepressant (imipramine 40mg/kg: 72 rats;
desipramine 30mg/kg: 112 rats), against a control group treated with vehicle (0.5% ty-
lose: 218 rats).

The prediction quality was then evaluated by specificity (Spec.), sensitivity (Sen.),
accuracy (Acc.) and also Matthew’s correlation coefficient(MCC.).

To show the effect of the FIR filter on the classifier, we first donot use the FIR filter
but only a SVM classifier with the RBF kernel. The optimum valuesof parametersγ of
the RBF kernel andC in SVM classifier are gained through a grid search method and in
terms of maximum average accuracy for the classifier with 5-fold cross validation. Tables
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8.5 shows the results of the classifier.

Experiment Spec. (%) Sen. (%) Acc. (%) Mcc.
Imipramine 40mg 79.1 85.3 80.0 0.58
Desipramine 30mg 75.4 85.1 76.1 0.46

Table 8.1: Performance of SVM classifier with optimum parameters ofγ andC (without
optimum FIR filter) in classification antidepressant drugs vs. control.

Tables 8.5 shows the results of our new method with the FIR filter as described before.
As we see, there is a notable improvement in performance withour method.

Experiment Spec. (%) Sen. (%) Acc. (%) Mcc.
Imipramine 40mg 93.1 93.3 93.3 0.84
Desipramine 30mg 98.0 81.7 86.6 0.75

Table 8.2: Performance of our method (optimum FIR filter) in classification antidepres-
sants drugs vs. control.

Fig. 8.10 shows the activity profiles of tylose and imipramine 40mg before and after
filtering. It is apparent that the data of the filtered activity profiles are more distinguish-
able than that of the unfiltered activity profiles. In our method, the classifier extracts the
features from the filtered activity profiles, while in the second method the SVM classifier
works on the unfiltered data and tries to find the optimum values of γ andC parameters
in terms of classification accuracy, and this may lead to overfitting and can result in an
increased error rate for new unseen activity profiles. Fig. 8.11 shows the effect of the
FIR filter on the feature space. In Fig. 8.11.b, in which we have used the FIR filter, the
features are more discriminative compared with the features from the unfiltered activity
profile which are influenced from the interference noise (Fig. 8.11.a). Fig. 8.12 shows
the frequency response and phase of the obtained optimum FIRfilter in the classification
of imipramine 40 vs. control and also the optimization of theKFD criterion.

8.6 Conclusions

In this section, we implemented a new method for classification of biological signals in
general, and in the forced swimming test as an example. The hypothesis behind our
method is that if we can deduce the interference signal from the original signal, the ac-
curacy of the classifier increases, otherwise, if our features are influenced from that in-
terference signal, the classifier faces overfitting and can not classify them accurately. We
used a FIR filter to filter out those additive noise from the signal. The parameters of the
FIR filter were obtained via maximizing the accuracy of a classifier that tries to make
discrimination between two classes of the activity profiles(e.g. drug vs. control). We
used the kernel Fisher discriminant as a criterion for the discrimination and the DIRECT
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(a) Activity profiles

(b) Activity profiles after the obtained FIR filter

Figure 8.10: The effect of the optimal FIR filter on the activity profiles of tylose and
imipramine 40mg. a) Raw data of activity profiles. b) Filteredactivity profiles.
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(a) AR features of an instance of activity profile
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Figure 8.11: The effect of the obtained optimal FIR filter on the AR features of an instance
of activity profile of tylose (blue *) and that of imipramine 40mg. (red +). a) without FIR
filter. b) with FIR filter.
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Figure 8.12: Classification imipramine 40 vs. control. a) Frequency response and phase
of the obtained optimum FIR filter. b) KFD criterion optimization
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search method for solving the optimization problem. Our proposed behavior classifica-
tion method allowed for a very reliable discrimination of rats subjected to different classes
of antidepressant drugs (tricyclic imipramine and desipramine) versus a vehicle-treated
group. We suggested AR parameters as suitable features for extraction of the dynamic
behavior of rats in the forced swimming test. Using these features, we do not need to
quantize the activity profile to 3 states of immobility, struggling/climbing and swimming,
and hence we do not loose the valuable information needed forclassification. We showed
that these features can be used in the study of the effect of drugs in rats. Furthermore,
We believe, with some modifications, our proposed FIR based classifiers can also be used
in other biological applications such as EEG signals classification and Brain Interface
Control (BCI).



Chapter 9

Summary

In this thesis, the main task was to find robust, fast and precise learning methods for
noisy, incomplete, with very limited amounts of data, whileconsidering the structure and
dimension of data. Kernel methods, founded on strong theoretical grounds, operate on
all types of data and provide a unified framework to interpolate between pattern analysis,
signal processing and string processing. We selected them as main pattern recognition
methods and our goal was to extend and improve them for the problems at hand.

A kernel method solution comprises two parts: a module that performs the mapping
into the feature space and a learning algorithm, designed todiscover linear patterns in
that space. The first class of methods that implemented the theory were Support Vector
Machines (SVMs). SVMs represent a very specific class of algorithms, characterized by
the use of kernels, the absence of local minima, the sparseness of the solution and the
capacity control obtained by acting on the margin or on otherdimension independent
quantities as the number of support vectors. In Section 3.1,we presented some examples
from different applications of system biology problems andbioinformatics, showing that
SVMs are currently the best performing methods in various domains. We think this work
also showed some usefulness of kernel based pattern analysis methods in a broad range
of high dimensional biological data. We briefly summarize the main results of this thesis:

In chapter 4, our aim was to develop an accurate method for classification of GPCR
families, especially at the sub-subfamily level, at which we have the problem of imbal-
anced data. We chose the local alignment kernel [64] as a suitable kernel for our classifi-
cation task. To solve the data imbalance problem, we suggested a new approach of over-
sampling for the imbalanced protein data in which the minority class in the data space
is oversampled by creating synthetic protein sequences, considering the distribution of
the minor and major classes. Using the local alignment kernel along with our oversam-
pling technique, we could get better accuracy and Matthew’scorrelation coefficient for
the classification of GPCRs at the subfamily and sub-subfamilylevel than other previ-
ously published method [22, 74]. We also developed a systematic study using GPCRs
as a set of real and artificially generated datasets to show the efficiency of our method
and how the degree of class overlapping can affect class imbalance. The results showed

133
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that our SPSO algorithm outperformed other oversampling techniques. In summary, this
method can be used for protein classification problems and remote homology detection,
where classifiers must detect a remote relation between unknown sequence and training
data with an imbalance problem.

In chapter 5, we studied the classification of biosonar signals as an example of the ran-
dom process signals which contain local similarities. We suggested a kernel calledtime-
resolved spectrumkernel to measure the similarity of echoes as time series andmade a
relation between that kernel and geometric specification ofthe objects. Thep-length sub-
sequence of that kernel simply measures the occurrences of fixedp-length subsequences
for each of the time series in consideration. The more time series share similarp-length
subsequences, the more similar they are. We also proposed a more general kernel called
warped time-resolved spectrumkernel, which considers warping in the subsequences. We
then used those kernels directly in a SVM-based classifier. We saw that by changing the
warping cost parameter the accuracy of classifier changes. This parameter lets the kernel
consider a warping (with a cost) for the subsequences of the time series and extract their
similarity. Considering that parameter in our classification task was justifiable because the
echoes reflected by the adjacent leaves of each tree can have somehow similar patterns but
not exactly the same, so we need to have a parameter that can let the kernel capture those
similarities, too. The optimal value of that parameter for each tree can be related to the
physical specification of each tree. Our results provided evidence that this kind of kernel
can be used for pattern extraction and classification in random signals. We think this kind
of kernel is suitable for pattern recognition in signals with inherent self similarity and for
estimating periodicity in arbitrary time series like speech and biomedical signals.

In chapter 6, having a set of the kernels suggested in chapter5, we proposed a new
method to find an optimal linear combination of those kernels. We formulated the op-
timal kernel selection via maximizing the Kernel Fisher Discriminant criterion (KFD)
and used the Mesh Adaptive Direct Search (MADS) method to solve the optimization
problem. This optimization method needed less run time thanthe other suggested op-
timization method [108] that brings the objective functionin the form of Semi-Definite
Programming(SDP) via the Schur complement technique. We obtained better results with
our suggested kernel selection method compared with other matching methods [135, 134].
Despite the accurate rate of classification, the main drawback of the time-resolved spec-
trum kernel was the low speed of both training and testing procedures. It prevented us to
use the method for real–time applications.

In chapter 7 we saw how the boosting method, when it is used with the kernel func-
tions, can gives satisfying results with much less run time than the time-resolved spectrum
kernel. In this chapter, we presented an algorithm based on gradient boosting for biosonar
signal classification. We presented two kinds of base learners for the gradient boosting:
Ordinary Least Squares (OLS) and kernel-based base learners. The main point of the sig-
nal preprocessing in our method, for biosonar classification, was using a filter bank like
that of the hearing system of bats. With this filter bank, the one-dimensional sonar echoes
were converted into shorter length but more informative multi-dimensional signals. After
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this conversion, the features are more distinguishable andthe boosting method was able to
classify them efficiently and to get satisfying results. Compared with our previous works
in chapters (5 and 6), we got more efficient and accurate results with the newly proposed
boosting method, which made it feasible for the real applications.

In chapter 8 we implemented a new method for classification ofbiological signals
in general, and used it in the animal behavior classificationas an example. We used
a Finite Impulse Response (FIR) filter to filter out the additivenoise from the activity
profile. The parameters of the FIR filter were obtained via maximizing the accuracy of a
classifier that tries to make a discrimination between two classes of the activity profiles
(e.g. drug vs. control). We used the kernel Fisher discriminant criterion as a criterion for
the discrimination, the DIviding RECTangles (DIRECT) search method for solving the
optimization problem and Support Vector Machines (SVMs) for the classification task.
We showed that Autoregressive (AR) coefficients are suitablefeatures for the extraction of
the dynamic behavior of rats and also the classification of activity profiles. Our proposed
behavior classification method provided a reliable discrimination of different classes of
antidepressant drugs (imipramine and desipramine) administered to rats versus a vehicle-
treated group. We believe, with some modifications, our suggested FIR based classifiers
can also be used in other biological applications such as EEGsignals classification and
Brain Interface Control (BCI).
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[55] J. Hadamard. Sur les problèmes aux d́erivées partielles et leur signification
physique.Princeton University Bulletin, pages 49–52, 1902.

[56] T. Hastie, R. Tibshirani, and J. H. Friedman.The Elements of Statistical Learning.
Springer–Verlag, 2001.

[57] D. Haussler. Convolution kernels on discrete structures. Technical report, UCSC-
CRL-99-10, University of California Santa Cruz, 1999.

[58] J. He, M. Sosokina, L. T. Watson, and J. W. Zwolak. Data distributed parallelism
with dynamic task allocation for a global search algorithm.In High Performance
Computing Symposium, pages 164–172, 2005.

[59] J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, A. Verstak, J. Jiang, K. Bae,
and W. H. Tranter. Dynamic data structures for a direct search algorithm.Journal
of Computational Optimization and Applications, 23:5–21, 2002.

[60] T. E. Herbert and M. Bouvier. Structural and functional aspects of g protein-
coupled receptor oligomerization.J. Biochem. Cell Biol., 76:1–11, 1998.



142 Bibliography

[61] U. Hoffmann, G. Garcia, J.-M. Vesin, K. Diserens, and T.Ebrahimi. Boosting Ap-
proach to P300 Detection with Application to Brain-Computer Interfaces. InPro-
ceedings of the 2nd International IEEE EMBS Conference on Neural Engineering,
pages 97—-100, Arlington, Va, USA, March 2005.

[62] N-J Huan and R. Palaniappan. Neural network classification of autoregressive fea-
tures from electroencephalogram signals for brain computer interface design.J.
Neural Eng., 1(3):142 – 150, 2004.

[63] Y. Huang, J. Cai, and Y. D. Li. Classifying g protein coupled receptors with bagging
classification tree.Journal of Computationa Biology and Chemistry, 28:275–280,
2004.

[64] J.-P.Vert, H. Saigo, and T.Akustu. Convolution and local alignment kernel. In
B. Scḧolkopf, K. Tsuda, and J.-P.Vert, editors,Kernel Methods in Compuatational
Biology. The MIT Press, 2004.

[65] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detect-
ing remote protein homologies.Journal of Computational Biology, 7(1-2):95–114,
2000.

[66] T. Jaakkola and D. Haussler. Exploiting generative models in discriminative clas-
sifiers. InAdvances in Neural Information Processing Systems, volume 11, 1999.

[67] T. Jaakkola and D. Haussler. Probabilistic kernel regression models. InProceed-
ings of the 1999 Conference on AI and Statistics. Society for Artificial Intelligence
in Statistics, 1999.

[68] N. Japkowicz. Learning from imbalanved data sets: A comparison of various strate-
gies. InProceedings of Learning from Imbalanced Data, pages 10–15, 2000.

[69] N. Japkowicz, C.Myers, and M. Gluch. A novelty detectionapproach to classifi-
cation. InProceeding of the Fourteenth Int. Joint Conf. on ArtificialInteligence,
pages 10–15, 1995.

[70] F. Jiao, J. Xu, L. Yu, and D. Schuurmans. Protein fold recognition using the
gradient boost algorithm. InComputational Systems Bioinformatics Conference
(CSB2006), 2006.

[71] T. Joachims. Making Large scale SVM learning practical. Technical report, LS8-
24, Universitat Dortmund, 1998.

[72] T. Joachims. Making Large–Scale Support Vector Machine Learning Practical. In
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