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Abstract

This thesis addresses the problem of finding robust, faspeswse learning methods for
noisy, incomplete high-dimensional biological data by neeaf so-called kernel meth-
ods. Kernel methods are at the heart of many modern mactaneihg techniques. The
intuitive idea behind kernel methods is that the data ardimeerly mapped into a higher
dimensional feature space, related to a nonlinear kermnetifun. In general, such a pro-
cedure has the advantage that inseparable data beconaetylseparable. A kernel func-
tion represents a computational trick, which makes it fadssd represent linear patterns
efficiently in high—dimensional spaces, to ensure adeqeatesentational power.

We begin with a short overview over the basic theoreticacepits, which are neces-
sary to understand the kernel-based algorithms employ#dsinwork. We present some
elements of statistical learning and regularization thesnd introduce the concept of
kernel functions. Then, we derive the Support Vector Maeh{@VM) algorithm from
Tikhonov regularization and geometric perspectives.

After this we turn our attention to applications of kernelthoels for some problems
of high-dimensional biological data: To develop an acairaethod for the classification
of (G-Protein Coupled receptors) GPCRs families, especialligeasub-subfamily level,
where we have a low number of protein sequences, we develew approach of over-
sampling,SyntheticProtein Sequencéversampling (SPSO), in which the minority class
in the data space is oversampled by creating syntheticipre¢guences, considering the
distribution of the minor and major classes. SPSO can be fasquotein classification
problems and remote homology detection, where classifiast detect a remote relation
between unknown sequence and training data with an imbajamdblem.

Another problem from neurobiology of bats, which is suneyethe content of this
thesis, is the pattern recognition and classification oédnar signals by means of kernel
methods. We study the classification of biosonar signals @xample of random process
signals which contain local similarities. Inspired by tlwusions for remote homology
detection in protein families, we suggest a similar keroakting kernels which measures
the similarity of two time series. The more time series slsim@lar subsequences, the
more similar they are. We also implement a more general kesich considers warping
in the subsequences. It measures the whole similaritieéwagoed non contiguous sub-
sequences of the two time series, independent of theirpositFurthermore, having a set
of the kernels for similarity extraction in time-series fiifferent sizes of subsequences,
we find the optimal linear combination of kernels. We then these kernels directly in



a SVM-based classifier. The results show that those kertielg tor a very reliable dis-
crimination of reflected sonar echoes from different olge@¥e also present an algorithm
based on gradient boosting for biosonar data classificatManpresent two kinds of base
learners for the gradient boosting: Ordinary Least Squ@des) and kernel-based base
learners. The main point of the signal preprocessing in athod, for biosonar classifi-
cation, is using a filter bank like that of the hearing systdrbats. With this filter bank,
the one-dimensional sonar echoes are converted into sthemtgh but more informative
multi-dimensional signals. We get efficient and accuraseilts with the newly proposed
kernel based boosting method.

As a last application of kernel methods in this thesis, we déh classification of bi-
ological data, having additive unknown noise. Activity files in the Forced Swimming
Test (FST) for animal behavior classification are exampfahase signals. We imple-
ment FIR-based classifiers for animal behavior classifinatiowhich a Finite Impulse
Response (FIR) filter is used to filter out the additive noisenfarctivity profiles. The
parameters of the FIR filter are obtained via maximizing theueacy of a classifier that
tries to make a discrimination between two classes of theitycprofiles. Our proposed
behavior classification method provides a reliable diseration of different classes of
antidepressant drugs (imipramine and desipramine) adtaned to rats versus a vehicle-
treated group.



Zusammenfassung

Diese Disseration befasst sich mit dem Problem, robustegiie und pazise Lernmetho-
den fur verrauschte und unvolstdige hochdimensionale biologische Daten durch Kern-
methoden (engl. kernel methods) zu finden. Die intuitiveeldmter diesen Verfahren ist,
dass die Daten mithilfe nicht-linearer Kernoperatorerimer Fbherdimensionalen Merk-
malsraum eingebettet werden. Ein Kernoperator stelltreieehnerischen Trick dar, der
es erniglicht, lineare Muster wirkungsvoll in hochdimensiomaRaumen abzubilden.

Zu Beginn soll ein kurzetberblick iiber die grundlegenden theoretischen Konzepte
der kernbasierten Algorithmen gegeben werden, die in diadgeeit zur Anwendung
kommen. Darin werden auch einige Elemente des statisiischenens und der Reg-
ularisierungstheorie sowie das Konzept der Kernopernatocggestellt. AnschlielRend
wird die Support-Vektor-Maschine, d. h., der SVM-Algonihs, aus der Tikhonov-
Regulasierung und geometrischen Perspektiven hergeleitet

Nach dieser Eirithrung liegt das Augenmerk auf Anwendungen von Kernmethode
fur einige Probleme mit hochdimensionalen biologischereaEs wird eine genaue
Methode fir die Klassifizierung von G-Protein-gekoppelten Rezeptoniften, (eng. G-
Protein Coupled Receptor ,GPCR), entwickelt, insbesonderdié Unterunterfamilie,
in der nur eine geringe Anzahl von Proteinsequenzen zuiigarfg steht. Dazu wird
ein neuer Ansatz zubberabtastung der Stichprobe vorgestellt, digerabtastung syn-
thetischer Proteinsequenzen (engl. Synthetic Proteineéag Oversampling, SPSO).
Die Minderheitenklasse im Datenraum wird dabei unteriiBksichtigung der Verteilung
der Mehr- und Minderheitenklasséibernéf3ig abgetastet, indem SPSOnktliche Pro-
teinsequenzen erzeugt. SPSO kaimHroteinklassifikationsprobleme und zur Erkennung
entfernter Verwandtschaften (engl. remote homology) ggmerden, wobei Klassifika-
toren eine entfernte Homologie zwischen einer unbekaréepenz und Trainingsdaten
in ungleich verteilten Stichproben erkenneiisgen.

Eine weitere Fragestellung, die in dieser Arbeit unterswaid, stellt die Anwen-
dung von Kernmethoden zur Mustererkennung und Klassifikaton Biosonarsignalen,
die in der Neurobiologie der Flededuse bedeutsam sind, dar. Die Klassifikation der
Biosonarsignale wird als Beispielif zufallige Prozesssignale, die lokafehnlichkeit
aufweisen, angéhrt.

Inspiriert durch die Ergebnissérfdie Detektion entfernter Homologien in Protein-
familien empfiehlt sich ein den Kernoperatorén Zeichenkettedhnlicher Kernoperator,
der dieAhnlichkeit zweier Zeitreihen misst. Zwei Zeitreih@hneln sich umso mehr, je



mehrahnliche Teilsequenzen sie aufweisen. Weiterhin wird Bgemeinerer Kernoper-
ator implementiert, der Verzerrungen der Teilsequenzeiachsichtigt. Dieser misst die
gesamteéhhnlichkeit aller verzerrten, nicht zusammémuyenden Teilsequenzen der bei-
den Zeitreihen unaldimgig von ihren Positionen. Diaver hinausdsst sich die optimale
Linearkombination von Kernoperatoren identifizieren, weine Menge von Kernopera-
toren zurAhnlichkeitsextraktion in Zeitreihen verschiedenebGen von Teilsequenzen
zur Verfugung steht.

Diese Kernoperatoren werden dann direkt in einem SVM-basiKlassifikator ver-
wendet. Die Ergebnisse zeigen, dass diese Kernel eine sghriassige Unterschei-
dung reflektierter Sonarechos verschiedener Objekte mtau Zur Klassifikation von
Biosonardaten wird ein auf Gradientvéndtung (engl. gradient boosting) basierender
Klassifikationsalgorithmus vorgestellt. Zwei Arten von Béernverfahreniir die Gradi-
entversarkung werden angewendet: Die Methode der@awichen kleinsten Quadrate
(engl. Ordinary Least Squares, OLS) und kernbasierte legfairen. Der Schwerpunkt
der hier dargelegten Methode zur Signalvorverarbeitumg Zwecke der Biosonarklas-
sifikation besteht in der Anwendung einer Filterbank in Axgg zum Horsystem der
Fledernause.

Mit dieser Filterbank werden die eindimensionalen Sortaye@ ihrer Dauer veikzt,
aber in informativere multidimensionale Signale konegtti So lassen sich effizient
genaue Ergebnisse mit dem neu vorgeschlagenen Kernopeletauf der Verstrkungs-
methode (engl. boosting method) basiert, gewinnen.

AbschlieRend werden die Kernmethoden zur Klassifikatiotolgischer Daten einge-
setzt, die ein unbekanntes additives Rauschen aufweisenBdispiel solcher Signale
sind Aktivitatsprofile im erzwungenen Schwimmtest (engl. Forced Swirgrest, FST)
fur die Klassifikation des Tierverhaltens. Auf besuikten Impulsantworten (engl. Fi-
nite Impulse Response, FIR) basierend, werden in dieser tAftessifikatoren fir das
Tierverhalten implementiert, in denen das additive Rauschech einen Filterir be-
schiankte Impulsantworten (FIR-Filter) von den Aktiisprofilen entfernt wird. Die
Parameter der FIR-Filter werden ermittelt, indem die Gayiarit maximiert wird, mit
der ein Klassifikator zwei Klassen des Akt&isprofiles zu separieren versucht. Die
hier vorgestellte Methode zur Klassifikation von Verhastewistern iihrt zu einer zu-
verlassigen Unterscheidung verschiedener Klassen von Amédsiga (Imipramine und
Desipramine).
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Chapter 1

Introduction

1.1 Motivation

1.1.1 High-Dimensional Biological Data

The emergence of various new application domains, suchoagdimatics, underscores

the need for analyzing high-dimensional data, speciallgmtinere are more variables (or
features) than observations. In a gene expression mienodata set, there could be tens
or hundreds of dimensions showing the expression level@igrr genes, each of which

corresponds to an experimental condition, or in biosonga diassification, there are a
limited number of echoes with thousands of data points tddmesitied.

In high-dimensional data analysis, one is often facing ttablem that real data is
noisy, and in many cases, features that are not informativeiriderstanding the data
structure itself or for performing later tasks, such astelsg, classification and regres-
sion. The combination of noise and very high dimensiaond 000) presents challenges
for data analysis and calls for efficient machine learninghoés that take the inherent
specifications and structure of natural data into account.

Mathematically, the learning problem can be described asnigna general rule or
estimating a functional dependency that explains datangivdy a sample of limited size,
and the learning process is a process of choosing an apgt@function from a given set
of functions.

In this thesis, the main task for high-dimensional bioladjidata is to find robust,
fast and precise learning methods for noisy and incomplata @hile considering the
structure and dimension of the data.

The range of natural science topics addressed in this tiesedatively broad and
touches different areas from natural science such as gebwiogy, neuroscience and
neurophysiology. We here present a brief overview over taerproblem of each of
them:

Imbalance Problem in Protein Data ClassificationMany classifiers are designed with

13



14 Chapter 1. Introduction

the assumption of well-balanced data sets. But in real pnodldike protein classifica-
tion and remote homology detection, when using binary tlaess like support vector
machines (SVM) and kernel methods, we are facing imbaladegalin which we have
a low number of protein sequences as positive data (mingsklzompared with nega-
tive data (major class). With imbalanced data, the classifend to classify almost all
instances as negative. There have been two types of s@dtonoping with imbalanced
data sets. The first type, as exemplified by different fornre efampling techniques, tries
to increase the number of minor class examples (oversag)mirdecrease the number of
major class examples (undersampling) in different way® Sétond type adjusts the cost
of error or decision thresholds in classification for iminaiad data and tries to control the
sensitivity of the classifier [100, 69, 68, 131].

G-protein coupled receptors (GPCRS) are a large superfarihtegral membrane
proteins that transduce signals across the cell membramauBe of that important prop-
erty and other physiological roles undertaken by the GPCRIyathey have been an
important target of therapeutic drugs. The function of m&BCRs is not known and
accurate classification of GPCRs can help us to predict theatifon. In our study we
want to classify GPCRs at the subfamily and sub-subfamilylle&ethis level in some
sub-subfamilies, we have only a very low number of protenuseces as positive data
(minor class) compared with others (major class). Thenismphoblem we are not only
faced with high-dimensional protein sequences but alsh thié imbalance number of
proteins in each class.

Biosonar Data ClassificationBats can distinguish objects by emitting a series of ultra-
sound signals (chirps) that generally sweep covering #aqies from 22 to 100 kHz. To
unravel the mechanism of echolocation, inspired by the losonar system, researchers
have utilized biosonar head and ultrasonic sensing teabksigimilar to that of bats for
mobile robots (biomimetic robots) and tried to classifyfeliént textures and landmarks
through their received echo signals [91, 82]. From our erpants and the work of other
researchers [91, 82, 97, 48], we conclude that finding roleadtire for classification is
not trivial. For example, the orientation of trees as landema&an result in large changes
in the reflected echoes. Hence, in this case the only tempasad features can be in-
efficient, and the local temporal similarities betweenedi#int echoes of one object as
an indication of its texture is a significant issue that stdug considered. Here, the
reflected echo contains subsequence similarities, at marmisitions, representing the
texture of an object (tree). Machine learning based appemcapable of extracting the
sub-similarities are therefore an option to address tlablpm.

Animal Behavior classification in Forced Swimming TestThe Forced Swimming Test
(FST) is a behavioral test used frequently to evaluate thepial efficacy of drugs affect-
ing the central nervous system (CNS) in rats or mice [104].his éxperiment, rats are
exposed to a 15-min pretest swim period and followed the d@xiby a 5-min test swim.
Immersion of rodents in water for an extended period of tim@lpces a characteristic
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behavior called immobility, in which the rat makes only taaeovements necessary to
keep its head above the water. When antidepressant drugdrameistered between the
pretest and test periods, usually three times within 24ddbe behavioral immobility is
selectively decreased [24]. Depending on the type of diatg,show a mixed behavior of
activities such as immobility, struggling/climbing (that tries to escape from the water)
and swimming. Researchers have tried to conclude the effaitugs from the above
three states (immobile, struggling and swimming). Typicaricyclic antidepressants
and drugs with selective effects on noradrenergic trarsamnsncrease struggling/climb-
ing behavior, while selective serotonin reuptake inhilsitmcrease swimming behavior
versus the control group [42, 36, 37]. In an automated dlaasbn method, we aim
to classify animals treated with known antidepressantstl@dontrol group. However,
our experiments show that the response of the rats to drugs isomplex to only con-
sider those states (immobile, struggling and swimminghdgator of the drug efficacy.
Furthermore, those activity profiles (signals) inheremiytain undesired and interfer-
ence noise that should be removed before feature extramtidrtlassification. Thereby,
a learning method which allows the removal of the noise sderhe well suited.

1.1.2 Kernel Methods

The success of machine learning methods depends on thidly &bsolve pattern recog-
nition and regression problems. The kernel methodologyaded on strong theoretical
grounds, provides a powerful and unified framework for maisgidlines. The intuitive
idea behind kernel methods is that the data are nonlineafyped into a higher dimen-
sional feature space, related to a nonlinear kernel functio general, such a procedure
has the advantage that data, which is linearly inseparaltieei original space may be-
come linearly separable in feature space. A kernel funatmnesents a computational
trick, which makes it possible to represent linear patteffisiently in high—dimensional
spaces, to ensure adequate representational power. liscepesconsidered as a measure
of similarity; different kernels correspond to differerttions of similarity. The structure
of the data and our knowledge of the particular type of datgest a way of comparison
that we consider in our kernel function.

Any kernel methods solution comprises two parts: a moduwdé glerforms the map-
ping into the feature space and a learning algorithm, desigo discover linear pattern
in that space. The first class of methods that implementethday were Support Vec-
tor Machines (SVMs). They are general approximators (deipenon the kernel) for
the (nonlinear) relation that underlies the given sampiesparheir successful perfor-
mance have been drawing the attention of many researchemand other paradigms
(like neural networks, Gaussian Processes) they becamelayveompetitive with strong
capabilities. They are conceptually simple, very transprand less sensitive to high
input dimensionality.
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1.2 Own Contributions

Since we believe that kernel methods offer a good possilditackle the above described
problems, the main goal of this thesis is to find a practicaf waextend and improve
those methods for the problems at hand. As kernels methedsect a new playground
with room for extensions and improvements, this thesis iateempt to contribute in that
matter. Thereby, in summary we see our contributions torttliidual topics as follows:

Imbalanced Problem in Protein DataTo increase the accuracy of remote homology de-
tection by discriminative methods, researchers also ftos finding new kernels, which
measure the similarity between sequences, as main partift&éed classifiers. So, af-
ter choosing an appropriate feature space, and repregesach sequence as a vector in
that space, one takes the inner product between these ‘gpetoe representations. For
GPCRs classification, we use the local alignment kernel (LAd&kgthat has been shown
to have better performance compared with other previougigssted kernels for remote
homology detection when applied to the standard SCOP tef84e109]. It represents
a modification of the Smith-Waterman score to incorporategutimal alignments by
computing the sum (instead of the maximum) over all possibggnments.

In this work, we propose an oversampling technique for pmatequencesSynthetic
Protein Sequencéversampling (SPSO) involves creating synthetic protequsaces of
the minor class, considering the distribution of that cksd also of the major class, and
it operates in data space instead of feature space. We showtbur method the infor-
mation of the minor class increases. To show the efficienayuofmethods, we use the
G-protein coupled receptors (GPCRs) family and create aalifiata based on it and then
use our algorithm for both real and artificial data. Furthemmwe see how our algorithm
can be used along with a different error cost method to irseréae sensitivity and stabil-
ity of the classifier.

Biosonar Data ClassificationWe study the classification of biosonar signals as an exam-
ple of random process signals which contain local simiksitInspired by the solutions
for remote homology detection in protein families and tmmgtkernel proposed by Lodhi

et al. [90], we suggest a similar kernel to measure the siityilaf two time series. The
p-length subsequence of that kernel simply measures thareoces of fixed-length
subsequences for each of the time series in consideratibe. miore time series share
similar p-length subsequences, the more similar they are. We alskzinent a more
general kernel, which considers warping in the subsequeeticemeasures the whole sim-
ilarities of all warped non-contiguous subsequences ofwltetime series, independent
of their positions.

Kernel Selection in Time-series KernelHaving a set of the kernels for similarity ex-
traction in time-series for different sizes of subsequsnae propose a method to find an
optimal linear combination of the kernels. We find the optikexnel selection via max-
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imizing the Kernel Fisher Discriminant (KFD) criterion [P& build the optimal linear
combination of kernels. Given that criterion, to solve tipéimization problem, we use a
search method called Mesh Adaptive Direct Search (MADS).

Boosting method for Biosonar Data classificatiorsradient boosting is a machine learn-
ing approach, which builds one strong classifier from mamgeldaarners. Originally,
boosting has been proposed in the 90’s (Freund and Schagieé, [45]) as a method
for classification and regression, in which a fitting methocetstimator, called the base
learner, is fitted multiple times on re-weighted data andfith@ boosting estimator is
then constructed via a linear combination of those basedesr We present two kinds of
base learners for the gradient boosting: Ordinary Leasa®guOLS) and kernel-based
base learners. Compared with our previous works, in whichnesgmted a time resolved
spectrum kernel to extract the similarities between echwegyet more efficient and ac-
curate results with the newly proposed boosting method. @vepare the methods in
terms of sensitivity, specificity, accuracy and Matthewdsrelation coefficient and also
the runtime of training and testing.

Animal Behavior classification in Forced Swimming Testln our work, we consider
that the activity profiles (signals) inherently contain asied and interference noise that
should be removed before feature extraction and classiicatVe use a Finite Impulse
Response (FIR) filter to filter out that additive noise from thinity profile. The param-
eters of the FIR filter are obtained via maximizing the accyraf a classifier that tries
to make a discrimination between two classes of the actprivyfiles (e.g. drug vs. con-
trol). We use the kernel Fisher discriminant criterion asit@igon for the discrimination,
the DIviding RECTangles (DIRECT) search method for solving tbgnaization problem
and Support Vector Machines (SVMs) for the classificatick Ve also consider the ac-
tivity profiles as outputs of a black box and all-pole model ase system identification
methods to find the parameters of that model, and show thairégitessive (AR) coef-
ficients are suitable features for the extraction of the dyinébehavior of rats and also
the classification of activity profiles. Our proposed bebawdlassification method pro-
vides a reliable discrimination of different classes ofidgpressant drugs (imipramine
and desipramine) administered to rats versus a vehicetlegroup.

1.3 Organization of this Thesis

The organization of this thesis is as follows: To make thiskumore self contained,
in the next chapter we begin with a short overview over thachéeoretical concepts
that are necessary to understand the kernel-based afgerémployed in this work. We
present some elements of statistical learning and regatiosn theory and introduce the
concept of kernel functions. In chapter 3, we present kdoaskd learning algorithms,
including SVMs for classification, which are utilized instthesis, from two perspectives:
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regularization theory, and the more common geometric petse.

Beginning from chapter 4 we present our own work: In chaptee&yntheticProtein
Sequenceversampling (SPSO) method is explained. We evaluate thaezfty of our
method for both artificial and real data.

In chapter 5 we present time-series kernels to measurertti@msty of echoes as time
series. We then use those kernels directly in a SVM-basesifiler. The results show
that those kernels allow for a very reliable discriminatadrreflected sonar echoes from
different objects.

In chapter 6 we propose a new method to find an optimal lineanbawation of the
time-series kernels. We formulate the optimal kernel selewia maximizing the Kernel
Fisher Discriminant criterion (KFD) and use the Mesh AdapDirect Search (MADS)
method to solve the optimization problem.

In chapter 7 we study the efficiency of boosting methods forabassification task.
We use the gradient boosting method with two kinds of baseézsa. The first one uses
the Ordinary Least Squares (OLS) regression and the otleeuses the kernel function
as base learner.

In chapter 8 we propose FIR-based classifiers for animal bethetassification. Our
proposed behavior classification method provides a reididcrimination of different
classes of antidepressant drugs (imipramine and desipea@dministered to rats versus
a vehicle-treated group.

Finally, in chapter 9 we draw the conclusions from this work.



Chapter 2

Mathematics of Learning

2.1 Introduction

Mathematically, the learning problem can be described asnigna general rule or esti-
mating a functional dependency that explains data givep ardample of limited size,
and the learning process is a process of choosing an apgt@function from a given set
of functions.

We learn from experience, this is commonplace. But we can he specific: we
learn by perceiving patterns and extrapolating them torotlases. In this sense, the
learning process rests on generalization and works by gkriag perceived regularities.

Generalization, an important aspect of machine learnmghe ability of correctly
classifying unseen data, which are not present in the trgiekamples. Precisely, it is
not sufficient for the algorithm to be consistent with only tinaining data, but also the
algorithm must show the property of correctly classifyirggwexamples. The case when
a function becomes too complex in order to be consistenglisdoverfitting. We should
try to optimize the generalization and not the fitting onrtinag data; in other words, there
is a tradeoff between complexity and accuracy on trainirtg dad various methods have
been proposed for choosing the optimal compromise [129, 130

In supervised learning, we are given a samplexdfaining datag = (21, ...,z,) €
X, together with a sample of corresponding outputs, (v1, ..., y) € ), and the collec-
tion of the labelled training sampl®,,, = {(x;, ;) }1*, used for training, and testing is a
set of independently and identically distributeédd.) examples drawn by an unknown but
fixed distributionp on (z,y) € X x ). Using the decompositiop(x, y) = p(x)p(y|z),
the sampling can be interpreted as a two steps process wistréhé inputz according
to p(z) is sampled and then a corresponding outpistsampled with probability(y|z).
While the first step can be totally random, the second stedlysuadels the sampling of
a noisy functionf. So the relation between input and output spaces is prosiaband
not functional, and for a given input, there is a distributiom(y|z) on possible outputs.
The goalis to learn a functiofie H, f : X — Y which models the probabilistic relation
betweent and) in a way thatf(z) ~ y.

19
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The hypothesis spade represents the set of admissible functions the learningr alg
rithm looks for; it is a subset of a larger spatecalledtarget spacewhich contains a
broader class of functions frod to ); putting some constraints on the elements/of
leads to the hypothesis spake

Common learning tasks are regression, whére R, and classification, in whicpy
is a set ofc classes. For example, in binary classificafor- {+1, —1} andc = 2.

In this chapter, we briefly review the statistical learnihgdry, followed by an outline
of the mathematical foundations of kernels. Preciselyctirecepts of loss function, risk
functional, Bayes function, regularization theory, Merkernel and reproducing kernel
Hilbert space from Vapnik [129, 130], Hastie et al. [56] , Cecknd Smale [38], Pog-
gio and Smale [103], are revised and some theorems such aiRdetheorem and the
Representer theorem are reported.

2.2 Loss Function and Expected Risk

A learning algorithm is a map from a data g&to a functionf. We considerf : X — ),
which may be any function fro®’ to ) [103].

Definition 2.1 (Loss function)A loss functiori : R x R — R is a non negative function
that measures the errd( f(x), y) between the predicted outpfifz) and the actual output
1.

Common loss functions can be defined depending on the prolffemexample, in
regression problems the loss is usually a function of tHem@ihce between the target and
the predicted valué(f(x),y) = l(y — f(z)). A typical example is theguadratic or L
loss:

I(f(x),y) = (y — fx)) (2.1)

another example is thebsolute or L, loss:

W(f(z),y) = |f(z) =yl (2.2)
and in the case of binary classification, witke Y = {+1, —1} the typical examples for
themisclassification losareindicator loss

@) = o-uin = { o TS 23)
andHinge loss
) == 5@ = { e (2.4

The aim of statistical learning theory [129, 130] is to defnesk functional, which
measures the average amount of error of a hypothesis, andkdédr a hypothesis among
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the ones with lowest risk. i f(x), y) is a loss function, measuring the error between the
predictionf(x) and the actual output, then the average error is called the expected risk
[103].

Definition 2.2 (Expected Risk)Given a functionf € 7 and a loss functior( f(x),y),
the expected riskrr,( f) of f with respect to distributiop is the expected loss

errf) = [ @) v)ote. )y (2.5)

Note that the expected error can almost never be precisehputed since we almost
never know the distributiop. Nevertheless, we are looking for the minimizgrin some
target spac such that:

f,=arg min err,(f) (2.6)

fer

This minimizer is called th®ayes functiorand its expected risk, calleBayes risk
is a lower bound on the error that depends only on the intridigiiculty of the problem.
As the distributionp on X x ) is unknown and the expected risk cannot be explicitly
computed, we approximate the expected risk bydmmpirical error (or sample error or
empirical risk) on the data collectidh.

Definition 2.3 (Empirical Error) Given a functionf € 7 and a loss functiot( f(x), y),
the empirical errorerrp, (f) of f with respect to the dat®,, is the average loss

erro, () = o 31 ()w) @)

The empirical error is a random variable depending on thdaanselection of the
dataD,,. Sincep is unknown, we can learyi by minimizing the empirical error (2.7).
The essential question is whether the expected risk of thewzer of the empirical error
is close to the one of,.

2.3 Learning by Risk Minimization

Given a hypothesis spad¢ and a training seD,,, the Empirical Risk Minimization
(ERM) is the method that finds the function

fp,, = argminerrp (f) (2.8)
feEH

A nice property calleadonsistencywhich we would like to be valid, is that the ex-
pected risk offp,, tends to the expected risk ¢f, independently from the distributign
when the number of training data tends to infinity:
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VpVe >0 lim Pr{lerr,(fp,) —err,(f,)| >} =0

When the consistency is valid, the ERM algorithms should firedtést function in
the hypothesis space. The following theorem guaranteesotisstency over alf:

Theorem 2.1(Vapnik and Chervonenkis, 197ERM is consistent if and only if

Ve >0 lim Pr{sup |err,(fp,,) —err,(f,)| >} =0
m—o00 feT

Another set of desirable properties for ERM is that the mapplefined by ERM be
well-posed The mathematical term well-posed problem stems from a itiefingiven
by Hadamard [55]. He believed that mathematical models g$ighl phenomena should
have the properties that:

Definition 2.4 (Wellposed Problem (Hadamard, 1902)A problem is well-posed if (1)
a solution exists, (2) the solution is unique and (3) the thmtudepends continuously on
the data. A problem is ill-posed if it is not well-posed.

In general, the solution to ERM does not exhibit generalirgtand because of the
lack of uniqueness and stability, it is dir-posedproblem. It can be made weflosed by
an appropriate choice @{.

2.4 Regularization Theory

The regularization theory is a framework in which ill-poggdblems can be solved by
adding appropriate constraints on the solution. A gengrpi@ach is to choose the hy-
pothesis spack to be a convex set in a Hilbert space (see section 2.5):

H={f:Q(f) < R’} (2.9)

whereQ( f) is a convex function. For examplgf) = ||f||* where|| f|| is the norm of

f in the Hilbert space. So the wefiosedness of the ERM problem can be recovered by
adding constraints on the target spdcéo obtain the hypothesis spaté There are two
main approaches:

Ivanov regularization: The direct approach to restrict the hypothesis space satithth
solution becomes unique and to find the solution of ERM cosgigtutting the constraint
that f must be bounded [129, 130]:

min o PIUCCORD) (2.10)

subject to || f[|* < R?
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Tikhonov regularization: The indirect approach adds a term estimating the complexity
of the solutionf to the empirical risk:

— 2.11
min Zl ), yi) + po(f) (2.11)

The parameter > 0 controls the tradeoff between the empirical error and the-co
plexity of the functionf. ¢ represents our prior knowledge about the functfonWe
considerg(-) = [ - [z = [IfI[*

min —Zl ), ui) + pllf11” (2.12)

ferH m

2.5 Mathematical Foundations of Kernels

In this section some useful concepts which represent thamsttical foundations of
kernel machines will be introduced. We will characterizkd/ikernels and feature spaces,
interpreting a kernel as the inner product in some featuaeep

We follow two equivalent approaches: the first one uses Mrtdgorem to interpret
the feature space as a Hilbert spaceeafl sequenceshe other one uses Reproducing
Kernel Hilbert Spaces (RKHS) to interpret the feature spaca Hilbert space of func-
tions. The section ends up with showing the general form efsthiution of a Tikhonov
regularized learning problem, which minimizes a cost fiomal composed by the error
on training data and the complexity of the learned function.

2.5.1 Euclidean and Hilbert Spaces

At first, we define Euclidean (or inner product or pre—Hilpard Hilbert spaces, which
represent an extension of Euclidean spaces from [38] ar].[10

Definition 2.5 (Euclidean SpaceA Euclidean space€ is a vector space with a bilinear
map(-,-) : € x & RsuchthatVf,g,h € £,a e R

1. {f,9) =9, )
2. (f+g,h) = (f,h) + (g, h) and (af, g) = a(f, g)
3. (f,f) >0andif(f, f)=0< f=0

A Euclidean space is also a normed space with the norm inducte inner product:

11l = VAT 1)

Before we define the Hilbert space, we need the following dedims.
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Definition 2.6 (CompletenessA Euclidean spacé is complete with respect to the norm
induced by the inner product:if

v(fl?f?a"') : fn € & and lim Sup”fn _me =0= lim fn - f e¢

Definition 2.7 (Densenessh setA is dense in a seB if A intersects every nonempty
open set inb.

Definition 2.8 (Separability) An inner product space is separable if it contains a count-
able dense subset.
Finally, a Hilbert space is defined as a Euclidean space witlesmore properties:

Definition 2.9 (Hilbert Space) A Hilbert space is an Euclidean space that is also (1)
complete and (2) separable.

Note that Hilbert spaces are generally infinite dimensioNdé require the space to
have a countable basis We can write

f = Z QpPn
n=1

for a basis{¢, }, ;.
As an example lef be the space afr—periodic functions with/” | f(z)|*dz < oo
and¢, (z) = exp(nxi) (the symbol i stands for the imaginary unit) then:

[e.9]

f(z) = Z ¢ exp(nai) (2.13)
1.9) =5 |t (214)

and

HNZJ%/ﬂﬂMMr (2.15)

A more general example of a Hilbert space is the set of squéggrable functions on
acompactset CRY, d €N

L3(z) = {f X —R: /sz(x)dx < oo} (2.16)

with the following inner product

<ﬁm=Aj@M@M (2.17)

and also another example of a Hilbert space is the set of sgoarergent real sequences
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I? = { T1, T, ...) Zx < oo} (2.18)

with the inner product

) = i%% (2.19)

2.5.2 Mercer’'s Theorem

In this subsection, we first explain a valid kernel, then aeén integral operator on valid
kernels and also the feature space of that. At the end, weeélthat the hypothesis space
is a Hilbert space [103].

Definition 2.10 (Mercer Kernel): A function K : X x X — R is a Mercer kernel if
1. K is continuous
2. K is symmetric, i.e foralk,y € X, K(z,y) = K(y, )

3. K is positive definite, i.e., for all finite set, ..., x,,, C X them x m matrix with
entriesK (z;, z;) is positive definite

VYmeN, Ve, ...,cp, €R ZZCZCJ (i, 25) >0

=1 j=1

and a symmetric matrix is positive definite if all its eigelmes are nonnegative

Definition 2.11 (Gram Matrix) Given a Mercer kernek’ and a set of objectsey, ..., ., },
them x m matrix K such that(;; = K(x;, x;) is called the Gram matrix of< with re-

spect to{z1, ...,z }.

Theorem 2.2 (Integral Operator on Mercer Kernel) The linear operatot. i : £*(X) —
L2?(X) on a Mercer kernek’ defined by

Lif(x /K x,z) (2.20)
is
1. well-defined:L is continuous for allf
2. bounded:|| Lk f|| < al|f]|, a € R

3. positive definite:f, [, K(z,z)f(z) f(z)dzdz > 0



26 Chapter 2. Mathematics of Learning

The proof is based on the spectral theorem for compact lioarators on a Hilbert
space (Cucker and Smale [38]).

Theorem 2.3 (Mercer's Theorem, 1909)Given a Mercer kernelk on X x X, let
{ Mk, @r}ie, be a system of the eigenvalue/eigenfunctions pfwith A > Axq > 0.
Thenforallz, z € X

z) = Z Ak () pr(2) (2.21)
k=1
where the convergence is uniform &hx X" and absolute

The following theorem from Cucker and Smale [38] shows whatf#tature map of a
Mercer kernel is.

Theorem 2.4 (Feature Space of a Mercer KernelJhe feature map : X +— [? defined
as

d(z) = {VAgr(z) 132, (2.22)

is well-defined, continuous, and satisfies

2) = Mpr(r)pi(z) = (d(x), ¢(2)) (2.23)
k=1

An important consequence is that a Mercer kernel can bepir@sd as an inner prod-
uct in the Hilbert spacé® of real sequences. In addition, the Hilbert spécef real
sequences constitutes tfeature spac®f our Mercer kernel. Note that if we are given
a feature map(x) which we know to be iri? for all x € X, we can immediately build
a valid kernel by settind((x, z) = (¢(x), ¢(z)) [38]. Now we define the set of square
integrable functions on a compact set X associated with adtdernel and show that it
is a Hilbert space.

Definition 2.12 Given a Mercer kernek” and its linear operatorl ;. defined in Equation
2.20,define

Hy = {f e *)(X): f= Zakgok with (\/_1) 12} (2.24)

where)\, ¢y, are the eigenvalues and the elgenfunctlonsLQfand define an inner prod-
uct(-, )y, : Hx x Hx — R as

Z @D (2.25)

k=1
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The elements off i are continuous functions and for dlle Hx the series

f= Z APk
k=1
converges uniformly and absolutely.

Theorem 2.5 (H is a Hilbert space)[103]The hypothesis spadé; induced by a Mer-
cer kernel K associated with its linear operatat ;- defined in Equatior2.20 and with
an inner product-, -) 7, defined in Equatio2.25is a Hilbert space.

Consequently given a Mercer kerngl, Hy is the Hilbert space generated by the
eigenfunctions of the integral operatby,. The setH of square integrable functions
L£?(X) on acompact set is the hypothesis space okarnel machingwhich is a learning
algorithm that deals with the data only through Mercer kixn€he general form of the
solution of a supervised learning algorithm with kernel hiaes is

Fe) =3 k(o) (2.26)

for some coefficient;; € R. By the definition ofH, we mathematically characterized
the hypothesis space of kernel machines.

2.5.3 Reproducing Kernel Hilbert Spaces

In the above, we characterized valid kernels and featureespaterpreting a kernel as an
inner product in some feature space. It exploits Merceestam to describe the feature
space as a Hilbert space of real sequences. Another aiterapproach uses the Repro-
ducing Kernel Hilbert Spaces (RKHS) to interpret the feaspace as a Hilbert space of
functions. Both approaches are equivalent.

Definition 2.13 (Reproducing Kernel Hilbert Space)A Reproducing Kernel Hilbert
SpaceH  is a Hilbert space of functions on a compact &ét These functions have the
properties that for eachr € X the evaluation functionalg, defined as

Folfl=f(z),VfeH (2.27)

are linear and bounded.
some properties of RKHS are:

o F[f +g]=F[f] + F.lg] = f(z) + g(x)

o Vz, 2 € X, |K(x,2)| < /K(z,2)\/K(z,2)
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o Ve e X, [f(x)] < [[fllm v/ K(z,x)

e Hjy is made of continuous functions

o f =Y, appy; the series converges absolutely and uniformlyin
Theorem 2.6 (Reproducing Property of a Hilbert Space)Given a Mercer Kernek,
we define a functio’,, : X — R as

K, (2) = K(z,2) (2.28)

Then we have:

e K, c H,Vx e X
e for each RKHS there exists a unique Mercer kernel K calledagypecing kernel

e conversely, for each Mercer kernel K there exist an unique Bitéit has K as its
reproducing kernel [38]

The reproducing property means:
Fulf] = (Ko, fYrge = f(2) (2.29)

Now we show that in 2.24 andH are the same. For that, we define an inner
product inH, (2.24) and assume:

f= iaiKmi and g = iﬁjf{zj
1=1 j=1
then

(fo ) me =YY aiBiK(z;,2) (2.30)

i=1 j=1

Let Hx be the the completion dff, with the associated norm. Considering

<K$i> sz>HK = K(:Ei’ Zj)
Then
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<j}}(I>HK = <§E:CW}{M7Z(I>HK
i=1
=1

= ZO@‘K(%’,@
= f(x)

While before the data was mapped into series of real numbewnsthrey are mapped into
functions which sit orx that generate the Hilbert space:

RN o(z) = K,

and each point is represented in the feature space by adaribait measures its similarity
with the other points.
On the other hand, from Mercer’s theorem, sirfce Hx (EQ. 2.24):

fl) =Y arpr(x)

It follows that:

(fs Ki)m,e = Z%(sok,f(g;)z{K = Zi—i/g&k(z)}((x,z)dz
k=1 k=1
= Z 3, Lrcon) (@) = Z 3 wek(@)
= flx)

Finally, after introducing the above results, we reach tiewing theorem from
Cucker and Smale (2001) :

Theorem 2.7 (Hx and Hy are equal) The Hilbert spacedx and Hy are the same
space of functions oX with the same inner product:

HKEHK and <',‘>'HK = <'7‘>HK

In summary, Mercer’s theorem provides a concrete way totoactsa RKHS. In
essence, Mercer’s theorem provides a coordinate basisRK&S.
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2.5.4 Representer Theorem

Using the results derived in the previous sections, nowntloa shown that the general
solution of the Tikhonov regularized learning problem

min _Zl xz ) Yi +N||f||K

feEHk M

= Zm: a; K (z;,x)
i=1

wherep > 0 is a parameter that controls the tradeoff between the etapeiror and
the complexity of the functiorf and the problem of finding afi € H that minimizes the
above regularized risk functional is turned into the prabte finding the best coefficients
a;, 1=1,...,m.

Proof of Representer TheoremThe proof is given in a simplified case when the loss
functionI(f(x;),y;) is convex and also differentiable with respectftgKimeldorf and
Wahba [80]). Define

1 m
- = Ui 2.31
mZ (i, yi) + pl £115% (2.31)
Sincef € Hg, then
F=) bpr and [[fl[k =) A—k (2.32)
k=1 k=1

We set the first derivative off (/) with respect td, to zero, then

()_

ol(f b
8bk “m Z 8bk (i) + 23

k
k

“ 1 Ol(f n
= b = i Z _2Mm 8bk> )<Pk(95z>
=1

So

b = Ak Z aipr (i) (2.33)

where
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L OU(f (), m)
T (2.34)

if we put Equation 2.33 into Equation 2.32 and use Merceestam:

bror(z) =D e Y aior(zi)pi(x
k=1 1

1 1=

azz/\kz@k xz (;Ok Z x“

1 k=1

WE

flx) =

k

'MS

2

In the case of a regression problem, if we use the quadrasé(f(z),y) = (y — f(z))?,
from Equation 2.34 we have:

yi — 2 a; K (zj, %)
j=1

e 2um by,  um wm

L Ol(f(xi),y:)  wi— flxi)

= uma; + Z a;K(zj, (2.35)
that in the matrix form becomes:

(uml,, + K)a=y (2.36)

So, by means of the representer theorem, the problem of §irfdinH  is turned into
finding coefficientsy;, : = 1,...,m. Wheny — 0, f(z) — 0; but settingu not too small
guarantees an unique solution of representer problem)(h8tause the matripuml ,, +
K) has full rank, and a stable solution for the linear syster@5pis well conditioned. In
this thesis we use the representer theorem to bring the pbatthe kernel function in a
booting classifier.

2.5.5 Examples of Kernel Families

Until now we have seen that there are two methods to map the dgta space:
1. Choose a map which explicitly gives us a Mercer Kernéi, or
2. Choose a Mercer kerné&l which implicitly corresponds to a fixed mappigg

Mathematically, kernels are often much easier to define amd the intuitive meaning
of serving as a similarity measure between objects andtated data. Moreover, there
exist simple rules for designing kernels on the basis ofrgkernel functions.
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Basic Kernels

The most simple kernel between two vectorg is the inner product
K(x,z) = (x,2)

More complex kernel may be constructed using simpler onég. pblynomial kernel is
defined as

Ko, 2) = ((2,2) + )" = i ( d ) b5 (2

2
s=0
The feature space @k, z)® is indexed by all monomialsof degrees

¢i(x) = 2} 2 2l subjectto > i; =

m
J=1

Another commonly used class of kernels is the class of RadsisBFainctions:

r—z
Krpp(z,2) = exp (_u)

202

in which the parametes controls the flexibility of the kernel in a similar way to the
degreel in the polynomial kernel.

Kernels for structured data

A particular and interesting property of kernel functioaghat they are closed under ad-
dition, multiplication with a positive constant and expatiation [113, 117]. This allows
the construction of new kernels from existing ones, whiaksigecially interesting for the
definition of kernels for structured objects. Some examatesas follows:

e Convolution kernels [57]: The basic idea behind convoluti@nnels is that the
similarity between composite objects can be captured byaioa between the
object and its parts. It defines the kernel function betwegnt objects as the
convolution ofsub-kernelsi.e, the kernels for the decompositions of the objects.
Convolution kernels are very general and can be applied imiausproblems.

e Graph kernels: A graph is defined as a set of vertices and & selges. Graph
kernels compare the structure of graphs such as the numbabgfaphs they have
in common. [86, 50, 49, 75].

¢ Diffusion kernels: The main idea behind diffusion kernedsthat it is easier to
describe the local neighborhood of an instance than dessgribe whole instance
space [81, 132]. The neighborhood might be defined as inssathat differs only
by one property.
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e Generative model kernels: The first prominent kernel basegemerative models
is the Fisher kernel [66, 67]. It is based on the gradientgflikelihood of the gen-
erative model (a posteriori probability) with respect te fparameter. The Fisher
kernel is defined from the information Fisher matrix dedufredh the generative
model. A general framework of defining generative-modehkés has been pre-
sented in [128]. The Fisher kernel comes as a particular afatee marginalized
kernels.

e String kernels: The traditional kernel for text classifioatis simply the inner prod-
uct of two words into the text space representation. A stkemel consists of
comparing common subsequences in the two words. The gapsdrethe subse-
guences are penalized. This can be done using the totahlengte two strings.
The p-spectrum kernel [85, 109] counts how many contiguabsss$rings of length
p the strings have in common. In this thesis we use this kexnélextent it for
time series. We present time-series spectrum kernels tgureghe similarity of
biosonar signals as time series.

2.6 Summary

In this chapter, we presented the basic theoretical tooh@attiematics of learning needed
to understand the algorithms employed in this thesis. Wéaegd the concepts of loss
function, risk functional and regularization theory. Weaddcterized valid kernels and
features spaces, interpreting a kernel as the inner prodwstime feature spaces. We
interpreted the feature space based on Mercer’s theorem Hilbert space of real se-
guences and based on Reproducing Kernel Hilbert Spaces (RkK Silbert spaces of
functions and saw that both approaches are equivalent. @éepied the general form
of the solution of a Tikhonov regularized learning problemmiet minimizes a cost func-
tional composed by the error on the training data and the t®qaty of the learnt function
based on the representer theorem. The represent theoreantpes that each function
minimizing the regularized risk functional can be writteswah in a closed form as a lin-
ear combination of kernels evaluated at the training datg dm the next chapter we
derive the SVM algorithm from two perspectives: Tikhonogukarization and the more
common geometric perspective.

At the end we presented some important examples of kernetifuns in vector spaces
such as polynomial and RBF kernels and we saw that using a pyagéernels functions
that they are closed under addition, multiplication andosemtiation allows construction
of new kernels from existing ones such as kernels for stradtabjects. Some examples
were convolution kernels, Graph kernels, diffusion kearel string kernels. Kernels can
also be defined over more complex structures such as trees.
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Chapter 3

Support Vector Machines and Kernel
Methods

3.1 Introduction

Support Vector Machines (SVMs), originally developed by and ceworkers [25],
are the most widespread kerAeadsed machine learning algorithms nowadays. They rep-
resent a very specific class of algorithms, characterizatdyse of kernels, the absence
of local minima, the sparseness of the solution and the dgpaomtrol obtained by acting
on the margin or on other dimension independent quantitieb as the number of sup-
port vectors. They provide a new approach to the problemtbéparecognition based on
the statistical learning theory. SVMs are based directlyh@nresults from the previous
chapter and realize the principle of risk minimization. S¥Minimize the empirical risk
simultaneously with a bound on the complexity, namely thegmna They always find a
global optimum because of their formulation as a Quadratigimming (QP) optimiza-
tion problem with box constraints. Their simple geometni@rpretation provides fertile
ground for explaining how they work in a very easy manner.

SVMs are largely characterized by the choice of kernel whieps the inputs into a
feature space in which they are separated by a linear hygisth@ften the feature space is
a very high dimensional one but the-salled curse of dimensionality problem is cleverly
solved by turning to the statistical learning theory. Thagistical learning theory tells us
that learning in a very high dimensional feature space casirbpler if one uses a low
complexity, i.e. simple class of decision rule [89]. All thariability and richness that
one needs to have a powerful function class is then intratlbgehe mapping through
the kernel function. In short, not the dimensionality bug tomplexity of the function
matters. In addition, for certain feature spaces and qooreding mapping®, there is a
highly effective trick for computing scalar products in ghidimensional feature space
using kernel functions. So SVMs represent a complete frasrlewhere several concepts
are combined together to form a powerful theory: dimensmependent generalization
bounds, Mercer kernels and RKHS, regularization theory aRd@timization represent
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therefore the foundations of SVMs.

SVMs are the best performing methods in various domains.y Tia@e been used
frequently in different applications of systems biologydnoinformatics. For example,
SVMs are used for prognosis or therapy outcome predictiGedb@n microarray data.
Golub et al. [51] and Mukherjee et al. [95, 96] applied SVMddokemia microarray
data. Brown et al [27]. classified yeast genes into functioagtgories based on SVMs.
Degroeve et al. [41] recognized the starts of introns by SVWarter et al. [30] identi-
fied functional RNAs on genomic DNA by SVMs. In most Bioinforneatapplications
support vector machines improved previous results.

After their introduction in the mid 90s, the soft margin ddi®r was introduced by
Cortes and Vapnik in 1995 [34] then the algorithm was extertdettie regression case
by Vapnik [129] and to clustering problems ([126], [112] 20]). Two books written
by Vapnik ([129], [130]) provide a very extensive theoratibackground of the field.
Other references can be found in Cristianini and Shawe-T4§$&]j; Shawe-Taylor and
Cristianini [114]; Hastie et al. [56].

In this chapter, at first, we derive the SVM algorithm from tperspectives: Tikhonov
regularization from the previous chapter, and the more comgeometric perspective.
Then, we will discuss the regression and clustering apjpdiea of the SVMs and also the
optimization algorithms used in SVMs.

3.2 SVMs and Regularization theory

We start with Tikhonov regularization

min _Zl J], » Yi +M||f||K

feEHKk M

whereK andH are the Mercer kernel and hypothesis space respectively( 4fx), y)
is the hinge loss function [129]

W(f(@),y) =1 —yf(o)ly (3.1)

which is non-differentiable atl — y; f(x;)) = 0, and we cannot follow the approach in
the proof of the representer theorem (chapter 2). But it isreeofunction and so the
representer theorem is still applicable. We introduce negative slack variable$ as
follows

&= |1 - yz’f(%)M
and so
& >1— ?sz(l"z)

then the problem is converted to [114]:
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1 2
min - i T
min 364wl
subject to vy f(x;) > 1—¢
>0 i—=1,...m

The SVMs contain an unregularized bias térso the Representer theorem results in
a function

(3.2)

f(z) = Xm: ¢iK(xj,x)+Db (3.3)

By the Representer theorem we can rewrite the above constrapienization prob-
lem as a constrained quadratic programming problem. Rhgggiz) into the Equation
3.2 results in the@rimal SVM[35]:

min = > & + puc’ Ke
i=1

subject to v (> a; K (z;,x;) +b) > 1 — & (3.4)
Jj=1
>0 i=1,....,m

Using Lagrange multiplier techniques, we derive the Wolialdjuadratic program:

L(c, &b, a,¢) = %Z&‘FMCTKC—Z o (?Jz {Z ;K (@i, ;) + b} — 1+ fz‘) —) &
i=1 i=1 i=1

j=1

(3.5)
We want to minimizel with respect ta:, b, ¢, £ anda subject to the constraints of the
primal problem and nonnegativity constraintseoand(;. We first take partial derivatives
with respect td and¢:

oL i

oL 1 1
=0= ——0;—(¢G=0=0<q; < —
afz’ m m

This results in a reduced Lagrangian:

and after derivation with respect o

oL% iYi
T 0= 2uKc—KYa=0= ¢ = -/
Jc 21
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whereY is a diagonal matrix whoseth diagonal element ig;; Y« is a vector whose
i-th element isv;y;. Substituting in the reduced Lagrangian tgrwe are left with the
following dual program:

_ 1.7
Cryréz@ Z o a Qo
subject to Z a;y; =0 (3.6)
0<azg L i=1,..,m
where( is the matrix defined by
Q=yKy" & Qi = yiy; K (z;, ;) (3.7)

In most SVM applications, instead of the regularizatiorepaeter., regularization is
controlled via a parametér, defined using the relationship

Like i, the paramete€' also controls the trade-off between between fitting the data
(empirical error) and the model complexity: a large valu€'davors the empirical error,
while a small value leads to a more regularized predictiomction.

Using this definition and after multiplying our objectiventttion by the constarg%
the basis regularization problem becomes

m

fg%l{ ¢ - (S (i), ) + I fI% (3.8)

and the primal and dual problems become, respectively:

1.7
min C C
ceR" (R ; ftec@

subject to : yz(z a; K (zi,2;) +b) > 1§ (3.9
j=1

T
max oy — —CY «
aER™ Z ! Q

subject to Z a;y; =0 (3.10)

O<041§C 1=1,....m
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Figure 3.1: Optimal separating hyperplane in a two dimeraispace. Two hyperplanes
perfectly separate the data. However, the optimal one hagarlmargin and intuitively
would be expected to the more accurate on new observations.

3.3 SVMs from a geometric perspective

The traditional approach to developing the mathematics/fiSis to start with the con-
cept of separating hyperplane and margin. The theory isllysideveloped in a linear
space, beginning with the idea of a perceptron that sesitaepositive and the negative
examples. Defining the margin as the distance from the hjgezgo the nearest exam-
ple, the basic observation is that intuitively, we expecypenplane with larger margin to
generalize better than one with smaller margin (Fig. 3.1).

We denote our hyperplane hyand linear separating function as classification func-
tion by sign(w”z + b) (Fig. 3.1). It means that all positive examples are on one sid
of the boundary functiom”z + b = 0, and all negative examples are on the other side.
At least one point exists for which”z + b = 1 and at least one point exists for which
wlz + b= —1. As the problem is linearly separable, there exists a weigbtorw andb
such thaty;(w?z; +b) > 0 (i = 1, ...,n). Rescalingyv andb such that the point(s) closest
to the hyperplane satisfyo”z; + b| = 1, we obtain a canonical form of the hyperplane
satisfyingy; (w”z; +b) > 1. That means the margin in this case equals HTIH This can
be seen by considering two points, z, on the opposite sides of the hyperplane which
exactly satisfyjw’z; + b| = 1, projecting them onto the hyperplane normal ve(ﬁ%{:
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wle,+b = 1
wley+b = —1

= wi(z) —x9) = 2
2

= <w/HwH,x1 —l’2> = HwH

To maximize the margiry, we have to maximiz%—H which means we have to mini-

mize ||w|| or equivalentlyw?w = ||w||?. To realize the risk minimization principle, we
maximize the margin. This leads to the support optimizapieoblem [118].

min ||w||?
' weRn (3.11)
subject to  y; ((w,z;) +b) i=1,...,n

In addition, we need to work with data sets that are not ligeseparable, so we
introduce slack variable§;, just as before. With the slack variables the primal SVM
problem becomes

i<l — (3.12)

Using Lagrange multipliers we can derive the same dual fagnm @he previous section
(Equation 3.10).

3.3.1 Optimality conditions

The primal and dual are both feasible convex quadratic pragr They both have the
same optimal and objective values. All optimal solutionsaoted through the partial
derivation with respect to parameters in Equation 3.5 massfy the KaruskKuhn-
Tucker (KKT) conditions [114]:
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zm:ch(a:i,x] Zyzozj (i, 25) =0 i=1,...,m
j=1
Z@iyi =0

C—a;—&=0 i=1,...m

(Zyjoz] (@i, ;) —i—b)—l—i—fi}O i=1,...m
[ (ZyJO‘J (@i, @ +b)_1+fi

Giy&ia; =20 o=1,...,m

=0 1=1,..m

Typically the number of non zer@; is much smaller than the number of training
examples, and so the Equation 3.3 can be computed efficlndymming only on exam-
plesz; for whicha; > 0. These examples are called Support Vectors (SVs) and esgres
the critical elements of the training set; they summaritéhal information contained in
the data set.

The KKT complementary conditions permit to find the valug,dbr SVs. Ifa; = C,
the corresponding; is calledboundedSV and¢; has an arbitrary value, while far <
a; < C'itis calledunboundedsV and stays on the geometric margin, which measures
the Euclidean distance of the points from the decision bagnoh the input space. The
KKT conditions also permit to compute the offéet

- Z yioi K (;, )
=1

So if we know the optimaty;, we can determiné. For a better computational stability,
we can take the average on unbounded SVs.

1 m

:0<a,; <C

A proposition from Cristianini and Shaweaylor [35] shows the relation between the
optimum solution ofy; and the geometric margin, which measures the Euclideaantist
of the points from the decision boundary in the input space.
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Figure 3.2: SVM classification with an RBF kernel. Support gestare circled. From
Sclhblkopf and Smola [113]

3.4 Support Vector Regression

Now we want to apply the support vector technique to regoessior the first time,
in Vapnik [129], SVMs for regression problem wifii = R were introduced. In his
proposal, SVMs are the solution of the Tikhonov regularigezblem but with a different
loss function

U(f(x),y) =y — f(z)]. = max {0, |y — f(z)] — €}
wherees > 0. In =SV regression the goal is to find a functigix) that has at most
deviation from the actually obtained targetsfor all the training data, and at the same
time is as flat as possible [117]. Introducing slack variaje¢; to penalize points that
are above or below the-tube and considering the regression functios (w, ¢(x)) + b,
the underlying optimization problem can be formulated aesdgatic program:

min - g(w,w) +C 3 (& + &)
w,b,€ E* —

subject to  ((w, ¢(x;)) +zb) —y < e+ & (3.13)
yi — (0, ¢(x;)) +b) <e + &
5275@*20, i=1,...,m

where the constraints provide that the prediction will eselto the regression value
—e =& < ((w,d(z:) +0) —yi <e +&
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Figure 3.3: Support vector regression. A regression fonas found such that a tube
with radiuse around the regression function contains most of the datatdPoutside the
tube are penalized by. Those penalties are traded off against the complexityngioxe
||wl|, which is represented by the slope of a linear function (F8utblkopf and Smola
[113)]).

In analogy to SVM classification, minimizingw?|| can also be understood as max-
imizing the secalleds—margin which is defined as the minimal distance between two
patternss(z), ¢ () in feature space withy (v) — f(z)| > 2e.

Similar to the SVM the above primal optimization problerd@®), is a convex problem
and applying the KuhrATucker theory leads to its dual formulation

min yH(af —a) —eel (@ +a) — 3(a" —a) ' K(a* — a)
a,a*eR™

subject to 0 < oy, af <C, i=1,...m (3.14)
el(a* —a)=0
wherea, a* € R™ are vectors of dual variables amrds the vector of all ones. The
resulting weight vector can be written as

flz) = Z (a—a)K (z;,x) + b

The KaruskKuhn-Tucker (KKT) complementary conditions permit to find theues
of & and¢; for SVs. The data points; with «; = C or of = C are outside the—tube.
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Data points with) < a; < C'or0 < «of < C are on the tube-border. Thus, the regression
function only depends on the points lying outside or exaotiythes—tube. The KKT
conditions also permit to compute the value)of

b=y — (w,$(x) +< (3.15)

Considering the generalization performance of the SVR, Sh@éaydor and Cristian-
ini [114] considered an upper bound on the expectation tiedifference between the
true function valug; and the estimated oneat some point: exceeds a threshotd

Theorem 2.1 (ShaweTaylor and Cristianini) . Let R be the smallest sphere enclosing
the data in feature space. With probability at ledst 6 over the random draw of the data
setD, we have:

X 1 . | R?||w]|? [log(2/9)
E[é(!y—y\>v>]<m§i:<&+&)+4 erS o

3.5 Support Vector Clustering

Support Vector Clustering (SVC) also called one class SVMsgrilged in Tax and Duin
[126] and [20], is an extension of basic SVMs. In this aldart one computes a set of
contours which enclose the data points in terms of suppatov® These contours are
interpreted as cluster boundaries. The outliers can beléamg relaxing the enclosing
constraints and allowing some points to stay out of the aostoThe primal problem of
the SVC can be formulated as

min R?+ C > &
R,c.§ i=1
subject to ||¢(x) — || < R* + &

fi 20, 1= 1,...,m

(3.16)

where R is the radius of the sphere,is the center of the spherg, are slack variables
and C as regularization constant is a control parameter. pan@meteiC' can be used
to control the portion of examples separated by the sphegainAintroducing Lagrange
multipliers and applying the Kuhn-Tucker theory leads ® dlual formulation

max o K(x;,x;) — ;o K (g, s
max  yaill(ziz) =2, 0 ciosKw2;) (3.17)

subjectto 0<a; <C, i=1,....m

At each point, we define the distance of its image in featuaesgrom the center of the
sphere
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Figure 3.4: The sphere and SVs found by Equation 3.18 usingearl kernel on an
example of data set.

R* = [|¢(z) — |
then, the KKT complementary conditions are satisfied by {itenal solutiona*, ¢* and
R*:
a: [qu(xi)—cHz—R*Q] —0,i=1,...m (3.18)

This implies that only training examples that lie on the surface of the optimal hy-
persphere have their correspondirjghon-zero (support vectors) while for the remaining
examplesy = 0. Furthermore, the distance of a point to the center of thergpbtan be
written as:

R (z) = K(z,2) — 2 Z QK () + ) Y ooy K (2, 1)) (3.19)

i=1 j=1

Therefore based oR(z) and R* one can decide whetherbelongs to an inlier or an
outlier of the data set.

3.6 Solving the SVM Optimization Problem

The SVM problem (3.9,3.10) is a Quadratic Programming (QRntzation problem.
The dual problem is easier to solve than the primal problemciv solve the QP problem
using standard software. Howewgiis am by m dense matrix which can be hardly stored
in memory for common problems with thousands of trainingadat
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A lot of work has been done for finding efficient methods to sdhe QP optimization
for SVMs. Among them, decomposition strategies are comynapplied to solve the
QP task associated with SVMs learning. The idea is to decemfite problem into a
sequence of smaller problems. Then, the reduced problemisecsolved by standard QP
solvers. Examples of decomposition techniques and impiéatiens have been discussed
by Kaufmann [76], Joachims [72], Platt [101, 102], Osunal ef9®], Keerthi et al. [77],
Shevade et al. [115], Steinwart [119] and Bakir et al. [9].

The algorithm has an iterative nature and in each iterati@yariablex € R™ is split
into a working spacél” and a fixed set’. Let 7y, denote the indices of the working set
and7r be the indices of the fixed set such thgt U 7 = {1, ...,m} andZy, N 7 = 0.
We can rewrite the dual problem (3.10) as:

£ 0t Ty L an ][ Q0 Q][]

max
aw RVl apeRIFI T oy ieF ap

subject to >y Vit Y g Yici =0
O<a;<C, i1=1,....m
(3.20)
Then we treaty as variable andvy as constant. Now we can solve the reduced dual
problem:

max (1 - Qwrar)aw — %&WQWWQW
(XWER'""

(3.21)
subject to ZieW Yo, = — ZieF (s
O<a;<C, i=1,....m

The reduced problem is of fixed size and can be solve usinqdata QP solver. An
important issue in the decomposition algorithm is the wagelécting the working set.
The basic idea is to examine points which are not in the wgrket and add the points
which violate the reduced optimality to the working set. Wenove points which are in
the working set but far from violating the optimality condits. Provided that the method
for selecting of the working set satisfies those elementangitions, the decomposition
algorithm ultimately converges to the optimal solutioneonvergence proof of various
modifications of the decomposition algorithms can be foum¥8, 88]. Two important
decomposition algorithms include:

1-Decomposition algorithms with fixed size of working sepgosed by Osuna [99].
The working set size is fixed. In each iteration, a part ofalalgs from the working set
is replaced by previously fixed variables which violate tH€TKconditions. This idea is
used for instance iBVMIightby Joachims [72].

2-Sequential Minimal Optimizer (SMO) by Platt [101, 102ha'SMO is an extreme
case of the general decomposition algorithm in which thekimgrset contains just two
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variables. The SMO approach has become very popular dugitaplementational sim-
plicity and a fast convergence. It is implemented for instam the popular LIBSVM
software package by Chang and Lin [31].

3.7 Summary

In this chapter, we introduced SVMs as a kernel-based madeamning algorithm based
on the regularization theory which minimizes the empiricgk simultaneously with a
bound on the complexity, namely the margin. We derived th&1&gorithm from two
prospectives: Tikhonov regularization and a geometrispettive.

In the geometric representation, SVMs for classificatidy o@ the idea of maximum
margin hyperplane in feature space. The optimal hypergkoriquely obtained by QP
optimization programming techniques. The solution is spand relies on examples
called support vectors.

In support vector regression, the support vector techngapplied to regression and
the Tikhonov regularization problem with a different loss¢tion. It utilizes a special
loss function, the—insensitive loss function. The regression function ordpehds on
the points lying outside or exactly on thetube.

In support vector clustering one can compute a set of costehich enclose the data
points in terms of support vectors. Again, the data poirds lies on the surface of the
optimal hypersphere are called support vectors. This @gbroesults in a state—of-the—
art method for novelty detection.

At the end, we discussed methods for solving the SVM optitrapa Decomposition
strategies are commonly applied to solve the QP task; Thasagpose the problem into
a sequence of smaller problems. We discussed some of thengesition techniques,
used in popular implementations of the SVMs.

In next chapters we will discuss the application of suppecdter machines and kernel
methods for some biological problems. Beginning from thet ohapter, we consider the
imbalance data in a protein classification problem, when seckernel methods. We will
see how an oversampling technique can increase the acafra&grnel-based classifier.
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Chapter 4

Kernel Methods for Imbalanced Protein
data Classification

4.1 Introduction

4.1.1 Classification of G-protein Coupled receptors families

G-protein coupled receptors (GPCRs) are a large superfarihtegral membrane pro-
teins that transduce signals across the cell membrane igl] @1). Through their ex-
tracelluar and transmembrane domains they respond to etyan ligands, including
neurotransmitters, hormones and odorants. They are ¢bdarad by seven hydropho-
bic regions that pass through the cell membrane (transnaralregions), as shown in
Fig. 4.1. Each GPCR has an amino terminal (NH2 or N-termiregljan outside of the
cell, followed by intracellular and extracellular loopshiwh connect the seven transmem-
brane regions, and also an intracellular carboxyl term(@&OH- or C-terminal) region.
GPCRs are involved in signal transmission from the outsidénéointerior of the cell
through interaction with heterotrimeric G-proteins, ootagins that bind to guanine (G)
nucleotides. The receptor is activated when a ligand thaesaan environmental signal
binds to a part of its cell surface component. A wide range ofecules is used as the
ligands including peptide hormones, neurotransmitteascpne mediators, etc., and they
can be in many formse.g, ions, amino acids, lipid messengers and proteases [4, 60].

The function of many GPCRs are unknown and understandingdhalgig pathways
and their ligands in laboratory is expensive and time-corisg. But the sequence of
thousands of GPCRs are known [21]. Hence, if we can developamate predictor of
the class (and so function) of GPCRs from their sequence iteaf §reat usefulness for
biological and pharmacological research. According tdiiheing of GPCRs to different
ligand types they are classified into different families. &hsn GPCRDB (G protein
coupled receptor data base) [21] all GPCRs have been divided imerarchy of ‘class’,
‘subfamily’, ‘sub-sub-family’ and ‘type’ (Fig. 4.2).

We want to classify GPCRs at the family, subfamily and sub-awildf/ level. Because

49
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Figure 4.1: Schematic representation of GPCR shown as sevesniembrane helices
depicted as cylinders along with cytoplasmic and extrataallhydrophilic loops.

U ———
|

Class E (005)
CAMP receptors
like

Class F (006)
——|Frizzeld!

Smoothened

Other
001-015

Figure 4.2: GPCR family tree according to GPCRDB nomenclature.

—

Traceamine
001-001-007

GPCR Class Sub-family Sub-sub-family Types
| [Class A (001) —_ _| Amine _ _ _[ Acetylcholine _ | Vvertebrate
rhodopsine like N 001-001 N 001-001-001 N type1
\
‘t\\\ N ‘\\\\ ’}l: N
Class B (002) \:\‘\ ~ Peptide i*:\\\ ‘| Aodg‘??é’ﬁf_%té’f i 1 Vet;t;g?te
- (Secretion like \‘\\ \ |001_002 1“1:\\\\ “,}\\\
\
\\\\ \\ ‘.:\1‘\\\ \ Dopamine “‘.‘ \ Vertebrate
Class C (003) R Ao BN [ 001-001-003 W | type3
_|Metabotropic | 001-003 | "‘.‘\\ \\“\
glutamate/ \t ‘*\ ﬂ\\ Histamine \ | Vertebrate
pheremone A\ E— ‘-.I-..\ 001-001-004 v| type 4
\ od)opsin ‘\1 \
"\ 001-004 ’ \ \\ ' Seretonin \ Non
E'ass R(UU‘U "1 \ | 001-001-005 Vertebrate
-~ Funga \
pheromone ) Olfactory 'y -
001-005 \ { Octopamine
\1 001-001-006
T —
(S )



4.1. Introduction 51

of the divergent nature of GPCRs it is difficult to predict thasdification of GPCRs
by means of sequence alignment approaches. The standartbinmatics approach for
function prediction of proteins is to use sequence comgarisols such as PSI-BLAST
[3] that can identify homologous proteins based on the apiomof low evolutionary

divergence, which is not true for GPCRs families. Here, we acanf a more difficult

problem of remote homology detection, where classifierstrdetect a remote relation
between unknown sequence and training data.

There have been several recent developments to the classifigroblem specific
to the GPCR superfamilies. Moriyama and Kim [79] developedhasification method
based on discriminant function analysis using compos#iat physicochemical proper-
ties of amino acids. Elrod and Chou [43] suggested a covadiigotiminant algorithm
to predict GPCRSs’ type from amino acid composition. Qian et[aD6] suggested a
phylogenetic tree based profile hidden Markov model (T-HMM)GPCR classification.
Karchin et al. [74] developed a system based on support vewohines built on profile
HMMs. They generated fisher score vectors [65] as featureorgetor SVM classifier
form those profile HMMs. They showed that classifiers like S3/tat are trained on
both positive and negative examples can increase the agycafdGPCRs classification
compared with only HMMs as generative method.

To increase the accuracy of remote homology detection kyridighative methods,
researchers also focused on finding new kernels, which medse similarity between
sequences as main part of SVM based classifiers. So aftesicigaen appropriate feature
space and representing each sequence as a vector in trat@patakes the inner product
between these vector-space representations.The Spdatraed [85], Mismatch kernel
[84] and Local alignment kernel [64] are examples of thogadids and it has been shown
that they have outperformed previous generative methadsifoote homology detection.

Another important problem in classification of GPCRs is the benof proteins at
the sub-subfamily level. At this level in some sub-subfasilwe have only a very low
number of protein sequences as positive data (minor classpared with others (ma-
jor class). Some researchers have not considered those GBRIRsS, or if they have
included them in their classifier they did not get as good Itedar them as for other
families with enough data [63].

4.1.2 Imbalanced dataset

Many classifiers are designed with the assumption of we#zsed datasets. But in real
problems, like protein classification and remote homologgedtion, when using binary
classifiers like support vector machines (SVMs) and kerrethads, we are facing imbal-
anced data in which we have a low number of protein sequerscpssitive data (minor
class) compared with negative data (major class).

A dataset is imbalanced if the classes are not equally repred and the number
of examples in one class (major class) greatly outhumberstiier class (minor class).
With imbalanced data, the classifiers tend to classify almibsstances as negative. This
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problem is of great importance since it appears in a largebeuraf real domains, such
as fraud detection, text classification, medical diagnastsprotein classification [84, 2].
There have been two types of solutions for coping with imbedal datasets. The first
type, as exemplified by different forms of re-sampling teghes, tries to increase the
number of minor class examples (oversampling) or decréesaumber of major class
examples (undersampling) in different ways. The second agjusts the cost of error or
decision thresholds in classification for imbalanced dathtaes to control the sensitivity
of the classifier [100, 69, 68, 131]. Undersampling techegjuavolve loss of information
but decrease the time of training. With oversampling we dbloose the information
but instead it increases the size of the training set andestrdining time for classifiers.
Furthermore, inserting inappropriate data can lead tofitieg. Some researchers [2]
concluded that undersampling can better solve the probfemlmalanced datasets. On
the other hand, some other researchers are in favor of ouplisgy techniques. Wu and
Chang [137] showed that with imbalanced datasets, the SV&&itiers learn a boundary
that is too close to positive examples. Then if we add pasitigtances (oversampling),
they can push the boundary towards the negative data, andwearicreased the accuracy
of the classifier.

To decide the question of oversampling vs. undersampling,garameters should
be taken into consideration: thebalance ratioand the distribution of data in imbal-
anced datasets. Thmbalance ratio(%Zzg::g}”%zg;zyggfb) is an important parameter
that shows the degree of imbalance. In undersampﬁ/ing wddashelsure of the existence
of enough information in the minor class and also of not lngshe valuable information
in the major class. We found out that the oversampling tegheican balance the class
distribution and improve that situation. But the distrilouatiof inserted positive instances
is of great importance. Chawla et al. [32] developed a metbod¥ersampling named
Synthetic Minority Oversampling Technique (SMOTE). Initltechnique, between each
positive instance and its nearest neighbors new synthesitiye instances were created
and placed randomly between them. Their approach proved smtcessful in different
datasets.

On the other hand Veropoulos et al. [131] suggested usifeyéift error costs (DEC)
for positive and negative classes. So the classifier is memsitsve to the positive in-
stances and gets more feedback about the orientation ofabg separating hyperplane
from positive instances than from negative instances.

In protein classification problems the efficiency of that agh (Veropoulos et al.
[131]) has been accepted. In kernel based protein clagsificanethods [85, 109, 84] a
class-depending regularization parameter is added toaigewal of the kernel matrix:

K'(z,x) = K(z,z) + An/N, wheren and N are the number of positive (or negative)
instances and the whole dataset, respectively. But, basedr@xperiments, if the dataset
is highly imbalanced and has overlapping data, choosingtase ratio of error costs for
positive and negative examples is not always simple and o the values near the
optimum value of the error cost ratio give unsatisfying tessu



4.2. Kernel function 53

4.1.3 Proposed Method for Imbalanced Protein Dataset

In this chapter, we show that a combination of the DEC methmatiaur suggested over-
sampling method for protein sequences can increase th#ggnand also stability of
the classifier. We propose an oversampling technique faeprgequences in which the
minority class in the data space is oversampled by creayinthstic examples. Working
with protein data in data space instead of feature spacesllis to consider the prob-
ability distribution of residues of the sequence using a H\Hildden Markov Model)
profile of the minority class and also one of the majority slasd then synthesize protein
sequences which can push precisely the boundary towareaegative examples. So we
increase the information of the minor class.

SyntheticProteinSequenc®©versampling (SPSO) [12, 15] involves creating synthetic
protein sequences of the minor class, considering thaldistyn of that class and also
of the major class, and it operates in data space insteachtfréespace. Our method
of oversampling (SPSO) can cause the classifier to builaétattgcision regions for the
minor class without overlapping with the major class.

Kernel methods have widely been used for string classifinatExamples of those
kernels for text classification and remote homology dedecith protein families include
the spectrum kernel [86], mismatch kernel [84], and theagtkiernel proposed by Lodhi
et al. [90]. For GPCR classification, we use the local alignnkemel (LA kernel)[11]
that has been shown to have better performance comparedtivéhpreviously suggested
kernels for remote homology detection when applied to thaddard SCOP test set [64,
109]. It represents a modification of the Smith-Watermamestmincorporate sub-optimal
alignments by computing the sum (instead of the maximumi) a@ossible alignments.
Using that kernel along with our oversampling technique weld get better accuracy
and Matthew’s correlation coefficient for the classificatiof GPCRs at the subfamily
and sub-subfamily level than other previously publishedhoe.

In this work, we also create artificial data with differengdees of overlapping and
imbalance ratio to show the efficiency of our methods. Fot, the use the G-protein
coupled receptors (GPCRs) family and create artificial dasadban it. Furthermore, we
see how our algorithm can be used along with DEC methods tease the sensitivity
and stability of the classifier.

In the following section, we explain the local alignmentrel In section 4.3, we
present the SPSO algorithm in details. In section 4.4, wiaexthe materials and dataset
used in our study. The experimental results are given insedt5. Finally, we conclude
in section 4.6.

4.2 Kernel function

In protein classification, variable length protein seq@snmust be converted to fixed
length vectors to be accepted as input to a SVM classifiers@ kectors should exploit
prior knowledge of proteins belonging to one family and deals to have maximum



54 Chapter 4. Kernel Methods for Imbalanced Protein data Clasdiication

discrimination for unrelated proteins. So the kernel fiorcts of great importance for
SVM classifiers in learning the dataset and also in explgipnior knowledge of pro-
teins and mapping data from input space to feature space.Siirtign Waterman (SW)
alignment score between two protein sequences tries togacate biological knowledge
about protein evolution by aligning similar parts of two gseqces but it lacks the positive
definiteness as a valid kernel [109]. The local alignmenmé&emimics the behavior of the
Smith Waterman (SW) alignment score and tries to incorpdhetdiological knowledge
about protein evolution into a string kernel function. Butikmthe SW alignment, it has
been proven that it is a valid string kernel. We used this&ldior our classification task,
so we give a brief introduction to that algorithm:

If K1 andK, are two string kernels then the convolution kerAgk K is defined for any
two stringsz andy by:

Kok Ko(my) = Y Kiwn,5)Ks(ws,9) (4.1)

T1X2=T,Y1Y2=Y

Based on work of Haussler [57] K; and K are valid string kernels, theR; x K,
is also a valid kernel. Vert et al. [64] used that point andrasfia kernel to detect lo-
cal alignments between strings by convolving simpler kistii@e local alignment kernel
(LA) consists of three convolved string kernels. The firstlet models the null contribu-
tion of a substring before and after a local alignment in twes:

V(Jf,y) € X27 K(](l’,y) =1 (42)
The second string kernel is for alignment between two resdu
0 if|z|#1lor |y #1
(8) _
K (zy) _{ exp[fs(z,y)] otherwise, (4.3)

where > 0 controls the influence of suboptimal alignments in the kevadue and
s(z,y) is a symmetric similarity score or substitution matrix,.eB OSUM62.
The third string kernel models affine penalty gaps:

K (,y) = exp {3 g (|2[) + g (Jy])]} (4.4)
g(n) is the cost of a gap of lengthhgiven by:

if n=20,

0 0
{ggngzdwm—u ifn>1, (4.5)

whered ande are gap opening and extension costs. After that the stringekbased on
local alignment of exactly, residues is defined as:

(n-1)
KV (2,y) = Ko = (Kéf) x K&ﬁ)) « K « K, (4.6)
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This kernel quantifies the similarity of two stringsandy based on local alignments of
exactlyn residues. In order to compare two sequences through aligp@sscal align-
ments, it is necessary to take into account alignments iffierent numbers: of aligned
residues:

KO =YK (4.7)

=0

The implementation of the above kernel can be done via dympmigramming [64].

4.3 SPSO: Synthetic Protein Sequence Oversampling

Given a set of positive training sequences (minor classpnd a set of negative train-
ing sequences (major clasS) we want to create synthetic protein sequentgs: et
as mutated replicas of each sequence of the minor classdpdbthat those synthetic se-
guences are created by an HMM profile (Hidden Markov Moddlilefoof the minor class
and are phylogenetically related to that class and far aveay the major class. For this,
at first we build a multiple alignment of the sequences of tiomclass using ClustalW
[127] and then we train a hidden Markov model profile with #ngf the created multi-
ple alignment sequences for each class (positive data arg family belonging to the
negative data). For every sequence in the minor class wee@aather mutated sequence
synthetically. For that, we consider an arbitrdfy, as number of start points for mutation
in that sequence. We suppose té/Mp, ( hidden Markov model profile of positive
instances) has emitted another sequence identical to timeseguence until the first point
of mutation. From that point afterward we assume fat M p. emits new residues until
the emitted residue is equal to a residue in the same positithe main sequence. From
this residue, all residues are the same as residues in tfiealrsequence until the next
point of mutation (Fig. 4.3).

In this way, if the point of mutation belongs to a low entropgaof the HMM profile
the emitted residue will be very similar to the main sequgmak have few mutations).
We expect the emmitance probability of the synthesized esscpiwithH M Mp, to be
higher than withH M Mp_, if not (very rarely), we synthesize another one or we de-
crease the value d¥,,. The N,, parameter can adjust the radius of the neighborhood of
the original sequences and the synthesized sequenceslavigién values ofV,,, the al-
gorithm creates sequences that are phylogenetically daray from main sequences and
vice versa. We used another routine to find a suitable valué,pfAt first, in the minor
class, we find the protein sequence which has the highessiemigrobability with the
HMM profile of the minor class and consider it as root node. nfivee suppose the root
node has been mutated to synthesize all other sequences mirtor class through the
newSequence procedure of our algorithm. It means each sequence is a eduteplica
of the root node sequence which is emitted by the HMM profiléhefminor class. We
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Algorithm SPSOf,,S )

Input :.S,, set of sequences of minority clags;, set of sequences of majority
class
Output: Ssyninetic, S€t Of synthetic protein sequences from the minority class

1 Create HMM profile of seb’,, callit HM Mp, ;

2 Create array of HMM profiles consisting of all families belamgto S_, call it
HMMp_[;

3 Choose an arbitrary number as number of start points for muatatall it V,,,;

4 fori— 1to|S,|do

5 | s=54];

6 repeat

7 Create an array of sorted non-repeating random numbers &g, as
array of start points for mutation, calli,, ;

8 Ssynthetic[i]: newseq (S’HMMp-‘r!Pm)!

9 P+ = P.(Ssynthetic[t], HM Mp. ) ;| * emittance probability of

synthesized sequence by HMMp, * [

10 p- H = Pe(SsynthetiC[iL HMMp* H) ;

11 until p, < maxp_[];

12 end

13 return Ssyninetic

Function newSeq( s,H M Mp.,P,,)

Input : s, original sequencef! M Mp, , HMM profile of setS, to whichs
belongs;P,,, array of start points for mutation
Output: sgyninetic; Synthetic sequence from

=

Ssynthetic = S ;
for i — 1to|P,|do

N

3 p= Pyli];/* assume that HMMp, in position p has
emitted  s[p] * [

4 repeat

5 Ssynthetic[p + 1]= emitted residue in position+ 1 by HM Mp, ;

6 p=p+1;

7 until (newres # slp|) && (p < |HM Mp.|) ;

8 end

9 return Syynihetic
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Figure 4.3: The phylogenetic tree of the original and thetlsgsized sequences from
the “vasoactive intestinal polypeptide” family of GPCRgpper) and an example of the
SPSO algorithm for sequences from the above famidwér). a. Multiple sequence
alignment and low entropy area of that famby A part of sequencel. c. Synthetic
sequence of1 with N,,=50. d. Synthetic sequence afl with N,,=100 (7,,: array of
start points, shown by/, for mutations).
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gain the value ofV,, for each sequence. Then, we get the average of all thosesvatue
N,, entry for the SPSO algorithm.

With each call of the SPSO algorithm, we double the minorsclass an example
of random synthesizing of sequences, Fig. 4.3(upper) stimsvphylogenetic tree of the
original sequences and the synthesized sequences fordba&otave intestinal polypeptide
family of class B (9 out of 18 sequences were randomly sadgctie is shown that the
synthesized sequences of most original sequences hawbdessce to them than to other
sequences. In that figure (lower) we see two synthetic segseofs1 with different
values ofN,,. In the low entropy area of the HMM profile of that family we lealess
mutations.

4.4 Datasets

To evaluate the performance of our algorithm, we ran our exysnts on a series of both
real and artificial datasets, whose specification covefsrdiit complexity and allows
us to fully interpret the results. We want to check its efficig with different ratio of
imbalance and complexity. Fig. 4.4 shows the pictorial @spntation of our datasets.
In the first one, the distribution of the positive and negatiata are completely different
and they are separate from each other. With that distributie want to see, how the
imbalance ratio affects the performance of the classifigtd®}f. The second one shows
datasets in which positive data are closer to negative aatéheere is an overlap between
the minor and major classes. With this distribution, we canstder both the ratio of
imbalance and overlap of the datasets in our study. The tnedis a case where the
minor class completely overlaps with the major class and awe lfully overlapping data.

We used the G-protein coupled receptors (GPCRs) family asla¢abnd then created
artificial data based on it.

The dataset of this study was collected from GPCRDB and we ieeddtaset June
2005 release [21]. The six main families are: Class A (Rhodbplise), Class B (Se-
cretin like), Class C (Metabotropic glutamate/pheromo@égss D (Fungal pheromone),
Class E (CAMP receptors) and Frizzled/Smoothened familg SEguences of proteins in
GPCRDB were taken from SWISS-PROT and TrEMBL [8]. All six fanslief GPCRs
(5300 protein sequences) are classified in 43 subfamili@®arsub-subfamilies.

If we want to classify GPCRs at the sub-subfamily level, mosttyhave only a very
low number of protein sequences as positive data (minosklesmpared with others
(major class). We chose different protein families fromt tleael to cover all states of
complexity and imbalance ratio discussed above (Fig. 4ld)some experiments we
made artificial data using those families and synthesizgdeseces from them (discussed
later). We used numbers to show the level of family, subfamrd sub-subfamily. For
example 001-001-002 means the sub-subfamily Adrenocefitat belongs to subfamily
of Amine (001-001) and class A (001).
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Figure 4.4: Pictorial representation of the minor (shadede) and major classes of our
datasets.

4.5 EXperiments

45.1 Artificial Data

We selected the peptide subfamily (001-002) of Class A (Rhsiddlke) to classify its
32 families (or sub-subfamily level of class A). We built HMdofiles of all families and
measured the probability of emission of sequences belgrigirach one by all HMM
profiles. We saw that the emission probability of each seceigenerated by the HMM
profile of its own family is higher than that of almost all otfamilies. So we can con-
clude that the distribution of the peptide subfamily in aallie feature map can be con-
sidered as in Fig. 4.4.a. We built a kernel matkixfor the training data. Each cell of
the matrix is a local alignment kernel score between prat@ind proteinj (Fig. 4.5).
Then we normalize the kernel matrix vig;; — K;;/+/K;;K;;. Each family is consid-
ered as positive training data and all others as negatiwerigadata. After that the SVM
algorithm with RBF kernel is used for training. For testing, ereated feature vectors
by calculating a local alignment kernel between the testisece and all training data.
The number of sequences in the peptide subfamily is in thgerah4 to 251, belonging
to (001-002-024) and (001-002-008), respectively. Thesrttbalance ratiovaries from
%37 to % Fig. 4.6a shows the result of SPSO oversampling for classificatioronfes
of those families. We see that this method can increase th@axy and sensitivity of
the classifier faced with highly imbalanced data withoutrdasing its specificity. The
minority class was oversampled at 100%, 200%, 300%,.. ¥800its original size. We
see that the more we increase the synthetic data (oversathpléetter result we get,
until we get the optimum value. It should be noted that aftarsampling, the accuracy
of classifiers for the major class didn’t decrease.

We compared our method with two other methods. The first oreSMOTE (Syn-
thetic Minority Oversampling Techniques) [32] that operain the feature space rather
than in data space, so it works with all kind of data. The sdamymparison was done
with randomly oversampling, in which we create random saqas by the HMM profile
of each family. For this, like our method, we build a multiplgnment of the minor class
sequences using ClustalW and then train a hidden Markov npydéle with length of
the created multiple alignment sequence. Then, we creadenasequences by the HMM
profile of each family. In this method we don’t have enoughtoarover the distribution
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Figure 4.6:a. %Minority correct for SPSO oversampling for some familegpeptide
subfamily (V number of sequenced). Comparison of several methods for oversampling.

The graph plots the total number of families for which a giveethod exceeds an ROC
score threshold.
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of created random sequences. We call this method rHMMp.

In our study, we use the Bioinformatics Toolbox of MATLAB toeate the HMM
profiles of families and the SVMlight package [71], to penfo8VM training and classi-
fication.

We used the Receiver Operating Characteristic (ROC) grap/a$ {d¢8how the qual-
ity of the SPSO oversampling technique. An ROC graph charizess the performance of
a binary classifier across all possible trade-offs betwbkerctassifier sensitivityl( P, .;.)
and false positive error rates'f,.:.) [124]. The closer the ROC score is to 1, the better
performance the classifier has. We oversampled each nyiroteigs with the three differ-
ent methods noted above, until we got the optimum perfor@émcone of them. At that
point, we calculated the ROC score of all methods.

Fig. 4.6b shows the quality of classifiers when using different ovengiing methods.
This graph plots the total number of families for which a giveethod exceeds an ROC
score threshold. The curve of our method is above the curegher methods and shows
better performance. In our method and in SMOTE, the insqytsitive examples have
been created more accurately than random oversamplingtp)MOur method (SPSO)
outperforms the other two methods especially for famileshich we have a low number
of sequences, although the quality of SMOTE is comparabiled SPSO method.

To study the second and third representation of the dataeetrsin Fig. 4.4 we need
to create some sequences synthetically. At first, we buglHNM profile of each family
of the peptide families and then computed the probabilitysof each sequence when
emitted not only by the HMM profile of its own family but alsaf all other families.
The average of those scores for sequences of each family erhgted by each HMM
profile can be used as a criterion for the closeness of thekdison of that family to
other families and how much it can be represented by their Hptbfiles. In this way
we can find the nearest families to each peptide family. Atttat we synthesized se-
guences for each family through thew Seq procedure of the SPSO algorithm, provided
that it is emitted by the HMM profile of another near family amot by its own HMM
profile. So after each start position for mutation (Fig.4dver)) we have residues that
are emitted by another HMM profile (we want to have overlaghivihstead of its own
HMM profile and there is an overlap for the distribution of 8yesized sequences between
those two families. The degree of overlapping can be tunettidyalue ofV,, (number
of mutations). This dataset (original and new synthesizegiences) can be considered
as partially overlapping dataset (Fig. 4} If we create more sequences using other
HMM profiles the distribution of the dataset is fully overfapg (Fig. 4.4c). To study
the partially overlapping datasets, we selected 10 fasndiepeptide families and built
the synthesized sequences as noted above. To create theveilapping dataset, we
performed that routine for each family using the HMM profiletloree families near to
the original family, separately.

We compare our oversampling technique with the SMOTE owepsiag technique
and the different error cost (DEC) method [131]. Tables 44 42 show the results.
We see that in general SPSO outperforms the SMOTE and DEGudsetand the perfor-
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mance of the classifier with the SPSO oversampling technigfudly overlapped datasets
is more apparent. When there is more overlapping between ithe mnd major classes,
the problem of imbalanced data is more acute. So the posifidhe inserted data in
the minor class is more important and in our algorithm it hesrbdone more accurately
than in SMOTE method. With regard to the time needed for edgbrithm, DEC has
an advantage compared to our method, because in the ovdirsgngezhnique the mi-
nor class, depending on the number of its instances, is avgaied up to 10 times (in
our experiments) which increases the dimension of the afddenatrix. In contrast, in
the DEC method choosing the correct cost of error for miga@itd majority classes is
an important issue. One suggested method is to set the @soratio equal to the in-
verse of the imbalance ratio. But, based on our experimeats/éiue is not always the
optimum, and especially in partially and fully overlappestasets we had instability of
performance even with values near the optimal value. Basemlipexperiments in the
well-separated imbalanced data the quality of DEC is vegr t@the SPSO method and
for some experiments, even better, and we could find the optivalue for error cost
ratio simply. So perhaps with this kind of datasets one shputfer the DEC method.
But with partially and fully overlapping data, we found thatr@versampling method in
general has better performance, and if it is used along WeDEC method, it not only
increases the performance of the classifier but it also makdisg the value for the error
cost ratio simpler. We also have more stability with valulese to the optimum value
of the error cost ratio. The graphs in Fig. 4and Fig. 4.7 show the value of the
ROC score of the classifier for partially overlapped ar@figequences from the family
of 001-002-024 {01 — 002 — 024") when the DEC method and DEC along with SPSO
(400% oversampling) were applied. We see that when SPSQGawpting is used we
have stability in ROC score values and after the optimumeyahe ROC score does not
change. The drawback is, that we again have to find the bast Y@l the error cost ratio
and the rate of oversampling through the experiment by achgakfferent values, but in
less time compared to only the DEC method, because of thditstaiitat was shown in
Fig. 4.7b. We used that method for all partially and fully overlapparjficial data (Ta-
ble 4.1 and 4.2). For each experiment we oversampled datdereat rates and selected
different values of error cost ratio until we got the besutesThe results in Fig. 4.€.
show that for those kind of data the ROC scores of SPSO and D&EESO are nearly the
same. But in the second method (DEC + SPSO), we need to ovdesdatp less than in
the SPSO only method and we could find the best value of the®sb ratio sooner than
in DEC only. With less rate of oversampling in SPSO we get é&ssirate results but we
can compensate that with DEC.

45.2 GPCRs Families Classification Results

We used our oversampling technique in classification all GH@Rgies at subfamily and
sub-subfamily level (mostly we have a low number of sequenda subfamily classifi-
cation we randomly partitioned the data in two non-overiagsets and used a two-fold
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Figure 4.7: The ROC score at different error cost ratios foficial sequences ai01 —
002 — 024" in (a) classifier with the DEC method and (b) classifier with®E SPSO
methods (400% oversampled). (c) Comparison of DEC, SPSO adBESO methods
for imbalanced data. The graph plots the total number of ixyats of partially and
fully overlapped imbalanced artificial data for which a giveethod exceeds an ROC
score threshold.
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Partially overlapping classes- ROC scores

minority class | # of sequences SMOTE | DEC | SPSO
001 — 002 — 015 16 0.863 | 0.943| 0.951
001 — 002 — 016 122 0.821 | 0.912| 0.929
001 — 002 — 017 68 0.854 | 0.892| 0.884
001 — 002 — 018’ 74 0.912 | 0.871| 0.891
001 — 002 — 020’ 86 0.972 | 0.975| 0.984
001 — 002 — 021 40 0.695 | 0.739| 0.723
001 — 002 — 022’ 44 0.725 | 0.762| 0.751
001 — 002 — 023 48 0.965 | 0.982| 0.996
001 — 002 — 024 8 0.845 | 0.834| 0.865
001 — 002 — 025’ 10 0.945 | 0.972| 0.987
overall ROC-score 0.859 | 0.882| 0.896

Table 4.1: ROC scores obtained on the partially overlappiagses created from peptide
families of GPCR dataset, by various methods. DEC = diffegerdr cost;

cross validation protocol. The training and testing wasiedrout twice using one set for
training and the other one for testing. To compare with tiseilte of other researchers,
the prediction quality was evaluated by Accuracy (Acc), tdedv’s correlation coefficient

(MCC), and also overall Accuracyi¢c) and overall MCC (/CC) as follows:

N .
S Acc(i)
Acc = 4,
cc ; N ( 8)
& mceoh)
CC = ;:1 —N (4.9)
where

Ace. = TP+ TN (4.10)

(TN + FN +TP + FP)
TP x TN — FN x FP

V(TN + FN)(TP+ FN)(TN + FP)(TP + FP)

MCC. =

(4.11)

(TP =number of true positive§, N = number of true negatives,P = number of false
positives ,['N = number of false negatives/=number of subfamilies or sub-subfamily)

Tables 4.5.2, 4.4 and 4.5 show the results of subfamily ifieason for classes A, B
and C of GPCRs. We see that even when the number of sequenosstisd@ccuracy of
our method is high. The overall accuracy for families A, B & 98.94%, 99.94% and
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Fully overlapping classes- ROC scores

minority class | # of sequences SMOTE | DEC | SPSO
001 — 002 — 015 32 0.673 | 0.680| 0.724
001 — 002 — 016~ 244 0.753 | 0.775| 0.821
001 — 002 — 017 136 0.672 | 0.652| 0.643
001 — 002 — 018 148 0.591 | 0.624| 0.672
001 — 002 — 020" 172 0.763 | 0.821| 0.858
001 — 002 — 0217 80 0.632 | 0.689| 0.681
001 — 002 — 022 88 0.615 | 0.812| 0.854
001 — 002 — 023 96 0.912 | 0.942| 0.968
001 — 002 — 024" 16 0.716 | 0.768| 0.819
001 — 002 — 025 20 0.908 | 0.902| 0.921
overall ROC-score 0.723 | 0.766| 0.796

Table 4.2: ROC scores obtained on the Fully overlappingselagreated from peptide
families of GPCR dataset by various methods.

96.95%, respectively, and overall MCC for families A, B ands®i98, 0.99 and 0.91,
respectively. The results show that almost all of the subfesnare accurately predicted
with our method. At the subfamily level we compared our mdthath that of Bhasin
et al. [22]. They used an SVM-based method with dipeptide pmsition of protein
sequences as input. The accuracy and MCC values of our metitperrform theirs. For
example in classification of subfamily A, the overall acayrand MCC of their method
were 97.3% and 0.97 but ours are 98.4% and 0.98, respectiviey did a comparison
with other previously published methods like that of Karcht al. [74] and showed that
their method outperformed the others.

For sub-subfamily classification we used 5-fold cross \aiah. Table 4.6 shows the
results for the sub-subfamily level. We see that in thisllel®o the accuracy is high and
we could classify most of GPCRs sub-subfamilies. We couldiolaa overall accuracy
of 97.93% and a MCC of 0.95 for all sub-subfamilies. At thisslewe could increase the
accuracy, especially when the number of sequences in thigvpdsaining data was less
than 10, and there was no example in which with our oversamgpfiethod the accuracy
decreases.

To the best of our knowledge there is only one study which & lmlone for sub-
subfamily classification [63] in GPCRs families. Their apmioas based on bagging
a classification tree and they achieved 82.4% accuracy tmsabfamily classification,
which is less accurate than ours (97.93% with MCC of 0.95) itkefipe fact that they had
excluded families with less than 10 sequences (we only drecdiamilies with less than
4 sequences). We think our oversampling technique can belywed for other appli-
cations of protein classification with the problem of imlmeled data and it can be used
along with the different error cost (DEC) method to overcoheefiroblem of imbalanced
data for protein data.
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Class A subfamilies

Accuracy (%) MCC

Amine 99.9 0.99
Peptide 97.8 0.97
Hormone protein 100.0 1.00
(Rhod)opsin 99.6 0.99
Olfactory 99.9 0.99
Prostanoid 99.9 0.98
Nucleotide-like 100.0 1.00
Cannabinoid 100.0 1.00
Platelet activating factor 100.0 1.00
Gonadotropin-releasing hormone 100.0 1.00
Thyrotropin-releasing hormone 100.0 1.00
Melatonin 100.0 1.00
Viral 87.0 0.80
Lysosphingolipid 100.0 1.00
Leukotriene 100.0 1.00
Overall 98.4 0.98

Table 4.3:The performance of our method in GPCRs subfamily classification (Class A).

4.6 Conclusion

GPCRs family classification enables us to find the specificityiands that bind to the
receptor and also to predict the function of GPCRs. Our aimigstudy was to develop
an accurate method for classification of GPCRs at the sub+silgflevel, at which we
have the problem of imbalanced data. We chose the localaéghkernel (LA kernel) as
a suitable kernel for our classification task. Compared withMs$, the LA kernel takes
more time during the training phase, but according to resaflbther researchers, the ac-
curacy of discriminative methods with that kernel is higtiem with a generative method
like HMMs. To solve the problem of imbalance, we suggestedwa approach of over-
sampling for the imbalanced protein data in which the migariass in the data space is
oversampled by creating synthetic protein sequencesjdming the distribution of the
minor and major classes. This method can be used for prdeessification problems and
remote homology detection, where classifiers must detestn@te relation between un-
known sequences and training data with an imbalance prolMéthink that this kind of
oversampling in kernel-based classifiers not only pushesldss separating hyperplane
away from the positive data to negative data but also chahgesrientation of the hyper-
plane in a way that increases the accuracy of classifier. Welaiged a systematic study
using GPCRs as a set of real and artificially generated datassi®w the efficiency of
our method and how the degree of class overlapping can affes$ imbalance. The re-
sults show that our SPSO algorithm outperforms other owgoag techniques. In this
chapter, we also presented evidence suggesting that otgamwpling technique can be
used along with DEC to increase its sensitivity and stabilit
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Class B subfamilies

Accuracy (%) MCC

Calcitonin

Corticotropin releasing factor
Glucagon

Growth hormone-releasing hormone
Parathyroid hormone

PACAP

Secretin

Vasoactive intestinal polypeptide
Diuretic hormone

EMR1

Latrophilin

Brain-specific angiogenesis inhibitor
Methuselah-like proteins (MTH)
Cadherin EGF LAG (CELSR)

Overall

100.0 1.00
100.0 1.00
100.0 1.00
100.0 1.00
100.0 1.00
100.0 1.00
100.0 1.00
100.0 1.00
99.1 091
100.0 1.00
100.0 1.00
100.0 1.00
100.0 1.00
100.0 1.00
~ 100 0.99

Table 4.4:The performance of our method in GPCRs subfamily classification (Class B).

Class C subfamilies

Accuracy (%) MCC

Metabotropic glutamate
Calcium-sensing like

Putative pheromone receptors
GABA-B

Orphan GPRC5

Orphan GPRC6

Taste receptors (T1R)

Overall

921 0.84
942 0.82
98.7 0.93
100.0 1.00
97.1 0.96
100.0 1.00
972 081
96.95 0.91

Table 4.5:The performance of our method in GPCRs subfamily classification (Class C).



68 Chapter 4. Kernel Methods for Imbalanced Protein data Clasdiication

Class A subfamilies Overall Accuracy (%) Overall MCC
Amine 97.1 0.91
Peptide 99.9 0.93
Hormone protein 100.1 1.00
(Rhod)opsin 96.6 0.95
Olfactory 98.9 0.92
Prostanoid 98.0 0.94
Gonadotropin-releasing hormone 96.1 0.93
Thyrotropin-releasing hormone 91.2 0.94
Lysosphingolipid 98.4 1.00
Class B  Latrophilin 100.0 1.00
Class C Metabotropic glutamate 98.1 0.96
Calcium-sensing like 97.2 0.93
GABA-B 100.0 1.00
Overall 97.93 0.95

Table 4.6:The performance of our method in GPCRs sub-subfamily classificatiorldss@, B
and C.



Chapter 5

Time series Kernels for Biosonar Data
Classification

5.1 Introduction

Time series are an important type of data occurring in mamgnstic disciplines. A
common task with time series is to compare one sequence mother. In some domains,
a very simple distance method measure, such as Eucliditandes will suffice. In the
case that two time series have similar parts but not at sirpdaitions, we use a more
efficient method for similarity extraction known as Dynanficne Warping (DTW), in
which the time of one (or both) sequences is “warped” befor@lggnment. Dynamic
programming is used to measure the similarity score in DTW.

Kernel methods have also been used as a popular method &wtetkte similarity.
Different kernels correspond to different notions of saritly. As we explained in chapter
2, a kernel function implicitly defines a feature space wiincmany cases we do not need
to construct explicitly. The structure of the data and owwedge of the particular time
series suggest a way of comparison that we can consider keooel function. Then, the
kernel function can be used directly in Support Vector Maeki(SVMs) based classifiers.

There have been methods proposed to embed the time aligopenrattion and DTW
into a kernel function [116, 39]. These methods especiabyuseful in speech recogni-
tion, in which the information lies in the whole time series.

However, in some time series the information lies in a fixadn@t very varied) size
window of time events (subsequence), independent of theabtime. So we have sub-
sequences at random positions whose similarities shouiddasured. Those repetitive
parts may occur in speech, musical pieces and sonar sighla¢sefore, the algorithms
for finding similar time series should not consider the whotee series but look for in-
formative subsequences. Then, in kernel based methodsitairsty extraction, we need
kernels which can extract similarities between all subsaqgas. Hence, the main task is
to find a map that reflects the suitable and common featurémséttime series and gives
a good indiction of the sub similarity we would like to capurOn the other hand, we

69
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should be able to calculate those inner products efficiently

In this chapter, we study the classification of biosonar agas an example of the
random process signals which contain those local simgarit

Bats can distinguish objects by emitting a series of ultradasignals (chirps) that
generally sweep covering frequencies from 22 to 100 kHz.[92spite the similarity
between the process of analysis of reflected echoes in bathainof the hearing system
in human beings, it is difficult for us to understand the pescédecause we have never
explored the environment with echolocation.

To unravel the mechanism of echolocation, inspired by theblmsonar system, re-
searchers have utilized biosonar heads and ultrasonimgeteshniques similar to that
of bats for mobile robots (biomimetic robots) and tried tasslify different textures and
landmarks through their received echo signals [91, 82].

McKerrow used a CTFM (Continuous Transmission Frequency Néded) system
and modelled the echoes with the acoustic density profisd the frequency compo-
nents and energy spectra and found features, which charadiee acoustic density pro-
files of plants in a classification task [91]. Kuc [82] suggelsa transformation of echo
to pseudo-action potential as a temporal point processderstand how bats recognize
landmarks in the field. Nller [97] presented a neuro-spike representation of echoe
which each echo is transcribed into a spike code using ampanmsous model, and clas-
sified four foliages using three features derived from syéee intervals. Gao et. al [48]
presented a template matching algorithm for classificaif@everal types of brick walls,
picket fences and hedges using sonar echoes. M. Wang et3dl, I85] used different
structural features in the frequency domain and also temptatching for the classifica-
tion task.

We used a Biosonar—based robot and ultrasound signalsgrhmd simulated echoes
of the bat while using different trees as landmarks (Fig).5BYy comparing the return-
ing echoes (which are individually the superposition ressaf the reflected echoes) and
pattern recognition methods, we aim at recognizing theatdj@ith emphasis on under-
standing and exploiting the characteristics of bat sonstesy. From the study of works
of the researchers noted above [91, 82, 97, 48] and also periexents, we concluded
that finding robust feature for classification is not triviebr example, the orientation of
objects can result in large changes in the reflected echoesceilin this case features
which are only temporally based can be inefficient. But on themohand, the local tem-
poral similarities between different echoes of one objsamindication of its texture is
a significant issue that should be considered.

Our approach is a combination of system neurobiology witias@ignal processing
and pattern recognition to learn how bats process echoesaanéive objects.

We develop an efficient method for our classification task emalsider both local
temporal similarity and the power spectrum of echoes angdgqs® a kernel based classi-
fication method considering those parameters.

We suggest a kernel callgone-resolved spectrum kernil measure the similarity
of echoes as time series. Thdength subsequence of that kernel simply measures the
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occurrences of fixeg-length subsequences for each of the time series in coasioler
The more time series share simifalength subsequences, the more similar they are.

We also implement a more general kernel calledped time-resolved spectrum ker-
nel, which considers warping in the subsequences. The warpedrgsolved spectrum
kernel measures the whole similarities of all warped nortigopus subsequences of the
two time series, independent of their positions. We thenthigse kernels directly in a
SVM-based classifier. The results show that those kernkel &r a very reliable dis-
crimination of reflected sonar echoes from different olgect

This chapter is organized as follows: In the next section agrbby illustrating the
echolocation and biosonar systems. In section 5.3 we exiilaimain parts of a biosonar
based robot. In sections 5.4 and 5.5, we discuss the tinodévessspectrum kernel, and
the results are given in section 5.6. At last, we concludeamirk in section 5.7.

5.2 Echolocation and Biosonar

Vision and audition are close phenomena in that both canegsoceflected waves of
energy. Vision processes photons (waves of light) as tlaegtfrom their source, bounce
off surfaces throughout the environment, and enter the. dpdact, the visual system is
able to perceive its surrounds by its ability to process tiraex patterns of photons of
visible light as they reflect into the eye from surfaces insthgurroundings. If all one
could see were sources of light and not reflected light, oas @yould give us very little
awareness of the nature of our surroundings. By perceividgraerpreting patterns of
reflected light, extremely rich and detailed informatiom ¢e gathered about the layout
and characteristics of surrounding space and objectsithere

Similarly, the auditory system can process phonons (walvesund), reflected from
their source, bounce off surfaces, and enter the ears. Th®gusystem then can extract
a great deal of information about the environment by intetipg the complex patterns
of reflected energy that they receive. Echo information capdrceived and processed
by the auditory system to enable many determinations albordgunding space and one’s
physical relationship to it.

Echolocation, the sonar ‘sight’ of bats, is similar to th&i8d NAvigating and Rang-
ing” or sonar used by the military. Because it is produced\apdj organisms rather than
by machines, it is often called ‘biosonar’. The term echatmn was first coined by
Donald Griffin in 1938 [52], who discovered that bats nawegaith the aid of high fre-
guency sounds bouncing off obstacles in their environménts an aspect of auditory
perception which may be broadly defined as the ability to gieecechoes. Echolocation
makes it possible for species to decrease their dependertbe @isual system; such in-
dependence confers advantages to the echolocator foratiavigand hunting under poor
lighting conditions.

Numerous investigations such as those concerning by ba¢symal birds, and ma-
rine animals [7, 53] clearly demonstrate that echoes cavigealetailed and consistent
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information about the surrounding environment. With thifrmation, sightless animals
perform all essential functions of productive living siarito those with sight.

Such studies of echolocation may be of great value to blingledoy making available
the knowledge needed to improve nonvisual competence irespaareness and travel.
A thorough understanding of the nature of this skill couldéhaaluable implications
for training and rehabilitation. In [120] possible uses chelocation by humans are
discussed and it is argued that echolocation may be a basiegimn—action ability of
humans.

Some simple and accurate examples conducted by [53, 11Dlehtllus to a compre-
hensive and practical understanding of the processesdebimlocation and its utility
in human while suggesting that both blind and sighted huraamsapable of substantial
precision in the perception of properties of distal objestech as distance, size, shape,
substance, and relative motion by echolocation.

Inspired by bat echolocation research, the human echaocstiudy was undertaken
in the hopes of acquiring a more intimate knowledge aboutdrgtholocation ability.
Findings demonstrate the ability of blind humans to use ledation to actively seek out
objects in their vicinity and thus to exert more control operceiving the qualities of
objects in their environment. Echolocation may in fact bed tor the blind to perceive,
not just the presence of objects, but such dimensions oflijeets as size and distance.

Bats can distinguish objects and their prey by emitting aeseoif ultrasound sig-
nals (chirps) that generally sweep covering frequencies f22 to 100 kHz. Lie et al.
[83] point out that certain species of bats can use echoateeliby their own ultrasonic
chirps can perceive obstacles as thin as 0.65 mm. Theses@uhther indicate that some
echolocating bats can develop a precise spatial memoryesfqusly explored environ-
ments to an accuracy within 2 centimeters and resolve riftepbints as close together
as 0.3 mm in range. The acoustic image of a sonar target igagpaderived from
time-domain or periodicity information processing by tlevous system.

The bat has a sonar transmitter (mouth) and two sonar resgpart of its auditory
system) which it uses to receive and analyze echoes refl&cdtargets in the envi-
ronment. It emits short high-bandwidth clicks in a forwaodised beam, and listens for
reflected echoes. During this process, the animal gathefslusformation about the in-
sonified targets. These pulses are usually frequency medul&M), constant frequency
(CF) or combinations of both [83].

5.3 Biosonar based robhot

5.3.1 Hardware

The implementation of the whole system consists of a molt®t (Robin) with two
PCs, a digital signal processing package, and a biosonansy&ig. 5.1). The biosonar
system includes a National Instruments N16110 analog 1/@,amini servo controller
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Figure 5.1: Biosonar system configuration

(module SSCII), a BNC2110 connector, and the biosonar headNTg1e0 card and the
BNC2110 connector transfer chirp signals and receive thectefleechoes. The biosonar
head (Fig. 5.3) consists of 3 Polaroid sensors in a triam¢ajyaut, similar to the layout of
a bat’'s mouth and ears: two Polaroid 600 sensors spacedrhzapart agars a Polaroid
7000 sensor amouthin the middle between two ears. Each of the two ears has two
degrees of angular freedom provided by two servo motorssd& han be finely rotated to
acquire local support. The Polaroid ultrasonic rangingesyds most commonly used by
the robotics research community.

The maximum sampling speed of the N16110 card is 5 MHz. Wezatll1 MHz in
our research. The NiMH charger box provides the sensorsaxi0V power supply. The
mobile robot Robin is an autonomous mobile service robothhattwo PCs inside, one
is in charge of navigation control, the other one is resgmador signal data processing,
feature extraction and decision making.

5.3.2 Chirp Design

Bats utilize many different types of echoes depending upoethdr they are hunting,
flying in a densely forested area, or flying in an open spacg][12ome bats use brief,
broadband, frequency modulated (FM) calls, while otherd erare prolonged, constant
frequency (CF) calls. CF chirps are more suitable for detec¢tan for tracking. But in
FM chirps, the frequency changes with its duration and itsesis of several modulated
FM components. It closely resembles a radar’s chirp signdll@ends itself well to range
finding. Furthermore, it yields a spectral signature thatsisful for determination of an
object’s size, shape and surface detail and discrimindigiween object types. Some
bats have developed nonlinear frequency modulation too.
CF-FM bats can switch between waveforms. They employ CF andyp® wave-

forms during a single engagement and for example use CF pulsas looking for prey
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(b) Biosonar head

Figure 5.2: The biosonar head consists of one emitter (M@unith two receivers (ears).

in a stationary position but switch to a CF—FM signal once @i@ytracking a target.
Considering the task of our research — natural landmarkitizggon — we used the
FM chirp with amplitude adaptation, which means the freqyesweeps linearly in a
range and the amplitude varies in an oval form. It resemile<hirp form of most bats
in nature.
In our experiments, the emitted pulse was a linearly frequemdulated chirp sweep-
ing from 20kHz to 120kHz in 1 ms (Fig.5.3).

5.3.3 Landmarks and Sensing Strategy

Through echolocation in darkness, a bat can perceive ngttbalposition of an object,
but also its 3D structure [54]. The recognizable target itureaworks as a landmark
for its navigation. For our sensory task, these landmarksilshbe rich and easy to be
found there. The criteria for selecting natural landmandude observability, frequent
occurrence, uniqueness, temporal stability, easy cleagdn, and lateral compactness
[107]. Considering those aspects, we selected three atifieies with similar height of
1.7 m as shown in Fig. 5.4.

Compared with other researchers [97, 82], we used a diffenettiod for sensing the
objects. We used a 0.5 degree angular stepsize for our szsisiree was scanned 360
degrees in a circular movement of the robot and we colleatbdes from all orientations
of leaves and tree. The reflected echo contains the infosmatiout the geometry of the
tree and is the superposition of all reflections [134, 135].
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Figure 5.3: Emitted chirp signal and its frequency content.

Figure 5.4: Three different trees as biosonar landmarksmHeft to right: Ficus, Bam-
boo, Schefflera.
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Figure 5.5: Block diagram of the preprocessing steps forateiteechoes.

5.3.4 Data Processing

Fig. 5.5 shows the block diagram of the data acquisition aegrpcessing procedure of
reflected echoes. We passed the reflected echoes througk aftidhgammatone filters

between 20 kHz and 120 kHz. In order to extract the envelopesdfiltered signals, they

were delivered to half-wave rectifiers.

The next step iframe blocking In this step the signal blocked to frames/éfsam-
ples, is separated from adjacent framesbyM < N) samples and has — M overlaps.
Considering the sampling frequency of the data acquisitemm (1 MHz) and the mini-
mum width of leaves of trees and axial resolution of transdsicwe selectedV = 32
and 50% overlap for frames. The next step in the data prepsougis to window each
individual frame so as to minimize the signal discontirestat the beginning and end of
each frame. We usedidamming windowfor this purpose. The last step is to calculate
the average energy of each band of gammatone filter bank mfesaroe. The result is a
feature matrix, where each column is a vector showing theagesenergy of each channel
in one time frame. Fig. 5.7 shows the examples of the prepseckreflected echoes from
Ficus, Bamboo and Schefflera trees. We use this feature ni@tiaxir classification task.

After the preprocessing steps for each echo (Fig. 5.5), we aanatrix of time series
in which each cell is a time frame and its value is the averagegy of each channel of
gammatone filter. Furthermore we have

A=CxS (5.1)

where A is the number of features, is the number of channels arfdithe number of
samples in each channel.
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Figure 5.6: Features: examples of the energy spectrumybafggammatone filter cen-
tered around 50 kHz) for Ficus, Bamboo and Schefflera trees.
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Figure 5.7: The energy spectrum in each time frame for FiodsSkhefflera trees (output
of gammatone filter centered around 50 kHz). The time-resbbpectrum kernel tries to
find the local similarities in window of sizein echoes of one object.
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Fig. 5.7 shows the examples of the preprocessed echoesusf&iic Schefflera trees.
We use those feature matrices for our classification task.

As noted before, the biosonar signals are random and nmrstat in the temporal
dimension and small changes in the orientation of the pkesiilt in changes in the po-
sition of energy features along the time series. For exanp&elocation of leaves in
the plant determines the acoustic energy throughout tineefsaand small changes in the
orientation of the plant result in changes in those featalasg the frames of time. But,
as we see in Fig. 5.7, despite the seemingly randomnesssxd #ignals, there are some
local similarities (shown by) in echoes from one tree. Then, if we can find the sizes of
windows in which we have maximum similarity between data é @bject, it can help
us to classify that object from others. We consider the duipthe block diagram shown
in Fig. 5.5, a time series, in which each point is a time frame iés value is a vector of
features (the average energy of each channel of gammattarebfink). We should find
the subsequences of the time seneependent of the positions of occurrentest have
maximum similarities in echoes of each object. The intaiti@hind our idea is that the
structure of objects and, as an example, the size of leavesnches, should be consid-
ered in the classification task. The size of the subsequémateve are looking for, can
be related to the size of the leaves or branches of the treandther way, the energy
reflected by the leaves or branches of the tree can be relatbée size of those similar
subsequences of the time series.

A similar situation happens in text classification and alsnate homology detection
in protein families, where we must detect a remote relatetwben an unknown sequence
and a family of proteins. Those proteins contain domainssgtamsitions are not similar
in proteins of a family. There again we should measure thal lsimilarities between all
subsequences as an indication of similarity between twoesezes.

Similar to the remote homology detection in proteins, whedassifier must detect
a remote relation between an unknown sequence and a famplsot#ins, in our classi-
fication task, the algorithms for finding similar time sers®uld not consider the whole
time series but look for informative subsequences, and wd kernels, which can extract
similarities between subsequences.

Inspired by the solutions for remote homology detectionriotgin families and the
string kernel proposed by Lodhi et al. [90], we re—implemtiéet spectrum kernel algo-
rithm for time series and suggest a kernel calliele-resolved spectrum kerrtelmeasure
the similarity of two time series [10, 14]. Thelength subsequence of that kernel simply
measures the occurrences of fixetength subsequences for each of the time series in
consideration, independent of their positions. Then, waement a more general kernel
calledwarped time-resolved spectrum keiddl, which considers warping in the sub-
sequences. The warped time-resolved spectrum kernel nesathie whole similarities
of all warped non contiguous subsequences of the two timessendependent of their
positions.
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Figure 5.8: Thep—spectrum kernel counts the commerength subsequences between
two strings (herg@=3).

5.4 Time-resolved Spectrum Kernel

A kernel function can often be considered as a measure ofasityi Different kernels
correspond to different notions of similarity. The struetof the data and our knowledge
of the particular time series suggest a way of comparisonweacan consider in our
kernel function. The use of a kernel makes it possible togoerfthe mapping into that
feature space and to calculate the inner product betweese tina@ps. But the main task
here is to find a map that reflects the suitable and common features of those niess
and gives a good indication of the similarity we would likecepture.

p—spectrum is an efficient sequence—similarity kernel, psegd by Lesli et al. [85],
which counts the common fixed length subsequences betweestivwgs.

Definition 5.1 (p—spectrum)Given a numbep > 1, thep—spectrum of a string is the set
of all the p—length contiguous subsequences that it contains

In a spectrum kernel, the feature spdcés indexed by all the subsequeneefrom
the alphabek and its elements count the number of times-meroccurs in the sequence.
Foru € Y7, the implicit embedding magp bringss to F:

¢:5— (duls)) € F

where

¢u(s) = number of times: € ¥? occurs ins

then thep—spectrum kernel between stringsaandt is the inner product in the feature
space:

Kp(s,t) = (dp(s), (1))

Figure 5.8 and table 5.1 show an example of a 3-spectrum lkefseand:. We see
that the more common substrings two strings have, the lasgée kernel value and so
the more the two strings are similar.
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Table 5.1: 3-spectrum kernel betweemnd? in Fig. 5.8,/KCs(s,t) = (¢5(s), ¢3(t)) =
2x14+1x1=3.

¢ | KEM | GHJ
s 1 1
t 2 1

Similar to the above—spectrum kernel for strings, the time-resolved spectramed
simply measures the whole similarities of all subsequeatts time series in considera-
tion, independent of their positions. The more two timeeseshare similar subsequences,
the more similar they are.

A time sequence = s;...s, IS a sequence of data points at successive times with
s; € RY, wherel < i < n andd is the dimension of data points. we denptethe length
of sands(i — p+ 1 : i) thep-length subsequence efrom positioni — p + 1 to position
1.

Definition 5.2. We denote!?! the set of indiceglefining all thep-long contiguous subse-
quences ok:

Io={i:1eN1<id <..<ip<|s]}

and s; is a subsequence afin positions given by = (i1, s, ..., ip).

Foru € P>, the infinite set of all subsequences with sizand dimensioni, the
implicit embedding map brings s to vector spacd’, ¢ : s — (¢.(s)) € F. Theu
component of our feature vector is defined as:

s = Y puls)

icly, uexpxd

whereyp is an implicit map that satisfies:

lip<8i,tj) =< QOU(Si), gDu(ij) > for 1€ |;, j € |; (5.2)

in which x, is a valid kernel function that measures the similarity esw twop-length
contiguous subsequencesandt; of the time series in consideration. In wordsg,(s)

is a sum over all similarities betweerlong subsequences efandu. The dot product
of those feature vectors represents the time resgivgaectrum kernel (spectrum kernel
with subsequence size pf:
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Figure 5.9: The time-resolven-spectrum kernel adds the similarities of aHlength
contiguous subsequences between two time series h8je
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= ZZ/ @u( Pu tl)d

ity jert 7 BT
= EE Kp(Sis t)
il jelf,

The above equation says that the spectrum kernel is a suomw@dtall subsequences
similarities. Considering the definitions tp‘andlfj, we can say:

¢l

ZZ% (i—p+1:i)t(—p+1:))) (5.3)

i=p j=p

Needless to say, the computation cost of that kernel is hitje. evaluation of;, re-
quiresO(p) computations, and the cost for computatiorkQf s, ¢) is of orderO(p|s||t]).
In string p-spectrum kernels, a very fast method for computatioft gffs, ¢) is to use an
efficient data structure known as 'trie’ (retrieval tree)which we build a suffix tree for
the collection ofp-length subsequences oandt, obtained by moving a-length sliding
window across each of andt¢, and then calculate the kernel by traversing the tree. But
because of an infinite subsequence set, that method is nlitape for the time series
spectrum kernel unless the time series is quantized, synelochnd converted to a string.
In this case we are faced with the quantization errors anchétbod for quantization and
symbolization can affect the efficiency of the kernel methivdtead of that we use dy-
namic programming to calculate the time-resolved speck&mel while accepting some
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constraints. We accept a constraint on choosing the kainetibns,(si, ), we suppose:

»(si, 4) H K" (sis bi;) (5.4)

in which x* is an arbitrary function (discussed later) that measuresithilarity between
two data points. Considering Equations 5.4 and 5.3, we definauailiary kernel,p-
suffix kernellCS (s, ') as:

Srot 4y — S Ee(S (s [=p+ Ll ") ([ | =p+ L) if min(]s[,[¢'))=p
’Cp (87t) - {0 otherwise.
TT &% (S0 oty ) i min(ls'],|¢/)>p

= = (5.5)

0  otherwise.

(5.6)

wheres’ = s(1: |¢|), ¢ =t(1:|t']),1 < || < |s|andl < |¢/| < |t|. Then we express
the p-spectrum kernel in terms of its suffix version as:

|s'| |l

=Y K (i) (1) (5.7)

i=1 j=1
If we add a new data point to the time series’, using the above equation we can
calculatefC, (s'z, t'):

|s'z| [t']
K, (sz,t') = ZZICSsx (11 g))
=1 j5=1
Is"l 1] It']
= D> D KIS (i) + Y K (e (1))
=1 j=1 7=1
|t']
= K,(s' )+ _KS(s'z,#'(1: ) (5.8)

Jj=1

On the other hand, if we add another new data pgitd the time serie¢’, considering
equation 5.4 and the above definitiontgf, we can say:

I ("2, t'y) = K" (2, y) Ky (5, 1) (5.9)
It is clear that:/C,(s,t) = IC,(s',t') if s = s',t = t'. Now, we define a recursive compu-
tation foriC,:
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Figure 5.10: The time-resolved kernel is calculated udiegsuffix kernels and the recur-
sion over prefixes continues until= s, and|t'| = |¢|

Definition 5.3: Recursive computation of the time resolved spectrum kernel

It']

Kp(s',t) = Kp(s', ) + ) K5 (s'w /(11 k) (5.10)
k=1
Ko (s, /(12 k) = k¥ (2, ) )K5_ (8,8 (1 - k — 1)) (5.11)

KS(s',t) = 1 for all st
K2(s',t) = 0, if min(|s'],|t']) <1,
Ki(s',¢) = 0, if min(|¢'],[t']) <,

The computation of the kernel follows a dynamic programnigchnique. We have
recursions over the prefixes of the time series and the lsrajtthe subsequences and we
do the routine above until = s and|t’| = |t|. Table 5.2 shows the steps for calculation
of K5 usingC5_, whenp = 3.

To prevent that with larger sizes of subsequences the kachéves a higher similar-
ity score we normalize the kernel:

_ ICZ‘(S7 t)
VIi(s, 8)Ki(t,t)

This operation scales the similarities in the range [0,1].

As we see from the above pseudo-code, the evaluation ofCili&" is of order
O(|s||t|) and the overall complexity of our algorithm to calculate reelir combination
of all p-spectrum kernels i®(p|s||t|) while if Equation 5.3 is used the complexity is of
orderO(p?|s||t|).

]C;LOTW’L(S’ t)
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Algorithm Time resolved spectrum kernel

N o g b~ WN =

(o]

10
11
12
13
14
15

Input : Time seriess andt of lengthn andm, max subsequence length
Output: Array of spectrum kerneC|[] with different sizes of subsequence-length
from 1 tol);

KPS(0:n,0:m,0)=1; [+ KPS(i,j,p) stores K;(s(1:4),t(1:7))
*/

KP(0:n,0:m)=0; [+ KP(i,j) stores IC,(s(1:14),t(1: 7)) */
forp«— 1toldo
KPS(0:n,0,p) =0;
KPS(0,0:m,p)=0;
for i — 1ton do
P(0)=0; /=* P(k) stores the second term on the right
side in Eq. 5.10 */
for k <— 1tomdo
KPS(i,k,p) = k*(s;, tg) KPS(i — 1,k — 1,p — 1);
P(k) = P(k—1)+ KPS(i,k,p); KP(i,k) = KP(i — 1,k) + P(k);
end
end
Klp| = KP(n,m); [+ K,(s,t) */
end

return /C|[]
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KPS(,,1)=K | e| =t | =ty | ' =titats

€ 0 0 0

S/ = 51 0 k*(Sl,tl) k*(Sl,tg) k*(sl,tg)

s = S§159 0 k*(SQ,tl) k*(SQ,tz) k*(Sg,tg)

S, — S5159S3 0 l{f*(Sg,tl) k*(Sg,tg) k’*(Sg,tg)

K5 et =t t = tit, t' = titots

€ 0 0 0 0

s =9 0 0 0 0

s = S1S2 0 0 /C*(Sg,tg)k*(sl,tl) k*(Sg,t3>k*(81,t2)
S/ — 515983 0 0 ]{?*(83, tg)k'* (82, tl) k*(Sg, tg)/{?*(827 tg)
K3 et =t |t =tty t' = tytots

€ 0 0 0 0

s’ =5 0 0 0 0

s = 5159 0 0 0 0

S/ — §159S3 0 0 0 k’*(Sg,tg)k'*(SQ, tg)k*(sl,tl)

Table 5.2:Calculation ofkC) usingICS L for s = sysoss, t = titaty andkCy = 1. Ks(s,t) =
Z Z’CS( (1:a)t(1 2 4)).

i=1j=

We considered, (si, tj) (Equation 5.2) as a product of similarities between datatgoi
(5.4). Different choices of that function allow differeniethods of comparing sub simi-
larities. As a suitable selection we consider:

K (Sii7 tji) = eXp

to measure the similarity between two data points, then:

(si,tj) H/{ Sis i) = ex HS'_tJW 512
I J 15y b)) — p 2 ( . )

Ky (si, tj) is the gaussian kernel of widthand suitable for measuring the similarity of
subsequences in the time series.

In practice and specially in our classification task, it negense to consider the sim-
ilarity of subsequences having different sizes and calewdinear combination of differ-
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Figure 5.11: The warped time-resolvedspectrum kernel adds the similarities of all
possibly warpeg—length subsequences between two time series fl¥&e

enti-spectrum kernels with different weightirdg > 0. The weighted kernel is:
l
K(s,t) = Y 6:K™(s,1) (5.13)
=1

The parameteff; shows the weight of eachlength kernel and the optimum selection
of those parameters extracts maximum similarities in theads in consideration.

5.5 Warped Time-resolved Spectrum Kernel

In this section, we implement a more general kernel caladped time-resolved spec-
trum kerne] which considers warping in the subsequences. The warpesrgsolved
spectrum kernel measures the whole similarities of all wdrpon contiguous subse-
guences of the two time series, independent of their positidgain, the more two time
series share similar subsequences, the more similar teey ar

In p-length warped time resolved spectrum kernel, we add thiasities of all (pos-
sibly warped)p-length subsequences of times sex@ndt.

Definition 5.4. We denoté!*! the set of indicesdefining all thep-long both contiguous
and non—contiguous subsequence of

Io={i:ieN1<id <. <ip <|s[}

andu = s; is a subsequence afin positions given by = (i1, is, ..., i, ). The number of
gaps in the subsequencegis= (i, — i1 + 1) — |i|.

For example, if we consider = s1s2835485, u = $15355 IS @ subsequence efin the
positionsi = (1, 3, 5) of length|i| = 3 andg; = 2.
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Foru € ¥P*? the set of all subsequences with sizand dimensioni, the implicit
embedding map bringss to a vector spacé’ (¢ : s — (¢u.(s)) € F) and theu compo-
nent of our feature vector is:

(s)= Y. pulsi)”

icll! uexpxd

wherevy € (0,1) is a decay factor as a cost for warping (non-contiguousitythe time
series and is an implicit map that satisfies:

Fp(sinti) =< @u(si), @u(ty) > T€15, jell ue (5.14)

in which k,, is a kernel function that measures the local similarity l@swtwop-length
subsequences andt; of the time series in consideration. In wordg/s) is a sum over
all similarities betweemp-long subsequences sfandu. The dot product of those feature
vectors ofs andt represents thevarped time resolveg-spectrum kernel

Ko(s.) = (60(s), én (1)) = / &2 ()2 (1) du

RdXp

- ZZVgiVQj/ Pu(si)pu(ty)du

L . dXp
i€l jell, R

Regarding the above kernel definition for local similarity((5.14), we conclude:

Kp(s,t) = Z Z Kp (i, 1)y (5.15)

iels jert

As we see from the above equation, the kernel adds all sityilrores between sub-
sequences, considering all possible degrees of warpingdIBies to say, the calculation of
that kernel has a very high computational cost. We use dymprogramming to calculate
it in an efficient manner and justifiable time.

Considering the definitions ¢f, and| ¢ we can rebuild the Eg. 5.15:

sl ¢l

Kp(s,t) = Z Z Z fip(si, £) 7"

=1 j=1 (ld)elz(lz) XI;(l:j)

To express the kernel using a suffix version of that, we defiaesuffix kernel as:
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K5 (s(1:4),¢(1:4)) = > Kop(si, 1)y 99 (5.16)

(Ij)els(l 1) t(l:j)
So we have:

sl It

=> ) Ki(s(1 1:7) (5.17)

=1 j=1

If we add a new data point to the time series’, using the above equation we can
calculatefC, (s'z, t'):

|s'x| |t']
K, (sz,t") = ZZKssx i),t'(1: 7))

=1 j=1
Is'| 1t'] It']

= SRS i) (1 g) + ) K (s (1))
i=1 j=1 J=1

Then,
']
K, (s'e,t') = K, (s ) + ) K3 (s'z,t'(1: ) (5.18)

j=1
Similar to the time—resolved spectrum, we accept a comstoai choosing the kernel

function s, (si, ;) (Equation 5.14) and consider (si;, tj,) = eXpM to measure
the similarity between two data points, then:

S|7tl ]i[,€ Slzatlz _eXp< ||SI2_ tJ|| ) (519)

That, x,(si, ;) is a gaussian kernel of widit and suitable for measuring the local
similarity of subsequences in the time series. This alsoressthe positive definiteness
of our suggested kernel (Eq. 5.15).

If we add another new data pointto the time serieg¢’, considering the assumption
for x, and the above definition &€ (Eq. 5.17), we have:

|s'| ||

I (% 1Y) = k¥ (%, y) D > AT (1 (1: ), (10 ) (5.20)

i=1 j=1

It means when new points are added, to measure theprsuyifix kernel, we must
calculate similarities op — 1 length subsequences in the suffixes considering all pessibl
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degrees of warping. To evalud@ recursively, we define:

l

K5 (k1) ZZ”/“ RIS (8L 0), (12 ) (5.21)

=1 j=1
Then equation 5.20 becomes:
Ky (s, t'y) = w2, ) (|8'], [£1) (5.22)

to express the above kernel recursively, we use the relation

a b a—1 b a a—1 b—1
YD DITERFIIES 3) DIED 3) BT 'ES 9p DILLE
=1 j=1 =1 j=1 =1 j=1 =1 j=1

Let f(i,j) = " K5 (s'(1:4),¢/(1 2 j)) , a = k andb = I, we have the following
algorithm:

Algorithm : Recursive computation of the warped time resolved specteunek

KSv(k, 1) = K5 (' (1 k), /(12 1) + 7K (ky L= 1) + K5 (k= 1,1) — K5 (k — 1,1 — 1)

K5 (82, t'y) = k" (2, y) (2, )5 (5], [£]) (5.23)
It'|

Ky(s'w ') = K(s' ) + ) K5 (s'w, t/(1: ) (5.24)
j=1

K(s't) = 1 for all &t
K2(s',t) = 0, if min(|s'|,[t]) <1,
Ki(s', ¢y = 0, if min(|s'|,[t']) <1,

The computation of the kernel follows a dynamic programntechnique with the
order ofO(p|s||t]). We have recursions over the prefixes of the time series andnigths
of the subsequences and we do the routine abovewrtils;; and|t’| = [t|. As we see
from the following pseudo-code, the evaluation of i ™ is of orderO(|s||t|) and the
overall complexity of our algorithm to calculate a lineamdanation of allp-spectrum
kernels isO(p|s||t]).

This operation scales the similarities in the range [0,1f. F5.12 plots the kernel
score of two samples of echoes reflected by a Ficus tree vifdretit values of warping
cost. We see that as the gamma parameter gets closer to 1 subsEtquences of two
time series warp more and the similarity score (kernel 9doeases. When gamma is
equal to zero, the kernel is equal to the time-resolved spadternel.
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Algorithm Warped Time resolved spectrum kernel

© 00 N O O b W N P

=
= o

12

13

14
15
16
17

Input : Time seriess andt of lengthn andm, max subsequence lengthnd
warping costy;

Output: Array of spectrum kerneC|[] with different sizes of subsequence-length
from 1 tol;

KPSw(0:n,0:m)=0;
for i — 1ton do
for j — 1tomdo
KPS(Z,]) = H*(Si,t]‘>;
K[1) = K[1) + KPS(i, j);
end
end
or p« 2toldo
for i «— 1ton do
for j «— 1tomdo
KPSw(i,j) = KPS(i—1,j — 1)+ yKPSw(i,j — 1) +
yKPSw(i—1,7) — v¥*KPSw(i— 1,7 —1);
KPS(i,5) = k*(si, t;) KPSw(i — 1,7 — 1);
/ = Equation 5.23 */
Klp] = Klp] + KPS(i, j);
/ » Equation 5.24 */
end
end
end
return K|

—
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Figure 5.12: Kernel score between two echoes of Ficus tréedifferent warping costs

5.6 Classification and Results

We gathered the sonar data,720 echoes for each tree (Fighreas explained before.
After the preprocessing steps for each echo (Fig. 5.5), we haime series in which
each point is a time frame and its value is an array of feaf(tinesaverage energy of each
channel of gammatone filter). Using the spectrum kernel aeetbld in the previous
section, we want to extract the similarities between theeslor our classification task.

5.6.1 Time-resolved spectrum kernel

As we told in the above, the time—resolved kernel is a speeisé of the warped time-
resolved spectrum kernel which the warping cpst 0. According to Equation 5.12 and
5.13, we need to find the parametérando.

Finding the parameters is a case of more general problem known as optimal kernel
selection. In the next chapter we will discuss our methodstdection of the optimal
kernels. However, here for simplicity, we consider equéllesa ofd; in the rangédp,, ps|
as follows:

9. — 1 pi<i<ps
7 )0 otherwise

p1 andp, are the minimum and maximum sizes of subsequences usedaotekie sim-
ilarities in each tree. To find suitable values for those pext&rs, we used a simpdgid
searchon p; andp,. We selected randomly 100 echoes of each tree and thenataidul
KCrerm(s[ml, s[n]) fori € [1,1], m,n € [1,100] ando € {1, 10,100, 1000} wheres|[m|
and s[n] are them-th andn-th of pre-processed echoes ani the length of the time
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series (in our experiment 90). Then we found the optimumesgy andp, in the range
[1,/] for eacho, by maximizing the average value of the kernels:

100 100 pZQ Kperm(sim], sn])

1=p1
max K = g E
P1,p2

m=1 n=1

P2 —P1

We found that a suitable value feris in the range [10,100] for all trees. Table 5.6.1
shows the optimum values fpr andp, with o = 10. We see that for ficus and bamboo,
which have smaller leaves thg has lower value. Again, for simplicity, we considered
equal values op;, andp, for all trees in our classification method.

Tree P1 P2

Ficus 5 25
Bamboo 8 23
Schefflera 11 32

Table 5.3:0ptimum Values fop; andp..

To measure the robustness of our algorithm, we randomlgteeld 00 echoes of each
tree (total 300 echoes) to train the classifier. Considetiegsamer, p; andp, (o = 10,
p1=5, p,=30) for all trees, we calculated the kernel malkix

K(i,j) = K(s[i], s[j]) = > _ Ko™ (s[i], s[5])

l=p1

in which ¢, j € [1,300] and s[i] is i-th echo, where for Ficus echoesg[1,100], for
Bambooi € [101,200] and for Schefflerac[201,300].

After calculation of the kernel matrik, we used the LIBSVM package for Support
Vector Machines (SVMs) regression and classification [&1gts us use our own kernel
matrix to train the classifier. We used the remaining dat&@l&xhoes) for test.

The prediction quality was then evaluated by specificitye(Sp sensitivity (Sen.) and
accuracy (Acc.) as follows:
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" TP
en. = —/—————
(TP + FN)
. TN
eC. = ———————_
P (TN + FP)
TP+ TN
Acc. =
(TN + FN + TP + FP)

(5.25)

whereT P = number of true positived; N = number of true negatives, P = number
of false positives an@’ N = number of false negatives.

Table 5.6.1 shows the average performance of the clasdifisihould be noted that
the classifier decides based on only one observation. If wen@e observations and
decide based on the average of the probability that an cdts@mbelongs to a class, the
accuracy increases (discussed in the next chapter).

Tree Specificity (%) Sensitivity (%) Accuracy (%)
Ficus 85.2 87.5 86.3
Bamboo 87.1 90.1 89.3
Schefflera 92.8 94.5 93.8

Table 5.4: Performance of time-resolved spectrum kernel in biosonar landmargsifadation
with 100 randomly selected echoes for training.

5.6.2 Warped time—resolved spectrum kernel

We find the parametens andp, with different values of warping cost in the warped
time—resolved spectrum kernel and then calculate the keratix. Table 5.6.2 shows
the performance of the classifier for different valuesyafhen it decides based on only
one observation.

We see that by changing the parametéhe accuracy of classifier changes. The best
accuracy for Ficus, Bamboo and Schefflera trees are gainédywit 0.1, v = 0.3 and
~v = 0.2, respectively. This parameter lets the kernel considerraing (with a cost) for
the subsequences of the time series and extract their gimil@onsidering that parameter
in our classification task is justifiable, because the echefscted by the adjacent leaves
of each tree can have somehow similar patterns but not gxhetlsame, so we need to
have a parameten] that can let the kernel capture those similarities, tooe dptimal
value of that parameter for each tree can be related to th&igatyspecification of each
tree.
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Tree Specificity (%) Sensitivity (%) Accuracy (%)
Ficus ¢=0.1) 86.3 88.2 87.1
Ficus ¢=0.2) 85.1 82.1 84.3
Ficus ¢=0.3) 81.1 83.4 82.7
Bamboo ¢=0.1) 85.9 87.8 86.6
Bamboo ¢(=0.2) 86.1 91.1 89.1
Bamboo ¢=0.3 88.6 90.4 89.8
Schefflerag=0.1) 91.7 89.1 90.6
Schefflera{=0.2) 92.8 94.4 93.7
Schefflera{=0.3) 92.6 94.1 93.1

Table 5.5:Performance of warped time-resolved spectrum kernel in biosonar laksliciassifi-
cation with 100 randomly selected echoes for training.

5.7 Conclusion

We considered the problem of biosonar landmark classificats an example of random
and non stationary signal classification in which findingustifeatures for classification
is not trivial. We regarded both the local temporal simtiaand the power spectrum of
echoes and suggested a kernel based classification mettaktracts those local simi-
larities, independent of the position of occurrences iroestof each object. We suggested
a kernel calledime-resolved spectrum kerrtel measure the similarity of echoes as time
series and made a relation between that kernel and georspgdaification of the ob-
jects. Thep-length subsequence of that kernel simply measures therecoes of fixed
p-length subsequences for each of the time series in coasioler The more time series
share similap-length subsequences, the more similar they are.

We also proposed a more general kernel callagoed time-resolved spectrum kernel
which considers warping in the subsequences. We then used kKernels directly in a
SVM-based classifier. We think this kind of kernel is suitafdr pattern recognition in
signals with inherent self similarity and for estimatingipdicity in arbitrary time series
like speech and biomedical signals. In our method, to keeptbblem simple, we made
a not very accurate assumption for theparameters of the kernel with an equal value
for all §;. But that parameter, the weight of the similarity (kernelrsgmf thep-size
subsequences, can represent the self similarity of oneop#re object, for example the
size of leaves, and also can show the geometric charaatsrdithat object. In the next
chapter, we will try to find the optimum value of those paranetvhile maximizing the
accuracy of the classifier using an optimization algorithm.



Chapter 6

Kernel Selection in Time series Kernels

6.1 Introduction

In the previous chapter, we considered a class of randonegsaignals and time—series
which contain sub similarities at random positions repnéag the texture of an object.
Those repetitive parts may occur in speech, musical piecgsanar signals. We sug-
gested a time—resolved spectrum kernel for extractingubsesjuence similarity in time
series in general, and as an example in biosonar signalsurlolassification task, we
considered the similarity of subsequences having diftesizes and a linear combination
of differenti-spectrum kernels with different weightidg > 0 :

l
K(s,t)=> 0K (s,t) (6.1)

The parameter8; show the weight of eachlength kernel and the optimum selection
of those parameters extracts maximum similarities in tigeads in consideration. We
then proposed a non—optimal and simple method to find a catibmof those kernels.

The kernel selection problem has been studied using differeethods. Fung et al.
[47] formulated an optimal kernel selection based on theltptec programming formula-
tion of the Fisher linear discriminant. They developed anative method that alternates
between optimizing the weight vector and the Gram matribm i€t al. [108] considered
the kernel selection in terms of maximization of the Fishecdminant ratio and showed
that the kernel selection can be formulated as a tractalrigegkooptimization problem,
and hence the globally optimal kernel can be found with efficy.

The kernel Fisher discriminant analysis is a non-lineaemsion of the linear Fisher
discriminant analysis. It finds the direction in a featuracy defined implicitly by a
kernel, onto which the projections of positive and negatiasses are well separated in
terms of the Fisher discriminant ratio. This criterion atmes that the obtained kernel
maximizes the similarity score between signals of one daslsminimizes the similarity
score between signals of two different classes.
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In this chapter, we find the optimal kernel via maximizing Kexnel Fisher Discrim-
inant criterion (KFD) [92] to build the optimal linear conmation of kernels. Given that
criterion, to solve the optimization problem, unlike to therk of Kim et al. [108] we use
a faster search method called Mesh Adaptive Direct Searé&kxD®). MADS as defined
by Audit and Dennis [6] is a class of algorithms for nonlinegtimization. It computes
a series of points that get closer and closer to the optimat.p®he algorithm searches
a set of randomly selected points, called a mesh, aroundutinent point—the point com-
puted at the previous step of the algorithm. The mesh is fdrbyeadding the current
point to a scalar multiple of a set of vectors called a patéhthe point in the mesh that
improves the objective function becomes the current pditih@next step. The routine
continues until a stopping criterion is fulfilled.

We use this method [13, 18] to find the optimum value of the p&tard; (equation
6.1) as an optimum weight of the kernel in the kernel selagimblem. Using the ob-
tained kernel, we then use the SVMs classifier to classifieidint classes of biosonar
signals. We get more accurate results compared with thésesuthe previous chapter,
where we used a simple method for the kernel selection.

This chapter organized as follows: section 6.2 containtitamal kernel selection
using the Fisher discriminant criterion. In section 6.8, thesh adaptive direction search
method is described. The experimental results are pres@ntection 6.4, and section
6.5 draws the conclusion of the work.

6.2 Fisher Discriminant based Optimal Kernel Selection

Having two classes of labelled data, Fisher’s idea was tk foba directionv that sep-
arates the class means well (when projected onto the fouadtidin) while achieving a
small variance around these means. The hope is that, usmgrtsjection a classifier
can classify the unlabelled data with a small error. The tjyameasuring the difference
between the means is called between class variance anddhétgumeasuring the vari-
ance around these class means is called within class varigggpectively. Then, in linear
Fisher discriminant analysis, the goal is to find a directlmat maximizes the inter—class
variance while minimizing the intra—class variance at tme time (Fig. 6.1).

Given a set ofi,. positive training data,, C R? (positive class), a set of_ negative
datay_ C R? (x = x4 U x_, all data) and binary labelg € {—1, 1} indicating the two
classes, the class separability in a direction R is defined as:

< v.Sgv >
— et 6.2
J(U) < U.Swl) > ( )

whereSz is the inter—class scatter matrix

Sp = (my —m_)(my —m_)"

in which
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Figure 6.1: Linear Fisher projection. a) Projection axise@n) and decision boundary
between means of both classes (black bold). b) Linear disgaint function

andSyy is the intra—class scatter matrix defined as:

SW — S_|_ + S_
whereS_ = > (z —m_)(z —m_)TandS; = > (x —my)(x —m)T.
TEX TEX

In signal processing, this criterion (class separabilgknown as the signal-to-interference
ratio.

In the case of the Fisher Linear Discriminant (FLD), the paater vectorn of the
linear discriminant functiorf(z) = sgn(< v.x > +b) is determined to maximize the
class separability (signal-to-interference ratio). Themproblem is to find:

< v.Sgv >

Vopt = aTg Max J(v) = arg max oSS (6.3)
The classical solution from linear algebra to the above lprabs:
Vopt = S{/_Vl(m-i- - m—) (64)

It can also be solved using quadratic programming. Fig. Bdivs an example of the
linear Fisher projection and its decision function on a dandpta set.

Linear discriminants are not always optimal for classifmatespecially in nonlinear
feature space, where we need nonlinear decision functiossg the kernel trick, the
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KFDA first maps the data via a non-linear mappingto the high dimensional feature
spaceF and then optimizes the Fisher criterion.

Givenamapp : u — ¢(u) € F, the aim is to find a direction = > a;¢(u;) in
=1
the feature spacé& given by weightsy = [ay, ..., a,,], that maximizes the separation of
the mean scaled in the feature space and minimizes the gariarthat direction (KFD

criterion). Considering the kernel matrix:
Ki,j = k(l’i,l'j> =< ¢(l’l),¢($]) > (65)
For the directiony, the criterion shown in Eq. 6.2 will be in the form of ([92]):

a’Ma
aT(N + M)«
The parametek is a regulation factor and/ and N (defined in [92]) are gained in terms
of the kernel matrixx’:

J(a) = (6.6)

M = (py = p)(py — p)"
whereu, = i > K, andu_ = i >~ are scaled means in the feature space, and:

TEX+ TEX—
N =KDK” (6.7)
where
H_ L, = 5-La 10, 0
0 I, —-+1, 17

nxn

in which 1,, and,, denote the vector of all ones and the identity operatdinrespec-
tively.

Comparing to the solution of the linear Fisher discrimindd.(6.4), the parameter
that maximizes Eq. 6.6 is obtained via:

Umax = (N + M) (py —p_) = (KDK"T + XI) 'Ky (6.8)

= S ]

where:

which results in:
Joax(K) =al Ky =y"K(KD'"K + \I)"'Ky (6.9)

If we consider the variabl&™ as a linear combination of a set of kernel matrices, in the
next step we try to find the matrik’, which maximizes the above equation. Considering
equations 6.1 and 6.9, the problem of finding the optimal &emterms of maximizing
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the Fisher discriminant ratio can be written as:

I I
min o OKTT™) = = Jmax( D2 O:K7™)
i=1 i=1
subject to 0>0 179=1

It is easy to prove the convexity of the above objective fiomctWe supposé (z, y) =
'y~ lz, h(K) = Ky andg(K) = KD'K + A\, considering the convexity of, » andg,
we conclude the convexity ¢f(h, g) and so the above objective function. Then, any local
optimum answer for the objective function is a global onehaitt too. One suggested
method (Kim et. al [108]) was to use the convex optimizatiod &ring the objective
function in the form of Semi-Definite Programming (SDP) uee tSchur complement
technique [26]. In their method, the SDP solver of SeDuMil[l®as used to solve the
SDP.

Instead of that method we use a newly suggested method fdrdptimization known
asMesh Adaptive Direct Searchethod that needs less run time (approximately one third
in our experiments) on a PC with an Intel Core Duo process88@3Hz and 1GB RAM)
while coded in Matlab 7.0.

6.3 Mesh Adaptive Direct Search

MADS (defined by Audit and Dennis [6]) is a class of algorithfmsnonlinear optimiza-
tion. It is a modification of the generalized pattern sea@R$ [5]) algorithm for local
optimization. In summary, this algorithm computes a seofgsoints that get closer and
closer to the optimal point. It searches a set of randomigcset! points, called mesh
around thecurrent pointthe point computed at the previous step of the algorithnme Th
mesh is formed by adding the current point to a scalar meliybla set of vectors called
the mesh sizépattern). (The GPS algorithm uses fixed direction vectefsgreas the
MADS algorithm uses a random selection of vectors to defiaertash). The point in the
mesh that improves the objective function becomes the rup@nt at the next step. The
value of the objective function either decreases or remiiesame from each current
point to the next. The routine continues until a stoppintgcion is fulfilled. The formal
definitions and algorithm from [6] follow:

Suppose thaf : R" — R U {+o0} is a given function under general constraint
xr e QCR" Q0. If Q# R" (constraint optimization), the algorithm attempts to
locate a minimizer of functiorf over(2 by means of darrier function:

fo = +oo ifp € Q
271 f otherwise.

The algorithm does not require the use of the approximatodgrivatives off (free-
derivative method). This is useful (especially in our casbgnV f is not available or
can not be accurately estimated.
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MADS is an iterative algorithm where at each iteratioa finite number of trial points
are generated and their objective function values are coedpeth the current incumbent
value f () as the best objective function value found so far. Each afeleal points lies
on thecurrent meshconstructed from a finite fixed set of, directionsD C R" scaled
by amesh sizparamete\}' € R,. The mesh size parameter controls the coarseness or
fineness of search at iteratién A}, is adjusted fromA;" depending on the success of
that iteration.

D,»,, must be a positive spanning seg., nonnegative linear combinations of its
elements must spaR”, and each directior; € D (j € [1,np]) must be the product of
some fixed nonsingular generating mattixc R by an integer vectot; € Z". We con-
siderZ a matrix whose columns atg, for j = 1, 2, ..., np, and use matrix multiplication,
D = GZ. If S; is the set of points where the objective functipimad been evaluated at
the start of iteratiork, at iterationk, the current mesh is defined as:

M, = U {r+Al'Dz: z€ N""}
€S

The above definition ensures that all previously visiteahigdie on the mesh, and that
new trial points can be selected around any of them.

Each iteration consists of SEARCH and POLL steps. In the SEAREpItbie value
of fq at any finite number of mesh points is evaluated. When a imgrovesh point,
at which fq is less that mip.s, fa, iS generated, the iteration may stop, or it may con-
tinue to find a better improved mesh point. Otherwise the P®tdps begins and the
algorithm generates and evaluaj@saround the current incumbent, wherefo(z;) =
min,es, fo(x). The poll size parametek? limits the distance between, and the new
trail points. The set of new trail points is calledrameandz;, is theframe center This
frame is generated using,, A?, A", and D to obtain a setD, of positive spanning
directions.

At iteration k, theMADS frames defined to be the set:

P, = {ZE}C—FAZLd d e Dk}CMk
in which Dy, is a positive spanning séi ¢ D)) and for eachl € Dy:
e d # 0 is nonnegative integer combination of the direction®in

e A7'd, the distance from the frame center, is bounded by a consta@s the poll
size parameter A} ||d|| < A} max {||d|| : d € D},

¢ limits of the normalized seb,. are positive spanning sets [33].

To ensure the convergence, the radii of successive framsesaanverge to zero at a
slower rate than the mesh size parameter. It meghs < A}, and it must satisfy

lim inf A} = lim inf A" =0
k—o0 k—o0
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The algorithm evaluateg, at points in the framé’, until it finds an improved point
with fo(t) < fa(xy) or until it has evaluated, at all of the points inP,. When the POLL
step fails to generate an improved mesh point then the fraroalied aminimal frame
and the fame center, is said to be a minimal frame center and the poll size paramete
should be updated.

At iteration k&, the mesh size parameter is updated according to:

A'/4, if py is a minimal frame center
AP =4 4A7, if an improved mesh point is found, and A" < 1
A7, Otherwise.

and the poll size parameter as:
ap = VAT
These rules guarantee thaf’ is always a power of 1/4 and less than or equal to one,
andAj* < A? for all k. We can select a default minimum value of mesh size as stgppin

criterion to be fulfilled.
In summary, the MADS algorithm is described as follows:

Algorithm Mesh Adaptive Direct Search Algorithm

step O [Initialization] Givenz,, A}* < A} andD,,,, a positive spanning set. Set
Af" = 1, and the iteration counter k:=0

step 1 [SEARCH step] Evaluaté,, on a finite subset of trial points on the megh as
defined above. If an improved trail poiwith fo(t) < fo(z) is found, declaré
successful and go to step 3.

step 2 [POLL step] Evaluatg, at points from the frame’, until anx;,, with
fa(zks1) < fa(xy) is found. If no such point exists, declakainsuccessful.

step 3 [Parameter update] If iteratidnwas declared unsuccessful, thenjset, = p,
(minimal frame center). Otherwigg ., is an improved mesh point. Updatg”, |
andAj_,. If an appropriate stopping criteria has not been met, sé#t and go
to step 1.

6.4 Experiment and Results

Similar to the experiment explained in the previous chaptergathered the sonar data,
720 echoes for each tree. After the preprocessing stepsafidr echo (Fig. 5.5), we
selected randomly 100 echoes of each tree and then caltW#&t&™ (s[m], s[n]) for
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i € [1,1], m,n € [1,100], wheres[m]| and s[n] are them-th andn-th of pre-processed
echoes andis the length of the windowed time series (here 90). Usingfitenal kernel
selection noted above, we found the optimal value#fan Eq. 6.1 and calculated the
matrix K
l
K(i,j) = K(s[i], slj]) = > 67" K™ (sl s[]) (6.10)

k=1

in whichi, 5 € [1,300] andsli] is i-th echo. For Ficus echoes[1,100], for Bamboa €
[101,200] and for Schefflerac[201,300]. For that we needed to fix parameteend-.
In our experiments, we found the suitable valuedEqg. 5.12) in the range [10,100].

Figure 6.2 shows the accuracy of the classifier for thoses tngth the optimum pa-
rameters of);, different warping costs)y) ando = 100, based on the number of echoes as
observation. It shows a high accuracy even for a low numberchbes. We see that the
parametery can affect the accuracy of the classifier and the accuradyedfrhe-resolved
spectrum kerneh(=0, without warping) increases in each tree by changing #nameter
Y.

Table 1 shows the accuracy of the classifier when it decidesdban only one ob-
servation. The best accuracies for Ficus, Bamboo and Sdalaeffees are gained for
v = 0.1,y = 0.3 andy = 0.2, respectively. We see if gets closer to 1 (no cost for warp-
ing) the accuracy decreases. Comparing the above resuitshgitresults in the previous
chapter (table 5.6.2), in which we used a simple method foredeselection, it shows an
improvement in the accuracy of classification.

v Ficus Bamboo Schefflera
v=0.0 86.2 89.5 90.2
v=0.1 89.1 90.1 91.3
~v=0.2 88.6 91.4 93.8
v=03 876 931 91,1
v=0.5 80.1 81.3 82.1
v=10 59.2 67.4 58.1

Table 6.1: Classification rate based on different valuesarid optimum kernel selection

Comparing with the previous works of our group (Wang et al.5[1B34]), the new
classifier shows a notable improvement in accuracy. The rfessit for classification
gained before was through template matching in 2D biosocaustic images (using a
2D Discrete Cosine Transform). The classification was maaextracting the maximum
normalized cross correlation between the acoustic teepl&tig. 6.4). As shown in Fig.
6.3, we could get higher accuracy in both single and repealtsdrvations (even with
fewer echoes) compared with Fig. 6.4 (note the differeniziootal and vertical axes).
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Figure 6.2: The accuracy of the classifier using our sugddstmel with different warp-
ing costs ¢ = 100) for a) Ficus, b) Bamboo and c) Schefflera. Fot 0, the kernel is
similar to the time-resolved spectrum kernel [10].
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6.5 Conclusion

In this chapter, we presented a method to extract an optimedd set of time-resolved
spectrum kernel based on the Fisher criterion in kernelespafith this criterion, the ob-
tained kernel ensures the maximum similarity score of $gyoione object and the mini-
mum similarity score between signals of two different olge®Ve used a Mesh Adaptive
Direct Search method (MADS) to solve our optimization pesbl This optimization
method needs less run time than another suggested meth@®ldtfiad brings the objec-
tive function in the form of Semi-Definite Programming (SD#) the Schur complement
technique. Compared with other matching methods for biassigaals [135, 134], we
obtained better results with our suggested kernel basduoaeDespite the accurate rate
of classification, the main drawback of the time-resolvestsum kernel is the low speed
of both training and testing procedures. The problem is raotge when we want to op-
timize the kernel selection. It prevents us to use the metbpdeal-time applications,
although this was not our main aim. In the next chapter we sa# how the boosting
method, when it is used with the kernel functions, can restilis problem.
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Chapter 7

A Kernel Based Boosting method for
Biosonar Data classification

7.1 Introduction

In chapters 5 and 6 we suggested a kernel nafete-resolved spectrum kernigr
matching the subsequences of time series (sonar echoegxanadting the local simi-
larities of echoes. The results outperformed other magctenhniques [135, 134]. The
time-resolved spectrum kernel simply measures the wholggsities of all subsequences
of the time series in consideration. The more two time settiese similar subsequences,
the more similar they are. An optimal linear combination efrlels with different sub-
sequence sizep{spectrum kernels) was a measure of similarity between itwe series
(chapter 6). Despite the accurate rate of classificatioti, tbaining and testing were slow
and the method was not applicable for real applications.

In this chapter, we implement a simple, yet powerful, metftowdhe problem at hand
using gradient boosting [16]. Gradient boosting is a maeh@arning approach, that
builds one strong classifier from many base learners. Giilginrbooting has been pro-
posed in the 90’s (Freund and Schapire, 1996 [45]) as a mdtroclassification and
regression in which a fitting method or estimator, calleddhse learner, is fitted multiple
times on re-weighted data and the final boosting estimatbeis constructed via a linear
combination of those base learners. In different worksa# heen shown that boosting
outperformed other machine learning methods for high-dsianal data. It is empiri-
cally illustrated in Bihimann and Yu [28] that boosting has mainly an advantagddta
with high-dimensional predictors. Hoffmann et al. [61] dggadient boosting to classify
high dimensional EEG signals in brain-computer interfeanes Jiao et al. [70] used this
method for high dimensional protein classification and ivleta satisfying results.

Similar to the above researches, we are also facing higlestsional data in classifica-
tion of sonar signals reflected by different kinds of treeffieAthe preprocessing steps for
each echo (Fig. 5.5), we had a matrix of time series in whicih e=ll was a time frame
and its value was the average energy of each channel of gamenfiter. Furthermore,

107
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we had:

A=CxS (7.1)

whereA was the number of features, withthe number of channels arttthe number of
samples in each channel. Now, the problem is very similarrtauiichannel EEG clas-
sification in which the state of brain or a special event imgamized and classified using
a multichannel recording of EEG signals. So we can use thdiggreboosting algorithm
for the sonar classification task as Hofmann et al. [61] didHe event classification from
EEG signals.

In this chapter, we study the efficiency of boosting methad®tir classification task.
We use the gradient boosting method with two kinds of baseéza. The first one uses
Ordinary Least Squares (OLS) regression and the other a®ethe kernel function as
base learner.

Compared with our previous works in chapters (5 and 6), in vihie presented a time
resolved spectrum kernel to extract the similarities betwechoes, we get more efficient
and accurate results with the newly proposed boosting rdetle compare the methods
in terms of sensitivity, specificity, accuracy and Matthewaorrelation coefficient and also
the runtime of training and testing.

The content of the rest of this chapter is as follows: In thikofang section, we
describe the gradient boosting in details. In section 78present two base learners for
gradient boosting. The experimental results are presentsection 7.4, and section 7.5
draws the conclusion of this work.

7.2 Gradient Boosting Algorithm

We here give a summary of the gradient boosting algorithrmf[46]. Given a set of
random input variables = {z, ..., =, } and arandom output variabjeand some samples
{ys, z;} |, we want to find an approximation functidfr that can predicy from x such
that over the joint distribution af, = values, the expected value of a specific loss function
[(y, F(z)) is minimized:

V@)=é@gﬁ%de@D (7.2)
= arg an(H)l E.[El(y, F(x))|z]

Examples of different loss functions include squared efgor- F')> and absolute
error |y — F| for regression, and negative binomial log-likelihobg(1 + e~2¥'"), when
y € {—1, 1} for classification.

F(z) is a member of parameterized class of functiéiis; p), wherep = {py, po, ...}
is a finite set of parameters whose joint values identifyviallial class members. In the
gradient boosting method, we have the additive expansibitedorm
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F(; {8 ambpey) = D> Bubl(w; ) (7.3)

in whichp = {fm,am}. The generic functiork(z;a) is called a base or weak learner
and is a simple function of with parametera. = {a;, as,...,ay}. The task is to find
the parameters of weak learners through solving Eq. 7.2.tiady a typical parameter
optimization method “greedy-stagewise” is used in whichopgmize{3,,, a,,,} after all
ofthe{s;,a;}(i=1,...,m — 1)} are optimized. Then, the recursive representation of the
optimization method is as follows:

N
{Bm,am} = arg rglglz 1(yi, Fino1(x5) + Sh(xg; a)) (7.4)
=1

where the joint distribution of (x,y) is estimated by a finiteta sampléy;, ;}2', and we
have

Fm =Fmpm1t ﬂmh(m7 am) (75)

Bmh(x;a,,) is an incrementaboostand the best greedy direction step towards the data-
based estimate df*(z). Friedman [46] suggested a steepest-descent method tdvéihd t
direction:

oo [ )
gm () [ OF (x;) :|F(;p):Fm1(9ﬁ)

It gives the best steepest-descent step directidi,at. We find the parametets,
that produces,,, = {h(z;; a,)}Y, most parallel to-g,, € RY. So we have:

(7.6)

N
a, = arg min ; [=gm () = ph(zs;2))" (7.7)
and then Eq. 7.4 is converted to:
N
B, = arg mﬁmz Uyi, 1 (i) + Bh(zi; am)) (7.8)

=1
We consider a regularization term to avoid the resultingfaveroblem by a large
number of weak learners. This can be done by addisgrenkage factoi) < v < 1to
the Eq. 7.5:

Fo = Fo1 +vBnh(z;a,) (7.9)

This can greatly improve the generalization performancthefalgorithm. The general
framework of the gradient boosting is as follows:



110 Chapter 7. A Kernel Based Boosting method for Biosonar Data clasfication

Algorithm A general gradient boosting framework
1 FO(ZEZ) = 0, \ ;
2 for m «— 1to M do

l(y;, F(x;
Im (i) = [ (gp(x(i) g

3 } F(z)=Fpm_1(z)

N
am = argmin ¥ [—gm(2:) — ph(zi;a)]?;
&P =1

N
5 Bm = arg mﬁin S UYi, Frne1 (i) + Bh(x; am));
i=1

6 Fm =I'ma+t Vﬂmh(xa am)y
7 end

In our classification task, we conveftz;) into a randomized predictor by using the

soft-max function :
eF(xl)

Plyi = 12:) = Srey o=
and use the Bernoulli log-likelihood for the loss function:

N

Uy, F) = log([] plys = 1) ply: = Ola) ™)
=1
N

- E:P%Fun—bal+¥””ﬂ

which results in:

(y;, F () = 20 F (2;) — log(1 + () (7.10)
andg,, in Eq. 7.6 is obtained with:

I () = 2(yi — pm(yi = 1)) (7.11)
and Eq. 7.8 is converted to:

N
Bm = arg mﬂin {Z 2y; (B (x;) + Bh(x;; an))

i=1

N
_ Z IOg (1 + 62(Fm1($i)+ﬂh($i;am)))}

i=1
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The pseudocode for the gradient boosting algorithm is gnehe following.

Algorithm Gradient boosting with Bernoulli log-likelihood loss furart

1 pO(yz = 1|$1) = 05, FO(Ii) = O, Vi ;
2 for m <+ 1to M do
3 gm<xz) = 2(3/@' _pmfl(yi = 1’xi))v Vi,

N .
, h =argmin Y (—gm(z;) — h(zi;a,))?;
h,a i=1

N
By = argmin {Z 2y; (B (i) + Bh(xi; a))

i=1

N
_ Z lOg (1 + e?(Fm1(x¢)+,3h(mi;am)))}

i=1

6 Fm:mel—i_l/ﬂmh('x;am)a

() ..
7| oy = 1mi) = s Vi

end

[ee]

After initialization, we calculatéh and 5 to update the new"'. This procedure is
continued until a certain number of iteratiohs is reached. To prevent the overfitting or
underfitting problems, we select optimum values\bfandv in a cross-validation test.

7.3 Selection of the Base Learner

The functionh can have any form that can be optimized over the parameifit the
training data. In this paper we consider two kinds of basekzaas follows:

7.3.1 Ordinary Least Squares (OLS) Base Learner
The simplest function to use here flois the OLS regressor as:
h(z) = a1z + ag = aX

<o) x= 11

By solving the Ordinary Least Squares (OLS) regression, wikfie parameter= o ; o)
in Eq. 7.7:

where
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a=(XX")"X"g

7.3.2 Kernel-based Base Learner

Kernel based regression methods are considered as themrobfinding the functiory
that minimizes the objective function

min —Zl (i), i) + plI£11” (7.12)

feH m

As we explained in chapter Z is the Reproducing Kernel Hilbert Space (RKHS)
generated by the kernél(.,.) and i is a parameter that trades off the quality of the
regression function and the regularization term. Accaydim the representer theorem
(Kimeldorf et al. [80]), explained in chapter 1, the optinfék) has the form:

- Zaik(xi,x) (7.13)

Recently different research has been done to use the ideara#l ke the boosting
procedure [123, 23, 40] based on the representer theorem.

Similar to Eqg. 7.5 in which¥'(z) is a summation of base learnefg;r) (Eq. 7.13) is
also a summation of kernel functions. Compared with the otloeks [123, 23], we use a
simple base learner to bring the concept of the kernel fandti the boosting procedure.
We consider:

h(z,v) = ank(x, xy) + g = aK

[z xe [

and again we use OLS regression to find the parametensl~.

where

(hy) = orgminy (—9(a) = (a7 )

hay'i 5
Optimizing the parameter means that each kernel function is selected once at most,
and this increases the run time of the algorithm. This alsrajutees that the effect of

some kernel functions is not excessively magnified and seepte over-fitting in the
boosting procedure.
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Method TREE  Spec. (%) Sen. (%) Acc. (%) MCC.
OLS regression Ficus 93.0 87.5 86.3 0.77
OLS regression Bamboo 97.1 95.0 96.1 0.91
OLS regression Schefflera 84.0 94.0 91.0 0.80
Kernel regressions(= 0.1) Ficus 88.1 93.0 911 0.81
Kernel regressiors(= 0.1) Bamboo 99.1 80.0 86.6 0.80
Kernel regressions(= 0.1) Schefflera 75.0 95.0 88.6 0.75
Kernel regressions(= 10) Ficus 92.1 96.0 95.1 0.79
Kernel regressions(= 10)  Bamboo 99.1 93.0 95.3 0.93
Kernel regressiors(= 10)  Schefflera 84.0 96.0 92.9 0.82

Table 7.1: The Performance of classification in sonar sgjusing the gradient boosting
method

7.4 Experiment and Results

We gathered the sonar data, 720 echoes, each one 10000 ift$a oo each tree shown
in Fig. 5.4. After preprocessing, those echoes were casdéot 720 matrices of features,
where in Eq. 7.1 K = 1980 (number of features),’ = 20 (number of channels) and
S = 99 (number of data points or frames in each channel). So, in oosting procedure,
N, the number of examples, is 720 and the number of featur&S8i3. But in training and

in each boosting step, instead of using all features at aveese only the features in each
channel § = 99) and find the regressarfor that and repeat the boost step for all chan-
nels. Then, in testing we use the corresponding regresase (learner) of all channels
to estimate the final'(x). In all experiments the maximum number of iterations of the
boosting algorithm)/, and the shrinkage factar, were set to 100 and 1, respectively.
For the kernel regression we chose the Radial Basis Function)(RBRel with different
values ofo. After using 5-fold cross validation, the prediction gtylvas then evaluated
by specificity (Spec.), sensitivity (Sen.), accuracy (Aand also Matthew'’s correlation
coefficient (MCC.). Table 7.4 shows the results of the clagsiffes we see from that
table, the gradient boosting with kernel-based base leahwvs a slight improvement in
accuracy and MCC. compared with the one that uses the OLS kaseleand also the
value ofs in RBF kernels affects the performance of the classifier.

In the previous chapter, we used the optimal selection c-fiesolved spectrum ker-
nels (table 6.1) and it was shown an improvement compared thvit previous work of
our group (Wang et al. [135, 134]), in which the classificatieas made through template
matching in 2D sonar acoustic image using a 2D Discrete Cdsaesform. Comparing
the Tables 7.4 and 6.1 one sees that the boosting methodiotuidve the performance
of classification.

The other point is the running time of the boosting methodbld& .4 shows the
running time of the boosting and spectrum kernel methods BR avith an Intel Core
Duo processor (1.83GHz and 1GB RAM) while coded in Matlab /f@ & a 5-fold
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cross validation test. From this table, we see that the bapapproach is more efficient
than the spectrum kernel for the classification of sonar datbneeds much less time for
training.

Training time ~ Testing time

Spectrum kernel 6 hours 2 mins
OLS regression Boosting 6 mins 10 seconds
Kernel regression Boosting 10 mins 20 seconds

Table 7.2: Running time of the proposed boosting method anmek-Fesolved spectrum
kernel in a 5-fold cross validation test.

7.5 Conclusion

In this chapter, we proposed a kernel based boosting metirobidsonar object clas-
sification. We used a regression approach in the gradiergtingowhich proved to be
both more accurate and efficient than other previously eganethods such as spec-
trum kernels and template matching using acoustic imagessiWgested a simple base
learner in the boosting method using the kernel matrix amaveld that it outperformed
the simple OLS regression. The main point of the signal pegssing in our method, for
biosonar classification, is using a filter bank like that & tiearing system of bats. With
this filter bank, the one-dimensional sonar echoes are cwuvéto shorter length but
more informative multi-dimensional signals. After thiswersion, the features are more
distinguishable and the boosting method was able to clagsim efficiently and to get
satisfying results. Without this filter bank, the boostingthod can not classify the raw
echoes accurately.



Chapter 8

FIR—-based Classifiers for Animal
Behavior Classification

8.1 Introduction

The Forced Swimming Test (FST) is a behavioral test usediéetly to evaluate the po-
tential efficacy of drugs affecting the central nervouseys{CNS) in rats or mice [104].
In this experiment, rats are exposed to a 15-min pretest gvenod and followed the
next day by a 5-min test swim. Immersion of rodents in waterafo extended period of
time produces a characteristic behavior called immobiiitywhich the rat makes only
those movements necessary to keep its head above water. \Witpaessant drugs are
administered between the pretest and test periods, ushadlg times within 24hr, the
behavioral immobility is selectively decreased [24]. Degieg on the type of drug, rats
show a mixed behavior of activities such as immobility, ggling/climbing (the rat tries
to escape from the water) and swimming. Researchers hadetdrisonclude the effect
of drugs from the above three states (immobile, strugglind swimming). Typically,
tricyclic antidepressants and drugs with selective effect noradrenergic transmission
increase struggling/climbing behavior, while selectieegatonin reuptake inhibitors in-
crease swimming behavior versus the control group [42, BB, 3

Fig. 8.1 shows examples of activity profiles, which are gdifnem successive images
of rat movement in FST test. Considering predefined threstoldhe immobility, strug-
gling and swimming states, and depending on the amplitudbeofctivity profile, the
average period of time in each state can be measured. By cogplanse parameters for
the animals treated with an antidepressant against theot@moup, which was treated
with the vehicle, it can be observed, for example, whethesthimming behavior of rats
with an antidepressant drug has increased.

In an automated classification method, we aim to classifynats treated with known
antidepressants and the control group. However, our exeets show that the response
of the rat to drugs is too complex to only consider those stasandicator of the drug ef-
ficacy. For example, consider predefined thresholds in awitggirofile with an arbitrary

115
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Figure 8.1: FST test as a behavioral test. The successivgesnaf rat movement are
converted to activity profile signals. a) activity profilelfarary unit) for tylose as control
and b) Imipramine 40mg as antidepressant.

unit for the amplitude as follows:
¢ If amplitude of the activity profile< 15 then immobility state.
¢ If amplitude of the activity profile- 40 then struggling state.
e If amplitude of the activity profiles [15, 40] then swimming state.

It means that we have quantized the activity profile only ire¢hstates, in which
the other values of the activity profile are not considerelis Theans, we have lost the
information hidden in the signal and so the accuracy of diaason. Even if we increase
the number of states (quantization levels), the value efstold at those states may affect
the concluded results.

The detection of the behavior of rats depends on recogn&iagges in some charac-
teristics of movement and we are interested in featureshwigipresent also the dynamic
behavior of rats.

System identification is a vital problem in many fields of bmical modelling. It is
mainly concerned with the determination of an input-outpapping of the system. It is
the experimental approach to the modelling of a process ¢ard pf unknown parame-
ters. Once the mathematical model is chosen, it can be dkawsd in terms of suitable
descriptions such as transfer function, impulse responpewer series expansions.

Here, we consider the activity profiles as outputs of a systathselect a suitable
model which extracts the dynamic behavior of those actpitfiles [17]. One possible
representation of the local dynamic behavior in the agtprbfile is using an Autoregres-
sive (AR) model, in which future values are predicted from enbmation of previous
sample values. A few tens of seconds of a profile activity cammally be described by
using up to ten AR coefficients and then the value of these Ad¥iceents as features can
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be used in a classifier to classify those activity profilesthia paper we show that these
features are suitable for the automated classification.

Another issue in the automated classification is the presehnoise in activity pro-
files. We consider the activity profile;(n), as the total of the inherent response of a rat
to a drug at a certain dose(n), and the undesired and interference noigép), so we
have:

z(n) = s(n) + N(n) (8.1)

N(n) is the undesired part, which affects the accuracy of classifihe presence of
this noise can be due to the experimental setup, the differbatween the physiological
behavior of rats, and so on. One method to remove this noigeuse a suitable filter
based on its frequency content. But the frequency conteriti®hbise is unknown. To
resolve this problem, we use the fact that when a suitabér fdtadded to a classifier, it
should increase the signal to noise ratio and so the accofahg classifier. For this, we
use a general model of filters known as FIR (Finite Impulse Besp):

W, = [w,(0), w,(1), ..., w,(p— 1" (8.2)
and the output of that filter is the estimationsdf):

5(n) = Wha(n) (8.3)

where the coefficients of the FIR filter are obtained via oping a criterion showing the
accuracy of a classifier which tries to classify two diffdrelasses of signals.

As we explained in chapter 6, Kernel Fisher Discriminant lxsia (KFDA) has been
used for classification and also for optimal kernel seledi@®, 13, 14, 108]. In this study
we use the Fisher discriminant criterion in the kernel sgzeca criterion for the accuracy
of the classifier and try to find the optimal coefficient of tHR Filter that maximizes that
criterion. To solve the optimization problem, we use theifihg RECTangles (DIRECT)
search method as an algorithm for global nonlinear optitiuna\We use Support Vector
Machines (SVMs) for the classification task. Our proposdthlsmr classification method
provides a reliable discrimination of different classesanfidepressant drugs (tricyclic
imipramine and desipramine) administered to rats versehihle-treated group [17].

In the following sections we discuss the autoregressiveahaidd the suggested FIR
based classifier in detail and then we explain the experiahsatup and results of classi-
fication. At last, we show our conclusions.

8.2 Autoregressive models

Autoregressive modelling utilizes the time history of awitto extract important informa-
tion hidden in the signal. AR modelling is an alternativette Discrete Fourier Transform
(DFT) in the calculation of a power spectrum density funttamd frequency content of
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Figure 8.2: AR analysis filter:[n] ands[n] represent input and output sequences, respec-
tively anda, ...a, are predictor coefficients.

a time series. In biomedical applications, AR modellingasably used in the dynamic
behavior analysis of heart rate [98] and electroencephabogecordings [44]. A review
of classification algorithms for EEG-based brain-compintarfaces [44] also shows that
the AR modelling has been widely used by researchers of #l, fie.g, mental tasks
classification [29] and braktomputer interface design [62].

Basically, the AR modelling of a time series is based on anmaptan that the most
recent data points contain more information than the oth& doints, and each value of
the time series can be predicted as a weighted sum of theoprevalues plus an error
term. The model is defined by :

p
zn| = Z a;x[n — i) + €[n| (8.4)
=1
wherez[n] is the current value of the time series,..a, are predictor (weighting)
coefficients,p is the model order (the number of previous points to be censtl for
the prediction of the new data point), anh| represents a one-step prediction error. It
determines an analysis filter, through which the time sesiéliered (Fig. 8.2). The pre-
dictor coefficients are usually estimated using the legs&ges minimization technique
such that the sum of squares=¢#f] is minimized. Two solutions to AR modelling are the
Yule-walker equation [138, 133] (autocorrelation methad)l the recursive implementa-
tion of that [87].
Fig. 8.3 shows an example of activity profiles (Imipramine#) and its estimation,

p
z(n) = > a;x[n — 1], through the AR model. AR coefficients are used as featuresfin

=1
classification task.

8.2.1 Selecting the Model order

If the order of the AR model is selected to be small, the spettwill be smoothed,
resulting in resolution loss. In contrast, if the order ikested to be large, the spectrum
will contain spurious peaks. The solution is to increaseditter p until the modelling
error is minimized. Thus, in order to overcome this problenpenalty functior”'(p),
which increases linearly with the model, is introduced:
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Figure 8.3: AR coefficients of an activity profile of imipramai 40 mg.p = 5 is the
model order andi = [—0.6551, —0.014698, —0.13442, —0.045845, —0.13416] are AR
coefficients. a) The original signal. b)-f) Reconstructeghais and effect of each coeffi-
cient on estimated(n).
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Figure 8.4: Akaike’s Information Criterion (AIC) values foradel orders of 1 to 12 for
an instance of activity profile (Fig. 8.3). The optimum vabf¢he order ig,,; = 5.

C(p) = Nloge, + f(N)p (8.5)

wheree, is the modelling error)NV is the length of the data record, arfdV) is a
function of N. The key idea is then to select the valuepathat minimizesC(p). one
proposed selection criteria is Akaike’s Information Ciiver(AIC) [1]:

AIC(p) = Nloge, + 2p (8.6)

This criterion represents a trade-off between the estidatediction error and the size
of the model. Fig. 8.6 plots the AIC value vs. model order fa activity profile shown
in Fig. 8.3. For this example, we see that the optimum value@brder ig,,; = 5.

8.3 Algorithms

8.3.1 FIR filter based classifier

We consider the problem of classification of signals thatt@ionadditive unknown or
undesired parts interference (noise). If we can not findabletfeatures representing the
desired part of signals or if we can not deduce the interferesngnal from the original
signal, the classifier may face overfitting and so a decrefbe @accuracy.

FIR filters are designed to filter out the undesired part from gignal based on its
frequency specification. Because of its stability and siaiglin implementation, they
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x(n)=s(n)+N(n)
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Figure 8.5: Adaptive filter for noise cancellation

are used frequently in different applications. Howeversame applications (such as
forced swim test classification), we do not have the frequepecification of the noise,
needed to design the FIR filter.

Fig. 8.5 shows the block diagram of an adaptive filter whichiged for noise (in-
terference) cancellation. As we know, if the reference e@suncorrelated to the signal
s(n), the output of the FIR filter is an estimation of the interfere (V(n)) and the filter
readjusts itself continuously to minimize the error betwéeand N. The coefficients of
the FIR filter can be obtained through the Least Mean SquaviSjlalgorithm. But in
our task the stationary and uncorrelatedness conditians &od N are not met and we
can not estimate(n) using the adaptive filter.

To cope with the problem, we suggest a new solution. We pepdsIR filter based
classifier, in which the FIR filter tries to remove undesiradp by getting feedback from
the accuracy of a following classifier. Fig. 8.6 shows ourposed solution. Consider
z1(n) = s1(n) + Ni(n) andza(n) = sqo(n) + Na(n) as two signals that contain undesired
parts N1 (n) and No(n). Our aim is to estimate; (n) andss(n) as outputs of the added
FIR filter. If we consider thé-length coefficient of the FIR filter as:

W, = [wn(0), w,(1), ..., w,(l —1)]"

we have:

51(n) = Wl (n), (8.7)

55(n) = Was(n) (8.8)

The classifier should discriminage(n) from s,(n). The coefficients of the FIR filter
that increase the accuracy of the classifier also increasgdhal to noise ratio. Then, the
task is to find optimum values of the coefficients that maxevazcriterion showing the
accuracy of the classifier. We select the Kernel Fisher idiscant criterion as a suitable
objective for our optimization problem.
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Figure 8.6: Optimal FIR filter based classifier. The coeffitseof FIR filters are gained
via optimization of a criterion showing the accuracy of tihessifier

8.3.2 Kernel Fisher discriminant based optimal FIR filter

We want to find the coefficients of the FIR filter that maximities performance of the
classifier. Here, we select Fisher discriminant criteriothie kernel space as a criterion
for the performance of the classifier. As we discussed beafohapter 6, the kernel
Fisher discriminant analysis is a non-linear extensionhef ltnear Fisher discriminant
analysis. It finds the direction in a feature space, defingiamly by a kernel, onto which
the projections of positive and negative classes are wpdrs¢ed in terms of the Fisher
discriminant ratio. The more two classes are separatedhjdgiher the performance of the
classifier is. Then, we make a relation between that crigerththe FIR filter coefficients
and find the coefficients that maximize that criterion. Thenké Fisher discriminant
based optimal FIR filter tries to find the coefficients of th&Filter that results in a
vectorv in feature space, on which projections of points give the imar separation
of the mean scaled in the feature space and the minimum eariarthat direction (Fig.
8.7).

In chapter 6, we saw that the Fisher criterion in the kernatsgan be represented in
terms of a kernel matri¥(, as:

Jmax(K) = y" K(KDTK + XI) 'Ky (8.9)
where:
_ | (/ny)la, ]
=L L o0

in which X is a regularization factor ant, and/,, denote the vector of all ones and the
identity operator irR¢, respectively.

The next step is to represent the kernel matrix in terms oFtRecoefficients. In Fig.
8.7, if we consider thélength coefficient of the FIR filter as:

W,, = [0, (0), w,(1), ...,w, (I —1)]"

we have:
51(n) = Wai(n), 82(n) = Wlay(n)
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Figure 8.7: Kernel Fisher discriminant based optimal Fifefilries to find the coefficients
of the FIR filter that result in a vectarin feature space, on which projections of points
give the maximum separation of the mean scaled in the feapaee and the minimum
variance in that direction.

We extract the features (AR parameterspandu, from s, (n) ands; (n) resp. and then:

K (uy,ug) =< ¢(uq) * ¢(ug) >

From the above equation and equation (8.9) we can say that thieecoefficients of the
FIR filter vary, the KFD criterion varies, too. However, tlask is to find the optimum
coefficients of the FIR filter that maximize the KFD criterjare., maximize the signal
to interference ratio. For this, we use a method of globahapation, by which we can
search for the optimum global value of the FIR coefficienta given range.

8.3.3 Direct search

The DIRECT algorithm as an effective pattern search methodpn@sosed by Jones et
al. [73] for bound constrained global optimization. It deafith problems on the form

min  f(2)

s.t. xp <o <y,

wheref € R andzx, z, zy € R".

The DIRECT algorithm is one of a class of deterministic direzrsh algorithms
that does not require gradients. The objective funcfianust only be continuous in the
neighborhood of a global optimum. It works by iterativelyiding the search domain
into boxes that have exactly one function value at the boergear. At first, it transforms
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the search space to be the unit hypercube. The functionnsstimapled at the center point
of this cube. The hypercube is then divided into smaller mgmangles whose center-
points are also sampled. In each iteration, through evaluahe objective function at
those centers, the algorithm determines which boxes arelikely to have a better point
than the current optimal one. A box is considered potegtigfitimal, if it has the po-
tentially best function value for a given Lipschitz condtarhe process continues after a
prespecified number of function evaluations. The definibbpotentially optimalfrom
[73] follows:

Definition 8.1: Suppose that the unit hypercube has been partitionediniyperboxes.
Let ¢; denote the center point of thth hyperrectangle, and; denote the distance from
the center to the vertices. Let> 0 be a positive constant. A hyperrectangles said to
be potentially optimal if there exists somie> 0 such that:

fle;)— Kd; < f(¢;)—Kd;, forall i=1,..,m,
f(cj)_de < fmin_glfmin‘

The formal steps of the DIRECT algorithm from [59] are givenhe following. A
detailed example of the search domain in the DIRECT algoritta®s given in [136]. The
serial and the parallel implementations of the algorithwehiaeen discussed in [59] and
[58], respectively.

8.4 Methods

8.4.1 Experimental setup

The experiments have been performed at the site of an inalustoperation partner.

Animal and Drug specifications

Male Wistar rats (Charles-River Germany), weighing 180-220gre used. They were
housed in groups of 4 in an animal room with standard con@stip0 — 22°C, 50-55%
relative humidity, 12h light/dark cycle with light on at ®@.m.). The rats, with freely
available food and water, were left in the animal room for aimum of 5 days to adapt
to the new environment. Vehicle (0.5 %Tylose) or clinicallsed antidepressants of dif-
ferent classes suspended in vehicle were administerely asahg a volume of 4ml/kg:
imipramine (40mg/kg) and desipramine (30mg/kg; both tiicyand antidepressants)
[93, 125, 19]. For this work, 218 rats treated with vehiclg,tieated with imipramine
and 112 treated with desipramine were used. Drugs or vehigte applied immediately
after the pre-test session, 5hrs before the test sessidi aubefore the test session.
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Algorithm DIRECT search method

Step 1 Normalize the search space to be the unit hypercubec; st the center-point
of this hypercube and evaluaféc, ), m = 1, andt = 0 (iteration counter).

Step 2 Identify the setS of potentially optimal rectangles [73].
Step 3 Select any rectanglge S.
Step 4 Divide the boxj as follows:
¢ ldentify the set/ of dimensions with the maximum side length. etqual

one-third of this maximum side length.

e Sample the function at the pointst de; for all i € I, wherec is the center of
the box and; is theith unit vector.

¢ Divide the boxj containingc into thirds along the dimensions iy starting
with the dimension with the lowest value @f =min{ f(c+ de;), f(c — de;)}
and continuing to the dimension with the highest Updatef,,.;,, andm

Step5 SetS =5 —{j}. If S # 0goto Step 3.

Step 6 Sett =t + 1. If iteration limit or evaluation limit has been reachedyst
Otherwise, go to Step 2.
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Figure 8.8: Activity images of two representative ratstiedavith a) vehicle (0.5% tylose,
p.0.) and b) desipramine (30mg/kg, p.o.)

Forced swimming test procedure

The forced swimming test procedure is as described in [1@84]efly, each animal is
placed to swim for 15min in a cylinder (height: 40cm; dianngt®&cm) containing 18cm
of water at25°C (pretest session). They are then taken out and allowed/ttod20min
in a cage placed below an infrared lamp. Twenty-four houtsrdhe pre-test session,
they are again placed in the cylinder for 5min (test sessi@am)l the behavior of rats is
recorded with a camcorder while it is assured that the cateesaand water line are on
a horizontal line in order to minimize the area of distortaure to reflections on water
surface.

Calculation of activity profiles

The image analysis software Halcon 7.0 (MVTec Software Gpiddnich, Germany)
was used to analyze the video tapes of rat movements. Tocexitra activity profile
showing the movement of a rat, for five consecutive frames difference between the
previous and the next image was calculated and binarizédanfiked threshold and then
totalized into one gray level image. Within each activityamge all non-zero pixels were
summed up in the vertical direction to obtain one activityfipe of the whole animal. Fig.
8.9 shows the corresponding activity profiles of Fig. 8.8.

8.4.2 Computational setup

We considered the FIR filter coefficientd/(in Fig. 8.7) in the range of [-1,1] and the
length of 10 for that. In order to reduce the dimension for dassification problem,
we computed the AR parameters of each activity profile viaréloairsive solution of the
Yule-Walker equation (Levinson method [87]). The optimuatue of the order of the AR
model,p,,: (EQ. 8.5), was gained though Akaike’s Information Criter{&®. 8.6). In our
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Figure 8.9: Calculated activity profiles for two represemtatats treated with a) vehicle
(0.5% tylose, p.o.) and b) desipramine (30mg/kg, p.o.).

experiment, the average value of 5 was gainegfgr In the next step, we considered an
RBF (Radial Basis Function) kernel for the Kernel fisher disananit analysis with/=1
([31]). Then, we used the optimization method told abovding the optimum values of
the FIR filter coefficientsi¥/,,;. In the next step, we used a SVM classifier with a linear
kernel. We found the optimur@ parameter of the SVM classifier using a simple grid
search in the range @2, 2'°] in terms of the maximum accuracy of the classifier.

We used a 5-fold cross validation for our classification task the whole dataset
was split into 5 sets, of which 4 sets were used for finding tieffer coefficients and
training the SVM classifier, and one set left out for testifige procedure was repeated
such that each set was used once for testing. The obtaingitsreem the 5 folds then
were averaged to produce a single estimation.

8.5 Results and discussion

We used the computational methods described above tofglaats treated with antide-
pressants of two different classes, tricyclic antide@esémipramine 40mg/kg: 72 rats;
desipramine 30mg/kg: 112 rats), against a control grougddcewith vehicle (0.5% ty-
lose: 218 rats).

The prediction quality was then evaluated by specificitye(Sp sensitivity (Sen.),
accuracy (Acc.) and also Matthew’s correlation coeffici@h€C.).

To show the effect of the FIR filter on the classifier, we firstad use the FIR filter
but only a SVM classifier with the RBF kernel. The optimum valoéparameters of
the RBF kernel and’ in SVM classifier are gained through a grid search method iand i
terms of maximum average accuracy for the classifier witbl8-¢ross validation. Tables
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8.5 shows the results of the classifier.

Experiment Spec. (%) Sen. (%) Acc. (%) Mcc.
Imipramine 40mg 79.1 85.3 80.0 0.58
Desipramine 30mg 75.4 85.1 76.1 0.46

Table 8.1: Performance of SVM classifier with optimum partargeof~y andC' (without
optimum FIR filter) in classification antidepressant drugsaontrol.

Tables 8.5 shows the results of our new method with the FI& ¢ described before.
As we see, there is a notable improvement in performanceomittmethod.

Experiment Spec. (%) Sen. (%) Acc. (%) Mcc.
Imipramine 40mg 93.1 93.3 93.3 0.84
Desipramine 30mg 98.0 81.7 86.6 0.75

Table 8.2: Performance of our method (optimum FIR filter) lassification antidepres-
sants drugs vs. control.

Fig. 8.10 shows the activity profiles of tylose and imipraewt®Omg before and after
filtering. It is apparent that the data of the filtered acyiytofiles are more distinguish-
able than that of the unfiltered activity profiles. In our nogththe classifier extracts the
features from the filtered activity profiles, while in the ged method the SVM classifier
works on the unfiltered data and tries to find the optimum \&abhfe, andC' parameters
in terms of classification accuracy, and this may lead tofdtiag and can result in an
increased error rate for new unseen activity profiles. Fig.1 &hows the effect of the
FIR filter on the feature space. In Fig. 8.11.b, in which weehased the FIR filter, the
features are more discriminative compared with the feattnen the unfiltered activity
profile which are influenced from the interference noise .(FEdl1.a). Fig. 8.12 shows
the frequency response and phase of the obtained optimurfilfeiRn the classification
of imipramine 40 vs. control and also the optimization of ik¥eD criterion.

8.6 Conclusions

In this section, we implemented a new method for classiboatif biological signals in

general, and in the forced swimming test as an example. Tpethgsis behind our
method is that if we can deduce the interference signal fleeotiginal signal, the ac-
curacy of the classifier increases, otherwise, if our festare influenced from that in-
terference signal, the classifier faces overfitting and cdrclassify them accurately. We
used a FIR filter to filter out those additive noise from thenalg The parameters of the
FIR filter were obtained via maximizing the accuracy of a sifeer that tries to make

discrimination between two classes of the activity prof(es. drug vs. control). We
used the kernel Fisher discriminant as a criterion for tiser@nination and the DIRECT
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search method for solving the optimization problem. Oumppsed behavior classifica-
tion method allowed for a very reliable discrimination ofsraubjected to different classes
of antidepressant drugs (tricyclic imipramine and desipne) versus a vehicle-treated
group. We suggested AR parameters as suitable featuregtfacton of the dynamic
behavior of rats in the forced swimming test. Using thesé¢ufes, we do not need to
guantize the activity profile to 3 states of immobility, gfgling/climbing and swimming,
and hence we do not loose the valuable information needezddssification. We showed
that these features can be used in the study of the effectugsdn rats. Furthermore,
We believe, with some modifications, our proposed FIR bakessifiers can also be used
in other biological applications such as EEG signals di&ssion and Brain Interface
Control (BCI).



Chapter 9

Summary

In this thesis, the main task was to find robust, fast and geel@arning methods for
noisy, incomplete, with very limited amounts of data, wititasidering the structure and
dimension of data. Kernel methods, founded on strong thieategrounds, operate on
all types of data and provide a unified framework to interfglaetween pattern analysis,
signal processing and string processing. We selected tlsema@n pattern recognition
methods and our goal was to extend and improve them for the@eans at hand.

A kernel method solution comprises two parts: a module teaiopms the mapping
into the feature space and a learning algorithm, designetistmver linear patterns in
that space. The first class of methods that implemented dwytlwere Support Vector
Machines (SVMs). SVMs represent a very specific class ofralgos, characterized by
the use of kernels, the absence of local minima, the spassasfehe solution and the
capacity control obtained by acting on the margin or on otlisrension independent
guantities as the number of support vectors. In Sectionv@&Ipresented some examples
from different applications of system biology problems &minformatics, showing that
SVMs are currently the best performing methods in variousaas. We think this work
also showed some usefulness of kernel based pattern analgéihods in a broad range
of high dimensional biological data. We briefly summarize thain results of this thesis:

In chapter 4, our aim was to develop an accurate method fesitilgation of GPCR
families, especially at the sub-subfamily level, at which ave the problem of imbal-
anced data. We chose the local alignment kernel [64] as aldeikernel for our classifi-
cation task. To solve the data imbalance problem, we suggd@shew approach of over-
sampling for the imbalanced protein data in which the migazlass in the data space
is oversampled by creating synthetic protein sequencessiadering the distribution of
the minor and major classes. Using the local alignment kexioeag with our oversam-
pling technique, we could get better accuracy and Mattheafselation coefficient for
the classification of GPCRs at the subfamily and sub-subfaleigl than other previ-
ously published method [22, 74]. We also developed a systerstady using GPCRs
as a set of real and artificially generated datasets to shewtftitiency of our method
and how the degree of class overlapping can affect classamt@ The results showed

133
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that our SPSO algorithm outperformed other oversampliolgrtigjues. In summary, this
method can be used for protein classification problems amdteehomology detection,
where classifiers must detect a remote relation betweenownksequence and training
data with an imbalance problem.

In chapter 5, we studied the classification of biosonar $sgaman example of the ran-
dom process signals which contain local similarities. Wggasted a kernel callddne-
resolved spectrurkernel to measure the similarity of echoes as time seriegradk a
relation between that kernel and geometric specificatidgh@bbjects. The-length sub-
sequence of that kernel simply measures the occurrencesedffiength subsequences
for each of the time series in consideration. The more timesashare similap-length
subsequences, the more similar they are. We also proposedeageneral kernel called
warped time-resolved spectruarnel, which considers warping in the subsequences. We
then used those kernels directly in a SVM-based classifiers&w that by changing the
warping cost parameter the accuracy of classifier chandes.pirameter lets the kernel
consider a warping (with a cost) for the subsequences ofrtiederies and extract their
similarity. Considering that parameter in our classificatask was justifiable because the
echoes reflected by the adjacent leaves of each tree candraeew similar patterns but
not exactly the same, so we need to have a parameter thati¢he kernel capture those
similarities, too. The optimal value of that parameter facle tree can be related to the
physical specification of each tree. Our results providedesnce that this kind of kernel
can be used for pattern extraction and classification ingamnsignals. We think this kind
of kernel is suitable for pattern recognition in signalshwitherent self similarity and for
estimating periodicity in arbitrary time series like spe@nd biomedical signals.

In chapter 6, having a set of the kernels suggested in ch&ptee proposed a new
method to find an optimal linear combination of those kern&\®e formulated the op-
timal kernel selection via maximizing the Kernel Fisher @isinant criterion (KFD)
and used the Mesh Adaptive Direct Search (MADS) method teesthle optimization
problem. This optimization method needed less run time tharother suggested op-
timization method [108] that brings the objective functiorthe form of Semi-Definite
Programming(SDP) via the Schur complement technique. \Waerad better results with
our suggested kernel selection method compared with otathimg methods [135, 134].
Despite the accurate rate of classification, the main drelwb&the time-resolved spec-
trum kernel was the low speed of both training and testinggulares. It prevented us to
use the method for real-time applications.

In chapter 7 we saw how the boosting method, when it is usdu tivé kernel func-
tions, can gives satisfying results with much less run tinaatthe time-resolved spectrum
kernel. In this chapter, we presented an algorithm basedazhent boosting for biosonar
signal classification. We presented two kinds of base learioe the gradient boosting:
Ordinary Least Squares (OLS) and kernel-based base Isaifte main point of the sig-
nal preprocessing in our method, for biosonar classifinatieas using a filter bank like
that of the hearing system of bats. With this filter bank, the-dimensional sonar echoes
were converted into shorter length but more informativetrtdimensional signals. After
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this conversion, the features are more distinguishabletabloosting method was able to
classify them efficiently and to get satisfying results. Canag with our previous works
in chapters (5 and 6), we got more efficient and accuratetsesith the newly proposed
boosting method, which made it feasible for the real appbos.

In chapter 8 we implemented a new method for classificatiohiaibgical signals
in general, and used it in the animal behavior classificaisran example. We used
a Finite Impulse Response (FIR) filter to filter out the additngse from the activity
profile. The parameters of the FIR filter were obtained viaim&ing the accuracy of a
classifier that tries to make a discrimination between tvess#s of the activity profiles
(e.g. drug vs. control). We used the kernel Fisher disciamircriterion as a criterion for
the discrimination, the DIviding RECTangles (DIRECT) searctthod for solving the
optimization problem and Support Vector Machines (SVMs)tfe classification task.
We showed that Autoregressive (AR) coefficients are suit@aleires for the extraction of
the dynamic behavior of rats and also the classification wfiacprofiles. Our proposed
behavior classification method provided a reliable disgration of different classes of
antidepressant drugs (imipramine and desipramine) adtaineid to rats versus a vehicle-
treated group. We believe, with some modifications, our eaggyl FIR based classifiers
can also be used in other biological applications such as &gqals classification and
Brain Interface Control (BCI).
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