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Contents

Zusammenfassung I

Introduction II
Branching Random Walks in Random Environment . . . . . . . . . . . . II
Random Walk in Random Environment . . . . . . . . . . . . . . . . . . II
Common points between the two models . . . . . . . . . . . . . . . . . . III
Composition of this dissertation . . . . . . . . . . . . . . . . . . . . . . . IV
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

Heil, Nakashima: A Remark on Localization for Branching
Random Walks in Random Environment 323-336

Heil, Nakashima, Yoshida: Branching Random Walks in
Random Environment in d > 3 are Diffusive in the
Regular Growth Phase 1316-1340

Heil: A Stationary, Mixing and Perturbative Counterexample
to the 0–1–law for Random Walk in Random Environment
in Two Dimensions i-xxxiv



Zusammenfassung

Die vorliegende Dissertation befaßt sich mit der Asymptotik der beiden Mo-
delle

”
Random Walk in Random Environment“ (RWRE) und

”
Branching

Random Walks in Random Environment“ (BRWRE), was mit
”
Irrfahrt in

zufälliger Umgebung“ und
”
Verzweigende Irrfahrten in zufälliger Umgebung“

übersetzt werden kann.
Beim RWRE wird die Bewegung eines Teilchens modelliert, dessen zufällige

Bewegung von der am jeweiligen Ort gegebenen Übergangswahrscheinlichkeit
abhängt. Diese ist zufällig und wird vor dem Start des Teilchens festgelegt.
Eine interessante Frage in diesem Modell ist, ob die Projektion des Ortes des
Teilchens auf einen eindimensionalen Unterraum rekurrent oder transient ist,
und falls transient, in welche Richtung. Ist es möglich oder unmöglich, daß
das Teilchen manchmal nach rechts verschwindet und manchmal nach links?
Unter welchen Voraussetzungen?

BRWRE ist ein Modell für eine Population von mobilen, reproduzieren-
den Teilchen, deren Nachkommenanzahl vom Ort und von der Zeit ihrer
Geburt beeinflußt wird. Die Bewegung der Teilchen ist von der Nachkom-
menentstehung unabhängig und entspricht der einer einfachen Irrfahrt. In
diesem Modell gibt es einen Phasenübergang zwischen der

”
regular growth

phase“ (Phase regulären Wachstums) und der
”
slow growth phase“ (Phase

langsamen Wachstums). Der Begriff
”
Phase“ ist hier zu verstehen als Bereich

von Parametern, in dem bestimmte Eigenschaften vorherrschen. Dies kommt
der Verwendung im thermodynamischen Kontext nahe. In der regular growth
phase wächst die Gesamtpopulation ähnlich schnell wie ihr Erwartungswert,
während sie in der slow growth phase langsamer wächst.

Drei Artikel bilden den Hauptteil der vorliegenden Arbeit. Die ersten
beiden betreffen BRWRE, der letzte RWRE. Der erste Artikel befaßt sich
mit der Entwicklung der Teilchenverteilung in der slow groth phase und be-
weist ein immer wiederkehrendes Zusammenballen der Teilchen, während im
zweiten Artikel in der regular growth phase ein zentraler Grenzwertsatz für
die Teilchenverteilung bewiesen wird. Im dritten Artikel wird ein zweidimen-
sionales Beispiel eines random environment konstruiert, das die Eigenschaft
hat, daß die darauf laufende Irrfahrt mit nichttrivialer (nicht null oder eins)
Wahrscheinlichkeit in positive Richtung transient ist. Die konstruierte Um-
gebung ist stationär und ergodisch, aber nicht i.i.d.; in der Tat ist bekannt,
daß im i.i.d.–Fall ein solches Verhalten nicht auftreten kann.
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Introduction

In order to model certain phenomena in nature, it is useful to separate the immobile
conditions of the system from the mobile objects present therein; these two parts
then are linked by the description of the rules by which the so called environment
has an influence on the particles.

The mathematical models in this dissertation have in common that simple
microscopic rules lead to non–trivial macroscopic effects.

We proceed by first describing them heuristically.

Branching Random Walks in Random Environment

The first model, also known under its acronym “BRWRE”, describes a population
of reproducing particles in a nonhomogeneous environment that changes over time.
Both time and space are discrete in this setting.

At time zero, there is one particle at the origin. It moves randomly to a
neighbouring point, which is chosen uniformly. There, in the next time step, the
particle is replaced by its children. These perform independently the same sort of
random movement, are replaced by their children, and so on.

Now, we need to say how many children each particle gets. This is where the
random environment comes into play. It is fixed beforehand (but random) and sets
for each point in space and each timestep the offspring distribution for all particles
originating there at that time.

Various questions are of interest in this model, some of which are the following:

• Will the population survive?

• If it survives, how fast will the overall population count evolve?

• How evolves the probability of two randomly chosen particles being at the
same point in space?

• How is the distribution of particles in space evoluting over time?

Random Walk in Random Environment

The second model, abbreviated “RWRE”, describes the movement of a single parti-
cle. One similarity to BRWRE is the proceeding of drawing a random environment
in a first step, which then is fixed and has lasting influence. As there is no branch-
ing present in this case, the influence of the environment is on the local transition
probabilities of the random walk rather than on the offspring distribution. This
means the neighbouring site to which the particle moves is not chosen uniformly,
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but according to the transition probabilities at the point where the particle is. The
transition probabilities do not depend on time in this model.

The main question in this setting is quite similar to the last one presented
above: How is the distribution of the particle’s position evoluting over time? As
this is in general a too broad question, often subquestions are considered:

• Is the Random Walk in Random Environment transient?

• Is the random walk’s projection on a one–dimensional subspace transient?

• Is the random walk’s projection on a one–dimensional subspace transient in
one direction only?

• Do the above mentioned possibilities hold with non–trivial probability (i.e.
not zero or one)?

• Under which assumptions on the environment are the answers to the above
questions positive or negative?

Common points between the two models

Despite their obvious differences (many particles vs. one particle, influence on the
offspring vs. influence on the movement etc.), the two BRWRE and RWRE share
quite many similarities.

On the side of the described phenomenon,

• both model the random movement of particles or of a particle,

• this movement takes place in Euklidean space,

• it is under some random influence from the environment in which it is hap-
pening.

On the side of the mathematical models,

• they share the two–step approach of drawing a random environment and
fixing it, then letting run the particle(s),

• the modeling is performed in both cases in the discrete space Zd.

As for the questions of interest, they can in both cases be subsumed under the
main question: “What happens with the particle(s)”?

III



Composition of this dissertation

The present work consists of three articles, the first two of which are on BRWRE,
while the third one is on RWRE.

The first article treats the behaviour of the population in the so called “slow
growth phase” in which the total population count grows slower than its expecta-
tion. This regime prevails in dimensions one and two, and in higher dimensions
if the environment is “too random”, featuring large fluctuations in the offspring
distributions. Under weak moment conditions, it is proven that in the entire slow
growth phase, localization occurs, which means that again and again, more than a
fixed percentage of the particles will mass at one point. This article is joint work
with Makoto Nakashima of Kyoto University.

The second article is concerned with the “regular growth phase”, in which
the total population and its expectation are of the same order. Here, a central
limit theorem and an invariance principle are proven, again under weak moment
conditions. This part is joint work with Makoto Nakashima and Professor Nobuo
Yoshida of Kyoto University.

Note that in both slow and regular growth phase, the population grows expo-
nentially. The difference lies in the comparison of the exponent with the expected
offspring rate.

One can say that the two articles on BRWRE complement each other as both
regular and slow growth phase are covered. They give qualitative answers to the
last question concerning BRWRE stated above. The results differ from previously
available ones inasmuch the necessary moment conditions are weakened, and it
is not assumed anymore that the particles have a minimum of one child. This
leads to the possibility of the entire population becoming extinct. However, it
can be shown that if the probability of having no children is not too high at too
many places, the process has positive probability to survive. As a consequence, all
theorems hold “on the event of survival”.

The last part of this dissertation is devoted to the last two questions stated
above concerning RWRE. For RWRE with independent and identically distributed
environment in dimension d = 2, it is known that a so called 0–1–law holds. It
states that the random walk’s projection on a one–dimensional subspace has a
probability of either zero or one to be transient to the right. This is also conjectured
to hold true for higher dimensions, but the proof remains wide open for now.
There is a counterexample to this assertion in dimensions three and higher for an
environment that is not i.i.d., but still stationary and mixing. The present work
gives such a counterexample for dimension two, meaning that for a 0–1–law to
hold, one cannot distance oneself too much from the i.i.d.–assumption.
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Abstract
We prove a localization-result for branching random walks in random environment, namely that
if the process does not die out, the most populated site will infinitely often contain more than a
fixed percentage of the population. This had been proven already before by Hu and Yoshida, but
it is possible to drop their assumption that particles may not die.

1 Branching Random Walks in Random Environment

1.1 Informal descripion

Branching Random Walks in Random Environment (BRWRE) are a model for the spread of parti-
cles on an inhomogeneous media, such as bacteria that move around and encounter food supply
or environmental conditions variable in time and space. These environmental conditions have an
impact on the reproduction rate of the particles.
The randomness of the model occurs in two steps. The first step is the setting of the environ-
ment, which determines the offspring distribution at different times and places. In our case, these
offspring distributions are to be i.i.d..

1RESEARCH DONE IN JAPAN, MADE POSSIBLE BY THE MONBUKAGAKUSHO
2PARTIALLY SUPPORTED BY JSPS REARCH FELLOW (DC2)
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The second step is the development of the population given the environment randomly generated
in the first step. Starting with one particle at the origin, each particle generates offspring according
to the offspring distribution associated with the time-space-location where it is born. It carries this
offspring to adjacent sites in the manner of a simple random walk, and dies, leaving the new
particles to start over, independently of each other.
As it is possible that particles die without leaving any offspring, the whole population might die
out. This phenomenon is described in the event of “extinction”. In the present article, however,
we are more interested in the long-term-behaviour of the population, and usually work on the
complementary event, called “survival”. All the notions will be thoroughly defined in Subsection
1.3.

1.2 Brief history

Branching random walks in random environment have been introduced in [Birk], and Birkner,
Geiger and Kersting [BGK05] revealed a phase change of the model which was subsequently
characterized as a dichotomy: [Nak11] revealed that this model exhibits a phase transition beween
what is called slow and regular growth, respectively.
The question of localization in this model, that is whether or not it is possible that in the long
term, many particles may become concentrated on few sites, was answered positively for the
slow growth phase by Hu and Yoshida [HY09] for environments that do not allow for extinction.
A similar answer is given for the more general model of Linear Stochastic Evolution (LSE) in
[Yos10]. BRWRE’s survival, together with growth rates for the population, are studied by Comets
and Yoshida [CY].
Uniting tools from the last three articles is what allows us to prove a localization result in a setting
where extinction is possible.
A central limit theorem for BRWRE in the regular growth phase is proved in [HNY]. In that article,
a more complete outline of the history of CLTs for BRW, BRWRE and related models can be found,
and pictures of the BRWRE are given.

1.3 Thorough definition of the model

We define the random environment as i.i.d. offspring distributions (qt,x)t∈N0,x∈Zd under some
(product-)measure Q on Ωq :=P (N0)N0×Zd , where P (N0) is the set of probability measures on
N0, and may be equipped with the natural Borel-σ-field induced from that of [0, 1]N0 . We call
this product-σ-field Fq.

qt,x = (qt,x(k))k∈N0
∈ [0, 1]N0 ,

∑

k∈N0

qt,x(k) = 1.

On a measurable space (ΩK ,FK), to each fixed environment q = (qt,x)t∈N0,x∈Zd we associate a
probability measure Pq

K such that the random variables K := (Kνt,x)t∈N0,x∈Zd ,ν∈N are independent
in the number ν of the particle and the space-time point (t, x) while being distributed according
to qt,x :

Pq
K(K

ν
t,x = k) = qt,x(k), k ∈N0. (1.1)

These random variables Kνt,x describe the number of children born to the ν-th particle at time-
space-location (t, x).
The ν-th particle (ν ∈N) at time t ∈N0 := {0,1, . . . }=:N∪{0} and site x ∈Zd moves (together
with all of his offspring) to some site adjacent to his birthplace, determined by the Zd -valued
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random variable X νt,x . The X := (X νt,x)t∈N0,x∈Zd ,ν∈N, defined on a probability space (ΩX ,FX , PX ),
are defined to be the one-step transitions of a simple random walk, and i.i.d. in all three time,
space, and particles:

PX (X
ν
t,x = y) = p(x , y) :=

¨

1/2d if |x − y|= 1

0 if |x − y| 6= 1;
(1.2)

| · | designates the one-norm.
At its time-space destination (t + 1, X νt,x), the said ν-th particle from (t, x) dies and leaves place
to its children, and the procedure starts over for every child.
Of course, we can combine the realization of X and K on one probability space

(ΩX ×ΩK ,FX ⊗FK , Pq), where Pq := PX ⊗ Pq
K (1.3)

and finally merge all our construction to

Ω := ΩX ×ΩK ×Ωq, F :=FX ⊗FK ⊗Fq,

P(A) :=

∫

A

Q(dq)Pq(dω), A∈ F .
(1.4)

Pq can be seen as the quenched measure and P as the annealed one of the model.
Now we come to the population at time t and site x . We start at time 0 with one particle at the
origin, and define inductively

N0,x := 1x=0, Nt,x =
∑

y∈Zd

Nt−1,y
∑

ν=1

1X νt,y=x Kνt−1,y , t ≥ 1. (1.5)

The filtration
F0 := {;,Ω}, Ft := σ

�

X ·s,·, K ·s,·, qs,·; s ≤ t − 1
�

, t ≥ 1, (1.6)

makes the process t 7→ (Nt,x)x∈Zd adapted. The total population at time t can now be obtained by
summation over all sites:

Nt :=
∑

y∈Zd

Nt,y =
∑

y∈Zd

Nt−1,y
∑

ν=1

Kνt−1,y t ≥ 1. (1.7)

Important quantities of this model are the averaged and local moments of the offpring distributions

m(p) :=Q
�

m(p)t,x
�

, m(p)t,x :=
∑

k∈N0

kpqt,x(k), p ∈N. (1.8)

We also write m := m(1).

1.4 The phase transition of the normalized population

It has been proven in [Nak11] that the total population exhibits a phase transition, where the
one phase amounts to population growing as fast as its expectation, while the other phase means
slower-than-the-expectation growth.
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Proposition 1.4.1. The normalized population N t := Nt/m
t is a martingale, and hence its limit

exists:

N∞ := lim
t→∞

Nt

mt , P-a.s.. (1.9)

Further,

P(N∞) =

¨

1 “regular growth phase”, or
0 “slow growth phase”.

Sufficient conditions for both phases are given by the following two Propositions 1.4.3 and 1.4.4,
which necessitate a bit of

Notation 1.4.2. Given the simple symmetric random walk St on Zd , we call πd the probability of
the return event

⋃

t≥1{St = 0}. Furthermore, we write

α :=
Q(m2

t,x)

m2 .

Proposition 1.4.3. There exists a constant α∗ > 1/πd such that, if

m> 1, m(2) <∞, d ≥ 3, and α < α∗, (1.10)

then P(N∞ > 0)> 0.

Proposition 1.4.4. On the other hand, P(N∞ = 0) = 1 is provided by any of the following three
conditions:

(a1) d = 1; Q(mt,x =m) 6= 1.

(a2) d = 2; Q(mt,x =m) 6= 1.

(a3) d ≥ 3; Q
�mt,x

m
ln

mt,x

m

�

> ln(2d).

Propositions 1.4.3 and 1.4.4 were obtained first in [BGK05, Theorem 4]. Proposition 1.4.3 plays
a crucial role in our proof as it allows us in the slow growth phase to conclude α > α∗ > 1/πd .

Remark 1.4.5. We would at this point recall the non-random environment case [AN72, Theorem
1, page 24], where

P(N∞ = 0) = 1 if and only if P(Kνt,x ln Kνt,x) =∞ or m≤ 1. (1.11)

In our case here, with the additional randomness of the environment, P(N∞ = 0) = 1 can happen
even if the Kνt,x are bounded (see Remark 1.6.3 b) below).

1.5 Survival and the global growth estimate

Another dichotomy of this model is the one of survival and extinction. We define

{survival} := {∀t ∈N0, Nt > 0}. (1.12)

The event of extinction is defined as the complement.
The following global growth estimate obtained in [CY, Theorem 2.1.1] characterizes the event of
survival:
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Lemma 1.5.1. Suppose Q(mt,x +m−1
t,x)<∞ and let ε > 0. Then, for large t,

Nt ≤ e(Ψ+ε)t , P-a.s.,

where the limit

Ψ := lim
t→∞

1

t
Q
�

ln Pq(Nt,0)
�

exists.
If Ψ> 0 and m(2) <∞, then

{survival}= {Nt ≥ e(Ψ−ε)t for all large t}, P-a.s.. (1.13)

Remark 1.5.2. a) Actually, the hypotheses given in [CY] are somewhat weaker, and are implied by
our assumption m(2) <∞. See the Remark 2) right after [CY, Theorem 2.1.1].
b) It is proved in [CY] as well that “Ψ> 0” is implied by

Q(mt,x =m) 6= 1, Q(ln mt,x)≥ 0. (1.14)

The object we investigate is the population density

ρt,x = ρt(x) :=
Nt,x

Nt
1Nt>0, t ∈N0, x ∈Zd . (1.15)

It describes the distribution of the population in space.
Related important objects are

ρ∗t :=max
x∈Zd

ρt,x and Rt :=
∑

x∈Zd

ρ2
t,x . (1.16)

They are, respectively, the density at the most populated site and the probability that two particles
picked randomly from the total population are at the same site at time t. We will call this latter
value the “replica overlap”.
It is possible to relate the event of survival to this replica overlap.

Theorem 1.5.3. Suppose m(2) <∞. Then, if P(N∞ = 0) = 1,

{survival} ⊆
n
∞
∑

t=1

Rt =∞
o

. (1.17)

The proof of this Theorem can be found in Section 2.2. While it is true that the opposite inclusion
does hold under the stronger assumption m(3) <∞, we do not state this formally here. The proof
can be found in [HNY].

1.6 The main result

Hu and Yoshida, using the assumption that particles may not die, proved in [HY09, Theorem
1.3.2] the following

Theorem 1.6.1. Suppose P(N∞ = 0) = 1 and

m(3) <∞, Q(mt,x =m) 6= 1, Q
�

qt,x(0) = 0
�

= 1. ([HY09, (1.18)])

Then, there exists a non-random number c ∈ (0, 1) such that,

limsup
t→∞

ρ∗t ≥ limsup
t→∞

Rt ≥ c, P-a.s.. (6.19)
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In this setting, extinction (i.e. the event that at some time, the total population becomes 0) cannot
occur. However, it is possible to drop this assumption with the help of a few additional tools.
Our main result is indeed that the last two hypotheses can be replaced by weaker ones.

Theorem 1.6.2. Suppose P(N∞ = 0) = 1 and

m(3) <∞, Ψ> 0, Q(m−1
t,x)<∞. (1.20)

Then, there exists a non-random number c ∈ (0, 1) such that

limsup
t→∞

ρ∗t ≥ limsup
t→∞

Rt ≥ c, P-a.s. on the event of survival. (1.21)

The proof of the Theorem is postponed to its own Section 2.4.

Remark 1.6.3. a) The fact that Theorem 1.6.1 does not allow for dying particles has two implica-
tions, namely Ψ> 0 (rather trivially by (1.14)) and Q(m−1

t,x)<∞. Our theorem shows that we can
indeed content ourselves with these two weaker conditions themselves.
b) The hypotheses P(N∞ = 0) = 1 and Ψ> 0 are difficult to check in practice. Yet, it is possible to
give an example that satisfies the easier (a1)− (a3) of Proposition 1.4.4 and (1.14), but not the
hypotheses of Theorem 1.6.1. It is given by the following class of environments constituted only
of two states: for n ∈N,

q·,·(0) = q·,·(n
2) =

1

2
with probability

1

n
, (1.22)

q·,·(1) = 1 with probability 1−
1

n
. (1.23)

In this case, Q
�mt,x

m
ln

mt,x

m

�

∼ ln n, and hence any dimension can be covered by n large enough.

2 Proofs

2.1 Tools for the proof of Theorem 1.5.3

The following Definition will be useful at several points. It provides notation for the thorough
calculus of the fluctuation of the normalized population.

Definition 2.1.1. Let

Us+1,x :=
1Ns>0

mNs

Ns,x
∑

ν=1

Kνs,x ≥ 0, Us+1 :=
∑

x∈Zd

Us+1,x =
Ns+1

mNs
1Ns>0 =

N s+1

N s

1N s>0.

The (Us+1,x)x∈Zd are independent under P(·|Fs). It is not difficult to see that, on the event {Ns > 0},

P(Us+1,x |Fs) = ρs(x), and hence P(Us+1|Fs) = 1.
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Also, with eci =
m(i)

mi , i = 2,3,

αρ(x)2 =
1

m2N2
s

N2
s,xQ
�

m2
s,x

�

≤ P
�

U2
s+1,x

�

�Fs
�

(2.1)

=
1

m2N2
s

P
�

�

Ns,x
∑

ν=1

Kνs,x
�2
�

�

�Fs

�

≤
N2

s,x m(2)

m2N2
s

= ec2ρs(x)
2, (2.2)

P
�

U3
s+1,x

�

�Fs
�

≤
m(3)

m3 ρs(x)
3 = ec3ρs(x)

3, again on the event {Ns > 0}. (2.3)

Theorem 1.5.3 is a consequence of the following Proposition. It can be found in [Yos10, Proposi-
tion 2.1.2] and relates survival and boundedness of the predictable quadratic variation for some
abstract martingale.

Proposition 2.1.2. Let (Yt)t∈N0
be a mean-zero square-integrable martingale on a probability space

with measure E and filtration (Ft)t∈N0
. Suppose −1≤∆Yt := Yt − Yt−1 for all t ∈N, and let

X t :=
t
∏

s=1

(1+∆Ys). (2.4)

If P
�

(∆Yt)2
�

�Ft−1
�

is uniformly bounded in t, then

{X∞ = 0} ⊆ {Ex tinct ion} ∪
� ∞
∑

s=1

P
�

(∆Ys)
2
�

�Fs−1
�

=∞
�

, (2.5)

where {Ex tinct ion} := {∃t > 0 : X t = 0}.

2.2 Proof of Theorem 1.5.3

We want to apply the abstract result that is Proposition 2.1.2 to our setting. To get the notation
right, we take X t := N t , and remark that the definition

∆Yt :=
N t

N t−1

1Nt−1>0 −1Nt−1>0 =
∑

x

�

Ut,x −ρt,x
�

≥−1 (2.6)

verifies (2.4); the Ut,x are taken from Definition 2.1.1. As for the other hypothesis of the Proposi-
tion, we need not even to check it in order to find

∑∞
s=1 P

�

(∆Ys)2
�

�Fs−1
�

=∞: if uniform bound-
edness does not hold, it is true anyway, and if uniform boundedness holds, we derive it from
Proposition 2.1.2 on the event {survival} ∩ {N∞ = 0}.
Now, with (2.1), we see that

∑t
s=1 P

�

(∆Ys)2
�

�Fs−1
�

shares its asymptotic behaviour with
∑t

s=1Rs,
so we conclude (1.17).

2.3 Tools for the proof of Theorem 1.6.2

One result that has not been taken into account in [HY09] and that helps us making the slight
improvement of the hypotheses is the following improved version of the Borel-Cantelli-lemma,
stated in [Yos10, Lemma 2.2.1]:



330 Electronic Communications in Probability

Lemma 2.3.1. Let (Rt)t∈N be an integrable, adapted process defined on a probability space with
measure E and a filtration (Ft)t∈N0

. Define V0 := 0=: T0 and

Vt :=
t
∑

s=1

Rs, Tt :=
t
∑

s=1

E[Rs|Fs−1], t ∈N.

a) Suppose there is a constant C1 ∈ (0,∞) such that

Rt −E[Rt |Ft−1]≥−C1, E-a.s. for all t ∈N. (2.7)

Then,
n

lim
t→∞

Vt =∞
o

=
�

lim
t→∞

Vt =∞, limsup
t→∞

Tt

Vt
≥ 1
�

⊆
n

sup
t≥1

Tt =∞
o

.

b) Suppose that (Rt)t∈N is in L2(E), and that there exists a constant C2 ∈ (0,∞) such that

Var[Rt |Ft−1]≤ C2E[Rt |Ft−1] E-a.s. for all t ∈N,

where Var[Rt |Ft−1] := E[R2
t |Ft−1]−E[Rt |Ft−1]2. Then, E-a.s.,

n

lim
t→∞

Tt =∞
o

=
�

lim
t→∞

Tt =∞, lim sup
t→∞

Vt

Tt
= 1
�

⊆
n

sup
t≥1

Vt =∞
o

.

This Lemma admits in our setting, with a slight abuse of notation, for the following

Corollary 2.3.2. On the event {limt→∞ Vt =∞}, there exists a constant c0 ∈ [1,∞) such that

Tt :=
t
∑

s=1

P(Rs|Fs−1)≤ c0

t
∑

s=1

Rs =: c0Vt (2.8)

holds for large t.

Proof. In fact, the hypotheses of both a) and b) of Lemma 2.3.1 are satisfied. Indeed, 0≤Rt =
∑

x ρ
2
t,x ≤ 1

is square-integrable and adapted, and (2.7) is satisfied with C1 = 2. Also,

Var(Rt |Ft−1)≤ P(R2
t |Ft−1)≤ P(Rt |Ft−1).

Hence, with a), {limt→∞ Vt =∞} implies {supt Tt =∞}. But Tt is a sum over positive terms, so its
supremum is equal to its limes, and we can readily apply part b). The statement is then trivial.

The following Lemma is an extension to [Yos10, Lemma 3.2.1] and replaces [HY09, Lemma 3.1.1].

Lemma 2.3.3. Let (Ui)1≤i≤n, n ≥ 2, be non-negative, independent and cube-integrable random
variables on our general probability space with probability measure E such that for

U =
n
∑

i=1

Ui , E[U] = 1. (2.9)

Let furthermore X be a random variable such that 0≤ X ≤ U2
1 a.s.. Then,

E
hU1U2

U2 : U > 0
i

≥ E[U1]E[U2]− 2E[U2]Var[U1]− 2E[U1]Var[U2], (2.10)

E
h X

U2 : U > 0
i

≥ E[U2
1 ](1+ 2E[U1])− 2E[U3

1 ]− 3E[U2
1 − X ]. (2.11)
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Proof. The first inequality is proved in [Yos10]. We will prove the second one.
Note that u−2 ≥ 3− 2u for u ∈ (0,∞). Thus, we have that

E
h X

U2 : U > 0
i

≥ E[X (3− 2U) : U > 0] = E[X (3− 2U)]

= E[(X − U2
1 )(3− 2U)] +E[U2

1 (3− 2U)]

= E[(X − U2
1 )(3− 2U)] + 3E[U2

1 ]− 2E[U3
1 ]− 2E[U2

1 ]E[
∑

i 6=1Ui]

= 2E[(U2
1 − X )U]− 3E[U2

1 − X ] + 3E[U2
1 ]− 2E[U3

1 ]− 2E[U2
1 ](1−E[U1])

≥−3E[U2
1 − X ] +E[U2

1 ](1+ 2E[U1])− 2E[U3
1 ].

At this point, we need some further notations. We denote by Ps(x , y) the probability that the sim-
ple random walk starting in x ∈ Zd goes to y ∈ Zd in exactly s ∈N steps. We write r j :=P2 j(x , x).
Also, we can define the semigroup of the simple random walk by Ps f (x) :=

∑

y Ps(x , y) f (y). We
write P :=P1.

Remark 2.3.4. With the Cauchy-Schwarz-inequality, we have

max
x

�

P jρt(x)
�2 ≤

∑

x

�

P jρt(x)
�2 ≤

∑

x

P jρ
2
t (x) =Rt =

∑

x

ρ2
t (x)≤ 1. (2.12)

We now start estimates on the population density. The following result corresponds to the inequal-
ity (3.7) in [HY09, Lemma 3.1.4].

Lemma 2.3.5. Suppose (1.20). On the event of survival up to time s ∈ N, for any y1, y2 ∈ Zd , we
have

P
�

ρs+1(y1)ρs+1(y2)
�

�Fs
�

≥P ρs(y1)P ρs(y2) + (α− 1)
∑

z

ρs(z)
2p(z, y1)p(z, y2) (2.13)

− 2ec2
�

P ρs(y2)P (ρ2
s )(y1) +P ρs(y1)P (ρ2

s )(y2)
�

− 2ec3

∑

z

ρs(z)
3p(z, y1)p(z, y2)− 3ec2

1

Ns

∑

z

ρs(z)p(z, y1)p(z, y2).

where the ec· are the same as in Definition 2.1.1.

Proof. We have

P
�

ρs+1(y1)ρs+1(y2)|Fs
�

=
∑

z1,z2

Ns,z1
∑

ν1=1

Ns,z2
∑

ν2=1

P
�1X ν1s,z1=y1

1X ν2s,z2=y2
Kν1

s,z1
Kν2

s,z2

N2
s+1

1Ns+1>0

�

�

�Fs

�

≥
∑

z1 6=z2

p(z1, y1)p(z2, y2)P
�

∑Ns,z1
ν1=1 Kν1

s,z1

∑Ns,z2
ν2=1 Kν2

s,z2

N2
s+1

1Ns+1>0

�

�

�Fs

�

(2.14)

+
∑

z

p(z, y1)p(z, y2)P
�

∑Ns,z

ν1 6=ν2=1 Kν1
s,zKν2

s,z

N2
s+1

1Ns+1>0

�

�

�Fs

�

. (2.15)

Now, we would like to estimate (2.14) and (2.15). We can rewrite these lines with the processes
from Definition 2.1.1. These verify the hypotheses of Lemma 2.3.3. The estimates obtained by the
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application of this Lemma comprise second and third moments which we cannot provide explicitly.
We therefore replace them by the estimates obtained in Definition 2.1.1; note that survival up to
time s+ 1 implies survival up to time s.

Since {Ns+1 > 0} ⊆ {Us+1 > 0}, by (2.10), we have

(2.14)=
∑

z1 6=z2

p(z1, y1)p(z2, y2)P
�Us+1,z1

Us+1,z2

U2
s+1

1Us+1>0

�

�

�Fs

�

≥
∑

z1 6=z2

p(z1, y1)p(z2, y2)
�

ρs(z1)ρs(z2)− 2ec2
�

ρs(z2)ρs(z1)
2 +ρs(z1)ρs(z2)

2�
�

.

Also, with X (z) =
�

�
∑Ns,z

ν=1 Kνs,z
�2 −

∑Ns,z

ν=1(K
ν
s,z)

2
�

/m2N2
s and (2.11),

(2.15)=
∑

z

p(z, y1)p(z, y2)P
�X (z)

U2
s+1

1Us+1>0

�

�

�Fs

�

≥
∑

z

p(z, y1)p(z, y2)

�

P
�

U2
s+1,z

�

�Fs
��

1+ 2ρs(z)
�

− 2P
�

U3
s+1,z

�

�Fs
�

− 3
Ns,z
∑

ν=1

P
�

�

Kνs,z
mNs

�2
�

�

�Fs

�

�

≥
∑

z

p(z, y1)p(z, y2)
h

αρs(z)
2 − 2ec3ρs(z)

3 − 3ec2
ρs(z)

Ns

i

.

These estimates imply the statement.

Lemma 2.3.6. Suppose (1.20). For all 1≤ j ≤ t − 1,

P
�

∑

x

�

P j−1ρt− j+1(x)
�2
�

�

�Ft− j

�

≥
∑

x

(P jρt− j(x))
2 +
�

α− 1
�

r jRt− j

− (4ec2 + 2ec3)R
3/2
t− j −

3ec2

Nt− j
.

Proof. If we apply the definition of the semigroup operator P , we get

∑

x

�

P j−1ρt− j+1(x)
�2 =

∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)ρt− j+1(y1)ρt− j+1(y2).

Applying (2.13) gives

P
�
∑

x

�

P j−1ρt− j+1(x)
�2
�

�

�Ft− j

�

≥ [I + (α− 1)I I − 2ec2 I I I − 2ec3 IV − 3ec2
1

Nt− j
V
i

,
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where

I :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)P ρt− j(y1)P ρt− j(y2)

=
∑

x

�

P jρt− j(x)
�2 by definition of the semigroup-operator;

I I :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
∑

z

ρt− j(z)
2p(z, y1)p(z, y2)

=
∑

x

∑

z

�

P j(x , z)
�2
ρ2

t− j(z) = r j

∑

z

ρ2
t− j(z) because

∑

x

�

P j(x , z)
�2 = r j;

I I I :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
�

P ρt− j(y2)P ρ2
t− j(y1) +P ρt− j(y1)P ρ2

t− j(y2)
�

= 2
∑

x

P jρt− j(x)P j(ρ
2
t− j)(x)

≤ 2 max
x
P jρt− j(x)

∑

x

P j(ρ
2
t− j)(x)≤ 2R1/2

t− jRt− j by Remark 2.3.4;

IV :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
∑

z

ρ3
t− j(z)p(z, y1)p(z, y2)

≤
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
∑

z1,z2

ρt− j(z1)p(y1, z1)ρ
2
t− j(z2)p(y2, z2)

=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)P ρt− j(y1)P ρ2
t− j(y2)≤ I I I ;

V :=
∑

x

∑

y1,y2

P j−1(x , y1)P j−1(x , y2)
∑

z

ρt− j(z)p(z, y1)p(z, y2)

=
∑

x

∑

z

�

P j(x , z)
�2
ρt− j(z) =

∑

z

ρt− j(z)r j = r j .

In these computations, the symmetry of p(·, ·) has been used at appropriate places. If we put
together the pieces, we obtain the statement of the Lemma.

Later, in the proof of the main theorem, we are going to perform a division by
∑t

s=1Rs at some
point. The following Lemma helps showing that a certain term then vanishes asymptotically. We
recall the definition of Vt :=

∑t
s=1Rs from Corollary 2.3.2 and write V∞ := limt→∞ Vt .

Lemma 2.3.7. Assume (1.20), and fix some j ≥ 1. The martingale Z j(·) defined by

Z j(t) :=
t
∑

s=1

∑

x

h

�

P jρs(x)
�2 − P

�

(P jρs(x))
2
�

�Fs−1
�

i

, t ≥ 1,

satisfies the following law of large numbers:

�

V∞ =∞
	

⊆
n Z j(t)

Vt
−−→
t→∞

0
o

, P-a.s..

Remark 2.3.8. The increments of Z j(t) will be used later, and in squared form in the proof of the
Lemma. They are given by

Z j(t + 1)− Z j(t) =
∑

x

h

�

P jρt+1(x)
�2 − P

�

(P jρt+1(x))
2
�

�Ft
�

i

;
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recalling Remark 2.3.4, we can further estimate

�

Z j(t + 1)− Z j(t)
�2 ≤

�

∑

x

�

P jρt+1(x)
�2
�2

+
�

∑

x

P
�

(P jρt+1(x))
2
�

�Ft
�

�2

≤R2
t+1 + P

�

Rt+1

�

�Ft
�2 ≤Rt+1 + P

�

Rt+1

�

�Ft
�

.

Proof of Lemma 2.3.7. The idea of the proof is to make use of the increasing process 〈Z j〉t associ-
ated with Z j(t) in order to monitor the growth of Z j(t) itself.
With the previous Remark, it is indeed possible to estimate 〈Z j〉t by the sum of the conditional
replica-overlap:

〈Z j〉t =
t−1
∑

s=0

〈Z j〉s+1 − 〈Z j〉s =
t−1
∑

s=0

P
�

�

Z j(s+ 1)− Z j(s)
�2
�

�

�Fs

�

(2.16)

≤ 2
t−1
∑

s=0

P
�

Rs

�

�Fs−1
�

= . . . ,

but this, by Corollary 2.3.2, is in turn related to the replica overlap itself:

· · · ≤ 2c0Vt , t ≥ 1. (2.17)

The rest is easy. Either 〈Z j〉∞ < ∞, in which case Z j(t) converges and the statement is trivial
anyway, or 〈Z j〉∞ =∞, in which case we can apply the law of large numbers for square-integrable
martingales, see [Dur91, p. 253], which gives us

�

�

�

�

Z j(t)

Vt

�

�

�

�

≤
1

2c0

�

�

�

�

Z j(t)

〈Z j〉t

�

�

�

�

−−→
t→∞

0.

As a final ingredient, we give a statement that compares parameters of the simple random walk
with ones of the BRWRE-model.

Lemma 2.3.9. Suppose (1.20) and P(N∞ = 0) = 1. There exist ε > 0 and t0 ∈N such that

t0
∑

s=1

rs ≥
1+ ε
α− 1

. (2.18)

Furthermore, with T > t0 and c4 := (α− 1)t0

∑t0

j=1 r j ,

T
∑

t=t0+1

h

(α− 1)
t0
∑

j=1

r jRt− j −Rt

i

≥ εVT − c4. (2.19)

Proof. In dimensions d = 1, 2, the first statement is trivial as
∑∞

s=1 rs =∞.
In dimensions d ≥ 3, the assumption P(N∞ = 0) = 1 in conjunction with Proposition 1.4.3 gives
us α≥ α∗ > 1/πd > 0, which implies

(α− 1)
∞
∑

s=1

rs = (α− 1)
πd

1−πd
>

1

1−πd
> 1, (2.20)

so that (2.18) follows.
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As for the second statement, we compute

T
∑

t=t0+1

h

(α− 1)
t0
∑

j=1

r jRt− j −Rt

i

= (α− 1)
t0
∑

j=1

r j

T
∑

t=t0+1

Rt− j −
T
∑

t=t0+1

Rt

= (α− 1)
t0
∑

j=1

r j(VT− j − Vt0− j)− (VT − Vt0
)≥ (α− 1)

�

VT − t0)
�

t0
∑

j=1

r j − VT

≥ (1+ ε)VT − (α− 1)t0

t0
∑

j=1

r j − VT = εVT − c4,

where for the last but one inequality, we used that Vt0− j ≤ t0 − j and VT− j + j ≥ VT for all
1≤ j ≤ t0.

2.4 Proof of the main theorem

Proof of Theorem 1.6.2. The idea of the proof is to obtain some estimate of the form

lim inf
T→∞

∑T
t=1R

3/2
t

∑T
t=1Rt

≥ C some constant, P-a.s.. (2.21)

This then implies

limsup
t→∞

Rt ≥ C2, P-a.s., (2.22)

as can easily be verified by contradiction.
However, the only tool we have at hand to estimate R3/2

t is Lemma 2.3.6, and we need to carry
out several operations before arriving at (2.21).
First, we apply Lemma 2.3.6 to j = 1, . . . t0, with t0 from (2.18), and take the sum:

t0
∑

j=1

�

(4ec2 + 2ec3)R
3/2
t− j +

3ec2

Nt− j

�

≥
t0
∑

j=1

∑

x

�

�

P jρt− j(x)
�2 − P

�

�

P j−1ρt− j+1(x)
�2�
�Ft− j

�

�

+ (α− 1)
t0
∑

j=1

r jRt− j

=
t0
∑

j=1

∑

x

�

�

P j−1ρt− j+1(x)
�2 − P

�

�

P j−1ρt− j+1(x)
�2�
�Ft− j

�

�

+
t0
∑

j=1

∑

x

�

�

P jρt− j(x)
�2 −

�

P j−1ρt− j+1(x)
�2
�

+ (α− 1)
t0
∑

j=1

r jRt− j

=
t0
∑

j=1

h

Z j−1(t − j+ 1)− Z j−1(t − j)
i

+
∑

x

�

Pt0
ρt−t0

(x)
�2 −Rt + (α− 1)

t0
∑

j=1

r jRt− j

≥
t0
∑

j=1

h

Z j−1(t − j+ 1)− Z j−1(t − j)
i

+ (α− 1)
t0
∑

j=1

r jRt− j −Rt .

In the last equality, we made use of Remark 2.3.8.
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Another summation, over t = t0 + 1, . . . , T , makes appear VT =
∑T

t=1Rt on the right hand side
(we immediately replace a telescopic sum by the end terms and apply (2.19)):

T
∑

t0+1

t0
∑

j=1

h

(4ec2 + 2ec3)R
3/2
t− j +

3ec2

Nt− j

i

≥
t0
∑

j=1

h

Z j−1(T − j+ 1)− Z j−1(t0 − j+ 1)
i

+ εVT − c4 (2.23)

Now, if we divide by VT and let T tend to infinity, the fact that by Theorem 1.5.3, V∞ = ∞
makes disappear several terms: the sum over 3ec2/Nt− j is finite by (1.13), and the one with the
martingales Z·(·) vanishes by Lemma 2.3.7. This leads directly to (2.21) and concludes the proof.

We would like to thank Prof. N. Yoshida for the suggestion of the subject and very helpful remarks,
and the anonymous referee for his most careful and thorough review.
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1 Introduction

1.1 Background

Branching random walks (and their time–continuous counterpart branching Brownian motion) are
treated, with the result of a central limit theorem (CLT), by Watanabe in [Wat67] and [Wat68].
Smith and Wilkinson introduce the notion of random (in time) environment to branching processes
[SW69], and in 1972, the book by Athreya and Ney [AN72] appears and gives an excellent overview
of the knowledge of the time.

A closely related model, the directed polymers in random environment (DPRE), is studied since
the eighties, when the question of diffusivity is treated by Imbrie and Spencer [IS88] as well as
Bolthausen [Bol89]. A review can be found in [CSY04].

It took until the new millenium for the time–space random environment known from DPRE to get
applied to branching random walks by Birkner, Geiger and Kersting [BGK05]. A CLT in probability
is proven in [Yos08a], and improved to an almost sure sense in [Nak11] with the help of Linear
Stochastic Evolutions (LSE), which were introduced in [Yos08b] and [Yos10]. Linear stochastic
evolutions build a frame to a variety of models, including DPRE. For LSE, the CLT was proven in
[Nak09]. Shiozawa treats the time–continuous counterpart, namely branching Brownian motions
in random environment [Shi09a, Shi09b].

The present article uses as a blueprint [CY06], which proves a CLT for DPRE, and the larger angle
of view allowed by the LSE gives the crucial ingredients to conclude our result, which is a CLT on
the event of survival on the entire regular growth phase, but under integrability conditions slightly
more restrictive than those from [Nak11]. Compared to the case of DPRE, the necessary notational
overhead is unfortunately significantly bigger. Speaking of DPRE, it is possible to extend the results
of [CY06] to the case where completely repulsive sites are allowed, using the same conditioning–
techniques as here.

A localization–result in the slow growth phase is proven by two of the authors of the present work
in [HN11].

1.2 Branching random walks in random environment

We denote the natural numbers by N0 = {0,1, 2, . . . } and N = {1,2, . . . }. We will need at various
places sets of probability measures, which we write as P (·); for instance,

P (N0) :=
n

q = (q(k))k∈N0
∈ [0, 1]N0 :

∑

k∈N0

q(k) = 1
o

stands for the set of probability measures on N0.

We consider particles in Zd , d ≥ 1, each performing a simple random walk and branching into
independent copies at each time–step.

i) At time n= 0, there is one particle born at the origin x = 0.

ii) A particle born at site x ∈ Zd at time n ∈ N0 is equipped with k eggs with probability qn,x(k),
k ∈N0, independently from other particles.
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iii) In the next time step, it takes its k eggs to a uniformly chosen nearest–neighbour site and dies.
The eggs then are hatched.

The offspring distributions qn,x = (qn,x(k))k∈N0
are assumed to be i.i.d. in time–space (n, x). This

model is called Branching Random Walks in Random Environment (BRWRE). Let Nn,y be the number
of the particles which occupy the site y ∈ Zd at time n.

For the proofs in this article, a modeling down to the level of individual particles is needed. First,
we define namespaces Vn, n ∈ N0 for the n–th generation particles and VN0

for the particles of all
generations together:

V0 = {1}= {(1)}, Vn+1 = Vn×N, for n≥ 0,

VN0
=
⋃

n∈N0

Vn.

Then, we label all particles as follows:

i) At time n= 0, there is just one particle which we call 1= (1) ∈ V0.

ii) A particle at time n is identified with its genealogical chart y = (1,y1, . . . ,yn) ∈ Vn.
If the particle y gives birth to ky particles at time n, then the children are labeled by
(1,y1, . . . ,yn, 1), . . . , (1,y1, . . . ,yn, ky) ∈ Vn+1.

By using this naming procedure, we define the branching of the particles rigorously. This definition
is based on the one in [Yos08a].

Note that the particle with name x can be located at x anywhere in Zd . As both informations
genealogy and place are usually necessary together, it is convenient to combine them to x = (x ,x);
think of x and x written very closely together.

• Random environment of offspring distibutions: Set Ωq = P (N0)N0×Zd
. The set P (N0) is equipped

with the natural Borel σ–field induced by the one of [0,1]N0 . We denote by Gq the product σ–field
on Ωq.

We fix a product measure Q ∈ P (Ωq,Gq) which describes the i.i.d. offspring distributions assigned
to each time–space location.

Each environment q ∈ Ωq is a function (n, x) 7→ qn,x = (qn,x(k))k∈N0
from N0 ×Zd to P (N0). We

interpret qn,x as the offspring distribution for each particle which occupies the time–space location
(n, x).

• Spatial motion: A particle at time–space location (n, x) jumps to some neighbouring location (n+
1, y) before it is replaced by its children there. Therefore, the spatial motion should be described by
assigning a destination to each particle at each time–space location (n, x). We define the measurable
space (ΩX ,GX ) as the set (Zd)N0×Zd×VN0 with the product σ–field, and ΩX 3 X 7→ Xn,x for each
(n,x) ∈N0× (Zd ×VN0

) as the projection. We define PX ∈ P (ΩX ,GX ) as the product measure such
that

PX (Xn,x = e) =

(

1
2d

if |e|= 1,

0 if |e| 6= 1

for e ∈ Zd and (n,x) ∈ N0 × (Zd × VN0
). Here, we interpret Xn,x as the step at time n+ 1 if the

particle x is located space location x .
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• Offspring realization: We define the measurable space (ΩK ,GK) as the set N0
N0×Zd×VN0 with the

product σ–field, and ΩK 3 K 7→ Kn,x for each (n,x) ∈N0 × (Zd ×VN0
) as the projection. For each

fixed q ∈ Ωq, we define Pq
K ∈ P (ΩK ,GK) as the product measure such that

Pq
K(Kn,x = k) = qn,x(k) for all (n,x) = (n, x ,x) ∈N0×Zd ×VN0

and k ∈N0.

We interpret Kn,x as the number of eggs of the particle x if it is located at time–space location (n, x).
One could directly speak of its children as well.

The first steps of such a BRWRE are shown in Figure 1.

Putting everything together, we arrive at the

• Overall construction: We define (Ω,G ) by

Ω = ΩX ×ΩK ×Ωq, G = GX ⊗GK ⊗Gq,

and with q ∈ Ωq,

Pq = PX ⊗ Pq
K ⊗δq, P =

∫

Q(dq)Pq.

Now that the BRWRE is completely modeled, we can have a look at where the particles are: for
(n,y) ∈N0× (Zd ×VN0

), we define

Nn,y = 1{the particle y is located at time–space location (n,y)}.

This enables the

• Placement of BRWRE into the framework of Linear Stochastic Evolutions: We set the starting con-
dition N0,y = 1y=(0,1). Then, defining the matrices (An)n via their entries in the manner indicated
below, we can describe Nn,y inductively by

Nn,y =
∑

x∈Zd×VN0

Nn−1,x1{y−x=Xn−1,x, 1≤y/x≤Kn−1,x},

=
∑

x∈Zd×VN0

Nn−1,xA y
n,x

= (N0A1 · · ·An)y, y ∈ Zd ×VN0
,

where y/x is given for x,y ∈ VN0
as

y/x=







k if
x= (1,x1, . . . ,xn) ∈ Vn,

y= (1,x1, . . . ,xn, k) ∈ Vn+1
for some n ∈N0,

∞ otherwise,

and where
A y

n,x := 1{y−x=Xn−1,x, 1≤y/x≤Kn−1,x}, x,y ∈ Zd ×VN0
.

One–site- and overall population can be defined respectively as

Nn,y =
∑

y∈VN0

Nn,(y,y), and Nn =
∑

y∈Zd×VN0

Nn,y,
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Figure 1: One realization of the first steps and branchings. In this particular example, there are
only two types of offspring distibutions, one allowing for one or three eggs, the other one for two
or none. This is indicated by the concentrical circles. The curly circles indicate points where the
realization of the environment has no influence on the outcome of the random walk. The arrows
indicate the movement of the particles, the number of strokes indicating the number of eggs carried.
The cones in the lower part of the picture get their full meaning in Remark 2.1.2.
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for n ∈ N0, y ∈ Zd . Other quantities needed later are the moments of the local offspring distribu-
tions for n ∈N0 and x ∈ Zd ,

m(p)n,x =
∑

k∈N0

kpqn,x(k), m(p) =Q(m(p)n,x), p ∈N0, m= m(1),

and the normalized one–site and overall populations

N n,y = Nn,y/m
n and N n = Nn/m

n, n ∈N0, y ∈ Zd .

It is easy to see that the expectation of the matrix entries, which is an important parameter in the
setting of LSE, for x,y ∈ Zd ×VN0

computes as

ay
x

:= P[A y

1,x] =

(

1
2d

∑

j≥k q( j) if |x − y|= 1, y/x= k, k ∈N,

0 otherwise,

with
q( j) :=Q

�

q0,0( j)
�

, j ∈N0.

Taking sums, we obtain
∑

y∈Zd×VN0

ay
x
=m, for x ∈ Zd ×VN0

.

1.3 Preliminaries

In this and the following subsection, we gather properties of BRWRE that are already known. First,
we introduce the Markov chain (S, Px

S
) = ((S,S), P(x ,x)

(S,S) ) on Zd × VN0
for x = (x ,x) ∈ Zd × VN0

,
independent of (An)n≥1, by

PxS (S0 = x) = 1,

PS
�

Sn+1 = y| Sn = x
�

=
ay
x

m
=







∑

j≥k q( j)

2d m
if |x − y|= 1, and y/x= k ∈N

0 otherwise.
(1.1)

where x,y ∈ Zd ×VN0
. The filtration of this random walk will be called Fn = σ(F 1

n ×F
2
n ), with

F 1
n := σ(S1, . . . , Sn), F 2

n := σ(S1, . . . ,Sn), n ∈N0, and the corresponding sample space Ω1×Ω2.

Note that we can regard S and S as independent Markov chains on Zd and VN0
, respectively, with S

the simple random walk on Zd .

Next, we introduce a process which is essential to the proof of our results:

ζ0 = 1 and for n≥ 1, ζn = ζn(S) =
n
∏

m=1

A Sm
m,Sm−1

aSm
Sm−1

. (1.2)
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Lemma 1.3.1. ζn is a martingale with respect to the filtration given by

H0 := σ(S0), Hn := σ(Am,Sm; m≤ n), n≥ 1.

Moreover, we have that

Nn,y =mnP(0,1)
S
(ζn : Sn = y) P–a.s. for n ∈N0, y ∈ Zd ×VN0

.

Remark 1.3.2. Summation over all possible sequences of names yields

Nn,y =mnP(0,1)
S
(ζn : Sn = y).

From this Lemma follows an important result: the next Lemma shows that a phase transition occurs
for the growth rate of the total population.

Lemma 1.3.3. N n is a martingale with respect to Gn := σ(Am : m≤ n). Hence, the limit

N∞ = lim
n→∞

N n, exists P–a.s. (1.3)

and
P(N∞) ∈ {0,1}.

Moreover, P(N∞) = 1 if and only if the limit (1.3) is convergent in L1(P).

The proof of Lemmas 1.3.1 and 1.3.3 can be found in [Nak11].

We refer to the case P(N∞) = 1 as regular growth phase and to the other one, P[N∞] = 0, as slow
growth phase. The regular growth phase means that the growth rate of the total population has the
same order as the growth rate of the expectation of the total population mn; on the other hand, the
slow growth phase means that, almost surely, the growth rate of the population is lower than the
growth rate of its expectation.

One can also introduce the notions of ‘survival’ and ‘extinction’.

Definition 1.3.4. The event of survival is the existence of particles at all times:

{survival} := {∀ n ∈N0, Nn > 0}.

The extinction event is the complement of survival.

1.4 The result

Definition 1.4.1. An important quantity of the model is the population density, which can be seen as
a probability measure with support on Zd ,

ρn,x = ρn(x) :=
Nn,x

Nn
1Nn>0, n ∈N0, x ∈ Zd .

Our main result is the following CLT, proven as Corollary 2.2.4 of the invariance principle Theo-
rem 2.2.2.

1322



Theorem 1.4.2. Assume d ≥ 3 and regular growth, and the moment conditions m(3) < ∞ and
Q
�

(m(2)n,x)
2� < ∞. Then, for all bounded continuous function F ∈ Cb(Rd), in P( · |survival)–

probability,

lim
n→∞

∑

x∈Zd

ρn(x)F
� x
p

n

�

=

∫

Rd

F(x)ν(d x),

where ν stands for the Gaussian measure with mean 0 and covariance matrix 1
d

I .

Remark 1.4.3. The hypothesis d ≥ 3 is in fact not necessary because in dimensions one and two,
regular growth cannot occur. Instead of a CLT, localized behaviour can be observed, see [HY09,
HN11].

It is the following equivalence, recently proven as [CY, Proposition 2.2.2], that enables us to speak
easily of P( · |survival)–probability:

Lemma 1.4.4. If P(N∞ > 0)> 0 and m<∞, then

{regular growth} := {N∞ > 0}= {survival}, P–a.s..

[CY] handles also the case of slow growth.

2 Proofs

2.1 The path measure

Definition 2.1.1. We set, on F∞,

µn(dS) :=
1

N n
PS(ζndS)1N∞>0, n ∈N0,

where ζ is defined in (1.2).

Additional notations and definitions comprise the shifted processes: for m ∈N0, z ∈ Zd ×VN0
, we

define N m,z
n = (N m,z

n,y )y∈Zd×VN0
and N

m,z
n = (N

m,z
n,y )y∈Zd×VN0

, n ∈N0, respectively by

N m,z
0,y = 1y=z, N m,z

n+1,y =
∑

x∈Zd×VN0

N m,z
n,x A y

m+n+1,x, and

N
m,z
n,y = N m,z

n,y /m
n.

Using this, we can, with m≤ n, express µn on a finite time–horizon as

µn(S[0,m] = x[0,m]) = ζm(x[0,m])
N

m,xm

n−m

N n
PS(S[0,m] = x[0,m])1N∞>0; (2.1)

in particular,
Nn,x

Nn
1N∞>0 =

∑

x[0,n]:xn=x
µn(S[0,n] = x[0,n]).
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Note that for B ∈ F∞, the limit
µ∞(B) = lim

n→∞
µn(B)

exists P–a.s. because of the martingale limit theorem for PS(ζn : B), which is indeed a positive mar-
tingale with respect to the filtration (Gn)n, as can be easily checked, and for N n, see Lemma 1.3.3.

Remark 2.1.2. We can write, for B ∈ F 1
n ,

µ∞(B×Ω2) =
1

N∞

∑

xn

PS(ζn : (B×Ω2)∩ {Sn = xn})N
n,xn

∞ 1N∞>0.

The reader who cares to return to the lower part of Figure 1 will be rewarded with an intuitive
picture of how we can let run our BRW up to time n = 3 and plug in there the shifted processes,
indicated by the dotted cones.

Definition 2.1.3. We define the environmental measure conditional on survival, or under the assump-
tions of Lemma 1.4.4 equivalently, regular growth, by

eP(·) = P
�

·
�

�N∞ > 0
�

=
P(· ∩ N∞ > 0)

P(N∞ > 0)
.

Lemma 2.1.4. Assume regular growth. Then,

ePµ∞( · ×Ω2) is a probability measure on F 1
∞, (2.2)

and
ePµ∞( · ×Ω2)� PS on F 1

∞, (2.3)

where PS denotes the measure of a simple random walk.

In order to prove this Lemma, we need the following observation:

Lemma 2.1.5. Suppose (Bm)m≥1 ⊂F 1
∞ are such that limm→∞ PS(Bm×Ω2) = 0. Then

0= lim
m→∞

sup
n
ePµn(Bm×Ω2) = lim

m→∞
ePµ∞(Bm×Ω2).

Proof. We first prove the first equality. For δ > 0,

P
�

µn(Bm×Ω2)
�

≤ P
�

µn(Bm×Ω2) : N n ≥ δ
�

+ P
�

1N∞>0 : N n ≤ δ
�

.

We can estimate

sup
n

P
�

µn(Bm×Ω2) : N n ≥ δ
�

≤ δ−1 sup
n

P
�

N nµn(Bm×Ω2)
�

= δ−1 sup
n

P
�

N n
PS(ζn : Bm×Ω2)

N n
1N∞>0

�

≤ δ−1 sup
n

PS
�

P(ζn) : Bm×Ω2�

= δ−1PS(Bm×Ω2)−−−→
m→∞

0.
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On the other hand, as N
−1
n converges eP–a.s., their distributions are tight, and

lim
δ→0

sup
n
eP(N n ≤ δ) = 0.

The second equality follows directly by an application of dominated convergence.

Proof of Lemma 2.1.4. The statement (2.2) is in some sense an affirmation of well–definiteness.
The proof consists in verifying that ePµ∞ is finitely additive, that ePµ∞(Ω1 × Ω2) = 1, and that
F∞ 3 Bn ×Ω2↘ ; implies ePµ∞(Bn ×Ω2)→ 0. The first two are quite obvious and the third one is
a trivial application of the preceding Lemma 2.1.5, as is the absolute continuity (2.3).

In the following Proposition, we introduce the variational norm

‖ν − ν ′‖E := sup{ν(B)− ν ′(B), B ∈ E},

where ν and ν ′ are probability measures on E . This norm will be applied to µn+m(· × Ω2) and
µ∞(· ×Ω2), which are indeed, eP–a.s., probability measures on F 1

r because of the finiteness of F 1
r ,

for all r, m, n ∈N0.

Proposition 2.1.6. In the regular growth phase,

lim
m→∞

sup
n
eP
�

‖µm+n(· ×Ω2)−µ∞(· ×Ω2)‖F 1
n

�

= 0.

Proof. From (2.1) and its analogue for µ∞, for n, m≥ 0,

N∞‖µm+n(· ×Ω2)−µ∞(· ×Ω2)‖F 1
n

= N∞ sup
B=B1×Ω2∈F 1

n⊗F
2
n

n

PS
�

ζn
N

n,Sn

m

N n+m
1B − ζn

N
n,Sn

∞

N∞
1B

�

1N∞>0

o

≤ N∞PS






ζn

�

�

�

�

�

�

N
n,Sn

m

N n+m
−

N
n,Sn

∞

N∞

�

�

�

�

�

�






1N∞>0

= 1N∞>0N
−1
n+mPS

�

ζn|N∞N
n,Sn

m − N n+mN
n,Sn

∞ |
�

≤ 1N∞>0N
−1
n+mPS

�

ζn
�

|N∞N
n,Sn

m − N n+mN
n,Sn

m |+ |N n+mN
n,Sn

m − N n+mN
n,Sn

∞ |
�

�

≤
|N∞− N n+m|

N n+m
PS
�

ζnN
n,Sn

m

�

+ PS
�

ζn|N
n,Sn

m − N
n,Sn

∞ |
�

.

Note that in the first of the right–hand terms, the denominator is cancelled out with PS
�

ζnN
n,Sn

m

�

;
so, as N n converges in L1(P), the P–expectation of the first term vanishes as m→∞, and the second
one yields

PPS
�

ζn

�

�N
n,Sn

m − N
n,Sn

∞

�

�

�

= PPS
�

ζnP
�

�

�N
n,Sn

m − N
n,Sn

∞

�

�

�

�

� Gn

��

= PPS
�

ζn





N m− N∞






L1(P)

�

= ‖N m− N∞‖L1(P) −−−→m→∞
0.
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This proves
sup

n
P
�

N∞‖µm+n−µ∞‖F 1
n

�

−−−→
m→∞

0.

Now, we use the same trick with the Chebychev–inequality that gives us a N∞ in front of the norm
as in Lemma 2.1.4:

eP
�

‖µm+n−µ∞‖F 1
n

�

= eP
�

‖µm+n−µ‖F 1
n
(1N∞>δ

+1N∞≤δ)
�

≤ δ−1
eP
�

N∞‖µm+n−µ∞‖F 1
n

�

+ 2eP
�

N∞ ≤ δ
�

tends to 0 with δ→ 0, m→∞ if we control δ and m approprietely, independently of n.

2.2 The main statements

Definition 2.2.1. For n≥ 1, the rescaling of the path S is defined by

S(n)t = Snt/
p

n, 0≤ t ≤ 1,

with (St)t≥0 the linear interpolation of (Sn)n∈N. We write S(n) for (S(n)t )t≥0.

Furthermore, we will denote by W = {w ∈ C ([0, 1] → Rd); w(0) = 0} the d–dimensional
Wiener–space, equipped with the topology induced by the supremum–norm. The probability space
(W,FW, PW) features the Borel–σ–algebra FW and PW the Wiener–measure. We will be using
W = (Wt)t≥0 a Wiener-process on this probability-space.

Theorem 2.2.2. Assume d ≥ 3 and regular growth, and the technical assumptions m(3) < ∞,
P
�

(m(2)0,0)
2�<∞. Then, for all F ∈ Cb(W),

lim
n→∞

µn
�

F(S(n))
�

= PW
�

F(W/
p

d)
�

, (2.4)

lim
n→∞

µ∞
�

F(S(n))
�

= PW
�

F(W/
p

d)
�

, (2.5)

in eP–probability.

Remark 2.2.3. This is equivalent to Lp(eP)–convergence for any finite p.

This Theorem implies the following CLT:

Corollary 2.2.4. Under the same assumptions as in the Theorem, for all F ∈ Cb(Rd),

lim
n→∞

∑

x∈Zd

F
� x
p

n

�N n,x

N n
=

∫

Rd

F(x)dν(x), in eP–probability,

where ν designs the Gaussian measure with mean 0 and covariance matrix 1
d

I .
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2.3 Some easier analogue of the main Theorem

The following Proposition is not needed for the proof of our result. We literally propose it never-
theless to the reader’s attention because the proof is much easier than the one of Theorem 2.2.2,
while the proceeding is the same. Basically, it can be done with the one–dimensional tools we have
at hand from subsection 2.1 and without the technical hassles in Lemmas 2.4.2, 2.4.8, and 2.4.13.
We will try to break it down to small parts as much as we can, and refer to these parts in the proof
of Theorem 2.2.2.

Proposition 2.3.1. Assume regular growth. Then,

lim
n→∞

ePµn(S
(n) ∈ ·) = PW(W/

p

d ∈ ·), weakly, (2.6)

lim
n→∞

ePµ∞(S
(n) ∈ ·) = PW(W/

p

d ∈ ·), weakly. (2.7)

The following notation will prove useful.

Definition 2.3.2. We define, for w ∈W,

F(w) = F(w)− PW
�

F(
W
p

d
)
�

, F ∈ Cb(W)

and
BL(W) = {F :W→R; ‖F‖BL := ‖F‖+ ‖F‖L <∞}

the set of bounded Lipschitz–functionals on W. The two norms are defined respectively by

‖F‖ := sup
w∈W

|F(w)|,

‖F‖L := sup
�

F(w)− F(ew)
‖w− ew‖

: w 6= ew ∈W
�

.

Proof of Proposition 2.3.1. The second statement is easier to prove. We attack it first, and use it later
to manage the first one.

Two ingredients from outside this article will help us to prove (2.7). First, (2.7) is equivalent to

lim
m→∞

ePµ∞(F(S
(m))) = 0 for all F ∈ BL(W), (2.8)

e.g., [Dud89, Theorem 11.3.3].

To prove (2.8), we make use of the following result for the simple random walk (S, PS), see [AW00]:
If (nk)k≥1 ⊂ Z+ is an increasing sequence such that infk≥1 nk+1/nk > 1, then for any F ∈ BL(W),

lim
m→∞

1

m

m
∑

k=1

F(S(nk)) = 0, PS–a.s.. (2.9)

One of the key ideas of the proof is that in the last line, due to (2.3), we can replace ‘PS–a.s.’ by
‘ePµ(· ×Ω2)–a.s.’, and the statement still holds.

This enables us to prove (2.8) by contradiction. Assume that (2.8) does not hold. Then there is some
subsequence aml

= ePµ∞(F(S(ml )))> c > 0 (or< c < 0). It has bounded domain, so has a convergent
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subsequence amlk
which can be chosen such that nk := mlk satisfies the above infk≥1 nk+1/nk > 1.

To this nk, we apply (2.9) and integrate with respect to ePµ∞. By dominated convergence, we can
switch integration and limit and get

lim
m→∞

1

m

m
∑

k=1

ePµ∞
�

F(S(nk))
�

= 0.

But this is a contradition to the assumption that all the ePµ∞(F(S(nk))) = ePµ∞(F(S
(mlk

))) > c (or
< c). So we conclude that (2.8) does hold, indeed.

Now, it remains to prove (2.6) with the help of (2.7). We need to show the analogue of (2.8):

lim
n→∞

ePµn
�

F(S(n))
�

= 0 for all F ∈ BL(W). (2.10)

For 0≤ k ≤ n, we add some telescopic terms:

ePµn
�

F(S(n))
�

= ePµn
�

F(S(n))− F(S(n−k))
�

+ ePµn
�

F(S(n−k))
�

− ePµ∞
�

F(S(n−k))
�

(2.11)

+ ePµ∞
�

F(S(n−k))
�

We apply what we just proved, i.e. (2.8), and conclude that the last line vanishes for fixed k and
n→∞. The middle one does the same due to Proposition 2.1.6. As for the first line, we note that F
is uniformly continuous and that

sup
S∈Ω1

max
0≤t≤1

�

�

�S(n)t − S(n−k)
t

�

�

�= O(k/
p

n).

Hence, (2.10) holds, so that we conclude (2.6) and thus the Proposition.

2.4 The real work

In order to prove the statement of Theorem 2.2.2 ‘in probability’, we take the path via ‘L2’. While the
proceeding is basically the same as in the last section, the notation becomes much more complicated.
As a start, we take a copy of our path S:

Definition 2.4.1. Let (eS, P
eS) be an independent copy of (S, PS) defined on the probability space (eΩ =

eΩ1× eΩ2, eF ) for i = 1, 2,3, 4. Similarily, we write eζ= ζ(eS), PSeS, and PSeS for the simultaneous product
measures and so on.

Lemma 2.4.2. For all B ∈ F 1
∞ ⊗ eF 1

∞, with the notation B = B ×Ω2 × eΩ2, the following limit exists
P–a.s. in the regular growth phase:

µ(2)∞ (B) = lim
n→∞

µ⊗2
n (B), (2.12)

where we define

µ⊗2
n (B) =

1

N
2
n

PSeS
�

ζn
eζn1B

�

1N∞>0,
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Moreover, we have that for all n ∈N, P–a.s. on {N∞ > 0},

µ(2)∞

�

(S, eS)[0,n] = {(xk, exk)}nk=1

�

=
1

N
2
∞

∑

xn,exn∈VN0

N
n,(xn,xn)
∞ N

n,(exn,exn)
∞ · (2.13)

· PSeS
�

ζn
eζn : (S, eS)[0,n] = {(xk, exk)}nk=1, (Sn,eSn) = (xn,exn)

�

.

For the proof, we need a few Definitions and Lemmas.

Definition 2.4.3. For B ∈ F 1
∞ ⊗ eF 1

∞, define the processes (Xn)n∈N0
and (Yn)n∈N0

which depend on B
as

X0 = X1 := 0, Xn = Xn(B) := PSeS
�

ζn
eζn1B∩{Sn−1 6=eSn−1}

�

;

Y0 := PSeS(B), Y1 = Y1(B) := PSeS
�

ζ1
eζ11B

�

, Yn = Yn(B) := PSeS
�

ζn
eζn1B∩{Sn−1=eSn−1}

�

.

Lemma 2.4.4. Yn converges to 0 P–almost surely, independently of B.

Proof. A consequence of the construction of the BRWRE is that ζn
eζn1{Sn−1 6=eSn−1,Sn=eSn}

= 0, P ⊗
PSeS–a.s., so that we have

0≤ P
�

Yn
�

≤ PPSeS
�

ζn
eζn1Sn−1=eSn−1

�

= PPSeS
�

ζn
eζn1S[0,n−1]=eS[0,n−1]

�

(2.14)

= PPSeS

� n−1
∏

k=1

(A Sk
k,Sk−1

)2

(aSk
Sk−1
)2
1S[0,n−1]=eS[0,n−1]

PSeS
�

P(A Sn
n,Sn−1

A
eSn

n,eSn−1
|Gn−1)

aSn
Sn−1

a
eSn
eSn−1

�

�

�Fn−1, eFn−1

�

�

= PSeS
�

n−1
∏

k=1

1

aSk
Sk−1

: S[0,n−1] = eS[0,n−1]

�
∑

x, y

P
�

A x
1,(0,1)A

y

1,(0,1))

ayx

ay
x

m2

=
m(2)

m2

1

mn−1

We made use of the fact that in the third line, because the A Sk
k,Sk−1

’s are indicators, we can erase
the square. Also erasable is the condition in the inner P–expectation. After that, the outmost P–
expectation can be taken into the first fraction, cancelling out one of the aSk

Sk−1
’s. To what remains,

we apply the definition of the expectation, using (1.1). This technique is hinted in the second part
of the fifth line, and applied similarly to the first part.

The assertion now follows from the Borel–Cantelli lemma.

Lemma 2.4.5. Xn is a submartingale with respect to Gn.

Proof. We start calculating

P(Xn|Gn−1) = P
�

PSeS(ζn
eζn1B∩{Sn−1 6=eSn−1}

)
�

�Gn−1
�

= PSeS

�

ζn−1
eζn−11B∩{Sn−1 6=eSn−1}

P
�A Sn

n,Sn−1

aSn
Sn−1

A
eSn

n,eSn−1

a
eSn
eSn−1

�

�

. (2.15)
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We do not use the following definition again, but we should like to point out its similarity to W to
be defined later. The inner P–expectation computes as

w(x, ex,y, ey) :=
P(A y

1,xA ey

1,ex)

ayxaey
ex

=































0 if ay
x

aey
ex
= 0,

1 if x 6= ex , ay
x

aey
ex
6= 0,

P(
∑

i≥k q0,0(i)
∑

j≥l q0,0( j))
∑

i≥k q(i)
∑

j≥l q( j) if x = ex , x 6= ex,
y/x= k, ey/ex= l, ay

x
aey
ex
6= 0,

0 if x= ex, y 6= ey , ay
x

aey
ex
6= 0,

� 1
2d

∑

j≥min{k,l} q( j)
�−1 if

x= ex, y = ey ,
y/x= k, ey/ex= l, ay

x
aey
ex
6= 0.

Using this, we note that, under the condition {Sn−1 6= eSn−1}, w(Sn−1,eSn−1,Sn,eSn) depends only on
Sn−1− eSn−1, Sn/Sn−1 and eSn/eSn−1. Thus, we pursue

(2.15)= PSeS
�

ζn−1
eζn−11B∩{Sn−1 6=eSn−1}

(1Sn−1 6=eSn−1
+α1Sn−1=eSn−1

)
�

, (2.16)

where α = P(m2
0,0)/m

2 > 1. This last equality is obtained by introducing a PSeS( · |Fn−1, eFn−1)–
conditional expectation, and remarking that the event B depends only on the random walk–part
while the corresponding above fraction depends only on the children–part, and the two are thus
independent. The calculus reads as follows:

PSeS

�

ζn−1
eζn−11{Sn−1=eSn−1,Sn−1 6=eSn−1}

PSeS
� P(

∑

i≥Sn/Sn−1
q0,0(i)

∑

j≥eSn/eSn−1
q0,0( j))

∑

i≥Sn/Sn−1
q(i)

∑

j≥eSn/eSn−1
q( j)

: B
�

�

�Fn−1, eFn−1

�

�

= PSeS
�

ζn−1
eζn−11{Sn−1=eSn−1,Sn−1 6=eSn−1}

∑

x,y

P(
∑

i≥x/Sn−1
q0,0(i)

∑

j≥y/eSn−1
q0,0( j))

m2 PSeS(B|Fn−1, eFn−1)
�

= PSeS
�

PSeS(ζn−1
eζn−11{Sn−1=eSn−1,Sn−1 6=eSn−1,B}

P(m2
0,0)

m2 |Fn−1, eFn−1)
�

The BRWRE has, due to the strict construction of the ancestry, the feature that

ζn−1
eζn−11B∩{Sn−1 6=eSn−1}

≥ ζn−1
eζn−11B∩{Sn−2 6=eSn−2}

.

So, we continue (2.16) and finish the proof of the submartingale property by

(2.16)≥ PSeS
�

ζn−1
eζn−11B∩{Sn−2 6=eSn−2}

�

= Xn−1.

Notation 2.4.6. For some sequence (an)n≥0, we set ∆an := an− an−1 for n≥ 1.

This notation is convenient when we treat the Doob–decomposition of the process Xn from Defini-
tion 2.4.3, i.e.
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Definition 2.4.7.
Xn = Xn(B) =: Mn+ bAn, (2.17)

with Mn a martingale, M0 = bA0 = 0, and bAn the increasing process defined by its increments
∆bAn := P(∆Xn|Gn−1). By 〈M〉n, we denote the quadratic variation of (Mn)n, defined by ∆〈M〉n :=
P
�

(∆Mn)2|Gn−1
�

. Passing to the limit, we define

bA∞ := lim
n→∞

bAn, 〈M〉∞ := lim
n→∞
〈M〉n. (2.18)

The next Lemma deals with the two processes bAn and Mn:

Lemma 2.4.8.
bA∞ <∞ and 〈M〉∞ <∞, P–a.s..

Now take a sequence of events (Bm)m∈N0
verifying P⊗2

SeS
(Bm) ↘ 0 with m → ∞. If we replace B by

Bm and define X m
n := Xn(Bm) together with its Doob–decomposition M m

n + bA
m
n , m, n ∈ N0, and the

corresponding limits as in (2.18), we have

bAm
∞ −−−→m→∞

0 and 〈M m〉∞ −−−→m→∞
0, P–a.s.. (2.19)

The proof is lengthy and will be postponed a little bit. But with this Lemma at hand, we can catch
up on the

Proof of Lemma 2.4.2. Applying the ‘B’–version of the last Lemma, we get that Xn converges, and by
the convergence of N

−2
n , µ⊗2

n = N
−2
n (Xn + Yn)1N∞>0 as well, eP–a.s. On the event of extinction, the

statement is trivial, and we conclude (2.12).

The second statement (2.13) follows immediately from the definition.

In order to prove Lemma 2.4.8, we also need the so called replica overlap, which is the probability
of two particles to meet at the same place:

Rn := 1Nn>0

∑

x

Nn,x

Nn
.

This replica overlap can be related to the event of survival via a Corollary of the following general
result for martingales [Yos10, Proposition 2.1.2].

Proposition 2.4.9. Let (Yn)n∈N0
be a mean–zero martingale on a probability space with measure E

and filtration (In)n∈N0
such that −1≤∆Yn, E–a.s. and

Xn :=
n
∏

m=1

(1+∆Ym).

Then,

{X∞ > 0} ⊇ {Xn > 0 for all n≥ 0} ∩
� ∞
∑

N=1

E
�

(∆Yn)
2
�

�In−1
�

<∞
�

, E–a.s., (2.20)
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holds if Yn is square–integrable and E
�

(∆Yn)2
�

�In−1
�

is uniformly bounded.

The opposite inclusion is provided by Yn being cube–integrable and

E
�

(∆Yn)
3
�

�In−1
�

≤ const ·E
�

(∆Yn)
2
�

�In−1
�

.

Corollary 2.4.10. Suppose P(N∞ > 0)> 0 and m(3) <∞. Then

{N∞ > 0}= {survival} ∩
n
∑

n≥0

Rn <∞
o

, P–a.s..

For proving this Corollary, we start with some notation.

Notation 2.4.11. Define

Un+1,x :=
1Nn>0

mNn

∑

x∈VN0
:

Nn,(x ,x)=1

Kn,(x ,x) ≥ 0.

It is imporant to note that the sum in this definition is taken over exactly Nn,x random variables.
Also define

Un+1 :=
∑

x∈Zd

Un+1,x =
Nn+1

mNn
1Nn>0 =

N n+1

N n
1N n>0.

The (Un+1,x)x∈Zd are independent under P(·|Gn). It is not difficult to see that, on the event {Nn > 0},

P(Un+1,x |Gn) = ρn(x), and hence P(Un+1|Gn) = 1.

Also, with eci =
m(i)

mi , i = 2, 3,

αρ(x)2 =
1

m2N2
n

N2
n,xQ

�

m2
n,x

�

≤ P
�

U2
n+1,x

�

�Gn
�

=
1

m2N2
n

P

�

�

∑

x∈VN0
:

Nn,(x ,x)=1

Kn,(x ,x)

�2�
�

�

�

Gn

�

≤
N2

n,x m(2)

m2N2
n
= ec2ρn(x)

2,

P
�

U3
n+1,x

�

�Gn
�

≤
m(3)

m3 ρn(x)
3 = ec3ρn(x)

3, again on the event {Nn > 0}.

Proof of Corollary 2.4.10. We need to verify the prerequisites of Proposition 2.4.9 which we apply
to Xn := N n and

∆Yn :=
N n

N n−1

1N n−1>0−1N n−1>0 =
∑

x
[Un,x −ρn,x]≥ 1.

The second moments compute as

P
�

(∆Yn)
2
�

�Gn
�

= P
�

(
∑

x
[Un,x −ρn−1,x])

2
�

�Gn
�

=
∑

x ,y
P
�

(Un,x −ρn−1,x)(Un,y −ρn−1,y)
�

�Gn−1
�

=
∑

x
P
�

(Un,x −ρn−1,x)
2
�

�Gn−1
�

=
∑

x

�

P
�

U2
n,x

�

�Gn−1
�

−ρ2
n−1,x

�

.
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Using the observations after Notation 2.4.11, we hence get

�Q(m2
n,x)

m2 − 1
�
∑

x
ρ2

n−1,x ≤ P
�

�

∆Yn
�2
�

�

�Gn

�

≤
�m(2)

m2 − 1
�
∑

x
ρ2

n−1,x .

Similar observations lead to estimate for the third moment:

P
�

(∆Yn)
3
�

�Gn−1
�

= P
�

�

∑

x
[Un,x −ρn−1,x]

�3
�

�

�Gn−1

�

=
∑

x
P
�

(Un,x −ρn−1,x)
3
�

�

�Gn−1

�

≤ 3
∑

x
P
�

U3
n,x +ρ

3
n−1,x

�

�

�Gn−1

�

≤
�m(3)

m3 − 1
�
∑

x
ρ3

n−1,x .

This proves that all hypotheses of Proposition 2.4.9 are fulfilled and in fact equality holds for (2.20).

Proof of Lemma 2.4.8. We make a slight abuse of notation writing B(m) as templates for both the
cases B and Bm, and so on for similar cases of notation. We can make use of (2.16) and, splitting
two times 1 into complementary indicators, get

∆bA(m)n = P
�

∆X (m)n

�

�Gn−1
�

= PSeS

�

ζn−1
eζn−11B(m)

h

�

1Sn−1 6=eSn−1
+α1Sn−1=eSn−1

�

1Sn−1 6=eSn−1
1Sn−2 6=eSn−2

+
�

1Sn−1 6=eSn−1
+α1Sn−1=eSn−1

�

1Sn−1 6=eSn−1
1Sn−2=eSn−2

−
�

1Sn−1 6=eSn−1
+1Sn−1=eSn−1

�

1Sn−2 6=eSn−2

i

�

. (2.21)

In the last term, 1Sn−1 6=eSn−1
is implied by the following indicator, while in the second term, 1Sn−1 6=eSn−1

is 0 due to the fact that ζn−1
eζn−11Sn−1 6=eSn−1

1Sn−2=eSn−2
= 0, P ⊗ PSeS–a.s.. Thus, we can continue

(2.21)= PSeS

�

ζn−1
eζn−11B(m)

h

(α− 1)1Sn−1=eSn−1
1Sn−2 6=eSn−2

+α1Sn−1=eSn−1
1Sn−1 6=eSn−1

1Sn−2=eSn−2

i

�

≤ αPSeS
�

ζn−1
eζn−11Sn−1=eSn−1

1B(m)

�

.

The sum
Z bA :=

∑

n
ζn−1

eζn−11Sn−1=eSn−1

is PSeS–integrable, thanks to Corollary 2.4.10 together with Lemma 1.3.1 and Lemma 1.3.3. So,
summation over all n ∈N yields

bA(m)n ↗ bA(m)∞ ≤ PSeS
�

Z bA : B(m)
�

(

<∞ for B(m) = B

−−−→
m→∞

0 for B(m) = Bm,
(2.22)
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P–almost surely.

Now, the same sort of estimates will be carried out for Mn, but involves much more work.

First, we note that ∆M (m)n can be written as

∆M (m)n = X (m)n − P
�

X (m)n

�

�Gn−1
�

= PSeS

�

ζn−1
eζn−11B(m)

hA Sn
n,Sn−1

aSn
Sn−1

A
eSn

n,eSn−1

a
eSn
eSn−1

1Sn−1 6=eSn−1

−1Sn−1 6=eSn−1

�

α1Sn−1=eSn−1
+1Sn−1 6=eSn−1

�

i

�

.

Definition 2.4.12. For convenience, we define

ϕn(S,eS) :=
A Sn

n,Sn−1

aSn
Sn−1

A
eSn

n,eSn−1

a
eSn
eSn−1

−α1Sn−1=eSn−1
−1Sn−1 6=eSn−1

.

This is the point where we cannot maintain our easy notation of S and eS, for we need four inde-
pendent random walks S[1], S[2], S[3], S[4]. The probability spaces and other notations are adjusted
accordingly, refer to Definition 2.4.1. We compute

∆〈M (m)〉n = P
�

(∆M (m)n )2
�

�Gn−1
�

= P⊗4
S

�

ζ
[1]
n−1ζ

[2]
n−1ζ

[3]
n−1ζ

[4]
n−11B(m)×B(m)

1
S
[1]
n−1 6=S

[2]
n−1
1
S
[3]
n−1 6=S

[4]
n−1

P
�

ϕn(S
[1],S[2])ϕn(S

[3],S[4])
�

�

. (2.23)

We note that if S[i]n−1 6= S[ j]n−1 for i = 1,2 and j = 3,4, then ϕn(S[1],S[2]) and ϕn(S[3],S[4]) are

independent, and that under {S[1]n−1 6= S
[2]
n−1}, it holds that PS[1],S[2]

�

P(ϕn(S[1],S[2]))
�

= 0, where
PS[1],S[2] is the probability measure with respect to (S[1],S[2]). From these observations, we get

(2.23)≤
∑

i=1,2; j=3,4

P⊗4
S

�

ζ
[1]
n−1ζ

[2]
n−1ζ

[3]
n−1ζ

[4]
n−11B(m)×B(m)

1
S
[1]
n−1 6=S

[2]
n−1
1
S
[3]
n−1 6=S

[4]
n−1

P
�

ϕn(S
[1],S[2])ϕn(S

[3],S[4])
�

: S i
n−1 = S j

n−1

�

. (2.24)

It is clear that

P
�

ϕn(S
[1],S[2])ϕn(S

[3],S[4])
�

≤ P

�A
S[1]n

n,S[1]n−1

A
S[2]n

n,S[2]n−1

A
S[3]n

n,S[3]n−1

A
S[4]n

n,S[4]n−1

aS
[1]
n

S
[1]
n−1

aS
[2]
n

S
[2]
n−1

aS
[3]
n

S
[3]
n−1

aS
[4]
n

S
[4]
n−1

�

.

We define W (X , Y ) for X =
�

x[1],x[2],x[3],x[4]
�

, Y =
�

y[1],y[2],y[3],y[4]
�

by

W (X , Y ) = P
�

A y[1]

1,x[1]
A y[2]

1,x[2]
A y[3]

1,x[3]
A y[4]

1,x[4]

�

.
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W (X , Y ) is zero whenever {a4} := a
S[1]n

S
[1]
n−1

a
S[2]n

S
[2]
n−1

a
S[3]n

S
[3]
n−1

a
S[4]n

S
[4]
n−1

is zero; we hence care only about cases

where {a4} 6= 0. Also, remember that (2.23) restricts to the event {S[1]n−1 6= S
[2]
n−1, S[3]n−1 6= S

[4]
n−1}.

Such cases can be separated as follows, with the definition k[ j] := y[ j]/x[ j] for j = 1, 2,3, 4:






































































































































































• •

••

• •

••

• •

•• 0 x[1] = x[3], x[1] = x[3], y[1] 6= y[3], {a4} 6= 0
• •

••
??

?
��

�
1 x[ j] 6= x (`) ∀ j,` ∈ {1, 2,3, 4} : j 6= `, {a4} 6= 0

• •

••
??

?
��

� • •

•• 2 x[1] = x[3] 6= x[2] 6= x[4] 6= x[1], x[1] 6= x[3],
{a4} 6= 0

• •

••
??

?
��

� • •

••

• •

•• 3
x[1] = x[3] 6= x[2] 6= x[4] 6= x[1], x[1] = x[3],

y[1] = y[3], {a4} 6= 0
• •

••
??

?
��

� • •

•• 4 x[1] = x[3] 6= x[2] = x[4], x[1] 6= x[3], x[2] 6= x[4],
{a4} 6= 0

• •

••
??

?
��

� • •

••

• •

•• 5
x[1] = x[3] 6= x[2] = x[4], x[1] 6= x[3], x[2] = x[4],

y[2] = y[4], {a4} 6= 0
• •

••
??

?
��

� • •

••

• •

•• 6
x[1] = x[3] 6= x[2] = x[4], x[1] = x[3], x[2] = x[4],

y[1] = y[3], y[2] = y[4], {a4} 6= 0
• •

••
??

?
��

�
��

� • •

••�
�� 7 x[1] = x[3] = x[2] 6= x[4], x[1] 6= x[3] 6= x[2],

{a4} 6= 0
• •

••
??

?
��

�
��

� • •

••�
����
� • •

••�
����
�

8
x[1] = x[3] = x[2] 6= x[4], x[1] 6= x[3] = x[2],

y[3] = y[2], {a4} 6= 0
• •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

�
9

x[1] = x[3] = x[2] = x[4],
x[ j] 6= x(`) ∀ j,` ∈ {1,2, 3,4} : j 6= `, {a4} 6= 0

• •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

� • •

•• 10
x[1] = x[3] = x[2] = x[4],

x[2] 6= x[3] 6= x[1] 6= x[2] = x[4] y[2] = y[4], {a4} 6= 0
• •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

� • •

•• 11
x[1] = x[3] = x[2] = x[4], x[1] = x[3] 6= x[2] = x[4],

y[1] = y[3], y[2] = y[4], {a4} 6= 0

Cases that can be obtained by symmetry are not listed here. Case 0 yields W (X , Y ) = 0 for it is
impossible in the BRWRE–Model: particles with the same name at the same place are blown by the
wind to the same site, so their children cannot be born at different sites.

The notation with the small squares is solely for the ease of understanding; all information is fully
contained in the written part. For how to read it, let us take as an example case number 5:

• •

••
??

?
��

� • •

••

• •

•• 5
x[1] = x[3] 6= x[2] = x[4], x[1] 6= x[3], x[2] = x[4],

y[2] = y[4], {a4} 6= 0

The first square corresponds to the ‘x ’–part, the second one to the ‘x’–part, and the last one to the
‘y ’–part of the restriction. Each • corresponds to an index j = 1, . . . , 4, read left–right, top–down.
The two left bullets of the first square are connected with a double stroke, read: equality sign, just
as the two left ones. Indeed, x[1] = x[3] and x[2] = x[4]. All other connections are single–stroked,
and are supposed to be read as inequalties. The second square conveys hence the information that
x[1] 6= x[3] and x[2] = x[4]. The other dotted connections indicate that both the cases of equality and
inequality are comprised. Lastly, the third square stands for all y[ j], j ∈ {1, . . . , 4} with y[2] = y[4].
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If one changes the mapping of bullet–position and index, one gets all the symmetries immediately.
A missing square has the same meaning as a square with only dotted lines would have.

Now, we can compute W (X , Y ), which equals in the respective cases to:














































































































































































































0
• •

••

• •

••

• •

•• 0

ay
[1]

x[1]
ay
[3]

x[3]
ay
[2]

x[2]
ay
[4]

x[4]

• •

••
??

?
��

�
1

� 1

2d

�2
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

�

ay
[2]

x[2]
ay
[4]

x[4]

• •

••
??

?
��

� • •

•• 2

� 1

2d

�

P
�
∑

i≥max{k[1],k[3]}

q00(i)
�

ay
[2]

x[2]
ay
[4]

x[4]

• •

••
??

?
��

� • •

••

• •

•• 3

� 1

2d

�4
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

�

P
�
∑

i≥k[2]
q00(i)

∑

i≥k[4]
q00(i)

� • •

••
??

?
��

� • •

•• 4

� 1

2d

�3
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

�

P
�
∑

i≥max{k[2],k[4]}

q00(i)
� • •

••
??

?
��

� • •

••

• •

•• 5

� 1

2d

�2
P
�
∑

i≥max{k[1],k[3]}

q00(i)
�

P
�
∑

i≥max{k[2],k[4]}

q00(i)
� • •

••
??

?
��

� • •

••

• •

•• 6

� 1

2d

�3
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

∑

i≥k[2]
q00(i)

�

ay
[4]

x[4]

• •

••
??

?
��

�
��

� • •

••�
�� 7

� 1

2d

�2
P
�
∑

i≥k[1]
q00(i)

∑

i≥max{k[3],k[2]}

q00(i)
�

ay
[4]

x[4]

• •

••
??

?
��

�
��

� • •

••�
����
� • •

••�
����
�

8

� 1

2d

�4
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

∑

i≥k[2]
q00(i)

∑

i≥k[4]
q00(i)

� • •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

�
9

� 1

2d

�3
P
�
∑

i≥k[1]
q00(i)

∑

i≥k[3]
q00(i)

∑

i≥max{k[2],k[4]}

q00(i)
� • •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

� • •

•• 10

� 1

2d

�2
P
�
∑

i≥max{k[1],k[3]}

q00(i)
∑

i≥max{k[2],k[4]}

q00(i)
� • •

••
??

?
??

?
��

�
��

� • •

••
??

?
��

� • •

•• 11

The number of different points in the first square corresponds to the number of separate expectations

(there are expectations hidden in the ay
[ j]

x[ j]
’s). The equalities in the second square that are written

down are important inasmuch as they decide about which sums become united to one sum running
over i ≥max{· · · }. The third square decides if in fact the case is at all possible. The exponent of the
fraction corresponds to the number of summation marks (there are summation marks hidden in the

ay
[ j]

x[ j]
’s, but fractions, as well, so these ay

[ j]

x[ j]
’s do not contribute to the exponent of the fraction).

Now, we can continue with ∆〈M (m)〉n. To get from (2.24) to the following line, one can apply the
same trick with insterted conditional expectations as in the succession of equalities (2.14), and pick
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the worst case, which is case 11. We continue (2.24) and find

∆〈M (m)〉n ≤
∑

i=1,2; j=3,4

C P⊗4
S

�

ζ
[1]
n−1ζ

[2]
n−1ζ

[3]
n−1ζ

[4]
n−11S[i]n−1=S[ j]n−1

: B(m)× B(m)
�

,

where C = c Q
�

(m(2)0,0)
2�/m4 <∞ and c is a constant depending only on d.

Z M
i, j :=

∑

n
ζ
[1]
n−1ζ

[2]
n−1ζ

[3]
n−1ζ

[4]
n−11S[i]n−1=S[ j]n−1

serves the same aim as Z bA in (2.22), and is P⊗4
S

–integrable for the same reasons as for Z bA. So, in
the same manner, we conclude

〈M (m)〉∞ =
∑

n
∆〈M (m)〉n ≤

∑

i=1,2; j=3,4

P⊗4
S
(Z M

i, j : B(m)× B(m))

(

<∞ for B(m) = B

−−−→
m→∞

0 for B(m) = Bm,

P–almost surely. This finishes the proof of Lemma 2.4.8.

Lemma 2.4.13.

ePµ(2)∞ is a probability measure on F 1
∞⊗ eF 1

∞. (2.25)

ePµ(2)∞ � PSeS(· × (Ω
2× eΩ2)) on F 1

∞⊗ eF 1
∞. (2.26)

Proof. As in the proof of (2.2), (2.25) and (2.26) boil down to proving that

lim
m→∞

ePµ(2)∞ (Bm) = 0,

for {Bm} ⊂ (F 1)⊗2 with limm→∞ PSeS(Bm) = 0. We show, in a way similar to the very end of the
proof of Lemma 2.4.2,

lim
m→∞

µ(2)∞ (Bm) = lim
m→∞

lim
n→∞

µ⊗2
n (Bm) = 0 in eP–probability,

by proving that
lim

m→∞
sup

n
X m

n = 0 in eP–probability, (2.27)

where X m
n = Xn(Bm) defined for Bm. Let also

X m
n =: M m

n + bA
m
n

be the submartingale decomposition as in (2.17) and as hinted in Lemma 2.4.8. Now, we can apply
the ‘Bm’–version of Lemma 2.4.8. bAm

n is taken care of by the first statement of (2.19), and for M m
n ,

the second statement and a little calculus will yield

lim
m↗∞

sup
n
|M m

n |= 0 in eP–probability. (2.28)

In fact, for ` ∈R, let τm
`
= inf{n≥ 0 : 〈M m〉n+1 > `}. Then,

P
�

sup
n

�

�M m
n

�

�≥ ε, N∞ > 0
�

≤ P
�

〈M m〉∞ > `, N∞ > 0
�

+ P
�

sup
n

�

�M m
n

�

�≥ ε, τm
` =∞

�

.
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Clearly, the first term on the right–hand–side vanishes as m↗∞ because of (2.19), and so does the
second term as can be seen from the following application of Doob’s inequality (for instance [Dur91,
p.248]):

P
�

sup
n

�

�M m
n

�

�≥ ε, τm
` =∞

�

≤ P
�

sup
n

�

�

�M m
n∧τm

`

�

�

�≥ ε
�

≤ 4ε−2P
�

〈M m〉τm
`

�

≤ 4ε−2P
�

〈M m〉∞ ∧ `
�

.

Since ` is arbitrary, (2.28) follows and hence we conclude (2.27).

Proof of Theorem 2.2.2. We are going to make use of the experience gathered in proving Proposi-
tion 2.3.1. In a manner very similar to the proof of (2.7), for (2.5), we need to show an analogue of
(2.8) with the help of an analogue of (2.9). To be more concrete, we show

lim
n→∞

eP
�

�

µ∞
�

F(S(n))
��2
�

= 0, (2.29)

which implies
eP
�

|µ∞(F(S(n)))|
�

−−−→
n→∞

0, (2.30)

and hence the convergence in probability. Indeed, using the same replacement argument, but with
(2.26) instead of (2.3), we get

lim
n→∞

ePµ(2)∞
�

G
�

S(n), eS(n)
�

�

= (PW)⊗2
�

G
�

· /
p

d, e·/
p

d
�

�

for any G ∈ Cb(W×W). In particular, we can take G(w, ew) = F(w)F(ew), and get (2.29), and hence
(2.5). The proof of (2.4) works with the same telescopic technique seen in (2.11) used in the proof
of (2.6):

eP
�

|µn(F(S
(n)))|

�

= eP
�

|µn(F(S
(n)− F(S(n−k)))

�

+ eP
�

|µn(F(S
(n−k)))−µ∞(F(S(n−k)))|

�

+ eP
�

|µ∞(F(S(n−k)))|
�

.

Note that the L2–techniques in this paragraph that lead to (2.30) are needed only for the treatment
of the last line; the other two can be dealt with with the same arguments than after (2.11).
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A Stationary, Mixing and Perturbative

Counterexample to the 0-1-law

for Random Walk in Random Environment

in Two Dimensions

Hadrian Heil∗

Abstract

We construct a two-dimensional counterexample of a random walk in random environ-
ment (RWRE). The environment is stationary, mixing and ε–perturbative, and the corre-
sponding RWRE has non-trivial probability to wander off to the upper right. This is in
contrast to the 0-1-law that holds for i.i.d. environments.

1 Random walk in random environment

We start by fixing the notation and the basic notions of the model.
We work in the d-dimensional space Zd, d ≥ 1. N0 := {0, 1, 2, . . . } and N := {1, 2, . . . } stand

for the natural numbers.
We will count dimensions from 0 to d − 1; so, we write u = (u0, u1, . . . , ud−1) ∈ Zd, and

denote by e0, . . . ed−1 the canonical unit vectors in Zd. This nonstandard–notation will simplify
things later. For two vectors v, w ∈ Zd, v · w denotes the scalar product.

For any real number r ∈ R, we will be using the floor function brc := max{m ∈ N0 : m ≤ r}
and for any natural number l ∈ N0 the modulo operation l mod 2 := 1l is impair ∈ {0, 1}.

If P is a probability measure, with the convenient notational abuse common in mathematical
physics, we write “P” for the expectation operator as well.

Define
Sd :=

{
$ ∈ [0, 1]{±ej ,0≤j<d} :

∑
e∈{±ej ,0≤j<d}

$(e) = 1
}
, d ∈ N,

the set of nearest neighbour transition probabilities on Zd. We call a family ω = (ωu)u∈Zd of
Sd-valued random variables on an appropriate probability space (Ω,A, P ) a random environment
on Zd.

One might ask for a random environment to satisfy, with 0 ≤ κ < 1/2 some ellipticity
constant, the condition

P
(
ωu(e) ∈ (κ, 1− κ)

)
= 1 for all u ∈ Zd, e ∈ {±ej , 0 ≤ j < d}. (1.1)

If (1.1) is satisfied with κ = 0, the environment is called elliptic, and if it is even satisfied with
some κ > 0, uniformly elliptic.

∗supported by the German–Israeli–Foundation, grant number I-974-152.6/2007

i



A morally even stronger notion of homogeneity is reached when one pushes κ towards 1
2d .

For ε > 0, ω is called ε–perturbative if

P
(
ωu(e) ∈ [1/2d− ε, 1/2d+ ε]

)
= 1 for all u ∈ Zd, e ∈ {±ej , 0 ≤ j < d}.

We use the term totally ergodic for “ergodic with respect to any shift”.
Take a starting point v ∈ Zd. To a random environment ω on (Ω,A, P ), we associate the

random probability measure Pωv , which, together with the Zd-valued random variables (Xt)t∈N0
,

establishes the random walk in random environment (P, Pωv , (Xt)t∈N0
). It is defined to satisfy

the Markov-property and

Pωv (X0 = v) = 1, (1.2)

Pωv (Xt+1 = Xt + e|Xt = u) = ωu(e), e ∈ {±ej , 0 ≤ j ≤ d− 1}, u ∈ Zd.

In [Kal81], Kalikow considered questions of recurrence and transience of this model, and proved
that for uniformly elliptic i.i.d.–environments,

PPω0 (Xt · v changes sign infinitely often) ∈ {0, 1}, v ∈ Zd. (1.3)

He also raised the question whether in d = 2, it holds that

PPω0 (Xt · v −−−→
t→∞

∞) ∈ {0, 1}, v ∈ Rd \ {0}. (1.4)

Sznitman and Zerner highlighted in [SZ99] that Kalikow’s question (1.4) is valid in any dimension
d ≥ 2. They also pointed out that (1.3) implies

P
(
Pω0 (Xt · v is transient)

)
∈ {0, 1}, v ∈ Zd.

The term Kalikow’s 0–1–law has since been established for this assertion.
For d = 2, Zerner and Merkl answer Kalikow’s question (positively) for elliptic i.i.d.–envi-

ronments in [ZM01]; an improved version of the proof is given in [Zer07]. Holmes and Salisbury
treat the same questions without the assumption of ellipticity in [HS].

The necessity of the i.i.d.–assumption is assessed in [ZM01] by means of an example for d = 2
of an elliptic, ergodic and stationary environment that features

PPω0 (Xt · v −−−→
t→∞

∞) 6∈ {0, 1} for some v ∈ Zd. (1.5)

[Zer07] gives a similar example with an even totally ergodic environment.
As for d ≥ 3, Bramson, Zeitouni and Zerner [BZZ06] have a uniformly elliptic, stationary,

totally ergodic, and even mixing example of an environment satisfying (1.5).
In the present article, we construct an environment with similar properties for dimension

d = 2. Our main theorem is indeed:

Theorem 1.0.1. For any ε > 0, there is an ε–perturbative, stationary, mixing random environ-
ment ω = (ωu)u∈Z2 with associated probability measure P such that for the associated random
walk ((Xt), P

ω
0 ), it holds that

PPω0
(
Xt ·~1 −−−→

t→∞
∞
)
> 0 as well as PPω0

(
Xt ·~1 −−−→

t→∞
−∞

)
> 0.

Here, ~1 denotes the vector (1, 1).
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A preprint by Guo [Guo] is concerned with the limiting velocity of the random walk in random
environment on the events {Xt · v −−−→

t→∞
†∞}, † ∈ {+,−}, v ∈ Rd, in dimensions d ≥ 2, in the

case where the random environment satisfies uniform ellipticity and a certain strong mixing
condition which holds in Gibbsian environments, for instance.

Proof of Theorem 1.0.1, and organisation of the article. In Section 2, we construct an object
called streetgrid which we use to define the actual random environment in Subsection 2.3. We
prove the streetgrid to be stationary and mixing in the Subsections 3.3 and 3.4. These properties
are inherited in the definition of the random environment.

In Subsection 3.2, we show that there are areas growing in the direction of ~1 that are in some
sense large. This has the consequence, via the placement of the transition probabilities, that the
random walk has positive probability of never leaving these areas, while wandering off to infinity
in the direction of ~1. This is shown in Subsection 4. The same arguments could be repeated for
−~1, which finishes the proof.

We should want to indicate some of the sources of inspiration that contributed to this article.
The ideas of conducting the random walk to infinity on a “treelike structure” of “not too slowly
growing roads leading to infinity” has been applied in [BZZ06]. As for how to construct such
a structure in dimension d = 2, Häggström and Mester [HM09] had the idea of ever larger,
ever rarer streets joining each other. By using Poisson processes of different intensities as the
underlying structure instead of their“windows” of fixed length, we were able to avoid some of the
rigidity of their model and to make assertions on mixing, at the price of developing a completely
new construction.

2 Construction of a random environment

2.1 Notation

2.1.1 Boxes

Recall the convention to write u = (u0, u1) ∈ Z2. We call a box any subset B of Z2 that can be
expressed as

B = {b0, . . . , b′0} × {b1, . . . , b′1} for some bj , b
′
j ∈ Z with bj ≤ b′j , j ∈ {0, 1}. (2.1)

For a box B, we define the emplacement of the faces of B as

bj(B) := bj , b′j(B) := b′j , j ∈ {0, 1}, (2.2)

where bj , b
′
j , j ∈ {0, 1}, are taken from (2.1).

For v, w ∈ Z2 we define the box between v and w as

B’twn(v, w) :=
{

min{v0, w0}, . . . ,max{v0, w0}
}
×
{

min{v1, w1}, . . . ,max{v1, w1}
}
.

The (outer) boundary of a box B may be defined as

∂B := {u ∈ Z2 : d(u,B) = 1};

here, d(·, ·) means the 1-metric. It is convenient to define as well the closure of B, which is

B := B ∪ ∂B;

iii



the upper right corner �B of a box B is

�B := (b′0(B), b′1(B)).

2.1.2 Streets and streetgrid, and blocks

We call a number m ∈ N0 a superlevel, and k ∈ {0, 1} a sublevel. The mapping (m, k) 7→ 2m+k :
N0×{0, 1} → N0 is bijective, and this number is called the corresponding level. Given any level
l ∈ N0, we can obviously reconstitute superlevel and sublevel using the inverse function, (b l2c, l
mod 2).

If a level has somehow been assigned to some object, we will speak of the superlevel and the
sublevel of that object as well.

Given a level l ∈ N0 and a function F ∈ N0
D, D ⊆ Z2, a box B ⊆ D is called a street of

level l w.r.t. F if
Fu = l for all u ∈ B, and Fu 6= l for all u ∈ ∂B ∩D.

We call it a field w.r.t. F if it is a street of level 0 w.r.t. F . When it is obvious or not important
which level and function are meant, we will simply speak of “street” and “field”.

We say F is a streetgrid if D is the union of streets and fields with respect to F , i.e.

D = ∪·
l∈N0

∪·
B street of

level l w.r.t. F

B. (2.3)

Given a box B contained in the domain of a streetgrid F , we define the level of the box B
w.r.t. F as

`(B) = `F (B) := max
u∈B

Fu.

Note that if the box B is a street, the two definitions of “level of the box B” and “level of the
street B” coincide.

For B ⊆ Z2 a box such that B ⊆ D the domain of F , we say B is a block w.r.t. F if all points
u ∈ ∂B are elements of exactly four different streets w.r.t. F , which are all of level greater than
`F (B).

The upper and lower levels of the block B are defined respectively as

`
F

(B) := max
u∈∂B

Fu and `F (B) := min
u∈∂B

Fu.

`·(B) will be crucial in determining streets of which levels might be present if we have only

information about ∂B the boundary of B, and `
·
(B) will constitute a lower bound to all levels

that are not present in B.
Given a streetgrid F and u ∈ Z2, we define S’rndFu to be the street or field around u; to be

precise,

S’rndFu is defined to be the unique street or field B w.r.t. F such that u ∈ B.

2.2 Construction of the streetgrid

2.2.1 Parameters and randomness used in the construction

λm := (m+ 1)!−2 and βm := m!2, m ∈ N0, (2.4)
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are called the rate of occurrence of streets at superlevel m and the planned widths of the streets
at superlevel m, respectively.

We define
Z := Z×N0 × Z2,

and, on some appropriate probability space (Ω,F , P ), a family of independent random variables

X :=
(
X(x, l, w)

)
(x,l,w)∈Z ,

which are to be Bernoulli-distributed with parameters λb l2 c
.

To understand the meaning of the index-set Z, we need to read it backwards. Every point
in Z2 gets for every level in N0 a Bernoulli-process {0, 1}Z.

Having the necessary terms and definitions as well as the random ingredients at hand, we can
start constructing the environment, beginning with a streetgrid. This will be done in two steps.
Starting at the origin, we begin with narrow streets and make our way towards infinity by ever
wider ones. This leaves wide areas of fields that will then be filled in the opposite direction with
ever narrowing streets.

2.2.2 The initial grid

We could put the random ingredient X directly into our construction, which will be built grad-
ually in several definitions. We prefer however to write down these definitions as functions on
{0, 1}Z , and to finally evaluate them at the random place X. Notationwise, we will drop the
dependence on x ∈ {0, 1}Z after the first appearence, though. Please note that the definitions
may, for some x ∈ {0, 1}Z , not make any sense; whenever there is some doubt on how x should
look like, any typical realization x of X will do.

In a first step, we define processes that, roughly speaking, show where streets would be if
each coordinate existed on its own. For each coordinate direction j ∈ {0, 1} and every superlevel
m ∈ N0, we attach to the left of every point highlighted as 1 by the process x(·, 2m + j, 0) an
interval with the width βm of the respective superlevel m. Then, for any point, we take the
maximum level of all streets the point lies in; that is, in the case of overlapping intervals of
different levels, the higher level prevails:

W j
x(x) := 2 max

{
m ∈ N0 : ∃y ∈ Z : x ≤ y < x+ βm, x(y, 2m+ j, 0) = 1

}
+ j, (2.5)

j ∈ {0, 1}, x ∈ Z, x ∈ {0, 1}Z .

We need to make sure W j
x(X) is P–a.s. finite for all j ∈ {0, 1} and all x ∈ Z. For m ∈ N, x ∈ Z,

it holds that

P
(
∃ y ∈ Z : 0 ≤ y − x < βm, X(y, 2m+ j, 0) = 1

)
= P

(
#{y ∈ Z : 0 ≤ y − x < βm, X(y, 2m+ j, 0) = 1} ≥ 1

)
≤ P

(
#{y ∈ Z : 0 ≤ y − x < βm, X(y, 2m+ j, 0) = 1}

)
=

x+βm−1∑
y=x

P
(
X(y, 2m+ j, 0) = 1

)
= βmλm =

m!2

(m+ 1)!2
=

1

(m+ 1)2
.

With the Borel–Cantelli–lemma, we conclude that there are P–a.s. only finitely many m ∈ N
satisfying the condition of the maximum in (2.5), which hence is P–a.s. finite.

The dependence on x will de dropped for the next few definitions, even though it of course
persists.
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Figure 1: Simulation of a realization of W 0
x (X) and V 0

x , x ∈ Z, represented by the thick line. The
rectangles indicate the intervals attached to the points highlighted by the Bernoulli-processes of
different intensities. Although in this picture the domain of the two functions looks continuous,

they are defined to have domain Z.

The function W j
x will be further transformed by removing the outer intervals of smaller value

in
V jx := W j

x1W j
x=(max0≤y≤xW

j
y∨maxx≤y≤0W

j
y ), j ∈ {0, 1}, x ∈ Z.

Note that the maximum over an empty set is to be read as −∞.
The transition from W 0

· to V 0
· is visualized in Figure 1.

Remark 2.2.1. A monotonically increasing function f : N0 → R satifies fx = max0≤y≤x fy,
x ∈ N0. (V jx )x∈N0

, j ∈ {0, 1} are not monotonically increasing, but “weakly monotonically
increasing, seen from 0” in the sense that they still satisfy

V jx ∈
{

0, max
0≤y≤x

V jy

}
, x ∈ N0, j ∈ {0, 1},

and a similar assertion for negative x.

With the following definition, we begin our two–dimensional construction. Any point u =
(u0, u1) ∈ Z2 gets assigned a level by

InitGridx(u) :=
(
V 0
u0
∨ V 1

u1

)
1V 0

u0
∨V 1

u1
≥maxj∈{0,1}(max0≤x<uj V

j
x∨maxuj<x≤0 V

j
x ).

In words, the point u gets assigned the maximum of the two V 0
u0

and V 1
u1

provided this maximum
is larger than any of the V jx for x between 0 and uj , with j ∈ {0, 1}. Thus, InitGrid satisfies
a two-dimensional analogue of the heuristical notion of “weakly monotonically increasing seen
from 0” mentioned in Remark 2.2.1.

Note that InitGrid is only the initial streetgrid, and w.r.t. this InitGrid, large fields remain.
We write InitGrid(u) := InitGridX(u); a simulation of InitGrid is shown in Figure 2.
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Figure 2: Simulation of InitGrid = InitGridX. Again, the domain of InitGrid is not continuous,
but Z2. V 0

· is the same as in Figure 1.

vii



Lemma 2.2.2. InitGridX(·) is P–a.s. a streetgrid.

Proof. We need to show that Z2 is a patchwork of streets and fields w.r.t. InitGridX(·) as in
(2.3). We will concentrate on the first quadrant, referring to analogy for the other ones.

Define
Y jm := min{x ∈ N0|V jx > m}, m ∈ N0, j ∈ {0, 1}.

On the coordinate axes, we have that

InitGrid(0) = max
j∈{0,1}

V j0 ,

InitGrid(xe0) = InitGrid(0) for all 0 ≤ x < Y 0

b InitGrid(0)
2 c,

InitGrid(ye1) = InitGrid(0) for all 0 ≤ y < Y 1

b InitGrid(0)
2 c,

InitGrid(xe0) = V 0
x for all x ≥ Y 0

b InitGrid(0)
2 c,

InitGrid(ye1) = V 1
y for all y ≥ Y 1

b InitGrid(0)
2 c.

On the first quadrant, it holds that

InitGrid
(
(x, y)

)
= InitGrid(0) for all 0 ≤ x < Y 0

b InitGrid(0)
2 c, 0 ≤ y < Y 1

b InitGrid(0)
2 c,

and more generally,

InitGrid
(
(x, y)

)
=


V 0
x if V 0

x > V 1
z for all 0 ≤ z ≤ y,

V 1
y if V 1

y > V 0
z for all 0 ≤ z ≤ x,

0 else.

If one takes this equation for fixed, say, x with V 0
x 6= 0 and lets run y from 0 to infinity, one

gets the value InitGrid((x, y)) = V 0
x = InitGrid(xe0) for all y < min{y ∈ N0|V 1

y > V 0
x }; in

other words, until from the other coordinate, one gets blocked. Because V 0
· and V 1

· have disjoint
codomains (except for 0, which they have in common), these blockings are sharp in the sense
that one can always tell whether a point has got its value (different from 0) from V 0

· or V 1
· .

Also, the other way around, if some point (x, y) ∈ Z2 has got its initial–grid–value from, say,
V 0
x , then fixing x and letting z run from y to 0 yields

InitGrid
(
(x, z)

)
= InitGrid

(
(x, y)

)
for all y ≥ z ≥ 0.

Combining the arguments of the last two paragraphs, one can see that all points u ∈ Z2 satisfying
InitGrid(u) = 2m+ j 6= 0 lie in areas of constant InitGrid-value outgoing perpendicularily from
the j-th coordinate axis. Each such area continues until it gets blocked by some area coming
from the other coordinate axis. The areas are of rectangular shape, and P–a.s. finite.

This applies as well to the areas where the initial grid equals 0. These are indeed surrounded
by four streets of different levels, so that they are fields.

Finally, we need not only to pay attention at the the four quadrants individually, but at the
transition between them as well. Indeed, the streetgrid–property holds because between adjacent
quadrants, the same V j· , j ∈ {0, 1} influences the construction of the streets.

Remark 2.2.3. We will be saying “ 0 is responsible in InitGrid for the emplacement of streets
of level l on D” for any block D w.r.t. InitGrid containing the origin and any level `InitGrid(D) ≤
l < `InitGrid(D).
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`InitGrid(D) is the highest level of any streets placed on D. The emplacement of these streets
has been provided by the random ingredient X evaluated at points (·, l, 0), so it is sound to say
0 is responsible.

How about the levels `InitGrid(D) < l < `InitGrid(D)? No street of these levels exists in D.
But this absence of streets was stipulated by an absence of 1s in the random ingredient X at
points (·, l, 0), `InitGrid(D) < l < `InitGrid(D). So it is legitimate to say 0 is responsible for those
levels as well.

We will extend the notion of responsibility in Definition 2.2.5.

2.2.3 Asphalting of the remaining fields

After constructing InitGridx(u), we continue by iteratively putting the missing streets on the
remaining fields. Let us describe informally how we proceed.

The streets that are not fields w.r.t. InitGridx are to remain untouched. We want to work
exclusively on the fields.

By Lemma 2.2.2, any field B w.r.t. InitGridx is surrounded by four streets. The minimum of
their level minus one is the level of the first streets that should be put on B. Determining the
level of the streets to put is hence the first step.

Then, we need to know the place where we put these streets. To each field B will be assigned
an own process resembling the one in (2.5); this time however, only one level at a time is taken
into account. The random ingredient of this process will be the Bernoulli process associated to
the upper right corner of B and the respective level.

Now, when the streets are put on the fields, smaller fields are created; on these, we put streets
of the next lower level, and so on.

Now, back to rigid definitions. First, we define a dummy and the starting point of the
iteration,

L0
u :≡ 0, L1

u := InitGridx(u), u ∈ Z2.

For i ≥ 1, and B a field with respect to the i-th iteration step Li· , we associate a level to B by

li(B) :=

{
minv∈∂B L

i
v − 1 if B is not a field with respect to Li−1

·
li−1(B)− 1 if it is.

This is the level of the streets that are going to be placed on B. The first line of the definition is
used at the first iteration step, and also the default for the following steps; only if there has no
street been put on a field in the last step, the second line makes sure that in the current step,
the same level is not used again.

We provide the emplacement in B for the new streets of level l (we exceptionally remind the
dependence on x) by

W l,B
x (x) := l1∃y∈Z: x≤y<x+βb l

2
c,x(y,l,�B)=1, l ∈ N0, x ∈ Z.

Given l, the indicator function checks whether at the point x, there is a street of level l induced
by the Bernoulli process at the upper right corner of the field.

The streets are placed on the field B using

Ll,Bu := W l,B
ul mod 2

1u∈B , u ∈ Z2.

The sublevel l mod 2 is taking care of the (vertical or horizontal) orientation of the streets.
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We need to do this setting of streets in every field, and set the whole iteration step as

Liu := Li−1
u +

∑
B field

w.r.t. Li−1
·

Ll
i(B),B
u .

We have put, on every field w.r.t. Li−1
· , streets of “one level lower”.

The process Li· = Li·(x) converges pointwise with i → ∞ for P–almost any realization x of
X: for any field w.r.t. InitGridx(·), at some iteration, the level 1 (with superlevel 0) is reached
and the remaining sub-fields are entirely filled with streets of level 1. Another way of seeing the
convergence is by remarking that for every point u ∈ Z2, the sequence (Liu)i∈N is monotonically
increasing and bounded. The limes will be called the final streetgrid SG(x) = (SG(x)u)u∈Z2 and
we write SG = (SGu)u∈Z2 := (SG(X)u)u∈Z2 .

Based on the earlier simulation of the initial grid, a simulation of the final streetgrid can be
found in Figure 3.

Lemma 2.2.4. SG(X) is P–a.s. a streetgrid.

Proof. Each iteration step Li is: to obtain Li, only the fields of Li−1 are changed, and on these
fields are placed streets extending in one coordinate direction up to the boundary of the field
they are placed on. These streets are of strictly lower level than all surrounding streets.

Because the passage to the limit is of the type where for any finite region, the sequence is
from some point on constant and equal to the limiting object, SG is a streetgrid as well.

We turn again towards the concept of responsibility. This time, we give a precise definition,
and then explain how it relates to our construction of the streetgrid.

Definition 2.2.5. Take a streetgrid g. For any block D w.r.t. g and any `g(D) ≤ l < `g(D),
there is a unique w ∈ Z2 of which we say that it is in g responsible for the emplacement of streets
of level l in D. It is given by w = 0 if 0 ∈ D, and w = �D if 0 6∈ D.

For g = InitGrid, this definition exactly reflects Remark 2.2.3. The streets already present in
InitGrid are carried over to SG, so it is reasonable to say 0 is responsible for these in SG as well.

The responsibility of points w 6= 0 can be understood as follows: Any field D w.r.t. InitGrid
does not contain the origin. It is also a block and will remain a block in the course of the
construction.

The first iteration step is about placing streets of level l = `InitGrid(D) − 1 on D. The
randomness for their emplacement comes from the Bernoulli process X((·, l, �D)). This is why
�D should be considered responsible for this block and level.

If no streets of level l are placed (because the Bernoulli process is 0 in the relevant range), �D
is responsible for the subsequent lower levels as well, until streets is placed. The level of these
streets will later turn out to be the level `SG(D) of the block D.

By the placement of these streets, smaller fields are created, and it is their upper right corner
that provides the randomness via X. These upper right corners are hence the places that are
responsible for the streets of these lower levels, on these smaller fields (which again are and
remain blocks).

The next level shows that there is no conflict of responsibility.

Lemma 2.2.6. Take a streetgrid g. If w ∈ Z2 is responsible in g for the emplacement of streets
of level l in D, where l ∈ N is a level and D some block w.r.t. g, then w is not responsible in g
for the emplacement of streets of level l in B, where B 6= D is some other block w.r.t. g.
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Figure 3: Simulation of the final street grid SG. Where was the origin again?

xi



Proof. Suppose w is responsible in g for the emplacement of streets of level l in both D and B,
where both D and B are blocks w.r.t. g, but D 6= B. A first deduction is that either both B and
D must contain the origin, or share the same upper right corner w = �B = �D. In either case,
B ∩D 6= ∅.

As B 6= D, this implies that, without loss of generality, ∂B ∩D 6= ∅. Hence, `g(D) ≥ `g(B).
This is a contradiction to that w was to be responsible for the same level in B and D.

2.3 Transition probabilities for the random environment

In order to determine where what transition kernels will be placed, we cut down the streets of
the streetgrid to lanes using the following definition:

Definition 2.3.1. For ♦,♥ ∈ {+,−}, B a street w.r.t. SG(X) of superlevel m := b `
SG(B)

2 c ≥ 2

and sublevel k := `SG(B) mod 2, we define the lanes

LaneSG
♦,♥(B) :=


{u ∈ B : bk(B) ≤ uk < bk(B) + βm

4 } if ♦ = +,♥ = +;

{u ∈ B : bk(B) + βm
4 ≤ uk < bk(B) + βm

2 } if ♦ = +,♥ = −;

{u ∈ B : b′k(B)− βm
2 < uk ≤ b′k(B)− βm

4 } if ♦ = −,♥ = −;

{u ∈ B : b′k(B)− βm
4 < uk ≤ b′k(B)} if ♦ = −,♥ = +.

The definition of b·(B) and b′·(B) was given in (2.2).

Note that there might be some non–empty space between the two middle lanes LaneSG
+,−(B)

and LaneSG
−,−(B).

We want to place the transition probabilities in a way that on the lanes with “+” as first
index, the random walk feels a drift northwards or eastwards (if the sublevel of the street is 0 or
1, respectively), and on the lanes with “−” as first index, it feels a drift to the south or the west.
The distinction between + and − in the second index is then used to provide a drift to the area
where two lanes of the same street with the same first index meet.

Definition 2.3.2. With ♦,♥ ∈ {+,−}, we define

ω♦,♥ : {±e0,±e1} → [
1

4
− ε, 1

4
+ ε],

ω♦,♥(†e0) :=
1

4
+ (†(♦(♥ε))),

ω♦,♥(†e1) :=
1

4
+ (†(♦ε)), † ∈ {+,−},

and

ω 1
4
(e) :=

1

4
, e ∈ {±e0,±e1}.

We will also be using the notation ω↗ = ω+,+ and visualize this local transition probability
either by or ↗. See also Figure 4.

We will need a reflection matrix, namely

R :=

(
0 1
1 0

)
,

to place the transition probabilities we just defined on the streets.
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ω+,+ ω+,− ω−,− ω−,+ ω 1
4

Figure 4: The transition probability kernels ωj·,·. The lengths of the arrows are not to scale.

Definition 2.3.3. Given the streetgrid SG(X), the transition probability kernels of the envi-
ronment at place u ∈ Z2 will be defined as follows. If u ∈ B a street w.r.t. SG(X) such that

b `(B)
2 c ≥ 2 and b′`(B) mod 2(B)− b`(B) mod 2(B) + 1 ≥ βb `(B)

2 c
, set

ωu = ωu(X) :=


ω♦,♥ if u ∈ LaneSG

♦,♥(B), ♦,♥ ∈ {+,−}, `(B) mod 2 = 0,

ω♦,♥ ◦R if u ∈ LaneSG
♦,♥(B), ♦,♥ ∈ {+,−}, `(B) mod 2 = 1,

ω 1
4
, else.

If u ∈ B any other street, set ωu := ω 1
4
.

Here, ω♦,♥ ◦R(e) = ω♦,♥(Re), e ∈ {±e0,±e1}.

A visualization of the lanes and the different corresponding transition probabilities can be
found in Figure 5; the bigger picture can be seen in Figure 6.

LaneSG
+,+(B)

LaneSG
+,−(B)

LaneSG
−,−(B)

LaneSG
−,+(B)

LaneSG
+,+(B′) LaneSG

+,−(B′) LaneSG
−,−(B′) LaneSG

−,+(B′)

Sublevel 1 Sublevel 0

B B′

Figure 5: The horizontal street B (of sublevel 1) joining the vertical street B′ (of sublevel 0).
The street B to the left is wider than its planned width, so that there is some space between
the lanes LaneSG

+,−(B) and LaneSG
−,−(B). The width of the streets is not to scale: B′ ought to be

much wider.
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Figure 6: Artists rendering of the environment, and drift a particle would feel. The drift pushing
it “towards the middle” of each tinted part of the street is not shown.

3 Properties of InitGrid and SG

3.1 Heuristial approach

Let us describe a very simple model of a random walk in a non–random environment. Define the
environment $ by setting

$u

{
ω↘ for all u ∈ Z2 such that u1 ≥ 0,

ω↗ for all u ∈ Z2 such that u1 < 0.

That is, the random walk is subject to a uniform drift in direction of e0 and towards the zeroth
coordinate axis. It is easy to prove by standard martingale methods and the Borel–Cantelli–
Lemma that the associated random walk in random environment (Xn)n starting at 0 has positive
probability never to leave the set {x ∈ Z2|x0 ≥ 0, |x1| ≤

√
x0}, while following the first coordinate

axis to infinity.
The morality of this example is that a random walk with uniform drift along a line and with

a drift pushing it back towards that line has positive probability to never be further away from
the line than the square root of the travelled length.

We will prove that P–almost surely, somewhere, there is a street w.r.t. InitGridX on the first
coordinate axis satisfying the following: if one walks down that street (northwards) until one
hits a perpendicular street, walks eastwards on that new one until the next perpendicular street,
starts walking northwards again, and so on; if one does so, then:

• at the end of one street, one always encounters one of the next higher level;

• the width of these streets grows nicely,

• the streets are not too long.
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Also, there will always be a drift pushing forward and to the middle of the two lanes with first
index “+” in these streets.

The idea is that, when walking like described above, the width of the street the walker is in
as a function of the distance travelled is larger than the square root (·)1/2; this is in analogy to
the above example.

An average–case–analysis shows heuristically why this is the case.
The streets of superlevel m have a planned width of βm and, on average, a length of less than

1
λm+1

. The somewhat worst case for the random walk is if it has to go through the whole length

of every street. The width of the n–th street the random walk visits is βn = n!2. The distance
travelled is of the order of

n∑
i=1

1

λi+1
=

n∑
i=1

(i+ 2)!2 ≤ 2(n+ 2)!2.

This shows that the square root of the travelled distance is of slower growth than the width of the
streets, leaving enough room to the random walk for fluctuations without leaving the sequence
of streets.

The exact proof stretches over the whole subsection, but the most pertinent statements can
be found in Corollarys 3.2.3, 3.2.7, and 3.2.8.

Remark 3.1.1. The statements above are even true with any root (·)1/α, α > 1, instead of the
square root (·)1/2. Hence we need to fix the exponent.

Definition 3.1.2.
Set α > 1 for the rest of the article.

3.2 The way to infinity is eventually large

We start the proof of the above claims with a seemingly technical Definition and Lemma.

Definition 3.2.1. The point inducing the (lowest part of the) first street of superlevel m ∈ N0

on the j-th coordinate axis is defined as

Gjm := min{x ∈ N0 : X(x, 2m+ j, 0) = 1}, j ∈ {0, 1}.

In view of the following Lemma, let us recall from (2.4) the parameters λm := (m + 1)!−2

and βm := m!2, m ∈ N0.

Lemma 3.2.2. The following events all happen P–almost surely only finitely often (in m):

{G0
m−1 ≥ G0

m − βm + 1}; {G1
m−1 − βm−1 + βm ≥ G1

m − βm + 1};
{Gjm > (λm)−α}, j ∈ {0, 1}.

Proof. The Gjm, m ∈ N0, j ∈ {0, 1}, are geometrically distributed, independent random variables
with success probability λm = 1

(m+1)!2 . We can calculate, for the first event,

P (G0
m−1 ≥ G0

m − βm + 1)

=
∑
x∈N0

P (G0
m−1 ≥ x− βm + 1)P (G0

m = x)
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=
∑
x∈N0

(1− λm−1)x−βm+1(1− λm)xλm

= (1− λm−1)−βm+1λm
∑
x∈N0

[(1− λm−1)(1− λm)]x

= (1− λm−1)−βm+1 λm
λm−1 + λm − λm−1λm

= (1− λm−1)−βm+1
(λm−1

λm
+ 1− λm−1

)−1

= (1− λm−1)−βm+1
(
(m+ 1)2 + 1− λm−1

)−1
, m ∈ N.

We see that the first term converges, while the second one is summable, so that we can conclude
using the Borel-Cantelli-Lemma.

The probability of the second event computes just the same way, only the limit of the leading
term is some other constant.

For the last event, we observe that

P
(
Gjm > (λm)−α

)
= (1− λm)bλ

−α
m +1c =

[(
1− 1

(m+ 1)!2

)(m+1)!2] b(m+1)!2αc+1

(m+1)!2 ∼ e−(m+1)!2α−2

is indeed summable as well.

Corollary 3.2.3. The event{
G0
m−1 + βm ≤ G0

m ≤ (λm)−α
}
∩
{
G1
m−1 + 2βm − βm−1 ≤ G1

m ≤ (λm)−α
}

(3.1)

holds P–a.s. eventually. Hence, P–a.s.,

M(X) := min

{
m′ ≥ 5

∣∣ω ∈ ∞⋂
m=m′

{G0
m−1 + βm ≤ G0

m ≤ λ−αm }
∩ {G1

m−1 + 2βm − βm−1 ≤ G1
m ≤ λ−αm }

}
<∞. (3.2)

M = M(X) is the superlevel from which the event defined in (3.1) always holds. The
restriction to m′ ≥ 5 is made so that we do not have to worry about whether we can divide
streets into four lanes, and subdivide lanes in four equal parts: already β4 = 576 = 36 ∗ 16.

There is a picture relating the terms of the event (3.1) in Figure 7.

Lemma 3.2.4. It holds P–a.s. that for all x ∈ N and all m′ > m ≥M ,

InitGridX(xe0) 6= 2m+ 1 and InitGridX(G0
me0) 6= 2m′.

Proof. Take any m ≥M . We have

G1
m ≥ G1

m−1 + 2βm − βm−1 ≥ 2βm − βm−1 ≥ βm.

X(G1
m, 2m+1, 0) = 1 induces a (part of a) street of superlevel m, with planned width βm. Thus,

this street of sublevel 1 does not reach the zeroth axis.
Now take m′ > m. We know that G0

m′ ≥ G0
m′−1 + βm′ ≥ G0

m + βm′ . This shows that any
vertical street of higher level does not reach G0

me0.

Lemma 3.2.5.
SGGjmej

= 2m+ j, m ≥M, j ∈ {0, 1}.
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0
G0
m−1 G0

m

G1
m−1

G1
m

≥ 0

≥ 0

≤ (λm)−α

≤ (λm)−α

βm

βm

βm−1

βm

Figure 7: The implications of the event in (3.1).

Proof. We prove the case j = 0.
Take m ≥M . As G0

m is a natural number such that X
(
G0
m, 2m, 0

)
= 1, we have W 0

G0
m

(X) ≥
2m. (G0

n)n≥M is an increasing sequence. Thus, it holds that V 0
G0
m
≥ 2m. This implies that

InitGridX(G0
me0) ≥ 2m. (3.3)

The case “>” subdivides into the two

• InitGridX(G0
me0) = 2m′ + 1 for some m′ ≥ m,

• InitGridX(G0
me0) = 2m′ for some m′ > m,

which both are excluded by Lemma 3.2.4. Hence, equality holds in (3.3). Gjm depends only on
X(·, ·, 0). As all streets that are not fields w.r.t. InitGrid remain untouched in the construction
of the final streetgrid, the equality holds for SGG0

me0
as well.

Similar observations can be made for points of the form G1
me1, m ≥ M , using an adapted

version of Lemma 3.2.4.

Definition 3.2.6. Set

Bjm := S’rndInitGrid(Gjmej) = S’rndSG(Gjmej), m ≥M, j ∈ {0, 1}.
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Corollary 3.2.7. For all m ≥M ,the width b′j(B
j
m)−bj(Bjm)+1 of Bjm is larger than or equal to

βm, while the length of the intersection of Bjm and the first quadrant, (�Bjm)i, i 6= j, i, j ∈ {0, 1},
satisfies

λ−αm+1 ≥

{
(�B0

m)1

(�B1
m)0.

Proof. Both assertions follow from the same type of arguments as in the proof of the Lemmas
3.2.4 and 3.2.5; the second one makes also use of the upper bounds provided by (3.1).

Corollary 3.2.8. It holds for all m ≥M that

S’rnd(�B0
m + e1) = B1

m and S’rnd(�B1
m + e0) = B0

m+1.

Proof. We prove only the first assertion.
Let m ≥M . As we have seen in Lemma 3.2.5, `(B0

m) = 2m.
By definition, the street B0

m extends vertically until it is blocked by some horizontal higher–
level–street. The superlevel of this street is greater as or equal to m, otherwise there would be
no blocking. Any horizontal street B1

m′ of level m′ > m does not interfere with B1
m, because

the G1
· all keep their distance from each other (see (3.1)). So, the blocking indeed happens by

B1
m.

3.3 Stationarity

Notation 3.3.1. Take F : {0, 1}Z → N0
Z

2

a function. Note that the values F (x) : Z2 → N0

of this function are themselves functions u 7→ F (x)u. Let I ⊆ Z, D ⊆ Z2. For x̄ ∈ {0, 1}I ,
g ∈ N0

D, by the notation
F (x̄)|D = g, (3.4)

we shall express that

for all x ∈ {0, 1}Z such that x|I = x̄, it holds that F (x)u = gu for all u ∈ D.

Here, x|I : I → {0, 1} denotes the usual restriction of the function x : Z → {0, 1} on I. Notation
(3.4) however is more restrictive than a mere restriction, because it is understood that on D, F (·)
does not depend on the values at places in Z \ I.

Also define 0|I to be the constant mapping that assigns 0 to any element in I.

Lemma 3.3.2. For any box B 3 0, there is P–a.s. a block w.r.t. SG(X) containing B:

P
( ⋃
D⊆Z2:
B⊆D

{D is block w.r.t. SG(X)}
)

= 1.

Proof. Take B a box containing the origin. For j ∈ {0, 1}, define the random variables

dj := max{x ≤ bj(B)|V jx−1 > `SG(B)} and d′j := min{x ≥ b′j(B)|V jx+1 > `SG(B)}.

These are P–almost surely finite, and B ⊆ D := {d0, . . . , d
′
0} × {d1, . . . , d

′
1}. D is a random set

and a block w.r.t. InitGrid(·). The streets placed on D by the iterative construction leading to
SG are all of lower level than the minimum of the levels present in ∂D, so that the block-property
is preserved.

xviii



Definition 3.3.3. Let D be a block w.r.t. g ∈ N0
D such that 0 ∈ D. Note that this is more a

condition on g than on D. Define

Jg :=
{

(y, 2m+ j, 0)
∣∣ m > b`

g
(D)

2
c, j ∈ {0, 1}, bj(D)− 1 ≤ y ≤ b′j(D) + βm

}
⊆ Z

and

Ig :=
{

(y, 2m+ j, u)
∣∣ j ∈ {0, 1}, 0 ≤ m ≤ b`

g
(D)

2
c, bj(D)− 1 ≤ y ≤ b′j(D) + βm, u ∈ D

}
⊆ Z.

The dependence of Ig and Jg on D is omitted because it can be considered implicit via g.
To explain the meaning of these two sets, we need to go into greater detail.
Take a realization of X. It is an element of {0, 1}Z , and leads to SG = SG(X). One can ask

at which points in Z the values of X may be changed without changing the outcome of SG, or
SG |D for some fixed D ⊆ Z.

The other way around, given a certain realization g ∈ N0
D of SG(X)|D, where D ⊆ Z2 is a

box, one can ask about the set of realizations of X such that

SG(X)|D = g.

It turns out it is enough to look at the outcome of X on the two subsets Ig and Jg of Z in order
to decide whether the last equation is true or not. All points that are responsible in the sense of
Definition 2.2.5 are contained in Ig, and X(·) being equal to 0 at all points in Jg stipulates the
absence of big streets that are not supposed to be on D.

Lemma 3.3.4. Under the hypotheses of Definition 3.3.3, Ig is finite, and Ig ∩ Jg = ∅. Let
x ∈ {0, 1}Z . If SG(x)|D = g, then it holds that SG(x|Ig∪Jg )|D = g, in the notation of (3.4).
In other words, SG(x)|D = g does not depend on x|Z\(Ig∪Jg). Also, SG(x)|D = g implies
x|Jg = 0|Jg . Finally, P (X|Jg ≡ 0) > 0.

Proof of Lemma 3.3.4. The first two assertions are obvious. SG(x)|D = g does hold or not no
matter what the values of x at the points (y, 2m+ j, u) with

• u ∈ Z2 \D, m ∈ N, y ∈ Z, j ∈ {0, 1},

• u ∈ D \ {0}, m ≥ b `
g(D)

2 c, y ∈ Z, j ∈ {0, 1},

• u ∈ D, m < b `
g(D)

2 c, y ≤ bj(D)− 1 or y ≥ b′j(D) + βm, j ∈ {0, 1},

• u = 0, m ≥ b `
g(D)

2 c, y ≤ bj(D)− 2 or y ≥ b′j(D) + βm + 1, j ∈ {0, 1}.

Let us look at the lines one at a time.
As D is a block w.r.t. g, and 0 ∈ D, all four streets in ∂D are already present in InitGridx.

InitGridx is only influenced by the values of x at points (·, ·, 0). The streets w.r.t. g in D are
either streets w.r.t. InitGridx or are influenced by the values of x at the upper right corners
of fields w.r.t. InitGridx or the subsequent iteration steps in the construction. These fields are
entirely contained in D, again because D is a block w.r.t. g. This is why points (·, ·, u) with
u 6∈ D have no influence.

We just looked at the influence of points in the upper right corners of fields lying entirely in
D. The streets they induce are all of lower level than the minimum level present in ∂D; higher
levels are not even considered, and thus the values of x at the points in the second line have no
influence on the equation.
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The values of points with lower level do have an influence, but only if the index of the
Bernoulli–process is not too far from D; to be precice, neither left to the lower end in the j–th
coordinate–direction of D, nor farther than one street–width to the right of the upper end of D.

Similarily, the values at the origin do not have any influence if the index of the Bernoulli–
process is too far from D; this translates as slightly loosened boundaries in the last line.

All remaining points are contained in Ig and Jg, which contain however some of the cases
above as well. This proves that SG(x)|D = g does not depend on x|Z\(Ig∪Jg).

The superlevels of the streets in D are per definitionem bounded by b `
g
(D)
2 c. If the equation

SG(x)|D = g is to hold, it is trivially true that

there is no street w.r.t. SG(x) of higher superlevel than b`
g
(D)

2
c in D. (3.5)

This condition (3.5) is equivalent to

x
(
y, 2m+ j, 0

)
= 0 for all bj(D)− 1 ≤ y ≤ b′j(D) + βm,m > b`

g
(D)

2
c, j ∈ {0, 1}. (3.6)

(3.6) can be written as x|Jg ≡ 0, which can hence be seen as an equivalent to (3.5).
Finally, we have, with some non-trivial, non-random constant c,

P (X|Jg ≡ 0) =
∏

m>b`
g(B)
2 c

∏
j∈{0,1}

(1−λm)b
′
j(D)−bj(D)+βm+2 ≥ c

∏
m≥1

∏
j∈{0,1}

(1−λm)βm = c
∏
m≥1

(1−λm)2βm .

This value to be larger than zero is equivalent to∑
m≥1

βm ln(1− λm) > −∞.

But

βm ln(1− λm) ∼ βm(−λm) = − m!2

(m+ 1)!2
= − 1

(m+ 1)2
,

and we can, by the finiteness of the sum, confirm positive PX|Jg -measure for 0|Jg .

Definition 3.3.5. We need to define some shift operators and related notations. Let v ∈ Z2 be
the vector we want to shift by.

For D ⊆ Z2, we write D + v := {u+ v | u ∈ D}.
For D ⊆ Z2, f ∈ N0

D, we define the shifted θvf ∈ N0
D+v by

(θvf)u := fu−v for all u ∈ D + v.

We also can shift elements (x, l, u) ∈ Z by

θv(x, l, u) := (x+ vl mod 2, l, u+ v).

A slightly different shift will sometimes be needed for elements of the form (x, l, 0) ∈ Z,
namely one that preserves the special role of the origin:

ϑv(x, l, 0) := (x+ vl mod 2, l, 0).

With these last two definitions at hand, we can shift the two Ig and Jg from Definition 3.3.3
in the standard way by

θvIg := {θv(x, l, u) | (x, l, u) ∈ Ig},
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ϑvJg := {ϑv(x, l, 0) | (x, l, 0) ∈ Jg}.

Finally, we shift whole configurations x̄ ∈ {0, 1}I , I ⊆ Z by defining

θvx̄
(
(x, l, u)

)
:= x̄

(
θ−v(x, l, u)

)
, (x, l, u) ∈ θvI.

Lemma 3.3.6. Let D 3 0 be a block w.r.t. g ∈ N0
D, Ig, Jg from Definition 3.3.3. Also take

any v such that −v ∈ D. Then, Iθvg = θvIg and Jθvg = ϑvJg, and for any x ∈ {0, 1}Z ,
SG(x)|D+v = θvg implies SG(x|θvIg∪ϑvJg )|D+v = θvg.

Proof. The first two equalities are easy exercises; an important point is how ϑ· preserves the
special role of the origin, but at a different position relative to the shifted box.

The second assertion then follows directly frome Lemma 3.3.4, which tells us that SG(x)|D+v =
θvg implies SG(x|Iθvg∪Jθvg )|D+v = θvg.

Figure 8 gives an idea of how the responsibility changes when the point of reference (the
origin) is changed. This sort of changing will be employed in Definition 3.3.7 in order to create a
configuration of {0, 1}Ig that yields the same outcome of the final streetgrid’s construction, only
shifted.

0

−v
0

v

Figure 8: Responsibility. If the base of some arrow is at w and the tip points to some street of
level l, then w is responsible for the emplacement of the streets of level l in D, where D is the

smallest block containing the street.

Definition 3.3.7. Take the hypotheses of Lemma 3.3.6. We define yet another operator on
configurations on {0, 1}Ig ,

x̄ 7→ ↗↙ x̄ :
{
ȳ ∈ {0, 1}Ig

∣∣SG(ȳ, 0|Jg )|D = g
}
→
{
ȳ ∈ {0, 1}θvIg

∣∣SG(ȳ, 0|ϑvJg )|D+v = θvg
}
.

So, we need to define the object
(
↗↙ x̄

)
(·) for all (y, l, w) ∈ Iθvg. We do this first for a special

case of pairs (l, w), and then for the rest.
Take any block B w.r.t. g, and `g(B) ≤ l < `g(B). Recall that B + v is a block w.r.t. θvg,

and that `g(B) = `θvg(B + v) and `g(B) = `θvg(B + v). So, we can apply Definition 2.2.5 and
obtain w ∈ D and w̃ ∈ D + v such that

• w̃ responsible in θvg for the emplacement of streets of level l in B + v, and

• w responsible in g for the emplacement of the streets of level l in B,
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which are both the only points to satisfy these conditions.
Write m := b l2c and j := l mod 2, and define, for bj(D + v)− 1 ≤ y ≤ b′j(D + v) + βm,(
↗↙ x̄

)(
(y, l, w̃)

)
:= x̄

(
(y − vj , l, w)

)
, and

(
↗↙ x̄

)(
(y, l, w + v)

)
:= x̄

(
(y − vj , l, w̃ − v)

)
. (3.7)

For any other case that has not yet been covered, take l < `g(D) and w̃ ∈ D + v such that

• w̃ is not in θvg responsible for the emplacement of the streets of level l in B̃ for any block
B̃ w.r.t. θvg, and

• w̃−v is not in g responsible for the emplacement of the streets of level l in B for any block
B w.r.t. g;

then, with m := b l2c, j := l mod 2, we define, for bj(D + v)− 1 ≤ y ≤ b′j(D + v) + βm,(
↗↙ x̄

)(
(y, l, w̃)

)
:= x̄

(
(y − vj , l, w̃ − v)

)
.

This last definition shows that the operator ↗↙ is for most of the points really just the shift
operator applied to the function x̄; only at the few points that are responsible, and at their
counterparts in the shifted set, the special definition takes effect, and so to say, the responsibility
is switched.

Note that ↗↙ depends strongly on v and g, which gives again an implicit dependence on D.
It also depends on our choice of Ig and Jg.

Lemma 3.3.8. ↗↙ is well-defined, and takes indeed values in the specified codomain. It is bijec-
tive, and probability–preserving in the sense that

P (X|Ig = x̄) = P (X|θvIg =↗↙ x̄) for all x̄ ∈ {0, 1}Ig .

Also, the following equivalence holds:

SG(x̄, 0|Jg )|D = g ⇐⇒ SG(↗↙ x̄, 0|ϑvJg )|D+v = θvg.

Proof. For the first part of the definition, we remark that if w̃ = w + v, the two definitions in
(3.7) coincide: w = w̃ − v. So, the two do not contradict each other immediately. Also, given
any l, w and w̃ are, respectively, responsible for l only in B and B + v. This was shown in
Lemma 2.2.6. In the second part, the two bullets make sure that only cases not yet covered by
the first part are defined. So, we indeed did not commit the error of multiply defining things.

The verification of ↗↙ x̄ ∈ {0, 1}θvIg consists in checking that the domain of ↗↙ x̄ is contained
in θvIg. Indeed, the indices y are chosen in the correct range. Also, l < `g(B) < `g(D). Finally,
w̃, w + v ∈ B + v ⊆ D + v. The same applies to the second part of the definition.

To prove the bijectivity of↗↙=↗↙(v, g), we consider the inverse function, which is↗↙(−v, θvg).
To check that this is true, remark that the two parts of the definition of ↗↙ can be inverted
separately; the responsible points are just reversed, and the responsibilities switched back. The
points which are not responsible being identical, the values there get shifted back as well.

For the preservation of probability, note that ↗↙ leaves the levels intact, and replicates the
same number of zeros and ones, just at different places. Then, the stationarity of the Bernoulli–
processes takes effect.

The last statement is a consequence of the concept of switching responsibilities described
above. The operator moves the values of x̄ at any point responsible in g for the emplacement
of streets of level l in B to the point which is in θvg responsible for the emplacement of streets
of level l on B + v. If one translates the concept of responsibility into the construcion of the
streetgrid, one sees that SG(↗↙, 0|Jθvg ) reconstitutes indeed the shifted g on the shifted domain.

The opposite inclusion follows from the above considerations on bijectivity.
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Theorem 3.3.9. SG(X) is stationary.

Proof. We need to show the invariance of SG(X)’s finite-dimensional marginal distributions
under the arbitrary shifts in Z2. Fortunately, we can restrict ourselves to distributions on boxes
and shift-vectors inside these boxes: if we need a farther shift, we just take a bigger box.

Let B 3 0 be a box, v ∈ Z2 such that −v ∈ B, and g ∈ N0
B .

In the following calculations, the first equality is due to Lemma 3.3.2, the second one is
true because the smallest (w.r.t. the semi-order established by the subset-relation) block around
B is unique. The fourth equality holds because the block property depends only on D, and
for the sixth one we apply Lemma 3.3.4 for one inclusion, the other one following directly from
Notation 3.3.1. Lemma 3.3.4 also implies the disjointness of Iĝ and Jĝ leading to the independence
used for the seventh equality. For the last equality, we apply Lemma 3.3.8.

P
(

SG(X)|B = g
)

= P
( ⋃
D⊇B

box

{
SG(X)|B = g, D block w.r.t. SG(X)

})
=
∑
D⊇B

box

P
(

SG(X)|B = g, D is the smallest block w.r.t. SG(X) containing B
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

P
(

SG(X)|D = ĝ, D is the smallest block w.r.t. SG(X) containing B
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

P
(

SG(X)|D = ĝ, D is the smallest block w.r.t. ĝ containing B
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D is the smallest block w.r.t. ĝ containing BP
(

SG(X)|D = ĝ
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
x̄∈{0,1}Iĝ

P
(

SG(x̄, 0|Jĝ )|D = ĝ, X|Iĝ = x̄, X|Jĝ ≡ 0
)

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
x̄∈{0,1}Iĝ

P (X|Iĝ = x̄)P
(
X|Jĝ ≡ 0

)
1SG(x̄,0|Jĝ )|D=ĝ

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
x̄∈{0,1}Iĝ

P
(
X|θvIĝ =↗↙ x̄

)
P
(
X|ϑvJĝ ≡ 0

)
1SG(↗↙x̄,0|ϑvJĝ )|D+v=θv ĝ

We continue by applying the bijectivity of ↗↙, and reverting the steps which lead here, but with
respect to the shifted sets.

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
ȳ∈{0,1}θvIĝ

P
(
X|θvIĝ = ȳ

)
P
(
X|ϑvJĝ ≡ 0

)
1SG(ȳ,0|ϑvJĝ )|D+v=θv ĝ

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block

∑
ȳ∈{0,1}θvIĝ

P
(

SG(ȳ, 0|ϑvJĝ )|D+v = θv ĝ,X|θvIĝ = ȳ,X|ϑvJĝ ≡ 0
)
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=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D smallest block w.r.t. ĝ containing BP
(

SG(X)|D+v = θv ĝ
)

At this point, we need to adjust the summation. We perform some trivial shift operations and
change the indices of the sums:

=
∑
D⊇B

box

∑
ĝ∈N0

D:
ĝ|B=g

1D+v smallest block w.r.t. θv ĝ containing B+vP
(

SG(X)|D+v = θv ĝ
)

=
∑
D⊇B

box

∑
g̃∈N0

D+v:
g̃|B+v=θvg

1D+v smallest block w.r.t. g̃ containing B+vP
(

SG(X)|D+v = g̃
)

=
∑

D′⊇B+v
box

∑
g̃∈N0

D′ :
g̃|B+v=θvg

1D′ smallest block w.r.t. g̃ containing B+vP
(

SG(X)|D′ = g̃
)
. (3.8)

On the other hand, because −v ∈ B implies 0 ∈ B + v, we can apply Lemma 3.3.2 to the
following (with subsequent steps similar to the ones just performed):

P
(

SG(X)|B+v = θvg
)

= P
( ⋃
D′⊇B+v

box

{
SG(X)|B+v = θvg, D

′ block w.r.t. SG(X)
})

=
∑

D′⊇B+v
box

P
(

SG(X)|B+v = θvg, D
′ is the smallest block w.r.t. SG(X) containing B + v

)

=
∑

D′⊇B+v
box

∑
g̃∈N0

D′ :
g̃|B+v=θvg

P
(

SG(X)|D′ = g̃, D′ is the smallest block w.r.t. SG(X) containing B + v
)

=
∑

D′⊇B+v
box

∑
g̃∈N0

D′ :
g̃|B+v=θvg

P
(

SG(X)|D′ = g̃, D′ is the smallest block w.r.t. g̃ containing B + v
)
,

which is equal to (3.8).

3.4 Mixing and ergodic properties

Definition 3.4.1. We say a family (Fu)u∈Z2 of discrete random variables on the probability space
(Ω,F ,P) is mixing w.r.t. P if for any v ∈ Z2 \ 0, any finite box B ⊆ Z2, and any realizations
f1, f2 : B → R, it holds that∣∣P(F |B = f1, F |B+nv = θnvf2)−P(F |B = f1)P(F |B+nv = θnvf2)

∣∣ −−−−→
n→∞

0.

Theorem 3.4.2. The streetgrid SG(X) is mixing w.r.t. P .
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Proof. Take B a box. Because of the stationarity of the process SG(X), we can suppose 0 ∈ B
without loss of generality. Let g ∈ N0

B . As for the shift, take v ∈ Z2 such that v0 > 0. The
case v1 > 0 can be proven analogously.

Define the cutting–event

Cn :=
{
∃m > b`

SG(B)

2
c∨b`

SG(B + nv)

2
c, ∃ b′0(B)+βm ≤ x ≤ b0(B+nv)−1 : X(x, 2m, 0) = 1

}
.

The meaning of this event is that between B and B+nv, there is a vertical street of higher level
than any of the streets in g and h.

The event Cn satisfies, for n ∈ N large enough,

P (Cn) = P
( ⋃
m>b `

SG(B)
2 c∨b `

SG(B+nv)
2 c

⋃
b′0(B)+βm≤x≤b0(B+nv)−1

{
X
(
x, 2m, 0

)
= 1
})

=
∑
m̂∈N0

P
( ⋃
m>m̂

⋃
b′0(B)+βm≤x≤b0(B+nv)−1

{
X
(
x, 2m, 0

)
= 1
})
P
(
b`

SG(B)

2
c ∨ b`

SG(B + nv)

2
c = m̂

)

≥
∑
m̂∈N

P
( ⋃
b′0(B)+βm̂≤x≤b0(B+nv)−1

{
X
(
x, 2m̂, 0

)
= 1
})
P
(
b`

SG(B)

2
c ∨ b`

SG(B + nv)

2
c = m̂− 1

)

=
∑
m̂∈N

(
1− (1− λm̂)nv0+b0(B)−b′0(B)−βm̂

)
P
(
b`

SG(B)

2
c ∨ b`

SG(B + nv)

2
c = m̂− 1

)
−−−−→
n→∞

1.

Cn also has the property to render independent events happening on B and B + nv: it implies
that the smallest block around B w.r.t. SG(X) and the smallest block around B + nv w.r.t.
SG(X) are disjoint, which means that different points are responsible for the two. We hence
have, with the events

G := {SG(X)|B = g} and Hv := {SG(X)|B+v = θvh},

and if we denote by Ccn the complement of Cn,

P (SG(X)|B = g,SG(X)|B+nv = θnvh)

= P (G ∩Hnv)

= P (G ∩Hnv ∩ Ccn) + P (G ∩Hnv ∩ Cn)

= P (G ∩Hnv ∩ Ccn) + P (G ∩Hnv|Cn)P (Cn)

= P (G ∩Hnv ∩ Ccn) + P (G|Cn)P (Hnv|Cn)P (Cn)

= P (G ∩Hnv ∩ Ccn) + P (G ∩ Cn)P (Hnv ∩ Cn)/P (Cn)

−−−−→
n→∞

P (G)P (H0).

Corollary 3.4.3. The streetgrid SG(X) is totally ergodic.

3.5 Consequences

Corollary 3.5.1. The environment ω is stationary.
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Proof. This is true because in order to determine every point ω(u), u ∈ Z2, the same function
is applied to the SG–values around u in a local and stationary manner, and because SG(X) is
stationary.

Corollary 3.5.2. The environment ω is mixing.

Proof. To prove this, we would like to carry over the arguments from the proof of Theorem 3.4.2.
However there is an issue about ω (as a function of SG) not being completely localized in the
sense that in order to determine ω on a box B, one needs to know the width of the streets present
in B. Recall that only if a street has its full planned width the biased transition probabilities
are placed on it; else, the transition probabilities of a simple random walk are used.

Fortunately, it is possible to determine what ω looks like on B by knowing SG on a box

B
β`SG(B) := {b0(B)− β`SG(B), . . . , b1(B)− β`SG(B)} × {b′0(B)− β`SG(B), . . . , b

′
1(B) + β`SG(B)};

one migth want to think of this box as a thicker closure, with thickness β`SG(B). In other words,
ω|B is SG(B)|

B
β
`SG(B)

–measurable.

We will use this fact in the following calculations. Take g̃, h̃ ∈ (S2)B .

P
(
ω|B = g̃, ω|B+nv = θnvh̃

)
=
∑
k,l∈N

P
(
ω|B = g̃, ω|B+nv = θnvh̃, `

SG(B) = k, `SG(B + nv) = l
)

=
∑
k,l∈N

∑
g∈NBβk , h∈NBβl

P
(
ω|B = g̃, ω|B+nv = θnvh̃, `

SG(B) = k, `SG(B + nv) = l,

SG |
B
βk = g, SG |

B
βl+nv

= θnvh
)

=
∑
k,l∈N

∑
g∈NB

βk

h∈NB
βl

P

(
ω|B = g̃,

ω|B+nv = θnvh̃,

`SG(B) = k,

`SG(B + nv) = l

∣∣∣∣SG |
B
βk = g,

SG |
B
βl+nv

= θnvh

)

P
(

SG |
B
βk = g, SG |

B
βl+nv

= θnvh
)

=
∑
k,l∈N

∑
g∈NBβk , h∈NBβl

1ω(g)|B=g̃, ω(θnvh)|B+nv=θnvh̃, `g(B)=k, `θnvh(B+nv)=l

P
(

SG |
B
βk = g, SG |

B
βl+nv

= θnvh
)

−−−−→
n→∞

∑
k,l∈N

∑
g∈NB

βk

h∈NB
βl

1ω(g)|B=g̃, `g(B)=k1ω(h)|B=h̃, `h(B)=lP
(

SG |
B
βk = g

)
P
(

SG |
B
βl = h

)

= P
(
ω|B = g̃

)
P
(
ω|B = h̃

)

4 Properties of the random walk

4.1 The main theorem and the idea of its proof

Theorem 4.1.1.
PPω0 (Xt ·~1 −−−→

t→∞
∞) > 0,
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where ω is the environment from Definition 2.3.2 with its corresponding probability measure P ,
and (Xt, P

ω
0 ) the random walk from (1.2).

A similar assertion holds with ~1 replaced by −~1. The two together imply Theorem 1.0.1.
Recall the heuristical description at the beginning of Subsection 3.2. The idea of the proof

of the Theorem is that the random walk Xt has positive probability to follow the streets in the
initial grid InitGrid, at least from some starting point onwards. The starting point has positive
probability to be reached directly from the origin. From there the random walk proceeds exactly
like described, except for the “going straight” part: as it is a random walk, we have to take care
of some fluctuations; but this is possible thanks to the streets growing nicely, see Corollary 3.2.7.

A complete proof of Theorem 4.1.1 will be given later. We start with a few technical

4.2 Definitions and Lemmata

Definition 4.2.1. We define the hitting time of the random walk (Xt)t of the set B ⊆ Z2 as

τB := inf{t ≥ 0|Xt ∈ B},

and the hitting time of the set B′ ⊆ Z2 after hitting B as

τB,B′ = τ(B,B′) := inf{t ≥ τB |Xt ∈ B′}.

τB and τB,B′ are of course stopping times w.r.t. Gt := σ(Xs, s ≤ t) the natural filtration.

Definition 4.2.2. We define sequences of sets, some of which depend on the parameter n ∈ N:

Bam(n) := {−βm
16

+ 1, . . . ,
βm
16
} × {−βm−1

16
, . . . , n},

Sam := B’twn
(
0,
βm
2
e1

)
,

Eam(n) := {u ∈ ∂Bam(n)|u1 ≤ n}, m ≥ 5.

“S” and “E” stand for “Start” and “Escape”. Furthermore, define the “Target”-set

T a
m(n) := ∂Bam(n) \ Eam(n) = B’twn

(
(−βm

16
+ 1, n+ 1), (

βm
16
, n+ 1)

)
, m ≥ 5.

The reason for the restriction to m ≥ 5 is the same as in (3.2).

Lemma 4.2.3. Take some sequence (nm)m≥5 such that βm
2 ≤ nm ≤ βαm+2, m ≥ 5. Also take

a sequence of starting points vm ∈ Sam, m ≥ 5. We consider the (non-random) environment
defined by setting

$a(u) :=

{
ω0
↗ if u0 ≤ 0,

ω0
↖ if u0 > 0

for all u ∈ Z2. It engenders the random walk (Xt)t≥0 in the environment $a, starting in vm,
given by the measure P$

a

vm . It now holds that P$
a

vm (τEam(nm) < τT a
m(nm)) is summable in m, where

τ· is from Definition 4.2.1.

A picture of the sets from Definition 4.2.2 and the environment of Lemma 4.2.3 can be found
in Figure 9.
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0

−βm−1

16

βm
2

n

−βm16 + 1 βm
16

Sam

T a
m(n)

Eam(n)

0

−βm16

βm
16 − 1

−βm8 + 1

−βm16 + 1 βm
16

3βm
16

Sbm

T b
m

Ebm

0 11βm
16

3βm
16

7βm
16 − 1

βm
4 − 2

βm
16 Scm

T c
m

Ecm

Figure 9: Escape and target sets used in Lemmas 4.2.3, 4.2.5, and 4.2.6, together with their
corresponding environment. Nothing is to scale.

Proof. We split the movement of Xt into its two coordinates Xt = (Xt,0, Xt,1). Xt,1 is stochas-
tically minorated by a random walk on Z with uniform drift to the right (and possibility to
sometimes stand still). The probability of this random walk to hit some negative −a before
wandering off towards infinity decays exponentially in a.

Also, the time to reach some positive b grows linearily in b, in the sense that there is a
positive, non-random constant c1 such that the probability of not reaching b up to time c1b
decays exponentially fast in b.

As the probabilities set in $a to go left or right are uniformly bounded away from 1, the
random walk X· will spend a nontrivial fraction of its time going left and right. This means that
there is some positive, non-random constant c2 < 1 such that the probability that the number
of times X· goes left or right up to time t is greater than c2t decays exponentially in t.
|Xt,0| is stochastically dominated by a random walk reflected at 0 with negative drift. Each

excursion from 0 of such a reflected random walk is stochastically dominated by a geometric
random variable, and the excursions are independent; recall that the probability of a geometric
random variable to be larger than a decays exponentially in a.

The number of excursions of |Xt,0| up to some time can be estimated very crudely by the
number of steps to the left or right up to that time.

If we put the pieces together, we find that the probability of escape to the left or right is for
large m bounded by the probability of at least one out of c2c1(βm+2)α ≥ c2c1nm independent
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geometric random variables being larger than βm
16 , which can be verified to be still exponentially

small in m.
As we did not care to keep track of exact rates, we settle for a much weaker statement of

summability.

Definition 4.2.4. We need many more similar objects as the ones in Definition 4.2.2:

Bbm := {−βm
8

+ 1, . . . ,
3βm
16
} × {−βm

16
, . . . ,

βm
16
− 1},

Sbm := B’twn
(
(−βm

16
+ 1)e0,

βm
16
e0

)
,

Ebm := {u ∈ ∂Bbm|u0 ≤ −
βm
16

or u1 ≤
βm
16
− 1},

Bcm := {0, . . . , 11βm
16
} × {0, . . . , βm

4
− 2},

Scm := B’twn
(
(
3βm
16

,
βm
16

), (
7βm
16
− 1,

βm
16

)
)
,

Ecm := {u ∈ ∂Bcm|u0 ≤
3βm
16
− 1 or u1 ≤

βm
4
− 2},

BAm(n) := {−βm
16
, . . . , n} × {−βm

16
+ 1, . . . ,

βm
16
},

SAm := B’twn
(
0,
βm
2
e0

)
,

EAm(n) := {u ∈ ∂BAm(n)|u0 ≤ n},

BBm := {−βm
16
, . . . ,

βm
16
− 1} × {−βm

8
+ 1, . . . ,

3βm
16
},

SBm := B’twn
(
(−βm

16
+ 1)e1,

βm
16
e1

)
,

EBm := {u ∈ ∂BBm|u0 ≤
βm
16
− 1 or u1 ≤ −

βm
16
},

BCm := {0, . . . , βm+1

4
− 2} × {0, . . . , βm+1

2
+

3βm
16
},

SCm := B’twn
(
(
βm
16
,

3βm
16

), (
βm
16
,

7βm
16
− 1)

)
,

ECm := {u ∈ ∂BCm|u0 ≤
βm+1

4
− 2 or u1 ≤

3βm
16
− 1}, m ≥ 5.

The target sets are

T †m := ∂B†m \ E†m, † ∈ {“ b”,“ c”,“ B”,“ C”},
T A
m(n) := ∂BAm(n) \ EAm(n), m ≥ 5, n ∈ N,

and they compute as

T b
m = B’twn

(
(−βm

16
+ 1,

βm
16

), (
3βm
16

,
βm
16

)
)
,
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T c
m = B’twn

(
(
3βm
16

,
βm
4
− 1), (

11βm
16

,
βm
4
− 1)

)
,

T A
m(n) = B’twn

(
(n+ 1,−βm

16
+ 1), (n+ 1,

βm
16

)
)
,

T B
m = B’twn

(
(
βm
16
,−βm

16
+ 1), (

βm
16
,

3βm
16

)
)
,

T C
m = B’twn

(
(
βm+1

4
− 1,

3βm
16

), (
βm+1

4
− 1,

βm+1

2
+

3βm
16

)
)
, m ≥ 5, n ∈ N.

Visualizations of these events can be found in Figures 9 and 10. There, also the events of interest
and the environments in the following Lemmata are shown.

Lemma 4.2.5. Define an environment by setting, for u ∈ Z2,

$b(u) :=

{
ω↖ if u1 < 0, u0 > 0,

ω↗ else

which engenders the random walk (Xt) starting in v under P$
b

v , v ∈ Z2. Let vm ∈ Sbm, m ≥ 5,

be an arbitrary sequence. It then holds that P$
b

vm (τEbm < τT b
m

) is summable in m.

Proof. The arguments will be quite the same as in the proof of the last Lemma.
There are four possibilities of escape to Ebm, namely

• to the south, which is exponentially becoming unlikely as the box grows with m, because
of the uniform drift to the north.

• to the west, which is exponentially becoming unlikely because of the uniform drift pushing
in the opposite direction on the western half–plane.

• to the east, which is exponentially becoming unlikely because the drift to the north is in
the eastern half–plane at least as strong as the drift to the east, which means that the
linear speed of X·,1 is at least the same as the one of X·,0. With the box growing large,

even if X· starts at the easternmost possible point βm
16 e0, by the time X·,1 reaches βm

16 , X·,0
will not have reached 3βm

16 + 1.

• to the horizontal piece of ∂Ba in the northern west, which is exponentially becoming
unlikely because the drift to the north provides that the probability of X·,1 being smaller

than 0 at the time X·,0 hits βm
16 is decaying fastly.

Lemma 4.2.6. P
ω↗
vm (τEcm < τT c

m
) is summable in m for any arbitrary sequence vm ∈ Scm, m ≥ 5.

Lemma 4.2.7. Take some sequence (nm)m≥5 such that βm
2 ≤ nm ≤ βαm+2, m ≥ 5. Also take a

sequence of starting points vm ∈ SAm, m ≥ 5. Define the environment by setting

$A(u) :=

{
ω↘ if u1 > 0,

ω↗ if u1 ≤ 0, u ∈ Z2.

It now holds that P$
A

vm (τEAm(nm) < τT A
m(nm)) is summable in m.
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Lemma 4.2.8. Define an environment by setting, for u ∈ Z2,

$B(u) :=

{
ω↘ if u0 < 0, u1 > 0,

ω↗ else,

which engenders the random walk (Xt) starting in v under P$
B

v , v ∈ Z2. Let vm ∈ SBm be an

arbitrary sequence. It then holds that P$
B

vm (τEBm < τT B
m

) is summable in m.

Lemma 4.2.9. P
ω↗
vm (τECm < τT C

m
) is summable in m for any arbitrary sequence vm ∈ SCm.

The arguments needed for the proofs of these last four Lemmata are the same as in the two
preceeding proofs, which is why we omit them here.

0 SAm−βm16
βm
2

n

−βm16 + 1

βm
16

T A
m(n)

EAm(n)

0−βm16
βm
16 − 1

−βm8 + 1

−βm16 + 1

βm
16

3βm
16

SBm T B
mEBm

0

SCm

βm
16

3βm
16

7βm
16 − 1

βm+1

4 − 2

βm+1

2 + 3βm
16

T C
m

ECm

Figure 10: Escape and target sets used in Lemmas 4.2.7, 4.2.8, and 4.2.9.
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4.3 Proof of the Theorem

We prove Theorem 4.1.1 by showing that the random walk has positive probability to hit a
certain sequence of target sets leading to infinity in a prescribed order, while not hitting the
succession of escape–sets we define at the same time. The sets will be based on the ones who
have just been treated in the Lemmas 4.2.3, 4.2.5, 4.2.6, 4.2.7, 4.2.8, and 4.2.9.

Definition 4.3.1. We will shift the sets defined in Definition 4.2.2 by the vectors

Oa
m := �Lane+,+(B1

m−1) + (
βm
4
,−βm−1

16
+ 1),

Ob
m := �Lane+,+(B0

m) + e1,

Oc
m := �Lane+,+(B0

m) + (−βm
4

+ 1, 1),

OA
m := �Lane+,+(B0

m) + (−βm
16

+ 1,
βm
4

),

OB
m := �Lane+,+(B1

m) + e0,

OC
m := �Lane+,+(B1

m) + (1,−βm
4

+ 1),m ≥ 5;

“O” stands for the shifted “Origin”.
Also define

nam := (�Lane+,+(B0
m))1 − (�Lane+,+(B1

m−1))1 +
βm−1

16
− 1,

nAm := (�Lane+,+(B1
m))0 − (�Lane+,+(B0

m))0 +
βm
16
− 1, m ≥ 5.

The next lemma shows how each shifted target set coincides with the next shifted starting
set.

Lemma 4.3.2.

T a
m(nam) +Oa

m = Sbm +Ob
m,

T b
m +Ob

m = Scm +Oc
m,

T c
m +Oc

m = SAm +OA
m,

T A
m(nAm) +OA

m = SBm +OB
m,

T B
m +OB

m = SCm +OC
m,

T C
m +OC

m = Sam+1 +Oa
m+1.

Proof. We prove the first line, the others being similar.

T a
m(nam) +Oa

m

= B’twn
(
(−βm

16
+ 1, nam + 1), (

βm
16
, nam + 1)

)
+ �Lane+,+(B1

m−1) + (
βm
4
,−βm−1

16
+ 1)

= B’twn
(
(−βm

16
+ 1, (�Lane+,+(B0

m))1 − (�Lane+,+(B1
m−1))1 +

βm−1

16
),

(
βm
16
, (�Lane+,+(B0

m))1 − (�Lane+,+(B1
m−1))1 +

βm−1

16
)
)

+ �Lane+,+(B1
m−1) + (

βm
4
,−βm−116

8
+ 1)
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= B’twn
(
((�Lane+,+(B1

m−1))0 +
βm
4
− βm

16
+ 1, (�Lane+,+(B0

m))1 + 1),

((�Lane+,+(B1
m−1))0 +

βm
4

+
βm
16
, (�Lane+,+(B0

m))1 + 1)
)

= B’twn
((

(�Lane+,+(B0
m))0 −

βm
16

+ 1, (�Lane+,+(B0
m))1 + 1

)
,(

(�Lane+,+(B0
m))0 +

βm
16
, (�Lane+,+(B0

m))1 + 1
))

= B’twn
(
(−βm

16
+ 1)e0,

βm
16
e0

)
+ �Lane+,+(B0

m) + e1 = Sbm +Ob
m.

Proof of Theorem 4.1.1. Out of convenience, we set

T †m := T †m(n†m), E†m := E†m(n†m), B†m := B†m(n†m), † ∈ {“a”,“A”}, m ≥ 5,

and ABC := {“a”,“b”,“c”,“A”,“B”,“C”}. Also define the initial target– and escape–sets

T 0 := SaM+1Oa
M+1 and E0 :=

(
∂ B’twn(0, �T 0 − e0)

)
\ T 0.

The event

{τT 0 < τE0} ∩
⋂

m≥M+1

⋂
†∈ABC

{
τ(S†m +O†m, T †m +O†m) < τ(S†m +O†m, E†m +O†m)

}
implies Xt ·~1→∞, t→∞: it describes the path of a random walk that hits a target set, from
this target set moves to the next target set, and so on. As, roughly speaking, these target sets
“lead to infinity in the direction of the vector ~1 = (1, 1)”, they help describing a path of a random
walk the scalar product with ~1 of which is diverging to +∞. A picture of a piece of such a path
with the corresponding target sets is available in Figure 11.

With the help of Lemma 4.3.2, we can successively apply the strong Markov property for X·,
and see that P–a.s.,

Pω0 (Xt ·~1 −−−→
t→∞

∞)

≥ Pω0
(
{τT 0 < τE0} ∩

⋂
m≥M+1

⋂
†∈ABC

{
τ(S†m +O†m, T †m +O†m) < τ(S†m +O†m, E†m +O†m)

})

= Pω0
(
τT 0 < τE0

) ∏
m≥M+1

∏
†∈ABC

Pω0

(
τ
(
S†m +O†m, T †m +O†m

)
< τ

(
S†m +O†m, E†m +O†m

))
.

Because of the ellipticity of the random environment, and because M from (3.2) is P–a.s. finite,
the first probability on the right hand side is strictly larger than 0.

The product being larger than 0 is thus equivalent to∑
†∈ABC

∑
m≥M+1

Pω0

(
τ
(
S†m +O†m, T †m +O†m

)
> τ

(
S†m +O†m, E†m +O†m

))
<∞.

The case “=” cannot occur because the target– and escape–sets are disjoint. Hence, what we
need to show is the P–almost sure summability in m of

Pω0

(
τ
(
S†m +O†m, E†m +O†m

)
< τ

(
S†m +O†m, T †m +O†m

))
, † ∈ ABC .
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T a
m +Oa

m
T b
m +Ob

m

T c
m +Oc

m

T A
m+1 +OA

m

T B
m+1 +OB

m

T C
m+1 +OC

m

Figure 11: Target areas. The path has positive probability to hit them in that order.

Let us look at the case † = “b”. Note that

Xt ∈ Bbm+Ob
m for all t ∈

{
τ
(
Sbm+Ob

m

)
, . . . ,

[
τ
(
Sbm+Ob

m, T b
m+Ob

m

)
∧τ
(
Sbm+Ob

m, Ebm+Ob
m

)]
−1
}
.

Also, ω(u) = (θOb
m
$b)(u) for all u ∈ Bbm + Ob

m, where $b is the one defined in Lemma 4.2.5.
This is true because of the placements of Ob

m, and Corollary 3.2.7.
So, the probability is the same as the one in Lemma 4.2.5, which yields summability.
The other cases in ABC can be treated the same way using Lemmas 4.2.3, 4.2.6, 4.2.7, 4.2.8,

and 4.2.9; for “a” and “A”, we need to remark that (nam)m and (nAm)m satisfy the necessary
conditions.
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