
Web-Based Science Gateways for
Structural Bioinformatics

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Sandra Gesing

aus Ahaus

Tübingen
2013

Tag der mündlichen Qualifikation: 10.04.2013
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Oliver Kohlbacher
2. Berichterstatter: Prof. Dr. Thomas Walter

ii

To Isabell
Being eleven years old, you are one ”smart cookie” -

full of the joys of life and very patient with me.

iii

Slartibartfast: I must warn you, we’re going to pass through, well, a sort of gateway thing.
Arthur Dent: What?
Slartibartfast: It may disturb you. It scares the willies out of me.
(Douglas Adams: The Hitchhiker’s Guide to the Galaxy)

iv

Acknowledgements

The work on this thesis was carried out during the years 2006 - 2011 at the University
of Tübingen in the group and under the supervision of Prof. Oliver Kohlbacher, at the
computer centre of the University of Tübingen in the group of Dr. Werner Dilling, at the
e-Science Institute Edinburgh in the group of Dr. Jano van Hemert, and at MTA SZTAKI
in the group of Prof. Peter Kacsuk. This thesis would have not been possible without the
support and effort of many people.

I would like to deeply thank my supervisor Prof. Oliver Kohlbacher for taking the
risk and offering me to join his team as a bioinformatics newbie. He aroused my interest
in science gateways for structural bioinformatics and gave me the opportunity to work
in this area and to write this thesis. Our lively discussions were always fruitful and he
gave me the freedom to do research in those areas that fascinated me most. He supported
my research visits lasting several weeks and the workshop series IWSG-Life (International
Workshop on Science Gateways for Life Sciences), which is guided by me.

I am also very grateful to Prof. Thomas Walter for beneficial discussions on science
gateways and reviewing this thesis. He and the former head of the computer centre Prof.
Dietmar Kaletta as well as Dr. Werner Dilling gave me the possibility to work in the field
of grid computing and parallel programming. It was a pleasure to work for them.

Furthermore, I owe much gratitude to Dr. Jano van Hemert and Prof. Malcolm
Atkinson for the valuable collaboration and for inviting me several times to the e-Science
Institute Edinburgh for long-term research visits. The scientific and technical discussions
gave me new insights in the field of science gateways. Jano and I chaired together the first
event of the workshop series IWSG-Life. The extension of Rapid introduced in this work
would have been unthinkable without the collaboration with Dr. Jos Koetsier, the main
developer of Rapid.

I am also tremendously thankful to Prof. Peter Kacsuk who supported my work on
WS-PGRADE and the project MoSGrid. He gave me the opportunity to work for several
weeks in his lab and has held many beneficial discussions with me. The SAML exten-
sion of WS-PGRADE, the development of the UNICORE submitter, and the Application
Specific Module would have been unthinkable without the collaboration with Prof. Miklos
Kozlovszky, Anna Szikszay Fabri, István Márton, and Ákos Balasko.

Many thanks go also to Prof. Shantenu Jha for the invitation to his lab for several
weeks and the valuable discussions. Even though it turned out that the subject of the
collaboration is beyond the scope of this work, it inspired me for the work on WS-PGRADE
described in this thesis and for future projects.

My work carried out via the MoSGrid project would not have been possible without the
efficient and pleasant collaboration with the following colleagues; Prof. Oliver Kohlbacher,
Dr. Jens Krüger, Dr. Werner Dilling, Dr. Bernd Schuller, Richard Grunzke, Georg

v

Birkenheuer, Patrick Schäfer, Prof. Sonja Herres-Pawlis, Johannes Schuster, Sebastian
Breuers, Prof. André Brinkmann, Ines Dos Santos Vieira, Prof. Gregor Fels, Prof. Rene
Jäkel, Dr. Ralph Müller-Pfefferkorn, Dr. Thomas Steinke, and Martin Wewior. Many
simulations for the performance studies were performed on the HPC-BW cluster (bwGRiD
cluster), which is funded by the Ministry for Education and Research of Germany and the
Ministry of Science, Research and Arts of the state Baden-Württemberg.

I would like to thank my colleagues and former colleagues in the Kohlbacher lab for
fruitful discussions. Special thanks go to Jens Krüger and Muriel Quenzer. Jens worked
with me in the MoSGrid project and supported me with use cases and workflows in struc-
tural bioinformatics. Muriel drafted with me the first concept for a workflow-enabled
portal for bioinformatics. I am also thankful to Andreas Bertsch who supported me with
his deep insights in TOPP and ideas for science gateways. I’m grateful to Marc Röttig
who supported the migration of workflows from Galaxy to WS-PGRADE with his wide
knowledge about Galaxy. Furthermore, many thanks go to our system administrators Jan
Schulze, Muriel, and Andreas Kerzmann for their premium support.

I also would like to thank Dr. Korbinian Schneeberger, Dr. Stephan Ossowski, Jörg
Hagmann, Prof. Detlef Weigel, Dr. Alexander Auch, Viktor Achter, and Lech Nieroda
for the efficient and pleasant collaborations on projects which are not in the scope of this
work but in the area of parallelisation of algorithms and tools.

I am grateful to Oliver, Thomas Walter, André, Jens, Andreas, Marc, Muriel, Miklos,
Stefan, and Hugh for their valuable comments on the manuscript.

During my time at the Kohlbacher lab, in Werner Dilling’s group, and at the labs I
have visited, I have met a lot of great people. Besides the fabulous conversations at the
labs, I enjoyed incomparable evenings at Saints & Scholars, Last Resort, Collegium, and
Coyote Cafe in Tübingen, genial get-togethers at The Doctors Bar and Native State in
Edinburgh, exquisite celebrations at Trófea Grill and Morrison’s Pubs in Budapest, and
amusing get-togethers in Baton Rouge. These evenings were always a great possibility to
relax in pleasant company and to have breaks from work which have not seldom lead to
very creative ideas for tools and projects.

Finally, I would like to wholeheartedly thank my friends and my whole family, who
often suffered from my keening about the progress of my research and patiently followed
my scientific endeavor.

In accordance with the standard scientific protocol, I will use the personal pronoun we to
indicate the reader and the writer, or my scientific collaborators and myself.

vi

Abstract

Structural bioinformatics applies computational methods to analyse and model three-
dimensional molecular structures. These methods address data-intensive and compute-
intensive problems, which demand high-performance computing (HPC) to allow data anal-
ysis in an acceptable time. Thus, structural bioinformatic applications are ideal candidates
for grid and cloud computing infrastructures, so-called DCIs (Distributed Computing In-
frastructures). DCIs provide access to HPC facilities and services across organisational
boundaries. However, the usability of DCIs is limited and the use of the complex methods
in structural bioinformatics requires a lot of experience. In addition, users mainly process
and analyse data not only via single jobs but via workflows.

An approach to offer easy and intuitive access to applications on DCIs are science
gateways. In general, a science gateway provides a single point of entry to a set of tools and
data of a specific application domain while hiding the complex underlying infrastructure.
Web-based science gateways are additionally characterised by only requiring a computer
connected to the Internet and an installed web browser on the users’ side. Developers of
such gateways support the users with pre-configured user interfaces targeted for a specific
application domain. The overall goal for creating science gateways is to increase the
usability of applications.

This work is focused on workflow-enabled grid portals that are specific web-based
science gateways supporting the management of workflows on DCIs. Four major aspects
in the context of workflow-enabled grid portals are adressed in this work: security in
portals with underlying DCIs, job and workflow management, migration of workflows
between diverse science gateways, and the automatic creation of portlets for workflow
management.

We have developed a granular security concept, which encloses all layers of the involved
infrastructure: the user interface, the high-level middleware layer, the grid middleware
layer, and the HPC facilities. We are especially focused on the role-based user manage-
ment concerted for the molecular simulation community and the credential management.
The workflow-enabled grid portal WS-PGRADE (Web Services Parallel Grid Runtime
and Developer Environment) has been extended for the use of SAML (Security Assertion
Markup Language) for trust delegation. The created credential files set the stage for the
authentication processes in the connected DCIs. We chose to use DCIs connected via the
grid middleware UNICORE 6 because of UNICORE’s scalable service-oriented architecture
and its workflow engine. For the integration in WS-PGRADE, we implemented a plugin,
a so-called submitter, which allows invoking jobs on UNICORE 6. The submitter addi-
tionally supports UNICORE workflows to be invoked via WS-PGRADE and thus provides
workflow interoperability. Users can seamlessly re-use existing UNICORE 6 workflows in
WS-PGRADE. The Application Specific Module (ASM) has been developed to simplify

vii

the implementation of workflow-enabled portlets extending WS-PGRADE. The migration
of workflows is achieved by a tool for the export of Galaxy workflows to WS-PGRADE
workflows. Galaxy is a workflow-enabled portal for cloud infrastructures and for local
HPC facilities. It is widely used but has the disadvantage of lacking the possibility to con-
nect to grid infrastructures. Therefore, we implemented the export of Galaxy workflows
to WS-PGRADE workflows, which can be easily imported by the users in WS-PGRADE.
Furthermore, this work presents a concept for automatically generating graphical user
interfaces for a WS-PGRADE portal via the software framework Rapid. Rapid allows
creating portlets without programming in the traditional sense. Developers are enabled
to automatically convert XML files to a fully functional portlet for WS-PGRADE.

The concepts and implementations in this work are applied in the science gateway
of the project MoSGrid (Molecular Simulation Grid). It forms a use case for a science
gateway for structural bioinformatics and provides a complete solution for the molecular
simulation community.

viii

Zusammenfassung

In der Strukturbioinformatik werden rechnergestützte Methoden angewandt, um
Molekularstrukturen zu analysieren und modellieren. Diese Methoden befassen sich
mit daten- und rechenintensiven Problemen, die für Datenanalysen in annehmbarer
Zeit den Einsatz von Hochleistungsrechnern erfordern. Dadurch sind Anwendungen in
der Strukturbioinformatik ideal geeignet für den Einsatz auf sogenannten Grid- und
Cloud-Rechnerinfrastrukturen. Diese verteilten Rechnerinfrastrukturen bieten Zugang
zu Hochleistungsrechnern und Diensten über organisatorische Grenzen hinweg. Aller-
dings sind die Interaktionsmöglichkeiten mit den Rechnerinfrastrukturen nicht benutzer-
freundlich und die Bedienung der komplexen Methoden der Strukturbioinformatik er-
fordert viel Erfahrung. Zudem führen Benutzer nicht nur einzelne Jobs sondern primär
Workflows zur Datenanalyse aus.

Um einen intuitiven Zugang zu Anwendungen auf verteilten Rechnerinfrastrukturen
zu erreichen, werden Science Gateways eingesetzt. Im Allgemeinen bieten sie einen ein-
heitlichen Zugang zu verschiedensten Programmen eines spezifischen Anwendungsgebiets
an und verbergen die komplexe unterliegende Infastruktur vor dem Benutzer. Webbasierte
Science Gateways zeichnen sich zusätzlich dadurch aus, dass sie auf der Benutzerseite
lediglich einen Computer mit Internetzugang und einen Webbrowser erfordern. Entwickler
solcher Science Gateways unterstützen die Benutzer mit voreingestellten Bedienoberflächen,
die für das jeweilige Anwendungsgebiet angepasst sind. Der Einsatz von Science Gateways
hat zum Ziel, die Bedienung von Software benutzerfreundlicher zu gestalten.

Der Fokus dieser Arbeit liegt auf workflowfähigen Grid-Portalen, die den Benutzern die
intuitive Verwaltung von Workflows auf verteilten Rechnerinfrastrukturen ermöglichen. Es
werden vier Kernaspekte von workflowfähigen Grid-Portalen in dieser Arbeit adressiert:
die Sicherheit in Portalen mit Zugriff auf verteilte Rechnerinfrastrukturen, Job- und Work-
flowverwaltung, die Migration von Workflows zwischen bestehenden Science Gateways und
die automatische Generierung von Portlets für Workflows.

Wir haben ein granulares Sicherheitskonzept entwickelt, das alle Ebenen der beteiligten
Infrastruktur umfasst. Wir konzentrieren uns insbesondere auf eine rollenbasierte
Benutzerverwaltung für die rechnergestützte Chemie-Community und die Verwaltung
von Berechtigungsdateien. Das workflowfähige Grid-Portal WS-PGRADE (Web Services
Parallel Grid Runtime and Developer Environment) ist für den Einsatz von SAML
(Security Assertion Markup Language) erweitert worden. Die erzeugten Berechti-
gungsdateien bilden die Grundlage für die Authentifizierungsprozesse in den angebun-
denen verteilten Rechnerinfrastrukturen. Wir haben uns aufgrund der skalierbaren
service-orientierten Architektur und der zugehörigen Workflow-Engine für UNICORE
6 als Grid-Middleware entschieden. Für die Integration mit WS-PGRADE wurde ein
sogenannter Submitter implementiert, über den Jobs an UNICORE 6 geschickt wer-

ix

den können. Ausserdem ermöglicht er das Aktivieren von UNICORE-Workflows in
WS-PGRADE und somit Workflow-Interoperabilität. Benutzer werden in die Lage
versetzt, UNICORE-Workflows in WS-PGRADE wiederzuverwenden. Die Anwendungs-
schnittstelle Application Specific Module (ASM) erleichtert Entwicklern die Erstellung
von workflowfähigen Portlets in WS-PGRADE. Die Migration von Workflows wird mit
einem Programm realisiert, das Galaxy-Workflows in WS-PGRADE-Workflows kon-
vertiert. Galaxy ist ein workflowfähiges Portal für Cloud-Rechnerinfrastrukturen und
für lokale Hochleistungsrechner. Es ist weitverbreitet, hat jedoch den Nachteil, das es
keine Verbindungsmöglichkeiten zu Grid-Rechnerinfrastrukturen bietet. Deswegen haben
wir ein Programm implementiert, das Galaxy-Workflows als WS-PGRADE-Workflows ex-
portiert, die sehr einfach von Benutzern importiert und dadurch mit wenig Aufwand wieder
benutzt werden können. Ausserdem wird ein Konzept zur automatischen Generierung von
graphischen Benutzerschnittstellen für WS-PGRADE über die Software Rapid vorgestellt.
Rapid versetzt Benutzer in die Lage, intuitive graphische Benutzerschnittstellen zu re-
alisieren ohne im klassischen Sinne zu programmieren. Entwickler können automatisch
XML-Dateien in vollfunktionale Portlets für WS-PGRADE konvertieren.

In dem Science Gateway des Projekts MoSGrid (Molecular Simulation Grid) sind die
Konzepte und Implementierungen dieser Arbeit umgesetzt. Das Science Gateway stellt
einen Anwendungsfall für ein Science Gateway im Bereich der Strukturbioinformatik dar
und bietet eine vollständige Lösung für die Anwender von molekularen Simulationen.

x

Contents

1 Introduction 1

2 Theoretical Background 8

2.1 Structural Bioinformatics . 8

2.2 Application areas . 10

2.2.1 Quantum Chemistry . 12

2.2.2 Molecular Dynamics . 14

2.2.3 Docking . 17

3 Distributed Computing Background 21

3.1 Grid and Cloud Computing . 21

3.2 Security in Grid Infrastructures . 22

3.3 Workflows . 25

3.4 Web-based Science Gateways . 27

3.4.1 Workflow-enabled Grid Portals . 28

3.4.2 Development of Portals . 31

4 Evaluated and Designed Infrastructure 34

4.1 Introduction . 34

4.2 Selected Distributed Computing Infrastructure 35

4.2.1 Grid Middleware UNICORE . 35

4.2.2 Cloud File System XtreemFS . 37

4.3 Workflow-enabled Grid Portals . 39

4.3.1 gUSE and WS-PGRADE . 39

4.4 Evaluated Portal Frameworks . 40

4.5 User Management for the Molecular Simulation Community 41

4.6 Basic Infrastructure . 43

5 A Novel Credential Management for Science Gateways 45

5.1 Introduction . 45

5.2 Credential Management Using SAML Assertions 46

5.3 Implementation . 47

5.4 Results and Discussion . 50

xi

CONTENTS

6 Enhanced Job and Workflow Management 52
6.1 Introduction . 52
6.2 Job Management . 53

6.2.1 UNICORE Submitter . 53
6.2.2 UNICORE Plugin in WS-PGRADE 57

6.3 Workflow Interoperability of gUSE with UNICORE 58
6.4 Workflow Management via the Application Specific Module 60
6.5 Results and Discussion . 62

7 A Novel Method for Workflow Migration 64
7.1 Introduction . 64
7.2 Workflows . 65

7.2.1 WS-PGRADE Workflows . 66
7.2.2 Galaxy Workflows . 69

7.3 Migration of Galaxy Workflows to WS-PGRADE Workflows 72
7.4 Graph Algorithm . 73
7.5 Results and Discussion . 77

8 Automatic Creation of Portlets for Workflows 79
8.1 Introduction . 79
8.2 Rapid Framework . 80
8.3 Extending Rapid for Workflows . 82
8.4 Results and Discussion . 83

9 MoSGrid - Bringing It All Together 85
9.1 Introduction . 85
9.2 Domain-specific Workflows . 86

9.2.1 The Molecular Dynamics Portlet . 86
9.2.2 The Quantum Chemistry Portlet . 89
9.2.3 The Docking Portlet . 91

9.3 Performance Studies . 93
9.4 Results . 96

10 Conclusion and Outlook 99

A Abbreviations 104

B Appendix 107

C Contributions 125

D Curriculum Vitae 127

E List of Publications 131

References 135

xii

List of Figures

1.1 The MoSGrid science gateway . 5

1.2 Visualisation of a result in the molecular dynamics portlet 6

2.1 Structural bioinformatics and involved disciplines 8

2.2 Growth of number of structures in the PDB 9

2.3 Screenshots of molecular structures generated with BALLView 10

2.4 Key problems of the three areas quantum chemistry (a), molecular dynamics
(b), and docking (c) illustrated on examples 11

2.5 Schematic representation of the interactions in a typical molecular mechan-
ics force field . 16

2.6 Basic algorithm of docking . 18

3.1 Application process for a user certificate . 24

3.2 General architecture of portal frameworks 28

3.3 Authentication and authorisation in a grid portal 29

4.1 UNICORE architecture . 36

4.2 Authentication process via trust delegation with SAML assertions 37

4.3 XtreemFS architecture . 38

4.4 gUSE architecture . 39

4.5 Selectable organisational views . 42

5.1 Security infrastructure of the MoSGrid science gateway 46

5.2 Trust delegation generation with integrated certificate portlet 47

5.3 UML class diagram of the ETDApplet implementation 49

5.4 Source files involved in the adaption of the certificate portlet 50

6.1 Configuration of a job in WS-PGRADE including the unique feature to
select an available tool from an automatically generated list 55

6.2 The UML class diagram of the UNICORE submitter. 56

6.3 The UML class diagram of the UNICORE plugin for WS-PGRADE 57

6.4 Illustration of an example of a WS-PGRADE workflow containing a UNI-
CORE workflow in the third job . 58

6.5 Configuration of a job as UNICORE workflow in WS-PGRADE 60

6.6 The UML class diagram of the workflow extension in the UNICORE submitter 61

6.7 UML class diagram of the most important ASM classes 62

xiii

LIST OF FIGURES

7.1 The graphical illustration of a workflow for docking of a protein in WS-
PGRADE . 67

7.2 XML illustration of the data structure of WS-PGRADE workflows on the
example of a workflow for docking of a protein 68

7.3 XML illustration of the data structure of jobs in a WS-PGRADE workflows
on the example of a workflow for docking of a protein 69

7.4 The graphical user interface for creating workflows in Galaxy 70
7.5 The graphical illustration of a workflow for docking of a protein in Galaxy . 70
7.6 JSON illustration of the data structure of Galaxy workflows 71
7.7 Source files involved in the download of workflows in WS-PGRADE format 73
7.8 Orientation of the points A, B, C, and D in 2D 77

8.1 Process of creating and using TOPP portlets via Rapid 80
8.2 Conceptual architecture of Rapid . 81
8.3 Extended conceptual architecture of Rapid for workflow-enabled grid portlets 83

9.1 Preparing a recipe with the MD portlet - at the top parameters can be
adjusted and a recipe chosen and in the bottom the whole recipe is shown . 87

9.2 MD portlet - monitoring and view of a molecule file in Jmol 89
9.3 QC portlet - configuration of a workflow . 90
9.4 QC portlet - result view with Jmol . 90
9.5 Docking portlet - configuration of a workflow 92
9.6 Docking portlet - monitoring of a workflow and visualisation of the result

with Jmol . 92
9.7 A workflow to minimise the energy of a molecular structure 94
9.8 The running times of the energy minimisation for the structures 1DX6 and

3UBJ on HPC-BW and Flavus . 95
9.9 A docking workflow including the preparation of the receptor and the prepa-

ration of the ligands . 96
9.10 Performance study for docking the protein kinase ABL 97
9.11 Performance study for docking the protein kinase ABL 97

xiv

List of Tables

3.1 Comparison of generic features in grid portals 30
3.2 Comparison of workflow features in grid portals 31
3.3 Three mature and live portlet generators that require little to no develop-

ment in conventional programming languages. 32

4.1 Hierarchical user roles in the MoSGrid science gateway 43

7.1 The supported workflow patterns in WS-PGRADE and Galaxy 66
7.2 Mapping of the Python dictionary to XML tags 73

9.1 Technical specifications of the clusters Alibaba, Bisgrid, Deimos, Emilia,
Flavus, HPC-BW, SuGI, and Atlas . 93

xv

List of Algorithms

6.1 Submission of a UNICORE job . 54
6.2 Submission of a UNICORE workflow . 59
7.1 Create a graph out of a workflow . 74
7.2 Calculate coordinates of the boxes representing steps 75
7.3 Methods to check intersections of edges . 77

xvi

”A mouse pusher:
A person that prefers a mouse over a keyboard; originally

used for Macintosh fans. The derogatory implication is that
the person has nothing but the most superficial knowledge

of the software he/she is employing, and is incapable of
using or appreciating the full glory of the command line.”

(http://www.retrologic.com/jargon/M/mouse-pusher.html)

1
Introduction

Structural bioinformatics is concerned with computational methods to gain new insight
into molecular structures, their prediction, and the analysis of their functions. These
computational methods are invaluable tools in materials science, structural biology, and
drug design. Structural bioinformatics addresses data-intensive and compute-intensive
problems, which demand high-performance computing (HPC) to allow data analysis in an
acceptable time. Hence, grid and cloud computing infrastructures, so-called Distributed
Computing Infrastructures (DCIs), have been developed to provide access to HPC facilities
and services across organisational boundaries.

One of the first definitions of grid computing can be found in a book edited by Foster
and Kesselmann [1]: ”A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to high-end computa-
tional capabilities.”The differences between grid and cloud computing have been discussed
for several years now and the definition of cloud computing is still evolving. One of the
opinions is that cloud computing offers on-demand resource provisioning with the possibil-
ity of scaling prices according to the utilised resources [2]. Sam Johnston stated in his blog
”The Cloud is what The Grid could have been.” [3] Aside from differences between grid and
cloud computing, grid middlewares and cloud software frameworks are responsible for the
authentication of users, the submission and monitoring of jobs, and the data management.
Accordingly, the underlying hardware, the operating systems involved, batch systems, and
file systems are hidden from the users.

Even though the details of the underlying infrastructure of DCIs is hidden, the appli-
cation of structural bioinformatic methods on DCIs has usability issues. On the one hand,
these issues derive from the applied methods. The usability of individual tools is limited
and the implemented methods are very complex, reflecting the underlying complex theory.

1

Introduction

They thus require a lot of experience. The lack of user interfaces and of pre-configured
settings deters novice users from using the tools. The users have to become acquainted
with the domain-related features, of course, but employing them via command lines in-
creases the barrier for a wide use. On the other hand, the underlying DCIs augment
the complexity, especially for users who lack a computer science background. In order
to access a DCI, users have to become versed in command line tools and job description
languages to submit jobs via a grid middleware or a cloud software framework. Already
the authentication procedure may demand the use of command line tools. In addition,
users in structural bioinformatics mainly process and analyse data not only via a single
job but via a workflow. A workflow can be described as a sequence of connected steps in a
defined order based on its control and data dependencies. For instance, the preparation of
a protein structure may include the minimisation and equilibration of energies to obtain
reliable predictions about the protein’s properties.

An approach to offer easy and intuitive access to applications on DCIs are science
gateways. A science gateway provides a single point of entry to a set of tools for a
specific scientific application domain. It hides, as far as suitable, underlying technical
infrastructures and offers a single look-and-feel for diverse functionalities. The overall
goal for creating science gateways is to increase the usability of applications. Usability of
software is examined by many different researchers (e.g., Seffah and Metzker [4], Brinck et
al. [5]) and an ISO standard [6] has been developed. The standard elucidates ergonomic
requirements for office work with visual display terminals including a guidance on usability.
Steve Krug states in his book ”Don’t make me think!: A Common Sense Approach to
Web Usability” the definition ”After all, usability really just means that making sure
that something works well: that a person of average (or even below average) ability and
experience can use the thing — whether it’s a Web site, a fighter jet, or a revolving door
— for its intended purpose without getting hopelessly frustrated.” [7]

One of the drawbacks of a science gateway is, that it may require the installation of
software and the administration of firewall properties on the users’ computers. To relieve
the users from these issues, a web-based science gateway offers access to pre-configured
tools via a web browser. Users are enabled to customise views and tools and their pref-
erences are stored. They only need a computer that can be connected to the Internet
and an installed web browser. Hardware configuration, software installation, and firewall
issues are resolved on the web servers’ side. The users are thus enabled to focus on their
particular research questions and interrelated computational methods. Furthermore, most
of the users are familiar with the World Wide Web for various applications (e.g., booking
of hotels, webmail).

The evolution and wide acceptance of the World Wide Web [8] and of web-based social
networks (e.g., Facebook [9]) reflects the potential of web-based science gateways for re-
search communities. Besides features targeted to a specific domain, science gateways may
offer community features to improve the communication between the gateway’s users. Re-
search communities are mostly spread geographically and appreciate tools like chatrooms,
Wikis, and repositories. Such tools allow users to build up active virtual communities and
they are able to discuss online, share knowledge, and forge links for further collaborations.

Science gateways supporting virtual communities and offering access to DCIs have im-
plemented single sign-on features with the principle of trust delegation. Single sign-on
concepts allow users accessing multiple resources with a unique credential and trust del-
egation allows the science gateway to act on behalf of the users. The characteristics of

2

the trust delegation in a science gateway depends on the credential management of the
underlying DCI. Nowadays, the security of grid middlewares is mostly based on public
key cryptography using X.509 certificates and certification authorities (CA) [10]. Estab-
lished trust delegation models include assertion files in SAML (Security Assertion Markup
Language) [11] or GSI proxy certificates (Grid Security Infrastructure) [12]. Optimally, a
science gateway only requires the users’ certificates imported in the browsers’ keystores
for a login or the local login maps to a federated identity (e.g., in Shibboleth infrastruc-
tures [13]). Furthermore, science gateways offer features for easily creating the additional
files for trust delegation. Once these files are available in the science gateway, the security
infrastructure allows the users to submit jobs and workflows to the underlying DCI.

The submission of workflows requires a workflow engine to efficiently manage the pro-
cess and to invoke jobs in the right order on suitable resources. A user-friendly solution is a
workflow-enabled science gateway. It assists users emulating their working steps and offers
tools for the whole lifecycle of a workflow; a workflow editor to create and change workflows
and a graphical interface to invoke and monitor the latter via a workflow engine. When
workflows are invoked on DCIs via the science gateway, it is called a workflow-enabled grid
science gateway that allows the efficient management of jobs, workflows and ideally also
of data. Dependent on the size of the involved datasets, it may be more efficient to invoke
tools at the data location than to transfer the data to the location of the tools. Grid and
cloud file systems work with several mechanisms (e.g., distributed replicas) to accelerate
data access. These mechanisms are hidden from the users and a science gateway may
facilitate the interface of a distributed file system in such a way as to enable them to use
the latter like a local file system.

The P-GRADE portal family [14, 15], EnginFrame [16], and Galaxy [17] have been
developed to serve users with the possibility of managing the whole lifecycle of workflows
including efficient data management. Whereas the first two grid portals support grid
and cloud infrastructures, Galaxy is a kind of toolbox for cloud infrastructures and for
HPC facilities managed by batch systems like PBS (Portable Batch System) [18] and
OGE (Oracle Grid Engine) [19]. It is widely used but has the disadvantage of lacking
the possibility of connecting to grid infrastructures. All three are designed for generic-
purpose workflows and can be employed for single application domains. In contrast to
the proprietary Galaxy, P-GRADE and EnginFrame are developed on top of a portal
framework. Portal frameworks aid developers with standard features like login procedures
and pre-defined so-called portlets. They are based on standards like JSR168 [20] and
its successor JSR286 [21], which allow for the development of portlets just one time and
deploy them in different portal frameworks (e.g., Liferay [22], Pluto [23]). However, the
development of portlets requires specialised skills and is time-consuming. It oftens occupies
a developer for weeks or months for a single feature. The demands on a workflow-enabled
grid portal for handling jobs, workflows, and distributed data in DCIs are similar regardless
of which application domain is applied. They offer graphical user interfaces but these are
not particularly adapted to the application domain. Hence, there is the need to develop
domain-specific portlets, which are tailored especially for an application domain.

Diverse tools exist to ease the developers’ work for a portlet framework. Besides Java
Development Frameworks (e.g., Vaadin [24], Google Web Toolkit [25]), which aid in im-
plementing Java web applications, three frameworks currently exist, which support the
development of portlets and are actively maintained: Rapid [26], EnginFrame, and Rapp-
ture [27]. Rapid allows generating JSR168/JSR286-compliant portlets for DCIs only by

3

Introduction

creating an XML (Extensible Markup Language) [28] file. EnginFrame also offers the pos-
sibility of defining service descriptions of processes in a proprietary XML format to make
a graphical interface available. In contrast to the self-contained portlets of Rapid, Engin-
Frame is a workflow-enabled grid portal and the process of creating portlets for DCIs relies
on the overall portal framework. Analogously, Rappture is a toolkit for creating graphical
user interfaces for the nanoHUB portal framework. However, the mechanisms are quite
different. Rappture specifically enables each application via a proprietary infrastructure
for the web. All three frameworks allow handling data-intensive and compute-intensive
jobs or workflows, respectively.

Even though there are workflow-enabled grid portals and tools easing the developers’
work available, it is a scientific challenge to create science gateways suitable to a specific
application domain. Often communities are heterogeneous with different levels of expe-
rience with domain-related tools as well as with the use of DCIs. These different levels
of experience have to be met in the science gateway. In addition, the security concept
has to fit to the targeted DCIs that are available to the community. Data in structural
bioinformatics is sensitive and expensive, especially in the field of drug design, and it is
fundamental to protect it again misuse and to prevent data loss. Analysis of this data is
mainly performed via workflows. Such workflows managed in diverse workflow engines dif-
fer from a syntactic point of view but can be re-used from a semantic point of view within
a community. On the developers’ side, the effort to add features in a workflow-enabled
grid portal is still quite high resulting from the complex underlying infrastructure and in
the case of structural bioinformatics additionally resulting from the complex theory and
sophisticated methods in the application domain.

This work presents a complete solution for the structural bioinformatics community
to aid end users and developers in the area of web-based science gateways. We focus
on workflow-enabled grid portals and cover four major aspects in this context: security
in portals with underlying DCIs, job and workflow management, migration of workflows
between diverse science gateways, and the automatic creation of portlets for workflow
management. The concepts, designs, and implementations have been carried out via the
interdisciplinary project MoSGrid (Molecular Simulation Grid) [29, 30]. The developed
web-based science gateway is based on the Liferay-version of the workflow-enabled grid
portal WS-PGRADE (Web services Parallel Grid Runtime and Developer Environment),
which belongs to the P-GRADE portal family.

A fundamental topic in science gateways is the authorisation and authentication of
users to ensure the confidentiality, integrity, and availability of data. For this purpose, we
have developed a granular security concept which covers all layers of the involved infras-
tructure: the user interface, the high-level middleware layer, the grid middleware layer, and
the HPC facilities. The focus of this work is on the role-based user management and the
credential management. We identified six main user roles ordered hierarchically regarding
their authorisation level: guests, novice users, expert users, workflow developers, science
gateway developers, and administrators. Guests can only access public information in the
science gateway; novice users, expert users, and workflow developers are registered users
with a different knowledge about the application domain and the underlying infrastruc-
ture; science gateway developers add features to the science gateway and administrators
manage the science gateway. These roles within the community are mapped to technical
roles in Liferay. In the area of credential management, WS-PGRADE has been extended
for the use of SAML for trust delegation. SAML assertions are advantageous compared to

4

proxy certificates since they can be limited to one entity, to a specific validity time span,
and to a trust chain of a maximum length. The possibility to manage SAML assertions
has been added to the certificate portlet of WS-PGRADE. The creation of the SAML as-
sertions is solved in an integrated signed applet, which forms a flexible and secure solution
only relying on a web browser and Java security.

WS-PGRADE has already provided access to various DCIs (e.g., Globus Toolkit [31],
gLite [32]). However, for the MoSGrid project, we decided to use the grid middleware
UNICORE 6 [33] because of its scalable, service-oriented architecture and its workflow en-
gine. There are already user interfaces available like the UNICORE Commandline Client
(UCC) [34] and the rich client [35] based on Eclipse which both demand the installation
of software on the users’ side. For the integration in WS-PGRADE, we have implemented
a plugin, a so-called submitter, which allows invoking jobs to UNICORE 6 employing the
libraries of the UCC. Furthermore, the feature has been added to support users with an
automatically generated list of available tools. This feature is unique compared to other
submitters of WS-PGRADE and other workflow-enabled grid portals. The submitter
additionally supports UNICORE workflows to be invoked via WS-PGRADE and, thus,
provides workflow interoperability. Users can seamless re-use existing UNICORE 6 work-
flows in WS-PGRADE. The Application Specific Module (ASM) has been developed to
simplify the implementation of workflow-enabled portlets in WS-PGRADE. ASM supports
to manage the whole life cycle of the execution of the workflows using the underlying DCI
services via an API (Application Programming Interface). Thus, developers do not need to
become acquainted with the underlying DCI services in detail but can focus on designing
the layout and on implementing features for the application domain.

Figure 1.1: The MoSGrid science gateway

The MoSGrid community is a heterogeneous group, which have already partially ap-
plied workflows in different workflow management systems like UNICORE and Galaxy.
Migration of workflows supports the re-usability in diverse workflow management systems

5

Introduction

and relieves users from creating workflows from scratch. We achieved migration of work-
flows by developing a tool for the migration of Galaxy workflows to WS-PGRADE work-
flows. Therefore, we have implemented the export of Galaxy workflows to WS-PGRADE
workflows, which can be easily imported by the users.

Furthermore, we have developed a concept for generating graphical user interfaces
automatically for a WS-PGRADE portal via Rapid. Rapid has been extended to process
additional to the Rapid XML file a WS-PGRADE XML workflow file. By adding this file, a
portlet is created with the graphical visualisation of the workflow. Each tool can be selected
in the visualisation for parameterising it for submission to the grid. If a tool also provides
an XML file about its parameters to Rapid, an additional forms opens up for the specific
parameters. Hence, developers are able to generate domain specific portlets including
workflows only by providing XML files. They are relieved from becoming acquainted with
portlet programming and can easily re-use existing workflows. Rapid with the workflow
extension thus provides a complete solution for creating domain-specific portlets embedded
in a WS-PGRADE portal.

MoSGrid as a D-Grid project (the German national grid initiative) [36] is employing
the DCI of D-Grid and supports the utilisation of several widely-used tools and workflows
in the domains of molecular dynamics, quantum chemistry, and docking (see Fig. 1.1).
In addition to the features of WS-PGRADE to manage workflows and share them via a
repository within the community, domain specific portlets have been developed, which are
tailored to particular needs of the community. They allow submitting pre-defined domain
specific workflows and the graphically visualisation of the results as well (see Fig. 1.2).

Figure 1.2: Visualisation of a result in the molecular dynamics portlet

Besides the possibility of managing workflows, the MoSGrid portal is being developed
as a community-oriented science gateway with repositories for molecular structures and
simulation results. Users of the portal will be able to share their data and results in public

6

repositories in the cloud file system XtreemFS [37] with protection against data loss and
unauthorised access.

Structure of the Thesis

This thesis is structured as follows: the theoretical background on structural bioinfor-
matics and the distributed computing background are introduced in Chapter 2 and 3,
respectively. Chapter 4 describes the evaluated and designed infrastructure for a science
gateway for structural bioinformatics, which forms the basis for the developments in the
subsequent chapters. Chapter 5 presents a novel credential management for science gate-
ways facilitating SAML. An enhanced job and workflow management allowing workflow
interoperability is introduced in Chapter 6. The seventh chapter provides a solution for
the migration of workflows and the eights chapter goes into detail for an extension for
creating automatically workflow-enabled portlets. Subsequently, we present the MoSGrid
science gateway as use case for a science gateway for structural bioinformatics, which ap-
plies the concepts and developments in this work (see Chapter 9). Section 10 provides the
conclusion of the presented work and gives an outlook on further steps.

7

2
Theoretical Background

This thesis focuses on web-based science gateways for structural bioinformatics, which is
briefly presented in the following. A complete introduction is far beyond the scope of this
work. Please refer to [38, 39, 40, 41, 42] for a more detailed coverage of the subject.

2.1 Structural Bioinformatics

Structural bioinformatics is a discipline combining theories and methods of various disci-
plines (see Fig. 2.1) to predict and analyse the structure of biological macromolecules in
order to gain insights in their mechanism of function.

Figure 2.1: Structural bioinformatics and involved disciplines

An enormous amount of data about molecules and macromolecules is available regard-

8

2.1 Structural Bioinformatics

ing their sequence, structure, and assembly. This information is highly valuable, but only
represents small part of the understanding of dynamic and functional behaviour. Gu and
Bourne [38] state ”The great promise of structural bioinformatics is predicated on the be-
lief that the availability of high-resolution structural information about biological systems
will allow us to precisely reason about the function of these systems and the effects of
modifications or perturbations”.

Several challenges have to be met to support researchers with computational methods
for structural data. The biological data basis generated by experimental methods like
X-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, and electron
microscopy is noisy and imperfect. It has to be examined regarding its experimental
quality and to be further analysed, e.g., the assignment of peaks in an NMR spectrum
to an atomic interaction is a difficult search problem. The structural models provided by
crystallography are generally static, whereas the function of a molecule generally results
from its dynamics. A huge amount of structural data is being experimentally created
and leads to the need for databases storing the information in standardised formats and
to efficiently categorise them. The Protein Data Bank (PDB) [43] is one of the first
established databases. Figure 2.2 illustrates the total and the yearly growth of the number
of searchable structures stored in the PDB.

Figure 2.2: Growth of number of structures in the PDB1

Molecular simulations are computational methods to predict useful functional prop-
erties of chemicals, e.g., thermodynamic properties, thermochemical properties, spectro-
scopic properties, mechanical properties, transport properties, or morphological informa-
tion. They anticipate the behaviour of molecules on basis of fundamental physical laws
that determine the interaction of atoms. Dirac noted 1929 ”The underlying physical laws

1Numbers are taken from [44]

9

Theoretical Background

necessary for the mathematical theory of a large part of physics and the whole of chem-
istry are thus completely known, and the difficulty is only that the exact application of
these laws leads to equations much too complicated to be soluble.” [45], which is still ap-
plicable nowadays. The computational methods implemented on basis of mathematical
and computational models have to deal, to some extent, with a continuous search space
and with NP-complete problems. Thus, heuristics and approximations are often necessary
for executing molecular simulations in an acceptable time even when deployed on DCIs.
Various sophisticated tools and methods have been developed for structural biology and
proved to be invaluable in numerous applications like materials science and drug design.

Further challenges arise in dynamic visualisation of molecule structures and their pre-
diction. The visualisation programs interpret and transform the raw data on basis of
computational analyses and molecular simulations. It is a complex process from modeling
and geometry stages to rendering stages. Various molecule viewers have been developed
to support users with 2D or 3D models of structural information (e.g., BALLView [46],
Jmol [47]). They offer diverse models to illustrate molecules (e.g., ball and stick model,
cartoon model, surface model, see Fig. 2.3) and provide insights that cannot be obtained
by simply examining raw data of structural information.

(a) Cartoon model and transparent surface (b) Surface model with field lines, e.g., to vi-
sualize electrostatic potentials

Figure 2.3: Screenshots of molecular structures generated with BALLView2

2.2 Application areas

A wide range of application areas uses structural bioinformatic methods, e.g., for prediction
of protein structures or structural alignment. The focus of this work is on three selected
application areas in the field of molecular simulations: quantum chemical calculations
dealing with the electronic structure of molecules, molecular dynamics employing classical
mechanics approaches, and docking estimating ligand-receptor interactions. Application
areas of quantum chemical calculations include the explanation of observed phenomena,
e.g., in spectroscopy, and the examination of the role of metal and polyester in biology.
Molecular dynamics is widely used for protein structure determination and refinement.
The main application of docking is in computer-aided drug design. Key problems of these
three areas include

2Graphics are taken from http://www.ballview.org/Gallery

10

2.2 Application areas

• the determination of the energy of chemical structures on basis of wave functions,
which can be found by approximating solutions of the Schrödinger equation (quan-
tum chemistry)

• the prediction of physical movements of atoms and molecules via molecular mechan-
ics force fields (molecular dynamics)

• the search for a stable complex of two molecules binding to each other (docking)

Figure 2.4 illustrates these key problems for the three application areas. The next three
sections give a brief overview on the theory and methods in these application areas.

(a) Relation between relative atomic coor-
dinates and potential energy

(b) Projections of molecular dynamics trajectories and the
X-ray structures as result of principal component analysis
on the EGFR kinase domain

(c) Searching for the ideal complex of the enzyme trypsin (green) with
its inhibitor BPTI (red)

Figure 2.4: Key problems of the three areas quantum chemistry (a), molecular dynamics
(b), and docking (c) illustrated on examples3

3Graphic (a) is taken from [48], graphic (b) is taken from [49], and graphic (c) is adapted from [50]

11

Theoretical Background

2.2.1 Quantum Chemistry

The scientific community using quantum chemistry encompasses inorganic, organic, and
physical chemists, among others. Quantum chemistry studies and simulates electronic
behaviour of molecules on basis of approximations of the Schrödinger equation [51]. The
Schrödinger equation is the eigenvalue equation

HΨ = EΨ

where H is the Hamiltonian operator (sum of operators corresponding to the kinetic and
potential energies of a system), Ψ is the wave function (characterises particles’ motions,
used to govern the probability of particles’ properties like the location of an electron
close to a nucleus), and E is the energy of the system. A few standard cases exist like
a particle in a box or the hydrogen atom, which allow solving the Schrödinger equation
exactly. For any poly-electronic system and, thus, any molecule, the real solution of the
equation can only be estimated, which has lead to a range of different approximations.
They can be divided in two major groups: ab initio (or first-principles) methods and
semi-empirical methods. Ab initio calculations rely on basis sets of parameters, which are
mostly not complete or partially estimated to solve equations of the underlying complex
theory exactly. In contrast, semi-empirical methods approximate parts or ignore terms of
equations to simplify a calculation.

The Born-Oppenheimer approximation [52] considers the motions of electrons but the
nuclei as fixed, which isolates the electronic structure problem from nuclear motion. The
approximation relies on the property that masses of nuclei are much larger than the masses
of the electrons. Thus, electrons are assumed to react almost instantaneously on motions
of the nuclei. The wave function can be expressed as the product of the nuclear wave
function and the electronic wave function. The total energy of a molecule is calculated via
the sum of the nuclear energy and the electronic energy.

A single-electron wave function is also referred to as an orbital. Linear combinations
of atomic orbitals are applied to determine molecular orbitals. Since these are concerned
only with single electrons, the specification of the location of all electrons in a molecule
requires N -electron wave functions combining N orbitals. The N -electron wave functions
have to consider the electrons’ spins and have to be anti-symmetric, which originates from
the indistinguishability of electrons. If two electrons are exchanged, the wave function
is required to change sign. Good approximations of N -electron wave functions can be
achieved via atomic and molecular orbitals. The variation principle allows evaluating the
quality of different approximations; the better the wave function is approximated, the less
energy is calculated for the system. However, the exact orbitals are mostly not known and
have to be approximated as basis sets. Various methods have been developed for creating
basis sets relying on experimental knowledge or knowledge about simpler systems than
the targeted ones.

Hartree-Fock (HF) equations [53] are integro-differential equations, which are used to
solve the minimisation problem for the energy via N equations of N spin orbitals under
the constraint that the orbitals are orthonormal to each other. In this method, the wave
functions can be written as the product of molecular orbitals with average charge distri-
bution, as so-called Slater determinants [54]. The solution of an equation for one electron
typically influences the solution for the other involved electrons. The self-consistent field
(SCF) [55] approach generates basis sets via multiple iterations exchanging operators and

12

2.2 Application areas

lowering the total energy until the solutions for all electrons stay unchanged. The pertur-
bation theory offers a set of approximation schemes for characterising complex systems via
the knowledge about a simpler system, for example, the Møller-Plesset perturbation [56]
adds electron correlation effects, coupled-cluster methods [57] add excitation operators to
improve the HF method. In general, HF equations are determined differently for atoms
and molecules. They can be solved numerically for atoms under the constraint that elec-
trons are spherically symmetrical distributed. These simplified cases form the basis for
analytical approximations of more complicated systems. For molecules, the linear combi-
nation of atomic orbitals (LCAO) [58] is a popular strategy, which defines each spin orbital
as linear combination of orbitals. The Roothaan-Hall equations [59, 60] apply matrices
instead of integro-differential equations to closed-shell molecules or atoms with N elec-
trons in N/2 orbitals and, thus, permits the solution of the equations with linear algebra
methods. Further approaches replace atomic orbitals by Gaussian functions. An advan-
tage for the calculation is that the product of two Gaussian functions can be formulated
as one Gaussian function. However, Gaussian functions do not have a cusp at the origin
and they decay towards zero more quickly than the orbitals. The resulting errors in the
approximations are unacceptable for single Gaussian functions replacing orbitals. Thus,
each orbital is equated with linear combinations of Gaussian functions.

Generally, basis sets rely on calculations of atomic functions and minimal basis sets
contain one basis function per atomic orbital. STO-nG (Slater-Type Orbitals) [61] are
minimal basis sets in which n Gaussian functions express one orbital. Since at least three
Gaussian functions are required to represent an orbital, STO-3G is the minimum for a
minimal basis set. These approximations have several deficiencies like calculating the
same number of basis functions for all atoms independent of the number of contained
electrons or lacking the ability to describe non-spherical aspects of electronic distribution.
Thus, more functions are added to the basis set. One approach is to double the functions
for each orbital, called the double zeta basis. Other approaches like 3-21G, 4-31G, and
6-31G, so-called split valence basis sets [62], double the functions for valence electrons but
describe core orbitals by a single function.

The computing time of ab initio methods is about O(n3) or worse for n atoms and most
of the computing time for solving the equations is spent on calculating and manipulating
integrals. Semi-empirical methods neglect or approximate some of these integrals. The
zero-differential overlap approximation (ZDO) [63] sets the overlap between selected pairs
of different orbitals to zero, for example orbitals of different atoms which is referred as di-
atomic differential overlap. The complete neglect of differential overlap (CNDO) [64] was
the first implementation of ZDO and utilises Roothaan-Hall equations to model atoms. It
explicitely includes only the outer valence electrons. The further developments CNDO/1
and CNDO/2 include electron-electron repulsion terms while ignoring many of them, ap-
proximating some, and filling a few with experimental data. The neglect of diatomic
differential overlap model (NDDO) [65] is the basis for the modified neglect of diatomic
overlap model (MNDO) [66]. In addition to ignoring the integrals for calculating orbitals
of electrons in different atoms, MNDO allows only using monoatomic parameters. By ex-
tending the method with d orbitals, the so-called MNDO/d method, organometallic com-
pounds can be analysed. MNDO has the tendency to overestimate the repulsion of atoms
at close separation distances. To address this drawback, the Austin Model 1 (AM1) [67]
and the parameterised model number 3 (PM3) [68, 69] have been derived from the MNDO
model. AM1 and PM3 differ regarding the parametrisation of the functions. AM1 fills

13

Theoretical Background

some parameters with spectroscopical values, whereas PM3 interprets them as optimisable
values. The reliability of results generated via semi-empirical methods has been gradu-
ally improved with enhancing the methods. However, they have still some drawbacks for
calculating properties of molecules often originating from missing parameterisation for a
particular property. It is fundamental for users of these methods to examine carefully the
results and to be aware that the calculations could deliver anomalous results for certain
types of systems.

Density functional theory (DFT) [70] relies on the characteristics of systems that the
ground-state energy and other properties are uniquely related to the electron density. In-
stead of calculating the full N -electron wave functions like HF methods, DFT methods
approximate the total electronic energy and the overall electronic density distribution.
DFT methods iterate over the electronic density functions via the SCF approach. The
functions may incorporate Gaussian functions, Slater-type orbitals, or numerical basis
functions. Numerical basis functions calculate analytical gradients of cubic spline func-
tions derived from a spherical polar grid on each atom. The local density approximation
(LDA) [71] is based on a model that the electronic density in each point in space has the
same value as in a homogeneous electron gas. Thus, the total energy only derives from
kinetic energy and exchange-correlation energy. DFT methods deliver excellent results for
particular systems but have shown that they are mostly inadequate for isolated organic
molecules. Hybrid HF/DFT methods (e.g., the B3LYP density functional [72]) have been
developed to address these drawbacks.

Tools for the area of quantum chemistry include Gaussian [73] and Turbomole [74].
Gaussian, for example, supports ab-initio quantum chemistry methods applying Gaussian
functions, a large number of basis sets, SCF, and DFT approaches. It achieves linearised
computational cost via automated fast multipole methods and sparse matrix techniques.
Furthermore, it is designed for shared-memory parallelisation.

All quantum chemistry methods attempt to calculate the electronic structure of atoms
and molecules to gain insights into properties of the targeted systems. For large systems,
quantum chemistry methods are too time-consuming even when deployed on DCIs. Meth-
ods in molecular dynamics using force fields can be applied also for large systems in a
reasonable time.

2.2.2 Molecular Dynamics

The scientific community in molecular dynamics is driven by organic and bio-organic
chemistry, and structural biology, while inorganic systems with metal interactions and
delocalised electrons are difficult to handle by these methods. Molecular dynamics deals
with studies and simulations of molecular motions. In order to access relevant time scales,
a classical mechanics approach is followed, treating molecules as interacting point masses.

Molecular mechanics relies on several presuppositions. The Born-Oppenheimer ap-
proximation allows writing the energy of a system as a function of nuclear coordinates. A
simple model of interactions in a system considers bond stretching, angle bending, and tor-
sion energies. Furthermore, insights gained in smaller systems can be transferred to larger
systems like macromolecules. The potential energy of a system is described in molecular
mechanics by force fields, which are mathematical functions and numerous approximations
derived from experimental data. The force fields rely on fundamental physical laws and
are divided into bonded interactions, which occur between atoms of the same molecule,

14

2.2 Application areas

and nonbonded interactions, which occur between atoms independent of bonds in the same
molecule or in different molecules. A simple functional form of the total energy is

Etotal = Ebond + Eangle + Etorsion︸ ︷︷ ︸
bonded interactions

+Eelectrostatic + EvanderWaals︸ ︷︷ ︸
nonbonded interactions

The bonded interactions include the energy Ebond between pairs of bonded atoms, the
energy Eangle between three atoms in which two are bonded to the same atom, and the
energy Etorsion if a bond between atoms is freely rotatable (see Fig. 2.5). The first two
energies are usually modelled by harmonic potentials; the farther the bond distances or the
valence angles are displaced from the equilibrium state, the more energy is needed. The
third energy is formed by torsional potentials, which reflect the changes in energy caused
by bond rotations. The nonbonded interactions are calculated between all pairs of atoms
located in different molecules or located in the same molecule characterised by being
separated by at least three bonds (see Fig. 2.5). Electrostatic interactions Eelectrostatic

are usually calculated via Coulomb’s law and represent the energy resulting from the
electrostatic interaction between charges in atoms and molecules depending on the distance
between the charges. In case the charges possess opposite signs, the electrostatic energy
is called attractive, otherwise repulsive. Van der Waals interactions EvanderWaals [75]
are usually approximated via the Lennard-Jones potential [76] describing an attractive
and a repulsive part of nonbonded interactions, which are not covered by electrostatic
interactions. They include forces between two permanent dipoles, between a permanent
dipole and an induced dipole, and between two induced dipoles.

Force fields are empirical, whereas their parameters may derive from ab initio quantum
mechanical methods. Besides the functional form, the parameterisation is fundamental to
predict molecular properties. An important feature is the transferability, which allows
the use of the same form and parameters for modelling a series of related molecules. Es-
tablished force fields include MM2 [77], MM3 [78], MM4 [79], AMBER (Assisted Model
Building and Energy Refinement) [80], and CHARMM (Chemistry at HARvard Macro-
molecular Mechanics) [81] force fields. The MM family distinguishes between types of car-
bon atoms and is widely used for the conformational analysis of small organic molecules.
AMBER and CHARMM force field families have been developed for molecular dynam-
ics of molecules and, thus, consider the coordinates of atoms as free variables. AMBER
is designed for macromolecules, whereas CHARMM is applied for small molecules and
macromolecules. The computation of force fields lies in the complexity of O(n) to O(n2)
for n atoms and the most compute-intensive tasks are the calculations of nonbonded inter-
actions. All calculations are typically parallelised and scale well even for a large number
of CPUs. Nevertheless, the method suffers from a few limitations. For example, parame-
terisation is complex and energies are not approximated very accurately. Hybrid quantum
mechanical/molecular mechanical (QM/MM) approaches aim to combine the advantages
of both methods: the accuracy of quantum mechanical methods with the speed of molecu-
lar mechanical methods. They partition the system into regions or layers, whose energies
are each calculated with quantum mechanical methods, molecular mechanical methods,
or a combination of both. A three-layer ONIOM (our Own N-layer Integrated molecular
Orbital molecular Mechanics) [82] method, for example, uses B3LYP density functional
for the inner core, HF equations for the intermediate layer, and MM3 for the outer layer
of a system.

15

Theoretical Background

bond stretching angle bending bond rotation (torsion)bond stretching angle bending bond rotation (torsion)

δ+
δ‐

δ+

non‐bonded interactions (electrostatic) non‐bonded interactions (van der Waals)

Figure 2.5: Schematic representation of the interactions in a typical molecular mechanics
force field

Molecular dynamics is a deterministic computer simulation method, which generates
configurations of macromolecules for predicting structural and thermodynamic properties
with an affordable amount of computation. It applies force fields and Newton’s equations
of motions to analyse forces upon atoms and to calculate atomic positions as a function of
time. Simulations are performed assuming in vacuo, implicit solvent, and explicit solvent
states of systems. Systems in vacuo and in implicit solvent states lack information about
volume and pressure in simulations, which can be addressed via computing free energies
(e.g., via mean-field approaches). Explicit solvent states are simulated via adding water
molecules to the system, usually performed in bounded boxes.

In molecular dynamics, time-dependent behaviour of atoms and molecules can be
examined, providing insight into a system’s state changing from one conformation or
configuration to another for a future or past point of time. Therefore, the calculation
of the forces upon atoms and their positions and velocities is performed for a series of
very short time steps, typically on the order of 1 − 4 fs. After each time step, the atoms
are moved to the calculated positions and the forces are updated to determine the po-
sitions and velocities for the next time step. Thus, a trajectory is generated reflecting
the temporal evolution of positions and velocities of atoms. A difficulty is to determine
an initial configuration of a system with a large set of molecules and atoms and to per-
form all calculations. Ensembles [83] have been introduced, that consist of replications of
the analysed system, considering all replications simultaneously and describing a possible
state the real system might be in. A widely-used ensemble in molecular dynamics is the

16

2.2 Application areas

microcanonical or NVE ensemble that conserves the number of particles (N), the volume
(V), and the energy (E). Furthermore, to reduce the complexity of the calculations of in-
volved molecules, suitable force fields are used and/or cluster analysis is performed, which
groups together homogeneous systems and chooses representatives of this group for the
calculation.

Thus, running a molecular simulation consists of several steps. Firsts, an appropriate
energy model has to be chosen like one of the introduced molecular mechanics models or
QM/MM models. Steered molecular dynamics (SMD) [84], for example, employs external
forces on proteins to manipulate their structures. It keeps parts of the configuration con-
stant and pulls the forces on selected atoms along desired degrees of freedom. Umbrella
sampling [85] supports the modification of coordinates of the potential function to avoid
unsuitable configurations of a system. The resulting free energy can be calculated via the
potential of mean force (PMF) [86], which describes the average force on a particle from
a set of molecules. Ab initio molecular dynamics (AIMD) [87] uses quantum mechanical
methods to calculate potentials, which causes higher compuational cost and is suitable for
smaller systems and shorter periods of time only. Typically, molecular dynamics simula-
tions have to consider effects like the cutoff of potentials and boundary effects.

After an energy model has been chosen, an initial configuration of the system has to be
carefully selected to set the stage for a successful simulation. Based on the initial config-
uration, the equilibration of the system is performed examining the thermodynamic and
structural properties. During the adjacent production phase, the simulation additionally
calculates simple properties of the system and writes them to log files at regular intervals.
This way, users are enabled to check whether the simulation performs promisingly. Fi-
nally, the results can be examined. In general, molecular dynamics simulations compute
for the dynamics of proteins and nucleic acids nanoseconds (10−9 s) or microseconds (10−6

s), which result in 106 or 109 calculations of short time steps assuming that a time step
is 1 fs long. These calculations take CPU-days to CPU-years and can be parallelised on
DCIs. Good scalability is exhibited within the codes Gromacs [88] and Amber [89], e.g.,
tools of Gromacs are parallelised for a number of force fields, for calculating the Newton’s
equations and, therefore, also for the calculation of trajectories.

Methods in molecular dynamics are generally used to examine properties of macro-
molecules and molecules and to predict their structures. They can also be applied for
analyses of ligand-receptor complexes as support for docking methods.

2.2.3 Docking

The main application of docking is in computer-aided drug design, both in academia
and industry. Within the docking domain, the evaluation of ligand-receptor interactions
is the main focus enhancing modern drug design. Large sets of drug-like molecules of
potentially active drugs have to be managed, enabling linear scaling as the individual
docking simulations are independent of each other.

Ligands are molecules interacting with receptors by direct physical interaction. Recep-
tors are usually integral membrane proteins or soluble proteins causing a response upon
the binding of a ligand. Docking methods predict the binding conformation of a ligand
and a receptor and predict the binding affinity. The basic algorithm of docking methods
typically include three major steps. Firsts, many plausible structures of a complex are gen-
erated. Therefore, a huge search space has to be globally or locally investigated. Global

17

Theoretical Background

methods scan the whole receptor’s surface, whereas local docking can be applied in case the
binding site is already identified. Both approaches have to inspect the ligand’s plausible
poses around a binding site, but local docking reduces the search space on the receptor’s
surface and, thus, the required computing time. After generating the plausible structures,
the algorithm filters out geometrically or energetically unfavourable structures and finally
predicts the binding free energy ∆G of the remaining structures via scoring/energy func-
tions. The assumption is that the better the score (the lower the calculated binding free
energy), the better the remained structures approximate the real structure (see Fig. 2.6).

Scoring functions are estimations and can be grouped into three major types: scoring
functions applying force fields, empirical scoring functions relying on the calculation of
physical interactions, and scoring functions based on knowledge about statistical poten-
tials of ligand-receptor complexes and their binding free energy. There is no universally
valid scoring function for all plausible structures but fitting scoring functions can often be
determined for specific structures.

Structure Generation

FilteringFiltering

< <ΔG

Figure 2.6: Basic algorithm of docking4

The lock-and-key principle [90] considers a ligand to a receptor as a key to a lock.
Thus, a binding ligand possess regions of geometric complementarity to regions in the
receptor’s surface. In general, this geometric complementarity is described via molecular
surfaces. Molecular surfaces can be defined in various ways relying on atom coordinates,
e.g., van der Waals surfaces are the imaginary surfaces of the union of spheres representing

4Graphics are adapted from [50]

18

2.2 Application areas

the atoms; solvent-excluded surfaces (SES) [91] contain the volume that is accessible to
the solvent on van der Waals surfaces; solvent-accessible surfaces (SAS) [92] define the
surface that is accessible to the center of a spherical solvent molecule. Besides relying on
the geometric complementarity, rigid docking methods presume that ligands and receptors
are rigid objects and preserve their structures during the binding process. The search for
the best placement of the ligand to the receptor investigate six degrees of freedom (DOFs)
in the motion: three translations of motions (horizontal, vertical, torsional) combined with
three rotations at perpendicular axes.

Semi-flexible docking methods consider flexible ligands having additional internal DOFs,
which leads to a larger search space of conformations and larger running times. The recep-
tor is preserved as rigid, whereas domain movements and side chain flexibility is investi-
gated for the ligand. FlexX [93] is one of the most popular codes for semi-flexible docking.
It decomposes ligands into pieces and flexibly builds them up in the binding site of the
receptor via a multi-greedy heuristic. FlexX offers an empirical scoring function based on
the work of Böhm [94] linearly combining loss of entropy, hydrogen bonds, salt bridges, in-
teractions between aromatic rings, and hydrophobic contacts. AutoDock [95] supports like
FlexX semi-flexible docking. The 2.x releases use simulated annealing (SA) [96], whereas
the 3.x releases employ a Lamarckian genetic algorithm (LGA) [97]. After the creation
of a random initial population, a loop over the next generations is executed. The next
generations are created via local optimisations, which apply a scoring function to select the
best individuals of the last generation. The scoring function considers hydrogen bonds,
van der Waals interactions, electrostatic interactions, entropy loss from ligand’s DOFs,
and solvation effects. To accelerate the performance of the scoring function, grid-based
evaluation is employed. Glide [98] belongs to the Schrödinger Suite [99] and follows a
deterministic approach for semi-flexible docking. It approximates a complete search of the
positional, orientational, and comformational space available to the ligand. The search
space is immensely narrowed via a grid-based approach. The energy is optimised consid-
ering fields like hydrogen bonds or hydrophobic groups. Next, the best docked poses are
selected via an energy function calculating van der Waals interactions and electrostatic
forces. Further refinement of the remaining few candidates is applied via a Monte Carlo
sampling. CADDSuite (Computer-aided Drug Design Suite) [100, 101] as a collection of
tools for drug design applies an empirical scoring function that contains terms for van der
Waals interactions, electrostatic contributions, desolvation of the ligand, hydrogen bonds,
and rotational entropy. Furthermore, it allows rescoring via a grid-based approach and
via experimentally gained measurements of the binding free energy. Thus, the rescoring
mechanism leads to more suitable scores reflecting the real docking process.

Flexible docking methods additionally consider the receptor or parts of the receptor as
flexible, which increases the DOFs and the search space. FlexX-Ensemble [102], formerly
known as FlexE [103], is an extension module of FlexX applying the same scoring function
but considering variations of the receptor. The receptor is represented as an ensemble
of structures, which is combined to a united description. The ligand is docked to the
ensemble. Even though the computing time ranges in exponential complexity for some
cases, the performance is better than docking the ligands against the number of singular
structures represented by the ensemble.

Before a docking process can be started, it is crucial to examine whether a ligand is
provided in the suitable format for the applied docking software. All semi-flexible and
flexible docking tools mentioned above require a 3D conformation of the ligand. Further

19

Theoretical Background

crucial properties depend on the docking method. AutoDock 3, for example, allows ligand
files only in PDBQ format and the partial charges for all the heavy atoms and polar
hydrogens must exist in the ligand. In contrast, CADDSuite supports various formats like
PDB and mol2 and only data with valid bond orders can be processed. The hydrogens
can be added via tools of the CADDSuite. Due to the different preparation steps, each
docking software offers exact descriptions for the steps of a ligand preparation suitable to
its methods. To support users within the process itself, workflow workbenches have been
developed like the KoNstanz Information MinEr (KNIME) [104] and PipelinePilot [105].
They are popular in the drug design community. The Schrödinger Suite, for example,
has been integrated with KNIME to provide users with standard workflows for ligand
preparation, receptor preparation, and the docking process itself. However, KNIME as
well as PipelinePilot only allow processing data on the users’ computers. For data analysis
on a large scale, workflow-enabled science gateways are needed that are able to manage
workflows on DCIs.

20

3
Distributed Computing Background

In the following the distributed computing background of this thesis will be introduced.
We present grid and cloud computing concepts and the security standards for grid comput-
ing. Furthermore, we give an introduction to workflows and web-based science gateways
relevant to this work.

3.1 Grid and Cloud Computing

Structural bioinformatics as well as diverse research areas (e.g., particle physics) are char-
acterised by data-intensive and compute-intensive problems, which demand high-perfor-
mance computing to allow data analysis in an acceptable time. Hence, grid and cloud
computing infrastructures have been developed to provide access to HPC facilities and
services across organisational boundaries. The paradigm of grid computing evolved in
the mid 1990s (e.g., Foster and Kesselmann [1]). The term grid was used in analogy to
the electric power grid to indicate the main goal; to make access to computing power as
easy as the access to electricity. Ian Foster extended his definition of grid computing by
a three-point checklist [106], which emphasises that a grid manages distributed resources,
uses standard, open, and generic-purpose protocols and interfaces, and carries out non-
trivial quality of services. The demand on computing power and its efficient management
has led to the development of so-called grid middlewares. Grid middlewares manage the
authentication of users, the submission and monitoring of jobs, and the data. Accordingly,
the underlying hardware, the involved operating systems, batch systems, and file systems
are hidden from the users. The authentication procedure is based on single sign-on con-
cepts which allow users to access multiple resources with a unique credential. The most
common grid middlewares are UNICORE, Globus Toolkit, and gLite.

The most popular solutions to support data management in the grid are GridFTP [107],
SRB (Storage Resource Broker) [108], SRM (Storage Resource Manager) [109], XtreemFS,
dCache [110], and OGSA-DAI [111]. GridFTP was introduced by Globus whereas SRM is
mostly used in gLite. SRB is popular in Globus-based grids and XtreemFS, OGSA-DAI,
and dCache are available in UNICORE, Globus, and gLite infrastructures.

The paradigm of cloud computing is still evolving and various defintions can be found
(e.g., 21 expert definitions in the Virtualization Journal [112]). Buyya et al. [113] describe

21

Distributed Computing Background

cloud computing as ”a model on which a computing infrastructure is viewed as a cloud,
from which businesses and individuals access applications from anywhere in the world
on demand”. Another definition is provided by NIST (National Institute of Standards
and Technology) [114]; ”Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction”[115]. Cloud com-
puting provides the access to software, compute resources, and data resources as services
and via virtualisations [116]. The concepts behind cloud computing are well known - from
cluster computing over grid computing to utility computing [117]. The new approach
is the combination of these related concepts. Cloud computing is often associated with
business models, which originates from the early uptake of cloud computing services by
Amazon, Google, IBM, and Microsoft. For example, Amazon provided commercialised
access to their Elastic Compute Cloud (EC2) [118] in 2007. The Magellan report 2011
on cloud computing for science [119] results in that key features of cloud computing are
very beneficial for science but that cloud computing needs further research and develop-
ments. However, there are already efficient, scalable, and reliable file systems for data
management in clouds available like XtreemFS, Amazon Simple Storage Service (Amazon
S3) [120], the Google File System (GFS) [121], and the Oracle Cloud File System [122].

3.2 Security in Grid Infrastructures

Whereas there has no security standard evolved for cloud computing so far, most of the
established grid middlewares and grid file systems rely on X.509 based certificates for
authentication. X.509 is an ITU standard (International Telecommunication Union) for a
public key infrastructure (PKI) [123] and one of the most important standards for digital
signatures. It was first issued in 1988 and relies on hierarchical certification authorities
(CAs). The standard X.509 v3 has been adapted by the Internet Engineering Task Force
(IETF) [124] and is commonly referred as PKIX [125].

An X.509 certificate includes the following information.

• Certificate Version

• Serial Number

• Algorithm ID

• Issuer

• Validity, Not Before, Not After

• Subject

• Subject Public Key

• Public Key Algorithm

• Subject Public Key Issuer

• Unique Identifier (Optional)

• Subject Unique Identifier (Optional)

• Extensions (Optional)

22

3.2 Security in Grid Infrastructures

Common formats are PEM and P12 (PKCS#12). PEM files usually contain Base64 en-
coded certificates and P12 files usually contain certificates and password-protected private
keys.

Via the IGTF (the International Grid Trust Federation) [126], a structure has been es-
tablished on common policies and guidelines for managing X.509 certificates across organ-
isations, across countries, and across continents. The coordination between grid projects
on the international level ensures unique and secure authenticaton of users, services, and
servers. The European part of this structure is the Policy Management Authority (PMA)
EUGridPMA (European Grid Policy Management Authority) [127]. In Germany, there are
two CA members of EUGridPMA: DFN (Deutsches Forschungsnetz) [128] and GridKa-Ca
(Grid Computing Centre Karlsruhe Certification Authority) [129]. They centrally process
the credential management for grid certificates in Germany and offer root certificates. The
latter are the basis for all user certificates, service certificates, and server certificates in
the German grid infrastructure and their long-term signing keys are used for the valida-
tion processes. The CAs support users with web-based tools in the creation of certificates
while verification of the identities of users is handled by registration authorities (RA).
Each entity (e.g., universities, companies) that wants to issue grid certificates, have to be
registered as RA at one of the CAs. The CAs store the certificates, publish lists of the DNs,
and email reminders to the included email address before the validity has expired (e.g.,
a user certificate is valid for one year). Furthermore, they manage so-called certificate
revocation lists (CRL). Once a certificate is issued, it is valid until it will expire. However,
for the cases that users forget the password protecting the certificate or the hardware with
the private key get lost, compromised or stolen, certificates can be revoked by inserting
them in CRLs. These are published and grid infrastructure providers can check whether
a certificate is still allowed even if the validity is not expired. While authentication for
users is handled via a certificate, the authorisation to grid middlewares is handled via
VO memberships. The German NGI (National Grid Initiative) offers a web page with
available VOs and the responsible VO authorities. Users can choose which VO is suitable
and apply for them and for roles within the VO (e.g., developer). If the VO authority
accept the application, all grid resources, which allow this VO, are available for the users.

Nowadays, there are two kinds of certificates to support the users: user certificates
which are each correlated with a single user and robot certificates which are correlated to
communities, to applications, or to science gateways. Robot certificates are not supported
in all DCIs since their security processes rely on the distinguished names in the certificates.
These are not unique for each user in a robot certificate.

However, the use of robot certificates relieves users from the multi-step application
process for a user certificate. Figure 3.1 illustrates the necessary steps in the German NGI
as an example for the general approach.

1. First of all, an appropriate RA has to be selected (e.g., the university the user is
attending or working for) and an online request form has to be filled in.

2. Users identify themselves at the RA in person and show up with the printed and
signed request. The form will be emailed automatically to the RA.

3. The RA will check the request to ensure its validity. It will be acknowledged and
the users receive a private key and a user certificate.

4. For using the certificate, it has to be imported in a web browser on the users’

23

Distributed Computing Background

Registration authority

signed

Registration authority

request

1 2

identify
register

1 2

3

5

acknowledge

import certificate

4

BrowserVO authority

Figure 3.1: Application process for a user certificate

computers.

5. Once the certificate is imported, users can apply for a VO which fits to their appli-
cation domain. If the authority of the VO accepts the application, the users will be
registered for the VO.

Security concepts relying on X.509 certificates offer single sign-on to users. The user
has to authenticate himself just once and gains access to all connected systems without
the need for further authentication procedures. Single sign-on relies on the principle of
trust delegation by which systems can be allowed to act on behalf of the user. It is used,
for instance, in workflow systems, where a whole workflow consists of multiple jobs. Using
trust delegation, a workflow engine acting in the name of the user, can submit individual
jobs to suitable resources without further user interaction. This approach decouples job
submission and user interaction.

Credentials for the authentication and authorisation of users have to be highly pro-
tected, especially in DCIs where they are used for various resources via single sign-on
methods and are transferred over wide-area networks. Suitable user authentication meth-
ods ensure that credentials are not divulged to unauthorized parties and the goal of server
authentication methods is to guard authentication information [130]. To additionally pro-
tect the X.509 user certificates, assertion files are used instead of the original certificates
in DCIs. Nowadays, there are two main concepts available for trust delegation in DCIs;
SAML assertion files and GSI proxy certificates.

SAML is an XML-based framework developed by the Security Services Technical Com-
mittee of the Organization for the Advancement of Structured Information Standards (OA-
SIS) [131]. SAML assertion files offer a few advantages compared to proxy certificates.

24

3.3 Workflows

A proxy certificate is always transferred along with its private key, which is extremly
sensitive. Anyone, who possesses the proxy certificate, can impersonate the user. To mit-
igate this problem, the validity span is often severe limited, which creates new problems.
Furthermore, it is impossible to reconstruct each step of a trust chain built with proxy
certificates. To mitigate the problem of short validity time spans, users can upload their
certificate to MyProxy servers and periodically generate proxy certificates for a certain
duration of time. A MyProxy [132] server also lessens security risks since the private keys
do not have to be stored on every maschine used. However, it also creates new problems.
The central server has to be very well secured and it does not improve the security of GSI
proxy certificates in itself. The SAML assertion file can be chained, meaning that an entity
acting on the users behalf can delegate trust to yet another entity, which is then also able
to act on the users’ behalf. The ability of SAML trust delegation assertions to be limited
to one entity, to a specific validity time span, and to a trust chain of a maximum length,
are important security characteristics. Furthermore, SAML is already supported by var-
ious single sign-on infrastructures like Shibboleth which allow mapping local accounts to
federated identities.

3.3 Workflows

The concept of workflows has a long history, which started with the industrialisation in the
area of business workflows and has led to the development of numerous workflow manage-
ment systems (e.g., Georgakopoulos et al. [133] list 50 workflow management systems). In
general, a workflow can be described as a sequence of connected steps in a defined order.
Each step represents a job in computational workflows. Workflow management systems
can be considered as sophisticated extension of job management systems. Job management
is basically concerned with the creation, submission, scheduling, and monitoring of jobs -
on single computers, on clusters, and in homogeneous as well as in heterogeneous DCIs.
On single computers, operating systems (e.g., Linux, Windows) take care of the allocation
of system resources, process scheduling, storage management, and providing services for
application programs. Clusters additionally require job schedulers or batch systems (e.g.,
OGE, PBS) for adequate job management and distributed file systems (e.g., Lustre [134])
for scalable storage management. Solutions for job schedulers and distributed file systems
mostly also offer to be operated via wide-area networks and, thus, create homogeneous
DCIs in regard to the job management. In contrast, heterogeneous DCIs necessitate grid
middlewares or cloud software frameworks capable of supporting different job schedulers
and file systems over wide-area networks. Workflow management systems handle addi-
tionally dependencies between jobs and are designed for creating, changing, invoking, and
monitoring workflows. They depend on job management systems for invoking and mon-
itoring of workflows, since a workflow is finally split into single jobs, which are executed
and monitored on the targeted hardware.

The interest in scientific workflows increased enormously with the possibility to pro-
duce and analyse data on a large scale for various research areas and the advent of grid
infrastructures. Yu and Buyya [135] stated ”Scientific workflow is concerned with the au-
tomation of scientific processes in which tasks are structured based on their control and
data dependencies”. They point out that each workflow can be illustrated as graph and
distinguish between a Directed Acyclic Graph (DAG) or a non-DAG representation of
workflows. Barker and van Hemert [136] as well as Ludäscher et al. [137] compare the

25

Distributed Computing Background

challenges for scientific workflows with the challenges for business workflows and give an
introduction to existing workflow solutions. The main differences are seen in the goals
(experimental vs. business goals), in the focus on implementation of scientific workflows
vs. modeling of business workflows to develop a common understanding of a process, and
in data-driven flows in science vs. process control flows in business.

Plenty of different workflow management systems and workflow languages have been
developed. For example, WS-PGRADE, Galaxy, UNICORE, Taverna [138], KNIME, and
PipelinePilot are widely used in the structural bioinformatics community. The workflow
languages differ in their syntax and semantics. Most of the established workflow languages
are XML derivatives like the proprietary workflow languages used in gUSE/WS-PGRADE
and UNICORE [139]. Galaxy, in contrast, stores workflows in internal data structures and
offers the possibility to export a workflow in JSON (JavaScript Object Notation) [140]
format. The advantages and disadvantages of XML compared to JSON have been thor-
oughly discussed for years [141, 142, 143]. Both formats provide advantages over each
other dependent on the purpose they are used for. XML is document-oriented whereas
JSON is data-oriented. XML is characterised by flexibility, extensibility, openness, and
interoperability. However, JSON posseses the same general characteristics as a format
for data interchange and is simpler than XML. Many XML parsers have been developed
in established programming languages, whereas JSON reflects builtin data structures of
programming languages and can be created and parsed via these data structures.

The semantic of workflow languages can be examined via categorisations regarding
the workflow patterns or workflow constructs the languages support. van der Aalst et
al. [144] suggest to distinguish between control-flow patterns, resource patterns, and data
patterns. Basic control-flow patterns, for example, include sequence, parallel split, and
synchronisation. The categorisation illustrate the feasible options for workflows in each
workflow language and allows comparing workflow languages on semantic level.

Besides the syntactic and semantic differences between the workflow languages, also
the graphical representation of workflows differ between the workflow systems. They all
use directed graphs but the form of the vertices and edges vary in several aspects. For
example, WS-PGRADE illustrates vertices via square boxes in a fixed size and allows
only straight lines for the edges. In contrast, the vertices in Galaxy are represented by
rectangular boxes in modifiable size and the edges are represented by curved lines. In
general, the user interfaces of the workflow systems provide the feature to create the graphs
via a drag-and-drop mechanism. Thus, the users decide on the layout of the graph. The
automatic translation of one graph representation to another may require a graph drawing
algorithm. The efficient and aesthetic creation of directed graphs has being extensively
studied [145]. The algorithm of Sugiyama et al. [146] is widely used, which creates a
layered layout [147]. Diverse problems occuring in the algorithm are NP-hard (e.g., 2-layer
crossing minimisation [148]) and have led to the developments of efficient heuristics [149].
Different criteria for the aesthetic of a graph has been followed like minimising the number
of edge crossings, aligning the nodes and edges to an underlying grid, and drawing the
edges as straight as possible. Purchase et al. [150] observed via empirical work that the
most important criteria for users are minimising edge crossing and the aligning of the
nodes and edges.

26

3.4 Web-based Science Gateways

3.4 Web-based Science Gateways

In general, a science gateway can be defined as a single point of entry to a set of tools
deployed across organisational boundaries. The overall goal is to increase the usability
of tools and to hide the complexity of the underlying infrastructure. Web-based science
gateways are characterised to require only a web browser on the user’s side. They usually
provide an intuitive user interface that requires much less effort to learn and use correctly.
There are various peculiarities of web-based science gateways, e.g., a web page providing a
collection of web services for single tools without employing a security infrastructure (e.g.,
the EBI web services [151]), a web page offering a collection of tools for the submission
to pre-defined DCIs (e.g., WeNMR [152]), and workflow-enabled grid portals (e.g., WS-
PGRADE). Workflow-enabled portals offer additionally tools for managing workflows and
grid portals additionally provide access to DCIs.

Portals can be developed from scratch or via a portal framework. A portal framework
combines the output of several independent web applications, so-called portlets, and ar-
ranges them in one or more customisable web pages. The output of each web application
tends to be rendered surrounded by a border that gives it the appearance of residing in a
window. Usually portal frameworks offer the possibility to log in to a personalised envi-
ronment using a username and password. When logged in, users can customise their own
pages by selecting the layout and deciding which portlets to display and where. The more
advanced portals can do this using user-friendly menus and drag-and-drop.

There are a number of standardisation efforts underway to enable portlets to be used in
portals from different vendors, using the principle of ’write once, deploy anywhere’. Cur-
rently there are the JSR168 standard and its successor JSR 286, WSRP (Web Services for
Remote Portlets) [153] and the OpenSocial [154] standard. The choice of using these stan-
dards assures the sustainability of the developed portlets. Several open and closed source
products exist that implement these standards and which can use conforming portlets
(e.g., Liferay, Pluto).

Portal frameworks are not standalone applications but consist of a container with
default applications and a portal interface which is deployed inside an application server
(see Figure 3.2). A well-established application server is Apache Tomcat [155], which
implements the Servlet 2.5 [156] and JavaServer Pages 2.1 [157] specifications and their
security models. Apache Tomcat handles the access control of users and programs to
resources and the integrity of data during transfers via HTTP or HTTPS. Furthermore,
the application server offers role-based authorization modules and supports the login with
user name and password.

User management generally deals with the authentication, authorisation, and account-
ing (AAA) [158] for access to and utilisation of services, local computing infrastructures,
and DCIs. Authentication processes are responsible for checking the identity of a user,
e.g., via a login-and-password mechanism. In contrast, authorisation processes are con-
cerned with examining whether an action, which a user wants to perform, is allowed for
the user. Some services are offered with underlying business models and users are charged
for employing these services. To calculate the charge, accounting processes collect detailed
data about the consumption of resources.

There are two authentication and authorisation layers in a grid portal; the first one
manages the access to the portal itself, the second one manages the access to the underlying
DCIs (see Fig. 3.3). Ideally, users are supported to authenticate themselves via the same

27

Distributed Computing Background

Figure 3.2: General architecture of portal frameworks

credential to the portal and the connected DCIs.

Role-based access control (RBAC) [159] is a wide-spread authorisation model in local
computing infrastructures and DCIs. It allows the control of access to different services
dependent on roles and simplifies the administration of large communities. Instead of
assigning permissions to single users, permissions are assigned to roles. Thus, as soon as a
user obtains a role, all related permisssions are granted to him. Furthermore, modifications
on permission have to be performed only once for a role and not for all users affected by the
modificaton. In general, all commonly used portal frameworks (e.g., Liferay, Pluto) employ
a RBAC model. In a X.509 infrastructure, role-based access is primarily granted via VOs.
Chadwick and Otenko implemented the infrastructure PERMIS [160] to support RBAC
via attributes in X.509 certificates and storing them in LDAP. To efficiently use RBAC
in a portal, it is essential to analyse which roles occur in a community using a science
gateway. Roles in science gateways should consider the users’ diverse levels of knowledge
and experience with the application area and the maintenance and further development
of a science gateway. Balasko et al. [161] present four user roles in the context of the
development lifecycle of science gateways: end users, science gateway developers, grid
application developers, and administrators.

3.4.1 Workflow-enabled Grid Portals

Diverse workflow-enabled grid portals have been developed, which have reached a maturity
level where they can be used by various user communities in a reliable way. These portals
include OGCE [162], GridPort [163], Vine Toolkit [164], P-GRADE portal family including
WS-PGRADE, and Genius [165]. Grid portals typically realize a layered concept in their
architecture implementing the following layers:

1. User interface layer

2. Applications, portlets layer

3. High-level (aggregation) services layer

4. Low-level DCI services layer (grid middlewares, cloud software frameworks)

28

3.4 Web-based Science Gateways

Portal server

provideAccount provide
credential file

Account

authorised assigned toauthenticate

Middleware
servicesPublicly

availableUser
Roles

authenticate

content

lRole‐

authorisedprovide
certificate

role‐
dependent
available

role‐
dependent
available

role‐
dependent
available
content

Role‐
dependent
available
content

get
registered

authorise
via VO
membership

authenticate
via

credential file
register

contentcontentcontentcontent

registered
users

register

VOs HPC facilities

Figure 3.3: Authentication and authorisation in a grid portal

5. DCI resources layer

In fact only layers 1-3 are implemented in a portal, layers 4-5 represent the underlying DCI
that is managed by the high-level services layer of the portal. A grid portal’s versatility
depends on how many DCIs it can manage by the high-level services layer. Once a grid
portal is able support various DCI types it is another important feature if the portal can be
connected to several DCIs and can run jobs simultaneously on several DCIs. This feature
is particularly interesting when large parameter sweep applications should be executed
and hence the parallel exploitation of several infrastructures is an advantage. This feature
is especially important in heterogeneous grids like the D-Grid where Globus, gLite, and
UNICORE sites are available. Unfortunately, the current grid portals are not prepared for
this flexible usage of the DCIs. The only exception is P-GRADE, which can simultaneously
run several jobs of a workflow in any DCI that is supported by P-GRADE.

If a portal supports several grids or VOs then it is important to provide some forms
of DCI settings facilities. Unfortunately, this is an area overlooked by most Grid portals.
Only Genius and P-GRADE provide some possibilities to control the usage of resources
and services. Genius enables the users to select resource broker, replica location server,
and MyProxy server. It could be a very useful function in an unreliable Grid infrastructure
where any of these services can be down at any time. Genius also enables the connection
of several VOs to the same portal and users can select the VO they would like to use. This

29

Distributed Computing Background

Table 3.1 Comparison of generic features in grid portals

OGCE GridPort Vine Toolkit P-GRADE Genius

Grid support Globus Globus Globus,
gLite,
UNICORE,
GRIA [166]

Globus,
gLite,
ARC[167],
BOINC [168]

gLite

Cloud support Amazon S3,
EC2

No No Eucalyptus [169],
OpenNebula [170]

No

Simultaneous
multi-DCI
support

No No No Yes No

DCI settings No No No Yes Yes
DCI data
management

GridFTP,
SRB

GridFTP,
SRB

GridFTP,
SRM, SRB,
OGSA-DAI

GridFTP, SRM,
SRB, OGSA-DAI

SRM

DCI resource
monitoring,
information
service

Yes Yes Yes Yes Yes

Job execution
monitoring

Yes Yes Yes Yes Yes

is very similar to P-GRADE where not only several VOs but also several types of DCIs
can be connected to the same portal. It is the task of the portal administrator to configure
the portal for various DCIs and VOs, then the user can add or remove resources from any
of those configurations and VOs as he likes. In this way a user can customize any DCI or
VO according to his preferences. For example, if a site proves to be very unreliable, then a
user can remove this resource from the list of resources using his applications. Of course,
it has no impact for the available resource list of other users.

DCIs are not perfectly reliable and, hence, monitoring the resources is an important
feature for the users to check the status of the various resources. The monitoring infor-
mation usually describes other important features of resources like capacity, load, config-
uration, etc. Every grid portal should be able to show this information to the users and
indeed, all the investigated portals have this functionality. Furthermore, it is not only
the resources the user would like to observe but also the jobs as they are executed, so
application monitoring is another must in grid portals. An overview is shown in Table 3.1.

The execution of workflows is an error-prone, tedious task especially in an unreliable
DCIs. Workflows enable to automatically manage these long and tedious application
execution processes. A very distinguishing feature of grid portals is if they are able to
support workflow development or not. Taking again the same five grid portals as example,
Table 3.2 shows their workflow support characteristics. As it can be seen, only three of
them provide workflow editors to develop workflow applications to be executed in the
underlying DCIs.

Parameter studies on a large scale are often used in the area of molecular simulations,
which can be processed via parameter sweeps. Therefore, it is also important to investigate
if a portal framework is able to support parameter sweep applications both at the workflow
language level and within the high-level services layer. Among the selected five grid portals

30

3.4 Web-based Science Gateways

Table 3.2 Comparison of workflow features in grid portals

OGCE GridPort Vine Toolkit P-GRADE Genius

Workflow ed-
itor

XBaya
(graphical)

No No P-GRADE
workflow
(graphical)

Triana work-
flow (graphi-
cal)

Parameter
sweep work-
flow execu-
tion

No No No Yes No

Workflow
repository

XRegistry No No DSpace [171] No

only P-GRADE has built-in support for parameter sweep applications.

Another important aspect of generic workflow-enabled portals is whether they support
the re-use of existing workflows by different members of the portal user community. This
is also an often overlooked feature of portals. Usually, they are designed to support only
individual users and not user communities. However, state-of-the-art portals should put
emphasis on supporting user communities by enabling application developers to publish
complete applications or workflow templates in a workflow repository. Then end-users can
download the published applications from the workflow repository and can execute them
in the connected DCIs controlled by the portal. This concept is quite new and supported
only by two of the example portals. OGCE provides XRegistry as part of its workflow
management system to store workflow application while P-GRADE is integrated with the
open-source DSpace repository.

3.4.2 Development of Portals

Portal development is often considered expensive regarding the development time. There
are several reasons for this. First, specifications are often vague, which means the de-
velopment process depends on iterating through many versions to get the final version
right. Second, this type of portal requires developers to know about the domain they are
developing for, the general area of portal, and web development as well as to be able to
work with DCIs — currently, this skill set is often not found in one person. Third, the cur-
rent state of portal development tools are immature; the frameworks are often stable, but
the underlying development processes are not developed as far as in other areas, making
debugging and integrating components time consuming.

All this makes scientific portal development expensive relative to the user base a
scientific portal base often supports. The specific goal of a scientific portal is often only of
interest to hundreds of researchers, which is significantly less than would be the case for
commercial portals such as Amazon, Google, and FaceBook. Therefore, the design and
implementation plan of scientific portals must take into account the fact that resources for
development and maintenance will be scarce and often have an end date that coincides with
an externally funded project. There are three mature, actively maintained toolkits that
aim to provide a cost-effective and time-efficient solution to the development and main-
tenance of scientific computing portals: Rapid, Rappture and EnginFrame. They offer
generic solutions which can be used by researchers from any discipline to execute what-

31

Distributed Computing Background

Table 3.3 Three mature and live portlet generators that require little to no development
in conventional programming languages.

Rapid Rappture EnginFrame

License GNU GPLv3 Proprietary Commercial
Open Source

Language used XML XML(1) XML
Remote connection Ssh and JSDL VNC VNC
Portal dependencies JSR168/JSR286 NanoHUB EnginFrame Server
Resource description in portlet not appropriate in portal
Grid support UNICORE, gLite, - UNICORE, gLite,

Globus Toolkit, Condor Globus Toolkit

(1) The original application must be adapted as well

ever application they depend on. Of course, this does mean the researcher must know how
to use the application and must invest significant time to learn how to go from a generic
framework for job submissions to their specific task. They aim to provide a specific solu-
tion to enable existing applications on to compute and data resources with the minimal
amount of development required. All three take a slightly different approach to achieving
the goal of providing web-based access to applications running in DCIs. Table 3.3 shows
basic information about the toolkits.

Rappture is a toolkit developed at Purdue University. Its aim is to web-enable scientific
applications by providing an experiment environment specifical to each application. It
combines numerical building blocks along with an infrastructure for handling user inter-
faces. Once the input/output is described for a simulator, Rappture handles the rest,
generating a graphical interface automatically based on the description. The resulting
application must then be deployed on the nanoHUB portal framework [172].

Development of a portlet takes two stages. In stage one the interface is defined in terms
of inputs and outputs in an XML file. In stage two the original application is modified
to include statements to allow the user interface to control the application and to show
relevant output. The latter development depends on the language the original application
was developed in. The connection between the remote application and the web interface is
via the Virtual Networking Computing (VNC) protocol. A significant difference between
Rappture and the next two solutions is that the current version is not specifically designed
to enable the applications to run on large-scale compute resources.

EnginFrame is a commercial product developed by NICE s.r.l., which includes an
XML language to define service descriptions of processes that are to be made available
in a graphical user interface as well as the actual portal framework that provides this
user interface. The framework supports many different job schedulers, which include both
cluster and grid computing.

Development of an interface is through a description of its inputs, outputs, and execu-
tion specifics. Compute resources are maintained by the overall portal framework. This
differs from the next solution, where each portlet is self-contained and therefore can live
in any container as it knows everything it needs to successfully handle compute jobs.

Rapid is developed by the UK National e-Science Centre at the University of Edin-
burgh. Its philosophy is to make submitting compute jobs as easy as booking a flight or

32

3.4 Web-based Science Gateways

purchasing a book online. The main idea is that the whole task, the resources, and the
interface are described in one XML file. This file is then translated directly into a portlet
that can be used directly in a portal container. An important aspect is that Rapid allows
the construction of a task that guides its users through several steps, it does not try to be
a generic interface for any compute job. This way each individual portlet can be tailored
to the requirements of its user base.

Portlets generated through Rapid do not depend on any specific portal platform, which
is in contrast to the other two solutions and to most so-called generic job submission
portals. Instead it relies on the JSR168/JSR286 standard for portal frameworks, which
allows portlets created with Rapid to work in any portal framework compliant with this
standard. Moreover, compute jobs are internally translated into JSDL (Job Submission
Description Language) [173], which allows Rapid to connect to any system that is able to
consume JSDL.

33

4
Evaluated and Designed Infrastruc-
ture

4.1 Introduction

The infrastructure of an intuitive and efficient web-based science gateway for structural
bioinformatics using DCIs has to be carefully designed because of the complexity of the
applied methods, the compute-intensive jobs, and the volume of data created and anal-
ysed. Hence, existing solutions in the area of workflow-enabled grid portals considering
the different layers of the infrastructure have been evaluated. Furthermore, the infrastruc-
ture has been adhered to the interdisciplinary MoSGrid project, which aims to provide a
complete solution for processing molecular simulations on grid infrastructures. This solu-
tion contains the intuitive web-based access to molecular simulations, the management of
workflows, and distributed data management. In addition, the MoSGrid project intends
to offer a large repository of molecular structures, chemical recipes, and results of simula-
tions. Since MoSGrid is a D-Grid project, the consideration of the D-Grid infrastructure
has been essential. Providers of resources in the D-Grid infrastructure offer access to the
HPC facilities via the grid middlewares UNICORE, Globus Toolkit, and gLite. Frame-
works for distributed data management set the stage for efficient data repositories on DCIs.
The D-Grid infrastructure supports XtreemFS, GridFTP, dCache, and OGSA-DAI.

We evaluated and designed the infrastructure on the following four layers of the archi-
tecture of workflow-enabled grid portals:

1. User interface layer
The user interface is adapted to the different levels of experience of the users. Suitable
roles have been designed in the science gateway.

2. Application, portlets layer
Diverse portal frameworks have been evaluated considering the users’ and the ad-
ministrators’ side.

3. High-level (aggregation) services layer
The available high-level services regarding existing workflow-enabled grid portals
have been examined.

34

4.2 Selected Distributed Computing Infrastructure

4. Low-level DCI services layer (grid middlewares, cloud software frameworks, dis-
tributed data management)
The available grid middlewares and frameworks for distributed data management in
the D-Grid infrastructure have been considered.

Since the layers build upon each other, the following sections present the designed infras-
tructure from the low-level DCI services to the high-level services layer to the application,
portlets layer through to the user interface layer.

4.2 Selected Distributed Computing Infrastructure

We chose the grid middleware UNICORE 6 because of its service-oriented and reliable
architecture. In contrast to Globus Toolkit and gLite, UNICORE 6 contains a powerful
workflow engine developed for the computational chemistry community during the project
Chemomentum [174]. To support distributed data management, we selected the efficient
and reliable file system XtreemFS, which is designed for DCIs in wide-area networks. It
offers optimised file distribution and access via replication features on server as well as on
file level.

4.2.1 Grid Middleware UNICORE

UNICORE is an integrated grid middleware system, that includes a full software stack from
clients to several server components down to components for accessing compute or data
resources. Its fundamental ideas are abstraction of site-specific details, openness, interop-
erability, operating system independence, security, and autonomy of resource providers.
Furthermore, the software is easy to install, configure, and administrate. UNICORE is
being deployed and used in a variety of use cases, ranging from small projects to large
multi-site infrastructures involving high-performance computing resources. UNICORE has
been under development in several German and European projects since 1997. Its current
version UNICORE 6 is based on web services, using many XML-based standards such as
JSDL, XACML (eXtensible Access Control Markup Language) [175] and SAML 2.0.

UNICORE consists of four tiers: the client layer, the gateway layer, the services layer,
and the target system layer (see Fig. 4.1). A variety of clients exist, from programming
interfaces (e.g., HiLA [176]), a commandline client [34], a powerful graphical client based
on the Eclipse framework [35] to portals.

UNICORE clients invoke operations as SOAP-based (Simple Object Access Proto-
col) [177] web services, which establish connections via the gateway. The latter is a thin
authentication and routing component protecting the grid services behind it. The under-
lying services layer provides basic services such as registry service, resource discovery, job
management, and storage access as well as higher level services like the workflow system.
The services are SOAP-based web services that follow the WSRF (Web Services Resource
Framework) paradigm [178]. Entities like jobs, systems, and storages are modelled as indi-
vidually addressable resources. For checking whether a user is allowed to perform actions
on the resources, UNICORE uses access control policies expressed in XACML. Each user
identity is mapped to a set of attributes, which are then checked against a set of XACML
policies. UNICORE jobs are expressed in JSDL, which supports data staging. If a job is
created on a targeted UNICORE resource, UNICORE automatically provides a job work-

35

Evaluated and Designed Infrastructure

Figure 4.1: UNICORE architecture

ing directory on an HPC facility (USpace). Via the BFT (Basic File Transfer) protocol
data can be uploaded to and created data can be downloaded from the USpace.

The UNICORE workflow system consists of two major services: the workflow engine
deals with workflow processing, while the service orchestrator combines a resource broker
with a single job execution manager. Single jobs in the workflow are passed to a service
orchestrator for brokering and execution.

The target system tier connects the services from the upper tier to the local HPC
facilities. It consists of the Target System Interface (TSI) installed on each connected
HPC facility. It communicates with the batch system, filesystem, and local operating
system to manage the jobs and the file I/O.

To support single sign-on and, thus, trust delegation UNICORE use the approach of
explicit trust delegation (ETD) [179] in its dynamic style [180]. it allows the dynamic
creation of jobs in the name of the user, though the trust relationships are still static. In
UNICORE signed trust delegation assertions, encoded in SAML 2.0, are used to provide
robust security properties. A client connects with a client-authenticated SSL (Secure
Socket Layer) connection to the gateway and provides three files: the SAML assertion file,
the X.509 certificate to which the trust delegation is issued by the user, and a truststore
which includes the public keys of the CAs used in the UNICORE DCI. The gateway issues
a SAML consignor assertion and forwards the request to the registry of the target site.

The registry checks the credential via the information provided in the assertion file
created by the gateway. If applicable, the client is allowed afterwards to get a list of all
available target systems and their preferences. Once a client is registered, the process of
trust delegation consists of three main steps (see Fig. 4.2). First, the UNICORE/X server
publishes its information to a service registry and provides information like the service
address, the service type and the identity of the server. Secondly, the client gets the
identity information from the service registry and finally, the client sends a request and

36

4.2 Selected Distributed Computing Infrastructure

adds the trust delegation information to the message directly to the UNICORE/X server.

Clients

gets

Service

Service
Registry
Service
RegistryPortal

gets
identity

information

Registry2

UNICOREsends request
hosting

environment1
3

q
with trust delegation

information

UNICORE/X server

publishes
identity

informationUNICORE/X server information

Figure 4.2: Authentication process via trust delegation with SAML assertions

SAML allows applying various security characteristics specifying the assertion in more
detail. The SAML assertion file for trust delegation of a user is signed according to the
XML digital signature specifications. The public part of the signing certificate is included
and, thus, the security token can be validated. The DN of the issuer as well as the DN of
the subject of the trust delegation are defined, the settings for the validity and the type
of an assertion file can be configured.

4.2.2 Cloud File System XtreemFS

XtreemFS is an object-based grid and cloud file system, which addresses the challenges
induced by high latencies and complex failure cases in DCIs. Such failure cases include
hardware defects and network splits, which prevent the accessibility of servers and, thus,
of the data stored on these servers. XtreemFS ensures the data integrity via replications
and allows storing data among many servers. It is characterised by global namespaces and
excellent scalability. According to the object-based concept, the file content and meta-
data are stored on different servers. XtreemFS has been developed in the EU project
XtreemOS [181] since 2006 and is being further developed in other projects (e.g., MoS-
Grid).

The architecture of XtreemFS consists of three layers, the client layer, the server layer,
and the metadata storage layer (see Figure 4.3). XtreemFS offers a FUSE (Filesystem
in USErspace) [182] client, which allows implementing a fully functional filesystem in a
userspace program. The development of further clients is supported via the two available

37

Evaluated and Designed Infrastructure

APIs, the Java API and the C++ API. The server layer contains three different types of
servers: the metadata and replica catalogs (MRCs) manage all metadata of the file system
(e.g., the filename, the DN of the owner, the directory tree) and keep a list of replicas; the
directory service (DIR) forms the central registry of XtreemFS that provides the list of
the available volumes, of the registered services, and of the available object storage devices
(OSDs); the OSDs store the content of files as objects split into fixed-size chunks of data.
The persistent data of DIR and the metadata are stored in an efficient key-value store
applying Log-Structured Merge-Tree (LSM-Tree) [183] methods. Clients allow mounting
the volumes of MRCs from anywhere in the Internet. They translate file system calls in
requests to the DIR, to the MRCs, and to the OSDs and, thus, connect MRCs and OSDs.
The servers and clients can be distributed worldwide.

Figure 4.3: XtreemFS architecture

XtreemFS supports additionally striping of file content [184]. Data striping chops the
file content in fixed-size segments, which can be accessed on different storage devices. The
striping scheme RAID 0 (Redundant Array of Independent Disks or Redundant Array of
Inexpensive Disks) [185] is applied to increase the performance and allows to parallelly
process read and write requests for a single file. RAID 5 additionally secures the data
by adding parity segments. Different OSDs may handle different parts of the striped file.
The management of the striping schemes and the calculation of the parity segments is
processed by the FUSE client.

XtreemFS supports X.509 certificates and authentication is handled by both OSD
and MRC, while authorisation is handled by the MRC only. There is no communication
between MRC and OSDs when authorising file access to a client. Instead the client requests
a lease on a file from the MRC. A lease represents the authorization level and is valid for
a limited timespan, and as such has to be renewed periodically. To access a file stored on
an OSD, the client sends a lease confirming that it is allowed to access the file.

38

4.3 Workflow-enabled Grid Portals

4.3 Workflow-enabled Grid Portals

There are various mature workflow-enabled grid portals available like P-GRADE, Genius,
Vine Toolkit, OGCE, and GridPort. We compared the features of these five grid portals
in Section 3.4.1. Due to the flexible DCI support, the graphical workflow editor, and
the possibility to process parameter sweeps, we chose to use WS-PGRADE, the second
generation of the P-GRADE portal family, as basis for the aimed web-based science gate-
way for structural bioinformatics. gUSE forms the high-level middleware employed by
WS-PGRADE and the next section gives an overview on the architecture of gUSE and
WS-PGRADE.

4.3.1 gUSE and WS-PGRADE

gUSE provides a collaborative, community-oriented application development environment,
where developers and end-users can share sophisticated (layered and parameter sweep-
enabled) workflows, workflow graphs, workflow templates, and ready-to-run workflow ap-
plications. The workflows are able to use a large set of virtualised, high-level DCI services.
This environment is capable to provide interoperation among classical service and desktop
grids, clouds and clusters, and unique web services in a scalable way.

Figure 4.4: gUSE architecture

Internally gUSE is implemented as a set of web services that bind together the different
components like a workflow storage, an application repository, an information system, and
a monitoring system. The architecture (see Fig. 4.4) contains a workflow engine (called
Zen), which provides seamless enactment of data-driven workflows and also supports ex-
tra features such as embedded workflows, timed workflows, web service type inputs, and
database access. The workflow engine facilitates the management of workflows, which are

39

Evaluated and Designed Infrastructure

based on DAGs.
The workflow engine encapsulates the single steps and invokes so-called submitters for

each job. Submitters are responsible for the authentication mechanism to the underlying
DCI and the management of the jobs. For each supported middleware for underlying DCIs
(e.g., Globus Toolkit, gLite) a specialised submitter has been developed to provide access.
Jobs within the same workflow may be configured for diverse DCIs or local resources and
the workflow engine invokes each with an appropriate submitter.

WS-PGRADE is an easily usable, highly flexible, graphical user interface of gUSE. The
current WS-PGRADE version employs Liferay and, thus, additionally supports JSR168-
and JSR286-compatible portlets. It uses the client APIs (Application Programming In-
terface) of gUSE services to turn user requests into sequences of gUSE-specific web ser-
vice calls. The collaborative, community-oriented application development environment
of WS-PGRADE offers a graphical workflow editor and enables users to manage the whole
lifecycle of workflows, from creating to changing over invoking or aborting to monitoring
workflows. The creation of a workflow implies several steps. First of all, a basic graph
representing the structure have to be drawn in the intuitive workflow editor. It facilitates
drag-and-drop mechanisms to add jobs with input and output ports illustrating the data
and connecting lines illustrating the dependencies between the jobs. As soon as a graph
is uploaded to the portal server, it constitutes the basis for a workflow. It can be used to
create a concrete workflow or a workflow template. The different types of workflows are
configured via setting the properties of each included job, e.g., a binary, parameters, input
and output files. WS-PGRADE enables users to easily administrate all preferences of a
portal instance, e.g., available DCIs, VOs, storage quota for users of a portal. On basis
of these preferences, lists of available DCIs and their properties are proposed via drop-
down menus for the configuration of a job. Existing workflows, workflow graphs, workflow
templates, and sophisticated workflow applications can be shared via a local repository.

The P-GRADE portal family has been mainly developed at MTA SZTAKI in Budapest
since 2003. WS-PGRADE portals are operating and serving numerous user communities
and international projects, providing access to multi-institutional grids and grid-based
virtual organizations as generic DCI portals or e-Science gateways within Europe. gUSE
and WS-PGRADE have become open-source in 2011 and the code is available under the
GNU General Public License (GPL) at Sourceforge [186].

4.4 Evaluated Portal Frameworks

In 2010, the MoSGrid project evaluated existing open-source portal frameworks imple-
menting the standards JSR168/JSR286. We compared Liferay, Pluto including the exten-
sion Jetspeed 2 [187], and GateIn [188] as joint project between the JBoss Community
Portal Project and eXo [189]. In addition, GridSphere [190] has been a widely-used portal
framework in the DCI community at that point of time. Due to the fact that the portal
framework has not been actively maintained any more, it was not taken in consideration for
the evaluation.The evaluation criteria were divided into user and administrator side. Since
usability, acceptance and establishment of a portal by a user community is essential, the
criteria on the user side (e.g., visual appearance, performance, reliability, security) were
prioritised compared to the administrator side (e.g., effort for installation and maintenance,
reliability, security, support by providers, documentation). Nevertheless, the observation
of the administrator side contributes to the sustainability and longevity of a portal. The

40

4.5 User Management for the Molecular Simulation Community

comparison between the three portal frameworks Liferay, Pluto/Jetspeed 2, and GateIn
resulted in Liferay as favoured portal regarding look-and-feel, features, security, monitor-
ing, and support. A small drawback was the lower performance compared to Pluto and
GateIn. Performance is an important aspect in the context of acceptance by the user
community. Nevertheless, the performance of the portlets is satisfying, especially in pro-
portion to the job duration and the user interaction with the portal. Currently, Liferay is
the most widely used portal framework for grid portals in the DCI community.

4.5 User Management for the Molecular Simulation Community

Portal frameworks support role-based authorisation to adapt the available features to the
users’ needs. Pages in a portal contain portlets or web content and, thus, contain among
others the domain related features of a portal. Liferay supports various authentication
standards and protocols out of the box, e.g., LDAP (Lightweight Directory Access Pro-
tocol) [191], single sign-on with CAS (Central Authentication Service) [192], and Open
ID [193]. Unfortunately, it lacks features for authentication via X.509 certificates.

Liferay extends the role-based authorisation of Apache Tomcat with more granular
security mechanisms for three different scopes: portal roles, organisation roles, and com-
munity roles. Portal roles and assigned permissions affect the whole portal with all its
included features. Organisations reflect hierarchical structures and may present various
divisions or various locations of a company. Private and public pages can be assigned
to organisations as well as to communities. In contrast to organisations, communities
are designed for allowing access across organisational boundaries or to pages which are
applicable for all users of a portal.

The access to pages is handled fine-grained. It allows to distinguish between whether
a role has access rights to a page at all or has rights for viewing, editing, or deleting
content. Pages in the three mentioned scopes can only be added by administrators and
are configured with default preferences. Registered users are enabled to adapt the look-
and-feel and preferences like the preferred language. Furthermore, they can add private
pages to the portal which are only visible to them.

To meet the needs of the molecular simulation community, the community management
and the organisation management is configured in the MoSGrid science gateway. The basic
view of the portal and its features are provided in the MoSGrid community view. The
configuration of the organisations MoSGrid consortium users and MoSGrid developers
automatically generates different views with their own portal workspaces selectable via a
drop-down menu (see Fig. 4.5). We implemented six roles via Liferay: guests, novice users,
advanced users, consortium users, developers, and administrators. The scope of the role
guest as well as the role administrator apply to the whole portal, the roles novice users
and advanced users are valid across the community MoSGrid, and consortium users and
developers are configured hierarchical in organisations.

Guests are characterized by lacking an account for the science gateway. However,
they can obtain information via an integrated Wiki about the project and about essential
steps for getting access to the MoSGrid science gateway and its features. Currently, some
demonstrations are being developed which will illustrate typical workflows in the three
application domains molecular dynamics, quantum chemistry, and docking. The users
are able to get a first impression of the user interface for the specific workflows and WS-
PGRADE features. Additionally, there will be the option to submit pre-defined workflows

41

Evaluated and Designed Infrastructure

Figure 4.5: Selectable organisational views

to the local resources on the portal server. Liferay offers the option that an account can
be created by an unknown user. As soon as a user has a login created for the MoSGrid
science gateway, he can apply for the MoSGrid community via email and his account will
be classified in the roles MoSGrid user or MoSGrid advanced user.

Novice users, in terms of novice users of tools in structural bioinformatics, are classified
as MoSGrid users. This role enables to choose pre-defined workflows to become acquainted
with the tools and domain-specific workflows. The latter are offered via intuitive graphical
user interfaces with default parameters. The users are allowed to access pages to change
the input and parameters, to invoke, and monitor the workflows.

The access to additional pages for creating and changing workflows is granted to the
MoSGrid advanced user. A portlet is being developed that enable the users to switch
between the role as novice user and as advanced user. They are self-dependent regarding
which level of functionalities they have access to in the scope of the community features.
Additionally, the administrators are relieved from the effort for assigning the role to ad-
vanced users.

The users within the consortium are assigned to advanced users and consortium users.
Thus, they are additionally allowed to change grid and gUSE settings (e.g., add new DCIs
for selection or configure thresholds like quotas for storage each user is allowed to occupy).
These options are not shown in the community view but in the auxiliary organisation
view of the portal. The users are enabled to easily switch between the views and obtain
well-arranged pages with the role-dependent features.

Similarly, an additional organisation view is selectable for the MoSGrid developers.
They additionally gain the same rights like the consortium users. While the view for
consortium users applies new features to them, the developer view allows the deployment
of new features. This view is invisible for MoSGrid users and consortium users and allows
to test without involving directly the community. Even though there is a cloned test

42

4.6 Basic Infrastructure

environment of the portal infrastructure available for the developers of MoSGrid, they
may first add a new or extended portlet on pages of this view. They can ensure that
the deployment process of a portlet including the insertion into a page can be finished
without any defects. Since Liferay allows only administrators to add new pages, we have
decided that MoSGrid developers are also assigned to the role administrators to gain access
to this feature. Hence, they are also enabled to manage all credentials including users,
organisations, and communities. However, from the organisational, theoretical point of
view, they do not need most of the administrative rights but they are thus enabled to
support the community even more efficient.

4.6 Basic Infrastructure

We evaluated and designed the infrastructure for the MoSGrid science gateway under
consideration of the application domain, existing standards, and the D-Grid infrastructure.
Due to the flexible DCI support, the graphical workflow editor, and the possibility to
process parameter sweeps, the workflow-enabled grid portal WS-PGRADE using the web
services of gUSE has set the stage for the science gateway. Until 2010 WS-PGRADE
was developed on top of the portal framework GridSphere. In course of the collaboration
between MTA SZTAKI and the MoSGrid project, developers of MTA SZTAKI have ported
WS-PGRADE to Liferay, the preferred portal framework of the MoSGrid project. On the
low-level DCI layer the grid middleware UNICORE 6 was chosen because of its service-
oriented and reliable architecture and the powerful embedded workflow engine. XtreemFS
was selected for distributed data management because of its efficiency and reliability in
wide-area networks.

Furthermore, we presented in this section the role-based user concept we implemented
for the molecular simulation community in Liferay.

Table 4.1 Hierarchical user roles in the MoSGrid science gateway

User role Wiki Demo Workflows Domain-specific DCI settings
pages

Guest read invoke - - -
MoSGrid user read invoke invoke, monitor read read
MoSGrid read invoke edit, invoke, read read
advanced user monitor
MoSGrid read, invoke edit, invoke, read configure
consortium user edit monitor
MoSGrid developer/ read, edit, edit, invoke, read, edit, configure
Administrator edit invoke monitor deploy

Via the user management of Liferay we are able to map the existing user roles in
the MoSGrid community to technical roles in the portal framework. Dependent on the
knowledge, the function, and responsibility for the portal, users obtain different levels of
access rights. Additionally, users may have various responsibilities within the community
like developing new features for or the administration of the science gateway. Hence, the
technicals roles are adapted to the users’ roles in the community. Table 4.1 outlines the
different roles with their access rights to different features in the science gateway. Even

43

Evaluated and Designed Infrastructure

though the basic infrastructure is tailored for the German molecular simulation community,
it is not limited to one research area and re-usable on international level.

44

5
A Novel Credential Management for
Science Gateways

5.1 Introduction

The security in grid computing infrastructures mostly relies on X.509 certificates. The
certificates require that users go through a multistage application process to receive their
user certificates. Therefore, users have to create essential files like SAML assertions or
proxy certificates to enable the trust delegation. These procedures are time-consuming
and may discourage users from using DCIs. Therefore, several approaches have been
proposed to simplify the application process or to automatically generate the essential
credential files.

WS-PGRADE offers features for the management of assertion files in a graphical user
interface. It allows to automatically create these files via a portlet.

La Rocca et al. [165] suggest to use robot certificates for user communities. These
certificates authorise users for specific tools and resources. They are handed over to
the users on smartcards which demands card readers on the users’ computers. Users are
authenticated via login and password in a grid portal and are granted access afterwards via
automatically generated proxy certificates and the smartcard to DCIs. This solution has
two major drawbacks. First, the need for additional hardware on the users’ side. Secondly,
the additional effort for processes in grid security infrastructures, such as mapping user
DNs to local accounts on HPC facilities.

The Java library GridCertLib [194] supports users of web-based science gateways to
automatically obtain X.509 certificates and to use proxy certificates. The prerequisite
is that the science gateway has access to a SAML assertion of a previously successful
Shibboleth authentication to the science gateway. A similar concept has been implemented
by the UK project SARoNGS [195]. However, the generation of a proxy certificate in the
portal still needs the interaction of the user and a web service, which demands Shibboleth
authentication. Both approaches are applicable for Shibboleth-based infrastructures.

There are several projects using federated access control based upon Shibboleth tech-
nologies, which are working with SAML. Users are authenticated by their home organisa-

45

A Novel Credential Management for Science Gateways

tion Identity Provider (IdP) server and the Service Provider (SP). Shibboleth, for instance,
only needs to trust the limited number of IdPs for authentication purposes. If the user is
authenticated by his home authentication server, a SAML authentication assertion mes-
sage is sent to the SP. Sinnott at al. [196] introduce two case studies, the DAMES portal
and the EuroDSD portal. The DAMES project developed secure portals for occupational
data management, educational data management, and e-Health data management. The
EuroDSD portal supports a secure upload of clinical case information for disorders of sex
development (DSD) and the search in this data.

The management of credentials for grid-based DCIs is not a standardised feature in
portal frameworks. It demands centralised tools and services, which can be facilitated
in grid middlewares and on portal servers. All briefly introduced solutions are concerned
with the credential management in a portal relying upon a secure and stable authentication
process in DCIs.

5.2 Credential Management Using SAML Assertions

Independent of the credential type, a basic management tool for credentials in a grid
portal offers to create, browse, and delete assertion files derived from provided X.509 user
certificates. An assertion file stored by the portal server sets the stage for the complete
authentication process to the underlying infrastructure and, thus, supports a single sign-on
process to all DCI components applying the same technology and granting access to the
initiating user.

We chose SAML assertions for the science gateway because of their advantages over
proxy certificates and for sustainability reasons. SAML is well-established in various
security systems and the maintenance of this technology is guaranteed for many years.

The MoSGrid security infrastructure consists of four layers: the grid portal as an intu-
itive user interface, the high-level middleware service layer including gUSE and XtreemFS,
the grid middleware layer with UNICORE, and suitable HPC facilities in the D-Grid in-
frastructure (see Fig. 5.1). SAML assertions had to be integrated into the MoSGrid in-
frastructure in several places; in WS-PGRADE, in the gUSE services, and the cloud file
system XtreemFS. The focus in this section is on the extended credential management of
WS-PGRADE.

Grid Middleware Layer
UNICORE

HPC Facilities
D-Grid

High-Level Middleware
Service Layer

User Interface
WS-PGRADE

XtreemFS

User

User
Certificate

gUSE Services

BFT

SAML
Assertion TLS

SAML
Assertion Service Certificate

SAML
Assertion

UNICORE
Atomic
Services

UNICORE
Target
System

Interface

Batch
System

File
System

Figure 5.1: Security infrastructure of the MoSGrid science gateway

46

5.3 Implementation

To protect the users’ certificates and their corresponding credentials, it is fundamental
to minimise the necessary transfers in the authentication process and the locations where
they have to be stored. WS-PGRADE achieves this goal by offering a certificate portlet for
credential management without uploading the certificates to the portal server. It offers to
generate SAML assertions on the users’ computers (see Fig. 5.2) or to upload certificates
to a MyProxy server. The SAML extension has been developed in this work. The previous
version of the certificate portlet only supported proxy-certificate-based authentication with
MyProxy servers. A new certificate portlet was created which provides features for the
diverse credential formats SAML, PEM, and P12.

Figure 5.2: Trust delegation generation with integrated certificate portlet

5.3 Implementation

Three options for the technical implementation in the certificate portlet were considered;
the Java portal library, an applet, and a Java Web Start (JWS) applicaton. One funda-
mental demand for the design of the extension was that the X.509 user certificates are
neither transferred to nor stored on the portal server. This has led to the elimination of
the first option, the Java portal library, since this library always requires to upload data
to the portal server for processing it. An applet and a JWS application allow processing
data on the users’ computer without involving the portal server. Both technologies are
easily integrated into portlets and necessitate minimal configuration steps on the users’
side. Both are relying on Java security [197] whereas applets can only be executed from
within a web browser and not directly from an operating system. JWS applications have

47

A Novel Credential Management for Science Gateways

to be installed on the users’ computers. Since comparisons [198] of further characteristics
have not shown disadvantages of applets, the need to install JWS applications on the
users’ side have led to the choice of an applet.

For security reasons and since the applet needs to access files on the users’ computers,
we have used a signed applet. Signed applets are characterised by a digital signature,
which ensures that the origin of an applet can be proven by the users. Web browsers
usually accept signed applets that rely on CAs like VeriSign [199] or thawte [200]. These
CAs sell SSL certificates world-wide and affirm that the certificate is valid for a person
or an instance. Proprietary certificates like D-Grid certificates cause the web browers to
prompt the users whether they trust the signing person or instance if the applet is called
for the first time.

Hence, users are enabled to accept or deny the access to files on their computer. Via
this mechanism, signed applets additionally ensure the integrity of the origin of the applet.
In the MoSGrid project, the X.509 certificate of the MoSGrid science gateway is taken for
signing the applet. Thus, the users can be sure to utilise an applet provided by MoSGrid.
Furthermore, the MoSGrid certificate fulfills the supplemental purpose to be the recipient
of the users’ trust delegation in the generated SAML assertion.

UNICORE developers provided an applet as open-source, which allows to set the fol-
lowing options:

• location of the keystore

• password of the keystore

• name of the subject for the SAML assertion

• location of the SAML assertion

• alias for the keystore

• validity of the SAML assertion

• length of the trust chain

In this work, the applet was adapted for the use in the MoSGrid portal. The user
only has to specify the location of his certificate on his computer, the corresponding
password, and the location on his computer where the generated assertion file should be
stored. Figure 5.3 shows a Unified Modeling Language (UML) [201] class diagram of
the implementation of the applet (ETDApplet - Explicit Trust Delegation Applet). The
resulting SAML assertion file adheres to the SAML 2.0 standard for X.509 certificates and
sets the stage for the authentication processes in UNICORE and XtreemFS. Moreover,
the SAML assertion file can be used for all other DCIs that support this standard.

The signed applet has been integrated into the certificate portlet for generating SAML
assertion files locally on the user’s computer. It automatically generates a SAML assertion
file with the same validity as the user’s certificate, which can be easily changed to a shorter
validity period. An assertion file can be uploaded to the portal via the certificate portlet
and will be available as the user’s security token.

48

5.3 Implementation

Figure 5.3: UML class diagram of the ETDApplet implementation. ETDApplet is the main
class of the applet. It uses KeyStoreLoader to load the certificate in a specific format (e.g.,
PKCS#12), SecurityProperties to store properties like the private key and the certificate
chain, and WebParam to store the keyword, description, and value of an applet parameter.

Since the MoSGrid science gateway only offers access to UNICORE infrastructures
via SAML assertions, the certificate portlet of WS-PGRADE has been also adapted to
simplify its use. The involved source files are shown in Figure 5.4. Users do not have to
distinguish between diverse options and are enabled to use all relevant options regarding
a SAML assertion file. Hence, the file can be generated, the generated or an existing file
on the user’s computer can be uploaded to the portal server, the credential can be deleted
on the portal server, and its details can be browsed, for example to inspect the duration
of the validity.

49

A Novel Credential Management for Science Gateways

Figure 5.4: Source files involved in the adaption of the certificate portlet

5.4 Results and Discussion

The credential management for science gateways relies on the security infrastructure of the
connected DCIs. This work is focused on grid-based DCIs, which authentication mecha-
nisms are based on X.509 certificates. Two main types of secure short-lived credentials
exist: SAML assertion files and GSI proxy certificates. The use of SAML assertions is
advantageous compared to proxy certificates. SAML trust delegation assertions can be
limited to one entity, to a specific validity time span, and to a trust chain of a maxi-
mum length. Furthermore, SAML is applied in various single sign-on infrastructures like
Shibboleth. We showed a solution to easily create SAML assertion files in a web-based
science gateway via a signed applet integrated into a portlet. A signed applet secures the
creation process and the users’ certificates can remain on the users’ computers without
being transferred to the science gateway, a proxy server, or the DCI. Thus, the necessary
data transfers and the number of locations where the credentials are stored, are minimised.
This solution based on an applet is very flexible and advantageous compared to the use of
the Java portal library or a JWS application. Applets only depend on the web browsers
and on Java security without the need for further installations on the users’ side. In ad-
dition, an applet can be easily integrated into every web-based science gateway. However,
the management of the SAML assertion has to be supported in the science gateway. Every
grid portal employing DCIs via single sign-on and trust delegation has to have features
for managing short-lived credentials. The credential portlet of WS-PGRADE has been
extended to manage SAML assertions. Only the mandatory fields have to be filled in by
the users. This simplifies the process of the necessary generating and uploading steps.
Hence, the credential management fulfills the security demands while offering an intuitive
solution to the community.

However, there is still room for improvement. The user certificate embedded in the
browser can be used for the creation of SAML assertions, which relieves the user from
choosing the certificate from the local hard drive. There are solutions available or un-
derway, which allow the automatic creation of short-lived credentials during the login
procedure eliminating the user interaction for this process. The Java library GridCertLib
supports users of web-based science gateways by automatically obtaining X.509 certificates
and using proxy certificates. The prerequisite is that the science gateway has access to
a SAML assertion of a previous successful Shibboleth authentication. This library could

50

5.4 Results and Discussion

be adapted for the use of SAML assertions and employed in the science gateway in case
it is used in an environment offering federated identities based on Shibboleth. Barbera
et al. [202] developed a prototype that automatically creates SAML assertions based on
robot certificates. The methods of this prototype could be applied in the science gateway
as well. A drawback of such solutions is that a user is not able to influence the properties
of a created SAML assertion nor to create diverse SAML assertions employing different
DCIs in a single portal.

Representatives of resource providers, of CAs, and of RAs of the German NGI currently
discuss to change the security infrastructure employing X.509 user certificates and to offer
access to DCIs via Shibboleth. The users would be relieved from the multistage process for
obtaining X.509 certificates. The foundation EGI.eu (European Grid Infrastructure) [203]
presented in October 2010 the result of a questionnaire about requirements for authen-
tication and authorization infrastructures for DCIs. The questionnaire was answered by
a number of projects from different domains. One result was that the key technologies
include SAML and X.509 certificates and that the goal is to bridge security domains by
using for example Shibboleth. Since the science gateway already applies SAML in its
infrastructure, only minor changes have to be performed for the authentication relying on
Shibboleth instead of X.509 certificates.

51

6
Enhanced Job and Workflow Manage-
ment

6.1 Introduction

Multiple workflow-enabled science gateways have been developed for the job and workflow
management in DCIs. UNICORE and Taverna, for example, provide intuitive workbenches
but require software installation on the users’ side. Also diverse excellent workflow-enabled
grid portals are available to support users via web browsers, e.g., WS-PGRADE, Genius,
OGCE (see Section 3.4.1 for a comparison).

All systems apply different workflow languages and serve various user communities.
The capability to invoke and nest workflows from different systems inside one system
is called workflow interoperability. Workflow interoperability allows to re-use existing
workflows and to dynamically target different workflow management systems. Efforts
towards a standard in this field reach back to the 1990s [204]. Nowadays, it still lacks a
standard but several solutions are underway to support workflow interoperability.

The project SHIWA (SHaring Interoperable Workflows for large-scale scientific sim-
ulations on Available DCIs) [205] suggests a platform based on WS-PGRADE. Within
SHIWA two different approaches for workflow interoperability [206] are distinguished:
coarse-grained interoperability and fine-grained interoperability. Coarse-grained interop-
erability applies to nested workflows of different systems, which are invoked via one system
applying service calls. This approach has been already integrated into the SHIWA plat-
form for several workflow engines, e.g. Taverna, and requires that the connected DCIs
include the targeted workflow engines. Fine-grained interoperability includes the trans-
lation of a workflow language into another workflow language, which can be processed
via one workflow engine. The translation can be performed directly from one workflow
language into another workflow language. The translation can also be performed within
a multistage process using an intermediate representation of the workflow. The SHIWA
project suggests the workflow language IWIR (Interoperable Workflow Intermediate Rep-
resentation) [207] for a multistage process.

A similar approach with an intermediate representation is followed by Abouelhoda et

52

6.2 Job Management

al. [208]. These authors have extended Galaxy to Tavaxy and have developed a workflow
language that allows nesting of workflows. Tavaxy focuses on the integration of Galaxy and
Taverna workflows. Galaxy workflows can be directly integrated into Tavaxy workflows,
whereas Taverna workflows can be invoked via web service calls.

Alqaoud et al. [209] follow a message passing approach and propose the Scientific Work-
flow Interoperability Framework (SWIF). SWIF offers a publish/subscribe asynchronous
messaging system based on web services. Workflows on a workflow engine can be pub-
lished via the SWIF client. If a workflow is published, the SWIF client offers services for
workflows on other workflow engines to subscribe the workflow. As soon as the published
workflow is invoked, the registered workflows are notified. Even though this approach
is generic, it requires a SWIF client on the users’ side and the feature in the workflow
engines to receive and analyse the message about the status of the published workflow and
its results.

Workflow interoperability enables users to re-use workflows of different systems in one
user interface. Such a user interface for the management of workflows is usually generic in
workflow-enabled grid portals and offers the same look-and-feel for diverse workflows inde-
pendent of the application. To extend the portal with further features and domain-specific
user interfaces, additional portlets have to be developed. Ideally, a workflow-enabled grid
portal provides an interface for employing the underlying workflow engine in an easy
fashion. EnginFrame and nanoHUB, for example, include appropriate frameworks (see
Section 3.4.2) for this purpose. Since the workflow engines and technologies facilitated in
the portals are different from each other and are not based on a standard, these frame-
works based on the portals are also different from each other. Hence, a framework cannot
be re-used for a portal based on a different technology.

This chapter goes into detail for job and workflow management via gUSE and WS-
PGRADE. We have added the support of UNICORE jobs as well as UNICORE workflows
and, thus, offer workflow interoperability. Furthermore, we introduce the Application
Specific Module (ASM) that provides an API for managing workflows to portlet developers,
who want to extend WS-PGRADE by additional features.

6.2 Job Management

To support the possibility for users to invoke workflows on UNICORE infrastructures via
WS-PGRADE, we extended gUSE as well as WS-PGRADE. A UNICORE submitter for
gUSE and a plugin module for UNICORE parameters in WS-PGRADE have been de-
veloped. They employ the UCC (UNICORE Commandline Client) libraries, which are
able to perform all UNICORE features available for a UNICORE client. In contrast to
programming interfaces like HiLA, the UCC libraries enable clients to invoke UNICORE
workflows. The option for directly using the UCC instead of its libraries inside the ex-
tensions would have led to the additional demand to offer and maintain a UCC in the
infrastructure for gUSE and WS-PGRADE.

6.2.1 UNICORE Submitter

The workflow engine of gUSE performs the complete workflow management and employs
submitters for the management of single jobs. One mandatory information in a job de-
scription is the targeted type of DCI, which allows the workflow engine to invoke the

53

Enhanced Job and Workflow Management

appropriate submitter and to supply it with the complete job configuration. The work-
flow engine offers a general interface for submitters. These submitters have to provide the
following methods to manage the whole lifecycle of a job:

• actionJobSubmit: Submission of a job including authentication, authorization, and
data staging

• actionJobAbort: Cancel a job

• actionJobOutput: Get the output of a job

• actionJobStatus: Query the status of a job

• actionJobResource: Return the resource, where the job was submitted to

The essential feature of a submitter is the submission of a job to UNICORE as illus-
trated by the algorithm below.

Algorithm 6.1 Submission of a UNICORE job

set trust delegation tokens
initialise a registry client
find/create a fitting target system service
if not fitting target system available then

abort job submission
exit

end if
generate JSDL
create UNICORE job
if executable is provided then

import executable to USpace
end if
if local input data is provided then

import data to USpace
end if
start UNICORE job

Three files are required to set the trust delegation tokens for a user invoking a job; the
SAML assertion file created via the certificate portlet, the X.509 certificate of the portal
server to which the trust delegation is issued by the user, and a truststore, which includes
the public keys of the CAs used in the UNICORE infrastructure. The SAML assertion file
is unique for each user, whereas the other two files are identical for all users of the same
portal. As soon as a user uploads his SAML assertion file via the certificate portlet to the
portal server, the submitter has access to this file. In order to create the SAML assertion
file, the public key of the portal is used by the certificate portlet.

An administrator of the portal ensures that the X.509 certificate used for the trust
delegation as well as the truststore are available to the submitter on the portal server.
Based on these essential files, the security properties for the connection to UNICORE are
settled and the submitter tries to establish a connection to a given registry. The registry
checks whether the trust delegation token is valid and for which connected resources (target
systems) the user is authorised. The information about authorised users is managed by
an XUUDB server that maps user credentials (an X.509 certificate or a DN) to a set of

54

6.2 Job Management

security attributes fitting to the target systems. A typical security attribute is a Unix
login, a role, or a Unix group.

If the user credential grants access to at least one target system, the submitter examines
the job properties in order to find a fitting target system. The basic characteristics in the
job definition is the application that the job has to perform. The application may either
be a binary executable or an executable script. The UNICORE submitter offers a unique
additional feature compared to all other submitters in gUSE. It allows users to simply
provide a name of a tool instead of expecting an executable file in the job configuration.
This feature is driven by the Incarnation Database (IDB, see Appendix B), a database in
UNICORE that maintains the properties of a target system and its implemented tools.

Figure 6.1: Configuration of a job in WS-PGRADE including the unique feature to select
an available tool from an automatically generated list

Besides the executable file or tool name, the job configuration may also define var-
ious parameters for the application (e.g., the expected wall time, number of required
nodes, whether it uses Message-Passing Interface (MPI) [210] for parallel execution) and
command line parameters. For input and output files, two main principles are imple-
mented: management of local files and of remote files. Local files have to be provided
in the job configuration. In contrast, remote files are defined by a URL with the schema

55

Enhanced Job and Workflow Management

”xtreemfs://<DN of the user>/” and the file handling is taken over by UNICORE and
XtreemFS. If XtreemFS is mounted locally at a target system, downloading or uploading
files from or to XtreemFS can be performed by a simple local copy command by UNI-
CORE. If an XtreemFS remote storage is available to the target system, the UNICORE/X
server can be configured to access this storage.

If a target system is compatible with the requirements of the job, a JSDL file with
the job information is generated and a UNICORE job is created. As a result, UNICORE
automatically provides a working directory (USpace) for the created job on the target
system. The USpace is solely accessible to the user who invokes the job. If an executable
or local input files are provided, the submitter uses the BFT (Basic File Transfer) protocol
for uploading these files belonging to a job to the USpace. In contrast, the file handling
of remote files is taken over by UNICORE and XtreemFS.

Figure 6.2: The UML class diagram of the UNICORE submitter. GridService is the
interface for submitters provided by gUSE. Grid unicore implements the interface and
uses UnicoreManager to start, monitor, and abort a UNICORE job on a suitable target
system. JSDLDocBuilder creates a JSDL file with the provided parameters for the job
including the data staging.

56

6.2 Job Management

After the potential data-staging, the UNICORE job is invoked as web service. The
workflow engine of WS-PGRADE starts to periodically poll the submitter about the sta-
tus of the web service. When the web service finishes, the local output files and standard
output files like STDOUT and STDERR are downloaded from the USpace and the re-
sources of the job are deleted on the UNICORE instance. The implementation details are
described via the UML diagram in Figure 6.2.

6.2.2 UNICORE Plugin in WS-PGRADE

WS-PGRADE allows the intuitive configuration of the characteristics and the parameters
of a job. The display of the choice of parameters is handled in a flexible and scalable
way with the aid of AJAX (Asynchronous JavaScript and XML) [211] and via a naming
convention recognised by gUSE. Parameters can be added to the portlet with the use
of JSPs (JavaServer Pages). If their names follow the schema job_<parametername>,
they are automatically added as parameters to the job properties and their values can be
requested by a submitter.

Figure 6.3: The UML class diagram of the UNICORE plugin for WS-PGRADE.
JobConfigUI unicore implements the general interface for displaying the parameters of
a job configuration for UNICORE. It uses UnicoreIDBToolHandler to get a list of all
tools maintained in the IDBs of the connected target systems. middleware unicore.jsp
uses AJAX to update the list of tools suitable to a new selected UNICORE registry via
GetUnicoreIDBTools.

As long as there are no properties configured for a job, a choice of generic parameters
valid for each DCI is provided to the user, e.g., a drop-down menu with available types of
DCIs, an option to upload an executable, and a field to define commandline parameters.
As soon as a type of DCI is selected by the user, the choices are extended by a DCI-related

57

Enhanced Job and Workflow Management

view created via plugins. Each type of DCI obtains an own plugin. In case of UNICORE,
users are enabled to choose the preferred UNICORE registry out of a generated list and
to provide additional parameters like the designated number of nodes for MPI jobs. The
selection of the registry induces a unique mechanism applied for UNICORE compared to
all other supported DCIs in WS-PGRADE. The trust delegation tokens are set and the
selected registry is initialised (see the previous section for the details on this process). All
tools, which are maintained in the IDBs of connected target systems, are automatically
added to a drop-down menu (see Fig. 6.1). Thus, WS-PGRADE provides up-to-date
information to users about the accessible tools by selecting a UNICORE registry. The
implementation of the plugin is illustrated in Figure 6.3.

6.3 Workflow Interoperability of gUSE with UNICORE

The UNICORE submitter additionally offers to invoke UNICORE workflows exported
from the UNICORE Rich Client (URC). Instead of starting only a single UNICORE job,
a UNICORE workflow is invoked. However, UNICORE workflows appear to gUSE like a
single job. Figure 6.4 illustrates this concept of workflow interoperability.

WS‐PGRADE Workflow

JOB1

JOB2

JOB3 JOB4

JOB2

JOB3

JOB3 1 JOB3 2 JOB3 2JOB3.1 JOB3.2 JOB3.2

UNICORE Workflow

Figure 6.4: Illustration of an example of a WS-PGRADE workflow containing a UNICORE
workflow in the third job

The workflow engine supplies the UNICORE submitter with the UNICORE workflow.
The submitter distinguishes between single UNICORE jobs and UNICORE workflows. To
submit a workflow, the following algorithm has to be performed.

58

6.3 Workflow Interoperability of gUSE with UNICORE

Algorithm 6.2 Submission of a UNICORE workflow

set trust delegation tokens
initialise a registry client
if workflow data storage available at registry then

create workflow data storage client at registry
else if shared data storage available then

create workflow data storage client for shared data storage
else

abort workflow submission
exit

end if
find fitting workflow site
load workflow from file
if workflow syntax not correct then

abort workflow submission
exit

end if
create workflow client
create rules document
create workflow wrapper
start UNICORE workflow

Setting up the security properties and initialising a registry is identical to the submis-
sion of a UNICORE job. A fundamental prerequisite for invoking workflows is the acces-
sibility of a data storage via the chosen registry. The submitter examines first whether
a local data storage is available at the registry. If this is not the case, the submitter
requests a shared data storage from the registry. UNICORE developers recommend to
install a data storage at each registry that provides a workflow system. However, this is
not mandatory but the UNICORE workflow system needs at least one type of accessible
data storage. If neither a local nor a shared data storage is provided, the workflow system
runs into an error. If a storage is available, the submitter requests a fitting workflow
site from the registry. Afterwards, the workflow is loaded from the provided workflow file
and the syntax is checked for correctness. If the syntax is correct, the submitter creates
a workflow client that fits to the workflow site. Furthermore, the submitter generates a
rules document that contains role-based access rights in XACML. The loaded workflow
and the rules document are wrapped for the UNICORE workflow system and the resulting
services are used to invoke a UNICORE workflow as web service.

The UNICORE workflow is handed over to the UNICORE workflow system that pro-
vides two major services: the workflow engine deals with workflow processing, while the
service orchestrator combines a resource broker with a single job execution manager. Sin-
gle jobs in the workflow are passed to a service orchestrator for brokering and execution.
The configuration of a job as a UNICORE workflow has been added to WS-PGRADE
as one additional job property in the UNICORE plugin. The property can be checked
by the submitter. For the purpose of uploading the workflow file and, thus, providing it
in the job properties, the existing upload option for executables is used (see Figure 6.5).
This approach guarantees that the gUSE workflow engine treats the UNICORE workflow

59

Enhanced Job and Workflow Management

Figure 6.5: Configuration of a job as UNICORE workflow in WS-PGRADE

simply like a UNICORE job.

The adaption of the submitter for workflows affected only the class UnicoreManager

of the submitter. Figure 6.6 illustrates the changed and additional methods. The other
already introduced classes and methods remained the same.

6.4 Workflow Management via the Application Specific Module

gUSE provides a sophisticated web-based way to create, configure, and execute grid ap-
plications on various types of DCIs. WS-PGRADE employs gUSE to offer a generic user
interface for workflows. To tailor the user interface to specific applications, additional
portlets are needed in WS-PGRADE. To hide the complex architecture from developers,
a new component called ASM has been developed that can be used as an API. Thus, de-
velopers are enabled to focus on creating domain-specific portlets, e.g., the possibility to
create user-friendly input masks or to allow some post-processing steps after the execution
such as generating pictures or charts from the results. Authentication on grid and cloud
infrastructures, submission, and monitoring of workflows are handled jointly by various
web-service components of gUSE.

60

6.4 Workflow Management via the Application Specific Module

Figure 6.6: The UML class diagram of the workflow extension in the UNICORE submitter

Every application included in the local repository of gUSE can be re-used via a portlet
using the ASM libraries. Applications in gUSE consist of workflows and corresponding
parameters as well as input and output files. ASM provides various interfaces for the
management of applications and contains methods that enable the management of the
whole execution lifecycle. These methods include the following:

• list the users who have exported applications to the local repository

• list the exported applications for a specified user

• import an application to the user space

• manage input and output files for upload and download

• manage remote files

• set and get the command line arguments of a specified job

• submit the application

• get the status of the application

• abort an application

• delete the application

In this way, the original but generic solutions for creating and managing applications are
hidden from the users. Users can use well-tested applications via interfaces that were
tailored to their needs. To assure that the users can set and execute an exact copy of
tested and shared applications, ASM does not provide any method to make structural
modifications on the workflows, for instance adding or deleting jobs.

ASM has been developed in Java and supports AJAX actions. Details of the imple-
mentation are illustrated in Figure 6.7. The Java methods can be called from portlets,
which in turn can use any technology and visualisation method fitting to the applications’
needs, independently from the underlying solution. The security mechanisms rely on the
implemented submitters in gUSE. Hence, portlets developed employing ASM can use a
submitter via the configured applications.

61

Enhanced Job and Workflow Management

Figure 6.7: UML class diagram of the most important ASM classes. The class ASMService
provides all methods for the whole execution lifecycle of an application. It uses ASMIn-
stance for managing the properties of the current imported workflow. ASM job includes
the methods to set and get the properties of a job.

6.5 Results and Discussion

The workflow-enabled grid portal WS-PGRADE employs a variety of DCIs via gUSE. In
this work, the job and workflow management of WS-PGRADE and gUSE was enhanced
on different levels. First, the management of jobs on UNICORE DCIs was added. The
developed submitter increases the number of supported DCIs and, thus, the flexibility for
the users applying WS-PGRADE. In addition, an automatically generated list of available
tools on the connected UNICORE DCIs is offered to the users. Hence, they are able
to choose from this list during the configuration of a workflow. During the execution of
a workflow, the single jobs are invoked via the submitter on a suitable resource. The
users are relieved from uploading any scripts or executables to the science gateway. In
particular, in case of complex software packages, users do not need to know on which
resources the software packages are actually provided. This is a unique feature compared
to the other submitters of gUSE and to other workflow-enabled grid portals. The current
solution creates the list of available tools dynamically for each user. This is performed by
reading the entries of the IDBs connected via the chosen UNICORE registry during the
configuration of a workflow.

The submitter for UNICORE additionally supports workflow interoperability. Users
are able to apply and re-use UNICORE workflows in a WS-PGRADE workflow. The
workflow engine of gUSE treats the UNICORE workflow like a UNICORE job and hands

62

6.5 Results and Discussion

it over to the submitter. The submitter distinguishes between UNICORE jobs and UNI-
CORE workflows and invokes them accordingly. This type of interoperability requires
that the user submitting a workflow has access to a DCI containing the targeted workflow
engine. This requirement is fulfilled in the MoSGrid portal since it offers access to UNI-
CORE DCIs. The same concept for workflow interoperability between WS-PGRADE and
UNICORE is applied by the SHIWA platform based on WS-PGRADE. The UNICORE
submitter has set the stage for the integration of UNICORE into SHIWA. Tavaxy offers
the same approach for workflow interoperability with Taverna via web service calls. Since
Tavaxy lacks the support of security features for X.509 certificates and SAML assertions,
UNICORE workflows cannot be integrated in Tavaxy via web service calls.

ASM is an API developed in this work, which provides methods for the whole life cycle
of a workflow submission. It is used for providing gUSE workflow features in portlets.
It supports developers of domain-specific portlets to focus on the layout and domain-
related features. The API can be applied via different Java Development Frameworks like
Vaadin and the Google Web Toolkit as well as frameworks supporting the development of
portlets like Rapid (see Section 8). The workflows are managed via the ASM API, which
internally use the gUSE services and, thus, the submitters. If the implementation of the
gUSE services or the underlying security infrastructure changes, the use of ASM assures
that the portlets are not affected. Hence, the use of ASM simplifies the development of
portlets integrated into WS-PGRADE.

63

7
A Novel Method for Workflow Mi-
gration

7.1 Introduction

In general, workflow-enabled science gateways support users creating, changing, and in-
voking workflows in an intuitive way. Ideally, users are offered a graphical user interface
without becoming acquainted with the syntax of a workflow language or with the tech-
nical aspects of the managing workflow engine. They can focus on the applications of a
workflow, which is independent of the underlying workflow technology. The migration of
workflows allows the sharing of workflows within communities and between related com-
munities, which do research in the same area but not necessarily use the same science
gateways. Migration of workflows is concerned with the conversion of workflows of one
workflow language to another following a fine-grained workflow interoperability approach
(see Section 6). It does not involve the different workflow systems themselves but offers the
possibility to map existing workflows to a different technology and to import and export
workflows. Migration of workflows between web-based science gateways can be applied on
different levels.

1. Migration between two instances of the same technology and version
This case implies the export and import of existing workflows from one gateway
instance to another gateway instance of the same technology and version. Some
science gateways (e.g., Galaxy) support the migration by exporting the graph char-
acteristics and job dependencies of a workflow. They relieve the users of creating the
workflow from scratch and they retain the logical flow and the parameters. Several
gateways additionally offer options to export an instance of a workflow including the
executables, log files, input files, and output files (e.g., WS-PGRADE).

2. Migration between two instances of the same technology but in different versions
Additionally to the demands of the first case, the migration of workflows between
different versions obliges to examine whether the definition of workflows has been
involved in changes. If not, this case is identically to the first one. Otherwise the
different definitions have to be compared regarding the possibility of mapping a

64

7.2 Workflows

workflow to the targeted version. In general, users aim to apply a technology with
more supported workflow constructs than to limit the workflows via a migration.
Thus, it is very probable that the targeted version for the migration is capable of
at least the same workflow constructs. Otherwise the demands of the following case
applies.

3. Migration between different science gateways
To migrate workflows between different science gateways, it is necessary to analyse
the two different workflow languages and technologies of storing workflows and de-
pendent data. An essential part is the investigation of the semantics of the diverse
workflow languages (Kradolfer et al. [212]). If the workflow languages vary in their
supported constructs, it is essential whether the targeted workflow language or the
origin workflow language support more constructs. If the targeted workflow language
is capable of more constructs than the origin one, the migration can be performed
smoothly. Otherwise, each workflow and the used workflow constructs has to be
checked whether it is suitable for an export in the other workflow language. In ad-
dition to the conversion of a workflow, a complete migration requires the export of
the workflow from the originating science gateway and an import of the workflow at
the target science gateway. There are three possibilities to place the conversion task
during the migration process. It can be executed during the export, in a stand-alone
tool, or in combinations with the import.

In this work, we focus on the third type of migration of workflows between Galaxy and
WS-PGRADE. Both science gateways are widely used by various communities. Galaxy
is a workflow-enabled portal for cloud infrastructures (e.g., Amazon EC2) and for HPC
facilities managed by batch systems like PBS. It is designed as a kind of toolbox and
administrators have to setup a Galaxy instance for each DCI they want to support. Ad-
ditionally, it lacks the possibility to connect to grid infrastructures. To allow re-using
Galaxy workflows more flexibly in different DCIs, we implemented the export of Galaxy
workflows to WS-PGRADE workflows.

7.2 Workflows

WS-PGRADE as well as Galaxy apply a data-driven workflow engine. To compare the
semantics of the two workflow languages and, thus, the supported constructs, we refer
to the workflow patterns defined by van der Aalst et al. [144]. The following workflow
constructs form the subset of the defined workflow patterns that is suitable for at least
one of the two workflow languages.

• Sequence:
Two connected jobs of a workflow are a sequence if one job is not started until the
preceding job is finished.

• Parallel split:
A workflow is split parallelly if a job forms a sequence with multiple subsequent jobs,
which are not connected to each other and can be executed concurrently.

• Synchronisation:
A workflow is synchronised if a job forms a sequence with multiple preceding jobs.

65

A Novel Method for Workflow Migration

• Exclusive choice:
It is a conditional parallel split in which only one branch of the workflow is executed.

• Multiple instances with a priori run-time knowledge:
A job or a branch of a workflow is instantiated multiple times and executed concur-
rently. The number of instances is known before the execution of the workflow and
the workflow has to be synchronised when the multiple instances are finished.

• Recursion:
It allows a job to invoke itself during its execution.

The analysis of the workflow languages has led to the following result of supported
workflow patterns.

Table 7.1 The supported workflow patterns in WS-PGRADE and Galaxy

Workflow pattern WS-PGRADE Galaxy

Sequence true true
Parallel split true true
Synchronisation true true
Exclusive choice true false
Multiple instances with a priori run-time knowledge true false
Recursion true false

Thus, all workflow patterns of Galaxy can be converted to workflow patterns in WS-
PGRADE. The syntactic format of the workflows are quite different and characterised in
the next sections.

7.2.1 WS-PGRADE Workflows

The data-driven workflows in WS-PGRADE are defined by two parts; i) the graphical
representation of the steps as a DAG with so-called ports for input files and output files
and ii) the concrete characterisation of the steps with well-defined input files and output
files. To create a workflow, first the graph has to be defined in the graph editor. Figure 7.1
illustrates the graphical representation of a workflow in WS-PGRADE. Each yellow box
represents a job, a little green box represents an input file and a little grey box represents
an output file. Connections (the red lines) can be only established between an input file
and an output file. Via this logic, the subsequent order of the workflow is assessed. The
graph editor allows additionally inserting names for the jobs, descriptions and names of
the input files and output files.

By storing the graph, the graph editor automatically creates an XML file that includes
the graph properties. The tag <workflow> is the root element for the definition of the
whole workflow, whereas <graf> configures the name of the graph (see Fig. 7.2).

The subjacent tags <job> define the properties of the jobs: their names, the coordinates
for the yellow boxes and the properties of the input files and output files. Via <input> the
input name, the coordinates of the ports and the logical flow of the workflow is represented.
It includes the name of the parent job (prejob) and which output port of prejob is taken
as input for the current job. All ports are automatically numbered with an integer starting

66

7.2 Workflows

with 0. preoutput contains the number of the output port of the parent job connected to
the input port of the current job.

Figure 7.1: The graphical illustration of a workflow for docking of a protein in WS-
PGRADE

Further parameters for the workflow and each job can be assigned after the graph

67

A Novel Method for Workflow Migration

has been expanded into a concrete workflow. By selecting this option, the XML file is
automatically extended with the tag <real> and all existing job properties are copied
under this tag (see Fig. 7.2). Under the <real> section, <job> may include the tags
<execute> and <history> (history of changes in the workflow). Via <execute> the job
properties like parameters are stored (see Fig. 7.3).

Figure 7.2: XML illustration of the data structure of WS-PGRADE workflows on the
example of a workflow for docking of a protein

While the XML file contains all logical information about the workflow, WS-PGRADE

68

7.2 Workflows

Figure 7.3: XML illustration of the data structure of jobs in a WS-PGRADE workflows
on the example of a workflow for docking of a protein

also stores all data of submitted workflows including local executables, local input files,
local output files, and log files in a directory on the portal server. A workflow can always
be re-used and input files can easily be changed for further invocation. Users are able to
perform the creation, possible changes and execution of workflows without managing and
knowing the underlying files. Each step is supported by graphical user interfaces and the
XML file is not shown in the science gateway.

WS-PGRADE offers different download and upload features for workflows. Users are
enabled to download or upload only a graph, a workflow or an instance of a workflow
with all corresponding files like executables, input files, and output files. A graph is
directly re-usable in another WS-PGRADE instance without any changes. A workflow or
an instance of a workflow may need corrections dependent on the underlying infrastructure
(e.g., available UNICORE registries).

7.2.2 Galaxy Workflows

The representation of Galaxy workflows is quite different from the representation of WS-
PGRADE workflows. The workflows of both systems are data-driven and they can be
represented by DAGs. However, the goal of Galaxy is to offer a toolbox for workflows in a
configured infrastructure (e.g., PBS, Amazon EC2). Administrators of a Galaxy instance
configure tools, including the necessary paths and environments for the execution. They
can pre-define parameters and can additionally allow to change parameters for a tool for
each execution. These tools are stored in a database and are offered to the users. Thus, the
users can simply select them for a workflow in a graphical user interface (see Figure 7.4).

In the graphical user interface of Galaxy the steps in a workflow are represented by
boxes, which include the name of the tool in the header and the input files and output
files as lists below. The logical flow of a workflow is symbolised by connecting an input file
to an output file of the parent job. Boxes in Galaxy may also represent input datasets.

69

A Novel Method for Workflow Migration

Figure 7.4: The graphical user interface for creating workflows in Galaxy

Figure 7.5: The graphical illustration of a workflow for docking of a protein in Galaxy

70

7.2 Workflows

Figure 7.6: JSON illustration of the data structure of Galaxy workflows

They are used for input files which are independent of other tools and are provided
by the user. Figure 7.5 represents the same workflow in Galaxy, which was shown in
WS-PGRADE in Figure 7.1.

A workflow and its graphical representation is stored in Galaxy in a Python [213]
dictionary. This datastructure includes fields for the name of the workflow, annotation,
and definitions for each step like the tool id, the job parameters, and information about
the parent jobs. It preserves the logical flow of the workflow and the coordinates of
the boxes. Since the tools are directly integrated in a Galaxy instance with a specific
underlying infrastructure, there is no information provided about this infrastructure (e.g.,
the underlying batch system). Figure 7.6 illustrates the JSON data structure.

A workflow structure can be uploaded or downloaded via Galaxy in a JSON format. A
workflow is directly re-usable in case the same tools with the same tool ids are configured
in the targeted Galaxy instance. If this is not the case, Galaxy reports an error when a
workflow is invoked.

71

A Novel Method for Workflow Migration

7.3 Migration of Galaxy Workflows to WS-PGRADE Workflows

WS-PGRADE as well as Galaxy offer features for importing and exporting workflows in
their specific format. For the migration, we analysed these specific formats (see above). A
WS-PGRADE-based workflow can be uploaded to a WS-PGRADE instance as ZIP file.
The ZIP file contains an XML file workflow.xml which defines the structure of the workflow
and its name. Furthermore, a directory is included which is named after the workflow’s
name. A correct workflow for WS-PGRADE can be created only from the XML file and
the directory. Galaxy supports the download of workflows in a JSON format representing
a Python dictionary and the export of workflows to myExperiment sandboxes in SCUFL
(see Karasavvas et al. [214] for the developed migration). Both formats differ from the
workflow format for WS-PGRADE. Since a workflow conversion from SCUFL to WS-
PGRADE format would have been as complex as the conversion from Galaxy format to
WS-PGRADE format and would involve an additional technology and dependencies on it,
the preferrable choice is to directly convert Galaxy workflows to WS-PGRADE workflows
for the migration.

There are three possible locations to perform the conversion; i) a stand-alone tool for
the conversion of the Galaxy-based JSON file to a WS-PGRADE-based ZIP file, ii) an
option to download a WS-PGRADE-conformable ZIP file in Galaxy, and iii) an option
to upload a Galaxy-conformable JSON file in WS-PGRADE. The main drawback of a
stand-alone tool is on the users’ side. They would have to install an additional tool for
the conversion. Therefore, the decision was made that the conversion takes place in one
of the involved science gateways. We have preferred to extend Galaxy for maintainability
reasons. The workflow format of WS-PGRADE is well-established in the P-GRADE portal
family. Furthermore, the workflow interoperability with various workflow-enabled science
gateways has been developed via the project SHIWA. The change of this format is less
probable than a change of the format of a JSON file reflecting an inner datastructure in
Galaxy. As long as the datastructure in Galaxy will only be extended and essential fields
will be not changed or removed, the integrated conversion is still executable.

The option to download a WS-PGRADE workflow out of Galaxy has required changes
at the user interface and the creation of an additional feature for workflow conversion.
Galaxy has been developed in Python and the template library Mako [215]. The additional
option in the user interface has been integrated into the existing Mako file for downloading
and exporting workflows. The underlying class for downloads of WS-PGRADE workflows
has been added to the web controller for workflows in Galaxy (see Fig. 7.7). The controller
has three main features: the coordinates for the WS-PGRADE graph are calculated based
on the structure of a workflow, necessary fields of the Python dictionary are used for
creating the XML file, and the resulting XML file as well as an empty directory with the
workflow’s name is zipped for download.

After the workflow has been read from the Galaxy database and assigned to a Python
dictionary, coordinates are calculated for the WS-PGRADE graph. Afterwards fields in
the Python dictionary are used to map to tags in an XML file describing a WS-PGRADE
workflow (see Table 7.2). The created XML file is zipped together with an empty directory,
which is named like the workflow. This ZIP file can be downloaded to the users’ computers
and then uploaded to a WS-PGRADE instance.

Via the XML file a correct graph of the workflow is created. A real workflow is also
prepared but it is not fully functionable in this state in WS-PGRADE. For a fully functional

72

7.4 Graph Algorithm

Figure 7.7: Source files involved in the download of workflows in WS-PGRADE format

Table 7.2 Mapping of the Python dictionary to XML tags

Python XML tag Use

workflow[name] <workflow> maingraf=”[name]” mainreal=”[name]”
name=”[name]”

<graf> name=”[name]”
<real> graf=”[name]” name=”[name]”

steps[name] and <job> name=”[name]”+”[tool version]”
steps[tool version]
input connections[name] <input> name=”[name]”
input connections[id] <input> determine the name of the prejob via

[id]
input connections[output name] <input> determine the number of the port

via [output name]
outputs[name] <output> name=”[name]”
inputs[name] <execute> key=”params” value=”-[name] ”

workflow, additional information or files are needed (e.g., the targeted DCI, executables).
WS-PGRADE supports the execution of tools via diverse methods, e.g., via uploaded
executables or addresses of web services. Additionally, the UNICORE submitter allows
selecting tools in the available HPC resources. The job name in the XML file is chosen like
the name of tools in the IDB of UNICORE. Users can select which DCI they want to use
for one job or for the whole workflow. If they have chosen to select one configuration for
the whole workflow, all jobs are automatically configured. However, the steps lack still a
job definition. The configuration for UNICORE enables another automatic step to finish
each job definition. Via an option for UNICORE, users are enabled to copy the job name
as tool name for each step in the workflow. Thus, a fully functional workflow is created
and can be invoked.

7.4 Graph Algorithm

Galaxy workflows as well as WS-PGRADE workflows can be represented as DAGs. How-
ever, the graph representation and the coordinates of Galaxy workflows and WS-PGRADE
workflows are quite different from each other. Therefore, the stored coordinates in Galaxy
workflows cannot be used for the conversion. Furthermore, input files, that are provided

73

A Novel Method for Workflow Migration

by the user and do not result out of a parent job, are stored as single steps in Galaxy.
WS-PGRADE displays them as ports of a job. Additionally to the coordinates of the
boxes representing jobs, WS-PGRADE needs coordinates for the small boxes illustrating
the input files and output files. To calculate the coordinates for a clearly arranged graph
in WS-PGRADE with as few intersections of edges as possible, we developed an algorithm,
which allows to calculate the coordinates of the boxes incrementally. The boxes for the
jobs and the ports have fixed measures and the boxes of the ports are drawn directly next
to the boxes of the corresponding jobs (see Fig. 7.1).

The steps of a Galaxy workflow are first sorted in topological order which sort all parent
steps before their children. The steps are represented by vertices. We have used a Python
code [216], which implements the algorithm of Tarjan [217] for topological order of DAGs.
They are many solutions available for DAGs (e.g., in Sedgewick ”Algorithms” [218]) to
create a topological order. The applied algorithm of Tarjan was the first one that solved
the problem for a Graph G = (V,E) in linear running time O(|V | + |E|). The algorithm
for creating a topological order consists of three main tasks. First a datastructure for a
directed graph is created (Task 1), then all root elements are filtered (Task 2) as starting
point for Task 3. In Task 3 all root elements are added to a list as long as a root element
exists. This list is built dynamically and if a root element is examined, it is emitted
from the graph and the children are probed whether they are now roots. This processing
ensures that each step is checked exactly one time and added to a list, which is sorted in
a topological order afterwards.

The algorithm for creating a graph out of a workflow distinguishes between steps of
the type tool and dataInput in the Python dictionary when generating the graph (see
Algorithm 7.1).

Algorithm 7.1 Create a graph out of a workflow

#create stepOrder, inputFiles and partialOrder
for all steps in workflow do

if type of step equal ”tool” or NONE then
append step to stepOrder

end if
if type of step equal ”dataInput” then

append step to inputF iles
end if

end for
for all steps in workflow do

for all inputConnections of step do
if inputConnection not in inputF iles then

append (inputConnection, step) to partialOrder
end if

end for
end for
#execute topological sort
stepOrder = topologicalSort(stepOrder, partialOrder)

74

7.4 Graph Algorithm

#sort parents directly before children
for all steps in stepOrder do

if distance between parent step and first child step > 1 then
move parent before child

end if
end for

The type tool characterises a job, the type dataInput characterises an input file. By
processing the jobs in this order, it is assured that the coordinates of all parent jobs are
already calculated before the children receive their coordinates. Furthermore, the algo-
rithm assures that all parent jobs are sorted directly before their children if the structure
of the graph allows it. For example, the order for the jobs
PDBDownload → Ligand3DGenerator → PDBCutter → ProteinProtonator → LigCheck
(see Figure 7.5) can be determined as already topologically sorted. For the graph in WS-
PGRADE, the algorithm sort the jobs in this order
Ligand3DGenerator → LigCheck → PDBDownload → ProteinProtonator→ PDBCutter.
The advantage of this order is that the intersections between edges can be avoided as far
as possible.

The coordinates of each box of a job is calculated dependent on the coordinates which
are already assigned (see Algorithm 7.2). If a job has no parent, the box is located at the
top, left from the so far maximal coordinates (see PDBDownload and Ligand3DGenerator
in Figure 7.1). Boxes of children are placed under the boxes of their parents. If the coor-
dinates directly under a parent are already occupied, the coordinates to the left are tested
until free coordinates are found (see ProteinProtonator and PDBCutter in Figure 7.1). If
there are more parents than two and at least two on the same vertical coordinates, the
child box is placed lower and left of the maximal coordinates (see IMGDock in Figure 7.1).
The boxes have the fixed measures 60 × 60 pixels and the algorithm calculates a fixed
space between the boxes.

Algorithm 7.2 Calculate coordinates of the boxes representing steps

xMax = xStart
for all steps in stepOrder do

if root then
xMax = xMax + space
x = xMax
y = space

else
assign ccoordinates of first parent to x and y
if step has one parent then

y = y + space
end if
for parents starting with second parent do

if x equal x coordinate of parent then
x = x + space

else if x < x coordinate of parent then
assign x coordinate of parent to x

end if

75

A Novel Method for Workflow Migration

if y equal y coordinate of parent then
y = y + space

else if y < y coordinate of parent then
assign y coordinate of parent to y

end if
while x, y already coordinates of a step do

x = x + space
end while
xMax = maximum of (x, xMax)

end for
end if

end for

The coordinates of the ports are determined by placing the ports on the frame of the
box which belongs to the corresponding job. In general, input files are represented at the
left or at the top and output ports at the bottom or at the right. These positions avoid the
intersection of the edge with the current parent box and child box. If there are so many
ports configured that this rule cannot be followed (e.g., more input files than eight), the
ports are placed on an available space at the box. The order of the configured connections
between ports is not stringently sorted like the topological order which is created by the
algorithm. To avoid intersections of edges connected to the same job box, the edges are
tested for intersections. For the test of intersections, we consider the coordinates of input
ports and output ports as points in a plane with x and y coordinates and utilise a geometric
algorithm [218, 219] to test whether points are located in a counter-clockwise order. It
relies on a formula for the calculation of the area of a triangle via the determinant of a
3 × 3 matrix. Let A, B, and C be points in 2D. Then the calculation for their order is
performed in the following way.

area(A,B,C) :=

∣∣∣∣∣∣
Ax Ay 1
Bx By 1
Cx Cy 1

∣∣∣∣∣∣ = (Cy −Ay)(Bx −Ax)− (By −Ay)(Cx −Ax)

area(A,B,C)


< 0 if A, B, C in clockwise angle
= 0 if A, B, C collinear
> 0 if A, B, C in counter-clockwise angle

Figure 7.8 illustrates the orientation of points. The points A, B, and C are drawn in
counter-clockwise order; A, B, and D are drawn in clockwise order.

The test whether two edges intersect with each other, is based on the counter-clockwise
order of the vertices defining them. Edges are considered as line segments in a plane. Let
(A,B) and (C,D) be two line segments. These intersect if and only if the points A and
B lie on different sides of (C,D) and the points C and D lie on different sides of (A,B).
This means that A, C, and D are oppositely oriented than B, C, and D and that A, B,
and C are oppositely oriented than A, B, and D. Thus, the below stated Algorithm 7.3
allows calculating the intersection between edges in constant time.

76

7.5 Results and Discussion

BB
C

A
D

A

Figure 7.8: Orientation of the points A, B, C, and D in 2D

If edges of input ports of one step intersect, the coordinates of the involved ports are
swapped (see IMGDock and the ports 1 and 2 in Figure 7.1), which is the final action in
the graph algorithm to calculate the coordinates for a WS-PGRADE workflow graph.

Algorithm 7.3 Methods to check intersections of edges

#method returns true if coordinates of A, B, C are counter clockwise ordered
function ccw(A, B, C)

return (C.y-A.y)(B.x-A.x) > (B.y-A.y)(C.x-A.x)
end function

#method returns true if edge (A,B) intersects with edge (C,D)
function intersect(A, B, C, D)

return ccw(A,C,D) 6= ccw(B,C,D) and ccw(A,B,C) 6= ccw(A,B,D)
end function

7.5 Results and Discussion

The concept of workflow migration between science gateways supports the re-usability
and the exchange of workflows between the communities of science gateways. Thus, users
are relieved from creating identical workflows in different technologies. In contrast to
workflow interoperability introduced in Section 6, migration of workflows includes the
translation of a workflow language into a targeted workflow language. Thus, the workflow
can be used in the targeted science gateway without the need to have access to the source
workflow engine. We have presented in this section the migration of Galaxy workflows to
WS-PGRADE workflows.

The migration of the workflows has been embedded in Galaxy and consists of several
steps. The essential steps for the workflow language translation are the graph algorithm
for calculating the coordinates of the graphical representation of the WS-PGRADE work-
flows and the mapping of suitable workflow constructs of the Galaxy workflow language
to workflow constructs of the WS-PGRADE workflow language. Due to the different
graphical representations of workflows in Galaxy and WS-PGRADE, the coordinates of
the Galaxy workflows cannot be re-used for the WS-PGRADE workflows. We developed a
graph algorithm, which avoids edge crossing as far as possible and aligns the vertices and
edges to an underlying grid. These two criteria for the aesthetics of a graph have been
classified as the most important criteria for users [150]. Galaxy workflows are represented
by DAGs and, thus, the vertices can be sorted in topological order. The topological order

77

A Novel Method for Workflow Migration

is extended by sorting parent vertices directly before their child vertices if the resulting
order is still a valid topological order. The coordinates are incrementally calculated so that
each child vertex is placed in a horizontal layer below the parent vertex. The algorithm
creates all coordinates in linear running time O(|V |+ |E|).

A plethora of graph drawing algorithms exists, which follows a layered layout ap-
proach [147]. The algorithm of Sugiyama et al. [146] is widely used. It consists of four
phases for the drawing of directed graphs: cycle removal, layer assignment applying chains
of dummy vertices for long edges, crossing reduction of edges, and x-coordinate assign-
ments to vertices while deleting dummy vertices. These phases include diverse NP-hard
problems (e.g., 2-layer crossing minimisation [148]). Thus, a number of efficient heuris-
tics [149] has been developed. The algorithms consider more criteria for the aesthetic of a
graph than our algorithm, e.g., the minimisation of the number of layers. Our algorithm
is efficient but it may lead for large graphs to a large number of layers and long edges.
For example, the illustration of a workflow consisting only of sequences results in a graph
with one vertex per layer.

Galaxy as well as WS-PGRADE are widely-used and are intuitive science gateways sup-
porting a large number of communities with overlapping research fields. However, Galaxy
lacks the support of grid-based DCIs and requires the installation of a Galaxy instance
per underlying DCI. Thus, the migration of Galaxy workflows to WS-PGRADE workflows
allows flexibly using existing Galaxy workflows for various DCIs. The same approach is
followed by Karasavvas et al. [214] migrating Galaxy workflows to myExperiment sand-
boxes, which use SCUFL as workflow language. The SHIWA project [205] as well as the
Tavaxy developers [208] suggest to perform workflow language translation via an interme-
diate presentation of the workflow in a multistage process. The resulting workflows of our
solution can be integrated into the SHIWA platform since WS-PGRADE workflows are
supported for the language translation to the intermediate workflow language IWIR [207].

78

8
Automatic Creation of Portlets for
Workflows

8.1 Introduction

The creation of portlets is a time-consuming process that demands specialised skills. Be-
sides portal frameworks, several tools and standards have been developed to aid developers
in the portlet creation process. Vaadin and Google Web Toolkit, for example, allow cre-
ating JSR168/JSR286-compliant portlets. Developers of portlets supporting workflows to
DCIs have to consider well-defined security features and embedded workflow management
systems. So far, there is no established standard for workflow-enabled portlets. How-
ever, reliable and fully featured portals like WS-PGRADE and Genius are available and
are based on the JSR168/JSR286 standard. Thus, deploying additional portlets to the
portals can be easily performed — the sophisticated task is the development of portlets
integrated with the workflow features for DCIs.

Frameworks like Rapid [26], EnginFrame [16], and Rappture [27] aim to provide a
specific solution to enable applications to utilise DCIs with a minimal amount of devel-
opment. All three frameworks are well-designed, actively maintained, and offer access
to DCIs (see Section 3.4.2). Rapid supports the standard JSR168/JSR286 and, thus, is
more flexible regarding the underlying infrastructure than EnginFrame and Rappture. The
latter two rely on specific portals, EnginFrame on an EnginFrame server and Rappture
on nanoHub, respectively. The philosophy of Rapid is to deliver customized portlets via
specifications of the interface, tasks, and resource descriptions in an XML file. Even more
flexible logic in the portlets can be achieved via plugins using Jython [220]. With the XML
file and optional plugin files as basis, Rapid allows the automatic creation of deployable
portlets for various portal frameworks such as Liferay and Pluto. Hence, there is no need
for becoming acquainted with portlet programming. These features as well as the flexible
and scalable design of Rapid made us choose it for an extension for workflows.

We developed a first prototype [221] for analysing mass spectrometry data via TOPP
(The OpenMS Proteomics Pipeline) [222] and used the Jython plugin. After this prototype
has been deployed in a Liferay portal framework, it allowed researchers to handle pipelines

79

Automatic Creation of Portlets for Workflows

for analysing data on a large scale. The users have been able to select different TOPP tools,
to monitor the pipeline, and visualise the results (see Fig. 8.1). However, to integrate a fully
functional workflow management system, the decision was made to design an extension in
Rapid that supports an existing workflow-enabled grid portal. Thus, we have developed
an extension in Rapid for the use of WS-PGRADE workflows.

1. specifies 2. uses

3. deploys
4. performs task

web portal

6. runs jobs

8. returns
results

teacherstudents

researcher

portal
designer

7. monitors

5. configures

9. analyses
results

interface,
task &

resource
description

XML

compute resources

Figure 8.1: Process of creating and using TOPP portlets via Rapid

8.2 Rapid Framework

As described above, Rapid is designed for automatic creation of portlets from XML files
and optional Jython plugins. These XML tags and Jython plugins are converted to Java
and JSP source files. The creation process is independent of a portal framework, whereas
the resulting portlet relies on JSR168/JSR286-compliant portals (e.g., Liferay, Pluto).

The conceptual architecture is shown in Figure 8.2. It reflects the separation between
the layout and the job submission included in each resulting portlet. The layout is modeled
via XHTML [223] and Rapid tags. Users may employ XHTML tags for tables or different
fonts, the Rapid tags allow to integrate parameters like text boxes, drop-down menus,
and radio buttons. Furthermore, a Java-based text editor can be inserted. The model of
the job manager has been designed with regard to the standards Basic Execution Service
(BES) [224] and JSDL. Hence, Rapid supports to define several stages of job submission;
staging in and staging out of data, execution of a job including pre-processing and post-
processing, and monitoring of jobs. Jobs can be invoked to several pre-configured DCIs.

80

8.2 Rapid Framework

Additionally, Rapid is able to invoke jobs via JSDL to GridSAM [225] services, a BES
implementation. GridSAM supports grid middlewares like UNICORE, Globus Toolkit,
and gLite.

Portal Framework

Rapid Portlet

User InterfaceUser Interface

Job Manager

Figure 8.2: Conceptual architecture of Rapid

The available XML constructs in the Rapid format can be divided into two groups:
XML tags for the layout and XML tags for job and data management. The root element of
each Rapid document is the tag <rapid>. Via the child elements, the targeted DCIs, the
file handling, the details of the job submission, and the layout are defined. The following
child elements exist.

1. <condor> defines Condor [226] as targeted DCI for the job submission (optional)

2. <sungridengine> defines OGE (formerly SGE) as targeted DCI for the job submis-
sion (optional)

3. <pbs> defines PBS as targeted DCI for the job submission (optional)

4. <fork> defines a local resource as target for the job submission (optional)

5. <local> defines a local file system (optional)

6. <ftp> defines an (s)ftp file system (optional)

7. <http> defines an http file system (optional)

8. <gsiftp> defines the gsiftp file system (optional)

9. <initialise> initialises a new job template

81

Automatic Creation of Portlets for Workflows

10. <page> defines the user interface

11. <persistence> defines state preservation (optional)

1. - 4. reflect the different pre-configured types of DCIs, which can be targeted for the
job submission (GridSAM is accessible via a job template), 5. - 8. contain the supported
protocols for file handling, 9. defines the job properties, 10. defines the user interface, and
11. allows to set persistence characteristics. Each element allows further definitions and
all available Rapid tags are provided in ”Manual: Writing a portlet using the Rapid tool”
on Sourceforge [227].

8.3 Extending Rapid for Workflows

For the extension of Rapid, ASM (see Section 6.4) is applied. It provides a possibility
to add workflow functionality to portlets tailored for WS-PGRADE. However, if it is
solely used, the developer still has to become acquainted with implementing portlets. The
extension of Rapid using ASM supports an intuitive way to create portlets via XML files.
Features developed with ASM require that the processed workflows exist in the repository
of the executing WS-PGRADE instance. Thus, the developer first has to create the
workflow that he wants to integrate in a portlet and to add it to the repository. The XML
file of the workflow is used as additional input file for the portlet creation.

Furthermore, extra Rapid tags have been defined for the integration. The tag <ws-
pgrade> contains the name of the WS-PGRADE workflow and is mandatory for initialising
further steps for the workflow integration. Dependent on the features the developer wants
to define in the portlet, the following tags can be added as child elements of <wspgrade>.

• <import> imports an application to the user space

• <upload> and <download> manage input and output files for upload and download

• <remoteinput> and <remoteoutput> manage remote files

• <configure> configures the properties of a specified job

• <submit> submits the application

• <status> gets the status of the application

• <abort> aborts an application

• <delete> deletes an application

If the Rapid process detects <wspgrade>, it automatically copies prepared portlet
snippets in the resulting Java source code for the specified actions like importing the
workflow to the user space as well as submitting and monitoring a workflow. These
snippets only provide the feature and not the layout. The layout still relies on the extensive
features of Rapid. In case the developer wants the same layout for the configuration of
jobs as it appears in WS-PGRADE, the tag <standardview> can be added and the source
code including the DCI-specific WS-PGRADE plugins (see Section 6.2.2) is automatically
copied for the generation of the portlet.

Additional features can be added via supporting XML files for tools in the workflow.
Each XML file reflects the parameter options for a tool, e.g., a list of choices, free text, or
files. When the XML file is parsed, the parameters are mapped to suitable Rapid tags for
the layout.

82

8.4 Results and Discussion

8.4 Results and Discussion

This section introduced a construction method for workflow-enabled grid portlets using
Rapid that allows creating intuitve graphical user interfaces without programming in the
traditional sense. Developers are enabled to automatically convert XML files (a Rapid
XML file, a WS-PGRADE workflow XML file, optional XML files for tools) to a fully
functional portlet for WS-PGRADE. The process of creating such portlets implies that
the developer additionally creates a workflow in WS-PGRADE, import it to the repository
of the executing instance, and downloads the workflow XML file before the portlet can
be generated via Rapid. The generation method applies ASM and relieves developers
from becoming acquainted with details about the underlying workflow system gUSE and
about DCIs. All DCIs available in the executing WS-PGRADE instance can be applied.
Thus, developers are enabled to focus only on the layout, which is maintained easily and
efficiently in XML files.

Figure 8.3: Extended conceptual architecture of Rapid for workflow-enabled grid portlets.
ASM is integrated in Rapid for the generation of the workflow-enabled portlets. In addtion,
gUSE and ASM have to be available for the execution of the workflow manager.

The integration of WS-PGRADE workflows into Rapid is an efficient solution for deve-
lopers. A minor drawback is the loss of independence of Rapid from portal frameworks and
workflow-enabled grid portals via the workflow extension. Rapid for WS-PGRADE work-
flows requires a more complex underlying infrastructure. The architecture of Rapid with-
out the extension is self-contained and portlets can be generated in every JSR168/JSR286-
compliant portal framework. The extension with the workflow manager using ASM always
requires WS-PGRADE, gUSE, and ASM in the grid portal infrastructure (see Fig. 8.3).

83

Automatic Creation of Portlets for Workflows

Hence, Rapid for workflow-enabled grid portals only supports the portal framework that
is applied by WS-PGRADE, which is currently Liferay. Even though Rapid including the
workflow extension has lost its independence, the possibilities for the design of the portlets
are more powerful compared to EnginFrame and Rappture. Both software frameworks only
offer pre-configured layouts for creating new user interfaces via XML files, whereas Rapid
supports XHTML and Rapid-specific tags for the layout.

84

9
MoSGrid - Bringing It All Together

Parts of this chapter have been previously published in [29].

9.1 Introduction

Structural bioinformatic tools have become indispensable tools in many fields of research
in life sciences and chemistry. Quantum chemical methods, molecular dynamics methods,
and protein-ligand docking provide deep insights into the structure of biomolecules and
their interactions and are essential tools in such diverse areas as material science and drug
design. While very powerful, most of the tools and applications used for computational
chemistry calculations reflect the complexity of the underlying scientific theories. Using
these tools requires a lot of experience. Their usability is often limited and frequently
deters novice users. The computational complexity of these methods, the jobs’ running
times, and the huge amount of data make them ideal candidates for DCIs. However, DCIs
have usability issues of their own, which limit their acceptance in the scientific community.
Overcoming these usability issues and thus enabling the use of DCIs for a broader user
community was the key goal when the MoSGrid project was conceived. It is part of the
D-Grid and is designed to address the requirements of both commercial and academic
users.

Currently, the MoSGrid community consists of about 100 users or working groups,
respectively. At this stage, the science gateway is opened for beta testing to about 20
users from academia and industry whose feedback and demands are invaluable for further
development. It is planned to offer the science gateway to the whole community in the near
future. Novice and advanced users are able to run their computations on DCIs. They are
assisted by graphical user interfaces with different levels of sophistication to accommodate
both user groups. Additionally, standard methods for specific problem classes are offered.
MoSGrid provides a framework for developing, storing, and providing simple and complex
workflows.

The infrastructure of the MoSGrid science gateway and its underlying DCIs is re-
flected in this work. The science gateway is based on the workflow-enabled grid portal
WS-PGRADE on a version which employs Liferay 6 and Apache Tomcat 6. The authenti-
cation and authorisation to the portal is performed via the user management of Liferay (see

85

MoSGrid - Bringing It All Together

Section 4.5) and to the DCIs via SAML assertions generated with the extended certificate
portlet of WS-PGRADE (see Section 5). Even though WS-PGRADE offers the access to
several DCIs and D-Grid supports computing infrastructures utilising UNICORE, Globus
Toolkit, and gLite, the MoSGrid portal only allows access to UNICORE infrastructures
and local resources. This decision has been made because of the additional features of
UNICORE with the integrated workflow system and the IDB to store preferences of re-
sources and installed tools. Thus, the developed submitter in gUSE including the workflow
interoperability with UNICORE is applied (see Section 6).

Furthermore, users will be enabled to archive the results of their calculations in a
repository and share them with other users. The repositories will be stored in XtreemFS
whose security infrastructure has been extended for the use of SAML assertions. To
provide an efficient data management between UNICORE jobs and XtreemFS, UNICORE
has been enhanced to work together with shared and remote data storages controlled
by XtreemFS. The included repositories will store data in MSML (Molecular Simulation
Markup Language). It has been designed for specifying structural information of small
and large molecules and results of various molecular simulation tools and docking tools.

Besides these features, portlets for domain-specific workflows have been implemented
which make use of the ASM libraries and are tailored to the specific demands in the tar-
geted domain. The development has been started right at the beginning of the MoSGrid
project and has been continuously adapted to meet the community’s feedback. Whereas
a first prototype for the quantum chemistry domain [228] evaluated and employed ICE-
Faces [229], the first prototype for handling data management with XtreemFS evaluated
and employed Vaadin. The evaluation resulted in using Vaadin for further developments.
In parallel, the ASM library has been developed and the below introduced portlet for
molecular dynamics (see Section 9.2.1) was the first one leaving the prototype state while
applying ASM and Vaadin. We will additionally introduce a new designed portlet for
quantum chemistry and a prototype for docking tools. Finally, Section 9.3 goes into detail
for case studies of the community regarding the running time on DCIs.

9.2 Domain-specific Workflows

In addition to the WS-PGRADE-based workflow-oriented instruments to use DCIs, MoS-
Grid aims to provide intuitive ways for novice users to run chemical simulations. To serve
this purpose, the chemical simulation codes, workflows, and DCIs are hidden. The user ac-
cesses portlets that directly offer instruments to start and manage simulations for different
subjects of structural bioinformatics.

Currently, MoSGrid offers specific portlets for molecular dynamics, quantum chemistry,
and protein-ligand docking. The portlets utilise the ASM library together with the gUSE
services like the UNICORE submitter. This enables the developers to focus on the domain-
related features to further improve the user experience. The design and functionality of
the domain specific portlets are described in the following.

9.2.1 The Molecular Dynamics Portlet

The Molecular Dynamics (MD) portlet enables chemists to easily access molecular sim-
ulation codes. The portlet allows chemists to simulate the processes of frequently used
standard recipes.

86

9.2 Domain-specific Workflows

Figure 9.1: Preparing a recipe with the MD portlet - at the top parameters can be adjusted
and a recipe chosen and in the bottom the whole recipe is shown

These recipes are mapped to UNICORE workflows and are available in the portal. This

87

MoSGrid - Bringing It All Together

way, the portal should on the one hand ease the work of experienced users and on the
other hand lower the hurdle on using molecular simulations on DCIs for novice users.
The scientists can submit molecular simulations without knowledge of the DCI. The MD
portlet is organized in two main sections. The first section covers the recipe configuration
and submission and the second section covers the monitoring of running simulations.

Submission - The MD submission section is designed to provide a molecular dynamics
service on multiple levels. Figure 9.1 shows the design. When the user selects the MD
portlet, he/she is welcomed with a short description of the portlet’s abilities. In addition,
the number of available cluster systems is displayed. To get this information, the portlet
has taken the user’s credentials to connect to the underlying DCI and detect which com-
puting facilities can be accessed. If the user cannot connect to any facility, maybe due to
missing SAML assertions, he/she is informed about the problem.

The MD simulation allows the user an easy use of standard workflows. In the current
state, the user is enabled to submit a single simulation using a directly uploaded job
description. Alternatively, the user can run a complex recipe that includes an energy
minimization and a subsequent equilibration. This recipe is an indispensable prerequisite
for all kinds of production runs. The portal supports the user with a description of the
purpose and requirements of the selected simulation.

For each simulation the user has to upload a file containing either the job description
(Gromacs TPR format) or the structural information (PDB format). In the background,
the portlet automatically checks the correctness of the job description. Unnecessary input
information is automatically removed. The user is notified about obvious problems like
missing residues in the input structure.

Even if the portlet minimises the necessary user input as far as possible, it still requires
further information. First of all, it is hard to guess how long a molecular simulation should
run [230]. Therefore, the user has to define the simulation length. Secondly, the user has
to define the resources for the simulation. This includes the number of parallel nodes and
the maximum duration of the simulation (wall time). When all information is given and
checked, the user can submit the job to the MoSGrid infrastructure.

The job submission uses the grid connection through the WS-PGRADE and gUSE
infrastructure and the UNICORE submitter. The MD portlet employs the user’s SAML
assertion for the authentication and accesses the submitter through the ASM module.
Alternatively, the connection can be established to the UNICORE grid middleware directly.

The UNICORE submitter checks the IDBs of the connected grid clusters. Each IDB
contains meta information about the simulation codes, available in its cluster system. This
allows to select the appropriate cluster for executing the recipe’s substeps.

Monitoring - After job submission, the user can monitor the job process in the second
main section. The jobs are either named after a user given identifier, or if the user did
not specify a job name, the jobs are named after the user login on the portal, combined
with the submit time, and name of the workflow recipe. A traffic light for each simulation
entry shows the status of the simulation.

Yellow indicates that the job is still executing or queued.

Green means that the job has been successful.

Red is used for a failed job.

Further information, e.g., about the underlying HPC facility, which the job uses, is hidden.

88

9.2 Domain-specific Workflows

Figure 9.2: MD portlet - monitoring and view of a molecule file in Jmol

For each recipe the user can query the output files, even for an ongoing simulation.
The files are displayed in a tree-like shape, reflecting the substeps of the running workflow.
The resulting or intermediate file of the workflow can be downloaded or displayed in the
portal. The MD portlet shows either plain text, pictures or figures, and in case a molecule
file is selected, a 3D view in Jmol (see Fig. 9.2).

In the future the MD portlet will be enhanced with more simulation codes, additionally
to the currently supported Gromacs.

9.2.2 The Quantum Chemistry Portlet

The Quantum Chemistry (QC) portlet implements a complete quantum chemical work-
flow. The platform enables researchers to submit their molecular simulations, monitor the
progress, and retrieve the results. It is designed for users both experienced and inexpe-
rienced with computational chemistry. Therefore, pre- and post-processing routines are
available. Amongst others, these can be used to export the output of the simulation tools
in a standardised format.

The chosen software design is open for extensions. Instead of directly accessing the
UNICORE command line client (UCC), the portlet is implemented to make use of ASM.
With the use of ASM, the authentication via SAML is processed by the UNICORE
submitter. To be able to use the ASM it was required to create WS-PGRADE work-
flows. First simple workflows include the execution of the specific tool and parsers for
data evaluation. The support for MSML/CML [231, 232, 233] is fully functional, but
relying on preliminary definitions, which are not yet standardised. So, while being able
to generate valid MSML, the input files are still generated and submitted in tool specific
formats.

Taking the users’ feedback into account, the user interface was split into two portlets;
the first is specialised to creating and submitting the workflows, the second portlet moni-

89

MoSGrid - Bringing It All Together

tors the workflows and visualises the results.

Figure 9.3: QC portlet - configuration of a workflow

Figure 9.4: QC portlet - result view with Jmol

Creating and submitting a workflow follows the structure-centric approach. First, the
user selects the geometry of a molecule. Currently, there is support for uploading files and
entering the information directly. OpenBabel [234] is used to support various geometry
file formats.

90

9.2 Domain-specific Workflows

The second step, presented to the user in a second tab, is the configuration of the
workflow (see Fig. 9.3). Here, parameters can be selected in three categories. The first
category summarises the generic parameters of QC calculations. This includes the job type
specification (e. g., optimization, energy minimization) and the selection of the simulation
method. The second catagory allows the user to select a specific tool for the simulation and
to set up tool specific parameters. The third and last tab offers access to hardware-specific
settings like runtime, number of processors, and the amount of memory needed.

The monitoring and display of results was transferred to a second, independent portlet.
Originally it was designed for the monitoring of all tools from all domains. With the ASM
integration the listing of workflows uses a tree-like structure. For the current single-
step-workflows there is a list entry for each workflow. The status is represented by the
well-known items queued, running, successful, or failed. On the right, the most important
information for each job is summarised. In case of a successful execution, the exit code of
the tool is shown as well as the information that result data is available.

This data can be viewed on the second tab of the monitoring portlet, where detailed
information and visual representation is provided (see Fig. 9.4).

Depending on the input data, the native output format of the simulation tool, specific
values and the trend of these values are plotted to files, which can be viewed, downloaded,
and processed in common spreadsheet applications. Visualisation of the data is provided
by Jmol.

9.2.3 The Docking Portlet

The docking portlet supports the use of docking tools via workflows and visualises the
results. At the moment, it is available as a prototype and offers access to pre-defined
workflows with CADDSuite tools. The design originates from lessons learned via the
development of the MD portlet and its integration of the ASM libraries. The users are
provided with three views; a welcome view for importing workflows and submitting them
(see Fig. 9.5), a monitoring view (see Fig. 9.6), and a debug view. This layout will be the
model for further developments of portlets in MoSGrid and its ASM features will be used
as a kind of template.

The welcome view allows to import workflows from the workflow repository of WS-
PGRADE via ASM to the user space. This way, users are supported with pre-defined
workflows. Since advanced users are additionally able to create a WS-PGRADE workflow
from scratch and to export these to the repository, the integration of a new workflow in
the welcome view is easily possible. Once a user has imported a workflow, it is offered
for submission, input data can be uploaded, and several parameters can be filled, e.g.,
the name of the ligand. The status of workflow is shown in the monitoring view (queued,
running, successful, or failed). Workflows can be deleted and in case, a workflow is finished,
the results can be downloaded and visualised in Jmol. For a more flexible use, the browsing
of intermediate results will be integrated in the future similar to the MD portlet.

Currently, a workflow is provided that performs protein-ligand docking via an itera-
tive multi-greedy docking method and rescoring algorithm. The molecules are prepared
with several steps like separating ligand and receptor and finding strongly bound water
molecules. By splitting the molecule file of the ligands, steps for the chemical sanity check
of the ligand and the docking can be parallelised. Finally, the docking results are merged
and filtered.

91

MoSGrid - Bringing It All Together

Figure 9.5: Docking portlet - configuration of a workflow

Figure 9.6: Docking portlet - monitoring of a workflow and visualisation of the result with
Jmol

92

9.3 Performance Studies

The next steps for the extension of the portlet include the visualisaton via WebGL [235]
tools, which allow not only the visualisation of molecules but provide a fully powered
molecule editor.

9.3 Performance Studies

There have been a plenty of benchmarks and performance studies about tools in computa-
tional chemistry regarding the increasing efficiency via parallelisations on DCIs (e.g., for
Gromacs [236, 237, 238, 239], for Gaussian [240, 241, 242, 243], for FlexX [244, 245, 246]).
Vendors of computer systems as well as independent research facilities often publish per-
formance values. The overall result is that each tool has to be examined per computer
architecture and per use case for the best rate of parallelisation. Above a certain number of
parallel processes and simultaneously applied cores, the overhead of parallelisation causes
parallel processing to be less efficient than serial processing. In [238], a benchmark for
Gromacs parallelised on 128 cores is introduced, which shows that there is still a speedup
for the application. However, already 14 % of the running time was needed for communi-
cating. Gaussian speedups with 32 concurrently used cores for selected applications [241].
Borcz et al. [247] developed workflows via the UNICORE Rich Client which reduces the
necessary analysis time for researchers at least six times.

Users of the MoSGrid science gateway have currently access to seven clusters for man-
aging their workflows (see Table 9.1).

Table 9.1 Technical specifications of the clusters Alibaba, Bisgrid, Deimos, Emilia,
Flavus, HPC-BW, SuGI, and Atlas

Cluster Name CPU Nodes Cores per Node Network
Alibaba Dual-core Intel Xeon 2.8 GHz 80 6 Infiniband
Bisgrid Dual-core AMD Opteron 2.8 GHz 8 8 Infiniband
Deimos Dual-core AMD Opteron 2.6 GHz 384 2 Gigabit

Dual-core AMD Opteron 2.6 GHz 230 4 Gigabit
Dual-core AMD Opteron 2.6 GHz 112 8 Gigabit

Emilia Quad-core Intel 3.0 GHz 43 8 Gigabit
Flavus Quad-core Intel i7 2.8 GHz 8 4 Gigabit
HPC-BW Quad-core Intel Xeon 2.83 GHz 140 8 Infiniband
SuGI Quad-core Intel Xeon 2.33 GHz 32 8 Infiniband
Atlas (1) 16-core AMD Opteron 2.2 GHz 92 64 Infiniband

(1) It is planned to offer access to Atlas in the second quarter of 2013.

Each job of a workflow is invoked via the UNICORE submitter on a suitable resource
(e.g., suitable to the selected tool, suitable to the requested number of cores). Often the
number of simultaneously allowed cores and processes, size of memory and of storage of
DCIs are limited to each user by computer centres serving various user communities at the
same time. Additionally, available software licenses have to be considered for the choice
of resources. For example, the SuGI cluster in Cologne is the only cluster of the MoSGrid
resources, which owns the suitable license for MoSGrid users to perform Gaussian jobs.
The use case on conformational analysis of guanidine zinc complexes presented by Herres-
Pawlis et al. [248] was carried out using 110 Gaussian 03 jobs on the SuGI cluster. 80

93

MoSGrid - Bringing It All Together

jobs could have started in parallel, whereas 30 conformations were calculated dependent
on the first 80 results. However, the number of allowed nodes for one user at the same
time is restricted to 20. Each run occupying eight cores took about 3 days on the cluster.
A similar calculation on a standard PC was aborted after 14 days.

A standard workflow for energy minimisation of a molecular structure (see Fig. 9.7)
offered by the MoSGrid science gateway is applied for the following performance study.
This workflow is often used in molecular dynamics for the preparation of molecular struc-
tures before performing further molecular simulations. The preprocessing step includes
the choice of a force field and the generation of an appropriate initial configuration for
a molecular system. Then the system is inserted into a periodic box and solvated with
water. Afterwards the total charge is neutralised by the addition of counter ions. The
workflow ends with the energy minimisation of the molecular structure. We employed
Gromacs 4.5.5 and the first four steps of the workflow are processed serially and the fifth
step can be performed in parallel. The workflows were invoked via the science gateway to
HPC-BW and Flavus with the structures of the proteins Acetylcholinesterase complexed
with Galanthamine containing 4210 atoms (PDB ID [43] 1DX6) and Hemagglutinin in
complex with ligand LSTa containing 45750 atoms (PDB ID 3UBJ) as input. Figure 9.8
illustrates the performance achieved on the two clusters. The running time for 1DX6
decreases almost linear to eight cores on HPC-BW and decreases further until 128 cores
in sublinear manner. The running time for 1DX6 on Flavus decreases from one core to
32 cores in sublinear manner, whereas the running time for 3UBJ decreases only until 16
cores sublinear and then increases for 32 cores. The running time on HPC-BW for 3UBJ
decreases even until 64 cores but increases again on 128 cores. The performance study
shows that applying Gromacs in its parallelised version is beneficial for both molecular
structures on the selected computer architectures at least up to 16 cores. The running
time for 1DX6 was even decreasing until 128 cores on HPC-BW.

Figure 9.7: A workflow to minimise the energy of a molecular structure

94

9.3 Performance Studies

Figure 9.8: The running times of the energy minimisation for the structures 1DX6 and
3UBJ on HPC-BW and Flavus

For the following performance study we applied the docking workflow using CADDSuite,
which is also offered in the docking portlet. Figure 9.9 illustrates this workflow, which
includes the steps for the preparation of a receptor and the steps for the preparation of
the ligands before the docking is performed. PDBCutter is used to split a complex into its
receptor and ligand parts. The extracted ligand forms the reference ligand for defining the
binding pocket. Missing hydrogen atoms are added to the receptor structure via Protein-
Protonator. The ouput of PDBCutter as well as ProteinProtonator is used in GridBuilder
to build an interaction grid for the binding pocket of the receptor. The resulting grid and
receptor file set the stage to dock a set of ligands with IMGDock. In general, the ligands
have to be prepared for docking by generating 3D conformations and adding hydrogens to
them (Ligand3DGenerator). Furthermore, a sanity check (LigCheck) is performed. The
sanity check examines, for example, whether the ligands are properly protonated, possess
suitable bond lengths and properly assigned binding orders. The LigandFileSplitter allows
to split the ligand file into a number of subsets. Thus, the workflow can be parallelised
based on the number of splits.

As input we used a benchmark data set for the protein kinase ABL (PDB ID 2HZI)
offered by DUD-E (A Dabase of Useful Decoys: Enhanced) [249]. The benchmark data
set includes a molecule file with 10885 ligands. Additionally, a second set of files (lead-like
subset) [250] containing about 5 million structures has been downloaded from the ZINC
database [251], which is generally used for virtual screening. Virtual screening is applied
in drug discovery to search large data sets of chemical structures in order to examine the
structures’ binding probability to a drug target. The structures in the data sets have
been already prepared for docking. Thus, we skipped the two steps Ligand3DGenerator
and LigCheck in the workflow. The resulting workflow has been submitted four times to

95

MoSGrid - Bringing It All Together

Figure 9.9: A docking workflow including the preparation of the receptor and the prepa-
ration of the ligands

Atlas. For the first three submissions we used the benchmark data set offered by DUD-E
as input and split it into 10, 100, and 1000 subsets via LigandFileSplitter. The screening
data set consisting of 41 single files formed the input for the fourth submission and these
41 files have been split each in 100 subsets. The CPU average time for a docking process
per ligand (see Fig. 9.10) was lower and, thus, performed better the higher the number
of molecules have been in the molecule file. However, the overall time for processing
the different workflows, the time which is recognised by the users, resulted in a gain of
performance in sublinear manner for the higher number of parallel jobs. For example, the
number of ligands processed via the screening data set are about 500 times more than
the number of DUD-E ligands but the duration of the complete docking process only took
67 times longer than the best running time with 1000 splits on the DUD-E ligands (see
Fig. 9.11).

9.4 Results

The MoSGrid project serves the molecular simulation community with an intuitive web-
based science gateway for the research areas molecular dynamics, quantum chemistry, and
docking. The science gateway is based on the Liferay-version of WS-PGRADE including
the extensions regarding the role-based user management (see Section 4.5), the novel
credential management based on SAML (see Section 5), and the enhanced job and workflow
management via WS-PGRADE (see Section 6).

Furthermore, the science gateway was extended with specific workflows and portlets
for the community. The development of the portlets was an interactive process considering
the feedback from the community. Thus, the user interface is especially tailored to the
targeted domains and pre-configured workflows with default values are provided. Users
are able to select from several options and are led through the whole process of editing,

96

9.4 Results

Figure 9.10: Performance study for docking the protein kinase ABL

Figure 9.11: Performance study for docking the protein kinase ABL

invoking, and monitoring a workflow to process data on a large scale. The results can be
visualised via Jmol. Advanced users, consortium users, and developers are additionally
able to create workflows and share them via a workflow repository within the community.
Also data repositories will be offered to the community. MSML was designed to store struc-
tural information on small as well as large molecules and results from various molecular
simulation tools and docking tools. Besides the valuable information for the community
to share knowledge about workflows, structural data, and molecular simulations, MSML
ensures interoperability of different tools through a consistent data representation.

The science gateway provides access to the D-Grid infrastructure. Currently, seven
clusters in different computer centres are integrated and users are able to employ them via
a single sign-on mechanism. The performance studies show that parallelisation of tools
and workflows using DCIs is beneficial for the performance of molecular simulations. The
gain of performance submitting workflows via the science gateway compared to scripts
starting the same tools via the commandline on these clusters depends on various factors.

97

MoSGrid - Bringing It All Together

First, the access to the clusters is handled by the science gateway via the single sign-
on approach. The users are relieved from applying for accounts for each resource they
want to use. In addition, the resources are heterogeneous regarding their architecture
and batch systems, which requires creating scripts for the diverse batch systems (e.g.,
OGE, PBS). The science gateway supports diverse resources hiding the differences from
the user. Furthermore, jobs of a workflow can be invoked on diverse connected clusters
via the science gateway whereas scripts are bound to one cluster. Thus, users can access
more resources and distribute their workflows. They are less dependent on the availability
of one dedicated cluster.

In the context of science gateways, also soft measures for performance are important
regarding the usability of infrastructures and the support of users. The ISO standard [6]
defines usability as ”the effectiveness, efficiency and satisfaction with which specified users
can achieve specified goals in a particular environment”. Research of usability connected
to science gateways covers a wide range of aspects like design aesthetics [252], peculiarities
of science gateways [253], and testing of usability [254].

The MoSGrid portal was designed to target the usability aspects in various areas. The
role-based user management meets authentication and authorisation requirements, but it
additionally provides an appropriate view of features taking the knowledge level of users
into account (e.g., the difference between novice users and expert users). The credential
management via a certificate portlet, whose view is reduced to mandatory fields, ease its
usability. The project adapts the user interfaces continuously to the feedback of users
and adds domain-related workflows. For example, the possibility to automatically extract
relevant information out of a Gaussian file for further analysis or to prepare molecules
for docking tools via pre-defined workflows, saves time for the users and is sensed as
comfortable by users.

98

10
Conclusion and Outlook

Parts of this chapter have been previously published in [29, 255].

Web-based science gateways with underlying DCIs have gained increasing popularity
in various compute-intensive and data-intensive research fields for about ten years now.
The overall goal is to enhance the usability of sophisticated tools and complex infrastruc-
tures. The main goal of this thesis was to provide a complete solution to aid end users
and developers in the field of web-based science gateways for structural bioinformatics.
The complexity of the applied methods and the volume of data created and analysed in
structural bioinformatics clearly suggest the use of workflow-enabled grid portals. The
interdisciplinary project MoSGrid has been conceived to support users in the field of
molecular simulations, especially in the application areas quantum chemistry, molecular
dynamics, and docking. The concepts, designs, and implementations presented in this
work have been developed under consideration of this D-Grid project.

We evaluated existing workflow-enabled grid portals and their infrastructures consid-
ering the application domain, standards, and the D-Grid infrastructure (see Chapter 4).
Criteria for the evaluation of the systems have been their embedded features, efficiency,
reliability, and usability. The evaluation resulted in the service-oriented grid middleware
UNICORE 6, the object-based grid and cloud file system XTreemFS, and the workflow-
enabled grid portal WS-PGRADE employing gUSE services for managing workflows on
DCIs. WS-PGRADE has been developed on top of the portal framework Liferay, which
implements the widely-used standards JSR168/JSR286. We analysed the different user
roles in the molecular simulation community and applied the role-based user management
of Liferay to reflect these roles via technical roles in the science gateway. Even though the
resulting infrastructure has been designed for the German molecular simulation commu-
nity, it is re-usable on international level for diverse research areas.

Security is a key aspect for science gateways offering access to DCIs. The security
of most established grid middlewares is based on X.509 certificates and the short-lived
credentials SAML assertions or GSI proxy certificates. The advantages of SAML assertions
compared to proxy certificates led to the decision to apply SAML in the science gateway.
The science gateway’s infrastructure was adapted in order to allow trust delegation from

99

Conclusion and Outlook

the user interface layer across the high-level middleware layer and the grid middleware
layer down to the HPC facilities via SAML. The portlet for credential management of
WS-PGRADE was extended for managing SAML assertions in this work. We integrated
and adapted a signed applet for the automatic creation of these short-lived credentials
(see Chapter 5). We showed that an applet is advantageous for the creation of credentials
compared to the JAVA portlet library or a JWS application. The applet is a flexible and
secure solution, which can be integrated into every web-based science gateway managing
short-lived credentials for DCIs. The options in the applet and the certificate portlet were
minimised to the mandatory options due to simplify their use for the community.

Other approaches like Murri et al. [194] and Barbera et al. [202] suggest to automat-
ically generate short-lived credentials during the login procedure. Thus, the users are
relieved from any interaction for creating a short-lived credential. However, they are not
able to change properties of the short-lived credential nor to manually create diverse short-
lived credentials. The latter option is interesting if a user has access to diverse DCIs with
different requirements on the properties of the SAML assertion (e.g., allowed duration of
validity). Thus, the design decision for a portlet is beneficial for a community having access
to various DCIs, whereas the integration in the login procedure is suitable for one DCI.
It is planned to offer the automatic creation during the login procedure to the German
molecular simulation community in the MoSGrid science gateway. The open-source ver-
sion of the MoSGrid science gateway will be offered for download including the integrated
portlet to keep the flexibility. Representatives of the German NGI as well as of European
NGIs discuss to apply security infrastructures based on Shibboleth facilitating SAML in
the future. Since the science gateway already uses SAML, its security infrastructure can
be easily extended to rely on Shibboleth instead of certificates for user authentication.

A second key aspect of workflow-enabled grid portals addressed in this work is the
job and workflow management in DCIs. We enhanced the job and workflow management
of WS-PGRADE and gUSE on different levels (see Chapter 6). First, the UNICORE
submitter and the UNICORE plugin were added to allow job management on UNICORE
DCIs. Secondly, we implemented the unique feature compared to other submitters in gUSE
and other workflow-enabled grid portals to select available tools via an automatically gen-
erated list. Thus, users receive the complete information on the software packages installed
on the connected UNICORE DCIs and maintained in the IDBs. The submitter ensures
that the selected tools are invoked on suitable resources. To apply this beneficial approach
for DCIs in general, the gUSE information system can be extended with a database table
storing all available tools on the different DCIs. The methods developed in this work could
be used to automatically keep the database up-to-date for UNICORE. UNICORE is the
only grid middleware, which offers the information about the available software. However,
the gUSE information system could be manually maintained for other DCIs. The supply
of software in DCIs is not a dynamic process requiring daily maintenance of the database.
In contrast, the users would benefit from selecting available tools during their daily work.

We additionally extended the submitter for workflow interoperability. The users can
seamlessly re-use UNICORE workflows in WS-PGRADE and integrate these workflows
into WS-PGRADE workflows. UNICORE workflows are treated as black box in WS-
PGRADE and can be easily inserted by the users. To invoke the UNICORE workflow
via WS-PGRADE, a UNICORE DCI has to be accessible for the user via WS-PGRADE.
The UNICORE submitter has set the stage for the same approach followed for workflow

100

interoperability between WS-PGRADE and UNICORE in the SHIWA platform [205].
The methods of the submitter for invoking and monitoring UNICORE workflows can
be re-used in science gateways allowing workflow interoperability via web services. The
prerequisite is that the science gateways additionally support credential management for
SAML assertions.

Another enhancement of the workflow management of gUSE affects the flexibility
of user interfaces extending WS-PGRADE. WS-PGRADE as well as workflow-enabled
science gateways in general offer generic user interfaces for the workflow management. To
support users with domain-specific portlets and to ease the implementation of such user
interfaces, we developed the ASM API. It internally uses the gUSE services but offers an
intuitive API for the management of the whole life cycle of workflows. Thus, the use of
ASM supports the developers to focus on the layout and domain-specific features. The de-
velopers are relieved from becoming acquainted with the gUSE services in detail. They can
employ any Java development framework they prefer (e.g., Vaadin, Google Web Toolkit)
for the development of portlets.

The solution presented in Chapter 7 contributes to the re-usability of workflows via
workflow language translation and migration of workflows between different science gate-
ways. The migration assures that workflows are fully integrated in the targeted science
gateway. The workflow-enabled portal Galaxy serves the structural bioinformatics com-
munity with a wide range of workflows. Galaxy is a kind of toolbox for cloud infrastruc-
tures and for HPC facilities, but lacks the support of grid-based DCIs. We embedded
the export of Galaxy workflows as WS-PGRADE workflows in Galaxy. The essential
tasks of the workflow language translation are formed by the graph algorithm calculat-
ing the coordinates of the WS-PGRADE workflow graph and semantic mapping of the
suitable workflow constructs. The graph algorithm avoids edge crossing as far as possible
and aligns vertices and edges to an underlying grid in linear running time. Purchase et
al. [150] categorise these two criteria for the aesthetics of a graph as the most important
criteria for users [150]. However, compared to other algorithms following a layered layout
approach [147], our algorithm could be improved regarding additional criteria for aesthet-
ics. For example, the number of layers could be minimised as in the widely-used algorithm
of Sugiyama et al. [146]. The consideration of additional criteria would increase the time
complexity of the algorithm for a graph G = (V,E) at least to O((|V |+ |E|)log|E|)) using
efficient heuristics developed for Sugiyama’s algorithm [149].

The workflow language translation from Galaxy workflow to WS-PGRADE workflows
enables the WS-PGRADE community to re-use Galaxy workflows on diverse grid-based
DCIs. Workflow migration including workflow language translation is used by several
approaches. Galaxy also offers the option to migrate Galaxy workflows directly to my-
Experiment sandboxes [214]. Abouelhoda et al. [208] extended Galaxy to Tavaxy and
designed an intermediate representation of workflows. Galaxy workflows can be directly
integrated into Tavaxy workflows. The SHIWA project [205] also suggests to perform
workflow language translation via an intermediate presentation of workflows. They use
IWIR [207] for workflow language translation in a multistage process. Since the SHIWA
platform is based on WS-PGRADE, the resulting workflows of our solution can be seam-
lessly integrated into the SHIWA platform.

In Chapter 8 we tackle the problem that portlet development is a time-consuming pro-

101

Conclusion and Outlook

cess, which demands specialised skills. The development of portlets for workflow-enabled
grid portals increases the complexity significantly. Rapid [26] is a self-contained portal
framework for automatic creation of portlets accessing DCIs without the need of program-
ming in the traditional sense. Due to the lack of a standard for workflow-enabled portlets,
we extended Rapid especially tailored for the management of WS-PGRADE workflows.
Thus, developers are able to create domain-specific portlets for WS-PGRADE by simply
providing XML files. A deployed portlet additionally requires the workflow in the reposi-
tory of the executing WS-PGRADE instance. EnginFrame [16] and Rappture [27] provide
similar solutions based on XML files for pre-configured layouts: EnginFrame for the Engin-
Frame server and Rappture for nanoHUB [172]. The advantage of the workflow extension
of Rapid over EnginFrame and Rappture lies in the flexibility of the layout. Rapid sup-
ports XHTML and Rapid-specific tags for the generated portlets. The workflow extension
of Rapid can be further developed for diverse workflow-enabled grid portals applying the
JSR168/JSR286 standard.Therefore, these portals have to be examined regarding their
interfaces for the workflow management. Thus, a more generic interface can be developed
that supports different workflow-enabled grid portals.

The developments in this work are applied in the MoSGrid science gateway. The
introduced specific portlets and workflows are especially developed for the MoSGrid com-
munity considering their feedback (see Chapter 9). The performance studies demonstrate
that using DCIs is beneficial for the performance of molecular simulations. However, the
portlets and workflows are re-usable on international level by the structural bioinformatics
community. Partners in MoSGrid intend to address the international community by par-
ticipating in the EU project SCI-BUS (Scientific gateway Based User Support) [256] and
the EU project ER-flow (Building a European Research Community through Interopera-
ble Workflows and Data) [257]. Furthermore, they are collaborating with the EU project
EDGI (European Desktop Grid Initiative) [258]. Several communities from a number of
application fields participate in SCI-BUS. Partners of SCI-BUS and ER-flow are also mem-
bers of the VO Life Science that is one of the first established virtual user communities.
The close collaboration between these communities allows the exchange of experiences,
workflows, results, and molecular structures. Thus, they can benefit from each other with-
out spending time on calculating the same molecular simulations or repeating unsuccessful
simulations. The data is sensitive and the analysis of molecular data on a large scale is
time-consuming and expensive. The output of a survey in the MoSGrid community shows
that 70% [259] would share their results and molecular structures in a repository after
they have published them or own a patent. We assume that researchers of the other
communities would agree to share data in a repository at a similar rate.

The willingness to share tools and workflows is quite higher (nearly to 90%). Thus,
the developers of services for the communities can also profit from the synergies. They
can coordinate domain-related work as well as general developments for the science gate-
ways. SCI-BUS focuses on further coordinated developments of science gateways and
on offering portlet repositories, whereas ER-flow concentrates on workflow interoperabil-
ity, workflows, and workflow repositories. EDGI brings in new technologies with desktop
grids. The participation in and collaboration with these three projects allows developers
of domain-related tools and workflows to concentrate on the specific demands, whereas
general developments (e.g., security) can be completed by partners who are working on
the infrastructure of science gateways. This leads to the provision of advanced services

102

better tailored to the users’ needs and supporting innovation and efficiency in the scientific
discovery process.

The MoSGrid science gateway will be extended in SCI-BUS by a semantic search
for workflows and simulation results. The visualisation of grid-computed results and the
possibility of interaction with a 3D molecule editor based on WebGL [235] will support
the users to process the full life-cycle of data analysis within the science gateway.

Currently, the MoSGrid community consists of more than 100 German users. How-
ever, the MoSGrid science gateways and its infrastructure with the integrated tools and
workflows as well as generated results are valuable for the international community. The
design of the science gateway is open for international use and the software will be pro-
vided as open-source software. SCI-BUS will advance a generic-purpose science gateway
technology that will provide access to DCIs and their services in Europe. Additionally,
life-sciences-related communities contribute to the project and partners of the communities
will further develop these gateways. Several user community workshops will bring together
users, developers, and providers of the science gateways. The collaboration with ER-flow
and EDGI forges links to more related communities and opens up the possibility for the
molecular simulation community to influence workflow interoperability and desktop grids
on European level.

103

A
Abbreviations

A-WARE An easy Way to Access grid REsources
AAA Authentication, Authorisation, and Accounting
AIMD Ab Initio Molecular Dynamics
AJAX Asynchronous JavaScript and XML
AM1 Austin Model 1
Amazon EC2 Amazon Elastic Compute Cloud
Amazon S3 Amazon Simple Storage Service
AMBER Assisted Model Building and Energy Refinement
API Application Programming Interface
ASM Application Specific Module
BES Basic Execution Service
BFT Basic File Transfer
BPEL Business Process Execution Language
CA Certification Authority
CADDSuite Computer-aided Drug Design Suite
CAS Central Authentication Service
CHARMM Chemistry at HARvard Macromolecular Mechanics
CNDO Complete Neglect of Differential Overlap
CRL Certificate Revocation List
DAG Directed Acyclic Graph
DCI Distributed Computing Infrastructure
DFT Density Functional Theory
DFN Deutsches Forschungsnetz
DN Distinguished Name
DOF Degree of Freedom
DSD Disorder of Sex Development

104

EBI European Bioinformatics Institute
EDGI European Desktop Grid Initiative
EGI European Grid Infrastructure
ER-flow Building an European Research Community

through Interoperable Workflows and Data
ETD Explicit Trust Delegation
EUGridPMA European Grid Policy Management Authority
Gap-SLC Gap Short Lived Credentials
GFS Google File System
GPL General Public License
GridKa-Ca Grid Computing Centre Karlsruhe Certification Authority
GridSAM Grid Job Submission and Monitoring Web Service
GSI Grid Security Infrastructure
gUSE grid User Support Environment
HF Hartree-Fock
HiLA High-level API
HPC High-Performance Computing
I2MI Internet2 Middleware Initiative
IDB Incarnation DataBase
IdP Identity Provider
IETF The Internet Engineering Task Force
IGTF International Grid Trust Federation
ISO International Organization for Standardization
ITU International Telecommunication Union
JSDL Job Submission Description Language
JSON JavaScript Object Notation
JSP JavaServer Page
JWS Java Web Start
LCAO Linear Combination of Atomic Orbitals
LDA Local Density Approximation
LDAP Lightweight Directory Access Protocol
LGA Lamarckian Genetic Algorithm
MD Molecular Dynamics
MNDO Modified Neglect of Diatomic Overlap
MoSGrid Molecular Simulation Grid
MPI Message Passing Interface
MRC Metadata and Replica Catalog
MSML Molecular Simulation Markup Language
NDDO Neglect of Diatomic Differential Overlap
NGI National Grid Initiative
NIST National Institute of Standards and Technology
NMR Nuclear Magnetic Resonance
OASIS Organization for the Advancement of Structured Information Standards
OGCE Open Grid Computing Environments
OGE Oracle Grid Engine
ONIOM our Own N-layer Integrated molecular Orbital molecular Mechanics
OSD Object Storage Device

105

Abbreviations

PBS Portable Batch System
PDB Protein Data Bank
PDP Policy Decision Point
PKI Public Key Infrastructure
PM3 Parameterised Model Number 3
PMA Policy Management Authority
PMF Potential of Mean Force
QC Quantum Chemistry
QM/MM Quantum Mechanical/Molecular Mechanical
RA Registration Authority
RAPPTURE Rapid APPlication InfrastrucTURE
RBAC Role-based Access Protocol
SA Simulated Annealing
SAML Security Assertion Markup Language
SAS Solvent-Accessible Surfaces
SES Solvent-Excluded Surfaces
SCF Self-Consistent Field
SCI-BUS SCientific gateway Based User Support
SCUFL Simple Conceptual Unified Flow Language
SHIWA SHaring Interoperable Workflows

for large-scale scientific simulations on Available DCIs
SMD Steered Molecular Dynamics
SOAP Simple Object Access Protocol
SP Service Provider
SRB Storage Resource Broker
SRM Storage Resource Manager
SSL Secure Socket Layer
STO Slater-Type Orbitals
SWIF Scientific Workflow Interoperability Framework
TOPP The OpenMS Proteomics Pipeline
TSI Target System Interface
UCC UNICORE Commandline Client
URC UNICORE Rich Client
UML Unified Modeling Language
UNICORE Uniform Interface to Computing Resources
VNC Virtual Networking Computing
VO Virtual Organisation
WeNMR A worldwide e-Infrastructure for NMR and structural biology
WS-PGRADE Web Services Parallel Grid Runtime and Developer Environment
WSRF Web Services Resource Framework
WSRP Web Services for Remote Portlets
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language
YAWL Yet Another Workflow Language
ZDO Zero-Differential Overlap

106

B
Appendix

Unified Modeling Language

We use the UML [201] in this work to illustrate the object-oriented design of the ex-
tended or implemented components. Due to clarity, the figures in this work include only
the extended or implemented components. We omit dependencies to components which
remained the same in the extended science gateways and tools, except for the interfaces
provided.

In 1997, UML [260] was developed from object-oriented methods, modeling language
design, and architectural description languages to represent software models. Its goal is to
provide tools for analysis, design, and implementation of object-oriented software. We have
visualised extended or newly implemented classes for science gateways and tools via UML
class diagrams. In these diagrams, classes are represented by rectangles, which include the
name of the correponding class and may contain attributes and operations. To illustrate
different types of attributes and operations, they are preceded with a single character (
”+” relates to public, ”#” relates to protected, and ”-” relates to private). Relationships
between classes are represented by lines or arrows. In this work, two different kinds of
relationships are illustrated; the dependency between two classes and the realisation of a
specification. The latter usually designates the implementation of an interface. Whereas
dependencies are drawn as dashed lines with an arrow, realisations are represented by a
dashed line with a hollow triangle at the end of the specification. A comment is shown as
a rectangle with the upper right corner bent. It is connected via a dashed line with the
associated class. The figure below shows an example for a class ClassA which implements
an interface InterfaceA and uses methods of the class ClassB. Additionally, comments
are added to ClassB.

107

Appendix

Figure B.1: Example for an illustration of two associated classes in UML

108

Model-View-Controller

The MVC [261] design pattern separates the visualisation of a program from its logic and
the respective data. The science gateways and tools, that we have extended or devel-
oped, are following the MVC pattern. To illustrate the involved implemented files and
their purpose, we included figures with the definition whether the specified files belong to
the model, the view, or the controller. The illustration is adapted from the UML [201]
representation of design patterns. The dashed ellipes contain the name of the pattern
and the dashed lines connect the involved source files listed in rectangles. The lines are
labeled with ”Model”, ”View”, or ”Controller”. The figure below shows a basic example.
The controller as well as the model contain one single file, whereas the view includes a
Java file, a JSP file, and a HTML file.

Figure B.2: Example for an illustration of the MVC pattern

109

Appendix

SAML Assertions

Here are examples provided for SAML assertion files used in the submission process of
jobs in UNICORE 6.

Figure B.3 illustrates a SAML consignor assertion issued by a gateway and forwarded to
the registry of the target site. It uses SOAP for exchanging information between resources
and contains a header part and a body part. The header defines the metadata about the
involved resources whereas the body part contains the identifier of the targeted resource.
The assertion is included in the header. It is characterised by the information on the
gateway in <ns0:Issuer>, by the properties of the user in <ns0:Subject>, and by the
type of assertion in <ns0:AttributeStatement>. The properties of the users inlcude the
DN of the user and the X.509 certificate.

Figure B.3: XML illustration of an example for a SAML consignor assertion

See Figure B.4 for an example of a registry entry which is provided by the UNI-
CORE/X server to the service registry. <sg:MemberServiceEPS> contains the character-
istics of the service. The service address is included in <add:Address>, the service type in
<met:Interface>> and the identity of the UNICORE/X server in <unic:ServerIdentity>.

110

Figure B.4: XML illustration of an example for a registry entry

Figure B.5: XML illustration of an example for a SAML assertion

111

Appendix

SAML allows to apply various security characteristics specifying the assertion more
detailed. Figure B.5 illustrates a SAML assertion file for trust delegation of a user which
is signed according to the XML digital signature specifications. The public part of the
signing certificate is included in <dsig:Signature> and thus the security token can be
validated. The DN of the issuer as well as the DN of the subject of the trust delegation
are defined in <urn:Issuer> or <urn:Subject>, respectively. In <urn:Conditions>, the
settings for the validity of an assertion file can be configured (e.g., the duration of validity).
Finally, <urn:AttrributeStatement> defines the type of a SAML assertion.

112

Incarnation Database (IDB)

UNICORE offers the possiblity to map abstract job definitions to real executables via the
IDB. It allows defining specifications for resources, the execution environment, and tools.
The corresponding XML schema as well as further explanations are provided at [262].
Here are examples listed which are configured in D-Grid facilities. Values for resources
(e.g., architecture, number of CPUs), for execution environments (e.g., number of cores,
precommands), and for tools (e.g., name, version, parameters, interactive parameters) can
be provided.

Figure B.6: XML illustration of an example for the configuration of a target system in the
IDB

113

Appendix

Figure B.7: XML illustration of an example for a configuration of a JSDL execution
environment

Figure B.8: XML illustration of an example for a configuration of an IDB application

114

XACML (eXtensible Access Control Markup Language)

An XACML entity is part of each UNICORE/X server and forms a Policy Decision Point
(PDP), which communicates with the XUUDB. UNICORE supports different XACML
versions (1.x and 2.x) [263] and the here given examples illustrate 2.x versions. For invoking
a job or a workflow, a request is generated with following attributes.

• the UNICORE service which is targeted (e.g. job management service)

• the name of the action being invoked

• the DN of the user initiating the request

• the role of the user as defined in XUUDB

The UNICORE/X server processes the request and checks it against a policy file or a set
of policy files. Policy files constitute rules for a request and support to dynamically add
policies to the processed authorisation. XACML supports role-based access to services
and the following example demonstrates the rule that the role admin allows access to all
services.

Figure B.9: XML illustration of an example for a rule for the role admin

115

Appendix

For limiting access to a certain service, the tag <Target> identifies the targeted service
and the tag <Condition> under which conditions the access is granted.The following
example illustrate that the service DataService allows access for users with the role data-
access.

Figure B.10: XML illustration of an example for a condition for users with the role data-
access

116

Access to service instances like jobs or the USpace is expressed via conditions. The
following sets access only to the owner of the service instance.

Figure B.11: XML illustration of an example for a rule for the owner of a service instance

117

Appendix

WS-PGRADE Workflows

The overall structure of WS-PGRADE workflows is described in Section 7.2.1. The fol-
lowing defines the example used for the illustration of the migration of workflows (see
Section 7). The dependencies of the jobs result out of the Galaxy workflow, the names of
the jobs are generated analogously to IDB tool names, and the coordinates are calculated
via the graph algorithm (see Section 7.4).

Figure B.12: XML illustration of an example for a WS-PGRADE workflow

118

Figure B.13: XML illustration of an example for jobs of a WS-PGRADE workflow

119

Appendix

Galaxy Workflows

The overall structure of Galaxy workflows is described in Section 7.2.2. The following
defines the example used for the illustration of the migration of workflows (see Section 7).

Figure B.14: JSON illustration of an example for a Galaxy workflow

Figure B.15: JSON illustration of an example for a parent step of a Galaxy workflow

120

Figure B.16: JSON illustration of an example for a data input step of a Galaxy workflow

Figure B.17: JSON illustration of an example for a child step of a Galaxy workflow

121

Appendix

Rapid Files

Rapid supports to create JSR168/JSR286-compliant portlets via defining an XML and
optionally via addtional plugins implemented in Jython. All available Rapid options except
for the extension for WS-PGRADE are provided in [227]. The following example reflects
the integration of a WS-PGRADE workflow.

Figure B.18: XML illustration of an example for an integration of a WS-PGRADE work-
flow in Rapid

122

Lists of Source Code Files

The developments in this work have been integrated into the software frameworks WS-
PGRADE [186], gUSE [186], Galaxy [264], and Rapid [227]. The following lists illustrate
the classes, which have been added or extended in these frameworks.

List for Section 5 ”A Novel Credential Management for Science Gateways”

The credential portlet

hu/sztaki/lpds/pgportal/services/credential/SZGCredential.java

hu/sztaki/lpds/pgportal/services/credential/SZGCredentialException.java

hu/sztaki/lpds/pgportal/services/credential/SZGCredentialManager.java

hu/sztaki/lpds/pgportal/services/credential/SZGCredentialMemoryStore.java

hu/sztaki/lpds/pgportal/services/credential/SZGCredentialStorage.java

hu/sztaki/lpds/pgportal/services/credential/SZGCredentialStorageFactory.java

hu/sztaki/lpds/pgportal/services/credential/SZGStoreKey.java

ETDApplet

de/fzj/unicore/security/etd/ETDApplet.java

de/fzj/unicore/security/etd/KeyStoreLoader.java

de/fzj/unicore/security/etd/SecurityProperties.java

de/fzj/unicore/security/etd/WebParam.java

List for Section 6 ”Enhanced Job and Workflow Mangement”

UNICORE submitter

hu/sztaki/lpds/submitter/grids/Grid_unicore.java

hu/sztaki/lpds/submitter/grids/unicore/JSDLDocBuilder.java

hu/sztaki/lpds/submitter/grids/unicore/UNICOREManager.java

UNICORE plugin

hu/sztaki/lpds/pgportal/servlet/ajaxactions/GetUnicoreIDBTools.java

hu/sztaki/lpds/pgportal/servlet/ajaxactions/grids/JobConfigUI_unicore.java

hu/sztaki/lpds/pgportal/servlet/ajaxactions/grids/JobConfigUtils.java

hu/sztaki/lpds/pgportal/util/resource/ResourceXMLHandler.java

hu/sztaki/lpds/pgportal/util/resource/UNICOREIDBToolHandler.java

123

Appendix

Application Specific Module

hu/sztaki/lpds/pgportal/services/asm/ASM_Instance.java

hu/sztaki/lpds/pgportal/services/asm/ASM_job.java

hu/sztaki/lpds/pgportal/services/asm/ASMInputPort.java

hu/sztaki/lpds/pgportal/services/asm/ASMManager.java

hu/sztaki/lpds/pgportal/services/asm/ASMObjectBase.java

hu/sztaki/lpds/pgportal/services/asm/ASMOutputPort.java

hu/sztaki/lpds/pgportal/services/asm/ASMPort.java

hu/sztaki/lpds/pgportal/services/asm/ASMRepositoryItemBean.java

hu/sztaki/lpds/pgportal/services/asm/ASMRepositoryItemType.java

hu/sztaki/lpds/pgportal/services/asm/ASMService.java

hu/sztaki/lpds/pgportal/services/asm/ASMUploadThread.java

hu/sztaki/lpds/pgportal/services/asm/EPortalClientInformation.java

hu/sztaki/lpds/pgportal/services/asm/EStatusConstants.java

hu/sztaki/lpds/pgportal/services/asm/InstanceStatusBean.java

hu/sztaki/lpds/pgportal/services/asm/PortalClientInformation.java

hu/sztaki/lpds/pgportal/services/asm/StatusColors.java

hu/sztaki/lpds/pgportal/services/asm/StatusConstants.java

hu/sztaki/lpds/pgportal/services/asm/exceptions/ASMException.java

List for Section 7 ”A Novel Method for Workflow Migration”

The extension of Galaxy for the migration of WS-PGRADE workflows

galaxy/lib/galaxy/web/controllers/workflow.py

galaxy/template/workflow/export.mako

galaxy/template/workflow/wspgrade_download.mako

galaxy/template/workflow/wspgrade_download_content.mako

List for Section 8 ”Automatic Creation of Portlets for Workflows”

The extension of Rapid for WS-PGRADE workflows

uk/ac/ed/rapid/jsp/output/Output.java

uk/ac/ed/rapid/jobsubmission/jobmanager/workflow/AbstractWorkflowFactory.java

uk/ac/ed/rapid/jobsubmission/jobmanager/workflow/WorkflowManager.java

uk/ac/ed/rapid/jobsubmission/jobmanager/workflow/WorkflowPlugin.java

uk/ac/ed/rapid/jobsubmission/jobmanager/workflow/WorkflowProperties.java

uk/ac/ed/rapid/jobsubmission/jobmanager/workflow/WorkflowState.java

124

C
Contributions

Chapter 1 - Introduction
Small parts of this chapter have been previously published in the manuscript [255].

Chapter 2 - Theoretical Background
Small parts of this chapter have been previously published as joint work with Jens Krüger
and Sonja Herres-Pawlis in the background section of the manuscript [29].

Chapter 3 - Distributed Computing Background
Parts of this work have been previously published as manuscript in Concurrency and Com-
putation: Practice and Experience [265]. The manuscript is a joint work with Jano van
Hemert (JV), Peter Kacsuk (PK), and Oliver Kohlbacher (OK). SG drafted most of the
manuscript as discussed with OK. JV contributed to the expert opinion on portal devel-
opment toolkits and PK contributed to the expert opinion on portals in HPC facilities,
grid and cloud infrastructures.

Chapter 4 - Evaluated and Designed Infrastructure
Parts of these sections have been previously published in [266] and [29]. The insights
in UNICORE 6 have been previously published as background in the manuscripts [266]
and [29]. It is a joint work with Richard Grunzke and Bernd Schuller. SG evaluated the
portal frameworks and designed the Liferay roles as discussed with MoSGrid consortium
members.

Chapter 5 - A Novel Credential Management for Science Gateways
This work is part of a manuscript that has been previously published in [29]. It is a joint
work with Miklos Kozlovszky (MK), Bernd Schuller (BS), Valentina Huber (VH), and
Anna Szikszay Fabri (AS). SG drafted the specifications for the credential management in
collaboration with MK and BS. AS extended the credential management for WS-PGRADE
by SAML as discussed with SG and MK. SG extended the basic version of the integrated
applet, which was created by VH and by AS.

125

Contributions

Chapter 6 - Enhanced Job and Workflow Management
The job and workflow management via gUSE and WS-PGRADE as well as the workflow
interoperability is part of a manuscript that has been previously published in the proceed-
ings of IWSG 2010 [266]. It is a joint work with Bernd Schuller (BS), Istvan Marton (IM),
Miklos Kozlovszky (MK), Patrick Schäfer (PS), and Oliver Kohlbacher (OK). SG designed
and implemented the UNICORE submitter and corresponding plugins as discussed with
BS, IM, MK, and OK. PS extended the UNICORE submitter for additional parameters
and remote files. The Application Specific Module is part of a manuscript that has been
previously published in [29]. It is a joint work with Miklos Kozlovszky (MK) and Akos
Balasko (AB). SG and MK drafted the specifications for the Application Specific Module
whereas AB designed and implemented it.

Chapter 8 - Automatic Creation of Portlets for Workflows
Part of this work has been published as manuscript at the CCGrid 2010 [221]. It is a joint
work with Jano van Hemert (JV), Jos Koetsier (JK), Andreas Bertsch (AB), and Oliver
Kohlbacher (OK). SG designed and implemented the prototype for TOPP as discussed
with OK and JV. JK supported with his deep insight in Rapid the development of the
Jython plugin and AB supported with his knowledge about TOPP the offered pipelines.

Figures of the manuscript [29] appear throughout this thesis. The figure of the manuscript [221]
is used in Chapter 8.

126

D
Curriculum Vitae

Personal Details
Date of Birth: 24.03.1972
Place of Birth: Ahaus, Germany
Marital Status: Divorced
Nationality: German

Education and Qualifications
since 2006 PhD student in Oliver Kohlbacher’s group

”Applied Bioinformatics Group”, University of Tübingen, Germany
1997 - 2005 Extramural studies in computer science (minor business management) at

FernUniversität Hagen, Germany
Degree Diplom-Informatiker

2001 Student at UCLA, Los Angeles, US
1991 - 1994 Apprenticeship Mathematisch-technische Assistentin at

Westfälische Wilhelms-Universität Münster, Germany
Degree IHK-Abschluss

1991 University-entrance diploma (Abitur) at
Pius-Gymnasium in Coesfeld, Germany

Research Visits
Sep 2012 Research visit in Jarek Nabrzyski’s group

Center for Research Computing, University of Notre Dame, US
Feb 2007 - Seven research visits in Malcolm Atkinson’s group
Aug 2011 (formerly Jano van Hemert’s group) at the

e-Science Institute Edinburgh, UK
Jul - Aug 2010 Research visit in Peter Kacsuk’s group at

MTA SZTAKI, Computer and Automation Research Institute,
Hungarian Academy of Sciences, Budapest, Hungary

Sep - Oct 2008 Research visit in Shantenu Jha’s group at
Center for Computation & Technology, LSU, Baton Rouge, US

127

Curriculum Vitae

Work Experience
since Sep 2012 diamedi UG (haftungsbeschränkt), Berlin, Germany

Managing Partner
Design and implementation of the diamedi UG internet platform
Marketing and accounting

since Oct 2011 Freelancer, Tübingen, Germany
Senior Consultant for web-based applications and project management

Design and implementation of webpages (PHP, MySQL, TYPO3)
Search Engine Optimization (SEO)

May 2006 - University of Tübingen, Germany
Sep 2011 Research Associate

Workpackage leader ”Portal” in MoSGrid (Molecular Simulation Grid)
Administration of clusters in bwGRiD (Baden-Württemberg Grid)
Design and implementation of portals for bioinformatics
Parallel programming (GPU, OpenMP, OpenMPI)
Teaching
Writing proposals
Chairing and organisation of workshops and conferences

Dec 2004 - LVM Versicherungen a.G., Münster, Germany
Apr 2006 Head of the group ”Application systems”

Infrastructure for web-based applications
Authentification via smartcards
Migration of Lotus Notes

May 2000 - LVM Versicherungen a.G., Münster, Germany
Nov 2004 System programmer (C, Perl, Unix scripts) und

Administrator (MQSeries, SAP, Lotus Notes)
Integration of ”’GDV-Schadennetz”’ with MQSeries
Migration of SAP R/2 to SAP R/3

Sep - Internship at InterGest North America, New York, US
Dec 2001 Application programming in Java and Visual Basic

Training of employees in SAP R/3 BC
Oct 1996 - LVM Versicherungen a.G., Münster, Germany
May 2000 Application developer (PL/I, IMS, DB2)

Design and implementation of a new accident insurance dialog
Design and implementation of an automatic request processing

Sep 1994 - Coesfelder Holzwerke GmbH & Co KG, Coesfeld, Germany
Sep 1996 Administrator (SAP, Network) and Programmer (ABAP/4, C)

Design and implementation of a sales information system
Configuration and installation of the network infrastructure

Additional Occupation
Oct 1998 - Tutor at the study center Coesfeld of the FernUniversität Hagen
Mar 1999 Course guidance

Organisation of events

128

Talks

• ”Web-based Science Gateways for Structural Bioinformatics”, Rutgers Discovery In-
formatics Institute, Rutgers University, New Brunswick, US, 2012

• ”Web-based Science Gateways for Structural Bioinformatics”, Center for Research
Computing, University of Notre Dame, US, 2012

• ”Web-based Science Gateways for Structural Bioinformatics”, Center for Clinical and
Research Informatics, NorthShore University HealthSystem, Evanston, US, 2012

• ”Granular Security for a Science Gateway in Structural Bioinformatics”, IWSG-Life
2011, London, UK, 2011

• Invited talk on ”The MoSGrid Portal - A workflow-enabled Grid Portal for Molecular
Simulations”, 7th Black Forest Grid Workshop, Freiburg, Germany, 2011

• ”A Science Gateway for Molecular Simulations”, EGI User Forum, Vilnius, Lithuania,
2011

• Invited talk on ”UNICORE integration into a science gateway for MoSGrid”, Super-
computing’10, New Orleans, US, 2010

• ”Workflow Interoperability in a Grid Portal for Molecular Simulations”, IWSG2010,
Catania, Italy, 2010

• ”A gUSE submitter for MoSGrid”, MTA SZTAKI, Computer and Automation, Re-
search Institute, Hungarian Academy of Sciences, Budapest, Hungary, 2010

• ”Requirements on a portal for MoSGrid”, PUCOWO, ETH Zürich, Switzerland, 2010

• ”EuSGE - European Science Gateways for e-Science”, University of Westminster,
London, UK, 2009

• Invited talk on ”A Workflow-enabled Grid-Portal for Bioinformatics”, NorduGrid
2008, Budapest, Hungary, 2008

• ”A Workflow-enabled Grid-Portal for Bioinformatics”, CCT, LSU, Baton Rouge, US,
2008

• ”Workflow Engines in a Bioinformatic Portal”, e-Science Institute Edinburgh, UK,
2007

129

Curriculum Vitae

Academic services

Chair of IWSG-Life 2012, May 2012, Amsterdam, The Netherlands
Chair of IWPLS’09, September 2009, Edinburgh, UK

PC member of IWSG 2013, June 2013, Zurich, Switzerland
PC member of PDP 2013, February 2013, Belfast, Northern Ireland
PC member of HealthGrid Conference 2012, May 2012, Amsterdam, The Netherlands
PC member of IWSG-Life 2011, June 2011, London, UK
PC member of PUCOWO 2011, June 2011, London, UK
PC member of GWW 2011, March 2011, Cologne, Germany
PC member of IWSG 2010, September 2010, Catania, Italy
PC member of PUCOWO 2010, June 2010, Zürich, Switzerland

Editor of Proceedings of the HealthGrid Conference and IWSG-Life 2012
Guest editor of Concurrency and Computation: Practice and Experience, editor of the
Special Issue: IWPLS 2009
Editor of the Proceedings of IWPLS’09, Edinburgh, UK, September 2009

Reviewer for the CCGRID 2009, May 2009, Shanghai, China
Reviewer for the Journal of Grid Computing

130

E
List of Publications

∗These authors contributed equally to the respective work.

Published manuscripts

• Gesing, S.∗, Grunzke, R.∗, Krüger, J., Birkenheuer, G., Wewior, M., Schäfer, P.,
Schuller, B., Schuster, J., Herres-Pawlis, S., Breuers, S., Balasko, A., Kozlovszky, M.,
Szikszay Fabri, A., Packschies, L., Kacsuk, P., Blunk, D., Steinke, T., Brinkmann,
A., Fels, G., Müller-Pfefferkorn, R., Jäkel, R., and Kohlbacher, O. ”A Single Sign-On
Infrastructure for Science Gateways on a Use Case for Structural Bioinformatics”.
Journal of Grid Computing, 10(4):769-790, 2012.

• Gesing, S., Herres-Pawlis, S., Birkenheuer, G., Brinkmann, A., Grunzke, R., Kac-
suk, P., Kohlbacher, O., Kozlovszky, M., Krüger, J., Müller-Pfefferkorn, R., Schäfer,
P., and Steinke, T. ”A Science Gateway Getting Ready for Serving the Interna-
tional Molecular Simulation Community”. Proceedings of Science, PoS(EGICF12-
EMITC2)050, 2012.

• Schlemmer, T.∗, Grunzke, R.∗, Gesing, S.∗, Krüger, J., Birkenheuer, G., Müller-
Pfefferkorn, R., and Kohlbacher, O. ”Generic User Management for Science Gateways
via Virtual Organizations”. In: EGI Technical Forum 2012, September 2012, Prague,
Czech Republic, 2012.

• Herres-Pawlis, S., Birkenheuer, G., Brinkmann, A., Gesing, S., Grunzke, R., Jäkel,
R., Kohlbacher, O., Krüger, J., and Dos Santos Vieira, I. ”Workflow-enhanced con-
formational analysis of guanidine zinc complexes via a science gateway”. Studies in
Health Technology and Informatics, 175:142-151, IOS Press, 2012.

• Gesing, S. and Krüger, J. ”Workshop Series IWSG-Life”. Studies in Health Tech-
nology and Informatics, 175:115-118, IOS Press, 2012.

• Gesing, S., Herres-Pawlis, S., Birkenheuer, G., Brinkmann, A., Grunzke, R., Kac-
suk, P., Kohlbacher, O., Kozlovszky, M., Krüger, J., Müller-Pfefferkorn, R., Schäfer,
P., and Steinke, T. ”The MoSGrid Community - From National to International
Scale”. In: EGI Community Forum 2012, March 2012, Munich, Germany, 2012.

131

List of Publications

• Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., dos Santos Vieira, I., Fels,
G., Gesing, S., Grunzke, R., Herres-Pawlis, S., Kohlbacher, O., Krüger, J., Lang,
U., Packschies, L., Müller-Pfefferkorn, R., Schäfer, P., Steinke, T., Warzecha K.,
and Wewior, M. (2012). ”MoSGrid: Efficient Data Management and a Standardized
Data Exchange Format for Molecular Simulations in a Grid Environment”. Journal
of Cheminformatics, 4(Suppl 1):P21, 2012.

• Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., Fels, G., Gesing, S.,
Grunzke, R., Herres-Pawlis, S., Kohlbacher, O., Krüger, J., Lang, U., Packschies,
L., Müller-Pfefferkorn, R., Schäfer, P., Schuster, J., Steinke, T., Warzecha, K., and
Wewior, M. ”MoSGrid: Progress of Workflow driven Chemical Simulations”. Proceed-
ings of Grid Workflow Workshop 2011, Cologne, Germany, March 4, 2011, CEUR
Workshop Proceedings, Vol-826, ISSN 1613-0073, 2012.

• Gesing, S., Hemert, J. v., Kacsuk, P. and Kohlbacher, O. ”Special Issue: Portals
for life sciences - Providing intuitive access to bioinformatic tools”. Concurrency and
Computation: Practice and Experience, 23: 223-234, 2011.

• Gesing, S.∗, Grunzke, R.∗, Balasko, A., Birkenheuer, G., Blunk, D., Breuers, S.,
Brinkmann, A., Fels, G., Herres-Pawlis, S., Kacsuk, P., Kozlovszky, M., Krüger, J.,
Packschies, L., Schäfer, P., Schuller, B., Schuster, J., Steinke, T., Szikszay Fabri,
A., Wewior, M., Müller-Pfefferkorn, R., and Kohlbacher, O. ”Granular Security for
a Science Gateway in Structural Bioinformatics” Proc. of 3rd Workshop IWSG-Life
2011, London, UK, June 8-10, 2011, CEUR Workshop Proceedings, Vol-819, ISSN
1613-0073, 2011.

• Gesing, S., Kacsuk, P., Kozlovszky, M., Birkenheuer, G., Blunk, D., Breuers, S.,
Brinkmann, A., Fels, G., Grunzke, R., Herres-Pawlis, S., Krüger, J., Packschies, L.,
Müller-Pfefferkorn, R., Schäfer, P., Steinke, T., Szikszay Fabri, A., Warzecha, K.,
Wewior, M., and Kohlbacher, O. ”A Science Gateway for Molecular Simulations”.
In: EGI User Forum 2011, Book of Abstracts, pp. 94-95, ISBN 978 90 816927 1 7,
2011.

• Krüger, J., Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., Fels, G.,
Gesing, S., Grunzke, R., Kohlbacher, O., Kruber, N., Lang, U., Packschies, L.,
Müller-Pfefferkorn, R., Herres-Pawlis, S.Schäfer, P., Schmalz, H., Steinke, T., Warzecha,
K., and Wewior, M. ”Molecular simulation grid”. Journal of Cheminformatics,
3(Suppl 1):O17, 2011.

• Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., dos Santos Vieira, I., Fels,
G., Gesing, S., Grunzke, R., Herres-Pawlis, S., Kohlbacher, O., Krüger, J., Lang,
U., Packschies, L., Müller-Pfefferkorn, R., Schäfer, P., Schmalz, H., Steinke, T.,
Warzecha, K., and Wewior, M. ”A Molecular Simulation Grid as new tool for Com-
putational Chemistry, Biology and Material Science”. Journal of Cheminformatics,
3(Suppl 1):P14, 2011.

• Gesing, S., van Hemert, J.I., Koetsier, J., Bertsch, A, and Kohlbacher, O. ”TOPP
goes Rapid - The OpenMS Proteomics Pipeline in a Grid-enabled Web Portal”.
CCGrid, pp.598-599, 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, 2010.

• Gesing, S., Marton, I., Birkenheuer, G., Schuller, B., Grunzke, R., Krüger, J.,

132

Breuers, S., Blunk, D., Fels, G., Packschies, L., Brinkmann, A., Kohlbacher, O.,
and Kozlovszky, M. ”Workflow Interoperability in a Grid Portal for Molecular Sim-
ulations”. In: Proceedings of the International Workshop on Science Gateways
(IWSG2010), pp. 44-48, Consorzio COMETA, 2010.

• Wewior, M., Packschies, L., Blunk, D., Wickeroth, D., Warzecha, K., Herres-Pawlis,
S., Gesing, S., Breuers, S., Krüger, J., Birkenheuer, G., and Lang, U. ”The MoS-
Grid Gaussian portlet - Technologies for Implementation of Portlets for Molecular
Simulations”. In: Proceedings of the International Workshop on Science Gateways
(IWSG2010), pp. 39-43, Consorzio COMETA, 2010.

• Krüger, J., Birkenheuer, G., Breuers, S., Gesing, S., Wewior, M., Brinkmann, A.,
Blunk, D., Kohlbacher, O., Packschies, L., and Fels, G. ”Workflows and Analysis
Approaches for Molecular Dynamics Simulations”. In: Proceedings of the Interna-
tional Workshop on Science Gateways (IWSG2010), pp. 61, Consorzio COMETA,
2010.

• Birkenheuer, G., Breuers, S., Brinkmann, A., Blunk, D., Fels, G., Gesing, S.,
Herres-Pawlis, S., Kohlbacher, O., Krüger, J., and Packschies, L. ”Grid-Workflows
in Molecular Science”. Software Engineering 2010, Grid Workflow Workshop, pp.
177-184, GI-Edition - Lecture Notes in Informatics (LNI), P-160, ISSN 1617-5468,
2010.

• Gesing, S., Kohlbacher, O., and Hemert, J. v. ”Portals for Life Sciences - a Brief
Introduction”. Proc. of 1st Workshop IWPLS’09, Edinburgh, UK, September 14-15,
2009, CEUR Workshop Proceedings, Vol-513, ISSN 1613-0073, 2009.

• Schneeberger, K.∗, Hagmann, J.∗, Ossowski, S.∗, Warthmann, N., Gesing, S.,
Kohlbacher, O., and Weigel, D. ”Simultaneous alignment of short reads against mul-
tiple genomes”. Genome Biology, 10(9):R98, 2009.

Accepted manuscripts

• Packschies, L., Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., de la Garza,
L., dos Santos Vieira, I., Fels, G., Gesing, S., Grunzke, R., Herres-Pawlis, S.,
Kohlbacher, O., Krüger, J., Kruse, M., Lang, U., Müller-Pfefferkorn, R., Schäfer, P.,
Schlemmer, Schärfe, C., T., Steinke, T., Warzecha, K., and Zink, A. ”The MoSGrid-e-
Science Gateway: Molecular Simulations in a Distributed Computing Environment”.
GCC 2012, accepted.

• Grunzke, R., Birkenheuer, G., Blunk, D., Breuers, S., Brinkmann, A., Gesing, S.,
Herres-Pawlis, S., Kohlbacher, O., Krüger, J., Kruse, M., Müller-Pfefferkorn, R.,
Schäfer, P., Schuller, B., Steinke, T., and Zink, A. ”A Data Driven Science Gateway
for Computational Workflows”. UNICORE Summit 2012, accepted.

Submitted manuscripts

• Balasko, A., Gesing, S., Kozlovszky, M., Kranyecz, Cs., Karoczkai, K., Kohlbacher,
O., and Kacsuk, P. ”Workflow interoperability by using automatic workflow language
translation”. Future Generation Computer Systems, submitted.

133

List of Publications

Edited journals/proceedings

• Gesing, S., Glatard, T., Krüger, J., Delgado Olabarriaga, S., Solomonides, T.,
Silverstein, J., Montagnat, J., Gaignard, A., and Krefting, D. (eds.) ”HealthGrid
Applications and Technologies Meet Science Gateways for Life Sciences”. Studies in
Health Technology and Informatics, Volume 175, IOS Press, 2012.

• Gesing, S. and Hemert, J. v. (eds.) ”Special Issue: IWPLS 2009”. Concurrency
and Computation: Practice and Experience, 23: 223-291, 2011.

• Gesing, S. and Hemert, J. v. (eds.) ”Proceedings of the International Workshop
on Portals for Life Sciences 2009”. CEUR Workshop Proceedings, Vol-513, ISSN
1613-0073, 2009.

134

References

[1] I. Foster and C. Kesselmann. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, 1998.

[2] J. Myerson. “Cloud computing versus grid computing”. IBM developerWorks, 2009.

[3] S. Johnston. “The future of cloud computing - an army of monkeys?”. http://samj.net/2008_07_

01_archive.html, 2008.

[4] A. Seffah and E. Metzker. “The obstacles and myths of usability and software engineering”. Commun.
ACM, 47(12):71–76, 2004.

[5] T. Brinck, D. Gergle, and S. D. Wood. Usability for the Web: Designing Web Sites that Work .
Morgan Kaufmann, 2001.

[6] International Organization for Standardization. “ISO 9241, Ergonomic requirements for office work
with visual display terminals (VDTs) – Part 11: Guidance on usability”. http://www.iso.org/iso/
iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57992, 1998.

[7] S. Krug. Don’t make me think!: A Common Sense Approach to Web Usability. New Riders, 2005.

[8] T. Berners-Lee. Weaving the Web : The Original Design and Ultimate Destiny of the World Wide
Web by its Inventor. HarperOne, 1999.

[9] “Facebook website”. http://www.facebook.com.

[10] International Telecommunication Union (ITU). “ITU-T Recommendation X.509”. http://www.itu.
int/rec/T-REC-X.509/en, 1988.

[11] OASIS. “Security Assertion Markup Language (SAML) V2.0”. http://docs.oasis-open.org/

security/saml/v2.0/saml-2.0-os.zip, 2002.

[12] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. “A Security Infrastructure for Computational
Grids”. In CCS ’98 Proceedings of the 5th ACM conference on Computer and communications
security, 1998.

[13] R. L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klingenstein. “Federated Security: The
Shibboleth Approach”. EDUCAUSE Quarterly, 27(4):12–17, 2004.

[14] P. Kacsuk. “P-GRADE portal family for grid infrastructures”. Concurrency and Computation:
Practice and Experience, 23(3):235–245, 2011.

[15] Z. Farkas and P. Kacsuk. “P-GRADE Portal: a generic workflow system to support user communi-
ties”. Future Generation Computer Systems, 27(5):454–465, 2011.

[16] L. Torterolo, I. Porro, M. Fato, M. Melato, A. Calanducci, and R. Barbera. “Building Science
Gateways with EnginFrame: a Life Science example”. In Proceedings of International Workshop on
Portals for Life Sciences (IWPLS’09), volume 513. CEUR Workshop Proceedings, 2009.

[17] J. Goecks, A. Nekrutenko, J. Taylor, and Galaxy Team. “Galaxy: A comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the life sciences”.
Genome Biology, 11(8):R86, 2010.

[18] J. P. Jones. “Beowulf cluster computing with linux”. chapter PBS: portable batch system, pages
369–390. MIT Press, Cambridge, MA, USA, 2002.

[19] G. Borges, M. David, J. Gomes, C. Fernandez, J. Lopez Cacheiro, P. Rey Mayo, A. Simon Garcia,
D. Kant, and K. Sephton. “Sun Grid Engine, a new scheduler for EGEE middleware”. In IBERGRID
- Iberian Grid Infrastructure Conference, 2007.

135

http://samj.net/2008_07_01_archive.html
http://samj.net/2008_07_01_archive.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57992
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57992
http://www.facebook.com
http://www.itu.int/rec/T-REC-X.509/en
http://www.itu.int/rec/T-REC-X.509/en
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip
http://docs.oasis-open.org/security/saml/v2.0/saml-2.0-os.zip

REFERENCES

[20] A. Abdelnur and S. Hepper. “JSR 168: Portlet Specification”. http://www.jcp.org/en/jsr/detail?
id=168, 2003.

[21] M.S. Nicklous and S. Hepper. “JSR 286: Portlet Specification 2.0”. http://www.jcp.org/en/jsr/

detail?id=286, 2008.

[22] Inc. Liferay. “Liferay”. http://www.liferay.com.

[23] Apache Software Foundation. “Pluto”. http://portals.apache.org/pluto/.

[24] M. Grönroos. Book of Vaadin. Oy IT Mill Ltd, 2010.

[25] M. Hahn. “The Google Web Toolkit: a deeper look and Extensions for GWT”. http://www.

dark-bit.de/wp-content/uploads/2009/07/paper_marcel_hahn_final.pdf, 2008.

[26] J. Koetsier and J. van Hemert. “Rapid Development of Computational Science Portals”. In Pro-
ceedings of International Workshop on Portals for Life Sciences (IWPLS’09), volume 513. CEUR
Workshop Proceedings, 2009.

[27] M. McLennan and R. Kennell. “HUBzero: A Platform for Dissemination and Collaboration in
Computational Science and Engineering”. Computing in Science & Engineering, 12(2):48–52, 2010.

[28] W3C. “Extensible Markup Language (XML) 1.0 (Fifth Edition)”. http://www.w3.org/TR/REC-xml/,
2008.

[29] S. Gesing, R. Grunzke, J. Krüger, G. Birkenheuer, M. Wewior, P. Schäfer, B. Schuller, J. Schuster,
S. Herres-Pawlis, S. Breuers, A. Balasko, M. Kozlovszky, A. Szikszay Fabri, L. Packschies, P. Kacsuk,
D. Blunk, T. Steinke, A. Brinkmann, G. Fels, R. Müller-Pfefferkorn, R. Jäkel, and O. Kohlbacher.
“A Single Sign-On Infrastructure for Science Gateways on a Use Case for Structural Bioinformatics”.
Journal of Grid Computing, 10(4):769–790, 2012.

[30] G. Birkenheuer, S. Breuers, A. Brinkmann, D. Blunk, G. Fels, S. Gesing, S. Herres-Pawlis,
O. Kohlbacher, J. Krüger, and L. Packschies. “Grid-Workflows in Molecular Science”. In Software
Engineering 2010, Grid Workflow Workshop, volume P-160, pages 177–184. GI-Edition - Lecture
Notes in Informatics (LNI), 2010.

[31] I. Foster. “Globus Toolkit Version 4: Software for Service-Oriented Systems”. IFIP International
Conference on Network and Parallel Computing, Springer-Verlag(LNCS 3779):2–13, 2006.

[32] C. Ragusa, F. Longo, and A. Puliafito. “Experiencing with the Cloud over gLite”. In Proceedings
of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing, CLOUD ’09,
pages 53–60. IEEE Computer Society, Washington, DC, USA, 2009.

[33] A. Streit, P. Bala, A. Beck-Ratzka, K. Benedyczak, S. Bergmann, R. Breu, J. M. Daivandy, B. De-
muth, A. Eifer, A. Giesler, B. Hagemeier, V. Huber S. Holl, N. Lamla, D. Mallmann, A. S. Memon,
M. S. Memon, M. Rambadt, M. Riedel, M. Romberg, B. Schuller, T. Schlauch, A. Schreiber, T. Sod-
demann, and W. Ziegler. “Unicore 6 - Recent and Future Advancements”. JUEL-4319, 2010.

[34] “UNICORE Commandline Client”. http://www.unicore.eu/unicore/architecture/

client-layer.php#anchor_ucc, 2011.

[35] “UNICORE Rich Client”. http://www.unicore.eu/unicore/architecture/client-layer.php#

anchor_urc, 2011.

[36] “D-Grid”. http://www.d-grid-gmbh.de/index.php?id=1&L=1.

[37] F. Hupfeld, T.i Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Marti, and E. Cesario.
“The XtreemFS Architecture - A Case for Object-based File Systems in Grids”. Concurrency and
Computation: Practice and Experience, 20(17):2049–2060, 2008.

[38] J. Gu and P. E. Bourne. Structural Bioinformatics. Wiley-Blackwell, 2009.

[39] A. R. Leach. Molecular Modelling: Principles and Applications (2nd Edition). Prentice Hall, 2001.

[40] N. Chandra, P. Anand, and K. Yeturu. “Structural Bioinformatics: Deriving Biological Insights from
Protein Structures”. Interdisciplinary Sciences: Computational Life Sciences, 2(4):347–366.

[41] E. B. Fauman, A. L. Hopkins, and C. R. Groom. Structural Bioinformatics in Drug Discovery,
chapter 23, pages 477–497. Wiley-Liss Inc., Hoboken, New Jersey, 2003.

[42] T. Lengauer, R. Mannhold, H. Kubinyi, and H. Timmerman. Bioinformatics - From Genomes
to Drugs. Vol.1: Basic technologies, volume 14 of Methods and principles in medicinal chemistry.
Wiley-VCH, 2002.

136

http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://www.liferay.com
http://portals.apache.org/pluto/
http://www.dark-bit.de/wp-content/uploads/2009/07/paper_marcel_hahn_final.pdf
http://www.dark-bit.de/wp-content/uploads/2009/07/paper_marcel_hahn_final.pdf
http://www.w3.org/TR/REC-xml/
http://www.unicore.eu/unicore/architecture/client-layer.php#anchor_ucc
http://www.unicore.eu/unicore/architecture/client-layer.php#anchor_ucc
http://www.unicore.eu/unicore/architecture/client-layer.php#anchor_urc
http://www.unicore.eu/unicore/architecture/client-layer.php#anchor_urc
http://www.d-grid-gmbh.de/index.php?id=1&L=1

REFERENCES

[43] H. M. Berman, K. Henrick, H. Nakamura, J. Markley, P. E. Bourne, and J. Westbrook. “Realism
about PDB”. Nature biotechnology, 25(8):845–846, 2007.

[44] PDB. “Yearly Growth of Total Structures”. http://www.rcsb.org/pdb/statistics/

contentGrowthChart.do?content=total&seqid=100, 2012.

[45] P. A. M. Dirac. “Quantum Mechanics of Many-Electron Systems”. Proceedings of the Royal Society,
A123:714–733, 1929.

[46] A. Moll, A. Hildebrandt, H. Lenhof, and O. Kohlbacher. “BALLView: A tool for research and
education in molecular modeling”. Bioinformatics, (3):365–366, 2006.

[47] B. McMahon and Robert M. Hanson. “A toolkit for publishing enhanced figures”. Journal of Applied
Crystallography, 41(4):811–814, 2008.

[48] J. Harvey. “Molecular Electronic Structure”. http://www.chm.bris.ac.uk/pt/harvey/elstruct/

hf_2.html.

[49] S. Wan, D. W. Wright, and P. V. Coveney. “Mechanism of Drug Efficacy Within the EGF Receptor
Revealed by Microsecond Molecular Dynamics Simulation”.

[50] O. Kohlbacher. New approaches to protein docking. PhD thesis, Universität des Saarlandes, 2000.

[51] E. Schrödinger. “Quantisierung als Eigenwertproblem (Erste Mitteilung)”. Annalen der Physik, 4
(79):361–376, 1926.

[52] M. Born and J. R. Oppenheimer. “Zur Quantentheorie der Molekeln”. Annalen der Physik, 389(20):
457–484, 1927.

[53] V. Fock. “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems”.
Zeitschrift für Physik, 61:126–148, 1930.

[54] J. Slater and H.C. Verma. “The Theory of Complex Spectra”. Physical Review, 34(2):1293–1295,
1929.

[55] V. Fock. “”Selfconsistent field” mit Austausch von Natrium”. Zeitschrift für Physik, 62(11-12):
795–805, 1930.

[56] C. Møller and M.S. Plesset. “Note on an Approximation Treatment for Many-Electron Systems”.
Physical Review, 46:618–622, 1934.

[57] H.G. Kümmel. “A biography of the coupled cluster method”. In Recent progress in many-body
theories, 11th international conference, pages 334–348. World Scientific Publishing, 2002.

[58] J. E. Lennard-Jones. “The electronic structure of some diatomic molecules”. Transactions of the
Faraday Society, 25:668–686, 1929.

[59] C.C.J. Roothaan. “New Developments in Molecular Orbital Theory”. Reveiws of Modern Physics,
23:69–89, 1951.

[60] G.G. Hall. “The Molecular Orbital Theory of Chemical Valency VIII. A Method for Calculating
Ionisation Potentials”. Proceedings of the Royal Society (London), A205:541–552, 1951.

[61] J. Slater. “Atomic Shielding Constants”. Physical Review, 36:57–64, 1930.

[62] M.M. Francl, J.S. Binkley, M.S. Gordon, D.J. DeFrees, and J.A. Pople. “Self-consistent molecular
orbital methods. XXIII. A polarization-type basis set for second-row element”. Journal of Chemical
Physics, 77:3654–3665, 1982.

[63] R. Pariser and R.G. Parr. “A Semi-Empirical Theory of the Electronic Spectra and Electronic
Structure of Complex Unsaturated Molecules. I.”. Journal of Chemical Physics, 21(3), 1953.

[64] J.A. Pople and G.A. Segal. “Approximate Self-Consistent Molecular Orbital Theory. II. Calculations
with Complete Neglect of Differential Overlap”. Journal of Chemical Physics, 43:S136–S149, 1965.

[65] J.A. Pople, D.P. Santry, and G.A. Segal. “Approximate Self-Consistent Molecular Orbital Theory. I.
Invariant Procedures”. Journal of Chemical Physics, 43:S129–S135, 1965.

[66] M.J.S. Dewar and W. Thiel. “Ground states of molecules. 38. The MNDO method. Approximations
and parameters”. Journal of the American Chemical Society, 99(15):4899–4907, 1977.

[67] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart. “AM1: A new general purpose quantum
mechanical molecular model”. Journal of the American Chemical Society, 107(13):3902–3909, 1985.

137

http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100
http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100
http://www.chm.bris.ac.uk/pt/harvey/elstruct/hf_2.html
http://www.chm.bris.ac.uk/pt/harvey/elstruct/hf_2.html

REFERENCES

[68] J.J.P. Stewart. “Optimization of parameters for semiempirical methods I. Method”. Journal of
Computational Chemistry, 10(2):209–220, 1989.

[69] J.J.P. Stewart. “Optimization of parameters for semiempirical methods II. Applications”. Journal of
Computational Chemistry, 10(2):221–264, 1989.

[70] R.G. Parr. “Density Functional Theory”. Annual Review of Physical Chemistry, 34:631–656, 1983.

[71] R.G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University
Press, 1994.

[72] S.H. Vosko, L. Wilk, and M. Nusair. “Accurate Spin-dependent Electron Liquid Correlation Energies
for Local Spin Density Calculations: A Critical Analysis”. Canadian Journal of Physics, 58:1200–
1211, 1980.

[73] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr.
J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,
S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
C. Gonzalez, , and J. A. Pople. “Gaussian 03, Revision C.02”, 2004. Gaussian, Inc., Wallingford CT.

[74] “TURBOMOLE v6.2 2010, A Development of University of Karlsruhe and Forschungszentrum Karl-
sruhe Gmbh, 1989-2007, TURBOMOLE Gmbh, since 2007”. http://www.turbomole.com.

[75] J. D . Van der Waals. “The equation of state for gases and liquids”. Nobel Lecture, 1910.

[76] J. E. Lennard-Jones. “On the Determination of Molecular Fields”. Proceedings of Royal Society
London, A 106(738):463–477, 1924.

[77] N.L. Allinger. “Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and
V2 Torsional Terms”. Journal of the American Chemical Society, 99:8127–8134, 1977.

[78] J. Lii and N.L. Allinger. “Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2. Vibra-
tional Frequencies and Thermodynamics”. Journal of the American Chemical Society, 111:8566–8582,
1989.

[79] N.L. Allinger, K. Chen, and J. Lii. “An Improved Force Field (MM4) for Saturated Hydrocarbons”.
Journal of Computational Chemistry, 17:642–668, 1996.

[80] S.J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profena, and P. Weiner.
“A New Force Field for Molecular Simulation of Nucleic Acids and Proteins”. Journal of the American
Chemical Society, 106:765–784, 1984.

[81] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus.
“CHARMM: A program for macromolecular energy, minimization, and dynamics calculations”. Jour-
nal of Compational Chemistry, 4(2):187–217, 1983.

[82] M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber, and K. Morokuma. “ONIOM: A
Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy
Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2+ H2 Oxidative Addition”. Journal
of Physical Chemistry, 100(50):19357–19363, 1996.

[83] M.E. Tuckerman and G.J. Martyna. “Understanding Modern Molecular Dynamics: Techniques and
Applications”. Journal of Physical Chemistry, 104:159–178, 2000.

[84] J. Gullingsrud, R. Braun, and K. Schulten. “Reconstructing potentials of mean force through time
series analysis of steered molecular dynamics simulations”. Journal of Computational Physics, 151:
190–211, 1999.

[85] G.M. Torrie and J.P. Valleau. “Nonphysical Sampling Distributions in Monte Carlo Free-Energy
Estimation: Umbrella Sampling”. Journal of Computational Physics, 23:187–199, 1977.

138

http://www.turbomole.com

REFERENCES

[86] B. Roux. “The Calculation of the Potential of Mean Force using Computer Simulations”. Computer
Physics Communications, 91(1-3):275–282, 1995.

[87] D. Marx and J. Hutter. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods.
Cambridge University Press, 2009.

[88] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. “GROMACS 4: Algorithms for Highly
Efficient, Load-Balanced, and Scalable Molecular Simulation”. Journal of Chemical Theory and
Computation, 4(3):435–447, 2008.

[89] D.A. Case, T.A. Darden, III T.E. Cheatham, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, R.C.
Walker, W. Zhang, K.M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A.W.
Goetz, I. Kolossvai, K.F. Wong, F. Paesani, J. Vanicek, R.M. Wolf, J. Liu, X. Wu, S.R. Brozell,
T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M.-J. Hsieh, G. Cui, D.R. Roe, D.H. Mathews,
M.G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P.A.
Kollman. “AMBER 12”. University of California, San Francisco, 2012.

[90] E. Fischer. “Einfluss der Konfiguration auf die Wirkung der Enzyme”. Berichte der deutschen
chemischen Gesellschaft, 27:2985–2993, 1894.

[91] M.L. Connolly. “Solvent-accessible surfaces of proteins and nucleic-acids”. Science, 221:709–713,
1983.

[92] B. Lee and F.M. Richards. “The interpretation of protein structures: estimation of static accessibil-
ity”. Journal of Molecular Biology, 55(3):379–400, 1971.

[93] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe. “A Fast Flexible Docking Method Using an
Incremental Construction Algorithm”. Journal of Molecular Biology, 261:470–489, 1996.

[94] H.J. Böhm. “The development of a simple empirical scoring function to estimate the binding constant
for a protein-ligand complex of known three-dimensional structure”. Journal of Computer-Aided
Molecular Design, 8(3):243–256, 1994.

[95] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson. “Au-
tomated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy
Function”. Journal of Computational Chemistry, 19:1639–1662, 1998.

[96] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. “Optimization by Simulated Annealing”. Science, 220
(4598):671–680, 1983.

[97] D. Whitley, S. Gordon, and K. Mathias. “Lamarckian Evolution, the Baldwin effect and function
optimization”. In Parallel Problem Solving from Nature - PPSN III, volume 866 of Lecture Notes in
Computer Science, pages 6–15. Springer-Verlag, 1994.

[98] T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, and J. L.
Banks. “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors
in Database Screening”. J. Med. Chem., 47:1750–759, 2004.

[99] “Schrödinger Suite”. http://www.schrodinger.com/.

[100] “CADDSuite (Computer-aided Drug Design Suite)”. http://www.ball-project.org/caddsuite.

[101] M. Schumann and O. Kohlbacher. “IMGDock and TaGRes: Efficient and Open-Source Docking and
Consecutive Target-Specific Rescoring”. (submitted).

[102] BioSolvIt. “FlexX-Ensemble”. http://www.biosolveit.de/FlexX-Ensemble/.

[103] H. Claussen, C. Buning, M. Rarey, and T. Lengauer. “FlexE: efficient molecular docking considering
protein structure variations”. Journal of Molecular Biology, 308(2):377–395, 2001.

[104] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel,
and B. Wiswedel. “KNIME: The Konstanz Information Miner”. In Studies in Classification, Data
Analysis, and Knowledge Organization (GfKL 2007), 2007.

[105] “Pipeline Pilot”. http://accelrys.com/products/pipeline-pilot/.

[106] I. Foster. “What is the Grid? A Three Point Checklist”. GRIDtoday, 1(6), 2002.

[107] J. Bresnahan, M. Link, G. Khanna, Z. Imani, R. Kettimuthu, and I. Foster. “Globus GridFTP: what’s
new in 2007”. In Proceedings of the first international conference on Networks for grid applications,
number 19 in GridNets ’07, pages 1–5. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2007.

139

http://www.schrodinger.com/
http://www.ball-project.org/caddsuite
http://www.biosolveit.de/FlexX-Ensemble/
http://accelrys.com/products/pipeline-pilot/

REFERENCES

[108] A. Rajasekar, M. Wan, and R. Moore. “mySRB and SRB, Components of a Data Grid”. In 11th
IEEE International Symposium on High Performance Distributed Computing 2002, pages 301–310,
2002.

[109] P. Saluja, BB. Prahlada Rao, V. Shashidhar, A. Paventhan, and N. Sharma. “An interoperable &
optimal data grid solution for heterogeneous and SOA based Grid - GARUDA”. IEEE International
Symposium on Parallel and Distributed Processing Workshops and PhD Forum, 2011, 0:1–8, 2010.

[110] A.S. Rana, F. Wurthwein, T. Perelmutov, R. Kennedy, J. Bakken, T. Hesselroth, I. Fisk,
P. Fuhrmann, M. Ernst, M. Lorch, and D. Skow. “Introducing Advanced Fine-grained Security
in dCache-SRM for PetaByte-scale Storage Systems on Global Data Grids: gPLAZMA grid-aware
PLuggable AuthoriZation MAnagement System”. In Nuclear Science Symposium Conference, pages
632–636, 2006.

[111] M. Jackson, M. Antonioletti, B. Dobrzelecki, and N. Chue Hong. “Distributed data management
with OGSA-DAI”. Grid and Cloud Database Management, pages 63–86, 2011.

[112] J. Geelan. “Twenty-One Experts Define Cloud Computing”. http://virtualization.sys-con.com/
node/612375, 2009.

[113] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. “Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility”. Future Generation
Computer Systems, 25:599–616, 2009.

[114] “National Institute of Standards and Technology (NIST)”. http://www.nist.gov.

[115] P. Mell and T. Grance. “The NIST Definition of Cloud Computing”. http://csrc.nist.gov/

publications/nistpubs/800-145/SP800-145.pdf, 2011.

[116] A. Weiss. “Computing in the clouds”. netWorker, 11(4):16–25, 2007.

[117] G. Perry. “How Cloud & Utility Computing Are Different”. http://gigaom.com/2008/02/28/

how-cloud-utility-computing-are-different/, 2008.

[118] Amazon Web Services. “Amazon Elastic Compute Cloud (Amazon EC2)”. http://aws.amazon.com/
ec2/.

[119] US Department of Energy (DOE). “The Magellan Report on Cloud Computing for Science”. http:

//www.nersc.gov/assets/StaffPublications/2012/MagellanFinalReport.pdf, 2011.

[120] Amazon Web Services. “Amazon Simple Storage Service (Amazon S3)”. http://aws.amazon.com/

s3/.

[121] S. Ghemawat, H. Gobioff, and S. Leung. “The Google File System”. In SOSP’03. Bolton Landing,
New York, USA, 2003.

[122] “Oracle Cloud File System”. http://www.oracle.com/us/products/database/

cloud-file-system/.

[123] OASIS. “PKI Technical Standards”. http://www.oasis-pki.org/resources/techstandards/

#organisations.

[124] “The Internet Engineering Task Force (IETF)”. http://www.ietf.org/.

[125] R. Housley, W. Polk, W. Ford, and D. Solo. “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile (RFC 3280)”. http://www.ietf.org/rfc/rfc3280.txt,
2002.

[126] IGTF. “The International Grid Trust Federation”. http://www.igtf.net/.

[127] EUGridPMA. “European Grid Policy Management Authority”. http://www.eugridpma.org/.

[128] DFN. “Deutsches Forschungsnetz”. https://www.pki.dfn.de/grid/.

[129] GridKa-Ca. “Grid Computer Centre Karlsruhe Certification Authority”. https://gridka-ca-sec.

fzk.de/.

[130] The Internet Engineering Task Force (IETF). “Securely Available Credentials (SACRED) - Creden-
tial Server Framework”. http://tools.ietf.org/pdf/rfc3760.pdf, 2004.

[131] OASIS. “Organization for the Advancement of Structured Information Standards”. http://www.

oasis-open.org, 2011.

140

http://virtualization.sys-con.com/node/612375
http://virtualization.sys-con.com/node/612375
http://www.nist.gov
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://gigaom.com/2008/02/28/how-cloud-utility-computing-are-different/
http://gigaom.com/2008/02/28/how-cloud-utility-computing-are-different/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.nersc.gov/assets/StaffPublications/2012/MagellanFinalReport.pdf
http://www.nersc.gov/assets/StaffPublications/2012/MagellanFinalReport.pdf
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://www.oracle.com/us/products/database/cloud-file-system/
http://www.oracle.com/us/products/database/cloud-file-system/
http://www.oasis-pki.org/resources/techstandards/#organisations
http://www.oasis-pki.org/resources/techstandards/#organisations
http://www.ietf.org/
http://www.ietf.org/rfc/rfc3280.txt
http://www.igtf.net/
http://www.eugridpma.org/
https://www.pki.dfn.de/grid/
https://gridka-ca-sec.fzk.de/
https://gridka-ca-sec.fzk.de/
http://tools.ietf.org/pdf/rfc3760.pdf
http://www.oasis-open.org
http://www.oasis-open.org

REFERENCES

[132] S. Tuecke, V. Welch, and J. Novotny. “An Online Credential Repository for the Grid: MyProxy”.
In Proceedings of the Tenth International Symposium on High Performance Distributed Computing
(HPDC-10), pages 104–111. IEEE Press, 2001.

[133] D. Georgakopoulos, M. Hornick, and A. Sheth. “An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure”. Distributed and Parallel Databases, 3:
119–153, 1995.

[134] “Lustre”. http://wiki.lustre.org/.

[135] J. Y. and R. Buyya. “A Taxonomy of Workflow Management Systems for Grid Computing”. Journal
of Grid Computing, 3(3-4):171–200, 2005.

[136] A. Barker and J. van Hemert. “Scientific Workflow: A Survey and Research Directions”. In Roman
Wyrzykowski and et al., eds., Seventh International Conference on Parallel Processing and Applied
Mathematics, Revised Selected Papers, volume 4967 of LNCS, pages 746–753. Springer, 2008.

[137] B. Ludaescher, M. Weske, T. McPhillips, and S. Bowers. “Scientific Workflows: Business as Usual?”.
In 7th Intl. Conf. on Business Process Management (BPM), 2009.

[138] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn. “Taverna: a tool for
building and running workflows of services”. Nucleic Acids Research, 34, Web Server issue:729–732,
2006.

[139] UNICORE Team. “UNICORE Workflow System Manual”. http://unicore.eu/documentation/

manuals/unicore6/files/workflow/workflow-manual.pdf, 2012.

[140] Internet Engineering Task Force (IETF). “A JSON Media Type for Describing the Structure
and Meaning of JSON Documents”. http://tools.ietf.org/pdf/draft-zyp-json-schema-03.pdf,
2010.

[141] M. Sporny and N. Walsh. “Web Services: JSON vs. XML”. http://digitalbazaar.com/2010/11/

22/json-vs-xml/.

[142] D. Crockford. “JSON: The Fat-Free Alternative to XML”. http://www.json.org/fatfree.html.

[143] S. Goessner. “Converting Between XML and JSON”. http://www.xml.com/pub/a/2006/05/31/

converting-between-xml-and-json.html, 2006.

[144] W.M.P van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. “Workflow Patterns”.
Distributed and Parallel Databases, 14(3):5–51, 2003.

[145] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visual-
ization of Graphs. Prentice Hall, 1999.

[146] K. Sugiyama, S. Tagawa, and M . Toda. “Methods for Visual Understanding of Hierarchical System
Structures”. IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109–125, 1981.

[147] O. Bastert and C. Matuszewski. “Layered Drawings of Digraphs”. In M. Kaufmann and D. Wagner,
eds., Drawing Graphs: Methods and Models, number 2025, pages 87–120. Springer, 2001.

[148] P. Eades and N.C. Wormald. “Edge crossings in drawings of bipartite graphs”. Algorithmica, 11:
379–403, 1994.

[149] M. Eiglsperger, M. Siebenhaller, and M. Kaufmann. “An Efficient Implementation of Sugiyama’s
Algorithm for Layered Graph Drawing”. Journal of Graph Algorithms and Applications, 9(3):305–
325, 2005.

[150] H.C. Purchase, C. Pilcher, and B. Plimmer. “Graph Drawing Aesthetics - Created by Users, Not
Algorithms”. Visualization and Computer Graphics, IEEE Transactions on, 18(1):81–92, 2012.

[151] H. McWilliam, F. Valentin, M. Goujon, W. Li, M. Narayanasamy, J. Martin, T. Miyar, and R. Lopez.
“Web services at the European Bioinformatics Institute-2009”. Nucleic Acids Res., 37(Web Server
issue):6–10, 2009.

[152] T. A. Wassenaar, M. van Dijk, N. Loureiro-Ferreira, G. van der Schot, S. J. de Vries, C. Schmitz,
J. van der Zwan, R. Boelens, A. Giachetti, L. Ferella, A. Rosato, I. Bertini, T. Herrmann, H. R. A.
Jonker, A. Bagaria, V. Jaravine, P. GÃ 1

4
ntert, H. Schwalbe, W. F. Vranken, J. F. Doreleijers,

G. Vriend, G. W. Vuister, D. Franke, A. Kikhney, D. I. Svergun, R. Fogh, J. Ionides, E. D. Laue,
C. Spronk, M. Verlato, S. Badoer, S. Dal Pra, M. Mazzucato, E. Frizziero, and A. M.J.J. Bonvin.
“WeNMR: Structural Biology on the Grid ”. In Proceedings of the International Workshop on Science
Gateways for Life Sciences (IWSG-Life 2011), volume 819. CEUR Workshop Proceedings, 2011.

141

http://wiki.lustre.org/
http://unicore.eu/documentation/manuals/unicore6/files/workflow/workflow-manual.pdf
http://unicore.eu/documentation/manuals/unicore6/files/workflow/workflow-manual.pdf
http://tools.ietf.org/pdf/draft-zyp-json-schema-03.pdf
http://digitalbazaar.com/2010/11/22/json-vs-xml/
http://digitalbazaar.com/2010/11/22/json-vs-xml/
http://www.json.org/fatfree.html
http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html
http://www.xml.com/pub/a/2006/05/31/converting-between-xml-and-json.html

REFERENCES

[153] OASIS. “Web Services for Remote Portlets Specification v2.0 (WSRP)”. http://docs.oasis-open.
org/wsrp/v2/wsrp-2.0-spec.html, 2008.

[154] OpenSocial and Gadgets Specification Group. “OpenSocial Specification 1.0”. http://

opensocial-resources.googlecode.com/svn/spec/1.0/OpenSocial-Specification.xml, 2010.

[155] The Apache Software Foundation. “Apache Tomcat”. http://tomcat.apache.org/tomcat-6.

0-doc/.

[156] Java Community Process. “Java Servlet 2.5 Specification”. http://jcp.org/aboutJava/

communityprocess/mrel/jsr154/index.html.

[157] Java Community Process. “JavaServer Pages 2.1”. http://jcp.org/aboutJava/communityprocess/
final/jsr245/index.html.

[158] Internet Engineering Task Force (IETF). “Guidance for Authentication, Authorization, and Ac-
counting (AAA) Key Management”. http://tools.ietf.org/pdf/rfc4962.pdf, 2007.

[159] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. “Role-Based Access Control Models”.
IEEE Computer (IEEE Press), 29(2):38–47, 1996.

[160] D. W. Chadwick and A. Otenko. “The PERMIS X.509 role based privilege management infrastruc-
ture”. Future Generation Computer Systems, 19(2):277–289, 2003.

[161] A. Balasko, M. Kozlovszky, A. Schnautigel, K. Karòckai, I. Màrton, T. Strodl, and P. Kacsuk.
“Converting P-GRADE Grid Portal into E-Science Gateways”. In Proceedings of the International
Workshop on Science Gateways (IWSG10), pages 1–6. Consorzio COMETA, 2010.

[162] C. Zhang, I. Kelley, and G. Allen. “Grid portal solutions: a comparison of GridPortlets and OGCE”.
Concurrency and Computation: Practice & Experience - Workshop on Grid Computing Portals (GCE
2005), 19(12), 2007.

[163] M. Thomas, J. Boisseau, M. Dahan, C. Mills, S. Mock, and K. Mueller. “Development of NPACI
Grid Application Portals and Portal Web Services”. Cluster Computing, 6(3):177–188, 2003.

[164] D. Szejnfeld, P. Dziubecki, P. Kopta, M. Krysinski, T. Kuczynski, K. Kurowski, B. Ludwiczak,
T. Piontek, D. Tarnawczyk, M. Wolniewicz, P. Domagalski, J. Nabrzyski, and K. Witkowski. “Vine
Toolkit - Towards Portal Based Production Solutions for Scientific and Engineering Communities
with Grid-Enabled Resources Support”. Scalable Computing: Practice and Experience, 11(2):161–
172, 2011.

[165] R. Barbera, G. Andronico, G. Donvito, A. Falzone, J.J. Keijser, G. La Rocca, L. Milanesi, G. P.
Maggi, and S. Vicario. “A Grid Portal with Robot Certificates for Bioinformatics Phylogenetic
Analyses”. Concurrency and Computation: Practice and Experience, 23(3):246–255, 2011.

[166] E. R. Watkins, M. McArdle, T. Leonard, and M. Surridge. “Cross-Middleware Interoperability in
Distributed Concurrent Engineering”. In Proceedings of the Third IEEE International Conference
on e-Science and Grid Computing, E-SCIENCE ’07, pages 561–568. IEEE Computer Society, Wash-
ington, DC, USA, 2007.

[167] M. Ellert, M. Gronager, A. Konstantinov, B. Konya, J. Lindemann, I. Livenson, J.L. Nielsen, M. Ni-
inimäki, O. Smirnova, and A. Wäänänen. “Advanced Resource Connector middleware for lightweight
computational Grids”. Future Generation Computer Systems, 23:219–240, 2007.

[168] D. P. Anderson. “Public Computing: Reconnecting People to Science”. In Conference on Shared
Knowledge and the Web, pages 17–19, 2003.

[169] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov. “The
Eucalyptus Open-Source Cloud-Computing System”. In Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGRID ’09, pages 124–131. IEEE
Computer Society, Washington, DC, USA, 2009.

[170] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. “Virtual Infrastructure Management in
Private and Hybrid Clouds”. IEEE Internet Computing, 13(5):14–22, 2009.

[171] M. Smith, M. R. Barton, M. Branschofsky, G. McClellan, J. Harford Walker, M. J. Bass, D. Stuve,
and R. Tansley. “DSpace: An Open Source Dynamic Digital Repository”. D-Lib Magazine, 2003.

[172] G. Klimeck, M. McLennan, S.P. Brophy, G.B. Adams III, and M.S. Lundstrom. “nanoHUB.org:
Advancing Education and Research in Nanotechnology”. Computing in Science & Engineering, 10
(5):17–23, 2008.

142

http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
http://opensocial-resources.googlecode.com/svn/spec/1.0/OpenSocial-Specification.xml
http://opensocial-resources.googlecode.com/svn/spec/1.0/OpenSocial-Specification.xml
http://tomcat.apache.org/tomcat-6.0-doc/
http://tomcat.apache.org/tomcat-6.0-doc/
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://tools.ietf.org/pdf/rfc4962.pdf

REFERENCES

[173] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pulsipher, and A. Savva.
“Job Submission Description Language (JSDL) Specification”. http://www.ggf.org/documents/

GFD.56.pdf, 2005.

[174] B. Schuller, B. Demuth, H. Mix, K. Rasch, M. Romberg, U. Maran, S. Sild, P. Bala, E. del Grosso,
M. Casalegno, N. Piclin, M. Pintore, W. Sudholt, and K. K. Baldridge. “Chemomentum - UNICORE
6 based infrastructure for complex applications in science and technology”. In Euro-Par 2007 Work-
shops: Parallel Processing (Lecture Notes in Computer Science 4854), pages 94–103. Springer-Verlag
Berlin Heidelberg, 2008.

[175] OASIS. “eXtensible Access Control Markup Language (XACML) Version 2.0”. http://docs.

oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, 2005.

[176] B. Hagemeier and R. Menday. “HiLA 2.0 - Evolutionary Improvements”. In UNICORE Summit
2010, volume 5 of IAS Series, pages 45–50, 2010.

[177] W3C. “Simple Object Access Protocol (SOAP) Version 1.2”. http://www.w3.org/TR/2007/

REC-soap12-part0-20070427/, 2007.

[178] OASIS. “Web Services Resource Framework (WSRF) - Primer v1.2”. http://docs.oasis-open.

org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf, 2006.

[179] D. Snelling, S. van den Berghe, and V. Li. “Explicit Trust Delegation: Security for Dynamic Grids”.
In Fujitsu Scientific and Technical Journal, pages 282–294, 2004.

[180] K. Benedyczak, P. Ba la, S. van den Berghe, R. Menday, and B. Schuller. “Key Aspects of the
UNICORE 6 Security Model”. In Future Generation Computer Systems, number 27, pages 195–201,
2011.

[181] I. Johnson, A. Lakhani, B. Matthews, E. Yang, and C. Morin. “XtreemOS: Towards a Grid Operating
System with Virtual Organisation Support”. In UK eScience All Hands Meeting, 2007.

[182] “FUSE”. http://fuse.sourceforge.net.

[183] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. “The Log-Structured Merge-Tree (LSM-Tree)”.
Acta Inf., 33(4):351–385, 1996.

[184] J. Stender, B. Kolbeck, F. Hupfeld, E. Cesario, E. Focht, M. Hess, J. Malo, and J. Mart́ı. “Strip-
ing without sacrifices: maintaining POSIX semantics in a parallel file system”. In First USENIX
Workshop on Large-Scale Computing, LASCO’08, pages 6:1–6:8. USENIX Association, Berkeley, CA,
USA, 2008.

[185] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. “RAID: High-Performance,
Reliable Secondary Storage”. ACM Computing Surveys, 26:145–185, 1994.

[186] “grid User Support Environment”. https://sourceforge.net/projects/guse/.

[187] “Jetspeed 2”. http://portals.apache.org/jetspeed-2/.

[188] “GateIn”. http://www.jboss.org/gatein.

[189] “eXo”. http://www.exoplatform.com/.

[190] J. Novotny, M. Russell, and O. Wehrens. “GridSphere: an advanced portal framework”. In Euromicro
Conference, 2004. Proceedings. 30th, pages 412–419, 2004.

[191] Internet Engineering Task Force (IETF). “Lightweight Directory Access Protocol (LDAP): Technical
Specification Road Map”. http://tools.ietf.org/pdf/rfc4510.pdf, 2006.

[192] D. Mazurek. “CAS Protocol”. http://www.jasig.org/cas/protocol, 2005.

[193] openid.net. “OpenID Authentication 2.0 - Final”. http://openid.net/specs/

openid-authentication-2_0.html, 2007.

[194] R. Murri, P. Z. Kunszt, S. Maffioletti, and V. Tschopp. “GridCertLib: A Single Sign-on Solution for
Grid Web Applications and Portals”. Journal of Grid Computing, 9(4):441–453, 2011.

[195] X. D. Wang, M. Jones, J. Jensen, A. Richards, D. Wallom, T. Ma, R. Frank, D. Spence, S. Young,
C. Devereux, and N.l Geddes. “Shibboleth Access for Resources on the National Grid Service
(SARoNGS)”. In Fifth International Conference on Information Assurance and Security, volume 2,
pages 338–341, 2009.

143

http://www.ggf.org/documents/GFD.56.pdf
http://www.ggf.org/documents/GFD.56.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf
http://fuse.sourceforge.net
https://sourceforge.net/projects/guse/
http://portals.apache.org/jetspeed-2/
http://www.jboss.org/gatein
http://www.exoplatform.com/
http://tools.ietf.org/pdf/rfc4510.pdf
http://www.jasig.org/cas/protocol
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html

REFERENCES

[196] R.O. Sinnott, T. Doherty, J. Jiang, S. McCafferty, A. Stell, and J. Watt. “Security-oriented Por-
tals for the Life Sciences”. In Proceedings of International Workshop on Portals for Life Sciences
(IWPLS’09), volume 513. CEUR Workshop Proceedings, 2009.

[197] S. Oaks. Java Security (2nd Edition). O’Reilly Media, 2001.

[198] “Applets vs JWS vs Applications”. http://mindprod.com/jgloss/javawebstart.html#

APPLETSVSJWS.

[199] “VeriSign Authentication Services”. http://www.verisign.com/.

[200] “thawte”. http://www.thawte.de/.

[201] Object Management Group. “Unified Modeling Lanuage Specification”. http://www.omg.org, 1998.

[202] R. Barbera, M. Fargetta, and R. Rotondo. “A Simplified Access to Grid Resources by Science
Gateways”. Proceedings of Science, 2011.

[203] EGI. “European Grid Infrastructure”. http://www.egi.eu/.

[204] J. G. Hayes, E. Peyrovian, S.l Sarin, M. Schmidt, K. D. Swenson, and R. Weber. “Workflow Inter-
operability Standards for the Internet”. IEEE Internet Computing, 4:37–45, 2000.

[205] “SHIWA - SHaring Interoperable Workflows for large-scale scientific simulations on Available DCIs”.
http://www.shiwa-workflow.eu/project.

[206] D. Krefting, T. Glatard, V. Korkhov, J. Montagnat, and S. Olabarriaga. “Enabling Grid Interop-
erability at Workflow Level”. In Proceedings of Grid Workflow Workshop 2011, volume 826. CEUR
Workshop Proceedings, 2012.

[207] K. Plankensteiner, J. Montagnat, and R. Prodan. “IWIR: A Language Enabling Portability Across
Grid Workflow Systems”. In WORKS’11, pages 97–106, 2011.

[208] M. Abouelhoda, S. Alaa, and M. Ghanem. “Tavaxy: Integrating Taverna and Galaxy workflows with
cloud computing support”. BMC Bioinformatics, 13(77), 2012.

[209] A. Alqaoud, I. Taylor, and A. Jones. “Scientific workflow interoperability framework”. International
Journal of Business Process Integration and Management, 5(1):93–105, 2010.

[210] W. Gropp, E. Lusk, and A. Skiellum. Using MPI: Portable Parallel Programming with the Message-
Passing Interface (Scientific and Engineering Computation). The MIT Press, 1994.

[211] R. M. Riordan. Head first Ajax. O’Reilly, 2008.

[212] M. Kradolfer and A. Geppert. “Dynamic Workflow Schema Evolution Based on Workflow Type
Versioning and Workflow Migration”. In Proceedings of the Fourth IECIS International Confer-
ence on Cooperative Information Systems, COOPIS ’99, pages 104–114. IEEE Computer Society,
Washington, DC, USA, 1999.

[213] “The Python Language Reference”. http://docs.python.org/reference/, 2011.

[214] K. Karasavvas, K. Wolstencroft, E. Mina, D. Cruickshank, A. Williams, C. Goble D. De Roure, and
M. Roos. “Opening new gateways to workflows for life scientists”. In HealthGrid Applications and
Technologies Meet Science Gateways for Life Sciences. IOS Press, 2012. (in print).

[215] “Mako Templates for Python”. http://www.makotemplates.org/.

[216] O. Faigon. “Topological Sort in Python”. http://www.bitformation.com/art/python_toposort.

html, 2005.

[217] R. Tarjan. “Depth-first search and linear graph algorithms”. SIAM Journal on Computing, 1(2):
146–160, 1972.

[218] R. Sedgewick. Algorithms. Addison Wesley, 1983.

[219] B. Boe. “Line Segment Intersection Algorithm”. http://www.bryceboe.com/2006/10/23/

line-segment-intersection-algorithm/.

[220] “Jython: Python for the Java Platform”. http://www.jython.org/.

[221] S. Gesing, J.I. van Hemert, J. Koetsier, A. Bertsch, and O. Kohlbacher. “TOPP goes Rapid - The
OpenMS Proteomics Pipeline in a Grid-enabled Web Portal”. In CCGrid 2010, 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pages 598–599, 2010.

144

http://mindprod.com/jgloss/javawebstart.html#APPLETSVSJWS
http://mindprod.com/jgloss/javawebstart.html#APPLETSVSJWS
http://www.verisign.com/
http://www.thawte.de/
http://www.omg.org
http://www.egi.eu/
http://www.shiwa-workflow.eu/project
http://docs.python.org/reference/
http://www.makotemplates.org/
http://www.bitformation.com/art/python_toposort.html
http://www.bitformation.com/art/python_toposort.html
http://www.bryceboe.com/2006/10/23/line-segment-intersection-algorithm/
http://www.bryceboe.com/2006/10/23/line-segment-intersection-algorithm/
http://www.jython.org/

REFERENCES

[222] O. Kohlbacher, K. Reinert, C. Gröpl, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, and M. Sturm. “TOPP
- the OpenMS Proteomics Pipeline”. Bioinformatics, 23(2):e191–e197, 2007.

[223] W3C. “XHTML 1.0 The Extensible HyperText Markup Language”. http://www.w3.org/TR/

xhtml1/.

[224] I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pcikles, D. Pulsipher, C. Smith,
and M. Theimer. “OGSA Basic Execution Service Version 1.0”. http://www.ogf.org/documents/

GFD.108.pdf.

[225] W. Lee, A. McGough, and J. Darlington. “Performance Evaluation of the GridSAM Job Submission
and Monitoring System”. In UK e-Science All Hands Meeting, pages 915–922, 2005.

[226] D. Thain, T. Tannenbaum, and M. Livny. “Distributed computing in practice: the Condor experi-
ence”. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.

[227] “Rapid Portal Development”. https://sourceforge.net/projects/rapidportlet/.

[228] M. Wewior, L. Packschies, D. Blunk, D. Wickeroth, K. Warzecha, S. Herres-Pawlis, S. Gesing,
S. Breuers, J. Krüger, G. Birkenheuer, and U. Lang. “The MoSGrid Gaussian Portlet – Technolo-
gies for the Implementation of Portlets for Molecular Simulations”. In Roberto Barbera, Giuseppe
Andronico, and Giuseppe La Rocca, eds., Proceedings of the International Workshop on Science
Gateways (IWSG10), pages 39–43. Consorzio COMETA, 2010.

[229] “ICEFaces”. http://www.icesoft.org/.

[230] J. Krüger and G. Fels. “Ion Permeation Simulations by Gromacs − an Example of High Performance
Molecular Dynamics”. Concurrency and Computation: Practice and Experience, 23(3):279–291, 2011.

[231] P. Murray-Rust and H. S. Rzepa. “Chemical Markup, XML, and the Worldwide Web. 1. Basic
Principles”. Journal of Chemical Information and Computer Sciences, 39(6):928–942, 1999.

[232] P. Murray-Rust and H. S. Rzepa. “Chemical Markup, XML and the World-Wide Web. 2. Information
Objects and the CMLDOM”. Journal of Chemical Information and Computer Sciences, 41(5):1113–
1123, 2001.

[233] P. Murray-Rust and H. S. Rzepa. “Chemical Markup, XML, and the World Wide Web. 4. CML
Schema”. Journal of Chemical Information and Computer Sciences, 43(3):757–772, 2003.

[234] “Open Babel: The Open Source Chemistry Toolbox”. http://openbabel.org/, 2011.

[235] C. Leung and A. Salga. “Enabling WebGL”. In Proceedings of the 19th international conference on
World wide web, WWW ’10, pages 1369–1370. ACM, New York, NY, USA, 2010.

[236] CC. Gruber and J. Pleiss. “Systematic benchmarking of large molecular dynamics simulations em-
ploying GROMACS on massive multiprocessing facilities”. Journal of Computational Chemistry, 32
(4):600–606, 2011.

[237] AMD, Dell, and Mellanox. “GROMACS Performance Benchmark and Profiling”. http://www.

hpcadvisorycouncil.com/pdf/GROMACS_Analysis.pdf, 2009.

[238] University of Florida High Performance Computing Center. “Gromacs Benchmark”. http://wiki.

hpc.ufl.edu/index.php/Gromacs.

[239] ScalaLife (Scalable Software Services for Life Sciences). “Gromacs”. http://www.scalalife.eu/

book/export/html/227.

[240] R. Yang, J. Cai, A. Rendell, and V. Ganesh. “Use of Cluster OpenMP with the Gaussian Quantum
Chemistry Code: A Preliminary Performance Analysis”. In Evolving OpenMP in an Age of Extreme
Parallelism, volume 5568 of Lecture Notes in Computer Science, pages 53–62. Springer Berlin /
Heidelberg, 2009.

[241] The National Center for Supercomputing Applications (NCSA). “Gaussian Benchmark”. http:

//include-test.ncsa.illinois.edu/UserInfo/Resources/Software/CHEM/g98bench.html.

[242] C. Redaelli. “Gaussian03 on NEC SX platforms”. http://www.maint.ch/redaelli/docs/

CSCS-NEC-G03.pdf, 2003.

[243] C. Redaelli. “Gaussian03 on the CSCS IBM MPP”. http://www.maint.ch/redaelli/docs/

CSCS-MPP-G03.pdf, 2003.

[244] C. Abdelouahab and B. Abderrahmane. “Comparative Study of the Efficiency of Three Protein-
Ligand Docking Programs”. Journal of Proteomics & Bioinformatics, (1):161–165, 2008.

145

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.ogf.org/documents/GFD.108.pdf
http://www.ogf.org/documents/GFD.108.pdf
https://sourceforge.net/projects/rapidportlet/
http://www.icesoft.org/
http://openbabel.org/
http://www.hpcadvisorycouncil.com/pdf/GROMACS_Analysis.pdf
http://www.hpcadvisorycouncil.com/pdf/GROMACS_Analysis.pdf
http://wiki.hpc.ufl.edu/index.php/Gromacs
http://wiki.hpc.ufl.edu/index.php/Gromacs
http://www.scalalife.eu/book/export/html/227
http://www.scalalife.eu/book/export/html/227
http://include-test.ncsa.illinois.edu/UserInfo/Resources/Software/CHEM/g98bench.html
http://include-test.ncsa.illinois.edu/UserInfo/Resources/Software/CHEM/g98bench.html
http://www.maint.ch/redaelli/docs/CSCS-NEC-G03.pdf
http://www.maint.ch/redaelli/docs/CSCS-NEC-G03.pdf
http://www.maint.ch/redaelli/docs/CSCS-MPP-G03.pdf
http://www.maint.ch/redaelli/docs/CSCS-MPP-G03.pdf

REFERENCES

[245] B. D. Bursulaya, M. Totrov, R. Abagyan, and C. L. Brooks. “Comparative study of several algorithms
for flexible ligand docking”. Journal of computeraided molecular design, 17(11):755–763, 2003.

[246] L. Olsen, I. Pettersson, L. Hemmingsen, H. Adolph, and F. S. Jø rgensen. “Docking and scoring of
metallo-β-lactamases inhibitors”. Journal of Computer-Aided Molecular Design, 18:287–302, 2004.

[247] M. Borcz, R. Kluszczynski, K. Skonieczna, T. Grzybowski, and P. Bala. “Processing the biomed-
ical data on the grid using the UNICORE workflow system”. https://sites.google.com/site/

iwsglife2012/abstract-3. IWSG-Life 2012.

[248] S. Herres-Pawlis, G. Birkenheuer, A. Brinkmann, S. Gesing, R. Grunzke, R. Jäkel, O. Kohlbacher,
J. Krüger, and I. Dos Santos Vieira. “Workflow-enhanced conformational analysis of guanidine
zinc complexes via a science gateway”. In HealthGrid Applications and Technologies Meet Science
Gateways for Life Sciences, volume 175 of Studies in Health Technology and Informatics, pages
142–151. IOS Press, 2012.

[249] M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet. “Directory of Useful Decoys, Enhanced
(DUD-E): Better Ligands and Decoys for Better Benchmarking”. Journal of Medicinal Chemistry,
55(14):6582–6594, 2012.

[250] “Lead-like subset #1”. http://zinc.docking.org/db/bysubset/1/.

[251] John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman. “ZINC:
A Free Tool to Discover Chemistry for Biology”. Journal of Chemical Information and Modeling, 52
(7):1757–1768, 2012.

[252] A. Sonderegger and J. Sauer. “The influence of design aesthetics in usability testing: Effects on user
performance and perceived usability”. Applied Ergonomics, 41:403–410, 2010.

[253] H. Pienaar. “Design and Development of an Academic Portal”. Libri, 53:118–129, 2003.

[254] J. Rubin and D. Chisnell. Handbook of Usability Testing: How to Plan, Design, and Conduct Effective
Tests. Hoboken: John Wiley & Sons, 2008.

[255] S. Gesing, S. Herres-Pawlis, G. Birkenheuer, A. Brinkmann, R. Grunzke, P. Kacsuk, O. Kohlbacher,
M. Kozlovszky, J. Krüger, R. Müller-Pfefferkorn, P. Schäfer, and T. Steinke. “A Science Gateway
Getting Ready for Serving the International Molecular Simulation Community”. In Proceedings of
Science, PoS(EGICF12-EMITC2)050, 2012.

[256] “SCI-BUS (Scientific gateway Based User Support)”. http://www.sci-bus.eu/.

[257] “ER-flow - Building a European Research Community through Interoperable Workflows and Data”.
http://www.erflow.eu/.

[258] “EDGI (European Desktop Grid Initiative)”. http://edgi-project.eu/.

[259] S. Gesing, S. Herres-Pawlis, G. Birkenheuer, A. Brinkmann, R. Grunzke, P. Kacsuk, O. Kohlbacher,
M. Kozlovszky, J. Krüger, R. Müller-Pfefferkorn, P. Schäfer, and T. Steinke. “The MoSGrid Com-
munity - From National to International Scale”. In EGI Community Forum 2012, 2012.

[260] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process. Addison-
Wesley Longman, 1999.

[261] G. E. Krasner and S. T. Pope. “A Cookbook for Using the Model-View Controller User Interface
Paradigm in Smalltalk-80”. Journal of Object-Oriented Programming, 1(3):26–49, 1988.

[262] “XNJS IDB Configuration”. http://unicore.eu/documentation/manuals/unicore6/unicorex/

xnjs-idb.html.

[263] “Guide to XACML security policies”. http://unicore-dev.zam.kfa-juelich.de/documentation/

unicorex-6.4.0-rc1/policies.html.

[264] “Galaxy”. https://bitbucket.org/galaxy/galaxy-central.

[265] S. Gesing, J. van Hemert, P. Kacsuk, and O. Kohlbacher. “Special Issue: Portals for life sciences
- Providing intuitive access to bioinformatic tools”. Concurrency and Computation: Practice and
Experience, 23(3):223–234, 2011.

[266] S. Gesing, I. Marton, G. Birkenheuer, B. Schuller, R. Grunzke, J. Krüger, S. Breuers, D. Blunk,
G. Fels, L. Packschies, A. Brinkmann, O. Kohlbacher, and M. Kozlovszky. “Workflow Interoperability
in a Grid Portal for Molecular Simulations”. In Proceedings of the International Workshop on Science
Gateways (IWSG10), pages 44–48. Consorzio COMETA, 2010.

146

https://sites.google.com/site/iwsglife2012/abstract-3
https://sites.google.com/site/iwsglife2012/abstract-3
http://zinc.docking.org/db/bysubset/1/
http://www.sci-bus.eu/
http://www.erflow.eu/
http://edgi-project.eu/
http://unicore.eu/documentation/manuals/unicore6/unicorex/xnjs-idb.html
http://unicore.eu/documentation/manuals/unicore6/unicorex/xnjs-idb.html
http://unicore-dev.zam.kfa-juelich.de/documentation/unicorex-6.4.0-rc1/policies.html
http://unicore-dev.zam.kfa-juelich.de/documentation/unicorex-6.4.0-rc1/policies.html
https://bitbucket.org/galaxy/galaxy-central

	Abstract
	Introduction
	Theoretical Background
	Structural Bioinformatics
	Application areas
	Quantum Chemistry
	Molecular Dynamics
	Docking

	Distributed Computing Background
	Grid and Cloud Computing
	Security in Grid Infrastructures
	Workflows
	Web-based Science Gateways
	Workflow-enabled Grid Portals
	Development of Portals

	Evaluated and Designed Infrastructure
	Introduction
	Selected Distributed Computing Infrastructure
	Grid Middleware UNICORE
	Cloud File System XtreemFS

	Workflow-enabled Grid Portals
	gUSE and WS-PGRADE

	Evaluated Portal Frameworks
	User Management for the Molecular Simulation Community
	Basic Infrastructure

	A Novel Credential Management for Science Gateways
	Introduction
	Credential Management Using SAML Assertions
	Implementation
	Results and Discussion

	Enhanced Job and Workflow Management
	Introduction
	Job Management
	UNICORE Submitter
	UNICORE Plugin in WS-PGRADE

	Workflow Interoperability of gUSE with UNICORE
	Workflow Management via the Application Specific Module
	Results and Discussion

	A Novel Method for Workflow Migration
	Introduction
	Workflows
	WS-PGRADE Workflows
	Galaxy Workflows

	Migration of Galaxy Workflows to WS-PGRADE Workflows
	Graph Algorithm
	Results and Discussion

	Automatic Creation of Portlets for Workflows
	Introduction
	Rapid Framework
	Extending Rapid for Workflows
	Results and Discussion

	MoSGrid - Bringing It All Together
	Introduction
	Domain-specific Workflows
	The Molecular Dynamics Portlet
	The Quantum Chemistry Portlet
	The Docking Portlet

	Performance Studies
	Results

	Conclusion and Outlook
	Abbreviations
	Appendix
	Contributions
	Curriculum Vitae
	List of Publications
	References

