
A Deep Embedding of Queries
into Ruby

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Inf. Manuel Mayr

aus Brixen (Italien)

Tübingen

2013

Tag der mündlichen Qualifikation: 05. Juli 2013
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Torsten Grust
2. Berichterstatter: Prof. Dr. Marc H. Scholl

Eberhard Karls Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Mathematisch-Naturwissenschaftliche Fakultät

A Deep Embedding of Queries
into Ruby

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat)

vorgelegt von
Manuel Mayr

Betreuer
Prof. Dr. Torsten Grust

Tübingen, 2013

Zusammenfassung

Relationale Datenbanksysteme und Programmiersprachen sind von un-
terschiedlichen Paradigmen geprägt. Datenbanksysteme beschränken sich
noch immer auf die Verarbeitung flacher Tabellen (ein Modell, das sich
insbesondere für große Datenmengen bewährt hat). Dem gegenüber un-
terstützen moderne Programmiersprachen eine Vielzahl von Hilfsmittel und
Abstraktionsmöglichkeiten, die den Entwicklern die Datenmodellierung erhe-
blich erleichtern. Unter diesen Hilfsmitteln finden sich beispielsweise geord-
nete und verschachtelte Datenstrukturen samt entsprechenden Operationen,
um diese zu verarbeiten.

Da Datenbanksysteme aus den meisten Webapplikationen nicht mehr
wegzudenken sind, sind insbesondere Web-Entwickler dem ständigen Wech-
sel zwischen diesen beiden Paradigmen ausgesetzt. Die Kommunikation mit
Datenbanksystemen macht es erforderlich, Anfragen in SQL zu formulieren,
um auf persistente Informationen zurückzugreifen. Um die Informationen
weiterzuverarbeiten, müssen diese in das Datenmodell der jeweiligen Gast-
sprache konvertiert werden. Es ist wenig überraschend, dass dieser Ansatz
unweigerlich zu schwer wartbaren Programmen, sowie zu Performanzproble-
men und sogar Sicherheitslücken führt.

Das Problem ist einfach: Es ist mehr als doppelt so schwierig zwei
Programmiersprachen zu benutzen als eine.

(Cheney, Lindley und Wadler)

Mit den Techniken, welche wir in dieser Arbeit vorstellen werden, rückt
die Lösung dieses Problems in greifbare Nähe. Wir wenden uns dem auf der
Programmiersprache Ruby basierenden Web-Framework Ruby on Rails
(auch Rails genannt) zu. Dabei werden wir eine Reihe von Problemen
aufzeigen, welche auf ActiveRecord, die Datenbankanbindung in Rails,
zurückzuführen sind. Unsere Aufmerksamkeit gilt vor allem der großen Ähn-
lichkeit zwischen ActiveRecord und SQL, eine Ähnlichkeit, die es mitunter
unmöglich macht, Ruby Idiome in der Formulierung von Datenbankanfragen
zu verwenden: (1) Anfragen werden im Wesentlichen basierend auf einem
sehr einfachen Konzept formuliert. SQL Fragmente werden in Ruby als
Zeichenketten formuliert und dann durch entsprechende Methodenaufrufe
direkt in eine der SQL Klauseln eingefügt. (2) Weder geordnete noch ver-
schachtelte Datenstrukturen und deren Verarbeitung werden nicht unter-
stützt. (3) Zudem werden in der Regel SQL Anfragen in Abhängigkeit der
Daten erzeugt, welche angefragt werden. Dies führt mitunter zu erheblichen
Performanzproblemen.

Mit Switch, einer nahtlosen Integration einer Anfragesprache in Ruby,
verfolgen wir das Ziel, die Grenzen zwischen der Gastsprache und dem
Datenbanksystem zu verwischen. Mit unserem Ansatz adressieren wir alle in

v

vi

ActiveRecord auftretenden Probleme auf einen Streich: Mit Switch gibt
es (1) weder einen stilistischen noch einen syntaktischen Unterschied zwis-
chen Ruby Programmen, die auf Arrays im Hauptspeicher oder Tabellen
in einer Datenbank operieren, (2) selbst wenn sich diese Programme auf
Ordnung verlassen oder verschachtelte Datenstrukturen verwenden. (3) Der
Übersetzungsmechanismus und der SQL Generator in Switch garantieren,
dass nur wenige Anfragen erzeugt werden. Dies hilft uns dabei, die Perfor-
manzprobleme, welche mit ActiveRecord entstehen, zu mindern.

In der vorliegenden Arbeit werden wir jene Schritte erläutern, die es
ermöglichen, Ruby Ausdrücke in semantisch äquivalente SQL Anfragen zu
übersetzen. Wir werden eine Reihe von sorgfältig ausgewählten Ruby Kon-
strukten und Idiomen identifizieren, deren Semantik sich auch im Daten-
bankkontext modellieren lässt. Ein Mechanismus, der uns den Zugriff auf die
Syntaxbäume dieser Konstrukte erlaubt, ebnet dabei den Weg, auf etablierte
Übersetzungstechniken aufzubauen.

Aufbauend auf einer Übersetzungstechnik namens Loop Lifting werden
aus den Ruby Ausdrücken Anfragepläne erzeugt. Diese Pläne bestehen
vorwiegend aus Primitiven aus der klassischen Relationalen Algebra. Nur
wenige Operatoren wurden hinzugefügt, um zum Beispiel geordnete Daten-
strukturen korrekt im Kontext einer Datenbank abzubilden. Diese Vorge-
hensweise erlaubt es uns zudem auf eine bereits bestehende Infrastruktur
zurückzugreifen, um die ungewöhnlichen Anfragepläne signifikant zu verein-
fachen.

Mit einem SQL Generator beenden wir unsere Reise durch die verschiede-
nen Etappen der Übersetzung. Der Generator verwandelt die Anfragepläne
in standard konforme SQL:1999 Anfragen, um von jenen Systemen zu profi-
tieren, die für die Verarbeitung großer Datenmengen prädestiniert sind.

Es sieht aus wie Ruby, ist aber so schnell wie handgeschriebenes SQL,

ist das Ideal, welches die Entwicklung und Forschung rund um Switch
antreibt.

Abstract

The mismatch between relational database systems and programming
languages is a long-standing problem in the community. Whereas database
systems still operate on flat tables, modern programming languages support
a garden variety of features, including ordered and nested data structures,
as well as data abstraction.

Particularly web developers suffer from this two-paradigms approach, be-
cause they must repeatedly undergo the mental shift from the host language
to SQL (and vice versa) that enables them to communicate with the rela-
tional back-end. It does not come as a surprise that this approach inherently
leads to unmaintainable code, performance issues, and even security holes
such as SQL injection attacks.

The problem is simple: two programming languages are more than
twice as difficult to use as one language.

(Cheney, Lindley, and Wadler)
With the techniques we developed in this work, the solution to this prob-

lem is close at hand. We will turn our focus on Ruby on Rails (Rails,
for short), a Ruby-based web-framework, and identify the key issues that
trace back to Rails’s ActiveRecord database-binding. We will demon-
strate that ActiveRecord’s query interface is little more than SQL in
disguise: (1) Query construction relies on a simplistic, concatenative seman-
tics, (2) order- and nesting-based programming is not supported, and (3) the
number and size of generated queries directly depends on the queried data.

Our efforts to provide a solution for the above problems assembled into
Switch, a deep-embedding of queries into Ruby and Ruby on Rails, which
aims to blur the traditional lines between the host language and the rela-
tional database back-end. Our approach tackles all of the above issues at
a single stroke: With Switch, there are (1) no syntactic or stylistic differ-
ences between Ruby programs that operate over in-memory array objects
or database-resident tables, (2) even if these programs rely on array or-
der and nesting. (3) Switch’s built-in compiler and SQL code generator
guarantee to emit few queries, addressing performance issues that arise in
ActiveRecord.

This thesis details the steps necessary to take a Ruby expression all the
way down to SQL. We will identify a sensible set of native Ruby constructs,
yet feasible to be translated into a datbase-executable form. A mechanism
that enables us to turn Ruby expressions into a runtime-accessible expres-
sion tree paves way for a full-fledged compiler-backend.

To take the Ruby expression towards a database-executable format, we
directly expand on a compilation technique, called loop lifting. The query
plans resulting from this technique primarly consist of primitives that resem-
ble the operators of the classical relational algebra, enriched with ranking

vii

viii

facilities to correctly reflect order. We take advantage of an existing opti-
mization infrastructure designed to significantly simplify the unusual plan
shapes stemming from the loop-lifted compilation.

With the SQL:1999 code generator we conclude our journey through
the different stages of our compiler. The code generator turns intermediate
algebraic plans into strictly standard-compliant SQL:1999 queries and lets
them take advantage of one of the most capable systems for processing large-
scale data available today.

Looks like Ruby, but performs like handcrafted SQL,

is the ideal that drove the research and development effort behind Switch.

To My Grandmother
Aloisia Antenhofer

It is my humble attempt at thanking her for
everything she has done for me in my life.

Acknowledgments

Several years have passed since I started to work at the Technische Universität
München, when Torsten offered me the chance to become a part of his team. I
gladly accepted and never looked back, although there were times when I was
having difficulties believing in myself. During all this time, Torsten has never
lost faith in me. His guidance and invaluable advice often saved me from getting
stuck in a dead-end. I am deeply grateful for the constant support I have received
throughout the last years. Thank you so much, Torsten!

I would like to thank all fellow contemporaries at the Technische Universität
München and at the Eberhard Karls Unversität Tübingen for the thriving and
lively setting they provided all through the last years. Particular thanks are due
to Jan Rittinger, with whom I shared my office for a very long time. With his
astuteness and his profound knowledge of relational concepts he could often help
me to sort out my thoughts. Thanks for all the shared experience and the countless
discussions.

Apart from the working environment, I owe thanks to numerous other people
who have accompanied me along my path. Special thanks go to Andrea Reichhal-
ter, Gregor Kovács, and Nicole Christiane Kaden for their company and friendship.
Nicole also agreed to review this thesis and brought clarity to my writing. Fur-
ther, I would like to thank my girlfriend Guliza for bearing with me for the last
six months when I decided to spend more and more time at the university. All of
you have become an important part of my life!

In fact, I have no words to express my gratitude towards my family. My
mother and grandmother suffered most from my constant absence, but they never
complained. I have no doubt that without their love and constant support this
work would not have been possible.

I love you!

xi

Contents

Zusammenfassung v

Abstract vii

Acknowledgments xi

1 Introduction 1
1.1 Programming Languages and Databases: Distant Shores 2

1.1.1 Impedance Mismatch . 4
1.2 State-of-the-art Database Bindings 4

1.2.1 Call Level Interface . 5
1.2.2 Language-Integrated Queries 6

1.3 Contributions of this Thesis . 6
1.4 Outline . 8
1.5 Prior Publications . 9

2 Query Integration into Ruby 11
2.1 A Survey of ActiveRecord . 13

2.1.1 Dynamic Finder Methods 14
2.1.2 Query Methods . 15
2.1.3 Relationships . 16

2.2 A Critique of ActiveRecord . 17
2.2.1 Spree: A Rails-Based E-Commerce Platform 17
2.2.2 Style Matters! . 19
2.2.3 SQL Translation . 19

2.3 Natural Query Embedding for Ruby 20
2.3.1 Collections and Enumerations 22
2.3.2 The Route from Ruby to Queries 24

2.4 Idiomatic Ruby . 26
2.5 The Language . 28
2.6 A Type System for Switch . 33
2.7 A Horizontal and Vertical Array-Representation 36

xiii

xiv CONTENTS

2.7.1 Formalization via Subtyping 38
2.8 Coerceing Tuples into Lists . 41

2.8.1 Coercion on Subtypes . 41
2.8.2 Coercion on Types . 46

2.9 Removing Tuple-Related Operations 52
2.10 Related Work . 55

3 A Relational Portrayal of Switch 57
3.1 A Primer in Loop Lifting . 58
3.2 A Relational Representation of Values 60
3.3 A Relational Algebra for Switch 62
3.4 Introducing the Compilation Scheme 64
3.5 Auxiliary Functions . 65

3.5.1 Gathering Items . 66
3.5.2 Adjustment of Items . 66
3.5.3 Lifting the Environment . 67
3.5.4 Restricting the Environment 67
3.5.5 Relational Zip . 69
3.5.6 Relational Append . 69

3.6 Base Types . 70
3.6.1 Binary and Unary Operators 70

3.7 Variables . 71
3.8 Tuples and Records . 71

3.8.1 Positional and Nominal Reference 73
3.9 Interfacing the Relational Back-End 74
3.10 Nesting . 76

3.10.1 Switch between Representations 77
3.10.2 (Un)Box . 81
3.10.3 Avoiding Query Avalanches 82

3.11 Surrogate Maps: A Home for Nested Lists 83
3.11.1 Appending Nested Lists . 83
3.11.2 Removing Nested Lists . 84

3.12 Conditionals . 86
3.13 Lists . 86

3.13.1 Positional Access . 87
3.13.2 The First and Last Element 89
3.13.3 Prefix and Suffix . 89

3.14 More List Functions . 90
3.14.1 Length . 91
3.14.2 Flatten . 91
3.14.3 Uniq . 91

CONTENTS xv

3.14.4 Reducing Lists . 92
3.15 Iteration . 93

3.15.1 Filtering Elements . 96
3.15.2 Establishing Order . 97
3.15.3 TakeWhile and DropWhile 98
3.15.4 Quantification and Element Lookup 99
3.15.5 Grouping . 101
3.15.6 Zip and Unzip . 102
3.15.7 MinBy and MaxBy . 104

3.16 Related Work . 105

4 SQL Code Generation 107
4.1 Target Language: SQL:1999 . 108

4.1.1 A Simple Translation Scheme 109
4.2 Basic Techniques . 111

4.2.1 Tiling the Query Plans . 113
4.2.2 Identifying Repeated Sub-Queries 116
4.2.3 Common Table Expressions 119

4.3 Translation Rules . 120
4.3.1 Value Expressions . 121
4.3.2 Predicates . 124
4.3.3 Working with (Multiple) Tables 124
4.3.4 Duplicate Elimination . 125
4.3.5 Ranking . 126
4.3.6 Grouping . 127
4.3.7 Set Operators . 127
4.3.8 Serialization . 128
4.3.9 Explicit Binding . 129

5 Assessment 133
5.1 Optimization in a Nutshell . 134
5.2 Benchmark . 137

5.2.1 Drop-down List of Countries 138
5.2.2 Granting Discount to High-Volume Customers 142
5.2.3 Who Bought This Also Bought That 143
5.2.4 Checkout and Cheapest Variants 150

5.3 SQL Code Generation . 152
5.4 Quantitative Assessment . 153
5.5 Queries on DB2 . 155

5.5.1 Switch versus ActiveRecord 157
5.5.2 Switch versus SQL . 158

xvi CONTENTS

6 Wrap-Up 159
6.1 Summary . 160

6.1.1 Query Integration into Ruby 160
6.1.2 A Relational Portrayal of Switch 160
6.1.3 SQL Code Generation . 161

6.2 Ongoing and Future Work . 161
6.2.1 More Host Languages . 161
6.2.2 Ogling at Map-Reduce Frameworks 162
6.2.3 Alternatives to Loop Lifting 162
6.2.4 Proving Switch . 163

A Assessment 165
A.1 Associations between Spree Models 165
A.2 Cheapest Variants . 166

Bibliography 171

Chapter 1

Introduction

Ruby on Rails [Rub] (or Rails for short) has matured into one of the most
popular web frameworks since it was released in the two thousand and four. Within
the first months that followed its initial release, Rails achieved tremendous success
that still continues. Nowadays it serves as the backbone for a variety of notable
Web 2.0-style applications and services so rich in their complexity that they had
been hardly realizable without the sensible features Rails offers. Among them
are applications such as Github, Qype, Twitter , or Xing to name merely a few of
those widely recognized on the Web.

Before David Heinemeier Hanson came up with Rails, web applications were
homogeneous code blocks. Developers tended to intermingle routines that handle
the client-facing presentation, application logic and the interaction with a rela-
tional back-end. As demands increased, they had to cope with the overwhelming
complexity of legacy code that turned out to be unmanageable. This problem was
the incentive for the development of Rails.

Ruby on Rails imposes some constraints on the design of applications. At a
closer look, however, those restrictions prove to be a guideline to ease the devel-
opment process. The architecture of every Rails-built application follows a strict
model–view–controller [GH+94] (MVC) design pattern that enables developers to
structure their applications in accordance with

Model an interface with a relational back-end that serves application data
and holds state information,

View the client-facing presentation and interaction, typically based on
HTML5/CSS/AJAX, and

Controller the specification of the application’s call interface, typically in
terms of a REST-ful URL router.

1

2 CHAPTER 1. Introduction

These closely cooperating subsystems interact in Rails as depicted in Figure 1.1:
1 The interaction starts with a request from the client, typically a browser, sent
to the web server. Following the reception of this request, the 2 web server
delegates it to the router, which identifies it and 3 dispatches it to a controller’s
action. The controller 4 queries and 5 gathers proper data from the model, and
6 supplies the view with the data in order to render a suitable representation
for the client. 7 Then the view sends this representation back to the controller.
8 The controller hands the representation over to the web server, which in turn
9 sends it back to the client.

Rails

MVC

Browser

Web server

Router

Dispatcher

Controller

View Model

9 1

7
6 5

4

8

2

3

Figure 1.1: MVC as it is used in Rails.

1.1 Programming Languages and Databases:
Distant Shores

Even though relational database management systems (commonly abbreviated
RDBMS) have evolved into efficient query processors over the last decades, the
attempts to fully exploit these enhanced query capabilities were rare. In the Web
community database systems are usually perceived as mere storage containers and
operated as such. Most of the analytical capabilities are ignored. As we will see
in the following sections, this does not come as a surprise.

1.1 Programming Languages and Databases: Distant Shores 3

Today’s persistent systems are supported by disparate mechanisms based upon
different concepts and paradigms. On the one hand, there is the programming
language domain, which presents a Turing-complete environment, that encourages
computation over arbitrary data defined using the language type system. On the
other hand, there is the database domain, which from the programmer’s angle is
characterized by the following attributes:

Data Model. RDBMS have been designed with the mathematical concept of
relations in mind. The rather simple n-ary relation, with the table as the
conceptual representation, is the single aggregate structure in the relational
model. Each element (or row) in a relation represents an n-tuple. Relations
inherently lack the notion of order. Moreover, in the relational model, positional
addressing has been replaced by associative addressing in a sense that each
datum in a database can be uniquely identified in terms of its table name,
attribute and primary value. Consequently, the placement of new data inserted
into the database is completely left to the system.

In contrast to the relational data-model provided by database systems, pro-
gramming languages intrinsically support a diversity of data structures, such
as possibly nested or associative arrays enabling developers to shape data ac-
cording to their requirements. The developer can now allow rely on several
characteristics, such as order, that can significantly ease the manipulation and
organization of data.

Query Model. On the basis of the relational data model, the relational ap-
proach calls for set processing capabilities. The primary purposes underlying
the relational algebra is the avoidance of loops [Cod82]. Therefore, each of the
relational algebra operators entails processing whole relations and thus trans-
forms one relation into a new one. Much of the derivational capacity is obtained
by the triade: project, select and join.

This compares to the execution model of a programming language. Found
among all programming languages is some form iteration that directly re-
flects the capabilities of the underlying processing unit. A popular variant
are the enumeration-controlled loops, which originated in the do-loop in For-
tran [For]. A similar mechanism has been adopted by nearly every subsequent
language. However, the syntax widely varies and ranges from iterators [GH+94,
chap. 5, p. 257ff] in object-oriented languages to functors [Jon03, chap. 6, p.
87ff] in the functional paradigm.

SQL [MS01], the standard language of data retrieval and manipulation, largely
adopts the set-processing capabilities of its formal underpinnings. The SELECT-
construct in SQL for example embodies the project, select and join operators of

4 CHAPTER 1. Introduction

the relational algebra in a single statement. As a declarative language, SQL leaves it
to the system to take necessary steps to select proper access paths when retrieving
or manipulating data.

1.1.1 Impedance Mismatch

The conceptual and technological differences between programming language and
database domain are known as impedance mismatch [Mai90], which reflects the
whole spectrum of these diverging systems. Cook and Ibrahim identified several
problems that impede the integration of relational database systems into program-
ming languages [CI05]: (1) imperative/object-oriented programs versus declarative
queries, (2) algorithms versus tables and indexes, and (3) threads versus transac-
tions. As a result, databases are both difficult to design and develop, and attaining
good performance usually requires sensible optimization based on the knowledge
of experts.

The disparity between programming language and database domain diverts
developers’ attention from the actual task by obliging them to focus on mastering
the disparate paradigms. Hence, despite the frugality of the relational model
application builders, e.g. Ruby developers employ intrinsic structures of their
host language when formulating algorithms. In contrast to relations, arrays are
ordered. Even arbitrary nesting can be induced into arrays and hashes. The
mismatch between intrinsic data structures of the host language and relations is one
to consider when interfacing a database system. Furthermore the aforementioned
set-orientation of RDBMS is rather hard to grasp for a lot of developers. Developers
tend to interface a database by scanning whole tables and materializing them on
the host language heap, where they can rely on familiar concepts to additionally
process the data. Not surprisingly, this is destined to fail because most host
languages are not designed to cope with bulks as large as those that can be found
in a database.

1.2 State-of-the-art Database Bindings

There have been various approaches to integrating queries into a host language
environment. The degree of integration ranges from orthogonal persistence to
explicit query execution. The latter keeps data formats completely disparate and
there is no automated support for transformation between them. At this low degree
of integration programmers need to cope with multiple representation semantics
and the mappings between them. With orthogonal persistence, there is no visible
distinction between data formats.

1.2 State-of-the-art Database Bindings 5

Typically the approaches are located in the middle of this range, where the
application builder still has to specify mappings and understand the relationships
between the multiple representations, but is relieved of the task of writing explicit
translation codes. In the following two sections we present approaches on the
margins of this range.

1.2.1 Call Level Interface

A widely known example for explicit query execution is JDBC [Jdb], which aims for
database-independent connectivity between the host language Java and databases.
JDBC was intended as a call level SQL interface for the Java platform by “focusing
on the execution of raw SQL statements and retrieving their results [HC97].”

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(

"SELECT id, name, salary"
+ " FROM Employees"
+ " WHERE salary > 3000");

while (rs.next()) {
int id = rs.getInt("id");
String name = rs.getString("name");
float salary = rs.getFloat("salary");

}

Figure 1.2: Table access via JDBC

In Figure 1.2, database access is explicit. The SQL query is embedded as a
string in the program and executed on the backing store. The actual data is then
gathered by iterating over the result (ResultSet rs), which provides an iterator
interface to access the data collected by the SQL query. Attribute names are used
to extract data from the result set.

This approach manifests a high degree of impedance mismatch, yet it is popular
and in common use. Apart from JDBC, at the moment there exist several similar
approaches, as e.g. Microsoft’s ODBC [Ms] or Perl’s DBI [Per], to name a few.

The primary mechanism for explicit query execution is the call level inter-
face [VP95] (abbreviated as CLI). Characteristic for CLI is the execution of SQL
queries through a standardized interface, in which queries are represented as strings
in the program. However, call level interfaces present a number of significant prob-
lems we can identify in the above example: (1) The queries remain unchecked until

6 CHAPTER 1. Introduction

runtime, because they are embedded as strings in the program. (2) Query results,
represented as dynamically typed objects, again are accessed by strings.

1.2.2 Language-Integrated Queries

A better, yet in terms of orthogonal persistence, not fully satisfactory approach
to integrating database technology into programming languages is to merge a full
fledged query language and a host language like C#. Microsoft has pursued this
goal with LinQ [BMT07; Lin], which is an extension to the .Net framework.

var result =
Employees.Where(emp => emp.Salary >= 3000).

Select(emp => new { Id = emp.Id
, Name = emp.Name
, Salary = emp.Salary });

Figure 1.3: Accessing a table via LinQ in C#.

Although Figure 1.3 is semantically equivalent to Figure 1.2, the integration
into to the host language C# has come a long way. The keyword var introduces a
strongly typed variable, whose type is determined by the type inference of LinQ.
The methods Where and Select in the above example are provided by LinQ and
accept lambda expressions (x => expr), which allow the programmer to pass code
rather than simple data to be executed. After having been type checked, the
query is compiled to a database agnostic intermediate representation. Following
the translation into SQL statements, the resulting queries are sent to the backing
store to be executed. The result is then shipped back into the host language heap
and materialized into a regular C# object that can be manipulated as such.

1.3 Contributions of this Thesis
This thesis focuses on the deep embedding of queries into the host language Ruby.
Our approach makes it possible to evaluate substantial fragments of Ruby on
database systems. The results of this work assemble into the layered system we
named Switch, depicted in Figure 1.4:

As part of this 1 we develop techniques to derive expression trees representing
the source Ruby program at runtime. We will devise 2 a type-sensitive rewrite
system as well as 3 translation rules to compile these trees into an algebraic
representation, based on loop lifting [Teu06; GR08; Sch08]. While this representa-
tion is independent of a specific database system, it is susceptible to a variety of

1.3 Contributions of this Thesis 7

4 optimization techniques that may be applied to the algebraic plans (a detailed
discussion of these techniques is beyond the scope of this theses and can be found
in [Rit10]). In addition, we provide a 5 translation scheme for compiling the al-
gebraic query plans into database executable SQL:1999 statements. The resulting
tables are then 6 materialized in the Ruby heap in the form of arrays and hashes.

Ruby
Program Result

Expression
Tree

Algebraic
Plans

SQL Queries

1

2

3

4

5

6

Sw
it

c
h

Ruby Runtime

Language

Loop Lifting

SQL Code Generation

Database Back-End

a b ca b ca b c

Figure 1.4: The above picture shows the layers that take part in the translation of
a Ruby fragment into a database-executable SQL query. The blue and red signals
() respectively denote query shipping and result shipping.

8 CHAPTER 1. Introduction

1.4 Outline

In the following, we will briefly discuss the overall structure and the topics we will
cover in the course of this work:

Chapter 2: Query Integration into Ruby.
We start with an overview of the principal features of ActiveRecord, the
state of the art database abstraction layer used in Rails. In the course of this,
we will discuss the translation strategy that ActiveRecord pursues to turn
the Ruby expressions into a database-executable format.

We will then shift our focus to Switch, the query compiler that we devise
in this work. Following the identification of Ruby fragments suitable to be
executed on a relational database back-end, we proceed with a thorough de-
scription of the language features. With a proper type system, we will then lay
the foundation for type sensitive rewrites, which enable us (i) to automatically
coerce tuples into lists (depending on the context) and (ii) remove tuple specific
functions at compile time.

Chapter 3: A Relational Portrayal of Switch.
In this chapter, we start off with a refresher on loop lifting. We then jump di-
rectly into the translation of Switch expressions. The expression are instantly
translated into a variant of the classical relational algebra, which assumes the
role of an intermediate representation. The choice for relational algebra as in-
termediate language has its particular strength. The relational operators are
well defined and independent from a specific database back-end. At the same
time, the algebraic primitives sufficiently reflect the query capabilities of mod-
ern RDBMS. Particularly, the mathematical characteristics of the relational
primitives offer additional potential for a variety of optimizations.

In the following, we consider each Switch construct separately to provide a
semantically equivalent relational expression. This translation faithfully deals
with tuples, records, and (nested) lists and associated operations. Addition-
ally, the semantics of order-sensitive operations is supported and preserved
throughout the entire calculation.

Chapter 4: SQL Code Generation.
SQL as the standard query language represents an ideal starting point to target
a variety of commercial database systems. In this chapter we describe the
process of translating the algebraic plans (from Chapter 3) into SQL statements.
We start with a simple translation scheme to illustrate the distinguishable
features of these two paradigms.

1.5 Prior Publications 9

In the following, we refine the translation. The result is a set of rules that
partition each algebraic plan into a set of tiles that possibly contains several
algebraic primitives. Each tile is then collapsed into a single SQL statement to
jointly implement the original semantics of the algebraic plan.

Chapter 5: Assessment.
Here, we will see how Switch can benefit from the advanced optimizers partic-
ipating in the query compilation of modern relational database systems. In the
beginning of this chapter we will take a look at some of optimization strate-
gies that can be applied to the algebraic plans derived from the loop-lifted
compilation.

We then introduce a diversity of query classes, each of which is formulated in
three variants: (i) an ActiveRecord formulation, (ii) a Switch formulation
and (iii) an SQL formulation. We will dissect these queries and observe how
they are executed on the database system. In the course of this, we will inspect
and explain the factors that affect the database system to decide on a specific
execution plan.

In the concluding experimentation section we will run the variants against each
other and database instances of various size to measure the evaluation time. We
will see that the Switch formulations can compete with the SQL formulations.

1.5 Prior Publications
Parts of this work have been published, or indirectly benefit from the following
papers. I would like to thank Torsten Grust, Tom Schreiber, Jan Rittinger, Jens
Teubner, Sherif Sakr, and Simone Bonetti for the fruitful collaboration.

T. Grust and M. Mayr. “A Deep Embedding of Queries into Ruby”. In: Proceedings
of the 28th IEEE International Conference on Data Engineering. ICDE 2012. 2012,
pp. 1257–1260

T. Schreiber, S. Bonetti, et al. “Thirteen New Players in the Team: A Ferry-based
LINQ to SQL Provider”. In: Proceedings of the 36th International Conference on
Very Large Data Bases. VLDB 2010. 2010, pp. 1549–1552

T. Grust, M. Mayr, and J. Rittinger. “Let SQL Drive the XQuery Workhorse”.
In: Proceedings of the 13th Int’l Conference on Extending Database Technology.
EDBT 2010. 2010, pp. 147–158

T. Grust, M. Mayr, et al. “Ferry: Database-Supported Program Execution”. In:
Proceedings of the 28th ACM SIGMOD Int’l Conference on Management of Data.
SIGMOD 2009. 2009, pp. 1063–1066

10 CHAPTER 1. Introduction

T. Grust, M. Mayr, and J. Rittinger. “XQuery Join Graph Isolation”. In: Proceed-
ings of the 25th Int’l Conference on Data Engineering. ICDE 2009. 2009, pp. 1167–
1170

M. Mayr. “Pathfinder meets DB2”. In: Ph.D. Workshop of the 11th Int’l Conference
on Extending Database Technology. EDBT 2008. 2008, pp. 59–64

T. Grust, M. Mayr, et al. “A SQL:1999 Code Generator for the Pathfinder XQuery
Compiler”. In: Proceedings of the ACM SIGMOD Conference on Management of
Data. SIGMOD 2007. 2007, pp. 1162–1164

Chapter 2

Query Integration into Ruby

The conceptual backbone of each software system is a domain model. Domain mod-
els comprise the entities, attributes, and relationships which govern the problem
domain. Since the advent of the object-oriented paradigm in the mid eighties, this
programming model has been predominantly used to build complex applications.
Object oriented languages provide typed objects consisting of state, behavior, and
references to other objects and hence endow an ideal environment to design rich
domain models.

Typically, objects from the domain model need to outlive the process that
created it. This persistence aspect of applications demands for a long-term storage
architecture, such as relational database management systems. Mapping objects to
RDBMS is of critical importance to persistence applications. In contrast to object-
oriented programming languages, RDBMS are equipped with tables of tuples and
foreign key constraints to establish relationships to other tuples.

A common approach to overcoming the differences between object-oriented
languages and RDBMS is object-relational mapping (or ORM for short). Fowler
identified two widely used architectural patterns [Fow02, Ch. 10] that can be ap-
plied to persistent systems (Figure 2.1 depicts the basic difference):
(1) An ActiveRecord is a domain object in object-oriented programming that

mimics a row in a database relation. Additionally each domain object is
equipped with the ability to update, insert or delete itself from the database.

(2) DataMapper is a software layer that separates a domain object from its
underlying database. Its role is to transfer data between these two storage
layers. In contrast to ActiveRecord, the domain objects are not even
aware of a persistent storage, such as a database system.

Rails heavily relies on ActiveRecord to interface a relational database sys-
tem. The chapter starts with a description of the features and characteristics of

11

12 CHAPTER 2. Query Integration into Ruby

Data MapperDomain
Object

Domain
Object

DataMapper ActiveRecord

Figure 2.1: With DataMapper, the domain objects are completely separated
from the persistence layer. Their purpose is to apply domain logic to the data
while the interaction with the persistent store is completely left to the mapper
objects. With ActiveRecord, the domain objects are furnished with the ability
to communicate directly with the database system to gather relevant data. Addi-
tionally, they are equipped with behavior in form of methods in order to process
this data accordingly (domain logic).

ActiveRecord. In particular, we will see how under the regime of Active-
Record, queries are constructed through the chained invocation of query meth-
ods. We demonstrate that ActiveRecord is little more than SQL in disguise
and conclude this critique of ActiveRecord with a demonstrating example of
the mechanism that is used to turn these queries into SQL statements.

In the second part of this chapter, we present Switch, a deep embedding
of relational queries into Ruby, and Ruby on Rails. Switch may be used
as a drop-in replacement for the query functionality offered by ActiveRecord.
We will identify a language fragment of Ruby that is suitable to be translated
into relational queries. In particular, we will underline that with Switch there
is no syntactic or stylistic difference between Ruby programs that operate over
in-memory array objects or database-resident tables.

Following the description of the principal language components, we will turn
our focus to a number of type-sensitive rewrites that help us to adopt the lenient
syntactic conventions of Ruby. This leads us to an approach in which arrays can
be regarded as either tuples or lists. On the database back-end, this classification
determines the representation of an array either as a row (in case of a tuple) or as a
column (in case of a list). To support this functionality, we introduced polymorphic
functions into the language that can handle both tuples and lists along with a type
system that can decide which variant is eventually used. Moreover, we provide a
rewrite mechanism based on subtyping to automatically convert tuples into lists if
appropriate.

2.1 A Survey of ActiveRecord 13

2.1 A Survey of ActiveRecord

ActiveRecord is the primary persistence mechanism that is used in Rails. As
an object-relational mapper ActiveRecord closely follows the standard ORM
regime of a closely linked domain model and database schema: (1) Each domain
class has a corresponding table in the database schema, (2) each object attribute
is mapped to its corresponding columns and (3) instances of an ActiveRecord
class resemble individual rows in a table.

In Rails a connection between a class and a table is established by inheriting its
functionality from ActiveRecord::Base. Characteristic for Rails is the convention
that a class named 〈T〉 (singular) is instantiated for any base table named 〈T〉s
(plural). In the case depicted in Figure 2.2, a Rails application will refer to T,
rather than Ts (Rails comes with a set of rules for inflecting plurals for English
words).

Another peculiarity, as shown in the figure below, is that class T does not men-
tion any of the columns in table Ts. ActiveRecord determines them dynamically
at runtime, by reflecting on the schema inside the database. The corresponding
getter and setter methods are then generated and bound to an instance of T with-
out any further action by the developer. As a consequence it becomes possible
to access fields, by standard Ruby methods t.a and t.a = a (to read and write
column a) for any instance t of class T.

class T < ActiveRecord::Base

end

Ts
a b c
...

...
...

a b c
...

...
...

inflection

columns determined dynamically

Figure 2.2: ActiveRecord maps a class name to a table name whereas column
names are determined dynamically at runtime.

Whereas Ruby immanently uses dynamic typing—objects are defined by their
call interface only—a column in a database table is associated with a type that
determines the sort of the values contained in it. ActiveRecord gleans type
information about those columns from the database schema and considers this
information in order to map values taken from a column to instances of the corre-
sponding classes in Ruby—e.g., integer columns are mapped to instances of class
Integer in Ruby. However, because Ruby is dynamically typed, when a row is
brought into the Ruby heap, type information is neglected as long as the user
does not update a field with an inappropriate value. When attempting to write

14 CHAPTER 2. Query Integration into Ruby

the object back to the table ActiveRecord converts this value to the expected
type unnoticeably, rather than preventing the user from performing an unsafe ac-
tion. If the type of the value and column are incompatible, ActiveRecord falls
back on default values, such as the number zero for numeric column types.

2.1.1 Dynamic Finder Methods

Whereas an ActiveRecord class embodies a table in a database, domain-model
objects are akin to individual rows in a table. In addition to automatically gener-
ated getter and setter methods each class is equipped with dynamic finder meth-
ods. Finder methods are the simplest query abstraction that can be found in
Rails. Their purpose is to retrieve rows from the back-end and convert them to a
domain-model object. Generally, such methods wrap commonly used SQL queries
and return ActiveRecord objects.

A finder method, such as T.find_by_a(a) in Figure 2.3a, delivers exactly one
object required to meet the criterion that the value in field a must match the
parameter a. Figure 2.3b shows the SQL statement that ActiveRecord will
derive when invoking a finder method in Rails.

Essentially, the invocation of a finder method breaks down into two phases. In
the following description, we refer to the finder method T.find_by_〈a〉(a):

Collection Phase. All decisive parts of the finder method must be collected:
1 The plural form of the model name T (namely Ts) serves as the name for
the base table (FROM) in the database back-end. 2 The postfix 〈a〉 of the finder
method, which is used to determine the column to be checked, 3 together
with the value a are turned into a filter condition (WHERE) and woven into the
template SQL query shown in Figure 2.3b. Only rows whose column a matches
the value a are allowed pass the condition and finally appear in the final result.
Additionally, the LIMIT clause confines the result to exactly one row.

Retrieval Phase. After the placeholders denoted by 1 , 2 and 3 in the template
SQL query on the next page have been substituted, the query is sent to the
database system. The resulting data is then turned into an array of Ruby
hashes [{ a:a, b:b, c:c }, . . .] by the database driver and presented to
the call level interface of ActiveRecord. In conclusion, because we expect a
single row, the hash is extracted from the array and converted into an instance
of the class T.

Finder methods are the most elementary query abstractions that can be found
in ActiveRecord. However, the techniques described here already convey an
idea of how ActiveRecord operates when constructing SQL queries.

2.1 A Survey of ActiveRecord 15

T.find_by_ a(a)

(a)

SELECT " Ts".*
FROM " Ts"
WHERE " Ts". a = a
LIMIT 1

(b)

3
3

1

1
1
1

2
2

Figure 2.3: Placeholders in the SQL query denoted by 1 , 2 and 3 are substituted
by the corresponding parts of the finder method on the left.

2.1.2 Query Methods

The query capabilities of ActiveRecord have come a long way. In past ver-
sions, developers fell back on variants of finder methods to express more complex
queries. In version 3.0 and onwards ActiveRecord::Relation has emerged as the
primary query abstraction. In the following, we refer to instances of the class
ActiveRecord::Relation as query objects.

Under the regime of ActiveRecord::Relation, queries are constructed by the
chained invocation of specific query methods. The method invocation chains origi-
nate in table classes T reflecting the base tables present in the underlying database
back-end; in fact, the table class T delegates query methods to a blank query ob-
ject.

T.select().
where ().
group ().
having().
group ()

SELECT FROM Ts
WHERE

GROUP BY ,
HAVING

1
2
3
4
5

1
2
3
4

5

Figure 2.4: SQL query clauses are gathered by the chained invocation of query
methods.

Each query object simply resembles an SQL query. Query methods—such as
select, group, where—implement a concatenative semantics of query construc-
tion, i.e., an ActiveRecord::Relation object gathers query clauses of a SELECT-
statement as shown in Figure 2.4; query objects maintain a list for each SQL clause.
When invoking a query method o.q(x), the calling query object o is cloned along
with its SQL clauses. Depending on the query method q, the formal argument x
is tracked in one of the lists of the cloned query object.

16 CHAPTER 2. Query Integration into Ruby

As with finder methods in Section 2.1.1, all the decisive parts of the SQL query
are gathered before the query can be sent to the database system. Whereas in
finder methods the data retrieval phase takes over directly after invocation, query
objects collect SQL clauses successively by chaining query methods. Only when the
result is going to be consumed—for example through the invocation of a method
that enumerates the result, such as each() or map()—an attempt to construct
executable SQL text from the clauses gathered so far is triggered.

2.1.3 Relationships

Most applications are based on domain models with entities that have a relation-
ship to other entities—for example, an order includes at least one line item. Within
a database schema these relationships are expressed by foreign-key relationships.

class Order < ActiveRecord::Base
has_many :line_items

end

Orders

id user
¯
id item

¯
total · · ·

...
...

...
...

class LineItem < ActiveRecord::Base
belongs_to :order

end

Line
¯
Items

id price quantity order
¯
id · · ·

...
...

...
...

...manyone

Figure 2.5: Associations in ActiveRecord

Likewise, ActiveRecord features the notion of associations1 between its
domain-model objects, and more important, the knowledge about these relation-
ships can also be employed in queries. Relationships are established in a class
by declaring them via has_one, has_many and has_and_belongs_to_many, which
specifies one-to-one, one-to-many and many-to-many relationships respectively.
Another specifier, belongs_to, is used in a one-to-one or one-to-many relationship
to denote membership to another object; in other words, the model for the table
that contains the foreign key always includes the belongs_to declaration. Fig-
ure 2.5 illustrates how relationships are modeled in both a database schema and
ActiveRecord. An example of how associations are used in a query and how
they translate into SQL queries shall be given in Section 2.2.

1In object-oriented parlance, an association between objects is similar to a relationship be-
tween tables.

2.2 A Critique of ActiveRecord 17

2.2 A Critique of ActiveRecord

Even though ActiveRecord comes with a variety of query methods, instances of
ActiveRecord::Relation are little more than an SQL in disguise: SQL clauses are
gathered by chaining query methods; depending on these clauses, an executable
query is constructed as soon as the result is going to be consumed.

The following discussion will revolve around Spree—a versatile Rails frame-
work to construct E-Commerce applications [Spr]—to shed some light on how
queries are formulated using ActiveRecord in a concrete setup.

2.2.1 Spree: A Rails-Based E-Commerce Platform

A Spree-generated web shop supplies operators with core functionalities—such as
maintaining a collection of products and customers, and keeping track of the orders
made by the latter. Spree is set up on a new Rails application that is enriched
by a flexible domain model and customizable views, designed to run a web shop
“out of the box.” The domain-model data reside in relational tables, whose layout
closely resembles the TPC-H benchmark (Figure 2.6 shows an excerpt).

Orders

id user
¯
id item

¯
total · · ·

...
...

...
...

Users

id name · · ·
...

...
...

Line
¯
Items

id price quantity order
¯
id · · ·

...
...

...
...

...

Figure 2.6: Tables containing Spree domain-model data (excerpt). The id columns
serve as primary keys, order_id and user_id references the Orders and Users table
respectively.

“ What would be the cost of granting a 10 percent discount to the open
orders placed by all high-volume customers? ”As a Web-Shop operator this might be a pressing strategic question that must

be answered. The Ruby snippet in Figure 2.7 answers this question using the
ActiveRecord approach to query embedding. The formulation is fourfold:
(1) We define a high-volume customer to be a user who hash placed more than

ten orders in the webshop; the variable high_vol (line 2) reflects this. High-
volume customers are determined in lines 5 through 8. The orders are

18 CHAPTER 2. Query Integration into Ruby

1

2

3

4

1 discount = 10.0/100 # grant a 10 percent discount ...

2 high_vol = 10 # ... to customers with more than

3 # 10 open orders

4

5 high_vols = Order.group("user_id").

6 having(["COUNT(user_id) >= ?",

7 high_vol]).

8 select("user_id")

9

10 open_orders = Order.where(["user_id IN (:tc) AND state = :s",

11 { tc: high_vols.map(&:user_id),

12 s: "O" }])

13

14 items = open_orders.includes(:Line_Item).

15 map(&:line_items).flatten

16

17 cost = items.sum {|i| i.price * i.quantity} * discount

Figure 2.7: Ruby code written in ActiveRecord –style. The red code fragments
are not considered to be database-executable.

grouped according to the user_id that uniquely identifies a customer; hence,
each group contains the orders made by a customer. The criterion applied
to each group in line 7 ensures that only groups containing more or equal
high_vol orders can pass our filter.

(2) Following the identification of proper customers, their outstanding orders
(state is equal to "O") must be found. This is achieved in the where() method
in line 10. Note that the result of the preceding query is used to take only
high-volume customers into account. Methods, such as map(), consume the
query result and thus trigger an attempt to materialize the data from the
back-end into the programming language heap; that is where map() is then
executed.

(3) Next, in line 14 all line items belonging to the orders are gathered using
an association via the query method include(). Again, the line items are
obtained by iterating over the open orders via map(). Because each order
comprises several line items, this leads to a nested list which is then flattened
(flatten()) to simplify the following calculation.

(4) Finally, the aggregated sum of price and quantity of the line items is used
to calculate the estimated cost of a 10 percent discount.

2.2 A Critique of ActiveRecord 19

1

2

3

4

1 SELECT user_id
2 FROM Orders
3 GROUP BY user_id
4 HAVING COUNT(user_id) >= 10;
5
6 SELECT *
7 FROM Orders
8 WHERE user_id IN (

714 user ids︷ ︸︸ ︷
4,7,. . .,1498,1499)

9 AND state = ’O’;
10
11 SELECT *
12 FROM Line_Items
13 WHERE order_id IN (

6124 order ids︷ ︸︸ ︷
1,2,. . .,59973,59974);

Figure 2.8: SQL statement sequence generated for the Ruby snippet of Figure 2.7.
Violet code is copied verbatim.

2.2.2 Style Matters!

Even though the Ruby snippet shown in Figure 2.7 is workable and delivers a
correct result, it does not bear many similarities to a well-written Ruby program.
The code is sprinkled with SQL text fragments (in quotes ". . .") and displays
resemblance with SQL queries.

In the argument of the where() method in line 10 parameter markers (?, :tc,
:s) are used to weave Ruby values into the query clause; query construction those
markers are substituted by the corresponding values in the Ruby hash. Although
the values are sanitized before sending them to the database, the resulting queries
are not sufficiently2 shielded against SQL injection attacks [WS07].

Overall, the query capabilities of ActiveRecord gives the impression that
SQL mastery is indispensable to write efficient Ruby programs interacting with
a database back-end. Query methods are convenient to insulate developers from
using SQL in their daily routine—when searching for particular objects in a ta-
ble (one object = one row) using simple filters—but as the queries become more
complex they are unable to further assist you.

2.2.3 SQL Translation

The rails metaphor that Ruby on Rails adopted for its programming style based
on conventions also applies to query construction: “query construction on rails.”
Like Rails in general, query construction is also pervaded by conventions, to

2While this thesis is being written a SQL injection vulnerability regarding the current Ruby
on Rails versions (http://seclists.org/oss-sec/2012/q2/504) was reported.

http://seclists.org/oss-sec/2012/q2/504

20 CHAPTER 2. Query Integration into Ruby

that developers are encouraged to stick to. Though adhering to certain principles
may lead to remarkable productivity boosts when rushing through the every day
routine, it becomes difficult to move “off rails” to overcome the restrictions enforced
by conventions.

All things considered, the aforementioned cases result in programming pat-
terns like those in Figure 2.7. There, Ruby methods operating on native data
structures of the programming language (map(), flatten(), sum()) are intermin-
gled with ActiveRecord queries. Query results are post-processed by the Ruby
interpreter although the relational back-end would be capable of performing the
entire computation close to the back-end. Interspersing native Ruby methods
with ActiveRecord queries entails an execution context switch from program-
ming language to the database query-processor and back. This phenomenon can
be found in Ruby’s execution traces.

The queries embedded into the Ruby source code via ActiveRecord in Fig-
ure 2.7 (denoted by 1 , 2 and 3 , respectively) lead to the corresponding SQL
queries in Figure 2.8. Note that the violet code fragments are literally adopted
in the SQL clauses. The queries are merely used to bring a set of objects into
the Ruby heap and leave the time consuming tasks—identified by the red code
fragments—to the programming language, which, in most cases, is overwhelmed
by the sheer volume of data it is facing.

Another aspect that affects the SQL queries on the preceding page is that the
Ruby heap is used to carry intermediates of considerable size from query to query
(see the arrows). The resulting huge IN (· · ·) clauses may easily overwhelm the
back-end’s SQL parser. The user ids identified by the values list 4 are generated
by the equally identified fragment in the Ruby source code that is the result of
query 1 ; note that map triggers ActiveRecord to construct the corresponding
query. In contrast to the user ids, the IN clause containing the order ids is caused
by the fragment 3 in the Ruby source, using include(:Line_Item) to determine
the line items to each order. Based on the open orders, the identifier list is derived
as the result the of query in 2 .

2.3 Natural Query Embedding for Ruby

Ruby is an object-oriented script language with dynamism as part of its philoso-
phy; in Ruby virtually everything may be altered at runtime:

Dynamic Typing
In Ruby, objects as well as classes in Ruby are defined by their call interface
exclusively, i.e. the methods they are prepared to respond to when called on.
When, due to a method invocation o.m(x), a message is sent to an object the

2.3 Natural Query Embedding for Ruby 21

method m is searched at runtime within its class definition. If the class lacks
a method m with a single argument x Ruby continues the lookup in the next
class in the ancestor chain until the method is found. This behavior is known
as late binding : the decision to retrieve a method is made at the latest possible
moment.

Recall that objects in Ruby, despite being instances of a certain class, are not
subject to type checking based on classes; as long as an object responds to the
method being called upon, Ruby will not complain. In Ruby this is called
duck typing.

Open Object Model
Another facet of Ruby is that any object may be extended by a new function-
ality at runtime3. Note that classes in Ruby are objects as well. Internally it
does not distinguish between objects and classes; classes are mere objects with
method containers that act as object factories.

The following mechanism is involved in which an existing method is altered or
a new method is added to an object at runtime: Let o be an instance of class
C. Both altering an existing and adding a new method cause a new class C ′
to be introduced and inserted between o and its original class C. The object o
is now an instance of class C ′, and C becomes the immediate ancestor of C ′.
Hence, when invoking method m′ on o, the lookup for m′ begins in C ′ rather
than in C. Ruby keeps these details to itself rather than revealing them to
the programmers, who are not even aware of the existence of C ′ 4.

Metaprogramming
Altering the behavior of a program within the program itself is called metapro-
gramming. Lisp was the first language to employ this technique. Lisp is
homoiconic, i.e. the primary representation of a program is accessible as a
primitive data structure in the program itself. In Lisp both data and a pro-
gram are represented as simple lists and thus easily modifiable by constructs
of the language itself.

Ruby’s design is heavily influenced by Lisp5, so it is no surprise, they share
the same virtues. Even though Ruby is not considered to be homoiconic,
it is almost as malleable as Lisp. Ruby exposes some of the internals of
its runtime model in the form of hooks that may be harnessed to react to
certain events, such as the invocation of unsupported methods on objects.
Furthermore, Ruby’s open object model enables any program to adapt itself
3Rubyists often refer to this as “monkey patching”.
4Because of its secret nature C ′ is called eigenclass.
5http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/179642

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/179642

22 CHAPTER 2. Query Integration into Ruby

to its environment to build flexible APIs. For example, the design of Active-
Record is heavily influenced by the metaprogramming abilities of Ruby: the
tight coupling of ActiveRecord classes with the database tables prompts
the classes to automatically define corresponding field names for each column.

Another valuable language feature that is coupled with metaprogramming is
Ruby’s ability to analyze itself; in programming languages this is called re-
flection. Reflection enables a programming language to examine itself during
runtime. Programs can discover the following informations about themselves:
(1) currently active objects, (2) class hierarchies of objects, (3) the attributes
and methods of an object, and (4) information on methods.

Ruby’s dynamic nature is closely tied to the idea of internal domain-specific lan-
guages, or DSLs [Hud98]. Internal DSLs are task-specific extensions of a general-
purpose host language enabling the programmer to concisely specify solutions to
a specific problem domain, and hence are only suitable only for a limited purpose.
Usually such languages are equipped with primitives that are closely tied to the
domain they are operating on, and thus make it easy for domain experts to both
understand and formulate code. Despite having a long tradition in the computing
landscape (particularly in Lisp), DSLs have been neglected most of the time and
have only recently gained attention with the advent of Ruby on Rails, which
can be regarded as a set of domain-specific languages devoted to the seamless
construction of web applications.

2.3.1 Collections and Enumerations

Since most programs deal with collections of data, Ruby is equipped with two
built-in classes: arrays and hashes. Because these structures are so pervasive in
most programs, they come with concise notations to construct literals.

Arrays contain a set of references to other objects. Each reference occupies
a position in the array and may be indexed with a non-negative integer value,
starting with 0. Ruby is conveniently equipped with a concise notation to define
literal arrays using square brackets. The following code snippet shows an example
of how arrays may be created and accessed (we use to indicate the value of the
expression):

a = [1,2,3]; a[1] # 2

Likewise, hashes are the Ruby-way to provide associative arrays (or dictio-
naries). They are similar to arrays; the difference between them is that a hash is

2.3 Natural Query Embedding for Ruby 23

not limited to non-negative numbers. It can be indexed with any type of object
that bears some notion of equivalence. Hashes can be constructed using braces
({}) as the following snippet demonstrates, and, like arrays, their elements may
be accessed with square brackets:

h = {:a=>1, :b=>2, :c=>3}; h[:b] # 2

Enumerable

Because the design and elegance of the Enumerable module are influenced by two
language features of Ruby, we shall briefly explain those in the next two para-
graphs before we proceed to discuss it in detail. The features in question are
blocks/lambdas and mixin modules. Both constructs are reminiscent of functional
languages and lead to a natural programming style.

Mixin modules (or mixins for short) are one of the defining characteristics
of Ruby and to some extent similar to type classes in the Haskell programming
language, which is the foundation for polymorphism in the language. With mixin
modules it becomes possible to share similar functionalities throughout otherwise
unrelated classes.

Blocks and lambdas are a language feature inspired by functional program-
ming languages. Although they have slightly different semantics, both may be seen
as function objects encapsulating code that may be injected into methods in order
to influence their behavior. Both blocks and lambdas exhibit closure semantics,
i.e. they retain variables that are in scope when they are constructed, and make
them accessible in their context. An example of block notation can be found in
Figure 2.9.

The Enumerable mixin is a generic iteration facility applicable to any collection
data-type that exhibits the properties of a monoid. The mixin furnishes collections
with all well-known list homomorphisms [MFP91], such as methods for traversal,
searching and sorting, which involve an iterative process. Actually, Enumerable
reveals an iterative core in form of the method each() that successively visits all
items in a collection, such as map(), select(), take(), drop(), to name a few.

When invoked with a block, each() successively unveils the items by passing
them to the block and binding them to the block parameter. This is commonly used
to bring all items to an enclosing scope where they can be further processed. Every
method in the Enumerable module is built around this iterative core construct, as
e.g. the method e.map {|x| ebody}, which iterates over the elements of collection
e1 and applies the annotated block to every item in order to form the resulting
array. The code snippet in Figure 2.9a demonstrates how each() is used. The

24 CHAPTER 2. Query Integration into Ruby

block notation

module Enumerable
. . .
def map(&b)
a = []
self.each { |x| a << b[x] }
a

end
· · ·

end

(a) Implementation of map in the Enumerable
module.

[1,2,3].map {|x| x*2}︸ ︷︷ ︸
f

∗
 [f(1),f(2),f(3)]

∗∗
 [2,4,6]

(b) Sample call of map on an array
(∗ denotes the intermediate,
∗∗
 the final result)

Figure 2.9: Implementation and sample call of map on a collection.

items of the collection, denoted by self, are successively bound to the formal
parameter x in the block followed by each(). The block b is applied to every item
and its result then appended to the array a, the overall result of map. Note that
self is bound to instances of the class that hosts the Enumerable mixin.

A characteristic shared by map() in the figure above and the other methods
in Enumerable is that the items of any collection exposed by each() are inserted
into an array on which the method-specific operation is performed. The same
array is then returned as the result, so that multiple methods may be chained
to a single expression—this is known as method chaining [FR10, Ch. 35]. This
technique permits to compose rather complex algorithms using a concise notation.
Due to anonymous functions in form of block notation in Ruby, this technique
may easily lead to nested queries, such as the example depicted in Figure 2.10.

2.3.2 The Route from Ruby to Queries

In this work we present Switch, a natural query embedding that nestles the
syntactic and semantic conventions of Ruby. Due to its dynamic nature, the lan-
guage has been identified as an ideal host for internal domain-specific languages.
Furthermore, Ruby already offers an iterative facility to perform complex opera-
tions on collections of data with Enumerable that adopts the concise syntax of list
comprehensions [TP89]. Hence, we believe that a domain-specific language based
on the Enumerable module querying against database-resident tables instead of
collections in the programming language heap exhibits a perfect match between
Ruby and database technology.

2.3 Natural Query Embedding for Ruby 25

As already mentioned in Section 2.3, a DSL is a host language extension fo-
cusing on a particular domain. Usually a semantics model [FR10, Ch. 11] that
captures the behavior of a system is covered by thin layers of such languages. The
role of a DSL is to populate this model via a “parsing step.” Note that the semantic
model is an ordinary object model in the host language.

In Switch, the semantic model is understood as the abstract syntax tree
(AST for short) that renders the structure of our input language. Whereas the
front-end of a compiler uses lexical and syntactical analysis on a stream of text to
arrange an AST, we rely on a series of method calls to assemble an equal result.
The object model we use to represent the parse tree adheres to the interpreter
design-pattern [GH+94, Ch. 5, p. 243ff]. The AST at hand paves the way for a
full fledged compiler back-end concerned with static analysis, optimization and
SQL-code generation.

Introducing an abstraction in form of an AST is a distinguishable characteristic
of Switch, as opposed to ActiveRecord, in which a direct approach is employed
whereby a SQL-query template has been chosen as the semantic model. This
template is then populated by method chaining as shown in Section 2.1.

The Switch front-end is implemented as a module presenting an interface
that resembles the one of Enumerable. However, in contrast to Enumerable, which
performs operations on a collection, Switch is concerned with capturing the lan-
guage structure in order to assemble the expression tree via the method call stack.
Similar to the process depicted in Figure 2.9a on the facing page, we return a
crafted object to support method chaining.

With an equally crafted object we invoke blocks ({|x| e(x)}) to form the ex-
pression tree of all operations applied to them while the runtime of Ruby evaluates
e and its subexpressions. Using this technique, Switch does not intrude the host
language interpreter as this is the case in other approaches that work directly on
the parse tree of Ruby6, such as Ambition [Amb]. Figure 2.10 shows an exam-
ple of a Switch expression and its corresponding parse tree. Note that already
in this phase any information that recalls the object-oriented nature of its host
language has disappeared. The structure of the AST rather denotes the call to
an ordinary function map(), which is supplied with two arguments (a nested array
and an abstraction), than a method call. The same applies to the AST node that
denotes the call to the function max_by(). We will describe the rationale behind
this in Section 2.5.

In Ruby each identifier with a capital first letter is a constant. Classes and
modules are no exception. In Switch, referring to a table R in the database back-

6In Ruby 1.8 it is possible to extract the parse tree of a method (http://blog.zenspider.
com/blog/2009/04/parsetree-eol.html). This possibility has been dissipated with the advent
of Ruby 1.9 due to internal changes in the interpreter.

http://blog.zenspider.com/blog/2009/04/parsetree-eol.html
http://blog.zenspider.com/blog/2009/04/parsetree-eol.html

26 CHAPTER 2. Query Integration into Ruby

S([[1,2],[3,4,5]]).map {| x |
x .max_by {| t | t }

} # [2,5]

map

[]

[]

1 2

[]

3 4 5

λ

ox max_by

ox λ

ot ot

Figure 2.10: Arranging the parse tree implicitly over the method call stack. The
green and orange highlighted fragments mark the block variables and the corre-
sponding objects we introduce in Switch to capture the expressions applied to
them.

end is accomplished via constants. We leverage the possibility to customize this
constant-name–resolution algorithm, so that Switch gathers the database meta-
data and obtains the schema for the table R. If available, an object that represents
the underlying table is generated and bound to the constant R. This object com-
prises the following information: (1) table attributes and the types associated with
them and (2) information about constraints, such as primary keys. Commonly such
table objects introduce a query in Ruby because it entails all methods applied to
them executed under surveillance of Switch’s capturing mechanism.

However, if a Switch query starts with a literal, such as in Figure 2.10, this
literal needs to be wrapped by a function (S(·)) in order to turn it into a query
object that is under Switch’s surveillance. For the sake of readability, we omit
this function in the following examples.

2.4 Idiomatic Ruby
Ruby supports several programming idioms, which are often encountered in pro-
grams. Much like in natural languages, idioms are an important part of any pro-
gramming language and Ruby does not make an exception here [Ful06]. In fact,
idioms are one of the reasons why Ruby is generally perceived as a very elegant
and concise language.

The way in which we turn a Ruby expression into a runtime-available ex-
pression tree does not interfere with using idiomatic Ruby. Developers may thus
continue to use idiomatic constructs in the formulation of Switch queries. Most
of these constructs are not even recognized by our compiler because they are in-
stantly translated into core constructs that the compiler already knowns how to
deal with. In the following we will give you an overview of Ruby specific idioms
that remain available in the formulation of queries:

2.4 Idiomatic Ruby 27

Lambdas. We have already mentioned in the preceding section that Ruby sup-
ports anonymous functions, called lambdas. The notation

inc = ->(x) { x + 1 }

defines such a function with a single parameter and assigns it to the variable
inc. The construct & enables a user to seamlessly convert these function into
a block, so that the following expressions are equivalent:

e.map(&inc) ≡ e.map {|x| x + 1 }

In this form, developers may use data abstraction as part of their queries.

Symbols. Ruby 1.9 adds the method to_proc() to the Symbol class. Similar
to the dealing with lambdas described above, this method allows a symbol to
be prefixed with & and passed as a block to a function. The symbol is then
assumed to be the name of a method, and neatly turned into a block:

e.map(&:m) ≡ e.map {|x| x.m }

Pattern Matching Ruby allows for a simple form of pattern matching in the
block notation. Consider the following simple expression enabling the user to
access the elements of the inner array in a very natural way:

[[1,2],[3,4]].map {|x,y| x } # [1,3]

We also support this idiomatic construct in Switch to facilitate positional
access on arrays, and nominal access on records. Since we pass customized
objects to blocks in order to assemble expression trees, Ruby does not inher-
ently know how to split them properly into their constituting elements. For
this reason, we consider the resulting parse-tree of an expression

e.m {|x1,...,xn| ebody } and replace it by e.m {|x| e′body } .

In case of arrays, all variables x1 through xn that occur free in ebody are sub-
stituted accordingly by x[1] through x[n] in order to form e′body. Similarly,
if e consists of records nominal references are used to access those records by
their field names. The type system we devise in the following section will help
us to make this distinction.

Idioms enable developers to concisely express well-known programming pat-
terns and additionally may improve the readability of their queries. The idioms
listed above are a small fraction of those available in Ruby. Because most of them
serve as shortcuts that are instantly converted into core constructs, most of them
can smoothly participate in Switch queries.

28 CHAPTER 2. Query Integration into Ruby

2.5 The Language

Since Switch is a domain specific language that targets the execution on a
database back-end, this affects its design in some points. A relational database
schema is static and comprised of (1) a finite set of table names, (2) a table schema
that links each column with a domain, and (3) a set of integrity constraints, such
as primary and foreign keys. Contrary to this, Ruby is a programming language
furnished with concepts such as dynamic typing that inherently contradict the
static nature of a database schema. In this section and the following ones, we shall
define the expressions that are allowed in Switch and are thus suitable for being
translated into a database query.

Table 2.1 presents a mapping between the concrete syntax (or surface syntax)
and abstract syntax. Whereas the concrete syntax specifies how Switch terms
are written in Ruby itself, the abstract syntax is used as a notational device to
formalize the rules following in the next sections. In the following discussion we use
ē as a shorthand for e1, . . . , en and ῑ=>ē for ι1=>e1, . . . , ιn=>en. Likewise, for types,
τ̄ is used as an abbreviation for τ1, . . . , τn, and σ̄ for σ1, . . . , σm (with n,m ∈ N).

Switch emphasizes the functional facets of Ruby, which we have already
identified in Section 2.3.1: We adopt the lenient syntactical and semantical con-
ventions of the host language as well as arrays and hashes, the principal data
structures for collections. Within Switch they are reinterpreted and poured into
a formal framework that on the one hand fits snugly into the Ruby environment
and on the other hand plays along with database query processors as target exe-
cution engines. Whereas objects are ubiquitous in Ruby, at its core Switch is
oblivious of object hierarchies and method calls; the information that we actually
deal with objects is already lost in the abstract syntax tree. Consequently even
the type system reasons in terms of tuples, records and lists rather than objects.

The following list confronts the Ruby idioms with their interpretation in Switch:

1 Variables. Variables are closely tied to the block notation in Switch. A
block in Switch is the only language construct that may introduce a variable
scope.

2 Base Types. Switch is equipped with standard base types, such as numbers,
strings and booleans. Whereas numbers and strings are inherently supported
by database systems, boolean values are neglected by some implementations7
and hence approximated in Switch by integer values 1 (for true) and 0 (for
false).

7Most notably IBM DB2, does not consider boolean as a native data type in SQL queries.

2.5 The Language 29

Expressions

Item Abstract Syntax Concrete Syntax
1 e := var[x] x

2 | int[i] | dec[d] | str[s] i | d | "s"
| bool[b] true | false

3 | () | (ē) [] | [ē]
4 | {} | {ῑ=>ē} | proj(e,ι) {} | {ῑ=>ē} | e.ι
5 | <> | <ē> −
6 | table[R] R
7 | if(e1,e2,e3) if e1 then e2 else e3 end

8 | m(e,ē) e.m(ē)
| m(e,λx.eb) e.m {|x| eb}

9 | ~(e1, e2) | <(e1, e2) | 7(e1, e2) e1 ~ e2 | e1 < e2 | e1 7 e2

Meta variables
e expression x variable name
i literal integer d literal decimal
s literal string b literal boolean
ι field name m method name
R table name ~ infix operator (∈ {+, -, *, /, %})
< infix operator (∈ {==, <, >, <=, >=}) 7 infix operator (∈ {&, |})

Table 2.1: Switch source language reference

Types

τ, σ, υ ::= Int | Dec | Bool | Str atomic values
| ∀i ∈ Z : *i+ integer literals
| () | (τ̄) tuples
| [τ] lists
| {} | {ῑ : τ̄} records
| τ � σ functions
| τ t1 ∧ σt2 intersection types

(with annotations t1 and t2)

Table 2.2: Types in Switch

30 CHAPTER 2. Query Integration into Ruby

3 Tuples. As a consequence of dynamic typing, arrays in Ruby can contain ar-
bitrary types. The expression a = [1, "Lisa", 23.3], for example, is a Ruby
array containing an integer, a string and a decimal value. Whereas in Ruby
this notation is an idiomatic way to implicitly denote product types, we make
this explicit in Switch by introducing the tuple

(int[1], str[Lisa], dec[23.3]) ,

in the abstract syntax tree. The tuple a is thus a 3-tuple of type (Int , Str ,Dec).
Likewise a[2] denotes the projection on the second field; in general, assuming
that t is an n-tuple, i must be in the range {0, . . . , n− 1}.

4 Records. Hashes are a set of key-value pairs in Ruby, such as the hash h =
{:id=>1,:name=>"Lisa"}. In this example the keys :id and :name—instances
of the class Symbol—are linked with an integer and a string value respectively.
In Ruby virtually every object can be used as a hash key. A value that
corresponds to a key value is retrieved through square bracket notation as, for
example, h[:name].

In Switch hashes are regarded as records. The above hash, for example, is
typed as {id : Int , name : Str}. Whereas in Ruby arbitrary objects can be used
as keys in hashes, in Switch are restricted labels for records to being strings or
symbols. Another difference between the Ruby hashes and records in Switch
is that their fields are indexed differently. In Switch a projection on the
labels of a record is obtained by a method call on its labels: the :name-field in
the above hash, for example, is projected by h.name in Switch, rather than
h[:name].

5 Lists. The list constructor denoted by <ē> describes finite-length lists whose
elements evaluate to an equal type; the list <int[1], int[2], int[3]>, e.g.,
has the type [Int]. Note that the list constructor does not have a counterpart
in the concrete syntax of Switch. The rationale behind this is that Ruby
arrays, which are interpreted as tuples in Switch, can be turned into lists
under certain circumstances. Switch, however, automatically decides when
such a conversion is to take place.

6 Table References. Each identifier with a capital first letter is recognized as
a reference to a table in the backing store. As we mentioned in the preceeding
section, the name resolution for constants has been customized to look up tables
in the database schema in order to create a table object. A database table in
Switch is perceived as a list of hashes, as depicted in Figure 2.11. Note that
the order in Figure 2.11a is explicitly given by the column pos; we shall define
how this column evolves in Chapter 3. Furthermore, we refer to the records

2.5 The Language 31

foo Users
pos id name country
...

...
...

...
6 42 "Erik" "D"

32 78 "Lisa" "I"

51 89 "Greg" "E"
...

...
...

...
(a)

[
· · ·
{ id : 42 , name : "Eric" , country : "D" },

{ id : 78 , name : "Lisa" , country : "I" },

{ id : 89 , name : "Greg" , country : "E" },

· · ·
]

(b)

Figure 2.11: Tables are perceived as list of records in Switch.

enclosed in square brackets in Figure 2.11b as list rather than tuple; under
certain circumstances tuples can be regarded as lists, which shall be explain in
more detail when we specify subtyping as it is used in Switch.

7 Conditionals. In the same way as in other programming languages, condi-
tionals in Switch branch into true and false parts. Depending on the guard
e1, that must evaluate to a boolean expression, the conditional if(e1,e2,e3)
evaluates to either e2 for true or e3 for false. In contrast to vanilla Ruby, the
conditional in Switch is only valid if and e3 are typed equally.

8 Method Calls. A method in Ruby is called by specifying a receiver object
and the method name, along with optional parameters and a block:

e1.m(e2,e3,. . .,en) {|x| eb}

As Switch emphasizes the functional aspects of Ruby, a method call is just a
notation for a function call in which the reveiver is bound to its first argument.
Likewise, a block {|x| eb} is construed as an abstraction λx.eb of a variable
x from a term eb; the scope of x is the body eb. Within the body eb a single
expression, which must be likewise a valid Switch term, is allowed. The above
Ruby method call is interpreted by Switch as follows:

m(e1,e2,e3,. . .,en,λx.eb)

Table 2.3 shows the functions predefined in Switch together in combination
with their associated types. Note that the type of the first argument is always
the type of the receiver. The functions that are tagged with {L,T}, such as
concat{L,T}, are overloaded in Switch and have a runtime definition for both
tuples and lists.

32 CHAPTER 2. Query Integration into Ruby

Built-in functions

concat{L,T} :: [τ]× [τ] � [τ]L concatenation
∧ (τ̄)× (σ̄) � (τ̄ , σ̄)T

[·]{L,T} :: [τ]× Int � τL positional access
∧ (τ̄)× *i+ � τi

T with i ∈ {1, . . . , n}
first{L,T} :: [τ] � τL ∧ (τ̄) � τ1

T first element
last{L,T} :: [τ] � τL ∧ (τ̄) � τn

T last element
take{L,T} :: [τ]× Int � [τ]L keep prefix

∧ (τ̄)× *i+ � (τ1, . . . , τi)
T

drop{L,T} :: [τ]× Int � [τ]L keep suffix
∧ (τ̄)× *i+ � (τi+1, . . . , τn)T

reverse{L,T} :: [τ] � [τ]L reversal
∧ (τ1, . . . , τn) � (τn, . . . , τ1)T

length{L,T} :: [τ] � IntL list length
∧ (τ̄) � *n+T

flatten :: [[τ]] � [τ] list flattening
sum, avg,
min, max :: [num(τ)] � num τ list aggregation
member? :: [atom(τ)]× atom(τ) � Bool element lookup
uniq :: [atom(τ)] � [atom(τ)] duplicate elimination
zip :: ([τ], [σ]) � [(τ, σ)] zip

unzip :: [(τ, σ)] � ([τ], [σ]) unzip

Higher order built-in functions

map :: [τ]× (τ � σ) � [σ] iterate over elements
select, reject :: [τ]× (τ � Bool) � [τ] filter elements

flat_map :: [τ]× (τ � [σ]) � [σ] iteration and flattening
all?, any? :: [τ]× (τ � Bool) � Bool quantification

take_while, drop_while :: [τ]× (τ � Bool) � [τ] prefix und suffix
count :: [τ]× (τ � Bool) � Int count elements

sort_by :: [τ]× (τ � atom(σ)) � [τ] sorting
min_by, max_by :: [τ]× (τ � atom(σ)) � τ minimum and maximum
group_with :: [τ]× (τ � atom(σ)) � [[τ]] grouping
partition :: [τ]× (τ � Bool) � [[τ]] partition

Table 2.3: A library of predefined Switch built-in functions and macros.

2.6 A Type System for Switch 33

9 Expressions. In Ruby there are no primitive values; even numbers and
boolean values are ordinary objects with methods. Infix operators, such as +
and <, are no exception: each expression in infix notation is, such as 1 + 2,
is desugared into a method call. The preceding example, e.g., is equivalent to
1.+(2) and evaluates to 3.

Switch defines ordinary arithmetic expressions as well as comparison oper-
ators on numbers, strings and booleans. Because the Ruby equivalents for
logical conjunction (&&) and disjunction (||) are not defined as customizable
methods, we employ the bitwise operators (! and &) to assume their role. To-
gether with the negation operator (!) they complete the set of logical connec-
tives in Switch.

2.6 A Type System for Switch

The type system we will describe in the current section forms the backbone of
Switch. Its purpose is to decide for an arbitrary expression whether it is a valid
term in Switch. Consequently a term that passes the type system is well behaved
and suitable to be translated into a representation in relational algebra and thus
into a SQL query executable on a database back-end. Moreover, the type system
establishes the foundation for several type sensitive rewrites, such as converting
tuples into lists.

The type environment Γ is a partial function that maps variable names in V to
their types in T :

Γ: V → T with (Γ, v :: τ)x =

{
τ if v = x

Γx else

The type of a variable x is thus retrieved by applying it to the environment τ = Γx.
Updating of the type environment is denoted by Γ, x :: τ . The empty environment
is simply a function that returns ⊥ for any argument applied to it. The type
environment is initialized with the functions in Table 2.3, so that it turns into a
dictionary in which the type for any given function name can be looked up: the
type of a variable name and a method type are retrieved equivalently.

A type rule as written in Table 2.4 has the general shape

Γ ` e :: τ

and is read as “In type environment Γ the expression e is typed as τ .”

34 CHAPTER 2. Query Integration into Ruby

Γ ` int[i] :: *i+
(Ty-Int)

Γ ` dec[d] :: Dec
(Ty-Dec)

Γ ` str[s] :: Str
(Ty-Str)

Γ ` bool[b] :: Bool
(Ty-Bool)

Γx = τ

Γ ` var[x] :: τ
(Ty-Var)

Γ ` () :: ()
(Ty-TupEmpty)

Γ ` ei :: τi i=1,...,n

Γ ` (ē) :: (τ̄)
(Ty-TupCons)

Γ ` {} :: {}
(Ty-RecEmpty)

Γ ` ei :: τi i=1,...,n

Γ ` {ῑ=>ē} :: {ῑ : τ̄}
(Ty-RecCons)

Γ ` <> :: [τ]
(Ty-ListEmpty)

Γ ` ei :: τ i=1,...,n

Γ ` <ē> :: [τ]
(Ty-ListCons)

Γ ` e :: {. . . , ι : τ, . . .}
Γ ` proj(e,ι) :: τ

(Ty-RecProj)
reflection on the database schema

Γ ` table[R] :: [{ῑ : τ̄}]
(Ty-TableRef)

Γ ` e1 :: Bool Γ ` ei :: τ i=2,3

Γ ` if(e1,e2,e3) :: τ
(Ty-If)

num(τ) Γ ` ei :: τ i=1,2

Γ ` ~(e1, e2) :: τ
(Ty-Arith)

atom(τ) Γ ` ei :: τ i=1,2

Γ ` <(e1, e2) :: Bool
(Ty-Comp)

Γ ` ei :: Bool i=1,2

Γ ` 7(e1, e2) :: Bool
(Ty-Junc)

Γ ` m :: τ1 × . . .× τn � σ

Γ ` ei :: τi i=1,...,n

Γ ` m(ē) :: σ
(Ty-Func)

Γ ` m :: [τ]× (τ � τb) � σ
Γ ` e :: [τ] Γ, x :: τ ` eb :: τb

Γ ` m(e, λx.eb) :: σ
(Ty-FuncBlock)

Γ ` e :: σ σ l τ

Γ ` e :: τ
(Ty-Sub)

Table 2.4: Type system of Switch

2.6 A Type System for Switch 35

We define the typing relation as a set of inference rules summarized in Table 2.4.
In the following we will provide a description for each rule:

Whereas the rules (Ty-Dec) and (Ty-Str) simply state the types for decimal num-
bers and strings, the rule for (Ty-Int) deserves more attention: As the functions
for positional access ([·]{L,T}), keep prefix (take{L,T}), and keep suffix (drop{L,T})
work on lists as well as on tuples, in the latter case the result type is defined in
terms of the integer value i, whose type is determined by the second argument of
this function. Hence, the value i must be available when the type system is deter-
mining the result type of such functions. The type *i+ is a dependent type [XP99]
that depends on the value of an integer literal. Given that only literal integers
(int[i]) are typed as *i+, we can be sure that i is to be involved in the reason-
ing process for the type system. The literal int[4], for example, has the type
*4+. Each dependent expression e :: *i+ can easily be converted into an integer
expression; we will come back to this when we describe the subtype relation.

A literal array in Ruby, such as [e1,. . .,en], leads to a tuple in Switch. Con-
sequently, the rules (Ty-TupEmpty) and (Ty-TupCons) capture the empty tuple () and
composite tuples (e1, . . . , en) respectively. Not surprisingly, the type of composite
tuples depends on its constituents. The rules (Ty-RecEmpty) and (Ty-RecCons), cap-
turing the empty {} and composite records {ι1=>e1, . . . , ιn=>en}, work analogously
to the rules for tuples. However, we insist that all labels ι1 to ιn in a record term
or type are distinct. This prevents ambiguities because the rule (Ty-RecProj) draws
the type for the projection proj(e,ι) on the field labeled by ι directly from the
type of the record e.

The rule (Ty-TableRef) is meant to be understood as follows: table[R], which
embodies a table in the underlying database, is typed as a list of records. Formally
a table can be interpreted as a bag of tuples. Lists, as well as bags (or multisets),
require their constituents to be equally typed. We justify the representation of an
unordered bag in terms of an ordered list by introducing an order based on one or a
combination of attributes of the table. Even though the actual choice is irrelevant,
usually the primary key is selected. The primary key presents a reasonable choice
because it is usually closely tied to the physical organization of a table (clustered
index). The record labels are obtained by reflection on the database schema; each
field in a tuple is named according to the table schema. Likewise, the atomic
types of the tuple fields are extracted from the schema and directly mapped to
their atomic equivalents in Switch.

Rule (Ty-If) assigns a type to a conditional expression based on the types of its
subexpressions. The guard e1 must evaluate to a boolean, whereas both e2 and e3

must evaluate to the same type.

36 CHAPTER 2. Query Integration into Ruby

The rules for arithmetic (Ty-Arith) and boolean expressions (Ty-Comp) depend on
their subexpressions. In (Ty-Arith) the type of e1 and e2 is required to be numeric
whereas (Ty-Comp) only demands their types to be atomic. The boolean connectives
“and” (&) and “or” (|), captured in rule (Ty-Junc), both evaluate to a boolean.

The rule for typing function calls (Ty-Func) insists that the types of their argu-
ments exactly match their domain types. Quite a few functions in Switch are
overloaded, and work on both lists and tuples. Based on the current rules the type
system is annoyingly rigid and rejects any function call that involves one of these
functions because it can not decide whether the variant for lists or tuples is meant.
However, in the next section we will refine the rules and thereby enable that the
type system to make an educated choice between the list and the tuple variant.

All functions accepting a block as their argument share the feature that of
performing some sort of iteration over a list of elements. In the course of this
iteration, the block is successively applied to each element in the list. Each time
the body eb is therefore evaluated in the context of one of these items. Fortunatly,
when typing such an expression we may rely on the fact that all the elements of
a list of types [τ] have the common type τ : the type of the body eb may thus
be derived under the assumption that x is of type τ ; this is formalized by rule
(Ty-FuncBlock).

We conclude the description of the type system with the rule (Ty-Sub), which
links the type system to the subtype relation we shall define in the next section.
The rule says that if σl τ , an element e of type σ is likewise an element of type τ .

2.7 A Horizontal and Vertical
Array-Representation

The role of arrays in Ruby is somewhat ambiguous: As Ruby is based on dynamic
typing, it does not have notationally distinct forms for tuples and lists. On the one
hand they are used as an idiom to denote tuples, on the other hand they represent
collections of decent size, in which all their elements have an equal type. In the
latter case their intention clearly is to act as list structures.

When working with database systems, this behavior becomes problematic be-
cause tuples and lists are represented differently in a database table. A Ruby array,
such as [1, "Lisa", 23.3], has the product type (Int , Str ,Dec) in Switch. It is
likewise rendered into a tuple in a table, as illustrated in Figure 2.12; we refer to
this as vertical representation.

With the decision to type literal arrays as product types, even the Ruby array
[1,2,3] is perceived as a tuple and hence typed as (Int , Int , Int). This leads

2.7 A Horizontal and Vertical Array-Representation 37

[1 , "Lisa" , 23.2] item1 item2 item3

1 "Lisa" 23.3

horizontal representation

Figure 2.12: Horizontal representation of an array in a database. Order is implicitly
given by the position of the columns.

the compiler to reject the following expression that, to the Ruby programmer, is
seemingly well behaved:

[1, 2, 3].map {|x| x + 1} # [2, 3, 4]

The function map, which has the type [τ] × (τ � σ) � [σ], expects a list as
first argument. Because the [1,2,3] is a tuple, the types do not match, and the
expression is not typeable. According to the present type system, map() may only
be applied to terms that either directly represent a table, such as the term R, or
are derived from a table.

The above tuple [1,2,3] could be easily transferred into a list representation:
As all elements have a common type they could be rendered into a single column
rather than using three columns (Figure 2.13). The position of the elements in
the tuple are preserved by providing an additional pos column. In contrast to the
represenation for tuples, this is referred to as vertical representation.

[10 , 20 , 30] pos item
1 10

2 20

3 30vertical representation

Figure 2.13: Vertical representation of an array in a table. Order is explicitly given
by a further column pos.

This conversion comes at a cost: we lose positional access in constant time,
the key characteristic of arrays. In the horizontal representation in form of tuples,
positional access is preserved by a simple projection on a table attribute that is
derived at compile time. In the vertical representation however positional access
is obtained by a comparison with the pos column at runtime, which, at best, is
achievable in logarithmic time depending on the cardinality of the table.

The second problem that we tackle in the subtype relation is to derive the
proper type for the overloaded functions we presented in Table 2.3. Each function
that is tagged with {L,T} can be applied to both tuples and lists. Because lists

38 CHAPTER 2. Query Integration into Ruby

and tuple are, due to their representation, treated differently at runtime, we must
exactly know which implementation is used. The subtype relation lays the foun-
dation for this decision and is used in type-coercion process we shall describe in
the next section. In the following discussion we use the function concat as repre-
sentative to examine how overloading of functions is implemented in Switch.

In Ruby, concat, appends the lists in the argument to the caller, which is
likewise an array:

[1, "a", 2].concat(["b", 3]) # [1, "a", 2, "b", 3]

In Switch, however, the type of concat() is overloaded and provides an imple-
mentation for the case that both arguments are lists and another one the case that
both arguments are tuples. In the example mentioned both arguments evaluate
to tuples so the type that fits best for this example is (τ̄)× (σ̄) � (τ̄ , σ̄), which is
instantiated as

(Int , Str , Int)× (Str , Int) � (Int , Str , Int , Str , Int)

For Ruby programmers, the following expression, which involves a table access
to Users, is also well behaved:

Users.map {|x| x.id}.
concat([23, 42]) # [. . . , . . . , . . .︸ ︷︷ ︸

result from map

, 23, 42] (Q1)

In this case, map() evaluates to a list whose elements are typed as integer—
assuming that x.id evaluates to an integer—and hence the function concat() is
confronted with a list as its first argument. The second argument ([23, 42]),
however is a tuple and does not conform with the type of the second parameter of
([τ]× [τ] � [τ]). Fortunatly we can promote this tuple to a list of the type integer
and eventually apply the version of concat() that is concerned with lists rather
than tuples; its type may be instantiated as follows:

[Int]× [Int] � [Int]

2.7.1 Formalization via Subtyping

The subtype relation in Table 2.5 refines the typing rules of Table 2.4, so that they
implement the concepts explained above. The subtype relation has the general
shape

τ l σ

2.7 A Horizontal and Vertical Array-Representation 39

and is pronounced as “A term of type τ can safely be used in a context where a
term of type σ is expected.” Subtyping is widely known as the principle of safe
substitution.

τ l τ
(SubTy-Refl)

τ l υ υ l σ

τ l σ
(SubTy-Trans)

Int l Dec
(SubTy-Int)

*i+lInt
(SubTy-Num)

τi l σi i=1,...,n

{ῑ : τ̄}l {ῑ : σ̄}
(SubTy-Rec)

τ l σ

[τ] l [σ]
(SubTy-List)

τi l σi i=1,...,n

(τ̄) l (σ̄)
(SubTy-Tup)

τi l σ i=1,...,n

(τ̄) l [σ]
(SubTy-Tup-List)

τ t1 ∧ σt2 l τ t1
(SubTy-Inter1)

τ t1 ∧ σt2 l σt2
(SubTy-Inter2)

Table 2.5: Subtypes in Switch

We will consider each form of type that is used in Switch separately. For each
one we introduce one or more rules formalizing under which circumstances it is
safe to substitute one type for another.

First, we stipulate the more general properties of the subtype relation: the rules
(SubTy-Refl) and (SubTy-Trans) implement reflexivity and transitivity respectively. A
situation in which equal types are subtypes of one another is captured by reflexivity.
Transitivity, denominates the case in which a type τ is indirectly—through the type
υ—a subtype of another type σ.

The rule (SubTy-Int) states that an integer term can be used whenever a decimal
term is expected. Similarly, a term of the dependent type *i+ can be promoted to
a term of type integer.

Rule (SubTy-Rec) applies to record types whose labels are identical. Additionally,
it is safe to allow the types of individual fields to vary as long as this is captured

40 CHAPTER 2. Query Integration into Ruby

by the subtype relation. The same applies to product types, which are captured
by the rule (SubTy-Tup).

A list whose elements are of type τ could safely be regarded as a list with
elements of type σ; rule (SubTy-List) captures this situation.

Rule (SubTy-Tup-List) formalizes the intuition that a tuple whose elements eval-
uate to a common type σ can be safely promoted to a list of type σ. The rule
generalizes this observation allowing the individual tuple types to vary, provided
that they are a subtype of the list type σ.

The overloading we implemented in Switch is a simple form of parametric
polymorphism called finitary polymorphism [Pie91]. In this regard, we enriched
the inhabitants of our type system with a new type τ t1 ∧ σt2 for every pair of
types τ and σ. This new type is meant to contain all terms that belong to the
type τ as well as to the type σ, or in other words, an element of the intersection
τ t1 ∧ σt2 is furnished with enough information to coerce it to be either an element
of τ , which is captured by rule (SubTy-Inter1), or an element of σ, reflected by rule
(SubTy-Inter2). Intersection types serve a purpose similar to method overloading in
Java [Jav], although they are resolved at runtime via type introspection rather
than at compile time via type checking. For example, the funcion concat() in
Switch is overloaded to work over both lists and tuples:

concat :: [τ]× [τ] � [τ] and concat :: (τ̄)× (σ̄) � (τ̄ , σ̄)

In Switch we use the intersection type to provide the following “combined type”
that can assume either the list type or tuple type. For the above function this
leads to:

concat{L,T} :: [τ]× [τ] � [τ]L ∧ (τ̄)× (σ̄) � (τ̄ , σ̄)T

The semantics for both functions are similar. On the one hand, for the list-typed
version of concat the application on two lists delivers the following result (due to
readability, we write 1 instead of int[1] for literals):

concatL(<1,2>,<3>) <1,2,3>

On the other hand, the tuple-typed version exposes a similar behavior when applied
on two tuples with elements of varying types:

concatT((1,2),(3.0)) (1,2,3.0)

The tags t1 and t2 are a peculiarity of the intersection types we propose in
this work. They will be used when we get rid of the subtypes in the next step
(Section 2.8) by replacing each rule by runtime coercions.

2.8 Coerceing Tuples into Lists 41

For functions, such as concat, the type system can now automatically infer the
proper type by making use of either rule (SubTy-Inter1) or rule (SubTy-Inter2) as we
demonstrate in the following example (see Table 2.6), in which we derive the type
of Query Q1 on page 38.

2.8 Coerceing Tuples into Lists
In the last section, we expressed the intuition that we can regard tuples as lists
under certain circumstances, and we additionally equipped Switch with a simple
overloading mechanism. However, the typing mechanism only tells us whether a
Switch expression is valid or not. In this section, we will devise a translation
between Switch terms that replaces subtyping by compile-time rewrites. If, for
example, a tuple is promoted to a list, we gather the individual elements of the
tuple and create a literal list at compile time. The result of this operation is
reflected on the database back-end where the list is arranged into a column rather
than into a tuple within a table.

To rewrite a Switch expression based on the typing information we exactly
need to know where subtyping takes place in the derivation tree that is produced
while inferring the type of an expression. Consequently we provide functions that
are applied to the derivation trees [BtC+91] of the subtype and the type relations
respectively. In the rules summarized in Table 2.7 we use C ∴ τ l σ to mean a
derivation tree C whose conclusion is a subtyping statement τ l σ. Likewise we
use D ∴ Γ ` e :: τ for the derivation tree D that concludes with Γ ` e :: τ in
Table 2.9.

2.8.1 Coercion on Subtypes

To rewrite a type based on the subtype relation we use the notation J·Kl that,
given a derivation tree C for a subtype statement τ l σ, derives a function that
tells us how to rewrite a term so that subtyping for this particular term becomes
obsolete. Consequently, JCKl is a function that translates a Switch term into
another Switch term. Note that in the function (CoeSubTy-Tup-List) we employ the
list literal <e1, . . . ,en> that is only available in the abstract syntax of Switch.
So far, the single statement in the surface syntax of Switch that produces a list
was table-reference operator via.

Whereas for reflexivity captured in function (CoeSubTy-Trans), we simply rewrite
the term by means of the identity function, in function (CoeSubTy-Trans) we com-
pose the rewrite functions—with f ◦ g ≡ λx.f(g(x)))—that we derived over the
derivation trees of its premises into a single function, to which the term t is then
applied.

42 CHAPTER 2. Query Integration into Ruby

concat(

3︷ ︸︸ ︷
map(table[Users]︸ ︷︷ ︸

1

,λx. proj(var[x],id)︸ ︷︷ ︸
2

) , (int[23],int[42])︸ ︷︷ ︸
4

)

1
reflection on database schema
Γ ` 1 :: [{. . . , id : Int , . . .}]

(Ty-TableRef)

2

with σ = {. . . , id : Int , . . .}
(Γ, x :: σ)x = σ

Γ, x :: σ ` var[x] :: σ
(Ty-Var)

Γ, x :: σ ` 2 :: Int
(Ty-RecProj)

3

with τ = {. . . , id : Int , . . .} and σ = Int
Γ ` map :: [τ]× (τ � σ) � [σ]

1 2

Γ ` 3 :: [Int]
(Ty-FuncBlock)

4
Γ ` int[23] :: *23+

(Ty-Int)
Γ ` int[42] :: *42+

(Ty-Int)

Γ ` 4 :: (*23+, *42+)
(Ty-TupCons)

5
*23 +lInt

(SubTy-Num)
*42 +lInt

(SubTy-Num)

(*23+, *42+) l [Int]
(SubTy-Tup-List)

6
4 5

Γ ` 4 :: [Int]
(Ty-Sub)

7

with υ = [Int]× [Int] � [Int] and δ = (τ̄)× (σ̄) � (τ̄ , σ̄)

Γ ` concat :: υL ∧ δT
υL ∧ δT l υL

(SubTy-Inter1)

Γ ` concat :: υL
(Ty-Sub)

F
3 6 7

Γ ` concat(3 , 4) :: [Int]
(Ty-Func)

Table 2.6: Type inference on Query Q1. In the above inference, we use the abstract
syntax concat(map(table[Users],λx.proj(x,id)),(23,42)). The type envi-
ronment starts with Γ = ∅. The rule annotated with F shows the result type of the
expression. Note how subtyping is used to regard the tuple ((int[23],int[42]))
as list in order to be aligned with the type of the result of map().

2.8 Coerceing Tuples into Lists 43

The next two functions (CoeSubTy-Int) and (CoeSubTy-Num) turn an integer into a
decimal number, and a term that belongs to a dependent type, which was intro-
duced above as a type for literal integers, into an integer respectively.

Function (CoeSubTy-Rec) rewrites a record in a way that in any individual field
the corresponding rewrite function JCiKl for i = 1, . . . , n is applied. For tuples
captured in (CoeSubTy-Tup) we likewise apply the rewrite function to any individual
field in order to compose a new tuple where subtyping is no longer needed.

Subtyping in lists occurs when the elements of a list can be coerced into ele-
ments of another type. Consequently we have to apply the rewrite function JCKl
on the elements of the list rather than on the list itself. Unfortunately, this leads
to an iteration over the list elements during runtime; the coercion is applied to the
block variable of map that is successively bound to each element of the list.

If we regard a tuple as a function, we again need to consider its constituents.
Each individual field of the tuple that belongs to the type τi, for each i = 1, . . . , n,
may be coerced into an element of the list type σ. As a result we access each single
tuple element and then coerce it by its corresponding function JCiKl. Finally, we
assemble a list literal, enclosed by <>, whose constitutes are the coerced tuple
elements; we express this in function (CoeSubTy-Tup-List).

The last two rules (CoeSubTy-Inter1) and (CoeSubTy-Inter2) apply to derivation
trees whose conclusion contains an intersection type. For overloaded functions
in Switch, whose type definition contain intersection types we provide differ-
ent compilation rules for the relational target language that reflect the respective
table representation of their arguments: horizontal or vertical representation. Con-
sequently we need to pick either concatL() and concatT(), that work on list and
tuples respectively.

Derived by rule (CoeSubTy-Inter1) and rule (CoeSubTy-Inter2), the purpose of these
coercions is to pick a concrete instance of an overloaded function. The tags t1 or
t2, which are tied to each constituent of an intersection type τ t1 ∧ σt2 . are used
to label the functions. In the case of concat(), this leads to either concatL() or
concatT().

44
C

H
A

P
T

E
R

2.
Q

u
ery

In
t
eg

r
at

io
n

in
t
o

R
u
by

Table 2.7: Coercion over the proof tree of the subtypes

t

τ l τ
(SubTy-Refl)

|

l

= λt.t (CoeSubTy-Refl)

t
C1 ∴ τ l υ C2 ∴ υ l σ

τ l σ
(SubTy-Trans)

|

l

= λt.(JC1Kl ◦ JC2Kl) t (CoeSubTy-Trans)

t

Int l Dec
(SubTy-Int)

|

l

= λt.t (CoeSubTy-Int)

t

*i +lInt
(SubTy-Num)

|

l

= λt.int[t] (CoeSubTy-Num)

t
Ci ∴ τi l σi i=1,...,n

{ῑ : τ̄}l {ῑ : σ̄}
(SubTy-Rec)

|

l

= λt. {ι1=>JC1Kl proj(t,ι1), . . . , ιn=>JCnKl proj(t,ιn)} (CoeSubTy-Rec)

t
Ci ∴ τi l σi i=1,...,n

(τ̄) l (σ̄)
(SubTy-Tup)

|

l

= λt.(JC1Kl [·]
T(t,1), . . . , JCnKl [·]

T(t,n)) (CoeSubTy-Tup)

continued on next page

2.8
C

o
erc

ein
g

T
u
ples

in
t
o

L
ist

s
45

t
C ∴ τ l σ

[τ] l [σ]
(SubTy-List)

|

l

= λt.map(t,λx.JCKl x) (CoeSubTy-List)

t
Ci ∴ τi l σ i=1,...,n

(τ̄) l [σ]
(SubTy-Tup-List)

|

l

= λt.<JC1Kl [·]
T(t,1), . . . , JCnKl [·]

T(t,n)> (CoeSubTy-Tup-List)

t

τ t1 ∧ σt2 l τ t1
(SubTy-Inter1)

|

l

= λt.tt1 (CoeSubTy-Inter1)

t

τ t1 ∧ σt2 l σt2
(SubTy-Inter2)

|

l

= λt.tt2 (CoeSubTy-Inter2)

46 CHAPTER 2. Query Integration into Ruby

2.8.2 Coercion on Types

In a way similar to that in the preceding section, in which we introduced runtime
coercions based on the subtype relation, we will now devise the coercion function
operating on derivation trees of conclusions in the type system. However, we use
the notation J·K:: to denote the coercion function that, given a derivation tree D
for a type statement Γ ` e :: τ about the expression e, derives a new Switch term
JDK::. Rather than deriving a function that rewrites a term, this time we directly
transform the term so that the result of JDK:: is again a Switch term. As in
the preceding section we must consider each shape of a type statement. Table 2.8
exemplifies how the coercion rules elegantly interact with the type inference.

Most of the functions summarized in Table 2.9 are straightforward, such as
the coerce functions defined on rules rules regarding the base types in (CoeTy-Int),
(CoeTy-Dec) and (CoeTy-Str). In the new expression we simply adopt the literal in the
type statement to the left-hand side. The same applies to the function (CoeTy-Var),
in which the variable on the left-hand side is merely adopted to the right-hand
side of the function.

Whenever we encounter either an empty tuple, record or list in a type statement
we immediately build an empty structure of the same type as the result of the
functions (CoeTy-TupEmpty), (CoeTy-RecEmpty) and (CoeTy-ListEmpty).

The functions that capture the rules on composite structures like tuples, records
and literal lists in (CoeTy-TupCons), (CoeTy-RecCons) and (CoeTy-ListCons) respectively,
propagate the rewrite function through the entire expression tree by applying the
individual coercion function JDiK:: to the constitutes ei for each i = 1, . . . , n.

In contrast to the table reference found on the left-hand side of function
(CoeTy-Tab), which is merely adopted on the right-hand side, the functions cap-
turing the projection in (CoeTy-RecProj) as well as the functions applying to the
conditional in function (CoeTy-If), simply propagate the coerce functions to their
corresponding constituents. This also applies to infix operators in (CoeTy-Arith),
(CoeTy-Comp) and (CoeTy-Junc) whose coerce functions JD1K:: and JD2K:: are applied
to the left and the right component respectively.

Similarly, rule (CoeTy-Func), which captures function calls, promotes the rewrites
to its arguments. Rule (CoeTy-FuncBlock) captures the functions that accept a block
as an argument. Here, coercion is applied to its first argument (the caller) and
injected into the body of the block argument.

The bridge between the subtype coercion and the type coercion is provided by
the function (CoeTy-Sub), which operates on the subsumption rule (Ty-Sub) of the
type system. Whenever subsumption occurs somewhere in the derivation tree, as-
sociated with a type statement, the term has to be transformed in order to replace

2.8 Coerceing Tuples into Lists 47

Expression Rule
q

1
y

::
= table[Users] (CoeTy-Tab)

q
2
y

::
= proj(var[x],id) (CoeTy-RecProj)

q
3
y

::
= map(

q
1
y

::
,λx.

q
2
y

::
)

(CoeTy-FuncBlock)
= map(table[Users],λx.proj(var[x],id))

q
4
y

::
= (int[23],int[42]) (CoeTy-TupCons)

q
5
y
l = λt.<[·]T(t,1),[·]T(t,2)> (CoeSubTy-Tup-List)

q
6
y

::
=
q

5
y
l

q
4
y

::

(CoeTy-Sub)
= <[·]T(

q
4
y

::
,1),[·]T(

q
4
y

::
,2)>

= <[·]T((int[23],int[42]),1),
[·]T((int[23],int[42]),2)>

q
7
y

::
= concatL (CoeTy-Sub)

q
F
y

::
= concatL(

(CoeTy-Func)
map(table[Users],λx.proj(var[x],id)),
<[·]T((int[23],int[42]),1),
[·]T((int[23],int[42]),2))>

Table 2.8: Coercion on the type proof tree of Query Q1. The bullets n refer to the
partial proof trees in Table 2.6. Based on subtyping, the tuple is automatically con-
verted into a list. In this constellation the result of map() and (int[23],int[42])
may be faithfully used as arguments of concatL().

subtyping with runtime coercions. Function (CoeTy-Sub) expresses this intention by
applying the Switch expression (in JDK::) to the rewrite function (JCKl) that was
derived based on the derivation tree of the subtype statement (τ l σ).

48
C

H
A

P
T

E
R

2.
Q

u
ery

In
t
eg

r
at

io
n

in
t
o

R
u
by

Table 2.9: Coercion over the proof tree of the type system

t

Γ ` int[i] :: *i+
(Ty-Int)

|

::

= int[i] (CoeTy-Int)

t

Γ ` dec[d] :: Dec
(Ty-Dec)

|

::

= dec[d] (CoeTy-Dec)

t

Γ ` str[s] :: Str
(Ty-Str)

|

::

= str[s] (CoeTy-Str)

t

Γ ` bool[b] :: Bool
(Ty-Bool)

|

::

= bool[b] (CoeTy-Bool)

t
Γx = τ

Γ ` var[x] :: τ
(Ty-Var)

|

::

= var[x] (CoeTy-Var)

t

Γ ` () :: ()
(Ty-TupEmpty)

|

::

= () (CoeTy-TupEmpty)

t

Γ ` {} :: {}
(Ty-RecEmpty)

|

::

= {} (CoeTy-RecEmpty)

t

Γ ` <> :: [τ]

|

::

= <> (CoeTy-ListEmpty)

continued on next page

2.8
C

o
erc

ein
g

T
u
ples

in
t
o

L
ist

s
49

t
Di ∴ Γ ` ei :: τi i=1,...,n

Γ ` (ē) :: (τ̄)
(Ty-TupCons)

|

::

= (JD1K::, . . . ,JDnK::) (CoeTy-TupCons)

t
Di ∴ Γ ` ei :: τi i=1,...,n

Γ ` {ῑ⇒ ē} :: {ῑ : τ̄}
(Ty-RecCons)

|

::

= {ι1=>JD1K::, . . . ,ιn=>JDnK::} (CoeTy-RecCons)

t
Di ∴ Γ ` ei :: τ i=1,...,n

Γ ` <ē> :: [τ]

|

::

= <JD1K::, . . . ,JDnK::> (CoeTy-ListCons)

t
reflection on the database schema

Γ ` table[R] :: [{ῑ : τ̄}]
(Ty-TableRef)

|

::

= table[R] (CoeTy-Tab)

t
D ∴ Γ ` e :: {. . . , ι : τ, . . .}

Γ ` proj(e,ι) :: τ
(Ty-RecProj)

|

::

= proj(JDK::,ι) (CoeTy-RecProj)

continued on next page

50
C

H
A

P
T

E
R

2.
Q

u
ery

In
t
eg

r
at

io
n

in
t
o

R
u
by

t
Di ∴ Γ ` ei :: τ i=1,2,3

Γ ` if(e1,e2,e3) :: τ
(Ty-If)

|

::

= if(JD1K::,JD2K::,JD3K::) (CoeTy-If)

t
num(τ) Di ∴ Γ ` ei :: τ i=1,2

Γ ` ~(e1, e2) :: τ
(Ty-Arith)

|

::

= ~(JD1K::, JD2K::) (CoeTy-Arith)

t
atom(τ) Di ∴ Γ ` ei :: τ i=1,2

Γ ` <(e1, e2) :: Bool
(Ty-Comp)

|

::

= <(JD1K::, JD2K::) (CoeTy-Comp)

t
Di ∴ Γ ` ei :: Bool i=1,2

Γ ` 7(e1, e2) :: Bool
(Ty-Junc)

|

::

= 7(JD1K::, JD2K::) (CoeTy-Junc)

u

www
v

Dm ∴ Γ ` m :: τ1 × . . .× τn � σ

Di ∴ Γ ` ei :: τi i=1,...,n

Γ ` m(ē) :: σ
(Ty-Func)

}

���
~

::

= JDmK::(JD1K::, . . . ,JDnK::) (CoeTy-Func)

continued on next page

2.8
C

o
erc

ein
g

T
u
ples

in
t
o

L
ist

s
51

u

ww
v

Dm ∴ Γ ` m :: [τ]× (τ � τb) � σ
D ∴ Γ ` e :: τ Db ∴ Γ, x :: τ ` eb :: τb

Γ ` m(e, λx.eb) :: σ
(Ty-FuncBlock)

}

��
~

::

= JDmK::(D,λx.Db) (CoeTy-FuncBlock)

t
D ∴ Γ ` e :: σ C ∴ σ l τ

Γ ` e :: τ
(Ty-Sub)

|

::

= JCKlJDK:: (CoeTy-Sub)

52 CHAPTER 2. Query Integration into Ruby

2.9 Removing Tuple-Related Operations
The last rewrite step taking place on the expression of the language is the removal
of tuple-related functions. We heavily rest on the type system to obtain the proper
information about types that are necessary to perform this kind of rewrites.

We devise a rewrite function that operates on derivation trees of type system
conclusions, as shown in Section 2.8.2. Similarly, we use the notation J·K() to
express the rewrite function that, given a derivation tree D for a type statement
Γ ` e :: τ , derives a new Switch term in which all tuple-related functions have
been replaced by means of simple positional access. The result of JDK() is a
Switch term.

We must consider each type shape separately to provide a proper rewrite rule.
However, in Table 2.10 we only list the rewrite rules that actually perform a rewrite.
We refrain from depicting the remaining rules because they merely promote the
rewrites to the constituting elements of an expression. Note that we can ignore
the subtype relation ((Ty-Sub) from Table 2.4), which has already been “compiled
away”.

In rule (RemTup-Concat) we place the elements of the constituent expressions (e1

and e2) consecutively into a fresh tuple. The information about the number of
elements present in e1 and e2 is delivered by the type system.

Accessing the first element and the last element is respectively captured by
rule (RemTup-First) and rule (RemTup-Last). Whereas the first tuple component can
be straightforwardly accessed, to access the last position we have to consult the
type system on the number of elements in e. This number can then be used to
access the last element.

Rule (RemTup-Take) keeps the prefix of a tuple by tidying up the first elements
of e into a fresh tuple. Rule (RemTup-Last) retains the suffix by consulting the type
system on the number of elements present in e.

Rule (RemTup-Reverse) mimics the semantics of reverseT() by reverting the
order of the elements manually. The length of a tuple (rule (RemTup-Length)) can
be determined at compile time by having recourse to the type system.

2.9
R

em
o
v
in

g
T

u
ple-R

elat
ed

O
per

at
io

n
s

53

Table 2.10: Remove tuple functions.

u

ww
v

Γ ` concatT :: (τ̄)× (σ̄) � (τ̄ , σ̄)
D1 ∴ Γ ` e1 :: (τ̄) D2 ∴ Γ ` e2 :: (σ̄)

Γ ` concatT(e1,e2) :: (τ̄ , σ̄)

}

��
~

()

=
([·]T(JD1K(),1), . . . ,[·]

T(JD1K(),n),
[·]T(JD2K(),1), . . . ,[·]

T(JD2K(),m))
(RemTup-Concat)

t
Γ ` firstT :: (τ̄) � τ1 D ∴ Γ ` e :: (τ̄)

Γ ` firstT(e) :: τ1

|

()

= [·]T(JDK(),1) (RemTup-First)

t
Γ ` lastT :: (τ̄) � τn D ∴ Γ ` e :: (τ̄)

Γ ` lastT(e) :: τn

|

()

= [·]T(JDK(),n) (RemTup-Last)

u

ww
v

Γ ` takeT :: (τ̄)× *i+ � (τ1, . . . , τi)
D ∴ Γ ` e :: (τ̄)

Γ ` takeT(e,int[i]) :: (τ1, . . . , τi)

}

��
~

()

= ([·]T(JDK(),1), . . . , [·]
T(JDK(),i)) (RemTup-Take)

continued on next page

54
C

H
A

P
T

E
R

2.
Q

u
ery

In
t
eg

r
at

io
n

in
t
o

R
u
by

u

ww
v

Γ ` dropT :: (τ̄)× *i+ � (τi+1, . . . , τn)
D ∴ Γ ` e :: (τ̄)

Γ ` dropT(e,int[i]) :: (τi+1, . . . , τn)

}

��
~

()

= ([·]T(JDK(),i+ 1), . . . , [·]T(JDK(),n)) (RemTup-Drop)

u

ww
v

Γ ` reverseT :: (τ1, . . . , τn) � (τn, . . . , τ1)
D ∴ Γ ` e :: (τ1, . . . , τn)

Γ ` reverseT(e) :: (τn, . . . , τ1)

}

��
~

()

= ([·]T(JDK(),n), . . . , [·]
T(JDK(),1)) (RemTup-Reverse)

u

ww
v

Γ ` lengthT :: (τ̄) � *n+
D ∴ Γ ` e :: (τ̄)

Γ ` lengthT(e) :: *n+

}

��
~

()

= int[n] (RemTup-Length)

2.10 Related Work 55

2.10 Related Work
Beside the embedding of query languages, the potential of Ruby as a host language
for a diversity of DSL’s has been already recognized. For example, in [AC+11a]
Alvaro, Conway, et al. endow Ruby with a DSL called Bloom, which facilitates
distributed programming on key-value stores. Bloom programs are bundles of
declarative statements about a collection of tuples, similar to SQL views. The au-
thors identify a set of Ruby methods—such as map(), reduce(), and group()—so
that an implementation on top of a distributed programming environment remains
feasible.

In a different setting, Furr, An, et al. present a static type inference that blends
Ruby’s type system with a static typing discipline [FA+09]. In this way, the ben-
efits of combined dynamic and static typing can be fully exploited. They describe
a type language incorporating various concepts—including union and intersec-
tion types [Pie91], object types [CM96], and parametric polymorphism [Pie02]—to
closely resemble Ruby’s dynamic type system. Like in this thesis, the authors use
intersection types to track different behavior of Ruby methods depending on the
types of their parameters.

A different approach has been proposed in [AC+11b] by An, Chaudhuri, et al.
The authors present a technique based on dynamic program executions to infer
static types. This constraint-based dynamic type inference wraps each run-time
value to connect it with a type variable and generated constraints that must hold
when the value is used.

In a subsequent paper, An, Chaudhuri, and Foster expose the semantics of
query methods used in Ruby on Rails [ACF09] by rewriting them into pure
Ruby code. The authors then leverage the techniques described in the previous
chapter to track errors made in Rails at compile time.

Chapter 3

A Relational Portrayal of Switch

In the current chapter we aim to trade the iterative semantics of Switch for the
efficient set-oriented execution model of a database. In the course of this, we rely
on a compilation scheme, called loop lifting, which originated as a technique to
express XQuery’s side effect-free FLWOR-expressions by relational means [see
GST04; Teu06].

In the course of the last years this technique has been leveraged to full support
of languages (or subsets of languages) whose semantic foundation is based on list
comprehensions [TP89; Wad92]. List comprehensions revolve around the iterative
side-effect-free evaluation of expressions under the binding of an unmodifiable iter-
ation variable. They have been widely recognized as a concise and neat notation to
perform complex computations over lists and feature in a substantial amount of the
programming languages in vogue today—among them Haskell [Has], Java [Jav]
and Python [Pyt] to name a few.

With the Enumerable mixin we already identified an iteration-centric subset of
Ruby based on an iterative core represented by the method each. This method,
whose sole purpose is to expose all elements of a collection in a single iteration,
lays the foundation for the entire functionality provided by the module. The
Switch snippet below, for instance, denotes the list resulting from a derivation of
the body ebody independently for each element of e—a constellation that perfectly
blends with loop lifting:

e.map {|x| ebody}

Whereas vanilla Ruby permits side-effecting computations—such as variable
assignments—in ebody, Switch proves to be sufficiently shielded:
(i) Whenever Ruby’s runtime encounters a Switch expression it starts to ar-

range the corresponding expression tree.

57

58 CHAPTER 3. A Relational Portrayal of Switch

(ii) In the course of this process, any expression eluding the control of Switch
is subject to Ruby’s runtime engine and directly reduced to a constant value
that may be seamlessly integrated into the expression tree.

The execution of the resulting Switch expression is deferred until the ele-
ments of the computation are actually consumed in the host language. Even an
assignment to a variable named x in the loop body of the above expression will
only shadow the iteration variable and thus not influence the behavior of the loop.
The lack of side effects is an essential requirement for a language to qualify for a
loop-lifted translation: because the iterations cannot interfere, they may be eval-
uated in arbitrary order, which perfectly suits the set-oriented execution model of
relational database systems.

In the next section we provide a bird’s-eye view of loop lifting and draw our at-
tention on how Switch values are represented in a tabular fashion in Section 3.2.
In Section 3.3 we shed light on the tabular operators that constitute a target lan-
guage for the compilation rules in the remaining chapter. A thorough description
of loop lifting can be found in [Teu06].

3.1 A Primer in Loop Lifting
The primary concern of loop lifting is the sound implementation of iteration con-
structs by means of a relational representation. Any compiler that employs loop
lifting to translate loop-centric programs (or queries) into a database-executable
form emits a plan or even several plans comprised of relational operators.

To illustrate this, consider the following Ruby snippet1 in which elements e1

to en are successively bound to the variable x, which in turn is possibly accessed
in ebody to evaluate its constituents that jointly form the overall expression result:

[e1,. . .,en].map {|x| ebody}
≡

[ebody [x 7� e1],. . .,ebody [x 7� en]]

(The expression e [x 7� ei] denotes the replacement of all free occurrences of x in e
by ei.) Since the semantics of map is purely functional (the evaluation of the body
ebody is performed independently for each element e1 to en) ebody may be evaluated
in arbitrary order, or even in parallel.

The intuition behind loop lifting is the avoidance of an explicit iterator con-
struct, such as map, by “unrolling” an iteration by means of a loop table with a
single column iter; n iterations lead to a loop table containing exactly n values
(1, . . . , n).

1Note that this expression is only valid in Switch if the literal Ruby array, which is repre-
sented as a tuple, may be regarded as a list, i.e., all elements evaluate to a common type.

3.1 A Primer in Loop Lifting 59

Iteration constructs in Switch may be arbitrarily nested: each iteration con-
struct establishes a new iteration context in which nested expressions are evaluated
(in general, this leads to a tree shaped hierarchy of iteration scopes). Any expres-
sion in Switch is considered to be iteratively evaluated in scope sx·y of its directly
enclosing iteration scope sx; the top level expression is evaluated in a pseudo single-
iteration denoted by s. The relational representation of a subexpression within an
iteration scope, such as the expression x + 40 within scope s1

s



[10,20,30].map {|x|

x
s1·1

+ 40
s1·2

}

s1

has to be lifted with respect to the loop table as shown in figure Figure 3.1.

�

iter pos item
1 1 10
2 1 20
3 1 30︸ ︷︷ ︸

loop-lifted encoding of x

iter
1
2
3︸︷︷︸

loop

× pos item
1 40︸ ︷︷ ︸

encoding of 40

=

iter pos item
1 1 40
2 1 40
3 1 40︸ ︷︷ ︸

loop-lifted encoding of 40

iter pos item
1 1 50
2 1 60
3 1 70︸ ︷︷ ︸

loop-lifted encoding of x + 10

Figure 3.1: Loop-lifted representation of x + 10 within scope s1.

In the following, we use item as a shortcut for item1, . . . , itemn, and likewise
v̄ to denote the sequence v1, . . . , vn. The table schema

〈
iter, pos, item

〉
is used

pervasively in the loop lifting compilation. For an expression e, a single loop-lifted
row encoding 〈i, p, v̄〉 may be read as “In iteration i the expression e yields the
values v1 to vn at the list position that corresponds to the rank of p in column pos.”
Establishing a unified table schema is crucial to ensuring the compositionality of
the translation rules we give in Section 3.4. Following the description of how values
of Switch are represented in a table, we will take a look at relational algebra that
forms the intermediate language in our compilation scheme.

60 CHAPTER 3. A Relational Portrayal of Switch

3.2 A Relational Representation of Values

Each value in Switch has its counterpart in the relational realm. In Switch a
literal of the base type is by definition a value. Decomposable data types, such
as tuples and lists, are values if their constituents are values as well. Values, as
stated above, play an important role because they describe the result of a program
execution in Switch; the type system makes sure that only programs resulting in
values (listed below) qualify as valid Switch programs which may translated into
a database executable form. In the following list we consider each type in Switch
and describe how associated values are encoded in a tabular fashion.

Base types (Int , Str , . . .). A literal value ` that is typed as atomic base type is
represented as a table with a single column item1 and a single row containing
the value to represent: item1

` .

Tuples and Records. The encoding scheme for tuples and records is very similar
to that of the base types: Each of the constituents of either a tuple or a record
inhabits a different column in its tabular representation. For the values of both
types we adopt the “ item1 to itemn”-naming scheme for columns.

Figure 3.2 illustrates how the tuple value (v1, {ι1=>v2,ι2=>v3},v4) is encoded
in a table; v1 to v4 are values of a base type. Even though the tuple is nested—
another decomposable value in form of a record with labels ι1 and ι2 is placed
on the second position—its tabular representation does not exceed a single row.
The column structure maps each of the atomic values to its column and retains
the shape of the result type.

Column Structure︷ ︸︸ ︷
(item1 , {ι1 : item2 , ι2 : item3 }, item4)

(v1 , {ι1=> v2 ,ι2=> v3 }, v4)
item1 item2 item3 item4

v1 v2 v3 v4

Figure 3.2: The representation of a nested tuple value in a tabular fashion. The
column structure provides information on how the individual components of a
decomposable type are flattened to the table schema.

3.2 A Relational Representation of Values 61

Lists. Ordered lists present the principal aggregate data structure in Switch.
Because our intermediate language in form of a table algebra operates over
inherently unordered, tables we encode order into the tabular representation
by means of a pos column that properly reflects the logical order of the elements

pos item
1 v1
...

...
m vm

within a list. It is critical to encode positions in the data itself
to ensure a communication from statement to statement (which
would be impossible by SQL’s ORDER BY construct). The pos
column may host values of an arbitrary domain as long as a
linear order may be imposed on them. This observation offers
some serious optimization potential as described in [Rit10]. In
this work however we will populate the pos column with natural
numbers only. The scheme by which the elements <v1, . . . , vm>—with v1 to vm
being values of an arbitrary but equal type—are arranged in a table is shown
on the right. Note that we used item since we do not know how many columns
these values occupy in their tabular representation.
Since relations adhere to the first normal form—the domain of an attribute
only contains atomic values2—an arbitrary nested list cannot be hosted by a
single table. Lists of nesting depth n are thus distributed over exactly n tables
T1 to Tn, each of which frames one nesting level. Two tables Ti and Ti+1 are
connected by a foreign-key relationship based on surrogates values.

<
< 10 ,
20 ,
30 >,
<>,
< 40 ,
50 >

> (Q2)

Q2·1
iter pos item1

1 2 •
1 5 ∗
1 8 ◦

Q2·2
iter pos item1

• 2 10
• 6 20
• 8 30
◦ 5 40
◦ 7 50

Figure 3.3: Representation of a nested lists by relational means. Between the
Outer table and the Inner table a foreign-key relationship is established to properly
reflect the shape of the list.

For further illustration consider the nested list and its corresponding tabular
representation depicted in Figure 3.3. The outer shape of the list is captured
by the table Outer: each of the surrogate values •, ∗ and ◦ in the column item1

stands for an entire list located in the table Inner. A list in Inner is constituted

2The demand for atomic values in relational database systems has been decreased with the
advent of the SQL:1999 standard by which the composite types array and anonymous row have
been introduced [MS01].

62 CHAPTER 3. A Relational Portrayal of Switch

by the group of rows that contain equal iter values; the column iter assumes the
role of a list identifier. Note that the value ∗ stands for the empty list and thus
does not find a matching value in the iter column. For the “glueing” columns
(item1 and iter) in table Q2·1 and Q2·2, values of any domain are suitable as
long as they support some notion of equivalence.

3.3 A Relational Algebra for Switch

The table operators lined up in Table 3.1 resemble a standard or restricted form of
operators found in the classical relational algebra [Cod70]—each of these operators
considers one or more tables as input and produces another table as a result. While
these operators are agnostic about an actual database system, they reflect the
query capabilities of any modern database system at the same time. Each operator
is, by design, furnished with simple semantics: for the select operator σa, e.g., it
is sufficient to only select tuples with a = true. Similarly the equi-join operator
(a=b) only supports equality predicates as join condition. The advantage of these
RISC-style operators is that they are especially beneficial to efficient algebraic
optimization and rewrites as proposed in [GMR09; Rit10; Teu06].

Operator Description

πa1:b1,...,an:bn(·) projection and column renaming from ai into bi
σa(·) select rows by a = true
@a:v(·) add column a with values v
δ(·) duplicate elimination
%a:〈b1,...,bn〉|p(·) row numbering (with order 〈b1, . . . , bn〉 and partition by p)
a:〈b1,...,bn〉(·) row ranking (with order 〈b1, . . . , bn〉)
}a:〈b1,b2〉(·) 2-ary arithmetic/comparison/boolean operator
· a=b ·, equi-join
· × · cross product
·] ·, · / · disjoint union and difference
grpa:◦(b)/g(·) aggregation on b group by g (◦ ∈ {max, sum,count, . . .})
a1 ... an
∅ , a1 ... an (empty) literal table with columns a1, . . . , an

T(a1,...,an)〈p〉 database table reference to T with columns a1, . . . , an
and primary key p

a1,a2,〈a3,...,an〉(·) plan root (with payload columns 〈a3, . . . , an〉

Table 3.1: Assembly style table operators reflect the query capabilities of modern
databases systems. Their simple semantics is advantageous when it comes to
effective algebraic optimization.

3.3 A Relational Algebra for Switch 63

Among the few non-standard operators is the attach operator @a1:v1,...,an:vn(q),
which is a shortcut for a1 ... an

v1 ... vn ×q. Both the row number and the row rank operator
are a tribute to arbitrary nesting and order in Switch. The pos column, which
is used to reflect order, is populated with numeric values adhering to an order
criterion that is imposed by the parameters of these operators.

Given an order b1, . . . , bn, the row-number operator %a:〈b1,...,bn〉|p(q) generates
consecutive row numbers in the new column a for every partition p in q. In each
partition, row numbering re-starts at 1. Omitting parition, we write %a:〈b1,...,bn〉(q)
to express that we operate on a single partition that spans the entire table em-
bodied by expression q.

In Switch, the other variant of numbering in form of the rank operator is
usually considered to maintain order. The row rank a:〈b1,...,bn〉(q) populates the
column a with the rank of the “current” row among the other rows in the table q. If
rows are tied—i.e. they have equal values in the ordering column—the same rank
will be assigned to them. In the compilation scheme, the row rank operator meets
various duties that are directly or implicitly linked with maintaining order, such
as (i) generating iteration identifiers, (ii) group identifiers, (iii) absolute positions,
(iv) and surrogate values to represent nested lists. On relational database systems
a the rank and the row-number operator causes a considerable cost: using this
operator entails a sorting operation on the input table according to the order
criterion. In Section 5.1 we will briefly discuss an optimization technique that
could remove these operators from the query plans in certain situations.

The proper functions for the above operators are at the ready in any SQL:1999
compliant database system as part of the SQL/OLAP amendment. In the SQL
translation of the algebraic operators above (4), we translate the row number
operator %a:〈b1,...,bn〉|p(q) into the following SQL-query:

SELECT *, ROW_NUMBER() OVER (
PARTITION BY p ORDER BY b1, . . . , bn) AS a

FROM q

Similarly, the row rank operator a:〈b1,...,bn〉(q) follows the semantics of the following
SQL-query:

SELECT *, DENSE_RANK() OVER (ORDER BY b1, . . . , bn) AS a
FROM q

The serialization operator a1,a2,〈a3,...,an〉(q) forms the plan root of every query
plan. Applied on q, this primitive will divide the result into groups (or lists) based
on the column a1. The column a2 describes the sequence order while the sequence
〈a3, . . . , an〉 accomodates the payload information.

64 CHAPTER 3. A Relational Portrayal of Switch

Plan Bundle
pb := (q︸︷︷︸

Query Plan

, cs︸︷︷︸
Column Structure

, surr︸︷︷︸
Surrogate Map

)

Column Structure
cs := itemn Columns

| (cs , . . . , cs) Tuples
| {ι : cs , . . . , ι : cs} Records

Surrogate Map

surr := {. . . , itemn 7→ pb, . . .}

Table 3.2: Auxiliary structures used in the compilation scheme: q stands for a
relational plan, the column structure is used to “flatten” the the type of a subex-
pression to a table schema, and the surrogate map hosts further plan bundles to
properly represent nesting.

3.4 Introducing the Compilation Scheme
The inference rules featured in this chapter present the first step in our translation
of a Switch expression (or query) into a database executable form. The principal
elements in this process are compilation rules with the general shape

Γ; loop ` eV pb ,

which may be read as “A Switch subexpression e is compiled to its plan bundle
pb,” provided that

(i) Γ denotes the variable environment that maps any variable x that occurs to
be free in e to the plan bundle pbx and

(ii) a relation loop that describes the iteration context of an expression e.

The plan bundle comprises the essential components to render the subexpres-
sion e into its loop-lifted encoding and to properly restore the result in the host
language. As we illustrate in Table 3.2, the plan bundle pb spans three parts:

(i) The query q describes the loop-lifted encoding of e in terms of table operators.
It emits a table with the schema

〈
iter, pos, item

〉
; the item sequence item

always starts at 1 and is consecutively numbered and solely parametrized
by a parameter n that reflects the number of items. The translation rules
operate exclusively on tables adhering to this schema. In the following, we
use Ln to denote the type of a table with a loop-lifting schema comprising n
item columns.

3.5 Auxiliary Functions 65

(ii) The items in the column structure reflect the types of the type system with
the exception that base types are substituted by column names itemn. Be-
ing assembled during the compilation process, the column structure prop-
erly reflects the type of e. The corresponding base types are mapped to
columns in the query q, where associated values can be found. For exam-
ple, the type (Int , {ι1 : Str , ι2 : Dec}) corresponds to the column structure
(item1, {ι1 : item2, ι2 : item3}), which assigns the atomic types Int , Str , and
Dec to the column names item1, item2, and item3 respectively.

(iii) If the Switch expression e is subject to nesting, this is indicated by one
or more columns containing surrogate values. The column names are found
in the surrogate map that maps column names to another plan bundle that
describes the inner shape of the expression e. More accurately, the surrogate
map is a partial function to which a column name may be applied. In return,
we obtain the associated plan bundle.
We write surr ·∪ {item1 7→ pb1, . . . , itemn 7→ pbn} in order to append item1 to
itemn with plan bundle pb1 to pbn to the surrogate map surr , and dom(surr)
to obtain the domain of the surrogate map. To restrict a surrogate map surr
to a subset of its domain I ⊆ dom(surr) we write surr |I .

The compilation process works in a bottom-up manner, starting with the sin-
gleton loop table iter

1 that embodies the aforementioned pseudo single-iteration of
the top-level scope s0. The compilation rules are truly compositional, i.e., the
direct constituents of each expression are translated independently from their sur-
rounding expression.

We start with the translation of Switch expressions where nesting is of sec-
ondary importance. These translation rules address an expression e by either
resulting in an empty surrogate map (∅) or by adopting the column structure
derived by its direct constituents. We introduce nesting in Section 3.10 and dis-
cuss expressions that call fora careful treatment of their nested structures in the
following sections.

For the sake of clarity, we use abstract syntax rather than concrete syntax in
all following examples. In this way, we can safely distinguish between lists and
tuples, which are perceived as arrays in Ruby syntax. However, we omit the
abstract notation for literals. In a few examples, we also provide the concrete
syntax to emphasize the connection to the Ruby code.

3.5 Auxiliary Functions

In the current section we devise several meta functions that facilitate the definition
of the compilation rules. Each function performs a particular compile time opera-

66 CHAPTER 3. A Relational Portrayal of Switch

tion, ranging from the retrieval of properties of plan components to the formulation
of query-plan fragments.

3.5.1 Gathering Items

An operation that commonly occurs in the formulation of translation rules is the
retrieval of columns names that are used to represent a value in a table. The
function

items(cs)

is inductively defined over column structures and returns the set of item columns
that are used to accommodate associated values.

This function is overloaded to work on surrogate maps in order to obtain the
columns that contain surrogate values in order to express nested data structures. In
mathematical terms: items(surr) derives the input domain of the partial function
surr . Both operations are defined in Table 3.3.

To obtain the number of item columns in a column structure we use the shortcut
|cs | to mean |items(cs)| (set cardinality), and likewise for surrogate maps we write
|surr | to mean |items(surr)|.

items(itemn) = {itemn}
items((cs1, . . . , csn)) = items(cs1)] . . .] items(csn)

items({ι1 : cs1, . . . , ιn : csn}) = items(cs1)] . . .] items(csn) (CS-Items)

items(surr) = dom(surr) (SM-Items)

Table 3.3: Gathering the item columns that used to represent the values associated
with a column structure. Applied on surrogate maps, items(surr) obtains all
columns that contain surrogate values.

3.5.2 Adjustment of Items

In the compilation rules, we heavily rely on the loop-lifted table schema compris-
ing a consecutively numbered item sequence. When working with multiple tables,
columns need to be re-adjusted to restore the loop-lifted table schema. The func-
tion

cs B l

3.5 Auxiliary Functions 67

descends into the column structure and increments each itemn by a number l result-
ing in itemn+l. The shape of the column structure, however, remains untouched.
We use cs C l as a shortcut for cs C l ≡ cs B (−l).

This function is overloaded to work on surrogate maps in which the following
equivalence holds:

surr itemn = (surr B l) itemn+l .

Similarly, the expression surr C l is used to mean surr B (−l). Consider Table 3.4
for a complete definition of both operations.

itemn B l = itemn+l

(cs1, . . . , csn)B l = (cs1 B l, . . . , csn B l)

{ι1 : cs1, . . . , ιn : csn}B l = {ι1 : cs1 B l, . . . , ιn : csn B l} (CS-Items-Inc)

surr B l = {itemi+l 7→ surr itemn | itemi ∈ dom(surr)}
(SM-Items-Inc)

Table 3.4: Adjustment of column names in column structures and surrogate maps.

3.5.3 Lifting the Environment

The lift operator in Table 3.5 lifts each loop-lifted representation of variables in
the environment Γ into a new iteration scope described by the query map, as
it can be seen, e.g. in rule (LL-Map) on page 93. The query map relates the
iteration identifiers from outer scope sx to the inner scope sx·y and has the schema
〈outer, inner, posouter〉; the column posouter additionally preserves the logical order
of the elements in the outer scope to avoid a costly re-calculation. This connection
between directly enclosing scopes permits us to establish the representation of any
free variable captured by the environment Γ in scope sx·y by means of an equi-join.

3.5.4 Restricting the Environment

The restrict operator in Table 3.6 confines each loop-lifted representation of vari-
ables in the environment Γ to values described by the iteration scope in the query
loop. The operation is used in preparation for the translation of conditionals
(rule (LL-If) on page 86) to respectively assemble separate environments for the
then-branch and the else-branch. The meta operation T·Ufq (see Section 3.11.2
for the definition) removes the values that are subject to the confinement from
(possibly) nested lists hosted by the surrogate maps.

68 CHAPTER 3. A Relational Portrayal of Switch

lift(map, ql) =

πinner:iter,pos,items(cs)

outer=iter

map q

(Lift)

LΓM↑map =

{
let (q, cs , surr) = Γ x

x ∈ dom(Γ)
in x 7→ (lift(map, q|cs |), cs , surr)

}
(Env-Lift)

Table 3.5: The operation LΓM↑map lifts all variables in Γ into a new iteration scope.
The query map relates two directly enclosing iteration scopes by preserving the
originating outer iteration for each iteration in the inner scope. Note that the query
q in Eq. (Lift) is annotated with the number of item columns (l) that appear in
the schema of q.

restrict(loop, ql) =

πiter,pos,item1,...,iteml

iter=iter2

q πiter:iter2

loop

(Restrict)

LΓMfloop =


let (q, cs , surr) =Γx,

q′ = restrict(loop, q|cs |) x ∈ dom(Γ)
in x 7→ (q′, cs ,TsurrUfq′)


(Env-Restrict)

Table 3.6: The operation LΓMfloop restricts all variables in Γ to the iteration con-
text, described by the query loop. Observe that the query q in Eq. (Restrict) is
annotated with the number of item columns (l) that appear in the schema of q.

3.5 Auxiliary Functions 69

3.5.5 Relational Zip

The relational zip operator in Table 3.7 merges the loop-lifted representation of an
arbitrary but finite number of queries into a single table. It is primarily used when
expressions displayed by separate queries are rendered into a single plan, such as
in rule (LL-Tup) on page 72.

The queries are paired according to their iteration identifier, so that elements
originating in the same iteration are placed in a single row. To prevent name
clashes, the item sequences are re-adjusted accordingly. For this purpose, every
query qi is annotated with the number of columns (li) that are required to accom-
modate the intermediate result in its tabular encoding.

. (ql11 , q
l2
2 , . . . , q

ln−1

n−1 , q
ln
n) =

iter

π iter,pos,item1,...
,iteml1

q1

iter

πiter,item1+l1
,...

,iteml2+l1

q2

iter

πiter,item
1+

∑n−2
i=1

li
,...

,item
ln−1+

∑n−2
i=1

li

qn−1

πiter,item
1+

∑n−1
i=1

li
,...

,item
ln+

∑n−1
i=1

li

qn

(RelZip)

Table 3.7: The relational zip operator pairs the tuples of n queries orig-
inating in the same iteration. Items are automatically adjusted to pre-
vent name clashes. For the sake of readability, we write q1 iter q2 to mean
πiter,pos,item1·2

(q1 iter=iter2 πiter:iter2,item2
(q2)). The item sequences item2 and item1·2

respectively denote the item columns participating in q2 and the join result.

3.5.6 Relational Append

The relational append operator in Table 3.8 combines an arbitrary number of
queries into a single query. It is used whenever the semantics of an expression
includes an append operation—such as the list constructor (see on page 87).

In contrast to the relational zip operator in the preceding section, the relational
append operator places the item columns that originate in the same iteration one
below each other rather than in the same row. Essentially, the append operation
is implemented via a disjoint union. To ensure the logical ordering— e.g. elements
from query q1 need to appear before elements of query q2—we extend the queries

70 CHAPTER 3. A Relational Portrayal of Switch

with a temporary column (ord). Based on the schema 〈iter, ord, pos〉, a new position
(pos2) is established. It is important to see that the column structure (cs) and
a surrogate map (surr) participate in the preparation of the query in order to
obtain the item columns that are used in the queries q1 through qn. Note that the
column pos2 doubles in the preparation of new surrogate values for the columns in
items(surr). The temporary column ord is further used to cope with nesting (see
Section 3.11.1 on page 83).

|(cs ,surr)(q1, . . . , qn−1, qn) =

πiter,pos2:pos,ord,
items(cs)−items(surr),
pos2:items(surr)

%pos2:〈iter,ord,pos〉

]

@ord:1

q1

]

@ord:n−1

qn−1

@ord:n

qn

(RelAppend)

Table 3.8: The relational append operator concatenates the tuples of n queries.

3.6 Base Types
For any literal, such as a literal integer or string, the loop lifted encoding produces
a table with a single element at position pos = 1 for every iteration in loop. The
translation rule for integers, decimals, strings and boolean values is depicted in
rule (LL-Literal).

lit ∈ {int[l], dec[l], str[l], bool[l]}
Γ; loop ` lit V (@item1:l(@pos:1(loop)), item1, ∅)

(LL-Literal)

3.6.1 Binary and Unary Operators

Switch provides various infix operators on the values of base types ranging
from simple arithmetics to the “Big Six” comparison operators. The translation
rule (LL-Binary) directly maps the infix operators (+, -, . . .) to their relational
equivalents (�, �, . . .).

3.7 Variables 71

The components e1 and e2 are translated individually to their loop-lifted trans-
lation, in a way to that in the rules for tuples and records. In this case, however,
we expect a single numeric value in each iteration. The meta function . (q1, q2)
(defined in Eq. (RelZip)) pairs tuples originating in the same iteration (the column
item1 in query q2 is renamed to item2 in order to prevent name clashes). As a result
we expect a table presenting the operands side by side in columns item1 and item2

for each iteration. For each operator its relational equivalent is applied row-wise
on the table to produce the overall result.

◦ ∈ {+, -, *, /, %, |, &, ==, <>, <, >, <=, >=}
Γ; loop ` ei V (qi, item1, ∅) i=1,2

q ≡ πiter,pos,item3:item1(}item3:〈item1,item2〉(. (q1
1, q

1
2)))

Γ; loop ` ◦(e1, e2)V (q, item1, ∅)
(LL-Binary)

In keeping with the above rule, the unary operators—the unary positive (-)
and negative (-), as well as the logical negation (!)—are respectively mapped to
their readily available primitives (�, �, !) in the relational intermediate language.

◦ ∈ {+, -, !}
Γ; loop ` eV (q, item1, ∅)

q ≡ πiter,pos,item2:item1(}item2:〈item1〉(q))

Γ; loop ` ◦(e)V (q, item1, ∅)
(LL-Unary)

3.7 Variables
Variables in Switch are merely introduced when using one of the iteration con-
structs in tandem with Ruby’s block notation. The rules for these constructs
provide the correct loop-lifted encoding for any variable x that is currently free in
the iteration body, and populate the variable environment Γ accordingly with a
plan bundle. When the variable x is accessed, its plan bundle is fetched from the
variable environment and adopted as the resulting plan bundle.

Γx = pb

Γ; loop ` var[x]V pb
(LL-Var)

3.8 Tuples and Records
Tuples, as well as records, wrap an arbitrary but finite number of elements into a
combined type, while they remain accessible by referencing to either a position or,
in case of records, to a label. The rule (LL-Tup) captures the loop lifting translation

72 CHAPTER 3. A Relational Portrayal of Switch

for a tuple. The intuition behind this rule is that we merge the derived loop-lifted
encodings of all constituents into a single table by means of an equi-join.

1 Γ; loop ` ei V (qi, cs i, surr i) 2 li = |csi|
3 cs ′i = cs i B

∑i−1

j=1
lj 4 surr ′i = surr i B

∑i−1

j=1
lj

∣∣∣∣∣ i=1,...,n

Γ; loop ` (ē)V (. (ql11 , . . . , q
ln
n), (cs ′1, . . . , cs

′
n),
⋃· n
i=1 surr

′
i)

(LL-Tup)

In step 1 of rule (LL-Tup) the elements e1 to en are translated separately into
their corresponding loop-lifted encodings respectively by employing the proper
rule. Each of the queries (qi) describes a table that adheres to the loop lifting
schema Lli (comprising li item columns). The combined schema for the entire
tuple is obtained by the total number of item columns of the individual queries
and thus has the form Ll1+...+ln . The number of elements li for each query is
calculated in step 2 .

The problem that arises here is that the item sequence of each query (qi)
starts with item1 and is consecutively numbered. Hence, the column names are
mutually overlapping, which inevitably leads to name clashes. We prevent these
name collisions by re-adjusting the item columns of each query so that they may
safely be used side by side in a single table. In step 3 and step 4 we shift the item
column names of each column structure cs i and surrogate map surr i respectively
by the overall number of item columns that are used to accommodate the preceding
elements.

Having adjusted all auxiliary structures we must consider the queries (qi), in
which the same problem arises apparently. Here we rely on the meta function
. (ql11 , . . . , q

ln
n) (see Eq. (RelZip)), which accepts the queries ql11 to qlnn jointly with

the number of item columns and merges them into a single table with the schema
Ll1+...+ln by means of an equi-join on the iter column; item sequences are adjusted
in the course of this process.

Rule (LL-TupEmpty) compiles the empty tuple into its tabular representation.
Since this tuple has no components, both the column structure and surrogate map
are empty.

Γ; loop ` ()V (@pos:1(loop), (), ∅)
(LL-TupEmpty)

Rule (LL-Rec), which captures the translation of records, works analogously to
the rule for tuples, with the exception that labels ι1 to ιn are employed to assemble
the column structure to properly reflect the type. An illustration of how both rules
elegantly interact to assemble a nested tuple out of the atomic values v1 to v3 is
depicted in Figure 3.4.

3.8 Tuples and Records 73

iter,pos,〈item1,item2,item3〉

iter=iter2

πiter,pos,item1 πiter:iter2,item1:item2,item2:item3

@item1:v1

@pos:1

iter=iter2

πiter,pos,item1 πiter:iter2,item1:item2

@item1:v2 @item1:v3

@pos:1 @pos:1

loop
iter
1
2
3
4

{ι1=>v2,ι2=>v3}
iter pos item1 item2
1 1 v2 v3
2 1 v2 v3
3 1 v2 v3
4 1 v2 v3

(v1,{ι1=>v2,ι2=>v3})
iter pos item1 item2 item3
1 1 v1 v2 v3
2 1 v1 v2 v3
3 1 v1 v2 v3
4 1 v1 v2 v3

Figure 3.4: Loop lifted representation of the nested tuple (v1,{ι1=>v2,ι2=>v3}) in
the iteration context embodied by the loop table. Note how the item columns are
properly renamed to prevent name clashes when two queries are paired.

Γ; loop ` ei V (qi, cs i, surr i) li = |csi|
cs ′i = cs i B

∑i−1

j=1
lj surr ′i = surr i B

∑i−1

j=1
lj

∣∣∣∣∣ i=1,...,n

Γ; loop ` {ῑ=>ē}V (. (ql11 , . . . , q
ln
n), {ι1 : cs ′1, . . . , ιn : cs ′n},

⋃· n
i=1 surr

′
i)

(LL-Rec)

Γ; loop ` {}V (@pos:1(loop), {}, ∅)
(LL-RecEmpty)

3.8.1 Positional and Nominal Reference

In rule (LL-TPos) we implement positional access on tuples ([·]T(etuple,int[p]))
via position p. Note that the type system ensures that p does not exceed the
number of elements in etuple. The rule is primarily concerned with compile-time

74 CHAPTER 3. A Relational Portrayal of Switch

bookkeeping tasks, whereas the query is expressed by means of a straightforward
projection on the respective columns.

1

{
Γ; loop ` etuple V (q, (cs1, . . . , csp, . . . , csn), surr)
{itemp1 , . . . , itempm} = items(csp)

2


l =

∑p−1

i=1
|cs i|

cs ′p = csp C l
surr p = surr |items(csp) Cl

3 q′ ≡ πiter,pos,itemp1 :item1,...,itempm :itemm(q)

Γ; loop ` [·]T(etuple,int[p])V (q′, cs ′p, surr p)
(LL-TPos)

In step 1 the tuple (etuple) is translated into its tabular representation in the
current iteration context. The remaining steps revolve around the column struc-
ture (csp), which maintains the item columns used to accommodate the referenced
element within query q.

In step 2 we restore the loop-lifted table schema: both column structure and
surrogate map are properly aligned and confined based on the preceding item
columns captured by the column structures (cs1 through csp−1). In step 3 we
eventually retrieve the element by a projection on its designated columns.

Nominal reference on a record captured by rule (LL-Proj) operates analogous
to rule (LL-TPos). In this case, however, the projection is applied on label names
rather than positions.

Γ; loop ` erecord V (q, {ι1 : cs1, . . . , ιp : csp, . . . , ιn : csn}, surr)
{itemp1 , . . . , itempm} = items(csp)

l =
∑p−1

i=1
|cs i|

cs ′p = csp C l
surr p = surr |items(csp) Cl
q′ ≡ πiter,pos,itemp1 :item1,...,itempm :itemm(q)

Γ; loop ` proj(erecord,ιp)V (q′, cs ′p, surr p)
(LL-Proj)

3.9 Interfacing the Relational Back-End
An important aspect of Switch is its ability to involve tables that reside in the
underlying database back-end in an arbitrary computation. For this purpose, the
language is furnished with a table reference operator (table[T]) that permits a
table to be used as a source for constitutive manipulations. In Switch a table is
represented as a list of records [{ι1 : τ1, . . . , ιn : τn}]:
(i) The labels ι1 to ιn are solely determined by the column names of the table,
(ii) while the respective column domain is straightforwardly mapped to the cor-

responding Switch types.

3.9 Interfacing the Relational Back-End 75

iter,pos,〈item1,item2,item3〉

×

loop πpos,
id:item1,
name:item2,
price:item3

pos:〈id〉

Products(id,name,price)〈id〉

Products
id name price
4 p1 10
7 p2 20
9 p3 30
13 p4 10

pos item1 item2 item3
1 4 p1 10
2 7 p2 20
3 9 p3 30
4 13 p4 10

Figure 3.5: The query plan accesses the Products table hosted by the underlying
database back-end (id denotes the primary key). The table shown on the right
taps the intermediate result before the cross-product with the iteration context is
applied.

(iii) To establish a logical order between elements in the list, we set up a position
column based on the primary key (the actual choice of a sorting criterion,
however, is arbitrary).

In rule (LL-Table) we comprise the above steps in a single rule. The column
names are preserved in the column structure whereas the table schema is entirely
renamed to impose the loop-lifted table schema to the query component. As a last
step, we establish the iteration context by use of a cross product (for an illustration
consider Figure 3.5).

q ≡ loop× πpos,c1:item1,...,cn:itemn(pos:〈p〉(T(c1,...,cn)〈p〉))

Γ; loop ` table[T]V (q, {c1 : item1, . . . , cn : itemn}, ∅)
(LL-Table)

76 CHAPTER 3. A Relational Portrayal of Switch

3.10 Nesting
The handling of nested lists is of critical importance in Switch. So far, we have
only seen how tuples and records may be nested accordingly to be rendered into a
single row. Naturally, a list spans several rows that are tied by its list identifier.
Therefore we must distribute nested lists over several flat tables linked by surrogate
values to properly present them to the database back-end.

For illustration, examine the following nested list that may be introduced in
the expression tree of a Switch program:

<<10, 20, 30>, <40, 50>> (Q3)

The list constructor features two further lists that jointly span exactly five
rows in their tabular encoding. Consequently, the expression in its entirety cannot
reside in a single row and has to enriched with information that explicitly tells us
to
(i) split its tabular representation into two queries (Q3·1 and Q3·2)
(ii) and to introduce surrogate values which relate the queries by a foreign-key

relationship in order to restore the original list.
For this purpose we introduce

box(e) ,

which, weaved into the expression tree, forks the compilation to translate two
relational queries to properly present Query Q3 to its flat table operators. The
expression below demonstrates how box(e) helps in the compilation of the above
expression:

< ◦ , • >

box(<10, 20, 30>) box(<40, 50>)

Now, with the information that the inner lists are respectively represented by a
single value that occupies a table cell, the list constructor is merely concerned with
computing the tabular encoding of the outer list (where all inner lists have been
substituted by their corresponding surrogates). Note that the surrogate value of
an empty list does not appear in the inner query.

The inner lists are then assembled into a single table, where the surrogate
values are used to discriminate between them. Here, the iter column, hosting the
surrogate values, additionally assumes the role of a list identifier, resulting in the
tables in Figure 3.6.

3.10 Nesting 77

Q3·1
iter pos item1

1 1 ◦
1 2 •

Q3·2
iter pos item1
◦ 1 10
◦ 2 20
◦ 3 30
• 1 40
• 2 50

Figure 3.6: Tabular representation of Query Q3. Note how the inner lists are
combined in a single table and may be easily discriminated according to their iter
column.

A similar problem arises when we use the following query to obtain the total
over the inner lists (for the sake of simplicity we substituted the binding list by a
literal as it would be seen by Switch):

map(<<10,20,30>,<40,50>>,λx.sum(var[x]))
<60,90>

(Q4)

Whereas box() is introduced to respectively condense the inner lists to a sur-
rogate, the computation in the body expects the loop variable to present these
lists—and its values—in a single table to successfully complete its task. In a
sense, we need to roll back the box operation on the iteration variable to properly
calculate the total.

To swap between the tabular and the row-wise list representation, we weave

unbox(e)

into the expression tree, resulting in the following query that has been properly
enriched with the respective operations in order to ensure a flat representation of
all participating constructs:

map(<box(<10,20,30>),box(<40,50>)>,λx.sum(unbox(var[x])))

The unbox() operation eventually triggers the compilation process to combine
the two queries (Q3·1and Q3·2) that have been introduced by the box() operation.
Later on, we will see how this is efficiently obtained by an equi-join on the surrogate
columns.

3.10.1 Switch between Representations

In terms of a database back-end, any Switch expression may be either represented
by a single row or, in case of lists, by multiple rows tied by their list identifier.
Based on this rough differentiation, the types in Table 3.9 classify any expression
according to their representation in the underlying back-end. In the following we
refer to them as implementation types :

78 CHAPTER 3. A Relational Portrayal of Switch

Implementation Types

β, γ, δ ::= Atom single row
| List multiple rows

Table 3.9: The above types classify any expression based on how they are imple-
mented in the underlying database back-end.

Atom Every expression that may be rendered into a single row ends up
in this category. We define Atom inductively over the type of a Switch
expression:

Int , Str ,Dec,Bool ∈ Atom
if τi ∈ Atom for all i = 1, . . . , n then (τ1, . . . , τn) ∈ Atom
if τi ∈ Atom for all i = 1, . . . , n then {ι1 : τ1, . . . , ιn : τn} ∈ Atom

The above definition tells us that base types are elements of Atom by defini-
tion. Furthermore, any arbitrary nested tuple or record may be implemented
by a single row as long as the types of its direct constituents are elements of
Atom as well.

List The second category tells us whether an expression is represented by a
group of rows in a table, and therefore, merely populated by lists (of arbitrary
type):

∀τ,[τ]∈ List

Following the above definitions, these coarse types may be easily derived based
on the type system we provide in Section 2.6. In Table 3.10 we applied the defini-
tions to summarize the built-in functions in terms of their implementation types.

The type system summarized by the set inference rules in Table 3.11 performs
a simple bottom-up static analysis that precedes the algebraic compilation. Along
with the proper implementation type for an expression, it prescribes the intro-
duction of runtime coercions (box(e) and unbox(e)), i.e. an expression e does
not meet the expected type. The judgment e → e′ : β reads as “The expression
e is possibly coerced into e′ to meet the expected implementation type, and has
implementation type β.”

In the inference rules, we use the following operator that triggers the introduc-
tion of box(e) or unbox(e):

oβ
γ(e) =


e , if β = γ
box(e) , if β = List and γ = Atom
unbox(e) , if β = Atom and γ = List

3.10 Nesting 79

By applying the inference rules on an expression e we obtain an expression, that
is enriched with runtime coercions, whose loop-lifted translations we devise in the
following section.

Built-in functions

concatL :List × List � List concatenation
[·]T :Atom ×Atom � Atom positional access
[·]L :List ×Atom � Atom positional access

firstL :List � Atom first element
lastL :List � Atom last element
takeL :List ×Atom � List keep prefix
dropL :List ×Atom � List keep suffix

reverseL :List � List reversal
lengthL :List � Atom list length
flatten :List � List list flattening
sum, avg,
min, max :List � List list aggregation
member? :List ×Atom � Atom element lookup
uniq :List � List duplicate elimination
zip :Atom � List zip

unzip :List � Atom unzip

Higher order built-in functions

map :List × (Atom � Atom) � List iterate over elements
select, reject :List × (Atom � Atom) � List filter elements

flat_map :List × (Atom � Atom) � List iteration and flattening
all?, any? :List × (Atom � Atom) � Atom quantification

take_while, drop_while :List × (Atom � Atom) � List prefix and suffix
count :List × (Atom � Atom) � List count elements

sort_by :List × (Atom � Atom) � List sorting
min_by, max_by :List × (Atom � Atom) � Atom minimum and maximum

partition :List × (Atom � Atom) � List partition
group_with :List × (Atom � Atom) � List grouping

Table 3.10: Implementation types of built-in functions

80 CHAPTER 3. A Relational Portrayal of Switch

Table 3.11: Static analysis that prescribes the introduction of runtime coercions
box(e) and unbox(e), if List/Atom mismatches are encountered in e (or its sub-
expressions).

int[i]→ int[i] : Atom
(Box-Int)

dec[d]→ dec[d] : Atom
(Box-Dec)

str[s]→ str[s] : Atom
(Box-Str)

bool[b]→ bool[b] : Atom
(Box-Bool)

var[x]→ var[x] : Atom
(Box-Var)

()→ () : Atom
(Box-TupEmpty)

ei → e′i : βi i=1,...,n

(ē)→ (oβ1
Atom(e′1), . . . ,oβn

Atom(e′n)) : Atom
(Box-TupCons)

{}→ {} : Atom
(Box-RecEmpty)

ei → e′i : βi i=1,...,n

{ῑ=>ē}→ {ι1=>oβ1
Atom(e′1), . . . , ιn=>o

βn
Atom(e′n)} : Atom

(Box-RecCons)

<>→ <> : List
(Box-EmptyList)

ei → e′i : βi i=1,...,n

<ē>→ <oβ1
Atom(e′1), . . . ,oβn

Atom(e′n)> : List
(Box-ListCons)

e→ e′ : Atom

proj(e,ι)→ proj(e′,ι) : Atom
(Box-RecProj)

continued on next page

3.10 Nesting 81

table[R]→ table[R] : List
(Box-TableRef)

e1 → e′1 : Atom ei → e′i : β i=2,3

if(e1,e2,e3)→ if(e′1,e′2,e′3) : β
(Box-If)

ei → e′i : Atom i=1,2

~(e1, e2)→ ~(e′1, e′2) : Atom
(Box-Arith)

ei → e′i : Atom i=1,2

<(e1, e2)→ ~(e′1, e′2) : Atom
(Box-Comp)

ei → e′i : Atom i=1,2

7(e1, e2)→ ~(e′1, e′2) : Atom
(Box-Junc)

Γm : β1 × . . .× βn � γ.

ei → e′i : δi i=1,...,n

m(ē)→ m(oδ1
β1

(e′1), . . . ,oδn
βn

(e′n)) : γ
(Box-Func)

Γm : List• × (Atom � Atom•) � β
e→ e′ : γ eb → e′b : δ

m(e, λx.eb)→ m(oγ
List•

(e′), λx.oδ
Atom•(e

′
b)) : β

(Box-FuncBlock)

3.10.2 (Un)Box

To split a query representing an expression e into two relating queries we have
recourse on the iteration context in which e is compiled. Since loop holds a unique
value for each iteration it may be safely used to establish foreign key relationship

πitem1(q
′) ⊇ πiter(q) ,

whereby the original expression may be restored.
Note how query q′ is used in rule (LL-Box) to substitute the tabular encoding

of expression e. The current iteration context participates in the preparation of a

82 CHAPTER 3. A Relational Portrayal of Switch

surrogate column (item1) to be inserted into the surrogate map, in tandem with
the entire plan bundle derived from the compilation of e.

Γ; loop ` eV (qinner, cs , surr)
qouter ≡ @pos:1(πiter:{iter,item1}(loop))

Γ; loop ` box(e)V (qouter, item1, {item1 7→ (qinner, cs , surr)})
(LL-Box)

In rule (LL-Unbox) we provide the inference rule to compile unbox(e) that merges
two queries that jointly implement a nested expression e into a single query. The
equi-join operator, applied to the surrogate columns, efficiently implements this
operation.

Γ; loop ` eV (qouter, item1, {item1 7→ (qinner, cs , surr)})
q ≡ πiter2:iter,pos,items(cs)(πiter:iter2,item1:surr(qouter) surr=iter qinner)

Γ; loop ` unbox(e)V (q, cs , surr)
(LL-Unbox)

3.10.3 Avoiding Query Avalanches

Switch guarantees that only few queries are fired against the database back-end.
This marks a significant deviation from ActiveRecord, which still suffers from
the n+1 query problem and keeps the back-end busy with a flood of simple look-
alike queries. Whereas ActiveRecord emits queries dependent on the database
instance size, in Switch it is exclusively the expression’s static result type that
determines the number of initiated SQL queries. More specific, the number of
queries #queries(τ) corresponds to the sum of the nesting depth of an expression
with the type τ (see also [GG+13]):

#queries(τ) =

{
1 , if τ ∈ Atom
sumdep(τ) , else

with sumdep(τ) defined as follows

sumdep(τ) =


0 , if τ ∈ {Int ,Dec, Str ,Bool}
sumdep(τ1) + . . .+ sumdep(τn) , if τ = (τ1, . . . , τn)
sumdep(τ1) + . . .+ sumdep(τn) , if τ = {ι1 : τ1, . . . , ιn : τn}
1 + sumdep(σ) , if τ = [σ]

The above definition for #queries() tells us that for an atom (Atom) Switch
issues a single query against the database in order to derive the result. In any other
case—if list types occur in τ—the nesting depth is determined via sumdep(τ). For
example, an expression with the result type [([[Int]], [Str])] eventually leads to
four query plans that are respectively translated into four SQL queries by the SQL
generator.

3.11 Surrogate Maps: A Home for Nested Lists 83

The reasons for this behavior lie in the type system in Table 3.11, which in-
troduces the operations box() and unbox() in order to cope with nesting. As
we detailed in the preceding sections, these operations are introduced based on
the types of the participating constructs of an expression. The operation box()
(rule (LL-Box)) increases the number of initiated queries by splitting the loop-lifted
encoding of an expression, whereas the operation unbox() (rule (LL-Unbox)) merges
two queries into a single one and therefore decreases the number of queries.

3.11 Surrogate Maps: A Home for Nested Lists

Surrogate maps constitute an important part of our compilation scheme because
they accommodate the loop-lifted encodings of nested expressions. The compile-
time operations we describe in the current section originate in the observation
that operations applied to lists—like concat() or drop()—can also affect nested
items. The following meta operations assure that list manipulations, performed
on an outer list, are also propagated to the nested list expressions.

3.11.1 Appending Nested Lists

In the preceding section we have seen how Query Q3 was enriched by box() oper-
ations in order to represent the inner lists by means of surrogate values.

<box(<10, 20, 30>), box(<40, 50>)>

Due to the compositionality of our compilation rules, each inner list is compiled
separately and results in a plan bundle of its own:

Γ; loop ` box(<10, 20, 30>)V (q1·1, item1,

surr1︷ ︸︸ ︷
{item1 7→ (q1·2, item1, ∅)})

Γ; loop ` box(<40, 50>)V (q2·1, item1, {item1 7→ (q2·2, item1, ∅)}︸ ︷︷ ︸
surr2

)

The compilation rule for the list constructor (rule (LL-List) on page 87) is pri-
marily concerned with merging the “outer queries” (q1·1 and q2·1) into a single
query by means of a disjoint union (via Eq. (RelAppend)). Note that q1·1 and q2·1
only contain surrogate values whereas the surrogate maps (surr1 and surr2) contain
the queries (q1·1 and q2·1) that derive the actual data for the inner lists. Hence,
to properly conclude the translation of the list constructor we must combine the
queries in the surrogate maps.

The meta operation

Tsurr 1, . . . , surrnU|q

84 CHAPTER 3. A Relational Portrayal of Switch

in its general form, combines the surrogate maps (surr 1 through surrn) and results
in a single surrogate map by respectively combining the query plans that originate
in the same surrogate column. Note how Eq. (Meta-Append) iterates through
the surrogate map to concatenate the queries by means of a disjoint union (see
Eq. (RelAppend)). The operation is then recursively applied to all “nested” surro-
gate maps (surr 1·i through surrn·i) in order to consider further nesting levels. A
detailed example that involves this operation can be found in Figure 3.8, which
shows how inner lists are merged into a single query plan.

Tsurr 1, . . . , surrnU|q =

let (q1·i, cs , surr 1·i) =surr 1 itemi,
...

(qn·i, cs , surrn·i) =surrn itemi,
qapp =|

(cs ,surr1·i)(q1·i, . . . , qn·i),
q′ =πiter:iter2,ord:ord2,pos:pos2(q),

q′app =qapp iter=iter2∧ord=ord2 q
′,

qi =πpos2:iter,pos,items(cs)(q
′
app)

itemi ∈ dom(surr 1)

in itemi 7→ (qi, cs , Tsurr 1·i, . . . , surrn·iU|qapp
)


(Meta-Append)

Table 3.12: The above rules recursively append the query plans in the surrogate
map (surr 1 through surrn) by means of a disjoint union. The query q has the
schema

〈
iter, pos, ord, item

〉
. Note that the column pos (temporarily renamed to

pos2) provides the new iter column for the “nested queries” (qi) in order to link
them to the “outer queries”.

3.11.2 Removing Nested Lists

If in the course of a computation elements are dropped from a list, this removal
needs to be established in their nested elements. For an example, consider the
following query that drops the first element from a nested list:

dropL(<<10, 20, 30>, <40, 50>>,1)
<<40,50>>

(Q5)

To propagate the removal of the first element to its nested data structures we
rely on the rule summarized by Table 3.13. This compile-time operation arranges
a new query plan that clears the surrogate maps of elements that have not been
removed outright with the originating element. Query q in the rules depicted

3.11 Surrogate Maps: A Home for Nested Lists 85

in Table 3.13 contains the iteration identifiers in a single row together with the
surrogates that can be found in the queries of the surrogate map. We use an equi-
join to discard all elements not stemming from the iteration context described by
query q: surrogates that are dropped do not find a matching value. This schema
is recursively reproduced to clear the entire plan bundle of leftover rows. For a
demonstrating example of how the loop-lifted encoding of Query Q5 is affected
consider Figure 3.7.

TsurrUfq =


let (qi, cs i, surr i) =surr itemi,

q′i = restrict(πitemi:iter(q), q
|csi|
i) itemi ∈ dom(surr)

in itemi 7→ (q′i, cs i,Tsurr iUfq′i)


(Meta-Filter)

Table 3.13: Propagates the removal of elements in query q to the nested data in
the surrogate maps. The query q contains surrogate values in the columns itemi

that we use in order to refer to the plan bundles of the nested expressions in the
surrogate map (surr).

Q5·1
iter pos item1

1 1 ◦
1 2 •︸ ︷︷ ︸

q

item1 7→

Q5·2
iter pos item1
◦ 1 10
◦ 2 20
◦ 3 30
• 1 40
• 2 50

︸ ︷︷ ︸
surr

item1 7→

Q5·2
iter pos item1
◦ 1 10
◦ 2 20
◦ 3 30
• 1 40
• 2 50

︸ ︷︷ ︸
TsurrUfq

Figure 3.7: The above figure demonstrates how the surrogate map is affected,
when Query Q5 removes the first item from the nested input list. Recall that the
surrogate map (surr) hosts the tabular encoding of the list items, each of which
being a nested inner lists. In this example, T·Ufq faithfully discards the first inner
list from the surrogate map. The red rules indicate dropped rows.

86 CHAPTER 3. A Relational Portrayal of Switch

3.12 Conditionals

The compilation of conditionals is quite complex and involves several steps sum-
marized in the single inference rule (LL-If):

In step 1 we translate the expression ebool in the current iteration context (ebool

evaluates to a boolean value). The resulting query qbool is then used in step 2 to
divide the iteration context into two partitions, described by loopthen and loopelse.
Based on these new iteration contexts, we establish separate variable environments
(Γthen and Γelse) by confining the loop-lifted representations of the free variables in
the environment Γ to iterations of the respective then-branch or else-branch (see
Eq. (Env-Restrict)). The subexpressions ethen and eelse are then translated using
the respective iteration context and variable environment.

In step 3 the resulting queries (qthen and qelse) are merged into a single query
(qif) by means of a disjoint union in order to form the overall result (consider
Eq. (RelAppend)). Note that we use T·U|q to reproduce this step throughout
(possibly) nested lists hosted by the surrogate maps.

1 Γ; loop ` ebool V (qbool, item1, ∅)

2


then-branch else-branch

loopthen ≡ πiter(σitem1(qbool)) loopelse ≡ πiter(σ¬item(qbool))
Γthen ≡ LΓMfloopthen

Γelse ≡ LΓMfloopelse
Γthen; loopthen ` ethen ⇒ Γelse; loopelse ` eelse ⇒

(qthen, cs if, surr then) (qelse, cs if, surr else)

3

q ≡ |
(cs if,surrthen)(qthen, qelse)

qif ≡ πiter,pos,items(cs if)(q)
surr if = Tsurr then, surr elseU|q

Γ; loop ` if(ebool,ethen,eelse)V (qif, cs if, surr if)
(LL-If)

3.13 Lists

Recall that the list constructor is merely used internally when a tuple is promoted
to a list to meet typing rules; in the surface syntax it is not possible to directly
assemble a list. Like the tuple constructor, the list constructor accepts an arbitrary
but finite number of elements. A list, however, requires all its elements to be
equally typed. Rule (LL-List) compiles a list into its loop-lifted encoding.

Initially, in step 1 all direct constituents are translated into their corresponding
tabular representation. In step 2 we have recourse to these derived queries (q1

3.13 Lists 87

to qn) in order to concatenate them via Eq. (RelAppend). The resulting query q
participates in the preparation of the surrogates maps for the final result.

In step 3 the surrogate maps are traversed via the meta function T·U|q to
account possibly nested lists. This operation recursively appends the query plans
in the surrogate maps (surr 1 through surrn) and results in the single surrogate
map surr .

1 Γ; loop ` ei V (qi, cs , surr i) i=1,...,n

2 q ≡ |(cs ,surr1)(q1, . . . , qn)
3 surr = Tsurr 1, . . . , surrnU|q

Γ; loop ` <ē>V (πiter,pos,items(cs)(q), cs , surr)
(LL-List)

The rule (LL-LConcat) captures the concatenation of two lists. Concatenation
expects its arguments (e1 and e2) to be equally typed lists whereas the list con-
structor handles elements of any type as long as their types are equal. The below
rule is a reprisal of the more general rule above and operates analogously except
for its confinement on the number of arguments.

Γ; loop ` e1 V (qi, cs , surr i) i=1,2

q ≡ |(cs ,surr1)(q1, q2)
surr = Tsurr 1, surr 2U|q

Γ; loop ` concatL(e1,e2)V (πiter,pos,items(cs)(q), cs , surr)
(LL-LConcat)

3.13.1 Positional Access

To access an element of a list based on its position, consider the following query,
which obtains the second element in the Products table (the primary key prescribes
the arrangement of the elements in the table, if not stated otherwise):

[·]L(table[Products],2)
{:id=>7, :name=>p2, :price=>20}

(Q6)

In rule (LL-LPos), which captures positional access to a list, we link the positions
in question (query qint from step 2) with the list elements (query qlist from step 1)
to obtain the proper elements by means of a comparison.

For this purpose, in step 3 , each list element is temporarily extended with
its absolute position and paired with qint, so that we may qualify tuples by an
equality comparison on the columns item|cs |+1 and item|cs |+2—step 4 reflects this
situation.

88 CHAPTER 3. A Relational Portrayal of Switch

(L
L
-L

is
t)

(L
L-

Li
st

)

Meta-Append

(LL-List)

iter,pos,〈item1〉 iter,pos,〈item1〉

πiter,surr:pos,iter:item1 πsurr′:iter,surr:pos,item1

iter2=iter∧ord=ord2

πitem1:iter2,ord:ord2,
surr:surr′

%surr:〈iter,ord,pos〉|iter %surr:〈iter,ord,pos〉|iter

]]

@ord:1 @ord:2 @ord:1 @ord:2

@pos:1 @pos:1

πiter,iter:item1 πiter,iter:item1

πiter,surr:pos,item1 πiter,surr:pos,item1

%surr:〈iter,ord,pos〉iter %surr:〈iter,ord,pos〉iter

]]

@ord:1 @ord:2 @ord:3 @ord:1 @ord:2

@item1:10@item1:20@item1:30 @item1:40 @item1:50

@pos:1 @pos:1 @pos:1 @pos:1 @pos:1

iter
1

1
2

1 2

<10,20,30>
iter pos item1
1 1 10
1 2 20
1 3 30

<40,50>
iter pos item1
1 1 40
1 2 50

<box(...),box(...)>
iter pos item1
1 1 1
1 2 2

<10,20,30>,<40,40>
iter pos item1
1 1 10
1 2 20
1 3 30
2 4 40
2 5 50

Figure 3.8: Loop lifted query plan resulting from the compilation of Query Q3. The
marked plan edges indicate where boxing splits the plans to calculate surrogate
values (1 for box(<10, 20, 30>) and 2 for box(<30, 40>)). The inner lists are then
merged into a single query (marked by the blue box).

3.13 Lists 89

1 Γ; loop ` elist V (qlist, cs , surr list)
2 Γ; loop ` eint V (qint, item1, ∅)
3 q ≡. (%item|cs |+1:〈iter,pos〉|iter(qlist)

|cs |+1, q1
int)

4 qelem ≡ πiter,pos,items(cs)(σitem(=
item:〈item|cs |+1,item|cs |+2〉(q)))

Γ; loop ` [·]L(elist,eint)V (qelem, cs ,Tsurr listUfqelem)
(LL-LPos)

3.13.2 The First and Last Element

The expression

firstL(table[Products])
{:id=>4, :name=>p1, :price=>10}

(Q7)

accesses the first element of a list and has the type firstL :: [τ] � τ . The close re-
semblance to positional access becomes clear when you take a look at rule (LL-LFirst)

that is simply rewritten in terms of positional access.

Γ; loop ` [·]L(elist,int[1])V (qelem, cselem, surr elem)

Γ; loop ` firstL(elist)V (qelem, cselem, surr elem)
(LL-LFirst)

Rule (LL-LLast) capturing the function lastL :: [τ] � τ performs the task dia-
metrically opposed to the above function by accessing the last element of a list.
As in the above rule, the expression of the term is based on positional access and
the function lengthL(), which derives the number of elements of a given list (we
provide the rule in Section 3.14.1).

Γ; loop ` [·]L(elist,lengthL(elist))V (qelem, cselem, surr elem)

Γ; loop ` lastL(elist)V (qelem, cselem, surr elem)
(LL-LLast)

3.13.3 Prefix and Suffix

Rule (LL-LTake) and (LL-LDrop) render the functions that calculate a prefix or suffix
of a list into their loop-lifted encoding. The function takeL :: [τ]× Int � [τ]
expects a list (elist) and an integer value (eint) as arguments and returns a sublist
consisting of the first eint elements from the list elist.

Poured into abstract syntax, this leads to a similar query as the following one
that picks the initial three products (order is determined by the primary key):

takeL(table[Products],3)
<{:id=>4, :name=>p1, :price=>10},
{:id=>7, :name=>p2, :price=>20},
{:id=>9, :name=>p3, :price=>30}>

(Q8)

90 CHAPTER 3. A Relational Portrayal of Switch

In rule (LL-LTake), we start with the translation of the list elist in step 1 . Then,
we employ query qint obtained by the translation of eint (step 2) to only fetch the
initial elements of the list. For this purpose we calculate in step 3 the absolute
positions (column item|cs |+1) of the elements in each list based on the iteration
identifier and the rank in column pos. The resulting query is paired with query
qint that provides the number of elements that are carried into the result for each
iteration (renamed to column item|cs |+2 prevent name clashes).

In step 4 the absolute positions in each row are compared to column item|cs |+2

to filter all elements with a position that is smaller or equal. All elements whose
positions meet this criterion pass the filter and end up in the final result. In step 5
we propagate new iteration context that has been established by the possible
removal of elements to all surrogates.

1 Γ; loop ` elist V (qlist, cs , surr list)
2 Γ; loop ` eint V (qint, item1, ∅)
3 q ≡. (%item|cs |+1:〈iter,pos〉|iter(qlist)

|cs |+1, q1
int)

4 q′ ≡ πiter,pos,items(cs)(σitem(ď
item:〈item|cs |+1,item|cs |+2〉(q)))

5 Γ; loop ` takeL(elist,eint)V (q′, cs , Tsurr listUfq)
(LL-LTake)

The function dropL :: [τ]× Int � [τ] discards the initial eint elements from
the list elist (with elist as the first argument and eint as the second argument).
Rule (LL-LDrop) reprises the steps from rule (LL-LTake) with the exception that the
elements in each list whose absolute position is smaller or equal do not reappear
in the final result.

Γ; loop ` elist V (qlist, cs , surr list)
Γ; loop ` eint V (qint, item1, ∅)
q ≡. (%item|cs |+1:〈iter,pos〉|iter(qlist)

|cs |+1, q1
int)

q′ ≡ πiter,pos,items(cs)(σitem(5item:〈item|cs |+1,item|cs |+2〉(q)))

Γ; loop ` dropL(elist,eint)V (q′, cs ,Tsurr listUfq)
(LL-LDrop)

3.14 More List Functions

For the following simple list functions, we provide a minimal example that illus-
trates their semantics along with the inference rule that prepares the loop-lifted
encoding.

3.14 More List Functions 91

3.14.1 Length

The length of a list is calculated by the function lengthL :: [τ] � Int . The following
query determines the length of a nested list. Note that the length is not affected
by the inner lists.

lengthL(<<10,20,30>,<40,50>>) # 2 (Q9)

Rule (LL-Length) captures this behavior by breaking down the loop-lifted repre-
sentation of the result derived by query qlist into several partitions according to the
list identifier described by the column iter. In turn, the aggregate function count
is eventually employed to count the elements for each list.

Γ; loop ` elist V (qlist, cs list, surr list)
q ≡ @pos:1(grpitem1:count(item1)/iter(q))

Γ; loop ` lengthL(elist)V (qlength, item1, ∅)
(LL-Length)

3.14.2 Flatten

The function flatten :: [[τ]] � [τ] disregards the outermost nesting level from its
input list:

flatten(<<10,20,30>,<40,50>>) # <10,20,30,40> (Q10)

Observe that the function flatten() is operationally equivalent to unbox(),
which merges a nested expression into a single query by means of a equi-join on
the surrogate columns. Rule (LL-Flatten) reflects this behavior.

Γ; loop ` unbox(elist)V pb

Γ; loop ` flatten(elist)V pb
(LL-Flatten)

3.14.3 Uniq

The list function uniq :: [atom(τ)] � [atom(τ)] removes all duplicates from its
argument (elist). To successfully complete its task, the elements of the input list
(elist) must occupy exactly a single row because the implementing query relies on
the duplicate-elimination operator (δ). The following query illustrates how the
function eliminates the value 20 that occurs twice in the given list. Note that
the arrangement of the elements in the resulting list is arbitrary and cannot be
properly restored with respect to possibly removed elements.

uniq(<10,20,30,20>) # <20,10,30> (Q11)

92 CHAPTER 3. A Relational Portrayal of Switch

In rule (LL-Uniq) the duplicate-elimination operator only eliminates tuples origi-
nating in the same iteration. Because the order of elements cannot be restored, we
set up the position column with 1 (the choice for a concrete position is arbitrary,
however) to reflect this situation.

Γ; loop ` elist V (qlist, cs list, ∅)
q ≡ @pos:1(δ(πiter,items(cs list)(qlist)))

Γ; loop ` uniq(elist)V (q, cs list, ∅)
(LL-Uniq)

3.14.4 Reducing Lists

Switch provides several aggregate functions on lists, performing operations that
reduces a list to a single value that that captures some property of the list. A
popular function is sum :: [num(τ)] � num τ that calculates the total of all values
in the argument list. With regard to this function we exemplify the translation
of aggregate functions. The remaining aggregate functions deriving the average,
minimum and maximum on a list can be found in rule (LL-Avg), rule (LL-Min) and
rule (LL-Max), respectively.

Applied to a list of numeric values the function calculates the total, as in the
below query:

sum(<10,20,30,20>) # 80 (Q12)

The result of translation of list elist in rule (LL-Sum) is expected to be the loop-
lifted encoding of a list containing numeric values. Since the column iter assumes
the role of a list identifier each list describes a group of rows based on an equal value
in column iter within query qlist. We consider each group separately by breaking
the result of query qlist down into partitions with equal list identifiers and apply
the proper aggregate function sum on the values residing in the column item1. As
a result we obtain a single row for each list containing the iteration column side by
side with the overall sum. We conclude the rule by restoring the position column
that has been lost in the course of aggregation.

Γ; loop ` elist V (qlist, item1, ∅)
q ≡ @pos:1(grpitem1:sum(item1)/iter(qlist))

Γ; loop ` sum(elist)V (q, item1, ∅)
(LL-Sum)

Γ; loop ` elist V (qlist, item1, ∅)
q ≡ @pos:1(grpitem1:avg(item1)/iter(qlist))

Γ; loop ` avg(elist)V (q, item1, ∅)
(LL-Avg)

3.15 Iteration 93

Γ; loop ` elist V (qlist, item1, ∅)
q ≡ @pos:1(grpitem1:min(item1)/iter(qlist))

Γ; loop ` min(elist)V (q, item1, ∅)
(LL-Min)

Γ; loop ` elist V (qlist, item1, ∅)
q ≡ @pos:1(grpitem1:max(item1)/iter(qlist))

Γ; loop ` max(elist)V (q, item1, ∅)
(LL-Max)

3.15 Iteration

The higher order function map :: [τ] × (τ � σ) � [σ] passes the elements of
the input list (first argument) successively to the user-supplied function (second
argument). In turn, the function is evaluated for each element to provide the sub-
results assembled to form the resulting list. The order in which the sub-results are
assembled is prescribed by the logical order of the elements in the input list. All
following iteration-based constructs use this prototypical iteration to build upon
their functionality.

1 Γ; loop ` elist V (qlist, cs list, surr list)
2 qinner ≡ inner:〈iter,pos〉(qlist)
3 map ≡ πiter:outer,inner,pos:posouter

(qinner)
4 qx ≡ @pos:1(πinner:iter,items(cs)(qinner))
5 Γx ≡ LΓM↑map ·∪ {x 7→ (qx, cs list, surr list)}
6 loopx = πinner:iter(map)
7 Γx; loopx ` ebody V (qbody, csbody, surrbody)
8 qmap ≡ πouter:iter,posouter:pos,items(csbody)(map inner=iter qbody)

Γ; loop ` map(elist,λx.ebody)V (qmap, csbody, surrbody)
(LL-Map)

The single inference rule (LL-Map) summarizes several steps to express the func-
tion map() by means of tabular operators. In step 1 we compile the list elist in the
current iteration scope to its loop-lifted encoding and employ the resulting query
(qlist) to establish a new iteration context for the function body (hosted by the
column inner in step 2).

Based on the query qinner in step 2 we derive the query map that relates the
outer and inner iteration context: for every inner iteration map preserves the
iteration identifiers of the parent scope. To further indicate this intention we
rename the column iter to outer in step 3 . Note that we likewise preserve the
position that reflects the logical order among elements in query qlist (temporarily
renamed to posouter) to prevent its costly recalculation.

94 CHAPTER 3. A Relational Portrayal of Switch

Query map is then employed in step 5 to lift the tabular representation for
every variable in the variable environment Γ into the new iteration context hosted
by environment Γx, so that they may participate in the evaluation of ebody.

In step 4 we prepare the loop-lifted representation of query qx to describe
the loop variable x, which in turn is inserted into the variable environment. In
this new iteration context and variable environment we fork the translation of the
function body (ebody) (step 7) to derive all sub-results.

To conclude the rule we assemble the sub-results back from the independent
iterations into a single list. Query map provides the necessary connection between
the enclosing iteration scopes as well as the prescribed order, so that we may
obtain the iteration identifiers from the enclosing scope by means of an equi-join
in step 8 .

For an illustration consider the below Switch snippet, which computes a 50
percent discount for the price of each product in the table Products.

Products.map {|p| p.price * 0.5}
≡

map(table[Products],λp.*(proj(var[p],price), 0.5))
<5,10,15,5>

(Q13)

The query plan in Figure 3.9 shows the resulting tabular representation where
several rules elegantly interact to present the overall result. In a nutshell, the
database back-end poses the schema of table Products to trigger the rule (LL-Table).
The resulting query is consequently used to set up new the iteration context to
compile the function body. Within the compilation of the function body, the rules
(LL-Literal), (LL-Var), and (LL-Binary) participate to derive the discount on all product
prices. With the sub-results at hand, the overall result is assembled by means of
an equi-join on query map, which establishes the outer context.

The function flat_map :: [τ]× (τ � [σ]) � [σ] takes a list as its first argument
and a user-supplied function as the second argument. The latter is obliged to
evaluate to a list for each element in the input list. The resulting list of lists
is then flattened. In rule (LL-FlatMap) we show how this macro expands into a
composition of the functions map() and flatten().

Γ; loop ` flatten(map(elist,λx.ebody))V pb

Γ; loop ` flat_map(elist,λx.ebody)V pb
(LL-FlatMap)

3.15 Iteration 95

Compilation of the function body

(LL-Table)

(LL-Literal) (LL-Var)

(LL-Binary)

iter,pos,〈item1〉

πouter:iter,posouter:pos,item1

inner=iter

πiter,pos,item3:item1

∗ item3:〈item1,item2〉

iter2=iter

πiter:iter2,item1:item2 πiter,pos,item3:item1

@item1:0.5
πiter,pos,item3

@pos:1 @pos:1

πinner:iter

πiter:outer,inner,
pos:posouter

πinner:iter,
item1,item2,item3

inner:〈iter,pos〉

×

pos:〈item1〉

πid:item1,name:item2,price:item3

iter
1 Products(id,name,price)〈id〉

Products
iter pos item1 item2 item3
1 1 4 p1 10
1 2 7 p2 20
1 3 9 p3 30
1 4 13 p4 10

0.5
iter pos item1
1 1 0.5
2 1 0.5
3 1 0.5
4 1 0.5

x.price
iter pos item1
1 1 10
2 1 20
3 1 30
4 1 10

x.price * 0.5
iter pos item1
1 1 5.0
2 1 10.0
3 1 15.0
4 1 5.0

Result
iter pos item1
1 1 5.0
1 2 10.0
1 3 15.0
1 4 5.0

1

2

3 4

6

7

8

Figure 3.9: Query plan resulting from the compilation of Query Q13. The plan
annotations exemplify the different steps summarized by rule (LL-Map), while the
tables on the left and on the right side tap the intermediate results at the respective
tabular operator during query execution.

96 CHAPTER 3. A Relational Portrayal of Switch

3.15.1 Filtering Elements

Similar to map() the higher order function select :: [τ] × (τ � Bool) � [τ]
iterates over all elements in the input list to evaluate a user-supplied predicate for
each element This predicate decides whether an element eventually ends up in the
result list.

The following query selects all products from the table Products that are
cheaper than 20; the products passing the filter are presented in a list:

Products.select {|p| p.price < 20}
≡

select(table[Products],λp.<(proj(var[p],price), 20))
<{:id=>4, :name=>p1, :price=>10},
{:id=>13, :name=>p4, :price=>10}>

(Q14)

With a slight extension, we may seamlessly turn map() into a filter, dropping
elements of the binding list that do not pass the filter criteria. Rule (LL-Select)

summarizes the steps, we will sketch below, in a single inference rule:
In step 1 , in a single iteration we preserve each element of the input list (elist)

along with the evaluation of the body of the predicate (epred), which is expected
to evaluate to a boolean value hosted by column item|cs |+1.

In step 2 , we drop all elements with the predicate evaluating to false. The
resulting iteration context from query q′ is then established in the surrogate maps
in step 3 to account (possibly) nested lists. This concluding step eliminates the
leftover elements that originate in an element dropped in step 2 .

1 Γ; loop ` map(elist,λx.(x, epred))V (q, (csx, item|csx|+1), surr)
2 q′ ≡ πiter,pos,items(csx)(σitem|csx|+1

(q))

3 Γ; loop ` select(elist,λx.epred)V (q′, csx,TsurrUfq′)
(LL-Select)

To adhere to the semantics of function reject(elist,λx.epred) we simply invert
the user-supplied predicate (epred) to let the loop-lifted representation reject any
item that meets the criteria. The rule (LL-Reject) implements this behavior.

Γ; loop ` select(elist,λx.not(epred))V pb

Γ; loop ` reject(elist,λx.epred)V pb
(LL-Reject)

The function count :: [τ] × (τ � Bool) � Int exhibits a similar semantics.
Applied to a list it counts the elements that meet a user-supplied condition, as
exemplified in the following query:

3.15 Iteration 97

Products.count {|p| p.price = 10}
≡

count(table[Products],λp.=(proj(var[p],price), 10))
2

(Q15)

By dropping the elements that do not fulfill the user-supplied criteria from
the input list and counting the remaining elements, rule (LL-Count) composes two
operations and results in the following simple rewrite.

Γ; loop ` lengthL(select(elist,λx.epred))V (q, item1, ∅)
Γ; loop ` count(elist,λx.epred)V (q, item1, ∅)

(LL-Count)

3.15.2 Establishing Order

In function sort_by :: [τ] × (τ � atom(σ)) � [τ] the user-supplied function
(second argument) is used to establish an arrangement of all elements in the input
list (first argument). The result of the independent evaluation of the function for
all elements in the input list determines the new order. If the function evaluates
to a tuple or record that may even be nested, as long as they do not contain lists.
The elements in the input list are arranged in ascending order according to the
lexicographic order of their underlying atomic values.

To exemplify how this affects the logical order of elements, consider the below
query, in which the price prescribes the arrangement of elements in the resulting
list. Note that due to the equal price, the first two elements may swap positions
in the result:

Products.sort_by {|p| p.price }
≡

sort_by(table[Products],λp.proj(var[p],price))
<{:id=> 4, :name=>p1, :price=>10},
{:id=>13, :name=>p4, :price=>10},
{:id=> 7, :name=>p2, :price=>20},
{:id=> 9, :name=>p3, :price=>30}>

(Q16)

We build sorting on top of map() to derive the sorting criterion while preserving
the elements of the binding list. Based on the sorting criterion described by the
columns items(csord), a new position rank (posnew) is then established in order to
rearrange the elements.

Γ; loop ` map(elist,λx.(x, eord))V (q, (csx, csord), surr)
q′ ≡ πiter,posnew:pos,items(csx)(posnew:〈items(csord)〉(q))

Γ; loop ` sort_by(elist,λx.eord)V (q′, csx, surr)
(LL-SortBy)

98 CHAPTER 3. A Relational Portrayal of Switch

As expressed in rule (LL-LReverse), to revert the elements of a list we derive a
new position column (posnew) based on the descending order of the current position
column (pos). This operation rearranges the ranks in the current position column
in the opposite direction.

Γ; loop ` elist V (q, cs , surr)
q′ ≡ πiter,posnew:pos,items(cs)(posnew:〈pos:desc〉(q))

Γ; loop ` reverseL(elist)V (q′, cs , surr)
(LL-LReverse)

3.15.3 TakeWhile and DropWhile

The function take_while :: [τ]× (τ � Bool) � [τ] derives the prefix of the input
list according to the user-supplied predicate (second argument). The elements of
the input list are transfered into the final result as long as the predicate holds,
adhering to the semantics described in [FM08, ch. 9, p. 322ff].

For a minimal example consider the below query, which successively iterates
through all products. The products reappear in the final result as long as they are
cheaper than 30. Note that even though p4 satisfies this condition, it is not found
in the resulting list (see Figure 3.5 on page 75 to examine the table Products).

Products.take_while {|p| p.price < 30 }
≡

take_while(table[Products],λp.<(proj(var[p],price), 30))
[{:id=>4, :name=>p1, :price=>10},
{:id=>7, :name=>p2, :price=>20}]

(Q17)

In rule (LL-TakeWhile) this is implemented by rewriting take_while() by means
of an iteration that evaluates the predicate for each element in the list elist and at
the same time retains the elements themselves (step 1). Essentially, in step 3 we
invert the predicate to obtain the position of the first element that does not meet
the criterion—this and all following elements do not appear in the final result.
Query qpos·min, which contains this critical position, is paired with qlist that is now
confined to all prior elements by means of a simple comparison on the position
ranks (step 4).

A problem, however, arises in the formulation of query qpos·min: if all elements
in elist match the predicate, its list identifier disappears entirely from query qpos·min

and all constitutive queries. To prevent this situation, we place an artificial false
value at the end of the list (step 2). This ensures that even though all elements
satisfy the predicate, query qpos·min passes a proper position rank.

3.15 Iteration 99

1 Γ; loop ` map(elist,λx.(x, epred))V (qlist, (csx, item|csx|+1), surr)

2


qpred ≡ πiter,pos,item|csx|+1:item1(qlist)

qpos·max ≡ grpitem1:max(pos)/iter(qpred)
qartif ≡ @item1:false(πiter,pos(�pos:〈item1,item2〉(@item2:1(qpos·max))))
q′pred ≡ qpred] qartif

3 qpos·min ≡ grpitem1:min(pos)/iter(σpass(¬pass:〈item1〉(q
′
pred)))

4 q ≡ πiter,pos,items(csx)(σpass(4pass:〈pos,item|csx|+2〉(. (q
|csx|+1
list , q1

pos·min))))

Γ; loop ` take_while(elist,λx.epred)V (q, csx,TsurrUfq)
(LL-TakeWhile)

As opposed to function take_while() the function drop_while :: [τ] × (τ �
Bool) � [τ] successively removes elements from the input list as long as the predi-
cate holds; all following elements reappear in the final result. Again, the predicate
is inverted in order to obtain the position of the first element in the list that vio-
lates the condition. Based on this position, all following elements are carried into
the end result. Note that we must not extend the list with an artificial false
value: if all elements match the predicate in order to be removed, the list identifier
disappears likewise in query qpos·min. In this case, however, this behavior adheres
to the semantics of drop_while() [FM08, ch. 9, p. 322ff] that returns an empty
list.

Γ; loop ` map(elist,λx.(x, epred))V (qlist, (csx, item|csx|+1), surr)
qpos·min ≡ grpitem1:min(pos)/iter(σpass(¬pass:〈item|csx|+1〉(qlist)))
q ≡ πiter,pos,items(csx)(σpass(>pass:〈pos,item|csx|+2〉(. (q

|csx|+1
list , q1

pos·min))))

Γ; loop ` drop_while(elist,λx.epred)V (q, csx,TsurrUfq)
(LL-DropWhile)

3.15.4 Quantification and Element Lookup

To check whether all elements in a list satisfy a certain condition consider the
following query. In this case, the function all? :: [τ] × (τ � Bool) � Bool
evaluates to true because all elements in the binding list are greater or equal 10.
For an empty binding list the function returns true for an arbitrary condition:

all?(<10,20,30,20>,λx.>=(var[x], 10)) # true (Q18)

To calculate the loop-lifted encoding in rule (LL-All) we rely on the aggregate
operator every: For a boolean column b and the grouping column a, the operator
grpc:every(b)/a(q) provides the aggregate conjunction on column b for each input
group in column c (see Figure 3.10).

In step 1 , after having evaluated the condition for each element in elist, we
employ the aforementioned operator to compute the aggregated conjunction on

100 CHAPTER 3. A Relational Portrayal of Switch

a b
1 false
1 true
1 true

...
n true
n true

input

a c
1 false

...
n true

result

grpc:every(b)/a

Figure 3.10: Demostrates the application of every on the input table on left-hand
side.

the resulting query (step 2). In step 2 we account possible empty lists that,
represented by the absence of a surrogate value in q, are present in the current
iteration context (loop).

1 Γ; loop ` map(elist,λx.epred)V (q, item1, ∅)
2 q′ ≡ grpitem1:every(item1)/iter(q)
3 q′′ ≡ @pos:1(@item1:true(πiter(loop) / q

′)] q′)
Γ; loop ` all?(elist,λx.epred)V (q′′, item1, ∅)

(LL-All)

For a demonstrating example of function any? :: [τ] × (τ � Bool) � Bool
consider the below query, in which we check for the input list, if at least one
element is greater or equal 30. For an empty list the function evaluates to false
for an arbitrary condition:

any?(<10,20,30,20>,λx.>=(var[x], 30)) # true (Q19)

In step 1 we eliminate all elements from elist that do not fulfill the condition,
so that lists in which all elements fail to satisfy the condition do not occur in q.
In step 2 we retrieve the remaining lists, of which at least one element met the
respective criteria. In a way similar to that of rule (LL-All), for the failing lists and
empty lists we employ the current iteration context to compute the overall result
(step 3).

1 Γ; loop ` select(elist,λx.epred)V (q, cs , surr)
2 q′ ≡ @item:true(δ(πiter(q)))
3 q′′ ≡ @pos:1(@item1:false(πiter(loop) / q

′)] q′)
Γ; loop ` any?(elist,λx.epred)V (q′′, item1, ∅)

(LL-Any)

3.15 Iteration 101

For the following query, the function member? :: [atom(τ)]× atom(τ) � Bool
succeeds because 30 exists in the input list:

member?(<10,20,30,20>,30) # true (Q20)

It is important to observe that member?() is simply a special case of the func-
tion all?() if the condition is stated accordingly. This situation is expressed by
rule (LL-Member) in form of a simple rewrite.

Γ; loop ` any?(elist,λx.=(var[x], e))V pb

Γ; loop ` member?(elist,e)V pb
(LL-Member)

3.15.5 Grouping

The function group_with :: [τ]× (τ � atom(σ)) � [[τ]] classifies the elements of
the input list according to the user-supplied discriminator provided by the second
argument. Elements that are tied according to the discriminator are placed into
a single list in the second tuple component of the overall result; the value of the
respective discriminator is preserved in the first tuple component.

In the below example the products (in table Products) are grouped accordingly
to their price. The equally-priced products p1 and p4 land in the same group while
the remaining values form a separate group.

Products.group_with {|p| p.price }
≡

group_with(table[Products],λp.proj(var[p],price))
<(10,<{:id=> 4, :name=>p1, :price=>10},
{:id=>13, :name=>p4, :price=>10}>),
(20,<{:id=> 7, :name=>p2, :price=>20}>),
(30,<{:id=> 9, :name=>p3, :price=>30}>)>

(Q21)

In step 1 we derive each element in one stroke with its corresponding dis-
criminator, which leads to the tabular representation in query qgrp. Based on the
columns accommodating the discriminator, we derive new surrogate values that
are eventually used to aggregate tied elements in the binding list elist. In step
4 we prepare a single discriminator value (first tuple component) by eliminating
the duplicates that have been introduced in step 1 . The corresponding elements
are then computed in 5 ; note how the column surr is used to establish new list
identifiers. We conclude the rule with step 6 by assembling the column structure
and surrogate list based on the information we calculated in step 2 .

102 CHAPTER 3. A Relational Portrayal of Switch

1 Γ; loop ` map(elist,λx.(ediscr, x))V (qgrp, (csdiscr, csx), surr grp)

2

{
l = |csdiscr| cs ′x = csx C l surr ′grp = surr grp C l
{itemx1 , . . . , itemxm} = items(csx)

3 q ≡ surr:〈iter,items(csdiscr)〉(qgrp)
4 qkeys ≡ πiter,surr:{pos,iteml+1},items(csdiscr)(δ(πiter,surr,items(csdiscr)(q)))
5 qgroups ≡ πsurr:iter,pos,itemx1 :item1,...,itemxm :itemm(q)

6

{
cs ≡ (csdiscr, iteml+1)
surr ≡ {iteml+1 7→ (qgroups, csx, surr

′
grp)}

Γ; loop ` group_with(elist,λx.ediscr)V (qkeys, cs , surr)
(LL-GroupWith)

In partition :: [τ] × (τ � Bool) � [[τ]] the elements in the input list are
divided into exactly two lists based on the user supplied predicate. This function
evaluates to a pair, in which elements for which the predicate evaluates to false
end up in the list at the first position whereas the other elements are placed into
the list at the second position.

l = |cspart|
Γ; loop ` map(elist,λx.(x, epred))V (qgrp, (cspart, iteml+1), surr grp)
q ≡ surr:〈iter,iteml+1〉(qgrp)
qkeys ≡ πiter,surr:{pos,item1}(δ(πiter,surr(q)))
qgroups ≡ πsurr:iter,pos,items(csx)(q)
surr ≡ {item1 7→ (qgroups, csx, surr grp)}

Γ; loop ` partition(elist,λx.epred)V (qkeys, item1, surr)
(LL-Partition)

3.15.6 Zip and Unzip

The function zip :: ([τ], [σ]) � [(τ, σ)] expects a pair containing two lists as
argument and produces an output lists, in which every two elements from the
input lists at the same position form a pair. In the following query the first list is
shorter and the excess elements (b4 and b5) are discarded:

zip((<a1, a2, a3>, <b1, b2, b3, b4, b5>))
<(a1, b1),(a2, b2),(a3, b3)>

(Q22)

Rule (LL-Zip) summarizes the following steps in a single inference rule: In step 1 ,
following the translation of the argument, we use the proper components in the plan
bundles that describe the argument lists (surr item1 and surr item2) to reconstruct
the loop-lifted schema in step 2 . It is critical to calculate the absolute positions for
the elements of the argument lists in order to merge the queries q1 and q2 by means
of an equi-join on the list identifier (iter = iter2) and the position (pos = pos2).
In step 4 , possibly exceeding elements from the longer list are removed from the
surrogate map.

3.15 Iteration 103

1


Γ; loop ` (e1,e2)V (q, (item1, item2), surr)
surr item1 = (q1, cs1, surr 1)
surr item2 = (q2, cs2, surr 2)

2


l = |cs1|
{item2·1, ..., item2·n} = items(cs2)
cs ′2 = cs2 B l surr ′2 = surr 2 B l

3


q′1 = πiter,pos2:pos,items(cs1)(%pos2:〈iter,pos〉(q1))
q′2 = πiter:iter2,pos2,item2·1:item1+l,...,item2·n:itemn+l

(%pos2:〈iter,pos〉(q2))
qzip = q′1 iter=iter2∧pos=pos2 q

′
2

4 surr ′1 = Tsurr 1Ufqzip surr ′′2 = Tsurr ′2U
f
qzip

Γ; loop ` zip((e1,e2))V (qzip, (cs1, cs
′
2), surr ′1] surr ′′2)

(LL-Zip)

As the inverse function to zip(), the function unzip :: [(τ, σ)] � ([τ], [σ])
expects a list of pairs in order to transform it into a pair comprising a list of first
components and a list of second components.

unzip(<(a1, b1), (a2, b2), (a3, b3)>)
(<a1,a2,a3>,<b1,b2,b3>)

(Q23)

In rule (LL-Unzip), to place the components of the pairs into separate lists we
need to split the hosting table into two parts based on the tuple components:

After the translation of the input list (step 1), we reconstruct the loop lifting
schema in step 2 by setting up separate column structures (cs1 and cs ′2) and
surrogate maps (surr 1 and surr 2). Additionally, these auxiliary structures help us
to maintain the columns that are required to accommodate the respective tuple
components.

In step 3 , based on query q (derived in step 1), we calculate fresh surrogate
values (column surr) in order to place the tuple components into separate lists.
The queries q1 and q2 embody the resulting lists that respectively host the first
tuple components and the second tuple components. The query qunzip expresses
the loop-lifted representation of the resulting pair that is linked with the queries
q1 and q2 by means of the surrogate values.

In step 4 , we prepare a fresh surrogate map (surr ′) that reflects the nested
structure of the overall result.

104 CHAPTER 3. A Relational Portrayal of Switch

1 Γ; loop ` eV (q, (cs1, cs2), surr)

2


l = |cs1|
{item2·1, ..., item2·n} = items(cs2)
surr 1 = surr |items(cs2)

cs ′2 = cs2 C l
surr 2 = surr |items(cs1) Cl

3


q′ = %surr:〈iter,pos〉(q)
q1 ≡ πsurr:iter,pos,items(cs1)(q

′)
q2 ≡ πsurr:iter,pos,item2·1:item1,...,item2·n:itemn(q

′)
qunzip ≡ πiter,pos,surr:{item1,item2}(q

′)
4 surr ′ = {item1 7→ (q1, cs1, surr 1), item2 7→ (q2, cs

′
2, surr 2)}

Γ; loop ` unzip(e)V (qunzip, (item1, item2), surr
′)

(LL-Unzip)

3.15.7 MinBy and MaxBy

The higher-order function min_by :: [τ] × (τ � atom(σ)) � τ takes a list and a
user-supplied function as arguments. The value in the input list that yields the
minimum for the function is returned. If more than one value evaluates to the
minimum, one of these values may be chosen arbitrarily.

To exemplify the semantics of function min_by() consider the following query
that selects the list with the minimum length from the nested input list:

min_by(<<10,20,30>,<40,50>,<>>,λx.lengthL(var[x]))
<>

(Q24)

In rule (LL-MinBy) we take advantage of the logical order that may be established
among the elements in the input list (elist). The function sort_by() helps us to
order the elements in ascending order according to the user-supplied function. The
first element in this list is apparently the smallest element that must be returned.
Consequently, we expand min_by() into the following definition to present its
loop-lifted version.

Γ; loop ` firstL(sort_by(elist,λx.ebody))V pb

Γ; loop ` min_by(elist,λx.ebody)V pb
(LL-MinBy)

The converse function max_by :: [τ] × (τ � atom(σ)) � τ takes a list and a
user-supplied function as arguments. Here, the value in the input list that assumes
the maximum when evaluated by the function is returned. If more than one value
yields the maximum, the choice for a result among these values is arbitrary.

The following query illustrates the semantics of max_by(). The list with the
maximum length is returned:

3.16 Related Work 105

max_by(<<10,20,30>,<40,50>,<>>,λx.lengthL(var[x]))
<10,20,30>

(Q25)

Rule (LL-MaxBy) captures the function max_by(). The inference rule faithfully
employs the function sort_by() to establish the logical order of the elements in
the input list. Because this leads to a list in which the elements are in ascending
order, we have to apply function lastL() in order to obtain the maximum.

Γ; loop ` lastL(sort_by(elist,λx.ebody))V pb

Γ; loop ` max_by(elist,λx.ebody)V pb
(LL-MaxBy)

3.16 Related Work
In their works [SS86; SS90; SS91], Scholl and Schek invest considerable effort to
crystallize the similarities of the relational model and object-orientation to combine
these seemingly diverging approaches into a unified framework. The authors give
up the first-normal-form restriction to faithfully model hierarchic objects by means
of nested relations. Enriched with “reference semantics” [Mey98], this approach
even allows the definition of complex objects with non-hierarchical associations,
which may be established by a classical foreign-key notation in the database back-
end.

To manipulate objects, they propose a nested relational algebra, variants of
which have been used to realize non-first normal form databases in the late eighties.
Here, nesting of query language expressions may occur naturally to properly reflect
the nested nature of the underlying object model while preserving the advantages of
the declarative, set-oriented paradigm. Regarding the query aspect, this approach
is very similar to what we propose in this work. The distinguishable characteristic,
however, is that we directly expand on the results of [Bus01] and use a flat algebra
to mimic the inherently nested surface language to meet the capabilities of today’s
(flat) SQL-centric back-ends. Furthermore we consider the order of the underlying
data-structures throughout the entire calculation.

The LinQ project [Tor06; Sym06; BMT07; KB+07] integrates queries into
several languages of the .Net suite. LinQ is designed to work with various data
sources (including RDBMS) and provides a unified object-oriented interface with
comprehension-flavored syntax to compose complex queries. Much like Switch,
a suitable provider compiles an embedded LinQ query—represented as a chain of
Standard Query Operator (SQO) invocations—into a sequence of SQL statements.
Commonly, this entails and post-processing phases (much like ActiveRecord)
performed on the host language heap. In its current implementation, LinQ still
suffers from the n+1 query problem when establishing relationships between tables.
Furthermore, all Standard Query Operators (SQO, for short) relying on order (e.g.

106 CHAPTER 3. A Relational Portrayal of Switch

positional access) are currently not supposed to be database executable. A loop-
lifted approach to implement the group of order-sensitive SQOs and to prevent the
flood of look-alike queries has been proposed in [SB+10; GRS10].

Another route to language-integrated queries has been followed byWiedermann
and Cook. In [WC07] the authors present a technique based on abstract interpre-
tation [CC77] for extracting set-oriented queries from imperative, object-oriented
programs. This work has been refined in [IJ+09] and eventually led to Remote
Batch Invocation (RBI), a language-level mechanism to identify batches, i.e. frag-
ments that may be executed in a set-oriented fashion (possibly by a RDBMS). As
the aforementioned approaches, the SQL generation approach used in RBI was un-
satisfying under some circumstances. In a thriving cooperation, we were able to
substitute the in-house SQL generation of RBI with a loop-lifted approach enabling
us to unleash the full potential of this system [But11].

In [Coo09] Cooper presents a sound rewrite system to turn an iteration-based
language operating over bags directly into SQL expression. A similar approach
is employed in Links [CL+07], which also offers language-integrated queries in a
unified web-framework solution (much like Rails). A loop-lifted variant of Links
has been proposed in [Ulr11].

In a different setting, Keller and Simons present a Flattening Transformation
to efficiently compile vector-based, nested data-parallel programs into equivalent
flat programs [KS96]. The intuition is to avoid the explicit source language iterator
construct “apply-to-each” ({e | x ← ein}), which allows nested computation. A
series of simple source-level transformations are applied to obtain an iterator-free
target language that only consists of primitive parallel operations.

To make up for the lack of iterators in the target language, the authors in-
troduce a functional, called lifting. Applied on arbitrary function f :: τ � σ,
the lifted variant f ↑ :: {τ} � {σ} is operationally and semantically equivalent to
f ↑(xs) = {fx | x ← xs}. A function may be arbitrarily lifted (f ↑n), but only the
simple lifted functions can be found in the target language. In the first set of trans-
lation rules, all iterators are replaced by their equivalent “vectorwise functions” in
a bottom-up walk over the expression tree. The flattening transformation then
translates possibly occurring multiple-lifted functions into simple lifted functions
present in the target language.

The above work shows a promising, alternative view of loop lifting. Currently,
loop lifting directly translates a source-level construct into an equivalent algebraic
plans. In a slightly different variation, the flattening transformation could be
introduced to mediate between the inherently nested nature of Switch and the
(flat) algebraic operators. The primitive parallel operations constituting the target
language may be easily transferred into the relational domain.

Chapter 4

SQL Code Generation

In this chapter, we will take the last step towards the goal of turning relational
database systems into highly efficient and scalable execution engines for arbitrary
Switch expressions. For this purpose, we supplement the compilation process by a
code generator that targets any SQL:1999-compliant database system. Proposed by
Chamberlin and Boyce in nineteen and seventy four [CB74], SQL has established its
dominance in the relational database area. The prevalence of SQL-centric systems
provides ideal preconditions for our code generator to address the majority of
actual RDBMS implementations available on the market. Additionally, this allows
us to benefit significantly from their built-in optimizers to speed up the generated
queries.

In the preceding chapter, we described how loop lifting may be used to turn a
Switch expression into one or more DAG-shaped algebraic plans that jointly im-
plement its dynamic semantics. The code generator then walks each of those inter-
mediate algebraic plans and turns them into separate strictly standard-compliant
SQL:1999 statements. In a sense, this approach makes relational algebra and SQL
swap their traditional roles in query processing. The result is a compiler that can
translate an arbitrary Switch expression into a representation executable on any
SQL:1999-ready RDBMS. In a different setting, a variant of this approach has been
described in [May07] in order to turn XQuery expressions into SQL queries.

In this context, the choice of relational algebra as intermediate language has its
particular strengths. On the one hand, the semantics of relational operators are
well-defined and oblivious of an actual database back-end. Compiler back-ends for
the MonetDB column store and the kdb+ column store are described in [BG+06]
and [Kan08] respectively. On the other hand, the algebraic primitives model the
query capabilities of modern RDBMS sufficiently so that the generation of efficient
SQL code remains feasible. To further facilitate the latter, the relational algebra

107

108 CHAPTER 4. SQL Code Generation

has been designed with the processing capabilities of SQL-centric database kernels
in mind. An example for this would be that the column projection (π) does not
eliminate duplicate rows.

The set-oriented semantics of SQL blends well with the bulk primitives that
constitute a relational expression. Furthermore, SQL condenses the semantics of
several algebraic operators into a single SELECT·FROM·WHERE block. This observation
led to a code generator approach that identifies tiles in the plans, similar to compil-
ers for programming languages. Inside these tiles, we apply template instantiation
to collapse a group of adjacent operators in the plan DAG into a single query. The
SQL queries that result from the translation of one or more tiles are gathered and
assembled into a single SQL:1999-compliant WITH statement that implements the
overall semantics of a single query plan.

In the following section we will describe in which aspects the relational alge-
bra deviates from SQL. Additionally, we provide a simple translation scheme to
demonstrate the semantics of the relational bulk primitives. The problems arising
with this approach lead to a refinement of the translation scheme to exploit both
(1) the ability to merge several operators into a single SQL query (2) and the DAG
structure of the algebraic plans. We will conclude the chapter by contributing the
translation rules that incorporate the above techniques to turn query plans into
efficient SQL queries that do not stumble over input data of considerable size.

4.1 Target Language: SQL:1999

Even though SQL and the relational algebra are both dedicated to the retrieval
and manipulation of data within RDBMS, they diverge in several aspects:

Data Model.
The operators of the classical relational algebra are defined over relations that
may be thought of as a set of tuples. In a relation, a tuple occurs not more
than once and each operator is additionally obliged to ensure that tuples are
eliminated from the result it produces.

The data model on which SQL operates is governed by the notion of a table
that, in contrast to relations, may contain several instances of the same tuple
(multiset or bag). The variant of the relational algebra we use in this work
has been designed to respect the tabular model that dominates SQL-centric
systems. If required, duplicate elimination (δ) is explicitly introduced into the
query plans. In this regard, the primitives bear resemblance with the execution-
plan operators perceivable in most database implementations.

4.1 Target Language: SQL:1999 109

Design.
The design of SQL was heavily influenced by both the relational algebra and
the relational tuple calculus. The latter was proposed by Edgar F. Codd as an
alternative declarative query language for the relational model [Cod70]. Like
other declarative languages, SQL allows the user to describe the desired data
without prescribing the operations that are necessary to produce the result.
This separation between computation logic and the physical operations leaves it
to the actual database implementation to plan, optimize and perform the steps
that faithfully retrieve the queried data. An SQL query roughly subdivides into
two language elements, including clauses and expressions.

Clauses are (possibly optional) constituent elements of a query. A clause com-
prises one or more expressions that may emit either an atomic value or a table.
The type of the resulting value of an expression is determined by the enclosing
clause. An expression that is used in the select clause, for example, must return
an atom whereas the expressions in the from clause are constrained to generate
a table.

As opposed to SQL, an expression composed of relational primitives dictates
the data flow through the corresponding query plan. Due to the mathematical
characteristics of the algebraic primitives these query plans are susceptible to
a variety of optimizations. In database systems, SQL queries are typically
translated into a notion similar to relational algebra, which assumes the role of
an execution plan. These execution plans are then simplified according to a set
of rewrite rules to enhance the performance of the queries. Another aspect that
needs to be considered is that the relational operators are closed with respect to
the tabular model. Each operator takes one or more tables and returns a table,
so that the operators may be arbitrarily composed. This closure property of
the relational operators is not easily transferable to SQL and deserve attention
in the translation process.

Due to the compositionality of Switch, in which all constructs nest orthog-
onally as long as typing rules are obeyed, the query plans deviate from the well
known π-σ-on pattern that is generated by SQL compilers. The loop-lifted encod-
ing typically leads to query plans comprising hundreds of operators that jointly
implement the intricate semantics of a Switch expression.

4.1.1 A Simple Translation Scheme

In Table 4.1 we provide a simple translation scheme to convert a query plan into
code executable on any SQL:1999-compliant system. Applied to the plan root, the
translation walks the plan DAG in a bottom-up fashion and maps each operator

110 CHAPTER 4. SQL Code Generation

sqlJπa1:b1,...,an:bn(q)K = SELECT a1 AS b1,. . ., an AS bn FROM (sqlJqK) AS C

sqlJσa(q)K = SELECT * FROM (sqlJqK) AS C WHERE a = true

sqlJ@a:v(q)K = SELECT *, v AS a FROM (sqlJqK) AS C

sqlJδ(q)K = SELECT DISTINCT * FROM (sqlJqK) AS C

sqlJ%a:〈b1,...,bn〉|p(q)K =

SELECT *, ROW_NUMBER() OVER(
PARTITION BY p
ORDER BY b1, . . . , bn) AS a

FROM (sqlJqK) AS C

sqlJ a:〈b1,...,bn〉(q)K =
SELECT *, DENSE_RANK() OVER(

ORDER BY b1, . . . , bn) AS a
FROM (sqlJqK) AS C

sqlJ}a:〈b1,b2〉(q)K = SELECT *, b1 ◦ b2 AS a FROM (sqlJqK) AS C

sqlJq1 a=b q2K =
SELECT *
FROM (sqlJq1K) AS C1 INNER JOIN

(sqlJq2K) AS C2 ON a = b

sqlJq1 × q2K = SELECT * FROM (sqlJq1K) AS C1, (sqlJq2K) AS C2

sqlJq1] q2K = sqlJq1K UNION ALL sqlJq2K

sqlJq1 / q2K = sqlJq1K EXCEPT ALL sqlJq2K

sqlJgrpa:◦(b)/g(q)K =
SELECT g, ◦(b) AS a
FROM (sqlJqK) AS C

GROUP BY g

sqlJa1 ... an K =
SELECT a1,. . .,an
FROM (VALUES (. . .)) AS C(a1,. . .,an)

sqlJ T(a1,...,an)〈p〉K = TABLE T

sqlJ a1,a2,〈a1,...,an〉(q)K=
SELECT a3,. . .,an
FROM (sqlJqK) AS C

ORDER BY a1,a2;

Table 4.1: Bottom-up translation of query plans into SQL:1999. Each relational
operator is translated into a single SQL query. The query that results from the
translation of a query plan is traversed by uncorrelated sub-queries and may be
hardly simplified by the database optimizer.

4.2 Basic Techniques 111

to a single and complete SQL query. By planning a separate query for every single
operator in the plan, we make up for the closure property that is not satisfied by
SQL. The resulting table may then be consumed by the query that is introduced
for the immediately following operator in the query plan.

The resulting SQL query reflects the underlying tree structure of the plan DAG
and is thus pervaded by uncorrelated sub-queries. Figure 4.1 illustrates how the
plan resulting from the loop-lifted translation of Query Q13 on page 94 is turned
into an SQL query. While workable, this query displays a number of severe prob-
lems:

(i) The considerable size of the queries emitted by the translation scheme—even
for small query plans—immediately leaps to the eye. As a Switch expression
continues to grow, the corresponding SQL query may easily overwhelm the
SQL compiler: Because each construct translates into a fixed number of
relational operators, the number of primitives in a query plan grows linearly
with the number of Switch constructs. Additionally, every operator in the
query plan triggers the construction of a complete SQL query that nests as
a sub-query in the overall SELECT statement.

(ii) Groups of query operators that can be captured by a single SELECT state-
ment are distributed over several uncorrelated sub-queries. Even though the
removal of nested sub-queries is a problem that has been tackled in several
works [BA+09; Kim82; Day87], these techniques have been adopted by few
query optimizers.

(iii) The translation scheme does not consult any information about the DAG
structure of the plans and leaves the identification of common sub-expression
to the query optimizer.

This translation approach, however, already gives an impression of how SQL
constructs may be used to implement the semantics of their algebraic counterparts.
The resulting queries are reasonably “good natured” as, e.g. the fact that all
UNION operations are over disjoint tables, nested queries in the FROM clause are
uncorrelated and the occuring JOIN operations are equi-joins that implement the
behavior of the nested iterations scopes.

4.2 Basic Techniques

The translation scheme we will devise in the following sections produces SQL
queries that look more like handcrafted queries. We tackle the problems raised
in the queries emitted by the translation scheme in Table 4.1, which overwhelmed
any database optimizer we had on our workbench. For all back-ends the combi-

112 CHAPTER 4. SQL Code Generation

iter,pos,〈item1〉

πouter:iter,posouter:pos,item1

20

inner=iter

19

πiter,pos,item3:item1

18

∗ item3:
〈item1,item2〉

17

iter2=iter

16

πiter:iter2,item1:item2

11

πiter,pos,item3:item1

15

@item1:0.5

10

πiter,pos,
item3

14

@pos:1

9

@pos:1

13

πinner:iter

8

πiter:outer,inner,
pos:posouter

7

πinner:iter,
item1,item2,item3

12

inner:〈iter,pos〉

6

×
5

pos:〈item1〉

4

πid:item1,name:item2,price:item3

3

iter
1

1

Products(id,name,price)〈id〉

2

SELECT iter, item1
FROM (20) AS C

ORDER BY iter, pos

SELECT outer AS iter,
posouter AS pos,
item1

FROM (19) AS C

SELECT iter, pos, item1
FROM (7) AS C1 INNER JOIN

(18) AS C2 ON inner = iter

SELECT iter, pos,
item3 AS item1

FROM (18) AS C

SELECT *,
item1 * item2 AS item3

FROM (17) AS CSELECT *
FROM (11) AS C1 INNER JOIN

(15) AS C2 ON iter2 = iter

SELECT iter AS iter2,
item1 AS item2

FROM (10) AS C

SELECT iter, pos,
item3 AS item1

FROM (14) AS C

SELECT *, 0.5 AS item1
FROM (9) AS C

SELECT iter, pos, item3
FROM (13) AS C

SELECT *, 1 AS pos
FROM (8) AS C

SELECT *, 1 AS pos
FROM (12) AS C

SELECT inner AS iter
FROM (7) AS C

SELECT iter AS outer, inner,
pos AS posouter

FROM (6) AS C

SELECT inner AS iter,
item1, item2, item3

FROM (6) AS C

SELECT *, DENSE_RANK() OVER (
ORDER BY iter,pos) AS inner

FROM (5) AS C
SELECT *
FROM (1) AS C1,

(4) AS C2
SELECT *, DENSE_RANK() OVER (

ORDER BY item1) AS pos
FROM (3) AS C

SELECT id AS item1, name AS item2,
price AS item3

FROM (2) AS C
SELECT iter
FROM (VALUES (1))

AS C(iter)

TABLE Products

Figure 4.1: Illustrates the application of the simple translation scheme (Table 4.1)
to Query Q13. Observe that each relational primitive maps directly to a com-
plete SQL query possibly occurs as sub-query in the formulation of the subsequent
operator.

4.2 Basic Techniques 113

nation of query size and repeated sub-queries resulted in execution plans whose
evaluation strategy largely reflect the structure of the underlying relational query
plans derived in Chapter 3.

The SQL code generation approach we propose rests on two techniques that
help the database optimizer to grasp and further simplify the SQL queries:

Tiling the Query Plans.
Here, we take the characteristics of the loop-lifted algebra and SQL into account
to partition a query plan into tiles that may comprise several operators. The
code generation then condenses all operators covered by a tile into a single
query.

Identifying Repeated Subqueries.
Additionally, we consider the DAG shape of the plans to help the database
optimizer to recognize repeated sub-queries in the resulting queries.

The combination of these techniques constitute the basic framework of the SQL
code generation.

4.2.1 Tiling the Query Plans

In the translation approach we propose that the algebraic plans be chopped to let
the RDBMS evaluate them in separate chunks. To identify suitable plan chunks,
the code generator walks the plan DAG to find tiles, much like compilers for
programming languages. In programming-language domain the technique that we
adopted for the SQL generation is known as Maximal Munch [App04, ch. 9, p.
195].

In this particular context a tile is the maximum plan fragment that can be
equally translated into a single SQL query. The goal is to cover the plan DAG with
a minimum set of non-overlapping tiles. When the tiles are placed accordingly in
the query plan, we apply template instantiation to collapse the operators for each
tile into a single SELECT statement. In this regard the simple implementation in
Table 4.1 expresses a special case of this approach in which each node is covered
by a separate tile.

In our case, we try to find tiles that constitute as many operators as possible
so that the corresponding SQL constructs still legally nest in a single query. The
rigid skeleton of a SELECT query already prescribes how constructs need to be
placed in the clauses to implement a specific relational operator. Essentially, each
operator is captured by using a single clause or a combination of clauses that jointly
implement its semantics on the relational back-end. The operator responsible for
column renaming and projection (π), e.g., only impacts the SELECT clause in the
corresponding SQL statement whereas the SQL constructs for grouping (grp that

114 CHAPTER 4. SQL Code Generation

SELECT

FROM

WHERE

WINDOW

GROUP BY

ORDER BY

UNION ALL
EXCEPT ALL

(Query) (Query)

DISTINCT select clause
from clause
where clause
window clause
grouping
sorting

δ
π @

grp◦ %

×
a1 ... an

σ

] /

Figure 4.2: An SQL query captures the characteristics of each operator of the
relational intermediate language by one or a combination of two clauses.

only co-occurs with an aggregation function) are situated at both the GROUP BY
clause and the SELECT clause. Figure 4.2 demonstrates which clauses in SQL are
used to implement the relational primitives. Note that the WINDOW clause, which
we conveniently inlined in the translation scheme in Section 4.3, is listed explicitly.

On the one hand, it is important to see that the row-wise operators, which are
hosted exclusively by the SELECT clause and WHERE clause as well as operators in
the FROM clause do not necessarily complete a query when encountered in the query
plan. On the other hand, the primitives that involve the window clause, grouping,
sorting or duplicate elimination entail query termination since they generally need
to consider a set of rows to faithfully complete their task. The UNION set operator
and EXCEPT set operator require two tables that are identical in their structure to
be combined (union compatibility). This observation leads to the classification of
relational operators in Table 4.2, which reflects the placement in the SQL clauses.

In the translation rules we consult the above classification to set out the borders
of the tiles. In the translation process we introduce an SQL query for each tile
in the plan. In the initial query plan, each node is covered by a separate tile.
To find the largest tile that fits we start at the leaf nodes of the query plan. If
the current operator is found in the first group, we merge the tiles of the current
and its adjacent operator. If, however, the operator is contained in the second

4.2 Basic Techniques 115

1. Merge Tiles 2. Terminate Tile

π σ δ % grp]
@ × /
◦ a1 ... an

� (Section 4.2.2)

Table 4.2: Classification of the relational primitives according to their placement
in the clauses of an SQL query. We will use this classification to determine where
tiling takes place in the query plan.

×

pos:〈item1〉

πid:item1,name:item2,
price:item3

iter
1 Products

(id,name,price)〈id〉

(a)

×

pos:〈item1〉

πid:item1,name:item2,
price:item3

iter
1 Products

(id,name,price)〈id〉

(b)

×

pos:〈item1〉

πid:item1,name:item2,
price:item3

iter
1 Products

(id,name,price)〈id〉

(c)

Figure 4.3: To find tiles, we start at the leaves of the query plan. The operators
covered by gray tiles are not visited yet. The classification in Table 4.2 helps us
to decide whether the tile of the current operator may be combined with the tile
covering the adjacent operator in the query plan. The rank operator () terminates
a tile so that the operators covered by the blue area in (c) result in a single SQL
query. The cross-product (×) does not terminate the green tile, which continues
to enfold further operators along the line.

116 CHAPTER 4. SQL Code Generation

group, we terminate the tile. In both cases the process restarts at the following
operator. Figure 4.3 exemplifies how this process operates on a fragment of the
plan in Figure 4.1.

4.2.2 Identifying Repeated Sub-Queries

The loop-lifted compilation turns any Switch expression into one ore more DAG-
shaped algebraic plans. Typically, these plans exhibit a wealth of sharing opportu-
nities that may be exploited in the SQL translation. In the underlying DAG, such
sharing opportunities appear in form of a branch. For the operator at which the
plan starts to fork into two or more strands this means that the resulting inter-
mediate relation is used more than once in the subsequent manipulations. When
merged into a single SELECT-query, this may easily lead to repeated sub-queries
that are hardly recognized by the query optimizer in order to be factored out and
executed once instead of multiple times.

So far, the opportunity to share common sub-expressions has not been consid-
ered in the generated query plans. In this way, a naive translation scheme that
walks a query plan in a bottom-up fashion to assemble an SQL query would in-
evitably lead to repeated sub-queries, as this is the case for the translation scheme
in Table 4.1. Figure 4.4a depicts a plan fragment that turns up in the loop-lifted
translation of conditionals. Starting at the column projection operator (π), the
plan divides into two separate strands, so that the intermediate relation is used by
both adjacent filter operators (σ).

To properly reflect this situation in the SQL-centric back-end, we introduce the
“materialization” operator �a1,...,an(q), which, applied to query q, explicitly tells us
to

(i) apply some sort of materialization strategy in the back-end in order to
(ii) prevent a costly re-computation of q by means of a repeated sub-query.

Note how the plan in Figure 4.4b is “rewired” to interpose materialization
between the adjacent operators, so that the filter operators directly refer to the
materialized result of the column projection operator.

Woven into the algebraic plan, materialization does not affect the underly-
ing semantics of a query, and may be perceived as identity operator so that the
equivalence

�a1,...,an(q) = q

holds for all plan fragments q. For a seamless integration into an algebraic plan,
the live columns

colsJqK = {a1, . . . , an} ,

which the plan fragment q emits, are adopted by the materialization primitive.
The live columns may be obtained in a single plan walk over q, as illustrated in

4.2 Basic Techniques 117

Table 4.3. On the back-end, however, this operator is critical to ensure that the
resulting SQL queries reflect the substantial degree of sharing in the DAG-shaped
algebraic plans.

Operator Live Columns

colsJπa1:b1,...,an:bn(q)K = {b1, . . . , bn}
colsJσa(q)K = colsJqK
colsJ@a1:v1,...,an(q)K = colsJqK] {a1, . . . , an}
colsJδ(q)K = colsJqK
colsJ%a:〈b1,...,bn〉(p)qK = colsJqK] {a}
colsJ a:〈b1,...,bn〉(q)K = colsJqK] {a}
colsJ}a:〈b1,b2〉(q)K = colsJqK] {a}
colsJq1 a=b q2K = colsJq1K] colsJq2K
colsJq1 × q2K = colsJq1K] colsJq2K
colsJq1] q2K = colsJq1K
colsJq1 / q2K = colsJq1K
colsJgrpa:◦(b)/g(q)K = {a, g}
colsJa1 ... an K = {a1, . . . , an}
colsJ T(a1,...,an)〈p〉K = {a1, . . . , an}
colsJ a1,a2,〈a1,...,an〉(q)K = {a1, . . . , an}
colsJ�a1,...,an(q)K = {a1, . . . , an}

Table 4.3: Deriving the live columns of an operator in a bottom-up traversal.

To formalize the above intuition, we regard a query plan as a direct acyclic
graph (Q,A). The set Q maintains the set of algebraic primitives that participate
in the evaluation of the query plan. A is comprised of pairs A ⊆ Q×Q and denotes
the set of arcs between operators. Each pair hosts the origin and the target of an
arc in the first and the second tuple component respectively.

Given a query graph (Q,A), we define the vicinity for an operator q ∈ Q

ν(q) := {r | (q, r) ∈ A} (4.1)

as the set of adjacent operators that are immediately reached when following the
direction of an arc starting at q. Using Eq. (4.1), branches may be easily identified
by their degree

deg+(q) := |ν(q)| . (4.2)

For a table operator q ∈ Q a degree

deg+(q) > 1

118 CHAPTER 4. SQL Code Generation

σb1 σ¬b1

πa1:b1,...,an:bn

(a)

σb1 σ¬b1

� b1,...,bn

πa1:b1,...,an:bn

(b)

Figure 4.4: The red operator in (a) denotes a repeated subexpression that is
referenced by both following operators. In (b) we interpose �a1,...,an between the
adjacent operators to prescribe some sort of materialization in the back-end.

identifies a branch in the underlying query plan.
Based on Eqs. (4.1) and (4.2), from a query plan (Q,A) we derive the enriched

query plan (Qmat, Amat) that explicitly tells us where materialization is to take
place in the SQL-centric back-end in two steps:

Identifying Branches.
Building upon the degree (Eq. (4.2)), we isolate operators and arcs where
the plan splits into two or more separate strands:

A� := {(q, r) | (q, r) ∈ A, deg+(q) > 1} (4.3)
Q� := {q | (q, r) ∈ A�} . (4.4)

Rewiring the Plan.
In the second step, we append the materialization operators to the set of
table operators

Qmat := Q] {�colsJqK | q ∈ Q�} , (4.5)

and properly rewire the plan components accordingly to interpose the mate-
rialization operator between the adjacent operators.

Amat := (A− A�)
] {(q,�colsJqK) | q ∈ Q�}
] {(�colsJqK, r) | (q, r) ∈ A�} .

(4.6)

4.2 Basic Techniques 119

Having derived the enriched plan (Qmat, Amat), we may now leverage this in-
formation in the back-end. Since the materialization primitive does not prescribe
a specific materialization strategy, we are free to tailor the strategy to a specific
database system at a later juncture. In this work, however, we decided to employ
the SQL:1999 WITH clause for this purpose, as we will describe in the following sec-
tion. A strategy that uses temporary tables [MS01, ch. 4, p. 100] or views [MS01,
ch. 4, p1̇06] has been described in [GM+07].

4.2.3 Common Table Expressions

With the techniques described above, we introduce several tiles into a query plan.
Each tile embodies a separate SQL query that needs to be executed on the back-
end. The resulting table is possibly used by other queries to correctly implement
the semantics of the underlying query plan. So far, we extensively used sub-queries
to assemble the queries into a single SQL query.

Introduced in SQL:1999, common table expressions (or WITH clauses) enables us
to factor out common sub-expressions. One or more “inner” queries may be bound
to a query name that, listed in the WITH clause, can be referenced in the definition
of the “outer” query expression (see Figure 4.5b). The query engine executes such
queries exactly once in order to arrange the result into a virtual table. This virtual
table is then actually used in each place where it is referenced [MS01, ch. 9, p.
296ff].

SELECT . . .
FROM (Q) AS T1
, (Q) AS T2

WHERE . . .

(a) When not recognized by the opti-
mizer, Query Q is executed twice.

WITH
t AS (Q)

SELECT . . .
FROM (t) AS T1
, (t) AS T2

WHERE . . .

(b) Query Q is bound to a query name
(t) that is referenced in the “outer” query
expression.

Figure 4.5: On the right-hand side, the WITH-clause executes the repeated sub-
expression (Q) only once instead multiple times as in the case depicted in (a).

The WITH clause is readily available in most database systems [Witc; Wita;
Witb]. In contrast to temporary tables, the WITH clause has no persistent side effect
on the database system. In the SQL code generation we gather the SQL queries for
each tile to immediately bind them to a query name that is then used to reference

120 CHAPTER 4. SQL Code Generation

the resulting table. Because we employ common table expressions for both tiling
and factoring out repeated sub-queries, we may safely remove the materialize oper-
ator from operator constellations of the form �(◦(q)) (with ◦ ∈ {δ, %, ,grp,], /})
from the loop-lifted query plans in order to prevent a superfluous binding.

4.3 Translation Rules
In this section we provide the translation rules that integrate the techniques dis-
cussed in the above section into a single translation scheme. The SQL dialect that
is generated in the course of this process is illustrated in Table 4.4. The primary
elements of the translation scheme are rules of the form

q Z⇒ 〈(Σ,F , w), C〉 ,

which translate an expression from relational plan fragment (q) into the following
components:

1. The first tuple component embodies a SELECT·FROM·WHERE block in SQL. Each
component maintains the decisive components to instantiate a query that
can be extended by an optional clause to correctly implement the semantics
of an operator.

(i) The column map (Σ) maps column names used in the loop-lifted algebra
to SQL expressions of the type coldef (see Table 4.4). The expressions
may be used in both the select clause and the where clause. Note that
column references are instantly bound to a correlation name, which
helps us to maintain distinct column names throughout the translation.

(ii) The set F contains the query expressions that may be used in the FROM
clause of a SQL expression. As in the above case, correlation names are
bound to these expressions to prevent name clashes. In the following,
we refer to this component as source expressions.

(iii) The boolean expression w is used to store a conjunctive predicate list.
We use w to phrase the WHERE clause when a concrete SQL query is
instantiated. In the following, we refer to this tuple component as
conjunction list.

All three components provided, we can easily employ template instantiation

sfw(δ,Σ,F , w) ≡ SELECT
if δ is set︷ ︸︸ ︷
DISTINCT {Σ a AS a | a ∈ dom(Σ)}

FROM F
WHERE w

4.3 Translation Rules 121

to assemble an SQL query. To express the SELECT clause, we bind the ex-
pressions to the column names found in the domain of the partial function
(dom(Σ)). Duplicate elimination (δ) is only enforced if the optional first
parameter is set.

2. The second component (C) embodies the set of query definitions that are
possibly used in the calculation of the overall expression in terms of a WITH
clause. Whenever a basic block is identified in the SQL translation, the
corresponding SQL query is gathered and bound to a query name that may
be used as a reference in the remaining translation.

In the remaining section we consider each operator in the loop-lifted algebra
separately to provide the proper translation rule that turns each of them into
a SQL query. Applied to the plan root, these rules assemble a WITH statement
comprising several queries that jointly implement the semantics of the query plan.
In Figure 4.6 we demonstrate how the translation rules, we provide in the following
sections, affect the translation of Query Q13.

4.3.1 Value Expressions

Each of the following relational primitives (π,σ, ◦) is translated into a value ex-
pression that may be used in any clause of an SQL statement to properly reflect the
semantics of an operator. We gather these expressions and maintain them in the
column map (Σ). The expressions remain accessible for further use by referencing
the column name that is provided by the relational operators.

In rule (SQL-Project), to capture column projection and renaming, we set up
the column map to maintain the columns that are of continuing interest in the
translation. In this way, the operator turns into a compile time operation. The
abundance of projection operators, which were introduced to prevent name clashes
in the loop-lifted query plans, are rendered superfluous. SQL permits us to avoid
ambiguity by establishing qualified column references using correlation names. If
a correlation name is specified for a table, any reference to a column must use the
correlation name rather than the table name.

q Z⇒ 〈(Σ,F , w), C〉
Σ′ ≡ {b1 7→ Σ a1, . . . , bn 7→ Σ an}
πa1:b1,...,an:bn(q) Z⇒ 〈(Σ′,F , w), C〉

(SQL-Project)

In a similar fashion we translate the algebraic primitives for column attach-
ment (@), unary and binary operators (◦). In rule (SQL-Attach), rule (SQL-Unary)

and rule (SQL-Binary) this is respectively reflected by extending the column map by

122 CHAPTER 4. SQL Code Generation

iter,pos,〈item1〉

πouter:iter,posouter:pos,item1

inner=iter

πiter,pos,item3:item1

∗ item3:〈item1,item2〉

iter2=iter

πiter:iter2,item1:item2 πiter,pos,item3:item1

@item1:0.5
πiter,pos,item3

@pos:1 @pos:1

πinner:iter

� iter,inner,
pos

πiter:outer,inner,
pos:posouter

πinner:iter,
item1,item2,item3

inner:〈iter,pos〉

×

pos:〈item1〉

πid:item1,name:item2,price:item3

iter
1 Products(id,name,price)〈id〉

WITH

C2(item1,item2,item3,pos) AS (
SELECT C1.id AS item1,

C1.name AS item2,
C1.price AS item3,
DENSE_RANK() OVER (
ORDER BY id) AS pos

FROM Products AS C1),

C4(inner,iter,pos,item1,item2,item3) AS (
SELECT DENSE_RANK() OVER (

ORDER BY C3.iter, C2.pos) AS inner,
C3.iter AS iter, C2.pos AS pos,
C2.item1 AS item1, C2.item2 AS item2,
C2.item3 AS item3

FROM (VALUES (1)) AS C3(iter), C2),

C5(outer,inner,posouter) AS (
SELECT C4.iter AS outer, C4.inner,

C4.pos AS posouter
FROM C4)

SELECT C6.outer AS iter,
C7.item3 * 0.5 AS item1

FROM C5 AS C6, C4 AS C7, C5 AS C8
WHERE C6.inner = C7.inner
AND C7.inner = C8.inner

ORDER BY C6.outer, C6.posouter

Figure 4.6: Translation of Query Q13 that relies on the rules we provide in the
following section. We leverage tiling to condense several algebraic primitives into
a single SQL query. Additionally, the identification of sub-queries helps us to
prevent costly recalculations.

4.3 Translation Rules 123

Expressions

withexpr := WITH qdef qexpr
qdef := tabname(col) AS (qexpr)

qexpr := qexpr UNION ALL qexpr
| qexpr EXCEPT ALL qexpr
| sfw

sfw := SELECT DISTINCT coldef
FROM tabexpr
WHERE pred
[group] [order]

coldef := expr AS col
pred := pred AND pred

| expr comp expr
| true | false

comp := = | < | > | <= | . . .
expr := corr.col | val

| expr arithop expr
| pred
| ranking
| setfunc(expr)

setfunc := MAX | MIN | . . . | EVERY
ranking := ROW_NUMBER() OVER ([part] [order])

| DENSE_RANK() OVER ([order])
part := PARTITION BY expr

order := ORDER BY expr
group := GROUP BY expr

arithop := + | - | * | / | . . .
tabexpr := tabname AS corr

| (VALUES (val)) AS corr(col)
val := 1 | . . . | n

| ’...’

Table 4.4: SQL:1999 dialect used in the translation of query plans. The brackets
mark optional query fragments. Overlined expressions e stand for e1, . . . , en.

124 CHAPTER 4. SQL Code Generation

the respective value expressions. For example, the binary operators (+ , − , . . .)
are directly mapped to their readily available SQL counterparts (+, -, . . .).

q Z⇒ 〈(Σ,F , w), C〉
@a:v(q) Z⇒ 〈(Σ] {a 7→ v},F , w), C〉

(SQL-Attach)

◦ ∈ {+, -, !} q Z⇒ 〈(Σ,F , w), C〉
}a:〈b〉(q) Z⇒ 〈(Σ] {a 7→ ◦Σ b},F , w), C〉

(SQL-Unary)

◦ ∈ {+, -, *, /, %, |, &, ==, <>, <, >, <=, >=}
q Z⇒ 〈(Σ,F , w), C〉

}a:〈b1,b2〉(q) Z⇒ 〈(Σ] {a 7→ Σ b1 ◦ Σ b2},F , w), C〉
(SQL-Binary)

4.3.2 Predicates

The select operator (σa) confines a table to rows that satisfy a given condition.
In rule (SQL-Select), to capture this behavior, we obtain the predicate from the
column map (Σ a), which, in turn is employed to refine the boolean expression (w)
by means of a conjunction (AND). When materialized, the boolean expression is
used to phrase the WHERE clause of an SQL statement.

q Z⇒ 〈(Σ,F , w), C〉
σa(q) Z⇒ 〈(Σ,F , w AND Σ a), C〉

(SQL-Select)

4.3.3 Working with (Multiple) Tables

The operators in this section are converted into table expressions that may be inte-
grated into the FROM clause of an SQL query. When encountered in the query plan,
they are turned into a table expression that is collected in the source expression,
which represents the from clause.

In the translation rule (SQL-Cross), which captures the cross product (×) the
source expressions (F1 and F2) of the translated constituent plan fragments are
merged by means of a disjoint union. Note that even if a table expression occurs
twice in the resulting set, they are still distinguishable by their correlation name.

qi Z⇒ 〈(Σi,Fi, wi), Ci〉 i=1,2

q1 × q2 Z⇒ 〈(Σ1] Σ2,F1] F2, w1 ∧ w2), C1 ∧ C2〉
(SQL-Cross)

Rule (SQL-EqJoin), which captures the equi-join operator (ona=b) is turned into
a classic comma-separated join. The resulting cross product additionally confines
the expression to satisfy the join condition Σ a = Σ b. It is important to see that

4.3 Translation Rules 125

the cardinality of the source expressions (F1 and F2) may possibly comprise more
than one table expression. For this reason we cannot use the INNER JOIN construct.

q1 × q2 Z⇒ 〈(Σ,F , w), C〉
q1 a=b q2 Z⇒ 〈(Σ,F , w AND Σ a = Σ b), C〉

(SQL-EqJoin)

To capture a table reference () that occurs in the query plan, we initialize the
source expression with the proper table name. Note that, to prevent name clashes
between columns, the table name as well as the columns are instantly bound to a
fresh correlation name. Rule (SQL-TableRef) reflects this situation. The conjunction
list is initialized accordingly to let every row in this table pass.

c = is a fresh correlation name
Σ ≡ {a1 7→ c.a1, . . . , an 7→ c.an}

T(a1,...,an)〈p〉 Z⇒ 〈(Σ, {T AS c}, true), C〉
(SQL-TableRef)

A similar strategy is applicable to the remaining operators in this section.
In rule (SQL-Table), to establish a table literal in the SQL-centric back-end, we
use the table value constructor (VALUES). The contents of the table literal are
straightforwardly adopted. An empty table may be constructed by obeying to
rule (SQL-TableEmpty). The NULL values are used to ensure adherence to the SQL
standard, even though the will never be exposed due to the conjunctive list that
evaluates to false.

t = is a fresh table name

F ≡
{
(VALUES (v1·1,. . . ,v1·n), . . .

(vm·1,. . . ,vm·n)) AS t(a1,. . . ,an)

}
a1 ... an
v1·1 ... v1·n
...

...
...

vm·1 ... vm·n

Z⇒ 〈({a1 7→ t.a1, . . . , an 7→ t.an},F , true), C〉
(SQL-Table)

t = is a fresh table name
F ≡

{
(VALUES (null,. . . ,null) AS t(a1,. . . ,an))

}
a1 ... an
∅ Z⇒ 〈({a1 7→ t.a1, . . . , an 7→ t.an},F , false), C〉

(SQL-TableEmpty)

4.3.4 Duplicate Elimination

To eliminate duplicates in a table, SQL provides the keyword DISTINCT, which may
be specified in the SELECT clause of a query. In rule (SQL-Distinct) we instantiate
an SQL query and apply duplicate elimination to all visible columns. The query
is then bound to a query name to provide a reference for subsequent operations.

126 CHAPTER 4. SQL Code Generation

q Z⇒ 〈(Σ,F , w), C〉
t = is a fresh table name c = is a fresh correlation name

C ′ ≡ {t(dom(Σ)) AS (sfw(δ,Σ,F , w))}
δ(q) Z⇒ 〈({a 7→ c.a | a ∈ Σ}, {t AS c}, true), C] C ′〉

(SQL-Distinct)

To establish duplicate elimination in the back-end, the cost-based optimizer
may choose between a hash-based or a sort-based execution strategy. PostgresSQL,
e.g., prefers hashing if the hash table is likely to fit into the working memory and
order is not relevant for the final result. A sort-based approach, however, is favored
whenever the preservation of order is likely to lead to a cheaper access-plan.

4.3.5 Ranking

The ROW_NUMBER() and DENSE_RANK() OLAP ranking facilities are employed to ma-
nipulate tabular representations of lists. Because we use row ranks for list posi-
tions, surrogate values and grouping, such rank-based operations are encountered
frequently in the query plans. Most perceivable implementations of these opera-
tors introduce a blocking sort operation into the execution plans, which presents
a serious cost for actual RDBMS implementations.

res i1 i2
1 1 1
2 1 3
3 1 4
1 4 1
2 4 1

(a)
ROW_NUMBER() OVER (
PARTITION BY i1
ORDER BY i2)

res i1 i2
1 1 1
2 1 3
3 1 4
4 4 1
5 4 1

(b) ROW_NUMBER() OVER (ORDER BY i1,i2)

res i1 i2
1 1 1
2 1 3
3 1 4
4 4 1
4 4 1

(c) DENSE_RANK() OVER (ORDER BY i1,i2)

Figure 4.7: Semantics of SQL/OLAP ranking facilities ROW_NUMBER() and
DENSE_RANK(). The column res respectively contains the result of the below ex-
pressions.

In rule (SQL-Rownum) and rule (SQL-Rank), we use the inline window clause [Mel02,
ch. 7, p. 310] rather than the explicit alternative that is specified in a separate
clause. The WINDOW clause permits us to define suitable partitions and ordering
among the rows of the resulting table. For a demonstration of the semantics of
ROW_NUMBER() and DENSE_RANK() consider Figure 4.7.

4.3 Translation Rules 127

q Z⇒ 〈(Σ,F , w), C〉

Σ′ ≡ Σ]
{
a 7→ ROW_NUMBER() OVER (PARTITION BY Σ p

ORDER BY Σ a1,. . .,Σ an)

}
t = is a fresh table name c = is a fresh correlation name

C ′ ≡ {t(dom(Σ′)) AS (sfw(Σ′,F , w))}
%b:〈a1,...,an〉|p(q) Z⇒ 〈({a 7→ c.a | a ∈ Σ′}, {t AS c}, w), C] C ′〉

(SQL-Rownum)

q Z⇒ 〈(Σ,F , w), C〉
Σ′ ≡ Σ] {a 7→ DENSE_RANK() OVER (ORDER BY Σ a1,. . .,Σ an)}

t = is a fresh table name c = is a fresh correlation name
C ′ ≡ {t(dom(Σ′)) AS (sfw(Σ′,F , w))}

b:〈a1,...,an〉(q) Z⇒ 〈({a 7→ c.a | a ∈ Σ′}, {t AS c}, w), C] C ′〉
(SQL-Rank)

4.3.6 Grouping

In the loop-lifted algebra the group operator (grp) additionally entails the cal-
culation of an aggregate function on the input groups. The aggregate functions
in the algebra (max(),min(),. . .) are mapped to their equivalent set functions in
SQL (MAX(), MIN(),. . .) [MS01, ch. 5, p. 132].

Similar to duplicate elimination, the cost-based optimizer of the RDBMS needs
to weigh up whether to introduce a hash-based approach or a sort-based approach
in the execution plan to divide the input table into groups. The set functions in
turn consider each group separately to complete their task.

◦ ∈ {max,min, sum,avg,count,every} q Z⇒ 〈(Σ,F , w), C〉
t = is a fresh table name c = is a fresh correlation name

C ′ ≡ {t(b,g) AS (sfw(Σ] {b 7→ ◦(Σ a)},F , w) GROUP BY Σ g)}
grpb:◦(a)/g(q) Z⇒ 〈({b 7→ c.b, g 7→ c.g}, {t AS c}, true), C] C ′〉

(SQL-Group)

4.3.7 Set Operators

The algebraic set operators (] and /) are straightforwardly mapped to their coun-
terparts in the SQL centric back-end (UNION and EXCEPT). Both set operations
require their input table to be union compatible. Hence, the tables must have
the same number of columns, and the data types of each pair of columns in the
two tables that appear at the same relative positions must be comparable. In
rule (SQL-Union) and rule (SQL-Except), to ensure that this restriction is met, we
instantiate the SQL queries for both constituent operators.

Because we perform set operations only over disjoint tables, we may faithfully
employ the low-cost variants UNION ALL and EXCEPT on the back-end. The set
operator UNION operates similarly to UNION ALL, but entails duplicate elimination

128 CHAPTER 4. SQL Code Generation

T
i
1
1
3

S
i
1
2

(a) input tables T and S

U
i
1
1
3
1
2

(b) U = T UNION ALL S

V
i
1
3

(c) V = T EXCEPT S

Figure 4.8: Semantics of set operators in SQL. Note that UNION ALL does not entail
duplicate elimination in the result table. By using EXCEPT we avoid removing
duplicates from the input tables before set difference takes place.

on the resulting table. Similarly, EXCEPT ALL removes all duplicates from the input
tables before the rows are transfered into the result table. The semantics of the
set operations is exemplified in Figure 4.8.

dom(Σ1) = dom(Σ2) qi Z⇒ 〈(Σi,Fi, wi), Ci〉 i=1,2

t = is a fresh table name c = is a fresh correlation name
C ′ ≡ {t(dom(Σ1)) AS (sfw(Σ1,F1, w1) UNION ALL sfw(Σ2,F2, w2))}

q1] q2 Z⇒ 〈({a 7→ c.a | a ∈ Σ1}, {t AS c}, true), C1] C2] C ′〉
(SQL-Union)

dom(Σ1) = dom(Σ2) qi Z⇒ 〈(Σi,Fi, wi), Ci〉 i=1,2

t = is a fresh table name c = is a fresh correlation name
C ′ ≡ {t(dom(Σ1)) AS (sfw(Σ1,F1, w1) EXCEPT sfw(Σ2,F2, w2))}
q1 / q2 Z⇒ 〈({a 7→ c.a | a ∈ Σ1}, {t AS c}, true), C1] C2] C ′〉

(SQL-Except)

4.3.8 Serialization

The serialization operator () marks the root of a query plan and triggers the
arrangement of a complete SQL query out of the fragments that have been collected
during the plan walk. Therefore, the formulation in rule (SQL-Serialize) is twofold:

(i) The set of query expression (C)—each representing a single tile in the query
plan—is turned in to a comma-separated list of the following shape:

{qe, | qe ∈ C} =

qn1 AS (sql1),
...

qnm AS (sqlm),

4.3 Translation Rules 129

In this form the query name qn i maybe used as a reference for an SQL query
sql i (with i ∈ {1, . . . , n}). The back-end’s execution engine ensures that
each SQL query in the list is executed not more than once, even if there exist
multiple references to a single query name.

(ii) The column map (Σ), the source expressions (F), and the conjunctive list
(w) are converted into an SQL query that forms the overall result. To facili-
tate the serialization in the host language, the result is additionally ordered
according to the list identifiers (column a1) and the positions (column a2).

q Z⇒ 〈(Σ,F , w), C〉

a1,a2,〈a3,...,an〉(q) Z⇒

WITH
{qe, | qe ∈ C}
sfw(Σ,F , w)
ORDER BY Σ a1, Σ a2

(SQL-Serialize)

We use the ordered table, calculated by the above query, and the type of the
respective Switch expression to construct the proper values in the host language.
If the Switch expression is supposed to evaluate to a list, the iteration values
assume the role of list identifiers while the position values determine the position
of the elements in the list. If the Switch expression leads to a nested result, the
loop-lifted translation produces two or more query plans leading to two or more
SQL queries. To properly place nested values, we rely on the surrogate values that
we introduced in the loop-lifted translation scheme for this purpose. In the host
language we use a kind of sort merge join to restore the result.

4.3.9 Explicit Binding

Whereas the loop-lifted translation features column projection and renaming (π)
to prevent name clashes, in the SQL generation approach we use the possibility
to introduce correlation names into the queries to ensure distinct column names
within an SQL query. In this way, the column projection does not affect the query
runtime.

An important observation is that if a query plan divides into two or more
strands these strands (originating in �), may possibly coalesce into a single op-
erator. In the example in Figure 4.9, the query plan illustrates ta self-join in
which the correlation name, used to reference the result of materialization, oc-
curs twice. To guarantee distinct correlation names, we introduce fresh correlation
names whenever the materialization operator is visited for the second time in the
plan walk.

The above observation leads to an approach where the operator assumes a
different kind of semantics during the translation. When the materialize operator

130 CHAPTER 4. SQL Code Generation

a=b

πa:b

� a

Figure 4.9: When not handled properly, the above constellation of plan operators
leads to a self-join that let the SQL compiler stumble over ambiguous column
names due to identical correlation names.

is visited for the first time in the plan walk, we instantiate the SQL query for its
constituent operator. To properly reflect the DAG structure of the query plan,
this query takes place among the query expressions (C). Rule (SQL-Mat-1) expresses
this behavior. The materialize operator is then substituted by

�〈(Σ,F ,w),C〉 .

The results from the translation of the materialize operator (〈(Σ,F , w), C〉) are
annotated to handle further visits. Additionally, we generate a new correlation
name to prevent name clashes for possibly coalescing plan strands. Rule (SQL-Mat-2)

formalizes this situation. Consider the red fragments in rule (SQL-Mat-1) that are
adopted in the formulation of rule (SQL-Mat-2).

q Z⇒ 〈(Σ,F , w), C〉
t = is a fresh table name c = is a fresh correlation name

C ′ ≡ {t(dom(Σ)) AS (sfw(Σ,F , w))}
Σ• ≡ {a 7→ c.a | a ∈ Σ} F• ≡ {t AS c} w• ≡ true

C• ≡ C] C ′

�a1,...,an(q) Z⇒ 〈(Σ•,F•, w•), C•〉
(SQL-Mat-1)

c′ = is a fresh correlation name
Σ ≡ {a1 7→ c.a1, . . . , an 7→ c.an} F ≡ {t AS c} w ≡ true

Σ′ ≡ {a1 7→ c′.a1, . . . , an 7→ c′.an} F ′ ≡ {t AS c′}
�〈(Σ

•,F•,w•),C•〉 Z⇒ 〈(Σ′,F ′, w), C〉
(SQL-Mat-2)

4.3 Translation Rules 131

q
.
= q′ Z⇒ 〈(Σ,F , w), C〉

t = is a fresh table name c = is a fresh correlation name
C ′ ≡ {t(dom(Σ)) AS (sfw(Σ,F , w))}

Σ′ ≡ {a 7→ c.a | a ∈ Σ} F ′ ≡ {t AS c} w′ ≡ true
�a1,...,an(q)

.
= �〈(Σ

′,F ′,w′),C〉 Z⇒ 〈(S ′, F ′,W ′), C] C ′〉
(SQL-Mat-Subst)

q
.
= q′ Z⇒ 〈(Σ,F , w), C〉

Σ′ ≡ {b1 7→ Σ a1, . . . , bn 7→ Σ an}
πa1:b1,...,an:bn(q)

.
= πa1:b1,...,an:bn(q′) Z⇒ 〈(Σ′,F , w), C〉

(SQL-Project-Subst)

Table 4.5: By the above rules we exemplify how the translation rules can be
refined to reflect plan rewrites. Beside delivering the proper SQL translation for q
the judgment q .

= q′ Z⇒ 〈(Σ,F , w), C〉 additionally tells us to substitute the plan
operator q by q′ in the query plan.

Since plan rewrites are confined to the materialize operator, we do not reflect
rewrite semantics in the translation rules to improve readability. However, in
Table 4.5 we provide two examples to illustrate how the translation rules can be
refined to integrate plan rewrites.

Chapter 5

Assessment

In this chapter we will closely look at the benefits we obtain when using Switch to
formulate queries. We will see that deep query embedding and SQL code generation
can still lead to competitive query performance. In fact, Switch-generated SQL
code can often contend with the manually written SQL, as we will demonstrate for
a diversity of query classes and use cases taken from Spree. To make this point,
we dissect the queries focusing on the comparison of Switch’s SQL output with

(1) the SQL statement sequence generated by ActiveRecord 3.0.5 and with
(2) a handcrafted SQL query variant that possibly entails calculation on the

Ruby heap in order to restore host-language data structures.

In all experiments, we measure the complete round-trip time, which includes (i) the
compilation time required to produce proper SQL statements as well as (ii) query
shipping, (iii) result shipping, and (iv) materialization on the host language heap.

Moreover, the inspection of the execution plans will help us to understand
and appreciate the efforts that relational database systems (DB2 R© in this case)
take to efficiently implement the tested queries. The techniques applied by DB2
range from accelerating data access via indexes to comprehensive rewrites that
let the optimizer reinvent the execution strategy based on a thorough cardinality
estimation of participating plan operators. The optimizer especially benefits from
data distribution statistics available in the catalog tables.

For the quantitative assessment, we leverage the similarity between Spree’s
data model and the TPC-H benchmark [Tpc] to derive application data for various
scale factors. The measured round-trip time will give us an impression of how DB2
can cope with the workloads. All measurements include the time required to bring
the expressions into a database executable format and to materialize the result on
the Ruby heap.

133

134 CHAPTER 5. Assessment

Before we jump into the experimentation part of this chapter, we will briefly
discuss the optimization potential of the loop-lifted query plans. Here, we will
benefit from the assembly-style semantics of the relational primitives to perform
plan rewrites that possibly lead to drastic simplifications. The optimization ap-
proach presented in [Rit10] and [GMR09] is discussed with regard to XQuery,
but is as well applicable to the plan shapes generated by Switch.

5.1 Optimization in a Nutshell

Even with the code generation approach we detailed in the previous chapter, cur-
rent commercial SQL optimizers typically struggle with the generated queries. The
unusual query shapes stemming from the loop-lifted compilation scheme feature
the scattered distribution of equi-joins, duplicate elimination, numbering operators
and grouping. These peculiarities call for an optimizer that is designed to exploit
the intricacies of the nested, ordered data model.

The optimization approach we rest on in this work pursues the goal to separate
a join graph from the blocking operators in the plan tail. The bundles of base table
references and joins constituting a join graph along with the blocking operators in
the plan let the relational optimizer face a problem known inside-out. Based on
its data statistics, the cost-based optimizer may then autonomously work out the
best execution plan to deliver the result.

To establish the desired plan shapes, the optimizer adopts a local rewrite tech-
nique coined peephole optimization [McK65]. This technique considers only a small
set of algebraic operators to perform optimizations. Several attribute grammars
pass operator properties across the query plan in a single top-down or bottom-up
walk to support this local rewrite strategy. Each optimization rule considers one
or more properties in order to simplify the plan. All optimization rules may be
divided into the following three heuristics [Rit10, ch. 4, p. 47]:

House Cleaning. Superfluous plan fragments are pruned and useless operators
that are guaranteed to yield an empty table are removed from a query plan.
Relational primitives are simplified based on key and constant information.
Variants of selection and projection pushdowns are performed and common
sub-plans removed.

Order Minimization. Certain operator constellations lead to the removal of
order constraints from the query plans, implemented by row numbering and
ranking operators. For example, a ranking operator that is exclusively used by
the serialize operator to ensure the order of the overall result may be faithfully
removed from the query plan.

5.1 Optimization in a Nutshell 135

Query Unnesting. Several equi-joins that are introduced in the loop-lifted
translation are rendered useless by the optimizer. Particularly the mapping
joins, which reflect the iterative semantics of a Switch expression exhibit
various properties that make them susceptible to further optimization.

In the rest of this section we will briefly discuss how optimization affects the
loop-lifted query plan for Query Q13. In Figure 5.1 we compare the original query
plan that directly results from the loop-lifted translation (on the left hand side)
with the plan that is rewritten according to the heuristics we sketched above (on the
right hand side). While operationally equivalent to the original plan, the optimized
plan uses neither numbering operators nor equi-joins to successfully implement the
iterative, ordered semantics of the underlying Switch expression. To achieve this,
the optimizer performs the following principal simplifications (respective operators
that are affected in the query plan are marked by , and):

To infer constant values, the optimizer walks the query plan in a bottom-up
fashion [Rit10, Ch. 4, p. 52]. At the cross product this property is considered
to recognize that the iter column originating in the loop table exposes a single
constant value. This tree pattern may thus be replaced straightforwardly by
a column attachment operator (@iter:1).
The rank operator () that is directly following the cross product also benefits
from the constant property inference. Due to the constancy the column iter
does not affect this operator and may thus be removed.

In most cases, the loop lifting compilation introduces equi-joins to combine
table columns that were split earlier in the compilation process to implement
iteration. To remove the aligning equi-joins, the optimizer performs a series
of equi-join pushdowns to bring joins towards this split point [Rit10, Ch. 4,
p. 78ff], where it may be removed if possible.
In this case, the rank operator embodies this split point. At this point, the
optimizer becomes aware that both join columns originate in the same col-
umn (inner). Additionally, the inner column is marked as key column [Rit10,
Ch. 4, p. 54], which leads to the elimination of the equi-join operator. Conse-
quently, the rank operator is now rendered superfluous because column inner
remains unreferenced by the upstream plan operators.

The last remaining rank operator in the query plan is also subject to removal.
The column pos that is produced as a result is exclusively used in the serialize
operator () to ensure the order of the final result. Apparently, column item1,
which is the only column that influences the logical order of the final result,
may be directly used in the serialization operator [Rit10, Ch. 4, p. 73ff].

136 CHAPTER 5. Assessment

iter,pos,〈item1〉

πouter:iter,posouter:pos,item1

inner=iter

πiter,pos,item3:item1

∗ item3:〈item1,item2〉

iter2=iter

πiter:iter2,item1:item2 πiter,pos,item3:item1

@item1:0.5
πiter,pos,item3

@pos:1 @pos:1

πinner:iter

πiter:outer,inner,
pos:posouter

πinner:iter,
item1,item2,item3

inner:〈iter,pos〉

×

pos:〈item1〉

πid:item1,name:item2,price:item3

iter
1 Products(id,name,price)〈id〉

iter,pos,〈item2〉

πiter,item1:pos,item5:item1

@iter:1

∗ item5:〈item3,item4〉

@item4:0.5

Products(id,name,price)〈id〉

SELECT 1 AS iter,
C1.price * 0.5 AS item1

FROM Products AS C1
ORDER BY 1, C1.id

Optimization

SQL Code
Generation

Figure 5.1: Comparison of the original query plan of Query Q13 (on the left hand
side) and the optimized variant (on the right hand side) resulting from the appli-
cation of the described optimization heuristics.

5.2 Benchmark 137

Following the optimization steps we sketched above, the optimizer applies var-
ious standard operator simplifications [Rit10, Ch. 4, p. 51ff] to derive the final
plan shape. Since the optimized plan may be covered by a single (blue) tile, the
SQL generator is able to condense the entire query plan into the single SELECT·
FROM·WHERE block below (in Figure 5.1). In the following experiments we apply the
above and various other optimizations to considerably simplify the query plans.
We will see that the resulting queries can compete with hand-crafted SQL queries.

5.2 Benchmark
For our experimentation setup, we devise a sensible set of queries to assess the
impact of this work. All of the queries may be used in the context of Spree [Spr],
the Rails framework to construct E-Commerce applications that we already in-
troduced in Section 2.2. As the underlying data model is very similar to the one of
the TPC-H benchmark [Tpc], we slightly adapted the data generator to populate
the tables of the Spree application we use in the experimentation setup. Con-
sider Appendix A.1 for an illustration of the relevant Spree tables and associations
between them.

Query Characteristics

B1 sorting, nested result, heavy materialization in the host
language

B2 filtering, huge intermediates, intermediate grouping,
aggregation

B3 filtering, sorting, huge intermediates, intermediate group-
ing, positional access

B4 high selectivity, join-based, aggregation
B5 filtering, aggregation, huge intermediates, deeply nested

result, heavy materialization in the host language

Table 5.1: Notable characteristics of Queries B1 through B5.

We compare five queries, each of which emphasizing a different aspect of query
formulation (Table 5.1). Each query comes in three forms, respectively focusing
on a different programmer profile:

(i) a web application developer, who displays proficiency in ActiveRecord
but lacks awareness of how the programs are evaluated on the database
back-end,

138 CHAPTER 5. Assessment

Query Result Types # Queries

B1 [(Str , [(Int , Str)])] 2

B2 Dec 1

B3 [{var_id : Int , size : Int}] 1

B4 Dec 1

B5 [{user : Int ,
orders : [
{order : Int ,
suggestions : [{lineitem : Int ,

your_var : {id : Int , price : Dec},
sugg_var : {id : Int , price : Dec}}],

saving : Dec}]}]

3

Table 5.2: Result types of the Switch queries and number of emitted SQL queries.
Consider Section 3.10.3, in which we detailed how the number of of queries is
obtained by the result type.

(ii) a pure Ruby developer, who takes the complex and ordered data structures
of Ruby for granted and uses Switch to express the queries, and

(iii) a database application developer, who composes a single SQL statement fol-
lowed by a Ruby expression to construct the desired data structures in the
host language.

In the following, we provide the respective queries to implement various tasks.
For all Switch queries we listed the type and the emitted SQL queries that are
fired against the database. The red code fragments mark query parts that are not
considered to be database executable and thus are evaluated in the host language
heap. The violet code fragments highlight the query parts that are literally adopted
in the translated SQL code.

5.2.1 Drop-down List of Countries

“ Creating a comprehensive list of countries and their associated states,
alphabetically ordered and ready to be used for an online form.

(B1) ”In Figure 5.3a we show the ActiveRecord variant of Query B1. The emitted
SQL queries are depicted in Figure 5.4a. As the first step, we gather all countries

5.2 Benchmark 139

ordered by their name. Not surprisingly, this formulation leads to the single SQL
query (line 1 in Figure 5.4a) that is executed on the database back-end. Following
the materialization in the host language, we iterate through the countries and
successively collect the associated states to construct the final result. For each
country ActiveRecord triggers the collection of respective states by a separate
query that employs the relationship between the tables Countries and States.

With ActiveRecord the size of the database instance can affect the size of
the generated SQL text. Worse, though, the database size may also determine the
number of SQL queries generated. For example, against a TPC-H instance, the
amount of generated SQL queries ranges from 30 queries (for scale factor 0.001)
to 300,000 queries (for scale factor 10). ActiveRecord partially addresses this
phenomenon, also known as the 1+n query problem, but Rails still suffers [Act,
see includes()]. A flood of simple, look-alike queries (Figure 5.4a) keeps the back-
end busy and the overall execution time is dominated by costly context switches
between the Rails and the database processes, which repeatedly exchange SQL
text and tiny pieces of data (see Figure 5.2a).

SQL text
data

...3
00

0
×

(a) ActiveRecord.

tim
e

SQL text
data

(b) Switch.

Figure 5.2: Context switches and shipment of queries/result data between the
Ruby runtime and the database back-end (against a TPC-H instance of scale fac-
tor 0.1).

Figure 5.3b expresses the Switch variant of Query B1. Ruby idioms such as
&:name≡ {|x| x.name} remain available to order the countries and states in line 1
and line 3, while the 1-to-n association to gather the states for each country is
established in line 4. Because the final result is nested, the translation leads to ex-
actly two SQL queries independent from the database instance size in Figure 5.4b.
Note that the constructs enclosed by square brackets ([. . .]), such as [id, name]
are regarded as a tuple by Switch and do not influence the nesting level. Here,

140 CHAPTER 5. Assessment

countries = Country.order("Countries.name")

countries.map { |c|
[c.name,
c.states.order("States.name").

map { |s| [s.id, s.name] }]
}

(a) Variant of Query B1 formulated from the angle of an ActiveRecord developer.

Countries.sort_by(&:name).map { |c|
[c.name,
states.sort_by(&:name).

select { |s| s.country_id == c.id }.
map { |id,name| [id, name] }]

}

(b) Variant of Query B1 formulated from the angle of a Ruby purist using Switch.

query = <<-SQL
SELECT c.name AS c_name, s.id AS s_id,

s.name AS s_name
FROM Countries c LEFT OUTER JOIN States s

ON c.id = s.country_id
ORDER BY c.name, s.name;
SQL

ActiveRecord::Base.connection.select(query).
group_by { |cs| cs["c_name"] }.
map { |cname,states|
[cname,
states.map { |s|
[s["s_id"].to_i, s["s_name"]]
}
]
}

(c) Variant of Query B1 formulated from the angle of a database application programmer.

Figure 5.3: Formulations of Query B1 from the point of view of three different
developers.

5.2 Benchmark 141

1 SELECT Countries.* FROM Countries ORDER BY Countries.name;
2 SELECT States.* FROM States WHERE (States.country_id = 1) ORDER BY States.name;
3 SELECT States.* FROM States WHERE (States.country_id = 2) ORDER BY States.name;
...

3000 SELECT States.* FROM States WHERE (States.country_id = 2999) ORDER BY States.name;
3001 SELECT States.* FROM States WHERE (States.country_id = 3000) ORDER BY States.name;

(a) SQL queries emitted by the ActiveRecord variant of Query B1 (against a TPC-H
instance of scale factor 0.1).

1 SELECT 1 AS iter, a.name AS item1,
2 ROW_NUMBER () OVER (ORDER BY a.id ASC) AS item2
3 FROM countries AS a
4 ORDER BY a.name ASC;
5

6 WITH
7

8 cnt (iter, item1, item2) AS
9 (SELECT DENSE_RANK () OVER (ORDER BY b.id ASC) AS iter

10 b.id AS item1, b.name AS item2,
11 FROM countries AS b)
12

13 SELECT c.iter AS iter, d.id AS item1,
14 d.name AS item2
15 FROM states AS d, cnt AS c
16 WHERE d.country_id = c.item1
17 ORDER BY c.iter ASC, d.name ASC;

(b) SQL queries emitted by the Switch variant of Query B1.

Figure 5.4: Comparison of the SQL queries emitted by ActiveRecord and
Switch. Note that ActiveRecord generates queries that heavily depend on the
underlying table size, whereas Switch always produces exactly the same queries
regardless of the database instance size.

142 CHAPTER 5. Assessment

ROW_NUMBER() and DENSE_RANK() (in line 2 and line 9) correctly implement the sur-
rogate values that permit us to assemble the result in the host language. Note how
Switch expresses the 1-to-n association via an equi-join in lines 15 and 16, rather
than a query for each single country. For countries without states no surrogate
value is generated. This leads to empty inner list when the result is assembled in
the host language.

Observe how the Switch formulation leads to a radically different interaction
with the database back-end: regardless of the database instance size, exactly two
SQL queries will be executed. Because all queries are independent, the execution
may even overlap arbitrarily, to leverage the back-end’s buffer-pool-replacement
strategy (Figure 5.2b).

In Figure 5.3c we express Query B1 in a single SQL query followed by a Ruby
expression, which postprocesses the result on the host language heap. To consider
countries that do not have associated states we use the LEFT OUTER JOIN construct.
Ordered by the country names and state names, the query result is then divided
into groups based on the country name in order to derive the desired shape.

5.2.2 Granting Discount to High-Volume Customers

“ What would be the cost of granting a 10 percent discount to the open
orders placed by all high-volume customers? (B2) ”We already introduced the above question in Section 2.2.1 to illustrate the dis-

advantages arising when ActiveRecord is used to express more complex queries.
The query in Figure 5.5a is a mere reprisal of the query we used in Figure 2.7 to
implement the above question. In this case, dependent on the database instance
size, the SQL translation generates huge IN(. . .) clauses that could easily overflow
the back-ends parse buffer and fail to scale.

In Figure 5.5b we show the array-centric reformulation of Query B2. Note how
the style considerably differs from the ActiveRecord variant, which directly uses
SQL query constructs in the formulation. Vanilla Ruby block syntax {|x| . . . }
may now be used to specify operation arguments. Pattern matching, as used in
the block expression {|u,os| os.length > highvol}, handily names and accesses
the fields of a record. Note that the second field os represents a nested Array
object (here: an array of orders). Observe also that we use several variables, such
as high_vols or open_orders, which, as part of Ruby’s evaluation process, are
conveniently assembled into a single expression before the loop-lifted translation
takes place.

After being optimized, the Switch expression in Figure 5.5b translates into
the single SQL statement shown in Figure 5.6. Again, the purely relational ap-
proach we emphasize in this work pays out in full when the queries are presented

5.2 Benchmark 143

to a relational back-end. DB2 recognizes further optimization potential and con-
siderably simplifies the query into the SQL construct presented in Figure 5.7a. The
Switch fragment that gathers the high-volume customers nests conveniently as
an uncorrelated subquery in the FROM clause (see line 3 through line 5) followed by
the predicate oc.cnt > 10 (in line 11) that eventually filters all users with more
than ten orders placed. Additionally, the query involves equi-joins on the SQL
level to retrieve the remaining order columns (especially order_id) to resolve the
1-to-n association with the line items in line 10 and line 8 respectively.

In the SQL reformulation of Query B2 (Figure 5.5c) we use an uncorrelated
subquery that nests in an IN(. . .) clause to gather high-volume customers. The
1-to-n association to the line items is then established via an equi-join. A compar-
ison of this formulation with the query in Figure 5.7a reveals their similarity and
underlines the quality of the SQL queries emitted by Switch.

Interestingly, to evaluate these queries, DB2 constructs exactly the same exe-
cution plan depicted in Figure 5.7b (consider Table 5.3 for all relevant plan oper-
ators). To efficiently implement the retrieval of high-volume customers in one go
with their orders a merge-scan join1 is employed—the index access ensures that
both input streams are sorted according to the user_id. Furthermore, in the right
branch of the sort-merge join, the a B-Tree [BM02] index structure is leveraged to
filter for open orders (state = ’O’). In the remaining plan, DB2 uses an index-
nested-loop join to retrieve the line items based on their order_id. In the left
branch, the optimizer recognizes that the outer table is poorly clustered and de-
cides to sort it based on its join column (id) in the Orders table. In this way the
number of read operations to access the inner table might be significantly reduced
because they are more likely to be in the buffer pool already [Db2a]. The index
structure on the inner table (right branch) allows an index-only access providing
all columns (price and quantity) that are of interest in the following calculation
without accessing the base table. The following grouping operator applies the
SUM() aggregation function to calculate the arising costs.

5.2.3 Who Bought This Also Bought That

“ Offering the customer a list of items related to the current product by
answering the question “Which items were purchased by customers
who bought that item?”—only the three most popular items are deliv-
ered along with their popularity. (B3) ”The snippet in Figure 5.8a displays a typical ActiveRecord fragment that

is intermingled with SQL code (violet code fragments) and fragments that are per-

1also known as sort-merge join

144 CHAPTER 5. Assessment

discount = 10.0/100
high_vol = 10

high_vols = Order.group("user_id").
having("count(user_id) > ?", high_vol).
select("user_id")

open_orders = Order.where("user_id IN (:tc) AND state = :s",
{ tc : high_vols.map(&:user_id),
s : "O" })

items = open_orders.includes(:line_items).map(&:line_items).flatten
cost = items.sum { |i| i.price * i.quantity } * discount

(a) Variant of Query B2 formulated from the angle of an ActiveRecord developer.

discount = 10.0/100
high_vol = 10

high_vols = Orders.group_with(&:user_id).
select { |u,os| os.length > high_vol }

open_orders = high_vols.map { |u,os|
os.select { |o| o.state == "O" }
}.flatten

items = open_orders.map { |o|
Line_Items.select { |l| o.id == l.order_id }
}.flatten

cost = items.map { |l| l.price * l.quantity }.sum * discount

(b) Variant of Query B2 formulated from the angle of a Ruby purist using Switch.

ActiveRecord::Base.connection.select(<<-SQL).to_f
SELECT SUM(l.price * li.quantity) * 0.1 AS cost
FROM Orders o INNER JOIN Line_Items li

ON o.id = li.order_id
WHERE user_id IN (SELECT user_id

FROM Orders o
GROUP BY o.user_id
HAVING COUNT(*) > 10)

AND state = ’O’
SQL

(c) Variant of Query B2 formulated from the angle of a database application developer.

Figure 5.5: Formulations of Query B2 from the point of view of three different
developers.

5.2 Benchmark 145

1 WITH
2 usr (item12, item28) AS
3 (SELECT a.user_id AS item12, COUNT (*) AS item28
4 FROM orders AS a
5 GROUP BY a.user_id),
6

7 oord (item45, item46, item47, iter48) AS
8 (SELECT c.id AS item45, d.order_id AS item46,
9 d.price * d.quantity AS item47,

10 1 AS iter48
11 FROM usr AS b, orders AS c, line_items AS d
12 WHERE b.item12 = c.user_id
13 AND 10 < b.item28
14 AND c.state = ’O’
15 AND c.id = d.order_id),
16

17 total (iter48, item49) AS
18 (SELECT e.iter48, SUM (e.item47) AS item49
19 FROM oord AS e
20 GROUP BY e.iter48)
21

22 SELECT 1 AS iter, (f.item49 * 0.1) AS item1
23 FROM total AS f;

Figure 5.6: SQL encoding of Query B2 directly emitted by Switch.

Operator Semantics Operator Semantics

RETURN Result row delivery SORT Sort rows (+ duplicate row
elimination)

NLJOIN Nested-loop join
(left branch: outer table)

MSJOIN Sort-merge join
(left branch: outer table)

IXSCAN B-tree scan TBSCAN Temporary table scan

u uis Index access (Orders) Table Table access

oqp Index access (Line
¯
Items)

u:user
¯
id, i:id, s:state, o:order

¯
id, q:quantity, p:price

Table 5.3: Relevant IBMDB2 plan operators.

146 CHAPTER 5. Assessment

1 SELECT 1 AS iter,
2 SUM(li.price * li.quantity) * 0.1 AS item1
3 FROM (SELECT o2.user_id, COUNT(*) AS length
4 FROM Orders AS o2
5 GROUP BY o2.user_id) AS oc,
6 Orders AS o1,
7 Line_Items AS li
8 WHERE o1.id = li.order_id
9 AND o1.state = ’O’

10 AND oc.user_id = o1.user_id
11 AND oc.length > 10;

(a) SQL query emitted by Switch (Figure 5.6) after DB2 rewrite facilities took place.
[Formatted for readability.]

RETURN

GRPBY

NLJOIN

TBSCAN IXSCAN

SORT oqp

MSJOIN Line
¯
Items

FILTER FILTER

GRPBY IXSCAN

IXSCAN uis

u Orders

Orders

or
de
rs

fo
r
hi
gh

-v
ol
um

e
cu
st
om

er
s

open
orders

relevant
line

item
s

(index-only
access)

(b) Execution plan constructed by DB2 to evaluate Switch formulation (Fig-
ure 5.5b) and the SQL formulation (Figure 5.5c) of Query B2.

Figure 5.7: To evaluate Query B2 on the back-end, DB2 devises exactly the same
execution plan for the Switch variant and the SQL reformulation.

5.2 Benchmark 147

formed in the host language heap (red code fragments). We search products that
have been bought together with a specific product variant (variant = 286). The
includes(:line_items) construct prevents the 1+n query problem by generating
a huge IN(. . .) list to gather the associated line items for each order. For a TPC-H
instance of scale factor 0.1 a list with 150, 000 order ids needs to be assembled in
the host language heap in order to populate the SQL query that is shipped to the
back-end (Figure 5.9a in line 5). The third query filters and counts all variants
that are actually ordered together with the relevant variant. Again, the query is
dominated by a huge IN(. . .) list (Figure 5.9a in line 10) that fails to scale as it is
applied to a TPC-H instance of scale factor 1.

The array-centric reformulation of Query B3 is captured in Figure 5.8b. The
list method any?() helps us to find all orders containing the considered variant.
Switch also embraces user-defined methods written in an array-centric style: the
singleton method in_order(), invoked in Figure 5.8b and defined as

class << line_items = Line_Items
def in_order(o)
select { |l| o.id == l.order_id }
end
end

encapsulates the 1-to-n association between the Spree tables Orders and Line
¯
Items,

for example. The list function take(3) eventually delivers three items after they
have been sorted according to their popularity.

The single SQL query (Figure 5.9b) that is generated by Switch presents a
typical join graph, in which the innermost statement performs a series of joins
followed by the blocking operators that involve sorting, grouping and aggregation.
Observe that the positional access (take(3)) is elegantly expressed by c.pos <=
3 in line 15. Column c.pos originates in a ROW_NUMBER() operator (line 3) that
establishes a new logical order based on popularity.

The hand-crafted SQL in Figure 5.8c provides the most efficient variant to
implement Query B3. Following the single equi-join to establish the association
between orders and line items grouping is applied to derive the popularity of the
variants (COUNT()). By stating FETCH FIRST 3 ROWS ONLY we prepare the back-ends
execution engine (and optimizer) to only gather the first three elements.

148 CHAPTER 5. Assessment

variant = 286
orders = Order.includes(:line_items).

select { |o|
!o.line_items.select { |li|
li.variant_id == variant }.empty? }

varid_count = LineItem.
where("order_id IN (:ordid) " +

"AND variant_id <> :varid",
{ ordid : orders.map(&:id),
varid : variant }).

count(:variant_id, group : "variant_id")
varid_count.sort_by { |vid,size| -size }.take(3)

(a) Variant of Query B3 formulated from the angle of an ActiveRecord developer.

variant = 286
orders = Orders.select { |o|

line_items.in_order(o).any? { |li|
li.variant_id == variant } }

orders.map { |o| line_items.in_order(o) }.flatten.
select { |li| li.variant_id != variant }.
group_with { |v| v.variant_id }.
map { |vid,li| { varid:vid, size:li.length } }.
sort_by { |vid,size| -size }.take(3)

(b) Variant of Query B3 formulated from the angle of a Ruby purist using Switch.

query = <<-SQL
SELECT l1.variant_id, COUNT(DISTINCT l2.order_id) AS size
FROM Line_Items l1 INNER JOIN Line_Items l2

ON l1.order_id = l2.order_id
WHERE l2.variant_id = 286
AND l1.variant_id <> 286

GROUP BY l1.variant_id
ORDER BY size DESC
FETCH FIRST 3 ROWS ONLY;
SQL

ActiveRecord::Base.connection.select(query).map { |v|
{ variant_id : v["variant_id"].to_i,
size : v["size"].to_i }

}

(c) Variant of Query B3 formulated from the angle of database application developer.

Figure 5.8: Formulations of Query B3 from the point of view of three different
developers.

5.2 Benchmark 149

1 SELECT orders.* FROM orders;
2

3 SELECT line_items.*
4 FROM line_items
5 WHERE (line_items.order_id IN (

150,000 order ids︷ ︸︸ ︷
1,2,. . .,150000));

6

7 SELECT COUNT(line_items.variant_id) AS count_variant_id,
8 variant_id AS variant_id
9 FROM line_items

10 WHERE order_id IN (

600,572 order ids︷ ︸︸ ︷
15431,17733,. . .,596292)

11 AND variant_id <> 286
12 GROUP BY variant_id;

(a) SQL queries emitted by the ActiveRecord variant of Query B3 (against a TPC-H
instance of scale factor 0.1).

1 SELECT 1 as ITER, c.vid AS item1, c.length AS item2
2 FROM (SELECT b.vid, b.length,
3 ROW_NUMBER() OVER (ORDER BY -b.length) AS pos
4 FROM (SELECT a.vid, COUNT(*) AS length
5 FROM (SELECT DISTINCT Q3.variant_id AS vid,
6 Q1.ID AS ID
7 FROM Orders AS Q1,
8 Line_Items AS Q2,
9 Line_Items AS Q3

10 WHERE Q2.variant_id = 286
11 AND Q1.ID = Q2.order_id
12 AND Q1.ID = Q3.order_id
13 AND Q3.variant_id <> 286) AS a
14 GROUP BY a.vid) AS b) AS c
15 WHERE c.pos <= 3
16 ORDER BY c.pos;

(b) SQL encoding of Query B3 emitted by Switch after having been rewritten by DB2
[Formatted for readability.]

Figure 5.9: SQL queries produced by the ActiveRecord and Switch variant of
Query B3.

150 CHAPTER 5. Assessment

5.2.4 Checkout and Cheapest Variants

“ Simulation of the last step in the checkout process in which the total
cost (including taxes) of the purchased products is presented to the
customer. (B4) ”The checkout process is the linchpin in every E-Commerce application. The

above query calculates the total cost (taxes included) of a specific order. Roughly,
Query B4 has to perform joins between six tables followed by an aggregation
function (SUM()) to faithfully derive the proper tax rate associated with a product.
The query operates in a realistic scenario: the order (id = 807) contains exactly
7 line items for all instances and is, due to its high selectivity2, made for a relational
database system.

For the Switch variant and the SQL variant (Figure 5.10b and Figure 5.10c
respectively), DB2’s cost-based optimizer recognizes high selectivity due to its
distribution statistics and decides to bring corresponding joins forward to prepare
an efficient execution plan. Note that we captured the associations between the
various tables by singleton methods as shown in the previous section.

The ActiveRecord variant solely relies on the favorable formulation, cap-
tured in Figure 5.10a. The finder method find_by_id() guarantees fast access
(supported by an index) to a specific order to subsequently gather the associated
line items. The includes() construct in turn establishes the required associa-
tions via IN(. . .) lists with each list containing exactly 7 items. Note that the
slightest difference in the formulation, for example perform the filter for a specific
order last in the query, leads ActiveRecord to yield a completely different set
of SQL statements. Inherently, the query formulation in ActiveRecord rigidly
prescribes the execution order of the expressions.

Switch, however, remains stable under such circumstances. The single SQL
query derived for QueryB4 leaves it to back-end’s optimizer to possibly reinvent the
evaluation strategy in order to provide an efficient execution plan that introduces
highly-selective operators early on.

“ We provide the chance to make substantial savings by enabling the
customer to review the cheapest variants for all chosen products of
their orders. We consider only orders for which the customers have
not yet completed the checkout. (B5) ”The last query we test addresses the not yet completed orders of all customers,

so that they may compare the chosen items of their orders with the cheapest
variants that can be found in the product catalog of the web-store. The result is a

2for scale factor 10 the Line
¯
Items table contains nearly 60 million entries

5.2 Benchmark 151

order_id = 807

order = Order.find_by_id(order_id)

line_items = order.line_items.includes(
{:variant => {
:product => { :tax_category => :tax_rates} }})

line_items.map { |li|
tax_rate = li.variant.product.tax_category.

tax_rate.amount
li.price * li.quantity * (tax_rate + 1)
}.sum

(a) Variant of Query B4 formulated from the angle of an ActiveRecord developer.

order_id = 807

Orders.by_id(order_id).line_items.map { |li|
tax_rate = li.variant.product.tax_category.

tax_rate.amount
li.price * li.quantity * (tax_rate + 1) }.sum

(b) Variant of Query B4 formulated from the angle of a Ruby purist using Switch.

ActiveRecord::Base.connection.select(<<-SQL).to_f
SELECT SUM(li.price * li.quantity * (tr.amount + 1))
FROM Orders o, Line_Items li, Variants v, Products p,

Tax_Rates tr, Tax_Categories tc
WHERE o.id = 807
AND li.order_id = o.id
AND li.variant_id = v.id
AND v.product_id = p.id
AND p.tax_category_id = tc.id
AND tc.id = tr.tax_category_id;

SQL

(c) Variant of Query B4 formulated from the angle of database application developer.

Figure 5.10: Formulations of Query B4 from the point of view of three different
developers.

152 CHAPTER 5. Assessment

B1 B2 B3 B4 B5

0

1/4

1/2

3/4

1
18 ops

46 ops 47 ops
81 ops

159 ops

Scale Factor
0.001
0.01
0.1
1

10

Figure 5.11: Relative Execution time of the standard SQL code generation in com-
parison to the simple approach for various database instance sizes. The numbers
atop of the bars show the number of operators (ops) participating in the loop-lifted
query plan of each query as a metric for its structural complexity.

list of records, in which each record comprises a user together with his orders. For
each line item in an order the identifier of the chosen product is listed along with
the cheapest variant. Additionally for each order the cost that could be saved by
choosing the cheapest variant is shown.

Because this query is the most complex one in our setting, we decided to defer
the formulation of all variants of Query B5 to Appendix A.2. The formulations are
accompanied by a more detailed discussion, in which we explain the interesting
aspects of this query.

5.3 SQL Code Generation

During our experiments we quickly realized that the simple SQL translation scheme
approach (see Table 4.1 on page 110) is not suitable to keep pace with handcrafted
SQL code. The simplistic approach, which maps each operator in the loop-lifted
query plan directly to a SQL query, devastated every query optimizer we had on
our workbench. Even small query plans lead to sizable SQL queries, in which
nesting and repeated sub-queries are pervasive (Figure 4.1 on page 112).

For the SQL query that the simple SQL code generator assembles for Query B2,
DB2’s query optimizer arranged the execution plan in Figure 5.12. In comparison
to the execution plan that we derived by our standard SQL code generation (see
Figure 5.7b on page 146) this plan is noticeably more complex and contains two
additional joins that could be avoided. Furthermore, due to the complex SQL
queries that are fed to DB2, the query optimizer is seemingly not able to properly
identify the sharing opportunities offered by the loop-lifted compilation.

5.4 Quantitative Assessment 153

The plan fragments we covered with gray tiles are equivalent. These repeated
sub-plans coalesce into the immediately following join operator (MSJOIN), which
merges the data based on the primary-key column id in the Orders table. The
query optimizer recognizes the uniqueness of the join-attributes, indicated by the
early-out flag [Ear] (*). This additional join could have been avoided if the query
optimizer had been aware of the equivalence of both sub-plans, as it is the case for
the plan derived by the standard SQL generator.

The situation turns out to be even more challenging for the query optimizer
if the query plans become more complex (in terms of participating operators),
or if rownumber operators (ROW_NUMBER()) or rank operators (DENSE_RANK())
participate in the evaluation. In this case, the back-end fails completely to arrange
efficient execution plans. In Figure 5.11 we illustrate the impact of the standard
SQL code generator in comparison to the simple approach.

5.4 Quantitative Assessment

In this section, we focus on the runtime characteristics of the query emitted by
Switch. We compare the runtime effects of Switch with the ActiveRecord
variants and SQL variants we detailed in the previous sections and examine how
DB2 copes with the different query instances.

All experiments were performed on a Sun Fire X4275 server. The host runs
Linux v2.6 with DB2 Viper v9.7 and is set up with two Intel XeonTM processor
units X5570 (2.95 GHz quad core), 72 GB main-memory, and a three SCSI disk
with 6 TB of storage in total.

For all queries, we measure the complete round-trip time that possibly com-
prises (a) the loop-lifted translation, (b) query optimization, (c) SQL generation
(d) deriving intermediate results in the host language, (e) query execution on the
back-end, (f) collecting the results from the back-end, and (g) deriving the desired
result shape in the host language (consider Table 5.4 for the detailed steps involved
in the different approaches).

For all queries we ran DB2’s design advisor [Db2b] that autonomously chooses
indexes and auxiliary structures that meet the demands of the workload. Fol-
lowing the reorganization of all participating tables into unfragmented, physically
contiguous pages (REORG [Db2c]), we instructed DB2 to gather detailed distribu-
tion statistics on all tables via the RUNSTATS command [Db2d]. All SQL queries
compiled by the back-end with optimization level 9.

154 CHAPTER 5. Assessment

Index Table Columns

IDX1 Orders user
¯
id

IDX2 Orders state, user
¯
id, id

IDX3 Line
¯
Items order

¯
id, id, quantity, variant

¯
id

IDX4 Line
¯
Items order

¯
id, variant

¯
id, id

Rows
Operator
(ID)
Cost

1
RETURN
(1)
118.909
|
1

GRPBY
(2)
118.909
|

157.595
MSJOIN
(3)
118.898

/--------/ \--------------\
157.595 *
TBSCAN |
(4) 6005
74.9872 TBSCAN
| (27)

157.595 43.1416
SORT |
(5) 6005
74.9757 SORT
| (28)

157.595 43.1413
MSJOIN |
(6) 6005
74.9118 IXSCAN

/-----/ \-----------\ (29)
39.366 * 40.7134
MSJOIN | |
(7) 6005 6005
18.3132 IXSCAN Index:

/----/ \----------\ (25) IDX4
243 * 55.8389

TBSCAN | |
(8) 243 6005
9.11231 TBSCAN Index:
| (18) IDX3
243 9.11231
SORT |
(9) 243
9.0949 SORT
| (19)
243 9.0949

MSJOIN |
(10) 243
8.99374 MSJOIN
/ \---\ (10)

33.3333 * 8.99374
TBSCAN | / \---\
(11) 729 33.3333 *

0.973328 IXSCAN TBSCAN |
| (16) (11) 729
100 7.92561 0.973328 IXSCAN
GRPBY | | (16)
(13) 1500 100 7.92561

0.837491 Index: GRPBY |
| IDX2 (13) 1500
1500 0.837491 Index:
IXSCAN | IDX2
(14) 1500
0.73262 IXSCAN
| (14)
100 0.73262
Index: |
IDX1 100

Index:
IDX1

Figure 5.12: Execution plan that DB2 arranged for the SQL query of Query B2

translated by the simple translation scheme for a database instance size of scale
factor 1. Consider the repeated sub-queries (covered by gray tiles) that have not
been properly recognized by the query optimizer.

5.5 Queries on DB2 155

C
om

pi
la

ti
on

Q
uery

E
xecution

M
at

er
ia

liz
at

io
n

ActiveRecord Switch SQL

(a) loop-lifted translation − X −
(b) query optimization − X −
(c) SQL generation X X −
(d) intermediate results X − −
(e) query execution X X X
(f) collecting query results X X X
(g) derive the result shape X X X

Table 5.4: The above table details the steps affecting the evaluation time for the
different approaches.

5.5 Queries on DB2

We measured the evaluation times for several scale factors (sf 0.001 through sf 10)
of five queries (B1, B2, B3, B4, and B5) for all three variants we proposed in
the previous section (15 queries in total). We executed each query ten times and
reported the average wall-clock evaluation time in milliseconds. Table 5.5 lists the
results of these measurements. To get an initial impression of the performance of
the Switch queries consider Figure 5.13, in which we put Switch into perspective
against its contenders.

ActiveRecord

SQL

1/4

1/2

3/4

B1 B2 B3 B4 B5

Scale Factor
0.001
0.01
0.1
1

10

Figure 5.13: Relative execution times of Queries B1 through B5

156 CHAPTER 5. Assessment

Query TPC-H Scale � (ms)

ActiveRecord Switch SQL

B1

0.001 121
≈3
> 38

≈19
> 2

0.01 871
≈11
> 74

≈2.6
> 28

0.1 10,812
≈18
> 592

≈3.7
> 156

1 368,988
≈52
> 7,016

≈2.3
> 2,996

10 DNF
?
> 63,795

≈2.0
> 31,163

B2

0.001 814
≈15
> 53

≈7.5
> 7

0.01 8,112
≈46
> 176

4.0
> 44

0.1 81,290
≈91
> 893

≈1.5
> 595

1 Fails
?
> 11,910

≈1
> 12,162

10 Fails
?
> 128,016

≈1
> 119,794

B3

0.001 885
≈26
> 34

≈1.4
> 23

0.01 8,923
≈287
> 31

≈1.4
> 21

0.1 92,938
≈2,655
> 35

≈1.4
> 24

1 Fails
?
> 35

≈1.6
> 21

10 Fails
?
> 37

≈1.6
> 22

B4

0.001 101
≈5
> 19

≈1.9
> 10

0.01 124
≈5
> 21

≈1.9
> 11

0.1 122
≈6
> 18

≈2.2
> 8

1 111
≈5
> 22

≈1.4
> 15

10 115
≈6
> 19

≈1.3
> 14

B5

0.001 259
≈4
> 67

≈2.5
> 27

0.01 1,196
≈5
> 211

≈1.5
> 141

0.1 4,662
≈5
> 932

≈1.2
> 774

1 52,148
≈3
> 15,066

≈1.1
> 13,421

10 DNF
?
> 603,406

≈1.1
> 546,783

Table 5.5: Comparison between DB2’s evaluation times (in milliseconds) for
Queries B1 through B5. We tested three different variants (ActiveRecord,
Switch, and SQL) for the scale factors 0.001–10. DNF marks the queries that
did not finish within 106 milliseconds, Fails indicates that a query overflows DB2’s
parse buffer and thus fails to scale.

5.5 Queries on DB2 157

B1 B2 B3 B4 B5

Compilation Time (ms) 12 33 22 11 41

Table 5.6: Compilation time (in milliseconds) required to translate a Switch
expression into a database executable SQL query. We ran the compilation ten
times and reported the average.

5.5.1 Switch versus ActiveRecord

No Switch query performs more slowly than its ActiveRecord variant. Partic-
ularly, for Query B1, Query B2, Query B3, and Query B5 the experiments indicate
a drastic reduction of evaluation time that ranges up to several orders of magnitude
(see

x
>). As we observed in the previous sections, these queries generate a consid-

erable amount of intermediates that, due to ActiveRecord’s partial execution
strategy, lead to either a flood of look-alike queries or huge IN(. . .) clauses.

For the Switch variants, the positive effects emerge especially for larger TPC-
H instances. For a database instance size of scale factor 10, the ActiveRecord
variants for Query B1 and Query B5 do not even manage to deliver results within
the given time frame. For a TPC-H instance of scale factor 1 or larger, Active-
Record overflows DB2’s parse buffer with SQL text of more than 107 Bytes (due
to huge IN(. . .) clauses) and thus fails to scale (Query B2 and Query B3).

Interestingly, for Query B3 the ActiveRecord variant shows a different scale
behavior compared to the Switch variant and the SQL variant (see Figure 5.14).
This is attributed to the huge intermediate results that ActiveRecord material-
izes twice in the host language (see Figure 5.8a on page 148) in order to construct
the SQL queries. Here, the fragments executed in the host language range from
a doubly nested select() method, and a map() operation (entailing several it-
erations over all available orders) to a sort_by() operation directly followed by
take() to deliver the most popular items. For the Switch variant and the SQL
variant the single SQL query benefits from the sophisticated optimization facilities
and data-access mechanisms (such as index structures and several join variants)
provided by DB2.

Because we only calculate the checkout costs for a single order, for Query B4 all
three variants benefit from the high selectivity. For the Switch variants and SQL
variants, based on the distribution statistics, the optimizer prepares an execution
plan that performs high-selectivity operations early on. The ActiveRecord
variant, however, has to rely on a favorable formulation to recognize high selectivity
early in order to keep the generated queries (and IN(. . .) clauses) to a minimum.

158 CHAPTER 5. Assessment

100

101

102

103

104

105

106

B1 B2 B3 B4 B5

0
.0

0
1

0
.0

1

0
.1

1 1
0

0
.0

0
1

0
.0

1

0
.1

1 1
0

0
.0

0
1

0
.0

1

0
.1

1 1
0

0
.0

0
1

0
.0

1

0
.1

1 1
0

0
.0

0
1

0
.0

1

0
.1

1 1
0

�
E
xe
cu
ti
on

T
im

e
(m

s)

Scale Factor

D
N

F

D
N

F

Fa
ils

Fa
ils

Fa
ils

Fa
ils

ActiveRecord Switch SQL

Figure 5.14: Measurements for Queries B1, B2, B3, B4, and B5: the table reports
the execution time in milliseconds averaged over 10 runs.

5.5.2 Switch versus SQL

The comparison between Switch and SQL demonstrates that the loop-lifted trans-
lations can compete with the SQL reformulations. All queries formulated using
Switch produce the same graph pattern as their SQL counterparts (see Fig-
ure 5.14). The previous observations showed that both formulations result in
a very similar (or even equivalent) execution plan that is eventually executed on
the back-end.

Two outliers are found for Query B1 and Query B5 (scale factor 0.001). For
these Switch queries, the evaluation time is largely dominated by the compilation
time required to bring a Switch expression into a database executable format (see
Table 5.6). For larger TPC-H instances, however, the performance gap shrinks
significantly.

Chapter 6

Wrap-Up

In 1987, Atkinson and Buneman observed that “Databases and programming lan-
guages have almost developed independently of one another for the last twenty
years” [AB87]. Consequently, they emphasized the need for a uniform language
that smoothly integrates with modern programming languages and exploits the
techniques and facilities that relational database systems can offer for processing
considerable amounts of data. More than twenty years later, the problem of di-
verging database and programming-language domains still persists and this gap is
nowhere more apparent than in nowadays web-programming frameworks.

Whereas programming languages support order and nesting as well as data
abstraction, relational database systems still operate on flat relational tables. Most
web developers are confronted with both paradigms and additionally bear the
burden of mediating between them. In this two-paradigms approach, developers
must repeatedly undergo the mental shift from the host language to SQL (and vice
versa).

With Rails, the Ruby community partially addressed this problem. Active-
Record enables developers to specify simple queries directly in the host language
and bypass clumsy JDBC-like wrapper libraries. The query facilities provided by
ActiveRecord, however, leave much to be desired. Ruby code is still sprinkled
with literal SQL text fragments. The concatenative semantics of query methods
rather reminds one of SQL than of Ruby. In the last years, smooth integra-
tion of database systems with programming languages has been receiving renewed
attention. Relevant work from academia and industry have been discussed in
Section 3.16.

159

160 CHAPTER 6. Wrap-Up

6.1 Summary
In this thesis we made an attempt to cure the problems ActiveRecord suffers
from. We picked up the ideas of loop lifting and presented a path towards query
integration with which there is no syntactic or stylistic difference between Ruby
programs that operate over in-memory arrays objects or database-resident tables,
even if these programs rely on array order and nesting. Our development efforts
assembled into Switch, a full-fledged compiler that translates Ruby expressions
all the way down to SQL. Switch’s built-in compiler and SQL generator guarantees
to emit few queries, addressing long standing performance problems that trace back
to Rails’ ActiveRecord database binding. In the following three sections, we
will outline the steps that led to a successful implementation.

6.1.1 Query Integration into Ruby

We capture the program’s structure in preparation for query generation. Devel-
opers may continue to use the host language’s versatile family of array operations
(found in the Ruby modules Array and Enumerable). The set of supported oper-
ations includes
concat [·] first last take drop reverse length flatten sum avg min
max member? uniq zip unzip map select flat_map all? any? take_while

drop_while count sort_by min_by max_by group_with partition max_by

min_by ,
as well as arithmetics, comparisons, and Boolean operations. We respect array
order and support computation over nested arrays that may occur in both inter-
mediates and final results (which naturally arise with group_with or partition,
for example). Futhermore, we encourage programming with iterative first-order
constructs—such as map and select. The deep-embedding approach, in which
query expressions are collected during program execution, does not impede de-
velopers to use Ruby-specific idioms and to define user-specific methods in an
array-centric style.

6.1.2 A Relational Portrayal of Switch

We expanded on the loop-lifting techniques and provided a set of rules to directly
transfer source-level constructs into their tabular representation. In this context, a
variant of the classical relational algebra, which assumes the role of an intermediate
language, emphasizes the relational pureness and displays sufficient flexibility to
reflect the capabilities of modern relational database management systems.

Loop lifting enables us to capture the independent evaluation of the iterative
side-effect-free Ruby constructs and to turn them into a fully set-oriented repre-

6.2 Ongoing and Future Work 161

sentation, which blends well with SQL-centric back-ends. The tabular encodings
with the schema

〈
iter, pos, item

〉
that are created during the compilation carry two

additional columns—iter and pos —in order to correctly express iteration and to
preserve the logical order between list items. The item columns (which denotes a
shortcut for the sequence item1, . . . , itemn) accommodate the actual data.

In contrast to ActiveRecord or LinQ, loop lifting does not tend to pro-
duce avalanches of simple look-alike queries, which lead to an inefficient repetitive
query-after-query mode of execution. The number of query plans we emit only
dependents on the nesting depth of the result type. To account nesting, a result
table carries a column, populated with surrogate values that make it possible to
refer to nested values.

6.1.3 SQL Code Generation

The query plans emitted by the loop-lifted compilation scheme are fed to the
SQL:1999 code generator. The code-generation approach we proposed applies a
greedy strategy to partition the query plans into separate tiles. Each tile might
consist of several relational primitives that may be faithfully condensed into a single
SQL statement. The sequence of SQL statements we obtain are then assembled
to form a SQL common table expression (WITH . . .), which collectively implements
the semantics of an input plan.

The experiments we conducted demonstrate that deep-embedding does not nec-
essarily contradict competitive query performance. In fact, the generated queries
can often contend with handcrafted SQL code and may outperform the Active-
Record variants by several orders of magnitude. The generated SQL queries leave
it to the back-end to choose for an efficient execution plan and thus can benefit
from the large body of optimization techniques integrated in such systems.

6.2 Ongoing and Future Work

Whereas we only focused on the marriage between Ruby and relational back-ends,
we are confident that the techniques developed in this work may be well applicable
to other host languages and back-ends.

6.2.1 More Host Languages

Apart from Rails, other popular frameworks are in use. With DJango [Dja]
the Python community contributed a similar framework that aims to tame the
complexity of web programming. In this context, the techniques we developed in
this work may be adopted to bring substantial amounts of Python into the reach

162 CHAPTER 6. Wrap-Up

of SQL-centric back-ends. Like Ruby, Python is a fully interpreted language
that features a dynamic type system. Python, however, inherently distinguishes
between tuples and lists, and natively supports list comprehensions as a syntactic
construct in form of

[ebody for v in e if econd]

along with a rich set of list functions.

6.2.2 Ogling at Map-Reduce Frameworks

When Dean and Ghemawat pioneered the Map-Reduce programming model in
their seminal work [DG08], they shifted the spotlight to distributed computing as
a viable alternative to RDBMS for processing and analyzing large-scale data. The
idea is simple: Clusters of heterogeneous computers collectively work on a single
problem in parallel. The underlying programming model was heavily inspired
by the map and reduce1 functions commonly used in functional programming,
although they slightly differ from their original forms.

Although the programming model was often criticized [SA+10] (partly for its
low-level interface), ApacheTM launched the open-source project Hadoop R© [Had]
that has been established as a thriving playground for several Map-Reduce-based
languages [PD+05; OR+08]. Particularly Hive [TS+09] is of interest in this con-
text, since it enables developers to interface Hadoop R© via HQL—a declarative
language similar to SQL. Much like in Switch, a variant of the relational algebra
assumes the role of an intermediate language. This intermediate language is then
directly translated into a sequence of Map-Reduce jobs that jointly implement the
semantics of the underlying HQL expression. A translation into HQL (or its re-
lational intermediate language) could bring Switch within touching distance of
a promising new back-end. Similar work has been done by Microsoft [YI+08] in
order to feature LinQ on their own Map-Reduce framework [IB+07].

An efficient translation upon vector-based in-memory database systems—such
as MonetDB/X100 [BZN05]—may add another challenge and is actively researched
at the Eberhard Karls Unversität Tübingen.

6.2.3 Alternatives to Loop Lifting

In Section 3.16, we already mentioned that the flattening transformation may come
into question for a replacement of loop lifting. An approach that lets participate
the flattening transformation in the compilation scheme would add another com-
piler stage that could significantly facilitate the translation into relational algebra

1also known as fold

6.2 Ongoing and Future Work 163

by applying a series of source-level transformations to the input language. This
path is currently followed at the Eberhard Karls Unversität Tübingen.

6.2.4 Proving Switch

We already began to set up a logical framework for formal study and analysis
of Switch. For this purpose, we chose the Coq proof assistant [Coq] and its
powerful inductive constructions to rigorously investigate Switch peculiarities.

So far, our efforts include the inductive formulation of the core constructs, the
type system, and the coercion rules we proposed for Switch. We also defined a
formal variant of the operational behavior of Switch constructs by means of a
small-step semantics [Pie02, ch. 3, p. 32ff]. We are confident that these definitions
open the perspective to formally prove the soundness of Switch.

Appendix A

Assessment

A.1 Associations between Spree Models

The below picture depicts the relevant fragment of Spree models and associated
relationships that participate in the evaluation of Queries B1 through B5.

In Table A.1 we list the amount of tuples that reside in the database tables for
all database instance sizes we considered in our experiments.

Orders

Users

Line
¯
Items Variants

Products Tax
¯
Categories Tax

¯
Rates

Countries States

1 * * 1

1
*

1
*

1* 1 *

1 *

Figure A.1: Relevant Spree models and associations

165

166 APPENDIX A. Assessment

Tables TPC-H Scale (# Tuples)

0.001 0.01 0.1 1 10

Orders 1, 5× 103 1, 5× 104 1, 5× 105 1, 5× 106 1, 5× 107

Line
¯
Items 6× 103 6× 104 6× 105 6× 106 6× 107

Variants 103 104 105 106 107

Products 200 2× 103 2× 104 2× 105 2× 106

Tax
¯
Categories 10 102 103 104 105

Tax
¯
Rates 20 2× 102 2× 103 2× 104 2× 105

Countries 30 300 3× 103 3× 104 3× 105

States 90 900 9× 103 9× 104 9× 105

Table A.1: Amount of tuples that reside in the tables for various TPC-H scale
factors.

A.2 Cheapest Variants

Here we resume the discussion on Query B5 from Section 5.2.4. Regarding its
structure this query is the most complex one in our setting and combines nearly
all techniques we used in the previous queries.

The ActiveRecord variant shown in Figure A.2 entails considerable post-
processing in the host-language heap that dominates the overall evaluation time
(consider the red code fragments). For a TPC-H instance of scale factor 1 nearly
1, 500 orders are materialized and left to the host language to group them by their
user_id (see line 3).

For each order, ActiveRecord generates a separate SQL query to gather
the associated line items (see line 7), leading to the typical abundance of context
switches between the host language and the SQL back-end.

But that is not all: Because each order is connected to 4 line items (on average),
ActiveRecord causes 6, 000 simple SQL queries to be fired against the database
in order to get the proper variant (see line 8). Another 6, 000 queries are placed
in order to get the variants with the same product_id, followed by the derivation
of the cheapest variants in the host language (see lines 9 through 10).

The Switch variant of Query B5 is shown in Figure A.3. Since Switch only
generates a separate SQL query for each nesting level, three queries are assembled
to outsource substantial work to the relational back-end.

A.2 Cheapest Variants 167

1 orders = Orders.where("checkout_complete = ?", 1)
2

3 orders.group_by(&:user_id).map { |u,os|
4 { user : u,
5 orders :
6 os.map { |o|
7 suggestions = o.line_items.map { |li|
8 yvar = li.variant
9 svar = Variants.where("product_id = ?",

10 yvar.product.id).min_by(&:price)
11 { lineitem : li.id,
12 your_var : { id : yvar.id, price : yvar.price },
13 sugg_var : { id : svar.id, price : svar.price } }
14 }
15

16 { order : o.id,
17 suggestions : suggestions,
18 saving : suggestions.sum { |v|
19 v[:your_var][:price] - v[:sugg_var][:price]
20 } }
21 } }
22 }

Figure A.2: Variant of Query B5 formulated from the angle of an ActiveRecord
developer.

For a database instance size of scale factor 1, the query that calculates the
outermost nesting level returns nearly 1, 500 tuples, each constiting of a user_id
and a surrogate value for the associated orders.

The query responsible for the second nesting level delivers 1, 500 order_ids
and the overall costs that could be saved by choosing the cheapest variants. A
surrogate value again enables us to reference the values of the innermost nesting
level.

The third query in turn returns 6, 000 tuples with the associated line items the
chosen variants and their cheapest alternatives. The results are then materialized,
and assembled in the host language in order to derive the nested result shape.
The loop-lifted compilation ensures that all values are delivered in the proper
logical order. Consequently, we can derive the nested result shape in linear time,
depending on the result size.

168 APPENDIX A. Assessment

orders = Orders.select { |os| os.checkout_complete = 1 }

orders.group_with(&:user_id).map { |uid, os|
{ user : uid,
orders :
os.map { |o|
suggestions = o.line_items.map { |li|
yvar = li.variant
svar = Variants.select { |v|

v.product_id == yvar.product_id
}.min_by(&:price)

{ lineitem : li.id,
your_var : { id : yvar.id, price : yvar.price },
sugg_var : { id : svar.id, price : svar.price } }

}

{ order : o.id,
suggestions : suggestions,
saving : suggestions.map { |v|

v.your_var.price - v.sugg_var.price
}.sum }

} }
}

Figure A.3: Variant of Query B5 formulated from the angle of a Ruby purist using
Switch.

In the SQL variant, shown in Figure A.4, we derive the relevant information
in a single query. In order to ensure that only one cheapest variant is suggested
for each line item, we use the ROWNUMBER() facility (see line 17) along with the
predicate in line 28.

For an instance size of scale factor 1, the SQL query sends almost 6, 000 tuples
to the host language. Observe that grouping is completely left to the host language
(consider the red code fragments) to assemble the nested result shape.

A.2 Cheapest Variants 169

1 query = <<-SQL
2 WITH
3
4 PurchasedVariants(id, product_id, price, li_id, order_id, user_id) AS
5 (SELECT v.id, v.product_id, v.price, li.id, o.id, o.user_id
6 FROM Orders o, Line_Items li, Variants v
7 WHERE o.id = li.order_id AND li.variant_id = v.id
8 AND o.checkout_complete = 1),
9

10 CheapestVariantsID(product_id, price) AS
11 (SELECT product_id, MIN(price)
12 FROM Variants v
13 WHERE v.product_id IN (SELECT product_id FROM PurchasedVariants)
14 GROUP BY product_id),
15
16 CheapestVariants(rid, id, product_id, price) AS
17 (SELECT ROW_NUMBER() OVER (PARTITION BY v.id) AS rid,
18 v.id, v.product_id, v.price
19 FROM Variants v, CheapestVariantsID cvid
20 WHERE v.price = cvid.price AND v.product_id = cvid.product_id),
21
22 Suggestions(sid, sproduct_id, sprice, id, product_id,
23 price, li_id, order_id, user_id) AS
24 (SELECT cv.id, cv.product_id, cv.price, pv.id, pv.product_id,
25 pv.price, pv.li_id, pv.order_id, pv.user_id
26 FROM CheapestVariants cv, PurchasedVariants pv
27 WHERE cv.product_id = pv.product_id
28 AND cv.rid = 1),
29
30 Savings(order_id, amount) AS
31 (SELECT order_id, SUM(s.price - s.sprice) AS amount
32 FROM Suggestions s
33 GROUP BY order_id)
34
35 SELECT sugg.*, sav.amount
36 FROM Suggestions sugg, Savings sav
37 WHERE sugg.order_id = sav.order_id
38 ORDER BY sugg.user_id;
39 SQL
40
41 ActiveRecord::Base.connection.select(query).
42 group_by { |v| v["user_id"] }.map { |uid, o|
43 { user: uid,
44 orders:
45 o.group_by { |v| v["order_id"] }.map { |oid,li|
46 suggestions = li.group_by { |v| v["li_id"] }.map { |lid,var|
47 { lineitem : lid,
48 your_var : { id : var.first["id"].to_i,
49 price : var.first["price"].to_f },
50 sugg_var : { id : var.first["sid"].to_i,
51 price : var.first["sprice"].to_f }
52 }
53
54 { order : oid,
55 suggestions: suggestions,
56 savings : li.first["amount"].to_f }
57 } }
58 }

Figure A.4: Variant of Query B5 formulated from the angle of database application
developer.

Bibliography

[AB87] M. P. Atkinson and P. O. Buneman. “Types and Persistence in Database
Programming Languages”. In: ACM Computing Survey 19.2 (1987),
pp. 105–170.

[AC+11a] P. Alvaro, N. Conway, J. Hellerstein, and W. Marczak. “Consistency
Analysis in Bloom: A CALM and Collected Approach”. In: Proceedings
of the 5th Biennial Conference on Innovative Data Systems Research.
CIDR 2011. 2011, pp. 249–260.

[AC+11b] J. An, A. Chaudhuri, J. Foster, and M. Hicks. “Dynamic Inference
of Static Types for Ruby”. In: Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL 2011. 2011, pp. 459–472.

[ACF09] J. An, A. Chaudhuri, and J. Foster. “Static Typing for Ruby on Rails”.
In: Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering. ASE 2009. 2009, pp. 590–594.

[Act] ActiveRecord Query Interface. Jan. 2013. url: http://api.rubyonr
ails.org.

[Amb] Ambition: Database Toolkits for Ruby. Dec. 2012. url: http://ruby
gems.org.

[App04] A. W. Appel. Modern Compiler Implementation in C. Cambridge Uni-
versity Press, 2004. isbn: 978-0-5216-0765-0.

[BA+09] S. Bellamkonda, R. Ahmed, A. Witkowski, A. Amor, M. Zait, and C.
Lin. “Enhanced Subquery Optimizations in Oracle”. In: Proceedings of
the VLDB Endowment 2.2 (2009), pp. 1366–1377.

171

http://api.rubyonrails.org
http://api.rubyonrails.org
http://rubygems.org
http://rubygems.org

172 BIBLIOGRAPHY

[BG+06] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner. “MonetDB/XQuery: a Fast XQuery Processor Powered
by a Relational Engine”. In: Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data. SIGMOD 2006.
2006, pp. 479–490.

[BM02] R. Bayer and E. McCreight. “Software pioneers”. In: New York, NY,
USA: Springer-Verlag, 2002. Chap. Organization and Maintenance of
Large Ordered Indexes, pp. 245–262.

[BMT07] G. M. Bierman, E. Meijer, and M. T. “Lost in Translation: Formalizing
Proposed Extensions to C#”. In: Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems and
Applications. OOPSLA 2007. 2007, pp. 479–498.

[BtC+91] V. Breazu-tannen, T. Coquand, C. A. Gunter, and A. Scedrov. “Inher-
itance As Implicit Coercion”. In: Information and Computation 93.1
(1991), pp. 172–221.

[Bus01] J. Van den Bussche. “Simulation of the Nested Relational Algebra by
the Flat Relational Algebra, with an Application to the Complexity
of Evaluating Powerset Algebra Expressions”. In: Theoretic Computer
Science 254.1-2 (2001), pp. 363–377.

[But11] D. Butterstein. “Batches: Remote Batch Invocation for Java”. Master
Thesis. Tübingen, Germany: Eberhard Karls Universität Tübingen,
July 2011.

[BZN05] P. Boncz, M. Zukowski, and N. Nes. “MonetDB/X100: Hyper Pipelin-
ing Query Execution”. In: Proceedings of the 5th Biennial Conference
on Innovative Data Systems Research. CIDR 2005. 2005, pp. 225–237.

[CB74] D. D. Chamberlin and R. F. Boyce. “SEQUEL: A Structured English
Query Language”. In: Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) Workshop on Data Description, Access and Control. SIG-
MOD 1974. 1974, 249––264.

[CC77] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints”. In: Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages. POPL 1977.
1977, pp. 238–252.

[CI05] W. R. Cook and A. H. Ibrahim. “Integrating Programming Languages
& Databases: What is the Problem?” In: In ODBMS.ORG. 2005.

BIBLIOGRAPHY 173

[CL+07] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. “Links: Web Pro-
gramming without Tiers”. In: Proceedings of the 5th international Con-
ference on Formal Methods for Components and Objects. FMCO 2007.
2007, pp. 266–296.

[CM96] L. Cardelli and Abadi M. A Theory of Objects. Springer, 1996. isbn:
978-0-3879-4775-4.

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data
Banks”. In: Communications of the ACM 13.6 (1970), pp. 377–387.

[Cod82] E. F. Codd. “Relational Database: A Practical Foundation for Pro-
ductivity”. In: Communications of the ACM 25.2 (1982), pp. 109–117.

[Coo09] E. Cooper. “The Script-Writer’s Dream: How to Write Great SQL in
Your Own Language, and Be Sure It Will Succeed”. In: Proceedings
of the 12th International Symposium on Database Programming Lan-
guages. DBPL 2009. 2009, pp. 36–51.

[Coq] The Coq Proof Assistant. Dec. 2012. url: http://coq.inria.fr.

[Day87] U. Dayal. “Of Nests and Trees: A Unified Approach to Processing
Queries That Contain Nested Subqueries, Aggregates, and Quanti-
fiers”. In: Proceedings of the 13th International Conference on Very
Large Data Bases. VLDB 1987. 1987, pp. 197–208.

[Db2a] DB2 Join Methods. Dec. 2012. url: http://pic.dhe.ibm.com/
infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db
2.luw.admin.perf.doc\%2Fdoc\%2Fc0005314.html.

[Db2b] db2advis–DB2 Design Advisor Command. IBM. Dec. 2012. url: http:
//pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?top
ic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr000245
2.html.

[Db2c] REORG INDEXES/TABLES Command. IBM. Dec. 2012. url: http://p
ic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%
2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0001966.html.

[Db2d] RUNSTATS Command. Dec. 2012. url: http://pic.dhe.ibm.com/
infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db
2.luw.admin.cmd.doc\%2Fdoc\%2Fr0001980.html.

[DG08] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Process-
ing on Large Clusters”. In: Communications of the ACM 51.1 (2008),
pp. 107–113.

[Dja] Django: The Web Framework for Perfectionists with Deadlines. Jan.
2013. url: http://www.djangoproject.com.

http://coq.inria.fr
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.perf.doc\%2Fdoc\%2Fc0005314.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.perf.doc\%2Fdoc\%2Fc0005314.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.perf.doc\%2Fdoc\%2Fc0005314.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0002452.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0002452.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0002452.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0002452.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0001966.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0001966.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0001966.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0001980.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0001980.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=\%2Fcom.ibm.db2.luw.admin.cmd.doc\%2Fdoc\%2Fr0001980.html
http://www.djangoproject.com

174 BIBLIOGRAPHY

[Ear] Operator Details–MSJOIN input argument. IBM. Jan. 2013. url: ht
tp://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?
topic=%2Fcom.ibm.db2.luw.admin.gui.doc%2Fdoc%2Fr002140
2.html.

[FA+09] M. Furr, J. An, J. Foster, and M. Hicks. “Static Type Inference for
Ruby”. In: Proceedings of the 2009 ACM Symposium on Applied Com-
puting. SAC 2009. 2009, pp. 1859–1866.

[FM08] D. Flanagan and Y. Matsumoto. The Ruby Programming Language.
O’Reilly, 2008. isbn: 978-0-5965-1617-8.

[For] Fortran: Automatic Coding System for the IBM 704. Oct. 1956. url:
http://www.fortran.com/FortranForTheIBM704.pdf.

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002. isbn: 978-0-3211-2742-6.

[FR10] M. Fowler and Parson R.Domain-Specific Languages. Addison-Wesley,
2010. isbn: 978-0-3217-1294-3.

[Ful06] H. Fulton. The Ruby Way. Addison Wesley, 2006. isbn: 978-0-6723-
2884-8.

[GG+13] G. Giorgidze, T. Grust, A. Ulrich, and J. Weijers. “Algebraic Data
Types for Language-Integrated Queries”. In: Proceedings of the 1st In-
ternational Workshop on Data Driven Functional Programming. DDFP
2012. 2013.

[GH+94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1994. isbn: 978-0-2016-3361-0.

[GM+07] T. Grust, M. Mayr, J. Rittinger, J. Teubner, and S. Sakr. “A SQL:1999
Code Generator for the Pathfinder XQuery Compiler”. In: Proceedings
of the ACM SIGMOD Conference on Management of Data. SIGMOD
2007. 2007, pp. 1162–1164.

[GM+09] T. Grust, M. Mayr, T. Schreiber, and J. Rittinger. “Ferry: Database-
Supported Program Execution”. In: Proceedings of the 28th ACM SIG-
MOD Int’l Conference on Management of Data. SIGMOD 2009. 2009,
pp. 1063–1066.

[GM12] T. Grust and M. Mayr. “A Deep Embedding of Queries into Ruby”.
In: Proceedings of the 28th IEEE International Conference on Data
Engineering. ICDE 2012. 2012, pp. 1257–1260.

[GMR09] T. Grust, M. Mayr, and J. Rittinger. “XQuery Join Graph Isolation”.
In: Proceedings of the 25th Int’l Conference on Data Engineering.
ICDE 2009. 2009, pp. 1167–1170.

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.gui.doc%2Fdoc%2Fr0021402.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.gui.doc%2Fdoc%2Fr0021402.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.gui.doc%2Fdoc%2Fr0021402.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.gui.doc%2Fdoc%2Fr0021402.html
http://www.fortran.com/FortranForTheIBM704.pdf

BIBLIOGRAPHY 175

[GMR10] T. Grust, M. Mayr, and J. Rittinger. “Let SQL Drive the XQuery
Workhorse”. In: Proceedings of the 13th Int’l Conference on Extending
Database Technology. EDBT 2010. 2010, pp. 147–158.

[GR08] T. Grust and J. Rittinger. “Jump Through Hoops to Grok the Loops
— Pathfinder’s Purely Relational Account of XQuery-style Iteration
Semantics”. In: Proceedings of the ACM SIGMOD/PODS 5th Int’l
Workshop on XQuery Implementation, Experience and Perspectives.
SIGMOD 2008. 2008.

[GRS10] T. Grust, J. Rittinger, and T. Schreiber. “Avalanche-safe LINQ Compi-
lation”. In: Proceedings of the VLDB Endowment 3.1-2 (2010), pp. 162–
172.

[GST04] T. Grust, S. Sakr, and J. Teubner. “XQuery on SQL Hosts”. In: Pro-
ceedings of the Thirtieth International Conference on Very Large Data
Bases. 2004, pp. 252–263.

[Had] Apache Hadoop: Open-source Software for Reliable, Scalable, Distributed
Computing. Jan. 2013. url: http://hadoop.apache.org.

[Has] The Glasgow Haskell Compiler. Sept. 2012. url: http://www.haske
ll.org/ghc/.

[HC97] G. Hamilton and R. Cattell. JDBCTM: A Java SQL API. Sun Mi-
crosystems Inc. Jan. 1997. url: http://www.dcs.ed.ac.uk/teachi
ng/cs2/prac6/jdbc-spec-0120.pdf.

[Hud98] P. Hudak. “Modular Domain Specific Languages and Tools”. In: Pro-
ceedings of the 5th International Conference on Software Reuse. ICSR
1998. 1998, pp. 134–142.

[IB+07] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad: Dis-
tributed Data-parallel Programs from Sequential Building Blocks”. In:
SIGOPS Operating Systems Review 41.3 (2007), pp. 59–72.

[IJ+09] A. H. Ibrahim, Y. Jiao, E. Tilevich, and W. R. Cook. “Remote Batch
Invocation for Compositional Object Services”. In: Proceedings of the
23rd European Conference on Object-Oriented Programming. ECOOP
2009. 2009, pp. 595–617.

[Jav] Java Stanard Edition. Jan. 2013. url: http://www.oracle.com/te
chnetwork/java/javase/overview/index.html.

[Jdb] Sun Microsystem: JDBC Overview. Jan. 2013. url: http://www.ora
cle.com/technetwork/java/javase/jdbc/index.html.

[Jon03] S. P. Jones. Haskell 98 Language and Libraries: The Revised Report.
Simon Peyton Jones, 2003. isbn: 978-0-5218-2614-3.

http://hadoop.apache.org
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://www.dcs.ed.ac.uk/teaching/cs2/prac6/jdbc-spec-0120.pdf
http://www.dcs.ed.ac.uk/teaching/cs2/prac6/jdbc-spec-0120.pdf
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

176 BIBLIOGRAPHY

[Kan08] T. Kandler. “Ein kdb+-Code-Generator für den Pathfinder XQuery
Compiler”. Master Thesis. München, Germany: Technische Universität
München, Jan. 2008.

[KB+07] D. Kulkarni, L. Bolognese, M. Warren, A. Hejlsberg, and K. George.
LinQ to SQL: .Net Language-Integrated Query for Relational Data.
Tech. rep. Microsoft Corporation, 2007.

[Kim82] W. Kim. “On Optimizing An SQL-like Nested Query”. In: ACM Trans-
actions on Database Systems (TODS) 7.3 (1982), pp. 443–469.

[KS96] G. Keller and M. Simons. “A Calculational Approach to Flatten-
ing Nested Data Parallelism in Functional Languages”. In: Proceed-
ings of the 2nd Asian Computing Science Conference on Concurrency
and Parallelism, Programming, Networking, and Security. ASIA 1996.
1996, pp. 234–243.

[Lin] LINQ to SQL. Microsoft Corporation. Aug. 2012. url: http://msd
n.microsoft.com/en-en/library/bb386976.aspx.

[Mai90] D. Maier. “Representing Database Programs as Objects”. In: Advances
in Database Programming Languages. New York, NY, USA: ACM,
1990, pp. 377–386.

[May07] M. Mayr. “Ein SQL:1999 Generator für Pathfinder”. PhD thesis. München,
Germany: Technische Universität München, Apr. 2007.

[May08] M. Mayr. “Pathfinder meets DB2”. In: Ph.D. Workshop of the 11th Int’l
Conference on Extending Database Technology. EDBT 2008. 2008,
pp. 59–64.

[McK65] W. M. McKeeman. “Peephole Optimization”. In: Communications of
the ACM 8.7 (1965), pp. 443–444.

[Mel02] J. Melton. Advanced SQL:1999 - Understanding Object-Relational and
Other Advanced Features. Morgan Kaufmann, 2002. isbn: 978-1-5586-
0677-7.

[Mey98] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1998.
isbn: 978-0-1362-9155-8.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. “Functional Programming
with Bananas, Lenses, Envelopes and Barbed Wire”. In: Proceedings
of the 5th ACM Conference on Functional Programming Languages
and Computer Architecture. FPCA 1991. 1991, pp. 124–144.

[Ms] Microsoft Open Database Connectivity. Microsoft Corporation. Dec.
2012. url: http://msdn.microsoft.com/en-us/library/ms71025
2(v=vs.85).

http://msdn.microsoft.com/en-en/library/bb386976.aspx
http://msdn.microsoft.com/en-en/library/bb386976.aspx
http://msdn.microsoft.com/en-us/library/ms710252(v=vs.85)
http://msdn.microsoft.com/en-us/library/ms710252(v=vs.85)

BIBLIOGRAPHY 177

[MS01] J. Melton and A. R. Simon. SQL:1999 - Understanding Relational
Language Components. Morgan Kaufmann, 2001. isbn: 978-1-5586-
0456-8.

[OR+08] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. “Pig
Latin: A Not-so-foreign Language for Data Processing”. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management
of Data. SIGMOD 2008. 2008, pp. 1099–1110.

[PD+05] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. “Interpreting the
Data: Parallel Analysis with Sawzall”. In: Scientific Programming 13.4
(2005), pp. 277–298.

[Per] Perl’s Database Interface. Jan. 2013. url: http://dbi.perl.org.
[Pie02] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

isbn: 978-0-2621-6209-8.
[Pie91] B. C. Pierce. “Programming with Intersection Types and Bounded

Polymorphism”. Ph.D. Thesis. Pittsburgh, PA 15213: Carnegie Mellon
University, Dec. 1991.

[Pyt] Python Programming Language. Jan. 2013. url: http://www.pytho
n.org.

[Rit10] J. Rittinger. “Constructing a Relational Query Optimizer for Non-
Relational Languages”. Ph.D. Thesis. Tübingen, Germany: Eberhard
Karls Universität Tübingen, Apr. 2010.

[Rub] Ruby on Rails: Web Development that Doesn’t Hurt. Dec. 2012. url:
http://rubyonrails.org.

[SA+10] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A.
Pavlo, and A. Rasin. “MapReduce and Parallel DBMSs: Friends or
Foes?” In: Communications of the ACM 53.1 (2010), pp. 64–71.

[SB+10] T. Schreiber, S. Bonetti, T. Grust, M. Mayr, and J. Rittinger. “Thir-
teen New Players in the Team: A Ferry-based LINQ to SQL Provider”.
In: Proceedings of the 36th International Conference on Very Large
Data Bases. VLDB 2010. 2010, pp. 1549–1552.

[Sch08] T. Schreiber. “Translation of List Comprehensions for Relational Database
Systems”. Master Thesis. München, Germany: Technische Universität
München, Mar. 2008.

[Spr] Spree: The World’s Most Flexible E-Commerce Platform. Jan. 2013.
url: http://spreecommerce.com.

[SS86] H. J. Schek and M. H. Scholl. “The Relational Model with Relation-
valued Attributes”. In: Information Systems 11.2 (1986), pp. 137–147.

http://dbi.perl.org
http://www.python.org
http://www.python.org
http://rubyonrails.org
http://spreecommerce.com

178 BIBLIOGRAPHY

[SS90] M. H. Scholl and H. J. Schek. “A Relational Object Model”. In: Pro-
ceedings of the 3rd International Conference on Database Theory. ICDT
1990. 1990, pp. 89–105.

[SS91] M. H. Scholl and H. J. Schek. “From Relations and Nested Relations”.
In: Proceedings of the 9th British National Conference on Databases.
BNCOD 1991. 1991, pp. 202–225.

[Sym06] D. Syme. “Leveraging .NET Meta-programming Components from
F#: Integrated Queries and Interoperable Heterogeneous Execution”.
In: The 2006 ACM SIGPLAN Workshop on ML. ML 2006. 2006.

[Teu06] J. T. Teubner. “Pathfinder: XQuery Compilation for Relational Database
Targets”. Ph.D. Thesis. München, Germany: Technische Universität
München, Sept. 2006.

[Tor06] M. Torgersen. “Language Integrated Query: Unified Querying across
Data Sources and Programming Languages”. In: Companion to the
21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications. OOPSLA 2006. 2006, pp. 736–
737.

[TP89] P. Trinder and Wadler P. “Improving List Comprehension Database
Queries”. In: Proceedings of the IEEE Region 10 Conference. TENCON
1989. 1989, pp. 186–192.

[Tpc] TPC Benchmark H. Jan. 2013. url: http://www.tpc.org/tpch/.

[TS+09] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.
Liu, P. Wyckoff, and R. Murthy. “Hive: A Warehousing Solution over
a Map-reduce Framework”. In: Proceedings of the VLDB Endowment
2.2 (2009), pp. 1626–1629.

[Ulr11] A. Ulrich. “A Ferry-Based Query Back-end for the Links Program-
ming Language”. Master Thesis. Tübingen, Germany: Eberhard Karls
Universität Tübingen, Mar. 2011.

[VP95] M. Venkatrao and M. Pizzo. “SQL/CLI — A New Binding Style for
SQL”. In: ACM SIGMOD Record 24.4 (1995), pp. 72–77.

[Wad92] P. Wadler. “Comprehending Monads”. In: Mathematical Structures in
Computer Science. MSCS 1992. 1992, pp. 61–78.

[WC07] B. Wiedermann and W. R. Cook. “Extracting Queries by Static Anal-
ysis of Transparent Persistence”. In: Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL 2007. 2007, pp. 199–210.

http://www.tpc.org/tpch/

BIBLIOGRAPHY 179

[Wita] Common Table Expressions. IBM. Dec. 2012. url: http://publib.b
oulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=
\%2Fcom.ibm.db2.doc.sqlref\%2Fsscte.htm.

[Witb] Subquery Factoring. Oracle Corporation. 2010. url: http://docs.o
racle.com/cd/B28359_01/server.111/b28286/statements_1000
2.htm.

[Witc] WITH Queries. Dec. 2012. url: http://www.postgresql.org/doc
s/9.1/static/queries-with.html.

[WS07] G. Wassermann and Z. Su. “Sound and Precise Analysis of Web Ap-
plications for Injection Vulnerabilities”. In: Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI 2007. 2007, pp. 32–41.

[XP99] H. Xi and F. Pfenning. “Dependent Types in Practical Programming”.
In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL 1999. 1999, pp. 214–227.

[YI+08] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
and J. Currey. “DryadLINQ: A System for General-purpose Distributed
Data-parallel Computing Using a High-level Language”. In: Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and
Implementation. OSDI 2008. 2008, pp. 1–14.

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=\%2Fcom.ibm.db2.doc.sqlref\%2Fsscte.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=\%2Fcom.ibm.db2.doc.sqlref\%2Fsscte.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp?topic=\%2Fcom.ibm.db2.doc.sqlref\%2Fsscte.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28286/statements_10002.htm
http://www.postgresql.org/docs/9.1/static/queries-with.html
http://www.postgresql.org/docs/9.1/static/queries-with.html

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Programming Languages and Databases: Distant Shores
	Impedance Mismatch

	State-of-the-art Database Bindings
	Call Level Interface
	Language-Integrated Queries

	Contributions of this Thesis
	Outline
	Prior Publications

	Query Integration into Ruby
	A Survey of ActiveRecord
	Dynamic Finder Methods
	Query Methods
	Relationships

	A Critique of ActiveRecord
	Spree: A Rails-Based E-Commerce Platform
	Style Matters!
	SQL Translation

	Natural Query Embedding for Ruby
	Collections and Enumerations
	The Route from Ruby to Queries

	Idiomatic Ruby
	The Language
	A Type System for Switch
	A Horizontal and Vertical Array-Representation
	Formalization via Subtyping

	Coerceing Tuples into Lists
	Coercion on Subtypes
	Coercion on Types

	Removing Tuple-Related Operations
	Related Work

	A Relational Portrayal of Switch
	A Primer in Loop Lifting
	A Relational Representation of Values
	A Relational Algebra for Switch
	Introducing the Compilation Scheme
	Auxiliary Functions
	Gathering Items
	Adjustment of Items
	Lifting the Environment
	Restricting the Environment
	Relational Zip
	Relational Append

	Base Types
	Binary and Unary Operators

	Variables
	Tuples and Records
	Positional and Nominal Reference

	Interfacing the Relational Back-End
	Nesting
	Switch between Representations
	(Un)Box
	Avoiding Query Avalanches

	Surrogate Maps: A Home for Nested Lists
	Appending Nested Lists
	Removing Nested Lists

	Conditionals
	Lists
	Positional Access
	The First and Last Element
	Prefix and Suffix

	More List Functions
	Length
	Flatten
	Uniq
	Reducing Lists

	Iteration
	Filtering Elements
	Establishing Order
	TakeWhile and DropWhile
	Quantification and Element Lookup
	Grouping
	Zip and Unzip
	MinBy and MaxBy

	Related Work

	SQL Code Generation
	Target Language: SQL:1999
	A Simple Translation Scheme

	Basic Techniques
	Tiling the Query Plans
	Identifying Repeated Sub-Queries
	Common Table Expressions

	Translation Rules
	Value Expressions
	Predicates
	Working with (Multiple) Tables
	Duplicate Elimination
	Ranking
	Grouping
	Set Operators
	Serialization
	Explicit Binding

	Assessment
	Optimization in a Nutshell
	Benchmark
	Drop-down List of Countries
	Granting Discount to High-Volume Customers
	Who Bought This Also Bought That
	Checkout and Cheapest Variants

	SQL Code Generation
	Quantitative Assessment
	Queries on DB2
	Switch versus ActiveRecord
	Switch versus SQL

	Wrap-Up
	Summary
	Query Integration into Ruby
	A Relational Portrayal of Switch
	SQL Code Generation

	Ongoing and Future Work
	More Host Languages
	Ogling at Map-Reduce Frameworks
	Alternatives to Loop Lifting
	Proving Switch

	Assessment
	Associations between Spree Models
	Cheapest Variants

	Bibliography

