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Zusammenfassung auf Deutsch

Diese Dissertation beschéaftigt sich mit der numerischen Untersuchung vollsténdiger Dis-
kretisierungen von parabolischen sowie Wellengleichungen auf bewegten Oberflichen. Dabei
ist es uns gelungen, zum ersten Mal optimale Fehlerabschitzungen in Raum und Zeit fur
Zeitintegratoren der Ordnung zwei und hoher herzuleiten. Aufgrund ihrer Allgemeinheit
sollten sich die hierbei entwickelten und in dieser Arbeit prasentierten Techniken auch
auf nichtlineare partielle Differentialgleichungen tibertragen lassen. Somit ist zu hoffen,
dass diese Dissertation Anlass zu weiteren wissenschaftlichen Untersuchungen partieller
Differentialgleichungen auf beweglichen Oberflichen gibt.

Im ersten Teil der Arbeit wird die volle Diskretisierung fiir eine lineare parabolische
Gleichung auf bewegten Oberflichen untersucht. Die rdumliche Diskretisierung wird dabei
durch die sogenannte “evolving surface finite element” Methode (ESFEM) realisiert, welche
zu einem System gewohnlicher Differentialgleichungen mit zeitabhéngigen Masse- und
Steifigkeitsmatrizen fithrt. Fiir diese Matrizen werden grundlegende, aber dennoch wichtige
Abschétzungen bewiesen, mit derer Hilfe sich die Stabilitét der Zeitdiskretisierungsver-
fahren in einem abstrakten Rahmen analysieren ldsst. Zur Losung der sich ergebenden
gewohnlichen Differentialgleichungen werden zwei verschiedene Methoden betrachtet — die
impliziten Runge-Kutta Verfahren sowie die sogenannten "backward difference formulas",
kurz BDF Verfahren. Wir zeigen, dass algebraisch stabile, fiir steife Gleichungen konzipierte
Runge-Kutta Methoden, wie beispielsweise Radau ITA, angewendet auf das hier betra-
chtete Problem uneingeschrénkt stabil sind. Danach werden wir Ergebnisse der Dahlquist
G—Stabilitdtstheorie und Nevanlinna—Odeh Multiplikatorentechnik mit Eigenschaften der
rdumlichen Semidiskretisierung verkniipfen, um fiir die BDF Verfahren uneingeschréankte
Stabilitdt bis zur Ordnung fiinf nachzuweisen. Kombiniert mit einer entsprechend gewéahlten
Ritz Projektion sowie Abschéatzungen, welche aus der Approximation der zugrunde liegen-
den Geometrie resultieren, liefern die gezeigten Stabilitédtseigenschaften dann optimale
Fehlerschranken fiir die vollen Diskretisierungen. Diese theoretischen Ergebnisse werden
im Anschluss anhand numerischer Experimente bestéatigt.

Im zweiten Teil wird zunédchst mit Hilfe des Hamilton’schen Prinzips der stationédren
Wirkung eine lineare Wellengleichung auf bewegten Oberflichen hergeleitet. In einem ersten
Schritt wird dieses Variationsprinzip durch stiickweise lineare, bewegte Finite Elemente im
Raum diskretisiert. Fiir die Zeitdiskretisierung werden dann zwei unterschiedliche Varia-
tionsintegratoren betrachtet — eine Version des Leapfrog oder Stormer—Verlet Verfahrens
sowie GauB—Runge-Kutta (GRK) Integratoren. Unter derselben Courant—Friedrichs-Lewy
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(CFL) Bedingung, wie sie fiir eine feste Oberfliche erforderlich wére, werden Stéabil-
itdtsabschédtzungen in der aus der Raumdiskretisierung resultierenden Matrix- Vektor
Formulierung hergeleitet. Durch geschickte Kombination der algebraischen Stabilitdt und
der Koerzivititseigenschaft des Verfahrens mit einigen Abschétzungen fiir die zeitabhéngi-
gen Masse- und Steifigkeitsmatrizen konnen wir die uneingeschrinkte Stabilitdt der GRK
Verfahren nachweisen. Wie auch im ersten Teil, sind diese Stabilitdtsabschitzungen fiir
die Zeitdiskretisierung hinreichend stark, um daraus auf die Konvergenz des vollstandig
diskretisierten Verfahrens in den natiirlichen zeitabhéngigen Normen schlieen zu kénnen.
Es sei erwahnt, dass die hier im Beweis der optimalen Ordnungsschranken verwendete Ritz
Projektion nicht mit der aus dem ersten Teil der Dissertation iibereinstimmt. Um auch die
im zweiten Teil hergeleiteten Resultate zu veranschaulichen, schlieBen wir hier ebenfalls
mit numerischen Simulationen.



Abstract

This dissertation addresses the numerical study of full discretization methods for linear
parabolic equations as well as wave equations on evolving surfaces. It is the first work able
to give rigorous proofs concerning error bounds for numerical schemes on evolving surfaces
with time integrators of order two and higher. We believe that the developed analytical
tools and achieved results in this thesis can be applied or extended to more complicated
linear or nonlinear partial differential equations on or of surfaces.

In the first part of this thesis, two fully discrete schemes for a linear parabolic equation on
evolving surfaces are studied. The spatial discretization is realized with the evolving surface
finite element method. This leads to a system of ordinary differential equations involving
time dependent mass and stiffness matrices. For these matrices, basic but nevertheless
important estimates are proven in order to study the stability of the time discretization
schemes in an abstract framework. Two different methods are considered, namely, the im-
plicit Runge-Kutta method, and the backward difference formulas (BDF'). For algebraically
stable and stiffly accurate implicit Runge-Kutta methods such as Radau ITA, the uncondi-
tional stability in the matrix-vector formulation is proven. In the same framework, using
results from Dahlquist’s G-stability theory and Nevanlinna—Odeh’s multiplier technique
together with the properties of the spatial semi-discretization, unconditional stability for
the BDF methods up to order five is shown. These stability results, combined with an
appropriately chosen Ritz projection and estimates arising from the approximation of the
geometry, enable us to derive optimal-order error estimates for the fully discrete schemes.
Numerical experiments are presented to confirm the theoretical results.

In the second part, a linear wave equation on evolving surfaces is derived by using
Hamilton’s principle of stationary action. This variational principle is first discretized in
space by piecewise linear evolving surface finite elements. For the time discretization, two
variational integrators — a version of the leapfrog or Stormer-Verlet method and Gauf3-
Runge-Kutta (GRK) methods — are studied. Working on the matrix-vector level, stability
estimates for the leapfrog scheme are shown under the same Courant—Friedrichs—Lewy
(CFL) condition which would be required for a fixed surface. Concerning the GRK method,
its algebraic stability and coercivity property are joined with basic estimates for the
evolving mass and stiffness matrices in order to prove unconditional stability for this time
discretization scheme. As in the first part, the thus obtained stability results are strong
enough to yield convergence of the fully discrete methods in the natural time-dependent
norms. It is worth noticing that in order to obtain optimal-order error estimates, the Ritz
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projection needed for the wave equation is different from the one considered in the parabolic
case. Numerous simulations illustrate the optimality of the convergence results.
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Introduction

The analytical and numerical study of partial differential equations (PDEs) on fixed and
moving surfaces is a very active research area and has attracted considerable attention
over the last years. These equations appear in many applications such as: fluid dynamics
[30], material science [§], image processing [41], physiology [28], etc. For PDEs on evolving
surfaces, an understanding of linear problems is expected to play a role as crucial as it
does for PDEs on fixed domains. The main goal of this thesis is the rigorous theoretical
justification of the surface finite element method coupled with time discretization schemes
of arbitrary high order when applied to model problems such as linear parabolic equations
as well as wave equations on evolving surfaces.

Research motivation and related results

There is a great amount of literature concerning the numerical approximation of PDEs
on fixed and moving surfaces. Many of these works are notable such as: the introductory
paper on the surface finite element method for solving the Poisson problem for the Laplace-
Beltrami operator on a fixed surface [13], where the convergence of the scheme is also
analyzed; the recent works using the extension of this surface finite element method and
various time discretization schemes to solve parabolic equations on a time-dependent surface
[14, [19], B8, [15] 16]; the papers on solving partial differential equations on evolving surfaces
by the finite volume method [32], by a grid-based particle method [33], and by level set
methods [II, [48]; the study of conservation laws on time-dependent surfaces [18]; and the
works [37, B9] for full discretizations of wave equations on evolving surfaces. Additional
references can be found in the review article by G. Dziuk & C. Elliott [17]. Many of the
aforementioned works will be further referenced in the following.

This work is motivated by the paper of G. Dziuk & C. Elliott [14], where an evolving
surface finite element method (ESFEM) was introduced to solve parabolic equations on
evolving surfaces. The method is elegant and simple, based on moving triangulated surfaces
and it needs only knowledge of the position of the vertices which sit on the smooth surface
for all time. Consequently, only the triangulation of the initial surface is needed, then,
by moving the vertices with the given velocity, the moving mesh is easily constructed.
In [I4], the authors proved optimal error estimates in the energy norm for the spatial
semi-discretization problem without providing an analysis of the time discretization. Thus,
studying the time discretization of the system of ordinary differential equations (ODEs)



2 Introduction

resulting from the ESFEM method arose as a natural task. In particular, the following
general question came up:

For a given time discretization scheme which is known to have some stability and accuracy
properties when applied to a parabolic equation on a fixred domain, do these properties
remain valid when the same scheme is applied to the parabolic equation on evolving
surfaces?

In order to investigate this question, the two well-known and most frequently used time
discretization schemes for the classical parabolic equation, namely, the algebraically stable
and stiffly accurate implicit Runge—Kutta method Radau ITA and the backward difference
formulas (BDF) have been considered. G. Dziuk, C. Lubich & D. Mansour [19] proved
stability and optimal error bounds for the ODE system arising from ESFEM approximation
for algebraically stable implicit Runge-Kutta methods, in particular Radau ITA collocation
methods of arbitrary high order. C. Lubich, D. Mansour & Ch. Venkataraman [38], using
results from Dahlquist’s G-Stability theory and Nevanlinna-Odeh’s multiplier technique
as well as the properties of the spatial semi-discretization, proved stability of the full
discretization in the natural time-dependent norms for the BDF methods up to order five,
and derived optimal-order error estimates in the energy norm.

In view of the above results, our objective is to give a complete theory of the ESFEM
method combined with the aforementioned time discretization schemes as applied to the
linear parabolic equation in analogy to the classical results. In particular, we provide
optimal error bounds for the full discretization in the energy as well as in the L?- norm.
For the sake of completeness, we mention that, after the work [19], G. Dziuk & C. Elliott
[T5] proved optimal error estimates in the L?-norm for the spatial semi-discrete problem.
Based on the latter Work, they showed optimal error estimates of the fully discrete
method with the backward Euler time discretization in [I6]. We consider the work [I5] a
decisive contribution to build upon, particularly the introduction of the Ritz projection.
Nevertheless, in extending the results from [I6] to the implicit Runge-Kutta method and
to the backward difference method up to order five, we do not make use of the techniques
introduced in [16], because in our opinion our approach is straightforward and simpler.

Having successfully developed a rigorous and complete theory for the linear parabolic
equation on evolving surfaces, we approached the wave equation on evolving surfaces. As
expected, the treatment of the time discretization schemes when applied to the resulting
ODE system arising from the ESFEM method required different techniques than the ones
used for the parabolic case. Unexpectedly, it turned out that the Ritz projection considered
for the parabolic case yielded only suboptimal order error bounds for the full discretization
of the wave equation. This led to the construction of a modified Ritz projection that not
only allowed to show optimal-order error estimates, but is also potentially useful in a much
wider context than the particular bilinear forms we considered.



Main challenges

In order to derive optimal order error estimates for full discretization schemes based on
the ESFEM method, there are four main problems which have to be investigated:

1. Geometric approximation: The numerical solution and the exact solution live on
different surfaces. Thus, a use of a lifting operator in order to compare both functions
is necessary. This process causes geometric perturbation errors that must be examined.

2. Material derivative approximation: Beside the given smooth velocity of the smooth
surface and its interpolation which is the velocity of the discrete surface, there is a
third velocity of the smooth surface determined by the lifting operator. This leads
one to analyze the difference between two different material derivatives for functions
defined on the smooth surface.

3. Stability analysis for the time discretization: The mass and stiffness matrices are both
time-dependent. Therefore, estimates for these matrices are important in order to be
able to study the time discretization of the ODE system arising form the ESFEM
method. These estimates have then to be cleverly combined with the properties of
the time marching method in order to achieve optimal stability estimates.

4. Ritz projection: The lifting process should also be thought about when defining a
Ritz projection. The time dependency of the smooth surface as well as of the discrete
surface yields to the fact that the material derivative and the Ritz operator do not
commute, thus error analysis for the material derivative of the Ritz projection is also
needed.

Contributions

The present work is a contribution to the numerical analysis of linear PDEs on evolving
surfaces and parts of it have already been published [19], B8] or submitted [37), 39]. We
briefly summarize its main results.

e Theorem [B:2} Optimal-order error estimates in the natural time-dependent norms
for the evolving surface finite element method in combination with an algebraically
stable and stiffly accurate implicit Runge—Kutta method for the parabolic equation
on evolving surfaces.

e Theorem Optimal-order error estimates in the natural time-dependent norms
for the evolving surface finite element method in combination with the backward
difference formula up to order five for the parabolic equation on evolving surfaces.

e Theorem Optimal-order error estimates in the natural time-dependent norms
of the variational fully discrete scheme (the evolving surface finite element method in
combination with a version of the leapfrog or Stérmer-Verlet method) for the wave
equation on evolving surfaces.
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e Theorem Optimal-order error estimates in the natural time-dependent norms
of the variational fully discrete scheme (the evolving surface finite element method in
combination with the Gaul~Runge-Kutta method) for the wave equation on evolving
surfaces.

Outline

This thesis is divided into two parts.

In the first part, two fully discrete schemes for a linear parabolic equation on evolving
surfaces are studied. For both cases, the evolving surface finite element method is applied
as a spatial discretization scheme. As for the time discretization, two different methods
are considered, namely, the algebraic stable and stiffly accurate implicit Runge—Kutta
method and the BDF method. Stability and convergence of the fully discrete schemes
are analyzed and optimal-order error estimates in the natural time-dependent norms are
achieved. Numerical experiments confirm some of the theoretical convergence results.

In the second part, a linear wave equation on evolving surfaces is derived by using
Hamilton’s principle of stationary action. The variational principle is first discretized in
space by piecewise linear evolving surface finite elements. The time discretization is done
using two different variational integrators, namely, a version of leapfrog or Stormer-Verlet
method and the Gaufi—Runge-Kutta method. In the same framework as in the first part,
the stability and convergence of the fully discrete methods is studied and optimal-order error
estimates are achieved. Again, numerical experiments confirm the convergence results.

For the sake of transparency, the architecture of the first part is mirrored in the second.
In order to keep both parts independent, some notations and, to much lesser extent, proofs
are partly repeated explicitly.

Part I. Full Discretization of Parabolic Equations on Evolving Surfaces

We deal with the numerical solution of the parabolic partial differential equation
0*u(z,t) +u(z,t) Vg - v(@,t) — Apgu(z,t) =0 (0.1)

on a compact moving hypersurface I'(t) C R™*! ¢ € [0, 7], with a given velocity v(x,t).
Here 0°u denotes the material derivative of w:

. Ou
aU—E—FU‘VU.

Based on the weak form of the parabolic equation

d
—/ugo—l—/Vpu-Vng:/ua'cp, (0.2)
dt Jr r T



where ¢ : Usejo T'() X {t} — R is an arbitrary test function, we consider a finite element
approximation using piecewise linear finite elements on a triangulated surface interpolating
I'(t) as described in [14]. This leads to the ODE system

d

- (M(t)a(t) + A(t)a(t) =0, (0.3)

where M (t) and A(t) are the evolving mass and stiffness matrices and «(t) is the nodal
vector of the spatially discrete solution. In order to construct the fully discrete solution,
we consider two different kinds of methods, namely, the implicit Runge—Kutta method and
the BDF method, for the time discretization of the ODE system (0.3)),.

The main purpose is to derive optimal-order error estimates for the concerned fully
discrete schemes; namely, the piecewise linear finite elements in combination with the
implicit Runge—Kutta method and the piecewise linear finite elements in combination
with the BDF method. The keystone is to show stability estimates in the natural time-
dependent norms for the time discretization. This will be achieved by first proving some
basic estimates for the evolving mass and stiffness matrices which provide an abstract
framework in which we can treat the ODE system . Based on these estimates, we derive
stability estimates in the natural time-dependent norms for algebraically stable and stiffly
accurate implicit Runge-Kutta methods such as Radau ITA. Continuing along the same
foundation, using results from Dahlquist’s G-stability theory [7] and Nevanlinna—Odeh’s
multiplier technique [42], together with the properties of the spatial semi-discretization, we
prove that the fully discrete scheme is unconditionally stable for the BDF methods up to
order five. These stability estimates for the implicit Runge-Kutta method, as well as for
the BDF method, are the only stability estimates that will be used in combination with an
appropriately chosen Ritz projection and geometric approximation estimates in order to
prove optimal-order error estimates for the fully discrete schemes.

The first part of this document is organized as follows:

In Chapter [T, we begin with recalling the basic notation for the parabolic partial
differential equation on evolving surfaces and derive the weak formulation (0.2) of the
problem in order to start our numerical analysis.

In Chapter [2, based on the weak formulation (0.2), we describe the spatial discretization
of the parabolic equation by using ESFEM method. This leads to the ODE system
(0.3) involving the time dependent mass and stiffness matrices, for which we prove basic
estimates.

In Chapter [3], we consider implicit Runge-Kutta methods for the time discretization
of the resulting ODE system and prove that the fully discrete method is unconditionally
stable.

In Chapter [4] in analogy to the previous chapter, we prove stability estimates for the
fully discrete scheme by using BDF method for the time discretization.

In Chapter [5 we study the difference between the fully discrete solution and an arbitrary
projection of the exact solution of the parabolic equation to the finite element space.
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We show that in order to obtain optimal-order error estimates, one needs only to choose
an appropriate projection of the exact solution and to control the error coming from the
approximation of the geometry. It will be demonstrated that our Ritz map, presented in
Chapter [7} is an optimal choice.

In Chapter [6] we prove a number of estimates due to the approximation of the geometry
and to the lifting process. These estimates will additionally be useful in the second part of
this thesis.

In Chapter [7, we introduce a general Ritz map for evolving surfaces which can be used for
other bilinear forms. A particular form will be considered and its approximation properties
will be studied.

In Chapter 8] we combine the results from the previous chapters in order to prove
optimal-order error estimates of the fully discrete schemes.

In Chapter [0 we confirm some of our theoretical results with numerical experiments.
Part II. Full Discretization of Wave Equations on Evolving Surfaces

In analogy to the treatment in the first part, we study the numerical solution of the wave
equation

0°0°u(w,t) + 0°u(w,t) Vg - v(z,t) — Apgyu(z,t) =0 (0.4)
on a compact moving hypersurface I'(t) C R™*1 ¢ € [0, 7], with a given velocity v(z, ).

Based on the fact that the solution of ([0.4) makes the action integral

S _ T 1 o |2 1 2
[u] = B |0%ul” — B |Vru|® | dt
0 I'(t) I'(t)

stationary under all paths with fixed endpoints, we develop and analyze fully discrete
variational methods. The variational principle is first discretized by the piecewise linear
evolving surface finite elements of Dziuk & Elliott [I4]. This leads to the semi-discrete
Hamilton principle which requests to minimize the discrete action integral

Tr1, ) 1
Salal = [ (RaOFM00 - SaT D) di (0.5)
where M(t) and A(t) are the evolving mass and stiffness matrices and ¢(t) is the nodal
vector of the spatially discrete solution. The minimizer of (0.5 is a solution of the
FEuler-Lagrange equation

d .
5 (M(0)d(1) + A(t)q(t) = 0. (0.6)
The variational time discretization of this system is done by minimizing an approximation
of the discrete action integral in order to obtain a discrete Fuler-Lagrange equations which

serve to compute approximations ¢, to ¢(t,). We investigate two different variational



time integrators, namely, a version of the leapfrog or stérmer-Verlet method that is stable
under a Courant-Friedrichs-Lewy (CFL) condition; and in order to overcome the time
step restriction due the CFL condition on one side while obtaining higher order accuracy
in time on the other side, Gaufi-Runge-Kutta (GRK) methods.

Our goal is to prove optimal-order error estimates for the fully discrete schemes which
correspond with the ones obtained for the classical wave equation. As for the parabolic
equation in the first part, the key is to prove stability estimates for the time discretization.

The case of the leapfrog method is studied under the same CFL condition that is required
for a fixed surface. Working cleverly with the time-dependent norms which are defined
by the evolving mass and stiffness matrices, we prove that the fully discrete variational
integrator (ESFEM coupled with the leapfrog method) is stable under the CFL condition.

The algebraic stability and the coercivity property of the GRK method together with the
properties of the spatial semi-discretization are the main tools to show stability estimates
in the natural time-dependent norms for the GRK method. Our treatment here is inspired
by the B-convergence theory which was originally developed to study the convergence
of implicit Runge-Kutta methods when applied to stiff systems of ordinary differential
equations (cf. [6,[9]). In particular, we prove that the order in time of the fully discrete
method is at least the B-convergence order of the s-stage GRK method. This order is
equal to 2 for s = 1, whereas, for s > 2, the B-convergence order is only equal to s. Under
additional regularity assumptions which we expect to be satisfied for closed smooth surfaces,
we show that the order is indeed the full classical order of the GRK methods, i.e., 2s.

The second part of this thesis is outlined as follows:

In Chapter we start with basic notations needed to derive the wave equation on
evolving surfaces from the Hamilton variational principle. We establish the variational
formulation of the model and prove existence and uniqueness of the weak solution.

In Chapter we follow the approach of Dziuk & Elliott [14] in order to discretize the
variational principle with piecewise linear evolving surface finite elements. This leads to the
Euler-Lagrange equation which we further reformulate as a Hamiltonian system.

In Chapter[I2] we describe the variational time discretization of the resulting Hamiltonian
system. Here, we prove three stability estimates. The first one is concerned with the
leapfrog method and require a CFL condition. The second one is for the implicit midpoint
rule (1-stage GRK method) and is established by taking up an idea of Kraaijevanger [31].
The last stability estimates which is for the general GRK method with s > 2 is shown by
using some properties of the GRK method together with the basic estimates proven for
the time dependent mass and stiffness matrices.

In Chapter we prove error bounds for a projection of the exact solution onto the
finite element space on the discretized surface which will reduce our problem of bounding
the total error to estimate the residual of this projection.

In Chapter based on the results obtained in the previous chapters, we state and
prove our main two results of this part; namely, optimal-order convergence of the full
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discretization in the natural time-dependent norms, one under the CFL condition for the
ESFEM in combination with leapfrog method, and another unconditionally for the ESFEM
in combination with the s-stage GRK method with s > 1.

In Chapter we present numerical experiments to illustrate some of our theoretical
convergence results for the wave equation on evolving surfaces.



Part 1.

Full Discretization of Parabolic Equations
on Evolving Surfaces






1. Parabolic Equations on Evolving Surfaces

We begin with recalling some basic definitions and results from elementary differential
geometry needed in order to formulate the mathematical model which we will study in the
first part of this thesis. The model is a linear partial differential equation (PDE) of parabolic
type posed on a given time-dependent surface. We then derive the weak formulation of
the problem which will be the starting point of our numerical study of this model. The
notations as well as the considered equation are taken from Dziuk & Elliott [14].

1.1. Basic notation

For a time interval ¢ € [0,7T], we consider a smoothly evolving family of smooth m-
dimensional compact closed hypersurfaces I'(t) in R™*! without boundary. The unit
outward pointing normal is denoted by v and depends smoothly on time t. We assume
that the velocity of the surface is given, with the interpretation that there exist a vector
field v such that material points x(¢) on the surface I'(t) move with the velocity

z(t) = v(x(t),t) for xe€T(t).
We define the space-time surface as

Gr= |J () x{t}.

te[0,7

Throughout the thesis, we often omit the omnipresent argument ¢ in the surface I'(t)
wherever it is clear which surface is considered or whenever the stated relations are valid
independently of the time t.

The tangential gradient of a smooth function g : G — R is given by
Vrg=Vg—-Vg-vv,

where g is an extension of g to an open neighborhood of I, Vg denotes the usual (m + 1)-
dimensional gradient and a-b = ;";11 a;b; for vectors a and b in R™*1 The tangential
gradient only depends on the values of g on the surface I and is independent of the choice

of the extension. Note that Vrg-v = 0.

11
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The Laplace-Beltrami operator on I' is then defined as the tangential divergence of the
tangential gradient

m+1

Arg = Vr-Vrg= Y (Vr);(Vr);g,
=1

and the Green’s formula on T'(9T" = ()) reads

/Vrg-Vw: —/«pArg- (1.1)
I r

The material derivative 0°g is given by

0g _
L . 1.2
0% 2t +v-Vg, (1.2)

which only depends on the values of the function g on the space-time surface Gr and is
independent of the choice of the extension. For a more detailed discussion concerning
surface gradients and material derivatives, we refer the reader to Gilbarg & Trudinger [21]
and Dziuk & Elliott [14].

We work with the Sobolev spaces:

H'(I) = {g € (1) | Vrg € (D),
H'(Gr) = {g € L*(Gr) | Vrg € LX(D).0" € L(T)}.

For more informations about Sobolev spaces, we refer to the monographs [2] and [47].

1.2. The mathematical model

The conservation of a scalar quantity u(z,t) with a linear diffusive flux on I'(¢) can be
modeled by the linear parabolic partial differential equation

{ 0*u(x,t) +u(z,t) Vg - v(z,t) — Argu(z,t) = f inGr (1.3)

u(-,0) = wup onI(0)

with given initial data ug € H*(T'(0)).

More details concerning the derivation of the parabolic equation, well-posedness and
regularity results can be found in [14] and the reference therein. For the sake of simplicity,
we shall set in all chapters f = 0. Note that it is easy and straightforward to extend all of
the upcoming results to the inhomogeneous problem. Next, we derive the start point of
our numerical analysis, the weak formulation of the mathematical model.
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Lemma 1.1 (weak formulation)
The weak formulation of (1.3)) reads: Find w € H'(Gr) such that:

e For almost every t € [0,T],

d

4 +/ V-V :/ o° lpe H(Gr). (14
dt/r(t)uSO i VIO Vree = [ w0 for all (Gr) (1.4)

o u(-,0) =wug .

PRrOOF
The proof uses the Leibniz formula on surfaces [14, Lemma 2.2]

d
- = 9°g + gV - v. 1.5
o /F(t)g /F(t) g+ 9Vrw v (1.5)

Let ¢ : G — R be a smooth test function. By multiplying the above equation ([1.3)) by ¢,
integrating over I', performing integration by parts, and using the formula (|1.5)), we find

0= o O®up+up Vr(t) -V + Vp(t)uvr(t)(p

= o 0*(up) —ud®v +u Vp(t) “Vp + Vp(t)qu(t)(p

d
= — up + Vrpu -V ,—/ ud®p. n
dt /F(t) 2 ) r(t) re¥ ) ¥






2. Spatial Discretization by Evolving Surface Finite
Elements

This chapter describes the spatial discretization of the parabolic equation using the evolving
surface finite element method (ESFEM) of Dziuk & Elliott [14]. The discretization is based
on the weak formulation (|1.4]) which will lead to a system of ordinary differential equations
(ODEs) involving time dependent mass and stiffness matrices. For these matrices, we
proof basic estimates which will be the only properties of the ESFEM method used while
studying the stability analysis of various time discretization schemes.

2.1. The Evolving surface finite element method

In order to construct a finite element approximation based on the weak form (1.4)) of the
parabolic equation, we first approximate the smooth surface I'(¢) by a triangulated surface
I'(t). Let the discrete surface

)= U E®

BE(t)eTn(t)

be the union of m-dimensional simplices E(t) that is assumed to form an admissible
triangulation 7 (t). The vertices {a;(t) }fi , of all simplices E(t) are taken to sit on the
surface I'(¢) for all time ¢ € [0,7] and to move with the given velocity v(a;(t),t). We
denote by h the maximum diameter of the whole triangulation.

The surface gradient on I'(t) is given by
Vr,9 = Vg = Vg Vpth,

where v, denotes the normal to 'y, ().

We define for each ¢ € [0, 7] the finite element space
Sp(t) = {¢n € COUTL() : dulp € Py for all E € Ty(t)},

where Py denotes the space of polynomials of degree at most 1. The moving nodal basis
{Xi}i]\il of Si(t) are determined by x;(a;(t),t) = d;; for all j, so they give

Sn(t) = span{x1(-,t),...,xn(- 1)}

15
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The discrete velocity Vj, of the discrete surface 'y (t) is the piecewise linear interpolant of
v, i.e.,

N
Vi(z,t) = Zv(aj(t),t)xj(x,t), x € Th(1). (2.1)
j=1

The discrete material derivative on I'j,(t) is thus given by

Opn

Ohon = ot

+ Vi, - V. (2.2)

It was shown in [I4, Proposition 5.4] that the discrete material derivative of the basis
functions satisfies the remarkable transport property, namely, it is

Ohx;j=0 for j=1,--- N. (2.3)

After the discretization of the surface and setting the appropriate definitions on the discrete
surface I',(t), we now formulate the spatial semi-discretization of the parabolic equation
as follows.

Problem 2.1 (The spatial semi-discretization)
Find Uy (-,t) € Sp(t) such that

e For all temporally smooth ¢p, with ¢p(-,t) € Sp(t) and for all t € (0,T],

d
dt v +/ VU -V = / UnOp - 2.4
dt /Fh(t) h O T t) Tr(t)Yh Fh(t)¢h T t) hOpPn (2.4)

e Upy(-,0) = Uy, where UP € S,(0) is an appropriate approximation of ug.
Remark 2.2
Under suitable regularity assumptions, an error estimate between the exact solution u of the
parabolic equation (1.3)) and the lift of the spatially discrete solution uj, = U}ZL was proved
in [T]):

T
sup [|u(-,t) = un (- )1 F2(rg) +/0 IVry (u(s t) = un(s )22 (o) dt < ch®.

0<t<T
An optimal error estimate in the L*-norm is derived in [15]:

sup ||u(-,t) — un(-, )|l L2(rq)) < ch®.
o<t<T

While these error bounds for the spatial semi-discretization are of independent interest,
they will not be used in the derivation of the error bounds for the fully discrete method
including time discretization.



2.2. The ODE system 17
2.2. The ODE system

We make use of the fact that the discrete solution Up(-,t) € Sp(t) and define the vector
a(t) € RY as the nodal vector with entries a;(t) = Up(a;(t),t) so that

N
Un(-t) = > aj(t)x; (- 1)
j=1

We often abbreviate Uy (t) = Up(-,t), x;(t) = x;(-, 1), etc.

Consequently, thanks to the transport property of the basis functions (2.3]), we prove
the following result.

Theorem 2.3 (ODE system)
Solving the spatial semi-discrete problem (2.4) is equivalent to solving the system of ordinary
differential equations (ODEs)

{gt<M<t>a<t>>+A<t>a<t> =0 (25)

a(0) = ao = (U}(a)),

where M(t) and A(t) are the evolving mass and stiffness matrices given by

Mt--:/ ()X (- 1), Atl-:/ Ve, coXi(t) -V (t

( )Z] Ta(t) Xi( )XJ( ) ( )zJ Ta(t) Ty ( ,t)Xz( ) Fh(t)X]( )

fori,j=1,...,N.
Proor
To obtain the ODE system, we set ¢, = x; for j =1,..., N in the weak form (2.4)) and
use the fact that the material derivatives of the basis functions vanish (2.3)). We write

o t) = j»V:l v;(t)x; (-, t), then again by the transport property (2.3) it follows that
O on(-,t) = ;\le 3 ()x; (-, t) € Sp(t). A simple calculation gives

d
il U +/ \Y Up-V
7 /Fh(t) h®h -~ 0, Un -V, (6)Ph
d & al
_“ . Uy + / \v Uy -V j
dt(;% /Fh(t) hXJ) ]221% Ta(t) Lr(t)Yh = V() Xd
N d N
=S y(E U~+/V Un -V, X ) + /U
=0 by ({2.5)

N
= [ o= [ Uidien
/rh(ﬂ ; 7 e "

which completes the proof. [
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We shall make use of the following transport lemma [I5, Lemma 4.2].

Lemma 2.4

For Wy (-, t), Zn(-,t) € Sp(t) we have:

d
— Wiz, = / 8;LWhZh + Wha;.LZh + WhZhVI‘h(t) -V (26)
dt Jr,(t) T (t)

With the matriz
Bn(Vh)ij = 5ijvfh(t) Vi — ((Vph(t))ivhj + (Vph(t))jvhi) , (G,g=1,...,m+1),

we have for the derivative of Dirichlet’s integral

d
= \Y Wy -V V4
dt/ph(t) Ta(t)Wh = VT (t)“h
N /Fh(t) Vru@9iWa - Vru Zn + /1“h(t) Vi, Wh - Vr,0)0nZn
+ Bh(vh)vfh(t)wh'vrh(t)Zh. (2.7)

Tr(t)

We denote time derivatives of k-th order by the superscript (k). The notation O,Sk) is for
the k-th order discrete material derivative which is defined by (2.2). We then discover
formulas for higher order Leibniz rules.

Lemma 2.5
Assume that the following quantities exist and set a = V', -Vy,. Then, there exist polynomials
gkl = gkl(a,a, e ,a(l)), [ = 1, ey k so that

dtk/ f= / 8h f‘f‘Z/ gklah I (2.8)

Similarly, there exist polynomials G = G (B, B(l)) with the matriz B = Bp(Vy),
so that

" / Vool Vet = [ VewdlS Vroo

+ ZleVrh t)a r. Vi, @h (2.9)
=1

for any function ¢, with Of, ¢y, = 0.

Proor
One easily proves this by induction with the help of the Leibniz rules from Lemma [
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2.3. Properties of the evolving mass and stiffness matrices

We observe that the evolving mass matrix is symmetric and positive definite. The stiffness
matrix is symmetric, and because we consider closed surfaces, only positive semidefinite
and its null-space is spanned by the vector (1,...,1)T.

We will use the notation: For a symmetric positive definite or semidefinite matrix
G(t) € RVXN we define the norm or semi-norm, respectively, for w € RV:

w[Zy = (w|G(t)|w) = w'G(t)w.

Note that for finite element functions Wy, (-,t) = SN w;(t)xi(-,t) € Sp(t) with the vector
of nodal values w(t) = (w;(t)) € RV, we have

1/2
[w®)aeiey = IWhC O 2y, ) = </r . |Wh|2> ; (2.10a)
h
w®lao = [Fro Wil g o)
1/2
— (/ |vphWh|2> =y / 'V, W2 (2.10b)
Fh(t) E(t)e']'h

We are ready now to state and prove the main result of this chapter.

Lemma 2.6
There are constants u, k, 3 (independent of the mesh-width h) such that

wh (M (s) = M(1))2 < ("7 = 1) Jwlagy 2l (2.11)
wl (M~ (s) = M(1) ™)z < ("7 = 1) [wlasy-1 2l (2.12)
w(A(s) = A(t)z < (€67 —1) Jwlag |2lap (2.13)

w (M7 A+ MM~ (s) = (M7 A+ MM 1) (1)) =
(771 — 1) [M T () w] aey s ar) M) 2 a4 000), (2.14)

for all w,z € RN and s,t € [0,T].

We will apply this lemma with s close to t. Note that then et — 1 < 2u(s — t),
e"5=t) — 1 < 2k(s —t) and P57t — 1 < 2B(s —t).

PrROOF
(a) For w,z € RN, we define the discrete functions

t) = ijXj(l’,t) and  Zp(x,t) ZZ]XJ x,t).
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Note that by the transport property (2.2), we have 0y W), = 05 Z), = 0. Therefore, by
the transport formula from Lemma [2.4] it follows that

w' (M(s) — M(t)) z = ) Wi(-,8)Zn(-,8) — - Wi (-, t)Zn(:5t)

:/ L W 0)Zu (o) do

t do Jr,(0)

:/ Wi (. 0) Zn(,0) Vi, (o) - Vi do
t Fh(O')

< M/t IWhallz2, o0 120l 220, (o)) do

= i1 [ wlasio #las(o) do

where we have used that max,ci g |V, (o) * Vi(;0)lloo(r, (o)) 15 bounded by a
constant y independent of h and s, t, since V}, is the linear interpolant of the continuous
velocity. With z = w, this inequality implies

ol < ol +o [ fwlipyds.  0<t<s<T.
and hence the Gronwall inequality yields
w[3ses) < 70wl -

Inserting this bound for |w[(,) and |2[5(,) in the above inequality yields the first

inequality (2.11)).
With Lemma we get for the matrix A

w' (A(s) — A(t)) z

= V) Wh(58) - Vi, () Zn(:5 8) — Vr,oyWh(5t) - Vi, 0 Zn (- 1)
Tx(s) Lp(t)

= /: dc(l,/rh(g) Vi@ Wh(0) -V, (o) Zn(+, 0) do.
Lemma keeping in mind that W}, = 97 Z;, = 0 here, gives
w' (A(s) — A(t)) 2
= /ts /Fh(o) By(Vi(-,0)Vr, o )Wh(-;0) - Vr, () Zn(-, o) do

< H/t 0| A(0)| 2] A(0) do

since maxqeft o) [|Br(Vi(:, )| oo (0, (o)) 18 uniformly bounded by a constant . Using
this inequality together with the Gronwall inequality as above yields the third

inequality (2.13]).
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(c) For the second inequality (2.12]), we introduce the dual basis of Sy, (t) defined by

N

(Wil D)1y = MO (G (D) Ly

and has the property that
/ Yixj = 0;; and / Yij = Mﬁlf”"
Fh Fh ’
The Leibniz formula (2.6)) gives
d [ ] [ ]
0= */ Yix; =/ Opixs + ¥iOpx; + Vix;Vr - Va,
dt Jr, T
and since Oy x; = 0, it follows that
/ 6;:1111')(]' = —/ lDinVF : Vh for all i,j = 1,... ,N.
Ty S

This yields that, for all Z,(-,t) € Su(t) and functions of the form Wj(z,t) =
SN wihi(+, t) with time-independent coefficients w;, we have

/ 6;;1,/17;12;1 = —/ WhZth - Vh. (2.15)
T, T,

For w, z € RN, we now define

N N
Wi(t) =Y wjthi (1) € Sp(t) and  Zy(-,t) = > z;(-,t) € Sp(t).
j=1 j=1
Using the Leibniz formula in the third equality and (2.15]) in the fourth equality we
obtain
wh (M(s)™h = M(1)™) = = Wi(8)Zn(8) — [ Wil ) Zn( )

Lr(s) Lr(t)

s d — -
_/1t i Jo. o, Tl )20 do

= /t /I‘h(g) (6,;17@2;1 + Wha,‘jh + WN/hZhVFh(U) . Vh) do

= / / ~WiZpVr, (o) - Vi do
t Fh(O')

S
<
t

=11 [ ol [#largoy-r do

do

|

La(Tn (o)) HZ”‘ La(Tn (o))

Using this inequality together with the Gronwall inequality as above yields the third

inequality (2.12]).
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(d) In order to proof the last inequality (2.14) we need to control the H'-norm of the

discrete material derivative of functions of the form:

N

N
Wi(t) =Y withi(, ) = Y (M(t) " 'w)i xi(-, 1) € Su(t),
i=1

=1

where 1); are the functions introduced in part (c). Due to the fact that dpx; = 0,
the material derivatives of finite element functions ¢ € S are again elements of Sj.
Therefore with the help of the L?-projection P, into Sy,(t), we deduce from (2.15)
that

N
MW (-,t) =Y widhei(-,t) = —=Po(Wi,Vr, - Vi) € Si(t).
=1
By standard arguments, we obtain
1R Wallz2(r,) = IPA(Wa Ve, - Vi)l rary) < pllWallzar,)- (2.16)
We show next that
IV, @l 2w < e (IVe,Wall 2w,y + 1Wallzar, ) - (2.17)
We use the inverse estimate (||Vr, énllz2r,) < Ch_1||¢hHL2(Fh) for ¢, € Sy) to find
IV, O Wi) 20y = IV, Pe(Wa Ve, - Va)ll z2ry)
<V, Pa(Wi(Vr,, - Vi = (Vo - 0) "N lr2ry,)
+ Ve, (Pe(Wa(Vr - 0) ™) = Wi (Ve - 0) ) 2y,
+ Ve, (Wi(Vr - 0) )2y
C - _
< 3 1B (Wa(Vr, - Vi = (Vr - v) Mz
& -~ —
+ 3 1P (W (Ve - 0) ™) = Wa(Vr - v) 2y
+ e Whll2ry) + el Ve, Wall 2, -

Here £~ : T}, — R denotes the extension of the function f : I' — R constantly in
normal direction to I'.

By interpolation estimates (cf. Lemma ) and since Wh is piecewise linear on 'y
and v is sufficiently smooth we have that

| P (Wi (Vi - 0) ™) = Wi (Ve - 0) 2w,y < b (IWallzayy + V0, Wallz2,))-
Since Vj, is the linear interpolant of v—!, we observe for the remaining term:

1Py (Wa(Vr, - Vi = (Vo - 0) ™Dz,
< N Wallzz@p IV, - Vi = (Vo 0) e rn) < chlWallz2r,)-
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All together yields to the stated inequality (2.17)).

We are now ready to use similar techniques as in part (a)—(c) to prove the last
inequality (2.14]). With the notations introduced above, using the transport Lemma

the estimates (2.16]) and (2.17)) together with the Young’s inequality we discover
wT (MU A+ MM~ (s) = (M7HA+ M]M7Y)(1)) 2

= Vi) Wa(-+8) - Vi, (5 Zn (-, 8) — Ve, Wa(t) - Vi, ) Za (- t)
Fh(s) Fh(t)

s d __ -
- [ = o) - e
/t Io /Fh(g) Vr@Wh(50) -V, (0)Zn(- 0) do
= /t /F - (Vph(g)a;:ﬁ//h . th(a)Zh + th(a)Wh . Vph(g)c‘)fjh) do
n(o
+/ / Bi(Vi) Vi, (o) Wh - Vi, (o) 21 do
t JTh(o)
S/t IV 5, )R Wall 221, (o)) |V (0) 2| 220y (o)) o
+/t IV0,0) Wil 20 (o) IV ()05 2l 21 ) o
S — ~
+/t KV, o) Whll L2 @) IV (o) 20l 220 (o)) Ao
1 S _ _
< §B/t (!M(U) wltasane) + 1M (0) 1Z\%A+M)(g)) do
where we used the fact that
IWallZ2(0, 0 = IM(0) " wl3so) and Ve, o)Wl 22, o)) = 1M (0) " ]

Letting z = w gives

|M(s) " wltayanys) < IME ™ wltayanm +5/t |M(0) ™ w[f 1 ary (o) do

Using this inequality together with the Gronwall inequality as above completes the
proof. [

From the ESFEM method, Lemma [2.6| is all what we will need in the stability analysis
of the time discretization schemes considered in Chapter [3] and Chapter @] We remark
that our results are also valid for general ODE problems of the form with matrices
satisfying the above estimates.

In the following, we assume that a = Vr, - V3, and B = B (V},) are sufficiently often
continuously differentiable with respect to time. Then gg; and Gy from Lemma [2.5| are
bounded independently of the grid size h and we can prove the following lemma which will
be used to switch from the matrix-vector level to the function-space level. This will be
done first in Chapter
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Lemma 2.7

For finite element functions Zy(-,t) = Zévzl zj(t)x;(-,t) € Sp(t) with the vector of nodal
values z(t) = (zj(t)) € RN, there exists a constant ¢ independent of the mesh-width h such
that

k
!
(M2) B )Ry < D108 Znll3a e, 0 (2.18)
1=0
and
. U] O]
(M) M2)POF) < e 210 ZullTaw, i + 1Vra@ O ZallZaw, ). (2:19)
=0
PROOF

We omit the omnipresent argument t. We set w = M_l(Mz)(k) and Wy, = Z;-V:l wjx;. We
then observe

dk
/Wth Zwk/ XkXj = (Mw)g—(MZ)() ﬁ/p ZhX;-
h

k=1
Then, by Lemma [2.5 we have that

k
/ Widn = / o Zngn + 3 / 000D Zud Ven € S
I T'n =1 7Tn
This means that

k
Wi =\ Z + 3" Pulgiady ™" Z,)
=1

with the L2?-projection Pj, onto Sj,. Here, we used the fact that the material derivatives of
Zy, € Sy, again are elements of Sj,, since 95 x; = 0. Then,

!
K k-1
(wlar = [[Whilp2r,) < [6% )ZhHLQ(I‘;L) +> [P )ZhHLQ(Fh)a

=1
which yields (2.18]). We write similarly
lwla = [V, WhllL2(r,)
(k) - (k=1)
<IVr8y Zullcayy + D IVe Puloudy, " Zn) |2y - (2.20)
=1
Here, gr; = gri(a,a, ... ,a(l)) are piecewise constant functions on the discrete surface I',

since a = Vr, - Vj.

We now show the proof of (2.19) for the case k = 1 and discuss the general case later.
For k = 1, we have already proved in (2.17) that the last term on the right hand side of

(2.20]) is bounded by
Ve, PrlaZll 2, < el Zullzay + 1V, Zall2r,))
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we thus obtain the inequality
wla < Ve, 0521 12, + el Zull 2y, + 1V, Zallz2r,))-

This gives (2.19)) in the case k = 1.

The case k > 1 is similar but more technical. We only give the basic ingredients for the
proof. In this case one has to deal with polynomials of the time derivatives a, ..., a®) of
a = Vr, - V. The most important formula is the material derivative of the tangential
gradient. For a vector valued function b, one has the identity

o5 (Vrp, -b) =Vr, - b — (AVr,b) (2.21)

with the matrix A;, = (Vr,), Vi, — oAl UhsVni(Vr,), Vas (L = 1,...,m 4+ 1). One
then has to use this formula for b = V}, and follow the ideas of the case k = 1. [






3. Time Discretization by Implicit Runge—Kutta Methods

In this chapter, we study the time discretization of the ODE system ({2.5) resulting from
the ESFEM method. We choose to apply implicit Runge—Kutta schemes which are known
to be unconditionally stable when applied to PDEs on fixed domains. For algebraically
stable and stiffly accurate Runge-Kutta methods such as Radau ITA collocation methods
of arbitrary higher order, we prove the unconditional stability of the fully discrete scheme.
Our stability analysis operates at the matrix-vector level and uses form the ESFEM method
only the stated estimates for the evolving mass and stiffness matrices (Lemma . Thus,
the analytical tools developed here could also be applied to similar ODE system obtained
after the spatial discretization of PDEs on moving domains or obtained when applying the
moving-mesh method.

3.1. Implicit Runge-Kutta methods

3.1.1. Method description

In order to compute approximations «,, to the solution a(t,) of the ODE system (2.5]), we
consider an s-stage implicit Runge-Kutta (RK) method for the time discretization. We set
for simplicity equidistant time points ¢, = t,,_1 + 7 with step size 7 > 0 and ¢ty = 0.

The approximations v, to the solution a(t,) are determined via the scheme (cf. [22], 27])

s
Mniani = Mnan+TZaijdnj7 1= 17 »Ss (318‘)
=1
s
Mn+1an+1 = Myap, +7 Z bzama (31b)
i=1

where the internal stages satisfy
anl+AnZanZ:O i:17"',57

with A,; = A(tn + CiT), M,; = M(tn + CiT) and M,41 = M(tn+1).

27
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Here s is the number of stages and the method is uniquely defined via the so-called
Butcher-tableau (cf. [27, Section IV.5]):

c a C1 ailp -+ Qis
bT
Cs Gs1 - Qss
‘ bl bs

3.1.2. Method assumptions

We assume:
e The method has stage order ¢ > 1 and classical order p > g + 1.

e The RK coefficient matrix (a;;) is invertible, and we denote its inverse by (w;;).

The method is algebraically stable: the s X s matrix

(biaij + bjaji — bibj) is positive semi-definite, and all b; > 0, (3.2)

The method is stiffly accurate:
cs=1 and bj=a, for j=1,...s, (3.3)
which implies

Qpt1 = Qnps-

Well-known examples are the collocation methods at Radau nodes, of stage order ¢ = s
and classical order p = 2s — 1. The simplest method of this class is the backward Euler
method with s=1and a;1 =ci=b1=1.

3.2. Defects and errors

Let us consider the perturbed ODE system

{ & (Mat) + A)at) = M(tr() (3.4)

a(0) = ap. ‘
with a residual r(t) € RY. We will see in Chapter [5| that an arbitrary projection of the
exact solution of the PDE to the finite element space Sy, (t) satisfies a perturbed ODE
system of the form . Thus, the analysis of this system will play a key role in estimating
the difference between the fully discrete solution and the considered projection.
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3.2.1. Defects and errors

The solution of (3.4)) satisfies the RK relations up to a defect (quadrature error)

s
Mm&(tn -+ C,‘T) = Mn&(tn) + T Z aij&(tn + CjT) + A 1=1,---,s, (3.5&)
j=1
id .
Mn+1&(tn+1) = Mn&(tn) + 7 Z bj&(tn + CjT) + 5n+1 (35b)
j=1

By the assumption of stiff accuracy, we have
Ont1 = Anps.

For smooth solutions, we have by Taylor expansion (in suitable norms!)
Ol = O(TPTH, A = (’)(Tq+1).

For the errors, we use the notations

en = ay — a(ty)

Em' = Olp; — &(tn + CZ'T)
V(t, + ),

Eni = dni —Q

and subtract to obtain the error equations

s
MyiEn; = Mype, + 7 Z aijEnj — Api, {

=1,---,s, (3.6a)
j=1
S .
My y1ent1 = Mpe, + TZ biEyi — 5n+1’ (36b)
i=1
where the internal stages satisfy
Eni + AniEm' = —MpyiTn; t=1,--,s, (37)

with 7 = r(tn, + 7).

3.3. Stability

The main result of this chapter is the following lemma. It states that the fully discrete
scheme (combination of the ESFEM method from Chapter |2/ and an algebraically stable
and stiffly accurate Runge—method) is unconditionally stable.
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Lemma 3.1

If the Runge—Kutta method is algebraically stable and stiffly accurate, then there exist
70 > 0 depending only on p, k of Lemma[2.6 such that for 7 < 19 and t,, < T, the errors
are bounded by

n n—1 s n
|%ﬁu+72]%&k§C<MM%+T§:2]W%WN%M+T§:MMﬂﬂJ
k=1 k=0 1i=1 k=1

n—1 s

+orY Y (yM,;ilAkiﬁWM + |M,;1Aki|§1ki)
k=01=1

where |w]|?, = wT(A(t) + M (t))"'w and ty; = ty + ¢;7. The constant C' is independent of
h,T and n (but depends on u,k, and T).

PrROOF
The proof is based on the algebraic stability and stiff accuracy of the method and uses
similar arguments as in the proof of Theorem 1.1 in [35] and Lemma 7.1 in [19].

(a) We start from (3.6b)), take the squared norm at ¢,41 and estimate the terms in
2

S
‘Mn-f—len-&-lﬁjfl = ‘Mnen +7 Z bjEnj‘ 1
n+1 = M,
S
_ 2<Mnen + 7 Z bjEnj ‘ M;_&l ’ 6n+1> + ‘5n+1|?\/[:&1'
j=1 "
(3.8)
Expressing M,e, by (3.6al), we obtain for the first term
S S
. 2 . _
[Maen + 73 biBnjly-1 = IMuenly 1 + 273 b (Bng | Myly | Mg B + Any)
j=1 " " j=1
S S . .
+ 72 Y (bibj — biaij — bjag)(Eni | Mty | By, (3.9)
i=1j=1

where the last term is non-positive by the assumption of algebraic stability (3.2). In
2.1,

the second term we write M}, = M ' + (M, l; — M;!). By condition ( we

have
Maenlys = (Maea | My | Maea)
= (en | My | en) + (Myen | MLy — M1 | Myey)
< (1+2u7) [enl3y, - (3.10)
In the middle term we write
(Bnj | My | Mo Enj + Dpj) = (Enj | My}t | M Epj + D)
+ (Bnj | Myl — M| My Enj + Agj)
(3.11)

and estimate the two terms on the right separately.
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(b) In view of (3.7, we have for the first term of (3.11))

<E”j { Mn_jl ’MnjEnj + Anj> = <ENJ | Enj> + <En] | Mn_jl ‘ Anj>
= — |Bn;4,, — (Mujrnj | Enj + My} Anj)
—(Enj | Anj | M;Anj> (3.12)

For the second and third term of (3.12]), we use the Cauchy-Schwarz inequality and
Young’s inequality to estimate

(Myjrag | Enj + M, Agj)
= ((Anj + Mpj) ™% Myyjroj | (Anj + M)/ (Enj + Mﬁle"f>>
_ _ 1/2
< (| Magrngllems (1Bng + My Anslis,, + 1 Eng + Mo Al )

< 2|| M7y

1
2ni + 7 (1Bailin, + 1Bulh,,)

1 -1 2 -1 2
+ 1 (|Mnj Anjlas,, + 1My Anj‘Am-)
(Enj | Anj | My Anj) < |Enjla,; 1My Anjla,,
1 _
< Z|Enj’,24nj + 2| My Ayl -
Therefore, by (3.12), the first term on the right-hand side of (3.11)) is bounded by

. _ 1 1
(B | My | My Enj + Dng) < = S1Enjl4,,; + 41 Enjli,

+C (1M} Anil3y,, + Mo A3, ) (3.13)

(c) For the last term on the right-hand side of (3.11} we rewrite (3.6al) as
. S
Enj = 7'—1 Z U}jz’(Mm‘Em' — M,e, + Am')
i=1

and use (2.11)-(2.12)) with sufficiently small 7 as in (3.10) to get the bound
(B | Myy = Myt | Moy B + Agj) < CT|Epjl -1 - (\Enj\Mnj + |A”j|Mnj1>

S
< C|€n|%\/ln + CZ ‘EME\/IM
=1

+CY Al (3.14)
i=1 "
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(d) In order to estimate the second term on the right hand side of (3.8)), we use the error
equations (3.6) together with the assumption that the the method is stiffly accurate

(3-3) to find

S S
Myen + 7Y bjEnj = Muen + 7Y asjEpj = MpsEns + Apg = M1 Eng + Ony1.
j=1 j=1

Then an application of the Cauchy-Schwarz inequality and Young’s inequality gives

S
2 <Mn€n + 7 Z bjEn; ’ Mn_Jh ‘ 5n+1> < 2|Myy1Ens + 5n+1‘M;+11 ‘5"+1’M;&1
J=1

<7 ]Ensﬁ\/[nﬂ + (14 27)71 ‘5n+1/T’M;+11'

(3.15)
(e) Combining (3.8)—(3.15)) and keeping in mind that b; > 0, we have shown
1 S
‘€n+1’%wn+1 - ’en’%\/[n + iszl’Enl‘inz
i=1
S S
< 07'|en|%\/[n +C7 Z |Em|?\/[m +Cr Z ||an7"m||z,m
i=1 i=1
S
rory (1M Al + 1M Al ) + Ol /7]y -
1=
(3.16)

In order to be able to apply the discrete Gronwall inequality, we still need to estimate
the terms |Ey|3, . This is what we do next.

We multiply the equation by ET. and obtain
il .
j=1

The first term on the right-hand side is estimated for sufficiently small 7 as

1 1 _
< QG‘EME\/I” + §€ 1|6n|?\/[n

1 _
< CelEmﬁ\/[m + 56 1|€n|?\4n

with a small constant ¢ > 0. Similarly, the last term is bounded by

2 R N
< g€l Enilig,, + 3¢ My Al
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For the middle_z term we proceed as in part (b). We rewrite with the help of (3.7]) the
expressions (Ey; | Ep;) as
(Enj | Bni) = —(Enj | Auj | Bui) = (Mnjrag | Eni),

then the Cauchy-Schwarz inequality, Young’s inequality and conditions (2.11))—(2.13])
yield

Combining the above bounds and choosing e sufficiently small (but independent of
T), we achieve

S S
’En%ﬁwm < C‘enﬁ\/ln +C1 Z ‘Enk‘,%lm +C1 Z ||Mnkrnk||z,nk + C’Mn_ilAniﬁ\/lm-
k=1 k=1

(3.17)
Inserting the bound (3.17)) into (3.16)) yields
1 S S
lens1lir,.0 = lenlir, + 37 D bil Bnil,, < Clenliy, + C7 37 [ MauirnillZ i
i=1 =1
S
+ 07 Y (1M Diliy,, + 1M Auif,,) + CTlbus /7]y - (318)

i=1

We now sum over n and apply the discrete Gronwall inequality to achieve the stated
result. [






4. Time Discretization by Backward Difference Formulas

We apply the backward difference formulas (BDF) to the ODE system ({2.5)) resulting from
the space discretization of the parabolic equation on evolving surfaces. In the same frame
work as in the previous Chapter [3| we study here the stability of the fully discrete method
(ESFEM coupled with BDF). Using results from Dahlquist’s G-stability theory [7] and
Nevanlinna & Odeh’s multiplier technique [42] together with the properties of the spatial
semi-discretization (Lemma , we prove that the fully discrete scheme is unconditionally
stable for the BDF methods up to order 5. To the best of our knowledge, this is the first
time that these powerful techniques have been used in the study of time discretizations of
parabolic differential equations [3§].

4.1. BDF time discretization

Let us first recall the ODE system from Chapter

{$<M<t>a<t>>+A<t>a<t> ~ 0

a(0) = ap. (4.1)

For the numerical integration of system (4.1)), we consider the k-step BDF method with
step size 7 > 0 given by

k
1
- Z 5jM(tn_j)an_j + A(tn)an =0, n>k, (4.2)
j=0
with given starting values ag,...,ap_1.

The method coefficients ¢; are determined from the relation
0(Q) =8¢ =3 5(1-0)". (4.3)
j=0 =1

The method is known to have order k and to be O-stable for & < 6 (cf. [27, Chapter
V]). Notice that the 1-step BDF method is the backward Euler method with dyp = 1 and
01 =—1.

35
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4.2. Defects and errors

As in the previous Chapter [3] we consider the perturbed ODE system

{gt(M(t)a(t))JrA(t)ii(t) = M@Or(t) (4.4)
a(0) = ap.

The solution &(t) of the perturbed system (4.4) when inserted into the above BDF scheme
(4.2)) yields defect d,, in

k
% S8 M (t )t ) + Altn)a(tn) = —dn. (4.5)
=0

For the error, we use the notation
en = Qp — Qp, (4.6)
and subtract to obtain the error equation

1 k
— E 5jM(tn_j)€n_j + A(tn)en =d,, n > k. (4.7)
T =

Jj=0

4.3. Basic results from Dahlquist (1978) and Nevanlinna &
Odeh (1981)

We will use the following result from Dahlquist’s G-stability theory.

Lemma 4.1 (Dahlquist [7]; see also [4], Section V.6 [27])
Let 6(¢) and u(C) be polynomials of degree at most k (at least one of them of exact degree
k) that have no common divisor. Let (-,-) be an inner product on RY with associated norm

|- If

Re@ >0 for || <1,

(<)
then there exists a symmetric positive definite matric G = (gi;) € R**F and real yo, ..., Vi
such that for all vy, ..., v, € RN

2

k K k k k
<Z 0iVk—i, Zujvk—j> =Y gi(vi,v5) = Y gij(vic1,v-1) + ‘Z%’Uz‘
i=0 =0 i=0

i,7=1 3,j=1

In combination with the preceding result for p(¢) = 1 — n¢, the following property of
BDF methods up to order 5 will play a key role in our stability analysis.
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Lemma 4.2 (Nevanlinna & Odeh [42])
If k < 5, then there exists 0 < n < 1 such that for 6(¢) = Yk_, %(1 — )Y,

6(¢)
Re T

The smallest possible value of 7 is found to be n = 0,0,0.0836,0.2878,0.8160 for
k=1,...,5, respectively.

>0 for |¢|<1.

4.4. Stability

We are now ready to state and prove the main result of this chapter analogous to the
stability Lemma for the implicit Runge-Kutta method. Here, we also prove that the
fully discrete scheme (combination of the ESFEM method and the k- step BDF
method with k& < 5) is unconditionally stable.

Lemma 4.3
For the k-step BDF method with k < 5, there exist 79 > 0 depending only on p and k of
Lemma such that for T < 19 and t, <T, the errors e, given by (4.7) are bounded by

n

n
lenlts, +7 Y leild, <CTY_lldjl1?,, +C  max el
; ; ’ 0<i<k—1
j=k i=k - =
where ||wl|Z ; = wT(A(t) + M(t))"'w, A(tn) = An and M(t,) = M, . The constant C is
independent of h,T and n (but depends on u,k, and T ).

Proor
We start from (4.7) and rewrite it as
k k
M, Z 5]'6”_]' +TAue, = 7d, + Z 5]' (Mn — Mn—j) €n—j-
j=0 j=1

We use a modified energy estimate. Instead of multiplying scalarly with e,, as would be
familiar with the implicit Euler method, we proceed similarly to the proof of Theorem 4.1
in [42] and take the Euclidean inner product with e,, — ne,_1, for n > k + 1. This gives

L+ 11, =111,+1V,, (4.8)

where

k
I, = <Z 5j€n7j ’Mn | €n — 77€n71>

7=0
I, = <en ’ Ap ’ €n 77€n—1>
111, =7 {dp,en —nep—1)
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To estimate the first term we introduce the following notation: For

En - (e’m C) enfchrl)T ’

we set

k

1Bl = > gijlen—iri| Mn| €n—its),
ig=1

where G = (gi;) is the symmetric positive definite matrix of Lemma for the BDF
polynomial 6(¢) of (4.3)) and for p(¢) = 1 — n¢ with n of Lemma This defines a norm
on R*N such that

k k
Co Z ‘Cn_k+j|%\/[n < ’En|%;7n <c Z |en—k‘+j|?\4n )
Jj=1 Jj=1

where ¢y and ¢; denote the smallest and largest eigenvalue of G, respectively. Then we
obtain by Lemmas and [4.2] that

’En%,n - ‘Eﬂ—l‘é,n <Ip, n=>k+1

With (2.11) we have for sufficiently small 7 (u7 < 1)
k
1En-1lgn = 1 En-1lgn1 <207 > |gijl len—1—kiln_y len—1—krjlnz,_,-
ij=1
We can choose v > 0 depending only on G such that
k

Z \Qz‘j| |€n—1—kti| M1 \en717k+j|Mn_1 < FV’En—l‘%',nfl'

ij=1
With (4.8), this yields the bound

|En|2Gn - |En*1|2G,n—1 < 2’}/MT|E7L*1|%¥,71—1 + 1L, + 1V, —II,, nz=k+1

The term 11, /7 is estimated using the Cauchy-Schwarz inequality, Young’s inequality and
(2.13)):

(en |Anlen —nen—1) = |en|,24n —n{en|Anlen—1)

v

1
|en|,24n - in‘enﬁln - 577!%—1&”
2—n
2

v

1
enl3, — 501+ 267)en a4, .
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For I111,,/T we have, using (2.11]) and (2.13]) in the last step for sufficiently small 7,

<dna €n — 77671—1>
= <(An + Mn)_1/2dna (An + Mn)1/2(6n - U6n71)>

1/2

< , (|€n - nen71|124n + len — nenflﬁ\/[n) /

1 1-—
slfudnuiw L(len = nen-1l%, + len = nea-il3,)

1

< 7!\d 120+ =5 (Ueal, +lealin,) +m*(lensli, + len-l3s,))

1
<

1—
T Il + =5 enlf, +lenlis,)

1—
+ (Lt 2nm) a3, + (L 2um)lenoaliy, ).

We estimate the term IV, using the Cauchy-Schwarz inequality, Young’s inequality and
(2.11)):

(en—j|Mn - Mn—j|en - 77€n—1> = (en—j|Mn - Mn—j|en> —-n <€n—j|Mn - Mn—j|€n—1>
< (L+n)pgrlen—jlis, + pitlenlis, + nuitlen-lis, -

Thus we get by the equivalence of norms

1V < Cpt )7 (1BnlE s + 1Bt
Combining the above inequalities and summing up gives, for sufficiently small 7 < 7
(which depends only on x and p) and for n > k + 1,

n

.
Bl + (1 =mT > leslh,

Jj=k+1
n—1 n
< Clp,mT Y |Ejle; +Clmr Y- lldyllZ; + CnPrlexl, -
=k j=k+1

The discrete Gronwall inequality and the equivalence of norms thus yield the stated result
with k£ + 1 instead of k and an extra term C(u, n)7'01|ek|?wk + 0772T|€k|,24k- To estimate

lexl3s, + Tlerl%,, we take the inner product of the error equation for n = k with e to
obtain

k
Soler|s, + Tlewld, = T(dk, ex) — Z (My—jer—;, k).

Noting that dg > 0 and estimating the terms on the right-hand side in the same way as above,
in particular using (Mj_jex—j, er) < ]ek,j\Mk_j . |ek\Mk,_j and ]ek]Mk_j < (L+2j7p)|ex|m,
we obtain

2 2 2 2
lexlas, +lexfa, < CTlldilly +C | max leifa-

Inserting this bound into the previous estimate completes the proof. [






5. Error Bounds for a Projection to the Finite Element
Space 1

In order to connect the stability lemmas from Chapter [3|and Chapter [4] with the continuous
solution of the parabolic equation , we study in this chapter the difference between
the fully discrete numerical solution U and a projection of the exact solution u(-,t) of the
parabolic equation to the finite element space Sy, (t) at time ¢t = t,,.

5.1. The fully discrete solution

Let {o}}_, be generated by the s-stage implicit Runge-Kutta method (3.1) or by the
k-step BDF method (4.2). Then, from the vector ay, = (af, -+ ,a’%)T, we obtain the fully
discrete numerical solution on the discrete surface I'y(¢,,)

N
Up =Y ajx (- ta), (5.1)
j=1

as approximation to the exact solution of the parabolic equation u(-,t,).

5.2. Projection to Sp(t)

Let Py, : HY(T'(t)) — Sp(t) € HY(T,(t)) be an arbitrary projection of the exact solution of
the parabolic equation to the finite element space Sp(t). We write

N
Puu(-,t) =Y a;(t)x;(-t).
j=1

Note that this projection Pj could be the piecewise linear interpolation operator at the
nodes or an L?- projection or a Ritz projection. The finite element residual of the parabolic
problem Ry (-,t) = Zévzl ri(t)x;(-,t) € Sp(t) is defined by

d .
/ Rypopn = d*/ Pru ép +/ V) (Pru) - Vi, 4 6n — / Poudhon, (5.2)
Tp(t) L JTh(t) Tp(t) Tp(t)

41
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where ¢y, is a temporally smooth function with ¢y (-, ¢) € Sp(t). Then the equivalent matrix
version for the vector r(t) = (r;(t)) € RV, is

& (M@a) + ADaE) = M) (5.3)

where &(t) = (a;(t)) € RY. This formulation (5.3) corresponds to the perturbed ODE

system ([3.4)) and ( .

5.3. Error bounds for the implicit Runge—Kutta methods

A direct application of the stability lemma for the implicit RK methods (Lemma gives
the following error estimates for the difference between the projection Ppu(-,t,) and the
fully discrete numerical solution U] determined by the combination of the piecewise linear
finite elements and the s-stage implicit RK method (scheme ({3.1])).

Theorem 5.1

Consider the space discretization of the parabolic equation by the evolving surface
finite element method and time discretization by the s-stage RK method satisfying the
assumptions . Assume that the geometry and the solution of the parabolic equation
are so reqular that Pyu has continuous discrete material derivatives up to order g+2. Then,
there exists 1o > 0 independent of h such that for T < 19, the error E}} = U]’ — Phu(-,ty)
is bounded for t, =nt < T by

. 1/2
IEZ | 22 ey + (Zuvm Bl 320,

n—1 s

1/2
< CBy, 7‘1+1+C7—(ZZHRh U+ ar )||H LT (bt T))) + ClIER z2(0y (10))-
k=0 i=1

Here C' is independent of h (but depends on T'), and
q+1

Bh,q / Z H8 Z) (Pru)(t )||L2 (Th(1)) ) + Z ( |th (Phu)( )H%?(Fh(t))) dt

The norm used for Ry is
(Rn, dn)r2(r,)
| Rp|| 771 = sup 0
H, " (Th) 0#prESh ||<Z5hHH1(rh)

Proor
‘We consider the errors

en = ap — a(ty)
E,=U, — &(tn + Cﬂ').
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Due to the stability Lemma [3.1] we have

n—1 s
lenlir, +TZ lerl%, <C <|€o|MO F7Y > I MyargillZ g, +TZ !5k/T\Mk>

k=1 k=01i=1 k=1
n—1 s
+ 07303 (Mg Al + 1M Akl - (5.4)
k=0 1i=1

(a) We first note that by using the norm identity (2.10]), it follows (omitting the argu-
ment t)

IMr|l, = (FTM(A + M) Mr)"? = ||(A + M)"V2 M|
rIM(A + M)~ AL
" otuer 1/2 i 1/2
owerN  (wiw) 022eRN (2T(A+ M)z2)

(Rh7 d)h)LQ(Fh

= oinl, Ty 5.5
0#¢n€Sh “¢h"H1(F H HH Y(Tw) ( )
Therefore we have
n—1 s n—1 s
T Z Z HMszszztm T Z Z HRh St + 61 )HH YTy (tpteiT)) (5'6)
k=0 i=1 k=0 i=1

(b) By using Taylor series expansion and the definition of the stage order ¢ and the
classical order p > g+ 1, we find that the defects d,,+1 and A,; appearing in the error

equation ((3.5)) satisfy

tn _
Spgq = 7911 / K (t t“) (Ma) 9+ () at (5.7a)
tn T
tn+1 t— tn _ ( Jrl)
A = 7 / K< )(Ma) D) (1) dt, (5.7b)
tn T

with bounded Peano kernels K and K;. We shall make use of Lemma [2.7] which
shows that for Z,(-,t) = Zé-v:l zj(t)x; (- t) € Sp(t) with z(t) = (2;(¢)) € RY:

k
!
(M) P @) < e SN0 Znl 2o, 0
=0

and

k
l l
M) M) B0y < 108 Zul2a g, ) + 1Ym0 Zull 2, 0))-
1=0
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These estimates together with (2.12)), (2.14) and the ODE system (/5.3 yield

[(Ma) ) ()31 < 21 (M&) ) ()3
q+2

<CZ(||8 (Pru)( )H%%Fh(t)))

M (o)™ (M&) D ()24 a0y < 2AM )7 (ME) D (640000

l 4
<> (1103 (Paw) DN 20y ) + 1V 008 Br) @) 320, 00))

provided that plt — o] < 1 and S|t — 0| < 1. Inserting these bounds into (5.7)) yield

n—1 s

TZ ’5k/T’M—1 +TZZ (’M/mlA/ﬂ’Mk + |MkzlAlﬂ‘Ak ) <C (Tq+1> 52
k=01i=1

(5.8)

(c) Inserting the bounds and (| into and using the norm identity -
completes the proof. [

If the classical order p of the Runge-Kutta method is equal to ¢ + 1, then the above
Theorem [5.1] shows that the order in time of the fully discrete scheme is optimal order
O(r9+1). However, for p greater than ¢+ 1, we need stronger regularity conditions in order
to obtain the classical order O(7P). In the following, we assume that:

ki—1 k1—1 1
M(t)ljtkjl(A(t)M(t)1)...2%_1(14(15)M(t)1);;(M(t)&(t))’ <y (5.93)
M(t)
kji—1 k1 —1 l
|M(t)—1;ikj_1(A(t)M(t)—l)...jtlﬂ_l(A(t)M(t)—l)CZl(M(t)a(t)) <~ (5.9b)
A(t)

forall k; > 1and I > g+1 with ky +---+k; +1 < p+1. The zeroth derivative of the matrix
A(t)M(t)~! is just the the matrix A(t)M(t)~! itself. Under these regularity conditions,
we are able to prove the next convergence result of full order O(77).

Theorem 5.2

Consider the space discretization of the parabolic equation by the evolving surface
finite element method and time discretization by the s-stage RK method satisfying the
assumptzons with p > q+1. Under suitable regularity conditions such that conditions

are satzsﬁed, the error Ej' = Uyt — Phu(-,ty,) is bounded, for sufficiently small 7 < 19
and fort,=n7t <T, by

1/2
1Bl z2qen ey + (7 vaph(t B 20,0

n—1 s

1/2
< Cor?+ Cr (3 S IIRAC tr + a7 It 0 e T))) + ClB 2(r, (10))-
k=0 i=1

Here Cy is independent of h (but depends on T and ).
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Proor

The main idea of the proof is to modify the defects A,; appearing in (5.4]) so they are of
order p. To do so, we follow Lubich & Ostermann in their proof of Theorem 1 in [36] and
first split the matrices Am'Mn_z'l and the defects A,; by Taylor series expansion as follows

(an)* tnteir (ty, + 7 — )"

= > W, +/tn S (AN 1)

. Z lf(l +Tp/tn+1 K. (t_tn>§(p+1)(t)dt
tn T

l=q+1

with bounded Peano kernels K; and §Z~( =3 (l > 5= Gijc ] — c) and m =p—q—1.

We denote by f*)(t) the k-th time derivative of f(¢) if k > 1 and fO(t) = f(t). The
N x N —identity matrix is denoted by Iy and we put:

Q=0® by, b' =b" ® Ly,
where ® denotes the Kronecker product of two matrices. We also use the notation:
A, = (Apt, ., AT, M, =diag(M,1, ..., My,)", etc.

Then, we introduce the new internal stages:

m—1
E,=E,+M;'D,, with D, = Z (r@T,)* D,,
k=0

E,=—-A.E,— M,r, = E, — A,M,'D,.
Thereby, we rewrite the error equations (3.6 as

ni’ Zzlv"'787

S .
My Epi = Mpep, — 7 Z aijEnj A,

S .
7 /
Mn—i—len—‘rl = Mnen + TZ sznz — Opt1s
=1

where the modified defects satisfy
- Q, +7QB,D, + (rQT,)™ D,
I =6p41 +70"B, D, + 70T, D, (5.10)
Similar to the estimate , we then obtain

n—1 s
el 473 el < C (\eorMo B TV PSR o raka)

k=1 k=0 i=1 k=1

n—1 s

+CTY ) (’M/ﬂlA ’M,m + | M ;ci|2A;m-) . (5.11)
k=01=1
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As a result of the regularity conditions (5.9), we discover that
My Ml + 1My Al < Cor®. (5.12)

We now come to the last part of the proof, where we show that |0} /7|ar, is also of order
O (7P). By the regularity condition , the first and second term of (5.10) clearly are
of order O (7P*1). Therefore, our problem reduces to show that 76T, D,, is of order
O (7+1). We first observe that 76Ty, D,, is just a linear combination of terms of the form

vracki—t .. achte® (AM—H® Dy o (AMHE D )a0(¢,,) - R
(5.13)

where C = diag (c1,¢2,...,¢s) and |k| = g:l ki, ki €{1,...,m} with j <m. Thanks to
the order conditions of the Runge-Kutta method (see [24, p. 56]), we have
vracks=t ... ach—1e® =0 for |k|+14+1<p.

Therefore, all the terms of (5.13)) vanish for |k| + 1+ 1 < p. Thus, by the regularity
conditions (5.9)), we find

10/ 7|0, < Cot? (5.14)
Inserting the bounds (5.12)), (5.14) and ([5.6) into ([5.11]) and using the norm identity (2.10])
completes the proof. [

5.4. Error bounds for the BDF methods

We use the stability lemma for the BDF methods (Lemma together with the norm
identity to prove the following error estimates for the difference between the projection
Pru(-,t,) and the fully discrete numerical solution U}’ (ESFEM/BDF).

Theorem 5.3

Consider the space discretization of the parabolic equation by the evolving surface
finite element method and time discretization by the BDF method of order k < 5. Assume
that the geometry and the solution of the parabolic equation are so reqular that Ppu has
continuous discrete material derivatives up to order k + 1. Then, there exists 79 > 0
independent of h such that for T < 19, the error E}} = U — Pyu(-,t,) is bounded for
th,=n7 <T by

. n 4 1/2
1B 2o + (73 1900 B2 0,0))
=k

~ n 1/2 )
k PN i
< Chpat" + (sz:k 1B C D 0) g max 1B e -

Here C is independent of h (but depends on T), and

_ T k+1 ©
Bk :/0 > 110 (Puw) (®)172(p, (1)) dt-
=0
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Proor
We consider the error

en =y — a(ty),
and get the error equation (4.7) with

d, 1 & _
dp, = M (tn)r(tn) + ﬁ(Ma)(tn) - Z dj(Ma)(tn—j). (5.15)
j=0
Lemma {4.3| with d,, of (5.15) shows that
2 2 2 2
enlin, + 73 leilh, <O Y12, +C max feil, (5.16)
j=k i=k

We first note by (5.5 that

HM(tn)T(tn)H*,tn = HRh(',tn)HH;l(rh(tn))' (5.17)

By using Taylor expansion and the definition of order k of the k-step BDF method, one
finds that the backward differentiation error of a smooth function can be represented with

a scalar Peano kernel K (6),
1 k
g ==Y gt —jr) = [ K@) (e~ or) ao.
T 0

We use this formula for g = M@ and set w = M~ (Ma)*+1, so that

—d Ma)(t —flké-M~t N =7k kK@M t, —01)do
dt( a)(tn) T;O J(Ma)(tn—j) =T /0 (0)(Mw)(t, — 01)do.
We note

IM(tyw|?,, = w™M(t)(A(s) + M(s)) " M(tyw

= wTM(t)M(s) V2 (M(s) V2 A(s)M (s)" V2 + 1)~
< ||M(s)"2M (w3 = w M (8) M (s) " M (t)w.

"M (s) V2 M (tw
This is further estimated using Lemma [2.6}

wTM ()M (s) "M (tH)w = w™M (t)w +w ™M E)(M(s) ™' — M) HYM)w < 2w M(t)w,
provided that 2u|t — s| < 1. For such ¢ and s we have thus shown that

1M (H)w]]? ¢ < 2 |w]?.
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Lemma shows that for w = M~ (Ma&)*+1) with & the vector of nodal values of Pju,

we have
k+1
w(t)]7 < C;} 1(Pa) D)1 F2r, (0

Combining these estimates yields

d 1 & 2
Hﬂ( ;2 (Ma)(ta-j) stn
<r c/ |(Mw)(t, — 072, db
< 72690 / lw(tn — 672y dB
0
L k+1
< 7% 9cC /0 S 1P D (b — 07 Bz 0oy 8- (5.18)
1=0
Plugging (5 and ((5.18) into , then into (5.16)) and finally using the norm identity
(2.10)) closes the proof n
Remark 5.4
1. If Py, is the piecewise linear interpolation operator at the nodes, then By, 4 as well as

2.

Bh,k are clearly bounded uniformly in h. However, one can expect only suboptimal
bound for the corresponding residual,i.e., HRh(t)HH—l(Fh(t)) = O(h). Thus, in order
h

to prove optimal-order error bounds, we have to deal with the question:

Is there a projection Py, such that By, 4 as well as Bh,k are bounded uniformly in h
and at the same time HRh(t)HH‘I(Fh(t)) is of optimal order O(h?)?
h

A positive answer to this question can be found in Chapter[§

We can also compare the fully discrete solution with the semi-discrete solution Uy, of
(then Ry, = 0). For the corresponding error U} — Up (-, t,), we obtain a similar
bound where Ry, does not appear and the factor in front of the 79t term (for the
implicit Runge—Kutta) and the 7% term (for the BDF method) are bounded in terms
of higher-order discrete material derivatives of Uy instead of Pybu. We then need
reqularity results for the semi-discrete solution Uy, such as that of Theorem 9.1 in
[19], which shows that

(SOUIP HUh HL2 (Th) +/ |thUhm ”L2 (Th) dt < CZ Hé?( )Uh( )”%Q(F;LO)'
b e 0



6. Lifts

We summarize a number of results from [13| 14}, 15] and prove geometric approximation
estimates about lifts of functions from the discretized to the original surface. These
estimates together with the Ritz map which we will introduce in Chapter [7] are crucial in
order to prove that the semidiscrete residual appearing in is of optimal order.

6.1. Estimates between surface finite elements and their
lifts

We denote by d(x,t),z € R™*L t € [0, T] the signed distance function to the smooth closed
surface I'(t) and let N (¢) be a neighbourhood of I'(t) such that for every x € N (t) and
t € [0,T7] there exists a unique p(z,t) € I'(t) which is the normal projection of = onto I'(t),
ie.

We assume I'y(t) C N (). Thus for each triangle E(t) in I',(¢) there is a unique curved
triangle e(t) = p(E(t),t) C I'(t), and this induces an exact triangulation of I'(¢) with
curved edges. Furthermore we assume that I'j,(¢) consists of triangles E(t) in 7p(t) with
inner radius bounded below by o > ch for some ¢ > 0.

For any continuous function 7y, : I'y, =& R we define its lift 77%1 :I'— R by
mh(p.t) =m(z.t),  pEeT(),
where x € T'y(t) is such that p = p(x,t). Then we have the lifted finite element space
Sh(t) = {on =, = ¢n € Sh(t)}-
Note that Xé(-,t)(j =1,...,J) form a basis of S!(t).

We denote by d;, the quotient between the smooth and discrete surface measures dA and
dAh, defined by (5hdAh = dA.

We further introduce Pr and Prp as the projections onto the tangent planes of T’
and I'y, respectively and the Weingarten map H (H;; = 0,;v;). Defining Q) = é([ —
dH)PrPryPr(I —dH) we get the relation [15, Lemma 5.5]

V(@) - Vi, é(z) = 6,9,Vrn' (p) - Vrd! (p). (6.2)
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Lemma 6.1
Assume T'(t) and T'(t) satisfy the requirements stated above. Then we have

Il poeqryy < b 1L = 8nllgooqryy < b2 v = vill pooqry) < b

1Pr = Qull ey < b ||00d] o <en? (o] < en?,

Leo(Ty,) o (Cn) —

|Pr@ Qe . < e

where the superscript (¢) denotes the (th discrete material derivative.

PRrROOF

A proof for the first four estimates can be found in [I4, Lemma 5.1]. To prove the other
estimates, we consider a single element E(t) C I';(t), and w.l.o.g. we assume E € R? x {0}.
Since 0}8@(1 = 0 in the vertices of the triangle F, the linear interpolant I h@,(f)d vanishes on

E. By the standard interpolation estimates it follows that

o], = o800 = mdi0d, < en?o0d],. ., < 0

Similarly,

Since vj = 0y,d and 0} (0y,; f) = Ox; (O f) — O, Vi - V f, We obtain recursively

l .
axj(a,()d)HLm(E) <ch for j=1,2

(ON < -
Hah V]HLOO(E) <ch for j=1,2.
For z = (z1,2,0) € E we have by (6.1))
Pu; = €5 — ViV — dvy; (1=1,2),
where e; € R3 denotes the jth standard basis vector. Then direct computation yields
on = Hpm X pCEQH = |V3‘ +dR(V7 VLENVOCQ) =V 1- V% - V22 +dR(V’ VIUVIQ)

with some smooth remainder function R. Since |d], \8}(L£)d\ = O(h?) and |v;], |8}(f)yj| = O(h)
for j = 1,2, it follows that |8\ 13| < ch? and

Os <o
H6% h Lw(E)"C '

Let us now prove the last estimate for ¢ = 1. The general case follows recursively with
similar arguments. We note that for Qj in (6.2)), we have with some smooth remainder

function R:

1
Qo = ?PT‘PT}LPT + dR(6p, Pr, Pry, H).
h



6.2. Error bound of the lifted interpolation

Since |d|, [08d] = O(h?), 6, = 1 + O(h?) and |85, = O(h?), we find
Pr(08Qy) Pr = Pro} (PrPr,Pr) Pr 4+ O(h?).
Using the fact that dyv - v = 0, we get
Proy (PrPryPr) Pr = Proy, (PrPry,Pr — Pr) Pr
= —Proy, (Pryhy,zpr) Pr.

We keep in mind that in our situation v, = e3. Thus

|Prvg| = vy — (v - v)v| = |es — vgv| = \/1 —vi= \/1/% +v2 = O(h),
G (Prom)| = | — (Ofvs)v — vsdiw] = O(h).

Inserting the bounds (6.5)) into (6.4]) and finally into (6.3]) completes the proof.

6.2. Error bound of the lifted interpolation

We shall make use of the following interpolation estimate given in [I3, Lemma 5]:

Lemma 6.2
For a given n € H*(T),

I = Zunll 2y + B IV = )l 2y < ch? (Hv%n\ e ||vrn||Lzm) ,

where Ipn € Sfl is the lift of the pointwise linear interpolation fhn € Sh.

6.3. Velocity of lifted material points and material
derivatives

51

(6.3)

By the definition (2.1)) of the discrete material velocity Vj, for a material point X (¢) on

', (t), we get the associated material velocity on I'(¢): For y(t) = p(X(t),t), we have

§(t) = vn(y(t),t)

v (y,t) = gf (x,t) + Vi, (z,t) - Vp (x,1)
= (Pr —dH)(z,t)Vi(z,t) — Oud(z, t)v(x,t) — d(z,t)0v(z, 1),

(6.6)

for y = p(z,t). We note that —0id(x,t)v(x,t) is just the normal component of v(p,t), and
the other two terms on the right-hand side of are tangent to I'(¢) in p. It follows

that

vp — v is a tangent vector.

(6.7)
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The discrete material derivatives on I',(¢) and I'(¢) then read

Obn

Ohon = —— 5t + Vi, - Vo,

. O
Ohpn = B oy V.

It was shown in [I5, Lemma 4.1] that the basis functions of S} (¢) also satisfy the transport
property
Onps = el = 0. (6.8)

Therefore the discrete material derivative and the lifting process commute in the following
sense: For ¢ = ¢§1 e St

Onon = (Ohen)' Z bn X5,

where ¢y, ;(t) = ¢n(a;(t),t) = on(a;(t), ).
We have the following bounds for the difference between the different velocities:

Lemma 6.3
The error between the continuous velocity v and the lifted discrete velocity vy on the smooth
surface I' satisfies the bounds, for £ > 0,

105 (0 = wn) | oo () + PV EOL (0 = o) || ooy < C b2, (6.9)

PrROOF
The definition of vy, together with the fact that Vj, = Iv give (cf. [15, Lemma 5.6])

|’U(p, t) - /Uh(pa t)’ = |PT(U - IhU)(p, t) + d(HIh’U(p, t) + aty)| < Ch2
For ¢ = 1, we have by the transport property and Lemma

0 (v —wvp)| < [(OpPr)(v — Ipv)| + |Pr(Ohv — I05v))|
+ (B0 d) (Mo + 8yv)| + |dOS (HIyv + )|
< Ch2.

Using the fact that Vrd = Vropd = 0 and Lemma [6.1}, we obtain

V(v —wp)| < e|v— Tl + ¢|Vr(v — Iyw)| + ch? < ch,
|Vroh (v —op)| < clv—Ipv| + ¢|Vr(v — Ipv)| + ¢|0pv — 1,050
+ ¢ |V (9t — I,05v)| + ch?
< ch.

For ¢ > 1 the proof uses the same arguments. n



6.4. Lifts and bilinear forms

6.4. Lifts and bilinear forms
We define the bilinear forms for w, p € H(T') as
a(w, p) = /erw - Vre,

m(w, o) = [ we.
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(6.10a)

(6.10Db)

where the forms also depend on time t. We write a(w, ;t) etc. when we want to make the

dependence on t explicit.

The discrete analogs of the above bilinear forms for Wy, ¢ € Sy, are defined by

an(Wh,dn) = Y /thWh‘th¢ha
BeT, " ¥

mp(Wh, on) Z/F Whon.

(6.11a)

(6.11b)

We are interested in the time derivatives of these bilinear forms. For this we need some

more bilinear forms:
g(vsw, ) = /F(Vr “v) we,
b(v;w, p) = /FB(U)VFw -Vro
with the matrix
B(v)ij = 6V - v — ((Vr)ivj + (Vr)jui), 4,5=1,...,m+1.

Their discrete analogs read

(Vi Wi, 1) = /F (Vr, - Vi) Widn.

bh (Vi Why ) = > /Bh(Vh)VrhWh-Vrhth
EeT, ' P

with

By(Vh)ij = 0i;Vr, - Vi — (Vr,)iVhi + (V1) iVhi), 4,5=1,....,m+1.

We shall make use of the following transport lemma [I5, Lemma 4.2].

Lemma 6.4
For ¢, w, 0%p, 0*w, Inp, 04w € HY(T) we have:

d (] (]
ﬁm(w, @) = m(0*w, ) + m(w,d%p) + g(v;w, ),

d
aa(w, @) = a(0®w, @) + a(w, 0°p) + b(v;w, p).

(6.12a)

(6.12D)

(6.13a)

(6.13b)
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The same formulas hold when 0° and v are replaced with 0 and vy, respectively. Further-
more for Wi, ¢p € Sp we have the following analogs:

d (] [ ]
£mh(Wh, én) = mu(OpWh, o) + mp(Wh, 05 on) + gn (Vi Wh, én),

%ah(Wha én) = an(OpWh, o) + an(Wh, 05 on) + br(Vi; Wh, ¢p).

We show the following bounds for the lifting process.

Lemma 6.5
For any (Wh, ¢n) € Sy, x Sy, with the corresponding lifts (wp, pp) € Sk x SL we have
Im(wh, on) — mp(Wh, én)| < ch®|lwnl 2y llenll 2y
la(wh, on) — an(Wh, ¢n)| < ch?(|Vrwn |l 2y IV renll 2y,
|9(vns wh, n) = gh (Vi Wh, d1)| < ch?(lwpll 2y lonll 2y,
|b(vn; wh, on) = bw (Vi Wi, én)| < ch?(|Vrw |l g2y | Vrenl 2.

Proor
The first two estimates have been shown in [I5, Lemma 5.5]. To prove the third estimate,
we apply the Transport Lemma [6.4] once on I', and a second time on I, to get the following
identities:
d d
2 wnson) = (W, én - 0p)

= mp(OpWh, dn - 0n) + mn(Wh, Opn - 0n) + mp(Wh, én - 90n)

+ 90 (Vi; Wh, @1 - On)
= m(Opwn, ¢n) + m(wn, Oppn) + g(Vh; Wh, n).-

Due to the fact that dfwy, = (G;LWh)l, using Lemma and the equivalence of norms
between the continuous and discrete surface, it follows

|9(vn; why 1) — gn(Vas Wh, 0)| = [mn(Wh, ¢ - 050n) + gn(Va; Wi, ¢ - (0 — 1))
< ¢ (108l oo qryy + 108 = Ul ooy ) 1wl 2oy llenll 2 ry
< ch?|lwal 2y llenll 2 -

Similarly we prove the last estimate. We use Lemma and the relation (6.2)) to find

d

*/ Vr,WiVr,on = / 9}, Vrw,Vron

dt Jr, T

= /F QL Vrohwp Ve + /F O}, Vrw, Vrdhen + /r " Vrwy Ve

+ /r B(vi) Q},Vrwa Ve

=] VrhaﬁWhVFh¢h+/F Vr,WiVr, 0rén + ; Bn(Vy)Vr, WiV, é.
h h h
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Therefore, the relation dfwy, = (95W3)!, (6.2) and Lemma yield
100 (Vi; Wh, é1) — b(vn; wh, ¢n)|
/F@ﬁQZVthVFSOh + /r B(vn) (Qéz - I) Vrw,Vren

< ch®||Vrwnl 2y | Veenll z2 )

which completes the proof.
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7. The Ritz Map for Evolving Surfaces

In the following, we introduce a modified Ritz projection for partial differential equations
on evolving surfaces. We start by motivating the definition for the parabolic equation.
Then, we state a general definition of a Ritz map, one of its version will be used for the
parabolic equation and another version for the wave equation. Since we are dealing with
moving surfaces and moving meshes, it turned out that in general the material derivative
and the Ritz map do not commute. Nevertheless, we are able to prove optimal estimates
for the error in the Ritz map and the error in its material derivative.

7.1. A modified Ritz projection

It turns out to be convenient in the error analysis to use a modified Ritz projection
Py, : HY(I(t)) — Si(t) defined as follows; we use the bilinear forms of Section 6.4 and the
lifted discrete velocity of Section To motivate the definition, we rewrite the weak form
of the parabolic equation in terms of the bilinear forms,

d .
% m(uv 80) + (I(U, 30) = ’I’)’L(U, d @)a

and use the Leibniz formula with the discrete material derivative d; on I' and note
oo = 0% + (v, — v) - Vg, because v, — v is a tangent vector (see (6.7)). Then, this
equation becomes

m(Opu, ) + g(vn; u, ) +m(u, (vp = v) - Vre) + alu, ¢) = 0. (7.1)

We now define a Ritz map that collects the last two terms on the left-hand side of this
equation, which are the only terms that contain the surface gradient of the test function (.
Since af(+,-) is only positive semi-definite, we consider the positive definite bilinear forms

a*(w, p) = a(w, @) + m(w, ), w, ¢ € H'(T)

an,(Wh, ¢n) = an(Wh, én) + mp(Wh, ¢n), Wh, ¢n € Sh.
We note that a*(w,w) = Hw||%{1(r). We write a*(w, ¢;t) etc. to make the dependence on ¢
explicit. In the error analysis for the wave equation, it turned out that we need a different

Ritz map then the one needed for the parabolic equation. For this reason, we give the
following general definition.

o7
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Definition 7.1 B
For given z € HY(T'(t)) and ¢ € L*(T'(t)), there is a unique Ppz € Sy,(t) such that for all

¢n € Sh(t) we have, with the corresponding lift o, = ¢},

a;“b(ﬁhz, bn;t) = a*(z, n;t) + m(C, (va(-,t) —v( 1)) - Vrwywn; t). (7.2)

We define Pyz € SL(t) as the lift of Pyz, i.e., Ppz = (Ppz)\.

7.2. Error in the Ritz map

Theorem 7.2
The error in the Ritz map satisfies the bounds, for 0 <t < T and h < hy with sufficiently
small hy,

< Ch? (HZHH2(F(t)) + HCHLz(F(t))) . (7.3)

12 = Przll 20 + P va(t) (z— th)‘ L2(D(1) —

Proor
We omit the omnipresent argument ¢ in the following. We first note that in view of

and Lemma we have for all @), € S}:

a*(z — Prz,on) = aj,(Prz, én) — a*(Prz, on) — m(C, (vp —v) - Vo)
< Ch? Pzl g oy llenll grogry + Ch? ¢ L2y lnll g ry - (7.4)

This relation will serve as a substitute for the Galerkin orthogonality in standard finite
element theory on fixed domains. Together with the interpolation error bound of Lemma 6.2
this yields

|z — ’PhZH?{l(F) =a"(z — Ppz,z — Ip2z) + a*(z — Ppz, Inz — Ppz)
<|z- 73hZHHl(P) Iz — IhZHHl(F) + ChQ(HPhZHHl(F) + HCHLQ(F)) [z — PhZHHl(F)
< Chllz = Puzll ey 12l g2y + CH® (HPhZHHl(F) + HCHLQ(F)) [z — Przll gy -

Using once more Lemma [6.2) we estimate

(IPw2ll oz oy + 1€ 22y ) 1n2 = Pzl gy

< (I1Pnz = 2l ey + 12l ey + 1€l 22ry) - (CR U2l 2y + 12 = Pazllansry)
< 2|z = Puzlltny + 123wy + 1172y + CR2 2l 3y -

Combining both of the above inequalities yields, for sufficiently small h,
Iz = Pazllin ey < OB (I213zy + 102y ) - (7.5)

which implies the gradient estimate in (7.3)).
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Now we use the Aubin-Nitsche trick to prove the O(h?) bound of the L?(T') error, and
solve the problem
—Arw+w=z—Ppz onl.

Then by the elliptic theory on smooth surfaces (see [3] and [47] for more details), w € H?(T)
satisfies the bound

[wll gr2(ry < ellz = Przll 2 (7.6)

The Cauchy—Schwarz inequality, the interpolation estimate of Lemma [6.2| and the bounds

and ( . ) yield
12 = Puzll72(r) = a*(z = Prz,w)
=a"(z — Ppz,w — [yw) + a*(z — Ppz, [Hw)
< CR? (12l 2y + 1< 22y ) el oy
+ CR2(IPwzl oy + 1€ 2y ) Il sy -

Noting, from (7.5 and Lemma

1Pnllpsry < Dzl + Ch (Il + 1<)
[Hhwl gy < lwll gy + Chlwll g2y »

we obtain
Iz = Paliaey < CB* (Il + ISl o)) ool ey

Applying the bound (7.6 completes the proof. [

7.3. Error in the material derivatives of the Ritz map

In general, 0} Pz # P05 2, but what we actually need, is the following result.

Theorem 7.3
The error in the material derivatives of the Ritz map satisfies the bounds, for ¢ > 1,
0<t<T and h < hy with sufficiently small hg,

[0 (= = a2y 1)

2aey T h HVF (8’(10 (2 = Pn2) (t)) ’

L(T'(t))

S

H2(T + Hal ! ()Hﬂl(r(t))>’ (77)

<oy ([0 . .
=0

with Y ¢(t) == 0.
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Proor
We prove this bound only for £ = 1. The general case follows with similar arguments.

We take the time derivative of Equation ([7.2)) and use the Transport Lemma the
relation

m—+1
8];Vrf = Vpa}:f — D(’Uh)VFf with D(vh)ij = (vl“)ivhj — Z VlVi(VI‘)jUh,h
=1

which is proved in [I8, Lemma 2.6], and the definition of the Ritz projection ([7.2)) to arrive
at

a*(Opz — O Prz, on) = — b(vn; 2 — Pz, ¢n) — g(vn; 2 — Prz, on)
+ Fi(¢n) + Fa(en) (7.8)

for ¢, € St ,where

Fi(¢n) = a} (08 Prz, én) — a* (O Phz, on) + ba(Vii Prz, én) — b(vn; Phz, ¢n)
+ 90 (Vi; Puz, én) — 9(vn; Puz, @),

Fy(on) = —m(Op¢, (v —v) - Vrn) — g(vn; ¢, (v — v) - Vrgs)
= m(¢, (Op[v —vn]) - Vron) +m(C, (v — v) - D(vn)Vren).

We start by bounding Fi(¢p) and Fa(¢p). Lemma yields
B (on)] < O (188Pn = s ey + 1Pn2llirscey) ol - (7.9)
In view of and the fact that (v — v) is a tangent vector, it follows that

10RC 2ry < NORE = O°Cll 2y + 10°Cl 21y
= [[(vn = v) - Vil 2y + 10°Cll 121
< ch? IVrdll 2y + 19°Cl L2y -

Thus we get the bound
[Folpn)] < CR2 (10°Cl oy + Il o)) ol oy - (7.10)
We use the relation to find

10821 g1y < 110%2]] g (py + h [|2] 2y -

Then inserting ¢y, = 05 Ppz in (7.8), and using Theorem (7.9) and (|7.10)), for A < hy,

we obtain

10 Pzl iy < C 0%z ga(ry + CR 2 g2y + CRAICH gy + Ch? 10°Cll L2 -
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Combining the above bounds, we estimate the right hand side of (7.8)), for sufficiently
small h < hg, as follows:
a*(Ohz — OhPrz, o)
< Oh (112l gaqry + Ilzsy + B 1%Ly + 102l gragey) ol gy - (711)
So we obtain

1852 — 03Pz 7 1y
=a"(0pz — OpPrz,0hz — I0%2) + ™ (02 — Op Prz, [,0°2 — Op Prz)
<0z — aﬁpthHl(r) 10Rz — Iha.z”Hl(F)

+Ch (||2”H2(F) 1S gy + A I1O%Cl 2y + 1 Ha.ZHHl(r)) [1n0°z — O Przl| g1y
(7.12)

The interpolation error bound of Lemma and yield

|0hz — Iha.zHHl(l") = |05z — 8.ZHH1(F) + 0%z — Iha.ZHHl(F)
< Ch||z gzry + CR[|0% 2] grary

and similarly
11002 — O Pzl gy < CRI10%2]| gory + Ch 2| g2y + 1072 — O Przll gary -
Applying the last two estimates to (7.12)) and using Young’s inequality, for h < hg, yield

1072 — 0 Phzll3n ey < Ch2 (Ial3aqey + 102 l3raqry + 1<y + 10°C0 3y ) -
(7.13)

which implies the gradient estimate in ([7.7)).

To prove the L?(T) estimate, we use as before the Aubin-Nitsche trick and solve the
problem

—Arw+w=0rz—0;Prz onl.
Then by the elliptic theory it follows

lwll g2y < cllOhz — O Przll 2y - (7.14)
A calculation that is nearly identical to [I5 proof of Theorem 6.2] gives

—b(vn; 2 = Phz, Inw) < OB (112l graey + I 2y ) ool gz -
Therefore combining , , and Theorem yields

a*(Bhz = 0Pz, Inw) < CR2 (|2 gy +10° 2 g oy 1 g1 0y 10l 2y el prary -
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Together with and Lemma this yields
1082 = O Phzl72ry = a*(Ohz — Oy Prz, w)
=a*(0rz — @ Prz,w — Iyw) + a* (0 z — Op Pz, [hw)
< OR* (12l ey + 10"l sy + 1Sy + 18 oy ) ol ey -
Finally applying the bound completes the proof.
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This chapter shows the main results of the first part of this thesis. To begin with, we prove
that the finite element residual R}, defined in is of optimal order when we take the
projection Ppu to be the Ritz map Pru defined in . Then, combining the results from
the previous chapters and this optimal bound of the residual, we finally achieve optimal
order of convergence in space and time of the full discretization schemes (ESFEM coupled
with implicit RK method as well as with BDF method) in the natural time-dependent
norms.

8.1. Bound of the semidiscrete residual

We define the Ritz map for the the parabolic equation on evolving surfaces by setting

(=uwuin , ie.,
aj,(Ppu, én) = a*(u, op) + m(u, (v(-t) — vp( 1)) - Vewyen) o, =on € Sh. (8.1)

We now replace the projection Ppu appearing in the definition (5.2) of the the finite element
residual Rj with the the Ritz map Pru given by (8.1)). This will permit us to show the
optimal rate of convergence O(h?) for this residual.

Lemma 8.1

Assume that the solution u of the parabolic equation is sufficiently smooth. Then, there
exist C > 0 and hg > 0 such that for h < hg and 0 <t < T, the finite element residual of
the Ritz map for the parabolic problem is bounded by

IRRC Ol 10, ) < Ch’. (8:2)

Proor
We start by rewriting the residual equation (5.2) for Ry, € Sy with P, = Py, as

d _ . -
mp(Ry, ¢n) = %mh(,Phua én) + an(Pru, on) — mp(Pru, Opén)

= mp (08 Phu, dn) + gn (Vi Prtt, é) + an(Pru, én), (8.3)
where we have used the Transport Lemma Next we rewrite the weak from ([1.4]) of the

parabolic equation in terms of the bilinear forms with ¢ = ¢}, as

7 m(0°u, pn) + a(u, pn) = m(u,0%ps),

63
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and use the the Leibniz formula with the discrete material derivative 97 on I' to obtain

m(Opu, pn) + g(vr; u, on) + a(u, on) = m(u, 0°vn — Ohn)-

Combining this equation with (8.3) and using the definition of the Ritz map (8.1]) yields

mu(Rp, én) = Fi(pn) + Faen) + Fs(pn)  on = ¢}, € S, (8.4)

where

Fi(pn) = mu (08 Pru, ¢p) — m(dfu, n),
Fa(on) = gn(Vi; P, on) — g(vns u, on),
F3(¢pn) = m(u, on) — mu(Phu, én),

Applying Lemma using (8,‘175hu)l = 0pPpu and applying Theorem [7.3{ with ¢ = 1 yields

|F1 (on)| = mn (08 Pru, én) — m(OPhu, n) + m(OfPrhu — Opu, on)
< On? ”S%HB(F) )

and with the same arguments

|Fa(¢n)| < OB |lonll 2y »
|F3(n)| < Ch? lonll pory -

Inserting the above bounds into (8.4) and noting the equivalence of the L?-norms between
the original and discretized surfaces completes the proof. [

Looking at the proof of the above lemma, we have even shown that the L?- norm of Ry, is
of order 2. In the definition and the proof, one could simply take the Ritz map with
¢ = 0 and end up with a definition which is more similar to the classical Ritz projection and
then have to estimate the extra term Fy(ppn) = m(u, (v — vp) - Vrgn) < Ch2{|Vrgn| 2.
This will also lead to the optimal bound in the H; Lnorm, but not in the L2-norm which
we actually do not need anyway. However, we will later see that for the wave equation it is
crucial to choose ( = dpu in the definition of the Ritz map.

8.2. Error bound for the full discretization

In this section, we compare the lifts of the fully discrete numerical solution u}! := (U}*)!
with the exact solution u(-,t,) of the parabolic equation ([1.3]).
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Let {ou}}_, be generated by the s-stage implicit Runge-Kutta method (3.1)) or by the
k-step BDF method (4.2)). Then as in (5.1]), we obtain the lift of the fully discrete numerical
solution

N
upp == (U =" afx (),
=1

which is a lifted finite element function defined on the surface I'(¢,). Next, we state and
prove the main results of the first part of this thesis.

Theorem 8.2 (ESFEM /RK)

Consider the space discretization of the parabolic equation by the evolving surface finite
element method and time discretization by the s-stage implicit Runge—Kutta method
satisfying the assumptions[3.1.9. Let u be a sufficiently smooth solution of the parabolic
equation (1.3) and assume that the discrete initial data satisfy

[t = P 0)]| ) < Col®
Then, there exist hg > 0 and 19 > 0 such that for h < hg and 7 < 79, the following error
bound holds for t, =nt <T:

n 4 1/2
gt = bl o) + R (T 30 1Vra 0 = Ve uCt)liawe,y) < C @ +h2),
j=k

Assuming that the reqularity conditions (5.9) are satisfied, we obtain TP instead of 7471,
The constant C' is independent of h, T, and n subject to the stated conditions.

Theorem 8.3 (ESFEM /BDF)

Consider the space discretization of the parabolic equation by the evolving surface
finite element method and time discretization by the BDF method of order k < 5. Let u be
a sufficiently smooth solution of the parabolic equation and assume that the discrete
initial data satisfy

< C()h,Q.

e Huﬁ——(?ﬁﬂw(ytﬁ L2(T(0)

0<i<k—1

Then, there exist hg > 0 and 19 > 0 such that for h < hy and ™ < 19, the following error
bound holds for t, =nt <T':

" n . 1/2
!uh—UQJMH@wmm+J(T§%Hmeui—Vmgwﬂiﬂﬁmmmﬁ <O (h+n?),
=

The constant C' is independent of h, T, and n subject to the stated conditions.

Proor
We decompose the global error into two components as

upp = u(,ty) = (ufy = Puul,ta)) + (Phul, ) — u(tn)). (8.5)
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Taking into account that the L? and H' norms on the discretized and original surface
are equivalent (Lemma , in order to estimate the first part of , we just need to
combine the theorems and lemmas from the previous chapters. For example, for the k-step
BDF method, using Theorem [5.3| together with Lemma (residual bound) and Theorems
and (for estimating B, x) one finds that the first part is of order O(7* + h?). The
second part of is already taken care of in Theorems and [

Remark 8.4

It is well known, that Runge—Kutta time discretization schemes suffer from order reduction
phenomena when they are applied to partial differential equations with non-periodic boundary
conditions on plane domains (cf. [34, (36, [43]). In particular, condition fails to
hold uniformly in the mesh size on surfaces with boundary. However, for smooth solutions
of equations on smooth closed surfaces, it can be expected that the reqularity condition
holds true.
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We present numerical experiments for the homogeneous as well as the inhomogeneous
parabolic equation on evolving surfaces confirming some of our theoretical results. The
fully discrete methods (cf. Section are implemented by using the finite element toolbox
ALBERTA [44], Matlab, and the DUNE-FEM module [5]. For the implementation of the
3- stage implicit Runge-Kutta method (Radau ITA), we make use of the code RADAUS5 of
Hairer & Wanner [26, 27]. The visualization is done by using the application ParaView [29].

Example 9.1
We consider the numerical example [14, Example 7.3] and solve the parabolic equation
O*u+uVr-v—Aru=f onl(t), (9.1)

where the surface I'(¢) is an ellipsoid with time dependent axis and given as the level set

2

x

I(t) = R? : ! 5+a3—1=0,.
®) {:L’G 1+0.25sin(7r't)+$2+$3

The right hand side f is calculated so that the exact solution is given by

—6

u(z,t) = e wyas.

Fully discrete scheme for the inhomogeneous parabolic equation on evolving
surfaces: We treated so far only the homogeneous parabolic equation on evolving surfaces,
we mention again that it is straightforward to extend our results to the inhomogeneous
case. The fully discrete scheme for the inhomogeneous equation has to be updated with a
right hand side similar to the inhomogeneous parabolic equation on a fixed domain. For
example, the implicit RK method becomes:

The s- stage implicit RK method for the inhomogeneous parabolic equation on evolving
surfaces reads

s s
Mo = Muoy, — T Z a,-jAnjanj + 7 Z aianj, 1=1,---,s, (9.28,)
j=1 =1
s s
Mn+1an+1 = Myoay — T Z bzAmam, + 7 Z sznzv (92b)

i=1 =1

N —1 N .
where (Fm')j:1 = (fl“h(tm-) f Xj)j:1’ with t,; = t, + ¢;T.

67
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1. Experiment (backward Euler): Let {7;5}?:0 and {7;}*_, be a sequence of meshes
of a surface by uniform refinement and a sequence of time steps respectively. The
uniform refinement is such that h; ~ %hi,l. We set 7; = in,l to obtain the time step
sequence, starting with 79 = 0.1. For each mesh 7}’ together with the corresponding
time step size 7;, we solve the parabolic equation using the piecewise linear finite
elements in combination with the backward Euler method. Then, we compute the
error between the lifted numerical solution and the exact solution for 0 < ¢ <1 in
the following norms:

0 2\ . n __ .
L2 (22) s max g = ulstn) |2

L2 (Hl) : (7’ i Hvr(tn)u}} — vl"(tn)u(’,tn)’
n=0

1
2 2
LZ(F(%))) '

: . 1/2 EOC .
Assuming that the error Err; satisfies Err; = C (hi + 7 ) . Then, it follows that
% = 2FOC Thus, the experimental order of convergence (EOC) is determined
by
og Err;_1
EOC:&) i=1,k.
log 2

In Table we list the errors and the corresponding EOCs. As theoretically expected
from Theorem we observe EOC' ~ 2 for the L™ (L?), whereas FOC = 1 for the
L* (H') norm.

Table 9.1.: Errors and observed orders of convergence for the backward Euler.

Level | DOF | L*(L?) | EOC | L?*(H') | EOC

0 318 [6.33-1072| — |[1.50-107' | -~

1 1266 | 1.85-1072 | 1.77 | 5.34-1072 | 1.49
2 5058 | 4.83-1073 | 1.93 | 2.24-1072 | 1.25
3 20226 | 1.22-1073 | 1.98 | 1.05-1072 | 1.08
4 80898 | 3.06-10"* | 1.99 | 5.21-1073 | 1.02

) 323586 | 7.67-107° | 1.99 | 2.60-102 | 1.00

2. Experiment (BDF2): We repeat the first experiment with the BDF2 method
instead of the backward Euler method. Now, we choose 7; = %Tz‘_l with p = 0.2.
Here, the error is assumed to satisfy Err; = C(h; + 7;)F9C. Then as above we get

ETT,L',l

(0]
EOC = —° P
log 2



The Table shows that the experimental orders of convergence, EOC

the L (L?) norm as well as EOC =~
theoretical ones (cf. Theorem [8.3).

Table 9.2.: Errors and observed orders of convergence for the BDF2.
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~ 2 for

1 for the L? (H') norm, coincide with the

Level | DOF | L*(L?) | EOC | L?*(H') | EOC
0 318 433-1072 | — |151-107' | -~
1 1266 | 1.88-1072 | 1.20 | 6.13-1072 | 1.30
2 5058 | 6.21-1073 | 1.59 | 2.54-1072 | 1.26
3 20226 | 1.76-1073 | 1.81 | 1.14-1072 | 1.15
4 80898 | 4.67-107% | 1.91 | 5.41-1073 | 1.07
5 323586 | 1.20-107* | 1.96 | 2.64-1073 | 1.03
6 | 1294338 | 3.04-107° | 1.98 | 1.31-1073 | 1.01

3. Experiment (Radau ITA): In this experiment, we examine the convergence of the
3- stage Radau ITA method (3.1)). The method is given via the Butcher tableau:

The 3-stage Radau ITA method

4—/6 88—76 296—169v6  —2+3v6
10 360 1800 225
446 | 2964+169v6 88476 —2-36
10 1800 360 225
1 16—v6 16+v6 1

36 36 9
16—6 16+/6 1
36 36 9

We compare the fully discrete solution with the piecewise linear interpolant of the
exact solution on the discrete surface I',(t). We consider the sequence of meshes

{TE(t)}4_, with 22¢¥6 42 meshpoints and a time step size sequence {7; }17

. For each

mesh ’775, we solve the parabolic equation on the time interval 0 <t < 1 using the

time step size 7; for i =0, - - -

,17. Then, we collect the errors e(x,t) = un(x) —u(x, t)

(with nT = t) at the mesh points of the surface into a vector e € R" and consider the
norm and semi-norm defined by the mass and stiffness matrix, respectively, at time ¢,

Error (M):
Error (A):

((e|M(t

)en'?,
|

|
((e|A(®) en'?.
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In Figure we plot the error for the Radau ITA in these norms versus the time
step size. We recognize two regions: In the region where the time discretization
error dominates the spatial one, we observe that the experimental convergence rate
coincide with the classical order 2 x 3 + 1 = 5 of the method. In the complementary
region, for smaller time steps, we observe a faster convergence with respect to the
spatial refinement in the L?-norm than in the energy seminorm. The observed results
match the theoretical ones perfectly (cf. Theorem .

Radau IIA L2 error Radau 1A H' error

107
107k >
10°
107 ,
g $ 10 F
4 =
5107 5
£ £,
im] 1 10
5|
10°% 258 DOFs —— 258 DOFs
1026 DOFs - 1026 DOFs
100 —— 4098 DOFs 107 —— 4098 DOFs
—— 16386 DOFs —— 16386 DOFs
---Slope =5 --- Slope =5
107 ; 0”° :
0 -2 -1 C 1 -2 -1 C
10 10 10 10 10 10

Stepsize Stepsize

Figure 9.1.: Errors of Radau ITA scheme in the L?norm (left: Error (M)) and the energy

seminorm (right: Error (A)) vs. time step size for four spatial refinements at
time t=1.

4. Experiment (Adaptive Radau ITA): We repeat the 3. Experiment (Radau ITA)
with variable time steps as provided by the RADAUS5 code of [27]. In Figure we
plot the errors in the M-norm as well as in the A-seminorm versus the computing

time in seconds on a standard PC for ten local error tolerances ranging from Atol =
Rtol = 107! to Atol = Rtol = 10710.

Adaptive Radau IIA L2 error Adaptive Radau IIA H' error

2
——258 DOFs 10 ——258 DOFs
1026 DOFs 1026 DOFs
_3 —=— 4098 DOFs —=— 4098 DOFs
10 ¢ —— 16386 DOFs 1 073 —— 16386 DOFs
—_ —4 —
S10E \ 1< \
= e 4
5 . 5 10 \
w10k E L
- 107
_7| —6
10 ‘ ‘ ‘ 10 ‘ ‘ ‘
10° 10’ 10% 10° 10° 10° 10’ 10° 10° 10
CPU time (s) CPU time (s)

Figure 9.2.: Errors of the Radau IIA in the L?-norm (left: Error(M)) and the energy

seminorm (right: Error(A)) vs. CPU time for four spatial refinements and ten
tolerances at time t=1.
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5. Experiment (BDF): In this experiment, we examine the convergence of the BDF
schemes of order k = 4 and k = 5. This is done exactly as in the Experiment
2 for the implicit Runge-Kutta method by using the BDF scheme for the time
discretization instead. The starting values ug,--- ,ui_1 are taken to be the exact
solution values at the nodes, i.e., for j =0, -,k — 1, we set (u;); = u(a;(t;),t;) for
i=1,...,N, with t; = j7. In Figures 0.3 and 0.4} we plot the errors in the M-norm
as well as in the A-seminorm at time ¢ = 1 versus the time step size. In analogy to
the 3. Experiment for the Radau IIA method, the optimal convergence order in time
is observed in the region where the temporal error is dominant. In the other region
where the spatial error is dominant, we see that, the convergence with respect to the
spatial refinement in the L?- norm is faster than the one in the H'-seminorm. Both
conclusions are in agreement with the convergence results as stated in Theorem

1 BDF4 !_2 error

1 BDF4 H' error

—-258 DOFs
1026 DOFs

258 DOFs
1026 DOFs

—4098 DOFs —4098 DOFs
—+16386 DOF| —-16386 DOFY
-~ Slope =4 -- Slope =4
6| -5
17 107" 00 %2 107" 10°
Stepsize Stepsize

Figure 9.3.: Errors of the BDF4 scheme in the L?- norm (left: Error (M)) and the energy
seminorm (right: Error(A)) vs. timestep size for four spatial refinements at
time ¢ = 1.

, BDF5 L? error . BDF5 H' error

—~-258 DOFs
1026 DOFs

—--258 DOFs
1026 DOFs
—4098 DOFs —4098 DOFs
——16386 DOF| —-16386 DOF
-- Slope =5 -- Slope =5
-5
107 =} 0
107 10 107 10
Stepsize Stepsize

Figure 9.4.: Errors of the BDF5 schemes in the L2- norm (left: Error (M)) and the energy
seminorm (right: Error (A)) vs. timestep size for four spatial refinements at
time ¢ = 1.
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Example 9.2
We choose a time-dependent surface of the form

t t
['(t) :== < x1 + max(0, x1)t, 9(x, )T , g(z, s cx eT(0) = S2 7
Va3 +a3 23+ a3

glz,t) = e 2 Jad 4+ 23 + (1 — e %) ((1 — x%) (x% + 0.05) +23/(1 — :U2)> .

We consider the parabolic equation (9.1) posed on the above surface on the time interval
[0, 1], with right hand side f = 0 and initial data u(x,0) = x122. The surface evolves from
an initially spherical shape at ¢ = 0 to a “baseball bat” like shape. In this experiment,
we compare three BDF methods, namely, the backward Euler method (BDF1), BDF2
and BDF4. First, we construct a reference solution by taking the discrete surface I'j,(t)
with 4098 meshpoints and the small time step size 7 = 10~ and then apply the ESFEM
coupled with BDF1 method. Next, we take the same mesh but a different time step size
7 =5 x 1072 and conduct three experiments with BDF1, BDF2 and BDF4. The starting
values for BDF2 as well as for BDF4 are determined by the constructed reference solution.
In Figure we show snapshots of the discrete solution for the four different experiments.
Reading from top to bottom, each subfigure presents the reference solution, the solution
by BDF1, by BDF2, and by BDF4. As theoretically expected, we observe a convergence
to the reference solution when the order of the scheme is increased. The computational
time of the reference solution with the small time step size is 264 seconds, whereas the
computational time of the schemes with the larger time step is approximately 3 seconds.

(9.3)
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of the form ([9.3]). Reading from top to bottom, each subfigure shows results of
the BDF1 scheme with the uniformly small time step size 7 = 10™% and the
BDF1, BDF2 and BDF4 schemes with the larger time step size 7 = 5 x 1072,






Part 11.

Full Discretization of Wave Equations on
Evolving Surfaces

75






10. Wave Equations on Evolving Surfaces

In this chapter, we derive a linear wave equation on a given time-dependent surface which
is the natural analog of the classical acoustic wave equation on a fixed spatial domain. We
begin with some basic definitions and results from elementary differential geometry that
are necessary to describe the mathematical model. Next, we use the Hamilton variational
principle to derive the wave equation on an evolving surface, where we consider a Lagrangian
that is the analog of the Lagrangian for the acoustic wave equation on a fixed domain. We
introduce the weak formulation and prove the well-posedness of the initial value problem.

10.1. Basic notation

For a time interval ¢ € [0,7T], we consider a smoothly evolving family of smooth m-
dimensional compact closed hypersurfaces I'(t) in R™"! without boundary. The unit
outward pointing normal is denoted by v and depends smoothly on time t.

We assume that the surface I'(t) is generated by the smooth map
®: Ty x [0,T] — R™™ ®(Ty,t) =T'(¢t),

where I'g = I'(0), and assume that ®;(-) = ®(-,t) : 'y — I'(¢) is a diffeomorphism for
every t € [0,T]. We can then represent the surface I'(t) as

I'(t) = {z = ®(zo,t) |z0 € To}.

The velocity of the material points z(¢) on the surface I'(¢) is given by
i(t) = v(a(t), 1) = @ (O (a(t), 1) for a(t) € (1),

We define the space-time surface as

Gr= |J @) x{t}.

te[0,7]

In the following, we omit the omnipresent argument ¢ in the surface I'(¢), wherever it is
clear which surface is considered or whenever the stated relations are valid independently
of the time ¢.
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The tangential gradient of a smooth function g : I' — R is given by
Vrg=Vg—-Vg-vv,

where g is an extension of g to an open neighborhood of I, Vg denotes the usual (m + 1)-
dimensional gradient and a - b = Z;”jll a;b; for vectors a and b in R™*! The tangential
gradient only depends on the values of g on the surface I and is independent of the choice

of the extension with Vrg-v = 0.

The Laplace-Beltrami operator on I' is the tangential divergence of the tangential
gradient

m+1

Arg=Vr-Vrg= Y (Vr);(Vr);g,
j=1

and the Green’s formula on T'(0T" = ) reads

/Vrg-er = —/ pArg. (10.1)
r r
The material derivative of a smooth function g : G — R is given by
g
0%g=— -V 10.2
9=, Tv Vg, (10.2)

which only depends on the values of the function g on the space-time surface Gr. For a
more detailed discussion concerning surface gradients and material derivatives, we refer
the reader to [21) [I4].

We use the notation L*(T") and H*(I") for the standard Sobolev spaces on a surface I'
for 1 < k < oo. We will also work with the Sobolev spaces:

T
2 k T 2
L>®(Gr; LF) = {g tGr — R tess sup |lg(,0)[[prre < oo} ,
0<t<T

L®(Gp; HY) = {9 tGr — Rt ess sup g )| ge(ry < OO} ,
0<t<T

with 1 < k < co. Due to the fact that ®; is a diffeomorphism between I'y and I'(¢), we
note the relation

g € H¥(I(t)) <= § € H"(To),

for the functions g(-,t) : T'(t) — R and g = go ®; : 'y — R. For more information about
Sobolev spaces, we refer to the monographs [2] and [47].
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10.2. Hamilton’s principle of stationary action

With the Lagrangian (kinetic energy minus potential energy)

. 1 o |2 1 2
L(u,0%u,t) = 3 /F(t) |0%ul|” — 3 /F(t) ‘Vp(t)u‘ (10.3)

we consider the action integral
T
Slul = [ £(u(t),0%u(t).0)dt (10.4)
0

for u(t) = u(-,t) € H(I'(t)). The analogous action integral on a fixed domain (2 instead
of moving surfaces I'(¢) is minimized by solutions of the classical acoustic wave equation
0?u — Au = 0. In our situation, we arrive at the following partial differential equation
which is called the Jenner equation in [16].

Lemma 10.1

If u : Gr — R is a smooth function that extremizes the action integral S[u] among all
smooth functions on G with given end-points u(-,0) and u(-,T), then u is a solution of
the Euler—Lagrange partial differential equation

0°0%u(z,t) + 0%u(z,t) V) - v(z,t) — Apgyu(z,t) =0 (10.5)

forx eT(t) and 0 <t <T.

We refer to as the wave equation on the evolving surface. An inhomogeneity
f(x,t) on the right-hand side of is obtained by adding the term fr(t) fu to the
Lagrangian. Note that it is easy and straightforward to extend all of the upcoming results
to the inhomogeneous problem.

PROOF
The result is a consequence of the Leibniz formula on surfaces [14, Lemma 2.2]:

d
— = 0°g + gV - v. 10.6
p” /F(t)g /F(t) 9+9Vrqu) v (10.6)

Computing variations of the action while keeping the endpoints of u(.,t) fixed (du(0) =
du(T) = 0), using ([10.6) and partial integration, we get

dS|u)

T
= 6:05’ (u+ €du) = /0 /F(t) (6 w0®du — VF(t)UVF(t)(SU> dt

Tq T
:/0 pr /F(t) 0%ududt —/0 /F(t) (0 O*udu + 0°uduVry - v+ Vp(t)uvp(t)éu) dt
T
= 7/ / <8°a'u + a.uvl"(t) S — Ap(t)u> oudt = 0.
0 Jrw

With the fundamental lemma of the calculus of variations we obtain the result. n



80 10. Wave Equations on Evolving Surfaces

10.3. The mathematical model

We consider the initial value problem for the linear wave equation on evolving surfaces

0°0%u(w,t) + 0%u(x,t) V) - v(z,t) — Aru(r,t) = 0 onGr
u(-,0) = wup onI'(0)
0%u(-,0) = ap onI(0)

with given initial data ug € H?(I'(0)) and w9 € H*(T'(0)).

Definition 1 (Bilinear forms)
As in Chapter |6, we define the bilinear forms for w,p € HY(T') as

CL(’UJ,QO) :/erw'vFQDa
m(w, ) :/ngo,

o(viw,9) = [ (Tr-v)we,

where the forms also depend on time t.

Definition 10.3 (Weak solution)
We say a function

w e L*(Gr; HY) with 8°u € L*(Gr; HY), 0°0%u € L*(Gr; L),
is a weak solution of the wave equation (10.7)), if:
e For almost t € [0,T]

m(8°0°u, ) + g(v; 0%u, ) + a(u, ) =0  for all p(-,t) € HY(T(t)).

e u(-,0) =up and O*u(-,0) = 1.

Lemma 10.4 (Weak form)
A weak solution u satisfies for almost every t € [0,T],

d

2 (0%u, 0) + alu, ) = m(8%u, %),
for all ¢ € L*(Gr; HY) with 0°¢ € L?(Gr; L?).
PROOF

(10.7)

(10.8a)
(10.8b)

(10.8¢)

(10.9)

(10.10)

By multiplying the above equation ((10.7) by a test function ¢, integrating over I' and

performing integration by parts, we obtain

0 =m(0°0°u, ) + g(v; 0°u, ) + alu, ¢)
= m(0°0%u, ¢) +m(0°u,0°p) + g(v; 0°u, p) + alu, p) — m(0*u, d*p)

d
— am(a'u, ) + a(u, ) — m(0%u, 0%p)

where we made use of the transport Lemma [6.4
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Theorem 10.5 (Existence and uniqueness of weak solution)
There exists a unique weak solution of the wave equation (10.7)) with

u € L®(Gr; H?),0%u € L®(Gp; HY)
9°0°u € L>®(Gr; L?)

Proor

Let {cpj }ien be the eigenfunctions of the the Laplace-Beltrami operator on I'y which form
an orthonormal basis of L?(I'g) and orthogonal basis of H!(T'g). With the help of the
diffeomorphism

P : Ty — F(t),
we define

0 (®e(-),) = 92(-).

For any function g € HY(T'(t)) and T'(t) > # = ®;(y), we then have
g(z,t) = g(Py(y Za] cpj ZO‘J ©j(z,t). (10.11)

We also note the transport property

%y) = 0. (10.12)

0%pj(x,t) = 7%

i(@(y.1).1) =

We now proceed similarly to the proof of Theorem 3 in [20, Section 7.2].

Galerkin ansatz: We consider the approximation of the problem ((10.10) on Xy (t) =
span{pr, -+ ok Find un (- 6) = Y2, g5()i (-, £) € Xn(t) such that

e For almost every t € [0, 7],

%m(a un, @) + a(un, @) = m(0°uyn,0%p) for all ¢ € Xn(t). (10.13)

o un(-,0) =Y gm(uo, ¢j)p; and 0®un(-,0) = 3o m(io, @;)e;.

Using the transport property ((10.12)), we find that 0®un(-,t) as well as 9*0®un (-, t) belong
to the finite dimensional space Xy (t). With the standard theory of ordinary differential
equations, one easily show that there exists a unique solution uy of the system ((10.13)).

Energy estimates:We prove some energy estimates which we will need when sending
N — o0:
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(1) We choose ¢ = 0®uy in ((10.13)) and use the transport Lemma to obtain

d
%m(ﬁ un,0%un) + a(un, 0%uy) = m(0%upn, 9°0%uy)
1d 1 . .
§£m(3 un, 0%uy) — 2g(v76 un, 0°un).
Again with the transport lemma and Cauchy-Schwarz inequality , it follows that

d
am(a'uz\[, 8'uN) + ﬁa(uN,uN) = b(v;un,un) — g(v,0%upn,0%uN)

< O (I1*un 32y + IVr@un e ) -

ot ey + 5 | o

Applying Gronwall’s lemma, we arrive at the first estimate

2
sup [|0%u
o] 0% 22qro) tef0,7) 20 (1))

<C (H(‘)'uN( MZ2 oy + Vr@un (0 )H%2(I“(0))) . (10.14)
(2) By the transport Lemma we also have

am(uN,uN) =2m(0%un,un) + g(v;un, un).

Thus using the Cauchy-Schwarz inequality and the above estimate ((10.14]), we get

d .
T lunllZ2 oy < CllunliZeay + C (Hf? un () Z2(roy) + HVF(O)UN(O)”%Q(F(O))> :

Once again applying Gronwall’s lemma, we obtain the second estimate

sup_[lunl|72 () < C (||3'UN(0)||%2(F(0)) + HUN(O)”%{l(F(O))) : (10.15)

t€[0,T]

(3) It remains to bound 9°0*uy in L?. To do so, we first take the time derivative of the
Equation (10.13) with ¢ = ¢; and use the Transport Lemma twice to find
m(@Puy, ;) + 9(v;0Pun, 9;) + a(0®un, ¢;)

d
+ b(v;un, pj) + ag

where the superscript (¢) denotes the ¢-th material derivative. By the transport
lemma, we note that (" = d/dt)

d d
dt g(v; 0%un, ;) = dt/(VF 0)0*un;

= /F(VF -v) 0%ung; + /F(Vp : v)a(Q)Uij + /F(Vp -0)20%uNpj

=: Fi(p;).

(v;0%un, ;) =0, (10.16)
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Next, we multiply the equation (10.16) by q;»/ (t), sum over j and use the Cauchy-
Schwarz inequality, Young’s inequality and the Transport Lemma [6.4] to estimate

m(@®uyn, 0P uy) + g(v; 0P un, 9Pun)+
+ a(0®up, 8(2)uN) + b(v; un, 8(2)uN) = —F1(8(2)uN),

as
d d
4 a@, 12 Ao 9 unl?
10 un 2y + 2 IVrotun e e
<C (\|3(2)UNH%2(F(75)) + ||8°UNH§{1(F(1:))> — 2b(viun, 0P uy), (10.17)

where we have used that sup;c(o 71([|Vr - vl Lo (re)) + [[(Vr - ) || Lo (r(2))) 18 bounded,
since the velocity v of the surface is smooth, to bound

A (0P un)| < C (110 un|a ) + 10%unll2ry) -

The next step is to estimate b(v;uy, 8(2)uN). The Transport Lemma and the
relation

m—+1
8‘fo = Vpﬁ’f — D(U)fo with ’D(’U)ij = (VF)in — Z VlVi(vF)j'Ul,
=1

which is proved in [I8, Lemma 2.6] yield

/Ot b(v; un(s), 0Puy(s)) ds = /

t
( B(U)Vp8(2)uNVpuN> ds
0 T'(s)

— /Ot (/F( )8°(B(U)VF8.UNVFUN) _ (8.8(0))VF8.UNVFUN> ds

t
—/ ( B(v)Vrd*un0®*Vruy) —B(v)D(v)VFG'uNVpuN> ds
0 I'(s)

t d :
o ds I'(s) 0 T(s)

_ / t ( / (a°B(v))vpa°qupuN> ds
0 I'(s)

t
- / ( / B(v)vpamNa'vpuN)—B(v)p(v)vpamwpw) ds
0 I'(s)
1 . .
< 4Ivro un (W20 + CIVEun 22y + ClIVEO* un (0)[172 (1))

t t
+ CIVrun (0) 17200y + C | IVrunlemeyds + C | IVr0®un |72 ds-
oy € | (X)) ; ()
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Integrating the equation (|10.17)) and using Cauchy-Schwarz inequality, Young’s
inequality and the above estimate, we arrive at

1 [
10Pun ()20 + 5Ivro un ()1 720y
t
<C [0 un () e + 708 () Fagr)ds

t
+ C/o (10%un ()1 72(r(s)) + IVrun (9)[172(r5)))ds + ClIVEun (Ol Z2 0

+ [V un (0)[ 7200 + CIVrun (0)l[72(0y + 10 un (0)[172(r(0))-
(10.18)

Inserting the bounds ((10.14) and ([10.15)) into (10.18) and applying Gronwall’s in-

equality, it follows that

sup [0 un (8)l|720y) + sup Vo un ()72
te[0,T] te[0.7]

< € (10Pun () 22y + [ Vr0) 0" un (0)|(r(oy))
+C (Ha'UN(O)H%%r(o)) + HUN(O)H%N(F(O))) (10.19)

Keeping in mind that the basis functions {¢; }?’;1 are the eigenfunction of —Ar (g,
we deduce for the initial data

lun (011 r(oy) < Clluollzr oy
18%un (0) 1371 roy) < Clldoll o))
Since 9P uy(0) € Xn(0), we have from and the Transport Lemma [6.4] that
m(0Pun(0),0Pun(0)) = — a(un(0),0Pupn(0)) — g(v; °*un(0), 0P un(0))
< | Areun (0)| 2200y 18P un (0] L2 (0 0))
+ C10%un (0) 22 (r (o) 10@un (0)| 221 (0y) -
Thus
|’a(2)UN(O)||L2(F(0)) < HAFOUN(O)||L2(F(O)) + C||8'UN(O)”L2(F(0))-
We also have that A2 un(0) € Xn(0) and m(un(0), 9}) = m(ug,¢}) for j =0,..., N,
therefore
|Aroun (0)[172 10y = m(Ar,un(0), Ar,un(0)) = m(un(0), AZ un(0))
= m(ug, At un(0)) = m(Ar,uo, Aryun (0))
< ||[Aryuollz2(r o)) 1Arun (0)[ L2 (0 (0))-
Thus, we find

18P un (0)]| 220y < CUIAT ol L2(r(0)) + lltoll L2 (r0)))-
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(5) Inserting the estimates for the initial data into (10.14)), (10.15) and (10.19)), we

discover

sup_[lun (830 0@y + sup [0%un () ey + sup 18P un ()32
te[0,7 te[0,7 te[0,7T]

< C(|Juoll g2(r(oy) + 1ol g (roy))-  (10.20)

Passing to limits: From the energy estimates (10.20)), we infer that there exists a
subsequence {uy, }?°; C {un}¥_; and a u € L*(Gr; H'), with 0°u € L?(Gp; H'),0°0%u €
L?(Gr; L?) such that

un, = u weakly in  L?(Gp; HY)
0*un, — 0%u weakly in  L?(Gp; HY)
0°0%uy, — 0°0°u weakly in  L*(Gr; L?)

Since the functions ¢;(-,t) are dense in H*(I'(t)) cf. (10.11)), we deduce
m(0°0%u, @) + g(v; 0%u, @) + a(u, ) =0 for all ¢(-,t) € HY(I'(t)).
In a standard way (cf. [20, Section 7.2.2], one can verify that
u(-,0) = up and 0%u(-,0) = up.
Thus, v is a weak solution of the wave equation (|10.7]).
Uniqueness: For a weak solution u of , using the same arguments as above

(10.15)), we discover

2 -2 2
2 el < © (Il 12 roy) + ol o))

From the linearity of the problem and the application of this estimate to the difference of
two weak solutions, we see that there can be only one weak solution.

Regularity: From the energy estimates (10.20f), we deduce that the limit function u

satisfies

sup ||u||? + sup [0%ul? + sup [|0@ul?
Sup [lyPerey S 1%l 51 (0 ey i 10 ull 72y

< C(lluoll (o)) + ol royy)  (10.21)
By the elliptic theory on smooth surfaces (see [3] and [47] for more details) and the relation
au, p) = —m(9°9%u, p) — g(v;®u, ) for all p(-,t) € H'(L (1)),
it follows that u(-,t) € H*(T'(t)) and
ullr2 gy < CUOP U2y + 10°wl 20 )-
Combining this estimate and completes the proof. [






11. Variational Space Discretization

This chapter describes the variational space discretization of the wave equation using the
evolving surface finite element (ESFEM) method of Dziuk & Elliott [14]. The variational
principle is discretized with piecewise linear evolving surface finite elements, which will
lead to a time dependent Hamiltonian system.

11.1. Recap: The evolving surface finite element method

Following [14], the smooth surface I'(¢) is interpolated at nodes a;(t) € I'(¢t) (i =1,...,N)
by a discrete polygonal surface I'j,(t), where h denotes the grid size. These nodes move
with velocity da;(t)/dt = v(a;(t),t). The discrete surface

= U E®

E)eTn(t)

is the union of m-dimensional simplices E(t) that is assumed to form an admissible
triangulation 7, (t); see [14] for details. The finite element space on the discrete surface
' (t) is chosen as

Sp(t) = {pn € CO(TH(1)) : ¢ulp € Py for all E € T(t)},

where IP; denotes the space of polynomials of degree at most 1. Let x;(-,t) (j =1,...,N)
be the nodal basis of Sy,(t), given by x;(a;(t),t) = 6 for all 4, so that

Sh(t) = Span{Xl('7 t)v s 7XN('7 t)}
We define a velocity for material points X (¢) on the surface I'y,(t) by

N
X(t) = Vi(X(t),1), Vilz,t) Zv t)xj(x,t), xeTy(t). (11.1)
7j=1

Then the discrete material derivative on I'y () is given by

Ogn

11.2
5t + Vi - Vo, (11.2)

Ohdn =

87
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The construction is such that the discrete material derivatives of the basis functions satisfy
the transport property [14, Proposition 5.4]:

Orxj =0. (11.3)
The discrete surface gradient is defined piecewise as
Vr,9=Vg—Vg-vpup,
where v, denotes the normal to the discrete surface.

After the discretization of the surface and setting the appropriate definitions on the
discrete surface I'y(t), we now formulate the semi-discrete Hamilton principle as follows.

Problem 11.1 (The semi-discrete Hamilton principle)
We replace the Lagrangian (10.3|) with the Lagrangian on the discretized surface

1 1
Lo (Un, 02U, t) = 7/ ]8,;Uh|2—7/ Ve, Upl? (11.4)
2 Jr4(t) 2.Jr,)
and minimize the action integral
T
SlUnl = [ L0 (UA(0), 01U (0).0) i (11.5)

for Up(t) = Up(-,t) € Sp(t).

With Up(-,0) = UY and 9pU(-,0) = U, where UY and U € S,(0) are appropriate
approximations of ug and g, respectively.

Remark 11.2
The problem (11.1)) turns out to be equivalent to the Galerkin discretization of (10.10)):
For all temporally smooth ¢y, with ¢p(-,t) € Sp(t) and for all t,

d
— U +/ A\ U, -V :/ U . 116
dt /Fh(t) hUn @1 gy TR Ty (1) Ph hUnOyp O (11.6)

Ty(t)

11.2. Matrix-vector formulation and Hamiltonian system

We denote the discrete solution
N
Un(-t) = q;(t)x;(-,t) € Sh(t)
j=1

and define ¢(t) € RY as the nodal vector with entries g;(t) = Up(a;(t),t). Then by the
transport property (11.3), we have

N
MU 1) =D 45()x (1) € Si(t),
j=1
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where ¢; = dg;j/dt. We often abbreviate Up(t) = Uy(-,t), OpUL(t) = ORUL(-,t), x;(t) =
x;(-, 1), ete.

The evolving mass matrix M (¢) and the stiffness matrix A(t) are defined by

(t)ij Fh(t)X ( )XJ() ()J A () ()X (t) Fh(t)X]()

for i,7 = 1,...,N. The mass matrix is symmetric and positive definite. The stiffness
matrix is symmetric and only positive semidefinite. Its null-space is spanned by the vector
(1,...,1)T because we consider closed surfaces.

With these matrices, the discrete Lagrangian becomes

1 1
Ly(Un, OpUp, t) = §qTM(t)q - iqTA(t)q =: L1(q,4,1) (11.7)

with an obvious doubling of notation. A simple calculation gives the following result.

Lemma 11.3
The minimizer of the action integral

T
Sulal = | Lalalt),a(e), ) a (11.8)

is a solution of the Euler-Lagrange equation

4
dt

With ¢(0) = a0 = (Uf(a;)) and 4(0) = do = (UP(a;)).

(M(#)q(t)) + A(t)q(t) = 0. (11.9)

By introducing the conjugate momenta

oL,

p(t) = (@), 4(t), 8) = M(1)q(t),

we reformulate ((11.9)) as the Hamiltonian system

p(t)

—A(t)q(t) (11.10a)
4(t) !

M) p(t) (11.10b)

corresponding to the time-dependent Hamiltonian

1 1
H(g,p,t) = 5p' M(t) p+ 77 At)g.

Putting the pieces together, we obtain the initial value problem:
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Problem 11.4 (The Hamiltonian system)
The system ([I1.10) can be written in the variable y(t) = (p(t), q(t))" as Hamilton’s equations

{ y(t) :J_lH(t)y(t)T o (11'11)
y(0) =0 = (qo0,p0)" = (q0,M(0)go)" ,
with

J:( 0 IN), H(t):<M(t)_1 0 >€R2NX2N, (11.12)
—Iy 0

and Iy is the identity matrix of dimension N.

RNXN

For a symmetric positive definite or semidefinite matrix G(t) € , we define the norm

or semi-norm, respectively, for w € RY:
2
w|gq) = (w]G(H)|w) = w'G(t)w

The following lemma from Chapter [2| (Lemma will be the only result needed from
the evolving surface finite element method in order to prove stability estimates for various
time discretization schemes.

Lemma 11.5

There are constants u, k (independent of the mesh-width h) such that

w' (M(s) = M(t))2 < pls = t] [w|arey 12l aacey (11.13)
wh (M(s)™H = M) 1)z < pls = t] fwlpry— [zl (11.14)
w'(A(s) = A(t))2 < Kls —t] [w]aw) 2] ) (11.15)

for all w,z € RN and s,t € [0,T).

11.3. Time dependent energy norm

With the symmetric positive definite matrix

~ M)~ 0
H(t) = ( 0 A+ M(@) >

c R2N><2N’

we define the associate time-dependent energy norm for y = (p, ¢)T on R*V:
lyl? = {g|A) + M) g) + (p|M (1)} p) = <y (1) y) =y H(t)y.  (11.16)

Note that for finite element functions Uy, (-,t) = ] 1¢(t)x;(-,t) € Sp(t) with the vector
of nodal values q(t) = (g;(t)) € RY and p(t) = M(t)4(t), for y(t) = (p(t), q(t))T, we have

ly(®)117 = (@) IM@)]a()) + (a(t) [A®) a(0)) + (p() [M (&)~ |p(1))
= 100125000 + IVma@Un GO ) + NORURC O,y (11:17)

In the stability analysis we will make use of the following estimates:

n
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Lemma 11.6
With p and x from Lemma|11.5 and the definitions above, we have

MOV (OVES M (11.15)
y* (Fils) ~ (D) = < (ut w)bs — ] Iyl =], (11.19)

for all y,z € R?N and s,t € [0,T).

Proor
Using the above definitions, the fact that (p|(A+ M)~!|p) < (p|M~!|p), the Cauchy-
Schwarz inequality, and Young’s inequality yield (omitting the argument t)

yTH(t)J ' H(t)yy =p"q

< Iplasan-1lala+m
1
5 (PR an-1 + lalhiar)

IN

< % (|p|?\4—1 + |Q|,24+M)

which prove the first inequality (11.18)).

The second inequality is a straightforward application of Lemma [11.9 [






12. Variational Time Discretization

In the following, we study the variational time discretization of the Hamiltonian sys-
tem (Problem . For a given set of a discrete time point 0 =tg <t; < --- <ty <T
with uniform step size 7, we want to compute an approximation ¢, of the exact solution
q(tn) of the Euler-Lagrange equation at time t = t,,. This will not be done in the
usual way by approximating the Fuler-Lagrange equations directly, but by minimizing
an approximate action to obtain a discrete Euler-Lagrange equation, which will give us a
scheme to compute g, for all 0 < n < L. In particular, we study the stability of a version
of the leapfrog or Stérmer—Verlet method under the natural analog of the CFL condition
that is required for a fixed surface. Further, we consider the Gaufi—Runge-Kutta (GRK)
methods, aiming for higher-order accuracy in time and unconditional stability of the fully
discrete scheme.

12.1. Recap: Variational integrators

We give a brief review of variational integrators which have been studied by Suris [45],
Veselov [46] and in a series of papers by Marsden and coauthors. For a comprehensive
discussion of variational integrators we refer the reader to Marsden and West [40] and [24],
Section VI.6].

We use an approximation

tn+1
Lo (s s tn) / Lh (q(t),4(t),t) dt. (12.1)

Then the action integral over the whole time interval is approximated by the discrete action
sum

L-1

Sh,T <{qn}g> = Z Eh,T(an dn+1, tn)-

n=0

Computing variations of this discrete action sum with the boundary points gg and ¢y, held
fixed, gives the discrete Fuler-Lagrange equations

DLy (qn—1,n,tn—1) + D1Lh 7 (qn, Gns1,tn) = 0, 1<n<L-1, (12.2)

where Dq and D5 denote the partial derivative with respect to the first and second argument
of Ly, », respectively.

93
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If we take initial conditions (qo, q1) then the discrete Euler-Lagrange equations ((12.2)
implicitly define a two-step integrator

(@n—1,9n) = (@n, @n+t1)

that calculates recursively the sequence {qn}OL by solving in every step the discrete Euler-
Lagrange equations.

Since we rewrote our problem in a Hamiltonian position-momenta form, we want
to have an integrator also in this form. We define the discrete momenta at every time step
n as

Pn = D2l +(qn—1,Gn, tn—1) = —D1Lp 7 (qn, Gnr1, tn),

where the second equality holds in view of ((12.2)). With this definition the variational
integrator in the position-momenta form is written as the one-step method

Pn = _Dlﬁh,T(q’RJ dn+1, tn) (123&)
Pn+1 = DoLy - (qn, Gnt1, ). (12.3b)

If we take initial conditions (go,po), then we solve the first equation for g1, then evaluate
the second equation to get pi, and repeat this procedure to get the full sequence {g, }§.

In the following, we will use the time dependent energy norm introduced in Chapter[IT}i.e,
for y = (p,q)T on R2V:

lyll? = (a1 A) + M) g) + (p[M ()| p). (12.4)

12.2. The leapfrog or Stormer—Verlet method

12.2.1. Method formulation

For a given step size 7, we choose L, -(qn, gn+1,tn) by approximating ¢(t) as the linear
interpolant of ¢, and ¢,+1 and approximating the first part of the integral (12.1)) with the
two terms of (L1.7)) by the midpoint rule and the second part by the trapezoidal rule. This
gives

T, .
Lhr (s Gn1stn) = 5 <qn+% M, 1 qn+%>
T
- Z(@n [An| an) + (gn+1 |Ans1] Qn+1>)

with Qn+% = (qn—i-l - Qn)/T7 Ay, = A(tn) and Mn+1/2 = M(tn + %7_)
Then we compute the scheme (12.3)),
, T
Pn = _Dlﬁh,T(Qna Qn+17tn) = Mn+%qn+% + EAnQn

. T
Prn+1 = D2£h,T(Qna Gni1,tn) = Mn+%qn+% - §An+IQn+1-
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Inserting the term of ¢, , 1 and solving the first equation for g, +1, we obtain:
2

A version of the leapfrog or Stormer—Verlet method (see, e.g., [23]) to the system (11.10):

_ 1 _
dn+1 = Q4n + TMnj%pn - iTzMni%Anqn (1253)
T T
Pn+1 = Pn — §AnQn - §An+IQn+1’ (12-5b)

or equivalently

T
Pnt1/2 = Pn — §AnQn (126&)
n+1 = qn + TMn__i%pn+1/2 (126b)

T
Pn+1 = Pnii1/2 — §An+1Qn+1- (12.6¢)

The scheme is explicit except for solving a linear system with the mass matrix in each
time step.

From the vectors ¢, = (¢}) and ¢, = (¢}) :== M (t,,)"'p, we obtain the finite element
functions on the discrete surface I'y,(t,,)

N N
Up =Y aixs(tn), ORUR =3 dx;(tn) (12.7)
J=1 j=1

as approximations to u(t,) and 9*u(t,), respectively.
12.2.2. Defects and errors

Let g, and p, be reference values that we want to compare with ¢, and p,, respectively
(e.g, Gn = q(t,) and pp = p(t,)). Inserted into (12.5)) they yield defects dj,; and d},_; in

_ _ IERUUE N
qn+1::qn4—rﬂ4nj%pn——ivﬂﬂdﬁj%Anqn—%dZ+l (12.8a)
~ ~ T -~ T —

Pn+1 = Pn — §AnQn - §An+1(In+1 + dfz—',—l' (12.8Db)

For the errors we use the notation

e(rIL =Gn —qn (12.9&)
e = pn —Dn (12.9b)
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and subtract to get the error equation

_ 1 _
el =el+ TMn_:%efL - §T2Mn+1%Aneg —d? (12.10a)
T T
€ﬁ+1 =ep — §An€% - §An+1€?1+1 - dﬁ+1- (12.10b)

12.2.3. The CFL condition

From now on we assume that the step size 7 fulfills the following restriction:
1
R (M@ ~2A@mM@) ) <10 (12.11)

for all 0 <t < T and for a fixed 0 < § < 1, where p(-) denotes the spectral radius. For a
quasi-uniform triangulation we have p (M(t)_l/QA(t)M(t)_l/Q) ~ h™2 so that we have a
time step restriction 7 < ch.

Under the CFL condition (12.11]), the symmetric matrix

~ 1

A(t) = A(t) — iTQA(t)M(t)_IA(t) is positive semidefinite, (12.12)
and there exists Cy such that for every e? € RY we have

(9| A(t)]e?) < (7| A(t)]e?) < Cy(e?] A(t)]e7). (12.13)

12.2.4. Stability

We denote by e, = (e%,eP) the error vector at time t,, and by d,, = (d%,dP) the defect

n'-n n»-'n
vector in (12.10). With this notation we prove the following stability result.
Lemma 12.1 (leapfrog)
There exists 19 > 0 depending only on p and k of Lemmall1.5 and on 0 of (12.11)) such
that for step sizes T < 1o satisfying the CFL condition (12.11)), the error for the leapfrog
method (scheme is bounded, fort, =nt <T, by

n
lenll, < C(lleollio + 3 Il )-
k=1

The constant C' is independent of h, T, and n subject to the stated conditions (but depends
on u, k, 0, and T).

Proor
We use a time-dependent modified energy norm on R?V: for e = (eP, ) € R?V,
2 ~ _
lellf crr = (7| M(£) + A(t)]e?) + (P [M (1) ]eP). (12.14)
Thanks to the CFL condition (12.11]), there is a constant Cy such that
lellscrn < llell; < Collell,crr - (12.15)

We prove the lemma in three steps.
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Local error: Here we analyze the error after one step, starting with e,, = 0. Thus the

error equation (|12.10f) simply reads

ens1 = —dp (12.16a)
T
eyl = —§An+1€%+1 —dpiy- (12.16b)

Using the semi-norm equivalence ((12.13]) for the first equation of (12.16|) yields

(s [Ant1 + Mugaleny) = (diyy [Mig1 + Anga| dy )
< Co (diy Mg + A | i) (12.17)

Furthermore we get by the second equation of ((12.16])

<€£+1 +di ’Mn_il‘ €ni1 t dﬁ+1> = 372 <egz+1 ‘An+1Mn_+11An+1’ eqqz+1> :
Thus we obtain

1
P —11].p _ 19/ 4q -1 q
<6’n+1 ‘Mnﬂ‘ €n+1> = ZT <€n+1 ’An+1Mn+1An+1‘ en+1>

=2 (b (Mt [ dny ) = (b Mk [ b )

We estimate the second term on the right-hand side by the Cauchy—Schwarz inequality
and Young’s inequality to obtain

1
D -1 1_p 2/.4 -1 q
<6n+1 ‘MnJrl’ €n+1> a7 <€n+1 ‘An+1Mn+1An+1‘ en+1>

2(db .y M|y ). (12.18)

N =

Therefore, adding (12.17)) to (12.18)) yields

lentille,,.orn < Co lldnsalle,.,, crr - (12.19)

Error propagation: We now consider one step of the error equations without defects
and estimate ||e,41]|¢,,, in terms of ||e,|s,:

1
-1 27 -1
el =el+ TMn_i_%eg — 57 Mn+%An€% (12.20a)
T T
€nt1 = €h — 5Aneh = SAnt1€0 - (12.20b)

We start by direct computation taking the squared A-seminorm of e 11 at time ¢4
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and the squared M ~!-norm of €/, | at time ¢, 1 to find
2

<€7qm+1 | Ayl €Z+1>

= (el | Ansale8) + 27 (e [Ansa| M

2 -1
Ti6h >—T <€%|An+1‘Mn+%Ane%>
+T2 <eﬁ MTL_—i%AnJ'_an_il eg> < -1 n+1Mn__:% An€%>
1
+ZT4 <eq AM | An+1M An eq>
-1
<efz+1 Mn+% G‘Z+1>

<ep M +12 eg> —7‘<€$L Mn_j% Ane%> —T<eﬁ Mn_j% An+1e%+1>
1 _ 1 _
+ ZTQ <6% AnMnJ:%An 6%> + 57'2 <14n67q1 Mni% An+162+1>
1 2 q -1 q
17 (Entr [Anti M Angajeny )
Expressing el | by (12.20a)), it follows that
-1
<6£+1 Mn+% 6‘Z+1>
= <efl MT;I% efl> —T<efl Mnj% Ane%> —T<e’,’l Mnj% An+1e%>
— 72 (e MY A MY | e —1—17'3 e IM " AnaM Apel
n n+% n+1 +% n 2 n+1 n€n
1 _ 1 _
+ 17’2 <e% AnMn_&%An e%> + 57—2 <Aneq Mn—i}% An+1€%>
1 _ _ 1
—I—§T3 <Ane% Mn_:%An_,_an_&% efL> 1 <eq A, M An_HM An eq>
1
+ Z 2 <€Z+1 An+1M An+1 + >

Adding both expressions leads to

1 1 -1
<€Z+1 Any1 — ZTQAn+1Mn+%An+1 6%+1> + <€Z;L+1 M 1 €ﬁ+1>
1 _
= (el |Aps1]ed) + <ep M 4:1 ep> — 57'2 <An+1e$l Mnil Ane%>
2

M—l

L 5
—1—17' <Ane% nd

Ane%> + <e§€ |Any1 — Ayl TMn_J:%efl> . (12.21)

We estimate the terms on the right-hand side of (12.21)) separately, starting by the

first and second term, then the third and the fourth together, and in the end the last
term.
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In the first and second term on the right hand side of (|12.21) we write 4,11 =

(Apt1 — An)+A, and Mnjl = (Mn_:l — M,n_l) +M,; ! respectively. Then conditions
2 2

(11.15) and (11.14]) yield

(€h [Anta] €h) = (e | Ant1 — Anl€f) + (€], |An] )

< (1+kT) (el |An|el) (12.22)

ef;;> < (14 pr) (eh |17 eh). (12.23)
In the third term of (12.21)) we also write A, 11 = (Ap+1 — An) + Ay, and add it to
the fourth term on the right side of (12.21)) to get

M1,
n+3

1 _ 1 _
— 57‘ <An+1e% Mnj% Ane%> + 17'2 <Ane% Mnj% Ane%>
1 _ 1 _
— <eg]An+1 — An‘ - 2T2MniéAne%> ~ 172 <eg AnMnj%An e%> . (12.24)

We start by the first term on the right hand side and use condition (11.15)) and
Young’s inequality to get

1

1 _
<€%‘An+1 — An‘ - 27'2Mnj%Ane%> < Cr |€%’An 2

2ar5—1 q
T MnJr%Anen

An

111
2 _
é Cr <|€%|An + Z ‘27_2Mnj%An€%

2
An

Using the CFL condition (12.11)), similar arguments to those used for (12.22) and
(12.23]), and (12.13)) yield that this is further bounded by
| )
A1

1 _ 1)1 _
<e%‘An+1 — An| - 27-2Mnj§Ane%> <Cr (yemn +3 ’272Mni%AneZ

1
<or <|e%\in 57 A3 )
n+%

1
<Or (leall, + 37 1Anctli )

< Cy T<e% ‘ﬁn‘ e%>.

For the last term of (12.24) we write Mn_j% = (Mn_ié - Mn_1> + M, ! and use
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condition ((11.14)), the CFL condition (12.11)) and (12.13]) to get

1
- 172 <e% e%>

_ 1 2 q —1 -1

1 n
2

-1
AL A,

Aneg> - %2 (ef |Anhty Ay )
< Or (M A [ Anl ) = 57 (et [ 4000 A, )

<Cyprt <e% ‘An’ e%> - %7’2 <e% ‘AnMn_lAn‘ e%> .

Ane%>

< %72 (e [ A1)+ Cp 7 (e8] A ef) . (12.25)

Combining the above bounds yields

M—l

1
n+2

M—l

1
n+3

- 57’2 <An+1€%

1
Ane%> + 17'2 <Ane%

For the last term on the right-hand side of (12.21]), we use condition (|11.15]), Young’s
inequality, the CFL condition (12.11)) to estimate

<e%‘An+1 - An’TMn_jlefL> <Cr ((e% |An|el) + i <TM;jleﬁ‘An’TM;jlefL>)
2 2 2
<Cr <<eg A et} + <ez; eg>)
< Cy (e |An|et) + (b MY eh)) . (12.26)

—1
ML

Now we take the squared M-norm of el 41 at time ¢, 1 to find
2

q
6n+1>

1) +2r (clfen) — 72 (el | Aul et} + 2 <eg

1
-3 <eﬁ Ane%> + 17'4 <e?L e%> .

The Cauchy—Schwarz inequality, the CFL condition ((12.11]) and the bound ([11.13])
yield

q
(e iy M,

= (et | M, M}

1

P
)

-1
A”Mn+%A”

—1
ML

1 _ —~
—72 <e% A, — ZTQAnMnJ:;An e?L> < (—7‘2 + 097'3) <e% ’An‘ e%>
2
3 ~1 3
T <eﬁ Mn+% Apel )y <t ]eﬁ]Mfll |Anel] -1
nry nTa




12.2. The leapfrog or Stérmer—Verlet method 101

Thus we have

(ed iy [M, a|efir) < (14 CT)[edfRy, + Crlen By + Cor (e |y ef ).

(12.27)

7_2

Combining (|12.21f)-(12.26]) and the above bound ((12.27) yields
<6Z+1 M, 1+ Apy1 — ZAnHMn::%AnH €%+1>
+ < Cn+1

i) < A+ Qo lenl?, crn- (1228)
This is almost the desired estimate, except that we have here M, /y instead of
My, 11. It remains to show that we have a bound of the same type also with M, ;.
Since by ((11.13]) and (11.14]),

q q q
€n+1> < puT <€n+1 )Mn-&-l/Q‘ €n+1>

P P
en+1>§:“ <n+1‘ n+1/2’ n+1>

q
6n+1>
2

.
ZAnJran—&-lAnJrl

M 1

q
<en+1 ‘M”‘H - Mn—l—%

< n+1

and by (11.14) and ((12.12)),
2

T
q
<en+1 e

-1 -1

1 An-i-l(MT:—&l - M,;E%)AHH

6%+1> < pre) iy |Ansalel 1),

q
en+1>

p
6n+1>)7

q
< nT <en+1

we obtain

2
T _
M1+ Angr = ZAnJrani%AnJrl

n
P
+ <en+1

HenJrlthH crp < (14 ur) <<egz+1

M1
n—&-%

which together with ((12.28]) finally yields
lentilly,y.crn < (L+CT) llenlly, orr -

(¢c) Error accumulation: A standard application of Lady Windermere’s fan (see [25] 27])
and the equivalence of norms ([12.15)) completes the proof. [

Lemma shows that the fully discrete scheme (combmatlon of ESFEM and Leapfrog
method [12.5)) is stable under the CFL condition . To overcome this time step
restriction due to the CFL condition, we consider in the next two sections fully implicit
variational time integrators; namely, the Gaufi—~Runge-Kutta methods, and we show that
they are unconditionally stable.
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12.3. The implicit midpoint rule

12.3.1. Method formulation

For a given step size 7, we choose Ly, -(¢n, gn+1,tn) by approximating ¢(t) as the linear

interpolant of ¢, and ¢,+1 and approximating the whole integral (12.1]) by the midpoint
rule. This gives

dney) = 5 (s

with g, 1 = (gn+1 = @) /75 Gyt = (a1 + an)/2, A

ntl = A(thr%T) and M,

T /.
'Chﬂ'(qnv qn+17tn) - 5 <qn+%

MnJr%

A

qn+%> )

1
n+3

M (tn + %7’) Then we compute the scheme ((12.3))

Pn = _Dlﬁd(Qna dn+1, T)

-
= Mn—&—%”n—f—% + §An+%qn+%
Pn+1 = D2La(qn, Gnr1,7)

T
:Mn+%vn+% — §An+%qn+%.

We set Ppyl = M
2

ni1d,,1 and solve the first equation for p, 1 to obtain the implicit
2 2 2
midpoint rule

T
pn_g_% =Pn — §An+%qn+%

_ T a1
Iptl = qn + §Mn+%pn+%
Gt = G+ 7ML p g

Pt =Pn = TAp 1oyt

T
We use the notation y, = (pn,qn) and Y, | (pn+1 , qn+;) to obtain:
2 2

The implicit midpoint rule applied to the Hamiltonian system (Problem [11.4)) reads
Y

T _
il =Ynt 5 T H Y (12.29a)
Y1 = Yo+ 7J T H 1Y (12.29b)

with H, 1 = H (t, + §7).
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12.3.2. Defects and errors

Let us consider the perturbed scheme

~ -1
Vi1 =n+ §J H, 1Y, +An+% (12.30a)
Gl = Gn + 1 H 1Y 1+ Gy, (12.30D)

where A 1 and d,41 are the defects obtained when inserting the values f’n 1 and g, (e.g.,

Yo =y(ta + +7) and g, = y(t,)) into (12:29).

By subtracting (12.30]) from (12.29)) and stetting E  i1=Y 1- ffnJr; and e, = Yn — Yn,
2 2 2
we get the error equations
1 .
Ep=ent §TEn+§ - An+% (12.31a)
Cnt1l = en +TE, 1~ i1, (12.31b)
where
: -1
En—i—% =J Hn—&-%En—i-%' (12.31c)

12.3.3. Stability

In analogy to the leapfrog method, we state and prove the main result of this section which
shows that the fully discrete method with the implicit midpoint rule (scheme ([12.29))) is
unconditionally stable.

Lemma 12.2 (implicit midpoint rule)
There exists 19 > 0 depending only on p and k of Lemma |2.6] such that for T < 19, the
error for the implicit midpoint rule is bounded , for t, =nt < T, by

tn) ’
Proor

The first step is to modify the errors e, and the defects d,41 in such a way that we obtain
new error equations of the form , where the first equation contains no defects. For
this purpose, we follow the idea of Kraaijevanger in his study of the B-convergence of the
implicit midpoint rule [31] and define, for given n, the new errors {€;};_, and the new

oty

n—j3

1
2 11t

n—1
Jeul, < € (neonto g, + X lo+ 855 - 85
Jj=1

The constant C' is independent of h,T and n (but depends on u,k, and T).
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defects {Sk} in the following way:

n
k=0
e =er — BpyL k=0,---,n—1
€n = €n
SO:A%
0k =0+ A1 — Ayt k=1, m—1

On=6n— A 1.
2

This gives the desired error equations for k =1, --- ,n — 1:

~ 1 .
Eppr =6t 571 (12.32a)

gk—&-l =€+ TE"nJr% — gk—i—l‘ (12.32b)

Now, we start from (12.32b|) by taking the squared norm of (€41 +gk+1) at (t, 1 =tp+ %7)
2
and estimate the terms in

Bug)+

N 2 _ A
H€k+1 + 5k+1Ht = ||€I<:H?k+l +27 <€k ’Hk+%
2

2
kt5 berd

Expressing e by (12.32al), using ((12.31c|) and relation (11.18)]), it follows that

e+ dinl,  <l@d?, + 7B, (12:33)

k+3 tk*’%

In order to bound the norm of EkJr%, we first multiply the equation (12.32a}) by EZ+% Ak+%

and obtain

|24,

tk+%

Bi).

Then, using the relation (11.18)), the Cauchy-Schwarz inequality and Young’s inequality,
for sufficiently small 7, yield

Ek+%> + %7’ <Ek+%

= (& |y Hes

2 ~ 2
<
HEk—l-% s C||ek||tk+%' (12.34)
2

Next, we write ﬁk—i—l =H, 1+ (flkH — fIkJr;) and use the condition (11.19)) to estimate
2 2

Hgk—&-l + gk+1H2 = <5k+1 + Okt ‘ﬁk-i—l‘ k41 + 5~k+1>

tot1

€r+1 + gk+1>

+ <5k+1 + 01 ‘ﬁk-i-l - fkar% €ht1+ 5~k+1>
B ~ 2
< (1+C7) HekJrl + k41 .

= <5k+1 + Ot ‘FIH%

(12.35)

k+3
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In the same way, we find

HngfH < (1+0m) |[ll7, - (12.36)

[N

Combining (|12.33])—(12.36|) yields

1], < 1+ C) @il + B,

Summing over k£ and knowing that ey = eg — g gives

n—1 n
Il < O 311, + [ ], + lleoll, -
§=0 3=0

Thus, using a discrete Gronwall inequality and the fact that e, = e, yield the stated
result. [

12.4. Gauf3—-Runge—Kutta methods

For a given step size 7, we choose L, -(qn, gnt1,tn) by approximating ¢(t) by a polynomial
of degree s and approximating the whole integral by the Gaul quadrature. Then,
we obtain the s- stage GauB—Runge-Kutta (GRK) method (cf. [24, Section VI.6] and [40]
for more details). In the following, we will then see that we have a class of fully discrete
variational schemes with an arbitrarily high order in time. Let us now start by giving a
brief review of the GRK methods.

12.4.1. Method formulation and properties

For a given step size 7 > 0, the s-stage GRK method applied to the Hamiltonian system
(11.11f) reads

S
Yoi=yn + Tzainnja =15, (12.37a)
j=1
i .
Ynt1 =Yn +T > biYni, (12.37b)
i=1

where the internal stages satisfy
Yoi = J 7 Hpi Yo i=1 s

with Hy; = H(t, + ¢;7).
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The method is uniquely defined via the so-called Butcher-tableau (cf. [27, Section IV.5]):

c A C1 ailp -+ Qi1s
bT
Cs as1 -+ Qss
‘ by --- b,

Here, the {b;}7_, are the weights of the s-stage GauB-quadrature and the {c¢;}{_, are the
nodes of this quadrature transformed to the interval [0,1]. The coefficients of the matrix
Q@ are determined from the conditions

S

k—1
> aey =
i=1

i,k=1,---,s.

|

Note that the implicit midpoint rule is the 1-stage GRK method with

L1
2|2

1

Now, we summarize the various properties of the method (cf. [27) Section IV.14]), which
are crucial in order to show the upcoming stability estimates.

e The GRK method is algebraically stable, i.e.,

b; > 0, i=1,,s, (12.38a)
biaij + bjaji - blb] =0 1,5=1,---,s. (1238b)
e The matrix @ is invertible and we denote its inverse by Q™! = [w;;]. Further,

0<c¢<1l(i=1,...,s), and by defining

. 1 . .
Q= Z:nlnnsm, B = diag (b1, ba,...,bs), C=diag(c1,co,...,¢s),

D = diag (dy, d, ..., ds) := B (C*l - I) ,
we have the coercivity condition

w'DQ 'w > aw™Dw for all w € R?, (12.39)

with o > 0 and d; > 0.

e The s-stage GRK method is of stage order s and classical order 2s.
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12.4.2. Defects and errors

Let gn,f/m and 17m be reference values that we want to compare with y,,Y,; and Ym,
respectively (e.g., Y, = Y(tn + 7)), Y i = Y(tn + ¢i7) and g, = y(t,)). When inserted into
(112.37)), they yield defects d,+1 and A,; in

S .
Yoi = Un +7 Y iV nj + Ani, i=1,-- s, (12.40a)
i=1
s ~
Unt1 =Tn+ 7Y 0¥ ni+ Ons, (12.40D)
i=1

where the new internal stages Yo satisfy
Yoi = I~ Hyi Vo, i=1 s

For the errors, we introduce the notations

€n = Yn — Yn (12.41a)
Epi = Yoi — YV, (12.41c)

and subtract (12.40) from (12.37) to get the error equations

S
Ep; :en+TZaijEnj_Ania =15, (1242&)
j=1
il .
eni1=en+ 7Y biFpni — Oy, (12.42b)
i=1
where
Epi = J 7" Hpi Eni, i=1,,s. (12.43)

12.4.3. Error equations in compact form

We rewrite the Runge—Kutta scheme ((12.42)) in a more compact form. The s x s and the
2N x 2N —identity matrices will be denoted by I; and Isy, respectively. The vector with
all components equal to one in R* is denoted by 1. Then, we put:

Q=0 Iy, bT:bT®IQN, 1=1® by,
where ® denotes the Kronecker product of two matrices. Further, with the vectors

An == (Anlv---aAns)Ta En - (Enla---vEns)Ta En - (Enla'--yEns>Ta
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and the block diagonal matrices

Jl=ILoJ1, H, = diag (Hp1, Hpa, ..., Hys),

the Runge-Kutta relations (12.42) and ([12.43) can be written as

E, =1le,+71QE, — A,, (12.44a)
ent1=en+ 70" By — 6pp1, (12.44b)

with F,, satisfying the relation
E,=J'H,E,. (12.45)

For a vector E = (E1, Ey, ..., E,)" € R2N's (Ez € R2N>, we define the norm

2
IEII; = (B

Lo @) E)=E" (Lo () B = Z 1B

12.4.4. Stability

The following stability lemma will play a key role in estimating the total error.

Lemma 12.3 (GRK)
There exists 19 > 0 depending only on u and k of Lemma |2.6] such that for T < 19, the
error for the s-stage GRK method (with s > 2) is bounded, for t, =nt <T, by

n—1 n
lenll,, <C (|€0Ht0 + 3 Al + > H5j|tj) :

§=0 j=1

The constant C' is independent of h,T and n (but depends on p,x, and T).

Proor
We prove this lemma in three steps:

(a) Local error: Here, we analyze the error after one step, starting with e,, = 0. Thus,
the error equation (|12.44)) simply reads

E,=1QE, - A, (12.46a)
eni1 =Tb E, — 6,11 (12.46b)

We multiply the equation ((12.46a)) by EZLI/LI\H (D(Qil ® I2N> and obtain

ELH, (DO' ® L) E, = TELH,, (D ® y) B,
+ ELH, (DO ® Ly) A, (12.47)

We handle each term separately, starting by bounding the term on the left-hand side
from below, and then bounding the terms on the right-hand side from above.
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~

We write ﬁn = (Is ® ﬁn(}) + (ﬁn — (Is ® ﬁnO)); where ﬁn(] = H(t,), and get
Eﬁﬁn ('Dafl & IQN) E, = EEL (IS &® j?\[no> (D(Tl (= I2N> E,
+ET (ﬁn - (IS ® ﬁno)) (Da—1 ® IQN) E,.
(12.48)

R - N\ 1/2
Since H,o is symmetric and positive definite, we define E, = <I s ® HnO) / E,.
Then, using the coercivity condition (12.39)) and the fact that d; > 0, for the first
term on the right-hand side of (|12.48]), we get

B} (I, ® Hy) (PO © Iy) By = E, (PO © Iy )
> aE? (D@ Hu) By
> c|| Enll7, (12.49)
with a constant ¢ > 0.

The last term on the right-hand side of ([12.48]) is estimated using condition ((11.19))
and Young’s inequality as follows

s

B} (H, ~ (I,® Hy)) (PO @ Lhy) E, = Y (DQ7Y) (B

%]

~

Hyi — Ho| By )

i,j=1

S
< CT YN\ Enilly, 1Enslly,

i,sj
<Oy (I1Bull?, + 1Bugl,)
]
< CT||E||} - (12.50)
Therefore, we deduce by , and , for sufficiently small 7, that
IIB.I7, < ¢ ELH, (DO~ @ Ly ) By, (12.51)

For the first term on the right-hand side of (|12.47]), we use the relations ((12.45)),
(11.18)), and (11.19) to get

TE'H, (D® Ly)E, =7ETH,(D® Ly)J 'H,E,

S
=7 diEniHpiJ " HpiEni
=1
' S
<orY 1Bl
i=1
< CT||Enll,- (12.52)



110

12. Variational Time Discretization

As above, the right-hand side of (12.47)) is estimated using the Cauchy-Schwarz
inequality and condition ((11.19))

ELH, (DO © by ) A < (1+C7) [|Bull, - | Anll,,- (1253)

Combining ((12.47)), (12.51)), (12.52) and (12.53)), for sufficiently small 7, yields

IE,, <C Al - (12.54)

Now, we go back to ((12.46b|) and rewrite with the help of (12.46a))
ent1 = (V'O @ L ) (B + Ay) = dny1,

then, using the Cauchy-Schwarz inequality, Young’s inequality, (12.54)) and condition
(11.19)), it follows that

lenst +Gnstll, <C (1Bl + 1Al )

n+1

< C [[Anlly,-
For the local error, we thus find

lentily,,, < C NlAlll, + 18nsil,,., - (12.55)

Error propagation: Here, we analyze the error after one step of the GRK method
between two numerical solutions starting from different start values. Instead of
(12.42)), we thus have the following error equations

S
Eni=e,+71 Z aijEnj, 1=1,--- s, (12.56a)
j=1
il .
ent1 =en+ 7Y biLni, (12.56b)
i=1
with
Em' = JﬁlHniEniv 1= 17 e, S (1257)

We start from ((12.56b)) by taking the squared energy norm at t,+; and then express
en by (12.56af) to find

S
2 2 77 -
lensllz, ., = leall?,,, +27 2 b; (B [Huta | Eng )
j=1

- 7'2 Z Z biaij + bjajl- — bibj <Em

i=1j=1

~

HnH’ B ). (12.58)
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The first term on the right-hand side of ([12.58]) is estimated using condition (11.19))

<en ‘ﬁn‘ en> + <en ’ﬁn+1 — ﬁn’ en>
< (1+C7) |leall?, - (12.59)

2
||enth+1

For the second term, we use the relations (11.19), (12.57) and (T1.18)) to estimate

(o i ) = (s | )+ (5 ] 1)

1 2
< Cr By + S 1B 2

[ EnjHW

< C7||Ewll,. HEWHt + C|Eq 2 . (12.60)

As in the first step by the local error (12.54)), with A,,; = e,, we estimate
1Enjlly, <C llenlls, - (12.61)

On the other hand, rewriting (|12.56a)) as

s
Enj =71 Z Wij (Em - €n) ,
=1

and using (|12.61)), it follows that

[, 07 el

Therefore, by (12.60|) and (12.61)), we find

(Eny ‘fIn+1’Enj> <C eall? . (12.62)

Thanks to the algebraic stability of the method (12.38)), the last term on the right-hand
side of (|12.58]) vanishes. Thus, by (12.58)), (12.59)) and (12.62f), we obtain

lentilly,,, <@ +C7) e, - (12.63)

Error accumulation: A standard application of Lady Windermere’s fan (see [25] 27])
completes the proof. [






13. Error Bounds for a Projection to the Finite Element
Space 11

In the previous Chapter we studied the stability of the fully discrete scheme on the
Matrix-vector level, now it is the time to connect the stated results to the PDE world.
We will thus analyze the error between the fully discrete numerical solution U] and a
projection of the exact solution wu(-,t) of the wave equation to the finite element space
Sp(t) at time ¢t = ¢,,. We will show, how the problem of estimating the total error reduces
to estimating the semidiscrete residual of the projection considered here.

13.1. The fully discrete solution

Let yn, = (pn,qa)T be generated by the leapfrog method or by the s-stage GRK
method (Keeping in mind that the 1-stage GRK is the implicit midpoint rule).
Then, from the vectors ¢, = (¢}) and ¢, = (¢}) = M (tn) " 'pn we obtain the fully discrete
numerical solution and its numerical material derivative

N N
Up =Y aixi(ta),  ORUR =D dixi(ta), (13.1)
Jj=1 j=1

which are finite element functions defined on the surface I';(¢,,).

13.2. Projection to Sy(t)

Let Py, : HY(T'(t)) — Sp(t) € HY(T',(t)) be an arbitrary projection of the exact solution of
the wave equation to the finite element space Sp,(t). We set

N N
Phu('¢t) = Z%(t)Xj('at)a ai.z(Phu)(at) = Zaj(t)Xj('vt)'
j=1 j=1

Note that this projection Pj could be the piecewise linear interpolation operator at the
nodes or an L?- projection or a Ritz projection.

113
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We define the finite element residual Ry(-,t) = Zé\le ri(t)x;(-,t) € Sp(t) by

/ Ri( ), t)
Tp(t)

d (]
= o /rh(t) ah(Phu)(-,t) ¢h(-,t) + /Fh(t) th(t)(PhU)(',t) . th(t)¢h(‘7t)

- [ orPa e o, (132
'y (t)

where ¢y, is a temporally smooth function with ¢,(-,t) € Sp(t). The equivalent matrix
version with the vectors g(t) = (g;(t)) € RN and r(t) = (rj(t)) € RY is

d

= (M) + Awmac) = M) (2). (13.3)
We reformulate as

p(t) = —A()§(t) + M(t)r(t) (13.4a)

q(t) = M@ "'p(t). (13.4b)

Further, we set 3(t) = (p(t),q(t))T and A(t) = (M (t)r(t),0)T, to get
y(t) = JLH)(t) + A2). (13.5)

In the next three sections, we will make use of the stability results for the leapfrog method
(Lemma [12.1]), the implicit midpoint rule (Lemma [12.2), and for the general GRK method
(Lemma [12.3) and translate them back into a function-space framework using the norm
identity @ in order to schow error estimates for the difference between the fully
discrete solution U} and the projection Phu(-,t,).

13.3. Error bounds for the leapfrog method

Theorem 13.1

Let Uy’ and 0pU}' be determined by the leapfrog method . Under the CFL condition
@ and suitable reqularity conditions on the exact solution u of the wave equation
@, such that Pyu has continuous discrete material derivatives up to order 4. Then,
there exists 7o > 0 independent of h such that for T < 19, the errors Ej' = U}’ — Pyu(-, ty)
and Oy E}' = Oy U — OF (Phu) (-, tn) are bounded for t, =nt <T by

1ER 20ty F VDR ER 200, (00 T IORER | L2(0, 20
<o (|

= vahE,?‘ o E?

))+‘

L2(Tx(to L2(Tp(to L2(Fh(t0))>
+ CBrm® + CT D IR t) | 2(ry ()

k=0
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Here C' is independent of h (but depends on T and 0), and

o= | (HVrh o Pru.t >HL2<rh<m+ZHB;S@PW("t”‘”(““”) o
/=1

where the superscript (£) denotes the (-th discrete material derivative
PROOF

Considering the errors

e% = dqn — a(tn)
efb =Pn — ﬁ(t'IZ)v

the defects appearing in the error equation (|12.10)) satisfy

dy1 =G (tnt1) = G (tn) =

\]

2

Mi;~( )+ T2M AnQ( n)

d7€,+1 = ﬁ(tn—i-l) - ﬁ(tn ( ) + §An+1q (tn—‘,—l) .

By (|13.4)) and Taylor expansion, we obtain

l\”\\l

H—T / Ky(0 tn+97)d9+T3M / Ky (0 (tn—i-@T)dH
+ TQM Mrn

(13.6)
o =T / K3(0) D (tn + 07)d0 + .

Mnrn + EMn+1rn+1a (13'7)

with bounded Peano kernels K, K5 and K3

Using Lemma and the norm identity (11.17)) we first have
1q () ns) + 17 (E)] ags)

3 (13.8)
< V2 (1197 PruC, )l 2oy + V0,037 PrCe, Ol 2, o))
provided that u|t — s| <1 and k|t — s| < 1. Now by Lemma and the CFL condition
(12.11]) we estimate for t € [t,, ty41]

P 0, € VERIML Ol < 27O o
TS‘Mn_j%ﬁ(tﬂAn+1 < 0972|5(t)|M*11 < 2Co7|p(t) pr(e)-

n+§

Therefore in view of ((13.5)) we find for sufficiently small 7:

(12 5Ol + 1M, 504 ) < O DO Olas (13.9)
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Lemma shows that for wy(t) = Zév:l w;(t)x;(t) with w(t) = (w;(t)):

k
(M) PR < e S0 wnllBar, (13.10)
j=0

Thus, (13.10) and (13.9) yield

3
-1 = -1 = J4
7 (1M Bl + 1M 50 ) < €72 3108 Prate ) o o
(=1

Again by Lemma and the CFL condition (12.11]) used similarly to ((13.9)), and by the
norm identity (|11.17)), we get the bound

72 (yMr;léMannH + |M;+1;Mnrn|,4n+l) < C7||Ru (s tn) 200 (1)) - (13.11)
Combining ([13.8]) and (13.11)), we thus have by (13.6)

> ldflan +1dila, < CT%8n + CT Y I Ru(yto) oo, re)) - (13.12)
k=1 k=0

For dj,; of (13.7) we use the same arguments (Lemma [11.5{and (13.10))) as above, to find

5 )1 < C1P a1 = CL D™ (1)) p)1

4
<O N10Y Puule, )]l 00

/=1
Thus, it follows that
n n
Do [dilyt < OB+ Cr Y I RRCoti)ll 2, ) - (13.13)
k=1 k=0

Inserting the bounds (13.12)) and (13.13) into Lemma and using the norm identity
(11.17) completes the proof. ]

13.4. Error bounds for the implicit midpoint rule

Theorem 13.2

Let Uyt and 07U} be determined by the 1-stage GRK method (implicit midpoint
rule). Under sufficient regqularity conditions on the exact solution u of the wave equation
, such that Ppu has continuous discrete material derivatives up to order 4. Then,
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there exists o > 0 independent of h such that for T < 19, the errors Ej) = U}’ — Pyu(-,ty)
and Op E}' = 0rUY — OF (Phu) (-, t,) are bounded for t, =nt <T by

LER | 20ty + VTR B 20, 2)) T NORER 20, 20))

<C <HEh‘

L2(Fh(t0)))

n—1

+ OBp7? +CTZ | Ru (- tr + 7')HL2 (Th(tat+37))"

+[ve.2l

L2(T'(t0)) L2(T(to))

Here, C' is independent of h (but depends on T'), and
b= [ (195,88 P Ol + 190,07 (P Dl o

+Z||a (Phu)( )||L2<rh(-,t>>)d’f~

PrROOF
The proof is similar to that of the previous Theorem [13.1} In order to keep the fully
discrete methods independent, we give all of the details explicitly again.

Considering the errors

Yn — Y(tn)
E Y, it

);

the defects appearing in the error equations for the implicit midpoint rule (12.31)) satisfy

l l
n+ +3 +3

D=

_ N I N
Ak—% = y(tk—%) —y(tk—1) — 5717 lHk_%y(tk_%)
Sp = J(ty) — J(th_1) — TJ’1Hk_%37(tk_%).

By (|13.5) and Taylor expansion, we obtain

1 t% t% —t\ .
Ay = 5TA(%H/O =i at (13.14a)
1
6k+Ak+1_Ak 1= TA(tk 1)+§7'A(tk+%)
t 1 t—1,_1\ ...
yr2 [k (“) () dt (13.14b)
tk,% T
1 tn tn_% —t\ .
b A,y = 27A(tn_%)—|—/tn (T ) (13.14c)

with bounded Peano kernel K.
By Lemma with ult — 0| <1 and the norm identity (11.17]), we first note that

IA@DIIZ = (M@)r(e) | M(0) Y M) < 2r(®) s = 21 Ba Ol (13:15)
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Lemma shows that for Zp,(-,t) = 3270, 2;(t)x; (-, ) with 2(t) = (;(t)):

Y ICI0 FNEe) S ECPAR (13.16)
=0

where f()(t) denotes the k-th time derivative of f(t) if k > 1 and f©O(t) = f(t). The

system ((13.5)), Lemma (13.16]) and the norm identity (11.17)) yield
- 2
[T = 18" (1)) +18™ O aran o)

= 2|(M®(k)(t)‘?\4(t)*l + 2‘(}<k)(t)‘%A+M)(t)
k+1
<CZ(||8 (Phu)( )HiQ(ph(t))HHvrh O™ (Pyu) (-, e,y (13:17)

The identities (13.14) together with the bounds ((13.15)) and ((13.17)) yield

n—1
84l o0 = Bagl, + €N+ 2504 = 2],
n—1
< CTBr+C1 Y || Ral-, tk+%)”L2(F;L(tk+%))-
k=0
Inserting this bound into Lemma and using the identity (11.17)) closes proof. L]

13.5. Error bounds for the Gaufl—Runge—-Kutta methods

We prove for general GRK method the following result similar to Theorem [13.2] We will
then use the stability Lemma and the norm identity (11.17).

Theorem 13.3

For s > 2, let U} and 0;U}' be determined by the s-stage GRK method (13.1). Under
sufficient regularity conditions on the exact solution u of the wave equation , such
that Pru has continuous discrete material derivatives up to order s + 2. Then, there
exists 1o > 0 independent of h such that for T < 19, the errors E}} = U]’ — Pyu(-,t,) and
OhE} = opU! — Op (Ppu)(-, tn) are bounded for t, =nt < T by

IER L2 2y + VPR ER 20, 100 + IORER L2 (0 80))

<
¢ (HEh’ L2(Th(to)) + HthEh‘ L2(Th(to)) NRE LQ(Fh(to))>
n—1 s
+ CBrs™ +C1 YD IRt + i)l L2(rp (tteir)-
k=01:=1

Here, C' is independent of h (but depends on T), and

T s+2
= | (vaaé“”(au)( Dllzzay + 2 10 (Pras)( >HL2(W) dt.

/=1
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PrROOF
Considering the errors

€n = Yn — g(tn)
Eni =Y — g(tn + Cl‘T),

we rewrite the Runge-kutta relation (12.44)), with A, = (Ap1, ... ,AnS)T, as

E,=1e,+7QJ 'H,E, — (TQA, + A,) (13.18a)
enit = en + 70T H, By — (7bTAp + 6011 - (13.18b)

Due to the stability Lemma [12.3] we get

n—1 n—1 n
lenlly, <C (HeoHto +7 0 Al + D AL, + D H%Ht].) : (13.19)
§=0 §=0 j=1
In view of (|13.15)), we have
n—1 n—1 s
Y AN, < CTY D IRRC te + eim) | 2y (teterr)) - (13.20)
k=0 k=0i=1

By using Taylor series expansion, we find that the defects d,,+1 and A,; appearing in the

error equation (|13.18]) satisfy
bl — by -
On41 = TS/ K ( ") Jet(t) dt
tn

T

tn _
Api = TS/ . K; (t tn) gt () dt,
tn

T

with bounded Peano kernels K and K;. By ([13.17)), we thus have

m

. it 2 a0
il < 7V2C [0S (104 (P (D z2qr )
v /=1

tn+1 s
+7V2C [ V0 (P ()| ey oy A (13.21a)

tn

: it SR 0
180l < 7v2C [ (107 (Pun) (Ol e ay)
/=1

n

tn+1 s
+ V20 /t 1V, 05 (Paw) (- ) 20, ) . (13.21D)

Inserting the bounds (13.20)) and (13.21]) into (13.19)) and using the norm identity (11.17))
completes the proof. [

For the 1-stage GRK method, Theorem shows that the order in time of the fully
discrete scheme is equal to the classical order O(72). However, Theorem for general
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s-stage GRK method shows only order O(7%). In order to obtain the classical order O(72%),
stronger regularity conditions are needed.

For s > 2, we assume that:

HJ‘lﬂ(kj‘l)(t) ey (CRIO 0 (t)Ht < (13.22a)

[T H S @) HE D ). J_lH(kl_l)(t)g(l)(t)Ht <, (13.22b)
forall0 <k; <s—land!>s+1withki+---+kj+1<2s+1and|oc—t| < 7. Fork; =0,
the matrix H(~1(t) is meant to be the identity matrix. Thereby, we get the following
convergence result of full order O(72%).

Theorem 13.4

Under suitable regularity conditions on the exact solution u of the wave equation ((10.7))
such that conditions (13.22]) are satisfied. Then, there exists 79 > 0 independent of h such
that for T < 1y, the errors Ej' = U}’ — Ppu(-,t,) and Oy E} = 0pUp — Op (Phu)(-,t,) are
bounded for t, =nt <T, by

IER 20 t)) T IV ER L2, 10y F NORER L2010
ot

Ve OREY

))+‘

L2(Tp(to L2(Tw(to LQ(Fh(to))>

n—1 s

+Cor™ + C7 YD |IRa(te + i)l 20y (14 +-cim) -
k=0 i=1
Here, Cy is independent of h (but depends on T and )
Proor

The main idea of the proof is to modify the defects appearing in (13.18) so they are of
order 2s 4+ 1. To do so, we follow Lubich & Ostermann in their proof of Theorem 1 in [36]
and first split the matrix H,; and the defects A,; as follows

s—1 k s—1
(CZ’T) (k) bnte;r (tn + T — t) (s)
Hy; =Ty + By = ——H tn HY (t)dt
* kz:% RO 1) ®)
2s tn+1 t . t
Api = Dpi + Ry = Z Tlﬁz(l)y](l) (tn) + 725/ K; (n) gt (1) de
tn T

l=s+1

with bounded Peano kernels K; and ffl) = % (l ijl aijcé._l — cﬁ)

We introduce the vectors Dy, = (Dy;);_; and R, = (Rp;);_,, the block diagonal matrices
Tn = diag (Tnla Tn2, e 7Tns) and Bn = diag (Bnly Bng, ey an) y

and the new internal stages

s—1
E,=E,+D,  with D,=Y (T(’,ZJ_lTn>k D,.
k=0
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Next, we rewrite the error equations ((13.18)) as

ens1 = en + 7O H,, By — (rbTA, + 8, )
E,=1e,+7QJ'H, E, — (TQA, + A}),

where the modified defects satisfy

81 =01 +70' I B, D, + 7" J'T,, D, (13.23)
A =R, +7QJ'B,D, + (TaJ—lTn)s D,.

By the stability Lemma we have

%

J=0

n—1 n—1 n
lenlly, <C (IIeoHt0 +7 3 A, + Z%] ajll,, + Z; tj) : (13.24)
J= J=

By the regularity conditions (13.22)), for j = (0,...,n — 1), we observe that
A, < Cor®* (13.25)

Now, we come to the last part of the proof, where we show that 6; is also of order

O (72*1). By the regularity condition (13.22), the first and second term of (13.23) clearly
are of order O (725*1). Therefore, our problem reduces to show that 76" J T, D,, is of
order O (72571). We start by introducing the following notation:

C = diag (c1,¢2,...,¢5) and ¢V = (52-(”)11 :
Then, we see that 7bTJ 71Tn/ﬁn consists of a linear combination of expressions of the form
prack=t . .ach—1e® . g gD @) g HE D )50 ¢,) - AIRFEL(13.26)
where |k| = g:l ki, kie{l,...,s}and j<s.
By the order conditions of the Runge-Kutta method (see [24, p. 56]), we have
pracks=1 ... ach—1e® =0 for |k|+1+1<2s,

therefore, all the expressions of ((13.26)) vanish for |k| + 1+ 1 < 2s. Thus, by the regularity
conditions (13.22)), for j = (1,2,...,n), we get

2

J

Inserting the bounds (13.25)), (13.27) and ((13.20)) into (|13.24]) and using the norm identity
(11.17) completes the proof. "
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Remark 13.5
1. If Py, is the piecewise linear interpolation operator at the nodes, then Bh, By, as well
as Bp,s are clearly bounded uniformly in h. However, we were only able to prove
that | R (-, t) |20, 1)) = O(1). Thus as in the parabolic case the remaining question
here is:
Can we find a projection Py, such that Bh; Bn as well as By s are bounded uniformly
in h and || Ry (-,t)||L2(r, 1)) 78 of optimal order O(h?)?

A positive answer for this question was not obvious and it was the main reason to
define such a Ritz map introduced in Chapter[7.

2. We can also compare the fully discrete solution with the semi-discrete solution Uy of
(11.6). For the corresponding error Ul — Uy(-,t,), we obtain a similar bound where
Ry, does not appear and the factor in front of the ° term is bounded in terms of
higher-order discrete material derivatives of Uy instead of Pyu. Then we would of
had to show regularity results for the semi-discrete solution Up,.



14. Error Estimates 11

In the following, we prove optimal error bounds for the fully discrete methods considered
in the previous chapters for the wave equation. Keeping in mind the previous results, the
problem of bounding the total error reduces to finding an appropriate projection Pju such
that the Residual appearing in is of optimal order O(h?). Thus, we first show how
our Ritz map introduced in Chapter [7]is a sufficient choice, thereby we make use of the
geometric approximation estimates stated in Chapter [6] Finally, we prove optimal error
estimates for the difference between the lifts of the fully discrete numerical solution and
the exact solution of the wave equation, as well as the difference between the numerical
material derivative of the lifts of the fully discrete numerical solution and the material
derivative of the exact solution.

14.1. Ritz map and residual bound

We first recall some definitions that we already used in the previous chapters.

We denote by d(z,t),x € R™*L t € [0,T] the signed distance function to the smooth
closed surface I'(t) and let N (t) be a neighborhood of T'(t) such that for every z € N(t)
and t € [0,T] there exists a unique p(x,t) € I'(t) which is the normal projection of z onto
I'(t), ie.,

We assume 'y, (t) C N (¢). Thus, for each triangle E(t) in I'y(t), there is a unique curved
triangle e(t) = p(E(t),t) C I'(t), and this induces an exact triangulation of I'(¢) with

curved edges. Furthermore, we assume that I'y(t) consists of triangles E(t) in Ty (t) with
inner radius bounded below by o;, > ch for some ¢ > 0.

For any continuous function ny, : I'y, — R, we define its lift 77;1 :I' — R by

Mh(p,t) = mn(z,t),  peT(t),

where x € T',(t) is such that p = p(x,t). Then, we have the lifted finite element space

Sh(t) = {on =& © ¢n € Sh(t)}.

123
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Now, we show how we choose the appropriate projection, so that the residual appearing in
is of optimal order O(h?). As in the case for the parabolic equation, it turns out
also to be convenient in the error analysis for the wave equation on evolving surfaces to use
a modified Ritz projection Py (t) : H'(I'(t)) — Su(t) defined in the following way, where
we use the bilinear forms of Section and the lifted discrete velocity of Section [6.3. To
motivate the definition, we rewrite the weak form of the wave equation in terms of
the bilinear forms,

7 0%, ) +alu, 9) = m(8%u, 8%p),

and use the Leibniz formula with the discrete material derivative d; on I' and note

Opp = 0% + (v, —v) - Vry, because v, — v is a tangent vector (see (6.7))). Then, this
equation becomes

m(OR05u, ) + g(vn; 0°u, @) + m(0;0%u — O 0Ru, ¢)
+ m(0®u, (v, — v) - Vi) + a(u, ) = 0. (14.2)

We now define a Ritz map that collects the last two terms on the left-hand side of this
equation, which are the only terms that contain the surface gradient of the test function ¢.
Note the difference to the parabolic case, that one have m(9°u, (v — vy) - V) instead of
m(u, (v —up) - Vry). Since a(-,-) is only positive semi-definite, we consider the positive
definite bilinear forms

a*(w, ¢) = a(w, ) + m(w, @), w, € HY(T)
ay,(Wh, ¢n) = an(Wh, 1) + mp(Wh, ¢n), Wh, ¢n € Sh.

We note that a*(w,w) = Hw|!12gl(p)~

Definition 14.1 N
For given z € HY(T'(t)) and 0°z € L*(T'(t)), there is a unique Pp,(t)z € Sy(t) such that for
all ¢, € Sp(t) we have, with the corresponding lift o, = (blh,

a?},(,]shzv ¢h) = CL*(Z, ‘Ph) + m(a.zv (Uh(" t) - U('7 t)) ’ vF(t)@h)' (143)
We define Pz € S (t) as the lift of Puz, i.c., Phz = (Ppz)t.

We immediately see that this definition is the same as the one considered in Chapter [7] when
we set ( = 0°z. Thus, we have the following results from Theorem and Theorem [7.3

Lemma 14.2
The error in the Ritz map satisfies the bounds, for 0 <t < T and h < hg with sufficiently
small hy,

Iz = Przll 2@y + 1 Hvr(t)(z - PhZ)HLQ(F(t)) < Ch? (HZHH2(F(t))+||a'ZHL2(r(t))) . (14.4)
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Lemma 14.3
The error in the material derivatives of the Ritz map satisfies the bounds, for £ > 1,
0<t<T and h < hy with sufficiently small hg,

H@,(f) (z — Ppz)

)+hkﬁﬁﬁMz—nﬂw

L2(T(t) L2(T(t))

g@mi@mq (14.5)
=0

7

e

H2(D(t HWQ‘

An optimal-order bound of the residual Rj(-,t) € Sp(t) of (13.2) is then achieved if we
take the mapping P, to be the Ritz map P}, defined in ((14.3).

Lemma 14.4
Assume that the solution u of the wave equation is sufficiently smooth. Then, there exist
C > 0 and hg > 0 such that for h < hg and 0 <t < T,

HRh("t)HLZ(Fh(t)) < Ch*. (14.6)
PRrooF

We start by rewriting the residual equation (13.2)) for R;, € Sj, with Py, = Py, as

d - - -
mp(Rp, ¢n) = %mh(aﬁphua on) + an(Pru, ¢n) — mp(0h Pru, Opén)

= mp (O8O Pru, 1) + gn(Vi; O Pru, dn) + an(Pru, én),

where we have used the Transport Lemma . Combining this equation with ([7.1]) and
using the definition of the Ritz map (14.3) yield

mp(Ry, én) = Fi(en) + Fa(on) + Fa(on),  on = ¢} € S, (14.7)
where

Fi(on) = ma (O30 P, én) — m(OR0u, on),

Fo(en) = gn(Vi; O3 Pru, én) — g(vn; 0°u, op),

Fs(en) = m(050pu — 9,0, op),

Fy(ion) = m(u, on) — mp(Phu, ¢n).

Applying Lemma using ((");L@;Lﬁhu)l = 0;0; Ppu and applying Lemma with £ =2
yields

[Fi(en)| = ‘mh(aﬁaﬁﬁhw ¢n) — m(0,0, Pru, ¢n) + m(0,05 Pru — 9, 05u, ‘Ph)‘
< ch? [lnll poqry -
Using the same arguments, it follows that

|Fa(en)| < ch? |l onll 2y »
|Ea(en)| < ch?[lonll 2y -
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Furthermore Lemma [6.3] yields

|F3(en)| = [m(83[(v — va) - Vrul, on)l < ch? [lonll2r -

Inserting the above bounds into (8.4) with ¢, = R}, and noting the equivalence of L2-norms
between the original and discretized surfaces completes the proof. [

We remark that it is crucial to choose ( = 9*°u in the definition of the Ritz map for the
wave equation, otherwise one will have only suboptimal order O(h) for the residual Ry
measured in the L?-norm.

14.2. Error bound for the full discretization

)
) of

In this section, we compare the lifts of the fully discrete numerical solution u} := (
and its numerical materlal derivative dpul := (9pUM)! with the exact solution u(-,t,
the wave equation and its material derivative 0®u(-,t,), respectively.

Let yn, = (pn, qn)T be generated by the leapfrog method ((12.5)) or by the s-stage GRK
method ((12.37)) (keeping in mind that the 1-stage GRK method is the implicit midpoint
rule (12.29)). As in (13.1)), we obtain the lifts of the fully discrete numerical solution and

its numerical material derivative from
U Z QJ X] 7 8h,uh 8hth Z q] Xj (148)

which are lifted finite element functions defined on the surface I'(¢,). Then, the main
results of this part read as follows:

Theorem 14.5 (ESFEM/leapfrog)

Consider the variational space discretization of the wave equation by the evolving
surface finite element method and the variational time discretization by the leapfrog method.
Let u be a sufficiently smooth solution of the wave equation and assume that the
discrete initial data satisfy

| = P, 0)|

+ HVF(O)U(})L = Vo) (Pru)(, 0)‘

L2(T(0)) L2((0))

O (Pru)(-,0)| < Coh.

L2(1(0))

Then, there exist hg > 0 and 19 > 0 such that for h < hg and T < 19 satisfying the CFL
condition (12.11)), the following error bound holds for 0 <t, =n1t <T':

e = s )l g2y + 2| Vrmh = VrauCeto)]
+[0hufy — 0%uletu)ll o,y < C (B +72).

The constant C' is independent of h, T, and n subject to the stated conditions.
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Theorem 14.6 (ESFEM /GRK)
Consider the variational space discretization of the wave equation by the evolving
surface finite element method and the variational time discretization by the s-stage GRK
method. Let u be a sufficiently smooth solution of the wave equation and assume
that the discrete initial data satisfy

b = Pr)(-,0)

O —_— .
L20©) + HVF(O)Uh V) (Pru)( 70)’ L2(T(0)
Onuf, = Oh(Pru)(-,0)| < Coh.

- ‘ L2(T(0)) —

Then, there exist hg > 0 and 19 > 0 such that for h < hg and ™ < 19, the following error
bound holds for 0 <t, =nr <T:

= ., tn)”LQ(F(tn)) +h va(tn)uﬁ = Vi, ul, tn)‘ L2(T(tn))

+ Ha}.luz - a.u(.,tn)”LQ(F(tH)) < C(h2 + TS).

For the implicit midpoint rule (s = 1), the bound holds with 72 instead of 7°. For general
s, assuming that the reqularity conditions (13.22)) are satisfied, we obtain 72° instead of 5.
The constant C' is independent of h, T, and n subject to the stated conditions.

Proor
The total error is divided into two parts such as

up = ulytn) = (uft = Puulta)) + (Paul,ta) = ul-t)). (14.9)

Taking into account that the L? and H'! norms on the discretized and original surface are
equivalent (Lemma and the fact that ||0°u — Opul| r2(r) < Ch? (Lemma , in order
to estimate the first part of , we need only to combine the theorems and lemmas from
the previous chapters. For example, the implicit midpoint rule (s = 1): we use Theorem

together with Lemma (residual bound) and Lemmas and (for estimating
Br), to find that the first part is of order O(72 + h?). The second part of (14.9) is already

taken care of in Lemmas [[4.2] and 4.3 n

The condition on the starting values is satisfied with the choice
u) = (Pru)(0),  Oful) = I,0°u(0).
For the nodal vectors ¢ and p® = M (0)q this corresponds to the entries
¢ = (Puu)(a;(0),0), 2 = io(a;(0)).

Instead of using the Ritz map P}, defined by ((7.2)) we can use the simpler approximation
ug given by the more standard Ritz projection

a(uf, dn; 0) = a*(ug, pp;0)  for all ¢y, € Sp(0), n = )
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with a sufficiently accurate approximation to the integrals on the right-hand side. By the
estimates of Theorem (with 0 in place of ¢ at t = 0 and the fact that |[v — v,| < Ch?),
this approximation still satisfies the condition on the initial data in both Theorems [14.5
and [I4.6] While this simplified projection is sufficient for determining the numerical initial
values, it cannot replace the Ritz map of in the second-order error analysis (see the
proof of Lemma .

This construction of the starting values requires solving a linear system with the extended
stiffness matrix A(0) + M (0) for ¢°. As for the classical wave equation on a fixed domain,
the simpler choice of the linear interpolant u% = I,u(0) does not guarantee second-order
convergence (cf. [12]).

Remark 14.7

As already mentioned in Remark Runge—Kutta time discretization of partial differential
equations on plane domains suffers from order reduction phenomena which depends on
the boundary conditions (cf. [34), (36, [{3]). Thus, we only expect that the convergence
order of the s- stage GRK method, when applied to a wave equation posed on surfaces
with boundary, is only equal to s + £ with £ > 0 depending on the boundary conditions.
This means that condition will mostly fail to hold uniformly in the mesh size on
surfaces with boundary. However, we expect that the reqularity condition holds true
for smooth solutions of wave equations on smooth closed surfaces.
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In this chapter, we present numerical experiments to illustrate some of our convergence
results for the wave equation. The fully discrete methods (schemes (12.5)), (12.37)) are
implemented by using the DUNE-FEM module, which is based on the Distributed and
Unified Numerics Environment (DUNE), see [5] [10} [IT]. The visualization is done by using
the application ParaView [29]. For more details about the implementation of the evolving
surface finite element method, we refer to Dziuk & Elliott [14].

Example 15.1
In this example, we consider the inhomogeneous wave equation

0°0*u+0%u Vr-v—Aru=f onI\(t), (15.1)
where

7t

[(t) = R3 : 2423 -1=05%.
®) {xe 1+ 025sm(r-¢) 2%

The right hand side f is calculated so that the exact solution is given by
u(z,t) = sin(vV6t)z s,

Fully discrete scheme for the inhomogeneous wave equation: We treated so far
only the homogeneous wave equation on evolving surfaces, we mention again that it is
straightforward to extend our results to the inhomogeneous case. The fully discrete scheme
for the inhomogeneous equation has to be updated only with a right hand side similar to the
inhomogeneous wave equation on a fixed domain. For example, the leapfrog scheme (|12.6))
becomes:

The leapfrog or Stormer—Verlet method for the inhomogeneous wave equation on evolving
surfaces reads

T T
pn+1/2 =Pn — §AnQn + §Fn (15.2&)
nt1 = qn + TMT:%an /2 (15.2b)
T T
Prt1 = Pnt1/2 — §An+1%+1 + 5 Fnta, (15.2c)

N

where (Fn);vzl = (frh(t") f_lXj)Jtl‘

129
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15. Numerical Experiments II

1. Experiment (Leapfrog): Let {ﬁ(t)}fzo and {7;}¥_, be a sequence of meshes on

the surface I'(¢) by uniform refinement and a sequence of time steps respectively. The
uniform refinement is such that h; ~ %hi,l. We proved in Theorem that the rate
of convergence in 7 and h are the same. Thus, we choose 7; = %7‘1’_1 to construct the
time step size sequence {Ti}fzo. Further, in order to satisfy the CFL condition, we
start with 7o = 5 x 1072, For each mesh ’7;; together with the corresponding time step
size 1;, we solve the wave equation ([15.1]) using the piecewise linear finite elements in
combination with the leapfrog method (scheme . Then, we compute the error
between the lifted numerical solution and the exact solution for 0 <t <1 in
the following norms:

159 2\ . n
L (L ) : Og}%XN l|up — u(tn)HLQ(I‘(tn)) )
[e%s) 1)\ . n __
L (H ) : Jmax Han)uh vp(tn)u(tn)\ )
L= ()" omax [105uh — 0%u(ta)ll L2r(e,)) -

Assuming that the error Er; satisfies Er; = C (h; + Ti)EOC, it follows that EEZI =

2FOC  Thus, the experimental order of convergence (EOC) is determined by

Eri—1

lo
EOC:M, i=1,--k.
log 2

In Table we list the errors and the corresponding EOCs. As theoretically
expected from Theorem we observe FOC' = 2 for the L™ (L2) as well as for
the L> ( L?)*® norm, whereas EOC = 1 for the L> (H') norm.

Table 15.1.: Errors and observed orders of convergence for the 1. Experiment (Leapfrog).

Level | DOF | L*(L?) | EOC | L>*(H') | EOC | L* (L?)* | EOC

0 318 |205-1072| - |177-107'| - [226-1072| -

1 1266 | 5.27-1073 | 1.95 | 8.91-1072 | 0.99 | 5.88-1073 | 1.94
2 5058 | 1.34-1073 | 1.97 | 4.27-1072 | 1.05 | 1.47-1073 | 2.00
3 20226 | 3.35-1074 | 2.00 | 2.18-10"2 | 0.96 | 3.74-107% | 1.97
4 80898 | 8.35-107° | 2.00 | 1.11-1072 | 0.96 | 9.50-107° | 1.98

5 323586 | 2.08-107° | 1.99 | 5.58-1073 | 0.99 | 2.37-107° | 1.99

2. Experiment (Implicit midpoint): We repeat the first experiment with the implicit

midpoint rule instead of the leapfrog method for the time discretization. We choose
a time step size 79 = 0.125 in order to obtain at least the same accuracy as by
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the Leapfrog method. In Table as in the case by the leapfrog method, we
observe again EOC = 2 for the L™ (L?) as well as for the L> ( L?)® norm, whereas
FEOC = 1 for the L*° (H') norm. This shows that the theoretical convergence results

(Theorem [14.6]) are optimal.

Table 15.2.: Errors and observed orders of convergence for the 2. Experiment (Implicit
midpoint).

Level | DOF | L*(L?) | EOC | L*®(H') | EOC | L*(L?)* | EOC

0 318 5.23-1073 - 1.74-1071 — 2.18-1072 -
1 1266 1.43-1072 | 1.87 | 887-10"2 | 0.97 | 5.47-1072 | 1.99
2 5058 3.68-107% | 1.95 | 4.45-1072 ] 099 | 1.37-1073 | 1.99

3 20226 | 9.30-107° | 1.98 [ 2.23-1072| 0.99 | 3.44-10~* | 1.99
4 80898 | 2.33-107° ] 1.99 | 1.11-1072 | 0.99 | 8.61-10"° | 1.99
5 323586 | 5.83-1076 | 1.99 | 5581073 | 0.99 | 2.15-107° | 1.99

6 1294338 | 1.45-1076 | 1.99 | 2.79-1073 | 0.99 | 5.38-1076 | 1.99

3. Experiment (GRK): In this experiment, we examine the convergence of the GRK
time discretization with s-stages. We observed, when applying the 2-stage GRK
method to the resulting ODE system after the space discretization by the evolving
surface finite element method, the total error is dominated by the spatial error. For
this reason, we shall compare the fully discrete solution with the exact solution of
the ODE system. Since this solution is not available, we compute reference solutions
Grey and pp.y via the 3-stage GRK method with a small time step size 7,..f = 1074,
Next, we construct the time step size sequence {Ti}zzo by setting 7; = %n_l with
70 = 0.5. For each time step size 7;, we solve the ODE system on the time interval
0 <t <1 to obtain the numerical solutions ¢,, and p,, using 4 different schemes,
namely, the Leapfrog method, the implicit midpoint rule, the 2-stage and the 3- stage
GRK methods. In Figure we plot the errors at time ¢ = 1 versus the time step
size in the following norms

Error (M) : ((%’ef —dqr; |M(t)’ Qref — qﬂ>)l/2 s
Error (A): ((gref — @ri |[A®) Grey — an))"?,

Error (M_l) : (<pref — P M(t)_l Pref _p‘ri>>1/2 .

Additionally, we plot the spatial error which dominates the total error. For all
schemes, we clearly observe that the experimental convergence rates in time match
perfect with the theoretical ones.
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Figure 15.1.: Errors vs. time step size for four different time discretization schemes as well
as the spatial error at time ¢ = 1.

Example 15.2

In this example, we show how the time step size restriction can be inconvenient. Let us
consider the start values ug = 10 and ug = 0. Then, independently of the choice of the
moving surface I'(¢), the exact solution of the wave equation ([10.7) remains constant for
all time (i.e., u(z,t) = 10). In Figure we show snapshots of the discrete solution at
times t = 0,1,1.5,2,2.5 (from top to bottom). Since the exact solution is constant, the
torus is not supposed to change its color. On the left-hand side of Figure the discrete
solution is obtained by using the Leapfrog method. We start with a small step size 7 = 155
in order to fulfill the CFL-condition at time ¢ = 0. However, due to the movement of
the mesh (i.e., h might decrease), there is no guarantee for the CFL-condition to remain
fulfilled. E.g., see the last two snapshots on the left-hand side of Figure [I5.2] One could, of
course, use the smallest occurring h. However, in the present example, this does not give an
accurate solution in a reasonable computing time. On the contrary, the implicit midpoint
rule integrates this problem without difficulty. By choosing the time step size 7 = %, it
takes only a few seconds to integrate until ¢t = 2.5 and to obtain a good approximation of
the exact solution as we clearly recognize from the right-hand side of Figure [15.2
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Leapfrog Midpoint

Figure 15.2.: Snapshots of the discrete solution of the wave equation using the Leapfrog
method (left) and the implicit midpoint rule (right). The exact solution is
constant: u = 10.



134 15. Numerical Experiments II

Example 15.3
We choose a time-dependent surface of the form

g(ﬂj,t)l‘g g(ZE,t)IL'3 X
Va3 +a3 ([ + a3

g(xz,t) = e_th+ (1-— e_Qt) ((1 — x%) (x% + 0.05) + ac% (1— :U2)> .

We consider the wave equation ({15.1)) posed on the above surface on the time interval
[0, 3], with right hand side f = 0 and initial data u(x,0) = e~Slz—wol* 4 e‘5|x_“"1|2, where
zo = (1,0,0),z1 = (—1,0,0), and 9°u(x,0) = 0. The surface evolves from an initially
spherical shape at ¢ = 0 to a “baseball bat” like shape. Simultaneously we observe a
wave traveling from the right to the left and another from the left to the right. They
superimpose for a short time and cross paths without any dissipation. We choose the
time step 7 = 5 x 1074, in order to satisfy the CFL condition . Figure 1 shows
snapshots of the discrete solution at time ¢t = 0,0.8,1.2,1.8,2.2, 3 from the left to the right.

I'(t) = {xl + max(0, z1)t, zel(0) = 52} , (15.3)

Figure 15.3.: Snapshots of the discrete solution of the wave equation on a time-dependent
surface of the form ([15.3) reading from the left to the right at time t =
0,0.8,1.2,1.8,2.2, 3.
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