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Introduction

In mathematics, the construction of explicit examples is done not just in order to il-
lustrate the theory but also to find possible counterexamples to open conjectures. In
algebraic geometry to do explicit constructions can be very difficult, this lack of exam-
ples sometimes obscures the geometry underlying the theory. However, if we restrict to
the special case of toric varieties over a field it is easier to do such constructions. The
reason for that is the well known dictionary between toric geometry and convex geome-
try. It allows us to do explicit examples by implementing the combinatorial description
into computer algebra systems. This enhances the possibilities of applications and the
understanding of algebraic geometry. The cornerstone of these results is a theorem due
to Sumihiro [34] which says that every toric variety has a cover by open affine torus in-
variant subsets. One of the goals of this work is to extend this theorem for toric varieties
defined over an arbitrary valuation ring of rank one.

The theory of toric varieties over a field has been very well studied and we can
find very good reference for them, see for instance Cox–Little–Schenk [11], Ewald [12],
Fulton [13], Kempf–Knudsen–Mumford–Saint-Donat [21] and Oda [27]. In [21] Mumford
generalized toric geometry for normal varieties defined over a discrete valuation ring.
Ever since, very few approaches have been taken in order to generalize toric geometry
over more general bases. The main difficulty is that, for valuation rings with valuation
neither trivial nor discrete, the noetherian methods of algebraic geometry are no longer
availables.

In [17] Gubler introduced and studied toric varieties over arbitrary valuation rings of
rank one. A T-toric variety Y over the valuation ring K◦ is an integral separated flat
scheme of finite type over K◦ such that the generic fiber Yη of Y contains T := (Gn

m)K
and the canonical action of T over itself extends to an algebraic action of T := (Gn

m)K◦

on Y . Given an admissible fan Σ ⊂ Rn × R+, for every cone σ ∈ Σ it is possible to
construct an affine T-toric scheme Vσ. Gluing them together we get a T-toric scheme YΣ.
Note that the combinatorial description of these varieties comes from cones and fans in
Rn × R+, similarly as in the case of fields and discrete valuation rings. One particular
feature in this setting is that tropical geometry provides a very good description of the
cone-orbit correspondence, for details see [17, §8] and §1.3.

Toric schemes over an arbitrary base ring R have been introduced and studied by
Rohrer in [31]. He starts with a fan Π ⊂ Rn and proceeds as usual, i.e. associating to
every cone σ ∈ Π an R-algebra Aσ. The schemes Spec(Aσ) can be glued together to get

9
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the scheme XΠ. By construction this toric scheme has an algebraic action of the split
torus (Gn

m)R. If we take R as the valuation ringK◦, this construction yields a special case
of Gubler’s construction. Actually for a fan Π, we have that XΠ = YΠ×R+ . Moreover
if we take R as a field K and restrict to normal varieties, we get the same objects with
the two approaches: We consider K as a valued field with the trivial valuation, then the
special fiber of a T-toric variety Y is empty, hence it is equal to the generic fiber Yη
which by Sumihiro’s theorem comes from a fan Π and therefore is of the form XΠ.

The difference between these two approaches is that the first one requires in the
definition that the torus action should be extended to the whole scheme but in the
second one you already start with the combinatorial picture and therefore by definition
the torus action is extended to the whole scheme automatically.

The construction made by Gubler depends strongly on the base ring, in particular on
the fact that the rank of the valuation is one. It allows the use of the theory of analytic
spaces in the sense of Berkovich as well as the use of tropical geometry. In the same way
the results of this paper depends on this fact. The question whether these constructions
for higher rank valuation rings can be carried out or not remains open.

Main results

The aim of this work is to classify toric varieties over the valuation ring K◦ as introduced
by Gubler in [17]. This will be done by proving three theorems. The classification will
generalize the correspondence between normal toric varieties and cones, in the affine case,
and fans in general.

Let K be a valued field of rank one, K◦ its valuation ring and Γ its value group.
Let T = Spec(K◦[M ]) be the split torus over K◦, with M the character lattice of T. In
chapter 1, we review the theory of toric varieties over the valuation ring K◦. We show
that given a Γ-admissible cone σ ⊂ Rn×R+ it is possible to construct the algebra K[M ]σ

over K◦ which gives rise to a normal T-toric scheme Vσ = Spec(K[M ]σ). If the valuation
is trivial or discrete or if the valuation is neither trivial nor discrete and the vertices of
σ∩ (Rn×{1}) are contained in Γn×{1} then the algebra K[M ]σ is of finite type and the
scheme Vσ is a normal T-toric variety over K◦. In this way, we have plenty of examples
of T-toric varieties over valuation rings of rank one. A natural question to ask is whether
all affine normal T-toric varieties over K◦ are of this form. The first result presented
here gives an affirmative answer to this question. In what follows, we assume that the
valuation v is not trivial. Explicitly, we have the following theorem.

Theorem 1. If v is not a discrete valuation, then the map σ 7→ Vσ defines a bijection
between the set of those Γ-admissible cones in Rn × R+ for which the vertices of σ ∩
(Rn×{1}) are contained in Γn×{1} and the set of isomorphism classes of normal affine
T-toric varieties over the valuation ring K◦.

With this theorem, we obtain a classification of normal affine T-toric varieties defined
over a valuation ring of rank one, which extends the standard result known for toric
varieties over a field and a discrete valuation ring. Note that if the valuation is discrete
or trivial the extra condition on the cones is not needed.
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The proof of Theorem 1 is given in chapter 2. We show that given an affine normal
T-toric variety Y = Spec(A) it is possible to construct a Γ-admissible cone σ such that
K[M ]σ = A. First, we construct a semigroup S from the K◦-algebra A and then we take
the cone generated by it, cone(S). The dual cone σ := cone(S)̌ works for our purpose.
Furthermore, we can reconstruct σ from the tropicalization of Yη ∩ T ◦, see Proposition
1.11. This implies that the cone σ is uniquely characterized by Y .

In order to classify normal T-toric varieties over the valuation ring K◦ which are not
affine, it is necessary to generalize the well known Sumuhiro’s theorem in toric geometry.

Theorem 2. Let v be a real valued valuation with valuation ring K◦ and let Y be a
normal T-toric variety over K◦. Then every point of Y has an affine open T-invariant
neighborhood.

This result extends Sumihiro’s theorem for normal toric varieties over a field [34] to
normal T-toric varieties over a valuation ring of rank one. The proof is considerably more
difficult as in the classical case since the noetherian methods are not available. Instead,
we use intersection theory with Cartier divisors for varieties over valuation rings of rank
one. This is done in chapter 3. These results follow from the intersection theory with
Cartier divisors on admissible formal schemes over K◦ developed by Gubler in [19]. We
use the notion of PvM-rings in order to study Weil divisors on normal varieties over
valuation rings and to associate to every Cartier divisors a cycle of codimension one.
With this, in chapter 4 we show that given an open affine subset U0 of a normal T-toric
variety Y it is possible to construct a T-invariant open subset U and a Cartier divisor
D such that U contains U0 and D has support U \U0. Then, we show that the line
bundle O(D) admits a T-linearization which leads to a T-equivariant embedding of U
into a projective T-toric variety with a linear action of the torus. Finally, using this fact
we prove Theorem 2 in chapter 5.

As a consequence of Theorem 1 and Theorem 2, we obtain our main classification
result.

Theorem 3. . If v is not a discrete valuation, then the map Σ 7→ YΣ defines a bijection
between the set of fans in Rn × R+, whose cones are as in Theorem 1, and the set of
isomorphism classes of normal T-toric varieties over K◦.

This theorem extends the classification of normal toric varieties over a field or a
discrete valuation ring to the classification of normal T-toric varieties over a valuation
ring of rank one. Note that if the valuation is discrete or trivial the extra condition on
the cones is not needed.

This result allows us to have a better understanding of toric geometry over rank one
valuation rings. It is worth to stress the fact that these objects are intimately related to
tropical geometry, for instance for a normal affine T-toric variety Vσ the cone σ can be
constructed from the tropicalization of the set of potentially integral points T ◦∩ (Vσ)η of
the generic fibre. Furthermore these toric schemes are used in [17] to generalize results
on tropical compactifications of closed subschemes of the torus T for arbitrary rank one
valuation fields, see [17, §12] for more details.
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Now, we briefly explain the structure of the thesis. In chapter 2, we introduced the
theory of T-toric schemes developed by Gubler in [17]. Since we don’t need all results
proved there and some of the proofs are not enlightening for our purpose, we just quote
them and suggest to the interested reader to look at the original source. We start with
the definition of a T-toric scheme. After the construction of some examples, we state the
main propositions which provides, with the help of the tropicalization map, the geometric
description in terms of the combinatorics of a Γ-admissible fan. We end this chapter with
the description of the projectively embedded T-toric varieties with a linear action of the
torus. The results of chapter 1 are fundamental for the understanding of this work. In
chapter 2, we prove Theorem 1. We construct a Γ-admissible cone σ and then we prove
that the T-toric variety Vσ is the original one. The proof of Theorem 2 is considerable
longer and therefore is divided in three parts which cover chapters 3, 4 and 5. In chapter
3, we introduce the necessary results concerning intersection theory. These results are
very important in order to overcome the problems arising for the non-noetherianness
of our setting. With them, we are able to prove that for every affine open subset U0

there exist a Cartier divisor D defined on the smallest T-invariant open subset U which
contains U0 such that supp(D) = U \U0. Furthermore for every t ∈ T ◦(K) the divisors
D and Dt are linear equivalent, see Corollary 3.30. In chapter 4, we show that the
line bundle O(D) on U is ample and admits a T-linearization. We also show that it is
possible to construct a T-equivariant immersion into a projective T-toric variety. Finally
in chapter 5 using the theory of non-necessarily normal projective T-toric varieties with
a linear action of the torus developed in [17], we end the proof of Theorem 2. Finally, we
conclude with the proof of Theorem 3 which give us the bijective correspondence between
normal T-toric varieties and Γ-admissible fans.
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Notation

For sets, in A ⊂ B the equality is not excluded and A\B denotes the complement of B
in A. The sets Z+, Q+ and R+ denotes the set of non-negative integers, rationals and
real numbers respectively. All the rings and algebras are commutative with unity.

For an integral domain A, we denote by Q(A) its quotient field and by F(A) the set
of fractional ideals. Given elements I, J of F(A) we denote by (J : I) the A-module

{x ∈ Q(A)|xI ⊂ J}.

Note that it is a fractional ideal as well. By P(A) = As̃sA(Q(A)/A) we denote the set
of weakly associated prime ideals of the A-module Q(A)/A, i.e. p ∈ As̃sA(Q(A)/A) iff
p ⊃ ann(m) for some m ∈ Q(A)/A and its a minimal prime over it. Note that any
p ∈ P(A) is a minimal prime ideal over an ideal of the form ((a) : (b)) for a, b ∈ A and
b /∈ (a). For a module over a noetherian ring, the weakly associated prime ideals are the
same as the associated prime ideals.

K will always denote a rank one valued field (K, v) with valuation group Γ :=
v(K×) ⊂ R. If the valuation is neither trivial nor discrete, then the value group is
dense in R. Note that K is not required to be algebraically closed or complete and that
its valuation can be trivial. The valuation ring is given by K◦ := {x ∈ K|v(x) ≥ 0} with
maximal ideal K◦◦ := {x ∈ K|v(x) > 0} and residue field K̃ := K◦/K◦◦. We denote
S = Spec(K◦) = {η, s}, where the generic point η correspond to the zero ideal and the
special point s to the maximal ideal K◦◦.

We denote by | · | := exp(−v(·)) the associated absolute value to the valuation v on
K. If (L,w) is a valued field extension of (K, v), the absolute value associated to w on
L will be denoted by | · |w.

A seminorm on a ring A is a function p : A→ R+ which satisfies p(1) = 1, p(0) = 0
and for every x, y ∈ A, we have

• p(xy) ≤ p(x)p(y),

• p(x+ y) ≤ p(x) + p(y).

If a seminorm satisfies p(xy) = p(x)p(y) for all x, y ∈ A it is called multiplicative. If
it satisfies p(xn) = p(x)n for all x ∈ A, n ∈ Z+ it is called power-multiplicative. Given a
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K-algebra A, a seminorm p on A extends the norm of K if p(a) = |a| ∀a ∈ K. A norm
is a seminorm with trivial kernel. If ρ : A → R+ is norm, A is a Banach algebra if it
is complete respect the norm topology induced by ρ. A seminorm p on A is bounded if
there is a constant C > 0 such that p(x) ≤ Cρ(x) ∀x ∈ A.

Let M be a free abelian group of rank n with dual N := Hom(M,Z). The natural
pairing is denoted by 〈u, ω〉 =: ω(u) ∈ Z for u ∈M,ω ∈ N . For an abelian group G the
base change is denoted by MG := M ⊗Z G, for instance MR = M ⊗Z R. The split torus
over K◦ with generic fiber T = Spec(K[M ]) is given by T = Spec(K◦[M ]). Therefore
M can be thought as the character lattice of T and N as its group of one parameter
subgroups. For u ∈M the corresponding character is denoted by χu.

For the notions on convex geometry used in this work, we suggest to the reader to
look into the Appendix A.



1 | Toric schemes over valuation rings

Toric varieties over a field have been studied since the 70’s and there are very good ref-
erences for them, for instance Cox–Little–Schenk [11], Ewald [12], Fulton [13], Kempf–
Knudsen–Mumford–Saint-Donat [21] and Oda [27]. Although in these books toric vari-
eties are defined over an algebraically closed field, the main results obtained there hold
over any field. The principal feature of these varieties is that their geometry can be under-
stood studying the combinatorics of some objects in convex geometry, namely polytopes,
cones and fans.

Some generalizations have been carried out. Toric schemes over discrete valuation
rings were studied by Mumford in [21], over arbitrary valuation rings of rank one by
Gubler in [17] and over arbitrary rings by Rohrer in [31]. Here we review the main
definitions and properties of toric schemes defined over an arbitrary rank one valuation
ring. We follow closely the description given in [17]. Over discrete valuation rings more
details can be found in the papers by Burgos–Phillipon–Sombra [8], Katz [20], Qu [28]
and Smirnov [33].

1.1 Affine toric schemes associated to polyhedra

Recall that K is a valued field of rank one, whose valuation ring is denoted by K◦ and
its valuation group by Γ ⊂ R.

Definition 1.1. A T-toric scheme over the valuation ring K◦ is an integral separated
flat scheme Y over K◦ such that the generic fiber Yη contains T as an open subset and
the translation action T × T → T extends to an algebraic action T ×K◦ Y → Y over
K◦. If it is of finite type, it is called a T-toric variety.

Note that if Y is a T-toric variety then Yη is a T -toric variety over K and therefore
its description can be done by the methods described in the references quoted above. A
polyhedron ∆ ⊂ NR is called Γ-rational if it can be written as

∆ :=
k⋂
i=1

{ω ∈ NR|〈ui, ω〉 ≥ ci}, u1, . . . , uk ∈M, c1, . . . ck ∈ Γ.

It is called pointed if ∆ does not contains affine subspaces of dimension > 0.

15



16 CHAPTER 1. TORIC SCHEMES OVER VALUATION RINGS

In order to construct examples of T-toric schemes, we need to introduce and to study
the following algebras associated to Γ-rational polyhedra in NR. Let ∆ ⊂ NR be a
Γ-rational polyhedron, we define the following subalgebra of the Laurent polynomials:

K[M ]∆ :=

{∑
u∈M

auχ
u ∈ K[M ]

∣∣∣∣∣ v(au) + 〈u, ω〉 ≥ 0 ∀ω ∈ ∆

}
.

Some examples of this algebra are the following:

• For ∆ = {0}, K[M ]∆ = K◦[M ].

• For ∆ = [0,∞) ⊂ R choosing a coordinate x, K[M ]∆ = K◦[x].

• For ∆ = [0, λ] ⊂ R. With λ ∈ Γ\{0}, ∆ is Γ-rational. Let a ∈ K be such that
v(a) = λ. Choosing a coordinate x, K[M ]∆ = K◦[x, ax−1].

Note that in these simple examples the algebra K[M ]∆ is of finite type and flat
over K◦, since it is K◦-torsion free. Therefore by [29, Corollaire 3.4.7] it is of finite
presentation. In general we have the following important result, see [17, Proposition 6.7].
For completeness, we reproduce the proof here.

Proposition 1.2. If the valued group Γ is either discrete or divisible in R, then the
algebra K[M ]∆ is of finite presentation over K◦.

Proof. It is enough to prove that K[M ]∆ is finitely generated. This follows because every
finitely generated flat algebra over an integral domain is of finite presentation, see [29,
Corollaire 3.4.7].

If the valuation is discrete, this statement was proved by Mumford in [21]. Actually
with σ = c(∆) ⊂ NR×R+ and π an uniformizing parameter for K◦, K[M ]∆ is generated
by the elements πkχu with (u, k) ∈ Sσ := σ̌ ∩ (M × Z), which is finitely generated as a
semigroup.

If the valuation is divisible, we reduce to the pointed Γ-rational polyhedron case,
then the proof given in [3, Proposition 4.11] works. Let σi := LCωi(∆) be the local
cone of ∆ at the vertex ωi, then its shown that K[M ]∆ is generated by the elements
αijχ

uij where {uij}j is a finite set of generators of σ̌i ∩M and αij ∈ K are such that
v(αij) + 〈uij , ωi〉 = 0.

For any w ∈ NR, we define the following w-weight on K[M ]

vw

(∑
u∈M

auχ
u

)
:= min

u
{v(au) + 〈u,w〉},

∑
u∈M

auχ
u ∈ K[M ].

As usual, we can extend this function to a valuation on the fraction field K(M). In
particular, given a pointed Γ-rational polyhedron ∆, we consider the w-weight associated
to each vertex w of ∆. Correspondingly, we have the rings

K[M ]w := {f ∈ K[M ]|vw(f) ≥ 0}
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which are integrally closed in K[M ]∆, see [17, Proposition 6.10 ]. With these valuations,
we associate to ∆ the following function

v∆(f) := min
ω∈Vert(∆)

{vω(f)} ∀ f ∈ K[M ]∆,

which is not necessarily a valuation.
With this, we prove that K[M ]∆ is integrally closed. Basically this follows because

of the equality
K[M ]∆ =

⋂
ω∈Vert(∆)

K[M ]ω.

Remark 1.3. If Γ is not divisible, then K[M ]∆ is not necessarily of finite presentation,
as is shown in the following example.

Example 1.4. Suppose the value group Γ ⊂ R is dense and not divisible. Then there
exists an element w ∈ R\Γ such that nw ∈ Γ for some n ∈ Z+. Therefore the polyhedron
∆ := {ω} is Γ-rational. Consider the algebra K[M ]∆, with M ' Z. Explicitly, we have

K[M ]∆ =
{∑

auχ
u ∈ K[M ] |v(au) + uw ≥ 0

}
.

We claim that K[M ]∆ is not finitely generated. For this, we argue by contradiction:
We suppose it is finitely generated as a K◦-algebra. Let g1, . . . , gk be M -homogeneous
generators, i.e. of the form gi = aiχ

mi with ai ∈ K and mi ∈ Z. Now let b ∈ K be such
that bχ ∈ K[M ]∆. There exist λ ∈ K◦ and α1, . . . , αk ∈ Z+\{0} such that

bχ = λgα1
1 · · · g

αk
k .

For some j ∈ {1, . . . , k} we have vw(g
mj
j ) /∈ Γ, otherwise from the previous equation we

would get that w ∈ Γ, which contradicts our assumption. Note that this implies that
vw(g

mj
j ) > 0, in particular vw(gj) > 0. Let

ε := inf
i
{vw(gi)|vw(gi) 6= 0} .

Then for any b ∈ K with bχ ∈ K[M ]∆, we have

vw(bχ) = v(b) + w = v(λ) +
∑
i

αivw(gi) ≥ ε > 0.

This inequality contradicts the density of Γ in R. We conclude that K[M ]∆ is not
finitely generated.

If v is neither discrete nor trivial and ∆ is a pointed Γ-rational polyhedron then
K[M ]∆ is finitely generated if and only if the vertices of ∆ are in NΓ, see [17, Proposition
6.9].
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If ∆ is a pointed Γ-rational polyhedron, then Q(K[M ]∆) = K(σ̌0 ∩M) = K(M).
This follows because σ0 := rec(∆) contains no affine subspace of dimension > 0, see [17,
Proposition 6.6]. Note that K[M ]∆ is naturally M -graded. Therefore if the valuation
v is neither trivial nor discrete and the vertices of ∆ are contained in NΓ, we conclude
that K[M ]∆ is a normal flat algebra of finite type over K◦ with an M -graduation. If v
is discrete or trivial the extra condition on the vertices of ∆ is not required.

Geometrically this means that U∆ := Spec(K[M ]∆) is a separated normal flat scheme
of finite type over K◦ such that it has an algebraic action of T over K◦ which extends
the translation action of T ⊂ (U∆)η over itself. In the case that K[M ]∆ is of finite type,
we conclude that U∆ is a T-toric variety.

Remark 1.5. For a pointed Γ-rational polyhedron ∆ ⊂ NR, we can define the T-toric
scheme U∆ using σ := c(∆), the closure of the cone generated by ∆× {1} in NR × R+,
as follows. Define

K[M ]σ :=

 ∑
u∈σ̌0∩M

αuχ
u ∈ K[M ]

∣∣∣∣∣∣ cv(αu) + 〈u, ω〉 ≥ 0 ∀(ω, c) ∈ σ

 .

We have K[M ]σ = K[M ]∆, then Vσ := Spec(K[M ]σ) = U∆.

Lets see how the geometry of the special fiber can be described. First we will see how
the irreducible components of (U∆)s can be characterized.

Proposition 1.6. The reduced induced structure on the special fibre is given by

((U∆)s)red = Spec(K[M ]∆/{f ∈ K[M ]∆|v∆(f) > 0}).

Proof. See [17, Lemma 6.13].

With this, we get the following important result.

Proposition 1.7. Let ∆ be a pointed Γ-rational polyhedron in NR. Then there is a bijec-
tion between the vertices of ∆ and the irreducible components of (U∆)s. The irreducible
component corresponding to the vertex ω is the closed subscheme Yω of U∆ given by the
prime ideal {f ∈ K[M ]∆|vω(f) > 0} of K[M ]∆.

Proof. See [17, Proposition 6.14]

Example 1.8. Let ∆ = [0, λ] with λ ∈ Γ\{0}. Then A = K[M ]∆ = K◦[x, ax−1] =
K◦[x, y]/(xy − a), with v(a) = λ. Therefore A ⊗K◦ K̃ = K̃[x, y]/(xy). We see that
(U∆)s has two components which correspond to the vertices of ∆.

Remark 1.9. Let ∆ ⊂ NR be a pointed rational polyhedron. If K is the function field
of a normal curve Y defined over an algebraically closed field K of characteristic zero,
then the description of the special fiber of U∆ can also be obtained from the theory of
polyhedral divisors developed by Altmann–Hausen in [2]. In order to do this, we consider
the polyhedral divisor D := ∆ ⊗ {y}, for some y ∈ Y . Let K◦ := OY,y be the discrete
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valuation ring corresponding to the localization of the structure sheaf of Y at y. Note
that K is the fraction field of K◦ and K its residue field. From [2, §7] we get a T -variety
X̃ over Y . Let π : X̃ → Y be the canonical morphism and K[Λ] be defined as in [2,
Definition 7.1], then the fiber of this morphism over y is given by π−1(y) = Spec(K[Λ]),
see [2, Proposition 7.10]. From [2, Proposition 7.3 - (iv)] we see that the irreducible
components of π−1(y) are TK-toric varieties corresponding to the local cones LCw(∆)
of ∆. On the other hand from [17, Corollary 6.15] this are precisely the irreducible
components of the special fiber of U∆. Note that the generic fiber of the morphism
π coincide with the generic fiber (U∆)η of the T-toric variety U∆. Actually, from the
definition of X̃ follows that the base change X̃ ×Y Spec(K◦) is isomorphic to U∆. This
shows that the constructions are the same for this case.

Finally, in order to show how the geometry of the special fiber depends on the com-
binatorics of the Γ-rational polyhedron ∆ and to give an explicit correspondence for the
T-orbits, we need the tropicalization map which we will introduce here. For further de-
tails on tropicalization see the articles by Baker–Payne–Rabinoff [3], Gubler [17] and the
draft by Maclagan–Sturmfels [24].

1.2 Tropicalization

In this section we are going to give the basic definitions and properties of tropical varieties.
Since for the definition of the tropicalization map Berkovich spaces are needed, we start
recalling the construction of an analytic space associated to an algebraic variety X over
a valued field K. Let X = Spec(A) be an affine scheme of finite type over K, the
analytification Xan of X is given by the set of multiplicative seminorms which extend
the absolute value of K, i.e. the maps p : A→ R+ which satisfy

• p(fg) = p(f)p(g)

• p(f + g) ≤ p(f) + p(g)

• p(a) = |a|

for all f, g ∈ A and all a ∈ K. This set is endowed with the weakest topology for which
the maps f : Xan → R, given by f(p) := p(f), are continuous for all f ∈ A. If X is a
scheme of finite type over K which is not affine, we consider an affine covering of it, we
construct their corresponding analytic spaces and finally we glue them together to obtain
Xan. This space is independent of the chosen affine covering. For a Banach algebra A ,
the Berkovich spectrum M (A ) is defined as the set of bounded multiplicative seminorms
on A , provided with the weakest topology defined as above. For details see [5] and [35].

Let X be a scheme of finite type over K and Xan be the corresponding analytic space.
An important affinoid subset of Xan consists of the potentially integral points of X.
This is defined as follows. For simplicity, we consider first the affine case X = Spec(A),
Xan = M (A). Given a point p ∈ Xan the quotient field L of A/{a ∈ A|p(a) = 0} is
endowed with an absolute value induced by p, | · |ω, which extends the norm on K. The
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field (L, ω) is a valued field extension of (K, ν). The canonical morphism A→ L induces
an L-rational point P on X. Consequently given an element f ∈ A and a seminorm
p ∈ Xan we can write p(f) as |f(P )|ω, where f(P ) denotes the image of f in L.

The set of potentially integral points is defined as

X◦ := {p ∈ Xan|p(f) ≤ 1 ∀f ∈ A}.

That is, the set of points for which the image of A under the canonical map A → L is
contained in L◦. Those points induces on X a potentially integral point, i.e. integral
for some valued field extension L/K. In general the potentially integral points X◦ of a
scheme X of finite type is the union of the sets U◦ for U ∈ U , where U is an open affine
covering of X. The set X◦ is independent from the chosen covering.

Consider the split torus T = Spec(K[M ]) over the valued field (K, v). The tropical-
ization map is defined as:

tropv : T an → NR, p 7→ tropv(p),

with tropv(p) given by
〈u, tropv(p)〉 := −log(p(χu)).

Explicitly, choosing coordinates x1, . . . , xn on the torus T this map is given by

p 7→ (−log(p(x1)), . . . ,−log(p(xn))).

It follows from the definition that the tropicalization map is continuous. Let X be a
closed subscheme of T . We define the tropicalization of the closed subscheme X or the
tropical variety associated to X as Tropv(X) := tropv(Xan).

We have the following fundamental result of tropical geometry.

Theorem 1.10. (Bieri-Groves) Tropv(X) is a finite union of Γ-rational polyhedra in
NR. If X is of pure dimension d, then we may choose all the polyhedra d-dimensional.

Proof. See [17, Theorem 3.3].

Furthermore if X is connected and K is complete, algebraically closed or real closed
with convex valuation ring then Tropv(X) is connected as well, see [10, Theorem 1].
Now, if (L,w) is an algebraically closed valued field extending (K, v) then Tropv(X)
equals the closure of the set {(−log|x1|w, . . . ,−log|xn|w)|x ∈ X(L)}. Note that if (K, v)
is algebraically closed, then it is just the closure of the valuation map defined on the
rational points, i.e. the closure of the set {(v(x1), . . . , v(xn))}|x ∈ X(K)} in Rn. This is
the usual definition of a tropical variety.

Before we proceed further, we explore another advantage of T-toric schemes over
valuation rings: there is a reduction map. This map connects the geometry of both
fibers and give us the complete description of the scheme. Given a T-toric scheme Y ,
the reduction map is defined on the set T an ∩ Y ◦η of potentially integral points of the
generic fibre in the analytic torus. Since every potentially integral point gives rise to a
seminorm p on K[M ]∆, the reduction map π sends this seminorm to the image of the
prime ideal {f ∈ A|p(f) < 1} ⊂ A in A ⊗K◦ K̃. Using the tropical map, the domain of
π is given explicitly as the following result shows.
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Proposition 1.11. Let ∆ be a pointed Γ-rational polyhedra, then on the generic fiber
(U∆)η =: Uσ we have U◦σ ∩ T an = trop−1

v (∆).

Proof. See [17, Lemma 6.21].

Proposition 1.12. Let ∆ be a pointed Γ-rational polyhedron in NR and let U∆ be the as-
sociated T-toric scheme over K◦. Then there is a bijective order reversing correspondence
between T-orbits Z of (U∆)s and open faces τ of ∆ given by

Z = π(trop−1
v (τ)), τ = tropv(π

−1(Z)).

Moreover, we have dim(Z) + dim(τ) = n.

Proof. See [17, Proposition 6.22].

Here we can see explicitly how tropical geometry help us to complete the description of
the T-toric scheme U∆ in terms of the combinatorics of the pointed Γ-rational polyhedron
∆. So far, we have seen that the generic fiber is described by toric geometry, it is the
T -toric variety associated to the cone σ = rec(∆), and the components of the special fiber
are in one-to-one correspondence with the vertices of ∆. Furthermore every component
of the special fiber is a toric variety over K̃. Given a vertex ω of ∆ the corresponding
component is a Spec(K̃[Mω])-toric variety, with Mω := {u ∈ M |〈u, ω〉 ∈ Γ}, for details
see [17, Corollary 6.15 ].

1.3 Toric schemes associated to fans

As we have seen, given a pointed Γ-rational polyhedron ∆ ⊂ NR, the scheme U∆ is a
normal T-toric scheme over K◦. Recall that this scheme can be written as Vσ, where
σ = c(∆). We would like to associate to a polyhedral complex C , made of pointed Γ-
rational polyhedra, a T-toric scheme by gluing the corresponding U∆, ∆ ∈ C , along their
common intersections. Unfortunately there are some problems in the gluing process and
to avoid them it is necessary to work with cones in NR×R+ instead of polyhedra in NR.
This construction is well behaved for any Γ-admissible fan Σ in NR × R+, see Remark
1.13 below.

Let σ ⊂ NR×R+ be a Γ-admissible cone. There is a bijective correspondence between
pointed Γ-rational polyhedra ∆ ⊂ NR and Γ admissible cones σ not contained inNR×{0}.
This is given by

σ 7→ ∆ = σ ∩ (NR × {1}),
∆ 7→ σ = c(∆).

A Γ-admissible fan Σ in NR × R+ is a fan of Γ-admissible cones.
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Remark 1.13. The previous correspondence can be extended to a correspondence between
polyhedral complexes and fans but not in complete generality, an extra condition on
those is required. This was pointed out by Burgos–Sombra in [9], see also [17, Remark
7.6]. Concretely there is a bijective correspondence between complete Γ-rational pointed
polyhedral complexes in NR and complete Γ-admissible fans in NR × R+.

Given a Γ-admissible fan Σ, we construct a normal T-toric scheme YΣ as follows:
for each Γ-admissible cone σ we have the normal affine T-toric scheme Vσ, then we glue
them together along the open subschemes coming from their common faces. The scheme
obtained in this way is separated, see [17, Lemma 7.8]. The description of the T-toric
schemes comming from Γ-admissible fans is given by the combinatorics of the tropical
cone, see [17, §8]. Explicitly, we have the following result.

Proposition 1.14. There is a bijective order reversing correspondence between T-orbits
Z of the special fiber (YΣ)s and open faces τ of Σ which are not contained in NR × {0}.
It is given by

Z = π(trop−1(τ)), τ = trop(π−1(Z)).

Proof. See [17, Proposition 8.8].

Finally, it is worth to note that since (YΣ)η and (YΣ)s are noetherian topological
spaces, then so is YΣ although K◦ is non-noetherian in general. This fact will be very
important in chapter 4, see for instance Lemma 3.10.

1.4 Projective toric schemes

The projective T-toric varieties with a linear action of the torus have a very explicit
description. In this section we review how to construct them. This varieties are not
necessarily normal, for details see [17, §9]. This construction does not give a classification
of all the possible projective toric schemes over K◦ but just those which have a linear
action of the torus, see [17, Proposition 9.8]. Over fields this construction was done
by Gelfand–Kapranov–Zelevinsky [15], see also Cox–Little–Schenk [11]. Over discrete
valuation rings this construction can be found in the paper by Katz [20].

Let A = (u0, . . . , uN ) ∈ MN+1 and y = (y0 : · · · : yN ) ∈ PNK◦(K). The height
function of y is defined as

a : {0, ..., N} → Γ ∪ {∞}, j 7→ a(j) := v(yj).

The action of T on PNK◦ is given by

(t,x) 7→ (χu0(t)x0 : · · · : χuN (t)xN ).

We define the projective toric variety YA,a to be the closure in PNK◦ of the orbit Ty.
The generic fiber YA,a is a toric variety respect to the torus T/stab(y). Indeed it follows
that YA,a is a T-toric variety over K◦ with respect to the split torus over K◦ with generic
fiber T/Stab(y).
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The weight polytope Wt(y) is defined as the convex hull of A(y) := {uj |a(j) <
∞}. The weight subdivision polytopal complex Wt(y, a) is obtained from Wt(y) with the
subdivision given by projecting the faces of the convex hull of {(uj , λj) ∈MR × R+|j =
0, . . . , N ; λj ≥ a(j)}.

Defining f on the set A(y) by f(ui) := a(i) and extending to Wt(y) by linearity,
we have a convex function f whose epigraph is equal to the convex hull of {(uj , λ) ∈
MR×R|λ ≥ a(j), j = 0, . . . , N}. The function f is uniquely charecterized by its epigraph
and the fact that it is convex. By construction the domain of this function is equal to
Wt(y).

The dual complex C (A, a) of Wt(y, a), is defined as the complete polyhedral complex
which has as polyhedra the maximal sets where the function

g(ω) := min
j=0,...,N

{a(j) + 〈uj , ω〉}

is linear. There is an order reversing correspondence between the faces of Wt(y, a) and
the polyhedra of C (A, a). Explicitily given a face Q of Wt(y, a), we have the following
polyhedron of C (A, a)

Q 7→ Q̂ := {ω ∈ NR|g(ω) = 〈u, ω〉+ f(u) ∀u ∈ Q}.

Given a polyhedron σ of C (A, a), we have the following face of Wt(y, a)

σ 7→ σ̂ = {u ∈MR|g(ω) = 〈u, ω〉 ∀ω ∈ σ}.

The main result about the T-toric schemes obtained in this way is given by the
following proposition.

Proposition 1.15. There are a bijective correspondence between

(a) faces Q of the weight subdivision Wt(y, a);

(b) polyhedra σ of the dual complex C (A, a);

(c) T-orbits Z of the special fiber of YA,a.

The correspondences are given explicitly as follows: The face Q = σ̂ is the face of
Wt(y, a) spanned by those uj with xj 6= 0 for x ∈ Z. The polyhedron σ is given by σ = Q̂
and relint(σ) = tropv({t ∈ T an|π(ty) ∈ Z}). The orbit Z is equal to

{x ∈ (YA,a)s|xj 6= 0⇔ uj ∈ A(y) ∩Q} = {π(ty)|t ∈ T an ∩ trop−1
v (relint(σ))}.

Proof. See [17, Proposition 9.12.].

We will see in chapter 4 that this result is crucial to prove Sumihiro’s theorem for
normal T-toric varieties.
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2 | The cone of a normal affine toric
variety

We recall that (K, ν) is a valued field with valuation ring K◦, residue field K̃ and value
group Γ ⊂ R. We assume that the valuation is not trivial since for this case the statement
of Theorem 1 is reduced to the field situation where its already known, see [21, ch. I
Theorem 1' ]. The split torus over K◦ is T = Spec(K◦[M ]) with generic fiber T =
Spec(K[M ]). The character group of T isM with dual N = Hom(M,Z). For an element
u ∈M , the corresponding character is denoted by χu.

As we have seen in the previous chapter a pointed Γ-rational polyhedron ∆ ⊂ NR,
with σ = c(∆) ⊂ NR × R+, induces a normal T-toric scheme Vσ = U∆ = Spec(K[M ]σ).
This is a T-toric variety if the valuation is discrete or if the valuation is not discrete and
the vertices of ∆ are in NΓ. It is natural to ask if every affine T-toric variety is of this
form. In this chapter we will give an affirmative answer to this question. In fact, we
will show that if the valuation is neither trivial nor discrete the isomorphism classes of
normal affine T-toric varieties are in a bijective correspondence with Γ-admissible cones
σ for which the vertices of σ ∩ (NR × {1}) are contained in NΓ × {1}. This gives the
proof of Theorem 1.

2.1 Construction of the cone

Let Y = Spec(A) be an affine normal T-toric variety as in Theorem 1. The algebra A
satisfies the following properties. Since T acts on Y , A has an M -graduation

A =
⊕
m∈M

Am.

Since it is finitely generated, we can chooseM -homogeneous generators a1χ
m1 , . . . , akχ

mk

of A, that is
A = K◦[a1χ

m1 , . . . , akχ
mk ] ai ∈ K. (2.1)

With this representation of the algebra A, we define the following semigroup

S := {(m, ν(a)) ∈M × Γ|aχm ∈ A\{0}}. (2.2)

25
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Lemma 2.1. The semigroup S is saturated in M × Γ.

Proof. Let (m, ν(a)) ∈M × Γ and N ∈ Z+ such that N(m, ν(a)) ∈ S, i.e. (aχm)N ∈ A.
Then aχm satisfies the integral equation

xN − (aχm)N = 0.

By normality of A, we get aχm ∈ A, i.e. (m, ν(a)) ∈ S.

Given a subset B ⊂M × Γ, it generates a cone in M × R, namely

cone(B) :=
{∑

αj(nj , ωj)|αj ∈ R+, (nj , ωj) ∈ B
}
⊂MR × R.

In particular, to the semigroup S we associate the cone

cone(S) :=
{∑

αj(nj , ν(bj))|αj ∈ R+, (nj , ν(bj)) ∈ S
}

in MR × R.

Lemma 2.2. Using the homogeneous generators a1χ
m1 , . . . , akχ

mk from (2.1), we get

cone(S) = cone({(0, 1), (mi, ν(ai)), i = 1, . . . , k}).

Proof. The inclusion “⊃" is clear. Let
∑
αj(nj , ν(bj)) ∈ cone(S) be as above. Since

(nj , ν(bj)) ∈ S, we get bjχnj ∈ A. Then (2.1) gives

bjχ
nj = λ(j)(a1χ

m1)l
(j)
1 · · · (akχmk)l

(j)
k for λ(j) ∈ K◦, l(j)1 , . . . , l

(j)
k ∈ Z+.

This implies

ν(bj) = ν(λ(j)) +

k∑
i=1

l
(j)
i ν(ai)

nj =
k∑
i=1

l
(j)
i mi,

hence

∑
j

αj

(
k∑
i=1

l
(j)
i mi, ν(λ(j)) +

k∑
i=1

l
(j)
i ν(ai)

)
=

∑
j

αj(0, ν(λ(j))) +
∑
j

∑
i

αjl
(j)
i (mi, ν(ai))

= (0, κ) +
∑
i

λi(mi, ν(ai))

with κ :=
∑

j αjν(λ(j)) and λi :=
∑

j αjl
(j)
i . This proves the lemma.
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Using duality of cones inMR×R, we define σ := cone(S)̌. Therefore, again by duality
of polyhedral cones we get σ̌ = cone(S), see [13, §1.2]. We have the following property
of σ.

Lemma 2.3. The cone σ is Γ-admissible.

Proof. From Lemma 2.2, we have that

σ =

k⋂
i=1

{(ω, s) ∈ NR × R+|〈mi, ω〉+ sν(ai) ≥ 0} with m1, . . . ,mk ∈M,

which is by definition a Γ-rational cone. To prove that σ is Γ-admissible we just have
to show that it doesn’t contain a line. Suppose it does, i.e. R · (ω, t) ⊂ σ for some
(ω, t) ∈ NR × R+. Since σ ⊂ NR × R+, we must have t = 0. Otherwise (λω, λt) ∈ σ for
all λ ∈ R and with λ = −1 we would have (−ω,−t) ⊂ NR×R+ which is not possible for
t > 0. Therefore the line is of the form R · (ω, 0) ⊂ NR × {0}.

On the other hand for any aχµ ∈ A, we have (µ, ν(a)) ∈ cone(S) = σ̌. Then

〈(µ, ν(a)), (λω, 0)〉 = 〈µ, λω〉 ≥ 0 ∀λ ∈ R.

In particular with λ = ±1, we get 〈µ, ω〉 = 0, i.e. µ ∈ ω⊥. Choosing a basis {u1, . . . , un}
for M , such that u1, . . . , un−1 ∈ ω⊥, we get A ⊂ K[χ±u1 , . . . , χ±un−1 ]. Therefore

Q(A) ⊂ Q(K[χ±u1 , . . . , χ±un−1 ]) = K(χ±u1 , . . . , χ±un−1) ( K(M).

Since Y = Spec(A) has a dense T -orbit, we have Q(A) = K(M). This contradicts
our assumption. Hence we conclude that σ doesn’t contain any line and therefore it is
Γ-admissible.

2.2 Proof of Theorem 1

With these lemmas, we are ready to prove the main result of this chapter. Define the
algebra

K[M ]σ :=

 ∑
m∈σ̌0∩M

amχ
m ∈ K[M ]

∣∣∣∣∣∣ 〈m,ω〉+ t · ν(am) ≥ 0, ∀(ω, t) ∈ σ

 .

By Lemma 2.3 and Remark 1.5 this algebra defines an affine normal T-toric scheme.
With the previous notation, we have to prove K[M ]σ = A.

Let us see first that A ⊂ K[M ]. Take any aχm ∈ A, since (m, ν(a)) ∈ S then
(m, ν(a)) ∈ σ̌. Therefore by the definition of the dual cone, we have

〈m,ω〉+ t · ν(a) ≥ 0 ∀(ω, t) ∈ σ.

Therefore aχm ∈ K[M ]σ, i.e. A ⊂ K[M ]σ.
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To prove the other inclusion, we take aχm ∈ K[M ]σ. Then (m, ν(a)) ∈ σ̌ = cone(S).
By Lemma 2.2, we get

(m, ν(a)) = (0, κ) +

k∑
i=1

λi(mi, ν(ai)), κ, λi ≥ 0.

From this, we get the following system of equations

m =
∑
i

λimi (2.3)

ν(a) = κ+
∑
i

λiν(ai) (2.4)

Now we show that it is always possible to choose λi ∈ Q+. We have to consider the
following two cases:

(a) Suppose that κ 6= 0. Let {bj}sj=1, with bj = (b
(1)
j , . . . , b

(k)
j ) ∈ Qk (j = 1, . . . , s), be

a basis in Qk for the solutions of the homogeneous equation associated to (2.3) and
let µ ∈ Qk be a particular solution for (2.3). The space of solutions is given by

L =

µ+

s∑
j=1

ρjbj |ρj ∈ R, j = 1, . . . , s

 .

Since λ := (λi) ∈ Rk+ is a solution of (2.3), there exist ρ◦j ∈ R (j = 1, . . . , s) such
that

λ = µ+
∑
j

ρ◦jbj .

Now choose ρ̂◦j ∈ Q close to ρ◦j , i.e.

ρ◦j = ρ̂◦j + εj .

Then
λ̂ = µ+

∑
j

ρ̂◦jbj

is also a solution of (2.3) which is close to λ. Explicitly, we have λ1
...
λk

 =

 λ̂1
...
λ̂k

+
s∑
j=1

εjbj .

Inserting this in (2.4), we get

ν(a) = κ+
∑
i

λ̂i +
∑
j

εjb
(i)
j

 ν(ai)

= κ+
∑
i

λ̂iν(ai) +
∑
i

∑
j

εjb
(i)
j

 ν(ai).
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With α :=
∑

i

(∑
j εjb

(i)
j

)
ν(ai), we get

κ+ α = ν(a)−
∑
i

λ̂iν(ai).

For εj small enough, we have that κ + α > 0. We conclude that it is possible to
choose the coefficients in (2.3) rational, i.e. the element (m, ν(a)) ∈ σ̌ is obtained
with the coefficients κ+ α, λ̂i, i = 1, . . . k.

(b) Suppose that κ = 0. In an analogous way, we obtain that

α :=
∑
i

∑
j

εjb
(i)
j

 ν(ai) = ν(a)−
∑
i

λ̂iν(ai)

=
∑
j

(∑
i

b
(i)
j ν(ai)

)
εj .

Then with δj :=
∑

i b
(i)
j ν(ai), we get

α =
∑
j

δjεj = ν(a)−
∑
i

λ̂iν(ai).

Therefore choosing εi properly, according to the sign of δj , we can assure that
every term in the sum

∑
j δjεj is positive and therefore α > 0. This shows that it

is possible to choose the coefficients in (2.3) rational, i.e. the element (m, ν(a)) ∈ σ̌
is obtained with the coefficients α, λ̂i, i = 1, . . . , k.

This proves that it is always possible to write (m, ν(a)) = (0, κ) +
∑
λi(mi, ν(ai))

with λi ∈ Q+ and κ ∈ R+. Let N ∈ Z+ such that Nλi ∈ Z+, i = 1, . . . , k. Then we get

N(m, ν(a)) = N(0, κ) +
∑
i

Nλi(mi, ν(ai)).

This proves in particular that Nκ ∈ Γ. Since (0, Nκ), (mi, ν(ai)) ∈ S (i = 1, . . . , k)
and Nλi ∈ Z+, we conclude (Nm,Nν(a)) ∈ S, because S is a semigroup. It follows that
(aχm)N ∈ A. By normality of A this implies that aχm ∈ A. Therefore K[M ]σ = A.
This proves Y = Vσ and Theorem 1.
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3 | Intersection Theory

In this chapter K will denote a valued field with valuation ring K◦, valued group Γ ⊂ R
and residue field K̃. We recall that a variety over K◦ is an integral separated flat scheme
of finite type over K◦.

To study the action of the split torus T = (Gm)nK◦ on divisors of T-toric varieties,
results concerning intersection theory of Cartier divisors will be of crucial importance.
For varieties over the valuation ring K◦, these results follow from the intersection theory
of Cartier divisors on formal admissible schemes over a valuation ring due to Gubler, see
[19]. Before state these results, we review some general properties of divisors on normal
varieties over valuation rings due to Knaf [23]. For completeness, we recall the definition
and basic results of Prüfer v-multiplication rings. After that, we study intersection theory
of Cartier divisors on normal T-toric varieties. These results were proved by Gubler in
[19] and are presented in an algebraic form in [18].

3.1 Prüfer v-multiplication rings

In this section we introduce the theory of Prüfer v-multiplication rings, which are suitable
for the study of normal domains over valuation rings. We will follow closely the paper
[23] by Knaf. A good survey by Fontana–Zafrullah can be found in [1].

Let A be a domain, we denote by F(A) the set of fractional ideals of A. Consider
the following operation on F(A):

ˆ : F(A)→ F(A), I 7→ Î := (A : (A : I)). (3.1)

A fractional ideal I which satisfy Î = I is called a divisorial ideal. We define the set
of finitely generated divisorial ideals by

Dνfin(A) :=
{
I ∈ F(A)|I = Î0, I0 f.g.

}
.

It is endowed with a semigroup structure using the product

(I, J) 7→ I · J := ÎJ . (3.2)

The same construction without the finiteness restriction on the ideals is denoted by
Dν(A).

31
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Definition 3.1. A domain A is called a Prüfer v-multiplication ring or PvM-ring iff
Dνfin(A) is a group.

Remark 3.2. The difference between Prüfer v-multiplication rings and Prüfer domains
as defined in Bourbaki [7, ch.VII §2 Exercise 12] is that the later requires that the
localization at any prime ideal is a valuation ring and as we will see, this is not the case
for PvM-rings. In particular every Prüfer domain is a PvM-ring.

We denote by P(A) the set of weakly associated prime ideals of the A-module Q(A)/A.
Note that any p ∈ P(A) is a minimal prime over an ideal of the form ((a) : (b)) for some
a, b ∈ A and b /∈ (a). The divisorial ideals can be characterized locally on the elements
of P(A) as the next proposition shows.

Proposition 3.3. Let A be a domain, then for any I ∈ Dν(A) we have I =
⋂
p∈P(A) IAp.

In particular A =
⋂
p∈P(A)Ap. Furthermore two divisorial ideals are equal if and only

if they are equal locally on the elements of P(A), i.e. ∀I, J ∈ Dν(A) we have I = J ⇔
IAp = JAp ∀p ∈ P(A).

Proof. This follows from [23, §1.1 – §1.2].

The next proposition shows how the PvM-rings can be characterized.

Proposition 3.4. Let A be a domain, A is a PvM-ring iff for every p ∈ P(A) the
localization Ap is a valuation ring and for every a, b ∈ A, we have (a) ∩ (b) ∈ Dνfin(A).
Furthermore if A is normal we just require that (a)∩(b) is finitely generated for any pairs
a, b ∈ A.

Proof. See [25, Theorem 3.2 – Theorem 3.3].

From this characterization, we get the following important corollary.

Corollary 3.5. Every normal coherent domain is a PvM-ring.

Proof. See [23, §1.3].

In order to study further the domain A, we introduce the t-operation on the fractional
ideals F(A) as

F(A)→ F(A), I 7→ It :=
⋃

I0⊂I, I0 f.g.

Î0.

With the product (I, J) 7→ (IJ)t, the set {I ∈ F(A)|It = I} is a semigroup denoted
by Dt(A). The ideals in this semigroup are called t-ideals. The set of integral t-ideals can
be ordered by inclusion and the maximal elements in this set are called maximal t-ideals.
They are prime ideals in A. This set is denoted by tMax(A). We denote by Val(A) the
set of valued primes of A, i.e. the elements p ∈ Spec(A) such that Ap is a valuation
ring. Because of Proposition 3.4, we know that in order to understand the domain A it
is necessary to understand the rings Ap for every p ∈ P(A). In particular we would like
to know if these rings are valuation rings. To answer this question the t-ideals are a very
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good tool, the reason is that every prime ideal p for which Ap is a valuation ring is a
t-ideal, see [25, Corollary 4.2].

The PvM-rings can be characterized using t-ideals.

Proposition 3.6. Let A be a domain, then A =
⋂
p∈tMax(A)Ap. Furthermore A is a

PvM-ring iff tMax(A) ⊂ Val(A). Moreover this condition is also equivalent to Val(A) =
Spec(A) ∩ Dt(A).

Proof. This follows from [23, 1.5].

The follwoing proposition determine the valued primes in a flat normal domain of
finite type over a valuation ring.

Proposition 3.7. Let A be a normal domain of finite presentation over the valuation
ring K◦, then Val(A) = {p ∈ Spec(A)|ht(p) = 1} ∪ {pη}, where pη correspond to the
generic point of the generic fiber of Spec(A). In particular for every p ∈ P(A) the rings
Ap are discrete valuation rings and for every p ∈ Spec(A⊗K◦ K̃) minimal the rings Ap
are valuation rings of rank one.

Proof. By [23, Theorem 2.4] a normal flat algebra of finite type over a valuation ring
is coherent. Then by Corollary 3.5, A is a PvM-ring. Hence the first statement follows
from [23, Theorem 2.6]. The last statement follows because A is an algebra of finite type
over a rank one valuation ring (K◦, v). The rings Ap, for p ∈ A ⊗K◦ K̃, are valuation
rings of constant reduction of F |K prolonging v. From [23, page 364] we know that these
valuations are extensions of Gauss valuations for a suitable transcendental basis of F
over K. Now the Gauss valuation of K(x1, . . . , xn) has the same rank as the valuation
of K, which is one, and the extension of a valuation to a finite algebraic field extension
also preserves the rank, see [7, ch. VI §8.1 Corollary 1].

In particular we have the generalization of the following well known result for normal
noetherian domains.

Proposition 3.8. Let A be a normal flat domain of finite type over K◦, then

A =
⋂
Ap,

where the intersection runs through the primes ideals of height one.

Proof. This follows from Proposition 3.3, Corollary 3.5 and Proposition 3.7.

The results obtained so far can be sumarized in a geometric way. Given a variety Y
over K◦, we denote by Val(Y ) := {p ∈ Y |OY ,p is a valuation ring} and by Y (1) := {p ∈
Yη|dim(OY ,p) = 1}.

Proposition 3.9. Let Y be an normal flat variety over the valuation ring K◦. We
denote by F := K(Y ) the field of rational functions on Y and by Gen(Ys),Gen(Yη) the
set of generic points of the special fiber and generic fiber respectively. Then
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(a) Val(Y ) = Y (1) ∪Gen(Ys) ∪Gen(Yη).

(b) The rings Ap for p ∈ Y (1) are discrete valuation rings.

(c) For p ∈ Gen(Ys) the valuation rings Ap are of rank one.

Proof. The first statement follows from [23, Theorem 2.6]. Since Yη is a normal variety
over K, (b) follows from standard results. The claim (c) follows from Proposition 3.7.

3.2 Intersection theory with divisors

First note that a variety Y defined over the valuation ring K◦ has the following proper-
ties.

Proposition 3.10. A variety Y defined over the valuation ring K◦ is a noetherian topo-
logical space. Furthermore every irreducible component of the special fibre has dimension
d := dim(Yη). If Ys is non-empty and if v is non-trivial, then the topological dimension
of Y is d+ 1. If Ys is empty or if v is trivial, then Y = Yη.

Proof. The underlying topological space of the scheme Y is the union of the underlying
spaces of Yη and Ys. Since these are noetherian topological spaces the proof of the first
statement follows. Since Y is flat over K◦, then every component of the special fibre has
dimension d. This implies that the dimension of Y is d + 1. The last claims is clear as
for trivial valuations Spec(K◦) = {η}.

In general the varieties Y defined over the valuation ring K◦ are non-noetherian,
therefore the theory developed by Fulton in [14, Chapter 20] can’t be use. Actually a
new definition of a cycle is required.

Definition 3.11. Let Y be a variety over K◦. A horizontal cycle on Y is a cycle on
Yη, i.e. a Z-linear combination of subvarieties of Yη. A vertical cycle on Y is a R-
linear combination of subvarieties on Ys. A cycle on Y is the sum of a horizontal and a
vertical cycle. If the closure of every component of the cycle in Y have dimension k (or
codimension p in Y ) then the cycle is called a cycle of dimension k (or codimension p).
A cycle of codimension 1 is called a Weil divisor.

Given a cycle Z = Z + V in Y , its support is defined as

supp(Z ) := supp(Z) ∪ supp(V ).

If Z =
∑
mWW ⊂ Yη, then supp(Z) = {W |mW 6= 0} ⊂ Y . Similarly for supp(V ), with

V ⊂ Ys a vertical cycle.

Now we define the pull-back and push-forward of cycles by flat and proper morphisms.
Let f : Y ′ → Y be a flat (proper) morphism. The morphisms fη : Y ′η → Yη and
fs : Y ′s → Ys are flat (proper), as flatness (properness) is preserved under base change.
Given a cycle Z = Z + V ⊂ Y the pullback by a flat morphism is defined as

f∗(Z ) = f∗η (D) + f∗s (V ).
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Similarly for a cycle Z ′ = D ′ + V ′ ⊂ Y ′ the push-forward by a proper morphism is
defined as

f∗(Z
′) = (fη)∗(D

′) + (fs)∗(V
′).

Recall that given a flat morphism f : Y → Y ′ between varieties over a field, the
pull-back of a cycle Z ′ ⊂ Y ′ is defined explitely by f−1(Z ′), the scheme theoretic inverse
image. If Z has codimension k then so does f−1(Z). Therefore the pullback of cycles of
varieties over K◦ preserves the codimension. Similarly, given a proper map f : Y → Y ′

of varieties over a field, the push-forward of a cycle Z ⊂ Y is given by

f∗(Z) = [K(Z) : K(f(Z))]f(Z)

if dim(Z) = dim(f(Z)). In this case [K(Z) : K(f(Z))] < ∞. Otherwise it is given by
f∗(Z) = 0. Then, the push-forward of cycles preserves the dimension.

Recall that for a Cartier divisor D on Y , its support is defined by

supp(D) := {y ∈ Y |OY ,y 6= O(D)y}.

Definition 3.12. Given a Cartier divisor D and a cycle Z on Y , we say they intersect
properly if for every prime component W of Z one has

codim(supp(D) ∩W,Y ) ≥ codim(W,Y ) + 1.

In particular if Z is a Weil divisor, this condition says that the intersection doesn’t
contain any Weil divisors.

To every Cartier divisor it is possible to associate a Weil divisor. For simplicity, we
outline the construction when Y is a normal variety over K◦. Let D be a Cartier divisor
on Y . Then its associated Weil divisor cyc(D) is defined as follows. The horizontal
component of cyc(D) is the Weil divisor corresponding to the Cartier divisor D|Yη on
Yη. We just need to construct the vertical part of cyc(E). Let W be an irreducible
component of Ys, and let V be a sufficiently small open affine subset ofW which contains
its generic point ηW . The Cartier divisor D can be represented in V by f = h/g, with
f, g ∈ OY (V ) and g 6= 0 on V . Since OY (V ) is a subring of the valuation ring OY ,ηZ ,
with valuation vZ extending v, see Proposition 3.9, we define

ord(E,Z) := vZ(f) = vZ(h)− vZ(g).

Clearly it is independent of the representatives of the Cartier divisor and the open subset
V . Therefore the vertical component of cyc(E) is defined as∑

Z

ord(E,Z)Z ,

where Z runs through the irreducible components of the special fiber Ys. By Proposition
3.10 Y is a noetherian topological space, then this sum is finite. In particular, given
a principal Cartier divisor div(f) on Y corresponding to a rational function f , the
associated cycle is denoted by cyc(div(f)).
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If the variety Y is not normal, we still can associate to every Cartier divisor a Weil
divisor. However, the construction is more involved and the theory of admissible formal
schemes over a valuation ring is needed, for details see [18, §2.9].

Let CaDiv(Y ) be the group of Cartier divisors on Y , we have shown that there exists
a map from this group to the group of Weil divisors Div(Y ) on Y .

Proposition 3.13. Suppose that Y is normal, then the map CaDiv(Y ) → Div(Y ) is
injective.

Proof. Let D ∈ CaDiv(Y ) be such that cyc(D) = 0. Locally, on U = Spec(A) ⊂ Y ,
D is defined by a rational function f . Since its associated principal Weil divisor is zero,
then f ∈ Ap for every height one prime ideal p of A. By Proposition 3.8 this implies that
f ∈ A. Since v(1/f) = −v(f) = 0, then by the same argument 1/f ∈ A, which means
that f is invertible. Therefore the Cartier divisor is trivial.

The map in Proposition 3.13 is compatible with flat morphisms in the sense of the
following proposition.

Proposition 3.14. Let ϕ : Y ′ → Y be a flat morphism of varieties over K◦. Then the
following diagram commutes.

CaDiv(Y )

ϕ∗

��

// Div(Y )

ϕ∗

��
CaDiv(Y ′) // Div(Y ′)

That is, given a Cartier divisor D on Y , we have ϕ∗(cyc(D)) = cyc(ϕ∗(D)).

Proof. This follows from [18, Proposition 2.15].

Two Cartier divisors D,D′ are called rationally equivalent if there exists a principal
Cartier divisor div(f) such that D −D′ = div(f). We define analogously the notion of
rational equivalence for Weil divisors. The group of rational equivalence classes of Weil
divisors is the first Chow group CH1(Y ) of Y . The equivalence class of a Weil divisor
D is denoted by [D ]. For Cartier divisors the group of equivalence classes is isomorphic
to the Picard group Pic(Y ) of Y .

The cycle associated to a given Cartier divisor satisfies the following properties.

Proposition 3.15. Let D be a Cartier divisor on Y , then the following properties hold

(a) supp(D) = supp(cyc(D)).

(b) The Cartier divisor D is effective iff cyc(D) is an effective cycle.

Proof. Clearly supp(cyc(D)) ⊂ supp(D). To show the other inclusion take y ∈ supp(D)
and suppose that y /∈ supp(cyc(D)). Let V = Spec(A) be an open affine subset of y such
that the local equation for D on V is given by a rational function f . Since A = ∩Ap and
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y is not in the support of cyc(D) hence vp(f) = 0 for all p, then f ∈ A. This means that
y is not in the support of D, which contradicts the assumption. This proves (a). For (b)
we just note that cyc(D) is effective iff vp(f) ≥ 0 for all height one prime ideal p, then
f ∈ Ap for all p as before, which implies that f ∈ A.

With the previous discussion between Cartier and Weil divisors, we are ready to
define the intersection product between a Cartier divisor and a cycle.

Let D be a Cartier divisor and W a prime cycle on Y which intersect properly.
To define the intersection product D.W we consider the following cases. First if W is
vertical it is defined as cyc(D|W ). If W is horizontal and the closure W ⊂ Y is normal
it is defined as cyc(D|W ).

If W ⊂ Y is not normal, it is still possible to associate to the Cartier divisor D|W
a Weil divisor, see [18, §2.9–§2.9]. We define D.W as the associated Weil divisor of
the restriction of D to the closure W in Y . By linearity we get the definition of the
intersection product of D with an arbitrary cycle Z . We also can define the product
between two Cartier divisors as follows.

Definition 3.16. Let D,E be two Cartier divisors on Y . The product of D and E is
defined as D.E := D.cyc(E).

The following proposition shows that this product is independent of the order, i.e. it
is commutative, see [18, Proposition 2.14].

Proposition 3.17. Given two Cartier divisors D and E intersecting properly on Y ,
that is codim(supp(D) ∩ supp(E),Y ) ≥ 2, we have D.cyc(E) = E.cyc(D).

Proof. Since we have to show this equality for horizontal and vertical components, this
is reduced to the case of fields. For the horizontal components it is a standard result in
intersection theory, see [14, Theorem 2.4]. For the the vertical components it was proved
by Gubler, see [19, Theorem 5.9].

3.3 T-invariant neighborhoods and Cartier divisors

In order to prove Sumihiro’s theorem, given a point y ∈ Y we take an open affine
neighborhood U0 of it and construct the smallest T-invariant neighborhood U which
contains U0. It would be very important for the proof to construct a Cartier divisor in
U with support U \U0. For this, the following result is needed.

Proposition 3.18. Consider a non-empty affine open subset U0 of a normal variety Y
over the valuation ring K◦. Then the components of Y \U0 have codimension one in Y .

Proof. Replacing Y by Y \W successively for every component W ⊂ Y \U0 of codimen-
sion one, we may assume that codim(U0,Y ) ≥ 2. We need to prove that Y = U0.
Given an affine open covering {Ui}i∈I of Y , we note that any pair Ui,Uj has non-empty
intersection because Y is irreducible. Furthermore since Y is separated, for all i ∈ I
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we have that U0 ∩Ui is a non-empty affine subset. Therefore it is enough to show that
Ui = Ui ∩U0 for every i ∈ I. This shows that we can restrict to the affine case.

We assume that Y = Spec(A) and let U0 = Spec(B). Since codim(U0,Y ) ≥ 2, by
Proposition 3.8 we have

A =
⋂

ht(p)=1

Ap =
⋂

ht(q)=1

Bq = B.

Then Y = U0, which proves the claim.

In order to study the T-action on Weil divisors, we need to restrict to the elements
of the torus whose reduction is well defined. This is given by T ◦, the affinoid torus in T
defined as {x ∈ T | |x1(x)| = 1, . . . , |xn(x)| = 1} where x1, . . . , xn are the coordinates of
T.

Definition 3.19. We said that a cycle Z in T×K◦ Y satisfies the flatness condition if
every component of the horizontal (resp. vertical) part of Z is flat over T (resp. Ts).

Let Y be a variety over K◦ and let it : Y → T ×K◦ Y be the embedding over
Y induced by the integral point of T corresponding to t. We are going to define the
pull-back i∗t (Z ) for those cycles Z in T×K◦ Y satisfying the flatness condition.

The induced maps it : Y → T ×K Y and it : Ys → Ts ×K̃ Ys are clearly regular
embeddings. Then it is possible to define the pull-back of the horizontal and vertical
part of Z on Y and Ys respectively, see [14, Chapter 6]. We define i∗t (Z ) as the sum of
these two pull-backs. Clearly, this pull-back keeps the codimension and is linear in Z .

The following proposition relates the cycles of codimension one in T ×K◦ Y with
those in Y . Recall that p2 is the canonical projection T×K◦ Y → Y over K◦.

Proposition 3.20. Given a cycle D of codimension one in T×K◦Y , there exists a cycle
D ′ on Y of codimension one such that p∗2(D ′) is rationally equivalent to D .

Proof. The statement is true over the generic fibers, see [14, Proposition 1.9]. For the
vertical parts, we proceed as follows. First note that the special fiber of T×K◦Y is given
by ⋃

Ts ×K̃ V,

where V runs through the irreducible components of Ys. Therefore every irreducible
component of (T×K◦Y )s is of the form Ts×K̃V = p∗2(V ), for some irreducible component
V of Ys. Then every vertical cycle of codimension 1 in T×K◦ Y is given by the pullback
of one in Y . This proves the claim.

Let x1, . . . , xn be a coordinate system of the split torus T ' (Gm)nK◦ and pj : T×K◦
Y → Gm be the canonical projection onto the j-th factor of T. Given a point t ∈
T ◦(K) with coordinates t1 = x1(t), . . . , tn = xn(t), we denote by Dtj the Cartier divisor
p∗j (div(xj − tj)) on T×K◦ Y given by the pullback of the divisor div(xj − tj) on Gm.
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Let Z be a cycle on T×K◦ Y satisfying the flatness condition previously stablished
in Definition 3.19. Using the proper intersection product for Cartier divisor from 3.2, we
have

(it)∗(i
∗
t (Z )) = Dt1 . . . Dtn .Z .

To see that such a product makes sense, we note that by the flatness conditionDt1 . . . Dtn .Z
is a proper intersection product and hence it is well defined, see [14, Example 6.5.1]. By
Proposition 3.17, the intersection product of two Cartier divisors is commutative, there-
fore the right hand side is symmetric respect to the Cartier divisors.

Given two varieties Y ,Y ′ over K◦ we consider a flat morphism ϕ : T ×K◦ Y →
T ×K◦ Y ′ over T. Let ϕt : Y → Y ′ be the flat morphism induced by an element
t ∈ T ◦(K) by base change. Note that in this situation, given a cycle Z ′ in Y ′ there are
different ways to get a cycle in Y , namely i∗t (ϕ∗(p∗2(Z ′))) and ϕ∗t (Z

′). The following
result shows that both constructions agree. We denote by p2 : T ×K◦ Y → Y the
canonical projection.

Proposition 3.21. Let Z ′ be a cycle of Y ′, ϕ : T×K◦Y → T×K◦Y ′ be a flat morphism
over T and ϕt : Y → Y ′ be the induced morphism by a point t ∈ T ◦(K). Then the cycle
ϕ∗(p∗2(Z ′)) satisfies the flatness condition and the equality i∗t (ϕ

∗(p∗2(Z ′))) = ϕ∗t (Z
′)

holds.

Proof. The cycle p∗2(Z ) = T ×K◦ Z clearly satisfies the flatness condition. Since ϕ is
a flat morphism over T and flat cycles are preserved by flat morphisms, we have that
ϕ∗(p∗2(Z ′)) also fulfills the flatness condition. By the definition of pull-backs of cycles
of varieties over K◦, it is enough to prove the claim for varieties defined over fields.
Since in this case the statement holds, see [14, Proposition 6.5], we get the proof of the
proposition.

Now, we explore the relation between the principal cycles given by rational functions
g on T×K◦ Y and those in Y given by evaluating the rational function g on an element
t ∈ T ◦(K). Precisely, we have the following result.

Lemma 3.22. Consider a variety Y over the valuation ring K◦ and let t ∈ T ◦(K).
Given a rational function g on T ×K◦ Y such that the cycle cyc(div(g)) satisfies the
flatness condition, we have that g(t, ·) is a rational function on Y and i∗t (cyc(div(g))) =
cyc(div(g(t, ·))).

Proof. Since the cycle associated to div(g) satisfies the flatness condition and flat mor-
phisms are open, the support of cyc(div(g)) can not be contain in it(Y ), where it is the
regular embedding induced by t ∈ T ◦(K). Then the first claim follows from the flatness
assumption. The last part of the statement follows from the fact that we may write
i∗t as an n-fold proper intersection product with Cartier divisors and from Proposition
3.17.

Proposition 3.23. Consider a variety Y over the valuation ring K◦. Then there is a
correspondence of cycles of codimension one in T×K◦Y and Y up to rational equivalence.
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That is the pull-back with respect to the canonical projection p2 : T×K◦ Y → Y induces
an isomorphism p∗2 : CH1(Y )→ CH1(T×K◦ Y ).

Proof. Given two cycles Z1,Z2 of codimension one on Y which are rationally equivalent,
by proposition 3.14, we get that p∗2(Z1) and p∗2(Z2) are rational equivalent as well. Then
p∗2 is compatible with rational equivalence and hence it is well-defined on the Chow
groups. Surjectivity follows from Proposition 3.20. To prove injectivity, suppose that
D is a cycle of codimension one on Y such that p∗2(D) is rationally equivalent to 0
on T ×K◦ Y . Using Lemma 3.22 for the unit element in T ◦(K), we deduce that D is
rationally equivalent to 0. This proves injectivity.

If we consider the Picard groups instead of the Chow groups in the statement of the
previous proposition for normal varieties, we get also an isomorphism.

Proposition 3.24. Given a normal variety Y over K◦, the pull-back with respect to p2

induces an isomorphism Pic(Y )→ Pic(T×K◦ Y ).

Proof. The claim follows from [17, Remark 9.6].

With the previous results, we can understand the behavior of cycles under the action
of the torus.

Proposition 3.25. Let Y be a normal T-toric variety over K◦ and let D be a cycle
of codimension one in Y . We denote by D t the pull-back of D with respect to the flat
morphism corresponding to the action of an element t ∈ T ◦(K) on Y . Then D t is
rationally equivalent to D .

Proof. From Propositions 3.20, we know that there exists a cycle D ′ of codimension one
in Y such that σ∗(D) is rationally equivalent to p∗2(D ′), where σ : T×K◦ Y → Y is the
action of the torus on Y . By Proposition 3.21 applied to the unit element e of T and
by Lemma 3.22 it follows that D is rationally equivalent to D ′. This implies that σ∗(D)
is rationally equivalent to p∗2(D). If we proceed in the same way as before, applying
Proposition 3.21 and Lemma 3.22 again, but now to t instead of the unit element e, we
get the proof of the Proposition.

As we have said at the beginning of the chapter, given an open affine subset U0 ⊂ Y
we are going to construct a T-invariant open subset U such that it contains U0 and it
has a Cartier divisor with support U \U0. The construction of this opens subset is given
in the following lemma.

Lemma 3.26. Given a non-empty open subset U0 of the T-toric variety Y over K◦, the
open subset U :=

⋃
t∈T ◦(K) tU0 is the smallest T-invariant subset containing U0.

Proof. Consider the subset S of T such that translation with its elements leaves U
invariant. The points in the special fibre of S are equal to the stabilizer of the boundary
of Us and hence an algebraic subgroup of Ts. By construction, it contains all rational
points over the residue field of the torus and hence this algebraic subgroup is equal to
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Ts. We use the same argument for the points of S contained in the generic fibre. Again,
it is an algebraic subgroup now contained in Tη. All points of T ◦(K) are contained in
this algebraic subgroup. Since T ◦ is an n-dimensional affinoid torus, we conclude that
T ◦(K) is Zariski dense in Tη and hence the algebraic subgroup is the torus Tη over K.
We conclude that U is T-invariant. This proves the claim.

Note that the action of T ◦(K) on U leave invariant the vertical part of U0, the reason
is that the set of generic points of the irreducible components of (U0)s is discrete and
the action is continuous. Therefore by Proposition 3.18 the components of U \U0 are of
codimension one, furthermore they are all horizontal. Let D be the horizontal cycle on
U given by the sum of those irreducible components.

Proposition 3.27. Let D be the cycle of codimension one in U defined above. Then
there is a unique Cartier divisor D on U such that D = cyc(D).

Proof. By Proposition 3.25, there is a non-zero rational function ft on U such that
D − D t = cyc(div(ft)). Since U \ t−1U0 is equal to the support of D t, we deduce
that the restriction of D to t−1U0 is the Weil divisor given by the rational function ft
on t−1U0. By Proposition 3.13 and Proposition 3.15, the Cartier divisor on a normal
variety is uniquely determined by its associated Weil divisor. This yields immediately
that {(t−1U0, ft)} is a Cartier divisor on U with associated Weil divisor D . Uniqueness
follows as well.

Remark 3.28. Note that since the cycle D is effective, then by Proposition 3.15 the
associated Cartier divisor D is effective as well.

It is natural to ask if this Cartier divisor is well behaved respect to the T-action. For
this we need first the following property. Recall that σ : T ×K◦ Y → Y is the torus
action of the normal T-toric variety Y over the valuation ring K◦

Proposition 3.29. Given the Cartier divisor D from Proposition 3.27, we have that
σ∗(D) is linearly equivalent to p∗2(D).

Proof. From Proposition 3.24, there is a Cartier divisor D′ on Y such that p∗2(D′) is
rational equivalent to σ∗(D). Since the unit element e in T ◦(K) induces the section ie
of σ and p2, we obtain that the divisor D is rational equivalent to D′ which proves the
claim.

With this proposition we can obtain the following result.

Corollary 3.30. Given the Cartier divisor D from Proposition 3.27, we denote by Dt

the pull-back with respect the torus action by t, where t is an element in T ◦(K). Then the
line bundles O(Dt) and O(D) on U are isomorphic. Furtheremore O(D) is base point
free, i.e. it is generated by global sections.
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Proof. By applying i∗t to the Proposition 3.29, we get that the Cartier divisor D is
linear equivalent to Dt, therefore the line bundle O(D) is isomorphic to O(Dt). From
proposition 3.27, we know that the Cartier divisor Dt is effective, hence it has a canonical
section sDt whose support is U \t−1U0, then the second claim follows from the first
one.

Note that this shows that the Cartier divisors Dt and D are linear equivalent for
every t ∈ T ◦(K).



4 | T-Linearization

In chapter 2 we have proved Theorem 1, which is the first step toward the classification
of normal T-toric varieties over the valuation ring K◦ stated in Theorem 3. In order to
obtain such a result Sumihiro’s theorem for normal T-toric varieties over the valuation
ring K◦ is crucial. To prove it, we need to study invertible sheaves L on normal T-toric
varieties over K◦. This is done in order to get embeddings into projective space and
simplify the problem.

In the previous chapter, we consider a non-empty affine open subset U0 of Y and the
smallest T-invariant open subset U of Y containing U0. In Proposition 3.27, we have
constructed an effective Cartier divisor D on U with supp(D) = U \U0. We saw that
cyc(D) is a horizontal cycle with all multiplicites equal to 1. In this chapter, we will see
that O(D) is ample and has a T-linearization leading to a T-equivariant immersion into
a projective space.

4.1 T-Linearization of a line bundle

Before introducing the notion of a T-linearization let us give some intuition behind the
definition. When we have a line bundle L (or equivalently an invertible sheaf L ) on a
T-toric variety Y , it is useful to know when it is possible to lift the torus action on Y
to an action on L. When this is possible in an appropriated way, we say that L has a
T-linearization. One of the advantages of this fact is that if the invertible sheaf is ample
it is possible to get a T-equivariant embedding into projective space which allow us, in
principle, to simplify problems.

In order to make this concept precise, we denote by µ : T×K◦ T→ T, σ : T×K◦ Y →
Y , p2 : T ×K◦ Y → Y the group action, the torus action and the canonical projection
into the second factor respectively, and by p23 : T×K◦T×K◦Y → T×K◦Y the projection
to the last two factors.

Definition 4.1. Let L be an invertible sheaf on a T-toric variety Y . A T-linearization
of L consists of an isomorphism of sheaves on T×K◦ Y

φ : σ∗L → p∗2L ,

satisfying the cocycle condition:

p∗23φ ◦ (idT × σ)∗φ = (µ× idY )∗φ. (4.1)
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Geometrically this can be seen clearly if we consider the line bundle L instead of the
invertible sheaf L . In this case a T-linearization is a lift of the torus action on Y to an
action on L such that the zero section is T-invariant, see [26] for details.

Given a T-toric variety Y and an invertible sheaf L with a T-linearization, we can
define the action of T on the sections of L . In order to do this, we need to define a dual
action of the split torus T on a K◦-module. Recall that µ̂ : K◦[M ]→ K◦[M ]⊗K◦K◦[M ]
and ϕ̂e : K◦[M ] → K◦ are the morphisms defining the product and the unit element in
T.

Definition 4.2. Let V be a K◦-module and A = H0(T,OT) = K◦[M ]. A dual action of
T on V is given by a morphism over K◦

σ̂ : V → A⊗K◦ V

which satisfies (µ̂⊗ idV ) ◦ σ̂ = (idA ⊗ σ̂) ◦ σ̂ and (ϕ̂e ⊗ idV ) ◦ σ̂ = idV .
A submodule W ⊂ V is called invariant under the action of T if σ̂(W ) ⊂ A⊗K◦ W .

An elemet v ∈ V is called invariant if σ̂(v) = 1⊗ v. If it satisfies σ̂(v) = χ⊗ v, for some
character χ of T, it is called semi T-invariant.

The action of the torus on an element of a K◦-module will be very important for the
proof of Sumihiro’s theorem. We will consider the module of global sections of some line
bundle and look for the semi T-invariant sections which satisfy certain conditions, see
Lemma 5.2 for a precise statement.

From now on Y will always be a normal T-toric variety over the valuation ring K◦.
We have the following lemma which was proved by Rosenlicht in the case of toric varieties
over a field, see [32]. We keep the same notation as in chapter 3, where U0 ⊂ Y is an
affine open subset and U is the smallest T-invariant open subset which contains it.

Lemma 4.3. For any f ∈ H0(T ×K◦ T ×K◦ U ,O∗T×K◦T×K◦U ) there exist characters
χ1, χ2 of T and g ∈ H0(U ,O∗U ) such that

f = χ1χ2g

Proof. By the lemma of Rosenlicht [32], the statement is true in the case of fields. Then
restricting f to the generic fiber we get f = χ1χ2g, where g ∈ H0(U,O∗U ), with U := Uη,
and χ1, χ2 are characters of T . Obviously χ1, χ2 are characters of T as well. Since

U ⊂ U

is an open dense subset, we can extend g to U . Composing f with the section ϕe induced
by the unit element e of T, we get g = f ◦ ϕe ∈ H0(U ,OU ). Now f is invertible, then
g is invertible as well, actually we have g−1 = χ1χ2f

−1 and since g−1 = f−1 ◦ ϕe ∈
H0(U ,OU ) we conclude that g ∈ H0(U ,O∗U ).
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4.2 Existence of the T-linearization

Let D be the Cartier divisor on U with supp(D) = U \ U0. In order to show that
L := O(D) has a T-linearization, we need to show that the isomorphism

φ : σ∗L → p∗2L

satisfies the cocycle condition (4.1).

Proposition 4.4. With the previous notation, L has a T-linearization. Furthermore
this induces a T-action on the global sections.

Proof. From Proposition 3.24, we know that the sheaves σ∗L and p∗2L on T×K◦ U are
isomorphic. Then both sides of (4.1) give rise to isomorphic sheaves on T×K◦ T×K◦ U .
Therefore there exists an element f ∈ H0(T×K◦ T×K◦ U ,O∗T×K◦T×K◦U ) such that

p∗23φ ◦ (idT × σ)∗φ = f(µ× idU )∗φ.

By Lemma 4.3 there are charcters χ1, χ2 and a regular invertible function g on U such
that

f(t1, t2, u) = χ1(t1)χ2(t2)g(u),

for all t1, t2 ∈ T (K) and u ∈ U (K). Evaluating in the points t1 = t2 = e ∈ T (K), u ∈
U (K) we get that f(e, e, u) = 1. Now, by the construction of φ we also have

f(e, t2, u) = 1

f(t1, e, u) = 1,

then g = 1. In general, we have

f(t1, t2, u) = χ1(t1)χ(t2) = (χ1(t1)χ2(e))(χ1(e)χ2(t2)) = 1.

Since the K-rational points are dense, this shows that the isomorphism φ is such that
f = 1 and therefore (4.1) is satisfied. We conclude that L has a T-linearization.

To prove the second claim, we note that from Definition 4.2 the composition of the
morphisms

H0(U ,L )→ H0(T×K◦ U , σ∗L )→ H0(T×K◦ U , p∗2L )→ H0(T,OT)⊗K◦ H0(U ,L )

defines a dual action of T on the global sections.
The last map follows from the Künneth formula, which also holds in this more general

setting, see [22]. Concretely given a section s ∈ H0(U ,L ), by the commutativity of the
diagram

p∗2L

��

// L

��
T×K◦ U // U

(4.2)

we have that (t · s)(u) = t−1(s(tu)).
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4.3 Ampleness

To show that L = O(D) is ample, we consider first the following fact.

Lemma 4.5. Let x1, . . . , xk be the affine coordinates of U0. Since U0 ⊂ U is an open
dense subset, we consider them as rational functions on U . Then there exists ` ∈ Z+ such
that the sections si := xislD are global sections of the line bundle O(lD), for i = 1, . . . , k.

Proof. For every principal divisor div(xi) the associated cycle is given by

cyc(div(xi)) =
∑
j

mijZj + V ,

with Zj the boundary divisors of U \U0 and V an effective Weil divisor of U0 which
meets U0. Recall that by construction D = cyc(D) =

∑
j Zj . Let ` := −min{mij , 0}.

Then the following divisor

cyc(div(xi)) + `D =
∑
j

mijZj + `D + V ≥
∑

(mij + `)Zj + V ≥ 0

is effective. In general, it could happens that the local functions for the Cartier divisor
div(xi) + `D are not regular, this is because the scheme U is not necessarily regular.
Fortunately it doesn’t happen in our situation, actually by Proposition 3.15 the Cartier
divisor div(xi) + `D is effective and we conclude that xis`D is a global section of O(`D).

Recall that Y is a Noetherian topological space, see Proposition 3.10. As a conse-
quence, we obtain that U is quasicompact. Then by Lemma 3.26 there is a finite subset
S ⊂ T ◦(K), which contains e, such that

U =
⋃
t∈S

t−1 ·U0 .

Since the local coordinates x1, . . . , xk of U0 induces the global sections s1, . . . , sk of
O(`D), then t · s1, . . . , t · sk are global sections of O(`Dt) ' O(`D) and local coordinates
of t−1U0. Hence, it is clear that the sections {t · sj}t∈S,j=1,...,k generate O(`D). Note
that the section t · sD is supported in U \t−1U0.

Lemma 4.6. The map ψ : U → PR′K◦, defined by

u 7→ (· · · : t · s1(u) : · · · : t · sk(u) : t · s`D(u) : · · · )t∈S

gives an embedding into PR′K◦ , with R′ = |S|(k + 1)− 1. This proves that L is ample.

Proof. Since L ` is generated by these global sections, this map is well defined. To show
that it is an open immersion it is enough to show that there is an open covering {Vi} of
ψ(U ) ⊂ PR′ such that the restriction of ψ to ψ−1(Vi) is an immersion on Vi, see ÉGA I
[16, Corollaire 4.2.4]. Since this map is defined by the coordinates of PR′K◦ , it is enough to
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take the covering of ψ(U ) induced by the open covering of PR′K◦ given by {Wt}t∈S , where
Wt is given by the complement of the set where the projective coordinates corresponding
to {t · si, t · s`D} are zero. We have that t−1U0 ⊂ ψ−1(Wt). Clearly it is an immersion on
each t−1U0 because {t · si} are local coordinates. Furthermore ψ is injective. Suppose
that ψ(u) = ψ(v), looking at the coordinates given by the sections t · s`D we have that
u, v ∈ t−1U0 for some t ∈ S. Since t · s1, . . . , t · sk is a coordinate system of t−1U we
have u = v. Therefore we conclude that ψ is an immersion.

Although ψ is an immersion, it is not necessarily compatible with the torus action.
The reason is that in general the submodule V`0 of V` := H0(U ,L `) generated by the
global sections {t · sj}t∈S,j=1,...,k and {t · sD}t∈S used in the definition of ψ in Lemma
4.6 is not T-invariant. To solve this problem, since L ` has a T-linearization, we need to
consider the dual action σ̂ of T on V`, see Proposition 4.4.

Recall that given a K◦-submoduleW of V`, it is called invariant under the action of T
if σ̂(W ) ⊂ A⊗K◦W , for A := H0(T,OT) = K◦[M ]. Since the same proof of [26, lemma*
on p. 25] works for modules over the valuation ring K◦, there is a finitely generated
submodule W of V` which is invariant under the action of T and contains V`0. Since W
is K◦-torsion free it is flat over K◦, therefore we conclude that W is a free K◦-module
of finite rank. Let R+ 1 be the rank of W .

Using this T-invariant K◦-module W , we get a morphism i : U → P(W ) with
i∗(OP(W )(1)) ∼= L `. The dual action of T on W induces a linear action of T on the
projective space P(W ). By construction, i is T-equivariant.

i(tu) = (· · · : w(tu) : · · · )w∈W
= (· · · : t(t · w)(u) : · · · )w∈W
= (· · · : t · w(u) : · · · )w∈W
= t · i(u) .

Since i factorizes throught ψ, we deduce from Proposition 4.6 that i is an immersion.
We conclude that the line bundle L is ample. Furthermore since the embedding is

T-equivariant, it allows us to consider the closure of an embedded T-invariant subset
U in projective space as a projective T-toric variety with a linear action of the torus.
Explicitly we have the following result.

Proposition 4.7. Given a non-empty open affine subset U0 of a normal T-toric variety
Y over K◦ and the smallest T-invariant open subset U of Y containing U0. We have
a T-equivariant open immersion of U into a projective T-toric variety YA,a, with A ∈
MR+1 and a the height function as in 1.4.

Proof. Let i : U → P(W ) be the T-equivariant immersion constructed above. We take
the closure Y of i(U ) in P(W ). By construction it is T-invariant and contains a dense
T-orbit. Furthermore since the line bundle O(D) has a T-linearization the T-action on
Y is linear. In other words, Y is a projective T-toric variety over K◦ on which T acts
linearly. Since i(U )(K) 6= ∅ it is possible to choose a K-rational point y in the open
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dense orbit of i(U ). By [17, Proposition 9.8] it is possible to find coordinates in P(W )
such that for some A ∈ MR+1 we have Y = YA,a for the height function a of y defined
in 1.4.



5 | Proof of Sumihiro’s theorem

With the theory developed so far, we are ready to prove Theorem 2. By the Proposition
4.7 it is enough to prove it for projective normal T-toric varieties over K◦ with a linear
action of T. From [17, Proposition 9.8] follows that this varieties are of the form YA,a,
where A ∈ MR+1 and a is a height function defined as in 1.4. The general case will
follow from this one.

5.1 Construction of the T-invariant neighbourhood

Let z ∈ YA,a and let Y be a closed T-invariant subset which does not contain z. Then
we have the following result.

Lemma 5.1. There exists a positive integer k and a section s0 of H0(PRK◦ ,O(k)) such
that s0|Y = 0 and s0(z) 6= 0.

Proof. Suppose that YA,a = V (a) ⊂ PRK◦ for some homogenous ideal a ⊂ K◦[x0, . . . , xR].
Since Y ⊂ YA,a is closed, it is closed as well in PRK◦ . Then there is an homogenous ideal
b such that Y = V (b). Since z ∈ YA,a\Y , hence a ( b then we can choose an element
f ∈ b\a such that f |Y = 0 but f(z) 6= 0. Then with s0 = f ∈ H0(PRK◦ ,O(k)) and
k = deg(f), we obtain the result.

Consider the K◦-module V := H0(PRK◦ ,O(k)) of global sections in projective espace.
It is clear that V is a free K◦-module of finite rank. Since the action of T in PRK◦ is linear
and it induces an action on the K◦-module V , we have a linear representation of T on
V , i.e. a homomorphism S : T→ GL(V ) of group schemes over K◦. A section s ∈ V is
called semi T-invariant if there is u ∈ M such that St(s) = χu(t)s for every t ∈ T and
for the character χu of T associated to u. Now consider the following K◦-submodule

W := {s ∈ H0(PRK◦ ,O(k))|∃λ ∈ K◦\{0} s.t. λs|Y = 0}

of V . Since Y is T-invariant, it is clear that W is invariant under the action of T. Note
that W is equal to the set of global sections of O(k) which vanishes on Yη.

Lemma 5.2. W is a free K◦-module of finite rank, besides its basis can be chosen semi
T-invariant.
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Proof. Let {xi|i = 1, . . . , l} be a basis of H0(PRK◦ ,O(k)). It is also a basis of the vector
space H0(PRK◦ ,O(k))⊗K ' K l. Defining∣∣∣∑λixi

∣∣∣ = max|λi||xi|,

we see that it is a Cartesian vector space as well as its subspace WK := W ⊗K◦ K ⊂ K l.
Let r = dim(WK), by [6, Proposition 2.4.1/5 ] there is an orthogonal basis {s1, . . . , sr}
of WK which can be extended to an orthogonal basis of K l, furthermore we can choose
this basis such that |si| = 1, i.e.“orthonormal”. Note that the elements of this basis are
in (K◦)l, which we may identify with H0(PRK◦ ,O(k)). Since W is saturated and has an
integral basis, we have that W = WK ∩ (K◦)l. Now let v ∈ W , then v =

∑
λisi with

λi ∈ K. Since v ∈ (K◦)l then
1 ≥ |v| = max|λi|,

which implies that λi ∈ K◦, hence {si} is a basis ofW . Now sinceW is a free K◦-module
of finite rank, as in the proof of [17, Proposition 9.8] we conclude that there is a basis
given by eigenvectors of the T-action, i.e. semi T-invariant sections.

Now, we can prove Sumihiro’s theorem for normal projective T-toric varieties with a
linear action of the torus.

Proposition 5.3. Let U be a T-invariant open subset of YA,a. Then every point of U
has a T-invariant open affine neighbourhood in U .

Proof. Let z ∈ U and let Y := YA,a \U . Since Y is T-invariant, we can use the previous
results as well as the notation from there. In particular, we have s0 ∈ H0(PN+1

K◦ ,O(k))
such that s0|Y = 0 and s0(z) 6= 0. Since s0 ∈ W , by Lemma 5.2, we see that there is a
semi T-invariant section s1 ∈ H0(PN+1

K◦ ,O(k)) with s1(z) 6= 0 and λs1|Y = 0 for some
λ ∈ K◦ \ {0}.

To construct the affine invariant neighborhood of z, we consider two cases: when z is
contained in the generic fiber and when z is contained in the special fiber. Suppose that
z is contained in the generic fibre of U over K◦. Then U1 := {x ∈ YA,a|λs1(x) 6= 0} is an
affine open subset of U that contains z. Since s1 is semi T-invariant, it follows that U1

is T-invariant: this can be seen from the equality λsi(tx) = t(t · λsi)(x) = tχu(t)λsi(u).
This proves the claim for this case.

Now suppose that z ∈ Us. Let Z be a T-orbit containing z, by Proposition 1.15
there is a face Qz of Wt(y, a) corresponding to it. Since Y is T-invariant, Ys contains at
least one dense T-orbit. Suppose it is irreducible and let QY be the face corresponding
to the dense T-orbit contained in Ys. Since z /∈ Y there exist ui ∈ Qz ∩ A(y) such that
ui /∈ QY ∩A(y), which means that for a closed point x of Ys, xi = 0 and for a closed point
of z̄ with coordinates (z0 : · · · : zn) we have that zi 6= 0. Let si be the corresponding
global section of O(1). Let s1 be one generator of V as above which is semi T-invariant
and is non-zero on z. For s := s1 ⊗ si, we define

U1 := {x ∈ YA,a|s(x) 6= 0} .
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By definition it is an affine T-invariant subset and since s1 and si vanish on the horizontal
and vertical components of Y respectively, it is contained in YA,a\Y .

If Ys is not irreducible, then for each component Y (k)
s we proceed as before to get the

sections si(k). With the product s := s1 ⊗ (⊗ksi(k)), we obtain a global section of some
tensor power of O(1) which vanishes on Y but not on z and which is semi T-invariant.
Then U1 := {x ∈ YA,a|s(x) 6= 0} defines an open affine T-invariant neighborhood of z
contained in YA,a\Y . This proves the claim.

With this result, we can conclude the proof of the Theorem 2.

Proof of Theorem 2. Given a point z ∈ Y in a normal T-toric variety Y overK◦, we take
U0 as an affine open neighbourhood of it and U as the smallest T-invariant open subset
of Y which contains U0. Let i : U → PRK◦ be the T-equivariant embedding constructed
in chapter 4. By Proposition 4.7 we know that there exists an element A ∈ MR+1 and
a height function a such that the closure of i(U ) in PRK◦ is a projective T-toric variety
YA,a with a linear action of the torus. From Proposition 5.3 there is an affine T-invariant
open neighbourhood U1 of i(z) which is contained in i(U ). The preimage i−1(U1) of
this neighbourhood is an affine T-invariant open neighbourhood of U , and therefore of
Y , which contains z. This proves Sumihiro’s theorem.

5.2 Classification

Finally in order to complete the picture which give rise to the interplay between toric
geometry and convex geometry, we prove Theorem 3 which give us a bijective correspon-
dence between normal T-toric varieties and Γ-admissible fans.

Proof of Theorem 3. Let Y be a normal T-toric variety over the valuation ring K◦. We
assume that the valuation is neither discrete nor trivial, since for those cases the result
is known. By Theorem 1 and Theorem 2 there is open covering of Y of the form {Vσi},
with Vσi normal affine T-toric varieties constructed from the Γ-admissible cones σi for
which the vertices of σi ∩ (NR × {1}) are contained in NΓ × {1}.

We want to show that the fan Σ made from the cones {σi} is Γ-admissible and that
YΣ ' Y . For this, we have to show that Vσi∩Vσj is an affine toric scheme and that the T-
action is compatible with the corresponding action in Vσi and Vσj . Since Y is separated
the intersection of two affine charts Vij = Vσi ∩ Vσj is affine and T-invariant. Then by
Theorem 1 there is a Γ-admissible cone σij ⊂ NR × R+ such that Vij ' Vσij . Applying
the orbit-face correspondence [17, Proposition 8.8] to the open immersions Vσij → Vσi
and Vσij → Vσj we have that σij is a closed face of σi and σj . By the definition of Vij the
same argument shows that σij = σi ∩σj . Therefore the cones {σi} and their closed faces
form a Γ-admissible fan Σ in NR × R+ such that Y ' YΣ. This gives the result.

These results allow us to say that the description of normal T-toric varieties over an
arbitrary valuation ring of rank one can be understood completely. This follows from the



52 CHAPTER 5. PROOF OF SUMIHIRO’S THEOREM

theory available for toric varieties over a field and from tropical geometry, as described
in chapter 2. Furthermore, although we have non-noetherian schemes, we still have a
classification of T-toric varieties in terms of fans. Since there are plenty of valuation rings
of rank one, the theory have been extended in a non-trivial way. The good understanding
of toric geometry over valuation rings allows us to have very solid foundations for the
theories which are based on those, for instance the theory of tropical compactifications.



Appendices

53





A | Convex Geometry

In this appendix we summarize the notions of convex geometry which are used throughout
this paper. The main references are Rockafellar [30], Ziegler [36] and Barvinok [4].

Let W be a real vector space and Γ ⊂ R an additive subgroup. Let M be a free
abelian group of rank n and N = Hom(M,Z) its dual. We denote by MR = M ⊗ZR and
NR = N ⊗Z R. A polyhedron ∆ in W is a finite intersection of closed half spaces

k⋂
i=1

{ω ∈W |〈ui, ω〉 ≥ ci}.

We say that the polyhedron ∆ is Γ-rational if ui ∈M and ci ∈ Γ. It is called pointed if it
is Γ-rational and do not contains affine subspaces of dimension > 0. When Γ = Q, this
coincides with the notion of rational polyedra used by Fulton in [13]. The dimension of
a polyhedron ∆ is the dimension of the subspace aff(∆) spanned by it.

A cone is a polyhedron with all ci = 0, i.e. a polyhedron of the form

k⋂
i=1

{ω ∈W |〈ui, ω〉 ≥ 0}.

A closed face of a polyhedron ∆ is ∆ itself or it is of the form H ∩∆ where H is the
boundary of a half space. An open face is a closed face without its properly contained
closed faces.

Let σ be a face of a polyhedron ∆. An interior point of σ is an interior point relative
to aff(σ). The set of the interior points of σ is called the relative interior of σ. It is
denoted by relint(σ). The relative interior of ∆ is called the interior of ∆.

A cone σ in NR × R+ is called Γ-admissible if it can be written as

σ =

k⋂
i=1

{(ω, s) ∈ NR × R+|〈ui, ω〉+ sci ≥ 0} , u1, . . . , uk ∈M, c1, . . . , ck ∈ Γ,

and does not contain a line.
A bounded polyhedron is called a polytope. This objects are easier to describe because

of the Minkowski-Weyl theorem, or the Krein-Milman theorem in the infinite dimensional
case, see [4, Theorem 3.3]. It says that every polytope is the convex hull of a finite
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number of points. Using the addition in W we can add polyhedra. This makes the set
of polyhedra into a monoid. Furthermore every polyhedron can be written as the sum of
a polytope and a cone.

Let ∆ be a polyhedron. The recession cone or the cone of unbounded directions of
∆ is defined as

rec(∆) := {ω ∈W |∆ + ω ⊂ ∆}.

The closure of the cone generated by ∆×{1} in W ×R+ is denoted by c(∆). For a cone
σ in W ×R+, we define σs := {w ∈W |(w, s) ∈ σ}. With σ = c(∆), we have σ0 = rec(∆)
and σ1 = ∆. A polyhedron is called pointed iff its recession cone contains no lines which
is equivalent to say that 0 ∈W is a vertex of σ0.

A fan Σ is a collection of cones such that every face of a cone is in Σ and the
intersection of any two cones is a face of each. A polyhedral complex C is a set of
polyhedra which satisfies that for any ∆ ∈ C every closed face of ∆ is in C and for any
∆,∆′ ∈ C their intersection is in C or is empty. The support of a polyhedral complex
C is gven by |C | = ∪|∆| ⊂ W for every ∆ ∈ C , where |∆| denotes the support of the
polyhedron ∆. If |C | = W the polyhedral complex C is called complete.

Let f be a real function onW . The epigraph of f , denoted by epi(f), is defined as the
convex hull of {(w, λ) ∈W ×R|λ ≥ f(w)}. A real function f convex iff epi(f) is a convex
set in W × R. For instance the affine functions on W are convex. On W = Rn a twice
continously differentiable function is convex iff its Hessian is possitive semi-definite, see
[30, Theorem 4.5].
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Zusammenfassung

In der Mathematik wird die Konstruktion konkreter Beispiele nicht nur zur Illustration
der Theorie genutzt, sondern ebenfalls zum Auffinden von Gegenbeispielen für offene
Vermutungen. Konkrete Konstruktionen sind in der algebraischen Geometrie im All-
gemeinen schwierig durchzuführen. Diese Tatsache verdeckt manchmal die, der Theorie
zugrunde liegende, Geometrie. Jedoch sind solche Konstruktionen im Fall einer torischen
Varietät über einem Körper einfacher durchzuführen. Dies ist mit der bekannten Überset-
zung zwischen torischer und konvexer Geometrie begründet. Dieses erlaubt uns konkrete
Beispiele durch die Implementierung der kombinatorische Beschreibung in Computeral-
gebrasysteme zu berechnen. Dadurch werden die Anwendungsmöglichkeiten und das Ver-
ständnis der algebraischen Geometrie verbessert. Der Grundpfeiler dieser Resultate stellt
ein Satz von Sumihiro dar, welcher besagt, dass jede torische Varietät eine Überdeckung
aus affinen offenen Torus invarianten Teilmengen besitzt. Eines der Ziele dieser Arbeit
ist es, dieses Resultat für torische Varietäten, die über einem beliebigen Bewertungsring
vom Rang eins definiert sind, zu verallgemeinern.

Die Theorie torischer Varietäten über einem Körper ist sehr gut verstanden und
es gibt viele gute Referenzen hierfür, vgl. etwa Cox–Little–Schenk [11], Ewald [12],
Fulton [13], Kempf–Knudsen–Mumford–Saint-Donat [21] und Oda [27]. In [21] erweiterte
Mumford die torische Geometrie auf normale Varietäten, welche über einem diskreten
Bewertungsring definiert sind. Seither wurden nur sehr wenige Versuche unternommen
torische Geometrie auf allgemeineren Basen zu erweitern. Das Hauptproblem ist, dass für
Bewertungsringe, deren Bewertungen weder trivial noch diskret sind, die noetherschen
Methoden der algebraische Geometrie nicht mehr zur Verfügung stehen.

In [17] führte Walter Gubler torische Varietäten über einem beliebigen Bewertungsring
vom Rang 1 ein. Eine T-torische Varietät Y über einem Bewertungsring K◦ ist ein inte-
gres separiertes flaches Schema vom endlichen Typ über K◦, sodass die allgemeine Faser
Yη von Y den Torus T := (Gn

m)K enthält und sich die natürliche Wirkung von T auf sich
selbst zu einer Wirkung von T := (Gn

m)K◦ auf Y fortsetzen lässt. Für jeden Kegel σ ∈ Σ
eines zulässigen Fächers Σ ⊂ Rn × R+ ist es möglich, ein affines T-torisches Schema Vσ
zu konstruieren. Durch Verkleben dieser affinen Schemata erhalten wir ein T-torisches
Schema YΣ. Zu beachten ist, dass die kombinatorische Beschreibung, ähnlich wie im Fall
einer torischen Varietät über einem diskreten Bewertungsring, von Kegeln und Fächern
in Rn ×R+ herrührt. Eine Besonderheit in diesem Fall ist, dass die tropische Geometrie
eine sehr gute Beschreibung der Kegel-Bahn-Beziehung liefert (für Details vgl. [17, §8]
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und §1.3).
Torische Varietäten über einem beliebigen Grundring R wurden von Fred Rohrer in

[31] untersucht. Er startet mit einem Fächer Π ⊂ Rn und geht wie üblich vor, d.h. zu
jedem Kegel σ ∈ Π ordnet er eine R-Algebra Aσ zu. Die Schemata Spec(Aσ) können
verklebt werden, wodurch man das Schema XΠ erhält. Nach Konstruktion besitzt dieses
Schema eine algebraische Wirkung durch den spaltenden Torus (Gn

m)R. Falls wir für R
den Bewertungsring K◦ wählen, liefert diese Konstruktion einen Spezialfall von Walter
Gublers Konstruktion. In der Tat haben wir XΠ = YΠ×R+ für einen Fächer Π. Darüber-
hinaus liefern diese beiden Ansätze dasselbe Resultat, wenn man für R einen Körper K
einsetzt und sich auf normale Varietäten beschränkt.

Der Unterschied zwischen diesen beiden Ansätzen ist, dass man beim ersten verlangt,
dass die Toruswirkung sich auf das ganze Schema fortsetzen lässt, wohingegen man im
zweiten mit der kombinatorischen Beschreibung startet und man daher, nach Definition,
automatisch eine Toruswirkung auf dem ganzen Schema gegeben hat.

Die Konstruktion von Walter Gubler hängt stark vom Grundring, insbesondere von
dem Fakt, dass dieser Rang 1 hat, ab. Dadurch wird der Einsatz der Theorie analytischer
Räume nach Berkovich sowie der Einsatz der tropischen Geometrie möglich.

In derselben Weise hängen die Ergebnisse dieser Arbeit von diesen Voraussetzungen
ab. Die Frage, ob sich die oben genannten Konstruktionen für Bewertungsringe von
höherem Rang verallgemeinern lassen, bleibt weiterhin unbeantwortet.

Hauptresultate

Das Ziel dieser Arbeit ist es torische Varietäten über einem Bewertungsring K◦, wie
von Walter Gubler in [17] eingeführt, zu klassifizieren. Um dies zu erreichen werden drei
Sätze bewiesen. Die dadurch erreichte Klassifikation wird die übliche Beziehung zwischen
normalen torischen Varietäten und Kegeln, im affinen Fall, und Fächern, im Allgemeinen,
verallgemeinern.

Sei K ein bewerter Körper vom Rang 1, K◦ sein Bewertungsring und Γ seine Werte-
gruppe. Sei T = Spec(K◦[M ]) der spaltende Torus über K◦. Mit M bezeichnen wir das
Charaktergitter von T. In Kapitel 1 wiederholen wir die Theorie torischer Varietäten über
dem Bewertungsring K◦. Wir zeigen wie man zu einem Γ-zulässigen Kegel σ ⊂ Rn×R+

eine K◦-Algebra K[M ]σ konstruiert, die das T-torische Schema Vσ = Spec(K[M ]σ)
liefert. Falls die Bewertung trivial oder diskret ist oder, falls die Bewertung weder trivial
noch diskret ist aber die Ecken von σ ∩ (Rn × {1}) in Γn × {1} enthalten sind, dann ist
die Algebra K[M ]σ vom endlichen Typ und das Schema Vσ ist eine normale T-torische
Varietät überK◦. Auf diese Weise erhalten wir viele Beispiele von T-torischen Varietäten
über einem Bewertungsring vom Rang 1. Eine natürliche Frage ist es, ob alle affinen nor-
malen T-torische Varietäten über K◦ von dieser Form sind. Das erste hier vorgestellte
Resultat bejaht diese Frage. Im Folgendem nehmen wir stets an, dass die Bewertung v
nicht trivial ist. Dann haben wir folgendes Resultat.

Satz 1. Falls die Bewertung v nicht diskret ist, definiert die Zuordnung σ 7→ Vσ eine
Bijektion zwischen der Menge der Γ-zulässigen Kegel in Rn ×R+, für die die Eckpunkte
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von σ ∩ (Rn × {1}) in Γn × {1} enthalten sind, und der Menge der Isomorphieklassen
normaler affiner T-torischer Varietäten über dem Bewertungsring K◦.

Mit Hilfe dieses Satzes erhalten wir eine Klassifikation normaler affiner T-torischer Va-
rietäten über einem Bewertungsring von Rang 1, welche die bekannten Standardresultate
von torischen Varietäten über einem Körper bzw. über einem diskreten Bewertungsring
erweitert. Zu beachten ist, dass im Fall eines diskreten oder trivialen Bewertungsrings,
die Zusatzbedingung für die Kegel entfällt.

Der Beweis von Satz 1 wird in Kapitel 2 geführt. Wir zeigen, dass man zu einer affinen
normalen T-torischen Varietät Y = Spec(A) einen Γ-zulässigen Kegel σ konstruieren
kann, sodass K[M ]σ = A. Zunächst konstruieren wir mit Hilfe der K◦-Algebra A eine
Halbgruppe S und nehmen den davon erzeugten Kegel cone(S). Der gesuchte Kegel ist
dann der duale Kegel σ := cone(S)̌.

Darüber hinaus lässt sich σ durch die Tropikalisierung von Yη ∩ T ◦ rekonstruieren
(vgl. Proposition 1.11). Damit ist der Kegel σ eindeutig durch Y gegeben.

Um normale, nicht notwendig affine, T-torische Varietäten über dem Bewertungsring
K◦ zu klassifizieren, ist es notwendig den, aus der torischen Geometrie bekannten, Satz
von Sumihiro zu verallgemeinern.

Satz 2. Sei v eine Bewertung mit Werten in R und Bewertungsring K◦. Dann besitzt
jeder Punkt von Y eine affine offene T-invariante Umgebung.

Dieses Resultat verallgemeinert den Satz von Sumihiro für normale torische Vari-
etäten über einen Körper (vgl. [34]) auf normale T-torische Varietäten über einem Be-
wertungsring vom Rang 1. Der Beweis ist deutlich schwerer als im klassischem Fall,
da hier keine noetherschen Methoden zur Verfügung stehen. Stattdessen wenden wir
die Schnitttheorie mit Cartierdivisoren auf Varietäten über einem Bewertungsring vom
Rang 1 an. Dies wird in Kapitel 3 getan. Die Ergebnisse folgen aus der Schnitttheo-
rie mit Cartierdivisoren auf zulässigen formalen Schemata über K◦, welche von Walter
Gubler in [19] entwickelt wurde. Wir benutzen die Notation der PvM-Ringe um Weil-
divisoren auf normalen Varietäten über einem Bewertungsring zu untersuchen und um
jedem Cartierdivisor einen Zykel der Kodimension 1 zuzuordnen. Wir nutzen dies um
in Kapitel 4 zu zeigen, dass man zu jeder offenen affinen Teilmenge U0 einer normalen
T-torischen Varietät Y eine T-invariante offene Teilmenge U und einen Cartierdivisor
D konstruieren kann, sodass U die Menge U0 enthält und D den Träger U \U0 hat.
Daraufhin zeigen wir, dass das Geradenbündel O(D) eine T-Linearisierung besitzt, was
zu einer T-äquivarianten Einbettung von U in eine projektive T-torische Varietät mit
einer linearen Wirkung des Torus führt. Schließlich können wir durch Anwendung dieser
Fakten Satz 2 in Kapitel 5 beweisen.

Als Folgerung aus Satz 1 und Satz 2 erhalten wir unser Hauptklassifikationsresultat.

Satz 3. Falls v keine diskrete Bewertung ist, liefert die Zuordnung Σ 7→ YΣ eine Bijektion
zwischen der Menge der Fächer in Rn ×R+, deren Kegel wie in Satz 1 beschrieben sind,
und der Menge der Isomorphieklassen normaler T-torischer Varietäten über K◦.
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Dieser Satz verallgemeinert die Klassifikation normaler torischer Varietäten über
einem Körper bzw. einem diskreten Bewertungsring auf normale T-torische Varietäten
über einem Bewertungsring vom Rang 1. Zu beachten ist, dass im Fall einer trivialen
oder einer diskreten Bewertung die Zusatzbedingung für die Kegel entfällt.

Dieses Resultat ermöglicht uns ein besseres Verständnis der torischen Geometrie über
einem Bewertungsring vom Rang 1 zu erhalten. Es lohnt sich zu betonen, dass diese Ob-
jekte in enger Beziehung mit tropischer Geometrie stehen: z.B. kann man den Kegel
einer normalen affinen T-torischen Varietät Vσ aus der Tropikalisierung der Teilmenge
der potentiell integren Punkte von T ◦ ∩ (Vσ)η, wobei (Vσ)η die generische Faser be-
zeichnet, gewinnen. Darüberhinaus werden in [17] diese torischen Schematas zur Ve-
rallgemeinerung einiger Resultate über tropische Kompaktifizierungen abgeschlossener
Unterschematas eines Torus T auf beliebige bewertete Körper von Rang 1 verwendet
(vgl. [17, §12]).


