
Towards closed-loop stimulation for stroke
rehabilitation

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
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Tübingen
2013



Tag der mündlichen Qualifikation:

Dekan:

1. Berichterstatter:

2. Berichterstatter:

27.01.2014

Prof. Dr. Wolfgang Rosenstiel

Prof. Dr. Martin Bogdan

Prof. Dr. Wolfgang Rosenstiel



Acknowledgements

Acknowledgements

I am grateful towards many people who supported and encouraged me throughout
the making of this thesis and I would like to take this opportunity to thank them.
First, I want to thank Prof. Dr. Wolfgang Rosenstiel for funding and supervising
my work and giving me the opportunity to work in his department on this exciting
project. I would like to especially thank Prof. Dr. Martin Bogdan for putting his faith
in me. His encouragement, support and advice guided me through this work and is
greatly appreciated.
A special thanks goes out to my coworkers in the Department of Computer En-
gineering and in particular the Neuroteam for their support throughout this time:
Dr. Dominik Brugger, Dr. Michael Bensch and Dr. Alexander Roth for their help
and encouraging discussions at the start of my work. Many thanks to Carina Wal-
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Summary

Summary

The restoration of motor function to chronic stroke patients with a severe hand im-
pairment is challenging, because no effective rehabilitation option exists. In recent
years, brain-computer interfaces (BCIs) have shown potential to remedy this problem
by decoding the patient’s movement intention from the brain signal and translating
it into movements of an orthosis. In addition, brain stimulation has been inves-
tigated for the treatment of a variety of neurological conditions, including stroke.
Combining both approaches into a closed-loop stimulation system has been pro-
posed to increase the effectiveness of this treatment approach. However, this has not
been put into practice before, therefore it is unknown, if closed-loop paradigms can
be realized for stroke patients.
In this thesis, closed-loop stimulation for stroke rehabilitation is studied for the first
time. Two approaches for a closed-loop system are investigated: (i) Stimulation
coupled to the movement intention of the patient and (ii) adaptation of stimulation
parameters to control the shape of the evoked activity. The focus lies on 3 chronic
stroke patients with a paralyzed left hand that had been implanted with epidural
electrodes for electrocorticogram (ECoG) recording and electrical stimulation.
To implement intention-dependent stimulation for the first approach, one has to
compensate for the distortions introduced by the stimulation after-effects into the
brain signal in order to ensure reliable decoding of the movement intentions. Meth-
ods to solve this problem are presented and compared in this work. The MEMgap
algorithm for spectral estimation in the presence of gaps in the signal is shown to
allow an unbiased decoding of the movement intention. With these algorithms, the
first bidirectional BCI system used for stroke rehabilitation was implemented.
The second approach, inspired by earlier work on visual neuroprosthetics, aims to
reduce the variability of the evoked brain activity through adaptation of stimula-
tion parameters to the ongoing brain activity. Experiments with stroke patients and
healthy participants show that the brain activity preceding a stimulation pulse has
a significant effect on the shape of the evoked activity but that the interaction of
the stimulation intensity with the prestimulus brain activity in the generation of
the evoked activity is too weak to make closed-loop stimulation for the stabilization
of evoked activity promising. However, based on analysis of the dependency of
stimulation-evoked neural activity on stimulation parameters and the brain activity
at the moment of stimulation, novel electrophysiological markers for neural connec-
tivity and for rehabilitation are proposed.
This work is one of the first studies on closed-loop stimulation in humans and in
particular the first study where such a stimulation paradigm had been applied for
stroke rehabilitation. It sets the basis for the use of brain-state-dependent stimula-
tion for stroke rehabilitation and introduces analysis methods for stimulation-evoked
potentials to monitor the rehabilitation process and to optimize future stimulation
systems.

II



Zusammenfassung

Zusammenfassung

Da für Schlaganfallpatienten mit Lähmungen der Hand momentan keine generell
effektive Therapie existiert, ist die Entwicklung neuer Rehabilitationsverfahren ein
wichtiges Ziel um die Effektivität der Physiotherapie zu verbessern. Relevante
neue Entwicklungen für diese Arbeit sind kortikale Stimulation zur Erregung des
Gehirngewebes und Gehirn-Computer-Schnittstellen (BCIs), die den Willen zur Be-
wegung der gelähmten Gliedmaße in Steuersignale für Orthesen umsetzen. In dieser
Arbeit werden zwei Ansätze für die Kombination dieser Konzepte zu einem closed-
loop System untersucht, das Stimulation in Abhängigkeit der aufgenommenen Hirn-
signale und der daraus detektierten Intention des Patienten ermöglicht: (i) Zeitliche
Kopplung der Stimulation an die Intention des Patienten, seine gelähmte Hand zu
bewegen und (ii) Adaption der Stimulationsparameter zur Kontrolle der stimula-
tionsevozierten Potentiale. Der Fokus dieser Arbeit liegt auf 3 Schlaganfallpatienten
mit einer Lähmung der linken Hand, denen epidurale Elektroden zur Aufnahme des
Elektrokortikogramms und zur elektrischen Stimulation implantiert wurden.
Für den ersten Ansatz muss sichergestellt werden, dass die Stimulationseffekte die
Merkmalsextraktion zur Dekodierung der Bewegungsintention möglichst wenig stö-
ren. Daher werden in dieser Arbeit Methoden zur Spektralschätzung während
Stimulation vorgeschlagen und verglichen. Dabei wird gezeigt, dass der MEMgap-
Algorithmus für die Bestimmung autoregressiver Modelle bei lückenhaften Daten,
verzerrungsfrei, und damit am besten für die Anwendung geeignet ist. Aus diesen
Ergebnissen entstand das erste bidirektionale BCI, das zur Rehabilitation von chro-
nischen Schlaganfallpatienten eingesetzt wurde.
Der zweite Ansatz, inspiriert durch Arbeiten zu visuellen Neuroprothesen, zielt da-
rauf ab, die Variabilität der evozierten Potentialen durch die Anpassung von Stim-
ulationsparametern an das gemessene Gehirnsignal zu verringern. Anhand von
Experimenten mit Schlaganfallpatienten und gesunden Probanden wird gezeigt,
dass die Hirnaktivität vor einem Stimulationspuls zwar einen signifikanten Einfluß
auf die Form der evozierten Potentiale hat, dass aber die Interaktion zwischen der
Stimulationsintensität, der Prä- und der Poststimulusaktivität nicht stark genug aus-
geprägt ist, um ein closed-loop Stimulationssystem auf dieser Basis vielversprechend
erscheinen zu lassen. Durch die Analyse der Abhängigkeit evozierter Potentiale von
Stimulationsparametern und der Gehirnaktivität im Moment der Stimulation kon-
nten aber neue elektrophysiologische Marker für neuronale Konnektivität und Re-
habilitation vorgeschlagen werden.
Dies ist eine der ersten Arbeiten zur Anwendung von closed-loop Stimulation bei
Menschen und das erste Mal, dass die Ableitung von Hirnsignalen und Hirnstimula-
tion zur Rehabilitation gleichzeitig durchgeführt wurde. Sie legt das Fundament für
weitere Studien zu bidirektionalen BCIs zur Schlaganfallrehabilitation und eröffnet
durch die Analyse evozierter Potentiale neue Möglichkeiten um den Rehabilitation-
sprozess zu überwachen und neue Stimulationssysteme zu optimieren.
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1 Introduction and motivation

Over the last two decades, the field of neural engineering has emerged at the fron-
tier between neuroscience, biomedical engineering and computer science, aiming to
restore or augment neural function. By building direct interfaces with neural tis-
sue, this field shows promise to provide therapies for many neurological disorders.
However, the human brain is nowhere near fully understood and the current state of
knowledge about it only scratches the surface of the probably most complex “black
box” in nature. Thus, the field of neural engineering is constantly evolving, driven
both by new neuroscientific findings as well as by advances in hard- and software.
Numerous exciting devices are in development: Sensory neuroprostheses are envi-
sioned to restore lost senses. The most prominent examples are cochlear implants
which have found their way into clinical practice already and retinal implants, which
are being investigated in clinical trials on their ability to restore at least basic vision.
Brain-computer or brain-machine interfaces offer a way for paralyzed patients to re-
gain the possibility to interact with their environment by allowing them for example
to type letters or control robots. For the restoration of neuronal function, or neu-
rorehabilitation, one attempts to repair neurological damage through the interaction
of the patient with specialized devices. Neuromodulation through drugs or brain
stimulation might be promising in this regard as it can directly alter neural activity.
Great challenges for all these applications are the individuality of each patient, the
typically very large number of degrees of freedom in designing a suitable treatment
paradigm and in general the limited understanding about the inner processes of the
brain, how they contribute to the pathophysiology of the patient and how they can
be influenced most effectively. These questions are typically studied in single cases
or small patient groups, but the hope is to identify approaches which might general-
ize to the whole patient group or, when transfered to novel patient groups, leading
to new treatment options for these patients.

In this thesis, the feasibility of such a knowledge transfer is investigated. It fo-
cuses on the application of closed-loop stimulation, inspired amongst others by a
paradigm developed for a visual neuroprosthesis [23], to stroke patients for move-
ment restoration. In typical fashion for neural engineering projects, as this approach
has not been attempted before, this work is as much about solving algorithmic and
technical challenges to apply closed-loop stimulation to stroke patients as it is about
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Chapter 1. Introduction and motivation

gaining new insights into their brain function such that one might be able to derive
treatment paradigms from it.

1.1. Stroke

A stroke is a cardiovascular accident in the brain which severs the blood supply to
certain brain areas. Two types of stroke have to be distinguished: Ischemic stroke, the
most common form, is responsible for about 90 % of all stroke cases [6]. It occurs be-
cause of the blockage of a blood vessel, for example due to a clot. Hemorraghic stroke,
on the other hand, is less common and can follow the rupture of a blood vessel lead-
ing to bleeding in the brain. Brain tissue that had been supplied by the disrupted
vessel with oxygen and nutrients is then at risk of receiving permanent damage or
even cell death (a lesion), possibly leading to the loss of functions associated with the
affected brain areas. Thus, the site of the lesion determines the symptoms following
the stroke. Physical disabilities are very common, such as problems of moving mus-
cles on one side of the body (hemiparesis) or difficulties of speaking.

Stroke is the leading cause of adult disability in the developed world and the third
most common cause of death [103, 113]. In its ”Atlas of Heart Disease and Stroke”
[113], the World Health Organization (WHO) estimated a total number of 15 mil-
lion stroke case worldwide each year with a mortality rate of one-third and puts the
number of people permanently disabled by the stroke at 5 million per year. Follow-
ing the stroke, 80 - 85 % of all survivors suffer at least temporarily from hemiparesis
[45] and/or sensorimotor deficits in the upper arm [39], leading to a reduced quality
of life [105]. Therefore, effective rehabilitation methods are needed to treat these
patients.
Faster and more reliable rehabilitation would not only be in the interest of the pa-
tients. The current situation places an immense burden on families and the society
as a whole in order to provide treatment options and/or long-term care for stroke
survivors. Kolominsky-Rabas et al. [96] estimated the lifetime cost of ischemic stroke
in Germany to be 40,000 - 45,000 e per case for a total of 108.6 billion e for the time
period between 2006 and 2025. 37 % of this estimation were costs for rehabilitation.
For the United States, the impact of new and recurring strokes on the health care
system for the year 2007 alone was estimated at more than 62 billion $ [105]. Thus,
the socioeconomic impact of improved therapies would be immense as well, espe-
cially considering that the aging process of the society will likely lead to an increase
in the number of stroke cases in the future.

2



1.2. Stroke rehabilitation

1.2. Stroke rehabilitation

In a review on the topic of motor recovery, Langhorne et al. [103] stated: ”Motor
recovery after stroke is complex and confusing”. The established way to treat pa-
tients who suffer from movement impairments following stroke is physical therapy,
where the patient, guided and encouraged by the therapist, performs exercises in
addition to other interventions such as manual therapy over an extended period of
time - at least several weeks, often months and years. Achieving functional recovery
is especially challenging for the upper limb [82]. 6 months after the stroke, more
than half of all stroke patients have persisting sensorimotor impairments in the arm
[39] and only about 20 % of all stroke survivors with severe paresis of the upper limb
achieve full recovery [102, 125]. One third of all stroke patients have poor to no hand
function even one year after the stroke [27]. Thus, the current state of rehabilitation
of upper limb function, in particular the hand, is not satisfactory [82].
A reason for this might be that hand and arm movements are less stereotypical
than movements of lower extremities, thus it is easier to retrain gait and mobil-
ity than the coordinated movements of multiple joints necessary for effective upper
limb function [105]. A multitude of novel techniques for rehabilitation have been
developed and tested in recent years in randomized controlled trials (RCTs). In
2009, Langhorne et al. [103] reviewed RCTs of 19 methods on their effectiveness for
lower limb, arm and hand recovery. Although they identified methods that consis-
tently improve lower limb and arm function, no method achieved the same for hand
function. For example, while robotics, constraint-induced movement therapy and
functional electrostimulation of muscles are likely to be beneficial for arm function,
the same methods did not consistently lead to an improvement of hand function.
Thus, a patient in the chronic state several months after the stroke with persisting
impairment of the hand function has at the moment no promising treatment op-
tion available except to continue with the classical rehabilitation approaches. Hence,
novel technologies are needed to provide a new perspective for rehabilitation for pa-
tients with hand paralysis and also to further improve on recovery of the other limbs.

Recently, two new approaches have emerged that have shown promise in this re-
gard: Brain-computer interfaces (BCIs) (e.g. [27, 65, 138]) and cortical stimulation
(e.g. [1, 21, 79, 106]). BCIs for stroke rehabilitation use the phenomenon that the
intention to perform a movement or just the visualization of a movement (motor
imagery) can be decoded from the brain signal, even for intended or imagined move-
ments of a paralyzed limb [7]. The result of the decoding (e.g. ”Patient tries to move
the paralyzed hand”) can then be used to control a feedback device, such as an or-
thosis or a robot capable of moving the paralyzed hand of the patient [27, 65, 138],
or for example visual feedback on a monitor [173]. Thus, the sensorimotor feedback
loop of (i) intention to perform a movement, (ii) movement is performed, (iii) visual
or haptic feedback of the movement, which was severed by the stroke, is reconnected

3



Chapter 1. Introduction and motivation

Figure 1.1.: Flow chart of the application of a BCI for hand movement rehabilitation. In this example,
the connection between the brain and the muscles of the patient has been severed by the
stroke, thus prohibiting the transmission of movement commands. However, by decoding
the movement intention from neural signals, an orthosis can be controlled to move the
hand of the patient in the desired manner.

using the BCI as a ”bypass” for the lesion (figure 1.1). Repeated training with such
a feedback device might support the brain to use residual cortico-muscular connec-
tions more effectively through principles of Hebbian plasticity [138].

Cortical stimulation aims to (re-)activate cortical areas which had been associated
with the now lost motor function, but have been damaged by the stroke. In contrast
to the BCI approach, where there is only one (very recent) publication of a controlled
study on its benefit [138], several systematic tests with the stimulation approach have
been published in the last decade: Results from first clinical studies supported by
Northstar Neuroscience (Seattle, WA) about the efficacy of cortical stimulation com-
bined with physiotherapy for hand function recovery following stroke have been
reported between 2006 and 2009 [21, 79, 106, 136]. Based on results from Phase I
and II trials with 8 [21] and 24 patients [106], respectively, cortical stimulation was
found to be safe and possibly beneficial for stroke rehabilitation because the im-
provement in motor function of stimulated patients was significantly better than for
control groups. However, a Phase III study with 146 patients could not confirm these
results.
Subsequently, the design of the study and the stimulation parameters have been
reviewed critically to gain insights for future trials. In their examination of this
clinical study, it has been suggested by Plow et al. [136] to consider, among other
points, ”brain activity before or after stimulation”, state-dependency of stimulation
effects and closed-loop systems to improve the combination of cortical stimulation
and rehabilitation. Thus, a transition might be sensible from using only stimulation
towards a combination of stimulation with brain signal recording and, in particular
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1.3. Problem statement

for closed-loop systems, towards a real-time adjustment of stimulation parameters
depending on the measured brain activity.

The concepts of brain-activity-dependent selection of stimulation parameters, de-
coding brain states and giving state-dependent feedback and in general closed-loop
feedback stimulation are very similar to the basic parts of BCIs - the difference being,
that current BCIs do not employ cortical stimulation in order to close the feedback
loop. Instead, other external devices such as a computer screen or robots are used
which rely on afferent sensory channels to relay information to the brain. Cortical
stimulation is a direct afferent channel to the brain. Hence, the inspiration of this the-
sis is the idea that the principles of BCIs (online brain signal analysis, brain state de-
coding, closed-loop feedback), when transferred to cortical stimulation, could allow
”smart”, more effective stimulation paradigms for movement restoration, because
stimulation parameters would be optimized to the patient and his/her brain activity
[171]. However, to achieve this, one has to determine, which kinds of closed-loop
stimulation systems are feasible and applicable to stroke patients.

1.3. Problem statement

In this thesis, two approaches are proposed that investigate more intelligent ways
to deliver cortical stimulation by utilizing the ongoing brain activity for the selec-
tion of stimulation parameters (closed-loop stimulation). The first approach is based
on the principle of brain state-dependent stimulation (BSDS) [85], adapted to the
rehabilitation of stroke patients. The BSDS paradigm works by detecting attempts
of the patient to move the paralyzed limb, interpreting the presence or absence of
this intention as a brain state, then controlling rehabilitation devices and the cortical
stimulation in reaction to the detected brain state. In its simplest form, the cortical
stimulator can be switched on and off depending on whether the patient attempts
a movement. Hence, the timing of the stimulation is adapted to the ongoing brain
activity and the brain state decoded from it. The intended effect is that the stimuli
are specifically associated by the brain with the desired state of an attempt to move
the hand. The main challenge that has been solved by the algorithms developed in
this thesis is to ensure that the brain state can be decoded reliably in the presence
of the artifacts and other undesirable after-effects of simultaneously applied cortical
stimulation.

The second approach is based on earlier animal studies by Brugger [23] who
demonstrated that the variance of the stimulation-evoked brain activity can be re-
duced by an adaptation of the stimulation intensity to the ongoing brain activity.
In the context of stroke rehabilitation this might be useful if one is able to define,
which shape of the evoked activity will be most beneficial for recovery of the pa-
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Chapter 1. Introduction and motivation

tient and then use adaptive stimulation to reliably evoke this particular waveform.
The challenge for this approach, apart from the question of how to the define the
target waveform, is the transfer of the results obtained in this earlier study with rats
and invasive microelectrodes to human patients - not only because it is a step from
an animal model to humans, but also because of the microelectrodes. These have
not been applied before to human stroke patients, thus less invasive methods might
be preferable. It is an open question whether closed-loop stimulation to control
the shape of the evoked activity can also be realized for these patients when using
recording and stimulation methods more suited to human patients such as elec-
troencephalography (EEG) combined with transcranial magnetic stimulation (TMS)
or electrocorticography (ECoG) combined with stimulation via epidural or subdural
electrodes. A major prerequisite for the feasibility of such an adaptive stimulation
paradigm is that there has to be a functional relationship between the ongoing brain
activity, stimulation parameters and the evoked activity [23]. Thus, the main ques-
tion addressed in this thesis for the second approach for closed-loop stimulation
is whether such a functional relationship can be identified with these less invasive
recording and stimulation methods to allow an adaptive stimulation system.

1.3.1. Structure of the thesis

The thesis is organized as follows: Chapter 2 gives an introduction into brain stim-
ulation and electrophysiological recording techniques, open-loop and closed-loop
stimulation systems, and the use of brain-computer interfaces (BCIs) and brain stim-
ulation for stroke rehabilitation. Furthermore, a general introduction is given into
classification and regression algorithms with a focus on Support Vector Machines
(SVMs) because these are important throughout the thesis for decision making from
brain signals. In chapter 3, the main research questions are reviewed and an intro-
duction into the research framework, the patients and the experiments is given. In
chapter 4, the approach of brain-state-dependent stimulation (BSDS) is introduced
as a way to integrate cortical stimulation and BCIs to form a novel rehabilitation
paradigm for stroke patients. With this approach, however, the problem of a robust
detection of the intention of the patient in the presence of stimulation artifacts arises.
Algorithms that tackle this problem are proposed and compared on their suitability
for continuous brain state decoding with simultaneous brain stimulation. It is also
shown, how the BSDS approach was put into practice and applied to the patients.
The feasibility of the second closed-loop approach of adaptive stimulation to con-
trol the evoked activity is studied in chapters 5 and 6. Here, the focus lies on the
postulated existence of a functional relationship between the prestimulus activity,
the stimulation parameters and the poststimulus brain activity. In chapter 5, ex-
periments are described and analyzed where the stimulation parameters were kept
constant in order to investigate the direct influence of the prestimulus activity on
the stimulation-evoked signals. It is shown that the brain state at the moment of
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stimulation significantly modulates the shape of the evoked activity, but that there
is almost no direct influence of the prestimulus spectrum on the stimulation effects.
Another set of experiments is described in chapter 6, devised to study the interaction
between the prestimulus activity and the stimulation intensity in the generation of
the poststimulus activity. However, no such interaction could be identified, shedding
strong doubt over the feasibility of the adaptive stimulation approach in patients.
The results and their implications for closed-loop systems and other future stimula-
tion paradigms for patients are discussed in chapter 7. In the appendix, the details of
the patients (appendix A) participating in the studies are summarized and a detailed
description of the procedures in the main experiments (appendix B) are given.
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2 Fundamentals

2.1. Interfacing with the brain

In order to realize closed-loop stimulation as a novel rehabilitation method, the most
basic prerequisite needed is a bidirectional interface with the brain of the patient:
First, one needs to record and analyze the brain signals, for example to determine
whether a patient wants to move the paralyzed limb or not, thus a technology is
needed to record the brain activity. Secondly, methods are needed to stimulate the
neurons. And thirdly, these methods need to be compatible such that stimulation
and recording is possible simultaneously. Thus, in the first section, methods are
reviewed to record neural signals and to apply brain stimulation.

2.1.1. Recording

There are a multitude of possibilities to record brain activity, ranging from the
blood-oxygen-level dependent (BOLD) response measured by functional magnetic
resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) to magnetoen-
cephalography (MEG) which measures the magnetic fields caused by neural activity.
In this work, however, electrophysiological methods to record the electrical activity
of neurons are used. The most important types, electroencephalography (EEG), elec-
trocorticography (ECoG) and recording via microelectrodes, are introduced in this
section.

Electroencephalography (EEG)

The EEG is a fairly easily applicable, noninvasive technique to record brain activity
with high temporal resolution. After work in the late 19th century, especially in
Eastern Europe, on the electrical brain activity in animals [127], the first human EEG
was obtained by Hans Berger in 1924 [12]. He discovered that oscillations of the
measured signal in the frequency range around 10 Hz are much stronger present
if the subject has the eyes closed than for open eyes - the so-called alpha blocking
response. Over the following decades, the EEG gained credence as a tool for the
diagnosis of a variety of neurological diseases, in particular epilepsy.
The EEG is recorded by electrodes fixed to the scalp, positioned according to a
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standardized system such as the 10-20 system [5]. The signal recorded from these
electrodes is generated by extracellular field potentials [127] of a cortico-thalamic
network and is typically analyzed in terms of oscillations in the spectral domain or
event-related potentials in the time domain. The EEG oscillations are grouped into
frequency bands: δ (below 3.5 Hz), θ (4-7.5 Hz), α (8-13 Hz), β (14-30 Hz) and
γ (above 30 Hz), although several subdivisions and additional rhythms have been
proposed [127]. Event-related potentials are detected in the time domain as summed
activity of neural populations time-locked to a stimulus. According to Nunez and
Srinivasan [130], several tens of millions of neurons have to be consistently active to
produce measurable potentials at the scalp.

Electrocorticography (ECoG)

The very first human EEG recordings by Berger [12] were actually performed with
dural electrodes in patients with skull defects, thus he also pioneered the cortical
EEG, or electrocorticogram (ECoG) [127]. The basic difference to EEG recordings is
that it requires an invasive procedure, where electrodes are placed between the brain
and the skull instead of being fixed on the scalp. Obviously, this requires a surgery,
thus the technique is limited to works with patients and animals. The implanta-
tion of ECoG electrodes has evolved into common clinical practice, especially for
the localization of seizures in epilepsy patients, but there exists an infrequent risk
of complications [58]. In particular, if the electrodes are connected to an external
amplifier, infections can be problematic. Thus, such external connections are rarely
used for more than 2-4 weeks, before either the electrodes are removed or all cables
and devices are internalized.
However, these risks for the patient have to be weighed against the better signal-
to-noise ratio that can be obtained by ECoG in comparison to EEG, due to the
smaller distance to the brain and the removal of the influence of the skull. An
important effect of this is that the usable bandwidth in BCI experiments is higher
for ECoG than EEG, allowing the use of frequencies in the higher γ band. These
high frequency components have been very useful to decode information from the
brain signal which is inaccessible from EEG, for example the discrimination between
movements of individual fingers [120]. However, the ECoG signal is not superior to
the EEG in all regards. Nunez and Srinivasan [130] described the difference between
ECoG and EEG recordings as the first one seeing only the trees, the second one only
the forest. The use of ECoG offers a small window into the brain to observe local
activity with high spatial resolution and bandwidth. However, it is usually only
possible to implant the electrodes in a small portion of the cortex, whereas the EEG,
can measure global neural activity across the whole head.
A second advantage of implanted electrodes over scalp electrodes is that they can
also be used to deliver electrical stimulation (see below). Thus, these electrodes of-
fer a way to realize a bidirectional interface with the brain. ECoG electrodes can
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be placed either sub- or epidural with epidural placement considered to be the less
invasive alternative, because the dura mater is not opened and the electrodes are not
in direct contact with the brain. Modeling studies suggest, that there is little or no
loss of signal quality from subdural to epidural placement [154].

Microelectrodes

Microelectrodes can be discriminated from macroelectrodes, such as those used for
EEG and ECoG, unsurprisingly by their size and their position relative to the brain.
According to Cogan [40], microelectrodes typically have a surface area less than
10,000 µm2 and penetrate the brain tissue, while macroelectrodes have a surface
area of more than 100,000 µm2 and are located on the surface of the brain or the
scalp. The first microelectrode studies were undertaken in the 1950s with microwire
arrays and have evolved since then to multielectrode arrays (MEAs) containing up to
100 electrodes. The electrodes are inserted into the brain tissue, thus this technique
has to be considered to be more invasive than the ECoG electrodes because brain
tissue damage is more likely. Because of this, their use for human patients is limited
to a handful of cases, but when used to acquire signals from tetraplegic patients to
control a computer cursor [77] and a robotic arm [42, 76], intended movements were
decoded with high accuracy and up to 7 degrees of freedom without explicit training
of the participant. In comparison to the methods above, microelectrodes offer the
unique possibility to record action potentials from single neurons, while millions of
neurons have to be simultaneously active to be measured by macroelectrodes.

2.1.2. Stimulation

While the recording of brain activity can be used to construct an efferent pathway
from the brain to peripheral devices, brain stimulation allows the direct transmis-
sion of information into the brain (afferent pathway) without the need to transmit
the information through sensory channels. A short overview of brain stimulation
methods is given here, distinguished by the criterion whether the stimulation is ap-
plied non-invasively (transcranial) or invasively (intracranial).

Transcranial stimulation

To stimulate the brain transcranially, two methods are used: Electrical stimulation
via large surface electrodes in the form of transcranial direct or alternating cur-
rent stimulation (tDCS/tACS) or transcranial magnetic stimulation (TMS) [137, 170].
Because this work is concerned with pulsed stimulation, not with continuous stim-
ulation, only TMS is described here. TMS was introduced in 1985 by Barker et al.
[8] and has since then become one of the most important tools for the study, diag-
nosis and therapy of the nervous system via non-invasive stimulation [88]. To apply
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TMS, a coil is placed on the scalp above the target point of stimulation. A rapid,
time-varying magnetic field is generated by the coil, inducing a current in the brain
which activates cortical neurons, especially at fiber terminations and axon bends
[51]. Such an induced activation can then indirectly modulate the activity of distant
neurons.
Several different stimulation paradigms exist for TMS, depending on the applica-
tion: Single pulse TMS can be used to probe cortical excitability of a specific area at
precise time points which is useful for the study of brain function and organization.
The first and still most popular single pulse paradigm is to stimulate the motor cor-
tex. This can elicit twitches in the muscles associated with the stimulated area, given
a suitably high intensity, which helps to identify properties of the cortico-muscular
connections. Repetitive TMS (rTMS), where a large number of stimulation pulses
are given with a fixed inter-stimulus interval, on the other hand is investigated for
therapy in a variety of conditions, from depression [44] to stroke rehabilitation [129]
and amyotrophic lateral sclerosis (ALS) [47], because of its effect of modulating the
excitability of the stimulated region [56].

Intracranial stimulation

There are three basic ways to deliver intracranial electrical stimulation: Epidu-
ral/subdural electrodes, depth electrodes and cortical microelectrodes. Using the
first type of electrodes, the pioneering work of Penfield and Jasper resulted in the
discovery of the somatotopic organization of the somatosenory areas [134]. Today,
cortical stimulation via epidural or subdural electrodes is not only used for such
cortical mapping applications [104, 117, 118], but also for therapy, for example in the
case of chronic pain [162] and epilepsy [156]. Typically, short (≤ 1 msec) mono- or
biphasic pulses are used, either as single pulses or as pulse trains with frequencies
of 20 Hz and above [20, 104]. Intensities for cortical mapping are chosen to be high
enough to evoke cortical and peripheral potentials (see next section, suprathreshold,
> 1 mA [104]) from one or just a few pulses. For therapeutic stimulation the inten-
sities are set much lower (subthreshold), but the stimulation is delivered in pulse
trains lasting for minutes, hours or even longer [20, 79].
For deep brain stimulation (DBS), depth electrodes are implanted, for example to
treat Parkinson’s disease [10, 178] or Tourette’s syndrome [148]. Its purpose is to
target deeper brain structures which can not be reached by surface electrodes. Some
cortical areas, for example the insular cortex [132], also lie too far from the surface,
thus stimulation is applied via depth electrodes.
Unlike most DBS applications, multielectrode arrays as the third subtype of in-
tracranial stimulation again target cortical neurons. Their implantation requires a
penetration of the brain tissue, thus they are rarely an option for human patients.
With the exception of a case study where microelectrodes were used to stimulate
the visual cortex of a blind woman [151], intracortical microstimulation (ICMS) via
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A B

Figure 2.1.: 19 evoked responses of a healthy participant after TMS. Each individual response is
shown as a grey line and the mean as a black line. (A): MEPs on the finger extensor
muscle EDC. (B): Responses on EEG channel C2, close to the location of stimulation near
EEG channel C4.

these electrodes has so far been only applied to animals. The much smaller scale of
stimulation compared to epidural/subdural electrodes allows very specific stimula-
tion. This makes these electrodes good candidates to study closed-loop stimulation
paradigms such as those described in section 2.3.2.

2.2. Stimulation-evoked neural activity

Valuable information about the way stimulation interacts with active neural net-
works can be extracted on brain signal (EEG, ECoG) and muscle signal recordings
(electromyography, EMG) from the analysis of stimulation-evoked activity. These
signals contain not only electrophysiological correlates of the stimulation effects, but
allow insights into the functional connectivity of neural populations [71, 117]. Two
forms of evoked potentials can be distinguished:

• Motor-evoked potentials (MEPs): If stimulation with a sufficient intensity is
applied over the motor cortex, neurons of the pyramidal tract can be excited
and a volley of activation travels via the cortico-spinal tract to the motor unit,
resulting in a muscle contraction. This muscle twitch can be measured using
EMG, where a MEP is found typically with a latency between 10 and 30 msec
after the pulse. This finding can be used to perform a cortical mapping proce-
dure, where systematically points on the cortex are stimulated with different
intensities and MEPs are measured. With this, a hotspot can be defined for
each muscle as the point on the cortex which has the lowest intensity threshold
to evoke an MEP. MEPs are usually recorded with a bipolar setup (the sig-
nals from two close EMG electrodes on the same muscle are subtracted), and
parametrized in terms of latency, peak-to-peak amplitude or total area. For a
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resting muscle and stimulation close to the threshold, the amplitude and the
area correlate well with the force of the twitch [91].

• Cortico-cortical evoked potentials (CCEPs): Similar to the MEP generation,
the stimulation also leads to the activation of cortico-cortical and cortico-thala-
mic fibers and thus activity at distant cortical sites. In figure 2.1, a comparison
is shown between the MEPs (A) of a healthy person and the CCEPs (B) evoked
by the same stimuli. While the MEP is typically a simple, biphasic response
lasting only a few milliseconds, CCEPs can consist of several longer lasting
subcomponents which vary widely in shape, reflecting the complex dynamics
evoked by the stimulus in the brain. Their amplitudes and latencies can help
to identify effective (i.e. anatomical) connections within the brain.

Instead of an evoked potential, Rosanova et al. [145] interpreted the effects of a TMS
pulse on the EEG as evoked oscillations and analyzed it in terms of event-related
spectral perturbation (ERSP). For this thesis, however, CCEPs and MEPs are used,
not the ERSP.
While MEP studies have been common since the introduction of TMS, simultaneous
TMS-EEG recordings became possible following improvements in recording hard-
ware in recent years [83]. This has spurred a multitude of studies that attempt to
characterize the evoked activity measured with EEG after TMS pulses and the in-
fluence of different stimulation parameters (coil location, coil angle, stimulus inten-
sity,...) [32, 55, 71, 97, 98, 145]. It became clear that the effects of stimulation depend
strongly on the stimulation parameters, especially location, polarity and intensity
but that they are fairly reproducible if the parameters are constant [32]. However,
the reaction of the brain to stimulation is not stereotypical, but influenced by its own
activity. This is the focus of chapter 5 and reviewed there in more detail.

2.3. Open-loop and closed-loop stimulation systems

So far, the basic tools to measure electrophysiological brain activity and to stimulate
the brain have been described, along with the way how the reaction of the brain
to stimulation can be recorded. These methods are important because they provide
the basis to introduce the concept of closed-loop stimulation in this section where
recording and stimulation take place simultaneously.

2.3.1. Open-loop systems

The devices used for chronic stimulation in clinical practice today are typically of
an open-loop design (figure 2.2 A): Stimulation parameters are independent from
the activity of the stimulated system and the stimulator is controlled by external
trigger signals. Stimulation parameters are programmed externally by a clinician
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A B

Figure 2.2.: Conceptual difference between an open-loop (A) and a closed-loop (B) system: For an
open-loop system the stimulation parameters are pre-determined, while for a closed-loop
system, the parameters are adapted to the simultaneously recorded brain activity.

and transmitted wirelessly to the device. In this simple form, stimulation can be a
therapeutic tool with fixed parameters that can be switched on and off, without any
measurement of the response of the brain. It has been used in this way for chronic
pain [109, 126, 162], epilepsy [156], depression [44], Parkinson’s disease [10] and first
studies have been conducted for rehabilitation after stroke [21, 79, 106]. Although
such a design has the benefit of being simple and well-established, it ignores that
the brain is a dynamic, changing system and treats it just as a static recipient of
stimulation. It does not allow for any kind of feedback between the ongoing brain
activity, the effects of the stimulation and the device. For example, in the case of
epilepsy therapy, a stimulation system which has an in-built seizure detection mod-
ule could trigger stimulation exactly at the right moment to disrupt a developing
seizure [59, 156], whereas conventional stimulation devices either need to stimulate
continuously or wait for the implanted person to detect the seizure and trigger the
stimulator. In the case of stroke rehabilitation with cortical stimulation, it has been
suggested [136] that closed-loop systems might provide better results than open-
loop systems as well.

The electrophysiological recording of the neural activity evoked by stimulation
could be helpful not only by increasing the effectiveness of stimulation systems, but
also as a source of information to understand brain processes. When recording the
evoked potentials in an open-loop paradigm, stimulation may be used for example
to probe the excitability and response of the brain for different patient groups in
comparison to healthy participants (perturb-and-measure [101]). This allows one to
gather information about the effects of the pathology on the reaction of the brain to
stimuli and to investigate the use of brain stimulation as a diagnostic tool. Example
applications for this are epilepsy [92, 93, 163], aging [31], hyperactivity in children
[22] and brain injury [146].
For within-subject analysis, changes in the neural responses depending on the task
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can be of interest. In the example of movement-related processes, the timing of the
stimulation is adapted to the structure of the experiment to assess for example how
the evoked potentials before and during a cued movement differ from each other
[74, 128].

2.3.2. Closed-loop systems

The basic idea for closed-loop systems is that the ongoing brain activity is used as
a source of information to adapt stimulation parameters online (figure 2.2 B), i.e. in
almost real-time during the experiment. Hence, in addition to the parameters used
for conventional open-loop stimulation systems (for example the placement of elec-
trodes and the identification of an approximate set of stimulation parameters), one
has to determine which characteristics of the brain signal are important and how
they are translated into stimulation parameters such as the timing, the intensity and
the location of stimulation. When applied to patients, this depends heavily on the
condition which is to be treated and possibly also on the individual characteristics
of the implanted patients. For example, the presence of cortical lesions which can
perturb the currents induced by stimulation [169] can pose a problem. Again, in
the example of closed-loop stimulation for epilepsy, important characteristics of the
signal are those which can be used to predict seizures. The detection of a seizure in
real time triggers the stimulator, hence the timing of stimulation is adapted to the
brain activity.

From a technical point of view, several features are needed to upgrade current
open-loop stimulation systems to closed-loop systems:

• A sensing interface to record brain activity, possibly also requiring additional
electrodes

• Feature extraction modules to extract important signal characteristics in real time

• A classifier or another translation algorithm to determine stimulation parameters
based on the recorded brain activity

• A stimulation interface allowing the triggering and on-the-fly programming of
parameters of the stimulator

This makes a closed-loop stimulation system a special case of a brain-computer
interface (BCI) [179]. In the following sections, an overview of studies on closed-loop
stimulation systems is given:
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Closed-loop stimulation for patients

Extracting information from the measured neural activity online during the exper-
iment to optimize stimulation parameters opens up possibilities for novel research
questions and therapies which should be more effective than open-loop therapy
[143]. However, the literature regarding practical implementations of therapeutic
closed-loop cortical stimulation with human patients is very scarce. For the treat-
ment of epilepsy, the Responsive Neurostimulator System (RNS) (NeuroPace Inc.,
Mountain View, CA) [59] was recently evaluated in a clinical study with 191 patients
with intractable partial epilepsy. Using electrocorticography (ECoG), the brain ac-
tivity was continuously monitored and pre-programmed electrical stimulation was
triggered when abnormal neural activity was detected. Such activity patterns had
to be defined by a physician individually per patient. A significant reduction in
seizures for patients with this device implanted in comparison to patients that did
not receive stimulation was found [124]. Even more sophisticated approaches for
seizure control are in early stages of development. The goal is to continuously an-
alyze the response to the stimulation and adjust the stimulation if it does not have
the desired effect, i.e. if the seizure is not disrupted by it [156].

Closed-loop stimulation with animal models

Apart from this clinical approach, research on closed-loop stimulation of neural tis-
sue in vivo is focused on animal models. Stimulation is in this case usually applied
with microelectrodes which are also used for recording of local field potentials (LFP)
and action potentials (spikes). The advantages of microelectrodes over surface elec-
trodes are a better control over the environment of the stimulation and smaller area
of activation around the electrode, thus possibly leading to more specific stimulation
[40]. Two directions of the research can be distinguished: (1) Stimulation as a means
to directly transmit information about the external environment to the brain and (2)
stimulation to manipulate and reorganize the neural connections in the vicinity of
the electrodes.

In the first case, intra-cortical microstimulation (ICMS) can act as a device pro-
viding the animal with feedback on its task performance [115] or to transmit com-
mands and cues, which task to execute [57, 131]. This approach is also at the core
of many developments in the field of sensory neuroprosthetics, where Dobelle and
Mladejovsky [49] demonstrated the possibility of directly stimulating primary sen-
sory areas, in this case the visual cortex, with the goal of eliciting sensations similar
to those a healthy person would have in the same environment. They proved the
feasibility of this approach with a visual prosthesis in a blind person [48]. It has
been hypothesized, that a closed-loop control of the applied stimuli which takes the
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ongoing neural activity and the effects of the stimulation into account in order to
reduce the variance of the evoked activity by adapting stimulation parameters [25]
could improve the stability and selectivity of such neuroprosthetics [110]. This ap-
plication provides the basis for the paradigm investigated in chapters 5 and 6 and is
discussed in more detail there. Campbell et al. [29] applied prediction and control
of neural activity to cochlear implants which are to date the best established form of
a sensory prosthesis. Apart from these neuroprostheses, closed-loop stimulation in
the hippocampus [70] and prefrontal cortex [69] has been shown to improve memory
function and cognitive performance in monkeys.

In contrast to the assistive nature of a neuroprosthesis, another research target is
to repair injuries of the brain directly by using stimulation to ”rewire” the neurons.
Hence, this direction is more of a restorative nature and very interesting in the con-
text of stroke rehabilitation. The hope is that the formation of neural connections
between affected brain areas can be facilitated by stimulation. This field is in a very
early phase, especially regarding the question on how to achieve lasting and specific
changes in neural connections. Jackson et al. [84] concentrated on two neurons in
the motor cortex of monkeys and demonstrated that the activity of a target neuron
can be conditioned if ICMS pulses are applied to it with a fixed time interval af-
ter a different trigger neuron produced an action potential. This is inspired by the
hypothesis of Hebb [75] that the strength of a connection between neurons is modu-
lated by the relative timing of their activity, paraphrased often concisely as ”Neurons
that fire together, wire together”. They also found that such conditioning can lead
to long-lasting changes in the evoked motor response to ICMS when stimulating the
conditioned neuron. These changes in stimulation-evoked responses by a Hebbian
pairing of pre- and postsynaptic activity can have direct implications on behavior,
such as a modification of the intensity threshold at which the animal perceives that
an ICMS pulse has been applied [141]. Improvements in understanding how to ef-
fectively induce and detect changes in the organization of larger neural populations
[142] are crucial considering that restorative stimulation probably will have to act
on much larger scales than just a few neurons to be effective for stroke patients. A
second problem is that the stimulation-induced changes in the neural connectivity
are often short-lasting. While the changes in motor output in the study of Jackson
et al. [84] lasted for at least 10 days after the period of stimulation had ended, the
effects found in Rebesco et al. [142] and Rebesco and Miller [141] receded to baseline
within a day after the end of the stimulation. Thus, a lot of research is needed before
such highly specific approaches to induce neuronal reorganization can be practically
applied to human patients.

To summarize, while most clinical applications of cortical stimulation employ
open-loop stimulation systems, closed-loop systems are a research target right now,
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because an increase in specificity and effectiveness of stimulation is expected by
them. At the moment closed-loop stimulation is closest to reaching clinical practice
for epilepsy patients, while most other research is carried out with animal models.
One problem of bridging the gap between animal research and the application in hu-
man patients is the fact that microelectrodes are the tool of choice for the work with
animals. While this is understandable from the point of view of stimulation speci-
ficity, implantations of microelectrodes in humans are scarce at the moment due
to their invasiveness. Hence, research about closed-loop stimulation with macro-
electrodes could be a more viable candidate to create more opportunities to apply
closed-loop stimulation for patients.
One problem for this is that the availability of usable devices for closed-loop stimu-
lation in humans is very limited. For closed-loop stimulation, online signal analysis
and adaptation of stimulation parameters has to be possible, but using external hard-
ware for this would be very cumbersome for the patients. Therefore, implantable
stimulators suitable for long-term therapeutic interventions would be very welcome.
Such devices have to be designed with low power usage in mind and certified for the
use in human patients, a very costly process. Rouse et al. [147] in cooperation with
Medtronic (Fridley, USA) constructed a prototype of an implantable device. It al-
lows online time-domain and frequency domain analysis of ECoG signals on up to 4
channels. A programmable digital signal processor on a microcontroller can be used
to realize for example a support-vector machine for signal classification. The stim-
ulation hardware is based on off-the-shelve open-loop stimulators from Medtronic,
routinely applied in patients, and extended with an interface for the microprocessor
to enable online programming of the stimulator. First implantations had been per-
formed in monkeys with an evaluation of the classification performance when all
signal processing is done on the device. In a more recent evaluation of this device
after implantation in an ovine model, Afshar et al. [2] demonstrated the use of on-
line adaptation of stimulation parameters to suppress post-stimulus after-discharges.
However, while the hardware looks promising, there are no published studies of its
application in human patients, yet, and this is the only way to judge its effectiveness
for therapy.

2.4. Use of stimulation and brain signal decoding for
rehabilitation

Following this introduction into closed-loop stimulation, the next question is how
such stimulation systems could be adapted to stroke rehabilitation: On the one hand,
stimulation parameters are needed which might be beneficial for rehabilitation, on
the other hand one needs to extract information from the brain signals which could
be useful to ”close the loop”, i.e. adapt the stimulation parameters to it. Thus, this
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section gives an overview over recent attempts to use cortical stimulation or the
analysis of brain activity in the form of BCIs to support stroke rehabilitation.

2.4.1. Cortical stimulation for stroke rehabilitation

It has been hypothesized that the stroke leads to a decrease in the activation of
the affected hemisphere, such that the motor cortex of the intact hemisphere is in-
creasingly active for movements of the paretic hand [94]. Hence, re-balancing the
relationship between healthy and affected hemisphere might be beneficial for reha-
bilitation. Thus, the two main approaches are to either downregulate the excitability
of the healthy side or to upregulate the excitability of the lesioned hemisphere (see
Hummel and Cohen [81] and Alonso-Alonso et al. [4] for reviews). Stagg et al. [157]
found that stimulation of the affected hemisphere was the more effective option.
The idea to use invasive cortical stimulation for rehabilitation is based on animal
studies demonstrating that pulsed electrical stimulation applied to rats after an in-
duced lesion in the sensorimotor cortex can restore motor function [1, 161]. In these
studies, electrodes were placed subdural or epidural over the motor cortex of the an-
imals and different stimulation parameters (polarity, pulse frequency) were tested.
A stimulation frequency of at least 50 Hz and anodal stimulation was found to lead
to the most beneficial effects.

This approach was transfered to human stroke patients by Brown et al. [21], Levy
et al. [106] and Huang et al. [79] who applied 50 Hz electrical stimulation with epidu-
ral electrodes placed over the affected motor cortex during a standard rehabilitation
paradigm in several hospitals. As with the studies on rats, stimulation pulses were
given continuously during rehabilitation sessions. However, although the first stud-
ies with patients led to significant improvements in upper limb function [79, 106],
this could not be replicated in a follow-up study with 146 patients. After that, sug-
gestions were brought forth by Plow et al. [136] who argued that the specificity of
the stimulation was maybe not sufficient and could be improved by taking into ac-
count the brain activity at the moment of stimulation.
Instead of implanted electrodes, less invasive approaches for stimulation have been
suggested as well [4, 81], in particular TMS and tDCS. However, improvements in
motor performance have been moderate and often short-lived with these approaches,
but the independence from risky surgeries keeps this a viable option for further re-
search.

2.4.2. Brain-computer interfaces for stroke rehabilitation

While stimulation opens an afferent pathway to the brain by directly modulating the
brain activity, BCIs provide an efferent pathway. Their three basic components are
[179]: signal acquisition to digitize the brain signal, signal processing to extract features
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from the recorded signal which are then translated to control signals for external de-
vices. This makes BCIs attractive for patients with neuromuscular disabilities (for
example amyotrophic lateral sclerosis (ALS), brainstem stroke, cerebral palsy and
many other diseases [179]) in which control over the natural efferent pathways, the
muscles, is almost totally lost. They can serve as a communication channel with
these patients, allowing them to interact with their environment by operating for
example a spelling interface [15] or controlling a robot [76].

In contrast to this, restorative BCIs from the field of neurorehabilitation aim to
restore function, not replace it, after an injury destroyed neural connections. For
example, a stroke might severe fibers of the pyramidal tract, thus cutting the main
communication line between the motor system of the patient and certain muscles,
leading to paralysis of the affected muscles. In this case, the aim of brain-computer
interfaces for movement restoration is the re-establishment of the sensorimotor loop
[65]. In a healthy person, movement commands from the brain are transmitted via
the corticospinal tract to the muscles where the movement is executed. This execu-
tion is accompanied by kinesthetic, proprioceptive and visual feedback to the brain,
thus closing the feedback loop. In a stroke patient with paralysis, the corticospinal
tract can be affected resulting in zero or only a very small amount of fibres connect-
ing the brain to the paralyzed muscles. Hence, motor commands, if they can be sent
to the muscles, are not strong enough to elicit the intended movement. Without a
movement, there is also no sensory feedback from the movement, the sensorimotor
loop is severed.
However, if the motor cortex is still able to generate the necessary commands, one
can try to restore control by detecting the intended movement from the brain sig-
nals and using external devices, for example an orthosis, to execute this movement
(figure 1.1). Ang et al. [7] confirmed that ”the majority of stroke patients could
use EEG-based motor imagery BCI.” Buch et al. [27] were the first to realize this
approach with stroke patients with a chronic hand plegia, demonstrating that even
severely affected stroke patients are still able to learn to control a BCI with imagined
movements of their paralyzed hand. The BCI utilized the event-related desynchro-
nization (ERD) of sensorimotor rhythms (SMR) during motor imagery (SMR-BCI,
section 4.1). Unfortunately, learning to control the BCI did not lead to significant
clinical improvements in hand function, possibly because the hand movement was
not controlled continuously by the patients. The first controlled study with a larger
number of patients was conducted by Ramos-Murguialday et al. [138], who showed
that the motor function of severely affected stroke patients can be improved with
the use of a ERD-driven EEG-based BCI which detected the intention of the patient
to move the paralyzed hand in real time and closed the sensorimotor loop with an
orthosis continuously controlled by the movement intention of the patient. They
suggested that by providing such a contingent link between the intention and the
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action, neural connections associated with the movement could be strengthened to
the point that volitional control of movements through residual cortico-spinal fibers
becomes possible again.

2.5. Decision making from brain signals

The general goal of a BCI is to infer information about the intention of the user from
the brain signal - informally put: to ”decode” the brain signal - and use it to com-
municate with external devices. For a closed-loop stimulation system, features of
the brain signal have to be translated to stimulation parameters. Thus, given a brain
signal X, one has to make a decision. The result of this decision can be either in the
form of a category (e.g. ”The patient intends to move the hand / the foot / looks at
this part of the computer screen”) or as a real-valued control signal (e.g. ”Set the ve-
locity of the cursor / the wheelchair / the intensity of the stimulation pulse to Y”).
The former paradigm is a classification problem, the latter a regression problem. A
large variety of algorithms have been developed by the Machine Learning commu-
nity to deal with these kinds of problems, from simple linear algorithms to complex
nonlinear ”black box” algorithms such as neural networks. However, at least for
supervised classification problems for BCIs, Support Vector Machines (SVM) seem
to be the most efficient ones [112], due to their robustness against noise, outliers
and high dimensionality. For regression problems with neural closed-loop stimu-
lation data, Support Vector Regression (SVR) has been employed successfully [26].
Thus, in this section a short introduction on the fundamentals on SVM-based classi-
fication and regression algorithms is given, using the nomenclature and notation of
Schölkopf and Smola [152] for the special case of real-valued features.

2.5.1. Regression and classification

In general terms, a regression model M provides a way to estimate a dependent
variable Y (the ”output”) from independent variables X (the ”input”), such that
M(X) ≈ Y. For this work, Y ∈ R, while X ∈ Rd is a vector containing d features
of the recorded brain activity. Thus, the simplest way for a relationship between X
and Y would be to assume that it is linear: Y = wTX + b with w ∈ Rd as the weight
vector and b ∈ R as a bias term. Using for example the method of least-squares,
w and b can be easily calculated from a set of n training instances (xi, yi)

n
i=1 with

(xi, yi) ∈ Rd ×R. The xi are called patterns, while the yi are labels.
In classification, the dependent variable is discrete: The goal is to assign each pattern
to a class yi. This can be achieved by learning a decision function on the training data,
for example by finding the parameters w ∈ Rd and b ∈ R of a hyperplane wTx+ b =
0. This is useful in particular for binary classification problems (yi ∈ {±1}), although
a discrimination between multiple classes can be achieved by combining several
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Figure 2.3.: Toy examples to illustrate the SVM: (A): In a separable problem to distinguish between
circles and crosses, the optimal hyperplane (solid line) is the one with the largest margin.
The 3 support vectors are marked by larger symbols and the margin is indicated by the
grey shaded area. Dotted lines show examples of other hyperplanes that are not optimal,
although they separate the training data perfectly, because their margin is smaller. (B):
To solve a non-separable problem, SVMs with RBF kernel are trained. Their hyperplanes
are shown for three different settings of the regularization parameter C.

hyperplanes. From this follows the binary decision function f (x) = sign(wTx + b)
[152]. Of particular interest is the margin, i.e. the smallest distance of a point to
the hyperplane. For a separable problem, an infinite number of hyperplanes can
be found that separate the patterns perfectly, but they are not equally suited (figure
2.3). Intuitively, the optimal hyperplane can be defined as the one with the maximum
margin because it keeps the greatest distance from the training samples, thus leaving
the most room for unknown test data. This hyperplane can be found by solving the
optimization problem [152]

max
w,b

min
{
‖x− xi‖, x ∈ Rd, wTx + b = 0, i = 1, . . . , m

}
.

These rather simplistic approaches to classification and regressions are limited in
several ways. First of all, they assume a linear relationship between xi and yi. This
is rarely the case in reality, therefore non-linear approaches can lead to improved
results. Secondly, the problems of outliers and non-separable classification problems
have not been considered. Soft-margin SVMs can deal with these kinds of problems
and are introduced in the next section.

2.5.2. Support Vector Machines (SVM) for classification

Today’s commonly used form of soft margin SVMs was introduced by Cortes and
Vapnik [43]. It has several desirable characteristics:
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• Sparseness: The only training patterns which influence the position of the
hyperplane are those lying on the margin, the so-called Support Vectors (figure
2.3 A). These gain their name from the idea that they ”hold the hyperplane in
place”. If patterns outside of the margin are added or removed this does not
change the solution. Thus, for a trained SVM model, only the support vectors
need to be stored and the impact of outliers is reduced.

• Flexibility: Prior knowledge about the problem can be introduced into the
SVM with the use of kernels (section 2.5.4) without the need to change the
training algorithm. While an SVM at its core is always performing a linear
separation with a hyperplane, the use of non-linear kernels has the effect that
this separation is done after - conceptually - projecting the training patterns
to another space more suited to the problem. Thus, kernels allow a nonlinear
classification.

• Robustness: One problem with the use of kernels is that the decision bound-
ary can become very complex when attempting to achieve a perfect separation
of the training data. This can be undesirable, because zero error on the training
data does not ensure that unknown test patterns are classified correctly, which,
ultimately, is the goal of training such an algorithm. A too complex bound-
ary can result from the algorithm simply ”remembering” the training data, a
problem called overfitting. The insight that simpler solutions can achieve better
results, a concept also known as Occams Razor, is incorporated into SVM train-
ing with the use of regularization. A parameter C controls the trade-off between
the smoothness of the decision boundary and the number of classification er-
rors (figure 2.3 B). A larger C penalizes errors stronger, leading to a more com-
plex, less smooth decision boundary. To allow such misclassifications, slack
variables ξi are introduced which represent the error for training pattern xi if
ξi > 0. This property also makes SVMs effective for high-dimensional data.

For linear classification, this results in the primal optimization problem [152]

min
w,ξ,b

1
2
‖w‖2 + C

m

∑
i=1

ξi

subject to ξi ≥ 0 ∀ i = 1, . . . , m and yi(wTx+ b) ≥ 1− ξi ∀ i = 1, . . . , m. For nonlinear
classification, the optimization problem is [35]

min
f∈H
‖ f ‖2

H +
n

∑
i=1

max(0, 1− yi f (xi))

where sign( f (xi)) with f (x) = ∑n
i=1 βik(xi, x) is the decision function. The βi are

the coefficients of the solution and k is the kernel function with its associated repro-
ducing kernel Hilbert space (RKHS) H (section 2.5.4). Although in practice these

24



2.5. Decision making from brain signals

g(x)−y

−∆ −ε ε ∆

loss lε

linear quadratic Huber

x

y

RBF

linear

2εA B

Figure 2.4.: Toy examples to illustrate the SVR: (A): Comparison of the linear, the quadratic and the
Huber loss function. (B): Results for a SVR with linear (blue) and RBF kernel (red). The
estimated function is shown as a solid line, the shaded area around the function indicates
an ε-tube.

problems are often solved in the dual form instead of the primal one because it sim-
plifies the optimization constraints, the basic concepts of SVMs are easier to explain
with the primal form which is why it is presented here. Furthermore, one advantage
of primal optimization over the dual one is that hyperparameters of the SVM can be
tuned more easily [35] (see section 2.5.5).

2.5.3. Support Vector Regression (SVR)

The SVM above can be extended to regression problems such that yi ∈ R instead
of {±1}. In this case, the class loss function max(0, 1− yi f (xi)) is not applicable.
Typically, an ε-insensitive loss function lε is used, which penalizes patterns only if
|yi − f (xi)| > ε. Typical penalties can be linear (l1− or hinge loss) or quadratic (l2-
loss). The l1-loss is not differentiable, hence the Huber loss was introduced by Bo
et al. [16]. It is a differentiable approximation that contains linear and quadratic
parts (figure 2.4 A).
Instead of finding the optimal hyperplane, SVR fits a tube with width ε to the data
points (figure 2.4 B) such that only patterns with lε( f (xi − yi) > 0 play a role for the
solution. Following Brugger et al. [26], the regression model g(x) = ∑m

i=1 βik(x, xi) +
b is found by

min
β,b

(
Lε(β, b) =

1
2

n

∑
i=1

lε(Kiβ + b− yi) +
λ

2
βTKβ

)

where Ki the i-th row of the kernel matrix K, β are the coefficients in the solution,
b is the bias term and λ = 1

C is the regularization parameter. This algorithm re-
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tains the advantages of SVMs for classification in terms of sparseness, flexibility and
robustness.

2.5.4. Kernel

One important aspect of classification and regression is the notion of the similarity
between patterns. Intuitively, if a test pattern with unknown label is more similar
to all the patterns known to belong to class yi than to those of other classes, then it
might be sensible to classify it as also belonging to class yi. The question is how to
define similarity between patterns for a particular problem. In its simplest form, one
can do this by comparing the test pattern xi with another pattern xj feature-wise via
the computation of the dot product: 〈xi, xj〉 = xT

i xj. This is a simple linear operation,
but it does not allow any dependencies between features or other nonlinearities. If
one expects such nonlinear influences for the problem to be solved, one can deal with
this issue by first projecting the input feature vector to some appropriate space H,
using a nonlinear function Φ(xi) : Rd → H and then computing the dot product in
H: 〈Φ(xi), Φ(xj)〉H. If the function Φ is suitably chosen such that the nonlinearities
vanish in H then the linear operation of the dot product is sufficient to capture the
similarity between patterns. However, especially if the space X is of high dimension,
this operation can be very costly. This is where the so-called kernel trick opens up a
shortcut:
A kernel k(., xi) : Rd 7→ R, x 7→ k(x, xi) is a function which performs the two steps
of (i) projection from the input space Rd to the feature space X and (ii) computation
of the dot product in H implicitly, thus avoiding the problem of the dimensionality
of H. The prerequisite for k to be considered as a kernel is that it has to be positive
definite. Only then can it be thought of as an implicit dot product in the associated
RKHS [152]. Examples of popular kernel functions are:

• Linear kernel: k(xi, xj) = xT
i xj

• Polynomial kernel: k(xi, xj) = 〈xi, xj〉o

• Gaussian radial basis function (RBF) kernel: k(xi, xj) = exp
(
− ‖xi−xj‖2

2σ2

)
The linear kernel simply realizes the computation of the dot product in the input

space. The polynomial and the Gaussian RBF kernel allow nonlinear interactions
between features, but each one has an additional parameter, either the order o of
the polynomial kernel, or the width σ of the RBF kernel. The next section discusses,
how appropriate settings for these hyperparameters and the other parameters of an
SVM or SVR can be found automatically.
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2.5.5. Model Selection

In the training procedure of SVMs for classification or regression, hyperparameters
need to be selected. These are parameters needed by the learning algorithm for ex-
ample to adjust its internal cost function. Of particular importance is the parameter
C which controls the trade-off between the maximization of the margin and, thus,
the smoothness of the decision function, and the minimization of the training error
[152]. With the exception of the linear kernel, there are usually also hyperparameter
associated with the kernel functions. For example, in the case of an RBF kernel, the
width σ of the kernel needs to be selected. Specific for SVR is the parameter ε, which
controls the width of the loss function. In order to optimize these parameters for the
particular problem at hand, one can use a regular search grid where all combina-
tions of a discrete set of possible values for the hyperparameters are tested on the
training data [33]. The parameter setting which performs best on the training data is
then used for the actual classification or regression procedure. This method can find
good parameter settings given a suitable spacing of the grid points (a logarithmic
spacing is very common), but it can be very time consuming, especially if there are
more than two hyperparameters to optimize [37].
The aim of the model selection step is to find settings for the hyperparameters which
minimize the error on unknown test data for optimal generalization. This measure
is obviously unknown, but one can find upper bounds for the leave-one-out error
(LOOE) of the SVM which provides an unbiased estimate for the probability of the
test error [166]. The LOOE is the error rate obtained by training the SVM on all in-
stances except one and classifying the remaining instance, repeated for all instances.
From this, one can derive a heuristic for the model selection, by finding hyperpa-
rameters such that the upper bound for the LOOE is minimized. The span bound
[36, 166] in particular gives the best results to automatically tune the hyperparam-
eters of an SVM [37]. This bound can be used for SVR model selection as well [34]
with the small change that the LOOE in the regression case is not the classification
error rate, but the average error of the estimation. As the optimization is a gradient-
based procedure, solvable for example via Quasi-Newton methods, the number of
runs of the classification/regression procedure is much smaller than for the grid
search explained above if there are more than two parameters to be optimized [34].

2.5.6. Feature Selection

Each training pattern xi ∈ Rd consists of a vector of d features: xi = (xi1, . . . , xid).
Let the set of all values for a particular feature j in the set of training patterns X be
denoted by Xj. Starting from a large number of features which may contain noise
and redundancies, it is often advisable to reduce the input dimension by selecting a
subset of features S ⊂ {1, . . . , d} which still contains all relevant information for the
problem M(X) ≈ Y. This dimensionality reduction can improve the quality of the
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classification or regression substantially, because it reduces the risk of overfitting.
In the field of Support Vector-based methods, overfitting is to some extend under
control thanks to the use of regularization which enforces a smoothness constraint
on the decision function. However, these methods can still benefit from a reduction
of the dimensionality of the feature space [68]. Feature selection methods can be
grouped in two regimes: filter and wrapper methods [67, 95]. Filter methods com-
pute criteria for feature relevance independently from the employed regression or
classification method. Examples for filter methods are [67]:

• r2 value: The square of Pearson’s r for the linear correlation between Xj denotes
the fraction of the variance of the labels explained by a linear relationship
between the feature and the labels. With Pearson’s r, only linear relationships
can be captured. However, this can be extended to nonlinear relationships
either by computing r between f (Xj) and Y, where f is a nonlinear function
such as the square or a logarithm, or for a monotonous relationship by using
Spearman’s correlation coefficient instead of Pearson’s.

• AUC value: The Receiver Operating Characteristic (ROC) is especially helpful
for feature selection for two-class classification problems Y ∈ {±1}. The value
of a threshold t is varied over all values of Xj. For each threshold, all train-
ing instances are assigned to a class depending on whether their value xij for
feature j is smaller or larger than t. Each threshold gives a true positive and
false positive rate (TPR/FPR) in comparison with the original labeling of the
training instances. The area under the curve (AUC) when plotting TPR versus
FPR is a measure, how well the training instances can be separated into the
two classes using only the value of xij as a predictor [53, 67]. Similar to the r2

value above, only a linear relationship between Xj and Y is evaluated with this.

• Mutual information: The mutual information is an information theoretic mea-
sure for the dependency between the probability density of Xj and the prob-
ability of Y. It is not restricted to linear relationships but hard to estimate,
because the true densities are unknown.

A general problem of filter methods is that they judge each feature independently
from all others, thus they cannot account for interactions between features. A par-
ticular feature Xj which is uncorrelated with Y might still be useful for solving the
problem, because its interaction with another feature k could provide otherwise un-
obtainable information (see Guyon and Elisseeff [67] for examples). Therefore, it
can be useful to evaluate feature subsets, thus covering the interactions within the
subset, instead of individual features in order to select the most appropriate feature
set.

Wrapper methods use the regression or classification algorithm as a black box to
get a measure for the suitability of the input feature set. For a particular feature
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subset, one evaluates its suitability by computing a performance measure for the
black box algorithm trained on this feature subset, for example by cross-validation.
Performance measures might be the classification accuracy or the prediction error.
In principle, one could perform this performance evaluation for all possible feature
subsets, but this brute force approach is only feasible if the number of features is
very small, because the number of subsets increases exponentially with the num-
ber of features. Greedy search strategies such as forward selection and backward
elimination can serve as heuristics in order to find a good feature subset [67]. In
comparison to the filter methods, where only a pre-processing step has to be per-
formed on the features, the wrapper methods are computationally more expensive,
because for the evaluation of each subset, a full training and testing procedure of the
classification or regression algorithm has to be performed. However, the wrapper
method allows one to judge features directly in the realm of interest: their suitability
for the algorithm to be used in practice. One popular wrapper method for feature
selection in the case of Support Vector methods, usable only with a linear kernel, is
Recursive Feature Elimination (RFE) [68]. RFE works with backwards elimination,
starting from a full set of features and gradually removing more and more. The
weight of each feature is used as the removal criterion: If the absolute weight of
the feature is large, it is probably more important than features with small weights.
However, this means that all features have to be scaled to the same range (e.g. by
using the z-score to normalize the raw feature values to zero mean and unit vari-
ance, or by doing a linear scaling to an appropriate range of values), otherwise the
weights are not comparable.
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3 Overview over the research
framework and the research
questions

This work took place within the ERC-funded project ”BCCI - a bidirectional cortical
communication interface” (grant # 227632) aiming to investigate the utility of the
combination of brain-computer interfaces and cortical stimulation for the communi-
cation with locked-in ALS patients as well as for stroke rehabilitation. It was a joint
project of the Department of Computer Engineering at the University of Tübingen
together with the Department of Neurosurgery and the Institute of Medical Psychol-
ogy and Behavioural Neurophysiology of the University Hospital in Tübingen. For
this thesis, only the stroke rehabilitation part is important.

In contrast to all earlier studies on stroke rehabilitation with human patients, this
idea of a bidirectional interface with the brain makes it necessary to be able to record
the brain activity and stimulate the brain at the same time. As outlined in section
2.1, there are several possibilities to realize this prerequisite, ranging from noninva-
sive means as in combined TMS-EEG up to very invasive methods such as implanted
multi-electrode arrays. For the BCCI project, epidural implantation of electrodes was
chosen as a compromise between invasiveness and signal quality: Their intracranial
placement means that they are closer to the brain than EEG electrodes, that there is
no influence of the skull on the recorded signals and that they can be used to deliver
electrical stimulation. While a surgery is necessary to implant these electrodes, they
are not in direct contact with the brain but sutured to the dura mater, while micro-
electrodes would penetrate the brain tissue.

In total, 5 patients were implanted with epidural electrodes during the BCCI
project: The first one was an amputee suffering from chronic phantom limb pain,
the second one a stroke patient also suffering from chronic pain and paralysis of the
left hand. These patients are described in more detail in Walter et al. [173]. Com-
bined brain stimulation and brain signal recording was not attempted with the first
patient and experiments on this with the second patient did not lead to satisfying
results because almost no neural reaction to the stimulation could be recorded, likely
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P1 P2 P3

Figure 3.1.: ECoG electrode positions from overlay of MRI and post-surgical CT for the three patients.
From left to right: P1-P3. From Walter et al. [172]

due to problems with the implanted electrodes. Thus, data from these patients is not
included in this thesis. Three more chronic stroke patients suffering from a paralysis
were implanted with epidural electrodes and for these, recording of stimulation ef-
fects was successful. The data from these patients thus forms the core of this thesis.
A general overview over the patients, the research questions and challenges as well
as the experiments is given in the next sections.

3.1. Patients

Data was recorded from three chronic stroke patients (table A.1) suffering from
paralysis of the left hand induced by the stroke. None of the patients was able to pro-
duce voluntary finger movements with the left hand and conventional physiotherapy
did not lead to improvements of hand functions. The patients were implanted in a
compassionate use protocol using cortical stimulation and BCI for stroke rehabilitation
conducted at the University of Tübingen. All procedures were approved by the local
ethics committee of the medical faculty of the university hospital in Tübingen and
the patients gave written informed consent. After extensive tests to assess motor
function and ensuring that the patients had no history of psychological exclusion
criteria such as depression or physiological conditions such as epilepsy, they trained
for 4 weeks with a noninvasive version of the BCI system without concurrent cortical
stimulation. This noninvasive phase was performed to test whether improvements
can be attributed only to the BCI training, or whether there is a further beneficial
effect of an invasive BCI training coupled with stimulation.

After the conclusion of the noninvasive phase, each stroke patient was implanted
with 16 epidural platinum iridium disk electrodes (Resume II, Medtronic, Fridley,
USA) with a contact diameter of 4 mm placed over the ipsilesional S1, M1 and pre-
motor cortex on 4 strips with 4 electrodes each and an inter-electrode center-to-center
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distance of 10 mm. They were arranged in a 4x4 grid-like pattern (figure 3.1) cen-
tered on the hotspot for eliciting MEPs on the extensor digitorum communis (EDC).
The EDC muscle is responsible for opening the fingers of the hand, hence it was
chosen as the main target for rehabilitation of the hand function. This hotspot was
identified by TMS mapping [177] before the surgery. Following the implantation,
the BCI and stimulation experiments were conducted during a period of 4 weeks
where the ECoG electrodes were accessible from the outside by cables through the
skull and scalp. After this invasive phase with 4 weeks of externalized cables, these
were internalized in a second surgery and connected to an implanted programmable
pulse generator (Medtronic, Fridley, USA). After that, the patients received cortical
stimulation through this stimulator. As all connections to the electrodes were inter-
nalized and the implanted pulse generator had not the ability to measure the brain
signals, no further closed-loop stimulation experiments were possible following the
second surgery.

3.2. Research questions and experiments

In the first chapter, two approaches for closed-loop stimulation were introduced:
brain-state-dependent stimulation and adaptive stimulation to control the shape of
the evoked brain activity. In practice, there are a number of challenges to be solved
to realize these ideas:

3.2.1. Brain-state-dependent stimulation

The basic idea of brain-state-dependent stimulation for stroke rehabilitation is to ap-
ply stimulation pulses only if the patient intends to move the paralyzed hand. This
makes it necessary to be able to decode the movement intention of the patient from
the brain signal continuously even while stimulation is applied. The challenge is
that stimulation induces artifacts which distort the brain signal. Thus, inferring the
brain state from such distorted brain signals would be unreliable and it would be
preferable to either clean the signal from these artifacts before further analysis or at
least to correct for their presence. Chapter 4 is dedicated to this topic:
After a discussion of the detection of the movement intention from the brain sig-
nal and the influence that stimulation after-effects have on this detection process,
algorithms are proposed to minimize the effects of the stimulation on the decod-
ing process, in particular on the estimation of spectral power. The basic idea of
these algorithms that is introduced here is to identify the period of time in which
the stimulation after-effects occur, to remove this segment of the signal leaving a gap
and then to use different strategies to deal with this gap to allow spectral estimation.
The algorithms are applied on EEG and ECoG data recorded from movement exper-
iments with the three stroke patients. In these experiments, the task of the patients
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was always the same: After an acoustic cue, the patients had to attempt to open the
paralyzed hand for 6 seconds and then to relax for 8 seconds. The details on these
experiments are given in appendix B.1 and B.2. For the evaluation and comparison
of these algorithms, the following steps are taken:

• Spectral power estimation on data without stimulation: Starting with data
from experiments where the patients performed cued attempted movements
but were not stimulated, one can simulate stimulation artifacts in these data
sets. Then, the proposed algorithms are applied to the data and it is tested,
how strongly the estimated spectral power with simulated artifacts differs from
the correct spectral power estimated on the original data sets. If the stimulation
artifact is removed perfectly by the algorithm, there should be no difference.
Such a performance is unlikely, but finding an algorithm that introduces no
systematic error (bias) into the spectrum would be very welcome because it
ensures that at least on average the features used for brain signal decoding are
not influenced by the presence of stimulation after-effects.

• Movement intention decoding on data without stimulation: Having a largely
unbiased estimate of the spectrum might not be enough. For the application,
the output of the classifier of detecting either the presence or the absence of an
intention to move is the crucial part because this controls the feedback to the
patient. Thus, one has to test on the same data sets as for the spectral power
estimation, whether the classification between a movement state and a relaxed
state (rest) would be biased when after-effects of stimulation are corrected with
one of the proposed algorithms. As different classifiers might produce slightly
varying results, a general measure of the discriminability between data from
two classes is used as a measure for this, the area under the ROC curve (AUC).

• Open-loop vs. closed-loop stimulation: If there is a bias in the movement
intention decoding when stimulation artifacts are present, it might be more
or less pronounced depending on the stimulation paradigm. In an open-loop
paradigm, stimulation occurs during the movement and during the rest phase,
so the output in both phases would be biased. In the closed-loop paradigm,
stimulation is only applied if the classifier detects an intention to move within
the movement phase. Thus, if the bias occurs only during the movement it
might even artificially ”improve” the decoding performance. To quantify this,
stimulation artifacts are simulated for open-loop and closed-loop paradigms
and the AUC scores are analyzed and compared to the correct scores without
simulated artifacts.

• Real stimulation data: While simulations allow the exploration of different
parameters and properties of the algorithms, they have to be tested in a realistic
environment as well, i.e. on data sets with actual cortical stimulation. For
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this, data sets were used from experiments where the patients performed the
same task but with concurrent stimulation, either in an open-loop or closed-
loop paradigm. The bias of the algorithms can not be computed for this data
because there is no correct, undistorted output one could compare the results
with: The stimulation after-effects and their distortions are part of the raw
data. However, in comparison to each other, the algorithms should behave
similarly as in the simulation. For example, if an algorithm had a positive
spectral bias by leading to a consistent overestimation of the spectral power
in the simulations, the spectral power after its application on stimulation data
should be higher than for an algorithm that had a negative spectral bias.

Only with an algorithm in place that allows the estimation of the spectrum and, in
turn, the decoding of the movement intention of patients even if cortical stimulation
is applied concurrently, were other experiments possible that make use of online
brain signal analysis and cortical stimulation. This includes the BCI rehabilitation
paradigm with stimulation for the chronic stroke patients B.1 as well as the experi-
ments introduced in the next section to study the effects of stimulation in different
movement-related brain states B.2.

3.2.2. Adaptive stimulation to control the evoked activity

A stimulation paradigm where stimulation parameters are adapted to the ongoing
neural activity in order to compensate for the effects that fluctuations in the pres-
timulus activity have on the shape of the poststimulus activity requires that there
is a detectable influence of the pre- on the poststimulus activity. Otherwise, such
a paradigm does not make sense. To test for such a relationship, the patients per-
formed the movement task described in section 3.2.1 while stimulation pulses were
applied in a regular interval independent of the brain activity of the patient (open-
loop). This data was analyzed to answer several questions:

• Brain state dependency: Does attempting to move the paralyzed hand change
the shape of the evoked activity compared to stimuli while the patient is re-
laxed? If yes, then the intention of the patient should be taken into account
when selecting stimulation parameters. A statistical analysis using permuta-
tion tests was performed to find time points in the poststimulus activity for
which the amplitudes differed significantly between movement and rest.

• Brain activity dependency: Is there a direct correlation between the spectral
power of the prestimulus activity and the amplitudes of the poststimulus ac-
tivity? If this is confirmed, then it would be worthwhile to analyze the brain
activity online to decide on stimulation parameters, for example by predict-
ing the shape of the evoked activity from the spectrum and stimulating only
if this prediction is close to a predefined target. The most relevant frequency
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bands for movement-related brain processes are the µ- and the β-band. Thus,
it was tested for which time points of the poststimulus activity there is a signif-
icant correlation between their amplitude and the prestimulus µ- or β-power.
This analysis was repeated with just the stimuli applied during the movement
phase, because this is the relevant subset for closed-loop stimulation.

So far, the stimulation parameters were kept constant while the patient was en-
couraged by the task to modulate his brain activity. Such a design is sensible to
investigate the (postulated) pre- to poststimulus relationship in the brain activity,
but in order to compensate for fluctuations in the prestimulus activity by adapt-
ing the intensity to it, one needs to study the effects of different intensities on the
evoked activity. To this end, experiments were performed with the patients in which
they were instructed to lie on the bed with open eyes in a relaxed state in order to
discourage activity-related changes in the brain activity. During that time, the pa-
tients were stimulated with pulses of varying intensities and a fixed inter-stimulus
interval, applied on different brain areas. Research questions for this experiment
were:

• Intensity dependence of evoked activity: How well is the intensity ”encoded”
in the shape of the evoked activity? How does this vary for different positions
of the stimulation and recording electrode? If the applied intensity is easily
recoverable from the evoked activity with a regression analysis, there is no
good incentive to use adaptive stimulation. If one wants to evoke a specific
target waveform in the evoked activity, one could simply use the regression
model to compute the appropriate intensity for the target waveform.

• Influence of prestimulus activity: Adaptive stimulation would take the ongo-
ing brain activity into account to select the optimal intensity to elicit the target
waveform. With this experiment it can be tested whether this is promising by
testing if regression models that take both pre- and poststimulus activity as
input to infer the applied intensity are superior to models using only the post-
stimulus activity. If not, adaptive stimulation is not a promising approach as it
would not bring a benefit.

The results of the movement task with open-loop stimulation are reported in chap-
ter 5, while the results of the experiments on intensity-dependency of the evoked
activity are covered in chapter 6.

3.2.3. Longitudinal analysis of stimulation-evoked potentials

With these patients and their implanted electrodes, being able to stimulate the brain
and record the brain activity for several weeks during a rehabilitation process is a
unique opportunity. Functional improvements of the patients during rehabilitation
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training could be due to plastic changes in their brains. As stimulation-evoked po-
tentials have been used as markers for neural connectivity [117, 118], it is sensible
to look for coherent changes in the potentials during the 4 weeks of rehabilitation,
especially for patients where clear functional improvements are found over time. As
this is the first time that such an analysis is possible and no prior research exists
on the question, which changes in stimulation-evoked brain activity occur during
functional recovery, this is an exploratory analysis.
The experiments mentioned so far, both the attempted movement tasks with open-
loop stimulation paradigms as well as the experiment with varying stimulation in-
tensities in relaxed patients have been repeated 2-4 times per patient, usually with 1
week between repetitions, thus covering the full or at least a large portion of the 4
weeks of rehabilitation training. The most promising experiment for this is the move-
ment task with open-loop stimulation for patient P1, because patient P1 showed clear
functional improvements, the experiment was repeated 4 times and the stimulation
parameters were kept constant between repetitions. The findings of this analysis are
found in chapter 5.
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4 Brain-state-dependent
stimulation

The clinical tests of cortical stimulation via implanted electrodes for movement
restoration in human stroke patients used open-loop stimulation in conjunction with
physiotherapy [21, 79, 106, 136]: While patients performed physiotherapy sessions,
stimulation pulses with a fixed frequency were applied to the damaged motor cortex.
In this open-loop design, the stimulation is independent from the actions and the
brain activity of the patient during physiotherapy. Its general purpose is to increase
the excitability of the ipsilesional cortex or decrease the excitability of contralesional
areas [81, 136]. This might facilitate brain plasticity during concurrent physiother-
apy, but one has no control over whether the reorganisation happens in the desired
fashion, to achieve recovery of lost motor function. If the stimulation could be ap-
plied specifically while the patient is actively trying to move the paralyzed limb,
then there is a direct association between the stimulation and its activating effect
on neurons, the movement of the limb (by a physiotherapist or an orthosis) and the
brain activity patterns responsible for movement planning and execution. This is an
extension of the hypothesis of Ramos-Murguialday et al. [138], that the association
between movement intention and the contingent BCI-controlled movement of the
orthosis strengthens residual cortico-muscular neural connections, possibly leading
to improved recovery of motor function. Hence, instead of an unspecific modula-
tion of cortical excitability, stimulation would serve to form a link between the brain
activity and the peripheral activity of a movement of the affected limb. In this way,
one might reinforce brain reorganisation specifically of areas associated with control
of the paralyzed limb.

In general, this approach can be seen as a form of brain-state-dependent stimula-
tion (BSDS) [85]. The concept of BSDS is to monitor the brain activity online and
to present stimuli only if specific patterns of brain activity are found. For example,
Bergmann et al. [13] monitored participant’s EEG during sleep and applied TMS
pulses if either an up- or down-state in non-REM sleep was found. The stimuli in a
BSDS paradigm do not have to be TMS or other forms of direct cortical stimulation,
they could be as simple as a visual or auditory stimulus. For this work, however,
cortical stimulation is used and the brain state in question is whether or not the
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Figure 4.1.: General idea of brain-state-dependent stimulation for stroke rehabilitation: The delivery
of stimulation pulses is started and stopped depending on whether an intention to move
the paralyzed limb can be decoded from the brain signal.

patient is trying to move the paralyzed limb. The basic process is given in fig-
ure 4.1: A state detection algorithm determines, whether the patient tries to perform
a movement and starts and stops the stimulator accordingly. While one could use
muscle signals as input for the state detector to detect whether a healthy participant
is actively performing a movement, this approach is problematic for paralyzed pa-
tients. Ramos-Murguialday et al. [139] found that although some patients still show
faint modulations of electromyographic (EMG) activity when attempting to move
the limb, this might not be strong enough to allow reliable decoding of movements
from EMG, especially considering that muscle spasticity which impairs voluntary
muscle activity is very common in stroke patients. Hence, brain signals are used
as input in the BSDS paradigm and the state detection algorithm has to detect the
intention of the patient to move the paralyzed hand from the recorded signals.
In the next section, the state of the art for movement intention decoding from brain
activity is described.

4.1. Detection of movement-related brain states from
brain activity

The term ”brain state” is based on the idea that the execution of a specific task
is associated with a specific configuration of the neural activity of the brain. The
state can refer to ”levels of wakefulness etc; or to contrasts between particular tasks;
or even to different conditions within a cognitive task” [50]. As the main focus of
this work is on movement restoration for stroke survivors, brain states related to
movement are the most interesting ones, especially the discrimination between the
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movement and the rest state. One has to differentiate here between three different
types of movements:

• Active movements: The participant either actually moves the muscles or at
least attempts to move them. This is usually accompanied by the generation of
muscle activity detectable via EMG, to some extent even in patients attempting
to move the paralyzed limb.

• Imagined movements: The participant visualizes to conduct the movement,
but no visible movement is performed and the EMG activity is similar to the
activity during rest. The limb whose movement was visualized may or may
not be moved externally during the imagined movements.

• Passive movements: Another person or an external device, for example a robot
or an orthosis, moves the limb while the participant stays relaxed. EMG activity
should not be detectable.

The brain activity patterns of all these different types of movements can be dis-
criminated from rest and differences between the individual movement types are
found as well [140]. To perform this discrimination, meaningful characteristics of
the measured brain signal have to be identified. Apart from the (discrete) brain state
identifying the type of movement, other parameters of movements, in particular the
direction of movement, have been shown to be detectable from the neural activ-
ity [18, 149]. Two domains are discussed as a source of signal features to decode
movement states and parameters: the time domain and the frequency domain.

4.1.1. Time domain features

Neurons in the primary motor cortex (M1) can be tuned to abstract features of move-
ments such as movement direction in extrinsic [62, 63] or muscle space [87]. Such
neurons typically have a preferred movement direction which leads to the strongest
increase in the rate of action potentials (spikes) before and during the movement
compared to rest. Spike rates can increase more than 100 msec before movement on-
set [62]. Thus, if one can measure action potentials of single cells using implantable
multi-electrode arrays (MEAs), one can discriminate movements from rest quite eas-
ily by counting the number of action potentials over an ensemble of neurons in M1
in a small time window, a procedure known as binning. The movement direction
can be inferred from the population vector [63]. As the increase in neural firing rate
starts before movement onset, one can even predict the start and direction of move-
ment before it is visible. These characteristics of single neuron time domain activity
have been used to construct neural prostheses which translate the spike rates into
movements of a robotic arm or a computer cursor. Using MEAs, this has been tested
mainly in animals [30, 38, 60, 61, 64] and in a few studies with tetraplegic humans
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Figure 4.2.: Spectral power computed from a screening session with P1 during intended movement
(blue) and rest (red) as an example of event-related synchronization (ERS) and desyn-
chronization (ERD). ECoG data was acquired from a channel close to the motor cortex.
The standard definition of the µ, β and γ band [127] are shown as dashed vertical lines.

as well [42, 76, 77].
As the use of MEAs is uncommon in humans, ECoG or EEG are alternatives but
do not allow the measurement of action potentials of single cells. Still, time domain
features of these signals can yield useful information about the ongoing movement
[61, 99, 149]. Schalk et al. [149] termed a low frequency component the local motor
potential, because its time domain evolution was highly correlated with the move-
ment direction, and used it for the offline decoding of movement direction from the
ECoG signal.

4.1.2. Frequency domain features

Especially for recording methods such as EEG or ECoG, where neural spikes can not
be obtained, the power spectrum of channels near sensorimotor cortex (in particu-
lar primary motor cortex (M1), premotor cortex (PMC) and primary somatosensory
cortex (S1)) has been shown to yield very useful information about movements. The
main effect is described by event-related synchronization (ERS) or desynchroniza-
tion (ERD) [135]: Modulations in the power spectrum of certain frequency bands
before, during and after movements in comparison with rest (figure 4.2). An ERD
is characterized by a reduced spectral power in comparison to rest, while ERS indi-
cates the opposite. Pfurtscheller and Lopes da Silva [135] identified three frequency
bands which are important in this regard:

• µ or sensorimotor rhythm (SMR) (8-13 Hz): Starting about 2 s before move-
ment onset, the power in the µ band decreases on channels over the sensori-
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motor cortex contralateral to the movement (contralateral ERD). This becomes
a bilateral ERD at the moment of movement execution.

• β rhythm (14-30 Hz): The temporal evolution of the ERD is similar to the µ

rhythm. After a voluntary movement is finished, ERS in the β-band is found,
the so-called β-rebound.

• γ rhythm (> 30 Hz): In the γ band, ERS is found during movements.

In the example of figure 4.2, while µ ERD and γ ERS are clearly seen, the β ERD
is less clear and centered around 30 Hz. Thus, these features are subject-specific
and should be individually adjusted. Typically, the spatial extent of these spectral
modulations becomes smaller and more focal, the higher the frequency. Due to the
somatotopic organization of the somatosensory and motor cortex, this means that
a spatiotemporal analysis of the spectral modulations of high frequencies could al-
low a discrimination of different movement types. Unfortunately, the signal to noise
ratio decreases for higher frequencies, making these rhythms difficult to measure.
With EEG for example, γ band modulations usually can not be analyzed on a single
trial level, hence movements are more commonly decoded from the µ and β band.
However, for ECoG, γ band activity yields useful information for the detection of
movement intention even for single trials [173, 181].
The fact that these rhythms are modulated both by active as well as by imagined
movements forms the basis for the SMR-BCIs which have been developed for a mul-
titude of studies since the 1980s [14, 179].

4.1.3. Online detection of movement-related brain states from
spectral power (SMR-BCI)

In this work, spectral information is used because it is the most reliable tool for EEG
and ECoG as input signals. In an actual experiment with BSDS, one has to ensure
that the movement state can be decoded online during the experiment in order to
provide fast and accurate feedback to the patient. The ability to detect brain states
almost in real time is one of the core principles of BCIs, and movement-related brain
states, especially from imagined movements, have been in use as a control signal for
a long time. The lateralization of ERD and ERS can be utilized by discriminating
between left and right hand movements, or the somatotopic organization by dis-
criminating tongue from foot movements [179]. Another slightly simpler possibility
is to decide between movement and rest (e.g. [140, 173]).
In any case, the system has to work online, hence the decision about the brain state
has to be made within a short time. For a SMR-BCI [100], this involves the following
steps:

1. Data acquisition, using EEG or ECoG.
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2. Signal processing:

a) Spectral filtering, for example to remove power line noise (optional).

b) Spatial filtering, for example to improve focality with a spatial Laplacian
[130] (optional).

c) Buffering of the data by keeping the last several hundred milliseconds of
the signal in a FIFO buffer.

d) Spectral estimation of the data in the buffer (feature extraction).

e) Classification of the brain state using the spectral power as input. The
classifier is usually trained to discriminate between brain states using data
from a screening session.

3. Feedback to the user, where the output of the classifier is used to generate a
control signal for the feedback device.

When using a feedback device such as an orthosis, which opens and closes the hand
of the patient depending on the output of the classifier [27, 138], the patient can
learn to control the movement of the device and thus also of his hand. In the next
section, it is discussed how cortical stimulation can be included into this setup to
deliver brain-state-dependent stimulation.

4.2. Spectral estimation during cortical stimulation

Starting from the online BCI for the detection of movement intention, the question is
now how this can be combined with cortical stimulation to apply stimulation only
while an intention to move is detected (figure 4.1). The crucial point is that one has
to ensure that the brain state is decoded properly even if stimulation is applied. The
approach taken in other studies [13] is to alternate between a decoding and a stim-
ulation mode in order to avoid having to deal with stimulation artifacts and other
after-effects (figure 4.3). If the decoder detects the appropriate state, a stimulus is
given. Then, the system waits until the stimulation effects have ceased, starts to col-
lect data and begins the decoding process anew. In the example of Bergmann et al.
[13] who used time domain features for the detection of the brain state, the latency
until state decoding was restarted after a stimulus was greater than 3 seconds. If the
decoding is performed on spectral features, a data buffer needs to be refilled from
the start, before the first features after a stimulus can be calculated. In the case of the
discrete Fourier transform, the length of such a data buffer should be at least 2 times
the period length of the lowest frequency of interest. In practice a greater buffer
length is preferred to reduce the variance of the spectral estimator, although one has
to consider the trade-off between the variance, the responsiveness of the system and
the expected non-stationarities within the brain signal: The longer the data buffer,
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Figure 4.3.: (A): 20 seconds of ECoG with several stimulation pulses, marked by stimulation artifacts.
The task of the patient was to switch on cue between attempting to move the paralyzed
hand (movement) and relaxation (rest). (B): Zoom on one stimulation pulse. (C): Time
course of the spectral power at 12 Hz. Stimuli are marked by dashed lines. (D): Zoom on
one stimulation pulse. Adapted from Walter et al. [172].

45



Chapter 4. Brain-state-dependent stimulation

the less variance there is in the spectral estimation. However, if the data buffer is too
long, short-term changes in the signal spectrum might be missed and a BCI which
uses these features as input would not be able to respond to such fast changes in the
brain state. One might even lose the contingency between the intention of the user
and the response of the BCI.
Consequently, the first response of the brain state decoder can be given e + b msec
after the stimulus, where e is the expected length of the stimulation artifact and the
part of the waveform of the evoked activity which are considered too different from
the normal, ongoing data on which the decoder is trained and b is the length of the
FIFO buffer (figure 4.4). This leads to two issues: First, the system can not give a
response for several hundred milliseconds or even longer after the stimulus, thus
violating any claims for continuous decoding. If other devices are coupled to the
decoder, not only the stimulator, the patient might become confused if the behavior
of these devices does not match his brain state, because they have to be on ”auto-
matic” mode as long as there is no input from the decoder. For example, if a patient
operates a wheelchair or a rehabilitation device with the command signals from the
decoder, these devices either need some intelligent control to cover these silent peri-
ods, continue to execute the last command from before the stimulus or simply stop
during that period which is very disruptive for concentration. It is very likely to
make it harder for the patient to learn to control the movements of his hand via the
rehabilitation device.
A second issue with this alternating scheme is that it enforces an upper limit on
the minimum inter-stimulus interval (ISI). As at least one output of the decoder is
needed to start the next stimulus, the ISI has to be at least e + b msec. Depending
on the application, this might not be sufficient. In TMS for example, stimulation
frequencies of 2 Hz and above are associated with facilitation of cortical excitability,
while lower frequencies seem to reduce MEP size [56]. So, if one wants to apply
excitatory stimulation with a frequency of at least 2 Hz on average, e + b has to
be smaller than 500 msec, prohibiting the use of very low frequencies for decoding
of the brain signal because the data buffer might be too short for their reliable es-
timation. One could remedy this issue by eliciting a pulse train with the desired
frequency instead of a single pulse if the decoder reports the desired brain state,
but then one has no guarantee that the participant remains in this state throughout
the stimulation train. Also, as discussed in the previous paragraph, external devices
coupled to the decoder output would have to cover silent periods of length t + e + b
msec autonomously, where t is the length of the pulse train.

A better solution is therefore to enable spectral estimation in the presence of stim-
ulation pulses. This allows continuous decoding of the brain state, but one has to
ensure that the spectrum is not disturbed by the stimulation, otherwise the appli-
cation of the decoder will not lead to meaningful results. Obviously, as shown in
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Figure 4.4.: Approaches to decode brain activity in the presence of stimulation: (A): ECoG signal with
a stimulation pulse at time point 0. A clear stimulation artifact and evoked activity is
visible. Bottom: Three possibilities to decode brain activity in the presence of stimulation
after-effects. (B): Decoding is stopped after each stimulation pulse and resumed only if
e + b msec have passed. For a short period of time, there is no output from the decoder.
(C): The signal is decomposed and only the ”clean” part is used for decoding. (D): A
gap is introduced to mask the stimulation after-effects such that they are ignored in the
decoding process. In contrast to (B), decoding continues uninterrupted but the decoding
system has to account for the gap in the data. See also section 4.2.2.
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figure 4.3, simply using the raw input signal is out of the question, as the presence of
the stimulation artifacts alone has a massive effect on the spectrum. Depending on
the position of the recording electrode, neural activity evoked by the stimulation can
reach amplitudes of several hundred microvolts [117, 118] and is in its shape vastly
different from the background brain activity. Thus, having either of these effects in
the data buffer from which the spectrum is calculated invalidates the assumption
that the signal in the buffer has to have a stationary spectrum. In practice, if one
computes the spectrum of such a time window, for example by using autoregressive
models (see below), then the resulting spectral power is vastly greater than for time
windows without stimulation after-effects (figure 4.3 C and D), making it clear that
the results are simply dominated by the stimulation effect, not by the underlying
neural signal one is actually interested in.
The best course of action to deal with this problem is to attempt to remove the after-
effects of stimulation from the data buffer before spectral estimation. There are two
approaches for this (figure 4.4): One can either attempt to decompose the recorded
signal into a clean part and an ”after-effect” part and compute the spectrum only
on the clean part. Alternatively, one could remove all segments of the buffer that
contain any after-effects of the stimulus.

4.2.1. Signal decomposition for artifact removal

The idea of signal decomposition rests on several assumptions:

1. There must be ”clean” neural data obtainable at every time point. Otherwise,
there will be gaps in the decomposed signal.

2. The stimulation after-effect is additive, or, stated in different words, once the
after-effect is removed, the statistics of the clean neural data have to match the
ongoing neural activity without stimulation. Otherwise, results of the analysis
of the cleaned signal are not directly comparable with results without stimula-
tion.

3. The characteristics of the stimulation after-effects are constant over time. Oth-
erwise, the decomposition would need to adapt over time.

4. The decomposition must be doable in real time in a BCI setting.

These assumptions may be problematic in practice:

1. This condition puts strict constraints on the recording setup, as one has to make
sure that the full extent of the stimulation artifact can be recorded without any
amplifier saturation. This is a common problem in concurrent EEG recording
and stimulation. For example, Veniero et al. [167] attempted to characterize
the stimulation artifact in TMS-EEG for different stimulation parameters and
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stimulated tissue but the limited dynamic range of their amplifier of ± 3.2 mV
prevented them from recording the full extent of the artifact. If a very dis-
tant electrode is used for decoding such that the stimulation artifact is small,
this might be feasible, but for electrodes close to the stimulation site, artifact
amplitudes in the range of several hundred millivolts or even several Volts
are possible. Ideally, an amplifier should be used with a dynamic range large
enough to cover all artifacts.

2. The brain signal recorded at an electrode consists of the population activity
of a large number of neurons. A stimulation pulse might activate some of
these neurons, either directly or by an incoming stimulation-evoked volley of
action potentials, resulting in an evoked potential (CCEP). Thus, if the evoked
potential is removed by a decomposition, the residual signal before and after
the stimulus differs because the contributions of the stimulated neurons are
missing. Still, due to the inherent nonstationarities within the brain signal, this
effect might be fairly small. Exactly these nonstationarities on the other hand
prevent a measurement of the strength of this effect because a true reference
signal can not be obtained.

3. It is well known that electrode characteristics can change over time. This is
especially prominent for EEG, where drying of the electrode gel can influence
the electrode impedance and change the size and shape of the recorded signal
and thus, in turn, the stimulation artifact and the evoked activity. This might
induce a drift in the recorded after-effects over time. Furthermore, there has to
be a precise synchronization between the stimulator and the amplifier to ensure
that the time of the pulse is aligned with the sampling time or, as a second
option, one has to use a sampling rate high enough to accurately sample the
artifact. Otherwise, if this is not done precisely, the artifact can differ from
stimulus to stimulus. As the stimulation pulses are typically shorter than a
millisecond and can have complex shapes, a sampling rate in the area of at
least 5-10 kHz would be preferable.

4. The progress in computational speed makes it possible to operate even very
complex algorithms in real time, thus CPU cycles are less of an issue. More
difficult might be that one has to ensure that the algorithms work on a single-
stimulus level and that a representative training set of artifact shapes can be
obtained to train these algorithms. However, it prohibits the use of purely
offline artifact removal methods such as the use of Kalman filters proposed in
Morbidi et al. [122].

Although none of the challenges above is prohibitive, one assembles many con-
straints when trying to implement a decomposition scheme for online use. For
example, the high sampling rates as a possible solution for problem 3 are excessive
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if one is interested in decoding brain rhythms as low as the sensorimotor rhythms,
placing unnecessary stress on the data transfer and online signal processing setup,
especially if the recording is done from many channels. The questions about the sta-
bility of the evoked effects make it debatable, whether simple decomposition meth-
ods such as template subtraction could work reliably. Even more importantly, if
one plans to use different stimulation parameter sets in an experiment, one would
have to construct templates for each individual parameter sets as the responses to
individual stimulation pulses, both artifacts [167] and evoked neural activity [32],
strongly depend on the applied parameters. This quickly becomes unfeasible as
soon as one considers stimulation paradigms where a stimulation parameter such
as the intensity is adapted to the ongoing brain activity (see chapter 6). In this case,
the stimulation parameter set is not predetermined and constructing a template for
each set is not possible. Thus, for any but the simplest stimulation paradigms, signal
decomposition is not a promising approach.

4.2.2. Introducing gaps for artifact removal

A different approach to the problem of spectral estimation in the presence of stim-
ulation artifacts has been proposed in Walter et al. [172]. Instead of a signal decom-
position, the segments of data with strong after-effects are removed from the data
buffer, thus one is independent of any of the assumptions necessary for e.g. template
subtraction. On the other hand, this approach brings a different set of challenges:
In particular, if we remove a segment of data from the buffer, how can we calculate
the spectrum for this buffer? Most spectral estimation methods require a data buffer
with regularly sampled data. There exist methods for non-regularly spaced data,
especially from the field of geology where data might be sampled over the course of
several years, but not necessarily always at the same date. However, such methods,
for example the Lomb-Scargle periodogram [111], are not established for the analy-
sis of brain activity. Common methods to assess changes in sensorimotor rhythms
for movement decoding in BCIs are: Fast Fourier Transform-based methods (FFT)
such as Welch’s algorithm, squaring of the signal after the application of bandpass
filters and autoregressive (AR) models [9].
AR models have beneficial characteristics for BCI research, as they allow spectral
estimation on relatively short data buffers, where an FFT would have to rely on av-
eraging of several sub-buffers such as in Welch’s method to keep the variance of
the estimator at bay, sacrificing frequency resolution. AR models are a parametric
method and although they allow continuous evaluation of the spectrum as opposed
to the discrete results of the FFT, one has to specify a model order that is appropriate
for the data [119]. Otherwise, the model might misrepresent the data. The ability of
getting a good spectral estimate on short buffers of data make the AR model a good
approach for BCIs, as it allows an online system with a short response time.
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4.2. Spectral estimation during cortical stimulation

4.2.3. Autoregressive (AR) models

Given a data buffer holding N values x(tk), 0 ≤ k < N which have been sampled
at regular intervals, the first step to estimate the spectrum of this buffer with AR
models is to fit an appropriate AR model to the data. The basic equation of an AR
model is given as:

x(tk) = −
p

∑
i=1

cix(tk−i) + e(tk), (4.1)

where p is the model order, x are the measured samples and e(tp) is a sample from
a white noise sequence. For a perfect autoregressive process this means, that each
sample within the buffer can be reconstructed as a weighted sum of its predecessors
(or successors, because the model is time-invariant) except for a random deviation.
The goodness of fit of an AR model can be quantified by computing the forward and
backward prediction errors f and b for each sample x(tk):

fp,k = x(tk) +
p

∑
i=1

ci x(tk−i) with k = p, . . . , N − 1

bp,k = x(tk−p) +
p

∑
i=1

ci x(tk−p+i) with k = p, . . . , N − 1

These errors capture the deviations between the actual measured value and what
value the AR model would have predicted for the sample. As a parametric method,
the model order p has to be chosen beforehand. If it is chosen too high or too low,
it might produce an insufficient representation of the data. A naive criterion for
model selection would be to minimize the prediction errors b and f , but adding
more variables to the model by increasing the order will always lead to lower f and
b. Therefore, to prevent overfitting, one can evaluate criteria such as the Akaike In-
formation Criterion (AIC) [3] which weighs the goodness of fit of the model against
the number of variables (the model order) to find a good trade-off between model
complexity and modeling error.
An AR model, once it has been fitted to the data, can be interpreted in two ways that
are important for this work. First of all, one can see it as a linear predictor to extrap-
olate a new sample x̂(tk) from known samples x(tk−i), i = 1, . . . , p by evaluating the
weighted sum on the known samples. Secondly, an AR model can be interpreted as
an all-pole infinite-impulse-response (IIR) filter which operates on the white noise
samples e and produces the measured samples x(tk) as output [133]. The coefficients
of the filter are equivalent to the AR coefficients ci.

Estimation of AR coefficients

For a certain model order, the AR coefficients ci have to be fitted to the data buffer.
Methods to achieve this are least-squares estimation, the Yule-Walker algorithm or

51



Chapter 4. Brain-state-dependent stimulation

the Burg algorithm [28]. The latter algorithm has the advantage over the other two
methods that the resulting coefficients are guaranteed to lead to a stable model,
hence it is the one most commonly used for AR estimation [90]. The Burg algorithm,
also called the Maximum Entropy Method (MEM), needs p steps and in each step j,
the coefficients cj,l for an autoregressive model of order j are computed. Hence, if the
Burg algorithm is applied to fit an autoregressive model of order p, the coefficients
for all model orders smaller than p are computed as well. The algorithm works as
follows [90, 172]:

An initial estimation of the power of the white noise component e in the AR model
is obtained as the power of the signal:

P0 =
1
N

N−1

∑
k=0
|x(tk)|2.

Then, step by step starting with an AR model of order 1, the AR coefficients for each
order are computed. If the coefficients ci−1,l, 1 ≤ l < i for order i − 1 have been
found, a new coefficient ci,i is computed by minimizing the forward and backward
prediction errors fp,k and bp,k with the formula

ci,i =
−2 ∑k∈Ii

fi−1,k · bi−1,k−2

∑k∈Ii
(| fi−1,k|2 + |bi−1,k−1|2)

, Ii = {i + 1, . . . , N − 1}. (4.2)

Each previously computed coefficient ci−1,l is then adjusted by

ci,l = ci−1,l + ci,i · ci−1,i−l

to get the AR coefficients for order i. The white noise power estimation is then
updated to

Pi = (1− |ci,i|2) · Pi−1

and the forward and backward prediction errors to:

fi,k = fi−1,k + ci,i · bi−1,k−1

bi,k = bi−1,k−1 + ci,i · fi−1,k .

After p steps, this results in the AR coefficients ci = ci,p, i = 1, . . . , p for the AR
model of order p.

Estimating the spectrum from an AR model

In order to get an estimate of the spectrum of the measured signal from the AR
model, one can use the interpretation of the AR model as an IIR filter: Following
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Pardey et al. [133], it states that the measured signal x has been generated by filtering
the white noise sequence e(t) with the IIR filter A with coefficients ci, leading to the
basic AR model of equation (4.1). Hence, in the frequency domain, one arrives at
the equation

E(z) = A(z)X(z)

where

A(z) = 1−
p

∑
i=1

cizi

and E(z) and X(z) are the z-transforms of e(t) and x(t), respectively. This means that
for a frequency ω, the frequency response A−1(ω) = H(ω) of the transfer function
of the filter, multiplied by the spectrum E(ω) of the noise process, gives an estimate
of the spectrum X(ω) of the measured samples x. Because we assume that the noise
process is white, its spectrum is flat and E(ω) is constant. Thus, after finding the p
autoregressive coefficients ci and the power Pp of the white noise process, one can
estimate the spectrum by evaluating the transfer function

H(z) =
√

Pp

(
1−

p

∑
i=1

cizi

)−1

of the filter to find power values

P(ω) =
Pp

|1−∑
p
i=1 cie−jiω|2

at (normalized) frequencies ω. In contrast to an FFT where the spectrum is computed
only for discrete frequencies, this means, that the spectrum obtained by an AR model
can be evaluated for arbitrary frequencies.

4.2.4. Spectral estimation in the presence of gaps

The Burg algorithm described above works on continuous data segments, but is not
suited to deal with missing segments. Therefore, the goal has to be to do spectral
estimation with AR models on data where segments are missing. For clarity, such
missing segments will be called gaps from here on. There are three basic possibilities
to deal with such data:

1. Fill the gap with artificial data, then apply standard AR estimation (figure 4.5
B and C)

2. Remove the gap and join the segments before and after the gap, then apply
standard AR estimation (figure 4.5 D)

3. Modify the AR estimation algorithm such that it can deal with gaps
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A

B C D

Figure 4.5.: Methods to deal with gaps in the data buffer: (A): ECoG signal with a stimulation pulse at
time point 0 and a gap (gray area) covering the first 50 msec after the pulse. Bottom: Three
possibilities to produce a seemingly continuous time window. (B): Linear interpolation
connects the start and the end of the gap. (C): The signal before the gap is extrapolated
with an AR model to fill the gap. (D): The segments before and after the gap are joined
together.
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Phrase Defined on Short description Tested values

model order page 51 Order of the AR model. 16, 32, 64

buffer size page 46
Length of the segment of data on which
the AR model is fitted and evaluated.

500 msec

gap size page 55
Length of the segment of missing data
(the gap).

5 - 100 msec

frequency page 52
Frequency bin for which the AR model
is evaluated.

5 - 100 Hz

packet size page 55
Number of samples in each data
packet arriving from the amplifier.

40

sampling rate page 55
Number of samples recorded per second
on one channel.

1000 Hz

Table 4.1.: Nomenclature for the important parameters of the AR model and the BCI system which
are being used throughout this chapter. For parameters that are varied in the simulations,
the tested values are given in the rightmost column.

In the following sections, the algorithms to test these three approaches are de-
scribed as in Walter et al. [172]. The important terms for this section are summarized
in table 4.1. One important consideration for these algorithms is that they have to
be usable in an actual experiment where the spectrum of a data buffer holding the
signal is computed each time that the buffer has been updated with newly recorded
samples. These samples typically arrive in packets holding a fixed number of sam-
ples (packet size). Therefore, they have to be on the one hand fast enough that the
constraint, that processing of the signal buffer should be finished before new data
points are acquired, is not violated and secondly, the algorithms need to be able to
deal with gaps at the end of the signal buffer where clean samples after the gap have
not yet been measured.

Linear interpolation

Gaps in the data can be bridged by linear interpolation between the last sample
before and the first sample after the gap (figure 4.5 B):

x̂(tg+k) = x(tg−1) +
k + 1
l + 1

·
(
x(tg+l)− x(tg−1)

)
, 0 ≤ k ≤ l − 1 (4.3)

where x are the signal samples recorded at times ti, l is the length of the gap in
samples and tg−1 is the index of the last sample before the gap.

While this might work for offline analysis of a data set, in the case of online analysis
during a BCI experiment, in which data is received in a sample- or packet-wise
system, one might have not yet received the first clean sample after the gap when
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trying to produce an estimate for x(tg+k) within the gap. A simple approach to solve
this problem consists of filling the gap with the value of the last sample before the
gap (x̂(tg+k) = x(tg−1)) as long as the packet containing the end of the gap has not
been received and using linear interpolation for the rest of the gap otherwise. This
approach is termed online compatible linear interpolation.

AR modeling

As a somewhat more sophisticated technique compared to linear interpolation, data
can be generated from an AR model to fill the gap (figure 4.5 C). This uses the
interpretation of an AR model as a linear predictor which has been introduced above:
Values x̂ for time points covered by the gap are extrapolated from samples recorded
before the gap, using the coefficients ci of the AR model estimated for the data buffer
directly before the gap:

x̂(tg+k) = −
p

∑
i=1

cix′(tg+k−i) + σ · e(tg+k), 0 ≤ k ≤ l − 1, (4.4)

x′(tg+j) =

{
x(tg+j) if j < 0
x̂(tg+j) otherwise

x′ can refer to either actually recorded samples before the gap or estimated samples
by the AR procedure. σ is the standard deviation of the white noise component in
the estimated AR model and e(t) one value of a white noise process.
While this approach has the property to generate data for the gap consistent with
the previously measured data, one might prefer to use a mixture of AR modeling
and linear interpolation for the online case. This would avoid jumps in the data
when merging generated data within the gap with new samples acquired after the
gap. This combination has been implemented here by performing AR extrapolation
when information about the first sample after the gap was not available and using
linear interpolation otherwise. In the recording setup of this study, the signal was
received in packets with a length of 40 msec. If a packet contained the start and the
end of a gap, then linear interpolation was used to fill the gap. If it contained only
the start or if the whole packet was part of the gap, then the AR model was used as
a linear predictor to fill the gap. If it contained only the end of the gap, then the last
sample of the last packet and the first sample after the gap were connected by linear
interpolation.

Joining two segments

If one chooses to ignore the information of the gap altogether when estimating the
model, one might consider simply joining the two segments around the gap, there-
fore sacrificing information about the timing in the vicinity of the gap (figure 4.5 D).
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step standard Burg MEMgap

1

2

3

4

forward and backward
estimation errors

only backward
estimation errors

only forward
estimation errors

ignored samples
(gap)

Figure 4.6.: Comparison of the standard Burg and the MEMgap algorithm. An AR model of order
4 is estimated on a buffer of 20 samples. For each step i, the colors indicate, for which
samples forward and backward estimation errors are used in the computation of the AR
coefficient ci,i. For MEMgap, a gap is placed in the center of the buffer. Around the gap,
an increasing number of samples contribute only either forward or backward prediction
errors, not both.

In practice, this means that the data buffer is updated only with those samples from
a newly acquired data packet that do not belong to a gap. In order to keep the buffer
size for spectral estimation constant, this has the consequence that older samples are
used to compute the spectrum with this method compared to the other algorithms.

Burg algorithm for segments (MEMgap)

For standard algorithms that compute the AR coefficients (Burg, Yule-Walker, least-
squares), the samples within the data buffer need to be continuous. The least-squares
estimation of the AR coefficients can be made compatible with data containing gaps
by eliminating all equations from equation (4.1) that contain samples from within a
gap and then solving the rest of the equations for the coefficients ci. As the Burg
algorithm (see section 4.2.3) yields more stable AR models than the least-squares
estimation, it was modified to work with gaps based on the Burg algorithm for
segmented data proposed in [46]. This was achieved by limiting the computation
of forward and backward prediction errors in each step of the algorithm to those
samples that are far enough away from a gap. In the remainder of this thesis, this
algorithm is called MEMgap (Maximum Entropy Method for data with gaps) for
brevity.

If one assumes that a sequence g of length N exists and that g(n) = 1 only if the
corresponding sample x(tn) is part of a gap in the data and 0 otherwise then one
just has to make sure that none of the samples x(tn) with g(n) = 1 influence the es-
timation of the model coefficients. The Burg algorithm computes the AR coefficients
for order p in p steps, yielding in the i-th step the coefficients of an AR model with
order i. If one uses in the i-th step only those samples fully for computation of the
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AR coefficients that are at least i + 1 time steps away from a sample with g(n) = 1,
one achieves the desired effect.
To be more precise, the coefficients are computed by evaluating forward and back-
ward prediction errors (see section 4.2.3). In the MEMgap algorithm, forward pre-
diction errors are only computed for samples that are at least i + 1 time steps after a
gap, backward prediction errors only for those at least i + 1 time steps before a gap.
Formally, this is done by modifying Ii in equation (4.2) to the set

Ii ={k | g(k) = 0 ∧ i < k < N ∧
(k− n < 0 ∨ k− n > i) ∀n with g(n) = 1}.

This set can also be computed iteratively in each step of the Burg algorithm as
Ii = Ii−1 ∩ I′i−1, where I′i−1 is the set Ii−1 with each entry incremented by 1 and
I0 = {k | g(k) = 0 ∧ 0 < k < N} is the set of all indices corresponding to samples
belonging to a gap. This resembles a ”forbidden zone” that initially contains only
the gaps but grows in each step of the algorithm by one sample. This process is visu-
alized in figure 4.6. The estimation of the white noise power P0 has to be calculated
only with samples outside of gaps: P0 = 1

|I0| ∑k∈I0
|x(tk)|2. The rest of the algorithm

works in the same way as the standard Burg algorithm described in section 4.2.3.

Obviously, this method can only work if the continuous segments between gaps are
long enough. Therefore, there needs to be at least one segment of samples with a
length that is at least equal to the model order p in order to make an estimation of
the spectrum with this method. In practice, it is preferable if the number of samples
in such a segment is several times higher than the model order in order to reduce the
bias and variance of the estimator. If there are ns segments of clean data with a length
greater than p and the total number of samples in these segments equals M, then
only M− 2ns p forward and backward prediction errors are available in the p-th step
of the MEMgap algorithm, although all M samples are evaluated to compute these
errors. This means that even if the total number of samples within gaps might be
the same, one can expect that the variance of the spectral estimation will be smaller
if there are only a few large gaps in the data compared to having many small gaps
because less samples contribute fully in the second case. According to de Waele and
Broersen [46], the same holds for the estimation bias which is inversely proportional
to the number of available samples.

4.2.5. Evaluation of the algorithms

The reason why algorithms to deal with stimulation after-effects are employed is
that one expects a distortion of the spectrum by these external effects. Unfortunately
it is possible that the application of a suboptimal algorithm for the correction of
these after-effects also distorts the spectrum. While this might be the ”lesser evil”
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compared with leaving the stimulation after-effects unprocessed, it still raises the
question whether the spectral features extracted from data segments with stimula-
tion and the output of further processing on these features can be trusted.
This issue gains even more importance if extracted features and classification results
influence the extraction and classification of later time steps. An example where
this occurs is an adaptive brain-computer interface, where the classifier is adjusted
online during the experiment to correct for nonstationarities in the data. Distortions
of the spectrum because of the stimulation or the algorithms applied to deal with its
after-effects could influence this adaptation process unfavorably.
Hence, it is crucial that the spectrum after the introduction of a gap is as close to the
original spectrum without the gap as possible. This can not be tested with actual
stimulation data, because the stimulation after-effects are present in the recording,
distorting the spectrum.
Therefore, the tests to assess the influence on the spectrum by the different algo-
rithms are performed on data without stimulation. This data was recorded from
patient P1 in a BCI training session with ECoG but without stimulation. The task
of the patient is described in section B.1. The data is divided into many small over-
lapping segments of length 500 msec with an overlap of 460 msec. This overlap
value was chosen to mimic the behavior of the recording system which delivered a
new data packet every 40 msec. Reference spectra for these segments are obtained
via the classical Burg algorithm. Then, gaps are introduced into the segments and
the algorithms described above are applied to deal with these gaps, either by filling
them with artificial data, joining the segments before and after the gap or by using
the MEMgap algorithm. The spectra obtained with gaps are then compared to the
gap-free spectra. Three main measures were used to evaluate the difference between
gap-free spectra and those from data with gaps:

bias( f ) =
1
n ∑i(P( f , i)− P0( f , i))

P0( f )

RMSE( f ) =

√
1
n ∑i(P( f , i)− P0( f , i))2

P0( f )

var( f ) = Var

(
P( f )− P0( f )

P0( f )

)
P( f , i) is the spectral power of data buffer i for frequency bin f , P0( f , i) is the

power of the original data buffer without gaps and P0( f ) is the average power of
the full original recording without gaps for frequency bin f . n is the number of
data buffers that are affected by gaps (i.e. data buffers where P( f , i) − P0( f , i) is
not zero). var( f ) is the variance of the difference between the power values of the
original data and the power values of the data with gaps for all data buffers affected
by gaps and frequency bin f , divided by the average power for frequency bin f in
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the data set without gaps. For example, a normalized bias of −0.1 means that the
estimated power after application of the stimulus processing algorithm is on average
10% smaller than the power of the original data set if a gap is present.
The results of the evaluation of the algorithms throughout section 4.2 have been
presented in Walter et al. [172] as well.

4.2.6. Algorithm performance on clean data

Several parameters of the spectral estimation are expected to influence the perfor-
mance of the algorithms:

• Gap size: The longer the gap, the more samples are missing for the spectral es-
timation. Thus, the absolute deviation from the original spectrum without gaps
will increase for increasing gap size. Secondly, the longer the gap, the more
artificial samples have to be introduced by linear interpolation and AR mod-
eling. If these algorithms introduce distortions, these should become rapidly
greater for increasing gap size. Thirdly, it might influence the MEMgap algo-
rithm, because it is the only algorithm where a longer gap means that there
are fewer samples from which the AR coefficients can be estimated. As stated
in de Waele and Broersen [46], this could lead to an increase in the bias of the
estimator.

• AR model order: The higher the model order, the less smooth the spectrum.
A model where the order is too low might not represent the signal accurately,
thus possibly introducing unwanted effects. This could be problematic for AR
modeling, where an insufficient model would be used to extrapolate the data,
increasing the likelihood of a strong deviation from the actual shape of the
signal. For high model orders, more parameters need to be estimated from the
data. Thus, MEMgap might run into problems for high model orders and long
gaps.

• Frequency bin: The frequency bin at which the AR model is evaluated. Low
frequencies in relation to the buffer size might pose a problem. These are
already difficult to estimate properly such that a considerable bias and vari-
ance of the spectral estimator is to be expected. Artifacts introduced by the
algorithms or missing samples because of the gap will very likely further in-
tensify this behavior. On the other hand, because linear interpolation removes
the high frequency content from the gap, thus reducing the total power of the
high frequencies within the data buffer, it should have a smaller impact on low
frequencies.

By introducing gaps into a long ECoG recording without stimulation, varying the
gap size between 0 and 100 msec in steps of 5 msec, the AR model order between 16,
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32 and 64 and the frequency bin between 5 and 99 Hz in steps of 2 Hz, the parameter
ranges most interesting for BCI experiments were tested. The buffer size was kept
constant at 500 msec.

Influence on the spectrum

Two examples for the analysis on the relationships between the spectral estimation
parameters on the differences between gap-free spectra and spectra with gaps are
given in figure 4.7 and 4.8. In figure 4.7, the influence of the gap size on the RMSE,
bias and variance is displayed for three different frequencies and a model order of
32. Although not shown here, the results for a model order of 16 and 64 are dis-
cussed below. In figure 4.8, the normalized bias is shown for the largest tested gap
size of 100 msec for three different AR model orders because any effect of the gap
on the bias should be most pronounced for the largest gap.
The main findings are [172]: MEMgap is unbiased for all parameters tested. It also
achieves the lowest RMSE and variance for gaps greater than 50 msec with the ex-
ception of the highest model order.
For shorter gaps, the linear interpolation methods have a lower RMSE and variance.
Unfortunately, these methods lead to a substantial negative bias across all tested fre-
quencies. The average decrease in power is close to the quotient of the gap size and
the buffer length. For example, for a gap size of 100 msec (out of 500 msec for the
length of the entire buffer), there is a reduction in power of about 20 % (figure 4.8).
As stated above, this is due to a portion of data being replaced by a straight line,
thus removing power in high frequencies. For lower frequencies this decrease is less
pronounced but still clearly present.
If the gap is filled by AR modeling, a positive bias is found, especially for a model
order of 16. It is likely, that this model order was not sufficiently high. Also, to fill a
gap of 50 msec with extrapolated data, an AR model with order 64 will always use
actually measured samples as input to generate the samples filling the gap, given
the present sampling rate of 1 kHz. For a model order of 16, most of the samples
filling the gap will be generated using only samples that had been generated by the
model as well, thus potentiating any mistakes. The positive sign of the bias for this
method stems most likely from ”jumps” from the last sample within the gap to the
first, actually measured, sample after the gap. If there is a large difference, this will
manifest as a broadband increase in power. These jumps are significantly smaller
for a model order of 64 than for 32, both producing smaller jumps than an order of
16. The average jump height for 100 msec gaps is 20.23 ± 11.94 µV (mean ± std)
for an order of 64. Compared to the average absolute amplitude difference of ad-
jacent samples of 1.68 ± 0.43 µV, this is a difference of one magnitude, implicating
that even large model orders will not prevent jumps, making a positive bias very
likely for AR modeling. Even if the data extrapolated with an AR model connected
perfectly to the data after the gap on this clean test data set (a highly unlikely sit-
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Figure 4.7.: Normalized RMSE, bias and variance of the spectral power estimation for the frequency
bin at 9 Hz (A),(D),(G), 21 Hz (B),(E),(H) and 81 Hz (C),(F),(I) for a model order of 32.
The colored lines illustrate the course of the normalized RMSE in (A)-(C), the normalized
estimation bias in (D)-(F) and the normalized variance in (G)-(I) relative to the gap size
for the different algorithms. The thin black line in (D)-(F) denotes an ideal estimation bias
of 0. Adapted from Walter et al. [172].

62



4.2. Spectral estimation during cortical stimulation

20 40 60 80 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

AR model order 16

 

no
rm

al
iz

ed
 b

ia
s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

20 40 60 80 100

AR model order 32

Frequency [Hz]

 

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

20 40 60 80 100

AR model order 64

 

 

●
●●

●

●

●
●

●●
●

●●●
●●●●●●

●●●●
●●●

●
●●

●●
●

●
●●

●●●●●●●●●●●
●

●

lin. interpol
real interpol
AR model ●

AR+interpol
joining
MEMgap

A B C

Figure 4.8.: Normalized bias for a gap size of 100 msec and an AR model order of 16 (A), 32 (B) and
64 (C) as a fraction of the power of the original signal. The thin solid line always indicates
a bias of 0. Adapted from Walter et al. [172].

uation due to the random component of the AR model), it is almost impossible for
such an algorithm to achieve the same performance with actual stimulation because
the recorded neural activity is influenced by the stimulation. If such an influence is
present, there will be evoked neural activity in the signal, possibly also a phase re-
setting of the main oscillations will be observed [164]. These effects are not captured
by an AR model fitted to prestimulus data, hence the extrapolated data can not fit
to the data measured after the gap. Therefore, AR modeling will always lead to
jumps between the gap and the post-gap data for real stimulation. Nevertheless, the
drawback of the existence of these jumps might be offset by having data generating
the gap which is in its statistics close to the real data.
The mixture of AR modeling and linear interpolation was introduced to remove the
problem of jumps at the end of the gap by connecting extrapolated data with real
data using linear interpolation. The bias of this method fluctuates between the posi-
tive bias of AR modeling and the negative bias of linear interpolation and depends
heavily on the relationship between gap size and the update rate of the system /
the data packet size. As the gaps are aligned to the data packets in this simulation,
a gap size smaller than 40 msec means that the end of the gap is contained in the
same packet as the start, thus only linear interpolation is used. For larger gaps, the
bias quickly becomes positive, as the deviations produced have to be corrected by
interpolation within a few samples, leading to sharp bends in the generated data
and thus to a power increase. These bends become less problematic as the gap size
approaches two times the packet size (in our case 80 msec), but increase afterward
(e.g. figure 4.7). While this method reduces the extreme bias of both AR modeling
and linear interpolation, the interaction of the gap size and the packet size makes
it difficult to transfer the analysis of the behavior of the algorithm to experimental
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EEG ECoG

Patients none open-loop none open-loop closed-loop

P1 1496 44 660 176 264
P2 143 99 682 176 286
P3 99 264 242

Total 1639 242 1606 594 550

Table 4.2.: Number of trials of the patients’ task to attempt to move the hand used in each paradigm to
calculate AUC values for different parameters of the stimulus effect processing algorithms.
None refers to sessions without stimulation and open-loop means that stimuli were applied
intermittently throughout the trial. In the trials listed under closed-loop, stimulation pulses
were given only during the task and if the decoding system reported a detected intention
to move.

settings where these parameters are different.
The joining method exhibits only a small bias, compared to the interpolation and
extrapolation algorithms. The sign of the bias is negative for frequencies smaller
than 20-30 Hz and positive otherwise. Compared to the MEMgap method, this bias
is clearly higher and the variance and RMSE of the spectral estimator is also higher.
For model order 16, the graphs are very similar to figure 4.7. The main differences
are that for order 16, the AR modeling algorithm exhibits a bias which linearly in-
creases with the gap size for all frequencies and that the difference in the RMSE
between MEMgap and the other algorithms is even more pronounced. For model
order 64, the variance and the RMSE for the frequency bin at 9 Hz is comparatively
large, indicating problems when estimating the power of low frequency bins with a
large model order. This is also evident from figure 4.8 C where a strong positive bias
is found for all methods at frequencies at or below 10 Hz. The linear interpolation
methods are the only ones that produce low RMSE, bias and variance for an order
of 64 and the 9 Hz frequency bin, but only up to a gap size of 40 msec (the packet
size). For 21 and 81 Hz, the graphs are again similar to those in figure 4.7 C,D,F,G,I,J,
although the RMSE and variance of MEMgap is now slightly higher than the RMSE
and variance of the linear interpolation methods.

Influence on the brain state decoding

The unbiasedness of MEMgap is a very desirable characteristic as it should ensure
that there is no systematic distortion introduced into the spectrum and thus the in-
put for the brain state classifier. Therefore, the influence on the actual decoding of
brain states should be small. To test this, online BCI experiments were simulated on
the data sets described in section B.1 and B.2. The patients had to perform cued at-
tempted hand movements in these experiments, switching between a movement and
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Figure 4.9.: Example for the simulation of open-loop and closed-loop stimulation. (A): Original ECoG
signal, source of the reference spectrum. Movement, rest and cue phases of the trial are
indicated by white, black and grey boxes, respectively. (B): Gap placement for open-loop
simulation. Red lines mark time points where a gap was introduced. (C): Gap placement
for closed-loop simulation.

a rest state. In comparison to the rest state, the movement state is associated with
event-related desynchronisation, thus a classification of small segments of data to
either of the two states should be possible by using the spectral power of sensorimo-
tor rhythms as features. As before, a data buffer of length 500 msec was moved in
steps of 40 msec over the EEG and ECoG signal recorded from 3 channels over the
left motor cortex.

In the first condition, an open-loop or uncoupled stimulation paradigm was simu-
lated analogous to the experiment described in appendix B.2: Throughout the whole
recording, data samples spaced 2 seconds apart were marked as a stimulation pulse
and gaps were placed starting at these samples with varying lengths. In the second
paradigm, only data samples within the movement phase were marked as stimu-
lation artifacts, simulating a closed-loop or coupled stimulation experiment. Again, a
spacing of 2 seconds between marked samples was used (figure 4.9).
In both conditions, the spectra were extracted with the different algorithms, the
mean of the logarithm of the power between 16 and 22 Hz was taken for each of the
three channels, summed over all channels and normalized. The scaling factor and
the offset of the normalization step was obtained from a zero mean, unit variance
normalization of the data collected in the rest phase. Thus, a negative sign after the
normalization indicates a lower power during the movement than during the rest
phase, hence ERD. The possibility to discriminate between the two states was mea-
sured with the area under the curve (AUC) of the receiver-operating characteristic
(ROC, see also section 2.5.6). A value of 0.5 stands for chance level, while values of 0
and 1 indicate optimal separability [53]. Thus, comparing the AUC scores with and
without gaps allows to judge whether the stimulation processing algorithms and
their possible distortions of the spectrum influence the actual brain state decoding.

Figure 4.10 shows the distributions of differences in AUC scores for open- and
closed-loop conditions for EEG and ECoG data, gap sizes of 10, 50 and 100 msec and
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Figure 4.10.: Distributions of the differences between AUC values without gaps and AUC values of
gap sizes of 10, 50 and 100 for data sets without stimulation. A deviation from 0 indicates
an over- or underestimation of class separability. (A) ECoG and (B) EEG data with gaps
simulated throughout the whole trial (open-loop condition, see figure 4.9). (C) and (D):
Average AUC values computed on the same data sets as in (A) and (B), respectively,
but with gaps simulated only within the movement phase (closed-loop condition, BSDS).
Boxes cover the range between the lower and upper quartile of AUC differences with
the median depicted as a black line. The whiskers extend to the most extreme data
point which is no more than 1. 5 times the interquartile range away from the box. *:
AUC scores differ significantly from MEMgap for this gap size (p < 0.05, Friedman test,
Bonferroni-corrected). Adapted from Walter et al. [172].
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4.2. Spectral estimation during cortical stimulation

the different algorithms. For each algorithm a, gap size g, a distribution A(g, a) =
{AUC(i, g, a)− ¯AUC(i)} of the deviations and A′(g, a) = {|AUC(i, g, a)− ¯AUC(i)|}
of the absolute differences in the AUC scores was obtained. ¯AUC(i) denotes the
reference AUC value obtained without gaps for session i. Using non-parametric
Kruskal-Wallis tests (Bonferroni-corrected for multiple comparisons) to test the hy-
pothesis that the contents of A′ at a particular gap size differ between the algorithms,
significantly smaller (p < 10−6) absolute deviations from the true AUC values were
found for MEMgap and joining than for AR modeling and interpolation in the open-
loop case.
Nonparametric Wilcoxon signed rank tests were used to assess, whether there is a
significant deviation from 0 in the median of A, which would indicate a system-
atic bias in the AUC scores and is especially important in the closed-loop condition.
Here, MEMgap produces the smallest absolute deviations compared with the other
algorithms (p < 10−6) and is also the only algorithm where the median difference
does not differ from 0 at the α = 0.05 significance level in most cases (except the
closed-loop ECoG case and a gap size of 100 msec, p = 0.005).
Thus, MEMgap is the most promising algorithm as it introduces the smallest changes
in the separability. Linear interpolation and AR modeling on the other hand heavily
skew the obtained AUC values. The application of linear interpolation to fill the gap
for example has the effect that AUC scores increase compared to data without the
gap, thus it artificially ”improves” the decoding. This supports the hypothesis stated
above: A bias in the spectrum is transferred to a bias in the ability of a decoder to
separate between the brain states.

Thus, an unbiased method such as MEMgap should guarantee an unbiased and
thus reliable decoding of the brain state.

Performance with real stimulation data

Until now, all simulations were performed on data without any stimuli. This was
necessary because a baseline spectrum was needed to quantify the spectral pertur-
bations introduced by the stimulation-processing algorithms. Unfortunately, it does
not answer the question how the algorithms cope with real stimulation data. Hence,
the same evaluations of the AUC score changes on open- and closed-loop data de-
pending on the algorithm and the gap size were repeated, but this time using data
with actual cortical stimulation pulses. The patients performed the same task as
described above and stimulation was applied either with TMS (in the case of nonin-
vasive recordings, only open-loop) or epidural stimulation (with ECoG, open-loop
and closed-loop). TMS pulses were applied with an inter-stimulus interval (ISI) of
3 seconds, epidural pulses with 2 seconds in the open-loop and 0.5 seconds in the
closed-loop condition. In the latter condition, stimulation pulses were only applied
as long as the online classifier currently reported a movement state which meant also
that the orthosis was moving at the same time. For each stimulation pulse, the start
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Figure 4.11.: Influence of the stimulation processing algorithm and gap size on the separability be-
tween intended movement and rest for experiments with stimulation. No processing
of the stimulation after-effects was conducted for a gap size of 0. For gap sizes of 10,
50 and 100 msec, AUC values were calculated after application of the four algorithms
(boxes from left to right) real interpol, AR model, joining and MEMgap. The chance level
AUC value of 0.5 [53] is shown as a solid line. (A) Average AUC values for the sep-
aration of movement and rest from experiments with epidural stimulation and ECoG
recordings. Stimulation pulses were given throughout the whole trial with a fixed ISI
of 2 sec and the gap size was varied between 0, 10, 50 and 100 msec. (B) Same as (A),
but for TMS-EEG data with an ISI of 3 sec. (C): Average AUC values for ECoG data sets
where stimulation pulses were triggered only if the BCI system detected an intention
to move within the movement phase (BSDS). Boxes are defined as in figure 4.10, open
circles depict AUC values outside the range of the boxplot whiskers. *: AUC scores
differ significantly from MEMgap for this gap size (p < 0.05, Friedman test, Bonferroni-
corrected). Adapted from Walter et al. [172].

of the gap was placed 2 msec before the beginning of the stimulation artifact and the
gap size was varied between 0, 10, 50 and 100 msec. As in the simulations above,
this was followed by the computation of the AUC scores. Further statistical analysis
were performed on the raw AUC scores, not on differences, because no reference
AUC score existed. Thus, when comparing the results between different algorithms,
a correction for row effects (i.e. using the same sessions for all algorithms such that
correlations are to be expected) is necessary. Therefore, instead of Kruskal-Wallis
tests, Friedman tests are used which are the nonparametric equivalent of a repeated-
measures ANOVA.
Figure 4.11 A and B shows the results for the open-loop experiments. While there
are no significant differences in the AUC scores between the algorithms, in the case
of the ECoG data, AUC scores with a gap size of 0 or 10 are significantly lower than
scores for 50 and 100 (p < 0.01), independent of the applied algorithm. Thus, intro-
ducing sufficiently long gaps such that the extent of the stimulation artifact and the
initial evoked activity are covered is beneficial for decoding. The closed-loop data
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Figure 4.12.: Mean AUC values for different settings of the gap size for ECoG data obtained in the
closed-loop condition with real stimulation. The baseline AUC value of 0.5 is shown as
a thin solid line.

in figure 4.11 C finally shows the expected pattern in the AUC scores which was ex-
pected from figure 4.10 C and D: For a gap size of 100, AUC scores are significantly
different between the algorithms (p < 10−6): AUC values for AR modeling and
linear interpolation are smaller and values for linear interpolation are higher than
MEMgap. Thus, the expected spectral bias of AR modeling and interpolation also
introduces a decoding bias for real stimulation data and MEMgap as an unbiased
method is the best choice for a gap processing method.
Two oddities of figure 4.11 C are that the AUC scores for a gap size of 0 are smaller
than 0.5 and that the scores for 10 msec have a large variability. AUC scores lower
than 0.5 mean, that the average power during the movement phase is actually higher
than during the rest phase, indicating ERS instead of ERD, something which is phys-
iologically very unlikely when working with the β band [135]. Instead, this effect
is due to the task-dependent existence of the stimulation after-effects in the closed-
loop setting: The large stimulation after-effects that occur only during the movement
phase lead to a very high spectral power of this phase. Thus, the spectral power of
the movement phase is very well separable from the power of the rest phase for a
gap size of 0. The variability at a gap size of 10 is present because for one of the 3
patients, a gap of 10 msec was not sufficient to cover all artifact-related jumps in the
recording, resulting in AUC scores lower than 0.5.

If the after-effects are dealt with by using a gap size of 50, the relationship between
the power during rest and feedback reverses and resembles the expected ERD/ERS
pattern. Comparing the AUC values for a gap size of 10 with longer gaps, it is also
clear that a gap size of 10 is not sufficiently long even if it covers in 2 out of 3 pa-
tients the direct stimulation artifact. The reason for this is probably that the early
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Figure 4.13.: Flow chart of the online setup for brain-state-dependent stimulation. All modules are
implemented in the BCI2000 framework. The dashed parts mark modules which are
specific for the use in BSDS paradigms.

evoked neural responses which usually peak between the first 20-30 msec after the
stimulus can also distort the spectrum and have to be covered by the gap. This can
be achieved by choosing a gap size of 50 msec or more, where the mean AUC values
(figure 4.12) remains almost constant, at least for MEMgap.

The main conclusion from this study is that MEMgap is the most suitable al-
gorithm for stimulation after-effect processing due to its unbiasedness. Thus, the
MEMgap algorithm can be used to design bidirectional BCI systems, as long as
spectral features are used for the detection of the user’s intention or brain state, be-
cause it guarantees that the features are not distorted by stimulation. In contrast to
earlier approaches, the decoding process can run continuously even while pulsed
stimulation is applied. The specific parameters of the algorithm, in particular the
gap size, obviously have to be adapted to each experiment. In the next section, the
implementation and useful settings for the parameters of the first realization of such
a bidirectional system are described.

4.3. Online brain state decoding and stimulation with a
bidirectional BCI

For online decoding of movement-related brain states with concurrent pulsed brain
stimulation, the general-purpose framework BCI2000 [149] was used and extended
with custom-developed signal processing modules (figure 4.13):

1. Pulse artifact detection: An exact localization of the timing of stimulation
artifacts to determine the starting point of gap placement. This was necessary
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because a direct synchronization between the stimulator and the amplifier is
not guaranteed to be present in all experiments and the software modules
should not be too dependent on the exact hardware setup do be usable in
different settings. The crucial feature of the artifact of a stimulation pulse is the
fast very high slope of the first milliseconds, where the measured signal usually
fluctuates between several millivolts, positive and negative (see e.g. figure 4.4).
Thus, if the sum of absolute amplitude differences within 1 millisecond exceeds
a certain threshold, an artifact is detected. While this threshold can be freely
chosen in the software, a value of 1 mV has proven to be useful for ECoG data
and epidural stimulation. For TMS, smaller values might be needed. 200 µV
are suitable here, although the exact value depends on the impedance and the
location of the recording channel in relation to the reference and the location
of the stimulation. A higher threshold makes false positives less likely. If the
stimulation is not triggered manually but by the BCI application (as in the
experiments described in appendix B), then a state variable within the BCI2000
software is set to mark whether a stimulation pulse was triggered recently.
If this is the case, then the pulse artifact detection is only active if this state
variable is set.

2. Gap placement: An auxiliary data channel is introduced which contains a 1
for every sample that belongs to a gap, otherwise a 0. If a pulse artifact is
detected, then as many samples are marked as the predefined gap size. The
start of the gap is set 3 samples before the time point reported by the pulse
artifact detection to avoid missing early portions of the artifact that were below
the threshold. Following the analysis in the previous section, a gap size of
50-70 msec has been successful in practice.

3. Spectral estimation with gaps: This replaces the standard AR spectral estima-
tion with the MEMgap algorithm. As described in section 4.2.4, it evaluates
the information on the auxiliary gap channel, masks the unwanted samples
and corrects for the missing data.

The resulting spectral power values are sent to an (adaptive) classifier to determine
the brain state. In the special case of BSDS for stroke rehabilitation, the classifier
discriminates between movement and rest and its binary output is used to control
the movement of a hand orthosis capable of opening and closing the paralyzed hand
of the patient. The orthosis started to open the hand of the patient as soon as the
classifier reported an intended movement 5 times in a row and it was stopped if rest
was detected for 5 consecutive times or if the trial had ended. The condition that
the classifier output had to be consistent multiple times before the movement state
of the orthosis was altered had been included to ensure a smooth behavior.
Furthermore, a control interface for the cortical stimulation systems was included as
an application module in the BCI2000. The external control interface of the TMS was
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restricted to TTL pulses which triggered the pre-programmed stimulation. Stimula-
tion parameters had to be set by the researcher manually. For the STG4008 stimula-
tor used with the epidural electrodes, a more extensive control over the stimulation
parameters were possible. Stimulation waveforms can be freely defined, sent to
the stimulator via USB and triggered by an asynchronous call. Hence, an extensible
object-oriented framework was implemented and included into the BCI2000 applica-
tion module which allows the simple definition of single pulse shapes up to whole
pulse trains on several channels, where all stimulation parameters can be set on-
line. This enables a system where all stimulation parameters are adjusted during the
experiments automatically based on the online analysis of the ongoing brain activity.

The bidirectional BSDS system described here was used in the rehabilitation for
the stroke patients, both with combined EEG and TMS as well as with epidural
electrodes. Details on the rehabilitation and stimulation paradigm can be found in
appendix B.1.
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5 Towards a control of
stimulation-evoked activity:
The relationship between pre-
and poststimulus activity

Two approaches for closed-loop stimulation have been introduced in this thesis. The
first one, brain-state-dependent stimulation (BSDS), has been covered in chapter 4.
In this and the following chapter, the second approach is studied: The feasibility of
applying cortical stimulation with the aim of controlling the response of the brain
(figure 5.1).
This approach is inspired by the work of Brugger et al. [23, 24, 25], who realized
such a system using microstimulation in the Barrel cortex of rats. They were able
to show that the variance of the evoked neural activity, at least for a certain range
of stimulation intensities, can be reduced if the intensity is adapted to compensate
for fluctuations in the ongoing neural activity before the stimulus. The overall aim
was to provide the possibility to define a target shape of the activity one wants to
achieve, for example because it is associated with a specific percept, and then hav-
ing a closed-loop system which automatically finds the stimulation parameters most
likely to evoke exactly this shape. Their work was originally intended for the use in
sensory neuroprostheses, for example to restore sight to blind people by direct mi-
crostimulation of the visual cortex, where the closed-loop stimulation system could
provide more stable visual perceptions than an open-loop system.
However, one could find a use for such a system in the application of cortical stimu-
lation for stroke rehabilitation as well: If one can identify neural correlates of rehabil-
itation in the stimulation-evoked activity of stroke patients regaining motor function,
it could be advisable to stimulate the patients in a way to reinforce these correlates.
No study has looked so far longitudinally on rehabilitation-induced changes in the
processing of stimulation pulses in stroke patients, hence no such correlates are
known. What is known is that some reorganization of the brain takes place during
recovery from stroke - the premotor cortex in particular is a likely ”hot spot” for this
[89], while the size of the motor representation of the affected limb in the primary
motor cortex is expected to increase as well [108]. Whether general correlates for this
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Figure 5.1.: Concept for adaptive stimulation to evoke a target shape of the brain activity.

recovery-associated reorganization exist in the stimulation-evoked brain activity is a
question that can not be tackled in this work due to the small number of patients,
although the patients at least provide an opportunity to test, whether any coherent
changes occur over the time of their participation in the experiment. If this is the
case, this would give an indication on where to look in larger groups of patients for
”dynamic” features of the evoked activity.
Even if we are unable to draw general conclusions about neural correlates of rehabil-
itation, it is possible to test, whether a stimulation paradigm is feasible where some
features of the poststimulus neural activity are controlled by adaptive stimulation.
The work of Brugger et al. [23, 24, 25] provides the starting point for this, but a major
conceptual step is necessary to transfer this approach from the animal model to hu-
man stroke patients: The implantation of microelectrodes is a very invasive process
and they have been implanted only in a handful of human patients so far, with just
one case where stimulation was applied via these electrodes (see section 2.1). Less
invasive stimulation and recording devices might make such an approach applicable
to more human stroke patients, for example by using EEG in combination with TMS
or ECoG together with electrical stimulation via implanted electrodes. However, it
needs to be tested then, whether the functional relationship between the prestimu-
lus activity, the poststimulus activity, and the stimulation intensity, which was at the
core of the work of Brugger et al., can be found as well when using these devices.
This step from micro- to macroelectrodes will impact both the spatial resolution of
the recording, because the signals of individual neurons are inaccessible with EEG
and ECoG, as well as the focality of stimulation: TMS and epidural electrodes re-
quire much higher currents than microelectrodes to produce a measurable effect on
the brain, thus, presumably, a much larger number of neurons is activated by the
stimulus.
A necessary condition for the existence of this postulated functional relationship is,
that fluctuations in the prestimulus activity need to have an effect on the evoked ac-
tivity after the stimulus. If this is not the case, that is, if the reaction of the brain to a
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magnetic or electrical stimulus was purely stereotypical, a closed-loop system would
not be better than an open-loop system in controlling the evoked activity. However,
this is unlikely, not only because of the studies with microelectrodes mentioned so
far, but also because of a number of other studies with TMS which investigated the
relationship between the brain activity at the moment of stimulation and either the
evoked muscle activity in the form of motor-evoked potentials (MEPs) or the evoked
brain activity. The following section gives an overview over these studies.

5.1. State of the art

5.1.1. Cortical excitability and stimulation-evoked potentials

One likely candidate process that influences the neural response to cortical stimula-
tion unrelated to the stimulation parameters is the receptiveness of the stimulated
area to stimulation, the so-called cortical or, when stimulating the motor cortex, cor-
ticospinal excitability. Corticospinal excitability can be measured easily by applying
stimulation pulses strong enough to elicit a muscle twitch. Using electromyography
(EMG), this muscle twitch is registered as a motor-evoked potential (MEP) and its
amplitude and/or latency serves as the direct measure of the excitability - the greater
the amplitude is, the more effective is the relay of the stimulation pulse towards the
muscle. One has to control for the strength of the muscle activity at the moment of
stimulation, because it also directly influences the amplitude of the MEP: Stronger
muscle activity leads to stronger MEPs [114]. Thus, measurements of corticospinal
excitability are usually conducted when the muscle is either at rest, or by giving the
stimulated person feedback of the EMG activity, thus encouraging a constant level
of muscle activity [165].
For cortico-cortical potentials evoked by TMS or electrical stimulation (CCEPs), such
measurements are more problematic, as the evoked waveforms can be relatively
complex and are not as easily parametrized as the MEP (figure 2.1). Usually, the
amplitudes of certain peaks in the evoked activity are used, although the mecha-
nisms of the generation of these waves are not fully understood, especially for late
peaks [55, 164]. An interesting component is the N100 response, a negative peak in
the EEG which occurs roughly 100 msec after a stimulus over the motor cortex on
central channels and is thought to reflect inhibitory activity [11, 17, 22, 128].
An increased level of cortical excitability could indicate that the stimulated brain
region is more receptive to incoming information and has been shown to correlate
with improved motor function [72]. It can be used as an outcome measure for a
clinical intervention where increased cortical excitability could indicate that a brain
region becomes more active over time. It is used as a tool to assess the rehabilitation
of paralyzed persons [80], where increases in MEP amplitude on the paretic limb are
proof that not only there is a corticomuscular connection present but also that the
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effectiveness of the connection increased over time.

Brain states

Long term processes, such as the neural reorganization associated with the recovery
of motor function in a stroke patient, are of course not the only way to change the
excitability of a brain region. By measuring MEP amplitude and latency and/or
CCEP subcomponent amplitude, several studies have found that the execution of
tasks influences the excitability level of certain brain areas as well. Such short-term
modulations can be understood in terms of switching between brain states. In its
simplest form, an experiment can be designed to investigate the differences in the
evoked activity during two states: task and rest.
In the periphery, the change of MEP amplitudes relative to the brain state has been
studied for decades and given insights into the inner workings of the motor system.
Major findings have been that not only active movements increase the MEP ampli-
tude compared to rest but that such an increase, although smaller, is also present
for imagined movements [52]. In both conditions, this MEP modulation is specific
for the muscle: During imagined flexion of the forearm, MEPs on the biceps are in-
creased compared with rest, but no effect is found for forearm extension [52]. Similar
results for imagined hand movements lead to the conclusion, that MEPs are only in-
creased if the stimulated muscle is an agonist in the movement [52, 73, 107]. Using
MEPs as output measure thus gives information how specific parts of the motor cor-
tex and their connection to the muscles are influenced by the execution of tasks.
The analysis of CCEPs, however, allows the investigation of brain states not related
to the motor system. The latency and size of evoked waveforms also highlights func-
tional connectivity within the brain [117, 118, 160], thus one can use the strength of
the reaction to the stimulus of different brain areas and its task-related modulation
to infer information about how these areas are involved in the cognitive processing
of the task. Thus, the study of CCEPs and their task-related modulations might be
worthwhile to gain a better understanding of the brain. For example, it was shown
that the state of consciousness of the stimulated person is reflected in the shape of
the evoked activity: While under anesthesia [54], during deep sleep [116] or in a min-
imally conscious state [146], the evoked brain potentials strongly differ from CCEPs
elicited in awake persons. The waveform in the non-awake state is less complex, has
a stronger early response and is constrained to a smaller brain area than evoked ac-
tivity during wakefulness. This so-called breakdown of effective connectivity [116] thus
gives insights about the neural correlates of consciousness. This finding is indepen-
dent from the integrity of the motor system, because cognitively present locked-in
patients without muscle control show similarly complex responses as healthy, awake
persons [146].
In awake persons, the N100 peak in the EEG has been used as a measure for brain-
state-dependent modulations of cortical excitability. Nikulin et al. [128] found that
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the N100 amplitude is reduced during and shortly before movements. They at-
tributed this to a reduction of the inhibitory response reflected in the N100 if the
stimulated brain region is active at the moment of stimulation, e.g. because a move-
ment has to be planned or executed. Morishima et al. [123] investigated the role of
the frontal eye field during a visual feature attention task and noticed differences in
the N100 response depending on whether a face or a moving stimulus was shown
as long as the TMS pulse was given late enough to ensure that the subjects had
time to prepare for the task. Johnson et al. [86] reported an increased N100 dur-
ing a short-term memory task and increased power in the β and γ range of the
stimulation-evoked event-related spectral perturbation (ERSP). Bonnard et al. [17]
found an increased N100 while subjects tried to resist an MEP, compared to a state
where the subjects did not fight the MEP. This again indicates that an increased
N100 might reflect increased inhibition. Häusler et al. [74] as one of the first to in-
vestigate movement-related changes in stimulation-evoked brain potentials showed
that the slow brain potential near the center of the scalp (EEG position Cz) following
a TMS pulse over M1 is larger when the participant is executing a thumb movement
compared to the preparation of the movement.
These studies demonstrate that the task and its associated brain state have a pro-
found influence on how stimulation is processed in the brain. It also becomes clear
that the analysis of stimulation-evoked effects can highlight changes in functional
brain connectivity [71, 117], thus serving as a bio-marker for task-related modula-
tions of excitability and connectivity.

Ongoing neural activity

The idea of a brain state is a very abstract and probably oversimplified concept, be-
cause it ignores the relationship to the underlying neural activity, which is never
constant during a specific task. If the brain state is a realization of the neural pro-
cessing, then changes in the brain state should be detectable from changes in the
measured brain activity. This is widely used in brain-computer interfaces, where
event-related changes in the brain activity (e.g. µ/β ERD) are used to infer the brain
state of the user (e.g. movement imagery). Hence, if the brain state influences the
effects of stimulation, one might also be able to find a direct relationship between
the ongoing activity and the stimulation-evoked potentials. On the other hand, the
changes in observable neural activity and modulations of the cortical excitability
could be uncorrelated epiphenomena of a switch in the brain state.
Several studies investigated the relationship between MEP amplitudes evoked by
TMS and the signal characteristics of EEG and EMG activity at the time of the stim-
ulation, with conflicting results. Mitchell et al. [121] computed the spectral power
of EEG and background EMG while healthy participants performed a grip task and
were stimulated either with TMS or transcranial electrical stimulation (TES). While
they found a significant correlation of the MEP amplitude with EMG, the correla-

77



Chapter 5. Pre- and poststimulus activity

tion coefficients with the EEG power after correction for the background EMG were
non-significant or around the significance threshold. In order to test for interactions
between EEG and EMG activity, they used a greedy bottom-up feature selection
method with leave-one-out cross-validation to predict the MEP amplitude based on
EEG and EMG. r2 values remained mostly below 0.3, thus even the combination of
EEG and EMG can not explain most of the variance. They argued that there is prob-
ably a difference between the level of activity and the level of excitability of a brain
region and concluded that EEG alone is not sufficient to explain the variability in
the evoked potential.
Van Elswijk et al. [165] hypothesized that β and γ oscillations are correlates of rhyth-
mic inhibitory processes, thus cortical excitability should depend on the phase of
these rhythms. Using TMS during isometric muscle contractions, a task known to
induce cortico-muscular coherence between EEG and EMG activity, they examined
not only EEG and EMG phase, but also spectral power on their suitability to predict
the MEP amplitude. Similar to Mitchell et al. [121], they found no significant rela-
tionship of the MEP with EEG power. Surprisingly, neither the EEG phase nor the
EMG-EEG phase relation were correlated with the MEP amplitude. However, they
found that the EMG phase for frequencies between 5 and 45 Hz modulates the MEP
significantly. From this it can be concluded, that the spinal β rhythm that manifests
itself in the EMG activity, not the cortical one influences the MEP. This is a bit sur-
prising because the existing cortico-muscular coherence during this task shows that
there should be a direct relationship between both rhythms.
Both studies investigated the relationship between cortical rhythms and MEP am-
plitude within a constant brain state. Furthermore, both removed background EMG
as a factor, either by analyzing only the residuals after correcting for EMG influence
[121] or by using online visual feedback of a target EMG activity [165]. Neither study
found a significant correlation between EEG power and the MEP measuring cortical
excitability. This sheds doubt on the hypothesis that the brain activity can explain
much of the variance of the stimulation-evoked activity, apart from the variance in-
duced by brain state switches.
On the other hand, Schulz et al. [153] found that EEG spectral power in the β range
and corticomuscular coherence in the α range predict MEP size. In their study,
TMS was applied over the motor cortex during or shortly after a hand movement.
However, this means that the brain state was not constant for all stimuli so that
this finding might be explained by the difference between the spectral power during
movement and rest and not by a direct influence of the prestimulus spectral power
on the MEP.
In contrast to the motor system states that were investigated by Mitchell et al. [121],
van Elswijk et al. [165] and Schulz et al. [153], Bergmann et al. [13] studied the CCEP
and MEP responses to TMS during sleep. In NREM (non-rapid eye movement) sleep,
prominent slow oscillations with frequencies smaller than 1 Hz dominate the EEG.
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The phase of this slow oscillations reflects changes in the membrane potential: Pos-
itive deflections reflect depolarization (up-state), negative waves hyperpolarization
(down-state). Thus, neurons should be more receptive to stimulation during the
up-state than during the down-state, because they are closer to the firing thresh-
old. As expected, Bergmann et al. [13] found stronger MEPs during the up-state,
reflecting the higher cortical excitability in this state. Using EEG-guided TMS where
stimuli are only applied if the absolute amplitude of the slow oscillation is above a
threshold, they applied pulses only if the brain was clearly in one of the two states.
Beyond this simple discrete state-dependent modulation, they found a weak (Pear-
son’s r < 0.2) but significant correlation between the EEG and the MEP amplitude
on a single-stimulus level, meaning that for example with a more positive slow-wave
amplitude there is a tendency for a greater MEP. This indicates that at least during
sleep, there might be a weak direct relationship between the measured neural ac-
tivity and the evoked potential. Romei et al. [144] found a significant relationship
between the posterior α rhythm amplitude and whether TMS pulses over the visual
cortex elicit phosphenes in healthy participants or not. This shows that spontaneous
fluctuations of neural activity might be associated with a functional role, at least in
the visual cortex [83].

In conclusion, discrete changes in the brain state can have a profound effect on
the response of the brain to stimulation, but at least for EEG combined with TMS
of the motor cortex, a direct relationship between measured neural activity and the
parameters of the evoked muscle response in awake participants is doubtful. It is
unknown whether the increased signal-to-noise ratio of invasive recording methods
together with electrical stimulation might be specific enough to reveal significant
correlations between prestimulus and poststimulus activity. In particular, it has not
yet been reported whether a relationship between the ongoing neural activity and
the evoked brain activity, i.e. the CCEPs, exists. Furthermore, one limitation of the
studies on this so far is that they have almost exclusively focused on healthy par-
ticipants, while the work in this thesis is concerned with patients with pathological
changes in the brain.

5.2. Research questions towards closed-loop control

As stated above, a direct influence of the prestimulus activity on the shape of the
poststimulus activity is a necessary prerequisite for the feasibility of closed-loop con-
trol of the stimulation-evoked activity. When looking at changes in the prestimulus
brain activity, one has to distinguish between a changing brain state and fluctuations
in the measured EEG or ECoG activity. The former usually induces the latter, but the
electrophysiological brain activity will fluctuate even within a constant brain state.
Therefore, because the focus of this work lies on motor function, the most basic hy-
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pothesis here is:

Hypothesis I
When stimulating the motor cortex, movement-related changes in the brain
state lead to changes in the stimulation-evoked brain activity.

Based on the many results reporting brain-state-dependent changes in MEP am-
plitudes and the work of Nikulin et al. [128] on movement-related changes in evoked
brain activity, this hypothesis has a good chance of holding up. However, it needs
to be tested whether these effects can be found in severely affected stroke patients
and also whether it is a TMS-specific effect or if it can be reproduced with electri-
cal stimulation. A positive result for this hypothesis would lead greater credence
to the BSDS paradigm developed in chapter 4, but it allows only a small step to-
wards closed-loop control of the evoked activity: One could envision a paradigm
where each brain state is associated with a certain stimulation intensity in order to
always produce the same shape of the evoked activity. For example, the stimula-
tion intensity while the patient rests could be higher compared to the time when
the patient is attempting to move the hand to compensate for the reduced cortical
excitability. Hence in comparison to the BSDS paradigm of chapter 4, the variability
of the evoked activity would not be reduced as the stimulation intensity within the
movement brain state would be the same in both paradigms, but the new paradigm
would allow the application of pulses also within the rest state, therefore the total
number of applied pulses can be increased. However, then the association between
the intention to move the hand, the hand movement and the stimulation would be
lost again which could be considered a loss of specificity in comparison to the BSDS
paradigm of chapter 4.
A more desirable stimulation paradigm would be to retain the temporal association
between the movement and the stimulation by stimulating only within the movement
state, but adapting the stimulation intensity to the ongoing brain activity to reduce
the variability of the evoked activity. For this to be possible, the following hypothe-
sis has to hold:

Hypothesis II
When stimulating the motor cortex while a movement is intended or per-
formed, changes in the electrophysiological prestimulus brain activity lead
to changes in the stimulation-evoked brain activity.
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5.3. Experimental setup

In order to test these hypotheses, an experiment was performed with healthy par-
ticipants and stroke patients, for the former with combined EEG and TMS, for the
latter with EEG and TMS and after the surgery several times using the implanted
electrodes. In order to disentangle the influence of movement-related brain states
and the ongoing brain activity on the stimulation evoked activity, the stimulation
parameters were kept constant for each participant, but by using a movement task,
the brain state of the participants was modified because they were instructed to
switch on cue between resting and a movement state. For the movement task, three
conditions were tested: attempted, imagined and passive movements with the latter
as a control condition. If significant changes in the shape of the stimulation-evoked
activity during one of the movement tasks and phases in the experiment where the
participant is in a relaxed state can be found, this would confirm hypothesis I. If
significant correlations between the EEG/ECoG activity before the stimulus and the
evoked activity can be found when analyzing only those stimuli applied within the
movement phase of the task, then the second hypothesis is confirmed.

5.3.1. Participants

7 healthy volunteers (1 female, mean age 26.5) and the three chronic stroke patients
(section A) participated in the experiment. For the patients, the experiment was con-
ducted once before implantation of the electrodes and two (P3) to four (P1 and P2)
times with the implanted electrodes present. In this invasive phase, all experimen-
tal sessions were spaced one week apart, covering almost the whole 4 weeks of the
period in which external connections to the implanted electrodes were present.

5.3.2. Procedure

The task, the recording parameters and the stimulation are described in detail in
section B.2. In short, the participants performed for 6 seconds a movement task after
an auditory cue, then relaxed for 8 seconds. The movement condition was to either
actively attempt to open the hand (active condition), imagine to open it (imagined
condition), or be relaxed, while the orthosis passively opens the hand (passive condi-
tion). Independently of the task or the brain signal, the participants were stimulated
with single pulses with a fixed interstimulus interval of 2 (epidural stimulation) or
3 (TMS) seconds. The intensity of the pulses was high enough to elicit measur-
able MEPs on the left hand extensor muscle. In the active and imagined condition,
the hand of the participant was opened by the orthosis which was controlled by an
online detection of the intention to move the hand.
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5.4. Data analysis

For each individual stimulus pulse, features are extracted from the pre- and post-
stimulus data. Thus, the data is not segmented into the trials of the task, but the
single stimuli.

5.4.1. Poststimulus data

All recorded EEG and ECoG data were filtered with a 2nd order Butterworth band-
pass filter with cutoff frequencies 3 and 300 Hz and a notch filter to remove the
power line artifact at 50 Hz. To avoid an influence of the stimulation artifact on
poststimulus data, the filters were applied anti-causally, i.e. on time-reversed data.
Where necessary, channels with long-lasting stimulation artifacts or noisy signal
were removed from further analysis. For each stimulus, 1 second of poststimulus
data was extracted. Semi-automatic stimulus-rejection was performed to exclude
stimuli considered to be outliers by using the variance of the EEG/ECoG signal as a
criterion and visual inspection. Depending on the condition (rest, active movements,
imagined movements, passive movements), stimuli were excluded if the muscular
activity did not conform to the task: The waveform length WL = ∑ |s(t)− s(t + 1)|
was used as a measure of the EMG activity on EDC in a window of 200 msec pre-
ceding stimulation, where s(t) is the emplitude of the rectified EMG signal at time
point t. It contains information about the EMG amplitude and frequency and has
been identified as the best feature for the detection of movements from EMG [159].
Let WLrest be the distribution of all WL values for stimuli in the rest phase. For the
active movement condition, if the waveform length did not exceed the median WLrest
by two standard deviations of WLrest in the movement phase, or if it was not within
one standard deviation of WLrest of the median WLrest in the rest phase, the stimulus
was excluded for the healthy participants because there was either too much EMG
activity in the rest phase or not enough in the movement phase. The EDC activity
of the patients was not reliable during active movements because of spasticity and
the inability of the patients to control their paralyzed muscles. Therefore, stimulus
rejection by EMG activity was unfeasible for the active movement condition and not
used for the patients. For passive and imagined movement conditions, all stimuli
were excluded for which the WL exceeded the median WLrest by more than one
standard deviation of WLrest. Then a spatial Laplacian was applied to the EEG data
to increase the focality of the extracted measures and to reduce bias introduced by
the reference electrode [130].

5.4.2. Prestimulus data

In order to test for correlations between the spectral content of the prestimulus data
and the amplitudes of the evoked activity, the spectral power before the stimulus
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was extracted. The spectrum has to be computed over a time window before the
pulse. In shorter time windows, only samples immediately before the stimulus play
a role, but the variance of the spectral estimation will be higher. For longer time
windows, the estimate will be more stable, but samples in the ”distant past” will
have the same influence on the spectrum as samples directly before the stimulus.
Hence, in this case, the spectrum captures more the broad changes in brain activity,
less the local fluctuations in the oscillations. As it is unclear, which of these fac-
tors is more important, the length of the window was varied between 100 msec and
1 second in 100 msec steps. The spectral power was determined with an autore-
gressive model of order 50 (determined as a model order well suited for the data
by use of the ARMASA Matlabr toolbox [19]) and two frequency bands were ex-
tracted: α (8-13 Hz) and β (14-30 Hz). For each sample of the poststimulus data,
the Spearman correlation coefficient ρ was computed with the α and the β band
power, once for all stimuli and then for stimuli in the movement and the rest phase
separately. Spearman’s ρ is a non-parametric measure of the relationship between
two variables, because it measures a monotonous relationship instead of a linear
relationship computed by Pearson’s r. For this reason it is also more robust against
outliers compared to r.

5.4.3. Statistical evaluation

Brain-state dependency of evoked activity

The significance of the difference between the waveforms of the evoked activity in
the task (either active, imagined or passive movement) versus the rest conditions was
tested with the following procedure, inspired by Casarotto et al. [32] and adapted to
the problem of discrimination between CCEPs of different conditions:

1. For each time point ti, channel cj and participant sk, divide the data of all rep-
etitions of the stimulus in two distributions: Dtask(sk, cj, ti) and Drest(sk, cj, ti)
that contain the samples from the task and the rest period, respectively.

2. Compute the normalized distance of these distributions using Cohen’s d for
unequal sample sizes. This captures the effect size of the influence of the task
on the evoked activity compared to rest as it takes into account not only the
difference in the median but also the variances of the distributions.

3. For a single participant, it was determined if a specific value for d was signif-
icant at the 0.05 level with a Monte-Carlo permutation procedure. The condi-
tion label of all repetitions (task or rest) was permuted randomly n = 3000 times
and d was recomputed for each time point and each channel. This resulted in
a distribution M(cj, sk) containing the maximum value of d obtained for each
permutation and all time points of channel cj of participant sk. The significance
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threshold for d of channel cj was set as the value of M(cj, sk) corresponding to
the one-tailed (1− α

C )100th percentile of M(cj, sk) with α = 0.05 and C being
the total number of channels. Using this procedure, the test result is corrected
for multiple comparisons incurred by the number of time points and channels
investigated.

4. Because of the variability of the patients, a group analysis was only conducted
for the healthy participants. To assess whether the median of d over all healthy
participants was significant at the group level, the permutation procedure from
(3) was performed for all healthy participants, d̄ was computed as the median
of d per permutation for each time point and channel over all healthy par-
ticipants and a distribution M′ containing the maximum value of d̄ over all
channels and time points was extracted. The significance threshold for d̄ was
then set as the value of M′ corresponding to the one-tailed (1− α)100th per-
centile of M′. This procedure therefore also corrected for the number of time
points and channels.

Spectral dependency of evoked activity

Similar to the brain-state-dependency analysis, significance testing of the correlation
between the prestimulus spectrum and the amplitudes of the poststimulus activity
has to take into account the large number of tests conducted and the fact that re-
sults for neighboring samples of the poststimulus activity are likely to be highly
correlated, due to the high autocorrelation of EEG and ECoG signals. For these rea-
sons, significance testing was again conducted using a permutation procedure, but
instead of permuting the class labels, the mapping between pre- and poststimulus
data was permuted (e.g. in one permutation, prestimulus spectral power from stim-
uli {1,2,3,4} was correlated with the poststimulus amplitude of stimuli {3,4,2,1}. As
above, the α-level of 0.05 was Bonferroni-corrected by the number of channels, the
number of repetitions was set to 3000 and three different stimulus sets were tested:

• All stimuli

• Only stimuli within the movement phase

• Only stimuli within the rest phase

As in the previous section, the significance threshold for a single participant and
single channel was computed by extracting the maximum absolute value for ρ per
permutation and finding the value at the target α-level, i.e. the (1− α) · 3000-th value
when the maximum ρ values were sorted in ascending order. All samples of the
poststimulus data where |ρ| exceeded the significance threshold were marked as
significant.
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5.4.4. Classification of the brain state from evoked responses

For each participant and movement condition, a support vector machine (SVM, lib-
SVM [33]) with linear kernel was trained to classify the preprocessed CCEP wave-
forms into the task class (active, imagined or passive movement) and rest. Using the
data after offline processing for the statistical evaluation, it was downsampled to
250 Hz and a window was used with a length of 300 msec, starting 5 msec after the
stimulus to exclude the initial stimulation artifact, resulting in 75 · nchannels features.
These parameters were found during a first offline evaluation of several settings for
the downsampling factor (1,2,4 or 10) and the window length (100 or 300 msec). Dif-
ferent spatial filters (none, common average reference, spatial Laplacian, canonical
correlation analysis) were compared for this data set, but no difference was found
between them [155]. Thus, the results reported here use the same spatial filtering as
in the statistical analysis: spatial Laplacian for EEG and no filter for ECoG.
The accuracy, sensitivity and specificity of the classification was estimated with a
4-fold cross-validation (CV) procedure: In each fold, 75 % of the stimuli were used
as training data, the rest for testing. The training data was rescaled to the range
from 0 to 1. The scaling factor and offset from this procedure was also applied to
the test data. Model and feature selection was performed exclusively on the training
data: With recursive feature elimination [68], sizes of the feature set between 5 %
and 100 % of the total number of features in steps of 5 % were tested to find an
optimized feature subset. In order to also test very small feature sets, sets with 40,
30, 20, 10 and 8 features were included as well. For each set of features, the regu-
larization parameter C was optimized using 10-fold cross-validation in the range of
2i, i ∈ {−5, . . . , 5}. By permuting the training data and applying another 10-fold
CV to it with the best C, the accuracy for each feature subset was computed. The
feature subset with the highest CV accuracy was chosen and a SVM was trained on
the whole training data using this feature set. This SVM was applied to the test data,
predicting either task or rest for the test stimuli. This procedure was repeated for all
4 folds, resulting in estimates for the classification performance measures.

5.5. Results

In the first part of the results section, it is shown that there are significant differences
in the evoked activity between the movement and the rest state and that at least for
the active condition, a classifier can be trained to discriminate between movement and
rest from the shape of the evoked activity on a single pulse basis. In the second
part of the analysis of this experiment, the question whether there is a significant
relationship between the prestimulus EEG/ECoG activity and the evoked activity is
addressed.
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Figure 5.2.: Median CCEP for one representative participant (S4) on different EEG channels. Blue:
Activity during active movements, red: activity during rest. Light red and light blue
areas cover the median ± the standard error (SE). Black bars below the waveforms mark
samples with a significant difference (p < 0.05, corrected for the number of channels and
samples).

5.5.1. Significant task-dependent differences in the evoked activity

Healthy participants

The effect size d from TMS stimulation and EEG for all three conditions (active,
imagined and passive movements) was extracted individually per participant (an
example for this is shown in figure 5.2) followed by a group analysis on the healthy
participants to test whether an effect can be found across participants (figure 5.3).
The stroke patients were not included in the group analysis as the physiological
changes associated with the stroke might limit the comparability of their evoked ac-
tivity with those of healthy participants.

In figure 5.3, the topographical distribution of the maximum effect size within 4
time windows is shown for the active, imagined and passive conditions. Significant
differences between the evoked effects during the movement phase versus the rest
phase are found most prominently for active movements, covering ipsi- and con-
tralateral sensorimotor cortex (SMC) in the time window of 100-160 msec after the
stimulus and the ipsilateral SMC between 180 and 240 msec. For the other conditions
and time windows, only few electrodes display significant effects, mostly those lo-
cated on ipsilateral parietal SMC. Significant task-dependent changes of the CCEPs
in the earliest time window (10-45 msec) are only found for the active movement
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Figure 5.3.: Topographical distribution of the median effect size for all 3 conditions (top row: active
movements, second row: imagined movements, third row: passive movements) and 4
time windows (column 1-4: 10-40, 45-90, 100-160 and 180-240 milliseconds after the stim-
ulus) for healthy participants. The thin black line denotes the d value at the significance
threshold of α = 0.05. Electrodes for which the d value exceeds this threshold for at least
one time bin within the given time window are marked by white circles.

condition. No significant differences were found outside these time windows.

The significant modulations 100-250 msec after the pulse over central channels for
active movements in healthy participants are in good agreement with Nikulin et al.
[128], who also identified the N100 as a component of the evoked activity mainly
found on central channels as the component which is most consistently modulated
during movement tasks compared to rest. Imagined and passive movements are
movement conditions which have not been investigated regarding their effect on
modulating the evoked activity so far. Thus, it is interesting to see that imagined
movements also lead to significant differences in the evoked activity, although much
less pronounced across subjects and that the spatial distribution of these effects in the
first 200 msec after the pulse is very similar to the distribution for active movements,
but that the pronounced late modulation found for active movements more than 200
msec after the pulse is absent for imagined movements. For passive movements, a
significant modulation is only found for a channel over the somatosensory cortex,
maybe because of the sensory feedback received during passive movements which
might alter the excitability of this cortex area.

87



Chapter 5. Pre- and poststimulus activity

Figure 5.4.: Effect sizes on ECoG data of the first session for all conditions, patients and channels. Seg-
ments exceeding the α = 0.05 significance threshold (corrected for the number of samples
and channels) are framed in white. In the first column, the location of the electrodes is
shown for each patient with the channel numbers used in the rest of the figures. Low
channel numbers correspond to frontal, high channel numbers to parietal electrodes. The
stimulation electrode is marked as a red circle, the reference electrode with R. Channels
without a number have been removed from the analysis due to strong artifacts or noise.

Patients

For the first invasive session of all patients, the d value is shown for all conditions,
patients and channels up to 700 msec after the stimulation pulse in figure 5.4. Later
than 700 msec after the pulse, no significant differences were found. The effect size in
terms of strength, timing and location varies between patients, but the within-patient
effect is consistent with the effect found for non-invasive data: passive movements
lead only to minor, non-significant effects, but much higher, significant effect sizes
are found for active and imagined movements. Within the first 50 msec, d values
are higher for active than imagined movements in P1 and P2. For P1, significant
task-dependent changes in the evoked activity between 300 and 600 msec after the
pulse are found most strongly on parietal channels in the active and the imagined
condition. For P3, only channel 8 in the active movement condition contains a short
segment of samples (71-73 msec) that exceed the significance threshold of d. No
significant effects were found for passive movements.
In figure 5.5, the same analysis is shown for the last session (fourth for P1 and P2,
second for P3). The strongest differences are still found for active movements, with
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Figure 5.5.: Same as in figure 5.4, but for the last session of the experiment instead of the first.

more samples over the significance threshold in P3. For P1, the large region of
significant differences between 300 and 600 msec has shifted to the time range of 200
to 400 msec, a gradual process which is observable in session 2 and 3 as well. The
significant region for P2 is still almost exclusively confined to the first 50 msec and
observable on all channels. Only P1 displays significant differences for imagined
movements, although much less pronounced than for the first session. No patient
has significant samples for passive movements.
The shift in the latency of the significant differences for the late evoked activity of P1
warrants a closer look. The average waveforms for movement and rest are displayed
in figure 5.6, with a focus on channel 8 in figure 5.6 C where the late component is
the most pronounced.

It is apparent that the significant differences are due to a latency difference in an
evoked component which occurs for the displayed session 3 between 100 and 500
msec after the stimulation. During movement, the component occurs roughly 30-50
msec earlier than during rest. This can be quantified by using Woody’s method [180]
for latency estimation of event-related potentials (ERPs). With this method, a tem-
plate of the ERP waveform is constructed and cross-correlated with each individual
stimulus. The latency of the best match provides an estimate of the latency of the
component. In figure 5.7, these latency values are displayed for all active movement
sessions of P1. In Walter et al. [176], it was shown that there is a coherent reduction
in the latency of this component over the course of the rehabilitation training and a
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Figure 5.6.: Average evoked activity in the third session for P1. (A) ECoG electrode positions over-
layed on the MRI of P1. White circles denote recording electrodes, the black circle the
stimulation electrode. The white arrow points to channel 8. (B) Mean evoked activity
on all channels for the active condition (blue) compared to rest (red). Black dots denote
time points with a significant difference between the conditions. (C) Zoom on the average
evoked activity on channel 8. Reproduced from Walter et al. [176].

significant difference in the latency between movement and rest in each repetition
of the experiment (one-sided t-tests, all p < 0.001). A two-way analysis of variance
(ANOVA) on the latencies of all 4 sessions of P1 reveals a significant reduction over
the course of the four sessions (p < 0.001, F(1, 1218) = 518.5) and a significant effect
of the condition (i.e. movement vs rest) (p < 0.001, F(1, 1218) = 2244.6) with latencies
during rest being higher than latencies during movement. The interaction between
session and condition is significant as well (p < 0.001, F(1, 1218) = 41.5). The latency
difference between movement and rest for all sessions indicates, that the latency of the
component might be influenced by movement-related processes in the brain. Other
parameters of the evoked activity, such as the area under the waveform or the peak
amplitude, exhibit significant changes over time and between conditions as well, but
the effect size is far higher for the latency than for the other parameters [176].

5.5.2. Classification results

The results in the previous sections showed that there are significant differences in
the evoked activity between stimuli in the movement phase of the trial compared to
the rest phase. This was especially prominent for the active movement condition.
This raised the question, whether these differences are observable even on a single-
stimulus level. To investigate this, classifiers were trained to discriminate between
the CCEPs in the movement and the rest phase.

The general tendencies of the classification results with EEG and ECoG record-
ings are in good agreement with each other. For EEG data, classification results for
healthy participants and patients are also similar. We obtained on average an accu-
racy of about 75-84 % for active movements, 66-71 % for imagined and 55-60 % for
passive movements (table 5.1). This corresponds to the results of the statistical anal-
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Figure 5.7.: Distributions of the late evoked component latency on channel 8 of P1 for all sessions,
analyzed individually for stimuli during the active movement (blue) and the rest phase
(red). Black plus signs denote outliers. In each week, the differences between the latency
distributions of movement and rest are significant. Reproduced from Walter et al. [176].

ysis of the waveforms, where active movements resulted in the strongest differences,
but significant differences were also found for imagined movements. Passive move-
ments on the other hand elicited the smallest differences compared to rest which is
resembled by the low classification accuracy. For ECoG data (table 5.2), the classifi-
cation accuracy reached 85 % on average for P1 and P2, reproducible over 4 sessions,
but the classification was much worse for P3 with 64 and 70 %. This is consistent
with the presence (and almost absence in the case of P3) of significant differences
in the ECoG activity. For imagined movements, there were also differences between
the patients: While the waveforms were well classifiable for P1 (81.36 % on average),
the results for P2 (55.70 %) and P3 (58.80 %) were close to chance level. A similar
relationship between the patients on imagined movements was found for the EEG
data, where only P1 had classification accuracies above 80 % (table 5.2). Passive
movements lead for all patients to bad classification accuracies, typically smaller
than 60 % (table 5.2).
Because the number of stimuli per class are not equal, the chance level for the clas-
sification is not exactly at 50 %, but depends on the actual ratio of movement to
rest stimuli per session. On average, after stimulus rejection, 60.76 ± 6.9 % of the
stimuli belonged to the rest condition, therefore this number should be regarded
as the chance level for the accuracy. The specificity and sensitivity are the fraction
of correctly classified rest and movement stimuli, respectively. Hence, the sensitiv-
ity captures, how often a change into the active state is detected. For EEG, this is
the case on average for 70 % of the active movement stimuli, 50-60 % for imagined
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Participant
Active Imagined Passive

Acc in % Spec Sens Acc in % Spec Sens Acc in % Spec Sens

P1 83.06 0.85 0.80 88.71 0.98 0.72 55.42 0.67 0.39
P2 63.50 0.70 0.56 59.57 0.70 0.45 68.52 0.86 0.33
P3 80.28 0.84 0.75 64.96 0.69 0.60 61.63 0.69 0.53

mean 75.61 0.80 0.70 71.08 0.79 0.59 61.86 0.74 0.42
std 10.58 0.09 0.13 15.50 0.16 0.14 6.55 0.10 0.10

S1 84.58 0.88 0.81 63.35 0.69 0.56 67.72 0.74 0.60
S2 80.92 0.88 0.67 72.14 0.81 0.53 66.13 0.76 0.52
S3 95.10 0.96 0.94 67.87 0.77 0.52 55.94 0.56 0.56
S4 81.64 0.84 0.77 62.50 0.70 0.51 49.68 0.53 0.46
S5 81.31 0.91 0.68 60.62 0.71 0.43 46.08 0.49 0.42
S6 82.97 0.95 0.31 57.74 0.74 0.24 56.00 0.61 0.49
S7 81.48 0.87 0.68 79.26 0.89 0.48 49.11 0.52 0.44

mean 84.00 0.90 0.69 66.21 0.76 0.47 55.81 0.60 0.50
std 5.05 0.04 0.19 7.45 0.07 0.11 8.42 0.11 0.06

Table 5.1.: EEG-TMS classification results, showing accuracy (Acc), specificity (Spec) and sensitivity
(Sens) for each movement condition. P: patients, S: healthy participants.

movements and 40-50 % for passive movements The sensitivity is higher for active
movements and ECoG data with 77 % and smaller for imagined (52 %) and passive
(38 %) movements, but due to standard deviations of 10-15 %, these differences be-
tween EEG and ECoG data might be not meaningful.

The fact that a classification of the brain state is possible from the shape of the
evoked waveform demonstrates that the modulatory effect of a switch in the brain
state is strong enough to have a clear impact on the stimulation processing even of
single pulses. Although this classification study was only conducted offline, it seems
to be in principle possible, at least for active movements, to determine the brain state
by analyzing the evoked response. Hence, one could use the evoked waveform as an
alternative input feature for sensorimotor BCIs, in which movement-related changes
in brain rhythms [135] are used for communication and control [14, 179]. Of course,
the necessary additional effort to include the stimulation setup into the BCI system
might be prohibitive in most cases, but the brain-state-dependent changes in the
evoked activity might be helpful to achieve communication with so-called ”BCI il-
literate” people, i.e. people where no satisfactory modulation of the brain rhythms
can be found. According to Vidaurre and Blankertz [168], this could affect between
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Patient #
Active Imagined Passive

Acc in % Spec Sens Acc in % Spec Sens Acc in % Spec Sens

P1

1 83.06 0.85 0.80 78.54 0.85 0.64 64.66 0.70 0.57
2 90.24 0.92 0.88 89.17 0.94 0.47 58.78 0.69 0.40
3 89.17 0.91 0.86 75.91 0.82 0.67 61.79 0.70 0.50
4 84.10 0.87 0.80 81.82 0.91 0.53 59.49 0.77 0.32

P2

1 86.27 0.90 0.81 63.51 0.66 0.60 54.69 0.62 0.43
2 86.80 0.88 0.85 57.14 0.67 0.44 53.04 0.60 0.44
3 82.61 0.81 0.84 51.63 0.57 0.44 48.31 0.57 0.34
4 81.13 0.84 0.77 50.52 0.62 0.36 57.76 0.49 0.00

P3
1 63.95 0.65 0.62 59.91 0.66 0.52 52.53 0.60 0.42
2 69.85 0.76 0.61 57.69 0.61 0.52 55.93 0.67 0.37

mean 81.06 0.84 0.77 66.58 0.73 0.52 56.70 0.64 0.38
std 8.56 0.08 0.10 13.65 0.13 0.10 4.81 0.08 0.15

Table 5.2.: ECoG classification results, showing accuracy (Acc), specificity (Spec) and sensitivity (Sens)
for each movement condition. #: Session number.

15-30 % of all participants. As shown in the next section, there might not be a direct
relationship between modulations in spectral power and modulations of the evoked
activity, hence the brain-state-dependent changes in the evoked waveforms might be
found as well in people without the ability to control their sensorimotor rhythms
and thus offer a promising new communication source. If one wants to pursue this
direction, it needs to be shown that the online classification of the evoked activity is
feasible and that the postulated modulation of the evoked activity can be found in
BCI illiterates. These questions are, however, outside the scope of this thesis.

The analysis so far shows that the first hypothesis in this chapter regarding the
question whether there is a brain-state-related dependency of the stimulation effect
is confirmed. This result goes beyond what has been reported in the literature so
far by showing that the effect is present also for severely affected stroke patients
during intended movements of the paralyzed hand and for electrical stimulation via
implanted electrodes. In addition, it was shown that this effect is detectable on a
single-stimulus level for active and attempted movements.
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Figure 5.8.: Comparison between brain-state-dependent modulations and correlations with µ and β
power. Data is shown from the active movement condition in the third session of the
Stimulation Screening experiment with P1 (upper row) and P2 (lower row). First column:
position of recording and stimulation electrodes. Second column: d-value of significant
brain-state-dependent modulations after the stimulus. Third column: Significant correla-
tions of prestimulus µ band power with poststimulus amplitudes. Fourth column: same
as third column, only for β band power.

5.5.3. Relationship between spectral power and poststimulus
activity

Changes in the brain state between rest and movement lead to event-related desyn-
chronization in µ and β frequency bands [135]. Hence, it is to be expected that signif-
icant correlations between prestimulus spectral power in these frequency bands and
the poststimulus data are found roughly in the same spatiotemporal areas as the
significant brain-state-dependent changes. This is indeed the case and illustrated
in figure 5.8 for one session of active movements with P1 and P2. In this figure,
the prestimulus spectrum has been determined over 500 msec of data before the
stimulus. For each recording channel, the poststimulus samples which are either
significantly modulated by the movement task, or significantly correlated with the
prestimulus spectral power are marked. Their color indicates the strength or direc-
tion of the influence of the prestimulus activity.

Due to the known covariance of the brain state and the spectral power for move-
ment tasks, the result that the brain-state-dependent and the spectral-power-depen-
dent modulations are quite similar is not surprising. It is more interesting to see,
whether the correlation with the spectral power is preserved when only stimuli
within the same brain state / trial phase are analyzed. However, both for the move-
ment and the rest phase, practically no samples with a significant influence of pres-
timulus spectral power are found. Table 5.3 shows the percentage of samples in the
first half second after the stimulus which are significantly modulated by the brain
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Method Participant BS
All Movement Rest

µ β µ β µ β

TMS-EEG

P1 2.39 0.24 0.30 0.00 0.01 0.00 0.01
P2 1.44 1.24 1.20 0.16 0.02 0.83 0.39
P3 0.79 0.35 0.81 0.00 0.03 0.03 0.15
S1 0.98 0.00 0.05 0.00 0.00 0.00 0.00
S2 0.01 0.02 0.32 0.00 0.01 0.01 0.03
S3 4.12 1.20 1.81 0.02 0.06 0.12 0.20
S4 0.50 0.01 0.32 0.00 0.00 0.00 0.00
S5 0.29 0.18 0.33 0.03 0.06 0.06 0.11
S6 0.06 0.01 0.12 0.00 0.01 0.00 0.03
S7 0.03 0.00 0.01 0.00 0.00 0.00 0.00

ECoG

P1

8.69 2.55 4.48 0.14 0.03 0.00 0.00
28.00 23.49 27.82 0.00 1.72 0.00 0.00
17.95 8.48 12.92 0.00 0.00 0.26 0.15
13.11 4.52 10.92 0.05 0.29 0.00 0.00

P2

1.92 0.22 0.42 0.00 0.00 0.14 0.12
4.80 1.18 5.32 0.00 0.00 0.00 2.78
5.44 1.86 6.20 0.00 0.00 0.16 1.50
4.58 1.74 5.48 0.00 0.00 0.00 0.04

P3
0.00 2.96 0.76 0.00 0.00 1.36 0.26
1.02 2.52 1.40 0.00 0.00 0.74 0.00

Table 5.3.: Percentage of samples of the poststimulus activity which are significantly modulated by
the brain state (BS) or significantly correlated with the µ or β spectral power. The spectral
correlations are either computed for all stimuli or using only those in the movement or the
rest phase.

state and the spectral power, averaged over the patients and broken down for all
stimuli and stimuli during either only the movement or the rest phase.
The results shown here are for the spectrum computed over a time window with
length 1 s before the stimulus. As argued before, the noticeably smaller values for
the three patients in their first ECoG sessions compared with the other invasive
sessions could be explained by the short time difference of less than five days be-
tween the surgery and the experiment. The patients might not yet have become
accustomed to controlling the orthosis via ECoG, thus the movement-related spec-
tral changes between movement and rest are less pronounced than in later sessions. A
direct comparison between the EEG and ECoG results is not fair, because the ECoG
channels are concentrated close to the location of stimulation, while the EEG chan-
nels cover the whole scalp. Thus, many EEG channels might be too distant from

95



Chapter 5. Pre- and poststimulus activity

the stimulation site that no stimulation-evoked activity is found there. This would
clearly lower the fraction of significant samples. A comparison between the patients
in the invasive phase is also difficult, because the electrode locations are not compa-
rable. Thus, an analysis is only sensible on a within-subject basis.
In table 5.3, while a comparably large fraction of poststimulus samples are modu-
lated by the brain state and also by the spectral power if all stimuli are taken into
account, almost none are significantly correlated with the spectral power if only
stimuli within the movement phase are used. This is especially evident for the in-
vasive data, where for P2 and P3 no significantly correlated samples are found in
the movement phase. Although the percentages are slightly higher for the rest phase
compared to the movement phase for µ power (p = 0.02, paired Wilcoxon signed rank
tests), no such effect is found for β (p = 0.07). The percentages during rest and move-
ment are much smaller than the values for all stimuli (µ, β: p < 0.001). The main
result is, however, that there are almost no samples in the poststimulus recording
for which the amplitude is significantly correlated with either µ or β power within
a constant brain state.
In figure 5.9, the percentage values are shown for all tested time windows between
100 and 1000 msec before the stimulus for patient P1. The spectrum of a short
window provides information about the activity occurring immediately prior to the
moment of stimulation, but the variance of the spectral estimate might be high. The
estimated spectrum for a long window would be more stable but its computation
takes information from a comparably long period of time into account, thus it re-
flects more general, less immediate changes in the brain activity. The results in figure
5.9 demonstrate that the length of the prestimulus time window does not influence
whether significant correlations between the spectral power and the poststimulus
amplitude modulations in the movement phase are found. These are almost absent.
Using all stimuli, the steady increase in the fraction of samples of the poststimulus
activity found to be significantly correlated with prestimulus spectral power with in-
creasing length of the prestimulus time window shows that short-term fluctuations
in the power of brain signal oscillations do not modulate the poststimulus ampli-
tude. Instead, the general power level of the oscillations as a correlate of the brain
state is the most important factor.

The absence of a significant relationship does not prove that there is absolutely no
relationship (the result is simply ”inconclusive”) [41]. However, it becomes clear that
at least within the movement phase, if there is a direct influence of the prestimulus
spectrum on the evoked activity, the size of this effect is very small.
Amplitude modulations are not the only way that an influence of prestimulus ac-
tivity might be observable. For P1, one sub-component of the evoked activity could
be identified which displays a dependency of its latency on the brain state (figure
5.6 and 5.7). Similar as for the amplitude modulations, one can test whether there
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A B

Figure 5.9.: Median of the percentage of samples in the poststimulus ECoG activity of P1 with sig-
nificant correlations with the prestimulus µ (A) and β (B) power, in relation to the length
of the prestimulus time window used to compute the spectrum. The median is taken
over all sessions with active movements in the invasive phase. The correlation between
prestimulus power and poststimulus amplitude is computed either for all stimuli (green),
only the stimuli in the movement phase (blue) or only the stimuli in the rest phase (red).

is a significant correlation of the latency with the prestimulus spectral power for all
stimuli, rest stimuli and movement stimuli. Using the Spearman correlation coefficient
and permutation tests as before in this section (α = 0.05), significant correlations be-
tween the prestimulus spectral power and the latency of this component were found
(figure 5.10) [176]. These significant correlations exist not only if one takes all stimuli
into account (figure 5.10 A), but also if only the movement stimuli are used (figure
5.10 B). With the exception of the third session, this frequency range encompasses
the frequencies between 5 and 40 Hz across all sessions. Thus, this shows that in
principle there might be components of the evoked activity which are modulated by
the prestimulus spectral power independently of the brain state. Hence, it might be
possible to optimize the stimulation parameters, especially the timing, to control the
latency of this component within the movement state [176].

Unfortunately, no comparable sub-component was found for the other patients
and the external connection with the implanted electrodes of P1 had been removed
before it could be tested experimentally, whether the latency of this evoked com-
ponent can be controlled by a closed-loop system. This stimulation system would
have used a regression model trained to predict the latency from the spectral power
to monitor the measured ECoG activity and to stimulate within the movement phase
only, if the predicted latency is below a predefined threshold.

To summarize: In this chapter, the relationship between pre- and poststimulus ac-
tivity was studied. The intention to move a limb, even a paralyzed one, changes the
reaction of the brain to the stimulus, possibly by altering the cortical excitability in
comparison to a resting state. This effect is strong enough, that these two brain states
can be discerned using the CCEPs of a single stimulus. Because the change from a
resting state to a movement state is accompanied by a change in the power spectrum
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A B

Figure 5.10.: Spearman correlation coefficient between the latency of the evoked subcomponent of P1
and the spectral power for all sessions. Significant correlations per session are marked by
horizontal colored lines. (A): All stimuli. (B): Only stimuli during the movement phase.

(ERD/ERS), it was logical to look whether the CCEP amplitudes are modulated by
the spectral power at the moment of stimulation as well. However, there was no
direct relationship between the prestimulus spectral power of sensorimotor rhythms
and the CCEP (table 5.3), a finding consistent with earlier studies on motor-evoked
potentials.
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6 Interaction between stimulation
parameters, pre- and
poststimulus activity

In the last chapter, the influence of the prestimulus activity on the evoked activity
was studied for constant stimulation parameters. While the actual activity of the
stimulated person at the moment of stimulation makes a difference, the analysis in
section 5.5.3 has provided no indication that there is more than a very faint direct
influence of the prestimulus spectral power of sensorimotor rhythms on the CCEP
amplitudes. This is unfortunate, because the crucial factor whether or not the pos-
tulated closed-loop control of the evoked activity is possible is that the brain activity
before the stimulus has to influence in some way the generation of the poststimu-
lus activity. This influence has to go beyond a brain-state-dependency, because it
might be sensible to contingently associate just a specific brain state with the appli-
cation of stimulation, thus stimuli would be triggered only while for example the
patient attempts to move. Because of this, one has to look for features of the EEG/
ECoG signal which provide meaningful information about the evoked effects within
a constant brain state. Thus, although the absence of a direct influence of the spec-
tral power of sensorimotor rhythms sheds doubt on the feasibility of this particular
closed-loop system, there are more possibilities to realize it which have to be inves-
tigated.
First of all, apart from sensorimotor rhythms, other parts of the spectrum could have
an influence. The same holds for the waveform of the signal before the stimulus. The
time domain activity in particular was very important for Brugger [23] who realized
closed-loop control with features derived from the local field potential. Secondly,
even if there is no direct relationship allowing the construction of a forward model
how patterns of prestimulus activity generate the CCEP for constant stimulus pa-
rameters, there might still be an interaction between the prestimulus activity and the
stimulation parameters. For example, Brugger [23] found that closed-loop control
was only possible for a specific range of intensities, not for all. Therefore, the re-
lationship between pre- and poststimulus activity should be studied for different
stimulus intensities in an attempt to test the third hypothesis:
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Hypothesis III
The prestimulus activity and the stimulation intensity interact in generating
the evoked activity. Thus, the combination of pre- and poststimulus activity
provides more information about the applied intensity than the poststimu-
lus activity alone.

For this reason, experiments were conducted with the patients in which they
were stimulated with varying stimulation intensities. Then, regression models were
trained to infer the intensity for each individual stimulation pulse from the recorded
neural activity - in a sense, to ”decode” the intensity from the brain activity [174,
175]. Naturally, one would assume that the shapes of the CCEPs give the most im-
portant pieces of information about the employed intensity. If there is an influence
of the prestimulus activity, even if it is an interaction with the stimulation intensity,
one could detect it by analyzing the decoding results: The error in estimating the
intensity when using the direct solution proposed by Brugger et al. [25], which com-
bines pre- and poststimulus neural activity, should be lower than the error when
using only the CCEPs as input features. Thus, two steps are needed in the analysis:

1. Decoding from CCEPs? One needs to show that a regression model can indeed
estimate the applied stimulation intensity from the CCEPs with reasonably
small error. This is not a particularly bold conjecture, because one clearly ex-
pects that there is a correlation between the intensity and the size of the evoked
activity. However, this analysis is interesting by itself for several reasons, not
only because it provides a baseline estimate for the decoding with combined
pre- and poststimulus features: If each recording channel is processed individ-
ually, the quality of the decoding should differ between recording sites. One
could speculate that this could depend on the strength of the neural connectiv-
ity between stimulation and recording site such that the decoding error might
be interesting to assess effective connectivity between brain areas. Secondly, if
one can show that the decoding generalizes to unknown intensities, one can
think about building an open-loop stimulation system where the regression
model computes an optimal intensity to evoke a certain CCEP shape.

2. Improvement with prestimulus activity? After that, regression models are
trained on the combined pre- and poststimulus activity to perform the same
task and the question is whether this leads to a reduced decoding error. If
this is the case then the third hypothesis would be confirmed and closed-loop
stimulation to control the evoked activity would seem feasible.
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6.1. Experimental setup

Figure 6.1.: Position of the stimulation and recording electrodes for P1 and P2. White circles denote
electrodes used only for recording, while electrodes used at least once for stimulation are
marked by black circles. Channel 10 of P1 is marked by the white arrow in the upper
right image. Adapted from Walter et al. [175].

6.1. Experimental setup

The task as well as the recording and stimulation setup of the experiment are de-
scribed in detail in section B.3. Two sessions were conducted with P1 and three with
P2. In each session, the patient was stimulated with 100 repetitions of 8 different
intensities in random sequence. Per session, this stimulation pattern was applied
sequentially on three different stimulation electrodes, one placed over the primary
somatosensory cortex (S1), one over the primary motor cortex (M1) and one over
the pre-motor cortex (PMC). This configuration is shown in figure 6.1. For P2, the
same three stimulation electrodes were used in all sessions, while for P1, stimulation
over S1 was conducted with two different electrodes. The white number in figure
6.1 indicates which electrode was used in which session.

6.2. Feature extraction

Channels with excessively long (> 20 msec) and pronounced stimulation artifacts
were removed from further analysis. Typically channels on the same strip as the
stimulation electrode were affected by this. Unfortunately, this meant that due to
the arrangements of the electrode strips, no effects of stimulation on somatosen-
sory cortex (S1) could be recorded on S1 for P1 because all channels on this strip
showed severe artifacts. A semi-automatic trial rejection using the variance of the
post-stimulation data was employed to remove trials with channel-specific artifacts,
amplifier saturation or other artifacts.
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6.2.1. Poststimulus data

As shown in figure 6.2, it is reasonable to assume that the shape of the evoked
waveform itself yields useful information about the applied stimulation intensity.
In order to capture this shape with features suitable as input for the regression
model, a binning procedure is used: First, a bandpass filter (Butterworth filter of
order 2, cutoff: 5 and 500 Hz) and a notch filter at 50 Hz were applied anti-causally
to the data to avoid contamination of the evoked response with the stimulation
artifact. A time segment after the stimulus with length l is divided into a set of bins
and the value of all samples within a bin is averaged. This number of samples is
termed the bin width b. The advantage of the binning procedure over using the raw
recorded activity is the reduced dimension of the input space and the reduction of
redundancy in the input features. In order to find good settings for the binning, all
permutations of values for l in the range between 20 and 500 msec in steps of 20
msec and b ∈ {1, 2, 3, 4, 5, 10, 15, 20} msec have been tested. If the window length
was not divisible by the bin width, the window was shortened to the next multiple
of b. These settings are tested for each channel individually, because they are likely
to be different due to the different shapes of the evoked activities. For the channel
depicted in figure 6.2 it seems likely that a l ≤ 50 msec is optimal.

6.2.2. Prestimulus data

Similar to the poststimulus data, meaningful features for the prestimulus activity
had to be found. Brugger [23] identified the time domain activity as a useful input
feature which could be improved by a projection on the principal components. Al-
though only faint correlations between the spectral power before the stimulus and
the stimulation-evoked activity could be found for resting state data (section 5.5.3),
the prestimulus spectral power might still be a useful feature, too. For the extraction
of prestimulus features, the bandpass filter was applied in the forward direction.

Time domain

In the time domain data, as for the poststimulus data, a binning procedure was used
to capture the shape of the waveform. Due to the results of the analysis of the post-
stimulation data, a bin width of 1 msec was used, but the length of the prestimulus
window was varied between 10 and 100 msec in steps of 10 msec.

Frequency domain

The spectral power was extracted with an autoregressive model of order 100 (deter-
mined as a model order well suited for the data by use of the ARMASA Matlabr

toolbox [19]) for the frequency range of 5-100 Hz in steps of 5 Hz. The spectrum
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was computed over prestimulus data windows with lengths differing between 100
and 700 msec before the stimulus in steps of 100 msec. Similar to the analysis in
section 5.5.3 this was done to test for the expected trade-off between variance and
immediacy of the spectrum.

6.2.3. Regression models

Regression models to infer the stimulation intensity from the time or frequency do-
main features were trained with the primal Support Vector Regression (SVR) algo-
rithm [16, 26] with an ε-insensitive l2-loss function. A Gaussian RBF kernel was
used in order to allow for interactions between pre- and poststimulus features of
the combined model. The hyperparameters - namely the regularization parameter
C, the width ε of the loss function and the width of the kernel σ were determined
using span bound optimization [34].

6.3. Evaluation of the regression models

In order to evaluate, how well a model performed in inferring the applied stim-
ulation intensity from poststimulus features alone or the combination of pre- and
poststimulus data, the root mean squared error (RMSE) and the square of Pearson’s
correlation coefficient r2 between the decoded and the actual intensities were used.
Models with an RMSE smaller than the step size of 1 mA were considered to be
successfully trained. In a first step, 10-fold cross-validation over all trials was used
to compute these measures. In each cross-validation fold, scaling factors and offsets
were determined to scale the training features to the range of -1 to 1. These factors
and offsets were then applied to the test data.
Secondly, in order to test whether the regression models generalize to unknown in-
tensities, the models were trained with all instances from a subset of intensities and
tested on the remaining instances from intensities unseen in the training procedure.
For P1, the SVR was trained on the trials with intensities of 1, 3, 5 and 8 mA for
training and tested on 2, 4, 6 and 7 mA. This was also done for the first session
of P2, whereas for the second and third session, 5, 7, 9 and 12 mA were used for
training and 6, 8, 10 and 11 mA for testing.

6.4. Results

The dependency of evoked responses on stimulation intensity can be seen in fig-
ure 6.2, demonstrating that there is a nonlinear relationship between the amplitude
of the evoked activity and the intensity. For the depicted channel, the strongest
differences are found in the first 50 msec after the stimulus.
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Figure 6.2.: Evoked activity on channel 10 (arrow in figure 6.1) after anodal pulses were applied to
the motor cortex of P1. Colored lines: Single trials color-coded by intensity. Black solid
lines: Mean evoked activity per intensity.

6.4.1. Decoding intensity from poststimulus data

An example for the results for identifying the best combination of window size
and bin width for the binning procedure of post-stimulation data is depicted in
figure 6.3. When estimating the applied stimulation intensity from the recorded
data with the best settings for bin width and window size, the resulting RMSE of
0.26 mA indicates that the intensities are very well separable. Thus, one could argue
that the connection from the brain area below the stimulation electrode to the one
below the recording electrode are well connected. Indeed, both electrodes are in
close vicinity (see figure 6.1). If one performs this analysis for all recording channels
in a stimulation session, one might be able to use the RMSE, i.e. the measure, how
well stimulation parameters are preserved in the evoked activity, as a measure of the
connectivity between the stimulation and the recording area [175]. In figure 6.4, this
is done for all three stimulation locations of the second session of P1. A noticeable
result, especially for M1 stimulation, is that the distance to the stimulation electrode
is not the only factor determining the quality of the decoding: The error is larger for
electrodes frontal and lateral to the stimulation site than those parietal and medial
from it.

Across all sessions, the RMSE of the estimated intensities was computed for the
different brain regions. The best and averaged RMSE across all channels of each
recording region is shown in table 6.1.

With the exception of stimulation over PMC and decoding over S1 and some chan-
nels on M1, for P1 a RMSE smaller than 1 mA can be reached in most cases, repro-
ducible in both sessions. For P2, only the intensity after stimulation over M1 can
be decoded with a small error on the other channels. This again is reproducible in
all sessions. It seems that at least for some combinations, the relationship between
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Figure 6.3.: Estimating the intensity used for the stimulation displayed in figure 6.2 from poststimulus
data. (A): RMSE depending on different combinations of window length and bin width.
(B): Estimated intensities vs. the actual intensities for the combination of window length
and bin width with the lowest RMSE. Boxes encompass the 25th-75th percentile, circles
denote outliers.

Figure 6.4.: Decoding of the intensity from all recording channels for different positions of the stim-
ulation electrode. Second stimulation session with P1, channel positions are displayed as
circles overlayed over the MRI of P1. Left: Stimulation electrode (white electrode) placed
over the somatosensory cortex (S1). Middle: Stimulation electrode over M1. Right: Stim-
ulation electrode over PMC. The RMSE of all other recording electrodes is color-coded.
White dashed circles denote electrodes which were not used in the analysis, either because
of strong stimulation artifacts or because they had been used as the reference electrode.
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Recording area

S1 M1 PMC

Patient Session Stim mean best mean best mean best

P1

1
S1 0.42 0.29 0.67 0.51
M1 0.42 0.40 0.47 0.27 0.69 0.43
PMC 1.94 1.65 1.21 0.39 0.67 0.67

2
S1 0.48 0.34 0.83 0.72
M1 0.40 0.28 0.55 0.18 0.85 0.75
PMC 1.43 1.35 0.71 0.24 0.64 0.64

P2

1
S1 1.99 1.49 1.83 0.85 1.45 1.28
M1 0.63 0.49 0.53 0.46 0.55 0.50
PMC 2.00 1.87 2.21 2.12 2.16 2.16

2
S1 2.02 1.57 2.09 1.74 2.25 2.25
M1 0.94 0.55 0.63 0.45 0.70 0.59
PMC 2.03 1.70 1.98 1.52 1.84 1.51

3
S1 1.78 1.38 1.90 0.75 1.27 1.21
M1 0.67 0.50 0.67 0.42 0.73 0.68
PMC 2.00 1.70 2.01 1.58 1.21 1.20

Table 6.1.: Average RMSE of the intensity estimation in mA over all channels recording from M1,
S1 or PMC for different positions of the stimulation electrode (Stim) and RMSE for the
channel with the lowest error per recording area. All stimulation trials were used.

stimulation intensity and the shape of the evoked activity can be captured by the
regression model.

This finding opens the question, whether such a regression model might be able
to predict, given a certain target shape, which stimulation intensity would be needed
to evoked this target shape. This analysis can be performed with the recorded data
by training the regression model on a subset of the 8 applied intensities and testing
it on a disjoint set. 4 intensities were used for training and 4 for testing (see section
6.3 for the concrete values per session). The results of this analysis, measured by the
average RMSE and r2 value per brain area, are shown in table 6.2.

This table again demonstrates that, similar to the results for all intensities, the
influence of the stimulation intensity on the evoked activity can be captured very
well by the regression model. Furthermore, the model can generalize to unknown
intensities. In Walter et al. [174] it was shown that 3-4 different training intensities
are sufficient to construct models that behave robustly for novel intensities, because
their estimation error is comparable to models that are trained on instances from all
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Recording area

S1 M1 PMC

Patient Session Stim RMSE r2 RMSE r2 RMSE r2

P1

1
S1 0.65 0.91 0.88 0.82
M1 0.79 0.92 0.77 0.88 1.24 0.69
PMC 2.06 0.00 1.36 0.49 0.69 0.88

2
S1 0.74 0.90 1.20 0.66
M1 0.89 0.91 0.84 0.82 1.08 0.75
PMC 1.52 0.39 0.90 0.77 0.64 0.91

P2

1
S1 2.02 0.02 1.77 0.20 1.83 0.07
M1 1.55 0.43 1.32 0.48 0.80 0.83
PMC 2.00 0.01 2.04 0.00 2.16 0.02

2
S1 1.92 0.10 2.02 0.02 2.06 0.01
M1 1.23 0.58 0.77 0.85 0.95 0.79
PMC 2.03 0.04 1.95 0.10 1.72 0.26

3
S1 2.00 0.04 1.83 0.16 1.82 0.19
M1 1.16 0.66 1.26 0.58 1.35 0.56
PMC 2.03 0.03 1.99 0.05 1.65 0.27

Table 6.2.: Average RMSE of the intensity estimation in mA and r2 over all channels recording from
M1, S1 or PMC for different positions of the stimulation electrode (Stim). Disjoint subsets
of intensities were used for training and tested. From Walter et al. [175].

available intensities. This opens up new possibilities for the optimized selection of
the stimulation intensity. If one knows how the brain should react to the stimulus,
one might be able to infer the optimal stimulation intensity to evoke the target shape
by applying several test stimuli with different intensities, then training a regression
model to estimate the intensity from the poststimulus activity. Afterward, one can
use the model to compute the intensity necessary for the target activity. However,
as this regression model only uses poststimulus activity, this would be a purely
open-loop stimulation paradigm: Once the intensity is computed offline, it would
be constant throughout the experiment. In addition, the target shape should be
within the space of achievable shapes for stimulation-evoked potentials [174].

6.4.2. Influence of prestimulus activity

This experiment gives us another opportunity to test whether a closed-loop system
for the control of the evoked activity is feasible. In comparison to the last chapter,
the leading question this time is not whether there is a direct influence of pre- to
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poststimulus activity (found to be unlikely in section 5.5.3), but whether there is an
interaction between the prestimulus activity and the stimulation intensity in generat-
ing the poststimulus activity. If this is the case, then the open-loop system outlined
in the last paragraph could be augmented to a closed-loop paradigm, where the
stimulation intensity is adjusted online during the experiment in order to evoke the
target shape. This would fulfill the idea of using closed-loop stimulation to reduce
the variance of the evoked activity.
The feasibility of this can be tested by evaluating the regression models: If a model
trained on the combination of pre- and poststimulus activity performs clearly better
than a model trained only on the poststimulus activity, then there has to be relevant
information encoded into the prestimulus activity. Hence, this would confirm hy-
pothesis III. Although it has been shown in the last chapter that the influence of the
prestimulus activity on the poststimulus activity is relatively small, as long as no
change in the brain state occurs, this hypothesis might still hold. The reason for this
is that features which are meaningless by themselves can become important for the
solution of a problem if their interaction with other features provides meaningful
information, as shown for example by Guyon and Elisseeff [67].
It is not clear which features of the prestimulus data might contain such relevant
information. According to Brugger [23], at least for microelectrode data, the shape
of the prestimulus waveform is of interest. On the other hand, as seen in the last
chapter, spectral power sometimes had a significant influence on the evoked activity,
hence the spectrum might be a useful feature, too. For each channel, both features
were tested and combined with the poststimulus features that led to the lowest
RMSE in the previous section. The length of the prestimulus window over which
these features were computed was varied and again the setting with the lowest error
was found using 10-fold cross-validation. In this case, however, the cross-validation
was done for the combined feature set of pre- and poststimulus activity. Then, the
RMSE was computed for the best setting of the preprocessing with another 10-fold
CV, both for the post-. and the pre- post model, once with binning and once with
spectral data. This can be considered as an example of a wrapper method for feature
selection. The process resulted in a total of 169 values for each feature set, one for
each combination of a recording and a stimulation electrode.

On average, the RMSE increased by 2.5 % for the spectral prestimulus features
and by 2.8 % for the binning features compared to using only the poststimulus fea-
tures. A Friedman test, Tukey-Cramer corrected for the three comparisons, revealed
that the RMSE for poststimulus data only was significantly smaller than for the com-
bined models (p < 0.001). This result does not support the hypothesis that the signal
before the stimulus interacts in a meaningful way with the stimulus parameters to
produce the poststimulus activity. Although a small improvement is found for some
models (figure 6.5), in the majority of cases (67.5 % for binning, 77.5 % for the spec-
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Figure 6.5.: Change in RMSE for combined pre- and poststimulus features in comparsion to models
using only the poststimulus features. Each box shows the distribution of the change in
percentage. Positive values indicate a higher error for the combined models. The dotted
horizontal line denotes 0 %, thus no change.

tral power), the result is worse for the combined model.
For the time domain features, the smallest error was found in more than 80 % of the
cases for windows with a length ≤ 50 msec with a significant positive correlation
(ρ = 0.33, p < 0.001) between prestimulus window length and the intensity estima-
tion error. Therefore, prestimulus windows longer than 100 msec seemed unneces-
sary to test. For the spectral features, no such correlation was found (ρ = −0.01,
p > 0.6). If the prestimulus signal does not provide meaningful information for
the model, this difference between time domain and frequency domain features
can be explained by the fact that for the binning procedure, a longer time window
means that more features are added whereas for the spectral analysis, the number
of features is independent from the prestimulus window length. If the prestimulus
features just add noise, an increasing number of them will lead to degrading perfor-
mance.

The analysis in this chapter did not reveal any clear influence of the prestimu-
lus activity on the CCEPs. Although the estimation error was reduced for some
stimulation-recording-combinations by a small percentage, in practice the influence
of the prestimulus activity is still very minor. Thus, one has to seriously doubt, given
the data at hand, whether a closed-loop system that controls the shape of the evoked
activity by intensity-adaptation is feasible. Of course, the absence of a relationship
can not be proven and the possibility remains that either better preprocessing meth-
ods are found to extract the relevant information from the prestimulus activity, or
that the negative result might be due to the patients, the electrodes and their po-
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sitions or the stimulation protocol. For example, if one compares the strength of
the brain-state-dependent modulations of the CCEPs and the influence of the stim-
ulation intensity, one finds that the former are smaller than the effects induced by
a change of intensity of 1 mA. As an example, one can consider the graph of the
intensity-dependence of the activity of channel 10 in P1 in the first session of this
stimulation experiment (figure 6.2). For an intensity of 7 mA, the strongest CCEP
peak is found 20 msec after the stimulus with an average amplitude of -64.9 µV.
For 6 and 8 mA, the average amplitude at this time point is -42.4 µV and -89.0 µV,
respectively, thus a change of 1 mA in intensity corresponds to about 20 µV in am-
plitude for this particular example. If data from the first and second session of the
stimulation screening experiment B.2 is taken, where P1 was stimulated with 7 mA
and identical pulse shapes on the same electrode as in this experiment, the same
peak in the CCEP at channel 10 with a latency of 20 msec is found. However, the
average amplitude of this peak changes only between 3.5 (session 1) and 9.6 (ses-
sion 2) µV between the movement and the rest state. Thus, it might be worthwhile
to perform the same experiment in the future with intensity steps less than 1 mA
or even a random sampling of intensities from a predefined interval. However, due
to time constraints and the removal of the external connections with the implanted
electrodes, such an experiment could not be conducted.
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7 Discussion

The central topic of this thesis was to investigate, whether closed-loop stimulation
for the facilitation of the rehabilitation of paralyzed stroke patients is feasible. Two
general ideas have been proposed how closed-loop stimulation paradigms can be
designed for this purpose: Firstly, brain-state-dependent stimulation, where the tim-
ing of the stimulation pulses is coupled to the output of a classifier which detects the
intention of the patient to move the paralyzed limb from the brain signals. Secondly,
the adaptation of stimulation intensity to the ongoing brain signal with the purpose
of producing stable evoked neural activity after stimulation. These two designs have
been studied in detail with severely affected stroke patients. The major findings of
this thesis are:

• Algorithms for the computation of the brain signal spectrum in the presence
of undesirable stimulation after-effects in the brain signal have been designed
and compared.

• For the first time, brain-state-dependent stimulation (BSDS) with a continuous
detection of the brain state was realized with the help of these algorithms.

• The BSDS paradigm has been shown to be applicable to patients and possible
to integrate in a regular rehabilitation training.

• Experiments investigating the relationship between prestimulus and poststim-
ulus brain activity and its interaction with stimulation parameters revealed a
small but significant influence of the brain state on the processing of stimula-
tion in the brain.

• If the patient is attempting to move the paralyzed limb, this modulation is
strong enough that it can be distinguished from a relaxed state on the level of
single pulses. This makes it possible to train a classifier to distinguish move-
ment and rest solely from evoked brain activity.

• However, any direct influence of the EEG/ECoG-signal on the evoked activity
before the stimulus, either in the frequency or the time domain, is likely to be
very small.
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• Although the stimulation intensity is well preserved in the evoked activity of
distant brain areas, the interaction between the prestimulus activity and the
intensity in the generation of these evoked potentials is again small.

• Hence, closed-loop stimulation to reduce the variance of the evoked brain ac-
tivity does not seem promising, at least when using ECoG and epidural elec-
trodes.

7.1. Brain-state-dependent stimulation

The BSDS protocol developed here allows a new type of experimental paradigm to
investigate the reaction of the brain to cortical stimulation: Similar paradigms used
so far have relied on external cues to the participant, but an online control whether
the participant actually tries to fulfill the given task has not been employed. By
directly decoding the brain state of the stimulated person from the brain signal,
one has a tight control of the stimulation timing and can apply stimulation very
specifically during the desired brain state. Thus, with this novel protocol, one can
investigate whether it is possible by pairing stimulation with a certain brain state
to modulate the performance of the participant in this brain state. By monitoring
directly the brain signal and using it to guide the stimulation timing, this should
be more successful than coupling the stimulation timing simply to external cues.
Instead of using what the participant is supposed to do as input and risking that he
does not do it properly, one directly uses what the participant actually does or what
he wants to do. Thus the stimulation timing should be more specific with the BSDS
paradigm and continuous brain state decoding.
What has been shown in this thesis is that stroke patients can control the BSDS
paradigm by attempting to move the paralyzed hand. These patients trained with
the paradigm first with combined EEG and TMS, then for 4 weeks using implanted
epidural electrodes for recording and stimulation. Although we found slight im-
provements in the hand function of the patients which came to pass over the 4
weeks of the invasive phase (e.g. P1: starting from only being able to perform min-
imal twitches of the little finger with the left hand at the beginning of the invasive
phase, he gradually developed the ability to weakly open and close the left hand vol-
untarily), the explorative nature of the BSDS paradigm with the cross-over design for
testing different stimulation parameters (see section B.1), the number of other proce-
dures conducted with the patients during the invasive period (e.g. other rehabilita-
tion training, other experiments, for example for the decoding of movement-related
signals) and the small number of n = 3 patients prevent us from drawing a conclu-
sion about whether BSDS actually provides a benefit for the patient. This can only be
tested in a randomized, controlled study with a larger number of patients. However,
before such a study can be attempted, there should be more research undertaken to
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get a better idea about which stimulation parameters are likely to facilitate rehabil-
itation. The last clinical study on brain stimulation for rehabilitation, the Northstar
Everest trial [21, 79, 106, 136] used 50 or 100 Hz stimulation, but it did not yield
the desired results. Furthermore, such a high stimulation frequency will not allow
BSDS. For example, for 50 Hz stimulation, there is an inter-stimulus interval of 20
msec. As shown in chapter 4 the minimal gap size necessary to cover all after-effects
of the stimulation which are detrimental to brain state decoding (stimulation artifact
and early evoked activity) needs to be higher than 10 msec, better in the range of
50 msec, therefore no clean EEG/ECoG data would be left over for brain state de-
coding. As there need to be at least as many samples between successive gaps as
the order or the AR model, even a gap size of 10 msec would not be sufficient to
fit the model. Hence, other stimulation frequencies need to be tested for a larger trial.

7.2. Controlling the evoked activity

The analysis on the influence of prestimulus brain activity on the shape of the
stimulation-evoked activity in chapter 5 and 6 do not support the hypothesis that
closed-loop stimulation can reduce the variance of the evoked activity significantly.
This is somewhat surprising, as it has been shown by Brugger et al. [23, 24, 25] that
such a control is in principle possible. However, there are several important differ-
ences between the work of Brugger et al. [23, 24, 25] and this thesis which might
account for this discrepancy:

• Microelectrodes vs epidural electrodes/EEG: Microelectrodes have a much
higher spatial resolution than the larger electrodes employed in this work, al-
lowing the recording of signals from single neurons. For an evoked potential to
be recordable by ECoG or EEG, millions of neurons have to fire synchronously
[130]. Thus, the recording in the EEG/ECoG case is much less selective than
with microelectrodes.

• Anesthetized vs awake: The results by Brugger [23] were obtained from anes-
thetized rats, while the experiments reported here were conducted with awake
patients. It has been previously shown, that the reaction of the brain to stim-
ulation during sleep or anesthesia differs strongly from the reaction in awake
brains [13, 54, 116]. For example, the brain switches between up- and down-
states during sleep [13] and anesthesia, hence one factor in the results of Brug-
ger [23] might be that the adaptation of the stimulation intensity was able
to compensate for these state switches. Towards closed-loop stimulation for
stroke rehabilitation, all stimulation pulses would need to be applied within
a specific brain state. It has been speculated that at least for TMS-EEG there
is only a weak direct connection between the measured brain signal and the
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cortical excitability [146], possibly because the spatial resolution of the record-
ing is too low [121]. According to the results of this study, this is similar for
ECoG and epidural stimulation. Thus, once the brain-state-dependency of the
stimulation effects cannot be exploited by the closed-loop system, the direct
relationship between brain activity and evoked activity is too small to allow
any noticeable control.

• Controllable poststimulus time window: In Brugger et al. [24], the amount of
time after a stimulation pulse where a reduction in the variance of the evoked
activity could be demonstrated was less than 10 msec. After that, no noticeable
effect could be achieved. The amplifier hardware used in this work which was
restricted to amplifiers certified for human use, resulted in the contamination
of the recorded signal with stimulation artifacts which had a strong influence
on the first ≈ 5 msec after the stimulus [167], thus a control was likely only
for a very short amount of time. However, the hope was that the latency until
evoked activity can be recorded on distant electrodes when stimulation and
recording is performed with ECoG electrodes (reported by Matsumoto et al.
[117] to be greater than 10 msec which was confirmed in this work) would
allow us to get around this timing issue.

• Distance between electrodes: The electrodes used in this work were spaced 1
cm apart, while for Brugger et al. [24] this distance was only 200 µm. Thus,
with the microelectrodes, very local effects were recorded, while the ECoG
electrodes even recorded the effects on relatively distant electrodes. While the
latter point gives a more global overview over the effects of the stimulation on
the brain, it also means that the most local effects can not be recorded.

• Stimulation intensity: Brugger et al. [24] tested different intensity ranges and
found that only the range with the smallest intensities allowed adaptive stim-
ulation. The intensities used in this work were higher by a factor of 1000 or
more. This was necessary because lower intensities, for example in the range of
1 mA, did not produce noticeable effects on any recording electrode (e.g. figure
6.2). Although the intensities used in therapeutic stimulation of patients over
epidural or subdural electrodes (e.g. [20, 21, 78]) are slightly smaller than the
intensities used in this work, the intensities employed in these clinical studies
are still by a factor of at least 100 higher than the intensities used in Brugger
et al. [24]. If there is a similar intensity-dependent effect present for stimula-
tion over epidural electrodes which was not found due to the specific set of
intensities tested in this work, the possibility of this control scheme is useless
as long as the intensities are not optimal for the rehabilitation of the patients.

Thus, a direct replication of the results of the microstimulation experiments using
less invasive means was unlikely.
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7.3. Using stimulation-evoked activity to optimize
open-loop systems

Although a closed-loop control of the stimulation-evoked activity does not seem fea-
sible without using microelectrodes, the shape of the evoked activity still holds in-
formation which can be used to optimize open-loop stimulation systems and stroke
rehabilitation. First of all, the response of the brain to stimulation in form of the
evoked activity can be interpreted as a measure of the connectivity between the
stimulated area and the recording area [54, 86, 117, 118, 160]. Thus, analysis of the
patterns of evoked activity might help to track during the rehabilitation training of
the patients whether changes in the brain connectivity associated with motor func-
tion recovery, for example between the supplementary motor area and the primary
motor cortex [66] and in the medial motor area [158], occur as expected.
An indication that this is indeed the case has been demonstrated here for P1, where
a renormalization of the latency of a subcomponent of evoked activity within the
motor area over the course of the rehabilitation training was found. If this can be
generalized to further patients, one might be able to specifically define for a patient,
how the recovery-associated changes in the pattern of evoked activity will look like
and derive from this a target shape to facilitate the generation of the desired changes.
Although a direct closed-loop control for this desired activity is unlikely to be pos-
sible, the work described here for the decoding of the stimulation intensity from the
waveform might allow to compute the stimulation parameter setting such that an
open-loop stimulation systems stays close to the target activity.
The additional use of stimulation experiments where stimulation is applied during
movement and during rest might be very helpful for the definition of the target
activity, because it allows to identify movement-dependent patterns in the evoked
activity, thus pinpointing components that are directly associated with the move-
ment of the limb that should be restored.

7.4. Conclusion and outlook

This work has been one of the very first studies on the use of closed-loop cortical
stimulation systems for human patients. Before, closed-loop stimulation has been in-
vestigated only for the treatment of epilepsy, while in all other clinical applications of
stimulation, open-loop system have been employed. The same open-loop approach
which seems promising for the treatment of chronic neuropathic pain, namely long
pulse trains with 50 Hz frequency applied over the motor cortex, has also been trans-
ferred to stroke rehabilitation, however with contradicting results. The closed-loop
protocol developed in this work, the use of brain-state-dependent stimulation, pro-
vides a new way for how to use stimulation effectively by being more specific in
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the stimulation timing than all current approaches. However, the effectivity of this
approach for rehabilitation needs to be proven in a controlled study with more pa-
tients. In addition, the realization of this BSDS paradigm enables the conduction
of many more studies about the topic of highly specific manipulation of the brain
by cortical stimulation, timed depending on the actual intentions of the stimulated
subject.

The second main question of this thesis was whether it is feasible to use corti-
cal stimulation for more than the modulation of cortical excitability, in particular
whether the reaction of the brain to single stimulation pulses can be of direct use.
The proposed approach of defining a target pattern of neural activity to be evoked by
stimulation might have some merits, because for at least one patient there are corre-
lates of the motor recovery to be found in the shape of the evoked activity. However,
an online control of the evoked activity by adaptation of the stimulation intensity to
the ongoing brain activity does not seem promising, mainly due to the weak direct
link between the pre- and the poststimulus activity. But the strong relationship be-
tween the shape of the evoked activity and the applied stimulation intensity might
make it possible to at least identify optimal stimulation parameters for the target
activity in an open-loop setting. Whether this works in practice has to be tested with
more patients.

The use of cortical stimulation for stroke rehabilitation is still in its infancy and a
lot more studies with patients are needed before one can think about using cortical
stimulation in clinical practice for movement recovery. Although the idea of directly
modulating the brain activity in order to facilitate reorganization of the brain is en-
ticing, it has yet to be demonstrated whether such an approach provides a benefit
to the patient. If it is found that the specificity of the stimulation is an important
factor, then invasive procedures with implanted electrodes, either ECoG as in this
work or microelectrodes are the most promising way to go due to the lack of (spa-
tial) specificity of current non-invasive recording and stimulation methods. This,
however, means, that one has to carefully weigh the risks associated with the im-
plantation procedure with the expected benefit for the patient. Based on the current
results, the improvement with ECoG electrodes is not very large, making it diffi-
cult to advocate more implantations. On the other hand, without being able to work
with more patients, one gives up the opportunity to improve the currently employed
stimulation and rehabilitation paradigms to fully make use of the advantages of im-
planted electrodes compared to non-invasive techniques. In this work and related
works, new paradigms for rehabilitation have been proposed which are at the mo-
ment not feasible without invasive recordings, for example the decoding of specific
hand movements (opening hand, closing hand,...) instead of just movement ver-
sus rest. Thus, more detailed, but small scale studies similar to this, possibly with
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stroke patients who have been implanted with ECoG electrodes for other reasons,
for example chronic pain [65, 173], might be optimal in order to further refine the
rehabilitation and stimulation paradigms and to identify a set of promising param-
eters. These parameters, given that the beneficial effect for rehabilitation is high
enough, can then be tested in a larger patient group. In addition, animal studies
might help to gain a deeper understanding about the processes involved in rehabil-
itation and the interaction of stimulation with the brain. In particular, the lack of a
good understanding about the generation of stimulation-evoked brain activity and
which parts of it provide meaningful information for stimulation paradigms needs
to be overcome in order to specify how stimulation has to be applied.
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A Patient characteristics

Patient Age (y) Sex
Months
since injury

Lesion Affected area

P1 56 M 80
Basal ganglia
hemorrhage

putamen, internal capsule,
insula, opercular part of
inferior frontal gyrus

P2 52 M 159
MCA territory
infarct (frontal)

Frontal lobe including
motor cortex (M1),
parietal lobe including
somatosensory cortex (S1)

P3 63 F 71
Basal ganglia
hemorrhage

Head of striate body,
lentiform nucleus, thalamus,
whole internal capsule,
insula, frontal lobe

Table A.1.: Patient characteristics. All patients had an infarct in the right hemisphere (cortical and
subcortical), leading to paresis of the left upper limb. Adapted from Walter et al. [172].
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B Experiments

In this thesis, results from several experiments are reported. These experiments were
conducted together with the Department of Neurosurgery of the University Hospital
in Tübingen. This section serves as a reference to describe the individual procedures
of the experiments.

B.1. Experiment I: BCI training

This section gives an overview over the BCI training experiments which were de-
signed to support the motor recovery of the patients.

B.1.1. Task

Almost every day (excluding weekends), the patients performed one session of BCI
training. Each session was divided into individual runs with each run consisting
of 11 trials. Per session, usually about 15 runs were conducted, leading to about
160 trials per session. The participant was sitting in a chair facing a 19” monitor.
The left arm of the participant was fixed with two straps, one at the forearm and
one around the wrist while magnets at the fingertips connected the left hand to a
commercial hand robot (Tyromotion Amadeo HTS, Graz, Austria). This device was
controlled by a brain-computer interface (see section B.1.4) and moved the fingers of
the inserted hand between an opened and a closed position. In the case of the stroke
patients, the range of the movement was adjusted in each session [140] because it
was limited by the spasticity of the patient. Each trial of the task consisted of three
phases: preparation (2 sec), feedback (6 sec) and rest (8 sec). During preparation, the
participant received an auditory cue but was instructed to wait with the execution
until the ”Go!” command was given at the start of the feedback phase. During the
feedback phase, starting with a closed position of the left hand, the participant had to
try to open the left hand until the end of the feedback phase. At that point, another
auditory cue (”Relax!”) was given. During the rest period, the hand of the participant
was returned to its original closed position which took about 2-3 seconds and the
participant was instructed to relax. This task design was adapted from Ramos-
Murguialday et al. [138] who used it in a noninvasive BCI-guided rehabilitation
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study with stroke patients, but without stimulation.

B.1.2. Electrophysiological recordings

Both EEG and ECoG were recorded with monopolar amplifiers (BrainAmp DC,
BrainProducts, Munich, Germany) with a sampling rate of 1000 Hz and a high-pass
filter with a cutoff frequency at 0.16 Hz. For the non-invasive sessions, 32 channels
of EEG were recorded with the standard 10-10 system (Fp1, Fp2, F3, Fz, F4, FT7,
FC5, FC3, FC1, FC2, FC4, FC6, FT8, C5, C3, C1, Cz, C2, C4, C6, TP7, CP5, CP3,
CP1, CPz, CP2, CP4, CP6, TP8, P3, P4, POz), referenced against FCz with circular
Ag-AgCl electrodes.
EMG was recorded either with a bipolar amplifier (16-channel BrainAmp ExG, Brain-
Products, Munich, Germany) or a monopolar amplifier of the same type as the
EEG/ECoG amplifier on both arms from flexor digitorum communis (FDC) and
extensor digitorum communis (EDC). On the left arm, additionally signals from the
extensor carpi ulnaris (ECU) and the extensor carpi radialis (ECR) were recorded. In
some sessions, EMG from left biceps brachii (BB) and left triceps brachii (TB) were
recorded as well. During monopolar recordings, the signals were referenced to an
electrode on the sensory cortex and bipolarized for offline analysis.

B.1.3. Cortical stimulation

In most sessions, excluding a few sessions with sham stimulation for control, cortical
stimulation was applied to the patients. When brain signals were acquired via EEG,
TMS was used for stimulation, otherwise epidural electrical stimulation over the
implanted electrodes was employed.

TMS

Transcranial stimuli were applied with a neuronavigated TMS device (NeXstim,
Helsinki, Finland) using a biphasic figure-of-eight coil. The TMS hotspot and opti-
mal coil angle for MEPs on EDC was located using a standardized cortical mapping
procedure [177].

Epidural stimulation

For epidural stimulation, biphasic symmetric pulses with a length of 500 µs were
applied monopolarly to one electrode on the grid with a STG 4008 stimulus genera-
tor (MultiChannel Systems, Reutlingen, Germany). This stimulator has a maximum
output current of 16 mA, 8 independent output channels and its stimulation patterns
are freely programmable via a USB interface.
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Stimulation parameters

During the 4 weeks of invasive BCI training, stimulation parameters were varied
from session to session in order to test different stimulation paradigms on their
ability to modulate cortical excitability and plasticity. The following parameters
were varied:

• Location: Either electrodes over premotor or primary motor cortex were used
as stimulation targets. The specific electrode per cortex was chosen as that
electrode with the lowest threshold for eliciting MEPs on the left hand extensor
muscle EDC, i.e. the electrode covering this part of the motor cortex with the
best connection to the paralyzed hand.

• Number of pulses: each time the stimulator was triggered, either a single
pulse or a double pulse was applied. Control conditions were sham stimula-
tion, where no stimulation was applied, and 50 Hz stimulation, where single
pulses with an inter-stimulus interval of 20 msec were applied at an electrode.
In the latter condition, no online signal processing of the brain signal could
be performed due to the strong artifacts induced by the stimulation and thus
the hand of the patient was moved passively by the orthosis. For the dou-
ble pulse paradigm, two pulses were applied each time with a small, fixed
inter-stimulus interval in the range of 10-20 msec. The location of the stimula-
tion electrodes for double pulses was either: both pulses applied on the same
electrode (first pulse on primary motor cortex and second pulse on the same
electrode (M1/M1) or (PMC/PMC), or on different electrodes (M1/ hyperlin-
klink:PMCPMC or PMC/M1). In the double pulse paradigm, the first pulse
served as a subthreshold conditioning pulse with only 70-75 % of the intensity
of the second, suprathreshold pulse. Sub-/suprathreshold refer to the ability
of a single pulse to elicit an MEP on the EDC muscle.

• Polarity: Stimulation was always applied monopolar, but the cortical electrode
could be either the cathode or the anode. The antipole was always a 50x90 mm
adhesive electrode placed on the skin of the patient below the left clavicle.

• Intensity: The stimulation intensity was adjusted per session for single and
double pulse sessions and chosen such that it reliably evoked MEPs on the
paralyzed arm without being too disruptive. If the stimulation intensity was
chosen too high, the induced muscle could be very distracting or even painful
for the participant, hence the intensity was set such that a small, but reliable
MEP was found.

• Contingency with brain signal: Stimulation could be applied contingent pos-
itive to the movement intention (i.e. only when the intention to move was
detected, the stimulator was triggered), contingent negative (i.e. stimulation

123



Appendix B. Experiments

was only triggered while no intention to move was detected) or independent
from the brain signal and the output of the brain state classifier. In all cases,
a minimum inter-stimulus interval was defined (usually 500 msec) such that
a new stimulus was triggered if at least the minimum inter-stimulus interval
had passed since the last stimulus, and if the brain state classifier reported the
correct movement state.

Before and after each BCI training session, a MEP mapping of the implanted elec-
trodes was performed. For each electrode, an intensity threshold for the generation
of MEPs on the paralyzed arm was determined by repeatedly stimulating each elec-
trode with varying intensities. The change in threshold intensity was interpreted
as a measure for the short-term modulation of the efficacy of the cortico-muscular
connection (the corticospinal excitability).

B.1.4. Online signal processing

In order to make sure that the participant is actively trying to follow the task to
attempt to open the hand, the hand orthosis movements were controlled with an
online classificator of the EEG and the ECoG spectrum using the general-purpose
brain-computer interface framework BCI2000 (http://www.bci2000.org, [150]). For
all participants a classification of spectral power between movement and rest was
possible in a frequency band from 16 to 22 Hz over sensorimotor cortex. For online
classification, two electrodes were selected that were not strongly influenced by stim-
ulation artifacts or signal drifts. The spectrum was estimated in a sliding window
with length 500 msec with a fitted autoregressive model with order 16 for 4 spectral
bins with a width of 2 Hz. In hindsight, a higher AR model order might have been
more appropriate. The resulting spectral feature f (ti) = ∑ log(pb(ti)), where pb is
the spectral power within bin b, was normalized to the mean and variance of f dur-
ing rest. Because one expects that the spectral power within the β range is smaller
during movement than during rest (event-related desynchronization, ERD, [179]), a
negative value for the normalized f signifies ERD. The orthosis was controlled by the
output of an additional smoothing step in order to reduce the variance of the spec-

tral estimation: Only if ∑5
j=0 c(ti− j) f (ti− j) < t with c(ti− j) =

{
8 f (ti − j) > 0
1 else

then the movement of the hand robot was started. If the value exceeded t, the move-
ment was stopped. The threshold value t was adjusted individually per patient and
session in order to provide a challenge in each experiment.
In order to prevent stimulation artifacts and CCEPs from distorting the spectral es-
timation, a peak detection algorithm was used to identify the onset of stimuli and
removed the strongest after-effects from the signal with linear interpolation prior to
spectral estimation. Details of the integration of stimulation in the online BCI have
been described in Walter et al. [172] and in chapter 4.
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B.2. Experiment II: Stimulation screening

The purpose of the stimulation screening experiment was to investigate the effects
of stimulation in different movement-related brain states.

B.2.1. Task

The general setup of a trial and run was the same as the one described for experiment
I in section B.1.1. However, instead of the participant always being instructed to
attempt to perform the hand movement, three different movement paradigms were
tested:

• Active/attempted movements: In this paradigm, as the patients were unable to
actively perform the movement, so they only had to attempt to open the hand.

• Imagined movements: The participants were instructed to imagine opening
their hand without actually performing any movements.

• Passive movements: The participants were instructed to stay relaxed through-
out all conditions. During the movement phase, the hand of the participants
was moved passively from a closed to an opened state. This condition served
as a control condition, because no change in the brain state of the participants
was expected.

For all conditions, the participants received visual feedback of their muscle activity
on the computer monitor they were facing. The EMG activity was measured on
electrodes of the left extensor digitorum communis (EDC) and displayed in the form
of a filled colored circle moving vertically in the middle of the screen. Two horizontal
bars defined the target EMG activity the participants had to achieve during the
feedback phase. The displayed circle was green if the EMG activity was within these
limits and red if this was not the case. Participants were instructed to try to keep
the circle green throughout the whole feedback phase while it should return to a
0 % level during the rest phase. Due to the impaired control of the stroke patients
of EMG activity on the paralyzed hand, the target EMG level was set to a value that
the patients were able to reach comfortably. This level was set commonly between
10 and 40 % of maximal extension for active movement with a range of ± 10 % and
0 - 10 % for imagined and passive movement. The purpose of this visual feedback
was to encourage the patients to produce no muscle activity during imagined and
passive session and to ensure a roughly constant EMG level during active movements.
Strongly varying EMG activity during active movements would make the analysis
of the elicited MEPs problematic, as muscle activity has a direct influence on their
amplitude [114].
Due to time constraints, only 33 trials of active movements, 33 trials of imagined
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movements and 22 trials of passive movements were conducted per session. The
sequence of the trials of these movement conditions was not randomized because it
might have been difficult for the patients to follow the instructions. Therefore, all
trials of a movement condition were conducted successively. The sequence of the
movement conditions was varied in some cases, but usually followed the pattern:
First active movements, then imagined, then passive movements.

B.2.2. Electrophysiological recordings

Both EEG and ECoG were recorded with monopolar amplifiers (BrainAmp DC,
BrainProducts, Munich, Germany) with a sampling rate of 1000 Hz and a high-pass
filter with a cutoff frequency at 0.16 Hz. For the non-invasive sessions, 32 channels
of EEG were recorded with the standard 10-10 system, referenced against FCz with
circular Ag-AgCl electrodes.
EMG was recorded either with a bipolar amplifier (16-channel BrainAmp ExG, Brain-
Products, Munich, Germany) or a monopolar amplifier of the same type as the
EEG/ECoG amplifier. EMG was recorded on the left arm and hand from abduc-
tor pollicis brevis (APB), first dorsal interosseus (FDI), flexor digitorum communis
(FDC), extensor digitorum communis (EDC), extensor carpi ulnaris (ECU), extensor
carpi radialis (ECR), biceps brachii (BB) and triceps brachii (TB). During monopolar
recordings, the signals were referenced to an electrode on the sensory cortex and
bipolarized for offline analysis. This setup was very similar to the recording setup
for the BCI training in section B.1.2, but the recording electrodes were the same in
all sessions.

B.2.3. Cortical stimulation

TMS

Transcranial stimuli were applied with a neuronavigated TMS device (NeXstim,
Helsinki, Finland) using a biphasic figure-of-eight coil. The TMS hotspot and opti-
mal coil angle for MEPs on EDC was located using a standardized cortical mapping
procedure [177]. The stimulation intensity was set at 110 % of the resting motor
threshold. The inter-stimulus interval (ISI) of successive pulses was set to 3 seconds
with a small jitter of ± 40 msec.

Epidural stimulation

For epidural stimulation we used anodal biphasic symmetric pulses with a length of
500 µs that were applied monopolarly to one electrode on the grid with a STG 4008
stimulus generator (MultiChannel Systems, Reutlingen, Germany). We used a 50x90
mm adhesive electrode under the left clavicle of the patient as cathode. We selected
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the stimulation electrode on the grid as the one with the lowest intensity threshold to
reliably evoke MEPs on EDC using single-pulse stimulation and held the stimulation
intensity fixed within each session at a level that evoked MEPs reliably during rest.
In the first session, we used for patient P1 and P2 an intensity of 7 mA and for
patient P3 an intensity of 16 mA. For P2 the intensity had to be increased over the
course of the following 3 sessions to 10.5, 12.5 and 14.5 mA to get stable MEPs. The
pulses were given with a minimum ISI of 2 seconds with a small jitter of ± 40 msec.

B.2.4. Online signal processing

The online analysis of the brain signals and the control of the orthosis in active and
imagined sessions was conducted in the same way as for the BCI training (section
B.1.4). For passive sessions, no online processing of the brain signals was performed
as the orthosis simply opened the hand of the participants passively during the
feedback phase of each trial.

B.3. Experiment III: Single pulses

The purpose of this experiment was to evaluated the effects induced by different
choices for the stimulation intensity on the evoked neural activity.

B.3.1. Task

In order to avoid confounding effects due to actions of the patients, the patients
were instructed to lie relaxed in bed during the experiment with open eyes. The
experiment was conducted with patient P1 (2 sessions) and patient P2 (3 sessions). In
each session, 3 electrodes were used for the delivery of single pulse stimulation, one
located on the somatosensory, one on the primary motor and one on the premotor
cortex. All other electrodes were used to record the evoked neural responses.

B.3.2. Electrophysiological recordings

ECoG signals were recorded with a monopolar amplifier (BrainAmp DC, BrainProd-
ucts, Munich, Germany) with a sampling rate of 5000 Hz and a built-in low-pass
filter at 1000 Hz. No high-pass filter was used to ensure that hardware filters do not
interfere with the shape of the stimulation artifact and the evoked neural potentials.
The signal was monitored and the built-in DC-correction of the amplifier was used if
the recorded signal threatened to exceed the operating range of the amplifier (± 3.27
mV). The ECoG data was referenced to the electrode at the fronto-medial corner of
the grid.
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B.3.3. Cortical stimulation

For epidural stimulation we used monopolar biphasic symmetric pulses with a
length of 500 µs that were applied to one electrode on the grid with a STG4008
stimulus generator (MultiChannel Systems, Reutlingen, Germany) with a 50x90 mm
adhesive electrode placed under the left clavicle of the patient acting as the antipole.
This electrode also served as the ground electrode for recording. Stimulation inten-
sities were varied in steps of 1 mA between 1 and 8 mA for P1 and the first session
of P2 and between 5 and 12 mA for the second and third session of P2. We applied
anodal pulses in the first sessions of both patients and the third session of P2 and
cathodal pulses in the second sessions. Per session, 100 pulses were given for each
intensity in randomized order, in total 800 pulses. The inter-stimulus interval was
set to 1 second.
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Abbreviation Full name

AIC Akaike Information Criterion
ALS Amyotrophic lateral sclerosis
ANOVA Analysis of variance
AR (model) Autoregressive (model)
AUC Area under the (ROC) curve
BCI Brain-computer interface
BOLD Blood-oxygen level dependent
BSDS Brain-state-dependent stimulation
CCEP Cortico-cortical evoked activity
CV Cross-validation
DBS Deep-brain stimulation
ECoG Electrocorticography
EDC Extensor digitorum communis (hand extension)
EEG Electroencephalography
EMG Electromyography
ERP Event-related potential
ERD/ERS Event-related (de-)synchronization
FFT Fast Fourier Transform
FIFO First in, first out
fMRI Functional Magnetic Resonance Imaging
ICMS Intra-cortical microstimulation
IIR filter Infinite impulse-response filter
ISI Inter-stimulus interval
LFP Local field potentials
LOOE Leave-one-out error
M1 Primary motor cortex
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Abbreviation Full name

MEA Multielectrode array
MEG Magnetoencephalography
MEM Maximum Entropy Method
MEP Motor-evoked potential
N100 Negative peak in the EEG, 100 msec after a TMS pulse
NIRS Near-infrared spectroscopy
P1, P2, P3 Patients
PMC Premotor cortex
PSD Power spectral density
RBF Radial Basis Function
RCT Randomized controlled trial
RFE Recursive feature elimination
RKHS Reproducing Kernel Hilbert Space
RMSE Root Mean Squared Error
ROC Receiver Operating Characteristic
S1 Primary Somatosensory Cortex
S1-S7 Healthy participants
SMC Sensorimotor cortex
SMR Sensorimotor rhythm
SVM Support Vector Machine
SVR Support Vector Regression
tDCS/tACS Transcranial direct/alternating current stimulation
TMS Transcranial Magnetic Stimulation
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[100] Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G., McFarland, D. J.,
Birbaumer, N., and Wolpaw, J. R. (2005). Patients with ALS can use sensorimotor rhythms to
operate a brain-computer interface. Neurology, 64(10):1775–1777.

[101] Kundu, B., Sutterer, D. W., Emrich, S. M., and Postle, B. R. (2013). Strengthened effective
connectivity underlies transfer of working memory training to tests of short-term memory and
attention. The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(20):8705–15.

[102] Kwakkel, G., Kollen, B. J., van der Grond, J., and Prevo, A. J. H. (2003). Probability of regaining
dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute
stroke. Stroke, 34(9):2181–6.

[103] Langhorne, P., Coupar, F., and Pollock, A. (2009). Motor recovery after stroke: a systematic
review. Lancet Neurology, 8(8):741–54.

[104] Lefaucheur, J.-P. and de Andrade, D. C. (2009). Intraoperative neurophysiologic mapping of
the central cortical region for epidural electrode placement in the treatment of neuropathic pain
by motor cortex stimulation. Brain Stimulation, 2(3):138–148.

137



Bibliography

[105] Levin, M. F., Kleim, J. A., and Wolf, S. L. (2009). What do motor ”recovery” and ”compensation”
mean in patients following stroke? Neurorehabilitation and neural repair, 23(4):313–9.

[106] Levy, R., Ruland, S., Weinand, M., Lowry, D., Dafer, R., and Bakay, R. (2008). Cortical stimu-
lation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of
safety and efficacy. Journal of Neurosurgery, 108(4):707–14.

[107] Li, S., Stevens, J. A., and Rymer, W. Z. (2009). Interactions between imagined movement and
the initiation of voluntary movement: a TMS study. Clinical Neurophysiology, 120(6):1154–1160.

[108] Liepert, J., Bauder, H., Miltner, W., Taub, E., and Weiller, C. (2000). Treatment-induced cortical
reorganization after stroke in humans. Stroke, 31(6):1210–1216.

[109] Lima, M. C. and Fregni, F. (2008). Motor cortex stimulation for chronic pain: systematic review
and meta-analysis of the literature. Neurology, 70(24):2329–37.

[110] Liu, J., Khalil, H. K., and Oweiss, K. G. (2011). Neural Feedback for Instantaneous Spatiotempo-
ral Modulation of Afferent Pathways in Bi-Directional Brain–Machine Interfaces. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 19(5):521–533.

[111] Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics
and Space Science, 39(2):447–462.

[112] Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review of classifi-
cation algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering, 4(2):R1–
R13.

[113] Mackay, J. and Mensah, G. (2004). The Atlas of Heart Disease and Stroke. World Health Organiza-
tion.

[114] MacKinnon, C. D. and Rothwell, J. C. (2000). Time-varying changes in corticospinal excitability
accompanying the triphasic EMG pattern in humans. The Journal of physiology, 528(Pt 3):633–45.

[115] Marzullo, T. C., Lehmkuhle, M. J., Gage, G. J., and Kipke, D. R. (2010). Development of Closed-
Loop Neural Interface Technology in a Rat Model: Combining Motor Cortex Operant Conditioning
With Visual Cortex Microstimulation. IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, 18(2):117–126.

[116] Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., and Tononi, G. (2005). Breakdown
of cortical effective connectivity during sleep. Science, 309(5744):2228–32.

[117] Matsumoto, R., Nair, D. R., LaPresto, E., Bingaman, W., Shibasaki, H., and Lüders, H. O. (2007).
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