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Abstract

How can we enable robots to learn control model-free and directly on hardware?

Machine learning is taking its place as a standard tool in the roboticist’s arse-

nal. However, there are several open questions on how to learn control for physical

systems. This thesis provides two answers to this motivating question.

The first is a formal means to quantify the inherent robustness of a given sys-

tem design, prior to designing the controller or learning agent. This emphasizes

the need to consider both the hardware and software design of a robot, which are

inseparably intertwined in the system dynamics.

The second is the formalization of a safety-measure, which can be learned

model-free. Intuitively, this measure indicates how easily a robot can avoid failure,

and enables robots to explore unknown environments while avoiding failures.

The main contributions of this dissertation are based on viability theory. Vi-

ability theory provides a slightly unconventional view of dynamical systems: in-

stead of focusing on a system’s convergence properties towards equilibria, the

focus is shifted towards sets of failure states and the system’s ability to avoid

these sets. This view is particularly well suited to studying learning control in

robots, since stability in the sense of convergence can rarely be guaranteed during

the learning process.

The notion of viability is formally extended to state-action space, with viable

sets of state-action pairs. A measure defined over these sets allows a quantified

evaluation of robustness valid for the family of all failure-avoiding control poli-

cies, and also paves the way for enabling safe model-free learning.

The thesis also includes two minor contributions. The first minor contribution
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is an empirical demonstration of shaping by exclusively modifying the system

dynamics. This demonstration highlights the importance of robustness to failures

for learning control: not only can failures cause damage, but they typically do not

provide useful gradient information for the learning process.

The second minor contribution is a study on the choice of state initializations.

Counter to intuition and common practice, this study shows it can be more reliable

to occasionally initialize the system from a state that is known to be uncontrol-

lable.



Zusammenfassung

Wie können wir Robotern ermöglichen, modellfrei und direkt auf der Hardware zu

lernen?

Das maschinelle Lernen nimmt als Standardwerkzeug im Arsenal des Robotik-

ers seinen Platz ein. Es gibt jedoch einige offene Fragen, wie man die Kontrolle

über physikalische Systeme lernen kann. Diese Arbeit gibt zwei Antworten auf

diese motivierende Frage.

Das erste ist ein formales Mittel, um die inhärente Robustheit eines gegebe-

nen Systemdesigns zu quantifizieren, bevor der Controller oder das Lernverfahren

entworfen wird. Dies unterstreicht die Notwendigkeit, sowohl das Hard- als auch

das Software-Design eines Roboters zu berücksichtigen, da beide Aspekte in der

Systemdynamik untrennbar miteinander verbunden sind.

Die zweite ist die Formalisierung einer Sicherheitsmaß, die modellfrei erlernt

werden kann. Intuitiv zeigt diese Maß an, wie leicht ein Roboter Fehlschläge ver-

meiden kann. Auf diese Weise können Roboter unbekannte Umgebungen erkun-

den und gleichzeitig Ausfälle vermeiden.

Die wichtigsten Beiträge dieser Dissertation basieren sich auf der Viabilität-

stheorie. Viabilität bietet eine alternative Sichtweise auf dynamische Systeme:

Anstatt sich auf die Konvergenzeigenschaften eines Systems in Richtung Gle-

ichgewichte zu konzentrieren, wird der Fokus auf Menge von Fehlerzuständen

und die Fähigkeit des Systems, diese zu vermeiden, verlagert. Diese Sichtweise

eignet sich besonders gut für das Studium der Lernkontrolle an Robotern, da Sta-

bilität im Sinne einer Konvergenz während des Lernprozesses selten gewährleistet

werden kann.
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Der Begriff der Viabilität wird formal auf den Zustand-Aktion-Raum erweit-

ert, mit Viabilitätsmengen von Staat-Aktionspaaren. Eine über diese Mengen

definierte Maß ermöglicht eine quantifizierte Bewertung der Robustheit, die für

die Familie aller fehlervermeidenden Regler gilt, und ebnet den Weg für ein sicheres,

modellfreies Lernen.

Die Arbeit beinhaltet auch zwei kleinere Beiträge. Der erste kleine Beitrag ist

eine empirische Demonstration der Shaping durch ausschließliche Modifikation

der Systemdynamik. Diese Demonstration verdeutlicht die Bedeutung der Robus-

theit gegenüber Fehlern für die Lernkontrolle: Ausfälle können nicht nur Schäden

verursachen, sondern liefern in der Regel auch keine nützlichen Gradienteninfor-

mationen für den Lernprozess.

Der zweite kleine Beitrag ist eine Studie über die Wahl der Zustandsinitial-

isierungen. Entgegen der Intuition und der üblichen Praxis zeigt diese Studie,

dass es zuverlässiger sein kann, das System gelegentlich aus einem Zustand zu

initialisieren, der bekanntermaßen unkontrollierbar ist.
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Chapter 1

Introduction

This cumulative thesis presents the four first-author papers I published during my

Ph.D. studies in the Dynamic Locomotion Group of the Max Planck Institute for

Intelligent Systems, Stuttgart [1]–[4]. The main contribution of these studies is

an extension of viability theory into state-action space and a measure over viable

sets in this space. The resulting mathematical objects open a path to new tools,

including tools to rigorously quantify the robustness of a system prior to controller

design [2] and model-free safe learning [3].

Each paper is attached in the appendix. The thesis is organized as follows: in

Chapter 1 (this chapter), I introduce the overall motivation and objectives. Chapter

2 concisely covers background knowledge and related work. Chapter 3 summa-

rizes each publication, my contributions, and suggests an order in which to read

them. Finally, in Chapter 4, I discuss the relevance of the publications in relation

to the overall theme and motivation and the open challenges they raise.

1.1 Overall Motivation

Dynamics are certainly one of the most fascinating domains to study, and motion

is dynamics embodied. To observe motion, whether the graceful leap of a squirrel

from one branch to another, or the gravity-defying feats of an aerobatics pilot, is

a pleasure in and of itself. To understand motion, even more so.

1



2 CHAPTER 1. INTRODUCTION

If this were not motivation enough, motion and mobility are entrenched in

every aspect of modern society. It is our ability to move people, goods, and infor-

mation quickly, cheaply, and reliably that enables a global economy and society.

The advent of mobile robots that can automate mobility promises to once again

change the scales of what we consider far or ‘just around the corner’. Automation

will allow mobility at a lower cost and in situations where it is unsafe or otherwise

undesirable to employ humans. Even without an increase in speed, automation can

reduce the time involving the user to virtually nil. Nonetheless, for this to become

an every-day reality requires a level of robustness and reliability that we can so

far only obtain in controlled laboratory settings, where models can be refined to

high accuracy.

Robustness to uncertainties is critical for deploying robots in the real world

for many reasons. Since sensing is always noisy, a controller needs to be robust to

noisy state estimation. Controllers are typically designed based on a model of the

robot and the world. Since all models are wrong [5], some amount of robustness is

always necessary, even in the most benign settings. Even with a very well chosen

model and excellent system identification, the accuracy of the model used will

decay over time. The robot’s dynamics will change due to wear and tear, and

the world the robot moves in will change. In realistic field deployments, it will

become common for the robot to be used and even modified in unforeseen ways.

Robustness will also help lower manufacturing costs since performance will be

more tolerant of imprecise manufacturing. Finally, as will be discussed in more

detail in this thesis, robustness plays a crucial role in enabling learning control.

Machine learning, especially reinforcement learning, is gaining a lot of trac-

tion in the community of robotics. Learning control directly from data can circum-

vent the inaccuracies of models, and can also allow the robot to continuously adapt

to changes in the real world. A general learning algorithm could also reduce the

engineering effort required to deploy a new robot, as the controller design could

be automated. However, we still lack learning algorithms that generalize well, are

data-efficient, and adequately consider practical issues such as safety.

A less studied aspect of the same problem is how the system itself should be
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designed. Although there is some published evidence [6], [7] that appropriate

system dynamics can significantly facilitate learning, as well as ample informal

consensus1, there have been few formal studies that rigorously show show how

morphology, control, and learning are connected. This formalization is the main

motivation of this thesis.

1.2 Objectives

‘How can we enable robots to learn control model-free and directly on hardware?’

I believe robots of the future will be able to effectively leverage models, and

therefore make extensive use of both simulation and optimal control. Neverthe-

less, I have chosen a guiding question that explicitly excludes these two tools for

a very deliberate reason: it moves the focus to aspects that I believe have not

received sufficient attention.

First and foremost is the necessity for robustness. Indeed, the absence of a

model can be loosely thought of as having a model over which we have abso-

lutely no certainty. Learning directly on hardware also emphasizes the need for

robustness, as failures become a significant problem. Failures can cause dam-

age to the robot or world, often require time-consuming resets, and perhaps most

importantly, they typically do not provide rich gradient information.

Second, as anyone who has worked on physical robots can confirm, the hard-

ware design and implementation immediately take a central role. Robots that are

appropriately designed and well manufactured are a lot easier to work with and

greatly alleviate a control designer’s work2. When learning control, it is reason-

able to expect a learning agent to reap the same benefits, even though we cannot

1At every conference I have attended that had a mixed audience, a biologist will point out to the

engineers that animals often fall, and this is important for learning. The engineers then invariably

agree that robots should be designed to allow for this, and that’s the end of the story.
2I recently spoke with a researcher at Google Brain, where they have 5 Ghost Robotics Minitaur

quadruped robots, some of which were produced in different batches. Due to the differences in

production, they behave slightly differently, and the researcher confirmed they have their favorites

for testing learning algorithms.
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fully describe what these benefits are.

More specifically, we will aim to formalize an understanding of how morphol-

ogy and system design influence how easy it is to design or learn a control policy.

Furthermore, we will aim for a more principled understanding of how a learning

agent can learn despite failures, and perhaps more importantly, directly reason

about failure.



Chapter 2

Preliminaries

This chapter introduces relevant fields to help readers from potentially different

backgrounds to quickly gain enough knowledge to understand the context, rele-

vance, and importance of the contributions of each paper, in particular as related

to dynamic legged locomotion. Covered are the basics of viability theory, legged

locomotion, and reinforcement learning.

2.1 Viability theory

The core of my work is based on viability theory, first pioneered by Jean-Pierre

Aubin [8]. The development of viability theory is largely motivated by observa-

tions of dynamical systems in nature and society, whose behavior somehow avoids

chaos or pure randomness, yet never seem to settle at a resting state, an equilib-

rium. Some examples are Darwinian evolution, economics, or politics of the state.

There is no equilibrium state for these systems, or at least, none that we can iden-

tify or foresee. The classical mathematical tools based on convergence to such an

equilibrium state are therefore ill-suited to describe them, although they can be

manipulated for the purpose: for example, by assuming a quickly time-varying

equilibrium state, which the system chases but is never able to reach.

Viability theory provides a more appropriate and direct description. First, a

set of failure states is defined, which the system must be able to avoid. We will

5



6 CHAPTER 2. PRELIMINARIES

think of this failure set as a set of absorbing states. From this naturally emerges

the viability kernel, the maximal set of states from which there exist control inputs

that keep the system from entering the failure set for all time. In other words, if

the system ever leaves the viability kernel, it can no longer return inside of it and

is doomed to enter the failure set within finite time.

Compared to mathematical objects based on the notion of convergence, such

as regions of attraction [9, (cf. 6.4)] or contractions [10], conditions for viability

are weaker (they provide no convergence properties) but more general.

Two other related sets which depart from the notion of convergence are back-

reachable sets [11] and controllable sets [12]. For backreachable sets, we start by

defining a target set. The backreachable set is the set of states from which there

exist control inputs that guide the system into the target set within finite time.

Since being able to reach this target set directly implies being able to avoid the

failure set, the back-reachable set is always a subset of the viability kernel. Con-

trollable sets require that every point in the set is reachable from any other point

of the set. In other words, the controllable set must be a backreachable set for all

subsets of the controllable set itself. Controllability is a more general statement

than backreachability in that it does not require the definition of a target state,

but also a stronger statement: not all backreachable sets are controllable sets. By

the same quality of backreachable sets, controllable sets are also subsets of the

viability kernel.

Viability theory, therefore, allows us to make very general statements of a dy-

namical system’s behavior, without making many assumptions. This generality

comes at a price: computing viable sets is typically computationally expensive.

For the types of dynamics we are interested in, we will resort to gridding and

brute force. In this thesis, I will use the concepts of viability theory, but we will

not concern ourselves with algorithms that scale to higher dimensions. For the

interested reader, I recommend starting with [13] for a clear and practical ap-

plication, [14] for an example of sample-driven approximations, and [11] for an

overview of tools for the computation of the related backreachable sets, which can

often be used in lieu of the viability kernel.
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2.1.1 Why use viability for legged locomotion?

The study of legged locomotion has come a long way by thinking of gaits as stable

limit-cycles: periodic orbits through state space, towards which nearby orbits con-

verge. This view allows us to explain various observations with a well developed

mathematical language: nonlinear dynamics and bifurcations [9].

For example, the remarkable stability of running dynamics [15] can be under-

stood by studying basins of attraction of a specific gait [16], [17]. The choice of

and transition between different gaits depending on locomotion speed or morphol-

ogy can be understood via bifurcation studies [18]–[20].

However, these tools hinge on the existence of a limit-cycle, and therefore are

ill-suited for understanding unsteady or erratic motion, which are also commonly

observed [21], [22]. Even when it is reasonable to assume the existence of a limit-

cycle, for example when walking or running on a treadmill at a steady speed, it is

often difficult to fit recorded time-series data to these assumptions [23], [24]. To

gain further insight into locomotion, we need tools that can reason about stability

in the sense of avoiding falls instead of in the sense of convergence [25].

Viability theory provides a natural description for this type of stability. Fur-

thermore, viability makes no assumptions on the control policy or the task at hand.

This makes it appropriate for analyzing morphology separately from the control

policy, as in [2].

In the field of legged robotics and control, there have also been developments

which move away from the perspective of strict convergence. Byl and Tedrake [26]

relax the requirement of convergence with the probabilistic concept of metastabil-

ity, and compute the mean first-passage time for several simple models of walking.

This metric takes into account the probability of failure from any sources of un-

certainty, and can effectively serve as a metric of task-level robustness. However,

the structure of how the system dynamics relate to failures is not exposed. Fur-

thermore, any change in the uncertainty, such as the distribution of disturbances,

requires the mean first-passage time to be recomputed from scratch.

Capture points and capture regions [27] build on the ideas of backreachability

to find effective yet simple foot placements that can come to a standstill. In this
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context, a capture point represents a foot placement that takes the system to a

captured state: standing, static equilibrium. An n-step capture region is the set of

foot placements that take the system to any state, from which the captured state

can be reached within n− 1 steps. The core idea is that it is not necessary for a

controller to always seek convergence, as long as the system stays within a region

from which it can converge within a finite number of steps. Capture regions are

particularly useful in legged locomotion since they are typically easier to compute

than viability kernels, and usually as large or nearly so [12], [27]. The core results

of this thesis, namely [2], [3], can be reformulated to use capture regions instead

of viable sets, without much loss of precision. I find, nonetheless, the more exact

language of viability theory to be useful in formalizing the mathematical objects

developed in this thesis.

2.2 Dynamic legged locomotion

While most results in my publications are valid for arbitrary dynamical systems,

the motivation is grounded in legged locomotion, in particular running. This field

offers abundant natural inspiration, including ourselves. Legged systems also en-

capsulate many interesting challenges in dynamics. The dynamics of legged sys-

tems are non-smooth, due to impacts at foot touchdown. They are hybrid, as the

governing equations of motion switch abruptly every time a foot touches down or

lifts off. They are underactuated, due to the floating base. While passively stable

legged systems exist, for most systems of interest to us, they are passively unstable

and require feedback control. And of course, they are typically highly nonlinear.

A core recurring concept in this field is the natural dynamics of the system:

intuitively, how the system ‘wants’ to move. Controllers should be designed to

exploit the natural dynamics, and robots should be designed to exhibit favorable

natural dynamics. However, a rigorous definition of natural dynamics is elusive,

especially for what constitutes more or less favorable natural dynamics. A core

contribution of this thesis is to show that robustness to uncertainty is an important

quality of ‘favorable’ natural dynamics, and provide a measure to quantify this.
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This section introduces various ways in which the concept of natural dynamics

comes into play, using compliance in running motion as the driving example.

2.2.1 Reduced order models of legged locomotion

Reduced order models allow researchers to cope with the complexity of legged

locomotion dynamics. In this thesis, I will focus on the spring-loaded inverted

pendulum (SLIP) model for running. This model originated in the biomechan-

ics community to describe center-of-mass movement of running in humans [28].

Comprising of a point-mass to represent the body and a massless spring to repre-

sent the leg, the model has only a few parameters, making it relatively easy to fit to

data. Several studies have then fit it to various animals of different sizes and with

different numbers of legs [15], [29], [30]. A two-legged extension also accurately

predicts ground-reaction forces of both running and walking in humans [31]. Da-

ley and Biewener [15] used this model to explain the open-loop robustness to

height perturbations observed in running birds. These studies of this parsimo-

nious model convincingly show the presence of compliance in natural running

motion.

It is no surprise that, in parallel to the development of this model in the biome-

chanics community, Raibert developed his famous hopping robots using very sim-

ilar models and intuition [32, cf. Figure 2.5]. Since then, compliance has been

frequently reproduced in bio-mimetic robots [33]–[38].

These simple models have also been used to study various control concepts [17],

[39], [40]. In one of the most insightful examples, Wu and Geyer [41] show an

open-loop trajectory for the swing-leg that achieves deadbeat control: any ground-

height perturbation can be completely rejected in a single step.

However, since this model is energy-conservative and neglects most degrees

of freedom, it is often insufficient to describe many observations of interest. For

example, extensions that include actuation have been used to draw conclusions on

control priorities [25], [42]. In another example, Maus, Revzen, et al. [24] use

a data-driven approach to suggest various extended state and control laws for the

SLIP, based on experimental observations of humans.
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Reduced order models are also often used for mathematical analysis, as their

low dimensional state space and parsimonious parameter space allow for thorough

investigation of the dynamics and parameters. In my own master thesis work [43],

I derive the explicit equations of motion (EoM) of a running model with a tail.

This is made possible by approximating the tail as a flywheel, and allows insight

on scaling effects of different parameters of the tail, which could then be tested

directly in hardware.

The low dimensionality also allows numerical analysis by brute force. The

basins of attraction for many such models have been studied numerically [17],

[44]–[46], and extended in some cases to bifurcation analysis [16], [20], [47]. By

making use of the Poincaré section, the stability of a limit-cycle can be numeri-

cally ascertained by Floquet analysis [48]. Reduced order models are also used

by Byl and Tedrake [26] in their study of metastability, mentioned above. Since

computing the mean first-passage time requires a very large number of simula-

tions, it would be prohibitive for more sophisticated models.

2.2.2 Heuristic control for legged locomotion

Perhaps the most extreme examples of exploiting natural dynamics are the robots

inspired by passive dynamic walkers [49]. These robots feature minimal sensing

and actuation, and are typically limited to flat ground [50], [51]. They make up

for their lack in maneuverability with extreme efficiency: the main purpose of

the controller is not to stabilize the system, but to inject small amounts of energy

to compensate for impact and friction losses. Tedrake, Zhang, et al. [6] saw in

natural dynamics more than just the opportunity for efficient motion: they use a

biped robot based on passive dynamic walkers, and show it can efficiently and

reliably learn and adapt to changing ground surfaces. Formalizing this insight is

one of the main motivations for this thesis.

Many of the earlier successful legged robots relied on exploiting natural dy-

namics by using simple controllers in the form of clocks and oscillators [18], [34],

[52], [53]: motor positions are servoed along predetermined, periodic trajectories

to the timing/phase of a clock/oscillator. All of these robots incorporate com-
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pliance in the form of mechanical springs. Once tuned to the natural dynamics,

the clock and oscillator controllers generate very stable and dynamic gaits. With

some feedback, the oscillators also adapt to the natural dynamics, resulting in dif-

ferent gaits depending on the morphology [18] or driving frequency [18], [54].

However, from my experience and discussions with more seniors researchers in

this field, these approaches rely on a lot of intuition and trial-and-error to design.

They are particularly challenging to tune for unstable systems such as bipeds with

point-feet.

Another approach is to use a hierarchical control scheme, in which the low-

level controller causes the system to behave like a reduced order model, such as

the SLIP model discussed above. If this low-level controller is accurate enough,

the plethora of control laws studied for the SLIP model can be directly used as

high-level controllers. To this end, there have been many efforts to design such a

low-level controller [55]–[57]. Unlike for other models such as the linear inverted

pendulum model, however, it is not trivial to map between the high-level repre-

sentation of a SLIP model and low-level representation of an actual robot, and

this approach has only seldomly been applied in practice [58]. Furthermore, these

high-level controllers exploit the natural dynamics of the reduced order model,

but not necessarily those of the system. It is entirely possible for the actual natu-

ral dynamics of the system to be negated by the low-level controllers. For these

reasons, I believe reduced order models such as the SLIP are excellent descriptive

models but poor prescriptive models: they allow a deep understanding, but make

for poor control targets.

Virtual model control [59], [60] provides a slightly more relaxed approach:

the low-level controller commands torques to mimic a spring-damper between two

arbitrary points, usually between the hip and the foot. This approach doesn’t force

the system’s dynamics onto the submanifold of the SLIP model but does retain the

complaint behavior. It is also easy to implement, requiring only knowledge of the

kinematics. However, this approach does not capture the impedance of the system,

and it can be difficult to stabilize the robot trunk in more aggressive motion.
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2.2.3 Optimal control for legged locomotion

Optimal control offers a more explicit approach to embed the natural dynamics in

the controller. The setting is to find a policy uk = π(xk) which minimizes the total

cost-to-go function J given a dynamical system xk+1 = f (xk,uk):

find uk = π(xk)

such that J∗(x0) = min
u

[
gN(xN)+

N−1

∑
k=0

g(xk,uk)

]
subject to xk+1 = f (xk,uk)

c(x,u)≤ 0

where J∗ is the optimal cost-to-go accumulated between any state x0 and a termi-

nal state xN , the final cost of being in xN is gN , and g(xk,uk) is the cost incurred

for applying the control input uk from state xk. This formulation explicitly takes

the dynamics of the system into consideration, since the solution must be consis-

tent with the dynamics f (xk,uk). One of the core insights in optimal control is

the principle of optimality: the fact that any subtrajectory of an optimal trajectory

is itself optimal for its starting and ending states. Therefore, the optimal control

problem can be split into several small steps, and each of these solved individu-

ally. This principle is leveraged in the Bellman equation (or its continuous-time

equivalent, the Hamilton-Jacobi-Bellman equation):

J∗(xk) = min
u

[g(xk,uk)+ J∗( f (xk,uk))] . (2.1)

If the optimal cost-to-go function is known, finding an optimal controller is re-

duced to a one-step lookahead optimization. To find J∗, we can simply use the

Bellman equation as an update rule iteratively, which leads to the dynamic pro-

gramming algorithm. A typical iteration will start at the final state xN , apply these

updates by backing out from the final state. Once J∗ has converged, a control pol-

icy that greedily follows eq. 2.1 will be optimal from any state. The main caveat

with this approach is that it does not scale well with dimensionality.

Perhaps the most popular optimal control approach used in legged locomotion

today is trajectory optimization: in this setting, we give up on global optimal-
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ity and instead seek trajectories that are only locally optimal. For the interested

reader, I recommend [61]. Without going into detail, there are two main families

of trajectory optimization: shooting methods and direct transcription methods.

Shooting methods iterate making a forward pass, using an initial guess to sim-

ulate a trajectory, and then a backward pass to compute updates to the control

inputs used. A popular and fast shooting method is differential dynamic program-

ming [62], in which each backward pass updates the control trajectory with a

Bellman update using a local, quadratic approximation of the cost-to-go function.

This allows the updates to be backed out of the final state, in a conceptually similar

way as the dynamic programming algorithm. Other shooting methods will typi-

cally pass the entire trajectory to a general nonlinear programming (NLP) solver,

which optimizes over the entire trajectory at once [61]. This approach tends to

struggle with problems that require constraint satisfaction and complex controls1,

such as legged locomotion. Nonetheless, it has been used successfully for offline

design and analysis [48], [63].

Transcription methods break up the problem completely and allow an NLP

solver to optimize not only over the control inputs at each time step, but also the

states. Dynamic consistency is then enforced by transcribing the dynamics into

constraints the solver must satisfy [61]. This formulation also allows constraints

to be directly encoded in the optimization problem, which is not straight-forward

for shooting methods.

A significant challenge for all these methods is the presence of contacts in

legged locomotion. Making or breaking a contact induces a non-smooth jump

in the cost, which solvers struggle with. While some formulations can directly

reason about contacts [64]–[66], they tend to be slow. A common approach is to

split the problem into parts that can be solved separately in a hierarchical control

scheme. Typically, these will include generating a center of mass (and some-

times momentum) trajectory [65], [67], a sequence of footstep positions and tim-

1I will not attempt a rigorous definition of what more or less ’complex’ controls are. Suffice

it to say that legged locomotion typically requires controls which are more complex than orbital

dynamics of satellites.
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ings [67], [68], and a whole-body controller to execute the first two [67], [69].

Much of the current research aims at improving the robustness [70], [71], ef-

ficiency [72], [73], or flexibility [74] of these individual problems. While the

viability-based tools presented in this thesis do not scale well, they can be used on

these lower-dimensional sub-problems.

2.2.4 Hardware Design for legged locomotion

Just as we strive for controllers that can exploit a system’s natural dynamics, we

strive for hardware designs that feature beneficial natural dynamics. One such

aspect, as discussed in Subsection 2.2.1, is compliance. We mentioned above

several designs [18], [34], [52], [53] which use highly-geared motors and position

control; the output of these ‘stiff’ actuators then drive mechanical springs, which

provide the desired compliance. The springs are placed distally, and therefore

minimize unsprung mass and protect the motors from harsh impacts. Additionally,

simple controllers can achieve remarkable stability while running on inexpensive

hardware with low update rates [75]. However, the complexity is traded off into

the hardware design, and tuning hardware is usually much more time-consuming

and expensive than tuning software. Furthermore, once built, it is usually difficult

to change parameters without disassembling the robot. Since different behaviors

often require very different natural dynamics, this approach can severely limit a

robot’s versatility.

A second approach is to incorporate the compliance directly in the actua-

tors. Indeed, Raibert’s first hoppers used pneumatic actuators, which act as air-

springs in addition to injecting energy [32]. They require, however, a supply of

pressurized air, which is cumbersome to carry on the robot. Series-elastic ac-

tuators (SEA) [76] are a popular alternative, and several of the most successful

robots of today are built with this type of actuation, such as ANYMAL [36] or

ATRIAS [35]. In these robots, the output of highly-geared motors is coupled in

series with a relatively stiff spring. By measuring the position of both ends of the

spring, the force output at the end-effector can be directly calculated. This allows

force/torque control at the joints, and compliance of the desired form can be gen-
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erated, within the limitations of the motor constraints and kinematics. The main

drawbacks are added complexity for manufacturing and low-level control.

A third approach eschews any mechanical springs in favor of generating com-

pliance purely through actuation and control. Low gear-ratios are required to

minimize reflected inertia and achieve transparency while still maintaining high

peak torque outputs [77]. Fortunately, the widespread success of quadcopters has

dramatically reduced the cost of off-the-shelf outrunner motors that satisfy these

requirements. Together with field-oriented control, sometimes called vector con-

trol, these motors provide an inexpensive solution at smaller scales. Many small

and medium-sized robots capable of highly dynamic motion and direct torque-

control are emerging, such as the MIT mini-cheetah [78], the Minitaur [37] and

MPI-IS’s own Solo [79]. Since mass scales roughly cubically2, these smaller-

scale robots are mechanically sturdy [80] and can operate at torques that are safe

to handle. These robots are excellent experimental platforms, especially for learn-

ing control, since failures may be more common.

Regardless of the approach taken, design is still largely an art, and only a few

specific aspects have been subject to rigorous study [81], [82]. One of the core

contributions of this thesis is to formalize a quantification of robustness due to the

system’s natural dynamics [2], which will allow a designer to compare different

designs objectively.

2.3 Learning control

The recent success in machine learning, in particular with reinforcement learn-

ing (RL), provides another alternative to model-based optimal control. My thesis

work has been strongly influenced by ideas from reinforcement learning, espe-

cially the notion of state-action space. For readers less familiar with this field, I

will introduce the essential topics needed to understand and appreciate this thesis.

2Mass will scale cubically to length if we assume isometric scaling and constant, uniform

density. While robot designs break these assumptions, this serves as a good rule of thumb.
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2.3.1 Reinforcement learning is model-free optimal control

At its core, reinforcement learning (RL) relies on the same key insight as dynamic

programming and optimal control: the principle of optimality. For the interested

reader, I recommend comparing two formulations of value iteration: the one in-

troduced in chapter 4.4 of the classical RL textbook by Sutton and Barto [83],

and the one introduced in chapter 5.3 of the classical optimal control textbook

by Bertsekas [84]. Aside from notation and a minor detail3, the equations are

the same: they are updates based on the Bellman equation (eq. 2.1). The critical

difference is the presence (or absence) of a model, which dictates how updates

can be applied. In the model-based case, the transitions and their associated costs

are known, and each iteration of the algorithm can apply an update at every state.

In the model-free case, the cost of a specific transition can only be discovered

through experience. A learning agent must therefore execute roll-outs, and can

only update states visited during this roll-out.

Since the cost of a transition cannot be known by consulting a model, it is

convenient to keep track of the value of state-action pairs, instead of just states.

The value in state-action space is called the Q-function, and leads to one of the

breakthroughs in RL: q-learning [83, cf. 6.5]. An important feature of this ap-

proach is that it leads to the optimal action without needing to specify the policy.

From any given state, any optimal policy must output an element from the level

set of optimal actions. I will use this insight in [2] to quantify the robustness of a

system without specifying a policy.

2.3.2 The challenge of robot learning

Kober, Bagnell, et al. [85] have written a comprehensive overview of RL for

robotics. Although slightly dated, the primary challenges ([85, cf. 8.1]) have not

changed considerably. Many core challenges stem from the difficulty of obtaining

samples from real-world experiments.

3In [83], there is a discount factor that is introduced a few pages after the initial formulation

in [84].
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Perhaps the most obvious difficulty is that, unlike in virtual systems, hard-

ware experiments can only run at physical time, and are difficult to parallelize.

Hardware experiments tend to require large amounts of space and funding; un-

like for simulations, the cost per experiment does not decrease dramatically with

scale. A more fundamental bottleneck is user time: a user typically needs to set

up each run, reset it after failures, and maintain and repair the robots. For exam-

ple, Levine, Pastor, et al. [86] used 14 robot arms, which executed roughly 1.7

million grasp attempts in the span of roughly six months. A policy in the form

of a deep neural network trained on this data achieves a respectable failure rate of

10%. In comparison, Silver, Schrittwieser, et al. [87] trained a policy from scratch

to play the board game go. During training, the learning agent generated 4.9 mil-

lion game-plays, and reached a super-human level in roughly 40 hours. Both of

these projects disposed of prodigious resources, far more than I believe should be

required if learning control is to be useful. Yet the gap in achieved performance is

staggering, and these two examples highlight the difficulty of gathering samples

in robotics.

Models can help in two ways: by allowing learning in simulation, and by

informing the designer of the appropriate structure to impose on the control policy.

Models allow simulations to be used to bootstrap the learning process. Col-

lecting data in simulation is typically a lot cheaper than in hardware, and the policy

can then be refined on the real robot. However, the transfer from simulation to the

real-world is not always straight-forward. The models used in simulation are of-

ten insufficiently accurate, especially for legged locomotion [88], [89], and the

learned policies often over-fit to these models. In other words, they find policies

that may be optimal (or at least work reasonably well) but are not robust. This is

commonly known as the sim-to-real problem.

A solution to this is dynamics randomization [89]–[91]: the parameters of the

simulation are perturbed in each learning iteration, with the hope that the resulting

control policy is not only robust to differences in the simulated model, but also

in the real world. This approach shows promise. However, to the best of my

knowledge, there is no principled approach to choose which parameters to perturb,
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or by how much.

Another approach is to ensure your simulation is sufficiently accurate: Hwangbo,

Lee, et al. [92] train a deep neural network to simulate the motor dynamics, which

are typically difficult to model with first principles. A policy trained in simulation

using this high-fidelity simulation, and transferred to the robot4.

Model-based control can also be used directly for controller design, effec-

tively warm-starting the learning process. In some of the most straightforward

approaches, tools from conventional control theory and learning are combined but

kept distinct. For example, Kumar, Ha, et al. [93] start by approximating a hu-

manoid robot with the linear inverted pendulum model, and design a balance and

stepping LQR controller based on this model. Then, a deep neural network is

trained, which outputs offsets to the joint torques and target angles to enlarge the

region of attraction. In another example, Yeganegi, Khadiv, et al. [71] start with

a standard hierarchical control setup: a trajectory optimization problem is formu-

lated using a linear inverted pendulum model to generate CoM trajectories, and

a whole-body controller tracks these trajectories. However, how robustly these

trajectories can be tracked depends largely on the coefficients of the cost-function

used in the high-level controller. A Bayesian optimization scheme is then used

to search for cost coefficients which result in trajectories that are both robust and

fast.

Conventional control theory can also inform the design of proper policy pa-

rameterization. An appropriately chosen parameterization has a significant effect

on the size of the search space as well as the resulting stability of the closed-loop

system [94]. Indeed, directly learning a policy which outputs motor torques is

often ineffective, especially for systems that are dynamically unstable [95]. In

recent work, Viereck, Kozolinsky, et al. [96] train a policy in the form of a deep

neural network which outputs trajectories of desired states and stabilizing feed-

back gains. These trajectories are more robust and reliable than directly learning

a state-to-torque mapping [96]. In another example, Marco, Hennig, et al. [97]

4Dynamics randomization is also used in this study, but the core novelty is the use of supervised

learning to obtain an accurate simulation.
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incorporate the structure of a linear-quadratic regulator (LQR) into the kernel of

a Gaussian process (GP). Extrapolation from previously observed samples is also

more accurate.

A model-free approach to adding domain knowledge is to design an appro-

priately informative proxy reward function, which is used in lieu of the original

reward function. This is particularly effective when the original reward function

is sparse, meaning rewards are only experienced occasionally. In these cases, it is

often difficult for the learning agent to properly attribute the correct value to the

actions which were most meaningful. Though excessive massaging of a reward

function can heavily bias the learning outcome, it also helps convergence tremen-

dously by shaping the reward landscape [98], [99]. In effect, the purpose of this

proxy reward function is to allow the learning agent to sample accurate gradient

information more reliably.

Curriculum learning [1], [100], [101] is an effective compromise: the proxy

reward function is only used temporarily. Once the learning agent has converged

to a reasonable policy, it can continue learning without the assistance of the more

informative reward function. While there is empirical evidence that this approach

can be very effective, it also requires a lot of intuition and experience to design

effective and general curricula.

There is great interest recently in automating the design of curricula, for ex-

ample by modeling student progress as a separate optimization problem [102], or

allowing the student direct control over the task difficulty [103]. The work of Ku-

mar, Ha, et al. [93], mentioned earlier, also incorporates an adaptive curriculum.

Perturbations are applied close to the edge of the currently known region of at-

traction of the humanoid robot. By collecting samples near the edge of stability,

these samples are very likely to be both highly informative and remain safe. In an-

other example, Ivanovic, Harrison, et al. [104] formally combine concepts from

curriculum learning and backreachability to learn from a sparse reward signal ef-

fectively. In this case, the learning agent begins training near the target goal, such

that even a random walk is likely to sample the reward. In subsequent iterations,

the agent is initialized from a successively larger set of initial states. Instead of in-
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creasing this set arbitrarily, it is increased by computing an approximate backward

reachable set over a short time horizon. In this manner, the curriculum directly

takes the dynamics of the system into consideration.

In all of these approaches, one of the most critical feedback loops is the de-

signer, typically a graduate student. This outer feedback loop is described in sub-

stantial detail by Xie, Clary, et al. [105]: they describe many of the practical

considerations required when learning on robots, and how these are accounted for

in an iterative design of the learning problem. They successfully train a policy in

simulation that they can deploy directly on the Cassie biped without any dynamics

randomization.

Each of these approaches addresses the same fundamental issue: the need for

robustness.



Chapter 3

Published Work

This cumulative thesis is based on the four first author, peer-reviewed publications

I wrote during my studies. In this chapter, I provide some remarks on recom-

mended reading orders for these papers, which are available in the appendix. For

each paper, I then provide the abstract, commentary, some context of the publica-

tion venue1 and individual contributions to each paper.

3.1 Overview

The recommended complete reading order is:

1. Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in

Hardware, Steve Heim, Felix Ruppert, Alborz Sarvestani, and Alexander

Spröwitz, ICRA 2018

2. Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

Steve Heim and Alexander Spröwitz, T-RO 2019

3. A Learnable Safety Measure Steve Heim, Alexander von Rohr, Sebastian

Trimpe, and Alexander Spröwitz, CoRL 2019

4. Learning from Outside the Viability Kernel: Why we should build Robots

that can Fall with Grace Steve Heim and Alexander Spröwitz, SIMPAR 2019
1This includes my subjective opinion on the quality of publications published in this venue.

21



22 CHAPTER 3. PUBLISHED WORK

The first paper is an empirical study that captures much of the motivation. A 2-

minute video synopsis of this paper available online at https://youtu.be/

6iH5E3LrYh8, and can be viewed in lieu of reading the paper for an intuitive

grasp of the results. The second paper formalizes viable sets in state-action space,

which is the core theoretical contribution of the thesis. The third paper builds on

the second to formalize model-free safe learning. For the most concise introduc-

tion to the core results, a reader may choose to start with this paper. The fourth

paper is an offshoot of the second and points out a minor, counterintuitive result.

3.2 Papers and Contributions

For each paper, the contributions of co-authors are listed in table format, as well

as a more detailed description of my contributions. Deciding on the contribution

split is a subjective and imprecise exercise. I asked each student co-author to first

consider independently how they thought contributions should be split. We then

compared notes, discussed it together, and agreed to the description I have writ-

ten here. This was presented to the principal investigator (PI) co-authors for their

approval. To reflect the imprecise nature of these descriptions, I do not use a per-

centage split but rather a descriptive word: central, major, substantial, or minor.

As a rule of thumb, central indicates a contribution that is central to the paper,

major indicates a critical contribution, without which the paper would probably

not have been submitted, substantial indicates an important contribution, with-

out which the paper quality would be significantly diminished and possibly not

accepted, and finally minor indicates contributions that improved the paper, but

did not significantly change the form or content.

3.2.1 Shaping in practice

Abstract:
Learning instead of designing robot controllers can greatly reduce engineering ef-

fort required, while also emphasizing robustness. Despite considerable progress

in simulation, applying learning directly in hardware is still challenging, in part

https://youtu.be/6iH5E3LrYh8
https://youtu.be/6iH5E3LrYh8
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due to the necessity to explore potentially unstable parameters. We explore the

concept of shaping the reward landscape with training wheels; temporary mod-

ifications of the physical hardware that facilitate learning. We demonstrate the

concept with a robot leg mounted on a boom learning to hop fast. This proof of

concept embodies typical challenges such as instability and contact, while being

simple enough to empirically map out and visualize the reward landscape. Based

on our results we propose three criteria for designing effective training wheels for

learning in robotics.

Commentary:
One of the most important take-aways from this empirical study is that failures are

common and typically provide very little useful information to learn from. When

considering safety in robot learning, the usual motivations are avoiding damage

(to the robot or the world) and time-consuming resets and repairs. Here we see,

however, that it is also important in order to learn more reliably.

Venue:
The IEEE International Conference for Robotics and Automation (ICRA) is the

largest and one of the most important conferences in robotics, alongside the In-

ternational Conference on Intelligent Robots and Systems (IROS). Publications in

these venues often have a high impact, and they are considered a top publication

venue for the field of robotics. However, the variance on the quality of publica-

tions is also high, presumably due to the high variance in reviewing quality.

Individual Contributions:
I helped form the initial idea of demonstrating shaping with a mechanical change

(training wheels), helped decide how to implement it, wrote the code for the lo-

comotion controller, the learning algorithm, and code to process, analyze, and

visualize the data. I conducted a large portion of experiments and wrote the pa-

per, except for an excerpt describing the hardware. I took part in regular team

meetings, and helped plan and adjust milestones throughout the project.
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Concept Implementation Analysis Submission Management

S.H. Central Central Central Central Major

F.R. Substantial Central Substantial Major Major

A.S. Substantial Central Substantial Substantial Major

A.S. (PI) Substantial Minor Minor Substantial Major

3.2.2 Beyond basins of attraction

Abstract:
Properly designing a system to exhibit favorable natural dynamics can greatly

simplify designing or learning the control policy. However, it is still unclear what

constitutes favorable natural dynamics and how to quantify its effect. Most stud-

ies of simple walking and running models have focused on the basins of attraction

of passive limit-cycles and the notion of self-stability. We instead emphasize the

importance of stepping beyond basins of attraction. We show an approach based

on viability theory to quantify robust sets in state-action space. These sets are

valid for the family of all robust control policies, which allows us to quantify the

robustness inherent to the natural dynamics before designing the control policy

or specifying a control objective. We illustrate our formulation using spring-mass

models, simple low dimensional models of running systems. We then show an

example application by optimizing robustness of a simulated planar monoped, us-

ing a gradient-free optimization scheme. Both case studies result in a nonlinear

effective stiffness providing more robustness.

Commentary:
To the best of my knowledge, this is the first rigorous formalization of how mor-

phology or mechanical design influences robustness. The formalization of viable

sets in state-action space allows quantified comparisons of different designs in

terms of robustness, without making assumptions on the control policy design.

Furthermore, focusing on robustness in terms of avoiding failure instead of con-

vergence is a subtle yet important change in how we reason about locomotion.

Although the fundamental mathematical objects are defined in this paper, there is
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a lot of room for future work in applying these objects in different contexts and

for specific systems. Another open topic is computational tools to apply this in

practice.

Venue:
Transactions on Robotics is the flagship journal of the IEEE Robotics and Au-

tomation Society. It is widely considered one of the top journals in robotics, either

on par or a close second to the International Journal on Robotics Research (IJRR).

Individual Contributions:
I formed the concepts, developed them via numerical experimentation, and for-

malized these concepts mathematically. I refined the direction based on feedback

to preliminary numerical results at conferences such as ’Dynamic Walking’ and

’Adaptive Motion in Animals and Machines’. I devised the algorithms, wrote all

code for simulation, numerical computation, and visualization. I wrote the pa-

per, and responses to reviewers, and managed my time and goals on this project,

including splitting off the side result to a separate publication (publication 4).

Concept Implementation Analysis Submission Management

S.H. Central Central Central Central Central

A.S. (PI) Minor Minor Minor Substantial Substantial

3.2.3 A learnable safety measure

Abstract:
Failures are challenging for learning to control physical systems since they risk

damage, time-consuming resets, and often provide little gradient information.

Adding safety constraints to exploration typically requires a lot of prior knowl-

edge and domain expertise. We present a safety measure which implicitly cap-

tures how the system dynamics relate to a set of failure states. Not only can this

measure be used as a safety function, but also to directly compute the set of safe

state-action pairs. Further, we show a model-free approach to learn this measure

by active sampling using Gaussian processes. While safety can only be guaran-

teed after learning the safety measure, we show that failures can already be greatly
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reduced by using the estimated measure during learning.

Commentary:
This paper builds on the mathematical objects introduced in Beyond Basins of At-

traction [2] by placing a measure over the viable sets in state-action space. The

primary motivation of the paper is to allow learning directly on the real system,

by restricting exploration to probabilistically safe regions. A side effect is that

samples are restricted to ‘interesting’ regions: as pointed out in several papers in

this thesis, failures are not only costly due to potential damage, but they are also

typically uninformative for the learning process. By concentrating samples in the

informative, non-failing set, the learning agent wastes fewer samples. Beyond the

robot learning setting, this approach can be used in other contexts where large

portions of the search space are uninformative by simply replacing the notion of

‘failure set’ with an appropriate state-constraint.

Venue:
The Conference on Robot Learning (CoRL) is a young conference: this publica-

tion appears in its third edition. It is loosely modeled after the Robotics Science

and Systems (RSS) conference, another small, single-track conference known for

its high-quality and low acceptance rate; in the third edition of CoRL, 112 papers

were selected out of 398 submissions. Papers from previous editions quite con-

sistently have high citation counts after only 1-2 years. This high citation count

can be partly attributed to the high standards of the conference, and partly to the

current popularity (and therefore high publication rate) of machine learning.

Individual Contributions:
I formed the concept and developed the theoretical groundwork in a deterministic

setting, including the convergence proof. I wrote the code framework for comput-

ing viable sets, as well as all simulations. I recognized the possibility of extending

this to a probabilistic setting, and reached out to Alexander von Rohr to help on

this aspect. I helped work out the details of modeling the measure as a Gaussian

process, and how to use this probabilistic model to gather samples. I helped debug

and test the learning algorithm and tune hyperparameters. I wrote the majority of

the paper, proof-read the paper, and helped make visualizations. I managed the



3.2. PAPERS AND CONTRIBUTIONS 27

milestones and overall timeline for the project and helped plan milestones for the

project.

Concept Implementation Analysis Submission Management

S.H. Central Central Central Central Central

A.v.R. Substantial Central Central Major Major

S.T. (PI) Minor Minor Minor Substantial Substantial

A.B.S. (PI) Minor Minor Minor Minor Substantial

3.2.4 Learning from outside the viability kernel

Abstract:
Despite impressive results using reinforcement learning to solve complex prob-

lems from scratch, in robotics this has still been largely limited to model-based

learning with very informative reward functions. One of the major challenges

is that the reward landscape often has large patches with no gradient, making

it difficult to sample gradients effectively. We show here that the robot state-

initialization can have a more important effect on the reward landscape than is

generally expected. In particular, we show the counterintuitive benefit of includ-

ing initializations that are unviable, in other words initializing in states that are

doomed to fail.

Commentary:
I find the core result of this work interesting since it is particularly counterin-

tuitive, and it gives a simple, concrete example that highlights why it is a good

practice to place a lot more variation in state initializations. This aspect is very

often completely ignored when designing experimental set-ups.

Venue:
The IEEE international conference on Simulation, Modeling, and Programming

for Autonomous Robots (SIMPAR) is a small (27 accepted papers that year), bi-

annual conference typically organized in proximity of a large robotics conference:

ICRA for this year. The theme for this edition was ’Leveraging Simulation in the

Hardware and Software Design of Autonomous Robots’. The overall quality of
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publications appeared to me to be decent, neither particularly high nor low.

Individual Contributions:
I formed and developed the concept, wrote the code and carried out experiments

and analysis. I chose the venue of publication, wrote the paper, and managed work

packages and milestones for the project.

Concept Implementation Analysis Submission Management

S.H. Central Central Central Central Central

A.S. (PI) Minor Minor Minor Substantial Substantial



Chapter 4

Discussion

For a detailed discussion specific to the results of each paper, we refer to the papers

themselves. Here we will discuss the common themes, the connections between

them, and what the results of this thesis mean for future work.

4.1 Designing robots that can avoid failure

As demonstrated in [1], robustness to failures is critical to learning control, and

appropriate system design can greatly influence the inherent system robustness.

Our work in [2] formalizes what a design should strive for: robust natural dynam-

ics.

I show an example of computational design in [2]. However, it is limited to

optimizing the parameters of a low-level control for a relatively simple legged

system. To truly make use of these concepts for computational design (both of

robot hardware and low-level controls) will require further progress in scaling the

tools to compute viable sets in state-action space.

The work in [3] begins to address this: although the main contribution of the

paper is to enable safe learning directly on a robot, it can also be used in simulation

to learn approximations of viable sets, and scales better than the brute-force com-

putation used in [2]. Nonetheless, further tools to allow computational tractability

are needed to make these concepts useful for higher-dimensional systems. Ex-

29
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ploiting structure in well-understood dynamical systems, such as the rigid-body

dynamics commonly seen in robots, is a promising path. How this structure relates

to the set-valued dynamics view of viability is an open question.

In parallel to developing computational tools, I also see value in the intuition

gleaned from reduced order models. Indeed, armed with the knowledge that ro-

bustness to noisy action spaces will make controller design easier, a robot designer

can already make more deliberate design decisions, guided by this intuition.

4.2 Designing robots that can fail

The work of this thesis also emphasizes the need for robots to be designed such

that occasional failures are not critical. The most important reason for this is that

guaranteeing safety requires perfect models, which, of course, do not exist [5].

The computational tractability of sufficiently accurate models is, as discussed

above, still a major challenge. It is then only reasonable to begin with simpler,

less accurate but more tractable models, before transferring directly to the real

system. To use these less accurate results in practice, we can take two approaches.

One approach is to compute under-approximated viable sets, which will retain

guarantees of safe operation. However, these tools also difficult to scale to higher

dimensions, and often result in over-conservative approximations [106].

A different approach, which is mentioned in [3], is to use data from actual

operation of the robot to refine an initial simulation-driven approximation of the

viable set. This approach is contingent on robots being allowed to fail occasion-

ally. In practice, this means a robot should be sturdy enough to survive a few

failures, but also that a failure does not cause unacceptable damage to the user or

environment. It is also useful if it is possible to reset the robot quickly and easily.

Just as in curriculum learning, it may be possible to gather at least a portion of

these data samples in a controlled environment: a sandbox, so to speak, where

failures are tolerable.

A second reason why robots should be designed to allow failures is illustrated

in [4]. The core concept is that systems often have large sets of unviable states:
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states which have not failed yet, but are doomed to fail within finite time. In

this time, the learning agent can still explore and collect informative samples that

are useful for the learning process — if it can survive the failure. For this to

be useful, two requirements should be fulfilled: first, information relevant to the

learning process should be available in unviable states. This will depend largely

on the reward function. Second, a well-designed system will not fail abruptly,

but rather be able to continue exploration for as long as possible, delaying the

inevitable failure. Fortunately, this requirement often goes hand in hand with

improving robustness, as discussed above. For example, starting with soft gains

on an impedance controller will allow a robot to stumble and fall more slowly

than a controller that is aggressively tuned for performance.

4.3 Leveraging dynamics models

I have focused on model-free methods, for a very deliberate reason: I believe that

model-based optimal control is a fantastically powerful tool, and it is too tempting

to try to reformulate any problem as an optimization problem. Many of the results

on robustness developed in this thesis, although not mathematically complicated,

are not evident through the lens of optimality. Taking a completely (or nearly)

model-free approach forces us to deal directly with robustness, as we have no

assumed structure to exploit. It has strongly motivated the development of the

new, mathematically simple objects presented in [2], and the clean simplicity for

safe learning in [3]. Now that the fundamental mathematical objects have been

established, the time is ripe for turning to model-based tools. Leveraging this

structure will be an essential key to scaling up these concepts to use models in

higher dimensions.

Several computational tools are being developed to compute invariant sets

in state-space. For example, sums-of-squares polynomials can be cast as semi-

definite programs (SOS programming), and have been used to compute robust

funnels [107] and robust regions of attraction [108]. Although these tools are typ-

ically used for analyzing convergence in the Lyapunov sense, it is reasonable to
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expect the same tools to work well for viable sets, which are also invariant sets.

Because these tools are computationally rather demanding, they have mostly

been used for analysis. However, recent developments are pushing their utility

for control, for example by combining SOS programming with reachability anal-

ysis in a hierarchical framework [109], or combining it with trajectory optimiza-

tion [70]. Similar combinations with a view of viability in state-action space have,

in my opinion, a lot of potential and offer exciting opportunities.

Directly learning a model of the dynamics while also learning a model of the

safety measure is, in my opinion, one of the most promising and straightforward

next steps. In particular, each of these learning processes can benefit from the

other in terms of sample efficiency: on the one hand, it is desirable to focus sam-

pling in viable regions when gathering samples for learning dynamics. On the

other hand, a model of the dynamics can be used to bootstrap learning the safety

measure. Furthermore, predictions can help active sampling by ‘checking ahead’

to compare the safety of a state-action pair with the safety of the predicted next

state. How to trade-off between uncertainty of the prediction compared to the

model of the safety measure is something I hope to look into soon.
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Shaping in Practice: Training Wheels to Learn Fast Hopping Directly
in Hardware

Steve Heim, Felix Ruppert, Alborz A. Sarvestani, Alexander Spröwitz
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Abstract— Learning instead of designing robot controllers
can greatly reduce engineering effort required, while also em-
phasizing robustness. Despite considerable progress in simula-
tion, applying learning directly in hardware is still challenging,
in part due to the necessity to explore potentially unstable
parameters. We explore the concept of shaping the reward
landscape with training wheels; temporary modifications of the
physical hardware that facilitate learning. We demonstrate the
concept with a robot leg mounted on a boom learning to hop
fast. This proof of concept embodies typical challenges such as
instability and contact, while being simple enough to empirically
map out and visualize the reward landscape. Based on our
results we propose three criteria for designing effective training
wheels for learning in robotics. A video synopsis can be found
at https://youtu.be/6iH5E3LrYh8.

I. INTRODUCTION

In nature, animals learn to move with a grace and agility
that is the envy of robotics engineers. One major challenge is
that most algorithms rely on accurate models, which in turn
also take a lot of engineering effort. Alternatively, reinforce-
ment learning (RL) is a powerful paradigm that can work
both model-based or model-free. In addition, reinforcement
learning is often able to learn from generic and even highly
delayed reward signals: for example a legged robot might re-
ceive a reward for reaching a specific target location within a
set time limit, and no reward for getting progressively closer.
This allows for easy and intuitive assignment of rewards
without constraining the behavior for achieving the goal.
Despite these attractive features and promising achievements
in simulation [1][2], applying RL directly in hardware has
proven challenging [3][4][5] with only a handful of successes
that actually run model-free [6][7].
One major challenge in hardware comes from the necessity

to explore the reward landscape. The landscape is usually
non-convex, and often only subsets represent behaviors that
actually accumulate reward: the rest of the landscape often
looks flat, representing different behaviors that all receive
the same or even no reward. Sampling from these regions
provides no gradient information for the robot to learn from.
This is particularly true when the reward is generic and
delayed such as in the previous example: a policy that causes
the robot to fall over immediately would get the same reward
of zero as a policy that hops in place, even though the second
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Fig. 1: A multiple-exposure image of our robotic leg mounted on
a boom hopping, showing the distinct stance and flight phases.

policy arguably solves part of the locomotion problem [8].
This problem is even more accentuated in robots that are
unstable, since instabilities often quickly lead to direct failure
states. These failures generally lead to no reward, and
can also damage the hardware. In practice, exploration is
executed cautiously, usually locally. This combination means
that large parts of the reward landscape are flat, and there is
no salient gradient to lead the learning agent in the correct
direction.
The exploration challenge can be solved by choosing a
more appropriate policy parameterization, or with different
exploration strategies such as intrinsic motivation [9]. This
can however be difficult to find and does not eliminate the
flat regions, or the potentially damaging failures.
Another approach is to shape the reward landscape. A
common method of shaping is to encode more information
of the task in the reward [10]. The drawback is that it
requires more prior knowledge of the task, and goes against
the attractiveness of being able to choose rewards based on
achieving a task rather than specifying a behavior1. It is
also possible to shape the landscape by proper mechanical
design. For example, walking robots designed after passive-
dynamic walkers [11] have good stability properties for a
wide range of policy parameters, allowing quick and reliable
learning from even poor initializations [6]. The drawback is
that designing the system around one specific behavior can

1Whether the robot crawls, walks or runs should depend on the context
of the situation and not on the goal.



be limiting in terms of versatility and design options.
We build on these ideas with the concept of training wheels:
shaping the landscape with temporary mechanical modifica-
tions of the robot that allow for easier learning. To the best of
our knowledge, this concept has only been briefly explored
in simulation, even though initial results showed promise
[12]. We present a proof of concept directly in hardware,
applied to learning fast hopping of a monoped robot with
a rolling foot: an underactuated, unstable system featuring
hybrid dynamics.
We would like to note that we largely use the terminology
of the RL community. In particular, the term environment
signifies everything that is beyond direct control of the learn-
ing agent. Take for example an agent whose policy outputs
a desired joint position; then the environment includes not
only the physical world the robot moves in, but also the
robot itself and the PD motor controller used to track the
desired joint position. For a more thorough treatment of RL
see [5][13].

II. SETUP: MECHANICS, POLICY AND LEARNING
SCHEME

Fig. 2: The entire robot consists of a leg mounted on a boom, with
a total of four degrees of freedom. The counterweight balances
out the mass of the boom without the leg or payload. The payload
represents the mass of the batteries and additional electronics, which
are offloaded via a tether.

Our robot platform (Fig. 2) consists of a two-segment leg
with a passive compliant ankle joint and an actuated hip joint,
mounted on a boom which constrains the body to motion on
a 2D surface. The robot thus has four degrees of freedom
(DoFs) and a single actuator. The passive compliance at the
ankle joint (Fig. 3) results in favorable natural dynamics [14],
though the system is still passively unstable.
The learning task is to achieve fast hopping, and the reward
for each rollout is the average speed with one additional
condition: potentially damaging behavior, such as landing
on the ankle instead of the foot, is tagged as a failure and
receives no reward. The training wheels for this proof of
concept are a simple change of the total mass of the robot

Fig. 3: The two-segment leg has a brushless DC motor at the hip,
and a passive compliant ankle joint. The spring is mounted to a
cam mechanism, and the joint itself is limited in extension range.

body: essentially we allow learning in a reduced gravity
environment.
We choose these training wheels for two reasons: first,
they should make it easier for the agent to learn the task.
Second, they should also be easy to apply in practice, so the
final behavior can be achieved with less engineering effort.
Based on this we introduce our first criterion in designing
training wheels: how easy are training wheels to apply to a
generic set of robots. For example, the weight of batteries,
computation or other payload can easily be offloaded during
an initial training phase for most robot designs.
We choose a simple policy with a 2D parameter space:
the hip actuator tracks an open-loop sinusoidal position
trajectory as follows

αhip = θ0 +θ1 sin(ωt) (1)

where αhip is the angular position of the hip, ω is a
hardcoded angular frequency while θ0 and θ1, offset and
amplitude parameters respectively, form the parameter space
of the policy. This simple policy parameterization serves
two purposes: first, a low-dimensional deterministic policy
is amenable to the simplest of learning schemes, and thus
eliminates the ambiguity of whether the training wheels
or the algorithm implementation are responsible for the
change in performance. In the results presented we choose
ω = 9Hz, based on experience. Higher values achieve higher
performance, but failures are also more violent and prone to
damaging hardware. Since we also need to sample failure
parameters to map out the landscape, we compromise be-
tween safety and performance.
We use stochastic gradient descent based on simple finite-
difference methods [15]. More importantly, the low dimen-
sionality allows us to empirically map out and inspect the
landscape of the learning problem as a 3D surface as seen
in Fig. 4. This allows us to compare the landscapes with and
without training wheels in detail, and show the change in



learning performance across each landscape.

A. Hardware Details

Each DoF of the boom and leg is measured with a rotary
encoder (CUI ATM102-V). The boom arm has a length
of 1.5[m] from pivot to the leg, and is counterweighted to
completely offset its own mass without the leg. The ankle
joint of the leg (Fig. 3) is mechanically limited to 130° in
one direction, and has a spring with a stiffness of 6 [ N

mm ]
attached to a cam mechanism with a radius of 15 [mm]. This
spring is slightly preloaded such that it always returns to
the resting angle of 130°. The upper and lower leg segments
measure 110 [mm] and 136 [mm] respectively, and the virtual
leg length from hip to foot is 223 [mm] at rest. The hip
is actuated with a brushless outrunner motor (T-motor MN-
4006) with a 1:5 gearbox. The motor control board (Texas
Instruments TMS320F28069M with DRV8305EVM booster
packs) uses field-oriented control for direct torque control
of the motor. A Xenomai real-time linux operating system
handles high-level control. Electric power and computational
power are both off-loaded via tether. A representative mass
is directly attached on the boom just behind the leg. With
the entire payload, the robot has a body weight of 600 [g].
For our two training wheel environments the representative
mass is replaced with an intermediate mass or completely
removed. This results in a body weight of 505 [g] (0.84 g0)
and 415 [g] (0.69 g0) respectively.

III. RESULTS

We test three environments: the robot with full payload
and two environments with training wheels which reduce
the weight to 0.69 g0 and 0.84 g0, where g0 is the weight
of the robot in the original environment. We will refer to
these two environments with training wheels as the beginner
environment and the intermediate environment respectively.
We map out the entire reward landscape for each environ-
ment by sampling and then interpolating the parameter space
(Fig. 4). The parameter space is limited to θ0 = [0 40]°
and θ1 = [10 45]°. Parameters outside this range are either
unreachable due to mechanical hard-stops, or in the zero-
reward region for all environments, and cropped for clarity.
All three landscapes have a mountain-like shape emerging
out of a flat surface. While not quite convex, the land-
scapes each have a prominent peak, making them amenable
to stochastic gradient descent. Also present in all three
landscapes is a cliff: a sudden sharp drop from high to
zero reward. This is found in the upper right quadrant of
the parameter space and can be recognized in Fig. 4 by
the dense contour lines. This cliff represents the border
between parameters which exhibit stable high performance
and unstable parameters. In practice it is both difficult as
well as dangerous to learn from beyond this cliff: policies
with high-amplitude tend to crash violently and damage the
hardware. It is interesting to note that the orientation of the
cliff does change in each environment, though its proximity
to the peak does not.

A. Salient Gradient Sets

We are interested in the region that achieves non-zero
reward which we will refer to as a salient gradient set
(SCS), delimited in the figures by the thicker, outermost
contour. This is the set of parameters a learning agent needs
to sample from in order to learn. The second criterion for
choosing effective training wheels is how much the training
wheels increase the size of the SCS. Indeed the SCS of
the beginner environment covers 46% of the total parameter
space, compared to 25% of the intermediate environment
and 20% in the original environment. This increase in size is
important both for gradient-based and gradient-free methods.
With stochastic gradient descent, for example, the gradient
is estimated by local sampling. This means the agent must
start inside, or at least within local sampling distance of the
SCS in order to estimate a gradient. Increasing the size of the
SCS directly increases the basin of attraction of the learning
system. Other exploration approaches such as eps-greedy can
sample from the SCS despite being initialized well away of
the SCS. In this case, increasing the size of the SCS increases
the probability of sampling from it, thus improving rate of
convergence.

B. Funneling Sets

In Randløv’s simulated work [12], the training-wheels
environment converges gradually to the original environment.
In practice, it is often difficult to implement a gradual
mechanical change: in many cases it is desirable to have
training wheels that are either on or off, or at least require
only a few stages. This brings up an important requirement
for training wheels: successive environments must funnel into
each other. In Fig. 5, the peak of the beginner environment,
located at [22.5 32.6]°, lies only barely within the SCS of the
original environment. In general, there are no guarantees the
peak of the training-wheels will be contained in the SCS
of the original problem. If it isn’t, or in our case if the
policy has not fully converged, there is a good chance that
when the training wheels are removed, the policy is still
too far from the next SCS to effectively sample from it.
This issue is solved by having an intermediate environment,
whose SCS contains a large area around the peak of the
beginner environment. In other words, each training-wheel
environment should easily funnel into the SCS of the next
environment to be effective. This is particularly important
when local exploration strategy is used, and is conceptually
similar to designing controller funnels [16][17].
There is a second consideration that should be kept in mind:
while the peak of an earlier environment must2 be contained
in the SCS of the successive environment, the reverse is
not true. This means switching back to an earlier training
environment must be done only cautiously, especially in
hardware. A simple workaround is to keep a memory of
previous policies, and switch back to known stable policies
when switching back to previous training environments.

2This condition is necessary when exploration is strictly local, and can
be relaxed otherwise.
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Fig. 4: The landscapes of the beginner, intermediate and original environments are visualized here. The upper row shows the sampled
points (circles) and the resulting interpolated mesh, slightly offset for visibility. The more gradual climb in the lower gravity environments
is visible. The contour maps in the second column more clearly show the change in shape of the ‘reward mountain’, the shape of of the
cliff and most importantly, the size of the basin of attraction for the learning system. The outer contour showing the set of parameters
which can provide a gradient is outlined with a thicker line. If the learning agent only samples outside this set, it will not be able to
accurately estimate a gradient.
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Fig. 5: The salient gradient set (SCS) for each environment is
mapped out with contour lines and the peak of each set marked by a
triangle. The location of the peak of one training environment with
respect to the SCS of the successive environment is very important.
To be effective, the training wheels must guide the current policy
towards parameters that will sample from the salient gradient set
of the next landscape with higher probability.

C. LEARNING ACROSS LANDSCAPES

As a proof of concept we use offline stochastic gradient
descent with finite-differences, with parameter perturbations
ranging between 0.5° and 2°. Gradient estimates tend to be
more robust to noise with larger perturbations, especially
where the gradient is very shallow such as at the edges of the
SCS. On the other hand, they become unstable closer to the
peak and especially when close to the cliff. We also choose
a constant, relatively large learning rate of 2.5. Again, larger
steps have the risk of overshooting and stepping over the
cliff, but otherwise perform well. In both cases a cleverer,
variable choice of these parameters would help the learning
process, but is not relevant to the training-wheels concept
and is kept constant.
Several typical learning sessions are shown in Fig. 6a,
with the most successful reaching a speed of 0.35 [m

s ]. We
also purposefully initialize several trials outside the SCS
of the original environment, and as expected we observe
meandering paths. Examples of agents initialized with pa-
rameters outside their respective SCS are shown in Fig.
6b. As expected, without sufficient gradient information the
agents will simply take steps in random direction. While this
random exploration has a non zero probability of entering the
salient gradient set and therefore converging, it can take a
large amount of iterations, especially when starting at some
distance from the set and with smaller learning step sizes.
Especially when learning directly in robot hardware, it is
critical to reduce the number of trials necessary.
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Fig. 6: Several typical learning paths are shown here: above, successful learning trials progress from the beginner to an intermediate and
finally to the original environment. Contour lines are not shown for visual clarity. One of these learning trials typically took around 10
minutes. Below are trials initialized directly with the original environment but outside its salient gradient set. These take learning steps
in random directions without improving.

IV. CONCLUSIONS AND OUTLOOK

We build on the concept of training wheels, temporary
mechanical modifications of the system, to shape the learning
landscape [12]. We apply it to learning open-loop legged
locomotion in a constrained test stand, as a simple, low-
dimensional problem that is unstable, underactuated and
features impacts. We propose three criteria to designing
effective training wheels in practice.

1) Ease of application to a generic set of robots
2) Increase in probability of sampling from the salient

gradient set
3) Ease of funneling from a training environment to the

successive environment

Since reducing the engineering effort is a main attraction for
applying learning to robotics, it is important that training
wheels are easy to implement and apply. As an example, we
surmise that adding damping to the joints, or to the floating
base, of a robot would help stabilize the system and greatly
help learning by improving stability [18][19], at a moderate
cost to performance and efficiency. Implementing mechanical
damping on small joints is however much more difficult
than simply temporarily offloading some of the payload, and
would require a custom design for each new robot. This
partially defeats the purpose of reducing the engineering
effort. While we plan to explore solutions to this in future
work, there is a lot of merit in solutions as effective yet
simple as reducing the payload.

The second criterion is the main qualifier for the effectiveness
of the training wheels in shaping the learning landscape.
To be more precise, increasing the probability of sampling
from the salient gradient set is what makes a training wheel
environment easier to learn in. The actual size of the set
in relation to the sample space is a good proxy; it is more
generalizable to arbitrary exploration strategies, and makes
it more intuitive to predict when designing training wheels.
In most cases it will be impossible to map out the landscape
by brute-force as we have done here. Good methods to
approximate the SGS size, or directly estimate the sampling
probability, need to be developed to more systematically
evaluate potential training wheels.
The final criterion is particularly relevant when local ex-
ploration strategies are used. As this strategy is common
in robotics, we feel it is an important criterion to include.
Training wheels that can be continuously tuned out, until
the dynamics converge back to the original environment,
would be guaranteed to satisfy this criterion [12]. However
the implementation of such training wheels generally goes
against the first criteria, and a trade-off will have to be made.
To be effective, training wheels will require a strategy to
transition from one landscape to the next. In practice, it is
helpful to regularly estimate the local gradient of the next
landscape before each transition. Ideally, we would want to
design a sequence of training wheels that funnel into each
other, similar in concept to [16][20].
In this work, when to switch between environments was



chosen heuristically. With the actual landscape maps avail-
able for reference, we can be very confident that the funnel
overlap between environments is large and we do not need to
completely converge on one environment before switching to
the next. For future work, it will be interesting to find a more
general rule for switching environments. Since the number
of trials needed to converge is particularly important when
learning in hardware, an optimal switching policy to learn
with the fewest iterations would be particularly useful.
Although we have presented these landscape shaping results
in the context of reinforcement learning, the challenge of
traversing a landscape in parameter-space is inherent to
optimization problems as a whole. In particular, the concepts
we develop should be useful for applying derivative-free
optimization in hardware [21] as well.
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REFERENCES

[1] X. B. Peng, G. Berseth, and M. Van de Panne,
“Terrain-adaptive locomotion skills using deep rein-
forcement learning”, ACM Transactions on Graphics
(TOG), vol. 35, no. 4, p. 81, 2016.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continu-
ous control with deep reinforcement learning”, arXiv
preprint arXiv:1509.02971, 2015.

[3] P. Abbeel, A. Coates, M. Quigley, et al., “An applica-
tion of reinforcement learning to aerobatic helicopter
flight”, in Advances in neural information processing
systems, 2007, pp. 1–8.

[4] J. Peters and S. Schaal, “Reinforcement learning of
motor skills with policy gradients”, Neural networks,
vol. 21, no. 4, pp. 682–697, 2008.

[5] J. Kober, J. A. Bagnell, and J. Peters, “Reinforce-
ment learning in robotics: A survey”, The Interna-
tional Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, 2013.

[6] R. Tedrake, T. W. Zhang, and H. S. Seung, “Learn-
ing to walk in 20 minutes”, in Proceedings of the
Fourteenth Yale Workshop on Adaptive and Learning
Systems, Yale University New Haven (CT), vol. 95585,
2005, pp. 1939–1412.

[7] N. Kohl and P. Stone, “Policy gradient reinforcement
learning for fast quadrupedal locomotion”, in Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on, IEEE, vol. 3, 2004,
pp. 2619–2624.

[8] M. H. Raibert, Legged robots that balance. MIT press,
1986.

[9] N. Chentanez, A. G. Barto, and S. P. Singh, “In-
trinsically motivated reinforcement learning”, in Ad-
vances in neural information processing systems,
2005, pp. 1281–1288.

[10] V. Gullapalli and A. G. Barto, “Shaping as a method
for accelerating reinforcement learning”, in Intelligent
Control, 1992., Proceedings of the 1992 IEEE Inter-
national Symposium on, IEEE, 1992, pp. 554–559.

[11] T. McGeer, “Passive dynamic walking”, The Inter-
national Journal of Robotic Research, vol. 9, no. 2,
pp. 62–82, 1990.

[12] J. Randløv, “Shaping in reinforcement learning by
changing the physics of the problem.”, in ICML, 2000,
pp. 767–774.

[13] R. S. Sutton and A. G. Barto, Reinforcement learn-
ing: An introduction, 1. MIT press Cambridge, 1998,
vol. 1.

[14] J. Rummel and A. Seyfarth, “Stable running with seg-
mented legs”, The International Journal of Robotics
Research, vol. 27, no. 8, pp. 919–934, 2008.

[15] J. Peters and S. Schaal, “Policy gradient methods for
robotics”, in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, IEEE, 2006,
pp. 2219–2225.

[16] Q. Cao, A. T. Van Rijn, and I. Poulakakis, “On
the control of gait transitions in quadrupedal run-
ning”, in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, IEEE, 2015,
pp. 5136–5141.

[17] R. Tedrake, I. R. Manchester, M. Tobenkin, et al.,
“Lqr-trees: Feedback motion planning via sums-of-
squares verification”, The International Journal of
Robotics Research, vol. 29, no. 8, pp. 1038–1052,
2010.

[18] J. E. Colgate and J. M. Brown, “Factors affecting
the z-width of a haptic display”, in Robotics and
Automation, 1994. Proceedings., 1994 IEEE Interna-
tional Conference on, IEEE, 1994, pp. 3205–3210.

[19] M. Calisti, F. Corucci, A. Arienti, et al., “Dynamics of
underwater legged locomotion: Modeling and exper-
iments on an octopus-inspired robot”, Bioinspiration
& biomimetics, vol. 10, no. 4, p. 046 012, 2015.

[20] A. Karpathy and M. Van De Panne, “Curriculum
learning for motor skills”, Advances in Artificial In-
telligence, pp. 325–330, 2012.
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Abstract—Properly designing a system to exhibit favorable
natural dynamics can greatly simplify designing or learning
the control policy. However, it is still unclear what constitutes
favorable natural dynamics and how to quantify its effect. Most
studies of simple walking and running models have focused on
the basins of attraction of passive limit-cycles and the notion of
self-stability. We instead emphasize the importance of stepping
beyond basins of attraction. We show an approach based on
viability theory to quantify robust sets in state-action space.
These sets are valid for the family of all robust control policies,
which allows us to quantify the robustness inherent to the natural
dynamics before designing the control policy or specifying a
control objective. We illustrate our formulation using spring-mass
models, simple low dimensional models of running systems. We
then show an example application by optimizing robustness of
a simulated planar monoped, using a gradient-free optimization
scheme. Both case studies result in a nonlinear effective stiffness
providing more robustness.

I. INTRODUCTION

Animals are not only agile and efficient, but also remarkably
adaptable and robust [1], [2], with arguably simple control
and morphology [3]–[5]. Reproducing this performance in
legged robots has been difficult. Most robots use sophisticated
algorithms [6]–[9] which rely on accurate models and state-
estimation at a substantial computational cost. This reliance
tends to make model-based approaches brittle.

Recently, there have been attempts to combine these ap-
proaches with machine learning to improve robustness and
adaptability [10]–[12]; however, it is notoriously difficult to
apply learning directly in hardware. We are motivated by the
question ‘how should a legged robot be designed, such that it
is easier to apply model-free learning directly in hardware?’.
A key part of the answer is the inherent robustness of the
natural dynamics of the system.

Indeed, designing a system with favorable natural dynamics
can simplify the control problem [13]–[17] and enable quick
learning directly in hardware [18], [19]. It is, however, still un-
clear how to quantify and evaluate the effects of design choices
on the control problem, especially in terms of robustness and
ease of designing or learning the control policy. After a robot is
deployed successfully, it is difficult to distinguish what is due
to the mechanical design, controller design, implementation,
or other factors. Designers must instead rely on experience
and intuition.

Many studies of natural dynamics focus on the concept of
self-stability and the basins of attraction of passively stable
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limit-cycles [20]–[23] or open-loop stable limit-cycles [24].
In this study, we advocate the importance of stepping away
from thinking in terms of limit-cycles and their basins of
attraction. We present a formulation grounded in viability
theory which allows us to quantify the inherent robustness
of the natural dynamics, prior to specifying the control policy
parametrization or control objective.

A. Natural Dynamics and Spring Mass Models
Perhaps the clearest example of natural dynamics is Tad

McGeer’s passive dynamic walker [25]: this purely mechanical
system with no sensors or actuators (and hence no control)
exhibits passively stable limit-cycles for downhill walking.
This idea has been extended in several robots, adding a little
actuation and control to allow walking on level ground [26],
[27] and to increase the basin of attraction of the passively
stable limit-cycle. A key concept is to exploit the natural
dynamics. The intuition behind this concept is that the control
can be ‘lazy’: if a perturbation pushes the system out of the
basin of attraction, the control should guide it back in. Once
the state is inside the basin of attraction, the control can allow
the system to naturally evolve to the attracting limit cycle.

Simulation studies of idealized walking models such as the
rimless wheel [28] and compass walker [29] have provided
more understanding of McGeer’s empirical results. These
models also have passively stable limit cycles albeit with rather
small basins of attraction.

For running, we turn to a different idealized model, the
spring-mass model. This simple model was initially developed
by the biomechanics community to study running [30], where
the spring abstracts the natural compliance of the muscle-
tendon system in the leg. While the effective leg stiffness
depends on many factors including muscle activation, it is
modeled as a constant parameter, and thus the model has no
control inputs. Thus, at the level of abstraction of the model,
the natural dynamics seem passive even though the system
may have active control embedded in it.

This simple model, also called a template, accurately pre-
dicts the overall behavior of many seemingly very different
systems, called anchors [31]. Indeed, by proper parameter
tuning, the spring-mass model can be used to accurately model
diverse running systems, from humans [32] to cockroaches
[33], bipedal [14] to hexapedal [34] robots.

B. Templates, Anchors, and Hierarchical Control
Spring-mass model templates are often used for under-

standing hierarchical control [31] since the template and
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anchor division offers a natural split in hierarchy. A high-level
control policy can be designed based on a template in a low-
dimensional space, while a low-level control policy based on
the anchor is designed in the high-dimensional space. Thus,
as long as the low-level controller enforces a template-like
behavior on the system, the high-level controller design can
be greatly simplified [35]–[37].

In this hierarchical context, the term natural dynamics is
always relative to the level of abstraction being considered.
Indeed, to a high-level control policy, there is no distinction
between which part of the system behavior is truly ‘passive’
and which has been influenced by the low-level controller1.

The template and anchor approach to hierarchical control
has been used to develop various discrete-time high-level con-
trollers: for example, the spring stiffness or landing angle of
attack might be chosen once per step, but the continuous-time
dynamics in between are left ‘passive’ [38]–[41]. One result
with this approach is that choosing an open-loop trajectory
of landing angles of attack during flight can achieve deadbeat
control without active control during stance [24], [42].

While these results are impressive, they generally suffer
from the curse of dimensionality: they are only tractable on the
low-dimensional template models. Therefore, the high-level
control relies on the overall system behaving as a simpler,
lower-dimensional system. This is usually achieved through
a combination of appropriate mechanical design, and a low-
level controller that exposes a simpler dynamical behavior to
the high-level controller.

There are two common approaches to low-level controller
design. On the one hand, a low-level control policy can enforce
the dynamical behavior of a specific template model [43]–[46].
While this approach offers more rigorous guarantees on the
behavior of the high-level system, it is also generally more
difficult to implement in practice.

On the other hand, the low-level control policy can be
designed to produce a lower-dimensional behavior without
enforcing the specific template dynamics [47]–[50]. This ap-
proach requires further tuning of the high-level control policy,
since it explicitly allows for a mismatch between the high-level
model and the actual system behavior.

Robustness is a key indicator of how accurate a model
needs to be, regardless of the approach taken: a policy that
is robust will suffer less from model inaccuracies. Our main
contribution is a means to quantify the robustness of the
natural dynamics, prior to designing the high-level control
policy, or even specifying its objective. We first illustrate
the quantification on template models in a rigorous manner.
We then show an example application using gradient-free
optimization to find robust parameters of a low-level controller,
without enforcing a specific template model. We are thus able
to quantify robustness without relying on low-dimensional
template models.

C. Computation of Viability
Our quantification relies on the concept of viability: a state

is said to be viable if there exists a set of control actions that
1This is equivalent to the split between agent and environment in reinforce-

ment learning.

keeps it inside the viability kernel for all time [51]. In other
words, a state that starts outside the viability kernel will fail
within a finite time, regardless of the control actions applied.

There has been much interest recently in computing viable
sets and its dual, back-reachable sets [52], for safe control ver-
ification and design [53]–[56], and more recently safe learning
of control [57], [58]. Our contribution complements prior work
by using a viability formulation to quantify robustness of the
system design prior to control policy design.

Viability-based approaches share a common challenge:
computing viability kernels relies on gridding the search space,
making the general case intractable [53], [59].

For particular classes of systems, more efficient algorithms
have been developed to find either inner or outer approxi-
mations of viable sets, which can generally be scaled to 6-
10 dimensions [59]. Thus, it is often beneficial to use ap-
proximations that fit these classes and dimension restrictions.
Computation of viable sets is then performed on the low-
dimensional approximation, which can be tracked using a
hierarchical control strategy [60], [61].

This matches well with the existing template and anchor
paradigm commonly used in legged robotics. We will show an
example application, in which we optimize the parameters of
the low-level control policy to exhibit robust natural dynamics
to a high-level control policy.

D. Notes on Terminology

We use terminology common to the reinforcement learning
community, such as actions instead of control inputs and
control policies instead of controllers. We will speak of control
policies sampling an action, or the system sampling a state-
action pair, to indicate the policy can be stochastic.

Much of the mathematics in the paper revolves around sets
in different spaces. Capital letters such as S denote spaces (in
this case state space). Capital letters with a subscript such as
SF denote a set in the corresponding space, the meaning of
the subscript being explained in the text (in this case the set
of failure states).

E. Structure

In Section II we cover the details of the two spring-mass
models we examine, their dynamics, and a typical bifurcation
diagram for the SLIP model.

In Section III we compute the viability kernel as well as
the transition map in state-action space. We illustrate how
this encompasses the bifurcation diagram, and why bifurcation
diagrams are limiting once we introduce control.

In Section IV we introduce our definitions of robustness,
and how to use this to evaluate two different designs of leg
compliance prior to designing a control policy.

In Section V we show an example application, in which
the quantification developed is used as the fitness function
to perform gradient-free optimization of a simulated planar
monopedal robot.

In Section VI we summarize the key contributions of the
paper, open questions, and our outlook.
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II. SPRING-MASS MODELS

We use two well-studied spring-mass models to illustrate
our concepts: the spring-loaded inverted pendulum (SLIP)
model and a nonlinear spring mass (NSLIP) model as first
studied by Rummel and Seyfarth [23] (see Fig. 1). Both
models have hybrid dynamics with the governing equations
of motion switching between flight and stance phases.

During flight phase, the body follows a ballistic trajectory,
whereas during the stance phase it follows a spring-mass
motion, which depends on the modeled spring. The details
of the equations of motion have been derived in [23], [30],
and can be found in the appendix. For convenient comparison,
we use the same parameters as in [23], which are similar to
human averages. In this work, we consider only deterministic
dynamics.

Figure 1: We focus on two spring-mass models: a) the spring-
loaded inverted (SLIP) model with a linear prismatic spring, and
b) a segmented leg model, with a linear torsional spring, which we
will refer to as a nonlinear spring-mass (NSLIP) model. c) shows a
qualitative trajectory over one cycle, starting and terminating with a
flight apex event.

A. Discrete Analysis via Poincaré Sections

The continuous motion of the point-mass body is fully
described in planar Cartesian coordinates by the state vector
[x,y, ẋ, ẏ]ᵀ. We simplify analysis by only evaluating the state
on a Poincaré section at flight apex, a common approach for
cyclic motion. At flight apex, potential and kinetic energy are
conveniently contained in the vertical position and forward
velocity respectively. Thus, the continuous state vector of
[x,y, ẋ, ẏ]ᵀ can be reduced to [y, ẋ]ᵀ. Taking advantage of the
constant energy constraint, we can further reduce the system

to a single state, the normalized apex height s, which defines
our state space:

s =
Epot

Epot +Ekin
=

g y
ẋ2

2 +g y
State Space: s ∈ S = [0,1]

where Epot and Ekin are potential and kinetic energy, respec-
tively, and g is the gravitational acceleration.

Starting from any state at apex s, we can numerically
integrate the continuous time dynamics until the system either
transitions to a second apex height or to a failure state. We
thus obtain the Poincaré map, also called a transition map, for
our discrete dynamics:

sk+1 = P(sk,α)

where the landing angle of attack α is a model parameter of
interest. We use this as our control action in Section III.

We will consider as failures all states in which the body hits
the ground with y = 0, as well as when the system reverses
direction with ẋ < 0. More formally,

Failure Set SF := {s : y = 0 or ẋ < 0}

B. Bifurcation Diagram of the SLIP Model

A bifurcation diagram allows the study of the existence
and stability of fix-points and limit-cycles, as a dependence
of model parameters.

The bifurcation diagram of the SLIP model with respect to
the angle of attack α is shown in Fig. 2. Similar bifurcation
diagrams for spring-mass models can be found in [62], and
bifurcation diagrams for spring stiffness can be found in [23],
[38].

Figure 2: The bifurcation diagram of the passive SLIP model
highlights the small range of parameters for which stable limit-
cycles exist. The basins of attraction are bounded by infeasibility and
unstable limit-cycles. Beyond these basins of attraction, however, is
a lot of structure that can be exploited through control.

We only evaluate period-1 limit-cycles, that is when sk+1 =
sk, and do not consider orbits which require multiple iterations
to return to periodicity. Stable limit-cycles are marked with
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a solid red line and unstable limit-cycles with a dashed red
line. The basins of attraction of the stable limit-cycles are
highlighted by the shaded area.

These basins of attraction are bounded from below by an
infeasibility constraint: below this line, the foot would begin
underground. The unstable limit-cycles bound the basins of
attraction from above: being perturbed onto an unstable limit-
cycle will keep the system at that new state; beyond this
threshold, it will diverge until the system fails.

Since either infeasibility or unstable limit-cycles bound the
basins of attraction, many previous studies have been limited
to identifying these bounds. The relevant range of parameters
and states for studying basins of attraction tends to be narrow,
as illustrated in Fig. 2. We will show in the next section that
there is a lot of structure outside the basins of attraction of
these passively stable limit-cycles. Once we allow parameters
such as the angle of attack α to be actively chosen as a control
decision, the relevant bounds are no longer the bounds of the
basins of attraction, but those of failure and viability.

III. NATURAL DYNAMICS AND VIABLE CONTROL

We begin the section by introducing control, then evaluate
the effect the natural dynamics have on the set of possible
control policies. A key concept is the link between the viability
kernel, a set within the state space, and the set of viable state-
action pairs.

A. Control Policies and State-Action Space

We will now allow the system to choose the landing angle
of attack α freely at each flight apex. This defines our action
space A:

a = α

Action Space: a ∈ A = [−180◦, 180◦]

where a is any action in A. In our figures we only show
the relevant range, excluding the range which contains only
failures or infeasible state-action pairs.

A control policy π is any function that maps a state to an
action, a = π(s). As such, a policy lives in the combined state
and action spaces, which we term Q-space2.

B. Transition Map

We compute high-resolution 800 by 800 grids of state-action
pairs, as is commonly done for these types of problems [9],
[24], [41], [56], [63]. We thus obtain a lookup table of the
transition map P(sk,ak), visualized in the state-action space
Q in Fig. 3 for the SLIP model and in Fig. 4 for the NSLIP
model.

To highlight the limit-cycles, we use a color-map centered
around sk − sk+1 = 0. The warm and cool colored regions
correspond to state-action pairs that result in a higher or
lower state, respectively. The gray regions are state-action pairs
which result in a failure state P(sk,ak) ∈ SF . The black region
is composed of infeasible points in which the foot would start
underground, and as such is not part of the Q-space.

2This term is chosen in reference to Q-learning in reinforcement learning.

We call the gray region the set of failing state-action pairs
QF . Its complement, the colored region, is the non-failing set
of state-action pairs QN . More formally,

QN := {(sk,ak) : P(sk,ak) /∈ SF} (1)

We denote the projection of QN onto the state space S as
the set SN = projS(QN). Throughout the paper, we always use
orthogonal projections, that is,

projS (s,a) = s (2)

SN is the set of controllable states, from which actions that
avoid immediate failure can be selected. More formally,

SN := {sk : ∃ ak such that P(sk,ak) /∈ SF} .

The upper bound between QN and QF are state-action pairs
that convert all kinetic energy into potential energy in one
step, resulting in a state of s = 1. In other words, these are
the equivalent of 1-step capture points [60]. The lower bound
is a boundary to falling, meaning that the point-mass hits the
ground without reaching a second flight apex.

C. Viable Sets

A viability kernel is the set of all states for which there is
at least one time-evolution of the system which remains in the
set for all time [51]. Since all state-action pairs (s,a) ∈ QN
result in at least a second step, all s ∈ SN have at least a one
failure-preventing action available. However, it is possible for
a non-failing state-action pair to reach a state from which all
solutions eventually reach a failed state, as was examined in
[64]. In other words, there can be states from which immediate
failure can be avoided, but from which the system will fail
within some finite time. Thus, the viability kernel, which we
will call SV , is a subset of SN and the set of viable state-action
pairs QV is a subset of QN .

We can compute the discretized set of viable state-action
pairs QV and its projection SV iteratively, as in Algorithm
1. In this process, we begin with an estimated QV = QN and
SV = projS(QV ). Then we alternate trimming both estimates of
QV and SV : first, we check if any state action pairs (s,a) in the
estimated QV maps to a state outside of SV and exclude these
from QV . Then we update the estimate of SV as the projection
of the new QV estimate and repeat. If the projection does not
change, each state in SV has an action available that maps back
into itself and the algorithm terminates.

Algorithm 1 Compute Viable Sets

procedure VIABLE SETS(P,QN)
QV ← QN
SV ←{}
while SV 6= projS(QV ) do

SV ← projS(QV )
for all sk+1 = P(sk,ak),(sk,ak) ∈ QV do

if sk+1 /∈ SV then
Remove (sk,ak) from QV

return QV , SV
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Figure 3: The lookup table of the SLIP model’s transition map shows possible combinations of state (height at apex) and action (landing
angle of attack), and their transition to either a second apex or a failure. State-action pairs in the gray region result in failure. State-actions
in the warm and cool colored regions result in hopping higher and lower respectively, with the color indicating the change in state (vertical
axis) at the next apex. Also marked are passively stable (solid red) and unstable (dashed red) limit-cycles, where the state does not change.

For the models we examine, QV is equal or almost equal to
QN except in unusual corner cases.

We can now compare the resulting QV and SV for the SLIP
and the NSLIP models (Fig. 5). Although the set of viable
states SV is the same in both models, the set of viable state-
action pairs QV is much larger for the NSLIP model. This
suggests unexplored benefits of nonlinear leg compliance.

D. Family of Viable Control Policies

A control policy π(s) must sample from QN with non-zero
probability; otherwise, it will always fail in a single step.
All meaningful policies must sample from QV with non-zero
probability, or it will always fail in finite time. In order to
avoid failure from every viable state for all time, a policy
must sample exclusively from QV , which we call the viable
policy design space. We call the set of all such policies the
family of viable control policies. More formally, if the set QV
is non-empty, we also have a non-empty set of viable policies
ΠV , where

∀sk ∈ SV ∃ π(sk) ∈ΠV , ak = π(sk) :
(sk,ak) ∈ QV and P(sk,ak) ∈ SV ∀k

The shape of QV in the dimensions of S and A poses
different constraints on the control policies π(s) ∈ ΠV that
we can design. The projection of QV onto the dimensions of
state space S is the viability kernel SV itself.

The volume of QV in the dimensions of action space A, on
the other hand, allows more flexibility in designing a viable

control policy since more viable actions are available to choose
from.

Imagine for example a set QV defined by a single line3

covering all of S, a surjective function f (s). While the viability
kernel SV = S is maximal, there is exactly one deterministic
control policy π(s) = f (s) which remains viable. This can
make the control policy not only difficult to design or learn,
but also very sensitive to uncertainty, as we will discuss in the
next section.

IV. ROBUST NATURAL DYNAMICS

We define robustness as the ability of a system to avoid
failure in the face of uncertainty. A key objective of this
work is to evaluate the robustness inherent to the natural
dynamics: we care about the robustness resulting from the
system design, before specifying the policy parameterization
or even the control objective (such as converging to a specific
limit cycle).

To this end, we focus on uncertainty in action-space, in other
words, the effect of noise on the control policy output. We will
use this as a basis to also examine robustness to perturbations
in state-space for the family of all robust controllers. We
briefly discuss the link of action noise to state-estimation
noise. We do not consider model uncertainty, and leave this
to future work.

3A hypersurface for arbitrary dimensional state-action space.
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Figure 4: Although the viability kernel SV remains the same for both models, the size of QV of the NSLIP is 36% larger. This allows for
more flexibility and robustness in designing a control policy for the NSLIP model. For reference, the QV of the SLIP model with gray lines
in horizontal and vertical for the cold and warm colored regions respectively.

A. Computing Robust Sets

Noise in the action space causes the system to sample a
state-action pair with a different action than chosen by the
policy:

a = π(sk)+ηa (3)
sk+1 = P(sk, π(sk)+ηa) (4)

where ηa is some form of noise. A robust control policy needs
to ensure that the chosen output never causes the system to
fail despite this noise, for all time. More formally,

If π(sk) ∈ΠR and ηa ∈ Ha

Then sk+1 = P(sk, π(sk)+ηa) /∈ SF ∀k
(5)

where ΠR is the family of all robust control policies. For
simplicity, we will consider noise sampled from a symmetrical
bounded set ηa ∈Ha = [−η ,η ], where η is some finite scalar.

When considering unbounded noise (such as Gaussian
noise), similar arguments hold in a probabilistic sense: instead
of being able to guarantee that state-action pairs allow the
system to never fail, we can only guarantee that it will not
fail within a finite-time horizon with a certain probability.

The effect of action noise reduces the space available
for controller design in two ways. First, the output of the
control policy π(sk) must be sufficiently distant from failing
state-action pairs, such that the added noise never causes an
immediate failure. The second requirement is similar to that
for viability: the system must always land in a state from which
it can continue to sample robustly, for all time. More formally,
we want that

sk ∈ SR, π(sk) ∈ΠR, ηa ∈ Ha :
P(sk, π(sk)+ηa) ∈ SR ∀k

(6)

We call QR the robust control policy design set. Similar to
the relation between ΠV and QV , policies in the set ΠR must
sample exclusively from QR in order to avoid failure for any
state sk ∈ SR where SR = projS(QR). Such sets are shown
in Fig. 5 for various amounts of noise η . Each of these
sets is computed with the iterative process in Algorithm 2.
This is essentially the same as the algorithm for computing
the viable set, while also considering additional possible
transitions caused by noise. Note that, if the system dynamics
have certain properties, only the worst-case noise needs to
be considered [59]. Even without these properties, a worst-
case only assumption is often sufficiently accurate in practice.
Importantly, the computation of QR depends only on the set
QV and thus the set of failure state SF , the transition map P
and the noise set H. It does not depend on the exact choice of
policy π(sk), but is valid for the family of all robust control
policies ΠR. In other words, we can evaluate the robustness
inherent to the natural dynamics, before we design the control
policy or define a control objective other than ‘avoid failure’.

B. Evaluating Robustness of Different Legs

We compare the robustness of the SLIP and NSLIP models
for varying amounts of noise, as shown in Fig. 5.

With the SLIP model, QR and SR become empty sets for
noise greater than ±10.75◦, whereas in the NSLIP model the
upper threshold is almost twice as large, at ±20.00◦.
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Figure 5: Robust sets for different amounts of noise are computed for the SLIP (top) and NSLIP (bottom). The NSLIP benefits from much
larger robust sets QR for any amount of noise, which makes it easier to design or learn a robust control policy. Also, the set of robust states
SR are not only larger for the NSLIP, but remain relatively large even for rather imprecise control.

For any given amount of noise, the size of the set QR is also
much greater for the NSLIP than for the regular SLIP model.
The larger size of QR means there is more flexibility to fulfill
robustness requirements while also designing a control policy
around other criteria.

Furthermore, action noise is one of the most common
methods of introducing exploration in learning, for example
with Gaussian policies [65]. The amount of noise needs to
be carefully balanced: more noise allows for more aggressive
exploration, but it can also keep the agent from converging to
the true optimum, as well as lead to unstable behaviors ending
in failed states. This can be particularly troublesome for learn-
ing in hardware, requiring more samples as well as potentially

damaging the robot. Robustness to action uncertainty allows
for more aggressive and effective exploration during learning.
This is particularly important for applying model-free learning
directly in hardware.

C. Robustness to State Perturbations
The projection of the robust policy design set onto state-

space, SR = projS(QR), is the set of robust states, from which
any robust policy π ∈ ΠR can always recover. Interestingly,
with small amounts of noise up to η < 5◦, SR remains the
same for both the SLIP and NSLIP models (see Fig. 6). For
greater amounts of noise, it shrinks much more rapidly for the
SLIP model.
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Algorithm 2 Compute Robust Sets

procedure ROBUST SETS(P,QV ,H)
QR← QV
SR←{}
while SR 6= projS(QR) do

SR← projS(QR)
for all (sk,ak) ∈ QR do

for all ηa ∈ Ha do
if (sk,ak +ηa) /∈ QR then

Remove (sk,ak) from QR
Break

if sk+1 = P(sk,ak +ηa) /∈ SR then
Remove (sk,ak) from QR
Break

return QR, SR

Figure 6: The size of the sets of robust sets SR remains equal for
the SLIP and NSLIP models for noise bounded to less than 5◦. For
greater amounts of noise, the sets shrink much more rapidly for the
SLIP model.

The set SR is particularly useful for choosing the specific
control objective. For example, if we expect perturbations in
state-space to have a symmetrical distribution, we would want
to stabilize a limit-cycle near the center of SR. On the other
hand, if we expect a specific type of perturbation to occur
more frequently, we can choose a limit cycle with a larger
margin in that specific direction.

As a specific example, a well-studied state perturbation
is a change of ground height between steps [1], [13], [24].
This type of perturbation involves a change in total energy:
the forward velocity at apex remains the same, though the
effective height (and thus potential energy) changes. We can
compute SR at different energy levels to then pick out operating
points that remain robustly controllable across different energy
levels, as shown in Fig. 7. Assuming symmetric distribution
of perturbations, the control objectives should be chosen to
maximize the distance from the edge of the viability kernel
in each direction. For a given desired forward velocity, we
can thus choose a total energy that centers the normalized
height to perturbation along the vertical axis (constant energy
perturbation) and along the forward velocity isolines (ground
height change).

Figure 7: We show here the SR for different amounts of total energy
for the NSLIP model, with noise fixed at η = 7.5◦. For a change
in ground height, the system state travels along the forward velocity
isolines (dashed black). For reference, the author runs recreationally
at roughly 3.2 [m/s], Eliud Kipchoge ran the Breaking2 marathon
event at roughly 5.8 [m/s] and Usain Bolt holds the 100 meter dash
world record at roughly 10.8 [m/s]. The simulations shown in other
graphs are all for the fixed energy level of 1’860 Joules.

D. Robustness to State Estimation Uncertainty

Sensory noise causes the control policy to sample an action
based on a noisy estimate of the state:

a = π(s+ηs) (7)

where ηs is the noise in state space. There is an equivalence
between ηs and ηa: the action used deviates from what
a control policy would determine under perfect conditions,
whether this is due to noise in action space or state estimation.
This equivalence can be directly calculated using eq. 4 and eq.
7:

π(s)+ηa = π(s+ηs)

ηa = π(s+ηs)−π(s)

If the control policy π is affine, the equivalence is trivially
ηa = π(ηs) and for bounded estimation noise ηs the equiva-
lent action noise ηa is also bounded. Otherwise, we cannot
guarantee bounds are available. Since this equivalence is
dependent on the specific control policy, we do not investigate
it further here. Suffice it to say, increasing robustness to action
uncertainty can only improve robustness to state-estimation
uncertainty as well.

E. Model Comparison

Previous studies of spring-mass models by Rummel and
Seyfarth and others [23], [66], [67] have suggested that non-
linear effective leg compliance can improve stability. These
studies focus on finding basins of attraction with a fixed
parameter set. As such, they focus specifically on limit-
cycle motion and only provide insight to robustness to state
perturbations.

With their numerical studies, Rummel et al. show that, com-
pared to a linear leg compliance, a nonlinear leg compliance
has a broader range of parameters which exhibit passively
stable limit-cycles. These limit-cycles also tend to have larger
basins of attraction. However, at higher velocities, the model
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with nonlinear spring stiffness no longer exhibits passively
stable limit cycles, whereas with a linear spring this property
is retained. These results suggested that nonlinear compliance
is only beneficial at lower running speeds [23].

Using our formulation, we can evaluate robustness to state
perturbations not only for an open-loop system but for any
robust control policy. Our results confirm that, even with a
maximally robust control policy, the set of robust states SR
shrinks at higher speeds (see Fig. 7), though not as drastically
as the basins of attraction studied by Rummel et al.

V. OPTIMIZING NATURAL DYNAMICS FOR ROBUSTNESS

As an example application, we use our quantification to
optimize the robustness of a simulated planar monoped with
a 2-segment leg with a hierarchical control structure, shown
in Fig. 8. The kinematic tree of the simulated system matches
a robot testbed we currently use in our lab, though we have
adjusted the parameters to be consistent with the models in the
previous section. The system consists of three links: a floating-
base free to move in the plane, but without rotation, and a
two-link leg. Both hip and knee joints are actuated, resulting
in an 8-dimensional state space and a 2-dimensional action
space. Rigid impacts and ground-reaction forces are solved as
described in [43], [68].

Figure 8: The simulated system is based on a hardware testbed,
which is rigidly attached to a boom. Thus the floating base is limited
to two degrees of freedom. Two additional degrees of freedom, the
hip and knee joints, are both actuated. Thus the system has 4 position
coordinates q= [x,y,θH ,θK ]

ᵀ, an 8 dimensional state space [q, q̇]ᵀ and
a 2 dimensional action space [τH ,τK ]

ᵀ, where τH and τK are the hip
and knee torques, respectively. The robot shown is designed by our
colleague Felix Grimminger.

We use the volume of the robust set QV as the fitness
function for a particle swarm optimization (PSO), a standard
gradient-free optimization scheme. Thus, instead of requiring
the low-level controller to enforce a specific template model,
we improve its robustness in a general sense. The resulting
natural dynamics allow for a high-level control policy to be
implemented more reliably.

A. High-Level State-Action Space

The choice of the high-level state-action space is based on
the spring-mass models and classic Raibert control [69], which
share many similarities. The structure is shown in Fig. 9.

Figure 9: The high-level state-action space is composed of the
height and forward velocity of the floating base at apex [y, ẋ]ᵀapex,
the desired landing angle of attack α and the thrust factor λ . The
natural dynamics considered are those relative to the high-level. These
include both the rigid-body dynamics of the simulated robot as well
as the embedded low-level controller.

The state is defined on the Poincaré section at flight apex,
as introduced in Section II. Since the system is not energy-
conservative, both the height and forward velocity of the
floating base at apex must be considered, resulting in the state
vector [y, ẋ]ᵀapex.

The action space is defined as a desired landing angle of
attack α , constrained within 0 and 45◦, and a thrust factor λ

applied during stance, constrained within 1 and 2. This results
in a 4-dimensional state-action space in the high-level, which
is amenable to direct computation of a sufficiently dense grid.

Although our choice of the state-action space is largely
motivated by Raibert control, we make no restrictions on the
high-level control policy and do not decouple the states and
actions.

B. Low-Level Controller

The low-level controller is a state-machine that switches
between flight and stance.

During flight, a standard PD position controller tracks the
desired landing angle of attack α dictated by the high-level
control policy. The resting length of the virtual leg, l0, is set
as a constant parameter less than the maximum leg length
to avoid reaching singularities. Thus α uniquely determines
the desired foot position during flight. Since there are two
possible joint configurations for each desired foot position,
this orientation is also set as a constant parameter in the
computation of the inverse kinematics. Thus α also uniquely
determines the desired joint angles. During the first flight
phase, from apex till touchdown, α is freely chosen as the
action. For the second flight phase, from liftoff till the next
apex, α is reset to the default position 0. Thus the initial leg
configuration at each apex is expected to be the same.

During stance, we do not enforce the dynamics of a spring
mass template model. Instead, compliant behavior is achieved
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via virtual model control (VMC) [47], [49]. Torques are
computed to mimic a relatively arbitrary leg compliance:

[τH ,τK ]
ᵀ =

{
BJᵀc kv∆l + K j∆θ if ẏ < 0
λ
(
BJᵀc kv ∆l + K j∆θ

)
otherwise

(8)

where [τH ,τK ]
ᵀ are the hip and knee torques, B is the

actuator selection matrix, Jc is the contact Jacobian, kv is the
stiffness coefficient of a virtual linear spring between hip and
foot, ∆l is the deflection of the virtual leg from rest, K is a
symmetric linear matrix, and ∆θ is the joint deflection of the
leg from rest. The diagonal coefficients of K can be interpreted
as virtual springs on the corresponding joints, while the off-
diagonal coefficient serves as a mixing term. As long as K
is positive-definite, K results in a nonlinear compliance with
respect to the virtual leg deflection ∆l. In similar fashion to
classic Raibert control [69], additional thrust is triggered once
the body reverses direction by amplifying joint torques by the
thrust factor λ , as dictated by the high-level control policy.

We assume accurate tracking of α during flight phase, which
is achieved through proper tuning of the PD gains. This is
important to ensure well-behaved high-level dynamics for two
reasons. First, to ensure that each high-level state-action pair
results in a unique state at touchdown. Second, to ensure that
the robot leg returns to the same resting configuration at each
apex. In this manner, the leg masses can be lumped with
the floating base to determine potential and kinetic energy,
meaning that the high-level state [y, ẋ]ᵀapex fully describes the
system energy. The transition map P thus provides a unique
map for each high-level state-action pair, and the viable sets
SV and QV can be directly computed in the high-level state-
action space.

C. Optimization Setup

We use a standard PSO implementation based on [70].
The parameters optimized are the stiffness coefficients of the
virtual leg in the low-level stance controller, [kv,k11,k22,ki j],
where k11 and k22 form the diagonal of the symmetric matrix
K, and ki j is the off-diagonal term.

As fitness function, we choose to maximize the hypervol-
ume enclosed by the viable set QV in the high-level state-
action space. For our systems, we have found that maximizing
the hypervolume of QV and QR generally leads to the same
results for reasonable amounts of noise. Each dimension of
the state is normalized by heuristically determined bounds on
maximum height and forward velocity, and the dimensions
of the action space are bounded by their corresponding con-
straints. The hypervolume is calculated by summing and then
normalizing the points inside the set. Thus, a fitness of 1 means
that for any state, all actions are viable. A fitness of 0 means
that for any state, all actions are outside the viable set.

For the results shown, 25 particles were initialized at
random. Convergence tolerance on the fitness variance was set
to 10−5, which was reached after 12 iterations, taking roughly
3.5 hours on a 28-core desktop. During the optimization, we
used a low-resolution grid with 160’000 points to speed up
computation. Note that a lower resolution will result in a more

conservative estimate of the sets, but not in mislabeled points
in the set. The simulation parameters used are:

Mechanical Parameters
gravitational acceleration g : 9.81

[
m/s2

]
body mass mB : 65 [kg]
upper leg length l1: 0.5 [m]

upper leg mass m1: 10 [kg]
upper leg inertia j1: 2

[
Kgm2

]
lower leg length l2: 0.5 [m]

lower leg mass m2: 5 [kg]
lower leg inertia j2: 2

[
Kgm2

]
Low Level Control Parameters
leg resting length l0 : 0.85 [m]

saturation torque τmax: 2000 [Nm]

Hip joint PD gains [kp,kd ]: [500,50] [−]
Knee joint PD gains [kp,kd ]: [500,25] [−]

D. Optimization Results

We compare the robustness with a virtual leg compli-
ance roughly matching that of the SLIP model, with stiff-
ness coefficient [kv,k11,k22,ki j] = [8,0,0,0]103, versus one
with the stiffness coefficients resulting from the optimization,
[kv,k11,k22,ki j] = [8.1,5.0,0.9,−0.5]103. The viability kernels
SV are visualized in Fig. 10. The intensity of the color-map
indicates the portion of the action space which is viable for
each point in state space. The red triangle marks an arbitrary
operating point, [y, ẋ]ᵀ = [1,1]ᵀ, and the action space for this
state is shown in the image inset. In the action space, the
action-pair leading to limit-cycle motion is also marked by
a red triangle. To illustrate improved robustness, 50 actions
are uniformly sampled around the operating point assuming
bounded noise η = [5◦,0.1]ᵀ (orange circles) and an additional
50 with bounded noise between η and 2η (blue circles).

As in the comparison between the SLIP and NSLIP models
in the previous section, the viability kernel SV in state space
remains nearly identical for both systems. The volume of the
set of viable state-action pairs, however, increases from 0.08
to 0.23, over 2.8 times. The noisy sampling of actions around
the operating point shows the decreased sensitivity to action
noise with the optimized nonlinear compliance. In Fig. 10 we
chose an arbitrary operating point for the sake of simplicity
and fair comparison. In practice, an operating point can be
chosen based on the robustness of that point in state-space.
Conversely, instead of optimizing the overall robustness of the
system, the fitness function can be weighted to bias robustness
near a predetermined operating point.

VI. CONCLUSION AND OUTLOOK

We have presented a formulation for computing viable and
robust sets in state-action space which allows the inherent
robustness of a system to be quantified, prior to specifying the
control policy parameterization or objective. Different system
designs can thus be compared quantitatively.
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Figure 10: Shown are the viability kernels in the high-level space for the initial monoped (left) and after optimizing virtual compliance
(right), along with the action-space for the operating point [y, ẋ]ᵀ = [1,1]ᵀ, shown in the image insets. A red triangle marks the state-action
pair which leads to limit-cycle motion on the operating point, in both the state and action spaces. In the action space, the orange and
blue circles mark actions randomly sampled around the operating point and with bounded noise η = [5◦,0.1]ᵀ, and between η and 2η ,
respectively. The states reached by these state-action pairs are marked with their respective colors in the state-space, which shows the much
lower sensitivity experienced by the optimized monoped. The intensity of the color-map indicates for each point in state space, the portion of
the action space which is viable. In the action space (image insets), the color-map indicates the intensity of the state that would be reached
if that state-action pair were sampled.

We have illustrated this formulation on the spring-mass
model, a low-dimensional system commonly used to synthe-
size control strategies for running robots. Furthermore, we
have shown an example application using our quantification
to perform gradient-free optimization. The system optimized
is a simulated planar monoped with a two segment leg
and a hierarchical control structure. The low-level controller
parameters are optimized to improve robustness of the natural
dynamics, as relative to the high-level state-action space.

An important advantage of this formulation is that the nat-
ural dynamics robustness can be optimized without enforcing
the dynamics of a specific template model, which is often
challenging and requires extensive tuning, developing accurate
models as well as state estimation [44], [71], [72]. Instead,
the inherent robustness will allow control policies designed on
simple model abstractions to be leveraged despite inaccuracies.

To the best of our knowledge, prior work in viability theory
focuses on evaluating robustness of a specific control policy,
or on synthesizing control policies directly, and computation
is limited to viability kernels in state space.

The notable exception is the work of Zaytsev et al. [56],
which also computes viable sets in state-action space. Aside
from the minor difference in studying walking instead of run-
ning models, Zaytsev et al. focus on the connection between
controllability and viability. This is used to qualify how robust
a given control policy is, how appropriate different templates
may be for a given control task and given robot, and to
motivate the statement that planning two steps ahead is suffi-
cient. While we use the same state-action space formulation,
we take a different approach to quantification by evaluating

bounded noise in action space, which is more suitable for our
motivating question: how to design natural dynamics that are
easy to exploit? Indeed, we show why this is the only type
of uncertainty which can be considered for the family of all
robust control policies, without setting any assumptions on
the control policy structure or objective. As such, we find
our methods to be highly complementary, and applicable at
different stages of robot design.

One of the main challenges with viability-based approaches
is tractability [53], [59]. While we have shown how, in princi-
ple, a hierarchical control scheme reduces dimensionality, this
approach alone is rarely sufficient in dealing with the curse of
dimensionality on real systems. There is much recent progress
on different scalable approaches to computing viable and back-
reachable sets (see Section I-C), and the specific choice will
depend greatly on the properties of the system in question.

For running motion, characterized by nonlinear, non-smooth
hybrid dynamics, we believe that, in addition to dimensionality
reduction through hierarchical control, the use of heuristics
such as computing ahead only two steps [56], are among the
most promising tools to scaling this to real hardware.

We are also interested in using sampling-based approaches
to make probabilistic estimates. There has been keen interest
recently in applying machine learning techniques to tune
control parameters directly in hardware [10], [73]–[75]. In
these situations, safe exploration of the state-action space is
particularly important. Active sampling to add samples close
to the edge of the viable set would significantly increase
sample-efficiency for estimating the sets, while at the same
time allowing safe exploration, making this a logical next step.
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Figure 11: a) shows the parameters of the SLIP and NSLIP models.
b) shows the states. The reference frame is reset to the foot position
at each touchdown. c) shows a qualitative trajectory over a full cycle,
with the relevant phases and events.

There is also potential for improvement in the definition of
failures, the starting point of any viability approach. In this
paper, we have used a very general and intuitive definition
for failure (falling and direction reversal), however other
definitions may be equivalent while offering earlier detection
when computing viability kernels. Conservative definitions
which lead to inner approximations may also be useful if they
substantially speed up computation. It may also be possible
to decouple the system dynamics, a common approach to
simplifying control [15], [69], [76], and identify different
failure conditions for each decoupled subsystem. This divide
and conquer approach would also allow substantially higher
dimensional systems to be tackled.

APPENDIX: SLIP AND NSLIP MODELS

The SLIP and NSLIP models are shown in Fig. 11. Inte-
gration between two apex events is split into three phases: a
flight phase which terminates with a touchdown event, a stance
phase which terminates with a liftoff event, and another flight
phase which terminates with an apex event. The flight phase
equations of motion are[

ẍ
ÿ

]
=

[
0
−g

]

where x and y are the body position and g is the gravitational
acceleration. The stance phase equations of motion are

[
ẍ
ÿ

]
=

Fleg

m

[
sin(θ)
cos(θ)

]
−

[
0
g

]
θ = arctan2

(y
x

)
− π

2
where θ is the incident angle between the body and the foot
(the rotation by π

2 serves to keep it consistent with the landing
angle of attack) and Fleg is the force acting on the body due
to the spring. In the SLIP model,

SLIP: Fleg = k (l0− l)

l =
√

(x2 + y2)

where k is the spring coefficient, l0 is the spring resting length,
and l is the leg length. In the NSLIP model,

NSLIP: Fleg =
4lc(β0−β )

l2
0 sin(β )

β = arccos
(

1− 2l2

l2
0

)
where c is the torsional spring coefficient, β0 is the spring
resting angle and β is the knee angle. The three events are

touchdown: l = l0

liftoff: θ = arctan2
(y

x

)
− π

2
apex: ẏ = 0

At each touchdown, the reference frame is reset to the foot
position, which allows the equations of motion to be written
more compactly. In the simulation, we also keep track of the
foot position in an auxiliary variable.

For convenient comparison, we use the same parameters as
in [23], which are similar to human averages:

gravitational acceleration g : 9.81
[
m/s2

]
body mass m : 80 [kg]
prismatic spring resting length l0: 1 [m]

prismatic spring coefficient k : 8200 [N/m]

torsional spring resting angle β0 : 170 [◦]

torsional spring coefficient c : 704 [Nm/rad]

For the SLIP and NSLIP simulations shown, except in Fig. 7,
the system energy simulated is 1’860 Joules.
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[49] D. Renjewski, A. Spröwitz, A. Peekema, M. Jones, and
J. Hurst, “Exciting engineered passive dynamics in a
bipedal robot”, IEEE Transactions on Robotics, vol. 31,
no. 5, pp. 1244–1251, 2015.

[50] W. C. Martin, A. Wu, and H. Geyer, “Experimental
evaluation of deadbeat running on the atrias biped”,
IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 1085–1092, 2017.

[51] J.-P. Aubin, Viability theory. Springer Science & Busi-
ness Media, 2009.

[52] J. N. Maidens, S. Kaynama, I. M. Mitchell, M. M.
Oishi, and G. A. Dumont, “Lagrangian methods for
approximating the viability kernel in high-dimensional
systems”, Automatica, vol. 49, no. 7, pp. 2017–2029,
2013.

[53] A. Liniger and J. Lygeros, “Real-time control for
autonomous racing based on viability theory”, IEEE
Transactions on Control Systems Technology, no. 99,
pp. 1–15, 2017.

[54] D. Panagou, K. Margellos, S. Summers, J. Lygeros,
and K. J. Kyriakopoulos, “A viability approach for the
stabilization of an underactuated underwater vehicle in
the presence of current disturbances”, in Proceedings
of the 48th IEEE Conference on Decision and Control
(CDC), 2009, pp. 8612–8617.

[55] P.-B. Wieber, “Viability and predictive control for safe
locomotion”, in IEEE International Conference on In-
telligent Robots and Systems (IROS), 2008, pp. 1103–
1108.

[56] P. Zaytsev, W. Wolfslag, and A. Ruina, “The boundaries
of walking stability: Viability and controllability of
simple models”, IEEE Transactions on Robotics, no. 2,
pp. 336–352, 2018.

14



[57] D. Lakatos, W. Friedl, and A. Albu-Schäffer, “Eigen-
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Abstract: Failures are challenging for learning to control physical systems since
they risk damage, time-consuming resets, and often provide little gradient infor-
mation. Adding safety constraints to exploration typically requires a lot of prior
knowledge and domain expertise. We present a safety measure which implicitly
captures how the system dynamics relate to a set of failure states. Not only can
this measure be used as a safety function, but also to directly compute the set
of safe state-action pairs. Further, we show a model-free approach to learn this
measure by active sampling using Gaussian processes. While safety can only be
guaranteed after learning the safety measure, we show that failures can already be
greatly reduced by using the estimated measure during learning.

Keywords: viability, safe learning, active sampling

1 Introduction

Learning control directly on hardware has great promise: learning would enable robots to adapt to
changing environments, exploit un-modeled dynamics, as well as greatly decrease the engineering
effort required to deploy a robot in the field. One of the challenges during the exploration process
is that the system might visit failure states, such as a flying robot crashing or a legged robot falling
over. These failure states can be costly in terms of time, damage to the robot or environment, and
are often uninformative for the learning process. Unfortunately, the learning agent may not know a
priori which actions lead to failure states. Furthermore, there may be actions which lead to unviable
states: states which have not yet failed, but from which it is inevitable to reach a failure state in
the future. Ideally, the learning agent only explores actions which keep the system within the set of
viable states, also known as the viability kernel [1].

Although algorithms to compute conservative approximations of the viability kernel are available,
they are contingent on accurate dynamics models, require substantial engineering effort and do not
scale well for many types of systems [2, 3]. Alternatively, it can be useful to have a safety function
which indicates how close the system is to leaving the viability kernel. Safety functions can help
guide exploration to stay within the viability kernel without having to know its precise bounds.
However, designing these functions is non-trivial, and faces the same issues commonly seen in
designing reward functions: they are typically only approximate indicators of potential failures,
require much handcrafting, and often introduce unwanted designer bias into the exploration.

We propose a model-free approach to learn a safety function, which captures the notion of viability
without requiring the viability kernel to be explicitly computed. Our first contribution is a safety
measure taken over the set of viable state-action pairs. Intuitively speaking, this measure describes
the quantity of actions available that can avoid leaving the viability kernel. It therefore implicitly
captures the structure of the systems dynamics, and how this relates to failure states, making it
an effective safety function. Our second contribution is an algorithm for model-free learning of
probabilistic estimates of both the measure and the viable set, using a Gaussian process (GP). On
the one hand, making no model assumptions means we cannot guarantee safety until the measure has
converged. We show, nonetheless, that the estimated measure can already be used during learning
to reduce the number of visits to failure states significantly. On the other hand, keeping assumptions

∗Equally contributing.
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to a minimum allows this approach to be applied more readily to systems with arbitrary dynamics,
where accurate models may be difficult to come by. This makes our approach particularly well-
suited to systems that are difficult to model and where failures are costly but not critical.

1.1 Background and Related Work

Safe Learning with Viability Kernels and Back-reachable Sets. Two common model-based ap-
proaches to find safe sets are the computation of viability kernels [1, 3, 4, 5] and back-reachable
sets [2, 6]. For viability, the user first defines a set of failure states; the viability kernel is then the set
of states from which there exist actions, such that the system can avoid the failure set for all time.
For back-reachability, a target set is defined; the back-reachable set is the set of states from which
there exist actions, such that the system can reach the target set in finite time. In practice, these
sets often coincide [5, 7, 8] and can be used interchangeably2. This depends, however, not only
on the system dynamics but also on the specified failure and target sets. For example, the failure
set for a walking robot may be defined as all states from which the robot cannot move its center of
mass (e.g., it has fallen over and cannot recover), and the target set may be defined as reaching a
specific location. If obstacles are blocking the path to the target location, the robot may be outside
the back-reachable set of the target set, even though it is inside the viability kernel.

There are several algorithms used to compute back-reachable sets or viability kernels in state space;
their effectiveness depends greatly on the assumptions used to model the system. For an overview,
we recommend [2, 3]. To circumvent the difficulty of obtaining an accurate model from first-
principles, models can also be learned from data. For example, Akametalu et al. [9] and Fisac
et al. [10] learn a GP model of the dynamics of the system and disturbances, and use this to compute
a conservative reachable set. As the system explores this set, the GP model is refined, and the set
can (usually) be expanded. Fisac et al. [10] demonstrate their approach on quadcopter flight. They
also point out the strong interdependence of safety and learning the systems true dynamics: safety
guarantees are only as good as the models they are based on. In contrast, we do not model or learn
the system dynamics, but a safety measure instead. We then estimate the set of viable state-actions
directly from our measure, which enables model-free safe learning. Although this loses safety guar-
antees while learning the safety measure, it can be substantially easier to apply to complex systems.

Recently, the notion of viability has been extended to sets in state-action space. Zaytsev et al. [7] use
this to directly link the reachable and viable sets. Heim and Spröwitz [11] use this to quantify the
influence of system design on robustness to noisy actions, which is particularly relevant in learning
control. We use the same notion of viability in state-action space, but extend the binary notion of
viability (a state-action pair either belongs to the set or not) with a measure.

Bayesian Optimization and Reinforcement Learning with Safety Functions. Recently, safe
Bayesian optimization (BO) using GPs has been used to apply model-free learning of controller
parameters for systems with failure conditions [12, 13, 14]. In addition to modeling the controller
performance, a second GP is used to model the safety of the controller parameter space. The safety
model is used to restrict active sampling to parameters with a high probability of being safe. Though
the controller parameters are applied to dynamical systems, safety is evaluated as purely dependent
on parameter space, such that it can be considered as a static bandit problem. Thus, each sample
of the parameter-space does not affect the safety of future samples. This approach is challenging
to apply to situations that include non-steady-state behavior or where a set of controller parameters
may be safe for some states but not others. In contrast to safe BO, we consider the more general case
where safety is dependent on the current state. This emphasizes the role of the system dynamics,
as they constrain the paths that can be taken through the search space. This type of problem can be
modeled as a non-ergodic Markov decision process: that is, where not every state can be reached
from every other state.

Turchetta et al. [15] have extended safe BO to Markov decision processes, and they demonstrate this
on a non-ergodic grid-world example, where there exist states which are reachable, but from which
the system cannot return. The notion of safety as ergodicity was previously formalized by Moldovan
and Abbeel [16] in the general reinforcement learning context, who also point out the counter-
intuitive result that more cautious exploration can often lead to faster convergence.

2This is the case when the viability kernel is ergodic.

2



In all of these approaches, it is assumed that a safety function can be sampled whenever visiting a
new point in the search space (whether this is the parameter or state space). Safety is then inferred
for nearby, unvisited points. The probable safety of these states can then be guaranteed using certain
assumptions on the safety function, such as Lipschitz-continuity. However, this safety function is
typically user-defined, and only indicative of what might cause failure. For example, Schillinger
et al. [14] use the temperature of the engine at steady-state, Berkenkamp et al. [12] use a minimum
performance threshold, and Turchetta et al. [15] use the ground inclination a rover needs to negotiate.
Just as guarantees for model-based methods depend on the quality of the model, safe BO depends on
a well-chosen safety function. In practice, the safety function is often chosen to be more conservative
than strictly necessary. In contrast, our safety measure implicitly encodes the structure of the system
dynamics and a definition of failure states. Furthermore, we show that the measure does not need
to be known a priori, and can be learned in a model-free manner by sampling. With no model
assumptions, safety guarantees can only be given once the measure has converged. Prior knowledge
can, however, be introduced to reduce failures significantly.

The rest of the paper is structured as follows: In Section 2, we define all the necessary objects
and introduce the safety measure. These concepts are illustrated with a toy example. In Section 3,
we extend this to a probabilistic setting and present an algorithm to learn the safety measure in a
model-free context. In Section 4, we show simulation results using our algorithm and point out key
properties. In Section 5 we summarize our contribution and potential future work.

2 A Measure over the Viable Set

We consider systems with deterministic dynamics of the form s′ = T (s, a), where s ∈ S is a state,
a ∈ A is an action, and T is the transition map of the dynamics to a new state s′. The set of failure
states SF ⊂ S can be defined arbitrarily. For the sake of simplicity, we consider here a set of states
from which there are no meaningful transitions and the system would need to be reset or replaced.
We will define objects in the state-action space Q := S × A. We use the shorthand s′ = T (q)
where q := (s, a) ∈ Q. We will illustrate the defined objects on a discrete grid-world, amenable to
pen-and-paper computation, and shown in Fig. 1.

Toy Model. Intuitively, the transition map in Fig. 1 can be thought of as representing a hovering
spaceship affected by gravity, which is stronger near the ground. The spaceship can apply two levels
of thrusters or allow itself to fall. The failure set is SF : {5}, when the spaceship crashes.

Figure 1: Shown are the transition map of our toy model, as well as each object: the viability kernel
SV , the viable set QV , the safety measure Λ and the Q-safety measure ΛQ. Both SV and QV are
highlighted in green. We also highlight state-action pairs which result directly in failure in orange,
and those that are unviable in yellow. The arrows and illustration are only to help with intuition.

We next define important mathematical objects for this work and illustrate them with the toy exam-
ple. First, we define the viability kernel SV .
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Definition 1 (Viability Kernel). The viability kernel SV ⊂ S \ SF is the maximal set of all states
s ∈ S, from which there exists an action that keeps the system inside SV (cf. [1, Chapter 1.1]).

By its definition, states outside of SV have either already failed, or will fail within finite time [1]. In
the toy model, the viability kernel is SV = {1, 2, 3}: for each of these states, there exists at least one
action which can keep the spaceship from ever failing. Avoiding failure does not require ergodicity:
the state s = 3 is viable, but it can no longer reach the other viable states. Note also that s = 4 is
neither in the viability kernel SV nor in the set of failure states SF : it has not yet failed but cannot
avoid reaching the failure set eventually. Next, we define the viable set in state-action space, QV .
Definition 2 (Viable Set). The viable setQV ⊂ Q is the maximal set of all state-actions q, such that
s′ = T (q) ∈ SV .

By its definition, the viability kernel SV is the projection of the viable set QV onto state space: for
any state in SV , the agent can sample a state-action from QV which maps back into itself [11]. Both
SV and QV are highlighted with green in Fig. 1. We can now define the safety measure Λ.
Definition 3 (Safety Measure). The safety measure Λ is the n-dimensional volume of the viable set
QV . When applied to a point s ∈ S, Λ(s) ∈ R≥0 is the measure of the corresponding slice of QV .

We use the Lebesgue measure for continuous spaces (assuming the sets are Lebesgue-measurable),
and the counting measure for discrete spaces. Intuitively, a higher value Λ(s) indicates that at state s,
more viability-maintaining actions are available. A low value indicates that the agent should be very
precise and deliberate since very few actions allow the system to avoid failure. In our toy model, for
example, Λ(3) = 1 means that there is only one action which allows the system to avoid failure, this
step and in the future. We can now map Λ into state-action space with the transition matrix.
Definition 4 (Q-Safety Measure). The Q-Safety Measure ΛQ is defined as Λ(s′) where s′ = T (q).
We use the shorthand ΛQ(q) = Λ(s′).

Next, we define safe level sets as the sets with measure ΛQ > λ, where the minimum safety level λ
is a non-negative scalar.
Definition 5 (Safe Level Sets). A safe level set Sλ is a set of states where Λ(s) > λ. A safe level set
Qλ is a set of state-action pairs which map into Sλ, such that ΛQ(q) > λ.

In other words, sampling from Qλ will map the system to a state from which there is at least one
action which maintains a safety level λ. Thus, the system can continue to choose actions which
maintain a minimum safety level of λ indefinitely. In Fig. 1, the safe level-sets Qλ=0 and Qλ=2

are highlighted in different shades of green. This can be useful when certain types of disturbances
are expected. We can recover the viable set from ΛQ with QV = Qλ=0, since viability implies
Λ(s) > 0. Thus, if the safety measure ΛQ is known, both the viable set QV and Λ can be obtained
directly. If only Λ is known, ΛQ can be computed directly using the transition map T . In the next
section, we will use these facts to learn ΛQ in a model-free fashion by sampling the dynamics.

3 Learning the Measure by Sampling

Given a system with an unknown transition map T and an unknown failure set SF , our main objec-
tive is to estimate the viable set Q̂V as a large, conservative approximation of the true viable set,
Q̂V ⊆ QV . Since we assume an accurate dynamics model is unavailable, we directly sample the
transition map T from a given state s by choosing an action a. Specifically, we begin sampling
sequences from an initial state s. We then receive the tuple (s′, failed), where s′ = T (q) is the new
state, and failed is a boolean indicating if s′ ∈ SF . The estimate Λ̂Q can only be updated with the
estimate Λ̂, except when sampling a failure. The goal is to choose actions a that are informative for
learning the safety measure while avoiding the failure set SF .

To achieve this goal, we model ΛQ, from which we compute Q̂V and Λ̂. The estimate Λ̂Q can
already be used during learning to avoid actions with a low estimated probability of being safe.

3.1 Convergence Properties

To examine the requirements for Λ̂Q to converge to the true measure ΛQ, we separately consider the
viable set QV and its complement QcV , the set of unviable and failed state-action pairs.
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Theorem 1. Under the assumption of infinite random sampling over Q, the measure Λ̂Q converges
to the correct value 0 for all q ∈ QcV .

A proof for discrete state-action spaces can be found in appendix A. Once the measure Λ̂Q inside
QcV has converged, the estimate for the viable set Q̂V is tightly bounded from above. Therefore, the
estimated safety measure is also tightly bounded to be Λ̂ ≤ Λ. We can then ensure Λ̂Q converges
to the true measure by initializing optimistically, such that initially Λ̂ ≥ Λ. These two conditions
of infinite sampling and optimistic starts are typical for model-free learning [17, Chapter 2.6] but
are also impractical. In particular, optimistic starts encourage visits to the failure set. We will now
extend ΛQ to a probabilistic setting, and use confidence bounds over the measure to estimate Q̂V .
Although this loses the guarantee of converging to the true ΛQ, we show that in practice it allows us
to converge to conservative subsets while reducing failures effectively.

3.2 Probabilistic Estimates: Modeling ΛQ with Gaussian processes

A probabilistic estimate allows us to (i) include prior knowledge without an explicit model of the dy-
namics, and (ii) estimate the uncertainty of the safety measure for a given state-action pair q, which
we will use for active sampling. When modeling q as a random variable, the distribution should
only allow for positive values and also have non-zero probability mass on the point zero, to model
the probability of a point being unviable. We use a normal distribution as a practical approxima-
tion, where the probability mass below zero is treated as the discrete probability for the point zero.
Specifically, we use a GP [18] to model the probabilistic estimate of ΛQ. The posterior estimate of
the measure at any point in Q is normally distributed, and it includes the prior assumptions on the
estimate as well as the samples D = (qi, Λ̂i(s

′
i)),

Λ̂Q(q)|D ∼ N (µ(q), σ2(q))

where Λ̂Q(q)|D means the estimate is conditioned on the samples, N is the normal distribution,
µ is the posterior mean function and σ2 the posterior variance, given by the covariance function.
The prior mean and covariance function can be used to encode the prior knowledge of the measure
function, such as smoothness or known safe sets.

Given Λ̂Q, the probability that a state-action pair belongs to the safe level set Qλ can be calculated
using the cumulative distribution function of the normal distribution FΛ̂Q

as

P [Λ̂Q|D > λ] ≈ 1− FΛ̂Q
[λ] .

3.3 A Learning Algorithm for ΛQ

We provide an approach for learning Λ̂Q and the derived Q̂V and Λ̂, described in Algorithm 1. As
discussed in Section 3.1, convergence requires an optimistic estimate of QV , such that the intitial
estimate Λ̂ ≥ Λ. Otherwise, a viable state-action pair may be incorrectly assigned the value 0.
At the same time, the algorithm should use a cautious estimate for active sampling to reduce the
probability of failing. To deal with this challenge, we use an optimistic set Q̂opt to compute Λ̂. A
separate, cautious set Q̂caut is used for active sampling. We obtain these as

Q̂opt(γopt) =

{
1 if P [Λ̂Q|D > 0] > γopt

0 otherwise,

Q̂caut(γcaut, λcaut) =

{
1 if P [Λ̂Q|D > λcaut] > γcaut

0 otherwise

by thresholding the probability with a minimum confidence γ ∈ [0, 1]. The algorithm has three
tuning parameters: γopt governs the level of optimism in Q̂opt, and λcaut and γcaut govern the level
of caution for active sampling. Choosing γcaut ≥ γopt ensures that Q̂caut ⊆ Q̂opt, so we never pur-
posefully explore outside the current estimate of the viability set. The algorithm samples the action
from the cautious set Q̂caut with highest variance. By actively reducing variance, the confidence in
the measure is increased. Choosing actions with high variance also encourages exploration of the
state space.
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Algorithm 1 Learning the safety measure

1: Input: initial measure estimate Λ̂Q; thresholds γcaut, γopt, and λcaut; initial state s0; maximum
number of samples n.

2: while i < n do
3: Compute Λ̂, Q̂opt and Q̂caut from Λ̂Q.
4: Acaut ← ∀a s.t. (si, a) ∈ Q̂caut. . Determine safe actions.
5: if Acaut is empty then
6: ai ← argmax

(si,a)∈A
P[a ∈ Q̂caut] . Take safest action.

7: else
8: ai ← argmax

a∈Acaut

σ2(si, a). . Explore based on variance of
the GP model.

9: (si+1, failed)← T (si, ai). . Sample the dynamics.
10: if failed then
11: Update D with ((si, ai), 0) and recompute Λ̂Q
12: si+1 ← random state from Q̂caut. . Reset if failed.
13: else
14: Compute Λ̂(si+1) from Q̂opt
15: Update D with ((si, ai), Λ̂(si+1)) and recompute Λ̂Q . Update measure estimate.

4 Results

We have tested our algorithm in simulation, and provide a Python implementation using the
SciPy [19] and GPy packages [20]. The code can is available in the supplementary material and
online at github.com/sheim/vibly, and includes example code to reproduce the results shown
here, some additional examples, and a template to implement dynamics of other systems.

We report the results of two examples, which each highlight a specific challenge: dealing with
unviable state-action pairs, and dealing with complex dynamics. We also use the second example
to suggest guidelines for choosing the algorithm parameters, though this will typically be system-
specific. Both examples are low-dimensional, and the ground-truth is computed by brute force. This
allows us to easily choose reasonable parameters for the GP model, which is otherwise a separate
challenge for using Gaussian processes. In practice, choosing these parameters is highly system-
dependent [21]. We use a covariance function from the Matérn family [18, Chapter 4], which has
two parameters: the length scales for each input dimension and the signal variance. The length
scales describe how fast the measure changes when moving away from a known state-action pair.
The second parameter is the signal variance, which relates to the total variation of the measure
estimate Λ̂Q. Details for the models are in the appendix.

Unviable state-action pairs. Our first example is based on the hovership spaceship from Section
2. The model has been modified with a continuous state-action space, and the dynamics have been
adjusted to increase the portion of the state-action space which is unviable. The GP prior mean is
purposefully initialized poorly, such that most of the initial estimate Q̂opt lies outside the true QV .
This example shows that the algorithm can cope with unviable states, even though the ground truth
is only sampled at failure. The confidence thresholds γopt, γcaut and λ are initialized to encourage
rapid initial exploration, then gradually increased to speed up convergence to a safe subset of QV .
After 250 samples, it has nearly converged to the ground-truth, with an 8% failure rate (see Fig. 2c).
In both examples shown in this paper, the confidence thresholds are increased linearly with each
iteration as a heuristic that helps speed up convergence and reduces failures.

Complex, unmodeled dynamics. Our second example is a simulation of the spring-loaded inverted
pendulum (SLIP) model, a low-dimensional idealized model commonly used to design controllers
for running robots [6, 22, 23]. Control, and therefore learning, is applied once per step-cycle, at
the apex of the flight phase. The system dynamics are therefore treated as a nonlinear, discrete map
with a 2-dimensional state-action space; this nonlinear map is obtained by numerically simulating
the full dynamics between two apex events. The set of failures, which includes falling and reversing
direction, is evaluated on the full state space of the continuous dynamics. For this system, the
measure ΛQ has a non-smooth edge on the lower part of the state space, due to an infeasibility3

constraint (see Fig. 3). Attempting to sample infeasible state-action pairs returns a failure. At this

3Infeasible state-action pairs have no physical meaning and cannot exist, such as starting underground.
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Figure 2: The progress of learning the Λ̂Q for the spaceship model. Starting from an inaccurate prior
2a, after 50 samples 2b and after 250 samples 2c. Red dots indicate samples, red crosses samples
that result in failures. After 250 samples, the optimistic set (light blue) and the measure Λ (green)
are close to the ground truth. The cautious set Q̂caut (dark blue) begins with a substantial region
outside the viable set (2c), but quickly converges to the ground truth.

discontinuity, the smoothness assumptions encoded in the GP are violated. Therefore, more failures
are sampled to learn the border of the viable set (see Fig. 3a). At the other borders of the viable set,
where the smoothness assumption holds, the estimated sets approach the border despite sampling
very few to no failures. When getting closer to the border of the viable set, the measure shrinks and
the border of the set can be inferred without sampling unviable state-action pairs.

We also use this example to illustrate best practices for a realistic scenario, and the influence of dif-
ferent choices for the tuning parameters γopt, γcaut and λ. The prior covariance function is obtained
from simulations of an incorrect model, in which spring constant of the SLIP model is 20% lower.
Since the covariance function encodes qualitative properties, it is reasonable to use a low fidelity
simulation to obtain these GP parameters. The GP prior mean is typically more sensitive to simula-
tion inaccuracies. It is therefore chosen around a known operating point, which we assume can be
determined with conventional means without the need for a full model. Ideal operating points will
feature a stable equilibrium-point or slow divergence from the operating point. Thus, the learning
system can drive down variance locally before exploring more distant states, and the confidence
bound γopt and γcaut can be initialized more aggressively. We initialize the operating point of the
SLIP model near a known limit-cycle of the running model. Although the prior is very conservative
(see Fig. 3), the algorithm converges to a conservative yet nearly maximal approximation of the
viable set QV , with a failure rate of 8% after 500 samples.

5 Discussion and Outlook

The first contribution of this paper is a safety measure taken over the set of viable state-action
pairs. While this measure is useful in itself, computing viable sets relies on accurate models and is
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Figure 3: Learning the viable set and the corresponding measure Λ̂ for a SLIP model. Starting from
a conservative prior (3a), after 50 samples (3b) and after 500 samples (3c). The color coding is as in
Fig. 2. A non-smooth infeasibility constraint bounds the bottom edge of the viable set. This violates
the smoothness assumption of the GP, and requires many samples to learn accurately. The other
edges are learned fairly accurately without many failures sampled. Actions close to the left edge are
avoided, as they bring the system to states with low safety measure.

often intractable for systems with complex, high-dimensional dynamics. Our second contribution
is a probabilistic, model-free approach to learn this measure and a safe set of state-action pairs
using GPs. On the one hand, this makes it applicable to a variety of systems. On the other hand,
making almost no assumptions means there are no hard guarantees for avoiding failure, even with a
reasonable prior. This approach is therefore appropriate for systems which are difficult to model and
where failures are costly but not critical, such as robots with soft or compliant components [24, 25]
and small to mid-sized legged robots [21, 26, 27].

An issue with our current algorithm is that old samples contain old, potentially incorrect estimates
of the measure, which can interfere with newer samples. A principled approach to only keep in-
formative samples would improve the estimate and reduce computation costs. As with most other
learning approaches, scaling to higher dimensions is a key challenge. An exploration strategy with
an information-theoretic approach, especially with a heteroscedastic model (with state-dependent
uncertainty), should improve both accuracy as well as sample-efficiency. In practice, it may be de-
sirable to balance information gain of the safety measure and performance. How to balance this in a
principled manner is an open question. We believe that leveraging a dynamics model will be key to
scaling. How to map assumptions of the dynamics to the safety model requires further investigation.
In addition, sample-efficiency might be greatly improved by updating all state-action pairs that are
close in a dynamical sense instead of a Euclidean sense. How to obtain such a metric of closeness
in state-action space is a problem we find is both challenging and has significant potential.

8



Acknowledgments

We thank Dominik Baumann, Matthias Neumann-Brosig and Friedrich Solowjow for insightful dis-
cussions during the project and while preparing the manuscript, as well as the anonymous reviewers
for constructive and thorough feedback. We thank IMPRS-IS for the academic development of Steve
Heim and Alexander von Rohr. This work was partly funded through the Cyber Valley Initiative and
the Max Planck Society.

References
[1] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre. Viability theory: new directions. Springer

Science & Business Media, 2011.

[2] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 2242–2253, Dec 2017. doi:10.1109/CDC.2017.8263977.

[3] A. Liniger and J. Lygeros. Real-time control for autonomous racing based on viability theory.
IEEE Transactions on Control Systems Technology, 27(2):464–478, March 2019. doi:10.1109/
TCST.2017.2772903.

[4] P. Wieber. Viability and predictive control for safe locomotion. In 2008 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 1103–1108, Sep. 2008. doi:
10.1109/IROS.2008.4651022.

[5] A. M. Bayen, E. Crück, and C. J. Tomlin. Guaranteed overapproximations of unsafe sets
for continuous and hybrid systems: Solving the hamilton-jacobi equation using viability tech-
niques. In Hybrid Systems: Computation and Control, pages 90–104. Springer Berlin Heidel-
berg, 2002.

[6] G. Piovan and K. Byl. Reachability-based control for the active slip model. The International
Journal of Robotics Research, 34(3):270–287, 2015. doi:10.1177/0278364914552112.

[7] P. Zaytsev, W. Wolfslag, and A. Ruina. The boundaries of walking stability: Viability and
controllability of simple models. IEEE Transactions on Robotics, 34(2):336–352, April 2018.
doi:10.1109/TRO.2017.2782818.

[8] S. Kaynama, J. Maidens, M. Oishi, I. M. Mitchell, and G. A. Dumont. Computing the viability
kernel using maximal reachable sets. In Proceedings of the 15th ACM International Conference
on Hybrid Systems: Computation and Control, HSCC ’12, pages 55–64, New York, NY, USA,
2012. ACM. doi:10.1145/2185632.2185644.

[9] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N. Zeilinger, and C. J. Tom-
lin. Reachability-based safe learning with gaussian processes. In 53rd IEEE Conference on
Decision and Control, pages 1424–1431, Dec 2014. doi:10.1109/CDC.2014.7039601.

[10] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin. A
general safety framework for learning-based control in uncertain robotic systems. IEEE Trans-
actions on Automatic Control, 64(7):2737–2752, July 2019. doi:10.1109/TAC.2018.2876389.
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[25] D. Büchler, R. Calandra, B. Schölkopf, and J. Peters. Control of musculoskeletal systems
using learned dynamics models. IEEE Robotics and Automation Letters, 3(4):3161–3168, Oct
2018. doi:10.1109/LRA.2018.2849601.

[26] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne. Feedback control for cassie
with deep reinforcement learning. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1241–1246, Oct 2018. doi:10.1109/IROS.2018.8593722.

[27] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter.
Learning agile and dynamic motor skills for legged robots. Science Robotics, 4(26), 2019.
doi:10.1126/scirobotics.aau5872.

10



A Convergence of the measure estimate for unviable state-action pairs

We will show here the convergence result for systems with discrete time and finite, discrete state-
action spaces. Specifically we show that, under the assumption of inifinite sampling, the estimated
measure Λ̂Q for the unviable state-action pairs q ∈ QcV converges to the true value of 0 when
following the updates

Λ̂Q(q) =

{
0 if failed
Λ̂(s′) else.

(1)

A direct consequence is that the estimated measure Λ̂ for all unviable states also converges to the
true value of 0. This provides an upper bound for the measure. We proceed to the theorem.
Theorem 1. Under the assumption of infinite random sampling over Q, the measure Λ̂Q converges
to the correct value 0 for all q ∈ QcV .

We define SU = (SV ∪ SF )
c as the set of unviable states, and QU := SU × A. We also define

the operator len(s), which returns the integer length of the longest trajectory starting from the state
s. We begin by showing that this theorem holds for all q ∈ QU , which ensures that the estimated
measure converges to 0 for all s ∈ SU . Consider all possible trajectories starting from any state
s ∈ SU . By the definition of viability, they are all acyclic, meaning no state is ever visited more than
once. They therefore all end in SF within finite time.
Lemma 1. The longest trajectory starting from any state s ∈ SU has length len(s) ≤ n, where n is
the number of states in SU .

This can be proven by contradiction. Let us assume that the longest trajectory starting in SU has
length nlongest > n. We take a sub-trajectory of length n; due to the acyclicity condition, this
trajectory has has visited n unique states, and therefore has visited all states in SU . It therefore
cannot be lengthened without breaking the acyclicity condition, contradicting our assumption.
Lemma 2. For every i = 1, . . . , nlongest, there exists at least one state s ∈ SU , for which the
longest trajectory beginning from that state has length i.

Again, this can be shown by contradiction. Let us assume there are no states with len(s) = 1.
Then take the longest trajectory starting from any s ∈ SU , and proceed to the last state in the
trajectory. By our assumption, len(s) > 1, which implies that there is at least one action available
from this state which would avoid failure and therefore increase the length of the trajectory by at
least 1, contradicting the our previous statement. This reasoning can be extended to all other i up to
nlongest by inserting shorter states in the failure set SF and repeating this process.

Proof. Now it is clear that sampling any q from a state with len(s) = 1 will immediately transition
to SF , and therefore will be updated with the ground truth as per 1. Once each of such q has been
sampled once, the measure estimate will be 0 for any state with len(s) = 1. At this point, sampling
any q from a state with len(s) = 2 will be updated with 0, and so on until all s ∈ SU have converged
to 0.

We can now turn our attention to the remaining q ∈ QcV . By definition, these are state-action pairs
that transition to SU in a single step. Therefore, as soon as the estimated measure for all s ∈ SU has
converged to 0, these will also be updated correctly with Λ̂(s) = 0.
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B Dynamics of Simulated Examples

We include here the details of the dynamics for the systems used in Section 4. The implementation
in Python is available in the supplementary material. We also include in the supplementary mate-
rial code to compute the true viable sets, although this is only computationally tractable for small
systems.

B.1 Hovering Spaceship

This example is a hovering spaceship loosely based on the toy example in Section 2, with a con-
tinuous state-action space. The spaceship has a single state, a vertical position, and is affected by
nonlinear gravity. The non-constant gravity has been adjusted to accentuate the issue of nonviable
which have not yet failed. The dynamics are:

ṡ = g0 + tanh (0.75 s)g − a (2)

where s is the height, g0 is a baseline gravitational acceleration, and g is a coefficient for the gravity
which increases with state. The spaceship can counteract gravity with the action 0 ≤ a ≤ amax.
The failure set is defined as s ≥ smax. We also model a control frequency ω, such that the spaceship
can only choose a new thrust a once every 1

ω seconds. This control delay further accentuates the
unviable states. The reader is encouraged to adjust these parameters in the code to see how this
affects both the viable sets, and the learning of the safety measure.
The parameters used to generate the graph in the paper are:

base gravitational acceleration g0 : 0.1
gravitational acceleration g : 1
max thrust amax : 0.5
ground height smax: 2
control frequency ω : 1

B.2 Spring Loaded Inverted Pendulum

The spring-loaded inverted pendulum is a common model for understanding running dynamics,
both in biomechanics and robotics. The body is represented by a point-mass, and a massless spring
represents the leg. It has hybrid dynamics, meaning the governing equations of motion switch
between different phases, and cyclic orbits. We begin each cycle at the apex, the highest point
during flight phase, when vertical velocity is zero. Each step cycle has 3 phases: A flight phase
terminating with a touchdown event, a stance phase terminating with a liftoff event, and a second
flight phase terminating with an apex event.
Between two apex events, we integrate the full state [x, y, ẋ, ẏ]

ᵀ, where x and y are the horizontal
and vertical positions of the point-mass. During each flight phase, the dynamics are[

ẍ
ÿ

]
=

[
0
−g

]
,

where g is the gravitational acceleration. During stance phase, the dynamics are[
ẍ
ÿ

]
=
k (l0 − l)

m

[
sin (θ)
cos (θ)

]
−
[

0
g

]
θ = arctan 2

(y
x

)
− π

2

l =
√

(x2 + y2),

where k is the spring stiffness, l0 is the spring resting length, andm is the mass. For concise notation,
the reference frame is centered on the foot during stance. In the implementation, the foot position is
also tracked and accounted for. The events are detected with

touchdown: l = l0

liftoff: θ = arctan 2
(y
x

)
− π

2
apex: ẏ = 0.
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For simplicity, we can examine the state once per step cycle, on the so-called Poincaré section, at the
apex of flight. At apex, all the potential energy at apex is contained in the height of the point-mass,
and the kinetic energy in the forward velocity (the vertical velocity is zero by the definition of
apex). Since the system is energy-conservative, we can use the potential energy normalized by total
energy as our single state. We thus use as state s =

Epot

Epot+Ekin
= gy

ẋ2

2 +gy
, where Epot and Ekin are

the potential and kinetic energy, respectively. For our simulations, we also define a single action:
the landing angle of attack of the leg, a = α, which is instantly reset to the desired angle at each apex.

For the figures in the paper, we used the following parameters, which are similar to human averages:

gravitational acceleration g : 9.81
[
m/s2

]
body mass m : 80 [kg]
spring stiffness k : 8200 [N/m]
spring resting length l0: 1 [m]

13



82 APPENDIX A. PUBLISHED PAPERS



Learning from Outside the Viability Kernel:
Why we Should Build Robots that can Fall With Grace

Steve Heim and Alexander Spröwitz

Abstract— Despite impressive results using reinforcement
learning to solve complex problems from scratch, in robotics
this has still been largely limited to model-based learning with
very informative reward functions. One of the major challenges
is that the reward landscape often has large patches with no
gradient, making it difficult to sample gradients effectively. We
show here that the robot state-initialization can have a more
important effect on the reward landscape than is generally
expected. In particular, we show the counter-intuitive benefit
of including initializations that are unviable, in other words
initializing in states that are doomed to fail.

I. INTRODUCTION

Recent advances in reinforcement learning (RL) have
shown a lot of promise, especially with the capability to
learn complex policies from scratch, model-free and from
very generic reward signals [1][2]. However it has been
difficult to transfer these results into learning directly in
robot hardware. Most RL in robotics is model-based and
uses highly informative reward functions [3].

One of the main challenges is that much of the reward
landscape (sometimes called a cost landscape) that a learning
algorithm needs to traverse tends to be flat, providing no
informative gradient. In classical RL, the ability to run a huge
number of trials, often in parallel, with completely random
initial conditions for both state and policy parameters helps
alleviate the problem. With a robot, this can be prohibitively
expensive in terms of time, hardware costs and computation.
It is typically necessary to invest substantial effort into the
design of a reasonable initial controller and parameteriza-
tion, and subsequently improve it via RL [4][5], instead of
learning policies from scratch.

Another common approach is to rely on model-based
control methods, and use RL to learn the model, instead of
learning the policy [3][6].

It is also important to choose an appropriate exploration
strategy, and the subfield of intrinsic motivation in particular
addresses the problem of getting stuck in a flat portion of the
reward landscape [7]. Alternatively, the reward landscape can
be shaped by providing more informative reward functions
[8][9], or a progressive set of reward functions or environ-
ments [10][11][12][13].

While these approaches all have merit, we show that the
choice of state initialization can have a greater effect on
the reward landscape than is usually assumed. The current
practice is to initialize from a stable state, as states that fail
with a high probability can be crippling. Quick failures often

Dynamic Locomotion Group, Max Planck Institute for Intelligent Sys-
tems, Stuttgart, DE {heim, sprowitz}@.is.mpg.de

result in no reward and therefore no gradient to learn from,
and often damage the robot hardware itself. At the most
restrictive, this means the robot always starts within the basin
of attraction of a stable controller. In order to accelerate
learning, it is important for the learning agent to explore
outside this region, and indeed considerable effort has been
made to be able to step outside the basin of attraction and
into its superset [14][15], the viability kernel.

A viability kernel [16] is the set of all states from which
there is at least one time-evolution that remains confined to
a desired region. Sampling states outside the current policy’s
basin of attraction allows the agent to learn more aggressively
and still avoid potentially disastrous failures. When learning
a model of the dynamics, the agent can clearly benefit by
being even more aggressive and initially visit failure states.
These states will often be in areas of the state-space that are
otherwise not visited, and data-points sampled there can give
additional information to fit a model more accurately. When
directly learning a policy in a model-free approach however,
the benefit of visiting states from which no stabilizing policy
exists is less obvious.

The main contribution of this work is to show that it can
be beneficial for model-free learning to initialize the robot
from states outside the viability kernel.

II. VIABILITY KERNEL OF A RUNNING MODEL
A. Model

Our work revolves around the spring-loaded inverted pen-
dulum (SLIP) model, a hybrid dynamic model ubiquitous
in both biomechanics and the robotic legged-locomotion
community for modeling running or hopping gaits. This
model can be fit very accurately to experimental data of
many different running animals [17][18], allows accurate
prediction [19], and also has been used to design controllers
for simulations [20][21][22][23] as well as actual robots
[24][25][26]. Indeed, there has been a lot of effort to give
legged robots SLIP-like behavior, either through mechanical
design [27][28] or control [24][29]. The two dimensional
view of the model, in the sagittal plane parallel to the
direction of travel, represents a submanifold of the 3D-
space, and the results can be extended to 3D motion both
in simulation [23] and hardware [30].

We consider this an ideal model that is both low-
dimensional enough to clearly illustrate our result, while
also informative and applicable to real-world systems. The
model, shown in Fig. 1, has a point mass representing the
body center of gravity, and a massless spring representing
the leg. Touchdown and liftoff conditions govern the switch



Flight Apex

Touchdown Liftoff

F light Apex

StanceF light F light

s̄k
↵k

Fig. 1: The classical spring-loaded inverted pendulum is character-
ized by hybrid dynamics: the governing equations of motion switch
between flight and stance phases at the touchdown and liftoff events.
We have highlighted here the normalized height at apex s̄k as our
one-dimensional state and the landing angle of attack αk as our
one-dimensional action.

between flight and stance phases. The model uses a no-slip
assumption for the foot during stance phase. At liftoff, the
massless leg is instantaneously reset to the landing angle of
attack αk. The continuous dynamics are as follow:

Continuous Dynamics

Flight Dynamics[
ẍ
ÿ

]
=

[
0
−g

]

Stance Dynamics[
ẍ
ÿ

]
=

k
m
(l0− l)

[
sin(α)
cos(α)

]
−
[

0
g

]

Touchdown Condition
y = l0 cos(αk)

Liftoff Condition
l = l0

α = arctan(y/x)− π

2

l =
√
((x− x f )2 + y2)

x : horizontal position
y : vertical position

α : angle of attack
x f : foot position

l : leg length

l0 : leg resting length = 1 [m]
k : spring stiffness = 8200 [N/m]

αk : landing angle of attack [rad]
m : body mass = 80 [kg]

g : gravity constant = 9.81 [m/s2]

The parameters used are parameters commonly used to
model human running [31].

As is commonly done [20][21][32], we use Poincaré return
maps to study the system [33]. We numerically integrate the

continuous-time dynamics from one apex height to the next,
and examine the state at these apex events. This gives us the
following discrete mapping:

Discrete Dynamics
Continuous Dynamics Integrated from Apex to Apex

State at Apex

sk =

[
yapex
ẋapex

]

Normalized Height at Apex

s̄k =
Eg

Eg +Ek
=

g yapex
ẋ2

apex
2 +gyapex

Apex Transition Dynamics
s̄k+1 = P(s̄k,αk)

Eg : Potential Energy
Ek : Kinetic Energy
P : Poincaré map

We dropped the x coordinate as it is not periodic, and at
apex the ẏ coordinate is zero by definition, which leaves
us with only two coordinates, y and ẋ. Finally, we exploit
the fact that the system is energy-conservative and use the
constant total energy constraint to reduce the system to a
single state, a normalized hopping height. This results in
the map s̄k+1 = P(sk,αk). Note that we include the landing
angle of attack parameter αk as a control input which can
be chosen freely at each apex. The original passive model
was used to analyze steady-state locomotion and set αk as
a constant parameter; for non-steady-state locomotion, the
landing angle of attack is a well studied choice for a control
input [23][30][34], alongside spring-stiffness.

B. Transition Matrix and Viability Kernel

The discrete dynamics of the system have two possible
transitions: either a mapping from one apex height to the
next apex height, or from an apex height to a failure state,
in which the point-mass body hits the ground with s̄k+1 = 0.

Having reduced both state and action space to a single
dimension, we obtain the entire transition matrix by brute
force simulation of a finely discretized grid over s̄ and αk, use
this to compute a difference in state and visualize the result
in Fig. 2. The grey regions are failures ending with the body
hitting the ground, and the colored regions are all the state-
action combinations that result in a second hop. The warm
colored region represent actions that lead to a higher height
at the next apex, whereas the cold-colored region are actions
that result in a lower height at the next apex. The intersection
between these two regions are limit-cycles where the apex
height remains constant. As the end-goal of locomotion is
arguably to reach a specific distance, actually traveling on
a limit-cycle is not strictly necessary: a policy which hops
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Fig. 2: Represented is the change in state for the SLIP model, with an energy content of Eg +Ek = 1.86kJ. The grey regions represent
state-action pairs that result in falls, and the black regions are infeasible points: the foot would start underground at apex. The warm
colored region result in a higher apex height, whereas the cold colored region results in a lower apex height. The black line at normalized
height 0.675 indicates the lower bound of the viability kernel: any states below this height can only select actions that lead to a lower
hopping height, until it inevitably falls.

erratically can also reach the end-goal. The black region
represents state-action combinations that are infeasible: the
foot would start underground at apex.

This constraint between 0° and 30° for αk is convenient
to illustrate our case, while also corresponding to the usual
range of angles used in human running [31]. It is also a
realistic constraint a robot might need to cope with, for
example due to mechanical hard-stops, limitations in hip-
swing velocity or to remain within friction cones.

The viability kernel of this constrained SLIP-model can
be seen by inspecting Fig. 2, and is the set of normalized
apex heights s̄k ∈ [0.675, 1]. For each state in this set, actions
can be chosen that either keep the system on a limit-cycle,
bring it to a higher, or to a lower apex height. Thus, it is
always possible to stay inside the set, making it a viability
kernel [16]. Any state that starts below the normalized height
threshold of 0.675, marked with a horizontal line in Fig. 2,
can only choose actions that either immediately fall or at best
hop at subsequently lower apex heights until it falls. These
states are doomed to fail.

III. CONTROL AND LEARNING

In our study, our goal is to learn a control policy for
choosing αk at each apex which travels as far as possible
from any viable initial state without falling.

A. Control Policy

Various control policies have been proposed for SLIP
models, often emphasizing deadbeat control [23][34] or some
form of optimality [20][35]. At its simplest, even a linear
controller is able to stabilize any of the limit cycles, even
if not in an optimal manner. We limit this study to a linear
controller, visualized in Fig. 3, since its low dimensionality
allows us to directly visualize the reward landscape in
parameter space, as in Fig. 4. The core of our results depends
on the structure of the transition matrix (the dynamics) both
inside and outside the viability kernel, which is independent
of the parameterization used.

Specifically, we use a linear gaussian policy

αk ∼N (µ, σ
2)

µ = θ0 sk +θ1

where N is the normal distribution, µ is the mean and rep-
resents the greedy policy in absence of exploration, and σ2

is the variance (our exploration parameter). The parameters
θ0 and θ1 are the slope and offset of our linear policy1.
Gaussian policies effectively include exploration directly into
the policy and are often effective in continuous state and
action systems, as often encountered in robotics [2][3].

1Though technically affine, we use the common practice of calling this
linear to avoid confusion.
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Fig. 3: Represented are two linear controllers. The solid line is
a well-tuned controller that would effectively stabilize the system,
whereas dashed line is a guess that has the correct general shape, but
is far from the salient gradient set (SGS). To highlight the problem,
we have overlaid the gaussian sampling for three possible situations:
in a) the gaussian policy would sample with high probability from
the SGS for a state inside the viability kernel. With the second
greedy controller in b) however, the probability of sampling a non-
failing action is close to 0. Case c) shows that the second greedy
controller has a decent chance of sampling successfully from the
SGS when initialized outside the viability kernel. It can learn from
these samplings even though all initializations are doomed to fail.

B. Interplay of Parameter Initialization, State Initialization
and Exploration Strategy

As an illustrative example, we award a fixed reward at
each apex, which equates to learning to hop as many times
as possible, regardless of the initial conditions. Using other
periodic rewards, such as distance traveled per step, does not
change the quality of the results.

It is clear that in order to learn, the agent needs to sample
at least once a state-action pair that transitions to another
apex: if the agent immediately samples from the state-action
pairs that result directly in a fall, colored grey in Fig. 2, it
will have a constant reward of 0 and no gradient to learn
from. For convenience, we will call the set of state-action
pairs that result in a second apex height a salient gradient
set (SGS).

With a random initialization of the policy parameters θ0
and θ1, it is possible that the greedy policy lies completely
outside the SGS of the transition matrix, and therefore has
a low chance of sampling from the SGS. The standard
solution of increasing the variance of the gaussian policy has
a drawback. While it increases the probability of sampling
from the SGS when the greedy policy is initialized far away
from the SGS, it also increases the probability to sample
failing actions when the greedy policy is well tuned, as
visualized with the solid line in Fig. 3.

In this work, we highlight another aspect of the problem
which, to the best of our knowledge, has been largely
overlooked. In fig. 3 we show an example where the greedy
policy chooses an action far from the salient gradient set for

any state belonging to the viability kernel. In these cases,
even local exploration will have only a low probability of
ever taking a second step and receiving a reward. The same
policy has a high probability of sampling non-failing actions
for states outside the viability kernel. In other words, we
can directly change the reward landscape by including these
states in the state initialization.

C. Landscapes

We discretized over the parameters θ0 and θ1, computed
100 roll-outs for each point of the grid using a fixed
exploration rate σ and used the average return as an estimate
of the reward. We then interpolated over the grid to obtain
the reward landscapes.

We repeated this for two scenarios: strictly viable initial-
izaiton (left column in Fig. 4) and feasible initializations
(right column in Fig. 4. Viable initializations are initial states
sampled with a uniform distribution from the viability kernel,
whereas feasible initializations are sampled from a uniform
distribution of all feasible states, including states that are
doomed to fail.

We have also repeated this estimate for different variance,
to highlight the much greater effect the state initialization
has on the reward landscape. Indeed we found that using
feasible initialization increased the SGS by just over 79%.
Nearly doubling the variance, from 8° to 15°, only increased
the SGS by 13%. This highlights a case where a large effort
to find effective exploration strategies can be replaced with
an improved state initialization.

D. Learning Setup and Results

To test our results, we implemented a standard temporal-
difference algorithm with eligibility trace, a typical policy-
gradient class of reinforcement learning algorithms [2][36]
relying on the likelihood ratio [37] to estimate the policy
gradient. To find appropriate hyperparameters for the learn-
ing step size and discount factor, several hundred learning
trials were run with randomized hyperparameters, which re-
vealed most consistent performance with a very low discount
factor around 0.95, and learning step sizes on the order of
magnitude of 0.001; in the presented results, these values are
used. The variance of the gaussian policy begins at 15° and
is reduced to 10°, 7.5° and 5° as the average performance
reaches 2, 3 and 4 steps respectively. Once a policy averages
at least 15 steps, learning is terminated.

To compare learning performance we ran learning trials
starting from the same initial policy parameter, using first
only viable initializations and then feasible initializations. In
the second case, once the policy averages more than three
steps, we consider the policy to have learned sufficiently and
switch to a viable initialization, since the end-goal is to be
stable for viable initializations.

We first ran trials for 50 randomized policy initializations
(see Fig. 5). Before accepting each randomly selected policy
initialization, its performance is estimated by averaging the
reward over 100 roll-outs with viable initialization, as we
did when estimating the reward landscape. Policy parameters
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Fig. 4: In the reward landscapes on the left, the system is initialized with a uniform random sampling inside the viability kernel, whereas
on the right it is initialized from states with a feasible action, whether viable or doomed to fail. For visual clarity, the parameter space
has been rotated 45 degrees and the reward (number of steps taken) is capped at 1. At values greater than this, the gradient is very steep
and policies quickly become stable for many steps. The meshed landscapes (top row) are shown for clarity and are the same as the first
set of contours (second row) with variance of 8°. The landscape on the right has a salient gradient set (a point in parameter space with
non-zero gradient) just over 79% larger. The landscapes with a more aggressive variance of 15° (bottom row) are shown to highlight how
little effect increasing exploration has in comparison to the choice in state initialization.

with less than 0.5 steps on average are discarded and re-
sampled. In other words, we biased initializations towards
policy parameters for which viable initializations also had a
chance to learn, instead of including policy parameters where
viable initializations had no chance of learning.

As shown in Fig. 5, we found that starting with feasible
initializations resulted in 60% more trials ending in success.
The policy initializations relative to the landscapes is shown
in Fig. 6. We then selected a single parameter at random, and
repeated 10 trials each with viable and feasible initializations,
shown in Fig. 7. Again, we found much greater reliability
in learning success when starting from feasible initialization
rather than strictly viable initializations.

IV. DISCUSSION AND OUTLOOK

We show the effect state initialization has on the reward
landscape of a dynamically unstable system, and a clear
case where a naive policy initialization learns more reliably
when unviable states, that is states that are doomed to fail,
are included in the initializations. We have in particular
highlighted it is to consider the effect of state initialization
in overcoming a common problem in robot learning: reward
landscapes with large patches devoid of gradient information.
This adds another tool to design learning setups, in addition
to more established approaches of exploration strategies or
reward shaping.

One of the major drawbacks of initializing in unviable
states is that failures often result in damage to the robot. A
solution is to start learning in simulation before transferring
the policies to real robots [38][39]. With this approach, it
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Successful Trials with Viable Initializations: 18 out of 50
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Successful Trials with Feasible Initializations: 29 out of 50

Fig. 5: Fifty initial policy parameters were tested, sampled at
random with a minimum chance of taking a 0.5 steps on average
when using a viable initialization. For visual clarity, only successful
trials are plotted.

is important not to mirror the same conditions of the robot
in simulation, but purposefully explore with more aggressive
and potentially unviable initializations.

While this approach is promising, a simulation still relies
on a model even if the policy is learned model-free. One of
the attractions of model-free learning is the reduced need for
expert knowledge and engineering effort in order to directly
deploy robots in the field. To this end, our results suggest a
different emphasis for robot design is needed. A robot should
not only be mechanically sturdy so it can survive failures,
but there should be meaningful actions to be explored in
unviable states. As we show with the SLIP model (see Fig.
2), the choice to fall immediately or to stumble several
steps before falling is what allows the system to learn from
unviable states. This is a property of the system dynamics,
and therefore the hardware design and not the controller
design. Especially when building legged robots that try to
mimic a SLIP-like behavior [27][28], these aspects should be
considered in addition to measures such as passive stability
and energy efficiency.
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