
Stereo vision and mapping with aerial
robots

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Radouane Ait Jellal
aus Taznakhte, Marokko

Tübingen
2020

Tag der mündlichen Qualifikation: 07.05.2020
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Andreas Zell
2. Berichterstatter: Prof. Dr. Andreas Schilling

To my family: my mother Kabira Laamraoui, the memory of
my father El-houcine, my wife Ilham and my twin children

Mohamed Shahin and Ilyas.

Abstract
Micro air vehicles (MAVs) have attracted researchers and industrials in recent years.
However, most of existing commercial MAVs rely on external positioning systems and
thus they have limited usage. Providing more autonomy to these robots will extend their
range of applications to include a set of challenging real-life problems. In this thesis, we
use a stereo camera mounted on a quadcopter MAV to achieve full autonomous flights in
indoor as well as outdoor environments. We study problems related to binocular dense
stereo matching, stereo visual SLAM and 3D obstacle avoidance using stereo vision.

First, we propose a hybrid stereo SLAM which combines feature-based SLAM with
direct image alignment. We address the following important question: is it better to
estimate the pose from a set of pre-computed feature correspondences or to estimate
the pose and the feature correspondences simultaneously? We propose to combine both
methods. We start by computing a pose estimate using feature correspondences. This can
efficiently and effectively handle large movements. The abstraction of the image content
to a set of sparse features might introduce a loss of accuracy because useful details might
be dropped. In a second step, we refine the pose using direct image alignment. In this
step of the algorithm, we take into consideration the details that have been ignored on
the first step to simultaneously estimate the pose and the pixel correspondences.

Secondly, we investigate efficient dense binocular stereo matching algorithms that can
run in real-time on-board our experimental MAV. We use the dense stereo matching to
estimate disparity maps from the stereo camera. The disparity maps are the key com-
ponent of our MAV. We use these disparity maps in the refinement step of our hybrid
stereo SLAM as well as to create a consistent 3D occupancy grid map for the path plan-
ner. We show that by using edge features and a special variant of Delaunay triangulation,
we could improve both the robustness and efficiency of the popular ELAS local stereo
matching algorithm. We have submitted our results to the Middleburry stereo benchmark
and our algorithm is listed on the permanent ranking table of this benchmark.

Finally, we show an application of the afore-mentioned algorithms in a system for
autonomous stereo-based 3D obstacle avoidance in outdoor environment. We designed a
modular system. We added additional modules for building 3D occupancy grid mapping
and for planning collision-free paths in 3D space. In our experiments, we show that we
can map large environments with several hundreds of keyframes.

v

Kurzfassung
In den letzten Jahren haben Roboter für Mikro-Luftfahrzeuge (MAVs) Forscher und In-
dustrie angezogen. Die meisten handelsüblichen MAVs sind jedoch auf externe Position-
ierungssysteme angewiesen und haben daher eine begrenzte Nutzung. Durch die Bereit-
stellung von mehr Autonomie für diese Roboter wird das Anwendungsspektrum um eine
Reihe anspruchsvoller realer Problemstellungen erweitert. In dieser Arbeit verwenden
wir eine Stereokamera, die auf einem Quadcopter-MAV montiert ist, um vollständige
autonome Flüge in Innen- und Außenbereichen durchführen zu können. Wir unter-
suchen Probleme im Zusammenhang mit binokularem dichtem Stereo-Matching, Stereo-
visuellem SLAM und 3D-Hindernisvermeidung mit Stereo-Vision.

Zunächst schlagen wir ein Hybrid-Stereo-SLAM vor, das merkmalsbasiertes SLAM
mit direkter Bildausrichtung kombiniert. Wir sprechen die folgende wichtige Frage an:
Ist es besser, die Position aus einem Satz vorberechneter Merkmalskorrespondenzen zu
schätzen oder die Position und die Merkmalskorrespondenz gleichzeitig zu schätzen?
Wir schlagen vor, beide Methoden zu kombinieren. Wir beginnen mit der Berechnung
einer Positionsschätzung unter Verwendung von Merkmalskorrespondenzen. In einem
zweiten Schritt verfeinern wir die Position durch direkte Bildausrichtung. In diesem
Schritt des Algorithmus berücksichtigen wir die Details, die im ersten Schritt ignoriert
wurden, um gleichzeitig die Pose und die Pixelkorrespondenzen zu schätzen.

Zweitens untersuchen wir effiziente dichte binokulare Stereo-Matching-Algorithmen,
die in Echtzeit an Bord unseres experimentellen MAV ausgeführt werden können. Wir
verwenden das dichte Stereo-Matching, um die Disparitätskarten der Stereokamera zu
schätzen. Die Disparitätskarten sind der Hauptbestandteil unseres MAV. Diese Karten
verwenden wir im Verfeinerungsschritt unseres Hybrid-Stereo-SLAMs sowie zur Erstel-
lung einer 3D-Belegungsrasterkarte für den Pfadplaner. Wir zeigen, dass wir durch
die Verwendung von Kantenmerkmalen und einer speziellen Variante der Delaunay-
Triangulation sowohl die Robustheit als auch die Effizienz des bekannten lokalen ELAS-
Stereomatching-Algorithmus verbessern können. Wir haben unsere Ergebnisse dem
Middleburry-Stereo-Benchmark übermittelt, und unser Algorithmus ist in der perma-
nenten Rangliste dieses Benchmarks aufgeführt.

Schließlich zeigen wir eine Anwendung der oben genannten Algorithmen in einem
System zur autonomen stereobasierten 3D-Hindernisvermeidung in Außenbereichen. Wir
haben ein modulares System entwickelt. Wir haben zusätzliche Module hinzugefügt,
um 3D-Belegungsrasterkarten der Roboterumgebung zu erstellen und zur Planung kol-
lisionsfreier Wege im 3D-Raum. In unseren Experimenten zeigen wir, dass wir große
Umgebungen mit mehreren hundert Keyframes abbilden können.

vii

Acknowledgments
I am deeply grateful to Prof. Andreas Zell for giving me the opportunity to work on this
interesting research topic and for keeping me focused in my research. I am also grateful
to Konstantin Schauwecker, Sebastian Scherer and Andreas Masselli who helped me to
gain my footing in stereo vision and to set-up my research platform.
My co-authors, Manuel Lange and Benjamin Wassermann, have been instrumental in
completing this dissertation. I would like to thank them for their successful collabora-
tion. I appreciate all the fruitful discussions I had with Prof. Andreas Schilling and my
co-authors.
Thanks to my colleagues at the chair of cognitive systems: Yann Berquin, Goran Huskic,
Robert Pech, Ya Wang, Ran Liu and Julian Jordan for the many interesting discussions
we have had over the last few years. Special thanks should be given to Klaus Beyreuther
and Vita Serbakova who offer assistance to our work.
Thanks to all members and to the organizing committee of the Mini-GRK (mini-graduate
school) for the initial founding of my research, for the fruitful collaboration and for the
joint participation at the EuRoC competition. I would like to thank, in particular, Prof.
Andreas Schilling, Prof. Heinrich Bülthoff, Prof. Hanspeter Mallot, Yuyi Liu, Manuel
Lange, Marcin Odelga and Gerrit Ecke.
Further thanks go to Thorsten Linder, my team leader at the ZF Friedrichshafen AG com-
pany, who encouraged me to finish writing my dissertation. I would like to thank Yamna
Moumni for taking care of my children during the last days of writing this dissertation.
Finally, I must express my very profound gratitude to my mother, Kabira Laamraoui,
and to my wife, Ilham Laouaj, for providing me with unfailing support and continuous
encouragement throughout my years of study and through the process of researching and
writing this thesis. Thank you.

ix

Contents
1 Introduction 1

1.1 Mobile robots . 1
1.2 Depth cues in the human visual system 3

1.2.1 Monocular depth cues: . 3
1.2.2 Binocular depth cues: . 4

1.3 Depth estimation and its robotic applications 4
1.4 The quadcopter MAVs . 5
1.5 Benefits and challenges of quadcopters 6
1.6 Contributions and outline . 6

2 Background 9
2.1 Mathematical foundations . 9

2.1.1 Least squares method . 9
2.1.2 Lie algebra parameterization for motion estimation 11

2.2 Image formation and camera model 12
2.3 Epipolar geometry . 18

2.3.1 The Fundamental matrix of computer vision 21
2.3.2 The Essential matrix . 24
2.3.3 Extracting the motion from the Essential matrix 25

2.4 The PnP algorithm . 27
2.5 Stereo matching . 29

2.5.1 Challenges and assumptions 29
2.5.2 Depth from disparity . 31

2.6 Stereo visual odometry and SLAM . 32
2.6.1 Visual SLAM and SFM . 33
2.6.2 Solving the SLAM problem 33

3 Hybrid SLAM by combining sparse features with direct image alignment 39
3.1 Introduction . 39
3.2 Motivation . 39
3.3 Related work . 40
3.4 ORB-SLAM2: Parallel tracking, mapping and loop closing 41
3.5 Hybrid stereo SLAM . 43

3.5.1 Pose initialization using ORB features 43
3.5.2 Refining the pose using direct image alignment 44

xi

Contents

3.5.3 Loop closure thread . 50
3.5.4 Autonomous quadcopter flights 50

3.6 Evaluation using the KITTI odometry Dataset 52
3.6.1 Evaluation criteria . 52
3.6.2 The KITTI odometry dataset 53
3.6.3 Error measures . 53
3.6.4 Trajectories with no loops . 55
3.6.5 Behavior on loopy trajectories 60
3.6.6 Running time evaluation . 64

3.7 Qualitative evaluation . 65
3.8 Conclusion . 67

4 Line Segment based Efficient Large Scale Stereo Matching 69
4.1 Introduction . 69
4.2 Motivation . 70
4.3 Related work . 72
4.4 The LS-ELAS Algorithm . 74

4.4.1 Edge extraction . 75
4.4.2 Support points matching along edges 78
4.4.3 Probabilistic disparity estimation 79

4.5 Evaluation . 84
4.5.1 The Middlebury stereo benchmark version 3 84
4.5.2 Comparing LS-ELAS with ELAS 88
4.5.3 Comparing LS-ELAS with other algorithms 91
4.5.4 Disparity map examples and view synthesis 102

4.6 Conclusion . 102
4.6.1 Summary . 102
4.6.2 Discussion: curved or straight line segments 103

5 Application: Outdoor Obstacle Avoidance using Stereo for a Quadcopter
MAV 105
5.1 Introduction . 105
5.2 Motivation . 106
5.3 Related work . 106
5.4 Experimental platform . 107
5.5 System description . 108

5.5.1 System overview . 108
5.5.2 Environment mapping . 108
5.5.3 3D path planning using RRT* 112

5.6 Results from outdoor experiments . 116
5.7 Conclusion . 116

xii

Contents

6 Conclusions 119
6.1 Summary . 119
6.2 Future work . 120

Symbols 123

Abbreviations 125

Bibliography 127

xiii

Chapter 1

Introduction

1.1 Mobile robots
Robots are playing an important role in modern life. The introduction of industrial robot
arms has revolutionized the assembly line. Since the invention of the first mass produced
industrial robot arm for factory automation in 1961 by the General Motors company (see
Kelly (2018)), the development of robot arms kept increasing. The industrial robot arms
can operate continuously and in most cases they are faster and more precise than human
workers. Therefore, massive production of goods at cheap price became possible and
also jobs which are unpleasant or dangerous for humans were efficiently performed by
robots. Although the stationary industrial robot arms have made a big success, they are
limited by being attached to a fixed surface. Applications for which the robot needs to
freely navigate in its environment require providing the robots with mobility and with
more intelligence. These kinds of robots are called mobile robots. Fig. 1.1 shows some
of the different civil applications for which robots can be used.

Multirotor micro aerial vehicles (MAVs) are a kind of mobile robots which has re-
cently gained much interest in research as well as in industry. The multirotors are able to
fly over uneven terrains, which might be inaccessible for ground vehicles, and have more
degrees of freedom. Unlike fixed wing flying robots, multirotors can hover at a fixed po-
sition and can efficiently navigate in cluttered indoor and outdoor environments. MAV
based applications are diverse and steadily growing. For example, the octacopter AscTec
Falcon 81 is a commercial multirotor which is used for industrial inspection (see Ascend-
ing Technologies (2018)). This robot has a range of 1 km and up to 22 minutes endurance
time. The same robot, equipped with different sensors, has been used also for MAV as-
sisted precision agriculture and aerial imaging. Companies such as Amazon, UPS and
DHL have started projects for parcel delivery using multirotors (see Desjardins (2018)
and Nicas (2014)). One motivation for these companies to use MAVs is the express de-
livery of parcels to isolated areas. Additionally, MAVs have shown their advantages on
disaster relief. On the Fukushima nuclear disaster, the T-Hawk MAV has been used to
photograph the nuclear plant from above to get a detailed view of the interior damage
(see Honig (2011)). We believe that MAVs will make a revolution on the robotic field

1Falcon 8 is a product of the Ascending technologies company

1

Chapter 1 Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.1: A collection of robots which shows the diversity of robotic applications. (a)
the rover ”Curiosity” from NASA. This rover is equipped with a stereo camera and has
landed on Mars on 6 August 2012. (b) the ROBOCLEANER RC 3000 from the German
company Kärcher (Alfred Kärcher SE & Co. KG). (c) self-driving delivery ground robot
from the UK company Starship Technologies. (d) quadcopter for parcel delivery from
the German post DHL. (e) underwater humanoid robot from the university of Stanford
USA. (f) a Volkswagen factory equipped with Kuka industrial fixed robots.

similar to what industrial robot arms have made in the past.
In most of the applications listed above, the MAVs are either manually controlled by ex-

pert pilots or use external positioning systems (e.g. GPS). In recent years, much interest
has been shown in developing new methods for fully autonomous MAVs which rely only
on the on-board sensors with no human intervention. Depending on whether the MAV
environment is known in advance (i.e. the MAV has an offline map), partially known or
completely unknown, the complexity of the navigation task varies significantly. The case
of a completely unknown environment is the most challenging one. This is the case that
we address in this dissertation. These are MAVs which can fully autonomously achieve
some tasks in an unknown environment without any human intervention.

2

1.2 Depth cues in the human visual system

(a) (b) (c)

Figure 1.2: Depth can be perceived from single 2D views by the human visual system.
Monocular depth cues are used for this purpose. (a): Texture gradient. (b): Linear
perspective. (c): Aerial perspective.

1.2 Depth cues in the human visual system
Stereo vision in robotic is inspired by the human visual system. Human perceive depth
using monocular and binocular depth cues. In this thesis, we mimic one type of the
binocular depth cues (retinal disparity) to provide our quadcopter with depth information.

1.2.1 Monocular depth cues:
Thanks to monocular depth cues, humans have the ability to perceive depth when viewing
with only one eye or when viewing a 2D image of a 3D scene (see Fig. 1.2). Some
monocular depth cues rely on prior knowledge, which can be used to judge depth in
similar environments. There are local (e.g. blur) monocular depth cues for which depth
can be judged using only local image properties. There are global monocular depth cues
(e.g. overlap), which require contextual information to judge depth (see Saxena et al.
(2007)). In the following, we describe some relevant monocular depth cues:
Retinal image size: Combined with prior knowledge, the retinal image size of an object
can help judge its depth. For example, humans have a prior knowledge about the size of
a bicycle. If they see a bicycle on an image they can judge the depth of the bicycle.
Texture gradient: The texture appears smoother for farther away objects. While sharp
details might be clearly seen for closer objects, these sharp details might be invisible
for farther away objects. An example is shown in Fig. 1.2(a) with two trees located at
different distances.
Linear perspective: The 2D projections of 3D parallel lines appear to converge at the
horizon. This give an indication of the depth. The closer together the lines are the greater
the distance. Fig. 1.2(b) shows an illustration of the linear perspective depth cue.
Overlap (or interposition): When an object overlaps another object, the object which
blocks the view is perceived (by humans) as closer than the obscured object.

3

Chapter 1 Introduction

Motion parallax: Let’s consider a moving person viewing a static environment. Closer
objects seem to move faster (across the retina) than farther away objects.
Aerial perspective: Vapor and dust particles on the air might cause distant objects to
appear bluish and hazy (see Fig. 1.2(c)). This phenomena is due to light scattering.
The blue light, which has the shortest wave lengths in the visible spectrum, is the most
sensitive to this phenomena.
Accommodation: The eye lens become thinner when focusing on distant objects. This
information can be used by the brain to judge depth.

1.2.2 Binocular depth cues:

In addition to monocular depth cues, humans use binocular depth cues to perceive depth.
The main binocular depth cue is retinal disparity (or stereopsis). In the following, we
introduce two important binocular depth cues: retinal disparity and convergence.
Retinal disparity: Human capture two images (each eye captures one) from slightly
different viewpoints. These differences are known as retinal disparity (or binocular par-
allax). The human visual system is sensitive to these differences. The human brain fuses
the two views to perceive depth.
Convergence: Focusing on very close-up objects causes the eyes to turn inward instead
of moving together. This information can be used by the brain to judge depth.

1.3 Depth estimation and its robotic applications
Depth estimation is an important task in mobile robotics. It is essential for many tasks
such as 3D reconstruction, obstacle avoidance, navigation, recognition, and object grasp-
ing. Laser scanners were the favorite sensor for a long time, they were used to estimate
the geometry of the robot environment. The main reason for this is the high accuracy of
their distance measurements. However, laser scanners have many drawbacks that con-
strain their usage. These drawbacks include the relatively low frame rate, the sparsity of
the measurements, the weight, and the cost. Recently, the robotic community has shown
an increasing interest in computer vision. Cameras tackle many drawbacks of laser scan-
ners. The introduction of RGB-D sensors2 with their sufficiently accurate depth map and
their real time capability has accelerated the research on indoor mobile robotics. Since
these Kinect-style RGB-D sensors are based on the projection and capturing of struc-
tured infra-red light, they are not designed for outdoor usage with substantial sunlight.
There is a need for more adequate sensors. Stereo cameras are the most adequate depth
estimation sensors to be used for a wide range of outdoor and indoor applications. They
provide data at high frame rates, they are lightweight, passive, energy efficient, and cus-
tomizable. The major drawback of a stereo camera with no dedicated computing unit is

2e.g. Microsoft Kinect, Asus Xtion Pro or Intel RealSense

4

1.4 The quadcopter MAVs

Figure 1.3: Illustration of a quadcopter MAV in X-configuration. Flying in different
directions can be achieved by individually controlling the speed of each motor.

the need to use the robot CPU for performing the stereo matching. There is a need for
efficient stereo matching algorithms in order not to exhaust the robot CPU through stereo
matching. In this thesis, we address this drawback and focus our research on developing
and using efficient stereo vision methods.

1.4 The quadcopter MAVs

Quadcopter MAVs are small unmanned aircrafts that use four motors with fixed pitch
propellers (see Fig. 1.1(d) and Fig. 1.3). While spinning, the motors create thrust that can
lift the quadcopter. A spinning motor generates a drag torque in the direction opposite
to the propeller spin. In order to cancel out the torques generated by the four motors,
the motors are configured in two pairs. The motors of one pair spin in a clockwise
direction and the motors of the second pair spin in counter-clockwise direction. Unlike
the conventional helicopter aircraft which uses a complex cyclic-pitch mechanism to
control the aircraft’s pitch and roll angle, the quadcopter uses a simple principle to control
them. A quadcopter uses fixed pitched propellers and individually controls the speed of
each motor to create a variable thrust between the four motors. Fig 1.3 illustrates motor
speeds for basic quadcoptor maneuvers. Moving forward (+ X-axis) would require the
two motors in the back to spin faster than the two motors in the front. Controlling the

5

Chapter 1 Introduction

yaw angle (rotation around the Z-axis) would require two rotors, which spin in the same
direction, to spin faster than the other two motors.

1.5 Benefits and challenges of quadcopters
Quadcopters MAVs are interesting small robots that can be used in environments which
are inaccessible for other types of robots. A quadcopter can for example easily fly above
water from one side of a river to the other side and can land on a building roof. Unlike
a fixed wing MAV, a quadcopter can fly in cluttered environments and it can hover at a
fixed position. Thus, it is convenient to use quadcopters indoors in rescue applications.
A quadcopter is highly flexible and fly in almost any direction while fixed wing MAVs
have limited flexibility. Well known limitations of quadcopter MAVs are the payload
and the endurance time. This has a direct impact on the choice of on-board sensors
that can be mounted on a quadcopter. The afore-mentioned limitations of quadcopters
are in particular challenging for the fully autonomous quadcopters. A quadcopter which
builds a sufficiently detailed map of its environment and uses that map to autonomously
navigate, requires sensors and computing processors that are usually heavy and power
consuming. In this thesis, we focus on the development of efficient algorithms for safe
navigation based on stereo vision.

1.6 Contributions and outline
To achieve fully autonomous flights with a quadcopter in unkonwn environments using
a stereo camera requires the quadcopter to use many vision algorithms. The percep-
tion of the quadcopter environment and the localization are important tasks to achieve
full autonomous flights. This thesis makes contributions in computer vision and robotic
domains that address these tasks.

Chapter 3 (page 39)
The first contribution is a hybrid stereo algorithm which combines the feature-based
SLAM with direct image alignment methods. The algorithm extends the popular feature-
based algorithm ORB-SLAM2 (see Mur-Artal and Tardós (2016)) to include a refinement
step, which is based on direct image alignment. The refinement step initializes its pose
using the final pose estimated by the feature based ORB-SLAM2 tracking thread. The
depth map is then used for warping the reference (left) image to synthesize the (left)
image as if it is captured from the pose of the target image. The motion parameter vector
that achieves a small error between the warped image and the target image is selected.
The refinement step uses a conceptually different method for iteratively estimating the
best pose increment. In particular, no feature detection and matching steps are required
and considerably more pixels are used on the computation of the pose increment than
features. This refinement step has shown improvement on the performance in particular

6

1.6 Contributions and outline

when the trajectory does not include loops. The hybrid stereo SLAM algorithm was
published at the 2017 ECMR Conference in Paris, France (Ait Jellal and Zell (2017)).

Chapter 4 (page 69)
The second contribution is an efficient dense binocular stereo matching algorithm. It is
used to estimate depth from stereo. The depth is used on our autonomous quadcopter
for two purposes. First, on the hybrid stereo SLAM for warping the (left) intensity im-
ages. Second, for constructing a volumetric occupancy grid map. We call our stereo
matching algorithm LS-ELAS since it extends the popular stereo matching ELAS (see
Geiger et al. (2011a)). LS-ELAS is based on line segments, therefore LS in LS-ELAS
refers to line segments. As in ELAS, LS-ELAS starts by finding robust matches for a
small set of pixels: the support points. The search for the correspondences of the support
points is done in linear-time using the whole disparity search range. The support points
are used to compute the mean disparity using Delaunay triangulation to generate a tri-
angle mesh from the support points. A prior based on the mean disparity can be set for
all the remaining pixels on the image. Thus, the matching of the remaining pixels can
be achieved in constant-time by searching for matches in a fixed interval of candidates
disparities around the mean disparity. This results in a near constant-time algorithm for
stereo matching. There are two main differences between the algorithms LS-ELAS and
ELAS. In LS-ELAS, the support point candidates are sampled along edges which allow
for depth discontinuity awareness. The depth discontinuity is further enforced by us-
ing the constrained Delaunay triangulation. ELAS uses a uniform grid for identifying
the support point candidates and it uses the original Delaunay triangulation. The results
on the popular Middlebury stereo benchmark showed that LS-ELAS improves the per-
formance across different error metrics. The LS-ELAS stereo matching algorithm was
published at the 2017 ICRA Conference in Singapore (see Ait Jellal et al. (2017)).

Chapter 5 (page 105)
The last contribution of this thesis shows a full system that uses stereo vision for outdoor
obstacle avoidance in an unknown environment. The two afore-mentioned contributions
constitute the core of this system. Besides the hybrid stereo SLAM and LS-ELAS, a
range of other vision algorithms was needed to run in real-time on-board the quadcopter.
The system builds a volumetric occupancy grid map from the disparity images and per-
forms 3D path planning on this map. This way, obstacle avoidance can be achieved by
following the collision-free paths from the planner.

7

Chapter 2

Background
This chapter intends to give fundamentals that might be necessary for the understand-
ing of this thesis. In this dissertation, we focus on the vision part of the autonomous
quadcopter. First, we introduce the mathematical foundations with an emphasis on the
least squares method for model fitting and optimization algorithms. The last part of the
background chapter explains different aspects of stereo vision. We start with the expla-
nation of a popular camera model. We then, present the case of two views which can
be captured either at the same time using two physical cameras or by a single moving
camera. Given two pictures of a scene captured from different viewpoints, stereo vision
aims at recovering the geometry of the 3D scene by establishing pixel correspondences
on both images and then triangulating the 3D scene points. This process is the inverse
of the image projection process. We will introduce the geometrical properties for the
two views perspective. Two important applications for the two views perspective are
the depth estimation and the motion estimation. We review the Essential matrix, which
is useful for estimating the motion from 2D-2D correspondences. We also review the
PnP algorithm, which uses a conceptually different method for motion estimation from
3D-2D correspondences. The two views perspective constitutes the elementary case for
sequences of images which are captured while the camera is moving. For the case of
image (or stereo pair) sequences, we review the techniques used for efficiently solving
simultaneous localization and mapping (SLAM). Finally, we review techniques for the
case of image sequences. We start by frame to frame visual odometry and then introduce
efficient techniques for solving globally consistent full SLAM in large scale.

2.1 Mathematical foundations

2.1.1 Least squares method
The least squares (LS) algorithms are used for optimizing non-linear cost functions in
many parts of our system. We use least squares in the feature based tracking to optimize
re-projection distances. Then, we use least squares in the direct image alignment to
minimize photometric errors (intensity differences). In the local mapping thread of the
SLAM algorithm, least squares are used in the local bundle adjustment (LBA) to locally

9

Chapter 2 Background

optimize the map. In the SLAM back-end, least squares are used to optimize a pose
graph when loops are detected and afterwards to optimize the whole graph (all keyframe
poses and all map points) by global bundle adjustment (GBA).
In general, given an error function e(x) = (e1(x), ...,em(x))T ∈ Rm, where the variable
x=(x1, ...,xn)

T ∈Rn is a vector of n parameters. We seek to estimate the optimal solution
x∗ that minimizes the energy function E(x) given by Eq. 2.2 (see Madsen and Tingleff
(2004)).

x∗ = argmin
x

E(x) (2.1)

= argmin
x

m

∑
i=0
|ei(x)|2 (2.2)

= argmin
x

e(x)ᵀe(x) (2.3)

In general, e is non-linear. So, we compute a linear approximation using the first order
Taylor expansion and solve the optimization problem iteratively. Let us consider a small
perturbation δx around the initial guess x̆. We get the following approximation: e(x̆+
δx) ≈ e(x̆) + Jδx, here J is the Jacobian of e(x) evaluated at δx = 0 (at x = x̆). The
elements Ei of the energy function E(x) can then be approximated (see Madsen and
Tingleff (2004)) such that:

E(x̆+δx) = e(x̆+δx)T e(x̆+δx)

≈ (e(x̆)+ Jδx)T (e(x̆)+ Jδx) (2.4)
= E(x̆)+2δxᵀJᵀe(x̆)+δxᵀJᵀJδx
= E(x̆)+2δxᵀJᵀe(x̆)+δxᵀHδx (2.5)

Where H = JᵀJ is the approximate Hessian.

Gauss-Newton method

By computing the derivative with respect to δx and setting it to zero we can compute
the increment δx∗ which minimizes Eq. 2.5 and solves the following linear system (Eq.
2.6):

Hδx∗ =−Jᵀe(x̆) (2.6)

This linear system is called ”normal equations” and it can be written as:

Ax = b (2.7)

Where: A=H, b=−Jᵀe(x̆) and x= δx∗. There are many methods for solving this linear
system. Usually, the linear system in Eq. 2.6 is solved by some kind of factorization,

10

2.1 Mathematical foundations

without inverting the matrix A (see Madsen and Tingleff (2004)).
The increment δx∗ is then added to the initial guess x̆.

x∗ = x̆+δx∗ (2.8)

The Gauss-Newton solver iterates the following steps: First, it locally approximates the
non-linear cost function with a linear function according to Eq. 2.4. Then, it computes
in closed form the increment δx∗ according to Eq. 2.6. Finally, it updates the parameter
vector according to Eq. 2.8 and starts a new iteration. While the intermediate problem
(linear approximation) is solved in closed form, the initial non-linear problem in Eq. 2.2
needs to be iteratively solved. At every iteration, the currently updated parameter vector
is used as an initial guess (linearization point). The iterative process continues until some
termination criteria are met, e.g., when the algorithm converges or we reach a maximum
number of iterations.

Levenberg-Marquart method

The Gauss-Newton method can converge very quickly but it is very sensitive to the initial
estimate x̆. The Gauss-Newton method requires the initial estimate to be close enough to
the optimal solution x∗. Otherwise, the Gauss-Newton might converge very slowly or fail
to converge. To tackle this problem, Levenberg (1944) and Marquardt (1963) proposed
to add a damping term into Gauss-Newton method. The Levenberg-Marquardt method
solves the following normal equations (see Madsen and Tingleff (2004)):

(JᵀJ+λ I)δx∗ =−Jᵀe(x̆) (2.9)

The damping term is controlled by a parameter λ . Different strategies have been pro-
posed for updating the parameter λ (at each iteration).
The Levenberg-Marquardt method can be seen as a combination of the Gauss-Newton
method and the gradient decent method. The Gauss-Newton uses a second order approx-
imation and allows for fast convergence when the initial is close enough to the optimum
(λ small). On the other hand, the gradient decent allows to (relatively) slowly moving
towards the optimum when the initial estimate is far away from the optimum (λ large).

2.1.2 Lie algebra parameterization for motion estimation

A rigid body transform g transforms a point P ∈R3 in the 3D space to a point g(P) ∈R3

in 3D space:

g : R3→ R3

P→ g(P) (2.10)

11

Chapter 2 Background

The rigid body transform g can be expressed by a 4× 4 matrix T ∈ SE(3), which is
composed of a rotation matrix R ∈ SO(3) and a translation vector t = (tx, ty, tz) ∈ R3.

g(P) = g(P,T) = T P = RP+ t (2.11)

Where

T =

[
R t

01×3 1

]
; and R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.12)

We use the Lie group SE(3) and its corresponding Lie algebra se(3) to get a minimal
parameterization of the 3D rigid body transforms. On the associated Lie algebra se(3),
the corresponding transform is a 6-dimentional vector ξ = (ξ1,ξ2,ξ3,ξ4,ξ5,ξ6). These
coordinates are called the twist coordinates, where the first (ξ1,ξ2,ξ3) are the linear ve-
locities and (ξ4,ξ5,ξ6) are the angular velocities. Here, we represent the rotation part of
the transformation with exactly three parameters (ξ4,ξ5,ξ6) rather than nine parameters
as in the rotation matrix representation. The use of the Lie group solves the singularities
of the compact Euler-angles representation.
A rigid body transform T can be mapped to its corresponding ξ using the logarithmic
map as follows:

log : SE(3)→ se(3)
g→ ξ = log(T) (2.13)

The inverse of this operation is the exponential map.

exp : se(3)→ SE(3)
ξ → T = T (ξ) = exp(ξ) (2.14)

2.2 Image formation and camera model
This background section is based on the work of Moons et al. (2010) and the book
Hartley and Zisserman (2004).

A camera is an optical sensor for capturing 2D images of its surrounding 3D envi-
ronment. The 2D images are obtained by projecting the 3D scene onto the 2D image
plane. The camera modeling is important in computer vision. Many camera models
have been proposed (see Hartley and Zisserman (2004)). The pinhole camera model is
a simple yet the most used model for a camera with a thin lens. This model accurately
captures the geometrical properties of perspective projection. This model is inspired by
the simple camera: the camera Obscura. The camera has the shape of light-proof box
with a infinitesimally small aperture (pinhole) on the front wall (see Fig. 2.1). Rays of

12

2.2 Image formation and camera model

light coming from an object of the 3D scene enter the camera through the pinhole and
intersect with the back wall of the camera. The back wall contains a film on which an
inverted image is formed. The plane containing this film (imager) is called the image
plane or retinal plane. The pinhole is referred as the center of projection. The distance
between the center of projection C and the image plane π is called the focal length f .
The line perpendicular to the image plane and passing through the center of projection C
is known as optical axis. The optical axis intersects with the image plane at the principal
point.

The pinhole camera produces an inverted image since the scene is reflected in the
center of projection C. The image appears upside down. One needs to rotate the image
180° to compensate for the reflection. To avoid the inversion of coordinates, and thus
simplify the mathematical formulas, it is common to consider the virtual image plane
parallel to the image plane (back wall) and located in front of the camera at the distance
f . In the remaining of this thesis, we will refer to this virtual image plane as the image
plane.

This background section is based on the work of Moons et al. (2010) and the book
Hartley and Zisserman (2004).

Perspective projection

The 2D projection p= (x,y), through C, on the image plane of a 3D point P= (Xc,Yc,Zc)
with coordinates in the camera frame C can be derived via the law of similar triangles. It
is given by:

p =

(
x
y

)
=− f

(
Xc/Zc
Yc/Zc

)
(2.15)

Figure 2.1: An illustration of the pin-hole camera model. We created this figure using
the software Autodesk 3ds Max.

13

Chapter 2 Background

Figure 2.2: Changing the origin of the image coordinate system to the top left corner of
the image.

Note that the 3D point P= (Xc,Yc,Zc) is described by its coordinates in the camera frame
C. The general case of a point given by its coordinates in the word frameW is discussed
later (See page 17).
The minus sign shows that the image is upside down on the (true) image plane. For
simplifying the mathematical equations it is common to consider a virtual image plane
on which the image is not upside down and the minus sign disappears. This virtual image
plane is located between the projection center and the object at a distance f (focal length)
from the center of projection (see Fig. 2.1).
The equation 2.15 can be written in matrix form by using the homogeneous coordinates
as follows:  x

y
z

=

 fx 0 0 0
0 fy 0 0
0 0 1 0




Xc
Yc
Zc
1

= M


Xc
Yc
Zc
1

 (2.16)

The matrix M can be decomposed into the product of two sub-matrices M1 and M2.

M = M1M2 (2.17)

Where:

M1 =

 1 0 0 0
0 1 0 0
0 0 1 0

 ; M2 =


fx 0 0 0
0 fy 0 0
0 0 1 0
0 0 0 1

 (2.18)

The matrix M1 presents the dimension reduction (3D to 2D) and the matrix M2 represents
the scaling made by the camera.
The expression in Eq. 2.16 assumes that the principal point (ox,oy) is the origin of the

image coordinate system. In practice, however, it is convenient to set the top left corner
of the image as the origin (see Fig. 2.2). This conforms to the way an image is usually
read out from the sensor: starting from the top left and reading out the image line by line.

14

2.2 Image formation and camera model

Figure 2.3: The points in 3D space are projected onto the image plane. The image is a
grid of (W ×H) discrete pixels. We created this figure using the software Autodesk 3ds
Max.

The offset can be applied as follow (see Eq. 2.19):

 x
y
z

=

 fx 0 ox 0
0 fy oy 0
0 0 1 0




X
Y
Z
1

 (2.19)

Camera intrinsic parameters

The coordinates (ux,uy) in the image plane are given in meters. However, the digital
image has picture element (pixel) units and is composed of discrete (W ×H) pixels (see
Fig. 2.3). In order to convert the image of a point on the image plane to the pixel
coordinates, we need to divide the coordinates by the size of a pixel. Let ρu and ρv be
the width and height of a pixel, respectively. In practice, we usually work with square
pixels i.e. ρu = ρv. The ratio ρu/ρv is called as the aspect ratio of the pixels. The pixel
coordinates can be expressed (see Corke (2011)) as follows:

 u
v
w

=

 1/ρu 0 ou 0
0 1/ρv ov 0
0 0 1 0

 fx 0 0 0
0 fy 0 0
0 0 1 0




X
Y
Z
1

 (2.20)

15

Chapter 2 Background

Camera extrinsic parameters

In our experimental platform, the camera is rigidly mounted on the quadcopter and moves
as the quadcopter flies. It is convenient to represent the 3D points in the global world
frame (W). Then, for each camera pose, convert the coordinate of the 3D point into the
camera centered local frame. The camera can undergo rotations around the three axes
(X ,Y,Z) and a translation Cw ∈ R3. The rotations can be represented by a 3×3 rotation
matrix (Rc

w). In the following, we will show the mapping from the world frame W to
camera centered frame C.

 Xc
Yc
Zc

=R

 Xw
Yw
Zw

+ t (2.21)

The conversion of the coordinates of a point P from the world coordinates Pw =(Xw,Yw,Zw)
into the camera centered frame Pc = (Xc,Yc,Zc) can be done by projecting the relative
vector (Pw−Cw = Pw−C) orthogonally onto each of the coordinate axes (r1,r2,r3) of
the camera local frame. This corresponds to the dot product of the matrix Rc

w with the
relative position (P−C).

Pc = Rc
w(Pw−C) (2.22)

Pc = RPw−Rc
wC (2.23)

We note here that Pw and Pc represent the same physical point P, which is described in
the two different coordinate systemsW and C, respectively.
The matrix Rc

w and the vector t =−Rw
c .Cw represent the extrinsic parameters of the cam-

era and can be put in a 4×4 homogenous matrix Mext = [R|t]. As shown in Eq. 2.26.

Pc = Rc
wPw + t (2.24)

Pc = [R|t]Pw (2.25)

Mext = [R|t] =
(

R3x3 t3x1
01x3 1

)
=


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (2.26)

16

2.2 Image formation and camera model

General camera model

In this section, we will introduce the general camera model described by the camera
projection matrix Ppro j. The projection Ppro j describes the mapping from a 3D point
in an arbitrary coordinate system (the world frame W for convenience) into the pixel
coordinates (x,y) on the image coordinate system I. The camera projection matrix Ppro j
can be constructed by putting together the transformations given in Eq. 2.20 and Eq.
2.26 as described in Eq. 2.27 (see Corke (2011)).

 x
y
1

=̂

 fx 0 ox
0 fy oy
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0

(R3x3 t3x1
01x3 1

)
Xw
YW
ZW
1

 (2.27)

Lens and non-linear distortions

The pinhole (aperture) of the camera has to be small to avoid image blur which occurs
when the camera aperture is much larger. The blur effect happens because the light
coming from a 3D point, of an object on the scene, will contribute to form multiple
pixels on the image plane. On the other hand, using a very small aperture reduces the
light intensity accumulated by the photo-receptors of the camera sensor. As a result, the
required exposure time increases and frame rate decreases accordingly. Replacing the
pinhole with a focusing lens which is both well placed and well sized allows solving the
problem. A focusing lens has a larger aperture allowing more light rays to get inside
the camera and focuses the light to avoid the blur (see Fig. 2.4). Furthermore, a lens
allows adjusting the camera field of view. The benefits of using a focus lens come with
the drawback of introducing non-linearity on the linear model of the camera perspective
projection. The co-linearity property of the points Pc, C and p will no longer hold. To
model this geometrical distortions introduced by the lens, we use the popular Barrel
model which models the radial distortions. The radial distortion models the systematic
variation of the optical magnification when radially moving away from the center of
projection. The magnitude of the deviation increases as we move further away from
the camera center of distortion. We also use the tangential model to model the lens
misalignment in which the imager is not exactly perpendicular to the optical axis. We
will always start by correcting the distortions from the camera images to be able to use
the linear camera model. For that purpose we need to perform camera calibration and
apply the inverse operations.

17

Chapter 2 Background

Figure 2.4: Left: A pinhole camera with no lens. Many light rays are blocked and the
exposure time needs to be large to accumulate enough light intensity to form the image.
Right: A camera with a thin lens. Light rays are accumulated from different directions
and focused on the image sensor. Image formation becomes faster. We created these
figures using the software Autodesk 3ds Max.

2.3 Epipolar geometry
This background section is based on the work of Moons et al. (2010) and the book
Hartley and Zisserman (2004).

During the navigation, the quadcopter processes the sequence of images captured from
different viewpoints to perform both localization and mapping. We study in this section
the elementary case: two views perspective projection. Let us consider a point P in 3D
space and its projections p1 and p2 onto two cameras C1 and C2, respectively (see Fig.
2.5). In the case of a static stereo, the camera center will also be referred to as Cl and
Cr (for left and right) instead of C1 and C2. We show the geometric properties resulting
from the triangle C1C2P. The vectors C1C2, C1P and C2P are co-planar. These properties
introduce constraints on the locations of the projections p1 and p2. These constraints are
captured by the Fundamental matrix of computer vision, the matrix F . The Fundamental
matrix and its properties are presented in Sec. 2.3.1(see page 21). For convenience, we
summarize here its most important properties. F states that the corresponding pixel p2
for a pixel p1 lies on the epipolar line F p1 on the image I2. An immediate result of F
is that the search for corresponding pixels reduces to 1D search instead of 2D. If the
camera matrices K1 and K2 are known then the Fundamental matrix F takes a special
form called the Essential matrix E. The matrix E, which has less DoF than F , is very
practical for estimating the relative motion [R|t] between the two cameras.

The term ”two views perspective” was chosen to describe many configurations which
arise in vision-based mobile robotics. In particular, it handles the following cases:

• Temporal stereo: a moving physical camera which captures two images from dif-
ferent locations at different times. In this case, the two views have the same cali-
bration matrix K1 = K2 = K. The two images could be any two images from the

18

2.3 Epipolar geometry

C

P

p

C1 C2

p1

P

p2

Figure 2.5: Left: monocular vision. The depth of the 3D P cannot be recovered from its
projection p alone. All 3D points along the ray (CP) get projected to the same point 2D
point on the image plane. Right: a second view can resolve the depth ambiguity.

sequence which have enough overlap on their field of views. Relevant cases are:
consecutive image pairs and image to keyframe pairs. In our experiments, we use
the two views perspective configuration for the left camera (reference camera) of
our stereo camera.

• Static stereo: two physical cameras located in different positions capturing the
scene at the same time. In our experiments, this configuration corresponds to our
stereo camera (left and right cameras) which is mounted on the quadcopter.

The points P, p1, C1, C2 and p2 belong to the same plane, which is called the epipolar
plane. The projection of the camera center C1 onto the camera image I2 is called the
second (right) epipole e2. The first (left) epipole e1 is defined in a similar way. The base
line C1C2 intersects with image planes at the epipoles e1 and e2.
Monocular camera
In the case of single view perspective the robot observes the scene (3D point P) using
one camera. From one single image, it is not possible to determine the depth of the 3D
point P given its 2D projection p1 because all the points belonging to the ray C1P project
to the same image point p (see left image of Fig. 2.5).
Stereo camera.
A second image which is captured from a different perspective can resolve the depth
ambiguity. Different points on the 3D line C1P are projected onto different 2D locations
on the second view (see right image of Fig. 2.5). The projection of the 3D line C1P onto
the second image I2 is a 2D line which passes through the right epipole e2. This 2D line
is the epipolar line corresponding to p1.

Two 2D epipolar lines l1 and l2 can be associated for each 3D point P as illustrated in
Fig. 2.5. All epipolar lines (of different point on the space) pass through the epipoles.
Now that we have presented the geometric constraints induced by the epipolar geometry,
we will show the resulting mathematical formulation of these geometric properties: the

19

Chapter 2 Background

Fundamental matrix F .
In the following we assume that the camera intrinsic parameters (K1 and K2) are known.
We also assume that we work with undistorted images (I1 and I2) so that we can apply
the general linear camera model. The projecting ray of the 2D point p1 = (x1,y1,1)
(given in homogeneous coordinates) is given by inverting the transformations shown in
the general camera model (see Eq. 2.27 on page 17). First, we get the 3D point on the
camera coordinate system using Eq. 2.28.

Pc = ρ1K−1
1 p1 (2.28)

Where ρ1 ∈ R.
Then, we get the coordinates on the world frame W by applying the inverse of the ex-
trinsic transformation. Since C1 is the position of first camera in the world coordinate
system, the coordinates of P in the world coordinate systemW can be given by Eq. 2.29
(see Moons et al. (2010)).

Pw =C1 +ρ1R1K−1
1 p1 (2.29)

Similarly, we get the formula for Pw (see Eq. 2.30) using the second projection p2.
Where ρ2 ∈ R.

Pw =C2 +ρ2R2K−1
2 p2 (2.30)

From Eq. 2.29 and Eq. 2.30, we get a system of 6 linear equations with 5 unknowns. The
unknowns are Xw , Yw , Zw, ρ1 and ρ2. If we do not consider the degenerate cases, we
need exactly 5 independent linear equations to uniquely solve the problem. Fortunately,
p1 and p2 are corresponding (projecting rays must intersect) and thus we have a rank-
deficient system. This means that we can uniquely solve the system. By substituting 2.29
in 2.30 (see Moons et al. (2010)), we get:

λ2 p2 = λ1K2RT
2 R1K−1

1 p1 +K2RT
2 (C1−C2) (2.31)

Where λ1 ∈ R and λ2 ∈ R.
Let us investigate this equation (see Eq. 2.31) as it encapsulates the Fundamental matrix

of computer vision. We start from a pixel p1 on the image I1.

• K−1
1 p1: describes the ray in 3D space corresponding to p1. It has the direction

C1 p1. This ray passes through P. The coordinates are given in the coordinate
system of camera C1.

• R1K−1
1 p1: multiplying by R1 transforms the coordinates of the ray to the world

coordinatesW .

• RT
2 R1K−1

1 p1: the ray expressed in the coordinate system of camera C2.

20

2.3 Epipolar geometry

Figure 2.6: Epipolar constraint. The points P, its projections, the epipoles and the cam-
eras centers are co-planar.

• K2RT
2 R1K−1

1 p1: 3D to 2D transformation. The ray is projected onto the coordinate
system of image I2. The point K2RT

2 R1K−1
1 p1 is the vanishing point corresponding

to p1. That is the endpoint of the epipolar line corresponding to p1 on the image
I2.

• K2RT
2 (C1−C2) = e2: the epipole e2 which is the projection of the point C1 onto

the image I2.

• λ1K2RT
2 R1K−1

1 p1: the distance from the epipole e2 along the epipolar line at which
p2 is located.

We can read the Eq. 2.31 as follow: given a point p1 on the image I1 then, its cor-
responding p2 is located at a distance λ1 on the line starting from e2 and having the
direction K2RT

2 R1K−1
1 p1. This is a important property from which the Fundamental ma-

trix of computer vision can be derived.

2.3.1 The Fundamental matrix of computer vision

In Eq. 2.31, we see that the vectors p2, e2 and K2RT
2 R1K−1

1 p1 are linearly dependent.
Thus, their triple-product is equal to zero (see Moons et al. (2010)). We get:

pT
2 (e2×K2RT

2 R1K−1
1 p1) = 0 (2.32)

By writing the vector product using the matrix expression (skew matrix [e2]× of vector
e2),we get:

9pT
2 [e2]×K2RT

2 R1K−1
1 p1 = 0 (2.33)

21

Chapter 2 Background

By defining the Fundamental matrix F as:

F = [e2]×K2RT
2 R1K−1

1 (2.34)

which is a 3×3 matrix, we get the formula for the constraints of 2D-2D correspondences.

pT
2 F p1 = 0 (2.35)

F is the Fundamental matrix of the image pair (I1, I2). It describes the relationship be-
tween corresponding pixels on both images. For a point p1 on the first image, its cor-
responding pixel p2 must lie on the corresponding epipolar line defined by F p1 on the
second image (see Moons et al. (2010)). F and its special cases (i.e. Essential matrix) are
powerful tools of computer vision. Even without reconstructing the scene, F provides
constraints of how the scene changes when the scene is viewed from a different perspec-
tive. Let’s now determine the degrees of freedom (DoF) of F . The Fundamental matrix
F is a 3×3 matrix. We can remove two DoFs from F . One DoF can be removed from F
because F can only be defined up to a scale. This is due to the fact that F is defined using
homogeneous coordinates. Furthermore, F can be decomposed into a product (see Eq.
2.34) of matrices including a skew symmetric matrix ([e2]×) which is a singular matrix
of rank 2 by formation. Thus, the Fundamental matrix is also singular of rank 2. This
removes the second DoF from the matrix F . As a result, the 3× 3 Fundamental matrix
F has 7 DoFs.

In the following, we will show how to estimate F from 2D-2D pixel correspondences.
Without any knowledge about the camera parameters (extrinsic and intrinsic), F can be
estimated from at least 7 known point correspondences between the images I1 and I2
(minimal case). In practice however, usually 8 or more known points correspondences
(see Longuet-Higgins (1981)) are used to avoid non-linearity of the minimal case. As-
suming there are no wrong matches (outliers) on the correspondences, we can use the
8-point algorithm (see Longuet-Higgins (1981)) to estimate F . For a pair (p(i)1 , p(i)2) of
corresponding pixels, Eq. 2.35 (Viz. pT

2 F p1 = 0) can be written using the form A(i) f = 0
(see Olsson (2013)) as follows:

F11 p(i)2,x p(i)1,x +F12 p(i)2,x p(i)1,y +F13 p(i)2,x p(i)1,z

+F21 p(i)2,y p(i)1,x +F22 p(i)2,y p(i)1,y +F23 p(i)2,y p(i)1,z

+F31 p(i)2,z p(i)1,x +F32 p(i)2,z p(i)1,y +F33 p(i)2,z p(i)1,z

=0 (2.36)

22

2.3 Epipolar geometry

(
p2,x p1,x p2,x p1,y p2,x p1,z ... p2,z p1,z

)


F11
F12
F13
.
.
.

F33


= 0 (2.37)

Eq. 2.37 shows that a pair of corresponding point introduces a new constraint on the
entries of F . Therefore, we need 8 correspondences to estimate F (up to a scale) in a
linear way. Let’s define the vector f = (F11,F12,F13, ...,F33)

T from the elements of the
matrix F . By stacking the equations from the n available pairs of corresponding pixels
(see Olsson (2013)), we construct a system (A f = 0) of linear equations:


p(1)2,x p(1)1,x p(1)2,x p(1)1,y p(1)2,x p(1)1,z ... p(1)2,z p(1)1,z

p(2)2,x p(2)1,x p(2)2,x p(2)1,y p(2)2,x p(2)1,z ... p(2)2,z p(2)1,z
...

p(n)2,x p(n)1,x p(n)2,x p(n)1,y p(n)2,x p(n)1,z ... p(n)2,z p(n)1,z





F11
F12
F13
.
.
.

F33


=



0
0
0
.
.
.
0


(2.38)

When n > 7 pairs of corresponding pixels are available, F can be estimated by solving
the system of linear equations A f = 0. One can solve argmin f |A f |2 subject to | f |= 0.
The coordinates for x (640 pixels) and y (480 pixels) are usually orders of magnitude
larger than z (z = 1 in the homogeneous coordinates). For better numerical stability, it
is therefore recommended to normalize the coordinates (see Hartley (1997)). Due to
noise on the pixel locations, the estimated Finit , which solves the linear system, might
not fulfill the constraint Det(Finit) = 0. Due to noise the smallest eigenvalue of the SVD
of Finit can be very small but non-zero. Therefore, we calculate the final F from Finit
by forcing Det(F) = 0. This can be done using the SVD (see Eq. 2.39) of Finit and
setting the smallest eigen value to ”0” (see Eq. 2.40). This guaranties that the corrected
F is the closest (Frobenious norm) matrix to the initial Finit which fulfills the constraint
Det(F) = 0 (see Olsson (2013)).

Finit =Udiag(σ1,σ2,σ3)V T (2.39)

The final Fundamental matrix F can be given by Eq. 2.40:

F =Udiag(σ1,σ2,0)V T (2.40)

Estimating F from 8 pixel correspondences gives an estimate which is very sensitive
to wrong correspondences (outliers). In many applications, it is very cheap to detect

23

Chapter 2 Background

and match more than 8 corresponding pixels (hundreds or even thousands of correspon-
dences) using image processing techniques. Intuitively one can think that with more
correspondences we can find a way to get a better estimation of F . In the literature there
are two major approaches for this: using a set of 8-points correspondences in a RANSAC
scheme (see Fischler and Bolles (1981)). Or using least squares on all available corre-
spondences to find the F which best fits the correspondences.

As can be seen in Eq. 2.34, the Fundamental matrix F encapsulates information about
the intrinsic and extrinsic parameters. Since F can be estimated from the images alone,
it can actually be used to estimate some of those parameters. In total, we have 22 DoFs
to estimate the full calibration of the two cameras. K1 (5 DoFs), K2 (5 DoFs), [R1|C1]
(3+3 DoFs), [R2|C2] (3+3 DoFs). But the Fundamental matrix F has only 7 DoFs. If
no additional knowledge about the cameras or about the scene points or no additional
assumptions are made then, the estimated parameter will be highly ambiguous. Exam-
ples of those ambiguities are the 3D reconstruction up to some homography transforma-
tions or even some projective transformations (see Hartley and Zisserman (2004)). We
are, however, interested in ”unique” Euclidean reconstructions on our experiments (see
Wurm et al. (2010)).

2.3.2 The Essential matrix

Additional DoFs can be removed from the system (p2F p1 = 0) if some prior knowledge
is given. For example, if the cameras are individually offline calibrated such that K1
and K2 are known, then the Fundamental matrix takes a special form called the Essential
matrix E. Let us consider q1 and q2 such that:

q1 = K−1
1 p1

q2 = K−1
2 p2 (2.41)

By substituting Eq. 2.41 in Eq. 2.34. We get:

qT
2 .([t]xRq1) = 0 (2.42)

By defining the Essential matrix E as:

E = [t]xR (2.43)

The epipolar constraint can be written using E as given by Eq. 2.44. This is similar to its
expression using the Fundamental matrix (see Eq. 2.35).

q2Eq1 = 0 (2.44)

24

2.3 Epipolar geometry

In this case, the unknown is the relative motion ([R|t]) between the cameras. The Es-
sential matrix has 5 DoFs. The relative motion ([R|t]) can only be determined up to a
scale from the Essential matrix E. This matrix is at the core of the 2D-2D correspon-
dences motion estimation methods. Many works for visual odometry and SLAM rely on
E and they differ only on the type of the features, the descriptors, the feature matching
algorithms and on the techniques for increasing the robustness against outliers.

2.3.3 Extracting the motion from the Essential matrix

The original 8-point algorithm for motion estimation has been presented by Longuet-
Higgins (1981). We will review the important aspects of this algorithm. First, the Essen-
tial matrix E is estimated using a similar method as the estimation of F (see page 22).
Then, the motion parameters can be extracted by uniquely decomposing E into a matrix
product [t]×R.
Longuet-Higgins (1981) proposed to perform the decomposition using the following
3×3 helper matrices: Z and W (see Eq. 2.45).

W =

 0 −1 0
1 0 0
0 0 1

 ; Z =

 0 1 0
−1 0 0
0 0 0

 (2.45)

Having only 5 DoFs, it can be shown that the SVD decomposition of E has the following
form (see Eq. 2.46).

E =Udiag(1,1,0)V T (2.46)

Let us set S1, S2, R1 and R2 such that: (S1 =−UZUT , R1 =UWTV T) and (S2 =UZUT ,
R2 =UWV T).
There are two possible solutions E = S1R1 and E = S2R2 for the decomposition of
E = [t]×R = SR. In the following, we will show the verification that the above two
factorizations are valid. We also verify that R1 and R2 are rotation matrices and verify
that S1 and S2 are skew-symmetric matrices.
It is easy to check that ZW = diag(1,1,0) and ZW T =−diag(1,1,0).
To verify that E = S1R1 we check

S1R1 =−UZUTUWTV T

=−UZWTV T

=−U(−diag(1,1,0))V T

=E (2.47)

25

Chapter 2 Background

We can verify that R1 is a rotation matrix. We check that R1 fulfills the two conditions
RT

1 R1 = I3×3 and Det(R1) = 1.

RT
1 R1 =(UWTV T)TUW TV T

=VWUTUW TV T

=I3x3 (2.48)

and:

Det(R1) =Det(UW TV T)

=Det(U)Det(W T)Det(V T)

=Det(W)Det(UV T)

=1 (2.49)

We can verify that S1 is a skew symmetric matrix by checking that −ST
1 = S1.

−ST
1 =(UZUT)T

=UZTUT

=−UZUT

=S1 (2.50)

Since t can only be extracted up to a scale any tλ = λ t where λ ∈ R∗ is also valid. The
vector product tλ × t = 0 can be written in matrix form as [tλ]×t = St = 0. So, t is in the
null-space of the matrix S. The third column u3 of the matrix U gives a solution for t.
It is worth to notice that the sign of λ is important as it determines if the 3D points will
be reconstructed in front of the cameras or behind the cameras. We need to check both
t = u3 and –t =−u3 as they are both valid solutions.
The result is four possible mathematical solutions (see Olsson (2013)) for the decompo-
sition of E into [t]×R where:

[R|t] =


[UWV T | u3], f or λ = 1
[UW TV T | u3], f or λ = 1
[UWV T |−u3], f or λ =−1
[UW TV T |−u3], f or λ =−1

(2.51)

Among the four solutions, only one is valid in practice and guarantees that all recon-
structed 3D points are located in front of both cameras. This is illustrated in Fig. 2.7. In
this example, the valid solution is the configuration on the top left image.

26

2.4 The PnP algorithm

Figure 2.7: Illustration of the four mathematical solutions for extracting the motion [R|t]
from the Essential matrix E. Only one solution (top left) is valid in practice.

2.4 The PnP algorithm

We have seen in the previous section that 2D-2D correspondences can be used to esti-
mate the camera pose. In this section, we review a conceptually different method for
pose estimation: the perspective n-points (PnP) algorithm which relies on 3D-2D corre-
spondences. Fig. 3.3 (on page 45) shows an illustration of 3D-2D, 2D-2D and 3D-3D
correspondences. PnP can be used in the case there is prior knowledge about the ge-
ometry of the scene in form of a set of 3D points with known coordinates and known
projections (pixel coordinates and associations) on the image. The minimal solution of
PnP which provides a finite set of solution is achieved when n = 3 and called P3P al-
gorithm. The origin of the P3P algorithm dates to the 17 century (see Grunert (1841)).
Fischler and Bolles (1981) presented the RANSAC algorithm as well as a method for
solving the P3P problem. They showed an application of their algorithm to estimate the
camera pose using RANSAC from many P3P hypotheses. They pointed out that as many
as four solutions can be found and by using a fourth 3D point (P4P), the best solution
can be identified. It is worth to notice that Fischler and Bolles (1981) formulated the PnP
problem as the problem of determining the lengths of line segments joining the camera
pose and the 3D points given the relative locations of the 3D points and the angles to
every pair of the 3D points. Fig. 2.8 shows an illustration of the P3P problem. In this
illustration, the camera is located at position P. The camera sees the three 3D points A,
B and C. The projections onto the image plane of A, B and C are the pixels a, b and c,
respectively. Let us consider the tetrahedron which has the point P as the apex and has
the triangle ABC as base. Let’s define the variables PA, PB and PC as the lengths of line
segments joining the camera center P and the 3D points A, B and C, respectively. Let’s
also define the angles α =^APB, β =^APC and γ =^BPC. The relative distances AB,

27

Chapter 2 Background

P

A

B

C

a

b

c

Figure 2.8: Illustration of the P3P problem.

AC and BC are given and the angles α , β and γ can be easily retrieved from the 3D-2D
correspondences. The following system of equations (see Eq. 2.52) can be derived from
the law of cosines.

(AB)2 = (PA)2 +(PB)2−2(PA)(PB)cos(α)

(AC)2 = (PA)2 +(PC)2−2(PA)(PC)cos(β)

(BC)2 = (PB)2 +(PC)2−2(PB)(PC)cos(γ) (2.52)

Let’s define x such that (PB) = x∗ (PA). Fischler and Bolles (1981) reduced the system
of equations in Eq. 2.52 into a bi-quadratic polynomial in one unknown x, where the
unknown x represents the ratio of two legs of the tetrahedron PABC. Fischler and Bolles
(1981) bi-quadratic equation in the unknown x has the form given in Eq. 2.53.

G4x4 +G3x3 +G2x2 +G1x+G0 = 0 (2.53)

Where Gi ∈ R for i = {0,1,2,3,4}.
Eq. 2.53 can be solved either in closed form (see Dehn (1960)) or by iterative techniques
(see Conte and de Boor (1980)). The camera orientation can be estimated when addi-
tionally the focal length of the camera and the principal point are known. We refer the
interested reader to Fischler and Bolles (1981) for a detailed description of the PnP al-
gorithm. A variant of the P3P algorithm which is faster to compute and more accurate is
proposed by Masselli and Zell (2014). They designed a new geometric parametrization
to solve the P3P problem.

28

2.5 Stereo matching

2.5 Stereo matching
We will introduce in this section the background of the stereo correspondence problem.
For static stereo, we will refer to the image I1 as the left image Il and the image I2 as the
right image Ir. For a reference pixel pl = (xl,yl) on the left image Il , we seek to find the
location of its corresponding pixel pr = (xr,yr) on the right (target) image Ir.

We distinguish between dense stereo matching and the sparse (feature-based) stereo
matching. In dense stereo matching, we seek to estimate the correspondences for all
pixels on the reference. The result of dense stereo matching is a disparity map. To deal
efficiently with the large amount of pixels, usually simple feature vectors are used for
computing the similarity measure for candidate matches. In chapter 4 (page 69), we will
introduce our dense stereo matching algorithm (LS-ELAS). On the other hand, in the
sparse stereo matching, we seek to establish correspondences for a small set of pixels on
the reference image. For example, one usually extracts the features using a sophisticated
feature or blob detector such as FAST or SIFT and wants to find the correspondences of
those features.

2.5.1 Challenges and assumptions
Looking for correspondences can be quite challenging. Among these challenges are the
half occlusion, rank order, fore-shortening effect, texture-less areas. We will elaborate
on these challenges and show how the correspondence problem can be simplified based
on the properties of the epipolar geometry and some assumptions.
Epipolar constraint. The epipolar geometry (see Eq. 2.35) constrains the correspon-
dence search from 2D to 1D. This results in a huge reduction of the computational time.
Looking for the corresponding pixel along the line on which it is located (the epipolar
line) increases the robustness against false matches.
Photo-constancy. Most matching approaches rely on the photo-constancy assumption:
the assumption that the light intensity reaching a pixel on the reference image is equal
to the intensity reaching its corresponding pixel on the target image. In other words, the
incident light on a surface of an object is assumed to follow the Lambertian reflectance
model. This assumption can be violated in many cases but it remains a useful assump-
tion.

Half-occlusions. For points which are only visible for one camera, looking for their
correspondences in the other image (target image) is an ill-posed problem. This is illus-
trated in Fig. 2.9. The points on the segment AB are visible by the left but they are not
visible for the right camera. The explicit detection of the half-occluded pixels is impor-
tant in many applications and a number of approaches has been developed for dealing
with occluded pixels (see Yang et al. (2009)). A simple and very effective approach is the
Left-right consistency check. The idea behind this technique is to compute two disparity
maps, each time one image is considered as the reference image and the other image as
target. Then, check if the disparities agree.

29

Chapter 2 Background

Figure 2.9: Illustration of some stereo matching challenges. Left: half occlusions. The
number ”4” is occluded for the camera C1 and the number ”2” is occluded for the camera
C2. Middle: a scenario where the ranking order is not uphold. The camera C1 sees ”2A”
while the camera C2 sees ”A2”. Right: foreshortening effect. The image of the segment
AB is represented using fewer pixels on camera C2 compared to camera C1.

Rank order assumption. We assume that corresponding pixels have the same rank or-
der in both images. In some cases, this cannot be true due to occlusions. Fig. 2.9 shows
an illustration of a case where the order assumption does not hold.
Weak texture areas. To characterize a pixel on an image, one often needs to have some
significant intensity changes on the pixel’s surrounding. In the case of weak texture,
the search can be ambiguous as many candidate matches might have similar matching
scores. Moreover, the true corresponding pixel might have a lower score, of the similar-
ity measure, than the neighboring candidate pixels.
Repetitive patterns. Another challenge of correspondence problem is the existence of
repetitive patterns on the target image. Here, even if there is enough texture change, the
search can still be ambiguous. As in the case of weak texture around the pixel, many
candidate matches might have a similar matching scores.
Foreshortening effect. Since the scene is observed from two different viewpoints, some
objects might appear shorter on one image compared to the other image. This case is
illustrated in Fig. 2.9. On the left view, the scene object is represented by more pixels
than on the right image. Even if there is no occlusion in this case, one may not find
a one-to-one mapping for the correspondences. To simplify the correspondence search
problem, we assume that there is at most one corresponding pixel.
Stereo rectification. To simplify the search of the correspondences the canonical config-
uration, is often used for dense stereo matching. In this configuration, the two identical
cameras are perfectly aligned to be co-planar. The only motion between the two cam-
eras is a translation along the X −axis (the baseline B). The result is that the two image
planes coincide (plane π) and the baseline is parallel to the image planes. The benefit
of using the canonical configuration is that the epipolar lines are horizontal and have the
same y coordinate. The epipolar line lr, on the target image, corresponding to a reference
point pl = (xl,yl) on the left image is a horizontal line with Y coordinate equal to yl .
The epipoles er and el are located at infinity since the image planes are parallel to the
baseline.

30

2.5 Stereo matching

Figure 2.10: Illustration of the rectification process. The stereo pair is projected using
the homographies onto a common virtual plane which is parallel to the baseline. On
this virtual plane, only the coordinates along the X−axis differs between corresponding
pixels.

Since it is technically hard to set up a stereo pair in the canonical configuration geometry,
we transform the images to simulate the canonical configuration. This process is called
stereo rectification (see Zhang (2000)). It computes from the calibration parameters two
3×3 homography transformations that can be applied to rectify the stereo pair.

2.5.2 Depth from disparity

On a rectified stereo pair, the disparity d of a pixel pl = (xl,yl) refers to the apparent pixel
difference or motion on the second image. The location of the corresponding point pr =
(xr,yr) can be written as a function of the coordinates of pl as follows: pr = (xl +d,yl).
The disparity is proportional to the inverse depth. The disparity can be derived from the
depth (based on similar triangles) and vice versa (see Eq. 2.54).

d =xr− xl =
B f
Z

; Z =
B f
d

(2.54)

For a calibrated camera, the full coordinate (X ,Y,Z) of a point P in 3D-space can be
computed if its 2D projection pl and the disparity d are known (see Eq. 2.55).

P = (X ,Y,Z) = (X ,Y,
B f
d
) (2.55)

31

Chapter 2 Background

Figure 2.11: Stereo visual odometry. Concatenating the elementary relative transforma-
tions to recover the full trajectory.

2.6 Stereo visual odometry and SLAM

We have seen how to estimate the relative pose Tk,k−1 between two camera poses Tk and
Tk−1. The absolute pose Tk at time k can be computed incrementally by concatenating
the elementary relative transformations, in order to recover the full robot trajectory (see
Fig. 2.11). Thanks to the homogeneous coordinates, the concatenation can be done by
simple matrix multiplication as given by Eq. 2.56.

Tk =

(
R3x3,k t3x1,k
01x3 1

)
= Tk,k−1Tk−1,k−2...T3,2T2,1T1,0T0 (2.56)

Moravec (1980) has presented one of the first approaches to estimate the robot pose
from camera only. The camera used in his work is mounted on a rail. The robot per-
forms stop-and-go motion. At each stop, the camera moves along the rail to capture 9
images at equi-distant positions. The image set simulates a multi-baseline stereo camera.
Most importantly, Moravec has proposed a pipeline for motion estimation which is still
adopted today by many researchers.
Modern visual odometry algorithms perform local bundle adjustment (LBA see page 35)

32

2.6 Stereo visual odometry and SLAM

to increase their performance.
In mobile robotics, the robot localization and the environment mapping are two im-

portant tasks. The localization refers to the task of estimating the robot pose on an
a-priori given map. The mapping refers to the task of constructing a map of the robot
environment using some measurements and some known robots poses. To navigate au-
tonomously in unknown environments there is a need to simultaneously perform both
tasks. Fortunately, there exists a way to achieve this goal: the Simultaneous Localiza-
tion and Mapping (SLAM). SLAM can incrementally build a map of an environment
and at the same time use this map to deduce the robot location within the map. SLAM
has been successfully used on many different fields on mobile robotics wheeled robots,
aerial robotics and underwater robotics.

2.6.1 Visual SLAM and SFM
Early work on SLAM was done using ground robots equipped with laser scanners. Cur-
rently, cameras are widely used for SLAM. This has led to establishing a bridge be-
tween the SLAM problem on robotics and the Structure from Motion (SFM) problem
of computer vision. Both visual SLAM and SFM seek to estimate the camera motion
by modeling the unknown robot environment. However, SFM focuses more on the es-
timation of accurate 3D models of the environment. Thus, SFM favors the use of batch
optimization methods using all poses Ti and landmark X j to solve the problem. SFM op-
timization methods often rely on bundle adjustment. On the other hand, SLAM focuses
on the incremental update of the map. As the robot moves, the controller needs to know
the current robot location. Thus, sequential filtering (EKF, Particle filter) approaches
were favored over batch optimization techniques to solve the SLAM problem. The most
accurate results are achieved by bundle adjustment. Strasdat et al. (2012) showed that
per unit of computation, bundle adjustment is more efficient than filtering approaches.
Recent keyframe-based visual SLAM algorithms are also based on bundle adjustment
and they can run in real-time on mobile robots. The breakthrough was done by Klein
in his work PTAM (see Klein and Murray (2007)). Klein used a dual core CPU to run
two threads in parallel one for localization (tracking) and one for mapping. The tracking
thread needs to achieve frame rate processing while the mapping thread only needs to fin-
ish processing before the next keyframe arrives. Decoupling the tracking from the (slow)
mapping allowed achieving real-time performance. PTAM became a standard algorithm
for visual navigation and researchers build many SLAM algorithms upon PTAM.

2.6.2 Solving the SLAM problem
Let us consider a robot moving in a scene and denote the robot poses Ti ∈ SE3. The
robot observes the visual landmarks X j (see Fig. 2.12). An observation zi j denotes that
the landmark X j ∈R3 is seen at robot pose Ti. Given a set of observations (zi j), we seek to
estimate the robot poses Ti and the landmark positions X j. Since there are uncertainties in

33

Chapter 2 Background

Figure 2.12: Left: An illustration of a SLAM problem with 4 robot poses {T0,T1,T2,T3}
and 5 landmarks {X0,X1,X2,X3,X4}. Right: the graph representation of this SLAM
problem using Markov Random Fields.

Figure 2.13: Left: illustration of the keyframe approach for SLAM. Right: illustration of
the filtering approach for SLAM.

the measurements, probability theory has been adopted to formulate the SLAM problem.
Probabilistic SLAM seeks to estimate the posterior probability of the map X j and poses
Ti conditioned on the measurements zi j.
As the robot moves, the graph will grow by adding new poses Ti and measurements zi j
(see Fig. 2.12). Whenever a new part of the environment is explored for the first time,
new landmarks nodes X j will also be added to the graph. This introduces the challenge
of how to efficiently deal with large scale SLAM problems. To get an estimate of the
solution of the SLAM problem two main solutions are proposed: incremental filtering
and keyframe based bundle adjustment.

Filtering approaches

The filtering approaches are based on marginalizing out past poses and summarizing the
measurements over time. One assumes that for estimating the state (Ti,X j) at time k one
only needs to know the state at time k−1 and the results of the measurements at time k
(Markov property). Previous nodes can then be deleted from the graph. The consequence

34

2.6 Stereo visual odometry and SLAM

is a denser graph as new links between pairs of the variables X j need to be inserted into
the graph. For eliminating the node Tk−1 we need to insert new links between each
pair (X j1,X j2) of landmarks where X j1 and X j2 are both seen from the pose Tk−1. The
marginalization of old poses for filtering approaches introduced heavily interconnected
landmark nodes. This introduces poor scalability of the SLAM system. An illustration
of the resulting graph is shown in Fig. 2.13.

Keyframe based bundle adjustment

This background section is based on the work of Pollefeys et al. (2014).
Bundle adjustment is the optimal solution to the visual SLAM problem as it solves

for the maximum likelihood solution by taking into account all measurements from all
camera poses. The optimization usually minimizes the photometric re-projection error
(see Eq. 2.57) to estimate the optimized structure and motion [Ri|ti]1:n from an initial
estimate.

zi j = xi j−π(RiX j + ti) (2.57)

Robust cost functions (iteratively re-weighted least squares) are usually used to account
for outliers in the measurements. This optimization problem can be solved using robust
non-linear least squares as discussed in section 2.1.1 (page 9). Eq. 2.58 gives the math-
ematical formula for the bundle adjustment. We assume that the first camera pose is the
reference coordinate system and we exclude it from the optimization.

(T2:n,X1:m)
∗ = arg min

T2:n,X1:m

n

∑
i=1

m

∑
j=1

ρ
(
‖xi j−π(RiX j + ti)‖Ωi j

)
(2.58)

Where ρ is a robust cost function such as the Huber cost function.
Most SLAM algorithms rely on the efficient Levenberg-Marquardt algorithm and its vari-
ants for solving the bundle adjustment problem in Eq. 2.58. In the case of the original
Levenberg-Marquardt algorithm, the bundle adjustment problem corresponds to solving
the normal equations given in Eq. 2.9 (viz. (JᵀJ+λ I)δx∗ =−Jᵀe(x̆) see page 11).
The keyframe based bundle adjustment for feature-based visual SLAM approaches are
based on three kinds of sparsity, which are as follows:

1. Sparsity of the graph because of discarding some nodes. In fact, only an approxi-
mation of the bundle adjustment problem is solved. The original graph is approxi-
mated by a sparse graph using a sparsification process.

2. Sparsity of the graph because of its bipartite nature which allows the usage of the
Schur complement trick (see Emilie (1968)). There are no edges between nodes of
the same type. Egdes (measurements) are only relating poses with landmarks.

35

Chapter 2 Background

3. Sparsity of the graph because usually not all points are visible in every camera
pose. This allows the usage of sparse matrix manipulation. The Jacobian (J) has
only a few non-zero entries. A measurement adds two rows to the Jacobian matrix.
These two rows are everywhere equal to zero except at the columns corresponding
to the camera pose at which the measurement is made and the columns correspond-
ing to the landmark. The matrix JT J has also a sparse block structure.

Naive implementations of bundle adjustment based SLAM which do not exploit these
sparsity properties might become computationally very expensive and memory demand-
ing as the graph grows. In the following, we will describe the afore-mentioned three
levels of sparsity.
The sparsification of the graph by simply discarding some pose nodes (see Fig. 2.13) is
a technique for reducing the computational cost. In many cases, it is not needed to take
into account all available poses and landmarks. A strategy to carefully discard nodes
from the graph has to be designed. Typically, an incoming frame becomes a keyframe
node on the graph only if it includes information about new parts of the scene. Whenever
a new keyframe is created the map has to be updated. The map update optimization is
performed only on the small subset of the nodes which are retained.
Egdes (measurements) are only relating camera pose nodes with landmark nodes. Thus,
the Jacobian matrix can be split into two parts as follow:

J =
(

Jc Js
)

(2.59)

Where Jc is the Jacobian with respect to the camera poses and Js is the Jacobian with
respect to the 3D landmarks. The index ”c” refers to the ”camera poses” and the index
”s” refers to the ”scene geometry” (the 3D landmarks). As a result, the matrix JT J has a
block structure composed of 4 blocks as given in Eq. 2.60. Each of the two blocks JT

c Jc
and JT

s Js depend only on one type of parameters.

JT J =

[
JT

c Jc JT
c Js

JT
s Jc JT

s Js

]
=

[
Hs Hsc
HT

sc Hc

]
(2.60)

[
Hs Hsc
HT

sc Hc

][
δs
δc

]
=

[
bs
bc

]
(2.61)

This partitioning of the matrix JT J allows using the Schur Complement trick (see Emilie
(1968)). The idea is that we split the large system into two small systems. First, we solve
for the camera parameters (δc). Then, we solve for the structure parameters (δs) using
substitution of δc. While it is possible to start by solving for the structure parameters,
there are usually less camera parameters than structure parameters and thus more effi-
ciency can be gained by starting with the camera parameters.

36

2.6 Stereo visual odometry and SLAM

[
I Hsc

−HT
scH−1

s I

]
(2.62)

By multiplying Eq. 2.61 by Eq. 2.62, we obtain Eq. 2.63.[
Hs Hsc
0 Hc−HT

scH−1
s Hsc

][
δs
δc

]
=

[
bs

bc−bsHT
scH−1

s

]
(2.63)

The matrix Hc−HT
scH−1

s Hsc is called the Schur complement of the matrix JT J. Now,
solving for the camera parameters δc can be done by solving
(Hc−HT

scH−1
s Hsc)δc = bc−HT

scH−1
s bs. The matrix H−1

s is a block diagonal matrix and
thus it is easy to invert, which facilitates the computation of δc. Solving for the structure
parameters δs can be done by backward substitution. δc and δs are the components of the
solution of the bundle adjustment problem (Eq. 2.58).

37

Chapter 3

Hybrid SLAM by combining sparse
features with direct image alignment
In this chapter, we address the problem of localization and mapping (SLAM) in 3D
using a stereo camera. This algorithm is used in chapter 5 as part of a large system
for autonomous outdoor obstacle avoidance using the MAV. Our SLAM algorithm is an
extension of the popular ORB-SLAM2 algorithm (see Mur-Artal and Tardós (2016)).
Large parts of this work have been pre-published in Ait Jellal and Zell (2017).

3.1 Introduction
ORB-SLAM2 relies on sparse ORB features. We added to ORB-SLAM2 a refinement
step which relies on (semi-dense) direct image alignment. Our algorithm combines fea-
ture based SLAM and direct image alignment SLAM, we therefore call it hybrid stereo
SLAM. The choice of extending ORB-SLAM2 is justified by its high accuracy, its effi-
ciency, and its capability to map large scale environments.
Depth images are needed for our refinement step. We present in chapter 4 LS-ELAS, our
stereo matching algorithm, which we use for depth estimation. Depth maps estimation
is relatively computationally expensive. So, we perform dense stereo matching only at
the keyframes of our hybrid SLAM. Accordingly, the refinement of the pose of a given
frame is done with respect to its reference keyframe. For easy reading of this thesis, we
introduce the SLAM algorithm before the stereo matching algorithm.

3.2 Motivation
Our motivation to combine a feature-based method and a direct image alignment method
is twofold: first, in some aspects feature-based methods and direct methods are com-
plementary. So, by combining them they compensate for each other’s drawbacks. For
example, when the stereo camera has moved over large distances between two frames the
direct methods might diverge. This is because direct methods usually need a good initial
guess which in case of large camera movement may not be satisfied. In the best case,

39

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

they might need considerably more iterations to converge. This might make real-time
operation difficult to achieve. Using a coarse-to-fine approach and/or a motion model
might help in some cases. On the other hand, the feature-based approach can deal very
efficiently with large camera movements. This can be attributed to the development of
descriptors which are invariant to a range of geometric (i.e. view-point) and photo-metric
changes. Having to deal with very sparse features, we can afford to enlarge the search
domain for correspondences, while still keeping real-time capabilities. The benefit of
using direct methods rather than feature based methods is in cases of degraded image
quality such as camera defocus and motion blur. In these cases, feature extraction might
fail, causing tracking loss while the image alignment would give reasonably good motion
estimation.
Second, we want to use additional information from the images and not only abstract
them to a set of features. We also want to benefit from the relatively computationally
expensive dense stereo matching not only for building a volumetric (chapter 5) map but
also for refining the tracking poses.

3.3 Related work
Most of the visual-SLAM-based systems which have been developed for autonomous
MAVs, and for mobile robotics in general, are feature-based. The PTAM framework
has been the base of many efficient visual SLAM algorithms for MAVs. Scherer et al.
(2012b) extended PTAM by using the inverse depth using an RGB-D camera. PTAM
has the drawback of being limited to a small environment. Mur-Artal and Tardós (2016)
proposed ORB-SLAM2, an efficient feature-based SLAM for large scale environments.
More details about ORB-SLAM2 can be found in the following section. Labbé and
Michaud (2018) presented a frame-to-map approach for motion estimation. Their SLAM
algorithm is an extension of their appearance-based loop closure approach (RTAB-Map)
which includes a powerful memory management tool.
Badino and Kanade (2011) presented a very efficient feature-based stereo visual odo-
metry algorithm which tracks Harris features (Harris and Stephens (1988)) from frame
to frame, using a Kanade–Lucas–Tomasi tracker (Tomasi and Kanade (1991)). For deal-
ing with outliers, they use the robust iterative least squares. Another example of efficient
stereo visual odometry is the work of Geiger et al. (2011b). They proposed a simple de-
scriptor which is designed for easy vectorization using SSE2 instructions. For robustness
against outliers, they proposed to track the features on the four images (two stereo pairs)
in a loop and they employed a minimal P3P solver in a RANSAC scheme. Buczko and
Willert (2016) propose to decouple the rotation from the translation when estimating the
motion. The results from their algorithm on the KITTI odometry benchmark are remark-
able, given that they propose a visual odometry only algorithm and no SLAM.
Direct methods estimate the motion parameters directly from the images without prior
feature extraction and matching steps. The goal is to compute the deformation between

40

3.4 ORB-SLAM2: Parallel tracking, mapping and loop closing

the reference image and the current image such that a measure of dissimilarity is mini-
mized. Lucas and Kanade (1981) presented the first direct image alignment algorithm for
optical flow and stereo. The Lucas-Kanade algorithm is a direct application of non-linear
least squares. The Lucas-Kanade algorithm and its variants have been applied to various
parametric image alignment applications such as tracking of rigid and articulated objects
(Black and Jepson (1998)) and mosaic construction (Shum and Szeliski (2000)).
Direct methods for visual odometry and visual SLAM are traditionally known for be-
ing computationally intensive. Nevertheless, there are some efficient dense SLAM ap-
proaches. Dense tracking and mapping in real-time (DTAM, see Newcombe et al. (2011))
can achieve real-time performance on GPU hardware. The sensor used for DTAM was an
RGB-D camera. Large-Scale Direct SLAM with Stereo Cameras (LSD-SLAM, see En-
gel et al. (2015), Engel et al. (2014)) is a more efficient example which achieves real-time
performance using a CPU. LSD-SLAM estimates the inverse depth for the keyframes and
uses this inverse depth to estimate the camera pose by aligning the current frame with
respect to the reference keyframe. LSD-SLAM uses the forward compositional Simon
and Matthews (2004) variant of the Lucas Kanade algorithms (see Lucas and Kanade
(1981) and Simon and Matthews (2004)). In our hybrid SLAM, we use the more effi-
cient inverse compositional alignment algorithm of Baker et al. (2001), which allows the
pre-computation of the Jacobian (and Hessian). Forster et al. (2014) introduced sparse
direct image alignment. They use the inverse compositional algorithm to track a set of
sparse features by means of image alignment. They extend their approach for multi-
ple cameras in the recent work Forster et al. (2016). Unlike Forster et al. (2014) and
Forster et al. (2016) which is a visual odometry algorithm, our algorithm is a full SLAM
algorithm. Fang and Scherer (2014) carried out an experimental study of many visual
odometry algorithms (using RGB-D cameras) where they emphasized on the trade-off
among accuracy, robustness, and computation speed. Klose et al. (2013) presented a sur-
vey of direct image alignment algorithms, which are based on the compositional motion
update. Most direct visual odometry algorithms use the intensity differences to measure
the dissimilarity between the warped image and input image. Alismail et al. (2016a) pro-
posed to use a low complexity dense binary descriptor (bit-planes) which they show to
be more robust against illumination changes. They used a challenging dataset recorded
using an underground mining robot.

3.4 ORB-SLAM2: Parallel tracking, mapping and loop
closing

The feature based part of our hybrid visual stereo SLAM system uses the popular ORB-
SLAM2 (Mur-Artal and Tardós (2016)) algorithm. The ORB-SLAM2 algorithm splits
the tracking from the local mapping using two separate CPU threads. This architecture
was initially proposed by Klein and Murray (2007) in their popular parallel tracking and

41

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

Extract features

create local map

Use covisibility graph

Track local map

MP & KF

management

Insert KF

Local BA

KF culling

Decide to take new KF

Local map

New KF
Input: stereo pair

Refine the pose using

direct image alignment

Tracking thread Mapping thread

Dense stereo

Initial pose

Figure 3.1: A diagram illustrating the tracking and mapping threads of our hybrid stereo
SLAM. Our algorithm extends the ORB-SLAM2 algorithm. The blue boxes are from
ORB-SLAM2 and the red boxes are our modification to ORB-SLAM2.

mapping (PTAM) algorithm. The PTAM algorithm was then successfully used by many
mobile robotics researchers, like Scherer and Zell (2013), Scherer et al. (2012c). The
ORB-SLAM2 algorithm starts by extracting a (sparse) set of ORB features (Rublee et al.
(2011)) on both images of the current stereo frame. The features are then matched on the
previous stereo frame to establish 2D-2D correspondences. Using the map we get 3D-
2D correspondences. A PnP solver is then used to optimize the initial pose. Using the
co-visibility graph (a graph which connects keyframes which share enough map points),
a local map is extracted and the pose gets refined by using more map points. The local
map contains the keyframes and the map points observed by these local keyframes. The
final pose we get from ORB-SLAM2 is estimated using only sparse features. Valuable
information might be missed by abstracting the images to a set of ORB features. We
propose to further refine the pose by using direct image alignment and use more data
from the image. We do not use all of the pixels but only those which have valid depth
(from dense stereo matching) and have an image gradient larger than a given threshold.

42

3.5 Hybrid stereo SLAM

Figure 3.2: The pixels that can contribute to the computation of the motion. Top: sparse
ORB-features used on the feature-based method. Bottom: disparity map computed for
the reference keyframe used on the direct method. If needed, all pixels with valid dispar-
ity can contribute to the estimation of the motion. More accuracy and robustness can be
obtained by virtue of measurements redundancy.

3.5 Hybrid stereo SLAM
We propose a hybrid visual stereo SLAM algorithm which combines a feature-based
method and a direct image alignment method. As discussed in the introduction, the
feature-based approaches are generally fast and they can handle large camera move-
ments. We make use of this characteristic and design a hybrid visual stereo SLAM
which uses the motion estimation from a feature-based visual SLAM as an initial guess
for a direct image alignment method refinement step. Our hybrid stereo SLAM is based
on the popular ORB-SLAM2 algorithm (see Mur-Artal and Tardós (2016)). We modify
the tracking thread such that we refine the poses using direct image alignment and we
modify the mapping thread such that we compute dense binocular stereo matching at
keyframes. Fig. 3.1 shows the different components of the tracking thread and mapping
thread of our algorithm. The loop closure thread is not shown.

3.5.1 Pose initialization using ORB features
We chose to initialize the pose estimate using a feature-based method. The feature-based
methods deals effectively with large motion. This can be attributed to the development
of descriptors which are invariant to a range of geometric (i.e. view-point) and photo-
metric changes. This claim can be supported by many works such as Agarwal et al.

43

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

(2009), which used SIFT features to perform Structure-from-Motion on 150 thousands
of unorganized images from Flickr.

Minimizing Euclidean distances

Our system uses ORB-SLAM2 to estimate ξ ∗f , the pose of the current frame based on
features. Any other feature-based stereo SLAM can be used. We compute Tf by min-
imizing the re-projection error (see Eq. 3.2) between predicted pixel locations and the
observed pixels locations (see Eq. 3.1).

e f (xi) = xi−π(RXi + t) (3.1)

T ∗f = argmin
Tf

∑
i∈ℵ

ρ (‖xi−π(RXi + t)‖Ωi) (3.2)

Where Ωi is a weighting (inverse covariance matrix) associated with the scale at which
the feature was extracted. And ρ is the Huber robust cost function. We note that we
minimize distances (pixel locations) on the image plane. We illustrate this case in Fig
3.3.

Initial pose of the direct alignment

The final pose ξ ∗f we estimate by means of the feature-based motion estimation is used
as initial guess for our direct image alignment motion refinement. This is described in
the following equation (see Eq. 3.3):

ξ̆d = ξ
∗
f (3.3)

3.5.2 Refining the pose using direct image alignment

Image warp

The 3D warp W (xi,ξd) which maps a pixel xi ∈ Il
re f in the reference keyframe into its

corresponding pixel in the image Il
cur using the pinhole camera projection model π is

given by:

W : R2×R6→ R2

(x,ξd)→W (x,ξd) = π(π−1(x,Z),g(T (ξd))) (3.4)

44

3.5 Hybrid stereo SLAM

C2

X1

X̂2

e2

e1

C1

X2

3D−3D

2D−2D

3D−2D

reference left image current left image

X̂1

x2
x̂2

x̂1
x1

Figure 3.3: Feature-based motion estimation: we aim to find the transform (pose of the
current camera) for which the sum of all re-projection distances ei (shown in red) is
minimal. 3D-2D correspondences for motion estimation are in general more accurate
than 3D-3D correspondences. x1 denotes the true projection of the true 3D point X1. The
pixel x̂1 denotes the detected/estimated corresponding pixel. X̂1 denotes the reconstructed
3D point based on the estimated correspondence.

45

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

Figure 3.4: Direct image alignment motion estimation: illustration of the inverse compo-
sitional algorithm. Here, we minimize the photometric error. The color (gray values) of
the squares encodes the intensity value [0-255]. The search for the warp increment (im-
age bottom left) is done in the reference image (top left) and then this warp is inverted
and composed (see Eq. 3.10) with the current warp of the target image (right image).
The result is a direct warp from the template image to the target image. The goal is to
find the warp parameters (motion parameters) which minimize the dissimilarity between
the warped template image and the input image.

46

3.5 Hybrid stereo SLAM

where

π

 X
Y
Z

=

 fx
X
Z + cx

fy
Y
Z + cy

fx
X−b

Z + cx

 (3.5)

and its inverse maps a 2D pixel x = (u,v), with known depth Z, to its corresponding 3D
point p = (X ,Y,Z):

π
−1

 u
v
Z

=


u−cx

fx
Z

v−cy
fy

Z
Z

 (3.6)

Minimizing the intensity differences

We compute Td by minimizing the re-projection photometric error between the predicted
intensities of the pixels and the observed intensities. We illustrate this case in Fig 3.4.
We work with 8-bit gray-scale images with intensities in the interval [0-255]. The error
is defined as follows:

ed(xi) = Il
re f (W (xi,δξd))− Il

cur(W (xi,ξd)) (3.7)

We optimize using pixels xi ∈ Dre f where Dre f is the set of pixels xi ∈ Il
re f such that xi

has a valid depth and the magnitude of the intensity gradient at xi is larger than a given
threshold. In practice, we use about 15% of the image pixels. Note that the domain Dre f
here is defined in Il

re f for the inverse compositional image alignment. For the forward
additive algorithm and the compositional forward algorithm, the domain is defined on
the current (input) image (Il

cur).
We iteratively optimize the following energy function to align Il

cur with Il
re f :

ξ
∗
d = argmin

ξd
∑

x∈Dre f

‖Il
re f (W (xi,δξd))− Il

cur(W (xi,ξd))‖2 (3.8)

= argmin
ξd

Ed(δξd) (3.9)

Compositional motion update

Since the increment δξd is computed for the reference keyframe image (the template
image not the target image) we need to invert it and and compose it with the current
parameter estimate. The warp update at iteration k+1 is given by Eq. 3.10.

T k+1
d = T k

d ∗ exp(−δξ
∗
d) (3.10)

47

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

Linearization using Taylor expansion

In the iterative optimization process, we linearize around δξ = 0 at every iteration using
Eq. 2.4 applied to the cost function in Eq. 3.8.

Ed ≈ ∑
x∈Dre f

‖Il
re f (W (x,0))− Il

cur(W (x,ξd))+ Jdδξd‖2 (3.11)

For the inverse compositional direct alignment step of our algorithm, the Hessian and its
inverse can be pre-computed (for all iterations). Thus, solving the linear system in Eq.
2.6 becomes trivial. The parameter update is also different since it involves inverted com-
position rather than forward additive increments (See Eq. 3.10). The pre-computation of
the Jacobian and Hessian assumes that we are not using M-estimator robust functions.
Using a robust function involves the use of iterative re-weighted least squares and the Ja-
cobian and the Hessian needs to be recomputed at each iteration. We provide the option
to use the Huber and Tukey robust functions.

Computing the Jacobians

The derivation of the Jacobians for our inverse compositional algorithm is similar to
the forward compositional algorithm in Kerl (2012). However, the Jacobians in our
case are computed for the Il

re f image and not for Icur as in Kerl (2012). For the sake
of completeness and clarity, we remind the derivation of the Jacobians for the inverse
compositional algorithm. We use the same notation as in Kerl (2012).

Jd(x,ξd) =
∂Ed

∂ξd
(3.12)

The Jacobian can be computed using the chain rule.

Jd(x,ξd) =JIJπJgJT (3.13)

=
∂ Il

re f (W (x,δξd))

∂π

∣∣∣
x=π(g(pi,T (0))=xi

.

∂π(p)
∂g

∣∣∣
p=g(pi,T (0))=pi

.

∂g(p,T)
∂T

∣∣∣T=T (0)=Il
cur,p=pi

.

∂T (ξd)

∂ξd

∣∣∣
ξd=0

(3.14)

48

3.5 Hybrid stereo SLAM

The individual Jacobians in Eq. 3.12 can be derived as follow.
The intensity Jacobian JI is evaluated at x = π(g(pi,T (0)), where T (0) = I4x4.

JI =
∂ Il

re f (W (x,δξd))

∂π

∣∣∣
x=π(g(pi,T (0))=xi

(3.15)

=(∇Il
re f ,u∇Il

re f ,v) (3.16)

The camera projection Jacobian is:

Jπ =
∂π(p)

∂g

∣∣∣
p=g(pi,T (0))=pi

(3.17)

=

[
fx

1
z 0 − fx

x
z2

0 fy
1
z − fy

y
z2

]
(3.18)

The Jacobian of the function g is:

Jg =
∂g(p,T)

∂T

∣∣∣T=T (0)=Il
cur,p=pi

=
[

x.I3×3 y.I3×3 z.I3×3 I3×3
]

(3.19)

The Jacobian of T is:

JT =
∂T (ξd)

∂ξd

∣∣∣
ξd=0

(3.20)

=



0 0 0
03×3 0 0 1

0 −1 0
0 0 −1

03×3 0 0 0
1 0 0
0 1 0

03×3 −1 0 0
0 0 0

I3×3 03×3



(3.21)

49

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

Finally, we get the expression for our per-pixel Jacobian:

Jd =JIJπJgJT (3.22)

=(∇Il
re f ,u fx,∇Il

re f ,v fy).[
1
z 0 − x

z2 −xy
z2 (1+ x2

z2) −y
z

0 1
z −

y
z2 −(1+ y2

z2)
xy
z2

x
z

]
(3.23)

Note that the per-pixel Jacobian Jd is a 6-dimensional vector. By checking the dimen-
sions of the different matrices which compose Jd , we get:

Jd︸︷︷︸
1×6

= JI︸︷︷︸
1×2

. Jπ︸︷︷︸
2×3

. Jg︸︷︷︸
3×12

. JT︸︷︷︸
12×6

(3.24)

3.5.3 Loop closure thread
We rely on the feature-based bundle adjustment from ORB-SLAM2 for the back-end
of our SLAM algorithm. Photometric bundle adjustment (see Alismail et al. (2016b)),
which jointly optimizes the camera trajectory and scene geometry, is unfortunately still
not suitable for real-time application on our hardware. Thus, a SLAM which is based
only on image alignment (and no features) is not developed in the scope of this disserta-
tion. Engel et al. (2015) developped a SLAM algorithm, which is based only on image
alignment. However, their SLAM back-end optimizes only the motion and does not op-
timize the structure. They perform pose graph optimization instead of jointly optimzing
the structure and the motion. We use the SLAM back-end from ORB-SLAM2. The loops
are detected using bag of binary words. The loop correction is done using the efficient
on-manifold general optimization framework g2o (see Kuemmerle et al. (2011)). When-
ever a new keyframe is created, the loop closure thread searches for potential loops. If
a loop is detected and validated then a process including two steps for loop correction is
performed. The first step is the optimization of a pose graph called the essential graph.
Then, bundle adjustment for jointly optimizing the structure and the motion is performed
to compute the optimized camera trajectory and scene geometry.

3.5.4 Autonomous quadcopter flights
We implemented our SLAM algorithm on our experimental quadcopter for performing
outdoor autonomous flights. The experimental setup is described in page 107. This is
a part of the large system for outdoor collision free autonomous navigation which is
described in chapter 5. We conducted various experiments in an outdoor environment
which has mostly vegetation, asphalt and buildings. In this environment, the algorithm
detects enough ORB features for tracking the robot pose. We had to replace the camera
lenses with lenses which have IR-cut filter to enhance the image quality on vegetation.

50

3.5 Hybrid stereo SLAM

We commanded the quadcopter to follow a path consisting of predefined way-points.
Since we were not using any external positioning system (e.g. GPS), we could not record
reference measurements (ground-truth data). Therefore, we evaluate our algorithm on a
public outdoor stereo dataset (see next section). The experiments show that the algorithm
could effectively be used on-board in real-time for outdoor autonomous flights. Fig. 3.5
shows the estimated trajectory from an outdoor experiment using our quadcopter research
robot.

Figure 3.5: Outdoor experiment. First row: robot trajectory. Second row left: robot
trajectory, keyframes and the map points (the landmarks). Second row right: an image
of the scene showing the tracked ORB features.

51

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

3.6 Evaluation using the KITTI odometry Dataset

3.6.1 Evaluation criteria
We have targeted an objective evaluation of our hybrid stereo SLAM algorithm. We
identified many requirements, which we consider they contribute to achieve an objective
evaluation. In the following, we summarize the most relevant requirements:

1. The algorithm needs to be compared to other algorithms based on the same input
data and the same metrics.

2. Quantitative results of the performance of the algorithm shall be reported by the
algorithm developers. The other algorithms should be tuned by their developers.

3. The performance measures should be robust. In particular, the measure should not
be based on the absolute reference.

4. The algorithm needs to run using the same parameters and should not not be tuned
for each sequence individually.

5. The dataset for the evaluation should be challenging. The environment should be
large, diverse, contain loops and illumination changes.

6. As we are interested in using our quadcopter in outdoor environment (see chapter
5 page 105), we are mainly interested in outdoor datasets.

7. It is preferred to evaluate the algorithms on some test data (for which there is no
available public ground truth data).

We consider that the evaluation by a third party on a publically available odometry bench-
mark is an effective way to achieve an objective evaluation. We made a benchmark of
available public stereo odometry datasets. Table 3.1 lists a comparison of three rele-
vant public stereo odometry datasets. We chose to evaluate our algorithm on the KITTI

Table 3.1: Comparaison of relevant publicaly available visual SLAM datasets

Dataset Cameras Statistics Ground thruth Env. ranking

KITTI
1392x512
@10 Hz

39.2 km
41 k frames

22 sequences

Accuracy 10cm
OXTS RT 3003

10 Hz
Outdoor Yes

EuRoC
752x480 pixels

@20 Hz
0.9 km

11 sequences

Accuracy 1mm
Motion capture
(Vicon) 200Hz

Indoor No

New College
512x384 pixels

@20 Hz

2.2 km
51 k frames
9 sequences

GPS CSI Seres
5 Hz Outdoor No

52

3.6 Evaluation using the KITTI odometry Dataset

odometry benchmark (see Geiger et al. (2012)) for two reasons. First, it includes a
robust performance measure and maintains a ranking list of other algorithms. This is
very important, as it allows comparing our algorithm with other algorithms for which no
open-source code is available. Second, the dataset is recorded in an outdoor environment
where RGB-D cameras won’t work.

3.6.2 The KITTI odometry dataset
The platform used for recording the data is a car driving in the city of Karlsruhe in
Germany. The platform was equipped with many sensors including a forward-looking
gray-scale stereo rig mounted on the top of the platform. The cameras have a frame rate
of 10 Hz and a resolution of 1392×512 pixels. The recorded trajectories have a total
length of about 39.2 km divided into 22 challenging sequences. The distance accuracy
of the ground truth is 2 cm. Some sequences include multiple loops and dynamic objects
(moving vehicles and moving pedestrians). The existence of loops on the trajectories
is of particular importance to evaluate full SLAM algorithms. Ground truth trajectories
are provided for the first 11 training sequences. The ground truth trajectories have an
accuracy of 10 cm. A GPS system of type OXTS RT 3003 operating at 10 Hz was used
to obtain the ground truth trajectories. The sequences 11 to 22 are used as test data sets.

3.6.3 Error measures
In this section, the following notations are used:

• Ci ∈ SE(3) : camera/robot pose at time i estimated by the SLAM algorithm.

• Cgt
i ∈ SE(3): the ground truth pose at time i.

• i : index which represents the time (i.e frame number).

• N : number of camera poses.

• ⊕ : standard motion composition operator.

• 	 : inverse motion composition operator.

• δi, j ∈ SE(3): relative transformation between poses Ci and C j.

δi, j moves the camera from Ci to C j = Ci⊕ δi, j. An intuitive error metric to compare
the performance of SLAM algorithms can be achieved by summing up all the individual
errors between the estimated poses and their corresponding ground truth poses. This can
be formulated using Eq. 3.25.

E(C) = ∑
i
(Ci	Cgt

i)2 (3.25)

This simple metric is based on the comparison of the estimated poses to the absolute
poses of the ground truth. It has been shown that this method is sub-optimal (see

53

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

Kümmerle et al. (2009)). It relies on absolute references which make it dependent on
when an error has been occurred. An error which occurs at the beginning of the tra-
jectory will be counted multiple times. Fig. 3.6 illustrates the difference between the
absolute and relative error metrics. In this figure the camera moves in 1D with constant
motion increment δ . We compare the results of two algorithms 1 and 2. Both algorithms
provide perfect estimate for all but one transition. The algorithm 1 made the error at the
end of the trajectory (last transition). The algorithm 2 made an error of the same amount
as algorithm 1 but this time at the beginning of the trajectory. This introduced a shift of
all consecutive poses. Based on the metric given in Eq. 3.25, the algorithm 1 is evaluated
as more accurate than the algorithm 2. The total error for algorithm 1 is ε . For algorithm
2, the total error is 5ε: the error ε occurring at the first transition is counted multiple
times (on all consecutive transitions). A fair metric would provide the same score for
both algorithms.
Kümmerle et al. (2009) addressed this problem and proposed a metric which depends on
the relative transformations between the poses instead of the absolute transformations.

E(δ) =
1
N ∑

i, j
(trans(δi, j	δ

gt
i, j)

2 + rot(δi, j	δ
gt
i, j)

2) (3.26)

Inspired by the work of Kümmerle et al. (2009), Geiger et al. (2012) used (in the KITTI
benchmark) a similar metric for evaluating the performance of SLAM algorithms. How-
ever, Geiger et al. (2012) split the rotational error from the translational error. The metric
for the quantifying translational error is given by Eq. 3.27:

Etrans(δ) =
1
N ∑

i, j
||trans(δi, j	δ

gt
i, j)||2 (3.27)

Similarly, the metric for the quantifying the rotational error is given by Eq. 3.28:

Erot(δ) =
1
N ∑

i, j
^(δi, j	δ

gt
i, j) (3.28)

Where ^ is the rotation angle.
The KITTI odometry benchmark computes the translational and the rotational errors for
all possible subsequences of length {100,200,...,800} meters. The compared SLAM al-
gorithms are ranked according to the average of the translational and the rotational errors.
The translational error is measured in percent and the rotational error is measured in de-
grees per meter.
The figures showing the trajectories are best viewed in the electronic format of this dis-
sertation. In the electronic format of this dissertation, the trajectory figures are created
using vector graphics to make sure that the reader sees sharp plots when zooming in the
figures.

54

3.6 Evaluation using the KITTI odometry Dataset

Algorithm 2

Algorithm 1

Robot poses

Ground truth

Figure 3.6: An illustration of a case where the metric given by Eq. 3.25 will fail. The
two SLAM algorithms did both an error of the same amount but in different places on
the trajectory. According to Eq. 3.25, algorithm 1 induces a smaller trajectory error (ε)
than the trajectory error of algorithm 2 (5ε). The robust metrics error given by 3.26 and
3.27 yield identical scores for the two algorithms

3.6.4 Trajectories with no loops
In trajectories with no loops, our algorithm achieves a considerable performance im-
provement compared to ORB-SLAM2. Our method accumulates less drift. The results
for sequence 12 of the KITTI odometry benchmark are shown in Fig. 3.7 and in Fig.
3.8. Our algorithm achieves the third best rotational error after Rot-ROCC and RTAB.
There is a difference of the rotational error of∼ 0.0005deg/m between our algorithm and
ORB-SLAM2. The average rotational error on sub-sequences of 100m length is 0.2deg
(i.e. 0.002 ∗ 100) for our algorithm and 0.25deg (i.e. 0.0025 ∗ 100) for ORB-SLAM2.
On sub-sequences of 800m length, the average rotational error increases to 1.12deg (i.e.
0.0014∗800) for our algorithm and 1.47deg (i.e. 0.0018∗800) for ORB-SLAM2. The
average translational error of ORB-SLAM2 is slightly (up to 0.05%) smaller than the
one of our algorithm. The average translational error on sub-sequences of 600m length
is 0.77% for our algorithm and 0.72% for ORB-SLAM2.

55

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400

z
 [

m
]

x [m]

RTAB
S−LSD−SLAM

StereoSFM
VISO2−S

Rot−ROCC
ORB−SLAM2

Our method
Ground Truth

Figure 3.7: Results from the sequence 12 of the KITTI odometry benchmark. This trajec-
tory has no loops. The accuracy of our algorithm is significantly better than the accuracy
of ORB-SLAM2.

56

3.6 Evaluation using the KITTI odometry Dataset

 750

 800

 850

 900

 950

 1000

 700 800 900 1000 1100 1200 1300 1400 1500

z
[m

]

x [m]

RTAB
S−LSD−SLAM

StereoSFM
VISO2−S

Rot−ROCC
ORB−SLAM2

Our method
Ground Truth

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 200 300 400 500 600 700 800

T
ra

n
s
la

ti
o
n
 E

rr
o
r

[%
]

Path Length [m]

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 100 200 300 400 500 600 700 800

R
o
ta

ti
o
n
 E

rr
o
r

[d
e
g
/m

]

Path Length [m]

Figure 3.8: Results from the sequence 12 of the KITTI odometry benchmark. Top: a
closer look at the last part of the full trajectory on figure 3.7. Bottom left: the relative
translational error. Bottom right: the relative rotational error.

57

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

 0

 100

 200

 300

 400

 500

 600

−300 −200 −100 0 100 200 300

z
 [

m
]

x [m]

RTAB
S−LSD−SLAM

StereoSFM
VISO2−S

Rot−ROCC
ORB−SLAM2

Our method
Ground Truth

Figure 3.9: Results of the test sequence 11 from the KITTI odometry benchmark. The
trajectory has no loops. Similar to the results from the sequence 12 of the the KITTI odo-
metry benchmark, the accuracy of our algorithm is significantly better than the accuracy
of ORB-SLAM2.

In the sequence 11 of the KITTI odometry benchmark, our algorithm performs better
than ORB-SLAM2. RTAB achieves the best performance. The difference between the
performance of RTAB, StereoSFM, Rot-ROCC and our algorithm is marginal. We also
want to emphasis here that StereoSFM and our algorithm are faster than RTAB and Rot-
ROCC. Running time results will be shown on the last part of the evaluation section (page
64). The results for sequence 11 are shown on Fig. 3.9 and Fig. 3.10. Our algorithm
achieves the third best average rotational error and the best average translational error on
the sub-sequences of 100m, 200m and 300m lengths. While the average translational
error from our algorithm is almost constant (∼ 0.5%), the results from ORB-SLAM2
show an increase of the average translational error when the path length increases. ORB-
SLAM2 has an average translational error of 0.60% for path length equal to 300m and
1.13% for path length equal to 700m. Unlike the results obtained from the sequence
12 of the KITTI odometry benchmark, we see on the results from the sequence 11 that
our algorithm has both a smaller translational and a smaller rotational error for all the
path lengths compared to ORB-SLAM2. VISO-2, which is a frame-to-frame visual odo-

58

3.6 Evaluation using the KITTI odometry Dataset

 480

 500

 520

 540

 560

 580

 60 80 100 120 140 160 180 200

z
[m

]

x [m]

RTAB
S−LSD−SLAM

StereoSFM
VISO2−S

Rot−ROCC
ORB−SLAM2

Our method
Ground Truth

 0

 0.5

 1

 1.5

 2

 100 200 300 400 500 600 700 800

T
ra

n
s
la

ti
o
n
 E

rr
o
r

[%
]

Path Length [m]

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 100 200 300 400 500 600 700 800

R
o
ta

ti
o
n
 E

rr
o
r

[d
e
g
/m

]

Path Length [m]

Figure 3.10: Results from the sequence 11 of the KITTI odometry benchmark. Top: a
closer look at the last part of the full trajectory on figure 3.9. Bottom left: the relative
translational error. Bottom right: the relative rotational error.

metry with no bundle adjustment optimization, has the largest translational and rotational
errors. This applies for all path lengths.

59

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

−150

−100

−50

 0

 50

 100

 150

 0 50 100 150 200 250 300

z
 [

m
]

x [m]

RTAB
S−LSD−SLAM

StereoSFM
VISO2−S

Rot−ROCC
ORB−SLAM2

Our method
Ground Truth

Figure 3.11: Results of the test sequence 15 from the KITTI odometry benchmark. The
trajectory has one loop.

3.6.5 Behavior on loopy trajectories
Trajectories with a single loop

Closing loops helps to correct the trajectory. One should be careful not to find (and close)
false loops. This would introduce significant errors on the trajectory and it would corrupt
the map. On our experiments we did not experience any false loop.
If the robot trajectory includes loops, the benefit of a full SLAM system (with SLAM
back-end) becomes obvious. As expected, the SLAM algorithms have a better perfor-
mance than visual odometry (without SLAM back-end) algorithms such as VISO-2 (see
Fig. 3.11(a)). One can see that loop closures help ORB-SLAM2 to achieve a perfor-
mance comparable to our algorithm. This finding can be consolidated when examining
trajectories with multiple loops (see Fig. 3.14). ORB-SLAM2 has a powerfull SLAM
back-end. This was also a remark from Jakob et al. (2016), who presented a SLAM
front-end based on direct sparse visual odometry. Their SLAM front-end outperforms
the front-end of ORB-SLAM2 in accuracy. But when activating the SLAM back-end,
ORB-SLAM2 outperforms their approach.

60

3.6 Evaluation using the KITTI odometry Dataset

−180

−170

−160

−150

−140

−130

 250 260 270 280 290 300 310 320 330

z
[m

]

x [m]

RTAB
S−LSD−SLAM

StereoSFM
VISO2−S

Rot−ROCC
ORB−SLAM2

Our method
Ground Truth

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100 200 300 400 500 600 700 800

T
ra

n
s
la

ti
o
n
 E

rr
o
r

[%
]

Path Length [m]

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 100 200 300 400 500 600 700 800

R
o
ta

ti
o
n
 E

rr
o
r

[d
e
g
/m

]

Path Length [m]

Figure 3.12: Results of the test sequence 15 from the KITTI Odometry benchmark. Top:
a closer look at the trajectory on figure 3.13. Bottom left: the relative translational error.
Bottom right: the relative rotational error.

61

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

−100

−50

 0

 50

 100

 150

 200

 250

−300 −200 −100 0 100 200 300 400

z
 [

m
]

x [m]

RTAB
S−LSD−SLAM

StereoSFM
VISO2−S

Rot−ROCC
ORB−SLAM2

Our method
Ground Truth

Figure 3.13: Results from the sequence 13 of the KITTI odometry benchmark. This
sequence has many loops. Our algorithm and ORB-SLAM2 have almost the same ac-
curacy. As expected, the full SLAM algorithms perform better than visual odometry
(without SLAM back-end) algorithms.

Trajectories with multiple loops

It is worth to notice that when there are multiple loops on the trajectory, ORB-SLAM2
benefits from the loop closures more than our hybrid SLAM does. This can be attributed
to the fact that we are using the feature-based SLAM back-end from ORB-SLAM2,
which is optimized to fit with ORB-SLAM2. As discussed on Sec. 3.5.3 (page 50), per-
forming a back-end which is based on direct image alignment is computational expensive
and not suitable for real-time systems. The difference on the performance between our
hybrid SLAM and ORB-SLAM2 becomes marginal in these cases. This behavior has
been seen on trajectories with one single loop and it becomes even more obvious when
there are multiple loops on the trajectory. When there are dynamic objects on the scenes
(moving vehicles), ORB-SLAM2 performs better than our algorithm.

62

3.6 Evaluation using the KITTI odometry Dataset

−80

−70

−60

−50

−40

−30

−20

−10

 0

 100 120 140 160 180 200

z
[m

]

x [m]

RTAB
S−LSD−SLAM

StereoSFM
VISO2−S

Rot−ROCC
ORB−SLAM2

Our method
Ground Truth

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 200 300 400 500 600 700 800

T
ra

n
s
la

ti
o
n
 E

rr
o
r

[%
]

Path Length [m]

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 100 200 300 400 500 600 700 800

R
o
ta

ti
o
n
 E

rr
o
r

[d
e
g
/m

]

Path Length [m]

Figure 3.14: Results from the KITTI odometry benchmark sequence 13. The sequence
has many loops. There is no significant difference between the performance of our algo-
rithm compared to ORB-SLAM2.

63

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

RTAB 1 core @ 2.5 Ghz 0.10 s
S-LSD-SLAM 1 core @ 3.5 Ghz 0.07 s

StereoSFM 2 cores @ 2.5 Ghz 0.02 s
VISIO2-S 1 core @ 2.5 Ghz 0.05 s
Rot-ROCC 2 cores @ 2.0 Ghz 0.25 s

ORB-SLAM2 2 cores @ 3.5 Ghz 0.06 s
Our method 2 cores @ 3.5 Ghz 0.08 s

Table 3.2: Comparison of the average running time for processing a stereo frame. The
times are reported as submitted by the algorithms developers to the KITTI benchmark.
All algorithms are implemented using C/C++. The image resolution is (1392×512).

3.6.6 Running time evaluation
Table 3.2 shows the running times from the KITTI benchmark of the different algorithms
which we selected for the comparison in the previous section. We report the times as
submitted by the algorithms developers. Since different CPUs are used, it is not straigh-
forward to rank the algorithms based on their running time. But given the CPU frequency
and the number of cores used for computation, one can get some insights about the run-
ning time of the selected algorithms. We remind that the running time depends on other
factors such as the cache size. The refinement step of our algorithm requires about 25%
of the (tracking) processing time. While Rot-ROCC (see Buczko and Willert (2016)) is
more accurate than ORB-SLAM2 and our method, this comes at the cost of being up to
three times computationally more expensive than our method.

64

3.7 Qualitative evaluation

3.7 Qualitative evaluation
The figures below (Fig. 3.15 and Fig. 3.16) show some qualitative results of our algo-
rithm. The images are from the sequence 00 of the KITTI odometry benchmark. The
point clouds at every fifth keyframe are drawn using a random color. The point clouds
seem to be well aligned. The camera poses are represented with a rectangle of size
1.0×0.8m2.

 0

 100

 200

 300

 400

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
Our method

ORB-SLAM2
Sequence Start

Figure 3.15: Our algorithm can map large environments. Point clouds at every fifth
keyframe are shown using a random color. These point clouds will be used to create a
consistent global volumetric occupancy map in chapter 5.

65

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

Figure 3.16: Qualitative results. Each point cloud is drawn using a random color. The
point clouds are well aligned. The image in the middle shows the road plane. The bottom
image shows the bird-view.

66

3.8 Conclusion

3.8 Conclusion

In this chapter, we developed a hybrid stereo SLAM algorithm by extending the popu-
lar ORB-SLAM2 algorithm. The ORB-SLAM2 is feature-based and abstracts the input
images to a set of ORB features. We proposed to start the tracking thread by using ORB
features as in ORB-SLAM2 and to refine the pose using direct image alignment. The
algorithm aligns the current left image with the left image of the reference keyframe and
updates the pose estimate accordingly. In this refinement step, we start with the feature-
based method because it can effectively and efficiently handle large camera displace-
ments. It is efficient because it uses considerably less data (the set of ORB features). It is
effective because it uses feature descriptors which are robust against viewpoint changes.
The drawback of the feature-based approach is the possible loss of useful details by the
abstraction. This drawback can be mitigated by our refinement step. We mean with
useful details here, the details that can allow for a more accurate pose estimation. For ef-
ficiency, the image alignment is done backward using the iterative inverse compositional
algorithm. The Jacobians need to be computed solely in the first iteration. Thus, they
can be reused in the consecutive iterations. For efficiency and robustness reasons, we
used only the pixels with significant texture changes. To perform the direct alignment
we need the depth map at the reference keyframe. This depth map is estimated from
stereo matching (see chapter 4). We note that we have developed LS-ELAS before the
hybrid SLAM algorithm.

We have evaluated our algorithm using the KITTI odometry benchmark. We selected 6
relevant visual odometry/SLAM algorithms to compare to our algorithm. In trajectories
with no loops and no dynamic objects, our algorithm has shown significant improve-
ment of the accuracy of the trajectory estimate. On a sequence of stereo images which
contains 1061 stereo pairs with no trajectory loops (the sequence 12 from the KITTI
odometry benchmark), our algorithm achieved the third best rotational error. There was
an almost constant difference in the rotational error of ∼ 0.0005deg/m between our al-
gorithm and ORB-SLAM2. The rotational error of our algorithm varies between 0.2deg
(path length=100m) and 1.12deg (path length=800m). The rotational error of ORB-
SLAM2 varies between 0.25deg and 1.47deg. The translational error of ORB-SLAM2
is slightly (up to 0.05%) smaller than the one of our algorithm. On paths of 600m length,
our algorithm has a translational error of 0.77% while ORB-SLAM2 has a translational
error of 0.72%.
The results from a second sequence of 921 images (the sequence 11 from the KITTI
odometry benchmark) with no loops show that our algorithm has both a smaller trans-
lational error as well as smaller rotational error for all the path lengths (100,200,..,800)
compared to ORB-SLAM2. Our algorithm has an almost constant translational error of
∼ 0.5% while the translational error of ORB-SLAM2 varies between 0.60% and 1.13%.
Our results confirm that which is a frame-to-frame visual odometry with no bundle ad-
justment optimization, has the largest translational and rotational errors. This applies for
all path lengths.

67

Chapter 3 Hybrid SLAM by combining sparse features with direct image alignment

For trajectories with loops, no significant improvement was made by our refinement step
to the ORB-SLAM2 algorithm. This behavior has been seen on trajectories with one
single loop and it becomes even more obvious when there are multiple loops on the
trajectory.

68

Chapter 4

Line Segment based Efficient Large
Scale Stereo Matching

In the previous chapter, we have discussed the use the of direct image alignment to refine
feature based SLAM. Depth images were needed at keyframes to perform this alignment.
We estimate depth maps from dense stereo disparity maps. The depth maps serve for a
second purpose on our quadcopter MAV: the perception of the robot environment. Using
the forward-facing stereo camera, the robot can estimate the geometry of the visible
parts of scene in front of it. In the next chapter, we fuse the depth maps from different
viewpoints to build a consistent volumetric map of the environment. As our goal is to
achieve meaningful fully autonomous flights such as planning and following collision-
free trajectories, the dense stereo algorithm needs to be computationally efficient. It
should meet the real-time requirements while running alongside other algorithms such
as path planning. In this chapter, we introduce our dense stereo matching algorithm
(LS-ELAS), which we use for estimating depth maps.

Large parts of this work have been pre-published in Ait Jellal et al. (2017).

4.1 Introduction
Depth estimation is an important task in mobile robotics. It is essential for many tasks
such as 3D reconstruction, view synthesis, obstacle avoidance, navigation, recognition
and object grasping. The introduction of RGB-D sensors1 with their sufficiently accu-
rate depth maps and their real-time capability on dedicated hardware has accelerated the
research on indoor mobile robotics. Since these Kinect-style RGB-D sensors are based
on the projection and capture of structured infra-red light, they are not designed for out-
door usage with substantial sunlight. There is a need for more adequate sensors. Stereo
cameras are the most adequate depth estimation sensors to be used for a wide range of
outdoor and indoor applications. Stereo cameras provide data at high frame rates, they
are lightweight, passive, energy efficient and customizable. This makes the hardware
side of a stereo system very convenient. The software side is still problematic because

1e.g. Microsoft Kinect, Asus Xtion Pro or Intel RealSense

69

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

of the trade-off between accuracy and computational efficiency. In this work, we pro-
pose an efficient and accurate dense stereo algorithm which can facilitate the migration
of systems initially designed to work in indoor environments using Kinect-style RGB-D
sensors, to operate outdoors.

We developed a dense stereo matching algorithm based on the popular ELAS algo-
rithm to estimate depth from stereo vision. We present four contributions in our work.
(1) An efficient method for edge extraction, which provides the connectivity of the edge
components as well. (2) A new method based on edge features for computing the support
matches. This method is selective and does find support points which are more informa-
tive and allows preserving the depth discontinuity. It is more efficient as well, since the
candidate support points that we use are more likely to have robust correspondences. (3)
A new prior for the Bayesian inference approach proposed by ELAS. Our prior better
represents the probability distribution of the disparity given the set of support points, the
set of line segments and the observations. (4) An adaptive method for sampling support
points along the edge segments.

4.2 Motivation
The depth estimation from stereo vision suffers from the problem of quadratic increase
of the depth measurement error with respect to the measured depth. For a given depth
measurement Z, if the depth error is assumed to be a Gaussian distribution, then the
standard deviation of the measurement error can be given by Eq. 4.1 (see Chang and
Chatterjee (1992)).

σZ =
σd

f B
Z2 (4.1)

Where f is the focal length, B is the baseline distance and σd is the disparity standard
deviation.
In particular, distant points have high uncertainty on their depth estimate. Since the re-
constructed X ,Y coordinates depend on the depth Z (see page 31), they are also affected
by the uncertainty of Z. It is worth to notice that other range sensors such as the Kinect
1.0 RGB-D camera also suffer from the problem of increasing range measurement error
with respect to the measured depth. While laser scanners do not suffer from this problem
and they provide more accurate depth estimates, they have in general large weight and
have high power consumption, making then not suitable for a quadcopter MAV. Since
we use stereo vision on our MAV quadcopter, we need to mitigate the afore-mentioned
problem. One option would be to increase the baseline (see Fig. 4.2). However, this
comes with the advantage of not recovering depth for nearby objects. Furthermore, in-
creasing the baseline is strongly constrained for a quadcopter MAV. A more elegant way
to mitigate the problem is by increasing the image resolution and exploring large dispar-
ity search intervals (see Fig. 4.2). Considering large disparity search intervals might be
very inefficient. In this case, even stereo algorithms with linear-time (O(d)) complexity

70

4.2 Motivation

Figure 4.1: Evolution over time of the Middlebury stereo benchmark datasets. The image
resolutions as well as the disparity search intervals have significantly increased over time.

(such as block matching) become inefficient. We note that we analyze the complexity
only with respect to the disparity d and ignore the number of the pixels (width×height)
of the image. The global stereo matching in this case becomes clearly unfeasible for
real-time applications on standard hardware. Currently, most real-time dense stereo mat-
ching algorithms, which meet real-time requirements for mobile robotic applications, are
from the category of local stereo matching algorithm with linear-time complexity with
respect to the disparity. When dealing with large disparity search intervals, the disparity
computation in linear-time (O(d)) is still expensive to be estimated in real-time. Excep-
tions to this rule are algorithms which use highly parallel computing units such as GPUs
and FPGAs. This implies that the constant-time and near-constant-time algorithms are
the best choice to deal with large disparity search intervals and high resolution images.
Independently of the size of the disparity search interval, the constant-time algorithm for
stereo matching constrains the search to a small fixed size subset of candidate dispari-
ties. For example, instead of exploring the entire disparity search interval for a stereo
pair (Fig. 4.1) of up to 800 candidate disparities, the search can be restricted to 5 dis-
parity candidates. Table 4.3 on page 90 shows the resolution and the number of possible
disparities of the newest Middlebury stereo dataset (version 3, 2014).

71

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

Figure 4.2: Two methods for increasing the depth accuracy for distant points. Top left:
original stereo camera. Top right: increasing the baseline. Bottom left: increasing the
image resolution. Bottom right: increasing both the baseline and the image resolution.
This figure is copied from Moons et al. (2010).

4.3 Related work
Many approaches have been proposed to solve the dense stereo matching problem in
the last 40 years. Scharstein and Szeliski (2002) showed that most of these approaches
follow a common pipeline. This pipeline has the following four steps:

1. Computation of the matching cost using a similarity measure function. Usually
some pre-processing of the images is performed prior to the computation of the
matching costs. Removing the noise from the images using filtering techniques
often improves the results. Examples of cost functions are: the sum of abso-
lute differences (SAD), the sum of squared differences (SSD), the zero-mean SSD
(ZSSD), the mutual information (MI) and the Hamming distance.

2. Aggregation of the matching costs, which are computed on the first step, over a
given neighborhood. A simple aggregation of the matching costs could be per-
formed by computing the SAD on a square around the candidate pixel location.

3. Optimization of the matching results. This step selects the best matching candidate
from the list of candidate matching pixels on the target image. According to how
the optimization of the matching cost is performed, one can distinguish between
two types of stereo matching algorithms: the local stereo matching algorithms and
the global stereo matching algorithms. On global stereo matching all of the pixels
on the image contribute for the computation of the corresponding pixel.

72

4.3 Related work

4. Refining the disparity maps. In this step, wrong matches can be identified, filtered
and sometimes corrected. The left-right consistency check is a widely used tech-
nique for refining the disparity maps and can provide robustness against occlusion.

Local stereo matching algorithms
In local stereo matching algorithms (e.g. Yoon and Kweon (2006), Einecke and Eggert
(2010) Ma et al. (2013), Kanade and Okutomi (1994), Ait Jellal and Zell (2015)), the
disparities are computed for each pixel individually, with the cost aggregated over a lo-
cal correlation window. The choice of the size and the shape of the correlation window
is both crucial and challenging. A correlation window with a large size can lead to edge
blurring at the depth discontinuities. A correlation window with a small size, on the
other hand, can significantly decrease the signal to noise ratio. This problem increases
the ambiguity of the candidate disparities and as a result it increases the amount of out-
liers. A customized shape and size of the correlation window (Kanade and Okutomi
(1994)) for each pixel individually comes at the cost of increasing the computational
time. Hirschmüller et al. (2002) proposed to use multiple correlation windows and a
border correction method. In this case it is not surprising that some adaptive window
local stereo matching algorithms are even slower than some efficient global stereo mat-
ching algorithms. Bleyer et al. (2011) proposed slanted support windows. They compute
3D planes at the level of pixels and project the support region onto the local 3D plane.
Einecke and Eggert (2010) proposed a two-stage correlation method for computing the
scores. This method shows less sensitivity to high contrast outliers.

Global stereo matching algorithms
In global stereo matching (e.g. Mozerov and van de Weijer (2015) Boykov et al. (2001)
Yang et al. (2010) Klaus et al. (2006)), the whole pixels of the image contribute to the
computation of the disparity of a given pixel. In addition to the data term the energy
function does include a smoothness term, which penalizes the disparities, which do not
agree with the disparities of the neighbors. The complexity of these algorithms is usually
O(dc), where d is the disparity range and c is the size of the maximum clique potential. c
is usually set to c = 2 for speeding-up the global stereo algorithms. Nevertheless, global
stereo algorithm remain very slow for mobile robotics applications. An efficient global
stereo algorithm is proposed by Felzenszwalb and Huttenlocher (2006). They come up
with a method for updating the messages in linear-time O(d) for the three models of
smoothness term: the potts model, the linear model and the quadratic model. However,
the huge memory requirement needed for storing the messages and the fact that there is
no guarantee for convergence for loopy graphs are two major drawbacks of this method.
Another efficient algorithm is the semi-global stereo matching (SGM) from Hirschmüller
(2008). In SGM, the costs are first computed using local stereo matching in linear-time
O(d). Then, a (global) smoothness step is applied for updating the costs by penalizing
the disparities that disagree with those of the neighbors. It considers interactions that
are potentially very long range along image rows, columns and diagonals to minimize a

73

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

cost function. The semi-global characteristic is due to the fact that only a small subset of
possible interaction paths is considered.

Constant-time and near-constant-time algorithms
The classification of stereo matching algorithms into local and global is based on the
way the disparity optimization is done (step 4 of the stereo pipeline, see page 72). Since
we are interested in real-time algorithms, we focus on the classification based on the
computational time complexity. Most local stereo algorithms have linear-time with re-
spect to the disparityO(d) and most global stereo algorithms have a quadratic-time with
respect to the disparity O(d2). Algorithms with higher order complexities are usually
impractical for robotics applications. Stereo matching algorithms, which smartly restrict
the search domain to a small interval, such as Sinha et al. (2014), Bleyer et al. (2011)
and Geiger et al. (2011a), are becoming more popular. This category of algorithms deals
efficiently with large scale images. While Sinha et al. (2014) involves a global optimiza-
tion stage, ELAS (Geiger et al. (2011a)) is a near-constant-time local stereo matching
algorithm.

The ELAS algorithm from Geiger et al. (2011a)
ELAS deals efficiently with large scale images. For computing the disparities, ELAS
explores the entire disparity search interval only for a very small subset of the pixels.
For all other pixels the search is restricted to a small fixed window of candidate dispar-
ities. ELAS starts by finding robust matches for some pixels called support points and
generates from them a 2D mesh by Delaunay triangulation. The support points are the
triangle corners. The matching of these triangle corners is done in linear-time (O(d)).
Afterwards the algorithm uses Bayesian inference with the assumption that the disparity
of a pixel is independent of all other pixels on the reference image, given the disparities
of the triangle corners it belongs to. For the pixels inside the triangles the matching is
done in constant-time (O(1)).

4.4 The LS-ELAS Algorithm
In this section, we describe in detail LS-ELAS, which is our dense stereo matching al-
gorithm. LS-ELAS stands for line segment based efficient large scale stereo matching.
LS-ELAS is an extension of the popular ELAS algorithm (Geiger et al. (2011a)). Sim-
ilar to the original ELAS, LS-ELAS computes the disparities in constant-time for most
of the pixels in the image and in linear-time for a small subset of the pixels (support
points). Our approach is based on line segments to determine the support points instead
of uniformly selecting them over the image range. This way we find very informative
support points which preserve the depth discontinuity. The prior of our Bayesian stereo
matching method is based on a set of line segments and a set of support points. Both sets
are plugged into a constrained Delaunay triangulation to generate a triangulation mesh

74

4.4 The LS-ELAS Algorithm

↖ 1 ↑ 2 3↗
← 0 x 4→
↙ 7 ↓ 6 5↘

5 6 7
4 x 0
3 2 1

Figure 4.3: The left table contains the direction labels for the 8 adjacent pixels around
the pixel x. The table on the right contains the inverse direction labels that are used for
an inverse search.

which is aware of possible depth discontinuities. We further increased the accuracy by
using an adaptive method to sample candidate points along edge segments.
In this section, we describe our algorithm in detail. We start by describing our method
for extracting the edge segments and the way we compute the set of support points and
the set of line segments. Then, we show the mathematical derivation of our Bayesian
approach for the stereo problem.

4.4.1 Edge extraction

The LS-ELAS algorithm, which is published in the ICRA-2017 conference (see Ait Jel-
lal et al. (2017)), was a joint work between our cognitive systems department and the
department of visual computing. Both departments are at the university of Tübingen in
Germany. This section of our dissertation (i.e. Section: 4.4.1 Edge extraction) was devel-
oped and written by Benjamin Wassermann and Manuel Lange from the department of
visual computing. For an easy understanding of the LS-ELAS algorithm, we describe in
this section the efficient new method for edge segment extraction from Benjamin Wasser-
mann and Manuel Lange. As their method has not been yet published (October 2019),
we could not provide a reference to their work.

In ELAS (see Geiger et al. (2011a)), the support point candidates (the set C = {ci j})
are sampled uniformly over the image (see Fig. 4.7(a)). This method is motivated by the
need for an efficient way to compute the support points. Other methods like using SIFT
(Lowe (2004)) features for support point candidates have shown no significant improve-
ments (Geiger et al. (2011a)). In this chapter, we present a new method for extracting
support point candidates based on edge features. Our approach is motivated by the ef-
ficient edge extraction method of Benjamin Wassermann and Manuel Lange. We show
that our method for computing the support matches is both robust and efficient. Further-
more, it allows us to use the line segments between two consecutive support points to
generate a better triangulation.

Our fast edge segment extraction method is similar to the Canny edge detector ap-
proach (see Canny (1986)):

1. The input image is smoothed by a Gaussian filter to reduce noise.

2. The intensity gradients of the image are computed.

75

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

(a) (b)

(c) (d)

Figure 4.4: Intermediate steps of our edge segments extraction method. (b) shows the
dirMap (gradient directions). (c) shows the edgeMap. The color encodes the gradient
direction (same as in dirMap). (d) shows the final edge segments list. Each edge segment
is drawn by a random color individually.

76

4.4 The LS-ELAS Algorithm

Algorithm 1: Main loop for extracting edge segments.
Data: seedList, edgeMap, dirMap, dir2Index
Result: edgeSegmentList
foreach seed in seedList do

segForward = extractSeg(seed);
reverse(dir2Index);
segReverse = reverse(extractSeg(seed));
edgeSegmentList.push(segReverse + segForward);

Algorithm 2: adjacentIndex: Find adjacent edge pixel.
Input: index, direction
Data: edgeMap, dir2Index
Result: adjIndex
for each adjIndex pixel do

if edgeMap[adjIndex] > 0 then
// Invalidates the pixel from seedList;
edgeMap[adjIndex] = -1;
return adjIndex;

return -1;

Algorithm 3: extractSeg: Extract single edge segment.
Input: index
Data: edgeMap, dirMap
Result: edgeSegment
while index >= 0 do

edgeSegment.push(index) ;
index = adjacentIndex(index, dirMap[index]) ;

return edgeSegment;

77

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

3. Non-maximum suppression is applied for thinning the spread edge responses to
the maximum responses.

4. Two thresholds are applied to determine potential strong and weak edge pixels.

5. The edges are tracked by hysteresis to suppress weak edges that are not connected
to strong edges.

The result of the classical Canny method only provides an edge pixel map without the
connected edge components. We want to have a data structure which holds all pixels
which belong to the same edge segment (see Fig. 4.4(d)). We need to split the edge
map to individually determine the edge segments. So, we extended the Canny method as
follows:

1. Within the third step of Canny the gradient orientation for each pixel has to be
known. Fast algorithms compute a rough approximation for the 8 possible neigh-
bouring pixels. In our method we store this information in a map for later use.

2. In our approach all edge responses over the lower threshold are marked in an edge
map (see Fig. 4.4(c)). The indices of the edge responses over the higher threshold
are stored in a seed list.

3. The hysteresis step is replaced by the connected edge components search (see Fig.
4.3).

Starting from a seed point and its initial direction (Canny modification 2 and 1), a con-
nected edge component is extracted by traversing the adjacent edge points (see Algorithm
3). Instead of testing all 8 adjacent pixels, we use the stored direction to predict the next
adjacent edge point as shown in Algorithm 2. The seed point could be the start point or
the end point of a segment. For an end point, the search direction has to be reversed. It
is also possible that the seed is a point in between the segment, which requires a reverse
and a forward search. The ordered connected edge points are stored in an edge segment
list. For more details see Algorithm 1.

4.4.2 Support points matching along edges
The process of computing the support points is illustrated in Fig. 4.7. We start by
sampling candidate support points along the edge segments. A candidate support point
includes the pixel coordinates (u,v) and the disparity d (d is initially set as invalid). The
set of support points is S. We set a feature vector for each candidate support point based
on the gradients in X and Y direction around it. The feature descriptor is shown in Fig.
4.5. To match the support point candidates, we use the sum of absolute differences to
compute the cost. We perform a left-right consistency check to filter the outliers. Since
the feature vector is 32 elements of 8 Bits each, the 256 Bits feature vector does fit in
the AVX2 (Advanced Vector Extensions 2 SIMD instructions) CPU registers and the

78

4.4 The LS-ELAS Algorithm

1 2 ... 24 25 ... 32
(a)

1 2
3 4

13
5 14 15 16 6

17 18,19 20
7 21 22 23 8

24
9 10

11 12
(b)

25 26
27

28 29
30

31 32
(c)

Figure 4.5: (a) the feature vector is composed of 32 elements of 8 Bits each. These
elements are obtained from the image gradients (Sobel). (b) locations of the elements
1-24 of the feature vector on the X-Sobel gradient image. (c) locations of the elements
25-32 of the feature vector on the Y-Sobel gradient image. The candidate support point
is at the center (red cell). The Sobel responses are normalized and shifted to have the
size of 8 Bits and values between 0 and 255.

computation is accelerated using the AVX2 instructions. Table 4.1 shows a comparison
of the percentage of successfully matched support points. The AVX2 is used only for
support points matching. For pixels inside triangles we use a 128 Bits feature vector and
SSE2 SIMD instructions as in ELAS.

We present two different methods for sampling candidate support points. In our first
method, we uniformly sample candidate support points along the edges. A constant step
separates two consecutive candidate points. This constant step is calculated from the
image diagonal length. We present also a more elegant method for sampling the support
point candidates. This sampling method is an adaptive method. Here we sample more
points on curved parts of edges than on straight parts. We use an iterative process where
we walk along the edge and consider the straight line between the last recently sampled
support point candidate (the start) and the current point (the end). When the ”curvature”
(the projection distance of any of the points from the currently checked part onto the
straight line, which lies between the current start and the current point) is over a certain
threshold, then a new support point candidate is set. This point is the new start for the
next steps of the walk. In case the curvature is low, we also set a new support point
candidate with a constant step. This process is illustrated in Fig. 4.9.

4.4.3 Probabilistic disparity estimation

We extend the Bayesian approach introduced by Geiger et al. in ELAS (see Geiger et al.
(2011a)) by including a list L = {li1 j−i2 j} of straight line segments in the probability
model. li1 j−i2 j is a straight line segment between two consecutive (matched) support
points si1 j and si2 j. The set of (matched) support points (S) and the set of line segments

79

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

(a) (b)

Figure 4.6: (a) shows the left image of the Middlebury 2014 Pipes dataset from which
we select the region defined by the red rectangle. (b) shows this area.

(L) are plugged into a constrained Delaunay triangulation algorithm to compute a mesh
of triangles. In other words, the input to our triangulation is the set of all support points
that have valid matches (this includes the isolated support points, which do not belong
to any line segment li1 j−i2 j) and the set of line segments L. The constrained Delaunay
triangulation is a triangulation, which is forced to include the input edges (our line seg-
ments list L). This way we nicely preserve the object boundaries. Fig. 4.8(a) shows the
2D mesh created by our method LS-ELAS. The line segments are represented with the
green color. Eq. 4.2 shows the mathematical formulation of our prior:

p(dn |S,L,o(l)n)=


γ + exp

(
− (dn−µ(S,L,o(l)n))2

2σ2

)
, if |dn−µ|< 3σ ∨dn ∈ NS

0,otherwise

(4.2)

It includes a Gaussian part and a uniform part. The mean µ(S,L,o(l)n)) in the Gaussian
part depends on the set of line segments L. The mean disparity µ(S,L,o(l)n)) is obtained
by interpolating the disparities of the corners (support points) of the triangles. Using
the constrained Delaunay triangulation to generate the triangle mesh might result in a
mesh, which does violate the Delaunay property locally for some triangles, because the
constrained Delaunay triangulation is enforced to include the input line segment set L.
We remind that the Delaunay property means that no point is contained inside the cir-
cumcircle of any triangle in the mesh. This means avoiding skinny triangles with large

80

4.4 The LS-ELAS Algorithm

(a) (b)

(c) (d)

Figure 4.7: (a) (b) show the support point candidates ci j (red and green) and the valid
support point si j (green) obtained using ELAS method with a step of 10 and 5 pixels
respectively. (c) shows the edges (in light blue) detected with our method. (d) shows
the support point candidates ci j (red and green) and the valid support point si j (green)
obtained using our algorithm.

81

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

(a) (b)

(c) (d)

Figure 4.8: (a) shows the 2D mesh generated using our method for the example in Fig.
4.7. The discontinuity edges are nicely preserved. (b) shows the disparity map esti-
mated using our algorithm (LS-ELAS). No hole filling post-processing is done and most
black regions correspond to occluded regions (and they should be black). (d) shows the
occlusion map for the Pipes dataset. The black grey pixels correspond show the half-
occlusions. The black pixels show the invalid pixels for which the reference system
could not find a reliable ground truth disparity.

82

4.4 The LS-ELAS Algorithm

A
B

Threshold

Figure 4.9: Illustration of the adaptive sampling on an edge segment AB. We sample
more candidates support points on the regions with large curvature (brown points). On
the flat regions of the edge segment, there are fewer candidate support points (blue
points).

height to base ratio. We prefer to have a mesh which preserves the discontinuity rather
than a mesh which conforms to Delaunay. The search domain is restricted to a small
set (radius of 3σ pixels) of candidates disparities around the mean µ(S,L,o(l)n)). For
example we can restrict the search domain to 7 disparities (σ = 1) instead of a full range
of 800 disparities. To account for depth discontinuity, the search domain is extended to
include the disparities of the neighbor support points Ns.
Similar to Geiger et al. (2011a), we model the image likelihood using a constrained
Laplace distribution (see Eq. 4.3).

p(o(r)n | dn,o
(l)
n) =



exp(−β‖ f (l)n − f (r)n ‖1),

if

(
u(l)n

v(l)n

)
=

(
u(r)n +dn

v(r)n

)

0,otherwise

(4.3)

The likelihood probability assumes that there is only one candidate match with non-
zero probability. The likelihood probability evaluates the similarity between candidate
matches based on local feature vectors (f l

n and f r
n). The ”if condition” ensures that we

search along the epipolar line (same v coordinate).
The posterior is the product of the prior and the likelihood. The maximun a-posteriori
estimate of the depth map dMAP

n is then obtained by maximizing the posterior probability
(see Eq. 4.4).

dMAP
n = argmax

dn

p(o(r)n | dn,o
(l)
n)p(dn | S,L,o(l)n) (4.4)

Maximizing the posterior probability is equivalent to minimizing the negative logarith-
mic energy. Thus, to find the winning disparity map (dMAP

n), we minimize the energy

83

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

function given by Eq. 4.5.

E(d) = β‖ f (l)n − f (r)n (d)‖1− log

[
γ + exp

(
−(d−µ(S,L,o(l)n))2

2σ2

)]
(4.5)

where f (r)n (d) is the feature vector at (u(l)−d,v(l)) on the right (target) image.
According to the definition of the prior probability (see Eq. 4.2), we need to evaluate
this energy function (see Eq. 4.5) only for candidate disparities d, which satisfy either
the condition |d− µ| < 3σ or the condition d ∈ NS. As a result, the computation of the
disparities (d) can be done in constant-time with respect to the disparity (O(1)). We
remind that this applies for the pixels within the triangles (of the triangle mesh). For the
triangle corners (i.e. the support points) the search for matches is done in linear-time
with respect to the disparity (O(d)). Thus, LS-ELAS is a near constant-time algorithm.

4.5 Evaluation

4.5.1 The Middlebury stereo benchmark version 3
We sought to objectively evaluate our stereo matching algorithm. We identified many
requirements which we consider that they contribute to achieve an objective evaluation.
On the following, we summarize the most relevant requirements:

• The dataset shall be challenging. In particular the images should have high resolu-
tions and large disparity ranges to show the gain of a near-constant-time algorithm.
Varying lighting conditions need also to be considered.

• The algorithm needs to be compared with other algorithms based on the same input
data and the same performance metrics.

• Quantitative results of the performance of the algorithm shall be reported by the
algorithm developers. The other algorithms should be tuned by their developers.

• A variety of performance measures needs to be considered to illustrate the strengths
and drawbacks of each algorithm.

• The algorithm needs to run using the same parameters and shall not be tuned for
each dataset individually.

• It is preferred to rank the evaluation of the algorithm on some test data (for which
there exists no available public ground truth).

We consider that the evaluation of our algorithm by a third party on a publically available
stereo matching benchmark is an effective way to achieve an objective evaluation. We
chose to evaluate the LS-ELAS algorithm on the Middlebury Stereo Evaluation Dataset
- Version 3 from 2014 (Scharstein et al. (2014)). At the time of writing this dissertation

84

4.5 Evaluation

Figure 4.10: The stereo pair DjembeL from the Middlebury benchmark has strong light-
ing differences between the left and right image of the stereo pair.

(October 2019), the Middlebury Stereo Evaluation Dataset - Version 3 is the newest ver-
sion.

The Middlebury Stereo Evaluation Dataset - Version 3 from 2014
The Middlebury Stereo benchmark is the standard benchmark for binocular stereo

matching algorithms. It contains a variety of different kinds of scenes. This new Mid-
dlebury dataset (version 3) is more challenging compared to the previous datasets (ver-
sion 2). The dataset includes images taken in industrial environments, such as the Pipes
dataset and images taken in indoor environments. The benchmark contains 15 stereo
image pairs for training with available ground truth disparity images, as well as 15 stereo
image pairs for testing, for which no ground truth disparity images are available. The
stereo image pairs have names. It is allowed to submit the results for the test dataset only
once.
The 15 stereo pairs of the test dataset are: Australia, AustraliaP, Bicycle2, Classroom2,
Classroom2E, Computer, Crusade, CrusadeP, Djembe, DjembeL, Hoops, Livingroom,
Newkuba, Plants and Staircase. Table 4.3 on page 90 shows the resolutions and the num-
ber of possible disparities of those stereo pairs.
The 15 stereo pairs of the training dataset are: Adirondack, ArtL, Jadeplant, Motorcycle,
MotorcycleE, Piano, PianoL, Pipes, Playroom, Playtable, PlaytableP, Recycle, Shelves,
Teddy and Vintge.
Every stereo pair is available in three different resolutions: Full (∼ 3000×2000 pixels),
Half (∼ 1500×1000 pixels), Quarter (∼ 750×500 pixels). The abbreviations: F, H and Q
are sometimes used and they respectively refer to the Full, Half and Quarter resolutions.

The Middlebury Stereo benchmark is very challenging. The images have high resolu-
tion of up to 6MP. The disparity range reaches 800 disparities. It includes versions with
changed exposure and changed lighting. We mean here that the reference image have
strong differences on exposure time and lighting compared to the target image of the
same stereo pair (see 4.11). The impact of bad camera calibration can also be evaluated
using images pair with imperfect rectification: for a pixel (xl,yl) on the reference image,
the corresponding pixel (xr,yr) on the target images does not have the same y coordinate.

85

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

Figure 4.11: Chromatic changes. Top row: the estimated disparity maps for the stereo
pair DjembeL (left) and Djembe (middle). Top row right: the ground truth. Second row:
the corresponding error maps encoded in gray levels.

Figure 4.12: The stereo pair Classroom2E from Middlebury benchmark has strong expo-
sure time differences between the left and right image of the stereo pair.

86

4.5 Evaluation

Ad
iro

n
Ar

tL
Jad

ep
l

Mo
tor

Mo
tor

E
Pia

no
Pia

no
L

Pip
es

Pla
yrm Pla

yt
Pla

ytP
Re

cyc

Sh
elv

s
Te

dd
y

Vi
ntg

e0

50

100

150

LS-ELAS
ELAS

Edge detection
Match candidates

Figure 4.13: X-axis: the different dataset images. Y-axis: the time in ms for computing
the support matches. The results from ELAS are in drawn in blue and those of LS-ELAS
in red. For LS-ELAS the time is the sum of the edge detection step (brown) and the
support candidate matching step (black). The results are reported for the training data set
at half resolution (∼ 1500×1000 pixels. On the full resolution (∼ 3000×2000 pixels),
our algorithm is even more efficient compared to ELAS (see Fig. 4.14).

We performed experiments on the Middlebury Stereo Evaluation Dataset - Version 3
from 2014 Scharstein et al. (2014) to evaluate our adaptive LS-ELAS algorithm. We
conducted all our running time measurements on a notebook computer equipped with
16 GB RAM and an Intel Core i7 4700MQ, 2.4 GHz (3.4 GHz turbo), 6 MB cache. All
results are single core performance. We have submitted our results to this benchmark,
they are listed as ”LS-ELAS” for broader comparison with other algorithms2. Our results
are particularly good in the sparse datasets, because we did not implement a good post-
processing method for correcting invalid matches (hole filling). In the rest of this section,
we focus on the sparse evaluation. We remind that in the Middlebury benchmark, sparse
disparity map means a ”dense” disparity map for which the hole filling step is not per-
formed. Most of the holes (filtered pixels) occur at half-occlusions on which the stereo
matching is an ill-posed problem. We choose nonocc as mask to exclude occluded pixels
from the computation of the performance metrics. The training and test datasets contain
15 stereo pairs each. The average (over all stereo pairs) is calculated by weighting the
images. The weighting differs and the weights are set by Middlebury.

2http://vision.middlebury.edu/stereo/eval3/

87

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

Quarter Half Full

0

200

400

600

800 ELAS
LS-ELAS

Figure 4.14: Evolution of the average time (in ms) for computing the support matches
with respect to the image resolution. Time averaged for 15 stereo-pairs of the training
dataset. X-axis: image resolutions: Full (∼ 3000×2000), Half (∼ 1500×1000), Quarter
(∼ 750×500). Y-axis: number of disparities.

4.5.2 Comparing LS-ELAS with ELAS

In this subsection, we compare the LS-ELAS algorithm with the original ELAS algo-
rithm. We start by comparing the step concerning support point matching of both algo-
rithms. We then compare the whole algorithms according to the different metrics of the
Middlebury benchmark.
In Fig. 4.13, the time for the support point calculation and matching is drawn for the
images of the training dataset in half resolution (typical image size 1500×1000 pixels).
As ELAS places the support points on a uniform grid (5× 5) over the image, calculat-
ing the position of the support point candidates is done immediately. We first have to
detect the edge segments in the image. Then, we sample our support point candidates
along them. This detection takes some time, which is visualized as Edge detection. Af-
ter having placed our support point candidates along the edge segments, their matches
in the target image are calculated. That time is plotted as Match candidates. The sum
of both our steps is drawn as LS-ELAS to compare against the time ELAS takes in its
corresponding steps. We can see that our method is faster, even though it performs the
additional edge detection. This is because our candidate support points are much more
likely to successfully match and the size of the candidate support points set is consider-
ably smaller. By sampling our support along the edges we increase the chance to match
them because it is guaranteed to have a given extent of texture differences. In particular,
no support points are sampled on uniform areas and thus we do not waste time on those

88

4.5 Evaluation

areas. Table 4.1 shows the percentage of matched support point candidates from the two
representative stereo pairs (Pipes and Arlt) from the Middlebury stereo benchmark. This
table shows that LS-ELAS requires significantly fewer support points candidates than
ELAS to obtain the same amount of matched support points. While the percentage of
matched points exceeds the 50% in case of LS-ELAS, it only reaches ∼ 10% in case of
ELAS. Support point candidate matching needs some time because the whole disparity
range has to be searched (O(d) complexity) plus the left-right consistency check. Hav-
ing fewer support point candidates, we can make up for the additional time we need to
detect edge segments.

Fig. 4.14 shows the comparison of the running time of the support point matching step,
between LS-ELAS algorithm and the original ELAS algorithm. The Y-axis is the average
time in ms of the images of the Middlebury Stereo Evaluation Dataset. The image size
is on the X-axis. Q stands for quarter resolution, H and F for half and full resolution
correspondingly. The average time for the quarter resolution images is 15.7ms for our
method and 17.9ms for ELAS. While the 2.2ms difference is not significant, it takes 64%
more time on the half resolution images. This increases to three times the calculation
time on the full size images for the corresponding steps in ELAS. In other words, LS-
ELAS requires 281.3ms for computing the support points on images of size 3000×
2000, which is three times faster than ELAS (838.2ms). We can see that increasing
the picture size affects ELAS much more than LS-ELAS. With a tendency to larger
images, this difference becomes more relevant. The Table 4.2 shows the comparison
results for all the Middlebury metrics on the test sparse dataset in full resolution. Our
algorithm outperforms ELAS on all Middlebury metrics. The definitions of these metrics
are described on page 91.
All the results above are from the adaptive sampling version of our algorithm. The
version with uniform sampling is less accurate but slightly faster. The evaluation on
the training sparse dataset showed that it is still more accurate than ELAS and most
competing algorithms listed on Table 4.5. For example: ”bad2.0”= 11.2 and ”Avgerr”=
3.56.

89

C
hapter4

L
ine

Segm
entbased

E
fficientL

arge
Scale

Stereo
M

atching

Table 4.1: PERCENTAGE OF VALID SUPPORT POINTS

Dataset Algorithm Candidates Matched Percent

Pipes F
LS-ELAS 23311 15845 68%

ELAS 228144 20834 9%

ArtL F
LS-ELAS 10797 6064 56%

ELAS 61716 6529 10%

Table 4.2: Performance evaluation on the Middlebury Stereo Evaluation Dataset - Version 3, LS-ELAS vs ELAS

Algorithm
LS-ELAS vs ELAS: average times, Set: test sparse, Mask: nonocc

bad 0.5 bad 1.0 bad 2.0 bad 4.0 Avgerr RMS A50 A90 A95 A99 time time/MP time/GD

LS-ELAS (F) 30.9 15.8 8.82 5.97 7.36 24.6 0.74 19.7 32.0 98.0 2.63 0.50 1.33
ELAS (F) 45.2 26.4 16.4 11.5 8.53 22.8 1.55 20.1 34.5 102 3.00 0.56 1.45

Table 4.3: Description of the test dataset of the Middlebury stereo benchmark.

Stereo pair
Unit Aust AustP Bic2 Clas ClasE Comp Crus CrusP Djem DjemLHoop Livgr Nkub Plant Stair

Full resolution MP 5.6 5.6 5.6 5.7 5.7 1.5 5.5 5.5 5.7 5.7 5.7 5.9 5.5 5.6 5.2
Disparities Pixel 290 290 250 610 610 256 800 800 320 320 410 320 570 320 450

90

4.5 Evaluation

4.5.3 Comparing LS-ELAS with other algorithms
We consider the following local and global binocular dense stereo algorithms to be rele-
vant for comparison with our algorithm (see related work, page 72):

• Local methods: ELAS (Geiger et al. (2011a)), Cens5 (Hirschmüller et al. (2002)),
SNCC (Einecke and Eggert (2010)).

• Global methods: SGM (Hirschmüller (2008)), SGBM1 (OpenCV 2.4.8
re-implementation of SGM), TSGO (Mozerov and van de Weijer (2015)), LPS
(Sinha et al. (2014)), and NOSS-ROB (Superpixel alpha-expansion and normal
adjustment for stereo matching. NOSS-ROB is a new algorithm. At the time of
writing this thesis, the authors made an anonymous submission of their results into
the Middlebury stereo benchmark because their paper has not yet been accepted).

We did not take IDR (Kowalczuk et al. (2013)) into the comparison, as it needs special
hardware running only on a graphics card. Many robots can’t supply the additional
power, payload and space needed for a dedicated graphics cards.

The Middlebury stereo benchmark includes a set of performance measures which will
be described below. The ranking can be done according to each individual metric. The
Middlebury stereo benchmark maintains an online table where the results and ranking of
other algorithms can be found. This is very important as it allows comparing our algo-
rithm with other algorithms for which no open-source code is available. The online table
allows to compare our results with the results from newly inserted algorithms into the
table as well.

The metric time/MP

A stereo matching algorithm, which is meant to be used in real-time on-board a quad-
copter MAV, needs to be efficient. Comparing the algorithms according to their running
time is important. The time per Megapixels metric (time/MP) is the time normalized by
the number of pixels. The unit is s/Megapixels. Table 4.4 shows the detailed results
according to the time/MP metric. A graphical visualization of this table is shown in Fig.
4.15. In average (over all stereo pairs), LS-ELAS needs ”0.50s” to process 1MP of data
and ELAS needs ”0.56s”. LS-ELAS and ELAS are by far more efficient than the com-
peting algorithms. In Fig. 4.15, the curves for LS-ELAS and ELAS almost overlap. The
results of the algorithms NOSS-ROB and Cens5 were reported using the half-resolution
dataset (H) as opposed to all other algorithms, which used the full-resolution dataset (F).
Unfortunately, we do not have access to the source code of those algorithms to measure
the time on the full-resolution dataset (F). The stereo pairs Crus, CrusP, ClassRoom, and
ClassRoomE have the largest disparity search ranges with a maximum disparity of up to
800 disparities. While the constant-time algorithms show no increase in the time/MP

91

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

for processing these stereo pairs, all other algorithms exhibit a significant increase in the
value of time/MP metric. NOSS-ROB needs on average 502s for processing every MP
of data, while the second slowest algorithm (SGM) needs 13.4s for processing the same
amount of data. As can be seen on the accuracy evaluation sections (page 94), SGM
wins the ranking according to most performance metrics. This comes at the cost of being
26.8 times slower than LS-ELAS. For a better visualization, the results of NOSS-ROB
are not plotted in Fig. 4.15. The stereo pair Compu has a small size (i.e. 1.5MP see
Table 4.3 page 90) compared to all other stereo pairs, which have sizes between 5.2MP
and 5.9MP. As a result, we excluded Compu from the plot on Fig. 4.15.

Au
str

Au
str

P
Bi

cy
c2

Cl
ass

Cl
ass

E

Cr
us

a

Cr
us

aP
Dj

em
b

Dj
em

bL

Ho
op

s

Li
vg

rm

Nk
ub

a

Pla
nts

Sta
irs

0

5

10

15

20

25
LS-ELAS

ELAS
SGM

SGBM1
LPS

TSGO

Figure 4.15: Results according to the metric Time/MP. This is a graphical representation
of table 4.4. The ranking according to the weighted average results over all the 15 stereo
pairs is as follows: LS-ELAS: 0.50, ELAS: 0.56, SNCC (H): 1.02, Cens5 (H): 1.35,
SGBM1: 3.69, LPS: 5.28, TSGO: 8.26, SGM: 13.4, NOSS-ROB: 502. LS-ELAS and
ELAS almost overlap.

92

4.5
E

valuation

Table 4.4: Performance evaluation on the Middlebury Stereo Benchmark Version 3, TIME / MP, test sparse, Nonocc

Algorithm
Avg Time per Megapixel

Aust AustP Bic2 Clas ClasE Comp Crus CrusP Djem DjemLHoop Livgr Nkub Plant Stair
LS-ELAS (F) 0.50 0.49 0.51 0.61 0.49 0.46 0.48 0.50 0.50 0.50 0.49 0.47 0.48 0.50 0.47 0.45
ELAS (F) 0.56 0.57 0.56 0.54 0.59 0.52 0.48 0.65 0.65 0.56 0.54 0.56 0.53 0.59 0.53 0.53
SNCC (H) 1.02 0.73 0.69 0.68 1.25 1.23 0.68 1.57 1.62 0.77 0.80 0.95 1.16 1.24 0.77 1.01
Cens5 (H) 1.35 1.03 1.01 0.85 1.83 1.84 0.82 2.21 2.20 1.00 1.02 1.24 1.02 1.64 1.01 1.42
SGBM1 (F) 3.69 2.44 2.45 2.31 4.67 4.61 1.84 6.27 6.28 3.01 2.95 3.56 2.99 4.80 2.97 3.51
LPS (F) 5.28 5.97 4.30 4.42 4.22 4.17 11.4 4.90 4.91 4.83 4.37 5.85 4.24 4.38 5.79 4.96
TSGO (F) 8.26 11.6 11.5 9.94 6.53 6.98 22.4 8.34 8.63 4.21 4.45 4.88 4.95 6.09 4.12 5.27
SGM (F) 13.4 10.0 9.32 8.20 16.1 18.4 8.03 23.0 22.6 9.83 10.4 12.7 10.2 16.8 10.4 13.9
NOSS-ROB (H) 502 502 502 502 502 502 502 502 502 502 502 502 502 502 502 502

93

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

Au
str

Au
str

P
Bi

cy
c2

Cl
as

s
Cl

as
sE

Co
mp

u

Cr
us

a
Cr

us
aP

Dj
em

b
Dj

em
bL

Ho
op

s
Li

vg
rm

Nk
ub

a
Pl

an
ts

St
air

s0

20

40

60

80

100 LS-ELAS
ELAS
SGM
SNCC

SGBM1
Cens5
LPS

TSGO
NOSS-ROB

Figure 4.16: Accuracy results according to the error metric ”bad 1.0”. The ranking ac-
cording to the weighted average results over all the 15 stereo pairs is as follows: SGM:
8.77, SNCC: 12.7, NOSS-ROB: 13.2, LS-ELAS: 15.8, SGBM1: 16.7, Cens5: 18.1,
ELAS: 26.4, LPS: 27.6, TSGO: 63.7.

The metrics: ”bad 1.0”, ”bad 2.0”, ”bad 4.0”

The standard metric for measuring the performance of a stereo matching algorithm is
the percentage of bad pixels. That is the percentage of pixels on the reference image
for which the estimated disparity (dn) exhibit an inaccuracy larger than a given thresh-
old δd . For example, the ”bad1.0” (Ebad(1.0)) metric has a threshold of 1.0 (pixel) and
measure the percentage of pixels for which the error in disparity is larger than 1.0 pixels.
It is worth to remind that the Middlebury stereo benchmark provides disparity ground
truth (dgt

n) with sub-pixel precision which is not relevant for our algorithm, as we esti-
mate discrete disparities. ”bad2.0” is the default metric used on the Middlebury stereo
benchmark. Eq. 4.6 shows the mathematical formula of the percentage of bad pixels
metric.

Ebad(δd) =
1
N ∑

n
(|dn−dgt

n |> δd) (4.6)

Fig. 4.16, 4.17 and 4.18 show the results of the selected algorithms according to the met-
rics ”bad 1.0”, ”bad 2.0” and ”bad 4.0”, respectively. A significantly lower error value
of our method compared to ELAS is clearly visible. LS-ELAS is also more accurate
than SGBM1, Cens5, LPS and TSGO. While SGM yields a lower error value, it is a
much slower method. The same applies to NOSS-ROB and SNCC. One important re-

94

4.5 Evaluation

Au
str

Au
str

P
Bi

cy
c2

Cl
as

s
Cl

as
sE

Co
mp

u

Cr
us

a
Cr

us
aP

Dj
em

b
Dj

em
bL

Ho
op

s
Li

vg
rm

Nk
ub

a
Pl

an
ts

St
air

s0

20

40

60

80

100 LS-ELAS
ELAS
SGM
SNCC

SGBM1
Cens5
LPS

TSGO
NOSS-ROB

Figure 4.17: Accuracy results according to the error metric ”bad 2.0”. The ranking ac-
cording to the weighted average results over all the 15 stereo pairs is as follows: SGM:
3.33, NOSS-ROB: 5.01, SNCC: 6.11, LS-ELAS: 8.82, Cens5: 9.31, SGBM1: 9.44,
ELAS: 16.4, LPS: 20.30, TSGO: 39.10.

Au
str

Au
str

P
Bi

cy
c2

Cl
as

s
Cl

as
sE

Co
mp

u

Cr
us

a
Cr

us
aP

Dj
em

b
Dj

em
bL

Ho
op

s
Li

vg
rm

Nk
ub

a
Pl

an
ts

St
air

s0

20

40

60

80

LS-ELAS
ELAS
SGM
SNCC

SGBM1
Cens5
LPS

TSGO
NOSS-ROB

Figure 4.18: Accuracy results according to the error metric ”bad 4.0”. The ranking ac-
cording to the weighted average results over all the 15 stereo pairs is as follows: SGM:
1.73, SNCC: 3.26, NOSS-ROB: 3.26, Cens5: 4.95, LS-ELAS: 5.97, SGBM1: 6.52,
ELAS: 11.5, LPS: 16.60, TSGO: 18.90.

95

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

mark that arises when analyzing the plots is that when increasing the tolerance from one
pixel (”bad 1.0”) to two pixels (”bad 2.0”), the error decreases considerably. When the
tolerance is further increased to four pixels (”bad 4.0”), the error still decreases but not as
strongly as in the previous case. The algorithms TSGO and LPS seem to be less accurate
even if they are global stereo algorithms. The reason for that is that TSGO and LPS do
not filter out occluded pixels. Since we are using the sparse dataset for our evaluation,
the occluded pixels contribute to the computation of the error and thus penalize these two
algorithms. On the dense dataset from Middlebury, these two algorithms perform much
better, and LPS is ranked second (after NOSS-ROB) according to the metric ”bad 1.0”
among the selected algorithms. Nevertheless, LPS and TSGO show strong performance
degradation on the challenging stereo pairs ClassE (see Fig. 4.12 page 86), which have
strong exposure time differences between the two images of the stereo pair, and DjembL
(see Fig. 4.10 page 85), with challenging lighting conditions.
The metric percentage of bad pixels applies a binary classification of the estimate. There
are correct estimates for which the error is less than the threshold (δd) and incorrect es-
timates for which the disparity error is larger than the threshold. Once the estimate is
out of the tolerance radius, this metric does not quantify how far the estimate is from the
correct value. This will severely penalize the algorithms which provide estimates, which
are close to the correct values but still out of the tolerance radius. Fortunately, there are
other metrics, which address this problem, such as the average disparity error (Avgerr)
and root mean squared disparity error (RMS). In the following, we remind the definitions
of these metrics (Avgerr and RMS) and we show our results according to them.

96

4.5
E

valuation

Table 4.5: Performance evaluation on the Middlebury Stereo Benchmark - Version 3, BAD 2.0, test sparse, nonocc

Algorithm
Avg Bad 2.0

Aust AustP Bic2 Clas ClasE Comp Crus CrusP Djem DjemLHoop Livgr Nkub Plant Stair
SGM (F) 3.33 11.7 1.64 2.04 2.01 3.04 3.56 6.15 3.41 2.45 2.19 4.10 3.39 2.35 3.61 1.01
NOSS-ROB (H) 5.01 3,57 2.84 3.99 1.93 5.15 3.34 3.32 3.15 2.32 8.55 7.45 7.06 12.5 5.20 9.06
SNCC (H) 6.24 17.3 3.32 3.61 4.45 5.48 7.39 13.3 9.40 3.49 3.40 6.46 4.10 3.99 7.07 3.32
LS-ELAS (F) 8.82 14.9 4.43 7.94 4.89 2.92 7.20 10.9 6.50 5.27 4.97 10.5 9.78 8.55 20.3 15.7
SGBM1 (F) 9.44 24.0 5.55 5.63 7.17 8.85 7.65 14.7 9.97 3.82 10.9 16.0 9.93 8.25 9.55 11.9
Cens5 (H) 9.48 23.7 4.44 4.60 6.21 9.23 9.21 20.3 18.1 4.77 6.50 8.87 6.55 6.02 11.9 4.57
ELAS (F) 16.4 24.9 5.44 7.55 10.7 15.5 9.85 21.1 17.2 7.07 11.5 19.9 15.6 16.6 42.2 30.7
LPS (F) 20.3 6.72 6.06 9.72 9.87 94.3 14.1 11.2 11.2 5.88 89.3 36.0 20.5 23.8 16.0 25.4
TSGO (F) 39.1 34.1 16.9 20.0 43.3 55.4 14.3 54.1 49.2 33.9 66.2 45.9 39.8 42.6 47.2 52.6

97

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

The metric: average disparity error

The average disparity error (Avgerr) is given by Eq. 4.7.

EAvgerr =
1
N ∑

n
|dn−dgt

n | (4.7)

Fig. 4.20 shows a comparison of the selected algorithms according to the Avgerr metric.
As in the case of the RMS metric, SGBM1 and LPS show a large error on the Class-
room2E (ClassE) stereo pair. ELAS and LS-ELAS have a slightly larger Avgerr on the
Plants stereo pair. The final Avgerr (averaged over all stereo pairs) from LS-ELAS is
7.36, which is slightly better than 7.75 from ELAS.

The metric: root mean square disparity error

The root mean square disparity error (RMS) evaluates the square root of the mean of the
squares of the disparity errors (dn−dgt

n). Eq. 4.8 shows the mathematical formula of this
metric.

ERMS = (
1
N ∑

n
(dn−dgt

n)2)
1
2 (4.8)

Fig. 4.19 shows a comparison of the selected algorithms according to the RMS metric.
SGBM1 and LPS show a large error on the Classroom2E (ClassE) stereo pair. ELAS
and LS-ELAS have a slightly large RMS disparity error on the Plants stereo pair. The
metrics Avgerr and RMS have the drawback of being very sensitive to outliers. If the
disparity error for an element of the sum in Eq. 4.7 (and Eq. 4.8) is very large, then its
contribution on the sum might be undesirably large. The median disparity error metric
does not suffer from this drawback. On the following paragraph we will show our results
according to the median disparity error metric.

98

4.5 Evaluation

Au
str

Au
str

P
Bi

cy
c2

Cl
as

s
Cl

as
sE

Co
mp

u

Cr
us

a
Cr

us
aP

Dj
em

b
Dj

em
bL

Ho
op

s
Li

vg
rm

Nk
ub

a
Pl

an
ts

St
air

s0

20

40

60

80
LS-ELAS

ELAS
SGM
SNCC

SGBM1
Cens5
LPS

TSGO
NOSS-ROB

Figure 4.19: Accuracy results according to the error metric ”RMS”. The ranking accord-
ing to the weighted average results over all the 15 stereo pairs is as follows: SGM: 10.90,
NOSS-ROB: 12.40, SNCC: 14.40, Cens5: 17.2, ELAS: 22.8, LS-ELAS: 24.60, TSGO:
28.80. SGBM1: 29.60, LPS: 31.90.

Au
str

Au
str

P
Bi

cy
c2

Cl
as

s
Cl

as
sE

Co
mp

u

Cr
us

a
Cr

us
aP

Dj
em

b
Dj

em
bL

Ho
op

s
Li

vg
rm

Nk
ub

a
Pl

an
ts

St
air

s0

10

20

30

40
LS-ELAS

ELAS
SGM
SNCC

SGBM1
Cens5
LPS

TSGO
NOSS-ROB

Figure 4.20: Accuracy results according to the error metric ”Avgerr”. The ranking ac-
cording to the weighted average results over all the 15 stereo pairs is as follows: SGM:
1.85, NOSS-ROB: 2.08, SNCC: 2.82, Cens5: 3.71, LS-ELAS: 7.36, TSGO: 7.75, ELAS:
8.53, SGBM1: 12.3, LPS: 13.7.

99

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

The metric: median disparity error

The median disparity error A50% of the disparity map is the central disparity error of
the pixels such that 50% of the disparity errors are less than or equal to A50% and
the remaining 50% disparity errors are greater than or equal to A50%. The median is
the 50% disparity error quantile in pixels. To compute this metric, we need to sort the
disparity errors and select the value at the middle of the sorted list. Fig. 4.21 shows
the results according to the median disparity error metric. The averaged A50 error over
all stereo pairs from ELAS is 1.55. It is twice as large as the one from LS-ELAS (i.e.
0.74). The algorithms SGBM1 and LPS have significant performance degradation on
the challenging stereo pair Classroom2E (see Fig. 4.12). For better visualization of the
results of all algorithms, we chose to exclude Classroom2E from the plot on Fig. 4.21.
While SGBM1 has a small A50 error (i.e. 0.55) on the stereo pair DjembL (see Fig.
4.10), LPS has a large A50 error (i.e. 30.20) on that stereo pair. For a better visualization,
we have also excluded DjembL from the plot on Fig. 4.21.

Au
str

Au
str

P

Bi
cy

c2

Cl
as

s

Co
m

pu

Cr
us

a

Cr
us

aP

Dj
em

b

Ho
op

s

Li
vg

rm

Nk
ub

a

Pl
an

ts

St
air

s0

1

2

3

4 LS-ELAS
ELAS
SGM
SNCC

SGBM1
Cens5
LPS

TSGO
NOSS-ROB

Figure 4.21: Accuracy results according to the median disparity error (A50). The ranking
according to the weighted average results over all the 15 stereo pairs is as follows: NOSS-
ROB: 0.42, SGM: 0.46, SNCC: 0.52, Cens5: 0.58, LS-ELAS: 0.74, ELAS: 1.55, TSGO:
1.67, SGBM1: 4.84, LPS: 4.99.

100

4.5 Evaluation

Figure 4.22: Disparity maps estimated by our algorithm. The images are from the Mid-
dlebury stereo dataset. Left: the triangle mesh. Right: the final disparity maps.

Figure 4.23: Synthesis of four views by virtually changing the camera viewpoint.

101

Chapter 4 Line Segment based Efficient Large Scale Stereo Matching

4.5.4 Disparity map examples and view synthesis
In this section we show some examples of the estimated disparity maps using LS-ELAS.
Fig. 4.22 shows estimated disparity maps for two stereo pairs from the Middlebury stereo
dataset. Fig. 4.23 shows the estimated disparity map for the stereo pair Bicycle. It also
shows four views which are synthesized by virtually changing the camera viewpoint.

4.6 Conclusion

4.6.1 Summary
In this chapter, we presented the dense stereo matching algorithm LS-ELAS. LS-ELAS
is an extension of the popular ELAS stereo algorithm. LS-ELAS stands for line seg-
ments based efficient stereo matching. As its name suggests it relies on line segments.
As in ELAS, we first compute a small set (∼ 5% of the pixels) of support points using
a large search interval for candidate disparities. Then we use this set of support points
to reduce the disparity search interval for all remaining pixels (∼ 95% of the points).
While in ELAS a grid is used to select the candidate support points, we sample them
along the edge segments. The result is a huge reduction in computational time, because
LS-ELAS requires significantly fewer support points candidates than ELAS to obtain
the same amount of matched support points. While the percentage of matched points
exceeds 50% in case of LS-ELAS, it only reaches ∼ 10% in case of ELAS. On aver-
age, LS-ELAS requires 281.3ms for computing the support points on images of size
3000× 2000, which is three times faster than ELAS (838.2ms). Reducing the time for
computing the support matches has contributed to efficiency increase of the algorithm
overall. The average time needed for processing 1MP of data (time/MP metric) using
LS-ELAS is 0.50s. ELAS needs 0.56s to process the same amount of data.
The selected sparse set of matched support points and the set of line segments relating
them are used to construct the prior disparity for our Bayesian stereo matching algo-
rithm. The prior is computed as follows: a 2D triangle mesh is generated from the
support points. We used the constrained Delaunay triangulation to generate a triangu-
lation mesh which, is aware of possible depth discontinuities. The third dimension (the
disparity) is interpolated for each pixel (inside a given triangle) from the triangle corners
(support points with known disparities). The prior disparity for a pixel is modeled as a
Gaussian distribution where the mean is the interpolated disparity at the given location
inside the triangle (to which the pixel belongs). The likelihood is modeled as a Laplace
distribution. A feature vector around the pixel is used to measure the similarity against
candidate pixels on the target image. The final disparity is obtained by maximizing the
posterior probability. The computation of this posterior is done in the negative log do-
main.
We validated our approach using the newest version of the public Middlebury stereo
Benchmark (version 3, 2014). Many error metrics are implemented to show different

102

4.6 Conclusion

aspects of the compared algorithms. The averaged results over all stereo pairs on the
test dataset show that LS-ELAS outperforms ELAS according to all metrics except the
RMSE metric. The percentage of bad pixels (wrong matches) of ELAS is almost two
times larger than the one from LS-ELAS. For an error tolerance of one pixel (”bad1.0”
metric), LS-ELAS has 15.80% wrong matches, while ELAS has 26.4%. When increas-
ing the tolerance to two pixels (”bad2.0” metric), the percentage of wrong matches de-
creases for both LS-ELAS and ELAS to 8.82% and 16.4%, respectively. When the
tolerance is further increased to four pixels (”bad4.0” metric), the percentage of wrong
matches decreases for both algorithms but not as strongly as in the previous case. The
average disparity error (Avgerr metric) from LS-ELAS is 7.36, which is slightly better
than 7.75 from ELAS. The averaged median error (A50 metric) over all stereo pairs from
ELAS is 1.55. It is twice as large as the one from LS-ELAS (i.e. 0.74).
We submitted our results and they are available online on the permanent ranking table of
the Middlebury stereo Benchmark. This will allow a broad evaluation of our results.

4.6.2 Discussion: curved or straight line segments
We considered a method for extending ELAS by using straight line segments. Starting
by the detection of preferably long straight line segments in both images, match them
and use the matches as additional constraints. While this would work on human-made
environments, it will sometimes fail to find straight lines on outdoor environments. Fur-
thermore, the use of straight lines is problematic at depth discontinuities. The line might
have points on the foreground and points on the background. One more disadvantage
is that the straight line segments on target image might be split into multiple parts. So,
we preferred to use curved edge segments instead of straight line segments because they
work fine for both straight and curved contours. In the image regions with poor texture
changes, we still detect small edges there and we sample candidate support points.

103

Chapter 5

Application: Outdoor Obstacle
Avoidance using Stereo for a
Quadcopter MAV
In the previous chapter, we discussed dense stereo matching and its application for es-
timating the depth from disparity. With that method, the robot can estimate the depth
map of the visible part of the scene. A depth map can be seen as a snap-shot of the
environment geometry at camera pose. Relying on one single shot of the environment
geometry is sensitive to inaccuracies of the depth estimation. In particular, distant points
suffer from depth inaccuracy. A second drawback of relying on a single depth image
is that the estimated depth images might be inconsistent and the overlapping surfaces
would not perfectly match. The reasons for potential misalignment of two or more depth
images are numerous. This can be due to inaccuracy of the pose estimation and to the
inaccuracy of the dense matching estimation. The fusion of multiple depth maps can
yield more consistent depth estimation. One efficient way to perform this fusion is to
reconstruct a 3D occupancy grid map.

Large parts of this work have been pre-published in Ait Jellal and Zell (2017).

5.1 Introduction
Levitt and Lawton (1990) identified the following three important questions for which
an autonomous mobile robot needs to compute answers.

• “Where am I?”

• “Where are other places with respect to me?”

• “How do I get to other places from here?”

We design a system which provides answers to these questions to achieve full autonomous
obstacle avoidance in unknown environments. The hybrid SLAM algorithm (see chapter
3) provides an answer to the first question. The hybrid SLAM provides also a context

105

Chapter 5 Application: Outdoor Obstacle Avoidance using Stereo for a Quadcopter MAV

(the map) on which the pose is estimated. The second question can be partially answered
using a volumetric map. We say that this question is only partially solved because the
identification of other places would require more than a simple volumetric map. For
example, additional semantic segmentation and object classification methods would pro-
vide a better answer to the second question. We use LS-ELAS for estimating depth maps
which are used for constructing the volumetric map. To answer the third question, we
integrated an open-source 3D path planner.

5.2 Motivation
The motivation behind this chapter is twofold. First, we want to experimentally show
that our algorithms (in chapter 3 and chapter 4) can be effectively used in real-time on-
board our quadcopter. Second, we show that stereo vision can be successfully applied
in conditions where other sensors (and systems) would fail. We discussed the benefits
of using stereo vision in the introduction of this thesis. A conventional RGB-D camera
would fail in those environments when there is substantial sunlight. Furthermore, the ex-
istence of high structures, such as building, degrades the GPS accuracy. As a result, the
GPS-based navigation might fail. In this chapter, we show experimentally that stereo vi-
sion can be used on-board to perform autonomous navigation in unknown environments.
The challenge is how to run all of the software components needed for a safe navigation
in real-time on the on-board CPU. Keeping the efficiency in mind is a key for devel-
oping such a system. During the development of our hybrid SLAM algorithm and our
LS-ELAS stereo matching algorithm, we took into consideration the computation time
as a major factor. In addition to our efficient algorithms, we needed additional efficient
algorithms for building occupancy grid maps and for planning collision-free paths.

5.3 Related work
Nuske et al. (2015) proposed an interesting system for mapping rivers using an octa-
copter MAV. For sensing the environment, they equipped their MAV with a stereo cam-
era and a lightweight spinning laser scanner. They build and maintain an obstacle map
using Scherer et al. (2012a), which they use for path planning. They rely on SPAR-
TAN (Sparse Tangential Network) from Cover et al. (2013) for planning the paths. They
contribute on the exploration and motion planning aspects of the system and use existing
algorithms for stereo visual odometry (see Rehder et al. (2012)) and for building obstacle
map (see Scherer et al. (2012a)). In contrast, we create our own SLAM system for pose
estimation. Furthermore, we developed an efficient dense stereo matching algorithm for
building occupancy grid maps. Heng et al. (2011) have proposed a stereo approach for
obstacle avoidance. They build an Octomap and use the anytime dynamic A* planner
(see Likhachev et al. (2005)) to generate collision-free path planning in 2D. For pose

106

5.4 Experimental platform

estimation, they use either artificial landmarks or a Vicon tracking system. In contrast,
our work is not limited to 2D. We plan paths in full 3D-space using the efficient RRT*
(see Şucan et al. (2012)) algorithm and we run a hybrid SLAM on-board.

5.4 Experimental platform
In our real experiments, we used a custom-made quadcopter. It is shown in Fig. 5.1.
The relevant components of our research quadcopter are as follows: a stereo camera
with a pair of Point-Grey Firefly monochrome cameras with a resolution of 640×480
pixels. The baseline between the two cameras is 22 cm. The stereo camera delivers
synchronized stereo pairs at 30 Hz. The stereo camera is calibrated offline to estimate the
intrinsic camera parameters using the OpenCV library (see Bradski (2000)). The flight
control unit used in this research is the px4-AutoPilot from the open-source Pixhawk
project (see Meier et al. (2012)). The brushless motors are of type 2212-13 980 kv with
10:45 propellers. The on-board computer is an Intel NUC mini-pc. It has an Intel core
i7-5557U CPU with 2x3.1 GHz, 4 MB cache, 28 Watts thermal design power (TDP) and
8 GB RAM. The on-board computer is connected to the autopilot via a serial link of
type USB to UART (Universal Asynchronous Receiver Transmitter). The quadcopter is
powered using a 4 cells Lipo battery with 5000 mAh capacity. The quadcopter length is
450 mm and it has a total weight of approximately 1.62 kg.

(a) (b)

(c) (d)

Figure 5.1: (a) the custom made quadcopter platform used in this research. (b) the Pix-
hawk px4-AutoPilot with IO-board. (c) the on-board mini-pc Intel NUC. (d) the stereo
camera.

107

Chapter 5 Application: Outdoor Obstacle Avoidance using Stereo for a Quadcopter MAV

5.5 System description

5.5.1 System overview
Fig. 5.2 shows an overview of our system for outdoor obstacle avoidance. The system
components include:

• The hybrid stereo SLAM algorithm (see chapter 3, page 39).

• The LS-ELAS dense stereo matching algorithm (see chapter 4, page 69).

• The robust OctoMap for creating volumetric 3D maps (see Schauwecker and Zell
(2014)).

• The RRT* path planner for planning collision-free paths on the OctoMap (see J.
et al. (2011) and (LaValle, 1998)).

• The position and attitude controllers from the Pixhawk project (see Meier et al.
(2012)).

• The hardware of the experimental platform (see page 107).

The hybrid stereo SLAM algorithm is in charge of keeping track of the quadcopter
pose in real-time while at the same time building a sparse map of the environment. At
keyframes, we compute dense stereo matching. The resulting disparity map is then used
to create a 3D point cloud, which is inserted in the occupancy grid map. The disparity
map is also used by the tracking thread to refine the poses using direct image alignment.
The planner gets an up to date binary occupancy grid map and the start (current) pose
and destination pose and then plans a safe path for obstacle avoidance. The planner
outputs a smooth trajectory of way-points. The poses from the localization thread of
the SLAM system are fused with the measurements from the on-board IMU using an
extended Kalman filter (EKF) to estimate the quadcopter state. The controller gets the
desired pose and the current pose and controls the motor speeds to fly to the desired
position. The Pixhawk px4-AutoPilot (see Meier et al. (2012)) controller is a cascaded
controller which includes a high level position controller and a low level attitude con-
troller. The attitude controller is critical and it outputs the motors speeds at high control
loop frequencies.
Our system is implemented in a set of software packages using the robot operating sys-
tem (ROS) middleware. As a result, we gain modularity and clear interfaces between the
software packages.

5.5.2 Environment mapping
The map built by the Hybrid SLAM algorithm is too sparse to be used for path planning.
Traditionally, 2D maps are widely used in mobile robotics. This can be granted to their

108

5.5 System description

Stereo camera

Controller

Hybrid stereo SLAM

px4-AutoPilot

On-board computer

Tracking

Direct img. alig.Feature-based

Local mapping

Loop closing

Dense stereo (LS-ELAS)

Robust Octomap

RRT* planner

State est. (EKF) Position Attitude

ROS bridge

Motor ESCsIMU

waypoint
pose

Motor commands

stereo pairs

Figure 5.2: System overview. The system includes a hybrid SLAM algorithm and a
path planner. The tracking thread of the SLAM algorithm provides an estimate of the
current pose to the controller. The path planner provides intermediate destinations to
the controller. The Pixhawk position controller manages to fly smoothly through the
intermediate way-points.

109

Chapter 5 Application: Outdoor Obstacle Avoidance using Stereo for a Quadcopter MAV

Figure 5.3: An outdoor experiment.

small memory footprint and reduced map update time. While 2D maps are suitable for
many ground mobile robots, they are not suitable for mobile robots which navigate freely
in 3D space such as multirotor MAVs. Even for ground robots, 2D maps are sometimes
not sufficient. A tall ground robot which needs to navigate below overhanging structures
requires also 3D maps. The 3D maps can be, however, memory demanding when naively
implemented. Fortunately, the octree data structure (see Meagher (1980)) gives a solution
to the memory footprint issue for 3D mapping. An octree represents the 3D space as tree
of cubes. At the root of the tree data structure, there is a large cube, which represents the
whole modeled 3D space. For storing a 3D point on the octree, we need to recursively
subdivide the octree into smaller and smaller subcubes. At each subdivision’s iteration,
a parent cube is divided into 8 children. Fig. 5.4 illustrates the subdivision process of
the octree data structure. Only the child subcube which contains the 3D point is then
subdivided in the next iteration. The remaining 7 subcubes do not need to be subdivided
if they do not contain other 3D points. This results in huge memory efficiency as memory
is not allocated for empty subcubes.

Wurm et al. (2010) developed OctoMap, which is an open-source library for 3D map-
ping. They rely on the octree data structure to efficiently represent the 3D space. Oc-
cupied, free and unknown spaces are all modeled to accommodate for different applica-
tions. For example, the identification of unknown space is very important for exploration
tasks and the free space is used for planning collision-free paths. A probabilistic repre-
sentation of occupancy is used in OctoMap to handle sensor noise. The binary Bayes
filter from Moravec and Elfes (1985) is used for recursively updating the map as new
measurements are made. At time t, the fused occupancy probability P(n|z1:t) of a voxel
n is estimated by updating its occupancy probability P(n|z1:t−1) at time t− 1 using the
new measurement (at time t). The map update is given in Eq. 5.1 (see Moravec and Elfes

110

5.5 System description

(a) (b) (c)

Figure 5.4: (a) recursive subdvision process of the 3D space. A parent node (cube) can be
subdivided into 8 children. (b) modelling of the subdivision process using the tree-based
octree data structure. Memory is not allocated for empty nodes. (c) illustration of the ray
casting process for identifying the voxels to be updated. A ray is fired from the sensor
origin (A) toward the 3D endpoint (B). The figures are reprinted from Schauwecker
(2014)(p. 103).

(1985)).

P(n|z1:t) =

[
1+

1−P(n|zt)

P(n|zt)

1−P(n|z1:t−1)

P(n|z1:t−1)

P(n)
1−P(n)

]−1

(5.1)

For efficiency, the map update step is done using log-odds.
In the case of stereo vision, the 3D endpoints are estimated from the disparity map (see
page 31). Given the sensor location and the 3D endpoints, OctoMap uses ray-casting (see
Amanatides and Woo (1987)) to identify the voxels (octree leaf subcubes) that need to be
updated. The leaf voxel on which the 3D point is located is considered as occupied and
also determines the visibility limit along the casted ray. The voxels between the sensor
origin and the occupied voxel are considered empty. Fig. 5.4(c) illustrates the process of
identifying the voxels to be updated. The map update rule (Eq. 5.1) is then applied to all
voxels along the casted ray up the the visibility limit. In order to ensure the updatability
of the occupancy probability of the voxels, a clamping policy is introduced. An upper
and a lower bounds are set for the probability of the voxels.
OctoMap has been used in many robotic works, and extensions to the original OctoMap
have been proposed. Among these extensions, an open-source variant, which is well
suited for stereo vision has been proposed by Schauwecker and Zell (2014). As we are
using a stereo camera, we use this variant of OctoMap to estimate a 3D occupancy grid
map of the robot environment.
Fig. 5.5 shows some intermediate steps for mapping the robot environment using the
robust OctoMap. The data is recorded during one of our outdoor experiments. During

111

Chapter 5 Application: Outdoor Obstacle Avoidance using Stereo for a Quadcopter MAV

the navigation, the hybrid SLAM algorithm keeps track of the robot pose and decides to
create new keyframes (KF). At keyframes, we estimate the depth maps using LS-ELAS.
The robust OctoMap uses the poses of the keyframes and the estimated depth images as
input to create a volumetric map of the environment. On the next section, this volumetric
map will be used for planning collision-free paths.

5.5.3 3D path planning using RRT*

The 3D path planner gets a binary version of the up-to-date octree and updates its bounds
using the current octree bounding boxes. The planning in 3D is more challenging than
in 2D and efficient methods need to be used. Standard path planners such as A∗ are
not efficient for use on-board a quadcopter. We choose to use a variant of the efficient
rapidly-exploring random trees RRT (see LaValle (1998)). We use the open-source li-
brary OMPL, which implements a set of planning algorithms. One of the algorithms
used for path planning in this setup is the RRT* algorithm from Karaman and Frazzoli
(2011). It is a variant of the original RRT. In the following the choice of this algorithm is
illustrated. RRT is a sampling-based algorithm and provides probabilistic completeness
(see Karaman and Frazzoli (2011)). That means that the probability that the planner fails

Figure 5.5: This figure shows the features tracked on the current frame, the disparity map
of the last keyframe (the color encodes the disparity value) and a view of the volumetric
reconstruction. The current point cloud which overlaps with the map is also drawn.

112

5.5 System description

to find a solution, if there is one, goes to zero as the number of samples approaches in-
finity. Such a sampling-based planner requires a collision checking module as it does not
represent obstacles explicitly (see Karaman and Frazzoli (2011)). A problem of RRT is
that it doesn’t provide any guarantees to an optimal solution. If we use RRT in this setup
we get a valid solution very fast but as stated it is not necessarily optimal. Experiments
show that it is very often not even close to optimal. But as we are planning paths for
a quadcopter optimal paths (or at least short paths) are important to not waste battery
power. To achieve an optimization of the planned path RRT* is used. Basically, the
tree is constructed in the same manner as in normal RRT but not all feasible connections
will be inserted. Normal RRT just inserts a connection between the new node and its
nearest neighbor (considering the Euclidean distance). The RRT* algorithm will check
all nodes in the surrounding of a new node and only insert the shortest path to the new
node, considering a cost function, into the tree. This cost function differs from the Eu-
clidean distance, because on the path from the root to the node, which will be connected
to the new node, there might be some obstacle that increases the cost in comparison
to a straight line connection. Therefore the nearest neighbor of the new node does not
have to be on the shortest path to the new node. After that, all the surrounding nodes
are checked again whether there is a new shortest path to each of them using the newly
inserted node. If that is the case, then the tree gets rewired to maintain it a tree structure.
As stated in Karaman and Frazzoli (2011), RRT* is probabilistically complete, like the
normal RRT, but moreover it is asymptotically optimal. That means that the returned
solution converges almost surely to the optimal path (see Karaman and Frazzoli (2011)).
This property made the RRT* algorithm a good choice for this path planning scenario.
Moreover, the algorithm is not limited to finding geometric shortest paths but can also
optimize towards a mixed optimization objective taking different costs (e.g. avoiding
power extensive maneuvers) into account. In the quadcopter online planning scenario it
has to be considered that one has to make a trade-off between spending energy and time
flying a non-optimal path vs. spending energy and time hovering too long to compute the
optimal path plus flying this path. Once a path is planned the way-points are sent to the
Pixhawk controller via a serial connection. The Pixhawk controller takes care of flying
the quadcopter to the desired destination.

113

Chapter 5 Application: Outdoor Obstacle Avoidance using Stereo for a Quadcopter MAV

(a) (b)

Figure 5.6: Thanks to the volumetric global map maintained by our algorithm, we can
plan collision-free paths between any two positions on the global map. (a) a view of the
outdoor environment in which we did the experiment. (b) a Google Maps view of this
area. The yellow rectangle shows the mapped area and the red line inside it shows the
straight line between the start and goal position for the planner.

(a) (b)

Figure 5.7: (a) the sparse map built by the SLAM algorithm. This map is used for pose
estimation and re-localization. (b) the 3D volumetric map (Octomap) which is used by
the planner. The green dots show the robot trajectory.

114

5.5 System description

(a)

(b)

(c)

Figure 5.8: (a) and (b) show two views of a set of 3D paths between the start and des-
tination positions. These views correspond to the black rectangle region of the map in
(b).

115

Chapter 5 Application: Outdoor Obstacle Avoidance using Stereo for a Quadcopter MAV

5.6 Results from outdoor experiments

We performed outdoor experiments in an environment with vegetation (grass), trees,
walls and asphalt. Some pictures of this environment can be seen in Fig. 5.3, Fig. 5.8(c),
Fig. 5.6(a) and Fig. 5.6(b). We uploaded a video to Youtube to show some of our results.
Link: https://youtu.be/h3yBGVeW8zQ.
Fig. 5.8 shows the details of an outdoor experiment. It shows the sparse map and the
volumetric map. A set of collision-free paths between two points are also shown. Table
5.1 shows some statistics from the outdoor experiment. The running times are reported
for the case where all software packages of our system (see Fig. 5.2) are running at
the same time on-board the quadcopter. The average time for the tracking thread of the
hybrid SLAM system is 72ms, which corresponds to a robot pose update at 14 f ps. As
we are not performing any aggressive flight maneuvers, the pose update meets the real-
time requirements. We set two configurations for performing the dense stereo matching.
In the first configuration, we use the full image resolution (640×480) and we set the
disparity search range to 96 disparities. On average, the running-time of the dense stereo
matching at this resolution is 183ms. In the second option, we down-scale the images and
perform the dense stereo matching at half-resolution (320×240) and we set the disparity
search range to 48 disparity candidates. The second configuration is much faster (55ms)
while still providing depth maps which are accurate enough to be used for path planning.
The update time of the OctoMap depends on the resolution of the estimated depth maps.
The average OctoMap update time is 191ms for the full depth map resolution (640×480)
and 62ms for the half resolution. The octree resolution (voxel size) is set to 10cm. The
ray casting is set to identify the voxels which need to be updated up to a distance of
8m along the ray. The planning time is set to 10s. The planner outputs a set of smooth
intermediate way-points for stable control of the autonomous flight. The paths include
sufficient intermediate way-points between the start and destination positions. In the
examples shown in the Fig. 5.8, the RRT* planner made on average 86 intermediate way-
points between the start and destination positions. In the current system, the destination
position for the planner is set manually using a script. If the goal position is outside
of the bounding box then the planner sets the destination as the farthest position, along
the straight line between the start position and destination position, which is inside the
mapped area (bounding box).

5.7 Conclusion

This chapter presents a system for outdoor obstacle avoidance using a stereo camera.
We try to answer the basic three questions for autonomous navigation: (1) “where am
I?”, (2) “where are other places with respect to me?” and (3) “how do I get to other
places from here?”. We used our algorithms described in chapter 3 (Hybrid SLAM)
and chapter 4 (LS-ELAS) to build a system for outdoor obstacle avoidance using stereo

116

https://youtu.be/h3yBGVeW8zQ

5.7 Conclusion

Sequence length (number of stereo pairs) 9040
Number of keyframes 1128
Number of map points 30616
Time for the feature based tracking 52 ms
Time for direct alignment refinement 21 ms

Run-time for dense stereo matching [SGM]
55 ms (320 × 240 pixels);
183 ms (640 × 480 pixels)

Octree update time
62 ms (320 × 240 pixels);
191 ms (640 × 480 pixels)

Size of the octree 360 MB
Size of the binary Octree 1.1 MB
Time for planning using RRT* 10 s

Average number of intermediate way-points
86 way-points
along the path

Table 5.1: Some statistics from the outdoor obstacle avoidance experiment. The different
software packages can run in real time on-board the quadcopter. The localization of the
robot, which is very critical, meets the real-time performance and runs at 14 f ps.

vision. This system performs on-board the quadcopter and in real-time the following
tasks: localization and mapping using our hybrid stereo SLAM, disparity estimation at
keyframes using our LS-ELAS algorithm, volumetric occupancy grid maps estimation
using OctoMap and 3D trajectory planning using RRT*.
During navigation, the tracking thread of the hybrid stereo SLAM algorithm provides
the robot pose at 14 fps. As we are not performing any aggressive flight maneuvers, the
update rate of the robot pose is sufficient to meet real-time requirements. The tracking
thread decides when to create new keyframes. We rely on the keyframes to create the
occupancy grid map. First, we run our LS-ELAS dense stereo matching algorithm. The
produced disparity maps are converted to depth maps and they are fused to construct
the 3D occupancy grid map of the robot environment. The robust OctoMap is memory
efficient and could map a large environment (sequence of 9040 stereo pairs) using only
360MB of memory. Furthermore, if a binarization of the OctoMap is performed, the
size reduces to 1.1MB. This map is global and it allows the robot to keep track of
the explored parts of the scene which are no longer visible. For simplicity, the robot
environment is assumed to be static. We then integrated a module for path planning
in 3D. For simplicity, we manually set the starting and destination points and the 3D
planner generates collision-free paths. The 3D planner is very efficient as it is based on
the efficient RRT* algorithm.

117

Chapter 6

Conclusions

6.1 Summary

In this dissertation, we have investigated the use of stereo cameras to enable full au-
tomony of a MAV. The MAV that we have chosen was a quadcopter with the advantages
of having a high degree of freedom and the possibility to hover at a fixed position. While
having the afore-mentioned advantages, the quadcopter suffers from limited payload and
limited endurance time. The need for efficient algorithms was key for successful fully
autonomous flights.

We developed an efficient hybrid SLAM algorithm (chapter 3), which combines feature-
based SLAM with direct image alignment. We addressed the following important ques-
tion: is it better to estimate the pose from a set of pre-computed feature correspondences
or to estimate the pose and the feature correspondences simultaneously? The hybrid
SLAM combines both methods. Firstly, it performs pose estimation using features. The
hybrid SLAM extends the ORB-SLAM2 algorithm (see Mur-Artal and Tardós (2016)).
Large camera movements can be efficiently and effectively handled using the feature-
based motion estimated. This is due to the availability of repeatable feature detectors and
invariant feature descriptors (invariant to geometric and photometric changes). Secondly,
the hybrid SLAM refines the estimated pose using direct image alignment. In this step
of the algorithm, the hybrid SLAM takes into consideration the details that have been ig-
nored on the first step to simultaneously estimate the pose and the pixel correspondences.
We have evaluated our algorithm using the KITTI odometry benchmark. In trajectories
with no loops and no dynamic objects, our algorithm has shown significant improvement
of the accuracy of the trajectory estimate compared to the original ORB-SLAM2. For
trajectories with loops, no significant improvement was achieved by our refinement step.
This behavior has been seen on trajectories with a single loop and it becomes even more
obvious when there are multiple loops on the trajectory. The refinement step requires
about 25% of the tracking time.

In chapter 4, we have introduced LS-ELAS which is an efficient dense binocular stereo
matching algorithm. LS-ELAS is used for estimating the depth from disparity. The depth
is used on our autonomous quadcopter for two purposes. Firstly, on the hybrid stereo

119

Chapter 6 Conclusions

SLAM for warping the (left) intensity images (see chapter 3). Secondly, for constructing
a volumetric occupancy grid map (see chapter 5). LS-ELAS is based on line segments
and it extends the popular ELAS algorithm (see Geiger et al. (2011a)). Similar to ELAS,
LS-ELAS computes the disparities in near-constant-time. For a small set of pixels (the
support points), the search for matches is done in linear-time with respect to the disparity
search window. While ELAS samples the candidate support points using a uniform grid,
LS-ELAS uses edge segments to sample the support point candidates. This results in
efficient computation of the support points. LS-ELAS has a larger ratio of ”successfully
matched pixels over all candidates” than ELAS. Moreover, the support points from LS-
ELAS allow for depth discontinuity awareness, as they are sampled along edges. A 2D
triangle mesh is then constructed using the set of support points and the set of line seg-
ments. As the disparity is computed for the triangles corners (support points), one may
compute a mean disparity for all pixels (inside the triangles) by means of interpolation.
A prior based on the mean disparity can be set for all the remaining pixels on the image.
Thus, the matching of the remaining pixels can be achieved in constant-time by searching
for matches in a fixed interval of candidates disparities around the mean disparity. This
results in a near-constant-time algorithm for stereo matching. We validated our approach
using the newest version of the Middlebury stereo benchmark (version 3, 2014). Many
error metrics are implemented to show different aspects of the compared algorithms. The
metrics include the percentage of bad pixels, the average disparity error, the root mean
square disparity error (RMSE), the median error, and the time/MP metric. The averaged
results over all stereo pairs on the test dataset show that LS-ELAS outperforms ELAS
according to all metrics except the RMSE metric. ELAS slightly outperforms LS-ELAS
according to RMSE.

Finally (in chapter 5), we used these algorithms to build a system for outdoor obstacle
avoidance in unknown environments. The goal of this system was to show that our
approaches can work in real-time on-board the experimental platform. The challenge
was to run all the required algorithms on-board the quadcopter in real-time at sufficient
frame rates.

6.2 Future work
The research presented in this thesis has raised many questions. The approaches that
have been proposed still have limitations.
The combination of feature-based SLAM with direct image alignment has increased the
accuracy on trajectories with no loops. In trajectories with loops, the original ORB-
SLAM2 (based only on features) yields almost the same results as our approach. The
reason for that is the powerful SLAM back-end from ORB-SLAM2, which is designed
to work with features. For efficiency reasons, we used the SLAM back-end from ORB-
SLAM2. There is need for a better SLAM back-end for our approach. An option would
be to design a SLAM back-end based on photometric bundle adjustment (see Alismail

120

6.2 Future work

et al. (2016b)) to jointly optimize the camera trajectory and scene geometry using direct
image alignment (without explicit extraction of the features). Unfortunately, photomet-
ric bundle adjustment is computationally expensive and thus not suitable for real-time
application on our hardware. A practical option to improve the accuracy of our method
(including loopy trajectories) would be to mount other sensors such as LIDAR and fuse
the visual SLAM estimates with the LIDAR estimates. At the time of writing this disser-
tation (december 2018), the algorithm V-LOAM (see Zhang and Singh (2015)), which
combines visual SLAM with LIDAR, provides the best accuracy results on the KITTI
odometry benchmark.

The LS-ELAS algorithm presented in chapter 4 has shown promising results on the
sparse dataset of the Middlebury stereo benchmark. However, the results on the dense
dataset are not as good as the results on the sparse dataset. The reason for that is that
LS-ELAS does not implement a suitable post-processing step for correcting invalid pix-
els (hole filling). Rather than that, only a simple extrapolation is performed to correct
the invalid pixels. The design of a suitable post-processing method would have increased
the overall performance of LS-ELAS. Additionally, the explicit identification of discon-
tinuity edges can potentially increase the accuracy of LS-ELAS.

The system presented in chapter 5 addressed the following three important questions
for autonomous navigation (see Levitt and Lawton (1990)): (1) “Where am I?”, (2)
“Where are other places with respect to me?”, and (3) “How do I get to other places
from here?”. The second question can be partially answered using a volumetric map. We
say that this question is only partially solved because the identification of other places
would require more than a simple estimation of the environment geometry using grid
maps. For example, additional semantic segmentation and object detection and recog-
nition methods would provide a better answer to the second question. Furthermore, the
destination pose is set manually by the pilot. Thus, there is a need for integrating a
module for choosing where to go (see Shade (2011)).

121

Symbols

B Baseline of the stereo camera.
C Camera center of projection.
C = {ci j} set of candidate support points sampled along the edges. ci j Can-

didate support point i sampled on edge segment e j.
C Camera coordinate system.
dn Disparity of the pixel n.
e Error function (residual).
E = {e j} set of edge segments.
fn 16-dimensional feature vector around the pixel n.
fx, fy,cx,cy Camera intrinsic parameters.
H Hessian matrix.
{Il

cur, Ir
cur} and {Il

re f , Ir
re f } the left and right images of the current frame and

reference keyframe, respectively.
I Image coordinate system.
J Jacobian matrix.
L= {li1 j−i2 j} set of straight line segments between two consecutive support

points si1 j and si2 j which belong to the same edge e j.
Ns Ns =

⋃
i=1,2,3

{dpi−1,dpi,dpi+1}. Where p1,p2 and p3 are the ver-

tices of the triangle to which the pixel belongs. dpi are the dispari-
ties of the triangle vertices.

on = (un,vn, fn)
T Observation with coordinate (un,vn) and feature vector fn.

O = {o1, ...,oN} Set of all image observations. The observations on the left image
(reference image) are denoted by o(l)n and o(r)n for the right image.

p = (x,y) Pixel with the coordinates (x,y).
P = (X ,Y,Z) Point in 3D space corresponding to the image pixel x = (u,v).
Ppro j Projection matrix.
π , π−1 Pinhole camera projection model and its inverse.
K Camera calibration matrix.
R 3×3 rotation matrix.
sm Support point defined by the coordinates (um,vm) and the disparity

dm. sm = (um,vm,dm)
T .

S = {s1, ...,sM} set of the support points . These are elements of C which are
successfully matched on the target image.

123

Symbols

t 3D translation (vector).
T ∈ SE(3) 3D rigid body transform. T = [R|t] where R ∈ SO(3) and t ∈ R3.
Tf Transform estimated by the feature-based approach.
Td Transform estimated by the direct image alignment approach using

the inverse compositional algorithm.
σ ,γ,β Parameters.
µ(S,L,o(l)n) Mean disparity obtained it by interpolating the disparities of the

triangle corners.
W (p,ξ) Warp function with parameter ξ . It maps pixel a p to a pixel

W (p,ξ).
W World coordinate system.
∇I Image intensity gradients (Jacobians).
x̆ Initial guess for the parameter x used to initialize the optimization.
x∗ Optimal value of the parameter x (after the optimization).
ξ ∈ se(3) Minimal parametrization of the 3D rigid body transform in the Lie

algebra.

124

Abbreviations

BA Bundle adjustment
BP Belief propagation
BRIEF Binary robust independent elementary features
deg Degree (°)
Det Determinant of a matrix
DoF Degrees of freedom
EKF Extended Kalman filter
ELAS Efficient large-scale stereo
Eq. Equation
ESC Electronic speed control
Fig. Figure
fps Frames per second
g2o Generalized graph optimization
GPS Global positioning system
GPU Graphics processing unit
KF Keyframe
KITTI Karlsruhe institute of technology and Toyota technological insti-

tute at Chicago
IMU Inertial measurement mnit
LS-ELAS Line segment-based efficient large-scale stereo
MAV Micro aerial vehicle
MB MegaByte
MP MegaPixel
ms Milliseconds
ORB Oriented FAST and rotated BRIEF
PnP Perspective n-points
PTAM Parallel tracking and mapping
RANSAC Random sample consensus
RGB-D Red Green Blue Depth
RMS Root mean square
RMSE Root mean square error
ROS Robot operating system
RRT Rapidly-exploring random tree
SAD Sum of absolute differences

125

Abbreviations

s Seconds
SGM Semi-global matching
SIFT Scale invariant feature transform
SFM Structure from motion
SLAM Simultaneous localization and mapping

126

Bibliography
Agarwal, S., Snavely, N., Simon, I., Sietz, S. M., and Szeliski, R. (2009). Building rome

in a day. 12th. IEEE International Conference on Computer Vision (ICCV), pages
72–79.

Ait Jellal, R. and Zell, A. (2015). A fast dense stereo matching algorithm with an ap-
plication to 3D occupancy mapping using quadrocopters. 17th IEEE International
Conference on Advanced Robotics (ICAR), pages 587–592.

Ait Jellal, R. and Zell, A. (2017). Outdoor obstacle avoidance based on hybrid visual
stereo SLAM for an autonomous quadrotor MAV. European Conference on Mo-
bile Robots (ECMR), pages 1–8. http://www.cogsys.cs.uni-tuebingen.
de/publikationen/2017/JellalECMR17.pdf, Youtube video: https:
//www.youtube.com/watch?v=h3yBGVeW8zQ.

Ait Jellal, R., Lange, M., Wassermann, B., Schilling, A., and Zell, A. (2017). LS-ELAS:
line segment based efficient large scale stereo matching. IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 146–152. http://www.cogsys.
cs.uni-tuebingen.de/publikationen/2017/JellalICRA17.pdf.

Alismail, H., Browning, B., and Lucey, S. (2016a). Bit-planes: Dense subpixel alignment
of binary descriptors. Computing Research Repository (CoRR) in arXiv. September
2016, volume abs/1602.00307.

Alismail, H., Browning, B., and Lucey, S. (2016b). Photometric bundle adjustment for
vision-based SLAM. Computing Research Repository (CoRR) in arXiv. August 2016,
volume abs/1608.02026.

Amanatides, J. and Woo, A. (1987). A fast voxel traversal algorithm for ray tracing. Pro-
ceedings of the European Association for Computer Graphics (EuroGraphics). vol-
ume 87, EG 1987-Technical Papers.

Ascending Technologies (2018). UAV applications – used worldwide for individual
requirements. www.asctec.de/en/uav-uas-drone-applications/, ac-
cessed on October 25, 2019.

Badino, H. and Kanade, T. (2011). A head-wearable short-baseline stereo system for
the simultaneous estimation of structure and motion. Proceedings of the 12th IAPR
Conference on Machine Vision Applications, MVA 2011, pages 185–189.

127

http://www.cogsys.cs.uni-tuebingen.de/publikationen/2017/JellalECMR17.pdf
http://www.cogsys.cs.uni-tuebingen.de/publikationen/2017/JellalECMR17.pdf
https://www.youtube.com/watch?v=h3yBGVeW8zQ
https://www.youtube.com/watch?v=h3yBGVeW8zQ
http://www.cogsys.cs.uni-tuebingen.de/publikationen/2017/JellalICRA17.pdf
http://www.cogsys.cs.uni-tuebingen.de/publikationen/2017/JellalICRA17.pdf
www.asctec.de/en/uav-uas-drone-applications/

Bibliography

Baker, S., Dellaert, F., and Matthews, I. (2001). Aligning images incrementally back-
wards. Carnegie Mellon University Pittsburgh, PA USA. The Robotics Institute. Tech-
nical report CMU-RI-TR-01-03.

Black, M. J. and Jepson, A. (1998). Eigentracking: Robust matching and tracking of
articulated objects using a view-based representation. Springer, International Journal
of Computer Vision (IJCV), 26(1), 63–84.

Bleyer, M., Rhemann, C., and Rother, C. (2011). Patchmatch stereo - stereo matching
with slanted support windows. Proceedings of the British Machine Vision Conference
(BMVC), pages 14.1–14.11.

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
pages 1222–1239.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
https://opencv.org/.

Buczko, M. and Willert, V. (2016). Flow-decoupled normalized reprojection error for
visual odometry. 2016 IEEE 19th International Conference on Intelligent Transporta-
tion Systems (ITSC), pages 1161–1167.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 8(6), 679–698.

Chang, C. and Chatterjee, S. (1992). Quantization error analysis in stereo vision. Con-
ference Record of the 26th. Asilomar Conference on Signals, Systems and Computers,
2, 1037 – 1041.

Conte, S. D. and de Boor, C. (1980). Elementary Numerical Analysis: An Algorithmic
Approach. International series in pure and applied mathematics, third edition of the
book. McGraw-Hill, New York, Montreal.

Corke, P. (2011). Robotics, Vision and Control - Fundamental Algorithms in MAT-
LAB®, volume 73. https://www.youtube.com/watch?v=fVJeJMWZcq8&
t=97s.

Cover, H., Choudhury, S., Scherer, S., and Singh, S. (2013). Sparse tangential network
(spartan): Motion planning for micro aerial vehicles. IEEE International Conference
on Robotics and Automation (ICRA), pages 2820–2825.

Dehn, E. (1960). Algebraic Equations: An introduction to the theories of Lagrange and
Galois, volume 24. Dover Publications.

Desjardins, J. (2018). Amazon and UPS are betting big on drone delivery. 2018.10.01.

128

https://opencv.org/
https://www.youtube.com/watch?v=fVJeJMWZcq8&t=97s
https://www.youtube.com/watch?v=fVJeJMWZcq8&t=97s

Bibliography

Einecke, N. and Eggert, J. (2010). A two-stage correlation method for stereoscopic
depth estimation. 2010 IEEE International Conference on Digital Image Computing:
Techniques and Applications (DICTA), pages 227–234.

Emilie, H. (1968). On the Schur complement, Basel Mathematical Notes,(University of
Basel). Journal of Combinatorial Theory (JCT), 14.

Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale direct monocu-
lar SLAM. European Conference on Computer Vision (ECCV), 8690, 1–16.

Engel, J., Stueckler, J., and Cremers, D. (2015). Large-scale direct slam with stereo
cameras. International Conference on Intelligent Robots and Systems (IROS).

Fang, Z. and Scherer, S. (2014). Experimental study of odometry estimation methods
using RGB-D cameras. IEEE International Conference on Intelligent Robots and
Systems (IROS), pages 680–687.

Felzenszwalb, P. and Huttenlocher, D. (2006). Efficient belief propagation for early
vision. International Journal of Computer Vision (IJCV), 70(1), 41–54.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Com-
munications of the Association for Computing Machinery (ACM), 24(6), 381–395.

Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). SVO: Fast semi-direct monocular
visual odometry. IEEE International Conference on Robotics and Automation (ICRA).

Forster, C., Zichao, Z., Michael, G., Manuel, W., and Scaramuzza, D. (2016). SVO
2.0: Semi-direct visual odometry for monocular and multi-camera systems. IEEE
Transactions on Robotics (T-RO).

Geiger, A., Roser, M., and Urtasun, R. (2011a). Efficient large-scale stereo matching.
Proceedings of the 10th Asian Conference on Computer Vision (ACCV) - Volume Part
I, pages 25–38.

Geiger, A., Ziegler, J., and Stiller, C. (2011b). Stereoscan: Dense 3D reconstruction in
real-time. IEEE Intelligent Vehicles Symposium (IV), pages 963 – 968.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? the
kitti vision benchmark suite. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3354–3361.

Grunert, J. A. (1841). Das pothenotische problem in erweiterter gestalt nebst über
seine anwendungen in der geodäsie. Grunerts Archiv für Mathematik und Physik,
1, 238–248.

129

Bibliography

Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Proc. of
Fourth Alvey Vision Conference, pages 147–151.

Hartley, R. I. (1997). In defense of the eight-point algorithm. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 19(6), 580–593. IEEE Computer
Society.

Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision.
Cambridge University Press, second edition.

Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., and Pollefeys, M. (2011). Au-
tonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-
board processing. IEEE International Conference on Robotics and Automation
(ICRA), pages 2472 – 2477.

Hirschmüller, H. (2008). Stereo processing by semi-global matching and mutual infor-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
30(2), 328–341.

Hirschmüller, H., Innocent, P. R., and Garibaldi, J. (2002). Real-time correlation-based
stereo vision with reduced border errors. Springer, International Journal of Computer
Vision (IJCV), pages 229–246.

Honig, Z. (2011). T-Hawk UAV enters Fukushima danger zone, re-
turns with video. http://www.engadget.com/2011/04/21/
t-hawk-uav-entersfukushima-danger-zone-returns-with-video/,
accessed 2018.10.01.

J., E., V., K., and D., C. (2011). Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research, page 846–894.

Jakob, E., Vladlen, K., and Daniel, C. (2016). Direct sparse odometry. arXiv reference
1607.02565. https://arxiv.org/abs/1607.02565.

Kanade, T. and Okutomi, M. (1994). A stereo matching algorithm with an adaptive
window: Theory and experiment. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 16(9), 920–932.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, Sage Publications, 30(7),
846–894.

Kelly, L. (2018). Unimate: the first industrial robot and why it failed. https://
www.history101.com/unimate-first-industrial-robot. Accessed:
2019-02-06.

130

http://www.engadget.com/2011/04/21/t-hawk-uav-entersfukushima-danger-zone-returns-with-video/
http://www.engadget.com/2011/04/21/t-hawk-uav-entersfukushima-danger-zone-returns-with-video/
https://arxiv.org/abs/1607.02565
https://www.history101.com/unimate-first-industrial-robot
https://www.history101.com/unimate-first-industrial-robot

Bibliography

Kerl, C. (2012). Odometry from RGB-D cameras for autonomous quadrocopters. Mas-
ter thesis, Technical University Munich (TUM), Department of Informatics, Munich,
Germany.

Klaus, A., Sormann, M., and K., K. (2006). Segment-based stereo matching using belief
propagation and a self-adapting dissimilarity measure. IEEE International Conference
on Pattern Recognition (ICPR), pages 15–18.

Klein, G. and Murray, D. W. (2007). Parallel tracking and mapping for small ar
workspaces. 2007 6th IEEE and ACM International Symposium on Mixed and Aug-
mented Reality (ISMAR), pages 225–234.

Klose, S., Heise, P., and Knoll, A. (2013). Efficient compositional approaches for real-
time robust direct visual odometry from rgb-d data. 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1100–1106.

Kowalczuk, J., Psota, E. T., and Perez, L. C. (2013). Real-time stereo matching on cuda
using an iterative refinement method for adaptive support-weight correspondences.
IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 23(1),
94–104.

Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g2o:
A general framework for graph optimization. IEEE International Conference on Rob-
otics and Automation (ICRA), pages 3607–3613.

Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., and
Kleiner, A. (2009). On Measuring the Accuracy of SLAM Algorithms. Kluwer Aca-
demic Publishers, Autonomous Robots, 27(4), 387–407.

Labbé, M. and Michaud, F. (2018). RTAB-Map as an open-source lidar and visual si-
multaneous localization and mapping library for large-scale and long-term online op-
eration. Wiley Publisher, Journal of Field Robotics (JFR), 36(2), 416–446.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.
Department of Computer Siene Iowa State University Ames, IA 50011 USA, Citeseer.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least
squares. Brown University, Quarterly of Applied Mathematics, 2(2), 164–168. http:
//www.jstor.org/stable/43633451.

Levitt, T. S. and Lawton, D. T. (1990). Qualitative navigation for mobile robots. Elsevier
Science Publishers Ltd., Artificial Intelligence, 44(3), 305–360. http://dx.doi.
org/10.1016/0004-3702(90)90027-W.

131

http://www.jstor.org/stable/43633451
http://www.jstor.org/stable/43633451
http://dx.doi.org/10.1016/0004-3702(90)90027-W
http://dx.doi.org/10.1016/0004-3702(90)90027-W

Bibliography

Likhachev, M., Ferguson, D., Stentz, A., and Thrun, S. (2005). Anytime dynamic A*:
An anytime, replanning algorithm. International Conference on Automated Planning
and Scheduling (ICAPS), 5, 262–271.

Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from
two projections. Nature, 293, 133–135. Nature Publishing Group.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision (IJCV), 60(2), 91–110. Kluwer Academic
Publishers, Hingham, MA, USA.

Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with an
application to stereo vision. International Joint Conferences on Artificial Intelligence
Organization, 2, 674–679.

Ma, Z., He, K., Wei, Y., Sun, J., and Wu, E. (2013). Constant time weighted median
filtering for stereo matching and beyond. ICCV .

Madsen, K Nielsen, B. and Tingleff, O. (2004). Methods for non-linear least squares
problems. Informatics and mathematical modelling.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the Society for Industrial and Applied Mathematics (SIAM), 11(2),
431–441.

Masselli, A. and Zell, A. (2014). A new geometric approach for faster solving the
perspective-three-point problem. IEEE International Conference on Pattern Recog-
nition (ICPR), pages 2119–2124.

Meagher, D. (October 1980). Octree encoding: A new technique for the representation,
manipulation and display of arbitrary 3D objects by computer. Rensselaer Polytech-
niggc Institute (Technical Report IPL-TR-80-111).

Meier, L., Tanskanen, P., Heng, L., Lee, G. H., Fraundorfer, F., and Pollefeys, M. (2012).
PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard com-
puter vision. Autonomous Robots, 33(1-2), 21–39. ttps://doi.org/10.1007/
s10514-012-9281-4.

Moons, T., Van-Gool, L., and Vergauwen, M. (2010). 3D reconstruction from mul-
tiple images part 1: Principles. Foundations and Trends® in Computer Graphics
and Vision, 4(4), 287–404. https://www.nowpublishers.com/article/
DownloadSummary/CGV-007.

Moravec, H. (1980). Obstacle avoidance and navigation in the real world by a seeing
robot rover. Phd dissertation (cmu-ri-tr3), Carnegie Mellon University, Pittsburgh.
PA, USA.

132

ttps://doi.org/10.1007/s10514-012-9281-4
ttps://doi.org/10.1007/s10514-012-9281-4
https://www.nowpublishers.com/article/DownloadSummary/CGV-007
https://www.nowpublishers.com/article/DownloadSummary/CGV-007

Bibliography

Moravec, H. and Elfes, A. E. (1985). High resolution maps from wide angle sonar. IEEE
International Conference on Robotics and Automation (ICRA), pages 116 – 121.

Mozerov, M. G. and van de Weijer, J. (2015). Accurate stereo matching by two-step
energy minimization. IEEE Transactions on Image Processing (TIP), 24(3), 1153–
1163.

Mur-Artal, R. and Tardós, J. D. (2016). ORB-SLAM2: an open-source SLAM system
for monocular, stereo and RGB-D cameras. arXiv preprint arXiv:1610.06475.

Newcombe, R., Lovegrove, S., and Davison, A. (2011). DTAM: Dense tracking and
mapping in real-time. IEEE International Conference on Computer Vision (ICCV),
pages 2320–2327.

Nicas, J. (2014). Deutsche Post DHL to deliver medicine via
drone. Deutsche Post DHL follows Amazon and Google in test-
ing delivery drones. https://www.wsj.com/articles/
deutsche-post-dhl-to-deliver-medicine-via-drone-1411576151,
accessed October 25 2019.

Nuske, S. T., Choudhury, S., Jain, S., Chambers, A. D., Yoder, L., Scherer, S., Cham-
berlain, L. J., Cover, H., and Singh, S. (2015). Autonomous exploration and motion
planning for an unmanned aerial vehicle navigating rivers. Journal of Field Robotics,
32, 1141 – 1162.

Olsson, C. (2013). Lecture notes in computer vision. Mathematical Imaging Group,
Lund institute of technology,Lund University, Sweden. http://www.maths.lth.
se/matematiklth/personal/calle/datorseende13/.

Pollefeys, M., Kolev, K., Aksoy, Y., and Zeisl, B. (2014). 3D vision course,
https://www.cvg.ethz.ch/teaching/3dvision/2014/index.php. Computer Vision and
Geometry Group Swiss Federal Institute of Technology in Zurich (ETH Zuerich).
https://www.cvg.ethz.ch/teaching/3dvision/2014/index.php.

Rehder, J., Gupta, K., Nuske, S., and Singh, S. (2012). Global pose estimation with lim-
ited gps and long range visual odometry. IEEE International Conference on Robotics
and Automation (ICRA), pages 627–633.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. R. (2011). ORB: An efficient
alternative to SIFT or SURF. IEEE International Conference on Computer Vision
(ICCV), pages 2564–2571.

Saxena, A., Schulte, J., and Ng, A. (2007). Depth estimation using monocular and stereo
cues. IJCAI International Joint Conference on Artificial Intelligence, pages 2197–
2203.

133

https://www.wsj.com/articles/deutsche-post-dhl-to-deliver-medicine-via-drone-1411576151
https://www.wsj.com/articles/deutsche-post-dhl-to-deliver-medicine-via-drone-1411576151
http://www.maths.lth.se/matematiklth/personal/calle/datorseende13/
http://www.maths.lth.se/matematiklth/personal/calle/datorseende13/
https://www.cvg.ethz.ch/teaching/3dvision/2014/index.php

Bibliography

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. International Journal of Computer Vision (IJCV),
47(1-3), 7–42.

Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., and
Westling, P. (2014). High-resolution stereo datasets with subpixel-accurate ground
truth. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), pages
31–42.

Schauwecker, K. (2014). Stereo Vision for Autonomous Micro Aerial Vehicles. PhD
dissertation, Faculty of science at the university of Tübingen, Germany. https://
publikationen.uni-tuebingen.de/xmlui/handle/10900/55173.

Schauwecker, K. and Zell, A. (2014). Robust and efficient volumetric oc-
cupancy mapping with an application to stereo vision. IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 6102–6107.
http://www.ra.cs.uni-tuebingen.de/publikationen/2014/
schauwecker_icra2014.pdf.

Scherer, S., Rehder, J., Achar, S., Cover, H., Chambers, A. D., Nuske, S. T., and Singh,
S. (2012a). River mapping from a flying robot: state estimation, river detection, and
obstacle mapping. Autonomous Robots, 32(5), 189 – 214.

Scherer, S., Dubé, D., and Zell, A. (2012b). Using depth in visual simultaneous localisa-
tion and mapping. 2012 IEEE International Conference on Robotics and Automation
(ICRA), pages 5216–5221. http://www.cogsys.cs.uni-tuebingen.de/
publikationen/2012/scherer2012.pdf.

Scherer, S. A. and Zell, A. (2013). Efficient Onboard RGBD-SLAM for Fully Au-
tonomous MAVs. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2013).

Scherer, S. A., Dube, D., and Zell, A. (2012c). Using Depth in Visual Simultaneous Lo-
calisation and Mapping. IEEE International Conference on Robotics and Automation
(ICRA), pages 5216–5221. St. Paul, Minnesota, USA.

Shade, R. (2011). Choosing Where To Go: Mobile Robot Exploration. Ph.D. thesis,
University of Oxford, Oxford, United Kingdom.

Shum, H. and Szeliski, R. (2000). Systems and experiment paper: Construction of
panoramic image mosaics with global and local alignment. International Journal of
Computer Vision (IJCV), 36, 101–130.

Simon, B. and Matthews, I. (2004). Lucas-kanade 20 years on: A unifying framework.
International Journal of Computer Vision (IJCV), 56(3), 221 – 255.

134

https://publikationen.uni-tuebingen.de/xmlui/handle/10900/55173
https://publikationen.uni-tuebingen.de/xmlui/handle/10900/55173
http://www.ra.cs.uni-tuebingen.de/publikationen/2014/schauwecker_icra2014.pdf
http://www.ra.cs.uni-tuebingen.de/publikationen/2014/schauwecker_icra2014.pdf
http://www.cogsys.cs.uni-tuebingen.de/publikationen/2012/scherer2012.pdf
http://www.cogsys.cs.uni-tuebingen.de/publikationen/2012/scherer2012.pdf

Bibliography

Sinha, S., Scharstein, D., and Szeliski, R. (2014). Efficient high-resolution stereo mat-
ching using local plane sweeps. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1582–1589.

Strasdat, H., Montiel, J. M. M., and Davison, A. J. (2012). Visual SLAM: Why filter?
Elsevier Image and Vision Computing (IVC), pages 65–77. volume 30.

Şucan, I. A., Moll, M., and Kavraki, L. E. (2012). The Open Motion Planning Li-
brary. IEEE Robotics & Automation Magazine, 19(4), 72–82. http://ompl.
kavrakilab.org.

Tomasi, C. and Kanade, T. (1991). Shape and motion from image streams: a factorization
method—part 3 detection and tracking of point features technical report CMU-CS-91-
132. Technical report, International Journal of Computer Vision (IJCV).

Wurm, K., Hornung, A., Bennewitz, M., Stachniss, C., and W., B. (2010). OctoMap: a
probabilistic, flexible, and compact 3D map representation for robotic systems. IEEE
International Conference on Robotics and Automation (ICRA).

Yang, Q., Wang, L., Yang, R., Stewénius, H., and Nistér, D. (2009). Stereo matching with
color-weighted correlation, hierarchical belief propagation, and occlusion handling.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 31(3), 492–
504.

Yang, Q., Wang, L., and Ahuja, N. (2010). A constant-space belief propagation algorithm
for stereo matching. 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1458–1465.

Yoon, K.-J. and Kweon, I.-S. (2006). Adaptive support-weight approach for corre-
spondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 28(4), 650–656.

Zhang, J. and Singh, S. (2015). Visual-lidar odometry and mapping: Low-drift, robust,
and fast. IEEE International Conference on Robotics and Automation (ICRA), pages
2174–2181.

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 22(11), 1330–1334.

135

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org

	1 Introduction
	1.1 Mobile robots
	1.2 Depth cues in the human visual system
	1.2.1 Monocular depth cues:
	1.2.2 Binocular depth cues:

	1.3 Depth estimation and its robotic applications
	1.4 The quadcopter MAVs
	1.5 Benefits and challenges of quadcopters
	1.6 Contributions and outline

	2 Background
	2.1 Mathematical foundations
	2.1.1 Least squares method
	2.1.2 Lie algebra parameterization for motion estimation

	2.2 Image formation and camera model
	2.3 Epipolar geometry
	2.3.1 The Fundamental matrix of computer vision
	2.3.2 The Essential matrix
	2.3.3 Extracting the motion from the Essential matrix

	2.4 The PnP algorithm
	2.5 Stereo matching
	2.5.1 Challenges and assumptions
	2.5.2 Depth from disparity

	2.6 Stereo visual odometry and SLAM
	2.6.1 Visual SLAM and SFM
	2.6.2 Solving the SLAM problem

	3 Hybrid SLAM by combining sparse features with direct image alignment
	3.1 Introduction
	3.2 Motivation
	3.3 Related work
	3.4 ORB-SLAM2: Parallel tracking, mapping and loop closing
	3.5 Hybrid stereo SLAM
	3.5.1 Pose initialization using ORB features
	3.5.2 Refining the pose using direct image alignment
	3.5.3 Loop closure thread
	3.5.4 Autonomous quadcopter flights

	3.6 Evaluation using the KITTI odometry Dataset
	3.6.1 Evaluation criteria
	3.6.2 The KITTI odometry dataset
	3.6.3 Error measures
	3.6.4 Trajectories with no loops
	3.6.5 Behavior on loopy trajectories
	3.6.6 Running time evaluation

	3.7 Qualitative evaluation
	3.8 Conclusion

	4 Line Segment based Efficient Large Scale Stereo Matching
	4.1 Introduction
	4.2 Motivation
	4.3 Related work
	4.4 The LS-ELAS Algorithm
	4.4.1 Edge extraction
	4.4.2 Support points matching along edges
	4.4.3 Probabilistic disparity estimation

	4.5 Evaluation
	4.5.1 The Middlebury stereo benchmark version 3
	4.5.2 Comparing LS-ELAS with ELAS
	4.5.3 Comparing LS-ELAS with other algorithms
	4.5.4 Disparity map examples and view synthesis

	4.6 Conclusion
	4.6.1 Summary
	4.6.2 Discussion: curved or straight line segments

	5 Application: Outdoor Obstacle Avoidance using Stereo for a Quadcopter MAV
	5.1 Introduction
	5.2 Motivation
	5.3 Related work
	5.4 Experimental platform
	5.5 System description
	5.5.1 System overview
	5.5.2 Environment mapping
	5.5.3 3D path planning using RRT*

	5.6 Results from outdoor experiments
	5.7 Conclusion

	6 Conclusions
	6.1 Summary
	6.2 Future work

	Symbols
	Abbreviations
	Bibliography

