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INTRODUCTION

This thesis contributes to the study of projective varieties with torus action. In par-
ticular, we present explicit descriptions and classification results for torus actions of
complexity two and contribute to the classification of singular Fano 3-folds.
The presence of a torus action on a variety brings combinatorial aspects into the game,
as becomes most evident in the case of toric varieties, that means normal varieties Z
containing an algebraic torus T as an open subset, such that the group structure of T
extends to an action on Z. The theory of toric varieties has its origin in 1970, when
Demazure observed the fundamental correspondence between toric varieties and fans [26],
and became a well established and active field of research [22, 24, 26, 34, 65, 66].
A natural step beyond the toric case is to consider T-varieties of complexity one, i.e.
normal varieties X with an effective action of an algebraic torus T×X → X such that
the complexity dim(X)−dim(T) equals one. T-varieties of complexity one are studied as
well since the 1970s. Here, we mention the work on K∗-surfaces [31, 32, 33, 67, 68, 69, 70],
the combinatorial approaches [1, 2, 56, 76] and the more algebraic point of view, based on
trinomials [40, 41, 47, 64]. Our work builds up on the description of rational T-varieties
of complexity one via their Cox rings [40].
In this thesis, we consider T-varieties of arbitrary complexity. More precisely, we are
interested in T-varieties that are Mori dream spaces, meaning normal projective varieties
X with finitely generated divisor class group Cl(X) and finitely generated Cox ring. The
T-action on X gives rise to a rational quotient π : X 99K Y , the so-called maximal orbit
quotient. Note, that for rational T-varieties of complexity one, the target space Y of the
maximal orbit quotient equals P1 and the critical values of π form a point configuration.
In general, the variety Y is again a Mori dream space suitably representing the field of
rational invariants K(X)T = K(Y ), the dimension of Y equals the complexity of the torus
action and π is defined on an open subset consisting of points with finite T-isotropy, see
Definition 1.2.13. In Chapter 1, we present a method to systematically produce all Mori
dream spaces X with torus action having a prescribed maximal orbit quotient X 99K Y ,
see Construction 1.2.5.
Our major example class, the (general/special) arrangement varieties, directly extends
the class of rational T-varieties of complexity one in the following sense: the target
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2 Introduction

space of the maximal orbit quotient P1 is replaced with a higher dimensional projective
space Pc and the point configuration building the critical values of π is replaced with
a hyperplane arrangement in (general/special) position. Some already known examples
are the intrinsic quadrics. These are Mori dream spaces having a Cox ring generated
by homogeneous generators such that the ideal of relations is generated by a single
homogeneous quadratic relation. Intrinsic quadrics were introduced in [15] as an example
class for the bunched ring approach to Mori dream spaces and were for example used
by Bourqui in [17] as a testing ground for Manin’s conjecture. Moreover, in [29] Fujita’s
freeness conjecture was verified for smooth intrinsic quadrics of Picard number at most
two.

Chapter 2 is dedicated to the study of general arrangement varieties. We explicitly
describe their Cox rings as complete intersection rings very similar to the case of ra-
tional T-varieties of complexity one. This allows for instance an explicit description
of their anticanonical divisor classes, see Proposition 2.2.4. Moreover, we present in
Corollary 2.2.16 a smoothness criterion for general arrangement varieties using toric
embeddings constructed via their Cox rings.

Let us turn to smooth general arrangement varieties of small Picard number. Recall,
that in the toric case, the only smooth examples of Picard number one are the projective
spaces Pn. In Picard number two, Kleinschmidt described all smooth projective toric
varieties as projectivized split vector bundles [57]. In the case of smooth rational T-
varieties of complexity one, the classification in Picard number one is due to [59]. Here,
the only varieties are the smooth projective quadrics in dimensions three and four. In
Picard number two, the description of all smooth rational T-varieties of complexity one
is presented in [30] and consists of 13 different families. Moreover, in [29] all smooth
intrinsic quadrics of Picard number at most two are determined.

For smooth projective general arrangement varieties of complexity two, one retrieves
in Picard number one precisely the smooth projective quadrics, see Proposition 2.2.23.
Similar to the case of complexity one, the situation in Picard number two is much more
ample. Theorem 3.1.1 presents the full description of all smooth projective general
arrangement varieties of complexity and Picard number two in 14 different families. We
prove in Section 3.2 that all of them are of true complexity two, meaning that they do
not admit a torus action of lower complexity. In contrast to the case of complexity one,
where being of true complexity one is simply characterized by a singular total coordinate
space, in complexity two this turns out to be a serious case-by-case work introducing
and comparing various invariants of the Cl(X)-graded Cox rings.

Using the explicit description of the anticanonical divisor class for general arrangement
varieties, one extracts the Fano varieties from Theorem 3.1.1 which leads to the complete
classification of smooth Fano general arrangement varieties of true complexity two and
Picard number two in any dimension. We prove in Section 3.4, that all the Fano vari-
eties in Theorem 3.1.3 arise from a finite set of smooth projective general arrangement
varieties of complexity two and Picard number two having dimensions 5 to 8 via iterated
duplication of a free weight, i.e. given a variable that does not show up in the defining
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relations of the Cox ring R(X), one adds a further free variable of the same degree,
see Construction 3.4.1. Geometrically a duplication of a free weight corresponds to two
elementary contractions and a series of isomorphisms in codimension one. This estab-
lishes a similar finiteness feature as observed in [30] in the case of complexity one: Here
the smooth rational Fano T-varieties of complexity one and Picard number two arise
via iterated duplication of a free weight from a finite list of smooth rational projective
T-varieties of complexity one of dimensions 4 to 7.

Theorem (Compare Cor. 3.4.6). Every smooth Fano general arrangement variety of
true complexity two and Picard number two arises via iterated duplication of a free weight
from a finite set of smooth projective general arrangement varieties of true complexity
two and Picard number two of dimensions 5 to 8.

Let us enter the field of singular T-varieties. We concentrate on the singularity types
arising naturally in the context of the Minimal Model Program.

The model case are toric varieties. Toric Fano varieties Z are in one-to-one correspon-
dence to the so called Fano polytopes AZ . The boundary of the Fano polytope ∂AZ is
determined by the property that it encodes the discrepancies of any toric resolution of
singularities:

∂AZ =
{

v%
1 + discr(D%)

; v% primitive
}
,

where discr(D%) is the discrepancy of the torus invariant prime divisor D% defined by the
ray % = cone(v%). This turns the Fano polytope into a combinatorial tool characterizing
singularity types of toric Fano varieties in terms of lattice points. For instance, Z has
at most canonical singularities if and only if the origin is the only lattice point in the
interior of AZ . Moreover, Z has at most terminal singularities if and only if the origin
and the primitive ray generators of the defining fan of Z are the only lattice points of
AZ . The Fano polytope was used i.a. by Kasprzyk to classify all three-dimensional toric
Fano varieties with at most canonical singularities [54, 55].

Now consider rational Fano T-varieties of complexity one. These varieties allow a natural
T-equivariant embedding into a toric variety X ⊆ Z, where the defining fan Σ of Z is
constructed via the Cox ring of X, see [6]. Intersecting X with the Torus T ⊆ Z, we
assign a tropical variety trop(X) to X and a weakly tropical resolution X ′ → X, where
X ′ is the proper transform of X with respect to the toric morphism Z ′ → Z given by
the common refinement of Σ and trop(X). In this situation, the anticanonical complex,
a polyhedral complex supported inside trop(X), can be defined in analogy to the toric
Fano polytope, see [13]. The anticanonical complex AX is bounded if and only if X is
log terminal. In this situation its boundary ∂AX is determined by the property that it
encodes the discrepancies of any toric ambient resolution of singularities in full analogy
to the Fano polytope. Here, a toric ambient resolution of singularities is a resolution of
singularities X ′′ → X, induced by a toric resolution of singularities Z ′′ → Z factoring
over Z ′ → Z. In particular canonicity and terminality of X can be read off AX in
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the same manner as for the toric Fano polytope. The anticanonical complex was used
in [13] to classify all three-dimensional Q-factorial rational Fano non-toric T-varieties of
complexity and Picard number one, having at most terminal singularities.
Building up on [13], we enlarge the area of application of the anticanonical complex
to Mori dream spaces with torus action of higher complexity. Similar to the rational
T-varieties of complexity one, these varieties admit a specific equivariant embedding
X ⊆ ZX into a toric variety, adapted to the geometry of ZX , see Theorem 1.2.10. Using
this toric embedding X ⊆ ZX and the associated weakly tropical resolution X ′ → X,
the central question is whether a toric ambient resolution of singularities exists. In this
situation we say that X admits an anticanonical complex if there exists a polyhedral
complex AX supported inside trop(X) encoding the discrepancies of any toric ambient
resolution of singularities via its boundary as indicated above; see 4.2.1 for the pre-
cise definition. Our main result reduces the question of toric ambient resolvability and
therefore the existence of an anticanonical complex to an explicit maximal orbit quotient,
meaning a maximal orbit quotient X 99K Y fitting into the commutative diagram

X //

/T
��

ZX

/T
��

Y // ZY ,

where ZX 99K ZY is defined on the union over all toric orbits of codimension at most one
and there yields a categorical quotient for the T-action; see Construction 4.3.3 for the
details. The necessary property of the quotient space Y ⊆ ZY is semi-locally toric weakly
tropical resolvability, meaning that the weakly tropical resolution Y ′ ⊆ ZY ′ is locally toric
in a strong sense, reflecting properties of its ambient toric variety; see Definition 4.1.3.

Theorem (Compare Cor. 4.3.9). Let X be a Q-Gorenstein Mori dream space with torus
action having an explicit maximal orbit quotient X 99K Y , where Y is complete and
admits a semi-locally toric weakly tropical resolution. Then X admits an anticanonical
complex AX and the following statements hold:

(i) X has at most log terminal singularities if and only if the anticanonical complex
AX is bounded.

(ii) X has at most canonical singularities if and only if 0 is the only lattice point in
the relative interior of AX .

(iii) X has at most terminal singularities if and only if 0 and the primitive generators
of the rays of the defining fan of ZX are the only lattice points of AX .

Note, that in this theorem X is not assumed to be Fano. In fact, the Fano property
reflects in certain convexity properties of the anticanonical complex, see Corollary 4.6.3
and Example 4.6.4.
Now, the idea is to apply the anticanonical complex to arrangement varieties. As a first
result we obtain anticanonical complexes for general arrangement varieties:
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Theorem (Compare Thm. 4.4.1). Every Q-Gorenstein general arrangement variety ad-
mits an anticanonical complex.

In Sections 4.5 and 4.6 we provide explicit descriptions for the anticanonical complex
of a general arrangement variety. As an application, we characterize log-terminality for
general arrangement varieties of complexity two in terms of exponents in the defining
relations of their Cox rings, see Corollary 4.5.16.

In Chapter 5 we use the anticanonical complex to obtain classification results for three-
dimensional Fano intrinsic quadrics having at most canonical singularities:

Theorem (Compare Thm. 5.1.1). Every three-dimensional Q-factorial Fano intrinsic
quadric having Picard number one and at most canonical singularities is isomorphic to
precisely one of the following varieties X defined by its Cl(X)-graded Cox ring R(X),
its matrix of generator degrees Q = [w1, . . . , wr] and its anticanonical divisor class
−KX ∈ Ample(X). Moreover, we list their Fano-index q(X) and their anticanonical
self-intersection number −K3

X .

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX q(X) −K3
X

1 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

1 1 1 1 1
] [

3
] 3 54

2 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

2 2 1 3 2
] [

6
] 6 36

3 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

1 3 1 3 2
] [

6
] 6 48

4 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

2 4 1 5 3
] [

9
] 9 729

20

5 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

2 6 3 5 4
] [

12
] 12 96

5

6 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

3 5 1 7 4
] [

12
] 12 1152

35

7 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

3 7 2 8 5
] [

15
] 15 1125

56

8 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 2
1̄ 1̄ 0̄ 1̄ 0̄

] [
8
1̄

]
1 32

3

9 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

6 4 5 5 2
1̄ 1̄ 0̄ 1̄ 0̄

] [
12
1̄

]
3 36

5

10 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 6
1̄ 1̄ 0̄ 1̄ 0̄

] [
12
1̄

]
3 12

11 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z2

[
1 3 1 3 2
1̄ 1̄ 0̄ 0̄ 1̄

] [
6
1̄

]
3 24

12 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 0̄

] [
3
1̄

]
3 27

13 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z2

[
1 1 1 1 1
1̄ 1̄ 0̄ 0̄ 0̄

] [
3
0̄

]
3 54

14 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

1 1 1 1 2
0̄ 0̄ 1̄ 0̄ 1̄

] [
4
0̄

]
4 32
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15 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

3 1 2 2 1
1̄ 1̄ 1̄ 0̄ 0̄

] [
5
1̄

]
5 125

6

16 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

1 3 2 2 2
0̄ 0̄ 0̄ 1̄ 1̄

] [
6
0̄

]
6 18

17 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z2

[
2 2 1 3 2
1̄ 1̄ 0̄ 0̄ 0̄

] [
6
0̄

]
6 18

18 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z2

[
1 3 1 3 2
1̄ 1̄ 0̄ 0̄ 0̄

] [
6
0̄

]
6 24

19 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 1
1̄ 1̄ 1̄ 0̄ 0̄

] [
7
1̄

]
7 343

48

20 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 2
1̄ 1̄ 1̄ 0̄ 1̄

] [
8
0̄

]
8 32

3

21 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 2
0̄ 0̄ 1̄ 0̄ 1̄

] [
8
0̄

]
8 32

3

22 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

5 1 3 3 2
0̄ 0̄ 1̄ 0̄ 1̄

] [
8
0̄

]
8 256

15

23 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

1 3 2 2 4
0̄ 0̄ 1̄ 0̄ 1̄

] [
8
0̄

]
8 64

3

24 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

5 3 4 4 1
1̄ 1̄ 1̄ 0̄ 0̄

] [
9
1̄

]
9 243

20

25 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

3 5 4 4 2
1̄ 1̄ 1̄ 0̄ 1̄

] [
10
0̄

]
10 25

3

26 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

5 1 3 3 4
1̄ 1̄ 1̄ 0̄ 1̄

] [
10
0̄

]
10 50

3

27 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

6 4 5 5 2
1̄ 1̄ 0̄ 1̄ 1̄

] [
12
0̄

]
12 36

5

28 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

6 4 5 5 2
0̄ 0̄ 0̄ 1̄ 1̄

] [
12
0̄

]
12 36

5

29 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

7 3 5 5 2
1̄ 1̄ 1̄ 0̄ 1̄

] [
12
0̄

]
12 288

35

30 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

2 4 3 3 6
0̄ 0̄ 1̄ 0̄ 1̄

] [
12
0̄

]
12 12

31 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

2 4 3 3 6
1̄ 1̄ 1̄ 0̄ 1̄

] [
12
0̄

]
12 12

32 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

7 3 5 5 4
0̄ 0̄ 1̄ 0̄ 1̄

] [
14
0̄

]
14 98

15

33 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
1 1 1 1 1
1̄ 2̄ 0̄ 0̄ 0̄

] [
3
0̄

]
3 18

34 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
1 1 1 1 1
1̄ 2̄ 1̄ 2̄ 0̄

] [
3
0̄

]
3 18

35 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
2 2 1 3 2
0̄ 2̄ 0̄ 2̄ 1̄

] [
6
0̄

]
6 12

36 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
2 2 1 3 2
0̄ 2̄ 2̄ 0̄ 1̄

] [
6
0̄

]
6 12

37 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
1 3 1 3 2
0̄ 2̄ 1̄ 1̄ 1̄

] [
6
0̄

]
6 16

38 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 2
1̄ 3̄ 2̄ 0̄ 3̄

] [
4
1̄

]
1 19
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39 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

2 4 3 3 2
3̄ 1̄ 0̄ 2̄ 0̄

] [
8
2̄

]
2 16

3

40 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 2
2̄ 0̄ 1̄ 3̄ 2̄

] [
4
2̄

]
2 16

41 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z4

[
1 1 1 1 1
2̄ 2̄ 1̄ 3̄ 0̄

] [
3
0̄

]
3 27

2

42 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 1
2̄ 0̄ 1̄ 3̄ 3̄

] [
3
3̄

]
3 27

2

43 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 1
0̄ 2̄ 1̄ 3̄ 0̄

] [
3
0̄

]
3 27

2

44 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 2
2̄ 0̄ 1̄ 3̄ 0̄

] [
4
0̄

]
4 16

45 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

3 1 2 2 1
1̄ 1̄ 1̄ 3̄ 0̄

] [
5
0̄

]
5 49

6

46 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 3 2 2 2
1̄ 1̄ 3̄ 1̄ 0̄

] [
6
0̄

]
6 9

47 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

3 1 2 2 2
2̄ 0̄ 1̄ 3̄ 0̄

] [
6
0̄

]
6 9

48 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

2 4 3 3 2
1̄ 3̄ 2̄ 0̄ 2̄

] [
8
0̄

]
8 16

3

49 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z5

[
1 1 1 1 1
2̄ 3̄ 1̄ 4̄ 0̄

] [
3
0̄

]
3 54

5

50 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z6

[
1 1 1 1 1
1̄ 5̄ 2̄ 4̄ 0̄

] [
3
0̄

]
3 9

51 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z6

[
1 1 1 1 1
2̄ 4̄ 3̄ 3̄ 0̄

] [
3
0̄

]
3 9

52 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z6
[

1 1 1 1 1
4̄ 0̄ 2̄ 5̄ 5̄

] [
3
0̄

]
3 9

53 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z6
[

1 1 1 1 2
4̄ 0̄ 5̄ 2̄ 1̄

] [
4
2̄

]
4 32

3

54 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z8
[

1 1 1 1 1
2̄ 0̄ 5̄ 1̄ 3̄

] [
3
1̄

]
3 27

4

55 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z8
[

1 1 1 1 2
2̄ 0̄ 5̄ 1̄ 2̄

] [
4
0̄

]
4 8

56 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z8
[

1 1 1 1 2
2̄ 0̄ 5̄ 1̄ 6̄

] [
4
4̄

]
4 8

57 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z9

[
1 1 1 1 1
4̄ 5̄ 3̄ 6̄ 0̄

] [
3
0̄

]
3 6

58 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z12
[

1 1 1 1 1
2̄ 0̄ 7̄ 1̄ 4̄

] [
3
0̄

]
3 9

2

59 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
2 2 2 1 1
1̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 0̄

] [
4
0̄
1̄

]
1 19

2

60 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
1 1 1 1 2
1̄ 1̄ 0̄ 0̄ 1̄
0̄ 1̄ 1̄ 0̄ 1̄

] [
4
1̄
1̄

]
1 16

61 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
2 2 2 1 3
1̄ 1̄ 0̄ 0̄ 1̄
0̄ 1̄ 1̄ 0̄ 1̄

] [
6
1̄
1̄

]
3 45

4
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62 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
1 1 1 1 1
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

] [
3
0̄
0̄

]
3 27

2

63 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× (Z2)2
[

1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄

] [
3
0̄
1̄

]
3 27

2

64 K[T1,...,T5]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z× (Z2)2

[
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄

] [
3
0̄
1̄

]
3 27

2

65 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× (Z2)2
[

1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄

] [
4
0̄
0̄

]
4 16

66 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
3 3 3 1 2
0̄ 0̄ 1̄ 0̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
6
0̄
0̄

]
6 6

67 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
2 2 2 1 3
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
6
0̄
0̄

]
6 9

68 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× (Z2)2
[

3 1 2 2 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄

] [
6
0̄
0̄

]
6 9

69 K[T1,...,T5]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z× (Z2)2

[
1 3 2 2 2
1̄ 1̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄

] [
6
0̄
0̄

]
6 9

70 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
1 1 1 3 2
1̄ 1̄ 0̄ 1̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
6
0̄
0̄

]
6 18

71 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× (Z2)2
[

2 4 3 3 2
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 1̄

] [
8
0̄
0̄

]
8 16

3

72 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× Z2 × Z4

[
2 2 2 1 1
1̄ 0̄ 1̄ 0̄ 0̄
1̄ 3̄ 3̄ 1̄ 0̄

] [
4
0̄
2̄

]
2 4

73 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× Z2 × Z4

[
1 1 1 2 1
0̄ 1̄ 0̄ 1̄ 0̄
1̄ 3̄ 3̄ 1̄ 0̄

] [
4
0̄
2̄

]
2 8

74 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2 × Z4

[
1 1 1 1 2
0̄ 0̄ 0̄ 1̄ 1̄
2̄ 0̄ 1̄ 3̄ 0̄

] [
4
0̄
0̄

]
4 8

75 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× Z2 × Z6

[
1 1 1 1 1
1̄ 0̄ 1̄ 0̄ 0̄
4̄ 1̄ 1̄ 5̄ 0̄

] [
3
0̄
3̄

]
3 9

2

76 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2 × Z6

[
1 1 1 1 1
0̄ 0̄ 1̄ 0̄ 1̄
2̄ 0̄ 4̄ 1̄ 1̄

] [
3
0̄
0̄

]
3 9

2

77 K[T1,...,T5]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z× Z2 × Z6

[
1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 0̄
2̄ 4̄ 3̄ 3̄ 0̄

] [
3
1
0

]
3 9

2

78 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× (Z3)2

[
1 1 1 1 1
1̄ 2̄ 1̄ 2̄ 0̄
2̄ 1̄ 1̄ 2̄ 0̄

] [
3
0̄
0̄

]
3 6

79 K[T1,...,T4,S1]
〈T 2

1 +T 2
2 +T 2

3 +T 2
4 〉

Z× (Z2)3
[

1 1 1 1 2
1̄ 1̄ 1̄ 0̄ 1̄
0̄ 0̄ 1̄ 0̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
4
0̄
0̄
0̄

]
4 8

Variety No. 1 is smooth and varieties Nos. 4, 19 and 49 are terminal. Moreover,
varieties Nos. 64, 69, 77 and 79 are of true complexity two. All the others are of true
complexity one.
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In the case of Q-factorial Fano intrinsic quadrics of dimension three and complexity two
that have at most canonical singularities, we are even able to classify all varieties without
restrictions on the Picard number.

Theorem (Compare Thm. 5.1.2). Every three-dimensional Q-factorial Fano intrin-
sic quadric of true complexity two having at most canonical singularities is isomor-
phic to precisely one of the varieties X, specified by its Cl(X)-graded Cox ring R(X),
its matrix of generator degrees Q = [w1, . . . , wr] and its anticanonical divisor class
−KX ∈ Ample(X) as follows:

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX

1 K[T1,...,T4,S1]
〈T 2

1 +T 2
2 +T 2

3 +T 2
4 〉

Z× Z2 × Z2 × Z2

[
1 1 1 1 2
1̄ 1̄ 1̄ 0̄ 1̄
0̄ 0̄ 1̄ 0̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
4
0̄
0̄
0̄

]

2 K[T1,...,T5]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z× Z2 × Z2

[
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄

] [
3
0̄
1̄

]
3 K[T1,...,T5]

〈T1T2+T 2
3 +T 2

4 +T 2
5 〉

Z× Z2 × Z2

[
1 3 2 2 2
1̄ 1̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄

] [
6
0̄
0̄

]
4 K[T1,...,T5]

〈T1T2+T 2
3 +T 2

4 +T 2
5 〉

Z× Z2 × Z6

[
1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 0̄
2̄ 4̄ 3̄ 3̄ 0̄

] [
3
1
0

]

5 K[T1,...,T4,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 +T 2
4 〉

Z2 × Z2 × Z2 × Z2

 1 1 1 1 0 0
0 0 0 0 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄ 0̄
1̄ 0̄ 0̄ 0̄ 1̄ 0̄

  2
2
0̄
0̄
0̄


6 K[T1,...,T5,S1]

〈T1T2+T 2
3 +T 2

4 +T 2
5 〉

Z2 × Z2 × Z2

[
1 1 1 1 1 0
−1 1 0 0 0 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄

] [
3
1
0̄
1̄

]

7 K[T1,...,T5,S1]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z2 × Z2 × Z2

[
−1 1 0 0 0 1
2 0 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄

] [
1
4
0̄
1̄

]

8 K[T1,...,T5,S1]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z2 × Z2 × Z2

[
1 1 1 1 1 1
1 −1 0 0 0 −2
0̄ 0̄ 1̄ 1̄ 0̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄ 0̄

] [
4
−2
0̄
0̄

]

9 K[T1,...,T5,S1,S2]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z3 × Z2 × Z2

 1 1 1 1 1 0 0
−1 1 0 0 0 1 0
0 0 0 0 0 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄ 0̄

  3
1
2
0̄
1̄



We turn to special arrangement varieties. Recall that a special arrangement variety is a
Mori dream space X with torus action having X 99K Pc as maximal orbit quotient, such
that the critical values form a hyperplane arrangement in special position. Note that not
all special arrangement varieties are honestly special, meaning that they do not admit a
torus action of lower complexity, turning them into a general arrangement variety, see
Example 6.3.3. As we have already treated the general arrangement case, we therefore
restrict ourselves to the case of honestly special arrangement varieties.

A first observation is that there are no smooth honestly special arrangement varieties
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with Picard number at most two, see Theorem 6.3.4.

For the further study, we establish in Sections 6.4 and 6.5 the existence of anticanonical
complexes for special arrangement varieties.

Theorem (Compare Thm. 6.5.1 ). Every Q-Gorenstein special arrangement variety
admits an anticanonical complex.

In contrast to the general arrangement case, where the weakly tropical resolution is again
a general arrangement variety, this is no longer true for special arrangement varieties.
Under the assumption that the weakly tropical resolution is a toric ambient modification
in the sense of [6], we provide in Section 6.5 an explicit description of the anticanonical
complexes for these varieties.

As an application, we obtain classification results for complexity two torus actions in
dimension three. Here, we consider the simplest honestly special arrangement varieties
that appear: these have five lines in P2 as critical divisors of the maximal orbit quotient.
Moreover, we say that a T-variety X is of finite isotropy order at most k, if there is an
open subset U ⊆ X with complement X \ U of codimension at least two, such that the
isotropy group Tx is either infinite or of order at most k for all x ∈ U .

Theorem (Compare Thm. 6.6.2). Every three-dimensional Fano honestly special ar-
rangement variety of complexity two, having a divisor class group of rank at most two, at
most canonical singularities, five critical lines as the critical values of the maximal orbit
quotient and finite isotropy order at most two is isomorphic to one of the following Fano
varieties X, specified by its Cl(X)-graded Cox ring R(X), its matrix Q = [w1, . . . , wr]
of generator degrees and its anticanonical divisor class −KX ∈ Ample(X).

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX

1
K[T1, T2, T3, T4, T5, S1]〈
T2

1 + T2
2 + T2

3 + T2
4 ,

T2
2 + aT2

3 + T2
5

〉
a 6= 0, 1

Z× (Z2)4

 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 1̄ 1̄ 0̄

  2
0̄
0̄
0̄
0̄


2

K[T1, T2, T3, T4, T5, S1]〈
T2

1 + T2
2 + T2

4 ,
T2

1 + T2
3 + T2

5

〉 Z× (Z2)4

 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 1̄ 1̄ 0̄

  2
0̄
0̄
0̄
0̄


3

K[T1, T2, T3, T4, T5, T6]〈
T1T2 + T2

3 + T2
4 + T2

5 ,
T2

3 + aT2
4 + T2

6

〉
a 6= 0, 1

Z× (Z2)2 × Z4

[
1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 3̄ 2̄ 0̄ 0̄ 0̄

] [
2
0̄
0̄
2̄

]

4
K[T1, T2, T3, T4, T5, T6]〈

T1T2 + T2
3 + T2

5 ,
T1T2 + T2

4 + T2
6

〉 Z× (Z2)2 × Z4

[
1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
3̄ 1̄ 2̄ 0̄ 0̄ 0̄

] [
2
0̄
0̄
2̄

]
5

K[T1, T2, T3, T4, T5, T6]〈
T2

1 + T2T3 + T2
5 ,

T2
1 + T2

4 + T2
6

〉 Z× (Z2)2 × Z4

[
1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
2̄ 1̄ 3̄ 0̄ 0̄ 0̄

] [
2
0̄
0̄
2̄

]

6
K[T1, T2, T3, T4, T5, T6]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T2
6

〉
a 6= 0, 1

Z× (Z2)2 × Z4

[
1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
2̄ 3̄ 1̄ 0̄ 0̄ 0̄

] [
2
0̄
0̄
2̄

]

7
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T2

3 + T2
4 + T5T6,

T2
3 + aT2

4 + T2
7

〉
a 6= 0, 1

Z2 × (Z2)2
[

1 −1 0 0 −1 1 0
2 0 1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]
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8
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T2

3 + T2
4 + T5T6,

T2
3 + aT2

4 + T2
7

〉
a 6= 0, 1

Z2 × (Z2)2
[

2 −2 0 0 −1 1 0
1 1 1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]

9
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T4T5 + T2
6 ,

T2T3 + aT4T5 + T2
7

a 6= 0, 1

〉
Z2 × (Z2)2

[
0 −1 1 1 −1 0 0
1 1 1 2 0 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

10
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T4T5 + T2
6 ,

T2T3 + aT4T5 + T2
7

a 6= 0, 1

〉
Z2 × (Z2)2

[
0 2 −2 −1 1 0 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

11
K[T1, T2, T3, T4, T5, T6, T7]〈

T1T2 + T3T4 + T2
6 ,

T1T2 + T2
5 + T2

7

〉 Z2 × (Z2)2
[

1 −1 −1 1 0 0 0
2 0 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
12

K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

6 ,
T1T2 + T2

5 + T2
7

〉 Z2 × (Z2)2
[
−1 1 0 0 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
13

K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

6 ,
T1T2 + T2

5 + T2
7

〉 Z2 × (Z2)2
[
−1 1 0 0 0 0 0
2 2 1 3 2 2 2
0̄ 0̄ 1̄ 1̄ 1̄ 1̄ 0̄
0̄ 0̄ 0̄ 0̄ 1̄ 0̄ 1̄

] [
0
6
0̄
1̄

]
14

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
6 ,

T2
1 + T4T5 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 1 −1 0 0
1 1 1 2 0 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
15

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
6 ,

T2
1 + T4T5 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 0 0 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
16

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
6 ,

T2
1 + T4T5 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 2 −2 0 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
17

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
6 ,

T2
1 + T4T5 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 0 0 0
2 2 2 1 3 2 2
1̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄
1̄ 0̄ 0̄ 0̄ 0̄ 0̄ 1̄

] [
0
6
0̄
1̄

]

18
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

5 + T2
6 ,

T3T4 + aT2
5 + T2

7

〉
a 6= 0, 1

Z2 × (Z2)2
[

1 −1 −1 1 0 0 0
2 0 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

19
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2
2 + T2

3 + T4T5,
T2

2 + aT2
3 + T6T7

〉
a 6= 0, 1

Z2 × (Z2)2
[

0 0 0 1 −1 −1 1
1 1 1 2 0 1 1
1̄ 1̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 1̄ 1̄ 0̄ 0̄

] [
0
3
0̄
1̄

]

20
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

5 + T2
6 ,

T3T4 + aT2
5 + T2

7

〉
a 6= 0, 1

Z2 × (Z2)2
[

2 −2 −1 1 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

21
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

5 + T2
6 ,

T3T4 + aT2
5 + T2

7

〉
a 6= 0, 1

Z2 × (Z2)2
[
−1 1 2 −2 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

22
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2
2 + T2

3 + T4T5,
T2

2 + aT2
3 + T6T7

〉
a 6= 0, 1

Z2 × (Z2)2
[

1 1 1 1 1 1 1
0 0 0 −2 2 1 −1
1̄ 1̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 1̄ 1̄ 0̄ 0̄

] [
3
0
0̄
1̄

]

23
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2
2 + T2

3 + T4T5,
T2

2 + aT2
3 + T6T7

〉
a 6= 0, 1

Z2 × (Z2)2
[

1 1 1 1 1 1 1
0 0 0 1 −1 −2 2
1̄ 1̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 0̄ 0̄ 1̄ 1̄

] [
3
0
0̄
1̄

]

24
K[T1, T2, T3, T4, T5, T6, T7]〈

T1T2 + T3T4 + T2
6 ,

T1T2 + T2
5 + T2

7

〉 Z2 × (Z2)2
[
−1 1 2 −2 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
25

K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

6 ,
T1T2 + T2

5 + T2
7

〉 Z2 × (Z2)2
[

2 −2 −1 1 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
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26
K[T1, T2, T3, T4, T5, T6, S1]〈
T1T2 + T2

3 + T2
4 + T2

5 ,
T2

3 + aT2
4 + T2

6

〉
a 6= 0, 1

Z2 × (Z2)3

 −1 1 0 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

  1
3
1̄
1̄
1̄


27

K[T1, T2, T3, T4, T5, T6, S1]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T2
6

〉
a 6= 0, 1

Z2 × (Z2)3

 0 −1 1 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
0̄ 1̄ 1̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

  1
3
1̄
1̄
1̄


28

K[T1, T2, T3, T4, T5, T6, S1]〈
T1T2 + T2

3 + T2
5 ,

T1T2 + T2
4 + T2

6

〉 Z2 × (Z2)3

 −1 1 0 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

  1
3
1̄
1̄
1̄


29

K[T1, T2, T3, T4, T5, T6, S1]〈
T2

1 + T2T3 + T2
5 ,

T2
1 + T2

4 + T2
6

〉 Z2 × (Z2)3

 0 −1 1 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
0̄ 1̄ 1̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

  1
3
1̄
1̄
1̄


30

K[T1, T2, T3, T4, T5, T6, S1]〈
T2

1 + T2
2 + T2

3 + T2
4 ,

T2
2 + aT2

3 + T5T6
a 6= 0, 1

〉
Z2 × (Z2)3

 0 0 0 0 −1 1 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 0̄ 1̄ 1̄ 0̄

  1
3
1̄
0̄
1̄


31

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T6T7
a 6= 0, 1

〉
Z2 × (Z2)2

[
0 1 −1 0 0 −1 1
1 2 0 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄ 0̄

] [
0
3
0̄
0̄

]

32
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T6T7
a 6= 0, 1

〉
Z2 × (Z2)2

[
1 1 1 1 1 1 1
0 −2 2 0 0 1 −1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

] [
3
0
0̄
1̄

]

33
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T6T7
a 6= 0, 1

〉
Z2 × (Z2)2

[
0 −1 1 0 0 2 −2
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 1̄

] [
0
3
0̄
1̄

]

34
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T6T7
a 6= 0, 1

〉
Z2 × (Z2)2

[
0 1 −1 0 0 −1 1
1 1 1 1 1 0 2
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]

35
K[T1, T2, T3, T4, T5, T6, T7]〈

T2
1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 1 −1 0 −1 1 0
1 2 0 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]
36

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 0 0 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
37

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 2 −2 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
38

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 1 −1 0 −1 1 0
1 1 1 1 0 2 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]
39

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 2 −2 0 −1 1 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]
40

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 0 0 0
2 2 2 2 1 3 2
1̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄
1̄ 0̄ 0̄ 0̄ 0̄ 0̄ 1̄

] [
0
6
0̄
0̄

]

The last chapter is an outlook beyond arrangement varieties. Here, we consider
arrangement-product varieties, i.e. Mori dream spaces X with torus action and maximal
orbit quotient X 99K Y , where Y is a product of projective spaces Pc1× . . .×Pct and the
critical divisors form a collection of hyperplanes compatible with the product structure
of Y , see Definition 7.1.1. For these varieties we provide explicit descriptions of their
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Cox rings and obtain classification results in the smooth case. Similar to the special
arrangement case, there are no smooth arrangement-product varieties of Picard number
one, see Proposition 7.1.8. In Picard number two, we obtain the following result:

Theorem (Compare Thm. 7.1.9 and Cor. 7.1.10). Every smooth projective arrangement-
product variety of Picard number two is isomorphic to a variety X specified by its Cox
ring

R(X) = K[T11, . . . , T1k1 , T21, . . . T2k2 ]/〈g1, g2〉,

where

gi =
{
Ti1Ti2 + . . .+ Tiki−1Tiki , ki ≥ 6 even,
Ti1Ti2 + . . .+ Tiki−2Tiki−1 + T 2

iki
, ki ≥ 5 odd,

the matrix Q of generator degrees and an ample class u ∈ Cl(X) = Z2

Q =
[

1 . . . 1 a1 a2 . . . ak2

0 . . . 0 1 1 . . . 1

]
, u = [a1 + 1, 1],

where we have ai ≥ ai+2 ≥ 0 and ai + ai+1 = 0 for i odd and ak2 = 0 if k2 is odd.
Moreover, X is Fano if and only if 0 ≤ a1 ≤ k1−2

k2−2 holds.





CHAPTER

ONE

EXPLICIT T-VARIETIES

In this chapter we develop an approach to systematically produce algebraic varieties with
torus action by constructing them as suitably embedded subvarieties of toric varieties.
The resulting varieties admit an explicit treatment in terms of toric geometry and graded
ring theory. Our approach extends existing constructions of rational varieties with torus
action of complexity one and delivers all Mori dream spaces with torus action. The
results of this chapter are published in the joint work [42].

1.1 Background on toric varieties and Cox rings

In this section we provide the necessary background and fix our notation on toric ge-
ometry and Cox rings. Throughout the whole thesis, the ground field K is algebraically
closed and of characteristic zero. Moreover, the word variety refers to an integral sepa-
rated scheme of finite type over K. In particular, we assume varieties to be irreducible.
By a point we mean a closed point.

When we speak of an action of an algebraic group G on a variety X, then we always
assume the action map G×X → X, (g, x) 7→ g ·x to be a morphism of varieties. A torus
is an algebraic group T isomorphic to a standard torus Tn = (K∗)n and a T-variety
is a normal variety X with an effective torus action, where effective means that only
the neutral element 1 ∈ T acts trivially. The complexity c(X) of a T-variety X is the
difference dim(X)− dim(T).

Toric geometry treats the case of complexity zero. More precisely, a toric variety is
a T-variety Z with a base point z0 ∈ Z such that the orbit map t 7→ t · z0 yields an
open embedding T → Z; we call TZ = T the acting torus of Z and write TZ ⊆ Z,
identifying 1 ∈ T with z0 ∈ Z and TZ with its orbit TZ · z0. Toric geometry originates
in Demazure’s work [26] in the 1970s and connects combinatorics, represented by fans,

15
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with algebraic geometry, represented by toric varieties. As introductory references, we
mention [25, 66, 34, 22]. Here comes the fundamental construction, which at the end
yields a covariant equivalence between the categories of fans and toric varieties.

Construction 1.1.1. A fan in Zn is a finite collection Σ of pointed, convex, polyhedral
cones living in Qn such that for any σ ∈ Σ also every face of σ belongs to Σ and for any
two σ, σ′ ∈ Σ the intersection σ∩σ′ is a face of both, σ and σ′. Given a fan Σ in Zn, the
associated toric variety Z is built by equivariantly gluing the spectra Zσ of the monoid
algebras K[Mσ] of the monoids Mσ := σ∨ ∩ Zn of lattice points inside the dual cones:

Z = ZΣ =
⋃
σ∈Σ

Zσ, Zσ = SpecK[Mσ], K[Mσ] =
⊕
u∈Mσ

Kχu.

The acting torus TZ = Tn = SpecK[Zn] embeds via K[Mσ] ⊆ K[Zn] canonically into
each of the Zσ ⊆ Z and one takes the neutral element 1n ∈ TZ = Tn as base point
z0 ∈ Z. The action of TZ on Z then just extends the group structure of TZ ⊆ Z.
Locally, on the affine open subsets Zσ ⊆ Z, the TZ-action is given by its comorphism
χu 7→ χu ⊗ χu.

Remark 1.1.2. Let Σ be a fan in Zn and Z the associated toric variety. The cones of
Σ are in bijection with the TZ-orbits via σ 7→ TZ · zσ, where zσ denotes the common
limit point for t → 0 of all one-parameter groups t 7→ (tv1 , . . . , tvn) of TZ with v ∈ Zn
taken from the relative interior σ◦ ⊆ σ. The dimension of TZ · zσ equals n − dim(σ).
In particular, the rays %1, . . . , %r of Σ, that means the one-dimensional cones, define the
TZ-invariant prime divisors Di := TZ · z%i of Z.

Cox’s quotient presentation generalizes the classical construction of the projective space
Pn as the quotient of Kn+1 \ {0} by K∗ acting via scalar multiplication. It delivers, for
instance, any complete toric variety as a quotient of an open toric subset of some affine
space by a quasitorus, that means an algebraic group isomorphic to a direct product of
a torus and a finite abelian group. Below and later, we write τ 4 σ if τ ⊆ σ is a face of
the convex, polyhedral cone σ.

Construction 1.1.3. See [21], also [22, Sec. 5] and [6, Sec. 2.1.3]. Consider a fan Σ
in Zn and let %1, . . . , %r denote its rays. In each %i sits a unique primitive lattice vector vi,
the generator of the monoid %i ∩ Zn. The generator matrix of Σ is the (n× r)-matrix

P = [v1, . . . , vr]

having v1, . . . , vr as its columns, numbered accordingly to %1, . . . , %r. We use the letter P
as well to denote the associated linear maps Zr → Zn and Qr → Qn. As any integral
n× r matrix, P defines a homomorphism of tori

p : Tr → Tn, t 7→ (tP1∗ , . . . , tPn∗)

where tPi∗ = tpi11 · · · tpirr has the i-th row of P = (pij) as its exponent vector. Now assume
that v1, . . . , vr generate Qn as a vector space, meaning that the associated toric variety
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Z has no torus factor. Consider the orthant γ = Qr
≥0 and the set

Σ̂ := {τ 4 γ; P (τ) ⊆ σ for some σ ∈ Σ}.

Then Σ̂ is a subfan of the fan Σ̄ of faces of the orthant γ ⊆ Qr. Moreover, P sends cones
from Σ̂ into cones of Σ. Thus, p : Tr → Tn extends to a morphism p : Ẑ → Z of the
associated toric varieties. We arrive at the following picture

Ẑ ⊆

//Hp

��

Z̄ := Kr

Z

where Ẑ ⊆ Z̄ is an open Tr-invariant subvariety and H ⊆ Tr is the kernel of the
homomorphism p : Tr → Tn of the acting tori. Being a closed subgroup of a torus, H is
a quasitorus. For any cone σ ∈ Σ, we have

p−1(Zσ) = Ẑσ̂, σ̂ := cone(ei; vi = P (ei) ∈ σ), p∗O(Zσ) = O(Ẑσ̂)H ,

where ei ∈ Zr is the i-th canonical basis vector. Thus, p : Ẑ → Z is an affine morphism
and the pull back functions are precisely the H-invariants. In other words, p is a good
quotient for the H-action, as indicated by “//H”.

Generalizing the idea of homogeneous coordinates on the projective space, one uses Cox’s
quotient presentation to obtain global coordinates on toric varieties.

Remark 1.1.4. Let Z be a toric variety with quotient presentation p : Ẑ → Z as in 1.1.3.
Then every p-fiber contains a unique closedH-orbit. The presentation in Cox coordinates
of a point x ∈ Z is

x = [z1, . . . , zr], where z = (z1, . . . , zr) ∈ p−1(x) with H · z ⊆ Ẑ closed.

Thus, [z] and [z′] represent the same point x ∈ Z if and only if z and z′ lie in the same
closed H-orbit of Ẑ. For instance, the points zσ ∈ Z, where σ ∈ Σ, are given in Cox
coordinates as

zσ = [ε1, . . . , εr], εi =
{

0, P (ei) ∈ σ,
1, P (ei) 6∈ σ.

Remark 1.1.5. Let Z be a toric variety with quotient presentation p : Ẑ → Z as in 1.1.3.
Then we obtain an injection from the closed subvarietiesX ⊆ Z to theH-invariant closed
subvarieties of Z̄ = Kr via

X 7→ X̄ := p−1(X) ⊆ Z̄.

The vanishing ideal I(X̄) ⊆ K[T1, . . . , Tr] is generated by polynomials g1, . . . , gs being
H-homogeneous in the sense that gj(h·z) = χj(h)gj(z) holds with characters χj ∈ X(H).
We call g1, . . . , gs defining equations in Cox coordinates for X ⊆ Z.
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We turn to Cox rings. Their history starts in the 1970s in a geometric setting, when
Colliot-Thélène and Sansuc introduced the universal torsors presenting smooth varieties
in a universal way as quotients [20]. In toric geometry, the quotient presentation and
Cox rings popped up in the 1990s in work of Audin [7], Cox [21] and others. In 2000,
Hu and Keel observed fundamental connections between Cox rings, Mori theory and
geometric invariant theory [51]. As a general introductory reference on Cox rings, we
mention [6].

We enter the subject. Consider a normal variety X with only constant invertible global
functions and finitely generated divisor class group Cl(X). For a Weil divisor D on X,
denote by O(D) the associated sheaf of sections. Then the Cox sheaf R and the Cox
ring R(X) of X are defined as

R :=
⊕

[D]∈Cl(X)
O(D), R(X) := Γ(X,R) =

⊕
[D]∈Cl(X)

Γ(X,O(D)).

Observe that we grade R and R(X) by divisor classes whereas the homogeneous com-
ponents are defined by divisors. If Cl(X) is torsion free, then this problem of well-
definedness is solved by just regarding R as the sheaf of multi-section algebras: fix a
subgroup K ⊆WDiv(X) of the Weil divisor group mapping isomorphically onto Cl(X)
and work with

R := S =
⊕
D∈K

O(D).

The case of torsion in Cl(X) requires more care: fix a subgroup K ⊆WDiv(X) mapping
onto Cl(X), denote by K0 ⊆ K the subgroup consisting of all principal divisors of K
and choose functions χE ∈ K(X), where E ∈ K0, satisfying

div(χE) = E, χEχE
′ = χE+E′ .

Consider the sheaf S of multi-section algebras associated with K, the subsheaf I ⊆ S of
ideals generated by 1− χE , where E ∈ K0 and define R := S/I. Then R is graded by
K/K0 = Cl(X) via

R[D] := π

 ⊕
D+K0

O(D)

 ,
where π : S → R denotes the projection. Then, up to isomorphy, this construction turns
out not to depend on any of the choices made; we refer to [14, 39] and [6, Sec. 1.1.4] for
the details.

Remark 1.1.6. See [21], also [22, Sec. 5] and [6, Sec. 2.1.3]. Let Z be a toric variety
without torus factor and let D1, . . . , Dr be the TZ-invariant prime divisors of Z. Then
the Cox ring of Z and its Cl(Z)-grading are given as

R(Z) = K[T1, . . . , Tr], deg(Ti) = [Di] ∈ Cl(Z).
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For a more explicit picture, let Z arise from a fan Σ in Zn. Then Di = TZ · z%i ⊆ Z
holds with the rays %1, . . . , %r of Σ. The divisor class group of Z and the divisor classes
of the Di are described by

Cl(Z) = K := Zr/im(P ∗), [Di] = wi := Q(ei) ∈ K,

where we denote by P ∗ the transpose of the generator matrix P of Σ, by Q : Zr → K
the projection and by ei ∈ Zr the i-th canonical basis vector.

Remark 1.1.7. In Construction 1.1.3, the toric variety Z is represented as a quotient
of Ẑ ⊆ Kr by the quasitorus H = ker(p) ⊆ Tr. With K = Cl(Z) = Zr/im(P ∗) from
Remark 1.1.6, we can view H also as the spectrum of the associated group algebra:

H = SpecK[K], K[K] =
⊕
w∈K

Kχw.

Here, the elements χw ∈ K[K] are the characters of H and w 7→ χw defines an isomor-
phism between K and the character group X(H). Setting χi := χwi , we retrieve the
H-action from the Cl(Z)-grading of the Cox ring R(Z) as

h · z = (χ1(h)z1, . . . , χr(h)zr).

In general, the Cox ring R(X) is normal, integral and, as its main algebraic feature,
it is Cl(X)-factorial [4, 39]. Let us recall the meaning. A ring R = ⊕KRw graded by
an abelian group K is K-integral if it has no homogeneous zero divisors. A nonzero
homogeneous non-unit f ∈ R is K-prime if, whenever f divides a product gh of two
homogeneous g, h ∈ R, then it divides g or h. The ring R is called K-factorial if it is
K-integral and every nonzero homogeneous non-unit of R is a product of K-primes. If
Cl(X) is torsion free, then the Cox ring admits unique factorization in the usual sense,
see [14, Prop. 8.4] and also [28, Cor. 1.2].
The bunched ring approach presented in [15, 38, 6] uses Cox rings to encode algebraic
varieties. The central construction starts with a given K-factorial ring R and produces
varieties X having divisor class group K and Cox ring R. In this thesis, we will work
with the following variant being closer to toric geometry in the sense that it uses fans
instead of the bunches of cones of [15, 38, 6]. Let us fix the necessary notation. By
an affine algebra we mean a finitely generated reduced K-algebra. If K is an abelian
group, then we denote by KQ = K ⊗Z Q the associated rational vector space. Given
w ∈ K, we write as well w for the element w ⊗ 1 ∈ KQ. Moreover, if Q : K → K ′ is a
homomorphism, we denote the associated linear map KQ → K ′Q as well by Q.

Construction 1.1.8. Let K be a finitely generated abelian group and R = ⊕KRw a
K-factorial, normal, integral, affine K-algebra with only constant homogeneous units.
Suppose that f1, . . . , fr are pairwise non-associated K-prime generators of R such that
any r−1 of the degrees wi := deg(fi) generateK as a group and for τi := cone(wj ; j 6= i),
the intersection τ1 ∩ . . . ∩ τr is of full dimension in KQ. Consider the closed embedding

SpecR =: X̄
x7→(f1(x),...,fr(x)) // Z̄ := Kr.
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The quasitorus H = SpecK[K] acts on Z̄ via h · z = (χ1(h)z1, . . . , χr(h)zr), where
χi ∈ X(H) is the character corresponding to wi ∈ K. This action leaves the subvariety
X̄ ⊆ Z̄ invariant. Now, consider the degree map

Q : Zr → K, ei 7→ wi.

Let P be an integral (n × r)-matrix, the rows of which generate ker(Q) ⊆ Zr. Then
the assumptions on f1, . . . , fr ensure that the columns of P are pairwise different and
primitive, see [6, Thm. 2.2.2.6 and Lemma 2.1.4.1]. Fix any fan Σ having P as generator
matrix. The associated toric variety Z and p : Ẑ → Z from Construction 1.1.3 fit into a
commutative diagram

X̂ ⊆

//H p

��

Ẑ

//Hp

��
X ⊆ Z

where we set X̂ := X̄ ∩ Ẑ and X := X̂//H is a normal, closed subvariety of Z. We
speak of X ⊆ Z as an explicit variety, refer to α = (f1, . . . , fr) as the embedding system
of X ⊆ Z and call any system of K-homogeneous generators g1, . . . , gs of the vanishing
ideal I(X̄) ⊆ K[T1, . . . , Tr] defining equations for X.

Remark 1.1.9. If, in Construction 1.1.8, the ambient toric variety Z is affine (complete,
projective), then the resulting X is affine (complete, projective).

The interface from explicit varieties to bunched rings relies on linear Gale duality. Here
comes how this concretely works in our situation.

Remark 1.1.10. Notation as in 1.1.3, 1.1.6 and 1.1.8. To any explicit variety X ⊆ Z,
we can apply the machinery of bunched rings [6, Chap. 3]. The translation into the
latter setting runs as follows. Consider the homomorphisms

P : Zr → Zn, ei 7→ vi, Q : Zr → K, ei 7→ wi,

where K = Zr/im(P ∗). For σ ∈ Σ, the face σ̂ 4 γ ⊆ Qr of the orthant is generated by
the ei with vi ∈ σ. The complementary face σ̂∗ 4 γ of σ̂ 4 γ is generated by the ei with
ei 6∈ σ̂. Set

Φ := {Q(σ̂∗); σ ∈ Σ with X ∩ Tz · zσ 6= ∅}.

Then Φ is a collection of cones in KQ with pairwise intersecting relative interiors. With
the system of generators F := (f1, . . . , fr), we obtain a bunched ring (R,F,Φ) in the
sense of [6, Def. 3.2.1.2]. We have an open inclusion

X ⊆ X(R,F,Φ)

into the variety associated with the bunched ring [6, Def. 3.2.1.3] such that the comple-
ment of X in X(R,F,Φ) is of codimension at least two. If X is affine or complete, then
the above inclusion is even an equality.
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Based on this translation, we will import several statements on the geometry of explicit
(T-)varieties in Section 1.4. For the moment, we just mention the following.

Remark 1.1.11. See [6, Thm. 3.2.1.4]. For every explicit variety X ⊆ Z, the divisor
class group and the Cox ring of X are given as

Cl(X) = K = Cl(Z), R(X) = R = R(Z)/I(X̄).

Moreover, X̂ is the relative spectrum of the Cox sheaf on X, which in turn is given as
the direct image R = p∗OX̂ . Finally, we have the prime divisors

DX
i = X ∩DZ

i ⊆ X

induced by the toric prime divisors DZ
1 , . . . , D

Z
r . Here each DX

i is determined by the
property p∗DX

i = VX̄(Ti).

Coming embedded into a toric variety, every explicit variety X ⊆ Z inherits the A2-
property: any two points of X admit a common affine neighborhood. The normal A2-
varieties are precisely the normal varieties that are embeddable into a toric variety,
see [77]. An A2-variety Y is A2-maximal if it does not allow open embeddings into
A2-varieties Y ′ such that Y ′ \Y is non-empty of codimension at least two. For example,
affine and projective varieties are A2-maximal.

Remark 1.1.12. See [6, Thm. 3.2.1.9]. Every A2-maximal variety with only constant
invertible global functions, finitely generated divisor class group and finitely generated
Cox ring can be represented as an explicit variety.

In [51], Hu and Keel introduced the Mori dream spaces as Q-factorial projective varieties
with a Mori chamber decomposition satisfying suitable finiteness properties which in
particular guarantee an optimal behavior with respect to the minimal model programme.

Remark 1.1.13. According to [51, Prop. 2.9], the Mori dream spaces are precisely the
Q-factorial projective varieties with a finitely generated Cox ring. In particular, every
Mori dream space can be represented as an explicit variety.

1.2 Constructing explicit T-varieties

We present our method of producing systematically explicit T-varieties, see Construc-
tion 1.2.5, and formulate basic properties, see Proposition 1.2.7, Theorem 1.2.10 and
Proposition 1.2.17. The proofs of the latter results are given in the subsequent section.
We begin by indicating the ideas behind Construction 1.2.5. First, take a glance at the
following naive way to produce varieties with torus action sitting inside a given toric
variety.
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Recipe 1.2.1. Let Z be a toric variety, TZ = T′×T a splitting of the acting torus into
closed subtori and Y ⊆ T′ a closed subvariety. Consider the closure

X := Y × T ⊆ Z.

Then the variety X ⊆ Z is invariant under the action of T on Z and thus we obtain an
effective algebraic torus action T×X → X. By construction, we have

X ∩ TZ = Y × T, K(X)T = K(Y ).

In particular, Y represents the field of T-invariant rational functions of X and thus the
projection TZ → T′ defines a rational quotient X 99K Y for the T-action on X.

So far, Recipe 1.2.1 provides no specifically close relations between the geometry of X
and that of its ambient toric variety Z. Nevertheless, we know in advance the rational
quotient Y and, stemming from a subtorus action on Z, the T-action on X can be
studied by toric methods. Moreover, Recipe 1.2.1 produces for instance all projective
T-varieties, as we infer from the following.

Remark 1.2.2. Any T-variety X that admits an equivariant embedding into a toric
variety Z with T acting as a subtorus of TZ can be represented as in Recipe 1.2.1.
The techniques from [37, 38] yield such equivariant embeddings for T-varieties X with
the A2-property provided they are Q-factorial or, more generally, divisorial in the sense
of [16], or have a Cox sheaf of locally finite type.

Our aim is to bring together the features of Recipe 1.2.1 with those of Construction 1.1.8.
Let us first look at a concrete example, indicating the main rules of the subsequent
construction game and illustrating the notation used there. The example we are going
to treat is a well known K∗-surface, occurring as an important step in resolving the
E6-singular cubic surface; see [36, Sec. 4] and, for links to various other aspects, also [6,
p. 522].

Example 1.2.3. Our initial data is a projective line Y ⊆ P2 given in homogeneous
coordinates by the following equation:

Y = V (T0 + T1 + T2) ⊆ P2.

We regard P2 as the toric variety defined by the complete fan ∆ with the generator
matrix

B = [u0, u1, u2] =
[
−1 1 0
−1 0 1

]
.

Now we start the game that builds up the generator matrix P of the fan of the prospective
ambient toric variety Z of our final X. First produce a matrix

P0 = [u01,, u02, u11, u21] =
[
−3 −1 3 0
−3 −1 0 2

]
,
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the columns uij of which are positive multiples of the columns ui of B. Then append a
zero column to P0, a block d below P0 and a block d′ below the zero column:

P = [v01,, v02, v11, v21, v1] =

 −3 −1 3 0 0
−3 −1 0 2 0
−2 −1 1 1 1

 =
[
P0 0
d d′

]
.

Let Σ be any complete fan in Z3 having P as its generator matrix and let Z be the
associated toric variety. Then the acting torus TZ of Z splits as

TZ = T3 = T2 × K∗.

Moreover, Y ∩ T2 ⊆ T2 is the zero set of 1 + T1/T0 + T2/T0. Proceeding exactly as in
Recipe 1.2.1 yields a surface X coming with an effective K∗-action:

X := (Y ∩ T2)×K∗ ⊆ Z.

We have X ∩T3 = V (1 + T1/T0 + T2/T0). Pulling back that equation via the homomor-
phism p : T5 → T3 given by P leads to the equation for X in Cox coordinates:

X̄ = V (T 3
01T02 + T 3

11 + T 2
21) ⊆ Z̄ = K5,

where the variables Tij represent columns of P0 and the index ij tells us that we have
the j-th repetition of the i-th column of B, scaled by the exponent lij of Tij .

Remark 1.2.4. In Example 1.2.3, we encountered two explicit varieties in the sense of
Construction 1.1.8: first, the projective line Y ⊆ P2 and second, the K∗-surface X ⊆ Z.
In particular, divisor class group and Cox ring of X are given as

Cl(X) = K = Z5/im(P ∗) = Z2,

R(X) = K[T01, T02, T11, T21, T1]/〈T 3
01T02 + T 3

11 + T 2
21〉.

Observe that the manipulations on the matrix B turned the redundant defining relation
T0 + T1 + T2 of Y into the serious relation T 3

01T02 + T 3
11 + T 2

21, defining the resulting X.

We come to the general construction of explicit T-varieties. It starts with a given explicit
variety Y ⊆ Z∆ provided by Construction 1.1.8 and delivers an explicit variety X ⊆ ZΣ
which is invariant under a direct factor T ⊆ TΣ of the acting torus TΣ ⊆ ZΣ.

Construction 1.2.5. Let Y ⊆ Z∆ be an explicit variety with embedding system α =
(f0, . . . , fr). The defining fan ∆ of Z∆ lives in some Zt and has a t× (r + 1) generator
matrix

B = [u0, . . . , ur].

In particular, Cl(Y ) = Cl(Z∆) equals KB := Zr+1/im(B∗) and the Cox ring of Y equals
the KB-factorial input ring RY of Construction 1.1.8. We build up a new matrix from B
and the following data
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• positive integers n0, . . . , nr and non-negative integers m, s with t + s ≤ n + m,
where n := n0 + . . .+ nr,

• for any two i, j, where i = 0, . . . , r and j = 1, . . . , ni, a positive integer lij and a
vector dij ∈ Zs,

• for any k, where 1 ≤ k ≤ m, a vector d′k ∈ Zs,

where, with the multiples uij := lijui ∈ Zt of the columns of B, we require that the
vectors

vij = (uij , dij) ∈ Zt+s, vk = (0, d′k) ∈ Zt+s

are all primitive, any two of them are distinct and altogether they generate Qt+s as a
vector space. Store the vij and vk as columns in a (t+ s)× (n+m) matrix

P = [vij , vk] =
[
u01 . . . u0n0 . . . ur1 . . . urnr 0 . . . 0
d01 . . . d0n0 . . . dr1 . . . drnr d′1 . . . d′m

]
.

Now, let Σ be any fan in Zt+s having P as its generator matrix and denote by ZΣ the
associated toric variety. Then we obtain a commutative diagram

X ⊆

��

ZΣ

��
Y ⊆ Z∆

where the rational map ZΣ 99K Z∆ is given by the projection Tt × Ts → Tt of the
respective acting tori TΣ = Tt × Ts and T∆ = Tt and we define

X := X(α, P,Σ) := (Y ∩ Tt)× Ts ⊆ ZΣ.

Then X ⊆ ZΣ is invariant under the action of the subtorus T = {1t} × Ts of the acting
torus TΣ = Tt × Ts of ZΣ. Moreover, set

T lii := T li1i1 · · ·T
lini
ini
∈ K[Tij , Sk], KP := Zn+m/im(P ∗) = Cl(ZΣ).

Let h1, . . . , hq be defining equations of Y in Cox coordinates, that means KB-
homogeneous generators for the ideal of relations between f0, . . . , fr. Consider the factor
ring

R(α, P ) := K[Tij , Sk]/〈h1(T l00 , . . . , T
lr
r ), . . . , hq(T l00 , . . . , T

lr
r )〉

and denote by QP : Zn+m → KP the projection. We turn R(α, P ) into a KP -graded
algebra via

deg(Tij) := wij := QP (eij), deg(Tk) := wk := QP (ek),

where eij , ek ∈ Zn+m are the canonical basis vectors. Observe that we have a unique
homomorphism of graded algebras RY → R(α, P ) sending fi to T lii .
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Remark 1.2.6. For t = n = 0, the above construction yields the usual construction
of a toric variety from a fan. Moreover, for s = m = 0 and n = r + 1, we arrive at
Construction 1.1.8.

We come to the first basic property of Construction 1.2.5. Note that in concrete cases
the assumptions of this proposition on R(α, P ) and the Tij made below can be checked
algorithmically via absolute factorization; see [44, Rem. 3.8].

Proposition 1.2.7. Let X = X(α, P,Σ) arise from Construction 1.2.5. If R(α, P ) is
a KP -integral affine algebra with only constant homogeneous units and the Tij define
pairwise non-associated KP -primes in R(α, P ), then X ⊆ ZΣ is an explicit variety.

Definition 1.2.8. By an explicit T-variety X ⊆ Z we mean a variety X = X(α, P,Σ)
in Z = ZΣ together with the action of T = {1t} × Ts arising from Construction 1.2.5
such that the assumptions of Proposition 1.2.7 are satisfied.

Corollary 1.2.9. Let X ⊆ Z be an explicit T-variety. Then X is a normal variety with
only constant invertible global functions. Moreover, dimension, complexity, divisor class
group and Cox ring of X are given by

dim(X) = s+ dim(Y ), c(X) = dim(Y ), Cl(X) = KP , R(X) = R(α, P ).

We say that a T-variety X ′ admits a presentation as an explicit T-variety if there is a
T-equivariant isomorphism X ′ → X with some explicit T-variety X ⊆ Z.

Theorem 1.2.10. Let X be an A2-maximal T-variety having only constant invertible
global functions, finitely generated divisor class group and finitely generated Cox ring.
Then X admits a presentation as an explicit T-variety.

Corollary 1.2.11. Every Mori dream space with an effective torus action admits a
presentation as an explicit T-variety.

In the rest of the section, we discuss the geometry of the torus action of an explicit
T-variety X ⊆ Z, aiming for a suitable quotient. First, we continue Example 1.2.3.

Example 1.2.12. Consider again the explicit K∗-surface X ⊆ Z from 1.2.3. An im-
portant source of information is the location of the columns of P over those of B with
respect to the projection pr : Z3 → Z2 onto the first two coordinates:
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v01

v02
v11

v21

v1

u0

u1

u2

Each column vij projects into the ray through ui and v1 lies in the kernel of the projection.
The rays %ij through vij and %1 through v1 define prime divisors DZ

ij and EZ1 of Z,
respectively. Cutting down to X gives us prime divisors

DX
ij := X ∩DZ

ij ⊆ X, EX1 := X ∩ EZ1 ⊆ X,

where the basic reason for primality is that the divisors are given in Cox coordinates by
K-prime ideals; for instance D01 is defined by 〈T01, T

3
11 + T 2

21〉. We are interested in the
isotropy groups. Recall that K∗ acts on X as the subtorus

T := {12} ×K∗ ⊆ T3 = TZ .

In particular, the isotropy groups of the T-action are constant along the TZ-orbits.
Consider the kernel L = {0} × Z of pr : Z3 → Z2. Then [6, Prop. 2.1.4.2] yields for any
σ ∈ Σ that the isotropy group of T at zσ ∈ Z has character group

X(Tzσ) ∼= (L ∩ lin(σ)) ⊕ (pr(lin(σ)) ∩ Z2)/(pr(lin(σ) ∩ Z3),

where lin(σ) ⊆ Q3 denotes the Q-linear hull. Looking at σ = %ij , we see that the isotropy
group Tx of the general point x ∈ DX

ij is cyclic of order lij , where lij is the exponent of
Tij in the defining relation of X, that means

l01 = 3, l02 = 1, l11 = 3, l21 = 2.

Moreover, the curve EX1 consists of fixed points of the T-action and there are two
isolated fixed points, forming the intersections of X with the toric orbits TZ · zσ for
σ = cone(v01, v02) and σ = cone(v02, v11, v21), respectively. In particular, we see that

X0 = X ∩ (TZ ∪ TZ · z%01 ∪ TZ · z%02 ∪ TZ · z%11 ∪ TZ · z%21) ⊆ X

is the open subset ofX consisting of all points x ∈ X having finite isotropy group Tx. The
projection pr : Z3 → Z2 defines a rational quotient Z 99K P2 for the T-action inducing
a rational quotient X 99K Y which in turn is defined on X0 ⊆ X and gives a surjective
morphism X0 → Y , where Y = P1.
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Before entering the general case, let us give the precise definitions of the necessary
concepts of quotients. For the moment, X may be any variety with an action of an
algebraic group G. As already indicated, a rational quotient for the G-variety X is a
dominant rational map π : X 99K Y such that π∗K(Y ) = K(X)G holds. A representative
of a rational quotient π : X 99K Y is a surjective morphism W → V representing π on a
non-empty open G-invariant subset W ⊆ X and an open subset V ⊆ Y . By results of
Rosenlicht, rational quotients always exist and admit a representative having G-orbits
as its fibers [73].

Behind Construction 1.2.5 there is a specific rational quotient, the maximal orbit quo-
tient. Recall that a geometric quotient of a T-variety X is a good quotient X → Y
having precisely the T-orbits as its fibers. Moreover, for any T-variety X, we denote by
X0 ⊆ X the open subset consisting of all points x ∈ X with finite isotropy group.

Definition 1.2.13. A maximal orbit quotient for a T-variety X is a rational quotient
π : X 99K Y admitting a representative ψ : W → V and prime divisors C0, . . . , Cr on Y
such that the following properties are satisfied:

(i) one has W ⊆ X0 and the complements X0 \W ⊆ X0 and Y \ V ⊆ Y , both are of
codimension at least two,

(ii) for every i = 0, . . . , r, the inverse image ψ−1(Ci) ⊆W is a union of prime divisors
Di1, . . . , Dini ⊆W ,

(iii) all T-invariant prime divisors of X0 with non-trivial generic isotropy group occur
among the Dij ,

(iv) every sequence J = (j0, . . . , jr) with 1 ≤ ji ≤ ni defines a geometric quotient
ψ : WJ → V for the T-action, where WJ := W \ ∪j 6=jiDij .

We call C0, . . . , Cr ⊆ Y a collection of doubling divisors for π : X 99K Y . The closure
of any Dij in X is a T-invariant prime divisor of X, again denoted by Dij and called
a multiple divisor . Moreover, we denote by E1, . . . , Em the prime divisors in the com-
plement X \X0 and call them the boundary divisors. Finally, we call ψ : W → V a big
representative for π : X 99K Y .

Example 1.2.14. We continue 1.2.3 and 1.2.12. The rational quotient X 99K Y arising
from the projection T3 → T2 of tori is a maximal orbit quotient. The intersection points
ci of Y ⊆ P2 with the coordinate axes V (Ti) yield a collection of doubling divisors, the
multiple divisors over ci are the DX

ij and the (only) boundary divisor is EX1 .

Remark 1.2.15. Observe that Definition 1.2.13 leaves some freedom for choosing the
doubling divisors C0, . . . , Cr. Some divisors necessarily appear: the images of divisors
with non-trivial finite generic isotropy group and the images of invariant divisors which
cannot be separated by ψ. Beyond those, we are free to choose further doubling divisors
Ci, which then means to insert Di1 accordingly.
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Remark 1.2.16. Let π : X 99K Y and π′ : X 99K Y ′ be maximal orbit quotients for a
T-variety X. Then there are open subsets U ⊆ Y and U ′ ⊆ Y ′ having complements
of codimension at least two and an isomorphism U → U ′ which sends any collection of
doubling divisors for π to a collection of doubling divisors of π′.

Proposition 1.2.17. Let X ⊆ ZΣ be an explicit T-variety. Let Z1
Σ ⊆ ZΣ be the union of

TΣ and all toric orbits TΣ ·z%ij and Z1
∆ ⊆ Z∆ the union of all toric orbits of codimension

at most one. Then, for X1 := X∩Z1
Σ and Y1 := Y ∩Z1

∆, we have a commutative diagram

X1 ⊆

��

Z1
Σ

��
Y1 ⊆ Z1

∆

where the downwards maps are maximal orbit quotients for the action of T. Denoting
by DΣ

ij and DΣ
k the toric prime divisors of ZΣ corresponding to the rays %ij = cone(vij)

and %k = cone(vk), we obtain the multiple divisors and the boundary divisors of X as

DX
ij = X ∩DΣ

ij , EXk = X ∩DΣ
k .

The generic isotropy group of EXk is a one-dimensional torus and the generic isotropy
group of DX

ij is finite of order lij. The doubling divisors are the intersections of Ci =
Y ∩D∆

i with the toric prime divisors of D∆
i ⊆ Z∆.

We briefly discuss relations to polyhedral divisors [1, 2]. First we have the following
recipe to convert explicit T-varieties into the setting of polyhedral divisors.

Remark 1.2.18. Given an explicit T-variety X ⊆ ZΣ, we indicate how to obtain a
describing divisorial fan in the sense of [1, 2]. First follow [1, Sec. 11]. For every σ ∈ Σ,
let ∆σ be the fan in Zt obtained as the coarsest common refinement of the projections
pr(τ) ⊆ Qt of all faces τ 4 σ ⊆ Qs+t. The toric variety associated with ∆σ is the
normalized Chow quotient Zσ///T, see [53, 23]. Let Y ′σ be the normalization of the
closure of the image of X ∩ TZ in Zσ///T and write Dσ,% for the pull back of the toric
prime divisor D% of Zσ///T to Y ′σ. Then

Dσ :=
∑

A% ⊗Dσ,%, A% := σ ∩ pr−1(v%) ⊆ Qs+t

defines a polyhedral divisor on Y ′σ describing the T-action on Xσ := X∩Zσ. Now, follow
the proof of [2, Thm. 5.6] to bring the local pictures together. Choose projective closures
Y ′σ ⊆ Y ′′σ and, via resolving indeterminancies of the birational maps between the Y ′′σ
induced by those between the Xσ, construct a normal projective variety Y ′′ dominating
birationally all the Y ′′σ . Pulling back the Dσ to Y ′′ yields the desired divisorial fan
describing the T-action on X.
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Remark 1.2.19. In general, maximal orbit quotient and Chow quotient of a T-variety
differ from each other. For example, let T = K∗ act on X = K4 via

t · z = (t−1z1, t
−1z2, tz3, tz4).

Working for instance in terms of fans we see that in this particular case we obtain a
maximal orbit quotient just by taking the good quotient

π : X → X//T, z 7→ (z1z3, z1z4, z2z3, z2z4),

where X//T = {w ∈ K4; w1w4 = w2w3}, and the canonical map X///T→ X//T from the
Chow quotient onto the good quotient resolves the singularity 0 ∈ X//T.

1.3 Proofs to Section 1.2

Here we prove the statements made in Construction 1.2.5, Proposition 1.2.7, Theo-
rem 1.2.10 and Proposition 1.2.17. We will make use of Bechtold’s normality criterion [12,
Cor. 6]; for convenience we give a direct proof here.

Proposition 1.3.1. Let K be a finitely generated abelian group, R a K-factorial affine
K-algebra with only constant K-homogeneous units and f1, . . . , fr a system of pairwise
non-associated K-prime generators for R. If any r − 1 of the deg(fi) generate K as a
group, then R is integral and normal.

Proof. The K-grading of R defines an action of the quasitorus H := SpecK[K] on
X̄ := SpecR such that the homogeneous elements f ∈ R of degree w ∈ K are precisely
the functions on X̄ which are homogeneous with respect to χw ∈ X(H). Set gi :=

∏
j 6=i fj

and consider the H-invariant open subset

X̂ := X̄g1 ∪ . . . ∪ X̄gr ⊆ X̄.

Since the fi are pairwise non-associated K-primes, X̂ has complement of codimension at
least two in X̄. According to [11, Thm. 1.3], each X̄gi/H is factorial and hence normal.
By [6, Prop. 1.2.2.8], the H-action on X̄gi is free. Thus, Luna’s slice theorem [60,
Thm. III.1] tells us that the quotient map X̄gi → X̄gi/H is an étale H-principal bundle.
As étale morphisms preserve normality, see [63, Prop. 8.1], we conclude that each X̄gi

and hence X̂ is normal. Now, observe

R = O(X̄) ⊆ O(X̂).

We claim that the last inclusion is in fact an equality. Let g ∈ O(X̂) be an H-
homogeneous function. Since g is a regular homogeneous function on X̄g1 , we have
g = g′/gl1 with a homogeneous function g′ ∈ R. Using K-factoriality, we find pairwise
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non-associated K-primes pi, fj ∈ R, where f2, . . . , fr are the generators fixed before,
such that

g = pν1
1 · · · pνss

fµ2
2 · · · f

µr
r
.

Since g is regular on the normal variety X̂ and X̄ \ X̂ is of codimension at least two in
X̄, we must have µ2 = . . . = µr = 0. Consequently, g ∈ R holds. Now, every regular
function on X̂ is a sum of K-homogeneous ones and thus extends to a regular function
on X̄. In particular, R = O(X̂) is normal.

To see that R is integral, we have to show that X̄ = SpecR is irreducible. Due to
normality, the irreducible components of X̄ coincide with its connected components
X̄1, . . . , X̄k. Indeed, if two distinct irreducible components have a common point, then
the corresponding local ring has zero divisors, contradicting normality. The assumption
that R is K-integral means on the geometric side that H permutes transitively the
X̄i. So, we can choose hi ∈ H with X̄i = hiX̄1 and a non-trivial character χ ∈ X(H)
vanishing along the stabilizer of X̄1. Then, setting f(z) := χ(hi) for z ∈ X̄i defines a
homogeneous unit on X̄, which is non-constant as soon as k > 1 holds. We conclude
k = 1 and thus X̄ is irreducible.

Proof of Construction 1.2.5, Proposition 1.2.7 and Proposition 1.2.17. The generator
matrix B of the fan ∆ and the generator matrix P of the fan Σ fit into the follow-
ing commutative diagram

Zn+m P //

A
��

Zt+s

��
Zr+1

B
// Zt

where the lifting A : Zn+m → Zr+1 of the projection Zt+s → Zt sends the canonical basis
vectors eij ∈ Zn+m to lijei ∈ Zr+1 and ek ∈ Zn+m to 0 ∈ Zr+1. Dualizing leads to a
commutative ladder of abelian groups with exact rows

0 oo KP
oo QP

OO

ı

Zn+m oo P
∗

OO

A∗

Zt+s ooOO 0

0 oo KB
oo
QB

Zr+1 oo
B∗

Zt oo 0

We validate Construction 1.2.5. According to Construction 1.1.8, the canonical basis
vector ei ∈ Zr+1 is sent by QB to deg(fi) ∈ KB. Thus, the induced map ı : KB → KP

sends deg(fi) ∈ KB QP (li1ei1 + . . . + linieini) ∈ KP . Define a KB-grading on the
polynomial ring K[F0, . . . , Fr] by deg(Fi) = deg(fi) and a KB-grading on K[Tij , Sk] by
deg(Tij) = QP (eij) and deg(Sk) = QP (ek). Then the homomorphism

K[F0, . . . , Fr] → K[Tij , Sk], fi 7→ T lii
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sends homogeneous elements of degree w ∈ KB to homogeneous elements of degree
ı(w) ∈ KP . In particular, the defining relations hj(T l00 , . . . , T

lr
r ) are KP -homogeneous,

the KP -grading of R(α, P ) is well defined and, moreover, we have the induced homo-
morphism of the graded algebras RY → R(α, P ) sending fi to T lii as desired.

We turn to Proposition 1.2.7. Let Ȳ ⊆ Kr+1 and X̄ ⊆ Kn+m denote the closures of the
inverse images of Y ∩ Tt and X ∩ Tt+s under the homomorphisms of tori b : Tr+1 → Tt
and p : Tn+m → Tt+s defined by B and P respectively. Observe that Ȳ = SpecRY holds.
With the quasitori HY := SpecK[KB] and HX := SpecK[KP ] and the homomorphism
of tori a : Tn+m → Tr+1 defined by A, we have a commutative diagram

X̄ ∩ Tn+m /HX

p
//

a
��

X ∩ Tt+s

/Ts
��

Ȳ ∩ Tr+1 /HY

b
// Y ∩ Tt.

Consider the product f ∈ RY over all the generators fi of RY and the product g ∈
R(α, P ) over all the generators Tij and Sk of R(α, P ). Then, using the above diagram,
we see

((RY )f )HY ∼= a∗ ((RY )f )HY =
(
(R(α, P )g)HX

)Ts
.

Since the left hand side ring is factorial, also the right hand side ring is so. By assumption,
R(α, P ) is KP -integral and the generators Tij are KP -prime. Using [11, Thm. 1.3], we
see that R(α, P ) is factorially KP -graded and Proposition 1.3.1 shows that R(α, P ) is
integral and normal. Consequently, we are in the setting of Construction 1.1.8 which
establishes Proposition 1.2.7.

Finally, we show Proposition 1.2.17. First note that Z1
Σ → Z1

∆ defines a maximal orbit
quotient of the Ts-action on ZΣ. The toric prime divisors of Z1

Σ cut down to the prime
divisors DX

ij and DX
k of X1 and those of Z1

∆ to the prime divisors Ci of Y1. Thus, we
can infer the statements on the isotropy groups from [6, Prop. 2.1.4.2] and conclude that
X1 → Y1 is a big representative of a maximal orbit quotient of the Ts-variety X.

We come to the proof of Theorem 1.2.10. The task is to provide for any abstractly
given A2-maximal T-variety X with only constant invertible global functions, finitely
generated divisor class group Cl(X) and finitely Cox ring R(X) a presentation as an
explicit T-variety X ⊆ Z. This runs via general Cox ring theory. Let us recall the
necessary background. Mimicking Cox’s quotient presentation 1.1.3, one looks at

X̄ = SpecR(X), H = SpecK[Cl(X)],

the total coordinate space and the characteristic quasitorus of X. Then H acts on X̄,
where this action is defined via its comorphism, sending a homogeneous element f ∈
R(X) of degree [D] to the element χ[D] ⊗ f of K[Cl(X)] ⊗R(X). Moreover, X can be
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reconstructed as a good quotient

SpecX R = X̂ ⊆

//H p

��

X̄ = SpecR(X)

X

Here the relative spectrum X̂ of the Cox sheaf R is called the characteristic space over
X. It is an open H-invariant subset of X̄ and the complement X̄ \ X̂ is small in the
sense that it is of codimension at least two in X̄; see [6, Sec. 1.6.1].

We will deal with canonical sections, which in the context of Cox rings means the fol-
lowing. For any effective representative D of a class [D] ∈ Cl(X), there is, up to scalars,
a unique f ∈ R(X)[D] with div(f) = p∗D on X̂. In this situation, we call f a canonical
section of D and write f = 1D. A canonical section 1D is a Cl(X)-prime element of
R(X) if and only if D is a prime divisor on X. See [6, Prop. 1.5.3.5 and Lemma 1.5.3.6]
for the full details.

Proof of Theorem 1.2.10. Write for shortK := Cl(X) andR := R(X). In a first step, we
lift the action of the torus T to the total coordinate space X̄. Consider the characteristic
space p : X̂ → X over X. By [6, Thm. 4.2.3.2], there are a T-action on X̂ and a positive
integer b such that for all t ∈ T, h ∈ H and x ∈ X̂, we have

t · h · x = h · t · x, p(t · x) = tb · p(x).

Since X̂ ⊆ X̄ has a small complement and X̄ is normal, the T-action on X̂ extends to X̄.
The fact that the actions of T and H commute means that we have an action of T×H
on X̄. Thus, the K-grading of R refines to a (M ×K)-grading for M = X(T). As M is
torsion free, [11, Thm. 1.5] yields that R is (M ×K)-factorial and (M ×K)-primality
coincides with K-primality in R.

Now, let F = (f1, . . . , fq) be a system of pairwise non-associatedK-prime generators of R
such that every T-invariant prime divisor of X having non-trivial generic isotropy group
has a canonical section among the fi. Then, as mentioned before, the fi are (M ×K)-
prime, and thus in particular (M×K)-homogeneous. Similarly as in Construction 1.1.8,
we obtain a (T×H)-equivariant closed embedding

SpecR =: X̄
x 7→(f1(x),...,fq(x)) // Z̄ := Kq.

Let Q : Zq → K, ei 7→ deg(fi) be the degree map of the K-grading. Then, in the
language of [6, Thm. 3.1.4.4], we have a maximal bunch of orbit cones

Φ = {Q(γx); x ∈ X̂ with H · x ⊆ X̂ closed}, γx = cone(ei; fi(x) 6= 0).

Moreover, [6, Props. 3.2.2.2, 3.2.2.5] ensure that we obtain a bunched ring (R,F,Φ) in
the sense of [6, Def. 3.2.1.1]. Now we reverse the translation performed in Remark 1.1.10.
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Fix a q′×q matrix P , the rows of which form a lattice basis for ker(Q). For a face γ0 4 γ
of the orthant γ = Qq

≥0, let γ∗0 4 γ be the complementary face. Then

ΣX := {P (γ∗x); x ∈ X̂ with H · x ⊆ X̂ closed}

is a set of cones intersecting in common faces; see [6, Thm. 2.2.1.14]. Let Σ be any fan
in Zq′ such that ΣX ⊆ Σ holds. Consider the associated toric variety Z = ZΣ and Cox’s
quotient presentation Ẑ → Z. We will build up the following commutative diagram

X̂ ⊆

//H p

��

Ẑ

//H
��

X //

π
��

Z

��
Y // Z∆.

By A2-maximality of X and the choice of Σ, we have X̂ = X̄ ∩ Ẑ and the induced
morphism X → Z of quotient spaces is a closed embedding. Moreover, X → Z is T-
equivariant, where T acts on Z as a subtorus of TZ ⊆ Z. Choose a splitting TZ = Tt×T.
Accordingly, the lattice hosting the fan Σ splits as Zq′ = Zt × Zs. Let ∆ be the fan in
Zt consisting of the zero cone and the projections of the rays of Σ. Then the projection
TZ → Tt of acting tori defines the rational map Z 99K Z∆. Defining Y ⊆ Z∆ to be the
closure of the image of X ∩ TZ , we complete the commutative diagram.

We investigate the shape of the generator matrices B of ∆ and P of Σ. Numbering its
columns as u0, . . . , ur, we turn B into a t× (r+ 1) matrix. For every i = 0, . . . , r, denote
by vi1, . . . , vini the columns of P such that the ray %ij = cone(vij) projects onto cone(ui).
Moreover, denote by v1, . . . , vm the columns of P such that the ray %k = cone(vk) lies in
the kernel of the projection Qt ×Qs → Qt. Then P is a (n+m)× (t+ s) matrix, where
n = n0 + . . .+nr. Consider the toric prime divisors DZ

ij ⊆ Z and EZk ⊆ Z corresponding
to the rays %ij and %k respectively. Computing the generic isotropy groups Tx of these
divisors according to [6, Prop. 2.1.4.2], we see that the EZk are the boundary divisors of
the T-action and that the vij have a non-trivial Zt-part being the lij-fold multiple of the
primitive generator ui ∈ Zt. Thus, B and P look as in Construction 1.2.5.

We claim that the dashed arrows are maximal orbit quotients for the T-actions on Z
and X respectively. Consider the union Z1 ⊆ Z of TZ and all toric orbits TZ · z%ij .
Then Z1 ⊆ Z0 is an open subset with complement of codimension at least two in the
set Z0 ⊆ Z consisting of all points z ∈ Z with finite isotropy group Tz. Let Ci be the
prime divisor of Z∆ corresponding to cone(ui), where i = 0, . . . , r. Then C0, . . . , Cr
serve as doubling divisors and Z1 → Z∆ is a big representative for the rational quotient
Z 99K Z∆, where Property 1.2.13 (iv) is due to [6, Cor. 2.3.1.7]. Cutting down to X
gives an open subset X1 = X ∩ Z1 of X0 and a morphism ψ : X1 → Y , which inherits
the properties of a big representative from Z1 → Z∆. In particular, Y is normal. A
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collection of doubling divisors is given by Ci = Y ∩Di, where D0, . . . , Dr ⊆ Z∆ are the
invariant prime divisors of Z∆. Observe that each Ci is prime, because it is the image
of X ∩D for any TZ-invariant prime divisor D ⊆ Z lying over Di ⊆ Z∆.
To conclude the proof, we still have to show that Y ⊆ Z∆ is an explicit variety, that
means that 1C0 , . . . , 1Cr generate the Cox ringR(Y ). Consider the commutative diagram

Zn+m P //

A
��

Zt+s

��
Zr+1

B
// Zt

where the matrix A : Zn+m → Zr+1 defines the homomorphism of a : Tn+m → Tr+1

which in turn uniquely extends to the monomial map

a : Kn+m → Kr+1, (z, w) 7→ (zl00 , . . . , zlrr ).

Note that a is the good quotient for the action of the quasitorus ker(a) on Kn+m. The
total coordinate space X̄ ⊆ Kn+m is invariant and thus maps onto a closed normal
subvariety Ȳ ⊆ Kr+1. Moreover, Ȳ inherits from X the property that the coordinate
functions of Kr+1 define pairwise non-associated elements on O(Ȳ ). By construction,
Ȳ ∩ Tr+1 dominates Y ⊆ Z∆. Thus, using [6, Lemmas 3.4.1.7, 3.4.1.9 and Cor. 3.4.1.6],
we see that O(Ȳ ) is the Cox ring of Y .

As a consequence of the above proofs we retrieve [46, Thm. 1.2] for the special case of
T-varieties with finitely generated Cox ring.

Corollary 1.3.2. Let X be a T-variety with finitely generated Cox ring R(X). Then X
admits a maximal orbit quotient π : X 99K Y and a collection C0, . . . , Cr of doubling
divisors such that we have an isomorphism of Cl(X)-graded rings

R(X) ∼= R(Y )[Tij , Sk]/〈T lii − Ui; i = 0, . . . , r〉,

where Tij , Sk ∈ R(X) and Ui ∈ R(Y ) are canonical sections of the multiple divisors Dij,
boundary divisors Ek and doubling divisors Ci respectively and the Cl(X)-grading on the
right hand side is given by

deg(Ui) = [li1Di1 + . . .+ liniDini ], deg(Dij) = [Dij ], deg(Sk) = [Ek].

Moreover, we have Ȳ = X̄//HX,Y , where the quasitorus HX,Y ⊆ Tn+m is the kernel of
the homomorphism of tori Tn+m → Tr+1 sending (t, s) to (tl00 , . . . , tlrr ).

1.4 First properties and examples

We discuss basic geometric properties of explicit T-varieties. First we provide a collec-
tion of general statements directly imported from [6, Chap. 3], concerning singularities,



1.4. First properties and examples 35

the Picard group and various cones of divisor classes. Then we present more specific
statements involving the T-action. The second part of the section is devoted to examples.
We indicate how to apply the results in practice by means of a concrete (new) example,
we show how the construction of rational T-varieties of complexity one from [40, 47]
fits into the framework of explicit T-varieties and finally, we present the Grassmannian
Gr(2, n) with its maximal torus action as an explicit T-variety.

When we speak about an explicit T-variety X ⊆ Z or, more specifically, about an
explicit T-variety X(α, P,Σ) in ZΣ, then we allow ourselves to make free use of the
notation introduced in Construction 1.2.5. Recall from Remark 1.2.6 that the case of
a trivial T-action, that means the explicit varieties from Construction 1.1.8, is included
via s = m = 0 and n = r + 1.

Remark 1.4.1. Let X ⊆ Z be an explicit T-variety. The total coordinate spaces X̄ and
Z̄, that means the spectra of the Cox rings R(X) and R(Z), are given as

X̄ := X̄(α, P ) := V (h1(T l00 , . . . , T
lr
r ), . . . , hq(T l00 , . . . , T

lr
r )) ⊆ Kn+m =: Z̄.

The embedding X̄ ⊆ Z̄ is equivariant with respect to the actions of the characteristic
quasitorus H = SpecK[KP ] defined by the gradings of R(X) and R(Z) by KP =
Cl(X) = Cl(Z). Moreover, we have a commutative diagram

X̂ ⊆

//H
��

Ẑ

//H
��

X ⊆ Z

where Ẑ → Z is Cox’s quotient presentation 1.1.3 and X̂ = X̄ ∩ Ẑ holds. The good
quotients X̂ → X and Ẑ → Z are the characteristic spaces over X and Z, respectively.

Every explicit T-variety X ⊆ Z inherits a decomposition into locally closed subsets by
cutting down the toric orbit decomposition of Z. Generalizing well-known basic facts
of toric geometry, one can express several geometric properties of X in terms of this
inherited decomposition. Let us introduce the necessary notation for precise statements.

Definition 1.4.2. Let X ⊆ Z be an explicit T-variety. Set γ := Qn+m
≥0 . An X̄-face is a

face γ0 4 Qn+m such that the complementary face γ∗0 4 γ satisfies

Kn+m ⊇ X̄(γ0) := X̄ ∩ Tn+m · zγ∗0 6= ∅.

For σ ∈ Σ and the corresponding face γ0 4 γ, that means the face with P (γ∗0) = σ,
consider the intersection of X and the associated toric orbit of Z = ZΣ:

X(γ0) := X(σ) := X ∩ Tt+s · zσ ⊆ Z.

We call σ ∈ Σ anX-cone and γ0 4 γ anX-face ifX(γ0) = X(σ) is non-empty. Moreover,
we denote

rlv(X) := {γ0 4 γ; γ is an X-face}.
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Finally, we call the subsets X(γ0) ⊆ X, where γ0 is an X-face, the pieces of the explicit
T-variety X ⊆ Z.

Remark 1.4.3. Let X ⊆ Z be an explicit T-variety. Then every piece X(γ0) ⊆ X is
locally closed and X is the disjoint union of its pieces:

X =
⊔

γ0∈rlv(X)
X(γ0).

Moreover, γ0 4 γ is an X-face if and only if it is an X̄-face and we have P (γ∗0) ∈ Σ. If
γ0 4 γ is an X-face, then X̄(γ0) maps onto X(γ0).

We describe basic local properties in terms of the pieces. Consider for the moment any
normal variety X. A point x ∈ X is factorial if every Weil divisor of X is Cartier near x.
Moreover, x ∈ X is Q-factorial if for every Weil divisor of X some nonzero multiple is
Cartier near x.

Proposition 1.4.4. Let X ⊆ Z be an explicit T-variety. Consider an X-face γ0 4 γ
and σ = P (γ∗0) ∈ Σ. Then the following statements are equivalent.

(i) The piece X(σ) consists of Q-factorial points of X.

(ii) The cone σ is simplicial.

(iii) The cone Q(γ0) ⊆ KQ is of full dimension.

Proof. Translate via Remark 1.1.10 and apply [6, 3.3.1.8 and 3.3.1.12].

Proposition 1.4.5. Let X ⊆ Z be an explicit T-variety. Consider an X-face γ0 4 γ
and σ = P (γ∗0) ∈ Σ. Then the following statements are equivalent.

(i) The piece X(σ) consists of factorial points of X.

(ii) The cone σ is regular.

(iii) The set Q(γ0 ∩ Zn+m) generates K as a group.

Moreover, X(σ) consists of smooth points of X if and only if one of the above statements
holds and X̄(γ0) consists of smooth points of X̄.

Proof. Translate via Remark 1.1.10 and apply [6, 3.3.1.8, 3.3.1.9 and 3.3.1.12].

We turn to the Picard group and the various cones of divisor classes. For a subset A ⊆ V
of a Q-vector space, we denote by lin(A) ⊆ V its Q-linear hull.
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Proposition 1.4.6. Let X ⊆ Z be an explicit T-variety. Then, in KP = Cl(X), the
Picard group of X is given by

Pic(X) =
⋂

γ0∈rlv(X)
Q(lin(γ0) ∩ Zn+m).

Moreover, in (KP )Q = ClQ(X), the cones of effective, movable, semiample and ample
divisor classes are given by

Eff(X) = Q(γ), Mov(X) =
⋂

γ04γ facet
Q(γ0),

SAmple(X) =
⋂

γ0∈rlv(X)
Q(γ0), Ample(X) =

⋂
γ0∈rlv(X)

Q(γ0)◦.

Proof. Translate via Remark 1.1.10 and apply [6, Cor. 3.3.1.6 and Prop. 3.3.2.9].

Remark 1.4.7. Let X = X(α, P,Σ) in Z = ZΣ be an explicit T-variety. If the fan Σ is
the normal fan of a polytope in Qt+s, then Z and hence X are projective. Conversely,
if X is projective, choose any class u ∈ Ample(X), an element e ∈ Qn+m with Q(e) = u
and consider the polytope

B(u) = (P ∗)−1(Q−1(u) ∩ γ)− e) ⊆ Qt+s.

Then, with the normal fan Σ(u) of B(u), we have X = X(α, P,Σ(u)), whereas the toric
ambient variety Z(u) associated with Σ(u) may differ from the original Z = ZΣ. Note
that in terms of the faces γ0 4 γ, the normal fan is given as

Σ(u) = {P (γ∗0); γ0 4 γ with u ∈ Q(γ0)◦} .

We indicate, in our setting, the fundamental connection between geometric invariant
theory and Mori theory found by Hu and Keel [51, Thm. 2.3]; we refer to [6, Sections 3.1.2
and 3.3.4] for additional background.

Remark 1.4.8. Let X = X(α, P,Σ(u)) in Z = ZΣ(u) be a projective explicit T-variety.
For every u ∈ Eff(X), denote by Γ(u) the collection of X̄-faces γ0 � γ with u ∈ Q(γ0)
and define a convex polyhedral cone

λu =
⋂

γ0∈Γ(u)
Q(γ0) ⊆ KQ = ClQ(X).

The cones λu form a fan Λ subdividing Eff(X). The fan Λ maintains the geometric
invariant theory of the characteristic quasitorus action on X̄ in the sense that the sets
Xss(u) of semistable points associated with the characters χu ∈ X(H) satisfy

X̄ss(u) ⊆ X̄ss(u′) ⇐⇒ λu < λu′ .
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Observe that if one of the conditions holds, then we have an induced morphismXu → Xu′

of the associated quotients byH. Now, look at the u ∈ Mov(X)◦. These define projective
explicit T-varieties. More precisely, we have

Xu = X(α, P,Σ(u)), X̂u = X̄ss(u).

Each Xu has λu as its semiample cone and is Q-factorial if and only if dim(λu) equals
dim(KQ). Moreover, Λ reflects the Mori equivalence: the birational map Xu 99K X ′u is
an isomorphism if and only if u, u′ ∈ λ◦ holds for some λ ∈ Λ.

Now we discuss more specific properties of explicit T-varieties X ⊆ Z involving in
particular the torus action. Recall that T = Ts, being a factor of TZ = Tt × Ts, acts on
Z and leaves X ⊆ Z invariant. Moreover, the projection TZ → Tt defines the maximal
orbit quotient Z 99K Z∆ for the T-action on Z and by restricting we obtain a maximal
orbit quotient π : X 99K Y for the T-action on X.

Proposition 1.4.9. Let X ⊆ Z be an explicit T-variety. Let L ⊆ Zt+s be the kernel of
the projection pr: Zt+s → Zt. Then, for every X-cone σ ∈ Σ and every x ∈ X(σ), the
isotropy group Tx satisfies

X(Tx) ∼= (L ∩ lin(σ)) ⊕ (pr(lin(σ)) ∩ Zt)/(pr(lin(σ) ∩ Zt+s).

Proof. From [6, Prop. 2.1.4.2] we infer the formula for the isotropy group of T ⊆ TZ at
the point zσ ∈ Z. Since the isotropy groups of the T-action are constant along the toric
orbits, this is all we need.

Proposition 1.4.10. Let X ⊆ Z be an explicit T-variety. Suppose that the Cox ring
presentation R(Y ) = K[f1, . . . , fr]/〈h1, . . . , hq〉 is a complete intersection. Then, with
h′u := hu(T l00 , . . . , T

lr
r ), also the Cox ring presentation

R(X) = K[Tij , Sk]/〈h′1, . . . , h′q〉

is a complete intersection. Moreover, in the latter case, the canonical divisor class of X
is given by

KX = −
r∑
i=0

ni∑
j=1

deg(Tij)−
m∑
k=1

deg(Sk) +
q∑

u=1
deg(h′u) ∈ KP = Cl(X).

In particular, with the canonical divisor class KY ∈ KB = Cl(Y ) and the maximal orbit
quotient π : X 99K Y , we have

KX − π∗(KY ) =
r∑
i=0

ni∑
j=1

(lij − 1) deg(Tij)−
m∑
k=1

deg(Sk).
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Proof. The second and third statement follow from [6, Prop. 3.3.3.2]. The first one is
seen via a simple dimension computation:

dim(X̄) = dim(X) + rk (Cl(X))
= s+ dim(Y ) + rk (Cl(X))
= s+ dim(Ȳ )− rk (Cl(Y )) + rk (Cl(X))
= s+ (r + 1− q)− (r + 1− t) + (n+m− t− s)
= n+m− q.

For the next observation, note that in Construction 1.2.5, we may remove successively
all maximal cones from the fan Σ that are not X-cones. The result is a minimal fan
Σ defining still the initial X. We call Z = ZΣ in this case the minimal ambient toric
variety of X.

Proposition 1.4.11. Let X ⊆ Z be an explicit T-variety and assume that Z is the
minimal toric ambient variety of X. Let L ⊆ Zt+s be the kernel of the projection
Zt+s → Zt.

(i) The normalization of the general T-orbit closure of X is the toric variety defined
by the fan ΣL in L, where

ΣL := {τ ; τ 4 (σ ∩ LQ), σ ∈ Σ}.

(ii) If the maximal orbit quotient π : X 99K Y is a morphism, then ΣL is a subfan of
Σ.

Proof. As Z is the minimal toric embedding, the general T-orbit closure of X equals the
general T-orbit closure of Z. This reduces the problem to standard toric geometry.

Corollary 1.4.12. Assumptions as in Proposition 1.4.11. If X is complete and ΣL is
a subfan of Σ, then we have

rk (Cl(X))− rk (Cl(Y )) > n− r − 1.

Proof. According to Proposition 1.4.11, the general T-orbit closure of X has divisor class
group of rank m− s > 0. Thus, the assertion follows from

rk (Cl(X)) = n+m− t− s, rk (Cl(Y )) = r + 1− t.

We come to the announced example discussions. First, we use Construction 1.2.5 to
produce a concrete example of a Q-factorial Fano variety with torus action of complexity
two and maximal orbit quotient X 99K P1 × P1.
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Example 1.4.13. Consider the surface Y := P1 × P1. Then we have Cl(Y ) = Z2 and
the Cox ring of Y is the polynomial ring K[T0, T1, T2, T3], where the Z2-grading is given
by

deg(T0) = deg(T1) = (1, 0), deg(T2) = deg(T3) = (0, 1).

Consider the redundant system α = (f0, . . . , f5) of generators for R(Y ) consisting of
fi := Ti for i = 0, . . . , 3 and the defining equations of the diagonals

f4 := T0T3 − T1T2, f5 := T0T2 − T1T3,

both being of degree (1, 1). A matrix B of relations between the degrees of generators
f0, . . . , f5 is given by

B :=


−1 1 0 0 0 0

0 0 −1 1 0 0
−1 0 −1 0 1 0
−1 0 −1 0 0 1

 .
Then Y is embedded into the toric variety Z∆, the fan ∆ of which lives in Z4 and has
the following four maximal cones

cone(v1, v3, v4), cone(v1, v2, v5), cone(v0, v3, v5), cone(v0, v2, v4),

where vi denotes the i-th column of B. Note that Y is given in Cox coordinates by the
equation f4 = f0f3 − f1f2 and f5 = f0f2 − f1f3. To build the variety X, consider the
matrix

P :=



−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
−1 0 −1 0 2 0 0 0
−1 0 −1 0 0 1 2 0
−1 −1 1 1 −1 1 −1 −1

0 1 0 1 0 1 2 −1


obtained from B by firstly doubling the last column, then multiplying its last and third
last columns with 2, adding a zero column and, after that, adding two new rows as
d, d′ part. We gain polynomials by modifying the variables of the describing relations of
Y ⊆ Z∆ accordingly to the column modifications:

g1 := T 2
41 − T01T31 + T11T21, g2 := T51T

2
52 − T01T21 + T11T31.

By construction, the polynomials gi are homogeneous with respect to the grading of
K[Tij , S1] given by

deg(Tij) := Q(eij) ∈ K, deg(S1) := Q(e1) ∈ K,

where Q : Z8 → K := Z8/im(P ∗) ∼= Z2, is the projection and eij , e1 ∈ Z8 are the
canonical basis vectors, numbered according to the variables Tij and S1. Let Σ = Σ(u)
in Z6 be the normal fan of the polytope

(P ∗)−1(Q−1(u) ∩ γ)− e) ⊆ Q6,
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where u := (8,−4) ∈ K and e ∈ Z8 is any point with Q(e) = u. Then Σ has the columns
of P as its primitive generators. Moreover, the projection Z8 → Z6 onto the first six
coordinates sends the rays of Σ into the rays of ∆. This gives a rational toric map
π : ZΣ 99K Z∆. Now, define a variety

X = X(α, P,Σ) := π−1(Y ∩ T4) ⊆ ZΣ.

Then X is invariant under the action of the subtorus T := {14}×T2 of the acting torus
T6 of Z. The T-variety X is normal, of dimension four with divisor class group and Cox
ring given by

Cl(X) = Z2, R(X) = K[Tij , S1]/〈g1, g2〉,

where the grading of the Cox ring is the one given above. This involves application
of Proposition 1.2.7; the necessary assumptions are directly verified. Now, applying
Propositions 1.4.4, 1.4.6, 1.4.10 and their implementation in [43], we see that X is a
Q-factorial Fano variety of Gorenstein index 30.

Remark 1.4.14. The Cox ring based approach of [40, 47] produces all A2-maximal
rational T-varieties X of complexity one with only constant invertible global functions
via a construction having a pair of matrices and a bunch of cones as input data. Let
us see how to retrieve these X via Construction 1.2.5. Two types of T-varieties are
distinguished: the first admits non-constant T-invariant functions, the second does not.

Type 1. The starting variety is Y = K in Z∆ = Kr+1, where the generator matrix of ∆ is
B = Er+1, we embed via the system α = (f0, . . . , fr) given by fi = T − ai with pairwise
different ai ∈ K and the defining relations for Y are

hi = Ui − Ui+1 − (ai + ai+1) ∈ K[U0, . . . , Ur], i = 0, . . . , r − 1.

Type 2. The starting variety is Y = P1 in Z∆ = Pr, where ∆ has generator matrix
B = [−1r,Er], the embedding system α = (f0, . . . , fr) with fi := ai,1T1 + ai,2T2 such
that [ai,1, ai,2] ∈ P1 are pairwise different and the defining relations for Y are

hi := det

 ai,1 ai+1,1 ai+2,1
ai,2 ai+1,2 ai+2,2
Ui Ui+1 Ui+2

 ∈ K[U0, . . . , Ur], i = 0, . . . , r − 1.

Now run Construction 1.2.5 for both types. The assumptions of Proposition 1.2.7 are
satisfied by [40, Thm. 10.4] and [47, Thm. 1.5]. Thus, Theorem 1.2.10 gives the desired
result. The input data A, P and Φ of [40, 47] are recovered as follows: the matrix A is
[a0, . . . , ar], where for Type 1 the ai are as above and for Type 2 we set ai = (ai,1, ai,2),
the matrix P is the one produced by Construction 1.2.5 and the bunch of cones Φ is
related to the fan Σ via Gale duality as outlined in Remark 1.1.10.
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Example 1.4.15. Fix n ≥ 5 and let X2,n = Gr(2, n) be the Grassmannian of two-
dimensional vector subspaces of Kn. Then X2,n has the projective linear group PGL(n)
as its automorphism group [19]. We will pick a maximal torus T ⊆ PGL(n) and show
how to obtain the T-variety X2,n via Construction 1.2.5. Set

r :=
(
n

2

)
.

Identify the Plücker coordinate space Kn ∧ Kn with Kr such that the basis (ei ∧ ej) of
Kn∧Kn corresponds to the basis (eij) of Kr, where eij ∈ Kr has ij-th Plücker coordinate
equal to one and all others zero. We order the bases (ei ∧ ej) and (eij) lexicographically.
Accordingly, we have the Plücker ideal and the affine cone

I2,n ⊆ K[Tij ; 1 ≤ i < j ≤ n], X̄2,n = V (I2,n) ⊆ Kr.

Look at the largest diagonal torus T̄ ⊆ GL(r) leaving X̄2,n invariant. With t := r − n,
we obtain T̄ as the kernel of the homomorphism b : Tr → Tt defined by the following
t×r matrix, the first n columns of which are defined by the remaining ones as indicated:

B = [v12, . . . , vn−1n] = [v12, . . . , v1n,Et,−1t] , v1i :=
∑
{j,k}∩{1,i}=∅ vjk.

Observe that T̄ ⊆ GL(r) is of dimension n. The corresponding torus T ∈ PGL(r) is
of dimension n − 1. Moreover, T acts effectively on X2,n ⊆ Pr−1 and thus T defines a
maximal torus of the automorphism group PGL(n). Now, look at the (r − 1)× r stack
matrix

P :=
[
B
d

]
=
[
v12, . . . , v1n Et −1t
En−1 0 −1n−1

]
.

Observe that the kernel of P is generated by the vector 1r ∈ Zr. In particular, P differs
from [Er,−1r] by multiplication with a unimodular matrix from the left. Let Σ be the
unique complete fan in Zr having P as generator matrix and let ∆ be the fan in Zt
having the rays through the columns of B as its maximal cones. Then we obtain a
commutative diagram

X̄2,n ⊆

p

��
b

��

Kr

p

��
b

��

X2,n ⊆

//T
��

ZΣ

//T
��

Y2,n ⊆ Z∆

where Y2,n ⊆ Z∆ is the closure of the image b(X̄2,n∩Tr). We have ZΣ = Pr−1 and X2,n ⊆
ZΣ is the Plücker embedding. Moreover, R2,n = K[Tij ]/I2,n is a unique factorization
domain [74, Prop. 8.5] and the variables Tij define prime elements. Thus, Y2,n ⊆ Z∆ is
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an explicit variety and the T-variety X2,n ⊆ ZΣ is an explicit T-variety. Moreover, the
T-action has maximal orbit quotient

π : X2,n 99K Y2,n.

We claim that, up to codimension two, Y2,n equals the blowing up Bln−1(Pn−3) of Pn−3
at n − 1 points in general position. Indeed, we may first blow up the n − 2 toric fixed
points of Pn−3 and then the base point of the resulting toric variety. Doing the latter
via [44, Alg. 5.7], one directly checks that the procedure terminates after the first step and
delivers R2,n as Cox ring of Bln−1(Pn−3). Thus, we may also take X2,n 99K Bln−1(Pn−3)
as a maximal orbit quotient for the T-action.

Remark 1.4.16. In order to describe a Mori dream space with torus action via divisorial
fans [1, 2], it happens that one has to start with a non Mori dream space as prospective
Chow quotient. For example, the maximal torus action on the Grassmannian Gr(2, n)
has the moduli space M0,n as its Chow quotient [52] and for n ≥ 10, it is known that
M0,n and hence all its blow ups have a non-finitely generated Cox ring [18, 35, 45]. Note
that the Chow quotient M0,n starts differing at n = 6 from the maximal orbit quotient
discussed just before. Altmann and Hein gave in [3] a description of the maximal torus
action on Gr(2, n) by means of a divisorial fan living on M0,n.





CHAPTER

TWO

GENERAL ARRANGEMENT VARIETIES

In this chapter we introduce our first example class, the general arrangement varieties.
These are certain T-varieties having projective spaces as the target spaces of their maxi-
mal orbit quotients, naturally generalizing the rational projective T-varieties of complex-
ity one. We show that all A2-maximal general arrangement varieties can be presented
as explicit T-varieties. Moreover, we use the methods on explicit T-varieties from Chap-
ter 1 to investigate the geometry of general arrangement varieties. In particular, we give
an explicit description of their anticanonical divisor class and characterize smoothness
of general arrangement varieties. The results of this chapter are published in the joint
work [42].

2.1 General arrangement varieties

Let us recall the necessary notions on projective hyperplane arrangements. A hyperplane
H in the projective space Pn is the zero set of a nonzero homogeneous polynomial
of degree one. A hyperplane arrangement in Pn is a finite collection H1, . . . ,Hr of
hyperplanes in Pn. A hyperplane arrangement in Pn is called general if for any 1 ≤ i1 <
. . . < ik ≤ r, the intersection Hi1 ∩ . . . ∩Hik is of dimension (n− k).

Definition 2.1.1. A (general) arrangement variety of complexity c is a T-variety X
with maximal orbit quotient X 99K Pc such that the doubling divisors C0, . . . , Cr form
a (general) hyperplane arrangement in Pc.

Remark 2.1.2. The projective general arrangement varieties of complexity c = 1 are
precisely the rational projective T-varieties of complexity one. Indeed, any rational
projective T-variety X of complexity one has maximal orbit quotient π : X 99K P1. The
doubling divisors form a point configuration in P1, which trivially satisfies the conditions
of a general hyperplane arrangement.

45
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We enter the construction of general arrangement varieties. As in the case of complexity
one [41, 40, 6], we first write down the prospective Cox rings in terms of generators
and relations, then investigate their algebraic properties and after all that construct the
varieties we are aiming for.

Construction 2.1.3. Fix integers r ≥ c > 0 and n0, . . . , nr > 0 as well as m ≥ 0. Set
n := n0 + . . .+ nr. The input data is a pair (A,P0), where

• A is a (c+ 1)× (r+ 1) matrix over K such that any c+ 1 of its columns a0, . . . , ar
are linearly independent,

• P0 is an integral r × (n + m) matrix built from tuples of positive integers li =
(li1, . . . , lini), where i = 0, . . . , r, as follows

P0 :=

 −l0 l1 0 0 . . . 0
...

... . . . ...
...

...
−l0 0 lr 0 . . . 0

 .
Write K[Tij , Sk] for the polynomial ring in the variables Tij , where i = 0, . . . , r, j =
1, . . . , ni, and Sk, where k = 1, . . . ,m. Every li defines a monomial

T lii := T li1i1 · · ·T
lini
ini

∈ K[Tij , Sk].

Moreover, for every t = 1, . . . , r−c, we obtain a polynomial gt by computing the following
(c+ 2)× (c+ 2) determinant

gt := det
[
a0 . . . ac ac+t
T l00 . . . T lcc T

lc+t
c+t

]
∈ K[Tij , Sk].

Now, let eij ∈ Zn and ek ∈ Zm denote the canonical basis vectors and consider the
projection

Q0 : Zn+m → K0 := Zn+m/im(P ∗0 )

onto the factor group by the row lattice of P0. Then the K0-graded K-algebra associated
with (A,P0) is defined by

R(A,P0) := K[Tij , Sk]/〈g1, . . . , gr−c〉,

deg(Tij) := Q0(eij), deg(Sk) := Q0(ek).

Example 2.1.4. Let us take c = 2 and r = 3. Thus, we will work with a 3×4 matrix A.
Moreover, let n0 = 2 and n1 = n2 = n3 = 1 and fix m = 0. This amounts to n = 5 and
a 3× 5 matrix P0. We choose

A =

 1 0 0 −1
0 1 0 −1
0 0 1 −1

 , P0 =

 −1 −2 2 0 0
−1 −2 0 2 0
−1 −2 0 0 4

 .
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So, the exponent vectors li are l0 = (1, 2), l1 = l2 = (2) and l3 = (4). Accordingly, we
obtain the four monomials

T l00 = T01T
2
02, T l11 = T 2

11, T l22 = T 2
21, T l33 = T 4

31.

We arrive at r− c = 1 relation g1 ∈ K[T01, T02, T11, T21, T31], obtained by computing the
following 4× 4 determinant

g1 = det


1 0 0 −1
0 1 0 −1
0 0 1 −1

T01T
2
02 T 2

11 T 2
21 T 4

31

 = T01T
2
02 + T 2

11 + T 2
21 + T 4

31.

The canonical basis vectors of the row space of P0 are indexed in accordance with the
variables Tij , that means that we write

e01, e02, e11, e21, e31 ∈ Z5 = Zn0+n1+n2+n3 .

We have K0 = Z5/im(P ∗0 ) = Z2 ⊕ Z/2Z⊕ Z/2Z. The projection Q0 : Z5 → K0 sending
eij to its class in K0 is made concrete by the degree matrix

Q0 = [Q0(eij)] =


2 1 2 2 1
0 2 2 2 1
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 0̄

 .
Consequently, for the initial data A and P0 of this example, the resulting K0-graded
algebra R(A,P0) is given by

K[T01, T02, T11, T21, T31] / 〈T01T
2
02 + T 2

11 + T 2
21 + T 4

31〉, deg(Tij) = Q0(eij).

We present the basic properties of the graded algebra R(A,P0). Recall that a grading of
a K-algebra R = ⊕KRw by a finitely generated abelian group is effective if the weights
w ∈ K with Rw 6= {0} generate K as a group and pointed, if R0 = K holds and
Rw 6= {0} 6= R−w is only possible for torsion elements w ∈ K. Finally, we say that an
effective grading is of complexity c if dim(R)− rk (K) = c holds.

Theorem 2.1.5. Let R(A,P0) be a K0-graded K-algebra arising from Construc-
tion 2.1.3. Then R(A,P0) is an integral, normal, complete intersection ring satisfying

dim(R(A,P0)) = n+m− r + c, R(A,P0)∗ = K∗.

The K0-grading of R(A,P0) is effective, pointed, factorial and of complexity c. The
variables Tij, Sk define pairwise non-associated K0-primes in R(A,P0), and for c ≥ 2,
they define even primes.
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The following auxiliary statements for the proof of this theorem are also used later. We
begin with discussing the specific nature of the matrix A and its impact on the ideal of
relations of R(A,P ).

Remark 2.1.6. Situation as in Construction 2.1.3. For any tuple I = (i1, . . . , ic+2) of
strictly increasing integers from [0, r], consider the matrix

A(I) :=
[
ai1 , . . . , aic+2

]
,

Let w(I) ∈ Kc+2 denote the cross product of the rows of A(I) and define a vector
v(I) ∈ Kr+1 by putting the entries of w(I) at the right places:

v(I)i :=
{
w(I)j , i = ij occurs in I = (i1, . . . , ic+2),
0, else.

Then any linearly independent choice of vectors v(I1), . . . , v(Ir−c) is a basis for ker(A).
Note that any nonzero v ∈ ker(A) has at least c+ 2 nonzero coordinates.

Remark 2.1.7. Situation as in Construction 2.1.3. Every vector v ∈ ker(A) ⊆ Kr+1

defines a polynomial

gv := v0T
l0
0 + . . .+ vrT

lr
r ∈ 〈g1, . . . , gr−c〉.

Moreover, if a subset B ⊆ ker(A) generates ker(A) as a vector space, then the polyno-
mials gv, v ∈ B, generate the ideal 〈g1, . . . , gr−c〉. In particular, we have

〈g1, . . . , gr−c〉 = 〈gv(I); I = (i1, . . . , ic+2), 0 ≤ i1 < . . . < ic+2 ≤ r〉,

with the tuples I from Remark 2.1.7. Observe that each gv, 0 6= v ∈ ker(A), has at least
c+ 2 of the monomials T lii and all the gv share the same K0-degree.

Lemma 2.1.8. Let R(A,P0) be a graded algebra arising from Construction 2.1.3.

(i) If we have li1 + . . . + lini = 1 for some i, then R(A,P0) is isomorphic to a ring
R(A′, P ′0) with data r′ = r − 1 and c′ = c.

(ii) If we have c ≥ 2, then for any generator Tij, the factor ring R(A,P0)/〈Tij〉 is
isomorphic to a ring R(A′, P ′0) with data r′ = r − 1 and c′ = c− 1.

Proof. To obtain (i), let A′ be the matrix obtained by deleting the i-th column from A.
Then the respective ideals defined by A and A′ produce isomorphic rings. Adapting the
matrix P0 accordingly, gives the desired P ′0.
We show (ii). As elementary row operations on A neither change the required properties
of A nor the defining ideal of R(A,P ), we may assume that ai1 6= 0 holds and all other
entries of the i-th column of A equal zero. Then the matrix A′ obtained by deleting
the first row and the i-th column from A satisfies the assumptions of Construction 2.1.3
with r′ = r − 1 and c′ = c − 1. Using Remarks 2.1.6 and 2.1.7, we see that the ideal
defined by A′ corresponds to the defining ideal of R(A,P0)/〈Tij〉. Again, adapting the
matrix P0 accordingly, gives the desired P ′0.
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Definition 2.1.9. Situation as in Construction 2.1.3. We say that a point z ∈ Kn+m

with coordinates zij , zk is of

(i) big type, if for every i = 0, . . . , r, there is an index 1 ≤ ji ≤ ni such that ziji = 0
holds,

(ii) leaf type, if there is a set Iz = {i1, . . . , ic} of indices 0 ≤ i1 < . . . < ic ≤ r, such
that for all i, j, we have zij = 0⇒ i ∈ Iz.

Remark 2.1.10. Situation as in Construction 2.1.3. Consider γ = Qn+m, a face γ0 4 γ
and the complementary face γ∗0 4 γ. Then any coordinate zij , zk of z = zγ∗0 ∈ Kn+m

equals zero or one and we have

zij = 0 ⇐⇒ eij ∈ γ0, zk = 0 ⇐⇒ ek ∈ γ0.

In particular, there is a point of big (leaf) type in Tn+m · zγ∗0 ⊆ Kn+m if and only if all
points of this toric orbit are of big (leaf) type. Moreover, in terms of the cone P0(γ∗0)
with P0 from Construction 2.1.3, we obtain the following characterizations:

(i) zγ∗0 is of big type if and only if P0(γ∗0) = Qr holds,

(ii) zγ∗0 is of leaf type if and only if P0(γ∗0) 6= Qr and dim(P0(γ∗0)) ≤ c.

Observe that if one of the conditions of (ii) holds, then the image cone P0(γ∗0) is generated
by at most r vectors from −1r, e1 . . . , er ∈ Zr and thus is pointed.

Lemma 2.1.11. For X̄ = V (g1, . . . , gr−c) ⊆ Kn+m from Construction 2.1.3, we have
the following statements.

(i) Every point z ∈ X̄ is either of big type or it is of leaf type.

(ii) Every z ∈ Kn+m of big type is contained in X̄.

(iii) For every z ∈ Kn+m of leaf type, there is a t ∈ Tn+m with t · z ∈ X̄.

Proof. To obtain (i), we have to show that any z ∈ X̄ which is not of big type must be of
leaf type. Otherwise, there are indices i1 < . . . < ic+1 and associated jq with ziqjq = 0.
As z is not of big type, there is at least one index i0 with zi0j 6= 0 for all j = 1, . . . , ni0 .
Remarks 2.1.6 and 2.1.7 provide us with a relation g ∈ 〈g1, . . . , gr−c〉 involving precisely
the monomials T lii for i = i0, i1, . . . , ic+1. Then g(z) = 0 implies zi0j = 0 for some
j = 1, . . . , ni0 ; a contradiction.
We verify (ii) and (iii). Let z ∈ Kn+m. If z is of big type, then we obviously have
gi(z) = 0 for i = 1, . . . , r − c. Thus, z ∈ X̄. Now, assume that z is of leaf type. First
consider the case Iz = {1, . . . , c}. Then, suitably scaling zc+1,1, we achieve g1(z) = 0.
Next we scale zc+2,1 to ensure g2(z) = 0, and so on, until we have also gr−c(z) = 0.
Then we have found our t ∈ Tn+m with t · z ∈ X̄. Given an arbitrary Iz, Remarks 2.1.6
and 2.1.7 yield a suitable system g′1, . . . , g

′
r−c of ideal generators that allows us to argue

analogously.
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Lemma 2.1.12. Situation as in Construction 2.1.3. Let X̄ = V (g1, . . . , gr−c) ⊆ Kn+m

and denote by J the Jacobian of g1, . . . , gr−c. Then, for any z ∈ X̄, the following
statements are equivalent:

(i) The Jacobian J(z) is not of full rank, i.e., we have rk (J(z)) < r − c.

(ii) The point z ∈ X̄ is of big type and there are i1 < . . . < ic+2 such that each of these
iq fulfills one of the subsequent two conditions:

• ziqjq = 0 and liqjq ≥ 2 hold for at least one 1 ≤ jq ≤ niq ,
• ziqj = 0 and liqj = 1 hold for at least two 1 ≤ j ≤ niq .

In particular, the set of points z ∈ X̄ with J(z) not of full rank is of codimension at least
c+ 1 in X̄.

Proof. Assertion (ii) directly implies the supplement and, by a simple computation,
also (i). We are left with proving “(i)⇒(ii)”. So, let z ∈ X̄ be a point such that J(z) is
not of full rank. Then there is a non-trivial linear combination annulating the lines of
J(z):

η1grad(g1)(z) + . . .+ ηr−cgrad(gr−c)(z) = 0.
The corresponding g := η1g1 + . . .+ ηr−cgr−c satisfies grad(g)(z) = 0 and is of the form
g = gv with a nonzero v ∈ ker(A) as in Remark 2.1.7. The condition grad(g)(z) = 0
implies ziji = 0 for some 1 ≤ ji ≤ ni whenever the monomial T lii shows up in g. As
observed in Remark 2.1.7, the polynomial g has at least c+2 monomials. Thus, we have
ziji = 0 for at least c + 2 different i. By Lemma 2.1.11, the point z ∈ X̄ is of big type.
Moreover, the two conditions of (ii) reflect the fact grad(g)(z) = 0.

Proof of Theorem 2.1.5. For c = 1, the statement is proven in [40, Thm. 10.1 and
Prop. 10.7]. So, assume c ≥ 2. First we show that X̄ = V (g1, . . . , gr−c) ⊆ Kn+m is
connected. By construction, the quasitorus H0 ⊆ Tn+m is the kernel of the homomor-
phism Tn+m → Tr defined by P0. Consider the multiplicative one-parameter subgroup
K∗ → H0, t 7→ (tζ , tξ), where

ζ =
(
n0 · · ·nrl01 · · · lrnr

n0l01
, . . . ,

n0 · · ·nrl01 · · · lrnr
nrlrnr

)
∈ Tn, ξ = (1, . . . , 1) ∈ Tm.

This gives rise to a K∗-action on X̄ having the origin as an attractive fixed point.
Consequently, X̄ is connected. Moreover, we can conclude that all invertible functions
as well as all H0-invariant functions are constant on X̄.
Now, Lemma 2.1.12 allows us to apply Serre’s criterion and thus we obtain that R(A,P0)
is an integral, normal, complete intersection. By construction, theK0-grading is effective
and as seen above, it is pointed. To obtain factoriality of the K0-grading, localize
R(A,P0) by the product over all generators Tij , Sk, observe that the degree zero part
of the resulting ring is a polynomial ring and apply [11, Thm. 1.1]. Finally, primality of
the generators Tij follows from Lemma 2.1.8 (ii).
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Now we use the algebras R(A,P0) obtained by Construction 2.1.3 to produce general
arrangement varieties. The basic idea is to turn R(A,P0) into a prospective Cox ring
via coarsening the grading by K0 = Zn+m/im(P ∗0 ) to a grading by K = Zn+m/im(P ∗),
where P arises from P0 by adding suitable further rows.

Construction 2.1.13. Let A and P0 be input data as in Construction 2.1.3. Moreover,
fix 1 ≤ s ≤ n+m− r and let d be an integral s× (n+m) matrix such that the columns
vij , vk of the (r + s)× (n+m) stack matrix

P :=
[
P0
d

]

are pairwise different, primitive and generate Qr+s as a vector space. Consider the factor
group K := Zn+m/im(P ∗). Then the projection Q : Zn+m → K factors through Q0 and
we obtain the K-graded K-algebra associated with (A,P ):

R(A,P ) := K[Tij , Sk]/〈g1, . . . , gr−c〉,

deg(Tij) := wij := Q(eij), deg(Sk) := wk := Q(ek).

Now, let Σ be any fan in Zr+s having precisely the rays through the columns of P as
its one-dimensional cones and let Z be the associated toric variety. Then we have a
commutative diagram

V (g1, . . . , gr−c) = X̄ ⊆

⊆

Z̄ =

⊆

Zn+m

X̂ ⊆

//H
��

Ẑ

//H
��

X ⊆

��

Z

��
Pc // Pr

with the quasitorus H = SpecK[K], Cox’s quotient presentation Ẑ → Z and the induced
quotient X̂ → X, where X̂ := X̄ ∩ Ẑ. The resulting variety X = X(A,P,Σ) is normal
with dimension, invertible functions, divisor class group and Cox ring given by

dim(X) = s+ c, Γ(X,O∗) = K∗, Cl(X) = K, R(X) = R(A,P ).

The acting torus TZ ⊆ Z splits as TZ = Tr × Ts and the factor T = {1r} × Ts leaves
X ⊆ Z invariant. The induced T-action on X is effective and of complexity

c(X) = c.
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Finally, the dashed arrows indicate the maximal orbit quotients for the T-actions on X
and Z respectively and Pc ⊆ Pr is the linear subspace given by

Pc = V (h1, . . . , hr−c), ht := det
[
a0 . . . ac ac+t
U0 . . . Uc Uc+t

]
∈ K[U0, . . . , Ur].

A collection of doubling divisors for the maximal orbit quotient X 99K Pc is given by
the intersections of Pc with the coordinate hyperplanes of Pr which form the general
hyperplane arrangement

H0, . . . ,Hr ⊆ Pc, Hi := {z ∈ Pc; ai0z0 + . . .+ aiczc = 0}.

Proposition 2.1.14. Let X = X(A,P,Σ) arise from Construction 2.1.13. Consider
the explicit variety Y = Pc in Z∆ = Pr with embedding system α = (f0, . . . , fr), where
∆ is the complete fan in Zr with generator matrix B = [−1r,Er] and

fi = ai0U0 + . . .+ aicUc ∈ K[U0, . . . , Uc] = R(Pc).

Then the variety X(A,P,Σ) ⊆ ZΣ equals the variety X(α, P,Σ) ⊆ ZΣ arising from
Construction 1.2.5. In particular, X(A,P,Σ) ⊆ ZΣ is an explicit T-variety.

Proof of Construction 2.1.13 and Proposition 2.1.14. The fact that X(A,P,Σ) ⊆ ZΣ
equalsX(α, P,Σ) ⊆ ZΣ is clear by construction. Observe that, forgetting for the moment
about the gradings, we have R(A,P ) = R(A,P0). Thus, Theorem 2.1.5 ensures that
R(A,P ) is normal, integral with only constant homogeneous units. Moreover, for c ≥ 2,
the generators Tij and Sk of R(A,P ) are pairwise non-associated. Being prime and K-
homogeneous, they are also K-prime. For c = 1, we infer K-primality of the generators
from [40, Thm. 10.4]. So, X(A,P,Σ) ⊆ ZΣ satisfies the conditions of Definition 1.2.8
and hence is an explicit T-variety. This yields in particular the statements on the divisor
class group and the Cox ring. The statement on the maximal orbit quotient is due to
Proposition 1.2.17.

Remark 2.1.15. According to Lemma 2.1.8 (i), we may always assume that the defining
data P of Construction 2.1.13 is irredundant in the sense that li0 + . . . + lini ≥ 2 holds
for every i = 0, . . . , r. In this case, we also say that X(A,P,Σ) is irredundant.

Definition 2.1.16. By an explicit general arrangement variety we mean a T-variety
X = X(A,P,Σ) in Z = ZΣ arising from Construction 2.1.13.

Example 2.1.17. Let A and P0 be as in Example 2.1.4. We enhance P0 by an 1 × 5
block as follows

P =
[
P0
d

]
=


−1 −2 2 0 0
−1 −2 0 2 0
−1 −2 0 0 4
−1 −3 1 1 1

 .
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So, we chose s = 1. We have K = Z5/im(P ∗) = Z ⊕ Z/2Z ⊕ Z/2Z and Q : Z5 → K is
represented by the degree matrix, having wij = Q(eij) ∈ K as its columns:

Q = [w01, w02, w11, w21, w31] =

 2 1 2 2 1
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 1̄ 0̄ 1̄ 0̄

 .
Let Σ be the unique complete fan in Z4 with P as its generator matrix. Then we arrive
at a projective explicit arrangement variety X = X(A,P,Σ) in Z = ZΣ with

dim(X) = 3, c(X) = 2, Cl(X) = Z⊕ Z/2Z⊕ Z/2Z.

Moreover, assigning to each generator Tij the divisor class Q(eij), we obtain a represen-
tation of the Cox ring by homogeneous generators and relations:

R(X) = K[T01, T02, T11, T21, T31] / 〈T01T
2
02 + T 2

11 + T 2
21 + T 4

31〉.

As a maximal orbit quotient, we have π : X 99K P2 and the doubling divisors form the
general line configuration in P2 given by

V (T0), V (T1), V (T2), V (T0 + T1 + T2).

Theorem 2.1.18. Let X be an A2-maximal general arrangement variety. Then X
admits a presentation as an explicit general arrangement variety.

Proof. According to Definition 2.1.1, there is a maximal orbit quotient π : X 99K Y
with Y = Pc admitting a general hyperplane arrangement C0, . . . , Cr as a collection of
doubling divisors. Then the canonical sections 1C0 , . . . , 1Cr are of degree one in the Cox
ring R(Y ) = K[U0, . . . , Uc]. Suitably enhancing the general hyperplane arrangement
C0, . . . , Cr, we achieve that 1C0 , . . . , 1Cr generate R(Y ). Regard R(Y ) as a graded
subalgebra of R(X) as in Corollary 1.3.2 and let α = (f0, . . . , fq) be pairwise non-
associated Cl(X)-prime generators of the Cox ring R(X) such that the fi lying in R(Y )
are precisely 1C0 , . . . , 1Cr . Then, following the lines of the proof of Theorem 1.2.10, one
reproduces X as an explicit T-variety X(α, P,Σ) in Z = ZΣ. Thus, Proposition 2.1.14
gives the assertion.

Remark 2.1.19. Let X be a general arrangement variety of complexity c. Then the
torus action of X has Pc as Chow quotient; use [9, Props. 2.4 and 2.5] for a proof. Using
the conversions Remark 1.2.18 and [46, Thm. 4.8], we see that the general arrangement
varieties are precisely the T-varieties arising from a divisorial fan Ξ on a projective space
Pc in the sense of [2] such that the prime divisors D ⊆ Pc with non-trivial slices ΞD form
a general hyperplane arrangement in Pc.
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2.2 Examples and first properties

We discuss examples and study basic structural properties of general arrangement va-
rieties. For instance, we investigate torsion in the divisor class group, describe the
canonical class and give a combinatorial characterization of the X-cones which in turn
leads to the combinatorial smoothness criterion provided by Corollary 2.2.16. More-
over, we specify constraints on the defining data of an explicit general arrangement
variety imposed by conditions on the singularities, preparing the classification presented
in Chapter 3. As a first concrete application, we prove at the end of this section that
the smooth projective general arrangement varieties of Picard number one are just the
classical smooth projective quadrics; see Proposition 2.2.23.
We begin with the examples. The first one shows how to realize intrinsic quadrics
as explicit general arrangement varieties. Recall from [15] that an intrinsic quadric
is a normal projective variety with a Cox ring defined by a single quadratic relation.
The intrinsic quadrics form a playground immediately adjacent to the one given by
the projective toric varieties, which have a polynomial ring as Cox ring. We mention
Bourqui’s work [17] proving Manin’s conjecture for the full intrinsic quadrics and the
classification results on smooth (Fano) intrinsic quadrics of low Picard number in [29]
as examples for research in this field.

Example 2.2.1. The normal form for graded quadrics provided by [29, Prop. 2.1] shows
that we can represent every intrinsic quadric as an explicit general arrangement variety
X ⊆ Z with defining matrix P having left upper block −l0 l1 0

... . . .
−l0 0 lr

 , l0 = . . . = lq = (1, 1), lq+1 = . . . = lr = (2),

where −1 ≤ q ≤ r and the variables Ti1 with i = q + 1, . . . , r have pairwise distinct
K-degrees. Moreover, for the dimension of X, the rank of the divisor class group and
the complexity of the torus action on X, we have

dim(X) = r − 1 + s, rk (Cl(X)) = m+ q + 2− s, c(X) = r − 1.

In the second example we exhibit a series of general arrangement varieties producing
many Fano examples. We pick up these varieties again in Example 2.2.18, when the
necessary methods are available to figure out the smooth Fano varieties.

Example 2.2.2. Fix integers r > c ≥ 1. Consider the product Z = Pr × Pr and the
intersection X = V (g1) ∩ . . . ∩ V (gr−c) ⊆ Z of the r − c divisors of bidegree (a, b) in Z
given by

g1 = λ1,0T
a
01T

b
02 + λ1,1T

a
11T

b
12 + . . .+ λ1,cT

a
c1T

b
c2 + T ac+1,1T

b
c+1,2,

...
gr−c = λr−c,0T

a
01T

b
02 + λr−c,1T

a
11T

b
12 + . . .+ λr−c,cT

a
c1T

b
c2 + T ar1T

b
r2,
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where a, b > 0 are coprime integers and any c+ 1 of the vectors λi = (λi,0, . . . , λi,c) are
linearly independent. Observe that for r > c + 1, the divisors V (gi) ⊆ Z are singular.
We realize X ⊆ Z as an explicit general arrangement variety. Let P be the stack matrix
with upper and lower blocks

P0 =

 −l0 l1 0
... . . .

−l0 0 lr

 , l0 = . . . = lr = (a, b),

d =

 −d0 d1 0
... . . .

−d0 0 dr

 , d0 = . . . = dr = (v, u),

where u and v are integers with ua − vb = 1. We claim that there is precisely one
complete fan Σ with generator matrix P and the associated toric variety Z = ZΣ is the
product Pr × Pr. Indeed, consider the matrices[

u · Er −b · Er
−v · Er a · Er

]
,

[
−1r Er 0 0

0 0 −1r Er

]
.

The first one is unimodular and multiplying it from the left to P yields, after suitably
renumbering columns, the second one. Now, choosing a suitable (c+ 1)× (r+ 1) matrix
A, we obtain the above relations as the output of Construction 2.1.13. Thus, X =
X(A,P,Σ) is of dimension r + c and comes with an effective r-torus action.

We enter the study of structural properties of explicit general arrangement varieties
X ⊆ Z as provided by Construction 2.1.13. We will freely use the notation fixed there.
Our first observation is that there may occur unavoidable torsion in the divisor class
group.

Proposition 2.2.3. Let X ⊆ Z be an explicit general arrangement variety. Then
Zr/im(P0) is a finite subgroup of the divisor class group Cl(X).

Proof. The divisor class group of X equals K = Zn+m/im(P ∗). Moreover, Zr/im(P0)
is the torsion part Ktors

0 of the factor group K0 = Zn+m/im(P ∗0 ). Applying the snake
Lemma to the exact sequences arising from P ∗0 and P ∗ yields that the kernel of K0 → K
injects into Zs. Consequently, the torsion part Ktors

0 maps injectively into K.

In Remark 2.1.7, we observed that R(A,P ) is a complete intersection ring. Thus, we
can apply Proposition 1.4.10 and obtain the following description of the canonical class.

Proposition 2.2.4. Let X ⊆ Z be an explicit general arrangement variety of complexity
c(X) = c. Then the canonical class of X is given in terms of the generator degrees
wij = deg(Tij) and wk = deg(Sk) as

KX = −
r∑
i=0

ni∑
j=1

wij −
r∑

k=0
wk + (r − c)

n0∑
j=1

l0jw0j ∈ K = Cl(X).
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Example 2.2.5. Consider again the explicit general arrangement varieties X ⊆ Z dis-
cussed in Example 2.2.2. The degree matrix Q is

Q = [w01, w02, . . . , wr1, wr2] = [E2, . . . ,E2].

Thus, Proposition 1.4.6 tells us Eff(X) = SAmple(X) = cone(e1, e2). Moreover, the
anticanonical class of X is given by

−KX = (r + 1− (r − c)a, r + 1− (r − c)b) ∈ Cl(X) = Z2.

as we infer from Proposition 2.2.4. In particular, X is a Fano variety if and only if the
following two conditions are satisfied

a <
r + 1
r − c

, b <
r + 1
r − c

.

Recall that in Definition 1.4.2 we introduced for any explicit variety X ⊆ Z the X-cones
as those cones σ ∈ Σ of the defining fan of Z such that X intersects the corresponding
orbit TZ · zσ non-trivially. For explicit general arrangement varieties X ⊆ Z, we may
determine the X-cones in a simple purely combinatorial way.

Definition 2.2.6. Consider the setting of Construction 2.1.13 and let σ ∈ Σ. We say
that the cone σ is

(i) big (elementary big) if σ contains at least (precisely) one column vij of P for every
i = 0, . . . , r,

(ii) a leaf cone if there is a set Iσ = {i1, . . . , ic} of indices 0 ≤ i1 < . . . < ic ≤ r such
that for any i, we have vij ∈ σ ⇒ i ∈ Iσ.

Remark 2.2.7. Situation as in Construction 2.1.13. Given σ ∈ Σ, let γ0 4 γ be the
corresponding face, that means that σ = P (γ∗0) holds. Then σ is a big (leaf) cone if and
only if the toric orbit Tn+m ·zγ∗0 ⊆ Kn+m consists of points of big (leaf) type in the sense
of Definition 2.1.9.

Proposition 2.2.8. Let X ⊆ Z be an explicit general arrangement variety. Then, for
every σ ∈ Σ, the following statements are equivalent.

(i) The cone σ is an X-cone.

(ii) The cone σ is big or a leaf cone.

Proof. Consider the face γ0 4 γ with P (γ∗0) = σ. By Remark 2.2.7, our σ is a big (leaf)
cone if and only if X̄(γ0) consists of points of big (leaf) type. The assertion thus follows
from Lemma 2.1.11.
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Example 2.2.9. We look again at X = X(A,P,Σ) in Z = ZΣ from Examples 2.1.4
and 2.1.17. Recall that we have

P = [v01, v02, v11, v21, v31] =


−1 −2 2 0 0
−1 −2 0 2 0
−1 −2 0 0 4
−1 −3 1 1 1

 .
Except cone(v01, v02, v11, v21, v31), every cone generated by some of the vij occurs in the
fan Σ. In particular, Σ has two big cones

σ1 = cone(v01, v11, v21, v31), σ2 = cone(v02, v11, v21, v31),

and six maximal leaf cones

τ1 = cone(v01, v02, v11), τ2 = cone(v01, v02, v21), τ3 = cone(v01, v02, v31),

τ4 = cone(v11, v21), τ5 = cone(v11, v31), τ6 = cone(v21, v31).

Thus, by Proposition 2.2.8 the X-cones of Σ are σ1, σ2 and the faces of τ1, . . . , τ6. This
allows us to determine the Picard group Pic(X). Recall the degree matrix

Q = [w01, w02, w11, w21, w31] =

 2 1 2 2 1
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 1̄ 0̄ 1̄ 0̄

 ,
having the generator degrees wij = Q(eij) ∈ K = Z×Z/2Z×Z/2Z as its columns. The
X-faces corresponding to the X-cones σ1, σ2, τ1, τ2, τ3 are

γ1 = cone(e02), γ2 = cone(e02),

η1 = cone(e11, e21), η2 = cone(e11, e21), η3 = cone(e21, e31).

Observe that these are precisely the minimal ones among all X-faces γ0 4 γ = Q5
≥0.

Thus, Proposition 1.4.6 yields

Pic(X) =
2⋂
i=1

Q(linQ(γi) ∩ Z4) ∩
3⋂
i=1

Q(linQ(ηi) ∩ Z4) = Z · (4, 0̄, 0̄) ⊆ Cl(X).

Using Proposition 2.2.4, we see that (4, 0̄, 0̄) equals the anticanonical class −KX . In
particular, X is a Gorenstein Fano threefold.

Big and leaf cones admit also simple characterizations in terms of the geometry of the
defining fan of the ambient toric variety.

Remark 2.2.10. Consider the setting of Construction 2.1.13 and let L ⊆ Zr+s be the
kernel of the projection pr : Zr+s → Zs. Then, for any σ ∈ Σ, the following statements
are equivalent.
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(i) The cone σ is big.

(ii) We have pr(σ) = Qr.

(iii) We have σ 6⊆ LQ and σ◦ ∩ LQ 6= ∅.

Moreover, σ ∈ Σ is a leaf cone if and only if its image pr(σ) ⊆ Qr is a pointed cone of
dimension at most c.

Proposition 2.2.11. Situation as in Construction 2.1.13. Let L ⊆ Zr+s be the kernel
of the projection pr: Zr+s → Zs and ΣL the fan in Zr+s consisting of all the faces of the
cones σ ∩ LQ, where σ ∈ Σ. Then the following statements are equivalent.

(i) ΣL is a subfan of Σ.

(ii) Σ contains no big cone.

(iii) Σ consists of leaf cones.

Proof. The equivalence of (ii) and (iii) is clear. We prove “(i)⇒(ii)”. Assume that there
is a big cone σ ∈ Σ. Then σ ∩ LQ belongs to ΣL but not to Σ according to 2.2.10 (iii);
a contradiction. We turn to “(ii)⇒(i)”. The task is to show that for every cone σ ∈ Σ,
the intersection σ ∩LQ is a face of σ. Let τ 4 σ be the minimal face containing σ ∩LQ.
Then τ◦ ∩ LQ is non-empty. Since τ ∈ Σ is not big, we can use 2.2.10 (iii) to conclude
τ ⊆ LQ. This means σ ∩ LQ = τ .

We use the the concrete description of X-cones as big cones and leaf cones to study
(quasi)smoothness properties of explicit general arrangement varieties X ⊆ Z. First, let
us define quasismoothness.

Definition 2.2.12. Let X ⊆ Z be an explicit T-variety. We say that x ∈ X is a
quasismooth point of X if the fiber p−1(x) ⊆ X̂ consists of smooth points of X̄.

Remark 2.2.13. Let X ⊆ Z be an explicit T-variety, σ ∈ Σ an X-cone and γ0 4 γ the
face with P (γ∗0) = σ. Then, for x ∈ X(σ), the intersection p−1(x) ∩ X̄(γ0) equals the
closed orbit H · z of p−1(x). In particular, x ∈ X is quasismooth if and only if z ∈ X̄
is smooth. Moreover, X(σ) consists of quasismooth points of X if and only if X̄(γ0)
consists of smooth points of X̄.

Proposition 2.2.14. Let X ⊆ Z be an explicit general arrangement variety.

(i) For every big cone σ ∈ Σ, the following statements are equivalent.

(a) There is a quasismooth point of X in the piece X(σ) ⊆ X.
(b) The piece X(σ) ⊆ X consists of quasismooth points of X.
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(c) Every sequence 0 ≤ i1 < . . . < ic+2 ≤ r admits 1 ≤ q ≤ c+ 2 and 1 ≤ j ≤ niq
such that viqj ∈ σ, liqj = 1 and viqk 6∈ σ for all k 6= j.

(ii) For every leaf cone σ ∈ Σ, the piece X(σ) ⊆ X consists of quasismooth points of
X.

Proof. According to Remark 2.2.13, we just have to care about smoothness of the points
of X̄(γ0). By Remark 2.1.7, a point z ∈ X̄(γ0) is smooth if and only if the Jacobian
J(z) of g1, . . . , gr−c is of full rank. The latter is characterized via Lemma 2.1.12 (ii).
In particular, we see that in the case of a leaf cone σ, all points of X̄(γ0) are smooth,
proving (ii). To show (i), let σ be big. By the nature of Condition 2.1.12 (ii), there is
a smooth point of X̄ in X̄(γ0) if and only if every point of X̄(γ0) is smooth in X̄. This
establishes the equivalence of (a) and (b). The equivalence of (a) and (c) is obtained by
negating Condition 2.1.12 (ii) for a point z of big type.

Corollary 2.2.15. Let X ⊆ Z be a quasismooth explicit general arrangement variety.
Assume that P is irredundant and let σ = cone(v0j0 + . . . + vrjr) be an elementary big
cone of Σ.

(i) We have liji ≥ 2 for at most c+ 1 different i = 0, . . . , r.

(ii) We have ni = 1 for at most c+ 1 different i = 0, . . . , r.

Combining Proposition 2.2.14, Remark 2.2.13 and Proposition 1.4.5 leads to the following
purely combinatorial smoothness criterion for explicit general arrangement varieties.

Corollary 2.2.16. Let X ⊆ Z be an explicit general arrangement variety.

(i) Let σ ∈ Σ be a big cone and γ0 4 γ the corresponding X-face. Then the following
statement are equivalent.

(a) There is a smooth point of X in the piece X(σ) = X(γ0) ⊆ X.
(b) The piece X(σ) = X(γ0) ⊆ X consists of smooth points of X.
(c) The cone σ is regular and 2.2.14 (i) (c) holds.
(d) We have K = Q(linQ(γ0) ∩ Zn+m) and 2.2.14 (i) (c) holds.

(ii) Let σ ∈ Σ be a leaf cone and γ0 4 γ the corresponding X-face. Then the following
statements are equivalent.

(a) There is a smooth point of X in the piece X(σ) = X(γ0) ⊆ X.
(b) The piece X(σ) = X(γ0) ⊆ X consists of smooth points of X.
(c) The cone σ is regular.
(d) We have K = Q(linQ(γ0) ∩ Zn+m).
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Example 2.2.17. Let us continue the discussion of X ⊆ Z from 2.1.4 and 2.1.17.
In 2.2.9, we determined the maximal X-cones: there are two big cones σ1, σ2 and six
maximal leaf cones τ1, . . . , τ6. Using Corollary 2.2.16, we see that the associated pieces
are precisely those consisting of singular points of X. Note that

X(τi) = X(σ1) ∪X(τi) ∪ X(σ2), i = 1, 2, 3,

are curves, each being the closure of the T-orbit X(τi); use Proposition 1.4.9. The union
over these X(τi) is a connected component of the singular locus of X. In addition, we
have X(τi) for i = 4, 5, 6, each consisting of an isolated singularity.

Example 2.2.18. We continue Example 2.2.2. Suitably renumbering the variables we
achieve a ≥ b. We claim that X is smooth if and only if one of the following conditions
is satisfied:

(i) r = c+ 1, a ≥ 1 and b = 1,

(ii) r = c+ 2 and a = b = 1.

Indeed, r ≤ c+ 2 holds, because otherwise the big cone σ ∈ Σ generated by all vij with
i ≤ r− 2 and vr−1 1, vr2 yields a singular point in X(σ). Now, the elementary big cones
of Σ are precisely cone(v0j0 , . . . , vrjr), where {j0, . . . , jr} equals {1, 2}, and the claim
follows from Corollaries 2.2.15 and 2.2.16. In particular we obtain smooth Fano varieties
in the cases

(iii) r = c+ 1, 1 ≤ a ≤ r and b = 1,

(iv) r = c+ 2 and a = b = 1.

Finally, we observe constraints on the defining data of an explicit general arrangement
variety arising from local factoriality and Q-factoriality.

Proposition 2.2.19. Let X ⊆ Z be a locally factorial explicit general arrangement
variety, where P is irredundant. Assume that Σ consists of leaf cones and each of the
sets cone(vi1) + LQ is covered by cones of Σ. Then ni ≥ 2 holds for i = 0, . . . , r.

Proof. Assume that ni = 1 holds for some i. Let % denote the ray through vi1 and
consider the cone τ := %+ LQ. We claim that for every σ ∈ Σ, the intersection τ ∩ σ is
a face of σ. Indeed, as Σ consists of leaf cones, the image of pr(σ) under the projection
pr : Qr+s → Qr is a pointed cone, having pr(%) as an extremal ray. Thus, τ = pr−1(pr(%))
cuts out a face from σ.
By our assumptions, the above claim implies that τ = %+ LQ is a union of cones of Σ.
Any cone of Σ \ ΣL contained in τ is necessarily of the form %+ σL ∈ Σ with σL ∈ ΣL.
We conclude that in particular all the cones σ = % + σL, where dim(σL) = s, must
belong to Σ. As σ and σL are leaf cones, they are X-cones by Proposition 2.2.8. Thus,
Proposition 1.4.5 yields that σ and σL are regular. This implies li1 = 1; a contradiction
to the assumption that P is irredundant.
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Corollary 2.2.20. Let X ⊆ Z be a non-toric, projective, locally factorial explicit gen-
eral arrangement variety. If Σ consists of leaf cones, then the Picard number and the
complexity of X satisfy

ρ(X) ≥ r + 3 ≥ c(X) + 4.

Proof. Since X is non-toric, we may assume that P is irredundant with r > c. Moreover,
as X is projective, we may assume that Σ is complete. Thus, Proposition 2.2.19 applies
and we obtain n ≥ 2r + 2. Then Corollary 1.4.12 yields the desired estimate.

Proposition 2.2.21. Let X ⊆ Z be a Q-factorial explicit general arrangement variety.
If Σ admits a big cone, then it admits an elementary big cone.

Proof. Let σ ∈ Σ be a big cone. Then σ is an X-cone according to Proposition 2.2.8.
Proposition 1.4.4 tells us that σ is simplicial. Now, any elementary big face of σ is as
wanted.

Corollary 2.2.22. Let X ⊆ Z be a non-toric, projective, locally factorial explicit gen-
eral arrangement variety. If X is of Picard number ρ(X) ≤ c + 3, then Σ admits an
elementary big cone.

We conclude the section with a closer look at smooth projective general arrangement
varieties of Picard number one.

Proposition 2.2.23. Let X be a non-toric, smooth, projective general arrangement
variety of Picard number one. Then X is a quadric V (T 2

0 + . . .+ T 2
r ) ⊆ Pr.

Proof. According to Theorem 2.1.18, it suffices to consider the explicit general ar-
rangement varieties X ⊆ Z. Moreover, we may assume that P is irredundant and
n0 ≥ . . . ≥ nr holds. Finally, we have KQ = Q and may assume that the effective cone
of X is Q≥0.

First we show that the are no variables of type Sk in R(A,P ). Otherwise, γ1 =
cone(e1) 4 γ is an X-face and thus we find a point x ∈ X̂ having x1 as its only
nonzero coordinate. By smoothness of X, the Jacobian of g1, . . . , gr−c does not vanish
at x; see Proposition 1.4.5. This implies li1 + . . . + lini = 1 for some i; a contradiction
to irredundance of P .

According to Corollary 2.2.22, the fan Σ admits an elementary big cone. Proposi-
tion 2.2.15 tells us n0 ≥ 2. Thus γ0j = cone(e0j) 4 γ is an X-face. Proposition 1.4.5
yields that deg(T0j) generates K. We conclude K = Z and deg(T0j) = 1. Additionally,
smoothness of X(γ01) implies that grad(g1)(x) 6= 0 holds for every point x ∈ X̄(γ01).
We conclude n0 = 2 and deg(g1) = 2. This implies deg(Tij) = 1 and for all i, j, we
obtain lij = 1 or lij = 2 according to ni = 2 or ni = 1.

Finally, observe that c = r−1 holds, i.e., that there is only one defining relation. Indeed,
otherwise, we find generators g′1, . . . , g′r−c, each involving precisely c+ 2 monomials and
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g′r−c all different from T l00 . Then the corresponding Jacobian vanishes at any x ∈ X̄(γ01),
showing that X(γ01) is singular. A contradiction.

Remark 2.2.24. Consider a smooth, projective explicit general arrangement variety
X ⊆ Z of Picard number one with P being irredundant. By Proposition 2.2.23, the
divisor class group Cl(X) is torsion free. Thus, Proposition 2.2.3 yields

P0 =

 −l0 l1 0
... . . .

−l0 0 lr

 , l0 = . . . = lr−1 = (1, 1), lr =
{

(1, 1), n even,
(2), n odd,

where n = n0 + . . .+ nr. Moreover, the torus action on X is the action of the maximal
torus of Aut(X) = O(n). In particular, the torus action on X is of complexity

c =
{
n
2 − 2, n even,
n−1

2 − 1, n odd.



CHAPTER

THREE

SMOOTH GENERAL ARRANGEMENT VARIETIES

Extending recent classification work in complexity one [30], this chapter is dedicated
to the study of smooth projective general arrangement varieties of true complexity two
and Picard number two. Here, true complexity two means that the torus action is of
complexity two and the variety does not admit a torus action of lower complexity. In
Section 3.1 we recall the classification results from [42]. In the subsequent Section 3.2,
we prove that all of the varieties from Theorem 3.1.1 are of true complexity two. In Sec-
tion 3.3, we turn to the Fano case. Here, we present an elaborated version of the results
from [42, 78]. Finally, in Section 3.1 we show that all Fano varieties from Theorem 3.1.3
can be constructed from a finite list of smooth general arrangement varieties of com-
plexity two and Picard number two via iterated duplication of a free weight. Section 3.1
and parts of Section 3.3 are published in the joint work [42].

3.1 Classification in Picard number two

In this section we recall the classification results already presented in [42]. We begin
with the description of all smooth general arrangement varieties of true complexity two
and Picard number two. Note that being Mori dream spaces, the varieties listed below
are indeed determined by their Cox ring together with an ample class; see Remark 1.4.7
and Remark 3.1.2 for the defining data as explicit general arrangement varieties.

Theorem 3.1.1. Every smooth projective general arrangement variety of true complexity
two and Picard number two is isomorphic to precisely one of the following varieties X,
specified by their Cox ring R(X), the matrix [w1, . . . , wr] of generator degrees and an
ample class u ∈ Cl(X) = Z2.

63
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No. R(X) [w1, . . . , wr] u dim(X)

1 K[T1,...,T9]
〈T1T2T 2

3 +T4T5+T6T7+T8T9〉

[
0 0 1 1 1 1 1 1 1
1 1 0 a1 a

′
1 a2 a

′
2 a3 a

′
3

]
1 ≤ a1 ≤ a2 ≤ a3, a

′
i = 2− ai

[
1

a3 + 1

]
6

2 K[T1,...,T9]
〈T1T2T3+T4T5+T6T7+T8T9〉

[
0 0 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 1

] [
1
2

]
6

3 K[T1,...,T8]
〈T1T2T 2

3 +T4T5+T6T7+T 2
8 〉

[
0 0 1 1 1 1 1 1
1 1 0 a1 a

′
1 a2 a

′
2 1

]
1 ≤ a1 ≤ a2, a

′
i = 2− ai

[
1

a2 + 1

]
5

4
K[T1,...,T8,S1,...,Sm]

〈T1T
l2
2 +T3T

l4
4 +T5T

l6
6 +T7T

l8
8 〉

m≥0

[
0 1 a1 1 a2 1 a3 1 d1 . . . dm
1 0 1 0 1 0 1 0 1 . . . 1

]
0 ≤ a1 ≤ a2 ≤ a3, d1 ≤ . . . ≤ dm,
l2 = a1 + l4 = a2 + l6 = a3 + l8

[
d
1

]
d max

of a3, dm

m+ 5

5
K[T1,...,T8,S1,...,Sm]

〈T1T2+T 2
3 T4+T 2

5 T6+T 2
7 T8〉

m≥0

[
0 2a + 1 a 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
a ≥ 0

[
2a + 2

1

]
m+ 5

6
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T 2
5 T6+T 2

7 T8〉
m≥0

[
0 2a3 + 1 a1 a2 a3 1 a3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
2a3 + 1 = a1 + a2, 0 ≤ a1 ≤ a2

[
2a3 + 2

1

]
m+ 5

7
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T 2
7 T8〉

m≥1

[
0 2a5 + 1 a1 a2 a3 a4 a5 1 1 . . . 1
1 1 1 1 1 1 1 0 0 . . . 0

]
2a5 + 1 = a1 + a2 = a3 + a4, ai ≥ 0

[
2a5 + 2

1

]
m+ 5

8
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥1

[
0 0 0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 5

9
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 a1 a2 a3 a4 a5 a6 a7 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
a1 = a2 + a3 = a4 + a5 = a6 + a7

ai ≥ 0

[
a1 + 1

1

]
m+ 5

10
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ · · · ≤ dm, dm > 0

[
1

dm + 1

]
m+ 5

11
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥1

[
−1 1 0 0 0 0 0 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 4

12
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 2a5 a1 a2 a3 a4 a5 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

]
a1 + a2 = a3 + a4 = 2a5, ai ≥ 0

[
2a5 + 1

1

]
m+ 4

13
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ . . . ≤ dm, dm > 0

[
1

dm + 1

]
m+ 4

14 K[T1,...,T10]〈
T1T2 + T3T4 + T5T6 + T7T8,

λ1T3T4 + λ2T5T6 + T7T8 + T9T10

〉 [
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

] [
1
1

]
6

Moreover, each of the listed data defines a smooth projective general arrangement variety
of true complexity two and Picard number two.
Remark 3.1.2. According to Theorem 2.1.18, the varieties from Theorem 3.1.1 can be
represented as explicit general arrangement varieties X(A,P,Σ) in the sense of Defini-
tion 2.1.16. The following table provides the defining data P and Σ, where we denote
the columns of P by v1, . . . , vn+m and set σi,j := cone(vk; k 6= i, k 6= j).
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No. P maximal cones of Σ

1

[
−1 −1 −2 1 1 0 0 0 0
−1 −1 −2 0 0 1 1 0 0
−1 −1 −2 0 0 0 0 1 1
u1 u2 u3 0 u5 0 u7 0 u9

]
ui ∈ Z4, u3 = −u5 − u7 − u9,
u1 = −u2 − a′1u5 − a′2u7 − a′3u9

σ1,i, σ2,i, i = 3, . . . , 9

2


−1 −1 −1 1 1 0 0 0 0
−1 −1 −1 0 0 1 1 0 0
−1 −1 −1 0 0 0 0 1 1

0 1 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 −1 1
0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 1 0 −1

 σ1,i, σ2,i, σ5,i, σ7,i, σ9,i,
i = 3, 4, 6, 8

3

[
−1 −1 −2 1 1 0 0 0
−1 −1 −2 0 0 1 1 0
−1 −1 −2 0 0 0 0 2
u1 u2 u3 0 u5 0 u7 u8

]
ui ∈ Z3, u3 = −u5 − u7 − u8,
u1 = −u2 − a′1u5 − a′2u7 − u8

σ1,i, σ2,i i = 3, . . . , 7

4

[
−1 −l2 1 l4 0 0 0 0 0 . . . 0
−1 −l2 0 0 1 l6 0 0 0 . . . 0
−1 −l2 0 0 0 0 1 l8 0 . . . 0
u1 u2 0 u4 0 u6 0 u8 u′1 . . . u′m

]
ui, u

′
i ∈ Zm+3, u1 = −u′1 − . . .− u

′
m

u2 = −u4 − u6 − u8 − d1u
′
1 − . . .− dmu′m

σ2,3, σ2,5, σ2,7, σ2,8+i,
σ1,4, σ4,5, σ4,7, σ4,8+i,
σ1,6, σ3,6, σ6,7, σ6,8+i,
σ1,8, σ3,8, σ5,8, σ8,8+i,
i = 1, . . . ,m

5

[
−1 −1 2 1 0 0 0 0 0 . . . 0
−1 −1 0 0 2 1 0 0 0 . . . 0
−1 −1 0 0 0 0 2 1 0 . . . 0
u1 u2 u3 0 u5 0 u7 0 u′1 . . . u′m

]
ui, u

′
i ∈ Zm+3, u1 = −u2 − u3 − u5 − u7,

(2a + 1)u2 = −a(u3 + u5 + u7)− u′1 − . . .− u
′
m

σ1,4, σ2,4, σ4,5, σ4,7,
σ1,6, σ2,6, σ3,6, σ6,7,
σ1,8, σ2,8, σ3,8, σ5,8,
σj,(8+i), i = 1, . . . ,m,
j = 1, 2, 3, 5, 7

6

[
−1 −1 1 1 0 0 0 0 0 . . . 0
−1 −1 0 0 2 1 0 0 0 . . . 0
−1 −1 0 0 0 0 2 1 0 . . . 0
u1 u2 u3 0 u5 0 u7 0 u′1 . . . u′m

]
ui, u

′
i ∈ Zm+3, u1 = −u2 − u3 − u5 − u7,

(2a3 + 1)u2 = −a1u3 − a3u5 − a3u7 − u′1 − . . .− u
′
m

σ1,6, σ2,6, σ3,6, σ4,6,
σ6,7, σ1,8, σ2,8, σ3,8,
σ4,8, σ5,8, σj,8+i,
i = 1, . . . ,m,
j = 1, 2, 3, 4, 5, 7

7

[
−1 −1 1 1 0 0 0 0 0 . . . 0
−1 −1 0 0 1 1 0 0 0 . . . 0
−1 −1 0 0 0 0 2 1 0 . . . 0
u1 u2 u3 0 u5 0 u7 0 u′1 . . . u′m

]
ui, u

′
i ∈ Zm+3, u1 = −u2 − u3 − u5 − u7,

(2a5 + 1)u2 = −a1u3 − a3u5 − a5u7 − u′1 − . . .− u
′
m

σj,8, σj,8+i, σ7,8+i
i = 1, . . . ,m,
j = 1, . . . , 6

8


−1 −1 1 1 0 0 0 0 0 0
−1 −1 0 0 1 1 0 0 0 0
−1 −1 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 −1 1 0
0 0 0 1 0 0 0 −1 1 0
0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 1 −1 2 0
0 0 0 0 0 0 0 0 −1m−1 Em−1

 σj,8, σj,8+i, σ7,8+i
i = 1, . . . ,m,
j = 1, . . . , 6

9

[
−1 −1 1 1 0 0 0 0 0 . . . 0
−1 −1 0 0 1 1 0 0 0 . . . 0
−1 −1 0 0 0 0 1 1 0 . . . 0
u1 u2 u3 0 u5 0 u7 0 u′1 . . . u′m

]
ui, u

′
i ∈ Zm+3, u1 = −u2 − u3 − u5 − u7,

a1u2 = −a2u3 − a4u5 − a6u7 − u′1 − . . .− u
′
m

σ8+i,j ,
i = 1, . . . ,m,
j = 1, . . . , 8

10

[
−1 −1 1 1 0 0 0 0 0 . . . 0
−1 −1 0 0 1 1 0 0 0 . . . 0
−1 −1 0 0 0 0 1 1 0 . . . 0
u1 u2 u3 0 u5 0 u7 0 u′1 . . . u′m

]
ui, u

′
i ∈ Zm+3, u′1 = −u′2 − . . .− u

′
m,

u1 = −u2 − u3 − u5 − u7 − d2u
′
2 − . . .− dmu′m

σ8+i,j ,
i = 1, . . . ,m,
j = 1, . . . , 8
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11


−1 −1 1 1 0 0 0 0 0
−1 −1 0 0 1 1 0 0 0
−1 −1 0 0 0 0 2 0 0

0 1 0 0 0 0 −1 −1 0
0 0 0 1 0 0 −1 0 0
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 −1m−1 Em−1

 σ2,j , σj,7+i,
i = 1, . . . ,m,
j = 1, 3, 4, 5, 6

12

[
−1 −1 1 1 0 0 0 0 . . . 0
−1 −1 0 0 1 1 0 0 . . . 0
−1 −1 0 0 0 0 2 0 . . . 0
u1 u2 u3 0 u5 0 u7 u′1 . . . u′m

]
ui, u

′
i ∈ Zm+2, u1 = −u2 − u3 − u5 − u7,

2a5u2 = −a1u3 − a3u5 − a5u7 − u′1 − . . .− u
′
m

σ7+i,j ,
i = 1, . . . ,m,
j = 1, . . . , 6

13

[
−1 −1 1 1 0 0 0 0 . . . 0
−1 −1 0 0 1 1 0 0 . . . 0
−1 −1 0 0 0 0 2 0 . . . 0
u1 u2 u3 0 u5 0 u7 u′1 . . . u′m

]
ui, u

′
i ∈ Zm+2, u′1 = −u′2 − . . .− u

′
m,

u1 = −u2 − u3 − u5 − u7 − d2u
′
2 − . . .− dmu′m

σ7+i,j ,
i = 1, . . . ,m,
j = 1, . . . , 6

14


−1 −1 1 1 0 0 0 0 0 0
−1 −1 0 0 1 1 0 0 0 0
−1 −1 0 0 0 0 1 1 0 0
−1 −1 0 0 0 0 0 0 1 1

0 1 0 0 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0 −1
0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 1 0 −1


σ1,4, σ1,6, σ1,8, σ1,10,
σ2,3, σ3,6, σ3,8, σ3,10,
σ2,5, σ4,5, σ5,8, σ5,10,
σ2,7, σ4,7, σ6,7, σ7,10,
σ2,9, σ4,9, σ6,9, σ8,9

We proceed with the Fano varieties contained in Theorem 3.1.1. The key to obtain
their full classification is the description of the anticanonical class of an explicit general
arrangement variety X ⊆ Z given by

−KX =
r∑
i=0

ni∑
j=1

wij +
r∑

k=0
wk − (r − c)

n0∑
j=1

l0jw0j ∈ K = Cl(X),

where c = c(X) is the complexity and wij = deg(Tij) as well as wk = deg(Tk) are the Cox
ring generator degrees, see Proposition 2.2.4. Going through the list of Theorem 3.1.1
and picking the cases with −KX lying in the ample cone, we obtain the following.

Theorem 3.1.3. Every smooth Fano general arrangement variety of true complexity
two and Picard number two is isomorphic to precisely one of the following varieties X,
specified by their Cox ring R(X) and the matrix [w1, . . . , wr] of generator degrees wi ∈
Cl(X) = Z2.

No. R(X) [w1, . . . , wr] −KX dim(X)

1 K[T1,...,T9]
〈T1T2T 2

3 +T4T5+T6T7+T8T9〉

[
0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1

] [
5
6

]
6

2 K[T1,...,T9]
〈T1T2T3+T4T5+T6T7+T8T9〉

[
0 0 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 1

] [
3
6

]
6

3 K[T1,...,T8]
〈T1T2T 2

3 +T4T5+T6T7+T 2
8 〉

[
0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1

] [
4
5

]
5

4A
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 2 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 0 1 . . . 1

] [
7 + 2m
3 +m

]
m+ 5

4B
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 1 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
4 +m
3 +m

]
m+ 5
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4C
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T6+T7T8〉
m≥0

[
0 1 0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
4 +m
3 +m

]
m+ 5

4D
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 1 1 1 1 1 1 d1 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

]
d1 ∈ {0, 1}

[
5+m−1+d1

3 +m

]
m+ 5

4E
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 3

4 +T5T 3
6 +T7T 3

8 〉
m≥0

[
0 1 0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 0 1 . . . 1

] [
3

3 +m

]
m+ 5

4F
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 0 1 0 1 0 1 d1 0 . . . 0
1 0 1 0 1 0 1 0 1 1 . . . 1

]
d1 ∈ {−1, 0}

[
2 + d1
3 +m

]
m+ 5

4G
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥0

[
0 1 0 1 0 1 0 1 d1 d2 0 . . . 0
1 0 1 0 1 0 1 0 1 1 1 . . . 1

]
d1, d2 ≤ 0, d1 + d2 ≥ −2

[
3 + d1 + d2

3 +m

]
m+ 5

5
K[T1,...,T8,S1,...,Sm]

〈T1T2+T 2
3 T4+T 2

5 T6+T 2
7 T8〉

m≥1

[
0 2a + 1 a 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
a ≥ 0, m > 3a

[
3a + 3 +m

3

]
m+ 5

6
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T 2
5 T6+T 2

7 T8〉
m≥1

[
0 2a3 + 1 a1 a2 a3 1 a3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
0 ≤ a1 ≤ a2, a1 + a2 = 2a3 + 1

m > 4a3 + 1

[
4a3 + 3 +m

4

]
m+ 5

7
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T 2
7 T8〉

m≥1

[
0 2a5 + 1 a1 a2 a3 a4 a5 1 1 . . . 1
1 1 1 1 1 1 1 0 0 . . . 0

]
ai ≥ 0, m > 5a5 + 2,

a1 + a2 = a3 + a4 = 2a5 + 1

[
5a5 + 3 +m

5

]
m+ 5

8
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
1≤m≤5

[
0 0 0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

] [
m
6

]
m+ 5

9
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 a1 a2 a3 a4 a5 a6 a7 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
ai ≥ 0, m > 3a1,

a1 = a2 + a3 = a4 + a5 = a6 + a7

[
3a1 +m

6

]
m+ 5

10
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ · · · ≤ dm, 0 < dm ≤ 5,

mdm < 6 + d2 + . . . + dm

[
m

6+
∑

dk

]
m+ 5

11
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
1≤m≤4

[
−1 1 0 0 0 0 0 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

] [
m
5

]
m+ 4

12
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 2a5 a1 a2 a3 a4 a5 1 . . . 1
1 1 1 1 1 1 1 0 . . . 0

]
a1 + a2 = a3 + a4 = 2a5,

ai ≥ 0, m > 5a5

[
m + 5a5

5

]
m+ 4

13
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ . . . ≤ dm, 0 < dm,
mdm < 5 + d2 + . . . + dm

[
m

5+
∑

dk

]
m+ 4

14 K[T1,...,T10]〈
T1T2 + T3T4 + T5T6 + T7T8,

λ1T3T4 + λ2T5T6 + T7T8 + T9T10

〉 [
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

] [
3
3

]
6

Moreover, each of the listed data defines a smooth Fano general arrangement variety of
true complexity two and Picard number two.
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Remark 3.1.4. Some of the above Fano varieties are intrinsic quadrics. Here is the
overlap of Theorem 3.1.3 with [29, Cor. 1.2]:

(i) Cases 10 and 13 are intrinsic quadrics of Type 1,

(ii) Cases 9 and 12 are intrinsic quadrics of Type 2,

(iii) Cases 8 and 11 are intrinsic quadrics of Type 3,

(iv) Case 4.G is an intrinsic quadric of Type 4.

Finally, we turn to the almost Fano case. As done above, we go through the list of
Theorem 3.1.1 and pick the cases with −KX lying on the boundary of the semi-ample
cone.

Theorem 3.1.5. Every smooth projective truly almost Fano general arrangement va-
riety of true complexity two and Picard number two is isomorphic to precisely one of
the following varieties X, specified by their Cox ring R(X), the matrix [w1, . . . , wr] of
generator degrees and an ample class u ∈ Cl(X) = Z2.

No. R(X) [w1, . . . , wr] u dim(X)

4A
K[T1,...,T8,S1,...,Sm]

〈T1T 4
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 3 1 3 1 3 1 3 . . . 3
1 0 1 0 1 0 1 0 1 . . . 1

] [
4
1

]
m+ 5

4B
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 2 1 2 1 2 1 1 2 . . . 2
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
3
1

]
m+ 5

4C
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T6+T7T8〉
m≥0

[
0 1 1 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 0 1 . . . 1

] [
3
1

]
m+ 5

4D
K[T1,...,T8,S1,...,Sm]

〈T1T 4
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 2 1 2 1 2 1 2 . . . 2
1 0 1 0 1 0 1 0 1 . . . 1

] [
3
1

]
m+ 5

4E
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥0

[
0 1 0 1 0 1 0 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
2
1

]
m+ 5

4F
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 1 1 1 1 1 1 0 0 1 . . . 1
1 0 1 0 1 0 1 0 1 1 1 . . . 1

] [
2
1

]
m+ 5

4G
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T4+T5T6+T7T8〉

m≥0

[
0 1 1 1 1 1 1 1 −1 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
2
1

]
m+ 5

4H
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T 2
6 +T7T8〉

m≥0

[
0 1 0 1 0 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
2
1

]
m+ 5

4I
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 1 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
2
1

]
m+ 5
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4J
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T6+T7T8〉
m≥0

[
0 1 0 1 1 1 1 1 0 1 . . . 1
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
2
1

]
m+ 5

4K
K[T1,...,T8,S1,...,Sm]

〈T1T 4
2 +T3T 3

4 +T5T 3
6 +T7T 3

8 〉
m≥0

[
0 1 1 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
2
1

]
m+ 5

4L
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 0 1 1 1 1 1 1 . . . 1
1 0 1 0 1 0 1 0 1 . . . 1

] [
2
1

]
m+ 5

4M
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥0

[
0 1 0 1 0 1 0 1 d1 . . . dm
1 0 1 0 1 0 1 0 1 . . . 1

]
dk ≤ 0,

∑
dk = −3

[
1
1

]
m+ 5

4N
K[T1,...,T8,S1,...,Sm]

〈T1T 2
2 +T3T 2

4 +T5T 2
6 +T7T 2

8 〉
m≥0

[
0 1 0 1 0 1 0 1 d1 . . . dm
1 0 1 0 1 0 1 0 1 . . . 1

]
dk ≤ 0,

∑
dk = −2

[
1
1

]
m+ 5

4O
K[T1,...,T8,S1,...,Sm]

〈T1T 3
2 +T3T 3

4 +T5T 3
6 +T7T 3

8 〉
m≥0

[
0 1 0 1 0 1 0 1 −1 0 . . . 0
1 0 1 0 1 0 1 0 1 1 . . . 1

] [
1
1

]
m+ 5

4P
K[T1,...,T8,S1,...,Sm]

〈T1T 4
2 +T3T 4

4 +T5T 4
6 +T7T 4

8 〉
m≥0

[
0 1 0 1 0 1 0 1 0 . . . 0
1 0 1 0 1 0 1 0 1 . . . 1

] [
1
1

]
m+ 5

5
K[T1,...,T8,S1,...,Sm]

〈T1T2+T 2
3 T4+T 2

5 T6+T 2
7 T8〉

m≥0

[
0 2a + 1 a 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
a ≥ 0,m = 3a

[
2a + 2

1

]
m+ 5

6
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T 2
5 T6+T 2

7 T8〉
m≥0

[
0 2a3 + 1 a1 a2 a3 1 a3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
0 ≤ a1 ≤ a2, 0 ≤ a3,

a1 + a2 = 2a3 + 1, m = 4a3 + 1

[
2a3 + 2

1

]
m+ 5

7
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T 2
7 T8〉

m≥1

[
0 2a5 + 1 a1 a2 a3 a4 a5 1 1 . . . 1
1 1 1 1 1 1 1 0 0 . . . 0

]
ai ≥ 0, m = 5a5 + 2,

a1 + a2 = a3 + a4 = 2a5 + 1

[
2a5 + 2

1

]
m+ 5

8
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m=6

[
0 0 0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

] [
1
2

]
m+ 5

9
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 a1 a2 a3 a4 a5 a6 a7 1 . . . 1
1 1 1 1 1 1 1 1 0 . . . 0

]
ai ≥ 0, m = 3a1,

a1 = a2 + a3 = a4 + a5 = a6 + a7

[
a1 + 1

1

]
m+ 5

10
K[T1,...,T8,S1,...,Sm]

〈T1T2+T3T4+T5T6+T7T8〉
m≥2

[
0 0 0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 1 1 0 d2 . . . dm

]
0 ≤ d2 ≤ · · · ≤ dm, dm ≤ 6
mam = 6 + d2 + . . . + dm

[
1

dm + 1

]
m+ 5

11
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m=5

[
1 1 1 1 1 1 1 0 . . . 0
−1 1 0 0 0 0 0 1 . . . 1

] [
1
2

]
m+ 4

12
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
1 1 1 1 1 1 1 0 . . . 0
0 2a5 a1 a2 a3 a4 a5 1 . . . 1

]
2a5 = a1 + a2 = a3 + a4,

ai ≥ 0, m = 5a5

[
2a5 + 1

1

]
m+ 4

13
K[T1,...,T7,S1,...,Sm]
〈T1T2+T3T4+T5T6+T 2

7 〉
m≥2

[
1 1 1 1 1 1 1 0 d2 . . . dm
0 0 0 0 0 0 0 1 1 . . . 1

]
d2 ≤ . . . ≤ dm,

mdm = 5 + d2 + . . . + dm

[
1

dm + 1

]
m+ 4
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Moreover, each of the listed data defines a smooth truly almost Fano general arrangement
variety of true complexity two and Picard number two.

3.2 True complexity

In this section we prove that all of the varieties listed in Theorem 3.1.1 are of true
complexity two. We proceed as follows: In a first step we show that the varieties in our
list are non-toric. We go on by comparing the varieties in Theorem 3.1.1 with those
from [30, Thm 1.1] and prove that they are pairwise non-isomorphic. This will be done
by comparing the geometric data encoded in their respective Cox rings.

Let us recall the basic facts and observations concerning invariants of graded rings. Let
R be a finitely generated integral algebra with an effective pointed grading of a finitely
generated abelian group K. As usual we denote by S(R) the weight monoid of R, i.e.
the monoid of all w ∈ K with non-trivial homogeneous component Rw.

The first invariant we consider is the set of primitive elements of S(R) which we will
denote by Sp(R). If (ϕ, ϕ̃) : R → R′ is an isomorphism of graded rings then ϕ̃ maps
Sp(R) onto Sp(R′).

A second important invariant is the set of generator degrees

ΩR := {w ∈ K; Rw 6⊆ R<w}.

As before graded isomorphisms map sets of generator degrees onto sets of generator
degrees. In particular, if (ϕ, id) : R → R′ is a graded isomorphism, then ΩR = ΩR′

holds. The two invariants are connected via the following inclusions: if f1, . . . , fr are
K-homogeneous generators for R, then we have

Sp(R) ⊆ ΩR ⊆ {deg(f1), . . . ,deg(fr)}.

A way to compute the set of generator degrees is to consider minimal presentations of
R, i.e. graded epimorphisms (ϕ, ϕ̃) from a K-graded polynomial ring K[T1, . . . , Tr], with
homogeneous variables, to R, such that ϕ̃ : K → K is an isomorphism and ker(ϕ) ⊆
〈T1, . . . , Tr〉2 holds. If (ϕ, id) : K[T1, . . . , Tr] → R is a minimal presentation then the
K-grading on K[T1, . . . , Tr] is effective and pointed as well and we have

ΩR = ΩK[T1,...,Tr] = {deg(T1), . . . ,deg(Tr)}.

Remark 3.2.1. Let X := X(A,P,Σ) be a general arrangement variety with Cox ring
R(A,P ). If P is irredundant, then the canonical projection K[Tij , Sk] → R(A,P ) is a
minimal presentation. Moreover let w ∈ KQ be a primitive ray generator of an extremal
ray of the effective cone Eff(X) and let n ∈ Z≥0 be the minimal multiplicity such that
the graded component R(A,P )nw is not trivial. Then the number µnw := dim(Rnw) is
an invariant under graded isomorphy on R(A,P ) and each set of K-prime generators of
R(A,P ) contains at least µnw generators of degree nw.
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Proposition 3.2.2. Each of the varieties listed in Theorem 3.1.1 is of true complexity
two, i.e., it does not admit torus actions of lower complexity.

Proof. First observe that each of the varieties listed in Theorem 3.1.1 has a singular
total coordinate space and hence is not toric. Thus, we have to show that none of them
is isomorphic to a smooth non-toric variety of Picard number two with torus action of
complexity one, which in turn are all given in [30, Thm. 1.1]. Let X be a variety listed
in Theorem 3.1.1 and assume X has a complexity one torus action. Then, comparing
the dimension of the total coordinate space X in combination with the dimension of its
singular locus to the respective data in [30, Thm. 1.1], we see that X can only be one of
the varieties from Nos. 3, 4, 5 and 6. We now go through the cases and show that none
of them admits a torus action of complexity one.

No. 3: Recall that Cox ring, degree matrix and an ample class of X are given as

R = K[T1, . . . , T8]/〈T1T2T
2
3 + T4T5 + T6T7 + T 2

8 〉,

Q =
[

0 0 1 1 1 1 1 1
1 1 0 b1 2− b1 b2 2− b2 1

]
, 1 ≤ b1 ≤ b2

u = (1, b2 + 1).

The total coordinate space Spec(R) of X is of dimension 7 with singular locus of codi-
mension 5. Computing these data also for the varieties X ′ from [30, Thm. 1.1], we see
that X can be isomorphic at most to one of the varieties X ′ defined via the data in
Nos. 4, 7, 8 or 9 in this list. We now go through these cases.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 4]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T
l2
2 + T3T

l4
4 + T5T

l6
6 〉, m′ ≥ 0,

Q′ =
[

0 1 a1 1 a2 1 c1 . . . cm′

1 0 1 0 1 0 1 . . . 1

]
,

0 ≤ a1 ≤ a2,
c1 ≤ . . . ≤ cm′ ,
1 ≤ l2 = a1 + l4 = a2 + l6,

u′ = (max(a2, c
′
m) + 1, 1).

The total coordinate space Spec(R′) of X ′ is of dimension m′+5 and the codimension of
its singular locus equals 5 minus the number of i with li ≥ 2. Consequently, we obtain

m′ = 2, l2 = l4 = l6 = 1, a1 = a2 = 0.

We write wi for the i-th column of Q and denote by µi the number of times it shows up
as a column of Q. Analogously, we define w′i and µ′i. Then we have

µ1 = 2, µ3 ∈ {1, 2, 3}, µ′1 ∈ {3, 4, 5}, µ′2 = 3

for the primitive generators of the effective cones of X and X ′. Observe that µ1 = 2 but
µ′1, µ

′
2 ≥ 3 hold; a contradiction.
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Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 7]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 1,

Q′ =
[

0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

]
u′ = (1, 2).

As above we write wi for the i-th column of Q, denote by µi the number of times it
shows up as a column of Q and define w′i and µ′i analogously. The semiample cone of
X ′ is generated by the primitive generators w′1 and w′6. Both of them lie in the interior
of the effective cone of X ′. This is in contrast to w1 which is a semiample primitive
generator of the effective cone of X; a contradiction.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 8]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 2,

Q′ =
[

0 0 0 0 0 0 1 1 . . . 1
1 1 1 1 1 1 0 a2 . . . am′

]
,

0 ≤ a2 ≤ . . . ≤ am′
am′ > 0

u′ = (1, am′ + 1).

As above we write wi for the i-th column of Q, denote by µi the number of times it
shows up as a column of Q and define w′i and µ′i analogously. Then we have

µ1 = 2, µ′1 = 6

for the only semiample primitive generators of the effective cones of X and X ′; a con-
tradiction.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 9]. After a
unimodular transformation, the Cox ring, the degree matrix and an ample class of X ′
are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 2,

Q′ =
[

1 1 . . . 1 0 . . . 0
0 a2 . . . a6 1 . . . 1

]
,

0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2
a2 = a3 + a4 = a5 + a6

u′ = (1, a2 + 1).

The total coordinate space Spec(R′) of X ′ is of dimension m′+ 5 and hence m′ = 2. We
write wi for the i-th column of Q and denote by µi the number of times it shows up as
a column of Q. Analogously, we define w′i and µ′i. We distinguish between two cases.

Case b2 ≤ 2: In this case we have Eff(X) = cone(e1, e2) = Eff(X ′). Observe that w1
and w′7 are the only semiample primitive generators of the effective cones of X and X ′.
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This implies ΩR = ΩR′ and we conclude a2 = b2. We are left with b1, b2 ∈ {1, 2} and
claim that all possible choices lead to a contradiction. Assume b1 = b2 = 2 holds. Due
to the multiplicity µ3 = 3 of the primitive extremal generator degree w3, we may assume
without loss of generality that a4 = a6 = 0. Therefore homogeneity of the relation
implies a3 = a5 = 2. This is a contradiction to ΩR = ΩR′ as w8 = (1, 1) 6= w′i for all
i = 1, . . . , r. The other cases can be excluded with analogous arguments.
Case b2 > 2: We apply a unimodular change of coordinates on Eff(X) and obtain the
Cox ring, the degree matrix and an ample class of X as

R = K[T1, . . . , T8]/〈T1T2T
2
3 + T4T5 + T6T7 + T 2

8 〉,

Q =
[

0 0 1 1 1 1 1 1
1 1 b2 − 2 b1 + b2 − 2 b2 − b1 2b2 − 2 0 b2 − 1

]
, 1 ≤ b1 ≤ b2

u = (1, 2b2 − 1).

As above we have Eff(X) = cone(e1, e2) = Eff(X ′) and as w1 and w′7 are the only
semiample primitive generators for the effective cones of X and X ′ we have ΩR = ΩR′ .
As we have b2 > 2 and a2 ≥ ai holds for all i ≥ 3, we obtain

a2 = 2b2 − 2 = a3 + a4 = a5 + a6 and b2 − 2, b2 − 1 ∈ {a3, a4, a5, a6} .

In particular, using a2− (b2− 2) = b2 and a2− (b2− 1) = b2− 1 we conclude a3 = b2− 2,
a4 = b2 and a5 = b2 − 1 = a6 due to homogeneity of the relations. Using ΩR = ΩR′ and
b1 ≥ 1, we conclude b1 = 2. In order to show, that this configuration of weights does
not give rise to an isomorphism of graded rings, we show that the graded components
Rw and R′w are not of the same dimension for w = (1, b2− 2). This is a contradiction as
ϕ(Rw) = R′w holds. Note, that the graded components Rw and R′w are generated by

T3, T5, T7T
α
1 T

β
2 , resp. T3, T1S

α
1 , S

β
2 , where α+ β = b2 − 2.

We claim that these generators are linearly independent. Assume not. Then we obtain
two linear combinations∑

µα,βT7T
α
1 T

β
2 + µ3T3 + µ5T5 ∈ 〈g〉 and

∑
λα,βT1S

α
1 S

β
2 + λ3T3 ∈ 〈g′〉.

As deg(g) = (2, 2b2− 2) = deg(g′) holds, this implies that each term with non vanishing
coefficient is of degree κ = (κ1, κ2) with κ1 ≥ 2 and κ2 ≥ 2b2 − 2. This is impossible as
all occurring terms are by construction of degree (1, b2 − 2). This proves the claim.

No. 4 in Theorem 3.1.1: Recall that Cox ring, degree matrix and an ample class of
X are

R = K[T1, . . . , T8, S1, . . . , Sm]/〈T1T
l2
2 + T3T

l4
4 + T5T

l6
6 + T7T

l8
8 〉, m ≥ 0

Q =
[

0 1 b1 1 b2 1 b3 1 d1 . . . dm
1 0 1 0 1 0 1 0 1 . . . 1

]
,

0 ≤ b1 ≤ b2 ≤ b3
d1 ≤ . . . ≤ dm

l2 = b1 + l4 = b2 + l6 = b3 + l8

u = (max(b3, dm), 1).
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The total coordinate space Spec(R) of X is of dimension 7 + m with singular locus of
codimension 7 minus the number of i with li ≥ 2. Computing these data also for the
varieties X ′ from [30, Thm. 1.1], we see that X can be isomorphic at most to one of the
varieties X ′ defined via the data of Nos. 4, 5, 6, 7, 8, 9, 10, 11 or 12 from this list. We
now go through these cases.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 4]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T
l′2
2 + T3T

l′4
4 + T5T

l′6
6 〉, m′ ≥ 0,

Q′ =
[

0 1 a1 1 a2 1 c1 . . . cm′

1 0 1 0 1 0 1 . . . 1

]
,

0 ≤ a1 ≤ a2,
c1 ≤ . . . ≤ cm′ ,
1 ≤ l′2 = a1 + l′4 = a2 + l′6,

u′ = (max(a2, c
′
m) + 1, 1).

We write wi for the i-th column of Q and denote by µi the number of times it shows
up as a column of Q. Analogously, we define w′i and µ′i. We obtain µ2 = 4 and µ′2 = 3
for the only non semiample primitive generators of the effective cones of X and X ′; a
contradiction.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 5]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T 2
3 T4 + T 2

5 T6〉, m′ ≥ 0,

Q′ =
[

0 2a+ 1 a 1 a 1 1 . . . 1
1 1 1 0 1 0 0 . . . 0

]
, a ≥ 0

u′ = (2a+ 2, 1).

As above, we write wi for the i-th column of Q and denote by µi the number of times
it shows up as a column of Q and define w′i and µ′i analogously. We obtain µ1 = 4 and
µ′1 ∈ {1, 3} for the only non semiample primitive generators of the effective cones of X
and X ′; a contradiction.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 6]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T 2
5 T6〉, m′ ≥ 1,

Q′ =
[

0 2a3 + 1 a1 a2 a3 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
,

a1, a2, a3 ≥ 0
a1 < a2
a1 + a2 = 2a3 + 1

u′ = (2a3 + 2, 1).

As above, we write wi for the i-th column of Q and denote by µi the number of times
it shows up as a column of Q and define w′i and µ′i analogously. We obtain µ1 = 4 and
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µ′1 ∈ {1, 2, 3} for the only non semiample primitive generators of the effective cones of
X and X ′; a contradiction.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 7]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 1,

Q′ =
[

0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

]
u′ = (1, 2).

As above, we write wi for the i-th column of Q and define analogously w′i. We obtain
w1 as a semiample primitive generator of the effecitve cone of X. But the variety X ′ has
no semiample divisor on the boundary of the cone of effective divisors; a contradiction.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 8]. After a
suitable change of coordinates, the Cox ring, the degree matrix and an ample class of
X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 2,

Q′ =
[

1 1 1 1 1 1 0 a2 . . . a′m
0 0 0 0 0 0 1 1 . . . 1

]
,

0 ≤ a2 ≤ . . . ≤ a′m
a′m > 0

u′ = (am + 1, 1).

As above, we write wi for the i-th column of Q and define analogously w′i. We obtain
w2 and w′1 as the only semiample primitive generators of the effective cones of X and
X ′. Looking at the homogeneous component of R and R′ of degree 2w2 resp. 2w′1 we
obtain a contradiction:

10 = dim(R2w2) = dim(R′2w′1) = 21.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 9]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 2,

Q′ =
[

0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
,

0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2
a2 = a3 + a4 = a5 + a6

u′ = (a2 + 1, 1).

As above, we write wi for the i-th column of Q and denote by µi the number of times
it shows up as a column of Q and define w′i and µ′i analogously. We obtain µ2 = 4 and
µ′1 ∈ {1, 2, 3, 6} for the only non semiample primitive generators of the effective cones of
X and X ′; a contradiction.
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Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 10]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T5, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T 2
5 〉, m′ ≥ 1,

Q′ =
[

1 1 1 1 1 0 . . . 0
−1 1 0 0 0 1 . . . 1

]
u′ = (2, 1).

As above, we write wi for the i-th column of Q and define analogously w′i. We obtain
w2 as a semiample primitive generator of the effecitve cone of X. The variety X ′ has no
semiample divisor on the boundary of the cone of effective divisors; a contradiction.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 11]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T5, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T 2
5 〉, m′ ≥ 1,

Q′ =
[

1 1 1 1 1 0 a2 . . . a′m
0 0 0 0 0 1 1 . . . 0

]
,

0 ≤ a2 ≤ . . . ≤ a′m
a′m > 0

u′ = (am + 1, 1).

As above, we write wi for the i-th column of Q and define analogously w′i. We obtain
w2 and w′1 as the only semiample primitive generators of the effective cones of X and
X ′. Looking at the homogeneous component of R and R′ of degree 2w2 resp. 2w′1 we
obtain a contradiction:

10 = dim(R2w2) = dim(R′2w′1) = 15.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 12]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T5, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T 2
5 〉, m′ ≥ 2,

Q′ =
[

1 1 1 1 1 0 0 . . . 0
0 2a3 a2 a2 a3 1 1 . . . 1

]
,

0 ≤ a1 ≤ a3 ≤ a2
a1 + a2 = 2a3

u′ = (1, 2a3 + 1).

As above, we write wi for the i-th column of Q and denote by µi the number of times
it shows up as a column of Q and define w′i and µ′i analogously. We obtain µ1 = 4 and
µ′1 ∈ {1, 2, 5} for the only non semiample primitive generators of the effective cones of
X and X ′; a contradiction.
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No. 5 in Theorem 3.1.1: Recall that Cox ring, degree matrix and an ample class of
X are

R = K[T1, . . . , T8, S1, . . . , Sm]/〈T1T2 + T 2
3 T4 + T 2

5 T6 + T 2
7 T8〉, m ≥ 0,

Q =
[

0 2b+ 1 b 1 b 1 b 1 1 . . . 1
1 1 1 0 1 0 1 0 0 . . . 0

]
, b ≥ 0,

u = (2b+ 2, 1).

The total coordinate space Spec(R) of X is of dimension m + 7 with singular locus of
codimension 4. Computing these data also for the varieties from [30, Thm. 1.1], we see
that X can be isomorphic at most to one of the varieties X ′ defined via the data of
Nos. 4, 6, 10, 11 or 12 of [30, Thm. 1.1]. We now go through these cases.

Assume that X is isomorphic to the variety [30, Thm. 1.1, No. 4], which we denote by
X ′. Cox ring, degree matrix and an ample class of X ′ are given by

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T
l2
2 + T3T

l4
4 + T5T

l6
6 〉, m′ ≥ 0,

Q′ =
[

0 1 a1 1 a2 1 c1 . . . cm′

1 0 1 0 1 0 1 . . . 1

]
,

0 ≤ a1 ≤ a2,
c1 ≤ . . . ≤ cm′ ,
1 ≤ l2 = a1 + l4 = a2 + l6b,

u′ = (max(a2, c
′
m) + 1, 1).

The total coordinate space Spec(R′) of X ′ is of dimension m′+5 and the codimension of
its singular locus equals 5 minus the number of i with li ≥ 2. Consequently, we obtain

m′ = m+ 2, l4 = l6 = 1, l2 = a1 + 1 = a2 + 1 ≥ 2, a1 = a2.

We write wi for the i-th column of Q and denote by µi the number of times it shows up
as a column of Q. Analogously, we define w′i and µ′i. Then we have

µ1 ∈ {1, 4}, µ4 = 3 +m, µ′2 = 3, µ′1 ≤ 1 +m′.

Observe that w1, w4 are the primitive generators of the extremal rays of the effective
cone of X and w4 is a semiample class, whereas w1 is not semiample. Moreover, w′2 is a
semiample primitive generator of the effective cone of X ′. We conclude

3 +m = µ4 = dim(Rw4) = dim(R′w′2) = µ′2 = 3.

Thus, m = 0 and m′ = 2 hold. Comparing the multiplicities dim(Rw) and dim(R′w′) for
w and w′ being the primitive generators differing from (1, 0) of the respective effective,
moving and semiample cones of X and X ′, we obtain

b, c1, c2 > 0, µ′1 = µ1 = 1 b = a1 = a2 = c1 < c2 = 2b+ 1.

But then the anticanonical class −KX = (3a + 3, 3) is divisible by 3, whereas −KX′ =
(4b+ 3, 3) is not; a contradiction.
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Assume that X is isomorphic to a variety X ′ as in [30, Thm. 1.1, No. 6]. Here, Cox ring,
the degree matrix and an ample class look as follows:

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T 2
5 T6〉, m′ ≥ 1,

Q′ =
[

0 2a3 + 1 a1 a2 a3 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
,

a1, a2, a3 ≥ 0,
a1 < a2,
a1 + a2 = 2a3 + 1,

u′ = (2a3 + 2, 1).

The dimension of the total coordinate space Spec(R′) of X ′ equals m′ + 5 and hence
m′ = m+ 2 must hold. As before, let wi be the i-th column of Q and µi the number of
times it shows up as a column of Q. Define w′i and µ′i analogously. We obtain

µ1 ∈ {1, 4}, µ4 = µ′6 = m+ 3, µ′1 ∈ {1, 2, 3}.

For X as well as for X ′, we find precisely one semiample primitive generator of the
effective cone, namely w4 and w′6. Consequently we obtain

1 = µ1 = µ′1, a1, a2, a3 > 0.

Comparing the multiplicities dim(Rw) and dim(R′w′) for w and w′ being the primitive
generators differing from (1, 0) of the effective, movable and semiample cones of X and
X ′, we arrive at a1 = a2 = a3 = b, which contradicts, for instance, a1 < a2.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 10]. In this case,
the Cox ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T5, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T 2
5 〉, m′ ≥ 1,

Q′ =
[

1 1 1 1 1 0 . . . 0
0 2 1 1 1 1 . . . 1

]
,

u′ = (2, 1).

Let wi, w′i and µi, µ′i be as before. Then w4 and w′1 are the only semiample primitive
generators of the effective cones of X and X ′, respectively. Thus, we obtain 1 = µ′1 =
µ4 = 3 +m; a contradiction.
Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 11]. The Cox
ring, the degree matrix and an ample class of X ′ are then given by

R′ = K[T1, . . . , T5, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T 2
5 〉, m′ ≥ 2,

Q′ =
[

1 1 1 1 1 0 a2 . . . am′

0 0 0 0 0 1 1 . . . 1

]
,

0 ≤ a2 ≤ . . . ≤ am′ ,
am′ > 0,

u′ = (am′ + 1, 1).

With wi, w′i and µi, µ′i as before, we see that, again, w4, w′1 are the only semiample
primitive generators of the effective cones of X, X ′, respectively, and conclude

5 = µ′1 = µ4 = 3 +m.
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This implies m = 2. Thus, Spec(R) is of dimension 7 +m = 9. Consequently, Spec(R′)
is of dimension 9 = 4 +m′, showing m′ = 5. Looking for R and R′ at the homogeneous
components of degrees 2w4 and 2w′1 respectively, we arrive at a contradiction:

15 = dim(R2w4) = dim(R′2w′1) = 14.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 12]. The Cox
ring, the degree matrix and an ample class of the latter are given as

R′ = K[T1, . . . , T5, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T 2
5 〉, m′ ≥ 2,

Q′ =
[

0 2a3 a1 a2 a3 1 1 . . . 1
1 1 1 1 1 0 0 . . . 0

]
,

0 ≤ a1 ≤ a3 ≤ a2,
a1 + a2 = 2a3,

u′ = (2a3 + 1, 1).

Comparing the primitive generators w, w′ and the corresponding multiplicities dim(Rw),
dim(R′w) of the effective, moving and semiample cones of X and X ′, we arrive at

m′ = 3 +m, 0 < b, 0 < a1 = a2 = a3.

Now, comparing the determinants of the Mori chambers of X and X ′ leads to a contra-
diction: we obtain

b = det(w3, w1) = det(w′5, w2) = a3, b+ 1 = det(w2, w3) = det(w′2, w′3) = a3.

No. 6 in Theorem 3.1.1: Recall that Cox ring, degree matrix and an ample class of
X are

R = K[T1, . . . , T8, S1, . . . , Sm]/〈T1T2 + T3T4 + T 2
5 T6 + T 2

7 T8〉, m ≥ 0

Q =
[

0 2b3 + 1 b1 b2 b3 1 b3 1 1 . . . 1
1 1 1 1 1 0 1 0 0 . . . 0

]
,

2b3 + 1 = b1 + b2
0 ≤ b1 ≤ b2

u = (2b3 + 2, 1).

The total coordinate space Spec(R) of X is of dimension 7 + m with singular locus of
codimension 5. Computing these data also for the varieties X ′ from [30, Thm 1.1], we
see that X can be isomorphic at most to one of the varieties X ′ defined via the data of
Nos. 4, 7, 8 or 9 from this list. We now go through these cases.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 4]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T
l′2
2 + T3T

l′4
4 + T5T

l′6
6 〉, m′ ≥ 0,

Q′ =
[

0 1 a1 1 a2 1 c1 . . . cm′

1 0 1 0 1 0 1 . . . 1

]
,

0 ≤ a1 ≤ a2,
c1 ≤ . . . ≤ cm′ ,
1 ≤ l′2 = a1 + l′4 = a2 + l′6,

u′ = (max(a2, c
′
m) + 1, 1).
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The total coordinate space Spec(R′) of X is of dimension 5 +m′ with singular locus of
dimension 5 minus the number of i with l′i ≥ 2. Consequently we obtain m′ = m+2 and
l′i = 1 for all i. In particular we obtain a1 = a2 = 0 since l′2 = a1 + l′4 = a2 + l′6 holds.
We write wi for the i-th column of Q and denote by µi the number of times it shows up
as a column of Q. Analogously, we define w′i and µ′i. We obtain

µ1 ∈ {1, 2, 4, 5}, µ6 = 2 +m, µ′1 = 3 +m′ µ′2 = 3

for the primitive generators of the effective cones of X and X ′. Observe that w6 and w′2
are the only semiample among these. This shows m = 1 which implies m′ = 3. For the
non semiample generator w′1 of the effective cone X ′ this means µ′1 = 6; a contradiction
to µ1 ∈ {1, 2, 4, 5}.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 7]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 1,

Q′ =
[

0 0 0 0 −1 1 1 . . . 1
1 1 1 1 1 1 0 . . . 0

]
u′ = (1, 2).

As above, we write wi for the i-th column of Q and define analogously w′i. We obtain
w6 as a semiample primitive generator of the effective cone of X. But the variety X ′ has
no semiample divisor on the boundary of the cone of effective divisors; a contradiction.

Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 8]. After a
suitable change of coordinates, the Cox ring, the degree matrix and an ample class of
X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 2,

Q′ =
[

1 1 1 1 1 1 0 a2 . . . am′

0 0 0 0 0 0 1 1 . . . 1

]
,

0 ≤ a2 ≤ . . . ≤ am′
am′ > 0

u′ = (am′ + 1, 1).

The total coordinate space Spec(R′) of X is of dimension 5+m′. Consequently we obtain
m′ = m + 2. As above we write wi for the i-th column of Q, denote by µi the number
of times it shows up as a column of Q and define w′i and µ′i analogously. We obtain

µ1 ∈ {1, 2, 4, 5}, µ6 = 2 +m, µ′1 = 6, 1 ≤ µ7 ≤ m′ − 1

for the primitive generators of the effective cones of X and X ′. Observe that w6 and
w′1 are the only semiample among these. We obtain m = 4 and m′ = 6. Looking at the
homogeneous component of R and R′ of degree 2w6 resp. 2w′1 we obtain a contradiction:

6 = dim(R2w6) = dim(R′2w′1) = 15.
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Assume that X is isomorphic to the variety X ′ as in [30, Thm. 1.1, No. 9]. The Cox
ring, the degree matrix and an ample class of X ′ are given as

R′ = K[T1, . . . , T6, S1, . . . , Sm′ ]/〈T1T2 + T3T4 + T5T6〉, m′ ≥ 2,

Q′ =
[

0 a2 . . . a6 1 . . . 1
1 1 . . . 1 0 . . . 0

]
,

0 ≤ a3 ≤ a5 ≤ a6 ≤ a4 ≤ a2
a2 = a3 + a4 = a5 + a6

u′ = (a2 + 1, 1).

As above, we write wi for the i-th column of Q and denote by µi the number of times it
shows up as a column of Q and define w′i and µ′i analogously. We obtain

µ1 ∈ {1, 2, 4, 5}, µ6 = 2 +m, µ′1 ∈ {1, 2, 3, 6}, µ7 = m′

for the primitive generators of the effective cones of X and X ′. Note that w1 and w′1 are
the only non semiample among these. Consequently we obtain µ1 = µ′1 ∈ {1, 2}.

Now note that w2 and w′2 are semiample primitive generators in the interior of the
effective cones of X resp. X ′. We obtain

2b3 + 1 = det(w2, w1) = det(w′2, w′1) = a2

for the volume of the complementary cone of the semiample cones ofX andX ′. Moreover
we obtain

b1 6= b2, a3 6= a4, a5 6= a6

since 2b3 + 1 = a2 is odd. Now assume b2 = b3. Since b1 + b2 = 2b3 + 1 we obtain
b1 = b3 + 1 > b2; a contradiction to b1 ≤ b2.

We distinguish between the cases µ1 = 1 and µ1 = 2.

Assume µ1 = 1: In this case we have a3, b1 > 0 and we obtain

b2 < 2b3 + 1, a4 < a2.

Assume b1 = b3 then w3 is a primitive generator of the moving cone of X with µ3 = 3.
So we are left with the cases a3 = a5 = a6 or a4 = a5 = a6 which both contradicts
a5 6= a6. Assume b1 6= b3 then w5 is a primitive generator of the moving cone of X
with µ5 = 2. Observe that the number of Mori chambers of R and R′ coincide. Hence
the cases a3 = a5 and a6 = a4 lead to a contradiction and we are left with a5 = a6; a
contradiction.

Assume µ2 = 2. Then a3 = b1 = 0 and b3, a5 > 0 hold. Since b3 < b2 we obtain w5 as a
primitive generator of the moving cone ofX with µ5 = 2. Observe that the Mori chamber
decomposition of Mov(X) has 3 chambers. So we obtain a5 = a6; a contradiction.
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3.3 Geometry in the Fano case

In this section we discuss some aspects of the geometry of the Fano varieties listed in
Theorem 3.1.3. We take a look at elementary contractions, i.e., the morphisms obtained
by passing to facets of the ample cone with respect to the Mori chamber decomposition,
which is directly computable in terms of the data listed in Theorem 3.1.3; use Propo-
sition 1.4.6 and Remark 1.4.8. Moreover, we look at small degenerations, that means
degenerations with fibers all sharing the same divisor class group. In fact, degenerating
the quadrinomial equations of the Cox ring into trinomial ones, reflects a degeneration
of Cox rings inducing a small degeneration of the underlying Fano variety into a possibly
singular variety with a torus action of complexity one.

We now explicitly go through the cases of Theorem 3.1.3 and list the basic information in
the subsequent table which are discussed in more detail afterwards. Let us explain how
to read the table. By Qk, we denote the smooth projective quadric of dimension k and
by Qk,l ⊆ Pl the projective quadric of rank k in Pl. We write Ya;1k,dl for a hypersurface of
degree a in the weighted projective space P(1k, dl), where we do not specify the equation,
and we set

Y4B = V (T 3
0 + T1T

2
2 + T3T

2
4 + T5T

2
6 ) ⊆ Pm+6,

Y4F = V (T0T
2
1 + T2T

2
3 + T4T

2
5 + T6T

2
7 ) ⊆ Pm+6.

As we consider smooth Fano varieties of Picard number two, there will be at most two
elementary contractions for each. If we have a birational elementary contraction, then
a prime divisor gets contracted. In this case we write X ∼ Y and denote by C ⊆ Y the
center of this contraction. The other possibility is that we have a Mori fiber space. Then
we write X → Y and denote by Fgen the general fiber. If there are no special fibers,
then we write just F for the fiber. Moreover, when we say that a variety is Gorenstein,
terminal, etc. then we mean that it is singular but has at most Gorenstein, terminal, etc.
singularities. We computed small degenerations for every case in the lowest dimensions.
The resulting varieties are always normal and Fano with a torus action of complexity one.
The properties of being Gorenstein, terminal etc. have been checked using [13, 43]. If we
say two, three, etc. degenerations, then this means that we found small degenerations
into two, three, etc. non-isomorphic Fano T-varieties of complexity one.

Remark 3.3.1. The following table lists the elementary contractions and small degen-
erations obtained via degenerating the Cox ring for the Fano varieties of Theorem 3.1.3.

No. dim(X) Contraction 1 Contraction 2 Small Degenerations

1 6 X ∼ Q6
C = Q4

X → P1
Fgen = Q5

two Gorenstein, terminal
locally factorial

2 6 X ∼ Q6
C = P2

X → P4
F = P2

two Gorenstein, terminal
locally factorial

3 5 X ∼ Q5
C = Q3

X → P1
Fgen = Q4

three Gorenstein, terminal
locally factorial
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4A m+ 5 X ∼ Y3;14,2m+3

C = Pm+2

X → P3
F = Pm+2

dim(X) ≤ 6: two Gorenstein,
terminal, locally factorial

4B m+ 5 X ∼ Y4B
C = Pm+2

X → P3
F = Pm+2

dim(X) ≤ 6: two Gorenstein,
log terminal, locally factorial

4C m+ 5 — X → P3
F = Pm+2

dim(X) ≤ 6: two Gorenstein,
terminal, locally factorial

4D m+ 5
if d1=1 or m=0:
X ∼ Q7,m+6
C = Pm+2

X → P3
F = Pm+2

dim(X) ≤ 6: two Gorenstein,
terminal, locally factorial

4E m+ 5 X → Pm+3
Fgen = Y3;14

X → P3
F = Pm+2

dim(X) ≤ 6: one Gorenstein,
locally factorial

4F m+ 5

if d1=0 or m=0:
X → Pm+3

Fgen = P1 × P1
if d1=−1:
X ∼ Y4F

C = Pm+2

X → P3
F = Pm+2

dim(X) ≤ 6: one Gorenstein,
log terminal, locally factorial

4G m+ 5

if di=0 or m=0:
X → Pm+3
Fgen = P2

if d1=−1 and d2=0:
X ∼ Q7,m+6

if d1=−2 and d2=0:
X ∼ Y3;14,2m+3

X → P3
F = Pm+2

dim(X) ≤ 6: one Gorenstein,
terminal, locally factorial

5 m+ 5 X → Pm+2
Fgen = Q3

—

dim(X) = 6: one Gorenstein,
terminal, locally factorial;
one Gorenstein, log terminal
locally factorial

6 m+ 5 X → Pm+1
Fgen = Q4

— dim(X) = 7: two Gorenstein,
terminal, locally factorial

7 m+ 5 X → Pm

Fgen = Q5
— dim(X) = 8: two Gorenstein,

terminal, locally factorial

8 m+ 5 X ∼ Pm+5
C = Q4

if m=1:
X ∼ Q6
C = {pt}

dim(X) = 6: one Gorenstein,
terminal, locally factorial;
one of Gorenstein index 2,
terminal, Q-factorial

9 m+ 5 X → Pm−1
Fgen = Q6

if a1=...=a7=0:
X → Q6
F = Pm−1

dim(X) = 7: one Gorenstein,
terminal, locally factorial

10 m+ 5 X → Q6
Fgen = Pm−1

if 0<d2=...=dm:
X ∼ Y2;18,dm−1

2
C = Pm−2

dim(X) = 7: one Gorenstein,
terminal, locally factorial
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11 m+ 4 X ∼ Pm+4
C = Q3

if m=1:
X ∼ Q5
C = {pt}

dim(X) = 5: two Gorenstein,
terminal, locally factorial;
one Gorenstein, terminal
Q-factorial.
dim(X) = 6: two Gorenstein,
terminal, locally factorial;
one of Gorenstein index 2,
terminal, Q-factorial

12 m+ 4 X → Pm−1
Fgen = Q5

if a1=...=a5=0:
X → Q5
F = Pm−1

dim(X) = 6: two Gorenstein,
terminal, locally factorial

13 m+ 4 X → Q5
Fgen = Pm−1

if 0<d2=...=dm:
X ∼ Y2;17,dm−1

2
C = Pm−2

dim(X) = 6: two Gorenstein,
terminal, locally factorial

14 6 X → P4
Fgen = P2

X → P4
Fgen = P2

one Gorenstein, terminal
locally factorial

No. 1: The variety X is of dimension 6 and admits two elementary contractions
Q6 ← X → P1. Here, X → Q6 is birational with center Q4 and X → P1 is a Mori
fiber space with general fiber Q5 and special fibers over [0, 1] and [1, 0], both isomorphic
to the singular quadric V(T1T2 + T3T4 + T5T6) ⊆ P6. Moreover, we obtain small degen-
erations of X into two different terminal, Gorenstein, locally factorial, Fano T-varieties
of complexity one.

No. 2. The variety X is of dimension 6 and admits two elementary contractions Q6 ←
X → P4. The morphism X → Q6 is birational with center P2 and X → P4 is a Mori
fiber space with general fiber P2. Moreover, we obtain small degenerations of X into
two different terminal, Gorenstein, locally factorial, Fano T-varieties of complexity one.

No. 3. The variety X is of dimension 5 and admits two elementary contractions Q5 ←
X → P1. The morphism X → Q5 is birational with center Q3 and X → P1 is a
Mori fiber space with general fiber Q4 and singular fibers over [0, 1] and [1, 0], both
isomorphic to the singular quadric V(T1T2 + T3T4 + T 2

5 ) ⊆ P5. Moreover, we obtain
small degenerations on X into three different terminal, Gorenstein, locally factorial,
Fano T-varieties of complexity one.

No. 4A. The variety X is of dimension m + 5 and admits two elementary contractions
Y ← X → P3. Here, Y is a hypersurface of degree 3 in P(14, 2m+3). The morphism X →
Y is birational with center isomorphic Pm+2 and the morphism X → P3 is a Mori fiber
space with fibers Pm+2. Moreover, for dim(X) ≤ 6, we obtain small degenerations of X
into two different terminal, Gorenstein, locally factorial, Fano T-varieties of complexity
one.
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No. 4B. The variety X is of dimension m + 5 and admits two elementary contractions
Y ← X → P3, where

Y = V (T 3
0 + T1T

2
2 + T3T

2
4 + T5T

2
6 ) ⊆ Pm+6.

The morphism X → P3 is a Mori fiber space with fibers Pm+2. Moreover, for dim(X) ≤
6, we obtain small degenerations into two different log terminal, Gorenstein, locally
factorial, Fano T-varieties of complexity one.

No. 4C. The variety X is of dimension m+5 and admits a Mori fiber space X → P3 with
fibers Pm+2. Moreover, for dim(X) ≤ 6, we obtain small degenerations int two different
into terminal, Gorenstein, locally factorial, Fano T-varieties of complexity one.

No. 4D. In both cases d1 = 0, 1 the corresponding variety X is of dimension m+ 5 and
admits a Mori fiber space X → P3 with fibers Pm+2. In case d1 = 1 or m = 0 we obtain
a birational elementary contraction X → Y , where

Y = V (T 2
0 + T1T2 + T3T4 + T5T6) ⊆ Pm+6.

Moreover, for dim(X) ≤ 6, we obtain small degenerations into two different terminal,
Gorenstein, locally factorial, Fano T-varieties of complexity one.

No. 4E. The variety X is of dimension m+ 5 and admits two Mori fiber spaces Pm+3 ←
X → P3. The morphism X → P3 has fibers Pm+2. To describe the fibers of ϕ : X →
Pm+3 set

Yc := {[z0, . . . , zm+3] ∈ Pm+3; zi = 0 for exactly c entries i ∈ {0, 1, 2, 3}} .

Then we obtain

ϕ−1(z) ∼=



P3 if z ∈ Y4

P2 if z ∈ Y3

VP3(T 3
0 + T 3

1 ) if z ∈ Y2

VP3(T 3
0 + T 3

1 + T 3
2 ) if z ∈ Y1

VP3(T 3
0 + T 3

1 + T 3
2 + T 3

3 ) otherwise.

Note that Y4 = ∅ in case m = 0. Moreover, for dim(X) ≤ 6, we obtain a small
degeneration into a Gorenstein, locally factorial, Fano T-variety of complexity one with
singularities worse than log terminal.

No. 4F. Case d1 = 0 or m = 0: The variety X is of dimensionm+5 and admits two Mori
fiber spaces Pm+3 ← X → P3. The morphism X → P3 has fibers Pm+2. To describe the
fibers of ϕ : X → Pm+3, set as above

Yc := {[z0, . . . , zm+3] ∈ Pm+3; zi = 0 for exactly c entries i ∈ {0, 1, 2, 3}} .
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Note that Y4 = ∅ in case m = 0. We obtain

ϕ−1(z) ∼=



P3 if z ∈ Y4

P2 if z ∈ Y3

VP3(T0T1) if z ∈ Y2

VP3(T0T1 + T 2
2 ) if z ∈ Y1

P1 × P1 otherwise.

Case d1 = −1: The variety X is of dimension m + 5 and admits two elementary con-
tractions. One of them is birational

X → V (T0T
2
1 + T2T

2
3 + T4T

2
5 + T6T

2
7 ) ⊆ Pm+6

with center Pm+2. The other one is a Mori fiber space X → P3 with fibres Pm+2.

In both cases, for dim(X) ≤ 6, we obtain a small degeneration into a log terminal,
Gorenstein, locally factorial, Fano T-variety of complexity one.

No. 4G. The variety X is of dimension m + 5. and admits a Mori fiber space X → P3
with fibers Pm+2. If di = 0 or m = 0 holds, then X admits another Mori fiber space
X → Pm+3 with general fiber P2 and special fiber P3 over V(T0, T1, T2, T3). If d1 = −1
and d2 = 0 holds, then we obtain a birational elementary contraction

X → V (T0T1 + T2T3 + T4T5 + T6T7) ⊆ Pm+6.

In case d1 = −2 and d2 = 0 we obtain a birational contraction X → Y onto a hyper-
surface Y of degree 3 in P(14, 2m+3). Moreover, for dim(X) ≤ 6, we obtain a small
degeneration into a terminal, Gorenstein, locally factorial, Fano T-variety of complexity
one.

No. 5. The variety X is of dimension m+ 5 and admits a Mori fiber space X → Pm+2.
As earlier, set

Yc := {[z0, . . . , zm+2] ∈ Pm+2; zi = 0 for exactly c entries i ∈ {0, 1, 2}} .

Then we obtain

ϕ−1(z) ∼=


P4 if z ∈ Y3

VP4(T1T2) if z ∈ Y2

VP4(T0T1 + T2T3) if z ∈ Y1

Q3 otherwise.

Moreover, for dim(X) = 6, we obtain a small degeneration into a terminal, Gorenstein,
locally factorial, Fano T-variety of complexity one and another one into a log terminal,
Gorenstein, locally factorial, Fano T-variety of complexity one.
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No. 6. The varietyX is of dimensionm+5 ≥ 7 and admits a Mori fiber spaceX → Pm+1.
Set

Yc := {[z0, . . . , zm+1] ∈ Pm+1; zi = 0 for exactly c entries i ∈ {0, 1}} .

Then we obtain

ϕ−1(z) ∼=


VP5(T1T2 + T3T4) if z ∈ Y2

VP5(T0T1 + T2T3 + T 2
4 ) if z ∈ Y1

Q4 otherwise.

Moreover, for dim(X) = 7, we obtain small degenerations into two different terminal,
Gorenstein, locally factorial, Fano T-varieties of complexity one.

No. 7. The variety X is of dimension m+5 and admits a Mori fiber space X → Pm with
general fiber Q5 and fibers isomorphic to the singular quadric V(T0T1+T2T3+T4T5) ⊆ P6
over [0, z1, . . . , zm]. Moreover, for dim(X) = 8, we obtain small degenerations into two
different terminal, Gorenstein, locally factorial, Fano T-varieties of complexity one.

No. 8. The variety X is of dimension m + 5 and admits a birational elementary con-
traction X → Pm+5 with center Q4. If m = 1 holds, then X is of dimension 6 and
admits a birational elementary contraction X → Q6 sending a P5 to a point. Moreover,
for dim(X) = 6, we obtain a small degeneration into a terminal, Gorenstein, locally
factorial, Fano T-variety of complexity one and another one into a terminal, Q-factorial,
Fano T-variety of Gorenstein index two and complexity one.

No. 9. The variety X is of dimension m + 5 and admits a Mori fiber space X → Pm−1
with general fiber Q6. If ai = 0 holds for all i, then X admits moreover a Mori fiber space
X → Q6 with fibers Pm−1. Moreover, for dim(X) = 7, we obtain a small degeneration
into terminal, Gorenstein, locally factorial, Fano T-variety of complexity one.

No. 10. The variety X is of dimension m + 5 and admits a Mori fiber space X → Q6
with general fiber isomorphic to Pm−1. In the case that 0 < d2 = . . . = dm holds the
variety X admits moreover a birational contraction X → Y , where

Y := V (T0T1 + T2T3 + T4T5 + T6T7) ⊆ P(18, dm−1
2 ),

with center Pm−2. Moreover, for dim(X) = 7, we obtain a small degeneration into a
terminal, Gorenstein, locally factorial, Fano T-variety of complexity one.

No. 11. The variety X is of dimension m + 4 and admits a birational elementary
contraction X → Pm+4. If m = 1 holds X is of dimension 5 and admits a birational
elementary contraction X → Q5 sending a P4 to a point. Moreover, for dim(X) = 5, we
obtain small degenerations into two different terminal, Gorenstein, locally factorial, Fano
T-varieties of complexity one and another one into a terminal, Gorenstein, Q-factorial,
locally factorial, Fano T-variety of complexity one. For dim(X) = 6, we obtain small



88 Chapter 3. Smooth general arrangement varieties

degenerations into two different terminal, Gorenstein, locally factorial, Fano T-varieties
of complexity one and another one into a terminal, Q-factorial, locally factorial, Fano
T-variety of Gorenstein index 2 and complexity one.

No. 12. The variety X is of dimension m+ 4 and admits a Mori fiber space X → Pm−1
with general fiber Q5. In the case that ai = 0 holds for all i the variety X admits
moreover a Mori fiber space X → Q5 with fibers Pm−1. Moreover, for dim(X) = 6,
we obtain small degenerations into two different terminal, Gorenstein, locally factorial,
Fano T-varieties of complexity one.

No. 13. The variety X is of dimension m+4 and admits a Mori fiber space X → Q5 with
general fiber Pm−1. If 0 < d2 = . . . = dm holds, then X admits moreover a birational
contraction X → Y , where

Y := V (T0T1 + T2T3 + T4T5 + T 2
6 ) ⊆ P(17, dm−1

2 ),

with center Pm−2. Moreover, for dim(X) = 6, we obtain small degenerations into two
different terminal, Gorenstein, locally factorial, Fano T-varieties of complexity one.

No. 14. The variety X is of dimension 6 and admits two Mori fiber spaces P4 ← X →
P4. In both cases we have general fibers isomorphic to P2 and special fibers P3 over
the points [0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0] and [1, 0, 0, 0, 0]. Moreover X
admits a small degeneration into terminal, Gorenstein, locally factorial, Fano T-variety
of complexity one.

3.4 Duplication of free weights

In this section we present the finite set of starting varieties from which one can construct
all varieties of Theorem 3.1.3 via iterated duplication of a free weight as introduced in [30,
Constr. 5.1]. In this procedure, one takes a Cox ring generator Sk of X not occurring in
the defining relations and constructs a new Cox ring by adding a further free generator
S′k of the same degree as Sk. The resulting variety X ′ is of one dimension higher. In
terms of birational geometry, the duplication of a free weight means taking an elementary
contraction X̃1 → X with fiber P1, passing via a series of small quasimodifications to
X̃t and then performing a contraction of a prime divisor X̃t → X ′, see [30, Prop. 5.3].
We start by adapting the methods from [30, Sec. 5] to explicit T-varieties.

Construction 3.4.1. Let X := X(α, P,Σ) be a projective explicit T-variety with Cox
ring R(α, P ) = K[Tij , Sk]/〈g1, . . . , gq〉, let Q : Zn+m → KP be the corresponding degree
map, u ∈ Cl(X) = KP an ample class and fix an index 1 ≤ j ≤ m. Now, consider the
block matrix

P ′ :=
[
P 0
ej −1

]
,
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where ej ∈ Zn+m is interpreted as a row vector and let

Q′ : Zn+m+1 → Zn+m+1/im(P ′)∗ = KP

be the linear projection extending Q : Zn+m → KP and sending em+1 to Q(ej). This
defines an explicit T-variety X ′ := X(α, P ′,Σ′(u)), where

Σ′(u) := {P ′(γ∗0); γ0 4 γ ⊆ Zn+m+1 with u ∈ Q′(γ0)◦}.

Note that Construction 3.4.1 is the Gale dual version of [30, Constr. 5.1.]. Therefore, in
the situation of Construction 3.4.1, we say that X ′ arises from X via duplication of the
free weight deg(Sj).

Proposition 3.4.2 (See [30, Prop. 5.2]). Let X ′ := X(α, P ′,Σ′) arises from an explicit
T-variety X := X(α, P,Σ) via duplication of the free weight deg(Sj) as in Construc-
tion 3.4.1. Then the following statements hold:

(i) We have dim(X ′) = dim(X) + 1.

(ii) The cones of semi-ample divisor classes satisfy SAmple(X ′) = SAmple(X).

(iii) The variety X ′ is smooth if and only if X is smooth.

(iv) The ring R(α, P ′) is a complete intersection if and only if R(α, P ) is so.

(v) If R(α, P ) is a complete intersection, deg(Sj) semi-ample and X Fano, then X ′ is
so.

We turn to the description of the Fano varieties from Theorem 3.1.3 via iterated dupli-
cation of free weights. For this, we will refer to a variety as a starting variety, if it is
defined via a datum from the following list.

No. R(X) [w1, . . . , wr] u dim(X)

1 K[T1,...,T9]
〈T1T2T 2

3 +T4T5+T6T7+T8T9〉

[
0 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1

] [
5
6

]
6

2 K[T1,...,T9]
〈T1T2T3+T4T5+T6T7+T8T9〉

[
0 0 1 1 0 1 0 1 0
1 1 0 1 1 1 1 1 1

] [
3
6

]
6

3 K[T1,...,T8]
〈T1T2T 2

3 +T4T5+T6T7+T 2
8 〉

[
0 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1

] [
4
5

]
5

4.A.1 K[T1,...,T8]
〈T1T 3

2 +T3T4+T5T6+T7T8〉

[
0 1 2 1 2 1 2 1
1 0 1 0 1 0 1 0

] [
7
3

]
5

4.A.2 K[T1,...,T8,S1]
〈T1T 3

2 +T3T4+T5T6+T7T8〉

[
0 1 2 1 2 1 2 1 2
1 0 1 0 1 0 1 0 1

] [
9
4

]
6

4.B.1 K[T1,...,T8]
〈T1T 3

2 +T3T 2
4 +T5T 2

6 +T7T 2
8 〉

[
0 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

] [
4
3

]
5

4.B.2 K[T1,...,T8,S1]
〈T1T 3

2 +T3T 2
4 +T5T 2

6 +T7T 2
8 〉

[
0 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1

] [
5
4

]
6

4.C.1 K[T1,...,T8]
〈T1T 2

2 +T3T 2
4 +T5T6+T7T8〉

[
0 1 0 1 1 1 1 1
1 0 1 0 1 0 1 0

] [
4
3

]
5
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4.C.2 K[T1,...,T8,S1]
〈T1T 2

2 +T3T 2
4 +T5T6+T7T8〉

[
0 1 0 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1

] [
5
4

]
6

4.D.1 K[T1,...,T8]
〈T1T 2

2 +T3T4+T5T6+T7T8〉

[
0 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

] [
4
3

]
5

4.D.2 K[T1,...,T8,S1]
〈T1T 2

2 +T3T4+T5T6+T7T8〉

[
0 1 1 1 1 1 1 1 0
1 0 1 0 1 0 1 0 1

] [
5
4

]
6

4.D.3 K[T1,...,T8,S1]
〈T1T 2

2 +T3T4+T5T6+T7T8〉

[
0 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1

] [
6
4

]
6

4.D.4 K[T1,...,T8,S1,S2]
〈T1T 2

2 +T3T4+T5T6+T7T8〉

[
0 1 1 1 1 1 1 1 0 1
1 0 1 0 1 0 1 0 1 1

] [
6
5

]
7

4.E.1 K[T1,...,T8]
〈T1T 3

2 +T3T 3
4 +T5T 3

6 +T7T 3
8 〉

[
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

] [
3
3

]
5

4.E.2 K[T1,...,T8,S1]
〈T1T 3

2 +T3T 3
4 +T5T 3

6 +T7T 3
8 〉

[
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

] [
3
4

]
6

4.F.1 K[T1,...,T8]
〈T1T 2

2 +T3T 2
4 +T5T 2

6 +T7T 2
8 〉

[
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

] [
2
3

]
5

4.F.2 K[T1,...,T8,S1]
〈T1T 2

2 +T3T 2
4 +T5T 2

6 +T7T 2
8 〉

[
0 1 0 1 0 1 0 1 −1
1 0 1 0 1 0 1 0 1

] [
1
4

]
6

4.F.3 K[T1,...,T8,S1]
〈T1T 2

2 +T3T 2
4 +T5T 2

6 +T7T 2
8 〉

[
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

] [
2
4

]
6

4.F.4 K[T1,...,T8,S1,S2]
〈T1T 2

2 +T3T 2
4 +T5T 2

6 +T7T 2
8 〉

[
0 1 0 1 0 1 0 1 −1 0
1 0 1 0 1 0 1 0 1 1

] [
1
5

]
7

4.G.1 K[T1,...,T8]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

] [
3
3

]
5

4.G.2 K[T1,...,T8,S1]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 1 0 1 0 1 0 1 −1
1 0 1 0 1 0 1 0 1

] [
2
4

]
6

4.G.3 K[T1,...,T8,S1]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 1 0 1 0 1 0 1 −2
1 0 1 0 1 0 1 0 1

] [
1
4

]
6

4.G.4 K[T1,...,T8,S1]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1

] [
3
4

]
6

4.G.5 K[T1,...,T8,S1,S2]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 1 0 1 0 1 0 1 −1 0
1 0 1 0 1 0 1 0 1 1

] [
2
5

]
7

4.G.6 K[T1,...,T8,S1,S2]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 1 0 1 0 1 0 1 −2 0
1 0 1 0 1 0 1 0 1 1

] [
1
5

]
7

5 K[T1,...,T8,S1]
〈T1T2+T 2

3 T4+T 2
5 T6+T 2

7 T8〉

[
0 2a + 1 a 1 a 1 a 1 1
1 1 1 0 1 0 1 0 0

]
a ≥ 0

[
3a + 4

3

]
6

6 K[T1,...,T8,S1]
〈T1T2+T3T4+T 2

5 T6+T 2
7 T8〉

[
0 2a3 + 1 a1 a2 a3 1 a3 1 1
1 1 1 1 1 0 1 0 0

]
0 ≤ a1 ≤ a2, a1 + a2 = 2a3 + 1

[
4a3 + 4

4

]
6

7 K[T1,...,T8,S1]
〈T1T2+T3T4+T5T6+T 2

7 T8〉

[
0 2a5 + 1 a1 a2 a3 a4 a5 1 1
1 1 1 1 1 1 1 0 0

]
ai ≥ 0,

a1 + a2 = a3 + a4 = 2a5 + 1,

[
5a5 + 4

5

]
6

8 K[T1,...,T8,S1]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 0 0 0 0 0 −1 1 1
1 1 1 1 1 1 1 1 0

] [
1
6

]
6

9 K[T1,...,T8,S1,S2]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 a1 a2 a3 a4 a5 a6 a7 1 1
1 1 1 1 1 1 1 1 0 0

]
ai ≥ 0,

a1 = a2 + a3 = a4 + a5 = a6 + a7,

[
3a1 + 2

6

]
7
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10.1 K[T1,...,T8,S1,S2]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 0 d

]
1 ≤ d ≤ 5

[
2

6 + d

]
7

10.2 K[T1,...,T8,S1,S2,S3]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 0 d− 1 d

]
2 ≤ d ≤ 4

[
3

5+2d

]
8

10.3 K[T1,...,T8,S1,S2,S3]
〈T1T2+T3T4+T5T6+T7T8〉

[
0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 0 1 3

] [
3
10

]
8

11 K[T1,...,T7,S1]
〈T1T2+T3T4+T5T6+T 2

7 〉

[
−1 1 0 0 0 0 0 1
1 1 1 1 1 1 1 0

] [
1
5

]
5

12 K[T1,...,T7,S1,S2]
〈T1T2+T3T4+T5T6+T 2

7 〉

[
0 2a5 a1 a2 a3 a4 a5 1 1
1 1 1 1 1 1 1 0 0

]
a1 + a2 = a3 + a4 = 2a5

ai ≥ 0

[
2 + 5a5

5

]
6

13.1 K[T1,...,T7,S1,S2]
〈T1T2+T3T4+T5T6+T 2

7 〉

[
0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 0 d

]
1 ≤ d ≤ 4

[
2

5+d

]
6

13.2 K[T1,...,T7,S1,S2,S3]
〈T1T2+T3T4+T5T6+T 2

7 〉

[
0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 0 d− 1 d

]
2 ≤ d ≤ 3

[
m

4+2d

]
7

14 K[T1,...,T10]〈
T1T2 + T3T4 + T5T6 + T7T8,

λ1T3T4 + λ2T5T6 + T7T8 + T9T10

〉 [
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1

] [
3
3

]
6

Moreover, we say that a starting variety is of Type a or Type b according to the following
list:

Type a: 1, 2, 3, 4.A.1, 4.B.1, 4.C.1, 4.D.1, 4.D.2, 4.E.1, 4.F.1, 4.F.2, 4.G.1, 4.G.2,
4.G.3, 14,

Type b: 4.A.2, 4.B.2, 4.C.2, 4.D.3, 4.D.4, 4.E.2, 4.F.3, 4.F.4, 4.G.4, 4.G.5, 4.G.6,
5, 6, 7, 8, 9, 10.1, 10.2, 10.3, 11, 12, 13.1, 13.2.

We say that a variety X arises via iterated duplication of free weights from one of the
starting varieties, if there is a sequence X = Xr, . . . , X0, where X0 is a starting variety
and for i > 0, the variety Xi arises via duplication of a free weight from Xi−1.

Remark 3.4.3. All starting varieties are smooth projective general arrangement vari-
eties of true complexity and Picard number two. Moreover, any variety X arising via
iterated duplication of free weights from one of the starting varieties is as well smooth
and projective and has true complexity and Picard number two.

Proposition 3.4.4. All starting varieties of Type a are Fano varieties. None of them
allows duplication of a free weight in the sense that the resulting variety is Fano.

Proposition 3.4.5. Let X arise via iterated duplication of free weights from a starting
variety X0 of Type b and denote by µi ∈ Z≥0 the number of duplications of the free
weight deg(Si). Then X and X0 are Fano if and only if they fulfill the requirements
listed in the following table:
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No. X0 Fano X Fano
4.A.2 Yes µ1 ∈ Z≥0

4.B.2 Yes µ1 ∈ Z≥0

4.C.2 Yes µ1 ∈ Z≥0

4.D.3 Yes µ1 ∈ Z≥0

4.D.4 Yes µ1 = 0, µ2 ∈ Z≥0

4.E.2 Yes µ1 ∈ Z≥0

4.F.3 Yes µ1 ∈ Z≥0

4.F.4 Yes µ1 = 0, µ2 ∈ Z≥0

4.G.4 Yes µ1 ∈ Z≥0

4.G.5 Yes µ1 ∈ {0, 1}, µ2 ∈ Z≥0

4.G.6 Yes µ1 = 0, µ2 ∈ Z≥0

5 a = 0 µ1 ≥ 3a

6 No µ1 ≥ 4a3 + 1

7 No µ1 ≥ 5a5 + 2

8 Yes 0 ≤ µ1 ≤ 4

9 a1 = 0 µ1 ≥ 3a1

10.1 Yes

µ1 = 0, µ2 ∈ Z≥0
or

µ1 = 1, µ2 ∈ Z≥0, d = 2
or

1 ≤ µ1 ≤ 4, µ2 ∈ Z≥0, d = 1

10.2 Yes

µ1 = µ2 = 0, µ3 ∈ Z≥0
or

µ1 = 0, µ2 = 1, µ3 ∈ Z≥0, 2 ≤ d ≤ 3
or

µ1 = 1, µ2 = 0, µ3 ∈ Z≥0, d = 2

10.3 Yes µ1 = µ2 = 0, µ3 ∈ Z≥0

11 Yes 0 ≤ µ1 ≤ 3

12 a5 = 0 µ1 ≥ 5a5

13.1 Yes

µ1 = 0, µ2 ∈ Z≥0
or

µ1 = 1, µ2 ∈ Z≥0, 1 ≤ d ≤ 2
or

µ1 = 3, µ2 ∈ Z≥0, d = 1

13.2 Yes
µ1 = µ2 = 0, µ3 ∈ Z≥0

or
µ1 = 0, µ2 = 1, µ3 ∈ Z≥0, 1 ≤ d ≤ 2
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Corollary 3.4.6. Every smooth Fano general arrangement variety of true complexity
and Picard number two is either a starting variety or arises via iterated duplication of
free weights from precisely one of the starting varieties of Type b. In particular every
such variety arises from a not necessary Fano one of dimension 5 to 8.

Question 3.4.7. It follows from [30, Prop. 5.4, Thm. 5.5] that every smooth Fano
variety of true complexity one and Picard number two is of dimension 4 to 7 or arises via
iterated duplications of free weights from a finite set of smooth projective varieties of true
complexity one and Picard number two of dimension 4 to 7. Corollary 3.4.6 establishes
the analogous statement with a finite set of starting varieties of dimensions 5 to 8 for
the Fano general arrangement varieties of true complexity two listed in Theorem 3.1.3.
It would be interesting to see if the smooth Fano general arrangement varieties of Picard
number two but higher complexity behave similarly.





CHAPTER

FOUR

THE ANTICANONICAL COMPLEX

The anticanonical complex has been introduced in [13] as a natural generalization of the
toric Fano polytope and so far has been successfully used for the study of singular Fano
varieties with a torus action of complexity one. In this chapter, we extend the area of
application to (not necessarily Fano) varieties, suitably realized inside toric varieties, for
example explicit T-varieties. In this situation, the central question is, whether ambient
toric resolutions provide enough discrepancies to define anticanonical complexes. Our
main result reduces this question to an explicit maximal orbit quotient, see Construc-
tion 4.3.3 and Theorem 4.3.6. Applying this result to general arrangement varieties, we
give an explicit construction for their anticanonical complexes. Note that being Fano
is reflected in a certain convexity property of the anticanonical complex. This allows
us to give a second construction in this situation. As an application we characterize
log-terminality in terms of exponents for general arrangement varieties of complexity
two. The results of this chapter are published in the joint work [49].

4.1 Toric ambient resolutions of singularities

In toric geometry resolution of singularities can be performed in a purely combinatorial
manner. The idea of toric ambient resolutions of singularities is to make this methods
accessible for closed subvarieties of toric varieties. The aim of this section is to give a
sufficient criterion on an embedded variety for the existence of a toric ambient resolution
of singularities, see Proposition 4.1.6.
Let us fix our terminology: Consider a toric variety Z with acting torus T and a normal
closed subvariety X ⊆ Z. Let ϕ : Z ′ → Z be a birational toric morphism. The proper
transform of X ⊆ Z is the closure X ′ ⊆ Z ′ of ϕ−1(X ∩ T ). We call ϕ : Z ′ → Z a toric
ambient modification if it maps X ′ properly onto X. If furthermore the proper transform
X ′ is smooth, we call ϕ a toric ambient resolution of singularities of X.

95
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Our approach to toric ambient resolutions of singularities is the following two-step pro-
cedure: at first we use methods from tropical geometry to prepare the embedded variety
for resolving its singularities in a second step with methods from toric geometry.
Let us recall the basic notions on tropical varieties. For a closed subvariety X ⊆ Z
intersecting the torus non trivially consider the vanishing ideal I(X ∩ T ) in the Laurent
polynomial ring O(T ). For every f ∈ I(X ∩ T ) let |Σ(f)| denote the support of the
codimension one skeleton of the normal quasifan of its Newton polytope, where a quasifan
is a fan, where we allow the cones to be non-pointed. Then the tropical variety trop(X)
of X is defined as follows, see [61, Def. 3.2.1]:

trop(X) :=
⋂

f∈I(X∩T )
|Σ(f)| ⊆ Qdim(Z).

A closed subvariety X ⊆ Z is called weakly tropical if the fan Σ corresponding to Z is
supported on trop(X). In the following we will always assume trop(X) to be endowed
with a fixed quasifan structure. If X ⊆ Z is weakly tropical then by sufficiently refining
the quasifan structure fixed on trop(X) we achieve that Σ is a subfan of trop(X).

Construction 4.1.1. Let X ⊆ Z be a closed subvariety intersecting the torus non-
trivially, consider the defining fan Σ of Z and the coarsest common refinement

Σ′ := Σ u trop(X) := {σ ∩ τ ; σ ∈ Σ, τ ∈ trop(X)}.

Let ϕ : Z ′ → Z be the toric morphism arising from the refinement of fans Σ′ → Σ and let
X ′ be the proper transform of X under ϕ. We call Z ′ → Z a weakly tropical resolution
of X.

Let Z ′ → Z be a weakly tropical resolution of X. Then the embedding X ′ ⊆ Z ′ is
weakly tropical as by construction |trop(X)| = |trop(X ′)| holds. Note that Z ′ and thus
X ′ depend on the choice of the quasifan structure fixed on trop(X).
For a toric variety Z we denote by Zσ ⊆ Z the affine toric chart corresponding to the
cone σ ∈ Σ in the lattice N . We will make use of the local product structure of toric
varieties:

Construction 4.1.2. Let X ⊆ Z be weakly tropical and let σ ∈ Σ be any cone. Choose
a maximal cone τ ∈ trop(X) with σ � τ , set N(τ) := N∩linQ(τ) and fix a decomposition
N = N(τ)⊕ Ñ . Accordingly, we obtain a product decomposition

Zσ ∼= U(σ)× T̃,

where U(σ) := U(σ, τ) is the affine toric variety corresponding to the cone σ in the
lattice N(τ) and T̃ is a torus. We write πσ := πσ,τ,Ñ for the projection Zσ → U(σ).

Due to the structure theorem for tropical varieties, the maximal cones τ ∈ trop(X) are of
dimension dim(X). In particular, in the situation of the above construction, U(σ) does
up to isomorphism not depend on the choices made. Moreover, if X ⊆ Z is complete
then due to [61, Prop. 6.4.7] we have |Σ| = |trop(X)| and for any maximal cone σ ∈ Σ
the cone τ ∈ trop(X) as chosen above equals σ.
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Definition 4.1.3. Let X ⊆ Z be weakly tropical. We call X ⊆ Z semi-locally toric if
for every maximal cone σ ∈ Σ there exists a projection πσ as in Construction 4.1.2 that
maps Xσ := X ∩ Zσ isomorphically onto its image πσ(Xσ) and the latter is an open
subvariety of U(σ).

Remark 4.1.4. Let X be a rational T-variety of complexity one. Then X allows an
equivariant embedding into a toric variety Z such that any weakly tropical resolution is
semi-locally toric, see [6, Prop. 3.4.4.6].

Note that given a weakly tropical embedding X ⊆ Z the notion of being semi-locally
toric is preserved when passing over to another embedding X ′ ⊆ Z ′ provided by a toric
isomorphism Z → Z ′ as made precise in the following remark:

Remark 4.1.5. Let A : N1 → N2 be an isomorphism of lattices (we use the letter A
as well to denote the induced linear map N1 ⊗ Q → N2 ⊗ Q) defining an isomorphism
of affine toric varieties ϕA : Z1 → Z2, with defining cones σ1 in N1 and σ2 := A(σ1) in
N2. Let X ⊆ Z1 be a semi-locally toric closed subvariety and N1 = N1(σ) ⊕ Ñ1 be a
decomposition of N1 such that the corresponding projection πσ : Z1 → U(σ1) maps X
isomorphically onto an open subset of U(σ1). Then A(trop(X)) = trop(ϕA(X)) holds
and the decomposition N2 = A(N1(σ))⊕ A(Ñ1) corresponds to a projection πσ2 : Z2 →
U(σ2) mapping ϕA(Xσ1) isomorphically onto an open subset of U(σ2).

Proposition 4.1.6. Let X ⊆ Z be a closed subvariety admitting a semi-locally toric
weakly tropical resolution, meaning X ′ ⊆ Z ′ is semi-locally toric. Then X ⊆ Z admits
a toric ambient resolution of singularities.

The rest of this section is dedicated to the proof of Proposition 4.1.6. Below (and in the
rest of this article) we will make frequent use of the following criterion, to which we will
refer to as Tevelev’s criterion, see [75, Lem. 2.2] and [61, Thm. 6.3.4]:

Remark 4.1.7. Let X ⊆ Z be a closed embedding. Then X intersects the torus orbit
T · zσ corresponding to the cone σ ∈ Σ non-trivially if and only if the relative interior
σ◦ intersects the tropical variety trop(X) non-trivially. Moreover, if X ⊆ Z is weakly
tropical, then the intersection T · zσ ∩X is pure of dimension dim(X)− dim(σ).

Lemma 4.1.8. Let X ⊆ Z be a closed embedding. Then any weakly tropical resolution
ϕ : Z ′ → Z is a toric ambient modification.

Proof. We have to show that ϕ maps X ′ properly onto X. Consider any completion
trop(X)c of the quasifan trop(X), i.e. a quasifan trop(X)c with support |trop(X)c| =
Qdim(Z) such that trop(X) is a subfan of trop(X)c. Then the morphism of fans Σ u
trop(X)c → Σ defines a proper morphism of toric varieties ϕ̃ : Z ′′ → Z with ϕ̃|Z′ = ϕ,
where we regard Z ′ as an open subset of Z ′′. We conclude that ϕ : X ′ → X is proper as
Tevelev’s criterion implies

X ′ = ϕ−1(X ∩ T )Z
′

= ϕ̃−1(X ∩ T )Z
′′
.
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Let Σ be a fan. We say that a fan Σ′ in the same lattice is a subdivision of Σ if any
cone σ′ ∈ Σ′ is contained in a cone σ ∈ Σ and |Σ| = |Σ′| holds. Any subdivision of
fans Σ′ → Σ defines a proper birational morphism of the corresponding toric varieties
Z ′ → Z.

Lemma 4.1.9. Let X ⊆ Z be a semi-locally toric weakly tropical embedding. Consider a
proper birational toric morphism ψ : Z ′ → Z defined by a subdivision of fans Σ′ → Σ. For
σ ∈ Σ denote by πσ : Zσ → U(σ) the projection mapping Xσ isomorphically onto an open
subvariety of U(σ) and consider the morphism of toric varieties ψ(σ) : V (σ) → U(σ)
arising via the subdivision of the cone σ in N(σ). Then there is a commutative diagram

Z ′σ
∼= V (σ)× T̃ V (σ)

Zσ ∼= U(σ)× T̃ U(σ),

ψ ψ(σ)×id

π′σ

ψ(σ)

πσ

where we set Z ′σ := ψ−1(Zσ), and π′σ maps X ′ ∩ Z ′σ isomorphically onto an open subva-
riety of V (σ). Moreover, the following statements hold:

(i) The proper transform X ′ with respect to ψ equals ψ−1(X).

(ii) The subvariety X ′ ⊆ Z ′ is weakly tropical and semi-locally toric.

Proof. Let N = N(σ) ⊕ Ñ be the decomposition of N giving rise to the isomorphism
Zσ ∼= U(σ)× T̃ and the corresponding projection πσ. Then by construction the defining
fan of Z ′σ is supported in N(σ) ⊗ Q. Using the same decomposition of N as above
we thus obtain an isomorphism Z ′σ

∼= V (σ) × T̃, the corresponding projection π′σ and
a commutative diagram as claimed. As πσ maps Xσ isomorphically onto its image we
conclude that the projection π′σ restricts to an isomorphism

π′σ : ψ−1(Xσ)→ ψ(σ)−1(πσ(Xσ)).

We show that ψ−1(Xσ) = X ′ ∩ Z ′σ holds: As ψ(σ)−1(πσ(Xσ)) is irreducible, so is
ψ−1(Xσ). Thus using that X ′ ∩ Z ′σ ⊆ ψ−1(Xσ) is a closed irreducible subvariety of
the same dimension we obtain equality as claimed. This proves Supplement (i) and the
assertion as ψ(σ)−1(πσ(Xσ)) is an open subvariety of V (σ). Supplement (ii) follows by
restricting the toric projection π′σ to the affine toric charts.

Proof of Proposition 4.1.6. Let ϕ : Z ′ → Z be a semi-locally toric weakly tropical reso-
lution. Then due to Lemma 4.1.8 the morphism ϕ maps X ′ properly onto X. Now let
ψ : Z ′′ → Z ′ be any toric resolution of singularities of Z ′ arising via a regular subdivision
of its defining fan Σ′ and denote by X ′′ the proper transform of X ′ with respect to ψ.
Then ϕ ◦ ψ : X ′′ → X is the composition of proper morphisms and hence is proper.
Moreover, as Z ′′ is smooth, the toric varieties U(σ′′), where σ′′ ∈ Σ′′, are smooth. In
particular, as X ′′ is semi-locally toric due to Lemma 4.1.9 (ii), it is smooth as well and
we conclude that ϕ ◦ ψ is a toric ambient resolution of singularities.
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4.2 Singularities and the anticanonical complex

Let Z be a toric variety and X ⊆ Z be a closed subvariety. Denote by Z0 ⊆ Z the (open)
union of all T -orbits of codimension at most one in Z. Assume that X intersects T ⊆ Z
and that X0 := X ∩ Z0 has a complement of codimension at least two in X. Then we
obtain a pullback homomorphism

WDivT (Z) → WDiv(X), D 7→ D|X ,

which, given a T -invariant Weil divisor on Z, first restricts to the smooth Z0, then pulls
back to X0 and finally extends to X by closing components. In this situation, we call
X ⊆ Z adapted if for every T -invariant prime divisor D on Z, the pullback D|X is a
prime divisor on X.

Assume X ⊆ Z to be adapted. Let ϕ : Z ′ → Z be a toric ambient modification, arising
from a refinement of fans Σ′ → Σ in a lattice N , meaning that every σ′ ∈ Σ′ is contained
in some σ ∈ Σ. We call ϕ an adapted toric ambient modification if besides X ⊆ Z also
X ′ ⊆ Z ′ is adapted (requiring in particular X ′ to be normal).

Let X be a normal Q-Gorenstein variety. Recall that given any proper birational mor-
phism ϕ : X ′ → X with a normal variety X ′ and a canonical divisor kX′ on X ′, we have
the ramification formula

kX′ − ϕ∗ϕ∗kX′ =
∑

aEE,

where E runs through the exceptional prime divisors of X ′ → X. The number
discrX(E) := aE ∈ Q is called the discrepancy of X with respect to E; it doesn’t
depend on the choice of kX′ and, identifying E with the local ring OX,E ⊆ K(X), it
depends not even on the choice of ϕ : X ′ → X.

Definition 4.2.1. Let X be Q-Gorenstein and X ⊆ Z be an adapted embedding.
Assume that the following conditions hold:

(i) The weakly tropical resolution ϕ : Z ′ → Z is adapted.

(ii) Every proper birational toric morphism Z ′′ → Z ′ is adapted.

(iii) There exists at least one toric ambient resolution of singularities Z ′′ → Z ′.

Then for every ray % ⊆ |Σ′| there exists a proper toric morphism ψ : Z ′′ → Z ′ with
% ∈ Σ′′. Denote by D%

Z′′ the corresponding toric divisor and set

a% := discX(D%
Z′′ |X′′).

Let v% denote the primitive ray generator of % and for a% > −1 set v′% := 1
a%+1v%. The

anticanonical region of X ⊆ Z is the set

A :=
⋃

%⊆ |Σ′|
A%, A% :=

{
conv(0, v′%), if a% > −1
%, else.
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In the situation of Definition 4.2.1 let Z ′′ → Z be a toric ambient resolution of singu-
larities factorizing over the weakly tropical resolution Z ′ → Z. Then the exceptional
divisors of X ′′ → X are precisely the pullbacks of the exceptional divisors of Z ′′ → Z
and we obtain the following:

Remark 4.2.2. Let X ⊆ Z be as in Definition 4.2.1 and let A be the anticanonical
region. Then the following statements hold:

(i) X has at most log terminal singularities if and only if the anticanonical region A
contains no ray.

(ii) X has at most canonical singularities if and only if for every ray % ⊆ |Σ′| we have
% ∩ A ⊆ conv(0, v%), i.e. ||v′%|| ≤ ||v%||.

(iii) X has at most terminal singularities if and only if for every ray % ⊆ |Σ′| with % /∈ Σ
we have % ∩ A ( conv(0, v%), i.e. ||v′%|| < ||v%||.

Remark 4.2.3. If Z is a Q-Gorenstein toric variety arising from a fan Σ, then for each
σ ∈ Σ there is a rational linear form uσ such that the anticanonical divisor of Z is given
on the affine chart Zσ ⊆ Z by div(χuσ) := m−1div(χmu), where m > 0 is any integer
such that mu lies in the dual lattice M of N . In particular, for the anticanonical region
A of Z we have

A ∩ σ = {v ∈ σ; 〈uσ, v〉 ≥ −1}.

This turns A into a polyhedral complex and properties of Z being log terminal, canonical
or terminal become questions on boundedness and behaviour with respect to lattice
points of this polyhedral complex.
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In the pictures above, we look at the complete fan Σ having the bullets different from the
origin as its primitive ray generators. Then the shadowed areas indicate the anticanonical
regions of a log terminal, a canonical and a terminal (hence smooth) projective toric
surface Z defined by Σ. Note that the polyhedral complexes drawn above are not convex,
which implies that the corresponding toric variety is not Fano. We will investigate this
correlation in more generality in Corollary 4.6.3.

Definition 4.2.4. LetX ⊆ Z be as in Definition 4.2.1 and assume that the anticanonical
region A can be endowed with the structure of a polyhedral complex. In this situation
we refer to the anticanonical region as the anticanonical complex and say that X ⊆ Z
admits an anticanonical complex.
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Remark 4.2.5. Let X ⊆ Z admits an anticanonical complex. Then Remark 4.2.2
specializes to the following:

(i’) X has at most log terminal singularities if and only if A is bounded.

(ii’) X has at most canonical singularities if and only if 0 is the only lattice point in
the relative interior of A.

(iii’) X has at most terminal singularities if and only if 0 and the primitive generators
of the rays of the fan of Z are the only lattice points of A.

Our main result of this section is a sufficient criterion on when an embedding X ⊆ Z
admits an anticanonical complex. Let X ⊆ Z be adapted. Then the pullback homomor-
phism on the level of Weil divisors described above induces a pullback homomorphism
Cl(Z)→ Cl(X) on the level of divisor class groups. We call the embedding X ⊆ Z neat
if this homomorphism is an isomorphism.

Proposition 4.2.6. Let X ⊆ Z be a neat embedding admitting a semi-locally toric
weakly tropical resolution and assume there exists a T -invariant Q-Cartier divisor D on
Z whose pullback D|X is a canonical divisor on X. Then X ⊆ Z admits an anticanonical
complex.

The rest of this section is dedicated to the proof of the above result. Starting with an
adapted embedding X ⊆ Z in a first step we explicitly construct a polyhedral complex
out of its weakly tropical resolution. We then show under which conditions one can
read discrepancies of X off this complex. In the second step we show that under the
assumptions of Proposition 4.2.6 this complex is indeed the anticanonical complex of
X ⊆ Z.

Remark 4.2.7. Let X ⊆ Z be adapted and consider an adapted toric ambient modifi-
cation Z ′ → Z. Then there is a commutative diagram

WDivT ′(Z ′) //

ϕ∗
��

WDiv(X ′)

ϕ∗

��
WDivT (Z) //WDiv(X),

where T ′ ⊆ Z ′ is the acting torus of Z ′, the horizontal arrows are the pullback homo-
morphisms defined above and the ϕ∗ are the usual birational transforms of Weil divisors
via ϕ, i.e. for any prime divisor D we have ϕ∗(D) := ϕ(D) if codim(ϕ(D)) = 1 holds,
and 0 otherwise.

For any toric variety Z, we denote by kZ the toric canonical divisor on Z given as
minus the sum over all toric prime divisors. Here comes our main technical tool for the
construction of the anticanonical complex:
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Definition 4.2.8. Let X ⊆ Z be adapted and ϕ : Z ′ → Z an adapted toric ambient
modification. A toric canonical ϕ-family is a family (Ui, Di)i∈I , where the Ui ⊆ Z ′ are
toric open subsets covering Z ′ and the Di are T ′-invariant Weil divisors on Z ′ such that
for every i ∈ I the following holds:

(i) Di|X′ is a canonical divisor on X ′,

(ii) on Ui we have Di = kZ′ ,

(iii) the T -invariant divisor ϕ∗(Di) is Q-Cartier.

Remark 4.2.9. Let X ⊆ Z be adapted, ϕ : Z ′ → Z an adapted toric modification and
(Ui, Di)i∈I a toric canonical ϕ-family. Then, by refining, we can achieve that I = Σ′
holds and the Ui = Z ′σ′ are the affine toric charts of Z ′.

Let u ∈ MQ be a rational character. Then the multiplicity of div(χu) along the divisor
D%
Z corresponding to a ray % ∈ Σ is given as 〈u, v%〉, where, as usual, v% ∈ % denotes the

primitive lattice vector inside %.

Construction 4.2.10. Let X ⊆ Z be adapted, ϕ : Z ′ → Z an adapted weakly tropical
resolution and (Z ′σ′ , Dσ′)σ′∈Σ′ a toric canonical ϕ-family. For every σ′ ∈ Σ′ choose a
σ ∈ Σ with σ′ ⊆ σ and a uσ′ ∈MQ with ϕ∗Dσ′ = div(χuσ′ ) on Zσ ⊆ Z. Set

A :=
⋃

σ′∈Σ′
Aσ′ , Aσ′ := σ′ ∩ {v ∈ NQ; 〈uσ′ , v〉 ≥ −1}.

Then A admits the structure of a polyhedral complex in NQ by defining the cells to be
the faces of the polyhedra Aσ′ ⊆ NQ.

Remark 4.2.11. In the situation of Construction 4.2.10, consider a cone σ′ ∈ Σ′, a ray
% � σ′, the corresponding toric prime divisor D%

Z′ and D
%
X′ := D%

Z′ |X′ . Then we have

ϕ∗ϕ∗(Dσ′ |X′) = ϕ∗((ϕ∗Dσ′)|X) = (ϕ∗ϕ∗Dσ′)|X′ ,

where the first equality is due to the commutative diagram given in Remark 4.2.7 and
the second follows by direct calculation in charts. In particular, the discrepancy of D%

X′

with respect to X is given by

discrX(D%
X′) = −1− 〈uσ′ , v%〉,

as the r.h.s. is the multiplicity of Dσ′ −ϕ∗ϕ∗Dσ′ along D%
Z′ for any σ′ ∈ Σ′ with % � σ′.

In particular, we conclude that the defining inequalities uσ′ ≥ −1 of A and thus the
whole set A do not depend on the choice of the toric canonical ϕ-family.

Definition 4.2.12. Let X ⊆ Z be adapted, ϕ : Z ′ → Z an adapted weakly tropical
resolution and consider a proper adapted toric ambient modification ψ : Z ′′ → Z ′. A
toric canonical ψ-family over Z is a toric canonical (ϕ ◦ ψ)-family (Vi, Ci)i∈I such that
Vi = ψ−1(Ui) holds with toric open subsets Ui ⊆ Z ′ and (Ui, ψ∗Ci)i∈I is a toric canonical
ϕ-family.
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Proposition 4.2.13. Situation as in Construction 4.2.10. Let ψ : Z ′′ → Z ′ be a proper
adapted toric ambient modification admitting a toric canonical ψ-family over Z and
denote by X ′′ ⊆ Z ′′ the proper transform of X ⊆ Z. Let % ∈ Σ′′ be a ray and, provided %
intersects the boundary of A, denote by v′% the intersection point. Then the discrepancy
a% of X with respect to the divisor D%

X′′ = D%
Z′′ |X′′ satisfies

a% = ||v%||
||v′%||

− 1, if % 6⊆ A, a% ≤ −1, if % ⊆ A.

Proof. Denote the toric canonical ψ-family over Z by (Vi, Ci)i∈I . Refining if necessary,
we achieve I = Σ′ and Vσ′ = Z ′′σ′ := ψ−1(Z ′σ′). By Remark 4.2.11, we may assume
Dσ′ = ψ∗Cσ′ for constructing the polyhedral complex A according to 4.2.10. Now choose
σ′ ∈ Σ′ and σ ∈ Σ with % ⊆ σ′ ⊆ σ. Moreover, let uσ′ ∈MQ with ϕ∗Dσ′ = div(χuσ′ ) on
Zσ ⊆ Z. Set π := ϕ ◦ ψ. Then, on Z ′′σ′ , we have

Cσ′ − π∗π∗Cσ′ =
∑
η⊆σ′
−Dη

Z′′ − π
∗div(χuσ′ ) =

∑
η⊆σ′

(−1− 〈uσ′ , vη〉)Dη
Z′′ ,

where η runs over the rays of Σ′′ that lie in the cone σ′. Thus, in particular, our % occurs
among the η. Now, applying the pullback homomorphism D 7→ D|X′′ to these identities
gives the ramification formula for a canonical divisor on X ′′. Thus, if % 6⊆ A holds, then
we obtain

a% = −1− 〈uσ′ , v%〉 = −1− ||v%||
||v′%||

〈uσ′ , v′%〉 = −1 + ||v%||
||v′%||

,

using 〈uσ′ , v′%〉 = −1, which just rephrases that v′% lies on the bounding hyperplane
uσ′ = −1 of A. If % ⊆ A holds, then we have 〈uσ′ , v〉 ≥ −1 even for all v ∈ %.

Let X ⊆ Z be adapted with adapted weakly tropical resolution Z ′ → Z. The above
result shows that the polyhedral complex A as in Construction 4.2.10 is the anticanonical
complex of X ⊆ Z if every proper birational toric morphism ψ : Z ′′ → Z ′ is an adapted
toric ambient modification and admits a canonical toric ψ-family over Z. We show
that any subvariety X ⊆ Z meeting the assumptions of Proposition 4.2.6 fulfills this
condition.

Lemma 4.2.14. Let X ⊆ Z be an adapted embedding admitting a semi-locally toric
weakly tropical resolution ϕ : Z ′ → Z. Then ϕ is an adapted toric ambient modification.
Moreover, if X ⊆ Z is a neat embedding, then X ′ ⊆ Z ′ is neat.

Proof. Note that the complement X ′ \ (X ′ ∩ Z ′0) lies in the union of all T ′-orbits of Z ′
of codimension at least two. As X ′ ⊆ Z ′ is weakly tropical, Tevelev’s criterion implies
that X ′ ∩Z ′0 is of codimension at least two in X ′. Thus we have a well defined pullback
homomorphism WDivT ′(Z ′)→WDiv(X ′).
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Now let D%
Z′ be a T ′-invariant prime divisor on Z ′ corresponding to a ray % ∈ Σ′. We

claim that the pullback of this divisor is a prime divisor on X ′. In order to prove this
we may restrict D%

Z′ to the toric chart Z ′% ∼= U(%)× T̃ as the complement of X ′ ∩Z ′0 is of
codimension at least two in X ′. Note that the restriction D%

Z′ |Z′% equals the pullback of
the T ′-invariant divisor D%

U(%) on U(%) with respect to the projection. As U(%) and its
preimage under the projection U(%) × T̃ are smooth, the pullback of D%

Z′ to X ′ equals
the intersection of D%

U(%) with X% inside U(%) and thus is a prime divisor.
For the supplement let X ⊆ Z be neat. In order to prove that the pullback induces an
isomorphism of divisor class groups, we may assume Z = Z0 and Z ′ = Z ′0 due to the
adaptedness of X ⊆ Z and X ′ ⊆ Z ′. In particular, we have a proper toric morphism
Z ′ → Z. Let E1, . . . , Er be the T ′-invariant prime divisors in the exceptional locus
of Z ′ → Z. As the embedding X ′ ⊆ Z ′ is weakly tropical and adapted we conclude
that the prime divisors in the exceptional locus of X ′ → X are exactly the pullbacks
E1|X′ , . . . , Er|X′ , where we use Tevelev’s criterion to show that these are indeed all. Note
that these divisors generate free subgroups of rank r in Cl(Z ′) and Cl(X ′) respectively.
Thus we obtain the following commutative diagram with exact rows

0
⊕

Z · [Ei] Cl(Z ′) Cl(Z) 0

0
⊕

Z · [Ei|X′ ] Cl(X ′) Cl(X) 0,

∼=

ϕ̃∗

∼=

ϕ∗

where the downward arrows are the pullback homomorphisms, and ϕ̃∗ and ϕ∗ denote
the canonical push forward homomorphisms. Applying the Five Lemma we obtain that
the pullback homomorphisms Cl(Z ′)→ Cl(X ′) induced by the embedding X ′ ⊆ Z ′ is an
isomorphism.

Lemma 4.2.15. Let X ⊆ Z be a neat, weakly tropical embedding and let U ⊆ Z be
an open T -invariant subvariety. Then the pullback homomorphism Cl(U)→ Cl(X ∩ U)
induced by the embedding X ∩ U ⊆ U is an isomorphism.

Proof. As U is a T -invariant subset of Z and the embedding X ⊆ Z is neat, we have

Z \ U = D%1
Z ∪ . . . ∪D

%r
Z ∪B and X \ (X ∩ U) = D%1

X ∪ . . . ∪D
%r
X ∪ (B ∩X)

with T -invariant prime divisors D%i
Z ⊆ Z and a T -invariant closed subset B ⊆ Z of

codimension at least two. Moreover, as X ⊆ Z is weakly tropical, we have codimX(B ∩
X) ≥ 2. Thus the following commutative diagram with exact rows gives the assertion:

Zr Cl(Z) Cl(U) 0

Zr Cl(X) Cl(X ∩ U) 0.

ei 7→[D%iZ ]

∼=

ei 7→[D%iX ]
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Lemma 4.2.16. Let X ⊆ Z be a neat embedding and let ϕ : Z ′ → Z be a semi-locally
toric weakly tropical resolution such that there exists a T -invariant Q-Cartier divisor D
with D|X a canonical divisor on X. Consider a proper toric morphism ψ : Z ′′ → Z ′

defined by a subdivision of fans Σ′′ → Σ′. Then the following statements hold:

(i) The embedding X ′′ ⊆ Z ′′ is neat.

(ii) ψ : Z ′′ → Z ′ is an adapted toric ambient modification and there exists a toric
canonical ψ-family over Z.

Proof. We prove (i). Note that by sufficiently refining the quasifan structure on trop(X)
we may assume that the toric morphism ϕ ◦ψ : Z ′′ → Z arises from a refinement of fans
Σ u trop(X) → Σ. It thus defines a weakly tropical resolution Z ′′ → Z of X which is
semi-locally toric according to Lemma 4.1.9. Applying Lemma 4.2.14 we conclude that
X ′′ ⊆ Z ′′ is a neat embedding.

We come to (ii). As ψ : Z ′′ → Z ′ is a proper morphism, so is its restriction X ′′ → X ′. In
particular, using (i) we obtain that ψ is an adapted toric ambient modification and there
exists a T ′′-invariant divisor D on Z ′′ whose pullback D|X′′ is a canonical divisor on X ′′.
We proceed the proof by constructing a toric canonical ψ-family over Z. Let σ′ ∈ Σ′ be
any cone. Then, in the notation of Lemma 4.1.9, the projection of X ′′∩Z ′′σ′ into V (σ′) is
an open subset of V (σ′). Thus there exists a canonical divisor on X ′′ that equals kZ′′ |X′′
on X ′′ ∩ Z ′′σ′ . Applying Lemma 4.2.15 we obtain [kZ′′ |Z′′

σ′
] = [D|Z′′

σ′
] ∈ Cl(Z ′′σ′) and thus

on Z ′′σ′ we have
D = kZ′′ + div(χu)

with a character χu of T ′′. Setting Cσ′ := D − div(χu) we obtain a toric canonical
(ϕ ◦ ψ)-family (Z ′′σ′ , Cσ′)σ′∈Σ′ . Due to Lemma 4.2.14 the morphism ϕ is an adapted
toric ambient modification. Moreover, by construction Z ′′σ′ = ψ−1(Z ′σ′) holds and the
family (Z ′σ′ , ψ∗Cσ′) is a toric canonical ϕ-family. This proves that (Z ′′σ′ , Cσ′)σ′∈Σ′ is a
toric canonical ψ-family over Z.

Proof of Proposition 4.2.6. Let ϕ : Z ′ → Z be any semi-locally toric weakly tropical
resolution. Then ϕ is an adapted toric ambient modification due to Lemma 4.2.14. Now
let ψ : Z ′′ → Z ′ be any proper birational toric morphism. Then due to Lemma 4.2.16 (ii)
it is an adapted toric ambient modification and admits a canonical toric ψ-family over
Z. Moreover, Proposition 4.1.6 ensures that there exists at least one proper birational
toric morphism that induces a resolution of singularities. Now, using Proposition 4.2.13
we conclude that the support of the polyhedral complex A as constructed in 4.2.10 is
the anticanonical region of X ⊆ Z. This completes the proof.
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4.3 The quotient criterion for explicit T-varieties

In this section we apply our results from Section 4.2 to explicit varieties X ⊆ Z. As
a first result we obtain a criterion for the existence of anticanonical complexes in the
Q-Gorenstein case, see Corollary 4.3.2. Our main result concerns explicit T-varieties
X(α, P,Σ) ⊆ Z. For these, we can deduce the existence of an anticanonical complex
from an explicit maximal orbit quotient, see Theorem 4.3.6 and Construction 4.3.3.

Remark 4.3.1. Let X ⊆ Z be an explicit variety. Then the embedding X ⊆ Z is neat,
divisor class group, Picard group and Cox ring of Z are given as

Cl(Z) ∼= Cl(X), Pic(Z) ∼= Pic(X), R(Z) = K[T%; % ∈ Σ(1)],

where Σ(1) denotes the set of rays of the fan Σ defining the toric variety Z. Moreover,
the ample divisor classes of X and Z coincide under the isomorphism.

Using the neat embedding of an explicit variety X ⊆ Z we can directly deduce the
following corollary from Proposition 4.2.6:

Corollary 4.3.2. Let X ⊆ Z be a Q-Gorenstein explicit variety and assume there exists
a semi-locally toric weakly tropical resolution. Then X ⊆ Z admits an anticanonical
complex.

Now let us furthermore assume that the explicit variety X ⊆ Z under consideration is
endowed with an effective action of an algebraic torus T. In particular, we work with
explicit T-varieties X(α, P,Σ) ⊆ Z from Chapter 1.

Construction 4.3.3. Let X(α, P,Σ) ⊆ Z be an explicit T-variety. Denote by N the
lattice of one-parameter subgroups of the acting torus T on Z and let Σ be the defining
fan of Z. Denote by NT the sublattice in N corresponding to T ⊆ T . Set N ′ := N/NT,
let P1 : N → N ′ be the projection and π1 : T → T ′ the associated homomorphism of tori.
Set

∆0 :=
{
P1(%); % ∈ Σ(1)

}
∪ {0}

and let Y0 be the closure of π1(X ∩ T ) in the toric variety Z∆0 corresponding to the fan
∆0. Then π1 defines a rational quotient X 99K Y0, i.e. a dominant rational map such
that π∗1K(Y0) = K(X)T holds. Now let ∆ be any fan having the same rays as ∆0 and
let Y ⊆ Z∆ be the closure of Y0. We call the rational map X 99K Y an explicit maximal
orbit quotient for the explicit T-variety X(α, P,Σ) ⊆ Z.

Remark 4.3.4. Explicit maximal orbit quotients are indeed maximal orbit quotients
as in Definition 1.2.13, compare Proposition 1.2.17.

Remark 4.3.5. In the situation of Construction 4.3.3, the linear map P1 : NQ → N ′Q
maps trop(X) onto trop(Y ). In particular, we have trop(X) = trop(Y ) ⊕ ker(P1), see
[61, Cor. 6.2.15].
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We now come to the main result of this Section. Starting with an explicit T-variety
X := X(α, P,Σ) ⊆ Z explicit maximal orbit quotients X 99K Y as in Construction 4.3.3
provide the possibility to check, if the variety X ⊆ Z admits an anticanonical complex
by studying the lower dimensional variety Y :

Theorem 4.3.6. In the notation of Construction 4.3.3, let X := X(α, P,Σ) ⊆ Z be a
Q-Gorenstein explicit T-variety and X 99K Y an explicit maximal orbit quotient such
that

(i) Y ⊆ Z∆ admits a semi-locally toric weakly tropical resolution,

(ii) P1 maps |Σ u trop(X)| into |∆ u trop(Y )|.

Then X ⊆ Z admits an anticanonical complex.

Proof. Let Z∆′ → Z∆ be a semi-locally toric weakly tropical resolution of Y . In par-
ticular, we have ∆′ = ∆ u trop(Y ) for a fixed quasifan structure on trop(Y ) and by
refining we achieve that ∆′ is a subfan of trop(Y ). Consider the quasifan structure{
P−1

1 (σ); σ ∈ trop(Y )
}

on trop(X) and let σ′ ∈ Σ′ = Σ u trop(X) be any cone. We
claim that X ′σ′ is semi-locally toric.

Assume δ′ := P1(σ′) ∈ ∆′ holds. Note that due to Remark 4.1.5 we can identify N ′ with
a sublattice of N and Y0 with its image in Z under the toric morphism defined by the
morphism N ′ → N . As Y ′ is semi-locally toric, there exists a maximal cone τ ∈ trop(Y )
and a decomposition N ′ = N ′(δ′)⊕ Ñ ′ such that the corresponding projection πδ′ maps
Yδ′ isomorphically onto and open subset of U(δ′). As P−1

1 (τ) is a maximal cone in
trop(X) containing σ′, any maximal cone of a refined quasifan structure on trop(X) spans
the same linear subspace. Therefore, we can choose N(σ′) = NT⊕N ′(δ′). In particular,
choosing the decomposition N = N(σ′)⊕ Ñ ′ we obtain a commutative diagram

Zσ′ ∼= U(σ′)× T̃ U(σ′)

Zδ′ ∼= U(δ′)× T̃ U(δ′),

π1 ψ×id

πσ′

ψ

πδ′

where ψ is the morphism of affine toric varieties arising via the projection of lattices
N(σ′) → N ′(δ′) mapping σ′ onto δ′. As πδ′ maps Yδ′ isomorphically onto its image
we conclude that the projection πσ′ maps π−1

1 (Yδ′) isomorphically onto the open subset
ψ−1(πδ′(Yδ′)) ⊆ U(σ′). We claim that X ′σ′ equals π

−1
1 (Yδ′): As ψ−1(πδ′(Yδ′)) is irre-

ducible, so is π−1
1 (Yδ′). Thus X ′σ′ ⊆ π−1

1 (Yδ′) is a closed irreducible subvariety of the
same dimension and thus equality holds.

In order to conclude the proof it is only left to show that for any σ′ ∈ Σ′ we can achieve
P1(σ′) ∈ ∆′ by sufficiently refining the quasifan structure on trop(Y ). By construction of
Σ′ we have P1(σ′) ⊆ δ for some δ ∈ ∆′. Consider any complete fan ∆c with P1(σ′) ∈ ∆c.



108 Chapter 4. The anticanonical complex

Then trop(Y ) u∆c defines a refined fan structure on trop(Y ) that contains P1(σ′) and
we set ∆′′ := trop(Y ) u∆c u∆′. Now using Lemma 4.1.9 we conclude that the proper
transform Y ′′ with respect to the morphism Z∆′′ → Z∆′ corresponding to the refinement
∆′′ → ∆′ is semi-locally toric as Y ′ is so. Thus by the above considerations we obtain
that X ′σ′ is semi-locally toric and the assertion follows with Corollary 4.3.2

The proof of Theorem 4.3.6 provides indeed the following explicit way to construct a
semi-locally toric weakly tropical resolution.
Remark 4.3.7. Let X(α, P,Σ) ⊆ Z and Y ⊆ Z∆ be as in Theorem 4.3.6 and let Z∆′ →
Z∆ be the semi-locally toric weakly tropical resolution of Y . Fix any quasifan structure
on trop(Y ) having ∆′ as a subfan and endow trop(X) with the quasifan structure defined
by the cones P−1

1 (τ) with τ ∈ trop(Y ). Then the refinement of fans trop(X) u Σ → Σ
defines a semi-locally toric weakly tropical resolution Z ′ → Z of X.
Corollary 4.3.8. Let X ⊆ Z be a Q-Gorenstein explicit T-variety and let X 99K Y be
an explicit maximal orbit quotient, such that Y is complete. Then X ⊆ Z admits an
anticanonical complex if Y ⊆ Z∆ admits a semi-locally toric weakly tropical resolution.

Proof. By construction Y is the closure of Y0 in a toric variety Z∆, where ∆ contains
∆0 as a subfan. Moreover, as Y is complete, the support of the defining fan ∆ contains
|trop(Y )|. As P1 maps |trop(X)| into |trop(Y )|, and Y admits by assumption a semi-
locally toric weakly tropical resolution, we meet the conditions of Theorem 4.3.6 and the
assertion follows.

Note that in the case that X(α, P,Σ) ⊆ Z is a complete explicit T-variety we have
|trop(X)| ⊆ |Σ|. In particular, in this situation every variety Y fulfilling the conditions
of Theorem 4.3.6 has to be complete as this is equivalent to |trop(Y )| ⊆ |∆|.
We end this section by finally summarizing the results for explicit T-varieties that are
Mori dream spaces:
Corollary 4.3.9. Let X be a Q-Gorenstein Mori dream space with torus action having
an explicit maximal orbit quotient X 99K Y , where Y is complete and admits a semi-
locally toric weakly tropical resolution. Then X admits an anticanonical complex A and
the following statements hold:

(i) X has at most log terminal singularities if and only if the anticanonical complex
A is bounded.

(ii) X has at most canonical singularities if and only if 0 is the only lattice point in
the relative interior of A.

(iii) X has at most terminal singularities if and only if 0 and the primitive generators
of the rays of the defining fan of ZX are the only lattice points of A.

Proof. We are in the situation of Corollary 4.3.8. Therefore, X ⊆ Z admits an anticanon-
ical complex and Remark 4.2.5 gives the characterizations of the singularity types.
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4.4 Application to general arrangement varieties

In this section we apply the quotient criterion from Section 4.3 to explicit general ar-
rangement varieties. Our main result is the following theorem:

Theorem 4.4.1. Let X := X(A,P,Σ) ⊆ Z be an explicit general arrangement variety.
Then the weakly tropical resolution Z ′ → Z of X is semi-locally toric. In particular, if
X is Q-Gorenstein, then X ⊆ Z admits an anticanonical complex.

We begin by investigating the explicit maximal orbit quotient X 99K Y from Construc-
tion 4.3.3 for general arrangement varieties:

Construction 4.4.2. Let X := X(A,P,Σ) ⊆ Z be an explicit general arrangement
variety. Then X is invariant under the subtorus action of Ts ⊆ Tr+s on Z. Using
Construction 4.3.3, the projection of lattices P1 : Zr+s → Zr with the corresponding
projection of tori π1 : Tr+s → Tr give rise to a fan ∆0 defining a toric variety Z∆0 and
an explicit variety Y0 ⊆ Z∆0 :

∆0 := {P1(%); % ∈ Σ(1)}, Y0 := π1(X ∩ Tr+s) ⊆ Z∆0 .

Moreover, we obtain a commutative diagram of rational quotients:

X Z

Y0 Z∆0 .

As above, let a0, . . . , ar denote the columns of A. Then the variety Y0 ∩ Tr is given as
the vanishing set of the linear equations h1, . . . , hr−c, where

ht := det
[
a0 a1 . . . ac ac+t
1 U1 . . . Uc Uc+t

]
∈ K[U±1 , . . . , U±r ].

Note that ∆0 is the one-skeleton of the defining fan of Pr. Moreover, the closure of
Y0 ∩ Tr inside Pr is a linear subspace Pc ⊆ Pr and the equations of this embedding are
given via the kernel of the matrix A = (a0, . . . , ar). Note that X 99K Pc defines an
explicit maximal orbit quotient as in Construction 4.3.3.

Remark 4.4.3. In the situation of Construction 4.4.2 the tropical variety of Y0 is the
c-skeleton of the fan of Pr, i.e.

trop(Y0 ∩ Tr) = Σ≤cPr := {σ ∈ ΣPr ; dim(σ) ≤ c} .

Using Remark 4.3.5 we conclude |trop(X)| = |Σ≤cPr |×Q
s. In the following, if not specified

otherwise, we will always assume trop(X) to be endowed with the quasifan structure
defined by the product Σ≤cPr ×Qs.
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Example 4.4.4. Consider the explicit general arrangement variety X := X(A,P,Σ) ⊆
Z from Example 2.1.17. For completeness we recall the defining data, i.e. the matrices
A and P and the maximal cones of Σ:

A :=

 1 0 0 −1
0 1 0 −1
0 0 1 −1

 , P :=


−1 −2 2 0 0
−1 −2 0 2 0
−1 −2 0 0 4
−1 −3 1 1 1

 ,

Σmax :=
{

cone(v01, v11, v21, v31), cone(v02, v11, v21, v31), cone(v01, v02, v11),
cone(v01, v02, v21), cone(v01, v02, v31)

}
In particular, the variety X is a Gorenstein Fano variety, having dimension three and
Picard number one. The T-action on X is of complexity two and arises as a subtorus
action K∗ ⊆ T4 acting on Z. Using the projection of tori T3+1 → T3, we obtain a
rational quotient X 99K P2, where

P2 ∩ T3 ∼= VT3(1 + U1 + U2 + U3) ⊆ T3

and the tropical variety of X is given as trop(P2 ∩ T3)×Q = Σ≤2
P3
×Q.

trop(Y0)

Note that trop(P2) = Σ≤2
P3

is a subfan of ΣP3 . Thus the weakly tropical resolution of
P2 ⊆ P3 is the identity. We look at the affine toric chart defined by the cone σ =
cone(e1, e2) ⊆ Q3. We obtain

(P2)σ ⊆ K2 ×K∗ and (P2)σ ∩ T3 = V (1 + U1 + U2 + U3).

Now, any point x = (x1, x2, x3) ∈ (P2)σ is defined by its first two coordinates, as
x3 = −x1 − x2 − 1 6= 0 holds. Thus the projection K2 ×K∗ → K2 maps (P2)σ onto the
open set K2 \ V (−x1 − x2 − 1). Computing this for the other cones in Σ≤2

P3
shows that

P2 ⊆ P3 is indeed semi-locally toric. Using the quotient criterion Theorem 4.3.6 yields
that X ⊆ Z admits an anticanonical complex. We will investigate the structure of this
complex in the next section.

Let us now turn to the proof of Theorem 4.4.1.

Lemma 4.4.5. Let A = (a0, . . . , ar) be a matrix as in Construction 2.1.3 and consider
the linear subspace Pc ⊆ Pr defined via the kernel of A, i.e. the vanishing set of the
relations f1, . . . , fr−c, where

ft := det
[
a0 a1 . . . ac ac+t
U0 U1 . . . Uc Uc+t

]
∈ K[U0, . . . , Ur].
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Fix the fan structure ∆ := Σ≤cPr on trop(Pc). Then the weakly tropical resolution of
Pc ⊆ Pr is semi-locally toric.

Proof. As the tropical variety of Pc ⊆ Pr is a subfan of the fan of Pr, Tevelev’s criterion
implies that the weakly tropical resolution is the identity on Pc. Therefore, we only have
to show that Pc ⊆ Z∆ is semi-locally toric. Let δ ∈ ∆ be a maximal cone. We consider
the situation exemplarily for δ = cone(e1, . . . , ec), i.e. we have (Pc)δ ⊆ Kc × (K∗)r−c.
By construction Pc∩Tr is given as the vanishing set of the linear equations h1, . . . , hr−c,
where

ht := det
[
a0 a1 . . . ac ac+t
1 U1 . . . Uc Uc+t

]
∈ K[U±1 , . . . , U±r ].

Therefore, any point in (Pc)δ can be written as (t, η1(t), . . . , ηr−c(t)) where t ∈ Kc and
the ηi are affine linear forms. This implies that Pc ⊆ Pr is semi-locally toric as the
projection πδ maps (Pc)δ isomorphically onto the following open subset of Kc:

πδ(Yδ) = {t ∈ Kc; ηi(t) 6= 0 for 1 ≤ i ≤ r − c} .

Proof of Theorem 4.4.1. We prove that any explicit general arrangement variety
X(A,P,Σ) ⊆ Z fulfills the conditions of Theorem 4.3.6. Due to Construction 4.4.2
the fan ∆0 is a subfan of the defining fan of Pr. In particular, in the notation of The-
orem 4.3.6 we may choose ∆ := ΣPr and obtain Y = Pc as the closure of Y0 in Pr. As
this embedding is defined via the kernel of A we can apply Lemma 4.4.5 and obtain that
the embedding Pc ⊆ Pr is weakly tropical and semi-locally toric. Thus it is only left to
show that in this situation we meet condition (ii) of Theorem 4.3.6. This follows as Pc
is complete and thus |∆ u trop(Y )| = |trop(Y )| holds.

4.5 Explicit description for general arrangement varieties

In this section we give an explicit description of anticanonical complexes for general
arrangement varieties X := X(A,P,Σ) ⊆ Z, see Proposition 4.5.4 and Corollary 4.5.5.
After fixing a quasifan structure on trop(X) we investigate the fan of the weakly tropical
resolution trop(X) u Σ, see Proposition 4.5.9. In particular, we obtain in Corollary 4.5.12
that the weakly tropical resolution of an explicit general arrangement variety is again
an explicit general arrangement variety. Applying our description of the anticanonical
complexes and our characterization of the several singularity types, we prove Theorem
4.5.14, which gives first bounding conditions on the exponents lij occurring in the defining
relations of the Cox ring of X. Specializing to torus actions of complexity two, we obtain
concrete bounds for the exponents in the defining equations in the log terminal case, see
Corollary 4.5.16.
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In this section let X := X(A,P,Σ) ⊆ Z always be an explicit general arrangement
variety of complexity c and let trop(X) ⊆ Qr+s be its tropical variety endowed with the
quasifan structure Σ≤cPr ×Qs, given in Remark 4.4.3.

Construction 4.5.1. Denote by e1, . . . , er+s the canonical basis vectors of Qr+s and
set e0 := −

∑
ei. For any subset I ⊆ {0, . . . , r} of k indices we set

λI := cone(ei; i ∈ I) + lin(er+1, . . . , er+s).

If 1 ≤ k ≤ c holds, then we have λI ∈ trop(X) and we call λI a k-leaf or, not specifying
k, a leaf of trop(X). Moreover, the collection of all leafs of trop(X) determines the
lineality space of trop(X):

λlin :=
⋂

I ⊆ {0, . . . , r},
|I| ≤ c

λI .

Definition 4.5.2. In the notation of Construction 4.5.1 we say that

(i) a cone σ ∈ Σ is a leaf cone, if σ ⊆ λI holds for a leaf λI of trop(X).

(ii) a cone σ ∈ Σ is called big, if σ ∩ λ◦i 6= ∅ holds for all 1-leaves λi of trop(X).

Note that any cone σ ∈ Σ is either a big or a leaf cone, see Proposition 2.2.8. In
particular, an explicit general arrangement variety X(A,P,Σ) ⊆ Z is weakly tropical if
and only if Σ consists of leaf cones.

Construction 4.5.3. Denote by vij := P (eij) and vk := P (ek) the columns of P .
Consider a pointed cone of the form

σ = cone(v0j0 , . . . , vrjr) ⊆ Qr+s,

that means that σ contains exactly one vector vij for every i = 0, . . . , r. We call such a
cone σ a P -elementary cone and associate to it the following numbers

`σ,i := l0j0 · · · lrjr
liji

for i = 0, . . . , r, `σ := (c− r)l0j0 · · · lrjr +
r∑
i=0

`σ,i

Moreover, we set

vσ := `σ,0v0j0 + . . .+ `σ,rvrjr ∈ Zr+s, %σ := Q≥0 · vσ ∈ Qr+s,

and denote by cσ the greatest common divisor of the entries of vσ.

Recall that, ifX is Q-Gorenstein with weakly tropical resolution Z ′ → Z, thenX ′ ⊆ Z ′ is
semi-locally toric due to Theorem 4.4.1. Therefore, X admits an anticanonical complex
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A as provided by Construction 4.2.10, which is locally defined by linear forms uσ′ ∈MQ.
More precisely we have

Aσ′ = A ∩ σ′ = σ′ ∩ {v ∈ NQ; 〈uσ′ , v〉 ≥ −1} .

We call any u ∈ MQ fulfilling the above equation a defining linear form for Aσ′ . In the
following we fix the polyhedral complex structure defined by the polyhedra Aσ′ and call
a point x ∈ A a vertex of A if it is a vertex of one of the polyhedra Aσ′ .

The following proposition gives a description of the linear forms uσ′ and thus the anti-
canonical complex A in terms of the numbers defined above.

Proposition 4.5.4. Let X(A,P,Σ) ⊆ Z be a Q-Gorenstein explicit general arrangement
variety. Then any u ∈ MQ is a defining linear form for Aσ′ if and only if it fulfills the
following conditions:

〈uσ′ , v〉 =
{
−1, if v = v%, where % ∈ (σ′)(1) ∩ Σ(1).

−`σ, if v = vσ, where σ ∈ Σ is a P -elementary cone with %σ � σ′.

Corollary 4.5.5. Let X := X(A,P,Σ) ⊆ Z be a Q-Gorenstein general arrangement
variety. Then the vertices of the anticanonical complex of X ⊆ Z are the origin, the
primitive ray generators of Σ and the points v′σ := `−1

σ vσ, where σ ∈ Σ is a P -elementary
cone and `σ > 0 holds. Moreover, if `σ > 0 holds for all P -elementary cones σ ∈ Σ,
then X is log terminal and each polyhedron Aσ′ is a polytope and therefore determined
by the above vertices.

Example 4.5.6. Consider the affine explicit general arrangement variety X :=
X(A,P,Σ) ⊆ Z where A and P are as follows and Σ is defined by the maximal cone σ:

A =
[

1 0 −1
0 1 −1

]
, P =

 −3 4 0
−3 0 4
1 1 1

 , σ = cone(v01, v11, v21).

Then `σ = −8 holds, we have v′σ = (0, 0,−5) holds and the anticanonical complex is not
bounded. In particular, X is not log terminal:

A

v′σ

%01

%11

%21
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Example 4.5.7. Consider the variety X := X(A,P,Σ) from Example 4.4.4. We use
Proposition 4.5.4 and Corollary 4.5.5 to compute the anticanonical complex A of X: Its
vertices are given by the columns v01, v02, v11, v21, v31 of P and the points in the lineality
space

vlin1 = [0, 0, 0, 1/5], vlin2 = [0, 0, 0,−1/3].

The anticanonical complex A of X has the following 15 maximal polytopes:

conv(0, v01, v02, vi1), conv(0, v01, vi1, vlin1), conv(0, v02, vi1, vlin2), 1 ≤ i ≤ 3,

conv(0, vi1, vj1, vlin1), conv(0, vi1, vj1, vlin2), 1 ≤ i < j ≤ 3.

Besides the origin and the primitive ray generators of Σ the anticanonical complex A of
X contains precisely the following lattice points:

[0, 0, 1, 0], [1, 1, 0, 1], [1, 0, 2, 1], [0, 1, 2, 1],

[0,−1,−1,−1], [−1, 0,−1,−1], [−1,−1, 0,−1], [−1,−1, 1,−1].

It turns out that [0, 0, 0, 0] is the only lattice point in the relative interior of A and there-
fore X is a canonical Gorenstein Fano explicit general arrangement variety of dimension
three, complexity two and Picard number one.

Remark 4.5.8. Consider two fans Σ1 and Σ2 in Qn. Then the common refinement
Σ1 u Σ2 consists of the cones σ1 ∩ σ2 with σi ∈ Σi for i = 1, 2. Let τ � σ1 ∩ σ2 be any
face. Then there exist faces τi � σi such that τ = τ1 ∩ τ2 holds.

Proposition 4.5.9. Let X(A,P,Σ) ⊆ Z be an explicit general arrangement variety.
Then the set of rays of Σ u trop(X) is given by:

(Σ u trop(X))(1) = Σ(1) ∪ {%σ; σ ∈ Σ is P -elementary} .

Lemma 4.5.10. Let σ ∈ Σ be a big cone.

(i) If σ1 ⊆ σ is a P -elementary cone, then σ1 is simplicial, we have vσ1 ∈ σ◦1 and
%σ1 = σ1 ∩ λlin holds.

(ii) If %σ1 = %σ2 holds for any two P -elementary cones σ1, σ2 ⊆ σ, then σ is P -
elementary. In particular, we have σ1 = σ2 = σ.

Proof. As the definition of a P -elementary cone does just depend on the special structure
of the matrix P , these statements can be deduced from the proof of [5, Prop. 3.8
(iii),(iv)].

Lemma 4.5.11. Let σ ∈ Σ be a big cone, τ ∈ trop(X) and let % ∈ (σ∩ τ)(1) be any ray.
Then one of the following statements hold:

(i) We have % ∈ σ(1).
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(ii) We have % = %σ1, where σ1 � σ is a P -elementary face. In particular, % ⊆ λlin
holds.

Proof. Due to Remark 4.5.8 there exists σ% � σ and τ% � τ such that σ% ∩ τ% = %
holds and we may assume these cones to be minimal with this property. We distinguish
between the following two cases.

Case 1: We have τ% = λlin, i.e. % = σ% ∩ λlin. If we have σ% ⊆ λlin, then % = σ% ∈ σ(1)

holds. So, assume not. Then with σ◦% ∩ λlin 6= ∅, we conclude that σ% is big and there
exists a P -elementary cone σ1 ⊆ σ%. We obtain

%σ1 = σ1 ∩ λlin ⊆ σ% ∩ λlin = %

and therefore % = %σ1 . As this does not depend on the choice of the P -elementary cone
σ1 we conclude that σ% is P -elementary due to Lemma 4.5.10 (ii).

Case 2: We have % = σ% ∩ τ% with % ⊆ τ◦% and τ% 6= λlin. Assume σ% ⊆ λ% holds. Then
% = σ% ∈ σ(1) holds. So assume σ% 6⊆ λ%. If σ% is a leave cone, i.e. σ ⊆ λI ∈ trop(X)
holds, then due to minimality of τ% we have τ � λI . We conclude % ∈ (σ%∩λI)(1) = σ(1).
So assume σ% is a big cone. In this case there exists a P -elementary cone σ1 ⊆ σ% with

%σ1 = σ1 ∩ λlin ⊆ σ% ∩ τ% = %

and therefore % = %σ1 . As this does not depend on the choice of the P -elementary cone
σ1 we conclude that σ% is P -elementary due to Lemma 4.5.10 (ii).

Proof of Proposition 4.5.9. We show "⊆". Let % be any ray of Σu trop(X). Then due to
Remark 4.5.8 we have % = σ ∩ τ with minimal cones σ ∈ Σ and τ ∈ trop(X). Assume σ
is a leaf cone, i.e. σ ⊆ λI ∈ trop(X) holds. Then due to minimality of τ we have τ � λI .
We conclude % ∈ (σ ∩λI)(1) = σ(1). If σ is a big cone, Lemma 4.5.11 gives the assertion.
We prove "⊇". Due to construction, the rays of Σ are supported on the tropical variety.
Thus it is only left to show that %σ is a ray of Σ u trop(X) for a P -elementary cone
σ ∈ Σ. This follows using Lemma 4.5.10 (ii).

As a consequence of Proposition 4.5.9 we obtain the following corollary:

Corollary 4.5.12. The weakly tropical resolution of an explicit general arrangement
variety is again an explicit general arrangement variety.

Proof. Let X := X(A,P,Σ) ⊆ Z be an explicit general arrangement variety and consider
its weakly tropical resolution Z ′ → Z. Due to Proposition 4.5.9 the rays of Σ′ =
Σ u trop(X) which are not rays of Σ are contained in the lineality space of trop(X).
In particular, the fans ∆0 and ∆′0 as in Construction 4.3.3 coincide and therefore the
explicit maximal orbit quotients X 99K Y0 and X ′ 99K Y ′0 coincide up to small birational
modifications. We conclude that X ′ = X(A,P ′,Σ′) holds, where A is the same matrix
as for X and P ′ contains the primitive ray generators of the fan Σ′, see [42, Sec. 6].
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Due to Theorem 2.1.5, the Cox ring R(A,P ) of an explicit general arrangement variety
X := X(A,P,Σ) ⊆ Z is a complete intersection ring. Therefore, we can apply [6, Prop.
3.3.3.2] and obtain the canonical class of X via the following formula:

KX = −
∑

%∈Σ(1)

deg(T%) +
r−c∑
i=1

deg(gi) ∈ Cl(X) ∼= Zn+m/im(P ∗).

Proposition 4.5.13. Let X := X(A,P,Σ) ⊆ Z be a Q-Gorenstein explicit general
arrangement variety with weakly tropical resolution Z ′ → Z and let σ ∈ Σ be a P -
elementary cone. Then the following statements hold:

(i) The discrepancy along the prime divisor of X ′ ⊆ Z ′ corresponding to %σ equals
c−1
σ `σ − 1.

(ii) The ray %σ is not contained in the anticanonical complex A, if and only if `σ > 0
holds; in this case, %σ leaves A at v′σ = `−1

σ vσ.

Proof. We prove (i). Due to Theorem 4.4.1 the variety X ⊆ Z admits a semi-locally toric
weakly tropical resolution. Applying Lemma 4.2.16 we conclude that there exists a toric
canonical ϕ-family. Therefore, explicitly constructing a pair (Z ′%σ , D%σ) as in Definition
4.2.8 we can use Remark 4.2.11 to calculate the discrepancy along D%σ

X′ :

Consider the ray %σ ∈ Σ′. Then %σ ⊆ λI holds for every maximal leaf of trop(X). In
particular, we may choose I := {1, . . . , c} and consider the divisor

D%σ :=
n0∑
j=1

(r − c)l0jD%0j −
∑

%′∈(Σ′)(1)

D%′ .

Then, as X ′ ⊆ Z ′ is an explicit general arrangement variety due to Corollary 4.5.12,
the pullback D%σ |X′ is a canonical divisor on X ′. Moreover, the push forward ϕ∗(D%σ)
is Q-Cartier and by construction we have D%σ = kZ′ on Z ′%σ . In particular, we have
constructed a tuple (Z ′%σ , D%σ) as claimed. Now, let u ∈ Qr+s be an element such that
div(χu) = ϕ∗(D%σ) holds on Zσ. Then due to Remark 4.2.11 we have

discrX(D%σ
X′) = −1− 〈u, v%σ〉.

Therefore, using vσ = v%σ · cσ, we obtain the assertion with

〈u, vσ〉 = 〈u,
r∑
i=0

`σ,iviji〉 =
r∑
i=0

`σ,i〈u, viji〉 = −`σ.

Using (i) assertion (ii) follows from the definition of the anticanonical complex.
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Proof of Proposition 4.5.4. Let σ′ ∈ Σ′ be any cone. Then a linear form u ∈ MQ is
defining for Aσ′ if and only if for all rays % ∈ σ′ we have

discX(D%
X′) = −1− 〈u, v%〉.

Due to Proposition 4.5.9 the rays of σ′ are either rays of Σ, then 〈u, v%〉 = −1 holds, or
they are of the form %σ where σ ∈ Σ is a P -elementary cone. In this case the assertion
follows from Proposition 4.5.13 (ii).

Proof of Corollary 4.5.5. By definition the vertices of A are the vertices of Aσ′ where σ′
runs over all cones of Σ′. In particular, they arise as the intersection of the hyperplane
uσ′ = −1 with the rays of σ′. Therefore, Proposition 4.5.4 gives the assertion. The
supplement follows using the characterization of log terminality as given in Remark
4.2.5 (i’).

Theorem 4.5.14. Let X ⊆ ZX be a Q-Gorenstein general arrangement variety of com-
plexity c and consider a cone σ = %0j0 + . . . + %rjr ∈ Σ. If the singularity defined by σ
is

(i) log terminal, then
∑
%∈σ(1) l−1

% > r − c holds,

(ii) canonical, then
∑
%∈σ(1) l−1

% ≥ r − c+ cσ
∏
%∈σ(1) l−1

% holds,

(iii) terminal, then
∑
%∈σ(1) l−1

% > r − c+ cσ
∏
%∈σ(1) l−1

% holds,

where cσ is the greatest common divisor of the entries of the vector vσ built up from the
primitive generators viji ∈ %iji as follows:

vσ := `σ,0v0j0 + . . .+ `σ,rvrjr ∈ Zr+s, `σ,i := l0j0 · · · lrjr
liji

∈ Z.

Proof. The cone σ ∈ ΣX is by definition P -elementary and big. Thus, the assertion
follows via direct calculation from Proposition 4.5.13.

Remark 4.5.15. Consider a P -elementary cone σ = %0 + · · · + %r ∈ Σ defining a log
terminal singularity and assume l%0 ≥ · · · ≥ l%r holds. Then the condition in Theorem
4.5.14 (i) implies that

∑c+1
i=0 l

−1
%i > 1 and l%c+2 = · · · = l%r = 1 holds.

Corollary 4.5.16. Let X ⊆ ZX be a Q-Gorenstein general arrangement variety of com-
plexity two. Then X is log terminal if and only if for any cone σ = %0j0 + . . .+ %rjr ∈ Σ
we achieve by suitably renumbering the involved rays that l4j4 = . . . = lrjr = 1 holds and
the tuple (l0j0 , l1j1 , l2j2 , l3j3) is one of the following:

(i) (1, x, y, z),

(ii) (2, 2, x, y),
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(iii) (2, 3,≤ 5, x), (2, 3, 7,≤ 41), (2, 3, 8,≤ 23), (2, 3, 9,≤ 17), (2, 3, 10,≤ 14), (2, 3, 11 ≤
13),

(iv) (2, 4, 4, x), (2, 4, 5,≤ 19), (2, 4, 6,≤ 11), (2, 4, 7,≤ 8),

(v) (2, 5, 5,≤ 9), (2, 5, 6,≤ 6),

(vi) (3, 3, 3, x), (3, 3, 4,≤ 11), (3, 3, 5,≤ 6),

(vii) (3, 4, 4, 5), (3, 4, 4, 4).

Proof. Using Remark 4.5.15 the claim follows from Theorem 4.5.14 via a direct calcula-
tion in the complexity two case.

4.6 An alternative construction

In this section we consider explicit general arrangement varieties X := X(A,P,Σ) ⊆ Z
with ample anticanonical divisor and give an alternative description of the anticanonical
complex in this setting. Following the same steps as done in [13], we explicitly construct
a polyhedral complex and show that it is indeed the anticanonical complex of X, see
Theorem 4.6.2. In particular, we make the construction developed in [13] applicable in
a broader setting: Besides leaving the Fano case by dropping the condition on X to be
projective, Example 4.6.8 shows, that in general the varieties X(A,P,Σ) ⊆ Z are not
treatable with the methods developed there.

In this section let X := X(A,P,Σ) ⊆ Z be an explicit general arrangement variety with
Cox ring R(A,P ) given by generators Tij , Sk and relations g1, . . . , gr−c as in Construction
2.1.13. Moreover let Z ′ → Z be its weakly tropical resolution defined by the fan Σ′ =
Σ u trop(X) in Qr+s.

Construction 4.6.1. Let γn+m ⊆ Qn+m be the positive orthant and let eΣ ∈ Zn+m be
any representative of the canonical class KZ of Z. Define polytopes

B(−KX) := Q−1(−KX) ∩ γn+m ⊆ Qn+m

and B := B(g1) + . . .+B(gr−c) as the Minkowski sum of the Newton polytopes B(gi) of
the relations gi. The anticanonical polyhedron AX ⊆ Qr+s of X is the dual polyhedron
of the polyhedron

BX := (P ∗)−1(B(−KX) +B − eΣ) ⊆ Qr+s, AX := BX
◦.

Theorem 4.6.2. Let X := X(A,P,Σ) ⊆ Z be a Q-Gorenstein explicit general arrange-
ment variety with ample anticanonical class. Then the anticanonical complex A of X is
the polyhedral complex

faces(AX) u Σ u trop(X) = faces(AX) u Σ′.
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Corollary 4.6.3. Let X := X(A,P,Σ) ⊆ Z be a Fano general arrangement variety.
Then its anticanonical complex A is piecewise convex, i.e.

conv(|A|) ∩ |trop(X)| = |A|.

Example 4.6.4. Consider the variety X := X(A,P,Σ) ⊆ Z from Examples 4.4.4 and
4.5.7. By construction, X is a Fano general arrangement variety and its anticanonical
complex is given as

|A| = conv(v01, v02, v11, v21, v31, vlin1, vlin2) ∩ |trop(X)|.

Lemma 4.6.5. Let X(A,P,Σ) ⊆ Z be an explicit general arrangement variety with
A = (a0, . . . , ar) and consider the linear subspace Pc ⊆ Pr defined via the kernel of A,
i.e. the vanishing set of the relations f1, . . . , fr−c, where

ft := det
[
a0 a1 . . . ac ac+t
U0 U1 . . . Uc Uc+t

]
∈ K[U0, . . . , Ur].

Then trop(Pc ∩ Tr) = Σ≤cPr is a subfan of the normal fan of

B̃ := B(h1) + · · ·+B(hr−c) ⊆ Qr, with hi := fi(1, U1, . . . , Ur).

In particular, the tropical variety trop(X) is a subfan of the normal quasifan of B̃ con-
sidered as a a polytope in Qr+s.

Proof. Let e1, . . . , er denote the standard basis vectors of Qr and set e0 := −
∑
ei. As

trop(Pc ∩ Tr) is by definition a refinement of a subfan of N (B̃), it suffices to show that
cone(ek) is a ray of N (B̃) for every k = 0, . . . , r. For this set

Jt := {j; Uj is a monomial of ft} = {0, . . . , c, c+ t} .

Then the lineality space of N (B(ht)), i.e. the maximal linear subspace contained in
N (B(ht)), is

σlin
t := lin(ej ; j ∈ {0, . . . , r} \ Jt).

Now let k ≤ c. Then cone(ek)× σlin
t ∈ N (B(ht)) holds for every t = 1, . . . , r − c and we

claim

cone(ek) =
r−c⋂
t=1

(
cone(ek)× σlin

t

)
=: σ ∈ N (B̃),

i.e. we have to show the inclusion "⊇". Let a ∈ σ be any point. Then for every t =
1, . . . , r − c we have a description

a =
∑

j>c, j 6=t
atjej + btkek, with atj ∈ Q, btj ∈ Q≥0.
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Usig that {ek, ec, . . . , er} are linearly independent, we conclude atj = 0 for all t, j and
therefore a ∈ cone(ek). We come to the case k > c. Here we have cone(ek) × σlin

k ∈
N (B(hk)) and we claim

cone(ek) =
(
cone(ek)× σlin

k

)
∩

r−c⋂
t=1,t6=k

σlin
t ∈ N (B̃).

Analogously to the first case this can be verified by a direct calculation.

Lemma 4.6.6. Let B ⊆ Qm be any polyhedron and denote by N (B) its normal quasifan.
Let further P : Qn → Qm be a surjective linear map. Then N (P ∗(B)) = P−1(N (B))
holds.

Proof. Let B be any polyhedron. Then N (B) = {C∨F ; F � B face} holds, where CF :=
cone(u− v; u ∈ B, v ∈ F ). Thus we have

C∨F = {y; 〈y, u− v〉 ≥ 0 for all u ∈ B, v ∈ F} .

Note that due to injectivity of P ∗ the faces of P ∗(B) are precisely the images P ∗(F ) of
the faces F � B. We conclude

C∨P ∗(F ) = {x; 〈x, P ∗(u)− P ∗(v)〉 ≥ 0 for all u ∈ B, v ∈ F}
= {x; 〈P (x), u− v〉 ≥ 0 for all u ∈ B, v ∈ F}
= P−1(C∨F ).

To a T -invariant Weil divisor D =
∑
a%D% on Z we assign a polyhedron:

BD := {u ∈MQ; 〈u, v%〉 ≥ −a%} ⊆MQ.

Proposition 4.6.7. Let X := X(A,P,Σ) ⊆ Z be an explicit general arrangement variety
with ample anticanonical class, fix a T -invariant divisor −kX on Z such that −kX |X is
an anticanonical divisor on X. Let B−kX denote the polyhedron corresponding to −kX
and let B ⊆ Qr+s and B̃ ⊆ Qr+s be as in Construction 4.6.1 and Lemma 4.6.5. Then
we have the following equalities:

(i) P ∗(B−kX )− kX = B(−KX).

(ii) P ∗(B̃) = B − (r − c) · l0, where l0 is identified with (l0, 0, . . . , 0) ∈ Kn+m

In particular, the fan Σ u trop(X) is a subfan of the normal fan of BX .
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Proof. The two equalities follow by direct calculation. We prove the supplement. Using
Lemma 4.6.6 we obtain

P−1(N (B−kX )) = N (B(−KX)) and P−1(N (B̃)) = N (B).

As −kX is ample due to Remark 4.3.1, the fan Σ is a subfan of the normal fan N (B−kX ),
and Lemma 4.6.5 shows that trop(X) is a subfan of N (B̃). It follows that P−1(Σ) u
P−1(trop(X)) is a subfan of the normal fan of B(−KX) + B. Projecting the involved
fans via P to Qr+s gives the assertion.

Proof of Theorem 4.6.2. Let σ′ ∈ Σ′ be any cone. Then due to Proposition 4.6.7 we
have σ′ ∈ N (BX). Fix any maximal cone τ ∈ N (BX) with σ′ � τ . Then we have
σ′ � σ ∩ λI � τ , where λI is a maximal leaf of trop(X) = trop(X ′) and σ ∈ Σ holds.
Denote by u ∈ BX the vertex corresponding to τ . Then we have a decomposition
P ∗(u) = µ+ ν − eΣ, with µ ∈ B(−KX) and ν ∈ B. We claim that the family

(Z ′σ′ , Dσ′)σ′∈Σ′ , with Dσ′ =
∑

%∈(Σ′)(1)∩Σ(1)

〈ν, e%〉D% −
∑

%∈(Σ′)(1)

D%

is a toric canonical ϕ-family and div(χu) = ϕ∗(Dσ′) holds on Xσ.
In order to verify the claim we first show that 〈ν, e%〉 = 0 holds for all % ∈ (σ′)(1) ∩ σ(1).
Denote by ν̃ the vertex of B̃ corresponding to ν. Then ν̃ defines the maximal cone{

x ∈ Qr+s; 〈x, u− ν̃〉 ≥ 0 for all u ∈ B̃
}
,

which contains λI . After suitably renumbering we may assume I = {1, . . . , c} and thus
ν̃1 = . . . = ν̃c = 0. With P ∗(B̃) = B − (r − c) · l0 we obtain that

〈ν, e%〉 = 〈P ∗(ν̃)− (r − c)l0, e%〉 = 〈ν̃, v%〉 − 〈(r − c)l0, e%〉 = 0

holds for all % ∈ σ(1) ∩ (σ′)(1). This shows that (Z ′σ′ , Dσ′)σ′∈Σ′ is a toric canonical
ϕ-family.
It is only left to show that div(χu) = ϕ∗(Dσ′) holds on Xσ. We fix a T -invariant
divisor −kX =

∑
%∈Σ(1) a%D% whose pullback −kX |X is an anticanonical divisor on X

and denote by µ̃ the vertex in B−kX corresponding to µ. Then, as −kX |X and therefore
−kX is ample, we have 〈µ̃, v%〉 = −a% for all rays % ∈ σ(1), see [22, Prop. 6.2.5]. We
conclude

〈µ, e%〉 = 〈P ∗(µ̃)− kX , e%〉 = 〈µ̃, v%〉+ 〈−kX , e%〉 = 0.
Since 〈u, v%〉 = 〈µ+ ν − eΣ, e%〉 holds, this completes the proof.

Example 4.6.8. Consider the variety X := X(A,P,Σ) ⊆ Z from Examples 4.4.4, 4.5.7
and 4.6.4. As before, we denote the primitive ray generators of Σ by

[v01, v02, v11, v21, v31] =


−1 −2 2 0 0
−1 −2 0 2 0
−1 −2 0 0 4
−1 −3 1 1 1


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and the defining relation of the Cox ring of X by g = T01T
2
02 + T 2

11 + T 2
21 + T 4

31. The
common refinement Σ′ = Σ u trop(X) is pure of dimension 3 and we have

(Σ′)(1) = Σ(1) ∪ {cone(e4), cone(−e4)} .

Further refining this fan we obtain a smooth toric variety Z ′′ whose fan has 72 maximal
cones and primitive ray generators given by the columns of the matrix

P2 :=
[
−2 −2 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2
−2 −2 −1 −1 −1 −1 −1 0 −1 0 0 0 0 0 0 0 1 1 1 1 1 2 2 0 0 0 0 0 1 0 0
−2 −1 −1 −1 0 0 1 −1 −1 0 0 1 1 2 3 4 0 0 1 1 2 0 1 0 0 1 1 2 0 0 1
−3 −3 −2 −1 −2 −1 −1 −1 −1 −1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1

]
.

We show that this example leaves the framework in which [13, Thm. 1.4] can be
applied as X ⊆ Z is not tropical resolvable in their sense: Note that we have
cone(v02, v31), cone(v21, v31) ∈ Σ′. In particular, any regular refinement of Σ′ contains
the following rays:

%1 := cone([−1,−1, 1,−1]) and %2 := cone([1, 1, 0, 1]).

Let P ′′ be a matrix whose columns are the primitive generators of the rays of a regular
refinement Σ′′ of Σ′. Then the shift of g with respect to P ′′ and P is the unique
polynomial g̃ ∈ K[T%; % ∈ (Σ′′)(1)] without monomial factors satisfying that its push
with respect to P ′′ equals the push of g with respect to P . In particular, we have
g̃ = m1 +m2 +m3 +m4, where the mi satisfy

T%1 |mi ⇔ i = 1, 2 and T%2 |mi ⇔ i = 3, 4

In the example P ′′ = P2 we have

m1 := T24T25T26T27T28T29T30
2T31

2T9

m2 := T17T18T19T20T21T22
2T23

2T29T8

m3 := T7
2T12T13T14

2T15
3T16

4T19T20T21
2T23T26T27T28

2T31T2T5T6

m4 := T1
2T2

2T3T4T5T6T7T8T9,

where T7 = T%1 and T29 = T%2 . Now, assume X is tropical resolvable in the sense of [13,
Def. 2.2]. Then there exists a regular refinement Σ′′ of Σ′ giving rise to a toric variety
Z ′′ such that the Cox ring of the proper transform X ′′ inside Z ′′ equals the freely graded
ring K[T%; % ∈ (Σ′′)(1)]/〈g̃〉. This is a contradiction since T%1 is not prime.



CHAPTER

FIVE

CANONICAL FANO INTRINSIC QUADRICS OF DIMENSION
THREE

In this chapter we treat the example class of intrinsic quadrics, i.e. projective varieties X
that admit a presentation of their Cox rings R(X) by Cl(X)-homogeneous generators,
such that the ideal of relations is generated by a single quadratic polynomial. These
varieties were introduced in [15] as an example class for the bunched ring approach to
Mori dream spaces and described there in case of smooth full intrinsic quadrics of Picard
number at most two, where full means, that every generator of the Cox ring shows up
in the defining relation. In [17] Bourqui used the intrinsic quadrics as a testing ground
for Manin’s conjecture. The description of smooth intrinsic quadrics of Picard number
at most two is due to [29], where in addition in this case Fujita’s freeness conjecture is
verified. In the singular case, the terminal Fano intrinsic quadrics of dimension three
having true complexity one and Picard number one are known due to [13]. We will
extend these results by treating the three-dimensional Fano intrinsic quadrics having at
most canonical singularities. Parts of Sections 5.1, 5.3 and 5.5 are published in [48] and
parts of Sections 5.1, 5.2 and 5.4 are published in the joint work [49].

5.1 Statement of the main results

Due to [29, Prop 2.1] any intrinsic quadric can be realized as an explicit general arrange-
ment variety X = X(A,P,Σ) ⊆ Z. More precisely the defining relation of its Cox ring
R(A,P ) is a quadric of the following form:

g = T01T02 + . . .+ T(q−1)1T(q−1)2 + T 2
q1 + . . .+ T 2

r1 with 0 ≤ q ≤ r + 1

This allows us to work in the language of explicit general arrangement varieties.

123
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Our focus is on Fano intrinsic quadrics of dimension three. Here, the case of Q-factorial
Fano intrinsic quadrics of complexity and Picard number one having at most terminal
singularities is known [13]. Our first result extends this classification in two directions:
On the one hand, we leave the terminal case and consider canonical intrinsic quadrics.
On the other hand, using our results from Chapter 4, we no longer restrict our study to
torus actions of complexity one.

Theorem 5.1.1. Every three-dimensional Q-factorial Fano intrinsic quadric having Pi-
card number one and at most canonical singularities is isomorphic to precisely one of the
following varieties X defined by its Cl(X)-graded Cox ring R(X), its matrix of generator
degrees Q = [w1, . . . , wr] and its anticanonical class −KX ∈ Ample(X). Moreover, we
list their Fano-index q(X) and their anticanonical self-intersection number −K3

X .

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX q(X) −K3
X

1 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

1 1 1 1 1
] [

3
] 3 54

2 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

2 2 1 3 2
] [

6
] 6 36

3 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

1 3 1 3 2
] [

6
] 6 48

4 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

2 4 1 5 3
] [

9
] 9 729

20

5 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

2 6 3 5 4
] [

12
] 12 96

5

6 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

3 5 1 7 4
] [

12
] 12 1152

35

7 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z [

3 7 2 8 5
] [

15
] 15 1125

56

8 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 2
1̄ 1̄ 0̄ 1̄ 0̄

] [
8
1̄

]
1 32

3

9 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

6 4 5 5 2
1̄ 1̄ 0̄ 1̄ 0̄

] [
12
1̄

]
3 36

5

10 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 6
1̄ 1̄ 0̄ 1̄ 0̄

] [
12
1̄

]
3 12

11 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z2

[
1 3 1 3 2
1̄ 1̄ 0̄ 0̄ 1̄

] [
6
1̄

]
3 24

12 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 0̄

] [
3
1̄

]
3 27

13 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z2

[
1 1 1 1 1
1̄ 1̄ 0̄ 0̄ 0̄

] [
3
0̄

]
3 54

14 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

1 1 1 1 2
0̄ 0̄ 1̄ 0̄ 1̄

] [
4
0̄

]
4 32

15 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

3 1 2 2 1
1̄ 1̄ 1̄ 0̄ 0̄

] [
5
1̄

]
5 125

6

16 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

1 3 2 2 2
0̄ 0̄ 0̄ 1̄ 1̄

] [
6
0̄

]
6 18

17 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z2

[
2 2 1 3 2
1̄ 1̄ 0̄ 0̄ 0̄

] [
6
0̄

]
6 18



5.1. Statement of the main results 125

18 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z2

[
1 3 1 3 2
1̄ 1̄ 0̄ 0̄ 0̄

] [
6
0̄

]
6 24

19 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 1
1̄ 1̄ 1̄ 0̄ 0̄

] [
7
1̄

]
7 343

48

20 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 2
1̄ 1̄ 1̄ 0̄ 1̄

] [
8
0̄

]
8 32

3

21 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

4 2 3 3 2
0̄ 0̄ 1̄ 0̄ 1̄

] [
8
0̄

]
8 32

3

22 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

5 1 3 3 2
0̄ 0̄ 1̄ 0̄ 1̄

] [
8
0̄

]
8 256

15

23 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

1 3 2 2 4
0̄ 0̄ 1̄ 0̄ 1̄

] [
8
0̄

]
8 64

3

24 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

5 3 4 4 1
1̄ 1̄ 1̄ 0̄ 0̄

] [
9
1̄

]
9 243

20

25 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

3 5 4 4 2
1̄ 1̄ 1̄ 0̄ 1̄

] [
10
0̄

]
10 25

3

26 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

5 1 3 3 4
1̄ 1̄ 1̄ 0̄ 1̄

] [
10
0̄

]
10 50

3

27 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

6 4 5 5 2
1̄ 1̄ 0̄ 1̄ 1̄

] [
12
0̄

]
12 36

5

28 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

6 4 5 5 2
0̄ 0̄ 0̄ 1̄ 1̄

] [
12
0̄

]
12 36

5

29 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

7 3 5 5 2
1̄ 1̄ 1̄ 0̄ 1̄

] [
12
0̄

]
12 288

35

30 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

2 4 3 3 6
0̄ 0̄ 1̄ 0̄ 1̄

] [
12
0̄

]
12 12

31 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

2 4 3 3 6
1̄ 1̄ 1̄ 0̄ 1̄

] [
12
0̄

]
12 12

32 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2
[

7 3 5 5 4
0̄ 0̄ 1̄ 0̄ 1̄

] [
14
0̄

]
14 98

15

33 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
1 1 1 1 1
1̄ 2̄ 0̄ 0̄ 0̄

] [
3
0̄

]
3 18

34 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
1 1 1 1 1
1̄ 2̄ 1̄ 2̄ 0̄

] [
3
0̄

]
3 18

35 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
2 2 1 3 2
0̄ 2̄ 0̄ 2̄ 1̄

] [
6
0̄

]
6 12

36 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
2 2 1 3 2
0̄ 2̄ 2̄ 0̄ 1̄

] [
6
0̄

]
6 12

37 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z3

[
1 3 1 3 2
0̄ 2̄ 1̄ 1̄ 1̄

] [
6
0̄

]
6 16

38 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 2
1̄ 3̄ 2̄ 0̄ 3̄

] [
4
1̄

]
1 19

39 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

2 4 3 3 2
3̄ 1̄ 0̄ 2̄ 0̄

] [
8
2̄

]
2 16

3

40 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 2
2̄ 0̄ 1̄ 3̄ 2̄

] [
4
2̄

]
2 16

41 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z4

[
1 1 1 1 1
2̄ 2̄ 1̄ 3̄ 0̄

] [
3
0̄

]
3 27

2
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42 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 1
2̄ 0̄ 1̄ 3̄ 3̄

] [
3
3̄

]
3 27

2

43 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 1
0̄ 2̄ 1̄ 3̄ 0̄

] [
3
0̄

]
3 27

2

44 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 1 1 1 2
2̄ 0̄ 1̄ 3̄ 0̄

] [
4
0̄

]
4 16

45 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

3 1 2 2 1
1̄ 1̄ 1̄ 3̄ 0̄

] [
5
0̄

]
5 49

6

46 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

1 3 2 2 2
1̄ 1̄ 3̄ 1̄ 0̄

] [
6
0̄

]
6 9

47 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

3 1 2 2 2
2̄ 0̄ 1̄ 3̄ 0̄

] [
6
0̄

]
6 9

48 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z4
[

2 4 3 3 2
1̄ 3̄ 2̄ 0̄ 2̄

] [
8
0̄

]
8 16

3

49 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z5

[
1 1 1 1 1
2̄ 3̄ 1̄ 4̄ 0̄

] [
3
0̄

]
3 54

5

50 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z6

[
1 1 1 1 1
1̄ 5̄ 2̄ 4̄ 0̄

] [
3
0̄

]
3 9

51 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z6

[
1 1 1 1 1
2̄ 4̄ 3̄ 3̄ 0̄

] [
3
0̄

]
3 9

52 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z6
[

1 1 1 1 1
4̄ 0̄ 2̄ 5̄ 5̄

] [
3
0̄

]
3 9

53 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z6
[

1 1 1 1 2
4̄ 0̄ 5̄ 2̄ 1̄

] [
4
2̄

]
4 32

3

54 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z8
[

1 1 1 1 1
2̄ 0̄ 5̄ 1̄ 3̄

] [
3
1̄

]
3 27

4

55 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z8
[

1 1 1 1 2
2̄ 0̄ 5̄ 1̄ 2̄

] [
4
0̄

]
4 8

56 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z8
[

1 1 1 1 2
2̄ 0̄ 5̄ 1̄ 6̄

] [
4
4̄

]
4 8

57 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× Z9

[
1 1 1 1 1
4̄ 5̄ 3̄ 6̄ 0̄

] [
3
0̄

]
3 6

58 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z12
[

1 1 1 1 1
2̄ 0̄ 7̄ 1̄ 4̄

] [
3
0̄

]
3 9

2

59 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
2 2 2 1 1
1̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 0̄

] [
4
0̄
1̄

]
1 19

2

60 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
1 1 1 1 2
1̄ 1̄ 0̄ 0̄ 1̄
0̄ 1̄ 1̄ 0̄ 1̄

] [
4
1̄
1̄

]
1 16

61 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
2 2 2 1 3
1̄ 1̄ 0̄ 0̄ 1̄
0̄ 1̄ 1̄ 0̄ 1̄

] [
6
1̄
1̄

]
3 45

4

62 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
1 1 1 1 1
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 1̄ 0̄

] [
3
0̄
0̄

]
3 27

2

63 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× (Z2)2
[

1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄

] [
3
0̄
1̄

]
3 27

2

64 K[T1,...,T5]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z× (Z2)2

[
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄

] [
3
0̄
1̄

]
3 27

2
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65 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× (Z2)2
[

1 1 1 1 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄

] [
4
0̄
0̄

]
4 16

66 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
3 3 3 1 2
0̄ 0̄ 1̄ 0̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
6
0̄
0̄

]
6 6

67 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
2 2 2 1 3
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
6
0̄
0̄

]
6 9

68 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× (Z2)2
[

3 1 2 2 2
0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄

] [
6
0̄
0̄

]
6 9

69 K[T1,...,T5]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z× (Z2)2

[
1 3 2 2 2
1̄ 1̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄

] [
6
0̄
0̄

]
6 9

70 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× (Z2)2

[
1 1 1 3 2
1̄ 1̄ 0̄ 1̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
6
0̄
0̄

]
6 18

71 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× (Z2)2
[

2 4 3 3 2
1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 1̄

] [
8
0̄
0̄

]
8 16

3

72 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× Z2 × Z4

[
2 2 2 1 1
1̄ 0̄ 1̄ 0̄ 0̄
1̄ 3̄ 3̄ 1̄ 0̄

] [
4
0̄
2̄

]
2 4

73 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× Z2 × Z4

[
1 1 1 2 1
0̄ 1̄ 0̄ 1̄ 0̄
1̄ 3̄ 3̄ 1̄ 0̄

] [
4
0̄
2̄

]
2 8

74 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2 × Z4

[
1 1 1 1 2
0̄ 0̄ 0̄ 1̄ 1̄
2̄ 0̄ 1̄ 3̄ 0̄

] [
4
0̄
0̄

]
4 8

75 K[T1,T2,T3,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 〉
Z× Z2 × Z6

[
1 1 1 1 1
1̄ 0̄ 1̄ 0̄ 0̄
4̄ 1̄ 1̄ 5̄ 0̄

] [
3
0̄
3̄

]
3 9

2

76 K[T1,T2,T3,T4,S1]
〈T1T2+T 2

3 +T 2
4 〉

Z× Z2 × Z6

[
1 1 1 1 1
0̄ 0̄ 1̄ 0̄ 1̄
2̄ 0̄ 4̄ 1̄ 1̄

] [
3
0̄
0̄

]
3 9

2

77 K[T1,...,T5]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z× Z2 × Z6

[
1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 0̄
2̄ 4̄ 3̄ 3̄ 0̄

] [
3
1
0

]
3 9

2

78 K[T1,T2,T3,T4,T5]
〈T1T2+T3T4+T 2

5 〉
Z× (Z3)2

[
1 1 1 1 1
1̄ 2̄ 1̄ 2̄ 0̄
2̄ 1̄ 1̄ 2̄ 0̄

] [
3
0̄
0̄

]
3 6

79 K[T1,...,T4,S1]
〈T 2

1 +T 2
2 +T 2

3 +T 2
4 〉

Z× (Z2)3
[

1 1 1 1 2
1̄ 1̄ 1̄ 0̄ 1̄
0̄ 0̄ 1̄ 0̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
4
0̄
0̄
0̄

]
4 8

Variety No. 1 is smooth and varieties Nos. 4, 19 and 49 are terminal. Moreover,
varieties Nos. 64, 69, 77 and 79 are of true complexity two. All the others are of true
complexity one.

The proof of the above theorem is split into three parts: In Section 5.3 we establish the
list of all intrinsic quadrics of complexity one. The case of complexity two torus actions
is treated in Section 5.4, and the remaining assertions are proven in Section 5.5.
We leave the case of Picard number one. Here, we were able to classify all Q-factorial
Fano intrinsic quadrics of dimension three and true complexity two having at most
canonical singularities:
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Theorem 5.1.2. Every three-dimensional Q-factorial Fano intrinsic quadric of true
complexity two having at most canonical singularities is isomorphic to precisely one of
the varieties X, specified by its Cl(X)-graded Cox ring R(X), its matrix of generator
degrees Q = [w1, . . . , wr] and its anticanonical class −KX ∈ Ample(X) as follows:

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX

1 K[T1,...,T4,S1]
〈T 2

1 +T 2
2 +T 2

3 +T 2
4 〉

Z× Z2 × Z2 × Z2

[
1 1 1 1 2
1̄ 1̄ 1̄ 0̄ 1̄
0̄ 0̄ 1̄ 0̄ 1̄
1̄ 0̄ 0̄ 0̄ 1̄

] [
4
0̄
0̄
0̄

]

2 K[T1,...,T5]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z× Z2 × Z2

[
1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄

] [
3
0̄
1̄

]
3 K[T1,...,T5]

〈T1T2+T 2
3 +T 2

4 +T 2
5 〉

Z× Z2 × Z2

[
1 3 2 2 2
1̄ 1̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄

] [
6
0̄
0̄

]
4 K[T1,...,T5]

〈T1T2+T 2
3 +T 2

4 +T 2
5 〉

Z× Z2 × Z6

[
1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 0̄
2̄ 4̄ 3̄ 3̄ 0̄

] [
3
1
0

]

5 K[T1,...,T4,S1,S2]
〈T 2

1 +T 2
2 +T 2

3 +T 2
4 〉

Z2 × Z2 × Z2 × Z2

 1 1 1 1 0 0
0 0 0 0 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄ 0̄
1̄ 0̄ 0̄ 0̄ 1̄ 0̄

  2
2
0̄
0̄
0̄


6 K[T1,...,T5,S1]

〈T1T2+T 2
3 +T 2

4 +T 2
5 〉

Z2 × Z2 × Z2

[
1 1 1 1 1 0
−1 1 0 0 0 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄

] [
3
1
0̄
1̄

]

7 K[T1,...,T5,S1]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z2 × Z2 × Z2

[
−1 1 0 0 0 1
2 0 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄

] [
1
4
0̄
1̄

]

8 K[T1,...,T5,S1]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z2 × Z2 × Z2

[
1 1 1 1 1 1
1 −1 0 0 0 −2
0̄ 0̄ 1̄ 1̄ 0̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄ 0̄

] [
4
−2
0̄
0̄

]

9 K[T1,...,T5,S1,S2]
〈T1T2+T 2

3 +T 2
4 +T 2

5 〉
Z3 × Z2 × Z2

 1 1 1 1 1 0 0
−1 1 0 0 0 1 0
0 0 0 0 0 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄ 0̄

  3
1
2
0̄
1̄



In order to prove the above theorem, in Section 5.2 we give effective bounds for the
Picard number of a Q-factorial Fano intrinsic quadric:

Proposition 5.1.3. Let X := X(A,P,Σ) ⊆ Z be a Q-factorial, Fano intrinsic quadric.
Then %(X) ≤ 3 +m holds.

Corollary 5.1.4. Let X := X(A,P,Σ) ⊆ Z be a Q-factorial, Fano intrinsic quadric of
complexity c = dim(X)− 1. Then %(X) ≤ 5 holds.

As an application of our classification Theorem 5.1.2, we finally give a negative result
for terminality in arbitrary dimensions for one-dimensional torus actions:

Proposition 5.1.5. Let X = X(A,P,Σ) ⊆ Z be a Q-factorial Fano intrinsic quadric
of complexity c = dim(X)− 1. Then X is not terminal.
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5.2 Structural results

In this section we prove structural results on Fano intrinsic quadrics that we will use
in the subsequent sections to prove our classification results. We start by investigating
the X-faces of a Fano intrinsic quadric X. Then we go on proving our bounds on the
Picard number given in Proposition 5.1.3 and Corollary 5.1.4. As an application we give
in Proposition 5.2.2 an effective bound for the Picard number in the three-dimensional
case with torus action of complexity two.

Lemma 5.2.1. Let X := X(A,P,Σ) ⊆ Z be a Fano intrinsic quadric. Then after
suitably renumbering we may assume n0 ≥ . . . ≥ nr and we are in one of the following
situations:

(i) We have nr−1 = nr = 1 and cone(e(r−1)1, er1, e1, . . . , em) is an X-face.

(ii) We have n0 = . . . = nr−1 = 2 > nr = 1 and cone(e01, e02, er1, e1, . . . , em) is an
X-face.

(iii) We have n0 = . . . = nr = 2 and cone(e01, e02, e11, e12, e1, . . . , em) is an X-face.

Proof. First note that in any of the above cases the cones under consideration are X̄-
faces. To prove that they are indeed X-faces we show that their images in KQ contain
−KX in their relative interior. Since all of the cones are pointed it suffices to show
that −KX can be written as a strictly positive combination over all extremal rays of the
respective cone. For this let n(1) be the number of indices i with ni = 1. Then we have

−KX = 2r − n(1)

2 deg(g) +
∑

wk where 0 < 2r − n(1)

2 ≤ r.

In case (i) we have deg(g) = 2w(r−1)1 = 2wr1 and in case (ii) we have deg(g) = w01 +
w02 = 2wr1, which proves the assertion in these cases. Finally, in case (iii) we have
n(1) = 0 and thus obtain

−KX = r deg(g) +
∑

wi = (w01 + w02) + (r − 1)(w11 + w12) +
∑

wk.

Proof of Proposition 5.1.3. We distinguish between the three cases treated in Lemma
5.2.1 and show that the dimension of the X-faces occurring there is at most m + 3.
Then using Q-factoriality of X, we obtain the bound on %(X) as claimed. In Case (i) of
Lemma 5.2.1 we obtain an X-face of dimension at most 1 + m as wr1 = w(r−1)1 holds
due to homogeneity of the defining relation g. Similar, in Case (ii) we obtain an X-face
of dimension at most 2 +m as wr1 ∈ cone(w01, w02) holds. Consider Case (iii). Here we
have

w01 + w02 − w11 − w12 = deg(g)− deg(g) = 0.
In particular, the cone cone(w01, w02, w11, w12, w1, . . . , wm) is of dimension at most 3+m.
This completes the proof.
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Proof of Corollary 5.1.4. In this situation we have s = 1 for the lower part of the matrix
P . This implies m ≤ 2, as the columns of P are assumed to be pairwise different and
primitive, which directly gives the assertion.

Proposition 5.2.2. Let X := X(A,P,Σ) ⊆ Z be a three-dimensional Q-factorial Fano
intrinsic quadric of complexity c = 2. Then %(X) ≤ 3 holds. Moreover, if X is a full
intrinsic quadric, then %(X) = 1 holds.

Proof. Due to Corollary 5.1.4 we have %(X) ≤ 5. Assume %(X) ≥ 4. We go through
the possible configurations of n = n0 + . . .+ n3 and 0 ≤ m ≤ 2. After renumbering the
columns of P we arrive at one of the following cases:

(i) n0 = . . . = n2 = 2 > n3 = 1, m = 1

(ii) n0 = n1 = 2 > n2 = n3 = 1, m = 2

(iii) n0 = . . . = n3 = 2, m = 1

(iv) n0 = . . . = n2 = 2 > n3 = 1, m = 2

In the Cases (i) and (ii) we have %(X) = 4 and in the Cases (iii) and (iv), we have
%(X) = 5. Applying Lemma 5.2.1 (ii) in the Cases (i) and (iv) we obtain a three-
dimensionalX-face which contradictsQ-factoriality ofX. Similar, applying Lemma 5.2.1
(i) in the Cases (ii) and Lemma 5.2.1 (iii) in the Case (iii) we obtain a three-dimensional
X-face and thus a contradiction to Q-factoriality as well. For the supplement let X be a
full intrinsic quadric and assume %(X) > 1. Due to Proposition 5.1.3 we have %(X) ≤ 3.
Thus renumbering the columns of P we are left with the following situations:

(i) n0 = n1 = 2 > n2 = n3 = 1

(ii) n0 = n1 = n2 = 2 > n3 = 1

In Case (i) we have %(X) = 2 and in Case (ii) we have %(X) = 3. Using the same
argument as before we exclude Case (i) using Lemma 5.2.1 (i) and Case (ii) using
Lemma 5.2.1 (ii).

5.3 Classification in the complexity one case

The aim of this section is to provide the list of all intrinsic quadrics in Theorem 5.1.1
having a torus action of complexity one. We work in the language of explicit general
arrangement varieties X(A,P,Σ) ⊆ Z. In particular, we use results from Sections 1.4
and 2.2 concerning the combinatorial data encoding the geometry of these varieties and
the explicit description of their anticanonical complexes from Section 4.5. In a first
step we distinguish the possible configurations for the parameters n and m. Then, we
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proceed by investigating these configurations case by case, see 5.3.2, 5.3.5 and 5.3.9. In
each configuration we give effective bounds on the entries of P to finally test all varieties
X(A,P,Σ) ⊆ Z for canonicity and obtain our classification result.

Remark 5.3.1. Let X := X(A,P,Σ) ⊆ Z be a Q-factorial explicit intrinsic quadric of
dimension three and Picard number one. Then n + m = 5 holds and we are in one of
the following situations.

(i) n = 3 and m = 2.

(ii) n = 4 and m = 1.

(iii) n = 5 and m = 0.

Setting 5.3.2. Let X := X(A,P,Σ) ⊆ Z be a Q-factorial Fano explicit intrinsic quadric
of dimension three and Picard number and complexity one, having at most canonical
singularities with n = 3 and m = 2. Then the matrix P has the following form:

P =


−2 2 0 0 0
−2 0 2 0 0
x1 x2 x3 x4 x5
y1 y2 y3 y4 y5


Remark 5.3.3. Situation as in 5.3.2. As X has Picard number one, we obtain a big
cone and an associated vertex of the anticanonical complex of X:

σ = cone(v01, v11, v21) ∈ Σ, v′σ = [0, 0, x1 + x2 + x3, y1 + y2 + y3].

In particular, forgetting about the first two coordinates, the anticanonical complex of X
intersected with the lineality space is a lattice polytope

∆ := conv([x4, y4], [x5, y5], [z1, z2]), [z1, z2] := [x1 + x2 + x3, y1 + y2 + y3].

As X has at most canonical singularities, the origin is the only interior lattice point of
∆. Thus, by applying admissible operations on the last two rows of P , we may assume
that ∆ is one of the 16 two-dimensional reflexive polytopes [10, 71, 58]. In particular,
as ∆ has three vertices, we may assume that it is one of the following.

conv([1, 0], [0, 1], [−1,−1]), conv([1, 1], [−1, 1], [0,−1]), conv([1, 1], [−1, 1], [−1,−2]),

conv([1, 1], [−1, 1], [−1,−3]), conv([2, 1], [−1, 1], [−1,−2]).

Remark 5.3.4. Situation as in 5.3.3. Then, the vertices of ∆ are invariant under adding
a multiple of the first two rows of P to one of the last two rows of P . Thus we may
assume in addition, that we have x2, x3, y2, y3 ∈ {0, 1}. Note that any such choice fixes
all entries of P , due to the definition of the vertex [z1, z2].
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Setting 5.3.5. Let X := X(A,P,Σ) ⊆ Z be a Q-factorial Fano explicit intrinsic quadric
of dimension three and Picard number and complexity one, having at most canonical
singularities with n = 4 and m = 1. By applying admissible operations we may assume
to be in the following situation:

P =


−1 −1 2 0 0
−1 −1 0 2 0
0 x2 x3 x4 x5
0 0 y3 y4 y5

 ,
x2 > 0,

0 < x5 ≤ |y5|,
x4, y4 ∈ {0, 1}.

Moreover, by multiplying the last row with (−1), if necessary, we may assume that we
have positive weights:

w01 = 4x2y5 + 2x3y5 − 2x5y3 + 2x4y5 − 2x5y4,

w02 = −2x3y5 + 2x5y3 − 2x4y5 + 2x5y4,

w11 = 2x2y5,

w21 = 2x2y5,

w1 = −2x2y3 − 2x2y4.

Note that the last row operation possibly changes the sign of y4. Thus we may only
assume that y4 ∈ {−1, 0, 1} holds.

Remark 5.3.6. Situation as in 5.3.5. As X has Picard number one, we obtain two big
cones with associated vertices of the anticanonical complex of X:

σ1 = cone(v01, v11, v21),

σ2 = cone(v02, v11, v21),

v′σ1 = [0, 0, 1
2(x3 + x4), 1

2(y3 + y4)])

v′σ2 = [0, 0, 1
2(x3 + x4) + x2,

1
2(y3 + y4)].

In particular, forgetting about the first coordinates, the anticanonical complex of X
intersected with the lineality space, is a triangle ∆ = conv(p1, p2, p3), with

p1 = [1
2(x3 + x4), 1

2(y3 + y4)], p2 = [1
2(x3 + x4) + x2,

1
2(y3 + y4)], p3 = [x5, y5].

Remark 5.3.7. Situation as in 5.3.6. We investigate the polytope ∆. First note, that
by assumption x5 > 0 holds and we obtain y5 > 0, as x2 and w11 = 2x2y5 are positive.
In particular, the vertex p3 is contained in the positive orthant. Moreover, as w1 is
positive, we conclude y3 + y4 < 0 and thus the points p1 and p2 are contained in the
lower half plane. Note that the line segment p1p2 is parallel to the x-axis. As X is Fano,
we have 0 ∈ ∆◦ and conclude x3 + x4 < 0, as x2 is positive. We sketch the situation:
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p1 p2

p3

−1
2(y3 + y4)

y5

Note, that we can not determine the position of p2 with respect to the y-axis.

Proposition 5.3.8. Situation as in 5.3.5. Then we obtain the following estimates for
the entries of P :

0 < x2 ≤ 2− (y3 + y4), 0 ≤ x4 ≤ 1, 0 < x5 ≤ |y5|,

−18− y4 ≤ y3 < −y4, −1 ≤ y4 ≤ 1

2x5y3 + 2x5y4 − 2x4y5 − 4x2y5
2y5

< x3 < −x4, 0 < y5 ≤

9 x2 = 1
x2− 1

2 (y3+y4)
x2−1 else.

Proof. Note that by assumption x2 > 0, x4 ∈ {0, 1}, y4 ∈ {−1, 0, 1} and 0 < x5 ≤ |y5|
hold. Now, positivity of the weights w01, w11 and w1 imply

2x5y3 + 2x5y4 − 2x4y5 − 4x2y5
2y5

< x3, 0 < y5 and y3 < −y4.

Moreover, similar as in Remark 5.3.7, we have 1
2(x3 + x4) < 0 and conclude x3 < −x4.

We investigate slices of the polytope ∆: Due to the singularity type of X, we have

|∆ ∩ {y = 0}| = x2 + x2

1
2(y3 + y4)

y5 − 1
2(y3 + y4)

≤ 2.

Thus, reordering suitably and using y5 > 0 yields

x2 ≤ 2− (y3 + y4)
y5

≤ 2− (y3 + y4).

Similarly, we have

∆ ∩ {y = 1} = x2 − x2
1 + 1

2(y3 + y4)
y5 − 1

2(y3 + y4)
≤ 1.
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In particular, if x2 6= 1 holds, this implies

y5 ≤
x2 − 1

2(y3 + y4)
x2 − 1 .

We proceed by investigating the tetrahedron ∆′ defined by the following vertices:

[0, 0, x5, y5], [−1,−1, x2, 0],

[0, 0, 1
2(x3 + x4), 1

2(y3 + y4)], [0, 0, 1
2(x3 + x4) + x2,

1
2(y3 + y4)].

Note that by construction ∆′ is contained in the anticanonical complex of X and thus
has the origin as its unique interior lattice point. The polytope ∆′ is living inside the
linear space spanned by [1, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1]. In particular, we may regard
∆′ as a polytope in Q3 by forgetting about the first coordinate. Now, ∆′ is contained in
the lattice polytope ∆′′ defined by the following vertices:

[−1, x2, 0], [1, x3 + x4 − x2], [1, x3 + x4 + x2, y3 + y4], [1, 2x5 − x2, 2y5].

Note that by construction ∆′′ is a lattice polytope having the origin as its unique interior
lattice point. Thus, due to [8, Thm 2.2], its standard Q3-volume is bounded by 12 which
gives

2
3x3(y3 + y4)− 4

3x3y5 ≤ 12 (5.3.1)

Now, reordering yields
18
x3

+ 2y5 − y4 ≤ y3

and as 1
x3
≥ −1 and y5 > 0 hold, we obtain at −18−y4 ≤ y3. Moreover, reordering 5.3.1

once more, we arrive at
−4

3x3y5 ≤ 12− 2
3x3(y3 + y4).

Using positivity of x3(y3 + y4) and −1 ≤ 1
x3
< 0, we conclude y5 ≤ 9.

Setting 5.3.9. Let X := X(A,P,Σ) ⊆ Z be a Q-factorial Fano explicit intrinsic quadric
of dimension three and Picard number and complexity one, having at most canonical
singularities with n = 5 and m = 0. By applying admissible operations on P , we may
assume to be in the following situation:

P =


−1 −1 1 1 0
−1 −1 0 0 2
0 x2 x3 0 x5
0 0 y3 0 y5

 , x2 > 0,
0 < x5 ≤ |y5|.
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Moreover, by multiplying the last row with (−1), if necessary, we may assume, that we
have positive weights:

w01 = 2x2y3 − x3y5 + x5y3,

w02 = x3y5 − x5y3,

w11 = −x2y5,

w12 = 2x2y3 + x2y5,

w21 = x2y3.

Remark 5.3.10. Situation as in 5.3.9. As X has Picard number one, we obtain four
big cones with associated vertices of the anticanonical complex

σ1 = cone(v01, v11, v21),

σ2 = cone(v01, v12, v21),

σ3 = cone(v02, v11, v21),

σ4 = cone(v02, v12, v21),

v′σ1 = [0, 0, 1
3x5 + 2

3x3,
1
3y5 + 2

3y3],

v′σ2 = [0, 0, 1
3x5,

1
3y5],

v′σ3 = [0, 0, 1
3x5 + 2

3x3 + 2
3x2,

1
3y5 + 2

3y3],

v′σ4 = [0, 0, 1
3x5 + 2

3x2,
1
3y5].

In particular, forgetting about the first coordinates, the anticanonical complex of X
intersected with the lineality space is a trapezoid ∆ = conv(p1, p2, p3, p4), with

p1 = [1
3x5 + 2

3x3,
1
3y5 + 2

3y3],

p3 = [1
3x5 + 2

3x3 + 2
3x2,

1
3y5 + 2

3y3],

p2 = [1
3x5,

1
3y5],

p4 = [1
3x5 + 2

3x2,
1
3y5].

Remark 5.3.11. Situation as in 5.3.10. We investigate the polytope ∆. In a first step,
we determine the position of its vertices relative to the x- and y-axis. First note that
by assumption x2 and x5 are positive and by positivity of the weight w11 = −x2y5 we
obtain y5 < 0. In particular, we have (p2)1, (p4)1 > 0 and (p2)2, (p4)2 < 0. Moreover, as
X is Fano, we obtain 0 ∈ ∆◦ and thus (p1)1 < 0 and (p1)2 > 0 due to the positivity of
x2. We sketch the situation:

p1

p2

p3

p4

2
3y3

2
3x2
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Note that we can not determine the position of p3 with respect to the y-axis.

Proposition 5.3.12. Situation as in 5.3.9. Then we obtain the following estimates for
the entries of P :

0 < x2 ≤ 3, 2x2y3 + x5y3
y5

< x3 <
x5y3
y5

, 0 < x5 ≤ |y5|,

0 < y3 ≤
72

3(x2 + 1) , −2y3 < y5 < 0.

Proof. Note that by assumption x2 > 0 and 0 < x5 ≤ |y5| holds. Now, positivity of the
weights w21, w11 and w12 imply

y3 > 0, y5 < 0 and − 2y3 < y5.

Thus, using positivity of w01 and w02, we conclude

x3 >
2x2y3 + x5y3

y5
and x3 <

x5y3
y5

.

Now, due to the singularity type of X, the y = 0 slice of ∆ implies

|∆ ∩ {y = 0}| = 2
3x2 ≤ 2

and thus x2 ≤ 3 holds. We proceed by investigating the pyramid

∆′ := conv([0, 2, x5, y5], v′σ1 , . . . , v
′
σ4),

By construction ∆′ is contained in the anticanonical complex of X and by deleting the
first coordinate, we may regard ∆′ as a polytope inside Q3 having the origin as its
unique interior lattice point, due to the singularity type of X. We proceed by modifying
∆′ ⊆ Q3. By extending the edges starting in [2, x5, y5], we enlarge ∆′ to the lattice
polytope ∆′′ having the following vertices:

[2, x5, y5], [−1, x3, y3], [−1, 0, 0], [−1, x2 + x3, y3], [−1, x2, 0].

Note that by construction ∆′′ still has the origin as its unique interior lattice point.
Thus, due to [8, Thm. 2.2], its standard Q3-volume is bounded by 12 and we conclude

y3 ≤
72

3(x2 + 1) .

Proof of Theorem 5.1.1 (complexity one). Due to Remark 5.3.4 and Propositions 5.3.8
and 5.3.12 we only have finitely many possible Fano varieties X(A,P,Σ) to check. Com-
puting the anticanonical complex for all possible configurations the resulting canonical
Fano varieties are listed in Theorem 5.1.1 with Nos. 1 - 63, 65 - 68, 70 - 76 and 78.
Note that none of them is toric as their total coordinate spaces have a singularity at the
origin.
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5.4 Classification in the complexity two case

This section is dedicated to the proof of Theorem 5.1.2, meaning that we classify all
Q-factorial Fano intrinsic quadrics of dimension three and true complexity two having
at most canonical singularities. In particular, we obtain all varieties having Picard
number one and appear as Nos. 64, 69, 77 and 79 in Theorem 5.1.1, which completes
the classification list. As an application we prove Proposition 5.1.5. As before, we work
in the language of explicit general arrangement varieties.

Remark 5.4.1. Let X := X(A,P,Σ) ⊆ Z be a Q-factorial Fano intrinsic quadric of
dimension three with torus action of complexity two. Then the dimension of the total
coordinate space and the Picard number are given as

dim(X) = n+m− 1, %(X) = n+m− 4, 4 ≤ n ≤ 8, 0 ≤ m ≤ 2.

Remark 5.4.2. Let X := X(A,P,Σ) ⊆ Z be a Fano explicit general arrangement
variety with anticanonical complex A. Then every convex combination of vertices of
A that lie inside the tropical variety trop(X) ⊆ Qr+s is contained in A. In particular,
if X is of dimension three, has a torus action of complexity two and at most canonical
singularities, then for any such point v = (v1, . . . , vr+1) that lies inside the lineality space
of the tropical variety trop(X), we have −1 ≤ vr+1 ≤ 1.

Let X be a Mori dream space. In order to detect a maximal torus action on X we
will make use of the procedure of lifting automorphisms. Assume there is a torus action
T×X → X. Then due to [6, Thm. 4.2.3.2] there is a lifted action T× X̂ → X̂ with

t · (h · x̂) = h · (t · x̂) for all t ∈ T, h ∈ HX , x̂ ∈ X̂.

Thus T as well as the product T × HX act on X̂ and therefore on X̄ as X̂ ⊆ X̄ is of
codimension two. We will identify both groups with the corresponding subgroups of
translations inside the automorphism group Aut(X̄).
We will show that in our situation this action is diagonal in the following sense: Let
X ⊆ Kn be an affine variety endowed with an effective quasitorus action H ×X → X.
We say that H acts diagonally on X if there are characters χw1 , . . . , χwn ∈ X(H) such
that h·(x1, . . . , xn) = (χw1(h)x1, . . . , χ

wn(h)xn) holds for all h ∈ H and (x1, . . . , xn) ∈ X.
Note that this is equivalent to homogeneity of the coordinate functions Ti ∈ O(X), where
we endow O(X) with the grading corresponding to the action of H on X.

Lemma 5.4.3. Let X be a Mori dream space with torus action T × X → X and Cox
ring R(X) = K[T1, . . . , Tr]/〈g1, . . . , gs〉. If all homogeneous components R(X)wi with
wi = deg(Ti) are one-dimensional then T×HX ⊆ Aut(X̄) acts diagonally.

Proof. Consider the grading on R(X) defined by the action T × HX on X̄. Then the
KX -grading is a coarsening of this grading and thus, as the homogeneous components
R(X)wi are one-dimensional, they are homogeneous components in this refined grading
as well. Thus the assertion follows.
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Proof of Theorem 5.1.2. According to Proposition 5.2.2 we have %(X) ≤ 3. We first go
through the cases sorted by the Picard number and then prove that none of the varieties
in the list are isomorphic. Finally, we prove that they are of true complexity two by
determining the dimension of the maximal tori in their automorphism groups.

Case (I) (%(X) = 1): Due to Remark 5.4.1 we are left with the following configurations:

(a) n = 4 and m = 1

(b) n = 5 and m = 0

Case (I)(a): As in the case of Picard number one any X̄-face is an X-face, we obtain a
big cone σ = cone(v01, v11, v21, v31) ∈ Σ. After applying suitable row operations on the
matrix P , we may assume

P =


−2 2 0 0 0
−2 0 2 0 0
−2 0 0 2 0
x 1 1 1 −1

 , v′σ =
[
0, 0, 0, x+ 3

2

]
.

As X has at most canonical singularities, we conclude 0 < (x+3)/2 ≤ 1 and thus x = −1
as the columns of P are primitive. The resulting variety X(A,P,Σ) is canonical and
appears as No. 1 in our list.

Case (I)(b): After suitably renumbering we may assume n0 = 2 and with %(X) = 1 we
obtain the following two big cones in Σ:

σj := cone(v0j , v11, v21, v31), where 1 ≤ j ≤ 2.

Moreover, after applying suitable row operations, the matrix P and the vectors v′σ1 and
v′σ2 are of the following form:

P =


−1 −1 2 0 0
−1 −1 0 2 0
−1 −1 0 0 2
x y 1 1 1

 ,
v′σ1 =

[
0, 0, 0, 2x+3

3

]
,

v′σ2 =
[
0, 0, 0, 2y+3

3

]
,

where x < y holds. As X has at most canonical singularities, we conclude 0 < (2x +
3)/3 ≤ 1 and −1 ≤ (2y + 3)/3 < 0. This implies x ∈ {−1, 0} and y ∈ {−3,−2}. Com-
puting their anticanonical complexes shows that all of the possible varieties X(A,P,Σ)
are canonical. Note that for x = −1, y = −3 and x = 0, y = −2 the resulting rings
R(A,P ) are isomorphic. All in all this gives the varieties Nos. 2 to 4 in our list.

Case (II) (%(X) = 2): Due to Remark 5.4.1 we are in one of the following situations:

(a) n = 4 and m = 2
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(b) n = 5 and m = 1

(c) n = 6 and m = 0

Case (II)(a): After applying suitable row operations, we arrive at

P =


−2 2 0 0 0 0
−2 0 2 0 0 0
−2 0 0 2 0 0
x 1 1 1 −1 1

 .
We obtain a point

(0, 0, 0, x+ 3
4 ) = 1

4(v01 + v11 + v21 + v31) ∈ conv(v01, v11, v21, v31) ∩ |trop(X)|.

Remark 5.4.2 implies −1 ≤ 1/4(x + 3) ≤ 1 and thus −7 ≤ x ≤ 1. Assume x is even.
Then the first column of P is not primitive; a contradiction. For x ∈ {−7,−5,−1, 1},
calculating the anticanonical divisor class shows that the resulting varieties are not Fano.
Thus, the only possible case left is x = −3. In this situation, computing the anticanonical
complex shows that the resulting variety is a canonical Fano variety, which appears as
No. 5 in our list.

Case (II)(b): We may assume n0=2 and after applying suitable row operations we
arrive at

P =


−1 −1 2 0 0 0
−1 −1 0 2 0 0
−1 −1 0 0 2 0
x y 1 1 1 −1

 ,
where we may assume x ≤ y. Note that due to completeness of X, we have |trop(X)| ⊆
|Σ|. Therefore, we obtain a big cone σ containing [0, 0, 0, 1] and a vertex v′σ of A

σ = cone(v02, v11, v21, v31), v′σ = [0, 0, 0, 1 + 2
3y].

Due to canonicity of X we conclude 0 ≤ 1 + (2/3)y ≤ 1 and thus −1 ≤ y ≤ 0. Now
consider the point

[0, 0, 0, 2x+ 3
5 ] = 1

5(2v01 + v11 + v21 + v31) ∈ conv(v01, v11, v21, v31) ∩ |trop(X)|.

Using Remark 5.4.2 we obtain −1 ≤ 1/5(2x+ 3) ≤ 1 and thus −4 ≤ x ≤ 1. Computing
the anticanonical complex in these cases gives Nos. 6 to 8 in our list.

Case (II)(c): In this case X is a full intrinsic quadric and therefore Proposition 5.2.2
implies %(X) = 1, a contradiction to %(X) = 2.
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Case (III) (%(X) = 3): Due to Remark 5.4.1 and Lemma 5.2.1 (i) we may assume
2 = n0 > n1 = . . . = n3 = 1 and m = 2. After applying suitable row operations we
arrive at

P =


−1 −1 2 0 0 0 0
−1 −1 0 2 0 0 0
−1 −1 0 0 2 0 0
x y 1 1 1 −1 1


where we may assume x ≤ y. Consider the point

[0, 0, 0, 2x+ 3
5 ] = 1

5(2v01 + v11 + v21 + v31) ∈ conv(v01, v11, v21, v31) ∩ |trop(X)|.

Using Remark 5.4.2 we obtain −1 ≤ 1/5(2x + 3) ≤ 1 and thus −4 ≤ x ≤ 1. Replacing
v01 with v02 in the above calculation, we obtain −4 ≤ y ≤ 1 as well. Computing the
anticanonical complex in these cases gives No. 9 in our list.

We proceed by proving that the varieties defined by the data in our list are pairwise
non-isomorphic.

Considering the divisor class groups, the only possible combinations to compare are Nos.
2 and 3 and Nos. 6, 7 and 8. The Fano index of a Fano explicit general arrangement
variety X = X(A,P,Σ) is the largest integer q(X) such that −KX = q(X)w holds
with some w ∈ Cl(X). If X is isomorphic to another general arrangement variety X ′
then their Fano indices coincide. Denote by Xi the explicit general arrangement variety
defined by the i-th datum in our list. Then the varieties X2 and X3, X6 and X8 and X7
and X8 are not isomorphic due to the following table:

Xi X2 X3 X6 X7 X8
q(Xi) 3 6 1 1 2

Thus, we are left with comparing Nos. 6 and 7. The effective cone of an explicit general
arrangement variety X = X(A,P,Σ) is the cone

Eff(X) = cone(wij , wk, 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m).

If X is isomorphic to another general arrangement variety X ′ then there is a lattice
isomorphism mapping the extremal primitive ray generators of Eff(X) onto that of
Eff(X ′). Considering the varieties X6 and X7 their effective cones are Eff(X6) =
cone([1,−1], [0, 1]) and Eff(X7) = cone([−1, 2], [1, 0]). Thus the varieties are not iso-
morphic as Eff(X6) is a smooth cone whereas Eff(X7) is not.

We finish the proof by showing that the varieties in our list are of true complexity two.
We treat all varieties except the one encoded by the 2nd datum of our list at once. Let X
be any of these varieties and assume T×X → X is a maximal torus action on X. As all
the homogeneous components R(X)wi are one-dimensional Lemma 5.4.3 applies and we
conclude that in these cases the generators Ti resp. Sk are homogeneous with respect to
the grading defined via the (T×HX)-action on X̄. As the ideal defining X̄ is principle,
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the relation is homogeneous as well and thus T × HX acts as a sub-quasitorus of the
maximal quasitorus defined via the maximal diagonal grading, see [6, Constr. 3.2.4.2].
Modding out the HX -action yields that T is indeed one-dimensional.
Now, let X be the variety encoded by the 2nd datum in our list. Here, the homogeneous
componentsR(X)wi are one-dimensional for i ≥ 3. In particular, the variables T3, T4 and
T5 are homogeneous with respect to the (Zt ×KX)-grading defined via the (T ×HX)-
action on X̄. Considering the 2-dimensional graded component R(X)w1 = R(X)w2 ,
one concludes that there exists a (Zt ×KX)-homogeneous set of generators of the form
T1 + λT2, µT1 + T2, T3, T4 and T5 ∈ R(X), where λ, µ ∈ K. We obtain a graded
isomorphism between R(X) and

R := K[f1, f2, f3, f4, f5]/〈µf2
1 − (λµ+ 1)f1f2 + λf2

2 − (λµ− 1)2(T 2
3 + T 2

4 + T 2
5 )〉,

where the variables and the relation of the latter ring are (Zt × KX)-homogeneous.
We conclude that the (Zt ×KX)-grading on R is a coarsening of its maximal diagonal
grading. Modding out KX , we conclude t ≤ 1 and T is indeed one-dimensional.

Proof of Proposition 5.1.5. Denote by n(1) resp. n(2) the number of terms of g with
ni = 1 resp. ni = 2, where 0 ≤ i ≤ r. Then, as X is Q-factorial and of complexity
c = dim(X)− 1, the dimension and the Picard number of X are given as

dim(X) = c+ 1 = n(1) + n(2) − 1, %(X) = n+m− r − 1 = n(2) +m.

In particular, using Proposition 5.1.3 we conclude dim(X) = %(X)−m+n(1)−1 ≤ n(1)+2.
In case that X is of dimension two, terminality means smoothness and the assertion
follows due to the classification of smooth Del Pezzo surfaces, see [27, 62]. In case that
X is of dimension 3, Theorem 5.1.2 shows that there exist no terminal varieties. Assume
dim(X) ≥ 4. Then n(1) ≥ 2 holds and after reordering and applying admissible row
operations we may assume that P contains the following two columns:

v(r−1)1 = (0, . . . , 0, 2, 0, 1), vr1 = (0, . . . , 0, 2, 1).

As X is complete and c ≥ 2 holds we have cone(v(r−1)1, vr1) ∈ Σ and Remark 5.4.2
implies

(0, . . . , 0, 1, 1, 1) ∈ conv(v(r−1)1, vr1) ⊆ A.

In particular, there is a lattice point in A which is neither the origin nor a primitive ray
generator of Σ and therefore X can not be terminal.

5.5 Proof of Theorem 5.1.1

In this section we prove the remaining assertions stated in Theorem 5.1.1. We begin
by proving that all Q-factorial Fano intrinsic quadrics of dimension three and Picard
number one are T-varieties of complexity one or two. This proves that Sections 5.3
and 5.4 provide indeed the full classification list.
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Proposition 5.5.1. Let X = X(A,P,Σ) ⊆ Z be a Q-factorial Fano explicit intrinsic
quadric of dimension three and Picard number one. Then X is either of complexity one
or two.

Proof. We consider the Cox ring R(A,P ) of X. By assumption we have n+m = 5 for
the number of variables in R(A,P ). Thus, by renaming the variables, we may assume
that R(A,P ) = K[T1, . . . , T5]/〈g〉 holds, where g is a quadratic polynomial contained in
the following list:

(i) T 2
1 , T1T2 or T 2

1 + T 2
2 ,

(ii) T1T2 + T 2
3 or T1T2 + T3T4,

(iii) any quadratic polynomial with three or four terms,

(iv) T 2
1 + T 2

2 + T 2
3 + T 2

4 + T 2
5 .

If g is one of the polynomials in (i), then R(A,P ) is not integral; a contradiction.
Now assume g is one of the polynomials in (ii). Then the finest possible grading on
R(A,P ) leaving the variables T1, . . . , T5 and the relation g homogeneous turns the total
coordinate space of X into a toric variety. Thus X is toric, implying that its Cox ring
is a polynomial ring. This contradicts the fact that its total coordinate space has a
singularity at the origin. Finally, assume g = T 2

1 + T 2
2 + T 2

3 + T 2
4 + T 2

5 holds. Then we
obtain

P0 =


−2 2 0 0 0
−2 0 2 0 0
−2 0 0 2 0
−2 0 0 0 2

 .
Therefore in order to make the columns of P primitive, P has to be quadratic, contra-
dicting %(X) = 1. Thus the only case left is (iii) which proves the assertion.

Now we turn to the irredundancy of the classification list.

Remark 5.5.2. Let X = X(A,P,Σ) ⊆ Z be an n-dimensional explicit intrinsic quadric.
Then the following numbers are invariants of X:

(i) The anticanonical self-intersection number −KnX , which can be directly computed
via [6, Constr. 3.3.3.4].

(ii) The Fano index q(X), which is defined as the largest integer q(X), such that
−KX = q(X) · w holds with some w ∈ Cl(X).

(iii) The Picard index p(X), which is defined as the index of the Picard group inside
the divisor class group. Note, that in our situation, the Picard group is given as

Pic(X) =
⋂

γ0 � γ
X-face

Q(γ0 ∩ Zn+m) ⊆ Cl(X).
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(iv) The dimension of the automorphism group dim(Aut(X)).

Moreover, if X is isomorphic to another intrinsic quadric X ′ = X(A′, P ′,Σ′), then R(X)
and R(X ′) are isomorphic as graded rings. In this case, the following holds:

(i) We have dim(X sing) = dim(X ′ sing).

(ii) There is a bijection between the set of generator degrees ΩX and ΩX′ .

(iii) The sets Ωdim
X := {dim(R(X)w); w ∈ ΩX} and Ωdim

X′ coincide.

Proposition 5.5.3. The varieties defined by the data in Theorem 5.1.1 are pairwise
non-isomorphic.

Proof. We denote by Xi the Fano variety defined by the i-th datum in Theorem 5.1.1,
by Ri its Cox ring, by Xi its total coordinate space and by Ωi = {w1, . . . , wr} its set
of generator degrees. As the divisor class group, the Fano index and the anticanonical
self-intersection number presented in Theorem 5.1.1 are invariants, we only need to
compare those varietiesXi andXj , where all these data coincide. The next table presents
invariants of these varieties, where the cases to compare are divided via horizontal lines:

i p(Xi) dim(Aut(Xi)) dim(Xi
sing)

16 24 2 1
17 24 2 0

20 48 2 1
21 24 2 1

27 240 2 1
28 120 2 1

30 24 2 1
31 48 2 1

33 9 2 0
34 9 2 0

35 54 2 0
36 18 2 0

41 16 2 0
42 16 2 1
43 8 2 1

46 48 2 1
47 48 2 1

50 36 2 0
51 36 2 0
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52 36 2 1

55 64 2 1
56 64 2 1

62 8 2 2
63 8 2 1
64 8 1 0

67 48 2 2
68 48 2 1
69 48 1 0

75 72 2 2
76 72 2 1
77 72 1 0

There are only 4 cases left, that can not be distinguished via the table above. We treat
them in the following paragraphs:

X33 and X34. In this case the homogeneous component of R33 of degree (1, 0) ∈ Ω33
has dimension three. This is in contrast to to R34, where the maximal dimension of the
homogeneous components with respect to the generator degrees in Ω34 is two.

X46 and X47. In this situation, all homogeneous components of R46 with respect to
the weights in Ω46 are one-dimensional which is in contrast to the two-dimensional
homogeneous component of R47 of degree (2, 0) ∈ Ω47.

X50 and X51. Note, that due to Remark 5.5.2, we have a bijection Ω50 → Ω51. Now
|Ω50| = 5 which is in contrast to |Ω51| = 4.

X55 and X56. Assume there is a graded isomorphism R55 → R56. Then we have an
isomorphism Cl(X55) → Cl(X56) mapping Ω55 onto Ω56. We go through the possible
images of (1, 1̄) ∈ Ω55: Assume that (1, 1̄) is mapped on either (1, 1̄) or (1, 5̄). Then
(2, 2̄) ∈ Ω55 is mapped on (2, 2̄) which is not contained in Ω56; a contradiction. Now
assume (1, 1̄) is mapped on (1, 0̄) or (1, 2̄) then (2, 2̄) is mapped on either (2, 0̄) or
(2, 4̄) which are not contained in Ω56; a contradiction; Finally assume that (1, 1̄) is
mapped on (2, 6̄). Then (2, 2̄) is mapped on (4, 4̄) which is again not contained in Ω56;
a contradiction. This implies that there is no graded isomorphism R55 → R56 and thus
X55 and X56 can not be isomorphic.



CHAPTER

SIX

SPECIAL ARRANGEMENT VARIETIES

In this chapter we investigate the example class of special arrangement varieties, i.e.
arrangement varieties, where the collection of doubling divisors forms a hyperplane ar-
rangement in special position. In Section 6.1, we give explicit descriptions of their Cox
rings and investigate their realizations as explicit T-varieties. As it turns out, some
special arrangement varieties admit a torus action turning them into a general arrange-
ment variety. We refer to the others as honestly special arrangement varieties. As a
first result, we show in Theorem 6.3.4 that honestly special arrangement varieties of
Picard number at most two are never smooth. Proceeding with the singular case, we
prove that all arrangement varieties admit anticanonical complexes, see Theorem 6.5.1.
In Section 6.5, we obtain an explicit description of the anticanonical complex for special
arrangement varieties in case that the weakly tropical resolution is a toric ambient mod-
ification as defined in [6]. As an application we obtain classification results in the case of
three-dimensional canonical Fano honestly special arrangement varieties of complexity
two and divisor class group of rank at most two, see Theorem 6.6.2. The results of this
chapter are published in the joint work [50].

6.1 Arrangement varieties and their Cox rings

In Chapter 2 we have introduced the general arrangement varieties as an example class
for explicit T-varieties. In this section we extend the description to special arrangement
varieties, i.e. arrangement varieties having a hyperplane arrangement in special position
as their doubling divisors. In the first part of this section we recall and adapt the notions
from Chapter 2 to arbitrary arrangement varieties. In particular, we explicitly describe
their Cox rings and their realization as explicit T-varieties. Accompanying the reader,
we have the running example 6.1.1, 6.1.5, 6.1.8, 6.1.13, 6.1.16 and 6.1.21. The proofs of
the statements in this section are presented in the subsequent section.
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146 Chapter 6. Special arrangement varieties

Recall, that a projective hyperplane arrangement H0, . . . ,Hr in Pn is called in general
position, if for every choice 0 ≤ i1 < . . . < ik ≤ r, the intersection Hi1 ∩ . . . ∩Hik is of
codimension k and otherwise, it is called in special position.

Example 6.1.1. Consider the following collection of lines in P2:

H0 := V (T0), H1 := V (T1), H2 := V (T2)

H3 := V (T0 + T1), H4 := V (T0 + T2).

Then H0, . . . ,Hr is a projective hyperplane arrangement in special position.

Definition 6.1.2 (See Def. 2.1.1). A (general / special) arrangement variety is a variety
X with an effective torus action T × X → X having π : X 99K Pc as a maximal orbit
quotient and the critical values form a projective hyperplane arrangement in general
(special) position.

Remark 6.1.3. Every arrangement variety has a finitely generated Cox ring, due to [46,
Thm. 1.2].

Having a finitely generated Cox ring, we turn to the description of arrangement varieties
as explicit T-varieties as in Chapter 1. We work in a similar manner as done in the case
of general arrangement varieties and begin with the description of their Cox rings.

Construction 6.1.4. Fix integers r ≥ c > 0, n0, . . . , nr > 0 and m ≥ 0 and set
n := n0 + . . .+ nr. The input datum is a tuple (A,P0) as follows:

• A = (a0, . . . , ar) is a (c + 1) × (r + 1)-matrix of full rank with pairwise linearly
independent columns ai.

• P0 is a r×(n+m)-matrix build up from tuples li = (li1, . . . , lini) of positive integers

P0 =

 −l0 l1 0 . . . 0
... . . . ...

...
−l0 lr 0 . . . 0

 .
Write K[Tij , Sk] for the polynomial ring in the variables Tij , where i = 0, . . . , r, j =
1, . . . , ni, and Sk, where k = 1, . . . ,m. For every li we define a monomial

T lii := T li1i1 · · ·T
lini
ini

∈ K[Tij , Sk]

and to any v ∈ Kr+1 we assign the polynomial

gv := v0T
l0
0 + . . .+ vrT

lr
r ∈ K[Tij , Sk].

Then any tuple (A,P0) defines a K-algebra

K[Tij , Sk]/〈gv; v ∈ ker(A)〉.
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Now let eij ∈ Zn and ek ∈ Zm denote the canonical basis vectors and let

Q0 : Zn+m → K0 := Zn+m/im(P ∗0 )

be the projection onto the factor group by the row lattice of P0. This defines aK0-graded
K-algebra

R(A,P0) := K[Tij , Sk]/〈gv; v ∈ ker(A)〉,

deg(Tij) := Q0(eij), deg(Sk) := Q0(ek).

Example 6.1.5. Consider the projective hyperplane arrangement H0, . . . ,H4 from Ex-
ample 6.1.1. We store the coefficients of the defining linear forms as the columns of a
matrix A and set

A :=

 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 , P0 :=


−1 −1 2 0 0 0 0
−1 −1 0 2 0 0 0
−1 −1 0 0 2 0 0
−1 −1 0 0 0 2 0

 .
Using this as input data in Construction 6.1.4, we obtain the following Z3×(Z2)3 graded
K-algebra, where we store the degrees of the generators Tij and Sk as the columns of a
matrix Q0:

R(A,P0) = K[T01, T02, T11, T21, T31, T41, S1]/〈T01T02 + T 2
11 + T 2

31, T01T02 + T 2
21 + T 2

41〉,

Q0 =



−1 1 0 0 0 0 0
0 0 0 0 0 0 1
1 1 1 1 1 1 0
0̄ 0̄ 1̄ 1̄ 1̄ 0̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 1̄ 0̄ 1̄ 0̄ 0̄


A direct computation shows that the ring R(A,P0) is an integral, normal, complete
intersection ring of dimension 5 having R(A,P0)∗ = K∗.

Theorem 6.1.6. Let R(A,P0) be a K-algebra arising from Construction 6.1.4. Then
R(A,P0) is an integral, normal, complete intersection ring satisfying

dim(R(A,P0)) = n+m− r + c, R(A,P0)∗ = K∗.

The K0-grading is effective, pointed, factorial and of complexity c.

Construction 6.1.7. Let R(A,P0) be as in Construction 6.1.4. We build up a new
(r + s)× (n+m) matrix

P :=
[
P0
d

]
,

where we require the columns of P to be pairwise different and primitive and generate
Qr+s as a vectorspace. Let Q : Zn+m → Zn+m/im(P ∗) =: K be the canonical projection.
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Then we obtain a new graded ring R(A,P ) by defining a K-grading on the ring R(A,P0)
by setting

R(A,P ) := K[Tij , Sk]/〈gv; v ∈ ker(A)〉,
deg(Tij) := Q(eij), deg(Sk) := Q(ek).

Example 6.1.8. We continue Example 6.1.5 and choose

d :=
[
−2 −3 1 1 1 1 1

]
.

This defines a Z2 × (Z2)3 grading on the resulting algebra

R(A,P ) = K[T01, T02, T11, T21, T31, T41, S1]/〈T01T02 + T 2
11 + T 2

31, T01T02 + T 2
21 + T 2

41〉,

where we store the degrees of the variables as the columns of the following matrix Q:

Q =


−1 1 0 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

 .

Corollary 6.1.9. The K-grading on R(A,P ) is effective, factorial and of complexity c.
Moreover, if the columns of P generate Qr+s as a cone, then the K-grading is pointed.

We obtain the following proposition as a direct consequence of the results from Chapter 1.

Proposition 6.1.10. The Cox ring of an arrangement variety is isomorphic to a ring
R(A,P ) as in Construction 6.1.7.

Now we turn to the realization of arrangement varieties as explicit T-varieties using
the rings R(A,P ). Note, that the subsequent statements are adapted versions from
Chapter 2.
Recall that R(A,P ) is an irreducible, normal complete intersection ring of dimension
n+m−(r−c). In particular, it defines an affine variety V (g1, . . . , gr−c), where g1, . . . , gr−c
are generators for the ideal 〈gv, v ∈ Ker (A)〉 as in Construction 6.1.7.

Construction 6.1.11. Let R(A,P ) be a K-graded ring as in Construction 6.1.7 and
assume the variables Tij , Sk to be K-prime. Choose any fan Σ in Zr+s having precisely
the columns of P as its primitive ray generators and denote by Z the corresponding toric
variety. Then we obtain the following diagram

V (g1, . . . , gr−c) =: X̄ Z̄ := Kn+m

⊆ ⊆

X̄ ∩ Ẑ =: X̂ Ẑ

X Z

//H //H
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where H := Spec K[K] is the characteristic quasitorus of Z, acting on the characteristic
space Ẑ → Z and X := X(A,P,Σ) is the image of X̂ under the latter morphism. The
torus T acting on Z splits as a product T r × T s and the T := T s-factor leaves X ⊆ Z
invariant.

Remark 6.1.12. The varietiesX := X(A,P,Σ) as in Construction 6.1.11 are irreducible
and normal with dimension, invertible functions, divisor class group and Cox ring given
by

dim(X) = s+ c, Γ(X,O∗) = K∗, Cl(X) = K, R(X) = R(A,P ).

Moreover the T-action on X is effective and of complexity c.

Example 6.1.13. We continue Example 6.1.8. Note that the variables Tij and S1 of
R(A,P ) are K-prime. Denoting the columns of P with vij and v1 with respect to the
variables Tij and S1 we choose the fan Σ with maximal cones

cone(v02, v11, v21, v31, v41), cone(v01, v21, v41, v1),

cone(v01, v11, v31, v1), cone(v01, v02, v21, v41), cone(v01, v02, v11, v31),

cone(v31, v41, v1), cone(v21, v31, v1), cone(v11, v41, v1), cone(v11, v21, v1).

The resulting variety X(A,P,Σ) has dimension three, only constant invertible global
functions, divisor class group Cl(X) ∼= Z2 × (Z2)3 and Cox ring R(X) = R(A,P ).
Moreover, the T-action is of complexity two.

Construction 6.1.14. Let X := X(A,P,Σ) ⊆ Z be as in Construction 6.1.11. Then
X fits into the following diagram:

X Z ⊇ Z0

Pc Pr

where Z0 is the (open) union of the torus and all orbits of codimension one in Z, the
morphism Z0 → Pr is a toric morphism induced by the projection of tori T r+s → T r,
the downward rational maps are defined via this morphism and Pc is linearly embedded
into Pr via [x] 7→ [Atx].

Remark 6.1.15. The rational map X 99K Pc is a maximal orbit quotient for the T-
action of X, where the critical values form the hyperplane arrangement

H0, . . . ,Hr ⊆ Pc, Hi := {[x] ∈ Pc; 〈ai, x〉 = 0}.

In particular, any variety X(A,P,Σ) as in Construction 6.1.11 is an arrangement variety.
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Example 6.1.16. We continue Example 6.1.13. The variety X = X(A,P,Σ) is an
arrangement variety having X 99K P2 as a maximal orbit quotient. In this case P2 is
realized inside P4 as

P2 = V (T0 + T1 + T3, T0 + T2 + T4) ⊆ P4

and the critical values form the line arrangement in special position from Example 6.1.1:

H0 = V (T0), H1 = V (T1), H2 = V (T2)

H3 = V (T0 + T1), H4 = V (T0 + T2).

In particular X is an arrangement variety and as we will see later it is one of the three-
dimensional Fano canonical complexity two varieties in Theorem 6.6.2.

Definition 6.1.17. We call a variety X(A,P,Σ) ⊆ Z as in Construction 6.1.11 an
explicit arrangement variety.

Remark 6.1.18. Every arrangement variety is equivariantly isomorphic to an explicit
arrangement variety.

Let us recall the basic notions on tropical varieties. Let Z be a toric variety with acting
torus T . For a closed subvariety X ⊆ Z intersecting the torus non trivially consider the
vanishing ideal I(X∩T ) in the Laurent polynomial ring O(T ). For every f ∈ I(X∩T ) let
|Σ(f)| denote the support of the codimension one skeleton of the normal quasifan of its
Newton polytope, where a quasifan is a fan, where we allow the cones to be non-pointed.
Then the tropical variety trop(X) of X is defined as follows, see [61, Def. 3.2.1]:

trop(X) :=
⋂

f∈I(X∩T )
|Σ(f)| ⊆ Qdim(Z).

Definition 6.1.19. Let X(A,P,Σ) ⊆ Z be an explicit arrangement variety. We denote
the columns of P with vij and vk according to the variables Tij and Sk. A P -cone is a
cone σ ⊆ Qr+s such that its set of primitive ray generators is a subset of the columns of
P , i.e.

σ = cone(viji , vk; i ∈ I ⊆ {0, . . . , r}, ji ∈ Ji ⊆ {1, . . . , ni}, k ∈ K ⊆ {1, . . . ,m}).

We call a P -cone σ ⊆ Qr+s

(i) a leaf cone, if σ ⊆ |trop(X)| holds.

(ii) a big cone, if σ◦ ∩ ({0} ×Qs) 6= ∅ holds.

(iii) a special cone, if it is neither big nor leaf but σ◦ ∩ |trop(X)| 6= ∅ holds.

Applying [75, Lem. 2.2], we obtain the following remark.
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Remark 6.1.20. Let X(A,P,Σ) ⊆ Z be an explicit arrangement variety. Then the
cones in Σ are of leaf, special or big type.

Example 6.1.21. We continue Example 6.1.16 and investigate the fan Σ. To describe
the tropical variety of X denote by e1, . . . , e4 the canonical basis vectors of Q4 and set

e0 := −e1 − . . .− e4, e5 := e0 + e2 + e4, e6 := e0 + e1 + e3.

We define a fan ∆ with maximal cones cone(ei, ej), where (i, j) is one of the following
tuples:

(0, 5), (0, 6), (1, 2), (1, 4), (1, 6), (2, 3), (2, 5), (3, 4), (3, 6), (4, 5).

Then trop(X) = |∆×Q| holds. Checking the items in Definition 6.1.19 for the cones in
Σ, we obtain one big cone

cone(v02, v11, v21, v31, v41),
four special cones

cone(v01, v21, v41, v1), cone(v01, v11, v31, v1),

cone(v01, v02, v21, v41), cone(v01, v02, v11, v31),
and four leaf cones

cone(v31, v41, v1), cone(v21, v31, v1),
cone(v11, v41, v1), cone(v11, v21, v1).

6.2 Proofs to Section 6.1

This section is dedicated to the proofs of the statements in Section 6.1. In a first step
we investigate product structures on the rings R(A,P0). Then we turn to the proof of
Theorem 6.1.6.

Definition 6.2.1. Let R(A,P0) be a ring as in Construction 6.1.4.

(i) We call the matrix A indecomposable if for any subset I ⊆ {1, . . . , r + 1} we have
{0} 6= Lin(ai; i ∈ I) ∩ Lin(aj ; j /∈ I).

(ii) We call a ring R(A,P0) indecomposable if A is indecomposable and lijni > 1 holds
for all i.

Proposition 6.2.2. Every K-algebra R(A,P0) from Construction 6.1.4 is isomorphic
as a K-algebra (forgetting the K0-grading) to a product

t⊗
i=1

R(A(i), P
(i)
0 )⊗K[S1, . . . , Sm′ ], (6.2.1)

where the algebras R(A(i), P
(i)
0 ) are indecomposable with m(i) = 0 for all i = 1, . . . , t and

m′ ≥ m holds.
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Remark 6.2.3. Note that these algebras are in general not isomorphic as graded
algebras concerning their natural gradings: The K0-grading defined on the product
via the isomorphism is in general coarsening the grading defined via the product
K

(1)
0 × . . . ×K(t)

0 × Zm′ . We will investigate this fact in Chapter 7, where we consider
arrangement-product varieties.

Remark 6.2.4. The following list of admissible operations does not effect the isomorphy
type of a ring R(A,P0):

(i) any elementary row operation on A.

(ii) swap columns in A and accordingly columns in P0.

(iii) swap any column in P0 inside a block li.

In particular, without loss of generality we may always assume the matrix A to be in
reduced row echelon form A = (Ec+1, ac+1, . . . , ar) and the polynomials gi generating
Ker(A) to be of the following form:

gi := λ0,iT
l0
0 + . . .+ λc,iT

lc
c + λ(c+i),iT

l(c+i)
(c+i) , 1 ≤ i ≤ r − c. (6.2.2)

Note that we have gi = gvi for vi = (ac+1+i,−ei), where ei denotes the i-th canonical
basis vector of Kr−c.

We turn to the proof of Proposition 6.2.2. The following lemma is straightforward but
for the convenience of the reader we will prove it here:

Lemma 6.2.5. Let A = (a0, . . . , ar) be a matrix as in Construction 6.1.4. Then there
exists a unique decomposition of Kc+1 into vectorsubspaces V1 ⊕ . . . ⊕ Vt such that the
following holds:

(i) For each 0 ≤ i ≤ r there exists j(i) ∈ {1, . . . , t} with ai ∈ Vj(i).

(ii) If V ′1 ⊕ . . . ⊕ V ′s is any other decomposition fulfilling (i), then for every 1 ≤ i ≤ t
there exists 1 ≤ j ≤ s with Vi ⊆ V ′j .

Proof. Let V1 ⊕ · · · ⊕ Vt be any decomposition of Kc+1 fulfilling (i). We construct a
decomposition fulfilling (ii) by successively refining this given decomposition. For this let
V ′1⊕. . .⊕V ′s be any other decomposition fulfilling (i) and assume our given decomposition
does not fulfill (ii). Then there exists 1 ≤ i ≤ s such that Vi 6⊆ V ′j for all 1 ≤ j ≤ s.
Set Ai := {k; ak ∈ Vi}. Then for every k ∈ Ai there exists j(k) with ak ∈ V ′j(k). In
particular, we obtain a decomposition

Vi = Vi ∩ (
⊕
k∈Ai

V ′j(k)) =
⊕
k∈Ai

Vi ∩ V ′j(k),

and dim(Vi) > dim(Vi ∩ Vj(k)) holds for any k ∈ Ai. Iterating this step we end up with
a decomposition fulfilling (ii).
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Proposition 6.2.2 is a direct consequence of the following more technical Lemma.

Lemma 6.2.6. Let R(A,P0) be a ring as in Construction 6.1.4. Then the following
statements hold:

(i) Let V1⊕ V2 = Kc+1 be a decomposition fulfilling Assertion (i) of Lemma 6.2.5 and
assume dim(V1) = 1. Then R(A,P0) ∼= R(A′, P ′0) holds, for a tuple (A′, P ′0) with
rk(A′) < rk(A) and m′ > m.

(ii) Let V1⊕ V2 = Kc+1 be a decomposition fulfilling Assertion (i) of Lemma 6.2.5 and
assume dim(Vi) > 1 for i = 1, 2. Then we have

R(A,P0) ∼= R(A(1), P
(1)
0 )⊗R(A(2), P

(2)
0 ),

for suitably chosen data (A(i), P
(i)
0 ) with rk(A(1)) + rk(A(2)) = rk(A) holds.

Proof. Let V1 ⊕ V2 = Kc+1 be a decomposition fulfilling Assertion (i) of Lemma 6.2.5.
Then, by applying Remark 6.2.4 (ii) we may assume V1 = Lin(a0, . . . , at) and V2 =
Lin(at+1, . . . , ar). Furthermore, as elementary row operation do note effect the isomor-
phy type of R(A,P0), we may assume V1 = Lin(e1, . . . , es) and V2 = Lin(es+1, . . . , ec+1).

We prove (i). For this let dim(V1) = 1, i.e. we have t = 0 and s = 1. Then a0 = λe1
holds and all entries a1j with j ≥ 1 equal zero. We conclude R(A,P0) ∼= R(A′, P ′0), with
m′ = m+ n0, A′ is the matrix obtained by deleting the first row and the first column of
A and P ′0 is build up from the tuples l1, . . . , lr.

We turn to (ii). Assume we have dim(Vi) > 1 for i = 1, 2. Then A is a block matrix of
the form

A =
[
A(1) 0

0 A(2)

]

and we conclude R(A,P0) ∼= R(A(1), P
(1)
0 ) ⊗ R(A(2), P

(2)
0 ), where P (1)

0 is build up from
l0, . . . , lt, P (2)

0 is build up from lt+1, . . . , lr and m1,m2 are positive integers with m1 +
m2 = m.

We turn to the proof of Theorem 6.1.6. Let (A,P0) be as in Construction 6.1.4. Then
the defining relations gv of the ring R(A,P0) can be obtained in the following way: For
any v ∈ Ker (A) write

fv := v0T0 + . . . vrTr ∈ K[T0, . . . , Tr]

for the corresponding linear form. Then gv = fv(T l00 , . . . , T
lr
r ) holds. We will use this

observation to prove in Lemma 6.2.8 connectedness of the affine variety X := V (gv; v ∈
Ker (A)). Moreover, in Proposition 6.2.9 we deduce the dimension of X from that of
Y := V (fv; v ∈ Ker (A)).
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Remark 6.2.7. Consider the polynomial ring K[T0, . . . , Tr] endowed with an effective
pointed Z-grading deg(Ti) = wi ∈ Z>0 and let f ∈ K[T0, . . . , Tr] be any homogeneous
polynomial. Then the polynomial

g := f(T l00 , . . . , T
lr
r ) ∈ K[Tij , Sk]

is homogeneous with respect to the grading defined by:

deg(Tij) = n0 . . . nrl01 . . . lrnr
nilij

· wi ∈ Z>0. (6.2.3)

Lemma 6.2.8. In the situation of Remark 6.2.7 let f1, . . . , fs ∈ K[T0, . . . , Tr] be homo-
geneous polynomials and set gi := fi(T l00 , . . . , T

lr
r ) ∈ K[Tij , Sk]. Then the affine variety

X := V(g1, . . . , gs) is connected.

Proof. Consider the acting torus (K∗)n+m of Kn+m and the multiplicative one-parameter
subgroup

λ : K∗ → (K∗)n+m, t 7→ (tζ01 , . . . , tζrnr , t, . . . , t),
where ζij := deg(Tij) is as in (6.2.3). Then by construction the image λ(K∗) acts on X
and has 0 as an attractive fixed point. This gives the assertion.

Proposition 6.2.9. Let Y = V (f1, . . . , fs) ⊆ Kr+1 be irreducible of dimension r+ 1− s
and set

X := V (g1, . . . , gs) with gi := fi(T l00 , . . . , T
lr
r ) ∈ K[Tij , Sk].

Then X is pure of dimension n+m− s.

Proof. Let X = X1 ∪ . . . ∪Xt be the decomposition of X into irreducible components.
Note that we have dim(Xj) ≥ n + m − s for 1 ≤ j ≤ t, as X = V (g1, . . . , gs) holds.
Consider the surjective morphism

ϕ : Kn+m → Kr+1 (x01, . . . , xrnr , x1, . . . xm) 7→ (xl00 , . . . , xlrr ).

Then by construction of X the restriction ϕ|X : X → Y is again surjective and we
conclude that

ϕj := ϕ|Xj : Xj → ϕ(Xj) =: Yj ⊆ Y
is dominant for every irreducible component Xj . Applying [72, Thm 1.1], we obtain an
open subset U ⊆ Yj such that for all y ∈ U we have

dim(ϕ−1
j (y)) = dim(Xj)− dim(Yj) = dim(Xj)− dim(Y ) + k

with k ≥ 0. Note that the latter equality holds as Yj ⊆ Y is a closed subvariety. Now
for any y ∈ Kr+1 we have

ϕ−1(y) = V (T l00 − y0, . . . , T
lr
r − yr) ⊆ Kn+m

and thus dim(ϕ−1(y)) = n+m− (r + 1) holds. We conclude

dim(Xj)− dim(Y ) + k = dim(ϕ−1
j (y)) ≤ dim(ϕ−1(y)) = n+m− (r + 1)

and therefore dim(Xj) ≤ n+m− s+ k holds, which gives the assertion.
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Proof of Theorem 6.1.6. In order to prove this statement it suffices to consider indecom-
posable algebras R(A,P0). Let B be a basis for ker(A) and fix v ∈ B. Then the linear
forms

fv := v0T0 + . . .+ vrTr ∈ K[T0, . . . , Tr]

are Z-homogeneous with respect to the standard Z-grading on K[T0, . . . , Tr]. In partic-
ular, applying Lemma 6.2.8 we conclude that X := V(gv; v ∈ B) is connected.

We want to use Serre’s criterion to show that X is normal and I(X) = 〈g1, . . . , gr−c〉
holds. In particular, asX is connected this implies thatR(A,P0) is integral. AssumeA to
be in reduced row echelon form as in Remark 6.2.4 and set A′ := (a′ij)i,j := (ac+1, . . . , ar).
Recall that the relations g1, . . . , gr−c are of the form gv1 , . . . , gvr−c , where vi denotes the
i-th row of the following block-matrix:[

(A′)t −Er−c
]
.

Now, set δi := grad(T lii ) and J1 := (a′ji · δi)i,j . Then the Jacobian of g1, . . . , gr−c is of
the form

J =

 J1

−δc+1
. . .

−δr

 .
Now assume that J(x) is not of full rank. Then there exist at least two indices c+ 1 ≤
i1 < i2 ≤ r such that δik(x) = 0 holds. Moreover, as the columns of A′ are pairwise
linearly independent, we have δi3(x) = 0 for at least one more index 0 ≤ i3 ≤ c. In
particular, this implies that there exist 1 ≤ jk ≤ nik such that xi1,j1 = xi2,j2 = xi3,j3 = 0
holds. We conclude that any x with J(x) not of full rank is contained in one of the
finitely many affine subvarieties of X of the following form:

V(f̃1(T l00 , . . . , T
lr
r ), . . . , f̃r−c(T l00 , . . . , T

lr
r ), Ti1,j1 , Ti2,j2 , Ti3,j3),

where f̃i := fi(T̃0, . . . , T̃r) with T̃ik := 0 for k = 1, 2, 3 and T̃i := Ti else. We claim that
these subvarieties are of codimension at least 2 in X. By Proposition 6.2.9 it suffices to
show that Ỹ := V(f̃1, . . . , f̃r−c, Ti1 , Ti2 , Ti3) ⊆ Kr+1 is of codimension at least r − c+ 2.
For this note that

Y ′ := V(f̃i; i /∈ {i1 − c, i2 − c}) ∩V(Ti1 , Ti2 , Ti3) ⊆ Kr+1

is irreducible and of codimension r − c + 1. Consider the matrix B arising out of A′
by replacing its i3-th row with a zero row. Then by construction for k = 1, 2 we have
f̃ik−c = fv, where v = (b1,ik , . . . , bc+1,ik , 0, . . . , 0) ∈ Kr+1. In particular f̃ik−c ∈ I(Y ′) for
k ∈ {1, 2} if any only if f̃ik−c = 0. We conclude that Ỹ ⊆ Kr+1 is of codimension at
most r − c+ 1 if and only if f̃i1−c = f̃i2−c = 0 holds. This contradicts the fact that the
columns of A′ are pairwise linearly independent.
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In order to complete the proof we have to show that the K0-grading has the desired
properties. By construction, the K0-grading is effective. Moreover, using Remark 6.2.7
we obtain a one parameter subgroup of H0 := SpecK[K0] via

K∗ → H0, t 7→ (tζ01 , . . . , tζrnr , t, . . . , t),

where ζij = deg(Tij) is as in (6.2.3) with w0 = . . . = wr = 1. As ζij > 0 holds for
all 0 ≤ i ≤ r, and 1 ≤ j ≤ ni we conclude that the grading is pointed. To obtain
factoriality of the K0-grading, we localize R(A,P0) by the product over all generators
Tij , Sk, and observe that the degree zero part of the resulting ring is a polynomial ring.
Now applying [11, Thm. 1.1] completes the proof.

6.3 (No) Smooth special arrangement varieties of small
Picard number

In this section we prove that in contrast to the general arrangement case, see Chapter 3,
there are no smooth honestly special arrangement varieties of Picard number at most
two.

Definition 6.3.1. An honestly special arrangement variety is a special arrangement
variety X with honestly special arrangement Cox ring R(A,P ), i.e. we have lijni > 1 for
all i = 0, . . . , r and j = 1, . . . , ni and the graded ring R(A,P ) is not isomorphic to a Cox
ring R(A′, P ′) of a general arrangement variety.

Remark 6.3.2. A special arrangement variety is honestly special if and only if it does
not admit a torus action that turn it into a general arrangement variety.

Example 6.3.3. Consider the ring R(A,P ) defined by the following data

A :=

 1 0 0 1
0 1 0 1
0 0 1 0

 , P :=


−2 2 0 0
−2 0 2 0
−2 0 0 2
−1 1 1 1

 .
Then any varietyX(A,P,Σ) is a special arrangement variety, that is not honestly special:
Consider the matrix

A′ :=
[

1 0 1
0 1 1

]
.

Then the ring R(A,P ) is isomorphic as a graded ring to the ring R(A′, P ), which in turn
is the Cox ring of a complexity one T-variety.

Theorem 6.3.4. Let X be a projective honestly special arrangement variety of Picard
number at most two. Then X is singular.
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The rest of this section is dedicated to the proof of Theorem 6.3.4. We work in the
language of explicit T-varieties from Chapter 1.

Remark 6.3.5. Let X(A,P,Σ) be an honestly special arrangement variety. Then the
ideal of relations between the generators Tij , Sk of R(A,P ) is generated by at least two
relations gv.

Remark 6.3.6. Let X := X(A,P,Σ) be a projective honestly special arrangement
variety. After suitably renumbering we may assume that for the defining relations

gt = λt0T
l0
0 + . . .+ λtcT

lc
c + T

lt+c
t+c , where 1 ≤ t ≤ r − c (6.3.1)

of R(A,P ) there exists an index k ∈ {0, 1, . . . , c} such that λ1k = 0 and λ2k 6= 0 holds.
In particular the face

γ0 := cone(ek1, λtke(t+c)1; 2 ≤ t ≤ r − 2) 4 γ

is an X-face. Moreover the corresponding stratum in X is singular due to the number
of relations defining R(A,P ).

Remark 6.3.7. Let X := X(A,P,Σ) be a projective arrangement variety of Picard
number one. Then every X-face {0} 6= γ0 4 γ is an X-face.

Proof of Theorem 6.3.4 for %(X) = 1. Assume there is a smooth explicit honestly spe-
cial arrangement variety X := X(A,P,Σ) with %(X) = 1. Then, using Remark 6.3.6 we
obtain a X-face with singular stratum in X which is an X-face due to Remark 6.3.7.
This contradicts smoothness of X due to Proposition 1.4.5.

We consider the case of Picard number two. In a first step, we adapt techniques from [30,
42] to treat these varieties. We proceed with Lemma 6.3.10, where we obtain first
constraints on the defining data A,P and Σ. Then we go on proving Theorem 6.3.4 for
%(X) = 2.

Remark 6.3.8. Let X := X(A,P,Σ) be an explicit arrangement variety with divisor
class group K = Cl(X) of rank two. Then, inside the rational divisor class group
Cl(X)Q = Q2, the effective cone of X is of dimension two and decomposes as

Eff(X) = τ+ ∪ τX ∪ τ−,

where τX ⊆ Eff(X) is the ample cone, τ+, τ− are closed cones not intersecting τX and
τ+ ∩ τ− consists of the origin:

τXτ+

τ−

.
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Due to τX ⊆ Mov(X), each of the cones τ+ and τ− contains at least two of the rational
weights

wij := (xij , yij) := degQ(Tij), wk := (xk, yk) := degQ(Sk).

Moreover, for every X-face {0} 6= γ0 4 γ precisely one of the following inclusions holds:

Q(γ0) ⊆ τ+, τX ⊆ Q(γ0)◦, Q(γ0) ⊆ τ−.

The X-faces are precisely those X-faces γ0 � γ with τX ⊆ Q(γ0)◦.

Remark 6.3.9. In the situation of Remark 6.3.8 consider a positively oriented pair
w,w′ ∈ Q2. If, for instance, w ∈ τ− and w′ ∈ τ+ hold, then det(w,w′) is positive.
Moreover, if the variety X is smooth and w,w′ are the weights stemming from a two-
dimensional X-face γ0 4 γ, then we have det(w,w′) = 1 due to Proposition 1.4.5. In
this case, we can achieve

w = (1, 0), w′ = (0, 1)

by a suitable unimodular coordinate change on Z2 ⊆ Q2. Then w′′ = (x′′, 1) holds
whenever w,w′′ are the weights stemming from a two-dimensional X-face and, similary,
w′′ = (1, y′′) holds whenever w′′, w′ are these weights.

Recall, that an explicit arrangement variety X := X(A,P,Σ) is called quasismooth, if
for every X-face, the corresponding stratum in X̄ is smooth.

Lemma 6.3.10. Let X := X(A,P,Σ) ⊆ Z be a Q-factorial quasismooth projective
honestly special arrangement variety of Picard number two. Then the following assertions
hold:

(i) If m > 0 holds, then all weights wk lie either in τ+ or in τ−.

(ii) If ni ≥ 2 holds for at least one index 0 ≤ i ≤ r, then m = 0 holds.

(iii) ni ≤ 2 holds for all 0 ≤ i ≤ r.

Proof. We prove (i). Let m ≥ 2. As cone(ek) is an X-face for 1 ≤ k ≤ m, Remark 6.3.9
implies wk 6∈ τX due to Q-factoriality of X. So assume we have wk1 ∈ τ+ and wk2 ∈
τ−. Then cone(ek1 , ek2) is an X-face with singular stratum in X; a contradiction to
quasismoothness of X.

We prove (ii). Let m > 0. Then we may assume that wk ∈ τ+ holds for all 1 ≤ k ≤ m.
Assume there exists a weight wij ∈ τ− with ni ≥ 2. Then cone(e1, ei1) is an X-face with
singular X-stratum, which contradicts quasismoothness of X. Thus wij ∈ τ+ holds for
all i with ni ≥ 2. Due to homogeneity of the relations we conclude wij ∈ τ+ for all i with
ni = 1 and there are no weights left to lie in τ−; a contradiction due to Remark 6.3.9.

We prove (iii). Assume there exists an index i with ni ≥ 3. Then after suitably renum-
bering we may assume i = 0. We claim that all w0j lie either in τ+ or in τ−. Assume
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that this is not true and w01 ∈ τ+ and w02 ∈ τ− holds. Then the cone cone(e01, e02) is
an X-face with singular X-stratum as there are at least two relations defining R(A,P );
a contradiction to quasismoothness of X. Thus we may assume w0j ∈ τ+ for j = 1, 2, 3
and homogeneity of the relations implies that all weights wkj with nk = 1 or nk ≥ 3
lie in τ+. Using Part (ii) and Remark 6.3.9 we conclude that there exist at least two
indices i1, i2 with ni1 = ni2 = 2 and after suitably renumbering we may assume that
wi11, wi21 ∈ τ− holds. In particular, the X-face cone(ei11, e01) is an X-face. As we have
at least two relations defining R(A,P ), the corresponding stratum in X is singular; a
contradiction to quasismoothness of X.

Proof of Theorem 6.3.4 for %(X) = 2. We show that the existence of a smooth variety
X(A,P,Σ) as in the theorem leads to a contradiction in all possible cases.

Assume ni = 1 holds for all 0 ≤ i ≤ r. Then due to homogeneity of the relations we may
assume that all weights wi1 lie in τ+. Thus due to Remark 6.3.9 there exist at least two
weights w1, w2 ∈ τ−. Due to Remark 6.3.6 there exists an index k ∈ {0, 1, . . . , c} such
that cone(e1, ek1, λtke(t+c)1; 2 ≤ t ≤ r − 2) is an X-face with singular stratum in X; a
contradiction to smoothness of X.

Now, due to Lemma 6.3.10 we may assume that 2 = n0 ≥ . . . ≥ nr ≥ 1 and m = 0
holds. Due to homogeneity of the relations we may assume that all weights wi1 with
ni = 1 lie in τ+ and thus due to Remark 6.3.9 n0 = n1 = 2 holds with w01, w11 ∈ τ+ and
w02, w12 ∈ τ−. Considering the X-faces cone(e01, e12), cone(e02, e11), quasismoothness of
X implies l01 = l02 = l11 = l12 = 1. After suitably renumbering we may moreover assume
w11 ∈ cone(w01, w02). And thus applying Remark 6.3.9 to the X-face cone(e01, e12) turns
the degree matrix Q into the shape

Q =
[

1 x02 x11 0 . . .
0 y02 y11 1 . . .

]
,

where x11, y11 ≥ 0. Applying Remark 6.3.9 to the X-face cone(e11, e02) we obtain 1 =
det(w11, w02) = x11y02 − x02y11. Using homogeneity of the relations we obtain

y02 = l02y02 = l11y11 + l12 = y11 + 1, 1 + x02 = l01 + l02x02 = l11x11 = x11.

This implies x02 = −y11 and y02 = 2−x11, hence 1−y11 = x11 ≥ 0 and thus 0 ≤ y11 ≤ 1.
Assume y11 = 0. This turns the degree matrix Q into the shape

Q =
[

1 0 1 0 . . .
0 1 0 1 . . .

]
.

In particular, the degree of the relations is (1, 1). This implies ni 6= 1 for all 0 ≤ i ≤ r
due to the honesty of R(A,P ). Assume there exists an index k with wk1, wk2 ∈ τ+ then
cone(ek1, e02), cone(ek2, e02) are X-faces and applying Remark 6.3.9 gives wk1 = (1, yk1)
and wk2 = (1, yk2) in contradiction to homogeneity of the relations. Similar arguments
hold for wk1, wk2 ∈ τ−. Thus we may assume wi1 ∈ τ+ and wi2 ∈ τ− for all 0 ≤ i ≤ r.
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Due to Remark 6.3.6 there exists an index k ∈ {0, 1, . . . , c} such that cone(ek1, e(c+2)2)
is an X-face with singular stratum in X. This contradicts smoothness of X. Thus we
may assume y11 = 1 this gives w11 = (0, 1) = w12 which in turn is a contradiction to
w11 ∈ τ+ and w12 ∈ τ−.

6.4 Toric ambient resolutions of singularities

The purpose of this section is to prove that explicit arrangement varieties admit a toric
ambient resolution of singularities as introduced in Section 4.1.

Theorem 6.4.1. Let X := X(A,P,Σ) ⊆ Z be an explicit arrangement variety. Then
X ⊆ Z admits a toric ambient resolution of singularities.

In order to prove the above result, we make use of the weakly tropical resolution of an
explicit arrangement variety X = X(A,P,Σ) ⊆ Z. As the weakly tropical resolution of
X depends on the choice of a quasifan structure on trop(X), in the following remark we
will have a closer look at two possible choices.

Remark 6.4.2. Let X(A,P,Σ) ⊆ Z be an explicit arrangement variety. Then, due to
Construction 6.1.14, the matrix A gives rise to a linear embedding Pc ⊆ Pr. Moreover,
the projection P1 : Qr+s → Qr onto the first r coordinates maps trop(X) onto trop(Y )
and we obtain

|trop(X)| = |trop(Pc ∩ Tr)| ×Qs.

In the following we will construct a fan structure on trop(Y ) and will endow trop(X)
with the corresponding quasifan structure, i.e.

trop(X) =
{
P−1

1 (λ); λ ∈ trop(Y )
}
.

Let A be as above and denote by A the set of columns of A. The lattice of flats L(A) is
the partially ordered set of all subspaces of Kr+1 spanned by subsets of A. Note that all
maximal chains in L(A) have length c+1. For any S ∈ L(A) denote by I(S) ⊆ {0, . . . , r}
the indices with ai ∈ S and set eS :=

∑
i∈I(S) ei, where e0 := −

∑r
i=1 ei. For any maximal

chain S1 ⊆ S2 ⊆ . . . ⊆ Sc ⊆ Kr+1 we define a cone cone(eS1 , . . . , eSc) and denote with
∆(A) the fan having these cones as maximal ones. Then due to [61, Thm. 4.3.7] this
defines a fan structure on the tropical variety trop(Pc).

Note that the tropical variety of a variety Y ⊆ Tr defined by linear relations can be
endowed with a unique coarsest fan structure, the so called Bergman-fan, see [61, Chap.
4].

Lemma 6.4.3. Let X := X(A,P,Σ) ⊆ Z be an explicit arrangement variety. Then
X ⊆ Z admits a semi-locally toric weakly tropical resolution.
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Proof. Due to Theorem 4.3.6 it suffices to show that the embedding Pc ⊆ Pr defined
by the matrix A admits a semi-locally weakly tropical resolution. For our purposes we
will endow trop(Pc) with the fan structure ∆(A) defined in Remark 6.4.2. Denote the
corresponding fan of Pr with ∆. Then trop(Pc) u∆ = trop(Pc) holds. Let τ ∈ trop(Y )
be a maximal cone. Then τ ⊆ δ holds for a cone δ ∈ ∆ and after a coordinate change
we may assume δ = Qr

≥0. Denote by v1, . . . , vc the primitive generators of the rays of τ .
Then by definition of the fan structure on trop(Y ) and after suitably renumbering we
achieve

vi =
ki∑
j=1

ej , where 1 = k1 < k2 < . . . < kc.

We complement the set v1, . . . , vc to a lattice basis of Zr by successively adding canonical
basis vectors in the following way: Whenever ki+1 > ki + 1 we add eki+2, . . . , eki+1 .
Moreover, we add the vectors ekc+1, . . . er. This gives rise to a decomposition Zr =: N =
N(τ)⊕ Ñ as in Construction 4.1.2 and we obtain an isomorphism Zτ ∼= U(τ)× Tr−c ∼=
Kc ×Tr−c. On the torus this isomorphism is given by the homomorphism ϕB : Tr → Tr
defined by the matrix B whose columns are the above lattice basis.

Let I := 〈f1, . . . , fr−c〉 be the ideal corresponding to Tr∩Y . For any f ∈ I∩K[T1, . . . , Tr]
denote by f̃ the push-down of f with respect to ϕB, i.e., the unique (ϕB)∗(f) ∈
K[T1, . . . Tr] without monomial factors such that Tµϕ∗B((ϕB)∗(f)) = f for a µ ∈ Zr≥0.
Then by construction we have

Yτ ∼= Ỹτ := V(f̃ ; f ∈ I ∩K[T1, . . . , Tr]) ⊆ Kc × Tr−c ∼= Zτ ,

where the isomorphism on the left hand side is the restriction of the isomorphism on the
right hand side. In order to complete the proof we need to show that the restriction of
the projection onto the first c coordinates to Ỹτ is an isomorphism onto its image and the
latter is an open subset of Kc. We show this by proving that for any k > c there exists a
push-down f̃ of an equation f ∈ I of the form f̃ = h+ λkTk, where h ∈ K[T1, . . . , Tk−1]
and λk 6= 0.

Our proof is by induction. Let k = c + 1. Recall that the (c + 1)-th column of B is a
canonical basis vector ei for some 1 ≤ i ≤ r. We distinguish between the following two
cases:

Case 1: There exists a ray generator vj(i) with kj(i) > i. Let j(i) be minimal with this
property. By construction of A we have i = kj(i)−1+2. Moreover, due to the construction
of the fan structure on trop(Y ) the columns a1, . . . , ai of A are linearly dependant and
there exists a push-down f̃ = h+ λkTk as claimed.

Case 2: We have i = kc + 1. Then the columns a1, . . . , akc , ai, a0 are linearly dependant
as τ was chosen maximal. In particular there exists a push down f̃ = h+λ0 +λiTi with
λi 6= 0 and h ∈ K[T1, . . . , Tkc ].

Now assume we have proven the above for all c < k ≤ n. Consider the case k = n + 1.
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As above the (n + 1)-th column of B is a canonical basis vector ei for some 1 ≤ i ≤ r
and we follow the same lines as in the induction basis:

Case 1: There exists a ray generator vj(i) with kj(i) > i. Let j(i) be minimal with this
property, i.e. we have kj(i)−1 < i < kj(i) and there exists α ≥ 2 with i = kj(i)−1 + α.
We conclude that the columns a1, . . . , ai of A are linearly dependant and there exists a
push-down f̃ = h+ λkTk with h ∈ K[T1, . . . , Tk−1] as claimed.

Case 2: We have i > kc and the existence of a push-down f̃ follows with exactly the
same arguments as in the induction basis.

Proof of Theorem 6.4.1. Due to Lemma 6.4.3 the embedding X ⊆ Z admits a semi-
locally weakly tropical resolution. Therefore the assertion follows using [49, Prop. 2.6].

6.5 The anticanonical complex for arrangement varieties

In this section we investigate the anticanonical complex for arrangement varieties. As
a direct consequence of Theorem 6.4.1 and Lemma 6.4.3 we obtain the existence of
anticanonical complexes for arrangement varieties:

Theorem 6.5.1. Every Q-Gorenstein explicit arrangement variety X(A,P,Σ) ⊆ Z ad-
mit an anticanonical complex.

Note that for general arrangement varieties an explicit description of the anticanonical
complex is given in the Sections 4.5 and 4.6.

We consider the case, where we have an explicit description of canonical divisors via the
theory of Cox rings. We begin by constructing candidates for the Cox ring of the weakly
tropical resolution of an explicit arrangement variety X := X(A,P,Σ) ⊆ Z. We use the
concept of toric ambient modifications presented in [44]. Let trop(X) be endowed with
a fixed quasifan structure and consider the toric morphism ZΣ′ → ZΣ defined via the
subdivision Σ′ = trop(X) u Σ → Σ of fans. Denote by P and P ′ the matrices whose
columns are the primitive ray generators of Σ and Σ′. Then the corresponding maps
P : Zr → Zn and P ′ : Zr′ → Zn define homomorphisms of tori

Tr′ p′ // Tn Trpoo .

Let gi ∈ K[T1, . . . , Tr] be one of the defining polynomials of R(X) = R(A,P ). The
push-down of gi is the unique p∗(gi) ∈ K[T1, . . . , Tn] without monomial factors such that
Tµp∗(p∗(gi)) = gi holds for some Laurent monomial Tµ ∈ K[T±1

1 , . . . , T±r ]. The shift of
gi is the unique g′i ∈ K[T1, . . . , Tr′ ] without monomial factors satisfying p′∗(g′i) = p∗(gi).



6.5. The anticanonical complex for arrangement varieties 163

Definition 6.5.2. Let X(A,P,Σ) ⊆ Z be an explicit arrangement variety with Cox ring

R(X) = K[T%; % ∈ Σ(1)]/〈g1, . . . , gs〉.

We call the weakly tropical resolution X ′ → X arising from a subdivision Σutrop(X)→
Σ explicit if X ′ has a complete intersection Cox ring defined by the shifts g′i of gi:

R(X ′) = K[T%′ ; %′ ∈ Σ′(1)]/〈g′1, . . . , g′s〉.

From now on let trop(X) be endowed with any coarsening of the quasifan structure
defined in Remark 6.4.2. In this situation, if the weakly tropical resolution of X is semi-
locally toric, it suffices to compute the discrepancies along the divisors corresponding
to the rays of Σ′ to describe the whole anticanonical complex. This motivates the
subsequent study of the rays of Σ′. We work in the notation of Definition 6.1.19 and
denote by eij resp. ek the canonical basis vectors of Qn+m. We set

vij := P (eij), vk := P (ek).

Moreover for a fan Σ we denote by Σ(1) its set of rays.

Definition 6.5.3. Let X(A,P,Σ) ⊆ Z be an explicit arrangement variety and σ ⊆ Qr+s

be a P -cone of special or big type. We call σ elementary, if the following statements
hold:

(i) For all 0 ≤ i ≤ r there exists at most one index 1 ≤ ji ≤ ni such that viji is a
primitive ray generator of σ.

(ii) There is a ray % in σ u trop(X) with % ∩ σ◦ 6= ∅.

Construction 6.5.4. Let X(A,P,Σ) ⊆ Z be an explicit arrangement variety and let
σ ⊆ Qr+s be an elementary P -cone. Denote by I the set of indices i such that viji is a
primitive ray generator of σ and define

`σ,i :=
∏
k∈I lkjk
liji

for i ∈ I, vσ :=
∑
i∈I

`σ,iviji , %σ := Q≥0 · vσ.

Proposition 6.5.5. Let X := X(A,P,Σ) ⊆ Z be an explicit arrangement variety. Then
the set of rays of Σ u trop(X) is given as

(Σ u trop(X))(1) = Σ(1) ∪ {%σ; σ ∈ Σ is elementary}.

Using the above result and applying the methods developed in [49] we obtain the fol-
lowing description of the discrepancies along the divisors corresponding to the rays of
Σ′ which leads to a full description of the anticanonical complex.

Proposition 6.5.6. Let X := X(A,P,Σ) ⊆ Z be a Q-Gorenstein explicit arrangement
variety admitting a semi-locally toric explicit weakly tropical resolution Z ′ → Z and let
σ = cone(viji ; i ∈ I) ∈ Σ be an elementary cone. Then the following statements hold:
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(i) The discrepancy along the prime divisor of X ′ ⊆ Z ′ corresponding to %σ equals
c−1
σ `σ − 1, where

`σ :=
∑
i∈I

`σ,i − k ·
∏
i∈I

liji

and k is the number of the defining equations gi of the Cox ring R(A,P ) of X with
gi(x) = 0 for all x ∈ V(Tiji ; i ∈ I).

(ii) The ray %σ is not contained in the anticanonical complex A, if and only if `σ > 0
holds; in this case, %σ leaves A at v′σ = `−1

σ vσ.

The rest of this section is dedicated to the proofs of Propositions 6.5.5 and 6.5.6. In
the following let X(A,P,Σ) ⊆ Z be an explicit special arrangement variety with an
(c + 1) × (r + 1)-matrix A. Let P1 : Qr+s → Qr denote the projection onto the first r
coordinates and ∆ := ΣPr the fan corresponding to Pr. Note that in this situation P1
maps the rays of Σ onto the rays of ∆.

Lemma 6.5.7. Let X(A,P,Σ) ⊆ Z be an explicit arrangement variety with maximal
orbit quotient Pc ⊆ Pr as in Construction 6.1.14. Then any ray of Σu trop(X) is either
projected onto the origin or onto a ray of ∆ u trop(Pc).

Proof. Let % be any ray of Σ u trop(X). Then there exist cones σ ∈ Σ and τ ∈ trop(X)
such that % = σ ∩ τ . By construction of the quasifan structure on trop(X) we have
τ = P1(τ)×Qs with a cone P1(τ) ∈ trop(Y ). Therefore, we have

P1(%) = P1(σ ∩ τ) = P1(σ) ∩ P1(τ) = ∪δ∈D(δ ∩ P1(τ)),

where D is a subset of ∆ and the last equality follows as ∆ is complete. As P1(%) is of
dimension at most one, we conclude that there exists a δ ∈ D with P1(%) = δ ∩ P1(τ)
and the assertion follows.

Let B denote the matrix whose columns are the primitive ray generators of Pr. Then we
have Pc = X(A,B,∆) ⊆ Pr and we may use the notions of Definitions 6.1.19 and 6.5.3.

Lemma 6.5.8. Let σ ∈ Σ be any special cone. Then the following statements hold:

(i) If δ := P1(σ) is an elementary B-cone, then we have P1(%) = %δ for all % ∈
(σ u trop(X))(1) \ σ(1).

(ii) If σ is elementary and % is a ray in σu trop(X) with %∩σ◦ 6= ∅, then % = %σ holds.

Proof. We prove (i). Let % ∈ σ u trop(X) be any ray with % ∩ σ◦ 6= ∅. Then there exists
τ ∈ trop(X) such that % = σ ∩ τ holds. As σ is special we have % 6⊆ λlin. Therefore,
applying Lemma 6.5.7 yields

P1(σ ∩ τ) = P1(%) ∈ (∆′)(1).
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Using ∅ 6= % ∩ σ◦ = % \ {0} we conclude P1(σ)◦ ∩ P1(%) 6= ∅. As the quasifan structure
fixed on trop(Y ) coarsens the matroid fan structure defined in Remark 6.4.2 we obtain
that for every cone of δ ∈ ∆ there exists at most one ray %′ ∈ ∆′ such that %′ ∩ δ◦ 6= ∅
and this ray equals %δ.

We prove (ii). As σ is elementary, the projection P1(σ) is an elementary B-cone. As
%∩σ◦ 6= ∅ we conclude % 6∈ σ(1). Therefore we may apply (i) and obtain P1(%) = %δ. Due
to the structure of σ there is exactly one ray in %δ × Qs and this ray equals %σ. This
completes the proof.

Lemma 6.5.9. Let σ ∈ Σ be any special or big cone. If %σ1 = %σ2 holds for any two
elementary P -cones σ1, σ2 ⊆ σ, then σ is elementary.

Proof. Assume σ is not elementary and denote by I the set of indices i such that there
exists at least one index 1 ≤ k ≤ ni with cone(vik) ∈ σ(1). Then there exists t ∈ I and
cones

τ = cone(viji ; i ∈ I) ⊆ σ0, τ ′ = cone(vij′i ; i ∈ I) ⊆ σ0

with jt 6= j′t and ji = j′i for all i 6= t. In particular we have τ 6= τ ′. Consider vτ and
vτ ′ and denote by cτ and cτ ′ the respective greatest common divisors of their entries.
Here, we may assume that c−1

τ ltjt ≥ c−1
τ ′ ltj′t holds. Moreover, as %τ = %τ ′ holds, we have

c−1
τ vτ = c−1

τ ′ vτ ′ . We conclude

c−1
τ ′ `τ ′,tvtj′t = c−1

τ `τ,kvtjt +
∑

i∈I,i 6=t
(c−1
τ `τ,i − c−1

τ ′ `τ ′,i)viji

and c−1
τ `τ,i ≥ c−1

τ ′ `τ ′,i holds for all 1 ≤ i ≤ r. This implies vtj′t ∈ τ . But as cone(vtj′t) is
an extremal ray of σ0 and τ ′ ⊆ σ0 holds, cone(vtj′t) is also an extremal ray of τ . This
contradicts the choice of j′t.

Proof of Proposition 6.5.6. We show "⊆". Let % be any ray of Σ u trop(X). Then there
exist σ ∈ Σ and λ ∈ trop(X) with σ ∩ λ = % and we will always assume σ and λ to be
minimal with this property. Note that if σ is a leaf cone, then we have σ ⊆ |trop(X)|
and due to the quasifan structure fixed on trop(X) we obtain σ = % for a ray % of Σ. So
assume σ is not a leaf cone. We distinguish between the following two cases:

Case 1: We have λ = λlin and with σ ∩ λ 6= ∅ we conclude that σ is big. In particular,
there exists a P -elementary cone σ1 ⊆ σ with

%σ1 = σ1 ∩ λlin = σ ∩ λlin = %.

As this equality holds for any P -elementary cone σ1 ⊆ σ we can apply Lemma 6.5.9 and
conclude that σ is P -elementary and % = %σ.

Case 2: We have λ 6= λlin. Due to minimality of σ and λ we have % 6⊆ λlin which implies
that σ is special and σ◦∩% = σ◦∩λ 6= ∅. In particular, either σ fulfills already condition
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(i) of Definition 6.5.3 and is elementary, or it contains a P -elementary cone σ1. In the
latter case we conclude

%σ1 = σ1 ∩ λ = σ ∩ λ = %.

As the above equality does not depend on the choice of σ1 ⊆ σ we conclude that σ is
elementary due to Lemma 6.5.9 and % = %σ.
We show "⊇". By construction the rays of Σ are supported on the tropical variety.
Therefore it is only left to show that any ray %σ lies in (Σu trop(X))(1). This follows by
definition of “elementary” and Lemma 6.5.8 (ii).

Due to Proposition 6.1.10 the Cox ring R(A,P ) of an explicit special arrangement variety
X := X(A,P,Σ) ⊆ Z is a complete intersection ring and therefore so is the Cox ring
of any explicit weakly tropical resolution X ′. Applying [6, Prop. 3.3.3.2] we obtain the
canonical class of X ′ via the following formula:

KX′ = −
∑

%∈(Σ′)(1)

deg(T%) +
r−c∑
i=1

deg(g′i) ∈ Cl(X) ∼= Zn+m/im((P ′)∗). (6.5.1)

In order to prove Proposition 6.5.6 we directly import the notion of a toric canonical
ϕ-family from Section 4.2.

Proof of Proposition 6.5.6. We prove (i). By assumption X ′ ⊆ Z ′ is semi-locally toric
and by Lemma 4.2.16 there exists a toric canonical ϕ-family. Therefore, explicitly con-
structing a pair (Z ′%σ , D%σ) as in Definition 4.2.8 we can calculate the discrepancy along
D%σ
X′ :

Consider the ray %σ ∈ Σ′ and let g′1, . . . , g′r be the defining relations of R(X ′). Then in
each g′t we can choose a monomial not divisible by the variable T%σ . Let us denote this
monomial with T ltt = T lt1t1 · · ·T

ltnt
tnt . Then we may choose

D%σ :=
r∑
t=1

nt∑
j=1

ltjD%′tj
−

∑
%′∈(Σ′)(1)

D%′ ,

where D%′tj
denotes the divisor corresponding to the variable Ttj in R(X ′). As X ′

has complete intersection Cox ring, the pullback D%σ |X′ is a canonical divisor on X ′.
Moreover, the push forward ϕ∗(D%σ) is Q-Cartier and by construction we haveD%σ = kZ′

on Z ′%σ . In particular, we have constructed a tuple (Z ′%σ , D%σ) as claimed. Now, let
u ∈ Qr+s be an element such that div(χu) = ϕ∗(D%σ) holds on Zσ. Then, due to
Remark 4.2.11, we have

discrX(D%σ
X′) = −1− 〈u, v%σ〉.

Therefore, using vσ = v%σ · cσ, we obtain the assertion with

〈u, vσ〉 = 〈u,
r∑
i=0

`σ,iviji〉 =
r∑
i=0

`σ,i〈u, viji〉 = −`σ.
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Here the last equality holds, as Diji occurs in ϕ∗(D%σ) if and only if there exists a term
T ν ·T lii with ν ∈ Zr+s≥0 which is not divisible by Tσ% in one of the shifts. Using (i) assertion
(ii) follows from the definition of the anticanonical complex.

6.6 Classification results for special arrangement varieties

In this section we present classification results for three-dimensional special arrangement
varieties of complexity two, having at most canonical singularities. In a first step we in-
vestigate the doubling divisors for an honestly special arrangement variety of complexity
two:

Proposition 6.6.1. Let X be a projective honestly special arrangement variety of com-
plexity two. Then the maximal orbit quotient X 99K P2 has at least five lines as its
critical values.

We consider the simplest honestly special arrangement varieties, which have five lines in
P2 as their doubling divisors. In this situation we obtain classification results for three-
dimensional Q-Gorenstein Fano honestly special arrangement varieties X of complexity
two, having a divisor class group of rank at most two, at most canonical singularities and
finite isotropy order at most two. Here, the latter means that there is an open subset
U ⊆ X with complement X \U of codimension at least two, such that the isotropy group
Tx is either infinite or of order at most k for all x ∈ U .

Theorem 6.6.2. Every three-dimensional Fano honestly special arrangement variety
of complexity two, having a divisor class group of rank at most two, at most canonical
singularities, five critical lines as the critical values of the maximal orbit quotient and
finite isotropy order at most two is isomorphic to one of the following Fano varieties X,
specified by its Cl(X)-graded Cox ring R(X), its matrix Q = [w1, . . . , wr] of generator
degrees and its anticanonical class −KX ∈ Ample(X).

No. R(X) Cl(X) Q = [w1, . . . , wr] −KX

1
K[T1, T2, T3, T4, T5, S1]〈
T2

1 + T2
2 + T2

3 + T2
4 ,

T2
2 + aT2

3 + T2
5

〉
a 6= 0, 1

Z× (Z2)4

 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 1̄ 1̄ 0̄

  2
0̄
0̄
0̄
0̄


2

K[T1, T2, T3, T4, T5, S1]〈
T2

1 + T2
2 + T2

4 ,
T2

1 + T2
3 + T2

5

〉 Z× (Z2)4

 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 1̄ 1̄ 0̄

  2
0̄
0̄
0̄
0̄


3

K[T1, T2, T3, T4, T5, T6]〈
T1T2 + T2

3 + T2
4 + T2

5 ,
T2

3 + aT2
4 + T2

6

〉
a 6= 0, 1

Z× (Z2)2 × Z4

[
1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 3̄ 2̄ 0̄ 0̄ 0̄

] [
2
0̄
0̄
2̄

]

4
K[T1, T2, T3, T4, T5, T6]〈

T1T2 + T2
3 + T2

5 ,
T1T2 + T2

4 + T2
6

〉 Z× (Z2)2 × Z4

[
1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
3̄ 1̄ 2̄ 0̄ 0̄ 0̄

] [
2
0̄
0̄
2̄

]
5

K[T1, T2, T3, T4, T5, T6]〈
T2

1 + T2T3 + T2
5 ,

T2
1 + T2

4 + T2
6

〉 Z× (Z2)2 × Z4

[
1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
2̄ 1̄ 3̄ 0̄ 0̄ 0̄

] [
2
0̄
0̄
2̄

]
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6
K[T1, T2, T3, T4, T5, T6]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T2
6

〉
a 6= 0, 1

Z× (Z2)2 × Z4

[
1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄
2̄ 3̄ 1̄ 0̄ 0̄ 0̄

] [
2
0̄
0̄
2̄

]

7
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T2

3 + T2
4 + T5T6,

T2
3 + aT2

4 + T2
7

〉
a 6= 0, 1

Z2 × (Z2)2
[

1 −1 0 0 −1 1 0
2 0 1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]

8
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T2

3 + T2
4 + T5T6,

T2
3 + aT2

4 + T2
7

〉
a 6= 0, 1

Z2 × (Z2)2
[

2 −2 0 0 −1 1 0
1 1 1 1 1 1 1
0̄ 0̄ 1̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 0̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]

9
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T4T5 + T2
6 ,

T2T3 + aT4T5 + T2
7

a 6= 0, 1

〉
Z2 × (Z2)2

[
0 −1 1 1 −1 0 0
1 1 1 2 0 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

10
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T4T5 + T2
6 ,

T2T3 + aT4T5 + T2
7

a 6= 0, 1

〉
Z2 × (Z2)2

[
0 2 −2 −1 1 0 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 1̄ 1̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

11
K[T1, T2, T3, T4, T5, T6, T7]〈

T1T2 + T3T4 + T2
6 ,

T1T2 + T2
5 + T2

7

〉 Z2 × (Z2)2
[

1 −1 −1 1 0 0 0
2 0 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
12

K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

6 ,
T1T2 + T2

5 + T2
7

〉 Z2 × (Z2)2
[
−1 1 0 0 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
13

K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

6 ,
T1T2 + T2

5 + T2
7

〉 Z2 × (Z2)2
[
−1 1 0 0 0 0 0
2 2 1 3 2 2 2
0̄ 0̄ 1̄ 1̄ 1̄ 1̄ 0̄
0̄ 0̄ 0̄ 0̄ 1̄ 0̄ 1̄

] [
0
6
0̄
1̄

]
14

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
6 ,

T2
1 + T4T5 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 1 −1 0 0
1 1 1 2 0 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
15

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
6 ,

T2
1 + T4T5 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 0 0 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
16

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
6 ,

T2
1 + T4T5 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 2 −2 0 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
17

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
6 ,

T2
1 + T4T5 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 0 0 0
2 2 2 1 3 2 2
1̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄
1̄ 0̄ 0̄ 0̄ 0̄ 0̄ 1̄

] [
0
6
0̄
1̄

]

18
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

5 + T2
6 ,

T3T4 + aT2
5 + T2

7

〉
a 6= 0, 1

Z2 × (Z2)2
[

1 −1 −1 1 0 0 0
2 0 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

19
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2
2 + T2

3 + T4T5,
T2

2 + aT2
3 + T6T7

〉
a 6= 0, 1

Z2 × (Z2)2
[

0 0 0 1 −1 −1 1
1 1 1 2 0 1 1
1̄ 1̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 1̄ 1̄ 0̄ 0̄

] [
0
3
0̄
1̄

]

20
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

5 + T2
6 ,

T3T4 + aT2
5 + T2

7

〉
a 6= 0, 1

Z2 × (Z2)2
[

2 −2 −1 1 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

21
K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

5 + T2
6 ,

T3T4 + aT2
5 + T2

7

〉
a 6= 0, 1

Z2 × (Z2)2
[
−1 1 2 −2 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

22
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2
2 + T2

3 + T4T5,
T2

2 + aT2
3 + T6T7

〉
a 6= 0, 1

Z2 × (Z2)2
[

1 1 1 1 1 1 1
0 0 0 −2 2 1 −1
1̄ 1̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 1̄ 1̄ 0̄ 0̄

] [
3
0
0̄
1̄

]

23
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2
2 + T2

3 + T4T5,
T2

2 + aT2
3 + T6T7

〉
a 6= 0, 1

Z2 × (Z2)2
[

1 1 1 1 1 1 1
0 0 0 1 −1 −2 2
1̄ 1̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 0̄ 0̄ 1̄ 1̄

] [
3
0
0̄
1̄

]
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24
K[T1, T2, T3, T4, T5, T6, T7]〈

T1T2 + T3T4 + T2
6 ,

T1T2 + T2
5 + T2

7

〉 Z2 × (Z2)2
[
−1 1 2 −2 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
0̄ 0̄ 1̄ 1̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
25

K[T1, T2, T3, T4, T5, T6, T7]〈
T1T2 + T3T4 + T2

6 ,
T1T2 + T2

5 + T2
7

〉 Z2 × (Z2)2
[

2 −2 −1 1 0 0 0
1 1 1 1 1 1 1
0̄ 0̄ 0̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 1̄ 0̄

] [
0
3
0̄
1̄

]

26
K[T1, T2, T3, T4, T5, T6, S1]〈
T1T2 + T2

3 + T2
4 + T2

5 ,
T2

3 + aT2
4 + T2

6

〉
a 6= 0, 1

Z2 × (Z2)3

 −1 1 0 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

  1
3
1̄
1̄
1̄


27

K[T1, T2, T3, T4, T5, T6, S1]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T2
6

〉
a 6= 0, 1

Z2 × (Z2)3

 0 −1 1 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
0̄ 1̄ 1̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

  1
3
1̄
1̄
1̄


28

K[T1, T2, T3, T4, T5, T6, S1]〈
T1T2 + T2

3 + T2
5 ,

T1T2 + T2
4 + T2

6

〉 Z2 × (Z2)3

 −1 1 0 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
1̄ 1̄ 0̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

  1
3
1̄
1̄
1̄


29

K[T1, T2, T3, T4, T5, T6, S1]〈
T2

1 + T2T3 + T2
5 ,

T2
1 + T2

4 + T2
6

〉 Z2 × (Z2)3

 0 −1 1 0 0 0 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 1̄ 1̄ 0̄ 0̄
0̄ 1̄ 1̄ 0̄ 1̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

  1
3
1̄
1̄
1̄


30

K[T1, T2, T3, T4, T5, T6, S1]〈
T2

1 + T2
2 + T2

3 + T2
4 ,

T2
2 + aT2

3 + T5T6
a 6= 0, 1

〉
Z2 × (Z2)3

 0 0 0 0 −1 1 1
1 1 1 1 1 1 1
1̄ 1̄ 1̄ 0̄ 1̄ 1̄ 0̄
1̄ 1̄ 0̄ 0̄ 0̄ 0̄ 0̄
0̄ 1̄ 0̄ 0̄ 1̄ 1̄ 0̄

  1
3
1̄
0̄
1̄


31

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T6T7
a 6= 0, 1

〉
Z2 × (Z2)2

[
0 1 −1 0 0 −1 1
1 2 0 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 0̄ 0̄

] [
0
3
0̄
0̄

]

32
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T6T7
a 6= 0, 1

〉
Z2 × (Z2)2

[
1 1 1 1 1 1 1
0 −2 2 0 0 1 −1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

] [
3
0
0̄
1̄

]

33
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T6T7
a 6= 0, 1

〉
Z2 × (Z2)2

[
0 −1 1 0 0 2 −2
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
1̄ 0̄ 0̄ 0̄ 0̄ 1̄ 1̄

] [
0
3
0̄
1̄

]

34
K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T2
4 + T2

5 ,
T2T3 + aT2

4 + T6T7
a 6= 0, 1

〉
Z2 × (Z2)2

[
0 1 −1 0 0 −1 1
1 1 1 1 1 0 2
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
1̄ 1̄ 1̄ 0̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]

35
K[T1, T2, T3, T4, T5, T6, T7]〈

T2
1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 1 −1 0 −1 1 0
1 2 0 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]
36

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 0 0 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
37

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 2 −2 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄

] [
0
3
0̄
1̄

]
38

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 1 −1 0 −1 1 0
1 1 1 1 0 2 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]
39

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 2 −2 0 −1 1 0
1 1 1 1 1 1 1
1̄ 0̄ 0̄ 1̄ 0̄ 0̄ 0̄
0̄ 1̄ 1̄ 1̄ 0̄ 0̄ 0̄

] [
0
3
0̄
1̄

]
40

K[T1, T2, T3, T4, T5, T6, T7]〈
T2

1 + T2T3 + T5T6,
T2

1 + T2
4 + T2

7

〉 Z2 × (Z2)2
[

0 −1 1 0 0 0 0
2 2 2 2 1 3 2
1̄ 0̄ 0̄ 1̄ 1̄ 1̄ 0̄
1̄ 0̄ 0̄ 0̄ 0̄ 0̄ 1̄

] [
0
6
0̄
0̄

]

We turn to the proofs of the above results.
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Proof of Proposition 6.6.1. We realize X as an explicit T-variety X(A,P,Σ) ⊆ Z. For
one up to three lines, the Cox ring R(A,P ) is a polynomial ring and thus X is toric. In
case of four lines, X admits either a torus action of complexity one, having one hidden
free variable as in Example 6.3.3 or is a general arrangement variety. Thus the assertion
follows.

Remark 6.6.3. Let X := X(A,P,Σ) ⊆ Z be an explicit honestly special arrangement
variety of complexity two and assume the maximal orbit quotient X 99K P2 has a line
arrangement of five lines as its critical values. Then we obtain the following two types
of relations, as the remaining cases are either general or of complexity one:

(I) g1 = T l00 + T l11 + T l22 + T l33 , g2 = T l11 + aT l22 + T l44 ,

(II) g1 = T l00 + T l11 + T l33 , g2 = T l00 + T l22 + T l44 .

Now specializing to dimension three and divisor class group of rank at most two, we
obtain ni ≤ 2, ni = 2 for at most two indices i = 0, . . . , 4 and m ≤ 2. Assuming that
X is of finite isotropy order at most two, we obtain li = 2 for ni = 1 and li = (1, 1) for
ni = 2. In particular the polynomials g1, g2 are quadratic.

Note that in question of isomorphy, the distribution of the ni is important: Two rings
R(A,P ) and R(A′, P ′) of the same type (I) or (II), where the vector (n0, . . . , nr) is a
permutation of the vector (n′0, . . . , n′r) do not need to be isomorphic, see i.a. Nos. 7 and
9 in our list.

Remark 6.6.4. Let X(A,P,Σ) ⊆ Z be an explicit arrangement variety with divisor
class group of rank two and consider the weight matrix Q whose columns consist of the
free part of the weights wij := deg(Tij) resp. wk := deg(Tk). We write a Q-basis for the
kernel of P in the rows of a matrix Q̃ and define a vector −wX :

Q̃ = [w̃01, . . . , w̃rnr ], −wX :=
∑

w̃ij − (r − c)
∑
j

l0jw̃0j .

Then there is a Q-linear isomorphism mapping the columns of Q on the columns of Q̃
and thus the canonical class −Kx on −wX . This isomorphism is either orientation pre-
serving or reversing. Therefore, in question of the position of weights inside Eff(X) as in
Remark 6.3.8, it suffices to look at rational weight matrices Q̃ with rational anticanonical
vectors −wX .

Remark 6.6.5. The following list of admissible operations on P do not effect the iso-
morphy type of the rings R(A,P ):

(i) Swapping two columns inside a block vij1 , . . . , vijni .

(ii) Adding multiples of the upper r rows to one of the last s rows.

(iii) Any elementary row operations among the last s rows.
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(iv) Swapping two columns inside the last s rows lying under the 0-block of the matrix
P0.

Proof of Theorem 6.6.2. Let X := X(A,P,Σ) be an explicit special arrangement va-
riety as in Theorem 6.6.2. Then the Cox ring of X is given as a ring R(A,P ) as in
Remark 6.6.3. In a first step, we bound the entries of P to obtain a list of candi-
dates. Note that our computations are independent of the type of the relations and the
distribution of the ni.

Case rk (Cl(X)) = 1: Due to Remark 6.6.3 we are left with the following three cases:

(a) n = 5 and m = 1

(b) n = 6 and m = 0

Note that in case of a divisor class group of rank one, every X̄-face is an X-face.

Case (a): After applying suitable admissible operations on P we may assume that we
are in the following situation

P =


−2 2 0 0 0 0
−2 0 2 0 0 0
−2 0 0 2 0 0
−2 0 0 0 2 0
x 1 1 1 1 1

 .

Now the big cone σ gives rise to a vertex v′σ of the anticanonical complex

σ = cone(v01, v11, v21, v31, v4,1), v′σ = [0, 0, 0, 0, 4 + x].

Thus x = −5 holds due to the singularity type of X.

Case (b): After applying suitable admissible operations on P we may assume that we
are in the following situation

P =


−1 −1 2 0 0 0
−1 −1 0 2 0 0
−1 −1 0 0 2 0
−1 −1 0 0 0 2
x y 1 1 1 1

 ,

where we may assume x > y. Now, the two big cones

σ1 = cone(v01, v11, v21, v31, v41), σ2 = cone(v02, v12, v21, v31, v41)

give the vertices v′σ1 and v′σ2 of the anticanonical complex

v′σ1 = [0, 0, 0, 0, 2 + x], v′σ2 = [0, 0, 0, 0, 2 + y].
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We conclude x = −1 and y = −3 due to the singularity type of X.

Case rk (Cl(X)) = 2: Due to Remark 6.6.3 we are left with the following three cases:

(a) n = 5 and m = 2,

(b) n = 6 and m = 1,

(c) n = 7 and m = 0.

Case (a): After applying suitable admissible operations on P we may assume that we
are in the following situation

P =


−2 2 0 0 0 0 0
−2 0 2 0 0 0 0
−2 0 0 2 0 0 0
−2 0 0 0 2 0 0
x 1 1 1 1 1 −1

 .

Now, a rational weight matrix Q̃ and the corresponding rational vector −wX is given as

Q̃ =
[

1 1 1 1 1 −x− 4 0
0 0 0 0 0 1 1

]
, −wX =

[
−x− 3

2

]
.

In case −x − 4 ≤ 0 we have SAmple(X) = cone([1, 0], [0, 1]) and thus −x − 3 > 0
due to the Fano property of X. This implies −4 ≤ x < −3 and thus x = −4; a
contradiction to the primality of the columns of P . In case −x − 4 > 0, we have
SAmple(X) = cone([1, 0], [−x− 4, 1]). This implies

−wX =
[
−x− 3

2

]
= (x+ 5)

[
1
0

]
+ 2

[
−x− 4

1

]
with x + 5 > 0 due to the Fano property of X. Thus, we obtain −5 < x < −4; a
contradiction.

Case (b): After applying suitable admissible operations on P we may assume that we
are in the following situation

P =


−2 1 1 0 0 0 0
−2 0 0 2 0 0 0
−2 0 0 0 2 0 0
−2 0 0 0 0 2 0
1 x y 1 1 1 1

 ,

where we may assume x > y. Due to completeness of X, we obtain an elementary big
cone σ ∈ Σ defining a vertex v′σ of the anticanonical complex:

σ = cone(v01, v12, v21, v31, v41), v′σ = [0, 0, 0, 0, y + 2].
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Thus, we conclude y = −3 due to the singularity type of X. Now a rational weight
matrix Q̃ and the corresponding rational vector −wX are given as

Q̃ =
[

1 2 0 1 1 1 −2x− 4
1 0 2 1 1 1 2

]
, −wX =

[
−2x− 4

2

]
.

In particular, we obtain SAmple(X) ⊆ Q2
≥0. As X is Fano, this implies −2x − 2 ≥ 0

and thus x ≤ −1.

Case (c): After applying suitable admissible operations on P we may assume that we
are in the following situation

P =


−2 1 1 0 0 0 0
−2 0 0 1 1 0 0
−2 0 0 0 0 2 0
−2 0 0 0 0 0 2
1 x y z 0 1 1

 ,

where we may assume x > y and z > 0. Now, due to completeness of X we obtain two
elementary big cones

σ1 = cone(v01, v11, v21, v31, v41) and σ2 = cone(v01, v12, v22, v31, v41),

defining the following vertices of the anticanonical complex:

v′σ1 = [0, 0, 0, 0, 1 + (2/3)x+ (2/3)z], v′σ2 = [0, 0, 0, 0, 1 + (2/3)y].

Thus we conclude

−3 ≤ y ≤ −2 and 0 < 1 + (2/3)x+ (2/3)z ≤ 1

due to the singularity type of X. This implies −2 ≤ x < 0 and thus 0 < z ≤ 2.

Now, any of the configurations above gives a ring R(A,P ). A direct computation shows
that in all cases, the generators Tij are K-prime. To obtain our list, we computed the
anticanonical complexes for all configurations and checked for canonicity using the char-
acterization in Remark 4.2.5. After removing some redundancy, we obtain the varieties
in our list.





CHAPTER

SEVEN

OUTLOOK

Our approach to Mori dream spaces with torus action described in Chapter 1 opens the
possibility to systematically produce all T-varieties X with prescribed maximal orbit
quotient X 99K Y . In this thesis we treated so far the case where Y is a projective space
and the doubling divisors form a hyperplane arrangement. In order to investigate new
example classes, one can for instance modify this setting in the following two directions.
On the one hand one could stay with Y = Pc and consider doubling divisors of higher
degree. On the other hand, one could replace Pc with any other Mori dream space.
We take a glimpse in the second direction and consider in this last chapter Mori dream
spaces with torus action where the maximal orbit quotient decomposes as a product
of arrangements. Note that their Cox rings (without the grading) already appeared in
Section 6.1: As rings they are isomorphic to decomposable rings R(A,P0). We follow
the ideas of Section 6.2 by constructing Cox rings of these varieties and realize them
as explicit T-varieties. As an application we obtain in Proposition 7.1.7 a criterion
to determine the true complexity of a special arrangement variety. Finally, we give a
full classification in the smooth case for projective varieties up to Picard number two
and characterize the Fano property of these varieties. The results of this chapter are
published in the joint work [50].

7.1 Beyond arrangement varieties

Definition 7.1.1. An arrangement-product variety is a varietyX with an effective action
of an algebraic torus T×X → X having X 99K Pc1 × . . .× Pct with t > 1 as a maximal
orbit quotient and the doubling divisors are a collection of products

Pc1 × . . .Pci−1 ×D
(i)
k × Pci+1 × . . .× Pt,

where i = 1, . . . , t and the collection D(i)
k is a hyperplane arrangement in Pci .

175
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Remark 7.1.2. Arrangement-product varieties have finitely generated Cox rings due
to [46, Thm 1.2].

We go on by constructing Cox rings of arrangement-product varieties. We will make use
of the notion of (in-)decomposability of rings R(A,P ) as in Definition 6.2.1.

Construction 7.1.3. Consider indecomposable rings R(A(i), P
(i)
0 ) for i = 1, . . . , t from

Construction 6.1.4 with m′i = 0. Choose integers s > 0, m ≥ 0 and set

c := c(1) + . . .+ c(t), n := n(1) + . . .+ n(t) and r := r(1) + . . .+ r(t).

We build up a new (c+ t)× (r + t) resp. (r + s)× (n+m) matrices

A :=


A(1)

. . .
A(t)

 , P :=
[
P0
d

]
:=


P

(1)
0 0 . . . 0

. . . ...
...

P
(t)
0 0 . . . 0
d

 ,

where we require the columns of P to be pairwise different and primitive, generating Qr+s

as a vector space. Denote by e(i)
kl resp. e(i)

k the canonical basis vectors of Qn+m accord-
ingly to the decomposition n = n(1)+. . .+n(t) and let Q0 : Zn+m → Zn+m/im(P ∗0 ) := K0
be the projection onto the factor group. We define a K-algebra

Rprod(A,P0) :=
⊗

R(A(i), P
(i)
0 )

and endow it with a K0-grading by setting

deg(T (i)
kl ) := Q(e(i)

kl ), deg(Sk) := Q(ek).

Moreover, by considering the projection Q : Zn+m → Zn+m/im(P ∗) := K, we define
analogously a K-graded K-algebra Rprod(A,P ).

Remark 7.1.4. The K0-graded K-algebras Rprod(A,P0) are integral, normal, complete
intersection rings satisfying

dim(Rprod(A,P0)) = n+m− r + c, Rprod(A,P0)∗ = K∗

and the K0-grading is the finest possible grading on Rprod(A,P0), leaving the variables
and the relations homogeneous. Moreover, it is effective, pointed, factorial and of com-
plexity c. Considering the rings Rprod(A,P ), the K-grading is effective, factorial and of
complexity c and, if the columns of P generate Qr+s as a cone, it is pointed as well.

Remark 7.1.5. Note that any arrangement-product variety has a K-graded K-algebra
Rprod(A,P ) as in Construction 7.1.3 as its Cox ring.
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As done in Section 6.1, we use the rings Rprod(A,P ) to construct explicit T-varieties
following precisely the same steps as in Construction 6.1.11. We will denote the resulting
explicit T-varieties with Xprod(A,P,Σ) ⊆ Z.

Remark 7.1.6. Let X := Xprod(A,P,Σ) ⊆ Z be an explicit arrangement-product
variety. Then the subtorus action of Ts ⊆ Tr+s on Z leaves X invariant. This turns X
into a Ts-variety of complexity c = c1 + . . .+ ct.

Proposition 7.1.7. Let X := X(A,P,Σ) ⊆ Z be an explicit special arrangement variety
of complexity c with a decomposable ring R(A,P ). Then X is not of true complexity c.

Proof. If R(A,P ) is decomposable, thenX can be regained as an explicit T′-variety out of
its Cox ring Rprod(A,P ), where the T′-action is of lower complexity by Remark 7.1.6.

We now turn to our main results concerning smoothness of arrangement-product vari-
eties. We will without further explanation use the language of explicit T-varieties as
done in Chapter 1. In particular, the smoothness criteria from Proposition 1.4.5 can be
applied in our situation.

Proposition 7.1.8. Let X be a projective arrangement-product variety of Picard number
one. Then X is singular.

Proof. By definition the Cox ring Rprod(A,P ) is decomposable into t > 1 indecomposable
rings R(i). Therefore the cone

γ(1) := cone(e(1)
kl ; 0 ≤ k ≤ r(1), 1 ≤ l ≤ n(1)

k )

is an X-face whose corresponding X-stratum is singular. As X is of Picard number one,
any X-face is an X-face and we conclude that X is singular.

Theorem 7.1.9. Every smooth projective arrangement-product variety of Picard number
two is isomorphic to a variety X specified by its Cox ring

R(X) = K[T11, . . . , T1k1 , T21, . . . T2k2 ]/〈g1, g2〉

where

gi =
{
Ti1Ti2 + . . .+ Tiki−1Tiki , ki ≥ 6 even
Ti1Ti2 + . . .+ Tiki−2Tiki−1 + T 2

iki
, ki ≥ 5 odd,

the matrix Q of generator degrees and an ample class u ∈ Cl(X) = Z2

Q =
[

1 . . . 1 a1 a2 . . . ak2

0 . . . 0 1 1 . . . 1

]
, u = [a1 + 1, 1],

where we have ai ≥ ai+2 ≥ 0 and ai + ai+1 = 0 for i odd and ak2 = 0 if k2 is odd.
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Corollary 7.1.10. A smooth projective arrangement-product variety of Picard number
two as in Theorem 7.1.9 is Fano if and only if 0 ≤ a1 ≤ k1−2

k2−2 holds.

Corollary 7.1.11. If X is a smooth projective arrangement-product variety of Picard
number two, then the dimension of X is at least 6.

The rest of this section is dedicated to the proofs of the previous statements.

Lemma 7.1.12. Let X := Xprod(A,P,Σ) be a Q-factorial, quasismooth projective
arrangement-product variety of Picard number two with Cox ring Rprod(A,P ) decompos-
ing into t > 1 indecomposable rings R(i) := R(A(i), P (i)). Then the following statements
hold:

(i) Let w(i)
kl denote the weights corresponding to the variables of the ring R(i). Then

the w(i)
kl lie either all in τ− or in τ+.

(ii) For all 0 ≤ α ≤ r(i) where 1 ≤ i ≤ t the number of variables per term n
(i)
α is at

most 2.

(iii) We have m(i) = 0 for all 1 ≤ i ≤ t, and t = 2 holds.

(iv) If n(i)
α = 2 holds for one index 0 ≤ α ≤ r(i) then the corresponding ring R(i) has

exactly one defining relation.

(v) If n(1)
α = 2 = n

(2)
β holds for two indices 0 ≤ α ≤ r(1) and 0 ≤ β ≤ r(2) then we have

l
(1)
α1 = l

(1)
α2 = l

(2)
β1 = l

(2)
β2 = 1.

Proof. We prove (i). By construction the cone

γ(i) := cone(e(i)
kl ; 0 ≤ k ≤ r(i), 1 ≤ l ≤ n(i)

k )

is an X-face. As Rprod(A,P ) is decomposable with t > 1 the corresponding X-stratum
is singular. Now assume that not all weights w(i)

kl lie in the same cone τ+ or τ−. Then
γ(i) is X-relevant which contradicts quasismoothness.

We turn to (ii). Assume there exists a ring R(i) such that n(i)
α > 2 holds for one index

0 ≤ α ≤ r(i). Due to (i) we may assume that all weights w(i)
kl lie in τ−. As there have

to be at least two weights in τ+ there exists an index 1 ≤ j ≤ t such that all weights
w

(j)
kl lie in τ+. We obtain an X-face cone(e(i)

α1, γ
(j)) whose corresponding X-stratum is

singular as n(i)
α > 2 holds; a contradiction.

We prove (iii). Assume m(j) > 0 holds for at least one 1 ≤ j ≤ t. Suitably renum-
bering we may assume j = 1. Moreover, with the same arguments as in the proof of
Lemma 6.3.10 (i) we may assume that w(1)

k ∈ τ+ holds for all 1 ≤ k ≤ m(1). Due to
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Remark 6.3.9 there are at least two weights that lie in τ− and using (i) we conclude
that there exists 1 ≤ i ≤ t such that all weights w(i)

kl lie in τ−. This gives an X-face
cone(γ(i), e

(1)
k ) with singular stratum as t > 1 holds; a contradiction to quasismoothness.

Now assume t ≥ 3 holds. As each of τ+ and τ− have to contain at least two weights we
may assume that all weights w(1)

kl lie in τ− and all weights w(2)
kl lie in τ+. This gives an X-

face cone(γ(1), γ(2)) which is singular as t ≥ 3 holds. This contradicts quasismoothness.

We turn to (iv). By renumbering we may assume i = 1. Let n(1)
α = 2. Then

cone(e(1)
α1 , γ

(2)) is an X-face whose stratum is singular if there is another defining re-
lation in R(1). This proves the assertion.

We prove (v). Due to (iii) and Remark 6.3.9 we may assume that all weights w(1)
kl lie

in τ+ and all weights w(2)
kl lie in τ−. This implies that the cones cone(e(1)

αl , e
(2)
βl′ ) with

l, l′ ∈ {1, 2} are X-faces. As the corresponding X-strata have to be smooth, the assertion
follows.

Proof of Theorem 7.1.9. By construction, Rprod(A,P ) admits a decomposition into in-
decomposable rings R(i) := R(A(i), P (i)), where 1 ≤ i ≤ t and t > 1 holds. Applying
Lemma 7.1.12 (iii) we obtain t = 2 and m = 0. Moreover, due to Lemma 7.1.12 (i)
we may assume that all weights w(1)

kl of the variables of the ring R(1) lie in τ− and all
weights w(2)

kl of the variables of the ring R(2) lie in τ+. Since X is projective and m = 0
holds, Σ contains at least one big cone σ = P (γ∗) with an X-face γ. Recall that in
our situation an X-face is an X-face if it contains at least one ray corresponding to a
variable of R(1) and another one corresponding to a variable of R(2). We conclude that
there exists 0 ≤ α ≤ r(1) and 0 ≤ β ≤ r(2) with n(1)

α = 2 and n(2)
β = 2, where equality

holds due to Lemma 7.1.12 (ii). Moreover, Lemma 7.1.12 (v) implies

l
(1)
α1 = l

(1)
α2 = l

(2)
β1 = l

(2)
β2 = 1

for all 0 ≤ α ≤ r(1) and 0 ≤ β ≤ r(2) with n
(1)
α = 2 and n

(2)
β = 2. Applying

Lemma 7.1.12 (iv) we are left with one homogeneous defining relation g1 for R(1) and
another homogeneous defining relation g2 for R(2) whose weights deg(g1) = w(1) and
deg(g2) = w(2) lie in τ− and τ+ respectively. In particular, by a suitable unimodular
coordinate change on Z2 we can achieve w(1) = (w1, 0) and w(2) = (0, w2) with positive
integers w1, w2. We conclude that for any α and β with n(1)

α = 2 and n(2)
β = 2 as above

there exists integers a and b such that

w
(1)
α1 = (w1/2, b), w

(1)
α2 = (w1/2,−b), w

(2)
β1 = (a,w2/2). w

(2)
β1 = (−a,w2/2).

As the cones cone(e(1)
α1 , e

(2)
β1 ) and cone(e(1)

α2 , e
(2)
β1 ) are X-faces, we conclude

1
4w1w2 + ab. = det(w(1)

α1 , w
(2)
β1 ) = 1 = det(w(1)

α2 , w
(2)
β1 ) = 1

4w1w2 + ab. (7.1.1)
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This implies a = 0 or b = 0 and we may assume the latter holds. Moreover, we obtain
w1 = w2 = 2 and homogeneity of the relations implies that the relations g1 and g2 are
quadratic. As equation (7.1.1) holds for any choice of α and β we are left with the
following configuration of weights:

Q =
[

1 . . . 1 a1 a2 . . . ak2

0 . . . 0 1 1 . . . 1

]
.

We show that there is at most one term in each of g1 and g2 with only one variable.
Assume there is more than one. Then the divisor class group contains torsion, see
Proposition 2.2.3. This is a contradiction, as cone(e(1)

α1 , e
(2)
β1 ) is an X-face and therefore

the divisor class group is isomorphic to Z2. Now, the conditions on the ai follow due
to homogeneity of the relations and by suitably renumbering. In order to complete the
proof it is only left to show, that the varieties in this class are indeed smooth. This
follows directly by checking the criterion of Proposition 1.4.5.

Proof of Corollary 7.1.10. In order to prove the statement we consider the varieties of
Theorem 7.1.9 and check under which condition the anticanonical class lies in the ample
cone. As R(X) is a complete intersection ring the anticanonical class is given as −KX =
(k1 − 2, k2 − 2). Moreover, due to Lemma 7.1.12 we have τ− = cone((1, 0)) and τ+ =
cone((a1, 1), (−a1, 1)). We conclude that −KX lies in the ample cone if and only if
0 ≤ a1 ≤ k1−2

k2−2 holds.
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