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Abstract 
When running a simulated social-historic scenario, we often find situations in 
which all agents die, even though the simulated population appears to grow in 
the first steps. Is this a signal that something is wrong in the computer model or 
its implementation? We analyze this issue in our computer model of coopera-
tion and cultural diversity among hunter-gatherers in prehistory. We have cal-
culated more than 11,000 possible parameter combinations, taking into account 
the growth and decay of the population and the availability of resources in the 
environment. When the initial population is too scarce or too big for the local 
availability of resources, it begins to decrease until it disappears. This can be a 
very trivial test for the Malthus condition, but we have discovered that there are 
other important correlations affecting social and economic factors that should 
be explored.

Introduction

In this paper, we discuss how models may be used to 
make inferences about the most remote past, when 
humans depended for subsistence on hunting and 
gathering. Our hypothesis begins as an extremely ab-
stract model and adds degrees of behavioral sophisti-
cation, which influence the results. These influences 
are discussed in a step-wise fashion so that the reader 
can see how changes to the model’s assumption in-
fluence outcomes.

Although the models being used in this paper are 
agent-based computer simulations, we describe the 
interaction of variables in the models using equa-
tions. To understand how this is translated into an 
agent-based model, the reader is referred to com-
mented code published recently at the CoMSES Net-
work-OpenABM

https://www.comses.net/codebases/f16c9d1c-
8c90-42dd-9ef4-d2f5980ac8a8/releases/1.0.0/

Testing Different Scenarios

First Scenario: Simplest Foraging Behavior 

We have implemented a series of computer models 
in which “virtual” hunter-gatherers survive on what 
they randomly find around them, with no technol-
ogy for resource acquisition, with a catchment area 
constrained only by technical limitations in trans-
port and mobility, and without any mechanism of 
social interaction allowing for cooperation: there is 
no transfer of food, technology or labor force. This 
scenario is typical for foraging behavior, where it is 
assumed agents should find, capture and consume 
food containing the most calories while expending 
the least amount of time possible in so doing (Del 
Castillo and Barceló 2012; Smith 1983; Stephen and 
Krebs 1986; Winterhalder and Smith 1981). If such 
an assumption were true, we would say that hunt-
er-gatherer’s survival would depend just on the 
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availability of resources, and the nature of econom-
ic behavior would be merely adaptive. We take this 
simplified hypothesis, to explore some of their be-
havioral consequences.

In our virtual world, agents are not individuals 
but reproductive units (two adults and a number of 
descendants). The amount of labor available for hunt-
ing and gathering is based on the number of mem-
bers the reproductive unit has; the agent survival 
threshold adjusts to the number and age of its mem-
bers. The algorithm can be run with alternative sur-
vival threshold values but we offer here results for an 
assumed fixed average value of 2,000 calories per in-
dividual day (Cordain et al. 2000; Eaton, Eaton III, & 
Konner 1997; Hill et al. 1984; Leonard 2014; Pontzer 
2015; O’Dea 2016; O’Keefe et al. 2010; Simmen et al. 
2017; Ströhle et al. 2010; WHO 1991). One-time step 
(cycle or “tick”) in the simulation roughly represents 
what and where an agent is able to do and move in 
six months, therefore at the agent level the threshold 
value is defined as 730 kilocalories multiplied by the 
number of labor units in this household. 

Each time an agent (“family”) cannot obtain ener-
gy up to the summed survival threshold of the entire 
family, it loses one of its members (labor unit), and 
the survival threshold and labor capacity is redefined 
for the remaining members of the household. In the 
same way, every 30 ticks (what roughly equals the 
average time a child needs to arrive to reproductive 
maturity), a new agent is born, and will live until the 
total acquired energy is below the survival threshold. 
There is additionally a stochastic mortality mecha-
nism (death by accident or illness). When survival 
is possible and the number of members in an agent 
(expressed in labor units) is greater than a variable 
parameter, the current agent reproduces and gives 
birth to a new agent, who has with half the parent la-
bor, the same technology, and the same identity. Our 
model clearly distinguishes from the more complex 
demographic engines to generate agents in hunt-
er-gatherer scenarios (Olives et al. 2015; Olives et al. 
2018; Smaldino et al. 2013; White 2014; White 2016). 
The purpose of this exercise is to discover the glob-
al dynamics of the simulated agent population, in 
terms of an increasing or a decreasing trend, and not 
to reproduce an existing ethnographically described 
population. 

In the simulation, the environment is divided 
into equally sized patches. Agents move within an 

area defined by a variable radius, fixed at startup, and 
whose variations are explored building alternative 
scenarios. This radius depends on the transport tech-
nology available at each moment. Each patch of the 
virtual environment has a number of RESOURCES 
(ri), measured in kilocalories (kcal). The availabili-
ty and abundance of resources are assumed to vary 
normally through the landscape; therefore, we have 
used a Gaussian distribution of values. By modifying 
the mean, we explore different scenarios (a poor ver-
sus a rich world). The standard deviation of resourc-
es in the world has been fixed for all the simulations. 
The year cycle has two differentiated seasons, so that 
in the cold-dry season, the availability of resourc-
es is half of the availability of resources during the 
warm-humid season. Resources at each patch have 
also a DIFFICULTY level (hi). It is also a normally 
distributed parameter counting the difficultness of 
resource acquisition.

Social agents survive only if they have success 
in acquiring energy available in the environment 
by means of hunting and gathering. It is modeled 
in terms of a simple energy transfer from the envi-
ronment to the agent up to the limit defined by the 
survival threshold (Garfinkel et al. 2010; Iwamura et 
al. 2014; Young and Bettinger 1992). In our case, the 
energy each agent acquires is:

Equation 1

The agent takes from the environment what it can 
extract according to the amount of labor it has. This 
appears as the factor (fi(t)) in the equation, the ac-
quired proportion that the agent has effectively ob-
tained by means of its labor and technology, which 
is multiplied to the amount of resources existing in 
the actual patch (Rj) in kilocalories. Given that we 
assume in the simplest scenario there is no storing 
capacity, what the agent takes from the environment 
is just what it needs at current time - the survival 
threshold (Survi). 

A specificity of our model is that agents do not 
just extract resources from the environment, but 
there is also an additional factor of difficulty affecting 
the probability of survival (Equation 1). The transfer 
of energy from the patch to the agent is mediated by 
the difficulty of access, and how labor+technology 
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allows acquiring a percentage of energy. The propor-
tion of the total resources at the patch extracted by 
the agent is then:

Equation 2

In other words, agents get the quantity of kilocalories 
they need from the patch they are situated, provided 
they have enough labor to compensate for the diffi-
culty of resource acquisition. As already defined in 
case of Equation 1, fi(t) measures the proportion of 
existing resources at the actual location the agent can 
obtain. It depends on the quantity of labor available 
at this time step (li (t)), the efficiency of the technol-
ogy at hand (βi(t)), and the local difficulty (hi(t)) of 
obtaining the resources existing at that place, harder 
to obtain in the cold season than in the warm one. 
The maximum value for fi(t) is 1, indicating the 
amount of work available and the effectiveness that 
current technology (βi) contributes to compensate 
for the difficulty of accessing resources. When the 
value of fi(t) is less than 1 but greater than 0, we can 
deduce that the working capacity and technology 
available only allow obtaining a proportion of the 
available resources.

A rich world scenario would be that in which 
there are plenty of food and resources available, and 
the reduction of resources during the cold season 
has no effect on survival. We have modeled different 
hypothetical “rich world scenarios,” on the assump-
tion that the mean of resources in the environment 
at the worst season exceeds many times the survival 
threshold of virtual families. In our model resourc-
es diminish at odd cycles (“cold” season) and they 
recover the initial value at even cycles (“warm” sea-
son). 

We have implemented the model in such a way 
that at odd cycles, when resources do not regener-
ate naturally, the amount of resources available in 
each cell should be equal to the half of what existed 
at the warm season minus what the agent extract-
ed at the previous time-step. Therefore, a gathered 
patch will still be worse than an unharvested patch 
even after the shift to the cold season. At the next 
cycle, resources on each cell are re-initialized to the 
value they had at the last warm season. Obvious-
ly, in rich enough worlds, seasonality does not have 
any impact, but when the mean of resources in the 
cold season is below survival threshold, survival is 
at risk.

Initial, exploratory work suggests that “rich” en-
vironments appear when resources during the warm 
season are above 13 times the survival threshold.

It is not a surprise that in these conditions, most 

Figure 1. Results of the 
first scenario foraging 
behavior and with an 
in increasing resource 
irregularity fixed for a 
standard deviation = 
1000 kcal.
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agents live and population grows if there is enough 
food for everyone (Figure 1). Even in the case of sed-
entary agents (radius of movement fixed to 0), a pop-
ulation will survive or even increase, provided there 
are resources well ahead of the survival thresholds. 
This is the classic Malthus hypothesis. Our results are 
consistent with modern work on Malthusian growth 
computer simulations (Lanz et al. 2017; Peretto and 
Valente 2015).

Given that the amount of resources has been sim-
ulated in terms of a Gaussian variable with a fixed 
standard deviation, and agents have been initialized 
on random patches at start-up, it becomes easy to 
calculate the probability of finding enough resources 
for survival using normal probabilities. In the rich 
scenario with a mean of 20,000 kcal of energy in the 
environment at the warm season (and a uniform ir-
regularity estimated in terms of a sd = 1000), there 
will be 0 probability to find some area with a quantity 
of resources below the survival threshold. In “poorer 
scenarios”, the probability of being on a patch where 
survival is not possible will be higher (Figure 2). The 
prior probability of survival can be computed from 
the probability of availability of enough resources 
(Barceló et al. 2014). In the case of mobile agents, 
such prior probability changes every time the agent 
takes the decision to move.

Second Scenario: Mobility Decisions

We have introduced a mobility mechanism to in-
crease the probability of survival when an agent does 
not find enough resources locally: move-to-another-
place. This has been implemented as a mobility deci-
sion (Figure 3). Two options are open for selection:

1.	 Stay at place

2.	 Move to another place

At first, the agent evaluates its chances of surviving in 
the next season. The expected quantity of resources 
at next cycle is calculated by the agent on the basis of 
its knowledge of the current season and the nature of 
the next season, and on the amount of energy it has 
already taken from environment at the present cycle. 
Consequently, if

Equation 3

on the next time-step, the agent remains at the patch 
and does not move. Otherwise, it moves randomly 
to any other unoccupied patch in a fixed neighbor-

Figure 2. The results show the probabilities of finding enough resources for survival in three different scenarios of resource 
availability for an example with 4 labor units.
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hood, limited by available technology for transport 
and movement. This dynamic is very loosely based 
on the marginal value considerations from classical 
optimal foraging theory (Gurven et al. 2006; Kee-
ley 1988; Keene 1979; Konner and Eaton 2010), al-
though in a very simplified way.

Obviously, prehistoric hunter-gatherers nor hunt-
er-gatherer bands known in historical times hardly 
ever displaced randomly and hunted-gathered at any 
place within a constrained neighborhood (Grove 
2009; Perreault and Brantingham 2011). Displace-
ment among hunter-gatherers can take many differ-
ent and varied forms: 

•	 the displacement of all the population or 
a part of it, 

•	 wandering randomly through the lowest 
cost-surface until finding the richest place, or 

the place where enough resources are most ac-
cessible, or 

•	 going directly using the most direct and 
fastest way to the place where there is a mem-
ory of plenty of resources. 

Because the condition is to move to an empty patch, 
there is not any chance that two agents coincide at 
the same patch. In any case, we have added a small 
amount of random noise (a randomly selected 0.05 % 
of agents always move). We have considered that a 
small amount of system stochasticity is necessary to 
avoid the risk of local minima. Exhaustive testing of 
simulations with and without such amount of ran-
dom noise suggests the advantages of this approach.

If the next season is a warm one, even the pro-
portion of resources the agent has extracted in the 
previous season will be naturally reproduced, and 

Figure 3. Functional diagram of the model showing agents decisions process. 
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survival will be possible. In case the next time step is 
a cold season, local resources will reduce drastically, 
and moving to another place will be imperative. 

Exploratory work on different scenarios suggests 
that when the availability of resources in the cold 
season exceeds seven times the survival threshold, 
introducing mobility does not affect survival. Con-
sequently, population grows, both at the level of the 
number family members and the number of families 
in the territory, although the growth of families in-
creases at a much slower scale (Figure 4).

The reason for the differences in the rate of 
growth lies in the social nature of reproduction. 
Within a family, the number of members increases 
geometrically linearly related to the availability of re-
sources, whereas within a landscape, the number of 
families increase arithmetically depending on the in-
ternal growth of family members. The simulation re-
production engine generates a new family when the 
previous family’s labor units grow to greater than or 
equal to a specified size threshold of 10. Other values 
are possible, and their effect on hunter-gatherer sur-
vival should be explored (Lesthaeghe 1998; Rijpma 
and Carmichael 2016; Skinner 1997). We think that 
this threshold for family “leave and cleave” is fixed in 
most societies through social norms. In this paper, 
and to reduce the parametric space, we have fixed it 

for the examples in this paper, using average family 
sizes from ethnological work in Patagonia (Barceló et 
al. 2015a). We have just added 5 % of random noise 
to account for accidental variability.

To our surprise, when introducing small 
amounts of random mobility (up to a 2  % of the 
landscape) in most cases, even in relatively rich 
worlds, all agents die, when in the sedentary sce-
nario survival was guaranteed (Figure 5). The rate 
of decreasing population is logically related with 
the mean of resources, and it is independent of the 
radius of mobility.

Starvation and population extinction only hap-
pen when the prior probability of survival in the cold 
season is below 55 %, based on the number of patches 
where resources are above the survival threshold for 
a virtual family of 4 members in average. However, 
it is relevant that even at higher, prior probabilities; 
population diminishes, when in the same circum-
stances, sedentary populations grow. In any case, the 
key factor is still the availability, irregularity, and ac-
cessibility of resources. The amount of mobility has 
no impact on the rate of mortality. We have simu-
lated scenarios where agents are allowed to move in 
the immediate 2 % of the total environment looking 
for enough resources, in the immediate 12.5 %, 50%, 
and even at the entire territory. In the absence of any 

Figure 4. Survival 
comparative charts ex-
plains how introducing 
mobility in a rich world 
(when the availability 
of resources in the cold 
season exceeds seven 
times the survival thres-
hold), does not affect 
survival, and hence 
population grows.
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of 1000 kcal. This value should be interpreted as a 
very small irregularity in the richest world (12.5 % of 
variation) and increasing irregularity as the mean of 
resources is lower, arriving to 40 % of variation in the 
poorest scenario).

Third Scenario: Introducing Technology

The use of technology for increasing revenues is the 
main characteristic of human beings for at least the 
last 3.3 million years. We have studied the probable 
effects of technology –see parameter β in equation 
2- in medium rich worlds (where the amount of re-
sources in the environment at the worst season ex-
ceeds two times what a family of 4 members needs 
for survival). We explore technology effect as an ex-
ponent rather than a multiplied factor because of its 
implicit non-linearity compared with the influence 
of the labor force (Hekkert et al. 2007; Kremer 1993; 
Ruttan 1996; Solé et al. 2013).

In medium rich scenarios, the effects of technol-
ogy on population growth of sedentary agents are 
small but relevant (Figure 6). Much more evident are 
its effects on mobile populations. If survival is at risk 
when opting for mobility even in a medium rich sce-
nario, technology multiplies the effects of labor on 
the accessibility of resources and the probabilities for 
survival, and it reverts population decrease.

other factor, mobility in itself cannot increase the 
probability of survival.

In our results we see that when resources dimin-
ish, families decrease their number of members, and 
hence the amount of labor available to compensate 
for the local difficulty of accessing existing resources. 
If the simulation started with families of four mem-
bers (where the number of members is a Poisson dis-
tributed parameter with small values of lambda, that 
is, with very small variability), the mean number of 
labor units per family rapidly converges to two. In 
such conditions, although the survival threshold also 
diminishes, the probability of acquiring enough re-
sources is affected by the local difficulty.

Mobility increases stochasticity in all simulated 
scenarios. That is, at each run of the same scenar-
io (with the same values and the same parameters 
at start-up), the evolution of the population differs. 
This is a consequence of the increasing irregularity 
in agents’ revenues. The mean energy acquired by la-
bor unit is fairly constant in all simulated scenarios, 
but when adding mobility, its standard deviation also 
increases, varying enormously from one cycle to the 
next. That means that although most agents behave in 
the same way trying to extract the maximum amount 
of energy they can find locally; the local availability 
varies. We have fixed such an irregularity assuming 
a Gaussian distribution with a standard distribution 

Figure 5. Comparative 
charts showing the va-
riation in the conditions 
of survival introducing 
small amounts of  
mobility.
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cisions based on its ambient circumstance, and the 
cooperation may emerge through local interactions 
among the robots, which is beneficial to the task 
(Cao et al. 2006).

In the simulation, agent i receives cooperation in 
form of labor (additional labor units) from agents 
that have labor in excess for their own survival, only 
in the case it is unable to reach its individual surviv-
al threshold on its own, and there is an agent with 
an excess of energy in the vicinity. If the amount of 
energy and the level of productivity is enough, the 
agent will act individually and collect as much ener-
gy as it needs. 

There is no compensation for the excess of labor 
exchanged or calculation of differential costs. That 
is to say, there is no obligation to “return the favor.” 
There is a constraint in the quantity of labor a “rich” 
agent can transmit to an agent “in need”. Each agent 
has a “FREE-LABOR” attribute expressing the num-
ber of labor units the agent can lend to another with-
out compromising its own survival. 

The number of labor units a family needs to reach 
her survival threshold is:

At poorer environmental conditions, technology 
by itself cannot revert the effects of mobility, stochas-
tically increasing movements to low value cells, and 
as a result, most agents die in relatively short periods 
of time.

Fourth Scenario: The Effects of Cooperation 
(“Collective Hunting”)

In our model, cooperation in a hunting-gathering 
band does not imply the transfer of subsistence, be-
cause what an agent acquires is limited to its current 
needs. Consequently, there is no surplus of food to 
be transferred, but there is always a surplus of labor 
not used when resources are rich enough and easi-
ly accessible with the current labor capability. This 
surplus of labor can be used in an abstract form of 
“collective hunting” (Hill 2002; Packer and Ruttan 
1988). In our case, higher values of difficulty (hi) are 
compensated by adding labor units from different 
agents in adjacent patches. In so doing, we under-
stand “collective hunting” in the way it has been used 
in robotic simulation: each agent makes its own de-

Figure 6. The advantages of technology related with three different scenarios of sedentary/mobile/resources abundance.
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lates the aggregated productivity [∆fi(t)] of an agent 
member of a group Gi(t):

Equation 5

where Gi(t) is the total amount of labor the group 
of agents that cooperate with agent i and δβι(t) the 
maximum technology within the group. There is an 
additional parameter modifying the total effect of 
aggregated labor at the social aggregate1 (θi(t)), cap-
turing the idea that cooperation is less needed when 
there are plenty of resources. Productivity after co-
operation is assumed to depend on labor productivi-
ty pi(t) in such a way that the higher the productivity 
the lower the expected returns of cooperation. Given 
a parameter

Equation 6

where α is a free parameter, so that 0  <=  α  <=  2. 
Therefore, θi is between 2 (when that particular patch 

1  We expect that social cooperation will be less likely with 
distance. Instead of including a separated parameter for 
distance, we restrict calculations to the neighborhood group, 
which is defined as a list of agents within the neighborhood 
radius with similar “culture.” Details of the “cultural” algorithm 
cannot be given here. The reader is referred to Barceló et al. 
2014, 2015a.

Equation 4

where ēi and ēl represents the acquired energy at the 
current tick (see Equation 1), li the actual quantity of 
labor, βi the actual technology to compensate for the 
local difficulty (hi) of obtaining the resources existing 
at that place, and ri the amount of resources existing 
in the actual patch. The first term is the additional 
number of labor units the family needs to reach its 
survival threshold; and the second term, li, is the ac-
tual number of labor units the family has. This equa-
tion is the result of clearing Survi in Equation 1 and 
adding relationships expressed in Equation 2 to cal-
culate ēi.

If the first term is greater than the second term, 
it means that the family does not have enough labor 
units to reach her survival threshold. Therefore, the 
value of Survi (Equation 4) will be greater than zero 
(and thus FREE-LABOR = 0). In those cases where 
both terms are equal, the number of necessary labor 
units will coincide with the number of labor units the 
family has. Consequently, the value of ST will be zero 
(and FREE-LABOR = 0). However, if the second 
term is greater than the first term, it means that this 
family has plenty of labor units to reach its survival 
threshold (and thus ST = 0). The result of the sub-
traction will be negative (the family has extra labor 
units). The value of this subtraction (with changed 
sign) is precisely the amount of free-labor the family 
will lend another family in need. 

With this supplementary labor, the system calcu-

Figure 7. Decreasing 
population of mobile 
non-cooperative/coope-
rative individuals in a 
poor world scenario (one 
scenario with a mean of 
6500 kcal at the warm 
season and 3250 kcal at 
the cold one. Resource 
irregularity fixed for and 
standard deviation = 1000 
kcal.
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to make decisions, the final result is affected by un-
certainty. Only when the technology for movement – 
transportation – allows an agent to contact with any 
neighbor in any place, then there is a clear increase 
in the chances of survival. However, when there are 
barriers to cooperation, either by physical distance 
or social distance (cultural identity), the advantages 
of cooperation are hardly evident.

Conclusions and Further Work

In this paper we have explored the old Malthusian 
view on population decreasing exponentially when 
resources are below a survival threshold. In our mod-
el, survival is not only affected by the raw quantity of 
existing resources, but by the “difficulty” of acquir-
ing what is needed to survive. That means the more 
mobile the resource and the more difficult its spatial 
accessibility, the higher the difficulty, and therefore 
the more labor is needed to obtain resources up to 
the survival threshold, and more time is needed for 
the task. When more labor is needed, survival is less 
probable because the survival threshold increases 
given the higher quantity of people to be fed. In this 
scenario, any mechanism to increase the efficiency of 
labor has relevant effects. 

When resources are low, not only because of their 
scarcity but because they are hard to obtain, hunt-
er-gatherer survival is at risk because the amount of 
labor available to compensate for the local difficul-
ty of accessing existing resources diminishes. When 
introducing small amounts of random mobility (up 
to 2 % of the landscape) in most cases, even in rel-
atively rich worlds, all agents die, when in the sed-
entary scenario the chances of survival were higher. 
Our simulations show that random mobility is only a 
partial solution to compensate for the high difficulty 
and relatively low volume of resources at place. 

In this paper we have just explored the conse-
quences of random mobility. It is no adaptive de-
cision, and it implies no rationality nor optimality 
criteria. Obviously, we need to implement a different 
mechanism that may include the selection of a bet-
ter cell, using the calculation of prior probabilities 
for survival, and also considering the possibility of 
“memory.” This would allow the agent to move to-
wards the cell the agent remembers was a “good” one 
if it is not “far away” from the actual position. In any 

is very poor in resources, xi = 0), and 1 (when that 
particular patch is very rich in resources, xi = 1). In 
general, we have calculated 

Equation 7

Such an assumption produces a probability around 
0.001 that xi be greater than 1. In any case, if the re-
sult of the above equation is below 0 or above 1, xi is 
reset to 0 and 1 respectively.

Preliminary results show that when fixing free pa-
rameters at medium/low values (Population = 150, 
Average technology = 1.05, Diversity = 0.1, labor av-
erage = 5, average storing factor = 0, internal change 
= 0.01) in a typical “poor resources” scenarios (mean 
resources on warm season patch = 6500 kcal), the 
advantages of cooperation are clear. Probabilities for 
survival increase in 53 % on average, although coop-
eration by itself is no guaranty of survival (Figure 7).

In any case, the size of the area where hunt-
er-gatherers look for possible cooperants has no rel-
evant effect on the advantages of cooperation. This 
result is unexpected. Cooperation apparently should 
depend on the distance over which social interac-
tion can be defined. According to our preliminary 
results, the amount of cooperation is not inversely 
proportional to the distance between agents, defined 
in terms of the size of area where cooperants can be 
found. In our simulations, we have not measured any 
significant impact of interaction radius, given that 
the decrease of population is fairly similar when in-
teraction is limited to the 2 % of the total area, when 
maximum allowed distance is fairly large (the agent 
can explore 60 % or even 100 % of the environment 
to look for prospective cooperants). In any case, this 
result cannot be used to deny the fact that ask-for-
help diminishes with distance. The scenario we have 
explored here has a low population density (150 
agents occupy just 5 % of available space). If popula-
tion declines because of the poor resource scenario, 
there is less opportunity for helpers as well and so the 
population cannot recover. This fact creates isolated 
groupings of families that cooperate only amongst 
each other. 

This result also shows the increasing stochastic-
ity of human survival in conditions where cooper-
ation is necessary. Cooperation may contribute to 
survival, but if agents rely on help from neighbors 
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ing their net energy intake per unit time. Following 
Mithen (1988), we can say that while optimal forag-
ing theory has been of considerable value for under-
standing hunter-gatherer subsistence patterns, there 
is a need for a complementary approach to human 
foraging behavior which focuses on decision-making 
processes and social cooperation. 

Hunting in the past seems to have been a much 
more complex activity than expected, whose success, 
and hence the posterior probabilities of survival, 
are less deterministically affected by the availability 
of animals in the area or the efficiency of available 
technology. We need to incorporate social dynamics 
well beyond the standard animal foraging model: an-
imals rarely cooperate, but cooperation is what made 
us humans. If a social agent cooperates with anoth-
er agent, the chances of hunting success are higher, 
even in the case of low animal availability, or the dif-
ficulty in capturing them with available technology. 
Here, there is a social decision (“to hunt together or 
to hunt individually”) that form the basis of Skyrms 
(2004) suggestion. According to this approach, we 
have modeled a cooperation mechanism in which an 
agent will cooperate with another:

1.	 when someone in the appropriate neigh-
borhood will ask for help given its inability to 
survive using its own means. This neighbor-
hood is constrained by the technology for mo-
bility (MOVEMENT is a global parameter);

2.	 there is enough cultural similarity among 
both agents (the survival threshold needed to 
define the possibility of labor exchange is de-
fined according the local circumstances);

3.	 the helping agent has labor in excess, and 
it can only contribute with what it does not 
need for its own survival;

4.	 only one agent can be helped at each time. 
The procedure is implemented so that all pos-
sible FREE-LABOR is given to the first agent 
asking for help. The remaining FREE-LA-
BOR is invested in surplus (additional ener-
gy) when the current value of the STORING 
FACTOR is set > than 0.

Our results show that when following these con-

case, it is interesting to observe that even in the case 
of random movement agents do not bounce along 
until they settle on a good patch where they survive 
and grow. This is a consequence of seasonal variation 
in resources and the impossibility to survive at the 
current site in the cold season, once a majority of re-
sources has already been harvested, and the remain-
ing energy is well below survival threshold. An effi-
cient technology for storing energy would be needed.

We have considered the effects of technology and 
social cooperation on survival in the simplest imag-
inable scenario. We have fixed low values of technol-
ogy just to test the effects of social cooperation in the 
worst circumstances imaginable. We have tested the 
effects of collective hunting on survival in a scenario 
of very poor resources, where a population of agents 
has low chances of survival. If cooperation is not 
particularly beneficial in the case of rich scenarios, 
where resources are easily accessible, collective hunt-
ing does increase the chances of surviving in the case 
of low-density, decreasing populations. 

Our results show that the advantages of cooper-
ation are clear (probabilities for survival increase in 
53 % of the scenarios on average), although coopera-
tion by itself is no guaranty of survival. We have also 
shown that the radius of mobility, determined by the 
level of transportation technology, does not affect 
the advantages of cooperation. Increased chances 
for survival are as high in the case of using horses 
to travel through the entire landscape on a single 
cycle, as in the case of travelling on foot over a re-
stricted 2 % of the area. In general, our results match 
those by Dyble et al. (2016), insisting on cooperation 
and sharing as concentrated within small clusters of 
households. These clusters represent one part of a 
multilevel social structure, and allow access to im-
portant cooperative relationships. 

The effects of collective hunting as a form of co-
operation have been studied by Skyrms (2004) and 
subsequent work (Antonioni, Tomassini & Buesser 
2014; Gold 2012; Perc 2011; Pereira and Santos 2012; 
Skyrms 2008; Tomasello et al. 2012), and our results 
coincide with what would be expected according to 
this theoretical framework. Other important work 
that takes into account the effects of cooperation in 
the success of hunting is Janssen and Hill (2014 and 
2016). All these works show the relevance of going 
beyond traditional views of prehistoric hunter-gath-
erers in terms of animal foraging behavior maximiz-
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In the social sciences, models are often presented 
uncritically as faithful representations of reality. In 
this paper, we make no such claim. We argue instead 
that our models of hunter-gatherer survival are use-
ful as devices for interrogating some prior hypothe-
ses about human behavior in Paleolithic times. Does 
it mean that the model is wrong? Not necessarily (Ep-
stein 2008). We have not yet explored alternative and 
more complex scenarios, because we were interested 
in simulating the simplest scenario to evaluate the 
effects of social cooperation and the transfer of labor 
force in the worst imaginable conditions. In any case, 
even this most simplified and abstract model sug-
gests the enormous variation of effects a single deci-
sion or strategy had, and it contributes to understand 
the basis of randomness in human action, especially 
at times where social organization was dependent on 
local resources and the local configuration of those 
resources.
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our aim has been to create a theoretical model of the 
possibilities of survival in prehistory, when technol-
ogy was poorly efficient, and it hardly contributed to 
survival. There is a theoretical impossibility in ob-
taining empirical data to test the expectations that 
prehistoric people had about the advantages of mo-
bility, the effects of available technology and the risk 
minimizing factor that comes from the possibility of 
increasing labor force cooperating with neighbor-
ing groups. We have intended to have some formal 
validation; that is, a test that the hypothesis may be 
true within an artificial (although objective) formal 
system (Barceló and Del Castillo 2016, Fforde 2017; 
Hasan and Tahar 2015; Yanow and Schwartz-Shea 
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which we can explain variability. The past cannot be 
reconstructed from archaeological data alone, be-
cause a given dataset contains insufficient regularities 
for predictive theorizing. Our computer model is just 
a hypothesis about the more probable behavior given 
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