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Summary 

 

Pre-pregnancy obesity, defined as a body mass index (BMI) greater than or equal 

to 30 kg/m2, can have adverse effects on the health of newborns and can also lead 

to metabolic, cardiovascular and neurological diseases in the offspring as they 

grow older. In the area of fetal origins and disease in adult life, a large number of 

studies have reported a critical role for maternal weight and metabolism before or 

during gestation in shaping the health of their offspring. Maternal obesity is 

recognised as a major modifiable contributor to obesity and metabolic syndrome 

in offspring, but the underlying factors remain unclear. The fetal autonomic 

nervous system (ANS) is subject to programming during developmental periods 

and is considered one of the processes by which early programming of disease can 

take place.  

 

The main goal of the present work was to use the fetal heart rate (HR) and heart 

rate variability (HRV) as proxies for the fetal ANS to study the effects of metabolic 

and anthropometric maternal (MAM) parameters before and during gestation on 

the fetuses of healthy, normoglycemic mothers. A total of 184 women in their 

second/third trimesters of uncomplicated pregnancies were included in this study. 

Pre-pregnancy BMI and maternal weight gain during pregnancy were recorded. In 

a subsample (n = 104), maternal insulin sensitivity was measured during an oral 

glucose tolerance test. Fetal HR and HRV were determined by magnetic recording 

in all subjects. The influence of pre-pregnancy BMI, maternal weight gain and 

maternal insulin sensitivity on fetal HR and HRV was evaluated. Associations 

between MAM parameters and maternal HR and HRV were also assessed. ANCOVA, 

partial correlation and mediation analysis were applied, all of which were adjusted 
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for gestational age, gender and parity. A regression on fetal HR using a machine 

learning approach was tested to explore which maternal factor is the driving factor 

programming the fetal ANS. Four models were tested: Linear regression, 

Regression Tree, Support Vector Machine and Random Forest.  

 

The fetal HR was higher in fetuses of mothers with high pre-pregnancy BMI 

(overweight/obese) than in mothers with normal weight. The fetal HRV was lower 

in mothers with high weight gain than in mothers with normal weight gain. The 

fetal HR was negatively correlated with maternal weight gain and maternal insulin 

sensitivity. Pre-pregnancy BMI was positively correlated with fetal high frequency 

and negatively correlated with low frequency and the low to high frequency ratio. 

Maternal weight gain was associated indirectly with birth weight through fetal HR, 

while maternal insulin sensitivity was associated with fetal HR through fetal HRV. 

Separately, fetal HRV was associated with birth weight through the fetal HR. The 

Random Forest ensemble tree-based model outperformed linear regression as the 

fetal HR regression model. Fetal HR can be predicted using the following nine 

relevant variables (sorted from the most important to the least important): pre-

pregnancy BMI, gender, maternal fasting insulin, maternal insulin sensitivity, 

gravidity, maternal age, maternal fasting glucose, gestational age and maternal 

weight gain. Pre-pregnancy BMI appeared to be the major factor predicting fetal 

HR. In conclusion, the fetal ANS is sensitive to maternal metabolic and 

anthropometric influences, and particularly maternal weight before pregnancy. 

These findings support the concept of the “Developmental Origin of Health and 

Disease” and increase our knowledge about the importance of the intrauterine 

environment in the programming of the ANS and the possible programming of 

disease in later life.   
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Chapter 1 

General introduction 

Obesity, defined as a body mass index (BMI) greater than or equal to 30 kg/m2, has 

become a worldwide epidemic and continues to rise (WHO, 2018) . Some studies 

have reported that maternal obesity might expose women’s offspring to long-term 

health effects, including obesity (Alfaradhi & Ozanne, 2011; Drake & Reynolds, 

2010; Lecoutre & Breton, 2015; Poston, Harthoorn, & Van Der Beek, 2011; 

Wankhade, Thakali, & Shankar, 2016). Taking a closer look at the societal 

“overnutrition” trend, infants of women with obesity often have higher birth 

weights and a greater risk of obesity in later life when compared with infants born 

to women without obesity (Godfrey et al., 2017; Taylor & Poston, 2007). Women 

with obesity before pregnancy also appear to have offspring with obesity in 

childhood and adulthood (Drake & Reynolds, 2010). Moreover, recent meta-

analyses suggest that excessive maternal weight gain can predispose the offspring 

to develop obesity in later life (Leonard, Petito, Rehkopf, Ritchie, & Abrams, 2017; 

Mamun, Mannan, & Doi, 2014; Nehring, Lehmann, & von Kries, 2013).  
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For the past thirty years, epidemiological studies have shown that diseases are 

programmed during early life development and involve interactions between 

inheritance, both genomic and development, and environment (Gluckman, Hanson, 

& Buklijas, 2010; Hanson & Gluckman, 2014). A study of the Dutch Hunger Winter 

victims was the earliest to link early life nutrition to later obesity (Ravelli, Stein, & 

Susser, 1976). The researchers found that offspring born to women exposed to 

famine in early pregnancy were more likely to become obese in later life. The 

emergence of the fetal programming theory emerged from a later series of 

epidemiological studies by David Barker and colleagues in 1986 and onwards 

(Barker & Osmond, 1986; Barker, Osmond, Golding, Kuh, & Wadsworth, 1989; 

Barker, Osmond, Winter, Margetts, & Simmonds, 1989). They proposed that 

maternal undernutrition during pregnancy might interrupt metabolic signalling in 

fetuses and may cause dysfunction of the metabolic systems controlling fetal food 

intake and storage, thereby resulting in cardiovascular diseases in adulthood 

(Barker, 1995; Godfrey & Barker, 2001). Further studies broadened this concept by 

including additional stressors like maternal stress and environmental chemical 

exposures, and provided further evidence for the possibility that a variety of 

metabolic, cardiovascular and neurological diseases can be triggered during fetal 

development (Barouki, Gluckman, Grandjean, Hanson, & Heindel, 2012; Reynolds, 

2013). This theory is known today as DOHaD, short for “Developmental Origins of 

Health and Disease” (Gluckman & Hanson, 2006; Suzuki, 2018).  

 

Overall, these previous findings suggest that maternal weight and metabolism 

could shape offspring development. Despite many studies reporting evidence of 

unfavourable outcomes in offspring of mothers with obesity and excessive 

maternal  
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weight gain, the possible underlying processes that could link changes in maternal 

weight and metabolism to the health of offspring are not well understood.  

 

Autonomic nervous system (ANS) is the main system responsible for energy 

balance and regulation of body weight (Hall, 2015; Landsberg, Saville, & Young, 

1984; Young, 2002). A comparably low HRV, is a common feature of childhood and 

adulthood obesity, indicating an imbalance in the ANS (Thayer, Yamamoto, & 

Brosschot, 2010). Adults with low birth weight tend to have a high resting pulse 

rate (Phillips & Barker, 1997). These observations suggested that the programming 

of the ANS is established during fetal development and might be one of the system 

involve in the disease development in adulthood. Also, Young suggested that 

programming of ANS in utero is linked to the development of obesity (2002). 

Although limited data are available relating birth weight and ANS in adults (Phillips 

& Barker, 1997; Weyer, Pratley, Lindsay, & Tataranni, 2000), more studies have 

emerged showing an association of undernourishment during fetal development 

and fetal HRV, an indirect measure of fetal ANS. Several studies have reported a 

lower fetal HRV in growth-restricted fetuses than in normal fetuses (Nijhuis et al., 

2000; Schneider, Fiedler, Liehr, Kahler, & Schleussner, 2006). Conversely, fetuses 

of women with gestational diabetes mellitus (GDM), also had lower postprandial 

fetal HRV (Fehlert et al., 2016). These researchers proposed an impaired 

development of the ANS in fetuses exposed to hyperglycaemia. GDM and maternal 

insulin resistance also have a known relationship with the postprandial response 

in the fetal central nervous system (Linder et al., 2014; Linder et al., 2015), while 

pre-pregnancy obesity appears to have long-term impacts on offspring 

neurodevelopment (Casas et al., 2013; Hinkle et al., 2012). Furthermore, women 

with higher pre-pregnancy BMI also have higher perinatal insulin resistance 
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(measured from cord blood), suggesting a relationship within utero development 

of peripheral insulin resistance (P. M. Catalano, Presley, Minium, & Hauguel-de 

Mouzon, 2009), which could potentially program the fetal metabolic phenotype.  

 

Given the potential for a negative effect of early life metabolic influences on the 

development of fetal ANS, and coupled with the fact that maternal weight or 

weight gain can, at least to a point, be modified, this modifiable risk factor for 

impairment in fetal ANS is particularly worthy of study. The objective of this thesis 

was to broaden the current knowledge of the potential role of intrauterine 

challenges linked with maternal obesity in fetuses of healthy mothers on the 

development of fetal ANS – a process by which early programming of disease 

might take place. Therefore, the research aim of this study was to explore the 

relationship between various metabolic and anthropometric maternal (MAM) 

parameters before and during gestation and the fetal HR and HRV in healthy 

pregnancies. Specifically, various analysis methods were used to investigate the 

association between maternal factors (pre-pregnancy BMI, maternal weight gain 

and glucose metabolism during the fasting state), and the fetal HR and HRV. The 

existence of the inter-relationships between MAM parameters, fetal HR, HRV and 

neonatal birth weight were evaluated by mediation analysis. Gestational age and 

parity were added as covariates in the analysis of fetal HRV, and a gender effect 

was tested as a potential control factor. The MAM parameters and maternal HRV 

were then used as features in the prediction of fetal HR using machine learning 

regression models. Fetal HR and HRV based on fetal magnetocardiograms (MCGs) 

were examined in a large sample of subjects. High pre-pregnancy BMI, excessive 

maternal weight gain and maternal insulin resistance in healthy pregnancies were 

expected to alter fetal HR and HRV. 
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1.1. The autonomic nervous system  

The ANS regulates the internal body functions that maintain body homeostasis 

(Squire et al., 2008; Wehrwein, Orer, & Barman, 2016). Its nerve cells leave the 

spinal cord and brainstem and connect to all the major organs and glands to either 

inhibit or stimulate their activity (Hall, 2015). The ANS is composed of two 

subsystems: the sympathetic nervous system (SNS) and parasympathetic nervous 

system (PNS). Functionally, each system is dominant under certain conditions. The 

SNS is stimulated during stressful situations and elicits what are known as “fight-

or-flight” responses. The PNS is responsible for quiet “rest-and-digest” activities, 

and opposes the effects of the SNS. Overall, the PNS conserves and stores energy 

to regulate basic body functions.  

 

The main transmitter produced and released by sympathetic post-ganglionic 

neurones is norepinephrine, whereas the parasympathetic post-ganglionic 

neurones produce and release acetylcholine. This difference in neurotransmitters 

causes the different functions between SNS and PNS (Squire et al., 2008). Figure 

1.1 shows the connection of SNS and PNS to organs in human body. The ANS 

consists of a series of two neurones that conduct impulses away from the central 

nervous system (CNS). The axon of the first neuron (called a pre-ganglionic neuron) 

synapses with a second neuron within an autonomic ganglion located outside the 

CNS. The axon of the second neuron (called a post-ganglionic neuron) extends 

from autonomic ganglion synapses to an organ tissue. The ANS conducts impulses 

from pre-ganglionic to the post-ganglionic neuron to stimulate the organ. Most 

organs are innervated by both systems, but some are innervated by only the SNS. 

The organs, such as the heart, that receive dual innervation show opposing effects 
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of the SNS and PNS, where an increase in the activity of one system simultaneously 

decreases the activity of the other. This antagonistic effect allows for the precise 

control of a tissue's function, resulting in the state of activity of the organ. 

Dynamic interplay between both systems is important for body homeostasis as 

well as serving as a survival mechanism (Squire et al., 2008; Wehrwein et al., 2016). 

 

 

 

Figure 1.1 Autonomic nervous system and its two branches. Left: Sympathetic nervous 

system. Right: Parasympathetic nervous system. Image from Hall (2015) used by 

permission of Elsevier. 
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1.2. Autonomic control of the heart rate  

Baseline HR is controlled at an internal pace that is determined by the sinoatrial 

(SA) node, while the ANS controls the heart rhythm through the SNS and the PNS 

(Figure 1.2).  

 

 

Figure 1.2 Control of the heart by sympathetic and parasympathetic nerves. Image from 

Hall (2015) used by permission of Elsevier. 

 

SNS stimulation increases the HR, while PNS stimulation decreases the HR. The 

sympathetic nerves innervate the heart muscle throughout the atria and ventricles 

to provide higher pumping ability during stress (Hall, 2015; Squire et al., 2008). 

SNS stimulation releases norepinephrine at the nerve endings and increases the 

permeability to sodium and calcium ions. This causes a more positive resting 

potential of the heart cells at the SA node, thereby increasing the rate of self-

excitation, which then leads to an increase in HR. The vagus nerve mainly 
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innervates the heart at the SA node and the atrioventricular (AV) node. 

Parasympathetic stimulation releases acetylcholine at the vagal ending. This 

increases the permeability of the fiber membranes to potassium, thereby leading 

to a decrease in the resting membrane potential of the SA node to a lower value 

than usual. The time needed to reach the self-excitation rate increases, resulting 

in slower heart beats. Parasympathetic activation to change the heart rate takes 

around 1.5 seconds, while sympathetic activation takes longer, around 24 seconds 

(Berntson et al., 1997). The differences in the speed and frequency of 

parasympathetic and sympathetic activation serves as the basis of spectral 

analysis of fetal HRV, which will be discussed in the next section. 

 

1.3. Fetal heart rate and heart rate variability 

The activity of the ANS can be estimated noninvasively by HRV analysis (Akselrod 

et al., 1981; Malik, 1996; Sayers, 1973). This analysis is based on consecutive heart 

beat variations of sinus origin. The interval between the R wave onsets of 

electrocardiogram (ECG) or MCG traces are typically used as the reference wave 

(i.e. the RR interval) to mark the heart beats since this has the largest amplitude 

compared to the neighbouring P, Q, S and T waves. A standard for HRV 

measurement, interpretation and clinical use was established in 1996 (Malik, 

1996). The analysis involves deriving time and frequency domain parameters using 

geometrical and nonlinear methods. The time and frequency domain analyses were 

the methods used in this dissertation.  

 

Fetal HR and HRV can be assessed noninvasively with magnetic sensors (Brändle 

et al., 2015; Fehlert et al., 2016; Van Leeuwen, Lange, Bettermann, Gronemeyer, & 
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Hatzmann, 1999; Wakai, 2004) or electrodes (David, Hirsch, Karin, Toledo, & 

Akselrod, 2007; Karin, 1994). These methods provide the necessary temporal 

resolution for reliable assessment of fetal HRV measures. In 1960, Hon introduced 

fetal HR monitoring, and he was the first to describe HRV as a clinical application 

in relation to maternal contractions (Hon, Reid, & Hehre, 1960). Later, he showed 

that fetal distress was preceded by alterations in fetal HRV even before the changes 

in the mean HR could be observed (Hon & Lee, 1963). Since then, fetal HRV has 

gained interest, particularly in pathologic conditions like intrauterine growth 

restriction (IUGR) pregnancy and preterm birth (Aziz, Schlindwein, Wailoo, Biala, 

& Rocha, 2012; Huhn et al., 2011; Schneider et al., 2006; Sriram et al., 2013). Fetal 

HR has been used as standard clinical procedure for fetal monitoring (Banta & 

Thacker, 1979; Dawes, Moulden, & Redman, 1996; Jenkins, 1989; Macones, 

Hankins, Spong, Hauth, & Moore, 2008) and is known as an important indicator of 

fetal well-being.   

 

The normal fetal HR ranges from 120 to 160 beats per minute (bpm) (Pildner von 

Steinburg et al., 2013). The regulation of the fetal HR is mainly driven by 

parasympathetic and sympathetic innervation (David et al., 2007). The 

synchronization of PNS and SNS neural activity at the SA node is thought to 

increase or decrease the fetal HR. Decreases in fetal HR and increases in HRV 

indicate that parasympathetic activity is dominant, while the opposite changes 

occur when sympathetic activity is dominant. Such changes in both HR and HRV 

have been used as indicators of fetal ANS maturation (Schneider et al., 2018; 

Schneider et al., 2009). In healthy developing fetus, the fetal HR decreases and HRV 

increases in a more complex pattern throughout gestation (Pildner von Steinburg 

et al., 2013; Serra, Bellver, Moulden, & Redman, 2009; Van Leeuwen et al., 1999; 
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Wakai, 2004). In the normally developing fetal ANS, the regulation of the HR is 

mostly under the control of SNS because the maturation of the PNS mainly occurs 

after birth. Only in the third trimester, starting from 31 weeks of gestation, does 

the parasympathetic regulation start to increase (Pildner von Steinburg et al., 2013; 

Van Leeuwen, Cysarz, Edelhauser, & Gronemeyer, 2013; Wakai, 2004).  

 

The response of fetal HR and HRV could be influenced by several other factors. 

Fetal HR and gestational age have been suggested to have strong influence on the 

fetal HRV (Lange, Van Leeuwen, Geue, Hatzmann, & Gronemeyer, 2005). In 

addition, gender also has an influence on the fetal HR, even though some 

inconsistencies exist in the reported findings. For example, no differences in fetal  

gender were detected at any gestational age (Bracero et al., 2016; Druzin, Hutson, 

& Edersheim, 1986; Fleisher, DiPietro, Johnson, & Pincus, 1997; Genuis, Genuis, & 

Chang, 1996; Lange et al., 2005; Ogueh & Steer, 1998), whereas DiPietro described 

differences in fetal HR at the second and third trimester, with a faster HR in female 

than in male fetuses (2015).  

 

The following is a short overview of the current state of research regarding the 

influence of maternal weight and metabolism on fetal HR and HRV: Earlier studies 

on fetal HRV in human fetuses were mainly performed in studies on maternal 

undernutrition (Bekedam, Visser, Mulder, & Poelmann-Weesjes, 1987; Nijhuis et al., 

2000; Schneider et al., 2006; Sriram et al., 2013). Later studies reported fetal HRV 

in pregnancies associated with diabetes and GDM (Costa, Nomura, Reynolds, 

Miyadahira, & Zugaib, 2009; Fehlert et al., 2016; Sirico, Sarno, Zullo, Martinelli, & 

Maruotti, 2019; Tincello, White, & Walkinshaw, 2001). Data are limited that relate 

maternal obesity and fetal HRV. To my current knowledge, only one study has 
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investigated the effect of maternal obesity on fetal HRV (Voegtline, Costigan, 

Henderson, & DiPietro, 2016). These researchers found lower fetal HRV and lower 

fetal HR acceleration in the fetuses of women with pre-pregnancy obesity than in 

the fetuses of women with normal weight, suggesting an impairment in fetal 

cardiac and motor development. One study tested the relationship between 

maternal insulin resistance and maternal inflammation with fetal HRV, but found 

no association (Dewi et al., 2017). Another study found a positive association 

between pre-pregnancy BMI and fetal HRV, the low to high frequency ratio (Ojala 

et al., 2009).   

 

1.4. Fetal magnetoencephalography  

Fetal magnetoencephalography (fMEG) is a non-invasive technique for recording 

magnetic fields generated by electrical currents in human tissue, with special 

adaptation for fetal and neonatal measurements (Preissl, Lowery, & Eswaran, 

2005). The method allows the simultaneous recording of fetal brain 

(magnetoencephalography, MEG) and fetal heart (MCG) signals through a sensor 

array fit onto the mother‘s abdomen. MEG for fetal measurement was first 

reported in 1976 to measure fetal heart signals (Hukkinen et al., 1976) and was 

later used by Blum to record fetal evoked brain responses (Blum, Saling, & Bauer, 

1985). The fetal adapted systems were built later. The high temporal resolution of 

the fetal heart signal recorded by fMEG device allows the investigation of the fetal 

ANS through HRV analysis (Brändle et al., 2015; Fehlert et al., 2016; Sriram et al., 

2013). Fetal heart signal amplitudes range from 1 to 10 pico Tesla and are stronger 

than the fetal brain signals, which range from 10 to 80 femto Tesla (Vrba, 

Robinson, McCubbin, Murphy, et al., 2004).  
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1.5. Goals and hypotheses 

The specific goal of this dissertation was to provide insight into the relationship 

of variations in MAM parameters—specifically pre-pregnancy BMI, maternal weight 

gain and maternal insulin sensitivity—and the ANS during fetal development. A 

second goal was to evaluate whether the associations of MAM and birth weight are 

mediated through the fetal ANS. A third goal was to predict fetal HR using 

regression-based machine learning algorithms from MAM parameters and 

maternal HRV as features. 

 

In this dissertation, the following hypotheses were tested: 

1. High pre-pregnancy BMI, excessive maternal weight gain and maternal 

insulin resistance in healthy pregnancies are associated with an increase in 

fetal HR and/or a decrease in fetal HRV.  

2. Fetal ANS is one of the processes linking MAM and weight at birth.  

3. Among the MAM parameters, pre-pregnancy BMI (as weight before 

pregnancy) has a stronger role in the programming of fetal ANS.  
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Chapter 2 

Material and methods 

2.1. Study population  

An MCG was recorded for the duration of 15 minutes in 184 pregnant women. In 

six of the recordings, the MCG could not be extracted due to the low signal to noise 

ratio, resulting in a total number of 178 included datasets. In a subsample 

comprising 104 participants, an oral glucose tolerance test (OGTT) was performed. 

For the anthropometric and metabolic characteristics of the participants, see the 

Results and Table 3.2.  

 

Written informed consent was received from participants prior to all 

measurements. The Ethics Committee of the Medical Faculty of the University of 

Tübingen approved the study plan. Self-reported health information was collected, 

including past medical history, current health condition, maternal age, parity, 

gravidity and height, as well as body weight before pregnancy and at the time of 

measurement. Inclusion criteria included uncomplicated pregnancies and normal 
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perinatal outcomes. Exclusion criteria included hypertension, cardiovascular 

disease, diabetes mellitus and GDM. 

 
Pre-pregnancy BMI is a measure of preconception body mass index in units of 

kg/m2. Based on the BMI category from the World Health Organization (WHO, 

2000), participants were assigned to four pre-pregnancy BMI groups: underweight 

(UW, BMI < 18.5 kg/m²; n = 9), normal weight (NW, BMI 18.5–24.9; n = 120), 

overweight (OW, BMI 25.0–29.9; n = 32) and obese (OB, BMI ≥ 30.0; n = 17). 

 
Maternal weight gain, which is a measure of weight gain during gestation (in 

kg/week) in the 2nd and 3rd trimester, was calculated according to the following 

formula: 

 
 Maternal weight gain

=
Weightduring pregnancy(kg) − Weightbefore pregnancy(kg) − 1.25 kg

Gestational age (weeks) − 12 weeks
 

 

For the weight gain during the 1st trimester (12 weeks), participants were assumed 

to gain the average recommended weight of 1.25 kg (Rasmussen & Yaktine, 2009) 

(see Table 2.1). This value was subtracted from the total weight gain and divided 

by the number of gestational weeks the pregnancy had progressed in the 2nd and 

3rd trimesters (gestational age during visit minus 12 weeks for the 1st trimester).   

 

On the basis of the Institute of Medicine recommendations for maternal weight 

gain in the respective pre-pregnancy BMI groups (Rasmussen & Yaktine, 2009), the 

participants were assigned to three maternal weight gain groups: below the 

recommended weight gain (Low; n = 66), within the recommended weight gain 
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(Normal; n = 53) and above the recommended weight gain (High; n = 59). Table 2.1 

summarises the recommendations and absolute values for maternal weight gain 

according to the pre-pregnancy BMI and maternal weight gain groups.  

 

 

 

2.2. Laboratory measurements and calculations  

In a subsample comprising 104 participants an OGTT (75 g glucose challenge) was 

performed. Blood samples were obtained at three time points: before glucose 

ingestion and 60 and 120 minutes after the challenge. Calculations and laboratory 

procedures of the blood measures are detailed in previous publications (Linder et 

al., 2014; Linder et al., 2015). Maternal fasting blood glucose and insulin were 

determined using the ADVIA 1800 autoanalyzer (Siemens Healthcare Diagnostics) 

and the ADVIA Centaur XP immunoassay system (Siemens AG), respectively. 

Maternal ISI is defined as the ability of insulin to increase glucose uptake to 



 
 16  |    Ma t e r i a l  an d  me t ho ds  

 

maintain glucose homeostasis (Wilcox, 2005). Maternal ISI were calculated in units 

of µmol kg–1 min–1 pmol/l, according to the formula Stumvoll (2001):  

 
Maternal insulin sensitivity

= 0.156 − 0.0000459 · Ins120min − 0.000321 · Ins0min − 0.00541 · Glu120min 

 
Ins120min and Glu120min  are the insulin level and the glucose level, respectively at 

120 minutes after the glucose challenge and Ins0min is the insulin level at the 

fasting state.  

 

2.3. Data acquisition  

Figure 2.1 shows a flow chart from fMEG data acquisition to MCG data processing 

and HRV analysis. All MCG measurements were performed with the SARA (SQUID 

Array for Reproductive Assessment, VSM MedTech Ltd., Port Coquitlam, Canada) 

system in the fMEG Center at the University of Tübingen; this system was 

specifically developed for fetal measurements. The system consists of 156 primary 

magnetic sensors and 29 reference sensors. The primary magnetic sensors are 

distributed over a concave array that is shaped to match the form of the gravid 

abdomen (Figure 2.2). During the measurements, the mother leans forward in a 

comfortable resting position, with minimal pressure on the abdomen. The system 

is located in a magnetically shielded room (Vakuumschmelze, Hanau, Germany) to 

attenuate external magnetic fields, and it allows for simultaneous recording of 

maternal and fetal MCG signals (Preissl, Lowery, & Eswaran, 2004). Spontaneous 

MCG without any stimulation was recorded continuously for a period of 15 

minutes at a sampling frequency of 610.4 Hz.  
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Figure 2.1 Flow chart from fMEG data acquisition to MCG data processing and HRV analysis 

 

 

Figure 2.2 Left: Schematic of a pregnant woman on the fetal MEG device with SQUID coils 

that allow recording of biomagnetic fields; for example, fetal brain and fetal heart activity. 

Right: a pregnant mother is seated on the fetal MEG device. © University Hospital Tübingen 
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2.4. MCG detection and RR intervals extraction 

Signals recorded from the fetal MEG device contain magnetic fields generated by 

electrical activity from various biological sources in the maternal body. Two major 

signals come from the maternal and fetal hearts—the maternal MCG and fetal 

MCG. For the analysis of maternal and fetal HRV, time differences between 

consecutive R waves (RR intervals) were acquired as an input signal and extracted 

from the maternal MCG and fetal MCG.   

 

The RR intervals of the maternal and fetal heart signals were extracted using the 

following methods: First, the maternal MCG was detected and marked with a 

template matching technique (Vrba, Robinson, McCubbin, Lowery, et al., 2004) or 

with adaptive Hilbert transformation (Ulusar et al., 2009). The maternal RR 

intervals were extracted and the maternal MCG was attenuated by signal space 

projection (McCubbin et al., 2006; Vrba, Robinson, McCubbin, Lowery, et al., 2004). 

After removal of the maternal MCG, the fetal MCG was marked in the resulting 

dataset and the fetal RR intervals were obtained by identical methods. Before 

extraction of the maternal RR intervals, the data were high-pass filtered at 0.5 Hz 

and the fetal RR data were extracted after application of a band-pass filter between 

1 and 50 Hz. Figure 2.3 shows the overlaid time series of all MEG channels before 

and after the maternal MCG extraction. Image in Figure 2.3 from Preissl et al. (2004) 

is used by permission of Elsevier.  
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Figure 2.3 Upper: a 15 second time series of all overlaid MEG channels with visible maternal 

MCG (marked by “M”) and fetal MCG signals (marked by “F”). Lower: the resulting time 

series with fetal MCG as the main component, after the extraction of maternal MCG. Image 

from Preissl et al. (2004) used by permission of Elsevier. 

  

2.5. HRV analysis  

The analyses, including pre-processing of RR time series and short-term HRV 

analysis in both the time and frequency domains, were developed and performed 

by in-house routines in MATLAB (Mathworks, Inc., Natic, MA, USA). The in-house 

routines were based on existing standard approaches and tailored for use with 

fetal MEG data on our system. The details of the techniques are described in the 

following sections.  

 

2.5.1. Pre-processing of the RR time series  

The RR interval, determined from consecutive R waves, is shown in Figure 2.4.  



 
 20  |    Ma t e r i a l  an d  me t ho ds  

 

 

Figure 2.4 An MCG segment of overlaid all MEG channels containing 4 fetal heart beats 

showing the extraction of beat-to-beat interval from consecutive R waves. T is the time 

corresponding to the RR.  

 

The RR time series of an MCG segment containing 𝑖 beats is given by: 

𝑅𝑅𝑖 = 𝑇𝑖+1 − 𝑇𝑖 

where 𝑅𝑅𝑖 is the 𝑖𝑡ℎ RR interval in the segment,  𝑇𝑖 is the time of the 𝑖𝑡ℎ beat occurs. 

The HRV is defined as the variation in the beat-to-beat interval during sinus 

rhythm. Therefore, any cardiac fluctuations that are not caused by the sinus node 

(known as ectopic beats) need to be excluded from the HRV analysis. The pre-

processing steps were therefore intended to filter out noise effects and minimize 

the number of incorrectly detected R-peaks due to the occurrence of ectopic beats. 

Ectopic beats were detected and replaced by an adaptive filtering method (Wessel 

et al., 2000). The process is illustrated in Figure 2.5.  
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Figure 2.5 Correction of ectopic beats in a segment of RR time series. Upper: original RR 

time series. Lower: resulting time series after ectopic beat replacement using adaptive 

filtering.  

 

A detrending method called “smoothness prior detrending”, as proposed by 

Tarvainen et al. (2002), was applied to eliminate the unwanted low frequency 

trends in the RR time series. Detrending is a common pre-processing step applied 

in HRV analysis. It was performed through high-pass filtering the non-stationary 

trends to minimize the non-stationarities within the RR time series. The 

stationarity of the RR time series is required for power spectral density estimation. 

Trends in physiological signals, like HR signals, contain complex components and 

strongly affect the low frequency components (Colak, 2009; Yoo & Yi, 2019). A 

lambda value of 500 was used to remove the unwanted low-frequency trend 

components. This value was chosen to have a high pass filter with cut-off 

frequency of less than 0.04 Hz (the lower limit of the low frequency band) to avoid 
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distorting the frequency band of interest. Figure 2.6 shows the detrending of an 

RR time series.  

 

Figure 2.6 Detrending a segment of an RR time series. Upper: original RR time series. The 

red line shows the low-frequency trend component of the time series. Lower: resulting time 

series after removal of the trends by “smoothness prior detrending”.  

 

The short-term HRV analysis was performed according to a standard approach 

(Malik, 1996) in both time and frequency domains. For maternal HRV, the 15-

minute data were segmented into 5-minute segments to reduce the non-

stationarity, and the HRV was computed for each segment. The average of the 

HRVs of the three periods was then used in the analysis. Since the fetal HR is 

usually much higher than the maternal HR, shorter segments were used for fetal 

data to reduce the issue of non-stationarity. Based on the procedure by Schneider 
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et al. (2009), the fetal HRV was analyzed from segments of 256 fetal heart beats. 

Assuming an average fetal HR of 140 bpm, a segment was roughly 2 minutes long.  

 

2.5.2. Time domain HRV measures  

Time domain analysis estimates the changes in the HR time series. For time 

domain measures, we calculated the mean HR in beats per minute (bpm). The 

variability within the RR time series was investigated by including the standard 

deviation of RR intervals (SDNN) and the root mean square difference of successive 

RR intervals (RMSSD) in the analysis.   

 

2.5.3. Frequency domain HRV measures  

Frequency analysis estimates the fluctuation of HR at different frequencies. In the 

frequency domain, the power spectral density was estimated using fast Fourier 

transform (FFT), based on Welch’s method. To calculate the FFT, the RR interval 

time series has to be transformed into an equidistant set of data points. Prior to 

the analysis, the unevenly sampled RR intervals were resampled with cubic spline 

interpolation at the resampling frequency of 4 Hz. This 4 Hz sampling frequency 

is sufficient to satisfy the Nyquist criterion to avoid the aliasing effect. The steps 

for performing FFT using Welch’s method consist of partitioning the time series 

data into overlapping windows, computing the periodogram for each window 

separately, and then averaging the periodogram segments to estimate the power 

spectrum. The segments overlapping by 50% and the Hamming window were 

applied to each data segment of 512 points in size (length of the Discrete Fourier 

Transform) before the computation of the periodogram. Welch's method was 

implemented using the “pwelch” function in MATLAB.  
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For maternal HRV, the spectral components of the different frequency bands 

typically used for adults (Malik, 1996) were evaluated: low frequency (LF: 0.04 to 

0.15 Hz), and high frequency (HF: 0.15 to 0.40 Hz). For fetal HRV, the respiratory 

motion of the fetus is reported to occur at a different frequency range than that 

of adults. Therefore, the frequency bands proposed by David et al. (2007) were 

used for HRV analysis in the fetus (LF: 0.08 to 0.2 Hz and HF: 0.4 to 1.7 Hz). The 

frequency components were expressed in absolute (LF and HF) as well as 

normalized (LFn and HFn) measures. SDNN, LF and LFn reflect both sympathetic 

and parasympathetic activity, while RMSSD, HF and HFn are assumed to be 

influenced by parasympathetic activity only. The LF/HF ratio reflects the balance 

between sympathetic and parasympathetic activity (David et al., 2007; Groome, 

Mooney, Bentz, & Wilson, 1994; Malik, 1996). The time and frequency domain 

parameters, with their formulas and their assumed influence of the ANS branches, 

are summarized in Table 2.2.   
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2.6. Regression analysis using machine learning 

Many studies have been performed to understand the behaviour of the fetal ANS 

and gain insight into neurodevelopment and fetal maturation (DiPietro, Costigan, 

Shupe, Pressman, & Johnson, 1998; DiPietro et al., 2015; Schneider et al., 2018). 

Multiple factors are assumed to contribute to the development of the fetal ANS, 

but the actual factors involved and how they interact remain to be established 

(DiPietro et al., 2015; Samuelsson et al., 2010; Young, 2002, 2006). Studies using 

fetal HRV indices themselves are now increasingly adopting machine learning. For 

example, Random Forest, an ensemble tree-based method, was used in the 

assessment of fetal maturation (Tetschke, Schneider, Schleussner, Witte, & Hoyer, 

2016). In another study, Support Vector Machine was used for detecting fetal 

distress (Warmerdam et al., 2018). 

 

Regression analysis is an approach for modelling the relationship between a 

continuous response and another set of regressor variables (also called 

independent variables). A regressor can be one continuous variable (known as 

single regression) or more variables (known as multiple regression). In a complex 

system like fetal ANS, the outcome most likely depends on multiple input 

variables. We conducted multiple regressions to examine whether fetal HR (as 

proxy of fetal ANS) is a function of multiple factors.  

 

Specifically, we used a machine learning approach to relate various maternal 

factors with the fetal HR to obtain insight into the possible factors driving fetal 

ANS behaviour. To avoid overlooking factors that might contribute to the ANS 

development, we included several maternal anthropometric parameters (for 

example, height and age) at the beginning of the analysis and then excluded the 
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factors that did not contribute to the model. The hypothesis was that the fetal 

ANS, operationalized as fetal HR, can be represented with a non-linear model and 

is driven by multiple maternal factors (for example, MAM and maternal ANS). The 

following techniques with non-linear functions were deemed as potentially 

beneficial and were applied: Random Forest and Support Vector Machine. Thus, 

this regression analysis sought to extract patterns from multiple maternal factors 

that are potentially useful for characterizing fetal ANS. The findings can provide 

knowledge about potential factors involved in the complex ANS process to better 

understand the developmental programming of the fetal ANS and its relationship 

with the weight at birth. 

 

In designing a model of fetal ANS, several supervised learning algorithms were 

used to perform the regression analysis. The workflow for building regression 

model of fetal HR is shown in Figure 2.7. The modelling, tuning and prediction for 

each algorithm was applied using the R “caret” package (M. Kuhn, 2008; Max Kuhn 

& Johnson, 2013). Caret, short for “Classification and Regression Training” is a 

streamline of multiple tools for modelling processes, including data splitting, 

feature selection and prediction.  

 

2.6.1. Data splitting and feature selection 

The subsamples containing 104 cases were included in the regression analysis. 

Testing the model on the unseen data will ensure that the model makes an 

unbiased prediction (James, Witten, Hastie, & Tibshirani, 2013; M. Kuhn, 2008). As 

an initial step, we randomly partitioned the dataset into two parts; “Training 

dataset” and “Testing dataset”. The training dataset is 70% of the data that were 

used for model training, evaluation and tuning (n = 73). The remaining 30% of the 
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data is the testing dataset (n = 31). The testing dataset was used for testing the 

prediction performance of the models. We used the function called 

“createDataPartition” in the R caret package (M. Kuhn, 2008) to perform the 

random splitting of the testing and training dataset.  

 

 

Figure 2.7 Workflow of the machine learning approach for building a regression model of 

fetal heart rate  

 

For the analyses, 11 clinical variables (pre-pregnancy BMI, maternal weight gain, 

maternal insulin sensitivity, maternal fasting glucose, maternal fasting insulin, 

gravidity, parity, maternal age, maternal height, gestational age during the 

measurement and fetal gender) and 8 maternal HRV variables (mean HR, SDNN, 

RMSSD, LF, HF, LFn, HFn and LF/HF) were included as regressors on fetal HR. 
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Abbreviations for descriptions of each variable are provided in Table 2.3. The 

model was trained according to three sets of features: 

1. Clinical variables consist of 11 features (upper part of Table 2.3).  

2. Maternal HRV consists of 8 HRV features (lower part of Table 2.3). 

3. Combined clinical/maternal HRV consists of 19 features. 
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2.6.2. Machine learning algorithms 

The Decision Tree, Random Forest (RF) and Support Vector Machine (SVM) 

algorithms were utilized to find one that best fit the data. The main concept of 

each algorithm is described in this section.  

 

Decision tree. Decision tree, introduced by Breiman, builds classification or 

regression models in the form of a tree structure (1984). The algorithm partitions 

a dataset into subsets through recursive partitioning. The partitioning process 

starts with a binary split and continues until no further splits can be made. The 

final result is a tree with various branches of variable lengths, called decision 

nodes and leaf nodes (also known as terminal nodes). The topmost node in a tree 

is a decision node (also known as a root node). It corresponds to the best predictor 

and has two or more branches. A leaf node contains a small subset of observations 

that represents a classification. Each leaf node can be presented as an “if-then” 

rule, and this makes the tree interpretable. For regression, the algorithm select the 

partition to minimize sum of squared error (James et al., 2013). As models with 

small trees are easier to interpret and produce decisions faster than large trees, 

the depth of the tree should be controlled (James et al., 2013). The regression tree 

was implemented using the “rpart” package provided within the R caret package 

(M. Kuhn, 2008; Therneau, Atkinson, & Ripley, 2019). 

 

Random forest. Random forest (RF) is a tree-based method that combines many 

decision trees into a single model. Individual predictions made by decision trees 

may not be accurate, but the predictions can be improved using combined decision 

trees; thus, the name “Random Forest” (James et al., 2013). The technique was 

created by Breiman (2001) and has a powerful performance in comparison to other 



 
2  Ma t e r i a l  a nd  m e th ods                       |  31 

 

supervised learning methods (Lavecchia, 2015; Strobl, Malley, & Tutz, 2009). In 

addition, RF also provides a measure of the variable importance of each feature 

(Breiman, 2001). Especially in clinical research, this feature importance has been 

widely used as a selection tool to remove features that contribute less in the 

prediction process (Hapfelmeier & Ulm, 2013; Kursa, 2014; Touw et al., 2019). This 

is important because, in machine learning, a higher number of features in a model 

often leads to overfitting (Zhang & Ma, 2012). Therefore, RF is suitable due to its 

increased accuracy and its ability to overcome overfitting problems (James et al., 

2013). Each decision tree in the forest considers a random subset of input features 

in making predictions (Breiman, 2001). This increases diversity in the forest, 

leading to more robust overall predictions. For regression, the RF is formed by 

growing trees depending on a random vector of numerical values, and it takes an 

average of all the individual decision tree estimates (Zhang & Ma, 2012). To 

implement the RF algorithm, the package “randomForest” within the R caret 

package (M. Kuhn, 2008; Liaw & Wiener, 2018) was used with ntree = 1000 (ntree 

is the total number of trees in each forest) and mtry = default value (mtry is total 

number of randomly selected variables for each tree). The default value of mtry 

for regression is the total number of features divided by 3.  

 

Support vector machine. The goal of the support vector machine (SVM) algorithm 

is to find an optimum boundary that separates data points of one class from the 

other class (James et al., 2013). It is mainly used in classification problems, but for 

the case of regression, similar to the classification, it optimizes the generalization 

bounds given for regression (James et al., 2013). The boundary is known as a 

“hyperplane”. If the data are linearly separable with 2 dimensions, the best 

hyperplane is a straight line with the largest distance between two nearest data 



 
32  |    Ma t e r i a l  an d  me t ho ds  

 

points from either class. The distance between the hyperplane and the nearest data 

point from either set is known as a “margin”. These two data points, also known 

as “support vectors”, are the most critical elements, since the optimum hyperplane 

depends on their positions for dividing the two classes. For nonlinearly separable 

data, SVM transforms the data into a higher dimensional space where a hyperplane 

can be formed to separate the two classes. This transformation of data into a 

higher dimension is known as kernelling (James et al., 2013). Regression analysis 

using SVM was performed using Radial Basis Function kernel from the “kernlab” 

package provided in the R caret package (Karatzoglou, Smola, Hornik, & 

Karatzoglou, 2018; M. Kuhn, 2008; Schölkopf & Smola, 2001).  

 

2.6.3. Model training and validation  

Two metrics were used to evaluate the model performance: the mean absolute 

error (MAE) and the root mean squared error (RMSE). The MAE is the average of 

the absolute differences between predicted values and actual values. The formula 

for this metric is: 

MAE =  
1

𝑛
 ∑  |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

where 𝑦𝑖 is the 𝑖𝑡ℎ actual outcome in the training dataset, 𝑦̂𝑖 is the model prediction.  

 

The RMSE is the average of the squared differences between predicted values and 

actual values. It can be obtained using: 
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RMSE =   √
1

𝑛
∑  (𝑦𝑖 −  𝑦̂𝑖)2

𝑛

𝑖=1

 

 
Using the linear regression model as a baseline and based on the value of RMSE 

and MSE, we compared each model performance with the linear model.   

 

Due to the relatively small sample size for this approach, a robust resampling 

method called “k-fold cross-validation” was applied to maximize the usage of each 

data point (Max Kuhn & Johnson, 2013). The data were randomly partitioned into 

k subsets (k-folds) of approximately equal size. One subset (one fold) is reserved 

for model testing and all other subsets (k-1 folds) are used for evaluating the 

model performance. As suggested by Kuhn (2013), k = 10 was used to minimize 

bias and variance in the error estimation due to the small dataset. The partitioning 

of data was repeated 10 times, which resulted in n = 100 resamples to fit each 

model. The cross-validation error metrics were obtained using the following 

formula: 

𝑀𝐴𝐸𝑘  =  
1

𝑘
 ∑ 𝑀𝐴𝐸𝑖

𝑘

𝑖=1

 

 

𝑅𝑀𝑆𝐸𝑘  =  
1

𝑘
 ∑ 𝑅𝑀𝑆𝐸𝑖

𝑘

𝑖=1

 

 

where 𝑀𝐴𝐸𝑖 and 𝑅𝑀𝑆𝐸𝑖 are each the error of the 𝑖𝑡ℎ fold in the training dataset. The 

function “trainControl” in R caret package was used for setting the parameter of 

cross-validation. The random number generator was reset to a common seed using 
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the “set.seed” function to create the same folds of resampling datasets prior to 

each model fitting.  

 

2.6.4. Model testing, tuning and feature reduction 

The prediction performance of the model was tested using the “predict” function 

in the R caret package (M. Kuhn, 2008). The best model was further improved by 

tuning the model parameters, and the new tuned model was called the “tuned RF 

model”. In order to build a model with a small number of features, the features 

that effectively contributed to the prediction performance were additionally 

evaluated using the “varImp” function to obtain a variable importance score 

(Breiman, 2001; Genuer, Poggi, & & Tuleau-Malot, 2019; M. Kuhn, 2008). The 

variable importance score represents the increment in the sum of the squared 

error from the permutation of each feature (M. Kuhn, 2008). Features with a higher 

variable importance score are more important and make larger contributions to 

the model performance. We referred to the model with a lower number of features 

as the “tuned RF model with reduced features”.  

 

2.7. Statistical analysis 

All statistical analyses were performed with SPSS version 23 (IBM SPSS Statistics, 

NY, USA) and results with a significance level of P < 0.05 were regarded as 

statistically significant. Pearson’s correlations and partial correlations were 

performed to investigate the associations between MAM parameters and maternal 

and fetal HR and HRV. Pearson’s correlations were also performed to test the 

correlation between the predicted and the actual values of fetal HR in the machine 

learning models. A one-way analysis of covariance (ANCOVA) was performed 
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separately for the main factors pre-pregnancy BMI (4 levels), pregnancy weight gain 

(3 levels) and gender (2 levels). A one-way analysis of variance (ANOVA) was 

performed for the machine learning regression models (5 levels). A paired t-test 

was used in the case-control subsample between the matched groups of pre-

pregnancy BMI. Fetal HR and HRV were compared between pre-pregnancy BMI 

groups matched in gestational age, gender and parity. An independent t-test was 

used to compare the effect of fetal gender on fetal HR and HRV. For all analyses, 

except for Pearson’s correlations, the adjusted values with gestational age, gender 

and parity as covariates were reported. Data are presented as mean ± standard 

error of the mean (SEM). Bonferroni-Holm correction was applied for multiple 

comparisons and corrected significance levels were used. To explore the possible 

mediation relationship between MAM parameters and fetal HR, HRV and birth 

weight, a mediation analysis was performed with a simple mediation model using 

the PROCESS macro in SPSS (Hayes, 2017). The significance of mediation effects 

was determined using bootstrapping with 95% confidence intervals (Preacher & 

Hayes, 2008). Figure 2.8 illustrates a general model for testing mediation effects.  
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Figure 2.8 General model for testing mediation effects. Total effect = path c, the effect 

between the predictor and the outcome. Direct effect = path c’, the effect between the 

predictor and the outcome after including the mediator in the model. Indirect effect = path 

ab, is the multiplication between the effect of the predictor and the mediator (path a) 

multiplied by the effect of the mediator and the outcome (path b).  
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Chapter 3 

Results 

 

Section 3.1 presents the descriptive characteristics of study participants, followed 

by the results for the gender effect on fetal HR and HRV in section 3.2. Sections 

3.3 to 3.5 present the main results of the association between fetal HR, HRV and 

maternal weight factors, maternal glucose metabolism and birth weight. An 

overview of the analysis performed for the main results is provided in Table 3.1.  

 
Results in section 3.3, 3.4 and 3.5 presented in this chapter are published as: 

 
 

 

 

 

Mat Husin, H., Schleger, F., Bauer, I., Fehlert, E., Kiefer-Schmidt, I., Weiss, M., Kagan, 

K. O., Brucker, S., Pauluschke-Fröhlich, J., Eswaran, H., Häring, H. U., Fritsche, A. 

and Preissl, H. (2020). Maternal weight, weight gain and metabolism are associated 

with changes in fetal heart rate and variability. Obesity. 
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3.1 Study participants  

In the main sample of 184 subjects, the gestational age ranged between 26 and 38 

weeks (mean ± standard deviation, 30.37 ± 2.91), maternal age was 31.7 ± 5.3 years, 

pre-pregnancy BMI was 23.59 ± 3.96 kg/m2 and weight gain was 0.38 ± 0.21 

kg/week. Neonatal birth weight was 3387.9 ± 440.72 g. Detailed anthropometric 

and metabolic characteristics of the study population (n = 178) and the subsample 

from OGTT participants (n = 104) are depicted in Table 3.2. 
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3.2 Fetal HR, HRV and fetal gender  

When testing the effect of fetal gender as a potential covariate, an ANCOVA using 

gestational age as a covariate revealed a significantly higher fetal HR in female 

than in male fetuses (142.34 ± 0.74 vs. 139.46 ± 0.73 bpm, F(1) = 7.54, P = 0.007). 

The significant difference remained even after birth weight was additionally added 

as a covariate (142.11 ± 0.74 vs. 139.68 ± 0.73 bpm, F(1) = 5.33, P = 0.022). However, 
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fetal gender showed no significant difference with respect to any fetal HRV 

parameter (P > 0.2). When analysing fetal HR and HRV, we therefore included fetal 

gender as a covariate, together with gestational age and parity. 

 

3.3 Maternal weight factors 

3.3.1 Maternal HR, HRV and maternal weight factors 

No association was found between maternal heart parameters and any maternal 

weight factors. Some concerns have been raised that HRV is mainly driven by HR 

(Antelmi et al., 2004; Billman, 2013; Sacha, 2014; Tsuji et al., 1996); therefore, we 

tested the correlation between maternal HR and maternal HRV. This test confirmed 

a significant correlation between the maternal HR and all maternal HRV measures 

(P < 0.001). Further analyses were conducted for maternal HRV by adjusting for 

maternal HR. Even after adjusting for maternal HR, no significant correlation was 

noted between maternal weight factors and maternal HRV as a continuous variable 

(Table 3.4). Consideration of pre-pregnancy BMI and maternal weight gain as a 

group factor revealed no significant differences in maternal HR and HRV. 

Moreover, tests of the relationship between continuous variables revealed a 

negative correlation between pregnancy BMI and maternal weight gain (r = -0.254, 

P = 0.001). 

 

3.3.2 Fetal HR and pre-pregnancy BMI  

The ANCOVA for the four pre-pregnancy BMI groups (covariates: gestational age, 

gender and parity) revealed a significant main effect of pre-pregnancy BMI on HR 

(F(3) = 2.84, P = 0.040, Table 3.3). Post hoc analysis showed that the HR was higher 
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in fetuses of mothers with obesity than in fetuses of mothers with normal weight 

(145.00 ± 1.67 vs. 140.25 ± 0.62, P = 0.040). However, after Bonferroni-Holm 

correction, the differences did not reach significance (P = 0.024). Figure 3.1b shows 

a U-shaped pattern of fetal HR in the different pre-pregnancy BMI groups, with 

lower values in the normal weight group compared to the groups outside the 

normal weight range in both directions. Pre-pregnancy BMI as a continuous 

variable showed no significant correlation with fetal HR (Table 3.4). Image from 

Figure 3.1b has been previously published in Mat Husin et al. (2020). 

 

Given the imbalanced sample sizes for pre-pregnancy BMI groups, with a very 

small sample of underweight (UW) subjects, further analysis was performed on 

matched subsamples in two larger groups: a normal weight (NW) group and a 

combined overweight and obese (OW+OB) group. Forty-nine subjects matched in 

gestational age, gender and parity were included. A paired t-test showed a 

significantly higher fetal HR in the combined overweight and obese group than in 

the normal weight group (142.00 ± 0.83 vs. 139.25 ± 1.04, t(96) = 1.96, P = 0.050). 

The results are shown in Figure 3.1c. We additionally performed an ANCOVA with 

three groups, by excluding the UW group (NW, OW, and OB). The main effect 

remained significant (F(2) = 3.51, P = 0.032). Post hoc analysis showed a 

significantly higher fetal HR in the fetuses of the OB group than in those of the 

NW group (145.00 ± 1.67 vs. 140.29 ± 0.62, P = 0.028), but the difference was not 

significant after Bonferroni-Holm correction (P = 0.084).  

 

3.3.3 Fetal HR and maternal weight gain 

The ANCOVA containing three maternal weight gain groups (covariates: 

gestational age, gender and parity) revealed no significant difference in fetal HR 
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(F(2) = 1.20, P = 0.305, Table 3.3). Maternal weight gain as a continuous variable 

(covariates: gestational age, gender and parity) had a significant negative 

correlation with fetal HR (r = -0.138, P = 0.041, Figure 3.2a, Table 3.4). However, 

after pre-pregnancy BMI was added as an additional covariate, no significant 

correlation was found between maternal weight gain and fetal HR (r = -0.132, P = 

0.083). 

 

3.3.4 Fetal HRV and pre-pregnancy BMI 

The ANCOVA revealed no significant main effect of pre-pregnancy BMI group on 

any HRV parameter (P > 0.2, covariates: gestational age, gender and parity, Table 

3.4). For continuous variables, pre-pregnancy BMI had a positive correlation with 

the HFn component (r = 0.175, P = 0.021), and an inverse correlation with the LFn 

(r = -0.175, P = 0.021) and the LF/HF ratio (r = -0.168, P = 0.026, Figure 3.1, Table 

3.4).   

 

3.3.5 Fetal HRV and maternal weight gain 

The ANCOVA (covariates: gestational age, gender and parity) showed a significant 

main effect of maternal weight gain group on fetal SDNN and absolute LF 

component (SDNN: F(2) = 5.17, P = 0.007; LF, F(2) = 5.28, P = 0.006). Post hoc 

analysis revealed that SDNN and LF were significantly lower in fetuses of mothers 

with high weight gain than in fetuses of mothers with normal weight gain, even 

after Bonferroni-Holm correction (SDNN: 8.64 ± 0.38 vs. 10.34 ± 0.39, P = 0.006, 

after Bonferroni-Holm correction, P = 0.018 ; LF: 24.85 ± 2.65 vs. 36.54 ± 2.77, P = 

0.008, after Bonferroni-Holm correction, P = 0.024). Remarkably, the overall effect 

of the maternal weight gain group on both SDNN and LF were depicted as an 
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inverted U-shaped relationship, with lower values in weight gain lower and higher 

than the recommended range (Table 3.3, Figure 3.2b and 3.2c). Maternal weight 

gain as a continuous variable showed no significant correlation with any fetal HRV 

variable (Table 3.4). Image in Figure 3.2b has been previously published in Mat 

Husin et al. (2020). 
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Figure 3.1 Relationship between fetal HR, HRV and pre-pregnancy BMI. a. Associations 

between pre-pregnancy BMI as a continuous variable and fetal LF/HF, with r as a partial 

correlation coefficient adjusted for gestational age, parity and gender. b. HR differed 

significantly between the different pre-pregnancy BMI groups. This effect was mainly due 

to a difference between the obese and normal weight group and was not significant after 

Bonferroni-Holm correction. A U-shaped pattern appears between pre-pregnancy BMI and 

fetal HRV in overall populations. c. When case-control matched for gestational age, parity 

and gender, HR differed significantly between normal weight and overweight/obese group. 

Data presented are mean ± SEM. HR: heart rate, bpm: beat per minute, BMI: body mass 

index, UW: underweight, NW: normal weight, OW: overweight, OB: obese. Figure 3.1b has 

been previously published in Mat Husin et al. (2020). 

 

                  

        

 b.  c. 

a. 



 
3  R es u l t s                        |  47 

 

 
Figure 3.2 Relationship between fetal HR, HRV and maternal weight gain. a. Associations 

between fetal HR and maternal weight gain, with r as a partial correlation coefficient 

adjusted for gestational age, parity and gender. Significant differences between the b. 

SDNN and c. LF in fetuses of high weight gain mothers and that of normal weight gain 

mothers (significance remained after Bonferroni-Holm correction). An inverted U-shaped 

pattern appears between maternal weight gain and fetal HRVs in overall populations. Data 

presented are mean ± SEM. HRV: heart rate variability, LF/HF: ratio of low frequency to 

high frequency, BMI: body mass index, SDNN: standard deviation of normal-to-normal 

interval, LF: low frequency, ms: milliseconds. Figure 3.2b has been previously published in 

Mat Husin et al. (2020)  

 

 

 

 

 

            

 

 

 

 

b. c. 

a. 
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3.4 Maternal glucose metabolism in the fasting state 

3.4.1 Maternal weight factors and maternal metabolism 

The pre-pregnancy BMI had a positive correlation with maternal fasting glucose 

and insulin (Glucose: r = 0.198, P = 0.042, Insulin: r = 0.536, P = 0.000). As expected, 

pre-pregnancy BMI was negatively correlated with maternal insulin sensitivity (r = 

-0.350, P = 0.000). No significant correlation was observed between any measure 

of maternal fasting metabolism and maternal weight gain (Glucose: r = 0.105, P = 

0.286; Insulin: r = -0.121, P = 0.220; Insulin sensitivity: r = 0.060, P = 0.544). 

 

3.4.2 Maternal HR, HRV and maternal metabolism 

Maternal HR was significantly correlated with maternal fasting insulin (r = 0.252, 

P = 0.010) and insulin sensitivity (r = -0.218, P = 0.026). For maternal HRV 

parameters, HF was negatively correlated with maternal fasting glucose (r = -0.199, 

P = 0.040) and LF/HF had a positive correlation with maternal fasting insulin (r = 

0.193, P = 0.050). As in the previous section for the whole population, further 

analyses were conducted by including HR as covariate to exclude the influence of 

HR on HRV. After adjusting for HR, HF remained significantly correlated with 

maternal fasting glucose (r = -0.215, P = 0.029); however, no significant correlation 

remained between LF/HF and maternal fasting insulin (r = 0.084, P = 0.399). In 

addition, RMSSD and HFn now showed a negative correlation with insulin 

sensitivity (RMSSD: r = -0.203, P = 0.040; HFn: r = -0.228, P = 0.020). LFn was 

positively correlated with insulin sensitivity (r = -0.228, P = 0.020). Table 3.4 

summarizes the correlation results. 
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3.4.3 Fetal HR and maternal metabolism 

As observed for the maternal HR, the fetal HR was significantly correlated with 

maternal fasting insulin (r = 0.241, P = 0.017) and insulin sensitivity (r = -0.236, P 

= 0.020, Figure 3.3a). No significant correlation was observed between fetal HR and 

maternal fasting glucose (r = 0.169, P = 0.097). The correlation results are shown 

in Table 3.4. 

 

3.4.4 Fetal HRV and maternal metabolism 

Maternal fasting insulin had a positive correlation with HFn (r = 0.253, P = 0.012) 

and an inverse correlation with LFn (r = -0.253, P = 0.012). A positive correlation 

was noted between maternal insulin sensitivity and LFn (r = 0.269, P = 0.008), as 

well as LF/HF (r = 0.220, P = 0.030), whereas a negative correlation was observed 

with HFn (r = -0.269, P = 0.008). As pre-pregnancy BMI was shown to be 

significantly associated with maternal insulin sensitivity, the test was repeated to 

control for the influence of pre-pregnancy BMI. The correlation remained 

significant for HFn (r = -0.222, P = 0.031) and LFn (r = 0.222, P = 0.031), but not for 

LF/HF (r = -0.199, P = 0.054). No associations were detected between fetal HRV and 

maternal fasting glucose. The results are presented in Table 3.4. 
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Figure 3.3 Relationship between maternal insulin sensitivity, fetal HR and HRV.                              

a. Associations between fetal HR and maternal insulin sensitivity with r as a partial 

correlation coefficient adjusted for gestational age, parity and gender. b. Fetal HRV 

mediating the association between maternal insulin sensitivity and fetal HR. LF/HF: the 

ratio of low to high frequency, CI: confidence intervals. Figure 3.3b has been previously 

published in Mat Husin et al. (2020)  

 

 

 

 

 

 

 

a. 

b. 



 
3  R es u l t s                        |  51 

 

Fetal HRV mediating the association between maternal insulin sensitivity and 

fetal HR 

We proposed fetal LF/HF as another possible mediator in the association between 

maternal insulin sensitivity and fetal HR. As illustrated in Figure 3.3b, fetal LF/HF 

significantly mediated the maternal insulin sensitivity in predicting fetal HR (ab = 

-10.383, 95% CI [-26.613, -2.369]). The direct relationship between maternal insulin 

sensitivity and fetal HR was significant (c = -49.525, P = 0.020), but was reduced 

and no longer significant after adding fetal LF/HF as the mediator (c’ = -39.141, P 

= 0.065). Image in Figure 3.3b has been previously published in Mat Husin et al. 

(2020). 

 

3.5 Birth weight 

3.5.1 Fetal HR, HRV and birth weight 

Fetal HR was significantly negatively correlated with birth weight (r = -0.187, P = 

0.013). No correlation was observed between any fetal HRV measure and birth 

weight.  

 

Fetal HR mediating the association between fetal HRV and birth weight 

In partial correlation, only fetal LF/HF was significantly correlated with fetal HR (r 

= -0.157, P = 0.039). Here, we tested the possibility of a mediation relationship 

between fetal HR and birth weight via fetal HR. As depicted in Figure 3.4a, a 

significant indirect association was apparent between fetal LF/HF and birth weight 

mediated by fetal HR (ab = 3.668, 95% CI [0.124, 10.470]). The association between 

fetal LF/HF and birth weight was not significant (c = 7.058, P = 0.470), and 
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remained not significant with further reduced effect size, after adding fetal LF/HF 

as the mediator (c’ = 3.390, P = 0.728). 

 

3.5.2 Fetal HR, maternal weight gain and birth weight 

Fetal HR mediating the association between maternal weight gain and birth 

weight 

Based on the inter-correlation between parameters from the results of partial 

correlation, we proposed that maternal weight gain predicts birth weight through 

fetal HR as the mediator. This model, as shown in Figure 3.4b, revealed a 

significant indirect association between maternal weight gain and birth weight, 

through fetal HR (ab = 58.931, 95% Cl [4.809, 159.590]), with a significant 

relationship shown for maternal weight gain predicting fetal HR (a = -5.208, P = 

0.041) as well as for fetal HR predicting birth weight (b = -11.316, P = 0.020). No 

significant relationship was indicated for the total effect between maternal weight 

gain and birth weight (c = 180.908, P = 0.267). The association was reduced after 

adding fetal HR as the mediator (c’ = 121.977, P = 0.453), suggesting that fetal HR 

mediates the relationship between maternal weight gain and birth weight.   
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Figure 3.4 Relationship between maternal weight gain, fetal HR, HRV and birth weight.               

a. Fetal HR mediating the association between fetal HRV and birth weight. b. Fetal HR 

mediating the association between maternal weight and birth weight. CI: confidence 

intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. 

b. 
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3.6 Fetal HR regression models 

In this section, the prediction performance of fetal HR regression models is 

compared by three different set of features: Clinical variables, maternal HRV and 

combined clinical/maternal HRV. Model predictions on the testing dataset are 

examined based on the correlation between the predicted and actual values. The 

prediction performance of the tuned model and the tuned model with reduced 

number of features are then evaluated. The regression performance from the 

results of the cross-validation are examined.  

 

Decision tree: In each set of features, when we trained the regression model with 

the decision tree, the tree did not find a good split and took the average of the 

fetal HR outcome as the predictor. Therefore, we excluded the results from the 

decision tree. The results for the performance of Linear regression (Linear), 

Support Vector Machine (SVM), Random Forest (RF), tuned RF and tuned RF with 

reduced features are reported. 

 

3.6.1 Feature set of clinical variables 

Prediction performance on testing dataset 

The predicted values of the RF model were significantly correlated with the actual 

fetal HR values (r = 0.378, P = 0.036). Other models showed no significant 

correlation between the predicted and the actual fetal HR. Given that the RF model 

showed the prediction of fetal HR closest to the actual fetal HR values, we 

examined the two RF model parameters; mtry and ntree, to find their best values 

to improve the model prediction performance. Using “grid search”, we obtained 
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the best value of mtry = 2, which is the same value used in the original RF model. 

Tuned RF model with ntree = 200 had a lower MAE (Figure 3.5a) and RMSE 

compares with the model using ntree = 1000 (ntree used in the original RF model). 

Therefore, the smaller value of ntree was chosen and the prediction performance 

of the tuned RF model was tested on the testing dataset. The model prediction was 

significantly correlated with the actual fetal HR (r = 0.360, P = 0.049); however, the 

prediction of the original RF was better than the tuned RF model. The reduction in 

the significance level was expected due to the lower number of trees used in the 

tuned RF model in comparison with the original RF model.  This can be seen from 

the cross-validation results as shown in Figure 3.5. The original RF model with 

ntree = 200 had a higher MAE and lower r2 compares with the tuned RF model 

using the same number of trees. For ntree = 1000, the MAE was lower in the tuned 

RF, however the r2 are similar.  

 

To test the model with a smaller number of features, we excluded 2 of the 11 

features with a cut-off of importance score lower than zero: parity and maternal 

height (the importance score is shown in Table 3.7). The model fitting using only 

9 features was repeated on the previously tuned RF model. The prediction 

performance remained significant (r = 0.382, P = 0.034). The prediction results are 

detailed in Table 3.5. The predictions of the three RF based models (RF, tuned RF 

and tuned RF with reduced features) and the linear model are presented in Figure 

3.6.  
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Figure 3.5. Evaluation of clinical variables based model between original RF model and 

tuned RF model from cross-validation.  a. mean values of MAE and b. mean values of r2 

versus number of trees.  

 

Model prediction performance from cross-validation  

The ANCOVA for the five models using clinical variables showed a significant main 

effect on MAE (F(4) = 6.75, P < 0.001. Post hoc analysis revealed a significantly 

lower MAE for all four models; RF (5.16 ± 1.10, P = 0.002), SVM (5.00 ± 1.01, P < 

0.001), tuned RF (5.16 ± 1.10, P = 0.002) and tuned RF with reduced features (5.26 

± 1.13, P = 0.011) than for the linear model (5.75 ± 1.15). All results remain 

significant even after Bonferroni-Holm correction. The cross-validation results are 

shown in Table 3.6. 
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Figure 3.6 Regression using a feature set of clinical variables. Predicted versus actual fetal 

heart rate values using testing dataset for the a. linear model, b. random forest model, c. 

tuned random forest model and d. tuned random forest model with a reduced number of 

features. 

 

3.6.2 Feature set of maternal HRV 

Prediction of the testing dataset and model performance from cross-validation 

No model based on maternal HRV variables showed significant correlation between 

the predicted and actual fetal HR values (Linear: P = 0.853, SVM: P = 0.403, RF: P = 

0.338, Table 3.5). We tuned the RF model using ntree = 100 and mtry = 2 and 

reduced the number of features from 8 to 6 features based on the scores of 

variable importance. Correlations between the predicted and actual fetal HR values 

remained not significant even after the hyperparameter tuning and features 
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reduction (Table 3.5). The ANOVA showed no significant difference of MAE and 

RMSE between the five models (Table 3.6). 

 

3.6.3 Feature set of combined clinical/maternal HRV 

Prediction performance of the testing dataset 

The predicted values of the RF model were significantly correlated with the actual 

fetal HR values (r = 0.376, P = 0.037). Models using linear regression and SVM 

showed no significant correlation between the predicted and the actual values of 

the fetal HR. The prediction results are shown in Table 3.5. We tuned with the RF 

model, which was the model with the best prediction performance. The value of 

the ntree = 100 and mtry = 2 were chosen because they had the lowest RMSE and 

MAE (the original RF model used ntree = 1000 and the same mtry value). When the 

tuned RF model was tested on the testing dataset, we observed that prediction was 

significantly correlated with the actual fetal HR (r = 0.397, P = 0.027). The 

prediction performance was better than the original RF model. In an attempt to 

improve the model prediction performance, we reduced the number of features 

from 19 to 13 based on the scores of variable importance. A zero cut-off of the 

importance score was used for feature reduction (Table 3.7). We then performed 

the model fitting again on the previously tuned RF model. The prediction was no 

longer significantly correlated with the actual fetal HR (r = 0.312, P = 0.088). 

Predictions of the three RF based models and the linear model are presented in 

Figure 3.7.  
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Model performance from cross-validation 

An ANCOVA revealed a significant main effect of MAE and RMSE between the 

models of the combined clinical/maternal HRV feature set (MAE: F(4) = 12.51, P < 

0.001 , RMSE: F(4) = 5.64, P < 0.001). Post hoc analysis showed that the MAE was 

significantly lower for all models (all P < 0.001) compared to the linear model. The 

RMSE values were significantly lower for all models (all P < 0.005) than for the 

linear model. All results remained significant even after Bonferroni-Holm 

correction. The results of cross-validation are listed in Table 3.6.  

 

 

Figure 3.7 Regression using a combined clinical/maternal HRV feature set. Predicted versus 

actual fetal heart rate values using testing dataset for the a. linear model, b. random forest 

model, c. tuned random forest model and d. tuned random forest model with a reduced 

number of features. 
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Chapter 4 

General discussion 

4.1. Discussion of the main findings 
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Changes in pre-pregnancy BMI, maternal weight gain and maternal insulin 

sensitivity alter fetal HR and HRV 

 
Our results provide evidence supporting our first hypothesis that variations in pre-

pregnancy BMI, weight gain during pregnancy and maternal insulin sensitivity can 

alter the development of fetal ANS. Table 4.1 summarizes the findings. We found 

a significant effect for the four pre-pregnancy BMI groups with regard to fetal HR. 

Normal weighted mothers had the lowest fetal HR. However, the point should be 

borne in mind that the normal fetal HR is in the range of 120 to 160 bpm (Pildner 

von Steinburg et al., 2013). Although the mean HR in the fetuses of mothers with 

obesity was still in the normal range (the mean fetal HR is 142 bpm), the value was 

higher than in the fetuses of their lean counterparts. The fetuses in the 

underweight group showed the same pattern, albeit not significant, which is 

possibly due to the small sample size in the underweight group. This finding 

indicates a U-shaped relation, suggesting that pre-pregnancy BMI should be in the 

normal range to prevent alterations in fetal HR. Furthermore, with regard to 

maternal weight gain, fetal HRV was lower in fetuses of mothers with high 

maternal weight gain than in those who gained weight within the recommended 

range, such that the SDNN was reduced by 16.5 percent. Although the maternal 

weight gain group was computed according to pre-pregnancy BMI, we still 

observed a reduction in HRV in fetuses of mothers with high maternal weight gain. 

This is in contrast to a recent finding by Voegtline et al. (2016), in which maternal 

weight gain was reported to have no predictive power on fetal HR and fetal HRV 

beyond pre-pregnancy BMI. This reduction in fetal HRV in mothers with high 

weight gain is an indicator of an adverse effect on fetal ANS, since reduced fetal 

HRV is also observed in IUGR (Nijhuis et al., 2000) and GDM fetuses (Fehlert et al., 

2016).  
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In general, the lower the pre-pregnancy BMI, the more weight gain during 

pregnancy is expected, and the ranges of a recommended weight gain for women 

with normal pre-pregnancy BMI are higher compared with women with obesity. 

Therefore, the observed relationship between pre-pregnancy BMI and fetal HR 

versus the association between maternal weight gain and fetal HRV is consistent 

with the previously stated increased HR in women with obesity (as they probably 

had a lower weight gain during pregnancy). Therefore, an increase in pre-

pregnancy BMI is associated not only with fetal ANS changes but also with 

increased maternal weight gain, even in women with normal pre-pregnancy BMI. 

Different, potentially adverse intrauterine environments—whether pre-pregnancy 

underweight or obesity—as well as inadequate or excessive maternal weight gain 

may therefore result in altered trajectories of normal ANS development. HR and 

HRV alterations are driven by sympathetic and parasympathetic activity. The U-

shaped and the inversed U-shaped curves in the effect of pre-pregnancy BMI and 

maternal weight gain could indicate immaturity of fetal ANS, implicating an 

anomalous ANS development in less favourable intrauterine environments.  

 

In healthy fetal development, fetal HR decreases gradually with advancing 

gestational age (Pildner von Steinburg et al., 2013; Serra et al., 2009). Maturation 

of the parasympathetic vagal tone commences at approximately 31 weeks of 

gestation and continues after birth (Nederend, Jongbloed, de Geus, Blom, & ten 

Harkel, 2016). This stronger parasympathetic influence causes a reduction in HR 

and an increase in HRV during gestation (Pildner von Steinburg et al., 2013; 

Schneider et al., 2009; Van Leeuwen et al., 2013; Wakai, 2004). Higher fetal HR and 

lower fetal HRV can be due either to an increase in sympathetic regulation or to a 
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decrease in parasympathetic regulation. Since the majority of our study population 

was investigated before 31 weeks of gestation (62%, mean gestational age 30.4 

weeks, ranging between 26 and 38 weeks), the observed increase in fetal HR in 

mothers with obese/overweight pre-pregnancy BMI is most probably influenced by 

activity in the sympathetic rather than in the parasympathetic nervous system. In 

addition, the observed effects on fetal HRV are seen in measures associated with 

both sympathetic and parasympathetic activity, but not in those associated 

primarily with parasympathetic activity. This indicates that the observed 

alterations are very probably the result of enhanced sympathetic nervous system 

activity.  

 

In addition, reduced maternal insulin sensitivity was indirectly associated with an 

increased fetal HR through fetal HRV, suggesting that the fetuses of healthy 

mothers with decreased insulin sensitivity are already exposed to a less favourable 

metabolic environment. As of now, only one study has studied the relationship 

between fetal heart parameters and maternal insulin sensitivity, but no association 

was observed (Dewi et al., 2017). These researchers suggested that their sample 

size (44 samples) was too small to show an effect. The correlation analysis in the 

present work revealed that decreased maternal insulin sensitivity and increased 

maternal fasting insulin are associated with an increased maternal HR and fetal 

HR. Furthermore, HR is higher in mothers with GDM than in normoglycemic 

mothers (Fehlert et al., 2016), and HR was higher in the fetuses of mothers with 

GDM both during the fasting state and after an oral glucose load. At 120 minutes 

after a glucose load, the SDNN, as the measure of overall variability, was lower in 

fetuses of mothers with GDM. The researchers also suggested that the decrease in 

the fetal HR in fetuses of mothers with GDM might be a reflection of fetal insulin 
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resistance (Fehlert et al., 2016). Based on these observations, the increased 

maternal and fetal HR associated with lower maternal insulin sensitivity and 

higher maternal fasting insulin already seen in normoglycemic mothers could be 

related to higher sympathetic activity in both mother and fetus. 

 

Fetal HR mediates the relationship between maternal weight gain and birth 

weight 

The role of MAM influences and fetal ANS on neonatal outcome, specifically 

whether fetal HR is mediating the relationship between maternal weight gain and 

birth weight, would be interesting to know. The absence of a linear association 

between maternal weight gain as a continuous variable and birth weight indicated 

that maternal weight gain has no association with the birth weight. However, 

mediation analysis revealed a significant effect of maternal weight gain on birth 

weight after adding fetal HR as the mediator. In other words, an increase in 

maternal weight gain associated with an increase in birth weight, but indirectly 

through the decrease in fetal HR. Based on the birth weight guidelines from Erich-

Saling Institute of Perinatal Medicine (2013), the majority of fetuses in this study 

have birth weights within the normal recommended range (97.8%, mean birth 

weight 3388 gram, recommended range is from 2500 to 4499 gram). The mean 

fetal HR (96.7 %, mean fetal HR 140.9 bpm) was also within the normal range 

(Pildner von Steinburg et al., 2013). Nonetheless, the fetal HR mediated the 

association between maternal weight gain and birth weight. In an impaired 

environment, the fetal ANS control may adapt to compensate for the changes in 

metabolism, perhaps through alterations in the fetal HR. This would appear to 

indicate that high sympathetic nervous system activity in fetuses may be involved 

in the fetal growth that is reflected in birth weight. Additionally, this finding 
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provides further supporting evidence that an immature ANS in the fetus may be 

an important key linking the increased birth weight and large-for-gestational-age 

offspring seen in women with excessive maternal weight gain. In the second 

mediation model on birth weight, besides maternal weight gain, the fetal HR also 

mediates the relationship between fetal HRV and birth weight. Birth weight is 

assumed to also have an optimal range and has a U-shaped relationship with fetal 

HR.  

 

Pre-pregnancy BMI is the driving factor of fetal HR 

The regression analysis using the advanced machine learning method showed that 

pre-pregnancy BMI has a major impact on the fetal HR and the impact was stronger 

than the maternal weight gain during pregnancy. Focusing first on the technical 

aspects of model performance, the results from both the clinical variables and the 

combined clinical/maternal HRV features show that the RF model outperforms 

multiple linear regression. The models successfully predicted the fetal HR as 

representing the complexity and dynamics of fetal ANS. Even clinical features 

alone—including multiple clinical variables such as gestational age, maternal 

weight and metabolic measures—were able to predict fetal HR.  

 

Given the best prediction performance of RF in the two feature sets (clinical 

variables and combined clinical/maternal HRV), model tuning was performed by 

choosing the best tree depths for making the prediction. The tuned model in the 

combined clinical/maternal HRV based model with a smaller number of trees 

produced an even better prediction than the clinical variable based model. By 

limiting the number of trees to 100 (which is the best total number of branches 

grows after each split), the forest is less deep, thereby increasing the model 
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generalization. We further reduced the complexity of the model by choosing a cut-

off of zero for the importance score to filter out the less important features. With 

only nine features, the clinical variables-based model achieved a higher accuracy 

than the model with thirteen features in the combined clinical/maternal HRV.  

 

During training, the model learned the patterns in the training dataset to make 

predictions, including the data that do not contribute to the predictive value. Even 

though in the cross-validation the SVM showed a similar performance to that of 

the RF model, the correlation results between prediction and the actual fetal HR 

values indicated that the RF model could describe the fetal ANS better than the 

SVM model. The RF technique probably produced a prediction closest to actual 

values compared to other assessed techniques because of the generalization 

created from the random sampling of subset and the selection of the features to 

make the split at each tree node. In several cross-validation folds using the 

decision tree algorithm, fetal HR values in the test subset were not within the range 

of the training set. In these cases, the decision tree could not find the best split 

and thus, took the average of fetal HR as the prediction outcome. The error metrics 

could not be calculated for these particular folds because the variance of the 

prediction becomes zero.  

 

From the ranking of the variable importance score, pre-pregnancy BMI has the 

largest impact on the prediction performance of the fetal HR models (Table 3.5). 

Maternal weight gain appeared to be among the least important features, with a 

negative importance score. After testing for collinearity, only maternal age, pre-

pregnancy BMI and gestational age had significant correlations with maternal 

weight gain, but the correlations were low (all parameters had r < 0.25). Moreover, 
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the RF algorithm produces diverse sets of trees and automatically removes the 

interaction and association between the features through the random sampling of 

features in the subunit of trees (Strobl et al., 2009). Therefore, the low importance 

of maternal weight gain in the model may not be due to collinearity between the 

included variab21les in the models. A possible reason could be that, among the 

MAM factors, a factor before pregnancy has a stronger influence than that factor 

during pregnancy in predicting the fetal HR. The importance of weight before 

pregnancy compared to weight during pregnancy has been reported in many 

studies (Kuzawa, 2005; Van Lieshout, Taylor, & Boyle, 2011). Among the maternal 

HRV features, RMSSD appeared to have the greatest on the fetal HR and was among 

the top features in the combined clinical/maternal HRV model. However, no 

maternal HRV-based model was able to predict the fetal HR even after the model 

tuning. When we combined maternal HRV with clinical features (clinical/maternal 

HRV), the model prediction performance became similar to the clinical variables 

based model. By integrating clinical variables like pre-pregnancy BMI, gender and 

maternal fasting insulin in the fetal HR model, we were able to predict fetal HR 

with high accuracy, even without maternal HRV. Furthermore, this finding also 

showed that maternal HRV features alone play a less important role than the MAM 

factors in the development of fetal ANS.  

 

Therefore, the RF model using the nine most relevant features can be concluded 

to best describe the fetal HR. Fetal HR is thus predicted by the following variables: 

pre-pregnancy BMI, maternal fasting insulin, insulin sensitivity, gravidity, maternal 

age, maternal fasting glucose, gestational age and maternal weight gain, with pre-

pregnancy BMI being the strongest influence on the fetal HR. From the ranking of 

variable importance, maternal glucose metabolism (fasting insulin and insulin 
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sensitivity) also has an important influence on the fetal HR as a maternal metabolic 

factor during pregnancy.  

 

Fetal HR differs between genders 

Female fetuses had a higher HR than the male fetuses, but no gender difference 

was detected for fetal HRV. The effect of gender on fetal HR appeared to be in line 

with some data shown previously (DiPietro et al. (2015), but other studies have 

found no gender differences in fetal HR (Bracero et al., 2016; Druzin et al., 1986; 

Fleisher et al., 1997; Genuis et al., 1996; Lange et al., 2005; Ogueh & Steer, 1998). 

Small sample sizes or different inclusion criteria might be the reasons for the 

inconsistencies. The significant gender difference in fetal HR might reflect 

variations in behavioural and neurological development by gender during 

gestation (Buss et al., 2009). Thus, in all fetal HR and HRV analyses of this work, 

gender has been included as a covariate, together with gestational age and parity. 

This additional observation of the gender related to fetal HR is important, as it 

would influence findings in future studies. Hence, taking gender into account as a 

covariate might be relevant in future fetal HR and HRV analyses. 

 

4.2. Interconnections between maternal weight, weight 

changes and metabolism, fetal ANS and birth weight 

 
To summarize and connect the main findings, Figure 4.1 presents the relationships 

connecting MAM variables, fetal ANS and birth weight.  
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Figure 4.1 Fetal ANS and its association with pre-pregnancy BMI, maternal weight gain, 

maternal insulin sensitivity and birth weight. Only associations from correlation and 

mediation analyses are included in the overall relationship. 

 

The relationships shown in the figure indicate two paths linking the factor before 

pregnancy (pre-pregnancy BMI) and the factors during pregnancy (maternal insulin 

sensitivity and maternal weight gain), which both connect to the birth weight 

through the fetal ANS. The first path, “Path ISI”, begins with the association of pre-

pregnancy BMI and the maternal insulin sensitivity, through fetal HRV as well as 

fetal HR and finally birth weight. Through path ISI, for example, a mother with 

obesity and lower insulin sensitivity (i.e. insulin resistance) would probably have 

an associated lower fetal HRV and therefore might also show an association with 

higher fetal HR. This overall relationship might play a role in the decreased birth 

weight. The second path, “Path MWG”, begins with the relationship between pre-

pregnancy BMI and maternal weight gain, as well as fetal HR and finally birth 
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weight. For the path MWG (i.e. a mother with pre-pregnancy obesity), the lower 

weight gain might be associated with an increase in the fetal HR and, at the end, 

might probably be associated with a decrease in the birth weight.  

 

Interestingly, an increase in the pre-pregnancy BMI through both paths was 

associated with signs of adverse fetal ANS, as indicated by an increase in the fetal 

HR and/or a decrease in the fetal HRV. However, both paths show a low birth 

weight as the outcome from a mother with pre-pregnancy obesity. This contrasts 

with the evidence seen among mothers with pre-pregnancy obesity associated with 

offspring obesity (Leonard et al., 2017; Mamun et al., 2014; Nehring et al., 2013). A 

point that should be taken into account is that the majority of fetuses in this 

sample had birth weights within the normal recommended range (97.8%, mean 

birth weight 3388 g, the recommended range is from 2500 to 4499 g). We 

suspected that the relationship between fetal HR and birth weight is not linear.  

 

Combining the interconnections and the findings using machine learning 

approach, the path ISI appears to play a more important role in the programming 

of the fetal ANS by pre-pregnancy obesity compares to the path MWG. Pre-

pregnancy BMI, followed by maternal insulin sensitivity, are the key factors 

associated with fetal ANS, while maternal weight gain is the least important factor. 

Maternal weight gain appeared to be the least important factor not only in the 

winning model (clinical variables) but also in the other models combining all 

features (clinical/maternal HRV) as well. A longitudinal study across pregnancy 

showed that the factor before pregnancy is more important than the factor during 

pregnancy in representing the intrauterine environment (Hellmuth et al., 2017). 

Furthermore, Gluckman pointed out that nutrient-dependent signalling (such as 
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insulin-like growth factor) responds to slow changes in maternal metabolism 

rather than to acute changes (2010). Maternal long-term environmental signalling 

also appears to be an important indicator for the developing fetus (Kuzawa, 2005).  

 

In the overall relationship, exposure of fetal ANS to over-nourished condition like 

high pre-pregnancy obesity, low maternal weight gain and low maternal insulin 

sensitivity, during fetal development associated with the development at birth - a 

reduced birth weight. The observed relationship in our findings (as shown in 

Figure 4.1) appeared to match with the model proposed by Kuh, Ben-Shlomo, 

Lynch, Hallqvist, and Power (2003), “critical period model”. The researchers 

proposed the model to explain the development of adult disease originating from 

exposure of the structure/function of organs and tissues/body systems during a 

sensitive period of early development. This model served as a basic concept of the 

DOHaD hypothesis (Gluckman & Hanson, 2006; Gluckman et al., 2010). 

 

Programming of fetal ANS related to pre-pregnancy obesity and maternal 

insulin resistance  

To our knowledge, no previous study has analysed the relationship between fetal 

HR and pre-pregnancy BMI and maternal insulin sensitivity in healthy pregnant 

mothers. Studies in offspring of mothers with obesity showed that pre-pregnancy 

BMI is associated with higher insulin levels (Gaillard et al., 2014), but no effect was 

found on the child’s resting HRV (Gademan et al., 2013). The mechanism that could 

explain how pre-pregnancy BMI and maternal glucose metabolism may lead to 

changes in fetal HR is not known. The significant association observed between 

maternal HR and maternal insulin sensitivity and maternal fasting insulin (as 

shown in Chapter 3), and the maternal RMSSD appeared as a second important 
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factor after pre-pregnancy BMI in the fetal HR regression model with combined 

clinical/maternal HRV features. This suggests that maternal ANS probably plays 

some role in the overall relationship connecting pre-pregnancy BMI, maternal 

insulin sensitivity and the fetal ANS. Exposure to pre-pregnancy obesity together 

with insulin resistance may program fetal ANS during early development, thereby 

possibly interrupting the normal fetal metabolic environment. According to the 

Pedersen hypothesis, fetal growth is related to a higher transfer of glucose through 

the placenta, thus stimulating the release of insulin in the fetus and resulting in 

fetal macrosomia (P. M. Catalano & Hauguel-De Mouzon, 2011; Pedersen, 1971). A 

higher glucose level in pre-pregnancy obese and insulin resistant mothers causes 

the transportation of glucose through placental barrier to the fetus (Vogt et al., 

2014). The ANS is responsible for regulation of energy and glucose homeostasis 

(Marino, Xu, & Hill, 2011); therefore, an increase in the  sympathetic activity (i.e. an 

increase in the fetal HR) might be a mechanism for adaptation to the higher glucose 

environment. In turn, it possibly leads to an increase in insulin secretion in the 

fetus and may interrupt the normal fetal metabolic development. 

 

4.3. Potential mechanism and implication 

Hyperglycemia-hyperinsulinemia 

In healthy pregnancies, the basal fetal HR increases and the fetal HRV decreases 

in a high glucose environment after glucose ingestion (Gillis, Connors, Potts, 

Hunse, & Richardson, 1992; Weissman, Goldstick, Geva, & Zimmer, 2003; Zimmer, 

Paz, Goldstick, Beloosesky, & Weiner, 2000). The assumption made in the present 

study is that the observed changes in fetal HR and HRV are due to an excess of 

glucose in the maternal circulation, which then elevates the glucose transport 
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across the placenta, even in normoglycemic mothers who were obese pre-

pregnancy. The increase in sympathetic activity could also be a fetal response to 

stress imposed by high glucose. According to the Pedersen hypothesis, 

hyperglycemia in mothers can cause an increase in fetal insulin secretion, thus 

resulting in fetal hyperinsulinemia (Pedersen, 1971). Cohen showed 

hyperinsulinemia from insulin infusion leads to a high fetal HR in fetal lambs; this 

may indicate a direct effect of insulin on the peripheral sympathetic nerves (Cohen, 

Piasecki, Cohn, Susa, & Jackson, 1991). Human studies in healthy adults also 

support this assumption, as acute insulin stress exerted by a hyperinsulinemic 

euglycemic clamp has been shown to reduce parasympathetic influence and 

increase sympathetic activity (Bellavere et al., 1996; Van De Borne, Hausberg, 

Hoffman, Mark, & Anderson, 1999). Fetal hyperinsulinemia may therefore play 

some role in the increased fetal HR in the fetuses of mothers with pre-pregnancy 

obesity. A recent suggestion has been made that insulin resistance and BMI, rather 

than the insulin level, are the main influencers of autonomic cardiac control in 

adults (Valensi, Chiheb, & Fysekidis, 2013). Whether this also is similar in the 

offspring of mothers with obesity remains to be investigated.  

 

Delayed ANS maturation 

The progress of the normal fetal ANS maturation is reflected by a decrease in fetal 

HR and an increase in fetal HRV with advancing gestation, indicating lower 

sympathetic activity and higher parasympathetic activity (Pildner von Steinburg et 

al., 2013; Serra et al., 2009; Van Leeuwen et al., 1999; Wakai, 2004). The current 

findings show that changes in nutrition in utero in relation to MAM factors alter 

the autonomic fetal cardiac activity. In particular, increases in pre-pregnancy BMI 

and decreases in maternal insulin sensitivity are associated with an increased fetal 
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HR and decreased fetal HRV. The alteration of fetal HR and HRV in mothers with 

pre-pregnancy obesity and insulin resistance might indicate a disturbance in the 

normal trajectory of fetal ANS maturation. Considerable data support this 

hypothesis. For example, a recent fMEG study showed that GDM resulted in a high 

fetal HR during the fasting state and a low fetal HRV postprandially during OGTT 

(Fehlert et al., 2016). Other studies have reported that GDM was associated with a 

high baseline fetal HR (Costa et al., 2009; Sirico et al., 2019). Conversely, 

inadequate intrauterine nutrition in IUGR fetuses elicited a similar response of the 

fetal HR and HRV (Bekedam et al., 1987; Nijhuis et al., 2000; Schneider et al., 2006). 

The present findings are in agreement with previous observations of lower fetal 

HRV in mothers with pre-pregnancy obesity (Voegtline et al., 2016). Therefore, we 

suspect that excessive intrauterine nutrition due to changes in pre-pregnancy BMI 

and insulin sensitivity may have important implications in the maturation of the 

fetal ANS. As the fetal ANS can be programmed during fetal life, fetal adaptation 

to these nutritional changes during development may disturb the normal 

maturation of the ANS.  

 

Insulin resistance in fetuses of mothers with pre-pregnancy obesity – a possible 

missing mediator in the overall relationship  

Women with obesity enter pregnancy with higher insulin resistance than normal 

weight women and, due to pregnancy, the insulin resistance further increases with 

gestational age (P. Catalano & deMouzon, 2015; P. M. Catalano, Huston, Amini, & 

Kalhan, 1999). The combination of pregnancy and obesity generates a 

dysregulation in metabolism that leads to a pathological state of insulin resistance 

in mothers. In the proposed inter-relationship (as shown in Figure 4.1), mothers 

with pre-pregnancy obesity and in the state of increased insulin resistance have 
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fetuses with an altered fetal ANS. An alteration in the fetal ANS could also be 

associated with the insulin resistance in the fetus that is missing in the overall 

relationship. This suggestion is supported by the Landsberg hypothesis, which 

proposes that insulin resistance in obese individuals with sympathetic stimulation 

is a mechanism for limiting weight gain, but it leads to an increase in blood 

pressure (Landsberg, 1990, 2001). Specifically, the hypothesis states that “insulin 

resistance serves to stabilize body weight by limiting fat stored in adipose tissue 

as well as via the sympathetic nervous system, driving thermogenic mechanisms 

to restore energy balance”. The fetuses of mothers with pre-pregnancy obesity in 

the proposed relationship who appeared to have lower birth weights agree with 

this hypothesis. In another observation related to this work, Catalano reported 

that infants of mothers with obesity have higher peripheral insulin resistance (P. 

M. Catalano et al., 2009) and the increased fetal insulin resistance was closely 

associated with increased neonatal body fat mass; however, they did not test the 

association with the birth weight. Whether the alteration in fetal ANS is a 

mechanism to prevent weight gain (as proposed by Landsberg) and/or leads to 

higher fat mass (as observed by Catalano) remains to be established. 

 

Furthermore, recent findings have suggested that insulin resistance in the brain 

controls not only the body weight, but also glucose metabolism (Hallschmid & 

Schultes, 2009). Insulin resistance in the fetal brain has been proposed as the cause 

of the alteration seen in fetal CNS in insulin-resistant mothers (Linder et al., 2014; 

Linder et al., 2015). A study of adults with obesity showed that insulin apparently 

influenced parasympathetic heart activity and hypothalamus activation, 

suggesting an action of insulin in the brain (Heni et al., 2014). Alterations in 

autonomic cardiac function that precede insulin resistance have been found in 
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adults, and this might also be true in fetuses (Chang et al., 2010; Masuo, Mikami, 

Ogihara, & Tuck, 1997; Valensi et al., 2013). Based on this evidence and many 

theories, a possible explanation is that fetal insulin resistance, as well as fetal fat 

mass, could be the missing factors in the proposed relationship that links the 

changes in the fetal ANS towards sympathetic predominance. The state of insulin 

resistance in the fetus as either a cause or a consequence of the fetal ANS alteration 

is a subject for future investigation.  

 

4.4. Strengths, limitations and suggestions for future 

research 

 
One of the strengths of this work is the use of a unique fMEG device that can non-

invasively measure the heart signals of the fetus (Preissl et al., 2005), thereby 

providing a window into fetal ANS development. The fetal HRV recorded with fMEG 

can be used to monitor fetal ANS, as has been demonstrated in previous studies 

(Brändle et al., 2015; Fehlert et al., 2016). The present work confirmed that the 

fMEG device is an excellent tool for detecting changes in fetal ANS associated with 

maternal metabolism in normoglycemic pregnancies, concerning the potential 

effect of intrauterine metabolic environment on fetal programming.  

 

The analysis included the use of mediation analysis, which is more complex than 

linear regression and allows testing of mediation factors in the relationship of 

interest. Moreover, the implementation of advanced machine learning techniques 

has provided additional useful information, especially in the study of noisy and 

complex biological signals. The observed effect of gender on fetal HR has been 

replicated (DiPietro et al., 2015), suggesting that gender effect should be taken into 
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account in future fetal HR and HRV studies. Even though the work in this 

dissertation includes a large population, it consists of cross-sectional 

measurements. Additionally, the reported significant correlations show only weak 

linear relationships between the maternal and fetal factors, despite our large 

sample size covering a wide range of maternal values. The grouped analyses 

indicated non-linear relationships, which should be taken into account in further 

studies. To advance the understanding of the features responsible for the 

development of ANS and to draw valid conclusions, long-term studies with HRV 

measures in offspring throughout childhood are necessary. This is important for 

tracking changes during development and for observing the relevance of pre-

pregnancy BMI, maternal weight gain and maternal insulin sensitivity on the ANS 

and its contribution to the development of obesity in the offspring during infancy 

and childhood.  

 



 
5  C o nc l us i o n                       |  81 

 

 

 

 

Chapter 5 

Conclusion 

In conclusion, these findings suggest that an alteration occurs in the development 

of fetal ANS in response to changes in pre-pregnancy BMI, maternal weight gain and 

maternal insulin sensitivity. These alterations might indicate a sign of less maturity 

in the ANS in fetuses of mothers with metabolism disturbances. The state of insulin 

resistance in the fetuses of mothers with GDM might also be true for fetuses of 

mothers with pre-pregnancy obesity and insulin resistance. The fact that fetal ANS 

mediates fetal growth suggests that ANS might potentially be one of the key features 

involved in the risk the development of disease in offspring. Hence, an alteration in 

fetal ANS during early development in relation to maternal weight, weight changes 

and maternal metabolism could have important clinical consequences in this era of 

rising obesity. Furthermore, this finding highlights the importance of pre-pregnancy 

weight which, together with maternal insulin sensitivity, could play a crucial role in 

the developmental programming of the fetal ANS. This may be an early life process 

driving maternal-fetal transmission of obesity and insulin resistance in offspring. 

High fetal HR may serve as a marker for an adverse fetal ANS status under the 

influence of pre-pregnancy weight and maternal insulin sensitivity. Maternal weight 

and metabolic factors are interconnected and connected to fetal ANS activity, so 

they might form a part of the complex relationship for fetal adaptation to the 

intrauterine environment.  
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