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Tübingen

2020



Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der

Eberhard Karls Universität Tübingen.
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Abstract

Purpose

To develop a methodology to monitor and validate vigilance during static automated

perimetry.

Methods

The method of constant stimuli (MoCS) was applied to assess the differential luminance

sensitivity with the OCTOPUS 900 perimeter (Haag-Streit AG, Koeniz, Switzerland). OPI

(Open Perimetry Interface) was used to set up the test algorithms: Stimulus intensity was

varied in 13 logarithmic stimulus luminance steps between 0.04 and 160 cd/m2 at a back-

ground luminance of 10 cd/m2. Goldmann size III (25,7’) stimuli were presented 20 times

each in three locations (-6.1◦,-3.5◦), (0◦,7◦), (6.1◦,-3.5◦), and a reference stimulus location

was added at (0◦,0◦) with a weight of 0.1 (compared to a weight of 1.0 for all other stimuli

locations) as an additional fixation incentive. Stimuli presented at this reference location

were excluded from data evaluation. An increased rate of false positive and false nega-

tive catch trials was implemented (25% each). Each examination included 1,612 stimuli

altogether. Response time was monitored. Pupil data, blink rate and the height of the

palpebral fissure were extracted from the built-in camera of the OCTOPUS 900 perime-

ter. The camera operated with a frequency of 20 fps. Heart rate was recorded with the

Ecgmove4 heart rate monitor using a chest strap (movisens, Karlsruhe, Germany). The

Epworth Sleepiness Scale (ESS) questionnaire was obtained from all participants and

evaluated in accordance with the existing guidelines (see chapter 3.3.7).

Subjects were included if the minimum distant visual acuity (without or with correction) was

at least 0.8 (single letter optotypes [numbers], VISUCAT, argus individuell optic GmbH,

Ottobrunn, Germany). The maxima of the acceptable ametropia were set to ±8.00 dpt

spheric and 2.50 dpt astigmatic ametropia. Ophthalmologic status had to be normal and

subjects had to give their informed consent.

Results

Sufficient data were obtained from 48 test subjects (18 males, 30 females, age range

22–78 years, median 47 years) distributed equally among three age groups (21–40,

41–60, 61–80 years).
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Twenty-four dominant eyes and 24 non-dominant eyes were examined in randomized or-

der.

No significant correlation was found between the ESS score, age, total number of errors,

and onset of sleepiness. No accordance of onset of sleepiness and pathological ESS

scores was present (McNemar’s test, χ2 = 16, df = 1, p = 6.33 · 10-5, statistically signifi-

cant difference between onset of sleepiness and ESS scores ).

Data evaluation was divided into global and individual analysis. One specific evaluation

method per parameter was selected via AUROC (area under receiver operating charac-

teristics curve) evaluation for global analysis and via best median correlation values for

individual analysis, respectively as shown in Tab. 0.1.

Table 0.1: Agreement indices (AI) and Spearman correlation coefficients (Spearman’s ρ)
for agreement with/correlation to the error rate for parameters/evaluation meth-
ods included in the study (BRV: blink rate variability, PD: pupil diameter, PDV
peaks: peaks in pupil diameter variability, PF: height of the palpebral fissure,
PFV: variability of the height of the palpebral fissure, HRVLF: heart rate variabil-
ity for low frequencies, RTV: response time variability). Parameters/evaluation
methods that performed best are highlighted in gray

parameters / evaluation
methods

Global analysis:
Agreement indices

Individual analysis:
Spearman’s ρ

median maximum median maximum
BRV 0.08 0.49 0.05 0.50
PD 0.01 0.44
PDVpeaks 0.05 0.61
PF -0.05 -0.82
PFV 0.09 0.52
HRVLF 0.06 0.60 0.06 0.67
RTV 0.14 0.47 0.27 0.61

For global analysis, the agreement indices (AI) and for individual analysis, the Spearman

correlation coefficients were calculated. Tab. 0.1 shows the median and maximum values:

Response time variability and the height of the palpebral fissure performed best and are

therefore highlighted in gray.
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An exemplary artificial prevalence enrichment was simulated for the individual analysis

of the pal-pebral fissure height by only considering the five subjects with the highest to-

tal number of errors. The median Spearman correlation coefficient for this subgroup in-

creased to -0.60.

Conclusion

Response time variability and the height of the palpebral fissure were identified as the

most promising and valid parameters in assessing and quantifying vigilance. An increased

number of catch trials turned out as an excellent validation tool for the assessment of fail-

ures resulting from reduced vigilance with high temporal resolution.

Keywords

eye tracking, vigilance, perimetry, quality control, catch trials, heart rate, pupil oscillations,

palpebral fissure, reaction time, eyelid closure, blink rate, psychometric function, ESS

III



Zusammenfassung

Ziel

Das Ziel dieser Arbeit war die Entwicklung einer Methode zur Überwachung und Vali-

dierung der Vigilanz während statischer, automatischer Perimetrie.

Methodik

Die Methode der konstanten Stimuli (MoCS) wurde angewandt, um die Leuchtdichteunter-

schiedsempfindlichkeit (LUE) mit dem OCTOPUS 900 Perimeter (Haag-Streit AG, Köniz,

Schweiz) zu bestimmen. OPI (Open Perimetry Interface) wurde verwendet, um die Testal-

gorithmen zusammenzustellen: Die Stimulusleuchtdichte wurde in 13 Schritten zwischen

0,04 und 160 cd/m2 mit einer Hintergrundleuchtdichte von 10 cd /m2 variiert. Goldmann-

Stimuli der Größe III (25,7’) wurden jeweils 20 Mal an drei Orten (-6.1◦, -3.5◦), (0◦,7◦),

(6.1◦, -3.5◦) gezeigt und ein Referenzort (0◦, 0◦) wurde hinzugefügt. Der Referenzort

wurde mit 0,1 gewichtet (während alle anderen Stimulusorte mit 1,0 gewichtet wurden)

und war als zusätzlicher Fixationsanreiz gedacht. Jedoch wurden am Referenzort präsen-

tierte Stimuli von der weiteren Datenauswertung ausgeschlossen. Die Untersuchung um-

fasste insgesamt 1.612 Stimuli. Die Reaktionszeit wurde überwacht.

Es wurde eine erhöhte Rate falsch-positiver und falsch-negativer Fangfragen eingestreut

(jeweils 25%). Die Pupillendaten, die Lidschlussrate und die Lidspaltenhöhe wurden über

die eingebaute Kamera des OCTOPUS 900 Perimeter mit einer Frequenz von 20 Hz be-

stimmt.

Die Herzfrequenz wurde mit dem Ecgmove4-Herzfrequenzsensor und Brustgurt (movisens,

Karlsruhe, Deutschland) aufgezeichnet. Der Epworth Sleepiness Scale (ESS)-Fragebogen

wurde von allen Teilnehmern ausgefüllt und entsprechend der bestehenden Richtlinien

(siehe Kapitel 3.3.7) ausgewertet.

Die Probanden wurden in die Studie eingeschlossen, wenn die Mindestfernsehschärfe

(ohne oder mit Korrektion) mindestens 0,8 betrug (Einzeloptotypen [Zahlen], VISUCAT,

argus individuell optic GmbH, Ottobrunn, Deutschland). Die akzeptable Ametropie wurde

auf maximal ±8,00 dpt Sphäre und maximal 2,50 dpt Zylinder festgelegt. Der augenärzt-

liche Status musste normal sein, und die Probanden mussten ihre Einwilligung nach

Aufklärung erteilen.
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Zusammenfassung

Ergebnisse

Suffiziente Daten wurden von 48 Testpersonen (18 Männer, 30 Frauen, Alter 22–78 Jahre,

Median 47 Jahre) erhoben, die gleichmäßig auf drei Altersgruppen

(21–40, 41–60, 61–80 Jahre) verteilt waren. 24 dominante und 24 nicht dominante Augen

wurden in zufälliger Reihenfolge untersucht.

Table 0.2: Übereinstimmungsindices (AI) und Spearman-Korrelationskoeffizienten (ρ) für
die Übereinstimmung/Korrelation zur Fehlerrate für die in die Studie einbezoge-
nen Parameter/Bewertungsmethoden (BRV: Variabilität der Lidschlussrate, PD:
Pupillendurchmesser, PDVpeaks: Variabilität der Pupillendurchmesserspitzen,
PF: Lidspaltenhöhe, PFV: Variabilität der Lidspaltenhöhe, HRVLF: Variabilität
der Herzrate für niedrige Frequenzen, RTV: Variabilität der Reaktionszeit

Parameter/
Bewertungs-
methoden

Globale Analyse:
Übereinstimmungsindices

Individuelle Analyse:
Spearman-Korrelations-
koeffizienten ρ

Median Maximum Median Maximum
BRV 0.08 0.49 0.05 0.50
PD 0.01 0.44
PDVpeaks 0.05 0.61
PF -0.05 -0.82
PFV 0.09 0.52
HRVLF 0.06 0.60 0.06 0.67
RTV 0.14 0.47 0.27 0.61

Es trat keine signifikante Korrelation zwischen ESS-Wert, Alter, Gesamtfehlerzahl und

Zeitpunkt des Einsetzens von Schläfrigkeitsperioden auf. Ein McNemar Test ergab, dass

ebenfalls keine Übereinstimmung zwischen dem Vorhandensein von Schläfrigkeitsperio-

den und einem pathologischen ESS-Wert vorlag (χ2 = 16, df = 1, p = 6.33 · 10-5, statis-

tisch signifikanter Unterschied zwischen dem Vorhandensein von Schläfrigkeitsperioden

und ESS-Werten).

Die Datenauswertung erfolgte in globaler und in individueller Form. Eine spezifische Be-

wertungsmethode pro Parameter wurde über die Bewertung der Fläche unter der ROC

(receiver operating characteristics)-Kurve (AUROC) für die globale Analyse bzw. über die

besten Median-Korrelationswerte für die individuelle Analyse ausgewählt, wie in Tab. 0.2

ersichtlich.
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Zusammenfassung

Für die globale Analyse wurden Übereinstimmungsindizes (AI) und für die individuelle

Analyse wurden Spearman-Korrelationskoeffizienten berechnet. Tab. 0.2 zeigt den Me-

dian und die Maxima/Spitzenwerte an: Die Reaktionszeitvariabilität und die Lidspaltenhöhe

zeigten die beste Eignung und sind daher grau hervorgehoben.

Exemplarisch wurde für die individuelle Analyse der Lidspaltenhöhe eine künstliche Prä-

valenzanreicherung simuliert, indem lediglich die fünf Testpersonen mit der höchsten

Gesamtfehlerzahl betrachtet wurden. Für diese ergab sich im Median ein Spearman-

Korrelationskoeffizient von -0,60.

Fazit

Die Variabilität der Reaktionszeiten und die Lidspaltenhöhe wurden als vielversprechend-

ste und valide Parameter zur Beurteilung und Quantifizierung der Vigilanz identifiziert.

Eine erhöhte Anzahl an Fangfragen erwies sich als ein hervorragendes Validierungsinstru-

ment mit hoher zeitlicher Auflösung zur Beurteilung von Fehlern, die auf eine verringerte

Vigilanz zurückzuführen sind.

Schlüsselwörter

Vigilanz, Perimetrie, Qualitätskontrolle, Fangfragen, Herzrate, Pupillenoszillationen, Lid-

spaltenhöhe, Reaktionszeit, Lidschlussrate, psychometrische Funktion, ESS
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the University Hospital in Tübingen, Department of Neurology and Epilep-

tology. The subject is placed at a distance of 1 m from the perimeter, an

assistant operates the response button at a distance of 2 m from the subject 34

4.5 Definition of width and height of the palpebral fissure . . . . . . . . . . . . 41

4.6 Example for global data analysis for the response time variability (RTV) for

subject ID 106 and an evaluation with Youden’s J. a A ROC curve was com-

puted and cut-off values for sensitivity and specificity were defined (with

sens. = 0.62 and spec. = 0.69 in this case, see green dashed lines). b

Percentiles for cut-off values for sens. and spec. were calculated (in this

case, the 66. perc. corresponded to the above mentioned values for sens.

and spec.). By a parameter distribution for RTV for the whole subject sam-

ple (subjects are sorted by the total no. of false responses to catch trials),

the specific cut-off value corresponding to the 66. perc. was defined (in this

case, the value was 0.15), marked by the black dashed line. The box plot

shows the distribution for the whole subject sample, whereas the median is

marked by the bold black line, the box marks the 25. and 75. perc., and

the whiskers stand for the 5. and 95. perc. In order to be able to give

an overview, the illustration here is very small. Images in original size are

shown in App. I. c Therefore, for the individual, time periods with values

occurring above the value of 0.15 (marked by the black dashed line) were

defined as an event for RTV (see light blue highlights). In contrast, events

for false responses to catch trials are highlighted in dark gray. An event

overlap is defined as the occurrence of both an event for RTV and for false

responses to catch trials at the same time. For a more detailed explanation

of an agreement plot, see Fig. 4.7 . . . . . . . . . . . . . . . . . . . . . . 45

XVI



List of Figures

4.7 Exemplary creation of an agreement plot for the agreement of an increased

error rate and the response time variability (RTV) for subject ID 106. Upper

part Time periods with an increased error rate are highlighted in gray. Mid-

dle part By a parameter distribution for RTV for the whole subject sample,

the specific cut-off value corresponding to the 66. perc. was defined (in

this case, the value was 0.15), marked by the black dashed line. Time pe-

riods with an increased response time variability (e.g. event occurrence for

response time variability) are marked in light blue. Lower part Transfer of

periods with event occurrence for response time variability to the blue bar.

If at the same time, the error rate was increased, the blue bar turns to a

dark blue color. CAVE: In some places the blue bar in the lower part seems

to be continuous, whereas the blue-marked areas in the upper part are in-

terrupted. The interrupted areas are correct and accurate. The continuous

effect occurs due to the circumstance, that the bars can only be displayed

with a relatively low accuracy (protruding markers), for this reason short

periods with short breaks in between in the agreement plot look like a con-

tinuous period of event occurrence. However, the agreement indices are

always calculated with the correct, accurate values . . . . . . . . . . . . . 46

4.8 Exemplary visualization (for subject 106) of the different quality parameters

a frequency of seeing (FOS) curve can provide. Fluctuations referring to

false positive responses to catch trials are highlighted in yellow, fluctuations

referring to false negative responses to catch trials are highlighted in or-

ange, slope steepness referring to the reliability of a subjects’ performance

is highlighted in gray. Locations tested: blue (0◦,7◦), green (-6.1◦,-3.5◦), red

(6.1◦,-3.5◦), L: luminance . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 False responses to catch trials for the proof-of-concept examination of one

test subject at the EEG laboratory of the University Hospital in Tübingen,
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1 Preliminary remarks

This work builds partly on the author’s master thesis. For this reason, parts of the Intro-

duction and Background chapters have already been used in a similar form in this master

thesis:

Ungewiss J. 2015. Parameters for Vigilance, Attention and Cognitive Workload within

Eye Tracking Recordings. Master thesis, Aalen University of Applied Sciences.

This does not affect the results or research process of this dissertation.

In addition, a review-paper on the fundamentals of perimetry has been published. How-

ever, neither scientific data nor results of this dissertation are included in this work. The

publication has no relation to the research process in the context of this dissertation but

does only summarize previously known facts.

Only parts of the Background chapter of this work have been used in a similar form in this

publication (wherever this was done, it is marked by appropriate citation):

Ungewiss J, Schiefer U. 2018. Perimetrie in der neuroophthalmologischen Funk-

tionsdiagnostik. Indikation – Methoden – Topodiagnostik. Klin Monatsbl Augenheilkd

235:1218–1228.

In addition, partial results of the present work have been published in advance:

Ungewiss J, Kübler T, Mallot HA, Schiefer U. 2016. Monitoring quality and vigilance

during automated static perimetry. 22nd International Visual Field and Imaging Sym-

posium, Udine.

The publication took place as a poster presentation and affiliated abstract. No manuscript

or scientific paper was published or written. Although, a detailed declaration of the propor-

tions in which all co-authors were involved, is prepared. As this declaration refers to parts

of different chapters (Study design and methodology, Results, and Discussion as well as

App. E – only with regard to pilot study 1, respectively), it is included at this point:
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1 Preliminary remarks

Author Author

position

Scientific

ideas %

Data gen-

eration %

Analysis & in-

terpretation %

Paper

writing %

Ungewiss J 1 50 100 80 90

Kübler T 2 only preliminary work

Mallot HA 3 10 0 0 5

Schiefer U 4 40 0 20 5

Title of paper
Monitoring quality and vigilance during automated

static perimetry
Status in publication process published as abstract and poster (2016)

Parts of this dissertation were submitted in the form of an abstract for the Annual Meeting

of the Deutsche Ophthalmologische Gesellschaft (DOG) in 2020:

Ungewiss J, Mallot HA, Schiefer U. 2020. Die Reaktionszeit und deren Variabilität als

Prädiktor der individuellen Antwortqualität während statischer, automatischer Perime-

trie. Abstract submitted and accepted for the DOG 2020.

No manuscript or scientific paper was published or written. Although, a detailed dec-

laration of the proportions in which all co-authors were involved, is prepared. As this

declaration refers to parts of different chapters (Study design and methodology, Results,

and Discussion, respectively), it is included at this point:

Author Author

position

Scientific

ideas %

Data gen-

eration %

Analysis & in-

terpretation %

Paper

writing %

Ungewiss J 1 60 100 80 90

Mallot HA 2 10 0 0 5

Schiefer 3 30 0 20 5

Title of paper

Die Reaktionszeit und deren Variabilität als

Prädiktor der individuellen Antwortqualität

während statischer, automatischer Perimetrie
Status in publication process abstract submitted and accepted (2020-06-19)

During the course of this dissertation, several algorithms have been used, that were not

developed by the author. As parts of different chapters (Background, Study design and
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methodology, Results, and Discussion) refer to these algorithms, a detailed declaration is

given at this point:

Algorithm Developer Explanation Status in publication pro-

cess

Determination of the

pupil diameter (initial

algorithms)

Müller M see chapter

3.4.4.1

Master thesis (Müller 2013),

Publication (Müller et al.

2014)

Determination of the pupil

diameter (improved algo-

rithm)

Wörner M see chapter

3.4.4.1

not published,

no manuscript written

Determination of the

height of the palpebral

fissure

Wörner M see chapter

3.4.4.2

not published,

no manuscript written

Prediction of false re-

sponses by EEG and

pupil data

Vergani

Dambros G

see chapter

3.4.3

Bachelor thesis

(Vergani Dambros 2017)

The author was not involved in the development of the algorithms at all.

The developers of the algorithms were not involved in scientific ideas, data generation,

analysis & interpretation and paper writing in any other way than by the development of

the algorithms.
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2 Introduction

The eyes are the only human sense organs that - as an upstream part of it - allow for a

direct insight into the human brain. For example, the visual field examination does not

only allow for an examination of the eye, but can also provide additional information about

the entire visual pathway right through to the processing procedures of the visual cortex.

For this reason, perimetry is an important tool, especially in the (neuro)ophthalmological

context. For example, perimetry allows for non-invasive studies of certain types of tumors,

as well as for follow-up of various eye disorders (such as the glaucoma) associated with

visual field loss. Treatment procedures are based on these investigations, which in the

worst case, in turn, can decide whether the eyesight of a patient is preserved. Validity of

the results of visual field examinations is therefore a decisive prerequisite to be able to

make informed decisions.

2.1 Exposure of the Research Issue

Perimetric sessions nowadays can take up to 15 minutes per eye. The only activity pa-

tients are forced to practice during that time is to fixate a target and to press a response

button in case of perception of visual stimuli. Visual field examinations in general are as

boring as monotonous and exhausting. Thus it is difficult to keep up with concentration

and vigilance during the entire perimetric session.

On the other hand, for the examiner, it is vital that patients’ concentration is kept at a con-

tinuously high and constant level in order to perform well during perimetry. Visual fields

can only be seen as valid, if patients do not produce errors unintentionally. Thus it is nec-

essary that patients are vigilant, attentive and focused. Otherwise, incorrect answers are

generated, that reflect the attentive status of a subject rather than his or her visual field

capabilities. Therefore, it is vital to monitor the according status of patients during visual

field examinations. The quality with regard to the validity of perimetric results can be im-

proved by terminating a perimetric session before its considerable contamination due to

vigilance- or concentration-related issues.
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2 Introduction

2.2 Research Objectives

The purpose of this work was to develop a methodology to monitor and validate vigilance

during static automated perimetry.

A considerably enhanced presentation rate of catch trials was applied during a static au-

tomated perimetric examination using the method of constant stimuli (MoCS) over an ex-

tended examination time. Therefore, patients’ vigilance was challenged in order to identify

the onset of vigilance-related problems in a standardized manner with high temporal res-

olution. Additional parameters such as eyelid closures (blinks), the pupil diameter, the

height of the palpebral fissure, heart rate and response time were investigated in order to

cross-correlate their results with the manifestation of false responses to catch trials and

therefore the occurrence of vigilance deficits. As a result, simple and valid parameters

were searched for as a replacement for the time-consuming use of an enhanced presen-

tation rate of catch trials.

2.3 Organization of this Research Project

This dissertation starts with a theoretical background of the research topic in order to

unfold terminology, physiological definitions, and an illustration of the algorithms applied.

The state of the art in vigilance monitoring during perimetry is displayed.

Study design and methodology are shown: This work contains two pilot studies, which

were necessary for the establishment of the final methodology of the main study.

The original data and derived measures are presented. The performance of the selected

parameters named above is being assessed and discussed - not only for perimetric ex-

aminations, but also in the context of further thinkable application fields such as nighttime

driving experiments or examinations on the immediate consequences of drug or alcohol

abuse.
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3 Background

To start with, the relevant background issues for this study are constituted and the state

of the art in science and technology is displayed in order to provide an estimation of the

potential of different parameters with regard to vigilance and quality monitoring in the con-

text of perimetry.

3.1 Perimetry and the visual field

The visual field (VF) is defined as the totality of all visual sensory input that can be per-

ceived when looking straight ahead at a fixation object, with the eye still and without head

or trunk movements (Traquair 1938). The differential luminance sensitivity (DLS, see chap-

ter 3.1.1) is a measure of the local position-related function within the visual field. The DLS

is highest at the center and drops towards the periphery. Locations of identical DLS are

connected by so-called isopters. The outer visual field limits are determined by individual

anatomical conditions (eye position, upper eyelid, eyebrows, nose) and are temporally at

approx. 100◦, below at approx. 70◦ and nasally and above at approx. 50◦ (Traquair 1938)

(Glaser 1967) (Schiefer et al. 2005a), as cited in (Ungewiss and Schiefer 2018).

The visual field can be examined with regard to its external borders or to circumscribed

lesions within the visual field borders. Visual field examinations are relevant for various

reasons. The most common reasons are

1. to detect a pathology affecting any part of the visual pathway

2. to evaluate a disease status

3. for follow-up of pathologies over time for progression analysis

4. to assess the efficacy of a treatment

5. for visual ability testing (Racette et al. 2017)
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3 Background

3.1.1 Basic psychophysics

Weber’s law (1846) puts the luminance difference (i.e. the contrast), which can just be

perceived (∆L), in relation to the surrounding luminance (L) (Weber 1846):

∆L

L
= const. (3.1)

This law was extended by the Fechner law (1860) to the description of identical sensation

differences (∆E) (Fechner 1860).

∆E =
∆L

L
(3.2)

With these laws, relations are represented, since the interrelation between subjective sen-

sitivity and physically measurable stimulus intensity cannot be adequately represented by

looking at differences alone.

The specified unit is the Bel, which is used to identify the decimal logarithm of the ratio of

two similar energy or power quantities. The more common unit is the decibel [dB], which

denotes the tenth part of a Bel and thus denotes two sizes in a ratio of 100.1 = 1.259.

In perimetry, the maximum luminance that a perimeter can represent is generally used

as a reference and is therefore set to 0 dB. Larger dB values describe an attenuation of

the presented luminance levels (Lachenmayr and Vivell 1992). The luminance at which a

stimulus can be perceived by the patient with a probability of 50% is referred to as differ-

ential luminance sensitivity (DLS). The boundary between stimuli seen and not seen by a

subject is not reached abruptly, but there is a transition area, which means that the asso-

ciated psychometric function follows a sigmoid course (Aulhorn and Harms 1972) (Greve

1973) (Bebie et al. 1976a) (Johnson 1998) (Schiefer et al. 2003), as cited in (Ungewiss

and Schiefer 2018).

3.1.2 Perimetric methods

In principal, there are two main perimetric methods: kinetic and static perimetry.

3.1.2.1 Kinetic perimetry

In kinetic perimetry, stimuli of different sizes and luminance levels (see Fig. 3.1), according

to (Goldmann 1945a) are moved from the non-seeing area to the seeing area of the patient
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(Harms 1940) (Goldmann 1945b). The outer visual field boundaries and scotoma are thus

determined (Anderson 1987) (Schiefer et al. 2005b).

Figure 3.1: Size and luminance levels of the Goldmann stimuli according to (Goldmann
1945a). The mark III4e, which is determined in Germany as relevant to the
expert opinion, corresponds to a stimulus diameter of 25.7’ and a stimulus lu-
minance of 320 cd/m2. The increase in stimulus area by one step corresponds
to the same perception effect as the increase in stimulus luminance by 5 dB
(Figure modified from Wilhelm Durst, published in (Schiefer et al. 2003), as
cited in (Ungewiss and Schiefer 2018))

Since the stimulus moves in the time interval between perception and response (response

latency), this method results in a systematic shift of the scotoma boundaries in the direc-

tion of the stimulus movement. For manually driven stimuli (for example with Goldmann

perimetry), there is no possibility to monitor the angular velocity (Flammer 1993). In con-

trast, semi-automated kinetic perimetry offers the possibility of determining vectors with

origin, direction of stimulus movement and constant angular velocity (Schiefer et al. 2003).

So-called response time measurement vectors can then be used to correct scotoma for
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the patient’s response latency (Schiefer et al. 2005b) (Vonthein et al. 2007), as cited in

(Ungewiss and Schiefer 2018).

3.1.2.2 Static perimetry

In static perimetry, fixed, i.e. non-moving stimuli are presented (mostly independent of the

examiner) in a grid of pre-defined test locations with defined luminance levels. Particular

importance is attributed to the selection of the examination strategy, the examined visual

field extension and the number of stimuli presented (Harms 1969) (Bebie et al. 1976b).

The distribution of defined test locations within the visual field results in a grid that sets the

local resolution for local differences in the DLS. An age-correlated standard value must be

available as a reference for each tested location (Anderson 1987).

A clear statement about the local DLS should be made with as few queries per test loca-

tion as possible. The stimuli are randomly presented across the examination area. Sev-

eral strategies are available according to (Bebie et al. 1976b). With the threshold-related,

supra-threshold strategy, the stimulus is initially presented at each test location a little

above threshold (i.e. with a higher luminance than the age-correlated standard value). If

this stimulus is recognized, the examination at this test location is ended. If the stimulus is

not recognized, the stimulus is presented at this test location with maximum luminance in

the further course of the examination. With this 2-phase strategy, defects can be divided

into three classes: normal, relative defect, absolute defect. In the case of a relative de-

fect, the slightly above-threshold stimulus is not recognized, but the maximum stimulus is

perceived. As part of a 3-phase strategy, relative defects can be described more precisely

by means of a bracketing procedure or by querying pre-defined fixed levels of luminance

(Johnson et al. 1992). A disadvantage of this strategy is the difficult detection of early

scotoma stages, with visual field defects being more shallow than the supra-threshold

level chosen by the algorithm. Since this strategy does not allow for numerical values, but

rather for an assignment to defect classes, progression analysis is difficult (Schiefer et al.

2005a), as cited in (Ungewiss and Schiefer 2018). By means of the threshold-determining

strategy, a stimulus of pre-defined (e.g. 4 dB supra- or infra-threshold) luminance (starting

luminance) is presented, which, depending on the patient’s response, is raised or lowered

in 4 dB steps until a response reversal from ”seen” to ”not seen” or vice versa occurs.

After this response reversal, the luminance is increased or decreased in 2 dB steps until

another response reversal takes place (4-2 dB input, according to (Bebie et al. 1976b)).
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The local DLS is then determined from this sequence (Schiefer et al. 2005a), as cited

in (Ungewiss and Schiefer 2018). In addition to these basic strategies, there are vari-

ous ”fast strategies” (such as SITA: Swedish Interactive Threshold Algorithm (Bengtsson

et al. 1997) or TOP: Tendency-Oriented Perimetry (Maeda et al. 2000)) that were de-

signed to reduce patient fatigue and stress. Interstimulus interval times adapted to patient

reaction times or luminance start levels are determined from already known DLS values

from adjacent test locations. Ultimately, such ”fast strategies” are often a black box with

non-accessible algorithms. In addition, these strategies lead to different threshold results

than the conventional methods, which is why a switch to a different strategy should be

avoided in the course of follow-up studies (Schiefer et al. 2005a) as cited in (Ungewiss

and Schiefer 2018).

As an alternative to the methods described above, the method of constant stimuli (MoCS)

(Urban 1910) can be used. A defined number of stimuli per defined luminance level is

shown at each pre-defined location in randomized order. This enables to achieve very pre-

cise results, even with associated frequency of seeing (FOS) curves (Hegelmaier 1852).

However, this method is very time-consuming and therefore at best suitable for studies

that allow for intense examinations, but not for common clinical use.

3.1.3 Definition of quality and validity with regard to visual field

examinations

Validity is the main quality criterion for a diagnostic method that is fulfilled, if the method

measures the feature that it is supposed to measure or pretends to measure with sufficient

accuracy (Wirtz 2013).

Quality in the context of visual field testing is usually defined by steadiness of a cen-

tral fixation of the patient combined with the proportion of false responses to catch trials

(for more information, see 3.1.4) (Schiefer et al. 2006). Quality can also be defined by the

retest reliability, i.e. deviations in the local DLS within the scope of repeated visual field ex-

aminations. A distinction is made between ”short-term fluctuation” (deviations within one

perimetric session) and ”long-term fluctuation” (deviations for different perimetric sessions

that were carried out at intervals of weeks or months) (Chauhan et al. 1993) (Demirel and

Vingrys 1994) (Schiefer et al. 2006).
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Therefore, valid perimetric results by means of sufficient accuracy of the method used can

only be achieved if the quality of a visual field examination is sufficient.

3.1.4 Quality monitoring during perimetry

The quality of a perimetric examination can be investigated by observing the patient’s fix-

ation via an infrared videocamera, as a fundamental requirement for a visual field exam-

ination is a steady central fixation of the patient (Demirel and Vingrys 1994). In addition,

so called catch trials are used (Anderson 1987) (Demirel and Vingrys 1995) (Vingrys and

Demirel 1998). Due to time constraints, catch trials are usually interspersed in a very

limited number (about 3 - 5% of all stimuli presented). In the case of false negative catch

trials, a stimulus with a very high luminance is presented at a test location, at which a

stimulus was previously perceived. If the response button is not pressed, the response

is considered false negative. In patients with many false negative responses, the DLS

is determined too low, and visual field defects are falsely detected or falsely increased

(Demirel and Vingrys 1995) (Vingrys and Demirel 1998). In the case of false positive

catch trials, the perimeter produces the mechanical noise that is customary for a stimulus

presentation, but no stimulus is presented. If the response button is pressed anyway, the

response is considered false positive. In ”trigger-happy” patients with many false positive

responses, the DLS is determined too high, and local defects can be overlooked or arti-

ficially reduced (Demirel and Vingrys 1994) (Schiefer et al. 2006) as cited in (Ungewiss

and Schiefer 2018).

The problem with visual field quality is, that the central DLS fluctuates strongly: It is initially

often very high, but can vary considerably during the course of an examination due to a

decrease of vigilance and attention (see 3.2) (Johnson et al. 1988) (Schiefer et al. 2006)

as cited in (Ungewiss and Schiefer 2018).

Therefore, the quality of visual field examinations is directly linked to vigilance and atten-

tion.
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3.2 Vigilance and attention – definition and scope

The terms vigilance and attention are often used synonymously in colloquial language al-

though there are noticeable differences. Therefore, it is necessary to define these terms

right at the beginning.

Vigilance is a derivation from the Latin word “vigilantia”. It can be translated as wake-

fulness. Vigilance, as a technical term, primarily refers to the level of central nervous

activation that enables a subject to adapt to the current environment (Head 1923).

In general medicine, vigilance is understood as a physiological state that is directly related

to central nervous activation (Canisius and Penzel 2007).

Central nervous activation is understood as the general neuronal willingness of the cen-

tral nervous system to respond to internal and external stimuli (Posner and Rafal 1987).

Different levels of alertness are attributed to diurnal fluctuations in the tonic excitation sys-

tem (e.g. sleep-wake rhythm). The ARAS (ascending reticular activation system) of the

brain stem is believed to play a central role in both tonic and phasic components of cen-

tral nervous activation. Thus, particular emphasis is being placed on the locus coeruleus,

which is is located in the posterior area of the rostral pons in the lateral floor of the fourth

ventricle (Posner and Petersen 1990) as cited in (Weeß et al. 1998). Central nervous ac-

tivation and the level of vigilance underlie physiological daytime variation. In the morning

and in the afternoon, central activation is in general higher than at nighttime (Wilhelm et al.

2001). For that, indicators used to monitor vigilance also vary during the day (Kraemer

et al. 2000).

Decreased vigilance – taking into account the current state of scientific knowledge – is

called daytime sleepiness (Weeß et al. 1998) as cited in (Endres 2009).

Sleepiness accords to the level of vigilance where a characteristic reduction of the central

nervous activation and inhibition of the Edinger-Westphal nuclei sets in. In addition, cere-

bral structures of the posterior hypothalamus are involved. Usually, sleepiness is caused

by a decrease of quantity or quality of sleep during the night and can be characterized

by falling asleep as soon as possible (Weeß et al. 2000) as cited in (Endres 2009) and

(Ungewiss 2015).

In addition to the term sleepiness, there is also the term fatigue, which is defined as a

difficulty in initiating or sustaining voluntary activities (Chaudhuri and Behan 2004). The

state of fatigue cannot be measured objectively, but only described subjectively (Weeß
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et al. 2000).

Fatigue and sleepiness are often seen and applied synonymously (Shapiro et al. 2002).

Both conditions often appear together, and “sleepy” and “fatigued” can feel quite similar

and be at times hard to distinguish. Although, fatigue and sleepiness arise from different

physiological scales.

There are miscellaneous definitions of the term attention, that have been improved over

time (Carrasco 2011).

William James already stated in his Principles of Psychology in 1890 (James 1890):

“Everyone knows what attention is. It is taking possession by the mind, in

clear and vivid form, of one out of what seem several simultaneously possible

objects or trains of thought. Focalization, concentration, of consciousness

are of its essence. It implies withdrawal from some things in order to deal

effectively with others, and is a condition which has a real opposite in the

confused, dazed, scatterbrained state which in French is called distraction,

and Zerstreutheit in German.”

Bleuler expounded in 1916, that attention was the allocation of limited awareness re-

sources to awareness contents, for example to the perception of the environment or of

one’s own behavior and action as well as thoughts and emotions (Bleuler 1916 / 1983).

The substance of that is that attention can be directed, whereas vigilance, fatigue and

sleepiness are global terms. Attention can change fast while sleepiness is a slow process.

In summary, it can be said that the terms vigilance, sleepiness and fatigue describe a

general state of arousal. In contrast, the terms attention, abstraction and distraction can

be described as directable. Figure 3.2 illustrates the antagonisms.

In the present study, perimetric measurements are analyzed. A perimetric session should

generally be terminated before reduced vigilance has a negative impact on the results.

It is not clear a priori, which of the above-mentioned terms is relevant with regard to visual

field testing. However, it can be assumed that inattention and sleepiness rather than fa-

tigue may be factors in this regard, and consequently concentration may also be vital. For

this reason, various physiological parameters are included, which are used as correlates

for inattention and for both, sleepiness and fatigue (see chapter 3.3).
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Figure 3.2: Comparison of the antagonisms vigilance, sleepiness, fatigue and attention,
inattention, abstraction, distraction

3.3 Parameters corresponding to perimetric quality

There are various physiological parameters that are associated with sleepiness, fatigue

or distraction - and therefore, in turn, with perimetric quality as described above. These

can be measured in order to draw conclusions about the vigilance level of subjects (see

chapter 3.2). The parameters are presented in detail below.

3.3.1 Blink rate

A blink is a fast, often automatic and involuntary closure and opening of the eyelids. It

provides bearing up the precorneal film for a permanent moistening of the cornea and

therefore protects the eye from drying-out. Additionally, small particles can be removed

from the eye in this way.

Normal eye blink rates range from 10 to 15 times per minute, that corresponds to one blink

every four to six seconds (Moses 1981). Several recent studies figured out quite equal val-

ues for the eye blinking rate (Bentivoglio et al. 1997) (Barbato et al. 2000) (Ziemssen et al.
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2005).

With an increase in fatigue, the eye blink rate increases as well (De Padova et al. 2009).

3.3.2 Pupillary oscillations

The diameter of a physiological pupil ranges from 1.5 mm under photopic conditions to

8 mm under scotopic conditions. Under average photopic conditions, the pupil diameter

ranges from about 2 mm to about 6 mm. The pupil diameter is age-related and decreases

by about 0.4 mm per decade. For that reason, the pupil diameter of elderly people ranges

from about 4 mm to about 5 mm (Joos et al. 2003).

Pupillary oscillations under constant environmental conditions arise, as permanent change

of the pupil diameter constantly has to correct the retinal illuminance level. Therefore, the

pupil shows physiological unrest. Pupillary oscillations are the result of this feedback loop,

especially under varying photopic conditions. With less attenuation of the feedback loop

(which may occur due to increasing fatigue and/or sleepiness), pupillary oscillations in-

crease (Grünberger et al. 1994).

The term hippus is a synonym for psychophysiological pupillary oscillations. It is some-

times also applied for the excrescence of pupillary oscillations (Beatty and Lucero-Wagoner

2000). A novel definition says, that a hippus is an inconstant, spontaneous, bilateral, syn-

chronous, rhythmic constriction and dilatation of the pupil with a large amplitude. Specif-

ically in sleepy people, the size change can be observed. Such large changes in pupil

diameter are called fatigue waves (Wilhelm et al. 1999) as cited in (Ungewiss 2015).

The terms of pupil diameter and pupillary oscillations are often found in the context of vig-

ilance, fatigue and sleepiness. The sleepier a person is and the less sleep suppression is

strived for, the shorter the time of initial mydriasis is and the higher and more frequent the

resulting pupillary oscillations that can be detected in healthy and vigilant persons under

scotopic conditions are. These waves consist of two components:

• Waves of dilatation and constriction lasting from 4 to 40 seconds with amplitudes of

up to 0.5 mm.

• Superposed fast and inextended oscillations, i.e. constrictions and re-dilatations of

a duration of 0.5 to 1 seconds with amplitudes of 0.1 to 0.3 mm.
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These waves show central nervous activation (Lowenstein et al. 1963) as cited in (Ungewiss

2015).

Another theory trying to establish a relation between hippus and vigilance states that a

characteristic hippus with a mean frequency of 2 to 3 Hz and amplitudes of many fluctua-

tions up to over 1 mm can be observed in sleepy persons. The origin of these oscillations

is unknown (Korczyn 1987).

3.3.3 Palpebral fissure

The eyelid morphology is influenced by age, race, ethnic group, and surrounding facial

anatomy. The height of the palpebral fissure ranges from approximately 9 to 12 mm and

decreases with increasing age (senile ptosis) (Iliff and Pacheco 2001).

When sleepy, inattentive and exhausted, the upper eyelid is lowered. In contrast, in the

state of vigilance or attention it is rather raised. The Müller muscles (Musculi tarsales)

adjust the position of the upper eyelid and therefore the height of the palpebral fissure.

They are innervated by sympathetic nerve fibers with alpha endings and therefore indi-

cate the degree of arousal (Records 1979). In slow drift-off phases (which means falling

asleep slowly over a long time period), as can be observed in exhausted people, there

is an increasing decoupling of voluntary eyelid closure and height of the palpebral fissure

(Galley 2001).

3.3.4 Heart rate

The heart rate is defined as the speed of the heartbeat measured by the number of con-

tractions (beats) of the heart per minute (bpm). Normal resting heart rates range from

60 to 100 bpm. Bradycardia is defined as a resting heart rate below 60 bpm. However,

heart rates from 50 to 60 bpm are common among healthy people and do not necessarily

require special attention. Tachycardia is defined as a resting heart rate above 100 bpm

(Mason et al. 2007).

The heart rate is varying due to the body’s physical needs and activities (for instance

physical exercise, sleep, anxiety, or stress). The heart rate is regulated by sympathetic

and parasympathetic input to the sinoatrial node (Schmidt-Nielsen 1997).
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The heart rate variability (HRV) is defined as the fluctuation in the time intervals between

adjacent heartbeats. The HRV is necessary to be able to adapt to environmental and

psychological challenges. An optimal HRV is associated with health and self-regulatory

capacity as well as adaptability or resilience. Stable higher levels of HRV are linked to the

performance of executive functions like attention (Shaffer and Ginsberg 2017).

HRV can be differentiated into different time domains: Long-term (24 h), short-term (about

5 min) and ultra-short-term (<5 min) HRV. Only ultra-short term HRV seems to be suitable

for experiments aiming at highly time-resolved results (such as vigilance monitoring during

a visual psychophysical examination) (Shaffer and Ginsberg 2017).

It is also possible to divide the HRV into components of different frequency ranges by a

Fast Fourier Transformation (FFT):

The low frequency (LF) band includes frequencies from 0.04 to 0.15 Hz and reflects the

sympathetic nervous system (SNS).

The high frequency (HF) band, on the other hand, ranges from 0.15 to 0.40 Hz. It is said

to reflect the activity of the parasympathetic nervous system (PNS).

The LF/HF ratio is intended to estimate the ratio between SNS and PNS activity. There-

fore, it acts as an indicator if the sympathetic or the parasympathetic part of the nervous

system is dominant (Shaffer and Ginsberg 2017).

It has to be stated, that there are various further HRV metrics. However, it is not possi-

ble to cover all existing methods in the course of this work. At least the basic and most

promising methods have been addressed.

3.3.5 Response time

There are different factors affecting reaction time or response time. One of the main pa-

rameters – beneath the type of task applied – is the state of attention. Response time

is fastest with an intermediate degree of arousal, and increases when a subject is too

relaxed or too tense (Freeman 1933) (Broadbent 1971) (Welford 1980).

Response time also depends on age. Already a study from Galton (1890) reported that

reaction times for teenagers (15–19 years) were 187 ms (mean value) for simple reaction

time tasks with light stimuli. Reaction time shortens from infancy to the 20s, then slowly
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increases until the 60s, and then, in turn, decreases from the 70s and beyond (Galton

1890). In contrast to intuitive belief, adolescents may probably react slower than adults

(Riddervold et al. 2008) (Van Damme and Crombez 2009).

Welford (1980) examined the impact of fatigue on response times. It was found that re-

sponse time gets slower when a subject is less vigilant, while Singleton (1953) observed

that especially sleepiness has a high effect on response times (Singleton 1953).

An experiment designed to link response times directly to vigilance showed that response

times are directly correlated to vigilance (Surwillo and Quilter 1964).

3.3.6 Electroencephalography (EEG)

Electroencephalography (EEG) is defined as a method of medical diagnosis and neuro-

logical research to measure the electrical activity of the brain by recording the voltage

fluctuations on the surface of the head.

Therefore, EEG is suitable for measuring the degree of central nervous activation electro-

physiologically. The electroencephalogram (EEG) is the only physiological signal that has

been shown to accurately reflect shifts in attention (Berka et al. 2007).

EEG evaluation is traditionally carried out by pattern recognition of a trained evaluator,

sometimes supported by software algorithms. Typical wave forms are stated in Tab. 3.1.

Alpha waves are of particular clinical importance with regard to sleepiness. According

to Weeß, changes in the clinically relevant alpha rhythm only appear when the state of

sleepiness becomes so massive that attention and consciousness losses and pseudo-

hallucinations already begin (Weeß et al. 1998).

It has to be stated, that alpha waves as well as their desynchronisation due to sleepiness

can only be measured with closed eyes, whereas perimetric tasks require open eyes. In

Table 3.1: Typical EEG wave forms according to (Pschyrembel 2013)
wave form frequency state
delta 0.5 – 3.5 Hz dreamless deep sleep

phase
theta 4 – 7 Hz light sleep phases
alpha 8 – 13 Hz relaxed alertness/vigilance
beta 14 – 30 Hz attention, arousal
gamma 31 – 70 Hz strong concentration
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the latter case, alpha waves usually change into beta waves. However, beta waves are

not specific with regard to sleepiness, as they also occur as a standard variant in some

subjects and are also visible when a muscle is constantly tensed or when active concen-

tration is used (Zschocke and Hansen 2012) (Schorner and Lopes da Silva 2018).

Broughton stated that the shape and amplitude of evoked potentials are dependent on vigi-

lance and thus allow for conclusions to be drawn about the degree of vigilance (Broughton

et al. 1988). However, these experiments were not performed in a way, in which EEG

measurement took place simultaneously to other tasks that required visual attention.

In the recent past, there have been additional approaches to not only investigate alpha

waves (in their form and/or rhythm), but also to examine the alpha power via its spectral

density, which describes, how the power (i.e. the amount of energy converted per time

unit) of a signal is distributed over frequency.

According to Wascher et al., alpha power is said to decrease with the allocation of atten-

tion (Herrmann and Knight 2001) and with increasing demands for the working memory

(Klimesch 2012) (Wascher et al. 2018). Thus, high alpha power may be related to with-

drawal of attention or task disengagement (Wascher et al. 2014) (Wascher et al. 2016)

that becomes predominant when boring tasks have to be performed (Borghini et al. 2014).

Therefore, alpha power may reflect mind-wandering when perceptual demands are re-

duced, e.g. during monotonous situations.

3.3.7 Questionnaires

Due to their nature, questionnaires for the subjective assessment of subject’s vigilance

cannot be time-matched. They only serve as an ”overall” parameter that can be used to

estimate in advance or retrospectively whether vigilance restrictions could occur during an

examination or activity. A large number of such questionnaires is available, the best known

of which are the Stanford Sleepiness Scale (SSS) (Hoddes et al. 1973) and the Epworth

Sleepiness Scale (ESS) (Johns 1991). To the author’s knowledge, the latter questionnaire

is the only one that has been validated in German language. Test subjects rate the likeli-

hood of falling asleep in eight typical everyday situations on a scale from 0 (not at all) to

3 (high). The individual results are summed up to a total score between 0 and 24 (Johns

1991) (Weeß et al. 2000) (Sauter et al. 2007).
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A German version of the ESS, taken from the Website of the German Sleep Society

(Deutsche Gesellschaft für Schlafforschung und Schlafmedizin (DGSM) 2007), that was

used within this study is attached in App. D.

3.4 State of the art

Subsequently, the state of the art in vigilance and response quality monitoring in the con-

text of ophthalmologically relevant psychophysical examination methods is described.

3.4.1 Vigilance monitoring

In the recent past, several efforts have been made to monitor vigilance, in part by means

of pupillography, which are mentioned subsequently.

3.4.1.1 Monitoring vigilance with pupillography

The company AMTech licensed the Pupillographic Sleepiness Test (PST) (Wilhelm et al.

1998) in 1997. It is based on infra-red video-pupillography and intended for specifically

scotopic conditions. The pupil diameter of subjects is determined by an implemented

algorithm, even with disturbing factors such as eye movement or eyelid closure. The

pupillary oscillation is recorded, averaged and described as Pupillary Unrest Index (PUI)

in millimeters per minute [mm/min]. The PST was the first test that verified Lowenstein’s

assumption, according to which the occurrence of fatigue waves was related to sleep de-

privation (Lowenstein et al. 1963). Therefore, the PST made a quantification of fatigue

and objective statements about vigilance possible. Today, it is seen as the gold standard

in examining sleepiness under scotopic conditions (Endres 2009).

A quite similar test has been implemented first into a campimetric device by Henson and

Emuh (Henson and Emuh 2010). Examinations took place under low photopic conditions.

Henson and Emuh found that pupillary fatigue waves became more evident with test du-

ration, and the probability of stimulus perception was higher when the amplitude of the

pupillary fatigue waves was low. However, exclusively supra-threshold stimuli were used

20



3 Background

and only a small group of patients (n = 13) with a limited age range (51–88 years), all

of whom were glaucoma patients or glaucoma suspects, but not further stratified, were

examined for a time period of 10 minutes.

Müller implemented an algorithm for vigilance monitoring by pupillography into a conven-

tional perimeter, operating under low photopic conditions as well, in 2013 (Müller 2013)

(see chapter 3.4.4.1). This algorithm has been refined (Müller et al. 2014) and validated

by proof-of-concept studies. However, validation by a larger sample size study has not

taken place until now.

3.4.1.2 Monitoring vigilance with other methods

There are also combinations of different methods to monitor vigilance, that are mentioned

for a comprehensive state of the art, as listed subsequently according to Weeß et al.

(2000) as cited in (Ungewiss 2015).

• Multiple Sleep Latency Test (MSLT)

The MSLT measures latencies of falling asleep and REM phases under polysomno-

graphic conditions. Latency of falling asleep is reduced with increasing fatigue

(Carskadon and Dement 1977).

• Maintenance of Wakefulness Test (MWT)

The MWT is a modification of the MSLT. It is an electro-physiological examination

method, test criteria are latency of falling asleep and REM phases as well (Mitler

1993).

• Critical Flicker Fusion Test (CFF-Test)

The CFF-Test is used to determine the visual fusion threshold. It depends on the

observation, that intermitting light in a range of frequency lower than 20 Hz is per-

cepted as a flicker signal. By increasing the frequency, the impact of constant light

appears continuous upon central nervous activation from a certain, critical frequency

on (Aufdembrinke 1982).

• Evoked Cognitive Potentials (ECP)

Today, this method creates the possibility of illustrating specific reactions of neural

structures to a stimulus. Thus, central nervous activation can be assessed (Weeß

et al. 2000).
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• Test: Alertness Program (TAP)

The TAP is a measurement of reaction time with a warning signal. Via subtest

alertness of the TAP, both tonic and phasic components of the central nervous level

of activation can be captured by a computer-based examination (Fimm 1989).

• Questionnaires

There are several questionnaires available, such as the Stanford Sleepiness Scale

(SSS) (Hoddes et al. 1973) and the Epworth Sleepiness Scale (ESS) (Johns 1991).

These are, as described in chapter 3.3.7, methods of self-assessment.

3.4.2 Monitoring attention and cognitive workload

Hess and Polt suggested in 1964, that task-evoked pupillary responses (TEPRs) might

provide a dynamic neurophysiological index of momentary information processing load.

Pupil size was measured in five subjects, while they had to mentally calculate the product

of two small numbers in four different challenges of varying difficulty. Their results showed

very clearly, that the pupil of each subject dilated as each calculation was mentally per-

formed. The extent of the observed calculation was almost monotonically related to the

difficulty of the announced calculation (Hess and Polt 1964).

Today, TEPRs are used to show subject’s cognitive state concerning perception, memory,

and responding as well. Pupil dilatation can be used for monitoring information process-

ing load and also refers to attention and concentration. For that reason, they can also be

used as an indicator for attention (Beatty and Lucero-Wagoner 2000) as cited in (Ungewiss

2015).

There is a method providing an objective psychophysiological measurement of cognitive

workload, which is called the Index of Cognitive Activity (ICA). The ICA is able to estimate

the levels of cognitive effort of subjects (Marshall 2000). It is based on changes in pupil

size that occur from the interaction between subjects and visual displays. The ICA mea-

sures abrupt discontinuities in the pupil diameter signal. As long as cognitive processing

is effortful, the pupil response occurs rapidly with a reflex reaction of dilatation. Simulta-

neously, the pupil shows a reflex reaction to light changes. The ICA separates light reflex

and dilation reflex.

The index is computed as the number of times an abrupt discontinuity in the pupil signal

is detected per second (Marshall 2002).

The effect of cognitive workload can be observed during perimetry: Mental workload
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reduces subject’s visual field areas, with heavy workload leading to a higher reduction

than light workload (see Figure 3.3) (Rantanen and Goldberg 1999) as cited in (Ungewiss

2015).

Figure 3.3: The effect of light, moderate and high cognitive workload on the visual fields of
two subjects. The vertices extend 90◦ from the point of fixation. A Goldmann
perimeter for kinetic perimetry with stimulus III 4e was used (Rantanen and
Goldberg 1999)

3.4.3 Response quality monitoring

Previously, it has been tried to predict the error rate (as a correlate of fatigue) of sub-

jects during a visual experiment. A 40 minutes campimetric task was carried out, during

which the test subjects had to detect visual stimuli of different contrast levels. It was found

that pupillographic measures can be used to train a machine learning model to predict

the error rate of a user with an average correlation of 0.72±0.17 (Vergani Dambros et al.

2017). However, correlations were not stable between the subjects, whereas for some,

positive and for other subjects, negative correlation coefficients occurred. Moreover, only

nine young test subjects (age range 20–32 years), that were not stratified or ophthalmo-

logically pre-examined in any way, were included (Vergani Dambros et al. 2017).

Additionally, EEG data (especially with regard to their alpha power) were evaluated to-

gether with pupillary data with regard to their ability to predict false responses to catch tri-

als. Therefore, Dambros developed specific machine learning algorithms (Vergani Dambros
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2017).

Data was analyzed by an SVR (support vector regression) as well as by a LASSO (least

absolute shrinkage and selection operator) algorithm. For more information on these al-

gorithms, see (Vergani Dambros 2017). Correlations of predicition and actual errors were

assessed.

3.4.4 Algorithms

There have been various studies to monitor vigilance in the recent past. Therefore, al-

gorithms to determine basic indicators for vigilance do already exist. Subsequently, two

particular algorithms used to determine the pupil diameter and the height of the palpebral

fissure are described, as these algorithms seem very helpful to monitor vigilance espe-

cially in examinations based on visual attention. Wavelet transformation is additionally

used to extract fatigue waves out of pupil diameter recordings and thus is mentioned.

3.4.4.1 Determination of the pupil diameter and definition of eyelid closures

(blinks)

Pupillography can be used to – generally spoken – determine the pupil diameter. For that,

the term pupillography is used to describe all methods to record and evaluate pupil activity

by means of changes in the pupil diameter. Continuous recordings of the pupil diameter

are carried out over a defined period.

To determine the pupil diameter by pupillography during perimetric examinations, an al-

gorithm has been released by Müller in 2013 (Müller 2013). This algorithm has been

extended and improved for the application within this dissertation by Michael Wörner (no

specific publication available). The pupil diameter is recorded during the perimetric ses-

sion. This is practically realized by the infrared camera integrated in the OCTOPUS 900

perimeter (Haag-Streit AG, Koeniz, Switzerland). A maximum frame rate of 20 frames per

second (fps) can be achieved. Resolution is 320x240 pixels (px) in grayscale.

Since the pupil is black and the surroundings are relatively bright, it can in principle be

assumed that the lowest luminance values found lie within the pupil. An exception to this

can only occur if the near-glass mount of the perimeter is used. To differentiate between

the pupil and the near-glass mount, a check is made as to whether the lowest values found
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are located within an ellipse or an ellipse section. If this is the case, it can be assumed

that the pupil is annotated.

As described, the pupil detection algorithm was improved in the course of this study. This

occurred between the conduct of the pilot studies and the main study. The reason for this

was, that a precise analysis of the annotated pupils showed, that in some cases of eyelid

closure, the pupil sizes detected were too small. This occurred due to the fact that the

initial algorithm was designed to recognize ellipses (including circles). The algorithm was

revised in a way that with the aid of a machine learning algorithm instead of ellipses, it

was now also possible to recognize circle or ellipse sections. Thus, pupil sizes could be

calculated more realistically (see Fig. 3.4).

Figure 3.4: Illustration of the different pupil sizes detected by the different versions of the
pupil detection algorithm. The green circle shows the pupil detected by the
initial algorithm (ellipse recognition), the red circle shows the pupil detected by
the improved algorithm (circle or ellipse section recognition)

In addition, a neural network has been implemented that does not only determine the pupil

diameter based on the preconditions stated above, but also gives a confidence value of

the probability that the detected part of the image is the real pupil or if no pupil is visible,

for instance during a blink.

It is decided, whether a blink is occurring in a specific video frame or not depending on

the confidence value of the pupil recognition taking into account the previous detection.

According to this definition, on the one hand an eyelid closure can be reliably recognized
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and on the other hand the height of the palpebral fissure can be detected without gener-

ating a bias due to eyelid closures.

3.4.4.2 Determination of the height of the palpebral fissure

The algorithm for the determination of the height of the palpebral fissure including its de-

scription was released by Michael Wörner for the purposes of this study.

The procedure for determining the height of the palpebral fissure is based on a paper by

Kazemi and Sullivan on the shape detection of faces (Kazemi and Sullivan 2014). Shape

is understood as a multitude of points that trace the contours of the chin, nose, eyes, etc.

of a face. A shape detection places such points within a given image based on the ap-

proximate position and extent of a face determined by automatic facial recognition. The

method of Kazemi and Sullivan starts with a medium shape, which is gradually changed

by a variety of intensity comparisons between pixel pairs of the present image so that it

approximates the actual facial contours. Which pairs of pixels are compared in each step

and which changes in the current shape are made depending on the difference in intensity

are trained beforehand as part of a machine learning process using a number of appro-

priately annotated images.

To determine the palpebral fissure height, this procedure was adapted so that the shape

to be found does not describe a whole face, but eight points along the upper and lower

edge of the eyelid. For this shape, the recognition was trained on 373 manually annotated

images from the present study, so that these eight points for describing the contour of the

eyelids could then also be found in unknown perimeter images. A center point could then

be determined for each eyelid from the four points on the upper and lower eyelid. The

distance between the upper and lower center finally results in the height of the palpebral

fissure.

3.4.4.3 Wavelet Transformation

Wavelet transformation uses wavelike functions in different shapes, that are described as

wavelets. Wavelets can be used to transform a signal into another representation which

shows the signal information in a more useful form. This transformation of the signal is

called the wavelet transform. Mathematically, the wavelet transformation is a convolution

of the wavelet function with the original signal.
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Figure 3.5: Wavelets, a some wavelet shapes, b location, c1, c2, c3 scale

A wavelet can be manipulated in two ways: it can be moved to different locations on

the original signal and it can be stretched (see Figure 3.5) (Addison 2002) as cited in

(Ungewiss 2015).

The wavelet transform is based on a pair of filters: One filter is a lowpass filter that takes

over the task of a scaling function, while the other is a highpass filter. The lowpass filter

produces an average signal (a) and the highpass filter produces a detail signal (d) (Weeks

2011) as cited in (Ungewiss 2015).

Wavelet transformation has, for instance, been used by Henson and Emuh in their study

on fatigue waves during a campimetric examination (see chapter 3.4.1.1) (Henson and

Emuh 2010).
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4.1 Basics of the methodology

This chapter presents the methodology of this study. It should first be noted that this work

is divided into two pilot studies and one main study. Basically, various physiological and

non-physiological parameters related to the vigilance of subjects during perimetry were

examined. These parameters were compared to the proportion of incorrect responses to

catch trials as a gold standard.

The pilot studies were needed to obtain a first rough estimate of the expected effects of

the study, which in the main study could be evaluated quantitatively.

For comparison between different test subjects, all physiological parameters mentioned

were evaluated relatively and thus normalized to a value range between 0 and 1 by form-

ing the ratio of the respective individual parameter values and the individual, parameter-

related maximum for each parameter for each subject.

Frame rate of the pupillographic recordings was set to 20 frames per second (fps). How-

ever, due to hardware limitations, the recording software was programmed to lower frame

rate or skip single frames in order to maintain the recording procedure also in cases where

there were bottlenecks in data processing in connection with the available RAM memory.

For this reason, all data were synchronized before the evaluation and resampled and

smoothed to an artificial final frame rate of 20 fps.

In addition to the physiological parameters described in chapter 3.3, the frequency of see-

ing curve (FOS curve) was determined for each subject.

All data were analyzed using MatLab Release 2018a (The MathWorks Inc., Natick, USA).
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4.2 Study design and methodology of pilot study 1

The first pilot study involved in this work has already been published as a poster with an

associated abstract at the IPS Meeting in Udine, Italy in 2016 (Ungewiss et al. 2016). For

this reason, only a course description is given for this pilot study at this place. The poster

and associated abstract are attached to this work in App. E.

4.2.1 Experimental setup and subject sample for pilot study 1

The method of constant stimuli (MoCS) was applied to assess the differential luminance

sensitivity with the OCTOPUS 900 perimeter (Haag-Streit AG, Koeniz, Switzerland, see

Fig. 6.1).

Figure 4.1: OCTOPUS 900 perimeter (Haag-Streit AG, Koeniz, Switzerland)

OPI (Open Perimetry Interface) (Turpin et al. 2012) was used to put together the test algo-

rithms: Stimulus luminance was varied in 13 logarithmic steps (3 dB each) between 0.04

and 160 cd/m2 at a background luminance of 10 cd/m2. Goldmann size III (25,7’) stimuli
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were presented eight times each in three locations (-5◦,+5◦), (0◦,0◦), (3◦,-6◦): Altogether,

1,560 stimuli were presented within approximately 45 minutes. An increased rate of false

positive and false negative catch trials was implemented (40% each). Pupil data were

extracted from the built-in camera of the OCTOPUS 900 perimeter, which operated with

a frequency of 20 fps. Heart rate was recorded with the H7 heart rate monitor using a

chest strap (Polar Elektro GmbH, Buettelborn, Germany). Response times (i.e. the time

intervals between stimulus presentation and the subjects’ confirmation of its recognition

by pressing the response button) were evaluated. Five test subjects were included in the

pilot study 1.

Subjects were in general included if minimum distant visual acuity (without or with cor-

rection) was at least 0.8 (single letter optotypes [numbers], VISUCAT, argus individuell

optic GmbH, Ottobrunn, Germany). The maxima of the acceptable ametropia were set to

±8.00 dpt spheric and 2.50 dpt astigmatic ametropia. Ophthalmologic and general sta-

tus had to be normal according to the exclusion criteria listed in chapter 4.4.2.2 in Tab. 4.1.

4.2.2 Data evaluation for pilot study 1

The quality of visual field testing was defined by the response behavior to catch trials. An

agreement index (AI) was determined, relating periods with increased variabilities of

1. pupil diameter variability (see chapter 4.2.2.1)

2. heart rate variability (see chapter 4.2.2.2) and

3. reaction time variability (see chapter 4.2.2.3)

to periods with increased number of false responses to catch trials (see Fig. 4.2).

Parameters were selected with regard to relations found in previous work (Müller 2013)

(Müller et al. 2014) (Ungewiss 2015).

An event was defined in a qualitative manner as described in chapters 4.2.2.1–4.2.2.3 for

the physiological parameters included. For false responses to catch trials, which was the

gold standard parameter, an event occurrence was defined empirically as a number at

least three false responses to catch trials with a period of less than one minute without a

false response in between.

The agreement index was calculated as the ratio between event overlap and total event

occurrence periods.
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Figure 4.2: Description of event occurrence with regard to catch trials. Time periods with
at least three false responses to catch trials with no more than 1 min. period
without false response in between (empirically defined as an event occurrence)
are highlighted in gray. PDV: pupil diameter variability HRV: heart rate variabil-
ity, RTV: reaction time variability, red squares: false negative catch trials, filled
red squares: false responses to false negative catch trials, purple diamonds:
false positive catch trials, filled purple diamonds: false responses to false pos-
itive catch trials

Variabilities were calculated using sliding window algorithms. Such algorithms were orig-

inally used for data flow control in computer networks (Tanenbaum 2003) and are now

widely used for the purpose of data analysis.

With the sliding window algorithm, data are analyzed gradually. A window of a certain

length of frames is defined. This window slides over the data in the order of their record-

ing. Since the same number of frames is processed at the same time, and the window

slides one frame per calculation step, a time-based parameter is evaluated gradually for a

certain period.

4.2.2.1 Pupil diameter variability

The pupil diameter variability (PDV) was computed as the variance of the pupil diameter

over a time period of 60 seconds, using a sliding window algorithm.

Event occurrence was empirically defined as the occurrence of normed PDV values larger

than 0.5. A time period was regarded as a coherent event if no more than 1 minute period

without normed PDV values larger than 0.5 appeared.

4.2.2.2 Heart rate variability

The heart rate variability (HRV) was computed as the variance of the heart rate over a

time period of 60 seconds, using a sliding window algorithm.

31



4 Study design and methodology

Event occurrence was empirically defined as the occurrence of normed HRV values larger

than 0.5. A time period was regarded as a coherent event if no more than 1 minute period

without normed HRV values larger than 0.5 appeared.

4.2.2.3 Response time variability

The response time variability (RTV) was computed as the variance of the response time

over a time period of 60 seconds, using a sliding window algorithm.

Event occurrence was empirically defined as the occurrence of normed RTV values larger

than 0.5. A time period was regarded as a coherent event if no more than 1 minute period

without normed RTV values larger than 0.5 appeared.

4.2.2.4 Frequency of seeing (FOS) curves

Frequency of seeing (FOS) curves describe the relationship between the probability of

seeing a stimulus and a stimulus property which can be contrast or size in perimetry.

They can be seen as cumulative Gaussian functions depicting local threshold variability

(Woodworth and Schlossberg 1954).

The characteristics of FOS curves have implications not only for perimetric thresholds but

also for their variability. In FOS curves, a steep slope reflects low variability and therefore

reliability, whereas a more shallow slope reflects higher threshold variability and therefore

reliability (Chauhan et al. 1993).

Thus, in contrast to fluctuations of the FOS curves, that are described by false positive and

false negative responses to catch trials, the slopes can also be used as a supplementary

measure for the reliability of a subjects’ performance and thus as a supplementary validity

criterion. For pilot study 1, FOS curves were only displayed graphically.

4.3 Study design and methodology of pilot study 2

As the collection of the pupillary data was carried out in the same way as in pilot study 1

(see chapter 4.2), a repetition of the information is not given here. Only the recording and

evaluation of the EEG data is explained.

32



4 Study design and methodology

4.3.1 Experimental setup and subject sample for pilot study 2

The method of constant stimuli (MoCS) was applied to assess the differential luminance

sensitivity with the OCTOPUS 900 perimeter (Haag-Streit AG, Koeniz, Switzerland). OPI

(Open Perimetry Interface) (Turpin et al. 2012) was used to put together the test algo-

rithms: Stimulus luminance was varied in 13 logarithmic steps (3 dB each) between 0.04

and 160 cd/m2 at a background luminance of 10 cd/m2. Goldmann size III (25,7’) stimuli

were presented 20 times each in three locations (-6.1◦,-3.5◦), (0◦,7◦), (6.1◦,-3.5◦), and

a reference stimulus location was added at (0◦,0◦) with a weight of 0.1 (compared to a

weight of 1.0 for all other stimuli locations) as additional fixation incentive. Stimuli pre-

sented at this reference location were excluded from data evaluation. The examination

included 1,612 stimuli altogether. An increased portion of false positive and false nega-

tive catch trials was implemented (25% each). Pupil data were extracted from the built-in

camera of the OCTOPUS 900 perimeter, which operated at a frequency of 20 fps.

In addition, a 32-channel EEG device with a sample rate of 30 Hz was used in com-

bination with an actiCAP and an actiCAP Control Box with electrodes (Brain Products

GmbH, Gilching, Germany) and 2 USBamp amplifiers (g.tec medical engineering GmbH,

Schiedlberg, Austria). For data collection, the BCI2000 viewer as an open source software

(Schalk et al. 2004) was used. Electodes were positioned as shown in Fig. 4.3. Electrode

positions were F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4,

P6, PO7, PO3, POz, PO4, PO8, POO1, POO2, PO9, O1, O2, PO10, Oz (abbreviations

as follows: F: frontal, T: temporal, P: parietal, O: occipital, C: central, z: midline sagittal

plane; in addition: EOG1, EOG2). The reference electrode REF was placed at the left

mastoid, the ground electrode GND was placed at the right mastoid.

Five test subjects were included in the pilot study 2.

Subjects were in general included if minimum distant visual acuity (without or with cor-

rection) was at least 0.8 (single letter optotypes [numbers], VISUCAT, argus individuell

optic GmbH, Ottobrunn, Germany). The maxima of the acceptable ametropia were set to

±8.00 dpt spheric and 2.50 dpt astigmatic ametropia. Ophthalmologic and general sta-

tus had to be normal according to the exclusion criteria listed in chapter 4.4.2.2 in Tab. 4.1.

An additional proof-of-concept experiment was performed in the rooms of the EEG labo-

ratory of the University Hospital in Tübingen, Department of Neurology and Epileptology

with one subject (male, age 59 years).
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Figure 4.3: Positions of the EEG electrodes for pilot study 2. Abbreviations as follows:
F: frontal, T: temporal, P: parietal, O: occipital, C: central, z: midline sagittal
plane, colors refer to the coloring of the EEG cap (actiCAP, Brain Products
GmbH, Gilching, Germany)

Figure 4.4: Experimental setup of the proof-of-concept study at the EEG laboratory of the
University Hospital in Tübingen, Department of Neurology and Epileptology.
The subject is placed at a distance of 1 m from the perimeter, an assistant
operates the response button at a distance of 2 m from the subject
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During this examination, only the number of false responses to catch trials and the EEG

derivations were collected. Any collection of pupillary data was impossible because the

subject had to keep up a distance of least 2 m from the perimeter due to electromagnetic

interference between the perimeter and the EEG system. The test subject was also unable

to operate the response button himself, as this also led to electromagnetic interference.

The subject therefore gave the voice feedback ”yes” as soon as he saw a stimulus. An

assistant immediately entered the response using the response button. The setup for this

proof-of-concept experiment is shown in Fig. 4.4

4.3.2 Data evaluation for pilot study 2

The data for the pilot study 2 (apart from the EEG data) were evaluated in the same way

as the data for the pilot study 1 (see chapter 4.2). Another separate description is there-

fore omitted.

EEG data analysis was performed for each of 30 channels, respectively (of the two re-

maining channels, one was used to synchronize the EEG system with the perimeter and

the other for an accompanying EOG that was not evaluated for means of this specific

study). Data analysis contained the evaluation of the relative alpha wave (which means

the ratio between alpha-frequency waves and all waves found) and of an energy param-

eter. This energy parameter was defined as the alpha power spectral density of the signal.

Additionally, EEG data (especially with regard to their alpha power) were evaluated to-

gether with pupillary data with regard to their ability to predict false responses to catch

trials. For this purpose, machine learning algorithms developed in a Bachelor’s thesis by

Dambros in 2017 (Vergani Dambros 2017) were applied (see chapter 3.4.3).

4.4 Study design and methodology of the main study

As the pilot study 2 showed, the EEG recording in its present status was not a suitable op-

tion for measuring vigilance during perimetry. The remaining parameters were considered

for the main study. In addition to the already known parameters (pupil diameter variability,

heart rate variability, and response time variability), additional evaluation methods (wavelet
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analysis for the pupil diameter variability and a frequency-dependent analysis for the heart

rate variability) were used in order to make sure, that no possible parameter has been ac-

cidentally overlooked.

As it was possible to reliably extract the palpebral fissure height and therefore also eyelid

closures using a machine learning algorithm (see chapter 3.4.4.2), these parameters were

also included in the main study.

The experimental setup as well as any relevant information for the main study is docu-

mented in the study synopsis for this work (see App. A).

4.4.1 Sample size estimation

The main study was the first part of this work to perform a quantitative way of data analysis.

Sample size estimation was carried out on the assumption that correlations for the recorded

physiological parameters and the error rate with regard to catch trials produce significant

results even for one subject due to the fact that there are 54,000 measurement values per

subject per parameter within one session. The actual sample size estimation was there-

fore designed in a way that even correlation examinations that affect the entire sample and

only contain one value per subject (for example the total number of errors, the subject’s

age or the scores of the ESS questionnaire) should result in significant values. A Spear-

man correlation with an intended correlation coefficient of ρ = 0.5 and a power of 0.95 was

assumed. Using a bivariate two-tailed model, the number of cases was at least n = 46 test

subjects.

In order to be able to divide the subjects into three age groups of the same size, n = 48

subjects were actually included.

4.4.2 Experimental setup and subject sample for the main study

4.4.2.1 Experimental setup

The method of constant stimuli (MoCS) was applied to assess the differential luminance

sensitivity with the OCTOPUS 900 perimeter (Haag-Streit AG, Koeniz, Switzerland). OPI

(Open Perimetry Interface) (Turpin et al. 2012) was used to put together the test algo-

rithms: Stimulus luminance was varied in 13 logarithmic steps (3 dB each) between 0.04
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and 160 cd/m2 with a background luminance of 10 cd/m2. Goldmann size III (25,7’) stim-

uli were presented 20 times each in three locations (-6.1◦,-3.5◦), (0◦,7◦), (6.1◦,-3.5◦), and

a reference stimulus location was added at (0◦,0◦) with a weight of 0.1 (compared to a

weight of 1.0 for all other stimuli locations) as additional fixation incentive. Stimuli pre-

sented at this reference location were excluded from data evaluation. The examination

included 1,612 stimuli altogether. An increased portion of false positive and false nega-

tive catch trials was implemented (25% each). Pupil data, blink rate and the height of the

palpebral fissure were extracted from the built-in camera of the OCTOPUS 900 perimeter,

which operated at a frequency of 20 fps.

Heart rate was recorded with the Ecgmove4 heart rate monitor using a chest strap (mo-

visens, Karlsruhe, Germany).

The ESS questionnaire was filled in by all participants and evaluated in accordance with

the existing guidelines (see chapter 3.3.7 (Johns 1991) (Sauter et al. 2007) (Deutsche

Gesellschaft für Schlafforschung und Schlafmedizin (DGSM) 2007)).

Response time (i.e. the time interval between stimulus presentation and the subjects’ con-

firmation of its recognition by pressing the response button) was monitored.

4.4.2.2 Description of the subject sample

Fourty-eight test subjects, equally distributed among three age groups (21–40 years,

41–60 years, 61–80 years) were included in the main study. Twenty-four dominant eyes

and 24 non-dominant eyes were examined in randomized order.

Subjects were included if minimum distant visual acuity (without or with correction) was

at least 0.8 (single letter optotypes [numbers], VISUCAT, argus individuell optic GmbH,

Ottobrunn, Germany). The maxima of the acceptable ametropia were set to ±8.00 dpt

spheric and 2.50 dpt astigmatic ametropia. Ophthalmologic and general status (obtained

by an ophthalmological examination and general history survey prior to the study) had to

be normal according to the exclusion criteria listed in Tab. 4.1.

Informed consent was obtained from all test subjects and the study was approved by the

ethics committee of the institutional review board (Landesärztekammer Baden-Württemberg,

Germany, see App. B). All subjects were insured during their presence as well as for their

arrival and return travel.

The test appointments were, as far as possible, evenly distributed over the day in order to

avoid any circadian rhythm-related bias of the data. A controlled, exact equal distribution

of the appointments over the day was not possible for organizational reasons.
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Table 4.1: Exclusion criteria for the pilot and main studies
general exclusion criteria ophthalmological exclusion criteria
epilepsy (potential triggering through
flicker stimuli) / psychiatric disorders

strabism (also temporarily = intermit-
tent)

medication affecting the reaction time stereo angle measured with Lang I test
≥600” in 40 cm distance with adequate
near-correction, if necessary
eye movement disorders
nystagmus
eye surgery less than 3 months ago
medication affecting the pupil dilatation
and/or constriction
relative afferent pupillary defect (RAPD)
serious eye injuries
indications of optic nerve or visual path-
way diseases
retinal or macular diseases

All documents used are attached to this work in App. C.

The individual ESS scores were tested for accordance to the existence of an onset of

sleepiness (defined by the first occurrence of at least two false responses to catch trials

within a 1-minute time period) by McNemar’s test. Therefore, it was only tested, if an

onset was present during the whole test period and if ESS scores were pathological con-

cordantly. ESS scores were ranked as pathological, if a score of 11.7 or above occurred.

This specific score was determined as former studies (Johns 1991) carried out, that the

mean of ESS scores for obstructive sleep apnea syndrome (OSAS) subjects amounted to

11.7.

Sleepiness onset was calculated for each individual and correlated to age, ESS score and

total number of errors. Total number of errors was also correlated to ESS score and age,

and ESS score was, in turn, correlated to age by Spearman correlations. Spearman cor-

relations were used as a normal distribution of the parameters was partly (i.e. in age) not

intended and therefore not present. Decisions about significance were always carried out

with regard to Bonferroni-corrected p values for the results (see chapter 4.4.3).
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The individual peculiarities of the test subjects (diseases, etc.) were recorded. They are

shown together with the individual data in one document per subject in the appendix of

the work (see App. F).

4.4.3 Data evaluation for the main study

Error distribution and distribution forms of the examined parameters were analyzed. Con-

sequently the statistical methods applied were chosen. First a global analysis of the data

(under the same criteria for all subjects), then an individual analysis (under individual cri-

teria) of the data was carried out.

Decisions about significance were always carried out with regard to Bonferroni-corrected

p values for the results.

That means, that a result was only rated as significant, if

p <
α

n
(4.1)

with p: p value, α: significance level of 0.05 (as usual), n: number of test procedures.

Specific p values that were to be achieved, are stated for each evaluation carried out di-

rectly attached to the specific results in chapter 5.3.

4.4.3.1 Parameters considered in the main study

Some of the parameters involved allow for more than only one evaluation method. All

evaluation methods applied are listed below.

False responses to catch trials: False responses to false positive as well as to false

negative catch trials were summarized for evaluation, since it was observed during the

conduct of the study that not all subjects reacted to the onset of fatigue or sleepiness in

the same way. Some began to press the response button evenly with the acoustic stim-

uli that were presented together with the false positive catch trials, while other subjects

missed the false negative catch trials. It was assumed that incorrect responses to both
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types of catch trials were associated with sleepiness.

Periods with an increased number of false responses to catch trials were defined as a

number of at least two errors per minute, calculated over a sliding window. This criterion

of at least two false responses to catch trials per minute corresponded to the 95. per-

centile of the error rates for all test subjects.

Eyelid closures (blinks): Blink rate (BR) was included as well as blink rate variablity

(BRV). As subjects were told to blink regularly after having perceived a stimulus, blink rate

was rated as a parameter afflicted with artifacts. It was assumed, that BRV could show an

unconcentrated behaviour with regard to eyelid closure. BR was assessed in blinks per

minute and BRV was calculated as variance of BR over a 60-seconds-time period using a

sliding window.

Pupillary oscillations: Blinks were removed prior to the further processing of the pupil-

lary data.

Pupil diameter (PD) and pupil diameter variability (PDV) were included in the evaluation.

PD was assessed by videopupillography and PDV was calculated as variance of PD over

a 60-seconds-time period using a sliding window. For PD, a linear interpolation was per-

formed for time periods where eyelid closures took place.

In addition, peaks in PDV (PDVpeaks, defined as the occurrence of values above the 95.

percentile of the data of all subjects together), relating to an immediate dilatation and/or

contraction of the pupil, were assessed and a wavelet transformation of the pupil data

(PDVd10) was conducted according to the method Henson used in his work (Henson and

Emuh 2010).

Palpebral fissure: The height of the palpebral fissure was defined as the distance be-

tween upper and lower lid edge in the course of the present work – in contrast to the width

of the palpebral fissure, which would be defined as the distance between inner and outer

lid corners (see Fig. 4.5).

The height of the palpebral fissure (PF) as well as its variability (PFV) were included in

the main study. PF was evaluated from the pupillary data after excluding the blinks by
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Figure 4.5: Definition of width and height of the palpebral fissure

application of a low pass filter via a 60-second-sliding window. Because of filtering due

to blink exclusion, the first minute window of the examination was contaminated with cal-

culation artifacts and therefore excluded from the further data evaluation procedure. PFV

was calculated as the variance PF over a 60-seconds-time period using a sliding window.

Heart rate: Heart rate (HR) and heart rate variability (HRV) were included. HRV was

calculated as variance of HR over a 60-seconds-time period using a sliding window.

In addition, a frequency-sensitive consideration of HRV took place, as HRV for low fre-

quencies (HRVLF) and HRV for high frequencies (HRVHF) were calculated separately

according to the frequency limits stated in 3.3.4.

Response time: Response time (RT) was included as well as response time variability

(RTV). A linear interpolation was performed for response times as these were not avail-

able during time periods where below-threshold stimuli were presented.

RTV was calculated as variance of RT over a 60-seconds-time period using a sliding win-

dow.

4.4.3.2 Parameter overview

In order to get a coarse overview of the data, respective parameters were first evaluated

using arbitrary and coarse granular assignment of the respective values to discrete in-

tervals (minute 1, minute 2, etc.). As discrete time intervals were chosen, an evaluation
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method was applied for each parameter that allowed also for discrete values (e.g. the dis-

crete number of blinks instead of the blink rate over a specific time period). Only if this was

not possible, mean values per minute were calculated. As short peaks that occurred were

considered as important for the evaluation, these should be taken into account. Therefore,

peak-sensitive mean values were chosen instead of median values only with regard to this

specific case, although the data did not show a normal distribution.

False responses to catch trials: False responses to catch trials were counted per dis-

crete minute interval as described above.

Corresponding parameters: The corresponding parameters listed in chapter 4.4.3.1

were analyzed.

For the blink rate (BR), discrete blinks were counted.

For the pupil diameter (PD), discrete peaks of the pupil diameter variability (PDVpeaks)

were counted.

For the height of the palpebral fissure (PF), mean values of the PF were calculated, as it

was assumed that PF decreased with increasing error rate.

For the heart rate (HR), mean values of the HR were calculated in order to check for a

possible decrease of the HR with increasing error rate.

For the reaction time (RT), mean values of the RTV were calculated. This was done as

from the evaluation of pilot study 1, it was assumed that RTV increased with increasing

error rate whereas no reference for RT was available.

4.4.3.3 Parameter distributions and resulting statistical principles

Irrespective of the data analysis method described in chapter 4.4.3.2, sensitive cut-off val-

ues for each parameter had to be defined post hoc in order to differentiate normal from

statistically noticeable or pathological values. As a second step, a global and individual

analysis of the data could be conducted. It might be that the latter evaluation methods

then showed results that could not be seen from the overview method.

For this more precise global and individual data analysis, however, the frequency distri-

bution of the data were first required in order to be able to determine the appropriate

statistical procedures.
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All parameters were displayed graphically with regard to their frequency distribution (see

chapter 5.3.4). Due to the fact that the majority of the parameters did not show normal

distribution, parameter-free methods were selected for the statistical evaluation. This also

seemed meaningful for the resulting rank correlations as it made no difference whether

absolute or relative, normalized values (as described above) were used for the evaluation.

4.4.3.4 Global data analysis

Parameter selection for detailed analysis: All parameters listed in chapter 4.4.3.1

were examined for the global analysis. For this purpose, sensitivity and specificity for

the entire collective were determined for each evaluation method depending on different

cut-off values and visualized via ROC (receiver operating characteristics) curves. These

were implemented in order to check whether a specific evaluation method seemed suit-

able at all if the cut-off values were selected correctly. AUROC (area under the ROC

curve) values were used to select the most promising evaluation method per parameter.

As the parameter selection was completed, cut-off values had to be determined. The

most relevant method to do this seemed to be the Youden index, also known as Youden’s

J, which was calculated as follows:

J = sensitivity + specificity − 1 (4.2)

Cut-off values were selected for the maximum of Youden’s J.

An alternative method for cut-off value selection would be the determination of sensitivity

at a specificity aimed at, which has been done in the past specifically with regard to oph-

thalmological studies (Zangwill et al. 2001). For the purpose of this study, a specificity of

0.8 was chosen.

After cut-off values for sensitivity and specificity were defined, the corresponding per-

centile values for each of the selected evaluation methods per parameter were calculated.

Definition of the agreement index (AI): For the selected parameters, an agreement in-

dex was calculated for the agreement between the occurrence of false responses to catch
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trials as a gold standard and noticeable values for the respective physiological parameter.

The ratio between event overlap and total event occurrence periods was calculated.

An event was defined for each respective parameter/evaluation method as an occurring

value above (for blink rate variability (BRV), the variability of the palpebral fissure height

(PFV), the low frequency band of the heart rate variability (HRVLF), and response time

variability (RTV)) or below (for pupil diameter (PD)) the specific percentile value corre-

sponding to the cut-off values for sensitivity and specificity evaluated with Youden’s J as

well as for a specificity of 0.8 in a quantitative manner. An example of the analysis process

is given in Fig. 4.6.

Agreement plots were created that show if an event occurred for the respective related

parameters and if agreement to time periods with an increased error rate was existent. An

example for the creation of an agreement plot is displayed in Fig. 4.7.

In addition, a ”meta-correlation” of the total number of errors for each subject and the

agreement indices was performed using Spearman’s rank correlation method.

4.4.3.5 Individual data analysis

Parameter selection for detailed analysis: The global analysis method described above

defines the same cut-off values for all subjects. This works well only as long as all subjects

react to fatigue or sleepiness in the same or in a similar way. However, it is conceivable

that some subjects give in to the onset of sleepiness quickly, while others fight it. In this

case, physiological parameters would develop very differently with the onset of fatigue or

sleepiness.

For this reason, an individual analysis was also carried out as a part of this study. For this

purpose, the number of false responses to catch trials was calculated ”pseudo-continuously”

and correlated as an error rate to the various evaluation methods for the included physio-

logical parameters, as listed in chapter 4.4.3.1. Since this was done individually for each

parameter for each test subject, the potentially individually different reaction to the onset

of fatigue or sleepiness was taken into account.

The evaluation methods with the highest median of correlation coefficients per parameter

were selected for the final analysis.
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Figure 4.6: Example for global data analysis for the response time variability (RTV) for
subject ID 106 and an evaluation with Youden’s J. a A ROC curve was com-
puted and cut-off values for sensitivity and specificity were defined (with sens.
= 0.62 and spec. = 0.69 in this case, see green dashed lines). b Percentiles
for cut-off values for sens. and spec. were calculated (in this case, the 66.
perc. corresponded to the above mentioned values for sens. and spec.). By
a parameter distribution for RTV for the whole subject sample (subjects are
sorted by the total no. of false responses to catch trials), the specific cut-off
value corresponding to the 66. perc. was defined (in this case, the value was
0.15), marked by the black dashed line. The box plot shows the distribution
for the whole subject sample, whereas the median is marked by the bold black
line, the box marks the 25. and 75. perc., and the whiskers stand for the 5. and
95. perc. In order to be able to give an overview, the illustration here is very
small. Images in original size are shown in App. I. c Therefore, for the individ-
ual, time periods with values occurring above the value of 0.15 (marked by the
black dashed line) were defined as an event for RTV (see light blue highlights).
In contrast, events for false responses to catch trials are highlighted in dark
gray. An event overlap is defined as the occurrence of both an event for RTV
and for false responses to catch trials at the same time. For a more detailed
explanation of an agreement plot, see Fig. 4.7
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Figure 4.7: Exemplary creation of an agreement plot for the agreement of an increased
error rate and the response time variability (RTV) for subject ID 106. Upper
part Time periods with an increased error rate are highlighted in gray. Mid-
dle part By a parameter distribution for RTV for the whole subject sample,
the specific cut-off value corresponding to the 66. perc. was defined (in this
case, the value was 0.15), marked by the black dashed line. Time periods with
an increased response time variability (e.g. event occurrence for response
time variability) are marked in light blue. Lower part Transfer of periods with
event occurrence for response time variability to the blue bar. If at the same
time, the error rate was increased, the blue bar turns to a dark blue color.
CAVE: In some places the blue bar in the lower part seems to be continuous,
whereas the blue-marked areas in the upper part are interrupted. The inter-
rupted areas are correct and accurate. The continuous effect occurs due to
the circumstance, that the bars can only be displayed with a relatively low ac-
curacy (protruding markers), for this reason short periods with short breaks in
between in the agreement plot look like a continuous period of event occur-
rence. However, the agreement indices are always calculated with the correct,
accurate values
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Individual correlation coefficients: Individual correlation coefficients were calculated

using Spearman’s rank correlation method, as justified in chapter 4.4.3.3.

In addition, a ”meta-correlation” of the total number of errors for each subject and the re-

spective correlation coefficients was performed for each parameter included using Spear-

man’s rank correlation method as well.

4.4.3.6 Frequency of seeing (FOS) curves

Frequency of seeing (FOS) curves were recorded for each test subject for each tested

location as described in chapter 4.2.2.4.

FOS functions were calculated as follows:

FOS = SSL · L[dB] (4.3)

with FOS: frequency of seeing, SSL: slope steepness, L[dB]: luminance level in dB

In addition, for the main study, the steepness of the steepest slope (SSL) of the FOS curve

within a monotonous drop (in order to exclude small fluctuations) was calculated for each

subject. If the steepness of the slope was different for different test locations, the median

of the slope steepness was taken.

A Spearman correlation between the steepness of the slope (SSL) and the total number

of errors per subject was carried out.

False positive and false negative responses to catch trials refer to the fluctuation of the re-

sponses. The slope steepness – in contrast – served as a supplementary measure for the

reliability of a subjects’ performance (retest reliability for the respective luminance levels

of the presented stimuli) and thus as a supplementary quality criterion. The interrelation

is shown in Fig. 4.8.
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Figure 4.8: Exemplary visualization (for subject 106) of the different quality parameters a
frequency of seeing (FOS) curve can provide. Fluctuations referring to false
positive responses to catch trials are highlighted in yellow, fluctuations referring
to false negative responses to catch trials are highlighted in orange, slope
steepness referring to the reliability of a subjects’ performance is highlighted
in gray. Locations tested: blue (0◦,7◦), green (-6.1◦,-3.5◦), red (6.1◦,-3.5◦), L:
luminance
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5.1 Results of pilot study 1

As the results of the first pilot study were already presented at the IPS Meeting 2016 in

Udine (Ungewiss et al. 2016), they will only be displayed very briefly here. Poster and

associated abstract can be found in App. E of this work.

Sufficient data were obtained from five subjects (3 male, 2 female; age range 25–58 years)

that were ophthalmologically normal (exclusion criteria are listed in chapter 4.4.2.2 in Tab.

4.1).

Agreement indices (according to chapter 4.2.2) and time periods with increased number

of false responses to catch trials are shown in Tab. 5.1.

The pupil diameter variability showed the highest agreement indices in three out of five

subjects, whereas response time variability showed lower but still moderate and heart

rate variability showed low or no agreement. It was assumed that the low agreement in-

dices for the heart rate variability could be related to the fact that the measuring equipment

was not sufficiently precise. For this reason, professional equipment for determining the

heart rate was procured for the main study.

Table 5.1: Agreement indices and time periods with increased number of false responses
to catch trials for pilot study 1

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Period with increased no.
of false responses to
catch trials

17.6 min 2.9 min. 2.0 min. 27.7 min. 0 min.

Pupil diameter variability 0.35 0.33 0.10 0.70 0
Heart rate variability 0 0 0 0.03 0
Response time variability 0.32 0.41 0 0.08 0
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5.2 Results of pilot study 2

Pilot study 2 was added to evaluate the relevance of EEG data. Pupil diameter was evalu-

ated again for plausibility testing as this was the parameter showing the highest agreement

to false responses to catch trials in pilot study 1.

Sufficient data were obtained from five subjects (4 male, 1 female; age range 24–59 years)

that were ophthalmologically normal (exclusion criteria are listed in chapter 4.4.2.2 in Tab.

4.1).

5.2.1 Results for pupillographic data and response time

Results for pupillographic data were evaluated in the same way as in pilot study 1. Agree-

ment indices (according to chapter 4.2.2) and time periods with increased number of false

responses to catch trials are shown in Tab. 5.2.

5.2.2 Results for EEG data

EEG data were only evaluated in a qualitative way. For each test subject, relative alpha

waves and alpha power represented by an energy parameter based on power spectral

density (PSD) were displayed for each channel separately, together with responses to

catch trials and pupillary oscillations, as alpha frequencies were seen as relevant in the

context of sleepiness detection. For time periods with an increased number of false re-

sponses to catch trials, EEG data were checked for remarkable characteristics. As none

of these were found, results of the pilot study 2 are only shown in App. G.

Table 5.2: Agreement indices and time periods with increased number of false responses
to catch trials for pilot study 2

Subject 6 Subject 7 Subject 8 Subject 9 Subject 10
Period with increased
no. of false responses
to catch trials

4.4 min 0 min. 2.0 min. 18.2 min. 0 min.

Pupil diameter varia-
bility

0 0 0.18 0.24 0
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For the additional proof-of-concept examination of one test subject at the EEG laboratory

of the University Hospital in Tübingen, Department of Neurology and Epileptology, results

of responses to catch trials are shown below in Fig. 5.1.

Figure 5.1: False responses to catch trials for the proof-of-concept examination of one test
subject at the EEG laboratory of the University Hospital in Tübingen, Depart-
ment of Neurology and Epileptology

It was neither possible to obtain the raw data, nor to extract a graphical representation

from the system of the EEG laboratory of the University Hospital in Tübingen, Department

of Neurology and Epileptology.

An analysis of the EEG data recorded there was carried out by Prof. Dr. Yvonne Weber,

the senior chief physician of the EEG laboratory. This showed that only in minutes 2 and

3, first signs of sleepiness according to clinically relevant methods could be observed.

Even at this stage, however, no change in the occipital basic rhythm was apparent, but

horizontal eye movements were detected by an EOG (electrooculogram) electrode, which

can indicate such a stage (Email correspondence between Prof. Dr. Yvonne Weber and

the author is attached in App. H for the verification of this statement).

As can be seen from Fig. 5.1, false responses to catch trials occurred mainly beginning

from minute 20 (only one false positive catch trial, that could not be rated as pathological,

appeared in minute 3). Therefore, EEG alpha waves did not seem to be a relevant option

for vigilance monitoring during perimetry for the reasons of both valide results and elec-

tromagnetic interference between the perimeter and the EEG system.

An evaluation of EEG alpha power and pupillary data with regard to their ability to predict

false responses to catch trials was carried out with the help of algorithms developed by

Dambros in his Bachelor’s thesis (Vergani Dambros 2017) as described in chapter 4.3.2.

The following results were found (see Tab. 5.3).

It can be seen from Tab. 5.3, that the overall results (with the exception of subject 9 for

SVR and subjects 7 and 8 for LASSO) show rather weak correlations. It should also be

noted that high correlation coefficients sometimes show an inter-individual difference in

the direction of the relationship (see subjects 7 and 8 for LASSO).

For this reason, the algorithms tested cannot be regarded as reliable for the present study.
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Table 5.3: Correlation coefficients of EEG and pupillary data analyzed with SVR and
LASSO algorithms developed by Dambros (Vergani Dambros 2017)

Subject 6 Subject 7 Subject 8 Subject 9 Subject 10
ρ (SVR) 0.17 0.02 -0.11 0.55 0.26
ρ (LASSO) -0.01 0.49 -0.66 0.00 0.12

Therefore, EEG alpha power did not seem to be a relevant option for vigilance monitoring

during perimetry in the course of this study as well.

5.3 Results of the main study

In contrast to the results of the pilot studies, data analysis for the main study was carried

out in a quantitative way.

5.3.1 Description of the subject sample

Subsequently, the subject sample is described by its distribution among age and gender

as well as for the individual ESS scores achieved. A correlation analysis of the information

about the subject sample is performed.

5.3.1.1 Basic information

Every test subject was labelled by an ID number ranging from 001 to 107. Not every pos-

sible number was given to a test subject included in the main study of this dissertation,

because subjects who had completed another study earlier, were addressed. A study ID

was given to them already at the first point of contact, regardless if they agreed to take part

in the present study or not. In addition, ID numbers were assigned to possible examination

time slots in advance. Not every examination time slot was used due to the availability of

the test subjects. The ID numbers were distributed as follows:

• 54 subjects of who had completed another study earlier were addressed.

23 of them agreed to take part in the present study.
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• 28 more subjects were recruited directly for the purpose of this study, all of whom

agreed to take part in the present study.

• 25 examination time slots were assigned to ID numbers in advance, but could not

be used.

Therefore, 107 subject IDs were assigned altogether. Fifty-one test subjects agreed to

take part in the present study.

All 51 subjects who agreed to take part in the present study underwent a preliminary

ophthalmological examination. Two of them had to be excluded due to in- and exclusion

criteria (see Tab. 4.1). Reasons for exclusion were strabism in one case, and the indica-

tion of an optic nerve disease in another case. One subject cancelled participation in the

study after the preliminary ophthalmological examination.

Sufficient data were obtained from 48 test subjects (in one case [subject 044] data record-

ing stopped after some time for unexplained reasons, data were analyzed anyway). The

subjects (18 male, 30 female, age range 22–78 years, median age 47 years) were dis-

tributed equally among the three age groups (21–40, 41–60, 61–80 years) as shown in

Fig. 5.2.

Figure 5.2: Age and gender distribution of subjects involved in the study (red: female, blue:
male)
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5.3.1.2 Epworth Sleepiness Scale (ESS)

The results for die Epworth Sleepiness Scale (ESS) scores for all test subjects, separated

by age, are shown in Fig. 5.3.

Figure 5.3: Distribution of the Epworth Sleepiness scale (ESS) scores by age. Black: age
group 21–40 years, dark gray: age group 41–60 years, light gray: age group
61–80 years

5.3.1.3 Onset of sleepiness

The onset of sleepiness was defined as the point in time, when an increased number of

false responses to catch trials occurred for the first time. An increased number of false

responses to catch trials was defined as an error rate of at least 2 errors/min., correspond-

ing to the 95. percentile for the error rates of all test subjects. Fig. 5.4 shows the onsets

for all subjects involved. Only 26 our of 48 subjects showed any onset at all with a median

of 5.9 minutes.

The results of an evaluation of the accordance of the ESS values and an occurrence of

onset of sleepiness are shown in Tab. 5.4. With χ2 = 16, df = 1, a resulting p value of

p = 6.33 · 10-5 showed that there was a statistically significant difference between the ESS

values and an occurrence of onset of sleepiness. Thus, no accordance of the ESS values

and onset of sleepiness was present.
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Figure 5.4: Onset of sleepiness for all subjects. IDs are shown on the left and sorted by
the total no. of errors for each subject (according to Fig. 5.6). Blue dots:
onset of fatigue (only for the 26 subjects showing an onset), black dashed line:
median (only for the 26 subjects showing an onset)
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Table 5.4: McNemar’s test of accordance of onset of sleepiness and pathological ESS
scores

onset present onset not present sum
ESS pathological 3 2 5
ESS not pathological 23 20 43
sum 26 22 48

Table 5.5: Results of global correlation analysis (Spearman’s rank correlation) for the pa-
rameters age, ESS, total no. of errors, and onset of sleepiness. Correlations to
the onset of sleepiness were only carried out for a subgroup of 26 test subjects
who showed an onset of sleepiness. Six correlation analyses were carried out,
which led to a significance requirement of p<0.008

Spearman’s ρ p
age x onset (subgroup) -0.33 0.09
ESS x onset (subgroup) 0.36 0.07
age x total no. of errors 0.10 0.49
ESS x total no. of errors 0.05 0.73
onset (subgroup) x total no. of
errors

-0.24 0.23

age x ESS -0.23 0.11

5.3.1.4 Global correlation analysis

Globally assessed parameters were correlated to each other. Six correlation analyses

were carried out, which lead to a significance requirement of p < 0.05/6 = 0.008. The

correlation coefficients are listed in Tab. 5.5.

No significant correlation between ESS score, age, total number of errors, and onset of

sleepiness occurred. This showed that neither ESS scores collected prior to a perimetric

examination nor age could be taken as an indicator for the occurrence of a time period with

an increased error rate or an increased total number of errors. In addition, total number

of errors and onset of sleepiness did not correlate significantly. Therefore, some subjects

seemed to be able to distribute single errors over a relatively wide time period, while oth-

ers produced many errors in a short time period, referring to a limited period of sleepiness.

The first case was often not rated as onset of sleepiness while the latter one was, as in

the first case an error rate of at least 2 errors/min. often occurred while in the latter case

that did not take place.
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5.3.2 Principles of parameter evaluation

5.3.2.1 Parameters considered in the study

All parameters involved in the study were already listed in chapter 4.4.3.

5.3.2.2 Graphical representation of relative, normalized measures

First, all parameters (normalized, relative values) were displayed graphically as shown

exemplarily for subject 106 in Fig. 5.5.

These graphics were conducted for all test subjects and can be found in documents cre-

ated for each individual subject in App. F. Such a document could be used to show

individual results of each test subject. In addition qualitative estimations about the relation

of different physiological parameters to false responses to catch trials could be carried out.

However, it was not possible to execute a quantitative analysis of data in that way.

For that reason, a cumulative approach was pursued subsequently.
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Figure 5.5: Parameters for subject 106 (normalized, relative values). BR: blink rate,
BRV: blink rate variability, PD: pupil diameter, PDV: pupil diameter variabil-
ity, d10V: variability of wavelet (d10) analyzed pupil diameter, PF: palpebral
fissure height, PFV: variability of the palpebral fissure height, HR: heart rate,
HRV: heart rate variability, HRVHF: heart rate variability (high frequency band),
HRVLF: heart rate variability (low frequency band), RT: response time, RTV:
response time variability
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5.3.3 Parameter overview

An overview for different parameters, as described in chapter 4.4.3.2, is shown.

For each parameter, subjects were arranged by their total number of errors starting from

a low number at the top to a high number at the bottom.

All overview figures are depicted in Fig. 5.6 – Fig. 5.11.

5.3.3.1 False responses to catch trials

Fig. 5.6 shows time periods with an increased number of false responses to catch tri-

als for all test subjects. Time periods without false responses to catch trials are marked

in white, whereas red-marked periods show that there an increased number (above the

95. percentile) of false responses to catch trials occurred. Color depth increases with an

increasing number of false responses per minute. Altogether, an unexpectedly low num-

ber of time periods with an increased number of false responses to catch trials occurred

among the vast majority of all test subjects. If false responses to catch trials were present

in a subject, these occurred mostly during the second half of the examination.

5.3.3.2 Eyelid closures/blinks

Fig. 5.7 shows time periods with an increased number of blinks (above the 95. percentile,

according to the requirements for false responses to catch trials) for all test subjects. Time

periods without an increased number of blinks are marked in white, whereas teal-marked

periods show that there an increased number of blinks occurred. Color depth increases

with an increasing number of blinks.

The graphic shows that an increased number of blinks occurred mostly during the second

half of the examination, as false responses to catch trials did (see Fig. 5.6). A subject-

related assignment of increased numbers of blinks to an increased number of false re-

sponses to catch trials was not possible.
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Figure 5.6: Time periods with increased number of false responses to catch trials for all
test subjects. Subjects are arranged by their total no. of errors starting from
a low number of errors at the top to a high number of errors at the bottom.
Time periods without false responses to catch trials are marked in white, red-
marked periods show that there an increased number (above the 95. per-
centile) of false responses to catch trials occurred. Color depth increases with
an increasing number of false responses per minute
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Figure 5.7: Time periods with increased number of blinks for all test subjects. For sorting
criteria, see Fig. 5.6. Time periods without an increased number of blinks are
marked in white, teal-marked periods show that there an increased number
(above the 95. percentile) of blinks occurred. Color depth increases with an
increasing number of blinks per minute
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5.3.3.3 Pupil diameter variability

Fig. 5.8 shows time periods with an increased number of peaks in pupil diameter variability

(above the 95. percentile, according to the requirements for false responses to catch

trials) for all test subjects. Time periods without an increased number of peaks in pupil

diameter variability are marked in white, whereas orange-marked periods show that there

an increased number of peaks in pupil diameter variability occurred. Color depth increases

with an increasing number of peaks in pupil diameter variability.

The graphic shows that neither a subject- nor a time-related assignment of an increased

pupil diameter variability to an increased number of false responses to catch trials was

possible.

5.3.3.4 Palpebral fissure height

Fig. 5.9 shows time periods with a decreased mean value (below the 5. percentile, ac-

cording to the requirements for false responses to catch trials) of the palpebral fissure

height for all test subjects. Time periods without a decreased mean value of the palpebral

fissure height are marked in white, whereas purple-marked periods show that there a de-

creased mean value of the palpebral fissure height occurred. Color depth increases with

a decreasing palpebral fissure height.

The graphic shows that a subject- and/or time-related assignment of a decreased palpe-

bral fissure height to an increased number of false responses to catch trials was possible

for individual subjects such as 040, 091 and 094. However, incorrect assignments oc-

curred, for instance for subjects 013 and 060 – for these subjects, continuous periods

with decreased mean values of the palpebral fissure were noticeable. For subject 060 in

particular, it could be assumed that this was based on the individual standardization of

the measured values. Subject 060 showed, compared to its maximum palpebral fissure

height, relatively small palpebral fissure heights over the entire examination. This could

be due to very high maximum values (wide openings of the eyes at times) or the fact that

when relaxed, the palpebral fissure height decreaseed more than in all other test subjects,

even if there were no other signs of sleepiness.
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Figure 5.8: Time periods with increased number of peaks in pupil diameter variability for
all test subjects. For sorting criteria, see Fig. 5.6. Time periods without an
increased number of peaks in pupil diameter variability are marked in white,
orange-marked periods show that there an increased number (above the 95.
percentile) of peaks in pupil diameter variability occurred. Color depth in-
creases with an increasing number of peaks in pupil diameter variability per
minute

63



5 Results

Figure 5.9: Time periods with decreased mean values for the palpebral fissure height for
all test subjects. For sorting criteria, see Fig. 5.6. Time periods without de-
creased mean values for the palpebral fissure height are marked in white,
purple-marked periods show that decreased mean values (below the 5. per-
centile) for the palpebral fissure height occurred. Color depth increases with
decreasing mean values for the palpebral fissure height per minute
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5.3.3.5 Heart rate

Fig. 5.10 shows time periods with a decreased mean value (below the 5. percentile, ac-

cording to the requirements for false responses to catch trials) of heart rate for all test

subjects. Time periods without a decreased mean value of heart rate are marked in white,

whereas green-marked periods show that there a decreased mean value of heart rate

occurred. Color depth increases with a decreasing heart rate.

The graphic shows that neither a subject- nor a time-related assignment of a decreased

heart rate to an increased number of false responses to catch trials was possible. For

subjects 025 and 107, continuous periods with decreased mean values of the heart rate

were noticeable. This might be due to the individual standardization of the measured val-

ues. If heart rate was very high during a very short period within the examination, all

other values were compared to that relatively low. For subject 025, this occurred due to a

very loud audio signal in the laboratory building, that could be heard in minute 20 of the

examination. Subject 107 was reported to almost fall asleep and was then startled by the

examiner who spoke to him in minute 36 of the examination.

5.3.3.6 Response time variability

Fig. 5.11 shows time periods with an increased mean value (above the 95. percentile,

according to the requirements for false responses to catch trials) of response time vari-

ability for all test subjects. Time periods without an increased mean value of response

time variability are marked in white, whereas blue-marked periods show that there an in-

creased mean value of response time variability occurred. Color depth increases with an

increasing response time variability.

The graphic shows that neither a subject- nor a time-related assignment of an increased

response time variability to an increased number of false responses to catch trials was

possible.
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Figure 5.10: Time periods with decreased mean values for the heart rate for all test sub-
jects. For sorting criteria, see Fig. 5.6. Time periods without decreased
mean values for the heart rate are marked in white, green-marked periods
show that decreased mean values (below the 5. percentile) for the heart rate
occurred. Color depth increases with decreasing mean values for the heart
rate per minute
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Figure 5.11: Time periods with increased mean values for the response time variability
for all test subjects. For sorting criteria, see Fig. 5.6. Time periods without
increased mean values for the response time variability are marked in white,
blue-marked periods show that increased mean values (above the 95. per-
centile) for the response time variability occurred. Color depth increases with
increasing mean values for the response time variability per minute
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5.3.3.7 Summary of parameter overview

A comparison of all overview charts displayed above shows, that there were accordances

of an increased number of false responses to catch trials and the palpebral fissure height

visible for individual subjects. Time-related accordances were visible for an increased

number of false responses to catch trials and an increased pupil diameter variability. How-

ever, a real qualitative accordance in a subject- and time-related manner for all subjects

and for the whole examination duration did not occur for any of the related parameters.

It must be stated, that an exclusion of individual test subjects or a consideration of certain

events (e.g. an audio signal and the consequences of the startling for this reason) did not

take place at this point. This was deliberately intended as such occurrences could also

appear during any regular visual field examination in a clinical context.

For that reason, a more detailed data analysis was carried out and is shown in the follow-

ing sections.

5.3.4 Parameter distributions

Prior to a detailed analysis of the study data, parameters were tested for their distribution

forms in order to decide, what statistical test methods were appropriate.

For false responses to catch trials as a gold standard, the total number of errors per sub-

ject was tested for normal distribution.

Fig. 5.12 shows a histogram of the total number of errors for all subjects. Data were

tested for normal distribution using Shapiro-Wilk’s test. According to that, the total num-

ber of false responses to catch trials was not normally distributed (W = 0.69599, p value

p = 1.13 · 10-8).
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Figure 5.12: Histogram for the total no. of errors for all test subjects

Fig. 5.13 shows the distribution of the error rate (calculated over a 60 seconds sliding

window) over time, divided into false positive and false negative as well as combined error

rate. It can be seen, that false positive responses appeared mainly in the beginning of the

measurement, while false negative errors increased with examination time. However, this

was only an overall approach, while individual behavior with regard to false positive and

false negative errors could not be derived from that.

As false responses to catch trials were seen as the gold standard with regard to this

examination and the total number of errors for all subjects was not distributed normally, it

was decided to go for non-parametric testing for the whole data analysis. Distribution plots

for all related parameters were created. Fig. 5.14 shows an exemplary plot for the pupil

diameter variability (PDV). This plot shows the distribution of values for each individual

subject condensed in one graphic (for sorting criteria, see Fig. 5.6, subjects are marked

by individual colors, as can be seen from the legend on the right side of the figure). A

boxplot showing the distribution of values for the whole subject sample was added (box:

25. and 75. percentile with 50. percentile marked as black line in the box; whiskers: 5.

and 95. percentile).
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Figure 5.13: Error rate for false positive and false negative errors over time for all subjects.
a false positive and false negative errors combined (gray), b false positive
errors (dark red), c false negative errors (light red)
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Figure 5.14: Exemplary distribution plot for the normed (0..1) pupil diameter variability.
The distribution of values for each individual subject is shown (for sorting
criteria, see Fig. 5.6, subjects are marked by individual colors, as can be
seen from the legend on the right side of the figure). A boxplot showing the
distribution of values for the whole subject sample was added (box: 25. and
75. percentile with 50. percentile marked as black line in the box; whiskers:
5. and 95. percentile)

As can be seen from the distribution plot in a qualitative manner, these parameters were

not distributed normally either. Plots for any of the other parameters included can be found

in App. I.
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5.3.5 Global data analysis

5.3.5.1 Parameter selection for the global analysis

For a detailed, yet global analyisis of the data set, the most promising evaluation method

for each parameter according to 4.4.3.1 had to be identified.

Therefore ROC curves were calculated for all evaluation methods mentioned. Area under

the ROC curve (AUROC) was calculated, as displayed in Fig. 5.15. For each parameter,

the evaluation method with the largest AUROC value was selected for global data anal-

ysis. Afterwards, cut-off values were calculated for both, Youden’s J and a pre-defined

specificity of 0.8.

With regard to AUROC values, blink rate variability (BRV, AUROC = 0.5424), pupil diame-

ter (PD, AUROC = 0.5857), variability of the palpebral fissure height (PFV,

AUROC = 0.7242), heart rate variability for low frequencies (HRVLF, AUROC = 0.5972),

and response time variability (RTV, AUROC = 0.6934) were selected for further global data

analysis.

Tab. 5.6 shows sensitivitiy and specificity values for Youden’s J and a pre-defined speci-

ficity of 0.8 as well as the cut-off percentiles for the selected evaluation methods.

Variability of the palpebral fissure height (PFV) and response time variability (RTV) showed

the highest values for sensitivity and specificity for Youden’s J as well as the highest val-

ues for sensitivity at a specificity of 0.8. As these evaluation methods also showed the

largest area under the ROC curve values, this observation met the expectations. For all

evaluations methods, sensitivity values were relatively low at a pre-defined specificity of

0.8 compared to Youden’s J sensitivities, as for Youden’s J, specificity values were below

0.8 for all evaluation methods.
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Figure 5.15: ROC curves and corresponding values for the area under the ROC curves
(AUROC): a blink rate (BR), blink rate variability (BRV), b pupil diameter (PD),
pupil diameter variability (PDV), wavelet transform of pupil diameter variabil-
ity (PDVd10), peaks in pupil diameter variability (PDVpeaks), c palpebral fis-
sure height (PF), variability of the palpebral fissure height (PFV), d heart
rate (HR), heart rate variability (HRV), heart rate variability for high frequen-
cies (HRVHF),heart rate variability for low frequencies (HRVLF), e response
time (RT), response time variability (RTV). For each parameter, the evalua-
tion method with the largest AUROC value was selected. Selected methods
are marked by the red rectangles
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Table 5.6: Sensitivitiy and specificity values for Youden’s J and a pre-defined specificity of
0.8 as well as cut-off percentiles (highlighted in gray) for the selected evaluation
methods

parameter sens.
(Youden’s J)

spec.
(Youden’s J)

sens. at
spec. 0.8

cut-off
perc.
(Youden)

cut-off
perc.
(sens.
at spec.
0.8)

blink rate
variability
(BRV)

0.58 0.50 0.25 50 80

pupil diame-
ter (PD)

0.45 0.71 0.34 30 19

variability of
the palpe-
bral fissure
height (PFV)

0.73 0.6 0.49 57 78

heart rate
variability
for low fre-
quencies
(HRVLF)

0.57 0.58 0.31 56 79

response
time variabil-
ity (RTV)

0.63 0.69 0.48 66 78
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5.3.5.2 Agreement index (AI)

Agreement indices were calculated for both methods Youden’s J and a pre-defined speci-

ficity of 0.8. Tab. 5.7 shows the results. The data were sorted by the total number of

errors starting from a low number of errors at the top to a high number of errors at the

bottom. As agreement indices were evaluated on the basis of time periods, the periods

with an increased number of false responses to catch trials were displayed as well. Me-

dian values were calculated only for the subgroup of subjects that showed any time period

with an increased number of false responses to catch trials at all. In Tab. 5.7, color depth

for errors increases with increasing error-related values. Color depth for the agreement

indices for each parameter and evaluation method increases with increasing agreement

indices.

As shown in Tab. 5.7, the highest agreement indices (with regard to both median and

maximum values) were obtained for the variability of the palpebral fissure height (PFV)

with an agreement index of up to 0.52 and a median value of 0.09 and for response time

variability (RTV) with an agreement index of up to 0.47 and a median value of 0.14 ac-

cording to Youden’s J.

In general, the agreement index values seemed to be comparably low, when median val-

ues were regarded. This was due to the comparatively low number of false responses to

catch trials that occurred. For subjects with a higher number of errors, agreement indices

increased.

It has to be stated, that the designation of cut-off values seemed to be more meaningful

using Youden’s J than using a pre-defined specificity of 0.8 due to the fact that the agree-

ment index is so to say an ”individualized sensitivity” value. As Youden’s J data resulted in

higher sensitivity (yet lower specificity) values than data for a pre-defined specificity of 0.8

altogether, agreement indices were expectedly higher for Youden’s J-calculated values.

For this reason, agreement plots (see chapter 5.3.5.3) were only created for the agree-

ment indices obtained from the data set related to Youden’s J.

In addition, a ”meta-correlation” of the total number of errors per subject and the agree-

ment index (obtained from the data set related to Youden’s J) was performed using Spear-

man’s rank correlation method. Five ”meta-correlations” were carried out. Thus, a signifi-

cance requirement of p<0.01 was determined. Tab. 5.8 shows the results.
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Table 5.7: Results for the agreement indices for all selected parameter evaluation meth-
ods. The data were sorted by the total no. of errors starting from a low number
of errors at the top to a high number of errors at the bottom. AI: agreement
index, ER: error rate (marked in red color), BRV: blink rate variability (marked
in teal color), PD: pupil diameter (marked in orange color), PFV: variability of
palpebral fissure height (marked in purple color), HRVLF: heart rate variability
for the low frequency band (marked in green color), RTV: response time variabil-
ity (marked in blue color). Color depth increases with increasing error-related
values and agreement indices
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Table 5.8: Correlation coefficients and p values for Spearman’s rank correlation of the total
no. of errors per subject and the agreement index (obtained from the data set
related to Youden’s J). AI: agreement index, BRV: blink rate variability, PD: pupil
diameter, PFV: variability of the palpebral fissure height, HRVLF: heart rate
variability for low frequencies, RTV: response time variability. Five correlation
analyses were carried out, which led to a significance requirement of p<0.01

total no. of
errors x AI
BRV

total no. of
errors x AI
PD

total no. of
errors x AI
PFV

total no. of
errors x AI
HRVLF

total no. of
errors x AI
RTV

Spearman’s
ρ

0.94 0.81 0.96 0.85 0.91

p value 4.80 · 10-23 2.21 · 10-12 2.58 · 10-28 1.17 · 10-14 1.06 · 10-19

As can be seen from Tab. 5.8, agreement indices correlated strongly with the total number

of errors per subject. The higher the number of errors occurred, the higher the correlation.

Accordingly, the idea of an agreement index seemed to be sufficient for test subjects that

showed clear signs of sleepiness. In contrast to that, for subjects that were vigilant, and

did not produce many errors, the agreement index obviously could not work as well.

5.3.5.3 Agreement plots

Agreement periods were displayed in agreement plots separately for each subject. An

exemplary agreement plot for subject 106 is shown in Fig. 5.16.

The agreement plot shows events for both error rate as a gold standard and related pa-

rameters. Event occurrence was defined as explained in chapter 4.4.3.4. These graphics

were conducted for all test subjects and can be found in schemes created for each indi-

vidual subject in App. F.

This type of representation did not allow for any further conclusions in the sense of the

data evaluation, but was only intended to illustrate the agreement index described above

for each individual subject.
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Figure 5.16: Agreement plot for subject 106. Events are shown over time and are high-
lighted in the colors that are depicted in the legend. Agreement for all related
parameters to the error rate are is highlighted in the same color as events but
in a darker shade (see legend)

5.3.6 Individual data analysis

5.3.6.1 Parameter selection for the individual analysis

For a detailed, individual analysis of the data set, the most promising evaluation method

for each parameter according to chapter 4.4.3.1 had to be identified.

Therefore, median values of all correlation coefficients obtained were calculated. The

evaluation method with the largest median correlation coefficient per parameter was se-

lected for further correlation analysis.

A table showing all correlation coefficients along with their p values for all evaluation meth-

ods is attached in App. J. As correlations were carried out individually for 48 subjects and

for 14 parameters, respectively, the requirement for significance was set to p<7.44 · 10-5.

For further individual correlation analysis, blink rate variability (BRV), peaks in pupil dia-

meter variability (PDVpeaks), height of the palpebral fissure (PF), heart rate variability for

low frequencies (HRVLF), and response time variability (RTV) were selected.

5.3.6.2 Individual correlation coefficients

A table showing the correlation coefficients for the selected evaluation methods for all pa-

rameters is shown below (see Tab. 5.9). This table does only show the specific correlation

coefficients. p values were excluded for clarity reasons. Because of the large number of
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data points per subject, almost all of the p values obtained were significant – especially

with regard to the evaluation methods selected for further analysis. All p values can be

found in the above-mentioned App. J. Data was sorted by the total number of errors as

described above.

As stated, not all p values were significant. Therefore, p values that did not show signif-

icance were marked in gray in App. J. As non-significant values did only occur for few,

individual subjects per parameter, an ”overall significance” was assumed for all parame-

ters tested.

Highest correlation coefficients (with regard to both median and maximum values) were

obtained for the response time variability (RTV) with a correlation coefficient of up to 0.61

and a median value of 0.27 and for the height of the palpebral fissure (PF) with a correla-

tion coefficient of up to -0.82 and a median value of -0.05 .

An exemplary, artificial enrichment of the prevalence was simulated for the height of the

palpebral fissure by only considering the five subjects with the highest total number of

errors. The median Spearman correlation coefficient for this subgroup increased to -0.60,

indicating a strong correlation.

In addition, a ”meta-correlation” of the total number of errors per subject and the correla-

tion coefficients obtained within the individual analysis was performed using Spearman’s

rank correlation method. Five correlation analyses were carried out, which led to a signifi-

cance requirement of p<0.01. Tab. 5.10 shows the results.

As can be seen from Tab. 5.10, correlation coefficients, in turn, correlated moderately

with the total number of errors per subject. The higher the number of errors occurred,

the higher the correlation. This shows, that the idea of Spearman correlation coefficients

seemed to be sufficient for test subjects that showed clear signs of sleepiness. In contrast

to that, for subjects who were vigilant, and did not produce many errors, correlation coef-

ficients did not work as well.
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Table 5.9: Results for the correlation coefficients for all selected parameter evaluation
methods. The data are sorted by the total no. of errors (marked in red color)
starting from a low number of errors at the top to a high number of errors at
the bottom. Color depth increases with increasing correlation coefficients or to-
tal no. of errors, respectively. BRV: blink rate variability (marked in teal color),
PDVpeaks: peaks in pupil diameter variability (marked in orange color), PF:
palpebral fissure height (marked in purple color), HRVLF: heart rate variability
for the low frequency band (marked in green color), RTV: response time vari-
ability (marked in blue color)

subject ID
total no. of 
errors

rho(BRV x 
ER)

rho(PDV 
peaks x ER)

rho(PF x 
ER)

rho(HRVLF 
x ER)

rho(RTV x 
ER)

090 0 NaN NaN NaN NaN NaN
038 1 -0,11 0,01 NaN 0,06 0,06
068 1 0,01 -0,11 0,24 0,05 0,12
013 2 0,13 0,03 0,04 0,14 0,28
028 2 0,01 0,18 0,03 -0,15 0,26
059 2 0,14 0,14 -0,26 0,26 0,30
070 2 0,04 0,25 -0,21 -0,03 0,10
097 2 -0,03 0,24 -0,01 0,06 0,32
098 2 0,18 -0,01 -0,07 0,11 0,22
001 3 -0,05 -0,09 -0,04 -0,17 0,27
046 3 0,15 -0,01 -0,15 -0,01 0,16
074 3 0,32 -0,08 0,01 0,14 0,19
078 3 -0,02 0,10 -0,04 0,12 0,07
096 3 -0,01 0,06 -0,01 0,04 0,27
099 3 -0,13 -0,09 0,02 -0,09 0,16
006 4 0,20 0,26 0,18 0,06 0,40
044 4 -0,09 0,00 -0,17 -0,14 0,15
065 4 0,05 -0,14 0,03 0,12 0,18
080 4 -0,14 0,12 0,13 -0,04 0,21
093 4 0,17 0,15 0,00 0,29 0,30
107 4 0,16 0,26 -0,30 0,22 0,16
015 5 0,11 0,01 0,07 -0,07 0,14
035 5 -0,02 -0,05 -0,16 -0,22 0,29
002 6 -0,13 -0,09 0,18 -0,03 0,29
060 6 -0,09 0,12 -0,09 0,10 0,19
030 7 0,00 0,06 -0,11 0,05 0,48
092 7 -0,10 -0,13 -0,04 0,06 0,40
101 9 -0,04 0,00 0,04 -0,22 0,54
025 10 0,19 0,10 -0,09 0,12 0,13
104 11 -0,25 0,02 0,43 -0,13 0,56
100 12 -0,07 0,24 0,13 0,05 0,07
019 14 0,18 -0,26 0,11 -0,27 0,39
021 14 0,01 -0,02 -0,08 -0,10 0,09
047 18 0,25 0,06 -0,15 0,01 0,40
056 18 0,15 0,26 -0,50 0,20 0,44
003 19 0,10 -0,07 -0,17 -0,05 0,04
031 20 0,02 -0,16 -0,02 0,06 0,28
105 22 0,07 0,33 -0,29 0,34 0,34
069 24 -0,16 0,03 0,07 -0,09 0,16
102 24 0,02 0,28 -0,02 0,07 0,34
082 25 0,15 -0,01 -0,34 0,11 0,20
084 26 0,11 0,01 -0,05 NaN 0,31
103 27 0,31 0,19 -0,32 0,14 0,61
095 39 0,45 0,05 -0,60 0,59 0,48
094 43 0,33 0,15 -0,71 0,61 0,43
106 44 0,26 0,21 -0,11 0,37 0,27
040 79 0,35 0,21 -0,59 0,17 0,50
091 82 0,50 0,61 -0,82 0,67 0,46
median values 0,05 0,05 -0,05 0,06 0,27
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Table 5.10: Correlation coefficients and p values for Spearman’s rank correlation of the
total no. of errors per subject and the correlation coefficients obtained from
the individual data analysis. BRV: blink rate variability, PDVpeaks: peaks in
pupil diameter variability, PF: palpebral fissure height, HRVLF: heart rate vari-
ability for low frequencies, RTV: response time variability, ER: error rate. Five
correlation analyses were carried out, which led to a significance requirement
of p<0.01

total no. of
errors x ρ
(BRVxER)

total no. of
errors x ρ
(PDVpeaks
xER)

total no.
of errors x
ρ (PFxER)

total no. of
errors x ρ
(HRVLFx
ER)

total no. of
errors x ρ
(RTVxER)

Spearman’s ρ 0.61 0.45 -0.69 0.58 0.45
p value 3.89 · 10-06 1.26 · 10-3 5.43 · 10-08 1.55 · 10-05 1.33 · 10-3

5.3.6.3 Frequency of seeing (FOS) curves

Frequency of seeing (FOS) curves were conducted for all test subjects for each tested

location, respectively and can be found in schemes created for each individual subject in

App. F.

Figure 5.17: FOS curves for subjects 090 (left side, total no. of false responses to catch
trials: 0) and 091 (right side, total no. of false responses to catch trials: 82)
for different locations tested: blue (0◦,7◦), green (-6.1◦,-3.5◦), red (6.1◦,-3.5◦)

Fig. 5.17 shows two exemplary FOS curves for subjects 090 (total number of false re-

sponses to catch trials: 0) and 091 (total number of false responses to catch trials: 82).

The first-mentioned FOS curve shows few fluctuations whereas the latter one shows many

and prolonged fluctuations. Therefore, it could be assumed, that response quality with re-

gard to reliability was more stable for subject 090 than for subject 091, which could be
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seen as an individual indicator for a higher validity of subject 090’s results.

The steepness of the slope (SSL) was calculated for each subject. The results for all

subjects (median values of the different locations) are shown in Tab. 5.11.

Table 5.11: Steepness of the slope (SSL) of the frequency of seeing (FOS) curve for each
subject. The data are sorted by the total no. of errors starting from a low
number of errors at the top to a high number of errors at the bottom.

As luminance levels were varied in steps of 3 dB, an ideal steepness of the slope would

be -0.33 (referring to a decrease in the frequency of seeing of 100% [equivalent to 1] for

one luminance step [equivalent to 3 dB]).

Fig. 5.18 shows a scatter plot for the steepness of the slope in dependence of the total

number of errors for all test subjects. It seemed that slope steepness flattened with an

increasing number of errors, although fluctuations occurred.

A Spearman correlation analysis was carried out for steepness of the slope (SSL) and total

number of errors per subject. A moderate correlation coefficient of ρ = 0.48

(p = 5.53 · 10-4) appeared.

Therefore, the slope of the frequency of seeing curves could actually be taken as a sup-

plementary measure for the reliability of a subjects’ performance within the scope of the

present study.
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Figure 5.18: Scatter plot for the steepness of the slope (SSL) in dependence of the total
no. of errors for all test subjects. Each blue dot represents one test subject.
Red dashed line: linear trend line (SSL = 0.0008 n - 0.2139; n: total no. of
errors)
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5.3.6.4 Summary of the results

In order to sum up the results obtained within the main study briefly, it can be stated, that

the most useful parameter for both global and individual analysis seemed to be the re-

sponse time variability (RTV) with an agreement index of up to 0.47 for the global analysis

and correlation coefficients of up to 0.61 for the individual analysis.

The variability of the palpebral fissure height (PFV) seemed also meaningful for global

analysis with agreement indices of up to 0.52, whereas the height of the palpebral fissure

(PF) seemed meaningful for individual analysis with correlation coefficients of up to -0.82.

Most promising evaluation methods differed between global and individual analysis. This

may be due to the fact, that not every subject behaved in the same manner, if sleepiness

occurred. Some parameters seemed to be more susceptible to such inter-individual dif-

ferences than other ones. A further discussion of this can be found in chapter 6.

Altogether, it is remarkable, that only a comparatively low number of false responses to

catch trials occurred for the majority of subjects. At this point, it must be noted that only

healthy normal subjects were examined in the present study. In patients with advanced

visual field loss, significantly higher error rates would be expected (Birt et al. 1997).

Obviously, sufficient results for the detection of sleepiness could only be achieved if sleepi-

ness was present according to the gold standard criterion of false responses to catch trials.

Against this background, the above-mentioned results can be seen as very promising, as

relatively high agreement indices and correlation coefficients could be obtained for test

subjects with a comparatively large total number of errors or a long time period of an

increased number of false responses to catch trials, respectively.
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The limitations of this research are discussed. The results found in this study are critically

compared to existing studies. Possible benefits of this work are mentioned. Finally, con-

clusions are drawn and an outlook is given to show what findings may be applicable to

clinical considerations and subsequent studies.

6.1 Limitations of study design and methodology

This work is limited for several reasons:

The assumptions underlying this study should first be evaluated for a standardized case.

In (ophthalmic) diseases, certain physiological reactions may be restricted or occur in a

different form than in healthy subjects. For instance, false response rates and the extent

and/or depth of visual field defects are known to correlate (Birt et al. 1997), and neuro-

ophthalmological diseases such as a stroke lead to a decrease in concentration (Hom and

Reitan 1990).

To exclude a bias in the data, only healthy subjects were included in this study.

In addition, the study took place under optimal conditions with regard to supervision of the

test subjects: An examiner was present during the whole examination and monitored the

subjects. In case of advanced signs of sleepiness, the examiner also motivated the test

subjects to stay alert.

Although an examination took over 45 minutes, there were significantly fewer sleepiness

periods than initially assumed – that may have occurred due to optimal supervision of the

test subjects, as stated above. Almost half of the subjects showed no time period with an

increased number of false responses to catch trials.

Of course, this circumstance affected the analysis of the data. If subjects show no signs of

fatigue or sleepiness, no obvious connection between sleepiness and other physiological

parameters can be found. In the present study, this was demonstrated by the fact that both

agreement indices and correlation coefficients for subjects with a high number of incorrect

responses to catch trials and in this context a lower vigilance level yielded significantly
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better values than for subjects with consistently good vigilance and a lower error rate.

In a future study, it could be meaningful to carry out a type of measurement in which an

individual baseline is recorded and each subject is then assessed on the basis of this

baseline. Thus each subject, possibly even those with temporary pathologies, could serve

as its own control.

The infrared camera built into the OCTOPUS 900 perimeter (Haag-Streit AG, Koeniz,

Switzerland) only allows for an image resolution of 320x240 px. With more recent devices,

such as the imo perimeter (CREWT Medical Systems Inc., Tokyo, Japan), a resolution of

up to 1280x960 px is possible (Matsumoto et al. 2016). It is conceivable that a more

precise resolution of the camera could lead to an enhanced image quality and thus better

detection of the pupil diameter and the height of the palpebral fissure, which could affect

some of the measured parameters.

The temporal resolution of the pupillographic recordings was also limited. The maximum

temporal resolution that could be achieved with the existing equipment was 20 fps. Due

to bottlenecks in the RAM memory of the available hardware, the recording software was

designed in a way that individual frames were aborted as soon as the hardware was no

longer able to adequately process the amount of data. This led to a temporary decrease

of the frame rate, which was corrected in the post-processing of the data by a resample

and smooth procedure. It cannot be ruled out that this process could have had an impact

on the high- and lowpass filters applied for the evaluation of the height of the palpebral fis-

sure and the heart rate variabilities for high and low frequencies (as described in chapters

3.3.4 and 4.4.3.1). An even more precise evaluation would have been possible without the

need for such a process.

In particular, the wavelet transformation process may possibly have worked only to a lim-

ited extent under these conditions. Pupillary oscillations that took place at high frequency

may not have been fully investigated with the present experimental setup. However, it

should be noted that from the known literature, pupil oscillations with rather low-frequency

(up to a maximum of 5 Hz) have to be assumed (Lowenstein et al. 1963) (Korczyn 1987).

It is known that the circadian rhythm and thus the time of day have an influence on vig-

ilance (Kraemer et al. 2000). Under normal conditions, performance and vigilance are

subject to a time of day fluctuation. A low performance is usual between 3:00 and 4:00

a.m. and in the afternoon between 1:00 p.m. and 3:00 p.m. A maximum vigilance is found
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in the early morning between 7:00 a.m. and 11:00 a.m. and between 4:00 p.m. and 8:00

p.m. (Lehmann and Michaelis 1943) (Davies and Parasuraman 1982), as cited in (Weeß

et al. 1998).

For this reason, attempts were made to distribute the patient examinations evenly over dif-

ferent times at least during the day. For organizational reasons (examination appointments

had to be adjusted to the availability of the test subjects), however, no equal distribution

could be achieved. More subjects tended to be measured in the morning or early after-

noon than in the evening. In particular, possible confounders such as age and gender

could not be considered to be equally distributed throughout the day.

It is known that age has an impact on pupil size (pupil diameter decreases by about 0.4

mm per decade), as well as on the height of the palpebral fissure (Iliff and Pacheco 2001)

(Joos et al. 2003). It would be desirable to be able to eliminate such effects and thus

potential confounders from the results. However, this was not possible within the scope

of the experimental setup of this study, since both the pupil size and the height of the

palpebral fissure were measured through a (near) lens set in the perimeter. This affected

the absolute size, since plus lenses (which are usually required especially by older em-

metropes for perimetric examination) enlarged and minus lenses (which have to be used

by stronger myopes) reduced the resulting image. In addition to the thickness and power

of the lenses, the distances between the eye and the recording video camera from the

lens were decisive for the image enlargement or reduction. On the one hand, these could

change due to movements of the test subject, which could not be completely ruled out

even with the use of a chin and forehead rest over a period of 45 minutes. On the other

hand, the anatomic variation between the subjects made it necessary to adapt the lens

position accordingly. The distance to the camera adjusted in this way could not be mea-

sured easily since the main plane of the camera lens was neither known nor visible.

6.2 Discussion of the results

6.2.1 Discussion of results for pilot study 1

The results for pilot study 1 were only partially reliable, as this was a proof-of-concept

study including five subjects who were not stratified in any way. Not all subjects showed

relevant sleepiness periods at all. For this reason, the agreement indices determined were
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only meaningful for some of the test subjects.

In advance, it was expected that the heart rate variability (HRV) was related to the vigi-

lance of the test subjects. Several studies suggested this, as already described in chapter

3.3.4.

However, a relation between HRV and false responses to catch trials was not shown in pi-

lot study 1. At first it was suspected that the inadequate quality of the heart rate recording

was due to the recording technology (H7 heart rate monitor, Polar Elektro GmbH, Buet-

telborn, Germany) which is suitable for athletes. For this reason, a more sophisticated

version of a heart rate sensor designed for scientific purposes was procured for the main

study (Ecgmove4 heart rate monitor, movisens, Karlsruhe, Germany). For a discussion of

the results of heart rate related parameters in the main study, see chapter 6.2.3.

For PDV and RTV, subjects with longer periods of sleepiness showed, as expected, con-

nections between vigilance and the respective parameter, as was to be expected. A more

in-depth discussion of all parameter-related results can be found in chapter 6.2.3.

6.2.2 Discussion of results for pilot study 2

EEG measurement was not sufficient within this pilot study. One factor for that may be

that electrode caps were used instead of cup or needle electrodes. Even though, it was

found out, that quality of EEG measurement does not decline by the use of electrode caps

(Shields et al. 2016), and data quality with regard to the signal to noise ratio (SNR) was

still acceptable for a 32-channel EEG device (Scarff et al. 2004), the fit of EEG caps may

not have been ideal, causing the caps to move around (Lloyd et al. 2015).

Dambros (2017) carried out a relation between EEG data and vigilance, even in experi-

ments that required visual attention. He found, that EEG data (alpha power) was – among

other eye-related parameters recorded via eye tracking – able to predict errors in a campi-

metric examination (Vergani Dambros 2017). However, as already stated in chapter 5.2.2,

these algorithms were applied to the data of the present study, and did not lead to any

sufficient outcome.

Possible reasons are, that Dambros evaluated his algorithms only by a small sample size

(n = 9, 4 female and 5 male, age range 20–32 years), that was thus very homogenuous at

least with respect to age.
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EEG signals were used within different studies recently in order to predict fatigue or sleepi-

ness. Power spectral density (PSD), which has also been used in the present work, is one

of the most frequently used tools. This transforms the EEG signal from time to frequency

domain to show its distribution as a function of frequency. In neuroscientific regards,

this curve is usually divided in 4 intervals of delta, theta, alpha and beta waves (Teplan

et al. 2002). However, there is no accordance with regard to frequency boundaries for the

named intervals until today.

Åkerstedt (1991) discovered a relation between alpha power density and sleepiness dur-

ing a night shift. The results also indicated that EEG spectra did induce effects outside

the alpha intervals. However, measurement took place in time periods, when subjects fell

asleep and for that, had their eyes closed. It was reported, that specifically during actual

sleep phases, alpha activity increased (Åkerstedt et al. 1991).

The same effect was found during the evaluation of an exhausting driving task (Gharago-

zlou et al. 2015) (Kong et al. 2015).

In addition, clinical applicability was tested as a proof-of-concept study arm in one subject,

as described in chapter 5.2.2. As this did not show any promising result, EEG evaluation

was aborted from this study at that point. In addition to the non-promising results, inclu-

sion of EEG in this study would have caused electro-magnetical interference between the

perimeter and the EEG device. Although, the perimeter does fulfill the IEC norm 60601-

1-2 EMC, interference with other electrical devices is possible as this is not forbidden by

means of this norm.

In principle, it would be possible to eliminate such interference from a signal, especially

if interference referred to power line signals (Leske and Dalal 2019). However, this was

not done in connection with the non-promising results of the proof-of-concept study at

the EEG laboratory of the University Hospital in Tübingen, Department of Neurology and

Epileptology. In any case, this would have been complex and would probably not have

been possible in the context of this work alone, as not only power line signals would have

to be eliminated, but different interfering signals (at least produced by the perimeter itself

and the response button, respectively).

In contrast, several recent studies have tried to prove that there is an effect of vigilance

on EEG measures – specifically during monotonous tasks such as driving, when test sub-

jects had to keep their eyes open.
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Alpha power can possibly reflect mind-wandering when perceptual demands are reduced,

e.g., during a driving situation (Lin et al. 2016). This assumption is supported by the

observation that an increase in alpha power with time on task cannot be observed, when

task demands are high (Fairclough and Venables 2006). The reason for this observation

is that participants remain involved in a given task when it is challenging.

Another study by Schmidt et al. reported a relationship between EEG measured alpha

power and sleepiness during an on-road driving task of about four hours time. It has to

be noticed that sleepiness was not measured during this examination but interrogated by

questionnaires during the driving task (Schmidt et al. 2007).

For an implementation of EEG into driving tasks, EEG measurement would have to be

simplified. Bajwa et al. tried to detect distraction while driving using EEG recording. In

order to simplify the setup, they tried to reduce the number of electrodes used by isolating

one electrode (FC5) from 14 initial electrode locations. They reported to experience a

big challenge in EEG analysis and were not able to distiguish between the five distraction

cases they used (read, text, call, and snapshot) using a single electrode with sufficient

accuracy (Bajwa et al. 2019).

Another way to simplify EEG measurement would be the use of dry electrodes. Zander

et al. reported that with the help of dry electrode caps, test subjects were able to apply

and adjust a pre-customized cap with the help of a little mirror (like the rear view mirror

of a car) in only a few minutes. However, signal quality was poor at times and a system

to better support the evaluation of signal quality was not available at that time, but would

have been beneficial (Zander et al. 2017).

Efforts have been made to simplify EEG measurement by using so-called ”cEEGrids”.

These are flex-printed, multi-channel sensor arrays that are placed around the ear using

an adhesive. cEEGrids are reported to be lightweight, comfortable to wear and unobtru-

sive (Debener et al. 2015) (Bleichner et al. 2015) (Bleichner et al. 2016). Debener et al.

were able to confirm an already known effect, a difference in 8-13 Hz (alpha) activity be-

tween eyes open and eyes closed resting conditions, with cEEGrid recordings (Debener

et al. 2015).

To the knowledge of the author, there is currently no study that would prove a simply

EEG measurement using only one or a few dry electrodes to work sufficiently. Never-

theless, there are various (non-scientific) articles that report that such devices are being
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developed, for instance with regard to an implementation in the head rest of a car in or-

der to monitor driver’s vigilance and attention status (for instance, see (Burgess 2017) or

(Dormehl 2017)).

As soon as there is evidence that such systems work, an implementation also in perimetry

would seem to be meaningful.

6.2.3 Discussion of results for the main study

First, general considerations regarding analysis methods and statistical approaches are

discussed. A detailed discussion for the parameters applied is added.

6.2.3.1 General considerations

There are various procedures for monitoring vigilance.

The most common tests for vigilance monitoring currently seem to be the Psychomotor

Vigilance Task (PVT) (Dinges and Powell 1985) and the Pupillographic Sleepiness Test

(PST) (Wilhelm et al. 1998). The latter one was already described in chapter 3.4.1.1.

In contrast to perimetry, which is be executed under (low) photopic conditions, the PST

does only work under scotopic conditions (Wilhelm et al. 1998). PST values cannot be

validated against any gold standard apart from actually falling asleep. In addition, it is not

possible to evaluate vigilance while fulfilling any other task such as perimetry or driving.

The PST can only be applied prior to or following another test procedure. Therefore, time-

correlated predictions about vigilance during any other task are not possible.

The PVT test, on the other hand, is a sustained-attention, reaction-timed task that eval-

uates the speed with which subjects respond to a visual stimulus. The PVT was first

published by Dinges and Powell in 1985 (Dinges and Powell 1985).

The PVT is carried out as a task where a subject has to press a response button as soon

as a light stimulus appears in front of a dark background. The light stimulus turns on ran-

domly every few seconds during a total examination duration of 5–10 minutes. Response

time and number of lapses are assessed.

The current study worked quite similar to that. In addition to the PVT, different types of

stimuli were presented and it could be tested whether a subject overlooked stimuli (as in

the PVT) or whether a subject, for example due to a lack of concentration, also pressed
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the response button if no stimulus was visible at all. In addition, the present vigilance

perimetry had the advantage that stimuli were continuously offered, which could allow for

a more precise distinction between sleepy and vigilant subjects.

However, it is nearly impossible to find any test procedure which allows for vigilance mon-

itoring during a psychophysical or (traffic) ophthalmological procedure. The only way to

realize that seems to be the observation of physiological parameters related to vigilance,

which has also been done in the context of the present study. Results of the respective

parameters are discussed below (see chapters 6.2.3.2–6.2.3.8).

If one or more parameters are found that lead to reliable results for the complete sample

of subjects, there is generally the difficulty that one cannot assign them to inter-individual

differences.

To illustrate such inter-individual differences, an observation made during the course of

the investigations should only be mentioned as an example. Accordingly, most of the sub-

jects examined reported that they were very exhausted after completing the present task,

which was monotonous for a relatively long period of time. However, it was noticed that

certain subjects obviously had no problems with the monotony. At the end of the examina-

tion, for example, these subjects stated that they had experienced a ”flow” feeling or even

found the examination to be stimulating.

As the number of subjects increased, a suspicion arose that these people might have a

common hobby of playing computer games. Whenever asked by the examiner, the sub-

jects confirmed this.

It must be stated that this information was not collected in a standardized manner. Not

all subjects were interviewed because the described observation only occurred during the

course of the examinations and only by chance.

In addition, presence of an obstructive sleep apnea syndrome (OSAS) was not an exclu-

sion criterion for this study. However, this information was also not collected in a standard-

ized manner, particularly with regard to its severity. It is conceivable that subjects with

more pronounced OSAS tend to fall asleep very quickly and therefore would perceive the

examination as excessively stressful.

With regard to the statistical evaluation procedures applied within this study, various con-

siderations have to be made:

The total number of false responses to catch trials was the only parameter tested for nor-
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mal distribution due to the fact that it was rated as the gold standard. In addition, it was

the only parameter which could be – except for the ESS score – carried out as a single

value per subject for the whole examination. The distribution of the values evaluated for

the other parameters varied strongly inter-individually. Therefore, mean or median cal-

culation did not seem to be a sufficient approach. For this reason, it was decided that

the frequency distributions were only evaluated by the related histograms, so that inter-

individual differences remained visible.

In principle, sliding window data was used for periods with or without an increased num-

ber of errors, since otherwise the errors must have been allocated arbitrarily at a ”specific

minute”. However, this was avoided when displaying the data in the parameter overview

(see chapter 5.3.3) and when displaying the error frequencies over time (see chapter

5.3.4). Hence, the errors were randomly assigned to a specific time period (minute). This

was done because it was the only possibility to obtain a reasonable overview of the data

that was intuitively understandable and therefore meaningful. In that way, the total number

of errors could be obtained as the sum of the number of errors in the individual bars of the

histogram.

As stated, especially overview data (see chapter 5.3.3) were randomly assigned to a spe-

cific time period (minute). This lead to an inaccuracy in the time point annotation of the

false responses to catch trials of up to ±1 minute, which had to be accepted for the

above-mentioned reasons. For statistical analysis, the data were always evaluated via the

above-mentioned sliding window procedure. The overviews were only used for the graphic

representation and visualization of the data.

In ophthalmology there is an unwritten law that for clinical studies the measurements from

only one eye (only right, only left or one randomly selected eye) are included in the evalu-

ation. The reason for this is the correlation (dependence) between right and left eye.

However, it is possible to include both eyes of a subject in a study. This may only happen

if it is taken into account that the organ is in pairs and that there is a correlation between

measurements for both eyes. Herber et al. found that if they were evaluating measure-

ment data of both eyes without consideration of their correlation, using classic statistical

tests, an overestimation of the statistical significance resulted. That could be avoided by

using a linear mixed model (Herber et al. 2020).

In the present study, one eye was included per subject, selected in a randomized manner

with regard to the leading eye.
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Requirements for the significance of the statistical tests applied were set using a Bon-

ferroni correction. Hence, specific p values were determined separately for the different

analysis types: the global correlation analysis of the basic characteristics of the subject

sample carried out in chapter 5.3.1.4, the global data analysis via agreement indices (see

chapter 5.3.5.2), the individual data analysis (see chapter 5.3.6), the frequency of see-

ing (FOS) curve analysis (see chapter 5.3.6.3) and both meta-correlation analyses (see

chapters 5.3.5.2 and 5.3.6.2).

Bonferroni correction was therefore carried out for analyses that referred to the same raw

data, respectively.

An ”overall Bonferroni correction” taking into account solely the number of statistical tests

carried out altogether, would have led to a inexpertly collective analysis of different data

sets with regard to data quality (for instance, individual correlation coefficients were car-

ried out for each ob 48 subjects separately in a time-resolved manner with 54,000 data

points per subject, whereas global correlation analysis took place for one data point per

subject for each parameter evaluated, respectively).

With regard to global data analysis (see chapter 5.3.5), it has to be stated that as already

described, the cut-off values were determined empirically via the distribution of the data

collected in the context of this study. Since the author is not aware of any generally appli-

cable cut-off values for such purposes, this seemed to be the only way.

In order to determine a cut-off value for the false responses to catch trials, the available

data was analysed in 1-minute time intervals. For consistency reasons, a sliding window

with a length of 60 seconds was also applied for all other parameters.

This was necessary, on the one hand, to ensure a sufficient number of errors per unit of

time (a specification of the errors per shorter unit of time did not seem to be sensitive

enough). On the other hand, the temporal resolution of the examination method would

have been lost if a division into longer units of time took place (see also the comments on

the rate of interspersed catch trials in chapter 6.2.3.2).

Evaluation methods for the different parameters in the study were selected by ROC curve

analysis. Values for the area under the ROC curve (AUROC) were comparatively low in

this study, even for those evaluation methods that have been selected, which means that

sensitivity and specificity values are also comparatively low for the selected cut-off values.

This can be explained by the fact that relatively few false responses to catch trials were
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made by the test subjects and that the physiological parameters evaluated cannot be re-

garded as exactly specific as well.

Cut-off values were finally determined by applying Youden’s J. Another option that has

also been pursued, was the determination of the cut-off value by setting a fixed specifi-

cation as published in (Zangwill et al. 2001). For the present study, a specificity value of

0.8 was fixed, although Zangwill et al. suggested values of 0.85 or above. As sensitivity

values were inappropriately low for specificity values of 0.85 and above, specificity was

lowered to a value of 0.8, which also seemed to be adequate in the context of this study

due to the low number of false responses to catch trials.

With regard to individual data analysis (see chapter 5.3.6), it has to be considered what

values of correlation coefficients could have been expected. The measurements were not

quite uniform in terms of their sample rate, since frames were irregularly aborted at times,

as explained in chapter 6.1. At the appropriate points, resampling and smoothing had to

be carried out, which could lead to a slight shift of the ranks assigned for the Spearman

correlation.

The recorded physiological parameters were compared to the ”pseudo-steady” error rate

for each individual frame. Therefore, the slightest shift (e.g. due to resampling) might have

been of importance. For this reason alone, correlation coefficients close to 1 were hardly

possible.

Against this background, the correlation coefficients of up to (-)0.82 achieved in this study

for subjects with a high number of false responses to catch trials should be rated as ex-

tremely meaningful.

The calculation of multiple correlations was completely dispensed within this study. In

general, multiple correlations should be viewed with caution as the tested parameters can

mutually interfere. Correlation coefficients can appear to be excessively high, which is

caused by the correlation of the dependent variables with each other (and especially not

to the gold standard) (Bortz 2013). This would have been expected especially for the pa-

rameters examined in this work, which were all associated with vigilance.

It seems desirable to examine the combination of the two most promising parameters

(palpebral fissure height and response time variability) to monitor vigilance. However, it

would have to be established beyond any doubt that there is no inherent connection be-

tween these two parameters. As stated above, this is fundamentally questionable, which

is why a multiple correlation analysis would not be rated as suitable for such an evaluation.
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”Meta-correlations” were performed for the total number of errors per subject and the

agreement indices as well as Spearman correlation coefficients from the individual data

analysis, respectively. The method of a ”meta-correlation”, specifically to re-correlate cor-

relation coefficients, is not a common statistical evaluation method. Yet it has been used in

the present work – not for the purpose of statistical data testing itself, but only for illustrat-

ing the relation of the results for the agreement indices and individual correlation analysis

and total number of errors occurred per subject. Thus, both methods do work if sleepiness

occurs in subjects – especially the agreement index shows a strong dependence in this

regard.

For the main study, the steepness of the steepest slope (SSL) of the frequency of seeing

(FOS) curves within a monotonous drop (in order to exclude small fluctuations) was cal-

culated for each subject. If the steepness of the slope varied for different test locations,

the median of the slope steepness was taken.

It would also have been possible to fit a logistic function to the FOS curves before calcu-

lating the steepness of the slope in order to obtain smoother results. However, this has

been avoided to be able to distinguish between fluctuation and slope steepness.

6.2.3.2 False responses to catch trials

In conventional perimetry, a catch trial rate of about 3–5% each false positive and false

negative catch trials is implemented (Schiefer et al. 2006). The presented work imple-

ments a catch trial rate of 25%, each for false positive and false negative catch trials.

Assuming a catch trial rate of 4%, a stimulus duration of 200 ms and an inter-stimulus

interval of 1500 ms, it results that a catch trial (either false positive or false negative) is

shown approximately every 21 seconds. The catch trial rates implemented in the present

study result in a catch trial (either false positive or false negative) approximately every

three seconds.

Assuming that not all responses to catch trials are automatically and immediately false as

soon as sleepiness begins, a conventional catch trial rate of 4% (or even less) would not

allow for sufficient time-resolved detection of sleepiness.

Larger studies on glaucoma or ocular hypertension that have been carried out in the re-

cent past, monitored vigilance and response quality with the help of catch trials as well.
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Some examples are displayed as follows:

The Advanced Glaucoma Intervention Study (AGIS) enrolled 5000 patients suffering from

open-angle glaucoma. Perimetry was conducted with a Humphrey Visual Field Analyzer

(HFA) set for the central 24-2 threshold test with full-threshold strategy, and the foveal

threshold test turned on. A usual catch trial rate of 3% each false positive and false nega-

tive catch trials was implemented (?).

The Collaborative Initial Glaucoma Treatment Study (CIGTS) was initiated to investigate

whether medication or filtrating surgery was more beneficial to patients with primary open

angle glaucoma (POAG). 607 patients at 14 participating centers were enrolled. Visual

fields were recorded using the HFA 24-2 full-threshold strategy with a usual catch trial rate

of 3% each false positive and false negative catch trials (Wahl 2005).

The Ocular Hypertension Treatment Study (OHTS) investigated the safety and efficacy

of topical hypotensive medication in delaying or preventing the onset of primary open-

angle glaucoma (POAG) in participants with ocular hypertension. 11,584 visual fields of

1,636 participants at 22 participating clinical centers were involved. Quality of visual fields

was rated as sufficient if two out of three tests met reliability criteria of less than 33% false

positives, less than 33% false negatives, (and also less than 33% fixation losses) using a

HFA 30-2 full-threshold strategy with a usual catch trial rate of 3% each false positive and

false negative catch trials (Johnson et al. 2002) (Kass et al. 2002) (Keltner et al. 2003).

There are various other studies that used visual fields as a primary outcome criterion. As

can be seen from the description of studies above, quality monitoring usually only played

a subordinate role, as a catch trial rate of only 3–5% was implemented. Therefore, quality

control could not have been carried out with sufficient time resolution, as stated above.

A parameter that is often used for quality monitoring during perimetry is fixation control.

Therefore, stimuli are either placed in the location of the blind spot and must not be de-

tected (method after Heijl-Krakau (Heijl and Krakau 1975)) or in the center of the visual

field and have to be seen.

The Heijl-Krakau method is associated with several problems: It must be assumed that the

initial determination of the blind spot works optimal. Movement or changes in size of this

reference due to bulbus rotation, higher ametropia or papillary changes can significantly

affect the validity of this method. This also applies in the case of extended scotoma in the

neighborhood to or under the inclusion of the blind spot.

Presentation of slightly supra-threshold central stimuli for fixation control, on the other

hand, can also be criticized: If fixation is shifted only for a few degrees, stimuli for fixation
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control are not visible anymore. In addition, the fixation of central stimuli is difficult or even

impossible for patients who suffer from central scotoma or paracentral, extensive scotoma

(e.g. arcuate scotoma in glaucoma patients). Central luminance sensitivity can also be

seen as a quite variable parameter that is initially often comparatively high, but decreases

during the course of an examination due to lack of concentration and vigilance (Schiefer

et al. 2006).

Therefore, quality monitoring via fixation control is seen as critical and controversial at

times.

This study implemented a catch trial rate of 25%, each false positive and false negative

catch trials, which were not regarded separately with respect to vigilance. This decision

was made because it could be observed during the experiments that not all subjects re-

acted equally when they started to get tired. Some began to overlook stimuli, while others

began to press the response button regularly, guided by the acoustic cues that the perime-

ter created parallel to the stimulus presentation – regardless of whether a stimulus could

be seen or not.

In connection with the generally low number of false responses to catch trials in this study,

a joint consideration of the false positive and false negative catch trials seemed appropri-

ate.

A global correlation of total number of errors and the onset, i.e. the point in time when an

increased number of false responses to catch trials was available for the first time, did not

show a statistically significant relationship. This is not intuitive to understand.

However, it turned out that some subjects made many mistakes in a short time (corre-

sponding to a short but strong sleepiness period), while other subjects made fewer mis-

takes over a longer period (corresponding to a general fatigue status or lack of concentra-

tion).

This raises the question of whether certain errors are more important than others in the

present evaluation. In fact, one error per minute is even ”tolerated” without an increased

number of false responses to catch trials being assumed. This is obviously an arbitrary

decision. In connection with the frequencies mentioned above, in which catch trials oc-

curred (every three seconds), this definition seemed reasonable. Finally, it must also be

taken into account that individual errors can also result from nervousness with fully pre-

served vigilance.
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6.2.3.3 Eyelid closures (blinks)

As stated in chapter 3.3.1, blink rate increases with an increase in fatigue or sleepiness

(De Padova et al. 2009).

As subjects are told to blink regularly (after having perceived a stimulus) during perimetry,

blink rates carried out during perimetric examinations must be seen as highly artificial.

Therefore eyelid closures were involved in this study, but the fact that these parameter

does not show any high relation to vigilance during perimetry, does not seem to be sur-

prising.

Nevertheless, it is a concerning issue, to which proportion the ocular surface has to be

covered by the upper eyelid. The phenomenon of incomplete eyelid closure during blinks

is well-known and reported (McMonnies 2007).

The US Federal Highway Administration (FHWA) and the National Highway Traffic Safety

Administration (NHTSA) proposes to detect sleepiness and/or drowsiness during driving

by the PERCLOS. The PERCLOS is the percentage of eyelid closure per unit of time. P80

is considered the most effective standard to define eyelid closure (meaning that the eyelid

is determined to be closed when palpebral fissure height is reduced to 20% or below the

normal height) (Dinges and Grace 1998) as cited in (Nie et al. 2017).

As some individuals tend to not close their eyelid completely while blinking and the indi-

vidual percentage of closure is not known, the approach applied during the present work

did not take into account the remaining palpebral fissure but the visibility of the pupil. If the

pupil was detected, no blink was assumed. If no pupil was detected in a specific frame,

but it had been detected in the previous frame, a blink was assumed.

6.2.3.4 Pupillary oscillations

According to Lowenstein, all of the pupil-related phenomena stated in chapter 3.3.2 are

known to exist under scotopic conditions only. In contrast, under photopic conditions, there

is additional increased activity from the parasympathetic nervous system, which reacts to

light levels and accommodation (Lowenstein et al. 1963).

Nevertheless, efforts were made to prove that the pupillary oscillations that occur under

scotopic conditions are also present under photopic conditions. Nishiyama et al. observed
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miosis and pupillary fatigue waves in subjects that had to perform an uneventful simulated

driving task. They found out that pupillary fatigue waves occurred in 80% of subjects dur-

ing the 10-minute recording session and that during periods when pupillary fatigue waves

were present, there was an increase in the number of targets missed and a decrease

in the saccade velocity, which can be seen as evidence of reduced vigilance (Nishiyama

et al. 2007).

Henson and Emuh found fatigue waves in patients performing a campimetric examina-

tion under low photopic conditions (background luminance: 10 cd/m2) (Henson and Emuh

2010).

In contrast to Henson and Emuh (2010), the present work did not identify pupillary oscil-

lations, especially computed with the help of wavelet analysis, as a parameter with strong

correspondence to fatigue or sleepiness. One reason for that may be limitations in tempo-

ral and spatial resolution of the video frames as already stated above (see chapter 6.1).

In addition, Henson and Emuh executed measurement under different conditions and for

a different group of subjects (elder glaucoma patients or glaucoma suspects), as carried

out in chapter 3.3.2.

On the other hand, Loewenfeld postulated in 1993, that pupillary oscillations correlated

with the luminance level (Loewenfeld 1993) and overlaid fatigue waves. The first exami-

nation regarding this issue was carried out by Warga et al. in 2009, specifically designed

to answer the question, if it was possible to filter pupil data collected in daylight to identify

sleepiness during activities in the daytime (like e.g. driving). They found that light-induced

pupillary oscillations in fact correlated positively with luminance levels, as postulated by

Loewenfeld.

Warga et al. stated that the observed light-induced oscillations were hard to differentiate

from sleepiness waves. In some cases, especially under stable alertness levels, they did

not come along with a general decline of the pupil diameter. The latter observation was re-

garded to be a typical characteristic of sleepiness waves. Light-induced oscillations did not

occur in all twelve young (23–28 years) healthy subjects they examined and the temporal

and spatial characteristics were considerably different between the subjects. Oscillations

under photopic conditions were not continuously present during the entire recording time

and periods with and without oscillations alternated although alertness of the subjects was

monitored and stable. Altogether, they noticed an increase in the amplitude and frequency

of pupillary unrest with increasing luminance levels up to 400 cd/m2. Below, light-induced
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oscillations often were similar to the well-known sleepiness waves (Warga et al. 2009).

In general, light-induced oscillations tend to be more vigorous in young, excitable people

than in older persons (Loewenfeld 1993).

In summary, it must be said that the relationship between the frequency and amplitude of

the pupil oscillations and vigilance under photopic conditions has not yet been definitely

clarified.

It has also to be mentioned, that Henson and Emuh derived so-called fatigue waves. It

seems to be questionable, if this is feasible in relation to a method such as perimetry,

which is thought to be more affected by sleepiness than fatigue. However, as both con-

cepts are dependent, this may only be a wording issue.

In contrast to Henson and Emuh’s experiment, the present study was carried out using the

built-in camera of a conventional, commercially available perimeter rather than a campi-

metric device with attached eye tracking unit. Clinical applicability therefore is given for

the first time by this approach.

With regard to the pupil and pupillary oscillations, it has also to be considered, that

changes in pupil dilation accompany effortful cognitive processing (Kahneman 1973).

A dilatation of the pupil can be observed in subjects with increased cognitive workload,

e.g. subjects instructed to solve a task associated with concentration, such as mental

arithmetic. Pupil dilatation refers to the complexity of the given arithmetic task. Calcu-

lating the product of two large numbers results in greater pupil dilatation than for small

numbers. Pupils return to their previous size within a few seconds of completing the men-

tal work. Therefore, it can be stated that cognitive workload, which is related to attention,

affects the pupil and, in turn, that pupil size over time can indicate cognitive workload

(Beatty and Lucero-Wagoner 2000).

While performing a perimetric task, subjects could react to an onset of sleepiness in com-

pletely different ways. Some allow the lack of concentration due to sleepiness, while others

fight it. The latter will likely experience a higher cognitive workload. These inter-subject

differences could affect the pupil and its oscillations and be an opponent to the fatigue

waves.
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6.2.3.5 Palpebral fissure

Fox reported back in 1966, that literature on the subject of the palpebral fissure was scarce

yet available. However, where it existed, no two authorities could agree on the size, shape

and proportions of the palpebral fissure (Fox 1966).

Adler stated that the palpebral opening usually is 25 mm wide in adults (Moses 1981),

Duke-Elder and Wybar reported it to be 30 mm wide (Duke-Elder and Wybar 1961). Ac-

cording to Kestenbaum, the palpebral fissure height is 9-10 mm in adults (Kestenbaum

1963), whereas Whitnass stated that it is 15 mm (Whitnall 1932).

Hanada et al. examined three different racial groups with regard to their palpebral fissures.

They stated that the mean horizontal dimension of the palpebral fissure of Japanese was

not statistically different from the mean of Indians, yet both were significantly greater than

the mean fissures of Whites. Vertical dimension of the palpebral fissure, however, was not

examined (Hanada et al. 2001).

Yuzuriha et al. stated, that the typical Mongoloid eye differs from the Occidental one in

puffiness of the upper eyelid and in narrowness of the palpebral fissure. They surmised

that an anatomical structure might exist in the preaponeurotic fat space, which determined

the features of the Mongoloid eye (Yuzuriha et al. 2000).

Hill et al. found out that the whole lateral canthus becomes lax and drifts medially with

age, resulting in a decline of the height of the palpebral fissure (Hill 1975).

In summary, palpebral fissure parameters vary vastly inter-individually due to race and

age. It is not possible to determine normal values and/or absolute cut-off values for the

height of the palpebral fissure, also in dependence of a subject’s vigilance status. The

palpebral fissure can only be evaluated in relation to an intra-individual baseline, as done

within the present study.

According to chapter 3.3.3, the upper eyelid is lowered when sleepy, inattentive and ex-

hausted (Records 1979). Results of this study confirmed this statement.

In addition, findings of this study suggest that the palpebral fissure height gets more vari-

able with decreasing vigilance. This could be due to the fact, that some individuals tend to

fight the occurrence of sleepiness and therefore open their eyes wide occasionally. This

behavior was observed several times in different subjects by the examiner.
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A decrease in the height of the palpebral fissure could possibly interfere with other param-

eters, for instance with pupil size. If the upper eyelid is lowered, the pupil may only be

partially visible. This has been a problem during the pilot studies in the present work, and

has then been corrected by an algorithm that was able to detect the pupil as a circular or

elliptic section (see chapter 3.4.4.2).

A possible interference of the height of the palpebral fissure and the blink rate has been

eliminated by filtering out any blink from the recorded data of the height of the palpebral

fissure prior to further data procession.

As already stated in chapter 6.2.3.3, the percentage of eyelid closure (PERCLOS) can be

used as a drowsiness detection technology. Dinges and Grace declared PERCLOS to be

the most reliable and effective parameter to judge the level of alertness of a driver (Dinges

and Grace 1998) as cited in (Nie et al. 2017).

However, it has to be said that PERCLOS has been used throughout various studies to

detect fatigue and that the PERCLOS cut-off value as a threshold for determining fatigue

ranges from 7.5% to 80% (Papadelis et al. 2007) (Di Stasi et al. 2010) (Abe et al. 2011)

(Jo et al. 2014).

Reasons can be, for instance, differences in the recognition of fatigue grading standards

among researchers, differences in the eye contour, which is detected by different image

processing algorithms, or various methods of eye identification and edge segmentation

(Nie et al. 2017).

PERCLOS is simple and robust, and it has long been a widely used feature. Yet it has

been reported to be insufficient to estimate mild drowsiness, and estimation accuracy with

PERCLOS alone is not high (Nagai et al. 2008).

Tsujikawal et al. therefore suggested that PERCLOS should only be used in combination

with other methods such as gaze movements or blink rate. Another method would be to

not only investigate the PERCLOS, but also the eyelid variability. It was found that eyelid

variability (correlation coefficient = 0.55 at frame rate of 20 fps) led to a significantly better

correlation to drowsiness than PERCLOS alone (correlation coefficient = 0.45 at frame

rate of 20 fps), specifically for lower frame rates (below 30 fps) (Tsujikawal et al. 2018).

The latter approach was therefore also used within the present study. Instead of the palpe-

bral fissure height (referring to PERCLOS) only, also the variability of the palpebral fissure

height was investigated.
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6.2.3.6 Heart rate (HR) and heart rate variability (HRV)

Heart rate variability (HRV) time-domain measurements are related to age and gender,

as they decline with age. Bonnemeier et al. (2003) assessed 24 h recordings from

166 healthy subjects (85 male, 81 female, age range 20–70 years). It was found that the

most dramatic HRV parameter decrease occurred between the second and third decades

(Bonnemeier et al. 2003) as cited in (Shaffer and Ginsberg 2017).

In the present study, heart rate related parameters were not corrected for age or gender.

Hence, test subjects were equally distributed among different age groups in order to keep

any bias as small as possible.

With regard to heart rate related measures, several studies were carried out in the past,

that have shown a relation between heart rate and vigilance level. As already stated

in chapter 3.3.4, it is possible to divide the HRV into components of different frequency

ranges by a Fast Fourier Transformation (FFT):

The low frequency (LF) band (0.04 to 0.15 Hz) was formerly known as the barorecep-

tor range because it mainly reflects baroreceptor activity during resting conditions. LF

power may be produced primarily by the sympathetic nervous system (SNS). The sympa-

thetic nervous system does not produce rhythms above 0.1 Hz, while the parasympathetic

nervous system (PNS) can affect heart rhythms down to 0.05 Hz (Shaffer and Ginsberg

2017).

The high frequency (HF) band (0.15 to 0.40 Hz) on the other hand reflects parasympa-

thetic activity. Lower HF power is often correlated with panic, anxiety or stress (Shaffer

and Ginsberg 2017).

The ratio of LF to HF power (LF/HF ratio) was formerly based on 24 h recordings, dur-

ing which both PNS and SNS activity contribute to LF power. PNS activity, on the other

hand, primarily contributes to HF power. The concept of the LF/HF ratio is the idea of

LF power being generated by the SNS while HF power is produced by the PNS. Shaffer

(2017) warned that the LF/HF ratio was controversial because 24 h and 5 min values were

generated by different procedures, and the results correlated poorly. The SNS contribu-

tion to LF power varies with testing conditions. Therefore, no reliable LF/HF ratio results

for (ultra-)short term measurement are available (Shaffer and Ginsberg 2017).

The present study investigated a relation between vigilance and the heart rate variability

for low frequencies (HRVLF). As it can be assumed that the SNS is related to vigilance,
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it is possible that the correspondence between vigilance and low frequencies of the HRV

occurred when test subjects started to fight the onset of sleepiness.

With regard to monotonous psychophysical examinations, already in 1963, Griew et al.

found a connection between heart rate and vigilance performance. He examined 24 test

subjects for their auditory attention. To do this, a response button had to be pressed during

a 60-minute examination whenever a certain auditory signal could be heard. The results

showed that the heart rate decreased with increasing number of errors (Griew et al. 1963).

In addition, it was shown by Chua et al. that heart rate variability (HRV) measures can be

used to predict daytime performance levels (Chua et al. 2008). This is also meaningful for

perimetric tasks. Chua et al. also investigated, whether changes in psychomotor vigilance

during sleep deprivation can be estimated using HRV. They carried out that HRV was able

to give information about a person’s vigilance state and stated that HRV measures could

potentially be used to predict when an individual is at increased risk of (visual) attentional

failure. They suggested that HRV monitoring, either alone or in combination with other

physiologic measures, could be incorporated into safety devices to warn drowsy opera-

tors when their performance was impaired (Chua et al. 2012). In contrast to the present

study, they examined subjects who were sleep deprivated for 40 hours. Subjects had to

undergo the Psychomotor Vigilance Task (PVT) every 2 hours for about 10 minutes within

the 40 hour examination duration. Vigilance tasks were shorter, but results were corre-

lated to actual sleep deprivation, which was not applied in the present study.

Henelius et al. found that HRV alone explained 33% of PVT variance during a study that

evaluated the impact of sleep deprivation. Therefore, a sleep restriction group (n = 15)

was restricted to 4 hours of sleep for 5 nights whereas a control group (n = 8) had 8 hours

of sleep during all nights. All of them underwent the PVT. HRV was examined within a

frequency band in the range [0.00, 0.40] Hz according to both, high and low frequency

bands together (Henelius et al. 2014). In contrast to that, the present study showed best

accordance to vigilance only for the HRVLF band (i.e. low frequencies of the heart rate

variability).
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6.2.3.7 Response time (RT) and response time variability (RTV)

As shown in chapter 3.3.5, response times are known to be linked to vigilance, as re-

sponse times increase with a decrease in vigilance (Freeman 1933) (Broadbent 1971)

(Welford 1980).

This was also found within the present study. Surprisingly, response time variability (RTV)

was (cor)related even more to vigilance by the means of the present study. To the author’s

knowledge, response time variability has not been connected to vigilance before.

However, RTV has been linked to attention in a vast amount of studies and is well-known

to be increased globally in patients suffering from attention deficit hyperactivity disorder

(ADHD, see for instance (Zakzanis 2001) (Klotz et al. 2012)).

Most studies of response or reaction time variability implicitly assume that increased reac-

tion time variability reflects occasional lapses in attention, and the dominant neurophysio-

logical interpretation suggests that variability is linked to intrusions of task-negative brain

network activity during task performance. (Tamm et al. 2012).

This could be related to the lack of concentration often occurring during perimetry.

6.2.3.8 Epworth Sleepiness Scale (ESS)

A questionnaire for evaluating sleepiness can generally be criticized for not being able

to be assessed during the examination. It is only possible to record the subjects’ usual

tendency to fall asleep before the start of an examination or retrospectively for once.

Questionnaires are, as described in chapter 3.3.7, methods of self-assessment.

In general, self-assessment as a common approach for gathering data in epidemiologic

and medical research, is known to require participants to respond to the questions asked

without personal interference. Relative to other sources of information, specifically labora-

tory measurements, self-reported data are often argued to be unreliable and threatened

by self-reporting bias (Althubaiti 2016).

In the present work, no correlation between total number of errors as well as onset of

sleepiness and ESS scores were found. Even accordance to onset of sleepiness could

not be found. This may depend on the choice of a cut-off criterion for whether a subject

shows a normal or pathological ESS score. The value of 11.7 was taken as a cut-off

criterion. No norm values were available, only mean values for different patient groups
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were published by Johns (1991). This publication stated a mean value of 11.7 for patients

suffering from obstructive sleep apnea syndrome (OSAS), which is known to be related to

daytime sleepiness (Bixler et al. 1979) (Breslau et al. 1997) (Ohayon et al. 1997). As no

further relevant information was available, this value was defined as a cut-off criterion.

In addition, it has to be stated that the diagnostic value of the ESS was classified as low by

the author himself (Johns 1991). Significant correlations to the Multiple Sleep Latency Test

(MSLT) reported by the author could not be confirmed in further studies (Benbadis et al.

1999). Yet the questionnaire has meanwhile found widespread use in clinical research

and is internationally known (Johns 1991).

Additionally, no correlation of ESS scores and age were found. This result corresponds to

what has been published by the author of this questionnaire (Johns 1991) and was there-

fore expected.

6.2.3.9 Frequency of seeing (FOS) curves

Frequency of seeing (FOS) curves were included in the evaluation as a supplementary

measure for the reliability of subjects’ performance (Woodworth and Schlossberg 1954)

(Chauhan et al. 1993). As these are only available retrospectively for the entire investi-

gation, it is unclear how the fluctuations develop over time and whether this varies from

person to person. A time-resolved investigation of these fluctuations could not be covered

in the context of this study.

For future studies, however, it would be interesting to determine the fluctuations of FOS

curves during perimetric examinations depending on the number of questions already

asked per location. This could also be used to define a cut-off, at which fluctuation rate,

based on the number of questions asked, a perimetric examination could be terminated.

For future applications, it would even be conceivable that such a FOS curve could replace

or supplement the presentation of catch trials in perimetric sessions with live recording

and evaluation of the perimetric data. Fluctuations in the high-threshold areas of the

curve could be used for such an analysis.

The available data carried out within this study could be re-evaluated in this regard during

a future study.
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6.3 Conclusion

The purpose of this work was to to develop a methodology to monitor and validate vigi-

lance during static automated perimetry. Vigilance (and also reduced vigilance, i.e. sleepi-

ness) was operationalized by several parameters such as eyelid closures (blinks), pupil

diameter, the height of the palpebral fissure, heart rate, and response time. These param-

eters were (cor)related to the number of false responses to catch trials given by a subject,

which was seen as the gold standard for vigilance and therefore also for the validity of the

perimetric results.

Response time variability and the height of the palpebral fissure were identified as the

most promising and valid parameters to fulfill the requirements with regard to the purpose.

Specifically with regard to less vigilant subjects that generated a comparably high number

of false responses to catch trials, relatively high agreement indices and correlation coeffi-

cients could be obtained.

The main benefit of the this new method is, that compared to other vigilance tests such as

the Pupillographic Sleepiness Test (PST) or the Psychomotor Vigilance Task (PVT), the

findings of this study allow for vigilance monitoring during a psychophysical examination

or other task such as driving in a highly time-resolved manner due to a considerably in-

creased portion of catch trials.

The following chapter 6.4 gives a short overview, how further developments and studies

could even improve vigilance monitoring by means of the results of the present study.

6.4 Outlook

6.4.1 Implementation in conventional perimetry

As already stated in chapter 5.3.6.4, only normal subjects without any visual field loss

were included in the present study. Patients with advanced visual field loss could be in-

cluded in a future study. In patients with advanced visual field loss, significantly higher

error rates can generally be expected (Birt et al. 1997).

A future study could also clarify, if the results of this work were reproducible also with pa-
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tients who suffer from different pathologies such as the obstructive sleep apnea syndrome

(OSAS), hypersomnia, narcolepsy, or insomnia, which could lead to a higher rate of false

responses to catch trials. It would be very interesting to investigate, whether similar phe-

nomena occurred.

In addition, if patients with sleep disorders as listed above were examined, a higher preva-

lence of sleepiness would occur. Therefore, results could show higher accordance or

correlation levels. This was exemplarily shown already in chapter 5.3.6.2 by the simula-

tion of an artificial prevalence enrichment for the individual analysis of the palpebral fissure

height. This immediately led to a strong correlation for the selected subgroup.

For all the reasons stated above, it would be meaningful to carry out a future study in

cooperation with a clinic that has access to a large number of patients suffering from the

respective pathologies.

A fixed implementation of the test procedure in a perimeter for live monitoring of vigilance

during examinations could be executed. The palpebral fissure is easy to determine using

the built-in camera for fixation control and can be seen as a valid parameter. Response

time is usually recorded during the examination anyway. Since these were the two most

promising parameters during the investigation, implementation would be comparatively

easy. A follow-up study could clarify the feasibility.

6.4.2 Implementation in a portable, headmounted perimeter

For further studies, spatial resolution as well as frame rate would have to be improved.

Frame rate would have to be at least 20 fps constantly without rejecting frames due to a

lack of processing power.

It was already investigated, that the imo perimeter (CREWT Medical Systems Inc., Tokyo,

Japan) would be feasible for such an implementation due to its resolution of up to

1280x960 px and the possibility of pupil recording.

With the implementation of the method for vigilance monitoring during perimetry found in

the present study, vigilance-controlled perimetry could be integrated into a headmounted

and thus portable and not stationary perimeter.
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Figure 6.1: imo perimeter (CREWT Medical Systems Inc., Tokyo, Japan)

In occupational medicine, it is important to have a device that is as compact as possi-

ble and portable, but still offers a variety of standardized examination options. The imo

perimeter (CREWT Medical Systems Inc., Tokyo, Japan) would basically be well suited

for this. It could not only serve as a perimeter, but also as a portable vigilance test on

its own and potentially as a multipurpose visual function test device. This may have a

considerable impact on occupational medicine.

6.4.3 Implementation into vigilance monitoring during driving

Bergasa et al. tried to come up with a system to monitor drivers’ vigilance in real-time.

They developed a non-intrusive prototype based on a hardware system for a real-time

acquisition of drivers’ images using an active IR illuminator. Software algorithms for the

real-time monitoring of six parameters that better characterize the fatigue level of a driver

were implemented. These visual parameters were eye closure duration, blink frequency,

nodding frequency, face position, and fixed gaze. The system worked robustly during day-

and nighttime, but only for test subjects that did not wear glasses (Bergasa et al. 2006).
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6 Discussion

In the present study, the height of the palpebral fissure was found as a reliable parameter

for vigilance monitoring. Therefore, real-time systems could be improved and made suffi-

cient even for subjects wearing glasses.

Finally, it has to be stated that vigilance perimetry could serve as a test for vigilance itself

in the future. This may especially be suitable for standardized driving tasks or with regard

to testing for immediate effects of alcohol or drug abuse as well as for sleep disorders

such as sleep apnea.

111



Bibliography

Abe T, Nonomura T, Komada Y, Asaoka S, Sasai T, Ueno A, Inoue Y. 2011. Detecting

deteriorated vigilance using percentage of eyelid closure time during behavioral main-

tenance of wakefulness tests. International Journal of Psychophysiology, 82(3):269–

274.

Addison PS. 2002. The Illustrated Wavelet Transform Handbook. Introductory Theory and

Applications in Science, Engineering, Medicine and Finance. Bristol: IOP Publishing

Ltd.
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Grundbegriffe. Der Ophthalmologe, 102(7):627–646.

Schiefer U, Pätzold J, Dannheim F. 2005b. Konventionelle Perimetrie - Teil 2: Konfronta-

tionsperimetrie - Kinetische Perimetrie. Der Ophthalmologe, 102(8):821–827.

Schiefer U, Pätzold J, Wabbels B, Dannheim F. 2006. Konventionelle Perimetrie - Teil 4:

Statische Perimetrie: Befundauswertung - Indizes - Verlaufskontrolle - Perimetrie im

Kindesalter. Der Ophthalmologe, 103(3):235–254.

Schiefer U, Wilhelm H, Zrenner E, Burk A. 2003. Praktische Neuroophthalmologie. Hei-

delberg: Kaden-Verlag.

122



BIBLIOGRAPHY

Schmidt EA, Kincses WE, Scharuf M, Haufe S, Schubert R, Curio G. 2007. Assessing

drivers’ vigilance state during monotonous driving. In: Proceedings of the Fourth

International Driving Symposium on Human Factors in Driver Assessment, Training

and Vehicle Design.

Schmidt-Nielsen K. 1997. Animal physiology: adaptation and environment. Cambridge:

Cambridge University Press:104.

Schorner D, Lopes da Silva FE. 2018. Niedermeyer’s Electroencephalography, 7th ed.

Oxford: Oxford University Press.

Shaffer F, Ginsberg J. 2017. An overview of heart rate variability metrics and norms.

Frontiers in Public Health, 5:1–17.

Shapiro C, Flanigan M, Fleming J, Morehouse R, Moscovitch A, Plamondon J, Reinish

R, Devins G. 2002. Development of an adjective checklist to measure five faces

of fatigue and sleepiness. Data from a national survey of insomniacs. Journal of

Psychosomatic Research, 52:467–473.

Shields SM, Morse CE, Applebaugh ED, Muntz TL, Nichols DF. 2016. Are electrode caps

worth the investment? An evaluation of EEG methods in undergraduate neuroscience

laboratory courses and research. Journal of Undergraduate Neuroscience Education,

15(1):29–37.

Singleton W. 1953. Deterioration of performance on a short-term perceptual-motor task.

In: Floyd WF and Welford AT. Symposium on fatigue. Oxford: HK Lewis & Co.:163–

172.

Surwillo W, Quilter R. 1964. Vigilance, Age, and Response-Time. The American Journal

of Psychology, 77(4):614–620.

Tamm L, Narad ME, Antonini TN, O’Brien KM, Hawk LW, Epstein JN. 2012. Reaction time

variability in ADHD: a review. Neurotherapeutics, 9(3):500–508.

Tanenbaum AS. 2003. Computernetzwerke. München: Pearson Studium.

Teplan M, et al. 2002. Fundamentals of EEG measurement. Measurement Science

Review, 2(2):1–11.

Traquair HM. 1938. An Introduction to Clinical Perimetry, Chpt. 1. London: Henry

Kimpton:4–5.

123



BIBLIOGRAPHY

Tsujikawal M, Onishil Y, Kiuchil Y, Ogatsul T, Nishino A, Hashimoto S. 2018. Drowsi-

ness estimation from low-frame-rate facial videos using eyelid variability features. In:

2018 40th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC). IEEE.

Turpin A, Artes PH, McKendrick AM. 2012. The Open Perimetry Interface : An enabling

tool for clinical visual psychophysics. Journal of Vision, 12(11):22:1–5.

Ungewiss J. 2015. Parameters for Vigilance, Attention and Cognitive Workload within Eye

Tracking Recordings. Master thesis, Aalen University of Applied Sciences.
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Warga M, Lüdtke H, Wilhelm H, Wilhelm B. 2009. How do spontaneous pupillary oscilla-

tions in light relate to light intensity? Vision Research, 49(3):295–300.

Wascher E, Arnau S, Gutberlet I, Karthaus M, Getzmann S. 2018. Evaluating pro-and

re-active driving behavior by means of the EEG. Frontiers in Human Neuroscience,

12:1–8.

Wascher E, Getzmann S, Karthaus M. 2016. Driver state examination – Treading new

paths. Accident Analysis & Prevention, 91:157–165.

Wascher E, Rasch B, Sänger J, Hoffmann S, Schneider D, Rinkenauer G, Heuer H, Gut-

berlet I. 2014. Frontal theta activity reflects distinct aspects of mental fatigue. Biolog-

ical Psychology, 96:57–65.

Weber EH. 1846. Tastsinn und Gemeingefühl, in: Wagner R (Ed). Handwörterbuch

der Physiologie mit Rücksicht auf physiologische Pathologie. Band 3. Teil 2. Braun-

schweig: Vieweg:481–588.

Weeks M. 2011. Digital Signal Processing Using MATLAB & Wavelets. 2nd ed. Boston:

Jones and Bartlett Publishers, LLC:271–272.

Weeß HG, Lund R, Gresele C, Boehning W, Sauter C, Steinberg R. 1998. Vigi-

lanz, Einschlafneigung, Daueraufmerksamkeit, Müdigkeit, Schläfrigkeit. Die Messung
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A Study synopsis

The following pages show the study synopsis for the main study and overall timeline for

the present study.
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Title of the project 
Subtitle 
 
Assessment of vigilance and quality during static 
automated perimetry (SAP) 
A study using the method of constant stimuli (MoCS) and 
an enhanced presentation rate of catch trials 

Name Examiner: 
Judith Ungewiß 

Acronym: 
ViPer 

Date / Version: 
2019-10-27 / V9 

1. Aims of this project 
1.1 Main purpose 
      à Primary objective 
      What goals shall be achieved at 
      the end of this project – which 
      results shall be achieved? 

1.1.1 To monitor vigilance and error rate and their (cor)relation in time  
         during SAP by video-pupillography and an increased no. of catch  
         trials as "ground truth" in order to specify a valid termination  
         criterion. 

1.2 Null Hypothesis/es 
      for primary objective 

1.2.1 There is no agreement of  
         (i) blinks and blink rate, (ii) pupil diameter, (iii) palpebral fissure  
         height, (iv) heart rate, (v) response time 
         as well as their variabilities 
         and error rate due to agreement indices. 
1.2.2 There is no correlation of  
         (i) blinks and blink rate, (ii) pupil diameter, (iii) palpebral fissure  
         height, (iv) heart rate, (v) response time 
         as well as their variabilities 
         and error rate. 

1.3 Other purpose(s) 
      à Secondary objective(s) 

1.3.1 To assess accordance of an onset of sleepiness and pathologic  
         Epworth Sleepiness Scale (ESS) scores 
1.3.2 To assess global correlations of  
         (i) age and onset of sleepiness, (ii) ESS and onset of sleepiness,  
         (iii) age and total number of errors, (iv) ESS and total number of  
         errors, (v) onset of sleepiness and total number of errors, (vi) age  
         and ESS 

1.4 Null Hypothesis/es 
      for secondary objective/s 

1.4.1 There is no accordance of an onset of sleepiness and pathologic  
         Epworth Sleepiness Scale (ESS) scores 
1.4.2 There is no correlation of  
         (i) age and onset of sleepiness, (ii) ESS and onset of sleepiness,  
         (iii) age and total number of errors, (iv) ESS and total number of  
         errors, (v) onset of sleepiness and total number of errors, (vi) age  
         and ESS 

1.5 Specify relevant/critical effect 
      size 
      Please differentiate carefully from 
      statistically significant result! 

1.5.1 For the definition of agreement indices, error rate is rated as  
         pathological, if error rate is at least 2 errors/min. 
1.5.2 For analysis of 1.2.1, relevant cut-off values are investigated via  
         ROC curves and AUROC values 
1.5.3 Epworth Sleepiness Scale (ESS) scores were rated as pathologic, 
         if a score of ESS > 11.7 was obtained 

2. Project organization 

2.1 Technical requirements 

2.1.1 OCTOPUS 900 perimeter (Haag-Streit, Koeniz, Switzerland) 
2.1.2 PC: DELL Optiplex 7010 (DELL, Round Rock, Texas, USA) 
2.1.3 2x hard disc for data backup (My Book, Western Digital, Irvine,  
         California, USA) 
2.1.4 translucent, reusable, sanitizable eye patch (Haag-Streit, Koeniz, 
         Switzerland) 
2.1.5 heart rate monitor and chest strap (Ecgmove4, movisens,  
         Karlsruhe/Germany) 
2.1.6 VISUCAT (argusindividuell optic GmbH Putzbrunn/Germany)  
         optotype-display with single optotypes (numbers) for initial  
         measurement of visual acuity 

2.2 Tasks Name Comments 
      1. supervisor Prof. Dr. H.A. Mallot Tübingen University 
      2. supervisor Prof. Dr. med. U. Schiefer Aalen and Tübingen University 
      Examiner Judith Ungewiß  

      Study group Competence Center "Vision 
Research" Aalen University 
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2.3 Quality management 
      Contact, meetings, supervision 

2.3.1 e-Mail contact between 1. supervisor and examiner, when needed 
2.3.2 continuous personal contact between 2. supervisor and examiner 
2.3.3 meetings, when needed 

2.4 Time frame February 2016 – January 2020 
2.5 Scheduled launch of the project May 01, 2016 (pilot studies), May 01, 2018 (full-scale study) 
2.6 End of the project January 31, 2020 

3. Project related issues 

3.1 Study design explorative study 

3.2 Sample size 
pilot study part 1 and pilot study part 2: 5 patients 
full-scale study: 48 patients (due to G*Power; Correl: Bivariate model, 
                        : n > 46) 

3.3 In- and Exclusion criteria? 
        further specification depending on project 

3.3.1 age ≥ 18 years, patients equally distributed among groups: 
         21 – 40 years, 41 – 60 years, 61 – 80 years 
3.3.2 minimum distant visual acuity (without/with correction) 0.8  
         (VISUCAT, single letter optotypes [numbers]).  
3.3.3 Ametropia: 
         maximum myopia sph -8.00dpt, maximum hyperopia sph +8.00 dpt, 
         maximum astigmatism cyl 2.50 dpt 
3.3.4 normal ophthalmologic status (ophthalmological examination) 
3.3.5 informed consent 

3.4 Recruitment of patients employees of Aalen University, citizens of Aalen 
3.5 Randomization randomization with respect to the leading eye 

3.6 Data analysis / 
      Statistics 

3.6.1 Software: MatLab Release 2018a – academic use (The  
         MathWorks, Natick, Massachusetts, USA) 
3.6.2 "Agreement index", defined as i.e. the ratio between 
         the time periods of event occurrence as specified in clauses  
         1.5.1 and 1.5.2       
         overlapping with the time periods with increased error rates  
         AND 
         the total time period with increased error rates or occurrence of  
         events as specified in clause 1.5.1 and 1.5.2 
3.6.3 Spearman correlation coefficients regarding clauses 1.2.2 and  
         1.4.2 
3.6.4 McNemar’s test regarding clause 1.4.1 
3.6.4 Variabilities are calculated as variances within a sliding window  
         over a 1 min.-period 
3.6.5 Visualization of differential luminance sensitivity by FoS-Curves 

3.7 Methodological sequence 
      of the project (full-scale study) 

3.7.1 Subject selection according to in-/exclusion-criteria 
3.7.2 Determination of the leading eye by Rosenbach test 
3.7.3 Assessment of sleepiness status by questionnaires (Epworth  
         sleepiness scale) 
3.7.4 Assessment of differential luminance sensitivity with the OCTOPUS  
         900 perimeter (Haag-Streit, Koeniz, Switzerland) using OPI at 3  
         locations (-6.1,-3.5), (0,7), (6.1,-3.5) 
3.7.5 Using MoCS (Method of Constant Stimuli) and an increased  
         number of catch trials (false pos./false neg. 25% each) 
3.7.6 Variation of stimulus intensity in 13 steps betw. 0.04 cd/m2 (39dB)  
         and 160 cd/m2 (3 dB) with background luminance of 10 cd/m2 

4. Resources and Costs 

4.1 What Costs arise?  
      What Resources are 
      needed? 
        Personnel/Staff, Material costs, 
        Equipment, Space/Rooms 

4.1.1.OCTOPUS 900 perimeter (Haag-Streit, Koeniz, Switzerland) 
4.1.2 PC: DELL Optiplex 7010 (DELL, Round Rock, Texas, USA) 
4.1.3 2x hard disc for data backup (My Book, Western Digital, Irvine,  
         California, USA) 
4.1.4 heart rate monitor and chest strap (Ecgmove4, movisens,  
         Karlsruhe/Germany) 
4.1.5 Examination room with full-blinding curtains 
         (AMPEL II – INNO-Z 1.11/1.12) 
4.1.6 MatLab License Release 2018a – academic use (The MathWorks,  
         Natick, Massachusetts, USA) 
4.1.7 patient insurance 
4.1.8 ethics commitee approval by institutional review board (Ethik- 
         Kommission der Landesärztekammer) 
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4.2 Patient- or other insurance 
      needed? yes 

4.3 Institutional review board / 
      Ethics committee approval 
      needed? 

yes 

 
 
Abbreviations 
MoCS method of constant stimuli     OPI  Open Perimetry Interface 
FOS frequency of seeing      SAP  static automated perimetry  
ROC receiver operating characteristics    AUROC area under the ROC curve 
 
 
Determination of the "Agreement index" 
 

 

range: 0 ≤ agreement index ≤ 1 
 
 
 
 
Timeline 
Feb 2016 – Mar 2016  Subject search and definition 
 
Apr 2016 – May 2016 Experimental setup for pilot study 1: perimetry and heart rate monitoring; 

Measurement period for pilot study 1 
 
Jun 2016   Analysis of data for pilot study 1 
 
Jul 2016 – Dec 2016 Determination of final methodology for parameters included in pilot study 1 
 
Jan 2017 – Mar 2017  Experimental setup for parameters not included in pilot study 1 

à pilot study 2: perimetry and EEG 
 
Apr 2017 – May 2017 Measurement period for pilot study 2 
 
Jun 2017 – Aug 2017  Analysis of data for pilot study 2 
 
Sep 2017 – Feb 2018 Determination of final methodology for parameters included in pilot study 2 and for  

full-scale study 
 
Mar 2018 – May 2018  Ethics committee approval 
 
Jun 2018 – Dec 2018 Recruitment of patients for full-scale study; 

Measurement period for full-scale study 
 
Jan 2019 – Jul 2019  Analysis of full-scale study data 
 
Aug 2019 – Jan 2020  Preparation and final arrangement of dissertation 
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B Ethics committee approval

The following pages show the ethics committee approval of the institutional review board

(Landesärztekammer Baden-Württemberg, Germany) for the present study.
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C Information material and forms

All information material for test subjects and case report forms used during the present

work are attached as follows:

• Information material

• Consent declaration form for the participation in the study and for data protection

• Medical history form

• Case report form (CRF)

• In- and exclusion criteria list

• Documentation form for the main examination
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Messung von Vigilanz und Qualität während statischer 
automatisierter Perimetrie (SAP) unter Zuhilfenahme 

der Methode der konstanten Stimuli (MoCS) und einer 
erhöhten Anzahl an Fangfragen 

Probandenaufklärung 

 

Sehr geehrte Probandin, sehr geehrter Proband, 

Die Studie „Messung von Vigilanz und Qualität während statischer 

automatisierter Perimetrie (SAP) unter Zuhilfenahme der Methode der 
konstanten Stimuli (MoCS) und einer erhöhten Anzahl an Fangfragen“ 
wird durchgeführt, um feststellen zu können, zu welchem Zeitpunkt eine 

Untersuchung des Gesichtsfeldes (Perimetrie) aufgrund von Müdigkeit des 

Patienten beendet werden sollte.  

Sind Sie interessiert? Ich freue mich über Ihre Teilnahme. 

Die Teilnahme an der Studie ist freiwillig. Ihnen entstehen durch eine 

Nichtteilnahme keine Nachteile. Sie haben das Recht, auch nach erklärter 

Einwilligung Ihre Einwilligung zu widerrufen und aus der Studie 

auszuscheiden. 

Ihre Daten werden in pseudonymisierter Form erhoben, verarbeitet und für 

die Dauer von 10 Jahren gespeichert. Zugriff auf Ihre Daten haben 

lediglich Angehörige des Kompetenzzentrums „Vision Research“ (Prof. Dr. 

med. Ulrich Schiefer, Dr. Michael Wörner, Judith Ungewiß) an der 

Hochschule Aalen. Zum Zweck einer Veröffentlichung werden die Daten 

lediglich in pseudonymisierter Form verwendet. 

Für diese Studie wurde eine Wegeunfallversicherung bei der VMD 

Versicherungsdienst GmbH, Klingenbergstr. 4, 32758 Detmold, abgeschlossen. 
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Die Versicherungssumme beläuft sich auf folgende Leistungen: 

- Ersatzleistung bei Invalidität: 100.000,00 € 

- Ersatzleistung bei Tod: 50.000,00 € 

- Bergungskosten: 15.000,00 € 

- Kosmetische Operationen: 5.000,00 € 

 

Überblick 

Die Gesichtsfelduntersuchung wird an einem 

sogenannten Perimeter (siehe Abb. 1) durchgeführt. 

Während der Untersuchung wird mit einer integrierten 

Kamera die Pupille aufgezeichnet. Zudem wird die 

Herzrate (HR) mittels Brustgurt (siehe Abb. 2) erhoben.  

Abb. 1: Perimeter      

 

                                                 Abb. 2: Brustgurt zur Registrierung der Herzrate 

 

Hintergrund 

Das Gesichtsfeld ist der Bereich, den man sieht, ohne Augen und Kopf zu 

bewegen. Bei einem gesunden Menschen hat es eine Ausdehnung von 

etwa 200 Grad. Bei der Messung des Gesichtsfeldes werden zum einen 

die Außengrenzen bestimmt, zum Anderen wird untersucht, ob innerhalb 

des Gesichtsfeldes Ausfälle vorhanden sind. Dies ist notwendig, um 

bestimmte Erkrankungen (z. B. Grüner Star) diagnostizieren und deren 

Fortschreiten feststellen zu können.  

Zur Untersuchung des Gesichtsfeldes dient die Perimetrie. Dazu werden 

dem Patienten mithilfe des Perimeters (siehe Abb. 1) Lichtreize 

verschiedener Größe und Helligkeit, verteilt über das Gesichtsfeld, 
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dargeboten. Sobald ein Lichtreiz gesehen wird, gibt der Patient dies mittels 

Druck auf einem Taster an. 

Um einen verlässlichen Gesichtsfeld-Befund zu erhalten, muss der Patient 

wach und aufmerksam sein. Die Gesichtsfelduntersuchung ist aber sehr 

ermüdend, weshalb untersucht werden muss, wann die Untersuchung 

überhaupt durchgeführt werden kann. Dazu werden sogenannte 

"Fangfragen", das sind Lichtpunkte, die so hell sind, dass sie gesehen 

werden müssen oder so dunkel sind, dass sie nicht gesehen werden 

können, eingestreut. Werden die hellsten Punkte nicht gesehen oder die 

dunkelsten Punkte als "gesehen" angegeben, so wird deutlich, dass der 

Proband unkonzentriert ist. Diese Fangfragen können allerdings nur sehr 

selten eingestreut werden, da sie ansonsten die Dauer der Untersuchung 

zu stark verlängern würden. Daher kann die Frage, wann die 

Untersuchung beendet werden sollte, mithilfe der Fangfragen bislang nur 

sehr ungenau beantwortet werden. 

Daher wird in dieser Studie testweise der Anteil an Fangfragen auf 50% 

erhöht. Zudem wird während der Untersuchung die Herzrate abgeleitet, um 

die Übereinstimmung des Müdigkeitslevels und der Antworten auf die  

Fangfragen überwachen zu können. Die Pupille wird während der Messung 

ebenfalls gefilmt. Aus diesen Videobildern kann ermittelt werden, wann die 

Pupille anfängt, sich regelmäßig zu weiten und zusammenzuziehen, ohne 

dass Änderungen des einfallenden Lichts vorhanden sind: Dies ist 

ebenfalls charakteristisch für den Eintritt von Müdigkeit. 

 

Ablauf der Studie 

Allgemein 

Bitte versuchen Sie während der gesamten Gesichtsfelduntersuchung 

ruhig auf dem Stuhl zu sitzen und vermeiden Sie starke Kopfbewegung, so 

dass Sie immer mit der Stirn an der Stirnstütze aufliegen.  
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Voruntersuchungen 

Vor den Haupttests werden folgende Voruntersuchungen von Prof. Dr. 

med. Ulrich Schiefer durchgeführt: 

• Spaltlampenuntersuchung des vorderen Augenabschnittes 
Hierbei untersucht der zuständige Augenarzt Hornhaut, Bindehaut, 
Tränenfilm und Lidränder sowie deren Beschaffenheit und das 
Vorliegen etwaiger Entzündungen oder Reizungen. Die Augenlinse 
wird auf Trübungen hin überprüft. 

• Spiegeln des hinteren Augenabschnittes 

Der Augenarzt betrachtet mittels Ophthalmoskop und Augenspiegel 
die Netzhaut des Probanden und beurteilt deren Zustand. Dazu 
werden Kriterien wie beispielsweise die Beschaffenheit der 
Blutgefäße oder der Papille herangezogen. 

• Augenbeweglichkeitsuntersuchung 

Hier wird überprüft, ob der Proband gleichmäßig in alle Richtungen 
blicken kann. Dazu fixiert der Proband ein vom Untersucher 
dargebotenes Objekt, welches in acht Richtungen (oben, oben 
rechts, rechts, unten rechts, unten, unten links, links, oben links) 
bewegt wird. Mit dieser Untersuchung können etwaige Lähmungen 
und Ausfälle der Augenmuskeln diagnostiziert werden. 

• Untersuchung der Augenstellung 

Der Augenarzt deckt mit einer Abdeckscheibe (Coverscheibe) 
wechselseitig ein Auge auf bzw. ab. So kann er erkennen, wie sich 
die Augen in Ruhestellung, also sobald sie kein Objekt mehr fixieren 
und während der Fixation eines Objektes verhalten. Anhand dieser 
Erkenntnisse kann der Untersucher feststellen, ob eine Fehlstellung 
der Augen vorhanden ist. 
 

Frau Judith Ungewiß, M.Sc., führt folgende Messungen durch: 

• Bestimmung der Sehschärfe 

Zur Bestimmung der Sehschärfe werden dem Probanden für jedes 
einzelne Auge auf einem Monitor Zahlen, die als Sehzeichen dienen, 
in Abstufungen immer kleiner werdend dargeboten. Diese werden 
vom Probanden laut vorgelesen, bis der Untersucher die Messung 
abbricht und die Sehschärfe ermittelt wurde. 
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• Test des räumlichen Sehens 

Der Test erfolgt in einer Prüfentfernung von 40cm. Der 
Studienteilnehmer wird gebeten, auf einer Prüfkarte erkennbare 
Objekte zu benennen und mitzuteilen. Hierüber erhält der 
Untersucher Aufschluss über das Vorhandensein und die Qualität 
des räumlichen Sehens des Studienteilnehmers. 

• Messung des Augeninnendrucks (mit berührungslosem Druckmess- 

gerät) 

Der Studienteilnehmer wird vor dem Messgerät positioniert und 
gebeten, auf einen Fixierpunkt zu schauen. Löst der Untersucher die 
Messung aus, so wird ein sanfter Luftstoß in Richtung des Auges 
des Probanden ausgegeben. Dieser Vorgang erfolgt drei Mal pro 
Auge. Anschließend wird der Wert des Augeninnendrucks auf dem 
Display des Geräts angelesen und notiert. 

• Bestimmung des Führungsauges (sofern vorhanden) 

Zur Bestimmung des Führungsauges fixiert der Proband ein in der 
Ferne gelegenes Objekt mit beiden Augen. Nun deckt er das Objekt 
mit seinem am ausgestreckten Arm vorgehaltenen Daumen ab. 
Durch den Untersucher wird nun abwechselnd rechtes und linkes 
Auge des Probanden abgedeckt. Dabei beobachtet der Proband 
seine Seheindrücke und beschreibt diese, wodurch das 
Führungsauge ermittelt werden kann: Wird das geführte Auge 
abgedeckt, so ist das Objekt durch den Daumen verdeckt, wird das 
Führungsauge abgedeckt, so ist das Objekt nun nicht mehr durch 
den Daumen verdeckt. 

 

Oben genannte Voruntersuchungen werden vorgenommen, um eine gute 

Sichtbarkeit der Lichtpunkte zu gewährleisten und Augenerkrankungen 

auszuschließen.  

 

Hauptuntersuchung 

Sie füllen einen Fragebogen zur Tagesschläfrigkeit („Epworth Sleepiness 

Scale“) aus. Dies nimmt in etwa 5-10 Minuten in Anspruch. 

Dann legen Sie den Brustgurt zur Ableitung der Herzrate an.  
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Im Anschluss findet die Gesichtsfelduntersuchung statt. Dazu werden Sie 

am Perimeter positioniert. Im Perimeter befindet sich zentral eine 

Fixationsmarke (siehe Abb. 3), die Sie bitte während der gesamten 

Untersuchung ansehen. An vier verschiedenen Orten erscheinen nun 

nacheinander unterschiedlich helle Lichtpunkte (bitte sehen Sie diese nicht 

an, sondern bleiben Sie bei der Fixationsmarke!). Sobald Sie einen 

Lichtpunkt sehen, drücken Sie bitte den Taster.  

Selbstverständlich dürfen Sie während der 

Untersuchung blinzeln. Sinnvollerweise tun Sie dies 

immer, nachdem Sie gerade einen Lichtpunkt 

gesehen haben. Da zwischen zwei Lichtpunkten 

immer eine ausreichend lange Pause ist, werden Sie 

so keinen Lichtpunkt verpassen.         Abb. 3: Fixationsmarke 

Die Untersuchung dauert ca. 45 Minuten. Während dieser Zeit sind Sie 

niemals alleine in Untersuchungsraum. Die anwesende 

Studiendurchführende kann Sie auf Ihren Wunsch hin jederzeit über den 

Fortschritt des Experiments in Kenntnis setzen. 

Vermutlich werden Sie während des Experiments müde werden – das ist in 

Ordnung und so gewollt. Bitte setzen Sie das Experiment trotzdem fort.  

 

Lediglich bei vollständigem Einschlafen werden Sie von der 

Studiendurchführenden geweckt werden. 

Nach Abschluss des Experiments legen Sie den Brustgurt ab.  

 

Nebenwirkungen 

Es sind keine Nebenwirkungen bekannt, die durch die durchgeführten 

Tests entstehen könnten. 
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Risiken 

Durch die Spaltlampenuntersuchung kann es zu einem kurzzeitigen Blend- 

gefühl kommen, ansonsten sind für die Untersuchungen keine Risiken 

bekannt. 

 

Zeitaufwand 

Der Zeitaufwand beläuft sich auf zwei Termine zu jeweils etwa einer 

Stunde. Der erste Termin ist vorgesehen für die Voruntersuchung bei Prof. 

Dr. med. Ulrich Schiefer, die Voruntersuchungen durch Frau Judith 

Ungewiß und die Erhebung der medizinischen Vorgeschichte. Am zweiten 

Termin erfolgen die Befragung mit dem Fragebogen „Epworth Sleepiness 

scale“ und die Gesichtsfelduntersuchung mit Ableitung der Herzrate. 
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Das Aufklärungsgespräch hat geführt: 

     Prof. Dr. med Ulrich Schiefer       Judith Ungewiß, M.Sc. 
    ulrich.schiefer@hs-aalen.de         judith.ungewiss@hs-aalen.de 

 
Kompetenzzentrum Vision Research        Kompetenzzentrum Vision Research 
Hochschule Aalen          Hochschule Aalen 
Studiengang Augenoptik          Studiengang Augenoptik 
Anton-Huber-Straße 23          Anton-Huber-Straße 23 
D-73430 Aalen           D-73430 Aalen 
Tel.: +49- 7361 576-4606         Tel.: +49- 7361 576-4625 
Fax: +49- 7361 576-4685         Fax: +49- 7361 576-4685 
http://www.vision-research.de         http://www.vision-research.de 
http://www.hs-aalen.de          http://www.hs-aalen.de 

                         

Oberarzt 
Abteilung für Augenheilkunde 
Universität Tübingen 
Elfriede-Aulhorn-Str. 7 
D-72076 Tübingen 
Tel.: +49- 7071 298-8088 
Fax: +49- 7071 29-5061 
www.sehbahn.de 
http://www.uni-tuebingen.de 
 

 

Erklärung der aufklärenden Person 

Hiermit erkläre ich, den/die o.g. Teilnehmer/in am 

___________________________ über Wesen, Bedeutung, Tragweite und 

Risiken der o.g. Studie mündlich und schriftlich aufgeklärt und ihm/ihr eine 

Ausfertigung dieser Probandenaufklärung sowie der Einwilligungserklärung 

übergeben zu haben. 

 

____________________________  ____________________________ 
Ort, Datum      Unterschrift der aufklärenden Person 

 

____________________________  ____________________________ 
Ort, Datum      Unterschrift des/der Teilnehmer/in 
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Messung von Vigilanz und Qualität während statischer 
automatisierter Perimetrie (SAP) unter Zuhilfenahme 

der Methode der konstanten Stimuli (MoCS) und einer 
erhöhten Anzahl an Fangfragen 

Einwilligungserklärung zur Durchführung der Untersuchungen  

Hiermit willige ich ein,  

dass zum Zwecke der Studie "Messung von Vigilanz und Qualität während 
statischer automatisierter Perimetrie (SAP) unter Zuhilfenahme der Methode 
der konstanten Stimuli (MoCS) und einer erhöhten Anzahl an Fangfragen" 
folgende Messungen / Untersuchungen durchgeführt werden dürfen: 

1. Bestimmung der Sehschärfe (mit und ohne Brille) 
2. Bestimmung der Brillenglasstärke (Refraktion) 
3. Bestimmung des Führungsauges 
4. Mikroskopische Untersuchung des vorderen Augenabschnitts 
5. Untersuchung der Netzhaut mit dem Augenspiegel 
6. Messung des Augeninnendrucks (mit berührungslosem Druckmessgerät) 
7. Messung zur Augenstellung 
8. Messung zur Augenbeweglichkeit  
9. Perimetrische Untersuchung 
10. Ableitung der Herzrate 

____________________________________________________________________ 

Einwilligungserklärung zum Datenschutz 

Sehr geehrte Probandin, sehr geehrter Proband, 

Für das Erstellen einer wissenschaftlichen Studie werden persönliche Daten und 
medizinische Befunde über Sie erhoben. Die Weitergabe, Speicherung und 
Auswertung ihrer persönlichen Daten erfolgt nach gesetzlichen Bestimmungen. Für 
die Teilnahme an oben genannter Studie werden folgende Einwilligungen 
vorausgesetzt: 

Hiermit willige ich ein, 
dass zum Zweck der Studie: „Messung von Vigilanz und Qualität während 
statischer automatisierter Perimetrie (SAP) unter Zuhilfenahme der Methode 
der konstanten Stimuli (MoCS) und einer erhöhten Anzahl an Fangfragen“ die 
folgenden personenbezogenen Daten von mir erhoben und mit einem 
Verschlüsselungscode versehen gespeichert werden: 
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1. Geschlecht     4. Brillenkorrektion 
2. Geburtsdatum    5. Augenbezogene Befunde 
3. Sehschärfe     6. Allgemeinbefunde 

Diese Daten dürfen nur mit einem Verschlüsselungscode versehen auf 
elektronischen Datenträgern gespeichert und verarbeitet werden. Ebenfalls bin ich 
damit einverstanden, dass meine Daten, in anonymer Form und ohne Rückschlüsse 
auf meine Person, veröffentlicht werden. 

Die Teilnahme an der Studie ist freiwillig. Ihnen entstehen durch eine 
Nichtteilnahme keine Nachteile. Sie haben das Recht, auch nach erklärter 
Einwilligung Ihre Einwilligung zu widerrufen und aus der Studie 
auszuscheiden. 

Ihre Daten werden in pseudonymisierter Form erhoben, verarbeitet und für die 
Dauer von 10 Jahren gespeichert. Zugriff auf Ihre Daten und die Verantwortung 
dafür haben lediglich Angehörige des Kompetenzzentrums „Vision Research“ 
(Prof. Dr. med. Ulrich Schiefer, Dr. Michael Wörner, Judith Ungewiß) an der 
Hochschule Aalen. Die verantwortliche Datenschutzbeauftragte der 
Hochschule Aalen ist Frau Britta Seitz, erreichbar unter datenschutz@hs-
aalen.de. Auf das Bestehen eines Beschwerderechts bei der Datenschutz-
Aufsichtsbehörde (Landesbeauftragter für Datenschutz und 
Informationsfreiheit Jörg Klingbeil, Königstrasse 10a, 70173 Stuttgart) wird 
hiermit hingewiesen. Sie haben das Recht, Auskunft (einschließlich 
unentgeltlicher Überlassung einer Kopie) über die Sie betreffenden 
personenbezogenen Daten zu erhalten sowie ggf. deren Berichtigung oder 
Löschung zu verlangen. Zum Zweck einer Veröffentlichung werden die Daten 
lediglich in pseudonymisierter Form verwendet. 
 

 

Name:   ________________________________________ 

Geburtsdatum: ________________________________________ 

 

 

Ort, Datum       Unterschrift 

Die Arbeitsgruppe „Vision Research“  sichert Ihnen den ordnungsgemäßen Umgang gemäß Datenschutz-Grundverordnung 
(DSGVO) mit Ihren zur Verfügung gestellten Daten zu. Zudem wird eine Weitergabe an externe Dritte ausgeschlossen. 
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Anamnesebogen 

Augenanamnese Ja Nein 

Falls ja, ab 

welchem 
Lebensjahr bzw. 

wann wurde 

Erstdiagnose 
gestellt? 

Welches Auge ist 
betroffen? 

 

R/L 

Anmerkungen 

1. Brillenträger?   . Lj.  ________________________

________________________ 

2. Kontaktlinsenträger?   . Lj  ________________________

________________________ 

3. Sehen Sie auf beiden Augen 
mit Korrektion gleich gut? 

    ________________________

________________________ 

4. Schielen bekannt?   . Lj R  L   ________________________

________________________ 

5. Sind Sie schwachsichtig? 
(Amblyopie)? 

  . Lj R  L   ________________________

________________________ 

6. Augenbewegungsstörungen 
bzw. Doppelbilder? 

    ________________________

________________________ 

7. Grauer Star (Katarakt)?   . Lj R  L   ________________________

________________________ 

8. Grüner Star (Glaukom)?   . Lj R  L   ________________________

________________________ 

9. Netzhauterkrankungen? 
(z.B. Netzhautablösung,..) 

 

  . Lj R  L   ________________________

________________________ 

10. Makulaerkrankungen?   . Lj R  L   ________________________

________________________ 
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Augenanamnese Ja Nein 

Falls ja, ab 

welchem 
Lebensjahr bzw. 

wann wurde 

Erstdiagnose 
gestellt? 

Welches Auge ist 
betroffen? 

 

R/L 

Anmerkungen 

11. Schwere chronische 
Augenentzündungen? 

  . Lj R  L   ________________________

________________________ 

12. Augenverletzungen?   . Lj R  L   ________________________

________________________ 

13. Augenoperationen?   . Lj R  L   ________________________

________________________ 

14. Augenmedikamente? 
(Tropfen/Salben) 

  . Lj R  L   ________________________

________________________ 

15. Sind in Ihrer Familie 
Augenerkrankungen bekannt? 
(z.B. hohe Fehlsichtigkeiten, 
Glaukom [Grüner Star], 
Katarakt [Grauer Star], 
Netzhautablösung, 
Farbsehstörungen,….) 

    ________________________

________________________

________________________

________________________

________________________

________________________ 

 

Allgemeinanamnese Ja Nein 

Falls ja, ab 
welchem 

Lebensjahr  bzw. 

wann wurde 
Erstdiagnose 

gestellt? 

Anmerkungen 

1. Herz-Kreislauferkrankung? 
 

  . Lj ________________________ 

________________________ 

2. Andere Organerkrankung? 
(z.B. Leber, Niere, Magen,..) 
 

   ________________________ 

________________________ 

3. Neurologische 
Erkrankungen?  
(z.B. Schlaganfall, Epilepsie) 

  . Lj ________________________ 

________________________ 
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Allgemeinanamnese Ja Nein 

Falls ja, ab 

welchem 
Lebensjahr  bzw. 

wann wurde 

Erstdiagnose 
gestellt? 

Anmerkungen 

4. Stoffwechselerkrankung? 
(z.B. Blutzucker, Schilddrüse, 
Fettstoffwechsel,..) 
 

  . Lj ________________________ 

________________________ 

________________________ 

5. Seelische Erkrankungen?   . Lj ________________________ 

________________________ 

 

6. Schwangerschaft?    ________________________ 

________________________ 

 

7. Medikamenteneinnahme?   . Lj ________________________ 

________________________ 

 

8. Medikamente, die die 
Reaktionszeit beeinflussen? 

  . Lj ________________________ 

________________________ 

 

9. Andere Erkankungen?   . Lj ________________________ 

________________________ 

 

10. Haben Sie Allergien?  
 

   ________________________ 

________________________ 

 

Sonstige Anmerkungen: 
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  ☐☐☐	
  	
  Probanden-­‐ID:	
  ☐☐☐

Geschlecht:	
  ☐m	
  	
  ☐w	
  	
  	
  	
  	
  	
  Alter:	
  ________

Untersuchungsdatum:	
  ☐☐.☐☐.☐☐☐☐

Untersucher:_______________________

Untersuchungsprotokoll

Augenstellung  und  Augenbeweglichkeit

RA  Intakt/Unauffällig RA                                        
Gestört/Auffällig

LA            
Intakt/Unauffällig

LA                                        
Gestört/Auffällig Bemerkungen

Augenstellung

Augenbeweglichkeit

Pupillen  (Efferenz  und  Afferenz)

Pupillen
Ja Nein RA  auffällig LA  auffällig

Pupillen  rund

Pupillen  zentriert

In  Helligkeit  und  Dunkelheit  isokor?

--Anisokorie?

  --Bei  Dunkelheit  zunehmend?
Dilatationsdefizit

  --Bei  Helligkeit  zunehmend?
Kontraktionsdefizit

RAPD?                         __  ,  __      logE                                   __  ,  __      logE

Vorderer  Augenabschnitt Spaltlampe  (WQ900,  Haag  Streit,  Köniz)

RA  Intakt/Unauffällig RA          Gestört/Auffällig LA  Intakt/Unauffällig LA              Gestört/Auffällig Bemerkungen

Bindehaut

Hornhaut

Vorderkammer

Vorderkammertiefe  temporale  Peripherie  
(Grad  1-- ,  nach  W.  van  Herick)

Irisfarbe

Iris/Pupille

Linse

Glaskörper

Intraokular  reizfrei?

Augenhintergund BETA  200  S  LED  Ophthalmoskop,  Heine,  Herrsching

Intakt/Unauffällig Gestört  /  Auffällig Intakt/Unauffällig Gestört  /  Auffällig

Papille  randscharf?

Papille  vital  gefärbt?

Zentrale  Exkavation?

CDR:

ISNT  Regel  erfüllt?

Papillenrand  /  Nervenfaserschicht

Makula?

Wallreflex

Foveolarreflex

Intakt/Unauffällig Gestört  /  Auffällig Intakt/Unauffällig Gestört  /  Auffällig

Zentrale  Fixation?

Exzentrischer  Fixationsort:  

Gefäße?

a  :  v  =  

Peripherie?

Bemerkungen

RA LA

AusprägungsgradAusprägungsgrad

Sonstige  Anmerkungen

R	
  >	
  L R	
  <	
  L	
  

210 3 4 210 3 4

+	
   Ø	
  	
  (	
  +	
  )	
  

+	
   Ø	
  	
  (	
  +	
  )	
  

+	
   Ø	
  	
  (	
  +	
  )	
  

+	
   Ø	
  	
  (	
  +	
  )	
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Einschluss- und Ausschlusskriterien  
 
 
Einschlusskriterien: 
 
¨ Mindestalter: 18 Jahre 
¨ Vorliegen einer unterzeichneten Einverständniserklärung 
 
 
Ausschlusskriterien: 
 
Allgemein: 
 
¨ Epilepsie (potentielle Anfalls-Triggerung durch Flickerreize)/psychiatrische Erkrankungen 
¨ Medikamente, die Reaktionszeit beeinflussen 

 
 

Ophthalmologisch: 
 
¨ Amblyopie (Schwachsichtigkeit) 
¨ Schielen (auch zeitweilig = intermittierend) 
¨ Stereowinkel gemessen mit Lang ≥ 600“ in 40 cm 
¨ Augenbewegungsstörungen 
¨ Augenzittern (Nystagmus) 
¨ operative Augeneingriffe, die weniger als 3 Monate zurückliegen 
¨ pupillenverengende Medikamente 
¨ schwerwiegende Augenverletzungen 
¨ Hinweise auf Sehnerven- oder Sehbahnerkrankungen 
¨ Erkrankungen der Netzhautregion des schärfsten Sehens (Makula-Erkrankung) 
 
 
 
================= 
 
Erfüllt der Proband alle Kriterien, um an der Studie teilzunehmen?  
Ja ¨  Nein ¨ 
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Dokumentationsbogen 
 
 
 
 
☐Brille      ☐Kontaktlinsen 

 

Bemerkungen: _________________________________________________________ 

   _________________________________________________________ 

 

 

 Sphäre Zylinder Achse  Visus  IOP 
Uhrzeit 

Rechtes Auge       

Linkes Auge       

 

Bemerkungen: _________________________________________________________ 

   _________________________________________________________ 

 

 
Führungsauge (Rosenbach): ☐RA     ☐LA     ☐nicht eindeutig 
untersuchtes Auge:  ☐RA     ☐LA      
 
Perimetrie ☐mit Nahglas 

☐ohne Nahglas 
eingesetzes Nahglas zur Perimetrie:  sph ☐☐,☐☐  cyl ☐☐,☐☐  A ☐☐☐° 

 Sphäre Zylinder Achse Visuscc Visussc 

Rechtes Auge      

Linkes Auge      

Bisherige Korrektionswerte 

Aktuelle Refraktion 

Angaben zum untersuchten Auge 
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Kommunikation mit ProbandIn: 

Uhrzeit Aktion 

  

  

  

  

  

  

  

 

 

Sonstige: 

_______________________________________________________________ 

_______________________________________________________________ 

_______________________________________________________________ 

_______________________________________________________________ 

_______________________________________________________________ 

_______________________________________________________________ 

_______________________________________________________________ 

_______________________________________________________________ 

 

Besonderheiten während der Messung 
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D Epworth Sleepiness Scale (ESS)

Questionnaire for the Epworth Sleepiness Scale (ESS) according to (Johns 1991), taken

from the Website of the German Sleep Society (Deutsche Gesellschaft für Schlafforschung

und Schlafmedizin (DGSM) 2007), in German language (see next page).
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C o d e: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fr a g e b o g e n z ur T a g e s s c hl äfri g k eit
( E p w ort h Sl e e pi n e s s S c al e)

D at u m: .........................

Di e f ol g e n d e Fr a g e b e zi e ht si c h a uf I hr n or m al e s Allt a g sl e b e n i n d er l et zt e n Z eit:

F ür wi e w a hr s c h ei nli c h h alt e n Si e e s, d a ß Si e i n ei n er d er f ol g e n d e n
Sit u ati o n e n ei n ni c k e n o d er ei n s c hl af e n w ür d e n, - si c h al s o ni c ht  n ur
m ü d e f ü hl e n ?

A u c h w e n n Si e i n d er l et zt e n Z eit ei ni g e di e s er Sit u ati o n e n ni c ht erl e bt h a b e n, v er s u c h e n
Si e si c h tr ot z d e m v or z u st ell e n, wi e si c h di e s e Sit u ati o n e n a uf Si e a u s g e wir kt h ätt e n.

B e n ut z e n Si e bitt e di e f ol g e n d e S k al a, u m f ür  j e d e Sit u ati o n ei n e m ö gli c h st g e n a u e
Ei n s c h ät z u n g v or z u n e h m e n u n d kr e u z e n Si e di e e nt s pr e c h e n d e Z a hl a n:

0 = w ür d e  ni e m al s ei n ni c k e n
1 = g e ri n g e  W a hr s c h ei nli c h k eit ei n z u ni c k e n
2 = mittl er e  W a hr s c h ei nli c h k eit ei n z u ni c k e n
3 = h o h e  W a hr s c h ei nli c h k eit ei n z u ni c k e n

Sit u ati o n W a hr s c h ei nli c h k eit
ei n z u ni c k e n

I m Sit z e n l e s e n d

   
B ei m F er n s e h e n

   
W e n n Si e p a s si v ( al s Z u h ör er) i n d er Öff e ntli c h k eit sit z e n
( z. B. i m T h e at er o d er b ei ei n e m V ortr a g)    
Al s B eif a hr er i m A ut o w ä hr e n d ei n er ei n st ü n di g e n F a hrt
o h n e P a u s e    
W e n n Si e si c h a m N a c h mitt a g hi n g el e gt h a b e n, u m
a u s z ur u h e n    
W e n n Si e sit z e n u n d si c h mit j e m a n d u nt er h alt e n

   
W e n n Si e n a c h d e m Mitt a g e s s e n ( o h n e Al k o h ol) r u hi g
d a sit z e n    
W e n n Si e al s F a hr er ei n e s A ut o s v er k e hr s b e di n gt ei ni g e
Mi n ut e n h alt e n m ü s s e n    
Bitt e ni c ht a u sf üll e n

S u m m e

D E p w ort h Sl e e pi n e s s S c al e ( E S S)

1 5 4
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Monitoring quality and vigilance during automated static perimetry 
A proof-of-concept-study using video-pupillography, heart rate recording, and an increased number of 
catch trials 
 
Judith Ungewiss1, Ulrich Schiefer1,2,3, Thomas Kübler1,4 
1 Competence Center Vision Research, University of Applied Sciences, Aalen, Germany 
2 Department for Ophthalmology, University of Tuebingen, Germany 
3 Research Institute for Ophthalmology, University of Tuebingen, Germany 
4 Computer Engineering Department, University of Tuebingen, Germany 
 
 
Purpose 
To monitor quality and vigilance by video-pupillography and heart rate recording during automated static 
perimetry. 
 
Materials and methods 
Method of constant stimuli was used to assess differential luminance sensitivity with the OCTOPUS 900 
perimeter (Haag-Streit AG, Koeniz, Switzerland) using OPI (Open Perimetry Interface): Stimulus intensity 
was varied in nine steps between 0.04 and 160 cd/m2 with a background luminance of 10 cd/m2. 
Altogether, 1,560 stimuli were presented in approximately 48 minutes. An increased rate of false-positive 
and false-negative catch trials was implemented (40% each). Pupil data were extracted from the built-in 
camera. Heart rate was recorded with the H7 heart rate monitor and chest strap (Polar Elektro GmbH, 
Buettelborn, Germany). 
The quality of visual field testing was defined by the response behavior to catch trials. An “agreement 
index” was determined, relating periods with increased variabilities of (i) pupil diameter, (ii) heart rate, and 
(iii) reaction time to periods with increased number of false responses to catch trials. The agreement 
index was calculated as the ratio between event overlap and total event occurrence periods. 
 
Results 
Sufficient data were obtained from five subjects (3 male, 2 female; age range from 25 to 58 years). 
Agreement indices are: 
 
Tab. 1: Agreement indices 
 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 
Period with increased no. of false 
responses to catch trials 

17.6 min. 2.9 min. 2.0 min. 27.7 min. 0 min. 

Pupil diameter variability 0.35 0.33 0.10 0.70 0 
Heart rate variability 0 0 0 0.03 0 
Reaction time variability 0.32 0.41 0 0.08 0 
 
Pupil diameter variability showed the highest agreement indices, whereas reaction time and heart rate 
variabilities showed low or no agreement. 
 
Conclusions 
In this study, pupil diameter variability was closer related to response behavior to catch trials than heart 
rate and reaction time variabilities. Pupil diameter variability can be considered as an indicator for 
decreasing quality of subjects’ responses, thereby allowing a termination criterion of a perimetric session 
before its considerable contamination due to vigilance-related issues. 
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IPS 2016 − Udine 

Monitoring quality and vigilance during automated static perimetry 
A proof-of-concept study using video-pupillography, heart rate recording, 

and an increased number of catch trials 

Purpose 
To monitor quality and vigilance 
by video-pupillography and 
heart rate recording during 
automated static perimetry. 

Methods  
Location of stimuli 
     (-5º,+5º),       (0º,0º),     (3º,-6º) 

OCTOPUS 900 Perimeter 
HAAG-STREIT Inc., Köniz, Switzerland 
Background luminance: 10 cd/m² 

MoCS (Method of constant stimuli) 
! 1,560 stimuli (approx. 48 min.) 
! nine luminance levels between 0.04 
    and 160 cd/m2 (i.e. -39 dB − -3 dB) 
! 8-fold repetition of each stimulus 
    intensity in randomized order at three 
    locations (see Fig. 1) 
 

Catch trials 
false-pos. & false-neg.: 40 % each 

Stimulus size 
size III = 25.7‘ 
	
  

Fig. 1: Location of stimuli (RE) 

Fig. 2: OCTOPUS 900 perimeter 

Fig. 3: H7 heart rate monitor, chest strap and app 

Heart rate monitoring 
H7 heart rate monitor, chest strap and 
app, Polar Elektro GmbH, Buettelborn, 
Germany 

Subjects 
! 5 subjects (RE, each) 
! 2 females, 3 males 
! age: 25 to 58 years 
! sph ametropia: 0.00 to -5.00 dpt 
! cyl ametropia: 0.00 to -2.75 dpt 
! else, ophthalmologically normal 
! informed consent 
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Results 

	
  
	
  

Conclusions 
!Pupil diameter variability is closer related to response behaviour regarding catch trials than to heart rate or to reaction time variabilities. 
!Pupil diameter variability can be considered as an indicator for decreasing quality of subjects’ responses. 
!Perimetric quality can be enhanced by terminating the session before its considerable contamination due to vigilance-related issues. 

Figs. 4 – 8:    
left:       pupil diameters variabilities (PDV, orange), 

         heart rate variabilities (HRV, green) and 
         reaction time variabilities (RTV, dark blue) over time, 
         normed to [0;1] by their maximum; 

             □  false neg. catch trials, correct responses; 
             ■  false neg. responses; 
              false pos. catch trials, correct responses; 
             w false pos. responses;  
             periods with increased no. of false responses to 
             catch trials (at least 3 false responses within 2 min.) 
             are highlighted in grey 
 
right:    frequency of seeing curves (the related  

         stimulus locations are color labeled as in Fig. 1) 
 

Agreement of measured parameters and increased number of false responses to catch trials 
 

Tab. 1: Periods with increased no. of false responses to catch trials and agreement indices, calculated as ratio between event overlap (either pupil diameter variability, 
            heart rate variability or reaction time variability and the periods  with increased no. of false [i.e. false-pos. OR false-neg.] responses to catch trials) and total 
            event occurence periods (all parameters mentioned below) 

 

	
  
	
  

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 
Period with increased no. of false 
responses to catch trials [min.] 

17.6  2.9  2.0  27.7  0.0  

Pupil diameter variability  0.35 0.33 0.10 0.70 0.00 
Heart rate variability 0.00 0.00 0.00 0.03 0.00 
Reaction time variability 0.32 0.41 0.00 0.08 0.00 

Fig. 6: 
Subject 3 (RE), 
♀, 25 years 
 

FoS 

Fig. 5: 
Subject 2 (RE), 
♀, 28 years 
 

FoS 

Fig. 8: 
Subject 5 (RE), 
♂, 28 years 
 

FoS 

Fig. 4: 
Subject 1 (RE), 
♂, 30 years 
 

FoS 

Fig. 7: 
Subject 4 (RE), 
♂, 58 years 
 

FoS 

PDV 
HRV RTV 

■	
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F Individual result documents

All individual result documents are attached.

The following abbreviations apply:

BR blink rate

BRV blink rate variability

f female

FOS frequency of seeing

HR heart rate

HRV heart rate variability

HRVHF heart rate variability (high frequency band)

HRVLF heart rate variability (low frequency band)

m male

no. number

OSAS obstructive sleep apnea syndrome

PD pupil diameter

PDV pupil diameter variability

PF height of the palpebral fissure

PFV variability of the palpebral fissure height

RT response time

RTV response time variability

SSL slope steepness
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subject ID 001
age 46
gender f
ESS score 7
total no. of errors 3

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.23 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 002
age 43
gender m
ESS score 7
total no. of errors 6

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.22 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 003
age 24
gender m
ESS score 7
total no. of errors 19

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.12 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 006
age 45
gender f
ESS score 3
total no. of errors 4

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.28 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 013
age 43
gender f
ESS score 11
total no. of errors 2

sleep disorders:
test subject reported to
suffer from short
breathing interruptions
during the afternoon nap

FOS curve

Agreement plot

SSL = -0.25 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 015
age 25
gender f
ESS score 12
total no. of errors 5

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.23 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 019
age 29
gender m
ESS score 14
total no. of errors 14

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 021
age 62
gender m
ESS score 5
total no. of errors 14

sleep disorders:
obstructive sleep apnea
syndrome (OSAS)

FOS curve

Agreement plot

SSL = -0.15 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 025
age 22
gender f
ESS score 6
total no. of errors 10

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.25 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 028
age 45
gender f
ESS score 10
total no. of errors 2

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.22 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 030
age 22
gender f
ESS score 3
total no. of errors 7

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 031
age 22
gender f
ESS score 4
total no. of errors 20

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.10 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 035
age 43
gender m
ESS score 7
total no. of errors 5

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.18 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 038
age 55
gender f
ESS score 6
total no. of errors 1

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 040
age 56
gender f
ESS score 6
total no. of errors 79

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.17 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 044
age 63
gender f
ESS score 11
total no. of errors 4

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 046
age 50
gender m
ESS score 10
total no. of errors 3

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.22 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 047
age 63
gender f
ESS score 5
total no. of errors 18

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.17 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 056
age 45
gender f
ESS score 10
total no. of errors 18

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents

177



subject ID 059
age 40
gender f
ESS score 8
total no. of errors 2

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.23 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents

178



subject ID 060
age 67
gender m
ESS score 10
total no. of errors 6

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.18 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 065
age 69
gender f
ESS score 6
total no. of errors 4

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.13 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 068
age 67
gender f
ESS score 6
total no. of errors 1

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 069
age 69
gender m
ESS score 5
total no. of errors 24

sleep disorders:
obstructive sleep apnea
syndrome (OSAS)

FOS curve

Agreement plot

SSL = -0.18 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 070
age 70
gender f
ESS score 4
total no. of errors 2

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.25 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 074
age 50
gender f
ESS score 3
total no. of errors 3

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.27 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 078
age 67
gender f
ESS score 5
total no. of errors 3

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.25 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 080
age 62
gender f
ESS score 9
total no. of errors 4

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.25 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 082
age 47
gender f
ESS score 10
total no. of errors 25

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 084
age 64
gender f
ESS score 5
total no. of errors 26

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.18 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 090
age 27
gender m
ESS score 1
total no. of errors 0

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.23 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 091
age 61
gender f
ESS score 15
total no. of errors 82

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.17 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 092
age 27
gender f
ESS score 7
total no. of errors 7

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.18 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 093
age 26
gender m
ESS score 12
total no. of errors 4

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.23 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 094
age 31
gender m
ESS score 8
total no. of errors 43

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.17 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 095
age 23
gender f
ESS score 12
total no. of errors 39

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 096
age 47
gender m
ESS score 3
total no. of errors 3

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.22 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 097
age 23
gender f
ESS score 9
total no. of errors 2

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.20 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum

ents
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subject ID 098
age 26
gender f
ESS score 10
total no. of errors 2

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.16 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
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subject ID 099
age 23
gender m
ESS score 10
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FOS curve
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subject ID 100
age 26
gender f
ESS score 3
total no. of errors 12
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FOS curve
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subject ID 101
age 28
gender m
ESS score 6
total no. of errors 9

sleep disorders:
none

FOS curve
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subject ID 102
age 74
gender f
ESS score 5
total no. of errors 24

sleep disorders:
none

FOS curve
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subject ID 103
age 76
gender m
ESS score 6
total no. of errors 27

sleep disorders:
none

FOS curve
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subject ID 104
age 52
gender f
ESS score 7
total no. of errors 11

sleep disorders:
none

FOS curve

Agreement plot
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subject ID 105
age 73
gender f
ESS score 1
total no. of errors 22

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.13 
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all related parameters

F
Individualresultdocum

ents

204



subject ID 106
age 58
gender m
ESS score 11
total no. of errors 44

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.22 

locations
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Individual results of
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all related parameters
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subject ID 107
age 78
gender m
ESS score 6
total no. of errors 4

sleep disorders:
none

FOS curve

Agreement plot

SSL = -0.23 

locations
(0,7)
(-6.1,-3.5)
(6.1,-3.5)

Individual results of
false responses to catch trials and
all related parameters

F
Individualresultdocum
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G Results of EEG data evaluation for

pilot study 2

Results of EEG data evaluation for pilot study 2 are attached on the next pages.

The following applies to all images:

• Peri: perimetric data

• Ch: EEG channel number

• If filters were applied, data were filtered over time periods of 10 seconds, respec-

tively
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H Email correspondence between Prof.

Dr. Yvonne Weber and the author

The email correspondence between Prof. Dr. Yvonne Weber and the author of this work

is attached on the following pages.
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Von: Yvonne Weber yvonne.weber@uni-tuebingen.de
Betreff: Re: Befundung EEG
Datum: 21. Dezember 2017 um 11:39

An: Ungewiß, Judith Judith.Ungewiss@hs-aalen.de

Liebe Frau Ungewiss,
es findet sich lediglich in der Zeit von 10:41 bis 10:42 eine Phase von weniger gespannter Aufmerksamkeit, die man bei gutem
Willen als Ansätze von Schläfrigkeit definieren kann. Das geht aber nicht über den geänderten occipitalen Grundrhythmus,
sondern über dort auftretende horizontale Augenbewegungen, die ein solches Stadium andeuten.
Ich wünsche Ihnen schöne Feiertage und einen guten Rutsch.
MfG
Y. Weber

Zitat von "Ungewiß, Judith" <Judith.Ungewiss@hs-aalen.de>:

Liebe Frau Weber,

mittlerweile habe ich die Perimetrie-Daten auswerten können - diese Daten zeigen uns, dass in bestimmten Zeitfenstern der
Proband aufgrund von fehlender Aufmerksamkeit Fehler in seinen Angaben gemacht hat.

Darf ich Sie vor diesem Hintergrund nochmals fragen, ob es Ihnen prinzipiell möglich wäre, in den EEG-Aufzeichnungen
(interessant ist für uns in diesem Fall die Aufzeichnung von 10:39:55 bis 11:23:33) „Ansätze von Schläfrigkeit“ erkennen zu
können?

Mit den besten Grüßen
Judith Ungewiß

——————————————————

Judith Ungewiß
M. Sc. Augenoptik und Psychophysik

Hochschule Aalen - Technik und Wirtschaft
Kompetenzzentrum Vision Research
Anton-Huber-Str. 23
73430 Aalen

Tel.: +49 - 7361 576-4625
Fax: +49 - 7361 576-4685
E-Mail: judith.ungewiss@hs-aalen.de<mailto:judith.ungewiss@hs-aalen.de>

www.hs-aalen.de<http://www.hs-aalen.de>
www.vision-research.de

Am 15.12.2017 um 22:24 schrieb Judith Ungewiß <judith.ungewiss@hs-aalen.de<mailto:judith.ungewiss@hs-aalen.de>>:

Liebe Frau Weber,

ganz herzlichen Dank auch auf diesem Wege für Ihre Unterstützung und Ihre Hilfe am heutigen Vormittag, sowie für Ihre hier
übermittelte Befundung.
Sobald ich meine Gerätschaften wieder in Aalen habe und auf die Perimeter-Daten zugreifen kann, werde ich eine Auswertung
auch dieser Daten vornehmen - der Vergleich beider Befunde (EEG und Perimetrie) wird für mich spannend.

Mit den besten Grüßen aus Aalen
Judith Ungewiß

——————————————————

Judith Ungewiß
M. Sc. Augenoptik und Psychophysik

Hochschule Aalen - Technik und Wirtschaft
Kompetenzzentrum Vision Research
Anton-Huber-Str. 23
73430 Aalen

Tel.: +49 - 7361 576-4625
Fax: +49 - 7361 576-4685
E-Mail: judith.ungewiss@hs-aalen.de<mailto:judith.ungewiss@hs-aalen.de>

www.hs-aalen.de<http://www.hs-aalen.de/>
www.vision-research.de<http://www.vision-research.de>

Am 15.12.2017 um 14:24 schrieb Yvonne Weber <yvonne.weber@uni-tuebingen.de<mailto:yvonne.weber@uni-
tuebingen.de>>:

H Email correspondence between Prof. Dr. Yvonne Weber and the author
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tuebingen.de>>:

Liebe Frau Ungewiss,
hier nun die Befundung des EEGs. Die erste Ableitung wurde 10:23:53 gestartet und lief bis 10:35:32. Darin fand sich kein
relevanter Schlafanteil. Die zweite Ableitung wurde 10:39:55 gestartet und lief bis 11:23:33. Darin fand sich ebenfalls kein
relevanter Schlafanteil.
MfG
Y. Weber

Prof. Dr. Y. Weber
Dpt. of Neurology and Epileptology
Hertie Institute for Clinical Brain Research
Werner Reichardt Centre für Integrative Neuroscience
University of Tübingen
Hoppe-Seyler Strasse 3
72076 Tübingen, Germany
T +49-7071-29-82048
F +49-7071-29-4488

Prof. Dr. Y. Weber
Dpt. of Neurology and Epileptology
Hertie Institute for Clinical Brain Research
Werner Reichardt Centre für Integrative Neuroscience
University of Tübingen
Hoppe-Seyler Strasse 3
72076 Tübingen, Germany
T +49-7071-29-82048
F +49-7071-29-4488

H Email correspondence between Prof. Dr. Yvonne Weber and the author
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I Distribution plots for all parameters

included in the study

Distribution plots for all parameters included are displayed on the following pages.

Test subjects are sorted by the total number of false responses to catch trials.
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I Distribution plots for all parameters included in the study

I.1 Blink rate (BR)
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I Distribution plots for all parameters included in the study

I.2 Blink rate variability (BRV)
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I Distribution plots for all parameters included in the study

I.3 Pupil diameter (PD)
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I Distribution plots for all parameters included in the study

I.4 Pupil diameter variability (PDV)
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I Distribution plots for all parameters included in the study

I.5 Pupil diameter wavelet analyzed parameter d10

(PDVd10)
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I Distribution plots for all parameters included in the study

I.6 Height of the palpebral fissure (PF)
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I Distribution plots for all parameters included in the study

I.7 Variability of the height of the palpebral fissure (PFV)
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I Distribution plots for all parameters included in the study

I.8 Heart rate (HR)
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I Distribution plots for all parameters included in the study

I.9 Heart rate variability (HRV)
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I Distribution plots for all parameters included in the study

I.10 High frequency band of the heart rate variability

(HRVHF)
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I Distribution plots for all parameters included in the study

I.11 Low frequency band of the heart rate variability

(HRVLF)
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I Distribution plots for all parameters included in the study

I.12 Response time (RT)
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I Distribution plots for all parameters included in the study

I.13 Response time variability (RTV)
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J Correlation coefficients for all

parameters included in the study

Spearman correlation coefficients and affiliated p values for all parameters and all subjects

are shown on the following page. Parameters are abbreviated as follows:

• Blink rate (BR)

• Blink rate variability (BRV)

• Pupil diameter (PD)

• Pupil diameter variability (PDV)

• Peaks in pupil diameter variability (PDVpeaks)

• Pupil diameter wavelet analyzed parameter d10 (PDVd10)

• Height of the palpebral fissure (PF)

• Variability of the height of the palpebral fissure (PFV)

• Heart rate (HR)

• Heart rate variability (HRV)

• High frequency band of the heart rate variability (HRVHF)

• Low frequency band of the heart rate variability (HRVLF)

• Response time (RT)

• Response time variability (RTV)
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ID age ESS onset gender
total no.
of errors

rho
(BR x 
ER)

p
(BR x 
ER)

rho
(BRV x 
ER)

p
(BRV x 
ER)

rho
(PDVd10 
x ER)

p
(PDVd1
0 x ER)

rho
(PDV x 
ER)

p
(PDV x 
ER)

rho
(PD x 
ER)

p
(PD x 
ER)

rho
(PDVpeaks 
x ER)

p
(PDVpeaks 
x ER)

rho
(PFV x 
ER)

p
(PFV x 
ER)

rho
(PF x 
ER)

p
(PF x 
ER)

rho
(HRV x 
ER)

p
(HRV x 
ER)

rho
(HR x 
ER)

p
(HR x 
ER)

rho
(HRVH
F x ER)

p
(HRVH
F x ER)

rho
(HRVLF 
x ER)

p
(HRVLF 
x ER)

rho
(RTV x 
ER)

p
(RTV x 
ER)

rho
(RT x 
ER)

p
(RT x 
ER)

090 27 1 NaN m 0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
038 55 6 NaN f 1 -0,0990 0,0000 -0,1073 0,0000 0,0403 0,0000 -0,0093 0,0288 0,0791 0,0000 0,0131 0,0020 -0,1065 0,0000 NaN 0,0000 -0,0246 0,0000 -0,0323 0,0000 0,0854 0,0000 0,0624 0,0000 0,0572 0,0000 -0,0523 0,0000
068 67 6 NaN f 1 -0,1587 0,0000 0,0106 0,0129 -0,0638 0,0000 -0,1632 0,0000 0,0692 0,0000 -0,1131 0,0000 -0,1807 0,0000 0,2414 0,0000 0,0343 0,0000 0,1748 0,0000 -0,1008 0,0000 0,0472 0,0000 0,1195 0,0000 -0,0103 0,0161
013 43 11 NaN f 2 -0,0362 0,0000 0,1304 0,0000 -0,2580 0,0000 0,0289 0,0000 0,1503 0,0000 0,0324 0,0000 -0,0959 0,0000 0,0421 0,0000 -0,0961 0,0000 -0,1476 0,0000 -0,2153 0,0000 0,1361 0,0000 0,2752 0,0000 0,0153 0,0003
028 45 10 NaN f 2 0,0402 0,0000 0,0063 0,1433 0,1343 0,0000 -0,0058 0,1738 0,0874 0,0000 0,1837 0,0000 0,1215 0,0000 0,0344 0,0000 0,0499 0,0000 0,0908 0,0000 -0,2267 0,0000 -0,1506 0,0000 0,2582 0,0000 0,0467 0,0000
059 40 8 NaN f 2 0,0728 0,0000 0,1426 0,0000 0,1104 0,0000 0,0015 0,7213 0,0420 0,0000 0,1404 0,0000 0,1615 0,0000 -0,2593 0,0000 0,0872 0,0000 -0,0374 0,0000 0,2426 0,0000 0,2557 0,0000 0,2972 0,0000 0,0440 0,0000
070 70 4 NaN f 2 -0,0179 0,0000 0,0449 0,0000 -0,0334 0,0000 0,0726 0,0000 0,1051 0,0000 0,2489 0,0000 -0,1195 0,0000 -0,2057 0,0000 0,0496 0,0000 -0,2183 0,0000 -0,0917 0,0000 -0,0320 0,0000 0,0963 0,0000 0,0235 0,0000
097 23 9 NaN f 2 0,0060 0,1573 -0,0260 0,0000 -0,0152 0,0003 0,0325 0,0000 0,0151 0,0004 0,2444 0,0000 -0,1109 0,0000 -0,0104 0,0151 0,2038 0,0000 0,1110 0,0000 -0,1586 0,0000 0,0587 0,0000 0,3152 0,0000 0,0331 0,0000
098 26 10 NaN f 2 0,2375 0,0000 0,1791 0,0000 -0,0475 0,0000 0,0786 0,0000 0,2751 0,0000 -0,0069 0,1124 0,3049 0,0000 -0,0735 0,0000 0,0087 0,0431 0,0232 0,0000 0,2084 0,0000 0,1072 0,0000 0,2205 0,0000 0,0791 0,0000
001 46 7 NaN f 3 0,1002 0,0000 -0,0519 0,0000 -0,0226 0,0000 0,0300 0,0000 0,0781 0,0000 -0,0867 0,0000 0,0322 0,0000 -0,0426 0,0000 -0,2301 0,0000 -0,1815 0,0000 0,1753 0,0000 -0,1702 0,0000 0,2739 0,0000 0,0153 0,0004
046 50 10 NaN m 3 0,0693 0,0000 0,1518 0,0000 -0,0345 0,0000 -0,1457 0,0000 -0,0093 0,0281 -0,0065 0,1255 -0,0129 0,0024 -0,1538 0,0000 0,0433 0,0000 0,1184 0,0000 0,0235 0,0000 -0,0114 0,0074 0,1559 0,0000 0,0494 0,0000
074 50 3 14,7983 f 3 0,1166 0,0000 0,3183 0,0000 0,0376 0,0000 -0,0662 0,0000 0,1753 0,0000 -0,0803 0,0000 0,3055 0,0000 0,0105 0,0149 0,2000 0,0000 0,0060 0,1602 0,2160 0,0000 0,1351 0,0000 0,1887 0,0000 0,0296 0,0000
078 67 5 0,5008 f 3 -0,0990 0,0000 -0,0248 0,0000 0,2001 0,0000 -0,0417 0,0000 -0,0517 0,0000 0,1006 0,0000 -0,0346 0,0000 -0,0418 0,0000 0,2794 0,0000 -0,0601 0,0000 0,2203 0,0000 0,1224 0,0000 0,0712 0,0000 -0,0528 0,0000
096 47 3 NaN m 3 0,1371 0,0000 -0,0080 0,0625 -0,0664 0,0000 0,1038 0,0000 0,0685 0,0000 0,0553 0,0000 0,2286 0,0000 -0,0071 0,1036 -0,0696 0,0000 0,2647 0,0000 -0,2588 0,0000 0,0355 0,0000 0,2679 0,0000 0,0057 0,1851
099 23 10 NaN m 3 -0,1331 0,0000 -0,1287 0,0000 0,0424 0,0000 -0,0492 0,0000 0,0779 0,0000 -0,0870 0,0000 -0,1755 0,0000 0,0224 0,0000 0,0135 0,0015 0,1120 0,0000 -0,0242 0,0000 -0,0903 0,0000 0,1621 0,0000 0,0455 0,0000
006 45 3 NaN f 4 0,1022 0,0000 0,2034 0,0000 0,1242 0,0000 0,1386 0,0000 0,1581 0,0000 0,2611 0,0000 0,2141 0,0000 0,1805 0,0000 0,1653 0,0000 0,0679 0,0000 -0,0730 0,0000 0,0645 0,0000 0,3978 0,0000 0,0739 0,0000
044 63 11 NaN m 4 0,0580 0,0000 -0,0867 0,0000 -0,0642 0,0000 0,0289 0,0000 -0,1155 0,0000 -0,0044 0,3788 -0,0394 0,0000 -0,1729 0,0000 -0,0366 0,0000 -0,0912 0,0000 0,0143 0,0041 -0,1437 0,0000 0,1495 0,0000 -0,0222 0,0000
065 69 6 NaN f 4 -0,0364 0,0000 0,0457 0,0000 -0,0728 0,0000 -0,1037 0,0000 0,0063 0,1431 -0,1396 0,0000 0,0156 0,0003 0,0276 0,0000 0,0985 0,0000 -0,0531 0,0000 0,0393 0,0000 0,1246 0,0000 0,1793 0,0000 0,0709 0,0000
080 62 9 NaN f 4 0,0727 0,0000 -0,1375 0,0000 -0,0797 0,0000 0,1361 0,0000 0,0423 0,0000 0,1216 0,0000 0,0291 0,0000 0,1326 0,0000 -0,0202 0,0000 -0,0043 0,3107 0,0961 0,0000 -0,0350 0,0000 0,2096 0,0000 0,0603 0,0000
093 26 12 NaN m 4 0,1679 0,0000 0,1657 0,0000 0,0900 0,0000 0,0548 0,0000 0,1834 0,0000 0,1502 0,0000 0,3869 0,0000 -0,0039 0,3663 0,1424 0,0000 0,0592 0,0000 0,0020 0,6346 0,2896 0,0000 0,3046 0,0000 0,0028 0,5141
107 78 6 NaN m 4 0,0339 0,0000 0,1649 0,0000 0,1372 0,0000 0,1185 0,0000 0,2009 0,0000 0,2638 0,0000 -0,1160 0,0000 -0,3045 0,0000 0,0796 0,0000 -0,1186 0,0000 0,1132 0,0000 0,2187 0,0000 0,1594 0,0000 0,0379 0,0000
015 25 12 NaN f 5 0,0214 0,0000 0,1109 0,0000 0,0598 0,0000 0,0110 0,0107 -0,0278 0,0000 0,0102 0,0179 0,2642 0,0000 0,0684 0,0000 0,2051 0,0000 -0,2453 0,0000 0,2470 0,0000 -0,0708 0,0000 0,1377 0,0000 0,0459 0,0000
035 43 7 18,4217 m 5 0,0406 0,0000 -0,0171 0,0001 -0,0454 0,0000 -0,0387 0,0000 -0,0151 0,0004 -0,0507 0,0000 -0,0228 0,0000 -0,1620 0,0000 -0,0480 0,0000 -0,0090 0,0345 -0,0664 0,0000 -0,2224 0,0000 0,2913 0,0000 -0,0082 0,0524
002 43 7 NaN m 6 -0,0285 0,0000 -0,1332 0,0000 -0,0497 0,0000 0,0164 0,0001 -0,0499 0,0000 -0,0904 0,0000 -0,1472 0,0000 0,1783 0,0000 -0,1038 0,0000 -0,1539 0,0000 -0,1452 0,0000 -0,0313 0,0000 0,2853 0,0000 0,0157 0,0002
060 67 10 36,8400 m 6 -0,0264 0,0000 -0,0859 0,0000 0,1381 0,0000 0,1629 0,0000 -0,1108 0,0000 0,1176 0,0000 -0,1356 0,0000 -0,0877 0,0000 0,0112 0,0096 0,0632 0,0000 -0,0509 0,0000 0,1033 0,0000 0,1946 0,0000 0,1295 0,0000
030 22 3 5,9217 f 7 -0,0449 0,0000 -0,0031 0,4660 0,1395 0,0000 0,1496 0,0000 -0,1438 0,0000 0,0625 0,0000 0,0913 0,0000 -0,1057 0,0000 -0,0765 0,0000 -0,2332 0,0000 0,0423 0,0000 0,0541 0,0000 0,4778 0,0000 0,1516 0,0000
092 27 7 NaN f 7 -0,0058 0,1784 -0,1048 0,0000 0,0018 0,6761 -0,1162 0,0000 -0,1615 0,0000 -0,1325 0,0000 0,0780 0,0000 -0,0352 0,0000 -0,0611 0,0000 -0,0317 0,0000 -0,0011 0,7893 0,0575 0,0000 0,4039 0,0000 0,0032 0,4504
101 28 6 29,8617 m 9 -0,0640 0,0000 -0,0378 0,0000 -0,1874 0,0000 0,0040 0,3479 -0,0252 0,0000 -0,0002 0,9615 -0,2075 0,0000 0,0436 0,0000 -0,0509 0,0000 -0,1398 0,0000 -0,1602 0,0000 -0,2150 0,0000 0,5394 0,0000 0,0182 0,0000
025 22 6 19,3650 f 10 0,0127 0,0030 0,1907 0,0000 0,1051 0,0000 -0,1594 0,0000 0,0934 0,0000 0,1016 0,0000 0,3298 0,0000 -0,0896 0,0000 0,3202 0,0000 0,2252 0,0000 0,1036 0,0000 0,1220 0,0000 0,1326 0,0000 0,1375 0,0000
104 52 7 0,5008 f 11 -0,1268 0,0000 -0,2499 0,0000 -0,1932 0,0000 -0,2054 0,0000 0,3536 0,0000 0,0222 0,0000 -0,3713 0,0000 0,4338 0,0000 0,0991 0,0000 0,2815 0,0000 -0,0809 0,0000 -0,1258 0,0000 0,5634 0,0000 0,0960 0,0000
100 26 3 3,9267 f 12 -0,1644 0,0000 -0,0715 0,0000 0,3386 0,0000 0,1467 0,0000 -0,2120 0,0000 0,2392 0,0000 -0,2584 0,0000 0,1312 0,0000 -0,2800 0,0000 0,0609 0,0000 -0,0993 0,0000 0,0492 0,0000 0,0704 0,0000 -0,0243 0,0000
019 29 14 16,4900 m 14 -0,1027 0,0000 0,1787 0,0000 0,1897 0,0000 -0,1929 0,0000 0,1691 0,0000 -0,2625 0,0000 -0,1793 0,0000 0,1132 0,0000 -0,0156 0,0002 0,0898 0,0000 -0,2913 0,0000 -0,2702 0,0000 0,3894 0,0000 -0,0102 0,0157
021 62 5 13,8792 m 14 0,1436 0,0000 0,0106 0,0139 -0,0155 0,0003 0,0521 0,0000 -0,1766 0,0000 -0,0194 0,0000 0,0763 0,0000 -0,0795 0,0000 0,1023 0,0000 0,0030 0,4905 -0,0977 0,0000 -0,1004 0,0000 0,0927 0,0000 0,1099 0,0000
047 63 5 8,3192 f 18 0,0754 0,0000 0,2462 0,0000 -0,0064 0,1351 0,1275 0,0000 -0,0494 0,0000 0,0600 0,0000 0,0774 0,0000 -0,1494 0,0000 0,0710 0,0000 -0,0818 0,0000 0,0747 0,0000 0,0069 0,1104 0,4014 0,0000 0,1481 0,0000
056 45 10 22,8467 f 18 0,3936 0,0000 0,1534 0,0000 -0,0048 0,2603 0,2171 0,0000 -0,4025 0,0000 0,2627 0,0000 0,4082 0,0000 -0,5039 0,0000 -0,0917 0,0000 -0,1428 0,0000 0,3737 0,0000 0,2041 0,0000 0,4448 0,0000 0,3158 0,0000
003 24 7 0,5008 m 19 -0,0313 0,0000 0,0965 0,0000 -0,1556 0,0000 -0,0136 0,0017 0,1687 0,0000 -0,0736 0,0000 0,1172 0,0000 -0,1714 0,0000 -0,0951 0,0000 -0,0998 0,0000 -0,0040 0,3583 -0,0529 0,0000 0,0445 0,0000 0,0479 0,0000
031 22 4 4,9950 f 20 -0,0278 0,0000 0,0200 0,0000 -0,0311 0,0000 -0,0826 0,0000 0,0936 0,0000 -0,1615 0,0000 -0,1178 0,0000 -0,0194 0,0000 0,0313 0,0000 0,1833 0,0000 -0,0431 0,0000 0,0606 0,0000 0,2762 0,0000 0,1353 0,0000
105 73 1 4,9583 f 22 0,1776 0,0000 0,0680 0,0000 -0,0152 0,0005 0,1786 0,0000 -0,1320 0,0000 0,3319 0,0000 0,1537 0,0000 -0,2926 0,0000 0,0928 0,0000 0,1240 0,0000 0,0163 0,0002 0,3446 0,0000 0,3355 0,0000 0,1744 0,0000
069 69 5 5,4100 m 24 -0,1219 0,0000 -0,1606 0,0000 -0,0573 0,0000 -0,0301 0,0000 -0,0199 0,0000 0,0282 0,0000 -0,0755 0,0000 0,0734 0,0000 0,0173 0,0001 -0,1321 0,0000 0,2263 0,0000 -0,0947 0,0000 0,1584 0,0000 0,0656 0,0000
102 74 5 0,5008 f 24 -0,0842 0,0000 0,0247 0,0000 -0,0182 0,0000 -0,0738 0,0000 -0,0678 0,0000 0,2810 0,0000 -0,2909 0,0000 -0,0231 0,0000 -0,0037 0,3890 -0,1464 0,0000 0,1882 0,0000 0,0661 0,0000 0,3397 0,0000 -0,0290 0,0000
082 47 10 0,7917 f 25 0,1918 0,0000 0,1533 0,0000 0,2110 0,0000 0,0346 0,0000 0,0433 0,0000 -0,0149 0,0005 0,2924 0,0000 -0,3354 0,0000 0,0486 0,0000 0,2617 0,0000 -0,1501 0,0000 0,1098 0,0000 0,2001 0,0000 0,0670 0,0000
084 64 5 0,5008 f 26 -0,0182 0,0000 0,1148 0,0000 0,3058 0,0000 0,0402 0,0000 -0,0695 0,0000 0,0113 0,0090 0,0737 0,0000 -0,0536 0,0000 -0,1102 0,0000 0,0350 0,0000 NaN NaN NaN NaN 0,3142 0,0000 0,0606 0,0000
103 76 6 0,6458 m 27 0,2487 0,0000 0,3095 0,0000 -0,1342 0,0000 0,1915 0,0000 0,1672 0,0000 0,1922 0,0000 0,1282 0,0000 -0,3202 0,0000 0,1189 0,0000 -0,0285 0,0000 0,0594 0,0000 0,1396 0,0000 0,6099 0,0000 0,0923 0,0000
095 23 12 17,9458 f 39 0,2189 0,0000 0,4474 0,0000 -0,0110 0,0107 0,1588 0,0000 -0,2065 0,0000 0,0545 0,0000 0,5068 0,0000 -0,5994 0,0000 0,2121 0,0000 -0,3589 0,0000 0,4341 0,0000 0,5881 0,0000 0,4766 0,0000 0,3549 0,0000
094 31 8 21,0425 m 43 0,0773 0,0000 0,3285 0,0000 0,4526 0,0000 0,2947 0,0000 -0,3240 0,0000 0,1476 0,0000 -0,0479 0,0000 -0,7053 0,0000 0,1018 0,0000 -0,5364 0,0000 0,5033 0,0000 0,6133 0,0000 0,4263 0,0000 0,2186 0,0000
106 58 11 5,9692 m 44 0,3417 0,0000 0,2591 0,0000 0,1804 0,0000 0,1891 0,0000 -0,2391 0,0000 0,2054 0,0000 0,4619 0,0000 -0,1067 0,0000 0,1528 0,0000 0,2165 0,0000 0,0279 0,0000 0,3743 0,0000 0,2736 0,0000 0,1084 0,0000
040 56 6 0,8108 f 79 0,4184 0,0000 0,3546 0,0000 -0,0258 0,0000 0,4414 0,0000 0,0555 0,0000 0,2141 0,0000 0,4904 0,0000 -0,5932 0,0000 -0,2446 0,0000 -0,5698 0,0000 0,4609 0,0000 0,1742 0,0000 0,5040 0,0000 0,3293 0,0000
091 61 15 14,9608 f 82 0,6311 0,0000 0,4957 0,0000 -0,0437 0,0000 0,5302 0,0000 0,0117 0,0068 0,6147 0,0000 0,7357 0,0000 -0,8219 0,0000 0,3580 0,0000 -0,2162 0,0000 -0,0760 0,0000 0,6706 0,0000 0,4606 0,0000 0,1381 0,0000
median 46,5 7 5,94545 6 0,0371 0,0457 -0,011 0,0313 0,0286 0,0549 0,0322 -0,048 0,0433 -0,009 0,0153 0,0606 0,2739 0,0479

As correlations were carried out individually for 48 subjects and for 14 parameters, respectively, the requirement for significance is set to p < 0,0000744.
For overview and clarity reasons, only four decimal places (after rounding) are given. p values less than 0,0000744 are therefore given as 0,0000. If a p value of 0,0000744 or above occurs, a p value of at least 0,0001 is stated 
(the discrepancy between the rounding limit 0,00005 and the significance value p = 0,0000744 was checked before and taken into account in individual cases).
P values that do not show significance are marked in gray. As non-significant values do only occur for few, individual subjects per parameter, an "overall significance" is assumed for all parameters tested.
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