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Abstract
The motion of the world is inherently dependent on the spatial structure of the world and
its geometry. Therefore, classical optical flow methods try to model this geometry to
solve for the motion. However, recent deep learning methods take a completely different
approach. They try to predict optical flow by learning from labelled data. Although
deep networks have shown state-of-the-art performance on classification problems in
computer vision, they have not been as effective in solving optical flow. The key reason
is that deep learning methods do not explicitly model the structure of the world in a
neural network, and instead expect the network to learn about the structure from data. We
hypothesize that it is difficult for a network to learn about motion without any constraint
on the structure of the world. Therefore, we explore several approaches to explicitly
model the geometry of the world and its spatial structure in deep neural networks.

The spatial structure in images can be captured by representing it at multiple scales.
To represent multiple scales of images in deep neural nets, we introduce a Spatial Pyra-
mid Network (SpyNet). Such a network can leverage global information for estimating
large motions and local information for estimating small motions. We show that SpyNet
significantly improves over previous optical flow networks while also being the smallest
and fastest neural network for motion estimation. SPyNet achieves a 97% reduction in
model parameters over previous methods and is more accurate.

The spatial structure of the world extends to people and their motion. Humans have
a very well-defined structure, and this information is useful in estimating optical flow
for humans. To leverage this information, we create a synthetic dataset for human op-
tical flow using a statistical human body model and motion capture sequences. We use
this dataset to train deep networks and see significant improvement in the ability of the
networks to estimate human optical flow.

The structure and geometry of the world affects the motion. Therefore, learning about
the structure of the scene together with the motion can benefit both problems. To facil-
itate this, we introduce Competitive Collaboration, where several neural networks are
constrained by geometry and can jointly learn about structure and motion in the scene
without any labels. To this end, we show that jointly learning single view depth predic-
tion, camera motion, optical flow and motion segmentation using Competitive Collabo-
ration achieves state-of-the-art results among unsupervised approaches.

Our findings provide support for our hypothesis that explicit constraints on structure
and geometry of the world lead to better methods for motion estimation.
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Zusammenfassung
Bewegungen sind naturgemäß von der räumlichen Struktur der Welt sowie ihrer Geo-
metrie abhängig. Daher versuchen klassische Methoden zur Schätzung des optischen
Flusses seit Jahrzehnten, die Geometrie zu modellieren, um die Bewegung zu schätzen.
Die jüngsten Methoden der tiefen Lernverfahren verfolgen jedoch einen ganz anderen
Ansatz. Sie versuchen den optischen Fluss zu schätzen, indem sie aus annotierten Da-
ten lernen. Obwohl tiefe Netze bei Klassifizierungsproblemen in der Bildverarbeitung
derzeit die besten Resultate bringen, sind sie bei der Schätzung des optischen Flusses
wenig effektiv. Der Hauptgrund dafür ist, dass tiefe Lernverfahren die Struktur der Welt
nicht explizit modellieren, sondern erwarten, dass diese implizit aus Daten gelernt wird.
Unsere Hypothese ist, dass es für ein neuronales Netz schwierig ist, etwas über die Be-
wegung zu erfahren, ohne zusätzliche Information über die Stuktur der Welt zu erhalten.
Daher untersuchen wir verschiedene Ansätze, um 3D Geometrie und räumliche Struktur
der Welt mit Hilfe tiefer neuronaler Netze explizit zu modellieren.

Die räumliche Struktur eines Bildes kann erfasst werden, indem das Bild in unter-
schiedlichen Skalierungen dargestellt wird. Um verschiedene Skalierungen in neurona-
len Netzen zu nutzen, stellen wir ein Spatial Pyramid Network (SpyNet) vor. Ein solches
Netzwerk verwendet globale Informationen zur Schätzung großer Bewegungen und lo-
kale Informationen zur Schätzung kleiner Bewegungen. Wir zeigen, dass SpyNet den op-
tischen Fluss viel besser abschätzt als bisherige Netz-werke und gleichzeitig das kleinste
und schnellste neuronale Netz ist. SPyNet reduziert die Anzahl der Modellparameter um
97% und erzielt eine bessere Performance als frühere Methoden.

Auch menschliche Bewegungen unterliegen der räumlichen Struktur der Welt. Der
Mensch hat eine wohldefinierte Geometrie, was nützlichlich ist, um den opti-schen Fluss
für Menschen zu schätzen. Vor diesem Hintergrund erstellen wir einen synthetischen
Datensatz für den optischen Fluss des Menschen unter Verwendung eines statistischen
Körpermodells und Mocap Sequenzen. Wir verwenden diesen Datensatz um tiefe Netze
zu trainieren und sehen eine signifikante Verbesserung hinsichtlich der Schätzung des
optischen Flusses.

Die Struktur und Geometrie der Welt ist dauerhaft präsent und beeinflusst Bewegung.
Daher kann das Lernen über die Struktur der Szene zusammen mit der Bewegung beiden
Problemen zugute kommen. Um dies zu ermöglichen, stellen wir Competitive Colla-
boration vor, eine Methode, bei der mehrere neuronale Netze der Geometrie der Welt
unterliegen und dadurch gemeinsam ohne Annotation die Struktur und Bewegung in
einer Szene lernen. Zu diesem Zweck zeigen wir, dass das gemeinsame Schätzen von
Tiefe aus einzelnen Bildern, Kamerabewegung, optischem Fluss und Bewegungsseg-
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mentierung mittels Competitive Collaboration derzeit die besten Ergebnisse unter den
unüberwachten Verfahren erzielt.

Unsere Ergebnisse stützen unsere Hypothese, dass explizite Einschränkungen der Struk-
tur und Geometrie der Welt zu besseren Methoden zur Bewegungsschä-tzung führen.
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Chapter 1

Introduction

The evolution of life on our planet was shaped by two important processes – motion
and vision [75]. The motion here represents the locomotion ability of the organisms,
whereas the vision represents the development of the visual systems. Throughout the
course of evolution, the synergistic interaction between motion and vision helped in the
development of complex organs for human vision and locomotion [75]. Motion, as it
seems, has played a crucial role in the development of visual system across the species of
the animal kingdom. Early visual systems, categorized by Class 1 type [96], consisted of
a few non-directional photo-receptor cells used for estimating the water depth, therefore
providing a stimulus for locomotion. The present human visual system, categorized by
Class 4 type [96], also uses the synergy between motion and vision for the development
of visual cortex. In addition, the middle temporal visual area (MT) in the human visual
cortex plays an important role in the perception of this motion in the world [18]. To
formalize our notion of motion, Gibson introduced optical flow [45], or the apparent
motion of pixels in a sequence of images. This is illustrated in Figure 1.1.

1.1 What is Optical Flow?

Consider an image sequence I(x,y, t) parametrized by Euclidean coordinates (x,y) and
time t. Then, the optical flow V = (u,v) is defined as the apparent motion of the pixel
at (x,y) over one unit of time. In an ideal world, we assume that the brightness of the
pixel does not change when it moves. Therefore, the optical flow V = (u,v) satisfies the
constraint

I(x,y, t) = I(x+u,y+ v, t +1). (1.1)

Optical flow has been found to be useful in a variety of applications spanning computer
vision, computer graphics and robotics. Optical flow has been shown to be useful in
two-stream deep networks for action recognition [123] where optical flow is encoded by
one of the streams, and images are encoded by the other stream. Sevilla et al. [118]
show a case study of how various optical flow methods influence the performance when
used in action recognition systems. Optical flow provides weak supervision for training
neural networks to segment objects [98]. Optical flow features are also useful in temporal
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Chapter 1 Introduction

Figure 1.1: An image from the Sintel optical flow dataset [22] showing the optical flow
in the scene marked by arrows and color coded optical flow for each of the pixels in the
image on the right. Illustration by J. Wulff and L. Sevilla-Lara.

interpolation of videos [69]. Amiranashvili et al. [6] show that using optical flow as an
additional input leads to better performance of robotic agents in a control task. Optical
flow is also useful for training networks to solve other computer vision tasks – depth,
camera motion and motion segmentation [106].

1.2 Computing Optical Flow

1.2.1 Energy Minimization

Classical methods such as Horn and Schunck [59] approach this problem using non-
linear optimization to minimize the energy function

E = ∑
x

∑
y

f
(

I(x,y, t), I(x+uxy,y+ vxy, t +1)
)
+g(uxy,vxy) (1.2)

where f is an error function, g is a regularization function and (uxy,vxy) is the optical flow
at (x,y). The first term f is known as the brightness consistency term and the regularizer
g is often referred to as the spatial smoothness term. The brightness consistency term
assumes that the pixel values corresponding to objects or scenes do not change when
they move across the image. The constraint provided by the brightness consistency term
is insufficient to obtain a unique solution for optical flow. Therefore, an additional con-
straint is introduced by the smoothness term g that assumes that the optical flow (u,v) is
spatially smooth.

Horn and Schunck [59] use an alternating minimization approach over the brightness
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Figure 1.2: A spatial image pyramid consists of an image sampled at multiple scales.

consistency and spatial smoothness term in an energy functional given by

E = ∑
x

∑
y
||I(x,y, t)− I(x+uxy,y+ vxy, t +1)||2 +(∇2uxy +∇

2vxy) (1.3)

to solve for optical flow. However, this energy term is convex only if the values of (u,v)
are small. Therefore, this formulation makes it intractable to solve for optical flow if the
motion is not small. To deal with this, Anandan [7] introduces a coarse-to-fine strategy
for optimizing for optical flow values. Under this, the image pairs are sampled in a
spatial pyramid (see Figure 1.2) at multiple spatial scales of decreasing resolutions. The
images at a coarse scale are first used to obtain rough estimates of optical flow using
Eq. (1.3), which are then refined by using images at finer scales.

Following Horn and Schunck, several other methods [13, 20, 82] approached the prob-
lem of estimating optical flow using optimization and spatial pyramids. These methods
improve upon the energy functional Eq. (1.2) by using robust functions [13] to model data
f and smoothness g terms. These methods that are based on the brightness consistency
and smoothness assumptions are commonly known as classical methods for computing
optical flow.

3
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1.2.2 Fallacies of Optical Flow Energy

Brightness consistency assumption. The assumptions of brightness consistency and
spatial smoothness in classical methods are weak and do not hold true in several cases
for general scenes. The brightness consistency holds true only if the surfaces are Lam-
bertian, i.e., their reflectence does not depend on the viewing angle. This is generally
not the case for real world objects. The specular reflections from the surfaces violate the
assumption that the points on an object have the same pixel intensity when the corre-
sponding pixels move in an image. The brightness consistency is also violated in case of
occlusions when objects move over each other. In such cases, the object pixels visible in
one frame are not visible in other frames to satisfy the data constraint modeled by f in
Eq. (1.2). The cases that violate brightness consistency also include transparent objects
for which the pixel values depend on several factors such as camera motion, illumination
etc. Another case violating this assumption is motion blur introduced by fast moving
objects or low frame rate cameras. Classical methods find it difficult to incorporate all
these failure cases in the brightness consistency term f in Eq. (1.2) which leads to large
errors in optical flow estimation.

Spatial smoothness assumption. The other fallacy of classical methods is the spatial
smoothness term g in the energy functional, Eq. (1.2). The spatial smoothness term gen-
erally holds true over small regions in the image. However, this assumption is violated
in several cases, such as occlusions and motion boundaries. During occlusions, the oc-
cluded pixels do not conform to similar optical flow across the occlusion boundaries.
In case of motion boundaries, the optical flow values across the boundaries have a dis-
continuity, and therefore enforcing spatial smoothness at these boundaries compromises
the accuracy of the optical flow estimates. Similarly, deformable objects such has hu-
man bodies, faces and hands do not conform to smooth flow fields in the self-occluding
regions.

Classical methods try to address these two assumptions by using extra terms in the
energy functional. However, these assumptions are still present to constrain Eq. (1.2)
and therefore estimate optical flow.

1.2.3 Deep Learning Approach

In order to get around the assumptions of brightness consistency and smoothness, we
can avoid optimization of the optical flow energy functional Eq. (1.2), and instead learn
from data. Consider that we have large samples of consecutive image pairs I1, I2 and
their corresponding ground-truth flow V = (u,v), making a dataset D = {(I1

i , I
2
i ,Vi), i =

[1,2,3, ...]}. We can use a deep neural network F(θ) parametrized by θ and train it on
the datasetD to regress to optical flow given a pair of images (see Figure 1.3). The neural
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Figure 1.3: An alternative to minimizing optical flow energy is to use a convolutional
neural network (CNN). A representative CNN regresses to optical flow using a pair of
image frames. Reproduced from [33].

network F is trained by minimizing the L1-norm,

min
θ

EI1
i ,I

2
i ,Vi∼D||F(I1

i , I
2
i ;θ)−Vi||1 (1.4)

using stochastic gradient descent. FlowNet [33] was the first method to compute opti-
cal flow following this approach by using deep convolutional networks. Although this
attempt was promising, the results were not as accurate as the classical methods. Par-
ticularly, FlowNet estimates noisy optical flow even when identical images are supplied
wherein the true optical flow between the images is zero. This is shown in Figure 1.4.

1.2.4 Spatial Pyramid Network

FlowNet employs a deep-learning approach to learn to regress optical flow using a large
synthetic dataset. We argue that there is an alternative approach that combines the best
approaches of classical methods and deep learning. We introduce a Spatial Pyramid
Network or SPyNet [103] that learns to compute optical flow by combining a classical
spatial-pyramid formulation with deep learning. This estimates large motions in a coarse-
to-fine approach by warping one image of a pair at each pyramid level by the current flow
estimate and computing an update to the flow. Instead of the standard minimization of an
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Image I1 = I2 FlowNet SPyNet

Figure 1.4: When identical images are input to FlowNet [33], the network hallucinates
noisy flow estimates. In contrast, SPyNet [103] correctly predicts zero flow.

objective function at each pyramid level, we train one deep network per level to compute
the flow update. Unlike the FlowNet approach, the networks do not need to deal with
large motions; these are dealt with by the pyramid. This has several advantages.

1. The Spatial Pyramid Network is simpler and 96% smaller than FlowNet [33] in
terms of model parameters. This makes it more efficient and appropriate for em-
bedded applications.

2. Since the flow at each pyramid level is small (< 1 pixel), a convolutional approach
applied to pairs of warped images is appropriate.

3. Unlike FlowNet, the learned convolution filters appear similar to classical spatio-
temporal filters, giving insight into the method and how to improve it.

The results obtained using SPyNet are more accurate than FlowNet on standard bench-
marks, suggesting a new direction of combining classical methods with deep learning.

1.3 Optical Flow Datasets
The progress of optical flow methods is also attributed to standard datasets in the field.
The Middlebury dataset [10] was the first standard dataset to serve as a benchmark for
optical flow methods. The dataset consists of 8 image pairs and their ground-truth optical
flow. Geiger et al. [43] introduced the KITTI dataset which has sparse ground truth
for driving scenes. The KITTI dataset was constructed using LIDAR and provides 200
images and their ground-truth flow fields. Butler et al. [22] introduced the Sintel optical
flow benchmark that consists of synthetically generated optical flow fields from a CGI
movie. Sintel provides 1041 image pairs with their ground-truth optical flow. However,
these datasets have several limitations. Real-world datasets like Middlebury and KITTI
are still very small, and are not diverse. Synthetic datasets like Sintel are also small for
large-scale training of deep neural networks. Moreover, there is a domain gap between
synthetic datasets and the real world that can affect the generalization ability of optical
flow networks trained on synthetic data. In Figure 1.5, we show examples from Sintel
and KITTI datasets.
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Sintel

KITTI

Figure 1.5: Image and corresponding optical flow samples from Sintel [22] and
KITTI [43] datasets.

1.3.1 Large-Scale Datasets

To address the problem of curating large-scale data for optical flow, Dosovitskiy et
al. [33] introduced the Flying Chairs dataset. This is a synthetic dataset containing
22,872 image pairs with their optical flow ground truth. The dataset is simple. It is
constructed by placing chairs of different shapes, poses, and colors on a random back-
ground image. A 2D affine motion is then applied to the chair to synthesize image pairs
and corresponding optical flow fields. Although the dataset is simple, it is large enough
for training deep neural networks. Dostovitsky et al. [33] used this dataset to train the
first neural network, FlowNet to compute optical flow. Since FlowNet is trained using
this synthetic dataset, it does not generalize well on real-world sequences due to the
domain gap.
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1.3.2 Human Optical Flow Dataset

To close the domain gap between synthetic and real datasets, we tackle the specific case
of human motion. Human motion is very special. Humans are deformable and do not
conform to rigid motion. As a result, the Flying Chairs dataset, which was constructed
by applying rigid motions to rigid objects (chairs), does not resemble the characteristics
of deformable human motion. Moreover, other characteristics of human motion such as
self-occlusion due to moving limbs, shape and pose changes are not present in the Flying
Chairs dataset. To address the limited availability of optical flow datasets containing
human motion, we construct the Human Optical Flow dataset [108]. For this, we use a
3D model of the human body and motion capture data to synthesize realistic flow fields
in both single- and multi-person images.

We then train a convolutional neural network to estimate human flow fields from pairs
of images. We demonstrate that our trained networks are more accurate than a wide
range of top methods on held-out test data and that they generalize well on real image
sequences.

Learning optical flow for humans shows that enforcing structure on scenes can im-
prove performance of optical flow methods. In this case, the structure is imposed by
using a realistic human body model [81] and human motion capture data [62]. Such
constraints about the structure can also be enforced on general scenes. Using contraints
about the structure of the world such as depth and rigidity, MR-Flow [153] achieves state
of the art results on optical flow benchmarks. However, Wulff et al. [153] approach the
problem by energy minimization and therefore their method is very slow. In contrast,
using such reasoning about geometry and structure of the world with deep networks can
lead to better accuracy and faster running time.

1.4 Learning Geometric Reasoning

To incorporate the geometry of the world in the problem of motion estimation, we need
to jointly model structure of the 3D world along with its motion. The 3D structure of
the world can be represented using depth maps. The motion has two components –
the motion of the observer and the motion of independent objects. Several works have
approached these problems independently.

Zhou et al. [159] show that view synthesis of neighboring frames in a video sequence
is sufficient for unsupervised learning of single view depth prediction and camera odom-
etry. Following this, Yin et al. [156] show that one can learn optical flow in addition to
depth and odometry. However, these methods do not account for independently moving
objects in the scene. By segmenting the static scene from independently moving objects,
we can reason about the static scene using depth and odometry, and reason about the
independently moving objects using optical flow. Therefore, there are four problems that
can be solved here – single view depth prediction, camera motion estimation, optical
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flow, and segmentation of a video into the static scene and moving regions. In practice,
we need four neural networks to solve each of the problems.

1.4.1 Competitive Collaboration

Training multiple neural networks using a single objective is tricky and can be seen as
a multi-player game. In order to train these networks, we introduce Competitive Col-
laboration, a framework that facilitates the coordinated training of multiple specialized
neural networks. In this framework, two networks act as adversaries and compete with
each other. The competition between the networks is moderated by another network, the
Moderator. Concurrently, these competitors form a consensus in alternating cycles to
collaborate and train the moderator. By doing so, all networks in the framework can be
trained to solve specific tasks.

1.4.2 Joint Unsupervised Learning of Depth, Camera Motion,
Optical Flow and Motion Segmentation

Using Competitive Collaboration, we address the unsupervised learning of four inter-
connected problems – single view depth prediction, camera motion estimation, optical
flow and segmentation of a video into the static scene and moving regions. As shown in
Figure 1.6, given an image, we can segment it into static scene and moving regions. The
motion in the static scene is a result of the depth of the scene and the camera motion ex-
clusively. Therefore, using a brightness consistency loss on the pixels of the static scene
in a video sequence, we can estimate the depth and camera motion. The independently
moving regions cannot be accounted for by using depth and camera motion across the
frames of a video sequence. Therefore, we account for these pixels using optical flow.
However, these problems are interconnected, and we can solve for motion segmentation
by looking at the consistency between depth, camera motion and optical flow.

Our key insight is that these four fundamental vision problems are coupled through ge-
ometric constraints. Consequently, learning to solve them together simplifies the prob-
lem because the solutions can reinforce each other. In the Competitive Collaboration
framework, neural networks act as both competitors to explain pixels that correspond to
static or moving regions, and as collaborators through a moderator that assigns pixels to
be either static or independently moving. In this way, our novel method integrates all
these problems in a common framework and simultaneously reasons about the segmen-
tation of the scene into moving objects and the static background, the camera motion,
depth of the static scene structure, and the optical flow of moving objects. Our model
is trained without any supervision and achieves state-of-the-art performance among joint
unsupervised methods on all sub-problems.
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Figure 1.6: An image can be segmented into static regions and independently-moving re-
gions. The static regions are accounted for by depth and camera motion, and the moving
regions are accounted for by optical flow. Using Competitive Collaboration [106], we
can jointly train for depth, camera motion, optical flow and motion segmentation in a
completely unsupervised framework.
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1.5 Thesis Organization
The thesis is organized as follows.

Chapter 2 surveys related work. We discuss classical optical flow methods, and their
problems, and various ways of dealing with these problems in the improved versions of
classical methods. We then go over end-to-end training of deep neural networks using
synthetic datasets. We discuss unsupervised learning of optical flow and the explicitly
modeling geometry in a deep learning framework.

In Chapter 3, we introduce the Spatial Pyramid Network and show how to train this
network to estimate optical flow. We experimentally evaluate our method on optical flow
benchmarks such as Middlebury [10], KITTI [43], and Sintel [22]. We also evaluate the
performance of SPyNet in terms of speed and memory.

In Chapter 4, we discuss generation of the Human Optical Flow dataset using a real-
istic 3D human body model and captured MoCap sequences. We improve upon SPyNet
and train this network on our Human Optical Flow dataset. We evaluate the performance
on our generated dataset and show qualitative results on real-world videos consisting of
human motion.

In Chapter 5, we introduce the Competitive Collaboration framework with three neural
networks, where two adversaries compete with each other through a moderator network
that moderates the competition. We study the convergence properties and generalization
of Competitive Collaboration.

In Chapter 6, we show joint unsupervised learning of single-view depth prediction,
camera odometry, optical flow and motion segmentation. We train four different net-
works jointly to solve each of the subproblems using Competitive Collaboration. We
evaluate the performance of all the subproblems on the raw KITTI [43] dataset.

In Chapter 7, we conclude by discussing the importance of geometrical constraints in
training deep neural networks for computer vision tasks. We also discuss ways to make
these systems more robust and accurate for the future.
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Chapter 2

Related Work

2.1 Classical Optical Flow

The classical formulation of the optical flow problem involves optimizing the sum of a
data term based on brightness constancy and a spatial smoothness term [59]. Classical
methods suffer from the fact that they make assumptions about the image brightness
change and the spatial structure of the flow that do not match reality. Early efforts make
the formulation more robust [13] using robust M-estimation. Many methods focus on
improving robustness by changing the assumptions. These optical flow methods include
pre-processing the images by filtering [147] and augmenting them with gradients [20].
Different scaling factors in the spatial pyramid are used [128]. A median filter [126,
147] is used to significantly boost performance. Feature matching [19] and semantic
segmentation [119] are integrated more recently, resulting in performance improvement.

Spatial Pyramids. The use of spatial pyramids for flow estimation has a long his-
tory [21, 46] with its first use in the classical flow formulation appearing in Glazer [46].
Typically, Gaussian or Laplacian pyramids are used to deal with large motions. Gener-
ally, gradient-based optical flow estimation relies on the computation of spatial and tem-
poral derivatives of the image sequence, implemented as filters [58]. This formulation
assumes that the image motion is small. Through spatial smoothing and subsampling,
this small motion assumption holds at high levels of the pyramid. A coarse-to-fine ap-
proach then estimates the flow such that, at each pyramid level, the motion is updated
with an estimate that is assumed to be small.

The methods based on spatial pyramid structure are well known to have problems
when small objects move quickly. To deal with them, Brox et al. [19] incorporate long
range matching into the traditional optical flow objective function. This approach of
combining image matching to capture large motions, with a variational [110] or discrete
optimization [51] for fine motions, can produce accurate results. Alternatively, Sevilla et
al. [120] replace the classical pyramid with a channel representation in which the spatial
pyramid is effectively applied to segmented images, preserving small structures at high
levels of the pyramid.
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Layered Methods. The brightness consistency term of the optical flow energy Eq. (1.2)
does not hold at the motion boundaries when objects are moving over each other accom-
panied by occlusions. To deal with this, Jepson and Black [67] model optical flow over
a patch using a mixture of smoothly varying layers. Wang and Adelson [143] decom-
pose an image into foreground and background layers using a mask and independently
estimate motion for each of the layers. Ayer and Sawhney [8] formulate this problem
of layered representation using maximum-likelihood estimation to model multiple ob-
ject motions in different layers of an image. Cremers and Soatto [28] use a variational
approach for segmenting the image plane into a set of regions of parametric motion.

Sun et al. [129] formulate a layered model to segment the image into foreground and
background using a Conditional Random Field (CRF). The optical flow for each of the
segments is computed by constraining it to the segments. Sevilla et al. [119] build upon
the layered formulation to segment image in semantically meaningful layers for comput-
ing flow. Further, Wulff et al. [153] segment the image into static regions and moving
objects to obtain the optical flow using a plane+parallax approach.

Geometric Methods. Modeling the spatial structure of images has proven useful in
estimation of motion. One can also model the structure of the world, in terms of its ge-
ometry and this has also been shown to be useful for motion estimation. Ullman [137]
shows that we can recover three-dimensional scene structure and relative motion from
a single monocular video sequence. Several works [146, 157] also combine estimation
of depth together with motion under an approach known as motion-stereo. Vedula et
al. [141] propose three-dimensional scene flow combining depth and optical flow to es-
timate 3D velocities of all the points in images.

Using a prior on the geometry has also been shown to be useful for optical flow esti-
mation. Guney et al. [50] model the geometry of cars in their approach to compute scene
flow. Sevilla et al. [119] incorporate the geometry of the scene using its semantics by
classifying the scene in to static regions, regions having affine motion, and deformable
regions. However, the scene geometry is not explicitly modeled. Wulff et al. [153] ex-
plicitly model geometry by factoring the scene in to static regions and independently
moving regions. For estimating the optical flow of static regions, they simply compute
the depth and camera motion which simplifies the optimization and therefore improves
accuracy. Optical flow is estimated using depth and camera motion of a static scene us-
ing a closed form solution (see Appendix A.1). The moving regions do not follow any
geometric contraints and therefore their optical flow is independently estimated.

2.2 Optical Flow meets Machine Learning
The key advantage of learning to compute flow is that we do not hand craft assumptions.
Rather, the variation in image brightness and spatial smoothness are embodied in the
learned model.
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Possibly the first attempt to learn a model to estimate optical flow is the work of Free-
man et al. [39] using a Markov Random Field (MRF). Freeman et al. consider a simple
synthetic world of uniform moving blobs with ground-truth flow. They vector-quantize
training patches to compute neighborhood co-occurrence statistics. Then, they perform
belief propagation in an MRF to estimate flow using the learned model. However, their
training data is not realistic and they do not apply the method to real image sequences.
Black et al. [15] use a PCA basis to model the distribution of optical flow. They estimate
optical flow using linear combination of these basis flows.

Roth and Black [115] learn a field-of-experts (FoE) model to capture the spatial statis-
tics of optical flow. The model is trained using flow fields generated from laser scans of
real scenes and natural camera motions. However, the data includes only the flow fields
without the corresponding images. Consequently, their method only learns the spatial
statistics of the flow. Sun et al. [128] describe the first fully learned model that can be
interpreted as a shallow convolutional neural network. They formulate a classical flow
problem with a data term and a spatial term. The spatial term uses the FoE model from
Roth and Black [115], while the data term replaces traditional derivative filters with a set
of learned convolutional image filters. With limited training data and a small set of filters,
their method does not show the full promise of learning flow. Rosenbaum et al. [114]
model the spatial statistics of optical flow using Gaussian Mixture Models. Wulff and
Black [151] learn the spatial statistics of optical flow by applying robust PCA [54] to real
(noisy) optical flow computed from natural movies. While this produces a global flow
basis and overly smooth flow, they use the model to compute reasonable flow relatively
quickly.

Several methods rely on matching image features using deep networks, and then use
those matches as a constraint in the optical flow energy function Eq. (1.2). Weinzaepfel
et al. [149] use convolutional features in a variational optimization framework thereby
improving the optical flow accuracy. In contrast, Guney et al. [51] use deep features in
discrete optimization of optical flow gaining even better performance. However, deep
matching methods [51, 110, 149] do not fully solve the problem, since they resort to
classical methods to compute the final flow field.

Spatio-temporal Filters and Human Perception. Learning spatial statistics of opti-
cal flow shows a correlation between learned spatiotemporal filters and motion models
from neuroscience [30]. Various methods show that spatio-temporal filters emerge from
learning, for example using independent component analysis [139], sparseness [97], and
multi-layer models [23]. Burt and Adelson [3] lay out the theory of spatiotemporal mod-
els for motion estimation and Heeger [57] provides a computational embodiment. While
inspired by human perception, such methods do not perform well [12].

Memisevic and Hinton learn a simple spatial transformations with a restricted Boltz-
mann machine [88], and find a variety of filters. Taylor et al. [133] use synthetic data to
learn “flow-like” features using a restricted Boltzmann machine but do not evaluate flow
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accuracy. Han et al. [52] propose a rich set of filters for representing a “video primal
sketch” but do not learn the filters or use them for estimating optical flow.

2.3 Optical Flow meets Deep Learning
The above learning methods suffer from limited training data and the use of shallow
models. In contrast, deep convolutional neural networks emerge as a powerful class of
models for solving recognition [56, 132] and dense estimation [25, 79] problems.

2.3.1 Optical Flow Networks

Early work use neural networks trained for other tasks such as segmentation to constrain
the optimization objective of optical flow. This is mainly because of unavailability of
large scale optical flow datasets at the time.

With the release of Flying Chairs dataset, FlowNet [33] was the first deep convo-
lutional architecture for flow estimation that is trained end-to-end. FlowNet introduced
two different types of networks – FlowNetS and FlowNetC. Both networks have a simple
U-Net architecture consisting of an encoder and a decoder, each of which are made from
a block of convolutional layers. The encoder and decoder have skip connections so that
the features computed at the encoder are also available to the decoder. For FlowNetS,
the input frames are stacked together and passed as input. In contrast, in FlowNetC, the
input frames are not stacked but a cost-volume between their features is computed. This
is contrasted in Table 2.1.

The cost-volume of input features is obtained by cross-correlating them. The cost-
volume is estimated using

c(x1,x2) = ∑
o∈[−k,k]×[−k,k]

〈 f1(x1 +o), f2(x2 +o)〉, (2.1)

where f1, f2 are input features maps. For each point (x1,x2), the cross-correlation is
defined by dot product of elements in the k−distance neighborhood. Once the cost-
volume is obtained, it is processed through the network to get optical flow prediction.
The cost volume helps in getting long range correspondences and therefore it is better
for capturing large motions in image sequences.

Both FlowNetS and FlowNetC networks show promising results, despite being trained
on Flying Chairs dataset, which is a synthetic dataset of chairs flying over randomly
selected images. Despite promising results, the method lags behind the state-of-the-art
in terms of accuracy. The major limitations come from – (a) synthetic dataset on which
it is trained, and (b) the architecture of the neural networks.

To deal with the domain gap between synthetic data and real world videos, Tran et
al. [135] use a traditional flow method to create “semi-truth” training data. Then, they
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Stacked Frames Correlation
U-Net FlowNetS [33] FlowNetC [33]
Spatial Pyramids SPyNet [103] PWC-Net [130]

Table 2.1: Contrasting different optical flow network architectures based on input pro-
cessing pipeline.

train a 3D convolutional network on this data. However, the performance of their method
does not exceed the performance of the traditional flow method that was used to create
the training data.

The Spatial Pyramid Network (SPyNet) [103] discussed in Chapter 3 approaches the
problem by bringing together ideas from classical methods [46] and integrating them
with deep networks. SPyNet consists of multiple small networks in a spatial pyramid.
The image pair is downsampled at multiple scales in the pyramid and a network com-
putes residual flow at each level of the pyramid. SPyNet is trained on the same data as
FlowNet and is more accurate. Furthermore, it is a simpler architecture with 96% fewer
parameters than FlowNet.

Ilg et al. [61] propose FlowNet 2.0, an architecture composed by cascading together
multiple FlowNetC and FlowNetS networks. This network is trained on even more data,
including animated sequences to close the domain gap with Sintel [22], and synthetic
driving scenes to close the domain gap with KITTI [43]. FlowNet 2.0 is a big improve-
ment over FlowNet and subsequently SPyNet, but it is a large network with a complex
architecture.

It is evident from SPyNet [103] that small networks in a pyramid can outperform large
networks even when trained on the same data. Sun et al. [130] propose PWC-Net consist-
ing of a correlation block similar to FlowNetC [33] but integrate it in a spatial pyramid.
This architecture is simpler than FlowNet2.0 with fewer parameters but achieves similar
performance. In Table 2.1, we show how different ideas from classical methods like cor-
relation and spatial pyramids integrate themselves in deep networks. Recently, Hur and
Roth [60] propose iterative refinement of optical flow over coarse-to-fine pyramid levels
using the same network in recurrent fashion.

2.3.2 Unsupervised Learning of Optical Flow

The problem with training optical flow networks is that they need large scale datasets.
These datasets are synthetic and therefore always have some domain gap with the real
world. Therefore, a group of methods formulate the problem from an unsupervised learn-
ing perspective.

The simplest approach is to use a deep network and minimize the optical flow energy
Eq. (1.2) on the flow predictions of the network given the unlabeled image sequences [5,
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66]. These optical flow estimates are reasonable but are far behind the state-of-the-art
optical flow methods. Meister et al. [87] add forward-backward constraint to the energy
term by using a Siamese network. In addition, they also reason about occlusions using
a heuristic to deal with areas where the brightness consistency term from Eq. (1.2) does
not hold. This method achieves better performance on KITTI using unsupervised training
followed by supervised fine-tuning on just 400 images of the KITTI dataset.

Further improvements are obtained by using multiple frames [64] and explicitly mod-
elling the occlusion term by predicting it from a network. Janai et al. [64] show that
using multiple frames can lead to significant improvement in optical flow predictions.
More recently, Wulff et al. [152] show that one can also learn optical flow by training
a network for temporal interpolation and then fine tuning it only on a small number of
images.

Although unsupervised learning of optical flow network shows promising results, the
methods that use supervision using synthetic data supersede in performance.

2.3.3 Small and Fast Optical Flow Networks
Traditionally, optical flow has been treated as an optimization problem that is approached
by minimizing the optical flow energy Eq. (1.2). This makes it very slow to compute.
Several recent methods attempt to balance speed and accuracy, with the goal of real-time
processing and reasonable (though not top) accuracy. GPU-flow [150] began this trend
but several methods now outperform it. PCA-Flow [151] runs on a CPU, is slower than
frame rate, and produces overly smooth flow fields. EPPM [11] achieves similar, middle-
of-the-pack, performance on Sintel (test), with similar speed on a GPU. DIS-Fast [73] is
a GPU method that is significantly faster than previous methods but is also significantly
less accurate.

In contrast, CNN methods have an advantage over traditional variational methods in
that they do not perform iterative optimization to propagate information spatially. All the
neural networks viz. FlowNet, SPyNet, PWC-Net can process video frames in real time.
SPyNet and PWC-Net are really small in terms of memory footprint which makes their
deployment easy on embedded systems. Deep learning has led to a class of optical flow
methods that obtain highly accurate real-time optical flow using a small computational
cost.

2.4 Large Scale Datasets
Several datasets have been developed to facilitate training and benchmarking of optical
flow methods. However, early datasets are not large or diverse enough to support training
of deep neural networks. The Middlebury dataset [10] contains 8 pairs of training frames
with ground truth, and is limited to small motions. Since then, optical flow datasets have
become larger and more challenging. The KITTI dataset [43] is larger but is focused on

18



2.5 Human Motion

rigid scenes and automotive motions [43]. The KITTI dataset has 200 pairs of images
and ground-truth flow. However, the optical flow ground truth in KITTI is sparse and
only exists for roads and cars.

The Sintel dataset [22] is larger than KITTI with 1041 pairs of images and ground truth
flow. The dataset contains complex deformations as well, such as motion of an animated
character, wings of a dragon, etc. The low-level statistics of optical flow in Sintel is
representative of the real-world motion [22]. However, since the data is generated using
computer graphics, complex and high-level structure of the world is not well represented.
These datasets are mainly used for evaluation of optical flow methods and are generally
too small to support training neural networks.

To learn optical flow using neural networks, more datasets have emerged that contain
examples on the order of tens of thousands of frames. The Flying Chairs [33] dataset con-
tains about 22,000 samples of chairs moving against random backgrounds. Although it
is not very realistic or diverse, it provides training data for neural networks [33, 103] that
achieve reasonable results on optical flow benchmarks. More synthetic datasets [86, 41]
for optical flow are especially designed for training deep neural networks and improve
the realism in the dataset. Flying Things [86] contains tens of thousands of samples
of random 3D objects in motion. The Monkaa and Driving scene datasets [86] contain
frames from animated scenes and virtual driving respectively. Virtual KITTI [41] uses
graphics to generate scenes like those in KITTI and is two orders of magnitude larger.
Recent synthetic datasets [40] show that synthetic data can train networks that generalize
to real scenes.

These datasets have a common property. The scenes generally have rigid objects and
rigid motions. In contrast, human bodies are non-rigid and undergo deformation. There-
fore, networks trained on these datasets perform poorly [108] when humans are present
in the scene. To address this Varol et al. [140] introduce the SURREAL dataset with hu-
man bodies. The dataset uses 3D human meshes rendered on top of color images to train
networks for 2D pose estimation, depth estimation, and body part segmentation. While
not fully realistic, they show that this data is sufficient to train methods that generalize to
real data. In a similar fashion, [160, 91] render synthetic color images for 3D hand pose
estimation. In Chapter 4, we go beyond these works to address the problem of optical
flow by synthesizing a dataset focused at human motion.

2.5 Human Motion
Using images to analyze human motion dates to the origins of photography. In 1884,
Marey [85], a French physician captured the change in joint positions across time by
capturing multiple photos in a single photographic plate. A hundred years later, Johans-
son [70] established the basis for modern motion capture (MoCap) in his work using
point lights attached to the body. To this day, reasoning about human motion using sparse
set of points is a very common approach in fields like human pose estimation [95].
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However, other holistic approaches that reason about the full extent of the body have
existed too. Parametric models using generalized local cones [93], superquadrics [42],
2d part templates [37] or more recently triangulated meshes [17] have been used to model
full body motion.

Human motion can be understood from 2D motion. Early work shows that simple mo-
tion history images can be used to recognize actions without computing dense flow [31].
Motion history images are sensitive to viewpoint changes. To address this, Winland
et al. [148] generalize motion history images to motion history volumes using multiple
camera views. Black et al. [15] use principal component analysis (PCA) to parametrize
human motion but use noisy flow computed from image sequences for training data.
They learn linear motion models of specific motions like walking and mouth movement
for the estimation of optical flow. Blank et al. [16] represent human motion as three-
dimensional shapes induced by the silhouettes in the space-time volume. Yilmaz and
Shah [155] use moving contours to represent human motion. Laptev et al. [76] compute
optical flow in a local neighborhood and aggregate it in histograms, called histograms of
optical flow to represent complex human motion.

More similar to us, Fablet and Black [35] use a 3D articulated body model and motion
capture data to project 3D body motion into 2D optical flow. They then learn a view-
based PCA model of the flow fields. They detect and track human motion by estimating
the parameters of this flow model given image sequences. In contrast to these methods,
we generate more realistic training data using a statistical model of the human body to-
gether with realistic image sequences. Rather than training a model of the flow statistics,
we use the images and flow to train a CNN to directly estimate flow from images.

Only a few works in pose estimation exploit human motion and in particular several
methods [38, 162] use optical flow constraints to improve 2D human pose estimation
in videos. Similar work [24, 99] propagates pose results temporally using optical flow
to encourage time consistency of the estimated bodies. Apart from its application in
warping between frames, the structural information existing in optical flow is used for
pose estimation alone [112].

Wang and Mori [144] propose max-margin hidden conditional random field (MHCRF)
on optical flow features for action recognition. Recent state-of-the-art action recognition
methods use two-stream deep neural networks [36, 123], where one of the streams is
used to process images and the other is used to process precomputed optical flow across
the image sequences.

Although motion has been used for a number of applications related to human per-
ception, there has been far less attention [15] to estimate human motion itself. Human-
specific patterns are not used as much for estimation of optical flow.
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2.6 Geometry meets Deep Learning
Although curating large scale datasets has led to success of deep-learning-based methods
on optical flow, they still lag in accuracy compared to methods [119, 153] that exploit
structure of the scene to compute motion. Joint estimation frameworks have been shown
to be useful in the past where problems could reinforce each other by constraining the
geometry of the world. Optical flow estimation can provide information about camera
motion [53] and vice versa. Depth and camera motion can provide information about
optical flow if there are no moving objects in the scene [159]. Optical flow can be used
to reason about motion segmentation [4, 109] and vice versa [14].

Flow estimation provides correspondences between views or consecutive frames which
are essential to unveil the relative camera pose between the views [53]. If the observed
scene only contains rigid static background, the flow with a known pose can be seen as
a camera ego-motion, which can provide correct disparities for 3D scene structure [94].
Because all these cues are tied and constrain each other, often times, solving one problem
can help other problems [94].

Recently, it has been shown that these problems can be effectively combined by seg-
menting image into static scene and moving regions (e.g. [153]). However, these methods
are based on classical optimization and tends to be very slow.

More recent works [84, 138, 142, 156, 159] approach joint estimation of structure and
motion by coupling two or more problems together in an unsupervised learning frame-
work. Zhou et al. [159] introduce joint unsupervised learning of ego-motion and depth
from multiple unlabeled frames. To account for moving objects, they learn an explain-
ability mask. However, these masks also capture model failures such as occlusions at
depth discontinuities, and are therefore not useful for motion segmentation.

Mahjourian et al. [84] use a more explicit geometric loss, an ICP constraint to jointly
learn depth and camera motion for rigid scenes. Yin et al. [156] add a refinement network
to Zhou et al. [159] to also estimate residual optical flow. The estimation of residual flow
is designed to account for moving regions, but there is no coupling of the optical flow
network with the depth and camera motion networks. Residual optical flow is obtained
using a cascaded refinement network, thus preventing other networks from using flow
information to improve themselves. Therefore, recent works show good performance
either on depth and camera motion [84, 156, 159] or on optical flow [87], but not on
both.

Zou et al. [161] exploit consistency between depth and optical flow to improve perfor-
mance on both the problems. In Chapter 6, we add the key missing piece to jointly learn
the segmentation of the scene into static and independently-moving regions. This allows
the networks to use geometric constraints where they apply and generic flow where they
do not. This introduces a framework where motion segmentation, flow, depth and camera
motion models can be coupled and solved jointly to reason about the complete geometric
structure and motion of the scene.
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Chapter 3

Spatial Pyramid Networks

Recent years have seen significant progress on the problem of accurately estimating op-
tical flow, as evidenced by improving performance on increasingly challenging bench-
marks. Despite this, most flow methods are derived from a “classical formulation” that
makes a variety of assumptions about the image, from brightness constancy to spatial
smoothness. These assumptions are only coarse approximations to reality and this likely
limits performance. The recent history of the field has focused on improving these as-
sumptions or making them more robust to violations [13]. This has led to steady but
incremental progress.

3.1 Introduction

An alternative approach abandons the classical formulation altogether and starts over
using recent neural network architectures [33, 135]. Such an approach takes a pair (or
sequence) of images and learns to directly compute flow from them. Ideally such a
network would learn to solve the correspondence problem (short and long range), learn
filters relevant to the problem, learn what is constant in the sequence, and learn about the
spatial structure of the flow and how it relates to the image structure. The first attempts
are promising but are not yet as accurate as the classical methods.

Goal. We argue that there is an alternative approach that combines the best of both
approaches. Decades of research on flow has produced well-engineered systems and
principles that are effective. But there are places where these methods make assumptions
that limit their performance. Consequently, here we apply machine learning to address
the weak points, while keeping the engineered architecture, with the goal of

• improving performance over existing neural networks and the classical methods
upon which our work is based;

• achieving real-time flow estimates with accuracy better than the much slower clas-
sical methods;
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• reducing memory requirements to make flow more practical for embedded, robotic,
and mobile applications.

Problem. Computing flow requires the solution to two problems. One is to solve for
long-range correlations while the other is to solve for detailed sub-pixel optical flow and
precise motion boundaries. The first neural network method, FlowNet [33], attempts to
learn both of these at once. In contrast, we tackle the latter using deep learning and rely
on existing methods to solve the former.

Approach. To deal with large motions, we adopt a traditional coarse-to-fine approa-
ch [46] using a spatial pyramid1. At the top level of the pyramid, the assumption is
that the motions between frames are smaller than a few pixels and that, consequently,
the convolutional filters can learn meaningful temporal structure. At each level of the
pyramid we solve for the flow using a convolutional network and up-sample the flow to
the next pyramid level. As is standard with classical formulations [127], we warp one
image towards the other using the current flow, and repeat this process at each pyramid
level. Instead of minimizing a classical objective function at each level, we learn a con-
volutional network to predict the flow increment at that level. We train the network from
coarse to fine to learn the flow correction at each level and add this to the flow output of
the network above. The idea is that the displacements are then always less than one (or a
few) pixels at each pyramid level.

We call the method SPyNet, for Spatial Pyramid Network, and train it using the same
Flying Chairs data as FlowNet [33]. We report similar performance as FlowNet on Fly-
ing Chairs and Sintel [22] but are significantly more accurate than FlowNet on Middle-
bury [10] and KITTI [43] after fine tuning. The total size of SPyNet is 96% smaller than
FlowNet, meaning that it runs faster, and uses much less memory. The expensive itera-
tive propagation of classical methods is replaced by the non-iterative computation of the
neural network.

We do not claim to solve the full optical flow problem with SPyNet; we address the
same problem as traditional approaches and inherit some of their limitations. For exam-
ple, it is well known that large motions of small or thin objects are difficult to capture
with a pyramid representation. We see the large-motion problem as separate, requiring
different solutions. Rather, what we show is that the traditional problem can be reformu-
lated, portions of it can be learned, and performance improves in many scenarios.

Additionally, because our approach connects past methods with new tools, it provides
insights into how to move forward. In particular, we find that SPyNet learns spatio-
temporal convolutional filters that resemble traditional spatio-temporal derivative or Ga-
bor filters [3, 57]. The learned filters resemble biological models of motion-processing
filters in cortical areas, MT and V1 [122]. The MT-V1 filters have also been shown
useful for optical flow estimation [26, 124]. This is in contrast to the random-looking

1This, of course, has well-known limitations, which we discuss later.
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Figure 3.1: Inference in a 3-Level Pyramid Network [32]: The network G0 computes
the residual flow v0 at the highest level of the pyramid (smallest image) using the low
resolution images {I1

0 , I
2
0}. At each pyramid level, the network Gk computes a residual

flow vk which propagates to each of the next lower levels of the pyramid in turn, to
finally obtain the flow V2 at the highest resolution. u is upsampling operator and d is
downsampling operator.

filters learned by FlowNet (see Figure 3.7). This suggests that it is time to reexamine
older spatio-temporal filtering approaches with new tools.

In summary our contributions are the following.

1. We combine traditional coarse-to-fine pyramid methods with deep learning for
optical flow estimation.

2. We introduce a new SPyNet model that is 96% smaller and is faster than FlowNet.

3. SPyNet achieves comparable or lower error than FlowNet on standard benchmarks
– Sintel, KITTI and Middlebury.

4. The learned spatio-temporal filters provide insight about what filters are needed
for flow estimation.

5. The trained network and related code are publicly available for research2 purposes.
Several methods [130, 64] have built on our approach.

3.2 Spatial Pyramid Network
Our approach uses the coarse-to-fine spatial pyramid structure of [32] to learn residual
flow at each pyramid level. Here we describe the network and training procedure. We
introduce a small change in notation in this chapter to improve readability. While we use
V to represent optical flow, and we use u to represent an upsampling operator and v to
represent the intermediate residual flows.

2https://github.com/anuragranj/spynet
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3.2.1 Spatial Sampling

Let I be an m× n image with dimensions that are powers of 2. Let d(.) be the down-
sampling function that decimates I to the corresponding image d(I) of size m/2× n/2.
Let u(.) be the reverse operation that upsamples images by a factor of 2. These operators
are bilinear and are also used for resampling the the optical flow field, V . We also define
a warping operator w(I,V ) that warps the image, I according to the flow field, V , using
bilinear interpolation.

3.2.2 Inference

Let {G0, ...,GK} denote a set of trained convolutional neural network (convnet) models,
each of which computes residual flow, vk

vk = Gk(I1
k ,w(I

2
k ,u(Vk−1)),u(Vk−1)) (3.1)

at the k-th pyramid level. The convnet Gk computes the residual flow vk using the up-
sampled flow from the previous pyramid level, Vk−1, and the frames {I1

k , I
2
k } at level k.

The second frame I2
k is warped using the flow as w(I2

k ,u(Vk−1)) before feeding it to the
convnet Gk. The flow, Vk at the k-th pyramid level is then

Vk = u(Vk−1)+ vk. (3.2)

As shown in Fig. 3.1, we start with downsampled images {I1
0 , I

2
0} and an initial flow

estimate that is zero everywhere to compute the residual flow v0 = V0 at the top of the
pyramid. We upsample the resulting flow, u(V0), and pass it to the network G1 along
with {I1

1 ,w(I
2
1 ,u(V0))} to compute the residual flow v1. At each pyramid level, we com-

pute the flow Vk using Equation ((3.2)). The flow Vk is similarly propagated to higher
resolution layers of the pyramid until we obtain the flow VK at full resolution. Figure 3.1
shows the working of our approach using a 3-level pyramid. In practice, we use a 5-level
pyramid (K = 4).

3.2.3 Training and Network Architecture

We train each of the convnets {G0, ...,GK} independently and sequentially to compute
the residual flow vk given the inputs {I1

k ,w(I
2
k ,u(Vk−1)),u(Vk−1)}. We compute target

residual flows v̂k as a difference of target flow V̂k at the k-th pyramid level and the up-
sampled flow, u(Vk−1) obtained from the trained convnet of the previous level

v̂k = V̂k−u(Vk−1). (3.3)
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Figure 3.2: Training network Gk requires trained models {G0...Gk−1} to obtain the initial
flow u(Vk−1). We obtain ground truth residual flows v̂k by subtracting downsampled
ground truth flow V̂k and u(Vk−1) to train the network Gk using the EPE loss.

As shown in Fig. 3.2, we train each of the networks, Gk, to minimize the average End
Point Error (EPE) loss between the residual flow vk and v̂k

1
mknk

∑
x,y

√
(vx

k− v̂x
k)

2 +(vy
k− v̂y

k)
2

where the mk×nk is the image dimension at level k and the x and y superscripts indicate
the horizontal and vertical components of the flow vector.

Each level in the pyramid has a simplified task relative to the full optical flow esti-
mation problem; it only has to estimate a small-motion update to an existing flow field.
Consequently each network can be simple. Here, each Gk has 5 convolutional layers;
this gave the best combination of accuracy, size, and speed. We train five convnets
{G0, ...,G4} at different resolutions of the Flying Chairs dataset. The network G0 is
trained with 24x32 images. We double the resolution at each pyramid level and finally
train the convnet, G4 with a resolution of 384x512.

Each convolutional layer is followed by a Rectified Linear Unit (ReLU), except the
last one. We use 7x7 convolutional kernels for each layer; these worked better than
smaller filters. The number of feature maps in each convnet Gk are {32, 64, 32, 16, 2}.
The image I1

k and the warped image w(I2
k ,u(Vk−1)) have 3 channels each (RGB). The

upsampled flow u(Vk−1) is 2 channel (horizontal and vertical). We stack image frames
together with the upsampled flow to form an 8 channel input to each Gk. The output is 2
channel flow corresponding to velocity in x and y.
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Using Torch73, we train five networks {G0, ...,G4} such that each network Gk uses
the previous network Gk−1 as initialization. The networks are trained using Adam [71]
optimization with β1 = 0.9 and β2 = 0.999. We use a batch size of 32 across all networks
with 4000 iterations per epoch. We use a learning rate of 1e-4 for the first 60 epochs and
decrease it to 1e-5 until the networks converge. We use the Flying Chairs [33] dataset
and MPI Sintel [22] for training. We trained G0 for three days and {G1,G2,G3,G4} for
one day each on a single Titan X.

We include various types of data augmentation during training. We randomly scale im-
ages by a factor between [1,2] and apply rotations at random within [−17◦, 17◦]. We then
apply a random crop to match the resolution of the convnet, Gk being trained. We include
additive white Gaussian noise sampled uniformly from N (0,0.1). We apply color jitter
with additive brightness, contrast and saturation sampled from a Gaussian, N (0,0.4).
We finally normalize the images using a mean and standard deviation computed from a
large sample of ImageNet [116] data in [56].

3.3 Experiments
We evaluate our performance on standard optical flow benchmarks and compare with
FlowNet [33] and Classic+NLP [127], a traditional pyramid-based method. We compare
performance using average end-point error (EPE) in Table 3.1. We evaluate on all the
standard benchmarks and find that SPyNet is the most accurate overall, with and without
fine tuning (details below). Additionally SPyNet is faster than all other methods as shown
in Table 3.2.

Note that the FlowNet results reported on the MPI-Sintel website are for a version that
applies variational refinement (“+v”) to the convnet results. Here we are not interested
in the variational component and only compare the results of the convnet output.

Flying Chairs. SPyNet achieves better performance than FlowNetS [33] on the Flying
Chairs dataset, however FlowNetC [33] performs better than ours. We show the qual-
itative results on Flying Chairs dataset in Figure 3.3 and compare the performance in
Table 3.1.

MPI-Sintel. The resolution of Sintel images is 436x1024. To use SPyNet, we scale the
images to 448x1024, and use 6 pyramid levels to compute the optical flow. The networks
used on each pyramid level are {G0,G1,G2,G3,G4,G4}. We repeat the network G4 at
the sixth level of pyramid for experiments on Sintel. Because Sintel has extremely large
motions, we found that this gives better performance than using just five levels.

We evaluate the performance of our model on MPI-Sintel [22] in two ways. First, we
directly use the model trained on the Flying Chairs dataset and evaluate our performance

3http://torch.ch/
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Method Sintel Clean Sintel Final KITTI Middlebury Chairs
train test train test train test train test test

Classic+NLP 4.13 6.73 5.90 8.29 - - 0.22 0.32 3.93
FlowNetS 4.50 7.42 5.45 8.43 8.26 - 1.09 - 2.71
FlowNetC 4.31 7.28 5.87 8.81 9.35 - 1.15 - 2.19
SPyNet 4.12 6.69 5.57 8.43 9.12 - 0.33 0.58 2.63
FlowNetS+ft 3.66 6.96 4.44 7.76 7.52 9.1 0.98 - 3.04
FlowNetC+ft 3.78 6.85 5.28 8.51 8.79 - 0.93 2.27
SPyNet+ft 3.17 6.64 4.32 8.36 8.25 10.1 0.33 0.58 3.07
SPyNet+ft* - - - - 3.36 4.1 - - -

Table 3.1: Average end-point errors (EPE). Results are divided into methods trained with
(+ft) and without fine tuning. SPyNet+ft* uses additional training data compared to
FlowNet+ft. Bold font indicates the most accurate results among the convnet methods.

Classic+NLP FlowNetS FlowNetC SPyNet
Time (s) 102 0.080 0.150 0.069

Table 3.2: Average running time of optical flow methods. All run times are measured on
Flying Chairs and exclude image loading time.

on both the training and the test sets. Second, we extract a validation set from the Sintel
training set, using the same partition as [33]. We fine tune our model independently on
the Sintel Clean and Sintel Final split, and evaluate the EPE. The fine-tuned models are
listed as “+ft” in Table 3.1. We show the qualitative results on MPI-Sintel in Figure 3.4.

Table 3.3 compares our fine-tuned model with FlowNet [33] for different velocities
and distances from motion boundaries. We observe that SPyNet is more accurate than
FlowNet for all velocity ranges except the largest displacements (over 40 pixels/frame).
SPyNet is also more accurate than FlowNet close to motion boundaries (see Figure 3.4),
which is important for many problems.

KITTI and Middlebury. We evaluate KITTI [43] scenes using the base model SPyNet
trained on Flying Chairs. Here we also fine-tune the model using Driving and Monkaa
scenes from [86] and evaluate the fine-tuned model SPyNet+ft*. Fine tuning results in a
significant improvement in accuracy by about 5 pixels. The large improvement suggests
that better datasets are needed and that these could improve the accuracy of SPyNet
further on general scenes.

For the Middlebury [10] dataset, we evaluate the sequences using the base model
SPyNet as well as SPyNet+ft, which is fine-tuned on the Sintel-Final dataset; the Mid-
dlebury dataset itself is too small for fine-tuning. SPyNet is significantly more accurate
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Frame 1 Frame 2 Ground Truth SPyNet

Figure 3.3: Visualization of optical flow estimates using our model (SPyNet) and the
corresponding ground-truth flow fields on the Flying Chairs dataset.

on Middlebury, where FlowNet has trouble with the small motions. Both learned meth-
ods are less accurate than Classic+NL on Middlebury but both are also significantly
faster.

3.4 Analysis
In this section, we analyse our method with previous work with respect to size of our
model, performance-accuracy trade off and the characteristics of filters learned by the
network.

Model Size. Combining spatial pyramids with convnets results in a huge reduction in
model complexity. At each pyramid level, a network, Gk, has 240,050 learned parame-
ters. The total number of parameters learned by the entire network is 1,200,250, with 5
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Frames Ground Truth FlowNetS FlowNetC SPyNet

Figure 3.4: Visual comparison of optical flow estimates using our SPyNet model with
FlowNet on the MPI Sintel dataset. The top five rows are from the Sintel Final set and
the bottom five rows are from the Sintel Clean set. Each set of 5 rows is sorted in the
order of increasing average displacements. SPyNet performs particularly well when the
motions are relatively small.
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Method d0-10 d10-60 d60-140 s0-10 s10-40 s40+
FlowNetS+ft 7.25 4.61 2.99 1.87 5.83 43.24
FlowNetC+ft 7.19 4.62 3.30 2.30 6.17 40.78
SpyNet+ft 6.69 4.37 3.29 1.39 5.53 49.71

(a) Errors on Sintel Final

Method d0-10 d10-60 d60-140 s0-10 s10-40 s40+
FlowNetS+ft 5.99 3.56 2.19 1.42 3.81 40.10
FlowNetC+ft 5.57 3.18 1.99 1.62 3.97 33.37
SpyNet+ft 5.50 3.12 1.71 0.83 3.34 43.44

(b) Errors on Sintel Clean

Table 3.3: Comparison of FlowNet and SpyNet on the Sintel benchmark for different
velocities, s, and distances, d, from motion boundaries.

FlowNetS

FlowNetC

SPyNet

Gk

32,070,472

32,561,032

1,200,250

240,050

Number of Model Parameters

Figure 3.5: Model size of various methods. Our model is 96% smaller than FlowNet.

spatial pyramid levels. In comparison, FlowNetS and FlowNetC [33] have 32,070,472
and 32,561,032 parameters respectively. SPyNet is about 96 % smaller than FlowNet
(Figure 3.5).

The spatial pyramid approach enables a significant reduction in model parameters
without sacrificing accuracy. There are two reasons – the warping function and learning
of residual flow. By using the warping function directly, the convnet does not need to
learn it. More importantly, learning residual flows restricts the range of flow fields in the
output space. Each network only has to model a smaller range of velocities at each level
of the spatial pyramid.

SPyNet also has a small memory footprint. The disk space required to store all the
model parameters is 9.7 MB. This simplifies deployment on mobile or embedded devices
with GPU support; this is future work.
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(a) (b)

Figure 3.6: (a) Visualization of filter weights in the first layer of G2 showing their spa-
tiotemporal nature on RGB image pairs using nearest-neighbor (left) and bilinear (right)
interpolation. (b) Evolution of some example filters across the pyramid levels (from low
resolution (0) to high resolution (4))

Visualization of Learned Filters. Figure 3.6(a) shows examples of filters learned by
the first layer of the network, G2. In each row, the first two columns show the spatial
filters that operate on the RGB channels of the two input images respectively. The third
column is the difference between the two spatial filters, hence representing the temporal
features learned by our model. We observe that most of the spatio-temporal filters in Fig-
ure 3.6(a) are equally sensitive to all color channels, and hence appear mostly grayscale.
Note that the actual filters are 7×7 pixels and are upsampled for visualization.

We observe that many of the spatial filters appear to be similar to traditional Gaussian
derivative filters used by classical methods and have a center-surround structure. These
classical filters are hand crafted and typically are applied in the horizontal and vertical
direction. Here we observe a greater variety of derivative-like filters of varied scales and
orientations. We also observe that some of filters spatially resemble second derivative or
Gabor filters [3]. The temporal filters show a clear derivative-like structure in time.

Figure 3.6(b) illustrates how filters learned by the network at each level of the pyramid
differ from each other. Recall that, during training, each network is initialized with the
network before it in the pyramid. The filters, however, do not stay exactly the same with
training. Most of the filters in our network look like rows 1 and 2, where the filters be-
come sharper with increasing contrast as we progress towards the finer-resolution levels
of the pyramid. However, there are some filters that are similar to rows 3 and 4. These
filters become more defined at higher resolution levels of the pyramid.
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Figure 3.7: Comparison of learned spatio-temporal filters of SPyNet (left) and FlowNet
(right)
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3.5 Discussion

In Figure 3.7, we compare our learned spatio-temporal filters with the spatial filters
learned by FlowNet [33]. We observe that first layer filters of FlowNet [33] appear
more random than the Gabor-like filters common to most neural networks or previous
spatio-temporal filters. We suspect this is because first layer windows do not overlap
common image patches when the motion exceeds a few pixels. In contrast, our pyramid
structure means that the motions are always small and the convolutional windows are
always looking at related patches in two neighboring frames. We find that this leads to
filters, even in the first layer, that resemble classical spatio-temporal filters.

Speed. Optical flow estimation is traditionally viewed as an optimization problem in-
volving some form of variational inference. This is computationally expensive, often
taking seconds or minutes per frame. This has limited the application of optical flow
in robotics, embedded systems, and video analysis. Using a GPU can speed up tradi-
tional methods [131, 150] but with reduced accuracy. Feed forward deep networks [33]
leverage fast GPU convolutions and avoid iterative optimization.

Figure 3.8 shows the speed-accuracy comparisons of several well known methods. All
times shown are measured with the images already loaded in the memory. The errors are
computed as the average EPE of both the clean and final MPI-Sintel sequences. SPyNet
offers a good balance between speed and accuracy; no faster method is as accurate.

Optical flow on identical frames. Computing optical flow on identical frames can
provide a lot of information about the characteristics of the trained network. In order to
validate our network performance on zero motion, we experiment by passing identical
frames as the input to our network. We use the test set of Sintel Clean, which was never
seen by our network as inputs. We observe an average flow magnitude of 0.06 pixels
for identical frames, which is significantly smaller than the average flow magnitude in
Sintel. The average flow magnitude in Sintel is 18.926. We show qualitative results in
Figure 3.9.

3.5 Discussion
Traditional flow methods linearize the brightness constancy equation resulting in an op-
tical flow constraint equation implemented with spatial and temporal derivative filters.
Sometimes methods adopt a more generic filter constancy assumption [2, 20]. Our filters
are somewhat different. The filters learned by SPyNet are used in the direct computation
of the flow by the feed-forward network.

SPyNet is small compared with other recent optical flow networks. Examination of
the filters, however, suggests that it might be possible to make it significantly smaller
still. Many of the filters resemble derivative of Gaussian filters or Gabor filters at various
scales, orientations, spatial frequencies, and spatial shifts. Given this, it may be possible
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Figure 3.8: Average EPE vs. runtime on MPI-Sintel. Zoomed in version on the bottom
shows the fastest methods as of December 2016. Times were measured by us. Adapted
from [151].

to significantly compress the filter bank by using dimensionality reduction or by using a
set of analytic spatio-temporal features. Some of the filters may also be separable.

Early methods for optical flow used analytic spatio-temporal features but, at the time,
did not produce good results and the general line of spatio-temporal filtering decayed.
The difference from early work is that our approach suggests the need for a large filter
bank of varied filters. Note also that these approaches considered only the first convolu-
tional layer of filters and did not seek a “deep” solution. This all suggests the possibility
that a deep network of analytic filters could perform well. This could vastly reduce the
size of the network and the number of parameters that need to be learned.

Note that pyramids have well-known limitations for dealing with large motions [19,
120]. In particular, small or thin objects that move quickly effectively disappear at coarse
pyramid levels, making it impossible to capture their motion. Recent approaches for
dealing with such large motions use sparse matching to augment standard pyramids [19,
149]. Future work should explore adding long-range matches to SPyNet. Alternatively
Sevilla et al. [120] define a channel constancy representation that preserves fine structures
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Frame 1 Frame 2 Both Frames
(SPyNet)

Frame 1 twice
(FlowNet)

Frame 1 twice
(SPyNet)

Figure 3.9: Optical flow using both frames and identical frames. Note that flow for the
latter case for SPyNet is nearly zero. The flow on identical frames has been magnified
by 10x for visualization.

in a pyramid. The channels effectively correspond to filters that could be learned.
A spatial pyramid can be thought of as the simple application of a set of linear filters.

Here we take a standard spatial pyramid but one could learn the filters for the pyramid
itself. SPyNet also uses a standard warping function to align images using the flow
computed from the previous pyramid level. This too could be learned.

An appealing feature of SPyNet is that it is small enough to fit on a mobile device.
Future work will explore a mobile implementation and its applications. Additionally we
will explore extending the method to use more frames (e.g. 3 or 4). Multiple frames
could enable the network to reason more effectively about occlusion.

3.6 Conclusion
In summary, we have described a new optical flow method that combines features of
classical optical flow algorithms with deep learning. In a sense, there are two notions
of “deepness” here. First we use a “deep” spatial pyramid to deal with large motions.
Second we use deep neural networks at each level of the spatial pyramid and train them
to estimate a flow update at each level. This approach means that each network has
less work to do than a fully generic flow method that has to estimate arbitrarily large

37



Chapter 3 Spatial Pyramid Networks

motions. At each pyramid level we assume that the motion is small (on the order of a
pixel). This is borne out by the fact that the network learns spatial and temporal filters that
resemble classical derivatives of Gaussians. Because each sub-task is so much simpler,
our network needs many fewer parameters than previous methods like FlowNet. This
results in a method with a small memory footprint that is faster than existing methods.
At the same time, SPyNet achieves an accuracy comparable to FlowNet, surpassing it in
several benchmarks. This opens up the promise of optical flow that is accurate, practical,
and widely deployable.
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Learning Human Optical Flow

A significant fraction of videos on the Internet contain people moving [44] and the lit-
erature suggests that optical flow plays an important role in understanding human ac-
tion [68, 125]. Action recognition datasets [74, 125] contain human motion as a major
component. The 2D motion of humans in video, or human optical flow, is an impor-
tant feature that provides a building block for systems that can understand and interact
with humans. Human optical flow is useful for various applications including analyzing
pedestrians in road sequences, motion-controlled gaming, activity recognition, human
pose estimation etc.

Despite this, optical flow has previously been treated as a generic, low-level vision
problem. Given the importance of people, and the value of optical flow in understand-
ing them, we develop a flow algorithm that is specifically tailored to humans and their
motion. Such motions are non-trivial since humans are complex, articulated objects that
vary in shape, size and appearance. They move quickly, adopt a wide range of poses, and
self-occlude or occlude in multi-person scenarios.

Our goal is to obtain more accurate 2D motion estimates for human bodies by train-
ing a flow algorithm specifically for human movement. To do so, we create a large and
realistic dataset of humans moving in virtual worlds with ground-truth optical flow (Fig-
ure 4.1(a)), called the Human Optical Flow dataset. This is comprised of two parts; the
Single-Human Optical Flow dataset (SHOF), where the image sequences contain only
one person in motion and the Multi-Human Optical Flow dataset (MHOF) where images
contain multiple people involving significant occlusion between them.

We evaluate the generalization of both our datasets by using them to train optical flow
networks. We train SPyNet [103] using SHOF dataset to obtain a baseline and then
train SPyNet as well as PWC-Net [130] on the MHOF dataset. In both cases, we see a
significant improvement in human optical flow estimation. The networks trained obtain
state-of-the-art optical flow on the test sequences of this dataset (Figure 4.1(b)). The
trained networks also generalize to real video sequences (Figure 4.1(c)).

Several datasets and benchmarks [10, 22, 43] have been established to drive the progr-
ess in optical flow. We argue that these datasets are insufficient for the task of human
motion estimation and, despite its importance, no attention has been paid to datasets and
algorithms for human optical flow. One of the main reasons is that dense human motion
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(a) Our dataset (b) Results on synthetic scenes (c) Results on real scenes

Figure 4.1: (a) We simulate human motion in virtual worlds creating an extensive dataset
with images (top row) and flow fields (bottom row); color coding from [10]. (b) We train
an existing deep network for human motion estimation and show that it performs better
when trained on our dataset and (c) generalizes to human motions in real world scenes.
Columns show single-person and multi-person cases alternately.

is extremely difficult to capture accurately in real scenes. Without ground truth, there
has been little work focused specifically on estimating human optical flow. To advance
research on this problem, we provide a dataset tailored to human optical flow.

A key observation is that recent work has shown that optical flow methods trained on
synthetic data [33, 61, 103] generalize relatively well to real data. Additionally, these
methods obtain state-of-the-art results with increased realism of the training data [41,
86]. This motivates our effort to create a dataset designed for human motion. To that end,
we use the SMPL body model [81] to generate about a hundred thousand different human
shapes. We place them on random indoor backgrounds and simulate human activities
like running, walking, dancing etc. using motion capture data [80]. We extend this by
using the more holistic SMPL+H [113] body and hands model to include finger motion,
and render multiple humans in each image. Thus, we create a large virtual dataset that
captures the statistics of natural human motion in both single and multi-person scenarios.
We then train optical flow networks on our datasets and evaluate their performance for
estimating human motion. While our dataset can be used to train any flow method, we
choose SpyNet and PWC-Net because they are compact and computationally efficient.
In summary, our major contributions are:

1. We provide the Single-Human Optical Flow dataset (SHOF) of human bodies in
motion with realistic textures and backgrounds, having 146,020 frame pairs for
single-person scenarios.

2. We extend this by providing the Multi-Human Optical Flow dataset (MHOF), with
111,312 frame pairs of multiple human bodies in motion, with improved textures
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and realistic visual occlusions, but without (self-)collisions or intersection of body
meshes. These two datasets together comprise the Human Optical Flow dataset.

3. We show that networks trained using our dataset outperform previous optical flow
methods by 30% on the single-person (SHOF) and 10-20 % on the multi-person
(MHOF) Human Optical Flow dataset, and they generalize to real world scenes.

4. We provide the data, code, and trained models at http://humanflow.is.tue.
mpg.de for research purposes.

4.1 Human Optical Flow Dataset

Our approach generates a realistic dataset of synthetic human motions by simulating
them against different realistic backgrounds. We use parametric models [81, 113] to gen-
erate synthetic humans with a wide variety of different human shapes and appearances.
We then use the Cycles rendering engine of Blender1 to generate realistic synthetic im-
age frames and optical flow, to create the Human Optical Flow dataset. This is comprised
of two parts. We first create the Single-Human Optical Flow (SHOF) dataset using the
body-only SMPL model [81] in images containing a single synthetic human. However,
image statistics are different for the single- and multi-person case, as multiple people
tend to occlude each other in complicated ways. For this reason we also create the Multi-
Human Optical Flow (MHOF) dataset to better capture this realistic interaction. To make
images even more realistic, we replace SMPL [81] with the SMPL+H [113] that models
the body together with fingers, to have richer motion variation. In the following section,
we describe the components of our rendering pipeline, shown in Figure 4.2. For clarity,
for each component we first describe the setup for the SHOF dataset, followed by the
changes for the MHOF dataset.

Body Model and Rendering Engine. The main challenge in the generation of realistic
human optical flow is modeling realistic articulated motions. We use the SMPL [81] and
SMPL+H [113] models, parameterized by pose and shape parameters to change the body
posture and identity, as shown in Figure 4.2.

The models also contain a UV appearance map that allows us to change the skin tone,
face features and clothing texture of the resulting virtual humans. A key component of
Blender in this project is its Vector pass. This render pass is typically used for producing
motion blur, and it produces the motion in image space for every pixel; i.e. ground truth
optical flow. We are mainly interested in the result of this pass, together with the color
rendering of the textured bodies.

1https://www.blender.org
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Figure 4.2: Pipeline for generating the RGB frames and ground truth optical flow for the
Human Optical Flow dataset. Hand poses are only used for the Multi-Human Optical
Flow dataset (MHOF).

Body Poses. In order to obtain a varied set of poses, we use motions from rich Mo-
Cap datasets in the literature, by converting 3D marker positions to SMPL shape and
pose parameters using MoSh [80]. For the SHOF dataset, we employ the Human3.6M
dataset [62]. Human3.6M contains five subjects for training (S1, S5, S6, S7, S8) and two
for testing (S9, S11). Each subject performs 15 actions twice, resulting in 1,559,985
frames for training and 55,727 for testing. These sequences are subsampled at a rate of
16 fps, resulting in 97,499 training and 34,420 testing poses from Human3.6M.

For the MHOF dataset, we choose different MoCap datasets to increase motion varia-
tion, namely the CMU Mocap and HumanEva [121] MoCap datasets. The CMU MoCap
dataset consists of 2,605 sequences of 23 high-level action categories. Here we use
more than 2,000 of these sequences. From the HumanEva dataset we use more than 10
sequences performing actions from 6 different action categories. To reduce redundant
poses, sequences are subsampled to 12 fps resulting in 321,873 poses. As a result the
final MHOF dataset has 254,211 poses for training, 32,670 for validation and 34,992
for testing.
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Hand Poses. Traditional MoCap systems and datasets [121] record the motion of full
bodies, and avoid the tedious capture of detailed finger motion. However, in natural
settings people jointly use their body, hands and fingers to communicate social cues and
to interact with the physical world. In this direction, for the MHOF dataset, we use the
SMPL+H model [113] and augment the body-only MoCap datasets, described above,
with finger motion. Instead of using random finger poses that would generate unrealistic
optical flow, we employ the “embodied hands” dataset [113] and sample continuous
finger motion to generate realistic optical flow. We use 43 sequences of hand motion
with 37,232 frames recorded at 60 Hz by [113]. Similarly to body MoCap, we subsample
hand MoCap to 12 fps to reduce overlapping poses without sacrificing variability.

Body Shapes. To maximize the variance in the SHOF dataset, for each subsequence
of 20 frames we use a random body shape drawn from a gender-specific uniform dis-
tribution of SMPL shape parameters bounded by [−3,3] standard deviations for each
shape coefficient according to the shape distribution in CAESAR [111]. Using a para-
metric distribution ensures that each subsequence of frames has a unique body shape.
A uniform distribution has more extreme shapes than the Gaussian distribution inferred
originally from CAESAR, while avoiding unlikely shapes by strictly bounding the coef-
ficients. For the MHOF dataset, we use similar sampling with only small differences to
avoid self-intersecting meshes that would result in generation of inaccurate optical flow.
For this, we use shorter subsequences of 10 frames to reduce intersections between dif-
ferent virtual humans. We further bound sampling of shape parameters to the narrower
range of [−2.7,2.7] standard deviations for each shape coefficient, since unlikely shapes
are more prone to mesh self-intersections after re-targeting motion from subjects with
different shape.

Scene Illumination. Optical flow estimation should be robust to different scene illu-
mination. In order to achieve this invariance, we illuminate the bodies with Spherical
Harmonics lighting [48]. Spherical Harmonics define basis vectors for light directions
that are scaled and linearly combined. This compact parameterization is particularly use-
ful for randomizing the scene light. The linear coefficients are randomly sampled with
a slight bias towards natural illumination. The coefficients are uniformly sampled be-
tween −0.7 and 0.7, apart from the ambient illumination (which is strictly positive and
a minimum of 0.3) and the vertical illumination (which is strictly negative to prevent
illumination from below).

Body Texture. To provide a varied set of appearances to the bodies in the scene, we
use textures from two different sources. A wide variety of human skin tones is extracted
from the CAESAR dataset [111]. Given SMPL registrations to CAESAR scans, the orig-
inal per-vertex color in the CAESAR dataset is transferred into the SMPL texture map.
Since fiducial markers were placed on the bodies of CAESAR subjects, we remove them
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from the textures and inpaint them to produce a natural texture. In total we use 166 CAE-
SAR textures that are of good quality. The main drawback of CAESAR scans is their
homogeneity in terms of outfit, since all of the subjects wore grey shorts and the women
wore sports bras. In order to increase the clothing variety, we also use textures extracted
from our 3D scans (referred as non-CAESAR in the following), to which we register
SMPL with 4Cap [100]. A total of 772 textures from 7 different subjects with different
clothes were captured. All textures were anonymized by replacing the face by the aver-
age face in CAESAR, after correcting it to match the skin tone of the texture. Textures
are grouped according to the gender, which is randomly selected for each virtual human.
For the SHOF dataset, the textures were split in training and testing sets with a 70/30
ratio, while each texture dataset is sampled with a 50% change. For the MHOF dataset,
we introduce more refined splitting with a 80/10/10 ratio for the train, validation and
test sets. Moreover, since we introduce also finger motion, we want to favour sampling
non-CAESAR textures, due to the bad quality of CAESAR texture maps for the finger
region. Thus each texture is sampled with equal probability.

Hand Texture. As described above, creating texture maps depends on model registra-
tion in 3D scans which transfers color from the scan to the texture map of the model.
However, certain parts of the body are hard to be scanned due to occlusions or mea-
surement limitations, and are frequently missing in 3D scans. As a result, texture maps
are particularly noisy for these regions or might even have holes. Hands and fingers are
a very representative case. Since texture is important for optical flow, we augment the
body texture maps of the previous section to improve hand regions. For this we follow
a divide and conquer approach; we first capture hand-only scans with a 3dMD scanner
similar to the one in [113], then we create hand-only textures using the MANO model
and the registration method of [113], getting 176 high resolution textures from 20 sub-
jects, and finally we use these hand-only textures to replace the problematic hand regions
in the full-body texture maps. For this, we need to find the best matching hand-only tex-
ture for every body texture. Therefore, we convert all texture maps in HSV space, and
compute the mean HSV value for each texture map from standard sampling regions; for
full body textures we sample face regions without facial hair, i.e. the cheekbones and
the area between the eyebrows, while for hand-only textures we sample the center of
the outer palm. Subsequently, for each body texture map we find the closest hand-only
texture map in HSV space, and shift the values of the latter by the HSV difference, so
that the the hand skin tone becomes more similar to the facial skin tone. Finally, this
improved hand-only texture map is used to replace the pixels in the hand-region of the
full body texture map.

Background Texture. The other crucial component of image appearance is the back-
ground. Since human motion rarely happens in front of clean and easily segmentable
scenes, realistic backgrounds should be included in the synthetic scenes. For the SHOF
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dataset, we found that using random indoor images from the LSUN dataset [158] as
background provided a good compromise between simplicity and the complex task of
generating varied full 3D environments. We use 417,597 images from the LSUN cat-
egories kitchen, living room, bedroom and dining room. The background images are
placed as billboards 9 meters from the camera, and are not affected by the spherical
harmonics lighting. To increase variability in background appearance, for the MHOF
dataset, we additionally employ the Sun397 dataset [154], that contains images for 397
highly variable indoor and outdoor scenes. For quality reasons, we reject all images with
resolution smaller than 512× 512 px, while we also reject images that contain humans
using Mask-RCNN [1, 55], as we do not have ground truth for these humans. As a re-
sult, we use 30,222 images, split in 24,178 for the training set and 3,022 for each of
the validation and test sets. We further increase the distance between the camera and
background billboard to 12 meters, to increase the space in which virtual humans can
move without colliding frequently to each other, while still being close enough for visual
occlusions.

Segmentation Mask. We use Blender’s material pass and store the ground-truth body
part segmentation for each frame. Although the body part segmentation for both SMPL
and SMPL+H models is similar, SMPL models the palm and fingers as one part, while
SMPL+H has a different part segment for each finger bone. Figure 4.3 shows an example
body part segmentation for SMPL+H. These segmentation masks allow us to perform a
per body-part evaluation of our optical flow estimation.

(Self-)Collision. The MHOF dataset contains multiple virtual humans moving differ-
ently, so there are high chances of collisions and penetrations. This is undesirable, not
only because penetrations are physically implausible and unrealistic, but also because the
generated ground truth optical flow might have artifacts. For these reasons, we employ
a collision detection method to avoid intersections and penetrations, by re-sampling the
parameters that lead to such. Instead of using simple bounding boxes for rough collision
detection, we draw inspiration from [136] and perform accurate and efficient collision
detection on the triangle level using bounding volume hierarchies (BVH) [134]. This
level of detailed detection allows for challenging occlusions with small distances be-
tween virtual humans, that can commonly be observed for realistic interactions between
real humans. This method is useful not only for inter-person collision detection, but also
for self-intersections. This is especially useful for our scenarios, as re-targeting body and
hand motion to people of different shapes might result in unrealistic self-penetrations.
The method is applicable out of the box, with the only exception the fact that we exclude
checks of neighboring body parts that are always or frequently in contact, e.g. upper and
lower arm, or the two thighs.
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Figure 4.3: Body part segmentation for the SMPL+H model. Symmetrical body parts
are labeled only once. Finger joints follow the same naming convention as shown for the
thumb. (Best viewed in color)
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Increasing Image Realism. One of the main differences between synthetic and real
images are the imperfections existing in the latter. Fully sharp images rendered with
perfectly static virtual cameras do not represent well the images captured in real situa-
tions. In order to increase realism, we introduced three types of image imperfections.
First, in 30% of the generated sequences we introduced camera motion between frames.
This motion perturbs the location of the camera with Gaussian noise of 1 cm standard
deviation between frames and rotation noise of 0.2 degrees standard deviation per di-
mension in an Euler angle representation. Second, motion blur was added to the scene.
The motion blur was implemented with the Vector Blur Node in Blender, and integrated
over 2 frames sampled with 64 steps between the beginning and end point of the motion.
Finally, general image blur was added to 30% of the images, as Gaussian blur with a
standard deviation of 1 pixel. The camera motion parameters in the MHOF dataset are
kept fixed within a subsequence to allow for more consistent optical flow.

Scene Compositing. For animating virtual humans, each MoCap sequence is selected
at least once. To increase variability, each sequence is split into subsequences. For the
first frame of each subsequence we sample a different shape, body and background tex-
ture, lights, blurring and camera motion parameters, while we also re-position virtual
humans on the horizontal plane and introduce a random rotation around the z-axis for
variability in the motion direction. For the SHOF dataset, we use subsequences of 20
frames, and at the beginning of each one, the single virtual human is re-positioned in
the scene such that the pelvis is projected onto the image center. For the MHOF dataset,
we increase the variability with smaller subsequences of 10 frames and introduce more
challenging visual occlusions by uniformly sampling the number of virtual humans in the
range [4,8]. To make sure that each sequence is selected at least once, we deterministi-
cally choose it for the first virtual human, while for the rest we sample randomly to make
the virtual humans move differently. In this direction, we sample MoCap sequences S j

with |S j| frames with a probability of p j =
|S j|

∑
|S|
j=1 |S j|

. Since the chosen sequences might

have a different length, we further randomly sample for each one the frame ID for the
starting frame, to encourage use of the whole sequences. In contrast to the SHOF dataset,
for the MHOF dataset, the virtual humans are not re-positioned at the center, as they
would all collide. Instead, they are placed at random locations on the horizontal plane
within camera visibility, making sure there are no collisions with other virtual humans
or the background plane during the whole subsequence.

Dataset Details. In comparison with other optical flow datasets, our SHOF dataset is
larger by an order of magnitude (see Table 4.1). The SHOF dataset contains 135,153
training frames and 10,867 test frames with optical flow ground truth. Our MHOF
dataset has 86,259 training, 13,236 test and 11,817 validation frames. This dataset
contains optical flow ground truth for the much more challenging scenario of multiple
moving people moving in the scene. For the SHOF dataset we keep the resolution small
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Dataset # Train Frames # Test Frames Resolution
MPI Sintel [22] 1,064 564 1024×436
KITTI 2012 [43] 194 195 1226×370
KITTI 2015 [89] 200 200 1242×375
Virtual Kitti [41] 21,260 − 1242×375
Flying Chairs[33] 22,232 640 512×384
Flying Things [86] 21,818 4,248 960×540
Monkaa [86] 8,591 − 960×540
Driving [86] 4,392 − 960×540
SHOF (ours) 135,153 10,867 256×256
MHOF (ours) 86,259 13,236 640×640

Table 4.1: Comparison of the Human Optical Flow datasets, namely the Single-Human
Optical Flow (SHOF) and the Multi-Human Optical Flow (MHOF) dataset, with previ-
ous optical flow datasets

at 256× 256 px to facilitate easy deployment for training neural networks. This also
speeds up the rendering process in Blender for generating large amounts of data. We
show the comparisons of processing time of different models on the single-person data
in Table 4.2(a). For the MHOF dataset, we increase the resolution to 640×640 px to be
able to reason about optical flow even in small body parts like fingers, using SMPL+H.
Our data is extensive, containing a wide variety of human shapes, poses, actions and
virtual backgrounds to support deep learning systems.

4.2 Learning
Our neural network derives from SPyNet [103] as described in Chapter3, which employs
different convnets at different levels of an image pyramid. In SPyNet, these convnets are
trained independently and sequentially to estimate optical flow. In SPyNet, fixed down-
sampling and upsampling operators d,u are used. In contrast, we introduce learnable
convolutional layers d,u, for downsampling and upsampling between the pyramid lev-
els. A differential warping operator, w [63] facilitates our model to be fully differentiable
and end-to-end trainable. Thus, we perform joint training of all the convnets at different
pyramid levels rather than training them sequentially like SPyNet. We briefly describe
the spatial pyramid structure and introduce our network and learning process below.

Our architecture consists of 4 pyramid levels. For simplicity, we show 3 of the 4
pyramid levels in Figure 4.4. Each level works on a particular resolution of the image.
The top level works on the full resolution and the images are downsampled as we move
to the bottom of the pyramid. Each level learns a convolutional layer d, to perform
downsampling of images. Similarly, a convolution layer u, is learned for upsampling
optical flow. At each level, we also learn a convnet Gk to predict optical flow residuals
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Figure 4.4: A Spatial Pyramid Network [103] for Optical Flow. At each pyramid level,
network Gk predicts flow residuals vk that get added up to produce full flow V2. w is
warping operator. u,d are learned convolutional layers that upsample flows and down-
sample images. The figure shows 3 pyramid levels for simplicity. Our implementation
uses 4 levels.

vk at that level. These flow residuals get added at each level to produce the full flow, VK
at the finest level of the pyramid.

Each convnet Gk takes a pair of images as inputs along with flow Vk−1 obtained by
upsampling the output of the previous level. The second frame is however warped us-
ing Vk−1 and the triplet {I1

k ,w(I
2
k ,Vk−1), Vk−1} is fed as input to the convnet Gk. The

structure of the convnets Gk is same as SPyNet. Each of the convnets Gk is a five layer
network containing {32, 64, 32, 16, 2} feature maps with 7x7 kernels. At each level, the
downsampling layers d learn 3x3 convolutional kernels with 6 feature maps to operate
on 6 channels of image pairs. Similarly, the upsampling layers u learn 4x4 convolutional
kernels with 2 feature maps to operate on 2-channel flows. We use w to refer to a bilinear
warping operator which is non-learnable. The general structure of spatial pyramids can
be seen in [103]. We import the weights of our convnets Gi from the first four convnets
{G0,G1,G2,G3} of SPyNet pre-trained on the Flying Chairs dataset [33]. We use a dif-
ferentiable warping operator, w [63]. We now construct our fully differentiable spatial
pyramid architecture and train it end-to-end minimizing a flow end-point error (EPE).

Hyperparameters. We use Adam [71] to optimize our loss at a constant learning rate
of 10−6, β1 = 0.9 and β2 = 0.999. We use a batch size of 8 and run 4000 iterations per
epoch. We train our model for 100 epochs on the Single-Human Optical Flow dataset.
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Method Average EPE Time(s)
Zero 0.6611 -
FlowNet [33] 0.5846 0.080
PCA Flow [151] 0.3652 10.357
SPyNet [103] 0.2066 0.038
Epic Flow [110] 0.1940 1.863
LDOF [19] 0.1881 8.620
Flow Fields [9] 0.1709 4.204
SpyNet+SHOF 0.1164 0.031

Table 4.2: EPE comparisons and evaluation times of different optical flow methods on
the SHOF dataset. Zero refers to the EPE when zero flow is always used for evaluation.
Evaluation times are based on the SHOF dataset with 256×256 image resolution.

We use the Torch72 framework for our implementation and use four Nvidia K80 GPUs
to train in parallel. It takes 1 day for our model to train.

Learning Multi Human Flow For learning on the Multi-Human Optical Flow dataset
(MHOF), we train two different architectures, SpyNet [103] and PWC-Net [130]. We
refer to the trained networks on the MHOF dataset as SpyNet+MHOF and PWC+MHOF.
We follow the same training procedure as followed SpyNet and PWC-Net, and initialize
the network weights to the trained SpyNet and PWC-Net before training on the MHOF
dataset. We evaluate the results using end-point error on the whole image, as well as
different parts of the human body and hands.

4.3 Experiments
We compare the average end-point errors (EPEs) of competing methods in Table 4.2
along with the time for evaluation. Human motion is complex and general optical flow
methods fail to capture it. Our trained network SpyNet+SHOF outperforms previous
methods, and SPyNet [103] in particular, in terms of average EPE on the SHOF dataset.
This indicates that other optical flow networks can also improve their performance on hu-
man motion using our dataset. We show visual comparisons in Figure 4.5. Similarly, the
networks SPyNet+MHOF, PWC+MHOF trained on Multi-Human Optical Flow datasets
outperform previous methods on average and on each of the different body parts as shown
in Table 4.3. The visual comparisons are shown in Figure 4.6.

We observe that FlowNetS [33] shows poor generalization on our dataset. Since the
results of FlowNetS are very close to the zero flow baseline (Tables 4.2, 4.3), we cross-
verify by evaluating FlowNetS on a mixture of Flying Chairs [33] and Human Optical

2http://torch.ch
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4.3 Experiments

Frame1 Frame2 Ground Truth FlowNetS PCA-Layers SPyNet EpicFlow LDOF FlowFields Spynet+SHOF

Figure 4.5: Visual comparison of optical flow estimates using different methods on the
Single-Human Optical Flow (SHOF) test set. From left to right, we show Frame 1,
Frame 2, Ground Truth flow, results on FlowNetS [33], PCA-Layers [151], SPyNet
[103], EpicFlow [110], LDOF [19], FlowFields [9] and SpyNet+SHOF (ours).
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Parts SpyNet PWC FlowNet FlowNet2 PWC SpyNet
+MHOF +MHOF

Average 0.448 0.411 0.882 0.346 0.295 0.409
Global 1.772 1.786 2.532 1.688 1.337 1.578
Head 2.128 2.289 3.283 1.942 1.568 1.804
lCalf 2.880 3.056 3.332 2.542 1.779 2.451
lFoot 4.198 4.583 4.334 3.701 2.623 3.750
lForeArm 4.695 4.564 5.011 4.235 3.424 4.147
lHand 6.441 6.424 6.666 5.695 4.651 5.719
lShoulder 1.923 2.073 2.773 1.966 1.599 1.757
lThigh 2.067 2.144 2.729 1.974 1.488 1.814
lToes 4.325 4.666 4.481 4.094 3.228 4.111
lUpperArm 2.879 2.887 3.561 2.816 2.219 2.524
Neck 1.732 1.734 2.621 1.629 1.344 1.478
rCalf 3.006 3.216 3.479 2.648 1.886 2.592
rFoot 4.336 4.753 4.471 3.847 2.759 3.876
rForeArm 4.835 4.636 5.140 4.286 3.473 4.223
rHand 6.479 6.326 6.674 5.581 4.561 5.536
rShoulder 2.013 2.155 2.929 2.066 1.659 1.850
rThigh 2.108 2.230 2.827 2.048 1.551 1.870
rToes 4.515 4.923 4.667 4.261 3.348 4.274
rUpperArm 3.035 3.005 3.729 2.883 2.280 2.643
Spine 1.682 1.690 2.403 1.621 1.313 1.530
Spine1 1.760 1.785 2.473 1.704 1.406 1.618
Spine2 1.754 1.824 2.546 1.752 1.425 1.630

Table 4.3: Comparison using end point error (EPE) on the Multi-Human Optical Flow
dataset. We show average EPE and body part specific EPE, where part labels follow
from Figure 4.3.

Flow dataset and observe that the flow outputs on human optical flow dataset is quite ran-
dom (see Figure 4.5). The main reason is that our dataset contains a significant amount
of small motions and it is known that FlowNetS does not perform very well on small
motions. SPyNet [103] performs quite well and is able to generalize to body motions.
The results however look noisy in many cases.

Our dataset employs a layered structure where a human is placed against a background.
As such, layered methods like PCA-layers [151] perform very well on a few images (row
6 in Figure 4.5) where they are able to segment a person from the background. However,
in most cases, they do not obtain good segmentation into layers.

Previous state-of-the-art methods like LDOF [19], Epic-Flow[110] and FlowFields
[9] perform better than others. They get a good overall shape, and smooth backgrounds.
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Frame1 Ground Truth FlowNet2 LDOF PCA-Layers EpicFlow SPyNet Spynet+MHOF PWC PWC+MHOF

Figure 4.6: Visual comparison of optical flow estimates using different methods on the
Multi-Human Optical Flow (MHOF) test set. From left to right, we show Frame 1,
Ground Truth flow, results on FlowNet2 [61], LDOF [19], PCA-Layers [151], EpicFlow
[110], SPyNet [103], SpyNet+MHOF (ours), PWC-Net [130] and PWC+ MHOF (ours).

However, their estimation is quite blurred. They tend to miss the sharp edges that are
typical of human hands and legs. They are also significantly slower.

In contrast, our network outperforms the state-of-the-art optical flow methods by 30%
on the Single-Human Optical Flow dataset. Our qualitative results show that our method
can capture sharp details like hands and legs of the person. Experiments on the MHOF
dataset show an improvement of about 10-20% using the same networks, SPyNet and
PWC-Net (see Table 4.3). Since, our test data is comparatively large, we evaluate only
the fastest optical methods on our dataset.

Real Scenes. We show a visual comparison of results on real-world scenes of people
in motion. We collect these scenes by cropping people from real world videos as shown
in Figure 4.7. We use DPM [37] for detecting people and compute bounding box regions
in two frames using the ground truth of the MOT16 dataset [90].
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Figure 4.7: We use a person detector to crop out people from real-world scenes (left) and
use our model to compute optical flow on the cropped section (right).

We visually compare our results with other popular optical flow methods on real world
scenes using models trained on the SHOF (Figure 4.8) and the MHOF (Figure 4.9)
datasets. The performance of PCA-Layers [151] is highly dependent on its ability to
segment. Hence, we see only a few cases where it looks visually correct. SPyNet [103]
gets the overall shape but the results look noisy in certain image parts. While LDOF [19],
EpicFlow [110] and FlowFields [9] generally perform well, they often find it difficult to
resolve the legs, hands and head of the person. The results from models trained on Hu-
man Optical Flow datasets look appealing especially while resolving the overall human
shape, and various parts like legs, hands and the human head. These models also per-
forms very well under occlusions when the full body is not visible, and under occlusions
with multiple people.

Timing Evaluation. Although some of the methods do quite well on our benchmark,
they tend to be slow due to their complex nature. As such, they are not likely to be used
in real time or embedded applications. We show timing comparisons on a pair of frames
in Table 4.2. We show a simple way of learning with human optical flow data using fast
optical flow networks. Our model takes 31 ms for inference on NVIDIA TitanX. As such
it can run in real time at 32 fps.

4.4 Conclusion
In summary, we created an extensive dataset containing images of realistic human shapes
in motion together with groundtruth optical flow. The realism and extent of this dataset,
together with an end-to-end trained system, allows our networks to outperform previous
state-of-the-art optical flow methods in our new human-specific dataset. Furthermore,
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Frame 1 Frame 2 PCA-Layers SPyNet EpicFlow LDOF FlowFields SPyNet+SHOF

Figure 4.8: Visual comparison of optical flow estimates using different methods on real
scenes. From left to right, we show Frame 1, Frame 2, results on PCA-Layers [151], and
SPyNet [103], EpicFlow [110], LDOF [19], FlowFields [9] and SPyNet+SHOF (ours).
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4.4 Conclusion

we show that our method generalizes to human motion in real world scenes for optical
flow computation. Our method is compact and runs in real time making it highly suitable
for phones and embedded devices.

The dataset and our focus on human optical flow opens up a number of research di-
rections in human motion understanding and optical flow computation. We would like to
extend our dataset by modeling more diverse clothing and outdoor scenarios. A direction
of potentially high impact for this work is to integrate it in end-to-end systems for ac-
tion recognition, which typically take pre-computed optical flow as input. The real-time
nature of the method could support motion-based interfaces, potentially even on devices
like cell phones with limited computing power. The data, model, and training code is
available, enabling researchers to apply this to problems involving human motion.

57



Chapter 4 Learning Human Optical Flow

Parts SpyNet PWC FlowNet FlowNet2 PWC SpyNet
+MHOF +MHOF

lIndex0 6.984 7.125 7.176 6.393 5.309 6.347
lIndex1 7.132 7.315 7.271 6.758 5.741 6.617
lIndex2 7.014 7.223 7.086 6.905 6.028 6.641
lMiddle0 7.021 7.178 7.268 6.342 5.215 6.337
lMiddle1 7.157 7.388 7.356 6.679 5.659 6.570
lMiddle2 6.867 7.123 6.981 6.769 5.865 6.449
lPinky0 6.370 6.559 6.617 5.927 4.957 5.740
lPinky1 6.595 6.828 6.766 6.258 5.379 6.033
lPinky2 6.393 6.635 6.478 6.282 5.486 5.990
lRing0 6.901 7.021 7.152 6.117 5.047 6.159
lRing1 6.941 7.135 7.137 6.374 5.383 6.335
lRing2 6.745 6.987 6.850 6.554 5.705 6.309
lThumb0 6.205 6.167 6.264 5.676 4.821 5.581
lThumb1 6.348 6.418 6.453 6.001 5.099 5.802
lThumb2 6.495 6.613 6.574 6.297 5.460 6.066
rIndex0 6.896 7.002 7.128 6.165 5.186 6.103
rIndex1 7.016 7.220 7.221 6.515 5.615 6.394
rIndex2 6.778 7.029 6.916 6.623 5.818 6.353
rMiddle0 7.105 7.183 7.331 6.249 5.223 6.231
rMiddle1 7.026 7.215 7.224 6.459 5.512 6.350
rMiddle2 6.634 6.871 6.772 6.496 5.633 6.158
rPinky0 6.443 6.469 6.623 6.034 4.969 5.641
rPinky1 6.392 6.491 6.548 6.159 5.162 5.706
rPinky2 6.148 6.265 6.260 6.071 5.143 5.611
rRing0 6.931 6.921 7.161 6.071 5.006 5.996
rRing1 6.716 6.803 6.915 6.062 5.123 5.961
rRing2 6.552 6.702 6.677 6.329 5.438 6.017
rThumb0 5.930 5.959 6.173 5.452 4.609 5.325
rThumb1 6.196 6.241 6.411 5.678 4.877 5.581
rThumb2 6.326 6.418 6.478 5.935 5.210 5.808

Table 4.4: Comparison using End Point Error (EPE) on the Multi-Human Optical Flow
dataset. We show average EPE on each of the fingers that follow from Figure 4.3. Note
that EPE on the hand parts is larger that other body parts (Table 4.3) which is critical to
problems like hand-pose estimation.
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Chapter 5

Competitive Collaboration
In the previous chapters, we used supervised learning to train optical flow networks.
However, we did not model any explicit constraints that account for the structure of the
scene. One can use depth to model the structure of the scene. In a video, depth and
camera motion can account for scene structure, and optical flow can be used for estimat-
ing independent object motion. Therefore, integrating geometry with motion requires
solving multiple problems which requires training multiple networks.

To facilitates the coordinated training of multiple specialized neural networks to solve
complex problems, we introduce Competitive Collaboration (CC). This framework fa-
cilitates neural networks learn to collaborate and compete in alternating cycles, thereby
achieving specific goals. We formalize Competitive Collaboration as a three-player
game, consisting of two competitors and a moderator, where the moderator takes the
role of a critic and two competitors collaborate to train the moderator. The idea of col-
laboration can also be seen as neural expectation maximization [49] where one model is
trained to distribute data to other models. For unsupervised learning, these ideas have
been mainly used to model the data distribution [49] and have not been applied to unsu-
pervised training of regression or classification problems.

5.1 Competitive Collaboration
Competitive Collaboration is formulated as a three-player game consisting of two play-
ers competing for a resource that is regulated by a moderator as illustrated in Figure 5.1.
Consider an unlabeled training dataset D = {Di : i ∈ N}, which can be partitioned into
two disjoint sets. Two players {R,F} compete to obtain this data as a resource, and each
player tries to partition D to minimize its loss. The partition is regulated by the mod-
erator’s output m = M(Di),m ∈ [0,1]Ω, and Ω is the output domain of the competitors.
The competing players minimize their loss function LR,LF respectively such that each
player optimizes for itself but not for the group. To resolve this problem, our training
cycle consists of two phases. In the first phase, we train the competitors by fixing the
moderator network M and minimizing

E1 = ∑
i

∑
Ω

m ·LR(R(Di))+(1−m) ·LF(F(Di)), (5.1)
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Chapter 5 Competitive Collaboration

Figure 5.1: Training cycle of Competitive Collaboration: The moderator M drives two
competitors {R,F} (first phase, left). Later, the competitors collaborate to train the mod-
erator to ensure fair competition in the next iteration (second phase, right).

where · is the elementwise product. However, the moderator M also needs to be trained.
This happens in the second phase of the training cycle. The competitors {R,F} form a
consensus and train the moderator M such that it correctly distributes the data in the next
phase of the training cycle. In the collaboration phase, we fix the competitors and train
the moderator by minimizing

E2 = E1 +∑
i

∑
Ω

LM(Di,R,F), (5.2)

where LM is a loss that denotes a consensus between the competitors {R,F}. Competitive
Collaboration can be applied to more general problems of training multiple task-specific
networks. In the rest of the chapter, we will study the convergence properties of the
framework and apply it to mixed domain learning on MNIST and SVHN digits.

5.2 Example
Competitive collaboration (CC) can be seen as a general learning framework for training
multiple task-specific networks. To showcase this generality, we demonstrate CC on a
mixed-domain classification problem.

Mixed Domain Classification

Digit classification is the task of classifying a given image I into one of the 10 digit
classes t ∈ {0,1,2, ..,9}. Two most widely used datasets for digit classification in-
clude images of the postal code digits, MNIST [77], and street view house numbers,
SVHN [92]. For our setup, we take the samples from both of the datasets, and shuffle
them together. This means that, although an image and a target (Ii, ti) form a pair, there
is no information if the digits came from MNIST or from SVHN.
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We now train our model under the Competitive Collaboration framework given the
mixed-domain dataset MNIST+SVHN, a mixture of MNIST and SVHN. The model
consists of two networks Rx and Fx that compete with each other regulated by a mod-
erator My which assigns training data to each of the competitors. Here, x denotes the
combined weights of the two competitor networks (R,F) and y denotes the weights of
the moderator network M. The networks are trained using an alternating optimization
procedure consisting of two phases. In the competition phase, we train the competitors
by fixing the moderator M and minimizing

E1 = ∑
i

mi ·H(Rx(Ii), ti)+(1−mi) ·H(Fx(Ii), ti), (5.3)

where mi = My(Ii) ∈ [0,1] is the output of the moderator and is the probability of assign-
ing a sample to Rx. H(Rx(Ii), ti) is the cross entropy classification loss on the network Rx
and a similar loss is applied on network Fx.

During the collaboration phase, we fix the competitors and train the moderator by
minimizing

E2 = E1 +λ ∑
i
·

{
− log(mi + ε) if LRi < LFi,

− log(1−mi + ε) if LRi ≥ LFi,
(5.4)

where LRi = H(Rx(Ii), ti) is the cross entropy loss from network Rx and similarly LFi =
H(Fx(Ii), ti). In addition to the above loss function E2, we use an additional constraint
on the moderator output that encourages the variance of m, σ2

m = Σi(mi− m̄)2 to be high,
where m̄ is the mean of m within a batch. This encourages the moderator to assign images
to both the models, instead of always assigning them to a single model.

In an ideal case, we expect the moderator to correctly classify MNIST digits from
SVHN digits. This would enable each of the competitors to specialize on either MNIST
or SVHN, but not both. In such a case, the accuracy of the model under CC would be
better than training a single network on the MNIST+SVHN mixture.

Implementation

For simplicity, we use a CNN with 2 convolutional layers followed by 2 fully-connected
layers for both the digit classification networks (R,F) as well as the moderator network
M. Each of the convolutional layers use a kernel size of 5x5 and 40 feature maps. The
fully-connected layers have 40 neurons each.

Evaluation

We now compare the performance of the CC model on MNIST+SVHN mixture with
training a single network on the same dataset. We measure our performance on the
standard test set of MNIST and SVHN. We see that our performance is better on the
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Networks Training MNIST SVHN MNIST+SVHN
R Basic 1.34 11.88 8.96
R CC 1.41 11.55 8.74
F CC 1.24 11.75 8.84
R,F,M CC 1.24 11.55 8.70

Table 5.1: Percentage classification errors. Training using Competitive Collaboration
leads to expert models for MNIST (F) and SVHN (R).

MNIST SVHN
R 0% 100%
F 100% 0%

Table 5.2: Assignments of moderator to each of the competitors.

mixture dataset as well as individual datasets (see Table 5.1). As shown in Table 5.1, the
network R specializes on SVHN digits and network F specializes on MNIST digits. By
using the networks (R,F,M), we get the best results as M picks the specialized networks
depending on the data sample.

We also examine the classification accuracy of the moderator on MNIST and SVHN
digits. We observe that moderator can accurately classify the digits into either MNIST
or SVHN without any labels (see Table 5.2). The moderator learns to assign 100% of
MNIST digits to F and 100% of SVHN digits to R. In the next chapter, we will use this
framework for unsupervised learning of depth, camera motion, optical flow and motion
segmentation to support the notion that Competitive Collaboration can be generalized to
other problems.

5.3 Convergence
Competitive Collaboration is an alternating optimization procedure. In the competition
phase, we minimize E1 with respect to x; in the collaboration phase we minimize E2 =
E1+λLM with respect to y. One might rightfully worry about the convergence properties
of such a procedure, where we optimize different objectives in the alternating steps.

It is important to note that—while E1 and E2 are different functions—they are in fact
closely related. For example, they have the same minimizer with respect to the moderator
output, namely assigning all the mass to the network with lower loss. Ideally, we would
want to use E1 as the objective function in both phases, but resort to using E2 in the
collaboration phase, since it has empirically proven to be more efficient in pushing the
moderator towards this optimal choice.
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Hence, while we are minimizing different objective functions in the competition and
collaboration phases, they are closely related and have the same “goal”. In the following,
we formalize this mathematically by identifying general assumptions on how “similar”
two functions have to be for such an alternating optimization procedure to converge.
Roughly speaking, we need the gradients of the two objectives to form an acute angle
and to be of similar scales. We will then discuss to what extent these assumptions are
satisfied in the case of Competitive Collaboration. Proofs are provided in Appendix B.

General Convergence Theorem Assume we have two functions

f ,g : Rn×Rm→ R (5.5)

and are performing alternating gradient descent updates of the form

xt+1 = xt−α∇x f (xt ,yt), (5.6)
yt+1 = yt−β∇yg(xt+1,yt). (5.7)

We consider the case of single alternating gradient descent for convenience in the analy-
sis. With minor modifications, the following analysis also extends to the case of multiple
gradient descent updates (or even exact minimization) in each of the alternating steps.
The following Theorem formulates assumptions on f and g under which such an alter-
nating optimization procedure converges to a first-order stationary point of f .

Theorem 1. Assume f is lower-bounded and x 7→∇x f (x,y) is Lipschitz continuous with
constant G1 for every y and y 7→ ∇yg(x,y) is Lipschitz continuous with constant G2(x).
Assume α ≤ 2L−1

1 . If there is a constant B > 0 such that

β 〈∇y f (x,y),∇yg(x,y)〉 ≥G2(x)β 2

2
‖∇yg(x,y)‖2 +B‖∇y f (x,y)‖2 (5.8)

then (xt ,yt) converges to a first-order stationary point of f .

Eq. (5.8) is a somewhat technical assumption that lower-bounds the inner product of
the two gradients in terms of their norms and, thus, encodes that these gradients have to
form an acute angle and be of similar scales.

Convergence of Competitive Collaboration We now discuss to what extent the as-
sumptions for Theorem 1 are satisfied in the case of Competitive Collaboration. For the
mathematical considerations to follow, we introduce a slightly more abstract notation for
the objective functions of Competitive Collaboration. For a single data point, E1 has the
form

f (x,y) = M(y)LR(x)+(1−M(y))LF(x), (5.9)
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where M(y)∈ [0,1] is a function of y (the weights of the moderator) and LR(x), LF(x)> 0
are functions of x (the weights of the two competing networks). The loss function E2
reads

g(x,y) = f (x,y)+λ ·

{
− log(M(y)+ ε) if LR(x)< LF(x),
− log(1−M(y)+ ε) if LR(x)≥ LF(x).

(5.10)

The following Proposition shows that f and g satisfy the conditions of Theorem 1 under
certain assumptions.

Proposition 1. Let f and g be defined by Eq. (5.9) and Eq. (5.10), respectively. If M(y),
LR(x) and LF(x) are Lipschitz smooth, then f and g fulfill the assumptions of Theorem 1.

The smoothness conditions on M(y), LR(x), LF(x) are standard as they are, for ex-
ample, needed to guarantee convergence of gradient descent for optimizing any of these
objective functions individually.

This Proposition shows that the objectives for individual data points satisfy Theorem 1.
In practice, however, we are concerned with multiple data points and objectives of the
form

f (x,y) =
1
n

n

∑
i=1

f (i)(x,y), (5.11)

where

f (i)(x,y) =M(i)(y)L(i)
R (x)+(1−M(i)(y))L(i)

F (x), (5.12)

and

g(x,y) =
1
n

n

∑
i=1

g(i)(x,y), (5.13)

where

g(i)(x,y) = f (i)(x,y)+λ ·

{
− log(M(i)(y)+ ε) if L(i)

R (x)< L(i)
F (x),

− log(1−M(i)(y)+ ε) if L(i)
R (x)≥ L(i)

F (x).
(5.14)

While we have found a suitable lower bound on the inner product of ∇y f (i) and ∇yg(i),
unfortunately, the sum structure of ∇y f and ∇yg makes it hard to say anything definitive
about the value of their inner product. It is plausible to assume that ∇y f and ∇yg will
be sufficiently close to guarantee convergence in practical settings. However, the theory
developed in Theorem 1 does not directly apply.
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Joint Unsupervised Learning of Depth,
Camera Motion, Optical Flow and
Motion Segmentation

In the previous chapter, we introduced Competitive Collaboration to facilitate coordi-
nated training of multiple neural networks. We now use this framework to train multiple
neural networks that address geometry and motion in a scene, thereby providing explicit
constraints on scene geometry for motion estimation.

We need to solve four different problems to jointly reason about scene structure and
motion – depth prediction, camera motion estimation, optical flow, and motion segmen-
tation. Depth prediction and camera motion estimation account for static scene structure
whereas optical flow accounts for independent object motion. The segmentation of a
video into static scene structure and independently moving regions is jointly estimated
in our framework using motion segmentation. Therefore, we formulate our problem as
joint unsupervised learning of single view depth prediction, camera motion estimation,
optical flow, and segmentation of a video into the static scene and moving regions (see
Figure 6.1).

6.1 Introduction

Deep learning methods have achieved state-of-the-art results on computer vision prob-
lems with supervision using large amounts of data [55, 72, 79]. However, for many vision
problems requiring dense, continuous-valued outputs, it is either impractical or expen-
sive to gather ground truth data [43]. We consider four such problems – single view
depth prediction, camera motion estimation, optical flow, and motion segmentation. Pre-
vious work has approached these problems with supervision using real [34] and synthetic
data [33]. However there is always a realism gap between synthetic and real data, and
real data is limited or inaccurate. For example, depth ground truth obtained using LI-
DAR [43] is sparse. Furthermore, there are no sensors that provide ground truth optical
flow, so all existing datasets with real imagery are limited or approximate [10, 43, 65].
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Figure 6.1: Unsupervised Learning of Depth, Camera Motion, Optical Flow and Mo-
tion Segmentation. Left, top to bottom: sample image, soft masks representing motion
segmentation, estimated depth map. Right, top to bottom: static scene optical flow, seg-
mented flow in the moving regions and combined optical flow.

Motion segmentation ground-truth currently requires manual labeling of all pixels in an
image [101].

Problem

Recent work has tried to address the problem of limited training data using unsuper-
vised learning [66, 87]. To learn a mapping from pixels to flow, depth, and camera
motion without ground truth is challenging because each of these problems is highly am-
biguous. To address this, additional constraints are needed and the geometric relations
between static scenes, camera motion, and optical flow can be exploited. For example,
unsupervised learning of depth and camera motion has been coupled in [84, 159]. They
use an explainability mask to exclude evidence that cannot be explained by the static
scene assumption. Yin et al. [156] extend this to estimate optical flow as well and use
forward-backward consistency to reason about unexplained pixels. These methods per-
form poorly on depth [159] and optical flow [156] benchmarks. A key reason is that
the constraints applied here do not segment objects that move independently like people
and cars. More generally, not all the data in the unlabeled training set will conform to
the model assumptions, and some of it might corrupt the network training. For instance,
the training data for depth and camera motion should not contain independently moving
objects. Similarly, for optical flow, the data should not contain occlusions, which disrupt
the commonly used photometric loss.
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Figure 6.2: The network R = (D,C) reasons about the scene by estimating optical flow
over static regions using depth, D, and camera motion, C. The optical flow network F
estimates flow over the whole image. The motion segmentation network, M, masks out
static scene pixels from F to produce composite optical flow over the full image. A loss,
E, using the composite flow is applied over neighboring frames to train all these models
jointly.

Idea

A typical real-world scene consists of static regions, which do not move in the physical
world, and moving objects [153]. Given depth and camera-motion, we can reason about
the static scene in a video sequence. Optical flow, in contrast, reasons about all parts of
the scene. Motion segmentation classifies a scene into static and moving regions. Our
key insight is that these problems are coupled by the geometry and motion of the scene;
therefore solving them jointly is synergistic. We show that by learning jointly from
unlabeled data, our coupled networks can partition the dataset and use only the relevant
data, resulting in more accurate results than learning without this synergy.

Approach

Competitive Collaboration is a three-player game consisting of two players competing
for a resource that is regulated by a moderator. As shown in Figure 6.2, we introduce
two players in our framework, the static scene reconstructor, R = (D,C), that reasons
about the static scene pixels using depth, D, and camera motion, C; and a moving region
reconstructor, F , that reasons about pixels in the independently moving regions. These
two players compete for training data by reasoning about static-scene and moving-region
pixels in an image sequence. The competition is moderated by a motion segmentation
network, M, that segments the static scene and moving regions, and distributes training
data to the players. However, the moderator also needs training to ensure a fair competi-
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tion. Therefore, the players, R and F , collaborate to train the moderator, M, such that it
classifies static and moving regions correctly in alternating phases of the training cycle.

Contributions

We show that jointly training networks with this framework has a synergistic effect
on the performance of all the networks in this framework. To our knowledge, our
method is the first to use low level information like depth, camera motion and optical
flow to solve a segmentation task without any supervision. We achieve state-of-the-
art performance on single view depth prediction and camera motion estimation among
unsupervised methods. We achieve state of art performance on optical flow among
unsupervised methods methods that reason about the geometry of the scene, and in-
troduce the first baseline for fully unsupervised motion segmentation. We even out-
perform competing methods that use much larger networks [156] and multiple refine-
ment steps such as network cascading [87]. All our models and code are available at
https://github.com/anuragranj/cc.

6.2 Approach

We use Competitive Collaboration as discussed in the previous chapter, and set up 3
players for jointly learning depth, camera motion, optical flow and motion segmentation.
The first player R = (D,C) consists of the depth and camera motion networks that reason
about the static regions in the scene. The second player F is the optical flow network that
reasons about the moving regions. For training the competitors, the motion segmentation
network M selects networks (D,C) on pixels that are static and selects F on pixels that
belong to moving regions. The competition ensures that (D,C) reasons only about the
static parts and prevents moving pixels from corrupting its training. Similarly, it pre-
vents any static pixels from appearing in the training loss of F , thereby improving its
performance in the moving regions. In the second phase of the training cycle, the com-
petitors (D,C) and F now collaborate to reason about static scene and moving regions
by forming a consensus that is used as a loss for training the moderator, M. We now
formulate the joint unsupervised estimation of depth, camera motion, optical flow and
motion segmentation within the CC framework.

Notation. We use {Dθ ,Cφ ,Fψ ,Mχ} to denote the networks that estimate depth, camera
motion, optical flow and motion segmentation respectively. The subscripts {θ ,φ ,ψ,χ}
are the network parameters. We will omit the subscripts in several places for brevity.
Consider an image sequence I−, I, I+ with target frame I and temporally neighboring
reference frames I−, I+. In general, we can have many neighboring frames. In our im-
plementation, we use 5-frame sequences for Cφ and Mχ but for simplicity use 3 frames
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to describe our approach. We estimate the depth of the target frame as

d = Dθ (I). (6.1)

We estimate the camera motion, e, of each of the reference frames I−, I+ w.r.t. the target
frame I as

e−,e+ =Cφ (I−, I, I+). (6.2)

Similarly, we estimate the segmentation of the target image into the static scene and
moving regions. The optical flow of the static scene is defined only by the camera motion
and depth. This generally refers to the structure of the scene. The moving regions have
independent motion w.r.t. the scene. The segmentation masks corresponding to each pair
of target and reference image are given by

m−,m+ = Mχ(I−, I, I+), (6.3)

where m−,m+ ∈ [0,1]Ω represent the probabilities of regions being static in spatial pixel
domain, Ω. Finally, the network Fψ estimates the optical flow. Fψ works with 2 images
at a time, and its weights are shared while estimating u−,u+, the backward and forward
optical flow1 respectively.

u− = Fψ(I, I−), u+ = Fψ(I, I+). (6.4)

Loss. We learn the parameters of the networks {Dθ ,Cφ ,Fψ ,Mχ} by jointly minimizing
the energy

E = λRER +λFEF +λMEM +λCEC +λSES, (6.5)

where {λR,λF ,λM,λC,λS} are the weights on the respective energy terms. The terms ER
and EF are the objectives that are minimized by the two competitors reconstructing static
and moving regions respectively. The competition for data is driven by EM. A larger
weight λM will drive more pixels towards the static scene reconstructor. The term EC
drives the collaboration, and ES is a smoothness regularizer. The static scene term, ER
minimizes the photometric loss on the static scene pixels given by

ER = ∑
s∈{+,−}

∑
Ω

ρ

(
I,wc(Is,es,d)

)
·ms, (6.6)

where Ω is the spatial pixel domain, ρ is a robust error function, and wc warps the
reference frames towards the target frame according to depth d and camera motion e.

1Note that this is different from the forward and backward optical flow in the context of two-frame
estimation.
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Similarly, EF minimizes photometric loss on moving regions

EF = ∑
s∈{+,−}

∑
Ω

ρ

(
I,w f (Is,us)

)
· (1−ms), (6.7)

where w f warps the reference image using flow u. We show the formulations for wc,w f
in the Appendix A. We compute the robust error ρ(x,y) as

ρ(x,y) = λρ

√
(x− y)2 + ε2 +(1−λρ)

[
1−

(2µxµy + c1)(2µxy + c2)

(µ2
x +µ2

y + c1)(σx +σy + c2)

]
, (6.8)

where λρ is a fixed-constant and ε = 0.01. The second term is known as the structure
similarity loss (SSIM) [145] that has been used in previous work [84, 156], µx,σx are the
local mean and variance over the pixel neighborhood with c1 = 0.012 and c2 = 0.032.

The loss EM minimizes the cross entropy, H, between the masks and a unit tensor
regulated by λM

EM = ∑
s∈{+,−}

∑
Ω

H(1,ms). (6.9)

A larger λM gives preference to the static scene reconstructor R, biasing the scene towards
being static.

Let ν(e,d) represent the optical flow induced by camera motion e and depth d, as de-
scribed in the Appendix A. The consensus loss EC drives the collaboration and constrains
the masks to segment moving objects by taking a consensus between flow of the static
scene given by ν(e,d) and optical flow estimates from Fψ . It is given by

EC= ∑
s∈{+,−}

∑
Ω

H
(
IρR<ρF ∨ I||ν(es,d)−us||<λc ,ms

)
, (6.10)

where I ∈ {0,1} is an indicator function that equals 1 if the condition in the subscript
is true. The first indicator function favors mask assignments to the competitor that
achieves lower photometric error on a pixel by comparing ρR = ρ(I,wc(Is,es, d)) and
ρF = ρ(I,w f (Is,us)). In the second indicator function, the threshold λc forces I = 1 if
the static scene flow ν(e,d) is close to the optical flow u, indicating a static scene. The
symbol ∨ denotes logical OR between indicator functions. The consensus loss EC en-
courages a pixel to be labeled as static if R has a lower photometric error than F or if
the induced flow of R is similar to that of F . Finally, the smoothness term ES acts as a
regularizer on depth, segmentations and flow,

ES = ∑
Ω

||λe∇d||2 + ||λe∇u−||2 + ||λe∇u+||2 + ||λe∇m−||2 + ||λe∇m+||2, (6.11)

where λe = e−||∇I|| (elementwise) and ∇ is the first derivative along spatial directions.
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The term λe ensures that smoothness is guided by edges of the images.

Inference. The depth d and camera motion e are directly inferred from network out-
puts. The motion segmentation m∗ is obtained by the output of mask network Mχ and
the consensus between the static flow and optical flow estimates from Fχ . It is given by

m∗ = Im+·m−>0.5∨ I||ν(e+,d)−u+||<λc . (6.12)

The first term takes the intersection of mask probabilities inferred by Mχ using forward
and backward reference frames. The second term takes a consensus between flow esti-
mated from R= (Dθ ,Cφ ) and Fψ to reason about the masks. The final masks are obtained
by taking the union of both terms. Finally, the full optical flow, u∗, between (I, I+) is a
composite of optical flows from the static scene and the independently moving regions
given by

u∗ = Im∗>0.5 ·ν(e+,d)+ Im∗≤0.5 ·u+. (6.13)

The loss in Eq. (6.5) is formulated to minimize the reconstruction error of the neighbor-
ing frames. Two competitors, the static scene reconstructor R = (Dθ ,Cφ ) and moving
region reconstructor Fψ minimize this loss. The reconstructor R reasons about the static
scene using Eq. (6.6) and the reconstructor Fψ reasons about the moving regions using
Eq. (6.7). The moderation is achieved by the mask network, Mχ using Eq. (6.9). Further-
more, the collaboration between R,F is driven using Eq. (6.10) to train the network Mχ .

If the scenes are completely static, and only the camera moves, the mask forces
(Dθ ,Cφ ) to reconstruct the whole scene. However, (Dθ ,Cφ ) are wrong in the inde-
pendently moving regions of the scene, and these regions are reconstructed using Fψ .
The moderator Mχ is trained to segment static and moving regions correctly by taking a
consensus from (Dθ ,Cφ ) and Fψ to reason about static and moving parts on the scene,
as seen in Eq. (6.10). Therefore, our training cycle has two phases. In the first phase, the
moderator Mχ drives competition between two models (Dθ ,Cφ ) and Fψ using Eqs. ((6.6),
(6.7)). In the second phase, the competitors (Dθ ,Cφ ) and Fψ collaborate together to train
the moderator Mχ using Eqs. ((6.9), (6.10)).

6.3 Experiments
Network Architecture

For the depth network, we experiment with DispNetS [159] and DispResNet where we
replace convolutional blocks with residual blocks [56]. The network Dθ takes a sin-
gle RGB image as input and outputs depth. For the flow network, Fψ , we experiment
with both FlowNetC [33] and PWC-Net [130]. The PWC-Net uses the multi-frame un-
supervised learning framework from Janai et al. [64]. The network Fψ computes op-
tical flow between a pair of frames. The networks Cφ ,Mχ take a 5 frame sequence
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Figure 6.3: Architecture of the DispNet (left), MaskNet (center-top), FlowNetC (right)
and Camera Motion Network (center-bottom). Convolutional layers are red (stride 2)
and orange (stride 1) and upconvolution layers are green (stride 2). Other colors refer to
special layers. Each layer is followed by ReLU, except prediction layers. In each block,
the numbers indicate the number of channels of the input feature map, the number of
channels of the output feature map, and the filter size.
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(I−−, I−, I, I+, I++) as input. The mask network Mχ has an encoder-decoder architec-
ture. The encoder consists of stacked residual convolutional layers. The decoder has
stacked upconvolutional layers to produce masks (m−−,m−,m+,m++) of the reference
frames. The camera motion network Cφ consists of stacked convolutions followed by
adaptive average pooling of feature maps to get the camera motions (e−−,e−,e+,e++).
The networks Dθ ,Fψ ,Mχ output their results at 6 different spatial scales that are used for
training. The predictions at the finest scale are used. The highest scale is of the same
resolution as the image, and each lower scale reduces the resolution by a factor of 2. We
now describe architecture details of each of the networks as shown in Figure 6.3.

Depth Network D. Our depth network is similar to DispNetS [86] and outputs depths
at 6 different scales. Each convolution and upconvolution is followed by a ReLU except
the prediction layers. The prediction layer at each scale has a non-linearity given by 1/(α
sigmoid(x)+β ). The architecture of DispResNet is obtained by replacing convolutional
blocks in DispNet by residual blocks [56].

Camera Motion Network C. The camera motion network consists of 8 convolutional
layers, each of stride 2 followed by a ReLU activation. This is followed by a convo-
lutional layer of stride 1, whose feature maps are averaged together to get the camera
motion.

Flow Network F . We use the FlowNetC architecture [33] with 6 output scales of flow
as shown in Figure 6.3. All convolutional and upconvolutional layers are followed by a
ReLU except prediction layers. The prediction layers have no activations. For PWC Net,
we use the network architecture from Janai et al. [64].

Mask Network M. The mask network has a U-Net [33] architecture. The encoder is
similar to the camera motion with 6 convolutional layers. The decoder has 6 upconvo-
lutional layers. Each of these layers have ReLU activations. The prediction layers use a
sigmoid.

Network Training

We use raw KITTI sequences [43] for training using Eigen et al.’s split [34] that is consis-
tent across related works [34, 78, 84, 156, 159, 161]. We train the networks with a batch
size of 4 and learning rate of 10−4 using ADAM [71] optimization. The images are scaled
to 256×832 for training. The data is augmented with random scaling, cropping and hor-
izontal flips. We use Algorithm 1 for training. Initially, we train (Dθ ,Cφ ) with only
photometric loss over static pixels ER and smoothness loss ES while other loss terms are
set to zero. Similarly, we train Fψ independently with photometric loss over all pixels and
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smoothness losses. The models (Dθ ,Cφ ),Fψ at this stage are referred to as ‘basic’ mod-
els in our experiments. We then learn Mχ using the joint loss. We use λR = 1.0,λF = 0.5
for joint training because the static scene reconstructor R uses 4 reference frames in its
loss, whereas the optical flow network F uses 2 frames. Hence, these weights normalize
the loss per neighboring frame. We iteratively train (Dθ ,Cφ ),Fψ ,Mχ using the joint loss
while keeping the other network weights fixed. The consensus weight λC = 0.3 is used
only while training the mask network. Other constants are fixed with λS = 0.005, and
threshold in Eq. (6.12), λc = 0.001. The constant λρ = 0.003 regulates the SSIM loss and
is chosen empirically. We iteratively train the competitors (Dθ ,Cφ ),Fψ and moderator
Mχ for about 100,000 iterations at each step until validation error saturates.

Qualitative results of the predictions are shown in Figure 6.4. We would like to point
out that our method is able to segment the moving car, and not the parked cars on the
roads. In addition, it segments other moving objects, such as the bicyclist.

Result: Trained Network Parameters, (θ ,φ ,ψ,χ)
Define λ = (λR,λF ,λM,λC)
Randomly initialize (θ ,φ ,ψ,χ)
Update (θ ,φ) by jointly training (Dθ ,Cφ ) with λ = (1.0,0.0,0.0,0.0)
Update ψ by training Fψ with λ = (0.0,1.0,0.0,0.0)
Update χ by jointly training (Dθ ,Cφ ,Fψ ,Mχ) with λ = (1.0,0.5,0.0,0.0)
Loop

Competition Step
Update θ ,φ by jointly training (Dθ ,Cφ , Fψ ,Mχ) with
λ = (1.0,0.5,0.05,0)

Update ψ by jointly training (Dθ ,Cφ ,Fψ ,Mχ) with
λ = (0.0,1.0,0.005,0)

Collaboration Step
Update χ by jointly training (Dθ ,Cφ ,Fψ ,Mχ) with
λ = (1.0,0.5,0.005,0.3)

EndLoop
Algorithm 1: Competitive Collaboration Training Algorithm

Monocular Depth and Camera Motion Estimation

KITTI Dataset. We obtain state-of-the-art results on single view depth prediction and
camera motion estimation as shown in Tables 6.1 and 6.3. The depth is evaluated on the
Eigen et al. [34] split of the raw KITTI dataset [43] and camera motion is evaluated on the
KITTI Odometry dataset [43]. These evaluation frameworks are consistent with previous
work [34, 78, 84, 156]. All depth maps are capped at 80 meters. As shown in Table 6.1,
by training our method only on KITTI [43], we get similar or better performance than
competing methods like [156, 161] that use a much bigger Resnet-50 architecture [56]
and are trained on the larger Cityscapes dataset [27]. Using Cityscapes in our training
further improves our performance on depth estimation benchmarks (Table 6.1).
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Image Predicted Depth Consensus Mask

Static scene Optical Flow Moving regions Optical Flow Full Optical Flow

Figure 6.4: Network Predictions. In each group of images, top row: we show image,
predicted depth, consensus masks, bottom row: we show static scene optical flow, seg-
mented flow in the moving regions and full optical flow.
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Error Accuracy, δ

Method AbsRel SqRel RMS RMSlog <1.25 <1.252 <1.253

Supervised Methods trained on KITTI
Eigen et al. [34] coarse 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. [34] fine 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. [78] 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Unsupervised Methods trained on Cityscapes+KITTI
Zhou et al. [159] 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Mahjourian et al. [84] 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Geonet-Resnet [156] 0.153 1.328 5.737 0.232 0.802 0.934 0.972
DF-Net [161] 0.146 1.182 5.215 0.213 0.818 0.943 0.978
CC (ours) 0.139 1.032 5.199 0.213 0.827 0.943 0.977

Unsupervised Methods trained on KITTI
Zhou et al.* [159] 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Mahjourian et al. [84] 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Geonet-VGG [156] 0.164 1.303 6.090 0.247 0.765 0.919 0.968
Geonet-Resnet [156] 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Godard et el. [47] 0.154 1.218 5.699 0.231 0.798 0.932 0.973
DF-Net [161] 0.150 1.124 5.507 0.223 0.806 0.933 0.973
CC (ours) 0.140 1.070 5.326 0.217 0.826 0.941 0.975

Table 6.1: Results on Depth Estimation. * refers to improved results authors’ github
page.

Ablation studies on depth estimation are shown in Table 6.2. In the basic mode, our
network architecture DispNet for depth and camera motion estimation is most similar to
Zhou et al. [159] and this is reflected in the performance of our basic model. We get
some performance improvements by adding the SSIM loss [145]. However, we observe
that using the Competitive Collaboration (CC) framework with a joint loss results in
larger performance gains in both tasks. Further improvements are obtained by using a
better network architecture, DispResNet. Greater improvements in depth estimation are
obtained when we use a better network for flow, which shows that improving on one task
improves the performance of the other in the CC framework (row 4 vs 5 in Table 6.2).

The camera motion estimation also shows similar performance trends as shown in
Table 6.3. Using a basic model, we achieve similar performance as the baseline [159],
which improves with the addition of the SSIM loss. Using the CC framework leads to
further improvements in performance.

In summary, we show that joint training using CC boosts performance of single view
depth prediction and camera motion estimation. We compare qualitative results for single
image depth prediction in Figure 6.5. We also contrast our results with basic models
that were trained independently without a joint loss in Figure 6.6. We observe that our
model produces better results, capturing moving objects such as cars and bikes, as well
as surface edges of trees, pavements and buildings.
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Error
Method Data Net D Net F AbsRel SqRel RMS RMSlog
Basic K DispNet - 0.184 1.476 6.325 0.259
Basic + ssim K DispNet - 0.168 1.396 6.176 0.244
CC + ssim K DispNet FlowNetC 0.148 1.149 5.464 0.226
CC + ssim K DispResNet FlowNetC 0.144 1.284 5.716 0.226
CC + ssim K DispResNet PWC Net 0.140 1.070 5.326 0.217
CC + ssim CS+K DispResNet PWC Net 0.139 1.032 5.199 0.213

Accuracy, δ

Method Data Net D Net F <1.25 <1.252 <1.253

Basic K DispNet - 0.732 0.910 0.967
Basic + ssim K DispNet - 0.767 0.922 0.971
CC + ssim K DispNet FlowNetC 0.815 0.935 0.973
CC + ssim K DispResNet FlowNetC 0.822 0.938 0.973
CC + ssim K DispResNet PWC Net 0.826 0.941 0.975
CC + ssim CS+K DispResNet PWC Net 0.827 0.943 0.977

Table 6.2: Ablation studies on Depth Estimation. Joint training using Competitive Col-
laboration and better architectures improve the results. The benefits of CC can be seen
when depth improves by using a better network for flow (row 4 vs 5). K refers to the
KITTI dataset and CS refers to the Cityscapes dataset.

Method Sequence 09 Sequence 10
ORB-SLAM (full) 0.014 ± 0.008 0.012 ± 0.011
ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130
Mean Odometry 0.032 ± 0.026 0.028 ± 0.023
Zhou et al. [159] 0.016 ± 0.009 0.013 ± 0.009
Mahjourian et al. [84] 0.013 ± 0.010 0.012 ± 0.011
Geonet [156] 0.012 ± 0.007 0.012 ± 0.009
DF-Net [161] 0.017 ± 0.007 0.015 ± 0.009
Basic (ours) 0.022 ± 0.010 0.018 ± 0.011
Basic + ssim (ours) 0.017 ± 0.009 0.015 ± 0.009
CC + ssim (ours) 0.012 ± 0.007 0.012 ± 0.008

Table 6.3: Average Trajectory Errors on Camera Pose Estimation.
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Image Ground Truth Zhou et al. [159]

Geonet [156] DF-Net [161] CC (ours)

Figure 6.5: Qualitative results on single view depth prediction. In each group of images,
top row: we show image, interpolated ground truth depths, Zhou et al. [159] results,
bottom row: we show results from Geonet [156], DF-Net [161] and CC (ours) results.
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Image Ground Truth CC (DispResNet)

Basic (DispNet) Basic+ssim (DispNet) CC (DispNet)

Figure 6.6: Ablation studies on single view depth prediction. In each group of images,
top row: we show image, interpolated ground truth depths, CC using DispResNet ar-
chitecture, bottom row: we show results using Basic, Basic+ssim and CC models using
DispNet architecture.
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Zhou [159] DF-Net [161] Godard [47] CC (ours)
0.383 0.331 0.361 0.320

Table 6.4: Absolute Relative errors on Make3D test set.

Make3D Dataset. We also test on the Make3D dataset [117] without training on it. We
use our model that is trained only on Cityscapes and KITTI. Our method outperforms
previous work [47, 159, 161] as shown in Table 6.4. We show qualitative results in
Figure 6.7.

Optical Flow Estimation

We compare the performance of our approach with competing methods using the KITTI
2015 training set [43] to be consistent with previous work [87, 156]. We obtain state-
of-the-art performance among joint methods as shown in Table 6.5. Unsupervised fine
tuning (CC-uft) by setting λM = 0.02 gives more improvements than CC as masks now
choose the best flow between R and F without being overconstrained to choose R. In
contrast, UnFlow-CSS [87] uses 3 cascaded networks to refine optical flow at each stage.
Geonet [156] and DF-Net [161] are more similar to our architecture but use a larger
ResNet-50 architecture. Back2Future [64] performs better than our method in terms of
outlier error, but not in terms of average end point error.

In Table 6.6, we observe that training the static scene reconstructor R or moving region
reconstructor F independently leads to worse performance. This happens because R can
not reason about dynamic moving objects in the scene. Similarly F is not as good as R
for reasoning about static parts of the scene, especially in occluded regions. Using them
together, and compositing the optical flow from both as shown in Eq. (6.13) leads to a
large improvement in performance. Moreover, using better network architectures further
improves the performance under the CC framework.

We compare qualitative results for optical flow estimation in Figure 6.8. We show that
our method performs better than UnFlow [87], Geonet [156] and DF-Net [161]. Our flow
estimations are better at the boundaries of the cars and pavements. In contrast, competing
methods produce blurry flow fields.

Motion Segmentation

We evaluate the estimated motion segmentations using the KITTI 2015 training set [43]
which provides ground-truth segmentation for moving cars. Since our approach does
not distinguish between different semantic classes while estimating segmentation, we
evaluate segmentations only on car pixels. Specifically, we consider car pixels and com-
pute Intersection over Union (IoU) scores for moving and static car pixels. In Table 6.7,
we show the IoU scores of the segmentation masks obtained using our technique under
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Image Ground Truth Prediction

Figure 6.7: Qualitative results on the Make3D test set.
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Train Test
Method EPE Fl Fl
FlowNet2 [61] 10.06 30.37 % -
SPyNet [103] 20.56 44.78% -
UnFlow-C [87] 8.80 28.94% 29.46%
UnFlow-CSS [87] 8.10 23.27% -
Back2Future [64] 6.59 - 22.94%
Back2Future* [64] 7.04 24.21% -
Geonet [156] 10.81 - -
DF-Net [161] 8.98 26.01% 25.70%
CC (ours) 6.21 26.41% -
CC-uft (ours) 5.66 20.93% 25.27%

Table 6.5: Results on Optical Flow. We compare with supervised methods (top 2 rows)
that are trained on synthetic data only; unsupervised methods specialized for optical
flow (middle 4 rows) and joint methods that solve more than one task (bottom 4 rows).
* refers to our Pytorch implementation used in our framework which gives slightly lower
accuracy.

Average EPE
Method Net D Net F Static Pixels Moving Pixels Total
R DispNet - 7.51 32.75 13.54
F - FlowNetC 15.32 6.20 14.68
CC DispNet FlowNetC 6.35 6.16 7.76
CC DispResNet PWC Net 5.67 5.04 6.21

Table 6.6: Ablation studies on Flow estimation. EPE is computed over the KITTI 2015
training set. R,F are trained independently without CC.
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Image Ground Truth UnFlow-CSS [87]

Geonet [156] DF-Net [161] CC (ours)

Figure 6.8: Qualitative results on Optical Flow estimation. In each group of images, top
row: we show image 1, ground truth flow, and predictions from UnFlow-CSS[87], bot-
tom row: we show predictions from Geonet [156], DF-Net [161] and CC (ours) model.
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Overall Static Car Moving Car
MaskNet 41.64 30.56 52.71
Consensus 51.52 47.30 55.74
Joint 56.94 55.77 58.11

Table 6.7: Motion Segmentation Results. Intersection Over Union (IoU) scores on
KITTI2015 training dataset images computed over car pixels.

Method Depth Pose Flow Mask
Geonet [156] 15ms 4ms 45ms -
CC (ours) 13ms 2ms 34ms 3ms

Table 6.8: Average runtime on TitanX GPU with images of size 128 × 418.

different conditions. We refer to the masks obtained with the motion segmentation net-
work

(
Im−m+>0.5

)
as ‘MaskNet’ and refer to the masks obtained with flow consensus(

I||ν(e+,d)−u+||<λc

)
as ‘Consensus’. The final motion segmentation masks m∗ obtained

with the intersection of the above two estimates are referred to as ‘Joint’ Eq. (6.12).
IoU results indicate substantial IoU improvements with ‘Joint’ masks compared to both
‘MaskNet’ and ‘Consensus’ masks, illustrating the complementary nature of different
masks. Qualitative results are shown in Figure 6.4.

Timing Analysis

We analyze inference time of our network and compare it with Geonet [156] in Table 6.8.
We observe that our networks have a faster run time using the same sized 128 ×416
images on a single TitanX GPU. This is because our networks are simpler and smaller
than ones used by Geonet.

For training, we measure the time taken for each iteration using a batch size of 4.
Training depth and camera motion networks (D,C) takes 0.96s per iteration. Training
the mask network, M takes 0.48s per iteration, and the flow network F takes 1.32s per
iteration. All iterations have a batch size of 4. In total, it takes about 7 days for all the
networks to train starting with random initialization on a single 16GB Tesla V100.

6.4 Conclusion and Discussion
Typically, learning to infer depth from a single image requires training images with
ground-truth depth scans, and learning to compute optical flow relies on synthetic data,
which may not generalize to real image sequences. For static scenes, observed by a
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moving camera, these two problems are related by camera motion; depth and camera
motion completely determine the 2D optical flow. This holds true over several frames
if the scene is static and only the camera moves. Thus by combining depth, camera,
and flow estimation, we can learn single-image depth by using information from several
frames during training. This is particularly critical for unsupervised training since both
depth and optical flow are highly ill-posed. Combining evidence from multiple tasks and
multiple frames helps to synergistically constrain the problem. This alone is not enough,
however, as real scenes contain multiple moving objects that do not conform to static
scene geometry. Consequently, we also learn to segment the scene into static and mov-
ing regions without supervision. In the independently moving regions, a generic flow
network learns to estimate the optical flow.

To facilitate this process, we introduce Competitive Collaboration in which networks,
both compete and cooperate. We demonstrate that this results in top performance among
unsupervised methods for all subproblems. Additionally, the moderator learns to seg-
ment the scene into static and moving regions without any direct supervision.

Future Work

We can add small amounts of supervised training, with which we expect to significantly
boost performance on benchmarks, cf. [87]. We could use, for example, sparse depth and
flow from KITTI and segmentation from Cityscapes to selectively provide ground truth to
different networks. A richer segmentation network together with semantic segmentation
should improve non-rigid segmentation. For automotive applications, the depth map
formulation should be extended to a world coordinate system, which would support the
integration of depth information over long image sequences. Finally, as shown in [153],
the key ideas of using layers and geometry apply to general scenes beyond the automotive
case and we should be able to train this method to work with generic scenes and camera
motions.
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Chapter 7

Conclusion and Future Work
The motion of the world is constrained by the structure and geometry in the scene.
Throughout this thesis, we have seen an intricate relationship between the structure of
the world and its motion. Jointly modeling structure of the world and the motion has
shown state-of-the-art performance for several computer vision problems.

Spatial Structure and Motion. In Chapter 3, we modelled the image structure at dif-
ferent resolution levels using a Spatial Pyramid Network. This enabled us to estimate op-
tical flow with real-time performance using a very small neural network. Recent works
have applied spatial pyramid networks to estimate optical flow in scenes containing hu-
man motion [108]. Integrating cost-volume structures in spatial pyramid networks for
estimating optical flow has led to state-of-the-art performance [130]. In the future, we
expect small and fast networks for estimating optical flow that can run on embedded
devices. Real-time and accurate estimation of optical flow would support several appli-
cations in computer vision and robotics.

Furthermore, small networks for optical flow estimation can lead to a better insight into
how we estimate and understand motion. Having a small network implies that motion
estimation can be parametrized by a small set of numbers [102]. Analyzing these pa-
rameters, or learned filters has a promise of reconciling the functionality of MT (the part
of the cortex that responds to motion) with computational tools like deep networks. The
long-term goal is to come up with a small set of numbers that can parametrize functions
to accurately compute optical flow. These functions can also represent the responses in
the human visual cortex that corresponds to motion in scenes.

Human Structure and Motion. The structure of the world certainly influences the
estimation of motion. In Chapter 4, we modelled structure of humans and their mo-
tion by generating synthetic data. The distribution of human motion was captured using
synthetic MoCap data. Training a deep neural network on this data showed improved
performance of optical flow networks on scenes containing human motion. These deep
networks also showed generalization to real scenes containing human motion. This rein-
forces the idea of incorporating the structure of the world, in this case humans, to improve
optical flow estimation. Human optical flow is important for several applications. Sev-
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eral action recognition methods [123] rely on optical flow in scenes containing human
action. A good optical flow estimation for humans would improve several computer vi-
sion applications that rely on accurate estimation of human motion such as human pose
and shape estimation, action recognition, modeling interaction of human and scenes, and
human body segmentation.

Learning Structure and Motion. So far, we have imposed constraints on the struc-
ture of the world such as spatial structure in image pyramids [103] and structure of
humans [108]. This motivated us to develop a framework for jointly learning struc-
ture and motion of the world. In Chapter 5, we introduced the Competitive Collabo-
ration framework to incorporate geometric constraints about the structure of the world
in deep networks using a game-theoretic formulation. Competitive Collaboration for-
mulates a three-player game with two competitors and one moderator that regulates the
competition. This framework is useful for problems such as representation learning of
multi-modal distributions, training a mixture of experts. More importantly, Competitive
Collaboration enabled us to disentangle structure and motion components from a scene,
where each component is handled by a competing player.

Competitive Collaboration allows independent networks for scene structure and the
motion to compete and collaborate together to enable learning. In Chapter 6, we modeled
the geometry of the world together with the motion to enable the joint unsupervised
learning of depth, camera motion, optical flow and motion segmentation. We showed
that jointly learning these problems is synergistic and gives improved performance on all
tasks.

In the future, we expect to see unification of all computer vision problems in a single
framework. This would lead to tasks benefiting from each other when the training data is
limited for certain tasks. Deep learning has helped us to reach a point, where we can train
a model to be an expert at a particular task given enough data. However, a lot of tasks
related to understanding vision have very limited or no training data. To solve them, we
would need to integrate them together with tasks which are well solved.

7.1 Long-Term Goals

The long-term goal of this work is full scene understanding (Figure 7.1). This means that,
given image frames of a scene, we understand the physical properties of the scene. This
includes the underlying structure that can be represented by depth maps, point clouds,
meshes or another representation. We should be able to estimate the motion of each and
every object in the scene along with the camera motion. We should be aware of the true
textures on every object and the lighting of the scene. If we truly understand a scene,
we should be able to render it from different view points, replace objects in the scene,
change texture of objects and lighting, and change the motion of scene objects.
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Figure 7.1: Given an image, understand the scene. Reproduced from Per-
ceiving Systems webpage, MPI https://ps.is.tuebingen.mpg.de/research_

fieldsinverse-graphics.

Computer vision has traditionally seen geometry or structure separately from the prob-
lem of estimating motion. We have shown that approaching these problems jointly has
a synergistic effect on the solutions. Modeling geometry of the scene together with its
motion would enable us to approach the solution of full scene understanding.
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Appendix A

Geometry and Optical Flow

A.1 Solution for Optical Flow using Depth and Camera
Motion

The estimate for camera motion consists of camera rotations sinα,sinβ , sinγ , and trans-
lations tx, ty, tz. Let e = (sinα,sinβ ,sinγ, tx, ty, tz) denote a vector representing camera
motion. Given camera motion and depth d, we transform the image coordinates (x,y)
into world coordinates (X ,Y,Z).

X = d
f (x− cx) (A.1)

Y = d
f (y− cy) (A.2)

Z = d (A.3)

where (cx,cy, f ) constitute the camera intrinsics. We now transform the world coordi-
nates given the camera rotation and translation

X′ = RxRyRzX+ t,

where (RxRyRz, t) ∈ SE3 denote 3D rotation and translation, and X = [X ,Y,Z]T . Hence,
in image coordinates

x′ =
f
Z
+ cx, (A.4)

y′ =
f
Z
+ cy. (A.5)

We can now apply the warping as

wc
(
I(x,y),e,d

)
= I(x′,y′). (A.6)

The static flow ν can be then obtained using

ν(o,d) = (x′− x,y′− y). (A.7)
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A.2 Warping an Image using Optical Flow
The flow warping function w f warps the image using optical flow. It is given by

w f
(
I(x,y),ux,uy

)
= I(x+ux,y+uy), (A.8)

where (ux,uy) is the optical flow, (x,y) is the spatial coordinate system, and I is the
image.
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Proofs

B.1 Proof of Theorem 1

Proof. The update of x is a straight-forward gradient descent step on f . Using the Lips-
chitz bound on f , we get

f (xt+1,yt)≤ f (xt ,yt)−α〈∇x f (xt ,yt),∇x f (xt ,yt)〉+
G1α2

2
‖∇x f (xt ,yt)‖2

= f (xt ,yt)−
(

α− G1α2

2

)
‖∇x f (xt ,yt)‖2

≤ f (xt ,yt)−A‖∇x f (xt ,yt)‖2

(B.1)

with A > 0 due to our assumption on α . For the update of y, we have

f (xt+1,yt+1)≤ f (xt+1,yt)−β 〈∇y f (xt+1,yt),∇yg(xt+1,yt)〉

+
β 2G2(x)

2
‖∇yg(xt+1,yt)‖2.

(B.2)

Using the assumption on the inner product, this yields

f (xt+1,yt+1)≤ f (xt+1,yt)−B‖∇y f (xt+1,yt)‖2. (B.3)

Combining the two equations, we get

f (xt+1,yt+1)≤ f (xt ,yt)−A‖∇x f (xt ,yt)‖2−B‖∇y f (xt+1,yt)‖2

≤ f (xt ,yt)−C
(
‖∇x f (xt ,yt)‖2 +‖∇y f (xt+1,yt)‖2) . (B.4)

with C = max(A,B). We define Gt = ‖∇x f (xt ,yt)‖2 +‖∇y f (xt+1,yt)‖2 and rewrite this
as

Gt ≤
f (xt ,yt)− f (xt+1,yt+1)

C
(B.5)
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Summing this equation for t = 0, . . . ,T , we get

T

∑
t=0

Gt ≤
f (x0,y0)− f (xT+1,yT+1)

C
. (B.6)

Since f is lower-bounded, this implies Gt → 0, which in turn implies convergence to a
first-order stationary point of f .

B.2 Proof of Proposition 1

Proof. The gradient of f with respect to x is

∇x f (x,y) = M(y)∇LR(x)+(1−M(y))∇LF(x) (B.7)

Since M(y) is bounded, ∇x f is Lipschitz continuous in x given that LR and LF are Lips-
chitz smooth.

For the assumptions on the y-gradients, we fix x and treat the two cases in the defini-
tion of g separately. We only consider the case LR(x) < LF(x) here, the reverse case is
completely analogous. Define L(x) = LF(x)−LR(x)> 0. The gradient of f with respect
to y is

∇y f (x,y) =−L(x)∇M(y) (B.8)

and is Lipschitz continuous with constant G2(x) = |−L(x)|G = L(x)G, where G is the
Lipschitz constant of M(y). We have

∇yg(x,y) =−
(

L(x)+
λ

M(y)+ ε

)
∇M(y). (B.9)

The inner product of the two gradients reads

〈∇y f (x,y),∇yg(x,y)〉= L(x)
(

L(x)+
λ

M(y)+ ε

)
‖∇M(y)‖2, (B.10)

and for the gradient norms we get

‖∇y f (x,y)‖2 = L(x)2‖∇M(y)‖2, (B.11)

as well as

‖∇yg(x,y)‖2 =

(
L(x)+

λ

M(y)+ ε

)2

‖∇M(y)‖2. (B.12)

Plugging everything into the inner product assumption of Theorem 1 and simplifying
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yields

β

(
L(x)+

λ

M(y)+ ε

)
≥ Gβ 2

2

(
L(x)+

λ

M(y)+ ε

)2

+BL(x) (B.13)

Since M, LR and LF are bounded, one easily finds a choice for β and B that satisfies this
condition.
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