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Deutsche Zusammenfassung

In der vorliegenden Dissertation soll die Existenz und verschiedene Eigen-
schaften von Attraktoren in dynamischen Systemen untersucht werden. Dabei
verwenden wir einen operatorentheoretischen Ansatz, den wir „Koopmanis-
mus“ nennen. Dazu sei X ein Zustandsraum und (ϕt)t≥0 ein Halbfluss auf
X. Dann definieren wir auf einem geeigneten Funktionenraum O auf X, auch
Observablenraum genannt, die zugehörige Koopmanhalbgruppe durch

T (t)f := f ◦ ϕt für f ∈ O , t ≥ 0 .

Diese Familie von linearen Operatoren (T (t))t≥0 ist eine Operatorhalbgruppe
auf O, falls die Operatoren T (t) den Raum O invariant lassen. Dies liefert eine
globale Linearisierung des im Allgemeinen nichtlinearen Halbflusses (ϕt)t≥0.

Diesen Übergang von einem dynamischen System (X, (ϕt)t≥0) zum zugehöri-
gen Koopmansystem (O, (T (t))t≥0) bezeichnen wir mit „Koopmanismus“. Die
Eigenschaften des zugrundeliegenden Systems spiegeln sich, in einem gewissen
Sinne, durch Eigenschaften des Koopmansystems wieder und umgekehrt.

Ein Attraktor eines dynamischen Systems (X, (ϕt)t≥0) ist eine kompakte und
(ϕt)t≥0-invariante Teilmenge ∅ 6= M ⊆ X des Zustandsraums mit der Eigen-
schaft, dass alle Zustände x ∈ X auf eine gewisse Art und Weise gegen M
konvergieren, kurz „ ϕt → M “ für t→∞. Ein Attraktor sollte außerdem mi-
nimal mit dieser Eigenschaft sein. In der Literatur finden sich, motiviert durch
wichtige physikalische Beispiele, viele Definitionen für Attraktoren. Wir be-
handeln gleichmäßige (asymptotisch stabile) Attraktoren, punktweise Attrak-
toren, Milnorattraktoren und Attraktionszentren, siehe hierzu Definition 3.22
auf Seite 30, sowie Lyapunovstabilität und Lyapunovfunktionen, siehe hierzu
Definition 3.25 auf Seite 31 und Definition 3.29 auf Seite 32.

Unser Vorgehen lässt sich folgendermaßen zusammenfassen. Zu einer abge-
schlossenen, (ϕt)t≥0-invarianten Teilmenge ∅ 6= M ⊆ X betrachten wir den
zugehörigen (T (t))t≥0-invarianten Unterraum IM ⊆ O aller Funktionen, die
auf M verschwinden, also

IM := {f ∈ O | f |M ≡ 0} .
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Deutsche Zusammenfassung

Wir charakterisieren Attraktivitätseigenschaften der abgeschlossenen, invari-
anten Teilmenge M durch Stabilität, d.h. Konvergenz gegen 0, der zugehöri-
gen Koopmanhalbgruppe eingeschränkt auf IM . Unser Leitmotiv lässt sich wie
folgt darstellen:

„ ϕt →M “ ⇔ „ T (t)
∣∣
IM
→ 0 “ .

Im nächsten Schritt betrachten wir die maximalen Unterräume von O, auf
denen die Koopmanhalbgruppe stabil ist,

I := {f ∈ O | T (t)f → 0 für t→∞} .

Dabei gibt es verschiedene Möglichkeiten die Konvergenz „ T (t)f
t→∞−−−→ 0 “

zu verstehen. Es stellt sich heraus, dass alle diese Unterräume von der Form
I = IM sind. Deshalb gehört zu jedem solchen Unterraum eine abgeschlossene,
invariante, attraktive Teilmenge von X, die minimal mit dieser Eigenschaft ist.
So stellen wir die Existenz verschiedener Attraktortypen sicher.

Der Aufbau der Arbeit ist wie folgt. Teil I besteht aus zwei vorbereitenden
Kapiteln. Grundlegende und bekannte Definitionen und Resultate über Stabil-
ität von Operatorhalbgruppen werden in Kapitel 2 wiederholt und diskutiert.
In Kapitel 3 werden grundlegende Eigenschaften und Beispiele von topolo-
gischen dynamischen Systemen, invarianten Mengen und Attraktoren wieder-
holt.

Im zweiten Teil werden im Sinne des oben erläuterten Leitmotivs Attraktoren
in dynamischen Systemen untersucht. In Kapitel 4 werden dynamische Sys-
teme mit kompaktem Zustandsraum betrachtet. Dabei werden in Abschnitt
4.1 Eigenschaften absorbierender Mengen durch Eigenschaften der zugehöri-
gen Koopmanhalbgruppe charakterisiert, siehe Proposition 4.7 auf Seite 38.
Abschnitt 4.2 widmet sich der Charakterisierung von Attraktortypen durch
Stabilität der Koopmanhalbgruppe. Dies ist in Theorem 4.9 auf Seite 40
aufgelistet und bildet das Hauptresultat des Kapitels. In Abschnitt 4.3 werden
Lyapunovfunktionen mithilfe des Koopmanansatzes untersucht. Da wir nicht
davon ausgehen, dass der zugrundeliegende Zustandsraum metrisch ist, verall-
gemeinern wir den Begriff einer Lyapunovfunktion auf eine Familie (gi)i∈I von
Funktionen, die auf dem Attraktor M verschwinden und M = ∩i∈Ig−1

i ({0})
erfüllen. Wir zeigen, dass die Existenz einer solchen Lyapunovfamilie äquiv-
alent zu starker Stabilität der eingeschränkten Koopmanhalbgruppe ist und
verallgemeinern damit ein klassisches Resultat für asymptotisch stabile At-
traktoren, siehe Theorem 4.11 auf Seite 44. Das Kapitel endet in Abschnitt
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4.4 mit einer Diskussion über die Existenz und einer allgemeinen Charak-
terisierung aller genannten Attraktortypen. Besonders hervorzuheben ist die
Charakterisierung des minimalen Attraktionszentrums durch den Abschluss
der Vereinigung der Träger aller ergodischen Wahrscheinlichkeitsmaße auf X,
siehe Proposition 4.24 auf Seite 52.

Anschließend werden in Kapitel 5 dynamische Systeme mit lokalkompaktem,
nicht kompaktem, Zustandsraum betrachtet. In Abschnitt 5.1 werden grundle-
gende Eigenschaften von Koopmanoperatoren und Koopmanhalbgruppen in
dieser Situation untersucht. Danach in den Abschnitten 5.2 und 5.3 wer-
den erneut absorbierende und attraktive Mengen untersucht. Die Charak-
terisierung dieser durch die Koopmanhalbgruppe wird in Proposition 5.18
auf Seite 65 und Theorem 5.19 auf Seite 66 jeweils aufgelistet. Abschnitt
5.4 beschäftigt sich in diesem Kontext erneut mit Lyapunovfunktionen und
-familien.

Abgeschlossen wird Kapitel 5 mit der Untersuchung der Existenz von Attrak-
toren. In Abschnitt 5.5 wird gezeigt, welche Ideale IM zu kompakten Teilmen-
gen des zugrundeliegenden Zustandsraums gehören, siehe Theorem 5.22 auf
Seite 70. Außerdem werden die einzelnen Attraktortypen charakterisiert. Dies
zusammen ermöglicht die Charakterisierung der Existenz von Attraktoren in
dynamischen Systemen mit lokalkompaktem, nicht unbedingt kompaktem Zu-
standsraum durch die zugehörige Koopmanhalbgruppe. Dies ist Theorem 5.38
auf Seite 76.

Kapitel 6 gibt einen Ausblick darauf, wie Koopmanismus für Attraktoren in
dynamischen Systemen auf vollständigen metrischen Räumen angewendet wer-
den kann. In Abschnitt 6.1 werden allgemeine Eigenschaften von Koopman-
operatoren und -halbgruppen für diesen Fall besprochen. Im nächsten Ab-
schnitt 6.2 werden erneut die verschiedenen Attraktortypen durch Stabilität
der eingeschränkten Koopmanhalbgruppe charakterisiert, siehe Theorem 6.13
auf Seite 90.

Der dritte Teil der Arbeit befasst sich mit stark stetigen (Bi-)Markovverbands-
halbgruppen auf Lp-Räumen. Wir charakterisieren solche Halbgruppen durch
Eigenschaften ihres Generators, der sich wie eine Derivation auf dessen De-
finitionsbereich verhält. Das ist das Hauptresultat des Kapitels, siehe The-
orem 7.12 auf Seite 98. Außerdem zeigen wir, dass auf einem Standard-
wahrscheinlichkeitsraum X = (X,Σ, µ) die Markovverbandshalbgruppen auf
L1(X) genau den Koopmanhalbgruppen entsprechen. Abschließend konstru-
ieren wir ein topologisches Modell für Koopmanhalbgruppen auf L1(X) in The-
orem 8.6 auf Seite 111.
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1 Introduction

It was in the 1950s and 60s that “attractors” became popular objects in the
field of dynamical systems. After the term first occurred in [ABS64, p. 55], cf.
[Mil85, p. 177], many variations and modifications have been defined, each of
them motivated by interesting examples.

One goal of this thesis is to establish a systematic hierarchy of different types
of attractors appearing in the literature. We prove the existence of attractors,
compare and characterize each while using operator theoretic tools.

We “translate” various concepts of attractors, such as asymptotically stable,
pointwise or Milnor attractors and centers of attraction, into operator theo-
retic terms by globally linearizing the dynamical system. We call this process
“Koopmanism”. Around 1930 this idea appeared in the papers [Koo31] by B. O.
Koopman and [vNeu32b] by J. von Neumann and provided the precise mathe-
matical framework to treat the so-called ergodic hypothesis from L. Boltzmann
formulated in [Bol85]. It is based on the distinction between a state space X
of a (physical) system and an associated observable space O being a (vector)
space of real or complex valued functions on X. If the non-linear semiflow

ϕt : X → X , t ≥ 0 ,

describes the dynamics on the state space X, the maps

f 7→ T (t)f := f ◦ ϕt , f ∈ O ,

become linear operators and, ifO remains invariant, (T (t))t≥0 is a one-parameter
semigroup of linear operators on O, called Koopman semigroup.

This idea led to the proof of the classical ergodic theorems of J. von Neumann
[vNeu32a] and G. D. Birkhoff [Bir31] and even gave rise to ergodic theory as a
mathematical discipline.

The recent state of the art of this operator theoretic approach to ergodic theory
as used in this thesis is presented in the monograph “Operator Theoretic Aspects
of Ergodic Theory” by T. Eisner, B. Farkas, M. Haase und R. Nagel [EFHN15].
In addition, there is a vast spectrum of applications of “Koopmanism”, the
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1 Introduction

recent book “The Koopman Operator in Systems and Control” by A. Mauroy,
I. Mezić and Y. Susuki (Eds.), [MMS20], provides a broad overview.

The main focus of this thesis is the study and characterization of attractors
using the Koopman approach. To this end, we consider dynamical systems
with locally compact state space X and a continuous semiflow (ϕt)t≥0 thereon,
cf. Definition 3.1 on page 19. Given a closed (ϕt)t≥0-invariant set ∅ 6= M ⊂ X,
our idea is to restrict the Koopman semigroup to IM ⊂ O, the corresponding
subset of functions vanishing on M , i.e.,

IM := {f ∈ O | f |M ≡ 0} .

Clearly, this set IM is invariant under the Koopman semigroup (T (t))t≥0. We
characterize the long-term behavior of (ϕt)t≥0 around M by asymptotic prop-
erties of the Koopman semigroup (T (t))t≥0 restricted to IM . So our leitmotif
can be visualized as

“ϕt →M ” ⇔ “T (t)
∣∣
IM
→ 0” .

The idea to characterize attractivity properties of invariant sets of a flow by a
stability property of the associated Koopman operators restricted to functions
vanishing on the attractor appears, e.g., in A. Mauroy and I. Mezić, see [MM16,
II.Prop. 1]. Their stability property corresponds to what we will later call weak
stability.

For each Koopman semigroup (T (t))t≥0 on a space O we define maximal sub-
spaces I on which the semigroup is stable, i.e.,

I := {f ∈ O | T (t)f → 0 as t→∞} .

Again, there are many ways how to interpret “T (t)f → 0” (cf. Definition 2.1 on
page 9 and Definition 2.3 on page 10). Each of these stability concepts yields
an invariant subspace I that corresponds to a closed and invariant subset
∅ 6= M ⊆ X, i.e., I = IM . So we obtain a closed and invariant attractive
subset of X that is minimal with this property. If the underlying state space
X is compact, so is M and therefore is an attractor. If X is a non-compact,
locally compact space we give conditions on I such that M is compact, i.e.,
that an attractor exists (cf. Theorem 5.38 on page 76).

The present thesis is composed of three parts. In Part I and Part II we consider
topological dynamical systems, i.e., semiflows on a locally compact state space
X to which we associate the corresponding Koopman semigroup. Part III
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addresses Koopman semigroups induced by measure preserving semiflows on
probability spaces X = (X,Σ, µ).

Part I starts with two preliminary chapters that summarize basic results on
stability of operator semigroups (Chapter 2) and on topological dynamical
systems (Chapter 3). Here, the monographs “Stability of operators and operator
semigroups” by T. Eisner, [Eis10], and “Stability Theory of Dynamical Systems”
by N. P. Bhatia and G. P. Szegö, [BS02], are our main references. In these
two chapters we fix the notation, recall some results and definitions and, in
Chapter 3, specify the term attractor, (cf. Definition 3.22 on page 30). The
main results are contained in the following two parts.

Then we turn to Part II which contains the study of attractors using the Koop-
man approach and consists of the Chapters 4, 5 and 6. In Chapter 4 we study
topological dynamical systems (K, (ϕt)t≥0) with compact state space K and
the corresponding Koopman semigroup (T (t))t≥0 on the Banach space C(K) of
continuous real-valued functions on K. We discuss strong continuity and basic
properties of (T (t))t≥0. Then we characterize absorbing and attractive invari-
ant subsets of K (cf. Definition 3.13 on page 24, Definition 3.18 on page 27
and Definition 3.3 on page 20) by stability properties of the corresponding
Koopman semigroup (T (t))t≥0 in Sections 4.1 and 4.2. The main result of
this chapter is the characterization of attractors via stability of the Koopman
semigroup in Theorem 4.9 on page 40.

In Section 4.3 we use Koopmanism to study Lyapunov functions and Lyapunov
stability. Classically, a Lyapunov function is an observable g ∈ O that vanishes
on the attractor M and is strictly decreasing along the orbits, i.e.,

g(ϕt(x)) = T (t)g(x) < g(x) for all x ∈ X \M , t > 0 .

This can be understood easily via the Koopman approach using our leitmo-
tif. Not assuming the state space X to be metric, we generalize the notion
of Lyapunov functions. We call a family (gi)i∈I of functions vanishing on the
attractor M Lyapunov family if M = ∩i∈Ig−1

i ({0}) and they are strictly de-
creasing along the orbits outside their respective zero sets (cf. Definition 3.28
on page 31, Definition 3.29 on page 32). We prove that the Koopman semi-
group restricted to IM is strongly stable if and only if there exists a Lyapunov
family for M , see Theorem 4.11 on page 44.

Another interesting property is almost weak stability on IM , see Section 2.2.
It translates into M being a center of attraction. It is known that on a com-
pact metric space there always exists a unique minimal center of attraction,
see for instance [NS60, Thm. 6.0.6], given by the closure of the union of the

3



1 Introduction

supports of ergodic measures, see [Man12, Ex. I.8.3] for a discrete version. In
[Kre20, Thm. 4.7], H. Kreidler proves this for semigroup actions with a Føl-
ner sequence on a compact space K, not necessarily metric. We are able to
give a simple proof for the existence of a unique minimal center of attraction
in Proposition 4.24 on page 52 obtained as the closure of the union of the
supports of ergodic measures. We utilize several equivalent characterizations
of almost weak stability and the “translation” in Theorem 4.9 (IV) on page
40 while not assuming K to be metric. Furthermore, we use these results to
examine an example of a minimal center of attraction that is not attractive,
cf. Example 3.21 e) on page 29 and Example 4.25 on page 53.

Sections 4.1, 4.2 and 4.4 are based on the author’s publication [Küh19] What
can Koopmanism do for attractors in dynamical systems?, The Journal of Anal-
ysis (2019).

In Chapter 5 we are concerned with dynamical systems with locally compact,
but non-compact state space Ω. We apply the results from Chapter 4 to the
one-point compactification Ω ∪ {∞} of Ω. To a semiflow (ϕt)t≥0 on Ω we
associate a semigroup on C0(Ω) ⊕ 〈1〉 ∼= C(Ω ∪ {∞}) in the usual way by
T (t)f := f ◦ϕt, t ≥ 0, f ∈ C0(Ω)⊕ 〈1〉, with 〈1〉 := {c · 1 | c ∈ R}. In Section
5.1 we elaborate on the fact that not every semiflow on Ω induces a semigroup
leaving C0(Ω)⊕ 〈1〉 invariant and discuss the term “Koopman semigroup” for
the associated semigroup. We show that Koopman operators on C0(Ω) ⊕ 〈1〉
(cf. Definition 7.4 on page 96) are exactly those algebra, or equivalently lattice,
homomorphisms T on C0(Ω)⊕〈1〉 with T1 = 1 that are τc-continuous, where
τc denotes the compact-open topology on C0(Ω) ⊕ 〈1〉. We then characterize
Koopman semigroups on C0(Ω)⊕ 〈1〉 by means of their generator acting as a
derivation on its domain.
This is followed by the Koopman characterization of absorbing and attractive
sets in Sections 5.2 and 5.3. Then we discuss Lyapunov functions and Lyapunov
stability in Section 5.4.

Chapter 5 is concluded by the discussion of the existence of attractors. In
Section 5.5 we prove that an ideal IM in C0(Ω)⊕〈1〉 corresponds to a compact
set M if and only if IM is τc-closed, see Theorem 5.22 on page 70. From this
we conclude that an attractor exists if and only if the corresponding subspace
I := {f ∈ O | T (t)f → 0 as t→∞} is τc-closed.

Thus, we obtain an operator theoretic characterization of dissipative systems
(cf. [Hal10, Sect. 3.4], [Lad91, Chapt. 1, p.4], [Tem12, Chapt. I, Sect. 3, p.11],
[SY13, Sect. 2.3.3] or [Chu15, Def. 2.2.1]).
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Again, we are able to use our operator theoretic view-point to prove the exis-
tence of a minimal center of attraction in the locally-compact setting (Propo-
sition 5.37 on page 75). It is given by the closure of the union of supports of
invariant measures on the state space Ω.

We conclude Part II in Chapter 6 with an outlook on attractors for semiflows on
a complete metric state space X. Given such a semiflow (ϕt)t≥0, we associate it
with the Koopman semigroup (T (t))t≥0 defined on Cb(X), the space of all real-
valued bounded continuous functions on X. Recall that Cb(X) is canonically
isomorphic to C(βX) where βX denotes the Stone–Čech compactification of
X. The goal ist to deduce attractivity properties of closed invariant subsets of
X by means of the Koopman semigroup, using the results from the compact
setting in Chapter 4 and, similarly to Chapter 5, by introducing the compact
open topology τc on Cb(X). In Section 6.1, we show that Koopman operators
are exactly those algebra, or lattice homomorphisms, T on Cb(X) with T1 = 1

that are τc-continuous. Furthermore, we prove that I ⊆ Cb(X) is a τc-closed
ideal if and only if there exists a closed subset M ⊆ X with I = IM .

There are several problems arising in this setting. One of them is that Koop-
man semigroups on Cb(X) are generally not strongly continuous, even though
the underlying semiflow (ϕt)t≥0 is continuous. But a Koopman semigroup is
strongly τc-continuous which suffices for the study of attractors.

We conclude this chapter with Section 6.2 by again characterizing how attrac-
tivity properties of a closed invariant subset of X are reflected by stability
properties of the corresponding Koopman semigroup in this case, cf. Theo-
rem 6.13 on page 90.

In Part III, we turn to measurable and measure preserving semiflows (ϕt)t≥0, cf.
Definition 8.1 on page 109, on a measure space X = (X,Σ, µ). In Section 7.1,
given a finite measure space X = (X,Σ, µ) we characterize (bi-)Markov lattice
semigroups on Lp(X) by means of their generator acting as a derivation on the
dense subspace L∞(X) ∩ D(A), Theorem 7.12 on page 98, and give a similar
result for lattice semigroups that are not necessarily Markov, Theorem 7.19
on page 103. Then we turn to a standard probability space X = (X,Σ, µ) in
Section 7.2 and apply these results to (bi-)Markov lattice semigroups (T (t))t≥0

on Lp(X), 1 ≤ p < ∞. In this case every operator T (t), t ≥ 0, is of the form
T (t)f = f ◦ ϕt, f ∈ Lp(X) for some (measure preserving) measurable map
ϕt. We point out that the family (ϕt)t≥0 of measurable maps does not form
a semiflow as in Definition 8.1 on page 109. Furthermore, in Chapter 8, we
discuss measurable and measure preserving semiflows and topological models
of Markov lattice semigroups. Given a Markov lattice semigroup on L1(X),
we construct a compact space K and a regular Borel measure ν on K such
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1 Introduction

that L1(K, ν) ∼= L1(X) and the Markov semigroup on L1(X) is isomorphic to
a Koopman semigroup on L1(K, ν).

The results in Part III appear in [EGK19] Nikolai Edeko, Moritz Gerlach,
Viktoria Kühner, Measure preserving semiflows and one-parameter Koopman
semigroups, Semigroup Forum (2019), p.48-63, and have been rearranged for
easier reading.

We conclude this introduction with some remarks on attractors in dynamical
systems on complete metric spaces. The existence of attractors is, in con-
trast to the compact situation (Chapter 4), not guaranteed. To characterize
those dynamical systems that allow for global attractors is quite difficult, cf.
[EZM05], [SY13, Sect. 2.3] or [Chu15, Sect. 3]. Using the Koopman approach
and the characterization in Theorem 6.13 on page 90 one might look for a
necessary and sufficient algebraic or topological condition on the ideals

I = {f ∈ Cb(X) | T (t)f → 0}

such that the corresponding closed invariant subset M ⊆ X, with I = IM ,
is a compact global attractor. This condition would include previously stud-
ied conditions as found in literature, e.g., dissipativity [SY13, Sect. 2.3.3, p.
32], asymptotically smooth systems [Hal10, Sect. 3.2, p. 36] or asymptotically
compact systems [Lad91, Chapt. 3, p. 12] to name a few.
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2 Operator theoretical tools for
topological dynamical systems

In this chapter we first review well-known stability concepts for strongly con-
tinuous operator semigroups on Banach spaces and introduce similar notions
for spaces with locally convex topologies. Then in Section 2.2 the notion of
“almost weak stability” and in Section 2.3 stability for positive strongly contin-
uous operator semigroups on Banach lattices will be discussed in more detail.

2.1 Stability of operator semigroups on Banach
spaces

Definition 2.1 Let (T (t))t≥0 be a strongly continuous semigroup of contrac-
tions on a Banach space X. Then (T (t))t≥0 is said to be

a) nilpotent if there exists t0 > 0 such that

‖T (t0)‖ = 0 ,

b) uniformly exponentially stable if there exists δ > 0 such that

lim
t→∞

eδt‖T (t)‖ = 0 ,

c) uniformly stable if
lim
t→∞
‖T (t)‖ = 0 ,

d) strongly stable if

lim
t→∞
‖T (t)x‖ = 0 for all x ∈ X ,

9



2 Operator theoretical tools for topological dynamical systems

e) weakly stable if

lim
t→∞
〈T (t)x, x′〉 = 0 for all x ∈ X , x′ ∈ X ′ and

f) almost weakly stable if for all pairs (x, x′) ∈ X × X ′ there exists a
Lebesgue measurable subset R ⊆ R+ with density 1 1 such that

lim
t→∞,t∈R

〈T (t)x, x′〉 = 0 .

In the above definition the following chain of implications holds

a) =⇒ b) =⇒ c) =⇒ d) =⇒ e) =⇒ f) .

All implications are strict except b) ⇐⇒ c) which can be found in [EN00,
Chapt. V, Sect. 1]. For examples we refer to [Eis10, Chapt. III], [Van12] and
[EN00, Chapt. V, Sect. 1]. We remark the following fact.

Definition 2.2 Let (T (t))t≥0 be a strongly continuous semigroup of contrac-
tions on a Banach space X. We define subsets corresponding to the properties
d) and e) in Definition 2.1 above by

Iss := {x ∈ X | ‖T (t)x‖ → 0 as t→∞} and
Iws := {x ∈ X | 〈T (t)x, x′〉 → 0 as t→∞ for all x′ ∈ X ′} .

Both are closed subspaces of X.

We generalize the concept of stability introduced in Definition 2.1 above to
stability with respect to a locally convex topology. We will use this in Chapter
5. Let X be a Banach space and τ an additional locally convex Hausdorff
topology on X (cf. [Sch71, §4,4.,p. 47]). We write P for a family of semi-
norms determining τ (cf. [Sch71, §4,4., p. 48]).

We distinguish between several stability notions with respect to τ as follows.

Definition 2.3 Let (T (t))t≥0 be a strongly continuous semigroup of contrac-
tions on a Banach space X and τ an additional locally convex Hausdorff topol-
ogy on X. Then (T (t))t≥0 is said to be

1The density of a Lebesgue measurable subset R ⊂ R+ is

d(R) := lim
t→∞

1

t
λ ([0, t] ∩R) , λ Lebesgue measure,

if the limit exists.
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2.1 Stability of operator semigroups on Banach spaces

a) τ -nilpotent if for every p ∈ P there exists t0 > 0 with

p(T (t0)x) = 0 for all x ∈ X ,

b) τ -stable if
lim
t→∞

p(T (t)x) = 0 for all p ∈ P , x ∈ X .

c) almost τ -stable if for every p ∈ P , x ∈ X there exists a Lebesgue mea-
surable subset R ⊆ R+ with density 1 such that

lim
t→∞,t∈R

p(T (t)x) = 0 .

Proposition 2.4 Let (T (t))t≥0 be a strongly continuous semigroup of con-
tractions on a Banach space X and τ an additional locally convex Hausdorff
topology on X. If (T (t))t≥0 is also strongly τ -continuous in the sense that
t 7→ p(T (t)x) is continuous for every p ∈ P , x ∈ X, then assertion c) in
Definition 2.3 on page 10 is equivalent to

c*) for all p ∈ P , x ∈ X

lim
t→∞

1

t

t∫
0

p(T (s)x) ds = 0 .

Proof. This follows by applying the so-called Koopman-von-Neumann Lem-
ma [Eis10, Chapt. III, Lem. 5.2] to the positive and continuous function given
by t 7→ p(T (t)x) for p ∈ P , x ∈ X. �

Definition 2.5 Let (T (t))t≥0 be a strongly continuous semigroup of contrac-
tions on a Banach space X and τ an additional locally convex Hausdorff topo-
logy on X. We define the following subsets of X.

Iτ := {x ∈ X | lim
t→∞

p(T (t)x) = 0 for all p ∈ P} ,

Iaτ := {x ∈ X | lim
t→∞

1

t

t∫
0

p(T (s)x) ds = 0 for all p ∈ P} .

These subsets are in general not τ -closed, see Example 5.24 on page 71.

We introduce an additional concept that will be useful later in the second part
of this thesis.

11



2 Operator theoretical tools for topological dynamical systems

Definition 2.6 Let A be a closed subspace of the space Cb(X) of all bounded
real-valued continuous functions on X, where X is a topological Hausdorff
space, and let µ be a regular Borel measure on X (cf. [Bog07, Def. 7.1.1, Def.
7.1.5]). A strongly continuous semigroup (T (t))t≥0 of contractions on A is said
to be (µ-)almost everywhere pointwise stable if for every f ∈ A

T (t)f(x)→ 0 as t→∞ for µ-almost all x ∈ X .

We define a corresponding closed subspace by

Iaeps := {f ∈ A | T (t)f(x)→ 0 as t→∞ for µ-almost all x ∈ X} .

2.2 Almost weak stability

For a complete treatment of almost weak stability for strongly continuous
semigroups on Banach spaces with relatively weakly compact orbits we refer
to [Eis10, Chapt. III, Sect. 5]. The tools and ideas used in this section are
based on [EFHN15, Chapt. 9].

The following proposition is a useful characterization of almost weak stability,
it can be found in a more general setting in [Hia78, Thm. 2.2].

Proposition 2.7 Let (T (t))t≥0 be a strongly continuous semigroup of con-
tractions on a Banach space X. Then the following are equivalent.

a) (T (t))t≥0 is almost weakly stable,

b)

lim
T→∞

1

T

T∫
0

|〈T (t)x, x′〉| dt = 0

for all x ∈ X, x′ ∈ X ′,

c)

lim
T→∞

sup
x′∈X′,‖x′‖≤1

1

T

T∫
0

|〈T (t)x, x′〉| dt = 0

for all x ∈ X.

Proof. The equivalence a) ⇐⇒ b) follows from the so called Koopman-
von Neumann Lemma, see for example [Eis10, Chapt. III, Lem. 5.2]. The
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implication b) =⇒ c) in the time discrete analogue is due to Jones and Lin,
cf. [JL76]. We adapt the proof given in [EFHN15, Prop. 9.17]. Every operator
T (t) as its adjoint T (t)′ is a contraction and the dual unit ball B′ is compact
with respect to the weak-* topology. Due to these facts we can define the
Koopman system

(C(B′), (T̃ (t))t≥0)

where
T̃ (t)f(x′) := f(T (t)′x′)

for t ≥ 0, f ∈ C(B′), x′ ∈ B′. Fix x ∈ X and define gx ∈ C(B′) by
gx(x

′) := |〈x, x′〉|. By b)

lim
T→∞

1

T

T∫
0

T̃ (t)gx(x
′) dt = 0

pointwise in x′ and by Lebesgue’s theorem of dominated convergence also
weakly and thus in the norm of C(B′), cf. [Eis10, Chapt. I, Thm. 2.25] or
[EFHN15, Prop. 8.18]. This is property c). The implication c) to b) is clear.

�

Using this proposition we define a space Iaws as follows.
Definition 2.8 Let (T (t))t≥0 be a strongly continuous semigroup of contrac-
tions on a Banach space X. We define

Iaws := {x ∈ X | lim
τ→∞

1

τ

τ∫
0

|〈T (t)x, x′〉| dt = 0} .

Proposition 2.9 Let (T (t))t≥0 be a strongly continuous semigroup of con-
tractions on a Banach space X. The subset Iaws is a closed, (T (t))t≥0-invariant
subspace of X.

Proof. That Iaws is a (T (t))t≥0-invariant subspace is clear. To prove that it
is in fact a closed subspace we use characterization c) of almost weak stability
in Proposition 2.7 on page 12. Let (xn)n∈N be a convergent sequence in Iaws

with limit x ∈ X and take ε > 0. Then there exists n ∈ N such that
‖xn − x‖ < ε

2
. By Proposition 2.7 c) on page 12 there exists t(n) ≥ 0 such

that

sup
x′∈X′,‖x′‖≤1

1

T

T∫
0

|〈T (t)xn, x
′〉| dt < ε

2

13



2 Operator theoretical tools for topological dynamical systems

for all T > t(n). This implies

sup
x′∈X′,‖x′‖≤1

1

T

T∫
0

|〈T (t)x, x′〉| dt

≤ sup
x′∈X′,‖x′‖≤1

1

T

T∫
0

|〈T (t)(xn − x), x′〉| dt+ sup
x′∈X′,‖x′‖≤1

1

T

T∫
0

|〈T (t)xn, x
′〉| dt

≤ ‖x− xn‖+ sup
x′∈X′,‖x′‖≤1

1

T

T∫
0

|〈T (t)xn, x
′〉| dt < ε for all T ≥ max{n, t(n)} .

This completes the proof by the equivalences of a) and c) in Proposition 2.7
on page 12. �

For strongly continuous semigroups of contractions with relatively weakly com-
pact orbits there are other equivalent characterizations of almost weak stabil-
ity, see [Eis10, Chapt. III, Sect. 5]. In the next proposition we discuss one of
those properties and are able to prove that this property implies almost weak
stability without assuming relatively weakly compact orbits.

Proposition 2.10 Let (T (t))t≥0 be a strongly continuous semigroup of con-
tractions on a Banach space X. If for all x ∈ X there exists a sequence (tn)n∈N
in [0,∞) with tn →∞ as n→∞ such that for all x′ ∈ X ′

lim
n→∞
〈T (tn)x, x′〉 = 0 ,

then (T (t))t≥0 is almost weakly stable.

Proof. Take x ∈ X and (tn)n∈N, tn →∞ such that

lim
n→∞
〈T (tn)x, x′〉 = 0

for all x′ ∈ X ′. As in the proof of Proposition 2.7 on page 12 we consider the
induced Koopman system (C(B′), (T̃ (t))t≥0) and the function

gx(x
′) := |〈x, x′〉| .

If µ ∈ C(B′)′ vanishes on
⋃
t≥0

(rg(Id− T̃ (t))), then

〈gx, µ〉 = 〈T̃ (tn)gx, µ〉

14



2.3 Spectral conditions for stability of positive semigroups on Banach lattices

for all n ∈ N. We observe that

〈T̃ (tn)gx, µ〉 =

∫
B′
T̃ (tn)gx(x

′) dµ(x′)

=

∫
B′
|〈x, T (tn)′x′〉| dµ(x′)

=

∫
B′
|〈T (tn)x, x′〉| dµ(x′) .

By assumption |〈T (tn)x, x′〉| converges to 0 for all x′ ∈ X ′. By Lebesgue’s
Theorem the integral

∫
B′
|〈T (tn)x,′ x′〉| dµ(x′) goes to 0 as well, thus implying

〈gx, µ〉 = 0. This implies gx ∈ lin
⋃
t≥0

(rg(Id− T̃ (t))) by the theorem of Hahn-

Banach. Thus,

1

T

∫ T

0

|〈T (t)x, x′〉| dt

=
1

T

∫ T

0

(T̃ (t)gx)(x
′) dt

T→∞−−−→ 0

for all x′ ∈ X ′, cf. [EN00, Chapt. V, Sect. 4] and in particular [EN00, Chapt.
V, Lem. 4.4]. Since x was arbitrary, (T (t))t≥0 is almost weakly stable. �

2.3 Spectral conditions for stability of positive
semigroups on Banach lattices

If (T (t))t≥0 is a positive strongly continuous semigroup on a Banach lattice,
some stability can be characterized by the spectrum of the generator A. We
first recall the uniform growth bound ω0 and the growth bound ω1 of (T (t))t≥0.

Definition 2.11 Let (T (t))t≥0 be a strongly continuous semigroup on a Ba-
nach space X. Then the uniform growth bound is

ω0 := inf{ω ∈ R | ‖T (t)‖ ≤Me−ωt for some M > 0}

and the growth bound is

ω1 := inf{ω ∈ R | lim
τ→∞

∫ τ

0

e−ωtT (t)x dt exists for all x ∈ X} .
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2 Operator theoretical tools for topological dynamical systems

Then
s(A) ≤ ω1 ≤ ω0 ,

where s(A) is the spectral bound

s(A) := sup{Reλ | λ ∈ σ(A)} .

Theorem 2.12 [Nag+86, Sect. C-IV]
Let (T (t))t≥0 be a positive strongly continuous semigroup with generator
(A,D(A)) on a Banach lattice X. Then the following are equivalent.

a) s(A) < 0,

b) ω1 < 0,

c) 0 ∈ ρ(A) and −A−1 = R(0, A) ≥ 0,

d)
∫∞

0
T (s)y ds exists for all 0 ≤ y ∈ X,

e) for all 0 ≤ x ∈ X there exists a unique 0 ≤ y ∈ D(A) with Ay = −x.

Corollary 2.13 If X = C(K), the space of all complex-valued continuous
functions on a compact space K, then the assertions in Theorem 2.12 are
equivalent to

e∗) there exists 0 ≤ g ∈ X such that

Ag = −1 .

f) (T (t))t≥0 is weakly stable.

Proof. The equivalence of e∗) and f) can be found in [Nag+86, Thm. 1.1,
Sect. B-IV]. Since e) implies e∗), it remains to show that e∗) implies one of
the other assertions. We show e∗) ⇒ c).
By [EN00, Chapt. 6, II.1.3], e*) implies

t∫
0

T (s)1 ds =

t∫
0

−T (s)Ag

= g − T (t)g ≤ g

16



2.3 Spectral conditions for stability of positive semigroups on Banach lattices

since T (t) is positive. Let ε > 0 and λ > 0, then

‖
t∫

r

e−λsT (s)1 ds‖ ≤ |e−λr|‖
t∫

r

T (s)1 ds‖ ≤ |e−λr|‖g‖ < ε

holds for all t, r sufficiently large. This implies that
∞∫
0

e−λsT (s)f ds exists for

all f ∈ C(K) and λ > 0, hence R(λ,A)f =
∞∫
0

e−λsT (s)f ds and λ ∈ ρ(A) for

all λ > 0, f ∈ C(K). For λ > 0 we obtain

‖R(λ,A)‖ = ‖R(λ,A)1‖ ≤ ‖g‖ <∞ .

All in all, R(λ,A) is uniformly bounded for all λ > 0 which implies 0 ∈ ρ(A),
because if s(A) = 0 ∈ σ(A) the resolvent would be unbounded for λ↘ 0. �

Corollary 2.14 In Corollary 2.13 on page 16 one can exchange 1 by any
strictly positive f ∈ C(K) since such f is again an order unit.
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3 Basic properties of topological
dynamical systems

In this chapter we define topological dynamical systems and continuous semi-
flows and discuss basic concepts of those. This will lay the groundwork for our
investigation of attractors and absorbing sets in topological dynamical systems
using operator theoretic tools.

Definition 3.1 A (topological) dynamical system is a pair (X, (ϕt)t≥0) con-
sisting of a locally compact Hausdorff space X and a continuous semiflow
(ϕt)t≥0 on X. We call a family (ϕt)t≥0 of continuous self-mappings on X,
semiflow if ϕ0 = idX , ϕt+s = ϕt ◦ϕs for all t, s ≥ 0. We call a semiflow (ϕt)t≥0

continuous if the mapping

ϕ : [0,∞)×X → X ,

(t, x) 7→ ϕt(x)

is continuous with respect to the product topology.

Throughout this thesis we will use the letter K for dynamical systems with
a compact state space and Ω if the state space is non-compact and locally
compact.

Example 3.2 1. Let X be a locally compact Hausdorff space and consider
ϕt := idX for all t ≥ 0. Then (X, (ϕt)t≥0) is a dynamical system.

2. Take K := [0, 1]. For x ∈ K and t ≥ 0, define ϕt(x) := e−tx. This yields
a dynamical system (K, (ϕt)t≥0).

3. Another standard example is given by Ω := R and the shift defined by
ϕt(x) := x+ t, x ∈ R, t ≥ 0 thereon.

4. We define a semiflow (ψt)t≥0 on [0,∞], the one-point compactification of
[0,∞), by

ψt(x) := e−tx, x ∈ [0,∞) and ϕt(∞) :=∞, t ≥ 0.
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3 Basic properties of topological dynamical systems

5. Recall the homeomorphism θ defined by

θ : [0,∞)→ [0, 1)

x 7→ x

x+ 1
.

Starting from above Example 3.2, 4., we obtain a continuous semiflow
(φt)t≥0 on [0, 1] by

φt(y) := θ ◦ ψt ◦ θ−1(y)

and φt(1) = 1 for all t ≥ 0. A short computation yields

φt(y) =
e−ty

e−ty + 1− y
for y ∈ [0, 1] .

For the rest of this chapter let (X, (ϕt)t≥0) be a dynamical system. For a subset
M ⊆ X we denote the family of its neighborhoods by U(M).

3.1 Invariant sets

Of great interest are invariant subsets and fixed points of a dynamical system
(X, (ϕt)t≥0).

Definition 3.3 An element x ∈ X (also called state or point) is called fixed
point if

ϕt(x) = x for all t ≥ 0 .

A subset B ⊆ X is called invariant if

ϕt(B) ⊆ B for all t ≥ 0 .

One important example of invariant subsets of X are “orbits”.

Definition 3.4 For x ∈ X its orbit is

orb(x) := {ϕt(x) | t ≥ 0} ,

and for a subset A ⊆ X we define

orb(A) := {ϕt(A) | t ≥ 0} .

For the closure we write orb(x) := orb(x) and orb(A) := orb(A), respectively.
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3.1 Invariant sets

Other interesting closed invariant sets are so-called ω-limit sets, cf. [SY13,
Sect. 2.1.2, p. 16], [BS02, Chapt. 3, Def. 3.1].

Definition 3.5 For x ∈ X we define the ω-limit set of x by

ω(x) :=
⋂
τ≥0

{ϕt(x) | t ≥ τ} .

For a set A ⊆ Ω we define its ω-limit set by

ω(A) :=
⋂
τ≥0

{ϕt(A) | t ≥ τ} .

Remark 3.6 Remark that for x ∈ X

ω(x) =
⋂
τ≥0

orb(ϕτ (x)) ⊆ orb(x)

and for A ⊆ X ⋃
x∈A

ω(x) ⊆ ω(A) .

In general
⋃
x∈A ω(x) 6= ω(A) as the following example shows.

Example 3.7 Consider K := R ∪ {∞} the one-point compactification of R
and the semiflow (ϕt)t≥0 on K defined by

ϕt(x) := x+ t, x ∈ R, t ≥ 0 and ϕt(∞) =∞ for all t ≥ 0 .

For the subset L := (−∞, 0]∪{∞} one obtains ω(L) = K, but
⋃
x∈L

ω(x) = {∞}.

The following useful characterization is well-known for dynamical systems with
metric state space X. We repeat the arguments for sequences adjusted to our
situation, cf. [BV13, Prop. 3.5].

Proposition 3.8 Let x, y ∈ X and A ⊆ X.

1. Then y ∈ ω(x) if and only if there exists a net (ti)i∈I in [0,∞) , ti →∞,
with ϕti(x)

i∈I−−→ y.

2. Similarly, y ∈ ω(A) if and only if there exist nets (ti)i∈I in [0,∞), ti →∞,
and (xi)i∈I in A with ϕti(xi)→ y.
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Proof. Proof of 1.: Take x ∈ X and y ∈ ω(x), i.e., y ∈ {ϕt(x) | t ≥ τ} =
orb(ϕτ (x)) for all τ ≥ 0.

We distinguish between two cases. First, if there exists τ ≥ 0 with

y ∈ orb(ϕτ (x)) \ orb(ϕτ (x)) ,

there exists a net (ti)i∈I , ti ≥ τ with ϕti(x) → y for i ∈ I and ti → ∞ since
y /∈ orb(ϕτ (x)).

If, on the other hand, y ∈ orb(ϕτ (x)) for all τ ≥ 0, then there exists r > 0
with y = ϕr(x). Also, y ∈ orb(ϕτ (x)) for all τ > r which implies there exists
s > r with ϕs(x) = y. We write y = ϕs−r(ϕr(x)) = ϕs−r(y) and obtain

y = ϕn·(s−r)(y) for all n ∈ N .

The increasing sequence tn := n · (s− r) + r satisfies ϕtn(x) = y and tn →∞.

For the other implication let (ti)i∈I be a net with ti →∞ such that ϕti(x) con-
verges to y. For fixed s ≥ 0 there exists i0 ∈ I such that ti ≥ s for all i ≥ i0.
Then (ϕti(x))i∈I,i≥i0 is still a net converging to y. Therefore, y ∈ orb(ϕs(x))
for all s ≥ 0.

Proof of 2.: Let A ⊆ Ω and y ∈ ω(A). We follow the same arguments as in
the proof of 1.: If there exists τ ≥ 0 with

y ∈ orb(ϕτ (A)) \ orb(ϕτ (A)) ,

then there exists a net (ti)i∈I , ti ≥ τ and a net (xi)i∈I in A with ϕti(xi)→ y
for i ∈ I. Since y /∈ orb(ϕτ (A)), ti →∞.

Next, if y ∈ orb(ϕτ (A)) for all τ ≥ 0, there exists t0 ≥ 0 and x0 ∈ A such that
y = ϕt0(x0). Next, there exists t1 ≥ t0 + 1 and x1 ∈ A such that y = ϕt1(x1)
since y ∈ orb(ϕt0+1(A)). Thus, one obtains a sequence (tn)n∈N, tn → ∞ and
a sequence (xn)n∈N in A such that y = ϕtn(xn).

To prove the converse implication, let (ti)i∈I be a net with ti →∞ and (xi)i∈I
a net in A such that ϕti(xi) converges to y. For fixed s ≥ 0 there exists i0 ∈ I
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such that ti ≥ s for all i ≥ i0. Then (ϕti(xi))i∈I,i≥i0 is still a net converging
to y. Therefore, y ∈ orb(ϕs(A)) for all s ≥ 0. �

Clearly, in the non-compact case, ω-limit sets may be empty.

Example 3.9 Consider X := [0,∞) and define a semiflow (ϕt)t≥0 thereon by
ϕt(x) := x+ t. Then ω(x) = ω(A) = ∅ for all x ∈ X and A ⊆ X.

To conclude this section we prove a connection between closed orbits and ω-
limit sets. We modify the usual arguments, cf. [BV13, Prop. 3.6] for a locally-
compact metric state space X to a general locally compact Hausdorff state
space.

Proposition 3.10 For L ⊆ X with orb(L) compact,

(i) the set ω(L) is non-empty and compact, and

(ii) ϕt(L)→ ω(L) in the sense that for every neighborhood U of ω(L) there
exists t0 ≥ 0 such that ϕt(L) ⊆ U for all t ≥ t0.

Proof. For the proof of (i) remark that ω(L) ⊂ orb(L) and hence ω(L) is
compact as a closed subset of a compact set. It is non-empty by the finite
intersection property.
Now, to prove (ii), assume there is an open neighborhood U of ω(L) such that
ϕti(xi) ∈ U c for a net (ti)i∈I in [0,∞) with ti → ∞ and a net (xi)i∈I in L.
But ϕti(xi) ∈ orb(L) for all i ∈ I and therefore has a convergent subnet with
limit in U c which is a contradiction to Proposition 3.8, (1.) on page 21. �

Proposition 3.11 Let L ⊆ X such that ω(L) is compact and non-empty,
then

ϕt(L)→ ω(L) as t→∞

in the sense of Proposition 3.10 (ii).

Proof. Assume this is not true, then there is an open neighborhood U of
ω(L) and a net (ti)i∈I in [0,∞), ti → ∞ and a net (xi)i∈I in L such that
ϕti(xi) ∈ U c. But, U c is compact in the one-point compactification X ∪ {∞}
of X, hence (ϕti(xi))i∈I has a convergent subnet with limit in U c, possibly∞,
which is a contradiction to Proposition 3.8, (1.), on page 21. �

Combining Proposition 3.10 and Proposition 3.11 we obtain the following.

Remark 3.12 For L ⊆ X compact, orb(L) is compact if and only if ω(L) is
compact and non-empty.
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3 Basic properties of topological dynamical systems

Proof. The implication “ =⇒ ” has been proved in Proposition 3.10 (i) on
page 23.
For the other implication remark that ω(L) being non-empty and compact
already implies that ϕt(L) → ω(L) by Proposition 3.11 on page 23. Now,
let (ϕti(xi))i∈I be a net in orb(L). If (ti)i∈I is bounded, it has a convergent
subnet (tij)j∈J with limit t ≥ 0 and thus ϕtij (xij) ∈

⋃
0≤s≤t

ϕs(L), which implies

that (ϕtij (xij))j∈J has a convergent subnet because L is compact. Now assume
that (ti)i∈I is unbounded and take a compact neighborhoodW of ω(L). Then
there exists i0 ∈ I such that ϕti(xi) ∈ W for all i ≥ i0 by assumption. Since
W is compact there exists a convergent subnet of (ϕti(xi))i∈I with limit inW ,
thus every net in orb(L) has a convergent subnet which implies that orb(L)
is compact. �

3.2 Asymptotic properties of dynamical
systems

Now we introduce other types of invariant sets that will be the main focus of
discussion throughout the second part of this thesis, namely absorbing, attrac-
tive and Lyapunov stable sets, (cf. [SY13, Sect. 2.3.3], [Tem12, Sect. 1.3, 1.4],
[BS02, Chapt. V]).

3.2.1 Absorbing sets

Definition 3.13 A closed invariant set ∅ 6= M ( X is called

a) absorbing if there exists t0 > 0 such that

ϕt0(X) ⊆M ,

b) compact absorbing if for all L ⊆ X compact there exists t0 > 0 such that

ϕt0(L) ⊆M ,

c) pointwise absorbing if for all x ∈ X there exists t0 > 0 such that

ϕt0(x) ∈M .
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3.2 Asymptotic properties of dynamical systems

The three concepts do not coincide in general, as the following examples
show.

Example 3.14 1. Let Ω := [0,∞) and for t ≥ 0, x ∈ Ω define

ϕt(x) := max(0, x− t) .

This semiflow is continuous and the set M := {0} is compact, invariant
and compact absorbing but not absorbing.

Considering the same semiflow on a different space however gives an ex-
ample for an absorbing set.

Let Ω := [0, 1) and for t ≥ 0, x ∈ Ω define

ϕt(x) := max(0, x− t) .

This semiflow is continuous and the set M := {0} is absorbing.

2. We construct an example for a pointwise absorbing set that is not com-
pact absorbing. Recall Example 3.2, 4., on page 19

On Ω := [0,∞) we obtain a semiflow (ϕt)t≥0 by

ϕt(x) :=

{
e−tx

e−tx+1−x x ∈ [0, 1)

e−t(x− 1) + 1 x ≥ 1 .

A short computation shows that (ϕt)t≥0 is in fact continuous. The set
M :=

[
0, 1

2

]
∪
[
1, 3

2

]
is pointwise absorbing, but not compact absorbing

or absorbing. Take for example the compact set L := [0, 1] then for
1
2
< x < 1, ϕt(x) ∈ M for t ≥ − ln

(
1
x
− 1
)
. But, − ln

(
1
x
− 1
)
→ ∞ for

x↗ 1.

To give a condition under which compact absorbing and pointwise absorbing
sets coincide we remark the following.

Remark 3.15 A locally compact space X is a Baire space, i.e., for a sequence
of closed subsets Xm, m ∈ N, with

X =
⋃
m∈N

Xm
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3 Basic properties of topological dynamical systems

there exists n ∈ N such that Xn has non-empty interior int (Xn). If M is a
pointwise absorbing subset of X, the sets ϕ−1

n (M), n ∈ N, form a closed cover
of X and M ⊆ ϕ−1

n (M) for all n ∈ N by invariance.

We use this fact to characterize under which condition a pointwise absorbing
set is compact absorbing. First, consider the following example.

Example 3.16 Take K := [0,∞] and the semiflow defined by ϕt(x) := e−tx
for x ∈ [0,∞), t ≥ 0, and ϕt(∞) =∞ for all t ≥ 0. The set M := [0, 1]∪ {∞}
is pointwise absorbing but not compact absorbing. We observe that for n ∈ N

ϕ−1
n (M) = [0, en] ∪ {∞} and int

(
ϕ−1
n (M)

)
= [0, en) .

Thus, M is not a subset of int (ϕ−1
n (M)).

This leads us to the following characterization.

Proposition 3.17 A compact invariant set ∅ 6= M ( X is compact absorbing
if and only if it is pointwise absorbing and there exists n ∈ N such that

M ⊆ int
(
ϕ−1
n (M)

)
.

Proof. IfM is compact absorbing it is pointwise absorbing. Take a compact
neighborhood U of M , by assumption there exists n ∈ N with ϕn(U) ⊆ M
and thus M ⊆ U ⊆ ϕ−1

n (M). Since U is a neighborhood of M , so is ϕ−1
n (M)

which implies M is in the interior of ϕ−1
n (M).

For the other implication let L ⊆ X be compact and use that for every x ∈ L
there exists tx ≥ 0 such that

ϕtx(x) ∈ int
(
ϕ−1
n (M)

)
⊂ ϕ−1

n (M) .

By continuity ϕ−1
tx (int (ϕ−1

n (M))) is open for every x ∈ L and

L ⊆
⋃
x∈X

ϕ−1
tx (int

(
ϕ−1
n (M)

)
) .

Since L is compact, there exist finitely many x1, . . . , xj for some j ∈ N such
that

L ⊆
j⋃

k=1

ϕ−1
txk

(int
(
ϕ−1
n (M)

)
) .

26



3.2 Asymptotic properties of dynamical systems

This implies for y ∈ L that

ϕtxk (y) ∈ int
(
ϕ−1
n (M)

)
⊂ ϕ−1

n (M)

for some k ∈ {1, . . . , j} and therefore

ϕtxk+n(y) ∈M .

Define T := max{txk | k ∈ {1, . . . , j}}, then

ϕT+n(y) ∈M

by invariance of M . �

Now we turn to attractive subsets of X and attractors.

3.2.2 Attractive sets and attractors

Definition 3.18 A closed invariant set ∅ 6= M ⊆ X is called

a) uniformly attractive if for all U ∈ U(M) there exists t0 > 0 such that

ϕt(X) ⊆ U for all t ≥ t0 ,

b) compact attractive if for all L ⊆ X compact and U ∈ U(M) there exists
t0 > 0 such that

ϕt(L) ⊆ U for all t ≥ t0 ,

c) (pointwise) attractive if for all x ∈ X and U ∈ U(M) there exists t0 > 0
such that

ϕt(x) ∈ U for all t ≥ t0 ,

d) likely limit set (for µ), where µ is a quasi invariant regular Borel measure1

on X, if for all U ∈ U(M) and µ-almost every x ∈ K there exists t0 > 0
with

ϕt(x) ∈ U for all t ≥ t0 ,

1Given a semiflow (ϕt)t≥0 onX, then a Borel measure µ onX is called quasi invariant (with
respect to (ϕt)t≥0) if for a Borel measurable setN , µ(N) = 0 if and only if µ(ϕ−1t (N)) = 0
for all t ≥ 0.
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3 Basic properties of topological dynamical systems

e) center of attraction if for all U ∈ U(M)

lim
t→∞

1

t
λ ({s ∈ [0, t] | ϕs(x) ∈ U}) = 1

for all x ∈ X, where λ denotes the Lebesgue measure on [0,∞).

The concepts a), b) and c) in Definition 3.18 on page 27 have been established
by A. M. Lyapunov in his dissertation ([Lya92]) in 1892 and have since been
broadly applied and investigated for dynamical systems on metric spaces. See
[BS02, Chapt. II] or [SY13, Sect. 2.3.3]. The property e) in Definition 3.18 on
page 27 appears in G. D. Birkhoff’s monograph “Dynamical Systems” [Bir66,
Chapt. VII] as “central motion” and has been further investigated by H. Hilmy,
see for example [Hil36], K. Sigmund, in [Sig77] and by H. Kreidler in [Kre20,
Sect. 4] to name a few. Definition d) for semiflows on smooth compact mani-
folds is due to J. Milnor and can be found in [Mil85, Sect. 2].

Remark 3.19 If (Ω, (ϕt)t≥0) is a dynamical system with locally compact state
space Ω that is metrizable and M is a compact subset of Ω, then there exists
a µ-null set satisfying the assumptions in Definition 3.18 d) on page 27 that
does not depend on U ∈ U(M) since the compact subset M has a countable
neighborhood basis.

Remark 3.20 For the concepts defined in Definition 3.18 on page 27 the
following implications hold.

a) +3 b) +3 c) +3

�"

d)

e)

The opposite implications do not hold true in general as can be seen in the
next example.

Example 3.21 a) Consider K := R∪ {∞} the one-point compactification
of R and the semiflow (ϕt)t≥0 defined by

ϕt(x) :=

{
x+ t x ∈ R
∞ x =∞

.

Then M := {∞} is attractive but not uniformly attractive.
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3.2 Asymptotic properties of dynamical systems

b) Consider Ω := [0,∞) and define ϕt(x) := e−tx. Then M := {0} is
compact attractive but not uniformly attractive.

c) As in Example 3.14, 2., on page 25 we consider Ω := [0,∞) and the
semiflow (ϕt)t≥0 on Ω, given by

ϕt(x) :=

{
e−tx

e−tx+1−x x ∈ [0, 1)

e−t(x− 1) + 1 x ≥ 1 .

The set M := {0} ∪ {1} is attractive but not compact attractive as can
be seen by the same arguments used in Example 3.14, 2., on page 25.

d) Take K := [0,∞] and the semiflow (ϕt)t≥0 on K, with

ϕt(x) :=

{
e−tx x ∈ [0,∞)

∞ x =∞
.

Consider the standard Gaussian measure γ on [0,∞] which is a regular
Borel measure on K that is quasi-invariant with respect to (ϕt)t≥0 since
it is equivalent to the Lebesgue measure λ. In particular, γ({∞}) = 0.
ThenM := {0} is a likely limit set for γ since γ([0,∞)) = 1 and ϕt(x)→
0 for all x ∈ [0,∞) but it is neither attractive nor a center of attraction
since ϕt(∞) =∞ for all t ≥ 0.

e) In [Hil36, p. 287], H. Hilmy gave a concrete example for a center of
attraction that is not attractive. We give a simplified version of this
example. Take the following differential equation{

ṙ = −r log(r)
(
(1− r)2 + sin2(θ)

)
θ̇ = (1− r)2 + sin2(θ)

given in polar coordinates on K := {z = r · eiθ ∈ C | 1 ≤ r ≤ 2, 0 ≤ θ}.
The solutions of above differential equation exist for all times and all
initial values in K and form a semiflow (ϕt)t≥0 thereon.

Since ṙ(t) ≤ 0 for all t ≥ 0 the radius r is monotonically decreasing and
since θ̇(t) ≥ 0 for all t ≥ 0 the angle θ is monotonically increasing and
unbounded, these facts clearly imply that the orbit of an initial state
with radius r > 1 forms a spiral towards the unit circle. On the unit
circle the radius is constant and the rate of change of θ is given by the
differential equation

θ̇ = sin2(θ) .
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3 Basic properties of topological dynamical systems

This implies that the unit circle is (ϕt)t≥0-invariant and attractive. Fur-
thermore, z1 = 1 and z2 = eiπ are fixed points, because sin2(0) =
sin2(π) = 0. Thus, points on the unit circle converge to either z1 or
z2. Remark that M := {z1} ∪ {z2} is not attractive. Take z ∈ K with
r > 1 and a neighborhood U of M . Since θ is monotonically increasing
and unbounded the set {t ∈ [0,∞) | ϕt(z) /∈ U} is unbounded and hence
M is not attractive. We claim that the set M is a center of attraction
for (X, (ϕt)t≥0) and is even minimal with this property. We prove these
facts in Example 4.25 on page 53.

Concluding this section we give the following definition.

Definition 3.22 A compact invariant subset ∅ 6= M ⊆ X is called

• (uniform/compact) attractor if it is (uniformly/compact) attractive and
minimal with this property,

• Milnor attractor for a quasi-invariant Borel measure µ on X if it is a
likely limit set and minimal with this property.

• Minimal center of attraction if it is a center of attraction and minimal
with this property.

We remark the following.

Remark 3.23 By Definition 3.18 on page 27 it becomes immediately clear
that for the existence of an attractor it is necessary that ω-limit sets are non-
empty. However, this is not a sufficient condition as the following example
shows.

Example 3.24 On Ω := C using polar coordinates we define a rotation as
follows

ϕt(r · eiθ) := r · ei(θ+2πt) , t ≥ 0 .

Then for z = r · eiθ, ω(z) = {y = r̃ · eiθ̃ ∈ C | r̃ = r} and for a compact subset
L ⊆ C we obtain ω(L) =

⋃
z∈L

ω(z). Hence the ω-limit sets are non-empty and

compact, but the only fixed point, z = 0, is not attractive in the sense of
Definition 3.18 on page 27.
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3.2 Asymptotic properties of dynamical systems

3.2.3 Lyapunov stable sets

One of the most prominent conditions in the context of attractors and invariant
sets is stability in the sense of Lyapunov, as introduced in [Lya92] and later
intensely studied, cf. [ABS64, Sect. 2] or [SY13, Sect. 2.3.3]. By this stability
we mean that orbits that start sufficiently close to the attractor will remain
close to the attractor.

Definition 3.25 A closed invariant set ∅ 6= M ⊂ X is called stable in the
sense of Lyapunov (or Lyapunov stable) if for all U ∈ U(M) there exists
V ∈ U(M), V ⊆ U such that

ϕt(V ) ⊆ U for all t ≥ 0 .

Proposition 3.26 Let ∅ 6= M ⊆ X be closed and invariant. Then the follow-
ing are equivalent.

a) The set M is stable in the sense of Lyapunov.

b) Every U ∈ U(M) contains an invariant V ∈ U(M). If U is closed, V can
be chosen closed as well.

Proof. For the implication a)⇒b) take U ∈ U(M) closed and V ∈ U(M),
V ⊆ U such that x ∈ V implies ϕt(x) ∈ U for all t ≥ 0. Consider W :=⋃
t≥0 ϕt(V ). Then V ⊂ W ⊂ U . Therefore, W is still a closed neighborhood

of M which is invariant. The implication b)⇒a) is trivial. �

Stability in the sense of Lyapunov does not imply any of the other attractivity
properties defined in Definition 3.18 on page 27.

Example 3.27 Define a semiflow on [0, 1] by choosing ϕt := id[0,1] for all
t ≥ 0. Every closed subset M ⊆ [0, 1] is invariant and stable in the sense of
Lyapunov, but none of the properties in Definition 3.18 on page 27 apply.

The concept of Lyapunov functions is an often used tool in the context of
attractors and Lyapunov stability. We give the following definition.

Definition 3.28 Let ∅ 6= M ⊆ X be closed and invariant. We call a family
(gi)i∈I of positive continuous functions gi : X → R Lyapunov family (for M)
if M = ∩i∈Ig−1

i ({0}) and for all i ∈ I and x ∈ X \ [gi = 0] we have

gi(ϕt(x)) < gi(x) for all t > 0 .
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3 Basic properties of topological dynamical systems

If the state space is metric one can define the following.

Definition 3.29 Let ∅ 6= M ⊆ X be closed and invariant. We call a positive
continuous function g : X → R Lyapunov function (for M) if M = g−1({0})
and for all x ∈ X \M we have

g(ϕt(x)) < g(x) for all t > 0 .

The connection between Lyapunov functions and families and attractors using
the Koopman approach shall be established in Sections 4.3 and 5.4.
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Part II

Attractors and Koopman
semigroups for topological
dynamical systems on...
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4 ... compact spaces

In this chapter1 we consider dynamical systems (cf. Definition 3.1 on page 19)
(K, (ϕt)t≥0) consisting of a compact topological Hausdorff space K and a con-
tinuous semiflow (ϕt)t≥0 on K. On the Banach space (C(K), ‖ · ‖∞) of all real-
valued continuous functions on K endowed with the supremum norm ‖ · ‖∞,
we associate a semigroup (T (t))t≥0 of linear operators to the semiflow (ϕt)t≥0

by defining
T (t)f := f ◦ ϕt for f ∈ C(K) , t ≥ 0 .

We recall that (C(K), ‖ · ‖∞) is a Banach algebra and a Banach lattice for the
usual pointwise operations and remark that each T (t), t ≥ 0, is an algebra and
lattice homomorphism with T1 = 1.

An attractor is a closed, hence compact and (ϕt)t≥0-invariant subset ∅ 6= M ⊆
K possessing a certain asymptotic property for which it is minimal, cf. Defi-
nition 3.22 on page 30. As addressed in the introduction every such subset of
K corresponds to the closed and (T (t))t≥0-invariant ideal

IM := {f ∈ C(K) | f |M ≡ 0}

in the Banach algebra C(K). Essential to this matter is that all closed ideals in
C(K) are of the form IM where M is a closed subset of K (cf. [EFHN15, The-
orem 4.8]). Also a subset M is (ϕt)t≥0-invariant (cf. Definition 3.3 on page 20)
if and only if the corresponding ideal IM is (T (t))t≥0-invariant, [EFHN15, Lem.
4.18]. Hence we have the following correspondence.

M ⊆ K closed subset ⇔ IM ⊆ C(K) closed ideal

M (ϕt)t≥0-invariant ⇔ IM (T (t))t≥0-invariant.

1The results in Sections 4.1, 4.2 and 4.4 of this chapter are based on the publication [Küh19],
Viktoria Kühner, What can Koopmanism do for attractors in dynamical systems?, The
Journal of Analysis, (2019).
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Given a function f : K → R and a ∈ R we use the notation

[f < a] := f−1((−∞, a)) , [f ≤ a] := f−1((−∞, a]) , [f = a] := f−1({a})

and, analoguously, [f > a] and [f ≥ a]. The sets [|f | > 0], f ∈ C(K), form
a basis for the topology on K since K is completely regular, [EFHN15, Ap-
pendix A.2] and [EFHN15, Proof of Lem. 4.12]. This is equivalent to the fact
that the zero sets [f = 0] for f ∈ C(K) form a basis of the closed subsets of
K or that the topology on K coincides with the initial topology induced by
C(K). Combining these facts, given a closed subset M ⊆ K and U an open
neighborhood of M , there exists f ∈ C(K) with M ⊆ [f = 0] and ε > 0 such
that [|f | < ε] ⊆ U , i.e. the sets of the form Uε,f := [|f | < ε], f ∈ C(K),
f(M) = {0} and ε > 0 form a basis for the system of neighborhoods of M .

In particular, for every closed ideal I ⊆ C(K) there exists a closed subset
M ⊆ K such that

I = IM = {f ∈ C(K) | f |M ≡ 0} and M =
⋂
f∈I

[f = 0] ,

see [EFHN15, Thm. 4.8]. Furthermore, for M ⊆ K closed, IM is isomorphic
to C0(K \M) by f 7→ f |K\M , where C0(K \M) is the space of all real-valued
continuous functions on K \M that vanish at infinity, cf. [Ped12, Sect. 1.7.6].
By the Riesz’ representation theorem (cf. [EFHN15, Thm. 5.7 & Rem. 5.8])
we identify the dual spaces C(K)′ and I ′M ∼= C0(K \M)′ of C(K) and IM with
the bounded regular Borel measures on K and K \M , respectively.

As mentioned in the introduction, the idea to study dynamical systems by in-
vestigating the associated operator semigroup is due to Bernard Koopman and
John v. Neumann, see [vNeu32b] and [Koo31]. This motivates the following
terminology, cf. [EFHN15, Chapt. 4,p. 45].

Definition 4.1 Let K be a compact Hausdorff space and T ∈ L(C(K)). We
call T Koopman operator if there exists a continuous mapping ϕ : K → K with

Tf = f ◦ ϕ for all f ∈ C(K) .

Clearly, every continuous mapping ϕ : K → K induces a Koopman operator
on C(K).

Koopman operators can be characterized as follows, see e.g., [Sch74, III, Prop.
9.1] or [DN79, Thm. 2.1].
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Lemma 4.2 For an operator T ∈ L(C(K)) the following properties are equiv-
alent.

a) T is an algebra homomorphism with T1 = 1.

b) T is a lattice homomorphisms with T1 = 1.

c) T is a Koopman operator.

Analoguously, we use the term Koopman semigroup.

Definition 4.3 Let K be a compact Hausdorff space. We call a semigroup
(T (t))t≥0 of linear operators on C(K) Koopman semigroup if every T (t), t ≥ 0,
is a Koopman operator, i.e., there exists a semiflow (ϕt)t≥0 on K (cf. Defini-
tion 3.1 on page 19) such that T (t)f = f ◦ ϕt for every f ∈ C(K), t ≥ 0.

Clearly, every semiflow (ϕt)t≥0 onK induces a Koopman semigroup on C(K).

Continuity of a semiflow (ϕt)t≥0 (cf. Definition 3.1 on page 19) and strong
continuity of the induced Koopman semigroup correspond in the following
way.

Lemma 4.4 Let (ϕt)t≥0 be a semiflow on K. Then the following are equiva-
lent.

a) (ϕt)t≥0 is continuous.

b) (ϕt)t≥0 is separately continuous, i.e., t 7→ ϕt(x) is continuous for fixed
x ∈ K and x 7→ ϕt(x) is continuous for fixed t ≥ 0.

c) The induced Koopman semigroup (T (t))t≥0 is strongly continuous.

We refer to [Nag+86, B-II, Lem. 3.2] or [DN79, Lem. 2.4] for the proof.

Combining these facts one obtains a characterization of Koopman semigroups
via their generators acting as derivations on their domain, see e.g., [DN79,
Satz 2.4] for the proof.

Definition 4.5 An operator A on C(K) is called derivation if its domain
D(A) is a subalgebra of C(K) with 1 ∈ D(A) and the product rule

A(f · g) = Af · g + f · Ag

holds for all f, g ∈ D(A).
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Theorem 4.6 Let (T (t))t≥0 be a strongly continuous semigroup on C(K) with
generator (A,D(A)). Then the following assertions are equivalent.

a) (T (t))t≥0 is a semigroup of algebra homomorphisms.

b) (T (t))t≥0 is a semigroup of lattice homomorphisms with T (t)1 = 1 for
all t ≥ 0.

c) (T (t))t≥0 is a Koopman semigroup.

d) (A,D(A)) is a derivation.

In the following sections we first characterize absorbing and attractive sub-
sets of a dynamical system by stability properties of the corresponding Koop-
man semigroup, then discuss stability in the sense of Lyapunov and Lyapunov
functions and finally prove the existence of different types of attractors and
characterize them.

From now on, (K, (ϕt)t≥0) is always a dynamical system and (T (t))t≥0 the
corresponding Koopman semigroup on C(K).

4.1 Absorbing sets and nilpotency

The following section is dedicated to the characterization of absorbing sets,
i.e., subsets of the state space that eventually contain every initial state, cf.
Definition 3.13 on page 24.

Proposition 4.7 Let ∅ 6= M ( K be a closed invariant set and (S(t))t≥0 the
restricted Koopman semigroup, i.e. S(t) := T (t)|IM for t ≥ 0. Then all the
assertions in (I) and all the assertions in (II) are equivalent.

(I) a) (S(t))t≥0 is nilpotent.

b) (S(t))t≥0 is uniformly stable.

c) ω0 = −∞, (cf. Definition 2.11 on page 15).

d) M is absorbing.

e) M is pointwise absorbing and M ⊂ int (ϕ−1
n (M)) for some n ∈ N.

(II) a) For all Dirac measures δx ∈ C(K)′ there exists t0 > 0 such that

S(t0)′δx = 0 .
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4.2 Asymptotics of dynamical systems

b) M is pointwise absorbing.

Proof. We begin with the proof of (I). Clearly, a) =⇒ b). For the impli-
cation b) =⇒ d) assume M not to be absorbing and fix t0 > 0, thus there
is x0 ∈ K \M with ϕt0(x0) ∈ K \M . Since K is completely regular, there
exists f ∈ IM with ‖f‖ = 1 and f(ϕt0(x0)) = 1. Therefore,

‖S(t0)‖ ≥ ‖S(t0)f‖ ≥ S(t0)f(x0) = 1 .

Since t0 was arbitrary, ‖S(t)‖ = 1 for all t ≥ 0 which contradicts b). The
implication d) =⇒ a) can be seen as follows. Let t0 > 0 be such that
ϕt0(K) ⊆ M , thus S(t0)f(x) = f(ϕt0(x)) = 0 for every f ∈ IM and x ∈ K.
This implies ‖S(t0)‖ = sup

‖f‖≤1

‖S(t0)f‖ = 0. Therefore, a), b) and d) are equiv-

alent. Clearly a) implies c) which implies d). The equivalence of d) and e)
has been proven in Proposition 3.17 on page 26.

Proof of (II): These equivalence is quite clear since a) implies that for all
x ∈ K there exists t0 > 0 such that

ϕt0(x) ∈
⋂
f∈IM

[f = 0] = M .

�

4.2 Asymptotics of dynamical systems

In this section we give an operator theoretic characterization of the attractivity
properties of dynamical systems as defined in Definition 3.18 on page 27.

The following lemma will be useful for the characterization of centers of at-
tractions via Koopman semigroups in the following theorem.

Lemma 4.8 Let (T (t))t≥0 be a strongly continuous Koopman semigroup on
C(K) and I a closed (T (t))t≥0-invariant ideal in C(K). Then the restricted
semigroup (S(t))t≥0, with S(t) := T (t)|I , t ≥ 0, is almost weakly stable if and
only if

lim
t→∞

1

t

t∫
0

S(s)|f |(x) ds = 0 for all x ∈ K , f ∈ I .
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Proof. Note that I is a closed ideal and therefore of the form I = IM
with M ⊆ K closed, this implies I ∼= C0(K \M). Hence, we identify the
topological dual I ′ of I with the bounded regular Borel measures on K \M .
The implication “⇒” follows from Proposition 2.7 on page 12 since I ′ contains
the point evaluations δx, x ∈ K \ M . The other implication is a direct
consequence of Lebesgue’s theorem of dominated convergence in the following
way. Let (tn)n∈N be a sequence in [0,∞) with tn

n→∞−−−→∞, f ∈ I and x ∈ K.
Remark that by the theorem of Fubini-Tonelli for n ∈ N,

1

tn

tn∫
0

|S(s)f(x)| ds =
1

tn

tn∫
0

S(s)|f |(x) ds

= 〈 1

tn

tn∫
0

S(s)|f | ds, δx〉 .

Since |S(t)f(x)| ≤ ‖f‖∞1K(x) for all t ∈ [0,∞), x ∈ K, Lebesgue’s theorem
of dominated convergence applies and thus for µ ∈ I ′

1

tn

tn∫
0

|〈S(s)f, µ〉| ds ≤ 1

tn

tn∫
0

〈S(s)|f |, |µ|〉 ds

= 〈 1

tn

tn∫
0

S(s)|f | ds, |µ|〉 n→∞−−−→ 0 .

This implies the implication “⇐”. �

The following theorem characterizes all attractivity properties from Defini-
tion 3.18 on page 27 by means of the corresponding Koopman semigroup.

Theorem 4.9 Let ∅ 6= M ⊆ K be a closed invariant set, µ a quasi-invariant
Borel measure on K and (S(t))t≥0 the restricted Koopman semigroup, i.e.
S(t) := T (t)|IM for t ≥ 0. Then the assertions in (I), (II), (III) and (IV),
respectively, are equivalent.

(I) a) (S(t))t≥0 is strongly stable.

b) M is uniformly attractive.

(II) a) (S(t))t≥0 is weakly stable.

b) M is attractive.
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4.2 Asymptotics of dynamical systems

(III) a) (S(t))t≥0 is almost weakly stable.

b) M is a center of attraction.

(IV) a) (S(t))t≥0 is µ-almost everywhere pointwise stable.

b) M is a likely limit set (for µ).

Proof. Proof of (I): First we show a) =⇒ b). Take U ∈ U(M). Since K is
completely regular, there is f ∈ IM and ε > 0 such that Uε,f = [|f | < ε] ⊆ U .
By assertion a) there is t0 > 0 such that ‖S(t)f‖ < ε for all t ≥ t0. This
implies

|S(t)f(x)| = |f(ϕt(x))| < ε for all x ∈ K , t ≥ t0 .

Therefore, ϕt(K) ⊆ Uε,f ⊆ U for all t ≥ t0. Also, b) =⇒ a) since, for ev-
ery ε > 0 and f ∈ IM there is a t0 > 0 such that ϕt(K) ⊆ Uε,f for all
t ≥ t0. This implies |S(t)f(x)| < ε for all t ≥ t0 and x ∈ K and therefore
‖S(t)f‖ = sup

x∈K
|S(t)f(x)| < ε for all t ≥ t0.

Proof of (II): To prove a) =⇒ b) take U ∈ U(M) and x ∈ K. Then there
exist ε > 0 and f ∈ IM such that Uε,f ⊆ U and since (S(t))t≥0 is weakly
stable there exists t0 > 0 such that

〈S(t)f, δx〉 = f(ϕt(x)) < ε for all t ≥ t0

which implies ϕt(x) ∈ Uε,f ⊆ U for all t ≥ t0. For the opposite implication let
ε > 0, f ∈ IM and x ∈ K. By b) there exists t0 > 0 such that 〈S(t)f, δx〉 < ε
for all t ≥ t0 and thus

〈S(t)f, δx〉 → 0 as t→∞

for all Dirac measures δx. By Lebesgue’s theorem of dominated convergence

〈S(t)f, µ〉 → 0 as t→∞

for all µ ∈ I ′M .

Proof of (III): To prove that b) implies a), assume that M is a center of
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attraction. Then for U ∈ U(M) open

1

t
λ({s ∈ [0, t] | ϕs(x) ∈ U c})

=
1

t

∫ t

0

1Uc(ϕs(x)) ds
t→∞−−−→ 0 for all x ∈ Ω .

Now take f ∈ IM with ‖f‖∞ = 1 and 1 > ε > 0. Then

1

t

∫ t

0

|S(s)f(x)| ds

≤1

t

∫ t

0

|S(s)f(x)|1[|f |<ε](ϕs(x)) ds+
1

t

∫ t

0

‖f‖∞1[|f |≥ε](ϕs(x)) ds

≤ ε+
1

t

∫ t

0

‖f‖∞1[|f |≥ε](ϕs(x)) ds < 2ε

for t sufficiently large since [|f | ≥ ε] is the complement of the open neighbor-
hood [|f | < ε] of M . Thus b) implies a) by Lemma 4.8 on page 39.

For the other implication take x ∈ K, f ∈ IM , f ≥ 0 and ε > 0. By
assumption there exists a subset R ⊆ [0,∞) with density 1 and t0 > 0 such
that

〈S(t)f, δx〉 < ε for all t ≥ t0 , t ∈ R .

Since R ∩ [t0,∞) still has density 1, we obtain

1

t
λ ({s ∈ [0, t] | ϕs(x) ∈ Uε,f})→ 1 .

This implies the assertion since the neighborhoods of the form Uε,f , ε > 0,
f ∈ IM , form a neighborhood basis of M .

Proof of (IV): To prove a) implies b) take a neighborhood U ∈ U(M). Then
there exist f ∈ IM and ε > 0 with Uε,f ⊆ U . By assumption there is a quasi
invariant Borel measure µ and a µ-null set Nf depending on f such that for
every x ∈ N c

f there is t0 > 0 such that

S(t)f(x) < ε

for all t ≥ t0. Clearly, this implies ϕt(x) ∈ Uε,f ⊆ U for all t ≥ t0. The other
implication follows similarly. �
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4.3 Stability in the sense of Lyapunov and
Lyapunov functions

In this section we address Lyapunov stability and Lyapunov functions. As
pointed out in the introduction, not assuming the state space X to be met-
ric, we generalize the notion of Lyapunov functions (cf. Definition 3.29 on
page 32) to a family (gi)i∈I of functions vanishing on the attractor M with
M = ∩i∈I [gi = 0], that are strictly decreasing along the orbits outside their re-
spective zero sets, cf. Definition 3.28 on page 31. We prove that the existence
of such a Lyapunov family is equivalent to strong stability of the restricted
Koopman semigroup (S(t))t≥0, thus extending the equivalent characterizations
of strong stability and uniform attractivity in Theorem 4.9 (I) on page 40.

We remark that invariant subsets of dynamical systems that are attractive and
stable in the sense of Lyapunov or equivalently uniformly attractive are often
referred to as “asymptotically stable”, cf. [BS02, Chapt. V, Def. 1.5] or [SY13,
Sect. 2.3.3, p. 32].

First we examine Lyapunov stability further, cf. Definition 3.25 on page 31.

Proposition 4.10 Let ∅ 6= M ⊆ K be closed and invariant. M is Lyapunov
stable if and only if

M =
⋂

V ∈U(M)

V inv.

V =
⋂

W∈U(M)

W closed & inv.

W .

Proof. The implication “ =⇒ ” is clear. To prove the converse, let U be an
open neighborhood of M and assume there is no invariant neighborhood V of
M with V ⊆ U . Then for all invariant neighborhoods V there exists xV ∈ V
with xV ∈ U c. This defines a net (xV )V ∈U(M), inv. which has a convergent
subnet since U c is compact. We denote this convergent subnet by (xVi)i∈I
and its limit by x. Now fix W ∈ U(M) closed and invariant. By cofinality of
the index set I there exists i0 ∈ I such that xvi ∈ W for all i ≥ i0. This implies
x ∈ W . Since W was arbitrary, it follows that x ∈

⋂
W∈U(M)

W closed & inv.
W = M

which contradicts x ∈ U c. This implies b) in Proposition 3.26 on page 31. �

In the next proposition we characterize uniform attractive invariant sets fur-
ther, using stability in the sense of Lyapunov. By doing so we obtain additional
equivalent properties for (I) in Theorem 4.9 on page 40.
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Theorem 4.11 Let ∅ 6= M ⊆ K be closed and invariant and (S(t))t≥0 the
Koopman semigroup restricted to IM . Then the following are equivalent.

a) (S(t))t≥0 is strongly stable.

b) There exists a family (gi)i∈I of positive functions in IM such that M =
∩i∈I [gi = 0] and for all i ∈ I and x ∈ K \ [gi = 0] we have

S(t)gi(x) < gi(x) for all t > 0 .

c) M is attractive and Lyapunov stable.

d) M is uniformly attractive.

Proof. In Theorem 4.9 (I) on page 40 we have already proved the equiva-
lence of a) and d).

Next we prove the equivalence of c) and d). Let M be uniformly attractive
and assume that it is not stable in the sense of Lyapunov. Take U ∈ U(M)
open. Then for every V ∈ U(M), V ⊂ U , there is xV ∈ V and tV > 0 such
that ϕtV (xV ) ∈ U c.

Because U c is compact, the net (ϕtV (xV ))V⊂U has a convergent subnet denoted

by
(
ϕtVi (xVi)

)
i∈I

with limit y ∈ U c. Since there exists t0 > 0 such that
ϕt(U

c) ⊆ U for all t ≥ t0 by assumption, the net (tVi)i∈I is bounded by t0 and
therefore has a convergent subnet, which we again denote by (tVi)i∈I , with
limit 0 < t∗ ≤ t0. Furthermore, the net (xVi)i∈I has a convergent subnet,
again denoted by (xVi)i∈I , with limit x ∈M . By continuity and invariance of
M it follows that

ϕtVi (xVi)→ ϕt∗(x) ∈M .

However, ϕt∗(x) = y ∈ U c which is a contradiction.

On the other hand, let M be (pointwise) attractive and stable in the sense of
Lyapunov. Take U ∈ U(M) open and invariant. Then for every x ∈ K there
exists t0 = t0(x, U) such that

ϕt(x) ∈ U for all t ≥ t0 .

Since ϕt0 is continuous and U is invariant, there exists an open neighborhood
Ux of x such that

ϕt(Ux) ⊆ U for all t ≥ t0 .
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Now since K is compact, there exist x1, . . . , xn ∈ K for some n ∈ N such that

K ⊆
n⋃
i=1

Uxi . For t ≥ max
i=1,...,n

t0(xi, U) we obtain

ϕt(K) ⊆ ϕt

(
n⋃
i=1

Uxi

)
=

n⋃
i=1

ϕt(Uxi) ⊆ U .

This concludes the proof of the equivalence of c) and d).

Now we show that d) implies b). Take f ∈ IM , f ≥ 0, and consider the
function

hf (x) := sup
t≥0

f(ϕt(x)) , x ∈ K .

First observe that
M ⊆ [hf = 0] ⊆ [f = 0]

since f ∈ IM and M is invariant. Also,

hf (ϕs(x)) ≤ hf (x) for all x ∈ K , s ≥ 0 ,

thus hf is monotonically decreasing along the orbits and hf (x) = 0 for all
x ∈M .

Now we show the continuity of hf on K \M . Take x ∈ K \M and ε > 0.
Since M is Lyapunov stable by the fact that c) and d) are equivalent, we can
assume the neighborhood Uε,f to be invariant. Furthermore, there exists a
neighborhood W of x such that |f(x)− f(y)| < ε for all y ∈ W . Since M is
uniformly attractive by assumption, there exists t0 > 0 such that ϕt(W ) ⊆
Uε,f for all t ≥ t0. This implies

|hf (x)− hf (y)|

≤
∣∣∣∣ sup
0≤t≤t0

S(t)f(x)− sup
0≤t≤t0

S(t)f(y)

∣∣∣∣+

∣∣∣∣sup
t≥t0

S(t)f(x)− sup
t≥t0

S(t)f(y)

∣∣∣∣
≤
∣∣∣∣ sup
0≤t≤t0

(S(t)f(x)− S(t)f(y))

∣∣∣∣+ 2ε

≤3ε

for all
y ∈

{
z ∈ K |

∣∣∣∣ sup
0≤t≤t0

(S(t)f(x)− S(t)f(z))

∣∣∣∣ < ε

}
⊆ W .

We used that | sup {f, g} − sup {f1, g1}| ≤ |f − f1|+ |g − g1| for f, g, f1, g1 ∈
C(K), cf. [Sch74, Prop. 1.4 (6)].
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Therefore, hf is continuous. Now for λ > 0 define

gf :=

∞∫
0

e−λsS(s)hf ds .

The function gf is an element of IM . Also, [gf = 0] = [hf = 0] and S(t)gf (x) <
gf (x) for all t > 0, x ∈ K \ [gf = 0] which can be seen as follows. Take
x ∈ K \ [gf = 0] and t > 0. Then there exists s0 > 0 such that

S(t+ s)hf (x) < S(s)hf (x) for all s ≥ s0 .

If this is not the case, then there exists a sequence (sn)n∈N with sn → ∞ as
n→∞ such that

S(t+ sn)hf (x) = S(sn)hf (x) > 0

for all n ∈ N which contradicts the fact that M is attractive. This implies

S(t)gf (x) =

∞∫
0

e−sS(t+ s)hf (x) ds <

∞∫
0

e−sS(s)hf (x) ds = gf (x) .

Then the family (gf )f∈IM satisfies the assumptions in b).

Next, we prove that b) implies c). Let (gi)i∈I be a family of functions satisfying
the assumptions in b), fix i ∈ I and x ∈ K \ [gi = 0]. The net (S(t)gi(x))t≥0

has a convergent subnet (S(tj)gi(x))j∈J since its bounded. Denote the limit of
(S(tj)gi(x))j∈J by c ≥ 0. Assume c > 0. Now, consider a convergent subnet
of (ϕtj(x))j∈J with limit y ∈ K and denote it again by (ϕtj(x))j∈J . Since by
assumption c > 0, y ∈ K \ [gi = 0]. Therefore, gi is strongly decreasing on
the orbit of y.

This implies the following for fixed s > 0

S(tj)gi(x) > · · · > gi(y) > S(s)gi(y) .

Additionally, S(tj + s)gi(x) ↘ S(s)gi(y) by continuity of gi and ϕs. Since
gi(y) > S(s)gi(y), there exists j0 ∈ J such that gi(y) > S(tj + s)gi(x) for all
j ≥ j0. Thus for tk > tj + s we obtain the following chain of inequalities

S(tj)gi(x) > · · · > S(tj)gi(x) > · · · > gi(y) > S(tj + s)gi(x) > S(tk)gi(x)

which is a contradiction, thus y ∈ [gi = 0] which then implies c = 0. There-
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4.3 Stability in the sense of Lyapunov and Lyapunov functions

fore, S(t)gi(x)→ 0 as t→∞ for all x ∈ K. Which implies ϕt(x)→ [gi = 0]
for all x ∈ K and since i was arbitrary ϕt(x) → ∩i∈I [gi = 0] = M for all
x ∈ K. Also, the neighborhoods Uε,gi where ε > 0, i ∈ I form a neighbor-
hood basis of M and are invariant which implies M to be Lyapunov stable.

�

Example 4.12 Consider K :=
∏
i∈R

Xi where Xi := [0, 1] for all i ∈ R and

ϕt((xi)i∈R) := (e−txi)i∈R, t ≥ 0. Then (ϕt)t≥0 is a continuous semiflow on K.
The set {(0)i∈R} is closed and invariant. For i ∈ R consider fi((xi)i∈R := xi.
Then the family (fi)i∈R is a Lyapunov family for (0)i∈R which is therefore a
uniformly attractive fixed point.

If the underlying state space K is a metric space, we obtain the following
well-known fact, (cf. [BS02, Chapt. V, Thm. 2.2]).

Remark 4.13 If in the situation of Theorem 4.11 on page 44 the state space
K is a metric space, then the assertions a)-d) in Theorem 4.11 on page 44 are
equivalent to

b*) there exists g ∈ IM , g ≥ 0 with M = [g = 0] and

S(t)g(x) < g(x) for all t > 0 , x ∈ K \M .

Proof. First we prove d) of Theorem 4.11 on page 44 implies b*). If K is
a metric space, then C(K) is separable. This implies IM is separable since
subspaces of metric separable spaces are again separable, cf. [Die11, Chapt.
III, Sect. 10, 3.10.9]. Thus, there is a countable family of functions (fn)n∈N,
fn ≥ 0, ‖fn‖∞ ≤ 1 for n ∈ N in IM with

⋂
n∈N [fn = 0] = M . As in the

construction in the proof of Theorem 4.11 on page 44 d) =⇒ b) we consider

hn := sup
t≥0

S(t)fn and gn :=
∞∫
0

e−λtS(t)hn for some λ > 0 fixed, n ∈ N. Now

set
g :=

∑
n∈N

1

2n
gn .

The function g is continuous since ‖gn‖∞ ≤ ‖fn‖∞ ≤ 1. Furthermore, g ≥ 0,
[g = 0] =

⋂
n∈N

[gn = 0] = M and g is strictly decreasing along the orbits for

y ∈ K \M , i.e., S(t)g(y) < g(y) for all t > 0, y ∈ K \ [g = 0].

On the other hand, take a function satisfying the assumptions in b*). Then
by the arguments of the proof of Theorem 4.11 on page 44 b) =⇒ c) it follows
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directly that ϕt(x) → M for all x ∈ K. It remains to prove that M is
Lyapunov stable. Take U ∈ U(M) and c > 0. Consider V := U ∩ [g ≤ c].
Then V is an invariant neighborhood of M . This concludes the proof. �

4.4 Existence and characterization of global
attractors

In this section we show that for a dynamical system (K, (ϕt)t≥0) there always
exist attractors in the sense of Definition 3.18, a),b),c) and d), on page 27. The
subspaces Iss, Iws, Iaeps and Iaws (cf. Definition 2.2 on page 10, Definition 2.6
on page 12 and Proposition 2.9 on page 13) are all closed ideals of C(K) and
are maximal with this property. We thus obtain corresponding closed invariant
sets ∅ 6= M ⊆ K that are uniformly attractive, attractive, a likely limit set
or a center of attraction, respectively, and are minimal with this property
by construction. In this subsection we will discuss what the corresponding
minimal attractor M looks like.

Proposition 4.14 The closed subspaces Iss, Iws, Iaeps and Iaws ⊆ C(K) are
lattice or equivalently algebra ideals in C(K).

Proof. We only compute this for Iaws, because Iws and Iaeps follow analogu-
osly and Iss is clearly a lattice ideal.
By Proposition 2.9 on page 13, Iaws is a closed subspace of C(K). It remains
to show that it is an algebra or equivalently a lattice ideal. Take f ∈ Iaws

we first show that |f | ∈ Iaws. Take x ∈ K and recall that for every t ≥ 0,
|〈T (t)f, δx〉| = |T (t)f(x)| = T (t)|f |(x). We recall that

0
T→∞←−−− 1

T

T∫
0

|〈T (t)f, δx〉| dt

=
1

T

T∫
0

〈T (t)|f |, δx〉 dt

=〈 1

T

T∫
0

T (t)|f | dt, δx〉 ,

therefore the assertion follows by Lemma 4.8 on page 39. Additionally, if for
g ∈ C(K), |g| ≤ f for some f ∈ Iaws it follows that g ∈ Iaws. �
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Remark 4.15 Note that the ideals Iss, Iws, Iaeps and Iaws do not contain 1.
This implies that each of these ideals corresponds to a unique closed invariant
subset ∅ 6= M ⊆ K. Applying the characterization Theorem 4.9 on page 40
we conclude that there always exist attractors in the sense of Definition 3.22
on page 30, but they might be equal to K.

4.4.1 Attractivity, ω-limit sets and Milnor attractors

We obtain the following characterization of uniform attractivity.

Proposition 4.16 Let (K, (ϕt)t≥0) be a dynamical system and ∅ 6= M ⊆ K
closed and invariant. Then the following are equivalent.

a) The set M is uniformly attractive.

b)
⋂
t≥0

ϕt(K) ⊆M .

Proof. If a) is true then for every U ∈ U(M), there is a t0 > 0 such that⋂
t≥0

ϕt(K) ⊆
⋂
t≥t0

ϕt(K) ⊆ U .

This implies ⋂
t≥0

ϕt(K) ⊆
⋂

U∈U(M)

U = M .

The opposite implication is true since
⋂
t≥0 ϕt(K) is itself uniformly attractive

because ϕr(K) ⊆ ϕs(K) for r ≥ s ≥ 0 and for V ∈ U(
⋂
t≥0 ϕt(K)) open there

exists t0 > 0 such that ⋂
t≥0

ϕt(K) ⊆ ϕt0(K) ⊆ V .

This can be seen as follows. Assume this is not true, then there exists a
subnet (ϕti(xi))i∈I with ti →∞, xi ∈ K, such that ϕti(xi) ∈ V c. Since V c is
compact, there is a convergent subnet of this net with limit y ∈ V c. This is a
contradiction because y ∈ ω(K) =

⋂
t≥0

ϕt(K) by Proposition 3.8, 2., on page

21. �
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As an immediate result we obtain the following.

Proposition 4.17 Let (K, (ϕt)t≥0) be a dynamical system. Then there exists
a unique minimal uniformly attractive subset of K given by⋂

t≥0

ϕt(K) .

Proof. The set
⋂
t≥0 ϕt(K) is closed as an intersection of compact sets, non-

empty by the finite intersection property of K, (ϕt)t≥0-invariant and is uni-
formly attractive by Proposition 4.16 b) on the previous page and is minimal
with this property by construction. �

Proposition 4.18 Combining Proposition 4.16 on page 49 and Proposition 4.17
we obtain the following characterization for the ideal of strong stability

Iss = I ⋂
t≥0

ϕt(K) .

Using ω-limit sets we obtain the following characterization of attractivity. The
characterization of attractors via ω-limit sets is due to N.P. Bhatia and G.P.
Szegö and can be found in [BS02, Chapt. V, Sect. 1]. It is important to note
that ω-limit sets are non-empty by the finite intersection property of K.

Proposition 4.19 Let (K, (ϕt)t≥0) be a dynamical system and ∅ 6= M ⊆ K
closed and invariant. Then the following are equivalent.

a) The set M is attractive.

b) ω(x) ⊆M for all x ∈ K.

Proof. To prove a) =⇒ b) take x ∈ K. By a)

ω(x) ⊆
⋂

U∈U(M)

U = M .

Consider U ∈ U(M) open and assume that a) does not hold, i.e., there exists
x ∈ K \M with ϕt(x) ∈ U c for infinitely many t > 0. Since U c is closed and
hence compact there exists a convergent subnet (ti)i∈I , ti → ∞, such that
ϕti(x)→ z ∈ U c which is a contradiction to b) by Proposition 3.8 on page 21.

�
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Proposition 4.20 Let (K, (ϕt)t≥0) be a dynamical system. Then there exists
a unique minimal attractive subset of K given by⋃

x∈K

ω(x) .

Proof. In Proposition 4.19 b) on page 50 we have seen that ω(x) is contained
in every closed, (ϕt)t≥0-invariant and attractive subset ∅ 6= M ⊆ K therefore
also ⋃

x∈K

ω(x) ⊆M .

Also the closure
⋃
x∈K ω(x) is contained in every suchM and (ϕt)t≥0-invariant,

attractive itself and minimal with this property by construction. �

Proposition 4.21 Combining Proposition 4.19 on page 50 and Proposition 4.20
we obtain the following characterization for the ideal of weak stability

Iws = I ⋃
x∈K

ω(x) .

Proposition 4.22 Let (K, (ϕt)t≥0) be a dynamical system with K metric, µ
a quasi invariant regular Borel measure on K and ∅ 6= M ⊆ K closed and
invariant. Then the following are equivalent.

a) The set M is a likely limit set.

b) ω(x) ⊆M for µ-almost every x ∈ K.

Proof. We prove this similarly to Proposition 4.19 on page 50. Let M be
a likely limit set for µ. Then there exists a µ-null set N such that for all
U ∈ U(M) and x ∈ N c there exists t0 > 0 such that ϕt(x) ∈ U for all t ≥ t0.
Remark thatN can be chosen independently from U sinceK is metric. Hence,
ω(x) ⊆ ∩U∈U(M)U = M for all x ∈ N c.

Now assume there exists a µ-null set N such that ω(x) ⊆ M for all x ∈ N c.
Take U ∈ U(M) open. If a) does not hold there exists x ∈ N c such that
ϕt(x) ∈ U c for infinitely many t > 0. Since U c is compact there exists a
convergent subsequence of (ϕt(x))t≥0 with limit in U c which is a contradiction
to ω(x) ⊆M by Proposition 3.8 on page 21. �

Proposition 4.23 Let (K, (ϕt)t≥0) be a dynamical system with K metric and
µ a quasi invariant regular Borel measure on K. By Proposition 4.22 there
exists a µ-null set N such that

Iaeps = I ⋃
x∈Nc

ω(x) .
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We thus obtain a characterization of the ideal of almost everywhere pointwise
stability.

4.4.2 Minimal centers of attraction and ergodic measures

An interesting fact is that the minimal center of attraction is characterized by
the ergodic measures on K. We recall that a regular Borel measure µ on K
is called invariant if µ(ϕ−1

t (A)) = µ(A) for all Borel measurable sets A and
t ≥ 0. An invariant probability measure is called ergodic if the corresponding
measure-preserving system (K, (ϕt)t≥0, µ) is ergodic, i.e., if A ⊆ K is Borel
measurable and invariant then µ(A) ∈ {0, 1}. In the following we write M1(K)
for the set of all regular Borel probability measures on K.

Proposition 4.24 The minimal center of attraction is given by the union of
supports of ergodic measures, i.e.,

Iaws = IMerg

with Merg :=
⋃

µ∈M1(K)

µ ergodic

supp(µ).

Proof. By [EFHN15, p.193, (10.1)] it suffices to show that Iaws = IMinv

where Minv :=
⋃

µ∈M1(K)

µ inv.

supp(µ). First we show “⊆”. Let µ ∈ M1(K) be invari-

ant. For f ∈ Iaws

〈|f |, µ〉 =
1

t

∫ t

0

〈|f |, µ〉 ds

µ inv.
=

1

t

∫ t

0

〈T (s)|f |, µ〉 ds→ 0

by Lemma 4.8 on page 39 and Proposition 4.14 on page 48. Therefore,
f
∣∣
supp(µ)

≡ 0 for all invariant µ ∈ M1(K). For the implication “⊇” let x ∈ K
and δx the corresponding Dirac measure and f ∈ IMinv . We observe that by
the Fubini-Tonelli Theorem

1

t

∫ t

0

|〈T (s)f, δx〉| ds =
1

t

∫ t

0

〈|f |, T (s)′δx〉 ds

= 〈|f |, 1

t

∫ t

0

T (s)′δx ds〉 .
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Since the dual unit ball B′ ⊂ C(K)′ is compact in the weak-*-topology and
every 1

t

∫ t
0
T (s)′δx ds is bounded, every subnet of

(
1
t

∫ t
0
T (s)′δx ds

)
t≥0

has a

convergent subnet in B′, i.e.,

〈|f |, 1

ti

∫ ti

0

T (s)′δx ds〉 → 〈|f |, µ〉 = 0

with µ an invariant probability measure. The fact that µ is invariant is true
because for every r ≥ 0 the subnet(

1

ti

∫ ti

0

T (r + s)′δx ds

)
i∈I

=

(
1

ti

∫ ti+r

r

T (s)′δx ds

)
i∈I

has the same limit as
(

1
ti

∫ ti
0
T (s)′δx ds

)
i∈I

. Also, µ 6= 0 since 〈1, µ〉 = 1.

Therefore, 1
t

∫ t
0
|T (s)f(x)| ds→ 0 as t→∞ for all x ∈ K. Thus, f ∈ Iaws by

Lemma 4.8 on page 39. �

Example 4.25 Continuation of Example 3.21 e) on page 29. As we have
seen, the set M = {z1} ∪ {z2} is a closed and (ϕt)t≥0-invariant subset of the
unit circle T which is the minimal attractive subset. Furthermore, the point
evaluations δz1 and δz2 are invariant measures, hence

M ⊆Minv ⊆ T .

However, by [EFHN15, Lem. 10.7] for every invariant measure µ, ϕt(supp(µ)) =
supp(µ) for all t ≥ 0. Since θ is strongly increasing on T \M , ϕt(L) 6= L for
all sets M ( L ⊆ T and t > 0. Hence, there cannot be an invariant measure
µ with M ( supp(µ) ⊆ T and therefore M is the minimal center of attraction
by Proposition 4.24 on page 52.

Summarizing we have the following chain of inclusions

Iss ⊆ Iws ⊆ Iaws ( C(K)

and ⋂
t≥0

ϕt(K) ⊇
⋃
x∈K

ω(x) ⊇
⋃

µ∈M1(K)

µ ergodic

supp(µ) ) ∅ .
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In this chapter a dynamical system is a pair (Ω, (ϕt)t≥0) consisting of a non-
compact, locally compact Hausdorff space Ω and a continuous semiflow (ϕt)t≥0

on Ω, cf. Definition 3.1 on page 19.

We again associate a family of linear operators (T (t))t≥0 to the semiflow (ϕt)t≥0

by
T (t)f := f ◦ ϕt for t ≥ 0 , f ∈ A ,

where A is a suitable unital subalgebra of Cb(Ω), the space of all real-valued
bounded continuous functions on Ω endowed with the ‖ · ‖∞-norm. It is not
immediately clear what the appropriate choice is such that A is (T (t))t≥0-
invariant and (T (t))t≥0 becomes strongly continuous on A.

Operator semigroups induced by continuous semiflows on a locally compact
space Ω are treated e.g. in [Are82, Ex. 2.3] where the associated operators
are defined on C0(Ω). However, in general these operators do not leave C0(Ω)
invariant. As an example take Ω := (0,∞] and the shift ϕt(x) := x + t for
x ∈ (0,∞) and ϕt(∞) :=∞ thereon.

Our idea is to consider C0(Ω) ⊕ 〈1〉, where 〈1〉 := {c1 | c ∈ R}. Recall that
C0(Ω)⊕〈1〉 is canonically isomorphic to C(αΩ) where αΩ := Ω∪{∞} denotes
the one-point compactification of Ω. Since αΩ is compact, we can use the
results from the previous chapter.

There are two questions that need to be clarified. The first one is: given a
semiflow (ϕt)t≥0 on a locally compact, non-compact space Ω, when does the
associated semigroup leave C0(Ω) ⊕ 〈1〉 invariant and is strongly continuous
thereon? As it turns out, this is the case if and only if the underlying semi-
flow can be extended to a continuous semiflow on αΩ, cf. Proposition 6.10 on
page 87.

The second question is which Koopman semigroups (cf. Definition 4.1 on
page 36 and Definition 4.3 on page 37) on C(αΩ) induced by a semiflow (ϕ̃t)t≥0

on αΩ correspond to a continuous semiflow on Ω, i.e., ϕ̃t(Ω) ⊆ Ω, t ≥ 0.
We give a characterization for such Koopman semigroups in Lemma 5.13 on
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page 61 and Theorem 5.15 on page 62, where we also characterize such Koop-
man semigroups by their generator.

In Section 5.2 and 5.3 we treat absorbing and attractive subsets for semiflows
(ϕt)t≥0 on Ω. We will again “translate” attractivity properties of dynamical
systems into stability properties of the corresponding Koopman semigroup.
In Section 5.4, we discuss stability in the sense of Lyapunov and Lyapunov
functions further.

Then, in Section 5.5, we give conditions for the existence of global attractors
and characterize them in a similar manner to the previous chapter. Again, the
closed ideals in C0(Ω) ⊕ 〈1〉 will play an essential role in studying absorbing
and attractive subsets of Ω. Since we want an attractor to be a compact and
invariant subset of Ω, we characterize those norm-closed ideals in C0(Ω) ⊕
〈1〉 that are of the form IM where M ⊂ Ω is compact, cf. Theorem 5.22 on
page 70.

We continue to use the notation [f < a] := f−1((−∞, a)) for a ∈ R, f ∈
C0(Ω) ⊕ 〈1〉 and analoguosly for [f ≤ a], [f > a], [f ≥ a] and [f = a]. For a
closed subset M ⊆ Ω the sets of the form Uε,f := [|f | < ε] for f ∈ C0(Ω)⊕〈1〉,
f(M) = {0} and ε > 0 form a basis for the neighborhoods of M .

5.1 Strong continuity of Koopman semigroups
and characterization via the generator

From now on let Ω be a non-compact, locally compact Hausdorff space. First
we discuss how a single continuous mapping ϕ : Ω→ Ω can be continuously ex-
tended to the one point compactification αΩ of Ω by considering the associated
operator T on C0(Ω)⊕ 〈1〉.

Proposition 5.1 Let ϕ : Ω → Ω be a continuous mapping and T the associ-
ated bounded operator defined by Tf := f ◦ ϕ for f ∈ C0(Ω)⊕ 〈1〉. Then the
following are equivalent.

a) The mapping ϕ can be continuously extended to αΩ.

b) The operator T leaves C0(Ω)⊕ 〈1〉 invariant.
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5.1 Strong continuity of Koopman semigroups and characterization via the generator

Proof. The space C(αΩ) is canonically isomorphic to C0(Ω) ⊕ 〈1〉 by the
isomorphism R : C(αΩ)→ C0(Ω)⊕ 〈1〉 where

Rf̃ :=
(
f̃ − f̃(∞)1

)
+ f̃(∞)1 for f̃ ∈ C(αΩ) .

First we prove that a) implies b). Assume that ϕ can be continuously extended
to αΩ with extension ϕ̃. Then ϕ̃ induces a Koopman operator T̃ : C(Ω̃) →
C(Ω̃). Now consider the following commutative diagram

C0(Ω)⊕ 〈1〉 C0(Ω)⊕ 〈1〉

C(αΩ) C(αΩ) .

R−1

T

T̃

R

In fact, for f ∈ C0(Ω)⊕ 〈1〉, x ∈ Ω,

(R ◦ T̃ ◦R−1f)(x) = (R(R−1f(ϕ̃(x))) = f(ϕ(x)) = Tf(x) ,

because ϕ̃|Ω = ϕ. Hence, T = R ◦ T̃ ◦R−1 ∈ L(C0(Ω)⊕ 〈1〉).

On the other hand, if T leaves C0(Ω) ⊕ 〈1〉 invariant, the operator T̃ :=
R−1 ◦ T ◦R is an algebra homomorphism on C(αΩ) and is therefore induced
by a continuous mapping ϕ̃ on αΩ by Lemma 4.2 on page 37. For x ∈ Ω and
f̃ ∈ C(αΩ) this implies

T̃ f̃(x) = f̃(ϕ̃(x)) .

By definition of T̃ we have

T̃ f̃(x) = (R−1 ◦ T ◦Rf̃)(x) = f̃(ϕ(x)) .

This implies ϕ̃|Ω = ϕ since C(αΩ) separates the points of αΩ and hence Ω.
Thus ϕ̃ is a continuous extension of ϕ. �

This proposition justifies the following definition.

Definition 5.2 Let ϕ : Ω → Ω be a continuous mapping that can be contin-
uously extended to αΩ. We call the associated operator T ∈ L(C0(Ω) ⊕ 〈1〉)
defined by Tf := f ◦ ϕ, f ∈ C0(Ω)⊕ 〈1〉, Koopman operator induced by ϕ.

Remark 5.3 Given a continuous self-mapping ϕ on Ω we call the operator
induced by Tf := f ◦ ϕ, f ∈ C0(Ω) ⊕ 〈1〉 , the “associated operator”. If the
mapping can be continuously extended to αΩ, hence the associated operator
leaves C0(Ω)⊕ 〈1〉 invariant, then we write “Koopman operator” for T .
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5 ... locally compact spaces

We further characterize when a continuous mapping on Ω can be continuously
extended to αΩ

Proposition 5.4 Let ϕ : Ω → Ω be a continuous mapping and a ∈ Ω. Then
the following are equivalent.

a) The mapping ϕ can be continuously extended to ϕ̃ : αΩ → αΩ with
ϕ̃(∞) = a.

b) The pre-image ϕ−1(A) is compact for every closed subset A ⊆ Ω that
does not contain a.

Proof. We begin with the implication a) to b). Take A ⊆ Ω closed with
a /∈ A, then Ac is an open neighborhood of a. By continuity there exists an
open neighborhood U of ∞ with

ϕ̃(U) ⊆ Ac .

Then U = Kc for some K ⊆ Ω compact since the open neighborhoods of {∞}
are exactly the complements of compact subsets of Ω. Therefore,

ϕ̃(Kc) ⊆ Ac

which is equivalent to
ϕ̃−1(A) ⊆ K .

For the other implication let V be an open neighborhood of a. We have to
show that there exists an open neighborhood U of ∞ with ϕ̃(U) ⊆ V . Now
consider ϕ−1(V c) which is compact by assumption and hence ϕ−1(V ) is an
open neighborhood of ∞ with ϕ̃(ϕ−1(V )) ⊆ V . �

Combining Proposition 5.1 on page 56 and Proposition 5.4 we obtain the fol-
lowing.

Proposition 5.5 Let ϕ : Ω → Ω be a continuous mapping and T the associ-
ated bounded operator defined by Tf := f ◦ ϕ for f ∈ C0(Ω)⊕ 〈1〉. Then the
following are equivalent.

a) The mapping ϕ can be continuously extended to αΩ with ϕ̃(∞) =∞.

b) The pre-image ϕ−1(K) is compact for every K ⊂ Ω compact.

c) T leaves C0(Ω) invariant.
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5.1 Strong continuity of Koopman semigroups and characterization via the generator

Proof. The equivalence of a) and c) follows from the fact that C0(Ω) ∼= J{∞}
and Proposition 5.1 on page 56. By the same arguments as in Proposition 5.4
on page 58 one obtains the equivalence of a) and b). �

The equivalence of a) and b) in Proposition 5.5 above is well-known and can
be found for example in [Bro88, Sect. 3.6] and the exercises therein.

Now we turn to continuous semiflows (ϕt)t≥0 on Ω and the associated operator
semigroup (T (t))t≥0 on C0(Ω) ⊕ 〈1〉. We will see that (T (t))t≥0 is strongly
continuous if and only if the underlying semiflow (ϕt)t≥0 on Ω can be contin-
uously extended to the one-point compactification αΩ. In many cases, (ϕt)t≥0

can be continuously extended by ϕ̃t(∞) =∞, t ≥ 0, e.g., if ϕt is invertible for
all t ≥ 0.

We define continuous extensions of continuous semiflows on Ω to αΩ as fol-
lows.

Definition 5.6 Let (ϕt)t≥0 be a continuous semiflow on Ω. We say (ϕt)t≥0 can
be continuously extended to αΩ if there exists a continuous semiflow (ϕ̃t)t≥0

on αΩ such that
ϕ̃t|Ω = ϕt for all t ≥ 0 .

The properties of a semiflow and the considerations in Proposition 5.4 on
page 58 and Proposition 5.5 on page 58 imply the following.

Remark 5.7 Let (ϕ̃t)t≥0 be the continuous extension of (ϕt)t≥0 on αΩ. There
are two possibilities for at := ϕ̃t(∞). Either at =∞ for all t ≥ 0 or at ∈ Ω for
all t > 0 and a0 =∞.

We now give an example for a semiflow that cannot be continuously extended
to αΩ or equivalently where the associated operators do not leave C0(Ω)⊕〈1〉
invariant, cf. [Sie17, Bsp. 3.21].

Example 5.8 Consider Ω := [−1, 0) ∪ (0,∞] and the semiflow defined by

ϕt(x) :=


e−tx x ∈ [−1, 0) ,

x+ t x ∈ (0,∞) ,

∞ x =∞ .

Then for t > 0

lim
x↘0

ϕt(x) = t and lim
x↗0

ϕt(x) = 0.
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This shows that ϕt cannot be continuously extended to αΩ = [−1,∞] for
t > 0, hence the associated operators do not leave C0(Ω)⊕ 〈1〉 invariant.

Given a continuous semiflow (ϕt)t≥0 we obtain the following characterization of
strong continuity for its associated operator family (T (t))t≥0 on C0(Ω)⊕〈1〉.

Proposition 5.9 Let (Ω, (ϕt)t≥0) be a dynamical system and (T (t))t≥0 the
family of associated operators defined on C0(Ω)⊕ 〈1〉. Then the following are
equivalent.

a) (T (t))t≥0 is strongly continuous on C0(Ω)⊕ 〈1〉.

b) The semiflow (ϕt)t≥0 can be continuously extended to a continuous semi-
flow on αΩ.

Proof. By Proposition 5.1 on page 56 we know that every operator T (t)
leaves C0(Ω)⊕〈1〉 invariant if and only if the mapping ϕt can be continuously
extended. The fact that the family (ϕ̃t)t≥0 of continuous extensions is a
continuous semiflow follows from the fact that C(αΩ) ∼= C0(Ω) ⊕ 〈1〉 and
Lemma 4.4 on page 37. �

We give the following definition in analogy to Definition 7.4 on page 96.

Definition 5.10 Let (ϕt)t≥0 be a continuous semiflow on Ω that can be contin-
uously extended to αΩ. We call the associated strongly continuous semigroup
(T (t))t≥0 on C0(Ω)⊕〈1〉 with T (t)f := f ◦ϕt, t ≥ 0, f ∈ C0(Ω)⊕〈1〉, Koopman
semigroup induced by (ϕt)t≥0.

Combining the previous considerations we obtain the following. See also [Sie17,
Lem. 3.16].

Proposition 5.11 Let (Ω, (ϕt)t≥0) be a dynamical system and (T (t))t≥0 the
associated operators defined on C0(Ω)⊕〈1〉. Then the following are equivalent.

a) (T (t))t≥0 leaves C0(Ω) invariant.

b) The semiflow (ϕt)t≥0 can be continuously extended to αΩ by ϕ̃t(∞) :=∞
for all t ≥ 0.

Proof. By Proposition 5.5 on page 58 we know that the operators T (t)
leave C0(Ω) invariant if and only if every mapping ϕt can be extended by
ϕ̃t(∞) = ∞. Then the family (ϕ̃t)t≥0 is a semiflow and it is continuous
because it is separately continuous and hence continuous by Lemma 4.4 on
page 37. �
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Now we turn to the second question mentioned in the introduction of this
chapter. Given a Koopman semigroup on C(αΩ) induced by a continuous
semiflow (ϕ̃t)t≥0 on αΩ, under what additional assumption can this semiflow
be restricted to a continuous semiflow on Ω, i.e., ϕ̃t(Ω) ⊆ Ω for all t ≥ 0. Recall
that by Lemma 4.2 on page 37 from the previous chapter we know that Koop-
man operators on C(αΩ) are exactly the algebra and lattice homomorphisms
T on C(αΩ) with T1 = 1 and by isomorphy on C0(Ω)⊕ 〈1〉.

To this end, we consider the compact-open topology τc, i.e., the topology of
uniform convergence on compact subsets of Ω. It is induced by the seminorms
defined by

pK(f) := ‖f |K‖∞ for f ∈ C0(Ω)⊕ 〈1〉, K ⊆ Ω compact.

The compact-open toplogy τc is coarser than the norm topology. Every norm
bounded set is τc-bounded. In addition, (C0(Ω)⊕ 〈1〉, τc) is sequentially com-
plete for norm-bounded sequences [Jar81, Chapt. 3.H, Thm. 9].

We first observe the following fact.

Lemma 5.12 If T ∈ L(C0(Ω) ⊕ 〈1〉) is a Koopman operator induced by a
continuous mapping ϕ on Ω, then T is τc-continuous.

Proof. Take a net (fi)i∈I in C0(Ω)⊕〈1〉 with τc-limit f . ForK ⊂ Ω compact

‖ (Tfi − Tf)
∣∣
K
‖∞ = ‖ (fi − f)

∣∣
ϕ(K)
‖∞ → 0 for i ∈ I .

This implies the assertion. �

We can identify Koopman operators induced by a continuous mapping ϕ on
Ω with those algebra and lattice homomorphisms on C0(Ω) ⊕ 〈1〉 that are
τc-continuous.

Lemma 5.13 Let T ∈ L(C0(Ω)⊕ 〈1〉). Then the following are equivalent.

a) T is an algebra homomorphism, T1 = 1 and T is τc-continuous.

b) T is a lattice homomorphism, T1 = 1 and T is τc-continuous.

c) T is a Koopman operator induced by a continuous mapping ϕ on Ω.

Proof. We prove that b) implies c). Take x ∈ Ω and f ∈ C0(Ω)⊕〈1〉. Since

〈|f |, T ′δx〉 = 〈|Tf |, δx〉 = |〈f, T ′δx〉| ,
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the linear form T ′δx is a lattice homomorphism. Now take a net (fi)i∈I in
C0(Ω) ⊕ 〈1〉 with ‖fi‖∞ ≤ 1 and τc − lim

i∈I
fi = 1. Since T is a τc-continuous

contraction and T1 = 1 it follows that

1 ≥ ‖T ′δx‖ ≥ |T ′δx(fi)| → 1 for i ∈ I .

Since the normalized lattice homomorphisms are point evaluations in Ω, there
is y ∈ Ω with T ′δx = δy. We set ϕ(x) := y. All in all,

〈Tf, δx〉 = 〈f, T ′δx〉 = 〈f, δϕ(x)〉 = 〈f ◦ ϕ, δx〉

for all f ∈ C0(Ω)⊕ 〈1〉. Therefore, f ◦ ϕ ∈ C0(Ω)⊕ 〈1〉 which implies that ϕ
is continuous.

Clearly, every Koopman operator induced by a continuous mapping ϕ on Ω
is an algebra homomorphism and lattice homomorphism with T1 = 1 and it
is τc-continuous by Lemma 5.12 on page 61 which concludes the proof. �

Next, we characterize Koopman semigroups induced by a continuous semiflow
on Ω by means of their generators acting as derivations on their domain.

Definition 5.14 Let A be a linear operator with domain D(A) ⊆ C0(Ω)⊕〈1〉.
Then A is called derivation if D(A) is a subalgebra of C0(Ω)⊕ 〈1〉, 1 ∈ D(A)
and it satisfies the product rule

A(f · g) = Af · g + f · Ag

for all f, g ∈ D(A).

Theorem 5.15 Let (T (t))t≥0 be a strongly continuous semigroup on
C0(Ω)⊕ 〈1〉 with generator (A,D(A)). Then the following are equivalent.

a) (T (t))t≥0 is a semigroup of lattice operators, T (t)1 = 1 and T (t) is τc-
continuous for all t ≥ 0.

b) (T (t))t≥0 is a semigroup of algebra homomorphisms and T (t) is τc-continuous
for all t ≥ 0.

c) (T (t))t≥0 is a Koopman semigroup induced by a continuous semiflow
(ϕt)t≥0 on Ω.
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d) The generator (A,D(A)) is a derivation and for every net (fi)i∈I with
τc − lim

i∈I
fi = f and all t ≥ 0 we have

τc − lim
i∈I

A

∫ t

0

T (s)fi ds = A

∫ t

0

T (s)f ds .

Proof. The equivalences of a), b) and c) follow directly from above Lemma 5.13
on page 61 and Proposition 6.10 on page 87. Remark that a strongly contin-
uous semigroup of algebra homomorphisms on C0(Ω) ⊕ 〈1〉 always satisfies
T (t)1 = 1. To prove that c) implies d) remark that, by Theorem 4.6 on
page 38 and C0(Ω)⊕ 〈1〉 ∼= C(αΩ), the generator A is a derivation.

Let (fi)i∈I be a net in C0(Ω) ⊕ 〈1〉 with τc-limit f ∈ C0(Ω) ⊕ 〈1〉. Then for
t > 0, K ⊂ Ω compact we obtain∥∥∥∥(A ∫ t

0

T (s)fi ds− A
∫ t

0

T (s)f ds

) ∣∣
K

∥∥∥∥
∞

=
∥∥(T (t)fi − fi − (T (t)f − f))

∣∣
K

∥∥
∞

which converges to 0 since T (t) is a Koopman operator and hence τc-continuous.

On the other hand, if A is a derivation, then (T (t))t≥0 is a semigroup of algebra
homomorphisms by Theorem 4.6 on page 38 and C0(Ω) ⊕ 〈1〉 ∼= C(αΩ).
Furthermore, for a τc-convergent net (fi)i∈I with τc-limit f , K ⊆ Ω compact
and t ≥ 0

‖(T (t)fi −T (t)f)
∣∣
K

∥∥
∞

≤
∥∥(T (t)fi − fi − (T (t)f − f))

∣∣
K

∥∥
∞ +

∥∥(fi − f)
∣∣
K

∥∥
∞

=

∥∥∥∥(A ∫ t

0

T (s)fi ds− A
∫ t

0

T (s)f ds

)
K

∥∥∥∥
∞

+
∥∥(fi − f)

∣∣
K

∥∥
i∈I−−→ 0 .

This concludes the proof. �

However, not every derivation on C0(Ω) ⊕ 〈1〉 that is a generator induces a
Koopman semigroup on C0(Ω)⊕〈1〉. The following example sheds light on this
problem, hence the additional condition in above Theorem 5.15 d) is needed.

Example 5.16 Consider for example the space C0([0, 1))⊕〈1〉 and the oper-
ator semigroup (T (t))t≥0 defined by

T (t)f(x) :=

{
f(x+ t) for x+ t < 1

0 for x+ t ≥ 1
, f ∈ C0([0, 1)) , t ≥ 0
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and T (t)1 = 1 for all t ≥ 0. The semigroup is strongly continuous, leaves
C0([0, 1))⊕ 〈1〉 invariant and its generator is a derivation. However, (T (t))t≥0

is not a Koopman semigroup induced by a semiflow on [0, 1) since the operators
T (t) are not τc-continuous. Take a net (fi)i∈I in C0([0, 1)) with τc− lim

i∈I
fi = 1.

Then, for t > 1, τc− lim
i∈I

T (t)fi = 0 which shows that T (t) is not τc-continuous.

5.2 Absorbing sets and nilpotency

From now on a dynamical system (Ω, (ϕt)t≥0) is a topological dynamical sys-
tem with non-compact locally compact state space Ω such that the induced
associated operator semigroup denoted by (T (t))t≥0 is a Koopman semigroup
on C0(Ω) ⊕ 〈1〉, see Definition 5.10 on page 60. Given a closed and invariant
subset ∅ 6= M ⊆ Ω we define

S(t) := T (t)
∣∣
IM
, t ≥ 0 .

Recall that the topological dual of C0(Ω) ⊕ 〈1〉 is canonically isomorphic to
M(αΩ) the space of all bounded regular Borel measures on αΩ. Since we do
not want {∞} to be an attractor we consider the weak topology

σΩ := σ(C0(Ω)⊕ 〈1〉,M(Ω))

induced by M(Ω) the space of bounded regular Borel measures on Ω. This
topology is given by the bilinear form

〈·, ·〉 : C0(Ω)⊕ 〈1〉 ×M(Ω)→ C

(f, µ) 7→
∫
Ω

f dµ

which yields a dual system (C0(Ω) ⊕ 〈1〉,M(Ω), 〈·, ·〉), cf. [Sch71, Chapt. IV,
§1, p. 123].

The following lemma will be useful in the context of almost σΩ-stability, similar
to the corresponding result in Lemma 4.8 on page 39 in Chapter 4.

Lemma 5.17 Let (T (t))t≥0 be a strongly continuous Koopman semigroup on
C0(Ω)⊕ 〈1〉 and I a closed (T (t))t≥0-invariant ideal in C0(Ω)⊕ 〈1〉. Then the
restricted semigroup (S(t))t≥0, with S(t) := T (t)|I , t ≥ 0, is almost σΩ-stable,
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i.e.,

lim
t→∞

1

t

t∫
0

|〈S(s)f, µ〉| ds = 0 for all µ ∈ M(Ω), f ∈ I,

if and only if

lim
t→∞

1

t

t∫
0

S(s)|f |(x) ds = 0 for all x ∈ Ω, f ∈ I .

We omit the proof since this fact can be shown in complete analogy to Lemma 4.8
on page 39 using Proposition 2.4 on page 11.

We recall the notion of absorbing sets introduced in Definition 3.13 on page 24
and give the following characterization via Koopman semigroups.

Proposition 5.18 Let ∅ 6= M ( Ω be a closed invariant set and (S(t))t≥0

the corresponding Koopman semigroup restricted to IM for t ≥ 0. Then the
assertions in (I), (II) and (III), respectively, are equivalent.

(I) a) (S(t))t≥0 is nilpotent.

b) (S(t))t≥0 is uniformly stable.

c) ω0 = −∞.

d) M is absorbing.

(II) a) (S(t))t≥0 is τc-nilpotent, (cf. Definition 2.3 a) on page 10).

b) M is compact absorbing.

c) M is pointwise absorbing and M ⊆ int (ϕ−1
n (M)) for some n ∈ N.

(III) a) For all Dirac measures δx ∈ I ′M there exists t0 > 0 such that

S(t0)′δx = 0 .

b) M is pointwise absorbing.

Proof. Proof of (I): This follows by the exact same arguments as in the
proof of the equivalences a)-d) in Proposition 4.7 (I) on page 38. Use that Ω
is completely regular and C0(Ω)⊕ 〈1〉 ∼= C(αΩ).
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Proof of (II): First we prove a) =⇒ b). Consider M ⊂ Ω closed and (ϕt)t≥0

invariant. Assume (S(t))t≥0 is τc-nilpotent. Take K ⊂ Ω compact, then there
exists a t0 such that f(ϕt(K)) = 0 for all t ≥ t0 and for all f ∈ IM . This
implies

ϕt(K) ⊂
⋂
f∈IM

[f = 0] = M .

The other implication is clear. The equivalence of b) and c) was proved in
Proposition 3.17 on page 26.

Proof of (III): This follows directly by above (II) since singletons {x}, x ∈ Ω
are compact and S(t)f(x) = 〈f, S(t)′δx〉 for f ∈ IM , t ≥ 0. �

5.3 Asymptotics of dynamical systems

This section investigates analoguous attractivity properties as in Definition 3.18
on page 27. For examples for all of these concepts, see Example 3.21 on page 28.
The main focus is again the characterization of attractivity concepts by sta-
bility properties of the induced Koopman semigroup on C0(Ω)⊕ 〈1〉 which is
Theorem 5.19 below. We refer to Definition 2.3 b) on page 10 for the defi-
nition of stability of an operator semigroup with respect to a locally convex
topology.

Theorem 5.19 Let µ a quasi-invariant Borel measure on Ω, ∅ 6= M ⊆ Ω
closed and invariant and (S(t))t≥0 the corresponding Koopman semigroup re-
stricted to IM . Then the assertions in (I), (II), (III), (IV) and (V), respectively,
are equivalent.

(I) a) (S(t))t≥0 is strongly stable.

b) M is uniformly attractive.

(II) a) (S(t))t≥0 is τc-stable.

b) M is compact attractive.

(III) a) (S(t))t≥0 is σΩ-stable.

b) M is attractive.

(IV) a) (S(t))t≥0 is almost σΩ-stable.

b) M is a center of attraction.

(V) a) (S(t))t≥0 is µ-almost everywhere pointwise stable.
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b) M is a likely limit set (for µ).

Proof. Proof of (I): cf. Theorem 4.9, (I) on page 40.

Proof of (II): To prove a) =⇒ b) take U ∈ U(M) and K ∈ K. Then there
exist ε > 0 and f ∈ IM such that Uε,f ⊆ U and since (S(t))t≥0 is τc-stable
there exists t0 > 0 such that

‖(S(t)f)|K‖ ≤ ε

for all t ≥ t0. Thus,
ϕt(K) ⊆ Uε,f ⊆ U

for all t ≥ t0. The opposite implication follows similarly.

Proof of (III): This follows by (II) since singletons {x}, x ∈ Ω are compact
and by Lebesgue’s theorem of dominated convergence.

Proof of (IV): We repeat the arguments from Theorem 4.9 (III) on page 41.
If M is a center of attraction, then for U ∈ U(M) open

1

t
λ({s ∈ [0, t] | ϕs(x) ∈ U c})

=
1

t

∫ t

0

1Uc(ϕs(x)) ds
t→∞−−−→ 0 for all x ∈ Ω .

Hence for f ∈ IM with ‖f‖∞ = 1 and 1 > ε > 0 we have

1

t

∫ t

0

|S(s)f(x)| ds

≤1

t

∫ t

0

|S(s)f(x)|1[|f |<ε](ϕs(x)) ds+
1

t

∫ t

0

‖f‖∞1[|f |≥ε](ϕs(x)) ds

≤ ε+
1

t

∫ t

0

‖f‖∞1[|f |≥ε](ϕs(x)) ds < 2ε

for t sufficiently large. Thus, b) implies a) by Lemma 5.17 on page 64.

Now take x ∈ Ω, f ∈ IM , f ≥ 0 and ε > 0. If a) is true there exists a subset
R ⊆ [0,∞) with density 1 and t0 > 0 such that

〈S(t)f, δx〉 < ε for all t ≥ t0 , t ∈ R .
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Since R ∩ [t0,∞) still has density 1, we obtain

1

t
λ ({s ∈ [0, t] | ϕs(x) ∈ Uε,f})→ 1 .

The assertion now follows because the neighborhoods of the form Uε,f , ε > 0,
f ∈ IM , form a neighborhood basis for M .

Proof of (V): This follows by the same arguments used in Theorem 4.9 (IV)
on page 41. �

5.4 Stability in the sense of Lyapunov and
Lyapunov functions

In this subsection we discuss stability in the sense of Lyapunov and Lyapunov
functions for the locally compact setting, cf. Chapter 3, Section 3.3.

For the remainder of this chapter let (Ω, (ϕt)t≥0) be a dynamical system such
that orb(L) is compact for all L ⊆ Ω compact, which is necessary for the
existence of attractors as discussed in Remark 3.23 on page 30.

Proposition 5.20 Let ∅ 6= M ⊆ Ω be compact and invariant and (S(t))t≥0

the corresponding Koopman semigroup restricted to IM . Then the following
are equivalent.

a) (S(t))t≥0 is τc-stable.

b) There exists a family (gi)i∈I of positive functions in IM such that M =
∩i∈I [gi = 0] and for all i ∈ I and x ∈ K \ [gi = 0] we have

S(t)gi(x) < gi(x) for all t > 0 .

c) M is attractive and Lyapunov stable.

d) M is compact attractive.

Proof. The equivalence of a) and d) has already been proved in (II) of
Theorem 5.19 on page 66. Next we show that d) =⇒ c). Let W be a compact
neighborhood ofM . AssumeM is not Lyapunov stable, then for every V ⊆ W
there exists tV > 0 and a xV ∈ V such that

ϕtV (xV ) ∈ W c .
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Since the set L := ϕ([0, tv]×{xv}) is connected, the union of the two disjoint
open sets

L ∩ int(W ) and L ∩W c .

is not all of L, i.e.,

L 6= (L ∩ int(W )) ∪ (L ∩W c) = L ∩ (int(W ) ∪W c) .

Therefore, there exists

yV ∈ L \ (int(W ) ∪W c) = L ∩ ∂W .

This implies yV = ϕt∗V (xV ) for some t∗V ∈ [0, tV ].

The boundary ∂W is compact which yields a convergent subnet (yVi)i∈I with
limit y ∈ ∂W . Since W is compact, the net (xVi)i∈I has a convergent subnet
which we will again denote by (xVi) converging to a point x ∈M . In addition,
since M is compact attractive, there is t0 > 0 such that

ϕt0(∂W ) ⊆ W .

This implies the above net (t∗Vi)i∈I to be bounded by t0, hence it has a con-
vergent subnet, again denoted by (t∗Vi) with limit t∗ ≥ 0.

All in all, xVi → x ∈ M , t∗Vi → t∗ and by continuity ϕt∗Vi (xVi) → ϕt∗(x) ∈ M
since M is invariant. This implies y ∈M which is a contradiction.

The other implication is clear by Theorem 4.9 (I) on page 40, c) =⇒ d),
exchanging K by an arbitrary L ⊂ Ω compact.

The equivalence of b) and d) can be seen exactly as in Theorem 4.11 on
page 44. �

Remark 5.21 If in the situation of Proposition 5.20 on page 68 the state
space Ω is a metric space, then the assertions a)-d) in Proposition 5.20 on
page 68 are equivalent to

b*) there exists g ∈ IM , g ≥ 0 with M = [g = 0] and

S(t)g(x) < g(x) for all t > 0 , x ∈ K \M .

Proof. This can be proved by the same arguments used in Remark 4.13 on
page 47. �
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5.5 Existence and characterization of global
attractors

As mentioned before, given a dynamical system (Ω, (ϕt)t≥0) an attractor is a
non-empty, invariant, attractive (cf. Definition 3.18 on page 27) and compact
subset of Ω that is minimal with this property. To this end we first investigate
how compact subsets of Ω can be characterized by algebraic properties of
C0(Ω)⊕〈1〉. The next theorem characterizes the algebra or equivalently lattice
ideals in C0(Ω)⊕ 〈1〉 that are of the form IM where M is a compact subset of
Ω.

Theorem 5.22 Let I ⊆ C0(Ω)⊕〈1〉 be a closed algebra or equivalently lattice
ideal. Then the following are equivalent.

a) The ideal is of the form IM with M ⊆ Ω compact.

b) There exists f ∈ I that does not vanish at infinity.

c) The ideal I is τc-closed.

Proof. For a) implies b) let I = IM for M ⊆ Ω compact. This implies
M = M

∼, where M∼ denotes the closure of M in αΩ, in particular∞ /∈M∼.
By Urysohn’s lemma there exists a continuous function f̃ : αΩ → [0, 1] with
f̃(∞) = 1 and f̃ |M ≡ 0. Then f := f̃ |Ω ∈ I and f does not vanish at infinity.

For the implication b) to a), let I be a closed algebra or equivalently lattice
ideal in C0(Ω)⊕ 〈1〉. Then I ∼= J with J ⊆ C(αΩ) closed algebra or equiva-
lently lattice ideal. Then J = JM̃ for a closed subset M̃ ⊆ αΩ. By assumption
there exists f ∈ I that does not vanish at infinity, hence its extension f̃ is an
element of JM̃ and f̃(∞) 6= 0 which implies that∞ /∈ M̃ , hence M̃ is already
compact in Ω.

Next, we assume a) and prove c). Let (fi)i∈I be a net in I = IM with τc-limit
f ∈ C0(Ω)⊕ 〈1〉 and let ε > 0. Since M is compact

‖f |M‖∞ = ‖(fi0 − f)|M‖∞ < ε

for i0 sufficiently large. This implies f |M ≡ 0 since ε was arbitrary.

On the other hand, suppose c) is true and a) does not hold, i.e., I ∼= JM̃ ⊆
C(αΩ), with M̃ ⊆ αΩ closed and ∞ ∈ M̃ , because M̃ cannot be a compact
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subset of Ω by assumption. Furthermore, there exists a net (fi)i∈I in C0(αΩ\
M̃) ∼= JM̃ with

‖(fi − 1)K‖∞
i∈I−−→ 0 for all K ⊆ αΩ \ M̃ compact .

Then 1 ∈ JM̃ ∼= C0(αΩ \ M̃) by a) which is a contradiction. Therefore, M̃ is
a compact subset of Ω and I = IM̃ . �

Next we discuss some properties of the subsets Iss, IσΩ
, IaσΩ

, Iτc and Iaeps (cf.
Definition 2.2 on page 10, Definition 2.5 on page 11 and Definition 2.6 on
page 12) of C0(Ω)⊕ 〈1〉.

Proposition 5.23 The sets Iss, IσΩ
, IaσΩ

, Iτc and Iaeps are ‖·‖∞-closed algebra
or equivalently lattice ideals in C0(Ω)⊕ 〈1〉.

Proof. We prove this for Iτc . Let ε > 0 and (fn)n∈N a ‖ · ‖∞-convergent
sequence in Iτc with limit f ∈ C0(Ω)⊕ 〈1〉. Then for K ⊆ Ω compact

‖(T (t)f)|K‖∞ ≤ ‖(T (t)(fn − f))|K‖∞ + ‖(T (t)fn)|K‖∞
= ‖(fn − f)|ϕt(K)‖∞ + ‖(T (t)fn)|K‖∞
≤ ‖fn − f‖∞ + ‖(T (t)fn)|K‖∞ < ε

for n and t sufficiently large since fn
‖·‖∞−−→ f and fn ∈ Iτcs. Since T (t)|f | =

|T (t)f | for all f ∈ C0(Ω) ⊕ 〈1〉 and t ≥ 0 it follows that |f | ∈ Iτc for all
f ∈ Iτc and for every g ∈ C0(Ω)⊕ 〈1〉 with |g| ≤ f for some f ∈ Iτc it follows
that g ∈ Iτc . The proof for the other subspaces uses the same arguments as
in Proposition 4.14 on page 48. �

Next we give an example where Iτc is not τc-closed.

Example 5.24 Consider the shift ϕt(x) := x + t for x ∈ R, t ≥ 0. Then Iτc
contains a net (fi)i∈I with fi ∈ C0(Ω) and τc − lim

i∈I
fi = 1, but clearly 1 /∈ Iτc .
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5.5.1 Attractivity, ω-limits sets and Milnor attractors

In this subsection we discuss the existence and characterization of attractors in
the sense of Definition 3.22 on page 30 similar to Subsection 4.4.1 in Chapter
4 where the state space was compact.

The following proposition gives a characterization of uniform attractivity.

Proposition 5.25 Let ∅ 6= M ⊆ Ω be closed and invariant. Then the follow-
ing are equivalent.

a) The set M is uniformly attractive.

b)
⋂
t≥0

ϕt(Ω) ⊆M .

We omit the proof since this can be shown using the same arguments as in
Proposition 4.16 on page 49. As an immediate result we obtain the following.

Proposition 5.26 There exists a unique minimal uniformly attractive subset
of Ω given by ⋂

t≥0

ϕt(Ω) .

Proof. Note that
⋂
t≥0 ϕt(Ω) is non-empty, because for all x ∈ Ω, ω(x) 6= ∅

by assumption and ω(x) ⊆
⋂
t≥0 ϕt(Ω). The set

⋂
t≥0 ϕt(Ω) is closed and

(ϕt)t≥0-invariant and is uniformly attractive by Proposition 4.16 b) on page
49 and is minimal with this property by construction. �

Remark 5.27 Combining Proposition 5.25 and Proposition 5.26 one obtains

Iss = I ⋂
t≥0

ϕt(Ω) .

Next, we characterize compact attractivity further.

Proposition 5.28 Let ∅ 6= M ⊆ Ω be closed and invariant. Then the follow-
ing are equivalent.

a) M is compact attractive.

b) ω(L) ⊆M for all L ⊆ Ω compact.
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Proof. IfM is compact attractive, then for a closed neighborhood U ∈ U(M)
and a compact subset L ⊆ Ω we know there exists t0 ≥ 0 with ϕt(L) ⊆ U for
all t ≥ t0. This implies

ω(L) =
⋂
t0≥0

⋃
t≥t0

ϕt(L) ⊆
⋃
t≥t0

ϕt(L) ⊆ U .

Since U was arbitrary, ω(L) ⊆M .

Now assume that ω(L) ⊆ M for all L ⊆ Ω compact and M is not compact
attractive, i.e., there exists an open neighborhood U ∈ U(M), a compact
subset L ⊆ Ω and nets (ti)i∈I , ti → ∞ and (xi)i∈I in L with ϕti(xi) ∈ U c.
The set U c∪{∞} is compact in αΩ and therefore there is a convergent subnet
of (ϕti(xi))i∈I in U c∪{∞} with limit y. Since ω(L) is compact by assumption,
y 6= ∞. Which implies y ∈ ω(L) by Proposition 3.10 on page 23 but y /∈ M
which is a contradiction. �

This leads us to the following conclusion.

Proposition 5.29 There exists a unique compact attractive subset of Ω that
is minimal with this property given by⋃

L⊆Ω
compact

ω(L) .

All in all, we obtain the following.

Proposition 5.30 Combining Theorem 5.19 (II) on page 66 and above Propo-
sition 5.29 we obtain

Iτc = I⋃
L⊆Ω

compact
ω(L) .

Similarly, we prove the existence of a unique (pointwise) attractive subset.

Proposition 5.31 Let ∅ 6= M ⊂ Ω be closed and invariant. Then the follow-
ing are equivalent.

a) The set M is attractive.

b) ω(x) ⊆M for all x ∈ Ω.
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We omit the proof since this follows directly from above Proposition 5.28 on
page 72.

Thus, we can conclude the following.

Proposition 5.32 There exists a unique minimal attractive subset of Ω given
by ⋃

x∈Ω

ω(x) .

Again we omit the proof since it is similar to Proposition 5.29 on page 73.

And finally we obtain the following.

Proposition 5.33 Combining Theorem 5.19 (III) on page 66 and above Propo-
sition 5.32 we obtain

IσΩ
= I⋃

x∈Ω ω(x) .

To conclude this subsection we turn to Milnor attractors, cf. Definition 3.22
on page 30.

Proposition 5.34 Assume that (Ω, (ϕt)t≥0) is a dynamical system where Ω
is metric and separable, µ a quasi invariant regular Borel measure on Ω and
∅ 6= M ⊆ Ω closed and invariant. Then the following are equivalent.

a) The set M is a likely limit set (for µ).

b) ω(x) ⊆M for µ-almost every x ∈ Ω.

Proof. We prove this similarly to Proposition 4.19 on page 50. Let M be
a likely limit set for µ. Then there exists a µ-null set N such that for all
U ∈ U(M) and x ∈ N c there exists t0 > 0 such that ϕt(x) ∈ U for all t ≥ t0.
Remark that N can be chosen independently from U since Ω is metric and
henceM admits a countable neighborhood basis. Hence, ω(x) ⊆ ∩U∈U(M)U =
M for all x ∈ N c.

Now assume there exists a µ-null set N such that ω(x) ⊆ M for all x ∈ N c.
Take U ∈ U(M) open. If a) does not hold there exists x ∈ N c such that
ϕt(x) ∈ U c for infinitely many t > 0. Since U c ∪ {∞} is compact in αΩ there
exists a convergent subnet of (ϕt(x))t≥0 with limit in U c ∪ {∞}, possibly ∞,
which is a contradiction to ω(x) ⊆M by Proposition 3.8 on page 21. �

This implies the following.
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Proposition 5.35 Assume that (Ω, (ϕt)t≥0) is a dynamical system where Ω
is metric and separable, µ a quasi invariant regular Borel measure on Ω and
∅ 6= M ⊆ Ω closed and invariant. There exists a unique subset of Ω that is a
likely limit set and minimal with property given by⋃

x∈Nc

ω(x)

for some µ-null set N .

And last we obtain the following correspondence.

Proposition 5.36 Let (Ω, (ϕt)t≥0) be a dynamical system with Ω metric and
separable, µ a quasi invariant regular Borel measure on Ω. By Proposition 5.35
and Theorem 5.19 (V) on page 66 there exists a µ-null set N such that

Iaeps = I ⋃
x∈Nc

ω(x) .

5.5.2 Minimal centers of attraction and ergodic measures

The minimal center of attraction is characterized by the invariant measures on
Ω.

In the following we write M1(Ω) for the set of all regular Borel probability
measures on Ω.

In contrast to the compact situation in Proposition 4.24 on page 52 of Chapter
4 the existence of an invariant probability Borel measure on Ω with compact
support is not ensured.

Proposition 5.37 The minimal center of attraction is given by the union of
supports of invariant measures, i.e.,

IaσΩ
= IMinv

with Minv :=
⋃

µ∈M1(Ω)

µ invariant

supp(µ).

Proof. In this proof we use the same arguments as in Proposition 4.24. First
we show “⊆”. Take µ ∈Minv and f ∈ IaσΩ

, then |f | ∈ IaσΩ
since it is a lattice
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ideal (cf. Proposition 5.23 on page 71) and

0 ≤ 〈|f |, µ〉 =
1

t

∫ t

0

〈|f |, µ〉 ds

µ inv.
=

1

t

∫ t

0

〈T (s)|f |, µ〉 ds→ 0 .

Therefore, f
∣∣
supp(µ)

≡ 0 for all invariant µ ∈Minv, this implies the assertion.

For the implication “⊇” let x ∈ Ω and δx the corresponding Dirac measure
and f ∈ IMinv . We observe that

1

t

∫ t

0

|〈T (s)f, δx〉| ds =
1

t

∫ t

0

〈|f |, T (s)′δx〉 ds

= 〈|f |, 1

t

∫ t

0

T (s)′δx ds〉 .

Recall that T (s)′δx = δϕs(x) is a point evaluation in Ω because (T (t))t≥0 is a
Koopman semigroup. This is crucial to ensure that the net

(
1
t

∫ t
0
T (s)′δx ds

)
t≥0

is a net in M1(Ω).

Since M1(Ω) is compact in the weak-*-topology induced by C0(Ω), every sub-
net of

(
1
t

∫ t
0
T (s)′δx ds

)
t≥0

has a convergent subnet
(

1
ti

∫ ti
0
T (s)′δx ds

)
i∈I

with

limit µ ∈ M1(Ω). This implies

〈|f |, 1

ti

∫ ti

0

T (s)′δx ds〉 → 〈|f |, µ〉 = 0

because µ is invariant. Hence, 1
t

∫ t
0
|T (s)f(x)| ds→ 0 as t→∞ for all x ∈ Ω.

The assertion now follows by applying Lemma 5.17 on page 64. �

5.5.3 Existence of attractors

Now we combine the results from the previous subsections and give conditions
for the existence of attractors in the sense of Definition 3.22 on page 30.

Theorem 5.38 All the assertions in (I), (II), (III), (IV) and (V) are equivalent
respectively.

(I) a) There exists a uniform attractor.
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b) The ideal Iss is τc-closed.

c) There exists an absorbing set in Ω that is compact.

d) The set
⋂
t≥0 ϕt(Ω) is compact.

(II) a) There exists a compact attractor.

b) The ideal Iτc is τc-closed.

c) There exists a compact absorbing set in Ω that is compact.

d) The set
⋃

L⊆Ω
compact

ω(L) is compact.

(III) a) There exists a (pointwise) attractor.

b) The ideal IσΩ
is τc-closed.

c) There exists a pointwise absorbing set in Ω that is compact.

d) The set
⋃
x∈Ω ω(x) is compact.

For the list of equivalences in (IV) we additionally assume that Ω is metric
and separable and µ a quasi-invariant regular Borel measure on Ω.

(IV) a) There exists a Milnor attractor.

b) The ideal Iaeps is τc-closed.

c) There exists a compact subset of L ⊆ Ω and a µ-null set N such
that for every x ∈ N c there exists t0 > 0 with ϕt(x) ∈ L for all
t ≥ t0.

d) There exists a µ-null set N such that the set
⋃
x∈Nc ω(x) is compact.

(V) a) There exists a minimal center of attraction.

b) The ideal IaσΩ
is τc-closed.

c) The set Minv (cf. Proposition 5.37 on page 75) is compact.

Proof. Proof of (I): By Definition 3.22 on page 30 and Proposition 5.26 on
page 72, if d) is true then there exists a uniform attractor, which is asser-
tion a). Furthermore, a) implies b) by combining Theorem 5.22 on page 70
and Theorem 5.19 (I) on page 66. If b) is true, then by Theorem 5.22 on
page 70 there exists a function f ∈ Iss that does not vanish at infinity, hence
its zero set [f = 0] is compact in Ω which implies that there exists a com-
pact neighborhood W of [f = 0]. Furthermore, [f = 0] contains

⋂
t≥0

ϕt(Ω) by
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Remark 5.27 on page 72. Since the set
⋂
t≥0

ϕt(Ω) is uniformly attractive by

Proposition 5.25 on page 72, there exists t0 > 0 such that ϕt(Ω) ⊆ W for
all t ≥ t0. This implies c). On the other hand, if there exists a absorbing
set that is compact, then it must contain

⋂
t≥0

ϕt(Ω) by Proposition 5.26 on

page 72 which is therefore compact, hence d) is true.

Proof of (II): The implication d) =⇒ a) is true by Definition 3.22 on page 30
and Proposition 5.29 on page 73. Assertion a) in turn, combining Theo-
rem 5.22 on page 70 and Theorem 5.19 (II) on page 66 implies b). The
implication b) to c) is true by Theorem 5.22 on page 70 and Proposition 5.30
on page 73. Again, if there exists a function f ∈ Iτc with compact zero set,
this zero set admits a compact neighborhood which is compact absorbing be-
cause [f = 0] contains

⋃
L⊆Ω

compact
ω(L). If c) is true, the given compact set

that is compact absorbing must contain
⋃

L⊆Ω
compact

ω(L) by Definition 3.22 on

page 30 which is therefore compact, hence d).

Proof of (III): Using the same arguments as in (I) and (II) we obtain that d)
implies a) by Definition 3.22 on page 30 and the characterization in Proposi-
tion 5.32 on page 74. By Theorem 5.19 (III) on page 66 and Theorem 5.22
on page 70 we obtain a) =⇒ b). If b) is true we obtain a function in IσΩ

with
compact zero set by Theorem 5.22 on page 70 which has a compact neigh-
borhood containing

⋃
x∈Ω ω(x) by Proposition 5.33 on page 74. This compact

neighborhood satisfies the assumptions in c) by Definition 3.18 c) on page 27.
The implication c) =⇒ d) follows from Proposition 5.32 on page 74.

Proof of (IV): Using Definition 3.22 on page 30 and Proposition 5.35 on
page 75 we obtain d) =⇒ a). Next, a) implies b) by Theorem 5.19 (IV) on
page 66 and Theorem 5.22 on page 70. Again, the ideal Iaeps contains a func-
tion with compact zero set that admits a compact neighborhood satisfying
the assumptions in c) by Theorem 5.22 on page 70 and Proposition 5.36 on
page 75. The implication c) =⇒ d) follows from Proposition 5.35 on page 75.

Proof of (V): If the closure of the union of supports of invariant measures is
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compact, then, by Definition 3.22 on page 30 and Proposition 5.37 on page 75,
it is the minimal center of attraction, hence c) implies a). Furthermore, by
Theorem 5.19 (V) on page 66 and Theorem 5.22 on page 70 we conclude that
a) implies b) and finally, b) implies a) by Proposition 5.37 on page 75.
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In this chapter we consider semiflows on complete metric spaces and try to
characterize attractive closed and invariant subsets again by properties of the
corresponding Koopman semigroup. To this end, let (X, d) be a complete
metric space and (ϕt)t≥0 a continuous semiflow thereon, where continuity is
defined as in Definition 3.1 on page 19. There are many examples for dynamical
systems with complete metric but not locally compact state space that have a
global attractor. Such dynamical systems appear for example as solutions of
so-called retarded differential equations, see [Chu02, p. 13, Ex. 1.5] and [Hal10,
Chapt. 4, Ex. 4.1.3]. Another often referenced example for such a dynamical
system is given by the solutions of the so-called Cahn-Hilliard equation, see
[SY13, Sect. 5.5, Thm. 55.8].

In contrast to the previous chapter, we cannot use the one-point compactifica-
tion for a metric space that is not locally compact. Thus, we consider βX, the
Stone–Čech compactification of X. Recall that C(βX) ∼= Cb(X) canonically,
where Cb(X) denotes the Banach space of all bounded real-valued continuous
functions on X endowed with the supremum norm ‖ · ‖∞, which is a Banach
algebra and a Banach lattice with the usual pointwise operations.

We define the Koopman semigroup (T (t))t≥0 corresponding to (ϕt)t≥0 by

T (t)f := f ◦ ϕt for f ∈ Cb(X) , t ≥ 0 .

Then {T (t) | t ≥ 0} ⊆ L(Cb(X)) and ‖T (t)‖ = 1 for all t ≥ 0.

Similar to the previous chapter we use the compact-open topology τc on Cb(X).
In Section 6.1, we discuss general facts about the τc topology needed for the
study of attractors in the context of this chapter. We also relate continuity
of the semiflow (ϕt)t≥0 and strong τc-continuity of the associated Koopman
semigroup (T (t))t≥0. Note that such a Koopman semigroup is generally not
strongly continuous but is bi-continuous (with respect to τc). The generator
acts as a derivation on its domain, similar to the previous chapters. For an
overview on the concept of bi-continuous semigroups, we refer to the articles
[Far04, Sect. 2] by B. Fárkas and [Küh03] by F. Kühnemund.
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Section 6.2 is concerned with a characterization of attractivity properties of
closed invariant subsets of dynamical systems via stability of the Koopman
semigroup.

In contrast to the previous chapters compact subsets of X do not necessarily
admit a neighborhood basis consisting of compact sets, but of bounded sets
only. Recall that a subset B ⊆ X is called bounded if there is a point x ∈ X
and a radius r > 0 such that B lies in the ball with radius r around x, i.e.,
B ⊆ Br(x).

Given a metric d one can always construct a topologically equivalent metric d̃
that is bounded, i.e., one can assume without loss of generality that the state
space X is bounded. Thus, if a closed invariant subset ∅ 6= M ⊆ X attracts
every bounded set, then it is already uniformly attractive. However, if M
attracts only compact subsets of X, it may not be Lyapunov stable, i.e., the
arguments discussed in Section 4.3 and 5.4. do not apply. It remains open to
relate Lyapunov stability to a suitable stability notion of Koopman semigroups
in this context.

Another problem is the existence of compact invariant subsets ∅ 6= M ⊆ X. It
is necessary that the corresponding ideal IM is τc-closed, but it is open if this is
a sufficient condition. There are several properties of dynamical systems, i.e.,
dissipativity [SY13, Sect. 2.3.3, p. 32], asymptotically smooth systems [Hal10,
Sect. 3.2, p. 36] or asymptotically compact systems [Lad91, Chapt. 3, p. 12],
that ensure the existence of a compact global attractor. It remains open to
characterize these properties by means of the Koopman semigroup and to find
conditions on IM that ensure the compactness of M .

6.1 Characerization of Koopman operators on
Cb(X)-spaces and τc-closed ideals

Let τc denote the compact-open topology on Cb(X), i.e., the topology of uni-
form convergence on compact sets of X. Let K denote the family of compact
subsets of X. Recall that the family (pK)K∈K of seminorms defined by

pK(f) := ‖f
∣∣
K
‖∞ = sup

x∈K
|f(x)| for f ∈ Cb(X) , K ∈ K ,

generates τc.
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6.1 Characerization of Koopman operators on Cb(X)-spaces and τc-closed ideals

The compact-open topology τc is compatible with the algebra and lattice struc-
ture of Cb(X) since for everyK ∈ K the corresponding seminorm pK satisfies

pK(fg) ≤ pK(f)pK(g) and pK(|f |) = pK(f) for all f, g ∈ Cb(X)

and for 0 ≤ f ≤ g it follows that pK(f) ≤ pK(g).

The following theorem is a generalized Stone-Weierstraß Theorem. This can
be found in more generality in [Coo11, Chapt. II, Thm 1.13 & Cor. 1.14].

Theorem 6.1 (Generalized Stone-Weierstraß Theorem) Let A be a subalge-
bra of Cb(X) that separates the points of X and such that for every x ∈ X
there exists f ∈ A with f(x) 6= 0. Then A is τc-dense in Cb(X).

Proof. Let A be a subalgebra of Cb(X) satisfying the assumptions. Fix
K ∈ K and consider the restricted algebra

A|K := {f |k | f ∈ A} .

Then A|K is a subalgebra of C(K) that separates the points of K and for all
x ∈ K there exists g ∈ A|K with g(x) 6= 0. By the usual Stone-Weierstraß
theorem A|K is dense in C(K) with respect to the supremum norm, i.e., for
all ε > 0, h ∈ C(K) there exists g ∈ A|K with ‖(h−g)|K‖∞ < ε. This implies
the assertion. �

To follow the same leitmotif as in the previous chapters we have to ensure that
the closed subsets of X coincide with certain ideals in Cb(X). The τc-closed
ideals turn out to be the right choice.

Proposition 6.2 Let I ⊆ Cb(X) be a τc-closed ideal, then

I = IM

where M =
⋂
f∈I

[f = 0] and IM := {f ∈ Cb(X) | f |M = 0}.

Proof. We follow the arguments used in [Coo11, Chapt. II, Prop. 2.7]. Let
I be a τc-closed ideal I ⊂ Cb(X). First note that I ⊆ IM is always true.
Furthermore, I is ‖ · ‖∞-closed and therefore it is isomorphic to an ideal of
the form IM̃ = {f ∈ C(βX) | f |M̃ = 0} where M̃ ⊂ βX.

Assume M̃ \MβX 6= ∅, M =
⋂
f∈I [f = 0]. This means there exists x0 ∈ M̃

and f0 ∈ C(βX) with f0(x0) = 1 and f |U ≡ 0 for some neighborhood U ∈
U(M

βX
).
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Now fix K ∈ K and consider I|K := {g|K | g ∈ I}. This is an ideal in C(K)
and therefore its closure is of the form

I|K
pK

= IL for some compact L ⊂ K .

In fact L = M ∩K. This implies f0

∣∣
K
∈ IL. Now take ε > 0. There exists

fK,ε ∈ I
∣∣
K

with

‖(f0 − fK,ε)
∣∣
K
‖∞ = pK(f0 − fK,ε) < ε .

Since fK,ε ∈ I|K , it is the restriction of a function fε ∈ I. Since K was
arbitrary, f0 ∈ I which is a contradiction. Hence, M̃ = M

βX which means
that for every function f ∈ Cb(X) vanishing on M its extension to βX
vanishes on M̃ and is therefore an element of I. This implies IM ⊆ I which
concludes the proof. �

Recall that Cb(X)′ is canonically isomorphic to the space M(βX) of all bounded
regular Borel measures on βX. For our purpose we look for a subspace of mea-
sures with support in X. A suitable choice is the topological τc-dual of Cb(X)
which we denote by Cb(X)′τc := (Cb(X), τc)

′. It is known that Cb(X)′τc is
canonically isomorphic to Mc(X) the space of bounded regular Borel measures
on X with compact support, cf. [Coo11, Chapt. II, Prop. 3.2].

We consider the dual system (Cb(X),Mc(X), 〈·, ·〉) (cf. [Sch71, Chapt. IV, §1,
p. 123]) given by the bilinear form

〈·, ·〉 : Cb(X)×Mc(X)→ C

(f, µ) 7→
∫
X

f dµ ,

and write
στc := σ(Cb(X),Mc(X))

for the induced weak topology, [Sch71, Chapt. IV, §1, p. 124], and

σ∗τc := σ(Mc(X),Cb(X))

for the induced weak∗ topology respectively.
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6.1 Characerization of Koopman operators on Cb(X)-spaces and τc-closed ideals

We define the subset Γ(X)τc of multiplicative linear forms in Cb(X)′τc , i.e.,

Γ(X)τc := {α ∈ Cb(X)′τc | ‖α‖ = 1 , α(f · g) = αf · αg for all f, g ∈ Cb(X)} .

For every x ∈ X the point evaluation

δx : f 7→ f(x)

is an element of Γ(X)τc . In fact, every multiplicative linear form in Cb(X)′τc is
a point evaluation.

Proposition 6.3 The mapping

δ : X → Γ(X)τc
x 7→ δx

is a homeomorphism where Γ(X)τc is endowed with the σ∗τc-topology.

Proof. We follow the proof given in [Coo11, Chapt. II,Prop. 2.2]. First note
that δ is injective since Cb(X) separates the points of X. To prove that δ is
surjective take α ∈ Γ(X)τc and consider its kernel ker(α). This is a τc-closed
subalgebra of Cb(X) with codimension 1. Assume ker(α) would not separate
the points of X, then there exist x 6= y ∈ X such that ker(α) is in the kernel
of the linear form given by f 7→ f(x) − f(y). Thus ker(α) has codimension
at least 2 which is a contradiction.

Furthermore, there exists an x ∈ X such that f(x) = 0 for all f ∈ ker(α)
because otherwise ker(α) satisfies the conditions of the generalized Stone-
Weierstraß Theorem 6.1 on page 83. Hence, it is τc-dense in Cb(X), i.e.,
α = 0. This implies,

ker(α) ⊆ {f ∈ Cb(X;R) | f(x) = 0} = ker(δx) .

If ker(α) ( ker(δx), ker(α) must have codimension at least 2 which is a
contradiction. Hence, α = δx for they both have codimension 1 and ‖α‖ = 1.

Finally, we show that δ is in fact a homeomorphism, i.e., the inverse

δ−1 : Γ(X)τc → X

is continuous. Consider a convergent net (δxi)i∈I with σ∗τc-limit δx. This means

〈f, δxi〉 = f(xi) −−→
i∈I

f(x) = 〈f, δx〉 for all f ∈ Cb(X) .
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Now consider an open neighborhood U of x and take f ∈ Cb(X) with f(x) = 1
and f |X\U ≡ 0, which exists since X is completely regular. We know that
there exists i0 ∈ I such that

|f(xi)− 1| < 1

2
for all i ≥ i0 .

This implies f(xi) ≥ 1
2
for all i ≥ i0 and therefore xi ∈ U for all i ≥ i0. �

Remark 6.4 Every τc-continuous normalized lattice homomorphism, i.e., a
functional ψ : Cb(X)→ R, with ψ(|f |) = |ψ(f)| for all f ∈ Cb(X) and ψ(1) =
1, is a point evaluation.

Proof. Take a τc-continuous lattice homomorphism ψ with ψ(1) = 1. This
is also a ‖·‖∞-continuous lattice homomorphism and since Cb(X) ' C(βX), it
is a point evaluation by [Sch74, Chapt. III, Prop. 1.4]. The point evaluations
on C(βX) coincide with the ‖ · ‖∞-continuous multiplicative linear forms on
C(βX), cf. [EFHN15, Lem. 4.10]. Hence, ψ is a τc-continuous multiplicative
linear form which is a point evaluation by Proposition 6.3 on page 85. �

Now we turn to the characterization of Koopman operators as algebra homo-
morphisms between Cb(X)-spaces.

Definition 6.5 Let ϕ : X → X be a continuous map. We call the map
Tϕ : Cb(X)→ Cb(X) defined via

Tϕf := f ◦ ϕ for all f ∈ Cb(X)

Koopman operator (induced by ϕ).

Proposition 6.6 Let ϕ : X → X be a continuous map, and T : Cb(X) →
Cb(X) the induced Koopman operator. Then T is a τc-continuous lattice and
algebra homomorphism with T1 = 1.

Proof. It is clear that T is linear. Consider a convergent net fα
τc→ f in

Cb(X). Remark that for K ⊂ X compact the image ϕ(K) is compact and
thus,

pK(Tfα) = pϕ(K)(fα) −→ pϕ(K)(f) = pK(Tf) .

Also, clearly T1 = 1, T (fg) = Tf · Tg and T |f | = |Tf | for all f, g ∈ Cb(X).

�
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Next, we use these facts to characterize homomorphisms between Cb(X)-
spaces.

Proposition 6.7 Let T : Cb(X) → Cb(X) be a τc-continuous algebra homo-
morphism with T1 = 1. Then there exists a continuous mapping ϕ : X → X
such that

Tf = f ◦ ϕ for all f ∈ Cb(X) .

Proof. Take x ∈ X then T ′δx is a τc-continuous multiplicative linear form
on Cb(X) with T ′δx(1) = 1 which is a point evaluation by Proposition 6.3 on
page 85. Set δϕ(x) := T ′δx. Thus by construction Tf = f ◦ ϕ ∈ Cb(X) for
every f ∈ Cb(X). This implies that ϕ is continuous because the sets of the
form [|f | > 0], f ∈ Cb(X), form a basis for the open sets in X. �

Proposition 6.8 Let T : Cb(X)→ Cb(X) be a bounded operator. Then the
following are equivalent.

a) T is a τc-continuous algebra homomorphism and T1 = 1,

b) T is a τc-continuous lattice homomorphism and T1 = 1,

c) T is a Koopman operator.

Proof. The fact that a)⇐⇒ b) is clear since the τc-continuous lattice homo-
morphisms and algebra homomorphisms coincide by Remark 6.4 on page 86.
The rest is clear by above Propositions 6.6 and 6.7 on page 86 and on the
current page.

Now we turn to semigroups of Koopman operators.

Definition 6.9 We call a semigroup (T (t))t≥0 of bounded linear operators on
Cb(X) Koopman semigroup if T (t) is a Koopman operator for every t ≥ 0,
i.e., there exists a semiflow (ϕt)t≥0 on X with T (t)f = f ◦ ϕt for all t ≥ 0,
f ∈ Cb(X).

We have the following correspondence between continuity of a semiflow and
the associated Koopman semigroup.

Proposition 6.10 Let (T (t))t≥0 be a Koopman semigroup on Cb(X) induced
by a semiflow (ϕt)t≥0 on X. Then the following are equivalent.
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a) The map

ϕ : [0,∞)×X → X ,

(t, x) 7→ ϕt(x)

is continuous.

b) The semigroup (T (t))t≥0 is strongly τc-continuous, i.e., the mapping

[0,∞)→ (Cb(X), τc) ,

t 7→ T (t)f

is continuous for every f ∈ Cb(X).

Proof. To see that a) implies b), take f ∈ Cb(X) and K ⊆ X compact. It
suffices to check continuity at t = 0. The set ϕ([0, 1] ×K) =: L is compact
as the continuous image of a compact set. Note that K ⊆ L since ϕ0 = idX .
Therefore, f |L ∈ C(L) and T (t)f |L ∈ C(K) for every t ∈ [0, 1]. Applying
[EFHN15, Thm. 4.17], t 7→ T (t)f |L ∈ C(K) is continuous at 0, i.e.,

‖T (t)f |L − f |L‖∞ = ‖(T (t)f − f)|K‖∞ → 0 .

This implies b) since K was arbitrary.

On the other hand, if b) is true, using again [EFHN15, Thm. 4.17], we obtain
that ϕ is continuous restricted to every set of the form [0, t0] × K, t0 > 0,
K ⊆ X compact. Using the semiflow property, this implies ϕ is continuous
on every compact subset of its domain. Hence, ϕ is continuous everywhere,
because [0,∞)×X and X are metric spaces. This completes the proof. �

Proposition 6.10 above can be found in [Küh03, Prop. 18]. Our proof is differ-
ent from the proof given there.

6.2 Asymptotics of dynamical systems

Recall the absorbing and attractivity properties of closed invariant sets from
Definition 3.13 on page 24 and Definition 3.18 on page 27 from Chapter 3.
These notions are defined for complete metric spaces analoguously. Further-
more, recall the definition of stability of a semigroup with respect to a locally-
convex topology in Definition 2.3 on page 10 and the result in Proposition 2.4
on page 11. We use these definitions and results analoguously for the situation
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in this chapter.

Proposition 6.11 Let (X, (ϕt)t≥0) be a dynamical system, ∅ 6= M ( Ω a
closed invariant set and (S(t))t≥0 the corresponding Koopman semigroup re-
stricted to IM for t ≥ 0. Then the assertions in (I), (II) and (III) are equivalent,
respectively.

(I) a) (S(t))t≥0 is nilpotent.

b) (S(t))t≥0 is uniformly stable.

c) M is absorbing.

(II) a) (S(t))t≥0 is τc-nilpotent, (cf. Definition 2.3 a) on page 10).

b) M is compact absorbing.

(III) a) For all Dirac measures δx ∈ I ′M there exists t0 > 0 such that

S(t0)′δx = 0

b) M is pointwise absorbing.

Proof. This can be shown by the arguments used in Proposition 4.7 on
page 38 and Proposition 5.18 on page 65.

The following characterization of almost στc-stability is similar to Lemma 4.8
on page 39 and Lemma 5.17 on page 64 from the previous chapters.

Lemma 6.12 Let (T (t))t≥0 be a strongly continuous Koopman semigroup on
Cb(X) and I a ‖ · ‖∞-closed (T (t))t≥0-invariant ideal in Cb(X). Then the
restricted semigroup (S(t))t≥0, with S(t) := T (t)|I , t ≥ 0, is almost στc-stable,
i.e.,

lim
t→∞

1

t

t∫
0

|〈S(s)f, µ〉| ds = 0 for all µ ∈ Cb(X)′τc , f ∈ I,

if and only if

lim
t→∞

1

t

t∫
0

S(s)|f |(x) ds = 0 for all x ∈ X, f ∈ I .
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Theorem 6.13 Let (X, (ϕt)t≥0) be a dynamical system, µ a quasi-invariant
Borel measure on X, ∅ 6= M ⊂ X closed and invariant and (S(t))t≥0 the
corresponding Koopman semigroup restricted to IM . Then the assertions in
(I), (II), (III), (IV) and (V), respectively, are equivalent.

(I) a) (S(t))t≥0 is strongly stable.

b) M is uniformly attractive.

(II) a) (S(t))t≥0 is τc-stable.

b) M is compact attractive.

(III) a) (S(t))t≥0 is στc-stable.

b) M is attractive.

(IV) a) (S(t))t≥0 is almost στc-stable.

b) M is a center of attraction.

(V) a) (S(t))t≥0 is µ-almost everywhere pointwise stable.

b) M is a likely limit set (for µ).

Proof. The proofs of (I) and (II) are as for Theorem 4.9 (I) on page 40 and
Theorem 5.19 (II) on page 66.

Proof of (III): If the semigroup is στc-stable, for every x ∈ X and U ∈ U(M)
there exists f ∈ IM , ε > 0 and t0 > 0 with ϕt(x) ∈ Uε,f ⊆ U for all t ≥ t0.
On the other hand if M is attractive, we obtain

〈T (f)f, δx〉 → 0 as t→∞

for all x ∈ X, f ∈ IM . Now take µ ∈ Cb(X)′τc and note that |T (t)f(x)| ≤
‖f‖∞ · 1X for all t ≥ 0, x ∈ X. Since

∫
X
‖f‖∞ · 1X dµ < ∞, we can apply

Lebesgue’s theorem of dominated convergence and therefore

〈T (t)f, µ〉 → 0 as t→∞ .

Proof of (IV): We prove first the implication b) =⇒ a). If M is a center of
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attraction and U ∈ U(M) open, then

1

t
λ({s ∈ [0, t] | ϕs(x) ∈ U c})

=
1

t

∫ t

0

1Uc(ϕs(x)) ds
t→∞−−−→ 0 for all x ∈ Ω .

Now take f ∈ IM with ‖f‖∞ = 1 and 1 > ε > 0. Then

1

t

∫ t

0

|S(s)f(x)| ds

≤1

t

∫ t

0

|S(s)f(x)|1[|f |<ε](ϕs(x)) ds+
1

t

∫ t

0

‖f‖∞1[|f |≥ε](ϕs(x)) ds

≤ ε+
1

t

∫ t

0

‖f‖∞1[|f |≥ε](ϕs(x)) ds < 2ε

for t sufficiently large since [|f | ≥ ε] is the complement of the open neighbor-
hood [|f | < ε] of M . Thus b) implies a) by Lemma 5.17 on page 64.

For the other implication take x ∈ X, f ∈ IM , f ≥ 0 and ε > 0. By
assumption there exists a subset R ⊆ [0,∞) with density 1 and t0 > 0 such
that

〈S(t)f, δx〉 < ε for all t ≥ t0 , t ∈ R .

Since R ∩ [t0,∞) still has density 1, we obtain

1

t
λ ({s ∈ [0, t] | ϕs(x) ∈ Uε,f})→ 1 .

This implies the assertion since the neighborhoods of the form [|f | < ε],
f ∈ IM , ε > 0, form a basis for the neighborhoods of M .

Proof of (V): This follows by the same arguments used in Theorem 4.9 (IV)
on page 41. �

With this result we conclude our outlook on how Koopmanism can be used for
attractors in dynamical systems on metric spaces.
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Part III

Measure Preserving Systems
and Topological Models
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7 Markov semigroups of lattice
operators and their generators

This part is based on the article [EGK19] by Nikolai Edeko, Moritz Gerlach,
Viktoria Kühner, Measure preserving semiflows and one-parameter Koopman
semigroups, Semigroup Forum (2019), p.48-63. The author contributed ap-
proximately 30% of the scientific ideas and the writing of this article, except
for the proofs of Theorem 7.20 on page 105 and Lemma 7.24 on page 107,
([EGK19, Thm. 2.1] and [EGK19, Lem. 2.5], respectively). These are due to
the co-author N. Edeko.

In this chapter we address the following problems. First, in Section 7.1, we
start with a finite measure space X = (X,Σ, µ) and characterize strongly con-
tinuous Markov lattice semigroups (T (t))t≥0 on Lp(X) by properties of their
generators. The main result (Theorem 7.12 on page 98) is that a strongly
continuous semigroup on Lp(X) is a Markov lattice semigroup if and only if
its generator A acts as a derivation on D(A) ∩ L∞(X), 1 ∈ D(A) and the
semigroup is locally bounded on L∞(X). We have seen such characterizations
previously in this thesis, cf. Theorem 4.6 on page 38 and Theorem 5.15 on
page 62. In 2015, T. ter Elst and M. Lemańczyk proved a similar result in
[tEL15] for unitary groups on L2(X). Then we give a version of the main result
in Theorem 7.19 on page 103 for lattice semigroups that are not necessarily
Markov. In Section 7.2 we turn to standard probability spaces. We apply the
results from Section 7.1 and prove that every Markov lattice semigroup is, in
this case, a Koopman semigroup, cf. Definition 7.4 on the next page.

Now we recall basic concepts and fix the notation for this part of the thesis.

For a measure space X = (X,Σ, µ) and 1 ≤ p ≤ ∞ we denote by Lp(X) :=
Lp(X;C) the corresponding complex Lp-space. This is a complex Banach lat-
tice in the sense of [EFHN15, Def. 7.2]. The lattice operations in Lp(X;R) are
denoted by ∨ and ∧ and coincide with the respective pointwise operations. To
be precise, the supremum and infimum is represented by the pointwise supre-
mum and infimum of representatives of the equivalence classes f and g, cf.
[EFHN15, Ex. 7.1, 2)].
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7 Markov semigroups of lattice operators and their generators

Next we define (bi-)Markov lattice operators.

Definition 7.1 Let X = (X,Σ, µ) and Y = (Y,Σ′, µ′) be finite measure spaces
and T ∈ L (Lp(X),Lp(Y)), 1 ≤ p <∞. The operator T is called

a) positive if it is real, i.e., TLp(X;R) ⊆ Lp(Y;R), and its restriction to the
Banach lattice Lp(X;R) is positive, i.e., Tf ≥ 0 for all f ∈ Lp(X;R),
f ≥ 0.

b) lattice homomorphism (or lattice operator) if |Tf | = T |f | for each f ∈
Lp(X),

c) Markov operator if it is positive and T1X = 1Y , and bi-Markov operator
if, additionally, T ′1Y = 1X .

We remark the following.

Remark 7.2 Every lattice homomorphism is positive and fulfills

T (f+) = (Tf)+ and T (f−) = (Tf)− for all f ∈ Lp(X;R) .

For operator semigroups consisting of (bi-Markov) lattice operators we use the
following notation.

Definition 7.3 Let X = (X,Σ, µ) be a finite measure space and (T (t))t≥0 a
strongly continuous semigroup on Lp(X). The semigroup (T (t))t≥0 is called

a) lattice semigroup if each operator T (t) is a lattice homomorphism and

b) (bi-)Markov lattice semigroup if every operator T (t) is a (bi-)Markov
operator.

Now we turn to Koopman operators which clearly are Markov lattice opera-
tors.

Definition 7.4 We call an operator T ∈ L (Lp(X),Lp(Y)) Koopman operator
if there exists a measurable map ϕ : Y → X satisfying ϕ−1(N) = 0 for every
µ-null set N ∈ Σ such that

Tf = f ◦ ϕ for every f ∈ Lp(X) .

In this case we denote the operator by Tϕ.
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Remark 7.5 A Koopman operator Tϕ ∈ L (Lp(X),Lp(Y)), 1 ≤ p < ∞, is a
Markov lattice operator. If the corresponding map ϕ is even measure preserv-
ing1, the Koopman operator Tϕ is bi-Markov.

Definition 7.6 Let (T (t))t≥0 be a strongly continuous semigroup on Lp(X)
for some 1 ≤ p < ∞. It is called a Koopman semigroup if for each t ≥ 0 the
operator T (t) is a Koopman operator.

Furthermore, we use the following definition.

Definition 7.7 Given a finite measure space X = (X,Σ, µ) and a linear op-
erator δ on Lp(X), 1 ≤ p <∞, with domain D(δ). Then δ is called derivation
on D(δ)∩L∞(X) if D(δ)∩L∞(X) is an algebra (with respect to the pointwise
almost everywhere multiplication) and

δ(f · g) = δf · g + f · δg for all f, g ∈ D(δ) ∩ L∞(X) .

Next, we recall the so-called measure algebra Σ(X). For further information
on Σ(X) we refer to [EFHN15, Sect. 6.1].

Definition 7.8 Consider the equivalence relation

M ∼ N if 1M = 1N µ-almost everywhere

on Σ. Then the set of equivalence classes

Σ(X) := Σ/∼

is called the measure algebra of the measure space X.

It is a Boolean algebra with respect to the usual operations.

Remark 7.9 For simplicity, we do not distinguish notationally between ele-
ments of Σ and Σ(X).

We define homomorphisms on Σ(X) as follows.

Definition 7.10 A mapping θ : Σ(X) → Σ(X) is called measure algebra ho-
momorphism if it is a Boolean algebra homomorphism and satisfies

µ(θ(A)) = µ(A) for all A ∈ Σ(X) .

1Given a measure space X = (X,Σ, µ) and a measurable mapping ϕ : X → X, we call ϕ
measure preserving if for every A ∈ Σ, µ(ϕ−1(A)) = µ(A).
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7 Markov semigroups of lattice operators and their generators

An easy example is the following.

Example 7.11 Let X = (X,Σ, µ) be a finite measure space and ϕ : X → X
a measurable map such that µ(ϕ−1(N)) = 0 for every µ-null set N . Then ϕ
induces a Boolean algebra homomorphism ϕ∗ by

ϕ∗ : Σ(X)→ Σ(X)

A 7→ ϕ−1(A) .

If ϕ is measure preserving, ϕ∗ is a measure algebra homomorphism.

7.1 Characterization of Markov lattice
semigroups on Lp-spaces

This section is concerned with the characterization of strongly continuous
Markov lattice semigroups on Lp-spaces by means of their generator. The
following theorem is our main result in this section. As a corollary we ob-
tain a characterization of strongly continuous bi-Markov lattice semigroups in
Corollary 7.18 on page 103 and also prove a similar result for strongly contin-
uous lattice semigroups that are not necessarily Markov, cf. Theorem 7.19 on
page 103.

Throughout this section X = (X,Σ, µ) is a finite measure space. Given a
strongly continuous semigroup (T (t))t≥0 with generator A we write D(A) for
its domain.

Theorem 7.12 Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on Lp(X), 1 ≤ p <∞. Then the following assertions are equivalent.

(i) (T (t))t≥0 is a Markov lattice semigroup.

(ii) For every t ≥ 0 there exists a Boolean algebra homomorphism θt : Σ(X)→
Σ(X) such that T (t)1M = 1θt(M) for all M ∈ Σ(X).

(iii) The space L∞(X) is invariant under (T (t))t≥0, the map t 7→ ‖T (t)‖L(L∞(X))

is locally bounded, 1 ∈ D(A), and A is a derivation on D(A) ∩ L∞(X).

We remark the following facts.
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7.1 Characterization of Markov lattice semigroups on Lp-spaces

Remark 7.13 (i) Given a bounded operator S on Lp(X) such that L∞(X)
is invariant under S, it follows from the closed graph theorem that the
restriction S|L∞(X) is a bounded operator. Therefore, the map

t 7→ ‖T (t)‖L(L∞(X))

is well-defined in (iii) of Theorem 7.12 on page 98. As will be shown
in Lemma 7.24 on page 107, the local boundedness condition is auto-
matically fulfilled for a strongly continuous operator group (T (t))t∈R on
Lp(X), 1 ≤ p <∞.

(ii) A semigroup (T (t))t≥0 satisfying (i)–(iii) in Theorem 7.12 on page 98
uniquely extends to a strongly continuous Markov lattice semigroup on
Lq(X) for each 1 ≤ q <∞ with

‖T (t)‖L(Lq(X)) = ‖T (t)‖
1
q

L(L1(X)),

use [EFHN15, Thm. 7.23]. In particular, it extends to L1(X). Therefore,
we only consider semigroups on L1(X) in Chapter 8.

As a preparation for the proof of Theorem 7.12 on page 98, recall the following
lemma relating the algebra and the lattice structure of L∞(X).

Lemma 7.14 Let T : L∞(X)→ L∞(X) be a bounded linear operator satisfy-
ing T1 = 1. Then the follwing assertions are equivalent.

(i) T is multiplicative.

(ii) T is a C∗-homomorphism.

(iii) T is a lattice homomorphism.

Proof. Obviously, (ii) implies (i). The equivalence of (ii) and (iii) can
be found in [EFHN15, Thm. 7.23]. There, the operator is assumed to be
conjugation-preserving but this assumption is superfluous since (ii) and (iii)
directly imply positivity of the operator and (i) implies that characteristic
functions are mapped to characteristic functions, hence (i) also implies pos-
itivity. The implication (i) =⇒ (ii) follows from [EFHN15, Thm. 4.13],
the analogous statement for spaces of continuous functions, by applying the
Gelfand-Naimark theorem [EFHN15, Thm. 4.23]. �

The following continuity property will be essential for the proof of Theo-
rem 7.12 on page 98.
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7 Markov semigroups of lattice operators and their generators

Lemma 7.15 Let B ⊂ L∞(X) be bounded. Then the multiplication

Lp(X)×B → Lp(X) ,

(f, g) 7→ fg

is ‖ · ‖p-continuous.

Proof. Let M be a bound for B. For f, u ∈ Lp(X), g, v ∈ B and c > 0

fg − uv = (f − u)g + u(g − v)

= (f − u)g + u1[|u|≤c](g − v) + u1[|u|>c](g − v)

and thus

lim sup
(f,g)→(u,v)

‖fg − uv‖p ≤ 2M
∥∥u1[|u|>c]

∥∥
p
→ 0 as c→∞ .

�

Next, we apply Lemma 7.15 to a strongly continuous semigroup satisfying the
assumptions in Theorem 7.12 on page 98.

Corollary 7.16 Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on Lp(X), 1 ≤ p <∞. In addition, suppose that L∞(X) is invariant
under (T (t))t≥0 and that the map t 7→ ‖T (t)‖L(L∞(X)) is locally bounded. Then,
for all f ∈ L∞(X) and all g ∈ Lp(X) the function

[0,∞)→ (t 7→ Lp(X)), t 7→ T (t)f · T (t)g

is continuous. Moreover, for f, g ∈ D(A)∩L∞(X) this function is differentiable
and satisfies the following product rule

d

dt
(T (t)f · T (t)g) = T (t)Af · T (t)g + T (t)f · T (t)Ag .

Proof. It suffices to prove the second part since the first is a consequence
of Lemma 7.15. Let f, g ∈ D(A) ∩ L∞(X) and t ≥ 0. Use Lemma 7.15 on
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7.1 Characterization of Markov lattice semigroups on Lp-spaces

page 100 and differentiate to obtain

d

dt
(T (t)f · T (t)g) = lim

h→0

1

h

(
[T (t+ h)f − T (t)f ]T (t)g

+ T (t+ h)f [T (t+ h)g − T (t)g]
)

= lim
h→0

1

h

(
[T (t+ h)f − T (t)f ]

)
T (t)g

+ lim
h→0

T (t+ h)f · lim
h→0

1

h
[T (t+ h)g − T (t)g]

=

(
d

dt
T (t)f

)
· T (t)g + T (t)f ·

(
d

dt
T (t)g

)
which proves the assertion. �

We are now able to prove Theorem 7.12 on page 98.

Proof (Proof of Theorem 7.12 on page 98.). The equivalence (i) ⇔
(ii) is proved almost exactly as in the case of bi-Markov operators, see [EFHN15,
Thm. 12.10].

To prove the implication (i) =⇒ (iii), first note that every operator T (t)
is positive. Since T (t)1 = 1 for each t ≥ 0, this already implies that the
semigroup preserves the subspace L∞(X) and the restriction of each T (t) to
L∞(X) is a contraction. In particular, it follows from Lemma 7.14 on page 99
that every operator T (t) is multiplicative on L∞(X). By Corollary 7.16 on
page 100, for every f, g ∈ D(A) ∩ L∞(X)

d

dt
T (t)(f · g) =

d

dt

(
T (t)f · T (t)g

)
= T (t)Af · T (t)g + T (t)f · T (t)Ag

= T (t) [Af · g + f · Ag] .

In particular, this shows f · g ∈ D(A) and A(f · g) = Af · g+ f ·Ag, hence it
proves that A is a derivation with 1 ∈ D(A).

We now prove that (iii) implies (i). Because of the local boundedness of
t 7→ ‖T (t)‖L(L∞(X)), there exists a constant C > 0 such that∥∥∥∥1

t

∫ t

0

T (s)f ds

∥∥∥∥
∞
≤ C‖f‖∞
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7 Markov semigroups of lattice operators and their generators

for 0 < t ≤ 1 and f ∈ L∞(X). This implies thatD := D(A)∩L∞(X) is a dense
subspace of Lp(X). We use this fact to show that each T (t) is multiplicative
on L∞(X). For fixed f, g ∈ D and t > 0 consider the mapping

s 7→ β(s) := T (t− s)[T (s)f · T (s)g]

on [0, t]. Since β(0) = T (t)(f · g) and β(t) = T (t)f · T (t)g, it suffices to
show that β is constant. To this end, consider the operator valued mappings
P,Q : [0, t] → L(Lp(X)) given by P (s) = T (t − s) and Q(s) = MT (s)f ◦ T (s),
where MT (s)f denotes the multiplication with the bounded function T (s)f . It
follows from Corollary 7.16 on page 100 that Q is strongly continuous and
that for each h ∈ D, s 7→ Q(s)h is differentiable with derivative

d

ds
Q(s)h = T (s)Af · T (s)h+ T (s)f · T (s)Ah = A

(
T (s)f · T (s)h

)
.

Here, the second equality follows from the fact that, by assumption, A is a
derivation and D is invariant under each T (t). In particular, D is invariant
under Q. Since P is also strongly continuous and s 7→ P (s)h is differentiable
for all h ∈ D, it follows from [EN00, Lem. B.16] that

β′(s) = −AT (t− s)[T (s)f · T (s)g] + T (t− s)A[T (s)f · T (s)g] = 0

for all s ∈ [0, t]. This shows that β is constant and thus that every T (t) is
multiplicative on D.

Since the multiplication with a fixed bounded function induces a bounded
operator on Lp(X) and D is ‖ · ‖p-dense in L∞(X), we can fix a function
g ∈ D and use a standard approximation argument to show that T (f · g) =
T (t)f · T (t)g for all f ∈ L∞(X) and g ∈ D. Fixing f ∈ L∞(X) and repeating
the argument shows that T (t)(f · g) = T (t)f · T (t)g for all f, g ∈ L∞(X),
so T (t) is multiplicative on all of L∞(X). Furthermore, A1 = 0 since A is a
derivation, hence T (t)1 = 1 for all t ≥ 0. Now Lemma 7.14 on page 99 yields
that every T (t) is a lattice homomorphism on L∞(X) and hence, by density
and continuity, also on Lp(X). �

Remark 7.17 Suppose that (iii) in Theorem 7.12 on page 98 is true without
assuming 1 ∈ D(A). Then, as in the proof above, it still follows that each T (t)
is multiplicative on L∞(X) and hence maps characteristic functions to charac-
teristic functions. From this, it follows that T (t)1 = 1 if T (t) is isometric. In
particular, then automatically 1 ∈ D(A) and A1 = 0.
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As a corollary of Theorem 7.12 on page 98, we also obtain the following char-
acterization of bi-Markov lattice semigroups.

Corollary 7.18 Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on Lp(X), 1 ≤ p <∞. Then the following assertions are equivalent.

(i) (T (t))t≥0 is a bi-Markov lattice semigroup.

(ii) For every t ≥ 0 there exists a measure algebra homomorphism θt : Σ(X)→
Σ(X) such that T (t)1M = 1θt(M) for all M ∈ Σ(X).

(iii) The space L∞(X) is invariant under (T (t))t≥0, the map t 7→ ‖T (t)‖L(L∞(X))

is locally bounded, A is a derivation on D(A) ∩ L∞(X) and A′1 = 0.

Proof. For the equivalence of (i) and (ii), the reader is again referred to
[EFHN15, Thm. 12.10]. For the equivalence of (i) and (iii), note that A′1 = 0
is equivalent to T (t)′1 = 1 for all t ≥ 0. Hence, (i) implies (iii) by Theo-
rem 7.12 on page 98. For the converse, note as as in Remark 7.17 on page 102
that from (iii) it follows that each T (t) maps characteristic functions to char-
acteristic functions. Since T (t)′1 = 1, it follows that 〈T (t)1,1〉 = 〈1,1〉 =
µ(X), and hence T (t)1 = 1 for each t ≥ 0. Therefore, (iii) implies (i) by
Theorem 7.12 on page 98. �

Now we discuss strongly continuous lattice semigroups on Lp(X) that are not
necessarily Markov. We show that their generator is a derivation perturbed
by a bounded multiplication operator. If f ∈ L∞(X) is an essentially bounded
function, Mf will denote its associated multiplication operator on Lp(X), p ∈
[1,∞].

Theorem 7.19 Let A be the generator of a strongly continuous semigroup
(S(t))t≥0 on Lp(X), 1 ≤ p <∞. Assume that 1 ∈ D(A) and q := A1 ∈ L∞(X).
Then the following assertions are equivalent.

(i) (S(t))t≥0 is a lattice semigroup.

(ii) The function q is real-valued and A = B+ q where B is the generator of
a Markov lattice C0-semigroup (T (t))t≥0 on Lp(X).

If (ii) holds, then

S(t)f = exp

(∫ t

0

T (s)q ds

)
· T (t)f (7.1)

for all t ≥ 0 and f ∈ Lp(X).
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7 Markov semigroups of lattice operators and their generators

Proof. To show the equivalence of (i) and (ii), we first recall from [EN00,
Thm. III.1.3] that B := A−q is a generator of a strongly continuous semigroup
(T (t))t≥0 on Lp(X) because B is a bounded perturbation of A. Since B1 = 0,
T (t)1 = 1 for all t ≥ 0. Now it follows from [Nag+86, Cor. C-II.5.8] (Kato’s
identity) that (S(t))t≥0 is a lattice semigroup if and only ifD(A) is a sublattice
of Lp(X) and

A|f | = Re(sign(f)Af)

for all f ∈ D(A). Since (i) implies that q is real-valued, A satisfies this
condition if and only if B does, which proves the equivalence of the assertions
(i) and (ii). Now assume that (ii) holds. Since each T (t) is multiplicative on

L∞(X) by Lemma 7.14 on page 99, T (t) exp(g) = T (t)
∑∞

n=0
gn

n!
= exp(T (t)g)

for each g ∈ L∞(X). Using this, one proves by induction that(
T (t)etMq

)n
= Mexp(t

∑n
j=1 T (jt)q)T (nt)

for each n ≥ 1. Replace t by t
n
and note that

n∑
j=1

t

n
T

(
jt

n

)
q
‖·‖p−−−→
n→∞

∫ t

0

T (s)q ds.

By Lemma 7.15 on page 100, one obtains the convergence

Mexp(
∑n
j=1

t
n
T( jtn )q) −−−→n→∞

Mexp(
∫ t
0 T (s)q ds)

of multiplication operators in the strong operator topology on L(Lp(X)). By
the Trotter product formula

S(t)f = lim
n→∞

[
T

(
t

n

)
exp

(
t

n
Mq

)]n
f = exp

(∫ t

0

T (s)q ds

)
· T (t)f

for all f ∈ Lp(X). �
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7.2 Markov lattice semigroups induced by
measurable maps on standard probability
spaces

As already noted, every Koopman semigroup on Lp(X), 1 ≤ p < ∞, is a
Markov lattice semigroup but the converse is, in general, not true. This is
due to the fact that mapping ϕ 7→ ϕ∗ is not injective, cf. [EFHN15, Exm.
6.7]. However, it is true if X is a standard probability space (cf. [EFHN15,
Def. 6.8]). For bi-Markov lattice homomorphisms, this is a classical theorem
by von Neumann, cf. [EFHN15, Thm. 7.20]. Below, we extend this theorem
to Markov lattice homomorphisms on Lp-spaces. We then relate this to results
from the previous section.

We omit the proof of the following theorem which is due to our co-author N.
Edeko and can be found in the joint article [EGK19, Thm. 2.1].

Theorem 7.20 Let X = (X,ΣX , µX) and Y = (Y,ΣY , µY ) be standard prob-
ability spaces and T : Lp(X) → Lp(Y), 1 ≤ p ≤ ∞, a Markov lattice ho-
momorphism (not necessarily bi-Markov). Then there is a measurable map
ϕ : Y → X such that T = Tϕ. If ϑ : Y → X is another such map, then ϕ = ϑ
µY -almost everywhere.

Using this result we are able to extend Theorem 7.12 on page 98 in the following
way.

Corollary 7.21 Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on Lp(X), 1 ≤ p <∞, where X = (X,Σ, µ) is a standard probability
space. Then the equivalent assertions (i), (ii) and (iii) of Theorem 7.12 on
page 98 are also equivalent to

(iv) There exists a family (ϕt)t≥0 of measurable maps on X such that ϕ−1
t

maps null sets onto null sets and T (t)f = f ◦ ϕt for all f ∈ Lp(X) and
t ≥ 0, i.e., (T (t))t≥0 is a Koopman semigroup.

Proof. If assertion (i) of Theorem 7.12 on page 98 holds, we obtain assertion
(iv) by Theorem 7.20 above. Conversely, if (iv) holds, then every T (t) is a
Markov lattice homomorphism, thus assertion (i) holds. �

As a corollary we obtain the following for bi-Markov lattice semigroups.
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7 Markov semigroups of lattice operators and their generators

Corollary 7.22 Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on Lp(X), 1 ≤ p <∞, where X = (X,Σ, µ) is a standard probability
space. Then the equivalent assertions (i), (ii) and (iii) of Corollary 7.18 on
page 103 are also equivalent to

(iv) There exists a family (ϕt)t≥0 of measure-preserving maps on X such that
T (t)f = f ◦ ϕt for all f ∈ Lp(X) and t ≥ 0.

Proof. Assume (i) of Corollary 7.18 on page 103. Then Corollary 7.21
on page 105 shows that there are measurable maps ϕt : X → X such that
T (t)f = f ◦ ϕt. Moreover, for M ∈ Σ

µ(ϕ−1
t (M)) = 〈1ϕ−1

t (M),1X〉 = 〈T (t)1M ,1X〉 = 〈1M ,1X〉 = µ(M)

because each T (t) is bi-Markov. Thus, each ϕt is measure-preserving. On the
other hand, (iv) implies (i) because every Koopman operator induced by a
measure-preserving map is bi-Markov. �

We have seen in Corollary 7.21 on page 105 that on a standard probabil-
ity space X = (X,Σ, µ) every strongly continuous Markov lattice semigroup
(T (t))t≥0 on L1(X) is induced by a family (ϕt)t≥0 of measurable maps on X
such that each ϕ−1

t maps null sets into null sets. Since (T (t))t≥0 is a semigroup,
one has ϕ0 = idX and ϕs ◦ ϕt = ϕs+t almost everywhere, using the uniqueness
in Theorem 7.20 on page 105. Note, however, that it can, in general, not be
made into a semiflow (cf. Definition 8.1 on page 109 below) since the identity
ϕt ◦ ϕs = ϕt+s might only be true outside of null-sets which depend on s and
t.

We use Corollary 7.21 on page 105 to characterize lattice semigroups in the
following way.

Corollary 7.23 Let A be the generator of a C0-semigroup (S(t))t≥0 on a
space Lp(X), where X is a standard probability space and 1 ≤ p < ∞, such
that 1 ∈ D(A) and q := A1 ∈ L∞(X). Then (S(t))t≥0 is a lattice semigroup if
and only if q ∈ L∞(X;R) and there exists a family (ϕt)t≥0 of measurable maps
on X corresponding to a strongly continuous Koopman semigroup on Lp(X)
such that

S(t)f = exp

(∫ t

0

q ◦ ϕs ds

)
· (f ◦ ϕt) (7.2)

for all f ∈ Lp(X) and t ≥ 0.
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Proof. If (S(t))t≥0 is a lattice semigroup, it follows from Theorem 7.19 on
page 103 that there exists a Markov lattice semigroup (T (t))t≥0 on Lp(X) with
generator (A−q,D(A)) such that (7.1) holds. The representation (7.2) hence
follows from Corollary 7.21 on page 105. Conversely, every semigroup of the
form (7.2) with real-valued q is a lattice semigroup. �

The next lemma shows that for groups, the boundedness assumption in The-
orem 7.12 on page 98 (iii) is superfluous. This allows us to recover [tEL15,
Thm. 1.1] as Corollary 7.25. We omit the proof for Lemma 7.24 which again
is due to N. Edeko and can be found in [EGK19, Lem. 2.5].

Lemma 7.24 Let X be a finite measure space and (T (t))t>0 be a semigroup
on L∞(X), strongly continuous with respect to ‖ · ‖p where 1 ≤ p <∞. Then
the mapping t 7→ ‖T (t)‖L(L∞(X)) is locally bounded.

Corollary 7.25 [tEL15, Thm. 1.1] Let A be the generator of a unitary C0-
group (T (t))t∈R on L2(X) where X = (X,Σ, µ) is a standard probability space.
Then the following assertions are equivalent.

(i) For every t ∈ R there exists an essentially invertible measurable and
measure-preserving map ϕt : X → X such that T (t)f = f ◦ ϕt for all
f ∈ L2(X).

(ii) The space L∞(X) is invariant under (T (t))t≥0 and A is a derivation on
D(A) ∩ L∞(X).

Proof. The implication (i) =⇒ (ii) is a consequence of Corollary 7.18
on page 103. In order to prove the converse implication, we observe that it
follows from Lemma 7.24 and Remark 7.17 on page 102 that A and (T (t))t≥0

as well as −A and (T (−t))t≥0 fulfill condition (iii) in Theorem 7.12 on page 98.
Corollary 7.21 on page 105 therefore shows that T (t) = Tϕt for measurable
maps ϕt : X → X and t ≥ 0. The essential invertibility of the maps ϕt follows
from [EFHN15, Prop. 7.12] and [EFHN15, Cor. 7.21]. Also, since each T (t) is
unitary and a Markov operator, one shows as in Corollary 7.22 on page 106
that each ϕt is measure-preserving. �

107





8 Topological model

In this chapter we show that every measurable and measure-preserving semi-
flow on a standard probability space is isomorphic to a continuous semiflow
(cf. Definition 3.1 on page 19) on a compact space. More precisely, we show
that a strongly continuous Markov lattice semigroup is always similar to a
Koopman semigroup in the following way. We construct a compact space K
and a Borel measure ν such that L1(X,Σ, µ) is isometrically Banach lattice
isomorphic to L1(K, ν) and, via this isomorphism, the semigroup (T (t))t≥0 is
similar to a semigroup of Koopman operators on L1(K, ν) induced by a contin-
uous semiflow (ϕt)t≥0 on K. Furthermore, in case that the space L1(X,Σ, µ)
is separable, we show that K can be chosen to be metrizable. Similar results
have been already obtained for strongly continuous representations of locally
compact groups on Lp(X) as bi-Markov embeddings, see [dJR17, Thm. 5.14].

We define the terms measurable and measure preserving semiflow as follows.

Definition 8.1 A family (ϕt)t≥0 of measurable self-mappings on a finite mea-
sure space X = (X,Σ, µ) is called semiflow if ϕ0 = idX , ϕt+s = ϕt ◦ ϕs for all
t, s ≥ 0 µ-almost everywhere. It is called measurable semiflow if the mapping

ϕ : [0,∞)×X → X ,

(t, x) 7→ ϕt(x)

is measurable.

A measurable semifow is called measure-preserving if ϕt is measure-preserving
for all t ≥ 0.

Remark 8.2 A measure preserving semiflow induces a Koopman semigroup
(cf. Definition 7.6 on page 97) on each Lp(X), 1 ≤ p <∞.

Example 8.3 Here, we give an example for a measurable semiflow that pre-
serves null sets, but the induced Koopman semigroup is not strongly continuous
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8 Topological model

on L1(X). Consider the measure space

X := ({0, 1},P({0, 1}), 1

2
(δ0 + δ1))

with
ϕ0 = id{0,1} and ϕt ≡ 0 for all t > 0 .

Then (ϕt)t≥0 forms a measurable semiflow. The only µ := 1
2
(δ0 + δ1)-null set

is ∅ and clearly µ(ϕ−1
t (∅)) = µ(∅) = 0 for all t ≥ 0.

The semiflow is not measure preserving since

µ(ϕ−1
t ({0})) = µ({0, 1}) = 1 , for all t > 0, but µ({0}) =

1

2
.

Now for f ∈ L1(X), f ≥ 0, with f(0) 6= f(1) and t > 0 we obtain

‖T (t)f − f‖1 =

∫
|T (t)f − f |dµ

=
1

2
(|f(ϕt(0))− f(0)|+ |f(ϕt(1))− f(1)|)

=
1

2
(f(0)− f(1)) 6= 0 .

Hence, the induced Koopman semigroup is not strongly continuous on L1(X).

Remark 8.4 If (ϕt)t≥0 is measure preserving, then the associated Koopman
semigroup is in fact strongly continuous on L1(X). This result can be found
even for measure preserving semiflows on σ-finite measure spaces in [Kre11,
Chapt. 1, Thm. 6.13].

We now show that for measurable semiflows inducing a Koopman semigroup,
one can construct a continuous semiflow on a compact metric space with a
Borel probability measure such that the two semiflows are isomorphic in the
sense of below Definition 8.5. This will be done by proving that every strongly
continuous Markov lattice semigroup is similar to a Koopman semigroup in-
duced by a continuous semiflow. We call a continuous semiflow (resp. Koop-
man semigroup) topological model for a measurable semiflow (resp. Markov
lattice semigroup) if they are isomorphic (Markov similar). See also [EFHN15,
Sect. 12.3] for this terminology and similar results in the time-discrete case.
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Definition 8.5 Let X = (X,Σ, µ) and Y = (Y,Σ′, µ′) be finite measure
spaces. We say that two measurable semiflows (ϕt)t≥0 and (ψt)t≥0 on X and Y
are isomorphic if there is a measure-preserving and essentially invertible map
ρ : X → Y 1such that

ψt ◦ ρ = ρ ◦ ϕt almost everywhere for all t ≥ 0 .

We say that two Markov lattice semigroups (T (t))t≥0 and (S(t))t≥0 on L1(X)
and L1(Y) are Markov similar if there is an invertible bi-Markov lattice ho-
momorphism Φ: L1(X)→ L1(Y) such that

S(t) ◦ Φ = Φ ◦ T (t) for each t ≥ 0 .

These notions are defined for flows and operator groups analogously.

The idea of the proof of the following result was kindly provided to us by
Markus Haase. An analogous result was recently proved for bi-Markov lattice
embedding representations of locally compact groups by de Jeu and Rozen-
daal, see [dJR17, Thm. 5.14]. For simplicity, we restrict ourselves to the case
p = 1.

We call a measure space X = (X,Σ, µ) separable if Lp(X) is separable for one
(and hence all) p ∈ [1,∞). Sometimes we distinguish between a measurable
function f : X → C and its equivalence class with respect to a measure µ on
X by writing [f ]µ for the equivalence class of f .

Theorem 8.6 (Topological Model) Let A be the generator of a strongly
continuous Markov lattice semigroup (T (t))t≥0 on L1(X), where X = (X,Σ, µ)
is a finite measure space. Then there exist a compact space K, a continuous
semiflow (ψt)t≥0 on K and a strictly positive Borel probability measure ν such
that the semiflow (ψt)t≥0 induces a Koopman-semigroup on L1(K, ν) which
is Markov similar to the semigroup (T (t))t≥0 on L1(X). The measure ν is
(ψt)t≥0-invariant if and only if (T (t))t≥0 is a bi-Markov lattice semigroup.

Proof. Consider A := {f ∈ L∞(X): s 7→ T (s)f is ‖ · ‖∞-continuous}. Since
each operator T (t) is contractive on L∞(X) and multiplicative by Lemma 7.14
on page 99, A is an algebra and clearly 1 ∈ A. Furthermore, A is closed with
respect to ‖ · ‖∞ and closed under conjugation. Therefore, A is a commutative
C∗-algebra invariant under (T (t))t≥0.
1Let X = (X,Σ, µ) and Y = (Y,Σ′, µ′) be finite measure spaces. A measure preserving map
ρ : X → Y is called essentially invertible if there exists a measurable map θ : Y → X
such that θ ◦ ρ = idX µ-a.e. and ρ ◦ θ = idY µ′-a.e.
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8 Topological model

We show thatA is dense in L1(X). The strong continuity of (T (t))t≥0 on L1(X)

implies that ‖ · ‖1-limt↘0
1
t

∫ t
0
T (r)f dr = f for each f ∈ L∞(X). Therefore, it

suffices to show that
∫ t

0
T (r)f dr ∈ A for f ∈ L∞(X). For all 0 ≤ s ≤ t and

f ∈ L∞(X)∣∣∣∣T (s)

∫ t

0

T (r)f dr −
∫ t

0

T (r)f dr

∣∣∣∣ =

∣∣∣∣∫ t

0

T (s+ r)f dr −
∫ t

0

T (r)f dr

∣∣∣∣
=

∣∣∣∣∫ t+s

s

T (r)f dr −
∫ t

0

T (r)f dr

∣∣∣∣
≤
∣∣∣∣∫ t+s

t

T (r)f dr

∣∣∣∣+

∣∣∣∣∣
∫ s

0

T (r)f dr

∣∣∣∣∣
≤ 2s‖f‖∞1

since each T (t) is ‖ · ‖∞-contractive. This shows that s 7→ T (s)
∫ t

0
T (r)f dr is

continuous at zero and hence on [0,∞) with respect to ‖ · ‖∞. Therefore, A
is dense in L1(X).

By a combination of the Gelfand-Naimark theorem and the Riesz representa-
tion theorem as in [EFHN15, Sect. 12.3] or [dJR17, Thm. 5.14] one obtains
a compact space K, a ∗-isomorphism Φ: A → C(K) with Φ1 = 1, a unique
probability measure ν on K such that∫

X

Φ−1g dµ =

∫
K

g dν

for all g ∈ C(K) and a semiflow semiflow (ψt)t≥0 on K such that T (t)|A =
Φ−1 ◦Tψt ◦Φ. By [EFHN15, Thm. 4.17], the semiflow ψ is continuous, cf. also
[Nag+86, Thm. B-II.3.4].

Moreover, Φ extends to a bi-Markov lattice homomorphism Φ: L1(X) →
L1(K, ν). Let (S(t))t≥0 denote the semigroup (T (t))t≥0 induces on L1(K, ν)
via Φ. Then

S(t)[f ]ν = [f ◦ ψt]ν (8.1)

for all continuous functions f ∈ C(K). By a standard approximation argu-
ment, this holds for all bounded, Baire-measurable functions, cf. [EFHN15,
Thm. E.1]. Via monotone approximation, (8.1) extends to all positive inte-
grable functions and is hence valid for all [f ]ν ∈ L1(K, ν). Finally, (T (t))t≥0
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is bi-Markov if and only if (S(t))t≥0 is, i.e.,∫
K

f dν =

∫
K

S(t)f dν =

∫
K

f ◦ ψt dν

for all f ∈ L1(K, ν). This holds if and only if (ψt)t≥0 preserves ν. �

Proposition 8.7 If, in the situation of Theorem 8.6 on page 111, the measure
space is separable, then the compact space K can be chosen to be metrizable.

Proof. Let A be the algebra

A := {f ∈ L∞(X): s 7→ T (s)f is ‖ · ‖∞-continuous}

from the proof of Theorem 8.6 on page 111. Since L1(X) is separable and A
is dense in the former, there is a countable dense subset D0 of A. We set

D := {T (t)f : f ∈ D0, t ∈ Q+} ⊂ A

and denote by A0 the C∗-subalgebra of A generated by D. The algebra A0

is then separable, dense in L1(X) and since A0 ⊂ A, T (t)A0 ⊂ A0 for not
only t ∈ Q+ but t ∈ R+. To complete the proof, one can now proceed as in
the proof of Theorem 8.6 on page 111 with A replaced by A0, obtaining a
compact representation space which is metrizable because C(K) is separable.

�

Remark 8.8 With slight notational adjustments, the proofs of the previous
two results also work for Markov lattice groups and continuous flows.

Corollary 8.9 Let X = (X,Σ, µ) be a standard probability space and (ϕt)t∈R
a measurable and measure-preserving flow on X. Then there are a compact
metric space K, a continuous flow (ψt)t∈R on K and a strictly positive (ψt)t∈R-
invariant Borel probability measure ν onK so that the flows (ϕt)t∈R and (ψt)t∈R
are isomorphic.

Proof. By Remark 8.4 on page 110 and Theorem 7.12 on page 98, the flow
(ϕt)t∈R induces a bi-Markov group on L1(X) that is strongly continuous and so
Remark 8.8 shows that there are a compact metric space K, a continuous flow
(ψt)t∈R and a strictly positive (ψt)t∈R-invariant probability measure ν on K
such that the groups (T (t))t∈R and (S(t))t∈R induced by the flows (ϕt)t∈R and
(ψt)t∈R are Markov similar via an invertible bi-Markov lattice homomorphism
Φ. Applying von Neumann’s theorem shows that there is a measurable and
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8 Topological model

measure-preserving map ρ : Y → X such that Φ = Tρ and ρ is essentially
invertible because Φ is invertible, see [EFHN15, Cor. 7.21]. The identity
Φ ◦ T (t) = S(t) ◦ Φ now shows that ϕt ◦ ρ = ρ ◦ ψt ν-almost everywhere, see
[EFHN15, Prop. 7.19]. �

Remark 8.10 Corollary 8.9 on page 113 is similar to [AK42, Thm. 5] but
there are two important differences: On the one hand, the authors of [AK42]
work with a slightly stronger notion of isomorphism of flows. On the other
hand, the models considered in [AK42] need not be compact.
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