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Abstract
The problem of designing controllers to regulate dynamical systems has been studied
by engineers during the past millennia. Ever since, suboptimal performance lingers
in many closed loops as an unavoidable side effect of manually tuning the parameters
of the controllers. Nowadays, industrial settings remain skeptic about data-driven
methods that allow one to automatically learn controller parameters. In the con-
text of robotics, machine learning (ML) keeps growing its influence on increasing
autonomy and adaptability, for example to aid automating controller tuning. How-
ever, data-hungry ML methods, such as standard reinforcement learning, require
a large number of experimental samples, prohibitive in robotics, as hardware can
deteriorate and break. This brings about the following question:

Can manual controller tuning, in robotics, be automated by using data-
efficient machine learning techniques?

In this thesis, we tackle the question above by exploring Bayesian optimization
(BO), a data-efficient ML framework, to buffer the human effort and side effects
of manual controller tuning, while retaining a low number of experimental samples.
We focus this work in the context of robotic systems, providing thorough theoretical
results that aim to increase data-efficiency, as well as demonstrations in real robots.
Specifically, we present four main contributions.

We first consider using BO to replace manual tuning in robotic platforms. To this
end, we parametrize the design weights of a linear quadratic regulator (LQR) and
learn its parameters using an information-efficient BO algorithm. Such algorithm
uses Gaussian processes (GPs) to model the unknown performance objective. The
GP model is used by BO to suggest controller parameters that are expected to
increment the information about the optimal parameters, measured as a gain in
entropy. The resulting “automatic LQR tuning” framework is demonstrated on two
robotic platforms: A robot arm balancing an inverted pole and a humanoid robot
performing a squatting task. In both cases, an existing controller is automatically
improved in a handful of experiments without human intervention.

BO compensates for data scarcity by means of the GP, which is a probabilistic
model that encodes prior assumptions about the unkown performance objective.
Usually, incorrect or non-informed assumptions have negative consequences, such as
higher number of robot experiments, poor tuning performance or reduced sample-
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efficiency. The second to fourth contributions presented herein attempt to alleviate
this issue.

The second contribution proposes to include the robot simulator into the learn-
ing loop as an additional information source for automatic controller tuning. While
doing a real robot experiment generally entails high associated costs (e.g., require
preparation and take time), simulations are cheaper to obtain (e.g., they can be
computed faster). However, because the simulator is an imperfect model of the
robot, its information is biased and could have negative repercussions in the learn-
ing performance. To address this problem, we propose “simu-vs-real”, a principled
multi-fidelity BO algorithm that trades off cheap, but inaccurate information from
simulations with expensive and accurate physical experiments in a cost-effective
manner. The resulting algorithm is demonstrated on a cart-pole system, where sim-
ulations and real experiments are alternated, thus sparing many real evaluations.

The third contribution explores how to adequate the expressiveness of the proba-
bilistic prior to the control problem at hand. To this end, the mathematical structure
of LQR controllers is leveraged and embedded into the GP, by means of the kernel
function. Specifically, we propose two different “LQR kernel” designs that retain
the flexibility of Bayesian nonparametric learning. Simulated results indicate that
the LQR kernel yields superior performance than non-informed kernel choices when
used for controller learning with BO.

Finally, the fourth contribution specifically addresses the problem of handling
controller failures, which are typically unavoidable in practice while learning from
data, specially if non-conservative solutions are expected. Although controller fail-
ures are generally problematic (e.g., the robot has to be emergency-stopped), they
are also a rich information source about what should be avoided. We propose
“failures-aware excursion search”, a novel algorithm for Bayesian optimization under
black-box constraints, where failures are limited in number. Our results in numerical
benchmarks indicate that by allowing a confined number of failures, better optima
are revealed as compared with state-of-the-art methods.

The first contribution of this thesis, “automatic LQR tuning”, lies among the first
on applying BO to real robots. While it demonstrated automatic controller learning
from few experimental samples, it also revealed several important challenges, such
as the need of higher sample-efficiency, which opened relevant research directions
that we addressed through several methodological contributions. Summarizing, we
proposed “simu-vs-real”, a novel BO algorithm that includes the simulator as an ad-
ditional information source, an “LQR kernel” design that learns faster than standard
choices and “failures-aware excursion search”, a new BO algorithm for constrained
black-box optimization problems, where the number of failures is limited.



Zusammenfassung
Das Problem des Reglerentwurfs für dynamische Systeme wurde von Ingenieuren in
den letzten Jahrtausenden untersucht. Seit diesen Tagen ist suboptimales Verhalten
ein unvermeidlicher Nebeneffekt der manuellen Einstellung von Reglerparametern.
Heutzutage steht man in industriellen Anwendungen datengestriebenen Methoden,
die das automatische Lernen von Reglerparametern ermöglichen, nach wie vor skep-
tisch gegenüber. Im Bereich der Robotik gewinnt das maschinelle Lernen (ML)
immer mehr an Einfluss und ermöglicht einen erhöhten Grad der Autonomie und
Anpassungsfähigkeit, z.B. indem es dabei unterstützt, den Prozess der Reglerein-
stellung zu automatisieren. Datenintensive Methoden, wie z.B. Methoden des Re-
inforcement Learning, erfordern jedoch eine große Anzahl experimenteller Versuche,
was in der Robotik nicht möglich ist, da die Hardware sich abnutzt und kaputt
gehen kann. Das wirft folgende Frage auf:

Kann die manuelle Reglereinstellung in der Robotik durch den Einsatz
dateneffizienter Techniken des maschinellen Lernens ersetzt werden?

In dieser Arbeit gehen wir die obige Frage an, indem wir den Einsatz von Bayes’scher
Optimierung (BO), ein dateneffizientes ML-Framework, als Ersatz für manuelles
Einstellen unter Beibehaltung einer geringen Anzahl von experimentellen Versuchen
untersuchen. Der Fokus dieser Arbeit liegt auf Robotersystemen. Dabei präsentieren
wir Demonstrationen mit realen Robotern, sowie fundierte theoretische Ergebnisse
zur Steigerung der Dateneffizienz. Im Einzelnen stellen wir vier Hauptbeiträge vor.

Zunächst betrachten wir die Verwendung von BO als Ersatz für das manuelle
Einstellen auf einer Roboterplattform. Zu diesem Zweck parametrisieren wir die
Einstellgewichtungen eines linear-quadratischen Reglers (LQR) und lernen diese
Parameter mit einem informationseffizienten BO-Algorithmus. Dieser Algorithmus
nutzt Gauß-Prozesse (GPs), um das unbekannte Zielfunktion zu modellieren. Das
GP-Modell wird vom BO-Algorithmus genutzt, um Reglerparameter vorzuschlagen
von denen erwartet wird, dass sie die Informationen über die optimalen Parameter
erhöhen, gemessen als eine Zunahme der Entropie. Das resultierende Framework
zur automatischen LQR-Einstellung wird auf zwei Roboterplattformen demonstri-
ert: Ein Robterarm, der einen umgekehrten Stab ausbalanciert und ein humanoider
Roboter, der Kniebeugen ausführt. In beiden Fällen wird ein vorhandener Regler
in einer handvoll Experimenten automatisch verbessert, ohne dass ein Mensch ein-
greifen muss.
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BO kompensiert Datenknappheit durch den GP, ein probabilistisches Modell, das
a priori Annahmen über das unbekannte Zielfunktion enthält. Normalerweise haben
falsche oder uninformierte Annahmen negative Folgen, wie z.B. eine höhere Anzahl
von Roboterexperimenten, ein schlechteres Reglerverhalten oder eine verringerte
Dateneffizienz. Die hier vorgestellten Beiträge Zwei bis Vier beschäftigen sich mit
diesem Problem.

Der zweite Beitrag schlägt vor, den Robotersimulator als zusätzliche Information-
squelle für die automatische Reglereinstellung in die Lernschleife miteinzubeziehen.
Während reale Roboterexperimente im Allgemeinen hohe Kosten mit sich bringen,
sind Simulationen günstiger (sie können z.B. schneller berechnet werden). Da der
Simulator aber ein unvollkommenes Modell des Roboters ist, sind seine Informatio-
nen einseitig verfälscht und können negative Auswirkungen auf das Lernverhalten
haben. Um dieses Problem anzugehen, schlagen wir “sim-vs-real” vor, einen auf
grundlegenden Prinzipien beruhenden BO-Algorithmus, der Daten aus Simulatio-
nen und Experimenten nutzt. Der Algorithmus wägt dabei die günstigen, aber un-
genauen Informationen des Simulators gegen die teuren und exakten physikalischen
Experimente in einer kostengünstigen Weise ab. Der daraus resultierende Algorith-
mus wird an einem inversen Pendels auf einem Wagen demonstriert, bei dem sich
Simulationen und reale Experimente abwechseln, wodurch viele reale Experimente
eingespart werden.

Der dritte Beitrag untersucht, wie die Aussagekraft der probabilistischen An-
nahmen des vorliegenden Regelungsproblem adäquat behandelt werden kann. Zu
diesem Zweck wird die mathematische Struktur des LQR-Reglers genutzt und durch
die Kernel-Funktion in den GP eingebaut. Insbesondere schlagen wir zwei ver-
schiedene “LQR-Kernel”-Entwürfe vor, die die Flexibilität des Bayes’schen, nicht-
parametrischen Lernens beibehalten. Simulierte Ergebnisse deuten darauf hin, dass
die LQR-Kernel bessere Ergebnisse erzielen als uninformierte Kernel, wenn sie zum
Lernen von Reglern mit BO verwendet werden.

Der vierte Beitrag schließlich befasst sich speziell mit dem Problem, wie ein
Versagen des Reglers behandelt werden soll. Fehlschläge von Reglern sind beim
Lernen aus Daten typischerweise unvermeidbar, insbesondere wenn nichtkonserva-
tive Lösungen erwartet werden. Obwohl ein Versagen des Reglers im Allgemeinen
problematisch ist (z.B. muss der Roboter mit einem Not-Aus angehalten werden), ist
es gleichzeitig eine reichhaltige Informationsquelle darüber, was vermieden werden
sollte. Wir schlagen “failures-aware excursion search” vor, einen neuen Algorithmus
für Bayes’sche Optimierung mit unbekannten Beschränkungen, bei dem die Anzahl
an Fehlern begrenzt ist. Unsere Ergebnisse in numerischen Vergleichsstudien deuten
darauf hin, dass, verglichen mit dem aktuellen Stand der Technik, durch das Zu-



lassen einer begrenzten Anzahl von Fehlschlägen bessere Optima aufgedeckt werden.
Der erste Beitrag dieser Dissertation ist unter den ersten die BO an realen

Robotern anwenden. Diese Arbeit diente dazu, mehrere Probleme zu identifizieren,
wie zum Beispiel den Bedarf nach einer höheren Dateneffizienz, was mehrere neue
Forschungsrichtungen aufzeigte, die wir durch verschiedene methodische Beiträge
addressiert haben. Zusammengefasst haben wir “sim-vs-real”, einen neuen BO-
Algorithmus der den Simulator as zusätzliche Informationsquelle miteinbezieht, einen
“LQR-Kernel”-Entwurf, der schneller lernt als Standardkernel und “failures-aware
excursion search”, einen neuen BO-Algorithmus für beschränkte Black-Box-Optimie-
rungsprobleme, bei denen die Anzahl der Fehler begrenzt ist, vorgeschlagen.
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Chapter 1

Introduction

Despite the current inertia toward the era of automation, controller parameters
of closed-loop dynamical systems are still tuned manually. This is a tedious and
laborious task, which usually requires human effort and entails associated costs.
Machine learning has potential to alleviate the need of manual controller tuning.
However, many challenges arise when executing this idea in practice.

This introductory chapter discusses those challenges and proposes several ways to
overcome them. It is structured as follows. First, in Sec. 1.1, we motivate the need
of automatic controller tuning frameworks in the industrial setting. Barriers and
challenges that complicate the deployment of automatic controller tuning in robotic
platforms are presented in Sec. 1.2. The problem setting, which poses Bayesian
optimization as an approach to automate controller tuning, is discussed in Sec. 1.3.
Then, in Sec. 1.4, we enumerate the four main contributions of this thesis and
outline its structure. Finally, in Sec. 1.5, we discuss existing work in the context of
the aforementioned contributions.

1.1 Motivation
Designing controllers to stabilize real systems has been studied by engineers for more
than 2000 years (Bennett, 1996). In the 18th century, mostly during the industrial
revolution, a prolific period of developments in control theory took place. Therein,
many analog controllers (back then named “governors”) were implemented in ma-
chinery, such as wind and water mills to control their speed. In 1868, J. C. Maxwell
described several governor mechanisms using linear differential equations, and pro-
posed conditions to determine their stability (Maxwell, 1868). After 1930, the first
PID controller, which was proposed to automate the steering system of U.S. Navy
ships (Minorsky, 1922), started gaining popularity. However, its applicability was

1
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limited by the lack of amplification devices, needed to amplify the low power sig-
nals obtained from measuring instruments (Bennett, 1984). Further developments
in long-distance telephony fostered the creation of signal amplifiers. Then, since
1970, analog controllers started to be replaced by computer-based micro controllers
(Ender, 1993). They extended the applicability of control loops to many devices,
which allowed for more precise controllers in many industrial sectors, such as petro-
chemical and paper plants. In the 90’s, the PID-type controllers constituted 90% of
the controllers used in the industry (Jelali, 2006). Nowadays, they remain present in
an uncountable set of applications, such as production lines, large scale construction
machinery (e.g., cranes, excavators), power plants, water supply networks and air-
crafts. In addition, modern control theory (Ogata and Yang, 2010) keeps studying
techniques to “close the loop” in dynamical systems, which has allowed the control
of sophisticated machinery, like walking robots (Winkler et al., 2017).

Despite the disruptive technological progress entailed by advances in controller
design, many control loops implemented today in the industry exhibit poor per-
formance. Specifically, from thirty to fifteen years ago, controller performance has
been reported to decay over time because the initially tuned parameters are never
re-tuned, hence performing worse as the properties of the plant change over time
(e.g., due to hardware wearing off) (Jelali, 2006). To mitigate this, robust con-
trol (Zhou et al., 1996) is known for keeping closed-loop stability in the presence
of small variations in the dynamics of the plant, at the expense of performance.
However, finding good robust controllers also requires manual tuning. Additionally,
technicians are usually instructed by the company management to tune controllers
until they are “good enough”, rather than worrying about reaching optimality (En-
der, 1993). These facts heavily contribute to poor plant performance overall and
additional costs in the long term.

There exists an important reason for which manual tuning in the industry leads
to poor performance: Manually “tweaking” controller parameters is time-consuming,
which incurs in high associated costs. However, companies see them as unavoidable
fixed costs (Ender, 1993). In general, manual tuning does not only lead to poor
performance, but it is also a laborious task, solely based on a trial-and-error process,
mainly driven by the engineer’s intuition, rather than expertise. It generally entails
a waste of valuable assets, such as engineering skills, which implies associated costs.
This becomes specially relevant when designing controllers for highly sophisticated
dynamical systems, like industrial robots. Therefore, methodologies that enable to
switch from “manual” to “automatic” tuning are desirable to mitigate manufacturing
costs.

In the research community, machine learning (ML) has been used during the
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past decades to increase autonomy and adaptability to new environments. Ap-
plications are extensive and range from personalized online recommender systems
(Vanchinathan, 2015) to learning control policies in underwater robotics (El-Fakdi
and Carreras, 2013). In particular, robot learning and learning control are two
emerging areas that aim at the same goal: Increasing adaptability in controlled dy-
namical systems. For example, Schaal and Atkeson (2010) review early work that
used model-free reinforcement learning (RL) algorithms on real robots: A walking
quadruped and a robot arm swinging up an inverted pendulum. Later on, (Mülling
et al., 2013) leveraged RL to learn cooperative table tennis from physical interaction
with a human and generalize to new situations. In recent work, deep RL is used
for learning legged locomotion policies, represented as neural networks, on a real
quadruped with little human intervention (Ha et al., 2020).

Generally speaking, ML has potential to help mitigate the efforts associated with
manual tuning. However, this raises additional challenges, which are discussed next.

1.2 Challenges
Automatic controller tuning with minimal or no human supervision is a complicated
problem (Jelali, 2006). In a nutshell, it requires dispensing with the human judgment
out of the manual tuning loop, and completely leaving the tuning process to an
algorithm. This raises many concerns, such as safety considerations, need of resilient
programs with appropriate user interfaces, renovated engineering skills to handle
them, reliability, and noticeable improvement upon manual tuning.

Although machine learning (ML) methods seem appealing for automating the
manual tuning process, deploying resilient and reliable learning algorithms that can
function without any human supervision is quite challenging. First, the algorithm
must be resilient to alterations in the tuning process. For example, the communi-
cation between the ML algorithm and the machine could break due to unforeseen
signal values, or unmodeled disturbances. Second, the algorithm must deliver a
good performing controller in a reduced number of iterations; otherwise, manual
tuning would still be preferred. Third, the controller parameters to be learned de-
pend on the specific controller structure we decide to use. Finding a parametrization
expressive enough, yet keeping low dimensionality, is difficult.

Furthermore, for automating controller tuning we need data-efficient approaches.
The main reason is that we need to conduct experiments on the real system, as
these will give the ultimate high-fidelity performance measure that the learning
algorithm needs to steer the search toward the optimal parameters. Hence, classical
reinforcement learning (RL) and neural network-based methods are usually too data-
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hungry to be deployed in real systems, as many robot experiments would need to be
collected. This could cause the robot to deteriorate faster and to break more often,
which carries high associated costs. Because of this, an open research question is
how to leverage scarce experimental data as much as possible in order to make better
informed decisions about how to steer the search toward the optimal parameters. In
other words, deploying sample-efficient algorithms when learning robot controllers
is important to mitigate the number of real experiments.

There exist several possibilities to spare experiments in the real system. For
example, realizing simulations using a robot model to acquire rough understanding
of the behavior of the controllers. However, combining the simulated data with the
real data during the learning process is not straightforward. Another possibility
is to inform the learning algorithms with more principled probabilistic models that
leverage directly the mathematical structure of the controller problem. Nonetheless,
embedding the controller structure into the construction of the probabilistic prior is
challenging. Finally, one could attempt to mitigate controller failures while learning,
as these can delay the search. Yet, optimizing controller parameters while being
constrained to avoid failures also requires investigation.

In the following section, we propose a ML framework that has potential to solve
the aforementioned issues.

1.3 Problem statement
A promising framework emerging as a possible solution to the challenges stated in
Sec. 1.1 and 1.2 is Bayesian optimization (BO), an area of increasing interest in
the ML community. BO comprises a collection of strategies that aim at finding
the minimum of an unknown objective, when queries of the objective are limited
or scarce. Because BO automatically steers the search toward the optimum, and
it respects the lack of abundant data, it can do both, serve as a replacement for
manual tuning while retaining sample efficiency.

BO perfectly exemplifies the no-free-lunch theorem (Wolpert and Macready,
1997): because it attempts to find the optimal controller with scarce data, it also
needs to be supported on prior assumptions. Specifically, BO assumes the perfor-
mance objective to be expressed with a Bayesian model. Such a model carries a
probabilistic prior that expresses our knowledge about the objective in probabilistic
terms. If the Bayesian model carries perfect assumptions about the shape of the
objective, theoretical guarantees of convergence to the global optimum can be pro-
vided. In other words, we are guaranteed to find the optimal controller parameters.

BO is a theoretically founded framework, with promising properties for learning
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on real systems. However, questioning whether it is deployable and actually useful
on real systems opens up a variety of research directions, which we discuss next.

First, we wonder whether it is possible to automate controller tuning of robots
using BO. As an entry-level problem, we propose to automatically improve an ex-
isting controller that performs poorly. To this end, we need to accommodate the
trial-and-error process on the real robot to the learning loop that BO proposes.
Specifically, we need to (i) deploy a robust communication framework between BO
and the robot, (ii) propose a performance criterion to quantify the quality of each
tried controller parameters, and (iii) ensure that the learned optimal controller im-
proves upon the initial one. We dedicate Chap. 3 to address this problem.

When using BO to automatically tune robot controllers, the objective perfor-
mance is modeled using a Gaussian process (GP), which is a Bayesian model used
to aid the optimization. However, prior to any data collection, the shape of the
objective function is unknown and thus, we cannot be certain about what would
be the best probabilistic prior to construct our GP. Having a poorly chosen prior
can lead to poor learning performance. Thus, another interesting question is how
to use informed priors to better leverage the acquired experimental data to be more
sample-efficient.

Thereby, one way to increase sample-efficiency when using BO to learn robot con-
trollers is to aid the controller learning using a dynamics model, e.g., running robot
simulations inside a computer. Because simulations are faster than real experiments,
they can be seen as a cheap source of information. Realizing many simulations can
help to reduce the number of real experiments, thus increasing sample-efficiency.
However, because the dynamics model is never perfect, we also need to collect real
experimental data to mitigate the bias of the simulator. One way to combine simula-
tion and real data is to use a multi-output Gaussian process that explicitly encodes
a joint distribution between the two information sources. This model needs then to
be interpreted by BO, which shall select controller parameters from the most infor-
mative, but cheaper information source, at each iteration. In Chap. 4 we address
this problem.

Another way to increase sample-efficiency is using an informed prior GP to model
the objective function. This can be done by building up a probabilistic prior with
contextual information of the control problem at hand. In the case of a linear
quadratic regulator (LQR), this involves exploiting the mathematical structure of
the control problem and identifying how different control parameters vary the value
of the quadratic performance objective. This problem is investigated in Chap. 5.

Finally, another possibility is to avoid controller failures while learning, as these
can delay the search of the optimum and contribute to hardware wearing off. This
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turns the controller tuning problem into a constrained optimization problem, where
the constraints are black-box functions representing “failure/success”. Although
undesirable, failures are also informative about a behavior that should be avoided.
Hence, an interesting problem setting arises by limiting the number of failures to a
pre-established value. Then, the goal is to find the optimum by leveraging failures
in the best possible way. We explore this problem setting in Chap. 6.
Generally speaking, all the problems proposed above attempt to answer the same
research question:

Can we replace manual controller tuning with Bayesian optimization,
and remain sample-efficient in robotics?

Throughout this thesis, we investigate this research question, and also address the
problem statements from above, in four different contributions. In the following, we
briefly summarize them, and also present the outline of the thesis.

1.4 Thesis outline and contributions
The main contents of this thesis investigate the four problems proposed in Sec. 1.3
about use Bayesian optimization (BO) for learning controllers in robotics. Before
discussing the aforementioned problems, we first provide a thorough description
of the automatic controller tuning problem using BO in Chap. 2, together with a
few essential mathematical tools (e.g., Gaussian processes) upon which the rest of
the thesis is built. Then, we discuss the aforementioned ideas in four main parts
(Chap. 3 to 6), presented in chronological order of their publication date. Finally,
we conclude the thesis in Chap. 7 with a reflection about present and future impact
of BO in robotics, among other inquiries.

In order to ease a quick inspection of the contents of the thesis, we briefly sum-
marize below each one of the four core parts. We briefly state the problem we
attempt to solve, the challenges involved and the obtained results on each part. For
clarity, we also cite all the publications that arose from each project. In all the
publications listed below, my responsibilities as first author were to (i) take the lead
on the project, (ii) write the paper, (iii) do all the experiments and (iv) manage all
the stages of the submission; all this with help and advice of the other co-authors.

Chapter 3: Automatic LQR tuning using Bayesian optimiza-
tion

The chapter constitutes the first part of the thesis and presents a framework to
automate the controller tuning process, otherwise conducted manually. To this end,
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linear optimal control is combined with a specific BO algorithm. We demonstrate the
framework on two challenging robotic platforms. Our results highlight the method’s
potential for automatic controller tuning in robotics. This framework constitutes
the core part of the thesis, from which several important challenges arose. These
challenges led to the research projects presented in the coming chapters.

The ideas presented in this chapter are largely based on our conference publica-
tion, which is cited below.
I Alonso Marco, Philipp Hennig, Jeannette Bohg, Stefan Schaal, and Sebastian

Trimpe, “Automatic LQR tuning based on Gaussian process global optimiza-
tion”, In IEEE International Conference on Robotics and Automation (ICRA),
pages 270–277, c© 2016 IEEE.

The above publication extends results from previous work (Marco, 2015; Marco
et al., 2015) and led to further unpublished, yet mature, results, which are presented
in this thesis, in Sec. 3.5.

While working on this project, we acknowledged many caveats that BO presents
when used to mitigate manual tuning. Specifically, BO is not as efficient as it could
be due to many issues, such as lacking informative priors. Those issues opened many
research problems, three of which are addressed on each of the subsequent chapters
of this thesis. We summarize them next.

Chapter 4: Trading off simulations and physical experiments
using BO

When working with highly complex real systems, such as humanoid robots, computer
simulators are usually available. They are a model the dynamics of the system, typ-
ically used as a preliminary testbench. One possibility to increase sample-efficiency
is to include the simulator as part of the optimization loop. Because simulations
are also informative about controller performance, they shall help to reduce the
necessary number of real experiments. However, simulations provide only biased
information about the real performance. In Chap. 4, we propose a BO variant that
explicitly models the trade-off between real robot experiments and simulated exper-
iments. Our results, demonstrated on a cart-pole system, indicate that the proposed
algorithm spares a great number of real experiments, while alternating between the
simulator and the real system. The associated publication is cited below.
I Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas

Krause, Stefan Schaal, Sebastian Trimpe, “Virtual vs. real: Trading off simula-
tions and physical experiments in reinforcement learning with Bayesian optimiza-
tion”, In IEEE International Conference on Robotics and Automation (ICRA),
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pages 1557-1563, c© 2017 IEEE.

Chapter 5: On the design of LQR kernels

Another way to increase sample-efficiency is using informed priors. Standard (or
non-informed) prior choices do not necessarily reflect the shape of the unknown
performance objective, thus leading to poor fitting. However, the control problem
at hand already imposes structure in the controller itself and also in the shape of the
performance objective. If such structure is properly exploited and incorporated in
the prior, fitting could be improved and real experiments would be better interpreted
in the context of a more correct prior, thus reducing BO iterations. In Chap. 5, we
propose a framework to design priors tailored to the specific structure of the control
problem at hand. Simulated results demonstrate that good learning performance
can be achieved with only a few BO iterations, compared to standard choices.
I Alonso Marco, Philipp Hennig, Stefan Schaal, Sebastian Trimpe, “On the Design

of LQR Kernels for Efficient Controller Learning ”, In IEEE Annual Conference
on Decision and Control (CDC), pages 5193-5200, c© 2017 IEEE.

Chapter 6: Controller learning under limited budget of fail-
ures

To further increase sample efficiency, the fourth part of the thesis addresses how
to keep the number of unstable controllers low. Because unstable controllers tend
to have risky repercussions in practice (e.g., hardware wearing off, reparation costs,
etc.), we try to avoid them. However, not tolerating failures at all would imply that
(i) only local exploration in a safe region is possible, as opposed to global explo-
ration, and (ii) we need to initialize the learning routine with a stable controller,
which is an impractical assumption in real robotics. Although generally undesirable,
unstable controllers can also be leveraged once they have occurred: They are infor-
mative about uninteresting regions that should be avoided in further experiments.
Hence, we propose a middle ground solution where collecting failures is not forbid-
den, but we limit them in number. We present a framework that addresses this
problem in Chap. 6. Comparisons against state-of-the-art methods show that the
proposed algorithm exploits better the budget of failures, hence estimating better
the optimum.

I Alonso Marco, Alexander von Rohr, Dominik Baumann, José Miguel Hernández-
Lobato, Sebastian Trimpe, “Excursion Search for Constrained Bayesian Opti-
mization under a Limited Budget of Failures”, under review.
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In the following section we briefly review relevant existing work that connects with
each one of the four projects summarized above.

1.5 Literature overview
The common goal to the four aforementioned projects is to fine-tune controller pa-
rameters of a robot using Bayesian optimization (BO). Usually, BO uses a Gaussian
process (GP) (Rasmussen and Williams, 2006) as a non-parametric model capturing
the knowledge about the unknown cost function. At every iteration, BO exploits
all past data to infer the shape of the cost function. Furthermore, in the spirit of
an active learning algorithm, it suggests the next evaluation in order to learn most
about the location of the minimum.
Next, we first briefly detail related work to the BO framework. Then, we place each
of the projects summarized above amongst existing literature.

1.5.1 Related work in Bayesian optimization (BO)

There exist an increasing number of BO algorithms based on Gaussian process (GP).
Herein, we briefly mention some of the most popular algorithms, many of which have
been used in thesis (either as a baseline for comparison, or as the main BO method).
Readers interested in a thorough survey about recent BO methods are referred to
(Shahriari et al., 2016).

Improvement-based methods attempt to collect evaluations likely to improve
upon the best point observed so far. Amongst these methods, expected improvement
(EI) (Jones et al., 1998; Mockus et al., 1978) selects evaluations that are expected
to lie below the current best observation; probability of improvement (PI) (Kushner,
1964) chooses evaluations with the highest probability of lying below the current
best observation.

Another set of algorithms steer the search in order to yield convergence guaran-
tees. For example, upper confidence bound (GP-UCB) (Auer, 2003; Srinivas et al.,
2010) captures the historically popular notion of “optimism in the face of uncer-
tainty”. It also proposes an explicit exploration vs. exploitation strategy, whose
trade-off is regulated at each iteration in order guarantee convergence.

Information-based methods are known to outperform the aforementioned strate-
gies and constitute another broad category. A key difference between these methods
and the ones mentioned above is that the former select evaluations that yield in-
creasingly low function values, while the later attempt to gain information about
the optimum. The former is the right strategy in settings where the performance
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of each individual experiment matters, e.g. the gait of a walking robot is improved
online, but it is not allowed to fall. However, in a “prototyping” setting, where the
sole use of experiments is to learn about a final good design, the numerical result of
each experiment is less important than its information content.

The first information-based method, Entropy Search (ES) (Hennig and Schuler,
2012), inspired many other algorithms in the same direction, e.g., Predictive En-
tropy Search (PES) (Hernández-Lobato et al., 2014) and Max-Value Entropy Search
(MES) (Wang and Jegelka, 2017). While PES proposes a computationally lighter
implementation than ES, both focus on gathering information about the location
of the minimum. On the contrary, MES targets gathering information about the
minimum value, thus resulting a computationally cheaper acquisition function.

Many of these methods have been used in the context of automatic controller
tuning of robotic platforms. For example in (Berkenkamp et al., 2016b; Calandra
et al., 2016; Schreiter et al., 2015), in different flavors. While in Chap. 3 and 4
we focus on data efficiency by maximizing the information gain in each iteration,
Berkenkamp et al. (2016b) and Schreiter et al. (2015) propose methods for safe
exploration. Specifically, Berkenkamp et al. (2016b) optimize a state-feedback con-
troller for quadrotor trajectory tracking using a safe BO algorithm (Sui et al., 2015),
which builds on GP-UCB. Herein, we propose to parametrize the feedback gain as
an LQR policy (Trimpe et al., 2014), whose optimal weights are learned using ES.
This algorithm is extended in Chap. 3 and 4 to include information from different
sources (such as simulation and physical experiments). Both methods have been
successfully applied to learn pole balancing controllers. Calandra et al. (2016) com-
pare PI, EI, and GP-UCB for learning the parameters of a discrete event controller
for a walking robot.

1.5.2 Chapter 3: Automatic LQR tuning using Bayesian op-
timization

The automatic controller framework presented in this chapter is inspired from previ-
ous work (Trimpe et al., 2014), where a Linear Quadratic Regulator (LQR) is itera-
tively improved based on control performance observed in experiments. Therein, the
controller parameters of the LQR design are adjusted using simultaneous perturba-
tion stochastic approximation (SPSA) (Spall, 2003) as optimizer of the experimental
cost. It obtains a very rough estimate of the cost function gradient from few cost
evaluations, and then updates the parameters in its negative direction. While control
performance could be improved in experiments on a balancing platform in (Trimpe
et al., 2014), this approach does not exploit the available data as much as could
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be done. Additionally, rather than exploring the space globally, it only finds local
minima.

Automatic tuning of an LQR is also considered in (Grimble, 1984) and (Clarke
et al., 1985), for example. In these references, the tuning typically happens by first
identifying model parameters from data, and then computing a controller from the
updated model. In contrast, we tune the controller gain directly thus bypassing the
model identification step. Albeit we exploit a nominal model in the LQR design, this
model is not updated during tuning and merely serves to pre-structure the controller
parameters.

In contrast to (Trimpe et al., 2014), we propose the use of Entropy Search (ES)
(Hennig and Schuler, 2012; Villemonteix et al., 2009), a recent algorithm for global
Bayesian optimization (BO), as the minimizer for the LQR tuning problem. ES
uses a GP as a non-parametric model capturing the knowledge about the unknown
cost function. Thus, we expect ES to be more data-efficient than simple gradient-
based approaches as in (Trimpe et al., 2014); that is, to yield better controllers with
fewer experiments. For a literature review see Sec. 2.3. A similar approach has
been proposed in (Berkenkamp et al., 2016b; Calandra et al., 2016; Metzen, 2015;
Schreiter et al., 2015). In (Schreiter et al., 2015), the space of controller parameters is
explored by selecting next evaluation points of maximum uncertainty (i.e. maximum
variance of the GP). In contrast, ES uses a more sophisticated selection criterion:
it selects next evaluation points where the expected information gain is maximal in
order to learn most about the global minimum. A particular focus of the method
in (Schreiter et al., 2015) is on safe exploration. For this purpose, an additional GP
distinguishing safe and unsafe regions (e.g. corresponding to unstable controllers)
is learned.

Safe learning is also the focus in (Berkenkamp et al., 2016b), where the BO
algorithm for safe exploration by Sui et al. (2015) is used. This work restricts the
exploration to controllers that incur a small cost with high probability. The method
avoids unsafe controllers and finds the optimum within the safely reachable set of
controllers. In contrast, ES explores globally and maximizes information gain in
the entire parameter space, regardless of a potentially large costs incurred in an
individual experiment.

In the context of dynamic walking, BO is used to learn gait parameters of pla-
nar biped robots (Antonova et al., 2016; Calandra et al., 2014; Rai et al., 2018).
In (Calandra et al., 2016), the gait is achieved using a discrete event controller,
and transitions are triggered based on sensor feedback and the learned parameters.
Furthermore, BO has been used to learn whole-body controllers for a humanoid
(Charbonneau et al., 2018; Yuan et al., 2019). In (Yeganegi et al., 2019), BO is used
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to learn a trade-off between robustness and performance for the generation of center
of mass trajectories.

Same as in Chap. 3, Metzen (2015) also uses ES for controller tuning, and ex-
tends this to contextual policies for different tasks. While Schreiter et al. (2015)
and Metzen (2015) present simulation studies (balancing an inverted pendulum and
robot ball throwing, respectively), other authors like Berkenkamp et al. (2016b)
and Calandra et al. (2016) demonstrate their algorithms in hardware experiments
(quadrotor and 4-DOF walking robot). To the authors’ knowledge, (Berkenkamp
et al., 2016b) and the work herein are the first to propose and experimentally demon-
strate BO for direct tuning of continuous state-feedback controllers on a real robotic
platform.

1.5.3 Chapter 4: Trading off simulations and physical ex-
periments using BO

In this chapter, we include a prior model information from a simulator in the learning
loop in order to spare evaluations on the real system. In the context of reinforce-
ment learning, this idea has been considered before. A typical approach is two-stage
learning, where algorithms are trained for a certain amount of time in simulation
in order to warm-start the learning on the real robot (Kober et al., 2013). For ex-
ample, Cutler and How (2015) report performance improvements when using model
information from simulation as a prior for real experiments. Transfer learning is a
similar approach that aims to generalize between different tasks, rather than from a
simulated model to the real system (Taylor and Stone, 2009). The work in (Cutler
et al., 2015) learns an optimal policy and value function of a finite Markov deci-
sion process based on models with different accuracies. They rely on hierarchical
models and switch to higher accuracy models once a threshold accuracy has been
reached at a lower level. A commonly used reinforcement learning method is policy
gradients (Peters and Schaal, 2006), where policy parameters are improved locally
along the gradient. In this setting, simulation knowledge can be used to estimate
the gradient of real experiments (Abbeel et al., 2006). However, policy gradient
methods only converge to locally optimal parameters. None of the above methods
explicitly considers the cost of experiments on a robot. In this chapter, we actively
trade off the different costs and information gains associated with simulation and
real experiments and obtain globally optimal parameter estimates.

In the context of Bayesian optimization, controller parameters can be deter-
mined globally, as in gait optimization for legged robots (Lizotte et al., 2007) and
controller optimization for a snake-like robot (Tesch et al., 2011). In Chap. 3, the
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controller parameters of a linear state-feedback controller were optimized using the
LQR framework as a low-dimensional representation of controller policies, while
in (Abdelrahman et al., 2016) the control policy itself was defined by Bayesian op-
timization with a specifically chosen kernel. Safety constraints on the robot during
the optimization process were considered in (Berkenkamp et al., 2016a). A com-
parison of different Bayesian and non-Bayesian global optimization methods can be
found in (Calandra et al., 2014). All the previous methods use Bayesian optimiza-
tion directly on the real system. In contrast, we consider an extension of Bayesian
optimization that can extract additional information from a simulator and speed up
the optimization process.

The methodology herein is related to multi-task Bayesian optimization, where
one aims to transfer knowledge about two related tasks (Krause and Ong, 2011;
Swersky et al., 2013). A GP model with multiple information sources was first
considered in (Kennedy and O’Hagan, 2000). Since then, optimization with mul-
tiple information sources has been considered under strict requirements, such as
models forming a hierarchy of increasing accuracy and without considering differ-
ent costs (Forrester et al., 2007; Kandasamy et al., 2019). More recently, Poloczek
et al. (2017) used a myopic policy, called the “knowledge gradient” by Frazier et al.
(2009), in order determine, which parameters to evaluate.

1.5.4 Chapter 5: On the design of LQR kernels

In this chapter, we propose using informed priors in order to increase sample-
efficiency. We assume the objective cost is modeled using a GP, which encodes
knowledge (e.g., lengthscale, variance) about the unknown cost function through a
kernel function. The design of customized kernels for GP regression has been con-
sidered before in the context of control and robotics for related problems. A kernel
for bipedal locomotion, which captures typical gait characteristics, is proposed in
(Antonova et al., 2016). In (Medina et al., 2016), an impedance-based model is in-
corporated as prior knowledge for improved predictions in human-robot interaction.
For the problem of maximizing power generation in photovoltaic power stations,
the authors in (Abdelrahman et al., 2016) incorporate explicit basis functions about
known power curves in the kernel. In Chap. 4, a kernel is designed to model infor-
mation from simulation and physical experiments, in order to leverage both sources
of information for RL.

However, none of the above references considers the problem of incorporating the
structure of the LQR problem to improve data-efficiency in learning control with
BO.
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1.5.5 Chapter 6: Controller learning under limited budget
of failures

In this chapter, we consider the controller tuning problem subject to avoiding fail-
ures with high probability, under a given budget of failures. This can be seen as
a optimization problem subject to multiple black-box unknown constraints. To ad-
dress such constrained optimization problem, Bayesian optimization under unknown
constraints (BOC) has been recently proposed. Within this method, there exist two
opposite views in regard of how failures are handled. On one extreme, zero-failures
strategies (Berkenkamp et al., 2016b; Sui et al., 2015) are needed in safety-critical
applications, where failures are not allowed. Such strategies avoid failures by con-
servatively expanding an initially given safe area, and never exploring beyond the
learned safety boundaries. On the other extreme, standard BOC strategies (Gard-
ner et al., 2014; Gelbart et al., 2014; Gramacy and Lee, 2011; Hernández-Lobato
et al., 2016; Picheny, 2014; Schonlau et al., 1998) are able to explore outside the
initially given safe area, and target alternative, more promising regions. However,
as they do not have a limit on the number of incurred failures, they can fail many
times. The type of settings we have in mind lie in between these two extremes: We
picture applications where paying the price of a pre-fixed budget of failures is afford-
able in exchange of finding a better optimum than conservative approaches. When
learning robot controllers, allowing a limited budget of failures, with the consequent
hardware-related issues, may help to find alternative, better optima.



Chapter 2

Preliminaries

In this chapter, we introduce the core problem statement of this thesis. This is the
controller tuning problem, described in Sec. 2.1, which will be recurrently referenced
throughout the thesis. In addition, we introduce several key concepts needed to
understand how the controller tuning problem is solved, such as Gaussian processes
(GPs) in Sec. 2.2 and the Bayesian optimization (BO) framework in Sec. 2.3.

2.1 Controller tuning problem
Given an existing model of a real system, controllers tailored to be optimal for
such model will most likely be suboptimal on the real system. When the model
mismatch, also known as the reality gap, is not large, small adjustments in the
controller parametrization might help to recover optimality. In this section, we
explain how to explicitly formulate the aforementioned fine-tuning problem as an
optimization problem.

Let a system be defined by sk+1 = h(sk, uk, wk), where sk ∈ RS is the system
state, uk ∈ RU is the control signal, wk ∈ RS is process noise, at time step k, and h
are the unknown dynamics of the system. We assume the system can be driven from
an initial state s0 to a terminal state sM , describing a trajectory τM = {sk, uk}Mk=0,
using a state-feedback controller uk = π(sk). The associated cost of such trajectory is
given by f(π) = ∑M

k=0 l(sk, π(sk)), with a user-defined cost function l : RS×RU → R.
Although the true system dynamics h are unknown, a dynamics model ĥ might be
available, in some cases. As it is widely known from the control literature, some
specific classes of models and cost choices l yield tractable optimal control solutions.

15
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At an abstract level, an optimal controller can be computed in closed-form by solving

π∗ = argmin
π

∑M
k=0 l(sk, uk)

s.t. sk+1 = ĥ(sk, uk, wk)
uk = π(sk).

(2.1)

For example, when the model ĥ is linear and the cost l is quadratic, the optimal
controller π∗ is the linear quadratic regulator (LQR) (Anderson and Moore, 1990).
Since the model ĥ does not fully resemble the true unknown dynamics h, the con-
troller π that is optimal for the known model ĥ, will be suboptimal for the true
unknown system dynamics h.

Finding a closed-form (exact or approximate) solution to (2.1) often depends
on the assumptions we put on the dynamics model ĥ. For example, if ĥ is given
as a neural network (Chua et al., 2018), classical techniques from optimal control
may not be applied (Anderson and Moore, 1990). In addition, acquiring ĥ is not
always possible, desirable, or necessary. For instance, π might be parametrized
independently of ĥ using a PID controller, tuned directly on the real system. In the
best case, ĥ is analytically given; however, the model mismatch between ĥ and h

could be too large, causing that π∗ exhibits poor performance when applied to the
real system h.

Generally speaking, for the controller tuning problem presented herein, we do
not assume that a dynamics model ĥ exists. In contrast, we assume the existence of
a feedback controller uk = π(sk), given in some parameterizable form. Hence, the
existence of a model is optional, and, if given, optimal control frameworks, such as
(2.1), could be leveraged.

In order to improve performance of a controller π on the real system h, we
parametrize it πx(sk) = π(sk;x) with parameters x ∈ X ⊆ RD. Then, the controller
tuning problem consists of adjusting/tuning πx until the optimal parameters x∗ are
found. For this, one can simply follow a trial-and-error process, by collecting ex-
perimental data on the true system h for each configuration x. This constitutes the
usual “manual tuning” process.

However, as the dimensionality increases (i.e., D > 3), manual tuning starts
becoming non-intuitive. Brute force approaches, such as grid search, require a pro-
hibitive number of real experiments due to the curse of dimensionality, which could
cause the hardware to wear off. Alternatively, one can formulate the tuning problem
as a black-box optimization problem and attempt to solve it using available algo-
rithms for global optimization. Each parametrization x of the controller πx steers
the true system with a different trajectory, which leads to a different cost f(πx)
value. This induces an objective f(πx) : X → R, which we write as f(x) to simplify
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notation. Then, the tuning problem is to find the parametrization x∗ that minimizes
the trajectory cost

x∗ = argmin
x∈X

f(x) (2.2)

on the true dynamics h.

2.2 Gaussian process (GP)
Herein, we briefly describe the core elements of a GP. For more details about GPs,
we refer the reader to (Rasmussen and Williams, 2006). We replicate below the
definition of a GP from (Rasmussen and Williams, 2006, Def. 2.1).

Definition 1 A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

In particular, the scalar function f : X → R is modeled with a GP if any finite
collection of queries [f(x1), f(x2), . . . , f(xt)] ∀xi ∈ X have a joint Gaussian distri-
bution. Throughout this thesis, the unknown objective f is modeled with a GP,
f ∼ GP (m(x), k(x, x′)), with covariance function k : X × X → R and prior mean
function m : X → R. The mean function is generally a parametric function, used to
inject prior structure in the GP model. A brief discussion about covariance functions
in the context of learning for real systems is later presented in Sec. 2.2.1.

We assume the function f cannot be queried directly, but only through noisy
observations

y(x) = f(x) + ε, ε ∼ N
(
0, σ2

)
. (2.3)

After having collected t observations of the objective Dt = {Xt, Yt} = {x1, . . . , xt,

y1, . . . , yt}, its predictive distribution at a location x is given by a univariate Gaus-
sian distribution

p(f |Dt, x) = N (f(x);µ(x|Dt), σ2(x|Dt)), (2.4)

with predictive mean µ(x|Dt) = m(x) + k>t (x)[Kt + σ2I]−1[Yt − Mt], where the
entries of vector kt(x) are [kt(x)]i = k(xi, x), the entries of the Gram matrix Kt are
[Kt]i,j = k(xi, xj), the entries of the vector of observations Yt are [Yt]i = yi, and
the entries of the vector of prior mean values Mt are [Mt]i = m(xi). The predictive
variance is given by σ2(x|Dt) = k(x, x)− k>t (x)[Kt + σ2I]−1kt(x). In the remainder
of the thesis, we drop the dependency on the current data set Dt and write µ(x),
σ(x) to refer to µ(x|Dt), σ(x|Dt), respectively.

Fig. 2.1 (top) exemplifies a Gaussian process posterior in a one dimensional
regression problem, conditioned on five observed data points, where the prior mean
function m is assumed to be zero.
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2.2.1 Covariance functions for real systems

The covariance function k : X ×X → R is a core element of a Gaussian process, as it
encodes (i) prior knowledge about the objective f , such as smoothness, characteristic
length-scales, and signal variance, and (ii) similarity between two function queries
f(x) and f(x′). The choice of the covariance function usually has an impact on
the quality of the regression. A covariance function k can be defined as a positive
semidefinite kernel1 .

There are many popular choices for kernels, however, it is non trivial to predict
which kernel will perform better for a given regression task. There exist many
popular choices for kernels in the context of GP regression. However, given a specific
regression task, selecting the kernel that will perform best prior to data collection
remains an open question.

In practical applications, such as controller tuning in robotics, where data collec-
tion is scarce, the kernel choice is important to achieve good learning performance,
yet for deciding on it we are left only with intuition. In recent work, the kernel
of a GP model itself is estimated from data (Rai et al., 2018; Wang et al., 2018b).
However, such kernel is either a neural network or a composition of radial basis
functions, respectively. In both cases, prior structure has been injected into the
problem to learn the kernels. We devote Chap. 5 to specifically address the kernel
design problem with a novel approach that allows to construct a kernel tailored to
a specific control problem.

I enumerate next two of the kernels that will be referenced the most throughout
the thesis. An introduction to the properties and usages of kernels in the context of
GPs can be found in (Rasmussen and Williams, 2006, Sec. 4.2.1).

Squared exponential kernel

The squared exponential (SE) kernel, also known as the Gaussian kernel, and more
appropriately named “exponentiated quadratic”, encodes functions that admit an
infinite number of derivatives, i.e., smooth functions. It is defined as

kSE(x, x′) = σ2
S exp

[
−1

2(x− x′)>S(x− x′)
]
, (2.5)

where the diagonal matrix S = diag
[
λ−2

1 , λ−2
2 , . . . , λ−2

D

]
carries information about

the lengthscale λi of the function on each input dimension. The signal variance σ2
S

can be connected to the amount of uncertainty about the function.
1While a kernel does not need to be positive definite, a covariance function does (Rasmussen

and Williams, 2006, Sec. 4.1). Throughout this thesis, we use the word “kernel” to refer to the
covariance function of a GP.
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The smoothness property is rather limiting when it comes to robotic applications.
For example, such kernels are not appropriate to model dynamical systems that
exhibit discontinuities (Rasmussen and Williams, 2006, Sec. 5.4.3), nor a good
choice to model sparse rewards. In those cases, a popular alternative is the Matérn
kernel.

Matérn kernel

Contrary to the SE kernel, the Matérn family of kernels are p-times mean-square
differentiable (Rasmussen and Williams, 2006, Sec. 4.1.1). In case of p = 1, it is
given by

kmat(x, x′) =
(

1 +
√

3d
λ

)
exp

(
−
√

3d
λ

)
, (2.6)

where d = ‖x− x′‖2. This makes it suitable for encoding non-smooth functions and
thus, it is usually preferred for modeling real systems.

An interactive GP tool that allows to modify the lengthscale λ and variance σ2
S of

a one-dimensional GP can be found at https://github.com/alonrot/interactiveGP.
In the following, we discuss how to estimate GP hyperparameters from data.

2.2.2 Hyperparameter optimization of GPs

GP models are usually considered a non-parametric probabilistic regression tool be-
cause no assumption is made on the parametric structure of the function. However,
the kernel, the mean and the likelihood functions contain free parameters, which are
determined by the user. Alternatively, the non-parametric consideration broadens
to include such hyperparameters, which are estimated from data, rather than fixed.

There exist numerous methods to estimate the hyperparameters, i.e., to fit the
GP model to the collected data. Herein, we enumerate a few of which have been
explored throughout this thesis.

Sampling-based methods attempt to sample from the posterior distribution of
the hyperparameters (usually intractable), given the data. For this, Elliptical Slice
Sampling is easy to implement and no tuning is required (Murray et al., 2010).
However, the prior distribution that models the hyperparameters, also known as
hyperprior, is required to be Gaussian. The No-U-Turn Sampler (NUTS) (Hoffman
and Gelman, 2014), a variant of Hamiltonian Monte Carlo, requires little or no
tuning and makes no explicit assumption about the hyperprior.

From a rather different perspective, variational inference (VI) gathers a broad
set of algorithms that approximate the hyperparameters posterior to a variational
family. In the context of GPs, GP-LVM (Titsias and Lawrence, 2010) was proposed

https://github.com/alonrot/interactiveGP
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to estimate both, the variational parameters and the model hyperparameters, as
typically done in sparse GPs models. More generally, ADVI (Kucukelbir et al.,
2017) has been proposed as a practical algorithm for variational inference, where
the user only needs to provide the probabilistic model and the dataset.

Finally, maximum marginal likelihood (type-II ML), also known as maximum a
posteriori (MAP), returns a point estimate of the optimal hyperparameters. The
marginal likelihood can be analytically computed for a GP when the likelihood
function is a Gaussian density, as in (2.3). Given a collection of t observations
Dt = {Yt, Xt}, the marginal likelihood (also known as evidence) is given in its
logarithmic form as (Rasmussen and Williams, 2006, Eq. (2.30))

log p(Dt|xt) = −1
2Y
>
t

[
Kt + σ2I

]−1
Yt −

1
2 log|Kt + σ2I| − t

2 log 2π, (2.7)

where Kt and σ2 have been introduced along with (2.4). Throughout this thesis, we
have mostly used MAP with appropriate hyperpriors for the hyperparameters, e.g.,
Chap. 3 and 6.

2.3 Automatic controller tuning using Bayesian
optimization

In this section, we explain the Bayesian optimization (BO) framework to automat-
ically tune controller parameters, which amounts to solving the black-box uncon-
strained expensive-to-evaluate optimization problem (2.2). Alg. 1 summarizes in
pseudocode the usage of BO for automatic controller tuning. The BO framework
presented herein will be extensively used in the coming parts of the thesis (Chap. 3
to 6).

BO denotes a class of algorithms for black-box global optimization problems in
which data collection is expensive (Kushner, 1964) and thus, only few evaluations are
possible. This setting is no different from the automatic controller tuning problem
in robotics Sec. 2.1, where an expensive-to-evaluate black-box function is optimized
(2.2). Therein, each query f(xt) involves doing a robot experiment with controller
parametrization xt. Such experiments carry associated costs (e.g., time consuming,
human effort), which make them expensive.

There exist many different BO strategies to steer the global optimization. Whereas
the tuning problem (2.2) is agnostic to the selected BO method, its outcome (e.g.,
incurred number of experiments before convergence) may differ from one another.

In all cases, BO assumes the objective is modeled as a GP (Sec. 2.2), and uses
such model to iteratively select next function evaluations in order to solve (2.2)
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Figure 2.1: Intermediate stage of a BO algorithm, before finding the true minimum. Top:
GP posterior conditioned on observed data. The unknown function (dashed line) is ap-
proximated by the GP, which is characterized by the predictive mean function (solid line)
and the predictive variance (colored surface). The latter is represented with ± two stan-
dard deviations. Thus, unknown functions are expected to be contained within the surface
limits with a 95% confidence. The current estimate of the global minimum (triangle) does
not coincide with the true minimum yet. Bottom: Acquisition function α computed with
entropy search (ES). The next parameters xt+1 are chosen at the maximum of α (hollow
red dot). c© 2019 IEEE.

efficiently. Next, we discuss the main steps taken generally taken by Bayesian opti-
mization algorithms at each iteration.

At iteration t, BO decides which controller xt+1 shall be queried on the objective
function f at the next iteration t+1. The decision-making is driven by an acquisition
function α : X → R, whose maximizer is the location of the next query:

xt+1 = argmax
x∈X

α(x). (2.8)

The value α(x) is computed using the predictive distribution p(f |Dt, x), given in
(2.4). Hence, each decision at iteration t is made taking the collected data Dt into
account. Although the auxiliary optimization problem (2.8) is typically non-convex,
querying α is usually computationally cheap. Thus, it can be solved using gradient-
free or gradient-based local optimization methods with random restarts. In Fig. 2.1
(bottom), we see the acquisition function computed using the posterior GP model
conditioned on the observed data.

The next parameters xt+1, selected at the maximum of α, are used to perform a
new experiment. The acquired observation yt+1 = y(xt+1) is added to the existing
data set Dt ← Dt ∪ {yt+1, xt+1} and α is again maximized in the next iteration.
This procedure is repeated until a pre-defined stopping criterion (e.g., observations
bounded below a pre-defined threshold) is met. Through this iterative procedure,
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Algorithm 1 Learning control with Bayesian optimization
1: Specify objective function f with finite horizon T (cf. Sec. 2.1)
2: Specify GP prior (mean m, kernel k)
3: Initialize: controller parameters x1; data set D = ∅
4: for t = 1 to T do
5: perform closed-loop experiment with controller xt
6: compute yt from experimental data {sk, uk}Mk=0

7: add evaluation {xt, yt} to data set Di
8: Compute predictive distribution (2.4)
9: [Optional:] Optimize hyperparameters (e.g., maximize (2.7))

10: Compute next controller xt+1 via (2.8)
11: end for
12: Determine “best guess” xBG for the controller parameters, e.g., minimum of

posterior mean (2.9)
13: return xBG

the framework is expected to explore relevant regions of the cost, infer the shape of
the cost function, and eventually yield the global minimum within X .

At the end of the algorithm, an estimate for the global minimum x∗ is reported
as the minimizer of the predictive mean of the GP

x∗ = argmin
x∈X

µ(x), (2.9)

where µ(x) is the mean of the predictive distribution (2.4). Since µ(x) is cheap to
evaluate and its gradients are given analytically, (2.9) can be approximately solved
by using local methods with sufficient random restarts, same as as for (2.8).

2.3.1 A note on Entropy Search

In this thesis, we have used Entropy Search (ES) (Hennig and Schuler, 2012) in two
projects: In Chap. 3, ES is used for automatic controller tuning, while in Chap. 4,
it is extended to a multi-fidelity setting.

ES explicitly approximates a probability distribution about the location of the
minimum at each iteration, and computes its entropy, i.e., information about the
minimum. Then, the next location is selected where the expected information in-
crement is maximal, i.e., where we expect to gain most information about the min-
imum. These procedures can be divided in two main steps, which we briefly sum-
marize next on an abstract level; for details, we refer to the original paper (Hennig
and Schuler, 2012). Pseudocode for ES can be found in Alg. 2. An alternative
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version to the original ES code2, which provides a more friendly user interface, plot-
ting tools, and corrects bugs is available in https://github.com/alonrot/userES.
A reimplementation of the original algorithm in c++, which increases computa-
tional speed by about ten times with respect to the original code, can be found at
https://github.com/alonrot/EntropySearchCpp.

Distribution about the location of the minimum

ES models the knowledge about the location of the global minimum with a proba-
bility density pmin, which quantifies the likelihood of the spatial distribution of the
minimum

pmin(x) = p(x = argmin
x̃∈X

f(x̃)). (2.10)

This probability density (2.10) is analytically intractable and needs to be approxi-
mated to a discrete distribution qmin, defined over a discretized version of the com-
pact domain X . ES discretizes the domain X as an irregular grid, which puts higher
resolution in regions more likely to contain the minimum.

Acquisition function

In order to estimate the information that ES has gathered about the minimum
location, the distribution qmin is compared to the uniform distribution u by means
of the Kullback-Leibler divergence (relative entropy)

Hqmin = DKL(qmin||u). (2.11)

The intuition behind this choice is that the uniform distribution contains no informa-
tion about the location of the minimum (Hqmin = 0), while a Dirac delta distribution
centered at the location of the true minimum would maximize (2.11). Therefore,
Hqmin ≥ 0 is used as a measure of how much we know about the minimum location.

We are not interested in Hqmin per se, but in how much this information would
increase if we did an experiment on a new location x. Because we cannot know
the exact outcome of this experiment beforehand y(x), we have to commit to its
expected value, which is feasible using the GP model. We define the expected change
in entropy at an unobserved location x as

α(x) = Ey(x)
[
Hq̃min(x,y(x))

]
−Hqmin = Ey(x) [∆H(x)] (2.12)

where q̃min(x, y(x)) depends implicitly on a new hypothetical observation (x, y(x)),
and represents a new distribution about the minimum (different from qmin) if we
had included (x, y(x)) into the current dataset.

2https://github.com/ProbabilisticNumerics/entropy-search

https://github.com/alonrot/userES
https://github.com/alonrot/EntropySearchCpp
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Algorithm 2 As its inputs, EntropySearch takes the type of covariance function
k, the likelihood l, a fixed number of evaluations T , and (possibly) existing data points
{x0, y0}. Instead of stopping after T iterations, alternative stopping criteria can be used.
1: initialize x1

2: y1 ← CostEvaluation(x1) . Cost evaluation
3: {x1, y1} ← {x0, y0} ∪ {x1, y1}
4: procedure EntropySearch(k,l,T ,{x1, y1})
5: for t = 1 to T − 1 do
6: [µ̄, k̄]← GP(k, l, {xt, yt}) . GP posterior
7: qmin ← approx_qmin(µ̄, k̄) . Approximate pmin

8: xt+1 ← argmax
x∈X

Ey(x) [∆H(x)] . Next location to evaluate at

9: yt+1 ← CostEvaluation(xt+1) . Cost evaluation
10: {xt+1, yt+1} ← {xt, yt} ∪ {xt+1, yt+1}
11: xBG ← argmin

x∈X
µ(x) . Update current “best guess”

12: end for
13: return xBG

14: end procedure

Since the distribution over the minimum q̃min(x, y(x)) adds a hypothetical new
point to the set of collected observations, it contains a larger amount of information
than qmin, which implies α(x) ≥ 0. A more detailed definition of (2.12) can be
found in (Hennig and Schuler, 2012, Sec. 2.6). The acquisition function in Fig. 2.1
corresponds to an intermediate stage of ES, where the next point is selected by
maximizing it (cf. (2.8)).



Chapter 3
Automatic LQR tuning using Bayesian

optimization

The ideas presented in chapter are mainly based on the conference publication
(Marco et al., 2016). Herein, we propose a framework to solve the automatic con-
troller tuning problem (cf. Sec. 2.1) using Bayesian optimization (BO) (cf. Sec. 2.3).
Specifically, we propose a linear optimal control problem, where an initial set of
controller gains is automatically improved according to a pre-defined performance
objective evaluated from experimental data. The underlying BO algorithm is En-
tropy Search (ES) (see Sec. 2.3.1 for quick summary), which represents the latent
objective as a Gaussian process (GP) (cf. Sec. 2.2) and collects datapoints at loca-
tions that are most informative about the minimum. We demonstrate the proposed
framework with two robotic platforms: A seven-degree-of-freedom robot arm bal-
ancing an inverted pole, and a humanoid robot performing a squatting task. Our
results in two-, four- and six-dimensional tuning problems highlight the method’s
potential for automatic controller tuning on robotic platforms.

This chapter is structured as follows1. We introduce the problem and state the
contributions in Sec. 3.1. The LQR tuning problem is described in Sec. 3.2. The use
of ES for automating the tuning is outlined in Sec. 3.3. The experimental results
obtained with the robot arm are presented in Sec. 3.4, and with the humanoid robot
in Sec. 3.5. We discuss additional contributions closely related to the work presented
herein in Sec. 3.6. Finally, the chapter concludes in Sec. 3.7 with a discussion about
the caveats of the proposed method and a discussion about future applications.

1For an extensive literature review see Sec. 1.5.2
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3.1 Introduction
Designing controllers for balancing systems such as in (Trimpe and D’Andrea, 2012)
or (Mason et al., 2014) are typical examples of scenarios, where manual tuning or
grid search, can be highly time-consuming. Often, one can without much effort
obtain a rough linear model of the system dynamics around an equilibrium con-
figuration, for example, from first principles modeling. Given the linear model, it
is then relatively straightforward to compute a stabilizing controller, for instance,
using optimal control. When testing this nominal controller on the physical plant,
however, one may find the balancing performance unsatisfactory, e.g. due to un-
modeled dynamics, parametric uncertainties of the linear model, sensor noise, or
imprecise actuation. Thus, fine-tuning the controller gains in experiments on the
real system is desirable in order to partly mitigate these effects and obtain improved
balancing performance.

Figure 3.1: The humanoid robot Apollo
learns to balance poles of different lengths
using the automatic controller tuning frame-
work proposed herein.

We propose an automatic tuning
routine where a limited budget of ex-
perimental evaluations is allowed (e.g.
due to limited experimental time on the
plant, or costly experiments). The au-
tomatic tuning shall globally explore a
given range of controllers and return the
best known controller after a fixed num-
ber of experiments. During exploration,
we assume that it is acceptable for the
controller to fail, for example, because
other safety mechanisms are in place
(Akametalu et al., 2014), or it is uncriti-
cal to stop an experiment when reaching
safety limits (as is the case in experi-
ment considered herein).

The core contribution of this chapter is the development of an automatic con-
troller tuning framework combining Entropy Search (ES) (Hennig and Schuler,
2012), a data-efficient Bayesian optimization (BO) algorithm, with LQR tuning
(Trimpe et al., 2014). While ES has been applied to numerical optimization prob-
lems before, this work is the first to use it for controller tuning on a complex robotic
platform. The effectiveness of the proposed auto-tuning method is demonstrated in
experiments of a humanoid robot balancing a pole (see Fig. 3.1). We present success-
ful auto-tuning experiments for parameter spaces of different dimensions (2D and
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4D), as well as for initialization with relatively good, but also poor initial controllers.
While early results of this approach are presented in the workshop paper (Marco

et al., 2015), the presentation herein is more elaborate and new experimental results
are included.

3.2 LQR tuning problem
This section is largely based on the controller tuning problem formulated in Sec. 2.1.
Therein, the formulation is at a higher level of abstraction than here, where the
formulation is made specific to the LQR tuning problem, as in (Trimpe et al., 2014).

3.2.1 Control design problem

We consider a system that follows a discrete-time non-linear dynamic model

sk+1 = h(sk, uk, wk) (3.1)

with system states sk ∈ RS, control input uk ∈ RU , and zero-mean process noise
wk ∈ RS at time instant k. We assume that (3.1) has an equilibrium at sk = 0,
uk = 0 and wk = 0, which we want to keep the system at. We also assume that sk
can be measured and, if not, an appropriate state estimator is used.

For regulation problems such as balancing about an equilibrium, a linear model
is often sufficient for control design. Thus, we consider a scenario, where a linear
model

s̃k+1 = Ans̃k +Bnuk + wk (3.2)

is given as an approximation of the dynamics (3.1) about the equilibrium at zero.
We refer to (3.2) as the nominal model, while (3.1) are the true system dynamics,
which are unknown.

A common way to measure the performance of a control system is through a
quadratic cost function such as

f = lim
M→∞

1
M + 1E

[
M∑
k=0

s>kQsk + u>k Ruk

]
(3.3)

with positive-definite weighting matrices Q and R, and E [·] the expected value. The
cost (3.3) captures a trade-off between control performance (keeping sk small) and
control effort (keeping uk small).

Ideally, we would like to obtain a state feedback controller for the non-linear
plant (3.1) that minimized (3.3). Yet, this non-linear control design problem is
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intractable in general. Instead, a straightforward approach that yields a locally op-
timal solution is to compute the optimal controller minimizing (3.3) for the nominal
model (3.2). This controller is given by the well-known Linear Quadratic Regulator
(LQR) (Anderson and Moore, 1990, Sec. 2.4)

uk = Fsk (3.4)

whose static gain matrix F can readily be computed by solving the discrete-time
infinite-horizon LQR problem for the nominal model (An, Bn) and the weights (Q,R).
For simplicity, we write

F = lqr(An, Bn, Q,R). (3.5)

If (3.2) perfectly captured the true system dynamics (3.1), then (3.5) would be
the optimal controller for the problem at hand. However, in practice, there can be
several reasons why the controller (3.5) is suboptimal: the true dynamics are non-
linear, the nominal linear model (3.2) involves parametric uncertainty, or the state
is not perfectly measurable (e.g. noisy or incomplete state measurements). While
still adhering to the controller structure (3.4), it is thus beneficial to fine tune the
nominal design (the gain F ) based on experimental data to partly compensate for
these effects. This is the goal of the automatic tuning approach, which is detailed
next.

3.2.2 LQR tuning problem

Following the approach in (Trimpe et al., 2014), we parametrize the controller gains
F in (3.4) as

F (x) = lqr(An, Bn,Ws(x),Wu(x)) (3.6)

where Ws(x) and Wu(x) are design weights parametrized in x ∈ RD, which are to
be varied in the automatic tuning procedure. For instance, Ws(x) and Wu(x) can
be diagonal matrices with xj > 0, j = 1, . . . , D, as diagonal entries.

Parametrizing controllers in the LQR weights Ws and Wu as in (3.6), instead of
varying the controller gains F directly, restricts the controller search space. This
restriction is often desirable for practical reasons. First, we assume that the nominal
model (albeit not perfect) represents the true dynamics reasonable well around an
equilibrium. In this situation, one wants to avoid controllers that destabilize the
nominal plant or have poor robustness properties, which is ensured by the LQR
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design2. Second, further parametrizing Ws and Wu in x can be helpful to focus on
most relevant parameters or to ease the optimization problem. While, for example,
a restriction to diagonal weights Ws and Wu is common practice in LQR design
(i.e. ns + nu parameters), it is not clear how one would reduce the dimensionality
of the gain matrix F (ns × nu entries) when tuning this directly. We expect this
to be particularly relevant for high-dimensional problems, such as control of a full
humanoid robot (Mason et al., 2014).

When varying x, different controller gains F (x) are obtained. These will affect
the system performance through (3.4), thus resulting in a different cost value from
(3.3) in each experiment. To make the parameter dependence of (3.3) explicit, we
write f = f(x). The goal of the automatic LQR tuning is to vary the parameters x
such as to minimize the cost (3.3).

Remark: The weights (Q,R) in (3.3) are referred to as performance weights.
Note that, while the design weights (Ws(x),Wu(x)) in (3.6) change during the tuning
procedure, the performance weights remain unchanged.

3.3 Automatic LQR Tuning
The above LQR tuning problem is summarized as the optimization problem

x∗ = argmin
x∈X

f(x) (3.7)

where we restrict the search of parameters to a bounded domain X ⊂ RD. The do-
main X typically represents a region around the nominal design, where performance
improvements are to be expected or exploration is considered to be safe.

The shape of the cost function in (3.7) is unknown. Neither gradient information
is available nor guarantees of convexity can be expected. Furthermore, f(x) cannot
be queried directly because (3.3) cannot be computed from experimental data in
practice as it represents an infinite-horizon problem. As is also done in (Trimpe
et al., 2014), we thus consider the approximate cost

y = 1
M + 1

[
M∑
k=0

s>kQsk + u>k Ruk

]
(3.8)

2According to classical results in control theory (Kalman, 1964) and (Kong et al., 2012), any
stabilizing feedback controller (3.4) that yields a return difference greater one (in magnitude) can
be obtained for some Ws and Wu as the solution to the LQR problem. The return difference
is relevant in the analysis of feedback loops (Anderson and Moore, 1990), and its magnitude
exceeding one means favorable robustness properties. Therefore, the LQR parameterization (3.6)
only discards controllers that are undesirable because they destabilize the nominal plant, or have
poor robustness properties.
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Algorithm 3 Automatic LQR Tuning
1: initialize x0 such that Ws(x0) = Q, Wu(x0) = R

2: Initialize Entropy Search (ES) (Alg. 2) with x0 and set CostEvaluation() =
CostEvaluationLQR()

3: Run ES

4: function CostEvaluationLQR(x)
5: LQR design: F̄ ← lqr(An, Bn,Ws(x),Wu(x))
6: update control law (3.4) with F = F̄

7: perform experiment and record {sk}, {uk}
8: Evaluate cost: y ← 1

M+1

[∑M
k=0 s

>
kQsk + u>k Ruk

]
9: return y

10: end function

with a finite, yet long enough horizon T . The cost (3.8) can be considered a noisy
evaluation of (3.3), i.e., y(x) = f(x) + ε, ε ∼ N (0;σ2). Such an evaluation is
expensive as it involves conducting an experiment, which lasts few minutes in the
considered balancing application.

The proposed method for automatic LQR tuning is obtained by using Entropy
Search (ES) (cf. Sec. 2.3.1) to solve the optimization problem (3.7), which arises
from the LQR tuning framework presented in Sec. 3.2. To this end, we model the
objective (3.3) using a GP, f ∼ GP (m(x), kSE(x, x′)), where we assume a zero-mean
prior function m(x) ≡ 0 and a squared exponential kernel kSE. Details about the
GP model used herein can be found in Sec. 2.2. We gather the hyperparameters of
the GP in the set H = {λ1, . . . , λD, σS, σ}.

A reasonable initial choice of the parameters x is such that the design weights
(Ws(x),Wu(x)) equal (Q,R), which encode the desired performance for the system
(3.1). Thus, the obtained initial gain F is suboptimal because (3.2) are not the
true dynamics. After N evaluations, ES reports the estimated best guess xBG as
the minimum expected cost (cf. (2.9)) when the maximum number of iterations has
been reached. Pseudocode for the automatic LQR tuning method is given in Alg. 3.

A tutorial that highlights the insights of the proposed automatic LQR tuning
method can be found in https://github.com/alonrot/aLQRtuning_tutorial.

3.4 Experimental results
In this section, we present auto-tuning experiments for learning to balance a pole
as shown in Fig. 3.1. A video demonstration that illustrates the second experiment

https://github.com/alonrot/aLQRtuning_tutorial
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described in Sec. 3.4.3 is available at https://youtu.be/TrGc4qp3pDM.

3.4.1 System description

We consider a one-dimensional balancing problem: a pole linked to a handle through
a rotatory joint with one degree of freedom (DOF) is kept upright by controlling the
acceleration of the end-effector of a seven DOF robot arm (Kuka lightweight robot).
Figure 3.1 shows the setup for two poles of different length. The angle of the pole
is tracked using an external motion capture system (Vicon).

The continuous-time dynamics of the balancing problem (similar to (Schaal,
1997)) are described by:

mr2ψ̈(t)−mgr sinψ(t) +mr cosψ(t)u(t) + ξψ̇(t) = 0
s̈(t) = u(t) (3.9)

where ψ(t) is the pole angle with respect to the gravity axis, s(t) is the deviation of
the end-effector from the zero position, and u(t) is the end-effector acceleration.

Two poles with different lengths are used in the experiments. The center of mass
of the short pole lies at r ' 0.33 m from the axis of the rotatory joint, its mass is
m ' 0.27 kg, the friction coefficient is ξ ' 0.012 Nms, and the gravity constant is
g = 9.81 m/s2. For the long pole, we have r ' 0.64 m and m ' 0.29 kg.

A model (3.2) of the system is obtained by linearization of (3.9) about the equi-
librium ψ = 0, s = 0 and discretization with a sampling time of 1 ms. Using the
parameters of the short pole, we obtain its nominal model (An, Bn). The non-linear
model (3.9) assumes that we can command a discretized end-effector acceleration uk
as control input to the system. In reality, this end-effector acceleration is realized
through an appropriate tracking controller for the end-effector following a similar
control structure as in (Righetti et al., 2014).

The estimated end-effector position sk and velocity ṡk are computed at a sam-
pling rate of 1kHz from the robot’s joint encoders using forward kinematics. The
pole orientation is captured at 200 Hz by the motion capture system. From this
data, we obtain estimates of pole angle ψk and angular velocity ψ̇k through nu-
merical differentiation and low-pass filtering (2nd-order Butterworth, 10 Hz cutoff).
With this scheme, no model is required to obtain estimates of all states (in contrast
to the Kalman filter used in (Marco et al., 2015)), and it can be used irrespective
of which balancing pole is used. The complete state vector of (3.2) is given by
sk = [ψk, ψ̇k, sk, ṡk]T.

When using a state-feedback controller (3.4) for balancing, biases in the angle
measurement lead to a steady-state error in the end-effector position (cf. discussion

https://youtu.be/TrGc4qp3pDM
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in (Trimpe and D’Andrea, 2012, p. 67) for a similar balancing problem). To com-
pensate for such steady-state offsets, the state feedback controller (3.4) is augmented
with an integrator on the end-effector position, which is a standard way to achieve
zero steady-state error (see e.g. (Åström and Murray, 2008, Sec. 6.4)). That is,
we implement the control law uk = Fsk + Fzzk instead of (3.4), where zk is the
integrator state.

Although Fz can readily be included in the LQR formulation (3.6) and tuned
alongside the other gains (as was done by Marco et al. (2015)), we fix Fz = −0.3
here for simplicity. Since the integrator is not a physical state (it is implemented
in the controller) and merely affects the long-term behavior, we do not include it in
the computation of the cost (3.8).

3.4.2 Implementation choices

We choose the performance weights to be

Q = diag(1, 100, 10, 200), R = 10 (3.10)

where diag(·) denotes the diagonal matrix with the arguments on the diagonal. We
desire to have a quiet overall motion in the system. Therefore, we penalize the
velocities ψ̇k and ṡk more than the position states.

We conducted two types of tuning experiments, one with two parameters and
another one with four. The corresponding design weights are
I 2D tuning experiments:

Wx(x) = diag(1, 50x1, 10, 50x2), Wu(x) = 10 (3.11)

where the parameters x = [x1, x2] can vary in [0.01, 10], and x0 = [2, 4] is chosen
as initial value.

I 4D tuning experiments:

Wx(x) = diag(x1, 25x2, 10x3, 25x4),
Wu(x) = 10

(3.12)

with x = [x1, x2, x3, x4], xj ∈ [0.01, 10], and x0 = [1, 4, 1, 8].
In both cases, the initial choice x0 is such that the design weights equal the perfor-
mance weights. That is, the first controller tested corresponds to the nominal LQR
design (3.5).

Balancing experiments were run for 2 minutes, i.e. a discrete time horizon ofM =
1.2 · 105 steps. We start the experiments from roughly the same initial condition.
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(a) ES initialization (b) GP posterior after 20 iterations

Figure 3.2: GPs at (a) the start and (b) the end of the first tuning experiment. The GP
mean is represented in violet and ± two standard deviations in gray. The red dot corre-
sponds to the initial controller, computed at location x0 = [2, 4]. The green dot represents
the current best guess for the location of the minimum. The blue dot is the location
suggested by ES to evaluate next, and orange dots represent previous evaluations.The
best guess found after 20 iterations (green dot in (b)) has significantly lower cost than the
initial controller (red dot).

To remove the effect of the transient and slightly varying initial conditions, we omit
the first 30 s from each experiment.

Because the nominal model does not capture the true dynamics, some LQR
controllers obtained during the tuning procedure destabilized the system. This
means that the system exceeded either acceleration bounds or safety constraints
on the end-effector position. In these cases, the experiment was stopped and a
fixed heuristic cost fu was assigned to the experiment. Values for fu are typically
chosen slightly larger than the performance of a stable but poor controller. We used
fu = 3.0 and fu = 5.0 for the 2D and 4D experiments, respectively.

Before running ES, a few experiments were done to acquire knowledge about
the hyperparameters H. A Gamma prior distribution was assumed over each hy-

Table 3.1: Characterization of the gamma prior over H

2D exploration 4D exploration
E [·] Std [·] E [·] Std [·]

Lengthscale λj 2.5 0.11 2.00 0.63
Signal variance σS 0.2 0.02 0.75 0.075
Likelihood noise σ2 0.033 0.0033 0.033 0.010
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perparameter with expected values and variances shown in Table 3.1. For the first
iteration of ES, we use these expectations as initial set H. After each iteration, H
is updated as the result of maximizing the GP marginal likelihood.

3.4.3 Results from 2D experiments

For the 2D experiments (3.11), we first use a short pole (Fig. 3.1, right) and the
best available linear model, showing that the framework is able to improve the initial
controller. Secondly, we exchange the pole with one of double length (Fig. 3.1, left),
but keep the same nominal model. We show, for the latter case, that even with
a 50% underestimated model, the framework finds a stable controller with good
performance. In both cases, we use the design weights (3.11).

Using an accurate nominal model

ES was initialized with five evaluations, i.e. the initial controller x0, and evaluations
at the four corners of the domain [0.01, 10]2. Fig. 3.2a shows the 2D Gaussian
process including the five initial data points. The algorithm can also work without
these initial evaluations; however, we found that they provide useful pre-structuring
of the GP and tend to speed up the learning. This way, the algorithm focuses on
interesting regions more quickly.

Executing Alg. 3 for 20 iterations (i.e. 20 balancing experiments) resulted in the
posterior GP shown in Fig. 3.2b. The “best guess” xBG = [0.01, 2.80] (green dot) is
what ES suggests to be the location of the minimum of the underlying cost (3.3).

In order to evaluate the result of the automatic LQR tuning, we computed the
cost of the resulting controller (best guess after 20 iterations) in five separate bal-
ancing experiments. The average and standard deviation of these experiments are
shown in Table 3.2 (left column, bottom), together with the average and standard
deviation of the initial controller, computed in the same way before starting the
exploration (left column, top). Even though the initial controller was obtained from
the best linear model we had, the performance was still improved by 31.9%.

Using a poor nominal model

In this experiment, we take the same nominal model as in the previous case, but
we use a longer pole in the experimental demonstrator (Fig. 3.1, left). The initial
controller, computed with x0, destabilizes the system, which can be explained by the
nominal model significantly misrepresenting the true dynamics. As shown in Figure
3.3, after 20 iterations, ES suggested xBG = [3.25, 0.01] as the best controller. The
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Figure 3.3: Final GP posterior for the second tuning experiment using a wrong nominal
model. The color scheme is the same as in Fig. 3.2.

results of evaluating this controller five times, in comparison to the initial controller,
are shown in Table 3.2 (middle column).

3.4.4 Results from 4D experiment

The 4D tuning experiment, realized with the long pole, uses the same nominal model
as in the previous experiments (i.e., a poor linear model for the real plant), and the
design weights (3.12). We show that the framework is able to improve the controller
found during the 2D experiments with the long pole, but in a higher dimensional
space.

The first controller x0 destabilizes the system. After 46 iterations, ES suggests
xBG = [4.21, 7.47, 0.43, 0.01], which in comparison with the 2D experiments with
the long pole, performs about 31.7% better (see Table 3.2). We actually ran this
experiment until iteration 50, however, the algorithm did not lead to further im-
provements.

Figure 3.4 shows the cost function evaluations over the course of the tuning ex-

Table 3.2: Cost values y for three tuning experiments

2D experiments 2D experiments 4D experiments
Good model Poor model Poor model

mean std mean std mean std
x0 1.12 0.11 fu - fu -

xBG 0.76 0.058 0.059 0.012 0.040 0.0031
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Figure 3.4: Cost values obtained at each experiment distinguishing stable controllers (blue
dots), and unstable controllers (red dots).

periment. The fact that unstable controllers are obtained throughout the experiment
reflects how the global search tends to cover all areas.

Before starting the 2D experiments, we spent some effort selecting the method’s
parameters, such as hyperparameters and parameter ranges. In contrast, we started
the 4D experiments without such prior tuning. In particular, we kept the same
performance weights, chose similar design weights, and started with the same values
for the hyperparameters H and penalty fu. However, we had to restart the search
twice in order to slightly adjust H, and fu.

In general, any method reasoning about functions on continuous domains from
a finite number of data points relies on prior assumptions (see (Hennig and Schuler,
2012, Sec. 1.1) for a discussion). We were quite pleased with the outcome of the
tuning experiments and, in particular, that not much had to be changed moving
from the 2D to 4D experiment. Nonetheless, developing general rules for choosing
the parameters of GP-based optimizers like ES (maybe specific for certain problems)
seems important for future developments.

3.5 Automatic LQR tuning on a humanoid robot
In the present chapter, we demonstrated the automatic LQR tuning framework (cf.
Sec. 3.3) by learning the gains of a cart-pole system as an entry-level problem.
Because the pole is handled by a robot arm, this platform poses a bigger challenge
than standard cart-pole systems. However, the tuning is carried at the highest
level in the control hierarchy, i.e., directly on the cart-pole system. In contrast, the
low-level feedback and feedforward control loops that are needed to move the robot
arm are assumed to be given and properly tuned. These low-level controllers are
much more high dimensional and thus, more challenging to tune. In consequence,
the tuning problem presented herein, which is at the highest level in the control
hierarchy, remains low dimensional, i.e., up to four dimensions (cf. Sec. 3.4).

In order to explore the applicability of the automatic LQR tuning framework, we
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(a) Hermes (lower torso) (b) Microrrobot (c) Throttle valve

Figure 3.5: (a) Two-legged hydraulic robot. (b) Soft microrobot powered and controlled
by structured light field. The picture shows the robot (black with dotted outline) and
linear light waves with wavelength λ and duty cycle δ; c© 2018 IEEE. (c) Throttle valve
platform used as experimental testbed; c© 2019 IEEE.

considered scaling up the dimensionality of the tuning problem by tuning an LQR
controller on a humanoid robot at the lowest level: From torques to states. For this,
we leveraged existing work (Mason et al., 2014), where a low-level LQR controller
was implemented to achieve a squatting task on the humanoid robot Hermes (see
Fig. 3.5a). In such work, the diagonal terms of the weighting matrices of the LQR
controller were manually tuned. This required non-trivial domain knowledge (also
referred to as “expert knowledge”), and significant effort and time. Hence, the goal
of this project is to show that the automatic LQR tuning framework can achieve
same or better performance than the manually tuned controller, by mitigating the
hurdle of manual tuning and reducing the amount of human supervision and domain
knowledge.

Our results show that, by using a clever parametrization of the diagonal matrices
of the LQR weights, Entropy Search (ES) improves the best controller reported in
(Mason et al., 2014) in 20 iterations. The obtained results within this project remain
for the moment unpublished, yet they are mature enough.

Among the challenges existing in automatically tuning a controller on a hu-
manoid robot, an important one is tackling the high dimensionality of the problem
with ES. In the following, we first discuss how to overcome that issue and then we
present the experimental setup and the results.
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3.5.1 Effective controller parametrization in Hermes

In this section, we discuss the challenges involved in finding an appropriate parametriza-
tion for a high dimensional robot in the context of the LQR tuning approach pro-
posed in Sec. 3.2. Same as in previous work (Mason et al., 2014), we used the robot
Hermes without its torso. This non-linear and high-dimensional system counts with
u ∈ R14 active hydraulic actuators: Three in the ankle, one in the knee and three
in the hip, on each leg. The state space (q, q̇, s, ṡ) ∈ R40 includes the joint positions
q ∈ R14 (one per actuator) and velocities q̇ ∈ R14 and the pose (position and orien-
tation) of the center of mass of the robot s ∈ R6 and its velocity ṡ ∈ R6. Since the
squatting task requires both feet to remain on the ground, the center of mass could
be estimated using forward kinematics.

Although the true system is non-linear, the LQR problem assumes a linear model.
The authors Mason et al. (2014) relied on an existing linearized model of the full
dynamics around an equilibrium point, obtained from first principles. In the context
of the automatic LQR tuning framework (Sec. 3.2 and 3.3), this constitutes the
nominal model, which is needed to compute the feedback gain F (x) (3.6) by means
of the design weights (Ws(x), Wu(x)). Given the dimensionality of the system, the
terms in the diagonal of the design weights add up to D = 14 + 40 = 54 parameters.

Such dimensionality remains arguably large for the tuning problem with BO
and just a few evaluations. To further reduce it, we propose a lower dimensional
parametrization by leveraging some characteristics of the squatting movement, such
as symmetry between legs. Specifically, we parametrize jointly those terms that are
penalizing joints that participate in the squatting movement with the same role.
Effectively, this parametrization reduced the dimensionality of the problem from
D = 54 to D = 6, i.e., x ∈ R6. For example, the first parameter x1 penalizes
simultaneously the flexion-extension movement of the ankle of both legs, while the
sixth parameter x6 penalizes simultaneously rotatory movement of the ankle and
the hip from both legs. This dimensionality reductions allowed to learn a good
controller with a few evaluations using ES.

A significant challenge and key to success in this project was programming a
robust communication interface between ES and Hermes. Our interface completely
automates the learning loop, so that once the optimization started, no further human
interaction is required. Details about such interface are reported in App. A.2, and
its c++ implementation is publicly available at https://github.com/alonrot/
userES_pubsub_lqr.

For this project, we reimplemented ES in c++, which increased computational
speed by about ten times with respect to the original Matlab implementation. The
c++ implementation is available at https://github.com/alonrot/EntropySearchCpp.

https://github.com/alonrot/userES_pubsub_lqr
https://github.com/alonrot/userES_pubsub_lqr
https://github.com/alonrot/EntropySearchCpp
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Also, an alternative version to the original Matlab code can be found in https:
//github.com/alonrot/userES.

Implementation choices

The squatting task is realized by tracking a sine reference sref
k that moves the center

of mass of the robot up and down 3 . Details about the reference trajectory are
given in App. A.1.

We measure the performance of the squatting task by modifying by penalizing
the tracking error

[
sref
k − sk

]
in the quadratic cost function (3.3) as follows:

f = lim
M→∞

1
M + 1E

[
M∑
k=0

[
sref
k − sk

]>
Q
[
sref
k − sk

]
+ u>k Ruk

]
. (3.13)

The objective f is modeled as a GP, i.e., f ∼ GP (0, kmat), where the Matérn kernel
is given in (2.6) and a prior zero mean is assumed. The hyperparameters of the GP
were fixed to λi = 0.1, σ = 0.01, σS = 0.5. Similarly to (3.8), the observations y
are given by removing the limit and the expectation from (3.13), and setting a fixed
time horizon of 5 seconds, i.e., M = 5 · 103, which corresponds to 6 squats.

We used similar performance weights (Q,R) to those used in (Mason et al., 2014),
which we report in App. A.1.

To achieve the aforementioned dimensionality reduction, we first set
Wu(x) = R and Ws(x) = Q, and then modify the pertinent terms of the diago-
nal of Ws(x) as

[Ws(x)]6,6 = [Ws(x)]13,13 = 102x1+4

[Ws(x)]4,4 = [Ws(x)]11,11 = 102x2+4

[Ws(x)]1,1 = [Ws(x)]8,8 = 102x3+4

[Ws(x)]2,2 = [Ws(x)]9,9 = 102x4+3

[Ws(x)]7,7 = [Ws(x)]14,14 = 10x5+5

[Ws(x)]3,3 = [Ws(x)]5,5 = [Ws(x)]10,10 = [Ws(x)]12,12 = 104x6+1,

(3.14)

where the controller parameters x ∈ X are bounded to a unit hypercube X = [0, 1]D

for simplicity. The pair of indices (6, 13), (4, 11) and (1, 8) are coupling together the
same joints in both legs and refer to the flexion-extension movements of the ankle,
knee and hip, respectively. The pair of indices (2, 9) and (7, 14) are also coupling
together the same joints in both legs and refer to the abduction-adduction movement

3Because the LQR tuning framework (Sec. 3.2) penalizes deviation errors from a zero equilib-
rium, the obtained control gain F (x) remains valid for tracking a reference, as long as the robot
state remains close to the equilibrium point.

https://github.com/alonrot/userES
https://github.com/alonrot/userES
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Figure 3.6: Left: Cost values y obtained in 20 iterations of ES. The cost corresponding to
the initial parameters x0 is shown at iteration 1. Right: Comparison of the performance
given by the best guess xBG against the initial performance, averaged over five and three
experiments, respectively. The error bars show standard deviation.

of the hip and the ankle, respectively. Finally, the indices 3, 5, 10, 12 couple together
the rotatory joints of the ankle and the hip from both legs.

Same as in Sec. 3.4.2, the initial parameters x0 were chosen such thatWs(x0) = Q

and Wu(x0) = R. Such initial parameters yield poor squatting performance, yet it
does not destabilize the robot. After N = 20 iterations, ES reports the “best guess”
xBG as the learned controller parameters (cf. (2.9)).

For those controllers that destabilize the robot, we assigned a heuristic cost
fu = 3.0.

Result

Fig. 3.6 (left) shows the obtained cost values while running ES. The best guess is
reported at xBG = [0.77, 0.28, 0.5, 0.48, 0.63, 0.37]. In Fig. 3.6 (right) we show the
value of the initial and the final controllers. To obtain them, we conducted five
experiments at the best guess location xBG and three experiments at the initial
location x0.

To assess the robustness of the learned controller, we (i) increased the frequency
of the squatting task from 0.8 Hz to 1.2 Hz and (ii) poke the robot with a stick to
make sure it is robust against disturbances while squatting. A video summary of
the learning routine, the resulting controller and the robustness tests can be found
at at https://youtu.be/udJAK60IWEc.

https://youtu.be/udJAK60IWEc
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3.6 Additional contributions
As in the work presented in this chapter, herein we briefly discuss two collaborations
where BO was used to automatically tune controllers on real systems.

3.6.1 Gait learning for soft microrobots

In (von Rohr et al., 2018), the goal is to learn a gait controller for a soft microrobot,
made of a photoresponsive material (see Fig. 3.5b). Therein, the controller consisted
on a light field falling onto the microrobot, which generated a gait. We used BO
to tune the parameters of the light field. This resulted in a 115% improvement in
the locomotion performance as compared to an informed initial guess, only after 20
experiments. In this case, no accurate locomotion models were available, contrary
to the work presented in this chapter, where an approximate dynamics model is
used. Additionally, an initial guess on the objective function was made by acquiring
56 cost evaluations.

3.6.2 Automatic controller tuning in an industrial setting

Additionally, in (Neumann-Brosig et al., 2019), BO was used to automatically tune
the controller of a throttle valve (see Fig. 3.5c), as an industrial application exam-
ple. Our results indicate that BO outperforms manual calibration as it consistently
achieves better performance with a lower number of experiments. Contrary the
work presented in this chapter, where the controller performance is measured with
a quadratic cost, herein we used performance metrics typically used in the industry,
such as “signal overshoot” and “response time” (T90).

3.6.3 Apollo pole balancing using Kinect

Something to notice in the robotic setup described in Sec. 3.4 (i.e., balancing an in-
verted pole with Apollo) is the use of a motion capture system (Vicon) to estimate
the pole angular position. This type of off-board sensors can be seen as a disadvan-
tage in the context of autonomous robots working among humans in the near future;
therein, the robot will most likely have to rely on on-board sensors to move freely
through the environment. The goal of this project is to replace the motion capture
system (Vicon) with a Kinect sensor, which is mounted on Apollo’s forehead. Such
sensor provides RGB and depth information at a much lower rate (i.e., 30 Hz, while
Vicon can operate at 200 Hz). In addition, the noise is larger and the delays can
be up to 2-3 frames. All this amounts to a “vision-in-the-loop” much challenging
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problem, which needs from state-of-the-art computer vision techniques to be solved
efficiently.

In this project, we used a particle filter (Issac et al., 2016) to estimate the position
of the pole. More concretely, a model-based 3D-tracking filtering algorithm uses
depth images to estimate the position of the pole. An outstanding feature of such
method is that it compensates for the measurement fat-tails, usually present in
depth sensory data. We showed that it is possible to balance the pole using an
LQR controller, despite of the inherent delays of the sensor. However, despite its
potential, this project is not on a mature state for publication yet.

3.7 Conclusions
In this chapter, we have used Bayesian optimization (BO) for automatic controller
tuning. We develop, and successfully demonstrate a framework based on LQR tuning
(Trimpe et al., 2014) and Entropy Search (ES) (Hennig and Schuler, 2012) on two
robotic platforms: An inverted pendulum balanced with the humanoid robot Apollo
and a squatting task performed by the two-legged robot Hermes. This work is the
first to apply ES in experiments for automatic controller tuning.

The results with Apollo show that the auto-tuning algorithm was successful in
a 2D and a 4D experiment, both when the method was initialized with an unstable
and with a stable controller. While the 2D experiment could presumably also be
handled by grid search or manual tuning, and thus mostly served as a proof of
concept, the 4D tuning problem can already be considered difficult for a human.

The results on Hermes demonstrate that it is possible to automatically tune
the low-level controller parameters on a high-dimensional system using BO. More
specifically, our results show improvement upon a poor controller learned after 20 ex-
periments. In addition, the LQR tuning framework and the effective dimensionality
reduction (Sec. 3.5.1) help to mitigate manual tuning effort.

In this section, we discuss the advantages and drawbacks of the proposed auto-
matic LQR tuning method. Additionally, we discuss future research lines to address
open questions related to this project.

3.7.1 Discussion

There are two key elements for the proposed automatic LQR tuning framework to
succeed in practice. First, a thoughtful parametrization of the design weights (cf.
Sec. 3.2.2) is important and can help to reduce the dimensionality of the tuning
problem. Spending the effort of finding such parametrization has a payback on
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autonomy, as it mitigates the human interaction with the robot and also allows
to automatically improve a poor controller only with high level human supervision
(e.g., for safety). Second, robustness in the communication framework was crucial
for success, as many technical issues can easily break the communication between
the optimizer (ES) and the robot. For example, if the robot needs to be emergency-
stopped due to an aggressive unstable controller, the optimizer needs to be informed
to wait for the robot to be restarted, instead of continuing or timing out (for more
details about the communication framework see App. A.2).

Generally speaking, the proposed automatic LQR tuning framework poses some
clear benefits, which we discuss below.
I A clear benefit of the LQR tuning framework (Sec. 3.2) in a high dimensional

setting, such as in Hermes, is related to the dimensionality reduction: While the
naive, but straightforward choice would be to directly learn the feedback gain
matrix, i.e., x = F , this would imply a 14 × 40 = 560 dimensional problem,
which is a too large dimensionality for learning from a few evaluations using
BO. Furthermore, we would not have leveraged the availability of the nominal
model. In contrast, the LQR framework learns a parametrized feedback gain
F (x) (3.6) through the diagonal of the LQR weighting matrices (Ws(x), Wu(x)),
which implies 14 + 40 = 54 parameters instead of 560.

I Although not completely reduced, human supervision was mitigated during the
learning process. This was possible due to the robust communication framework
that allowed to carry out the entire optimization loop without human interven-
tion. For security reasons, an operator has to be ready to stop the robot platform
by pressing an emergency button. However, this is a common safety measure in
many robotic platforms.

I The communcation framework can be reused without major alterations to opti-
mize controller parameters in other tasks.
A key question for the development of truly automatic tuning methods is the

amount of “prior engineering” that has to be spent to get the method to work. In
particular, the 4D experiments on Apollo were promising since not a lot of tuning,
and only few restarts were necessary. The 6D experiments on Hermes also involved
a few restarts, but it required careful parametrization of the design weights. Below,
we discuss some aspects about the required “prior engineering” for the automatic
LQR tuning to work in practice.
1) In the project with Hermes, non-trivial efforts were spent on properly tuning the

matrices Q and R to compute the quadratic cost (3.13). Because some states
could be noisier or larger in magnitude than others, they could outweigh all
others in the final cost value. To avoid this, domain knowledge on the robotic
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platform is required and real experiments need to be manually carried to properly
tune Q and R, before starting ES.

2) In the project with Hermes, reducing the dimensionality of the parameter space
down to 6 in the design weights carried some drawbacks. First, finding the
appropriate coupling terms in the design weights required (i) knowing a priori the
type of movement to be made (i.e., squatting), and (ii) using domain knowledge
to decide what joints to couple together. Second, this process required doing
experiments on the robot before starting ES.

3) The LQR problem assumes a linear system. This poses two clear disadvantages:
(i) in case of a robot (which are typically non-linear systems), a linearized model
around an equilibrium point is assumed to be available, and (ii) the movements
of the robot are restricted to be quasi-static around the equilibrium point. For
instance, automatic LQR tuning cannot work if the robot is walking, jumping
or extending a leg.

It is generally important to understand how to overcome these problems. For ex-
ample, about the first issue: When working with real systems, coming up with an
effective, yet simple, reward function unavoidably requires domain knowledge about
the platform. However, reducing the number of prior experiments is possible by
having less complicated reward functions. In the particular case presented in this
chapter, we could simply replace the proposed quadratic cost with the tracking er-
ror of the center of mass. In such case, a single state participates in the final cost
value, which solves the problem of trading off the influence of different states. In
other settings, many states might have to be penalized. In such case, an additional
BO routine could be executed in an outer loop to aid the automatic tuning of such
parameters, constituting a meta-learning approach.

About the second issue: Dimensionality reduction of a humanoid robot using
domain knowledge has been recently proposed in the context of BO (Yuan et al.,
2019). In the present case, although symmetries in the squatting movement made
it possible to reduce the dimensionality, such symmetries might not be present in
other tasks. The number of evaluations required in standard BO to have a good
coverage requires an exponential amount of evaluations. Provided the intrinsic ef-
fective dimensionality is low, REMBO (Wang et al., 2016) has been proposed as a
solution to tackle high dimensional spaces. Furthermore, (Wang and Jegelka, 2017)
proposes an additive model that allows to scale to higher dimensions.

About the third issue: The automatic tuning framework presented in this chapter
is not strictly tied to LQR problems. For example, BO could be used to automati-
cally tune parameters of the iterative LQR (Li and Todorov, 2004) control architec-
ture, which is designed for robots operating along trajectories, rather than equilib-
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rium points, and assumes a non-linear model of the system. Alternatively, model-
based reinforcement learning (MBRL) algorithms usually involve a small number of
parameters, either in the reward shaping or in the algorithm itself (Chua et al., 2018;
Deisenroth and Rasmussen, 2011; Kamthe and Deisenroth, 2018). In those cases,
BO could aid learning such parameters in an outer optimization loop. In fact, BO
has been used to tune controller parameters of very different control architectures
(Antonova et al., 2016; Bansal et al., 2017; Büchler et al., 2019) (see Sec. 1.5.2 for
a review).

3.7.2 Open problems

Besides the aforementioned issues, there are a number of open problems that we
encountered while working on these projects. Herein, be briefly discuss them and
how they connect with the subsequent chapters of this thesis.

First, an important aspect of the presented framework is the treatment given to
unstable controllers. Both, in the project with Apollo and the project with Hermes,
many aggressive controllers were encountered during the learning routine. In these
cases, the platform was stopped by pressing an emergency button. In that case,
the obtained data was scarce or non existent, and not comparable with the data
obtained from stable controllers. In Chap. 6 we specifically address this issue by
introducing safety constraints into the tuning problem.

Second, in these projects we have chosen standard kernels to configure the Gaus-
sian process models. Because we have no accurate understanding of the true shape
of the cost function before (and also not after) we carry out experiments on the
robot, it is unclear what is the best kernel choice. Would it be possible to design an
expressive kernel tailored to the control problem at hand? In Chap. 5 we study this
and some related open questions.

Third, as typically happens in robotics, before trying a controller on the real
system, we make sure that such controller does work in simulation. In Chap. 4 we
study how to incorporate the simulation into the learning loop.
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Chapter 4
Virtual vs. real: Trading off simulations
and physical experiments using Bayesian

optimization

This chapter presents the contents of our conference publication (Marco et al., 2017).
A video recording of the spotlight presentation at the conference can be found at
https://youtu.be/6ddBAX8-BHQ. The ideas presented herein naturally emerged
motivated by one of the shortcomings of the controller learning framework proposed
in Chap. 3. Therein, the proposed method is not as sample-efficient as it could be
if additional sources of information were injected into the learning loop. Since sim-
ulators are usually are readily available for most robotic platforms and informative
about what behavior to be expected in reality, we study herein the possibility of
including it as an additional information source.

The algorithm presented in this chapter is an extension of Entropy Search (cf.
Sec. 2.3.1) to the case of multiple information sources. The result is a principled way
to automatically combine cheap, but inaccurate information from simulations with
expensive and accurate physical experiments in a cost-effective manner. We apply
the resulting method to a cart-pole system, which confirms that the algorithm can
find good control policies with fewer experiments than standard Bayesian optimiza-
tion on the physical system only. Furthermore, we also use herein the LQR tuning
framework proposed in Sec. 3.2.

In this chapter1, we first introduce the problem and enumerate the contributions
in Sec. 4.1. Then, we formulate the problem in Sec. 4.2 and discuss the proposed
method in Sec. 4.3. After, we present our results in Sec. 4.4 and finally conclude in
Sec. 4.5.

1For an extensive literature review see Sec. 1.5.3
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Figure 4.1: The proposed algorithm optimizes the parameters x of a control policy based
on data of a cheap, but inaccurate simulation and expensive data from the real system. By
actively trading off between the information that can be gained from each system relative
to their costs, the algorithm requires significantly fewer evaluations on the physical system.

4.1 Introduction
Typically, the control policies that are used in robotics depend on a small set of
tuning parameters. To achieve the best performance on the real system, these pa-
rameters are usually tuned manually in experiments on the physical platform. Policy
search methods in reinforcement learning aim to automate this process (Sutton and
Barto, 1998). However, without prior knowledge, these methods can require signifi-
cant amounts of experimental time before determining optimal, or even only reason-
able parameters. In robotics, simulation models of the robotic system are usually
available, e.g., as a by-product of the design process. While exploiting knowledge
from simulation models has been considered before, no principled way to trade off be-
tween the relative costs and accuracies of simulations and experiments exists (Kober
et al., 2013). As a result, state-of-the-art reinforcement learning methods require
more experimental time on the real system than necessary.

In this chapter, we present a Bayesian optimization algorithm that can auto-
matically optimize the parameters of control policies based on data from different
information sources, such as simulations and experiments. Specifically, we use an
extension of Entropy Search (Hennig and Schuler, 2012; Villemonteix et al., 2009),
a Bayesian optimization framework for information-efficient global optimization.
Therein, entropy is used to measure the information content of simulations and
experiments. Since this is an appropriate unit of measure for the utility of both
sources, our algorithm is able to compare physically meaningful quantities in the
same units on either side, and trade off the amount of information gained from
different sources with their respective costs. As a result, the algorithm can auto-
matically decide whether to evaluate cheap, but inaccurate simulations or perform
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expensive and precise real experiments. This results in fewer physical experiments
to determine optimal parameters (see Fig. 4.1). We apply the method to optimize
the policy of a cart-pole system and show that this approach can speed up the
optimization process significantly compared to standard Bayesian optimization (cf.
Sec. 2.3). The main contributions of this chapter are (i) a novel Bayesian opti-
mization algorithm that can trade off between costs of multiple information sources
and (ii) the first application of such a framework to the problem of reinforcement
learning and optimization of controller parameters.

For convenience within the next sections, we rename the concepts accuracy and
cost: We now refer to the lack of accuracy of a controller as cost. Furthermore,
we now denominate the cost of retrieving an evaluation from a specific information
source as effort.

4.2 Problem Statement
Throughout this chapter, we aim at solving the same controller tuning problem
presented in Sec. 2.1. As stated therein, the goal is to find an optimal controller
to complete a certain task on a dynamic system. We assume no dynamics model
is given, but a controller uk = π(sk;x), parametrized with parameters x ∈ X , is
assumed to be known. The goal is to determine the optimal parameters x∗ that
globally minimize the cost f of a task,

x∗ = argmin
x∈D

f(x), (4.1)

where queries f(x) involve doing an experiment on the real robot and measuring
an error signal over a fixed time horizon. Since these experiments cause wear in
the robot and take time, the goal is to minimize the number of iterations before
the optimal parameters in (4.1) are determined. To this end, we use Bayesian
optimization (BO) (cf. Sec. 2.3).

We assume that a simulation of the system is available, which we want to exploit
to solve (4.1) more efficiently with fewer evaluations on the physical system. While
simulations are only an approximation of the real world and cannot be used to
determine the optimal parameters in (4.1) directly, they can be used to provide an
estimate fsim(x) of the true cost. We use this estimate to obtain information about
the location of the optimal parameters on the real system. As a result, at each
iteration t, we do not only choose the next parameters xt+1 to evaluate, but also
whether to perform a simulation or an experiment.

Both experiments, in the real world and in simulation, have physically meaningful
evaluation efforts associated to them. For example, the effort may account for the
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amount of time required to complete an experiment/simulation and for monetary
costs such as wear in the system. The overall goal is to minimize the total effort
incurred in the experiments and simulations until the optimal parameters (4.1) on
the real system are found.

We assume the cost is modeled with a Gaussian process (GP) f ∼ GP (m(x), k(x, x′)).
We use the same notation introduced in Sec. 2.2. Furthermore, same as in Chap. 3,
we use Entropy Search (ES) (cf. Sec. 2.3.1) to address the automatic controller
tuning problem (4.1).

4.3 Reinforcement Learning with Simulations
In this section, we show how the ES algorithm can be extended to multiple sources of
information, such as simulations and physical experiments. The two main challenges
are modeling the errors of the simulator in a principled way and trading off evaluation
effort and information gain. In the following, we focus on the case where only one
simulation is available for ease of exposition. However, the approach can easily be
extended to an arbitrary number of information sources.

4.3.1 GP model for multiple information sources

To model the choice between simulation and physical experiment, we use a specific
kernel structure that is similar to the one used in (Poloczek et al., 2017). The key
idea is to model the cost on the real system as being partly explained through the
simulator plus some error term. That is, f(x) = fsim(x) + ferr(x), where the true
cost consists of the estimated cost of the simulation, fsim(x), and a systematic error
term, ferr(x). To incorporate this in the GP framework of Sec. 2.2, we extend the
parameter vector by an additional binary variable δ, which indicates whether the
cost is evaluated in simulation (δ = 0) or on the physical system (δ = 1). Based
on the extended parameter x̂ = (x, δ), we can model the cost by adapting the GP
kernel to

k(x̂, x̂′) = ksim(x, x′) + kδ(δ, δ′) kerr(x, x′). (4.2)

The kernels ksim(·, ·) and kerr(·, ·) model the cost function on the simulator and its
difference to the cost on the physical system, respectively. The kernel kδ(δ, δ′) = δδ′

is equal to one if both parameters indicate a physical experiment and zero otherwise.
From Sec. 2.2, we know that the kernel (4.2) models the covariances for differ-

ent parameters. Intuitively, the kernel (4.2) encodes that two experiments on the
physical system covary strongly. However, if one of the δ-variables is zero (i.e., a sim-
ulation), then the covariance between the two values is captured by ksim. Effectively,
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(a) Exploration stage after two evaluations

(b) Exploration stage after ten evaluations

Figure 4.2: Synthetic example of how simulations and physical experiments can be com-
bined by trading off information and evaluation effort. In (a), top, it is shown the GP
posterior conditioned on one simulation (blue dot) and one physical experiment (red dot).
The GP model from Sec. 4.3.1 encodes that a portion of the uncertainty in the cost of the
real system (red shaded) can be explained through the simulator (blue shaded). The red
dashed line represents the cost function of the physical system. The cost function of the
simulator is omitted for simplicity. In (a), bottom, it is shown the expected information
gain per unit of effort of the simulator (blue line), and of the physical system (red line).
The most informative point (blue dot) is selected among the two sources by the proposed
method as next evaluation (in this case, a simulation). In (b), top, it is shown the GP
posterior after nine iterations. The global minimum (orange dot) is found close to the true
minimum.

the error covariance is switched off in simulations in order to model that simulations
cannot provide all the information about f . By choosing the kernels ksim and kerr,
we can model to what extend f can be explained by the simulator and thereby its
quality. This is illustrated with a synthetic example in Fig. 4.2. The total variance
of the cost on the physical system is shown in red. Before any data is observed,
it is equal to the uncertainty about the simulation plus the uncertainty about the
error. As shown in Fig. 4.2a, the blue shaded region highlights the variance of the
simulator. Evaluations in simulation (blue dots) reduce the uncertainty of this blue
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shaded region, but reduce only partially the uncertainty about the true cost (red).
In contrast, an evaluation on the real system (red dot) allows one to learn the true
cost f directly, thus reducing the total uncertainty (red), while some uncertainty
about the variance of fsim remains (blue). Having uncertainty about the simulation
is by itself irrelevant for the proposed method, because we solely aim to minimize
the performance on the physical system.

Next to the kernel, we account for different amounts of noise in simulation (typi-
cally noise-free) and on the real system. That is, the noise variance of measurements,
σ2 in (2.3), takes different values, σ2

exp and σ2
sim, depending on whether an experiment

or a simulation is chosen. With this kernel and noise structure, the two informa-
tion sources can be modeled by a single GP, and the predictive distribution can be
computed using (2.4).

4.3.2 Optimization

With the GP model defined, we now consider how it can be used to trade off accuracy
for evaluation effort. To this end, we extend Entropy Search (ES) (cf. Sec. 2.3.1) to
account for multiple information sources. As before, we want to minimize the cost
(4.1) on the real system. This means, the distribution over the minimum is defined
in terms of the same cost (2.10) as in standard ES. In order to approximate pmin,
we need to use the GP kernel with the additional δ factor fixed to one,

pmin(x) = p(x = argmin
x̃∈X , δ=1

f(x̃, δ)). (4.3)

As in ES, the goal is to arrive at a distribution pmin that has low entropy (i.e.,
very peaked on a certain location). The expected change in entropy is an appropri-
ate measure for this. However, this quantity additionally depends on the variable δ,
so that the algorithm has an additional degree of freedom in the parameters to opti-
mize. If one were to use the same optimization problem as in (2.12), the algorithm
would always choose to evaluate parameters with δ = 1. This is because the exper-
iments with δ = 1 provide information about the cost function f directly, while an
evaluation with δ = 0 only provides information about part of the cost, fsim.

To trade off between the two choices more appropriately, we associate an effort
measure with both kinds of evaluations; tsim for the simulation and texp for physical
experiments. While simulations are less informative about pmin, they are signifi-
cantly cheaper than experiments on a physical platform so that tsim < texp. These
effort measures can have physically meaningful units, such as the amount of time
taken by a simulation relative to a physical experiment. While the effort measures
are important to trade off the relative gains in information, they do not require
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tuning. For example, setting the effort of the simulator too high may lead to more
experiments on the physical system than necessary, but the optimal parameters on
the real system are found regardless.

A key advantage of using entropy to determine progress toward the goal is that
it is a consistent unit of measurement for both information sources, even in the case
of different noise variances. As a result, we can compare the gain in information
about the location of the minimum (i.e., pmin) in simulation and physical experiments
relative to their efforts. Thus, we select the next parameters, xt+1, and where to
evaluate them, δ, according to

argmax
x∈D, i∈{sim,exp}

E [∆Hi(x)] / ti. (4.4)

The expected gain in entropy, E [∆Hi(x)], depends on whether we evaluate in sim-
ulation or physical experiment. By selecting the best gain per unit of effort, the
algorithm automatically decides which kind of evaluation decreases the uncertainty
about the location of the minimum the most, relative to effort. Importantly, since
the GP model in (4.2) is adaptive to the quality of the simulator, the acquisition
function (4.4) leads to informed decisions about whether the simulator is reliable
enough to lead to additional information.

We illustrate a typical run of the algorithm in Fig. 4.2. The algorithm was
initialized with one physical experiment (red dot in Fig. 4.2a) for the purpose of
illustration. The evaluation effort of the simulator was set to 40% less of that of the
real system. As a result, it is advantageous to exploit initially the low effort that
takes to do simulations. The algorithm automatically decides to do so, as can be seen
in Fig. 4.2a. The simulation (blue dot) decreases the amount of uncertainty about
the simulation model, but provides only partial information about the true cost of the
system. As a result, the method eventually starts to evaluate parameters on the real
system. Notice that this is not the same as two stage learning, because the algorithm
can decide to switch back to simulations if this is beneficial. This is especially
important in situations where the quality of the simulation is not known in advance
and the hyperparameters of the kernels in (4.2) are optimized. Eventually, the
algorithm converges to a distribution pmin that is peaked around the minima of the
cost function. Since the model can exploit cheap information from simulation, fewer
physical experiments are needed to determine the minimum than if only physical
experiments were used.

Because the proposed method extends Entropy Search (ES) to multiple in-
formation sources, we refer to it as Multi-fidelity Entropy Search (MF-ES). The
method outputs the best guess location for the global minimum xBG, which is
obtained as in (2.9). Our Matlab implementation of MF-ES can be found at
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https://github.com/alonrot/mfES.

4.4 Experimental Results
In this section, we evaluate MF-ES for optimizing the feedback controller of an
unstable cart-pole system, as illustrated in Fig. 4.1.

4.4.1 System description

As experimental setup, we use the Quanser Linear Inverted Pendulum (Quanser,
2015). The dynamic equations of the cart-pole system were already introduced in
(3.9). To simulate the dynamics, we used the model parameters are reported in
(Quanser, 2015). The cart-pole setup is connected through dedicated hardware to a
standard Laptop and can be controlled via Matlab/Simulink. A nonlinear Simulink
model of the system dynamics (3.9) is provided by the manufacturer and used as
the simulator in our setting.

4.4.2 Controller Tuning Problem

Herein, we use the same controller tuning framework presented in Sec. 3.2. Therein,
a feedback controller uk = F (x)sk is used to control the system, and the feedback
gain F (x) ∈ R1×4 is parametrized using the design weights Ws(x) and Wu(x) of the
LQR problem (see Sec. 3.2.2 for details). As in Sec. 3.3, the goal is to minimize
a quadratic cost function (3.3), defined by means of the performance weights Q =
diag (1, 1, 1, 0.1) and R = 10−1.5, and a sufficiently long time horizon M . Following
Sec. 3.2.2, we parametrized the design weights as

Ws(x) = diag(10x1 , 1, 1, 0.1), x1 ∈ [−3, 2], (4.5)
Wu(x) = 10−x2 , x2 ∈ [1, 5]. (4.6)

Hence, we are left with tuning two parameters, x ∈ R2. In spite of the low dimen-
sionality of the problem, our goal is to illustrate how MF-ES works with a real
robotic platform. In Chap. 3 we already showed that both, the automatic LQR
tuning framework and Entropy Search work well in higher dimensional problems.
We also emphasize that LQR weights are only one possible way to parameterize
feedback controllers; alternative parameterizations (Roberts et al., 2011) or direct
tuning of the gains F (Berkenkamp et al., 2016a) is also possible. The method
proposed herein is independent of the specific parameterization used.

https://github.com/alonrot/mfES
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An evaluation of the cost fexp(x) is obtained by computing the controller gain
(3.6) based on the weight matrices (4.5), (4.6), performing a 30 s balancing exper-
iment on the physical system, and computing the cost according to (3.8) from the
experimental data {xk, uk}Mk=0, with M = 3 · 104. A simulation evaluation fsim(x) is
obtained in the same manner by running a 30 s simulation instead.

If a candidate controller violates safety limits on the states and inputs, it is
determined as unstable, and we assign a fixed penalty of fexp = 0.06 and fsim = 0.04
for physical experiment and simulation, respectively. These numbers are chosen
conservatively larger than the cost of the worse stabilizing controller observed after
some a priori initial evaluations. Thus, evaluations during the learning procedure
shall not result in higher costs than these.

The controller is automatically tuned over roll-outs without human intervention.
To this end, a nominal2 controller xnom = [0, 1.5] is balancing the pole when no tun-
ing experiment is being performed. The optimizer triggers new experiments, when
an evaluation on the real system is required. As soon as the experiment is finished,
or instability is detected, the system switches back to the nominal controller. The
nominal controller shows very poor performance, which shall be improved with the
proposed RL method.

4.4.3 Bayesian Optimization Settings

We apply the method of Sec. 4.3, MF-ES, to optimize the experimental cost (3.3)
by querying simulations and experiments. The efforts in (4.4) correspond to the
approximate times we need to wait until a simulation is computed and a physical
experiment is performed, tsim = 1 s and texp = 30 s, i.e., simulations require 30 times
less effort than physical experiments.

For the GP model, we choose the rational quadratic kernel with α = 1/4 (see
(Rasmussen and Williams, 2006)) for both ksim and kerr in (4.2). Hyperparam-
eters, such as length scales and output variances, were chosen from some initial
experiments and then held fixed during optimization. As prior mean functions,
we use msim(x) ≡ 0.04 and merr(x) ≡ 0.02, respectively, for the simulation and er-
ror GP. These choices correspond to the penalties fsim and fexp given for unstable
controllers (adding msim and merr for the experiment). Hence, the prior mean is
pessimistic in the sense that we believe a controller to be unstable before seeing
any data. The prior variance of ksim and kerr are chosen as σ2

S,sim = 1.6× 10−5 and
σ2
S,err = 3.84× 10−4 respectively.

2The nominal controller is the optimal controller if the true dynamics was linear according to
the nominal model (A,B). Then, choosingWs(x) andWu(x) corresponding to the cost (3.3) yields
the optimal controller F , see Sec. 3.2 for details.
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Figure 4.3: GP posterior after termination of the exploration with MF-ES. The evaluations
on the simulator (light blue) are systematically below the evaluations on the real system
(dark blue). This bias is captured by the GP model assuming a lower prior mean for the
simulator data, as mentioned in Sec. 4.4.3. The posterior mean (green surface) and ±2
std (gray surface) predict the underlying cost function of the real system, conditioned on
the observed data from both simulator and experiments. The best guess location for the
global minimum, xBG, is represented by the orange dot.

The noise standard deviation of an evaluation on the real system, as defined in
(2.3), has been estimated to σexp = 2.08× 10−4, while the noise of the simulator has
been set to σsim = 10−5, roughly twenty times lower.

We stop the exploration when the GP posterior mean at the best guess xBG (i.e.,
the current estimate of the global minimum) has not changed significantly (within
a range of σerr/4 over the last 3 iterations), and we are sufficiently certain about its
value (posterior standard deviation at xBG less than σerr/2). Once the exploration
has terminated, we evaluate the final best guess controller on a physical experiment
and take its cost as the outcome of the learning procedure.

4.4.4 Results

A video summary describing the method and the obtained results can be found at
https://youtu.be/oq9Qgq1Ipp8. We run MF-ES on the LQR problem described
in Sec. 4.4.2. Fig. 4.3 shows the final GP cost function landscape after the learning
procedure, highlighting simulations (in light blue) and experiments (in dark blue).

https://youtu.be/oq9Qgq1Ipp8
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Figure 4.4: (Top) Cost obtained at each iteration with the proposed approach during one
exploration run. When the exploration terminates, the best guess is evaluated on the
physical system (violet dot). (Bottom) Evolution of the GP posterior mean at the best
guess µ(xBG) and std ±σ(xBG).

For the same learning run, Fig. 4.4 (top) illustrates how MF-ES alternates between
simulations and physical experiments over iterations. As can be seen, the algo-
rithm first performs multiple cheap simulations, which allow to identify regions of
unstable controllers (i.e., regions of high predicted cost in Fig. 4.3) without any real
experiment. At iterations 10 and 14, the algorithm demands two expensive physical
experiments. The reason is that a time unit spent in simulation is expected to be
less informative than on a physical experiment. Thereby, experiment time should be
better spent on the physical system. Fig. 4.4 (bottom) shows the GP posterior mean
and standard deviation of the best guess at each iteration. The stopping criterion
terminates the exploration after 14 iterations because the GP posterior mean of the
last three best guesses were steady enough. Finally, the algorithm selects the last
global minimum, xBG = [0.212, 2.42] (orange dot in Fig. 4.3), as the final controller,
which was evaluated on the physical system retrieving a low cost f(xBG) = 0.0194.

As a remark, we observe that the algorithm alternates between simulations and
experiments in a non-trivial way, which cannot be reproduced with a simple two-
stage learning process, where simulations are used to seed experimental reinforce-
ment learning. Furthermore, in Fig. 4.3, we can see that the posterior mean around
x = [−2, 4] falls back to the prior in the absence of evaluations. As pointed out
in Sec. 4.4.3, the prior mean is pessimistic in the sense that predicts instability
in unforeseen areas, which is a reasonable assumption in controller tuning of real
systems.

In order to illustrate the benefit of trading off data from experiments and sim-
ulations, we compare MF-ES to ES (Hennig and Schuler, 2012), which uses only
physical experiments. The latter corresponds to the automatic controller tuning set-
ting in Sec. 3.3. We run each of these methods ten times on the controller tuning
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Figure 4.5: Comparison of the final controller cost at each run between the proposed
approach (MF-ES) and ES. The cost of the nominal controller (beige) with ± 2 std is
shown for reference.
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Figure 4.6: Number of physical experiments at each run for MF-ES (dark blue) and
standard ES (dark red), as well as simulations for MF-ES (light blue).

problem. The results are discussed in Fig. 4.5 and Fig. 4.6.
In Fig. 4.5, we show the cost of the final controller at each run, for both meth-

ods. The cost of the nominal controller (green) is shown as a reference. MF-ES finds
controllers that are 33.23% better, on average. Moreover, it consistently finds sta-
bilizing controllers, while ES fails to find a stabilizing solution in 4 out of 10 cases
(cost of 0.06).

Fig. 4.6 compares the number of physical experiments performed with MF-
ES (dark blue) and with ES (dark red). While ES needs on average 3.5 physical
experiments, MF-ES needs 2.7 (22.86% less) plus 11.9 simulations. These results
demonstrate that MF-ES can find, on average, better controllers with a lower num-
ber of real experiments by also leveraging information from simulations.

4.5 Conclusions
In this chapter, we have proposed an extension of Entropy Search (ES) to the multi-
fidelity setting in order to adaptively select between multiple information sources
with different accuracies and evaluation efforts. We learn the controller parameters
of a real cart-pole system using our framework, which trades off between experiments
on the physical plant and the simulator. The experimental results confirm that
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using prior model information from a robot simulator can reduce the amount of
data required to globally find good control policies.

We have also shown that the applicability of the automatic LQR tuning frame-
work proposed in Sec. 3.3 easily extends to a setting with multiple information
sources. Additionally, our extension of ES to the multi-fidelity setting (MF-ES)
constitutes a novel contribution by itself.

We discuss below MF-ES in the context of related work posterior to its publica-
tion. Although the field has somewhat evolved, MF-ES remains relevant. Finally,
we propose future ideas on how to extend and improve MF-ES.

4.5.1 Discussion and future lines

Although we have demonstrated the effectiveness of the proposed method (MF-ES)
in a low dimensional parameter space, recent work has applied MF-ES to more
complex real systems. For example, in (Rodriguez et al., 2018), simulations and real
experiments are combined in order to learn gait stabilization parameters on a real
bipedal robot.

In spite of its advantages, MF-ES comes with a few shortcomings. For example,
the applicability of this method is restricted to knowing, or having a way to estimate,
the effort involved in gathering evaluations from the different information sources.
There could be cases in which the effort cannot be accurately estimated ahead in
time, for example in finances, when assessing the monetary cost of assets needed for
an investment. In those kind of settings, the trade off between information gain and
effort might be changing over iterations, which poses an interesting research direc-
tion, worth to investigate. Additionally, the prior variance given to the simulator
serves as a proxy to establish “how informative it is”. Because the simulator does
not change over iterations, the prior variance must stay constant. This can be seen
as a drawback, as the flexibility of the GP model is not being fully exploited. A
simple solution could be to obtain the simulator prior variance by scaling down the
real cost variance with a fixed factor. Then, the prior variance of the real cost can
be optimized, while the factor keeps reflecting “how informative” the simulator is
with respect to the true function. Finally, such factor could be estimated a priori by
(i) sampling a large number of experiments from both, the simulator and the real
system, and (ii) computing the ratios of successful controllers on each case.

From a more high-level perspective, a plausible counterargument to this work
naturally arises when applying it in settings where simulations are way cheaper than
real evaluation. For instance, one may wonder why restricting ourselves to a pipeline
of sequential real/simulated evaluations if simulations are essentially “for free”. In
these settings, the proposed method herein would appear useless, as one could (i)
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conduct many simulations prior to evaluations on the real system, or (ii) conduct
simulations in batches in parallel to the real experiment as it runs. In the following,
we discuss why MF-ES is still useful in both cases.

While the first case might seem appealing, a plausible number of simulations
grows exponentially with the dimensionality of the problem, which still leaves room
for a method that alternates between simulations and real experiments on demand,
like MF-ES.

For example, the authors Rai et al. (2018, 2019) describe a setting in which a
walking controller for a biped robot is estimated using BO (specifically, expected
improvement). They have access to a high-fidelity simulator and argue that sim-
ulations come at no cost, since they have access to infinite resources. Thus, they
propose a kernel informed by the high-fidelity simulator, which is first learned off-line
using samples from the simulator and then, used to learn a 9-dimensional controller
on the real robot with BO. While this could seems a reasonable, they report that
only 100,000 simulations were conducted, which implies a coarse grid of less than
4 points per dimension. In spite of the high-fidelity simulator, there are high vol-
umes in the simulation space still unexplored. Furthermore, each simulation took
non-negligible time to complete (i.e., five seconds each; a total of five days). In this
type of setting, MF-ES has potential for improvement: It could be warm-started
using the pre-computed informed kernel, and help to cover the unexplored chunks
of volume in the simulator as it is demanded by the information/effort trade off.

In a similar context, (Antonova et al., 2018) propose to pre-learn an informed
kernel using samples from a database of simulated grasping tasks. Then, such kernel
was used to learn on the real system by randomly alternating with a non-informed
kernel (e.g., squared exponential) to mitigate the bias. Herein, MF-ES could also
be used to keep updating the informed kernel by collecting simulation evaluations.

Generally, poor simulators tend to bias the search, which casts doubt over the
“information never hurts” argument. However, with MF-ES this argument still holds
as we can explicitly state how much confidence we give to the simulator in the first
place. As opposed to (Antonova et al., 2018), where the bias of the simulator needs
to be explicitly mitigated, our approach automatically does so, which we believe
poses a great benefit.

In the second case, MF-ES could be parallelized when it comes to query for
the simulator using batch Bayesian optimization (Daxberger and Low, 2017; Wang
et al., 2017, 2018a). Specifically, while the real experiment is being queried, BO
keeps querying simulations in batches, which should speed up convergence. Toward
this direction, some ideas from (Hernández-Lobato et al., 2016, Sec. 5) could be
leveraged. The authors propose a framework to speed up the acquisition of a new
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candidate in BO, when the experimental evaluation is sufficiently slow.
Finally, recent work (Wu et al., 2019) combines batch BO in the multi-fidelity

setting. However, this would be impractical herein, as the robot experiments have
to be conducted sequentially, i.e., we assume a single robot, rather than a robot
farm.

4.5.2 Vision

There is an increasing interest in the robot learning community on including the
simulator in the learning loop. This has been commonly addressed as “closing the
reality gap” (Chatzilygeroudis et al., 2019; Mirletz et al., 2015; Zhu et al., 2018).
Despite of this recent interest, one may wonder whether this is a trend, or if it is
meant to stay over time.

Nowadays, high-fidelity simulators are becoming more present and more accu-
rate. With the increasing growth in computational power, it is unavoidable to think,
could there be a point in time in which simulators are as informative as the real robot
experiments?. Indeed, if that was the case, then, algorithms like MF-ES and much
of the aforementioned research would become obsolete. However, there are two as-
pects to keep in mind. First, it is clear that no robot model, as good as it could
be, can perfectly match reality, even if infinite computational power is available.
Second, if robots are ever functioning among humans, they will constantly need to
adapt their controllers and their dynamics to new situations. This is due to changes
in the environment, but also possible changes in their morphology (e.g., slight loos-
ening of articulations, deformities caused by impacts over time, etc). Building and
programming those robots with a certain degree of adaptability and robustness is
definitely desirable from the user standpoint, to avoid frequent reparations. That
said, algorithms like MF-ES, that account for a mixture between fresh data acquired
from the environment and a pre-established simulator (more or less accurate), will
keep having a place in future developments in robot learning.
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Chapter 5

On the design of LQR kernels

In this chapter, we present ideas from our conference publication (Marco et al.,
2017). A video recording of the presentation at the conference can be found at
https://youtu.be/zsC6Lufkl_E.

The ideas discussed herein build upon the automatic LQR tuning framework in-
troduced in Chap. 3. Therein, Bayesian optimization (BO) (Sec. 2.3) is proposed as
a powerful framework for direct controller tuning from experimental trials on non-
linear dynamic systems. To model the performance objective function that encodes
the tuning performance, BO typically relies on Gaussian processes (GPs) (Sec. 2.2).
In Chap. 3 and 4, the used GP models are described with a non-informative kernel.
This can, however, lead to poor learning outcomes on standard quadratic control
problems. For a first-order system, we construct two kernels that specifically lever-
age the structure of the well-known Linear Quadratic Regulator (LQR), yet retain
the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear
and nonlinear systems demonstrate that the LQR kernels yield superior learning
performance.

This chapter is structured as follows1. First, we introduce the problem and
the contributions in Sec. 5.1. Second, we introduce the considered learning control
problem in Sec. 5.2. Third, we use the BO framework for learning control (cf.
Sec. 2.3) in the special case of a scalar problem and develop the LQR kernels in
Sec. 5.3. Numerical results in Sec. 5.4 illustrate the improved learning performance
of the proposed kernels over a standard kernel. The chapter concludes with remarks
in Sec. 5.5.

1For an extensive literature review see Sec. 1.5.4
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5.1 Introduction
While BO provides a promising framework for learning controllers in fairly general
settings, the full power of Bayesian learning is often not exploited. A key advantage
of Bayesian methods is that they allow for combining prior problem knowledge with
learning from data in a principled manner. In case of GP models, this concerns
specifically the choice of the kernel, which captures the covariance between function
values at different inputs and is thus the core component to model prior knowl-
edge about the function shape. By choosing standard kernels, however, naive BO
approaches do often not exploit this opportunity to improve learning performance.

In this chapter, we show how structural knowledge about the optimal control
problem at hand can be leveraged for designing specific kernels in order to improve
data efficiency in learning control. For a first-order nonlinear quadratic optimal
control problem, we propose two LQR kernels that leverage the structure of the
famous Linear Quadratic Regulator (LQR) problem given in form of an approximate
linear model of the true nonlinear dynamics. The proposed kernels leverage the
structure of the LQR problem, while retaining the flexibility of nonparametric GP
regression. In detail, we state below the contributions of this work:
1) We discuss how the structure of the well-known LQR problem can be leveraged

for efficient learning of controllers for nonlinear systems.
2) This discussion leads to the proposal of two new kernels for GP regression in the

context of learning control: the parametric and nonparametric LQR kernels.
3) The improved learning performance achieved with these kernels over a standard

kernel is demonstrated through numerical simulations.
Notation: A Gaussian random variable z with mean m and variance V is denoted by
z ∼ N (m;V ). The expected value of x is denoted by E [x], while V [x1, x2] denotes
the covariance of x1 and x2. We also use V [x1] := V [x1, x1].

5.2 Learning Control Problem
The goal of this section is to introduce the controller tuning problem presented in
Chap. 2. More specifically, we take the variant presented in Sec. 3.2. As therein, we
consider a nonlinear stochastic system with unknown dynamics

sk+1 = h(sk, uk, vk) (5.1)

with state sk ∈ RS, control input uk ∈ RU , and random noise vk ∼ N (0;V ). We
assume that the state sk can be measured or otherwise estimated. The control
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objective is to find a state-feedback controller

uk = Fsk (5.2)

with controller gain F ∈ RU×S such that the quadratic cost

f = lim
M→∞

1
M + 1E

[
M∑
k=0

s>kQsk + u>k Ruk

]
(5.3)

with symmetric weights Q ≥ 0 and R > 0 is minimized. A quadratic cost is a
very common choice in optimal control (Anderson and Moore, 1990) expressing the
designer’s preference in the fundamental trade-off between control performance and
control effort.

While the solution of the above problem is standard when the dynamics (5.1)
are known and linear (Anderson and Moore, 1990), here, we face the problem of
optimal control under unknown and nonlinear dynamics.

To address this problem, we use the automatic controller tuning approach pro-
posed in Chap. 2. For this, we parametrize the control gain F with parameters
x ∈ X . Instead of the indirect approach proposed in Sec. 3.3, and also used in
Sec. 4.4.2, which parametrizes the weights of a linear quadratic regulator (LQR) to
compute F , we take here a direct parametrization x = vec (F ). In order to find the
optimal parameters x∗, we use Bayesian optimization (BO) (Sec. 2.3) to search the
optimum of (5.3) by directly evaluating the performance of candidate controllers x
on the real system (5.1).

The dependence of the cost function f (5.3) on x is unknown a priori because
of the lack of knowledge of the of the system (5.1). We model f using a Gaussian
process (GP) f ∼ GP (m(x), k(x, x′)). We use the same notation introduced in
Sec. 2.2.

Furthermore, in contrast to Chap. 3 and 4, the BO algorithm used herein is
expected improvement (EI) (Jones et al., 1998; Mockus et al., 1978).

5.3 Constructing LQR Kernels
In this section, we present two kernels that are specifically designed for the control
problem of Sec. 5.2 and incorporate approximate model knowledge in form of a
linear approximation to (5.1). Because for a linear system, the solution to the
optimal control problem of Sec. 5.2 is the well-known LQR, we term these kernels
LQR kernels. The following derivations are presented for a first-order system (5.1),
where all variables are scalars (S = U = 1). Small letters are used in place of the
capital ones to emphasize scalar variables (e.g., v instead of V in (5.1)). We consider
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minimization of the cost (5.3), which is rewritten as

f = lim
M→∞

1
M + 1E

[
M∑
k=0

qs2
k + ru2

k

]
. (5.4)

We start by considering a learning example with a standard kernel choice for the
GP, which motivates why a specifically designed kernel can be desirable.

5.3.1 Problems with standard kernel

The most common kernel choice in GP regression is arguably the squared exponential
(SE) kernel kSE (2.5). Let us consider the problem of learning the cost function f
(5.4) via GP regression with SE kernel for the following linear example:

Example 1 Let (5.1) be given by sk+1 = 0.9sk + uk + vk with vk ∼ N (0; 1).

Fig. 5.1 shows the prior GP and the posterior GP after obtaining four data points
(i.e., after four evaluations of controllers xi). A few issues are apparent from the
posterior: (i) the kernel has problems with the different length scales of the function
(f is steep around x = −0.1, but rather flat in the center region); (ii) the GP does
not generalize well to regions where no data has been seen (e.g., around x = −1.6,
where the posterior mean resorts to the prior); and (iii) the overall fit is not very
good.

Clearly, the fit will improve with more data, but, for efficient and fast learning
of controllers, we are particularly interested in good fits from just few data points.
Hence, we seek to improve the fitting properties of the GP by exploiting knowledge
about the system (5.1) in terms of an approximate linear model.

5.3.2 Incorporating prior knowledge

In no practical situation, one has a perfect model of the system to be controlled.
At the same time, it is often possible to obtain a rough model, e.g., from first
principles modeling or some system identification procedure. Here, we assume that
an uncertain linear model

sk+1 = ask + buk + vk (5.5)
a ∈ [amin, amax], b ∈ [bmin, bmax] (5.6)

is available as an approximation to (5.1), e.g., from linearization of a first principles
model with (possibly) some uncertainty about the physical parameters.

In the following, we will consider controller gains f such that the system (5.5) is
guaranteed stable for all parameters (5.6). That is, we consider x ∈ F with

F := {x∈R | |a+ bx| < 1
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Figure 5.1: Prior and posterior GPs of Example 1 using the squared exponential kernel
kSE (hyperparameters: σ2

S = 25, λ = 0.4). The thick line represents the GP mean, and
the light blue area the GP variance (+/- two standard deviations). The true function is
shown in the bottom plot in dashed gray, and data points in orange.

∀a∈ [amin, amax], b∈ [bmin, bmax]}. (5.7)

This restriction makes sense, for example, in safety critical applications, where one
wants to avoid the risk of trying an unstable controller based on the system knowl-
edge available (i.e., (5.5), (5.6)). Moreover, the restriction to F will ensure that
subsequent calculations are well-defined.

If a and b were known, the functional dependence of the cost J on the controller
gain f in (5.2) for the linear system (5.5) could be derived using standard control
theory.

Fact 1 Consider the system (5.5) with known parameters a and b, and let |a+bx| <
1. Then, the cost (5.4) is given by2

f = v
q + rx2

1− (a+ bx)2 =: φ(a,b)(x). (5.8)

Proof The controlled process sk+1 = (a + bx)sk + vk is stable by assumption and
thus converges to a stationary process with zero mean and variance E [s2

k] = P ,
2In the notation φ(a,b)(x), we omit the parametric dependence on v, q and r since v is a

multiplicative constant, which does not play a role in the later optimization, and we assume that
q and r are fixed.
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where P is the unique positive solution to P − P (a + bx)2 = v, (Anderson and
Moore, 2005, Theorem 3.1). For stationary sk, (5.4) resolves into

f = E
[
qs2

k + ru2
k

]
= (q + rx2)E

[
s2
k

]
= (q + rx2)P.

Equation (5.8) then follows.

If we are uncertain about a and b, a collection of possible costs (5.8) emerge from
all the possible combinations of a and b within their ranges (5.6). We assume this
collection of costs to be explained by a Gaussian process fLQR. While any arbitrary
choice of a and b in (5.5) is only an approximation to (5.1), it yields a cost (5.8) that
contains useful structural information, which can be leveraged for faster learning
controllers from data. In the next sections, we show how this prior knowledge can
be exploited to construct LQR kernels.

5.3.3 Parametric LQR kernel

A reasonable choice for fLQR(x) is

fLQR(x) = w φ(ā,b̄)(x), w ∼ N (w̄;σ2
w) (5.9)

where ā := (amin + amax)/2 and b̄ := (bmin + bmax)/2 are the midpoints of the
uncertainty intervals (5.6).

Equation (5.9) is a standard parametric model with a single feature φ(ā,b̄)(x) and
Gaussian prior. It is well-known (see e.g. Rasmussen and Williams (2006)) that
fLQR(x) is a GP,

fLQR(x) ∼ GP (0, kpLQR(x, x′)) (5.10)

where we have assumed w̄ = 0, with kernel

kpLQR(x, x′) := σ2
wφ(ā,b̄)(x)φ(ā,b̄)(x′)

= σ2
p

v2(q + rx2)(q + rx′2)
(1− (ā+ b̄x)2)(1− (ā+ b̄x′)2)

(5.11)

and hyperparameters σp := σw, ā, and b̄. We refer to (5.11) as the parametric
LQR kernel because it captures the cost function for the linear system (ā, b̄) with
quadratic cost, and thus the structure of the LQR problem.

To illustrate the performance of the parametric LQR kernel kpLQR, we revisit
Example 1 using this kernel instead of the SE kernel. The top two graphs of Fig. 5.2a
show the prior and posterior GP for the same data points as in Fig. 5.1 when using
kpLQR with hyperparameters ā = 0.9 and b̄ = 1. We see that the posterior fit from
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(a) Parametric LQR kernel (b) Nonparametric LQR kernel

Figure 5.2: (a) GP fit using the parametric LQR kernel kpLQR (hyperparameters: σ2
p = 1,

ā = 0.9, b̄ = 1). The color code is the same as in Fig. 5.1. The hyperparameters are
exact for Example 1, while they are off by about 10% for Example 2. (b) GP fit using
the nonparametric LQR kernel knLQR (hyperparameters: σ2

n = 20, amin = 0.8, amax = 1.0,
bmin = 0.9, and bmax = 1.1). Colors are the same as in Fig. 5.1. Both examples are fitted
well.

only four data points is almost perfect and much better than the one in Fig. 5.1.
This is, of course, not a big surprise because the hyperparameters match the true
underlying system of Example 1 perfectly. The fitting performance deteriorates,
however, if the hyperparameters are off. This can be seen in the bottom graph of
Fig. 5.2a, which shows the posterior GP with the same hyperparameters, but for
the system

Example 2 sk+1 = 0.8sk + 0.9uk + vk with vk ∼ N (0; 1).

To improve the fit in this situation, one can use hyperparameter optimization
(see Sec. 2.2.2) to find improved parameters ā and b̄ that better explain the data.
The simulation results in Sec. 5.4 will show that this can be a viable approach. An
alternative is to design more flexible and expressive kernels, which allow for fitting
more general models. This we discuss next.
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5.3.4 Nonparametric LQR kernel

The kernel (5.11) captures the structure of the cost function for the LQR problem
with one specific linear model (ā, b̄). A straightforward way to increase the flexibility
of the kernel in order to fit more general problems is to use m basis functions (or
features) φ(ai,bi) corresponding to m models (a1, b1), (a2, b2), . . . , (am, bm),

fLQR(x) =
[
φ(a1,b1)(x) φ(a2,b2)(x) · · · φ(am,bm)(x)

]
︸ ︷︷ ︸

=:Φ>(x)

w

= Φ>(x)w (5.12)

with w ∈ Rm, w ∼ N (w̄; Σw). The derivation of the corresponding kernel is analo-
gous to (5.11) (see (Rasmussen and Williams, 2006, Sec. 2.7)) and yields

kpLQR,m(x, x′) = Φ>(x) Σw Φ(x′). (5.13)

Same as (5.9), the model (5.12) represents a parametric model for the LQR
cost fLQR. That is, its flexibility is essentially limited to the number of explicit
features φ(ai,bi). Using powerful kernel techniques (Schölkopf and Smola, 2002), the
parametric model can be turned into a nonparametric one, which includes an infinite
number of features while retaining finite computational complexity. The key idea is
to consider the kernel (5.13) in the limit of infinitely many features corresponding
to models a ∈ [amin, amax] and b ∈ [bmin, bmax]. The derivation follows ideas similar
to how the standard SE kernel can be derived from basic features, (Rasmussen and
Williams, 2006, p. 84).

Consider the partitions of [amin, amax] and [bmin, bmax] intom equidistant intervals,
and let {ai}1:m and {bi}1:m be the lower (or upper) interval limits. Consider the
model (5.12) with feature vector

Φ>(x) =
[
φ(a1,b1)(x) · · ·φ(ai,bj)(x) · · ·φ(am,bm)(x)

]
which includes all combinations φ(ai,bj) for i, j ∈ {1, . . . ,m}, and the parametric
prior w̄ = 0 and Σw = σ2

n(amax−amin)(bmax−bmin)
m2 I for some σn ∈ R. The kernel (5.13)

then becomes

kpLQR,m(x, x′) = σ2
n(amax − amin)(bmax − bmin)

m2

×
m∑
j=1

m∑
i=1

φ(ai,bj)(x)φ(ai,bj)(x′). (5.14)

Since φ(ai,bj) is continuous on F , the finite sum (5.14) converges to the Riemann
integral in the limits as m→∞. We can thus define the nonparametric LQR kernel

knLQR(x, x′) = lim
m→∞

kpLQR,m(x, x′)
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= σ2
n

∫ bmax

bmin

∫ amax

amin
φ(a,b)(x)φ(a,b)(x′) da db (5.15)

for x, x′ ∈ F with the signal variance σ2
n and the integration boundaries amin, amax,

bmin, and bmax as hyperparameters. While the kernel in (5.15) represents the struc-
ture of the cost function (5.8) for an infinite number of models (all a ∈ [amin, amax]
and b ∈ [bmin, bmax]), its computation is finite consisting of solving the integral in
(5.15). By contrast, the computational complexity of the parametric kernels (5.13)
and (5.14) grows with the number of features m. We prove that the kernel (5.15) is
indeed a valid covariance function.

Proposition 2 knLQR(x, x′) is positive semidefinite for all x, x′ ∈ F .

Proof Take any collection {x1, x2, . . . , xN} and any z ∈ RN . Let KN be the Gram
matrix for the kernel knLQR. Then

z>KNz =
N∑
j=1

zj

( N∑
i=1

ziknLQR(xi, xj)
)

= σ2
n

N∑
j=1

zj
N∑
i=1

zi

bmax∫
bmin

amax∫
amin

φ(a,b)(xi)φ(a,b)(xj) da db

= σ2
n

bmax∫
bmin

amax∫
amin

N∑
j=1

zjφ(a,b)(xj)
N∑
i=1

ziφ(a,b)(xi) da db

= σ2
n

bmax∫
bmin

amax∫
amin

( N∑
i=1

ziφ(a,b)(xi)
)2
da db ≥ 0

which completes the proof.

The above derivation corresponds to the kernel trick Rasmussen and Williams
(2006); Schölkopf and Smola (2002), which is a core idea of kernel methods and
behind many powerful learning algorithms. In essence, the kernel trick means to
write a learning algorithm solely in terms of inner products of features and replacing
those by a kernel3. In particular, this allows for considering an infinite number of
features, while retaining finite computation.

Figure 5.2b shows the prior and posterior GP for the nonparametric LQR kernel
(5.15). Because the kernel is more flexible than (5.11), it can fit the cost functions
for the two different models of Example 1 and Example 2 well.

3All computations for the GP regression involved in obtaining the predictive distribution (2.4)
are expressed solely in terms of the kernel k (and the prior mean function).
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5.3.5 A combined kernel

System (5.5) is an approximation to the true system (5.1). It is thus not desirable to
fully commit to the model for solving the optimal control problem. This would mean
to directly minimize (5.8) (which would result in the well-known LQR solution). On
the other hand, the linear problem contains information about the structure of
the optimization problem, which shall be useful also for optimization of the true
nonlinear system (5.1), as long as we believe (5.5) to be a reasonable approximation
thereof. In other words, we can expect the true cost function J for the nonlinear
problem to bear some similarity to (5.8).

We model the cost function (5.3) for the nonlinear system (5.1) as being com-
posed of a part that stems from the approximation as LQR problem and an error
term,

f(x) = fLQR(x) + f∆(x). (5.16)

The term f∆(x) captures the error in the model that stems from the fact that the
true problem is nonlinear. We model it as a standard GP, e.g., using the SE kernel
(2.5): f∆(x) ∼ GP ((, 0) , kSE(x, x′)). We can model fLQR(x) as a GP (5.10) using
either the parametric LQR kernel (5.11) or the nonparametric (5.15) LQR kernel.
Then, since the sum of two independent Gaussians is also Gaussian, it follows from
(5.16) that also f is a GP (see (Rasmussen and Williams, 2006, Sec. 2.7)), with

f(x) ∼ GP (0, kLQR(x, x′) + kSE(x, x′))

where kLQR can be replaced by (5.11) or (5.15). By choosing the hyperparameters
of the kernels, the designer can express how much he or she trusts the LQR versus
the SE model. For example, σS = 0 means to fully rely on the LQR kernel.

5.4 Simulations
In this section, we show statistical comparisons of the LQR kernels proposed in
Sec. 5.3 against the commonly used SE kernel, in two different settings. In the first
setting, we evaluate the performance of each kernel in the context of GP regression.
Specifically, we quantify the mismatch between the GP posterior mean, computed
from a set of random evaluations, and the underlying cost function. In the second
setting, we evaluate each kernel in the context of BO by comparing the learned
minimum to the true global minimum.

The GP regression and BO experiments are presented in Sec. 5.4.2 and Sec. 5.4.3,
respectively, considering a linear system (5.1). In addition, we also evaluate the BO
setting for a nonlinear system in Sec. 5.4.4.
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5.4.1 Experimental choices

For the simulations in Sec. 5.4.2 and Sec. 5.4.3, we consider the true system (5.1) to
be linear (i.e., (5.5)) with uncertain parameters a ∈ [0.8, 1.0] and b ∈ [0.9, 1.1]. We
consider the optimal control problem as in Sec. 5.2 with q = r = v = 1. Feedback
controllers (5.2) are considered to be in the range (5.7), F = [−1.64,−0.001].

For each controller x, the corresponding infinite-horizon LQR cost f(x) is given
by (5.8). In practice, only finite-horizon simulations can be realized. Therefore, the
outcome of an experiment is noisy, as modeled in (2.3), with σ = 0.05.

In each simulation, a different linear model (a, b) is obtained by uniformly sam-
pling the ranges above, which yields a different underlying cost function (5.8). Each
simulation is repeated for four different kernels:
I SE kernel: As described in (2.5).
I LQR kernel I: Parametric LQR kernel (5.11) with fixed parameters (ā, b̄) (mid-

points of uncertainty intervals).
I LQR kernel II: Parametric LQR kernel (5.11), with (ā, b̄) optimized from eval-

uations by maximizing (2.7).
I LQR kernel III: Nonparametric LQR kernel (5.15).

The parametric LQR kernel (5.11) is constructed taking the middle points of the
uncertainty intervals, i.e., ā = 0.9 and b̄ = 1. For the nonparametric LQR kernel
(5.15), the intervals serve as integration domains. The length scale of the SE kernel
is computed as one fifth of the input domain, i.e., λ = 0.327. The signal variance of
the parametric and nonparametric LQR kernel, i.e., σ2

p and σ2
n, are normalized such

that kpLQR(x̄, x̄) = knLQR(x̄, x̄) = 10, where x̄ = −0.82 is the midpoint of F . Since
the variance of these two kernels grow fast toward the corners of the domain, we set
for the SE kernel σ2

S = 50, for a fair comparison.

5.4.2 GP regression setting

For this statistical comparison, we run 1000 simulations. In each simulation, we
compute the GP posterior conditioned on two evaluations randomly sampled from
the underlying cost function. We assess the quality of the regression by computing
the root mean squared error (RMSE) between the true cost function and the GP
posterior mean, both computed on a grid of 100 points over F .

Fig. 5.3a shows the histograms of the RMSE obtained with the different kernels.
The LQR kernels clearly outperform the SE kernel in these experiments because they
contain structural knowledge about the true cost, which contributes to a better GP
fit, even with only two data points. The nonparametric kernel makes good predic-
tions because it inherently contains information about all possible functions within
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Figure 5.3: (a) Histograms of the root mean squared error (RMSE) between the true cost
function and the GP posterior mean conditioned on two evaluations. The histograms are
computed out of 1000 simulations. (b) Histogram of the regret incurred by stopping BO
after three evaluations. The system considered is the linear system (5.5). The histogram
is computed over 100 BO runs.

their uncertainty ranges of (a, b). However, poorly specified integration bounds will
decrease its performance. The RMSE statistical analysis confirms this when the
integration intervals on (a, b) are a 50% larger than their uncertainties. The para-
metric kernel with fixed hyperparameters (ā, b̄) has a significant number of outliers
since, in many cases, the data is queried from a cost function whose sampled (a, b)
are far away from the ones of the kernel. The parametric kernel with hyperparam-
eter optimization also leads to a better fit than SE, but has most outliers (about
75% of the simulations) since hyperparameter optimization is not reliable with just
two data points.

We have repeated these experiments with N = 1, 5, and 10 evaluations. Ta-
ble 5.1 shows the averaged RMSE over 1000 simulations for each kernel, and the
corresponding standard deviation (in parentheses). The the outliers (i.e., any RMSE
above 5) were excluded from these computations. In general, we see that the LQR
kernel optimized from data performs better than the others for more than 2 evalu-

Table 5.1: RMSE averaged over 1000 simulations.

N SE ker. SE ker. (*) LQR ker. I LQR ker. II LQR ker. III
1 2.76 (0.74) 2.39 (0.81) 1.01 (0.95) 1.98 (1.29) 1.31 (0.71)
2 2.49 (0.85) 2.42 (0.93) 1.02 (0.96) 1.09 (1.07) 1.22 (0.67)
5 1.83 (1.02) 1.31 (0.95) 1.10 (1.05) 0.45 (0.70) 1.20 (0.76)
10 1.13 (0.99) 0.98 (0.86) 0.98 (0.96) 0.20 (0.46) 1.11 (0.74)
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ations.
For a fair comparison, we also include the SE kernel with hyperparameter opti-

mization in the table (marked with an asterisk). Because it performs similar to the
SE kernel, and it does not improve upon the LQR kernels, we leave it out of the
discussion for the rest of the chapter.

Remark: The hyperparameters (a, b) of the parametric LQR kernel are optimized
from data by maximizing the marginal likelihood (2.7). In a sense, optimizing the
hyperparameters (a, b) of the LQR kernel from data can be considered similar to
doing system identification on the linear system (a, b) using (2.7) as performance
metric.

5.4.3 Bayesian optimization setting

In this section, we evaluate the performance of each kernel in the context of BO. For
each BO run, the first evaluation is decided randomly within the range of controllers
F . Subsequent evaluations are acquired using expected improvement (EI) (Jones
et al., 1998; Mockus et al., 1978). We stop the exploration after three evaluations and
compute the instantaneous regret (i.e., the absolute error between the true minimum
and the minimum of the GP posterior mean) as the outcome of each experiment.

Fig. 5.3b shows the histogram of the regret for each kernel over 100 BO runs.
The LQR kernels consistently outperform the SE kernel. The nonparametric kernel
shows some outliers because in some cases the GP posterior mean grows large to-
ward negative values, and so does its minimum. This is a wrong prediction of the
underlying cost, defined positive. However, this minor issue can easily be detected,
and the optimization procedure continued with a randomly sampled controller.

5.4.4 Bayesian optimization setting for a nonlinear system

In this section, we use the same BO setting as in Sec. 5.4.3, but consider now a
nonlinear system (5.1), namely

sk+1 = ã sin (sk) + b̃uk + vk (5.17)

with vk ∼ N (0; 1) and uncertain parameters ã ∈ [0.9, 1.1], b̃ ∈ [0.9, 1.1]. We control
this system from x0 = 1 to zero, using the same controller structure as the one
described in Sec. 5.4.1. In this case, the considered range of controllers is F =
[−1.57,−0.27], which corresponds to (5.7), reduced by a 20%. The LQR kernels are
built up using the linearized version of (5.17) around the zero equilibrium point, i.e.,
sk+1 = ãsk + b̃uk + vk. Table 5.2 shows the regret average and standard deviation.
As can be seen, the LQR kernels perform better than the SE kernel.
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Table 5.2: Regret averaged over 100 BO runs for a nonlinear system

N SE kernel LQR kernel I LQR kernel II LQR kernel III
2 1.34 (0.33) 0.30 (0.21) 0.32 (0.20) 0.35 (0.18)
3 0.49 (0.39) 0.33 (0.38) 0.31 (0.19) 0.32 (0.18)
4 0.35 (0.27) 0.36 (0.44) 0.32 (0.18) 0.32 (0.17)
5 0.36 (0.21) 0.31 (0.36) 0.32 (0.20) 0.32 (0.18)

5.5 Conclusions
In this chapter, we discussed how prior knowledge about the structure of an optimal
control problem can be leveraged for data-efficient learning control. Specifically, for
a nonlinear quadratic optimal control problem, we showed how an uncertain linear
model approximating the true nonlinear dynamics can be exploited in a Bayesian
setting. This led to the proposal of two novel kernels, a parametric and a nonpara-
metric version of an LQR kernel, which incorporate the structure of the well-known
LQR problem as prior knowledge. Numerical simulations herein demonstrate im-
proved sample-efficiency over standard kernels, i.e., good controllers are learned from
fewer experiments.

Approaching the nonlinear quadratic optimal control problem presented herein
with pure model-based methods can lead to superior performance for very accu-
rate models compared to the proposed data-based approach. However, this chapter
shares the motivation of Chap. 3, where a data-based approach is proposed for the
cases in which only poor models are available, and extends it by incorporating the
LQR structure into the kernel.

We discuss below the proposed ideas on the design of LQR kernels in the context
of related work posterior to its publication. In addition, we propose future ideas on
how to extend LQR kernels to high-dimensional systems.

5.5.1 Discussion

There exist recent work where the kernel used for learning with BO is pre-computed
using some form of prior knowledge. In the work from Rai et al. (2018, 2019), a
kernel is designed using data acquired from an existing high-fidelity simulator, which
reduces the number of real experiments required to optimize controller parameters.
However, in lack of a high-fidelity simulator, constructing a kernel from simulated
data can negatively bias the search, specially if the simulator model is poor. Instead,
our approach does not use any given data to construct the kernels: We rely on the
mathematical structure of the control problem at hand. The authors in (Wang et al.,
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2018b) propose a meta-BO approach, in which the kernel structure is never imposed,
but rather inferred from data. For this, they learn using the primal formulation
of the GP. However, assumptions about the structure of the primal are needed
(i.e., hyperparameters of the required basis functions). In addition, the unknown
objective must correspond to its prior and large amounts of data are needed to learn
the kernel. It is thus unclear how it would scale to learning on a high dimensional
real robot, where data collection is scarce. Our approach is more tailored to the
particular control problem at hand, and does not require data to be learned, i.e., its
mathematical structure already speaks for the control problem.

In Sec. 5.3.5, we propose a kernel combination that could help to learn on non-
linear systems. Therein, we propose to combine an informed kernel (i.e., the LQR
kernel) with a non-informed kernel (e.g., squared exponential). A similar idea has
been recently used in the context of learning from simulation data (Antonova et al.,
2018), where an informed kernel is generated using simulated data and combined
with a non-informed kernel. Contrary to this approach, our informed kernel does not
require additional data to be constructed. Instead, it is built upon the mathematical
structure of the control problem at hand.

As shown in this chapter, incorporating prior knowledge in a robot learning
setting is possible, although it is non trivial. Specifically, when the control problem
is LQR (i.e., linear model and quadratic cost), the nonparametric LQR kernel (5.15)
cannot be analytically written, as it needs to be approximated with a quadrature
(5.15). For a multivariate system, integrating out the linear model is unclear, and
an interesting research direction.

5.5.2 Vision

The results shown in this chapter are preliminary in the sense that the LQR ker-
nels are developed for a first-order system. While this is the natural first step, this
framework could be potentially helpful also in multivariate systems. For example,
it could be merged with the automatic LQR tuning framework proposed in Chap. 3
and used to learn controller parameters in more challenging real systems with im-
perfect state measurements, like the robot arm balancing an inverted pole and the
humanoid robot doing squats (cf. Sec. 3.4). In addition, it could be helpful to
increase data-efficiency during learning by using it in Chap. 4, which also relies on
the aforementioned automatic LQR tuning framework.
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Chapter 6
Controller learning under limited budget of

failures

This chapter introduces ideas presented in our work (Marco et al., 2020), submitted
for publication at a conference. Herein, we discus the treatment given to unstable
controllers that may appear during the controller learning routine. This issue is
raised in Sec. 3.7.2 in the context of automatic controller tuning in robotics. Therein,
unstable controllers are seen as problematic because the robot has to be emergency-
stopped and restarted before the learning routine can continue.

From a general perspective, the urge to avoid unstable (or unsafe) controllers
is only exacerbated in safety-critical settings, where the cost of a failing controller
usually has catastrophic consequences (e.g., life-threating situations in autonomous
driving). In contrast, in other settings, like the robot learning experiments discussed
in Chap. 3, failures have only mild consequences. Therefore, they can be seen
as tolerable costs in exchange for a faster learning process, as they provide rich
information about undesired behaviors.

In this chapter, we propose a novel decision maker in the context of Bayesian
optimization under unknown constraints. Our method leverages the information
provided by encountered failures while regulating the conservativeness of the search
as a function of a pre-established budget of failures. Empirical validation shows
that our algorithm uses the failures budget efficiently in a variety of optimization
experiments, and generally achieves lower regret than state-of-the-art methods. In
addition, we propose an original algorithm for unconstrained Bayesian optimization
inspired by the notion of excursion sets in stochastic processes, upon which the
failures-aware algorithm is built.

This chapter is structured as follows1. In Sec. 6.1, we introduce the problem and
further elaborate on the contributions. In Sec. 6.2, we characterize excursion sets in

1For an extensive literature review see Sec. 1.5.5
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Gaussian processes (GP), and explain their benefits when used in BO. In Sec. 6.3, we
formalize the proposed novel acquisition function to solve unconstrained problems.
In Sec. 6.4, such acquisition is extended for the constrained case in the presence of
a budget of failures. In Sec. 6.5, we validate both acquisition functions empirically
on common benchmarks for global optimization and real-world applications. We
conclude with a discussion in Sec. 6.6.

6.1 Introduction
When deploying machine learning (ML) algorithms in real-world scenarios, a key
difficulty lies in the proper management of undesired outcomes. These are usually
inevitable when learning under unknown or uncertain circumstances. As an extreme
case, in applications like autonomous driving, a failure in the decision-making may
lead to human casualties. Such safety-critical scenarios need conservative ML al-
gorithms, which forbid any failures. On the other hand, there exist scenarios in
which failures are still undesired, although might not come at a high cost. For
example, when learning the controller parameters of an industrial drilling machine
to drill faster, a few configurations might break the drill bits, but in exchange, a
faster drilling can be learned. In such non-safety-critical applications, failures shall
be considered as a valuable source of knowledge, and one would tolerate a limited
number of them in exchange for better learning performance.

In this chapter, we propose two complementary, yet distinct contributions. Our
first contribution is a failures-aware strategy for BOC that, in contrast to prior work,
does not need to be initialized in a safe region and that makes decisions taking into
account the budgets of remaining failures and evaluations.

Our second contribution is a novel acquisition function inspired by key notions
of the geometry of excursion sets in stochastic processes. In (Adler and Taylor,
2009), an excursion set is defined over smooth manifolds as those points for which a
process realization crosses upwards a given threshold. The larger the threshold, the
more likely it is that an upcrossing will reveal the location of the global maximum.
Based on this intuition, we derive an acquisition function, which can be written
analytically, is cheap to evaluate, and explicitly includes the process derivative to
make optimal decisions.

6.2 Excursion sets in Bayesian optimization
The main goal is to address the unconstrained optimization problem (2.2), where
the objective f : X → R is expensive to evaluate, and X ⊂ RD. To this end,
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we propose a search strategy inspired by the study of the differential and integral
geometry of excursion sets in stochastic processes (Adler and Taylor, 2009). In the
particular case of GPs, analytical expressions can be derived for such sets. In the
following, we provide the needed mathematical tools and intuition over which our
search strategy is constructed.

6.2.1 Excursion sets in Gaussian processes

Let us assume a zero-mean scalar Gaussian process f , with X = [0, 1]D, D = 1,
and stationary covariance function k(τ) = k(‖x− x̂‖2). The excursion set {x ∈
X : f(x) ≥ u} is defined as the set of locations where the process f is above
the threshold u. In (Adler and Taylor, 2009, Part II. Geometry), such sets are
characterized by the number of upcrossings of process samples through the level
u, i.e., N+

u = #{x ∈ X : f(x) = u, f ′(x) > 0}, where f ′(x) is the derivative of
the process. Intuitively, large N+

u represents a high frequency of upcrossings, which
is connected with having many areas in X where f(x) lives above u. For a one-
dimensional, stationary, almost surely continuous and mean-square differentiable
Gaussian process, the expected number of upcrossings (Rasmussen and Williams,
2006, Sec. 4.1) is given by the well-known Rice’s formula (Lindgren, 2006, Sec.
3.1.2)

E
[
N+
u

]
=
∫ 1

0
Ep(f,f ′|x) [f ′ : f = u, f ′ > 0] dx (6.1)

=
∫ 1

0

∫ +∞

−∞

∫ +∞

0
f ′δ(f − u)p(f, f ′|x)df ′dfdx

= 1
2π

√√√√−k′′(0)
k(0) exp

(
− u2

2k(0)

)
,

where p(f, f ′|x) is the joint density of the process and its derivative, both queried at
location x, δ is the Dirac delta, and the second derivative of the covariance function
k′′ must exist. Interestingly, (6.1) can be used to approximate the probability of
finding the supremum of a process realization above a high level u. The growth rate
of the approximation error with respect to u is bounded∣∣∣∣∣E [N+

u

]
− Pr( sup

x∈[0,1]
f(x) ≥ u)

∣∣∣∣∣ < O(e−βu2/k(0)), (6.2)

as u→∞, with O(·) indicating the limiting behavior of the approximation error and
β > 1 needs to be found (Adler and Taylor, 2009, Sec. 14). The intuitive reasoning
behind this is simple: If f crosses a high level u, it is unlikely to do so more than
once. Therefore, the probability that f meets its supremum above u is close to the
probability that there is an upcrossing of u. Since the number of upcrossings of a
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high level will always be small, the probability of an upcrossing is well approximated
by E [N+

u ].
While the bound in (6.2) does not hold for the general case D > 1, we use it

as a starting point to build a new acquisition function for D ≥ 1 (cf. Sec. 6.2.3),
which shows empirically superior results than state-of-the-art BO methods. In the
following section, we show, forD = 1, how E [N+

u ] can be leveraged to lead the search
towards areas where the number of upcrossings is large, or equivalently, where the
global maximum is more likely to be found. Thereafter, we extend the result for
D ≥ 1.

6.2.2 Practical interpretation for use in Bayesian optimiza-
tion

The expected number of upcrossings (6.1) contains valuable information about the
amount of times a sample realization of the process z “upcrosses” the level u. How-
ever, (6.1) cannot be used directly for decision-making because it is a global property
of the process itself, rather than a local quantity at a specific location x. Next, we
provide a practical interpretation that relaxes some of the assumptions made to ob-
tain (6.1) and allows for its use in BO. To this end, we introduce three modifications.

First, when seeking for the optimum of the process, it is more useful to consider
both, the up- and down-crossings through the level u, as both of them occur near the
optimum when u is large. This quantity is defined in (Lindgren, 2006, Sec. 3.1.2)
as the expected number of crossings

E [Nu] =
∫ 1

0
Ep(f,f ′|x) [|f ′| : f = u] dx (6.3)

=
∫ 1

0

∫ +∞

−∞

∫ +∞

−∞
|f ′|δ(f − u)p(f, f ′|x)df ′dfdx,

with Nu = #{x ∈ [0, 1] : f(x) = u}.
Second, BO uses pointwise information to decide on how interesting it is to

explore a specific location x. (Lindgren, 2006, Theorem 3.1) proposes the intensity
of expected crossings E [Nu(x)], which can be computed by simply removing the
domain integral in (6.3)

E [Nu(x)] =
∫ +∞

−∞

∫ +∞

−∞
|f ′|δ(f − u)p(f, f ′|x)df ′df. (6.4)

Third, when conditioning the Gaussian process f on observed data Dft , it be-
comes non-stationary2, and thus, the predictive distribution of a query f(x) changes

2Note that all GPs are non-stationary when conditioned on data, even if the covariance function
that defines them is stationary.
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as a function of x. The dependency on Dft is introduced in (6.4) following (Lindgren,
2006, Remark 3.2), as

E
[
Nu(x|Dft )

]
=
∫ +∞

−∞
|f ′|p(u, f ′|x,Dft )df ′, (6.5)

where the joint density is evaluated at f = u after resolving the integral over the
Dirac delta. We next provide a brief analysis for solving (6.5).

Using the rule of conditional probability, we have p(u, f ′|x,Dft ) =
p(u|x,Dft )p(f ′|u, x,Dft ). The first term, p(u|x,Dft ) = N (u;µ(x), σ2(x)), is a Gaus-
sian density3 evaluated at u, with the predictive mean and variance of the GP model.
The second term is also a Gaussian density over the process derivative, conditioned
on f = u. This can be seen as adding a virtual observation u at location x to
existing data set. Hence, p(f ′|x, u,Dft ) = p(f ′|Dft ∪ {x, u}) = N (f ′;µ′(x), ν2(x)).
Then, (6.5) can be rewritten as

E
[
Nu(x|Dft )

]
= p(u|x,Dft )

∫ +∞

−∞
|f ′|p(f ′|Dft ∪ {x, u})df ′ (6.6)

= N (u;µ(x), σ2(x))
(
2ν(x)φ (γ(x)) + µ′(x)erf

(
γ(x)√

2

))
,

where γ(x) = µ′(x)/ν(x), φ is the probability density function of a standard normal
distribution, and erf (·) is the error function (see App. B.1 for a complete derivation).
Fig. 6.1 shows E[Nu(x|Dft )] for two different values of u, where the GP is conditioned
on seven observations. As can be seen, different thresholds imply different intensity
of crossings for the same process. When the threshold is near collected evaluations,
the largest intensity of crossings tends to be concentrated near the data. On the
contrary, when it is far from the data, the largest intensity of crossings is found in
areas of large variance.

6.2.3 Extension to D dimensions

Although (6.6) was derived for D = 1, we can extend it to the case D ≥ 1. Since
(6.5) depends on |f ′|, a natural extension is to consider the L-1 norm of the gra-
dient of the process ‖∇f(x)‖1 = ∑D

j=1 |
∂f(x)
∂xj
|. Following this, we extend (6.6) as

Ep(f(x),∇f(x))[‖∇f(x)‖1 : f(x) = u,Dft ],

E
[
Nu(x|Dft )

]
' N (u;µ(x), σ2(x))× (6.7)
D∑
j=1

(
2νj(x)φ(γj(x)) + µj(x)erf

(
γj(x)√

2

))
,

3Using simplified notation, we write p(u|x,Df
t ) to refer to the density function pf |x,Df

t
(ξ) evalu-

ated at ξ = u. Similarly, we write p(u, f ′|x,Df
t ) to refer to the joint density function pf,f ′|x,Df

t
(ξ, ζ)

evaluated at ξ = u for some value ζ.
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(a) Gaussian process posterior

(b) Intensity of expected crossings E[Nu(x|Dft )]

Figure 6.1: (a) Gaussian process posterior conditioned on a set of observations. Given a
process realization (dashed lines), two choices for the threshold u (solid lines) determine
two different excursion sets. (b) Intensity of expected crossings E[Nu(x|Dft )] for each
threshold u. Higher values correspond to areas where the boundaries of the excursion sets
are likely to be, i.e., where the process is more likely to cross u. The curves are normalized
to have the same maximum value.

where γj(x) = µj(x)/νj(x). The gradient∇f(x) ∼ N (∇f(x);∇µ(x), V (x)) follows a
multivariate Gaussian, and µj(x) = [∇µ(x)]j and νj(x) =
([V (x)]jj)1/2 =

√
∂2k(xj, xj)/∂x2

j . Note that ∇µ(x) and V (x) depend on the ex-
tended data set Dft ∪ {x, u}.

In the following sections, we propose two novel algorithms that build upon the
quantity (6.7).

6.3 Excursion search algorithm
The modifications applied to (6.1), detailed above, allow extracting useful informa-
tion about how likely is the process f to cross a certain level u at each location x.
When u is a lower bound on the collected data, (6.7) reveals locations where the
process is more likely to have a minimum. If we repeatedly evaluate at such loca-
tions, one would expect to approach faster the global minimum. In the following,
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we characterize (6.7) as an acquisition function for optimal decision-making.

6.3.1 Threshold of crossings as the global minimum

The choice of the threshold u in (6.7) is important when trying to find the global
minimum. A hypothetically appropriate low value for u is right above the global
minimum f∗ = f(x∗), i.e., u = f∗+ε, where ε > 0 is small. Then, if crossings through
u = f∗ + ε are likely to occur at a specific area, we know that such area is likely to
contain the global minimum, and thus, will show a large E[Nu(x|Dft )]. However, in
practice we do not have access to the true f∗ of the objective function, and thus,
cannot compute u in the aforementioned way. At most, we are able to assume a
distribution over the global minimum f∗ ∼ p(f∗), implied by the GP model on f .
In the following, we assume that u follows such distribution, i.e., u ∼ p(u) = p(f∗).

It is well-known in extreme value theory (De Haan and Ferreira, 2007) that f∗
follows one of the three extreme value distributions: Gumbel, Fréchet, or Weibull,
which generally model tails distributions. For example, in (Wang and Jegelka, 2017),
the Gumbel distribution is chosen to model p(f∗). However, such distribution has
infinite support, while in practice it is not useful to have any probability mass
above the best observed evaluation η = min(y(x1), . . . , y(xt)). Instead, we consider
the Fréchet distribution as a more appropriate choice as it provides finite support
f∗ ≤ η. For minimization problems, we can define it in terms of its survival function
Fs,q(a) = Pr(f∗ ≥ a), given by

Fs,q(a) =


0, if a > η

exp
(
−
(
η−a
s

)−q)
, if a ≤ η

(6.8)

where Pr(f∗ ≥ a) =
∫+∞
a p(f∗)df∗, and the parameters s > 0 and q > 1 can

be estimated from data following the same approach as in (Wang and Jegelka,
2017, Appendix B). A thorough analysis on the advantage of using the Fréchet
distribution, instead of the Gumbel distribution, for gathering samples of f∗ can
be found in App. B.2. Using the above definition, the stochastic threshold u ∼
p(u) = p(f∗), makes the quantity (6.7) also stochastic. We propose to compute its
expectation over u, i.e., Ep(u)[E[Nu(x|Dft )]] = Ep(f∗)[E[Nf∗(x|D

f
t )]], which we explain

next.

6.3.2 Acquisition function

We define the excursion search (Xs) acquisition function as

αX(x) = Ep(f∗)
[
E
[
Nf∗(x|D

f
t )
]]
' 1
S

S∑
l=1

E
[
Nf l
∗
(x|Dft )

]
, (6.9)
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where the outer expectation is intractable and is approximated via sampling. For
each sample f l∗ ∼ p(f∗), (6.7) needs to be recomputed. The samples can be col-
lected through the inverse of (6.8), f l∗ = F−1

s,q (ξl). ξl ∼ U(0, 1) follows a uniform
distribution in the unit interval, and F−1

s,q (ξl) = η − s(− log(1− ξl))−1/q.
Intuitively, the Xs acquisition function (6.9) reveals areas near the global mini-

mum (i.e., where the gradient crosses the estimated f∗ with large norm), instead of
directly aiming at potential maximums, minimums, or saddle points. Furthermore,
Xs inherently trades off exploration with exploitation: At early stages of the search,
the estimated Fréchet distribution (6.8) reflects large uncertainty about f∗, which
causes the samples f l∗ to lie far from the data. Hence, exploration is encouraged,
as shown in Fig. 6.1 (green lines). At later stages, when more data is available,
the Fréchet distribution (6.8) shrinks toward the lowest observations, which then
encourages exploitation, as shown in Fig. 6.1 (violet lines).

The acquisition (6.9) is our first contribution, and can be used for unconstrained
optimization problems, e.g., (2.2).

6.4 Bayesian optimization with a limited budget
of failures

In the previous section, we introduced a new acquisition function (6.9) grounded in
the connection between the true optimum of the process f and the expected number
of crossings through its current estimate (cf. (6.2)). However, such acquisition does
not explicitly have into account any budget of failures B or evaluations T . In the
following, we propose an algorithm that makes use of B and T to balance the decision
making between (i) safely exploring encountered safe areas, and (ii) searching outside
the safe areas at the risk of failing, when safe areas contain no further information.

6.4.1 Problem formulation

To the unconstrained problem (2.2), we add G black-box constraints, gj : X → R,
j = {1, . . . , G}, also corrupted by noise and expensive to evaluate. Moreover, we
assume a non-safety critical scenario, where violating the constraints is allowed, but
it is strictly forbidden to do so more than B times. Analogously, we allow only
for a maximum number of T ≥ B evaluations. The case T < B is not considered
herein, as the budget of failures can simply be ignored. Under these conditions, we
formulate the constrained optimization problem with limited budget of failures as

xc
∗ = argmin

x∈X
f(x), s.t. g1(x) ≤ 0, . . . , gG(x) ≤ 0
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under failures
T∑
t=1

Γ(xt) ≤ B, (6.10)

where xc
∗ is the location of the constrained minimum, and Γ(xt) =

I [g1(xt) > 0 ∨ . . . ∨ gG(xt) > 0] equals 1 if at least one of the constraints is violated
at location xt, and 0 otherwise. I is the indicator function, and g(x1), . . . , g(xT )
are the collected evaluations of the constraints at locations x1, . . . , xT . Since the
constraints gj are unknown, and modeled as independent Gaussian processes gj ∼
GP (0, k(x, x̂)), queries f(x) and g(x) are stochastic and (6.10) cannot be solved
directly. Instead, we address the analogous probabilistic formulation from Gelbart
et al. (2014):

xc
∗ ' argmin

x∈X
µ(x), s.t.

G∏
j=1

Pr(gj(x) ≤ 0) ≥ ρ

under failures
T∑
t=1

Γ(xt) ≤ B, (6.11)

where Pr(gj(x) ≤ 0) = Φ (−µj(x)/σj(x)), Φ is the cumulative density function of
a standard normal distribution, and ρ ∈ (0, 1) is typically set close to one. The
predictive mean µj and variance σ2

j conditioned on Dgj

t of each gj are computed as
in Sec. 2.2. In the following, we provide a novel Bayesian optimization strategy to
address (6.11).

6.4.2 Safe exploration with dynamic control

In order to include the probability of constraint satisfaction in the decision mak-
ing, we propose a similar approach to Gelbart et al. (2014) by explicitly adding a
probabilistic constraint to the search of the next evaluation

xnext = argmax
x∈X

αX(x)

s.t.
K∏
i=1

Pr(gj(x) ≤ 0) ≥ ρt,
(6.12)

where the parameter ρt ∈ (0, 1) determines how much we are willing to tolerate
constraint violation at each iteration t. This leads the search away from areas where
the constraint is likely to be violated, as those areas get revealed during the search.

Contrary to (Gelbart et al., 2014), where ρt is fixed a priori, we propose to
choose it at each iteration, depending on the remaining budget of failures ∆Bt =
B−∑t

j=1 Γ(xj) and remaining iterations ∆Tt = T − t. Intuitively, the more failures
we have left (large ∆Bt), the more we are willing to tolerate constraint violation
(large ρt). We achieve this by proposing an automatic control law to drive ρt, which
we describe next.
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Let us define a latent variable zt = Φ−1 (ρt), zt ∈ R that follows a deterministic
process zt+1 = zt+ut, using a dynamic feedback controller ut = ut(∆Bt,∆Tt). Such
controller drives the process toward one of the two references: zsafe = Φ−1 (ρsafe) and
zrisk = Φ−1 (ρrisk), where typical values are ρsafe = 0.99 and ρrisk = 0.01. We define
a control law

ut = (zsafe − zt)Γ(xt)
∆Bt

+ (zrisk − zt) ∆Bt

2∆Tt
, (6.13)

with ∆Bt > 0, ∆Tt > 0, and ∆Bt ≤ ∆Tt. The first term drives the process toward
zsafe when a failure occurs at iteration t, with intensity 1/∆Bt. In this way, the
fewer failures are left in the budget, the more urgently the process chases zsafe. The
second term attempts to push zt down to zrisk with an intensity proportional to the
ratio between the remaining failures and iterations.

When ∆Bt = 0, but ∆Tt > 0, only a conservative safe exploration is allowed. To
do so, we set ut = (zsafe−zt) for the remaining iterations until t = T . Additionally, if
there are more failures left than remaining iterations, i.e., ∆Bt > ∆Tt, the remaining
budget of failures is not decisive for decision making, and thus, we set ut = (zrisk−zt).

The resulting control strategy weights risky versus conservative decision-making
by considering the budget of evaluations and iterations left: When no failures occur
for a few consecutive iterations, ρt is slowly driven toward ρrisk, and when a failure
takes place, it lifts up ρt toward ρsafe.

6.4.3 Risky search of new safe areas

The probabilistic constraint in (6.12) puts a hard constraint on the decision making
by not allowing evaluations in regions that are known to be unsafe. When ρt is high,
(6.12) will discard regions where no data has been collected and locally explore
regions where safe evaluations are present. Such conservative decision making is
desirable when ∆Bt � ∆Tt because it avoids unsafe evaluations. The smaller the
ρt, the more risky evaluations we can afford, which makes the constraint information
less important in the decision making. However, when ρt is too low, the probabilistic
constraint tends to be ignored, and the decisions are based on the information from
the objective. Albeit this indeed counts as the wanted risky exploration strategy,
completely ignoring the constraint information could result in repeated evaluations
in unsafe areas. To avoid this, we follow the approach from (Gelbart et al., 2014),
where the acquisition function is aware of the constraint information, without this
being a hard constraint. Therein, locations are chosen at

xnext = argmax
x∈X

αX(x)
D∏
j=1

Pr(gj(x) ≤ 0). (6.14)
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This approach “jumps” outside the current safe areas at the risk of failing, while the
multiplying term discourages exploration in areas revealed to be unsafe.

Trading off risky versus safe exploration depends on the remaining budget ∆Bt,
and is quantified by ρt, as detailed in Sec. 6.4.2. We propose a user-defined decision
boundary ρb, such that if ρt ≤ ρb, the next location will be selected using (6.14),
and (6.12) otherwise.

While (6.12) assumes that a safe area has already been found, this might not be
the case at an early stage of the search. In such case, we collect observations using
(6.14) and only resort to the risk versus safety trade-off once a safe area has been
found.

Pseudocode for the overall framework, named failures-aware excursion search
(XsF), and an analysis of its computational complexity can be found in App. B.3.
XsF returns the estimated location of the constrained minimum xc

∗ from (6.11),
computed by setting ρ = ρsafe.

6.5 Empirical analysis and validation
We empirically validate Xs and XsF by comparing their performance against state-
of-the-art methods. We consider three different scenarios. In the first one, we vali-
date each method on common challenging benchmarks for global optimization. In
the second and third scenarios we compare XsF against state-of-the-art methods in
constrained optimization problems. In the second, we optimize the hyperparameters
of a neural network to achieve maximum compression without degrading its perfor-
mance. In the third, we learn the state feedback controller of a cart-pole system.
Both, Xs and XsF are implemented in Python. The code, which includes scripts
to reproduce the results presented herein, is documented and publicly available at
https://github.com/alonrot/excursionsearch.

6.5.1 Experimental setup

To assess the performance of all methods we use simple regret rT = f(xbo) −
minx∈X f(x), where xbo = arg mint∈[1,T ] y(xt) is the point that yielded the best ob-
servation so far. In the constrained case, such point is given by xbo = mint∈[1,T ] y(xt)
s.t. yg(xt) ≤ 0. We quantify how often safe evaluations are collected using Ω =

100Nsafe/T , where Nsafe is the number of safe evaluations made at the end of each
run.

In all cases, the domain is scaled to the unit hypercube. We set ρsafe = 0.99,
ρrisk = 0.01, and ρ0 = 0.1. The decision boundary was set at ρb = 0.5. Both,

https://github.com/alonrot/excursionsearch
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the objective function and the constraint are modeled with a zero-mean GP, with
a squared exponential kernel. The lengthscales and the signal variance are fit to
the data after each iteration. Further implementation details, such as hyperprior
choices and number of random restarts, are reported in App. B.4.

6.5.2 Benchmarks for global optimization

We validate Xs and XsF in two challenging benchmarks for global optimization:
Hartman 6D, and Michalewicz 10D (Jamil and Yang, 2013). We allow a budget
of evaluations T = 100 in all cases and repeat all experiments 50 times for each
function using a different seed. As in (Hernández-Lobato et al., 2016; Wang and
Jegelka, 2017), we use the same initial evaluation (previously selected at random)
across all repetitions.

Excursion search (Xs)

We assess the performance of Xs by comparing against popular BO methods: Ex-
pected improvement (EI) (Močkus, 1975), Probability of improvement (PI) (Kush-
ner, 1964), Min-Value Entropy Search (mES) (Wang and Jegelka, 2017), and Gaus-
sian process upper confidence bound (UCB) (Srinivas et al., 2010). Our implemen-
tations are based on those used by (Wang and Jegelka, 2017), available online4

Fig. 6.2a shows the evolution of the simple regret over iterations in the Michalewicz
10D benchmark. Xs reaches the lowest regret, and none of the methods is able to
achieve a regret close to zero, which is not surprising given high dimensionality of
the problem and the number of allowed evaluations. Table 6.1 (top) shows statistics
on the regret value for both benchmarks. While all methods report a generally high
regret in Michalewicz 10D, Xs clearly outperforms all the other methods in Hartman
6D, as it finds a near-zero regret.

Failures-aware excursion search (XsF)

To validate XsF, we propose a constrained optimization problem under a limited
budget of failures. For this, we simply impose a constraint to the aforementioned
benchmarks g(x) = ∏D

i=1 sin(xi)− 2−D. Such function uniformly divides the volume
in 2D sub-hypercubes, and places 2D−1 convex disjoint unsafe areas in each one of
the sub-hypercubes, so that they are never adjacent to each other. We allow T = 100
and a considerably small budget of failures B = 10 to all methods. We compare
XsF against expected improvement with constraints (EIC) (Gelbart et al., 2014) and
predictive entropy search with constraints (PESC) (Hernández-Lobato et al., 2016).

4github.com/zi-w/Max-value-Entropy-Search
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EIC and PESC are terminated when their budget is depleted. Although individual
experiments rarely finish at the same iteration (i.e., some may deplete the budget
of failures earlier than others), we use in our results the last regret reported by each
algorithm. For EIC, we use our own implementation, while for PESC we use the
available open source implementation, included in Spearmint5.

In Fig. 6.2b, we see that XsF reaches a higher number of total evaluations and
consistently achieves lower regret than EIC and PESC. Fig. 6.2b (middle) shows
the evolution of the remaining budget of failures ∆Bt over iterations (mean and
standard deviation). As can be seen, EIC and PESC deplete the budget faster
than XsF. Finally, Fig. 6.2b (bottom) shows the evolution of the ρt parameter used
to switch between risky and safe strategies in XsF, and also as a threshold for
probabilistic constraint satisfaction (cf. Sec. 6.4.2). We differentiate two stages:
During the initial iterations ρt is low, and thus, risky exploration is preferred, which
allows XsF to quickly discover better safe areas. At the last iterations, when the
budget is depleted, XsF keeps exploring conservatively the discovered safe areas,
with ρt = ρsafe.

Table 6.1 (bottom) shows the regret for both, the Michalewicz 10D and the
Hartman 6D functions in the constrained case. While the regret comparison is
similar to the 10D case, the 6D case shows that Xs clearly outperforms the other
methods. The quantity Ω confirms that XsF visits safe evaluations more often than
the other methods.

Generally, hyperparameter learning influences the performance of the algorithms.
5github.com/HIPS/Spearmint/tree/PESC

Table 6.1: Constrained (top) and unconstrained benchmarks (bottom). Simple regret rT
(mean ± std) and percentage of safe evaluations Ω.

Hartman 6D Michalewicz 10D
rT rT

EI 0.75± 0.00 0.67± 0.00
mES 0.47± 0.00 0.67± 0.00
PI 0.34± 0.11 0.72± 0.03

UCB 0.39± 0.18 0.70± 0.06
Xs 0.02± 0.01 0.63± 0.06

rT Ω (%) rT Ω (%)
EIC 0.33± 0.35 68± 30 0.75± 0.06 15± 3

PESC 0.14± 0.22 61± 29 0.74± 0.07 16± 5
XsF 0.09± 0.14 90± 16 0.70± 0.04 28± 7
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(a) Unconstrained (b) Constrained

Figure 6.2: Performance assessment of Xs and XsF on the Michalewicz 10-dimensional
benchmark.

In App. B.5, we show experiments with fixed hyperparameters and a correct GP
model, where Xs and XsF outperform the aforementioned methods.

6.5.3 Compressing a deep neural network

Applying modern deep neural networks (NNs) to large amounts of data typically
results in large memory requirements to store the learned weights. Therefore, finding
ways of reducing model size without degrading the NN performance has become an
important goal in deep learning, for example, to meet storage requirements or to
reduce energy consumption. Bayesian compression has been recently proposed as a
mean to reduce the NN size: Given an NN architecture, an approximate posterior
distribution q on the NN weights is obtained by maximizing the evidence lower
bound (ELBO), which balances the expected log-likelihood of samples from q and
the theoretical compression size, as given by the KL divergence between q and a
prior distribution p (Havasi et al., 2018). A penalization factor β can be used
to scale the KL divergence to control the final size of the NN. Finding the value
of β that achieves the lowest compression size without significantly degrading NN
performance is a challenging and expensive tuning problem. To alleviate the effort
of tuning hyperparameters, Bayesian optimization is commonly used. Herein, we
propose to minimize the validation error of the NN while keeping its size below
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(a) NN compression (b) Cart-pole problem

Figure 6.3: Performance comparison of XsF against EIC and PESC

a threshold, using constrained Bayesian optimization under a limited budget of
failures. While in this example failing to comply with the size requirements is not
catastrophic, collecting many failures is undesirable.

We use a LeNet-5 on the MNIST dataset, and a required size below 15 kB. The
parameters to tune are β, the learning rate χ, and a scaling factor κ on the the
number of neurons of all layers. As a reference for our implementation, we used the
open source implementation of MIRACLE6 Havasi et al. (2018). We allow T = 20
and B = 5 and repeat the experiments 5 times. We fix the training epochs to
20000 for each evaluation (about 25 min in wall-clock time). As shown in Fig. 6.3a,
XsF achieves the lowest regret and standard deviation. The best safe observation
is reported by XsF, with validation error 0.76% and theoretical NN size of 12.4 kB
(x553 compression). The learned parameters are β = 6.56× 10−7, χ = 1.35× 10−3

and κ = 10.

6.5.4 Tuning a feedback controller

Bayesian optimization has been used for learning robot controllers to alleviate man-
ual tuning (Calandra et al., 2016; Rai et al., 2018). Herein, we propose to tune a
4D state feedback controller on a cart-pole system, where unstable controllers found
during the search are undesirable, as human intervention is required to reset the

6github.com/cambridge-mlg/miracle
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platform, but not catastrophic. In this setting, allowing a limited budget of failures
might increase chances of finding a better optimum. In practice, a constraint can
be placed in the cart position to trigger an emergency stop when it grows large (cf.
Chap. 3). Controllers that surpass such limit at any moment during the experiment
are considered a failure. We use the simulated cart-pole system7 from openAI gym
Brockman et al. (2016), implemented in the MuJoCo physics engine Todorov et al.
(2012). The tasks consists on, first stabilizing the pendulum starting from ran-
dom initial conditions, and second, disturbing the cart position with a small step.
We consider a budget B = 15 and T = 100, and repeat all experiments 10 times.
Fig. 6.3b shows that XsF finds a better controller than the other methods.

6.6 Conclusions
In this chapter, we have presented two novel algorithms for Bayesian optimization
(BO): Excursion search (Xs), which is based on the study of excursion sets in Gaus-
sian processes, and failures-aware excursion search (XsF), which trades off risky
and safe exploration as a function of the remaining budget of failures through a
dynamic feedback controller. Our empirical validation shows that both algorithms
outperform state-of-the-art methods. Specifically, in situations in which failing is
permitted, but undesirable, XsF makes better use of a given budget of failures by
depleting it at a slower rate, while generally achieving lower regret values.

In this section, we present a few ideas on how to further improve the proposed
strategies and also discuss the prospective applicability of the proposed method to
real-world settings.

6.6.1 Discussion

Despite of the effectiveness of Xs and XsF, empirically demonstrated, there are some
aspects to both algorithms that can be further improved, yet they require a careful
treatment. We discuss them next.

The main motivation for Xs lies in the error bound (6.2), which indicates that
the larger the threshold u, the more likely it is that an “upcrossing” through u leads
to the global supremum. In practice, collecting evaluations where the number of
upcrossings is expected to be large is likely to result in quickly finding promising
regions. This intuition, which is used to build up Xs, is valid for a one-dimensional
input space and it is exploited through Rice’s formula (6.1). However, its validity
remains unclear in higher dimensions due to the following reasons.

7gym.openai.com/envs/InvertedPendulum-v2/
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First, in (Adler and Taylor, 2009, Sec. 11.7), an extension of Rice’s formula (6.1)
to higher dimensions is provided. However, such extension relies on another quan-
tity, the mean Euler characteristic of manifolds, which characterizes their integral
and differential geometry, and is fundamentally different than the aforementioned
upcrossings number. In contrast to our heuristic extension (cf. Sec. 6.2.3), such
quantity is the correct extension of (6.1) to higher dimensions. Although theoreti-
cally more appealing, it also has a more complicated and less intuitive interpretation.
Second, in (Adler and Taylor, 2009, Sec. 11.7), the error bound (6.2) is formulated
in the context of the mean Euler characteristic. However, leveraging it for its use
in BO, would imply a practical reinterpretation (cf. Sec. 6.2.2), possibly involving
many approximations. Finally, another related quantity, not studied in this work,
is the expected number of local maxima above the threshold u, which is described
in (Adler and Taylor, 2009, Sec. 4.6).

Generally speaking, leveraging these quantities for practical use in BO is non-
trivial. Although our final acquisition diverges from the theoretically correct result
shown in (Adler and Taylor, 2009, Sec. 11.7), it remains motivated by the error
bound (6.2), which is the core motivation to this result. Furthermore, our acquisition
function (6.9) can be written analytically in the D-dimensional case and is cheap to
evaluate. There are, nonetheless, two approximations involved: The expectation in
Sec. 6.3.2 and the construction of the Fréchet distribution (cf. Sec. 6.3.1). Although
this might be seen as a disadvantage, it is not uncommon in BO to use numerical
approximations within the formulation of the acquisition function. For example,
in (Wang and Jegelka, 2017), the same two types of approximations are used. In
addition, other popular methods, such as (Hennig and Schuler, 2012; Hernández-
Lobato et al., 2014) involve many more approximations than the ones used herein.

The computation of the Fréchet distribution (cf. Sec. 6.3.1) could also be im-
proved by changing the type of discretization of the input domain. We follow the
algorithm described in (Wang and Jegelka, 2017, Appendix B), where the input do-
main is discretized with a uniform grid. In contrast, (Hennig and Schuler, 2012) use
a more sophisticated discretization which involves putting more resolution in areas
where the minimum is likely to be. This would result in a more accurate description
of the distribution of the global minimum, which is worth investigating.

Finally, studying how the error bound (6.2) can be leveraged to provide theoret-
ical convergence guarantees would characterize the usefulness of the method beyond
its effectiveness, which was empirically demonstrated herein. However, we empha-
size once again that such convergence guarantees do not hold valid when deploying
BO and BOC to automate controller tuning of real systems, like robots, as data
collection is scarce.
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6.6.2 Future lines

The proposed method for constrained optimization, XsF, is tailored to settings where
paying the price of a few failures is affordable in hope of finding better optima. In
the best case, these optima will lie outside the initial safe area, in case such an area
is given.

In the foreseeable future, when deploying robotic systems to work and live among
humans, a minimum level of adaptability will always be required. The robot will
constantly be facing new environments and challenging interaction settings where
adaptability will play a key role (see Sec. 4.5.2 for a related discussion). Methods
like BO and BOC can help in this regard by automatically fine-tuning robot settings
with a few trials, while avoiding (or mitigating) failures. However, even in safety
critical applications, zero-failures learning can only be guaranteed probabilistically.
In other words, failures are, and will always be, an inherent part of any learning pro-
cess. When incorporated into the learning loop, failures are informative about what
behavior should be avoided and, when properly leveraged, they can be a useful tool
of information to speed up the learning process. Because of this, flexible algorithms
that are neither too conservative nor too risky, like XsF, proposed herein, will poten-
tially have a great benefit in future robotics applications. Furthermore, a particular
feature that enhances flexibility when using XsF is the possibility of leaving to the
user’s choice an upper bound on the number of failures. This immediately contrasts
with safe learning methods, like (Berkenkamp et al., 2016b; Sui et al., 2015), where
no failures are allowed, and also with standard BO algorithms like (Gelbart et al.,
2014; Hernández-Lobato et al., 2016), where the number of failures is unbounded.



Chapter 7

Conclusions

In this thesis, we have presented a selection of projects that we have worked on during
my PhD. Herein, we first summarize the overall contributions of each project, then
discuss potential research directions arising from them, and finally conclude with a
reflection about the role of Bayesian optimization (BO) for robotics in the present
and near future.

7.1 Summary
In this thesis, we have presented four contributions, whose motivation has been
mainly driven by the following question: Can we replace manual controller tuning
with BO, and remain sample-efficient in robotics?. In general, we have proposed
several methodological contributions that address this question, and supported our
research claims with experimental results in real robotic platforms. More specifi-
cally, in Chap. 3 we have demonstrated that manual tuning can be replaced with BO
in real robotic platforms, which is the core problem of this thesis. Furthermore, we
have addressed three theoretically founded algorithms that increase sample-efficiency
when learning robot controllers using BO. Our results indicate that same or better
performance can be achieved with fewer robot experiments, in general. A complete
list of publications that have been developed during this PhD, associated or not
with the object of this thesis, can be found in Sec. 7.1.1.

In the following, we explicitly state the contribution of each part of the thesis.

Automatic LQR tuning using Bayesian optimization

In Chap. 3, we have used Bayesian optimization (BO) to automate the tuning of
a linear quadratic regulator (LQR). Therein, the performance objective is modeled
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using a Gaussian process (GP) (Rasmussen andWilliams, 2006). We have developed,
and successfully demonstrated this framework using Entropy Search (ES) (Hennig
and Schuler, 2012) on two robotic platforms: An inverted pendulum balanced with
the humanoid robot Apollo (cf. Sec. 3.4) and a squatting task performed by the
two-legged robot Hermes (cf. Sec. 3.5). Furthermore, this work is the first to apply
ES in experiments for automatic controller tuning.

The results obtained with the inverted pendulum platform were successful in 2D
and 4D tuning experiments, both when the method was initialized with an unstable
and with a stable controller. While the 2D experiment could presumably also be
handled by grid search or manual tuning, and thus mostly served as a proof of
concept, the 4D tuning problem can already be considered difficult for a human.

The results obtained with the robot Hermes on a squatting task indicate that the
proposed framework retains its effectiveness in higher-dimensional systems. Therein,
we directly learn the low-level controller parameters using BO on a 6D problem.
More specifically, our results show improvement upon a poor controller learned after
only 20 experiments. In addition, combining the LQR tuning framework with an
effective dimensionality reduction (Sec. 3.5.1) enables the deployability of BO, which
in return, helps to mitigate manual tuning effort.
Below, we list a set of additional contributions associated to this work.
I A video demonstration that illustrates the automatic LQR tuning framework

demonstrated on Apollo: https://youtu.be/TrGc4qp3pDM.
I A video summary showing the learning routine, the learned performance and

robustness tests for the automatic LQR tuning on Hermes: https://youtu.be/
udJAK60IWEc.

I A c++ implementation of ES, which is about ten times faster than the original
Matlab implementation: https://github.com/alonrot/EntropySearchCpp.

I A c++ implementation of the robust communication interface used to commu-
nicate ES with Hermes: https://github.com/alonrot/userES_pubsub_lqr.

I An alternative Matlab implementation to the original ES code, which provides a
more friendly user interface, plotting tools, and corrects bugs: https://github.
com/alonrot/userES.

Trading off simulations and physical experiments using BO

In Chap. 4, we have proposed an extension of ES to the multi-fidelity setting in
order to adaptively select between simulations and real experiments. The resulting
algorithm automatically trades off information accuracy with evaluation effort. We
demonstrate our framework by learning the controller parameters of a real cart-pole
system, where simulations were 30 times faster (i.e., cheaper) than real experiments.

https://youtu.be/TrGc4qp3pDM
https://youtu.be/udJAK60IWEc
https://youtu.be/udJAK60IWEc
https://github.com/alonrot/EntropySearchCpp
https://github.com/alonrot/userES_pubsub_lqr
https://github.com/alonrot/userES
https://github.com/alonrot/userES
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The experimental results confirm that using prior model information from a robot
simulator can reduce the amount of data required to globally find good control
policies.

We have also shown that the applicability of the automatic LQR tuning frame-
work proposed in Sec. 3.3 easily extends to a setting with multiple information
sources. Additionally, our extension of ES to the multi-fidelity setting (MF-ES)
constitutes a novel contribution by itself.
In addition, a list with supplementary material is given below.
I A video demonstration of MF-ES on a cart-pole system can be found at https:

//youtu.be/oq9Qgq1Ipp8.
I Our Matlab implementation of MF-ES can be found at https://github.com/

alonrot/mfES.

On the design of LQR kernels

In Chap. 5, we have discussed how to leverage the mathematical structure of the
well-known LQR problem to speed up the learning process using BO. The corre-
sponding performance objective is modeled using a GP, whose kernel is constructed
by exploiting the linear model and the quadratic cost function that constitute the
LQR problem. We have proposed two novel kernels: a parametric and a non-
parametric version of the LQR kernel. Our numerical simulations demonstrate im-
proved sample-efficiency and increased prediction accuracy over standard kernels,
i.e., good controllers are learned from fewer experiments. A video recording of
the talk at the conference, where this contribution was presented can be found at
https://youtu.be/zsC6Lufkl_E.

Controller learning under limited budget of failures

In Chap. 6, we have presented two novel algorithms for BO: Excursion search (Xs),
which is based on the study of excursion sets in Gaussian processes, and failures-
aware excursion search (XsF), which trades off risky and safe exploration as a func-
tion of the remaining budget of failures through a dynamic feedback controller. To
our knowledge, Xs is the first acquisition function that explicitly exploits the ex-
act gradient posterior probability to make predictions. Our empirical validation
shows that both algorithms outperform state-of-the-art methods. Specifically, in
situations in which failing is permitted, but undesirable, XsF makes better use of a
given budget of failures by depleting it at a slower rate, while generally achieving
lower regret values. A Python implementation for both algorithms is available at

https://youtu.be/oq9Qgq1Ipp8
https://youtu.be/oq9Qgq1Ipp8
https://github.com/alonrot/mfES
https://github.com/alonrot/mfES
https://youtu.be/zsC6Lufkl_E
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https://github.com/alonrot/excursionsearch.

7.1.1 List of publications

Herein, I list core papers in which I am first author (see Sec. 1.4), and upon which
this thesis is mainly based. Additionally, I also list a series of papers in which I was
a collaborator during my PhD.
I Alonso Marco, Philipp Hennig, Jeannette Bohg, Stefan Schaal, and Sebastian

Trimpe, “Automatic LQR tuning based on Gaussian process global optimiza-
tion”, In IEEE International Conference on Robotics and Automation (ICRA),
pages 270–277, c© 2016 IEEE.

I Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, An-
dreas Krause, Stefan Schaal, Sebastian Trimpe, “Virtual vs. real: Trading off
simulations and physical experiments in reinforcement learning with Bayesian
optimization”, In IEEE International Conference on Robotics and Automation
(ICRA), pages 1557-1563, c© 2017 IEEE.

I Alonso Marco, Philipp Hennig, Stefan Schaal, Sebastian Trimpe, “On the
Design of LQR Kernels for Efficient Controller Learning”, In IEEE Annual Con-
ference on Decision and Control (CDC), pages 5193-5200, c© 2017 IEEE.

I Alonso Marco, Alexander von Rohr, Dominik Baumann, José Miguel Hernández-
Lobato, Sebastian Trimpe, “Excursion Search for Constrained Bayesian Opti-
mization under a Limited Budget of Failures”, under review.

I Matthias Neumann-Brosig, Alonso Marco, Dieter Schwarzmann, Sebastian
Trimpe, “Data-efficient Auto-tuning with Bayesian Optimization: An Industrial
Control Study”, IEEE Transactions on Control Systems Technology, 2019.

I Alexander von Rohr, Sebastian Trimpe, Alonso Marco, Peer Fischer, Stefano
Palagi, “Gait learning for soft microrobots controlled by light fields”, IEEE In-
ternational Conference on Intelligent Robots and Systems (IROS), 2018.

I Andreas Doerr, Christian Daniel, Duy Nguyen-Tuong, Alonso Marco, Stefan
Schaal, Marc Toussain, Sebastian Trimpe, “Optimizing Long-term Predictions
for Model-based Policy Search”, Conference on Robot Learning (CoRL), 2017.

I Andreas Doerr, Duy Nguyen-Tuong, Alonso Marco, Stefan Schaal, Sebas-
tian Trimpe, “Model-Based Policy Search for Automatic Tuning of Multivariate
PID Controllers”, IEEE International Conference on Robotics and Automation
(ICRA), pages 5295-5301, 2017.

https://github.com/alonrot/excursionsearch
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7.2 Future work
In this section we briefly summarize future directions and open challenges for each
one of the four contributions. A more elaborated and extensive discussion can be
found in the corresponding conclusions of each chapter (cf. Sec. 3.7, 4.5, 5.5 and 6.6).

In Chap. 3, we have shown how Bayesian optimization (BO) can be used to
automate controller tuning in two challenging robotic platforms. Executing this
idea in practice entailed many challenges, which we discuss next.

First, designing an appropriate cost functional (3.3) that expresses the desired
performance objective was non-trivial. Such cost functional is described by matrices
Q and R, which diagonal parameters need to be chosen beforehand. Because such
parameters are chosen intuitively, we may realize that they do not quite reflect the
desired performance. However, we typically realize this only after having executed
the learning algorithm. Thus, iterating over these parameters is a rather slow pro-
cess. This opens the question of whether is possible to also automatically learn these
parameters, e.g., using meta-learning approaches (Gupta et al., 2018; Wang et al.,
2018b).

Second, a robust communication framework between the robot and the optimizer
was crucial (see Sec. 3.7.1 and App. A.2). In general, many technical issues can easily
break the communication, such as unstable controllers (in which case the robot needs
to be emergency-stopped), aggressive controllers causing huge vibrations, or other
external factors difficult to foresee. Usually, the communication framework becomes
robust after a few attempts to run learning experiments on the real system. However,
once the programming is finished, it is unclear whether the same loop can work under
different conditions (e.g., different robot, different environment, etc.). This poses
an important challenge: How can we expect to have robots constantly adapting
to new situations in the foreseeable future if the learning loops are so fragile and
task-dependent?

Third, for the experiments in both robotic platforms (Sec. 3.4 and 3.5), we
needed to thoughtfully parametrize the controllers to achieve a low dimensional
tuning problem. One of the reasons for this, is that BO scales badly with the di-
mensionality. From a more general perspective, optimization problems with large
dimensionality require a large number of data points to cover larger volumes. This
opens the debate of whether global methods are generally desirable, or even useful,
in settings in which data collection is scarce, like parameter optimization in robotics.

The multi-fidelity algorithm (MF-ES) proposed in Chap. 4 can trade off infor-
mation vs. evaluation effort and has shown to be beneficial in practice. However,
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there exist a number of issues that shall need to be addressed in future research.
First, the evaluation efforts of each information source are assumed to be given

parameters. For instance, they could be the duration of a simulation and a real
experiment. While this seems like a natural choice, it can be problematic in prac-
tice. For example, if the simulator is several orders of magnitude cheaper than real
experiments, it might take a while until a real experiment is ever demanded by
the algorithm. This can increase the total wall clock time it takes to run the opti-
mization, as we need to add the time MF-ES needs to suggest a new point (in our
current Matlab implementation, this is about 30 seconds). To alleviate this problem,
one can directly tweak the evaluation effort parameters, regardless of any natural
choices. This way, one can indirectly control the total duration of the experiment.
However, a more fundamental methodology to treat this parameter choice is worth
investigating.

Second, the correlation between the cost of the simulator and the real cost has
been imposed by means of an additive kernel structure (4.2). Although this has
shown to be beneficial, such structure could also be learned directly from data, in
the context of multi-output Gaussian processes.

Third, from a more high-level perspective, a plausible counterargument to this
work naturally arises when applying it in settings where simulations are way cheaper
than real evaluation. For instance, one may wonder why restricting ourselves to a
pipeline of sequential real/simulated evaluations if simulations are essentially “for
free”. In these settings, the proposed method herein would appear useless, as one
could (i) conduct many simulations prior to evaluations on the real system, or (ii)
conduct simulations in batches in parallel to the real experiment as it runs. In
Sec. 4.5.1, we discuss why MF-ES remains useful in both cases.

In Chap. 5, we have shown how to design LQR kernels in a scalar problem, i.e.,
a one-dimensional state-space system. Although this serves as a proof of concept,
scalability to multivariate systems remains an open question. More specifically,
computing the nonparametric LQR kernel is already expensive in a one-dimensional
setting, as it involves marginalizing out the model parameters (5.15) through a two-
dimensional quadrature that needs to be numerically approximated. For a system
with S states and U control inputs, the same quadrature is S3U -dimensional, which
scales badly with the dimensionality of the state. Such quadrature needs to be re-
computed every time the kernel is called, which implies a non-trivial computational
bottleneck, as the kernel function is called very often in BO algorithms. Hence,
alternative formulations of the same LQR kernel, or efficient numerical approxi-
mations, will need to be investigated. For instance, Bayesian quadrature methods
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(Kanagawa and Hennig, 2019) could be used.

Although the two algorithms presented in Chap. 6 have empirically proven to
be useful in a variety of global optimization benchmarks, there exist some open
problems that we discuss next.

On one hand, the algorithm Xs is built upon basic notions on excursion sets
(Adler and Taylor, 2009), i.e., the set of points where a random field upcrosses a
given level u. The main motivation for Xs lies in the error bound (6.2), which
indicates that the larger the threshold u, the more likely it is that an “upcrossing”
through u leads to the global supremum. In practice, collecting evaluations where
the number of upcrossings is expected to be large is likely to result in quickly finding
promising regions. Although this intuition is valid for a one-dimensional input space,
its validity remains unclear in higher dimensions.

On the other hand, although empirical validations of Xs have demonstrated its
effectiveness, no convergence guarantees have been provided. Although not strictly
necessary, this is a desirable property that helps to understand under which circum-
stances the algorithm would theoretically converge to the optimum. To this end, a
possibility would be to investigate the connection between the aforementioned error
bound and standard convergence measures, such as regret. For the same reasons,
convergence guarantees for XsF are also worth of being investigated.

7.3 Reflections
In this section, I briefly reflect on some relevant questions regarding the present
and future of Bayesian optimization in the context of autonomous and intelligent
robots. The tone and writing style of this section is intentionally less technical and
more colloquial than previous sections. I intend to give my personal opinion on a
short variety of present questions, very much connected with the contents and ideas
presented in this thesis.

Has BO for learning on real systems come at the propitious moment?

Ever since the first BO algorithms were proposed (Kushner, 1964; Mockus et al.,
1978), many optimization strategies have been elaborated (Shahriari et al., 2016).
Specially during the past decade, there has been a subtle increase of BO algorithms
in count and diversity (cf. Sec. 1.5.1). Most of these methods rely on modeling
the performance objective with Gaussian processes (GPs). Hence, probably the
published book Gaussian processes for machine learning (Rasmussen and Williams,
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2006), which serves as a guide for newcomers to the filed, propelled the usage of BO
not only in the machine (ML) community, but also in other areas, like robotics.

Roboticists started using BO for feedback controller learning (Berkenkamp et al.,
2016b; Calandra et al., 2016) a few years after BO started gaining popularity. To
our knowledge, these works are, together with the ones presented in this thesis, the
first using BO for learning on a biped robot, a robot manipulator, and a quadrotor.
Thereafter, BO was used to other robotic applications, like learning the gaits of
a biped robot (Rai et al., 2018, 2019) and learning to control pneumatic artificial
muscles (Büchler et al., 2019). In all cases, the core motivation for these works was
the need of data-efficient learning methods capable of sparing real experiments to
prevent the hardware from wearing-off and reducing human supervision.

From a financial point of view, all the above methods point to saving resources
and assets. While saving production costs is generally desirable when manufactur-
ing and maintaining robots, not all actors in the game are equally prone to it. In
fact, contemporary to the above work (circa 2016), research conducted at large tech-
nological companies started breaking the paradigm of learning with a single robot
on a small-scale, single-domain. For example, researchers at Google (Levine et al.,
2016, 2018) used 14 networked robots to learn to grasp objects using vision feedback.
After 800 000 hours of training (equivalently, 3000 hours) the failure rate of picking
objects is 34% on average. Later, (Kalashnikov et al., 2018) proposed a framework
for scalable robotic reinforcement learning; they used a database of 580 000 grasp
attempts, collected on 7 real robot arms with minimal human intervention.

Clearly, the necessity of learning with scarce data is heavily influenced by the
amount of resources available. Nowadays, universities can generally not afford hav-
ing farms of robots as large technological companies do. Furthermore, reparation
costs could be sometimes unaffordable, and a broken robot usually implies halting
indefinitely one or more research projects in that lab. In contrast, this remains
unproblematic in research carried at large companies.

These two contemporary visions on robot learning, i.e., learning with scarce data
using data-efficient methods (e.g., BO) versus learning from brute-force data collec-
tion with reinforcement learning, definitely bounds the usefulness of each methodol-
ogy as a function of available resources. Whether this trend continues unaltered or
changes in the incoming future is of course unclear. However, this train of thought
opens up the next question:

What is the place of BO for robotics in the future?

Beyond speculation, nowadays we can only state with relatively high certainty that
BO will most likely remain useful for fine-tuning existing behaviors, otherwise re-
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tuned manually. Same as BO can be used to improve the squatting performance
of a high-dimensional robot (cf. Sec. 3.5), it could be useful in the future when
robots are aiding humans in day-to-day tasks. Let us give an example: A kitchen
robot has learned to cut efficiently a certain type of onions (certain shape, color,
texture). If we decide to buy another type of onions, with different characteristics,
most likely the robot will need to adapt to them. Under non-trivial assumptions on
the robustness of the controller, the dynamics model, and reliability of the sensor
equipment, the robot could learn to chop the new onions only from a few trials, at
human-level rates. For this, having a method such as BO, that allows to incorporate
existing contextual knowledge (e.g., how to chop the first type of onions) as prior,
could help to learn from a few trials.

The list of examples where (adult) humans quickly adapt from only a few trials
is interminable: Walking on a new carpet, sitting on a different chair, walking up
different stairs, pouring water on a different cup, etc. Generally speaking, humans
adapt effortless to momentary disturbances or constant changes in their day-to-day
routines. Hence, it is not outlandish to expect the same from robots in the future.
Of course, programming robots with adaptive algorithms that are very general and
require little or none human supervision also implies expertise, effort and costs. This
brings up the following question:

Is BO really mitigating the tuning effort, or just shifting it?

As stated in Chap. 3 and in (Berkenkamp et al., 2016b; Calandra et al., 2016;
Neumann-Brosig et al., 2019), BO mitigates manual tuning and human intervention.
However, BO itself also requires non-trivial efforts to be setup. Specifically, it usually
requires (i) tuning hyperparameters of both, the GP model and the BO algorithm,
(ii) expertise in machine learning to understand and leverage it properly, and (iii) a
robust communication framework between the robot/system and the BO optimizer
to minimize human intervention1.

Tuning hyperparameters of BO algorithms is non-trivial, task-dependent and
requires expertise. Commonly, they appear in the hyperprior distributions of the
Gaussian process models (cf. Sec. 2.2.2), but also in BO algorithms themselves.
However, these are usually a only handful of hyperparameters, which are very dis-
tinct among themselves, and understanding their functionality and implications in
the algorithm only requires a high-level intuition. This is less involved than man-
ually conducting the search of the controller parameters themselves. Furthermore,
after paying the initial cost of acquiring expertise and programming the commu-

1For an example, see a description of the communication framework (App. A.2) we developed
to learn with a two-legged robot (Sec. 3.5)
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nication framework, reusing the same framework to re-tune similar plants should
come at lower effort and amount of human supervision than re-tuning the controller
parameters directly. From a broad perspective, we could say that BO methods are
beneficial in the long-term.

Is robot-learning research going private?

In the first question posed in this section, we raised the concern of large tech-
nological companies generating large datasets by training on robot farms for long
periods of time. Maybe, more important than who generates such large databases
is whether they are open-source and shared with the other actors. The inevitable
risk of privately acquiring and hosting such large datasets, e.g., as happens in large
technological companies, is nowadays buffering the impact of robot-learning research
produced in universities. If we measure impact by mean of how quickly and effec-
tively pieces of a research field become part of our day-to-day life, such companies
are definitely advantageous with respect to universities, at least within the context
of robot-learning.

In an effort of contributing to the research community, a recent collaborative
effort has been put in hosting an open source database in which 4 different institu-
tions participated. Specifically, RoboNet (Dasari et al., 2019) has been proposed as
an open database for sharing robot experience in pick-and-place robot manipulation
tasks. It provides an initial pool of 15 million video frames, collected across 7 differ-
ent robot platforms, with a large amount of data diversity. Their experiments show
the possibility to generalize across new objects, tasks, camera viewpoints, grippers,
or even entirely new robots.

It is the responsibility of our community as a whole to keep sharing our find-
ings and contributing altogether to the technological progress, rather than letting
new ideas, data, and algorithms hidden under the veil of competitiveness and profits.

Is BO less data-efficient than model-based reinforcement learning?

Certainly, there exist more methods in the robot learning community that aim
at data-efficiency. While recent model-free reinforcement learning methods remain
very data hungry (Espeholt et al., 2018; Hessel et al., 2018) to be deployed in real
systems, an existing powerful tool is the use of model-based reinforcement learning
(MBRL) methods. These methods aim at learning a specific task with little or no
prior information by first acquiring a dynamics model, and continuously improving
it in order to match a performance goal. To this end, some of the methods that
are tailored to work on real robots represent the dynamics model with a neural
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network (Chua et al., 2018; Nagabandi et al., 2019), while some other do it with a
Gaussian process (Deisenroth and Rasmussen, 2011; Kamthe and Deisenroth, 2018).
When comparing the usage in robotics of MBRL and BO, we can find drawbacks
and advantages in both of them regarding data-efficiency and applicability to real
robots. We discuss them below.

The greatest benefit of MBRL methods is that they leverage the time-dependent
state trajectories acquired in experiments to improve the dynamics model, while
BO typically compresses such data into a single performance data point. In this re-
gard, MBRL can increase sample-efficiency, as the collected data is more extensively
exploited. However, the greatest disadvantage of MBRL algorithms is that their
scalability to high-dimensional robots is limited by their computational complex-
ity. Usually, MBRL methods leverage model predictive control (MPC) and similar
approaches to predict state trajectories in a receding-horizon fashion. Appropriate
lengths for the prediction horizon scale badly with the complexity of the task and
the state dimensionality. Hence, applicability of MBRL to high-dimensional robots
(e.g., walking robots) is limited by either (i) the frequency at which the prediction
loops can run, or (ii) the prediction horizon length. In any case, using MBRL for
robotic settings that require fast dynamics, such as walking, remains unclear.

On the contrary, BO methods usually proceed episodically and leverage the col-
lected data off-line, after the episode has finished. Because of this, their applicability
is not limited by the complexity of the task at hand. Of course, their biggest dis-
advantage is the input dimensionality that they can handle. To this end, ongoing
research tackles high-dimensional BO (Wang and Jegelka, 2017; Wang et al., 2016),
although its applicability for learning on real robotic systems is currently being
explored.

An open research question is how to combine the best from both worlds, BO
and MBRL. For instance, from a rather broad perspective, MBRL could be used as
in (Chua et al., 2018; Kamthe and Deisenroth, 2018) to exploit the acquired data
more efficiently, while an outer BO loop iterates on the parameters of a probabilistic
prior that encodes possible motions (e.g., dynamic motion primitives, central pattern
generators, etc.). By injecting prior structure in the problem (the role of BO), we
shall remain sample-efficient, while leveraging the time-dependent trajectory (role
of MBRL).
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Appendix A
Automatic LQR tuning of a humanoid

robot

In this appendix, we discuss further details about the implementation choices and
the experimental setup used in Sec. 3.5.

A.1 Implementation choices
The robot Hermes performs a squatting task by tracking a given sinusoidal reference.
Such reference sref

k ∈ RS is only non-zero in the vertical component of the center of
mass (COM) of the robot. The corresponding COM part rk =

[
rX
k , r

Y
k , r

Z
k

]
and its

velocity ṙk are given as

rZ
k = sZ

0 − a(1 + cos (2πb∆τk))
ṙZ
k = a2πb∆τ sin (2πb∆τk))
rX
k = ṙX

k = rY
k = ṙY

k = 0,
(A.1)

where a = 0.1 m is the amplitude, b = 0.8 Hz is the frequency, ∆τ = 10−3 s is
sampling time, k is the time step and sZ

0 is the vertical component of the position
of the center of mass at the initial time.

For simplicity, the performance matrices are such that R = I, where I is the
identity matrix. Furthermore, we penalize the joint positions and the position and
orientations of the center of mass in matrix Q as follows

Q18,18 = Q19,19 = Q20,20 = 102;Q3,3 = Q5,5 = Q10,10 = Q12,12 = 103

Q6,6 = Q13,13 = Q1,1 = Q8,8 = Q9,9 = Q2,2 = Q17,17 = 105

Q15,15 = Q16,16 = 104;Q4,4 = Q11,11 = 107,

(A.2)

and Qi,i = 1 for the rest of the indices, with i = {1, . . . , 40}.
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A.2 Experimental setup
The robot Hermes was cable-communicated with a desktop PC, running Ubuntu
16.04 and fully controlled using SL (Schaal, 2009) at 1kHz. Hermes is a hydraulically-
actuated torque-controlled humanoid, manufactured by Sarcos. Its joints need from
an external high-pressure oil pump to function. More details about Hermes can be
found in (Mason et al., 2014).

We used ROS to communicate the robot and Entropy Search (ES) by send-
ing/receiving data via publishers/subscribers. The c++ code for the communication
framework is publicly available at https://github.com/alonrot/userES_pubsub_
lqr. In the following, we briefly explain the main aspects of such communication
scheme.

First, we start ES (see Alg. 2). When CostEvaluation() is called, the com-
munication between ES and Hermes begins. Therein, ES publishes the controller
parameters to Hermes, and a new squatting experiment is started. Once the experi-
ment has terminated, the corresponding cost value is listened by ES, which continues
executing until a pre-established stopping criterion is met.
Once a new experiment has started, the three following steps are conducted:
1) Assuming the robot is up and running, bring the robot to the home position,

regardless of its current state.
2) Perform squatting task for 30 seconds, while checking for unstability flags.
3) Report “unstable” if the robot surpasses pre-established joint limits, or report

the cost value in case the task is successfully finished.
Step 1 is needed to ensure all experiments start from the same initial joint config-
uration, i.e., the home position. There exist many technical issues can easily break
the ES optimization loop. For example, loosing communication with the robot or
an aggressive controller destabilizing the robot. The former is ensured by checking
a “alive/dead” flag published from the robot side, while the latter is achieved by
making sure that certain joint limits are not exceeded. If exceeded, a stopping flag
was triggered to safely freeze the robot. However, in many cases, too aggressive
controllers would cause sudden violent movements in the robot, or high vibrations
(due to the controller amplifying measurement noise). Then, an emergency stop had
to be pressed to stop the oil pump, after which the robot was not operative anymore
and had to be manually restarted. At the same time, ES was informed about the
standby situation, to wait indefinitely for the robot to be restarted.

https://github.com/alonrot/userES_pubsub_lqr
https://github.com/alonrot/userES_pubsub_lqr


Appendix B
Controller learning under limited budget of

failures

This appendix presents supplementary material to Chap. 6, such as derivations,
clarifications and additional results.

B.1 Additional details to the derivation of XsF

Herein, the derivation of (6.6), shown in Sec. 6.2.2, is complemented with two ad-
ditional insights. First, in App. B.1.1, we show how the integral from (6.6) resolves
into an analytical expression. Then, in App. B.1.2, we reason about adding {x, u}
to the dataset Dft as a virtual observation.

B.1.1 Analytical expression for the integral in (6.6)

The integral from (6.6) can be split in two parts∫ +∞

−∞
|f ′|p(f ′|D̃)df ′ = −

∫ 0

−∞
f ′p(f ′|D̃)df ′ +

∫ +∞

0
f ′p(f ′|D̃)df ′,

where the placeholder D̃ = Dft ∪ {x, u} is used for simplicity, and the dependency
of f ′ on x is implicit, and also omitted. Since f ′ ∼ N (f ′;µ′(x), ν2(x)) is Gaussian
distributed, each of the integrals above can be seen as the expected value of an
unnormalized truncated normal distribution with support [−∞, 0], and [0,+∞],
respectively (Jawitz, 2004). These expectations are given by∫ 0

−∞
f ′p(f ′|D̃)df ′ = µ′(x)Zu(x)− ν(x)φ

(
−µ′(x)

ν(x)

)
∫ +∞

0
f ′p(f ′|D̃)df ′ = µ′(x)Zl(x) + ν(x)φ

(
−µ′(x)

ν(x)

)
,

where Zl(x) = Φ
(
µ′(x)
ν(x)

)
, Zu(x) = Φ

(
−µ′(x)
ν(x)

)
, φ is the density of a standard normal

distribution and Φ is its cumulative density function. We make use of the definition
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Φ (a) = 1
2(1 + erf

(
a/
√

2
)
), where erf (·) is the error function, to compute Φ (a) −

Φ (−a) = erf
(
a/
√

2
)
. Then, Zl(x) − Zu(x) = erf

(
µ′(x)√
2ν(x)

)
, and the integral can be

solved analytically as∫ +∞

−∞
|f ′|p(f ′|D̃)df ′ = µ′(x)(Zl(x)− Zu(x)) + 2ν(x)φ

(
µ′(x)
ν(x)

)
= µ′(x)erf

(
µ′(x)√
2ν(x)

)
+ 2ν(x)φ

(
µ′(x)
ν(x)

)
.

Then, (6.6) follows.

B.1.2 Virtual observation {x, u}

The posterior of the process derivative p(f ′|x, u,Dft ) is a Gaussian density and can
be seen as conditioning f ′(x) on an extended dataset that includes {x, u} as a virtual
observation. In the following, we briefly discuss this.

Since differentiation is a linear operation, the derivative of a GP remains a GP
(Rasmussen and Williams, 2006, Sec. 9.4). Furthermore, the joint density between
a process value f(x), its derivative f ′(x) and the dataset {X, y} is Gaussian (Wu
et al., 2017)

p(y, f, f ′|x,X) = N



y

f

f ′

 ;


0
0
0

 ,

K̃(X,X) K(X, x) K ′(X, x)
K(x,X) K(x, x) K ′(x, x)
K ′(x,X) K ′(x, x) K ′′(x, x)


 ,

where K̃(X,X) = K(X,X)+σ2
nI,K ′(X, x) = ∂K(X, x)/∂x,K ′′(x, x) = ∂2K(x, x)/∂x2,

and the prior mean of the GP is assumed to be zero. Then, the conditional
p(f ′|f, x,Dft ) = N (f ′;µ′(x; f), ν2(x)) is also Gaussian, and can be obtained us-
ing Gaussian algebra (Rasmussen and Williams, 2006, A. 2). The mean µ′(x; f)
depends on the random variable f as

µ′(x; f) =
[
K ′(x,X) K ′(x, x)

] K̃(X,X) K(X, x)
K(x,X) K(x, x)

−1 y
f

 . (B.1)

The desired Gaussian density N (f ′;µ′(x;u), ν2(x)) is obtained by replacing the
value f in the expression for the mean (B.1). Thereby, {x, u} appears in (B.1) as
an additional virtual observation at location x added to the existing dataset {X, y},
in shorthand notation: p(f ′|u, x,Dft ) = p(f ′|Dft ∪ {x, u}).

B.2 Fréchet distribution
In this section, we present a brief analysis on why assuming a Fréchet distribution
is less error prone in practice than using the Gumbel distribution, when it comes to
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Figure B.1: (top) Gaussian process, and η (red dashed line). (bottom) Survival functions
for both Gumbel, and Fréchet distributions. Samples from the Gumbel (crosses) and from
the Fréchet (circles) distribution are shown.

model the distribution over the global minimum p(f∗). This analysis complements
the methodology presented in Sec. 6.3.1.

When modeling p(f∗) with the Gumbel distribution and sampling from it, some
samples of the global minimum can lie above the lowest observation so far η =
min(y(x1), . . . , y(xt)), with non-zero probability, which is unrealistic. This can be
explicitly avoided by using the Fréchet distribution which, contrary to Gumbel, has
zero probability mass near η. We illustrate this with an example, in which a GP with
zero mean, unit variance, and squared exponential kernel is considered, conditioned
on 20 observations sampled from the GP prior. We discretize the domain in 200
points and sample the resulting GP posterior at them. In Fig. B.1, we see that a
portion of the Gumbel samples lie above η. To show consistency, we sample the
posterior GP 100 times and average the number of times that Gumbel exceeds η,
i.e., 1.60± 1.22% of the cases, while the Fréchet distribution exceeds η in 0% of the
cases.

B.3 Algorithm and complexity
Herein, we discuss pseudocode for XsF and its computational complexity.
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B.3.1 XsF algorithm

Pseudocode for XsF is shown in Alg. 4. The decision boundary ρb is used to switch
between safe search (cf. (6.14)) and risky search (cf. (6.14)). The algorithm returns
the location where the mean of the posterior GP is minimized without violating
the probabilistic constraints. To abbreviate, we have used the placeholder ζ(x) =∏K
i=1 Pr(gj(x) ≤ 0).
We do not explicitly discuss Xs, as it simply comprises a standard Bayesian

optimization loop, which involves (i) computing samples of the global minimum,
and (ii) maximizing the acquisition function (6.9).

B.3.2 Complexity

At each iteration, the most expensive operations required to obtain (6.14) and (6.14)
are: (a) obtaining samples from the global minimum p(f∗) and (b) maximizing the
acquisition function using local optimization with random restarts.

As explained in (Wang and Jegelka, 2017), obtaining S samples from p(f∗) in-
volves discretizing the input domain and performing a binary search, which has a
total cost of O(S+Nd log(1/κ)), where Nd is the size of the discretization grid, and
κ is the accuracy of the binary search.

Each call to the acquisition function αX (6.9), has a cost of O(SD) where D is
the dimensionality of the input space. Then, assuming R random restarts, and M
maximum number of function calls, the total cost of XsF in per iteration the worst
case scenario is given by O(MRD(S + 1) +Nd log(1/κ) + (G+ 1)(Nobs + 1)3). The
last term is the cost of inverting the Gram matrix, needed for GP predictions (cf.
(B.1)), after having collected Nobs observations, and having G constraints. When
setting G = 0, we obtain the computational cost of Xs, as it also requires gathering
samples from p(f∗) and local optimization with random restarts.

B.4 Implementation details
Both, Xs and XsF are developed using BoTorch1, a Python library for Bayesian
optimization that serves as a low-level API for building and optimizing new acquisi-
tion functions and fitting GP models. It makes use of scipy Python optimizers2 for
estimating the GP hyperparameters and optimizing the acquisition function through
local optimization with random restarts. In all cases we allow 10 random restarts
and use L-BFGS-B (Byrd et al., 1995) as local optimization algorithm. Currently,

1botorch.org/docs/introduction.html
2docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
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Algorithm 4 Failures-aware Excursion Search (XsF)

1: Input: T,B, S,Df0 ,D
g
0, ρsafe, ρrisk, ρb, ρ0

2: for t = 1 to T do
3: ρt ← UpdateDecisionBoundary(ρt−1)
4: f∗ ← SampleGlobalMinimum(S)
5: if ρt > ρb then
6: xt ← arg maxx∈X αX(x; f∗) s.t. ζ(x) ≥ ρt (6.14)
7: else
8: xt ← arg maxx∈X αX(x; f∗)ζ(x) (6.14)
9: end if
10: EvaluateAndUpdateGPs(xt)
11: end for
12: xc

∗ ← arg minx∈X µ(x) s.t. ζ(x) ≥ ρsafe
13: Return: xc

∗

14: procedure UpdateDecisionBoundary(ρt)
15: zt ← Φ−1 (ρt)
16: ut ← ut(∆Bt,∆Tt) Controller update (6.13)
17: zt ← zt + ut Process update
18: Return: Φ (zt)
19: end procedure

20: procedure SampleGlobalMinimum(S)
21: Estimate Fréchet distribution Fs,q following Sec. 6.3.1
22: for l = 1 to S do
23: f l∗ = F−1

s,q (ξl). ξl ∼ U(0, 1)
24: end for
25: Return: f 1

∗ , . . . , f
S
∗

26: end procedure

27: procedure EvaluateAndUpdateGPs(xt)
28: y = f(xt), yj = gj(xt) j = {1, . . . , G}
29: Dft ← {y, xt}, D

gj

t ← {yj, xt} j = {1, . . . , G}
30: Update hyperparameters of GP models
31: end procedure

BoTorch does not support optimization under non-linear constraints, which is
needed to solve (6.12). To overcome this, we use the implementation of COBYLA
(Powell, 1994) from nlopt3.

In all experiments, the noise of the likelihood is fixed to σn = 0.01 for all GPs.
The chosen hyperpriors on the lengthscales and the signal variance are reported in
Table B.1, where U(a, b) refers to a uniform prior on the interval [a, b], G(a, b) refers

3nlopt.readthedocs.io/en/latest/



128 Appendix B − Controller learning under limited budget of failures

to a Gamma prior with concentration a and rate b, and N (a, b2) refers to a normal
distribution with mean a and standard deviation b.

In Sec. 5.2., both, the Michalewicz and the Hartman functions are normalized to
have zero mean and unit variance. The true minimum is known for both functions,
which allows to compute the regret.

In Sec. 5.4, the goal is to find the state feedback gain x ∈ R4×1 for the cart-
pole problem that minimizes a quadratic cost f(x), which penalizes deviations of
the pendulum states sk = [ϕk, ϕ̇k, lk, l̇k]> from an equilibrium point s∗. The pole
angle is ϕk, the pole angular velocity is ϕ̇k, the cart displacement is lk, and the cart
velocity is l̇k. The input to the system is the cart acceleration ak, which is given by
ak = x>(sk− s∗) + 0.01∑Nsimu

1 (lk− l∗), where an integrator, with gain 0.01, is added
to eliminate the steady-state the error. For each parametrization x, the constraint
value is computed as the maximum displacement of the cart over a simulation of
Nsimu = 800 steps, i.e., g(x) = max(lk), k = {1, . . . , Nsimu}. Constraint violation
is quantified as g(x) > lmax, where lmax is the physical limit of the rail in which
the cart moves. To allow the system to dissipate energy, the damping value of the
simulated cart-pole in MuJoCo was increased from 1.0 to 1.5.

Table B.1: Hyperprior choices for the GP model hyperparameters for all experiments.

Lengthscale λ Variance σ2

Michalewicz 10D f U(0.01, 0.3) N (0.5, 0.252)
g U(0.01, 0.3) N (0.5, 0.252)

Hartman 6D f G(1.0, 5.0) N (0.5, 0.252)
g G(1.0, 5.0) N (0.5, 0.252)

NN compression f U(0.01, 0.3) N (0.5, 0.22)
g U(0.01, 0.3) N (7.5, 2.02)

Pendulum f U(0.01, 0.3) N (1.0, 0.252)
g U(0.01, 0.3) N (0.5, 0.252)

B.5 Additional results
In this section, we present complementary results to those presented in Sec. 6.5.2.

To decouple the influence of the hyperparameter learning from the performance
of the acquisition function itself, we fix the GP hyperparameters and sample the
true objective f and the true constraint g from the corresponding GP priors. To
obtain such samples we follow the same approach as in (Hernández-Lobato et al.,
2016): First, the input domain is discretized to an irregular grid of 8000 points.
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Table B.2: Constrained (top) and unconstrained in-model comparisons (bottom). Simple
regret rT (mean ± std) and percentage of safe evaluations Ω.

3D Synthetic function
rT

EI 1.03± 0.50
mES 1.03± 0.43
PI 0.86± 0.41

UCB 1.00± 0.43
Xs 0.19± 0.34

rT Ω (%)
EIC 0.71± 0.61 21± 19

PESC 1.32± 0.62 14± 6
XsF 0.30± 0.51 52± 15

Second, function evaluations are randomly sampled from the corresponding GP
prior at such locations. Finally, the GP is conditioned on those evaluations and the
resulting posterior mean is used as true objective. The lengthscales where fixed to
0.1 and the signal variance to 1.0.

The simple regret cannot be computed because the true minimum of the GP
sample is unknown a priori. Instead, we report results assuming a very conservative
lower bound on all the possible sampled functions, i.e., minx∈X f(x) = −4.0. We
allow a maximum of T = 100 iterations, and a budget of failures B = 15 in the
constrained case. The experiments were repeated 50 times for all algorithms. At
each repetition, a new function is sampled from the GP priors.

In Table B.2, we show a performance comparison of both, Xs and XsF in op-
timizing a 3D input space. Without the influence of hyperparameter optimization,
the proposed methods reach lower observations than state-of-the-art methods.
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