
On-board Obstacle Avoidance in the Teleoperation of Unmanned Aerial Vehicles

On-board Obstacle Avoidance in
the Teleoperation of Unmanned

Aerial Vehicles

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Marcin M. Odelga
aus Warschau (Polen)

Tübingen
2018

Tag der mündlichen Qualifikation: 16.04.2019
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Heinrich H. Bülthoff, Department

of Human Perception, Cognition and Action,
MPI for Biological Cybernetics, Tübingen

2. Berichterstatter: Prof. Dr. Andreas Zell

To all the people that inspired and supported me, teachers,

supervisors, fellow researchers and novelists. To my family

and foremost to my wife, Aneta Peszko.

Abstract

The teleoperation of unmanned aerial vehicles (UAVs), especially in cramped, GPS-
restricted, environments, poses many challenges. The presence of obstacles in an
unfamiliar environment requires reliable state estimation and active algorithms to
prevent collisions.

In this dissertation, we present a collision-free indoor navigation system for a
teleoperated quadrotor UAV. The platform is equipped with an on-board minia-
ture computer and a minimal set of sensors for this task and is self-sufficient with
respect to external tracking systems and computation. The platform is capable of
highly accurate state-estimation, tracking of the velocity commanded by the user
and collision-free navigation. The robot estimates its state in a cascade architec-
ture. The attitude of the platform is calculated with a complementary filter and
its linear velocity through a Kalman filter integration of inertial and optical flow
measurements.

An RGB-D camera serves the purpose of providing visual feedback to the oper-
ator and depth measurements to build a probabilistic, robot-centric obstacle state
with a bin-occupancy filter. The algorithm tracks the obstacles when they leave
the field of view of the sensor by updating their positions with the estimate of the
robot’s motion. The avoidance part of our navigation system is based on the Model
Predictive Control approach. By predicting the possible future obstacles states, the
UAV filters the operator commands by altering them to prevent collisions. Exper-
iments in obstacle-rich indoor and outdoor environments validate the efficiency of
the proposed setup.

Flying robots are highly prone to damage in cases of control errors, as these
most likely will cause them to fall to the ground. Therefore, the development of
algorithm for UAVs entails considerable amount of time and resources. In this
dissertation we present two simulation methods, i.e. software- and hardware-in-
the-loop simulations, to facilitate this process. The software-in-the-loop testing
was used for the development and tuning of the state estimator for our robot
using both the simulated sensors and pre-recorded datasets of sensor measurements,
e.g., from real robotic experiments. With hardware-in-the-loop simulations, we are
able to command the robot simulated in Gazebo, a popular open source ROS-
enabled physical simulator, using computational units that are embedded on our
quadrotor UAVs. Hence, we can test in simulation not only the correct execution of
algorithms, but also the computational feasibility directly on the robot’s hardware.

Lastly, we analyze the influence of the robot’s motion on the visual feedback pro-

vii

Abstract

vided to the operator. While some UAVs have the capacity to carry mechanically
stabilized camera equipment, weight limits or other problems may make mechanical
stabilization impractical. With a fixed camera, the video stream is often unsteady
due to the multirotor’s movement and can impair the operator’s situation aware-
ness. There has been significant research on how to stabilize videos using feature
tracking to determine camera movement, which in turn is used to manipulate frames
and stabilize the camera stream. However, we believe that this process could be
greatly simplified by using data from a UAVs on-board inertial measurement unit
to stabilize the camera feed. Our results show that our algorithm successfully sta-
bilizes the camera stream with the added benefit of requiring less computational
power.

We also propose a novel quadrotor design concept to decouple its orientation
from the lateral motion of the quadrotor. In our design the tilt angles of the
propellers with respect to the quadrotor body are being simultaneously controlled
with two additional actuators by employing the parallelogram principle. After
deriving the dynamic model of this design, we propose a controller for this platform
based on feedback linearization. Simulation results confirm our theoretical findings,
highlighting the improved motion capabilities of this novel design with respect to
standard quadrotors.

viii

Kurzfassung

Teleoperation von Drohnen in Umgebungen ohne GPS-Verbindung und wenig Be-
wegungsspielraum stellt den Operator vor besondere Herausforderungen. Hindernis-
se in einer unbekannten Umgebung erfordern eine zuverlässige Zustandsschätzung
und Algorithmen zur Vermeidung von Kollisionen.

In dieser Dissertation präsentieren wir ein System zur kollisionsfreien Navigation
einer ferngesteuerten Drohne mit vier Propellern (Quadcopter) in abgeschlossenen
Räumen. Die Plattform ist mit einem Miniaturcomputer und dem Minimum an Sen-
soren ausgestattet. Diese Ausstattung genügt den Anforderungen an die Rechen-
leistung. Dieses Setup ermöglicht des Weiteren eine hochgenaue Zustandsschätzung
mit Hilfe einer Kaskaden-Architektur, sehr gutes Folgeverhalten bezüglich der kom-
mandierten Geschwindigkeit, sowie eine kollisionsfreie Navigation. Ein Komple-
mentärfilter berechnet die Höhe der Drohne, während ein Kalman-Filter Beschleu-
nigung durch eine IMU und Messungen eines Optical-Flow Sensors fusioniert und
in die Softwarearchitektur integriert.

Eine RGB-D Kamera stellt dem Operator ein visuelles Feedback, sowie Distanz-
messungen zur Verfügung, um ein Roboter-zentriertes Modell umliegender Hin-
dernisse mit Hilfe eines Bin-Occupancy-Filters zu erstellen. Der Algorithmus spei-
chert die Position dieser Hindernisse, auch wenn sie das Sehfeld des Sensors verlas-
sen, mit Hilfe des geschätzten Zustandes des Roboters. Das Prinzip des Ausweich-
Algorithmus basiert auf dem Ansatz einer modell-prädiktiven Regelung. Durch Vor-
hersage der wahrscheinlichen Position eines Hindernisses werden die durch den Ope-
rator kommandierten Sollwerte gefiltert, um eine mögliche Kollision mit einem Hin-
dernis zu vermeiden. Die Plattform wurde experimentell sowohl in einer räumlich
abgeschlossenen Umgebung mit zahlreichen Hindernissen als auch bei Testflügen in
offener Umgebung mit natürlichen Hindernissen wie z.B. Bäume getestet.

Fliegende Roboter bergen das Risiko, im Fall eines Fehlers, sei es ein Bedienungs-
oder Berechnungsfehler, durch einen Aufprall am Boden oder an Hindernissen Scha-
den zu nehmen. Aus diesem Grund nimmt die Entwicklung von Algorithmen dieser
Roboter ein hohes Maß an Zeit und Ressourcen in Anspruch. In dieser Arbeit
präsentieren wir zwei Methoden (Software-in-the-loop- und Hardware-in-the-loop-
Simulation) um den Entwicklungsprozess zu vereinfachen. Via Software-in-the-loop-
Simulation konnte der Zustandsschätzer mit Hilfe simulierter Sensoren und zuvor
aufgenommener Datensätze verbessert werden. Eine Hardware-in-the-loop Simula-
tion ermöglichte uns, den Roboter in Gazebo (ein bekannter frei verfügbarer ROS-
Simulator) mit zusätzlicher auf dem Roboter installierter Hardware in Simulation

ix

Kurzfassung

zu bewegen. Ebenso können wir damit die Echtzeitfähigkeit der Algorithmen direkt
auf der Hardware validieren und verifizieren.

Zu guter Letzt analysierten wir den Einfluss der Roboterbewegung auf das vi-
suelle Feedback des Operators. Obwohl einige Drohnen die Möglichkeit einer me-
chanischen Stabilisierung der Kamera besitzen, können unsere Drohnen aufgrund
von Gewichtsbeschränkungen nicht auf diese Unterstützung zurückgreifen. Eine
Fixierung der Kamera verursacht, während der Roboter sich bewegt, oft unsteti-
ge Bewegungen des Bildes und beeinträchtigt damit negativ die Manövrierbarkeit
des Roboters. Viele wissenschaftliche Arbeiten beschäftigen sich mit der Lösung
dieses Problems durch Feature-Tracking. Damit kann die Bewegung der Kamera
rekonstruiert und das Videosignal stabilisiert werden. Wir zeigen, dass diese Me-
thode stark vereinfacht werden kann, durch die Verwendung der Roboter-internen
IMU. Unsere Ergebnisse belegen, dass unser Algorithmus das Kamerabild erfolg-
reich stabilisieren und der rechnerische Aufwand deutlich reduziert werden kann.
Ebenso präsentieren wir ein neues Design eines Quadcopters, um dessen Ausrich-
tung von der lateralen Bewegung zu entkoppeln. Unser Konzept erlaubt die Neigung
der Propellerblätter unabhängig von der Ausrichtung des Roboters mit Hilfe zwei-
er zusätzlicher Aktuatoren. Nachdem wir das dynamische Modell dieses Systems
hergeleitet haben, synthetisierten wir einen auf Feedback-Linearisierung basierten
Regler. Simulationen bestätigen unsere Überlegungen und heben die Verbesserung
der Manövrierfähigkeit dieses neuartigen Designs hervor.

x

Contents

1 Introduction 1
1.1 Teleoperation in the Context of UAVs 1
1.2 Components of Teleoperation . 2

1.2.1 The Platform . 3
1.2.2 Software Components . 6
1.2.3 Low-level Control . 8
1.2.4 Operator’s Desk . 9

1.3 Thesis Outline . 12

2 State Estimation 15
2.1 Introduction . 15

2.1.1 Literature Overview . 15
2.1.2 Problem Statement . 18
2.1.3 Methodology . 18

2.2 Foundations . 19
2.2.1 Frames and Notation . 19
2.2.2 Quadrotor-Camera System 20
2.2.3 Measurement and Estimation 21
2.2.4 Sensor Models . 22

2.3 Complementary Filter . 28
2.4 Kalman Filter . 29

2.4.1 General Equations . 30
2.4.2 Variations in the Implementation 32
2.4.3 EuRoC Kalman filter . 36
2.4.4 Vicon-IMU Integration . 40

2.5 On-board Velocity Estimation . 43
2.5.1 Estimator Design . 43
2.5.2 Bias Estimation . 45
2.5.3 Estimation Results . 46

2.6 Software-in-the-loop Simulations . 49
2.7 Summary . 50

3 Obstacle Detection and Tracking 51
3.1 Introduction . 51

3.1.1 Literature Overview . 51

xi

Contents

3.1.2 Problem Statement . 53
3.1.3 Methodology . 54

3.2 Bin-Occupancy Filter . 54
3.2.1 Prediction . 55
3.2.2 Correction . 56

3.3 Implementation . 56
3.3.1 Depth Measurement Model and Calibration 57
3.3.2 Coordinate System . 58
3.3.3 Robot-Centric Obstacle State 61
3.3.4 Measurement Updates . 62
3.3.5 State Updates . 64

3.4 Summary . 66

4 Obstacle Avoidance 69
4.1 Introduction . 69

4.1.1 Literature Overview . 69
4.1.2 Problem Statement . 71
4.1.3 Methodology . 72

4.2 Avoidance Algorithm . 72
4.2.1 Probability of Collision . 73
4.2.2 Model Predictive Control . 74
4.2.3 Commanded Velocity . 74
4.2.4 Obstacle Avoidance . 75
4.2.5 Active Avoidance . 78

4.3 Hardware-in-the-loop Simulations 79
4.3.1 About HIL Simulations . 80
4.3.2 Simulation Setup . 81
4.3.3 Experiments . 83
4.3.4 Conclusion . 86

4.4 Experimental Validation . 87
4.4.1 Indoor Experiments . 87
4.4.2 Outdoor Experiments . 94

4.5 Summary . 96

5 Underactuation of UAVs in Teleoperation 99
5.1 Introduction . 99

5.1.1 Problem Statement . 99
5.1.2 Methodology . 100

5.2 Camera Gimbals . 100
5.2.1 Depth Camera Gimbal . 102
5.2.2 Conclusions . 102

xii

Contents

5.3 IMU-based Digital Image Stabilization 103
5.3.1 Literature Overview . 103
5.3.2 Motivation and Methodology 105
5.3.3 Stabilization Algorithm . 106
5.3.4 Experimental Setup and Results 110
5.3.5 Discussion . 111
5.3.6 Conclusions and Future Works 113

5.4 6 DOF Quadrotor . 113
5.4.1 Literature Overview . 114
5.4.2 Motivation and Methodology 114
5.4.3 Platform Design . 115
5.4.4 Control . 119
5.4.5 Simulations . 120
5.4.6 Conclusions . 122

5.5 Summary . 122

6 Discussion 125
6.1 Future Work . 126

A Experimental Hardware 129
A.1 Flight Controller . 129
A.2 On-board Computer . 130

B State Update Code 131

Bibliography 133

xiii

Chapter 1

Introduction

1.1 Teleoperation in the Context of UAVs

Development of various robotics systems has a common goal - increase of efficiency
in execution of tasks from the wide range of human interest. Subsequently, it
extends this spectrum by enabling tasks that would not be available without the
tools of robotics. It can be informally assumed that the higher the autonomy level
of a given robotic system the higher the efficiency of the system. In teleoperation,
however, when a robot is directly controlled by the user, the presence of a human
operator can be seen as a limiting factor. Nevertheless, the human supervision can
provide supreme reliability, not yet achievable for fully autonomous robots.

Operation in unstructured environments is arguably one of the largest impedi-
ments to full autonomy, with additional challenges arising from close interaction,
noise and ambiguity in sensing. Variability of consecutive cases (case-to-case vari-
ability) of a given application leads to a lack of generalization, which in turn trans-
lates to a difficulty in categorization and in defining robot behaviors. For example,
in applications such as medical robotics, or the decommissioning of a nuclear plant,
the great variability between cases makes defining robot behaviors extremely hard.

A trade-off between high reliability in teleoperation and autonomous systems’ ef-
ficiency can be achieved through the concept of shared autonomy. Such a resolution
may be also desired as a compromise in situations when legal limits are imposed
on the use of autonomous systems or because of practical reasons. By enabling
certain autonomous behaviors the system’s performance can be increased while si-
multaneously reducing the operator’s mental workload. To achieve this, however,
it is also important to maintain good situational awareness as operator throughout
the whole process. The operator should be well aware of any autonomous behavior
of the platform and be able to supervise it, such that their decision making and
supervision is not limited.

From the point of view of the operator, a robot with appropriate capabilities
enables them to remotely study the environment or physically interact with it.
Multirotor unmanned aerial vehicles (UAVs) are especially suitable for the former
in applications such as visual inspection, thermal imaging, aerial photography and

1

Chapter 1 Introduction

mapping, search and rescue missions etc. Unlike fixed-wing aircraft, multirotors
can hover, consequently enabling control over more degrees of freedom (DOF), and
in contrast to common helicopters they have simpler dynamics, and do not require
a tail rotor to counteract the torque-induced control issues. Smaller propellers are
also safer and cheaper in production.

Manual piloting of a multirotor would require, however, a very high workload
if a pilot were to control each motor individually. To facilitate the control task,
multirotors are equipped with flight controllers that drive the motors given the user
input. To realize the control task, the controller has to be equipped with sensors
to estimate the state of the controlled quantities.

Quadcopters and other unmanned vehicles come with added bonuses but also
new challenges. In order to be easier to operate, they require reliable controllers
and state estimation. Nevertheless, piloting of UAVs can be still challenging due
to the limited situation awareness of the pilot who controls the platform remotely,
not from on-board the aircraft. Many quadcopters are outfitted with on-board
cameras to give the pilot a first person perspective when flying. However, even
with improved optics, many precautions still must be taken to ensure a safe flight,
such as thorough mission planning, analysis of potential obstacles, and being within
the line of sight in order to make the best judgment calls.

Until relatively recently most work on multirotors, with quadrotors being the
most prominent members of that family, have utilized external tracking systems to
develop new software and hardware solutions for UAVs. With the rapidly growing
interest in this field of research, and a booming number of publications on these
flying robots over the past decade, scientists started to shift towards more advanced
topics and applications. Lately, thanks to progress in miniature computers and new
sensors, this has become feasible. Tasks like on-board state estimation, environment
sensing and object recognition have become executable on the platforms themselves,
enabling significantly improved UAV autonomy.

1.2 Components of Teleoperation

Teleoparation indicates the operation of a robot, or machine, at a distance. From
the functional point of view it has two distinctive subsystems, the robot and the
operator’s desk, coupled with a wired or wireless interface. The interface between
the user and the robot has to enable proper communication between these two
systems, which includes sending commands to the robot and receiving feedback
that informs the user about the execution of the task. Hence, the teleoperated
robotic UAV in addition to its standard components, i.e., mechanical structure,
actuators and sensors, has to be equipped with devices related to its task and
components to provide meaningful data about the robot’s state and surroundings
to the operator.

2

1.2 Components of Teleoperation

As vision is the dominant sense in humans, visual sensors of different types are
the major source of information for the operator, starting from simple monocular
cameras, through stereoscopic and multiple sensor setups to the use of specialized
cameras that measure different spectra, e.g., thermal or infrared sensors. Other
sensors can gather additional information about the object in the view, e.g., distance
measurement through depth estimation. Additional sensor channels can include,
but are not limited to, auditory and tactile channels. Haptic controllers, i.e., devices
that enable force and torque feedback, have proved beneficial in teloperation tasks
(Franchi et al., 2012; Omari et al., 2014). Through haptic sensing, the operator’s
awareness about the dynamics of the robot or the presence of obstacles can be
greatly improved.

1.2.1 The Platform

From the hardware point of view, a UAV robotic platform has to fulfill various
requirements. On one hand, its mechanical structure, i.e., the frame with rotors
and other basic components, has to provide enough payload to carry the necessary
sensors and computation units for the desired tasks while ensuring certain standards
of maneuverability and flight time. On the other hand, as we mostly target indoor
applications, size limits must also be considered. Larger propellers provide more
lift and enable room for additional equipment but increase the overall footprint
of the robot which might make it unsuitable given our assumptions and working
environment.

From the software perspective, we need to endow the platform with sufficient
computational power while keeping the size and weight limits. Especially for al-
gorithms allowing autonomous behaviours and that require the processing of large
amounts of sensor data, a relatively high computational power is necessary. How-
ever, because of the limited payload of the platform, this requires a balance between
the complexity of the implemented algorithms with a high computational power-
to-weight ratio of the on-board computer.

Hardware Overview

As the main part of this thesis is a continuation of the work by Stegagno et al.
(2014), we begun with the same UAV setup which we later modified and adjusted in
terms of hardware and software during the development of the presented algorithms.
Our UAV platform is based on a MK-Quadro quadcopter from MikroKopter1, it
consists of a frame with four 10 inch propellers powered by brushless motors with
motor controllers, in its default configuration it weights less than 1 kg and can carry
up to 0.5 kg of payload.

1http://www.mikrokopter.de

3

Chapter 1 Introduction

(a) (b)

Figure 1.1: Our experimental platforms, (a) initial version and (b) final version.

The platform is equipped with a flight controller, a small microprocessor control
board with its own firmware, which serves as the interface with the motor controllers
and low-level sensors. Although the on-board computer would be highly capable
of performing the aforementioned tasks, the dedicated controller provides higher
reliability and robustness. Given the minimal functionalities of the flight controller
firmware (with a comprehensive and thorough debugging thanks to the development
environment), this embedded system ensures stable and consistent performance.
The technical details of our flight controller can be seen in App. A.1.

The main computational unit is a smartphone-grade single-board computer (Odroid-
XU3), it communicates wirelessly with a ground station PC, transmitting visual
feedback to the operator, i.e., color images from the camera, and receiving joypad
and Omega.6 haptic device inputs. Using the joypad buttons, the operator can eas-
ily switch between different modes of operation (e.g., turn on the motors, initiate
lift-off, switch to the haptic control mode, etc.) and give the desired velocity with
the haptic device while receiving force feedback.

The platform has two optical sensors, an RGB-D camera (Asus Xtion Pro Live)
that is used as the source of data for obstacle detection and to provide RGB visual
feedback to the operator, and an optical flow sensor with a built-in echo sonar
(PX4Flow, Honegger et al. (2013)) oriented downward and used in the state esti-
mation process.

Additionally, the platform is equiped with IR markers for an external tracking
system, which provided ground truth pose information for our initial experiments,
tuning of the on-board state estimator, and evaluation of the performance of the
tracking and obstacle avoidance algorithms independently from state estimation
errors.

Two versions of the platform are depicted in Fig. 1.1. Both of the platforms,
with additional hardware, weigh approximately 1.3 kg. The additional components
are attached rigidly to the frame with 3D printed parts. The platform is powered
by a 2600 mAh LiPo battery that provides approximately 10 min of flight.

4

1.2 Components of Teleoperation

RGB-D Camera

The on-board RGB-D sensor (Asus Xtion Pro Live) is used as the source of data
for obstacle detection providing 640×480 RGB and depth images at around 30 fps.
Fig. 1.1 depicts two configurations of the camera that we used throughout this
research.

The platform in Fig. 1.1a was used in the initial experiments with single obstacles.
The vertical orientation of the camera was motivated by the previous work by
Stegagno et al. (2014) where the authors performed ”pan-scanning”, alternating left
and right yaw rotations to extend the horizontal field of view. The camera in this
setup is also rotated downward at about 20° to increase the number of visual features
inside the FOV by framing a bigger portion of the ground, while simultaneously
offering a horizontal line of sight to the operator. In the second setup, shown in
Fig. 1.1b, the camera is oriented horizontally, in its default orientation. As we
decided to forgo the pan-scanning motion in favor of better obstacle tracking, this
standard orientation provides a better depth field of view and visual feedback to
the operator. It both configurations the camera is mounted approximately 45° to
the right with respect to the front propeller, with this new direction also defining
the forward direction of motion of the robot in our experiments.

RGB-D cameras are optical sensors that combine functionalities of color images
(RGB) and depth sensors in one device. Classically, the distance from an object
to the camera in computer vision can be estimated through stereo vision and tri-
angulation. Having at least two images of the same object enables estimation of
its position in the camera frame if the relative pose of both cameras with respect
to each other is known. This, however, is a computationally expensive process and
often results in a sparse depth estimation, especially when dealing with objects of
uniform color and low contrast.

Structured light sensors, like the Microsoft Kinect or the Asus Xtion Pro Live that
we use, approach this problem in another way. Equipped with infrared projectors,
these sensors cast a known pattern on the objects in the field of view and estimate
the distance to almost every pixel in the image by analyzing the deformation of this
pattern. Although there are new problems related to this approach (susceptibility to
sunlight, poor detection of highly reflective surfaces and occluded areas), structured
light sensors are highly reliable in indoor applications and provide direct dense
depth information.

As stated above, depth cameras with their relatively wide fields of view and dense
measurements are perfect sensors for obstacle detection. These sensors provide
accurate information about obstacles in space, but in order to express detected
points in the robot frame they need proper modeling and calibration.

5

Chapter 1 Introduction

ROS topics
over wireless
connection
feedback for
the operator

(pose,)
input from
the operator

hardware
interface

thrust, attitude,
yaw rate
commands

IMU data

screen
joystick

haptic interface
(vicon)

base
station

Telekyb
(high-level
control and
algorithms)

Odroid

ROS
topics

commands

IMU data

low-level
control

ROS topics
sensor interface

serial connection

Quadrotoron-board sensors USB, serial

Figure 1.2: A block scheme of our UAV hardware/software setup.

1.2.2 Software Components

The software of a robot includes all the necessary components to drive the platform
and perform a desired task. It is comprised of of various modules dedicated to
the low- and high-level control, state estimation, sensor software drivers, signal
processing, communication with the operator’s desk, etc. The block diagram of
our software setup is shown in Fig. 1.2, this diagram also indicates the hardware
components on which the software is running or with which it is interfacing.

The main computational unit is the Odroid board operated by Ubuntu and run-
ning the Robot Operating System with the Telekyb framework. The technical
details of this miniature computer are presented in App. A.2. We exploit ROS
communication topics to connect the robot to a base station equipped with in-
put/feedback devices using wireless communication. In addition, the base station
may host appropriate routines to read measurements provided by a motion capture
system (Vicon), if present, and translate them into ROS topics.

Similarly, Telekyb modules are interfaced through ROS topics with a ROS node
to connect them with the sensors and the quadrotor hardware. The role of this
block is to encrypt and send the commands (desired thrust, attitude and yaw rate)
to the microcontroller through the serial connection. The low-level controller is
then in charge of driving the propellers’ motors to follow the received commands.
Similarly, the block receives IMU and battery status data from the microcontroller
and translates them to ROS messages.

The UAV can be equipped with additional sensors such as an RGB-D sensor or
other cameras, laser scanners, GPS modules etc. In general, these sensors can be
connected through serial and USB ports which are present on the Odroid board.
The interface with the high-level controller and algorithms is obtained once again
with specific ROS nodes that translate measurements into ROS topics.

ROS - the Robot Operating System

The Robot Operating System, although called an operating system, is an advanced
framework for robotic software, which requires a compatible operating system to
work in. It is a collection of tools, libraries and conventions, whose purpose is to

6

1.2 Components of Teleoperation

facilitate the development of complex control software for robotic applications in a
broad sense. It has the form of a middleware as it provides layers of abstraction be-
tween the computing hardware, sensors, actuators with their hardware, and control
algorithms, with protocols to standardize/unify communication and data exchange
between different components. As such, it allows users (developers, researchers)
to develop software oriented towards these components, which, thanks to the ROS
framework, can be independent from the selection of other components.

Each executable software portion constitutes a node in the ROS structure/frame-
work that can communicate with other nodes using tools defined in the ROS client
library: messages over topics or service calls. In general, topics are meant for fast
distribution of frequent data to an undefined number of recipients. Services on the
other hand, are two way communication channels. They are usually more specific
but mostly allow nodes not only to receive data but also send specific requests.

ROS topics are data channels that are identified with their names and have
specified message types. Any node can create a topic by publishing to it or receive
data by subscribing to an already existing topic. For example, a user can implement
a sensor specific driver as a node that will regularly query the sensor about its
measurement, transfer the data into a predefined message structure and publish
it so that other nodes can utilize the sensor data. In this example, standardized
message types allow users to create more general algorithms that will use a specific
type of sensors, which share the same message type, but not limited to specific
models.

ROS services also have specified names and data types that consist of two com-
ponents: a request and response. In the request part, the node that calls the service
specifies the conditions and receives a corresponding response. For example, in our
obstacle avoidance algorithm that is detailed in Chap. 4, we implemented the ob-
stacle mapping as a separate node with the avoidance part as a service. The UAV
trajectory processor node can validate its desired velocity command by sending
it to the obstacle avoidance node and receiving a response with a command that
minimizes the probability of collision given specific constrains.

Telekyb

Telekyb (Grabe et al., 2013) is a teleoperation framework developed initially as a
standalone software and migrated later into the ROS architecture. It is a collection
of different software components related to the teleoperation of UAVs, it has defi-
nitions of its own data structures with inter-communication. The main component
of Telekyb is a ROS node called Telekyb Core. It is modular and contains different
classes of objects with internal data structures and and inter-communications, e.g.,

• State Estimator (Controller),

• Trajectory Controller,

7

Chapter 1 Introduction

• Behavior Controller.

The modularity of this design enables easier module modifications and replacement.
For example, the State Estimator implements a state-estimation algorithm that,
depending on the available sensor measurements, computes the state of the robot.
Thus, it is not limited to one sensor configuration, but as the output is a standard
ROS message, different algorithms can be implemented and selected at launch time
depending on the current configuration. In a laboratory environment an external
tracking system can be used, while for flights in unstructured environments we use
an implementation of the algorithm presented in Sec. 2.5.1.

The Trajectory Controller is a module containing a higher-level trajectory track-
ing algorithm. It produces a unified control output for the robot in a hierarchical
fashion where the control vector goes through consecutive sub-modules that can
modify it. First, the control signal is computed based on a point-to-point tra-
jectory or, as in our case, from the desired velocity command - the user input.
Subsequent routines can filter that control signal based, e.g., on a limited flying
zone or additional limits. For example, if the user wants to restrict the robot from
flying into a certain region, they can add a module that will check the position of
the robot and restrict the commanded velocity without the need of modifying the
the whole Trajectory module. In our experiments we use the so-called Standard
Trajectory Tracker, which is an implementation of the control algorithm described
by Martin and Salaün (2010).

The Behavior Controller controls the transition between different modes or stages
of operation. For example, the initial power-on, lift-off, hover, teleoperation etc.
It ensures that the commands sent to the robot are appropriate for its current
state. For example during the lift-off or hovering in place, the robot should not be
commanded to fly sideways.

Other components of Telekyb are ROS nodes that handle the specific experiment
and communicate with the UAV. The UAV node implements protocols to interface
with the UAV, including reading of the on-board sensors and sending commands to
the low-level controller. The experiment node handles the user input devices and
translates it into commands sent to the Telekyb Core.

1.2.3 Low-level Control

The low-level controller is the software component that directly interfaces with the
robot’s actuators to control the robot’s motion. It is a PID controller for the roll
and pitch angles and the yaw angle rate, and it is implemented as a part of the flight
controller firmware. Based on the attitude commands from the trajectory controller
in Telekyb, it computes the roll, pitch and yaw torques given the current state of
the platform from the internal attitude estimator and gains set by the user in the
UAV interface node. The internal attitude estimator is a complementary filter

8

1.2 Components of Teleoperation

u = [φd, θd, ψ̇d, ∆τd]
T

IMU data

θ PID

ψ̇ PID

Complementary
Filter

+

+

+

−
−

−

φd

θd

ψ̇d

∆τd

φ̂ θ̂
ˆ̇
ψ

φ PID
y = [τφ, τθ, τψ, ∆τd]

T
εφ

εθ
εψ̇

Figure 1.3: Block diagram of the low-level PID controller.

identical to its counterpart in the state estimator of Telekyb presented in Sec. 2.3.
The command to each motor is computed based on the obtained roll, pitch and yaw
torques and the total desired thrust, fourth component of the attitude command
from Telekyb. A simplified diagram of the low-level control scheme is shown in
Fig. 1.3.

The commands to the motor controllers are obtained as a weighted distribution
of the total thrust 

um1

um2

um3

um4

 = Km


0 −1 −1 1/4

−1 0 1 1/4

0 1 −1 1/4

1 0 1 1/4



τφ
τθ
τψ

∆τd

 , (1.1)

where umi
is a generalized i-th motor input, Km is a matrix with propellers coef-

ficients (Ryll et al., 2015), vector [∆τd, τφ, τθ, τψ]T contains the total thrust ∆τd
and, respectively, the roll, pitch, and yaw torques from the PID controllers, it is
multiplied by the torque distribution matrix.

The torque distribution matrix comes from the dynamic model of a quadrotor
(Franchi et al., 2012) and its physical meaning can be illustrated with Fig. 1.4.
The nominal thrust of each motor is equal to ¼ of the total thrust ∆τd. Additional
components depend on the desired roll, pitch and yaw torques. Motors m1 and m3

lie on the x axis and the difference in their thrust contributes to the pitch rotation,
i.e. about the y axis. In the same manner, the motors m2 and m4 contribute to the
roll rotation. The 4th column of the distribution matrix corresponds to the yaw
rotation - torques generated by all motors result in the rotation about the vertical
axis, depending on their directions of rotation.

1.2.4 Operator’s Desk

The other side of the teleoperation setup is the operator’s desk. The main com-
ponents of the operator’s desk are the ground station computer with a screen for

9

Chapter 1 Introduction

x y

m1 m2

m3m4

z

Figure 1.4: Simplified diagram of the quadrotor.

visual information, input device(s), possibly haptic feedback enabled, and speakers
if audio information is available. The visual feedback, displayed for the operator
on the screen, contains the view from the robot’s visual sensors with overlaid addi-
tional graphical and textual information, e.g., robot’s status. Auxiliary information
can be also displayed, for example a 3D view of the robot’s surroundings if that is
available through robot’s sensors. In applications where stereo vision is important,
e.g. in teleoperated medical robots, the visual feedback can be presented as stereo
pairs of images.

Input Devices

There are a few control strategies in teleoperation. For robots with a limited
workspace, e.g., in teleoperation of robotic arms, position control can be used where
the workspace of the input device is mapped to the workspace of the robot. For
robots with an infinite workspace, for example UAVs, usually velocity control (Ste-
gagno et al., 2014) is used or the desired position is given as way-points on a map
(Ahmad et al., 2017). Another control mode is the attitude control of UAVs. In this
mode the operator directly controls the roll, pitch, yaw rate and the total thrust.
The attitude control requires a skilled operator and involves high workload.

In our experiments we intend to control the robot in the velocity mode and for
that we use the following input devices. The main control device is an Omega 6
haptic device shown in Fig. 1.5a. Its three translational degrees of freedom are used
to produce a velocity control input as

• forward/backward2 motion,

• right/left rotation,

2backward motion is only conditionally allowed, within the working limits of the obstacle avoid-
ance algorithm, 4.2

10

1.2 Components of Teleoperation

(a) (b)

Figure 1.5: Input devices: (a) Omega 6 haptic device and (b) joypad con-
troller. Image sources: (a) http://www.forcedimension.com and (b) https:

//www.logitechg.com.

• up/down motion.

We do not allow the user to give lateral translation commands as it would result
in motions toward regions outside the visual feedback and could potentially cause
collisions. Instead, the user has to rotate the platform first so it faces the desired
direction of motion. The haptic device is capable of exerting forces on these degrees
of freedom which we use to give a haptic feedback to the operator and increase their
situational awareness (Stegagno et al., 2014).

The joypad shown in Fig. 1.5b is used as an auxiliary control device, with its
color-coded buttons we can send commands to, e.g., arm the motors, command
the robot to lift-off, enter hovering, and then enter into the teleoperation mode.
Additionally, in experiments that do not require the precision of control of the
haptic device, the joypad knobs and arrow keys can be used to control the robot’s
motion.

Teleoperation Distance

The distance of remote operation of a robotic system is virtually unlimited. In the
field of flying robots close, mid and long range operations are possible, even to the
intercontinental distances as presented by Riedel et al. (2013). Nevertheless, the
important aspect is that the UAV is not in the direct line of sight of the operator
and they have to rely on the available feedback.

The limiting factors for long range operations are the interface range, bandwidth
and latency. Interfaces can vary from direct cable connection to wireless ones, both
using standard bands (WiFi, Bluetooth) or low power dedicated devices (IEEE
802.15.4, such as XBee). Long range communications usually rely on the Internet
with LAN/WAN extension on either end.

11

http://www.forcedimension.com
https://www.logitechg.com
https://www.logitechg.com

Chapter 1 Introduction

1.3 Thesis Outline

In this work we tackle the following aspects of vision-based UAV teleoperation. In
Chap. 2 we talk about state estimation, a critical task in any robotic application.
State estimation is the process of obtaining knowledge about the dynamic state
of the robot through measurements and observations. After defining the formal
aspects of reference frames and notation related to UAVs, we discuss Kalman fil-
tering (KF), a common sensor fusion algorithm. We analyze non-standard cases
of Kalman filtering in terms of available measurements and possible delays in the
system. We also show how KF can be used to estimate sensor bias and we define
the models of the sensors that we use on our system. Our main contribution in
Chap. 2 is a dual state KF design for UAV velocity estimation. Based on the in-
ertial measurement unit (IMU) and optical flow (OF) integration, it estimates the
state of the platform and the sensor bias.

The main goal of this thesis is to present a method for obstacle detection, tracking
and avoidance for a UAV teleoperated in the velocity mode. In Chap. 3 we discuss
different approaches to the obstacle detection and tracking in existing literature,
and we analyze them in the context of this thesis. We propose our solution based on
the bin-space representation of obstacles in the local frame of the robot using depth
camera measurements. As our intention is that our platform is independent from
external computation, we pay special attention to the efficiency of our approach in
terms of execution on the on-board computer. We specify in detail our approach,
which includes the definition of the obstacle state and the process how it is updated
with new measurements and the motion of the robot.

In Chap. 4 we define our approach to obstacle avoidance. Our method is inspired
by Model Predictive Control. With the obstacle state obtained with the algorithm
from Chap. 3 we can predict possible collisions given the user input. The principle
of the avoidance algorithm is based on a passive approach, i.e., the algorithm only
reacts to the user input, altering it when necessary, however, should not perform
actions on its own. The user is informed about any alteration of their input through
haptic feedback. This approach guarantees that the user’s control over the process
is not being limited while facilitating the teleoperation task. In Chap. 4 we also
talk about hardware-in-the-loop simulations (HIL), a method that enables testing
of an algorithm with simulated sensor measurements on the actual hardware. We
show how by using this method, the development time and cost can be greatly
improved which is especially important in experiments with high risk of damage to
the system. To prove the validity of our navigation system with obstacle avoidance,
we show the results of numerous experiments in different scenarios.

In Chap. 5 we analyze the impact of the underactuation of multirotors on teleop-
eration. As this class of UAVs has to tilt in order to exert lateral accelerations, the
visual feedback from a camera rigidly attached to the robot is subject to the same
motion. Therefore, it can impair the quality of the visual feedback presented to the

12

1.3 Thesis Outline

operator and in turn impact their situation awareness. We present three different
approaches for visual feedback stabilization, which are

• active stabilization with camera gimbals,

• digital stabilization using IMU data,

• stabilization with a novel, fully actuated platform.

The first approach is a common solution in aerial photography and in this work we
analyze how, and if, it can be adopted to our non-standard RGB-D camera. The
other two approaches consist of our original work and have been successfully pub-
lished in the works Odelga et al. (2017) and Odelga et al. (2016b). Our approach
to digital image stabilization is based on using only IMU data and the platform’s
estimated attitude to stabilize the image. It is a lightweight solution that does not
require computationally expensive feature tracking. Next, we present the concept
of a novel quadrotor design with two additional actuators for simultaneous manip-
ulation of the propellers’ orientation. Thanks to the mechanical links, our platform
requires only two servo motors to regain the missing degrees of freedom (DOFs)
and have a one-to-one relation between the number of control inputs and DOFs.

13

Chapter 2

State Estimation

2.1 Introduction

State estimation is a process in which the probable value of certain quantities can be
assessed based on available information, both partial and indirect. Thus, by using
information from different sources, the calculated estimate is typically more precise
and accurate than each information source individually. The source of data are
usually sensor measurements, predictions based on the model of the system, and
estimates from secondary algorithms. Proper statistical modelling of these data
enables calculation not only of the approximate value of the estimated quantity
but also of its probabilistic distribution and certainty.

In robotics, state estimation is one of the most important tasks. Variables defin-
ing the state of a dynamic system, together with its model, are essential in any
control process. The choice of state variables is arbitrary, as long as the corre-
sponding transformation describing the behaviour of the system can be determined.
For example, a typical state of an UAV includes its orientation, angular velocity
(the rate of change of orientation), 3D velocity and position in the world reference
frame. Such a set of quantities comprises a base state vector in the position control
of a UAV.

2.1.1 Literature Overview

Depending on the quantities that we want to estimate, there are different ap-
proaches to state estimation for UAVs. The state of an UAV can be defined as
its pose, i.e., its linear position and angular orientation and the corresponding
derivatives: linear and angular velocities and accelerations. However, depending
on the control mode, not all of these quantities have to be estimated on-board.

The most fundamental is the estimation of a platform’s attitude, the orientation
with respect to the gravity vector and the rate of rotation around that direction,
i.e., the roll and pitch angles and the yaw rate. Together with an attitude controller
such an approach can be implemented on a low-power microcontroller system, which
makes it a popular solution among radio control (RC) hobbyists. However, as

15

Chapter 2 State Estimation

the microcontroller knows neither its position nor linear velocity, it is the user’s
responsibility to assess and control these quantities with the tilt and total thrust
of the platform. Therefore, as introduced in Sec. 1.2.4, the attitude control mode
requires a skillful and well-trained operator. The standard solution in attitude
estimation is the complementary filter (Mahony et al., 2008; Martin and Salaün,
2010).

Enabling on-board velocity control makes UAVs possible to operate even by an
untrained person. Because the commanded velocity is directly dependent on the
user input, such a control mode is more forgiving, as it is always possible to stop the
platform by releasing the input. Velocity estimation, however, requires additional
sensors, the most common being an optical flow sensor (Honegger et al., 2013)
paired with a range finder, as the estimation of the linear velocity from the optical
flow measurements needs the corresponding distance measurements.

To enable the possibility of controlling the robot in the position mode, e.g.
through way-points, it is necessary that the robot is able to determine its own
position. The most common solution in a laboratory environment is the use of an
external tracking system, e.g. Vicon. This approach has been used in multiple
works related to UAVs and other robots mainly thanks to its accuracy, low noise,
and relatively high frequency of position updates, for example in the work by Ste-
gagno et al. (2014) and the work describing our initial results in obstacle avoidance
(Odelga et al., 2016b). The main advantage of such setups is obvious, it enables
separation of the estimation problem from the investigated problem and focus on
higher-level algorithms and applications.

For outdoor scenarios, a possible reference position can be obtained through the
Global Positioning System (GPS) and its integration with other sensor measure-
ments, for example in a inertia-GPS sensor fusion as shown by Schinstock (2013).
Researchers, however, tend to forgo the use of GPS, mostly due to its limitations
and low accuracy in obstacle-rich environments which are typical for small size
robots and their applications. Therefore, the main goal of the research on position
estimation for UAVs (and other robots) is a fully on-board system, independent
from external sources of information, that is robust and accurate in various scenar-
ios.

The main approach to the on-board position estimation is visual odometry (VO)
(Nister et al., 2004; Se et al., 2005), where the position of the robot is determined
based on the position of the camera computed from the comparison of consec-
utive images. This estimation can be either based on feature tracking (indirect
approaches), as in the notable work by Mur-Artal et al. (2015) that uses ORB
features, or directly, by analyzing the photometric error between frames (Engel
et al., 2013). In summary, the direct approaches estimate the pose of the camera
through an optimization problem, by finding a frame-to-frame transformation that
align images and minimizes pixel intensity difference directly in the sensor space.
Feature-based, or indirect, approaches perform an additional step of feature ex-

16

2.1 Introduction

traction and matching. The robot’s pose can be then determined through bundle
adjustment (Lourakis and Argyros, 2005) by finding the transformation that aligns
the matched features in consecutive frames.

As in every dead reckoning problem, as the pose of the camera is based on the
integration of subsequent transformations, visual odometry approaches are subject
to accumulating errors. One of the solutions to this issue is loop closure (Se et al.,
2005). The algorithm cross compares the camera’s current view with the frames
(or features) stored in memory, and consequently minimizes the accumulated error
when the robot-camera system reaches a previously known location.

Visual odometry methods are very computationally intensive and although the
current state-of-the-art algorithms achieve (sub-)centimeter precision, running them
on a lightweight, on-board computer is challenging (Delmerico and Scaramuzza,
2018). Additionally, these methods usually require laborious tuning to optimize
their performance to accuracy ratio and often requires a trade-off between robust-
ness and execution time.

Classical visual odometry algorithms, such as in the work presented by Nister
et al. (2004), were first developed by computer vision researchers. Hence, the focus
was purely oriented on determining the camera pose (and subsequently environment
mapping) from the images only. As the perspective from a monocular camera does
not provide metric correlations between the features, methods that rely solely on
a single-lens sensor provide estimates with an unknown scale. To overcome that
issue, VO algorithms based on stereo (Engel et al., 2013) and depth cameras (Kerl
et al., 2013) have since been developed.

The newest trend is visual-inertial fusion, wherein the motion estimated from
a visual sensor is enhanced with the estimate inferred from an inertial sensor.
Within this class of visual-inertial odometry (VIO) methods, two classes can be
distinguished, so called, loosely and tightly coupled approaches. In loosely coupled
algorithms the motion is first determined from the different sensors and then the
estimate is refined through sensor fusion algorithms, e.g. Kalman filtering. In
tightly coupled algorithms, the inertial data is used within the VO algorithm. A
detailed work by Delmerico and Scaramuzza (2018) presents an overview of the
most recent VIO algorithms from both of these classes.

The main focus of the work by Delmerico and Scaramuzza (2018), however, is a
broad performance comparison of different VIO algorithms run on a few popular
on-board computers. It shows that these algorithms can be satisfactorily run on
these platforms, but as can be seen from the presented analysis, the algorithms
usually consume a large portion of the system’s resources, leaving little room for
additional functionality.

Among other works, Stegagno et al. (2014) shows that the full knowledge of
drift-free position is not critical for safe teleoperation, however, the robot must
be able to reliably estimate its own velocity. Compared to full-fledged VO or
simultaneous localization and mapping (SLAM) algorithms, the velocity estimation,

17

Chapter 2 State Estimation

even when based on feature tracking, is computationally much less intensive and can
be relatively easily run on-board allowing space for additional algorithms (Bonnin-
Pascual et al., 2015; Oleynikova et al., 2015).

2.1.2 Problem Statement

In the context of this thesis, the goal is to develop a reliable and robust state
estimation algorithm for the purpose of indoor teleoperation of UAVs. As the
mentioned algorithm has to run on-board a small size quadrotor platform it must
be optimized in terms of computational requirements and also in terms of used
sensors as the platform is limited both in payload and computational power.

We prioritize the algorithms related to the teleoperation facilitation in this work,
namely obstacle detection and avoidance, and the self-sufficiency of the platform
with respect to external sensors and computation. Therefore, the state-estimation
part of our work must not only ensure on-board feasibility but also allow execution
of other, possibly computationally intensive, algorithms.

2.1.3 Methodology

The assumptions mentioned in the previous section convince us to refrain from a
full VO or SLAM and seek an alternative solution instead. We developed a velocity
estimation algorithm that is based on the classical optical flow-inertial integra-
tion (Bonnin-Pascual et al., 2015; Oleynikova et al., 2015), but has been tailored
specifically for our platform. Some features are distinctive to our implementation,
which we hope is presented with a strong attention to detail, and constitute a clear
contribution.

In Sec. 2.2 we present the formal description of our system with associated frames,
transformations, and notation, and introduce models of the sensors that we use on
our platform. In Sec. 2.3 we introduce equations and describe the complementary
filter for orientation estimation. In Sec. 2.4 we discuss Kalman filtering and its
variations in different scenarios with examples of our own implementations. In
Sec. 2.5 we detail the implementation of our on-board state estimator with example
results. In Sec. 2.6 we briefly discuss software-in-the-loop simulations and how we
benefited from it in the development of our algorithms. We conclude this chapter
in Sec. 2.7.

18

2.2 Foundations

2.2 Foundations

2.2.1 Frames and Notation

Throughout this thesis we represent relevant quantities with respect to their refer-
ence frames. A cartesian coordinate frameA can be defined asA : {OA, XA, YA, ZA},
where OA defines the origin of A, and XA, YA and ZA are its three axes as per the
right-hand rule.

To express the relation between the two frames, we use the following notation:
ApB ∈ R3 to represent the origin of the frame B : {OB, XB, YB, ZB}, in frame A
and RA

B ∈ SO(3) represent the rotation matrix expressing the orientation of B in
A. For an arbitrary point P we can define the following relation for its position in
A given its position in B

ApP =A pB +RA
B
BpP . (2.1)

With BφA, BθA, and BψA we denote the roll, pitch and yaw angles that represent
the rotation of frame B in A according to roll-pitch-yaw (RPY) notation. Thus,
the RA

B matrix is defined as

RA
B = Rz(

AψB)Ry(
AθB)Rx(

AφB), (2.2)

where Rx(·), Ry(·), Rz(·) are the basic rotation matrices and represent the elemen-
tal rotations around the X, Y and Z axes respectively. Thus

RA
B =

cψ −sψ 0
sψ cψ 0
0 0 1

cθ 0 −sθ
0 1 0
sθ 0 cθ

1 0 0
0 cφ −sφ
0 sφ cφ

 =

=

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 ,
(2.3)

where the notation sδ, cδ and tδ indicates the sin, cos and tan of a generic angle δ.

It is often convenient to determine the RPY angles from a given rotation matrix.
If we express an arbitrary rotation matrix as

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (2.4)

19

Chapter 2 State Estimation

from (2.3) we can obtain the following relations

φ = tan−1

(
r32

r33

)
, (2.5)

θ = tan−1

(
−r31√
r2

32 + r2
33

)
, (2.6)

ψ = tan−1

(
r21

r11

)
. (2.7)

As the order of rotations matters, it is important to emphasize that the RPY
convention assumes extrinsic rotations, i.e., all rotations are about the fixed frame
A in the above example. Thus, in order to obtain B, we first perform the rotation
of angle AφB about XA, then of angle AθB about YA, and of angle AψB about ZA.
On the other hand, the classical Euler convention defines the rotations as intrinsic,
e.g., the Euler ZYX rotation means rotation of ψ, θ, and φ about Z -Y

′
-X

′′
axes,

where Y
′

and X
′′

are the axes of intermediate frames, after the first and the second
rotation, respectively. However, the classical Euler ZYX with the same angle values
as RPY rotation will produce an identical rotation matrix.

2.2.2 Quadrotor-Camera System

A UAV for teleoperation purposes must be equipped with a camera to provide
visual feedback to the operator. A simplified schematic diagram of a UAV-camera
system is shown in Fig. 2.1 with reference frames used to represent the relevant
quantities related to the state-estimation and control of our platform. In our case,
the sensor is rigidly attached to the robot’s frame but all of the considerations
presented throughout this thesis can be generalized to an actuated camera.

The main reference frame, the quadcopter frame Q : {OQ, XQ, YQ, ZQ}, repre-
sented in the common aerospace North-East-Down (NED) notation is used to ex-
press the robot’s position and orientation in an arbitrary, North-West-Up (NWU),
global (world) reference frame W : {OW , XW , YW , ZW}. Q is attached to the middle
point of the robot, ideally its center of mass, the XQ axis defines the front direction
and the ZQ axis points downward.

The robot’s position and orientation in the world frame are defined as WpQ ∈ R3

and RW
Q ∈ SO(3), respectively. Following the notation introduced in Sec. 2.2.1,

with WηQ = [WφQ,
W θQ,

WψQ]T we represent the rotation of the robot as RPY
angles. Hence, the RW

Q matrix can be obtained as

RW
Q = Rx(π)Rz(

WψQ)Ry(
W θQ)Rx(

WφQ), (2.8)

where the Rx(π) matrix describes the transformation from NED to NWU notation.

20

2.2 Foundations

XQ

XH

ZQZH

ZC

YC

XC

YH

YQ
ZW

YW
XW

Figure 2.1: The Quadrotor-camera system with relevant coordinate frames.

Stegagno et al. (2014) demonstrated that for UAV teleoperation tasks, the robot-
centric approach is convenient, i.e. where both, the state of the system and the
commands are expressed in a local, horizontal frame. We introduce the horizontal
frame H : {OH , XH , YH , ZH} in which the XHYH plane is parallel to the world
XWYW plane and is defined such that OH ≡ OQ and its orientation differs from
RW
Q only by the yaw angle and the NED-NWU conversion. Hence[

HφQ
HθQ

Hψ̇Q
]T

=
[
WφQ

W θQ
W ψ̇Q

]T
, (2.9)

and
RH
Q = Ry(

W θQ)Rx(
WφQ). (2.10)

The position of the quadrotor and its yaw angle expressed in such a frame, HpQ
and HψQ, respectively, are equal to zero.

Lastly, we represent the camera frame, the reference frame for the sensor images,
as C : {OC , XC , YC , ZC}. The position and orientation of C in Q, i.e. QpC and
RQ
C , are extrinsic parameters of the camera that depend on the way the camera is

attached to the robot. These quantities can be determined or refined through an
off-line calibration as shown in Sec. 2.2.4.

In particular, on our platform the camera is mounted with a yaw angle of 45° in
order to avoid occlusions by the propellers.

2.2.3 Measurement and Estimation

Measurement describes both the process in which a sensor is used to obtain in-
formation about certain quantities and the obtained information itself. As such,
measurements are inherently encumbered with errors, usually referred to as ob-

21

Chapter 2 State Estimation

Low Precision High Precision

High Accuracy

Low Accuracy

Figure 2.2: Precision and accuracy.

servation or measurement errors. These errors can be classified as systematic and
random errors.

Systematic errors are related to the measurement or the observation process di-
rectly, and are strictly related to the way a sensor produces its output . This type of
errors is predictable, and can usually be modeled and mitigated in a calibration pro-
cess. Typical systematic errors are scaling and offset biases. As shown in Fig. 2.2,
high proportional errors reduce a sensor’s accuracy while measurement offsets con-
tribute to sensor’s precision. With the term accuracy we refer to the correctness of
the mean value of a quantity, and with the term precision its covariance.

Random errors on the other hand, are random fluctuations of a sensor’s read-
ings. They reveal the variation of the output in repeated observations of the same
quantity in the same conditions.

Estimation is the process in which uncertain information is used to produce a best
approximation of a value. For example, proper statistical modeling of a sensor with
its errors allows the reduction of noise and an increase in the overall certainty of the
measured value. Methods like Kalman filtering provide a means to fuse information
from sources of different precision and accuracy and obtain an estimate better than
any single source could provide alone.

2.2.4 Sensor Models

IMU Model

The on-board inertial measurement unit (IMU) consists of an accelerometer and
a gyroscope. It provides measurements of the linear acceleration and the angular
velocity in the body frame Q. In principle, the IMU can also include a magnetome-
ter to collect absolute heading measurements. However, as shown by Suksakulchai
et al. (2000), in indoor settings, due to disturbances caused by power lines, fer-
romagnetic structures, and robotic motors, the measurements provided by digital

22

2.2 Foundations

compasses are often unreliable. Therefore, in most indoor mobile robotics research,
e.g., by Stegagno et al. (2016), the heading is considered as an unknown quantity
that requires estimation using localization filters.

Accelerometers measure proper acceleration, i.e., with respect to their own in-
stantaneous rest frame. A sensor placed in a rest will measure upward acceleration
equal to Earth’s gravity in the absolute value. Considering sensor imperfections
and measurement errors, we model the measurements from the accelerometer as

ã = αa(a+ νa) + δa, (2.11)

and the measurements from the gyroscope as

ω̃ = αω(ω + νω) + δω, (2.12)

where, for i = {a,ω}, ĩ denotes the measured value, i the real value of acceleration
and angular rate respectively, αi and δi represent the scaling and offset biases, and
νi is a zero-mean random error.

Although the zero-mean error νi can be filtered out in the estimation process,
the offset and scaling biases must be estimated in order to decrease their negative
effect on the state estimate. There are various methods to calibrate inertial sensors,
in further examples in this chapter we detail our off-line and on-line calibration
procedures in different scenarios.

We introduce a set of bias-corrected measurements, ā and ω̄, for the accelera-
tion and angular velocity, respectively. Hence, these new quantities, assuming an
accurate bias estimation, should be affected only by the random, zero-mean noise:

ā =
ã− δa
αa

= a+ νa, (2.13a)

ω̄ =
ω̃ − δω
αω

= ω + νω. (2.13b)

In addition the measured acceleration consists not only of the quadrotor’s self-
acceleration aq but also the gravity term g. Thus, the following relation completes
the IMU model:

a = aq − g = aq −RQ
WgW , (2.14)

where gW = [0, 0, g]T.

Camera Model

The camera model provides a relation that links pixel coordinates in the image
plane with their position in the world frame. This process requires two sets of
parameters, intrinsic parameters that allow transformation from the 2D image plane
to 3D coordinates in the camera frame, and extrinsic parameters that describe the

23

Chapter 2 State Estimation

relative pose of the camera in the world frame.

P

C

XC

YC

ZC

u

v

image
plane

IpP

f
I

[cx, cy]
T

W XW

YW

ZW

XC
′

YC
′

C
′

Figure 2.3: Pinhole camera model, projection of an arbitrary point P on the image
plane.

The projection of a point in the camera frame onto the image plane can be
described with the pinhole camera model (Weng et al., 1992). Let us take an
arbitrary point P with its coordinates in the world reference frame as WpP =
[xW , yW , zW]T. The same point can be expressed in the coordinates of the camera
as CpP = [xC , yC , zC]T, and in the camera frame projected onto the image plane as
C
′
pP = [xC′ , yC′]

T. If the point P is in the field of view of the camera, assuming no
distortions, it will appear in the image with its pixel coordinates as IpP = [u, v]T.
The principle of the camera model is shown in Fig. 2.3 and given the camera focal
length f = [fx, fy]

T we can formulate the following geometric relation
xC′ = fx

xC
zC

yC′ = fy
yC
zC

, (2.15)

and, with respect to the pixel coordinates{
xC′ = u+ cx

yC′ = v + cy
, (2.16)

where [cx, cy]
T is the principal point, i.e. the camera’s optical center projected onto

the image plane. Combining Eq. (2.15) and (2.16) we define the relation between
pixel coordinates and objects in the camera frame asuv

1

 =

fx 0 cx
0 fy cy
0 0 1

xC/zCyC/zC
1

 = K
CpP
zC

, (2.17)

where K is the camera projection matrix.

24

2.2 Foundations

The model in Eq. (2.17) can be extended with the point coordinates in the world
frame given the camera’s extrinsic parameters, i.e., its position and orientation in
the world frame

CpP = RC
W
WpP + CpW . (2.18)

Using homogeneous coordinates[
C
′
pP
1

]
=
[
RC
W

CpW
] [WpP

1

]
= T C

W

[
WpP

1

]
, (2.19)

Hence, the following relation completes the camera model

s

uv
1

 = KT C
W

[
WpP

1

]
, (2.20)

which describes the projection of an arbitrary point in the world frame WpP onto
the image plane, where s is an unknown scale factor.

Image Distortions

The model in Eq. (2.20) is a distortion-free camera model, i.e., it describes a perfect
camera without potential image distortions. Although these distortions can be
irregular, due to the circular symmetry of a camera’s lens, they are usually radially
symmetric and as such can be modeled and compensated for.

We assume the distortion model{
u
′
= u+ δu(u, v)

v
′
= v + δv(u, v)

, (2.21)

where u
′

and v
′

are distorted coordinates of ideal u and v coordinates, δu(u, v) and
δv(u, v) are distortion functions. Based on the geometric relation between ideal
and actual point positions in the image plane, image distortions can be classified as
radial and tangential. These distortions result in the shift of the ideal pixel position
[u, v]T to the distorted position [u

′
, v
′
]T as shown in Fig. 2.4a.

Radial distortion results in an offset of the point’s position along the radial di-
rection, i.e., away or towards the center of an image. A negative radial distortion
is typical for wide angle lenses. It is a barrel distortion and causes the points lo-
cated farther from the image center to move inward and decrease of the scale. In
pincushion distortion, points spread away from the image center, increasingly with
the radial distance. It is a positive radial displacement and increases the scale. An
example of these distortions is shown in Fig. 2.4b, the object, originally a square,
is viewed in the image as either positively or negatively distorted.

25

Chapter 2 State Estimation

(u, v)

(u
′
, v

′
)

δtδr

u

v

(a) (b) (c)

Figure 2.4: Camera calibration: (a) radial and tangential distortions, (b) pincushion
and barrel distortions of a square, and (c) typical calibration patterns.

As the displacement in a radial distortion depends on the distance from the image
center it is best modeled in polar coordinates (ρ, φ) with a polynomial (Weng et al.,
1992)

δρr = k1ρ
3 + k2ρ

5 + k3ρ
7 + . . . , (2.22)

where ρ is the radial distance from the image center, k1, k2, k3, . . . are the radial
distortion coefficients, and {

u = ρcos(φ)

v = ρsin(φ)
(2.23)

defines the polar to Cartesian system transformation.
Tangential distortion causes translation of the ideal point position along the

direction perpendicular to the line between the point and image center, or, in other
words along the angular coordinate φ in the polar system. The reason of this
distortion is usually a misalignment of the lens or lens assembly.

Camera Calibration

As image distortion is a common and well-known problem in computer vision there
are numerous tools available for camera calibration (Bouguet, 2015). The principle
of these methods is similar, the user records a number of images of a known pattern,
e.g. as shown in Fig. 2.4c, and using a calibration algorithm based on optimiza-
tion finds the camera matrix and distortion coefficients that match the observed
projection and deformation of the pattern in the images.

Optical Flow sensor model

Optical flow (OF) is the apparent motion of objects in the field of view of a camera
caused by the relative motion between the sensor and the environment. Because
of the perspective projection of objects in the field of view onto the image plane,

26

2.2 Foundations

optical flow has the following properties a) it depends on the distance to the object,
and b) translation along the image u axis is indistinguishable from the rotation of
the sensor around its v axis, and vice versa.

pt1
v

∆v

pt2

ωu

∆u

ωv

pt1 pt2

ωz

pt2

pt1

u uu

v

Figure 2.5: Effect of translations and rotations of the camera frame on the optical
flow in the image plane.

An example of the effect of positive translations and rotations of the camera on
the optical flow is shown in Fig. 2.5. In this section we present a simplified optical
flow sensor model under the following assumptions

a) the sensor provides optical flow averaged to the image center, and

b) rotations about the axis perpendicular to the image plane are always around
the image center,

which allow us to neglect the effect of the rotation around the camera’s optical axis.
Thus, we can model the optical flow sensor as

vx =

(
∆u

∆t
− ωyd

)
f

d
,

vy =

(
∆v

∆t
+ ωxd

)
f

d
,

(2.24)

where vx and vy are optical flow based velocities along the image axes, ∆u and ∆v
are measured flows, i.e. the difference in the object’s position in the image between
consecutive frames expressed in the number of pixel. ∆t is the time interval between
the frames, ωx and ωy are angular rates around the camera axes, f is the sensor
focal length, and d is the distance to the object that produced the optical flow.

The distance d has to be estimated in order to have the proper reference metric
for the optical flow based velocities. The distance is usually measured with an
ultrasonic or infrared/laser distance sensor but can be also estimated from a stereo
or depth camera. As shown later in this chapter, for better estimates of OF based
velocities, the precision of measurements from a distance sensor can be improved
by filtering this variable, e.g., by including it in the state of a Kalman filter.

27

Chapter 2 State Estimation

Complementary
Filter

IMU

Low-pass
Filter

High-pass
Filter

∫
∑φ̂acc

ˆ̇
φ

φ̂

Figure 2.6: Block diagram of the complementary filter.

2.3 Complementary Filter

A complementary filter is an estimator that can be used to estimate the platform’s
orientation, i.e., the roll and pitch angles (φ, θ), using IMU measurements (Ma-
hony et al., 2008; Martin and Salaün, 2010). In this algorithm the angles are first
integrated using a proper projection of the gyro readings and corrected using the
orientation of the gravity vector, estimated from the filtered accelerometer readings.
The block diagram depicting this algorithm is shown in Fig. 2.6.

First, at every instant k, the angular velocity ωk in the sensor (body) frame, read
from the gyroscope, must be properly transformed to obtain the roll, pitch and yaw
rates η̇k = [φ̇k, θ̇k, ψ̇k]

T,
η̇k = Dk(ηk)ωk, (2.25)

where

Dk(ηk) =

1 sin(φk)tan(θk) cos(φk)tan(θk)
0 cos(φk) −sin(φk)
0 sin(φk)/cos(θk) cos(φk)/cos(θk)

 , (2.26)

defines the transformation between the angular velocity read by the sensor and
the RPY rates. The values obtained in Eq. (2.25) can be integrated to obtain the
platform’s attitude

φ̂gyro = φ̂k−1 + φ̇k∆t,

θ̂gyro = θ̂k−1 + θ̇k∆t.
(2.27)

The complementary values can be calculated from the accelerometer measure-
ment

a = aq −RQ
WgW = aq −

 sin(θk)
−cos(θk)sin(φk)
−cos(θk)cos(φk)

 gW , (2.28)

where a = [ax, ay, az]
T is the measured acceleration, aq is the acceleration of the

platform and gW = [0, 0, g]T is the gravity vector in the world frame. Assuming that
the acceleration of the platform aq is negligible with respect to the gravitational

28

2.4 Kalman Filter

acceleration gW , the attitude can be estimated as

φ̂acc = atan2(−ay,−az), and

θ̂acc = atan2

(
ax,
√
a2
y + a2

z

)
.

(2.29)

Combining Eq. (2.27) and (2.28), the complementary filter equations with gain α
are then

φ̂k = (1− α)(φ̂k−1 + φ̇k∆t) + αφ̂acc, and

θ̂k = (1− α)(θ̂k−1 + θ̇k∆t) + αθ̂acc.
(2.30)

This algorithm has the form of a low-pass filter and the gain α must be properly
tuned such that the gyro drift is compensated for without introducing additional
acceleration components coming from the platform’s own acceleration aq.

2.4 Kalman Filter

Kalman filtering (KF) is an iterative estimation algorithm that uses different sources
of information in order to obtain an approximate estimate of a system’s state in the
form of state variables. This estimate is represented as a joint probability distri-
bution together with its covariance, i.e., a measure of uncertainty, and through the
use of multiple data it is more accurate than each information sources individually.

Using the system’s dynamic model, series of measurements, statistical noise and
other uncertainties associated with these processes, results in an optimal estimate
in terms of minimum mean square error (Kalman (1960)) for a linear system. The
extended Kalman filter (EKF) is an extension for nonlinear systems in which, for
every new time interval, the system and measurement models are linearized about
the current estimate of the state.

The algorithm consists of two steps in every iteration, the state estimate of the
current iteration is firstly obtained as a transform of the previous one using the
system’s dynamical model. In this prediction step, because of uncertainties re-
lated to the model, the resulting a piori estimate has a higher covariance. In the
second step, the sensor measurement is used to update the estimate and lower the
uncertainty, using a weighted average, called the Kalman gain. Hence, the final es-
timate of the system’s state lies between the predicted value and the measurement,
and has a better estimated uncertainty than either alone. The weights are calcu-
lated from the covariance, and thus, are distributed accordingly to the certainty
associated with the system and sensor models.

This process is repeated at every instance that a new measurement and its co-
variance is available. As the system’s state and model describe the dynamics of
the system, the filter requires only the last estimate and its covariance to calculate

29

Chapter 2 State Estimation

the new estimate with no past information required. Although in the classic im-
plementation the frequency of this process depends on the rate of measurement, as
we explain later in this section, this is not mandatory. Thus, the updates based on
the system model can be virtually performed at any desired rate with the cost of
lower certainty in the produced estimate.

Kalman filtering provides an effective way to handle noisy sensor data and un-
certainties related to the system model, which are usually due to simplifications.
Nevertheless, the correctness of the model, accuracy of measurements and other
unaccounted factors place limits on the estimation performance and reliability of
the results. KF it is a common sensor fusion and data fusion algorithm with nu-
merous applications such as in guidance and navigation technologies. Is is widely
used in the control of robots and in the estimation of their state.

2.4.1 General Equations

A discrete-time linear dynamic system can be described with the following matrix
difference equation:

qk = Fkqk−1 +Gk(uk + νuk), k = 0, 1, . . . (2.31)

where qk is a state vector, Fk is a state transition matrix, uk is a known input
vector, e.g., control signal, Gk is an input matrix, and νuk is a zero-mean white
Gaussian process noise, νuk ∼ N(0,Rk), with covariance

Qk = E[νukν
′

uk
]. (2.32)

A general measurement equation can be written as

zk = Hkqk + νzk , k = 0, 1, . . . (2.33)

where zk is the measurement vector, Hk is a measurement (observation) matrix,
and νzk is a zero-mean measurement noise, νzk ∼ N(0,Rk), with covariance

Rk = E[νzkν
′

zk
]. (2.34)

The matrices Fk, Gk, Hk, Qk, and Rk are assumed known and can be either
time-varying or constant, and in the later case the time indices k can be dropped.
The state vector is modeled as a random variables with Gaussian distribution, and
the process and measurement noise are assumed independent.

30

2.4 Kalman Filter

Step 1. Prediction

As mentioned before, Kalman filtering consists of two estimation steps, in the first
step the dynamic model of the system, eq. (2.31), is used to propagate the previous
estimate as

q̂−k = Fkq̂k−1 +Gkuk, (2.35)

where q̂−k is the a priori estimate at instant k, and q̂k−1 is the state estimate at
instant k−1. The above ·̂ notation represents the mean value of a random variable
qk, whose a priori covariance can be expressed as

P−k = FkPk−1F
T
k +GkQk (2.36)

Step 2. Correction

With every prediction step the covariance P−k will inherently grow, i.e., propagation
of the mean value in eq. (2.35) always entails an increase of uncertainty. The
estimate in eq. (2.35) can be updated given a measurement zk. First, the residual
value is computed as

ỹk = zk −Hkq̂
−
k , (2.37)

and the residual covariance as

Sk = HkP
−
k H

T
k +Rk, (2.38)

then, with the Kalman filter gain

Kk = P−k H
T
k S
−1
k , (2.39)

the a posteriori state estimate and estimate covariance can be obtained as

q̂k = q̂−k +Kkỹk, (2.40)

Pk = (I −KkHk)P
−
k . (2.41)

Remark 2.1 Initial values of q̂0 and P0 are needed at initial step k = 1, if q̂0 is
known then P0 = 0, P0 = λI otherwise, λ sufficiently large.

If we expand Eq. (2.40) using the residual formulation from Eq. (2.37), we get

q̂k = (1−KkHk)q̂
−
k +Kkzk, (2.42)

which represents a weighted average of the a priori estimate q̂−k and the measure-
ment zk. Hence, the values with better estimated uncertainty are trusted more.

In order to achieve the desired behavior of the filter the certainty of the measure-
ments and predictions based on the system model, have to be properly determined.

31

Chapter 2 State Estimation

As the the values of these quantities usually have to be assumed, at least to a
certain extent, the performance of the filter can be tuned by altering them. Thus,
by changing the respective covariances the filter’s responsiveness to the model and
to the measurements can be tuned. A high value of the resulting Kalman gain will
result in a fluctuating output while a lower gain will follow the prediction more
closely but reduce the filter’s responsiveness.

Extended Kalman Filter

To generalize this to nonlinear systems, let us consider the following model and
measurement equations:

qk = f(qk−1,uk) + νuk , (2.43)

zk = h(qk−1) + νzk , (2.44)

where f and h are nonlinear functions of the state vector. Although eq. (2.43) can
be used directly in eq. (2.35) to obtain the a priori estimate q−k , and, respectively,
eq. (2.44) in eq. (2.37), matrices Fk, Gk, and Hk are needed in the consecutive
steps. Assuming that f and h are differentiable, the required matrices can be
calculated as partial derivatives, which essentially linearizes f and h around the
current estimate

Fk =
∂f

∂qk

∣∣∣∣
q̂k−1,uk

, Gk =
∂f

∂uk

∣∣∣∣
q̂k−1,uk

, Hk =
∂h

∂qk

∣∣∣∣
q̂k−1

(2.45)

2.4.2 Variations in the Implementation

The standard state progression of a Kalman filter is presented in Fig. 2.7, where
at every time instance k (iteration) the a priori estimate q̂−k is obtained based on
the system model, the estimate from the previous step q̂k−1, and the input to the
system uk−1. Consequently, the a posteriori estimate q̂k is calculated given the
current measurement z̃k using the measurement model.

q̂−
k

q̂k

z̃k

q̂−
k+1

uk z̃k+1

q̂k+1

q̂−
k−1

z̃k−1

q̂k−1

uk−1 uk+1

Figure 2.7: State progression in a classical Kalman filter.

In this classical implementation, Kalman filtering is an iterative, discrete-time
process, where the frequency of new estimates depends on the frequency of ob-
servations. An example of such a case can be a situation when we want to get

32

2.4 Kalman Filter

information of a systems that we do not directly control or when the observation
frequency is high enough for the control purposes. If higher rate estimation is re-
quired, new estimates can be calculated using the system model alone and updated
with measurements when the later are available. This process, however, is subject
to cumulative errors which is reflected in covariance growth over consecutive steps.
Examples of such cases are path integration or dead reckoning in general, where the
object’s position can be updated knowing its previous location and velocity. Over
time, however, the accuracy of such an estimate decreases.

q̂−
k+1 q̂−

k+2 q̂−
n−1q̂−

n−2

un−2uk uk+1

q̂k q̂−
n

z̃n

q̂n

uk+1

un−1

Figure 2.8: State progression of a KF with sparse measurements or when higher
frequency of the estimate is needed.

Fig. 2.8 depicts the case with multiple state updates in between sparse measure-
ments. Consecutive system inputs uk to un−1, from time instant k to n, respec-
tively, are used to update the estimate until a new observation z̃n is available and
the estimate can be corrected.

In order to increase the estimate’s accuracy or in a case when multiple sensors
are available (or necessary, if individual sensors do not cover enough of the state
vector’s components) multiple updates per iteration step are possible. An example
block diagram of this case is shown in Fig. 2.9, where at every time instant k
two independent measurements, z̃1

k and z̃2
k, are available. In this example, q̂

′

k

represents an intermediate estimate after an update with measurement z̃1
k, and q̂

′′

k

the a posteriori estimate for the given time instant.
In general, variations of cases from Fig. 2.8 and 2.9 are possible, i.e., when more

than one measurement is available although not simultaneously with other mea-
surements, and with multiple state updates between measurements.

q̂−k

q̂
′

k

z̃1
k

q̂−k+1

uk z̃1
k+1

q̂
′

k+1

q̂−k−1

z̃1
k−1

q̂′k−1

uk−1 uk+1

q̂
′′

k

z̃2
k z̃2

k+1

q̂
′′

k+1

z̃2
k−1

q̂
′′

k−1

Figure 2.9: State progression of a KF with multiple measurements per iteration.

33

Chapter 2 State Estimation

q̂−
k+1 q̂−

k+2 q̂−
j q̂−

n−1q̂−
n−2 q̂n

un−2

q̂j

uj

q̂−
j+1 q̂−

n−1

un−1

(z̃j)n
uk uk+1

q̂k

Figure 2.10: State progression of a Kalman filter with asynchronous measurements.

Asynchronous (E)KF

Ideally, when dealing with an estimation problem using Kalman filtering, as demon-
strated in the case shown in Fig. 2.7, reliable measurement is available with a high
enough frequency to generate state estimates for control purposes. Although varia-
tions of the KF (e.g., Fig. 2.8 and 2.9) can provide solutions in non-standard cases,
they do not cover all real world scenarios.

Sensors are also dynamic systems and the output state (measurement) does not
change instantly when an input change occurs (measured quantity). It will rather
adjust the output value over a period of time - the response time Tr. The response
time can be defined as the time that is required for a sensor to change its output
value from a previous state to a new, steady value within a tolerance band of the
correct output.

This problem can be neglected if a sensor’s response time is smaller than half of
the desired estimation period Te

Tr < Te/2, Te = 1/fe. (2.46)

A delayed measurement with respect to an a priori estimate at instant k, by less
than half of the estimation period, still corresponds to that same time instant.

A Kalman filter requires that measurements are used to update estimates from
the corresponding time instances. Therefore, delayed observations do not meet the
criteria in Eq. (2.46) and should not be used directly in the time step they are
available.This is especially true when the observation is not a raw sensor output
but involves additional processing of sensory data, such as when the measurement
is an output from a computer vision algorithm, for example, visual odometry or
object recognition and detection.

One of possible solutions to this problem is shown in Fig. 2.10 as another KF
block diagram. Assuming a system with infrequent and delayed measurements it
is a similar case to the example shown in Fig. 2.8, where the system model is
used between consecutive measurements to obtain a higher rate of estimates. The
difference is that the measurement (z̃j)n available at instant n, is delayed, and thus

34

2.4 Kalman Filter

corresponds to a past time instant j.
As explained before, in a proper Kalman filtering process, (z̃j)n should be used to

update the corresponding estimate q̂−j . In order to do that, sequences of past control
inputs and corresponding estimates should be stored. This allows our algorithm to
calculate the update at the proper time instant and use the stored values of the
control input uj, j = {i, ..., n − 1}, to propagate this estimate until the current
time instant n.

A more specific example of a KF in this configuration is presented in Sec. 2.4.3
describing our Kalman filter design for the European Robotics Challenges (EuRoC).

Measurements as the Input

Normally, the Kalman filter equations shown in the previous section, for state
updates and corrections using measurements, can be used directly, either in their
standard or extended version. This is true as long as the measurement model
shown in Eq. (2.33) holds, that is, the measurement is a linear (or non-linear in
EKF) function of the state vector. Many sensors that output position or distance,
fall into that category, however, sensor measurements of higher differential order
than in the state vector can not be used directly.

The classical examples are inertial navigation systems (INS) in which inertia
measurement unit (IMU) readings are integrated in the system model to estimate,
consecutively, system’s velocity and position. Because of simplifications and inac-
curacies of the dynamic model of a system, acceleration and angular rate provided
by an IMU tend to be more accurate than the values calculated from the system’s
dynamic model.

For example, there are a few steps involved to obtain the same quantities us-
ing the dynamic model of a quadrotor. Firstly, the motor and propeller models
are used to estimate generated forces and torques, which are consequently used in
the dynamic model of the quadrotor to obtain its acceleration and angular rate.
This process contains simplifications (motor dynamics, higher order aerodynami-
cally effects, approximated values of the quadrotor’s mass and inertia) that can be
potentially neglected for control purposes but result in a higher uncertainty than
the propagation of IMU measurements.

In such a case, IMU measurements are used as the input to a simplified model,
describing integration of the inertia values to velocities and position of the system.
Depending on the reference frame, this model has to contain proper transformation
of the values read in the sensor/body frame.

Bias Estimation

As mentioned before, Kalman filtering ensures optimal estimation results in terms
of the mean squared error. This is valid, however, when the noise associated with

35

Chapter 2 State Estimation

the state update and measurement has the form of white noise, i.e., it has a zero-
mean Gaussian distribution. Thus, any offset, either constant or drifting, will result
in an inaccurate estimation.

If sensor or input biases can not be eliminated through calibration, additional
estimation of these quantities is required. If a complementary measurement to
the biased value is available, this can be performed on-line with the same KF by
extending its state with new quantities. Examples of bias estimation within the
Kalman filter can be seen in the examples presented later in this chapter.

2.4.3 EuRoC Kalman filter

The European Robotics Challenges1 (EuRoC) initiative is a set of industry-relevant
challenges that aim to speed up the process of bringing innovative technologies
from research labs to industry. It consisted of three challenges with multiple tasks
and stages from the wide spectrum of industry related robotics topics such as:
reconfigurable manufacturing cells, logistics and manipulation, and plant inspection
and servicing.

One of the challenges2 aimed at targeting the open problems in the existing UAV
solutions, especially multicopters, to enable their deployment in real life scenarios.
It involved the development of a localization and state estimation algorithm without
any external positioning systems which was aligned with the topic of this thesis. The
organizers provided datasets, sensor measurements recorded in real UAV flights,
and comprehensive benchmarking tools, simulation environment with ground truth
data for evaluation. We found it of great use in the development of algorithms for
our teleoperated platform.

The main tasks that we were interested in were tasks 3 and 4 of challenge 3:

• UAV control (hovering) in different conditions (wind gusts),

• UAV way point navigation in different conditions (sensors, obstacles).

One of the goals in EuRoC was to enable teleoperation inspection tasks by in-
spection experts, even those untrained in piloting UAVs. As until recently the
complexity of UAV control has required a skilled operator, applications such as
UAV inspection have not been possible. On-board localization and state estima-
tion also enable further capabilities, such as path planning and obstacle avoidance,
which makes the deployment of UAVs in real life applications possible.

Problem Statement

The goal of the aforementioned tasks was to develop a control strategy for a UAV,
simulated together with its sensors in the provided software environment. The UAV,

1http://www.euroc-project.eu/
2http://www.euroc-project.eu/index.php?id=challenge_3

36

http://www.euroc-project.eu/
http://www.euroc-project.eu/index.php?id=challenge_3

2.4 Kalman Filter

whose body frame we denote as Q, was equipped with an IMU and depending on
the task either one or two optical pose sensors. The sensors were fixed with respect
to the body frame Q, the IMU at its center and with its own frame aligned to Q,
and the pose sensors, P1 and P2, rotated and shifted with respect to Q by known
extrinsic parameters.

We aimed at developing a state estimator to compute the full 6 degrees of freedom
pose of the platform, an essential component of this task as its accuracy directly
influences the accuracy of the control part. The simulated sensors provided inertial
measurements at 100 Hz, pose measurements at 10 Hz, and ground truth data for
evaluation.

Sensor Models

The provided IMU data contained measurements of the linear acceleration and
the angular velocity of the UAV in the sensor frame. These measurements were
affected by errors, a white noise and a time-varying offset. Except with respect to
the model presented in Sec. 2.2.4, the measurements were not affected by scaling
biases. Considering the non-inertial character of the sensor frame, the measured
acceleration also consists of the gravity term gQ.

Hence in this example, we model the measurements as

ã = a+ νa + δa, (2.47)

ω̃ = ω + νω + δω, (2.48)

where again, for i = {a,ω}, ĩ denotes the measured value, i the real value of the
acceleration and angular rate respectively, νi is a zero-mean random error, and δi is
a time-varying offset. With respect to the IMU model in Eq. (2.11) and (2.12), this
model does not contain scaling factors. Considering the additional gravity part,
Eq. (2.14) holds

a = aQ − gQ = aQ −RQ
WgW . (2.49)

The pose sensor’s data was 10 Hz pose measurements, i.e. position and ori-
entation,. Although being encumbered only by a white noise error, this data was
elaborately delayed by about 0.1 s with respect to the IMU measurements to reflect
the processing time of optical pose sensors. These sensors can be modeled as

W p̃Pi
= WpPi

+ νpi , (2.50)
W η̃Pi

= WηPi
+ νηi , (2.51)

where WpPi
is the position of the i-th sensor in the world frame, p = [x, y, z], and

WηPi
is its orientation in the form of the roll, pitch and yaw angles, η = [φ, θ, ψ].

37

Chapter 2 State Estimation

To obtain the corresponding pose of the robot given W p̃Pi
and W η̃Pi

we use

W p̃Qi
= RW

Q · QpPi
− W p̃Pi

, (2.52)

R̃W
Qi

= R̃W
Pi

(
W η̃Pi

)
RQ
Pi

T
, (2.53)

where QpPi
andRQ

Pi
are the position and orientation of the i-th sensor in the robot’s

frame Q, respectively, and they are known extrinsic parameters. The corresponding
roll, pitch and yaw angles, WηQi

, can be calculated from the rotation matrix in
Eq. (2.53) as shown in Sec. 2.2.

Kalman Filter Design

The formal definition of the state vector

q = [WpT
Q,

W ṗT
Q,

WηT
Q]T, (2.54)

contains the position of the robot WpQ, its velocity W ṗQ, and orientation WηQ in
the world reference frame W . For the sake of clarity, we omit the frame indices and
write Eq. (2.54) as

q = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ]T. (2.55)

Following the notation introduced in Sec. 2.4.1, we modeled the system as

qk = Fqk−1 +Guk, (2.56)

where

F =

I3x3 ∆tI3x3 03x3

03x3 I3x3 03x3

03x3 03x3 I3x3

 , G =

 03x3 03x3

∆tRW
Qk

03x3

03x3 ∆tDk

 , (2.57)

and
uk = [ãT

k , ω̃
T
k]T (2.58)

represent the IMU measurement, (2.47) and (2.48) at instant k and includes noise
as introduced earlier. The rotation between the sensor (robot) frame and the world
frame is represented by RW

Qk
in matrix G. Dk defines the transformation between

the angular velocity read by the sensor and the RPY rates as defined in Eq. (2.26).

As in Eq. (2.33) in Sec. 2.4.1 we modeled the pose sensor’s measurements as

zik = Hkqk + νzk , (2.59)

where
zik = [W p̃T

Qi
, W η̃T

Qi
]T (2.60)

is the pose from the i-th pose sensor, given relations in (2.52) and (2.53), respec-

38

2.4 Kalman Filter

tively, and

H =

[
I3x3 03x3 03x3

03x3 03x3 I3x3

]
. (2.61)

The above quantities enable consecutive state estimations in the iterative KF
process described in Sec. 2.4.1. As the pose sensor’s readings were delayed, and at
a much lower frequency than the IMU measurements, we utilized the asynchronous
KF strategy as shown earlier in Fig. 2.10. The main update loop with predictions
based on Eq. (2.35) with matrices defined in this section is run with the rate of the
IMU measurements and the updates are performed whenever information from the
pose sensor becomes available.

Bias Estimation

Although the zero-mean error can be filtered out in the estimation process, the
IMU offsets, δa and δω, must be estimated in order to decrease their negative effect
on the state estimate. In order to do this we introduce an extended state that now
includes these additional quantities

q? = [x, y, z, ẋ, ẏ, ż, δẍ, δÿ, δz̈, φ, θ, ψ, δωx , δωy , δωz]
T, (2.62)

where [δẍ, δÿ, δz̈] = δT
a and [δωx , δωy , δωz] = δT

ω .

The extended state q? requires additional extensions of the matrices F , G andH
to accommodate the new quantities and their relation with the other state variables.
Thus

F ? =


I3x3 ∆tI3x3 03x3 03x3 03x3

03x3 I3x3 03x3 03x3 03x3

03x3 03x3 −∆tRW
Qk

03x3 03x3

03x3 03x3 03x3 I3x3 03x3

03x3 03x3 03x3 03x3 −∆tDW
k

 , G? =


03x3 03x3

∆tRW
Qk

03x3

03x3 03x3

03x3 ∆tDk

03x3 03x3

 ,
H? =

[
I3x3 03x3 03x3 03x3 03x3

03x3 03x3 03x3 I3x3 03x3

]
.

(2.63)

Estimation Results

We used the presented Kalman filter design to control the simulated UAV in tasks
3 and 4 of EuRoC challenge 3. As explained before, the robot was equipped with
an IMU and two pose sensors with extrinsic parameters (sensor poses in the robot’s

39

Chapter 2 State Estimation

time (s)
0 30 60 90 120 150 180 210

p
os
it
io
n

-5

0

5

10

15

20

25

x

y

z

Figure 2.11: EuRoC Kalman filter estimation results, estimated position.

x y z

ep (m) 0.0116 0.0295 0.0161
eη (rad) 0.0088 0.0057 0.0084

Table 2.1: Pose estimation in the EuRoC task 4.2, RMS errors.

frame)

QpP1 =

 0.03
−0.07

0.1

 , QpP2 =

−0.05
0.08
0.1

 ,
QηP1 =

 0.2
−0.1
0.3

 , QηP2 =

−0.1
0.2
−0.3

 .
(2.64)

Here, we present the estimation results from task 4.2. The goal in this task
was to perform way-point tracking within the given time limits. The resulting
estimated position of the robot is shown in Fig. 2.11 and the estimation error, i.e.,
the difference between the estimated value and the ground truth data, is presented
in Fig. 2.12.

The error of the estimated orientation is shown in Fig. 2.13. The overall perfor-
mance of our estimator is presented in the form of the RMS errors in Table 2.1.
Fig. 2.14 and 2.15 show the time evolution of the estimated biases, offsets on the
accelerometer and gyroscope, respectively.

2.4.4 Vicon-IMU Integration

Vicon is an external tracking system (also called a motion capture system), which
uses multiple cameras to track infrared reflective markers attached to an object

40

2.4 Kalman Filter

time (s)
0 30 60 90 120 150 180 210

er
ro
r

-0.1

-0.05

0

0.05

0.1

0.15

x error

y error

z error

Figure 2.12: EuRoC Kalman filter estimation results, the estimated position error.

time (s)
0 30 60 90 120 150 180 210

er
ro
r
(◦
)

-1.5

-1

-0.5

0

0.5

1

1.5

φ error

θ error

ψ error

Figure 2.13: EuRoC Kalman filter estimation results, the estimated orientation
error.

in a rigid configuration. The markers, attached to the object of interest, form
the so-called vicon-tree, a geometrical shape with uniquely defined position and
orientation in the Vicon frame of reference. Assuming enough camera coverage and
visibility of the markers, the system reports the object’s pose with high accuracy
and relatively high frequency.

Vicon, and other motion capture systems, are very popular in robotics experi-
ments as they separate the problem of state estimation from the control algorithms
allowing researchers to focus on other aspects of robotics applications. One of many
works that used such a system, is the work by Stegagno et al. (2014) with more
references therein. We also utilized Vicon in the initial experiments of our obstacle
avoidance algorithm (Odelga et al., 2016b).

In our setup, the tracking system provided pose measurements at 120 Hz. Such
a rate is usually sufficient for most of the control problems but in some cases more

41

Chapter 2 State Estimation

time (s)
0 30 60 90 120 150 180 210

b
ia
s

-0.5

-0.25

0

0.25

0.5

0.75

δẍ

δÿ

δz̈

Figure 2.14: EuRoC Kalman filter estimation results, offset bias on acceleration.

time (s)
0 30 60 90 120 150 180 210

b
ia
s

-7.5

-5

-2.5

0

2.5

5

7.5

δωx

δωy

δωz

Figure 2.15: EuRoC Kalman filter estimation results, offset bias on angular rate.

precise information is required. For example, in controllers that require higher order
differential components of the pose, like jerk or snap (Ryll et al., 2015; Mellinger
and Kumar, 2011; Odelga et al., 2016a), additional sensors are necessary.

One of the strategies to provide higher frequency and more precise estimate is
Vicon-IMU integration through Kalman filtering. Virtually identical in its config-
uration to the example provided in Sec. 2.4.3, such a system can not only provide
higher differential components of the pose at higher frequencies but also increases
the estimation robustness in the case of communication delays or the loss of Vicon
packets. Additionally, using the extended state as in Eq. (2.62), the system can be
used to calibrate the inertial sensor by estimating its offset biases.

42

2.5 On-board Velocity Estimation

Kalman Filter

IMU

D(η)
Complementary

Filter

ˆ̇ηω̃

φ̂acc
θ̂acc

ã

Optic Flow
Sensor

Correction

Prediction−R̂Q
Hg

ãq

R̂Q
H

ṽx, ṽy

d̃,
˜̇
d

q̂−k

q̂k

Figure 2.16: Block diagram of the estimation scheme.

2.5 On-board Velocity Estimation

The quantities that we estimate depend on two aspects. First of all, they reflect
the control purposes as we need the direct or indirect observation of values that
are being controlled. Secondly, depending on the robot’s set of sensors, we can
extend the state with variables that can improve the overall estimation and control
performance, for example the biases in Eq. (2.62).

For a teleoperated UAV, we have a choice of three main modes of operation
(Sec. 1.2.4): the attitude mode, velocity mode, and position- control mode. The
most basic mode of operation, the attitude mode, although the simplest in terms
of estimation is the most challenging for the pilot. Although the complementary
filter alone would be sufficient in this mode, the limitations of this approach makes
it inadequate in the context of this work. In terms of estimation, the position
mode is the most challenging one, especially under the assumption of a GPS-denied
environment and the use of on-board sensors only.

The state estimation algorithm that we present in this section and utilize in our
teleoperation experiments is a Kalman filter-based velocity estimator. It estimates
the robot’s velocity in the horizontal frame, i.e., in a frame that moves and yaws
with the robot but its orientation with respect to the gravity vector is constant
(Sec. 2.2.2).

2.5.1 Estimator Design

Our algorithm implements the IMU-optical flow integration using the cascade ar-
chitecture shown in Fig. 2.16 with complementary and Kalman filters. The com-
plementary filter estimates the roll and pitch angles which define the platform’s
orientation with respect to the horizontal frame RH

Q . This orientation is used to
project the IMU readings onto the desired directions. The projected measurements

43

Chapter 2 State Estimation

are then integrated to obtain the platform’s velocity H ṗQ. The use of an optical
flow sensor enables compensation of the drift accumulating in the integration pro-
cess. Since the optical flow sensor is also equipped with an echo sonar sensor to
provide the metric reference for the flow based velocity estimate, we have extended
the filter’s state to also include the distance to the ground d.

The state vector of our Kalman filter is

q =
[
H ṗT

Q d
]T

=
[
H ẋQ

H ẏQ
H żQ d

]T
=
[
ẋ ẏ ż d

]T
. (2.65)

We model the system with Eq. (2.31) , where

Fk =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 ∆t 1

 , Gk =

 ∆tR̂Hk
Qk

0 0 0


uk = āk − (R̂Hk

Qk
)TgW .

(2.66)

The resulting estimate is inherently encumbered with accumulating error and
noise resulting from inaccuracy in the estimation of the system’s orientation R̂Hk

Qk
.

Using the optical flow sensor in the Kalman filter’s update (Eq. (2.40)) we can
compensate for this error.

We note the optical flow measurement as

z̃flow =

[
ṽx
ṽy

]
, (2.67)

where ṽx and ṽy are the OF-based velocities obtained with the OF sensor model in
Eq. (2.24). We use the following measurement model,

z̃flow =

[
ṽx
ṽy

]
=

[
1 0 0 0
0 1 0 0

]
qk = Cflowqk. (2.68)

To correct the estimates of the horizontal velocity ż and distance to the ground
d. We use measurements from the echo sonar with the corresponding measurement
model,

z̃dist =

[
d̃k

d̃k−d̃k−1

∆t

]
=

[
0 0 0 1
0 0 1 0

]
qk = Cdistqk, (2.69)

It is important to note that the OF velocity measurement (2.67) is computed
using the model in Eq. (2.24) with the estimate of the ground distance d̂ that,
thanks to the filtering process, has a lower covariance than the direct measurement
from the echo sonar d̃.

44

2.5 On-board Velocity Estimation

αa δa

x 0.9963 0.0028
y 1.0053 0.0096
z 1.0098 0.0517

Table 2.2: Estimated accelerometer biases

2.5.2 Bias Estimation

The IMU measurements used in the presented estimation scheme are assumed to
be bias-corrected, as shown in Sec. 2.2.4. The EuRoC KF example shows that
sensor calibration and bias estimation are important to achieve high estimation
performance. Especially when dealing with real sensors, improper calibration can
diminish the results. To define the bias of our sensor, we employed a two step
process, an offline calibration and a pre-flight bias estimation with the KF with an
extended state.

Offline Calibration

To calibrate the accelerometer, we have employed the least squares method based on
the ellipsoid fitting described by (Bektas, 2015). This process requires samples of a
known acceleration, e.g., gravity, in at least six widely-spread orientations and was
performed off-line. The calibration results are used to compute the bias-corrected
estimates (2.13). An example set of obtained values is presented in Table 2.2.

In principle, the same method could be applied to estimate the gyroscope bias.
That would require, however, to rotate the sensor with a known angular velocity
around different axes. Our experiments showed that the factory calibration of the
gyroscope is accurate enough to neglect the scaling factor (i.e., αω ' 1). The
gyroscope offset δω can be estimated by averaging steady measurements over a
sampling period τs, which, for the platform presented in this work, is performed
every time during the on-ground phase prior to take-off with motors switched off.
The sampling period is set to 2 s, which corresponds to 1000 samples at 500 Hz.

On-ground Bias Estimation

Throughout our experiments, we noticed that the accelerometer biases (2.11) tend
to drift slightly between consecutive tests, probably due to vibrations and impacts
during landings. To mitigate this issue, we employed an additional on-ground bias

45

Chapter 2 State Estimation

estimation based on an extension to our Kalman filter’s state model (2.65):

q? =
[
qT δT

a

]T
=
[
ẋ ẏ ż d δẍ δÿ δz̈

]T
, (2.70a)

F ?
k =


1 0 0 0

−∆tR̂Hk
Qk

0 1 0 0
0 0 1 0
0 0 ∆t 1 0 0 0

03×4 I3×3

 , G?
k =

 ∆tR̂Hk
Qk

04×3

 . (2.70b)

This bias estimation utilizes the fact that when the platform is on the ground its
state is constant (in particular, its velocity is equal to zero) to correct the biases
with assumed zero measurements in Eq. (2.67) and (2.69).

Once the robot is commanded to lift-off, the estimation system switches from
Eq. (2.70) to the reduced form (2.65).

2.5.3 Estimation Results

In Figures 2.17-2.23, shown in this section, we present the results of our state
estimation from one of our experiments. We recorded both the sensor measurements
and the output from the filter, i.e., the estimate. As the reference value, we recorded
the corresponding values using Vicon. In this experiment the robot was commanded
to lift-off and then fly consecutively: forward, left, backward, right, forward-left,
backward-right.

time (s)
0 10 20 30 40

ve
lo
ci
ty

(m
/s

2
)

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

ẋ (Vicon)

ṽx (OF)
ˆ̇
x (estimate)

Figure 2.17: IMU-OF state estimation results, forward velocity.

Fig. 2.17 and 2.18 show the horizontal velocities of the robot. The vertical
velocity and the distance to the ground are shown in Fig. 2.19 and 2.20, respectively.
Please note that the distance to the ground d is not identical to the robot’s z position

46

2.5 On-board Velocity Estimation

time (s)
0 10 20 30 40

ve
lo
ci
ty

(m
/s

2
)

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

ẏ (Vicon)

ṽy (OF)
ˆ̇y (estimate)

Figure 2.18: IMU-OF state estimation results, lateral velocity.

in the Vicon frame, as the sensor is attached with an offset from the center of the
robot. This offset is visible in the plot in Fig. 2.20.

time (s)
0 10 20 30 40

ve
lo
ci
ty

(m
/s

2
)

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

ż (Vicon)

∆d̃/∆t (OF)
ˆ̇z (estimate)

Figure 2.19: IMU-OF state estimation results, vertical velocity.

The on-ground accelerometer bias estimation result is shown in Fig. 2.21. Because
of the correlation with the orientation estimation, the algorithm requires around 10 s
to stabilize the bias value. After the robot is commanded to lift-off, our estimator
switches to the simpler state and biases are no longer updated.

Finally, in the plots shown in Fig. 2.22 and 2.23 we present the results of the
complementary filter, where the orientation of the robot is expressed in terms of
the roll and pitch angles.

47

Chapter 2 State Estimation

time (s)
0 10 20 30 40

d
is
ta
n
ce

(m
)

-0.2

0

0.2

0.4

0.6

0.8

1

z (Vicon)

d̃ (sensor)

d̂ (estimate)

Figure 2.20: IMU-OF state estimation results, distance to the ground.

time (s)
0 10 20 30 40

b
ia
s
(m

/s
2
)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

δẍ

δÿ

δz̈

Figure 2.21: IMU-OF state estimation results, accelerometer offset bias.

time (s)
0 10 20 30 40

an
gl
e
(◦
)

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

φ (Vicon)

φ (estimate)

Figure 2.22: IMU-OF state estimation results, complementary filter: the roll angle.

48

2.6 Software-in-the-loop Simulations

time (s)
0 10 20 30 40

an
gl
e
(◦
)

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

θ (Vicon)

θ (estimate)

Figure 2.23: IMU-OF state estimation results, complementary filter: the pitch an-
gle.

2.6 Software-in-the-loop Simulations

Software-in-the-loop simulations (SIL) are methods for testing algorithms, or entire
code structures, in simulated environments. As SIL testing usually refers to real-
time and dynamic systems, SIL simulations can greatly improve the time and cost of
robotics development by enabling algorithm validation on a simulated system before
deployment in the real world. For example, during development of a software for
motion control, failures of the algorithm can result is crashes or collisions, broken
components of the robot or damages to its surroundings and can endanger people
as well. Hence, SIL simulations provide a convenient and safe method for code
testing.

In our work we utilized SIL simulations to test and validate our state estimator.
The EuRoC competition enabled twofold SIL testing, first, the organizers provided
various datasets - recordings of sensor readings in different UAV flights together
with the ground truth pose. The second testing modality was the provided physical
simulation environment that included a controllable model of the UAV with sensors.
The datasets allowed us to validate our KF state estimator against the provided
ground truth data, fine tune its parameters to minimize the error between the
estimated state and the real one, and subsequently develop further functionalities,
e.g., bias estimation.

Although the real flight data enabled testing with real-life sensor readings, they
did not test the stability of our state estimator when used in a control loop. To test
that scenario, it is necessary to simulate not only the sensors but also the platform
with its dynamics. The simulation environment provided in EuRoC consisted of an
arbitrary UAV with its mass, inertia, propellers, and sensors in a ROS-compatible
physical simulator - Gazebo. This enabled a proper SIL testing, i.e., UAV trajectory

49

Chapter 2 State Estimation

control with Telekyb using our KF-based state estimator.
Subsequently we used a similar approach in the testing of our on-board state

estimator described in Sec. 2.5.1. After retrofitting our quadrotor platform with
an optical flow sensor, we performed a number of test flights with different levels
of aggressive maneuvers in our lab with an external tracking system. Thus, we
created our own datasets with recorded motion and sensor readings of our actual
platform.

In principle we could follow the same procedure and simulate the whole platform
in the simulator, however, the results with the recorded datasets were accurate
enough to allow testing with our real platform directly.

2.7 Summary

In this chapter we showed in detail the development process of our on-board state
estimation algorithm. Although it is based on a classical sensor fusion algorithm -
Kalman filtering, we paid special attention to the particularity of our application.
We discussed the use of KF in non-standard scenarios, in different sensor setups and
for sensor bias estimation. Our final approach is based on IMU-OF integration and
has proven reliable in the experiments with our platform, i.a., in those shown later
in Chap. 4. Additionally, we have extended our algorithm to position estimation
which allowed us to take part in the EuRoC competition. The EuRoC simulator
and datasets allowed us to also demonstrate how SIL simulations can be used in
the process of software development and debugging.

50

Chapter 3

Obstacle Detection and Tracking

3.1 Introduction

A variety of sensors can give a robot the ability to sense its surroundings. From the
most basic mechanical bumpers and non-contact, close-proximity distance sensors,
through optical infrared or sonar rangefinders to laser scanners and depth cameras,
the robot gains the ability to sense the environment. Analysis of sensor measure-
ments allows the robot to take actions depending on its task and situation, e.g.,
the detection of obstacles around the robot enables further actions such as path
planning or obstacle avoidance. Given the limited sensing range and field of view
of many sensors, obstacle tracking provides the means to improve and maintain
knowledge about the state of obstacles despite the motion of the platform or the
obstacles themselves.

In UAV teleoperation, especially in an unknown, obstacle-rich environment, ob-
stacle detection and tracking is of great importance as a part of the assisting al-
gorithms for the operator, enabling functionalities such as collision-free navigation.
Thus, it can facilitate the task of the human operator and improve efficiency of the
teleoperation process.

3.1.1 Literature Overview

Although tracking is inseparably linked with detection, there are systems that forgo
tracking, and, for the purpose of collision-free navigation, use reactive algorithms
based only on the current state of detected obstacles. As a reference for this thesis
we analyze different classes of approaches in order to make a thorough overview of
existing algorithms. For clarity, we divide this section into two parts, dedicated to
detection and tracking approaches, respectively.

Detection

The most basic approach is the use of distance sensors emulating the behavior of me-
chanical bumpers that limit motion in the sensing directions (Nieuwenhuisen et al.,
2013; Houskamp, 1978). Gageik et al. (2015) proposed an array of complementary

51

Chapter 3 Obstacle Detection and Tracking

ultrasonic and infrared distance sensors to enhance their system’s robustness. Al-
though it does not require complicated processing of measurements, this approach
has certain limitations. The obstacle detection, and hence avoidance, is limited to
the area covered by the sensors, thus, require many dedicated sensors to achieve
effective results. This in turn, can be not feasible for small robotics platforms as it
can add excess weight.

Instead of using multiple one-directional sensors, Ferrick et al. (2012) used a 360°
laser range finder to create a 2D occupancy grid map to determine obstacle-free
paths for their UAV. A natural 3D extension can also be obtained by rotating the
sensor via servomotors as shown by Nieuwenhuisen et al. (2013). The laser range
finders, especially with the additional actuators, can again be too heavy or bulky
for small size UAVs.

For the purpose of obstacle avoidance, a popular approach is to use monocular
cameras, for example in algorithms based on optical flow (Merrell et al., 2004), or
by determining the size expansion ratios of obstacles from feature tracking in the
field of view of the sensor (Al-Kaff et al., 2016). The perspective from a monocular
camera, however, does not provide any correlation between the detected features
other than the relative direction. This in turn makes building a 3D model of the
environment and obstacle tracking cumbersome. On the other hand, stereo cameras
enable generation of disparity images and the distance estimation based on the
epipolar geometry, which consequently enables mapping of the observed obstacles
from the image plane to the robot/camera frame (Ait-Jellal and Zell, 2015).

Tracking

In order for a robot to be able to process information about its environment, it is
first necessary to properly model it and store that information in the memory. Dif-
ferent ways of modeling have certain advantages and disadvantages and differently
influence processing efficiency. Irrespective of the actual implementation, a rep-
resentation of the robot’s surroundings contains virtual objects representing their
counterparts in the real world together with the encoded information about their
position, size, etc.

Depending on the reference frame, such a representation can be classified either
as global or local, i.e., expressed with respect to a global reference frame (extrinsic
representation) or in relation to the robot (intrinsic representation). While the
former approach is typically related to the localization problem, or broadly speak-
ing simultaneous localization and mapping problem (SLAM), the later has certain
advantages, especially in tasks like teleoperation, as it ensures fixed memory size
and bounded processing time (Odelga et al., 2016b).

Regardless of the reference frame, the information about the environment can
be mapped in different ways. Information about objects can be stored as sets
of points (point clouds), lines, or polygons, as continuous data containing their

52

3.1 Introduction

positions, dimensions, colors, etc. The representation of laser sensor readings and
stereo or depth cameras as point clouds has been used in several SLAM algorithms,
for instance by Cole and Newman (2006) or Nüchter et al. (2007).

The second representation in this category is the discrete mapping, in which
space is modeled as a grid of cells of equal size, i.e., volume elements - voxels.
Objects are mapped into these grids such that each cell contains information about
its occupancy. This category introduces an abstraction layer between the object
and its representation such that the data (mainly position) is associated with the
grid, not the object (Roth-Tabak and Jain, 1989; Moravec, 1996).

One of the most notable examples of this method is the work by Hornung et al.
(2013). The authors propose an efficient way to store large-scale environments as
3D voxel grids using an octree representation. The cells in a map of predefined
size are recursively divided into eight smaller cells - nodes. The main advantage
of this representation is that whenever all the children of a node contain the same
information they can be pruned, hence, it enables dynamic resolutions. For example,
a large, empty (or occupied) space can be fully described with a few big cells as
finer resolution does not provide more information. The main drawback, however,
is that accessing specific regions of the map requires iteration along the tree, while
in maps of fixed resolution, the voxels can be queried directly by their position.

The cells occupancy information can be also represented discretely, with deter-
ministic binary (empty/full) information, or in a stochastic manner, where cells
contain a given probability of being occupied, which enables storing uncertainty
related to the measurement and the representation. On the other hand, continuous
data contains inherently more information about objects, especially their bound-
aries, thus it is seldom represented in a stochastic way. Nevertheless, statistical
analysis is still widely used with such data, especially in registration of different
measurements to a common reference frame (Agamennoni et al., 2016).

3.1.2 Problem Statement

In most of the aforementioned works, the limiting factor is the on-board computa-
tional power. The transition from sensor arrays to frame-to-frame image analysis
and occupancy grids was possible not only thanks to the development of more
advanced algorithms, but also because of to the recent progress in mobile CPUs.

Obstacle detection and tracking is a computationally expensive task due to the
amount of data that needs to be processed, especially given the availability of
lightweight sensors that have extended the data gathering abillities of UAVs with
limited payload. Since we are performing all the computation on-board, in our
development we have given particular attention to the computational efficiency of
our method.

In this doctoral thesis, obstacle avoidance in the context of UAV teleoperation is
the main thread. Therefore, in previous chapters we defined the platform, a quadro-

53

Chapter 3 Obstacle Detection and Tracking

tor unmanned aerial vehicle, and the particularity of teleoperation with respect to
other control modes, Sec. 1.2.4. While obstacle avoidance is a broad subject with
many application and different approaches, the context of teleoperation implies
certain constraints and assumptions.

In order to avoid any obstacle, the obstacles must be reliably detected first, then
saved into the memory to preserve information about their state (namely their size
and position). Additionally, given the limited number of sensors that the platform
can carry and their range of detection, a tracking algorithm can be employed to
maintain the state of detected obstacles knowing an estimate of the robot’s motion.
Finally, the obstacle’s possible interference with the desired trajectory of the robot
can be analyzed and prevented.

3.1.3 Methodology

As obstacle detection (with tracking) and avoidance can be partially analyzed in-
dependently, we dedicate this chapter to the investigation of the former problem.
Motivated by the work by Stegagno et al. (2014), we decided to develop an ob-
stacle detection and tracking algorithm based on a single RGB-D camera as this
sensor provides a relatively large amount of information with a large field of view
compared to its size.

Constrained by the limited computational power of the on-board computer, we
decided to adopt a local and bounded obstacle system, i.e., one represented in
a frame that moves with the robot. Therefore, in order to preserve the relative
position of the obstacles, this local state has to be updated given the motion of the
robot.

In Sec. 3.2 we summarize the bin-occupancy filter, a multitarget tracking algo-
rithm that provides theoretical formulations for our problem.

In Sec. 3.3 we detail our implementation using the bin-occupancy filter. We
start from a comparison of different coordinate frames and their pros and cons in
terms of being used to represent the obstacle state. Next, we fully characterize
our surveillance region within which we will detect and track obstacles. Finally,
we detail the state and measurement updates of our implementation, i.e., how
we update the state with depth measurements and how we transform it given
the estimate of the robot’s motion. We summarize and conclude this chapter in
Sec. 3.4.

3.2 Bin-Occupancy Filter

The bin-occupancy filter is a multitarget tracking (MTT) algorithm introduced by
Erdinc et al. (2009). It approaches the problem of target tracking by investigating
if there is a target at a given point in space. It models the robot’s surroundings as

54

3.2 Bin-Occupancy Filter

a surveillance region S partitioned into bins, which may or may not be occupied
by a target. Hence, it is an opposite approach to most MTT algorithms, which
instead estimate the number of targets and simultaneously track them. In the case
of obstacles that might collide with the platform, our interest is to define free and
occupied regions in the vicinity of the robot rather than to know the exact number
of potential obstacles. Therefore, the use of the first approach is more reasonable.

The algorithm has the structure of a recursive filter whose state is the probability
of occupancy of each bin in the region of interest S. The bins in the surveillance
region S are assumed to be sufficiently small such that each of them is potentially
occupied by at most one target. If two targets (regardless of their dimension)
happen to be located close together, the bin volume can be reduced so that this
assumption remains valid. Moreover, one target should give raise to only one
measurement, and should generate it independently of other targets.

The algorithm comprises of two phases that we summarize in this section: pre-
diction and correction, also referred to as the state and measurement updates.

3.2.1 Prediction

The prediction step of the bin-occupancy filter takes the knowledge of the state of
the bins at time k − 1 and makes an a priori estimate based on the probabilities
of two events. Given two generic bins i and j, at a given instant k the event bin i
contains a target is possible if:

a) a new target appears in bin i,

b) a target from bin j moves to bin i.

These events are mutually exclusive - two targets cannot occupy the same bin
considering the aforementioned assumptions. The second case also includes the
case when j = i, i.e., the target in bin i stays in this bin. We also call this step the
state update, as we will show later that these events correspond to the motion of
the robot.

The state update equation computes the probability of bin i being occupied at
time k, given the set of measurements from time 1 to k − 1

pk|k−1(Uk(i)) = b(i)

+
∑
j

p(i|xj)Ps(xj)pk−1|k−1(Uk−1(j)) , (3.1)

where Uk(i) ∈ {0, 1} is a random variable which is 1 if bin i contains a target at
time k and 0 otherwise, b(i) is the probability that a new target appears in bin i, xj
is the middle point of bin j, Ps(xj) is the probability of survival of a target located
at xj to the next time step, p(i|xj) is the probability that a target located at xj

55

Chapter 3 Obstacle Detection and Tracking

moves to bin i, and pk−1|k−1(Uk−1(j)) is the probability of bin i being occupied at
time k−1. Equation (3.1) describes the sum of probabilities of the two independent
events a) and b).

3.2.2 Correction

The correction phase of the algorithm is based on sensor measurement. Whenever
new information is available the state of the observed bins can be updated. In
the bin-occupancy filter method, a generalized sensor measurement is modeled as
zs, s ∈ {1, . . . ,m}, where m is the number of detected targets. At instant k, and
the measurement update of bin i is defined as

pk|k(Uk(i)) = pk|k−1(Uk(i))

[
(1− Pd(xi)) (3.2a)

+
m∑
s=1

Pd(xi)f(zs|xi)∑
j Pd(xj)f(zs|xj)pk|k−1(Uk(j))

]
, (3.2b)

which updates the probability from Eq. (3.1) with the measurement at instant k.
The other components of Eq. (3.2) are:

• Pd(xi) is a visibility factor describing the probability of detection of a target
located at xi independent from the sensor measurement,

• f(zs|xi) is the sensor’s probability density function (PDF) of a measurement
zs given a target at xi.

In Erdinc et al. (2009), Eq. (3.2) was derived using Bayes’ formula using the a
priori estimate pk|k−1(Uk(i)), current measurement zs, s ∈ {1, . . . ,m} and proba-
bilities related to the visibility of the target Pd(xi). The second part, Eq. (3.2b)
corresponds to the influence of measurement s ∈ {1, . . . ,m} on the updated bin
i, weighted by the PDF function f(zs|xi), which depends on the measurement lo-
cation. This PDF represents the sensor noise, and thus allows the introduction of
false positive and false negative measurements.

3.3 Implementation

Although the bin-occupancy filter inherently imposes a probabilistic representation
with the surveillance region partitioned into discrete cells, it does not specify other
aspects of the representation. The choice of the size of the bins or even their shape
is implementation specific, and at the user’s discretion as long as it fulfills the filter’s
assumptions. The general prediction and correction equations, shown in Sec. 3.2,
must also be particularized given the implementation specifics.

56

3.3 Implementation

3.3.1 Depth Measurement Model and Calibration

The pinhole camera model presented in Sec. 2.2.4 describes only the perspective
geometry of a point. Thus, by inverting the model in Eq. (2.17) we can only obtain
(xc, yc) coordinates in relation to the distance zC . The depth measurement, i.e.,
the zC value, complements the pinhole camera model allowing a full 3D position
mapping from the image plane to the camera and, consequently, the world (or
robot) frame.

In a general form the depth measurement can be modeled as

z̃uv = f(u, v, zC), (3.3)

where z̃uv is the measured distance to an object (pixel) with (u, v) coordinates in
the image plane, and f is an unknown sensor model. Assuming that the image
distortions can be sufficiently well compensated for with the previous distortion
models, Eq. (2.21), we use the following quadratic depth sensor model

z̃uv = αd2z
2
C + αd1zC + δd (3.4)

where δd is an unknown offset, and αd2 and αd1 are unknown scaling coefficients.
The calibration algorithm principle is similar to the image calibration presented in

Sec. 2.2.4. Knowing the true distance to the object, the coefficients of Eq. (3.4) are
obtained using the least squares method with a sufficient number of measurements.

The actual distance can be estimated in the same fashion, by using an object
with a known, easily detectable pattern. For example, a checkerboard, as shown in
Fig. 2.4c can be easily detected using corner detection. Known dimensions of the
squares in the checkerboard enable estimation of the distance.

Remark 3.1 In order to calibrate the depth sensor one has to use the corresponding
images from the IR sensor as the depth sensor does not allow recognition of the
calibration patter. Nevertheless, the calibration is possible assuming proper lighting
conditions and access to the IR images used for the depth estimation.

Point Cloud

Each pair of color and depth measurements can be mapped to the world (or camera)
frame into a point with 3D coordinates and color information. The set of resulting
points representing the surface of objects in the field of view is often reffered to as a
point cloud. Even though we have not used the color information in the presented
obstacle detection and tracking algorithm, for the sake of completeness, it is worth
to mention that assigning color to the depth points requires another calibration
process which can improve the factory setting of the sensor. The color and the
depth sensor create a stereo pair that needs to be registered to a common reference

57

Chapter 3 Obstacle Detection and Tracking

X

Y

Z

x
y

z P

(a)

X

Y

Z

ρ

θ

z
P

(b)

X

Y

Z

θ

φρ

P

(c)

Figure 3.1: The three main coordinate systems with coordinates of an arbitrary
point.

frame, such that pixels of the same image coordinate match each other in both of
the images.

The stereo camera calibration procedure again requires a calibration pattern and
a set of corresponding images from both sensors. This process allows estimation of
the transformation matrix from one camera to the other, and registration of both
of the images.

3.3.2 Coordinate System

As explained earlier in this chapter, the map or representation of the robot’s sur-
roundings can be expressed either with respect to a global frame or in relation
to the robot in its local frame. In the global representation both the position of
the robot and obstacles are defined with respect to a common, stationary frame
of reference. A Cartesian coordinate system seems a natural choice for the global
reference frame as it directly corresponds to (x, y, z) linear translations - natural
movement for humans in our 3D world. In Fig. 3.1 we summarize the three main
coordinate systems with the position of an arbitrary point P .

In local representations where the position of every obstacle is defined with re-
spect to the robot, other representations such as cylindrical or spherical coordinate
systems, have certain advantages. For instance, the radial coordinate of either of
these systems directly represents the distance to an object, which can be benefi-
cial when determining the range of possible collision-free motion. Moreover, local
representations can have a fixed size, i.e., we only preserve information about ob-
jects within a certain range. This ensures constant memory demand and bounded
processing time of such a representation while also not restricting the range of the
robot’s motion.

The main drawback of global representations is their large memory requirements

58

3.3 Implementation

as sufficient computational power and memory has to be available to store and
process the mapped obstacles. Especially in large scale environments this is usually
not feasible with the limited power of on-board computers. Therefore, in this work
about the teloperation of UAVs, we decided to employ a local representation of the
robot’s surroundings for the purpose of its navigation. In this section we analyze the
usefulness of the main coordinate systems in the context of obstacle representation
for our task. The summary of our findings is shown in Table 3.1.

Partitioning into Bins

The bin-occupancy filter assumes the specification of a surveillance region S parti-
tioned into bins (cells). Target detection and tracking is performed only over this
predefined region, i.e., even when a target is detected outside of this region it is
disregarded. Hence, at every instant k, as we only take into consideration obstacles
within S, the size of this region defines the instantaneous possible range of motion.

Furthermore, we assume that the cells have a constant size and that the surveil-
lance region is defined as the number of cells along every axis. This ensures a
three-dimensional array structure of S with a uniform distribution of cells. Hence,
similarly to the voxel representation, the position of every cell is linearly dependent
on its number (or coordinate) and does not have to be explicitly stored. The reverse
operation is also of low complexity. Cells associated with an arbitrary location (or
region) within S can be easily determined.

The shape of the surveillance region will differ in every coordinate system: cuboid
in the Cartesian system, cylinder and sphere in the cylindrical and spherical sys-
tems, respectively.

Transformation Complexity

Cartesian Cylindrical Spherical

x/y transformation
low moderate high

complexity
z transformation

low low high
complexity

ψ transformation
moderate low low

complexity
sensor model

poor partially good good
matching

space complexity high low high

Table 3.1: Comparison of the three main coordinate systems as local frames for
obstacle representation.

59

Chapter 3 Obstacle Detection and Tracking

Given the inherent properties of local representations, the information about
objects stored in memory must be updated to accommodate for the robot’s motion.
Different coordinate systems involve different levels of transformation complexity
- the mapping between the motion of the platform and the coordinates of a given
system. For example, the rotation around the platform’s vertical axis, i.e., yaw
rotation of ψ angle about zH (see Fig. 2.1 for reference), directly corresponds to
the azimuthal coordinate of both cylindrical and spherical systems. Thus, in order
to update the position of mapped obstacles, the value of ∆ψ (total rotation) can
be used directly.

On the other hand, the same transformation in a Cartesian system requires ad-
ditional computation of the corresponding ∆x and ∆y values given the rotation
of ∆ψ. Additionally, as the corresponding linear translation is proportional to the
radial distance from the system’s origin in the yaw rotation, the {∆x, ∆y} value is
different depending on the object’s (x, y) location. The transformation values do
not depend, however, on the cell’s z coordinate. Thus, cells of the same {x, y} coor-
dinate are transformed by the same {∆x, ∆y} value in every layer of the cylindrical
system given a pure ψ rotation.

Similar complexity will affect the x/y transformation in the cylindrical system.
For a given {∆x, ∆y} translation of the platform, a corresponding {∆ρ, ∆ϕ} value
has to be calculated. Although this value differs for different {ρ, ψ} coordinates, it
is again the same for every layer, i.e., z coordinate.

The spherical system has the highest transformation complexity, except the yaw
rotation for every translation of the platform, either lateral or horizontal, a full set
of {∆ρ,∆θ,∆φ} translations in the spherical system has to be computed.

Sensor Matching

The depth camera that we use to detect obstacles can be described with the pinhole
camera model (Sec. 2.2.4). Although it uses Cartesian coordinates, the sensor read-
ings can be easily transformed to any other system. The probability of detection,
however, depends on the relative size of the bins. As the objects farther from the
camera appear smaller, they have also a lower probability of detection assuming a
constant cell size and volume in a Cartesian system.

On the other hand, a spherical system ensures a constant relative size of its bins,
as their metric volume grows together with the radial distance, and their dimensions
along {θ, φ} (azimuth and polar angles) directions are constant after projection on
the image frame.

Space Complexity

With the space complexity we mean the general efficiency of a system in terms of the
number of cells needed to cover a given range. The Cartesian representation requires

60

3.3 Implementation

the highest number of cells for the same volume. As the metric volume of cells in
both the cylindrical and spherical representations grows with radial distance, they
require fewer cells for the same volume. Hence, the Cartesian system has higher
space complexity as more cells have to be updated in every iteration of the filter.

Although the spherical system covers more space with the same number of cells,
(assuming comparable metric volume of cells) the surveillance region must be larger
to enable the same range of motion. Considering the motion of a quadrotor, espe-
cially in the context of teleoperation, the platform mainly moves forward, rotates
and changes its altitude. Hence, a cylindrical surveillance region offers the highest
(instantaneous) range of motion with a lower cell number than other coordinate
systems.

Conclusion

Considering the above discussion, summarized in Table 3.1, we decided to employ a
cylindrical coordinate system as it provides the best performance in our situation.
Given the limited computational power related to on-board computation capabili-
ties, the average low complexity of the operations on the cylindrical system should
ensure the feasibility of this approach. Additionally, the parameters of such a sys-
tem can be further tuned to accommodate for limited computational resources. For
example, the size and resolution of the obstacle representation can be changed to
optimize the complexity of the operations on this system.

3.3.3 Robot-Centric Obstacle State

The bin-occupancy algorithm performs tracking and assumes target detection in a
quantized surveillance region S. As we are interested in tracking obstacles in the
near vicinity of the UAV, we define S as a bounded region in a local cylindrical
coordinate frame M : {OM , PM ,ΨM , ZM}, wherein obstacles will be tracked. The
PM and ΨM coordinates are, respectively: the radial and the azimuth distances,
and a generic point is expressed in M with (ρ, ψ, z) coordinates. The frame is
defined with respect to the horizontal frame H such that OM ≡ OH and ZM ≡ ZH .
The azimuth reference plane, ΨM = 0, is defined at an angle to the XHZH plane,
such that it intersects with the camera optical center. The surveillance region
boundaries are defined as (ρSmin

, ρSmax) and (zSmin
, zSmax) on the PM and ZM axes,

respectively.
The surveillance region S is defined as a set of bins bi, whose size in M is

∆ρb ×∆ψb ×∆zb, and the obstacle state is represented as the probability of bins
bi ∈ S being occupied. In Fig. 3.2a an example layer of S and its partition into
bins are shown. The inner circle, clear from partitioning for clarity, represents the
restricted area SR, which is considered occupied by the quadrotor, hence no ob-
stacle should get inside SR. In Fig. 3.2b, we show a 3D view of S and SR with a

61

Chapter 3 Obstacle Detection and Tracking

(a) (b)

Figure 3.2: Surveillance region: (a) top view of the surveillance region divided into
partitions, (b) in blue a 3D view of the surveillance region; in red the restricted
area.

QpC , R
Q
H

RH
Q

Measurement
Model

Measurement
Update

depth
image

point
cloud

points
in H

RGB-D
Camera

Camera
Model

Figure 3.3: Diagram of the measurement update of the Bin-Occupancy filter.

simplified contour of the quadrotor and its relative size.

The dimension of bins (∆ρb ×∆ψb ×∆zb) is constant in cylindrical coordinates,
but considering the non-Euclidean property of this coordinate system, the absolute
volume of cells differ, i.e., their volume grows proportionally to the radial distance
from the center. The bin-occupancy filter assumes the same volume for all bins,
or rather, the same probability of target detection. Considering the model of an
ideal pinhole camera, each pixel in a depth frame from the sensor represents the
distance to an area that grows with the distance from the sensor. Although the
ideal would be a spherical representation, our cylindrical surveillance region ensures
more comparable probability of detection than a Cartesian system, when we take
into account the simultaneous change in the volume of the cells and the pixels
relative size.

3.3.4 Measurement Updates

Obstacle state corrections (Sec. 3.2.2) have the form of measurement updates.
Whenever a new depth frame from the camera is available, a measurement up-
date can be performed. First, the image from the camera is scaled down such that
the new pixel dimension is adjusted to the dimensions of the bins. This process

62

3.3 Implementation

bi

xi(ρi, zi)

RS

ZS

OS ≈ OC

∆d

bj

xj(ρj , zj)

d(xj , OCxi)

Figure 3.4: Illustration of the visibility factor computation.

significantly reduces the amount of data that must be processed while ensuring
that every pixel corresponds to at most one bin. The scaled depth image is then
transformed into a point-cloud using the camera’s intrinsic parameters. Using the
model described in Sec. 3.3.1, the location of every depth point (pixel) with a non-
zero depth value in the horizontal frame is calculated. The points are expressed
in the frames Q and H using the camera’s extrinsic parameters (i.e. QpC and
RQ
C) and the roll and pitch angles. Then, using the standard Cartesian-cylindrical

transformation, the corresponding cylindrical coordinates are calculated forming a
set of obstacle points in M . The set of obstacle points is then mapped into the
bin-space representation, i.e., each point is assigned to the bin that corresponds to
its position. A scheme of the whole process is presented in Fig. 3.3.

Visibility calculation

The measurement update equation of the bin-occupancy filter given in Eq. (3.2)
requires the computation (or definition) of the visibility factor Pd(xi) for every i-
th bin with its center at xi. For every bin with a positive target detection this
parameter is assumed to be Pd(xi) = 1, as the detection of the corresponding
obstacle point ensures its visibility.

All the other bins, without positive target detections, go through a two-step
process to determine their Pd(xi) factor. In the first step we perform an inverse
procedure with respect to the previously described one. For every bin we calculate
its corresponding pixel coordinates (u, v) in order to check if that bin is in the field
of view of the camera. If the bin is outside the field of view Pd(xi) = 0, otherwise
we compute the occlusion rate based on the occupancy of other cells between the
investigated one and the camera.

Hence, in the second step we compute the visibility factor based on the occlusion
rate of bins with positive detections along the line segment OCxi. As illustrated
in Fig. 3.4, the occlusion rate is defined based on the distance d(xj, OCxi) between

63

Chapter 3 Obstacle Detection and Tracking

the potentially occluding bin j (with its center at xj) and OCxi, as

γi(j) :=

{
d(xj ,OCxi)

∆d
if d(xj, OCxi) ≤ ∆d

0 if d(xj, OCxi) > ∆d

, (3.5)

Γi = {γi(j) | γi(j) > 0}, (3.6)

where ∆d is a threshold value and Γi is the set of all bins j that occlude bin i with
their factors γi(j). The visibility factor Pd(xi), for bins without a positive target
detection, is defined as

Pd(xi) = Vi
∏
j

γi(j)
(
1− pk|k−1(Uk(i))

)
, (3.7)

where Vi is the visibility indicator for cell i: 1 for cells inside the camera’s FOV, 0
otherwise.

As empty space is detected by the camera indirectly, the visibility factor allows
the algorithm to update the cells that are occupied in the state but where there is no
corresponding positive detection in the new measurement. The probability of occu-
pancy of such cells is consequently decreased as the lack of a positive measurement
suggests that the corresponding cell is now empty.

3.3.5 State Updates

State
Estimator

Hvz ∫ ∆z
if (|∆z| > Tz)

∆z = 0

updateZ(∆z)

H ψ̇ ∫ ∆ψ
if (|∆ψ| > Tψ)

∆ψ = 0

updateΨ(∆ψ)

Hvx

∫ ∆x
if (

√
∆x2 + ∆y2 > Txy)

updateXY (∆x,∆y)Hvy

∆y

(∆x,∆y) = (0, 0)

Figure 3.5: Block diagram of the state update logic.

The obstacle state is local and bounded, meaning that whenever the robot moves
the obstacles stored in memory should be moved as well in order to maintain their
relative location with respect to the real world objects. This also allows us to ex-
tend the knowledge of the obstacles to the region of S outside the field of view
of the camera. The predefined, limited size of S with a constant number of bins

64

3.3 Implementation

ensures finite computational time and memory demand. Because of the probabilis-
tic representation, where each cell in the grid contains not a binary value but a
probability of being occupied, the uncertainty related to the estimate of the robot’s
motion should also be reflected in the obstacle state. Hence, when obstacles are
no longer in the field of view of the sensor, the certainty related to their position
decreases over time with consecutive motion updates.

On the other hand, because of the discrete character of the representation, the
obstacle state is partitioned into fixed size bins, each cell, besides of its position
and size, contains only one piece of information - the probability of being occupied.
Therefore, in order to represent a loss of certainty, this probability is spread to
adjacent cells with consecutive updates.

The prediction stage of our algorithm is performed based on the estimated state of
the robot. The obstacles in S are updated using three independent transformations:

• a translation along the ZM axis, given the UAV velocity Hvz,

• a rotation around the ZM axis, given the UAV yaw rate Hψ̇,

• a translation on the PMΨM plane, given the UAV velocities Hvx and Hvy.

In order to keep the computational time bounded, and limit the spread of the
probabilities in S due to the quantization noise, these three transformations are
not performed every time that a new velocity estimate is available. Instead, the
velocities are integrated and a transformation is performed only when the corre-
sponding accumulated value reaches the corresponding threshold. This process is
illustrated in Fig. 3.5, where Ti, i = {xy, z, ψ} is the threshold value for the re-
spective updates. The actual implementation of the update functions is shown in
Appendix B.

Similarly, obstacles that leave the surveillance region are erased from the mem-
ory. This also keeps the necessary memory bounded and independent from the
duration of experiments without limiting the area of exploration. Please note that
to compute Eq. (3.1) the probability of survival Ps(i) and the probability of the
birth of new targets b(i) are needed. These parameters depend on the environment
and should be set such that a boundary zones should have a relatively high b(i),
while a value of Ps(i) < 1 can be used to reduce artifacts.

For the first two updates listed above, i.e., the translation and rotation around the
ZM axis, the uncertainty spread can be controlled with the corresponding threshold
value. As in the example shown in Fig. 3.6, in these two updates the probability of
the occupancy of a cell will always be transferred towards a directly adjacent bin,
along the ZM and ΨM direction, respectively.

In the example of probability of occupancy evolution over time in Fig. 3.6, the
threshold value was set to half the cell size 1/2∆x. The first iteration of this example
contains high probability of occupancy in the middle cell after a previous measure-
ment. The state is then subsequently updated six times, three times in the positive

65

Chapter 3 Obstacle Detection and Tracking

1.0

.5 .5

.5.25 .25

.38.38.13 .13

.38.25 .25 .06.06

.03 .03.16 .16.31 .31

.02 .02.09 .09.23 .23.31

x

x

x

x

x

x

x

∆x

updatex(1
2∆x)

updatex(1
2∆x)

updatex(1
2∆x)

updatex(− 1
2∆x)

updatex(− 1
2∆x)

updatex(− 1
2∆x)

Figure 3.6: An example of the state update on a simple, one dimensional, obstacle
state.

direction and then three times in the negative direction. Thus, for every cell, at
each step half of the probability remains in that cell and half moves to the adjacent
cell. As can be seen from this example, this approach preserves the mean value of
the obstacle’s position, after the last update the highest probability is again in the
middle cell. The variance of the obstacle’s position, however, increases with every
update as there is no new measurement.

The obstacle state update on the PMΨM plane, as these directions are coupled,
is more complicated. As explained earlier during the transformation complexity
analysis in different coordinate systems, {∆ρ, ∆ϕ} translations depend not only
on the corresponding {∆x, ∆y} motion of the platform but also on the cell’s (ρ, ϕ)
position. Fig. 3.7 shows an example of such a transformation. A {∆ρ, ∆ϕ} trans-
lation of one cell is shown based on the corresponding {∆x, ∆y} pair. As these
two directions can not be updated independently we also can not directly control
the occupancy spread and therefore the spread of related uncertainty.

The example in Fig. 3.7 also depicts a limitation of our approach, the rate of the
uncertainty growth on the PMΨM plane can not be controlled independently, i.e.,
it depends indirectly on the number of updates and the update threshold size. A
higher threshold size can limit the spread of uncertainty by limiting the number of
updates.

3.4 Summary

In this chapter we presented our algorithm for a local bin-occupancy system to store
information about detected obstacles. Implementation of the bin-occupancy filter
allowed us not only to store new measurements, but to also update the existing state

66

3.4 Summary

y

x

ρ

ψ

∆y

∆x

∆ψ

∆ρ

y

x

y

x

ρ

ψ

Figure 3.7: Example of a state update on the PMΨM plane.

with new information and estimate the location of previously seen obstacles with
the estimated motion of the robot. The use of a cylindrical system increased the
efficiency of our approach with respect to other representations as was shown in the
complexity analysis. A bounded surveillance region partitioned into a fixed number
of bins ensures finite computational time and memory demand, which is especially
important when dealing with the limited resources of on-board computation.

As the main purpose of obstacle detection and tracking is the following use of
this algorithm in obstacle avoidance, the next chapter will show further advantages
of our system with respect to a teleoperated UAV.

67

Chapter 4

Obstacle Avoidance

4.1 Introduction

Unconstrained by ground conditions, flying robots are desired in applications such
as exploration, inspection, and surveillance, as they can reach places that ground
robots can not. However, the operation of UAVs in an unstructured, obstacle rich
environment with limited space to maneuver is a challenging task. As we explained
in Chap. 2, state estimation is essential in order to ensure drift-free control and
enable further algorithms for collision-free navigation. In order to further assist the
operator and increase the number of potential applications of this technology, the
robot needs to be able to properly process the user’s input and correct for errors
resulting from the limited situational awareness of the operator.

Obstacle avoidance, enabled by environment sensing, detection and tracking of
potential obstacles, can greatly enhance the teleoperation performance of UAVs
by filtering the user’s commands to prevent collisions. Additionally, by improv-
ing safety, obstacle avoidance measures can increase the operator’s confidence and
allow for more effective task execution. Although human supervision is often re-
quired due to legal and safety reasons, operating a UAV can be greatly simplified
by endowing the UAV with autonomy (Odelga et al., 2016b; Grabe et al., 2013).
Autonomous obstacle avoidance, especially when operating in tight and unstruc-
tured GPS-denied environments, can enhance visual inspection or search and rescue
missions. Thus, allowing for operation closer to the objects of interest, and in more
cluttered environments, leaving the operator free to focus on higher level goals
(Nieuwenhuisen et al., 2013; Bonnin-Pascual et al., 2015; Mebarki et al., 2015).

4.1.1 Literature Overview

Depending on the task’s objective and the amount of a priori knowledge of the
system, we can distinguish two main formulations of the collision-free navigation
problem, path-planning and obstacle avoidance. In path-planning the focus is usu-
ally on the optimization of a robot’s trajectory given the desired position that the
robot should reach (Ferguson et al., 2005). Assuming a high amount of information

69

Chapter 4 Obstacle Avoidance

about the environment, including obstacle sizes and positions, these algorithms aim
to minimize the path length or optimize energy efficiency (Mellinger and Kumar,
2011) while ensuring no collision and obstacle avoidance. Teleoperation applica-
tions, however, consider mostly unknown and/or non-static environments. More-
over, when a UAV has only a generic goal (e.g., exploration of a given space), a
path planning approach becomes ineffective. In such scenarios, a reactive control
law is usually implemented that adjusts the system’s behavior given exterocep-
tive measurements (Borenstein and Koren, 1991; Becker et al., 2006; Zohaib et al.,
2013).

Some previous works have dealt with autonomous obstacle avoidance for telop-
erated UAVs. One of the most basic approaches is the potential field (Ge and Cui,
2002), in which directional distance sensors are used and a repulsive force is gener-
ated whenever a sensor’s measurement is below a certain threshold (Nieuwenhuisen
et al., 2013). Hua and Rifa (2010) and later Omari et al. (2014) proposed a solu-
tion using measurements from laser scanners and other range finders. Obstacles are
represented as surfaces, and the commanded velocity of the robot is modified based
on the robot’s distance to these surfaces. In the work by Gageik et al. (2015), the
authors propose an array of complementary ultrasonic and infrared distance sensors
to enhance their system’s robustness.

Although UAVs operate in 3D environments, some works simplify the case to a
plane. Ferrick et al. (2012) developed a method based on a 360° laser range finder to
create an image of the walls around the robot at its altitude. Using standard image
processing techniques they extract the boundaries of the obstacles and implement
the obstacle avoidance using the concept of wall-following.

Another popular approach is the use of optical flow generated from a monocular
camera. Although in these methods the distance information can not be directly
extracted, they provide a relative measure of the obstacle’s proximity and enable
avoidance actions (Merrell et al., 2004; Serres et al., 2006; Mahony et al., 2009). Al-
Kaff et al. (2016) performed obstacle avoidance by determining the size expansion
ratios of objects in the field of view of the sensor using a feature tracking-based
optical flow.

Oleynikova et al. (2015) presented an algorithm for a reactive obstacle avoid-
ance based on stereo camera images. Reconstruction of the obstacles in the field
of view of the sensor is based on epipolar geometry and the resulting disparity
images. The avoidance algorithm then performs path-planning that relies on a
short-term map. It does not require accurate odometry and does not keep a glob-
ally consistent map over the whole experiment. The obstacle map is created from
a U-map, an accumulated histogram along the columns of the disparity images and
the obstacles are modeled as ellipses. The 3D disparity information is reduced to
a 2D representation, where every data point contains a sum of occupancies from
the corresponding column. Therefore, although the method uses 3D stereo vision,
the avoidance algorithm, called in the work a local path-planning, is limited to the

70

4.1 Introduction

planar case.

More recent works take advantage of the smaller size and higher performance of
miniature computers by employing more sophisticated methods not only for map
building but also for obstacle avoidance. In the work by Xu et al. (2015), an octree-
based 3D path planning algorithm using a state lattice concept is employed to find
an optimal trajectory. The path-planning problem is reduced to the graph search
problem. By using the octree concept for both the map and the state lattice, the
memory requirement is kept to a minimum and the authors claim that the graph
search is made more efficient. Gohl et al. (2015) equipped their platform with four
stereo cameras allowing the robot to have an omnidirectional view of the environ-
ment. Detected obstacles are stored as points in a local, spherical coordinate frame
that is transformed as the robot moves with the estimate of its state. Although their
platform can see in all directions the avoidance algorithm is reduced to determining
the possible range of motion in different directions (bearings).

4.1.2 Problem Statement

One of the main goals of this work is to develop an obstacle avoidance algorithm
for a teleoperated multirotor UAV. Our intention is that the resulting algorithm
should allow an operator to pilot a robot relying only on visual and haptic feedback
without fearing of possible collisions. As one of the main applications of teleoper-
ated UAVs is inspection, we assumed that our algorithm should allow the robot to
come relatively close to objects of interest and help the user to fly through obstacle-
rich environments. Moreover, the user should always be aware when the algorithm
changes their command and the algorithm should not perform undesired motions.
Furthermore, the analysis of potential directions of motion should not be limited
to 2D.

One of the limiting factors of the avoidance capabilities of our system is the
narrow field of view of the camera. In vision based teleoperation the operator
should not be allowed to command the robot in directions that are not instantly
visible if the navigation system can not ensure safety.

In order to realize the avoidance algorithm, we assumed that a relatively accu-
rate representation of the robot’s surroundings is needed. In the previous chapter,
we proposed an algorithm for obstacle detection and tracking based on the bin-
occupancy filter and measurements from a depth camera, that creates and updates
a robot-centric and bounded obstacle state, partitioned into bins. The obstacles are
represented as the probability of occupancy assigned to every bin of the state. The
resolution of the cells can be tuned to achieve a trade-off between the processing
time and the accuracy of obstacles representation.

71

Chapter 4 Obstacle Avoidance

RGB-D
Camera

Bin-occupancy
Filter

Obstacle
Avoidance

depth
image

obstacle
state

robot
state

operator
commands

robot
commands

Figure 4.1: Block diagram of the navigation system.

4.1.3 Methodology

The aim of the work presented in this chapter is to develop an algorithm that
will alter the user input to avoid collisions in a way optimized for teleoperation.
Therefore, having had the obstacle state created with the bin-occupancy filter, our
algorithm checks for possible obstacle interference with the desired trajectory of
the robot to prevent collisions. The algorithm can be tuned to achieve the desired
behavior of the system. By changing the value of weights in the cost function,
different avoidance actions can be favored. The user input can be limited to stop
the robot in front of an obstacle, or the direction of motion can be changed in order
to fly around an object on the robot’s path by either passing it on left, on the right,
or by going above it.

Since we are using an RGB-D camera with a limited field of view, we have inte-
grated the obstacle tracking algorithm with a Model Predictive Control (Camacho
and Bordons (2007)) inspired avoidance to modify the velocities commanded by
the operator. We detail the avoidance algorithm in Sec. 4.2.

In Sec. 4.3 we present a hardware-in-the-loop simulation setup for quadrotors.
With our setup we are able to command the robots in a Gazebo simulation, a
popular open source ROS-enabled physical simulator, using computational units
that are embedded on our quadrotor UAVs. Hence, we can test in simulation not
only the correct execution of algorithms, but also the computational feasibility
directly on the robot’s hardware. In addition, since Telekyb is inherently designed
for multi-robot systems, with our setup we can also test the communication flow
among multiple robots. We provide two use cases to show the characteristics of our
setup.

In Sec. 4.4 we show a thorough validation of our algorithm over multiple experi-
ments in different obstacle setups. We conclude this chapter in Sec. 4.5.

4.2 Avoidance Algorithm

The architecture of our navigation system is as follows. First, the obstacle detection
and tracking module creates a local obstacle state using the bin-occupancy filter.
The role of this part of the system is not only to detect obstacles but also to extend
the limited field of view of the camera by including regions that are not instantly

72

4.2 Avoidance Algorithm

Figure 4.2: Top view of a segment of the bin representation and, in red, boundaries
of a possible restricted area given the presented size of the robot.

visible. Using filtering, we can extend the knowledge of obstacles in the vicinity
of the robot and reduce measurement noise as well. The second module in the
navigation system is the obstacle avoidance. At every time step, the algorithm tries
to predict potential collisions by analyzing the possible future obstacle states by
performing a sequence of simulated state updates (Sec. 3.3.5) in different directions
in the range of possible motions. Its working principle is inspired by MPC, where
the system state is described with the obstacle state and the dynamics of the system
with the user input and state updates.

The block diagram of the navigation system is shown in Fig. 4.1. The key idea is
that the operator’s commands are altered by the obstacle avoidance block given the
knowledge of the estimated obstacle state by our detection and tracking algorithm
fed with the robot’s state and depth images.

4.2.1 Probability of Collision

To ensure no collisions, the obstacle avoidance part of our navigation system ought
to prevent obstacles from entering the region of S occupied by the robot. We define
the probability of collision as a joint probability of occupancy over a subset of bins
bi ∈ SR ⊂ S, where SR represents the part of the surveillance region associated to
the robot. The boundary of the restricted area SR is represented in the Fig. 4.2
with the red continuous circle.

Assuming that collisions with obstacles in different bins are independent, we

73

Chapter 4 Obstacle Avoidance

define the probability of collision with obstacles in SR at instant k as

1−
∏
i∈SR

(
1− p(Uk(i))

)
, (4.1)

where p(Uk(i)) is the probability of bin i being occupied.

In general, the two main sources of possible collision (i.e., an obstacle entering
the region SR in the local obstacle state) are

a) the operator driving the robot towards an occupied area,

b) uncommanded drift of the robot.

4.2.2 Model Predictive Control

In MPC, a model of the system is used to calculate a control input that minimizes
an objective function. The system state is predicted at a finite-time horizon. To
determine the control input, an Optimal Control Problem (OCP) is solved sequen-
tially at each instance of the system. Then, the first control input is applied to the
system, while taking future steps into account.

An example of such an objective function is

J(x, u) = p(xk) +
N−1∑
t=0

q(xk, uk) , (4.2)

where the time horizon is expressed as N computation steps in which the cost,
expressed as q(xk, uk) and p(xk), is computed. The optimization problem consists
of finding the value of uk that minimizes the cost function (4.2).

4.2.3 Commanded Velocity

The quadcopter is commanded by the operator in the horizontal frame H, i.e.
the desired velocity is given in directions parallel and perpendicular to the gravity
vector (Sec. 2.2.1). Since the platform is intended for teleoperation, the range
of possible commanded velocities is limited. In particular, we have allowed the
following movements

• forward/backward translation,

• along the ZH axis (up-/downward),

• rotation around the ZH axis (left/right).

74

4.2 Avoidance Algorithm

The forward direction is defined in H by the orientation of the camera, i.e., with
the unit vector

Rz(
QψC)

[
1 0 0

]T
=
[
cos(QψC) sin(QψC) 0

]T
, (4.3)

where QψC is the yaw angle of C in Q.

The values sent to the robot are the commanded velocity

HvD =

vDxvDy
vDz

 =

cos(QψC)vD
sin(QψC)vD

vDz

 (4.4)

and the commanded yaw rate Hψ̇D, where vD, vDz and Hψ̇D are three inputs pro-
vided by the operator using an input device. The mapping between the input
device’s workspace to the velocity command was based on the one presented by
Stegagno et al. (2016).

4.2.4 Obstacle Avoidance

The obstacle avoidance algorithm foresees possible collisions based on the user
input and the current obstacle state. To achieve collision-free teleoperation, our
algorithm solves an optimization problem over N time-steps

argmin
uk

J =
N∑
k=1

wk

(
1−

∏
i∈SR

(
1− pi(kuρ, uψ, uz)

))
+ wψ|uψ| (4.5)

+ wz|uz| ,

where
pi(kuρ, uψ, uz) = p(Uk(i)|(kuρ, uψ, uz)), (4.6)

is the probability of bin i being occupied in step k, it is determined using the
model of the system defined in Sec. 3.3.5, where (kuρ, uψ, uz) define the values of
the state updates. The optimization problem in Eq. (4.5) produces the optimal
control input u?k = (uρ, uψ, uz)

T and gives the number Ns ≤ N of collision-free
steps. The parameters wk, wψ and wz are weights that define the cost of the
translation limit because of the probability of collision, the change of the desired
direction of motion, and the change of elevation of the robot, respectively. Since by
the earlier definition, the operator only commands the robot to go forward on the
XHYH plane, we penalize the change of direction and elevation by adding weighted
costs.

The number of collision-free steps Ns is defined as the maximum value of k for

75

Chapter 4 Obstacle Avoidance

which the collision probability is lower than the safety threshold given the obtained
value of u?k.

The avoidance algorithm produces a control input that ensures the avoidance
of obstacles and minimizes the change of magnitude of the user’s input, direction,
and altitude of the robot. It is a passive approach, i.e., no action is performed
in the absence of an operator’s command. It is valid under the assumption of an
accurate state estimation and fast control, i.e., assuming no uncommanded drift of
the robot.

The control input uk, expressed in the cylindrical coordinates M , describe the
transformation of the obstacle state, as defined in Sec. 3.3.5, and has the following
form

uk =

uρuψ
uz

=

 ∆ρ
n∆ψ
m∆z

 , n ∈ Z : {n∆ψ ∈ [−π
2
, π

2
]}

m ∈ [mmin,mmax],
(4.7)

where ∆ρ, ∆ψ and ∆z are the dimensions of the bins in S. The above relation also
constrains our optimization problem in Eq. (4.5) by defining the feasible region of
uk.

This control input describes a translation of the size of a cell ∆ρ in each prediction
step k, in the azimuth direction of n∆ψ and a potential change in elevation along
the ZM axis of m∆z. The parameters n and m define the maximum deviation from
the desired values given by the user.

The number of prediction steps N is not predefined, but is decided based on the
forward velocity commanded by the operator vD and the time horizon Th of the
prediction. In particular, it corresponds to the number of uρ updates needed to
achieve the desired translation of vDTh. The value of N can be computed as

N =

⌈
vDTh
∆ρ

⌉
. (4.8)

Lastly, the reference velocity in the frame H sent to the robot is

Hvref = f(u?k, vD) =
Ns

N
Rz

(
QψC

)vD cos(uψ)
vD sin(uψ)
uz/Th

 (4.9)

Please note that the coefficient Ns/N is meant to limit the velocity when there is
no collision-free path over the whole time horizon Th. In the extreme case when
Ns = 0, the reference velocity is set to zero. This case corresponds to the situation
in which obstacles are in front of the robot in all feasible directions.

To summarize, our obstacle avoidance algorithm produces a reference velocity
(4.9) as a set of translations of the obstacles state by minimizing the difference
between the commanded velocity (4.4) and the output reference signal. The possible

76

4.2 Avoidance Algorithm

cases are

• vref = vD when there is no predicted collision on the desired direction,

• lateral or vertical avoidance by projecting the desired velocity vD on a new,
collision-free direction,

• limit of the commanded velocity when there is no fully collision-free direction,

• additional component on the ZH direction for vertical avoidance.

Remark 4.1 Although we do not allow the operator to command any lateral mo-
tion, the algorithm, knowing the obstacle state, can perform such a motion.

Remark 4.2 The algorithm cannot perform any motion by itself, any obstacle
avoidance action is only possible under the presence of operator input.

Remark 4.3 In order to compute Eq. (4.5), it is not necessary to perform the
prediction of the obstacle state of the whole region S. In fact, to reduce the compu-
tational time, it is possible to compute only the future state of the bins that belong
to SR.

Backward Motion

So far, we have covered the case of forward motion of the robot. When the operator
gives a positive input, the velocity command is extrapolated in the form of simulated
obstacle state updates, the probability of collision is evaluated, and an alternative
input is chosen if needed. In the case of yaw rotation no action is needed, as the
overall joint probability of collision in SR does not change due to the cylindrical
shape of this region. In order to command the robot in a different direction, the
operator must first rotate the platform and then command the robot to travel in
the new forward direction.

As one of the objectives of our teleoperated setup is that we allow the user to
come very close to objects, we also needed to enable backward motion to avoid
tedious maneuvers close to obstacles. The algorithm, however, will limit avoidance
action to the reduction of the commanded velocity and would stop the platform
if a potential collision was detected. Hence, in the case of a negative input, the
reference velocity has the following form

Hvref =
Ns

N
Rz

(
QψC

)vD0
0

 (4.10)

where the ratio Ns/N converges to zero as the robot gets closer to an occupied region.

77

Chapter 4 Obstacle Avoidance

Figure 4.3: Top view of a part of robot’s trajectory, in gray, a projection of the
restricted area.

Additionally, as we do not differentiate between empty and unknown cells, we
imply a second limit to backwards motion. The robot can only be commanded to go
back up to a predefined distance, lower than the radius of the surveillance region S,
and only backtrack its previous forward motion. In the case of a significant change
in bearing, the backward motion is restricted.

4.2.5 Active Avoidance

Our avoidance algorithm, described in the previous section is a passive (or reactive)
approach, i.e., any avoidance action can be performed only under the presence of
the user’s input. This is true, as long as the estimation system and the controller are
accurate enough to prevent the robot from drifting. However, when that happens,
it is possible that some of the obstacles can get too close to the robot and the
algorithm can not correct for that.

In the current on-board implementation there are two main factors that con-
tribute to the potential drift of the robot. These factors are related to the presum-
ably lower quality of the on-board velocity estimate with respect to the estimate
provided by an external motion capture system. First, the on-board estimate is af-
fected by larger noise and may be biased for some time. As a result the quadrotor
will naturally drift in the direction of the error. The second source of uncommanded
drift is related to the delay in the velocity control loop. As a lower quality esti-
mate of the velocity is now available, we need to reduce the gains of the velocity
controller, making the system slower to respond to the reference velocity.

In order to tackle this issue we have isolated a subset of SR at its boundary

78

4.3 Hardware-in-the-loop Simulations

SRb (between the solid and dashed red lines in Fig. 4.2), thus, we can extract
the occupied bins in SRb as SO = {bi ∈ SRb : p(Uk(i) > 0)}. The algorithm
actively checks this region of the obstacle state for possible obstacles and in a case
of detection performs a repulsive avoidance action.

The active avoidance velocity command uA is computed in the opposite direction
than the detected obstacles, proportionally to the possibility of collision according
to

uA =

[
uAx
uAy

]
=
∑
bi∈SO

−ap(Uk(i))
1−

∏
bi∈SO

(1− p(Uk(i)))
xbi
|xbi |

, (4.11)

where xbi is the (x, y) coordinate of bin i in H and a is a parameter that defines
the magnitude of the repulsive velocity, and the vector uA is then added to the
reference command obtained from Eq. (4.9) and the new command is sent to the
robot. In the worst case, when there is no motion that clears SR from the obstacles,
the produced command minimizes the possibility of collision (4.1).

An example of the active avoidance is shown in Fig. 4.3 as green arrows. It is
a top view of the robot’s trajectory in one of our experiments. In the presented
example, the robot was commanded towards an edge of an obstacle, it can be
seen how the operator’s input (in blue) command was changed to circumvent the
obstacle (in red). The controller, however, was not fast enough to limit the forward
velocity of the robot, and the additional active component was generated (in green)
to assure collision-free operation.

4.3 Hardware-in-the-loop Simulations

In this section, we present our setup for multirotor hardware-in-the-loop simula-
tions. As the development of an obstacle avoidance algorithm entails testing in
obstacle rich environments, the risk of failures and damage to the system is very
high. To overcome this issue at least partially, we designed a setup in which the
algorithm could be tested in a simulated environment. Hence, there is no risk of
damage to the actual hardware. Moreover, as we use the same computational unit,
the method allows us to test the feasibility of execution of our algorithm directly
on the on-board computer.

Motivated by the clear advantages of this type of testing, we subsequently extend
this approach to multi-robot scenarios to cover a wider spectrum of UAV related
experiments, and shared our result with the community in the work Odelga et al.
(2015).

79

Chapter 4 Obstacle Avoidance

4.3.1 About HIL Simulations

Research on computationally power-demanding algorithms has required the de-
velopment of new, faster, more power efficient and miniaturized CPUs. As in
the system of communicating vessels, demand on computational power drives the
progress in computing hardware, while the development of new hardware enables
more advanced, higher fidelity algorithms.

In robotics, the latest trends in research have pushed for on-board integration
of highly informative sensors such as laser scanners (Omari et al., 2013), cameras
(Forster et al., 2014) and RGB-D devices (Stegagno et al., 2014; Fang and Scherer,
2015), where the quantity of available information demands high processing band-
width. This is especially true in the field of computer vision, as can be seen in
algorithms related to visual odometry (Delmerico and Scaramuzza, 2018), object
detection, recognition and tracking (Ahmad et al., 2017; Price et al., 2018), where
in many cases the available processing power is the limiting factor and algorithms
are tuned to balance computational time and performance.

The increase in available information and the need to process it on-board also
requires more computational power embedded directly on the robot. However, due
to payload and power consumption constraints, the computational power available
on-board is not yet comparable to the one of a normal desktop PC.

Another trend is the use of physical simulations to test algorithms for robotics
before the hardware implementation phase. Simulations are particularly useful
when considering UAVs as each experiment can be time consuming and even result
in a crash. However, whenever porting an algorithm from simulation to physical
hardware, frequency synchronization issues may arise due to limited on-board com-
putational power. The main problem is that simulations usually run on a different
hardware than the one equipped on-board, hence it is impossible to check the real
execution time of the software.

Literature Overview

Hardware-in-the-loop (HIL) simulations (Burbank et al., 2011) are a good way
to test these aspects without a need of real robot experiments. In the work by
Chandhrasekaran and Choi (2010) the authors present a UAV system with HIL
simulations for testing the platform with real-time data. Their system consists
of a reliable platform for testing critical safety properties with special attention.
Thus, through HIL simulation they greatly reduce experimental costs. Another
HIL setup, for a UAV helicopter, can be seen in the work by Cai et al. (2008).
The authors show its cost-efficiency in terms of verification of the overall control
performance and safety. Their system, capable of simulating flight tests, including
basic flight motions and full-envelope flights, confirms the high effectiveness and
usefulness of HIL simulations.

80

4.3 Hardware-in-the-loop Simulations

ROS topics
over wireless
connection
feedback for
the operator

input from
the operator

Gazebo
interface

thrust, attitude,
yaw rate
commands
ROS topics
over wireless
connection

IMU data, pose,
on-board sensors

screen
joystick

haptic interface

base
station

Telekyb
(high-level
control and
algorithms)

Odroid

ROS
topics

commands

IMU data
pose

simulated sensor
measurements

Host PC
with

Gazebo

ROS topics

Figure 4.4: A block scheme of the hardware-in-the-loop simulation setup.

Methodology

In this section, we present our setup for HIL simulations for UAVs. This approach
not only enables tests of the functioning of our algorithms, but, in contrast to
only software simulations presented in Sec. 2.6, also allows tests of the hardware
constraints of our computational units. It is a scalable approach, and thus allows
testing with a single or multiple robots.

Our setup for HIL simulations consist of two main parts. The first is Gazebo, a
popular open source ROS-enabled simulator, which provides the dynamical simu-
lation of one or more UAVs and the corresponding sensor readings (IMU, cameras,
etc.). On the other side, each of the simulated UAVs is driven using an ARM-based
Odroid board, which is the high level control board installed on our quadrotors.
The interfacing between the components is provided by a ROS node based on the
Telekyb software (Grabe et al. (2013)).

Using this simulation scheme, we obtain two major benefits with respect to soft-
ware simulation. First, we can test algorithms directly on the on-board compu-
tational units, hence also testing the computational times and the feasibility in
real-time. In addition, since our setup is scalable to multi-robot systems, we can
also test the communication among multiple boards.

In Sec. 4.3.2 we show the software setup for HIL simulations in detail and talk
about specific aspects of our approach for both single and multi-robot scenarios.
In Sec. 4.3.3 we show two case studies in which we demonstrate the feasibility of
hardware-in-the-loop simulations in testing of our obstacle avoidance algorithm for
teleoperated UAVs, and an extension of HIL simulations to multi-robot systems.

4.3.2 Simulation Setup

In Sec. 1.2.2 we described the software setup used to drive our UAV platform.
Here, we show the necessary modifications in order to run HIL simulations and
we point out the required steps to extend the system to perform multi-robot HIL
simulations.

In order to perform HIL simulations, we can exploit the standardization of the
input/output provided by Telekyb, whose interfacing with other blocks is run solely

81

Chapter 4 Obstacle Avoidance

through ROS topics. A block scheme of our setup to perform hardware-in-the-loop
simulations is depicted in Fig. 4.4. With respect to the scheme in Fig. 1.2, the
hardware and sensor interface block has been replaced with a Gazebo interface
block. The main functionality of this setup is to provide an interfacing layer between
Gazebo and the high-level control algorithms.

In particular, this approach uses data provided by the sensors and ground truth
data provided by Gazebo to emulate the ROS topics provided by the Vicon tracking
system (if required), IMU, cameras and other sensors present both in the simula-
tion and the real robot setup. The emulation not only comprises of the specific
topics and format on which the data are provided by Gazebo, but also handles
frequency synchronization. For example, our actual Vicon system provides data
at 120 Hz, while the physical simulation is performed with a timestep of 1 ms, so
that ground truth pose information about the UAV is available at 1000 Hz. Nev-
ertheless, the pose provided to the Telekyb blocks is temporized at 120 Hz by the
Gazebo interface.

On the other hand, the Gazebo interface translates the thrust, attitude and yaw
rate commands provided by the high-level controller into commands that can be
read from the simulator and applied to the simulated UAV model.

Interfacing with the base station and operator does not change with respect to the
real robot system. The Gazebo simulator can be hosted either on the base station
or on a different machine. In order to also test the communication link between the
robot and the base station, the latter is preferred, while the first can be implemented
if the objective of the simulation is only to test the functionality and the execution
time of the implemented algorithms. In both cases, the communication between
the Odroid board and Gazebo is achieved through ROS topics over wireless IEEE
802.11 connection.

Multi-robot Extension

Since all components of the hardware-in-the-loop simulation, and in particular
Telekyb, are inherently thought to be for multi-robot applications, only a few adap-
tations are required to perform multi-robot HIL simulations, which are as follows.

The most important adaptation is that each robot simulated in Gazebo is en-
dowed with a unique identifier, which must be inserted in the name of all ROS
nodes and topics relative to such a robot. Hence, for each robot in Gazebo, one
Odroid board is set up to host a Gazebo interface that reads the appropriate topics
(i.e., the topics containing the own ID) and a Telekyb instance connected to such
ID. Each Odroid is also connected to the base station in the same way as in the
previous case. The resulting scheme is presented in Fig. 4.5.

In addition to the single robot case, it is also possible to test the inter-robot
communication network. At the current stage of development, the communication
between robots is yet again performed exploiting ROS topics on a wireless IEEE

82

4.3 Hardware-in-the-loop Simulations

Gazebo
interface 2

Gazebo
interface n

Odroid 1

Odroid 2

Odroid n

Telekyb 1

Gazebo
interface 1

Telekyb 2

Telekyb n

Host PC with Gazebo

base station
human

interfaces

inter-robot
communication

network

Figure 4.5: A block scheme of the multi-robot hardware-in-the-loop simulation
setup.

802.11 channel. Nevertheless, it is also possible to include and test custom com-
munication networks among the robots equipping Odroid boards with appropriate
hardware (e.g., bluetooth antennas).

4.3.3 Experiments

To illustrate usability of HIL simulations we present two case studies in this section.
Our main interest in this type of testing, in the context of this thesis, is to test
our navigation system architecture with obstacle detection, tracking and avoidance
in a single robot case. Therefore, we present our results in a HIL setting with a
simulated quadrotor and a single obstacle that can be approached multiple times
as the robot is teleoperated.

In the second case study, we highlight the extended multi-robot capabilities of
our hardware-in-the-loop simulation scheme by performing formation control with
three simulated UAVs driven by three Odroid boards.

Obstacle Avoidance

In order to conduct the experiment with simulated UAV and sensor readings, we
recreated our quadrotor setup presented in Sec. 2.2.2 in Gazebo using a generic
dynamic model of a multirotor1. Color and depth images are generated thanks
to an RGB-D sensor plug-in. The intrinsic and extrinsic parameters, i.e. camera
parameters and sensor pose, respectively, are set to match the real hardware.

1https://github.com/ethz-asl/rotors_simulator

83

https://github.com/ethz-asl/rotors_simulator

Chapter 4 Obstacle Avoidance

Figure 4.6: Three comparative snapshots of the same obstacle avoidance algorithm
performed in hardware-in-the-loop simulation (top) and a real UAV experiment
(bottom).

-1
-0.5

y
W

00

0.5

1

1.5

2

x
W

2.5

3

1

0.5

0

3.5

z
W

UAV trajectory

commanded velocity

avoidance velocity

obstacle

(a)

-1
-0.5

y
W

00

0.5

1

1.5

2

x
W

2.5

3

0

0.5

1

3.5

z
W

UAV trajectory

commanded velocity

avoidance velocity

obstacle

(b)

Figure 4.7: The comparison of trajectories performed by the UAV in a real experi-
ment (left) and in hardware-in-the-loop simulations (right).

84

4.3 Hardware-in-the-loop Simulations

Module 1 Module 2
µ σ µ σ

PC <1 ms - <1 ms -
HIL 1.74 ms 0.302 ms 5.3 ms 1.42 ms

Robot 1.95 ms 0.339 ms 5.65 ms 0.78 ms

Table 4.1: Execution time comparison of the measurement update (module 1) and
the state update (module 2) on different platforms.

To control the simulation we used the control scheme shown in Fig. 4.4 with
appropriate components to interface with Gazebo instead of the real quadrotor.
The trajectory controller part of Telekyb was tuned accordingly to adjust to the
slightly different dynamics of the simulated UAV.

We have conducted simple obstacle avoidance experiments performed both in
simulation and on a real robot. In both cases, the human operator was commanding
the robot to go towards the edge of the obstacle. In Fig. 4.6 snapshots from the
experiments are presented and show consecutive positions of the robot during the
flight. Full trajectories, together with the commanded and reference velocities, are
presented in Fig. 4.7. Both figures show comparable behavior of the real and the
simulated robot in the experiments.

In Table 4.1 we show the mean values µ and standard deviations σ of the ex-
ecution time of two modules of the algorithm. These modules are related to the
measurement and state updates of the obstacle state, respectively. We have run the
same experiment on three different computers: a standard desktop PC, hardware-
in-the-loop simulation, and the real platform. Table 4.1 shows that the computation
times obtained in the PC simulation are very different with respect to the timing
obtained in the other two experiments. On the contrary, the computation times
in the HIL simulation and in the experiment with a real robot are comparable.
Small differences in the execution times in HIL and real experiments are due to
the real sensor acquisition time, which is, however, negligible compared to the rest
of the algorithm’s execution time. It is clear from the table that the timing ob-
tained on the PC does not provide any meaningful insight into the evaluation of
the real-time feasibility on the real hardware. However, using HIL simulation we
were able to evaluate the real-time execution time which was comparable to the
real experiment’s execution time.

Multi-robot Formation Control

In order to test the multi-robot capabilities of our HIL setup, we have performed
a multi-robot teleoperation experiment with three simulated UAVs driven by three
separate Odroid-XU3 boards following the scheme of Fig. 4.5. The formation con-

85

Chapter 4 Obstacle Avoidance

Figure 4.8: A snapshot of formation control performed in a hardware-in-the-loop
simulation.

trol algorithm for the robots is the one proposed by Franchi et al. (2012).
The test algorithm was specifically chosen because it requires some exchange of

information among the robots in order to achieve consensus on the status of the
system. This inter-robot communication was performed using the wireless IEEE
802.11 capabilities of the Odroid-XU3 boards. In Fig. 4.8 we show one snapshot of
this simulation with three robots in a simple formation. This setup was later used
in experiments in the work by Ahmad et al. (2016).

4.3.4 Conclusion

In this section, we presented a UAV hardware-in-the-loop simulation scheme which
allows for the testing of the computational requirements of our algorithms directly
on the computational unit that is equipped on the robots, while simultaneously
enjoying the safety of a simulation. As we used the same on-board computational
unit, HIL simulations provided a quantitative evaluation of the execution time,
memory demand and the capability of our CPU to run all the system’s software
components simultaneously.

The presented examples show clear benefits of the simulation environment and
similarly to the SIL shown in Sec. 2.6, it enabled the testing and tuning of our
algorithm without the risk of damages to the platform. The comparable behavior
of our system in simulations and real experiments proves the possibility of the
generalization of the simulated results to the real experiments. Additionally, we
can perform multi-robot HIL simulations to test the communication among the

86

4.4 Experimental Validation

robots.
The use of HIL simulations was very useful during the development of our obstacle

avoidance algorithm, especially in terms of time needed to perform experiments.
In fact, it was possible to test various parameters without the need to run real
experiments. The use of the actual hardware (Odroid-XU3) in the simulations
allowed us to check if the execution times of the various modules were compatible
with the on-line execution.

4.4 Experimental Validation

In this section, we present selected results of our obstacle avoidance experiments.
As we described in Sec. 4.3, we started from HIL simulations which enabled us to
debug and tune every part of our algorithm (obstacle detection, tracking and avoid-
ance) before deployment on an actual platform. After successful validation in the
simulation environment, we performed avoidance experiments of simple obstacles
in our laboratory with an external tracking system. The use of the tracking system
allowed us to test the avoidance algorithm independently from state estimation,
leaving more computational power for the former.

After the initial testing of the avoidance algorithm we shifted our focus to the de-
velopment of the on-board state estimation algorithm, which we detailed in Sec. 2.5.
The presented solution, thanks to its low computational power requirements, com-
plemented our avoidance algorithm, enabling state estimation in a GPS-denied
environment and made the platform self-contained in terms of sensor equipment
and computations.

In order to fully validate our method, we have successfully performed multiple
experiments in several obstacle setups including both horizontal and vertical ob-
stacles. In the set of 50 experiments, the operator was able to guide the robot
along the desired path with a success rate of over 94%. Excessive motion of the
platform, due to drift in the state estimation, caused early termination of two ex-
periments, which were aborted as safety measure to prevent crashes. Although the
robot drifted, it merely touched an obstacle, as our algorithm was still able to limit
the platform’s velocity and prevent major collisions.

4.4.1 Indoor Experiments

The experiments presented in this section were performed with the following setting
of the algorithm’s parameters. The size of the surveillance region S (Sec. 3.3.3) was
set such that

ρ ∈ [0, 2.5m], z ∈ [−1.5m, 1.5m],

∆ρb = 0.1m, ∆ψb =
1

30
π rad, ∆zb = 0.1m,

87

Chapter 4 Obstacle Avoidance

and the restricted area SR occupied by the robot as

ρ ∈ [0, 0.5m], z ∈ [−0.3m, 0.2m] .

The weights used in the cost calculation in Eq. (4.5) were set to

wt = 10, wψ = 3, wz = 3.

These values have been hand-tuned in a heuristic technique by the operator to ad-
just the avoidance behavior. The magnitude of the user input, i.e. the commanded
velocity, was limited to 0.5 m/s and the time horizon Th for the collision prediction
to 1 s.

All the velocity plots presented in this section, show the velocities in a horizontal
frame in NWU orientation (Sec. 2.1). Hence, the forward (or longitudinal) velocity
refers to the velocity component along the x axis and the lateral velocity to its
component along the y axis. With the term vertical velocity we describe the velocity
component along the direction of the gravity vector.

All the experiments presented in this section were performed in a laboratory with
a Vicon tracking system and the world coordinates in the plots showing the robot’s
trajectories refer to the coordinates of the tracking system. The information from
the tracking system was only used as a ground truth, this reference data was not
sent to the robot. In all the experiments, in order to well illustrate the avoidance
capabilities of our approach, the operator was instructed to fly towards the edges
of the obstacles.

Zig-zag Flight

The first experiment presented here, consisted of a corridor with four walls perpen-
dicular to the desired trajectory. The gap between the walls was set such that it
did not allow for a straight, collision-free motion from the one end to the other.
The operator commanded the robot to fly along the corridor, make a u-turn after
the last obstacle, and return.

A full 3D view of the obstacle setup and the robot’s trajectory together with
the operator’s commands and the avoidance commands can be seen in Fig. 4.9.
Additionally, to illustrate the compactness of the setting, we show the ground
projection of the trajectory with the gray shaded area corresponding to the robot’s
size. Fig. 4.3, shown earlier in this chapter, presents a close view of the avoidance of
one of the walls with a detailed presentation of corresponding commands. Fig. 4.10
and 4.11 show the forward and lateral components of the commanded velocity. The
avoidance algorithm added additional lateral components to navigate between the
obstacles, while limiting the longitudinal component when necessary.

88

4.4 Experimental Validation

Figure 4.9: Zig-zag flight: the trajectory of the robot (in green) in the 4-wall avoid-
ance experiment with its projection on the ground (in black), the commanded ve-
locity (in blue) and the avoidance velocity (in red). The obstacles are represented
as the gray cuboids.

Figure 4.10: Forward velocities in the 4-wall avoidance experiment.

89

Chapter 4 Obstacle Avoidance

Figure 4.11: Lateral velocities in the 4-wall avoidance experiment.

Wall Following

In the experiment in Fig. 4.12, our robot was commanded to fly at an angle towards
a straight wall. This simple example shows how the commanded velocity was altered
by adding the additional lateral component (Fig. 4.13) resulting in a reference
velocity that guided the robot along the surface of the wall, while the forward
command was reduced to keep the absolute value of the velocity within the imposed
limits. This example depicts the versatility of our approach, which resulted in the
predicted and desired behavior, without utilizing additional algorithms, e.g., edge
or surface detection.

Vertical Avoidance

The third experimental setup presented here, consisted of two horizontal obstacles
along the desired path of the robot. In this case, the user commanded the robot
to fly straight at the level of the obstacles’ edges and our algorithm altered the
commanded velocity in the vertical direction resulting in motions below and above
the corresponding obstacles. The 3D trajectory of the robot can be seen in Fig. 4.15
and the forward and the lateral velocities in Fig. 4.16 and 4.17.

Backward Avoidance

The last experiment that we present in this section shows the case in which the
robot was commanded to fly backward towards a previously detected obstacle.
From the trajectory of the robot, shown in Fig. 4.18, can be seen that when the
robot was below the top edge of the obstacle, the algorithm limited the backward
motion to avoid a collision. However, after the robot was commanded to increase
its altitude above the obstacle, the algorithm allowed the robot to fly further back,

90

4.4 Experimental Validation

Figure 4.12: Wall following experiment: the trajectory of the robot (in green) with
its projection on the ground (in black), the commanded velocity (in blue) and the
avoidance velocity (in red). The wall is represented as the gray cuboid.

Figure 4.13: Forward velocities in the wall following experiment.

91

Chapter 4 Obstacle Avoidance

Figure 4.14: Lateral velocities in the wall following experiment.

Figure 4.15: Vertical avoidance experiment: the trajectory of the robot (in green) in
the avoidance of horizontal obstacles with its projection on the ground (in black),
the commanded velocity (in blue) and the avoidance velocity (in red). The obstacles
are represented as the gray cuboids.

92

4.4 Experimental Validation

Figure 4.16: Forward velocities in the avoidance of horizontal obstacles.

Figure 4.17: Vertical velocities in the avoidance of horizontal obstacles.

93

Chapter 4 Obstacle Avoidance

Figure 4.18: Backward avoidance experiment: the trajectory of the robot (in green)
with its projection on the ground (in black), the commanded velocity (in blue) and
the avoidance velocity (in red). The obstacle is represented as the gray cuboid.

up to the limit imposed by the size of the surveillance region. The corresponding
velocities can be seen in Fig. 4.19 and 4.20.

4.4.2 Outdoor Experiments

The main limiting factor of utilizing our platform in outdoor settings is the depth
sensing technology. The camera that we have used uses the structured light tech-
nique that is very susceptible to lighting conditions. The strong IR component of
sunlight effectively blinds the sensor. In order to show that other aspects of our
method do not limit its usability to indoor scenarios, we performed a few initial
experiments in a forest during a cloudy day.

Thanks to the cloud cover and the canopy, the platform was shaded from the
direct sunlight and the sensor was able to detect major obstacles as tree trunks and
larger bushes. During these several minutes long experiments the operator tried
to purposely fly into trees and our algorithm successfully prevented collisions, a
snapshot of one of these flights is shown in Fig. 4.21. These initial outdoor testings
also proved that our method, in terms of both the state estimation and obstacle
avoidance is not limited to a structured laboratory environment and flat obstacles.

94

4.4 Experimental Validation

Figure 4.19: Forward velocities in the backward avoidance experiment.

Figure 4.20: Vertical velocities in the backward avoidance experiment.

95

Chapter 4 Obstacle Avoidance

Figure 4.21: Snapshot from the recording of the forest experiment with our platform
avoiding a tree and showing our safety equipment.

4.5 Summary

In this chapter, we presented our obstacle avoidance algorithm for a teleoperated
UAV. Based on a local obstacle state, created using a bin-occupancy filter with
measurements from a depth camera and the robot’s state, the algorithm filters
the operator’s input and alters it when necessary. The estimated obstacle state is
used to predict possible collisions and to modify the velocity commanded by the
operator to avoid obstacles. Additionally, we added an active avoidance component
to compensate for any possible drift of the platform. Through the experiments
presented in this chapter, we not only validated our navigation system but also
the on-board state estimator and the self-sufficiency of the platform. The platform
is able to estimate its state in an indoor, GPS-restricted environment, using IMU
and optical flow integration and is independent from external tracking systems and
computations. The initial outdoor testing shows that the algorithm is not limited
to structured environments and can handle obstacles of different sizes.

In this chapter, we also presented a UAV hardware-in-the-loop simulation scheme
which allows us to test the computational requirements of our algorithms directly
on the computational unit that is equipped on the robot, while simultaneously
enjoying the safety of a simulation. Additionally, we can perform multi-robot HIL
simulations to test the communication between robots.

The use of HIL simulations was very useful during the development of our obstacle

96

4.5 Summary

avoidance algorithm, especially in terms of time needed to perform experiments. In
fact, it was possible to test various parameters without the need to run real-world
experiments. The use of the actual hardware (Odroid-XU3) in the simulations
allowed us to check if the execution times of the various modules were compatible
with the on-line execution.

97

Chapter 5

Underactuation of UAVs in
Teleoperation

5.1 Introduction

Unmanned aerial vehicles, being not constrained by ground conditions, can operate
in places that are out of reach of other classical mobile robots. They offer high
maneuverability, vertical take-off and landing, a hovering mode, and other features
that make them popular platforms for many robotic applications such as inspection,
exploration, surveillance, data collection, and recently also physical interaction with
their environment (Ryll et al., 2017) or even humans (Rajappa et al., 2017).

5.1.1 Problem Statement

One of the limitations of multirotors with co-planar propellers, including quadro-
tors, is their intrinsic underactuation. A change in position or disturbance coun-
teraction of such UAVs involve a change in their orientation. Although this may
not impose any significant restraint in open-air flights, it might be crucial when
the precision of control matters or in presence of external disturbances, e.g., an
abrupt or unwanted change in orientation might involve the need of incommodious
rectification of directional sensor measurements.

In the context of teleoperation, stabilization of the visual feedback from the
UAV is an important factor affecting task performance, especially in obstacle rich
environments as presented in Chap. 4 and in works by Stegagno et al. (2014);
Odelga et al. (2016b).

In physical interaction involving either a direct contact (Gioioso et al., 2014) or
additional robotic arms attached to the multirotor body (Yüksel et al., 2015, 2016),
the lack of controllability over some degrees of freedom can significantly complicate
the control task, e.g., by requiring higher order differentiation of the system model,
and consequently estimation of higher order derivatives of the system state.

99

Chapter 5 Underactuation of UAVs in Teleoperation

(a) (b)

Figure 5.1: Examples of camera gimbals for the use with UAVs for (a) small cameras,
and (b) more professional equipment.

5.1.2 Methodology

One of the common solutions, mostly in aerial photography, is the use of additional
stabilization devices (e.g., camera gimbals, Hilkert (2008)) that decouple the sensor
rotation from the orientation of the platform. In Sec. 5.2 we present a selection of
solutions of gimbal systems, comment on them and show our own design for the
depth camera used in our work.

In many cases, however, mechanical methods are inadequate or impractical and
their additional weight limits flight time. In Sec. 5.3 we present our algorithm for
digital image stabilization using only IMU data. Since it is a software solution it
adds no physical weight to the system, which is especially beneficial for small aerial
vehicles.

In Sec. 5.4 we propose a novel contept of a fully-actuated UAV in which we
expand the controllability with additional actuated DOFs.

5.2 Camera Gimbals

Stabilizing the video feed from UAVs is extremely important in a wide variety of
applications, from aerial photography to security monitoring. As most UAVs are
still operated by a human, e.g. in teleoperation tasks, it is important to be able to
provide the operator with an easily viewable video feed to facilitate controlling the
UAV or for the purpose of cinematography and aerial photography.

Camera gimbals are mechatronic devices with 2 or 3 rotational degrees of freedom
that allow decoupling of the rotation of the camera from the system it is attached to.
This main system can be a robot or any moving object including a simple handle,
or a mount in general, for the camera operator. Gimbals for UAVs are usually

100

5.2 Camera Gimbals

(a) (b)

Figure 5.2: Prototype gimbal for our RGB-D camera, (a) CAD model and (b)
mechanical prototype.

mounted below the platform, often with an additional layer of passive damping for
high frequency vibrations from the UAV’s motors. Examples of such devices are
depicted in Fig. 5.1.

The main purpose of camera gimbals is video stabilization, i.e., elimination of
the negative effect caused by the motion of the main system on the video feed.
Additionally, depending on the gimbal’s construction and range of motion, it can
enable active control of the camera’s orientation allowing the user to change the
direction of view.

Modern camera gimbals utilize specially designed brushless motors that, in con-
trast to simple servo motors, allow smooth motion control and rapid reactions to
unwanted motions. Gimbals usually require separate controllers but UAV flight
controllers also exist with built-in gimbal functionality that can control additional
brushless motors directly. In any case, in order to properly control rotation, the
camera’s orientation must be estimated. The easiest and most common solution is
the use of an additional IMU sensor attached to the camera frame. This approach
enables relatively precise estimation of the camera’s roll and pitch angles, but as
explained earlier in Sec. 2.2.4, without additional measurements the estimated yaw
angle value is subject to drift. Alternatively, rotary encoders can be used on the
motors to determine the relative orientation of the camera with respect to the
main system. This, however, adds cost and weight and might not be feasible for
low-weight systems.

101

Chapter 5 Underactuation of UAVs in Teleoperation

5.2.1 Depth Camera Gimbal

In Chap. 3 we showed how to expand the limited field of view of a sensor with
tracking algorithms. Nevertheless, it is only possible to track objects previously
visible by the sensor and to a certain extent. When the camera is fixed to the
robot’s frame, the range of possible directions of view is limited to the feasible
platform orientations. Hence, it is impossible to orient the sensor in directions that
the platform cannot face. For example, in the work by Stegagno et al. (2014), the
authors employed an active ”pan-scanning”, alternative left and right rotations of
their quadrotor platform, to increase the FOV in the horizontal direction.

To test the positive impact of a stabilized video feedback on the performance
of UAV teleoperation and additional benefits related to the ability of controllable
direction of view, we designed and built the device depicted in Fig. 5.2 for our
depth camera. It comprises of a relatively lightweight, glass fiber reinforced 3D
printed frame and appropriate gimbal-designated brushless motors. It is important
to properly balance such a device, i.e., mount the camera in a way that all the
rotation axes intersect close to the system’s center of mass and the motors effort
is optimized. As most modern CAD software can estimate the total mass and
inertia assuming properly assigned material properties to every part, this is not a
complicated task.

To control our device we used a BaseCam SimpleBGC1 3-axis controller. This
controller also has analog and digital (serial) connections to enable inputs of the
desired camera orientation. The serial port can also be used to read the status of
the camera orientation and controller parameters.

We used the software provided with the controller to adjust its PID gains to the
dynamics of our components (the camera and frame inertia, and motors) with the
trial-and-error method. In tests with the prototype shown in Fig. 5.2b, where the
structure was rotated by hand to simulate the motion of a quadrotor, the stabilized
video was almost indistinguishable from a still camera view (except for the yaw
rotation, which was not stabilized).

5.2.2 Conclusions

In the final design of our platform we decided to forgo the additional stabilization
equipment. The obstacle avoidance experiments presented in Chap. 4 proved that
within the assumptions related to the platform’s motion in the teleoperation tasks,
the performance with a rigid camera and an appropriate tracking algorithm is very
satisfactory. The bulkiness, additional weight and problematic cable management
outweighted the benefits of the active stabilization device.

In terms of video feedback improvement, we propose an alternative approach
based on software stabilization. As presented in the following section, that approach

1https://www.basecamelectronics.com/simplebgc32bit/

102

https://www.basecamelectronics.com/simplebgc32bit/

5.3 IMU-based Digital Image Stabilization

Figure 5.3: The RGB camera’s narrow FOV (bright) overlaid on the fisheye’s wide
FOV, with little (left) and large (right) compensations for quadcopter movement.

adds no physical weight to the system, and therefore offers clear benefits with
respect to low computational power requirements.

5.3 IMU-based Digital Image Stabilization

While some UAVs have the capacity to carry mechanically stabilized camera equip-
ment, weight limits or other problems may make mechanical stabilization imprac-
tical. As a result many UAVs rely on fixed cameras to provide a video stream to
an operator or observer. With a fixed camera, the video stream is often unsteady
due to the multirotor’s movement from wind and acceleration. These video streams
are often analyzed by both humans and machines, and the unwanted camera move-
ment can cause problems for both. For a human observer, unwanted movement
may simply make it harder to follow the video, while for computer algorithms, it
may severely impair an algorithm’s intended function.

There has been significant research on how to stabilize videos using feature track-
ing to determine camera movement, which in turn is used to manipulate frames and
stabilize the camera stream. We believe, however, that this process could be greatly
simplified by using data from a UAVs on-board inertial measurement unit to stabi-
lize the camera feed. In this section we present an algorithm for video stabilization
based only on the IMU data from a UAV platform. Our results show that our algo-
rithm successfully stabilizes the camera stream with the added benefit of requiring
less computational power than a feature-tracking approach.

5.3.1 Literature Overview

The logical solution for video stabilization on smaller aerial vehicles is using software
since it adds no physical weight to the UAV and many stabilization algorithms
already exist. Most existing software used for video stabilization, however, relies on
complex and computationally expensive feature tracking algorithms (Thillainayagi

103

Chapter 5 Underactuation of UAVs in Teleoperation

and Kumar, 2016; Shen et al., 2009; Mingkhwan and Khawsuk, 2017; Ryu et al.,
2009). In these algorithms, image features in consecutive frames are matched with
the features in a reference frame. A comparison of the location of known features
between frames is then used to determine how the camera has moved between
frames, and to stabilize the video. Research has focused on efficient and effective
feature detection algorithms such as SIFT (Thillainayagi and Kumar, 2016) and
SURF (Mingkhwan and Khawsuk, 2017), as well as methods which allow for the
calculation of an affine-transform matrix comparing separate frames in the video
(Thillainayagi and Kumar, 2016; Shen et al., 2009; Mai et al., 2012; Mingkhwan
and Khawsuk, 2017; Schwertfeger et al., 2011). Other approaches have included
algorithms based on particle filters (Zhu et al., 2015), linear and curve filters (Wang
et al., 2012), and iFMI spectral registration (Schwertfeger et al., 2011).

In this work, however, we propose that the use of feature detection is unnec-
essarily complex and computationally expensive for video stabilization given the
limited computational power on-board most UAVs. The goal of every stabilization
algorithm is to determine the type and magnitude of unwanted camera movement.
Once camera movement is determined, individual frames can be manipulated to
stabilize the video. As virtually all UAVs carry IMU units, we believe it is easier
and faster to calculate the orientation of the camera from the IMU’s accelerometer
and gyroscope rather than by using feature detection.

IMU data is frequently used in active optical and mechanical stabilization devices
to manipulate either the camera’s orientation, or the position of the camera’s lens.
The use of IMU data, however, has not generally been used in digital stabilization
algorithms. Although some studies have used IMU data for image stabilization,
they tend to be hybrid approaches that combine feature detection with IMU data
for faster and more accurate results. Most notably Ryu et al. (2009) created an
algorithm that uses IMU data to assist, speed up, and improve the accuracy of
the KTL tracker algorithm. It does not seem, however, that anyone has entirely
forgone feature recognition for digital video stabilization on UAVs.

Further examples of hybrid stabilization approaches are seen in industry. For
example, Axis Communications, which develops, and sells security cameras, has
developed a hybrid approach using gyroscope data in combination with feature
tracking to stabilize security camera footage in real time2. Karpenko et al. (2011)
created an algorithm for stabilizing iPhone videos, and adjusting for rolling shutter
distortion, in real time using data from the iPhone’s gyroscope. By calculating the
difference in rotation between frames, the algorithm utilizes an iterative method,
however, rather than simply calculating the orientation of the camera at any given
time with respect to a reference frame.

To the best of our knowledge, there is only one work that proposes the use
of rotation obtained from an attitude and heading reference system (AHRS) by

2https://www.axis.com/fi/en/technologies/axis-electronic-image-stabilization

104

5.3 IMU-based Digital Image Stabilization

Wiriyaprasat and Ruchanurucks (2015). Although the presented method is similar
in its core to our method, it lacks real world experiments and evaluation.

We believe that the only work that has demonstrated an IMU based stabilization
method on-board a quadcopter was the limited horizontal and vertical compensa-
tion algorithm created by Stegagno et al. (2014). This work involved a teleoperated
quadcopter that would actively ”pan-scan” by rotating left and right to increase
the camera’s limited field of view (FOV) for the operator. By gathering data from
the camera’s on-board IMU, the quadcopter could display each image frame in the
correct position along a horizontal reference line, while the images were also sta-
bilized vertically. Since the quadcopter was limited to three degrees of freedom
(it was unable to ”roll” left or right) there was no compensation for roll move-
ment in the algorithm, a correction that is very important for flights outside of the
lab. Additionally, the image was only translated, and not warped to adjust for the
perspective of the operator.

5.3.2 Motivation and Methodology

Our platform setup consists of a quadcopter operated remotely by a human oper-
ator, and was developed to engage in obstacle avoidance using an RGB-D camera.
During experiments described in more depth in Sec. 4.4, the camera footage was
quite shaky and consequently limited the teleoperation performance of the robot.
To solve this problem we wanted to create a system that stabilizes the video feed in
real time. The solution is digital stabilization software since it is lightweight and, as
long as the quadcopter has the necessary computing power, can be added onto an
existing platform with relatively little effort. Rather than using a feature-tracking
algorithm, we decided instead to use the quadrotor’s orientation estimated from
IMU data to manipulate video frames.

While the implementation by Karpenko et al. (2011) based the video stabilization
on an iterative method using gyroscopes, we use only the quadcopter’s immediate
orientation relative to the horizontal frame to stabilize the image. Because our
method does not require any feature detection or iterative methods, it uses very
little computing power, and so can easily run on-board our existing quadrotor
platform. In contrast to typical digital stabilization algorithms, which frequently
have narrow fields of view, even discarding data to gain stability, we demonstrate
our approach with a wide angle camera as illustrated in Figs. 5.3.

In contrast to Wiriyaprasat and Ruchanurucks (2015), we propose a method that
uses a quadrotor’s IMU to compute the camera rotation without a dedicated AHRS
unit. Furthermore, we provide an implementation of the algorithm on an actual
UAV with real world experiments and numerical evaluation.

In the following sections we first describe our method for image stabilization
using IMU data. We then discuss the effectiveness of this form of stabilization and
draw conclusions regarding the success and ultimate usefulness of this approach.

105

Chapter 5 Underactuation of UAVs in Teleoperation

Figure 5.4: Stabilization results for the quadrotor’s roll rotation. Showing the
reference view (left), non-stabilized (middle) and stabilized (right) frames.

Figure 5.5: Stabilization results for the quadrotor’s pitch rotation. Showing the
reference view (left), non-stabilized (middle) and stabilized (right) frames.

5.3.3 Stabilization Algorithm

In this section, we consider an arbitrary UAV-camera system in which the sensor is
rigidly attached to the robot’s frame. In order to stabilize the image, the camera’s
orientation with respect to a reference frame is needed, but, as the orientation
estimation is essential for control of any flying robot, this can be considered to be
already known.

Quadrotor-camera System

In particular, we can take the system presented earlier in Sec. 2.2.1 as an example,
however, we will show that the algorithm can be generalized to an arbitrary selection
of reference frames. To summarize, the relevant coordinate frames of the system
were shown in Fig. 2.1, where Q denotes the quadrotor’s frame of reference, H is
the corresponding horizontal frame, and C is the frame associated with the camera.
In the robot-centric approach, XH and YH define the forward and lateral directions
of motion, respectively.

The robot’s attitude is expressed as the rotation matrix between Q and H,

RH
Q = Ry(θ)Rx(φ), (5.1)

106

5.3 IMU-based Digital Image Stabilization

where φ, θ denote the roll and pitch angles. Because the frame H rotates together
with the robot the yaw angle ψ is set to zero. When (φ, θ) = (0, 0), the horizontal
frame H aligns with Q.

Since the camera is rigidly attached to the robot, RQ
C – the rotation matrix

between frame C and the quadroter frame Q, is a constant extrinsic parameter of
the camera.

Desired Reference Frame

The goal of video stabilization is to make consecutive frames of a video stream
appear as they would from a desired, still camera frame. Because the camera and its
frame C rotate together with the quadrotor, we introduce a new horizontal camera
frame CH , such that CH = C when (φ, θ) = (0, 0). Moreover, we define I and IH
to be image planes associated with the camera frames C and CH , respectively.

In order to stabilize the image, it is necessary to find a mapping function that
will transform points from the current image plane IC to the desired, stabilized
horizontal image plane IH , fmap : I 7→ IH .

In the pinhole camera model, described in Sec. 2.2.4, the transformation

uIvI
1

 = K
[
RC
W |CtW

] 
xW
yW
zW
1

 ,
p′I = K

[
RC
W |CtW

]
p′W ,

(5.2)

defines the projection between homogeneous coordinates of an arbitrary world point
p′W and the homogeneous coordinates of the corresponding image point p′I . K rep-
resents the camera matrix (intrinsic parameters) and

[
RC
W |CtW

]
is a joint rotation-

translation matrix.

Similarly, the camera-horizontal frame is related to p′W by

p′IH = K
[
RCH
W |

CHtW
]
p′W . (5.3)

Next, given that
RC
W = RC

CH
RCH
W , (5.4)

we get
p′I = K

[
RC
CH

RCH
W |

CtW
]
p′W , (5.5)

107

Chapter 5 Underactuation of UAVs in Teleoperation

and consequently

p′W =
[
RC
CH

RCH
W |

CtW
]−1

K−1p′I

=
[(

RC
CH

RCH
W

)−1 |Ct−1
W

]
K−1p′I

=
[
RCH
W

−1
RC
CH

−1|Ct−1
W

]
K−1p′I .

(5.6)

Using standard relations for R ∈ SO(3) rotation matrices

RB
A

−1
= RB

A

T
= RA

B,

RA
BRB

C = RA
C ,

(5.7)

and translation vectors
At−1

B = −AtB, (5.8)

we can obtain
p′W =

[
RW
CH

RCH
C | −

CtW
]
K−1p′I , (5.9)

and then substitute ((5.9)) into ((5.3)) to get

p′IH = K
[
RCH
W |

CHtW
] [

RW
CH

RCH
C | −

CtW
]
K−1p′I

= K
[
RCH
W RW

CH
RCH
C |

CHtW − CtW
]
K−1p′I

= K
[
RCH
C |0

]
K−1p′I .

(5.10)

Equation (5.10) shows that since OC ≡ OCH
, we only need the relative orientation

between frames RCH
C and the camera matrix K in order to re-project points from

image plane I onto IH .

Furthermore, we can define

K
[
RCH
C |0

]
K−1 = HIH

I , (5.11)

where HIH
I is the homography matrix that represents the difference in perspective

between two cameras that are both viewing the same object.

Construction of the Homography Matrix

The homography matrix in Eq. (5.10) can account for rotation and translation,
however we are only interested in compensating for the rotation of the camera. The
rotation of the robot can be obtained from Eq. (5.1) using the angles calculated
by the complementary filter, Eq. (2.30). Matrix RH

Q , however, only represents the
orientation of the robot relative to the horizontal frame, and we need to calculate
the orientation of the camera to the camera’s horizontal frame RCH

C in order to
stabilize the image. Using Eq. (5.7) we can define the projection of quadrotor’s

108

5.3 IMU-based Digital Image Stabilization

Figure 5.6: An example image (left) before and (right) after distortion rectification.

rotation to the camera frame

RCH
C = RCH

H RH
QRQ

C , (5.12)

where RCH
H is the only unknown, and RQ

C , as defined earlier, represents the extrinsic
rotation of the camera.

As defined earlier, when (φ, θ) = (0, 0) Q = H, C = CH and consequently, RCH
H =

(RQ
C)T. Because the camera is fixed in relation to the quadcopter, RQ

C is constant,
thus, this relation also holds for (φ, θ) 6= (0, 0). Hence

RCH
C =

(
RQ
C

)T

RH
QRQ

C . (5.13)

Once we have constructed the homography matrix we are able to use it to reproject
the current frame onto the stabilized image plane IH .

Camera Calibration and Distortion Correction

In order to obtain the camera matrix, we used a classical calibration method based
on a chess board pattern of a known size to estimate the camera’s intrinsic param-
eters and the lens distortion coefficients. Based on the pinhole camera model, our
projection matrix is

K =

fx 0 cx
0 fy cy
0 0 1

 , (5.14)

where fx and fy are the camera focal lengths, and cx and cy represent the optical
center in pixel coordinates.

Because the wide field of view we use introduces barrel distortions onto images,
the first step of our algorithm is a distortion correction. Since this is a standard
process (Hartley and Zisserman (2004)) we do not review the method. An example
of the distortion correction for one frame is depicted in Fig. 5.6.

109

Chapter 5 Underactuation of UAVs in Teleoperation

Figure 5.7: Our quadrotor platform with a new camera with a wide field of view
lens.

5.3.4 Experimental Setup and Results

For any large rotations of the quadcopter and camera, objects of importance can
leave the field of view of a standard camera. The effects of this problem can be
minimized by using a wide angle lens. For these reasons, we equipped our robot
with the Intel RealSense ZR300 camera which, among other features, provides color
and grayscale images with standard and wide angle fields of view, respectively. Our
quadrotor setup with the new camera is shown in Fig. 5.7, the camera is fixed to
the robot’s frame such that it’s optical axis ZC points toward the front of the robot.

A comparison of the two fields of view is presented in Fig. 5.3 as overlaid images.
The fisheye lens greatly increases the area visible to the operator and a central
target is still within the field of view even after large rotations.

For performance validation purposes, we put two circular targets in the view of
the camera. By detecting the circles’ centers we can relate the camera roll and
pitch rotations to the corresponding rotation of the line between the circles and the
vertical translation of the point between the circles, respectively.

Experiments

In order to validate our algorithm, we have performed several test flights with
aggressive changes in the direction of motion, resulting in rapid and large changes
to the robot’s orientation. In each of these tests, the camera feed together with the
IMU measurements were recorded. Real flight examples of the quadrotor’s roll and
pitch rotations and their effect on the camera images are shown in Figs. 5.4 and 5.5.
It is clear by inspection alone that our algorithm successfully stabilizes the video
feed.

For quantitative evaluation, we recorded a non-flight set of data in which the roll
and pitch angles could be decoupled from the other movements of the robot. It also
allowed us to obtain higher rotation angles than would occur in a real flight. In

110

5.3 IMU-based Digital Image Stabilization

time [s]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n
o
rm

a
liz

e
d
 d

is
p
la

c
e
m

e
n
t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

non stabilized video

stabilized video

Figure 5.8: Illustration of pitch stabilization using the normalized vertical target
translation of the video without (blue) and with (red) stabilization.

these tests, we were able to evaluate the functioning of our algorithm in a controlled
manner. The quality of the roll and pitch stabilization is shown in Figs. 5.8 and 5.9,
respectively. The displacement in Fig. 5.8 is normalized as a fraction of the frame
height.

While there is some residual noise in the stabilized results displayed in Figs. 5.8 and
5.9, it is negligible when compared to the non-stabilized video. For pitch correction,
the maximum displacement of the target center in the stabilized image was 1.9%
of the frame height, while the maximum displacement of the non-stabilized frame
was 27.4% of the frame height. The results for the rotational correction are similar.
In the stabilized video, the target rotates a maximum of 3.9°, while the maximum
rotation in the non-stabilized video is 64.0°.

It is also important to note that in both of these experiments the robot was
manually rotated to pitch and roll angles that would never be seen in normal flight
in order to test the limits of the IMU data and algorithm. Thus the residual noise
experienced in flight would likely be much smaller than the maxima we see in these
tests. In fact, we measured the pitch angle to the point that one of the circle-targets
partially left the field of view and so data was not collected until it returned within
the field of view. This explains the straight lines from seconds 3-4 and 9-10.5 in
Fig. 5.8.

5.3.5 Discussion

For our purposes, the idea of digital stabilization is to manipulate a video stream
so that every frame appears from the same perspective, without any shaking or
swaying. Ideally this would mean that if a target were in the horizontal frame, the
UAV could be rotated any amount around the roll and pitch axis and we would
still see the same image.

It is clear that our stabilization algorithm has created a much more viewable
image for the operator in the sense that we have removed much of the jitter and

111

Chapter 5 Underactuation of UAVs in Teleoperation

time [s]

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

im
a
g
e
 r

o
ta

ti
o
n
 [
d
e
g
]

-80

-60

-40

-20

0

20

40

60

80

non stabilized video

stabilized video

Figure 5.9: Illustration of roll stabilization using the target rotation of the video
without (blue) and with (red) stabilization.

Figure 5.10: A set of five frames from our test flight with the non-stabilized (top)
and the corresponding stabilized (bottom) frames.

rotational errors that come from robot movement. As seen in Fig. 5.10, even with
large roll and pitch changes, the central target remains in the same orientation and
vertical position throughout the video. Not only does our algorithm successfully
stabilize the video, but it does so relying only on the on-board IMU data of our
quadcopter. Just as important is that the approach works equally well for the
expanded field of view provided by the fisheye camera. The limitation of digital
stabilization to small fields of view in order to maintain stability is a major problem
of the field. Theoretically, an expanded field of view leads to more features that a
feature-based algorithm must process for each frame, slowing the video-processing
time. Because our algorithm is not based on feature tracking, an expanded field
of view does not slow the algorithm, and we can arbitrarily scale the field of view
with the only limitations on processing speed being the actual image size.

Having seen the success of using a wide angle lens, it is also interesting to consider
the possibilities that could come from gathering an even wider FOV. In the past
few years, companies, such as Ricoh and GoPro, have begun to manufacture cheap

112

5.4 6 DOF Quadrotor

and lightweight 360° cameras that can capture video of the entire world around
them. These cameras usually function by stitching together the images from two
opposite facing fisheye cameras. If it is possible to capture the entire world around
the quadcopter, then theoretically we can stabilize for any magnitude of roll and
pitch that the quadcopter undergoes, while the field of view passed to the operator
remains unchanged.

5.3.6 Conclusions and Future Works

Relying only on IMU data, our algorithm successfully stabilizes the video feed
for large roll and pitch variations of the UAV. Thanks to its low computational
requirements, our algorithm can also be employed on-board UAVs more easily than
feature tracking methods. Lastly, using a wide angle lens enables the retention of
a larger field of view after stabilization than is provided by our RGB camera’s raw
image.

Further improvements could be achieved by using a camera with an even larger
field of view, such as a 360° camera. This could allow for stabilization in nearly
any orientation of the UAV with no data loss. Additionally, a comparison between
our work and a feature tracking method on the same dataset could be performed
with a more thorough method for performance evaluation, e.g., the inter-frame
transformation fidelity Aguilar and Angulo (2014).

5.4 6 DOF Quadrotor

In this section, we propose a novel quadrotor design in which the tilt angles of the
propellers with respect to the quadrotor body are simultaneously controlled by two
additional actuators by employing the parallelogram principle. Since the velocity
of the controlled tilt angles of the propellers does not appear directly in the derived
dynamic model, the system cannot be static feedback linearized. Nevertheless, the
system is linearizable at a higher differential order, leading to a dynamic feedback
linearization controller. Simulations confirm the theoretical findings, highlighting
the improved motion capabilities with respect to standard quadrotors.

One of the limitations of quadrotor UAVs (and other multirotors with coplanar
propellers) is their intrinsic underactuation. Belonging to the family of underac-
tuated systems the lateral motion of such platforms is strongly coupled with their
orientation and, consequently, it is not possible to track an arbitrary 6D trajectory
in space. A change in position or disturbance counteraction of such a UAV involves
a change in its orientation. Although this may not impose any significant restraint
in open-air flights, it might be crucial when the precision of control matters, or
in presence of external disturbances, e.g., an abrupt or unwanted change in orien-
tation might involve the need of incommodious rectification of directional sensor

113

Chapter 5 Underactuation of UAVs in Teleoperation

Figure 5.11: Top: conceptual CAD model of the proposed platform; bottom: the
tilting mechanism in detail; in green, the two additional actuators; in gray, the
joints of the platform; the red arm indicates the forward direction.

measurements. As stated before, stabilization of the visual feedback from a vehicle
is an important factor affecting performance in teleoperation tasks, especially in
obstacle rich environments as described in Chap. 4 of this thesis.

5.4.1 Literature Overview

Fully actuated multirotors are UAVs with additional actuators that enable control
over all six degrees of freedom of such platforms. The two main concepts of this
approach can be found in the literature, which are as follows.

The first solution is the employment of fixed tilted propellers (Rajappa et al.,
2015; Brescianini and D’Andrea, 2016), which however, requires constant counter-
balance and energy dissipation of extra forces and torques. For this reason, the
values of the tilt angles are usually optimized for certain range of trajectories. An-
other approach is to add auxiliary propellers (Gentili et al., 2009) or a wing/rotor
tilting mechanism, as by Ryll et al. (2015); Mikami and Uchiyama (2015); Kendoul
et al. (2006). Platforms equipped with additional actuators share some drawbacks,
such as loss of efficiency from the increased weight, and higher power consumption.

5.4.2 Motivation and Methodology

Inspired by the aforementioned research, we propose a novel platform with only
two additional actuators that allows the simultaneous change of the orientation of
all propellers. In Fig. 5.11, we show a conceptual 3D design of the platform and,
in Fig. 5.12, its kinematic diagram. The main novelty, and in our opinion the most
interesting property of this design, is that it allows the control of six degrees of
freedom with six inputs. Thus it does not require optimization due to redundant
control inputs, nor does it suffer from energy dissipation due to an internal wrench
caused by counteracting actuators.

114

5.4 6 DOF Quadrotor

mP1

mP2

mP3

mP4

fP1

fP2

fP3

fP4

f

f

f

f

m

m

m

m

Figure 5.12: Kinematic diagram of the platform.

In Sec. 5.4.3 we describe the proposed mechanism and derive the dynamical
model of our fully actuated quadrotor. In Sec. 5.4.4 we derive the equations for the
dynamic feedback linearization and propose a controller for the platform. Sec. 5.4.5
presents simulation results which highlight the improved motion capabilities with
respect to a standard quadrotor and Sec. 5.5 concludes this chapter.

5.4.3 Platform Design

In order to control a classical quadrotor to perform a motion along a given trajec-
tory, the accumulated thrust of the four propellers must be directed towards the
desired direction while simultaneously counteracting the gravity force and other
external disturbances (Mahony et al., 2012). Although the rotation of the platform
can be induced with the resulting torque, only the angle around the vertical axis
(usually Z) can be controlled independently whilst the other two are used to orient
the thrust as stated above.

In order to decouple the lateral motion from the tilt angles of the platform and
thus regain the control over the two missing degrees of freedom, we have designed
a model with a propeller tilting mechanism that can change the orientation of the
produced thrust. This tilting mechanism, depicted in Figs. 5.11 and 5.12, is made
of a 2-DOF actuated joint, a central link, and a bottom structure (the four bottom
arms in the figures) that transfer the motion to the motor links. The central link,
bottom structure, and the platform’s arms and motor links form four parallelograms
coupled with the central link allowing the simultaneous tilt of all the propellers.

115

Chapter 5 Underactuation of UAVs in Teleoperation

P1

P

P2

P3 MB

θm

φm

W

XB

YB

ZB

ZM

XM

YM

ZW

YW

XW

ZP1

YP1

XP1

ZP2

YP2

XP2
ZP4

YP4

XP4

ZP3

YP3

XP3

dd

φm

θm

OP3O

OP4O
OP1O

OP2O

OB≡OMO O

P

P4

P

P MB

W

Figure 5.13: Simplified diagram of the platform with depicted coordinate frames:
W in black, B in green, M in red and Pi, i = 1, . . . , 4 in blue.

In the derivation process of the dynamic model of our platform, presented later
in this section, we assume that the motion of the bottom structure is negligible with
respect to the dynamics of the UAV. This assumption is motivated by the fact that
the broad majority of the system’s components (e.g., battery, computational unit,
etc.), and thus its mass, can be located around the center of the upper structure.
Due to the mechanical constraints of the design presented in Fig. 5.11, the tilting
angles are limited to the interval [−π

6
, π

6
]. The effect of this constraint will be further

discussed in Sec. 5.4.5.

Notation and Definitions

We represent the relevant quantities in the following reference frames: depicted
in Fig. 5.13, a global inertial frame of reference W : {OW , XW , YW , ZW}; a mov-
ing body frame B : {OB, XB, YB, ZB} attached to the quadrotor at its center of
mass, ideally the middle point between the propellers; the tilting mechanism frame
M : {OM , XM , YM , ZM} with OM ≡ OB; and a set of four frames attached to the
centers of propellers Pi : {OPi

, XPi
, YPi

, ZPi
}, i = 1 . . . 4.

To represent the relative pose of two arbitrary frames we use the notation pre-
sented in Sec. 2.2.1. Therefore, the platform’s position and orientation in the global
frame W is

p = WpB = [px, py, pz]
T,

RB = RW
B = Rz(

WψB)Ry(
W θB)Rx(

WφB),
(5.15)

where WφB = φB, W θB = θB, WψB = ψB denote the roll, pitch and yaw rotation
angles of the platform, and Rx(·), Ry(·), Rz(·), the canonical rotation matrices
representing the elemental rotations around the X, Y and Z axes.

In a classical quadrotor the thrust is directed along the vertical axis ZB of the

116

5.4 6 DOF Quadrotor

body frame. In our design, by reorienting the propellers with a tilting mechanism,
the force can be applied independently of the body rotation along the new direction
ZM defined such that

RB
M = Ry(θm)Rx(φm), (5.16)

where BφM = φm and BθM = θm are the roll and pitch angles of the tilting mecha-
nism. As a result of the four coupled parallelograms that link the tilting mechanism
with the motor links, the orientation of each i-th propellerRB

Pi
is identical and equal

to the orientation of the tilting mechanism

RB
Pi

= RB
M , i = 1 . . . 4, (5.17)

and their positions are defined as

oPi
= BoPi

= Rz ((i− 1)π/2)

d0
0

 , i = 1 . . . 4, (5.18)

with d being the arm length - the distance from the centers of the propellers to the
center of mass of the UAV.

Dynamic Model

Exploiting the common Newton-Euler approach, we start with defining the forces
and torques acting on the platform. We assume the following simplified model of a
propeller: {

fPi
= (0 0 kf w̄i|w̄i|)T, kf > 0,

mPi
= (0 0 − kmw̄i|w̄i|)T, km > 0,

(5.19)

in which the produced thrust fPi
and the reaction moment mPi

in the propeller
frame Pi, i = 1 . . . 4 are proportional to the signed square spinning velocity of
the rotor wi = w̄i|w̄i|, i = 1 . . . 4 with factors kf and −km, respectively. The
factors kf and km are the propeller’s thrust and torque coefficients, which can be
obtained experimentally as shown by (Ryll et al., 2015). Although this approach
does not model any first- or second-order aerodynamic effects (e.g., the different
thrust between the advancing and retreating blades or blade flapping), as validated
by Ryll et al. (2015), Eq. (5.19) sufficiently accurately captures the dynamics of a
propeller. In addition we assume that the actuators of the tilting mechanism have
high gain and fast dynamics.

Hence, we can obtain the propellers total thrust Bt ∈ R3 and torque Bτ ∈ R3

117

Chapter 5 Underactuation of UAVs in Teleoperation

acting on the center of mass

Bt =
4∑
i=1

RB
Pi
fPi

, (5.20)

Bτ =
4∑
i=1

RB
Pi
mPi

+
4∑
i=1

(
BoPi

×RB
Pi
fPi

)
. (5.21)

Substituting (5.20) and (5.21) to the Newton-Euler set of equations

RB
Bt = m

p̈−
 0

0
−g

 ,

Bτ = IBω̇B + ωB × IBωB,

(5.22)

yields the dynamic model of our system:[
p̈
ω̇B

]
=

[
g
c

]
+

[
1
m
RB 0
0 I−1

B

] [
∂ Bt
∂w

∂ Bt
∂ ωm

∂ Bτ
∂w

∂ Bτ
∂ ωm

][
w
ωm

]
=

=

[
g
c

]
+

[
1
m
RB 0
0 I−1

B

] [
Fm 0
τm 0

] [
w
ωm

]
=

= f + JR [Jm 0]

[
w
ωm

]
= f + J

[
w
ωm

]
,

(5.23)

where m is the total mass of the platform, IB ∈ R3×3 is the constant, diagonal and
positive-definite inertia matrix, and ωB = [ωBx ωBy ωBz]

T is the angular velocity of
the UAV in B,

f = [gT cT]T = [(0 0 − g)T (−I−1
B (ωB × IBωB))T]T (5.24)

expresses the gravity force acting on the system and the Coriolis term, [wT ωT
m]T =

[(w1 w2 w3 w4)T (φ̇m θ̇m)T]T is the control input of the system, and

Fm =
∂Bt

∂w
=

 kfcφmsθm kfcφmsθm kfcφmsθm kfcφmsθm
−kfsφm −kfsφm −kfsφm −kfsφm
kfcφmcθm kfcφmcθm kfcφmcθm kfcφmcθm

 , (5.25)

118

5.4 6 DOF Quadrotor

τm =
∂Bτ

∂w
=

 −kmcθmsφm dkfcθmcφm + kmcθmsφm
−dkfcφmcθm + kmsφm −kmsφm
−dkfsφm − kmcφmcθm −dkfcφmsθm + kmcφmcθm

. . .

. . .
−kmcθmsφm −dkfcθmcφm + kmcθmsφm

dkfcφmcθm + kmsφm −kmsφm
dkfsφm − kmcφmcθm dkfcφmsθm + kmcφmcθm

 ,
(5.26)

where cα = cos(α) and sα = sin(α) for α = {φm, θm}.

5.4.4 Control

The system obtained in (5.23) is a non-linear dynamic model, as detailed by Isidori
(1995) it is always possible to statically feedback linearize such a system if the
Jacobian matrix

J =

[
1
m
RB 0
0 I−1

B

] [
Fm 0
τm 0

]
=

[
1
m
RBFm 0
I−1
B τm 0

]
∈ R6×6,

is invertible. Because of the two rightmost null columns of J , corresponding to the
input ωm, this condition is not satisfied. Thus, we seek to invert the system at a
higher differential order. Derivation of Eq. (5.23) with respect to time gives[...

p

ω̈B

]
= ḟ + J̇RJmw + JRJ̇mw + JRJmẇ

=

[
1
m
ṘBFmw
ċ

]
+ JR

[∂Fm

∂φm
w ∂Fm

∂θm
w

∂τm
∂φm

w ∂τm
∂θm
w

]
+ JRJmẇ

=JR

[
Fm

∂Fm

∂φm
w ∂Fm

∂θm
w

τm
∂τm
∂φm

w ∂τm
∂θm
w

] [
ẇ
ωm

]
+

[
1
m
ṘBFmw
ċ

]
=J?

[
ẇ
ωm

]
+

[
1
m
ṘBFmw
ċ

]
, (5.27)

where J? is the extended Jacobian, w becomes an internal state of the system, and
ṘB = [ωB]×RB with [ωB]× ∈ so(3) such that [a]×b = a× b for a ∈ R3, b ∈ R3.

The system (5.27) can be feedback linearized with the reference input [
...
pT
r ω̈

T
r]T

by means of the law [
ẇ
ωm

]
= J?−1

([...
p r
ω̈r

]
−
[

1
m
ṘBFmw
ċ

])
, (5.28)

which has a solution if ρJ? = rank(J?) = 6, i.e.,

det(J?) = 8d2k5
fkmc

2
φmcθm(w1 + w2 + w3 + w4)2 6= 0 (5.29)

119

Chapter 5 Underactuation of UAVs in Teleoperation

Condition (5.29) is satisfied for φm, θm 6= ±π
2

and wi > 0, i = 1 . . . 4, which is
always fulfilled due to the mechanical constraints of the platform (|φm|, |θm| < π

6
)

and the assumption that during flight wi > 0, i = 1 . . . 4.

In order to validate the derived system we have employed a linear trajectory
tracking controller for position

...
p r =

...
pd +Kp1(p̈d − p̈) +Kp2(ṗd − ṗ) +Kp3(pd − p), (5.30)

and orientation

ω̈r = ω̈d +Kω1(ω̇d − ω̇B) +Kω2(ωd − ωB) +Kω3eR, (5.31)

as a common approach for feedback linearized systems. The orientation error eR is
defined as

eR =
1

2

[
RT
BRd −RT

dRB

]
∨ , (5.32)

with [·]∨ being the inverse map from so(3) to R3.

Controllers in Eq. (5.30) and (5.31) ensure (Isidori, 1995) an exponential conver-
gence of the tracking error to 0 for all the aforementioned derivatives if the gain
matrices Kp1 , Kp2 , Kp3 , Kω1 , Kω2 , Kω3 assure a proper pole placement. The
control problem is now defined as an output tracking problem given the desired
trajectory in position pd, orientation Rd, and their derivatives. It is therefore ad-
visable that the desired trajectories are continuous and differentiable up to the 3rd
order.

It is necessary, however, to estimate the platform position p and orientation RB,
linear and angular velocities, ṗ and ωB, and linear and angular accelerations, p̈ and
ω̇B. Because of the differentiation needed for the dynamic feedback linearization
of the model, the actual control inputs w, must be numerically integrated from the
output of system (5.28), i.e., ẇ.

The closed loop system is similar to the one described by Ryll et al. (2015). Due
to the one-to-one correspondence between the number of inputs and outputs it is
not redundant, and thus does not require optimization.

5.4.5 Simulations

In order to validate our model and controller, we have performed numerical simu-
lations of the system in closed loop. In particular, we have tested the ability of our
system to perform motions that are not feasible with a normal quadrotor, such as
pure translational lateral motion and hovering with non-zero roll and pitch angles.

The trajectory controller designed in Sec. 5.4.4 requires a trajectory defined in
position and its derivatives up to the third order (jerk). Therefore, the reference
trajectories are computed using a fifth-order spline interpolation which generates a

120

5.4 6 DOF Quadrotor

smooth trajectory based on start and end poses (Khalil and Dombre, 2002).
For all of the presented simulations we used the following values of platform

parameters, m = 1 kg,

IB =

0.015 kg ·m2 0 0
0 0.015 kg ·m2 0
0 0 0.025 kg ·m2

 , (5.33)

kf = 1.6 · 10−5, km = 2.5 · 10−7, d = 0.3 m. The gains of the linear feedback
controllers, (5.30) and (5.31), were obtained heuristically and set to Kp1 = Kω1 =
30I3, Kp2 = Kω2 = 600I3, and Kp3 = Kω3 = 900I3, where I3 is the 3× 3 identity
matrix.

Here, we have selected three simulations in which the UAV performs maneuvers
which are not feasible with a classical quadrotor.

Lateral motion

Figure 5.14 shows the simulation of a lateral motion with null orientation of the
UAV. The desired trajectory is defined as three points such that the platform moves
first 5 m along the XW direction, then 5 m along the YW direction, and lastly go
back to the initial position p0 = [0 0 0]T, while maintaining the orientation φB
= θB = ψB = 0◦. As expected, the roll and pitch angles of the mechanism, φm
and θm respectively, behave as if they were the roll and pitch angles of a classical
quadrotor, thus the body orientation can remain constant. The fluctuation of the
spinning velocities wi, ∈ 1 . . . 4, compensates the additional effects imposed by the
movement of the tilting mechanism.

Hovering with non-zero orientation

In the second simulation, whose results are shown in Fig. 5.15, the platform is set
to hover in place (pd = [0 0 0]T) while the UAV’s orientation angles, φB, θB and
ψB, are manipulated. The angles, initially at φB, θB, ψB = 0◦, are in turn brought
first to 10◦ and then back to 0◦. The change of the roll and pitch of the UAV results
in a symmetric behavior of the tilting mechanism in order to compensate for them.
Instead, by analogy with a classical system, the yaw angle ψB can be controlled
independently through the input w.

Complex motion

In the third simulation, Fig. 5.16, we present a point to point trajectory in which
both the position and orientation of the platform are being changed. It shows that
the pitch angle of the body θB can be set to a negative value during forward motion
(and vice versa) which is not possible with a standard quadrotor.

121

Chapter 5 Underactuation of UAVs in Teleoperation

time [s]

0 5 10 15 20 25 30 35

p
o

s
it
io

n
 [

m
]

-1

0

1

2

3

4

5

6

px
py
pz
desired

time [s]

0 5 10 15 20 25 30 35

m
e

c
h

a
n

is
m

 o
ri
e

n
ta

ti
o

n
 [

d
e

g
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

φm

θm

time [s]

0 5 10 15 20 25 30 35

b
o

d
y
 o

ri
e

n
ta

ti
o

n
 [

d
e

g
]

-0.1

-0.05

0

0.05

0.1

φB

θB
ψB

desired

time [s]

0 5 10 15 20 25 30 35

s
p

in
n

in
g

 v
e

lo
c
it
y
 [

ra
d

/s
]

391.4

391.45

391.5

391.55

391.6

391.65

391.7

391.75

391.8

w1 w2 w3 w4

Figure 5.14: Results of the first simulation (lateral motion). Top-left: position of
the UAV; top-right: orientation of the tilting mechanism; bottom-left: orientation
of the UAV; bottom-right: spinning velocities of the propellers.

Remark: The tilt angles of the mechanism, φm and θm, depend on the desired
lateral acceleration, as seen in simulation 1), and UAV orientation, φB and θB,
as seen in simulation 2). Hence, their limit due to the mechanical constraints
also limits the feasible motion. For example, it is not possible to hover with any
φB > max(φm) = π

6
.

5.4.6 Conclusions

One of the main drawbacks of quadrotors is their underactuation, which causes
two rotational degrees of freedom to be strongly coupled with the translational
degrees of freedom. In this section, we have presented a novel design of a fully
actuated quadrotor with tilting propellers. After deriving the dynamical model of
the platform, we showed that it can be feedback linearized in order to design an
appropriate control law. Simulations highlight the six DOFs capabilities of the
platform.

5.5 Summary

Underactuation of quadrotors can have a negative impact on an operator’s situa-
tional awareness when the provided visual feedback is subject to the robot’s motion.
In this chapter we showed three approaches to regain the missing degrees of free-
dom from the point of view of the camera. The first solution is to use an additional
stabilization device that decouples the rotation of the camera from the motion of

122

5.5 Summary

time [s]

0 1 2 3 4 5 6 7 8 9 10

p
o

s
it
io

n
 [

m
]

-1

-0.5

0

0.5

1

px
py
pz
desired

time [s]

0 1 2 3 4 5 6 7 8 9 10

m
e

c
h

a
n

is
m

 o
ri
e

n
ta

ti
o

n
 [

d
e

g
]

-15

-10

-5

0

5

10

15

φm

θm

time [s]

0 1 2 3 4 5 6 7 8 9 10

b
o

d
y
 o

ri
e

n
ta

ti
o

n
 [

d
e

g
]

-10

-5

0

5

10

φB

θB
ψB

desired

time [s]

0 1 2 3 4 5 6 7 8 9 10

s
p

in
n

in
g

 v
e

lo
c
it
y
 [

ra
d

/s
]

300

320

340

360

380

400

420

440

460

w1 w2 w3 w4

Figure 5.15: Results of the second simulation (hovering with non-zero orientation).
Top-left: position of the UAV; top-right: orientation of the tilting mechanism;
bottom-left: orientation of the UAV; bottom-right: spinning velocities of the pro-
pellers.

time [s]

0 5 10 15 20 25

p
o

s
it
io

n
 [

m
]

-2

-1

0

1

2

3

4

5

6

px
py
pz
desired

time [s]

0 5 10 15 20 25

m
e

c
h

a
n

is
m

 o
ri
e

n
ta

ti
o

n
 [

d
e

g
]

-15

-10

-5

0

5

10

15

φm

θm

time [s]

0 5 10 15 20 25

b
o

d
y
 o

ri
e

n
ta

ti
o

n
 [

d
e

g
]

-10

-5

0

5

10

φB

θB
ψB

desired

time [s]

0 5 10 15 20 25

s
p

in
n

in
g

 v
e

lo
c
it
y
 [

ra
d

/s
]

384

386

388

390

392

394

396

w1 w2 w3 w4

Figure 5.16: Results of the third simulation (complex motion). Top-left: position of
the UAV; top-right: orientation of the tilting mechanism; bottom-left: orientation
of the UAV; bottom-right: spinning velocities of the propellers.

123

Chapter 5 Underactuation of UAVs in Teleoperation

the platform. While additional equipment increases the overall size and weight of
the platform, it could be also used to reorient the sensor and extend the feasible
measurement range.

The second approach is the easiest to implement as it is a software solution. It
does not increase the weight of the platform, and as it uses the state of the robot
which is already available it has low computational power requirements. However,
as the principle of software image stabilization is based on a change of image per-
spective, it requires a camera with a wide field of view.

The last concept that we presented in this chapter was a novel design of a quadro-
tor with two additional actuators to tilt its propellers. Although our simulation re-
sults proved the validity of the design, the higher mechanical complexity of this sys-
tem requires further development to transfer the results to an actual flying robot.

124

Chapter 6

Discussion

In this dissertation, we have focused on algorithms to aid UAV operators in their
required tasks. Arguably, one of the most difficult tasks in teloperation is the
navigation of UAVs in the vicinity of obstacles. The limited field of view of vi-
sual feedback and the difficult assessment of depth in monocular vision limits the
operator’s dimensional awareness of the robot’s surroundings. In bilateral teleop-
eration, haptic feedback is used to complement the visual information and enhance
the user’s awareness with tactile feeling.

Our main motivation throughout this work was the belief that teleoperation can
be simplified by endowing a robot with autonomy. By enabling the robot to sense
its environment and detect objects that could possibly interfere with its trajectory
and cause collisions, we have developed a navigation scheme, based on the concept
of shared autonomy. In this approach, the function of the autonomous behaviours
of the robot is to help the user while not limit their supervision. Moreover, the user
must always be aware of the robot’s actions and should be able to stop any undesired
behavior. Therefore, our obstacle avoidance algorithm is primarily passive. When
the user commands the robot to fly towards an obstacle, the algorithm will try
to modify the commanded velocity by changing its direction or magnitude. Only
in the presence of uncommanded drift of the platform will the algorithm actively
compensate for this motion to minimize the chance of collision. In our approach,
we give feedback about the algorithm’s action to the operator through the haptic
device. Hence, in the case of unwanted behavior, the user can change its input and
halt the avoidance action.

The avoidance algorithm is inspired by Model Predictive Control. The algorithm
uses a weighted cost function to optimize its behavior. The operator can tune the
algorithm to their needs by simply adjusting the values of the weights assigned to
different criteria, i.e., prioritize either the change of the desired velocity direction or
its magnitude. For example, in visual inspection, the operator may wish to safely
approach objects of interest rather than avoid them by flying around. Moreover,
the user can further prioritize vertical over horizontal avoidance, which will result
in a different behaviour of the platform in the case of obstacles of more complex
shape.

125

Chapter 6 Discussion

The obstacle state is a grid based probabilistic representation of the obstacles in
a local, cylindrical coordinate frame. The state is updated with measurements from
the depth camera and, as it is a robot-centric representation, with the estimated
motion of the robot. The obstacle state is limited in size to minimize memory
and computational demand, thus ensuring on-board execution feasibility. When
occupied cells in the obstacle state move outside the field of view of the camera, we
spread their occupancy probability to adjacent cells to reflect to the lower certainty
of these regions. However, we do not have the full control of that spread, as we use
a cylindrical representation, in which radial and azimuth coordinates are coupled
and can not be updated independently. This results in the platform not being
able to pass through tight openings, e.g., windows, as we need a larger opening to
accommodate for the uncertainty growth.

Supervised by human operators, teleoperated UAV platforms with additional au-
tonomous behaviours can achieve reliability levels beyond that of fully autonomous
robots given the current state of research. Obstacle avoidance algorithms, designed
for close operation to obstacles and in cramped spaces, enable applications such as
specialized inspection and search and rescue missions.

6.1 Future Work

The main shortcoming of our approach is that we can not ensure collision-free navi-
gation in all directions. For example, with the camera rigidly fixed to the platform,
it is not possible to look directly above the platform and ensure obstacle avoidance
when commanding the robot to go upward. Additionally, as we do not discriminate
between occupied/empty cells and unknown cells (not previously visible), we were
forced to put additional constraints on the allowed user input. Further analysis of
this issue could allow us to improve our avoidance algorithm and increase the safety
of teleoperation.

In this thesis, we assumed that our approach should work with any controller
for the robots velocity. Therefore, we imposed rather low limits on the platform’s
maximum velocity in our experiments. We also gradually decrease the platform’s
velocity as it gets closer to obstacles without investigating the platform’s dynamics.
Although our experiments were successful and proved the validity of our approach,
the method could be further improved by including the dynamic model of the robot
in the collision prediction and avoidance process.

Our approach was intended to be used in close proximity of static obstacles. Al-
though the algorithm can detect and update moving obstacles, by design, it can
not ensure safe navigation with highly dynamic objects. Because of the properties
of the grid representation, e.g. its resolution, it is not well suited for accurate rep-
resentation of motion. In order to avoid dynamic objects, our navigation system
would need to be complemented with an algorithm with a different working prin-

126

6.1 Future Work

ciple, for example, one based on optical flow estimation. As we are already using
a camera that can provide depth information, it should be possible to detect the
full 3D motions of objects in the field of view by combining their optical flow and
depth motion.

The RGB-D camera is also a suitable sensor for visual odometry. However,
because of the limited computational power of the on-board computer, we proposed
to use an alternative method with a dedicated optical flow sensor. Nevertheless,
we believe that with a proper software optimization, velocity estimation using the
color and depth images could be potentially more reliable and versatile than the
current approach.

Lastly, depth sensing technology based on structured light is the only limiting
factor for outdoor applications with our navigation system. Transition to a stereo
vision based depth estimation would allow us to perform experiments in outdoor
settings as well as extend the usability of our method.

To summarize, potential future works could include

• further development of the obstacle state to include and discriminate between
unknown cells/regions around the robot,

• modeling of robot’s dynamics to improve its velocity limits,

• an extension of the obstacle avoidance algorithm to include support for dy-
namic obstacles,

• improvement of the sensing technology to enable outdoor applications and
better state estimation.

127

Appendix A

Experimental Hardware

A.1 Flight Controller

A flight controller is a microcontroller board that performs the low level control of
the motors as explained in Sec. 1.2.3. In our initial works (Odelga et al., 2016b)
we used a low-level controller board provided by the quadrotor’s manufacturer.
Equipped with an 8-bit microcontroller running at 16 MHz, the board included
two 3-axis, 10-bit analog sensors, an accelerometer (with a range of ±2 g) and a
gyroscope (±300 deg/s range), both read with an analog to digital converter.

The proprietary firmware, which allowed control of the quadcopter with a stan-
dard radio controller, was replaced with our own software with a PID controller
to track the desired attitude (the roll and pitch angles, and the yaw rate) and
thrust commands driving the brushless motor controllers over a standard I2C bus.
Commands are sent to the board through two serial channels. The first channel is
used to send control commands to the microcontroller at around 100 Hz, to receive
status data (e.g. battery level) and change setting (e.g. controller gains) at low-
frequency (˜20 Hz). The second channel, strictly unidirectional, is used to retrieve
high frequency IMU readings at 500 Hz.

Later, we retrofitted the robot with a low-level flight controller based on a Copter-
Control3D (CC3D) board, developed in the OpenPilot1 project. Equipped with
a faster, 32-bit microcontroller running at 72 MHz, this board allowed for better
firmware development with its advanced debugging options. The main advantage,
however, is its 16-bit digital IMU - MPU-6000 sensor configured to provide mea-
surements at 500 Hz over the range of 500°/s and 4g for the built-in gyroscope
and accelerometer, respectively. The IMU measurements are used for the on-board
state estimation presented in Sec. 2.5.1.

Data exchange with the on-board computer running ROS and Telekyb is achieved
through the asynchronous serial communication port of the microcontroller.

1http://opwiki.readthedocs.io/en/latest/index.html

129

Appendix A Experimental Hardware

(a) (b)

Figure A.1: Flight controller boards (a) from MikroKopter (v2.5) and (b) CC3D
board from the OpenPilot project. Image sources: (a) http://wiki.mikrokopter.
de/en/FlightCtrl_ME_2_5 and (b) https://openpilotwiki.readthedocs.io/.

A.2 On-board Computer

The main computational unit of our robot is an Odroid-XU3 shown in Fig. A.2,
having a large selection of ports it can interface with numerous sensors and other
logic boards, e.g., our flight controller. This single board computer supports the
Ubuntu 14.04/16.04 ARM distribution and is ROS enabled, hence we can run the
Telekyb (Grabe et al., 2013) software and its high-level controller and algorithms.
It is a double quad core2 ARM microprocessor board that provides enough compu-
tational power to make the system independent of external computational units.

The high computational power to weight and size ratio, and the low cost make
this board relatively popular among the robotics community. It enables the use of
computationally demanding algorithms, e.g., vision based odometry and mapping
(Fang and Scherer (2015); Forster et al. (2014); Mohanarajah et al. (2015)) or
advanced control methods such as model predictive control (Liu et al. (2015)),
directly on the platform.

Communication with the low-level flight controller is carried out over the serial
connection as described in the previous section. Power to the board and its pe-
ripherals is provided by a 5 V step-down voltage regulator connected to the LiPo
battery. The board can exchange data with the fixed operator desk using a USB
Wi-Fi adapter.

2four Cortex-A15 at 2.0 Ghz, four Cortex-A7 and Heterogeneous Multi-Processing (HMP) solu-
tion for tasks management

130

http://wiki.mikrokopter.de/en/FlightCtrl_ME_2_5
http://wiki.mikrokopter.de/en/FlightCtrl_ME_2_5
https://openpilotwiki.readthedocs.io/

Figure A.2: Odroid-XU3 single board computer with its numerous interfaces. Im-
age source: https://www.hardkernel.com/main/products/prdt_info.php?g_

code=G140448267127&tab_idx=2.

131

https://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127&tab_idx=2
https://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127&tab_idx=2

Appendix B State Update Code

Appendix B

State Update Code

Algorithm 1: Obstacle state update given a lateral translation (∆x,∆y)

1 function updateXY (∆x,∆y)
input : Integrated translations in the horizontal frame ∆x and ∆y
parameters: Cell dimensions ∆ρb, ∆ψb, and ∆zb
data : Obstacle state, an array S[R][Ψ][Z] of the size R×Ψ× Z

2 for ρi ← 1 to R do
3 for ψi ← 1 to Ψ do

// real values of the coordinates

4 ρ← (ρi − .5)∆ρb
5 ψ ← (ψi − .5)∆ψb

6 x← ρcos(ψ) + ∆x
7 y ← ρsin(ψ) + ∆y

// change of the cylindrical coordinates

8 ∆ρ←
√
x2 + y2 − ρ

9 ∆ψ ← atan2(y, x)− ψ
// change expressed in the discrete coordinates

10 ∆ρi ← b∆ρ/∆ρbc
11 ∆ψi ← b∆ψ/∆ψbc
12 ∆ρr ← ∆ρ−∆ρi∆ρb
13 ∆ψr ← ∆ψ −∆ψi∆ψb

// fer every cell

14 for zi ← 1 to Z do
15 if (ρi + ∆ρi + 1) ≤ R and (ρi + ∆ρi) > 0 then

16 S
′
[ρi][ψi][zi]← (1−∆ρr)(1−∆ψr) · S[ρi + ∆ρi][(ψi + ∆ψi)%Ψ][zi]

17 +∆ρr(1−∆ψr) · S[ρi + ∆ρi + 1][(ψi + ∆ψi)%Ψ][zi]
18 +(1−∆ρr)∆ψr · S[ρi + ∆ρi][(ψi + ∆ψi + 1)%Ψ][zi]
19 +∆ρr∆ψr · S[ρi + ∆ρi + 1][(ψi + ∆ψi + 1)%Ψ][zi]

20 else

21 S
′
[ρi][ψi][zi]← 0

22 end

23 end

24 end

25 end
26 for ρi ← 1 to R do
27 for ψi ← 1 to Ψ do
28 for zi ← 1 to Z do

29 S[ρi][ψi][zi]← S
′
[ρi][ψi][zi]

30 end

31 end

32 end

132

Bibliography

Agamennoni, G., Fontana, S., Siegwart, R. Y., and Sorrenti, D. G. (2016). Point
clouds registration with probabilistic data association. In 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 4092–4098.

Aguilar, W. G. and Angulo, C. (2014). Real-time video stabilization without phan-
tom movements for micro aerial vehicles. EURASIP Journal on Image and Video
Processing , 2014(1), 46.

Ahmad, A., Ruff, E., and Bülthoff, H. (2016). Dynamic baseline stereo vision-based
cooperative target tracking. In 19th International Conference on Information
Fusion, pages 1728–1734.

Ahmad, A., Lawless, G., and Lima, P. (2017). An online scalable approach to unified
multirobot cooperative localization and object tracking. IEEE Transactions on
Robotics (T-RO), 33, 1184 – 1199.

Ait-Jellal, R. and Zell, A. (2015). A fast dense stereo matching algorithm with an
application to 3d occupancy mapping using quadrocopters. In 2015 International
Conference on Advanced Robotics (ICAR), pages 587–592.

Al-Kaff, A., Meng, Q., Martn, D., de la Escalera, A., and Armingol, J. M. (2016).
Monocular vision-based obstacle detection/avoidance for unmanned aerial vehi-
cles. In 2016 IEEE Intelligent Vehicles Symposium (IV), pages 92–97.

Becker, M., Meirelles Dantas, C., and Perdigo Macedo, W. (2006). Obstacle avoid-
ance procedure for mobile robots. ABCM Symposium Series in Mechatronics , 2,
250–257.

Bektas, S. (2015). Least squares fitting of ellipsoid using orthogonal distances.
Boletim de Ciências Geodésicas , 21, 329–339.

Bonnin-Pascual, F., Ortiz, A., Garcia-Fidalgo, E., and Company, J. P. (2015). A
micro-aerial platform for vessel visual inspection based on supervised autonomy.
In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 46–52.

133

Bibliography

Borenstein, J. and Koren, Y. (1991). The vector field histogram-fast obstacle avoid-
ance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3),
278–288.

Bouguet, J.-Y. (2015). Camera calibration toolbox for matlab. http://www.

vision.caltech.edu/bouguetj/calib_doc/.

Brescianini, D. and D’Andrea, R. (2016). Design, modeling and control of an omni-
directional aerial vehicle. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 3261–3266.

Burbank, J. L., Kasch, W., and Ward, J. (2011). Hardware-in-the-Loop Simula-
tions , chapter 6, pages 114–142. Wiley-Blackwell.

Cai, G., Chen, B. M., Lee, T. H., and Dong, M. (2008). Design and implementation
of a hardware-in-the-loop simulation system for small-scale uav helicopters. In
2008 IEEE International Conference on Automation and Logistics , pages 29–34.

Camacho, E. F. and Bordons, C. (2007). Introduction to Model Predictive Control ,
pages 1–11. Springer London, London.

Chandhrasekaran, V. K. and Choi, E. (2010). Fault tolerance system for uav using
hardware in the loop simulation. In 4th International Conference on New Trends
in Information Science and Service Science, pages 293–300.

Cole, D. M. and Newman, P. M. (2006). Using laser range data for 3d slam in
outdoor environments. In Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006., pages 1556–1563.

Delmerico, J. A. and Scaramuzza, D. (2018). A benchmark comparison of monoc-
ular visual-inertial odometry algorithms for flying robots. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA).

Engel, J., Sturm, J., and Cremers, D. (2013). Semi-dense visual odometry for
a monocular camera. In IEEE International Conference on Computer Vision
(ICCV), Sydney, Australia.

Erdinc, O., Willett, P., and Bar-Shalom, Y. (2009). The bin-occupancy filter and its
connection to the phd filters. IEEE Transactions on Signal Processing , 57(11),
4232–4246.

Fang, Z. and Scherer, S. (2015). Real-time onboard 6dof localization of an indoor
mav in degraded visual environments using a rgb-d camera. In 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 5253–5259.

134

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

Bibliography

Ferguson, D., Likhachev, M., and Stentz, A. T. (2005). A guide to heuristic-based
path planning. In Proceedings of the International Workshop on Planning under
Uncertainty for Autonomous Systems, International Conference on Automated
Planning and Scheduling (ICAPS).

Ferrick, A., Fish, J., Venator, E., and Lee, G. S. (2012). Uav obstacle avoidance
using image processing techniques. In 2012 IEEE International Conference on
Technologies for Practical Robot Applications (TePRA), pages 73–78.

Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast semi-direct monoc-
ular visual odometry. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 15–22.

Franchi, A., Secchi, C., Son, H. I., Bülthoff, H. H., and Giordano, P. R. (2012).
Bilateral teleoperation of groups of mobile robots with time-varying topology.
IEEE Transactions on Robotics , 28(5), 1019–1033.

Gageik, N., Benz, P., and Montenegro, S. (2015). Obstacle detection and collision
avoidance for a uav with complementary low-cost sensors. IEEE Access , 3, 599–
609.

Ge, S. and Cui, Y. (2002). Dynamic motion planning for mobile robots using
potential field method. Autonomous Robots , 13(3), 207–222.

Gentili, L., Marconi, L., Naldi, R., and Sala, A. (2009). Experimental framework
for a ducted-fan miniature aerial vehicle. In 2009 American Control Conference,
pages 4159–4164.

Gioioso, G., Ryll, M., Prattichizzo, D., Bülthoff, H. H., and Franchi, A. (2014).
Turning a near-hovering controlled quadrotor into a 3d force effector. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pages
6278–6284.

Gohl, P., Honegger, D., Omari, S., Achtelik, M., Pollefeys, M., and Siegwart, R.
(2015). Omnidirectional visual obstacle detection using embedded fpga. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3938–3943.

Grabe, V., Riedel, M., Bülthoff, H. H., Giordano, P. R., and Franchi, A. (2013).
The telekyb framework for a modular and extendible ros-based quadrotor control.
In 2013 European Conference on Mobile Robots , pages 19–25.

Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edition.

135

Bibliography

Hilkert, J. M. (2008). Inertially stabilized platform technology concepts and prin-
ciples. IEEE Control Systems , 28(1), 26–46.

Honegger, D., Meier, L., Tanskanen, P., and Pollefeys, M. (2013). An open source
and open hardware embedded metric optical flow cmos camera for indoor and
outdoor applications. In 2013 IEEE International Conference on Robotics and
Automation, pages 1736–1741.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).
OctoMap: An efficient probabilistic 3D mapping framework based on octrees.
Autonomous Robots . Software available at http://octomap.github.com.

Houskamp, R. W. (1978). Obstacle protection with unmanned vehicles. In 28th
IEEE Vehicular Technology Conference, volume 28, pages 153–155.

Hua, M. and Rifa, H. (2010). Obstacle avoidance for teleoperated underactuated
aerial vehicles using telemetric measurements. In 49th IEEE Conference on De-
cision and Control (CDC), pages 262–267.

Isidori, A. (1995). Nonlinear Control Systems . Springer-Verlag, Berlin, Heidelberg,
3rd edition.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Journal of basic Engineering , 82(1), 35–45.

Karpenko, A., Jacobs, D., Baek, J., and Levoy, M. (2011). Digital video stabiliza-
tion and rolling shutter correction using gyroscopes. Technical report, Stanford
University.

Kendoul, F., Fantoni, I., and Lozano, R. (2006). Modeling and control of a small
autonomous aircraft having two tilting rotors. IEEE Transactions on Robotics ,
22(6), 1297–1302.

Kerl, C., Sturm, J., and Cremers, D. (2013). Robust odometry estimation for rgb-d
cameras. In 2013 IEEE International Conference on Robotics and Automation,
pages 3748–3754.

Khalil, W. and Dombre, E. (2002). Chapter 13 - trajectory generation. In W. Khalil
and E. Dombre, editors, Modeling, Identification and Control of Robots , pages
313 – 345. Butterworth-Heinemann, Oxford.

Liu, Y., Montenbruck, J. M., Stegagno, P., Allgwer, F., and Zell, A. (2015). A
robust nonlinear controller for nontrivial quadrotor maneuvers: Approach and
verification. In 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5410–5416.

136

http://octomap.github.com

Bibliography

Lourakis, M. L. A. and Argyros, A. A. (2005). Is levenberg-marquardt the most
efficient optimization algorithm for implementing bundle adjustment? In Tenth
IEEE International Conference on Computer Vision (ICCV’05) Volume 1 , vol-
ume 2, pages 1526–1531 Vol. 2.

Mahony, R., Hamel, T., and Pflimlin, J. M. (2008). Nonlinear complementary
filters on the special orthogonal group. IEEE Transactions on Automatic Control ,
53(5), 1203–1218.

Mahony, R., Schill, F., Corke, P., and Oh, Y. S. (2009). A new framework for force
feedback teleoperation of robotic vehicles based on optical flow. In 2009 IEEE
International Conference on Robotics and Automation, pages 1079–1085.

Mahony, R., Kumar, V., and Corke, P. (2012). Multirotor aerial vehicles: Modeling,
estimation, and control of quadrotor. IEEE Robotics Automation Magazine,
19(3), 20–32.

Mai, Y., Zhao, H., and Guo, S. (2012). The analysis of image stabilization tech-
nology based on small-uav airborne video. In 2012 International Conference on
Computer Science and Electronics Engineering , volume 3, pages 586–589.

Martin, P. and Salaün, E. (2010). The true role of accelerometer feedback in quadro-
tor control. In 2010 IEEE International Conference on Robotics and Automation,
pages 1623–1629.

Mebarki, R., Lippiello, V., and Siciliano, B. (2015). Nonlinear visual control of
unmanned aerial vehicles in gps-denied environments. IEEE Transactions on
Robotics , 31(4), 1004–1017.

Mellinger, D. and Kumar, V. (2011). Minimum snap trajectory generation and
control for quadrotors. In 2011 IEEE International Conference on Robotics and
Automation, pages 2520–2525.

Merrell, P. C., Lee, D.-J., and Beard, R. W. (2004). Obstacle avoidance for un-
manned air vehicles using optical flow probability distributions. Mobile Robots
XVII , 5609, 13–22.

Mikami, T. and Uchiyama, K. (2015). Design of flight control system for quad
tilt-wing uav. In 2015 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 801–805.

Mingkhwan, E. and Khawsuk, W. (2017). Digital image stabilization technique for
fixed camera on small size drone. In 2017 Third Asian Conference on Defence
Technology (ACDT), pages 12–19.

137

Bibliography

Mohanarajah, G., Usenko, V., Singh, M., D’Andrea, R., and Waibel, M. (2015).
Cloud-based collaborative 3d mapping in real-time with low-cost robots. IEEE
Transactions on Automation Science and Engineering , 12(2), 423–431.

Moravec, H. P. (1996). Robot spatial perception by stereoscopic vision and 3d
evidence grids. Technical report, Carnegie Mellon University.

Mur-Artal, R., Montiel, J. M. M., and Tards, J. D. (2015). Orb-slam: A versatile
and accurate monocular slam system. IEEE Transactions on Robotics , 31(5),
1147–1163.

Nieuwenhuisen, M., Droeschel, D., Schneider, J., Holz, D., Lbe, T., and Behnke,
S. (2013). Multimodal obstacle detection and collision avoidance for micro aerial
vehicles. In 2013 European Conference on Mobile Robots , pages 7–12.

Nister, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry. In Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., volume 1, pages I–652–I–659 Vol.1.

Nüchter, A., Lingemann, K., Hertzberg, J., and Surmann, H. (2007). 6d slam-
3d mapping outdoor environments: Research articles. J. Field Robot., 24(8-9),
699–722.

Odelga, M., Stegagno, P., Bülthoff, H. H., and Ahmad, A. (2015). A setup for multi-
uav hardware-in-the-loop simulations. In 2015 Workshop on Research, Education
and Development of Unmanned Aerial Systems (RED-UAS), pages 204–210.

Odelga, M., Stegagno, P., and Bülthoff, H. H. (2016a). A fully actuated quadrotor
uav with a propeller tilting mechanism: Modeling and control. In 2016 IEEE In-
ternational Conference on Advanced Intelligent Mechatronics (AIM), pages 306–
311.

Odelga, M., Stegagno, P., and Bülthoff, H. H. (2016b). Obstacle detection, tracking
and avoidance for a teleoperated uav. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 2984–2990.

Odelga, M., Kochanek, N., and Bülthoff, H. H. (2017). Efficient real-time video sta-
bilization for uavs using only imu data. In 2017 Workshop on Research, Education
and Development of Unmanned Aerial Systems (RED-UAS), pages 210–215.

Oleynikova, H., Honegger, D., and Pollefeys, M. (2015). Reactive avoidance using
embedded stereo vision for mav flight. In 2015 IEEE International Conference
on Robotics and Automation (ICRA), pages 50–56.

138

Bibliography

Omari, S., Hua, M. D., Ducard, G., and Hamel, T. (2013). Bilateral haptic tele-
operation of vtol uavs. In 2013 IEEE International Conference on Robotics and
Automation, pages 2393–2399.

Omari, S., Hua, M.-D., Ducard, G., and Hamel, T. (2014). Bilateral haptic teleop-
eration of an industrial multirotor uav. In F. Röhrbein, G. Veiga, and C. Natale,
editors, Gearing Up and Accelerating Crossfertilization between Academic and
Industrial Robotics Research in Europe:, pages 301–320, Cham. Springer Inter-
national Publishing.

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J.,
and Ahmad, A. (2018). Deep neural network-based cooperative visual tracking
through multiple micro aerial vehicles. IEEE Robotics and Automation Letters ,
3, 3193–3200.

Rajappa, S., Ryll, M., Bülthoff, H. H., and Franchi, A. (2015). Modeling, control
and design optimization for a fully-actuated hexarotor aerial vehicle with tilted
propellers. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 4006–4013.

Rajappa, S., Bülthoff, H. H., Odelga, M., and Stegagno, P. (2017). A control
architecture for physical human-uav interaction with a fully actuated hexarotor.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4618–4625.

Riedel, M., Franchi, A., Giordano, P. R., Bülthoff, H. H., and Son, H. I. (2013). Ex-
periments on intercontinental haptic control of multiple uavs. In S. Lee, H. Cho,
K.-J. Yoon, and J. Lee, editors, Intelligent Autonomous Systems 12 , pages 227–
238, Berlin, Heidelberg. Springer Berlin Heidelberg.

Roth-Tabak, Y. and Jain, R. (1989). Building an environment model using depth
information. Computer , 22(6), 85–90.

Ryll, M., Bülthoff, H. H., and Giordano, P. R. (2015). A novel overactuated quadro-
tor unmanned aerial vehicle: Modeling, control, and experimental validation.
IEEE Transactions on Control Systems Technology , 23(2), 540–556.

Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., and
Franchi, A. (2017). 6d physical interaction with a fully actuated aerial robot. In
2017 IEEE Int. Conf. on Robotics and Automation, pages 5190–5195, Singapore.

Ryu, Y. G., Roh, H. C., Kim, S. J., An, K. H., and Chung, M. J. (2009). Digital
image stabilization for humanoid eyes inspired by human vor system. In 2009
IEEE International Conference on Robotics and Biomimetics (ROBIO), pages
2301–2306.

139

Bibliography

Schinstock, D. E. (2013). Gps-aided ins solution for openpilot. http://wiki.

openpilot.org/download/attachments/950387/INSGPSAlg.pdf.

Schwertfeger, S., Birk, A., and Bülow, H. (2011). Using ifmi spectral registration for
video stabilization and motion detection by an unmanned aerial vehicle (uav). In
2011 IEEE International Symposium on Safety, Security, and Rescue Robotics ,
pages 61–67.

Se, S., Lowe, D. G., and Little, J. J. (2005). Vision-based global localization and
mapping for mobile robots. IEEE Transactions on Robotics , 21(3), 364–375.

Serres, J., Ruffier, F., and Franceschini, N. (2006). Two optic flow regulators for
speed control and obstacle avoidance. In The First IEEE/RAS-EMBS Interna-
tional Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob
2006., pages 750–757.

Shen, H., Pan, Q., Cheng, Y., and Yu, Y. (2009). Fast video stabilization algorithm
for uav. In 2009 IEEE International Conference on Intelligent Computing and
Intelligent Systems , volume 4, pages 542–546.

Stegagno, P., Basile, M., Bülthoff, H. H., and Franchi, A. (2014). A semi-
autonomous uav platform for indoor remote operation with visual and haptic
feedback. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 3862–3869.

Stegagno, P., Cognetti, M., Oriolo, G., Bülthoff, H. H., and Franchi, A. (2016).
Ground and aerial mutual localization using anonymous relative-bearing mea-
surements. IEEE Transactions on Robotics , 32(5), 1133–1151.

Suksakulchai, S., Thongchai, S., Wilkes, D. M., and Kawamura, K. (2000). Mobile
robot localization using an electronic compass for corridor environment. In Sys-
tems, Man, and Cybernetics, 2000 IEEE International Conference on, volume 5,
pages 3354–3359 vol.5.

Thillainayagi, R. and Kumar, K. S. (2016). Video stabilization technique for ther-
mal infrared aerial surveillance. In 2016 Online International Conference on
Green Engineering and Technologies (IC-GET), pages 1–6.

Wang, L., Zhao, H., Guo, S., Mai, Y., and Liu, S. (2012). The adaptive compen-
sation algorithm for small uav image stabilization. In 2012 IEEE International
Geoscience and Remote Sensing Symposium, pages 4391–4394.

Weng, J., Cohen, P., and Herniou, M. (1992). Camera calibration with distortion
models and accuracy evaluation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(10), 965–980.

140

http://wiki.openpilot.org/download/attachments/950387/INSGPSAlg.pdf
http://wiki.openpilot.org/download/attachments/950387/INSGPSAlg.pdf

Bibliography

Wiriyaprasat, K. and Ruchanurucks, M. (2015). Realtime vdo stabilizer for small
uavs using a modified homography method. In 2015 International Conference
on Science and Technology (TICST), pages 40–43.

Xu, S., Honegger, D., Pollefeys, M., and Heng, L. (2015). Real-time 3d navigation
for autonomous vision-guided mavs. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 53–59.

Yüksel, B., Mahboubi, S., Secchi, C., Bülthoff, H. H., and Franchi, A. (2015).
Design, identification and experimental testing of a light-weight flexible-joint
arm for aerial physical interaction. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 870–876.

Yüksel, B., Buondonno, G., and Franchi, A. (2016). Differential flatness and control
of protocentric aerial manipulators with any number of arms and mixed rigid-
/elastic-joints. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 561–566.

Zhu, J., Li, C., and Xu, J. (2015). Digital image stabilization for cameras on
moving platform. In 2015 International Conference on Intelligent Information
Hiding and Multimedia Signal Processing (IIH-MSP), pages 255–258.

Zohaib, M., Pasha, M., Riaz, R. A., Javaid, N., Ilahi, M., and Khan, R. D.
(2013). Control strategies for mobile robot with obstacle avoidance. CoRR,
abs/1306.1144.

141

	1 Introduction
	1.1 Teleoperation in the Context of UAVs
	1.2 Components of Teleoperation
	1.2.1 The Platform
	1.2.2 Software Components
	1.2.3 Low-level Control
	1.2.4 Operator's Desk

	1.3 Thesis Outline

	2 State Estimation
	2.1 Introduction
	2.1.1 Literature Overview
	2.1.2 Problem Statement
	2.1.3 Methodology

	2.2 Foundations
	2.2.1 Frames and Notation
	2.2.2 Quadrotor-Camera System
	2.2.3 Measurement and Estimation
	2.2.4 Sensor Models

	2.3 Complementary Filter
	2.4 Kalman Filter
	2.4.1 General Equations
	2.4.2 Variations in the Implementation
	2.4.3 EuRoC Kalman filter
	2.4.4 Vicon-IMU Integration

	2.5 On-board Velocity Estimation
	2.5.1 Estimator Design
	2.5.2 Bias Estimation
	2.5.3 Estimation Results

	2.6 Software-in-the-loop Simulations
	2.7 Summary

	3 Obstacle Detection and Tracking
	3.1 Introduction
	3.1.1 Literature Overview
	3.1.2 Problem Statement
	3.1.3 Methodology

	3.2 Bin-Occupancy Filter
	3.2.1 Prediction
	3.2.2 Correction

	3.3 Implementation
	3.3.1 Depth Measurement Model and Calibration
	3.3.2 Coordinate System
	3.3.3 Robot-Centric Obstacle State
	3.3.4 Measurement Updates
	3.3.5 State Updates

	3.4 Summary

	4 Obstacle Avoidance
	4.1 Introduction
	4.1.1 Literature Overview
	4.1.2 Problem Statement
	4.1.3 Methodology

	4.2 Avoidance Algorithm
	4.2.1 Probability of Collision
	4.2.2 Model Predictive Control
	4.2.3 Commanded Velocity
	4.2.4 Obstacle Avoidance
	4.2.5 Active Avoidance

	4.3 Hardware-in-the-loop Simulations
	4.3.1 About HIL Simulations
	4.3.2 Simulation Setup
	4.3.3 Experiments
	4.3.4 Conclusion

	4.4 Experimental Validation
	4.4.1 Indoor Experiments
	4.4.2 Outdoor Experiments

	4.5 Summary

	5 Underactuation of UAVs in Teleoperation
	5.1 Introduction
	5.1.1 Problem Statement
	5.1.2 Methodology

	5.2 Camera Gimbals
	5.2.1 Depth Camera Gimbal
	5.2.2 Conclusions

	5.3 IMU-based Digital Image Stabilization
	5.3.1 Literature Overview
	5.3.2 Motivation and Methodology
	5.3.3 Stabilization Algorithm
	5.3.4 Experimental Setup and Results
	5.3.5 Discussion
	5.3.6 Conclusions and Future Works

	5.4 6 DOF Quadrotor
	5.4.1 Literature Overview
	5.4.2 Motivation and Methodology
	5.4.3 Platform Design
	5.4.4 Control
	5.4.5 Simulations
	5.4.6 Conclusions

	5.5 Summary

	6 Discussion
	6.1 Future Work

	A Experimental Hardware
	A.1 Flight Controller
	A.2 On-board Computer

	B State Update Code
	Bibliography

