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ABSTRACT 
The sea urchin spine of Phyllacanthus imperialis is characterized by a lightweight 

construction undergoing energy dissipation by quasi-plastic deformation based on multiple 

fracturing, even though the constituting material is basically brittle magnesium calcite 

(CaxMg1-xCO3) with a very low content of organic matter and yet is organized in a 

hierarchical construction. The correlation between the structural and mechanical 

characteristics of the sea urchin spine of Phyllacanthus imperialis is analyzed in depth to 

discover the operating principle in order to transfer them into ceramic- and concrete-based 

materials.  

High-resolved micro-computed tomography (μCT) proved to be ideally suited to analyze 

the internal structures of the adult spine of Phyllacanthus imperialis non-invasively in 

regard of the strut arrangement, configuration and connectivity. Based on μCT 

reconstruction of the microstructural elements of the spine, the relationship of the varying 

structural elements was defined and summarized accurately in a two-dimensional map as 

abstracted, structural key elements. A comparative analysis of the microstructure of the 

adult and of a not fully grown spine shows that the growth process of the spine is 

characterized by an interplay of calcite resorption and precipitation caused by phagocytes 

and sclerocytes, respectively.  

The type of mechanical behavior of adult spine segments of Phyllacanthus imperialis is 

dependent on the volumetric proportion of the outer layer, the cortex. Two main failure 

modes are identified: a) a high volumetric quantity of the cortex in the spine segment results 

in high initial strength and stiffness and b) when the volumetric quantity of the cortex is 

low, a comparable large energy dissipation capacity combined with a low initial strength 

and stiffness is given. A comparison between the spine interior (radiating layer and 

medulla) and the radiating layer in terms of the mechanical properties has revealed that the 

wedge-like enclosing of the radiating layer with the lateral side branches of the medulla 

provides a larger mechanical stability and is responsible for the controlled detachment of 

segments at advanced stages of compression.  

A transfer of the highly interconnected and directional structures of the sea urchin spine in 

ceramic-based materials is feasible utilizing the freeze-casting method. Both agar and 

gelatin as additives in a water-based ceramic suspension are suitable to manufacture 

directional and cellular cell geometries in the ceramics. The concentration of gelatin in the 

ceramic suspension determines the degree of the connectivity of the cell walls, which 

dictates, in turn, the type of mechanical behavior. Two categories of failure modes are 

determined: a) a progressive interplay of flaking and crumbling and b) a segmental division 

of the ceramic into several lath-like segments. 
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The Zhang and Ashby (1992) honeycomb model prediction is not applicable for freeze-

cast ceramics with a directional pore system, because it models an elastic/ plastic 

honeycomb foam behavior rather than brittle fracturing. Brittle fracturing can be covered 

by the pore model by Pabst and Gregorová (2014) and is a reasonable approach to cover 

the physical constraints for freeze-cast ceramics. Freeze-cast alumina ceramics 

characterized by prolate pore shape are associated with low Eshelby (1957)-Wu (1966) 

exponents and exhibit a high resilience in the light of strength and stiffness. Ceramics, 

which are comprising isolated cell walls have the lowest resilience. Their high values of 

the Eshelby (1957)-Wu (1966) exponents indicate an oblate pore shape. The relation of the 

elastic moduli and the pore shape by Pabst and Gregorová (2014) is applicable to freeze-

cast alumina ceramics.  

The operating principles of the sea urchin spine of Phyllacanthus imperialis have been 

revealed and are suitable as concept generator for biomimetic materials as well as for 

concrete-based constructions, which might be fabricated in pursuing research activities.  
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ZUSAMMENFASSUNG 
Das Seeigelstachelskelett von Phyllacanthus imperialis besitzt eine hierarchisch 

organisierte Leichtbauweise, die durch quasi-plastische Verformung basierend auf 

mehrfacher Risserzeugung und -ausbreitung in der Lage ist, Energie zu dissipieren, obwohl 

das Baumaterial aus sprödem Magnesiumcalcit (CaxMg1-xCO3) und mit sehr geringen 

Gehalten aus organischem Material besteht. Der Zusammenhang zwischen den 

strukturellen Skeletteigenschaften mit den mechanischen Charakteristika des 

Seeigelstachels von Phyllacanthus imperialis wird untersucht, um die grundlegenden 

Wirkprinzipien und ihre Funktionen aufzudecken, um diese auf keramische und 

zementbasierte Materialien zu übertragen.  

Die hochaufgelöste Mikro-Computertomographie (μCT) erwies sich als ideal für die 

nichtinvasive Analyse der inneren Strukturen von adulten Seeigelstacheln von 

Phyllacanthus imperialis in Bezug auf die Anordnung, Gestaltung und Konnektivität des 

Skelettnetzwerks. Basierend auf μCT-basierten Rekonstruktionen der mikrostrukturellen 

Elemente des Stachels wurde die Beziehung der verschiedenen Stereomstrukturelemente 

zueinander genauer definiert. Diese wurden in einer zweidimensionalen Karte als 

abstrahierte, strukturelle Schlüsselelemente zusammengefasst. Eine vergleichende Analyse 

der Mikrostruktur des adulten und eines nicht vollständig ausgewachsenen Stachels hat 

ergeben, dass der Wachstumsprozess des Seeigelstachels von Phyllacanthus imperialis 

durch ein Zusammenspiel von Calcitresorption und -ausfällung gekennzeichnet ist, welcher 

durch intrazelluläre Phagozyten und Sklerozyten verursacht wird.  

Die Art des mechanischen Verhaltens von adulten Stachelsegmenten von Phyllacanthus 

imperialis bei uniaxialer Kompression wird von dem Volumenanteil der äußeren Schicht, 

der Cortex, diktiert. Zwei grundsätzliche Versagensarten sind identifiziert worden: a) ein 

hoher volumetrischer Anteil der Cortex im Stachelsegment bewirkt ein hohe initiale 

Steifigkeit und Festigkeit und b) eine vergleichsweise hohe Energiedissipationsfähigkeit, 

aber geringere initiale Steifigkeit und Festigkeit ist gegeben bei einem geringen 

Volumenanteil der Cortex im Stachelsegment. Ein mechanischer Vergleich zwischen dem 

Stachelinneren (Medulla und radiierender Schicht) und der radiierenden Schicht hat 

ergeben, dass die keilartigen Überstrukturen zwischen radiierender Schicht und Medulla 

eine höhere mechanische Stabilität aufweisen und auch für das kontrollierte Ablösen von 

Segmenten bei fortgeschrittener Kompression verantwortlich sind. Eine Übertragung der 

stark vernetzten und gerichteten Skelettstruktur des Seeigelstachels in keramische 

Materialien ist durch die Gefriergussmethode möglich. Sowohl Agar als auch Gelatine sind 

als Additive in einer wasser-basierten Keramiksuspension geeignet, um gerichtete und 

zellulare Zellgeometrien in den Keramiken herzustellen. Der Gehalt an Gelatine in der 

Keramiksuspension bestimmt den Grad der Verbundenheit der Zellwände, der wiederum 
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die Art des mechanischen Verhaltens diktiert. Zwei Kategorien an Versagensarten sind 

festgestellt worden: a) ein Zusammenspiel aus Abblättern und Zerbröseln und b) eine 

vertikale Segmentierung der Keramik. 

Das Honigwabenmodel von Zhang und Ashby (1992) ist nicht für gefriergegossene 

Keramiken mit einem gerichteten Porensystem geeignet, da es nur die elastische/plastische 

Verformung eines Schaumes mit einer honigwabenförmigen Zellgeometrie beschreibt. 

Sprödes Bruchverhalten wird mit dem Porenmodel von Pabst und Gregorová (2014) 

abgedeckt und ist ein geeignetes mechanisches Model für gefriergegossene Keramiken. 

Gefriergegossene Aluminiumoxidkeramiken, die sich durch längliche Porenkanäle 

auszeichnen, sind durch niedrige Eshelby (1957)-Wu (1966)-Exponenten charakterisiert 

und weisen eine hohe Widerstandsfähigkeit in Bezug auf Steifigkeit und Elastizität auf. 

Dagegen zeigen gefriergegossene Keramiken, die im Wesentlichen aus 

unzusammenhängenden Zellwänden bestehen, eine geringere Widerstandsfähigkeit aus. 

Ihre hohen Werte der Eshelby (1957)-Wu (1966)-Exponenten weisen auf eine abgeflachte 

Porenform hin. Die Beziehung zwischen den Elastizitätsmodulen und der Porenform von 

Pabst und Gregorová (2014) ist anwendbar auf gefriergegossene 

Aluminiumoxidkeramiken.  

Die Wirkprinzipen des Seeigelstachels von Phyllacanthus imperialis sind entschlüsselt 

worden und eignen sich als Konzeptgeber für biomimetische Materialien und auch für 

zementbasierende Konstruktionen, die in weiterführenden Forschungstätigkeiten 

hergestellt werden könnten.  
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1. Introduction 
1.1 Natural materials and biomimetics 

Many biological tissues and devices comprise remarkable engineering properties. The toughness of the 

coconut endocarp, the strength and lightweight of bamboo or the adhesion abilities of the gecko’s feet 

are a few of the many examples of high-performance natural materials. Biological materials are a 

constant source of inspiration for solving a variety of technical challenges in architecture (Klang et al. 

2016, Kovaleva et al. 2018, Grun et al. 2018), mechanical engineering (Born et al. 2017) and material 

sciences (Jeronimidis and Atkins, 1995). In recent years, more and more of these natural materials have 

been systematically studied with the objective of solving technical problems through the abstraction, 

transfer and application of knowledge gained from biological models. This sort of ‘technology transfer’ 

from nature to engineering is most often called biomimetics (ISO 18458/ 18459: 2015, en). It has to be 

mentioned that ‘biomimetics’ and ‘bionics’ are not used synonymously. According to the ISO, 2015 

‘Bionics’ is described as a ‘…technical discipline that seeks to replicate, increase, or replace biological 

functions by their electronic and/or mechanical equivalents.’ Therefore, ‘bionics’ and ‘biomimetics’ are 

not identical. One of the earliest and famous examples for biomimetics is the idea of Leonardo da Vinci 

to transfer the flight of birds into flying devices for human beings. Another classical example from the 

present day is the development of dirt- and water-repellent coating from the observation that practically 

nothing sticks to the surface of the lotus flower, known as ‘lotus effect’ (Barthlott 1990, Barthlott and 

Schimmel, 2010).  

As researchers strive to develop better and better materials and devices as well, there is a lot to learn 

from nature. In many cases, the types of design requirements for materials (stiffness, strength, 

lightweight design, energy dissipation capacity) are similar in the engineering realm and in nature. 

However, it appears that natural and man-made materials often use different routes to solve similar 

engineering problems (Vincent et al. 2006). For instance, while researchers use a wide variety of 

chemicals and materials to achieve various properties, natural materials of living beings consist of 

relatively few constituent elements, which are used to synthesize a variety of polymers and minerals 

with incredible functional properties. The key is often a complex, hierarchical structuring of the natural 

materials (Jeronimidis and Atkins 1995, Currey 2005), which results from the fact that natural materials 

grow according to a recipe stored in the genes, rather than being fabricated according to an exact design. 

Living beings are capable to react and adapt constantly to environmental changes in an efficient and 

highly dynamic manner with their encoded range of possible reactions expressed as mutation, 

recombination and selection. In the evolutionary process, the efficient usage of natural resources is a 

significant evolutionary advantage and therefore a guiding evolutionary principle.  
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1.2 Motivation 
Many plants, animals or specific organs of these organism have evolved strategies to cope with sudden 

mechanical loads and impacts caused by falling, rock falls, attack of feeding animals and various other 

environmental loads as wind gusts or wave movements. A typical mechanism of some biological 

structures is to avoid overcritical loads by dissipating energy by allowing failure of certain substructures, 

which are not significant for the survival of the whole organism. Some biological structures of animals 

combine this type of advantageous energy dissipative mechanism with a lightweight construction. The 

transfer of such desirable properties like strength, high energy dissipation capacity and lightweight into 

construction-specific materials and structures is of particular interest for buildings in regions with high 

seismic activity or exposed to dynamic loads. In view of the increasing scarcity of natural resources in 

contrast to a steadily growing population a resource-conserving building construction is of paramount 

importance at the present time as well. The development of a building material and/or structure combing 

lightweight design and a high energy dissipative property based on biological concepts found in nature 

is a subproject of the Collaborative Research Centre (CRC)-Transregio 141 ‘Biological Design and 

Integrative Structure – Analysis, Simulation and Implementation in Architecture’. Another subproject 

of the CRC-Transregio 141 is to produce a porous ceramic with a limited number of principles abstracted 

from the biological concept generator. Porous ceramics have many industrial applications, in which 

porosity can be positively taken into account, due to a wide range of application such as refractories, 

filtrations, biomaterials, catalyst supports, thermal insulators and lightweight structural components. 

The sea urchin spine of Phyllacanthus imperialis was chosen as biological concept generator, because 

it represents a lightweight construction undergoing energy dissipation by quasi-plastic deformation 

based on multiple fracturing, even though the constituting material is basically brittle magnesium calcite 

(CaxMg1-xCO3) with a very low content of organic matter and yet is organized in a hierarchical 

construction. 

 

1.3 Sea urchin spine of Phyllacanthus imperialis  
Sea urchins are members of an ancient group from the class Echinoidea in the Phyllum Echinodermata 

that is hundreds of million years old and represent one of the taxonomically most diverse groups of 

marine invertebrates in the oceans of the world today (Pawson 2007). They are prevalent all over the 

marine world and live in both high-energy tidal environments and low energy abyssal depths. The sea 

urchins are divided into two dichotomously groups determined by their morphology and ecological 

niche: Regularia and Irregularia. The latter are characterized by a secondary bilateral symmetry 

containing rather thin fur-like spines and live endobenthic, meaning that they bury themselves in the 

sediment. Regularia show, in contrast, a pentamerous symmetry with comparable up to finger-thick 

spines and live epibenthic on the solid substrate.  

The spine of the investigated species, Phyllacanthus imperialis (lance sea urchin), belong to the regular 

sea urchins, specifically to the order Cidaroida, which is a sister clade to all other echinoids. The animal 
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itself prevails widely in the backreef area in the littoral zone (depths up to 70 m) and wedges itself 

between the reefs during the daytime (Nebelsick 1992a; b, Nebelsick 1996). This species is not directly 

exposed to the highest energy environment and inhabits more protective areas with coral cover 

(Nebelsick 1992a; b). The primary spines of this species vary in size from the oral side, where they are 

comparatively small, to the aboral side (Fig. 1.1 (A), (B)). The large and robust aboral spines can protect 

the echinoid from predators such as fish, sea stars and several bird species (Kurz 1995, Kowalewski and 

Nebelsick 2003) and serve as locomotion as well as mechanical fixation structure between the reefs. In 

contrast to other echinoids, the mature primary spines are devoid of epidermis. In this manner, the 

skeleton is in direct contact with sea water. As a consequence, it is colonized by numerous epibionts 

(Fig. 1.1 (A), (B)) including perforating taxa (David et al. 2009). Besides the large primary spines, the 

test is also covered by blunt secondary spines, which are only a few millimeters in length (Fig. 1.1 (A): 

red square).  

As with all microstructures of echinoderm skeletons, the primary spines consist of a porous three-

dimensional meshwork of high-magnesium calcite (CaxMg1-xCO3) known as stereom (Smith 1980, 

Smith 1990). Magdans and Gies (2004) have shown that the MgCO3-content varies between 

2 to 12 mole percent in the spine structure. The trabeculae meshwork consists of highly ordered 

polycrystalline mesocrystals (Cölfen and Antonietti 2008). These mesocrystals comprise of highly 

ordered nanoparticle-sized domains, oriented parallel to the c-axis. Small quantities of organic material 

(Märkel et al. 1971) and amorphous calcium carbonate (ACC) are between and within the magnesium 

calcite domains (Seto et al. 2004). The type of stereom, which can be found in the skeleton, depends on 

the specific architecture of the skeleton and varies not only between the species, but also within one 

single element of the skeleton. The pores of the stereom are filled with stroma, consisting of fluids and 

several organic compounds like extracellular fibrils and connective tissue cells (Märkel et al. 1971). The 

stereom differentiation in echinoids was extensively studied by Smith (1980), who differentiated the 

stereom of plates into varying classes. According to Smith (1980), ten different types of stereom can be 

observed in echinoderms: labyrinthic, laminar, galleried, microperforate, rectilinear, fascicular, 

retiform, imperforate, simple and irregular perforate. The terminology by Smith (1980) is used here to 

describe the stereom network structure in the spine of Phyllacanthus imperialis.  
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Fig. 1.1: Sea urchin Phyllacanthus imperialis. The lateral and the aboral side of the whole sea urchin Phyllacanthus imperialis 
is shown in (A) and (B), respectively. Main elements of the sea urchin: ps = primary spine, os = oral spine, al = Aristotle’s 
lantern, sp = secondary spine, as = aboral spine, t = test, eb = epibiont. Scale bars: (A) = 1 cm, (B) = 1 cm.  
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In this context, the significant stereom definitions used for the internal spine structure of Phyllacanthus 

imperialis are presented in the following, which are the labyrinthic (Fig. 1.2 (A)), laminar (Fig. 1.2 (B)) 

and galleried stereom type (Fig. 1.2 (C)). The definition of the labyrinthic stereom is simple compared 

to the laminar and galleried stereom type and consists of an unorganized mesh of interconnecting struts 

(Smith 1980). The definition of the galleried and laminar stereom types is much more complex. Since 

these definitions are relevant in this thesis for the characterization of the internal spine structure of 

Phyllacanthus imperialis, the detailed description of the galleried and laminar stereom type stated by 

Smith (1980) is given in the following. Smith (1980) defines the galleried stereom as ‘... stereom [that] 

possesses long parallel galleries in one direction only and shows no pore alignment perpendicular to 

this direction. It is composed of parallel trabecular rods which are interconnected by struts in such a 

way as to produce cylindrical passages paralleling the rods [Fig. 1.2 (C)]. Viewed parallel to the 

galleries the pores are seen to be in an irregular polygonal arrangement with rods at the intersections 

of trabeculae [Fig. 1.3 (A), (B)]. Internal pore alignment is moderately well-developed so that each 

gallery penetrates deep into the test. […] When viewed perpendicular to the galleries the long straight 

rods and passageways can be seen [Fig. 1.3 (C), (D]. There is no alignment of lateral pores and these 

are usually smaller in diameter than the galleried pores (p. 10).’ 

In contrast, the laminar stereom type comprises ‘a multilamellar construction built up of thin sheets of 

stereom separated by trabecular struts. […] The separation distance between the sheets is much greater 

than the thickness of individual sheets. Trabecular struts are usually thin and are orientated more or 

less perpendicular to the lamellae. […] When viewed perpendicular to the lamination this stereom has 

a planar surface perforated by numerous closely spaced pores of large diameter’ (Smith 1980, p. 10).  

 

 
 

 

  

Fig. 1.2: Stereom types according to the nomenclature of Smith (1980). Following stereom fabrics are illustrated in (A), (B) 
and (C): labyrinthic, laminar and galleried stereom type, respectively. Modified after Smith (1980).  
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In general, the primary spines of echinoids can be subdivided into the base and shaft including also the 

tip (Fig. 1.4 (A)). The base is restricted to the area below the milled ring (Fig. 1.4 (A)). The collar 

comprising Prouho’s membrane is located directly above the milled ring (Fig. 1.4 (A)) and is defined as 

shaft. If the spine breaks off, the regeneration of the spine occurs at the site of Prouho’s membrane 

(Burkhardt et al. 1983). The primary spine of Phyllacanthus imperialis contains three main structural 

areas from the outer to inner structure (Fig. 1.4 (B)): cortex, radiating layer and medulla. On the 

macroscopic level this classification can also be recognized by the different colors of the spine interior 

(Fig. 1.4 (A)). Grossmann and Nebelsick (2013) have described the stereom network in the medulla as 

laminar stereom type, whereas the stereom structure in the radiating layer were characterized as galleried 

stereom type using the nomenclature by Smith (1980). Presser et al. (2009a) characterized the radiating 

layer of the spine of Phyllacanthus imperialis as galleried stereom structure as well.  

It was demonstrated that the spines of Phyllacanthus imperialis possess a high initial crushing strength, 

σc, of 61 ± 14 MPa (Presser et al. 2009a). Weber et al. (1969) determined an σc of 72 MPa for the spines 

of Stylocidaris affinis belonging to the same family as Phyllacanthus imperialis (Cidarinae). Their 

mechanical behavior under uniaxial compression involves a high energy dissipation by graceful failure 

both in slow compression (Presser et al. 2009a) and in an impact type of loading (Presser et al. 2011). 

Presser et al. (2009a; b) has found that the enhanced energy dissipation, through which the material re-

Fig. 1.3: SEM images of the galleried stereom, which occur in the interambulacral tubercle (A, B) and plates (C, D) of sea 
urchins. The images in (A) and (B) demonstrate the stereom network perpendicular, whereas the images in (C) and (D) display 
the stereom parallel to the crystallographic c-axis. Scale bars: (A) = 20 μm, (B) = 20 μm, (C) = 40 μm, (D) = 40 μm. Modified 
after Smith (1980).  
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gains high compression resistance well after the compression has started, is caused by the hierarchic 

structure of the spine from the microscale down to the nanoscale.  

 

 
 

 

 

 

 

The mesocrystalline structure at the nanoscale prevents the typical cleavage of pure calcite along the 

cleavage plane. Instead, it provides crack branching where the crack stops at the grain boundaries as 

well. Therefore, the spine shows instead a conchoidal fracture behavior and thus an increased fracture 

toughness. The struts of the porous stereom network act furthermore as predetermined breaking points 

on the microscale (Presser et al. 2009b). The energy consuming breaking of these structures follows a 

layer-by-layer crushing mode, which keeps the material below intact (Presser et al. 2009a; b).  

 

1.4 Freeze-casting  
It has been shown in Presser et al. (2009b) that the manufacturing of a biomimetic porous ceramic 

containing cap-shaped layers of alternating porosities is basically feasible utilizing starch-blended slip 

casting. This modified slip casting method has its limitations. Ceramics manufactured with this method 

lack the homogenous and ordered pore geometry. Other techniques like the layer-by-layer deposition 

(Podsiadlo et al. 2007, Tang et al. 2003), filtration (Cheng et al. 2013, Yao et al. 2010), hydrogel casting 

(Zhang et al. 2015) and electrophoretic deposition (Chavez-Valdez et al. 2013) are time-consuming and 

Fig. 1.4: Aboral spine of Phyllacanthus imperialis in the longitudinal view (parallel to the c-axis). The spine is separated into 
the base and shaft. The base is limited to the milled ring (mr). The shaft of the spine includes the collar (cl) and Prouho’s 
membrane (pm). A back-scatter electron (BSE) image of the spine structure (red box) illustrates the three main structural units 
of the spine, which are as follows: the medulla (M), radiating layer (RL) and the cortex (C). Scale bars: (A) = 1 cm and 
(B) = 1 mm. 
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size limiting processes, which enable to fabricate ceramic layers with a thickness of approximately 

200 μm only. Freeze-casting produce, in contrast to the techniques mentioned above, porous ceramics 

with complex, three-dimensional pore structures that can also contain at least two different levels of 

open porosity and an ordered pore alignment. Mimicking those features is required in order to 

manufacture the abstracted concepts of the spine of Phyllacanthus imperialis into a porous bioinspired 

ceramic. In general, the freeze-casting technique has clearly become a focus of attention in the last 

decade concerning the manufacturing of complex pore geometries and open interconnected pore systems 

due its simple operation, cost efficiency and environmental friendliness.  

The manufacturing process uses a ceramic suspension, which is directional frozen and then sublimated 

before sintering (Fig. 1.5). This process provides materials with a unique porous architecture, where the 

porosity is almost a direct replica of the frozen ice crystals. The pore morphology, orientation and 

average pore size can be tailored by altering process parameters such as slurry concentrations (Fukusawa 

et al. 2001, Deville 2008, Deville 2010), freezing temperatures (Peppin et al. 2006, Peppin et al. 2007, 

Peppin et al. 2008, Deville 2008), cooling rates (Hunger et al. 2013, Lichtner et al. 2015, Liu et al. 2018, 

Deville 2008) and use of additives (Munch et al. 2009, Deville 2008, Deville 2010).  

 

 
 

 

 

However, this freedom adds significant difficulties when trying to understand the underlying principles 

that govern the relations between obtained microstructure and processing. A metastudy by Scotti and 

Dunand (2018), extending the initial data repository of Deville et al. (2016), has been published to 

summarize the understanding of the key processing-structure-property relationships in the recent freeze-

casting literature and includes now additional parameter, which influence the microstructure: coursing 

Fig. 1.5: Schematic overview of the freeze-casting process. Four main processing steps are part of the manufacturing 
process: preparation of the suspension, solidification via freezing of the suspension, sublimation and sintering.  
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(Pawelec et al. 2015), gravity (Scotti et al. 2017), mold design (Husmann et al. 2015), surface wetting 

of the freezing substrate (Yang et al. 2015) and filler material (Zhang et al. 2017).  

The pore structure of freeze-cast ceramics is largely determined by the morphology of the solidified 

fluid (Naviroj et al. 2017, Deville et al. 2011). Water is the most common fluid for the freeze-casting 

process, because of its environmental friendliness, low cost and easy handling and best application 

chances. Furthermore, when a unidirectional freeze-casting technique is employed, lamellar pore 

structures (Han et al. 2009), which exhibit a high mean aspect ratio can be fabricated. High aspect ratios 

are advantageous in applications such as batteries, heat and acoustic insulators, because open aligned 

channels promote fluid flow (Perry and Kandlikar 2006, Hasan et al. 2009).  

However, for load-bearing applications, an increased interconnectivity between the cell walls is 

beneficial, because it improves the behavior of the material under compression (Munch et al. 2009, 

Porter et al. 2014, Zhang et al. 2010) and resembles the stereom architecture of the spine of 

Phyllacanthus imperialis, which is required for the manufacturing of a bioinspired ceramic. Generation 

of wall interconnectivity during the solidification can be attained by modifying the character of the 

suspension. This can be achieved in a water-based suspension by increasing the particle volume fraction 

(Tang et al. 2005) and/or the solidification velocity (Hunger et al. 2013, Wegst et al. 2010, Da Silva et 

al. 2015), through the use of additives as binders (Zhang et al. 2010) or cryoprotectants (Sofie and 

Dogan, 2001). Glycerol as additive and known as cryoprotectant in a water-based ceramic slurry is able 

to increase the interconnectedness between the lamellar cell walls by ceramic bridges (Fig. 1.6 (D)). It 

has been demonstrated that the quantity of ceramic bridges increases as the glycerol concentration 

increases (Zhang et al. 2010, Sofie and Dogan 2001). To suppress the preferential lamellar growth of 

ice crystals more intensively (Fig. 1.6 (C)) it is known from previous studies that the addition of gelatin 

in the conventional freeze-casting procedure induces rather a cellular morphology (Fig. 1.6 (B)) with a 

high degree of interconnectivity of the cell walls (Arabi and Zamanian 2013, Fukushima et al. 2014, Wu 

et al. 2010). This sort of pore morphology is caused by the increased viscosity of the suspension utilizing 

gelatin as additive. Dowell et al. (1962) has recognized that the formation of ice crystals in gelatin gels 

enhances the migration resistance of water during freezing. The water molecules, which surround the 

gelatin, form a discontinuous network and prevent the concurrent preferential growth of ice crystals. 

Instead, ice nuclei are formed spatially separated in the gelatin network. Thus, the ice crystals are 

reduced in size and show a circular morphology (Fukushima et al. 2014). A highly concentrated slurry 

further promotes the formation of microstructural bridges between the cell walls due to the fact that 

more particles might be entrapped by ice crystals.  

A cellular pore morphology can also be fabricated through the combination of 5 and 10 wt.% of sucrose 

(with respect to dry powder mass) at a pH = 2.5 (by adding citric acid) in an alumina-water based 

suspension (Munch et al. 2009; Fig. 1.6 (A)). Using 4 wt.% sucrose in a water-based suspension creates, 

however, lamellar structures with a significant amount of bridges (Munch et al. 2009; Fig. 1.6 (E)). 
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Munch et al. (2009) have concluded that sucrose causes an interfacial instability at the solidification 

front facilitating the growth of bridges from the lamellar walls during directional solidification.  

The combination of an increased microstructural wall interconnectivity to improve the mechanical 

properties and the circular open channels to facilitate the fluid flow in the ceramic is desired in many 

technical applications. 

 

 
 

1.5 Objectives  
Two principal approaches can be distinguished in biomimetics referred to as bottom-up process of 

biomimetics (biology-push) and top-down process of bionics (technology pull) (Speck et al. 2017). This 

thesis is based on the bottom-up process (Fig. 1.7). In the bottom-up process, the discoveries and basic 

research of the biological role model are at the beginning of the biomimetic project. Consequently, the 

biological role model is investigated quantitively in terms of its form-structure-function relationship and 

their mechanical, physical and chemical properties to obtain an understanding about the operating 

principles of the relevant structures, which might be interesting for technical implementation. The 

technical implementation in real demonstrators requires an abstracted model that summarizes the 

operating principles of the biological role model. In contrast to the bottom-up process, the top-down 

process focuses on a particular question in the light of a certain application, which is described in detail 

in Speck et al. (2017).  

Fig. 1.6: Effect of additives on the cell architecture. The graph 
illustrates the cell architecture that can be manipulated through the use 
of distinctive additives from lamellar to cellular. BSE images of (A) 
10 wt.% sucrose in citric water with a pH of 2.5 and (B) 5 wt.% gelatin 
in a water-based suspension resulting in cellular structures; (C) a 
water-based suspension that results in lamellar structures without 
bridges; (D) 5 wt.% glycerin in a water-based suspension, which 
results in lamellar with microscopic surface asperities; (E) 4 wt.% 
sucrose in a water-based suspension creates lamellar structure with 
significant bridges. Scale bars: (A) = 50 μm, (B) = 500 μm, 
(C) =500 μm, (D) = 500 μm, (E) = 500 μm. (A) and (E) modified 
after Munch et al. (2009). 
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On the bases of the bottom-up approach of biomimetics, the 

thesis aims for  

 

a) a comprehensive understanding about the inner 

microstructure of the aboral adult spine of the sea urchin 

Phyllacanthus imperialis. It includes a characterization of the 

strut arrangement, their connectivity to each other and of the 

transformation zones between the different stereom 

architectures. Parameters like the strut thickness, pore size 

and the porosity of the varying structural areas within the 

spine structure have to be quantitively obtained. Based on the 

microstructural results, it is attempted to define the border 

between the medulla and radiating layer. Such formulation of 

a strict border hence requires a definition of the medulla and 

radiating layer as well.  

 

b) the development of a hypothesis concerning the growth 

mechanisms of the spine. A comparative observation of the 

microstructure between an aboral adult and aboral 

adolescence spine is therefore needed.  

 

c) the relation of the material properties, fracture behavior and 

the energy absorption capabilities with its microstructural 

characteristics. On the basis of the results on the relationship 

between the mechanical and microstructural features, the 

function of the structural elements and its specific 

configuration within the spine has to be discussed in the light 

of the mechanical environment of the sea urchin.  

 

d) cellular, highly porous bioinspired ceramics comprising the 

abstracted concepts of the spine of Phyllacanthus imperialis. 

Therefore, the bioinspired ceramic should contain comparable 

porosities like the sea urchin spine and an open-cell network 

with channel-like porosities, which is hence highly 

anisotropic in terms its pore shape. Gelatin and agar are 

exploited as additives in a water-based alumina suspension in 

Fig. 1.7: Schematic overview illustrates the 
biomimetic bottom-up process (biology-
push). The quantitative analyses are based on 
the adult, aboral spine of Phyllacanthus 
imperialis. Its operating principles are 
summarized in an abstracted model, which is 
relevant for the technical implementation into 
a ceramic- and concrete-based material.  
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the freeze-casting route in order to create cellular pore morphologies.  

 

e) discussion about the applicability of the mechanical predictions of the Gibson and Ashby (1997) and 

Pabst and Gregorová (2014) models for porous sea urchin spines and freeze-casted alumina ceramics. 

The honeycomb model provided by Zhang and Ashby (1992) is also included in the discussion of the 

pore models related to the freeze-casted ceramics. 

 

f) a first step to introduce a computer-aided design (CAD) model, which comprises the basic abstracted 

structural configuration of the spine microstructure. The CAD approach represents a first and important 

step for the transfer of the abstracted principles into a concrete-based building material. 
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2. Spines of Phyllacanthus imperialis 
 

2.1 Microstructure and morphology 
 

2.1.1 Introductory remarks  
A structural and morphological investigation of the spines of Phyllacanthus imperialis has been 

conducted by Grossmann and Nebelsick (2013), who gave an overview about the strut thicknesses, pore 

sizes and structure of the stereom of an aboral and oral spine of Phyllacanthus imperialis. Besides the 

inner microstructure of the aboral spines, Grossmann and Nebelsick (2013) provide insights into the 

shape and surface sculpturing of the cortex as well. Grossmann and Nebelsick (2013) have utilized 

backscatter electron (BSE) images and μCT scans of aboral and oral spines of Phyllacanthus imperialis. 

BSE images displaying clearly the microstructure of an oral spine are, however, lacking in their 

analyses. Their μCT reconstructions are not related to one specific section recorded with high 

magnifications, but are rather related to the entire spine structure. In this way, it was recognizable that 

the spine consists of three areas of varying densities: from the outer almost dense shell, the density 

decreases from the outside to the spine interior. The center of the spine is called medulla, the outer shell 

is the cortex and in between of them is the radiating layer with its intermediate density (see section 1.3). 

The struts or any other microstructural details, however, are not recognizable in their μCT 

reconstructions of the spines. A detailed view of the strut configuration, their connectivity and 

transformation from one to the next stereom architecture is required to understand the microstructural 

reasons for the high strength under compression, on the one hand and the beneficial non-catastrophic 

fracture behavior of the aboral spine, on the other. To examine the latter aspects in detail, the 

microstructural results demonstrated here base on high-resolved μCT scans of a small section of the 

aboral spine, which is complemented by observations via BSE images.  

The main focus of this chapter is the microstructure and morphology of an aboral adult spine of 

Phyllacanthus imperialis. The microstructure of an oral and aboral adolescence spine is described in 

this chapter as well. A detailed numerical analysis of the microstructure was not performed for the oral 

and aboral adolescence spine. The microstructure of an adolescence aboral spine and its comparison 

with an adult aboral spine is important for the interpretation of the effective growth mechanisms acting 

within the spine ontogenesis. The microstructural configuration of the oral and adult aboral spine 

indicates the adaptions to their specific mechanical environment and are discussed at the end of this 

chapter.  
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2.1.2 Material and methods  
2.1.2.1 Material 

The sea urchins were not killed for this thesis. The investigated primary spine material belongs to the 

tropical cidaroid Phyllacanthus imperialis (Lamarck 1816). The spine material was purchased from a 

material supplier (Mineralien- und Fossilienhandlung Peter Gensel, Weimar, Germany).  

 

2.1.2.2 Scanning electron microscopy (SEM) 
Spine segments (cut parallel and perpendicular to the c-axis) were investigated with a scanning electron 

microscope (Tabletop Microscope TM3030plus, Hitachi Ltd., Tokyo, Japan) at the Institute of 

Geosciences of the University of Tübingen. The backscatter electron mode (BSE) has been applied for 

the microscopic analysis at an acceleration voltage of 15 kV and at a working distance of 6500 μm. 

 

2.1.2.3 Micro computed tomography (μCT) and data processing  
The upper part of a spine (Fig. 2.1, red box) was scanned in a nano CT scanner (phoenix nanotom m, 

Fa. GE Sensing & Inspection Technologies GmbH, Germany) at the ITV Denkendorf. The samples were 

scanned at 800 kV/180 μA with an exposure time of 800 ms to a resolution of 1.27 μm per voxel. The 

acquired two-dimensional X-ray images were reconstructed with a Filtered Back Projection 

reconstruction algorithm. The μCT data are analyzed and reconstructed into three-dimensional objects 

using the Fiji 2.0.0 (ImageJ) software package. In order to determine the porosity xy-images were 

binarized using the iterative ‘default’ threshold based on Ridler and Calvard (1978). Based on this 

binarization process, the software calculates the amount of black and white in the image. The algorithm 

of the plugin BoneJ (Doube et al. 2010) has been used to determine the thickness of the struts. For this 

purpose, binarized images have been utilized for the evaluation of the thickness as well. The pore axis 

lengths were determined from the reconstructed three-dimensional objects applying the mode ‘fit 

ellipse’.  
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2.1.3 Nomenclature 
Spines of sea urchins and also the skeletal plates forming the test of echinoids are composed from high-

magnesium calcite (see section 1.3) and are mesodermal in origin (Weber 1969). The plates and the 

spines consist of a three-dimensional mesh of trabeculae. The trabeculae are sometimes called struts 

(Smith 1980). In this thesis, the terms trabecular rod and cross struts have their own definitions for the 

spine microstructure and are not utilized synonymously. A differentiation between both is based on their 

orientation to the c-axis of the spine: the trabecular rod is oriented parallel, whereas the cross strut is 

oriented perpendicular to the c-axis (Fig. 2.2 (A), (B)). The term ‘struts’ is used here as a collective term 

comprising trabecular rods as well as cross struts. Such differentiation of the structural elements 

constituting the stereom mesh is not made in the current literature. Smith (1980), however, has classified 

the arrangement of the stereom in different stereom types (section 1.3). Its nomenclature of the stereom 

is based on the microstructure of the coronal plates from echinoids. Grossmann and Nebelsick (2013) 

utilized the nomenclature of Smith to characterize the stereom mesh of the spine of Phyllacanthus 

imperialis. According to their structural analyses of the spine they have defined the medulla as laminar 

and the intermediate radiating layer as galleried. New findings of microstructure and the configurational 

shape display, however, that the characterization of Grossman and Nebelsick (2013) for the 

microstructure based on the nomenclature of Smith (1980) is not accurate for the spine of Phyllacanthus 

imperialis. The reason is that none of the defined stereom classes by Smith (1980) does cover the 

stereom meshes of the medulla and the radiating layer correctly.  

Based on the new understanding about the microstructure of the spine of Phyllacanthus imperialis, the 

nomenclature of Smith (1980) is extended by two new stereom classes in this section, which are here 

the ‘layered’ and ‘columnar’ stereom, respectively (Fig. 2.2 (C), (D)). In order to avoid confusion due 

Fig. 2.1: Spine of the sea urchin Phyllacanthus imperialis. Red box illustrates the scanned area via μCT. A complete 
reconstruction of the scanned spine area as zx-plane can be seen on the right-hand side. Scale bar = 10 mm. 
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to certain structural similarities the definition of the ‘layered’ and ‘columnar’ stereom type is provided 

below. The definitions also include a comparison with the galleried and laminar stereom type by Smith 

(1980). The ‘layered’ and ‘columnar’ stereom type are established as independent definitions in this 

way and are not synonyms for the galleried and laminar stereom type. The comparison and therefore the 

definitions are given in a descriptive way further below. The definitions of the ‘layered’ and ‘columnar’ 

stereom type are based on the numeric results from the trabecular thickness and pore axis length (cf. 

2.1.4.3.1).  

 

 
 

 
 

 

 

 

Layered stereom.  

The layered stereom is characterized by a lamellar construction, which is composed of thin sheets of 

stereom layers (Fig. 2.2 (C); Fig. 2.3 (A)). The stereom layers are separated from each other by cross 

struts. The separation distance between the sheets is regular and approximately equal to the thickness of 

the individual sheets (Fig. 2.3 (A)). This last-mentioned point is not given in the definition of the laminar 

stereom type in which the thickness of the sheets is smaller than the space between the individual sheets.  

Fig. 2.2: Stereom types and their nomenclature. Trabecular rods and cross struts are the basic elements of the stereom fabrics 
displayed in (A) and (B). (C): One individual stereom layer consists of several trabecular rods, whereas a number of stereom 
layers form the so-called layered stereom type. The columnar stereom type is displayed in (D) where the trabecular rods are 
arranged in a circular array forming polygonal passages (orange). The pores in the front row (blue circles) show no straight 
congruency with the pores belonging to the back row (red circles). The lateral pores of the columnar stereom type are equal or 
smaller in size (green circles) compared to the adjacent pores (blue circles).  
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Each individual sheet is permeated by circular or elongated pores (Fig. 2.3 (B), (C)). The pore sizes on 

one individual sheet appears to be (very) even. Each sheet comprises a strict arrangement of pore rows 

parallel to the z/c-axis (Fig. 2.3 (B), (C)). The rows of pores are, however, arranged with a misalignment 

along the z/c-axis, which means that every second pore row is congruent (Fig. 2.3 (C): red arrow). The 

distance from one pore to the next is almost identical with the pore size. Such strict arrangement of pores 

and pore shape is not part of Smith’s laminar stereom type. The definition by Smith (1980) stated, 

however, that the ‘surface [is] perforated by numerous closely spaced pores of large diameters (p. 40)’. 

Therefore, it does not mention the kind of pore shape and arrangement, typical for an individual stereom 

layer. The accompanied SEM images by Smith (1980) give more references about the pore shape, size 

and arrangement on the stereom sheet. A surface with randomly arranged pores and varying sizes with 

a circular character can be observed and therefore do not agree with our observation for the layered 

stereom type.  

The cross struts connecting each individual stereom layer are orientated perpendicular to the stereom 

sheets and are arranged in a periodic way, which means that every second row of cross struts is congruent 

analogously to the arrangement of pores (Fig. 2.3 (B): red arrow). The perpendicular orientation of the 

cross struts to the c-axis is to some extent similar to the laminar stereom type. Another similarity is the 

multilamellar construction of stereom sheets. Further similarities are not present between both stereom 

types.  

 

 
 

 
 

 
 
  

Fig. 2.3: Three-dimensional reconstruction of the layered stereom type based on μCT data. Sheets of stereom layers (sl) 
separated by cross struts (c) characterize the layered stereom type. The blue vertical lines (a) and (b) display the position of 
the cross sections, which are given in (B) and (C), respectively. The cross section in (B) shows a single stereom layer with 
cross struts, whereas the cross section in (C) reveals only the circular pores on the stereom sheet. The red arrow indicates the 
congruence of pores and cross struts in every second row. The scale bars: (A), (B) and (C) = 100 μm.  
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Columnar stereom. 

This stereom type consists of several long trabecular rods, which are linked by cross struts in such way 

to produce irregular polygonal passages parallel to the c-axis (Fig. 2.2 (D); Fig. 2.4 (A)). The number 

of trabecular rods forming one individual columnar stereom varies from 4 to 8 (Fig. 2.4 (A)). If one 

looks at the columnar stereom type perpendicular to the c-axis, it can be seen that the front and back 

front pore rows are not congruent (Fig. 2.4 (B), (C): blue and red arrows). In the galleried stereom type 

by Smith (1980) continuous passageways are present facing at the pores perpendicular to the c-axis, a 

clear differentiation to the columnar stereom type.  

The columnar stereom type is characterized by circular pores (Fig. 2.4 (C)). The lateral pores appear to 

be smaller or equal in terms of their size compared to the adjacent pores (Fig. 2.4 (C)). The galleried 

stereom type, however, characterizes the pore size of the lateral pores as smaller than of the adjacent 

pores. Therefore, the galleried stereom type excludes neighboring equal sized pores in the structure.  

Additionally, the lateral pores of the columnar stereom type are arranged in an offset manner to the 

adjacent pores (Fig. 2.4 (C): green and blue arrows). This misalignment of lateral pores to the adjacent 

pores is also formed in the galleried stereom type of Smith (1980).  

 

 
 

 

 

 

Fig. 2.4: Three-dimensional reconstruction and pore arrangement of the columnar stereom. Trabecular rods are displayed in 
(A) as white dots forming polygonal passages. (B): A cross section parallel to the z-axis of the reconstructed stereom column 
based on μCT data reveals that the pores on the side (a) and (b) (red and blue pores) show no congruency. A BSE image in 
(C) demonstrates the non-congruency of the pores from the back (red arrow) and front row (blue arrow) of the columnar 
stereom. Adjacent/lateral pores from the front pore rows are marked as a green arrow. The scale bars: (A) and (C) = 100 μm.  
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2.1.4 Results 
2.1.4.1 Differentiation between the ‘medulla’ and ‘radiating layer’ 

The adult spine of Phyllacanthus imperialis can be divided into three main areas: cortex, radiating layer 

and medulla (section 1.3). On the macroscopic level this classification can be recognized by the different 

colors of the spine interior (section 1.3). A precise definition of the border between the so-called 

‘radiating layer’ and ‘medulla’ based on microscopic investigations of the stereom mesh was not yet 

introduced in the spine structure descriptors of Phyllacanthus imperialis. The determination of the 

‘medulla-radiating layer-border’ necessitates a definition of the ‘medulla’ and ‘radiating layer’. The 

formulation of the definition is based on a detailed description of the occurring stereom types and their 

strut thicknesses from the inner to the outer spine structure. For the characterization of the appearing 

stereom types the terms ‘medulla’ and ‘radiating layer’ have been explicitly avoided in this section due 

to absence of a clear definition in the current literature and to avoid misunderstandings. This section 

displays the varying stereom types and arrangements that can occur directly at the spine tip, near the 

spine tip (μCT scanned section) and at the middle region of the spine shaft. The positions of the 

demonstrated regions are summarized in Fig. 2.5. The following characterization is based on images 

that display the area parallel to the c-axis of the spine.  

 

 
 

 
2.1.4.1.1 Stereom types and strut arrangement 

In the display of varying stereom types and its characterization considering the strut arrangement, the 

μCT scanned section representing the area near the spine tip is introduced firstly (Fig. 2.6), because of 

the clearer visibility of the microstructures compared to BSE images. The xy-plane of the spine is shown 

in Fig. 2.6 (A). The innermost area of the spine is characterized by large, polygonal passages. These 

polygonal passages are distributed also further out from the inner spine area in form of extended side 

branches. Starting from the extended side branches lateral strut routes run outwards directly into the 

cortex. Each lateral strut route is connected in a regular manner with the cortex. The red dashed line in 

Fig. 2.6 (A) indicates the position of the zx-plane, which is displayed in Fig. 2.6 (B). The center of the 

spine consists of areas displaying trabecular rods, which are arranged to columns (Fig. 2.6 (B, a1, a2)), 

on the one hand, and disorderly arranged struts (Fig. 2.6 (B, b1, b2)), on the other hand. Particularly 

towards to the center of the spine, it seems that the quantity of disorderly arranged struts increases 

compared to regular arranged strut pillars (Fig. 2.6 (B, a1, a2)). The disorderly strut configuration 

sequences form a very open structure and the pores are difficult to define as the stereom forms no planar 

Fig. 2.5: Cross section of the spine Phyllacanthus 
imperialis parallel to the c-axis. Red box illustrates 
the μCT scanned area of the spine. The blue boxes 
indicate the position of the figures. pm = Prouho’s 
membrane. Scale bar = 1 cm. 
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surface (related to the zy-section). The regular arrangement of the strut pillars belongs to the columnar 

stereom type, which is prevalent at the area outside the center of the spine (= extended side branches 

from the spine center). Further towards to the cortex, the regular and strict columnar stereom 

arrangement changes and forms an unorganized mesh of struts (Fig. 2.6 (B, c)). Compared to the 

disorderly strut configuration in the spine center, the thickness of the struts seems to be larger here. The 

three-dimensional tangle of interconnecting struts is limited to a very small space and changes to a 

blurred assembly of stereom layers towards to the spine exterior (Fig. 2.6 (B, d)). Further outward the 

blurred stereom layers become more and more apparent so that clear stereom layers are visible, having 

a regular arrangement and a slight curvature (Fig. 2.6 (B, e)). These stereom layers are part of the lateral 

strut routes (Fig. 2.6 (A)) and are classified as layered stereom.  

 

 
 

 

 

The middle region of the spine shaft is displayed in Fig. 2.7. It is quite apparent that the columnar 

stereom type is substantially more present in the spine center compared to the region near the spine tip. 

Unorganized stereom meshes are negligible or simply non-existent in the spine center. The basically 

columnar stereom from the inner center is followed by a kind of transition zone consisting of a disorderly 

strut configuration and a blurred assembly of stereom layers (the same as described above). The blurred 

assembly of stereom layers becomes clearer and forms stereom sheets near the cortex.  

  

Fig. 2.6: Reconstruction of stacked images of the Phyllacanthus imperialis spine structure based on μCT images. The xy-plane 
is given in (A). The red dashed line in (A) displays the position of the vertical cross section, which is illustrated in (B) as zx-
plane. Scale bar = 250 μm.  
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The microstructure of the spine tip is displayed in Fig. 2.8 (A), which shows essentially the inner center 

of the spine. An intensive stereom mélange comprising the columnar stereom type as well as sequences 

of unorganized stereom meshes can be observed at the lower half of the spine center (Fig. 2.8 (B)). The 

stereom mélange transforms into a fan-like structure (Fig. 2.8 (C)) resembling those found in the spine 

tip of Heterocentrotus mammilatus (Grossmann and Nebelsick 2013). Comparing both regions of the 

spine center, it can be recognized that the trabecular rods of the fan-like structure are thicker than those 

of the stereom mélange (Fig. 2.8 (B), (C)). The trabecular rods of the fan-like structure are arranged in 

a straight to slightly curved manner (Fig. 2.8 (C)). In this way, a regular arrangement of the pore rows 

has been formed towards to the spine tip, forming a layer-like stereom structure.  

 

 
 

 

Fig. 2.8: BSE images display the spine microstructure of Phyllacanthus imperialis (parallel to the c-axis). The exact position 
of the images is seen in Fig. 2.5 and as red box in (A). The BSE image in (A) shows an overview of the spine tip, whereas a 
detailed view of certain areas is given in (B) and (C). Scale bars: (A), (B) and (C) = 300 μm.  

 

Fig. 2.7: BSE image of the spine microstructure of Phyllacanthus imperialis. The BSE image displays the cross-sectional 
plane parallel to the c-axis. The position of the BSE image is illustrated in Fig. 2.5. Scale bar = 250 μm.  
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A closer look into the microstructure reveals that the transition from one to the next stereom type is not 

separated sharply in terms of the strut configuration. Unorganized stereom meshes and blurred 

assembling of stereom layers are present in the transition zones. This structural arrangement of the 

stereom is present both in the middle of the spine shaft and near of the spine tip. In contrast, the 

configuration of the spine center is dependent on the position of the c-axis: the middle region of the 

spine shaft is characterized by the columnar and minor parts of disorderly arranged struts, whereas the 

section near the spine tip is rather marked by an alternation of the columnar stereom type and irregular 

arranged struts. Since the microstructure of the spine is characterized by transition zones and 

heterogenous distribution of stereom types in the spine center, a categorization of the microstructure 

into the ‘medulla’ and ‘radiating layer’ cannot be performed only based on the stereom arrangement. 

Therefore, the trabecular thickness has been considered in determining the border between the ‘medulla’ 

and ‘radiating layer’ clearly. Therefore, the definitions of the medulla and radiating layer also consider 

the trabecular thickness as parameter.  

 

2.1.4.1.2 Calculated strut thickness 
The distribution of the strut thickness from the μCT reconstruction (Fig. 2.6) is displayed in Fig. 2.9. 

The xy-plane of the spine shows that the struts of the polygonal passages located in the spine center and 

the lateral strut routes have varying thicknesses (Fig. 2.9 (A)). There is no transition zone regarding the 

struts thickness between both structural types. There is a clear border between the polygonal passages 

and the lateral strut routes in terms of the strut thickness: the polygonal passages have a strut thickness 

of < 10 μm, whereas the lateral strut routes are > 10 μm. The green dashed line in Fig. 2.9 (A) indicates 

the position of the zx-plane, which is displayed in Fig. 2.9 (B).  

The distribution of the strut thickness makes obvious that the layered stereom type on the outer spine 

side and the transition zone, which consists of blurred assembly of stereom layers and unorganized mesh 

of struts are characterized by the same range of strut thickness of > 10 μm (corresponding to the lateral 

strut routes illustrated in Fig. 2.9 (A)). It can clearly be seen that there is a sharp border between the 

irregular mesh of struts and the adjacent columnar stereom type in the light of the thickness distribution. 

The columnar stereom type alternating with disorderly arranged struts in the spine center is related to 

the polygonal passages (Fig. 2.9 (A)) and therefore refers to the same strut thickness range of < 10 μm.  
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2.1.4.1.3 Definition of the ‘medulla and ‘radiating layer’ 
The addition of the visual evaluation of the strut thickness distribution displays clearly that the 

categorization of the microstructure into the ‘radiating layer’ and ‘medulla’ is not strictly dependent on 

the configuration of the stereom itself, but is rather correlated with the strut thickness. 

Only the use of the configurational shape of the strut meshes (expressed as stereom type) is rather 

misleading for the differentiation between the ‘medulla’ and ‘radiating layer’, since one structural form 

can occur multiply in the microstructure (i.e. the unorganized strut meshes). The definition of the 

‘radiating layer’ and ‘medulla’ can be set for the microstructure of the spine of Phyllacanthus imperialis 

in consideration of the stereom mesh configuration and strut thickness as follows:  

 

Medulla. 

Microstructure is mainly marked by polygonal passages (perpendicular to the c-axis), which expand 

partially as radial side branches towards to the cortex. The polygonal passages belong typically to the 

columnar stereom type and often with a strut thickness of < 10 μm. The side branches of the medulla’s 

cross section form a circular base. 

 

Radiating layer.  

The microstructure is marked by the layered stereom type. The stereom sheets are arranged in form of 

layers in the spine structure, which appear curved or almost straight routes perpendicular to the c-axis. 

Fig. 2.9: Calculated strut thickness distribution in the microstructure of the spine of Phyllacanthus imperialis based on μCT 
data. The cross section in (A) demonstrates the zy-plane. The green dashed line represents the position of the cross section 
illustrated in (B), which is the zy-plane.  
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Each layer/route is connected with the cortex and runs almost straight or slightly curved to the nearest 

radial side branches (perpendicular to the c-axis) of the medulla. The thickness of the struts is > 10 μm.  

 

 

2.1.4.2 Numerical determination of the strut thickness and porosity 

2.1.4.2.1 Step-wise analysis of the strut thickness 
The strut thickness of the radiating layer and medulla has been determined numerically by the analysis 

of stacked cubes from the μCT data. Each stacked μCT cube had a y-, x-, and z- edge length of 140 μm, 

160 μm and 882 μm, respectively. Examples of the stacked μCT cube from the radiating layer and the 

medulla are illustrated in Fig. 2.10 (A). The results of the average strut thicknesses of each stacked μCT 

cube and their positions within the microstructure of the spine are displayed in Fig. 2.10 (B). Apparently, 

the radiating layer has a strut thickness gradient. The strut thickness decreases from the outside to the 

inside: it decreases from the average strut thickness of 15.7 μm (= position 1) to a value of 11.6 μm 

(= position 4; Fig. 2.10 (B)). Significantly smaller average values for the strut thickness have been 

determined for the medulla (Fig. 2.10 (B)) ranging between 7.0 and 9.6 μm (Fig. 2.10 (B)). On basis of 

the data, the average strut thickness for the stereom structures in the medulla and radiating layer has 

been determined to be 8 ± 1.6 μm and 13.7 ± 2.0 μm, respectively (Fig 2.10 (C)).  

 

 
 

 

 

 

2.1.4.2.2 Porosity of the radiating layer and medulla  
The porosity of the radiating layer and medulla has been determined utilizing binarized xy-images of 

the μCT data. In this purpose, several binarized images have been chosen from a specific spine position 

Fig. 2.10: Strut thicknesses of the radiating layer (RL) and medulla (M) based on μCT data of the spine Phyllacanthus 
imperialis. The determination of the strut thickness is based on a step-wise analyses of stacked μCT cubes. An example of the 
stacked μCT cube of the radiating layer and medulla is illustrated in (A). The average strut thicknesses and their positions in 
the microstructure is given in (B). The plot in (C) represents the average strut thickness for the radiating layer and medulla.  
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and have been quantified (section 2.1.2.3). The specific position of the xy-images is related to the cross 

section parallel to the c-axis of the μCT scanned spine segment (Fig. 2.1). Fig. 2.11 gives the results of 

the porosity of the radiating layer and medulla depending on the position within the spine microstructure 

(parallel to the c-axis). The porosity of the medulla varies between 82 and 88 %, whereas the radiating 

layer ranges between 74 and 79 %. The medulla can therefore be characterized by an average porosity 

of 85.7 ± 2.8 % and the radiating layer of 76.6 ± 3.0 % (Fig. 2.11 (C)).  

 

 
 

 

2.1.4.3 The ‘layered’ and ‘columnar’ stereom type 

2.1.4.3.1 Numerical characterization of the ‘layered’ and 
‘columnar’ stereom type  
 

The numerical characterization of the layered and columnar stereom type is related mainly to the pore 

size expressed as a2 and a1 axis representing the smallest and the largest axis of the pore, respectively. 

In this context, the zx- and zy-planes were used to determine the pore axis lengths. Characterizing the 

layered stereom type includes also the size of the joints of the cross struts (expressed as axis length c2 

and c1) and the distances of the pores on an individual stereom layer.  

A stacked μCT section displaying parts of the layered and columnar stereom of the Phyllacanthus 

imperialis spine is illustrated in Fig. 2.12. Parts of the layered stereom is highlighted in the turquoise 

and green boxes, whereas the columnar stereom with its cross-sectional planes is displayed in the yellow 

boxes. The measurement of the respective axis is also shown in red. Tab. 2.1 summarizes the results of 

the pore distances on the stereom layer, pore axis lengths and axis lengths of the cross-strut joints. It 

displays the average values of the analysis. The statistical distributions of all parameters mentioned 

above (Fig. A.1, Fig. A.2) and examples of some analyzed μCT sections of the radiating layer are 

included in the appendix (Fig. A.3, Fig. A.4).  

 

Fig. 2.11: Porosity, φ, of the radiating 
layer (RL) and medulla (M) based on 
the μCT scan data of the spine 
Phyllacanthus imperialis. The 
position is related to the cross section 
parallel to the c-axis of the μCT-
scanned spine segment (cf. Fig. 2.1). 
The porosity of the radiating layer and 
medulla as a function of the position 
within the spine microstructure is 
displayed in (A). The average porosity 
of the radiating layer and medulla is 
presented in (B).  
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Tab. 2.1: Stereom types in the spine of Phyllacanthus imperialis with their axis lengths of the pores, cross struts and pore 
distances. The values of a1 and c1 as well as a2 and c2 represent the longest and smallest axis, respectively. The respective pore 
distances on the stereom sheet from the layered stereom are displayed with their specific orientations. The average measured 
axis lengths are illustrated in Fig. 2.12.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Layered stereom type Columnar stereom type 

ZY-plane (stereom sheet) ZY-plane 

Joints of cross struts Pore distance Pore rows 
c1 (μm) c2 (μm) Orientation (°) Distance (μm) a1 (μm) a2 (μm) 

16.8 9.5 0 14.1 19.6 17.4 

Pores on layer 
45 15.7 

  
a1 (μm) a2 (μm)   

19.9 12.8 135 15.2 
  
  

ZX-plane 180 15.0 YX-plane 

Pores between layers 
225 14.8 

Polygonal passages 
a1 (μm) a2 (μm) a1 (μm) a2 (μm) 

17.7 10.1 270 14.0 22.0 17.4 

Fig. 2.12: A stacked μCT section displaying parts of the layered and columnar stereom of the spine of Phyllacanthus 
imperialis. The different cross-sectional planes of the layered stereom type are displayed in the turquoise and green boxes. 
Parts of the columnar stereom type are presented in the yellow boxes. The measurement of the axis is displayed in red and 
comprises the parameters as follows: pore sizes, pore distances and sizes of the cross struts. The smallest and largest axis is 
given as a2 and c2 as well as a1 and c1, respectively.  
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The results of the layered stereom type indicate that the pores on the zy- and zx-plane reach similar 

average values in terms of their axis lengths (zx-plane: a1 = 17.7 μm, a2 = 10.1 μm; zy-plane: 

a1 = 16.8 μm, a2 = 9.5 μm). The statistical distribution of the pore axis lengths of the layered stereom 

type is displayed in Fig. A.1, Fig. A.2 and Fig. A.3 (Appendix). The different size of the average pores 

axis lengths of both sectional planes is an indicator for oval-shaped channels. The joints of the cross 

struts are characterized by an average c1 and c2 value of 16.8 and 9.5 μm, respectively. Therefore, the 

average axis lengths of the cross struts reach a similar size as the pores on the stereom layers and the 

channels between the stereom layers (Tab. 2.1). The average pore distances on an individual stereom 

layer are in the range of 14.0 and 15.7 μm. The numerical results indicate a high regularity and 

symmetry in which the pores and the cross struts are arranged with a strict order in the layered stereom 

type.  

The statistical distribution of the pore axis lengths of the columnar stereom type is shown in Fig. A.4 

(Appendix). The columnar stereom type is also characterized by a regular arrangement of pores 

(Fig. 2.12; zy-plane in yellow). The average pore axis lengths of the polygonal passages (a1 = 22.0 μm, 

a2 = 17.4 μm) and of the pore rows of the columnar stereom (a1 = 19.6 μm, a2 = 14.7 μm) are larger 

compared to the pores of the layered stereom type. The smaller difference between the average pore axis 

lengths of the columnar rows indicates that the pores have a rather circular than an oval character 

(Tab. 2.1).  

 
2.1.4.3.2 Numerical comparison with the galleried and laminar 
stereom type 

 
Grossmann and Nebelsick (2013) analyzed the spine structure of Phyllacanthus imperialis. They 

characterized the medulla and the radiating layer consisting of the galleried and the laminar stereom, 

respectively. Besides their structural stereom classification of the medulla and radiating layer according 

to Smith (1980), they have determined the pore sizes and strut thicknesses of the respective stereom 

types as well. Smith (1980) has also characterized the galleried stereom type in regard to its pore size 

and strut thickness. But his results are related to the general galleried stereom architecture of external 

plate surfaces from echinoids and are thus not directly related to the microstructure of the spine of 

Phyllacanthus imperialis. Therefore, the data of the galleried stereom architecture of Smith (1980) might 

be considered as addition. This section focuses therefore on the comparison between average pore 

diameter and strut thickness emerging from this work (section 2.1.4.2.1 and 2.1.4.3.1) and from 

Grossmann and Nebelsick (2013).  

Fig. 2.13 summarizes the relationship of the average pore sizes and strut thicknesses of the stereom 

structure prevailing in radiating layer and medulla. Grossmann and Nebelsick (2013) reported for the 

stereom structures in the radiating layer an average pore diameter of 20.2 μm and average strut thickness 

of 17.8 μm (Fig. 2.13). This is in agreement with the data obtained from this work for the stereom 

structures of the radiating layer (average pore diameter = 16.3 μm, average strut thickness = 13.7 μm). 

Significant differences display, however, the average pore diameters and strut thicknesses of the stereom 
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structures occurring in the medulla (Fig. 2.13). Grossmann and Nebelsick (2013) have determined an 

average pore diameter and strut thicknesses of 18.6 μm and 18.6 μm, respectively. This study has 

determined an average pore diameter of 17.3 μm, but the average strut thickness is 8.0 μm, which is 

significantly smaller than the average strut thickness determined by Grossmann and Nebelsick (2013).  

This average strut thickness and pore diameter of the medulla are located in the field, which is 

characteristic for the galleried stereom type determined by Smith (1980) occurring in the external plate 

surfaces of echinoids (Fig. 2.13).  

The difference in strut thickness between Grossmann and Nebelsick (2013) and our study is possibly 

due to natural variations. Slightly modified environmental changes for a short time may influence the 

calcification and resorption process in the skeleton of the sea urchin. Pore sizes and strut thicknesses of 

the spine microstructure may slightly vary within the same species in this way.  

 

 
 

 

 

2.1.4.4 Superstructures  
The microstructure of the spine of Phyllacanthus imperialis is also characterized by superstructures. 

Two types of superstructures can be distinguished in the spine microstructure. A superstructure 

comprises two stereom types, as their mutual distribution forms a superordinate structure. In another 

case, a superstructure can also appear in a single stereom type. In this case, the strut configuration is 

slightly modified resulting in a subordinate structure, which is not obviously visible on every cross-

sectional level. This kind of superstructure can be limited to cross-sectional level and is therefore visible 

only on this level. The identified superstructures of the spine of Phyllacanthus imperialis are presented 

in the following.  

Fig. 2.14 displays the superstructures of the medulla of the spine of Phyllacanthus imperialis. A 

reconstructed z-projection of the spine microstructure focusing mainly on the medulla is presented in 

Fig. 2.13: Average pore diameters and strut thicknesses of certain stereom types. The displayed data of Grossman and 
Nebelsick (2013) and this study represent the results of the spine microstructure of Phyllacanthus imperialis. The data of Smith 
(1980) come from the general galleried stereom architecture occurring in external plate surfaces of echinoids.  
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Fig. 2.14 (A). The area of the medulla is framed with a yellow line and forms radial side branches. In 

the center of the medulla is a dense and radial arrangement of cross struts forms a kind of ‘bulge’ 

(Fig. 2.14 (A), (B)). Since this bulge-like structure is visible on the xy-plane only, the bulge-like 

structure is here referred to as two-dimensional bulge and is a superstructure of the medulla. The two-

dimensional bulge consists of radially arranged cross struts, which are oriented to the center of the bulge 

(Fig. 2.14 (B)). The center of the two-dimensional bulge comprises, however, rather a disordered 

arrangement of cross struts (Fig. 2.14 (B)). On the macroscopic scale, these bulges appear as bright, 

circular and dense structures, which are surrounded by areas of higher porosity (Fig. 2.14 (C)).  

 

 
 

 

 

 

The BSE images in Fig. 2.15 illustrate the medulla of the spine of Phyllacanthus imperialis with its two-

dimensional bulges. Compared to the z-projection of the μCT data, the BSE mode does not reveal the 

radial character of the cross struts of the two-dimensional bulges (Fig. 2.15 (A)). The BSE images, 

however, illustrate that the cross struts of the two-dimensional bulges are larger compared to the adjacent 

cross struts (Fig. 2.15 (A), (B)). An image analysis of the strut thickness of the two-dimensional bulge 

confirms this statement (Fig. 2.15 (C)): the color of the cross struts appears to be brighter than of the 

adjacent cross struts, which is an indication for a larger strut thickness. A precise numerical 

quantification of the strut thickness of the two-dimensional bulge is rather inappropriate, since the color 

differences of the adjacent cross struts and of the bulge is very small.  

Fig. 2.14: Superstructures within the medulla of the spine of Phyllacanthus imperialis. The reconstructed z-projection of the 
spine based on μCT data is given in (A). The area marked with yellow lines is the medulla comprising the columnar stereom 
type and structural two-dimensional bulges. The structural shape of a single two-dimensional bulge is displayed in a greater 
resolution in (B: red box). An optical image of the medulla is given in (C). Scale bars: (A), (B) and (C) = 250 μm.  
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The two-dimensional bulges are permanently present in the medulla of the spine shaft of Phyllacanthus 

imperialis, but are not found in the spine base, which is the area beneath Prouho’s membrane 

(Fig. 2.15 (D)). The size, expansion and strut thickness of the polygonal passages in the medulla at the 

spine base appear to be much more regular than to those which are located in the spine shaft 

(Fig. 2.15 (D)). 

 

 
 

 

 

 

 

Taking the stereom structures of the radiating layer and medulla together, another superstructure 

becomes visible in the spine microstructure of Phyllacanthus imperialis. This kind of superstructure is 

described in more detail below. A reconstructed z-projection of the μCT scanned spine structure is 

Fig. 2.15: Presence and absence of structural two-dimensional bulges within the medulla of the spine of Phyllacanthus 
imperialis. BSE image (A) displays the medulla, which consists of superstructures in the form of two-dimensional bulges. The 
BSE image (B) gives a greater resolution of a single two-dimensional bulge. The strut thickness of two-dimensional bulge and 
adjacent cross struts is visualized in (C). The morphology of the medulla beneath Prouho’s membrane (cf. Fig. 2.5) is given in 
(D). The scale bars: (A) = 500 μm, (B) = 500 μm, (C) = 500 μm and (D = 500 μm.  

 



K. Klang                                    2. Spines of Phyllacanthus imperialis: Microstructure and morphology 

 36 

displayed in Fig. 2.16 (A). The radiating layer consists of several individual stereom layers 

(Fig. 2.16 (A): yellow solid lines). Each single stereom layer is connected with the cortex. Starting from 

the cortex, each single stereom layer runs directly to the nearest side branch of the medulla in a straight 

to slightly curved manner. In this way, a group of several stereom layers forms a ‘wedge-like’ structure 

that encloses a side branch of the medulla. This sort of superstructure, where a group of stereom layers 

enclose a side branch of the medulla, is here called ‘wedge’ (Fig. 2.16 (A): yellow dashed lines). In 

total, 13 wedges have been determined in the adult, aboral spine of Phyllacanthus imperialis 

(Fig. 2.16 (B)).  

 

 
 

 

 

  

Fig. 2.16: Superstructure of the spine of Phyllacanthus imperialis. The reconstructed z-projection image (μCT) in (A) shows 
that several single stereom layers (yellow solid lines) form a wedge (dashed yellow line). The spine consists of 13 wedges, 
which is illustrated in (B). Results of the counting of the single stereom layers in each wedge are presented in (C). Scale bar: 
(A) = 500 μm. 
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In order to establish whether the number of stereom layers is homogenously distributed in the wedges, 

the stereom layers of each wedge have been determined as well. Several images displaying the z-

projection of the μCT scanned spine structure have been considered for the counting of the stereom 

layers. The analyzed z-projection images can be assigned to a certain z-position (= c-axis) in the μCT 

scanned range of the spine segment (Fig. 2.1). The results of the counting of the single stereom layers, 

which are related to wedge system, are displayed in Fig. 2.16 (C). The position of each wedge is given 

here as number. The color bar shows the number of the stereom layers. The position of the images in 

μCT scanned range of the spine is given in form of mm-levels (Fig. 2.1). In this case, the outer region 

of the diagram represents the results that are based on z-projection images, which were taken from the 

top of the μCT scanned spine segment (z-position = 2.8 mm). Results of the z-projection images 

belonging to the lower area of the μCT scanned range are located inside of the plot 

(z- position = 0.5 mm).  

The results display that 5 wedges consist of more than 28 single stereom layers (Fig. 2.16 (C)), which 

are wedge 4, 7, 8, 10 and 11. This number have been also determined in several z-projection images, 

when comparing the outer and inner area of the plot (Fig. 2.16 (C)). The wedges containing more than 

28 single stereom layers are here classified as ‘dominant wedges’. Except of wedge 4, the dominant 

wedges are arranged in pairs. Overall, the dominant wedges are arranged in a roughly trigonal manner 

in the spine structure.  

 
2.1.4.5 Cortex  

2.1.4.5.1 Inner structure 
The inner microstructure of the cortex with its pore size, porosity and quantity of pores is displayed in 

this section. A stacked μCT section of the cortex is illustrated in Fig. 2.17 (A). The cortex is pervaded 

with pore channels oriented almost perpendicular to the z-axis.  

The interior microstructure of the cortex can be visualized utilizing several sections (Fig. 2.17 (B)-(F)). 

Besides the small pores, the external morphology of the cortex contains also comparably large pores 

appearing very irregularly in their shape (Fig. 2.17 (B)). Their pore channels, however, cannot be pursuit 

deeply into the internal microstructure of the cortex and are not present in the outer half of the cortex 

(Fig. 2.17 (B)-(D)). The quantity of pores increases visually from the outside to the inside (Fig. 2.17 (C)-

(F)).  

On the basis of the μCT sections, the pore size, porosity and the quantity of pores of each section has 

been determined in this way. The pore size distribution expressed as pore axis lengths (a1 = smallest 

axis and a2 = largest axis of the pore) of each section is displayed in Fig. A.5 (Appendix). An μCT 

section of the cortex is displayed in Fig. A.6 (Appendix). The results of the average pore diameters (see 

also Fig. A.5, Appendix) and the quantity of pores for each section are presented in Fig. 2.18. The largest 

average pore diameter of 28 μm is found on the external surface of the cortex. The average pore 

diameter, however, remains almost constant from the outside to the inside (Fig. 2.18) and varies between 



K. Klang                                    2. Spines of Phyllacanthus imperialis: Microstructure and morphology 

 38 

15 μm (Interior (a)) and 17 μm (Interior (c)). In contrast, a gradual increase of the quantity of pores is 

clearly visible from the inside to the outside of the cortex (Fig. 2.18): from the 950 pores (Exterior) the 

quantity of pores increases to about 2500 pores (Interior (c)).  

 

 
 

 

 

 
 

The porosity of the microstructure of the cortex is illustrated in Fig. 2.19, in which the innermost μCT 

sections have been utilized to determine the porosity. Several binarized images of the same section have 

been utilized for the evaluation of the porosity. The position of the binarized images in μCT scanned 

range of the spine is given in form of mm-levels (Fig. 2.1) and is plotted against the porosity 

Fig. 2.17: Stacked μCT section of the cortex of the spine of Phyllacanthus imperialis. An overview of the cortex with the 
according section is given in (A). The BSE images (C-E) from the sections are colored in (A). The BSE in (B) displays the 
external surface of the cortex. Scale bars: (B), (C), (D), (E) and (F) = 150 μm. 

 

Fig. 2.18: Average pore sizes and 
quantities of pores utilizing μCT sections 
of the cortex belonging to the spine of 
Phyllacanthus imperialis.  
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(Fig. 2.19 (A)). The average values of the porosity of each μCT section is shown in Fig. 2.19 (B) and 

summarizes the results of the porosity of several images along the z-axis (Fig. 2.19 (A)). The average 

porosity increases from the outside to the innermost cortex structure: from an average of 11 ± 0.9 %, the 

porosity increases up to an average of 18 ± 1.0 %. The grey column in Fig. 2.19 (B) represents the 

average porosity of the whole cortex calculated from the average porosity of all μCT sections, which is 

15.2 ± 3.2 %. 

The relative constant pore size with an increasing number of pores and hence expanding porosity from 

the outside to the inside indicates that the pore channels branch out increasingly towards to the spine 

interior.  

 

 
 

 

 

 

 

2.1.4.5.2 Outer structure 
The external morphology of the cortex of the spine of Phyllacanthus imperialis is displayed below and 

based on BSE images (Fig. 2.20). The whole external spine structure has been considered in the 

morphological investigations in this context (Fig. 2.20 (A)). The spine tip is characterized by smooth 

line-type ridges oriented parallel to the c-axis (Fig. 2.20 (B), (C)) and is also permeated by few pores, 

which mainly occur in the areas between the ridges (Fig. 2.20 (B), (C)). In total, 13 ridges have been 

determined at the spine tip, which most likely correlate with the internal wedge system of the spine 

microstructure (cf. section 2.1.4.4). Further down along the c-axis of the spine, the ridges on the surface 

become increasingly flatter and are separated by pore rows. Few pores disrupt (perpendicular to the c-

axis) the flattened ridges and create rather circular spots (Fig. 2.20 (D): red arrow). The lower part of 

the external surface of the spine still contains line-type arrangement of the ridges, but they are not present 

Fig. 2.19: Porosity, φ, of the cortex of the spine of Phyllacanthus imperialis. The porosity of certain μCT sections of the 
cortex is displayed in (A). The porosity has been determined using binarized images of the μCT scanned range. Each 
porosity value is therefore related to a specific position in the μCT scanned range. The average porosity of each μCT section 
and of the whole cortex is displayed in (B). 
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anymore as smooth straight lines such as at the spine tip. A single line-type ridge comprises several 

swollen polygonal spots, which appear irregular in their size and shape (Fig. 2.20 (E)). On this scale, 

there are also no large pores visible between the area of the ridges (Fig. 2.20 (E)). The swollen polygonal 

spots appear to be more regular in size and shape further down along the c-axis of the spine 

(Fig. 2.20 (F)), but are still arranged in a line-type manner. No noticeable larger pores are apparent in 

this section as well (Fig. 2.20 (F)). Near to the spine base, the line-type arrangement of the swollen 

polygonal spots is not present anymore. The swollen polygonal spots are rather randomly arranged at 

the spine surface (Fig. 2.20 (G)).  

 

 
 

 

 

A higher magnification of the Fig. 2.20 (C) is shown in Fig. 2.21. Besides the clustering of smaller pores 

on the surface of the spine tip (Fig. 2.21 (A)), a higher magnification reveals basically the polycrystalline 

character of the external surface of the cortex due to the individual irregular crystallites oriented in all 

directions (Fig. 2.21 (B), (C)).  

  

Fig. 2.20: Morphology of the external surface of the cortex of the spine of Phyllacanthus imperialis. Each position of the 
BSE images is illustrated in (A). The morphology of the cortex surface is displayed in (B), (C), (D), (E), (F) and (G). Scale 
bars: (A) = 1 cm, (B) = 1 mm, (C) = 1 mm, (D) = 1 mm, (E) = 1 mm, (F) = 1 mm and (G) = 1 mm. 
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2.1.4.6 Proportion of the radiating layer, medulla and cortex 
The quantity of the medulla, radiating layer and cortex have been determined utilizing BSE images 

(perpendicular to the c-axis) of the spine of Phyllacanthus imperialis. The medulla, radiating layer and 

cortex are here referred to as ‘structural elements’ of the spine. Several BSE images have been quantified 

in terms of their structural elements and have been chosen from a specific position along the c-axis of 

the spine shaft (Fig. 2.22: blue lines). In order to understand, however, the changes and influences 

between the structural elements, several z-projection images from the μCT scanned range (Fig. 2.22: 

red box) of the spine segment have been analyzed. 

 

 
 

Results of the absolute area proportions of the structural elements and their total amounts in the z-

projection images (from the μCT scanned range) are displayed in Fig. 2.23 (A) and (B). From these, the 

relative values have been determined to evaluate the correlations and influences between the structural 

elements (Fig. 2.23 (C)).  

The relative area proportion of medulla and radiating layer are inversely correlated, but the slope of the 

curve progressions is different of both along the z-axis: the fluctuation of the relative area proportion of 

the medulla is larger than of the radiating layer. The cortex, in contrast, displays no fluctuations along 

the z-axis in terms of its relative area proportions. It rather shows an almost linear increase to the spine 

Fig. 2.21: A detailed view of the morphology of the external cortex surface of the spine of Phyllacanthus imperialis. The 
BSE image in (A) displays a small section illustrated in Fig. 2.21 (C) in a higher magnification. The BSE images in (B) and 
(C) show the cortex surface in a very high magnification. It consists of individual irregular crystallites. Scale bars: 
(A) = 250 μm, (B) = 10 μm and (C) = 10 μm. 

Fig. 2.22: Cross section of the spine Phyllacanthus 
imperialis (parallel to the c-axis). Red box displays 
the μCT scanned area of the spine. Blue lines indicate 
the position of the BSE images, which have been 
utilized for determining the area proportion of the 
radiating layer (RL), medulla (M) and cortex. 
pm = Prouho’s membrane.  
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tip and therefore appears to be independent from the fluctuations of the medulla and radiating layer. The 

inverse correlation of the medulla and radiating layer on the small spatial range indicates a dynamic 

interaction that is unaffected by the cortex.  

 

 
 

Several BSE images, which were selected at particular positions along the c-axis were also quantified 

in terms of the quantity of the structural elements. The absolute values of the area occupied by the 

individual structural elements and their total amounts in the particular spine’s cross section are displayed 

in Fig. 2.24. The relative values determined from the BSE images and μCT scans are summarized in 

Fig. 2.25. It presents an overview of the area proportion of the structural elements and shows their 

relationship to one another over the entire c-axis of the spine. The cortex and medulla are both inversely 

correlated with the relative area proportion of the radiating layer (Fig. 2.25 (A), (B)). There is also a 

positive correlation between the medulla and cortex when moving towards to the spine tip 

(Fig. 2.25 (C)). As the graphs show, in addition to the correlation of the structural elements to one 

another that the radiating layer covers the largest proportion in the spine. Its proportion increases from 

the spine tip to the spine basis (Fig. 2.25 (A), (B)): from 38 %, the relative area proportion in the spine 

Fig. 2.23: Quantity of the medulla (M), radiating layer (RL) and cortex (C) in the 
spine of Phyllacanthus imperialis. The quantity of the structural elements is based 
on z-projection images from the μCT scanned range of the spine segment (Fig. 2.22: 
red box). The absolute area proportions of the medulla, radiating layer and cortex are 
presented in (A). The total areas of the spine’s cross sections are given as absolute 
values and are displayed by the curve colored in black (B). The relative area 
proportions are illustrated in (C). 
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increases up to 87 %. Significantly smaller relative area proportions display the medulla and cortex 

(Fig. 2.25 (C)). Both remain below an area proportion of less than 20 % in total. In contrast to the area 

proportion of the radiating layer, the proportion of medulla and cortex increase towards to the spine tip. 

The cortex has the largest amount of both at the tip (45 %), whereas the medulla reaches only a relative 

value of 18 %. Extremely small area proportions of medulla and cortex were determined near the spine 

basis. Both of them have an area proportion of less than 10 %, whereas the radiating layer reaches a 

relative area proportion of 87 % at this point.  

 

 
 

Fig. 2.24: Quantity of the medulla (M), 
radiating layer (RL) and cortex (C) in 
the spine of Phyllacanthus imperialis. 
The quantities of the structural elements 
are based on BSE images. The BSE 
images were chosen from specific 
positions along the c-axis of the spine 
shaft (Fig. 2.22). The absolute area 
proportions of the medulla, radiating 
layer and cortex are given as red, green 
and blue curve, respectively. The total 
areas of the spine’s cross sections are 
displayed as absolute values and are 
displayed by the curve colored in black.  
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2.1.4.7 Microstructure of an oral spine and adolescent aboral spine 
This section deals with the microstructure of the internal stereom meshwork of adolescent aboral and 

oral spines. The investigations are based on BSE images (Fig. 2.27). The size of the oral spine is smaller 

by a factor of 10 compared to the aboral spine. The internal microstructure of the oral tip and near the 

spine base has been investigated (Fig. 2.26: red lines) and is presented in section 2.1.4.7.1. Only one 

position of an adolescent aboral spine is presented in section 2.1.4.7.2, because the internal stereom 

meshwork shows no significant changes along the c-axis. The exact position of the internal 

microstructural investigations of an adolescent aboral spine is seen in Fig. 2.26 (red line).  

 

 

Fig. 2.26: Spines of Phyllacanthus imperialis. An 
example of an aboral adult, aboral adolescent and 
oral spine is illustrated in this image.  
Scale bar = 1 cm. 

 

Fig. 2.25: Quantity of the medulla, radiating layer 
and cortex over the entire c-axis of the spine of 
Phyllacanthus imperialis. The quantities are based 
on BSE images and μCT scans (Fig. 2.22). The 
inversely correlations between the cortex and 
radiating layer and between medulla and radiating 
layer are displayed in (A) and (B), respectively. The 
positive correlation between the cortex and medulla 
is, however, presented in (C).  
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2.1.4.7.1 Oral spine 
The internal microstructure of the oral spine representing the area near to the spine tip is displayed in 

Fig. 2.27. The shape of the spine is characterized by 6 lateral side branches consisting mainly of cortex 

parts (Fig. 2.27 (A)). It appears that the lateral side branches are only present on one side of the spine 

(Fig. 2.27 (A)). The inner center of the spine microstructure is highly porous (Fig. 2.27 (A)) and is 

surrounded by a dense intermediate structure. It appears in such way, as if the struts of the intermediate 

structure have been ‘amalgamated’ with a material (Fig. 2.27 (B)). In this way, the struts and pores are 

only vaguely defined and therefore hardly recognizable at a few positions (Fig. 2.27 (B)). Some open 

pores disrupt the dense structures of the intermediate structure of the spine (Fig. 2.27 (B)).  

 

 
 
 
 
 
 

Fig. 2.28 displays the internal microstructure of the spine center, the intermediate structure of the spine 

and the cortex parallel to the c-axis near the spine tip. The inner center of the spine consists mainly of 

trabecular rods, which create straight pore rows by their slightly displaced arrangement and their cross 

struts. The shape and size of the pores appear to be more regular near to the subsequent intermediate 

structure than those in the center of the spine. The center of the spine is characterized by ordered pore 

rows as well as by large, irregular spaces between the trabecular rods. The intermediate structure of the 

spine is also mainly characterized by an almost dense structure as mentioned above. Some places reveal, 

however, vague struts. Significantly more struts can be seen very close to the cortex. The trabecular rods 

display rather a wavy-like shape at these positions. Like in the aboral spine, the cortex is pervaded by 

pore channels as well.  

Despite the amalgamated material, the trabecular rods and the cross struts are still visible on the cross-

sectional and -longitudinal section. This is an indication for a secondary transformation of the 

intermediate structure, where the pores of the primary stereom mesh were filled with additional material. 

Fig. 2.27: Microstructure of the oral spine of Phyllacanthus imperialis. The BSE image (A) shows the cross section near to 
the spine tip. A higher magnification of the intermediate structure between the highly porous inner area and cortex is 
displayed in (B). Scale bars: (A) = 500 μm and (B) = 300 μm.  
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The secondary transformation of the intermediate structure might be accompanied with a decomposition 

of the primary meshes.  

 

 
 

 

 

The internal microstructure near the spine base is displayed in Fig. 2.29. Two lateral side branches 

remain on the spine facing each other along the larger axis of the spine cross section (Fig. 2.29 (A)). 

The intermediate structure between the cortex and highly porous center consists of a mixture of 

amalgamated materials and struts (near the spine center (Fig. 2.29 (B))). Adjacent to the cortex, the 

intermediate structure displays clear struts running almost straight to the cortex (Fig. 2.29 (B)). The 

denser part of the intermediate structure shows also vaguely the contours of some struts (Fig. 2.29 (B)). 

The center of the spine structure is characterized by numerous minute polyhedral pieces on the struts, 

which appear to be isolated and in clusters (Fig. 2.29 (C)). Some pores of the inner spine center are filled 

with these polyhedral-shaped pieces (Fig. 2.29 (D)). The polyhedral shape of the pieces is clearly visible 

in a higher magnification of the filled pores (Fig. 2.29 (E)). A lot of these minute polygons cover the 

struts of the inner spine center (Fig. 2.29 (C), (E)).  

 

Fig. 2.28: Microstructure of the oral spine of Phyllacanthus imperialis. The BSE displays the area parallel to the c-axis and 
represents the area near to the spine tip. Scale bar = 300 μm.  
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2.1.4.7.2 Adolescent aboral spine 

The internal microstructure of an adolescent aboral spine is displayed in Fig. 2.30. Unlike in the oral 

spine, the intermediate structure here contains no amalgamated phases and is rather characterized by 

struts running almost straight to the cortex (Fig. 2.30 (A)). The almost straight strut routes form stereom 

layers, which are arranged in wedge-like structures similar to those in the adult aboral spine 

(Fig. 2.30 (A)). The intensity of the interlocking of the wedges with the inner structure is less intensive, 

because the lateral side branches are poorly developed. In this way, the wedges appear to be rather 

isolated from the inner spine microstructure (Fig. 2.30 (A)). The inner microstructure is characterized 

by a circular base in cross section (Fig. 2.30 (A)).  

The pores of the inner spine structure are also filled with groups of polygonal-shaped pieces similar to 

those of the oral spine structure (Fig. 2.30 (B)). Numerous minute mineral polygons cover the struts of 

Fig. 2.29: Microstructure of the oral spine of Phyllacanthus imperialis. The BSE images display the cross sections 
(perpendicular to the c-axis) near to the spine base. An overview of the oral spine is seen in (A) including the areas, which 
are shown in a high magnification (= blue squares). The intermediate spine structure is presented in (B). The inner spine 
center and its strut structure is displayed in (C), (D) and (E). Scale bars: (A) = 500 μm, (B) = 500 μm, (C) = 30 μm, 
(D) = 50 μm and (E) = 30 μm.  
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the inner spine structure as well (Fig. 2.30 (C)). A cluster of minute polygons, however, can be seen on 

fractured struts (Fig. 2.30 (C)). 

 

 
 

 

 

 

 

 

2.1.5 Discussion 
2.1.5.1 Growth mechanism 

Smith (1990) concluded from high resolution TEM studies of other authors (see Smith 1990, Tab.1) that 

the main actors of the biomineralization in all five echinoderm classes are the sclerocyte and phagocyte 

cells. The two cell types have been suggested to be migratory coelomocytes or to share a common 

ancestor with these. The calcification process in echinoderms is strictly intracellular and based on 

syncytial sclerocytes, which already coat available calcite surfaces on which growth is to take place or 

may be formed independent of pre-existing stereom. Märkel and Röser (1983) observed that the 

sclerocytes are anchored to the stereom trabeculae by means of cytoplasmic processes, which ramify 

into filiform and convolute distal processes closely pressed on the trabecula of the stereom. A detailed 

description of the calcification process based on syncytial sclerocytes and its cell arrangement is given 

by Smith (1990) and Märkel and Röser (1983). The calcoclast function, however, that means the calcite 

resorption is controlled by phagocytic cells. This cell type occurs individually throughout the stroma 

and shows long, straight pseudopodia that extent through the pore space. The syncytial phagocytic cells 

Fig. 2.30: Microstructure of an adolescent aboral spine of Phyllacanthus imperialis. The BSE images display the 
microstructure near to the spine base. A cross section of the spine (perpendicular to the c-axis) is shown in (A). Highlighted 
in yellow are the single stereom layers forming wedge-like structures in the spine interior. The struts of the inner spine center, 
which are partly covered and filled with minute polygons are displayed in (B) and (C). Scale bars: (A) = 500 μm, (B) = 30 μm 
and (C) = 20 μm.  
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can be formed above the milled ring of the spine shell and are able to autotomize (= spontaneous casting 

of body parts, especially when the organism is injured or under attack) the shaft. It has been found that 

individual phagocytic cells occur in a high density at areas where skeletal damage has happened 

(Heatfield 1971, Shimizu and Yamada 1976, Dubois 1989).  

A comparison of the internal microstructure between the adolescence aboral and adult aboral spine 

indicates that calcite resorption is an essential feature during the growth of the spines, which influences 

the shaping of the inner stereom elements. The adult aboral spine is characterized by a wedge-like 

arrangement of the stereom layers (section 2.1.4.4) where the tip of each wedge is disrupted by the 

lateral side branches of the inner spine center (Fig. 2.31 (C)). In contrast, an adolescent aboral spine is 

characterized by a wedge-like interlocking with the inner spine structure as well, but the intensity of the 

interlocking is weakly defined, because the lateral side branches are poorly developed in this growth 

stage (Fig. 2.31 (B). These observations indicate that medulla, radiating layer and cortex do not grow 

separately from one another and in a chronological order starting from the center to the outside and 

instead that all three structural areas grow simultaneously. Structural modifications like the extension 

of the lateral side branches from the center, which are accompanied with a reconstruction of the wedges 

during the growth, can only be justified if strut material is resorbed and precipitated again at another 

strut position. If only a chronological and separate growth of each structural area would be present 

without resorption and calcification, the almost circular arrangement and the poorly developed lateral 

side branches of the spine center would be still visible in the adult aboral spine. Furthermore, an 

expansion of the inner spine structure in form of lateral side branches to the outside would probably 

have not occurred during the growth of the aboral spine. The restructuring of the wedge system during 

growth is an indication for a dynamic interaction between resorption and calcification of strut material 

in the inner aboral spine of Phyllacanthus imperialis.  

The calcite etching phagocytes of echinoderms may be compared with the vertebrate osteoclasts and the 

calcite building sclerocytes with the osteoblasts. This dynamic accumulation, degradation and 

remodeling process is required in order to repair microcracks and to remodel to current functional 

demands of the mechanical loading. The latter one is characteristic of Wolff’s law, which states that 

bone in vertebrates will adapt to loads under which it is placed (Wolff 1986). If loading on a particular 

bone rises, the bone will remodel itself over time to become stronger to resist the current loading 

conditions. A structural investigation of femoral heads has experimentally proven this kind of 

correlation of bone architecture remodeling and mechanical loading: the bone trabecular orientation 

aligned with principal stresses (Wolff 1986, Boylell and Kim 2011). An adaption to the changes of the 

mechanical environment results in an optimal bone configuration, which is associated with an increased 

mechanical efficiency. The ability to adapt to the mechanical environment resulting in an optimal 

configuration of the trabecular architecture and the dynamic remodeling processes associated with an 

accumulation and degradation of skeletal material can be analogously transferred to the spines of 
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Phyllacanthus imperialis. Varying internal microstructures in the oral and aboral spine allow 

interpretation in terms of their specific functions. 

Section 2.1.4.7.1 demonstrated that dense material phases are present in a larger extent near to the tip of 

the oral spine than near to the spine base (Fig. 2.31 (A)). The larger extent of material phases is required 

in the spine tip, since the highest punctual load concentrates at the spine tip due to the locomotion of the 

sea urchin. The punctual load acting on the oral spines is significantly smaller in terms of the intensity 

and duration compared to the aboral spines. The sea urchins mainly utilize the aboral spines to wedge 

themselves into the reef cavities during day time. A high mechanical loading occurring over several 

hours implies that the aboral spine architecture has to adapt to such loading conditions. Consequently, 

the microstructure differentiates between the oral and aboral spine, because of the varying mechanical 

environments. Since the oral spine are at least 10 times smaller in size compared to the aboral spines, 

the weight of dense material phases in the intermediate structures is negligible for the oral spines. A 

dense material phase in the aboral spine would increase significantly the weight of the spine. Therefore, 

the sea urchin requires a high expenditure of energy to move the aboral spine. A light-weight architecture 

would thus no longer be guaranteed in the aboral spines. Another disadvantage of the dense material 

phases is that it contains no crack deflection and blunting mechanisms such as the stereom network. 

Cracks can rather evolve unhindered through the material phases. As a result, larger segments can be 

removed from the structure and the spine breaks in all likelihood in a catastrophic manner. The aboral 

spine is characterized by a highly differentiated strut network (section 2.1.4.4), which ensures a light-

weight architecture and can withstand high mechanical loadings. To what extent the superstructures, the 

varying quantities of the cortex, radiating layer and medulla as structural elements contribute to the load 

capacity and to the beneficial fracture behavior in the aboral spines of Phyllacanthus imperialis will be 

presented in depth in chapter 2.2.  

 

 
 

 

 

  

Fig. 2.31: Schematic overview of the microstructures of an oral, adolescent and adult aboral spine of Phyllacanthus imperialis. 
The oral spine with its dense intermediate structure is displayed in (A). The schematic microstructure of an adolescent aboral 
spine is seen in (B). (C) illustrates the microstructure of an adult aboral spine. C = Cortex, RL = Radiating layer, M = Medulla.  
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2.1.6 Conclusions 
(1) For an accurate description of the stereom structures in the adult aboral spine of Phyllacanthus 

imperialis, a nomenclature of the stereom network was introduced, which differentiate, inter alia, 

between the terms ‘cross struts’, ‘trabecular rods’ and ‘struts’. The term ‘struts’ is here a general term 

of the stereom mesh including both ‘cross struts’ and ‘trabecular rods’. The latter two terms can be 

differentiated according to their orientation to the crystallographic c-axis of the spine. This nomenclature 

can also be transferred into other cellular-like materials in nature for instance bones, sponges and corals.  

 

(2) New structural units were introduced based on the microstructural investigations of the adult aboral 

spine of Phyllacanthus imperialis, since the structural units by Smith (1980) do not describe the stereom 

structure of the spine completely. The new defined structural units are the so-called ‘layered’ and 

‘columnar’ stereom type and represent a useful addition to the current categorization by Smith (1980). 

 

(3) The medulla and the radiating layer were defined according to the configuration of the struts and 

distribution of the strut thickness for the adult aboral spine of Phyllacanthus imperialis.  

 

(4) A step-wise analysis of the strut thickness of the spine microstructure has revealed that the thickness 

of the struts in the radiating layer decreases gradually towards to the medulla: it decreases from the 

average strut thickness of 15.7 μm to a value of 11.6 μm. Significantly smaller average values of the 

strut thickness were determined for the medulla ranging between 7.0 and 9.6 μm. The average porosity 

of the radiating layer, medulla and cortex is 76.6 ± 3.0 %, 85.7 ± 2.8 % and 15.2 ± 3.2 %, respectively.  

 

(5) It was discovered that the aboral spine of Phyllacanthus imperialis is characterized by 

superstructures. The radiating layer comprises several individual stereom layers, which form wedge-

like structures. Each wedge of the radiating layer encloses a single lateral side branch of the medulla. In 

total, 13 wedges are present in the spine. Dominant wedges, which contain more than 28 stereom layers, 

are arranged in a roughly trigonal manner in the spine structure. The medulla, however, is characterized 

by small bulges, which consist of dense radial arrangements of struts. It was demonstrated that the strut 

thickness of the bulges is slightly larger compared to the adjacent strut material of the medulla.  

 

(6) A highly branched system of pore channels with constant pore sizes throughout the inner structure 

characterizes the cortex of the spine of Phyllacanthus imperialis. The degree of branching of the pore 

channels increases from the outside to the inner cortex. It was shown that the surface morphology of the 

cortex varies along the z-/c- axis of the spine.  

 

(7) A comparison of the microstructure between an adolescent aboral spine and an adult aboral spine of 

Phyllacanthus imperialis has demonstrated that calcite resorption is an essential feature during the 
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growth of the spines and shaping of the inner stereom elements. The growth process of the spines, which 

is accompanied with a reconstruction of the inner stereom structure is characterized by a dynamic 

interplay of calcite resorption and precipitation.  

 

(8) The different microstructures of the aboral and oral spines of Phyllacanthus imperialis are an 

indication for specific adaptions to the particular mechanical environment. It was demonstrated that the 

oral spine contains additional amalgamated material in the intermediate structures of the spine. Viewed 

at a higher magnification, some pores are filled with polygon-shaped pieces. Minute polygon-shaped 

pieces are distributed on the struts as well. The oral spines of Phyllacanthus imperialis are mainly used 

for locomotion. Therefore, the punctual load acting on the oral spine takes place in a short time interval 

in contrast to the aboral spine. Their spine architecture is adapted to punctual loadings acting for several 

hours due to the wedging into the reef cavities during day-time.  
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2.2 Mechanical characteristics 
 

2.2.1 Introductory remarks  
This chapter relates material properties, fracture behavior as well as the energy absorption capability of 

the spine segments from the aboral spine of Phyllacanthus imperialis to its microstructural 

characteristics. The material properties expressed as maximum compressive strength (σc) and the 

Young’s modulus (E) were determined via uniaxial compression of spine segments. To characterize 

each spine segment in terms of its microstructure, a ‘structural factor’ is introduced to cover numerically 

the microstructural set up, in addition to the porosity of the spine segments. Besides the spine segments, 

certain areas of the spine segments were isolated and prepared in form of small cylinders and uniaxially 

compressed to understand their mechanical effectiveness. Cylinders were prepared, which either contain 

exclusively the radiating layer or medulla or combinations of radiating layer and medulla to compare 

the material properties, failure behavior and energy absorption capacity. One example of a radiating 

layer-cylinder is displayed in Fig. A.7 (see Appendix). At the end of the chapter, specific mechanical 

pore models are applied on the material properties of the spine segments including the (special) spine 

cylinders. The chapter comprises also a discussion of the potential mechanical functions of the 

microstructural setup of the aboral spine.  

 

2.2.2 Sample characterization and methods  
2.2.2.1 Sample preparation 

Adult aboral spines of Phyllacanthus imperialis were utilized as samples (dried samples without any 

further treatment from the Philippines) for the mechanical characterization. Several aboral spines were 

sectioned perpendicular to the c-axis with a diamond saw (Buehler med 1000, ITW Test and 

Measurement GmbH, Esslingen, Germany) using a blade thickness of 500 μm. In this way, spine 

segments were fabricated with coplanar ends for the uniaxial compression tests. The coplanar ends are 

required to achieve uniform loading during the uniaxial compression experiments. To avoid bending 

and buckling during the uniaxial compression, each spine was cut into segments with a 2:1 

length/diameter ratio (Bargel and Schulze 2008, Weber 1969).  

Certain structural elements of the spine segments have been separated from each other by utilizing a 

drill bench with hollow drills as attachments. Single cylinders were prepared from the spine segments, 

which were cut previously into spine segments with a 2:1 length/diameter ratio as well. In this way, 

cylinders were fabricated containing only the core elements of the spine segments. The core includes 

here both the medulla and radiating layer, but no cortex. The inner diameter of the hollow drill was 

6 mm for the fabrication of cylinders consisting only of the core element of the spine segment.  
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Cylinders from spine segments were also prepared to obtain exclusively parts of the medulla and 

radiating layer. The inner diameter of the hollow drill was 5 mm to get cylinders comprising the 

radiating layer only. A significantly smaller diameter of the hollow drill is required to prepare cylinders 

consisting only of medulla. A hollow drill with an inner diameter of 3 mm was used in this case. All 

spine segments as well as the spine cylinders were cleaned in an ultrasonic bath as last step of 

preparation.  

 

2.2.2.2 Sample characterization 
The spine microstructure was characterized using optical light microscopy and SEM. For determining 

the quantity of the medulla, radiating layer and cortex in the spine segments, only the digital light 

microscope (Hirox RH-2000, Hirox Europe Ltd., Limonest, France) was used. The length of the spine 

segments and of the spine cylinders as well as the diameters of the spine cylinders were determined with 

a digital caliper. The microstructure of uniaxial loaded core cylinders of the spine, however, was 

investigated utilizing the SEM. After a first significant acoustic signal in the initial stage of loading, the 

uniaxial compression was stopped to examine the cracks on the core cylinder. The operation conditions 

of the SEM are described in section 2.1.2.2. The porosity of the spine segments and spine cylinders was 

determined gravimetrically by assuming a density of 2.711 g/cm3 for calcite (DeFoe and Compton 

1925). Therefore, the volume of the spine segments and cylinders was calculated by measuring the area 

of the cross section, A, on the microscopic images and multiplying it with the mean height, h. Together 

with the mass, m, the porosity was estimated from the following equation:  

 

ϕ [%] =  �1 − �
m [g]

A [cm2]  ×  h [cm] × 2.711 [g ×  cm−3] 
��  ×  100 (1) 

 

2.2.2.3 Mechanical testing 
Uniaxial compression tests were conducted in a universal testing machine (Instron 3180, Instron 

Deutschland GmbH, Pfungsstadt, Germany). The spine segments and spine cylinders were placed on a 

Si3N4 plate on the crosshead and pressed against a tungsten carbide compression die. The force was 

measured simultaneously by a force transducer. A photograph and schematic view of the measuring 

principles of the universal testing machine is illustrated in Klang et al. (2016). All experiments were 

performed with a crosshead movement speed of 0.5 mm/min. During the uniaxial compression tests of 

the specimen, the fracture behavior and the displacement was monitored by a video extensometer 

(LIMESS RTSS-C02, LIMESS Meßtechnik GmbH, Krefeld, Germany).  

From the geometry of the spine specimens, the critical strength, σc, has been calculated from the load at 

the first crack formation. The displacement recorded from the video extensometer was used for 

calculating the Young’s modulus, E, from the slope of the linear elastic increase in the stress (σ)–

strain (ε) plots.  
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2.2.3 Results 
2.2.3.1 Uniaxial compression of spine segments 

2.2.3.1.1 Correlation of the microstructure with material properties 
To quantify the structural relationship of the spine segments with the mechanical behavior in uniaxial 

compression, the spines were divided into the cortex (= shell) and the compliant core. The core itself is 

composed of medulla and radiating layer (Fig. 2.32). A simplified division of the spine segment into a 

core-shell structure helps to model the influence and behavior of the cortex in the spine segment during 

uniaxial compression. As can be seen in section 2.1.4.6, the quantity of the cortex and core varies along 

the c-axis of the spine (Fig. 2.32). Therefore, a ‘structural factor’ was created to summarize the quantity 

of cortex and core in each spine segment. The structural factor is composed of the radius of the spine 

segment, a, which was normalized by the cortex thickness, t (Fig. 2.32: marked in red). Such a structural 

parameter, expressed as radius to thickness ratio a/t, was first established and utilized by Dawson and 

Gibson (2007), Karam and Gibson (1995a) and Karam and Gibson (1995b), who used the a/t ratio to 

characterize and model the shell-core system of plant stems, animal quills and bird feather rachis in 

terms of their mechanical efficiency.  

 

 
 
 
 
 
 
  

Fig. 2.32: BSE images and photograph of an aboral adult spine from Phyllacanthus imperialis. The BSE images display the 
cross section perpendicular to the c-axis and represent the area near to spine tip (right-hand side) and base (left-hand side). 
The spine can be divided into the medulla (M), radiating layer (RL) and cortex (C). The medulla and radiating layer form 
together the core of the spine segment. The thickness of the cortex and the radius of the spine segment is marked as t and a, 
respectively. Scale bar = 1 mm.  

 



K. Klang                                             2. Spines of Phyllacanthus imperialis: Mechanical characteristics 

 56 

Their model analyzes the resistance of several natural dense cylindrical shells supported by an elastic 

honeycomb- or foam-like cellular core to local buckling with that of an equivalent hollow shell without 

a compliant core. Thin-walled cylindrical shells are common in engineering for instance civil 

engineering structures, offshore oil platforms or aircraft fuselages. Typical shell radius to thickness 

ratios for a variety of cylindrical engineering structures can be seen in Fig. 2.33.  

 

 
 

Fig. 2.34 summarizes the a/t ratio dependency as a function of t, the porosity, ϕ, and of the area 

percentage of the medulla and cortex over the entire spine lengths, which includes the μCT data 

(Fig. 2.34: green squares) and evaluated BSE images (Fig. 2.34: red squares) from the section 2.1.4.6. 

The dimensions and relative values of the area occupied by the structural elements in cross section were 

also considered from the coplanar spine segments, which were used for the uniaxial compression (UC) 

tests (Fig. 2.34: black squares). The cortex thickness is inversely correlated with the a/t ratio in relation 

to the entire spine lengths and is larger by a factor of 2.5 at the spine tip compared to the spine base 

(Fig. 2.34 (A)). Low a/t ratios are, in principle, an indication for a large value of the cortex thickness. It 

emerged from the evaluation of the porosities of the structural areas that the cortex has the lowest 

porosity (15.2 ± 3.2 % (cf. section 2.1.4.2.2)) compared to the radiating layer and medulla with 

76.6 ± 3.0 % and 85.7 ± 2.8 %, respectively. A large proportion of the cortex is therefore associated 

with low values of porosity of the spine segment (Fig. 2.34 (B)). With an decrease of the thickness of 

the cortex, the porosity increases constantly up to a value of 67 %. The porosity of the spine segments 

does not increase significantly any further, even though the a/t ratios rises: from an a/t ratio of 9.4, the 

a/t ratio increases up to a value of 15.3 (Fig. 2.34 (B)). This range of a/t ratio is still characterized by an 

area percentage of the cortex between 20 to 35 % in the spine segments (Fig. 2.34 (C)). The medulla 

has, however, an area proportion of merley between 5 to 15 % (Fig. 2.34 (D)).  

It seems that the low percentage of the medulla is not able to significantly influence the porosity of the 

spine segments. Despite the fact that the segments belonging to the lower half of the spine are 

Fig. 2.33: Radius to thickness ratio a/t for several 
engineering cylindrical structures. Modified after Dawson 
and Gibson (2007). 
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characterized by small values of the area percentage of the cortex, the highly dense structure of the 

cortex (with a porosity of 15.2 ± 3.2 %) is influencing the porosity of the spine segments more than the 

structures constituiting the medulla.  

 

 
 
 

 

 

 

 
The Young’s modulus and the σc as a function of the a/t ratio of the spine segments are displayed in 

Fig. 2.35. The color bar indicates the volume fraction of the cortex in percent. The Young’s modulus 

and the σc increases when the a/t ratio becomes smaller (Fig. 2.35 (A), (B)), which is associated with a 

rise of the volume fraction of the cortex. The stiffness and strength of the spine segments is therefore 

accompanied with the thickness of the cortex. The volume fraction of the cortex influences also the 

fracture behavior of the spine segments. A differentiation is made between two failure modes, named 

failure mode I and II (Fig. 2.35 (A), (B)). The details of each failure mode are presented in section 

2.2.3.1.2.  

Fig. 2.34: Overview of the a/t ratio dependency as a function of the cortex thickness, t, the porosity, ϕ, and of the area 
percentage of the medulla and cortex over the entire spine lengths of Phyllacanthus imperialis. The correlations include the 
μCT data and evaluated BSE images from section 2.1.4.6. The dimensions and relative values of the area occupied by the 
structural elements in cross section were also considered from the coplanar spine segments, which were used for the uniaxial 
compression (UC) tests. The cortex thickness, the area percentage of the cortex and medulla are inversely correlated with the 
a/t ratios of the spine segments, which are displayed in (A), (C) and (D), respectively. The correlation of the a/t ratio with the 
porosity is shown in (B).  
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The uniaxial compression experiments of the spine segments reveal that the failure mode changes 

between an a/t ratio of 8 and 9.2 (Fig. 2.35 (A), (B): red arrows), which is in the porosity range between 

55 and 60 %. This range marks the turning point in the plot where the porosity and the a/t ratio are 

correlated with one another (Fig. 2.34 (B)). Spine segments from the lower half of the spine have larger 

a/t ratios of more than 9.2. These spine segments, characterized by a/t values of larger than 9.2, belong 

to failure mode I. Their values for the Young’s modulus and of the σc vary between 4.6 and 10.8 GPa 

and 45.8 and 73.8 MPa, respectively (Fig. 2.35 (A), (B)). Spine segments, however, which are 

characterized by smaller a/t ratios of 8 can be assigned to the upper half of the spine including the spine 

tip. Their values for the Young’s modulus and of the σc range between 6 and 16.4 GPa and 

43 and 113 MPa, respectively (Fig. 2.35 (A), (B)). These spine segments undergo failure mode II and 

are characterized by an enhanced stiffness and strength compared to the spine segments, which are 

associated with the lower half of the spine.  
 

 
 

 

 

 

 

2.2.3.1.2 Failure mode I and II of the spine segments  
Typical stress-strain curves and corresponding microphotographs of the failure mode I and II of the 

spine segments are illustrated in Fig. 2.36 and Fig. 2.37, respectively. Failure mode I shows a high 

plateau strength after the σc, which is similar to cellular materials (Ashby and Medalist 1983, Brezny 

and Green 1990). In contrast, failure mode II is characterized by a sharp decrease of the strength after 

the σc and followed by a constant low level of strength, which is approximately comparable to the brittle 

failure behavior in terms of the progression in the stress-strain curve. The fracture behavior of failure 

mode I and II can be described briefly as follows: failure mode I is characterized by a rigid connection 

of the cortex-core systems, because the cortex remains attached to the core during the entire compressive 

loading. Failure mode II is rather characterized by breaking up the core-shell system, since the cortex 

Fig. 2.35: Relationship of the material properties with the a/t ratio of the spine segments of Phyllacanthus imperialis. The 
Young’s modulus and the maximum compressive strength, σc, as a function of the a/t ratio is displayed in (A) and (B), 
respectively. The color bar indicates the volume fraction of the cortex of the spine segment. The red arrows show the transition 
from failure mode I to II of the spine segments. 
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flakes off the spine structure after reaching the load-limit of the spine segment (Fig. 2.37). The 

classification for cellular solids in compression by Gibson (2005) can be transferred to both failure 

modes (Fig. 2.36 (A), Fig. 2.37 (A)): a linear elastic regime, the ‘quasi-ductile’ regime (post collapse) 

and densification.  

After a brief alignment period and the subsequent linear elastic increase, the first drop in stress of the 

failure mode I is characterized by the generation of individual horizontal cracks, which occur mainly in 

the upper region of the spine segment (Fig. 2.36 (B), b). Those horizontal cracks continue to propagate 

around the whole spine segment (Fig. 2.36 (B), c). Originating from the horizontal ring crack, vertical 

cracks initiate to propagate through the spine segment (Fig. 2.36 (B), d: red dashed line). 

Simultaneously, the lower part of the spine segment is affected by crushing (Fig. 2.36 (B), d-e). After 

complete crushing of the upper section between the bottom and the ring crack by continued spallation, 

the stress oscillates on a kind of plateau region (Fig. 2.36 (A)). At the same time, a lath-like segment 

splits off from the spine structure (Fig. 2.36 (B), f). The size of the lath-like segment is small compared 

to the remaining spine segment. The stress oscillates further on a kind of plateau level irrespective of 

the material loss, which indicates the relative structural integrity of the remaining spine segment. 

Another lath-like segment flakes off from the spine structure, which is, in turn, associated with a 

significant drop in stress (Fig. 2.36 (B), g: red arrow). After more than 50 % crushing of the remaining 

spine segment, a significant increase in the stress is observed and marks the last stage of the failure 

mode I (Fig. 2.36 (A), (B), h). 

 

 
 

 

  

Fig. 2.36: Spine segment of Phyllacanthus imperialis under uniaxial compression. A representative stress (σ)-strain (ε) curve 
(A) is displayed of failure mode I. The microphotographs (B) showing the characteristic stages of the failure behavior of 
failure mode I.  
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In contrast to failure mode I, the failure mode II is characterized by a brief stress-strain period, in which 

the cortex displays a kind of mechanical reaction before reaching the σc of the spine 

segment (Fig. 2.37 A). After the linear-elastic increase, the cortex starts to dismantle slowly from the 

spine structure (Fig. 2.37 (D), b), which can be suggestively seen, since the color of the cortex appears 

to be lighter compared to the undamaged cortex (Fig. 2.37 (B), a). The dismantling of the cortex occurs 

at 65 MPa (Fig. 2.37 (A)). It is marked by an inflexion point, after which the gradient of the stress curve 

is lower than 65 MPa. The dismantling of the cortex occurs, when the σc acting on the cortex equals the 

stress, which is accompanied with the dismantling of the cortex. The dismantling balanced the 

maximized stress acting on the core-cortex interface. The longitudinal spallation of the cortex in larger 

quantities (Fig. 2.37 (A), (B), c) occurs after reaching the σc of the spine segment. Thus, the core 

becomes exposed (Fig. 2.37 (B), c and d). In few milliseconds, horizontal and vertical cracks propagate 

simultaneously through the core (Fig. 2.37 (B), e-f). The length and thickness of the vertical cracks 

becomes larger with continuous compression. After complete crushing of the upper section of the core 

(Fig. 2.37 (B), g and h), which is associated with a significant decrease in the stress, several lath-like 

segments separate thereafter from the remaining core. These lath-like segments tilt increasingly to the 

side with further compression (Fig. 2.37 (B), i). Due to the tilting of the segments, the stress drops again 

(Fig. 2.37 (A)). The last stage of failure mode II is also characterized by a densification of the remaining 

segments (Fig. 2.37 (A), (B), j-k)). 

 

 
 

 
Fig. 2.37: Spine segments of Phyllacanthus imperialis under uniaxial compression. A typical stress (σ)-strain (ε) curve of 
failure mode II is presented in (A). The corresponding relevant microphotographs of the fracture behavior are listed in (B).  
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2.2.3.1.3 Failure mode II: case ‘quasi bulging’ of the cortex 
Despite the dismantling, the cortex is able to ovalize minimally in order to balance the stress acting on 

the core-shell interface (Fig. 2.38 (A), a, b). This kind of minimal bulging happens between 

60 and 70 MPa (Fig. 2.38 (C)). The stress of the initial dismantling of the cortex (σ = 65 MPa), which 

were previously described, is in the same pressure range. The cross-sectional ovalization can be 

expressed through the following dimensionless parameter (Pan and Hsu 1999, Kyriakides and Shaw 

1982): 

 

ξlb =  
∆D
D0

 (2) 

 

The diameter D0 defines here the unloaded condition of the spine and ∆D is the change of the diameter 

with increasing loading (Fig. 2.38 (B)), which is here 7.8 mm and 0.7 mm, respectively. Therefore, the 

cross-sectional ovalization (ξlb) is 0.089. In order to avoid misunderstandings and to differentiate 

between the observed bulging of the cortex and the elastic buckling observed in natural materials 

(Dawson and Gibson 2007, Karam and Gibson 1995a, Karam and Gibson 1995b), the ovalization of the 

cortex is here referred to as ‘quasi bulging’. This ‘quasi bulging’ creates circumferential stress in the 

cortex (Gibson et al. 2010). When the circumferential stress exceeds the circumferential strength, it 

causes longitudinal chipping of the cortex (Fig. 2.38 (A) c, d: red arrows). Nevertheless, the cortex is 

capable to ovalize again (Fig. 2.38 (A), d), which is accompanied by an increase in stress until reaching 

the σc of the spine segment. Afterwards, the cortex is strongly fractured (Fig. 2.38 (A), e) and spalls off 

in large quantities or completely from the spine structure, which is associated with a large drop in stress 

(Fig. 2.38 (A), f).  
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2.2.3.1.4 Energy capacity of failure mode I and II 
The specific energy absorption per volume unit, Uv(ε), of the spine segments, which undergo failure 

mode I and II, has to be determined to quantify their mechanical effectiveness. The parameter Uv(ε) is 

composed of the ratio of the energy absorption, W(ε), and volume of the spine segment destroyed during 

compression, V(ε):  

 

Uv(ε) =  
W(ε)
V(ε)

 (3) 

 

The energy absorption, W(ε), is a measure of the total amount of energy that was dissipated during 

straining and calculated by integrating the area under the stress-strain curve, which is given as: 

 

W(ε) =  � σ (ε) dε
ε

0
 (4) 

 

Another parameter to characterize the energy absorption capacity of materials is the energy absorption 

efficiency. This parameter quantifies the failure behavior of the spine segments and was taken from 

metal foams literature. The energy absorption efficiency, η(ε), characterizes a materials ability to absorb 

Fig. 2.38: Spine segment of Phyllacanthus imperialis under uniaxial compression. (A): The stress (σ)-strain (ε) curve and 
corresponding microphotographs displaying the fracture behavior of the spine segment. It demonstrates the minimal bulging 
of the cortex, which is here referred as ‘quasi-bulging’. A higher magnification of the ‘quasi bulging’ (in green) is displayed 
in (B). The ovalization is defined as D/D0. The parameter D0 marks the diameter at unloaded condition of the spine segment, 
whereas the change of the diameter of the spine segment at increased loading is expressed as ∆D. 
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stress as it compresses by normalizing the energy absorbed by the maximum stress observed (Yu et al. 

2009): 

 

η(ε) =  
1

σmaxε
� σdε
ε

0
 (5) 

 

where σmax is the peak value of stress during the uniaxial compression. In this case, the value of the σmax 

equals σc.  

The curves of the Uv(ε) of the spine segments, which fracture by failure mode I and II, are displayed in 

Fig. 2.39 (A). Failure mode I remains on a relatively constant level of Uv(ε) at high strain rates, which 

is effective in dissipating energy. Failure mode II is rather characterized by a peak value of the Uv(ε) 

that decreases sharply and remains then on a constant low level of the Uv(ε). A boxplot summarizes the 

average values of the Uv(ε) and its distribution at the strain of 0.3, 0.5 and 0.7 (Fig. 2.39 (B)). The 

converted values of the Uv(ε) into the η(ε), which are related to the specific strain are presented in 

Fig. 2.39 (C). For spine segments, which undergo failure mode I, the average η(ε) drops to a value of 

65 % at a strain of 0.7. In contrast to the spine segments, which undergo failure mode I, the failure mode 

II is characterized by a huge drop in terms of the η(ε): the average values decrease down to 30 % at a 

strain of 0.7. The comparable large average η(ε) values of the spine segments, which are subjected to 

failure mode I, are an indication for an improved mechanical efficiency after reaching the σc of the spine 

segments. Both failure modes are characterized by quasi-ductility based on multiple fracturing, which 

means that the spine segments are able to dissipate energy through the generation of a horizontal and 

vertical crack system and segmentation.  

The difference between failure mode I and II is the intensity of the structural segmentation of the spine 

segments. During compressive loading, the exposed core of the spine segments undergoing failure 

mode II, is divided structurally into several lath-like segments, which tilt increasingly to the side with 

continuous loading. Therefore, the structural integrity is no longer ensured and the capability to absorb 

energy is thus reduced greatly. The rigid connection of the cortex–core system (a characteristic for spine 

segments undergoing failure mode I) is able to reduce the intensity of the structural segmentation. A 

complete separation of the spine segment in several small lath-like segments does not occur in this case.  

The major proportion of the spine segment remains the same, even though small lath-like segments flake 

off laterally. Since the quantity of the remaining material is larger compared to the spine segments 

characterized by failure mode II, the spine segments are therefore still able to dissipate energy even at 

high strain levels. This, in turn, results in comparable large average values of the Uv(ε) and η(ε) for 

spine segments undergoing failure mode I, which is due to the basically kept structural integrity of the 

spine segments even at high strain levels. 
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2.2.3.2 Uniaxial compression of the structural elements of the spine 
This section deals with the behavior of prepared cylinders under uniaxial compression, which contain 

certain isolated structural elements of the spine (cf. section 2.1.4.6: ‘structural elements’). Cylinders 

were tested in uniaxial compression, which contain either the medulla only or the radiating layer. The 

cores of the spine segments, which consist of the medulla and radiating layer as structural units (without 

the cortex), were uniaxial loaded in order to quantify in detail the mechanical effectiveness in 

comparison to the medulla- and radiating layer-cylinders. For this purpose, the material properties, 

failure modes and their energy capacities are demonstrated for all tested spine cylinders in a comparative 

way. This section ends with the display of the crack propagation (perpendicular to the c-axis) of a loaded 

core cylinder in order to combine the current knowledge of the failure behavior with the inner 

microstructure of a spine.  

 

2.2.3.2.1 Correlation of the structural elements of the spine with 
the material properties  

 

Fig. 2.40 displays the material properties, expressed as σc and Young’s modulus, as a function of the 

porosity of the uniaxial loaded cylinders, which contain isolated structural elements of the spine (see 

above). The porosity of the cores varies between 66 and 76 % (Fig. 2.40 (A), (B)). Their variation in the 

porosity values is caused by the volume fraction of the radiating layer and medulla. Both are 

Fig. 2.39: Specific energy absorption per volume unit, 
Uv(ε), and energy efficiency, η(ε), of spine segments of 
Phyllacanthus imperialis. The curves in (A) display the 
Uv(ε) as a function of the strain, ε. Failure modes I and II are 
colored in green and red. The boxplot in (B) and (C) shows 
the statistical distribution of the Uv(ε) and η(ε)of the failure 
mode I and II at certain strain levels.  
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characterized by different porosity values (cf. section 2.1.4.2.2). In addition, the natural variation of the 

porosity of both in the medulla and radiating layer has to be considered in this context as well. A larger 

volume fraction of the stereom structures, which constitute the medulla, increases the porosity of the 

cores. In turn, larger volume fractions of the stereom structures, which create the radiating layer, 

decrease the porosity of the cores. The porosities of the radiating layer-cylinders vary in a comparable 

smaller range of 69 and 72 % and are in good agreement with the porosity range (Fig. 2.40 (A), (B)), 

which was determined by the image analysis of the μCT data (cf. section 2.1.4.2.2; porosity ranges 

between 74 and 79 % of the radiating layer). 

Despite of the almost same porosity ranges, the values of the σc and for the Young’s modulus vary 

between core and radiating layer-cylinders (Fig. 2.40 (A), (B)). The values of the σc and for the Young’s 

modulus of the latter is in the range of 56 and 43 MPa and between 2.3 and 3.9 GPa, respectively 

(Fig. 2.40 (A), (B)). Comparatively larger values of the material properties have, however, the cores. 

The values of the σc varies between 53 and 74 MPa and the values for the Young’s modulus is in the 

range between 3.0 and 6.7 GPa (Fig. 2.40 (A), (B)).  

The medulla-cylinders have the smallest values of the σc and Young’s modulus: the values of the σc and 

Young’s modulus are less than 40 MPa and less than 3 GPa, respectively. Taking only the medulla-

cylinders and radiating layer-cylinder into consideration, the varying values of the material properties 

are clearly a function of the porosity and are also strongly correlated with the strut thicknesses of the 

medulla and radiating layer. In comparison to the radiating layer, the medulla is characterized by 

significantly smaller strut thicknesses (cf. section 2.1.4.2.1). Section 2.1.4.2.1 has shown that the 

thickness of the struts of the stereom structures, which constituting the medulla are reduced by a 

factor > 2 compared to the strut thickness of the radiating layer.  

 

 
 
 
 
  

Fig. 2.40: A correlation of the maximum compressive strength, σc, and Young’s modulus with the porosity, φ, of the cores, 
radiating layer-cylinders (RL) and medulla-cylinders is given in (A) and (B), respectively.  
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2.2.3.2.2 Failure mode of ‘medulla-cylinders’ and ‘radiating layer 
cylinders’ 

 
The fracture behavior of the radiating layer-cylinders and the medulla-cylinders is displayed in Fig. 2.41. 

First the fracture behavior of the radiating layer-cylinders is described below. After the linear elastic 

increase, the radiating layer-cylinder balances the stress by crumbling (Fig. 2.41 (A), b: red arrow) and 

flaking of smaller parts from the upper section of the cylinder (Fig. 2.41 (A), c). After crumbling of the 

thinned upper section (Fig. 2.41 (A), d: red arrow), smaller parts flake off laterally from the upper 

section (Fig. 2.41 (A), e). The crumbling and flaking are associated with a gradual loss of the stress 

(Fig. 2.41 (A: green arrow 1)). The remaining lower section is mainly crushed at high strain levels, 

which is, in turn, accompanied with a gradual increase in the stress (Fig. 2.41 (A), f-g, blue arrow 2). 

The last stages of compression are marked by a stress-plateau, which decreases gradually through 

continuous crushing (Fig. 2.41 (A), h-j, blue arrow 3). The fracture behavior of medulla-cylinders is 

quantitively similar (Fig. 2.41 (B)), but the stress here is significantly lower compared to the stress 

acting on the radiating layer-cylinders. The ‘quasi’ ductile regime of the medulla is characterized, on 

the one hand, by a gradual decrease of the stress (Fig. 2.41 (B, blue arrow 1)) and, one the other hand, 

by an gradual increase of the stress at high strain levels (Fig. 2.41 (B, blue arrow 2)). This, in turn, means 

that the same fracturing mechanisms that were characterized for the radiating layer-cylinders act also 

on the medulla-cylinders, which are as follows: crumbling, flaking and crushing.  

 

 
 
 
 
 
  

Fig. 2.41: The stress (σ)-strain (ε) curves of the radiating layer-cylinder (A) and medulla- cylinder (B). The cylinders were 
tested under uniaxial compression. The microphotographs on the right-hand side demonstrate the fracture behavior of the 
radiating layer-cylinder. 
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2.2.3.2.3 Energy capacity of the ‘medulla-cylinders’, ‘radiating 
layer cylinders’ and the core 
 

The curves of the Uv(ε) in dependence of the strain for the cores, radiating layer- and medulla-cylinders 

are displayed in Fig. 2.42. The curve of the Uv(ε) of the core is characterized by a peak value, but 

decreases gradually with increasing strain (Fig. 2.42 (A)). The Uv(ε)-strain curves of the compressed 

radiating layer- and medulla-cylinder, show, however, quantitively a smoother decrease of the Uv(ε) 

after achieving the maximum value of the Uv(ε). A boxplot (Fig. 2.42 (B)) summarizes the average 

values of the Uv(ε) distribution of the cores, radiating layer- and medulla-cylinders as a function of the 

strain (ε = 0.3, 0.5, 0.7). The converted values of the Uv(ε) into the η(ε) are displayed in Fig. 2.42 (C). 

The η(ε) values of the radiating layer-cylinders are large in comparison to the cores and medulla-

cylinders even at high strain levels. They are characterized by an average η(ε) value of 76 % at a strain 

of 0.7, whereas the cores have an average value of 47 %. In contrast to the cores and radiating layer-

cylinders, the lowest average values of the η(ε) are achieved by the medulla-cylinders over the entire 

strain in principle. At a strain of 0.7, the average value of the η(ε) drops to 43 %. 

Varying η(ε) values are an indication for different effective fracture modes, which are, in turn, dependent 

on the structure and form of the specimen. Section 2.2.3.2.2 has demonstrated that radiating layer-

cylinders mainly crumble under compression. Simultaneously, small parts of the radiating layer-

cylinders flake off laterally. On the whole, their material losses are comparatively low. Therefore, the 

radiating layer-cylinders tend to remain their structural integrity compared to the cores, which are 

affected by structural segmentation into several lath-like parts. Consequently, the structural integrity of 

the cores is weakened. In this way, the cores are not able to absorb the high stress anymore compared 

to the radiating layer-cylinders at the same strain.  

The fracture mode of crumbling, which occurs at radiating layer-cylinders, indicates that each pore row 

of the stereom network (perpendicular to the c-axis) is crushed in a step-wise manner. The cracks cannot 

distribute continuously in the strut structure, since the cracks, which propagate along the struts, are 

stopped by the pores. Consequently, the pores lead to crack blunting. The constant level of energy 

consumption of the radiating layer-cylinders, which are characterized by a comparatively low drop of 

the Uv(ε) at high strain levels, indicates that continuously new energy has to be invested in order to 

induce new cracks into the undisturbed surface of further struts, since the pores act as crack arrestor. 

The medulla-cylinder and the radiating layer-cylinder are both subjected to similar failure modes (cf. 

section 2.2.3.2.2). Both are characterized by different porosities, which affect directly the quantity of 

η(ε). 
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2.2.3.2.4 Crack propagation in the core 
 

The cores have a larger stiffness and strength compared to radiating layer-cylinders, although both share 

approximately similar porosities. Differences in the strength and stiffness are due to the internal 

configuration of the strut network. Fig. 2.43 displays the propagation of cracks in the core. The uniaxial 

loading of the core was stopped after the first acoustic signal occurred. 

Two stages of cracks are visible in Fig. 2.43: the initial stage and an advanced stage of crack 

propagation. The initial stage is characterized by the fact that the crack starts to propagate directly along 

the border between the medulla and radiating layer (Fig. 2.43: red box). The crack propagation along 

the medulla-radiating layer-border indicates that the stress is mainly concentrated at the transformation 

zone. This transformation zone can be seen as interface between the radiating layer and medulla. Hence, 

the core comprising the radiating layer and medulla can be simplified as core-shell system. Several 

studies on natural core-shell systems under uniaxial compression (Karam and Gibson 1995a, Karam and 

Gibson 1995b) have shown that the stress in the core is maximized at the shell-core interface and decays 

radially inward. This analogy to the Karam and Gibson models (Karam and Gibson 1995a, Karam and 

Gibson 1995b) is limited to the stress distribution in the initial stages of uniaxial compression only. The 

reason for this limitation is that the porous core-shell systems by Karam and Gibson (1995a) are 

subjected to elastic asymmetrical buckling of the shells supported by elastic cores at high strain levels, 

whereas the simplified core-shell system (core = medulla, shell = radiating layer) of the spine is affected 

here by quasi-brittle fracturing as described further below.  

Fig. 2.42: Specific energy absorption per volume unit, 
Uv(ε), and energy efficiency, η(ε), of radiating layer-
cylinders (RL), medulla-cylinders (M) and cores of the spine 
of Phyllacanthus imperialis. The plot in (A) display the 
various Uv(ε) capabilities depending on the strain (ε). The 
boxplot in (B) and (C) show the statistical distribution of the 
Uv(ε) and η(ε) at certain strain levels.  
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With further compressive loading, the crack propagates outwards along the stereom layers of the 

radiating layer. A segment starts to separate from the core in this way (Fig. 2.43). From this it appears 

that the lath-like separation of the spine at high strain levels is structurally caused by the wedges of the 

spine interior. The wedges give the direction of the crack propagation and limit therefore the size of the 

separated segments due to the shaping of the wedge system. The wedge-like interlocking of the lateral 

side branches of the medulla with the stereom layers of the radiating layer, which creates by itself their 

own structural unit, ensures a large mechanical stability of the core. 

 

 
 

 

 

 

 

2.2.4. Discussion  
2.2.4.1 Mechanical prediction by pore models  
 

A comparison of the observed data with mechanical model predictions can provide insights into the 

compressive deformation behavior of the spine segments of Phyllacanthus imperialis. The semi-

empirical analytical models of Gibson and Ashby (1997) relate to the deformation mechanisms of cell 

walls and edges. They differentiate between the open-cell and closed-cell pore morphology. These 

models have been applied to different mechanical properties such as fracture toughness, creep or 

Young’s modulus.  

Fig. 2.43: BSE images of the core of the spine Phyllacanthus imperialis. The core was uniaxial loaded until the first acoustic 
signal occurred. The initial crack propagation near to the medulla is displayed in a high magnification in the red box. Advanced 
stage of the crack propagation is displayed on the left-hand side, where the crack is deflected along the stereom layer. 
Scale bar = 1 mm. 
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The Young’s modulus of brittle cellular solids is related to a measure of relative porosity �ρ
∗

ρS
� for the 

closed-cell and open-cell foam respectively as  

 

Closed-cell foam: 
E∗ =  ES  �ϕedge2 �

ρ∗

ρS
�
2

+ �1 − ϕedge�
ρ∗

ρS
+  

ρ0 (1 − 2 ν)
ES (1 − ρ∗/ρS)

� (6) 

 

Open-cell foam: 
E∗ =  ES  C1 �

ρ∗

ρS
�
2

 (7) 

 

Eq. (6) and (7) describe the material failure for brittle foams and are related to the Young’s modulus of 

the materials. The density of the cell wall and of the whole foams is ρS and ρ∗, respectively. The 

parameter ES  corresponds to the Young’s modulus of the corresponding solid cell wall material. Gibson 

et al. (2010) use a Young’s modulus for biogenic calcite of 77 – 79 GPa and Presser et al. (2009a) give 

a Young’s modulus of 76.6 ± 1.9 GPa. A value of 78 GPa has been adopted for ES . The skeletal material 

of the spine is a natural composite material, due to the varied MgCO3 concentrations, minor quantities 

of organic matter and ACC in the CaxMg1-xCO3 structure of the spine. Therefore, the value of ES  can be 

considered here as an approximation to the skeletal composite material of the spine. The parameter 

ϕedge is the solid fraction contained in the cell edges (the remaining fraction 1-ϕedge is in the cell faces). 

The first term of Eq. (6) accounts for deformation in the cell edge, the second term gives the contribution 

of cell stretching and the third term is the contribution of the gas pressure (where the initial gas pressure 

in the cell and the Poisson’s ratio of the foam is given as ρ0 and ν, respectively). The parameter ϕedge 

of 1 and the Poisson ratio of calcite of 0.322 (Ito et al. 2017) have been taken into account for Eq. (6). 

Gas trapped in cells can increase the stiffness, but this effect is negligible at a gas at atmospheric pressure 

of 0.1 MN/m2 to the modulus of the foam (Roberts and Garboczi 2001, Gibson et al. 2010). The 

atmospheric gas pressure has to be considered for elastomeric foams of low relative density less than 

10 % (Gibson et al. 2010). C1 is an empirical geometric constant describing the cell geometry. Finite 

element analysis of random three-dimensional Voronoi foams with struts of circular cross section find 

that C1 = 0.8 (Vajjhala et al. 2000).  

The equations, which relate to the Young’s modulus of the materials, have been chosen, because the 

Young’s modulus is a well-defined physical value, which can be read from text books, instead of the 

value for the modulus of rupture (MOR),  σS , of the solid cell wall material.  

Under compression, the cell walls of open foams bend at low �ρ
∗

ρS
� and with increasing (ρ

∗

ρS
) of larger 

than 0.1 in the elastic deformation regime. In this case, the contribution of the compression of cell walls 

becomes more significant. For closed-cell foams, the cell edges both bend and contract, while 

membranes that form cell faces stretch under compression.  
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Pabst and Gregorová (2014) present another pore model to cover the brittle fracture behavior. They 

expanded a spheroidal pore shape model of Kingery and Coble (1956) by introducing the Eshelby 

(1957)-Wu (1966) exponent, [E], to describe the Young’s modulus-porosity relation by a power law 

equation as follows:  
 

E∗ =  ES (1 − ϕ)[E] (8) 
 

The Eshelby (1957)-Wu (1966) exponent is directly related to a geometrical shape factor of the pore 

expressed as aspect ratio that covers anisometric and isometric pore shapes with 3-fold rotation 

symmetry. Under consideration of the Poisson’s ratio for calcite (ν = 0.322, Ito et al. 2017), the Eshelby 

(1957)-Wu (1966) exponent ranges from 2 - ∞ for oblate pores and 2 - 2.3 for prolate pores in loading 

direction. Fig. 2.43 displays the Young’s modulus as a function of porosity, ϕ, of the spine segments, 

cores, radiating layer- and medulla-cylinders.  

Fitting Eq. (8) to the plotted data, the relationship between the Young’s modulus and porosity of the 

plotted data covers an Eshelby (1957)-Wu (1966) exponent between 3.0 and 2.0 (Fig. 2.44), which 

reflects well the dominant pore shapes from spherical to columnar. The prediction by the open-cell 

model, which has a similar, but not identical curve progression as the curve given by an Eshelby (1957)-

Wu (1966) exponent of 2.3, can be approximated by the obtained data as well. The closed-cell model 

shows no agreement with the obtained data at all. The smallest deviation from the curves defining the 

prediction of the open-cell model and covering an Eshelby (1957)-Wu (1966) exponent of 2.3 display 

the cores, radiating layer- and medulla-cylinders. Spine segments with an a/t ratio of larger than 11 

display a comparable large deviation. Their values vary between an Eshelby (1957)-Wu (1966) exponent 

of 2 and 3. Spine segments, however, with an a/t ratio of lower and/ or equal to 8 accumulate in a larger 

number at the curve belonging to an Eshelby (1957)-Wu (1966) exponent of 3. The deviation of the 

latter data from the pore model prediction for prolate pores describing an Eshelby (1957)-Wu (1966) 

exponent of 2.0 - 2.3 is probably caused by the large volume fraction of the cortex in the spine segments.  

 
 

  

Fig. 2.44: Plot of the Young’s modulus as a 
function of the porosity, ϕ, of the spine 
segments of Phyllacanthus imperialis. The 
data of the spine segments are plotted as 
open squares, which are defined by their a/t 
ratio (colored squares). The results of the 
radiating layer-cylinders (RL), medulla-
cylinders (M) and the cores are displayed as 
white and black square and grey triangle, 
respectively. The open-cell and closed-cell 
model by Gibson and Ashby (1997) is 
displayed as solid black line and dashed 
black line. The Pabst and Gregorová (2014) 
prediction for different Eshelby-Wu 
exponents, [E], is given as dotted lines.  
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2.2.4.2 The strength – modulus chart 
 

Fig. 2.45 summarizes the relationship of strength and stiffness of all uniaxial tested spine materials 

(medulla-, radiating layer-cylinders, cores and spine segments with cortex). In principle, materials, 

which are characterized by a particularly high resilience (viz. the ability to bend without breaking 

according to Gibson et al. (2010)), are located rather on the right-hand side (see Fig. 2.45). The medulla- 

and radiating layer-cylinders are located on the left-hand side in Fig. 2.45 indicating a reduced resilience 

compared to the cores and spine segments. As described in section 2.2.3.2, varying values of the strength 

and stiffness of the medulla- and radiating layer-cylinders are a function of the porosity (see Fig. 2.40). 

The cores display a larger strength and stiffness compared to the medulla- and radiating layer-cylinders. 

As stated in section 2.2.3.2.1 and section 2.2.3.2.4 before, the cores require less material than the 

radiating layer-cylinders. Therefore, the core is more efficient in terms of the ability to provide stiffness 

and strength with the minimal use of material. The cores, radiating layer- and medulla-cylinders can be 

approximated by a linear relationship between the σc and Young’s modulus, which is defined as follow: 

 
σc
E

= 0.016 (9) 

 

The medulla-cylinders differ slightly from the function in Eq. (9), whereas the radiating layer-cylinders 

and cores cover well the linear relationship. The values of σc and for the Young’s modulus of the spine 

segments cannot be approximated with the function in Eq. (9), the data distribute randomly on the right-

hand side of the plot. The stiffness of the spine segment is increased by addition of an almost dense shell 

like the cortex on the cores. In contrast, the strength of the segments is not further increased significantly 

through the addition of the cortex on the cores. The mechanical performance seems to be relatively equal 

of spine segments consisting of an a/t ratio of 11 - 8 and 11 - 15, because the data sets of both scattering 

in the same plateau-like numerical range. Both latter spine segments are characterized by failure mode I 

(cf. section 2.2.3.1.1). Spine segments, however, which have an a/t ratio of lower than 8, are 

characterized by larger values of the strength and stiffness and fracture by failure mode II (cf. section 

2.2.3.1.1). They distribute in a rather linear way in Fig. 2.45 and can be approximated by the function 

of the σc and Young’s modulus as follows:  

 
σc
E

= 0.0069 (10) 

 

In principle, the larger values of the strength and stiffness are an indication for a larger resilience 

compared to spine segments, which are characterized by an a/t ratio of larger than 8. As mentioned in 

section 2.2.3.1.1, the a/t ratio of the spine segments correlates with the position in the spine (along the 

c-axis): Spine segments with an a/t ratio of larger than 8 belong to the lower half, whereas segments, 
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which are characterized by an a/t ratio of lower than 8, can be assigned to the upper half of the spine of 

Phyllacanthus imperialis.  

 

 
 

 

2.2.4.3 Implications of the function of the structural elements of the 
aboral spine  
 

The level of compressive loading condition acting on the sea urchin spine segment in the experimental 

setting (> 500 N) is significantly higher than the mechanical loading conditions, which prevail in the 

natural habitat of the sea urchins. Such compressive loading conditions in the experimental setting would 

probably press the spine into the test and therefore fracture the test of the sea urchin, before the spine 

would fracture or dissipate energy. Thus, the ability to dissipate energy advantageously is not necessarily 

an adaptation to its mechanical environment, but rather a positive by-product of the porous, 

hierarchically organized material by itself. Nevertheless, the results of the mechanical testing of the 

spine segments offer room for interpretation for potential implications of the function of the structural 

elements of the aboral spine of Phyllacanthus imperialis. As stated in section 2.1.5, the sea urchins 

wedge themselves during the day time inside the reef cavities in order to protect themselves against the 

high hydrodynamic environment and predators. The spine tip is directly in contact with the hard 

substrate due to the wedging. A high resilience at the spine tip is therefore required, since a high punctual 

load, which lasts for hours, act on the tip of the spine. The high-volume fraction of the cortex at the 

spine tip is thus useful to enhance the resilience in principle. The lateral protrusions of the cortex (cf. 

section 2.1.4.5.2) at the spine tip contribute not just as additional thickening, but may also dissipate the 

principal stress advantageously.  

Fig. 2.45: Relationship of the maximum compressive 
strength, σc, to the Young’s modulus for spine segments 
of Phyllacanthus imperialis. The plot summarizes the 
strength and stiffness of the spine segments in dependency 
of their a/t ratio, of radiating layer-cylinders (RL) and 
medulla-cylinders (M).  
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The ‘quasi bulging’ of the cortex (failure mode II) occurring in spine segments from the upper half of 

the spine (Fig. 2.45) might be an indication for a reduced rigidity, which, in turn, emerged due to 

evolutionary adaption of the sea urchin to its ecological niche. In principle, a solid solution hardening 

of the material is achieved by the Mg incorporation in the crystal structure (Magdans and Gies 2004). 

Dery et al. (2014) have shown that the average Mg concentration in the cortex is 5.1 mole percent 

MgCO3. This is significantly lower than the concentrations observed in the medulla (5.9 mole percent 

MgCO3) and the radiating layer (8.1-0.5 mole percent MgCO3). A decrease of the Mg in the cortex 

reduce also the degree of brittleness, which allows therefore minimal elastic reactions. These minimal 

elastic reactions are expressed in pure compressive loading of the spine segments as ‘quasi bulging’. 

The ‘quasi bulging’ prevents a catastrophic brittle failure of the cortex, when the σc is reached on the 

cortex. From a purely material-specific perspective, the stress is balanced by the modus of ‘quasi 

bulging’ leading to an increase of the σc of the spine segment (section 2.2.3.1.3), which is also a positive 

feature of the spine material per se. Phyllacanthus imperialis does not exploit this characteristic in its 

ecological niche. A minimal degree of elasticity of the cortex at the spine tip is nevertheless required, 

since the sea urchin has to modify the pressure for the wedging according to the prevailing 

hydrodynamic conditions. Changing flow velocities and the occurrence of predators imply a highly 

dynamic environment for the sea urchin. It further means that the spine is subjected to constant 

dynamical changes of the mechanical environment during the wedging between the reef cavities. The 

pressure acting on the spine is constantly readjusted to the changes of the environment. Therefore, the 

punctual load at the spine tip fluctuates during the wedging. The cortex at the spine tip has to react also 

dynamically in form of a minimal degree of elasticity. A cortex, which is too rigid would directly lead 

to the actual material fracture of the upper spine segment. This interpretation of the results extends the 

rather chemical function of the cortex given by Dery et al. (2014). They have argued that the low Mg 

concentration in the cortex compared to the inner core and the increased density of the cortex is 

responsible for the large acidification resistance. Probably the large acidification resistance enabled 

them to survive the Permian-Triassic crisis, which was associated with severe acidification events of the 

ocean. 

 
2.2.5. Conclusions  

The spine of Phyllacanthus imperialis performs several functions from the mechanical point of view. 

The respective mechanical function is dependent on the proportion of the cortex and core, which is, in 

turn, related to the position in the spine (along the c-axis). Varying proportions of the cortex and core 

influence the resilience and the intensity of the energy dissipation, which are here concluded as 1) and 

2):  

 

1) An a/t ratio of smaller than 8 is a characteristic for segments from the upper half of the spine. The 

upper half of the spine is characterized for its high resilience to mechanical stress. Just before reaching 
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the σc, the segments from the upper half of the spine display a kind of ‘quasi bulging’ of the cortex, 

which is probably an indication for a reduced degree of brittleness/ rigidity. This is related to lower Mg 

concentration in the cortex compared to the inner core. A decrease of the Mg reduces also the degree of 

brittleness or rigidity in the cortex, which allows thus a minimal elastic reaction expressed as ‘quasi 

bulging’ of the spine segment under compressive loading. The ‘quasi bulging’ mode of the spine 

segment balances the stress leading to an increase of the σc of the spine segment.  

 

2) Segments from the lower half of the spine display an a/t ratio of larger than 8 and are characterized 

by a rigid cortex-core connection. They display comparatively large values of the effective energy 

absorption at advanced stages of compression, which is a similar behavior to cellular materials under 

uniaxial compression. The reason for this is that the cortex keeps widely the structural integrity of the 

segments and provides thus that the degree of segmentation is kept as low as possible. Conversely, 

segments from the upper half are strongly subjected to structural segmentation, since the cortex was 

spalled off right after reaching the load-limit. Therefore, the core is not stabilized anymore by the cortex. 

The lower half of the spine has been optimized towards keeping further material losses as low as 

possible, when the upper half of the spine does not exist anymore.  

 

The varying mechanical efficiencies of the cortex can be assigned and limited to specific areas in the 

stress-strain diagram: the cortex, which is present in the upper half of the spine, is highly effective at the 

beginning of the compression. The cortex in the lower half of the spine is, however, significantly 

effective after the first material failure happens, which means at high strain levels. Overall, the cortex 

performs several functions on the mechanical point of view. 

 

A comparison of the material properties of the radiating layer and core representing varying strut 

configurations, but similar densities have shown that the core is characterized by larger strength and 

stiffness at high strain levels. The reason for the differences in the material properties of both is the 

varying designs of the strut network’s internal configuration. The relation of the mechanical 

characteristics with the microstructure of the core is listed below as item 3): 

 

3) The inner structure of the spine, the core, is optimized in terms of the ability to provide stiffness and 

strength with a minimal use of material. The wedge-like interlocking of the lateral side branches of the 

medulla with the stereom layers of the radiating layer, which creates by itself their own structural unit, 

ensures a high mechanical stability of the core. The lath-like separation of the spine at high strain levels 

is structurally caused by the wedges of the spine interior. The wedges give the direction for the crack 

propagation and limit therefore the size of the separated segments due to the shaping of the wedge 

system. 
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Since the sea urchins wedge themselves between the reef cavities, a high resilience at the spine tip is 

therefore required to withstand the high punctual loading, which can last for hours. The high-volume 

fraction of the cortex at the spine tip thus enhances the resilience in principle. The lateral protrusions of 

the cortex at the tip of the spine contribute not just as additional thickening, but also might dissipate the 

principal stress advantageously. The cortex is characterized by lower Mg concentrations compared to 

the inner structural elements of the spine. Low Mg concentrations reduce the rigidity of the cortex and 

allow minimal elastic reaction that was experimentally visible under extreme loading conditions of the 

spine segment (‘quasi bulging’). A minimal degree of elasticity of the cortex at the spine tip is 

reasonable, since the sea urchin have to modify the pressure for the wedging according to the prevailing 

hydrodynamic conditions. The pressure acting on the spine is constantly readjusted to the changes of 

the flow velocities and the occurrence of predators.  
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3. Technical transfer into ceramics 
 

3.1 Freeze-casting  
 

3.1.1 Introductory remarks  
In order to transfer the spine microstructure of Phyllacanthus imperialis, freeze-casting as 

manufacturing method was utilized to fabricate ceramic lab-scale samples. Cellular unidirectional cell 

geometries and cell structures with varying cell sizes can be manufactured using the freeze-casting 

technique. More details about freeze-casting as manufacturing technique are presented in section 1.4. 

Gelatin and agar as additives in an alumina-water suspension have been used to fabricate ceramics with 

a high interconnectivity between the cell walls. Ceramics containing different cellular structures and 

their mechanical characteristics and evaluation in terms of the degree of interconnectivity of the cell 

walls are presented in this section. The applicability of the prediction of mechanical properties of the 

Gibson and Ashby models and of the honeycomb model provided by Zhang and Ashby in a broader 

view for freeze-cast alumina ceramics are discussed in this chapter. Furthermore, a proposed 

proportionality of strength and stiffness was established and implemented into the spheroidal pore model 

by Pabst and Gregorová (2014). To what extent the stiffness and strength relationship is applicable into 

the Pabst and Gregorová (2014) formalism is also discussed at the end of this chapter.  

 

3.1.2 Material and methods  
Unidirectional alumina scaffolds were manufactured via the freeze-casting route from a water-based 

alumina suspension. As additives gelatin was used on one hand and agar on the other. In the following 

the preparation of the alumina-gelatin-water and alumina-agar-water suspension is described. The 

design of the molds for the alumina slurry, the condition of the sublimation and sintering are presented 

afterwards.  

 
3.1.2.1 Gelatin as additive 

Tab. 3.1: Concentration of the solid loading of Al2O3 and gelatin of the water-based alumina suspension.  

Name 𝜙𝜙 sintered 
foam 

Total concentration of 
Al2O3 

Total concentration of 
gelatin with regard to 

water 
Dolapix CE 64 

 (vol.%) (wt.%) (vol.%) (wt.%) (vol.%) (cm3) 

G_6.8_16.5 77 - 79 44.0 16.5 5 6.8 0.47 

G_3.5_16.5 77 - 79 44.0 16.5 2.5 3.5 0.47 

G_1.8_16.5 77 - 79 44.0 16.5 1.25 1.8 0.47 

G_9.9_14.4 - 40.0 14.4 7.5 9.9 0.20 

G_6.8_14.4 86 - 87 40.0 14.4 5 6.8 0.20 

G_3.5_14.4 82 - 84 40.0 14.4 2.5 3.5 0.20 
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Water suspensions of gelatin powder (Ewald-Gelatine GmbH, Bad Sobernheim, Germany) were 

prepared with a solid loading of 9.9, 6.8, 3.5 and 1.8 vol.% (Tab. 3.1). Homogenization of the gelatin 

suspension was carried out at 60 – 70 °C by stirring for 1 h. Under continuous stirring of the gelatin 

suspension, the 99.99 % α-alumina powder (TM-DAR Taimicron of Taimei Chemicals Co, 

d50 = 1.2 μm, ρ = 3.98 g/cm3) was added slowly in small measures to obtain a solid load of 16.5 and 

14.4 vol.% by dispersing them with 0.47 and 0.20 cm3 of Dolapix CE 64 (Zschimmer & Schwarz GmbH 

& Co KG Chemische Fabriken, Lahnstein, Germany), respectively (Tab. 3.1). The volume of Dolapix 

was fixed at 0.5 % of the solid content (recommendation of the manufacturer). The dispersion was 

carried out with an ultrasonic processor UP400S (Hielscher Ultrasonics GmbH, Teltow), equipped with 

20-mm titanium sonotrode (Amplitude 50 %, cycle 0.5 s), for every alumina-gelatin suspension for 

5 minutes. A constant rotation of the beaker at the titanium sonotrode ensured a homogeneous 

distribution of the alumina particles and temperature. The temperature of the alumina-gelatin suspension 

was monitored and kept below 80 °C to avoid hydrolysis of the gelatin.  

 

3.1.2.2 Agar as additive 
Tab. 3.2: Concentration of the solid loading of Al2O3 and agar of the water-based alumina suspension. *pH value = 4.0 with 
citric acid.  

Name 𝜙𝜙 sintered 
foam 

Total 
concentration of 

Al2O3 

Total concentration of 
agar with regard to 

water 

Total concentration of 
sucrose with regard to 

water 

Dolapix 
CE 64 

 (vol.%) (wt.%) (vol.%) (wt.%) (vol.%) (wt.%) (vol.%) (cm3) 

A_4.3_8.6 86 30 8.6 2.5 4.3 5 3 0.13 

AC_4.3_8.6 84 30 8.6 2.5 4.3 5* 3* 0.13 

A_4.3_5.9 90 20 5.9 2.5 4.3 - - 0.1 

 

 

The manufacturing of the foams based on three different water suspensions of 100 % pure agar powder 

E406 (Special ingredients Ltd., United Kingdom) with a solid loading of 4.3 vol.%. A homogenized 

suspension was achieved at a temperature of 60 – 90 °C under continuous stirring for 2 h. One ceramic 

was prepared with a water-agar suspension only (Tab. 3.2: A_4.3_8.6). The addition of 99.5 % sucrose 

(Sigma, St. Lois, MO) and a solid loading of 3 vol.% in the water-agar suspension formed the basis for 

two additional ceramics, whereby one water-agar-sucrose suspension was further manipulated by a 

reduction of the pH (pH = 4.0 of the slurry) using citric acid (Tab. 3.2: AC_4.3_8.6). A homogenized 

water-agar-sucrose suspension was achieved at a temperature in the range of 60 – 90 °C after 2 h of 

stirring. Under continuous stirring of all three suspensions and retaining the temperature between 

60 – 90 °C, the alumina powder was added slowly in small measures. A solid loading of 5.9 vol.% 

alumina powder was achieved in the water-agar suspension. The water-agar-sucrose suspensions, 

however, comprise a solid loading of 8.6 vol.% alumina powder. The appropriate volume of 
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Dolapix CE 64 of each slurry was adjusted according to the solid loading (Tab. 3.2). By using the 

procedure stated in section 3.1.2.1 the alumina particles were kept in suspension.  

 

3.1.2.3 Mold designs, sublimation and sintering conditions  
Tab. 3.3: Temperature, pressure and duration of the sublimation phase.  

Temperature (°C) Pressure (mbar) Duration (h) 

-60 0.1 22 

-30 0.1 22 

-20 0.05 22 

0 0.05 16 

+20 0.03 12 

+50 0.03 18 

+50 1013 16 

 

 

Polytetrafluorethylene (PTFE) tubes (with an inner diameter of 25 mm and a height of 35 mm) were 

used as molds that were placed on a copper plate with a thickness of 3 mm. Before filling the alumina 

slurry into the PTFE tubes, the copper plate was cooled at a temperature of -60 °C. After 4 h of 

directional freezing, the frozen specimen was carefully removed from the PTFE tubes by slightly heating 

the PTFE tubes. The temperature, pressure and duration of the sublimation of the ice crystals under 

vacuum are listed in Tab. 3.3. The obtained green bodies were sintered in a conventional furnace. Each 

intermediate temperature was achieved with a constant ramp speed of 1 °C/min. In the first stage the 

temperature was increased to 550 °C and dwelled for 2 h; subsequently the specimens were heated to 

900 °C and dwelled for 2 h. Finally, the target sintering temperature of 1350 °C was reached and held 

for 4 h. 

The basic mold design was also manipulated through the addition of silicon and copper plates (Fig. 3.1). 

Two mold designs were tested with a selected slurry composition, which corresponds to the ceramic 

G_6.8_16.5 (Tab. 3.1). Mold design I consists of triangle-shaped silicon slices, which are arranged in a 

circular array and which alternate with the copper plate at the bottom of the mold (Fig. 3.1). The side 

walls are lined with copper stripes (thickness = 500 μm), which alternate with areas consisting of Teflon. 

The side walls of the mold design II are only lined with a thin copper film (thickness = 500 μm; Fig. 3.1). 

In addition, a silicon ring (width = 4 mm) was placed at the bottom of the mold (Fig. 3.1). It covers the 

outermost area of the copper plate only. The bottom of the inner circle was left empty.  
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3.1.2.4 Microstructural characterization 
The microstructure of the ceramics was investigated with a scanning electron microscope (Tabletop 

Microscope TM3030 plus, Hitachi Ltd., Tokyo, Japan) in the backscatter electron modus (BSE) at an 

acceleration voltage of 15 kV and at a working distance of 6800 μm. Pore sizes (pore axis length and 

pore diameter) were determined utilizing the software Fiji 2.0.0 (ImageJ). In total, 100 pores were 

considered for each ceramic species.  

From the ceramic A_4.3_5.9, the thickness and pore axis length were determined via μCT scans by 

using Fiji 2.0.0. The μCT scans were performed at the University of Freiburg (Plant Biomechanics 

Group). A Skyscan 1174 (Bruker), which operates at 35 kV and 5 W was used for the scan of the ceramic 

specimen. The reconstructions of the μCT data were performed utilizing the Skyscan software. The pixel 

size in the μCT image is 3.5 μm. Three-dimensional views of the 2*2*2 mm section were created in 

Fiji 2.0.0.  

The porosity of the ceramics was determined using Eq. (1). Instead of the density of calcite, a theoretical 

density of α-Al203 of 3.97 g/cm3 (Sun et al. 2016, Hautcoeur et al. 2018) was implemented in Eq. (1). 

 

3.1.2.5 Strut network 
By using the plugin ‘Angiogenesis Analyzer’ for Fiji 2.0.0, the cellular strut network was evaluated 

based on cross sections perpendicular to the freezing direction of infiltrated ceramic specimens. The 

strut network of the ceramics, which were manufactured by utilizing a water-gelatin suspension with a 

solid loading of 16.5 vol.% alumina (Tab. 3.1: G_6.8_16.5, G_3.5_16.5, G_1.8_16.5) were considered 

in this analysis, since they represent the three main types of branching, which can occur among the 

gelatin-alumina series. The analysis of the strut network of each ceramic type comprises four images in 

total.  

In the following, the detected constituting elements of the network and their definitions according to 

Carpentier (2012) are described below.  

Fig.3.1: Mold designs, which were utilized for the 
manufacturing of ceramics containing a directional 
pore system. Basic setup consists of a simple 
Polytetrafluorethylene (PTFE) tube that is mounted 
on the copper plate. Changes of the pore channel 
orientation and gradation have been attempted with 
mold designs I and II.  
 
 
 



K. Klang  3. Technical transfer into ceramics 

 81 

Nodes are pixels that have at least three neighbors, which correspond to bifurcation (Fig. 3.2 (A): 

yellow). A segment is limited by two junctions, whereby a junction is composed of several nodes and 

branches (Fig. 3.2 (A)). Isolated elements are displayed as dark blue lines (Fig. 3.2 (A)). A master 

segment consists of three segments that are limited by two junctions (Fig. 3.2 (B)). Junctions, however, 

which link at least three master segments are called master junction (Fig. 3.2 (C)). Meshes display closed 

areas composed of segments or master segments (Fig. 3.2 (C)).  

 

 
 

 

3.1.2.6 Mechanical characterization 
Uniaxial compression tests were carried out using a universal testing machine (Instron 4502, Instron 

Deutschland GmbH, Pfungstadt, Germany) with a constant crosshead movement speed of 0.5 mm/min. 

The ceramic cylinders were placed on a Si3N4 plate on the crosshead and pressed against a tungsten 

carbide compression die. The force was measured simultaneously by a force transducer. During the 

tests, the fracture behavior was monitored with a video extensometer (LIMESS Meßtechnik GmbH, 

Type RTSS_HS) capturing one side of the tested specimen.  

 

3.1.3 Results 

3.1.3.1 Microstructure of the gelatin series 
Different pore morphologies can be achieved utilizing varying gelatin concentrations in the water-based 

alumina suspension. A circular shape of the cells displays the ceramics, which were manufactured with 

a gelatin concentration of 9.9 and 6.8 vol.% (Fig. 3.3). The ceramic types G_6.8_14.4 and G_9.9_14.4 

have a concentration of solid loading of 14.4 vol.% in common and differentiate in terms of their gelatin 

concentrations. Smaller pore sizes are present in the ceramic manufactured with the higher gelatin 

concentration of 9.9 vol.% (Fig. 3.3 (A), (B)). The latter has an average pore diameter of 50 μm 

(Fig. 3.5 (A)), whereas a larger average pore diameter of 90 μm has been characterized for the ceramic 

type G_6.8_14.4 (Fig. 3.5 (A)). The reduced pore sizes are caused by the continuous gelatin network, 

which enhances the permeability of water and prevent thus the concurrent preferential growth of ice 

crystals (Arabi and Zamanian 2013, Fukushima et al. 2014). It appears that the directionality of the cell 

Fig. 3.2: Detection of constitutive elements of the cellular network by using Angiogenesis Analyzer (Fiji 2.0.0).  
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channels becomes vaguer and obtains more a foam-like character for the ceramic manufactured with a 

larger gelatin concentration (Fig. 3.3 (A.2), (B.2)). A larger solid loading does not change tremendously 

the pore size and morphology of the ceramic, which is the case for the ceramic type G_6.8_16.5 in 

comparison with the ceramic type G_6.8_14.4. The latter is characterized by an average pore diameter 

of 90 μm (Fig. 3.5 (A)). Due to the larger concentration of the solid loading, the cell walls appear to be 

thicker compared to the ceramic type G_6.8_14.4. The struts of the ceramic types G_9.9_14.4, 

G_6.8_14.4 and G_6.8_16.5 are not fully solidified and are characterized by an internal porosity 

(Fig. 3.3 (A.3), (B.3), (C.3)).  

Utilizing the lower concentration of gelatin of 3.5 vol.% leads rather to cellular oblate pore structures 

(Fig. 3.4). A solid loading of 14.4 and 16.5 vol.% was utilized at this gelatin concentration and the 

ceramic types are called here G_3.5_14.4 and G_3.5_16.5, respectively. The oblate cells of both are 

largely aligned in one direction (Fig. 3.4 (A), (B)). The variability of cell sizes is optically reduced at 

larger solid loadings (Fig. 3.4 (B)). In contrast, the ceramic type G_3.5_14.4 is also characterized by 

oblate cells, which are aligned in one specific direction, but the cells are additionally separated by 

comparably smaller cells (Fig. 3.4 (A). Due to the irregular cell shape of both, only one cell axis was 

determined in this case. The distance, d1, is the shortest cell axis of the oblate cells. The average d1 value 

of the ceramic types G_3.5_14.4 and G_3.5_16.5 is 64 and 60 μm, respectively (Fig. 3.5 (B)). 

Therefore, the main oblate cells appear to be similar for both, even with varying solid loadings. A 

reduction of the solid loading leads to numerous smaller cells appearing in the ceramic (Fig. 3.4 (A)), 

which separate the comparably larger oblate cells from each other. It appears that the larger oblate cell 

rows alternate with rows containing the smaller cells, but under maintenance of the equal cell orientation 

in principle. At higher magnification the cell walls are visibly not completely solidified (Fig. 3.4 (A.1), 

(B.1)) and characterized by an internal porosity as well. This is not surprising, because all ceramics 

presented here were subjected to the same sintering conditions (cf. section 3.1.2.3). In contrast to the 

ceramics manufactured with a gelatin concentration of 9.9 and 6.8 vol.%, the ceramic types G_3.5_14.4 

and G_3.5_16.5 are characterized by surface asperities on the cell walls (Fig. 3.4 (A.2), (B.2)), which 

appear as vein-like system (Fig. 3.4 (A): red box, (B): red box). Fig. 3.4 (A.3) demonstrates the 

alternation between large, straight cell channels and closely positioned walls (parallel to the freezing 

direction), which comprise in itself prolate pores.  

The cellular oblate cell network is not present at a gelatin concentration of 1.8 vol.% and at a solid 

loading of 16.5 vol.% (Fig. 3.4 (C)). This ceramic type, G_1.8_16.5, is rather characterized by disjointed 

cell walls, which are arranged without any specific alignment perpendicular to the freezing direction 

(Fig. 3.4 (C)). Just like the both ceramics described before, the cells walls are also characterized by 

surface asperities that occur mainly on one side of the cell wall (Fig. 3.4 (C): red box). The cell walls 

are aligned straightly and parallel to the freezing direction (Fig. 3.4 (C.2)) and have an average distance 

of 77 μm one to another (Fig. 3.5 (B)). The internal strut porosity is displayed in Fig. 3.4 (C.1).  
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Fig. 3.3: BSE images of the microstructure of the alumina ceramics from the gelatin series. The columns (A), (B) and (C) 
belong to the ceramic type G_9.9_14.4, G_6.8_14.4 and G_6.8_16.5, respectively. The cross section (perpendicular to the 
freezing direction) of the ceramics is displayed in (A), (B) and (C). The images in (A.1), (B.1) and (C.1) show unconsolidated 
cell walls of the ceramics. The images in (A.2), (B.2) and (C.2) show the cross section of the ceramics parallel to the freezing 
direction. The red arrow demonstrates the freezing direction. Scale bars: (A), (B) and (C) = 500 μm; (A.1), (B.1) and 
(C.1) = 10 μm; (A.2), (B.2) and (C.2) = 500 μm.  
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Fig. 3.4: BSE images of the alumina ceramics from the gelatin series. The columns 
(A), (B) and (C) belong to the ceramic types G_3.5_14.4, G_3.5_16.5 and 
G_1.8_16.5, respectively. The images in (A), (B) and (C) illustrate the cross section 
of each ceramic type (perpendicular to the freezing direction). The internal porosity 
of the struts is shown in (A.1), (B.1) and (C.1). The images (A.2), (B.2), (C.2) and 
(A.3) represent the area parallel to the freezing direction. The red arrow gives the 
freezing direction. Scale bars: (A), (B) and (C) = 500 μm; (A.1) = 10 μm; 
(B.1) = 10 μm; (C.1) = 20 μm; (A.2) = 200 μm; (A.3) = 500 μm; (B.2) = 200 μm; 
(C.2) = 200 μm.  



K. Klang  3. Technical transfer into ceramics 

 85 

 
 

 

 

3.1.3.1.1 Analysis of the strut network 
The quantification of the cellular network of the three main structural types, which appear in the gelatin 

series is illustrated in Fig. 3.6. In this case, ceramics with a solid loading of 16.5 vol.% were selected 

for the evaluation of the cellular network. They varied, however, in terms of their gelatin concentrations, 

which were applied for their manufacturing. The following gelatin concentrations comprise the selected 

ceramic specimens (G_6.8_16.5, G_3.5_16.5 and G_1.8_16.5): 6.8, 3.5 and 1.8 vol.% (Tab. 3.1). The 

designations of the detected elements are illustrated in Fig. 3.6. (D). A detailed description of the 

constituting elements was presented in section 3.1.2.5.  

The degree of interconnectivity, which is expressed here as meshes, master segments, segments, 

junctions and nodes, reaches quantitively the largest number in the ceramic type G_6.8_16.5 (Fig. 3.7: 

red columns; cf. Fig. 3.6 (A)). Such a quantitively large number of the interconnectivity of the cell walls 

is not given for the ceramic types G_3.5_16.5 and G_1.8_16.5 (Fig. 3.7: blue and green columns). The 

quantity of meshes, master segments, segments, junctions and nodes are significantly decreased 

compared to the ceramic type G_6.8_16.5. On the other hand, the quantity of the detected elements such 

as extremities, isolated elements and branches is relatively large for both of the ceramic types 

G_3.5_16.5 and G_1.8_16.5 (Fig. 3.7: blue and green columns). The aforementioned elements like 

extremities, isolated elements and branches rather characterize the degree of non-connectedness of the 

cell walls. Therefore, these latter elements have been detected rarely in the ceramic type G_6.8_16.5, 

because the cell walls are strongly interconnected with each other.  

 

Fig. 3.5: Distribution (n = 100) of the pore diameter and pore axis length of the alumina ceramics from the gelatin series. The 
pore diameter distribution of the ceramic types G_9.9_14.4, G_6.8_16.5 and G_6.8_14.4 is displayed in (A). The distribution 
of the pore axis length from the ceramic types G_3.5_16.5, G_3.5_14.4 and G_1.8_16.5 is shown in (B).  
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Fig. 3.6: Detected elements of the cellular network utilizing Angiogenesis Analyzer (Fiji 2.0.0). The quantification of the 
cellular network is based on BSE images of infiltrated ceramics and has considered the ceramics G_6.8_16.5 (A), 
G_3.5_16.5 (B) and G_1.8_16.5 (C). The designations of the detected elements are summarized in (D). Scale bar = 1 mm. 

Fig. 3.7: Results of the cellular network using Angiogenesis Analyzer (Fiji 2.0.0).  
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3.1.3.2 Microstructure of the agar series 
Utilizing agar as additive, ceramics can be manufactured with a solid loading of less than 9 vol.%. A 

solid loading of 8.6 vol.%, which was utilized for the ceramic types A_4.3_8.6 and AC_4.3_8.6, leads 

to porosities of 86 and 84 %, respectively (cf. Tab. 3.2). A larger porosity was achieved in the ceramic 

type A_4.3_5.9 that was manufactured with a solid loading of 5.9 vol.% (cf. Tab. 3.2). The different 

manufacturing methods of the ceramics from the agar series are explained in detail in section 3.1.2.2.  

The ceramic type A_4.3_8.6 consists essentially of lamellar cell walls, which are arranged in one 

direction (Fig. 3.8 (A)) and have an average distance of 200 μm to each other (Fig. 3.9). They appear in 

the cross-sectional view (perpendicular to the freezing direction) rather disconnected (Fig. 3.8 (A)) and 

contain no cross struts. Numerous cell walls display a wavy-like character (parallel to the freezing 

direction), so some of the cell walls meet and create a junction (Fig. 3.8 (A.2): yellow arrow). In general, 

the cell walls appear flaky with panels detaching on several places (Fig. 3.8 (A.2)). This, in turn, results 

in rather loose composed cell walls (Fig. 3.8 (A.2)). The ceramic type AC_4.3_8.6 was manufactured 

with the same concentration of agar, solid loading and sucrose such as in the ceramic type described 

before. Additionally, the pH of the ceramic suspension was adjusted with citric acid to a pH value of 4 

during the manufacturing process. This leads to spherical cell shapes in the ceramic type AC_4.3_8.6 

(Fig. 3.8 (B)). The average diameter of the pores is 210 μm (Fig. 3.9). The cell walls are connected with 

adjacent cell walls by cross struts parallel to the freezing direction (Fig. 3.8 (B.2)). In this way, the 

spaces between the cell walls appear to have a prolate shape (Fig. 3.8 (B.2)). The cell walls are also 

characterized by flaky cohesion.  

A solid loading of 5.9 vol.% and an agar concentration of 4.3 vol.% without the use of sucrose and 

reduction of the pH has created widely open cell channels, which form polygonal cells at several places 

in the ceramic type A_4.3_5.9 (Fig. 3.8 (C)). The cell edges display no signs of flocculation and thus 

show rather sharp cell edges and surfaces (Fig. 3.8 (C)). The cell walls by themselves, however, are 

strongly penetrated by cracks and appear to be strongly fragmented (Fig. 3.8 (C.2)). The internal 

porosity of the struts is displayed in Fig. 3.8 (C.1). The internal porosity of the struts is also present in 

the ceramic types A_4.3_8.6 and AC_4.3_8.6 from the agar series (cf. Fig. 3.8 (A.1), (B.1)).  
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Fig. 3.8: BSE images of the microstructure of the alumina ceramics from the agar series. The (A) row displays the ceramic 
A_4.3_8.6. The ceramic AC_4.3_8.6 is shown in the (B) row, whereas the ceramic A_4.3_5.9 is displayed in row (C). The 
concentration of the solid loading, agar and sucrose concentration is given in Tab. 3.2. The cross section of the ceramics 
(perpendicular to the freezing direction) is displayed in (A), (B) and (C). The images in (A.1), (B.1) and (C.1) show the 
internal porosity of the struts. The images below ((A.1), (B.2) and (C.3)) display the area parallel to the freezing direction. 
The freezing direction is given as red arrow. Scale bars: (A) = 500 μm, (B) = 500 μm, (C) = 500 μm; A.1 = 10 μm, 
B.1 = 10 μm, C.1 = 10 μm; A.2 = 500 μm, B.2 = 500 μm, C.2 = 2 mm.  
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A μCT reconstruction of the ceramic type A_4.3_5.9 reveals the cellular arrangement of the cell walls. 

The cell walls by themselves appear to be rather loose without being connected together by other cell 

walls (Fig. 3.10). The cell walls display strong curvatures and are randomly oriented in the ceramic. 

Therefore, the distance from one cell wall to the adjacent was not determined due to the irregular 

arrangement of the cell walls and the curvatures. In contrast, the strut thickness was determined based 

on the μCT reconstruction. An average strut thickness of 27 μm was determined (Fig. 3.11 (A)), 

whereby a lot of struts reach a thickness of less than 27 μm (Fig. 3.11 (B)). 

 

 
 

 

 

 

Fig. 3.10: Reconstruction of the μCT data of the ceramic type A_4.3_5.9. The cell walls are characterized by strong 
curvatures and display little preferred orientation. Distribution of the cell wall thickness are displayed in Fig. 3.11. 
Scale bar = 200 μm.  

Fig. 3.9: Pore axis length of the ceramics from the agar 
series. The pore axis length gives the distance between the 
cell walls (cf. Fig. 3.8 (A), (B)) of the cross section 
(perpendicular to the freezing direction).  
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3.1.3.3 Uniaxial compression of the ceramics  
The following ceramics from the gelatin series were tested mechanically: G_6.8_16.5, G_3.5_16.5, 

G_1.8_16.5, G_6.8_14.4 and G_3.5_14.4. From the agar series, only the ceramic type A_4.3_5.9 was 

tested under uniaxial compression. Fig. 3.12 displays the used symbols in diagrams of material 

properties, fracture behavior and the energy absorption capacity. Each figure deals with one specific 

strut arrangement caused by the use of varying gelatin concentrations in the manufacturing process. 

Details of the mechanical behavior of the ceramics, which are characterized by roundish cell channels 

with a high degree of connectedness of the cell walls as well as ceramics comprising cellular oblate cells 

are shown in section 3.1.3.3.2. It includes also the fracture behavior of ceramics, which are characterized 

by numerous isolated cells.  

The classification for cellular solids in compression by Gibson (2005) can also be transferred to the 

failure modes of the ceramics: a linear elastic regime, the ‘quasi-ductile’ regime (post collapse) and 

densification. The stage of densification is not necessarily always involved at the end of uniaxial 

compression of the ceramic. A strong structural segmentation can lead to several segments, which could 

disaggregate simultaneously. Therefore, the uniaxial testing can be considered as terminated, since no 

segment is in contact with the compression die anymore.  

 

 

Fig. 3.11: Determination of the strut thickness of the ceramic type A_4.3_5.9 from the agar series. The strut thickness is 
based on μCT data. The distribution of the strut thickness is displayed in (A). Results of the visual strut distribution is shown 
in (B). Scale bar = 200 μm 
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3.1.3.3.1 Material properties 

The results of the material properties, expressed as σc and the Young’s modulus, of the freeze-casted 

alumina ceramics are displayed in Fig. 3.13. For the sake of clarity, the composition of the ceramics in 

terms of the solid loading and concentration of the additive are differentiated in Fig. 3.12 by using 

different colors and symbols. The ceramics, which were manufactured with a gelatin concentration of 

6.8, 3.5 and 1.8 vol.%, are marked as red, blue and green squares, respectively. The open and filled 

squares give the concentration of the used solid loading: a solid loading of 16.5 and 14.4. vol.% can be 

assigned in each case to the filled and open squares.  

Ceramics, which were manufactured with the same solid loading have approximately the same range of 

porosity, but differentiate in their values of the strength and stiffness. The values of the material 

properties indicate that the configuration and arrangement of the cell walls influence significantly the 

strength and stiffness of the ceramics. The previously presented values of the stiffness and strength of 

the three ceramic types were evaluated in terms of their strut network in section 3.1.3.1.1. By combining 

the material properties with the results of the strut network, it can be observed that the degree of 

interconnectivity of the cell walls correlates with the values of the stiffness and strength of the ceramics. 

The largest values of the stiffness and strength achieves the ceramic type G_6.8_16.5, which is 

characterized by the largest quantity of detected elements such as meshes, master segments, segments, 

junctions and nodes indicating, in turn, that the cell walls are strongly interconnected among each other. 

The ceramic type G_1.8_16.5 has the lowest stiffness and strength of the three ceramic types from the 

gelatin series. The largest quantity of isolated elements, branches and extremities was observed in this 

ceramic type. The isolated cell walls are incapable to withstand lateral motions by shear stress. A strong 

interconnectivity of the cell walls, on the other hand, ensures additional stiffening, which rises the 

mechanical stability of the ceramic. The same correlation is observed in the ceramics manufactured with 

a lower solid loading of 14.4 vol.% ((Fig. 3.12 (A), (B): open squares). It involves the ceramic types 

G_6.8_14.4 (red open squares) and G_3.5_14.4 (blue open squares). Their porosity ranges between 

82 and 87 %. The values of the σc and for the Young’s modulus of the ceramic type G_6.8_14.4 are 

between 16 and 20 MPa and between 677 and 1329 MPa, respectively. The ceramic type G_3.5_14.4 

has lower values of the σc and for the Young’s modulus: the values of the σc vary between 7 and 12 MPa, 

Fig. 3.12: Freeze-cast alumina ceramics, which were tested under uniaxial compression. The utilized symbols are displayed 
below.  
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whereas the values for the Young’s modulus are between 108 and 400 MPa. Comparing Fig. 3.3 (C) 

and Fig. 3.4 (A), it can be seen that the quantity of the isolated cell walls is larger in the ceramic type 

G_3.5_14.4. It becomes clear that the mechanical stability is dependent on the strut arrangement. When 

the cell walls are strongly linked with each other, the mechanical stability is also increased in this 

context. The lowest strength and stiffness come from the ceramic type from the agar series. This ceramic 

type has a value of the σc of 0.7 MPa and a Young’s modulus of just 23 MPa. The ceramic type is 

characterized by wide channels without any intermediate struts/ bridges. This results in long bearing 

distances. Thus, the cell walls are subject to high shear stresses and bending moments under uniaxial 

loading and are therefore not able to withstand high mechanical loadings. 

 
 

 

 
 
3.1.3.3.2 Ceramic type ‘circular cell shape’ 

Fig. 3.14 displays the stress-strain curves and corresponding microphotographs of the fracture behavior 

of the ceramics, which are characterized by circular cell shapes and a high degree of interconnectedness 

of the struts.  

After the linear elastic increase, the ceramic compensates the stress by crumbling (Fig. 3.14 (A): a, b 

and Fig. 3.14 (B): a ,b) and subsequently flakes into smaller parts starting from the upper region of the 

ceramic (Fig. 3.14 (A): c, d, e, f and Fig. 3.14 (B): c ,d, e). The two fracture mechanisms make it possible 

to avoid stress decreasing drastically in large scales in the ‘quasi’ ductile regime. By the mode of 

crumbling and flaking the ceramic is rather capable to keep the acting stress on a constant level 

(Fig. 3.14 (A), (B): starting from a strain of 0.2) before the densification starts (Fig. 3.14 (B): f). 

  

Fig. 3.13: The maximum compressive strength, σc, and Young’s modulus values of the ceramics from the gelatin and agar 
series. The plot (A) displays the relationship of the σc, (B) the Young’s modulus as a function of the porosity, ϕ.   
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3.1.3.3.3 Ceramic type ‘cellular oblate cell shape’ 
The stress-strain curves and accompanied microphotographs of the fracture behavior of the ceramic 

types, which contain rather cellular oblate cell shapes and several disjointed cell walls integrated in the 

microstructure are presented in Fig. 3.15. Compared to the ceramic types ‘circular cell shape’, which 

were presented before, these ceramic types here are essentially characterized by a steeper gradual 

decrease of the compensating stress (Fig. 3.15 (A), (B)). After reaching the σc, both show clearly the 

formation of vertical cracks (Fig. 3.15 (A): b, c and Fig. 3.15 (B): b), which intensify with continuous 

loading (Fig. 3.15 (A): d, e and Fig. 3.15 (B): c, d). 

This multiple propagation of vertical cracks in the ceramic results in a division into several lath-like 

segments, which tilt increasingly to the side with continuous loading (Fig. 3.15 (A): f, g, h, i and 

Fig. 3.15 (B): e, f, g).  

  

Fig. 3.14: Ceramics manufactured with a gelatin 
concentration of 6.8 vol.% under uniaxial compression. The 
stress (σ)-strain (ε) curve and the accompanied 
microphotographs of the fracture behavior of the ceramic 
type G_6.8_16.5 is given in (A), whereas the mechanical 
behavior of the ceramic G_6.8_14.4 is displayed in (B). 
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3.1.3.3.4 Ceramic type ‘disjointed cell walls’ 
The fracture behavior displayed as microphotographs and the stress-strain curves of the ceramic types, 

which contain in their majority disjointed cell walls in the microstructure, are presented in Fig. 3.16. 

The course of the stress-strain curve in Fig. 3.16 (A) resembles those exhibited by the ceramic type 

‘cellular oblate cell shape’. The stress-strain curve is also characterized by a large drop in stress after 

achieving the σc, which is associated with the propagation of a vertical crack systems (Fig. 3.16 (A): b). 

An intensification of the vertical cracks, which is associated with a segmentation of the ceramic into 

several lath-like segments occurs as well with continuous loading (Fig. 3.16 (A): c, d). In contrast to the 

failure mode of the ceramic type ‘cellular oblate cell shape’, the ceramics here do not undergo a 

densification, since the lath-like segments were already tilted sideways (Fig. 3.16 (A): f).  

Fig. 3.15: Uniaxial compression tests of the ceramics manufactured with a gelatin concentration of 3.5 vol.%. The stress (σ)-
strain (ε) curve and accompanied microphotographs of the fracture behavior of the ceramic type G_3.5_16.5 is shown in (A). 
The failure mode and related stress (σ) – strain (ε) curve of the ceramic G_3.5_14.4 is given in (B).  
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This kind of fracture mechanism, which develops a vertical crack system leading subsequently to a 

structural segmentation, can also be observed in the ceramic from the agar series (Fig. 3.16 (B): a-g). 

Compared to the stress-strain curve of the ceramic presented in Fig. 3.16 (A), the stress-strain curve 

here is rather characterized by a gradual increase of stress after the load-limit was reached 

(Fig. 3.16 (B)). However, starting at a strain of 0.07, the stress fluctuates around an average plateau 

value until the first vertical cracks propagate through the structure (Fig. 3.16 (B): b). After the vertical 

crack formation, the stress decreases gradually with continuous loading, since the structural integrity of 

the ceramic progressively decreases, which is, in turn, accompanied with a structural segmentation of 

the ceramic (Fig. 3.16 (B): c, d, e, f). The remaining segments are densified in the last stage of 

compression (Fig. 3.16 (B): g). 

 

 
 

 

 

  

Fig. 3.16: Ceramics under uniaxial compression from the gelatin and agar series. The stress (σ)-strain (ε) curve and 
accompanied microphotographs of the fracture behavior of the ceramic G_1.8_16.5 are displayed in (A). The mechanical 
behavior of the ceramic A_4.3_5.9 from the agar series is given in (B).  
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3.1.3.3.5 Energy absorption capacity  
The specific energy absorption per volume unit, Uv(ε), and the energy efficiency, η(ε), was calculated 

from the stress-strain curves utilizing Eq. (3), (4) and (5). The curves of the Uv(ε) of the ceramics 

manufactured from the gelatin series are displayed in Fig. 3.17 (A). The curve of the Uv(ε) of the 

ceramic from the agar series is not shown, due to the comparable low capability of the Uv(ε). All ceramic 

types are characterized by a peak value of the Uv(ε), which decreases gradually with increasing strain. 

The average values of the Uv(ε) and their distribution at a strain of 0.3 and 0.5 are summarized in 

Fig. 3.17 (B). The maximum values of the Uv(ε) and their distribution are displayed in Fig. 3.17 (B) as 

well. The ceramic type ‘circular pore shape’ reaches the largest values of the Uv(ε). The ceramics 

comprising disjointed cell walls, are characterized by the lowest values of all manufactured ceramics. 

The ceramics with the cellular, oblate cell walls are in between of them.  

The converted values of the Uv(ε) into the η(ε) of the ceramics are summarized in Fig. 3.17 (C). It can 

be observed that the decrease of the η(ε) values from those ceramics, which belong to the ceramic type 

‘circular pore shape’, is not as large as from ceramics, which are characterized by disjointed cell walls 

and a cellular oblate cell shape. At a strain of 0.5, the average values of the η(ε) remain above 80 % for 

both of them. A significantly larger decrease of the average values of the η(ε) display the ceramics of 

the ceramic type ‘disjointed cell walls’ and ‘cellular oblate cell shape’: at a strain of 0.5, the average 

values of the η(ε) of the ceramic G_3.5_16.5, G_3.5_14.4 and G_1.8_16.5 fall beneath 65 %. 

Variations of the average values of the η(ε), especially at the strain of 0.5, indicate that different fractures 

modes are effectively involved in the ceramics. The varying fracture modes are mainly determined by 

the internal configuration of the cell walls within the ceramic. Two main categories of fracturing were 

observed during the uniaxial compression of the ceramics:  

a) a simultaneous interplay of flaking and crumbling;  

b) an intensification of vertical cracks leading to a segmental division of the ceramic into several 

lath-like segments. 

The fracture mode b) occurs at ceramics, which belong to the ceramic type ‘disjointed cell walls’ and 

‘cellular oblate cell shape’. Both are characterized by numerous disjointed cell walls. As mentioned in 

section 3.1.3.3.1, the isolated and disjointed cell walls are subject to shear stress and therefore 

susceptible to high deflection during the uniaxial compression. Consequently, larger segments can spall 

off from the structure. In this way, the structural integrity is no longer ensured and the capability to 

absorb stress is thus reduced greatly. 

In contrast, ceramics, which belong to the ceramic type ‘circular pore shape’, undergo progressive 

crumbling and flaking of small lateral pieces. The strong connectivity of the cell walls to each other 

prevents shearing and thus bending moments of the cell walls. Therefore, the stiffening increases the 

mechanical stability and keeps the material loss comparatively low. It implies that the major proportion 

of the ceramics tends to retain its structural integrity. Consequently, a high quantity of stress is therefore 

needed to break the strong cohesive structure. 
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3.1.3.4 Gradation and separate structural areas in one ceramic 
The manufacturing of a graded pore system is possible by using mold design I (Fig. 3.18 (A)). The 

gradation is limited to the lower region of the mold, which is directly adjacent to the bottom plate of the 

mold. The gradation is thus limited to the first 10 % of height from the ceramic.  

The inner structure of the ceramic consists of polygonal pores with almost directional cell channels 

(parallel to the freezing direction) and is thus termed as ‘Zone C’ (Fig. 3.18 (B), (C)). The pore diameters 

are between 50 and 180 μm. Further outwards the diameter of the polygonal pores becomes smaller 

(Fig. 3.18 (C)). They reach a pore diameter of approximately 30 to 50 μm, whereby larger pores are 

visible at few specific points as well (Fig. 3.18 (C)). This area is stated as ‘Zone B’ (Fig. 3.18 (A)). The 

cell channels are oriented almost parallel to the freezing direction and tilt increasingly to the side towards 

the outside (Fig. 3.18 (B)). Very large channel sizes are present in the outermost area of the ceramic, 

namely in the ‘Zone A’ (Fig. 3.18 (B)). Due to the varying channel sizes in ‘Zone A’, it is not feasible 

to determine an approximate value of the cell size (Fig. 3.18 (A)).  
 

Fig. 3.17: Specific energy absorption per volume unit, 
Uv(ε), and energy efficiency, η(ε), of the ceramics 
from the gelatin series. The plot in (A) displays the 
variation of the Uv(ε) capabilities depending on the 
strain (ε). The plot in (B) and (C) show the statistical 
distribution of the Uv(ε) and η(ε) at certain strain 
levels.  
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Using mold design II creates two separated structural areas in the ceramic (Fig. 3.19). In contrast to the 

limited extension in height of the ceramic manufactured with mold design I, the two structural separated 

areas have no limitation in height. The outermost area of the ceramic appears to have a foam-like 

character (Fig. 3.19 (A), (B)), which transforms into tilted cell channels inside of the ceramic 

(Fig. 3.19 (C)). It should be noted that the shaping of several cell channels is rather blurred at some 

places. This outermost area is called ‘Zone A’ (Fig. 3.19 (A), (B), (D)). Clearly defined cell channels 

are visible in the inner zone of the ceramic, which is here called ‘Zone B’ (Fig. 3.19 (D)). The cell shape 

is polygonal as well and reaches a cell diameter between 60 and 160 μm (Fig. 3.19 (C)). Cell channels 

of ‘Zone B’ are oriented almost parallel to the freezing direction (Fig. 3.19 (C)). 

  

Fig. 3.18: Graded ceramic manufactured by utilizing mold design I. The microstructure of the ceramic and its division in 
different zones is displayed in (A) that illustrates the cross-sectional area perpendicular to the freezing direction. The 
orientation of the cell channels is given in (B). The red arrow demonstrates the freezing direction. A higher magnification of 
the graded structure is displayed in (C). The area is marked as red rectangle in (A). Scale bars: (A) = 2 mm, (B) = 500 μm, 
(C) = 500 μm.  
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The characterization of mechanical properties of the varying cell channel orientations and sizes are 

conducted via the ‘pin indentation method’. The experimental setup of the pin indentation tests is 

displayed in detail in Schmier et al. (2016). A tungsten-carbide pin (diameter = 1 mm) penetrated 

perpendicular to the freezing direction into both ceramics with a cross head movement of 0.5 mm/min. 

The results of the pin indentation tests are displayed in Fig. 3.20. A high stress distribution is obtained 

during the testing of the outer region of both ceramics (Fig. 3.20 (A), (B)), which represents ‘Zone A’ 

in both cases.  

The stress distribution decreases from the outer region to the inner region of the ceramics, which is here 

displayed as ‘Zone B’ and ‘Zone C’ (Fig. 3.20 (A), (B)). Additionally, widths of the stress peaks 

decrease in these zones. Due to the orientation of the cell channels in the ‘Zone B’ and ‘Zone C’, which 

are oriented perpendicular to the applied stress, the heights and widths of the stress peaks are a function 

of the channel size and cell wall thickness. This is, in turn, recognizable in Fig. 3.20 (A) when comparing 

Fig. 3.19: Ceramic manufactured with mold design II. The cross-sectional area (perpendicular to the freezing direction) is 
illustrated in (A). The separate structural units are ‘Zone A’ and ‘Zone B’. A higher magnification of the ‘Zone A’ and ‘Zone 
B’ is demonstrated in (B) and (C), respectively. The orientation of the cell channels from both zones is displayed in (D). The 
red arrow indicates the freezing direction. Scale bars: (A) = 2 mm, (B) = 2 mm, (C) = 2 mm, (D) = 2 mm 
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the ‘Zone B’ and ‘Zone C’ with each other. ‘Zone B’ is characterized by high stress peaks and narrow 

widths of the stress peaks, which reflect significant smaller cell diameters and larger cell wall 

thicknesses (Fig. 3.20 (A), (B)). The widths of the stress peaks are larger in ‘Zone C’ due to the larger 

cell channels (Fig. 3.20 (A)). A decrease of the stress peaks is here associated with a reduction of the 

cell wall thicknesses.  

Similar stress distributions can be observed in ‘Zone C’ and ‘Zone B’ of the ceramics, which were 

manufactured with mold design I and II, respectively (Fig. 3.20 (A), (B)) indicating similar channel 

orientations, cell sizes and cell wall thicknesses.  

 

 
 

 

 

 

3.1.4 Discussion 

3.1.4.1 Applicability of pore model predictions on freeze-cast 
alumina ceramics 

 
A comparison of the experimentally measured data with mechanical model predictions can provide 

insights into the compressive deformation behavior of freeze-cast ceramics. The mechanical response 

of porous ceramics was modeled by representing the cellular structure in several ways. The semi-

empirical Gibson and Ashby (1997) prediction uses a dimensional analysis to model the deformation 

and failure mechanism in cell walls and edges observed in cellular materials. Their approach does not 

define the exact cell geometry, but assumes that the cell geometry is generally similar in foams of 

different relative densities. They categorize the varying predictions according to their connectivity of 

the cell edges and faces to each other and differentiate between the pore morphologies (Gibson and 

Ashby 1997) open-cell, closed-cell and honeycomb. These models have been applied to different 

mechanical properties such as fracture toughness, creep or Young’s modulus (Ashby and Medalist 

Fig. 3.20: Mechanical recording of the cell channels via pin indentation of the ceramics manufactured with mold design I and 
II. Both ceramics were locally loaded perpendicular to the freezing direction. The stress (σ)/displacement curve (A) and (B) 
belong to the ceramics, which were manufactured with mold design I and II, respectively.  
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1983). For the compressive strength the formulas for the closed-cell, open-cell and honeycomb are, 

respectively: 

 

Closed-cell (brittle crushing): 

σ =  σP �C6 �ϕedge
ρ∗

ρs
� +  C6′′�1 − ϕedge�

ρ∗

ρs
� (11) 

 

Open-cell model (brittle crushing): 

σ =  σP C4  �
ρ∗

ρs
�

3
2
 (12) 

 

Honeycomb model (out-of-plane):  

σ =  6 Ewall  �
ρ∗

ρs
�
3

 (13) 

 

These three models are commonly used for freeze-cast materials to compare measured and predicted 

values of the compressive strength. The listed formulas for the closed- and open-cell model displayed 

above, describe the material failure for brittle foams. C6, C6’’ and C4 are empirical geometric constants 

(C6 = 0.65, C6’’ = 1 and C4 = 0.2). The parameter ϕedge is the solid fraction contained in the cell edges 

(the remaining fraction 1-ϕedge is in the cell faces). The parameter ϕedge was defined as 1 for the freeze-

casted alumina ceramics. The apparent density of the dense and cellular material is defined as ρs and ρ*, 

respectively. The modulus of rupture (MOR) of the solid cell wall material is defined as σp. As with 

other brittle materials, this parameter depends strongly on the microstructure (i.e. the grain size, grain 

size distribution and porosity). High purity grades of the alumina and solidified cell walls with a general 

low internal wall porosity lead to high measured values of the σp. Therefore, the σp can be different 

depending on the sintering temperature. According to Brook (1991) the MOR for pure alumina (99.5 %) 

is > 400 MPa. At a sintering temperature of 1500 °C, the σp of highly pure alumina was measured up to 

850 MPa (Gao et al. 2000) utilizing the spark plasma (SPS) sintering technique. Lower sintering 

temperatures of 1350 °C, in contrast, have led to a σp of approximate 450 MPa (Gao et al. 2000). The 

freeze-cast alumina ceramics were also sintered up to the target temperature of 1350 °C (cf. section 

3.1.2), so the value for the σp of 450 MPa was used for the open- and closed cell model. Many authors 

used values for the comparison of the out-of-plane honeycomb model of the strength by Zhang and 

Ashby (1992). This prediction includes as Ewall, which is the Young’s modulus of the corresponding 

solid wall. The formula describes the mechanical response of an elastic honeycomb foam, which is 

uniaxial loaded along its x3 direction, where the cell walls undergo bulging and buckling in a periodic 

way. This plastic behavior was found in foams with a relative low density of < 0.12 (Zhang and Ashby 

1992)). With increasing densities, the material will fracture during collapse. 
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The open- and closed-cell models for brittle crushing by Gibson and Ashby (1997) were also considered 

for the freeze-casted alumina ceramics. There is some agreement only for cases with anisotropic 

dendritic branching of cell walls indicating open cell walls (Fig. 3.21: Vijayan et al. 2015). The freeze-

cast alumina ceramics, which are characterized by directional cell channels, are neither well described 

by the closed- nor the open-cell model.  

A fair agreement of the obtained strength of honeycomb structures consisting of aluminum alloy 5052 

(Hou et al. 2012, Theobald et al. 2010) with the prediction by Eq. (13) was obtained (Fig. 3.21: red 

symbols, red dashed line). The elastomeric honeycomb structures from Hou et al. (2012) and Theobald 

et al. (2010) fail by buckling, since they are characterized by relative low density of < 0.12.  

Furthermore, Eq. (13) predicts extremely high compressive strength values (Fig. 3.21: dashed line for 

Ewall = 380 GPa) for alumina ceramics. The experimental data of the literature are orders of magnitude 

below predictions using the value for Ewall of dense alumina (ca. 380 GPa). Fitting the honeycomb 

formula to the freeze-cast materials, an Ewall of 100 to 900 MPa can be obtained. The freeze-cast alumina 

ceramics from Ferraro et al. (2018) and Deville et al. (2016) are also located in the range of the obtained 

Ewall values. They have obtained an Ewall of 230 MPa. Arguments to explain the general low Ewall (Ferraro 

et al. 2018) of such approaches by an incomplete densification of the cell walls (Ferraro et al. 2018) are 

very unlikely, because the values would ask for a porosity of more than 90 % in the wall material, which 

is clearly not the case (cf. Fig. 3.3 and Fig. 3.4).  

 

 
 

 

 

 

Fig. 3.21: Plot of the compressive strength of the freeze-cast alumina ceramics as a function of the porosity, ϕ. The colored 
symbols represent the maximum compressive strength, σc, of the ceramics from the gelatin series. The maximum compressive 
strength of the ceramic type A_4.3_5.9 is also illustrated. Grey, black and white symbols are literature data. The dark red 
triangles represent honeycomb structures consisting of aluminum alloy 5052 (Hou et al. 2012; Theobald et al. 2010). The 
honeycomb predictions are displayed as orange and red lines. The open- and closed-model for alumina ceramics are displayed 
as solid line.  
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Under the assumption that an incomplete densification of the struts leads to low values of the Young’s 

modulus, the experimental and obtained values of the Young’s modulus from the honeycomb model 

should consequently be the same. In the current literature, Young’s modulus values from ceramics 

manufactured via freeze-casting are rare. When the values of the experimental and obtained Young’s 

modulus are the same, the values should lie on the dashed line in Fig. 3.22. The values for the Young’s 

modulus from freeze-cast alumina ceramics of Vijayan et al. (2015) and from the gelatin series are not 

located on the dashed line. They lie above and below the dashed line instead. This means that the stated 

proportionality of the compressive strength to the Young’s modulus with σ = 6 E from the honeycomb 

model is not suitable as prediction for the compressive strength for porous freeze-casted ceramics. 

Porous ceramics, which undergo brittle failure cannot meet the honeycomb prediction in principle, since 

the prediction covers rather elastomers (Zhang and Ashby 1992).  

 

 
 

 

 

The prediction by Pabst and Gregorová (2014) was made for isotropic and anisotropic ceramics with 

pure brittle failure. As stated in section 2.2.4.1 before, a lot of pore morphologies such as spheroidal, 

columnar and disk-shaped pores as special or asymptotic limit cases can be covered with this relation, 

since the Eshelby-Wu exponent is directly related to the aspect ratio of the pores with 3-fold rotation 

symmetry. Therefore, the columnar prolate channels of the freeze-cast alumina ceramics can be treated 

with this relation, which is displayed in section 2.2.4.1 as Eq. (8). The parameter E∗ is the Young’s 

modulus of the corresponding cell wall material, which is given for alumina according to Hulbert (1993) 

with 400 GPa (purity > 99.7 wt.%). With ν = 0.2 for alumina, the Eshelby (1957)-Wu (1966) exponent 

ranges from 2 - ∞ for oblate pores and from 2 - 2.3 for prolate pores in loading direction. Fitting Eq. (8) 

to the freeze-cast alumina ceramics, the relationship of the Young’s modulus and porosity of the 

Fig. 3.22: Parity plot comparing experimental and theoretical Young’s modulus values, which were predicted by Eq. (13). 
Besides the ceramics from the gelatin series and the ceramic type A_4.3_5.9, the Young’s modulus values of Vijayan et al. 
(2015) were also integrated in this plot.   
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ceramics covers an Eshelby (1957)-Wu (1966) exponent between 2.6 and 5.5 (Fig. 3.23). The Eshelby 

(1957)-Wu (1966) exponent of the ceramics, which were categorized as ‘circular cell shape’ ranges 

between 2.3 and 3.2. The ceramics characterized by the cellular, oblate cell shape can be approximated 

to an Eshelby (1957)-Wu (1966) exponent of 3.6 and the ceramics comprising disjointed cells walls to 

an Eshelby (1957)-Wu (1966) exponent of 5.5. In between are the ceramics of Vijayan et al. (2015) 

regarding their values of the Eshelby (1957)-Wu (1966) exponents. Despite of their columnar prolate 

character of the ceramics ‘circular cell shape’ and ‘cellular, oblate cell shape’, the Eshelby (1957)-

Wu (1966) exponents deviate from the predicted range of 2.0 - 2.3 for columnar, prolate pores. The 

large Eshelby (1957)-Wu (1966) exponents reflect the dominant pore shape of oblate pores. Varying 

strut thicknesses, a broad pore distribution, slightly tilted and bent cell walls as well as unconsolidated 

struts may contribute as structural defects to the deviation from an Eshelby (1957)-Wu (1966) exponent 

of 2.3. The listed structural features contribute to a corresponding scattering in defect population size, 

since failure during compressive loading is attributed to growth and quantity of these defects.  

The porosity-Young’s modulus relation in Fig. 3.23 demonstrates that brittle materials containing oblate 

pore forms result in lower values of the Young’s modulus. 

 

 
 

 

 

The physical principles behind the Pabst and Gregorová relation were developed for the porosity-

Young’s modulus relation. However, it was shown, that it can also be applied for other properties like 

thermal conductivity and other elastic moduli (Pabst and Gregorová 2014) like bulk and shear modulus. 

Fig. 3.24 displays the Eshelby (1957)-Wu (1966) exponent for the bulk, shear and Young’s modulus for 

a ν = 0.2 as a function of the aspect ratio. The Eshelby (1957)-Wu (1966) exponents of the three elastic 

Fig. 3.23: Dependency of Young’s modulus and porosity, ϕ, of the ceramics from the gelatin series including also the ceramic 
A_4.3_5.9 from the agar series and the ceramics from Vijayan et al. (2015). The dashed lines represent the Eshelby-Wu 
exponents (= [E]) from Eq. (8). 
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moduli are located very close for prolate pores (but not exact identical) tending asymptotically to 

infinity, whereas the values differ for oblate pores. In order to demonstrate in what extent this relation 

between the elastic-moduli and the pore shape is applicable to freeze-cast alumina ceramics, the 

relationship between the σc and Young’s modulus needs to be investigated more closely.  

 

 
 

 

 

The σc and Young’s modulus relationship of the freeze-cast ceramics is summarized in Fig. 3.25. The 

ceramics characterized by the circular cell channels exhibit a high resilience, since they are located on 

the right-hand side of the diagram. The ceramics comprising the isolated, disjointed cell walls 

demonstrate in contrast the lowest strength and stiffness of the presented ceramic morphologies. The 

freeze-cast ceramics cannot be approximated by a linear function between the σc and Young’s modulus 

(Fig. 3.25 (A), grey dashed line). They can be rather approximated by a quadratic function (see Eq. (14)) 

of the σc and Young’s modulus (Fig. 3.25 (A), (B): black dashed lines).  

The significance and meaning of σc
2/E as well as the formula-specific physical background will be 

clarified in the following. The quadratic function of the σc and Young’s modulus is used in material 

property charts as characteristic material-specific value in order to quantify the maximum elastic strain 

energy per unit volume of materials (Ashby 2006, Ashby et al. 2007), which is defined as  

 

σc2

E
=  M7 (14) 

 

The freeze-casted ceramics cannot be covered with one individual quadratic function only. Therefore, 

two quadratic functions were fitted to cover the dataset completely, which are defined as 

Fig. 3.24: Plot shows the aspect ratio dependence of the Eshelby (1957)-Wu (1966) exponent of the bulk (blue dashed line), 
shear (green dashed line) and Young’s modulus (red solid line) for a Poisson ratio of 0.2. Modified according to Pabst and 
Gregorová (2014).  
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σc2

E
= 0.88 

    

(15) 

 

and 

 

σc2

E
= 0.64 

    

(16) 

 

 
 

 

 

 

 

Fig. 3.26 summarizes the maximum elastic strain energy per unit volume for several natural cellular 

materials and engineering materials including the freeze-casted alumina ceramics as well. Materials that 

excel at storing elastic strain energy per unit volume are characterized by having high values of the 

material index, M7, like steel, aluminum or carbon fiber reinforced polymer (CFRP) of more than 

4 MJ/m3 (Fig. 3.26). Corals, trabecular bones, corks and parenchyma behave more rigidly. Therefore, 

the natural, cellular materials achieve small values of the maximum elastic strain energy per unit volume 

with less than 0.2 MJ/m3 (Fig. 3.26). The freeze-casted alumina ceramics were characterized by a 

maximum elastic strain energy between 0.64 and 0.88 MJ/m3.  

  

Fig. 3.25: (A): Relationship of the maximum compressive strength, σc, with the Young’s modulus for freeze-cast alumina 
ceramics. It includes the ceramics from the gelatin series and the ceramic A_4.3_5.9 from the agar series. The two black 
dashed lines demonstrate an approximation of the data by the quadratic functions of the σc and Young’s modulus. A linear 
approximation of the σc and Young’s modulus is displayed as grey dashed line. (B): A higher magnification of a part of the 
diagram demonstrates the approximation and therefore the good agreement of the data by two quadratic functions in detail.  
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The quadratic relation in Eq. (14) with its material index M7 is based on the formula for the theoretical 

strength of a material, σth. The theoretical strength of a material is subjected to brittle fracture, where 

the bonds are separated over the fracture surface (Gross and Seelig 2006). Therefore, surface energy is 

required in order to form two new surfaces. Thus, the theoretical strength is the maximum stress a 

material can withstand before it breaks and is proportional to the root of the Young’s modulus, E, and 

its surface energy, γ (Kelley 1973, Gross and Seelig 2006): 

 

σth =  �
γ ∙ E
a0

 (17) 

 

The interatomic distance is given by a0, which is a measure for the range of interatomic forces (Kelley 

1973). The following relationship can be obtained by changing Eq. (17) according to the quadratic 

function of the theoretical strength and Young’s modulus:  

 

σth2

E
=  

γ
a0

 (18) 

 

Since the surface energy of alumina is 1.0 J/m2
 (Kelley 1973), the stress required to break a bond is 

 

σth2

E
=  

1
a0

 (19) 

 

The relation of σc
2/E and its implementation and applicability into the pore model by Pabst and 

Gregorová (2014) is presented in the following part. Therefore, both functions, Eq. (15) and Eq. (16), 

Fig. 3.26: The maximum elastic strain energy 
per unit volume, σc2/E, of natural cellular 
materials, freeze-casted alumina ceramics and 
engineering materials. Data were obtained 
from Gibson et al. (2010).  
*CFRP: Carbon fiber reinforced polymer 
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were inserted into the Pabst and Gregorová relation (Eq. (8)) and converted according to the Eshelby 

(1957)-Wu (1966) exponent, which is given as  

 

[E] =  ⎝

⎜
⎛

ln�
σC2
M
E∗ �

⎠

⎟
⎞

�ln (1 −  ϕ)�
 

(20) 

 

The factor M was taken from Eq. (15) and Eq. (16) as 0.64 and 0.88, respectively. The conversion 

according to the Eshelby (1957)-Wu (1966) exponent from Eq. (8) is, in turn, given as  

 

[E] =  
�ln �ES 

E∗ ��

�ln (1 −  ϕ)�
 (21) 

 

A parity plot (Fig. 3.27) displays the Eshelby (1957)-Wu (1966) exponents determined by Eq. (20) and 

Eq. (21). The dashed line in Fig. 3.27 illustrates a good agreement of the Eshelby (1957)-Wu (1966) 

exponents determined by Eq. (20) and Eq. (21). The ceramic types ‘circular cell shape’ and ‘cellular 

oblate cell shape’ meet the dashed line in principle, which indicates that the Eshelby (1957)-Wu (1966) 

exponents of the Young’s modulus and σc are approximately the same for prolate pores. In contrast, the 

values of the Eshelby (1957)-Wu (1966) exponent differentiate for oblate pores, since the data of the 

ceramics characterized by isolated cell walls do not meet the dashed line. It follows the stated relation 

from Pabst and Gregorová (cf. Fig. 3.24) where the aspect ratio is described as a function of the Eshelby 

(1957)-Wu (1966) exponent of the bulk, shear and Young’s modulus for a ν = 0.2.  
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3.1.5 Conclusions 
1) Directional prolate cell channels were manufactured utilizing gelatin as additive in a water-based 

alumina slurry. The configuration of the pore system, i.e. the degree of the interconnectivity of the cell 

walls and the quantity of isolated cell walls, is dependent on the gelatin concentration. The quantity of 

solid loading has little influence on the shaping of the pores. Starting at a gelatin concentration of 

6.8 vol.% with a gradual reduction of the gelatin concentration by 50 % has shown that polygonal, 

cellular oblate pore systems can be manufactured in this way as well as structures with several disjointed 

cell walls.  

 

2) It was demonstrated that agar in a water-based alumina slurry can be used as additive to fabricate 

directional cell channels in ceramics. Continuous lamellar cell channels, which have a cellular character 

due to a wavy-like appearance of the cell walls, have been manufactured utilizing sucrose and agar. 

Through a combination of agar, sucrose and the adjustment of the pH of the slurry to a value of 4 (with 

citric acid), ceramics with rather spherical channels were manufactured, in which the degree of the 

interconnectivity of the cell walls is increased. Both ceramic types are characterized by cell walls with 

a flaky cohesion. Wide polygonal cell channels without any flocculation at the cell walls were 

manufactured by utilizing only agar as additive.  

 

The following conclusions (3 - 6) are related to the ceramics from the gelatin series and to the ceramic 

type A_4.3_5.9 from the agar series: 

 

Fig. 3.27: Parity plot comparing the Eshelby (1957)-Wu (1966) exponents (= [E]) of Eq. (20) and Eq. (21). It includes the 
results of the Eshelby (1957)-Wu (1966) exponent of the ceramics from the gelatin series and the ceramic A_4.3_5.9 from the 
agar series. 
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3) The strength and stiffness of the ceramic strongly relate to the shaping of the pore system and the 

degree of interconnectivity of the cell walls. Large values of the stiffness and strength were obtained for 

ceramics with strongly interconnected cell walls. Ceramics with a high quantity of isolated cell walls 

were characterized with rather low values of strength and stiffness.  

 

4) It was shown that the fracture behavior of the ceramics under uniaxial compression is likewise 

strongly related to the shaping of the cell channels and cell wall arrangement. Two main fracture modes 

of failure were identified for the freeze-cast alumina ceramics:  

a) a progressive interplay of flaking and crumbling;  

b) an intensification of vertical cracks leading to a segmental division of the ceramic into several 

lath-like segments.  

Failure mode a) is related to ceramics, which contain directional pore systems with a high degree of 

interconnectivity of the cell walls. In contrast, ceramics with an increased quantity of isolated cell walls 

are rather characterized by failure mode b). Failure mode a) leads to a widely maintained structural 

integrity and very low loss of material of the ceramic even at advanced stages of uniaxial compression. 

A vertical crack propagation and its intensification at high strain levels leads to a segmental division of 

the ceramic, which is, in turn, associated with failure mode b).  

 

5) A graded pore structure with varying orientations of the cell channels can be manufactured with mold 

design I (inner areas of the PTFE cylinder are characterized by an alternation of copper stripes and 

Teflon areas). The gradation is limited to the first 10 % of the ceramic in height and disappears at 

increasing height. Depending on the cell channel size and orientation, the graded ceramic may be divided 

into three distinct zones. The cell channel sizes decrease from the center towards to the exterior of the 

ceramic. The outer region of the ceramic is, however, characterized by cell channels that are more or 

less oriented perpendicular to the freezing direction. The highest variation of the cell channel size is 

concentrated at the outer region of the ceramic. Separate structural units (viz. a quasi ‘core-shell’ 

structure), which comprise different cell channel orientations, can be manufactured in one ceramic by 

utilizing mold design II (inner area of the PTFE cylinder is marked by a thin copper film). The different 

structural units are uniformly present in the entire ceramic in height. The cell channels in the center are 

oriented parallel to the freezing direction and are tilted increasingly towards to the outer region of the 

ceramic.  

 

6) The physical constraints of the honeycomb model provided by Zhang and Ashby (1992) are not given 

for freeze-cast alumina ceramics with a directional pore system, because it models an elastic/ plastic 

honeycomb foam behavior. The spheroidal pore model by Pabst and Gregorová (2014) for pure brittle 

materials is a reasonable approach to cover the physical constraints for freeze-cast alumina ceramics. 

The ‘circular cell shape’ and ‘cellular, oblate cell shape’ ceramics exhibit a high resilience in the light 
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of strength and stiffness, which are associated with low Eshelby (1957)-Wu (1966) exponents reflecting 

the dominant prolate shape. The ceramics, which are characterized by isolated, disjointed cell walls have 

the lowest strength and stiffness. Their high values of the Eshelby (1957)-Wu (1966) exponents indicate 

an oblate pore shape. The relation of the elastic moduli and the pore shape by Pabst and Gregorová 

(2014) is applicable to freeze-cast alumina ceramics.  

 

7) It has been demonstrated that the freeze-casted alumina ceramics can be defined by a quadratic 

function of the σc and Young’s modulus including the material index M7, which is defined as maximum 

elastic strain energy per volume unit. The quadratic relation of the σc and Young’s modulus with the 

material index M7 has its formula-specific background on the formula for the theoretical strength of a 

material.  
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4. Abstraction and 1st CAD approach 
 

This section presents one part of the abstracted structural model of the spine microstructure of 

Phyllacanthus imperialis, which summarizes the essential key elements of the spine microstructure. The 

different key elements are assigned to specific levels of abstraction. Section 4.2 presents a first approach 

of a computer-aided design (CAD) model of a part of the spine microstructure.  

 

4.1 Structural abstraction 
Tab. 4.1: Division of structural and material specific key elements of the spine of Phyllacanthus imperialis on the macroscopic 
and microstructural level. 

1st abstraction level (macrostructure) 

Shell Porous core 
2end abstraction level (microstructure): Stereom types 

Perforate stereom: Layered stereom: Columnar stereom: 
Braching of channels Wedges, cross struts - 

3rd abstraction level (‘meta-level’): Configuration, Shaping, Crystallinity 

Outer poly- and inner monocrystalline layer 
(Dery et al. 2014) 

Trigonal arrangement of 
dominant wedges 

Radiating nodes 

 

 

The extensive structural investigation of the spine microstructure of Phyllacanthus imperialis utilizing 

light microscopy, SEM technique (BSE mode) and μCT reconstructions allow to create an abstracted 

map of the structural key elements (Fig. 4.1). These key elements can be distributed on certain levels of 

abstraction (Tab. 4.1).  

Obviously the microscopic and macroscopic division into a ‘core-shell’ structure marks the first level 

of abstraction, whereby the core might be further divided according to its porosity into two cylinders: 

the radiating layer and medulla. The second level of abstraction comprises a detailed structural 

understanding of the stereom arrangement. Earlier investigations (Grossmann and Nebelsick 2013, Dery 

et al. 2014) of the structure leads to a division of the core into the galleried and laminar stereom type. 

This structural segmentation describes not accurately the spine microstructure of Phyllacanthus 

imperialis. Furthermore, it is incomplete in the consideration of the whole spine microstructure, because 

it focuses on singular structural components only. It does not consider the relative structure (shaping 

and configuration) of elements to each other, but excludes the relation of the shaping and transition from 

one structural element to the next one. Section 2.1.4 demonstrated that the formal division of the spine 

microstructure in certain stereom types can be further extended through new findings of the 

configuration of the stereom as well as clustering.  
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In Fig. 4.1 the configuration of the inner core elements and afterwards the core-shell connection is 

described schematically. The radiating layer comprises single stereom layers (Fig. 4.1: yellow area), 

which together form wedge-like structures. Each wedge is not completely closed, but rather encloses a 

side branch of the inner spine center. Both structural elements are interwoven with each other.  

In total, 13 wedges are present in the spine structure (Fig. 4.1: blue dashed lines). The stereom layers 

are connected with ordered cross struts arranged in certain distances along the z-axis (Fig. 4.1: red lines). 

Six of the 13 wedges can be regarded as dominant wedges (Fig. 4.1: grey outer area), because they 

contain more than 28 stereom layers. These dominant wedges are grouped in two units and are arranged 

approximately in a trigonal way. In contrast to the microstructural stereom types, the specific trigonal 

arrangement of the dominant wedges is not obviously visible utilizing SEM and μCT reconstructions. 

A precise quantification of the stereom layers within the spine microstructure visualized the trigonal 

arrangement of the wedges for the first time (see section 2.1.4.4). The dominant wedges can therefore 

be categorized into their own level of abstraction referred to as ‘meta level of abstraction’. The ‘meta 

level of abstraction’ includes also the bulges of the spine center (Fig. 4.1: marked as pink structures). 

The cortex appears to be isolated on the first level of abstraction. Therefore, the transition of the 

outermost stereom to the core seems to be abrupt. On the second level of abstraction, the strong 

connection between the perforate and laminar stereom becomes clear (Fig. 4.1). Each single stereom 

layer is connected with the cortex (Fig. 4.1). The spaces between the stereom layers and the cross struts 

are the channel openings (Fig. 4.1: green lines). The transition from the exterior of the cortex to the 

inner spine structure is a graded one: the channel sizes remain almost constant (aside from the extreme 

large ones at the exterior), but the number of channels increases more than twice from the outside to the 

inside.  
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 Fig. 4.1: Abstraction of the microstructure of the adult spine of Phyllacanthus imperialis. The division of the structural key 
elements into several abstraction levels is summarized in Tab. 4.1. 
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4.2 1st CAD approach of the spine microstructure 
Based on the current understanding of the spine microstructure of Phyllacanthus imperialis, a first 

approach of a CAD model has been created utilizing the software SketchUp (Trimble Inc., California, 

USA). The first CAD approach displays one way to model the wedge-like structure of the radiating layer 

with its single stereom layers and the side branches of the medulla. The trabecular rods themselves 

consist of stacked columns (Fig. 4.2 (A), (B)). The trabecular rods were narrowed to create the columnar 

stereom structure of the medulla (Fig. 4.2 (B)).  

 

 
 

Each stereom layer consists of several rows of stacked columns (Fig. 4.3: black arrows). The upper and 

lower part of the columns are connected by cross struts, which were simplified as beams in the model 

(Fig. 4.3). This approach of the wedge-like microstructure in the CAD model can reflect to some extent 

the spine structure of Phyllacanthus imperialis. However, some further improvements are crucial. The 

offset of pores, which is a characteristic of the stereom layers, could not be transferred into the CAD 

model. It means, in turn, that the trabecular rod as basic element of the CAD model has to be refined in 

such way that an offset of pore rows can be created in the stereom layers. Furthermore, the trabecular 

rods and cross struts of the stereom layers are different in their size in the first CAD approach of the 

wedge. The next CAD model should contain equal sized struts.  

  

Fig. 4.2: Structural composition of the trabecular rods 
in the CAD model. Each individual trabecular rod 
consists of individual columns. The size of the used 
trabecular rods is different for the structures in the 
radiating layer (A) and medulla (B).  
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In order to create equal-sized trabecular rods and cross struts within a wedge-like configuration, a 

repeating unit volume extracted from the μCT reconstructions can be used to create an idealized 

representative volume element (RVE) of the wedge-like structure (Chen 2011). A macroscopic model 

of the entire aboral spine can be created by repeating the idealized RVE of the wedge-like structure.  

 

Fig. 4.3: First CAD model of the wedge of the spine of Phyllacanthus imperialis.  
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5. Outlook 
 

5.1 Transfer into a concrete-based column 
Since the spine structure was described numerically (strut- and pore sizes, volume fraction of the 

stereom units) and morphologically (superstructures), a scalable CAD model could be developed in the 

future, which includes the whole microstructural characteristics of the spine of Phyllacanthus imperialis. 

It was demonstrated that the layered and columnar stereom structures can be transferred into a CAD 

model. But the basic building blocks of the trabecular rods have to be refined in order to come closer to 

the actual spine microstructure. On the basis of a CAD model, the finite element (FE) method could be 

utilized in order to gain a better understanding about the stress distribution and failure mechanism of the 

whole spine structure. So far, the FE method was applied to an individual section of the galleried stereom 

in Presser et al. (2009b) to determine the stress distribution. They have demonstrated that high stress 

accumulates at the tapered sides of the trabecular rods. Qualitative FE method simulations of the stress 

distribution of the whole microstructure including the superstructures of the spine do not yet exist. New 

findings of the FE method simulations could be utilized to optimize the CAD model.  

An optimized CAD model can be used to transfer the spine microstructure into a concrete-based column 

on a construction-scale under the utilization of the frozen sand formwork technique developed by ILEK 

(Institut für Leichtbau und Entwerfen) at the University of Stuttgart. With this formwork method, it is 

possible to fabricate complex three-dimensional moulds by milling a frozen mixture of water and sand 

(Gericke et al. 2015). Recently, shell segments with a two-dimensional graded porosity inspired by the 

spine of Heterocentrotus mammilatus were manufactured with the frozen sand formwork technique 

(Fig. 5.1 (A)) and were assembled to a pavilion representing a prototype of weight-optimized load 

bearing system (Kovaleva et al. 2018). A section of the three-dimensional stereom structure based on 

concrete was manufactured by utilizing the frozen sand formwork technique as well (Fig. 5.1 (B): 

manufactured by Daria Kovaleva, ILEK).  

It demonstrates that complex spatial moulds may be developed and fabricated with the frozen sand 

formwork technique, since it has no constraints, such as undercuts and bottleneck problems (Coupek et 

al. 2016). This fabrication technique for complex spatial negative moulds offers a way to manufacture 

a concrete-based column inspired by the spine structure of Phyllacanthus imperialis. In this case, the 

optimized CAD model comprising the total spine microstructure of Phyllacanthus imperialis can be 

exploited to fabricate the spatial negative mould (= pore network of the spine structure) for the concrete 

column. The frozen sand formwork technique is advantageous, since the fabrication of the moulds is 

waste-free and can be reused for further concrete casting. In view of the increasing scarcity of natural 

resources in contrast to a steadily growing population, manufacturing of concrete components 

combining high mechanical resilience with a lightweight design is of paramount importance for our 

society today.  
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5.2 Three-dimensional printing technique for porous 
ceramics 
 

5.2.1 Bioinspired ceramic component 
To transfer the spine microstructure with its integrated superstructures into a technical ceramic, freeze-

casting is not suitable as manufacturing method. Freeze-casting is particularly suitable to manufacture 

one pore system containing a specific cell geometry and size in one specimen. The manufacturing of a 

graded pore structure is feasible, but the gradation is only limited to a specific height in one specimen. 

Manufacturing of the differentiate spine structure with its wedge-like interlocking with the side branches 

of the medulla and the cortex intersected by channels as well is not realizable with the freeze-casting 

technique (Fig. 5.2 (A), (B)). Alternatively, the three-dimensional printing technique can also be utilized 

to manufacture a ceramic component inspired by the microstructure of the spine of Phyllacanthus 

imperialis. The same optimized CAD model would be utilized in the process of manufacturing of the 

concrete-based column as well.  

  

Fig. 5.1: Fabrication of concrete-based porous work pieces. In (A) is displayed a frozen sand form and the manufactured 
product, which contains a graded two-dimensional porosity (modified after Kovaleva et al. 2018). In (B) is displayed a frozen 
sand form, which creates three-dimensional structures (modified after Kovaleva et al. 2018). *) Modified after Wulle et al. 
(2017). Scale bar = 1 cm.  
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5.2.2 Systematical investigation of the pore model by Pabst 
and Gregorová (2014) 
 

Three-dimensional printed ceramic species could also be utilized to test systematically the spheroidal 

pore model by Pabst and Gregorová (2014). The influence of the composite material and varying 

structural units, which are prevailing in many biological materials, on the strength and stiffness might 

be removed in this way. Freeze-casted ceramics are not suitable for this systematical analysis of the pore 

model prediction by Pabst and Gregorová (2014) due to occurrence of varying strut thicknesses, a broad 

pore distribution and slightly tilted and bent cell walls. Three-dimensional printing, by contrast, is a 

common way to manufacture ceramic structures with well-defined cell geometry. However, the cell 

geometries are in the mm-range and reach not yet a comparable size in the μm-range of the freeze-casted 

ceramics. Reaching low cell geometry sizes plays a subordinate role for the applicability of the pore 

model by Pabst and Gregorová (2014) on porous ceramics in this issue. A common three-dimensional 

printing technique for porous ceramics is the so-called direct ink writing (DIW) where the desired body 

is assembled by specifically depositing small amounts of an ink or a paste (Lewis 2006). This can be 

realized by a filamentary-based approach, like robocasting (Zocca et al. 2015, Deckers et al. 2014) and 

fused deposition modeling (Guo and Leu 2013) or by a droplet-based approach, such as ink-jet printing 

(Sachs et al. 1992, Song et al. 1999). Each approach bases on CAD models, which is advantageous in 

order to ascertain the limitations of the pore model prediction for porous ceramics with regard to cell 

geometries. A basic CAD model, for instance with a prolate pore system, could be exploited to change 

systematically and step-wise the degree of interconnectivity of the cell walls, the cell sizes and 

geometries as well.  

Fig. 5.2: Comparable display of BSE images of the spine microstructure of Phyllacanthus imperialis and of a graded freeze-
casted alumina ceramic. The cross section (perpendicular to the c-axis) of the spine microstructure is displayed in (A). The 
graded freeze-cast alumina ceramic with its cross section is presented in (B). Scale bars: (A) = 500 μm, (B) = 500 μm.  
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Appendix 

 
 
 

 
 

 

Fig. A.1: Boxplots of the analyzed μCT 
reconstruction of the radiating layer of the spine of 
Phyllacanthus imperialis. The boxplot in (A) gives 
the pore axis lengths of the pores between and on 
the stereom layer. The statistical distribution of the 
lengths of the cross struts is also plotted in (A). The 
numerical spacing between the pores is illustrated 
in (B) in form of a boxplot. 

 

Fig. A.2: μCT scan of the radiating stereom layer of the spine of Phyllacanthus imperialis. The μCT reconstruction displays 
the position of the pore axis lengths between the stereom layers.  
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Fig. A.3: μCT scan of the radiating stereom layer of the spine of Phyllacanthus imperialis. The position of the selected slice 
plane is given in (A) as light blue and red line. The positions of the pore axis lengths are illustrated in (B).  
 

 

 
Fig. A.4: Boxplot gives the axis lengths of the pores belonging to the columnar stereom type of the spine Phyllacanthus 
imperialis.  
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Fig. A.5: Pore size distribution of the μCT sections, which are displayed in Fig. 2.18 and belong to the stacked μCT section of 
the cortex (spine of Phyllacanthus imperialis). 
 

 
Fig. A.6: Stacked μCT section of the cortex belonging to the spine of Phyllacanthus imperialis. The position of the selected 
slice plane is given in (A) as turquoise and green line. The positions of the pore axis lengths are illustrated in (B).  
 

 
Fig. A.7: Display of a prepared radiating layer-cylinder of the spine of Phyllacanthus imperialis. Scale bar = 1 mm
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