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Summary

Melanoma is the most aggressive form of skin cancer, with a rapidly increasing incidence rate.
Malignant melanoma is characterized by mutations in the mitogen-activated kinase (MAPK)
pathway, which strongly correlate with poor prognosis of the disease. The kinase BRAF is
mutated in ~48% of melanoma cases, resulting predominantly in V600E substitution that leads
to constitutive activation of the BRAF kinase and downstream signaling pathways. Over the
last decade, several therapeutic treatments for melanoma have been developed with improved
efficiency and overall survival rates. Targeted inhibition of the mutated BRAF with selective
inhibitors, such as vemurafenib or dabrafenib and immunotherapy with the immune checkpoint
antibodies targeting PD-1 and CTLA-4 receptors, results in regression of the disease. However,
only a minority of patients can benefit from the current therapies and most of them quickly
develop resistance to the treatment. Prognostic biomarkers, resistance mechanisms and
mutational profiles of melanoma are mainly studied by genomics and transcriptomics. Although
only about 2% of the genome codes for proteins, variants in these region of the genome have a
high potential to rewire signal transduction networks. In addition, the majority of targeted
cancer therapies do not target the genome, but rather the protein itself. Thus, it is highly
important to analyze proteins and their patient-specific alterations in context of personalized
medicine. Mass spectrometry-based proteomics can be used to study protein-specific clinical
questions and can identify molecular mechanisms of treatment-resistant melanoma. By
combining personalized genomics and proteomics, in an approach called proteogenomics, it is
possible to derive patient-specific protein sequence databases — that include patient-specific
amino acid variants. These in turn can provide deeper and more comprehensive molecular
characterization of cellular processes that underlie disease progression. Several mechanisms for
acquired resistance and even cross-resistance in melanoma have been detected, but key
(phospho)proteins involved in resistance, as well as mutations altering protein modification
status are still largely elusive. This thesis develops and applies personalized proteogenomics
workflows to study these mechanisms on the level of individual melanoma cells and patient

tissues.

In the first part of this thesis, a SILAC-based quantitative (phospho)proteomics profiling of
vemurafenib-resistant and -sensitive A375 melanoma cells was performed to gain new insights
into molecular processes that govern resistance to BRAF inhibitors. Among down-regulated
proteins in vemurafenib-resistant cell lines were multiple cytoskeletal proteins including the
intermediate filament nestin. Previous studies showed that nestin is expressed in various types

of solid tumors and its abundance correlates with malignant phenotype of transformed cells.
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However, the role of nestin in cancer cells with regard to acquired resistance is still poorly
understood. CRISPR/Cas9 knockout of the nestin gene showed that the loss of nestin leads to
increased cellular proliferation and colony formation upon treatment with kinase inhibitors.
Moreover, nestin depletion is associated with an invasive phenotype and acquired resistance to
MEK and BRAF inhibitors. Finally, phosphoproteome analysis revealed that nestin depletion
affects integrin and PI3K/AKT/mTOR pathway signaling similar to resistant cells. In this part,
proteomic and phosphoproteomic changes have been determined for BRAF inhibitor resistant

and sensitive cells.

In the second part of the thesis, an individualized proteogenomics approach was applied to two
melanoma cell lines, A375 and SkMel28, to analyze non-synonymous mutations and their
impact on signal transduction networks in context of acquired resistance to kinase inhibitors.
Integration of genomics and proteomics highlighted the distinct mutational landscape of both
cell lines and revealed that cancer mutations are accumulating in MAPK and ErbB signaling
pathways in resistant cells. Several alternate peptides interfering with the modification status
of proteins with a potential to rewire signal transduction pathways were confirmed by high
resolution mass spectrometry. Among them was transcription factor RUNX1, previously
connected with myeloid leukemia and breast cancer. Validation of a loss of a known
phosphorylation site on RUNX1 using SILAC-based protein interaction studies suggested that
this mutation has an impact on the interactome of the protein and may alter its transcriptional
activity. Taken together, this part of the thesis established the individualized proteogenomic
workflow for analysis of mutational profiles of cancer cell lines and tissues.

In the third part of the thesis, this individualized proteogenomics approach was applied to four
clinical melanoma samples in response to immunotherapy. Integration of the matching
genomics and (phospho)proteomics datasets revealed an extensive number of patient-specific
variants and disproportional number of shared variants in immune checkpoint inhibitor (ICi)-
treated patient samples compared to untreated (naive) samples. The proteogenomic signatures
of human tissues could be recapitulated in patient-derived xenografts, thus allowing
phosphoproteomics analysis. MS-measurements confirmed mutation-driven modification
changes of several proteins specific to one sample, most of them were previously not reported
in melanoma. Statistical analysis revealed differing mechanisms and associated network-
attacking mutations in response to immunotherapy, such as PI3K/AKT signaling or GTPase
activation in ICi treated samples. The gain of a new phosphorylation site on the GEF protein
DOCK1 was further investigated by interactome studies and the results showed that this

mutation has an impact on the interactome of DOCKZ1. The obtained results have demonstrated
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that the developed individualized proteogenomic workflow can be efficiently applied to human

melanoma tissue and patient-derived xenografts in response to immunotherapy.

Taken together, this thesis presents a new personalized proteogenomics workflow that can be
routinely applied to numerous types of cancer and other diseases involving patient-specific
accumulation of mutations in protein-coding genes. Datasets reported in this thesis provide new
insights into resistance mechanisms and associated mutations with the potential to rewire signal
transduction networks in malignant melanoma. This work can therefore serve as a basis for

further improvement of therapeutic treatment of cancer patients.
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Zusammenfassung

Das Melanom ist die aggressivste Form von Hautkrebs mit einer schnell ansteigenden
Inzidenzrate. Das maligne Melanom ist gekennzeichnet durch Mutationen im Mitogen-
aktivierten Kinaseweg (MAPK), die mit einer schlechten Prognose der Krankheit einhergehen.
Die Kinase BRAF ist in circa 48% der Melanomfalle mutiert, was vorwiegend zu einer
Substitution von V600E und zu einer konstitutiven Aktivierung der Kinase BRAF und der
nachgeschalteten Signalwege fihrt. In den letzten Jahren wurden mehrere therapeutische
Behandlungen fir Melanome mit verbesserter Effizienz und erhohter Uberlebensrate von
betroffenen Patienten entwickelt. Eine gezielte Hemmung der mutierten Kinase BRAF mit
selektiven Inhibitoren wie Vemurafenib oder Dabrafenib und eine Immuntherapie mit den
Antikorpern gegen die PD-1 und CTLA-4 Rezeptoren fiihren zu einem Ruckgang des
Krankheitsverlaufes. Allerdings profitiert nur eine Minderheit der Patienten von den derzeitigen
Therapien, wéhrend die meisten dieser Patienten schnell eine Resistenz gegen diese
Behandlungen entwickeln.  Prognostische  Biomarker, Resistenzmechanismen  und
Mutationsprofile wurden vor allem in Genom und- Transkriptomstudien analysiert. Obwohl nur
2% des Genoms fur Proteine codieren, haben Mutationen in diesem Bereich des Genoms ein
hohes Potential Signaltransduktionsnetzwerke zu verandern. Infolgedessen richten sich die
Mehrzahl der derzeitigen Therapien nicht gegen bestimme Gene, sondern gegen Proteine in
Krebszellen. Daher ist es sehr wichtig, Proteine und ihre patientenspezifischen Veranderungen
im Kontext der personalisierten Medizin zu analysieren. Massenspektrometrie-basierte
Proteomik kann proteinspezifische klinische Fragen beantworten, die weit auerhalb der
Reichweite der Genomik liegen und molekulare Mechanismen identifizieren, die dem
metastasierten und behandlunsgresistenten Melanom zugrunde liegen. Durch die Kombination
von personalisierter Genomik und Proteomik, die als Proteogenomik bezeichnet wird, kénnen
patientenspezifische Proteinsequenzdatenbank generiert werden, die patientenspezifische
Aminoséurevarianten enthalten. Diese konnen wiederum eine tiefere und umfassendere
molekulare Charakterisierung der zellularen Funktionen ermdglichen, die dem Fortschreiten
der Krankheit zugrunde liegen. Verschiedene Mechanismen fur erworbene Resistenzen,
darunter sogar Kreuzresistenzen, wurden im Melanom nachgewiesen, aber Schlusselproteine,
die daran beteiligt sind, sowie damit verbundene Mutationen, die den Modifikationsstatus
verandern und daher die Resistenzentwicklung beeinflussen koénnen, sind noch weitgehend
unerforscht. Diese Arbeit entwickelt und wendet personalisierte Proteogenomikansatze an, um
diese Mechanismen auf der Ebene einzelner Melanomzellen und Patientengewebes zu

analysieren.

Vil
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Im ersten Teil dieser Arbeit wurde ein SILAC-basierter quantitativer Ansatz zur Untersuchung
der Proteomverdnderungen von Vemurafenib-resistenten und —sensitiven Melanomzellen
angewendet, um neue Einblicke in molekulare Prozesse zu erhalten, die die Resistenz steuern.
Unter den herunterregulierten Proteinen in Vemurafenib-resistenten Zelllinien befanden sich
mehrere Zytoskelettproteine, einschlieRlich das Intermediarfilament Nestin. Frihere Studien
zeigten, dass Nestin in verschiedenen Arten von soliden Tumoren exprimiert wird und seine
Abundanz mit einem malignen Phanotyp transformierter Zellen korreliert. Allerdings ist die
Rolle von Nestin in Krebszellen im Hinblick auf die erworbene Resistenz noch nicht
ausreichend bekannt. CRISPR/Cas9 generierte Knockouts des Nestin-Gens zeigten, dass der
Verlust von Nestin bei Behandlung mit Kinase-Inhibitoren zu einer erhohten Zellproliferation
und Koloniebildung fuhrt. Dartber hinaus korreliert die Expression von Nestin mit einem
invasiven Phanotyp und einer erworbenen Resistenz gegentiber MEK- und BRAF-Inhibitoren.
Schliellich ergab die Phosphoproteomanalyse, dass der Knockout von Nestin die
Signallibertragung durch Integrin und PI3K/AKT/mTOR-Signalwege &hnlich wie bei
resistenten Zellen beeinflusst. In diesem Teil der Arbeit wurden proteomische und
phosphoproteomische Veranderungen von BRAF-Inhibitor-resistenten und sensitiven Zellen

bestimmt.

Im zweiten Teil der Arbeit wurde ein individualisierter Proteogenomikansatz auf zwei
Melanomzelllinien (A375 und SkMel28) angewendet, um nicht synonyme Mutationen und
deren Auswirkungen auf Signaltransduktionsnetzwerke im Zusammenhang mit der erworbenen
Resistenz gegeniber Kinaseinhibitoren zu analysieren. Die Integration von Genomik- und
Proteomikdaten hob die unterschiedlichen Mutationsprofile beider Zelllinien hervor und zeigte,
dass Krebsmutationen in MAPK- und ErbB-Signalwegen in resistenten Zellen akkumulieren.
Mehrere mutierte Peptide, die den Modifikationsstatus von Proteinen beeinflussen kénnen und
somit ein hohes Potenzial haben Signaltransduktionswege zu beeinflussen, wurden durch
hochauflésende = Massenspektrometrie  bestatigt. Unter diesen befand sich  der
Transkriptionsfaktor RUNX1, der zuvor mit myeloischer Leukdmie und Brustkrebs in
Verbindung gebracht wurde. Die Validierung des Verlustes einer bekannten
Phosphorylierungsstelle  von RUNX1 unter Verwendung von SILAC-basierten
Proteininteraktionsstudien legte nahe, dass diese Mutation einen Einfluss auf das Interaktom
von RUNX1 hat und dessen Transkriptionsaktivitat verdndern kann. Zusammenfassend
etablierte dieser Teil der Arbeit einen individualisierten Proteogenomikansatz zur Analyse von

Mutationsprofilen von Krebszelllinien und Geweben.

VIl
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Im dritten Teil der Arbeit wurde dieser individualisierte Proteogenomikansatz auf vier klinische
Melanomenproben unter Immuntherapie angewendet. Die Integration der Genomik- und
dazugehorigen Phospho-Proteomikdaten fiihrte zur Identifizierung einer Vielzahl von
patientenspezifischen Mutationen und einer Uberproportionalen Anzahl derselben
Genvarianten in Immun-Checkpoint-Inhibitoren behandelten Proben gegenuiber unbehandelten
Proben. Die in menschlichem Gewebe identifizierten proteogenomischen Signaturen konnten
in vom Patienten stammenden Xenotransplantaten rekonstruiert werden, wodurch
Phosphoproteomeanalysen ermdéglicht wurden. MS-Messungen bestétigten mutationsbedingte
Modifikationsveranderungen an mehreren Proteinen, von denen die meisten bisher nicht im
Melanom bekannt sind. Die statistische Analyse ergab unterschiedliche Mechanismen und
damit verbundene netzwerkangreifende Mutationen als Reaktion auf eine Immuntherapie, wie
z.B. PI3K/AKT-Signalisierung oder GTPase-Aktivierung in Immuntherapie-behandelten
Proben. Der Gewinn einer neuen Phosphorylierungsstelle am GEF-Protein DOCK1 wurde
durch Interaktomstudien weiter untersucht, und die Ergebnisse zeigten, dass diese Mutation
einen Einfluss auf das Interaktom von DOCKZ1 hat. Die erhaltenen Ergebnisse zeigten, dass der
entwickelte individualisierte proteogenomische Ansatz auf menschliches Melanomgewebe und
von Patienten stammende Xenotransplantate im Zusammenhang mit Immuntherapie

angewendet werden kann.

Zusammenfassend prasentiert diese Arbeit einen personalisierten Proteogenomikansatz, der
routinemé&fig auf weitere Krebsarten und andere Krankheiten angewendet werden kann, bei
denen patientenspezifische Mutationen in proteinkodierenden Genen akkumulieren. In dieser
Arbeit beschriebene Datensatze bieten neue Einblicke in Resistenzmechanismen und damit
verbundene Mutationen mit dem Potenzial Signaltransduktionsnetzwerke bei malignen
Melanomen zu beeinflussen. Diese Arbeit kann daher als Grundlage flr eine weitere
Verbesserung von therapeutischen Behandlungen von Krebspatienten sein.
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Introduction 1

1 Introduction

1.1 Malignant melanoma

Melanoma is the 19" most common cancer worldwide, accounting for approximately 232,000
new cases in Germany in 2012 *. Although malignant melanoma accounts for less than five
percent of all skin cancer cases it is the most serious form of the disease, causing up to 75%
skin cancer related deaths. Melanoma predominantly affects Caucasian population of both
genders, and once it becomes metastatic, the prognosis is very poor 2. Ultraviolet radiation from
sunlight is one of the main risk factors for the development of melanoma and is directly
associated with the UV-B spectrum >4, It is also related to sun patterns and timing in particular
intense and intermittent sun exposure. Individuals with a history of sunburn in their childhood
or adolescence are at highest risk of developing melanoma °. In addition, UV-A exposure from
artificial sources have been associated in a number of studies to an increased risk of developing
melanoma ®7. Besides environmental risk factors, host factors play an important role including
family history, genetic susceptibility and the number of acquired melanocytic nevi 8.
Approximately 7-15% of melanoma cases occur in patients with a family history for melanoma
and around 25% arises from pre-existing nevus *°. Cutaneous melanoma is the most common
form of melanoma accounting for 90% of all incidences and arises from melanocytes .
Melanocytes, the pigment producing cells can be found in skin, eye, inner ear, and
leptomeninges %3, In skin, melanocytes are located and consistently distributed in the basal
layer of epidermis and represents the second largest cell population within the skin 4,
Epidermal melanocyte proliferation and pigment production is stimulated by UV-radiation
induced DNA damage in the neighboring keratinocytes, which secretes a-melanocyte
stimulating hormone (aMSH) °. Binding of aMSH to the melanocortin 1 receptor (MC1R) on
melanocytes induces the synthesis of the macromolecule melanin. Melanin is transferred to
adjacent keratinocytes, where it accumulates around the nucleus and building a photo-
protective barrier against UV-radiation 11, Melanin production is initiated and regulated by
the Wnt signaling pathway, c-KIT receptor tyrosine kinase, and downstream transcription
factors like melanocyte inducing transcription factor (MITF) 1819, Several studies have shown
that stimulation of the MC1R receptor dictates differentiation and migration of melanocytes .
Melanoma is caused by uncontrolled growth of melanocytes forming a tumor which can
become malignant and spread to other organs. Melanoma progression begins from a localized
lesion undergoing radial growth, then reaching lymph node by undergoing vertical growth and

finally metastasizing to distant organs via the lymphatic and circulatory systems (Figure 1). In
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2009, melanoma was classified by Balch et al. into four stages (I-1V) based on the thickness,
ulceration and metastatic status . Localized melanoma is divided into two stages: stage | and
stage Il melanoma. This includes patients with no evidence for distant metastases and low risk
for metastases and melanoma-specific mortality (stage I) or intermediate risk and melanoma-
specific mortality (stage Il). The ten-year survival rate after surgical removal is 95% of stage |
and 39% of stage Il. Regional metastases, stage Il melanoma, shows a high in-transit
metastasis, absence or presence of ulceration of the primary melanoma and metastatic lymph
nodes. The five-year survival rate for patients with stage 111 melanoma is 60% in absence of
ulceration and 36% in presence of ulceration. Contrastingly, patients with distant metastases
(stage 1V) have a poor prognosis with a median survival time of six to nine months and a one-
year survival rate of only 25% 22, The aggressiveness of this cancer type highlights the need for

improvement of existing therapies 23

Radial Growth Vertical Growth

Phase Phase Metastatic Melanoma
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Figure 1: Pathological staging of melanoma progression based on Clark model. Progression can start
from uncontrolled growth of normal melanocytes to form a benign nevus. The benign nevus can proliferate
to a dysplastic nevus with irregular borders and variable pigmentation. In the radial growth phase, the
melanocytes proliferate horizontally into the epidermis, followed by vertical proliferation and invasion of
the basement membrane in the vertical growth phase. Malignant melanocytes spread to distinct areas of the
body, most of the time first to lymph nodes, then skin, soft tissues, lung and brain. (adapted from Seuradge
and Wong, 2006 %)

1.1.1 Mutational landscape of melanoma

Two main pathways are known to be deregulated in melanoma development, the mitogen-
activated protein kinase (MAPK) pathway and phosphatidylinositol-3-kinase (PI3K) pathway
(Figure 2). In the MAPK pathway, receptor-tyrosine-kinases (RTKSs) are activated by a variety
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of growth factors, i.e. epidermal growth factor (EGF), platelet-derived growth factor (PDGF)
and nerve growth factor (NGF), as well as G-protein-coupled receptors (GPCRs) and cytokines
25, Binding of ligands to the receptors activate the tyrosine kinase activity of the cytoplasmic
domains, which leads to autophosphorylation of several tyrosine residues 26. The
phosphorylated tyrosine residues form binding sites for Src homology 2 (SH2), Src homology
3 (SH3) or phosphotyrosine binding (PTB) domain-containing proteins like growth factor
receptor-bound protein 2 (GRB2) ?’. GRB2 binds the guanine nucleotide exchange factor SOS,
which induces the exchange of guanosine diphosphate (GDP) to guanosine triphosphate (GTP)
in the G-protein RAS. Activated RAS dissociates from the complex and initiates the
phosphorylation of the serine/threonine protein kinase RAF 28, Phosphorylation-activated RAF
kinase can induce downstream signaling by triggering phosphorylation of the
serine/threonine/tyrosine kinase MEK and leads to the activation of the serine/threonine protein
kinase ERK %%, ERK phosphorylation induces expression of genes to cell survival,
differentiation and proliferation.
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Figure 2: MAPK and PI3K/AKT/mTOR pathway and common mutations and alterations in
melanoma. (adapted from Amaral et al., 2017 2°)
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The MAPK pathway is frequently mutated in malignant melanoma and other cancer types and
gained clinical importance due to the high occurrence of RAF- activating mutations L. Around
48% of metastatic melanoma patients harbor non-synonymous somatic missense mutations in
the RAF kinase BRAF (v-raf murine sarcoma viral oncogene homolog B) %°. The predominant
mutation, accounting for 90% of BRAF mutations, is within the kinase domain and results in
the substitution of valine to glutamic acid at amino acid 600 (V600E) 3!. This mutation can
result in a 500-fold increased activation of BRAF, and thus leads to a constitutive activation of
downstream signaling in cancer cells 2, In addition, the substitution of valine by lysine
(V600K) at the same position is observed in 20% of melanoma patients. Another 6% of patients
have other genotypes including alternative splicing or amplification of BRAF and mutations in
ARAF 3 Besides RAF alterations, mutations in the upstream regulator RAS (rat sarcoma)
occur in approximately 18% of melanoma patients including NRAS. The dominant mutations
are Q61R and Q61K substitutions resulting in inability to hydrolyze GTP to GDP. Activating
mutations in KRAS or HRAS occur at a very low frequency in melanoma compared to other
cancer types. BRAF and NRAS alterations are, so far, the most common point mutations
detected in proto-oncogenes in melanoma and mutations rarely overlap, likely due to redundant
pathway reactivation 3°. This supports the hypothesis that both kinase families are major
signaling checkpoints in the MAPK pathways promoting malignant progression.

Besides mutations in the MAPK pathway, oncogenic alterations in the PI3K/ protein kinase B
(AKT) pathway occur in approximately 50% of melanomas . Similar to the MAPK pathway,
the PI3BK/AKT pathway is activated by extracellular ligand binding to RTKSs, which causes
receptor dimerization and autophosphorylation of tyrosine residues in the intracellular domain
37 P85, the regulatory subunit of PI3K, binds to the receptor via its SH2 domain and recruits
p110, the catalytic subunit, to the membrane. Both subunits form the activated PI3K enzyme.
Independently of the receptor, p85 and p110 can be recruited and activated by GRB2 and GTP-
bound RAS, respectively. Activated PI3K phosphorylates phosphatidylinositol to
phosphatidylinositol (4,5)-biphosphate (PIP2) and subsequently to phosphatidylinositol-
(3,4,5)-triphosphate (PIP3). These phosphorylated lipids are anchored in the plasma membrane
and activate the serine/threonine kinase AKT through binding of the pleckstrin homology (PH)
domain. The interaction with PIP3 causes a conformational change of AKT and thus leads to
the exposure of the phosphorylation sites in the kinase domain and the C-terminal region of the
protein. Phosphorylated S473 in the C-terminal region of AKT by mechanistic target of
rapamycin complex (MTORC) or phosphoinositide-dependent kinase 2 (PDK2) stimulates

AKT activation. Fully activated AKT leads to substrate-specific phosphorylation events in the
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cytoplasm and the nucleus, where it regulates transcription of genes involved in cell
proliferation, cell cycle progression and apoptosis, through a variety of downstream proteins
like glycogen synthase kinase 3-beta (GSK-3B) *. Phosphatase and tensin homologue (PTEN)
negatively regulates PISBK/AKT signaling pathway by dephosphorylating phosphatidylinositol
at the 3’position 3°. A variety of alterations and copy number changes within significant
components of this pathway have been identified and are now the focus of pharmacological
development. Loss of expression or inactivating mutations of the tumor suppressor PTEN have
been identified in approximately 20-30% of patients with malignant melanoma “°. PTEN loss
commonly occur in the presence of BRAF mutations leading to a hyperactivation of
(PKB)/AKT signaling and activation of MAPK pathway whereby induction of apoptosis is
abolished 4142, Other driver mutations are in the PD domain of AKT1 (at position E17), which
were detected in 1-2% of melanoma cases “3. Interestingly, an analogous mutation on AKT3
has been identified exclusively in melanoma and leads to increased expression and activation
of AKT3 #45 Apart from AKT mutations, 2-6% of melanoma contain a point mutations in
PIK3CA encoding for the catalytic subunit p110 of PI3K 4647, This may result in a constitutive
activation of AKT/mTOR. Mutations in the kinase domain of mTOR occur in approximately
10.5% of melanoma patients resulting in gain-of function and activation of a mTORC1-
mediated feedback loop within the PI3K pathway. The pathway is also activated by
amplifications of RTKs like EGFR or c-KIT. Mutations in c-KIT have been identified in 2-8%
of melanoma cases “8. Several studies have demonstrated a high prevalence of activating

mutations in the PI3K/AKT pathway highlighting the critical role in melanoma progression.

In addition to mutations occurring directly within the MAPK and PI3K pathway, other genes
are mutated in melanoma including NF1 (neurofibromatose type 1) and CDKN2A (cyclin-
dependent kinase inhibitor 2A). NF1, a tumor suppressor gene, is mutated in approximately 10-
15% of patients and is the third most frequently mutated gene in melanoma #°°. NF1 regulates
RAS signaling by converting active RAS-guanosine triphosphate (RAS-GTP) to inactive RAS-
guanosine diphosphate (RAS-GDP) °L. Several studies showed that loss-of-function mutations
diminished inhibition of RAS signaling and thus leads to increased MAPK and PI3K signaling
495052 patients harboring NF1 mutations are often frequently mutated in various other genes
including BRAF and NRAS “352, The G-protein signaling proteins GNAQ (guanine nucleotide-
binding protein G(q) alpha subunit) and GNA11 (guanine nucleotide-binding protein alpha 11)
are altered in 9.5% of mucosal melanoma and up to 90% of uveal melanoma cases >4, The
most common alterations are mutations, amplifications and deletions resulting in an oncogenic

GTP signaling and hyper proliferation of melanoma cells. Several studies showed that
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mutations in GNAQ and QNA11 have led to MAPK pathway activation through RAS activation
and phosphorylation of MEK and ERK °>°°. In addition, the tumor suppressor gene CDKN2A
is frequently mutated in melanoma patients with loss-of-function mutations or deletions. This
gene encodes for several proteins including p16(INK4A) and p14(ARF) proteins, who induce
cell growth and senescence °’. The three-year overall survival rate decreases from 55% in
patients with wild-type CDKN2A to 24% for patients with mutations in CDKN2A %,

1.1.2 Standard treatment options for melanoma

Malignant melanoma is treated by combinations of surgical resection, immunotherapy,
chemotherapy or targeted therapy. These treatment options are selected depending on the
features of the tumor including location, stage and genetic profiles. For patients with stage |
melanoma, surgery is the primary treatment; while, for patients with metastatic melanoma,
chemotherapy, targeted therapy and immunotherapy are recommended. There are two main
limitations in melanoma therapy: 1) reduced drug efficiency due to development of resistance
to immune-, chemo- and targeted therapy °%°° and 2) numerous side effects, which can lead to
skin toxicity, associated to immune reactions, and lack of specificity for tumor cells . In recent
years, improved knowledge of the genetic profiles of melanocytes and a better understanding
of the molecular factors involved in malignant transformation have led to the development and
approval of several new therapeutic strategies. Chemotherapy using the standard medication
dacarbazine (DTIC), an alkylating agent approved in 1974 by the U.S. Food and Drug
Administration (FDA), achieved a complete response of <5% and a five-year survival in 2-6%
of patients with metastatic melanoma 2. DTIC methylates nucleic acids, which results in DNA
damage causing growth arrest and cell death. Unfortunately, DTIC shows several
gastrointestinal side effects including nausea and vomiting, as well as suppression of blood cell
production in the bone marrow leading to anemia and neutropenia 2. Development of
chemoresistance and rapid metastasis are one of the main reasons for the low long-term survival
rate of patients with metastatic melanoma. Chemoresistance is probably caused by resistance
to drug-induced apoptosis or repair of drug-induced DNA damage %°. Several studies also
showed that resistant melanoma cells showed a reduced drug uptake, increased drug efflux and
an intracellular drug inactivation . Replacement with other chemotherapy reagents or
combinations did not improve the overall survival of melanoma patients ®*. Therefore, new
therapeutic treatments have been explored with improved effectiveness against malignant

melanoma and reduced side effects.
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1.1.3 Targeted therapy using immune checkpoint and kinase inhibitors

Over the last decades, the role of the immune system controlling tumor progression has been
established and new immunotherapeutic targets showed remarkable clinical activity (Figure 3).
Under normal physiological conditions, T cell antigen receptors (TCR) on lymphocytes respond
to antigenic peptides presented on the cell surface on major histocompatibility complexes
(MHCs) type I. The TCR is a disulfide-linked membrane-anchored heterodimeric protein
complex with highly variable alpha and beta chains, which leads to a diverse repertoire of TCRs
on T cells ®. Due to infections or cancer, the TCR on T cells recognizes the myriad of possible
foreign antigens presented in the surface of cells. The TCR recognition of the antigen leads to
the activation of T cells, clonal selection and an activation of the process of immunity ®°. After
activation and proliferation of T cells, effector T cells (Teffs) releases cytokines like interferon
gamma (IFN-y) which leads to the destruction of tumor cell by high cytotoxicity. This complex
process comprises a constant interplay between inhibitory and stimulatory signals leading to
the amplification of antigen-specific immune responses to cancer self-antigens while
preventing autoimmunity. Dysfunctional immune reactions against tumor cells are key events
in tumorigenesis and tumor progression and may be due to diminished antigen recognition and
a highly immunorepressive tumor microenvironment . Several studies demonstrate that
impaired antigen recognition can be due to epigenetic and post-transcriptional silencing or
alterations in the antigen-processing machineries. The tumor microenvironment can be
influenced by a diverse variety of factors including enrichment of regulatory cells such as Tregs
or the upregulation of co-inhibitory signals in lymphocytes °’.

Immunotherapy has recently become a valuable option for melanoma treatment. Anticancer
immunotherapies could be broadly categorized into two groups: (1) drugs targeting immune
tolerance via blockade of negative regulatory signals like co-inhibitory checkpoints and (2)
drugs enhancing endogenous antitumor immune response via stimulation of immunogenic
pathways. Therapeutic cancer vaccines, exogenous recombinant cytokines and oncolytic
viruses are also used as immunostimulatory strategies to enhance antitumor immune response.
Several drugs targeting immune tolerance are now in clinical development, and some were
approved by the FDA for use in various cancer types. The reagents nivolumab and ipilimumab
are immune checkpoint antibodies targeting PD-1 (the programmed cell death-1) and CTLA-4
(cytotoxic T lymphocyte-associated antigen-4) receptors. PD-1 and CTLA-4 are co-inhibitory
T cell receptors and acts as negative regulatory receptors that block T cell activation and induce
immune tolerance. The CTLA-4 antibody ipilimumab (approved in 2011 by the FDA) was the

first agent which showed improved overall survival of melanoma patients. CTLA-4 is mainly
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expressed on T cells and is a homolog of CD28, a costimulatory receptor on T cells 8. Under
normal conditions, CTLA-4 is expressed at very low level and is rapidly up-regulated upon
antigen binding %°7°. Both receptors bind the same ligands, CD80 and CD86 on antigen-
presenting cells, however the binding affinity is much higher for CTLA-4 than CD28 . The
binding of CTLA-4 prevents the co-stimulation and activation of T cells. Several studies
showed that anti-CTLA-4 antibodies also promote depletion of Tregs in the tumor
microenvironment by expressing high levels of FcyRIV 2. Subsequently, inhibition of CTLA-
4 receptors with therapeutic anti-CTLA4 antibodies demonstrated tumor rejection and
significant prolongation in patient survival. The overall survival rate was improved to 9.1
months with higher three-year survival rate of 20.8% compared to placebo 3. However, only a

minority of patients respond to ipilimumab and most patients display immune-related toxicities.
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Figure 3: Immunotherapies for cutaneous melanoma treatment. Approved immunotherapy reagents
are depicted in a white box, trials in a grey box. Ipilimumab, an anti-CTLA-4 antibody, induces antitumor
immune response by binding to the CTLA-4 receptor, and increases clonal T cell expansion and infiltration.
The anti-PD-1 antibody nivolumab block the interaction between the PD-1 receptor and the ligands PD-L1
and PD-L2. (adapted from Domingues et al., 2018 2?).

Clinical trials using another checkpoint receptor, anti-PD-1 antibodies reported higher response
rates and fewer immune side effects compared to CTLA-4. PD-1 is expressed on several
immune cells including activated T cells, B lymphocytes and natural killer (NK) cells "7,
Expression of PD-1 is induced by binding of its ligands PD-L1 and PD-L2 and by cytokines
such as interleukin-2. Nivolumab ® was approved in 2014 by the FDA and blocks the
interaction between PD-1 and its ligands, which results in antitumor activity and reduces tumor
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progression. Monotherapy with nivolumab showed a median progression-free survival (PSF)
of 6.9 months and an improved overall survival compared with monotherapies of ipilimumab
(median PSF of 2.2 months) in metastatic melanoma patients that are naive to both reagents ’.
Combined therapies have been studied and achieved a median PSF of 11.5 months, especially
in patients with PD-L1 negative tumors. Combinations of chemotherapy with immunotherapy
also showed increased response rates and an improved median PSF compared to monotherapies
8, However, no increase in the overall survival of patients could be observed and it was
associated with severe toxicity °. Checkpoint inhibitor immunotherapy showed an increased
progression free survival for melanoma patients, however only a small percentage of patients
responded to these inhibitors. The complexity and multiplicity of involved mechanisms,
heterogeneity in the immune response across tumors, the tumor microenvironment and the
varying tumor immunogenicity affect the response and resistance to immune checkpoint
blockade. Resistance can be divided into two groups according to the timing of occurrence that
IS primary resistance, for patients never-responding to the treatments, and acquired resistance
developing following a period of response to the drugs. It can be also classified into intrinsic,
altered processes due to gene expression, signal transduction, DNA damage and immune
recognition in cancer cells, and extrinsic due to external T cell activation. The clinical response
to immune checkpoint inhibitors and acquired resistance is often associated with a high
mutational load and expression of tumor neoantigens leading to antitumor immunity 8082,
Several studies showed that non-synonymous mutations were identified to generate tumor
neoantigens that drive cytotoxic response against cancer cells 87828 A high mutational and
neoantigen load was also found to be associated with responses to anti-CTLA-4 treatment in
patients with metastatic melanoma 8. The loss of neoantigen expression may lead to poor
immunogenicity and acquired resistance to checkpoint inhibitor blockade ®’. A recent study
demonstrated a loss of seven to 18 putative neoantigens in resistant NSCLC tumors after
treatment with the checkpoint inhibitors PD-1 and CTLA-4 . Several other studies showed
that deficiencies in antigen presentation and down-regulation of MHC class | (MHC-1) play a
role in immune checkpoint resistance 8%, Loss-of-function mutations in p2-microtubulin
leading to loss of expression of MHC-I, thus allowing immune evasion of tumor cells 8.
Besides mutation in B2-microtubulin, loss of JAK/STAT pathway results in acquired resistance
due to downregulation of MHC-1 %92, Additionally, classic oncogenic pathways like MAPK
or PI3K pathways can regulate immune response by influencing the tumor microenvironment.
Alterations in the MAPK pathway may lead to increased expression of VEGF, a vascular

endothelial growth factor, and other inhibitory cytokines, thus mediating immune evasion of
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tumor cells 3%, Treatment of resistant cells with combination of MAPK inhibitors in mouse
models resulted in the overcoming of immune checkpoint blockade resistance %. Constitutive
activation of PI3K pathway due to loss of PTEN was associated with resistance to PD-1 therapy
and decreased overall survival of patients with leiomyosarcoma °>%. Combined therapy against
PD-1 and PI3K in a mouse model with head and neck squamous carcinoma demonstrated a
decrease in inhibitory cytokine production and a modification of the tumor microenvironment,
which ultimately lead to tumor regression °%. The combination of different immune
checkpoint and targeted therapy may improve response to treatments and better patient

outcomes.

Melanoma is characterized by mutations in genes of key signaling pathways that result in cell
proliferation and malignant phenotype. Approximately 70% of patients display one or more of
these mutations. In the past few years, small molecules inhibitors or antibodies targeting
mutated proteins focusing on BRAF and MEK have been developed and showed a rapid
antitumor response and regression of this disease. Targeted inhibition of the mutated BRAF
protein with the selective inhibitor vemurafenib was approved by the FDA in 2011.
Vemurafenib reversibly bind to the kinase domain of BRAF competing with adenosine-
triphosphate (ATP) ultimately inhibiting BRAF-induced MEK activation %°. Melanoma patients
positive for BRAFY®9E mutations showed an improved clinical response rate, overall survival
and progression-free period after treatment with vemurafenib compared to chemotherapy. In
2013, the FDA approved a second BRAF inhibitor (BRAFi) dabrafenib, which also results in a
reduction of MAPK pathway signaling *. These drugs have a response rates of approximately
50% and result in an average free survival benefit of four months %191, However, almost all
patients rapidly develop resistance to RAF inhibitors after a period of approximately five
months 100102103 " Resistance mechanisms to BRAF inhibition is often associated with
intercellular reactivation of the MAPK pathway including expression of the kinases CRAF and
COT1 or activating mutations in NRAS, MEK1 or AKT1 (Figure 3). In addition, aberrant
splicing of BRAF, activation of PI3K via the loss of PTEN and activation of tyrosine kinases
have been identified in patients with acquired resistance '%. Several studies showed that
targeting signaling effectors downstream of driver oncogenes are valuable strategy to overcome
resistance. Trametinib a small-molecule inhibitor of MEK1/2, a downstream target of BRAF,
was approved by the FDA in 2013 for treatment of BRAF-mutated malignant melanoma
patients 1%, Monotherapies with trametinib showed an increased overall survival of six months
compared with chemotherapy 1%, Trametinib showed activity in patients with NRAS mutations

in contrast to the BRAF inhibitor vemurafenib. However, patients receiving trametinib suffered



Introduction 11

from severe side effects including heart toxicity 1°7. Cobimetinib, an oral selective MEK
inhibitor, is another targeted drug for metastatic melanoma and is often used in combination
with vemurafenib 119 PSF and response rates were prolonged in patients with combined
therapy compared to vemurafenib alone. However, adverse effects were observed in
approximately 71% of all patients and melanoma patients pre-treated with BRAFi were less
responsive to the combined targeted therapy *°,

Alterations in RTK signaling play an important role in primary resistance to BRAF treatment
(Figure 4). Overexpression or activation of RTK may results in the activation of several parallel
signaling pathways and thus lead to resistance. Several studies showed that RTK like EGFR are
overexpressed in patients resistant to BRAF and MEK therapy '*'. PDGFR and IGF-1R are also
frequently mutated in melanoma cells treated with both inhibitors, leading to the activation of
PI3K pathway #2. The PI3K pathway was also found to be activated by mutations or deletions
of PTEN. When treated with BRAFi, patients with mutated PTEN showed a shorter
progression-free survival compared to patients with wild-type PTEN 12113 Alterations in NF1
were identified in BRAF mutated cells resulting in RAS activation and increased RAS
phosphorylation, thus mediating resistance to BRAF inhibitor but not MEK inhibitor therapy
8 Hepatocyte growth factor (HGF) secreted by stromal cells activates HGF receptor (MET)
leading to MAPK and PI3K activation, which translates into primary resistance to BRAF
inhibition 4. Patients with primary resistance may not benefit from targeted therapy,
highlighting the need of identifying these patients before starting therapy and developing new
therapeutic strategies. One of the most studied mutations related to acquired resistance to BRAF
treatment are alterations in RAS. RAS mutant melanoma cells showed activated CRAF, MEK
and ERK expression after BRAF inhibition, leading to BRAF/CRAF interaction followed by
activated MAPK signaling 11>116_ Activating mutations in NRAS also lead to significant MAPK
pathway reactivation after BRAF inhibition 1>/ Secondary resistance to BRAF inhibition is
also characterized by BRAFV®%E alternative splicing and copy number amplifications. Several
studies demonstrated that approximately 16% of patients with acquired resistance showed
BRAF splice variants lacking exon 4-8, thus enhancing BRAF dimerization and ERK activation
18119 1n approximately 12% of these patients BRAF amplifications were detected and could
be linked to associated resistance ?°. Besides BRAF dimerization, BRAF and CRAF
heterodimerization and ectopic expression of CRAF were also associated with ERK activating
BRAFi resistance 2%, The switching between RAF isoforms as adaptors for MAPK pathway,
can counteract and overcome BRAF inhibition in melanoma cells 1?2, Consequently, inhibition

of all three isoforms may be required to prevent ERK activation for melanoma patients with
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acquired resistance. Downstream of the driver oncogenes BRAF and NRAS, activating MEK
mutation (Q56P and E203K) were identified in patients with BRAFi resistance, resulting in a
shorter PSF and poorer response (33%) compared to patients with MEK wild-type (72%) 123124,
In another study, patients acquired resistance was associated with the presence of NRAS and
MEK mutations, suggesting that mutated cells have a proliferation benefit under selective
pressure to BRAFi %, Several RTK proteins, specifically PDGFR, IGFR and EGFR, are
upstream of the driver oncogenes and their upregulation and overexpression result in activation
of signaling pathways other than MAPK 15118 PDGFR and EGFR can be activated by MITF,
a melanocyte-specific modulator. Loss of MITF inversely correlated with RTKs gain of
expression in patients with secondary resistance 3%, Levels of MITF could help to predict
early resistance to targeted therapy. Independently from MAPK and PI3K pathway signaling,
Notch1 signaling was identified to be highly up-regulated in cell culture harboring BRAFY60°E

mutation and acquired resistance 2°.

HGF stromal secretior

> U ¢

\
WV ERK Negative feedback T —_—

v

MITF

overexpression
amplification

Alterations in PI3K/PTEN/AKT pathway

A mitochondrial

e /" HOXDS

A oxidative
ANSUrvive metabolism #Aproliferation \_;_mutatlon__

FOXD3 up-regulation

Figure 4: Mechanisms to targeted therapy resistance in melanoma. Resistance mechanisms are divided
into primary resistance in green, secondary resistance in orange and adaptive resistance in dark red. (adapted
from Amaral et al., 2017 %)



Introduction 13

In order to overcome mechanisms of resistance, combined therapies have been established for
melanoma treatment. The combined BRAF and MEK inhibition with dabrafenib and trametinib
was approved by the FDA in 2014 27, Combined therapy showed an improved PFS of 9.4
months compared to monotherapies with dabrafenib (5.8 months) 1?8, Several other studies
confirmed the advantages of combining BRAF and MEK inhibitors using vemurafenib and
cobimetinib and also demonstrated prolonged overall survival of patients with metastatic
melanoma %8, Despite the great advantages including delay of acquired monotherapy
resistance, the combined treatment often leads to serve adverse events and a longer
hospitalization is needed 2. As in monotherapies, acquired resistance of combined therapies
have been identified in patients with metastatic melanoma. In a recent study, ERK mutations
were identified in resistant melanoma cells treated with BRAFi and MEKIi, mediating a
reactivation of the MAPK pathway '®. Interestingly, patients resistant to BRAFi and MEKi
were not resistant towards ERKi and vice versa. This suggest a new therapeutic strategy,
whereby switching inhibitors may delay resistance development. Heterodimerization of
BRAFV%E ith either CRAF or MEK were also observed in cells with combined drug
resistance, leading to MAPK pathway activation 3. Combined targeted therapy of key
molecules of the MAPK pathway may be insufficient to avoid development of resistance.
Several groups are currently investigating targeting the oncogenic PI3K pathway with the
combination of PIBK/AKT inhibitors together with BRAFi and MEKi 3213, In summary,
targeted therapy and immunotherapy offer great advantages over conventional chemotherapy
for melanoma treatment. However, drug resistance hampered the prolongation of progression-
free survival and response rates. Resistance mechanisms and even cross-resistance between

combined targeted therapy is still not fully understood and need further investigation.

1.1.4 Personalized medicine in melanoma

Over the last decade, several therapeutic treatments for melanoma have been developed with
improved efficiency and overall survival rates. Only a minority of patients benefits from the
current treatment therapies and most of these patients develop resistance 982134 Malignant
melanoma is known to be highly heterogeneous and characterized by its high frequency of
somatic mutations compared to other cancer types 3. Some molecular events are more frequent
in some patients and provide an opportunity to adjust the treatment for individual patients.
Classical systems are limited by the prediction and prognosis of treatment response and thus

the development of more effective targeted therapies for each individual are needed.
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Personalized medicine will hopefully lead to an improvement of preventive measures, early
diagnosis and the identifications of drug targets and biomarkers. The past decade has seen a
revolution in the field of nucleotide sequencing, which now allows for routine nucleotide-based
investigations of tumor samples. Different next generation sequencing (NGS) strategies are
used in precision medicine allowing for sequencing of just a few hotspots, sequencing of large
gene panels or even whole genome sequencing (WGS). Smaller panels like hotspot sequencing
panels or actionable sequencing panels are a collection of frequently mutated genes that are
either clinically actionable or have diagnostic significance . Larger panels focus either one
the entire region of a target gene or disease-associated regions to screen for risks of inherited
diseases (germline mutations) as well as to identify tumor driver mutations (somatic mutations).
Whole exome sequencing (WES) or WGS provide comprehensive tools to study the complete
coding region (WES), as well as intronic and other non-coding DNA regions (WGS). Only 1-
2% of the genome codes for proteins. In addition, the majority of targeted therapies do not target
the genome, but rather the protein in cancer cells. Thus, it is highly important to quantify and
identify proteins through all areas of personalized medicine, including biomarker detection and
response prediction. Mass-spectrometry based proteomics allows the identification and
quantification of thousands of proteins in complex samples. Several proteomic studies
identified proteins that were mis-regulated in melanoma cell lines and patients and some of
them showed a positive correlation with tumor progression and patient survival rates. For
example, Welinder et al. reported 288 proteins that showed a positive correlation between
protein expression and disease outcome for six patients with stage 111 metastatic melanoma %7,
Four of these are currently used as melanoma markers including melanoma-associated antigen
D2 (MAGD2) and melanoma cell adhesion molecule (MUC18). In addition, high levels of
lactate dehydrogenase and S100 calcium-binding protein B (A100B) were found to be
correlated with melanoma stage and progression **8. Several biomarkers were identified in
serum samples of patients with melanoma and were associated with melanoma progression,
recurrence and survival *8, Diagnostic biomarker identifiably in blood of patients would make
them clinical relevant for the prediction of responses to both immunotherapy and targeted
therapy. Personalized medicine incorporates the molecular and the biological aspects of each
patient’s disease, thus allowing the selection of optimal treatment on the basis of improved

efficiency, overall survival and reduced adverse events.
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1.2 Key proteins relevant in this study and their link to melanoma

1.2.1 Intermediate filament nestin

Nestin is an intermediate filament VI, a component of the cytoskeleton and was originally
described as a stem cell marker. It was first identified in neuroepithelial stem cells and other
progenitor cells during migration and proliferation phases in early embryonic development
139,140 In adult tissue it is involved in regeneration processes remodeling the cytoskeletal actin
network 41, The human NES gene is located on chromosome 1 at position 23 and consists of
four exons, separated by three introns. The protein comprises 1621 amino acids (aa) with a
highly conserved a-helical rod domain (306 aa) flanked by a small N-terminal head (7 aa) and
a long C-terminal tail domain (1308 aa) **? (Figure 5). The rod domain is composed of four a-

helical coils (1A, 1B, 2A and 2B) and is essential for dimerization.
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Figure 5: Nestin protein structure with functional domains and heterodimer formation with
vimentin. The nestin protein (1621 Aa) is composed of a N-terminal (N-ter) head domain, an a-helical rod
domain and a C-terminal (C-ter) tail domain. Heterodimer formation of nestin and its interaction partner
vimentin through the central rod coiled domain. (adapted from Bernal et al., 2018 43)

Nestin forms heteropolymers with other filaments, mostly vimentin and keratin, mediated by
the rod domain #41%° (Figure 5). The formation of heteropolymers plays an important role in
the organization of the cytoskeletal network and is regulated by PTMs mostly phosphorylation
143 Phosphorylated nestin triggers the disassembly of other bound cytoskeletal filaments like
vimentin, keratins and nuclear lamin through the disruption of cross-links 1*3. The dynamic

regulations of the cytoskeletal network mediated by nestin and other filament proteins are
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important in many cellular processes such as cell survival, proliferation and cell motility 144,
Several studies described the role of nestin in a variety of tumors like pancreatic cancer, prostate
cancer, glioblastomas, breast cancer and especially in malignant melanomas 14620, Piras et al.
showed that nestin was highly expressed in cancer stem cells, which are involved in
tumorigenesis and malignancy 1. In addition, the expression of nestin correlated with a poor
prognosis for patients with malignant melanoma. This was also observed with increased
metastasis, invasion and migration in pancreatic cancer and neurogenic and mesenchymal
tumors 142145150 Tq counteract theses effects, several studies used sShRNA and siRNA to inhibit
nestin expression in melanoma and liver cancer mouse models and lung adenocarcinoma 52153,
The inhibition of nestin resulted in less metastases in the mouse models and showed reduced
cell proliferation, migration and invasion of cancer cells. In addition, nestin was also described
to be involved in angiogenesis **. In endothelial cells of blood vessels, high expression of
nestin was observed and inhibition of nestin-positive mouse blood vessels led to a decrease in
blood vessels close to the tumor and consequently to tumor regression **. Quendro et al.
identified in a proteomic screen an increased expression of nestin in late stages Ill and 1V of
metastatic melanoma and a correlation with the aggressiveness of the subtypes, suggesting
nestin as marker of melanoma staging *1. In cutaneous melanomas of the nodular type, nestin
expression was observed in 92% of cases and associated with increased tumor thickness,
ulceration and increased proliferation #°. In addition, nestin expression was also reported to be
up-regulated in melanoma cell lines and depletion of nestin revealed an activation of matrix
metalloproteinases suggesting a stronger invasive phenotype of the cancer cells 1. In summary,
nestin expression indicates a poor prognosis and a low survival rate in many different types of
cancer %1152 Nestin over-expression in malignant melanoma could be a potential prognostic

biomarker for the aggressiveness and invasiveness of the tumor 141147,

1.2.2 Transcription factor RUNX1

The transcription factor RUNX1 belongs to the family of the runt related transcription factors
(RUNX), consisting of the members RUNX1, RUNX2, RUNX3. The RUNX family was
reported in several key processes like cell proliferation, differentiation, senescence and
apoptosis °. All members of the family share an evolutionary conserved runt domain of 128
aa at the N-terminus mediating DNA binding **’. The three RUNX proteins are encoded on
different genes and show distinct tissue-specific expression pattern %6, The structures of the

three RUNX proteins are similar, however, the function differs including roles in neurogenesis,
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gastric epithelial cell proliferation (RUNX3), osteogenesis (RUNX2) and hematopoiesis
(RUNX1) 4158 RUNX1 was originally described in chromosome aberrations related to human
acute myeloid leukemia. Alternative splicing of the RUNX1 gene leads to eleven isoforms
expressed in different cell types and development pathways like TGFB, WNT or NOTCH
signaling ™. Binding to the core-binding factor subunit beta (CBFB) enhances the
transcriptional activity and DNA binding of RUNX1 %, DNA binding is mediated by the runt
domain and leads to a conformational change and a specific spatial reorganization of the amino
acids that are involved in DNA recognition. RUNXI1 recognizes the core sequence 5’-
YGYGGT-3’ in the DNA sequences *1. RUNX1 also mediates CBFB independent functions
by binding to other transcriptional cofactors and chromatin modifiers like histone deactelylase
HDACL1 or acetyltransferase p300 %2, Binding to transcriptional activators and suppressors
regulates the transcription of hematopoietic genes especially during differentiation of B cells,
T cells and myeloid cells. Several studies suggest that disrupted or mutated RUNX1 gene can
lead to various malignancies of the hematological system like platelet disorder,
myelomonocytic leukemia (MLL), lymphocytic leukemia (ALL), or acute myeloid leukemia
(AML) 163184 RUNX1 was found to be mutated in around 2.04% of all cancer types and so far
43 mutations are described in the literature %. In around 20% of adult AML patients therapy-
related myeloid neoplasms and fusion genes through chromosomal aberration were identified
may influence the protein stability and function 6. The most prominent gene fusion is RUNX1-
ETO resulting from the runt domain of RUNX1 and the four nervy homology regions of
(NHR1-4) of ETO. The fusion complex enhances the interaction with transcriptional regulators
leading to self-renewal of hematopoietic stem cells (HSCs) and leukaemogenesis 1%7. RUNX1
expression and mutation was not only reported in leukemia, but also in various solid tumors,
like breast cancer, oesophageal adenocarcinoma and epithelial cancers including skin squamous
cell carcinomas %8170, In some cancer types activity of RUNX1 was associated with a strong
tumor suppression, but oncogenic in others. Recently, RUNX1 was found to be involved in
resistance mechanisms to BRAFY®%E inhibition in malignant melanoma ™. In this study,
RUNX1 mediated up-regulation of the receptor tyrosine protein kinase CSF1R was identified
leading to growth and invasion via activation of the ERK and PI3K/AKT pathways. In resistant
melanoma cell lines, increased expression of CSF1R was observed with concomitant up-
regulation of the CSF1R ligand 1L34, which were shown to correlate with tumor progression,
invasion and acquired resistance to BRAF inhibitors. Thereby, ERK pathway activity stimulates
RUNX1 to activate transcription of CSF1R and its ligand IL34. Co-expression of both the

receptor and the ligand causes high oncogenic potential by enabling para- and autocrine
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activation. RUNX1 is regulated by several regulatory mechanisms including splice variants,
transcriptional control by two different promoters and post-translational modifications 172,
Methylation, acetylation and phosphorylation regulate RUNXL1 transcriptional activity,
whereas the interplay between phosphorylation and ubiquitylation regulate the stability of the
protein. During cell cycle progression, RUNX1 gets phosphorylated by the cyclin dependent
kinases (CDKSs) on S276, S293, T300 and S303 in the M phase of the cycle, which leads to the
anaphase-promoting complex mediated degradation of RUNX1 1737 Upon cytokine
stimulation, RUNX1 can be also activated through phosphorylation by ERK1/2 kinases at
positions S249, S266 and S276 enhancing the interaction with p300 and transcriptional activity
175, Phosphorylation of RUNX1 can also disrupt the interaction with the transcriptional
suppressor SIN3A leading to carcinogenic processes in some types of cancer 1’6, The interaction
with SIN3A can be also abolished by PRMT1-mediated arginine methylation resulting in a
higher activity of RUNX1 "7, In leukemia, phosphorylation by the homeodomain-interacting
protein kinase 2 (HIPK2) was reported 18, Triple-phosphorylation of RUNX1 by HIPK2 on
S249, T276 and S273 mediates the binding and activation of the histone acetyltransferase p300,
which results in up-regulation of target gene expression. In turn, p300 acetylates RUNX1 on
K24 and K43, which enhances its DNA binding capacity and thereby influence the
transcriptional activity 1’9, P300-mediated acetylation of RUNX1 can be also stimulated by
TGFB signaling. Deregulation of PTMs or mutations may disrupt RUNXZ1-mediated

differentiation and direct cells towards cancer fate.

1.2.3 Guanine nucleotide exchange factor DOCK1

The guanine nucleotide exchange factor (GEF) DOCK1 belongs to the eleven-member family
DOCK mediating direct GDP/GTP exchange to promote cytoskeletal reorganization in cell
proliferation, differentiation and migration %8 DOCK1 contains two evolutionarily
conserved domains, the DOCK homology region-1 (DHR-1) and the DHR-2 domain 12,
DOCKU1 interacts with specific members of Rho family such as RAC or Cdc42 but not with the
Rho protein RhoA. The DHR-1 domain mediates the recruitment of DOCK1 to the membrane
by direct binding to PIP3 after P13-kinase activation. Recent investigations suggest that DOCK1
binds the signaling lipid phosphatidic acid (PA) instead of PIP3 8318 Sanematsu and
colleagues showed that PDGF treatment in fibroblasts promotes the DHR-1-dependent and
PIP3-dependent recruitment of DOCK1 and DOCKS5 to the membrane, resulting in RAC1-
dependent peripheral membrane ruffle formation . The binding of DOCK1 to PA via the
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DHR-1 domain is important for the localization of DOCKZ1 at the membrane, resulting in the
activation of RAC1 to form dorsal ruffles. Both RAC-dependent membrane ruffles are involved
in specific biological processes such as cell migration for peripheral ruffles and cell invasion
linked to dorsal ruffles. DOCK1-mediated cytoskeletal remodeling is also regulated by the
formation of the complex between DOCK1 and ELMO scaffolding proteins (ELMOL1 and
ELMO?2), binding to the N-terminal SH3 domain of the protein 86, The ELMO scaffolds directs
DOCKT1 to distinct areas of the cell including the cell membrane to allow activation of RAC1
and their downstream signaling pathways. In the basal state, both proteins are in the closed
confirmation and extracellular stimulation release ELMO autoinhibition followed by activation
of DOCK1 and optimal RAC activation 818 The C-terminus of the DOCK1 GEF protein,
including a PBR domain and a ‘PXXP’ region, second mediates the interaction with SH3-
containing adaptor proteins, such as CRK and GRB2. DOCK1 activity is regulated by several
post-translational modifications including phosphorylation, acetylation and ubiquitylation.
Phosphorylation on Y722, Y1811 or S1250 by SRC and PKA kinases increases its GEF activity
towards RAC activation, while ubiquitylation of DOCK1 was enhanced after EGF stimulation
and binding to CRK %% Binding of ELMOL1 inhibited the ubiquitylation of DOCK1 and thus
stabilizing the protein . This regulation of GEF activity by PTMs and binding of interaction
partners might contribute to the distinct activation of RAC at the plasma membrane. Several
studies described the roles of DOCK1 in a variety of tumors such as glioblastoma, thyroid
cancer, breast cancer and malignant melanoma 1°21%, In glioblastoma, DOCK1 and its complex
partner ELMO1 were observed to be highly expressed in the invasive areas of the cancer tissue
sections and could be linked to the PDGFR- induced downstream signaling in glioblastoma cell
lines 192192 In addition, they could show that suppression of DOCK1 expression prevents the
cell migration and activation of downstream targets such as RAC, ERK1/2 and AKTL.
Activation of PDGFR promotes the phosphorylation of DOCK1 at Y1811 through SRC kinase,
which leads to the interaction with CRK and BCAR1 followed by activation of RAC and
downstream targets like AKT and ERK1/2 1%, Phosphorylation of DOCK1 at Y722 by SRC
kinase and S1250 by PKA kinase can also be induced after activation of oncogenic EGFRvIII
to increase its affinity to RAC and promote GTP load %1%, Mutations of these different
phosphorylation sites of DOCK1 prevents growth and invasion of oncogenic RTK
overexpression in cancer cells. Notably, the overall survival of patients with glioblastoma was
significantly decreased in tumors with DOCK1Y81F and PDGFRA mutations *%. In breast
cancer, high levels of DOCK1 mRNA expression was associated with a poor prognosis for

patients with either HER2-positive or basal breast cancer, suggesting that DOCK1 is an
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important downstream effector of HER2 %, Inhibition or knockout of DOCK1 in vivo in breast
cancer cells showed that DOCK1 expression is essential for the activation of RAC though
HER2-dependent activation of DOCK1 and thus regulates cancer metastasis and migration 1%,
In human melanoma cells, DOCK1 expression was linked to invasion through complex
formation with the focal adhesion kinase FAK and CRK 1%, This complex formation leads to
RAC activation and induced JNK activity directly regulating actin cytoskeletal reorganization
and formation and secretion of matrix-metalloproteases MMPs. In addition, Tomino et al.
showed that DOCK1 promotes the GDP/GTP exchange of oncogenic RACP?® resulting in
increased invasion and metastasis in melanoma and breast cancer cells %. This somatic
mutation on RACL1 was reported in 9% of sun-exposed malignant melanomas and leads to self-
activation due to increased inherent GDP/GTP exchange 2°. In another study, they reported a
DOCK1-mediated RAC activation in RAS-driven cancer cells promoting cellular invasion and
macropinocytosis . Similar as in RAC mutated cells, inhibition of DOCK1 suppresses cell
growth and metastasis of RAS-transformed cancer cells in vivo. The RACP?S mutation was
also reported to be associated with resistance to kinase inhibitors and immunotherapy and could
serve as a predictive biomarker for therapy resistance in melanoma 2%, Inhibition of DOCK1
suppressed the RAC1P?*S-induced invasion in cancer cells and might be a potential treatment
option in melanoma patients associated with RAC mutations 1971%,

1.3 CRISPR/Cas9 system — a new tool for genome editing

Prokaryotes have developed innate and adaptive immune systems to cope with the constant
threats of phage infections and plasmid transfer. The adaptive immune system clustered
regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) genes was
identified in 40% of bacterial and 90% archaeal genomes 2°*. The CRISPR immunity is based
on small fragments of foreign DNA of previous infections (so called spacers) integrated in the
host cells CRISPR array 202293, The spacers are of 26-47 base pairs (bp) long and separated by
short repetitive sequences of 2-48 bp. The CRISPR system has been classified into three classes
based on the core element content and sequences. Type | and Ill systems require large
multisubunit ribonucleoprotein complexes for the silencing of foreign nucleic acids in
subsequent rounds of infections. In contrast, in the type Il system the DNA cleavage of foreign
viruses and plasmids is mediated by only a single Cas protein bound to a dual RNA molecule.
The CRISPR/Cas9 system from Streptococcus pyogenes (S. pyogenes) is the most commonly

used system for genome editing using the well characterized Cas9 endonuclease 2°42% (Figure
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6). The CRISPR associated (Cas) genes are adjacent to the CRISPR locus. During the
immunization process, the foreign DNA is cleaved by the Cas complex and the short fragments
are integrated into the host CRISPR repeat-spacer locus as spacers between CRISPR RNA
(crRNA) repeats 2%62%7 In the second stage, the CRISPR array containing acquired spacers is
transcribed into precursor crRNA and enzymatically processed and cleaved into mature crRNA.
The crRNA consists a spacer sequence at the 5’end, which is responsible for targeting it to the
foreign genomic element, as well as the part of the crRNA repeat sequence allowing the
recognition by the Cas protein. In the type Il CRISPR/Cas9 system, hybridization between the
crRNA repeat sequence and a noncoding trans-activating CRISPR RNA (tracrRNA) is critical
for the processing of the crRNA and the target-mediated cleavage by Cas9 2%%. In the third stage
of the immune response, the crRNA spacer hybridizes with complementary foreign DNA and

the Cas9 protein mediates the cleavage of the invading genome upon a second infection 2%,
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Figure 6: Different phases of CRISPR/Cas9-mediated immunity in type 11 system in bacteria. In the
CRISPR spacer acquisition phase (1), invading foreign DNA is cleaved by the Cas complex into short
sequences (spacers, colored boxes). These spacers are inserted into the CRISPR locus between short
palindromic repeat sequences (repeats, black diamonds). In CRISPR expression phase (2), the precursor
CRISPR RNA (pre-crRNA), and Cas9 proteins are transcribed and subsequently processed. The foreign
DNA sequence is recognized, in phase 3, by the crRNA-Cas9 complex via complementary base pairing and
subsequently cleaved by the Cas9 protein. It is essential that the target sequence is in close proximity to a
protospacer adjacent motif (PAM; red). (adapted from Bhaya et al., 2011 2%)
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The action of CRISPR/Cas9 depends on the assembly of the crRNA and the Cas9 protein to
interrogate DNA targets. The complex recognizes a sequence-specific PAM motif located in
close proximity of the crRNA target site in the invading genome 2. This motif is absent in the
host genome, which protects it from self-cleavage. In the class 1l CRISPR/Cas9 system, the
cleavage of the DNA is mediated by the nuclease domain of the Cas9 protein, a HNH domain.
This domain cleaves the complementary target strand to the gRNA and the RuvC-like nuclease
domain of the Cas9 protein cleaves the non-target strand 2*%2'%, Cas9 is guided to the DNA by
the crRNA-tracrRNA duplex, which is unique for the class Il system. The nuclease Cas9 from
S. pyogenes recognizes the PAM motif 5’NGG (N represents any nucleotide) in the foreign
DNA.

Recent achievements in genome editing techniques allow the precise manipulation of any gene
at its genomic locus in a variety of experimental models including cell lines, laboratory animals,
plants and was even tested human clinical trials 2. The specificity of genome editing is based
on ‘programmable’ nucleases producing specific double strand breaks (DSBs), which are
repaired by endogenous cellular repair mechanisms. Zinc-finger nucleases (ZFNs) and
transcription activator-like (TAL) effector nucleases (TALENS) were the first engineered
systems 212214 The DNA-binding domains of transcription factors have been fused with the
nuclease domain of the restriction enzyme FOKI 2%, When targeted to specific site in the
genome, the nuclease domain of FOKI forms a dimer that activates the nuclease activity
mediating a DSB near the target site. These systems function through DNA-protein interactions
and require engineering and cloning of proteins for each target site. The CRISPR/Cas9 system
is a powerful RNA guided DNA platform, which can be used for high-throughput applications
(Figure 7). The crRNA-tracrRNA complex can be fused into a chimeric single guide RNA
(syRNA), the basis of the flexible genomic engineering toolkit 29215216 The sgRNA-Cas9
complex induces the cleavage of a specific target site adjacent to a PAM sequence. Essentially

any genomic locus containing a PAM motif can be targeted with a customized sgRNA.

The DSB created by Cas9 triggers endogenous DNA repair mechanisms, such as non-
homologous end joining (NHEJ) or homology-directed repair (HDR) pathway 218219 (Figure 7).
The NHEJ pathway causes random insertions or deletions of nucleotides at the DSB site, so
called InDel mutations. These may lead to gene knockouts by causing a shift in the target gene
reading frame, premature stop codons or mutations of a critical region in the encoded protein.
Error-prone NHEJ is also used for loss of function screening, genomic rearrangements and
NHEJ-mediated homology independent knockin of genes 222!, HDR can be exploited to

generate precise modifications in a defined locus at the DSB site through homologous
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recombination guided by exogenous donor repair templates. The HDR pathways provides a
powerful tool for sequence-specific gene editing including gene knockout, gene knockin,

mutagenesis and gene corrections 2%2. In addition, it is also often used to introduce a tag or a

reporter gene to study protein localization or protein-protein interactions 223,
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Figure 7: CRISPR/Cas9 based gene modification by commonly used delivering methods and DNA
repair mechanisms. Plasmid containing the mMRNA sequence of the Cas9 protein as well as the sgRNA,
Cas9 mRNA in complex with sgRNA or a ribonucleoprotein (RNP) complex methods can be used. The
sgRNA (pink) bind to the target site (green) of the genomic DNA via complementary base pairing and the
Cas9 protein induces a double strand break (DSB) three base pairs upstream of the PAM sequence (red).
The double strand break can be repaired by two endogenous cellular repair mechanisms. The non-
homologous end joining (NHEJ) pathway results in random insertions or deletions (InDels) of nucleotides.
The homology-directed repair (HDR) pathway requires a donor template with homologous sites. Thus,
precise genome editing is enabled by a specific donor sequence. (adapted from Tian et al., 2018 2%")

Despite the great potential of CRISPR/Cas9, several limitations and challenges exist and can
still be improved concerning specificity, efficiency and control. The PAM sequence motif of
Cas9 limits the availability of genomic targets to an average of one target site per eight bp.
Several Cas9 protein variants with altered PAM sequences have been developed to improve
Cas9 specificity and availability of target sites in the human genome 224, For example, xCas9
recognizes several PAM sequences including 5’NG, 5°GAA and 5’GAT 22°. Another challenges
are possible off-target effects as the 20-bp targeting sequence of the crRNA and the 3-bp PAM
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sequence may exist elsewhere is the genome. To reduce off-target effects several Cas9 variants
have been generated to improve Cas9 sensitivity 2%, Shen et al. (2014) engineered a Cas9
protein with an inactive nuclease domain, which functions as a nickase, cleaving only one DNA
strand 2?7, This strategy was applied to cancer cell lines and mouse embryos and showed
reduced off-target effects and improved specificity. In addition, a catalytically deactivated Cas9
variant (dCas9) was developed and can be used for sequence-specific gene regulation 228,
Transcriptional activators and repressors can be fused to the dCas9 and this complex can be
directed to any genomic locus by specific sgRNAs and serve as a RNA-guided DNA-binding
platform. This technique is termed CRISPR interference (CRISPRi) and widely used to repress
or activate DNA transcription by blocking RNA polymerase binding, elongation or the binding
of transcription factors 22°. Multiple targeting is also possible and the effects of dCas9 binding
are reversible. In addition, by tagging dCas9 with an enhanced green fluorescent protein, it can

be also used as an imaging tool for example for specific sequences or repetitive elements 2%,

1.3.1 CRISPR/Cas9-mediated genome engineering in cancer biology

In the recent years, CRISPR/Cas9 has revolutionized the field of genomic engineering and
helped to understand and manipulate biology in a variety of studies ranging from basic research
to clinical applications 2332, The CRISPR/Cas9 system has been used in several studies to
investigate rearrangements of the genome in cancers and other diseases. For example,
chromosomal translocations could be precisely reproduced by joining two chromosomes via
the NHEJ pathway in lung cancer and acute myeloid leukemia cell lines. This has been even
further developed to generate cancer mice models by CRISPR/Cas9 to study cancer progression
and malignancy. In addition, the CRISPR/Cas9 system was also successfully applied to high-
throughput screenings to identify genes essential for cell viability in cancers, which enables the
identification of potential drug targets. In a breast cancer study, CRISPR/Cas9 was used for the
diagnosis, treatment and drug resistance research. Using the dCas9 system, the CDKN2A gene
was identified as a diagnostic marker indicating abnormal cell division in breast cancer cells
233 In another study, the HER2 gene was targeted by CRISPR/Cas9, revealing a correlation
between HER2 expression and inhibition of cell growth and attenuated tumorigenicity 234. For
leukemia models, lentivirus-delivered Cas9-sgRNA systems in primary hematopoietic cells has
been developed and was used to target inactivated genes including TET2 and RUNX1 to study
development of myeloid malignancy 3. The targeted studies enhance the development of

precision cancer medicine and provide a powerful tool to study functional cancer genomics.
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Acquired resistance to drugs is one of the major challenges in cancer therapy. Resistance in
leukemia is often mediated by synergistic gene target interactions, which can be identified by
SgRNA library screenings for combinatorial genes in CRISPR/Cas9 based knockout cell lines
2% The depletion of these combinatorial genes showed great promise in leukemia cells and may
allow the development of personalized genotype-based therapies. In precision cancer medicine
also screens for cancer metastasis-related genes using CRISPR/Cas9 loss of function libraries
are often used to identify new therapeutic targets and potential biomarkers 23723, Gene therapy
by the CRISPR/Cas9 system could be consequently a powerful tool to treat genetic disorders
in the future. For example, in mice, researchers corrected the CFTR locus which is responsible
for cystic fibrosis in intestinal stem cells and the mutated B-globin locus in sickle cells disease
in hematopoietic stem cells by genome editing. The CRISPR/Cas9-based diagnosis panels
SHERLOCK and DETECTR rely on the Casl3a or Casl2a RNA-guided RNase which
mediates a non-specific single strand cleavage 24242, For SHERLOCK; a reporter signal
released after RNA cleavage is used to detect common driver mutations in cancer like
BRAFV8%E or EGFR358R in highly sensitive diagnostic approach 2*2, Recombinase polymerase
amplifications (RPA) are used in the DETECTR system to amplify micro samples and detect
infections in cancer like HPV types in lung carcinomas. Promising results from CRISPR/Cas9
studies have been achieved, however more work is needed to develop a safe and effective tool

for diagnosing and treating cancers.

1.4 Mass spectrometry based proteomics and proteogenomics

1.4.1 Proteome and post-translational modifications

Biological processes are often carried out by proteins and their characterization is of
fundamental interest in cell and cancer biology. The proteome comprises all expressed proteins
within a cell, tissue or organism at a given time under defined conditions. The human genome
consists of approximately 20,000 protein-coding genes, however complexity increases from the
transcriptional to the translational level due to alternative variants and post-translational
modifications (PTMs) 24324 (Figure 8). Not only the complexity of the proteome also the
abundance, dynamic range and the localization of proteins plays also an important role in

biological functions 246247,
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Figure 8: The increase in complexity from genome to proteome. The genome comprises 20,000 to
25,000 genes, the proteome is estimated to encompass over 1 million proteins. Transcriptional and mRNA
level changes increase the size of the transcriptome relative to the genome, and post-translational
modifications of proteins exponentially increases the complexity of the proteome. (adapted from Virag et
al., 2019 249)

Proteomics, the large scale study of proteins, is widely used for the analysis of cellular
compositions under changing conditions. Mass spectrometry (MS)-based proteomics enables
the global analysis of the protein composition, protein abundance, PTMs state of proteins and
their dynamic processes in the cell 28, Post-translational modifications of proteins regulate a
broad variety of biological processes including cell growth, proliferation and apoptosis. Over
300 PTMs have been identified ranging from small chemical moieties such as acetylation or
phosphorylation to more complex structures like glycosylation or ubiquitylation 24°-25%,
Phosphorylation of proteins is the most prominent PTM and can influence signal transduction
networks, protein activity, protein-protein interaction and sub-cellular localization 2. Protein
phosphorylation, mediated by protein kinases, is a reversible process and the removal of
phosphorylation is performed by protein phosphatases. The human proteome encodes for more
than 500 protein kinases and roughly 150 protein phosphatases accounting for up to 3.5% of
the proteome. Most kinases are specific for phosphorylating one residues. Several amino acids
can be phosphorylated and divided into four groups: (a) O-phosphorylation at serine, threonine
and tyrosine, (b) N-phosphorylation at arginine, histidine and lysine, (c) S-phosphorylation at
cysteine and (d) acyl-phosphorylation at aspartic acid and glutamic acid. O-phosphorylation is
the best studied type of phosphorylation due the chemical stability and compatibility with
proteomic workflows. The stoichiometry of phosphorylation is generally relatively low at a
given time point and usually not all copies of a protein are phosphorylated or multiple sites may
be variably regulated during different processes. Recent phosphorylation studies have revealed
that the majority of proteins in a mammalian cell are phosphorylated at one or more residues
253 Many other types of PTM having become more prominent and are now extensively studied
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by proteomics like acetylation and methylation of non-histone proteins 2**. Acetylation on
lysine residues has been associated for a long time with the regulation of chromatin structures
and was described in the 1964 for the first time 2°°2%, In the recent years, several proteomic
studies identified over 5,000 acetylation sites on over 2,000 proteins localized in the cytoplasm,
mitochondria and plasma membrane %72%, In addition to acetylation, ubiquitylation and
SUMOylation are also lysine modifications and play an important role in protein degradation
as well as other cellular regulatory functions such as apoptosis and DNA repair 2°°. Many
proteins are sequentially modified at multiple residues as one PTM can serve as a positive or
negative signal for the addition or removal of a second PTM or for the recognition of other
binding partners that may modify the protein further 2%°. Bioinformatic tools and databases can
be used to predict hotspots for different types of PTMs on the same protein and revealed that
these modifications are often in close proximity to each other, about 15 amino acids apart 2.
Several proteomic studies obtained evidence about the crosstalk of PTMs in eukaryotic and
prokaryotic cells including phosphorylation and ubiquitylation during the process of protein
degradation or SUMOylation and phosphorylation for the activation of kinases like CDKII
262263 pTMs and even the crosstalk between PTMs expand the landscape of the proteome and
functions as a fine-tuning mechanism regulating the function, localization and interaction of

proteins.

1.4.2 LC-MS/MS instrumentation

The field of mass spectrometry based proteomics is rising since the last decades due to technical
investigations. The work of Thomson in 1912 and his student Aston in the next few years led
to the development of the first mass spectrometer and the detection of isotopes of elements 264,
Both scientists were awarded with the Nobel prize in 1906 and 1922 for their pioneering work
in the field of physics and chemistry, respectively. Developments in instrumentation including
soft ionization techniques, increased sensitivity and resolving power moved mass spectrometry
from chemistry into the field of biology, where it becomes a powerful tool to study and
characterize thousands of proteins. Mass spectrometry is the measurement of the mass-to-
charge (m/z) ratio of an ionized molecules 2%, Mass spectrometer consist of an ion source that
converts the analyte of interest from liquid to gas phase, a mass analyzer that separates charged
ions based on their m/z ratio and a detector that records the numbers of ions at each m/z value
266 Two soft ionization techniques, called matrix-associated laser desorption ionization

(MALDI) and electrospray ionization (ESI) are used for many proteomic configurations and
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the efficiency of ionization can differ by order of magnitudes for different peptides 2. For
MALDI, the analyte is embedded in a crystallized matrix and will be vaporized and ionized by
laser impulses, which initiates an energy transfer from the matrix to the molecule 2826°, ES|
takes place at atmospheric pressure and the analyte molecules are ionized and transferred from
liquid to gas phase 2° (Figure 9). The analyte is transported through a needle at high electrical
potential (2-6 kV). An electric field between the end of the needle and the entry capillary of the
mass spectrometer is applied and the charged analyte will form a Tylor cone and droplets will
be released. The solvent of the formed droplets will evaporate and the charged analyte enters
the gas phase (Figure 9). Most of the ions introduced by ESI will be multiply charged in contrast
to MALDI.
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Figure 9: Electrospray ionization for biomolecules. An electric field between the end of the needle and
the entry capillary of the mass spectrometer is applied and the charged droplets will be released. The solvent
of the formed droplets will evaporate and the charged analyte enters the gas phase. (adapted from Steen and
Mann, 2004 271

The charged ions are separated by the mass analyzer in the MS instrument based on their m/z
ratio. In addition, ions can be also temporarily trapped and even detected in some types of
analyzers 2’2, Mass analyzers varying in their resolving power, mass accuracy and sensitivity
based on their ability to separate ion with similar or near-identical m/z values 2’3, The resolution
(R) refers to the ability to separate two narrow mass spectral peaks and the mass accuracy also
depends on the signal-to-noise ratio for each mass spectral peak 2%°. A quadrupole mass analyzer
consist of four parallel round metal rods, connected as opposite pairs 2’427, A direct current
voltage and a radio frequency are applied to the rods. Under a fixed electric field, ions will
oscillate between the rods and ions with a narrow window of m/z will have stable trajectories
through the quadrupole. In contrast, ions with m/z values outside of the m/z window will have
an unstable path and will collide with the rods. By varying the voltages applied to the
quadrupole, different m/z ions can be selected and reach the detector. A quadrupole ion trap

(IT) is also composed of four linear rods in which the ions are trapped in the center of the device
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and then scanned from the trap to a detector 2’®. The sequential ejection of trapped ions using
ramped voltages allows the recording of m/z ratio for a wide mass range. The IT is limited by
the number of ions trapped in the device, which results in poor resolution and mass accuracy.
Linear quadrupole ion traps have an increased trapping space and consist of two end cap
electrodes 2°. The end cap electrodes have small holes in their centers that allows ions to either
enter or exit the trap. Different voltages will trap and eject the ions equally through the sides of
the trap and the m/z ratio will be recorded. In 1999, a new type of mass analyzer, the Orbitrap
was invented by Makarov and was used for the first time in proteomics in 2005 by Hu et al.?”".
A Orbitrap consist of a central inner axial electrode, and outer electrode and two end cap
electrodes 278, lons are trapped in an electric field, orbit around the central axial electrode and
oscillate harmonically along its axis with a frequency characteristic for each m/z value 2’°. This
introduces an image current in the outer electrodes, which is transformed by Fourier-
transformation into a frequency spectrum and then converted into a mass spectrum. The
Orbitrap is coupled to a nitrogen-filled C-trap (curved RF-only quadrupole), where ions are
trapped and pulsed into the Orbitrap by high voltages. The Orbitrap shows a very high mass
accuracy and high resolution capabilities 2”3, Different types of mass analyzers can be combined
within an instrument, called hybrid mass spectrometer 2’4, It combines the robustness and
sensitivity of one mass analyzer with the high mass accuracy and resolution of another mass

analyzer.

Tandem mass spectrometry (MS/MS) is a key technique to achieve the amino acid sequences
from peptides (Figure 10). A MS1 spectrum shows intact peptide ions eluting at a given time
with a specific m/z value and the heights of the signal reflects the numbers of detected ions 2”.
For MS/MS, a precursor peptide with a specific m/z is selected and fragmented to generate
product ions for detections. The precursor peptides break at the weakest bond, usually the
peptide bond between amino acids forming b and y ions by colliding with an inert gas 2’1, The
resulting fragment ions are analyzed in a MS2 or MS/MS spectrum 27, Several different
fragmentation methods are utilized in mass spectrometry including collision induced
dissociation (CID), higher energy collisional dissociation (HCD) and electron transfer
dissociation (ETD) %°, CID and HCD causes fragmentation primarily at amide bonds by
collision of the precursor peptide with inert gas molecules. CID is performed in a linear ion trap
filled with helium, whereas HCD takes place in a separate collision cell. The fragment ions
produced by HCD are recorded by an Orbitrap. Due to slow-heating, internal fragmentation and
neutral-losses of H20O, NH3 and labile PTMS are common 81, ETD uses radical anions to

rapidly transfer electrons with low electron affinity to multiply protonated peptides resulting in
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a backbone fragmentation with ¢ and z ions 282, The electron transfer is highly efficient and fast
and is therefore suited for peptides with higher charge state and labile PTMs like
phosphorylation. Fragment ions containing the N-terminus of the peptide are referred as a,b,c,

and the fragments containing C-terminus are described as x,y,z ions (Figure 10) 267271,
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Figure 10: Peptide fragmentation with shotgun proteomics. Proteins extracted from different types of
sample are digested into peptides using trypsin, which cleaves peptide bonds at the C terminus of lysine
(K) and arginine (R) residues. To reduce complexity, the peptides are separated by liquid chromatography
(LC), which shows the most abundant signal at each retention time and injected into the mass spectrometer.
At any given time, multiple peptides co-elute at the same time and can be distinguish by their mass to
charge ratio (m/z). The mass spectrum of the intact peptides is called the MS1 spectrum. The signal
corresponding to the peptide EIQTAVR is highlighted in blue. The top intensive precursor ions are isolated
and fragmented by collision with an inert gas. The m/z values of the fragment ions, derived from the blue
peptide, are recorded in the MS2 spectrum. By convention, peptide fragments containing the N terminus
are called b ions, whereas fragments with the C terminus are called y ions. (adapted from Pappireddi et al.,
2019 %7)

A mass spectrometer can be operated in different acquisition modes including data-dependent
acquisition (DDA) and data-independent acquisition (DIA). In DDA, the most intensive
precursor ions are selected for fragmentation and analyzed in the mass spectrometer 2/, The
selected precursors are excluded for a certain time and the MS/MS spectra which are acquired
will differ from run to run. However, dependent on the sample complexity, more signals are
available than the instrument chooses for the isolation for fragmentation. The DIA approach
could help to overcome this problem, MS2 spectra are continuously collected over the entire
MS1 spectrum, resulting theoretically in a MS and MS/MS spectra for each m/z value.
However, current instruments are not fast enough and isolation windows are selected to reduce

the number of MS/MS spectra for each m/z value by still covering the entire m/z range. The
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resulting MS/MS spectra typically contain fragment ions of multiple precursor ions and thus
the data is more complex compared to DDA data. The obtained mass from the MS1 and the
MS/MS spectra are matched against theoretical spectra generated from a predefined database
283 (Figure 11). The databases are specific for each organism and are usually protein databases
translated from genomic data, although databases from spectral libraries or mMRNA data were
successfully applied. The databases are generated by in silico protein digestion for the specific
protease using search engines, such as Mascot 233, Sequest 24 or Andromeda implemented into
MaxQuant 28288 The best matches to a known amino acid sequence are scored and reported as
a peptide identification. Each genetically encoded amino acid except for leucine and isoleucine
has a different molecular weight, which allows the identification of the amino acid sequence by
comparing the differences in the m/z values. A final step is the assembly of identified peptides
into proteins. In order to control the extent of false and positive hits, a decoy database containing
reverse peptide sequences together with the protein database is used 28287 (Figure 11).
Identifications generated from the decoy database can be considered as true negative hits and
can be used to calculate the false discovery rate (FDR) 28, The FDR threshold is typically 1%
at the peptide and 5% at the protein level.
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Figure 11: Data analysis of proteomic data and false discovery rate estimation. The data-dependent
acquisition (DDA) data is analyzed by matching each acquired spectrum individually against a protein
sequence database. A decoy database is used to estimate the false positive hits. Only the best scoring
hit/spectrum is reported as peptide identification. (adapted from Gillet et al., 2016 %)

1.4.3 Discovery proteomics

Bottom-up or shotgun proteomics is the most widely used approach in MS-based proteomics to
identify and characterize proteins across a broad dynamic range. This approach involves the
proteolytic digestion of proteins prior analysis by liquid chromatography coupled to mass
spectrometry (LC-MS) (Figure 12). In a typical workflow, proteins are extracted from different
biological samples such as cultured cell or cancer tissues. Proteins are digested into peptides
using specific proteases like trypsin, which cleaves the peptide bond at the carboxyl terminus
of arginine (R) and lysine (K) . The resulting oligopeptides are of optimal mass range for
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chromatographic separation and due to the basic amino acid content these peptides can be
ionized properly in electrospray ionization (ESI) 2. For specific applications or to increase the
sequence coverage, several other proteases like chymotrypsin, AspN or GluC can be used alone
or in combinations 21, Proteomic samples often contain a number of buffer components that
may interfere with the MS/MS analysis, therefore peptides are usually concentrated and
desalted on reverse-phase C18 columns. The human genome consists of around 20,000 proteins,
resulting in approximately 106 million possible tryptic peptides 2*’. To reduce the complexity
of the analyte entering the mass spectrometer, high pressure liquid chromatography (HPLC) or
ultra-high liquid chromatography (UHPLC) can be coupled to a mass spectrometer (LC-MS).
Reverse phase (RP) chromatography is widely preferred for chromatographic separation 29229,
The separation is based on the hydrophobicity of peptides determined by the amino acid
composition. The peptides form hydrophobic interactions to alkyl chains coupled to silica beads
and are eluted with increasing organic solvent over time. At the beginning of the gradient,
hydrophilic peptides will elute, whereas hydrophobic peptides will stay longer on the column.
The stepwise elution of peptides from the column allows also the detection of low abundant
peptides and the separation of peptides with different hydrophobic properties. Eluting peptides
are ionized by nano-ESI and thereby positively charged. The reproducibility of retention time
between different runs is improved with a stabilized column temperature. The extensive co-
elution of peptides is a still a major problem for on-line coupled LC-MS/MS analysis 2%*. A pre-
fractionation at the protein level or peptide level can be introduced to further reduce sample
complexity and several techniques have been developed 2%2%, Proteins can be separated by 1D
gel electrophoreses based on the molecular weight of the protein or different chromatography
methods including off-line RP chromatography, size exclusion chromatography (SEC) or
strong anion or cation exchange chromatography (SAX, SCX) 2%2%7  For 1D gel
electrophoreses, proteins are denatured in SDS and separated in a polyacrylamide matrix based
on the molecular weight of the protein. Separated proteins can be digested with proteases
directly in the gel and peptide extraction will be carried out with organic solvents such as
acetonitrile prior LC-MS analysis 2%82%, Using SEC, proteins are separated according to their
size and this technique is often used in top-down proteomics, the analysis of intact proteins by
mass spectrometry. SAX and SCX are based on the interaction of positively (SCX) or
negatively (SAX) charged peptides with opposite charged groups of the stationary phase 29:%,
The proteins are separated according to their electric charge using a salt or pH gradient. Most

tryptic peptides carry two positive charges, due to C-terminal R or K residues and N-terminal
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amines, which is preferred in proteomics analysis. In addition, proteins can be resolved into
fractions using organelle separation to reduce sample complexity.
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Figure 12: General workflow of mass spectrometry based proteomics. The proteins are extracted from
cells or tissues and then enzymatically digested by proteases (trypsin) into peptides. The proteins can be
multiply modified including phosphorylation (P), methylation (Me) or ubiquitylation (Ub). The complexity
of the sample can be reduced at the protein and at the peptide level. Proteins can be fractionated by their
molecular weight, liquid chromatography or immune affinity enrichment. Peptides can be pre-fractionated
by cation exchange, reverse phase chromatography, and isoelectric focusing. Phosphorylated peptides, can
be enriched by immobilized metal affinity chromatography (IMAC), titanium dioxide (TiO,) or immune
affinity enrichment. Each fraction is analyzed by liquid chromatography coupled to a mass spectrometer
(LC-MS/MS). For fragmentation of precursor ion collision-induced dissociation (CID), higher-energy
collisional dissociation (HCD) or electron-transfer dissociation (ETD) can be used. (adapted from Doll et
al., 2015 301)

Proteins or peptides carrying a PTM are generally difficult to analyze by mass spectrometry
and several strategies for the analysis of PTMs have been developed %7 (Figure 12).
Phosphorylation introduces a negative charge to the peptides, whereas ESI is generally
performed in the positive mode. Peptide separation and sample preparation prior MS analysis
may be insufficient due to the hydrophilic properties of phosphopeptides. The low
stoichiometry of phosphopeptides compared to non-phosphorylated peptides often results in
ionic suppression and can be observed in low peaks 2. To overcome these limitations several
modification-specific enrichment techniques combined with advanced MS/MS methods were
successfully applied 3°33%4, The main goal of these approaches is the separation of modified
peptides from unmodified proteolytic peptides due to the low stoichiometry of the modified
peptides in a cell. The sensitivity of the technique is based on the yield of the enriched peptides,
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extent of unmodified peptides contamination, complexity of the sample and the sensitivity of
the MS/MS system 3%. Antibody-based enrichment of modified peptides is widely used method
for a wide range of modifications including lysine acetylation, arginine methylation and
tyrosine phosphorylation. It is based on the isolation of modified peptides by immunoaffinity
purification using a PTM specific antibody 3%. In addition, to site-specific antibodies,
antibodies recognizing a motif like kinase motifs are available. lonic interaction-based
enrichment strategies are mostly used for the enrichment of phosphopeptides from complex
peptides mixtures. lon metal affinity chromatography (IMAC) is based on the interaction of
negatively charged phosphopeptides with positively charged ions (mainly Fe®*) coupled to a
matrix or beads. Peptides are eluted with increasing pH, which change the charge state of the
peptide. SCX and SAX can be also applied to phosphopeptide enrichment. In the recent years,
titanium dioxide (TiO2)- based matrix enrichment has been prevalently used to enrich
phosphopeptides 372%, The high affinity of TiO, to negatively charged phospho groups makes
this method highly efficient and specific for the enrichment of phosphorylated peptides. To
enrich for mono- and polyphosphorylated peptides, serval methods were combined in a wide
range of studies and showed great results in sensitivity 2%, In addition, modified peptides can
be also enriched by tagging PTMs by chemical derivation including in vitro chemical labelling
and in vivo metabolic labelling. Besides the sample preparation also the data analysis including

the precise localization of PTMs to a specific site can be challenging.

1.4.4 Quantitative proteomics

Quantification of thousands of proteins by mass spectrometry based proteomics is often used
to study biological processes. Different techniques can be used to analyze protein-protein
interactions, protein abundance or post-translational modifications between two or more
physiological states %31, These approaches can be mainly divided into relative quantification,
the relative amount of a high number of proteins or absolute quantification to determine the
absolute amount of distinct proteins 32 For both, quantification is either performed without the
introduction of stable isotopes (label-free) or with chemical or metabolic stable isotope labelling
(label-based) (Figure 13). The most widely used form of quantitative proteomics is label-free
and is based on the quantification of MS1 signals of peptides 3!3. Two strategies can be applied:
(1) spectral counting or (2) spectrometric signal intensity to measure the protein expression. In
spectral counting, the number of measured spectra is determined as a proxy of the abundance

peptide concentration in a sample 3. A high sequence coverage enables the comparison over
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multiple data samples. MS2 spectra are not used for the quantification, but required for the
identification of the peptide sequence. Label-free quantification can be used for hundreds or
thousands of samples and avoids additional costs and sample preparation for labelling or
tagging of proteins and peptides. Each samples needs to be measured separately and the
multiple runs results in a reduced throughput. Another limitation is the poor reproducibility
between samples, which comes from each sample runs separately and variations in the MS1
and MS2 spectra acquisition. Another problem are missing values, as a significant fraction of
peptides will not be detected in each samples. Imputation of missing values due to better data
analysis technique help to overcome this problem 31, The software imputes values by matching
retention time and m/z values between samples. Improvement of mass spectrometry
technologies may help to overcome these limitations. Label-based approaches allow the
multiplexing of samples, which results in high accuracy and precision. Stable isotope labelling
in cell culture present a pre-harvest labelling methods and is based on the incorporation of stable
isotopes into proteins during their synthesis in active cells 31637, Metabolic labelling of proteins
is often carried out by using arginine and lysine with stable isotopes of 2H, 13C and 15N.
Methionine, histidine and leucine can also be used for SILAC as well 32, In a typical SILAC
experiment, cells are either grown in medium with unlabeled arginine/lysine (light) or in
medium with labelled amino acids (heavy). After incorporation of these amino acids into newly
synthesized proteins, cells are mixed, proteins are extracted and digested using trypsin protease
prior LC-MS/MS analysis. The combination of samples in early step of the workflow minimizes
variances between replicates and results in high reproducibility and accuracy compared to label-
free approaches 38, The tryptic digestion with trypsin results in peptides with C-terminal
arginine and lysine and ensures a labelling of nearly all peptides. The heavy-labelled peptides
produce a distinct mass shift in the MS1 spectra compared to its light-labelled counterpart.
However, the chemical properties of the peptides are nearly identical results in the same
chromatographically behavior and ionization efficiency 31°. The m/z difference between the
heavy and light peptide will be resolved and the ratio can be calculated, which shows the relative
changes in protein abundance between the different samples. SILAC has been successfully used

for mammalian cell culture, yeast, mouse and bacteria 320-324,
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Figure 13: Overview of labelling techniques used in proteomics approaches. Quantification is either
performed without the introduction of stable isotopes (label-free) or with chemical or metabolic stable
isotope labelling (label-based) ate the protein or peptide level. Labels can be also introduced as spiked in
as synthesized peptides. After labelling, samples can be combined for further sample preparation and
processing. (adapted from Bantscheff et al., 2012 3%)

Post-harvest labelling techniques like isotope-coded affinity tag (ICAT), isobaric tags for
relative and absolute quantification (iTRAQ) or tandem mass tag (TMT) introduce labels at the
protein or peptide level after cells have been harvested 326-328, The mass of the isobaric tags is
all the same and can be distinguished after fragmentation of the precursor ion. ICAT have been
developed and often used for clinical samples such as tissues of cancer patients, which cannot
be labelled with SILAC. The ICAT reagents consist of a reactive group (i.e. thiol), a linker
group and an affinity handle like biotin 32°. The reactive group targets cysteine residues of
peptides, which are labelled with linker consisting of light and heavy labelled stable isotopes.
The affinity handle is used for the purification of tagged peptides and reduces the complexity
of peptides mixtures from biological samples. One of the major limitations of ICAT is the
labelling of only one amino acid, which will come in line with the loss of peptide analysis
lacking cysteine. Therefore, the isobaric multiplexing tagging reagent iTRAQ has been
developed and can be used to label up to four or eight different biological samples
simultaneously 3%, The reactive group of iTRAQ targets primary amines at the N-terminus and

side chain amino groups of peptides. iTRAQ can also be applied to absolute quantification using
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synthetic peptides with a known sequence and mass. In recent years, isobaric labelling
techniques were further developed and TMT allows multiplexing of up to eleven samples.
Similar to iTRAQ, the tag contains a site that fragments in the MS2 spectrum and the mass of
the reporter ion can be used to distinguish the peptide originated from different samples.
Isobaric labelling techniques can be only applied to non-living samples and the labelling is
applied at the peptide level, which does not control for variances introduced in the early step of
the workflow. In addition, co-elution of multiple peptides is one of the major limitations as all
peptides carrying the same reporter ion. Another chemical labelling technique at the peptide
level is dimethyl-labelling 3. Primary amines of lysine residues and N-termini of peptides are
modified and the comparison is based on the mass difference of the label. Three different
samples can be studied simultaneously. Quantitative proteomics is a powerful tool study
dynamic changes of proteins and PTMs between different types of samples and allows insights

into a variety of biological processes.

1.4.5 Proteogenomics in cancer biology

Proteogenomics, the combination of genomics and proteomics is a new research field and is
often use to identify peptides containing mutations, novel protein-coding loci or alternative
splicing forms 332335, The term proteogenomics was used for the first time in 2004 by Church
group, performing a genomic reannotation of mycoplasma pneumonia using proteomic data ¢
Since then, the field of proteogenomics is emerging based on technical investigations enabling
high throughput genomics and deep MS-based proteomics 3372%, In addition to the data
integration for genome reannotation, proteogenomics was widely used to study multilevel gene
expression, signaling networks, disease subtypes and clinical prediction of patient’s outcome
339,340 Most of the proteogenomic workflows involve several main steps (Figure 14). First,
nucleotide data can be used to encode the sequence of the proteins expressed in a sample and
this data can be retrieved from the genome, exome, transcriptome or translatome level 332, The
genome contains sequence information of protein-coding and non-coding regions but also the
backbone of all protein sequences. Exome sequencing of enriched exonic sequences through
hybridization capture covers only 1% of the genome that codes for proteins 34!, Transcriptome
represents the output of the gene transcription and translatome comprises the portions of
transcriptome bound to the ribosome. These different types of sequence data can be used to
generate a proteogenomic database, which ultimately include possible single amino acid

variants (SAVs), insertions and deletions (InDels) and splice junctions for each individual
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sample 3%2, The NGS data needs be analyzed before by either de novo assembly or alignment
of genomic sequences to a pre-existing database- such as Ensembl 342, RefSeq ** or UniProt
34 De novo assembly is used to build a reference genome from one or multiple sequences of
these genomes 3%, The newly-synthesized and assembled genomes, the protein-coding regions
and other functional elements within an assembled genome must be identified 4. A majority
of proteogenomic databases were created by six frame translation of the genome of an
organism. This includes the prediction of all possible protein-coding sequences expressed in a
sample under analysis. For the alignment (reads mapping) the re-sequenced organism is mapped
to a pre-existing reference genome and in silico translated variants are incorporated into a
protein database 34’. This enables the identification of a variety of genomic variants, which are
absent in the reference genome. These sample-specific variants are of fundamental biological
interest including novel or unannotated proteins, variants specific for an individual, mutations
underlying a disease. Similar to proteomics, MS/MS spectra are matched to peptide sequences,
known as peptide spectrum matches (PSM) 346348 peptide sequences obtained from PSM are
then matched against a customized protein sequence database. By incorporating sample specific
sequences like SAVs, InDels, alternative splice junctions and novel gene fusions the size of the
database increases. However, the likelihood of experimentally observing a peptide decreases
and the matching of more theoretical candidates against experimental MS/MS spectrum will be
likelihood incorrect 34, To identify high confidence PSMs, a quality spectra and fragmentation
will be required. In addition, the computational time increases with larger databases and the
FDR must be controlled at the protein and peptide level. Separate FDR estimation should be
applied to known and novel peptides **°. For proteogenomic approaches it will always be a

compromise between completeness of the database, size and a well-controlled FDR.

A number of bioinformatical tools have been developed for proteogenomic approaches. For
instance, costumProDB 1, Galaxy-P %2, PPline **3 or PGA ** software can be used to generate
customized protein databases from NGS data, including SNVs, InDels ad novel splice junctions
35 In addition, also specific software are available with a special focus for example on novel
splice isoforms (QUILTS * or SpliceDB 7 software). Not only sample-specific NGS data can
be incorporated, several public SNV repositories like COSMIC *3 or dbSNP 3% database can be
used. Besides the database construction tools, visualization of peptides on the genome and
proteome level have been developed. However, there is a processing need for efficient and easy-

to use tool for the bioinformatic analysis and visualization of proteogenomic data 332,
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Figure 14: Sequence-centric proteogenomics workflow. Nucleotide data that can be retrieved from the
genome (whole genome sequencing (WGS)), exome (whole exome sequencing (WXS)), transcriptome
(RNAseq) level by next generation sequencing (NGS). The sequences need to be assembled into the DNA or
RNA sequence by either de novo assembly or alignment of genomic sequences to a pre-existing reference
database. Sample specific alterations are determined and incorporated into customized sequence databases.
Peptide identifications from corresponding LC-MS/MS runs of the same sample are used to identify sample
specific sequences and alterations by matching the acquired MS/MS spectra against the spectra derived from
the customized database. Proteogenomic approaches can be used for genome annotation by mapping of
peptides to unannotated genome regions; to identify tumor-specific variants on the proteome level as well as
novel protein splice variants; and detect species-specific peptides in microbial communities. (adapted from

Ruggles et al., 2015 3%)

Cancer and especially melanoma is characterized by an accumulation of mutations such as

SNVs, InDels, frameshifts or copy number variants (CNVs) rewiring cellular networks 33234,

The identifications of cancer specific mutations in cancer proteomics is referred as onco-

proteogenomics and has been studied intensively in the last decade 3°. A proteogenomics

approach and a cancer-specific database allows the detection of variants on the proteome level,

which has the potential to yield novel insights into cancer biology 3. The proteomic detection

of mutated proteins can help to identify clinical biomarkers or actionable drug targets 357:359:360,

Two consortium namely The Clinical Tumor Analysis Consortium (CPTAC) and the Cancer
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Genome Atlas (TCGA) were launched simultaneously and showed great contribution and effort
for the field of onco-proteogenomics. Colorectal, breast and ovarian cancer types has been
studied by CPTAC so far and several proteogenomic studies described the classification of
cancer subtypes, correlation of copy number alterations with protein expression and the
identification of mutated proteins and PTMs and associated signaling pathways 29262, The
TCGA created a large database containing novel, cancer-specific peptides including splice
junctions, InDels and substitutions. Using this TCGA database, 524 novel variant peptides in a
single ovarian cancer sample were identified in 2014 by Woo et al. 33, In a large scale study of
49 NCI60 cancer cell lines, 7.3 million novel peptides and 4,771 mutations were reported by
combining dbSNP, COSMIC, UniprotKB and sample-specific genomic and transcriptomic data
34 In addition to the identification of novel variant peptides, Sun and colleagues identified
several unique fusion peptides in non-small cell lung cancer (NSCLC) %%, These studies provide
valuable insights into cancer biology and how the proteome is regulated by genetic effects. The
repertoire of reported somatic mutations and the cellular responses within a cell will help to
identify driver and cancer-specific mutations and disturbed signaling networks in precision
oncology. The altered signaling networks in cancer cells can be studied by an integrative
proteogenomics analysis of genetic variants and PTMs, which can identify consequences of
genetic variants on the molecular level *%. It is very likelihood that a change of an amino acid
residue in a PTM target directly rewiring cellular networks. Approximately 22.2% of all amino
acids in the human proteome are serine (S), threonine (T), tyrosine (YY) and lysine (K) ***. These
four amino acids are predominantly modified by phosphorylation at S/T/Y or acetylation and
ubiquitylation at K. Several studies have been reported that these four amino acids are
disproportionally affected by missense mutations 36¢-3%8_ |n addition, not only the amino acid
itself can be affected also the recognition motif in a flanking region of the mutation site for
corresponding transferase like protein kinases or ligases might be altered 3%°37°, Yang et al.
showed that 64 phosphorylation sites potentially change the phenotype compared to
nonphosphorylated amino acid by using SwissProt and dbSNPs annotated in the NCBI sbSNP
database 3’1, In a CPTAC breast cancer study, Mertins and colleagues performed at integrative
analysis of proteomic and phosphoproteomic study of 105 genomically annotated samples 362,
This allowed the classification of the breast cancer subtypes on the genome and proteome level
and the characterization of the somatic cancer genome including the chromosomal loss of 5g.
In addition, the phosphoproteomic dataset revealed a new G-protein receptor cluster and
activated kinases specific for breast cancer subtypes, which was not identified by mRNA

analysis alone. As for the breast cancer study, Zhang et al. identified specific acetylation sites
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that could be associated with homologous recombination in ovarian cancer *2. These newly
identified modification sites may help to find the best treatment strategy for each individual
patient. Proteogenomics is often used to classify cancer subtypes and to identify actionable
mutated proteins for the best course of treatment for each individual. However, onco-
proteogenomics was also recently applied to study acquired resistance to treatments and drug
toxicity. In a lung cancer study, several mutations were reported to be linked to the efficiency
of tyrosine kinase inhibitors and showed a potential to predict patient’s survival rates 7. In
addition, acquired resistance and driver mechanisms of resistance against tyrosine kinase
inhibitors were also studied in gastrointestinal stromal tumors using a proteogenomic

phosphoproteomic approach 374,

In summary, the application of proteogenomics in clinical research is a powerful tool study the
mode of action of disease-associated mutations on the genome, proteome and PTM level. The
mutation can directly or indirectly change PTM sites and several studied showed that this may
change the protein stability, protein-protein interactions and signal networks. It also highlights
the value of state of the art MS-based proteomics in the era of precision medicine. In addition,
proteogenomics will may improve the treatment of patients in personalized manner and may be

implemented as a routine clinical lab test in the future.
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2 Aims and objectives

Malignant melanoma is characterized by a high frequency of somatic mutations in key signaling
pathways and development of resistance mechanisms against treatments. The overreaching aim
of this thesis was to characterize proteomic changes and the mutational landscape of melanoma
cells in response to kinase inhibitors and immunotherapy. To achieve this, | first compared
drug-sensitive and drug-resistant melanoma cells in order to gain new insights into the general
molecular mechanisms underlying resistance to kinase inhibition. 1 next applied a
proteogenomic approach to drug-sensitive and -resistant melanoma cell lines in response to
kinase inhibitors to assess the influence of non-synonymous mutations on signal transduction
networks. Finally, | applied a proteogenomics approach to melanoma patient tumor material to
investigate the molecular mechanisms underlying immunotherapy response in individual

patient samples.
Specific aims and objectives were:

1. Comprehensive (phospho)proteomics analysis of vemurafenib-sensitive and resistant

melanoma cells

a. Comparison of drug-sensitive and drug-resistant A375 melanoma cells using
quantitative (phospho)proteomics

b. Identification of significantly regulated proteins and phosphosites between both
phenotypes

c. CRISPR/Cas9-mediated knockout of the interesting candidates identified at the
proteome level

d. Functional validation of candidates using cell proliferation, migration and invasion

assays, as well as proteomic analyses

2. Individualized proteogenomic characterization of melanoma cell lines A375 and SkMel28
in response to vemurafenib resistance
a. ldentification of mutations at the genome and (phospho)proteome level
b. Investigation of over-represented pathways due to the accumulation of alternate proteins
between phenotypes and cell lines
c. Identification of phosphoproteins harboring mutations with a potential to rewire signal
transduction

d. Define significantly regulated proteins and phosphosites between phenotypes
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e. Validation of mutated protein isoforms by interactome studies

3. Individualized proteogenomic characterization of human melanoma cells in response to

immunotherapy

a. Optimization of the protein extraction protocols for patient tissue samples

b. Identification of patient-specific variants at the genome, proteome and phosphoproteome
level in the context of immunotherapy

c. Investigation of pathway over-representation due to accumulation of mutated proteins
between naive and immune checkpoint inhibitor treated samples

d. Comparison of proteogenomic profiles of human patient material and patient-derived
xenografts generated in NSC mouse

e. Prioritization of patient-specific mutations with a high impact to rewire signal
transduction

f. Validation of mutated protein isoforms by interactome studies
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Schmitt, M., Sinnberg, T., Nalpas, N. C., Maass, A., Schittek, B., Macek, B.

Quantitative proteomics links the intermediate filament nestin to resistance to targeted BRAF

inhibition in melanoma cells
Molecular & Cellular proteomics 18, 1096-1109
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+ Nestin depletion affects PI3K/AKT and integrin signaling similar to resistant cells.
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Quantitative Proteomics Links the Intermediate
Filament Nestin to Resistance to Targeted
BRAF Inhibition in Melanoma Cells* ®

Marisa Schmitt+,

Birgit Schittek§, and Boris Macek#9

Targeted inhibition of mutated kinases using selective
MAP kinase inhibitors in malignant melanoma often re-
sults in temporary improvement of clinical symptoms fol-
lowed by rapid development of resistance. To gain in-
sights in molecular processes that govern resistance, we
performed SILAC-based quantitative proteomics profiling
of vemurafenib-resistant and -sensitive melanoma cells.
Among downregulated proteins in vemurafenib-resistant
cell lines we detected multiple proteins involved in cyto-
skeletal organization and signaling, including the interme-
diate filament nestin, which was one of the most down-
regulated proteins. Previous studies showed that nestin
is expressed in various types of solid tumors and its
abundance correlates with malignant phenotype of
transformed cells. However, the role of nestin in cancer
cells regarding acquired resistance is still poorly under-
stood. We performed CRISPR/Cas9 knockout of the
nestin gene ( NES ) in vemurafenib-sensitive cells and
showed that loss of nestin leads to increased cellular
proliferation and colony formation upon treatment with

BRAF V°%°E and MEK inhibitors. Moreover, nestin deple -

tion led to increased invasiveness and metalloprotei-
nase activity like the phenotype of melanoma cells with
acquired resistance to the BRAF inhibitor. Finally, phos-
phoproteome analysis revealed that nestin depletion in-
fluenced signaling through integrin and PI3K/AKT/
mTOR pathways and led to increased focal adhesion
kinase abundance and phosphorylation. Taken together,
our results reveal that nestin is associated with acquired
vemurafenib resistance in melanoma cells. Molecular
& Cellular Proteomics 18: 1096-1109, 2019. DOI: 10.1074/
mcp.RA119.001302.

Malignant melanoma is the 19 ™ most common cancer
worldwide, accounting for
Although melanoma accounts for less than one percent of
skin cancer cases, it is responsible for 79% of skin cancer-
related deaths ( 2). Therapies for advanced melanoma have
changed greatly in recent years with the US Food and Drug

~232,000 new cases in 2012 ( 1).

Tobias Sinnberg§, Nicolas C. Nalpast, Annika Maasst,

Administration approval of several immunotherapy and tar-
geted drugs, including cobimetinib, an inhibitor of MEK ki-
nases (3), and vemurafenib, a BRAF inhibitor, for patients
carrying the BRAF V9°°F mutation (4). These drugs have a
response rate of ~50% as monotherapies and result in an
average survival benefit offour to six months ( 5-7). However,
almost all patients ultimately develop resistance to drug treat-
ment (5, 8). Therefore, an understanding of the acquired re -
sistance is essential for the development of effective therapies
for malignant melanema. Multiple cellular pathways have
been postulated to explain drug resistance, ranging from sig-
nal transduction networks to transcriptional pathways ( 9). The
majority of kinase inhibitor resistance development is caused
by molecular or genetic alterations that lead to MAPK path-
way reactivation. A variety of genetic causes, including  NRAS
(10, 11), KRAS (12) and MEK mutations (13), alternative splic -
ing or amplification of BRAF and loss of NF1 (9, 11, 12), have
been identified in tumors with acquired resistance. In addition,
activation of the PI3K/AKT pathway can be responsible for
BRAF inhibitor resistance— because of downregulation of
PTEN through loss or mutational inactivation, or somatic mu-
tations in AKT1/3 and PIK3CA (11, 12).

Nestin, a member of the type VI intermediate filament pro-
tein family, was originally described as a stem cell/progenitor
cell marker, especially during migration and proliferation
phases in early embryonic development ( 14). Expression of
nestin is also associated with the regulation of cell death in
neural progenitor cells, podocytes of kidneys and neuromus-
cular junction development in a CDK5-dependent manner
(15). In adult tissue, it plays an important role in regeneration
processes where it is localized to tissue/organ-specific sites
(16). Previous studies have reported that nestin is expressed
in various human malignancies, including pancreatic cancer
(17, 18), prostate cancer (19), breast cancer (20), glioblasto -
mas (21), gastrointestinal stromal tumors (22), trichoblastoma
(23), angiosarcoma (22) and malignant melanoma (24, 25). In
some tumor types, nestin expression correlates with aggres-
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sive growth, metastasis, migration and poor prognosis (  18);
however, the roles of nestin in cancer cells have not been
characterized at a molecular level. In advanced stages of
melanoma, nestin- and CD133-positive melanoma cells were
detected in the peripheral blood of patients, at the invading
front and at sites of melanoma metastases ( 26-28). These
studies indicate that nestin could be significantly involved in
the invasion and distant metastasis of melanomas. In a large-
scale proteomic approach, nestin was found to be a useful
diagnostic and prognostic biomarker that can potentially dis-
tinguish melanoma subtypes and can help to predict mela-
noma aggressiveness in these different subgroups (  29). Inter-
estingly, depletion of nestin in melanoma was shown to
increase expression of matrix metalloproteinases (MMP) ' and
enhance melanoma invasion ( 30). Recent evidence indicates
that nestin downregulation in prostate cancer cell lines trig-
gers an expression pattern of phosphorylated focal adhesion
kinase (FAK). Phosphorylated FAK (pFAK) localizes at the cell
membrane and promotes integrin clustering. This results in
pFAK- and integrin-dependent matrix degradation and an
invasive phenotype ( 31). In the context of targeted BRAF  V69%F
and MEK inhibitor therapy in melanoma, a loss of nestin
expression in tumor cells was identified immediately after
treatment therapy ( 32). All these findings suggest that nestin is
associated with tumorigenesis, however, little is known about
the role of nestin in melanoma and the relationship of nestin
and acquired resistance.

In this study, we use quantitative proteomics to identify
proteome and phosphoproteome alterations in A375 mela-
noma cells resistant to BRAF  Y°°%F inhibitor vemurafenib. Our
analysis identified nestin as one of the most downregulated
proteins in resistant cells. Extensive biological follow-up re-
vealed its connection with invasiveness and cell survival of
resistant melanoma cells. Finally, phosphoproteome analysis
revealed that nestin depletion influenced signaling through
integrin and PI3K/AKT/mTOR pathways.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale— The (phospho)pro-
teomics data is derived from three sets of samples prepared and
analyzed by LC-MS/MS. A total of 143 runs analyses were performed
with 230 min gradient for proteome, 42 min gradient for fractionated
proteome and 90 min gradient for phosphoproteome measurements
on a Q Exactive HF mass spectrometer. In part 1, SILAC labeled A375

" The abbreviations used are: MMP, matrix metalloproteinase;
BRAFi, BRAF inhibitor; CRISPR, clustered regularly interspaced short
palindromic repeats; DSB, double strand break; DTT, dithiothreitol;
ECM, extracellular matrix; FDR, false discovery rate; FBS, fetal bovine
serum; FFPE, formaldehyde fixed paraffin embedded; 1AA, iodoacet-
amide; LC-MS/MS, liquid chromatography combined with tandem
mass spectrometry; NOG, N-ocetylglucosamine; NonSil, nonsilenc-
ing siRNA; PAM, protospacer adjacent motif; SDS, sodium deoxy-
cholate; SILAC, stable isotope labeling in cell culture; sgRNA, single
guided RNA; NonTar, nontargeting control RNA; siRNA, small inter-
fering RNA.

S and A375 R cells (“light,” “medium,” and vice versa) were used in
two different screens (123 samples); screen 1, proteome and phos-
phoproteome measurements (33 samples, three biological replicates
(11 per replicate), ten rounds of phosphopeptide enrichment for each
replicate), whereas in screen 2, the proteome was fractionated into 30
fractions (90 samples, three biological replicates (30 per replicate)). In
part 2, SILAC labeled Nes-KO, A375 S and A375 R cells were used
(“light,” “medium,” “heavy”) (22 samples, two biological replicates
(eleven per replicate), ten rounds of phosphopeptide enrichment per
replicate). Raw data was processed by MaxQuant software as de-
scribed below. Statistical analysis was performed with Perseus ( t test,
FDR < 0.01,s0 = 1) (version 1.5.0.31), STRING: functional protein
association networks analysis (STRING Consortium 2018) and Graph-
Pad Prism (version 7.04). For detailed description of statistical anal-
ysis of each experiment see MS data analysis and statistical analysis
in the section methods.

All biological assays were performed in three biological and tech-
nical replicates, so that appropriate statistical analysis could be per-
formed. Statistical analysis was performed with two-tailed unpaired t
test in GraphPad Prism. p values < 0.05 were considered statistically
significant, with * for p < 0.05, ** for p < 0.01, *** for p < 0.001 and
% for p < 0.0001. In each experiment, separate controls were
included. Images of experiments and Western blotting were quanti-
fied using Image) software.

Chemicals— Stock solutions of the BRAF  Y*°°F inhibitor PLX4720
(vemurafenib analog, Selleckchem, Houston, TX) and the MEK inhib-
itor cobimetinib (Hycultec, Beutelsbach, Germany) were prepared in
dimethyl sulfoxide (DMSO).

Cell Culture and SILAC Labeling—
internal biobank was approved by the local ethical committee (781/
2018B02) and experiments were performed in accordance with the
declaration of Helsinki Principles. The human metastatic BRAF ~ V60F -
mutated melanoma cell lines A375, Mel1617, 451lu, SKMel28 and
SKMel 19 were used in this study ( 33, 34). The generation of the cell
lines with acquired resistance to vemurafenib analogue PLX4720 (for
simplicity referred to as "vemurafenib” in the Results section) was
conducted as described previously ( 33) (List of used cell lines in
supplementary Information S1 ). Cells were either grown in RPMI 1640
(Sigma-Aldrich, Darmstadt, Germany) containing penicillin/strepto-
mycin (100 U/ml, PAN) and FBS (10%, PAN) or RPMI 1640 SILAC
(Sigma-Aldrich) lacking arginine, lysine and leucine. Leucine (12.5
mg/ml, Sigma-Aldrich), penicillin/streptomycin (100 U/ml, PAN, Aid-
enbach, Germany), dialyzed FBS (10%, PAN) and stable isotope-
encoded arginine and lysine were added to the SILAC medium. The
“light” SILAC media was further supplemented with  L-['2Cg,'"N,]
lysine (Lys0) and L-['2C¢,"*N,] arginine (Arg0) (Cambridge Isotope
Laboratories, Tewksbury, MA), whereas L-[*H,] lysine (Lys4) and
L-["3C (] arginine (Arg6) were added to the “medium” SILAC media and
L["Cq,""N,] lysine (Lys8) and L-["*C,,'*N,] arginine (Argl10) to
"heavy” SILAC media. Cells were grown in a humidified atmosphere,
5% CO , at 37 °Cin either RPMI 1640 or “light,” “medium,” or “heavy”
RPMI 1640 SILAC media.

Protein Extraction of Cultured Cells— Cell lysis was performed in
lysis buffer (6 m urea, 2 m thiourea, 10 m m Tris pH 8.0) supplemented
with protease inhibitor (complete Mini EDTA-free tablets, Roche, Ba-
sel, Switzerland), phosphatase inhibitor buffers (5 m m glycerol-2-
phosphate, 5 m m sodium fluoride, and 1 m M sodium orthovanadate)
and 1% N-Octylglucoside (NOG) on ice for 10 min. DNA and RNA in
the lysate was removed using benzonase (Merck, Darmstadt, Ger-
many) for 10 min on room temperature (RT) followed by centrifugation
at 2800 X g (10 °C, 20 min). Remaining NOG detergent was removed
by acetone precipitation. Briefly, four volumes of acetone ( —20 °C),
one volume of methanol were added, and the proteins were precip-
itated overnight at —20°C. After centrifugation (2800 X g, 4°C,
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20 min), the detergent-containing supernatant was removed, and the
protein pellet was washed with 80% acetone (  —20 °C). Protein pellets
were then resolved in lysis buffer without NOG and protein concen-
tration was measured using Bradford assay.

Sample Preparation for MS Analysis—  Extracted proteins from each
cell line were mixed 1:1 (“light” to “medium”) or 1:1:1 (“light” to
“medium” to “heavy”) and reduced with 10 m m DTT for 1 h, alkylated
with 55 mm iodoacetamide for an additional hour and digested with
Lys-C (Lysyl Endopeptidase, Wako Chemicals, Neuss, Germany) for
3 h at RT. After adding offour volumes of 50 m m of ammonium
bicarbonate, trypsin (Promega Corporation, Madison, Wisconsin) was
added and tryptic digestion was carried out overnight. To stop the
digestion, 1% TFA was added, peptides were purified on Sep-Pak
C18 Cartridge (Waters, Milford, MA) and either eluted in 80% aceto-
nitrile (ACN) for high pH reverse phase chromatography or desalted
on C18 StageTips (as described previously [ 36)).

High pH Reverse Phase Chromatography— 1-2 mg of peptides
were fractionated on an off-line Ultimate 3000 high-pressure liquid
chromatography (HPLC) system (Dionex, Thermo Fischer Scientific,
Waltham, MA) equipped with xBridge BEH130 C 5 130A, 3.5 um,
4.6 % 250 mm column (Waters), as described previously (  37). The
system was operated under high pH conditions using buffer A (5m  m
NH 4,OH) and buffer B (5 m s NH,OH in 90% ACN) at pH 10. Peptides
were eluted using an 80 min gradient at a flow rate of 1 ml/min. The
gradient consisted of 5% to 25% B over 45 min, followed by 40% B
during 10 min and finally 70% B for 5 min. The gradient was held at
70% B for 5 min, reduced to 5% B within 5 min and the column
equilibrated for 10 min. One-minute fractions were collected from 0 to
60 min. The 60 fractions were concatenated into 30 pools and dried
by vacuum centrifugation. Peptide pools were reconstituted in 1 ml of
80% ACN, 10 pg of the pool were concentrated and desalted on
StageTips prior LC-MS/MS measurements for proteome analysis.

Phosphopeptide Enrichment— Phosphopeptides were enriched
using TiO , beads. TiO , beads (Titansphere, 10 um, GL Sciences,
Tokyo, Japan) were resuspended in DHB solution (80% ACN, 1%
TFA, 3% 2,5-dihydroxybenzoic acid (DHB)) and incubated for 20 min.
Purified peptides were added to the TiO , beads in DHB solution and
incubated for 10 min for each enrichment round. This step was
repeated nine to ten times. Phosphopeptide-bound TiO  , beads were
sequentially washed with 30% ACN in 1% TFA, 50% ACN in 1% TFA
followed by 80% ACN in 1% TFA. Peptides were eluted with 5%
NH,OH in 60% ACN into 20% TFA followed by 80% ACN in 1% FA.

The eluate was reduced by vacuum centrifugation, pH was adjusted
to < 2.7 with TFA and peptides were desalted on C18 StageTips prior
LC-M5/MS measurements.

Formalin Fixed Paraffin Embedded Tissue Preparation for MS Anal-
ysis— FFPE tissue of pre-and posttreated patients with the kinase
inhibitor vemurafenib (2 serial sections, 5 um thick; List of FFPE
specimens used in this study in  supplementary Information 53 ) were
first deparaffinized by two washes in xylene (5 min, 50 °C) followed by
three serial washes in ethanol (100%, 95% to 70%) for 10 min each.
Ethanol was removed completely, and sections air-dried. Lysis was
carried out in 4% SDS, 50 m  m DTT, 100 m m HEPES pH 7.5 supple-
mented with protease inhibitor at 95 °C for 60 min and by sonication
for 15 min. 10 g of proteins were purified by acetone precipitation
and protein pellet was resolved in lysis buffer (6  m urea, 2 m thiourea,
10 mm Tris pH 8.0). Proteins in the cleared lysate (13,000 % g, 10 min)
were reduced with 10 m m DTT for 60 min, alkylated with 55 m m
iodoacetamide for an additional 60 min and LysC digestion was
carried with 1 pg of LysC fo r 3 h at RT. After adding four volumes of
50 mm ammonium bicarbonate, 1 g of trypsin was added for tryptic
digestion overnight. Digestion was stopped by adding 1% TFA and
peptides were loaded onto C18 StageTips for desalting and subse-
quent dimethylation labeling ( 35). Briefly, peptides were labeled with

either 4% CH ,0, 06 m NaBH ,CN (“light”) or 4% '*CD,0, 06 m
NaBD ,CN ("heavy”) in phosphate buffer (50 m wm NaH ,PO,, 50 mm
Na ,HPO ,). After washing with solvent A, peptides were eluted with
solvent B and analyzed by LC-MS/MS.

Liquid Chromatography-MS Analysis—  All samples were analyzed
on an Easy-nLC 1200 UHPLC (Thermo Fischer Scientific) coupled to
an Q Exactive HF mass spectrometer (Thermo Fischer Scientific)
equipped with a nanoelectrospray source. Peptides were separated
on a 20 cm analytical column (75 pm ID PicoTip fused silica emitter
(New Objective, Woburn, MA)) in-house packed with ReproSil-Pur
C18-AQ 1.9 pm resin (Dr Maisch GmbH (Ltd.), Ammerbuch, Ger-
many). Peptides were eluted using a 90 min gradient for phospho-
proteome, 230 min gradient for proteome analysis and 42 min gradi-
ents for fractionated peptide pools. Gradient was generated by
solvent A (0.1% FA) and solvent B (80% ACN in 0.1% acetic acid) at
40 °C and 200 nl/min flow rate. The mass spectrometer was operated
in data dependent mode. Full MS scans were acquired with a reso-
lution of 120,000 and within a mass range of m/z 300 to 1650. For
higher-energy collisional dissociation (HCD), the 12 most intensive
peptides were selected, and MS/MS spectra were recorded with a
resolution of 60,000. For 45 min gradients, fast scanning top20
method was used with a resolution of 15,000 for HCD scans and
maximum fill time of 30 ms. For the analysis of TIO , enriched phos -
phopeptides, full MS were acquired in the range of 300-
1500 m/z at a resolution of 120,000, Seven most abundant precursor
jons from a survey scan were selected for HCD fragmentation (isola-
tion width of 1.20 m/z; 27% normalized collision energy and activation
time of 0.1 ms were allowed) and MS/MS spectra were acquired at a
resolution of 60,000 on the Orbitrap analyzer.

MS Data Analysis and Statistical Analysis—  The raw data files were
processed with the MaxQuant software suite (version 1.5.2.8) (  38).
The Andromeda search engine ( 39) searched MS/MS data against
Uniprot Homo sapiens (release 2015_10_23; 91,646 entries) database
containing commonly observed contaminants. Carbamidomethyla-
tion of cysteine (C) was set as fixed modification and oxidation of
methionine, phosphorylation at serine (S), threonine (T) or tyrosine (Y)
were defined as variable modifications. Trypsin/P was selected as a
protease. For quantification, the amino acids (Lys4)/(Arg6) and (Lys8)/
(Arg10) were defined as “medium” and "heavy” labels for the com-
parison of cell lines. Dimethylation on peptide N termini and lysine
residues was defined as “light” ( +28.03 Da) and "heavy” ( +36.08 Da)
labels for the comparison of pre-and posttreated tumors (FFPE spec-
imens). No more than two missed cleavages were allowed. The MS
tolerance was set at 4.5 ppm and MS/MS tolerance at 20 ppm for the
analysis using HCD fragmentation method. The false discovery rate
(FDR) for peptides and proteins was set to 1%. For all other param-
eters, the default settings were used. Only protein groups with at least
two peptides were included in the final data sets and all contaminants
were removed. Protein groups were kept for further statistical analysis
only if quantified in 3 out of 3 replicates (for the first experiment) and
2 out of 2 replicates (for the second experiment). To find significant
differences between sensitive and resistant A375 cells, log  ,-trans -
formed SILAC ratios were subjected to  t test in Perseus, with a
permutation-based FDR threshold of 0.01 and s  value of 1. The
SILAC ratio ofidentified phosphorylation sites were normalized to the
ratios of corresponding protein groups. All term enrichment analyses
were performed using Perseus, by mapping reference lists or subsets
of proteins with annotation terms. The resources used for annotation
of proteins were Gene Ontology (GO), Biological Processes (GOBP),
GO Cellular Compartment (GOCC), GO Molecular Functions (GOMF)
and Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition,
significantly changing proteins determined by t test analysis (FDR
0.1, s , value of 1) were mapped to pathways and network associa -
tions using STRING ( 40) against the whole genome as the statistical
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background. The top 20 significant pathways were selected. The
median of the t test difference of assigned significantly changing
proteins was calculated for each pathway. A list of all peptide se-
quences is provided in the supplementary Peptide Table and a list of
all protein identifications and phosphorylation site identifications are
provided in supplementary Table S1

Analysis of Microarray Data from Pre- and Posttreated Patient
Tumors— To confirm the relevance of our findings regarding nestin
protein abundance profile in A375, we reanalyzed NES gene expres-
sion profile in human patients with melanoma pre- and posttreatment.
The publically available microarray data with accession number
GSE50509 and GSE61992 were retrieved from the NCBI GEO data-
base. These data were acquired on lllumina Sentrix HumanHT12 v.4.0
Expression BeadChip as described in the original publications (41,
42). We reanalyzed the microarray datasets within the R environment
(43). Each probe was annotated using the illuminaHumanv4.db pack -
age (44). Quality control analysis (probe intensity density plot} was
performed on all microarrays to check for normalization bias between
samples or batches. The normalized data were filtered based on
probe quality using illuminaHumanv4.db package. Differentially ex-
pressed genes were identified from the filtered normalized data using
the LIMMA package ( 45). Briefly, this was performed by blocking
samples on a per-patient basis, fitting a linear model and generating
Empirical Bayes statistics to compare pre- and posttreatment sam-
ples. The Benjamini-Hochberg multiple testing correction method
was applied to all differentially expressed genes (  supplementary Ta-
ble S2).

Immunchistochemistry— Immunohistochemistry staining of clinical
FFPE specimens (List of FFPE specimens used in this study in sup-
plementary Information 53 ) was performed with a nestin specific
polyclonal rabbit antibody (N5413, Sigma-Aldrich) diluted 1:50 in PBS
containing 0.3% Triton-X100 and 1% BSA. Briefly, 5 wm FFPE tissue
sections were de-paraffinized and antigen retrieval was performed in
citrate buffer pH 6 in a pressure cooker for 2 min under pressure
before a slow cocling down of the samples. Afterward tissue sections
were stained according to the manufacturer’s protocol (Thermo Sci-
entific, UltraVision LP Detection System: AP Polymer) using FastRed
(Thermo Scientific, Liquid Fast-Red Substrate System) as substrate.

Generation of Genome Edited Melanoma Cell Lines—NES
knockout was carried out by CRISPR/Cas9-mediated genome editing
according to the published protocol ( 46). The SpCas9 plasmid PX459
(Plasmid 62988) was obtained from a nonprofit plasmid share repos-
itory (Addgene, Watertown, MA). Suitable CRISPR target sites within
NES Exon 1 positive strand were identified using the “CRISPR Design
Tool” (http:/crispr.mitedu/ ). The respective oligonucleotide inserts
(Biomers, Ulm, Germany) (5 '-cctcgacggegegeeggttg-3 ' (forward), 5 /-
caaccggegegeegtcgagg-3  * (reverse)) were designed with overhangs
compatible for ligation into PX459 linearized by digestion with Bbsl
(New England BiolLabs, Frankfurt, Germany). Oligonucleotides were
phosphorylated with polynucleotide kinase T4 PNK (New England
BioLabs), annealed and inserted into the plasmid using T4 DNA ligase
(New England BioLabs) and transformed into chemocompetent DH5  «
E. coli cells (New England Biolabs). Oligonucleotide inserts (ITD) {  5'-
gtattactgatattggtggg-3 ' (forward), 5'-cccaccaatatcagtaatac-3 ' (re-
verse)) were designed as CRISPR/Cas9 nontargeting (NonTar) control
sgRNA and cloned into the SpCas9 plasmid PX459. Melanoma cells
were seeded with low density (100,000 cells per ml), grown for 24 h in
RPMI- 1640 medium without FBS. Transfection of the SpCas9/sgRNA
plasmid or SpCas9/MonTar plasmid was carried out with Lipo-
fectamine 2000 (Thermo Fischer Scientific) according to the manufa-
cturer's instructions, On the next day, cells were selected using
puromycin (2 pg/ml, Invivogen, Toulouse, France) and incubated for 2
days. Once individual colonies formed, single colonies were picked,
cultured in separate wells and expanded in 6-well plates until cell

gene

number was enough for further analysis. Genomic DNA was isolated
using GeneElute Mammalian Genomic DNA MiniPrep Kit (Sigma-
Aldrich) and PCR amplification was performed using primers (5 '-
agatgtggggagctcaatcgg -3 (forward) and 5 '-tccaacctctgttccaacge -3
(reverse)) and sequenced by Sanger sequencing. Off-target effects of
the guide sequence were predicted using Cas-OFFinder online tool
(47). A mismatch of three bases were allowed. (List of predicted
off-target sites in supplementary Information 54 ).

siRNA  Knockdown— Nestin knockdown was carried out by trans-
fecting A375 S cells with a pool offour FlexiTube siRNA oligos (100
nw, Qiagen, Hilden, Germany) against human nestin. NonSilencing
siRNA (NonSil, Dharmacon) was used as control. siRNA transfections
were performed using Lipofectamine RNAIMAX (Invitrogen) according
to manufacturer’s protocol. The medium was changed the following
day. All assays were performed at 48-72 h posttransfection.

Western Blotting— Cells were harvested in lysis buffer and proteins
were precipitated overnight with acetone/methanol ( —20 °C). Cell
lysates from SkMel28 S/R, SkMel19 S/R, 451lu S/R and Mel1617 S/R
were used for immunoblotting analysis. Protein extracts were sepa-
rated on 4-12% NuPAGE Bis-Tris gels (Novex, Life Technologies,
Carlsbad, CA), transferred to PVDF membranes (0.2 um, Sigma-
Aldrich). The blot membranes were blocked in 1% Tween-20 and
probed with primary antibedy followed by horseradish peroxidase-
conjugated secondary antibodies. Primary antibodies used were anti-
Nestin (N5413, Sigma-Aldrich; sc-23927, Santa-Cruz Technologies),
anti-EGFR (#2232, Cell Signaling Technologies, Danvers, MA), anti-
Integrin B1 (E11) (sc-374430, Santa-Cruz Technolgies), anti-Integrin
B4 (B4) (sc377523, Santa-Cruz Technologies), anti-GAPDH (MAS5-
15738, Thermo Fischer Scientific), anti-AKT (SAB4500797, Sigma
Aldrich), anti-AKT (phospho-5124) (SAB4301497, Sigma Aldrich), an-
ti-ERK1/2 (SAB1305560, Sigma Aldrich), anti-ERK1/2 (phospho-
T202/Y204) (SAB1306604, Sigma Aldrich), anti-FAK (D1) (sc-271126,
Santa-Cruz Technologies) and anti-Histone H3 antibody (D1H2)
(#4499, Cell Signaling Technologies). Secondary antibodies used
were anti-rabbit 1gG, HRP-conjugated (#7074, Cell Signaling Tech-
nologies) and anti-mouse IgG, HRP-conjugated (#7075, Cell Signaling
Technologies). ECL was detected by exposure with the Fusion SL
instrument (Vilber Lourmat, Eberhardzell, Germany). For quantifica-
tion, ImageJ software was used.

Clonogenic Assay— Cells were seeded in low density with 200
cells/cavity in 12-well plates and treated with BRAF  Y°°°F and MEK
inhibitors (1 pm PLX4720, 0,1 pum cobimetinib). After 7-10 days, cells
were fixed with 4% formaldehyde and stained with 0.05% Coomassie
Brilliant Blue solution (Bio-Rad Laboratories, Hercules, CA) containing
80% methanol and 10% acetic acid. Stained colonies were washed
twice with DPBS and counted under the microscope.

Proliferation/Cell Viability Assay— A MTS assay was used to ana-
lyze the proliferation and survival of melanoma cells. Cells were
seeded (2 X 10%) into 96-well plates. On the next day, media was
changed, and cells were incubated for 96 h with increasing concen-
trations of respective inhibitors (0.1 um to 20 um of PLX4720 or
cobimetinib) or with DMSO. After washing with DPBS, cell viability
was assessed by CellTiter 96 ~ Aqueous One Solution Cell Prolifera -
tion Assay (Promega Corporation), according to the manufacturer’s
instructions. The IC ., values were determined from the dose-re -
sponse curves using log inhibitor versus response (three-parameter)
test in GraphPad Prism.

Gelatin  Zymography— For gelatin zymography, melanoma cells
were cultivated to 70-80% confluence, washed twice with DPBS and
grown for 24 h in FBS-free RPMI 1640 medium in presence or
absence ofinhibitors (1 um PLX4720, 0.1 um cobimetinib). Condi-
tioned media was collected, concentrated using SpeedVac and
nonreducing sample buffer was added (4% SDS, 20% glycerol,
0.01% bromphenol blue, 125 m m Tris-HCL pH 6.8). Samples were
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separated on Novex 10% Zymogram Plus (Gelatin) gels (Thermo
Fischer Scientific). Gels were washed twice with washing buffer (2.5%
Triton X-100, 50 m m Tris-HCl, 5 m m CaCl ,, 1 um ZnCl,), incubated for
24 h with incubation buffer (1% Triton X-100, 50 m M Tris-HCl, 5 m m
CaCl ,, 1 um ZnCl,;) at 37 °C, stained with staining solution (40%
methanol, 10% acetic acid, 0.5% Coomassie Blue) fo r 1 hat RT and
incubated with destaining solution (40% methanol, 10% acetic acid)
until white bands appeared. For guantification of bands, Imagel
Software was used.

3D Melanoma Spheroid Culture— Cells were seeded on 1.5% agar
noble (VWR) coated 96-well plates and incubated for 3 days to form
spheroids. Spheroids were embedded into collagen | rat tail protein (1
mg/ml, Thermo Fischer) diluted in RPMI medium and cultured for four
to ten more days. A total of 15 to 25 spheroids from each experiment
were analyzed per condition. For quantification of outgrowth of spher-
oids, images were taken on day 0 and day 10. The outgrowth length
for 15 spheroids was quantified using Image) software.

RESULTS

We used high-resolution mass spectrometry to characterize
the proteome and phosphoproteome changes associated
with resistance to BRAF inhibitor therapy in vitro (supplemen-
tal Fig. S1 A). To study acquired drug resistance, the
BRAF Ve°°E mutant melanoma cell lines sensitive (A375 S) and
resistant to vemurafenib (A375 R) were used ( 33). For pro -
teomic and phosphoproteomic analysis, A375 S and A375 R
cells were subjected to stable isotope labeling by amino acids
in cell culture (SILAC) using Lys4/Arg6 supplemented in
growth medium. The resulting peptide mixture was measured
using on-line liquid chromatography coupled to high-resolu-
tion mass spectrometry (LC-MS/MS). In addition, phospho-
peptide enrichment was performed and analyzed by LC-
MS/MS ( supplemental Fig. STA  and supplementary Table S1
and supplementary Peptide Table ).

Cytoskeletal Proteins Are Downregulated in Vemurafenib-
resistant Melanoma Cells— We performed two proteomic
screens (each in three biological replicates) that resulted in
detection of 129,485 unique peptide sequences correspond-
ing to 9453 distinct protein groups at an estimated FDR of
0.27% at the peptide and 1.28% at the protein level (Fig. 1 A,
1B; supplementary Table S1 ). Protein differential abundance
analysis indicated widespread regulation of protein abun-
dance that occurs during the development of BRAF resist-
ance in vitro. The significantly downregulated proteins were
involved in focal adhesion, integrin signaling, and actin cyto-
skeleton regulation (Fig. 1 C), upregulated proteins in the ac-
tivation of PI3K/AKT, mTOR, and MAPK/ERK signaling path-
way (Fig. 1 C). In the phosphoproteome measurement, we
identified 13,354 phosphorylation sites, of which 10,444 were
localized to a specific Ser/Thr/Tyr residue (  supplemental Fig.
S1B and supplementary Table S1 ) and 9106 phosphorylation
sites were quantified reproducibly in all three replicates. We
mapped our dataset to the known resistance mechanisms
MAPK/ERK and PI3K/AKT pathway and observed a good
coverage of regulated key proteins ( supplemental Fig. S1 C).
For example, the RTKs EGFR, PDGFR, and IGF1R were iden-
tified upregulated in A375 R wversus A375 S cells, as well as

NRAS, BRAF, ERK1, MITF, AKT2, and mTOR { supplemental
Fig. S1C). In addition, we identified phosphorylation sites on
AKT (S124) and ERK1/2 (T202/Y204) significantly upregulated

in A375 R cells ( supplemental Fig. ST C).

Among pathways activated in the A375 R cells, multiple
proteins involved in cytoskeletal organization were signifi-
cantly over-represented (Fig. 1 A and 1B). Reorganization of
the cytoskeleton is often associated with migratory and inva-
sive phenotype of tumor cells and contribute to cancer's
aggressiveness. In this dataset, a remarkable number of dif-
ferentially regulated proteins were involved in cytoskeleton
and adhesion pathways (Fig. 1 A, 1B, and 1 C), and several key
proteins, such as nestin, vimentin and gelsolin, showed sig-
nificant changes in abundance. The type VI intermediate fila-
ment protein nestin showed a median log , ratio of —2.71 in
resistant cells in all replicates and was one of the highest
changing proteins in the whole dataset. To validate these
findings, we assessed expression of nestin by Western blot-
ting in several widely used melanoma cell lines, such as
SkMel28 and Mel1617 (Fig. 1 D). Quantification of the Western
blotting by densitometry revealed significant changes of nes-
tin abundance between drug-sensitive and drug-resistant
cells (Fig. 1 E).

To further address the clinical relevance of the downregu-
lation of nestin in patients, we used two public transcriptomic
datasets available from NCBI GEO repository. We selected all
microarray data from patients with matching pre- and post-
treatment tumors (vemurafenib, dabrafenib and dabrafenib/
trametinib); i.e. 21 and 9 patients from microarray datasets
GSE50509 and GSE61992, respectively (41, 42). The bioin -
formatics reanalysis of these microarray data revealed 23, 0
and 17 significantly changing probe sets in vemurafenib, dab-
rafenib and dabrafenib/trametinib treated tumors versus pre-
treatment tumors (FDR = 0.1, supplementary Table 52 ). The
MRNA expression of nestin (probeset ID = ILMN_1738147)
was not significantly changing across posttreatment tumors
versus pretreatment tumors. However, we did observe a tend-
ency toward nestin downregulation between paired tumors
(supplemental Fig. S1 D and S1E). We could confirm these
findings in FFPE specimens of two patients pre- and post-
therapy with BRAF inhibitor using immunohistochemistry
against nestin protein ( supplemental Fig. ST F). The abun-
dance of nestin in pretreated tumors differed between pa-
tients; however, there was a clear tendency toward nestin
downregulation between post- and pretreated tumors within
each individual patient. Proteomic analysis of FFPE speci-
mens of one patient pre- and post-BRAF inhibitor therapy
identified nestin as one of the most downregulated proteins in
the post-BRAF inhibitor treated tissue ( supplemental Fig.
S1G) with a log, ratio of —2.5. In total, we identified 14
peptides of nestin in both tissue specimens with a sequence
coverage of 36.5%. Taken together, these data show that
acquired resistance is associated with alterations in cytoskel-
etal and adhesion molecules and leads to the downregulation
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analysis of different drug-resistant and drug-sensitive melanoma cell lines (A375, SkMel28, SkMel19, 451lu and Mel1617) against nestin and

quantification of signal intensities using ImageJ software.

of the intermediate protein nestin in melanoma cell lines and
metastases of human patients.

Nestin Expression Correlates with Invasive Properties of
A375 Cells— To evaluate the functional role of nestin in resist-
ance toward BRAF inhibition, we induced a  NES gene knock-

out in vemurafenib sensitive A375 S cells using the CRISPR/
Cas9 system ( supplemental Fig. S2 A). Single clones (A375
Nes-Ko #1-5) were selected for further analysis based on their
effective NES knockout ( supplemental Fig. 52 B-S2 E). As a con-
trol we used a nontargeting (NonTar) control guide sequence
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A375S  A375 NonTar

A375R A375 Nes-KO

FiG. 2. Nestin expression correlates with invasive properties of melanoma cell lines.

A375R A375 Nes-KO

A375S  A375 NonTar
A, Anchorage-independent growth assays of A375

S, A375 NonTar, A375 R and A375 Nes-KO clone #1 cells. Cells were seeded on agar, incubated for 3 days and spheroids were embedded
into a collagen | matrix and further incubated for 10 days. Images are representative of three independent experiments of day 0 and day 10

(15-20 spheroids per cell line and day). All images were acquired with a light microscope at 5-fold magnification. Scale bar: 200

pm. B,

Quantification of spheroids outgrowth. Analysis of outgrowth length was performed by measuring the total length from the center for 15

spheroids each on microscopic images using ImageJ software. Results are displayed as mean values

and transfected A375 S cells with this construct. A375 NonTar
cells showed no InDels in the NES gene and no change in nestin
protein abundance ( supplemental Fig. S2 F and S2 G).

To address the relationship between nestin abundance and
the invasive properties of melanoma cells, we performed
three-dimensional spherical outgrowth assay. Melanoma
spheroids formed from A375 S and A375 NonTar cells in-
creased in size over 10 days (Fig. 2 A and 2B). However,
vemurafenib-resistant and A375 Nes-KO spheroids were not
compact, showed less cellular adhesion and exhibited cells
that progressively infiltrated into the surrounding collagen gel.

ISk

In contrast, A375 S and A375 NonTar spheroids showed
restricted invasive movement of a few cells away from the
spheroid edge. Loss of nestin expression reduced the spher-
oid-forming ability of A375 Nes-KO cells like A375 R cells.
Collectively, these data show that expression of nestin corre-
lates with an invasive phenotype of resistant melanoma cells.
Depletion of Nestin Affects Cell Proliferation and Colony
Formation On Treatment with BRAF Y°°° and MEK Inhibi -
tors—To investigate the effects on cell proliferation in drug-
sensitive, drug-resistant and genome edited A375 Nes-KO
cell lines, we treated cells with the MAPK signaling pathway
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Clonogenic assay of A375 S, A375 NonTar, A375 R and NES knockout (A375 Nes-KO) cells after 10 days treatment with signaling pathway

inhibitors. Cells were treated with vemurafenib (1

um) and cobimetinib (0.1 um), either alone or in combinations. Controls were treated with

DMSO. Cultures were fixed with formaldehyde and stained with crystal blue. Images are representative of three biological and three technical
replicates. B, Quantification of single colonies per condition. Results represent the mean of three biological experiments and three technical

replicates (9 wells per cell line). Error bar represents standard deviations

for 24 h, and then treated with vemurafenib ( C) or cobimetinib (D) at the indicated concentrations (0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10 and 20

C-D, A375 S, A375 NonTar, A375 R, and A375 Nes-KO were cultured
M)

or DMSO as control. Cell viability was determined by MTS assay 96 h later. Results expressed as percentage of control represent the mean

of three biological experiments and six technical replicates (

n = 24). Error bar represents standard deviations of replicates.

E-F, Activity of

MMP9 ( E) and MMP2 ( F) using gelatin zymography. Supernatants of A375 S, A375 R and A375 Nes-KO cell lines were treated with DMSO or
vemurafenib for 24 h, analyzed by zymography gelatin plus gels and stained with Coomassie. ImageJ software was used for quantification of

signals. Results represent the mean of three biological experiments

inhibitors vemurafenib (BRAF V°°F inhibitor) and cobimetinib
(MEK inhibitor) and performed in vitro colony formation and
cell proliferation (MTS) assays. First, we examined the colony
formation ability of A375 Nes-KO compared with A375 S and

E=SE

A375 R controls. A375 NonTar cells were used as CRISPR/
Cas9 control cell line. In absence ofinhibitors, cell lines
showed similar colony formation ability in terms of colony
number and size (Fig. 3 A). A375 S and A375 NonTar single
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cells were not able to grow into a colony after treatment with
the BRAF V°°F jnhibitor vemurafenib. In contrast, A375 R
showed the same colony formation ability with vemurafenib.
For the genome edited A375 Nes-KO cell lines, we observed

a 2-fold decrease in colony number (Fig. 3 A and 3B). How-
ever, the size of the BRAFi treated nestin knockout cell line
colonies were smaller (data not shown). When cells were
treated with the MEK inhibitor cobimetinib or in combination
with BRAFi, the A375 S and the A375 R cell lines showed no
ability to grow into colonies (Fig. 3 A and 3B). Interestingly,
after both treatments, the A375 Nes-KO cell lines colonies
were observed in similar numbers and sizes (Fig. 3 A and 3B).
Next, we examined whether different concentrations of
BRAF V6°°E and MEK inhibitors impair cell survival and prolif -
eration of melanoma cells. We calculated the IC ., value for
each cell line and treatment using a three-parameter dose-
response test. When treated with vemurafenib, the IC  ,, of
A375 R, A375 S, A375 NonTar, and A375 Nes-KO was 2.46

um, 0.268 um, 0259 um and 2.091 pum, respectively (Fig. 3 C).
This confirmed that A375 Nes-KO cells tolerate vemurafenib
treatment better than the A375 S cells. In addition, the ob-
served effect was constant over different concentrations of
BRAF and MEK inhibitors. No difference was observed be-
tween A375 S and A375 NonTar cells. For the cobimetinib
treatment, the IC ., of A375 Nes-KO cells (IC ,;, 0.31 um) was
7.7-times higher than for A375 R cells (IC  , 0.04 um) (Fig. 3D).
A375 S and A375 NonTar cells were not able to grow under
these conditions.

To confirm this finding, we used a siRNA loss-of-function
model system and investigated the phenotype of a condi-
tional nestin knockdown (A375 Nes- K_,) with regards to
vemurafenib sensitivity. Downregulation of nestin expres-
sion was effectively achieved in A375 S cells as opposed to
cells harboring nonsilencing siRNA (NonSil) (  supplemental
Fig. S3 A). In agreement to NES gene knockout (Nes-KO),
nestin RNA downregulation resulted in increased cell pro-
liferation on BRAF Y¢°°t kinase inhibition compared with
A375 S cells as seen in the MTS assay ( supplemental Fig.
S3B). The IC ,, of vemurafenib in A375 Nes- K, cells was
similar (1.454 pum) to the NES knockout cells; pointing to the
fact that nestin affects cell survival on stimulation with dif-
ferent BRAF Y¢°°F and MEK inhibitors.

Depletion of Nestin Induces Matrix Metalloproteinase Activ-
ity—Downregulation of nestin was previously connected with
increased activity of matrix metalloproteinases (MMP) MMP-9
and MMP-2, which are involved in migratory potential and
invasiveness of cancer cells (  30). We hypothesized that A375
R with a significantly downregulated expression of nestin will
induce melanoma matrix metalloproteinases and that this
effect will be mimicked by our functional knockout cell line
A375 Nes-KO. To maintain enzymatic activity of MMP-9 and
MMP-2, we treated A375 S, A375 R and A375 Nes-KO cells
with vemurafenib or DMSO as a control for 24 h and analyzed
the supernatants using gelatin zymography ( supplemental

Fig. S3C). All cell lines secreted MMP-2 and MMP-9; however,
A375 R and A375 Nes-KO cells showed a significantly stron-
ger signal for both metalloproteinases compared with the
supernatant of A375 S cells ( supplemental Fig. S3 C). This
pattern was like that observed in cells cultured with the
BRAF V°°F inhibitor. A 2-fold difference in MMP-9 activity and
3-fold difference in MMP-2 activity was observed between
untreated supernatants of drug-sensitive and drug-resistant
lines (Fig. 3 E and 3F). Interestingly, quantification of signals
resulted in a similar peak area for bands of MMP-9 and
MMP-2 in A375 Nes-KO and A375 R supernatants (Fig. 3 E
and 3 F), highlighting the similarity of their phenotypes. Treat-
ment of cells with the BRAF Y5%°F inhibitor led to significant
increased activation of MMP-9 in A375 R and A375 Nes-KO
supernatants and decreased activation of MMP-2 in genome
edited A375 Nes-KO lines (Fig. 3 E and 3F). These results
suggest a relationship between expression of nestin and ac-
tivity of certain MMPs known to enhance tumor invasion.

Loss of Nestin Expression Is Associated with PI3K/AKT and
Integrin Signaling— To understand how the loss of nestin pro-
tein abundance may alter cellular protein homeostasis, we
performed a quantitative (phospho)proteome analysis of A375
Nes-KO versus A375 S versus A375 R cells using a SILAC
approach and LC-MS/MS. In twe biological replicates, we
identified 5965 protein groups and 7524 phosphorylation
sites, of which 91 showed significant changes in abundance
ata FDR < 0.01 (s, = 1) in the A375 Nes-KO compared with
A375 5 (Fig. 4 A and 4B, supplementary Table S1 and supple-
mentary Peptide Table ). The comparison of A375 R to A375
Nes-KO cells showed significant differences between these
two cell lines (supplemental Fig. 54 A). Biological replicates
showed a good correlation of the proteome and phosphopro-
teome (supplemental Fig. S4 B and 5S4 C). Interestingly, ECM
interacting proteins, such as vinculin, fibronectin, integrin 34
and integrin «6, as well as Proteinkinase C, focal adhesion
kinase FAK and other downstream signaling proteins were
significantly upregulated in the genome-edited cells (Fig. 4 A).
Enrichment analysis of the significantly regulated proteins for
GO cellular component indicated an involvement in adhesion
junctions, extracellular region and focal adhesion. ( Supple-
mental Fig. 54 D). The KEGG pathways PI3K/AKT signaling,
remodeling offocal adhesions, actin cytoskeleton signaling
and integrin signaling were significantly over-represented in
A375 Nes-KO cells compared with A375 S cells ( supplemental
Fig. S4D). Furthermore, the phosphoproteome analysis re-
vealed differentially regulated phosphorylation sites on key
members of the integrin signaling pathway and downstream
proteins. Phosphorylation sites on FAK, ERK1/2 and Integrin
B4 were significantly upregulated in the genome edited cell
line compared with A375 S cells (Fig. 4 B). To identify the
(phospho)proteomic overlap between A375 Nes-KO and
A375 R cells, we correlated the ratios of A375 Nes-KO Versus
A375 S against ratios of A375 R versus A375 S (Fig. 4 C and
4D). We identified differentially regulated proteins and phos-
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phorylation sites on key members of the integrin signaling (T202/Y204) and AKT (S124) were also increased in A375 R,

pathway in A375 Nes-KO and A375 R cells with similar ratios knockout and knockdown cells compared with A375 S. Taken

(Fig. 4 C and 4 D). For example, abundance of EGFR, Filamin-B together, these results link nestin with integrin and PI3K/AKT
and Collagen 6A3 and 10AT1, as well as phosphorylation sites signaling pathways in melanoma; while also revealing new
on Integrin B4, FAK and ERKI1. Focal adhesion kinase FAK melecular events in context of acquired resistance to vemu-
plays a central role in cancer cell motility, adhesion, and rafenib (Fig. 4 F).

invasion (48, 49). In melanoma cells, we found Nes-KO to be

associated with increased FAK phosphorylation and protein DISCUSSION

levels (Figs. 4 B). Phosphorylation of FAK at S910 was identi- To identify additional resistance mechanisms and reveal
fied with high quality by LC-MS/MS ( supplemental Figs. S4 E). new molecular targets to overcome resistance, we investi-

We confirmed these results by immunoblot using antibodies gated two melanoma cell lines (A375 S and A375 R) with

against key signaling molecules in  NES knockout (A375 Nes- differing phenotypes of acquired resistance to the BRAF ~ Ve9%F
KQ), nestin knockdown (A375 Nes- K_), A375 S and A375 R inhibitor vemurafenib. In this context, we utilized SILAC cou-

cells (Fig. 4 E). Immunoblot revealed a higher expression of pled to mass spectrometry to characterize the global pro-
EGFR, Integrin B4 and FAK in A375 R, A375 Nes-KO and teomic and phosphoproteomic changes in melanoma cell
Nes- K, cells. Signals for phosphorylation sites of ERK1/2 lines. This study is, to our knowledge, one of the largest global

Molecular & Cellular Proteomics 18.6 1105



Manuscript |

57

Quantitative Proteomics of BRAF Drug Resistance

(phospho)proteomic analyses assessing the differentially ex-
pressed proteins in drug-sensitive and drug-resistant mela-
noma cells. We identified several pathways to be over-repre-
sented in resistant cells including PI3K/AKT/mTOR signaling,
integrin signaling and MAPK/ERK signaling pathways. The
MAPK/ERK and PI3K/AKT/mTOR signaling pathways are
known resistance mechanisms and constitutively activated in
malignant melanoma. Here, several key proteins and phos-
phorylation sites within these pathways were identified with
high confidence like EGFR or phosphorylated ERK1/2. In ad-
dition to signaling pathways, the tumor microenvironment and
remodeling of the cytoskeletal organization have been re-
ported to play an important role in the development of ac-
quired resistance. For example, Kim and colleagues showed
that actin signaling through YAP/TAZ activation confers BRAF
inhibitor resistance in melanoma ( 50). Similarly, we detected
several cytoskeletal proteins such as nestin, vimentin and
gelsolin to be downregulated in resistant cells. In the present
study, we investigated whether the intermediate filament nes-
tin may contribute to resistance in melanoma cells. Expres-
sion of nestin in various cancer cell types has been studied,
however the mechanistic basis of the function of nestin is still
unknown. Nestin was reported to be involved in cancer cell
migration, invasion, and metastasis ( 18, 31, 51). Quendro and
colleagues showed in a large-scale proteomic study that nes-
tin and vimentin are both upregulated in melanoma cells and
tissue material compared with control melanocytes ( 29). We
could confirm this in A375 melanoma cells and further show
that nestin and vimentin are downregulated in resistant cells
compared with sensitive cells. Nestin and vimentin are inter-
action partners with important functions in cell migration,
cytoskeletal reorganization and apoptosis ( 52). Doxie and col -
leagues showed that nestin expression was completely de-
pleted in nestin-expressing cells in human tumers after BRAF
and MEK inhibitor therapy, which highlights the loss of nestin
expression in human tumors. In previous reports, NES ex-
pression has been reported to be regulated by the transcrip-
tion factors SOX9 and SOX10 and nestin and SOX9 may be
negative prognostic markers in melanoma ( 53). In agreement
with this, both transcription factors were also identified in our
data set with the same abundance trend as nestin. Because
nestin is a known stemness marker ( 27) we investigated the
presence of other stemness markers in our data set. We could
identify the stemness marker ABCG2, which is known to
enhance tumorigenic potential of melanoma cells ( 54). Al-
though ABCG2 was not significantly regulated, we identified
the potential cancer stem cell (CSC) marker of ALDH1 to be
upregulated in drug-resistant and in nestin CRISPR/Cas9
knockout cells compared with sensitive cells. ALDH1 is asso-
ciated with multidrug resistance in different types of human
melanoma tumors ( 55) and therefore may influence the stem -
ness of melanoma cells. Taken together, this highlights the
good coverage of the dataset and utility as a resource for the
melanoma community.

To confirm the clinical significance of our findings, we re-
analyzed public microarray datasets for matching pre- and
posttreatment tumors. We could only observe a tendency
toward NES downregulation, however in none of the treat-
ments did it reach significance. Several hypothetical reasons
could explain this. The first reason may be that nestin clinical
relevance is patient specific and depends on the patient ge-
netic background or tumor microenvironment. The second
contributing factor may be that, contrary to A375 cell line
where we have a clear BRAFi sensitive/resistant phenotype, in
pre- and posttreatment tumors the response to BRAFi is not
well defined (i.e. nonresponder, partial responder, full re-
sponder). In addition, we could confirm downregulation of
nestin in FFPE specimens using immunohistochemistry; how-
ever, expression of nestin differed between tumor specimens.
Quantitative proteomics of one pair of pre- and post-treated
tumors identified nestin as one of the most downregulated
proteins in the dataset with a good sequence coverage. These
results highlight the significance of nestin expression in hu-
man tumors.

To study the effect of nestin, we used CRISPR/Cas9 ap-
proach to generate a NES gene knockout in drug-sensitive
melanoma cells. We identified two peptides at the N terminus
of the protein by high-resolution mass spectrometry because
the knockout occurred at the end of Exon 1 of the genomic
sequence. However, the knockout cell line was considered as
an effective functional knockout of nestin because both inter-
action and functional active domains were absent from the
resulting protein. To confirm that our results are not because
of cell manipulation in terms of Cas9 expression, guide RNA
transfection or single cell picking, we generated a CRISPR/
Cas9 control cell line (A375 NonTar) using a nontargeting
guide sequence. We could not observe differences in the cell
proliferation and colony formation between A375 NonTar and
drug-sensitive cell lines. This study provides novel data show-
ing that nestin expression significantly correlates with cell
survival and colony formation on MAPK signaling pathway
inhibitor treatment. Indeed, we are not only describing an
increased cell survival and colony formation ability in knock-
out cells under BRAF inhibitor treatment, but we also show a
direct effect of NES expression on the growth of melanoma
cells on inhibition with the MEK inhibitor cobimetinib. Several
studies have suggested that combined therapy with BRAF
and MEK inhibiters are promising trials to delay MAPK-driven
acquired resistance and may activate other resistance mech-
anisms like PI3K/AKT/mTOR signaling pathways ( 56). Deple -
tion of nestin may activate these resistance mechanisms and
increase cell survival on mono- or combined therapy.

Qur results indicate a phenotypic difference in invasion and
proliferation of drug-sensitive and drug-resistant cells. Inter-
estingly, the genome edited A375 Nes-KO cell lines derived
from drug-sensitive cells showed a similarly invasive pheno-
type to drug-resistant cells. However, expression of nestin
has been reported to mediate both, three-dimensional tumor-
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igenesis and cell invasiveness (19, 25). It is also reported that
depletion of nestin using shRNA results in an invasive pheno-
type of melancma cell lines, which is mediated through up-
regulation of specific matrix metalloproteinases (MMPs) ( 30).
In this study, we could also show that nestin gene knockout
induces activity of MMP2 and MMP?9 like resistant phenotype.
This falls in line with the hypothesis proposed by Lee and
colleagues, who identified nestin depletion to be associated
with the activation of MMP-2 (gelatinase A, type IV collagen-
ase) and MMP-9 (gelatinase B, type IV collagenase) (  30). The
invasion and metastasis of tumor cells have been shown to
require proteolytic activity to degrade components of the
extracellular matrix ( 57) and to involve FAK/integrin-mediated
cell/matrix adhesion pathways ( 58). We provide evi dence that
nestin depletion is associated with signaling through focal ad-
hesion, integrin and PI3K/AKT/mTOR pathways. Interestingly,
ECM interacting proteins, like Laminin-B or Filamin-B, the in-
tegrins B1 and B4, Proteinkinase C, FAK and other downstream
signaling proteins were significantly upregulated in the genome
edited cells compared with drug sensitive cells at the proteome
level. FAK activated by integrins plays a central role in cell
invasion and adhesion by triggering several signaling pathways.
Furthermore, the phosphoproteome analysis revealed differen-
tially regulated phosphorylation sites on the key players of the
integrin signaling pathway and downstream proteins. In this
regard, recent evidence in prostate cancer research indicate
that nestin depletion is associated with an expression pattern of
phosphorylated FAK (pFAK) at the cell membrane. Phosphoryl-
ated FAK promotes integrin clustering, which results in pFAK-
and integrin-dependent matrix degradation and an invasive
phenotype (31). In melanoma cells, Hyder and colleagues could
also observe increased levels of phosphorylated FAK and pro-
tein levels in nestin knockdown cells and a localization of phos-
phorylated FAK at the cell membrane like the studies in prostate
cancer ( 31). In conclusion, we could link nestin protein levels,
not only with an invasive phenotype, but also with acquired drug
resistance in melanoma.
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Table I11: List of all used patient derived melanoma cell lines in this study. ATCC:
American Type Culture Collection

Name Tissue Morphology Source BRAF mutation
A375 skin epithelial ATCC (CRL-1619) BRAF V600E
Mel1617 skin epithelial M. Herlyn ! BRAF V600E
451lu skin epithelial M. Herlyn ! BRAF V600E
SKMel28 skin polygonal ATCC (HTB-72) BRAF V600E
SKMel19 skin epithelial C. Garbe ? BRAF V600E
1 Herlyn, D. et al. Properties of Human Melanoma Cells Metastatic in Nude Mice. Cancer

Research 50, 2296-2302 (1990).
2 Sinnberg, T. et al. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF
Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib. EBioMedicine 8,
132-149, d0i:10.1016/j.ebiom.2016.04.037 (2016).

Table 12: Top five down-and up-regulated proteins of vermurafenib-resistant and -
sensitive A375 proteome.

) ) SILAC ratio Intensity
Uniprot ID Gene name Protein name
(log2) (logo)
P02751 FN1 Fibronectin -2.81 10.22
P48681 NES Nestin -2.71 10.20
P35625 TIMP3 Metalloproteinase inhibitor 3 -1.92 9.44
Q13938 CAPS Calcyphosin -1.79 9.58
HLA class Il histocompatibility
P04233 CD74 . ) -1.38 9.96
antigen gamma chain
Sperm protein associated with
AO0A0G2JJ56 SPANXB1 2.10 8.29
nucleus on X chromosome B/F
Immortalization up-regulated
Q9GZP8 IMUP ) 2.01 7.69
protein
P80723 BASP1 Brain acid soluble protein 1 2.00 8.21
P00533 EGFR Epidermal growth factor receptor 1.65 7.83
Q52LW3 ARHGAP29 Rho GTPase-activating protein 29 1.34 7.61
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Table 13: List of FFPE specimens used in this study.

Patient Surgery date Localization Treatment Remarks
#1 09.11.2011 Abdomen Immunohistochemistry
Buttocks (gluteal, | Vemurafenib (12 months)/ . )
05.06.2014 . Immunohistochemistry
left) Ipilimumab (3 months)
) Immunohistochemistry
#2 23.11. 2011 Tight (left) .
and proteomics
. . Immunohistochemistry
25.02.2013 Lower leg (right) Vemurafenib (3 months) .
and proteomics

Table 14: Predicted off-target effects of crRNA guide CCTCGACGGCGCGCCGGTTG
using Cas-offinder. Chr: chromosome.

crRNA DNA Chr Position Direction mismatch
CCTCGACGGCGCGCC CCTCGACGGCGCGC
chrl 1570000 + 0
GGTTGNGG CGGTTGCGG
CCTCGACGGCGCGCC | CCcCGACGGCGCGgC
chrl? 7478944 + 3
GGTTGNGG GGTTcCGG
CCTCGACGGCGCGCC | CCcCaACGGCGCGCC
chr20 62861781 - 3
GGTTGNGG GGcTGTGG
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[S1A]
protein extraction protein digestion sample preparation & off-line fractionation LC-MS/MS
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Figure S1: Quantitative proteome and phosphoproteome analysis of human melanoma cells identifies down-
regulation of nestin. [A] Schematic of sample preparation workflow. Vemurafenib resistant A375 (A375 R) and
A375 sensitive cells (A375 S) were ‘light” (Lys0/Arg0) and ‘medium’ (Lys4/Arg6) SILAC labelled. After cell
lysis, crude protein extracts were mixed 1:1, reduced, alkylated and trypsin digested. The resulting peptides
mixture was fractionated using an off-line HPLC operated with high pH buffers. Fractions were pooled and
measured directly (proteome) or applied to phosphopeptide enrichment using titanium dioxide (TiO3) prior to
liquid chromatography mass spectrometry analysis (LC-MS/MS). [B] Volcano plot of vemurafenib-resistant and
-sensitive A375 proteomes for phosphoproteome. t-test difference of SILAC ratios between A375 R and A375 S
(logo) are plotted against p-value (-logio) (n=3). Black lines indicate the significance threshold (FDR < 0.01; so =
1). Significantly up- and down-regulated proteins are highlighted in magenta. [C] Identified key molecules and
phosphorylation sites of the MAPK/ERK and PI3K/AKT signaling pathway. Green: up-regulated in A375 R vs.
A375 S cells; red: down-regulated in A375 R vs. A375 S cells; grey: identified, but not quantified; arrows: up-
regulated phosphorylation sites in A375 R vs. A375 S. [D] NES expression profile in human patients with
melanoma metastases in vemurafenib, dabrafenib and dabrafenib plus trametinib treated tumors and pre-treatment
control tumors (FDR <0.1). [E] mRNA expression levels of nestin protein in thirty patients with melanoma
metastases after BRAF inhibitor therapy compared to control tumors. [F] Immunohistochemical staining for nestin
of melanoma metastases obtained before treatment with a BRAF inhibitor vermurafenib and after resistance
acquisition for two patients. Nestin levels are shown in red (Fast red substrate). [G] Proteomics of FFPE specimens
pre-and post-BRAF inhibitor therapy using quantitative proteomics based dimethyl-labelling. Ratios (logz) of post-
BRAF vs. pre-BRAF inhibitor therapy are plotted against intensity (logio) (p-value <0.05). Nestin is highlighted
in magenta.
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Figure S2: Nestin expression correlates with invasive properties in melanoma cell lines. [A] Schematic
overview of the establishment of NES knockout cells using CRISPR/Cas9 genome editing system. Blue: guide
sequence targeting Exonl in the genomic sequence of NES; red: protospacer adjacent sequence (PAM) sequence;
DSB: double strand break. [B] Western blot analysis of A375 S, A375 R and CRISPR/Cas9 genome edited cell
clones Nes-KO #1-7. [C] Sanger sequencing result of reference DNA (A375 S and R) and CRISPR/Cas9 genome-
edited cell clones Nes-KO #1 - 5. [D] Amino acid sequence of human nestin from Uniprot database. Grey: peptide
sequences identified by LC-MS/MS. [E] Amino acid sequence of CRISPR/Cas9 genome edited cell clones Nes-
KO #1-5. Grey: peptide sequences identified by LC-MS/MS. Red: truncated amino acid sequence compared to
A375 S. [F] Western blot analysis of nestin and GAPDH protein in A375 S, A375 R, A375 NonTar and A375
Nes-KO cells. [G] Sanger sequencing results of reference DNA (A375 S and R) and CRISPR/Cas9 genome-edited
control cell clones A375 NonTar #1 — 4.
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Figure S3: Depletion of nestin affects cell proliferation and colony formation upon treatment with signaling
pathway inhibitors. [A] Western blot analysis of A375 S, A375 NonSil and A375 siRNA against nestin and
quantification of bands intensities using ImageJ software. Nestin was down-regulated in A375 S cells by
transfection of a pool of four siRNA oligos (siRNA) against human nestin. Untreated A375 S and NonSilencing
siRNA (NonsSil) treated A375 S cells were included as control. Cells were harvested 48 h post-transfection. [B]
A375 S, A375 R, A375 NonSil and A375 Nes-Kd were cultured for 24 h, and then treated with PLX4720 at the
indicated concentrations (0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10 and 20 uM) or DMSO as control, respectively. Cell viability
was determined by MTS assay 96 h later. Results expressed as % control represent the mean of three biological
experiments (n=24). Error bar represents standard deviations of three biological replicates [C] Gelatine
zymography of supernatants of A375 S, A375 R and A375 Nes-KO cell lines treated with DMSO or PLX4720 for
24 h. Image is a representative of three independent experiments.
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Figure S4: Quantitative proteomics comparison between nestin knockout and BRAF inhibitor sensitive and
resistant cell lines. [A] Volcano plot of A375 Nes-KO and A375 R proteomes. t-test difference of SILAC Ratios
between A375 Nes-KO and A375 R (log,) are plotted against p-value (-logio) (n=3). Black lines indicate the
significance threshold (FDR < 0.01; so = 1). Significantly up- and downregulated proteins are highlighted in
magenta. [B] Proteome correlation of A375 Nes-KO relative to A375 R in biological replicate 1 and 2. [C]
Phosphoproteome correlation of A375 Nes-KO relative to A375 R in biological replicate 1 and 2. [D] Over-
representation of selected signaling KEGG pathways of A375 Nes-KO compared to A375 S cells using String
database analysis. The t-test difference of SILAC ratios between A375 Nes-KO and A375 S (logz) were plotted
for each pathway (t-test, FDR < 0.1; s =1). Enrichment score [%] identified significantly changing proteins
mapped to the pathway by the total protein count involved in that pathway. Colour of the dots represents the FDR.
[E] Annotated spectra of phosphorylated peptide LQPQEIpSPPPTANLDR containing a phosphosite at S910 on
focal adhesion kinase FAK.
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Abstract

Analysis of patient-specific single nucleotide variants, genomic insertions, deletions and
structural variants is a cornerstone of personalised medicine. Although only about 2% of the
genomic sequence is protein-coding, mutations occurring in these regions have potential to
influence protein structure and can therefore have severe impact on the aetiology of many
diseases. Of special interest are mutations that affect modifiable amino acid residues, as protein
modifications involved in signal transduction networks cannot be analysed by genomics.
Proteogenomics addresses this impact by analysing proteomes in context of patient- or tissue-
specific non-synonymous single nucleotide variants (nsSNVSs), insertions and deletions. Here
we present a bioinformatics application termed Proteogenomics Characterisation Tools (PCTi)
that enables straightforward integration of nucleotide variants into protein databases,
assessment of their potential impact and subsequent visualisation of proteogenomics data. We
apply PCTi to analyse the non-synonymous mutational landscape of two frequently used
malignant melanoma cell lines (A375 and SkMel28) in context of resistance to commonly used
BRAF inhibitor vemurafenib. We detect a disproportional impact of nucleotide variants on
modifiable residues between sensitive and resistant cell lines. Approximately 35% of protein
variants in both cell lines interfere with the modification status and potentially influence signal
transduction networks. MS measurements confirmed mutation-driven modification changes in
over 50 proteins; among these was the transcription factor RUNX1 mutated on S276L. We
confirm the loss of the Ser276 phosphorylation site by MS and demonstrate the impact of this

mutation on the interactome of RUNX1.

Introduction

The past decade has seen a revolution in high-throughput sequencing technologies, which
provide information on DNA/RNA sequence, gene structure and expression *7°. Mass
spectrometry (MS)-based proteomics is experiencing a technological revolution similar to that
of the high-throughput sequencing. The current state-of-the-art “shotgun” proteomics
workflows are capable of routine, comprehensive analysis of proteomes 247248376 and post-
translational modifications (PTMs) such as phosphorylation 310377378 However, most of the
standard proteomics approaches identify peptides and proteins by matching MS/MS spectra
against protein databases derived from public repositories (e.g. UniProt) that are not

“individualised”, i.e. do not contain sequence information specific for an individual patient,
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tissue or cell line. Commonly used protein databases therefore inherently prevent identification
of individual non-synonymous mutations. Proteogenomics addresses this issue by combining
nucleotide and protein sequencing information, thus enabling simultaneous study and
integration of DNA sequence, RNA expression and splicing, protein isoform abundance, as
well as localisation of protein PTMs in personalised fashion 340362380 However, the integration
of such omics datasets is usually not straightforward and requires advanced computational
skills. In this context, a number of bioinformatic tools are available to the community for
proteogenomics approaches. For instance, customised protein sequence databases can be
generated from NGS data using costumProDB, Galaxy-P, PPline or PGA software *1-%4, In
addition, several tools compare PTM sites with mutations, such as PhosSNP, PTMvar and
ReKINect 34081382 Eyrthermore, the concurrent visualisation of omics datasets is offered by
VisANT, NetGestalt and Galaxy softwares 3338, Currently, there is a need for workflows that
combine various aspects of a proteogenomics approach in a user-friendly fashion.
Proteogenomics has a potential to precisely characterise mutation-driven alterations of signal
transduction pathways during tumourigenesis *%. Accumulation of mutations is one of the
hallmarks of cancer cells and malignant melanoma is a type of cancer with the highest
frequency of somatic mutations 3. Recent investigations showed that mutations of signalling
targets in malignant melanoma are associated with poor clinical outcome, specifically in the
mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)
pathway that affects abnormal cellular growth 1%, The RAS/BRAF/MEK/ERK kinase pathway
Is mutated to an oncogenic form in 30% of all cancers, with non-synonymous somatic missense
mutations in BRAF up to 50% of cutaneous melanomas 2. The predominant BRAF mutation
is within the kinase domain with a single nucleotide substitution of valine to glutamic acid at
amino acid 600 . This mutation can result in a 500-fold increased, dimerization-independent
activation of BRAF, and thus leads to a constitutive activation of downstream signalling in
cancer cells 3233, Targeted inhibition of the mutated BRAF kinase with selective inhibitors like
vemurafenib, dabrafenib or encorafenib (BRAFi) results in a reduction of MAPK pathway
signalling *3. However, almost all patients rapidly develop resistance to BRAFi monotherapy
after a period of approximately five months 1°0192103  The considerable majority of BRAF
resistance development is caused by molecular or genetic alterations that lead to MAPK
pathway reactivation. The identification of multiple cellular mechanisms of resistance has
greatly improved the understanding of malignancy and clinical outcomes of BRAFY69E
metastatic melanoma e.g. by the introduction of combined BRAF and MEK inhibition.

However, mutations that alter the corresponding protein modification status and therefore
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influence resistance, remain largely elusive. In addition, the precise effect of nsSSNVs, insertions
and deletions (InDels) and frameshift mutations at the proteome and PTM level are still largely

unknown.

Here we present a new software termed Proteogenomics Characterisation Tools (PCTi), which
streamlines multiple aspects of a proteogenomics analysis, from generation of custom protein
sequence databases to visualisation of integrated proteogenomics data. We applied PCTi to
analyse two immortalised human cell lines commonly used in melanoma research, A375 and
SkMel28, in their parental as well as in their BRAFi resistant state. PCTi was able to reconstruct
signal transduction networks specific to individual cell lines and phenotypes using their

matching genomics and (phospho)proteomics datasets.

Results

To study the impact of single amino acids variants on signal transduction networks, we selected
two widely exploited melanoma cells lines harbouring the BRAFV%%E mutation, A375 and
SkMel28. The cell lines were established with two different phenotypes, drug-sensitive (“S”
phenotype) and drug-resistant (“R” phenotype) against the BRAF inhibitor vemurafenib, as
described previously 7. Both cell lines were subjected to exome sequencing as well as
proteomics and phosphoproteomics analysis using high-resolution mass spectrometry (Figure
S1A). To integrate and analyse genomic and proteomic datasets, we developed the software
PCTi. This application is coded entirely in the R programming language and provides a user-
friendly graphical interface via the Shiny package 3. The software comprises four independent
modules, which are used to (1) incorporate non-synonymous nucleotide variants into a protein
sequence, (2) stratify variants according to their biological impact based on user specification,
(3) integrate the nucleotide and amino acid variants identification (WES and MS), and (4)
visualise the analysed proteogenomics datasets (Figure 1). For more details about PCTi please

refer to Material and Methods section.
Application of PCTi to BRAFi-sensitive and -resistant melanoma cell lines

As a proof of principle, we used the PCTi software to characterise two melanoma cell lines,
A375 and SkMel28, both presenting drug-sensitive (S) and drug-resistant (R) phenotypes to
BRAF inhibitor vemurafenib. In this context, we performed Whole Exome Sequencing (WES)
and deep MS-based (phospho)proteomics to get information on the mutational landscape, as

well as abundance of proteins and phosphorylation sites. Number and type of nucleotide
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variants detected in the WES analysis was similar between the cell lines and is summarised in
Figure S1B and C. Each non-synonymous mutation was incorporated using the
PCTincorporate module into the corresponding protein isoforms, generating several thousand
additional protein sequences in respective protein databases. Despite this large increase in the
number of protein isoform sequences, the database search space increased by only 2-3%
(Figure S1D and E).
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Figure 1: PCTi application provides a reactive environment for the integration of genomics with proteomics.
Schematic representation of the PCTi software. The first module of PCTi allows the incorporation of a list of
mutations stored in a VCF file directly into the corresponding genomic assembly. The resulting FASTA file
contains protein sequences with non-synonymous mutations and is ready to use for LC-MS/MS data processing.
The second module calculates the impact of the non-synonymous mutations based on user-specified parameters
centered on disease type and modification status. The resulting impact scores help the prioritisation of relevant
mutated proteins. The third module integrates WES and MS by identifying reference and alternate peptides
resulting from a LC-MS/MS processing. It also determines the reference or alternate peptides, which contain post-
translational modifications. The final module generates images of the proteogenomics integration, such as protein-
based mutation/peptide coverage or proteogenomics-based interaction network.

We then used the PCTimpact module to evaluate the effect of mutated protein residues on
protein phosphorylation status and on melanoma aetiology. In this context, approximately 35%
of mutated protein isoforms had a loss or gain of S/T/Y modifiable amino acids and/or kinase-
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substrate motifs in both cell lines. Among these, a loss of known phosphorylation sites was
observed in more than one thousand protein isoforms. In addition, more than 20% of the
mutated protein residues were previously reported in melanoma samples and/or present on
protein encoded by known oncogene or tumour suppressor genes. In both cell lines, the impact
score distribution showed that only a minority of mutated protein isoforms have a medium to
high impact score (with 0 =no impact; 1 = high impact), for example the point mutations
G691S on Ret proto-oncogene protein, S276L on RUNX family transcription factor 1 and a
frameshift mutation V514W1fsX139 on FLII actin remodelling protein (Figure S1F and G).The
individualised databases, discussed above, were used for the processing of deep proteomics and
phosphoproteomics data from A375 and SkMel28. Each cell line was analysed separately and
peptides were separated into fractions using high pH reverse phase chromatography. High
resolution MS identified more than 9,300 protein groups and over 130,000 sequence-unique
peptides in each cell line (Figure S1H and I). Interestingly, the identified coverage on the
proteome level was similar, whereas the coverage of identified non-redundant phosphorylation
sites strongly differed between cell lines (Figure S1H and I). This difference is unlikely caused
by technical reasons and reflects previously reported differences 2. In both cell lines, most of
the phosphopeptides were exclusively identified in resistant cells, suggesting high relevance of
PTMs in resistance to BRAF inhibition.

BRAFi-sensitive and -resistant SkMel28 cells have distinct mutational landscapes

We next compared the BRAFi-sensitive versus -resistant phenotypes for A375 and SkMel28
cell lines on the basis of the WES-identified nucleotide variants. The comparison between A375
S and R revealed almost identical number of non-synonymous nucleotide variants, as well as a
very high overlap (94%) of mutations (Figure 2A). Although a similar number of non-
synonymous nucleotide variants was identified in SkMel28, the overlap between S and R
phenotypes was only 39.7% (Figure 2B). Comparison of the sequencing depth revealed similar
results across phenotypes and cell lines, with median depth ranging from 90 to 118 reads
(Figure S2A and B). As the same tools were used for variant calling, the difference in the
overlap between S and R phenotypes in SkMel28 cells is unlikely to be a technical artefact.
Variants were then characterised based on the reference to alternate nucleotide variant change,
which revealed a higher exchange frequency of adenine to guanine (and vice versa), as well as
cytosine to thymine (and vice versa). These mutations represented approximately 65% of the
total nucleotide changes and were consistent across phenotypes and cell lines (Figure S2C and
D).
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Individualised proteogenomics highlights key differences between BRAFi-sensitive and -

resistant melanoma cell lines

To address hotspot mutations accumulating in specific pathways, we performed pathway
enrichment of identified proteins harbouring amino acid variants. For both cell lines, we
detected multiple alternate peptides and phosphopeptides including peptides harbouring single
amino acid variants, InDels and frameshift mutations. Most of the identified mutations were
detected in drug-resistant cells compared to drug-sensitive cells on the proteome and
phosphoproteome level (Figure 2C and D). Next, we performed pathway enrichment of
proteins containing alternate peptides and showed significant differences between cell lines and
their phenotypes (Figure 2E). For both cell lines, MAPK signalling pathway and ErbB
signalling pathway were over-represented for mutated proteins in drug-resistant cells, whereas
RHO GTPase cycle was enriched for both drug-sensitive cells. In contrast, transcriptional
regulation by RUNX1 was only over-represented in A375 R cells which is linked to
transcriptional misregulation in cancer. Metabolism, HIPPO signalling pathway and lysosome
were enriched for variant proteins in A375 S cells. The annotation enrichment results for
SkMel28 S and R showed that most of the pathways were similarly over-represented for both
phenotypes. In addition, we compared the proteomic and phosphoproteomic differences
between both drug-sensitive and resistant cells for both cell lines and identified several
significantly regulated proteins (Figure S2E and F). MS analysis revealed the identification of
numerous significantly regulated proteins and phosphorylated proteins between cell line sand
their phenotypes, including key signalling proteins like BRAF, ERK1, AKT. To characterise
phenotypes between drug-sensitive and drug-resistant cells, we conducted an enrichment
analysis including Gene Ontology (GO), KEGG pathway, and Reactome analysis in order to
assess over-represented pathways and biological processes between significantly regulated
proteins of shared identifications and unique proteins for each phenotype (Figure S2G and H).
Based on the enrichment results for Reactome, signalling pathways like MAPK were enriched
in both resistant cell lines and PI3BK-AKT-mTOR pathway in A375 R and Whnt signalling in
SkMel28 R cells, known to be highly activated in resistant melanoma cells. YAP/TAZ-
stimulated gene expression, rRNA processing and nucleosome assembly were identified in both
sensitive cells. For shared proteins, extracellular matrix organisation was over-represented in
both sensitive cells and Rho GTPase activation and AURKA activation by TPX2 in A375 R
cells, whereas signalling by activin, NCAM1 signalling were significantly enriched in SkMel28
R cells (Figure S2G and H). These findings highlighted the shared properties and differences



Manuscript |1 80

between melanoma cell lines and showed that alterations can be identified at the peptide and
phosphopeptide level.
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Figure 2: Individualised proteogenomics highlights key differences between dug-sensitive and drug-
resistant melanoma cell lines. [A] and [B] Exome sequencing results of A375 [A] and SkMel28 [B], mapped to
commonly used databases COSMIC and dbSNP and novel mutations identified in this study. Upper panel shows
venn diagram of the comparison of drug-sensitive (S) and drug-resistant (R) cells. [C] and [D] Identification of
reference, alternate and novel variants on the proteome and phosphoproteome level of A375 [C] and SkMel28 [D].
[E] Radial plot of over-represented pathway of proteins containing identified alternate variant peptides for A375
(left) and SkMel28 (right). The enrichment score was calculated by Fisher exact test (FDR < 0.1).

Mass spectrometry detects several alternate peptides phosphorylated on the mutation site

In the MS-based proteomics data, we focused on those mutations affecting the phosphorylation
status of a protein. We identified 51 and 41 mutated isoforms with a phosphorylation event on
the mutation site in A375 and SkMel28, respectively (Figure 3A and B). These comprised both
phosphorylated reference peptides, implying a loss of the phosphorylation site due to the
mutation, and phosphorylated alternate peptides, involving a gain of phosphorylation site.
Notably, among the phosphorylated alternate peptides, approximately half were found
phosphorylated only in the resistant phenotypes. The rest were phosphorylated either only in
the sensitive phenotype or shared across phenotypes. Several of these mutations were among
the top impact ranked mutations for each cell line, such as FLII, RUNX1, SCRIB, PPP1CA,
KLF16, OGFR, RBMX and ANLN (Figure S3A and B). We checked whether these
phosphorylated reference and alternate peptides contained kinase substrate motifs. While
several peptides did contain a motif, significantly over-represented were only the ERK1,2 and
Casein kinase Il substrate motifs in A375 R (Table S1).

We then investigated the potential influence of phosphorylation site gain or loss on the protein-
protein interactome of each cell line. Interestingly, the generated interaction network was highly
enriched in proteins showing an up-regulation trend in A375 R. Conversely, for the interaction
network of SkMel28, both phenotypes were equally represented in up-regulated proteins
(Figure 3C and D). Among the mutated proteins used to generate these interaction networks,
several had notably more connections, such as PCM1, RUNX1 and DTL for the A375 cell line
and PPP1CA for SkMel28 (Figure S3C and D). Thus, the gain of a phosphorylation site on
these proteins could be of importance not only for the affected protein but also for their
numerous interactors. To characterise the interactome of each phenotype, we performed an
over-representation analysis against GO functions, KEGG pathways and Reactome pathways
(Figure S3E and F). The analysis revealed notable differences between phenotypes, with A375
R characterised by several pathways connected to transcription, mitosis and SUMOylation,

whereas SkMel28 R was represented by telomerase activation.
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Taken together these results suggest different phosphorylation landscape and possible rewiring
of signal transduction networks in the resistant and sensitive phenotypes, an observation that

was consistent across the two cell lines used.
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Figure 3: Mass spectrometry detects several alternate peptides phosphorylated on the mutation site. [A] and
[B] The mutated proteins, identified with a phosphopeptide covering the mutation site either as reference or
alternate, are displayed for A375 [A] and SkMel28 [B]. From the outer to the inner track, the first track represents
the mutation genomic location in context of its impact score; with the phosphorylated mutation sites located on a
reference peptide (blue) or on an alternate peptide (red). The second track depicts mutation genomic location for
the WES dataset, with the colour highlighting whether this mutation was identified only in the sensitive cells,
resistant or in both. The third and fourth tracks display the same type of information based on identified reference
and alternate peptides, respectively. Similarly, the identified phosphorylated peptides are represented on the fifth
and sixth tracks. [C] and [D] The protein-protein interactomes of the confirmed protein with loss/gain of
phosphorylation sites (as well as their interactors) for A375 [C] and SkMel28 [D]. Only identified proteins are
displayed and coloured based on up-regulation trend in one or another or both phenotypes.

Key molecules of MAPK pathway harbour different alterations in melanoma cells

Next, we selected the most commonly altered genes in melanoma and assessed their alterations
on the exome and protein level as well as their expression and phosphorylation status for both
cell lines and phenotypes (Figure S3G). Melanomas most frequently harbour alterations in
BRAF, CDKN2A, NRAS, TP53 and NF1. Several mutations were identified on the exome and
the proteome level including BRAF and EGFR in the MAPK pathway, and ERBB2 and ROS1
in the PI3K-AKT-mTOR pathway. Both phenotypes of the cell lines showed differently altered
genes and proteins identified by our proteogenomics workflow. Mutations in PTEN were only
identified in A375 R cells; CDK4 was only identified to be altered in SKMel28 S cells and the
alternate peptide was identified by LC-MS/MS. Protein expression analysis based on label-free
quantification revealed significant differences between cell lines and phenotypes. For example,
KMTD?2 showed a higher intensity in drug-sensitive A375 S cells compared to A375 R and
TP53 is up-regulated in SkMel28 R cells compared to SkMel28 S cells. Several of the most
commonly altered proteins in melanoma were identified to be phosphorylated on known but
also on new modification sites, demonstrating the power of proteogenomic data integration to

detect sample-specific changes in protein modifications.

Loss of a known phosphorylation site on RUNX1 leads to changed interactome and altered

transcriptional activity

Among high impact mutations identified with our proteogenomic approach, one was a
previously reported mutation on transcription factor RUNX1, a key transcription factor
involved in cell proliferation, differentiation and apoptosis **¢. We identified several mutations
on RUNX1 with a potential to change the modification status of the protein (Figure 4A). One
of the identified alterations on RUNX1 gene results in a loss of known phosphorylation site at
S276 to L276 on RUNX1 protein. The reference and alternate peptides were identified with
high resolution mass spectrometry in both A375 S and R cells (Figure S4A to C). The

phosphorylation site is located in a highly modified region in close proximity to the
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transcription activation domain of RUNX1, previously reported to be involved in binding of
key regulatory proteins, such as P300 3%, We therefore hypothesised that this mutation is likely
to influence the interactome of RUNX1. To study the impact of the loss of a modifiable amino
acid, we performed immunoprecipitation of Flag-tagged RUNX1 wt and RUNX1 S276L in
CRISPR/Cas9-mediated RUNX1 knockout (KO) SILAC labelled cells (Figure 4B). The
interactome analysis by LC-MS/MS revealed that RUNX1 and its core binding factor CBFB
were significantly enriched in both pulldowns compared to Flag-empty vector (Figure S4D
and E). Interestingly, histone deacetytranferase HDAC1 was enriched in RUNX1 wt
interactome and depleted in the RUNX1_S276L interactome (Figure 4B). HDACL1 is a known
interaction partner of RUNX1 and acts as a transcriptional repressor by removing acetylation
modification from histone 3°*. Another protein that significantly differed in the interactome of
RUNX1 was the protein RAB21, a Ras-related protein. To confirm these findings, we
performed pulldown assays with synthetic peptides harbouring the amino acid sequence for
reference, alternate or phosphorylated reference peptides of RUNX1 in A375 cells (Figure 4C).
As in the interactome study, HDAC1 was significantly depleted in the pulldown of alternate
peptide versus reference peptide indicating that the interaction between HDAC1 and RUNX1
is disturbed due to the alteration. In addition, we also identified SIN3A to be significantly
depleted in alternate peptide pulldown compared to reference pulldown. Similar to HDACI,
SIN3A acts a transcriptional repressor and both are forming a corepressor complex with
RUNX1 which regulates the transcription of hematopoietic genes 6. Besides the
transcriptional regulators, we also identified several other proteins and known interactions
partners of RUNX1. RIN1, a RAS and Rab interactor and PTPN23, a tyrosine-protein
phosphatase, showed the same trend as HDACL1 and SIN3A, both proteins are known to act as
regulator of RAS-mediated mitogenic activity 323%, In addition, we compared the alternate
peptide pulldown to the phosphorylated peptide pulldown and identified several proteins
involved in the nuclear core complex to be significantly enriched in the phosphopeptide
pulldown compared to the alternate peptide pulldown (Figure S4F). Enrichment analysis of
KEGG pathways indicated that proteins identified in alternate peptide pulldown compared to
reference peptide were enriched in TGFp signalling pathway, melanogenesis and insulin
pathway signalling (Figure S4G). These include key molecules like PML, CTBP2 and YAP1.
GOBP enrichment revealed that the proteins identified in the reference pulldown proteins are
enriched for catenin import into nucleus and histone deacetylation. Proteins identified in the
alternate pulldown are also involved in regulation of gene expression and cytokine biosynthetic

processes. Next, we mapped a list of transcriptionally regulated proteins by RUNX1 from
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BioGrid to our dataset and showed that the moiety of identified proteins is enriched in alternate
pulldown compared to reference pulldown (Figure S4H). Taken together, we could show that
the loss of known phosphorylation site has an impact on the interactome of RUNX1 (Figure

S41) and postulate that it leads to altered transcriptional activity (Figure 4D).
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Figure 4: Loss of a known phosphorylation site leads to a changed interactome and altered transcriptional
activity of RUNX1. [A] Schematic overview of the transcription factors RUNX1 protein. Numbers indicate the
positions of amino acids residues within the protein. Identified phosphorylation sites are highlighted in blue and
mutations by our proteogenomic workflow are highlighted in red. Identified peptides by LC-MS/MS are shown in
the second panel. Phosphorylated peptides are indicated with a blue border, while reference and alternate peptide
are highlighted in green and red, respectively. [B] Interaction proteomics screen in A375 RUNX1_KO cells stably
overexpressing FLAG-tagged RUNX1_wt or FLAG-tagged RUNX1_S276L. SILAC protein expression (log2) of
RUNX1_wt or FLAG-tagged RUNX1_S276L relative to the corresponding control cell line (FLAG tag only).
RUNX1 and its core binding factor CBFC are marked in black. Significantly up and down regulated proteins are
highlighted in red. Results represent three replicates per experiment group. [C] Volcano plot of synthetic alternate
peptide (Syn_Leu) versus synthetic reference peptide (Syn_Ser) pulldowns of A375 cells. Fold change of ratios
between Syn_Leu and Syn_Ser (log2) are plotted against p-value (-log10) (n=3). Black lines indicate the
significance threshold based on student t-test (FDR < 0.01; S0=1.2). Significantly up and down regulated proteins
are highlighted in red. [D] Schematic overview of proposed interaction of RUNX1 wt and RUNX1_S276L with
main transcriptional regulators.
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Discussion

In the current study, we presented a new web application, PCTi, which allows a simple and
user-friendly proteogenomics analysis in an individualised fashion. Onco-proteogenomics can
help to identify clinical biomarkers or actionable drug targets 357393 Therefore, as a proof of
principle we applied our tool to two cell line models of melanoma, a cancer that is well known
for its high mutation load *** and the potential for rewiring cellular networks 33234, Two
consortia, namely the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The
Cancer Genome Atlas (TCGA), have greatly contributed to the development of onco-
proteogenomics %363, However, proteogenomics studies are still relatively rare and, due to

their complexity, out of reach of most proteomics (or genomics) laboratories.
PCTi application provides a reactive environment for proteogenomics analysis

We hope that PCTi will facilitate proteogenomics projects by providing a simple reactive
environment to construct tools (e.g. protein databases) and integrate different omics datasets.
Among the key features of PCTi is a user-friendly interface that can be used as a part of existing
WES and MS data processing workflows. We have modularised our application so that users
are free to use all or only part of it (e.g. possible to generate a custom database without pursuing
with the rest of PCTi). Nevertheless, all modules are designed to work together in order to create
a homogeneous workflow, leading to interactive visualisations. Importantly, our tool is suitable
for a broad range of biomedical questions and is not limited to oncology studies as it depends
on user input (i.e. WES data, MS data, selected impacts). PCTi currently has some restrictions,
i.e., the variants must be called against H. sapiens genome assembly GRCh38, and MS data
processed using MaxQuant software suite. We expect these limitations to disappear as the
application matures. While the application can in principle be used for non-human organisms,

it was never tested in such context.

Regarding PCTincorporation module, we decided to incorporate non-synonymous nucleotide
variants into a reference genome for the creation of custom protein sequences database. While
this approach is not novel, it has the advantage to preserve the reference assembly used during
variant calling and to allow creation of a reference protein sequences database (as opposed to
retrieving it from online sources) 3°*. We also decided to incorporate variants mapping to the
same gene locus separately, resulting in separate protein sequence entries (e.g. PCM1 gene
mutated at position 159, 597 and 691). Among our reasons is the fact that few variants are
located close enough from each other to be detected by MS (typical tryptic peptide length is

comprised between 7 and 30 amino acids). Furthermore, variants phasing information are not
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necessarily available following variant calling, without which it is impossible to predict which
variants belong to the same allele. In the context of our melanoma cell lines, the nucleotide
variants incorporation revealed very similar numbers (~10,000 variants) across cell
lines/phenotypes, the large majority being SNVs (Figure S1A and B), which is consistent with
previous study 3%. We also observed characteristic nucleotide substitutions, whereby two thirds
of substitutions are comprised of transitions, with the remaining one third being transversions
(Figure S2A and B). The C to T transition was highly represented and has been reported as a

result from sun-light exposure, which is highly relevant for skin cancer 3%,

Due to the large number of nucleotide variants identified by WES, representing nearly twice as
many variant isoforms, we implemented an impact scoring in PCTimpact module to enable
stratification of variants, e.g. in clinical context. For this purpose, our impact method relies
almost entirely on user input, and enables pre-definition and prioritisation of an unlimited
number of impacts (via parameters customisation). With regards to application of PCTimpact
to melanoma cell lines, we prioritised mutations that have been reported in melanoma patients
(based on CGDS resource) 3°’; and those that fall on oncogenes and tumour suppressor genes.
We also focused on mutations that affect phosphorylation status. Around 14.8% of all amino
acids in the human proteome are serine, threonine or tyrosine 3, which are predominantly
modified by phosphorylation. Several studies have reported that these three amino acids are

disproportionally affected by missense mutations 3637,

Here, we predicted the impact of several thousand mutated isoforms, including the impact of
mutated protein residues in context of loss or gain of S/T/Y in A375 and SkMel28. While these
may not all be relevant in tumour cells, since not all genes are expressed at any one-time,
previous studies have shown the deleterious effect of such mutations 340362371 Among the
mutated isoforms with impact score medium to high (Figure S3A and B), two thirds were
known oncogenes or tumour suppressors genes; and more than 80% had a loss of known
phosphorylation sites. Interestingly, about 10 nucleotide variants in A375 and SkMel28 were
known with frequencies ranging from 0.8% to nearly 30% of melanoma samples in CGDS. The
affected genes were THBS1, ZFHX3, OGFR, RET, SYNE2, BRCA1, MUC16, SELENOP and
RUNXZ1; most of which have been shown to be involved in tumour progression and maturation
or development of drug-resistance in melanoma or other cancer types 3%¢-4%. Thus, we believe
that careful selection of impacts by users (i.e. based on online resources, experiment) can lead

to meaningful prioritisation of nucleotide variants, as demonstrated here for melanoma.
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Integration of genomics and proteomics reveals differing mechanisms linked to BRAFi

resistance in melanoma

While we detected near identical number of nucleotide variants across cell lines/phenotypes
(Figure 2A and B), we observed very different overlap between phenotypes. Indeed, A375 S
and R had very few unique nucleotide variants, as opposed to SkMel28 S and R where nearly
two thirds of variants were unique to one or the other phenotype. Checking the sequencing
depth of these samples revealed similar distribution between phenotypes, suggesting that these
differences may originate from the underlaying biology of these cell lines 3¥°. We identified
hundreds of amino acid variants by high resolution mass spectrometry, including some that led
to a change in the modification status of the protein. Our identification results are in the same
range (or higher) as other studies investigating amino acid variants using custom protein
sequence databases 2354407408 - Qyer-representation of variant proteins revealed that cancer
mutations are accumulating in MAPK and PI3K/AKT/mTOR pathways in drug-resistant cell
lines, whereas YAP/TAZ stimulated gene expression was enriched in sensitive cells. The
identified enriched pathways are known to be highly activated in melanoma cells with acquired
resistance 3011940% |n addition, we report stronger differences in enriched pathways between
A375 R and S compared to Skmel28 S and R. Thus, we suggest the usage of A375 cell line for

the study of resistance in melanoma.

Following integration and visualisation of the different omics data for the variants affecting
phosphorylation status, we observed a similar trend as described above whereby most mutations
are shared between A375 R and S, whereas a large number of mutations were unique to
SkMel28 R or S (Figure 3). Notably, the agreement between omics was good, there was no
case of variant found unique to a phenotype at the WES level that was found unique to the other
phenotype at the proteome or phosphoproteome levels (e.g. nucleotide variant unique to A375
S while alternate peptide found unique to A375 R). Among interesting variant, RUNX1 was
one of the top impact scoring entries for A375, while a frameshift in PPP1CA was found unique
to SkMel28 R (Figure S3A and B). Several over-represented pathways highlighted striking
differences between the sensitive and resistant phenotypes as a result of confirmed loss or gain
of phosphorylated residues. For example, pathways connected to transcription, mitosis and
SUMOylation were over-represented in A375 R, these functions when dysregulated have been
shown to induce drug resistance #1941l Whereas, SkMel28 R was over-represented in
telomerase activation pathway, which is also known in context of melanoma resistance as well

as a potential drug target to overcome such resistance 412413,
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Rewiring of signal transduction network due to the loss of a known phosphorylation site
on RUNX1

We experimentally validated one striking example of a loss of a known phosphorylation sites
on RUNX1 and showed that this mutation has an impact on the interactome of RUNX1. The
transcription factor RUNX1 is mutated in 3.03% of melanoma patients and so far 43 mutations
are described in the literature for cutaneous melanoma %, In this study, we also identified
several mutations that may have an influence on the modification status of the protein and one
was also confirmed by LC-MS/MS (Figure 4 and S4). The mutation site S276L does not fall
on a domain on the protein RUNX1 but is located in a highly modified region of the protein
and thus may influence the transcriptional activation domain. Wee et al. showed in vitro that
the triple phosphorylation at the sites S249, T273 and S276 are important for the interaction
with the histone acetyltransferase p300 and thus lead to the regulation of gene transcription via
chromatin remodelling 1’8, Here, we could not identify p300 in the interactome studies of
RUNX1 by immunoprecipitation of overexpressed RUNX1 or synthetic peptide pulldowns.
Interestingly, we identified the transcriptional activator WWTR1 (TAZ) and KAT7 and the
corresponding transcriptional repressors HDAC1 and Sin3A to be significantly changing
between reference and alternate pulldown of RUNX1 (Figure 4B and C). The loss of the
interaction to HDAC1 by mutating RUNX1 at S48, S303 and S424 to aspartic acid in vitro has
been also described previously 4. However, we could link it to a different mutation site and
show that the interaction is associated with the modification status of the protein. The crosstalk
between  acetylation/deacetylation  mediated by KAT7 and HDAC1 and
phosphorylation/dephosphorylation may alter the transcriptional activity by RUNX. We
postulate that the regulation of transcriptional activity of RUNX1 is p300 independent and may
suggest a NAMPT dependent regulation through sirtuins, mainly SIRT2. Here, we show the
enrichment of NAMPT in reference pulldown analysis. Taken together, we postulate that the
mutation, which influence the modification status of the protein, change the interactome of
RUNX1 and altered the transcriptional activity of RUNX1.

Conclusions

Proteogenomics is a powerful tool to study the mode of action of disease-associated mutations
at the genome, proteome and PTM level. Here, we developed a new software tool, termed PCTi,
and applied it to study mutational landscape of two melanoma cell lines sensitive and resistant

to BRAF inhibition. Our approach revealed key differences between BRAFi-sensitive and -
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resistant melanoma cell lines, such as over-representation of MAPK signalling and ErbB
signalling pathways in resistant phenotypes. We also confirmed the loss or gain of several
phosphorylation events on mutation sites, that may lead to the rewiring of signal transduction
network in context of melanoma resistance to BRAFi. We further investigated the mutation
S276L on the transcription factor RUNX1 and confirmed the loss of the Ser276 phosphorylation
site by MS. Our results suggest that this mutation has an impact on the interactome of RUNX1
and may be responsible for change in its transcriptional activity. This dataset can be used as a

resource to identify network-attacking mutations to improve patient’s survival.

Materials and Methods
Extended method description can be found in Supplementary Information.
Cell culture

The human metastatic BRAFV%°E-mutated melanoma cell lines A375 and SKMel28 were used
in this study. The generation of the cell lines with acquired resistance to vemurafenib analogue
PLX4720 (Selleckchem) (for simplicity referred to as “vemurafenib” in the Results section) was
conducted as described previously *’. A375 S/R and SkMel28 S/R cells were grown in RPMI
medium  (Sigma-Aldrich) supplemented with FBS (10%, PAN Biotech) and
penicillin/streptavidin (100 U/ml, PAN Biotech) at 37°C and 5% CO2.

SILAC —labelling of cells was performed as described previously 4°.
DNA extraction and Whole Exome Sequencing

Cells were harvested by centrifugation and DNA was extracted using QlAamp DNA Mini
(QIAGEN) according to the manufacturers’ instructions. WES libraries were prepared using
SureSelect Human All Exon (Agilent) according to manufacturers’ instructions. Paired-end
sequencing was performed on an HiSeq 2500 instrument (Illumina). The WES measurements
were performed at c.ATG Core Facility in Tuebingen. Raw sequence data were then processed
using an in-house pipeline developed at the Proteome Centre Tuebingen according to GATK

best guidelines 6.
Incorporation of non-synonymous variants into protein databases

PCTi application is coded entirely in the R programming language “*” and uses Shiny package

388 for its graphical user interface. The first module, PCTincorporate takes as input a Variant
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Call Format (VCF) file containing nucleotide variants from one or more samples. The transcript
nucleotide sequences were extracted from GRCh38 H. sapiens genome assembly and Ensembl
transcript annotation (via BSgenome and GenomicFeatures packages). These sequences were
then in silico translated (from start to first stop codon) into a reference protein sequences
database (Biostrings package). The called variants were injected into each overlapping
reference transcript nucleotide sequences and then in silico translated. The computed
information was reported directly within the alternate FASTA header to facilitate interaction
with the rest of PCTi (e.g. mutation positions, reference ID). The output consists in two FASTA
files containing reference protein sequences and sample-specific alternate protein sequences,
which are used as protein databases for processing of LC-MS/MS data.

Annotation of the biological impact of detected variants

The FASTA file discussed above is used as the main input to the PCTimpact module, in
conjunction with several user-defined specifications that define how the mutations impact are
computed. In the current study, the focus was on the impact of amino acid variants on protein
phosphorylation-based signal transduction networks in melanoma. PCTimpact module was
used to annotate each reference/alternate protein sequence based on whether phosphorylation
sites (S/T/Y) were lost and/or gained (IRanges package). A list of known kinase motifs was
retrieved from PhosphoNetworks #® and these motifs were searched along the
reference/alternate protein sequences. Located kinase motifs were overlapped with mutation
position to determine loss/gain of the motifs. Known human phosphorylation sites were
retrieved from PhosphoSitePlus and Phospho.ELM databases 28241°, The mutations affecting
these sites were annotated as loss/gain of phosphorylation. In a similar fashion, known mutation
sites in melanoma were obtained from CGDS %" and overlapped with our mutations. A list of
oncogenes and tumour suppressor genes was compiled from Cosmic, ONGene, Bushman lab
and Uniprot 344420421 " Mutations on these genes were annotated as cancer-relevant. A
Levenshtein similarity score was calculated between reference and alternate protein sequences
and mutated sequences with less than 90% similarity to their reference were flagged. Each
impact was scored with the application default (i.e. no factor was applied to one or another
impact). A summed score was calculated for each alternate sequences’ amino acid, and the
maximum summed score was reported for that mutated isoform. Because the score depends on
the number of impacts tested by the user, we also computed a scaled maximum score (between
0 and 1), to allow comparison between processings. Following the computation of all impacts,
each mutated protein isoform is scored and ranked to allow prioritisation for follow up studies

(tab-separated file as output).
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Overexpression and immunoprecipitation of RUNX1

Immunoprecipitation (IP) of overexpressed Flag-tagged RUNXL1 in A375 S RUNX1 KO
SILAC cells was performed with Flag M2 antibody in three biological replicates. RUNX1 gene
knockout was carried out by CRISPR/Cas9-mediated genome editing according to the

published protocol 422,
Pulldown assays with synthetic peptides and on-bead digestion

Synthetic peptides comprising 17 amino acids and a biotinylated linker in the N-terminus were
coupled to Pierce streptavidin magnetic beads and synthetic peptide pulldowns in A375 S cells

were performed in three independent replicates (Supplementary Information).
Extraction and digestion of proteins

Cells were harvested with lysis buffer and digested with trypsin essentially as described before
415

High pH reverse phase chromatography

Prior fractionation, peptides were purified on a Sep-Pak C18 Cartridge (Waters). High pH
reverse phase chromatography was conducted using off-line Ultimate 3000 high-pressure liquid
chromatography (HPLC) system (Dionex, Thermo Fischer Scientific) equipped with xBridge
BEH130 Cis 130A, 3.5 um, 4.6 x 250 mm column (Waters), as described previously 4%°.

Phosphopeptide enrichment

Phosphopeptides were enriched using TiO2 beads (Titansphere, 10 um, GL Sciences). 1 mg of
beads (in 80%, 1% TFA) were added to acidified high pH fractions and incubated for 30 min
in a rotation wheel. Phosphopeptide-bound TiO> beads were sequentially washed with 30%
ACN, 1% TFA, followed by 50% ACN, 1%TFA and 80% ACN, 1% TFA Peptides were eluted
with 5% NHsOH into 20% TFA followed by 80% ACN in 1% FA. The eluate was reduced by
vacuum centrifugation, pH was adjusted to < 2.7 with TFA and peptides were desalted on C18

StageTips prior LC-MS/MS measurements.
Liquid chromatography - mass spectrometry

Peptides were measured on an EASY-nLC 1200 ultra-high-pressure system (Thermo Fisher
Scientific) coupled to a quadrupole Orbitrap mass spectrometer (Q Exactive HF, Thermo Fisher
Scientific, USA) via a nanoelectrospray ion source. About 1 pg of peptides was loaded on a 20-

cm analytical HPLC-column (75 um ID PicoTip fused silica emitter (New Objective); in-house
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packed using ReproSil-Pur C18-AQ 1.9-um silica beads (Dr Maisch GmbH)). Peptides were
eluted using a 90 min gradient for proteomic, phosphoproteomic and synthetic peptide
pulldown studies and 60 min gradients for RUNX1 interaction studies. Gradient was generated
by solvent A (0.1% FA) and solvent B (80% ACN in 0.1% TFA) at 40°C and 200 nl/min.
Column temperature was kept at 40 °C. The mass spectrometer was operated in data-dependent
mode, collecting MS spectra in the Orbitrap mass analyzer (60 000 resolution, 300-1650 m/z
range) with an automatic gain control (AGC) target of 3E6 and a maximum ion injection time
of 25 ms. For higher-energy collisional dissociation (HCD), the 12 most intensive peptides were
selected and MS/MS spectra were recorded with a resolution of 30,000 (fill time 45 ms). For
phosphoproteomic studies, top7 method was used with a resolution of 60,000 for HCD scans
and maximum fill time of 220 ms. For the analysis of RUNX1 interactome, full MS were
acquired in the range of 300 - 1750 m/z at a resolution of 60,000 (fill time 20 ms). Twelve most
abundant precursor ions from a survey scan were selected for HCD fragmentation (fill time 110
ms) and MS/MS spectra were acquired at a resolution of 30,000 on the Orbitrap analyzer.
Precursor dynamic exclusion was enabled with a duration of 20 s. Synthetic peptide pulldowns

were analysed with a top7 method with a resolution of 60,000 and a fill time of 110 ms.
Mass spectrometry data processing

The raw data files were processed with the MaxQuant software suite (version 1.6.8.0 and
1.5.2.8) 2%, The Andromeda search engine 2% searched MS/MS data against PCTi H. sapiens
reference (99,354 entries) and cell line-specific alternate databases (A375 = 29,104 entries;
SkMel28 = 40,041 entries), as well as UniProt H. sapiens (release 2019/02/13; 95,943 entries)
database and commonly observed contaminants. Carbamidomethylation of cysteine (C) was set
as fixed modification and oxidation of methionine, phosphorylation at serine, threonine or
tyrosine were defined as variable modifications. Trypsin/P was selected as a protease. No more
than two missed cleavages were allowed. The MS tolerance was set at 4.5 ppm and MS/MS
tolerance at 20 ppm for the analysis using HCD fragmentation method. The false discovery rate
(FDR) for peptides and proteins was set to 1%. For label-free quantification of melanoma cell
lines, a minimum of one peptide was required. For quantification of proteins in the
immunoprecipitation experiments, the amino acids (Lys4)/(Arg6) and (Lys8)/(Argl0) were
defined as ‘medium’ and ‘heavy’ labels for the comparison of RUNX1 overexpressed cell lines.

For all other parameters, the default settings were used.

Proteogenomics integration
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The PCTintegrate module was used to integrate WES and MS datasets, specifically to check
which mutations were identified across datasets. Initially, the reference and alternate protein
sequences were in silico digested according to laboratory condition; i.e. digestion with trypsin
and up to two missed cleavages (cleaver package). The overlap of MS-identified peptides with
in silico digested peptides led to the determination of reference (non-mutated peptide that
overlap the mutation position on reference protein), alternate (mutated peptide that overlap the
mutation position on alternate protein) or unspecific (non-mutated peptide that does not overlap
any mutated positions on reference protein) peptide classification. On the basis of this peptide
classification, we summarised the peptides identification per mutated isoforms, allowing
coverage characterisation into reference only, alternate only, reference and alternate or
unspecific. We finally focused on PTM (as implemented in the MaxQuant processing), which
here consists in phosphorylation sites. Reference and/or alternate peptides found
phosphorylated were flagged as such, as well as those were the phosphorylation occurred
directly on the mutated sites (either on reference or alternate sequences). This coverage

information is exported within MaxQuant style processing results (tab-separated file as output).

PCTimage module was used to visualise mutated position along H. sapiens genome in a sample
specific context (using ggplot and ggbio packages). The module allowed protein isoform
specific representation, which includes mutation sites, impacts location and MS identification
coverage. We also generated network of protein-protein (using BioGRID database), drug-target
(using Uniprot database) and prediction kinase-substrate (PCTimpact results) interactions; e.g.
RUNX1 network 34424 The generated networks were exported (using igraph and RCy3

packages) into Cytoscape for further customisation 4%,
Pathway analysis

Statistical analyses were performed with Perseus software suite (version 1.6.5.0). The drug-
sensitive and drug-resistant cell lines were compared using label-free quantification, after
filtering of all reverse and potential contaminant hits. Significance B (p value 0.05) test was
used for statistical analysis. A list of all protein identifications and phosphorylation site

identifications are provided in Table S1 and 2.

For proteomic interaction studies, protein groups were kept for further statistical analysis only
if quantified in 3 out of 3 replicates. The SILAC ratios of the three independent replicates were
averaged and an arbitrary cut-off of two-fold change was used to determine significant SILAC
ratios. The log2 transformed ratios were plotted against intensities (log10). For synthetic

peptide pulldowns, label-free quantification between three independent replicates was
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performed and ratios were subjected to t-test analysis, with a permutation-based FDR threshold
of 0.01 and sO value of 1.2. A list of known interaction partners and transcriptionally regulated
targets by RUNX1 were retrieved from BioGrid and mapped to the dataset. A list of all protein

identifications are provided in Table S3.

The resources used for annotation of proteins were Gene Ontology (GO), Biological Processes
(GOBP), GO Cellular Compartment (GOCC), GO Molecular Functions (GOMF) and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) and Reactome Pathway database (Reactome).
The fisher exact test (FDR < 0.5) was used to checked for over-represented categories among
significantly changing proteins (between drug-sensitive and drug-resistant cell lines or between
reference and alternate pull-down). A list of all over-representation results is provided in Table
S1,2and 3.
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Supplementary Information

Schmitt, M., Sinnberg, T., Bratl, K., Garbe, C., Macek, B., Nalpas N. C.

Integration of individualized proteogenomics datasets to analyse single amino acid variants in

malignant melanoma

Under revision in Frontiers in Oncology, 2020

Table 1: List of used patient derived melanoma cell lines in this study. ATCC: American Type Culture
Collection

Name Tissue Morphology Source BRAF mutation
A375 skin epithelial ATCC (CRL-1619) BRAF V600E
SKMel28 skin polygonal ATCC (HTB-72) BRAF V600E

Table 2: List of used synthetic peptides in this study.

Peptide Sequence

Runx1_S276 SGSGSPSVHPATPISPGRASGM
Runx1_L276 SGSGSPSVHPATPILPGRASGM
Runx1_p276 SGSGSPSVHPATPISPGRASGM
Runx1_pT273pS276 SGSGSPSVHPATPISPGRASGM

Kind gift of Prof. Dr. Stefan Stefanovic, University of Tuebingen
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Figure S1: PCTi application provides a reactive environment for the integration of genomics with
proteomics. [S1A] Schematic overview of the proteogenomic workflow. Vemurafenib sensitive (S) and resistant
(R) melanoma cell lines A375 and SkMel28 were used in this study. For exome sequencing, DNA was extracted
and sequenced on Illlumina HiSeq 2000. Variants were called using GATK software. For the proteomic and
phosphoproteomic workflow, cells were lysed and proteins were digested using trypsin. The resulting peptide
mixture was fractionated using an off-line RP HPLC operated at high pH. Fractions were pooled and measured
directly (proteome) or applied to phosphopeptide enrichment using titanium dioxide (TiO2) prior to LC-MS/MS.
MS raw data was processed with MaxQuant software and analysed by PCTi. [S1B] and [S1C] Number of non-
synonymous nucleotide variants per mutation types identified by WES for A375 [S1B] and SkMel28 [S1C]. [S1D]
and [S1E] The number of protein sequences per reference or alternate databases for A375 [S1D] and SkMel28
[S1E], as well as the overlap in search space between databases (up to two missed cleavages). [S1F] and [S1G]
Mutated isoform count per impact score for A375 [S1F] and SkMel28 [S1G], whereby 0 means no impact and 1
means high impact. The table displays mutated isoform count for each type of lost/gained impact. [S1H] and [S1I]
Protein and phosphosite counts identified by MS for A375 [S1H] and SkMel28 [S11].
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Figure S2: Individualised proteogenomics highlights key differences between dug-sensitive and drug-
resistant melanoma cell lines. [S2A] and [S2B] Sequencing depth density of the WES data obtained for A375
[S2A] and SkMel28 [S2B]. [S2C] and [S2D] Count of nsSNV transitions and transversions for A375 [S2C] and
SkMel28 [S2D]. [S2E] and [S2F] Scatter plot of A375 R and A375 S [S2E] and SkMel28 R and SkMel28 S [S2F]
proteomes (filled circles) and phosphoproteome (filled squares). The log2 transformed ratios are plotted against
intensities (log10). The top significantly regulated proteins and phosphoproteins are highlighted in red. [S2G] and
[S2H] Over-representation of selected Reactome pathways for A375 [S2G] and SkMel28 [S2H]. The enrichment
score calculated by Fisher exact test were plotted against the p-value (-log10) (FDR < 0.1).
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Figure S3: Mass spectrometry detects several alternate peptides phosphorylated on the mutation site. [S3A]
and [S3B] The highest ranked impact scoring mutations for A375 [S3A] and SkMel28 [S3B] cell lines, including
the type of mutation. [S3C] and [S3D] The protein-protein interactomes of the confirmed protein with loss/gain of
phosphorylation sites (as well as their interactors) for A375 [S3C] and SkMel28 [S3D]. Each node is plotted on
the basis of the maximum interaction weight (number of evidences for an interaction) and the number of
connections (number of interactors). Nodes are colour coded in red if they represent a target protein used to
generate the network or in black if they are an interactor. [S3E] and [S3F] Over-representation analysis of the
interactome of each phenotype based on GO functions, KEGG pathways and Reactome pathways for A375 [S3E]
and SkMel28 [S3F]. Each node represents a pathway with the colour gradient encoding the number of identified
proteins in that pathway, while the node size equals the Benjamini-Hochberg adjusted p-value (-log10). [S3G] The
top twelve mutations for malignant melanoma were selected and mutation status displayed based on exome
sequencing, proteome and phosphoproteome identification.



Manuscript |1

104

[S4A]
204
A375Ruo L
od l M
€ 209
g
S A375 5104
= o ’_\_\_J_\ —~— [ [
g 20
SkMel28 Rio ™
—_— — | T
o0 \J —J — |
209
SkMel28 S0
ol — m
0aa 10032 20083 002 40022
[54B] [54C]
Gene names m/z Score Gene names m/z Score
RUNX1 132528 28048 RUNX1 980.73 12048
P . E B EREE TWERE VAR R 1207 @ e BB e
[
@ @
o o
< i<
T o
o o
< f=
S S
a o
@ o
2 2
=3 =
= =
=3 e
‘ £
500 1000 1500 2000 2500 3000 3500 3000 3500
miz
[54D] [S4E]
1GKY A18
1 *IGKY A8 " .
i |
10 i 10 |
! ~unxt i RUNXT PDIAB
* IGHG2
2 » IGHG2 > . ¥
a9 e 20 t i KPNET
5 HBAT . . i HBat | ediEirsp JSREFT
€ THes1 . SHOHDE £ POTER, - * SECH1AT
= 0 ey SECRIAL L = s SFNT . LYAR A GOT2 SNRPD3
= 8l APOE L APRIAR. (F BFe g CCA o HP TH!MS%%W%%;'OP?A
2 zo168, , *VOAG3 - . Cnea ks) At
R eAcABIL € ARL,\'\(A;% - ACADVLs IM2AECET wkian0020
bery BAGT RAB21 HDACT" é.‘"““_ FUBP
; ANpaZe U 7 DR
6
54
5 4 2 0 3 1 [ 4 2 ) ] 4
log2 ratio Flag-RUNX1_wt / Flag log2 ratio Flag-RUNX1_5276L / Flag
[S4F] [54G]
DNAIAS Wireference pulldown [l alternate pulldown
ATROIA KEGG bile secretion|EG——
NUP153 B —
ntie B signaling|
EIF4EZ  NTP
melanogenesis
nNuPsé
MR insulin signaling|
’ GINS24 GOBP
EPCE
,—:v uPFeAF%IMP BFOXZ catenin import into nucleus
= NUPZI4, o POUZF1 . .
& SLC25 . histone deacetylation
= NDUFA13% |
o GPATCHSs UAP: Eifs regulation of hydrolase activity|
o PIAK2Ae " CLNTT
JORNY B L D cytokinesis|
I INTSE, itoti
z mitotic cell cycle|
&
cytokine biosynthetic process
14 lipid biosynthetic process|
regulation of gene expression
innate immune respense
oo cell cycle|
3 b i T H 3 o 5 10 15
t-tact differance Sun | e ue Syn nSar enrichment factor
[S4H] [S41]
o TGFB signalin:
o Transciptional Bsig 9
regulators
©
S
=
7
Q
2
_g‘ o
—
o
4
&
o
Regara « . FEME2 Modifiers
PP Psmar
i P»:‘s‘ggmu of Runx1
PSMD; e
HIST2HZACS o
o
+3

05
t-test difference Syn

0 0.5 15

_Leu vs. Syn_Ser

a2 Fold chan
RUNX1_5276L / RUNXT_wt

Wnt signaling



Manuscript 11 105

Figure S4: Loss of a known phosphorylation leads to a changed interactome and altered transcriptional
activity of RUNX1. [S4A] PSM count for A375 and SkMel28 of identified peptides of RUNX1 to visualise protein
coverage. [S4B] and [S4C] Deconvoluted MS/MS spectrum of phosphorylated reference [S4B] and alternate [S4C]
peptide of RUNX1 identified by high resolution mass spectrometry. [S4D] and [S4E] Interaction proteomics
screen in A375 RUNX1 KO cells stably overexpressing FLAG-tagged RUNX1 wt or FLAG-tagged
RUNX1_S276L. SILAC protein expression (log2) of RUNX1_wt [S4D] or FLAG-tagged RUNX1_S276L [S4E]
relative to the corresponding control cell line (FLAG tag only). RUNX1 and its core binding factor CBFC are
marked in black. Significantly up and down regulated proteins are highlighted in red. Results represent three
replicates per experiment group. [S4F] Volcano plot of synthetic alternate peptide (Syn_Leu) versus synthetic
reference phosphopeptide (Syn_pSer) pulldowns of A375 cells. Fold change of ratios between Syn_Leu and
Syn_pSer (log2) are plotted against p-value (-log10) (n=3). Black lines indicate the significance threshold based
on student t-test (FDR < 0.01; S0=1.2; n=3). Significantly up and down regulated proteins are highlighted in red.
[S4G] One-dimension annotation enrichment of KEGG pathways and GOBP for reference (Syn_Ser; green) and
alternate (Syn_Leu; grey) peptide pulldown. The enrichment score calculated by Fisher exact test were plotted
against the p-value (-log10) (FDR < 0.1). [S4H] Volcano plot of synthetic alternate peptide (Syn_Leu) versus
synthetic reference peptide (Syn_Ser) pulldowns of A375 cells. Fold change of ratios between Syn_Leu and
Syn_Ser (log2) are plotted against p-value (-log10) (n=3) based on student t-test (FDR < 0.01). Transcriptionally
regulated proteins by RUNX1 based on Reactome annotation are highlighted in blue. [S41] Protein-protein
interaction network for RUNX1 based on BioGRID. Mutated genes identified by exome sequencing are circled in
red. The node colour correlates with the ratio between RUNX1_S276 and RUNX1_wt. Nodes with white colour
are not identified in this study. Enriched pathways are coloured as indicated.
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Abstract

Immune checkpoint inhibitors are used to restore or augment antitumor immune response and
show great promise in treatment of melanoma and other types of cancers. However, only a
relatively small percentage of patients are fully responsive to immune checkpoint inhibition,
mostly due to tumor heterogeneity and primary resistance to therapy. Both of these features are
largely driven by accumulation of patient-specific mutations, pointing to the need for
personalized approaches in diagnostics and immunotherapy. Proteogenomics integrates patient-
specific genomic and proteomic data to study cancer development and resistance mechanisms,
as well as tumor heterogeneity in individual patients. Here, we use a proteogenomic approach
to characterize the mutational landscape of samples derived from four clinical melanoma
patients at the genomic, proteomic and phosphoproteomic level. Integration of datasets enabled
identification and quantification of an extensive number of sample-specific amino acid variants,
among them many that affect modifiable amino acid residues and were not previously reported
in melanoma. We detected a disproportional number of alternate peptides between treated and
untreated (naive) samples with a high potential to influence signal transduction. Statistical
analysis revealed accumulation of mutations in specific pathways within immune checkpoint
inhibitor-treated and naive samples, including PI3K-AKT and focal adhesion signaling. Several
variants detected by MS affected the protein phosphorylation status; among them was the
guanine nucleotide exchange factor DOCK1 that was selected for further validation. This is the
first proteogenomic study designed to study the mutational landscape of patient-derived

melanoma tissue samples in response to immunotherapy.

Introduction

Over the last decades, the role of the immune system controlling tumor progression has been
established and new immunotherapeutic targets showed remarkable clinical activity. The
reagents nivolumab and ipilimumab are immune checkpoint antibodies targeting PD-1 (the
programmed cell death-1) and CTLA-4 (cytotoxic T lymphocyte-antigen-4) receptors 429430,
PD-1 and CTLA-4 are co-inhibitory T cell receptors and act as negative regulatory receptors
that block T cell activation and induce immune tolerance 431432, Subsequently, blockade of these
receptors with antibodies demonstrated tumor rejections and a significant prolongation in
melanoma patient survival 433, However, only a minority of patients responded to ipilimumab

and many patients developed immune-related toxicities. The complexity and multiplicity of
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involved mechanisms, heterogeneity in the immune response across tumors, the tumor
microenvironment and the varying tumor immunogenicity play roles in response and resistance
to immune checkpoint blockade #3*. The clinical response to immune checkpoint inhibitors and
resistance is often associated with a high mutational load and the number of expressed tumor
neoantigens leading to antitumor immunity 88, Several studies showed that deficiencies in
antigen presentation and down-regulation of MHC class I (MHC-I) play a role in immune
checkpoint resistance 828, Besides mutation in p2-microtubulin, loss of JAK-STAT pathway
results in acquired resistance due to down-regulation of MHC-1 °%°2, Additionally, classic
oncologic pathways like MAPK, PI3K-AKT or Wnt/p3-catenin pathways can regulate immune
response by influencing the tumor microenvironment. Alterations in the MAPK pathway may
lead to increased expression of VEGF, a vascular endothelial growth factor, and other inhibitory
cytokines, thus mediating evasion of tumor cells 3%, Constitutive activation of PI3K-AKT
pathway due to loss of PTEN was associated with resistance to PD-1 therapy and decreased
overall survival of patients with leiomyosarcoma %9, The majority of these studies are
performed at the genomic and transcriptomic level. Transcriptomic signatures of cytosolic
markers and immune-related genes were associated with clinical response and outcome of
patients with different therapies **°. Melanoma sub-populations showed a heterogeneity in
transcriptional processes and CDK4 and CDKG6 regulated pathways were linked to resistance
mechanisms in non-responder cells studied by single cell RNA sequencing. In contrast to
transcriptomic studies, Harel et al. compared in a quantitative proteomic screen clinical
melanoma samples treated with either tumor infiltrating lymphocyte (TIL)-based or anti PD-1
immunotherapy and could show an association between higher lipid metabolism and response
to immunotherapy “*®. Standard proteomics approaches identify peptides and proteins by
matching MS/MS spectra against protein databases derived from public repositories (e.g.
UniProt) that are not individualized, i.e. do not contain sequence information specific for the
individual patient. Commonly used protein databases therefore inherently prevent identification
of individual non-synonymous mutations. By combining nucleotide sequencing and MS
technologies, it is possible to simultaneously study and integrate DNA sequence, RNA
expression and splicing, protein isoform abundance and PTMs in a personalized fashion.
Genomic alterations due to non-synonymous single nucleotide variants (nsSNVSs), insertions or
deletions (InDels) of nucleotides, frameshifts and alternate splicing variants can alter cellular
function at the protein level by modulating its abundance, localization and protein-protein
interaction 43743, Clinical data have shown that oncogenic targets are aberrantly post-

translationally modified during tumorigenesis and might be relevant as therapeutic targets 3.
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The most prominent modification is phosphorylation, which is abnormally activated during
tumorigenesis and may propagate dysregulated signals and cellular functions 43%44°, However,
such alterations affecting the modification level in signaling molecules can be benign and
insignificant. Here, we propose to use melanoma tissue from human tumors and patient-derived
xenografts of the same cases in response to immunotherapy to study the mutational landscape
and reconstruct signaling transduction network specific to individual samples using their

corresponding genomics, proteomics and PTMs datasets.

Results

Individualized proteogenomics of melanoma in response to immunotherapy

In order to identify signatures and cellular mechanisms of immunotherapy response, we
analyzed matching clinical samples including blood, tumor tissue and patient-derived
xenografts (PDX) from four patients (Figure 1A and S1A). Two of the analyzed samples were
naive (no treatment at time point of sampling) and two patients were treated with immune
checkpoint inhibitors (ICi) nivolumab and ipilimumab at the time point of surgery (Figure
S1A). The progression-free survival (PFS) and overall survival (OS) were calculated based on
the start of therapy and have differed in all samples (Figure S1A). The patient under therapy
with the ID 111 showed a shorter PFS and OS compared to others. Only one patient presented
the well characterized BRAFV%%E mutation, however all patients showed NRAS mutations
(G12V, Q61R, Al46T, F156L) at different sites, which is the second-most mutated gene in
melanoma. For proteogenomic analysis, we performed whole exome sequencing (WES) from
snap-frozen tumor tissue and matching blood samples, allowing detection of germline and
somatic nucleotide variants (Figure 1A). Using our in-house online tool PCTi, we generated
individualized protein sequence databases that contain the WES-identified non-synonymous
variants (Figure 1A). Among all non-synonymous nucleotide variants detected by WES (ca.
23,000), more than half were unique to one of the four patients, whereas only 15.9% were
identified in all four samples (Figure 1B). Number and type of nucleotide variants detected by
WES were similar across all four samples (Figure 1B and C). In this context, the vast majority
were substitutions, most of which have been previously reported (ca. 85%). The rest of the
nucleotide variants were classified as frameshifts, deletions and insertions; these also followed
a similar reporting status as the substitutions (Figure 1C). Next, we compared the WES analysis
of blood and tissue samples in order to distinguish between germline and somatic nucleotide

variants (Figure 1D). Here, we observed an approximate 1:10 ratio of somatic to germline
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nucleotide variants. The non-synonymous mutations were incorporated using the PCTi tool into
the corresponding protein isoform, thus providing protein sequence databases that are
individualized for each patient. The tumor tissue was injected into immune-deficient mouse in
order to generate patient-derived xenografts (Figure 1A). From the PDX material, proteins
were extracted and separated by high pH reverse chromatography. Peptides were either
measured immediately by LC-MS/MS or subjected to phosphopeptide enrichment using TiO>
chromatography. In addition to the PDX material, we also performed proteomics of FFPE
material of the same patient. The proteomic and phosphoproteomic datasets of each sample
were processed against the human reference and individualized protein databases, as well as
the Uniprot mouse database to assess the mouse contamination. ldentified peptides were
divided into three classes based on taxonomic classification: class | contains peptides annotated
exclusively as human, class Il are shared between human and mouse, and class Il are annotated
exclusively as mouse. Nearly all of the proteins and mutations were identified in class I and Il
and used for further analysis (Figure 1E). In total in class | and 11, we identified over 9,500
proteins and 120,000 sequence-specific peptides per sample (Figure 1E, Supplementary
Table 1 — 4). The phosphoproteomic analyses revealed the identification of over 9,000
phosphorylation sites for samples 101, 111 and 129, while over 5,000 phosphorylation sites
were detected for the sample 110 (Figure 1E, Supplementary Table 1-4). Across the different
clinical samples, between 18% and 28% contained an entry in the sample-specific databases for
mutated protein isoforms, including single amino acid variants, insertions, deletions and
frameshifts. Up to 27% of these mutations were detected by high resolution mass spectrometry.
The samples 110 (12.16%) and 111 (11.86%) showed the highest proportion of mutated
isoforms compared to the overall identified proteins. In addition, we confirmed the gain of a
new phosphorylation site for four protein isoforms (PCM1, TANC1, CLDN23, CTNND1) by
MS by identifying the phosphorylated alternate peptide (Figure 1D). From the 1,687 detected
reference peptides, several were confirmed by MS to be phosphorylated on the mutation site
including five protein isoforms showing the phosphorylated reference peptide as well as the
alternate peptide harboring the non-modifiable residue (HELZ2, LMO7, MIA2, TTN, MDC1,
PLEC, ZFYVE19, ARGEF40) (Figure 1D). The difference of identified variant peptides
detected by MS is unlikely due to technical artifacts at the WES level, since the sequencing
depth was similar across samples; thus allowing for the comparison of mutations across samples
(Figure S1B). Interestingly, the MaxQuant-derived score and intensity of identified peptides

were similar between reference and alternate peptides, highlighting the overall good quality of
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the mutation identifications (Figure S1C and Figure S1D). Together our results highlight the
importance of individualized approaches in order to investigate patient specific tumors.
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Figure 1: Proteogenomics integrates mutational landscape of melanoma cells. [A] Schematic overview of the
proteogenomic workflow. Whole blood and tumor tissue of four patients were used in this study. Metastatic tumor
tissue was injected into immune-deficient mouse to generate patient-derived xenografts (PDX). For whole exome
sequencing, DNA was extracted from whole blood and metastatic tissue and sequenced on Illumina sequencing
instrument. Individualized protein databases and impact files were generated with PCTi online tool. For the
proteomic workflow, FFPE specimens from the same tissue as well as PDX tissue was used. Cells were lysed and
proteins were digested using trypsin. The resulting peptide mixture from PDX material was fractionated using an
off-line RP HPLC operated at high pH. Fractions were pooled and measured directly or applied to phosphopeptide
enrichment using titanium dioxide (TiO2) prior to LC-MS/MS. MS raw data was processed with MaxQuant
software and analysed by PCTi. [B] Overlap of non-synonymous nucleotide variants identified by WES of four
melanoma patients (tumor tissue and blood). [C] Inner donut depicts the type of all non-synonymous nucleotide
variants identified by WES including substitution, insertions, deletions and frameshifts. Outer donut represents the
proportion of novel nucleotide variants identified in this study. [D] Overlap of somatic (brown) proportional to all
identified nucleotide variants (blue) of all samples, as well as overlap with alternate (red) and reference (orange)
peptides identified by MS and peptides phosphorylated on variant site (green). [E] Identified protein groups and
phosphorylation sites by MS for each sample. Identified proteins with a mutation entry in the database are depicted
in grey and identified mutated protein isoforms by MS are shown in black.
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Proteogenomics highlights accumulation of mutations in specific pathways linked to

immunotherapy

To address mutations accumulating in specific pathways, we performed pathway enrichment
analysis of identified proteins by MS harboring amino acid variants based on KEGG and
Reactome resources (Figure 2A and B). In both naive samples, the enriched pathways were
similar and included ribosome biogenesis, apoptotic cleavage and caspase-mediated cleavage
of protein and focal adhesion. While the over-representation of JAK-STAT signaling and
RUNX3 regulated transcription were exclusively identified in the naive samples 101 and 110,
respectively (Figure 2A). The enriched pathways for immune checkpoint inhibitor (1Ci) treated
samples differed and only the pathways signaling by GTPase and Type | hemidesmosome
assembly were identified in both samples. For the sample 111 from the patient with the short
PSF and OS, VEGF and PI3K-AKT signaling as well as activation of IFN production were
enriched. Whereas, G-alpha (12/13) signaling events, DAP12 signaling and signaling by MET
were over-represented in mutated proteins for the sample 129 (Figure 2B). Next, we focused
on the sample-specific mutations on alternate peptides and phosphopeptide exclusively detected
in one of the samples (Figure 2C). We identified approximately 125 alternate peptides in the
samples 101 and 129 and over 300 and 390 alternate peptides in the samples 110 and 111,
respectively. Notably, several phosphorylated alternate peptides were detected by mass
spectrometry with a potential to change the modification status of the protein. For the sample
with ID 111, 35 identified alternate peptides were phosphorylated and six of them showed a
phosphorylation event on the mutation site. These comprised three reference phosphorylated
peptides, implying a loss of the phosphorylation site due to the mutation, and phosphorylated
alternate peptides, involving a gain of a new phosphorylation site. For example, substitutions
on the protein isoforms ZFYVE19 (S366A) and WNK1 (T1056P) showed a loss of
phosphorylation sites and the phosphorylation site on the key regulator of abscission step in
cytokinesis ZFYVEL9 is known to get phosphorylated by the kinase NEK3. The gain of a new
phosphorylation site on CTNND1 (N52S) and CLDND1 (P232S) were confirmed to be
phosphorylated by mass spectrometry and the PCTi software predicted that the kinases
p38MAPK and CDK5/GSK3 could act on these new kinase motifs, respectively. Moreover,
two frameshifts resulting in the loss of known phosphorylation sites and gains of new
phosphorylation sites were detected on the protein isoform INST1 (p.N773TfsX0) and CASP9
(p.L151SfsX0), resulting in a changed kinase motif from PLK1 to GSK3 and CAMK2G to
PKC, respectively. In addition, we performed pathway enrichment of proteins containing

sample-specific alternate peptides and showed accumulation of mutations in specific pathways
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(Figure 2D). The pathway positive regulation of MAP kinase activity was enriched in both ICi-

treated samples, whereas cytokine production and regulation of PI3K-AKT signaling were

over-represented in the sample 111 and FGFR2b ligand binding and activation and Rho GTPase

cycle in the sample 129. cAMP signaling pathway and EGFR tyrosine kinase inhibitor

resistance were enriched for sample-specific variants in the sample 110 and cellular senescence

and immunoregulatory interactions in the PDX101. These findings demonstrating the power of

proteogenomic data integration to detect sample-specific mutations and their accumulation in

specific pathways.
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Figure 2: Proteogenomics highlights differing mechanisms of mutated proteins between naive and treated
samples. [A] and [B] Dot plot of over-represented pathway based on proteins containing identified alternate
peptides for naive samples 101 and 110 [A] and immune checkpoint inhibitor treated samples 111 and 129 [B].
Results are based on Fisher-Exact test (FDR < 0.1). [C] Sample-specific alternate peptides and phosphopeptides
that are exclusively identified by MS. [D] Dot plot of over-represented pathway based on proteins containing
sample-specific alternate peptides and phosphopeptides. Results are based on Fisher-Exact test (FDR < 0.1). [E]
Histogram summarizing the content of the PI3K-AKT signaling pathway in terms of number of genes, proteins
and identified mutations.

While the PI3BK-AKT signaling pathway is known to be activated in melanoma cells in response
to immunotherapy %, our analysis shows that other complementary tumorigenesis —related
pathways including GTPase signaling are also activated in immune checkpoint inhibitor treated
samples due to specific genomic and proteomic alterations, representing alternative treatment
opportunities. Visualization of our proteogenomic datasets on the PI3K-AKT signaling
pathway (KEGG) showed that the vast majority of genes harbor one or more nucleotide variant
in at least one of the clinical samples (Figure S2A). Interestingly, among these nucleotide
variants identified by WES, between 13% and 26% of the corresponding amino acid variants
could be confirmed by MS depending on the clinical samples (lowest in 101, highest in 111,
Figure 2E). Similar results were observed for the regulation of actin cytoskeleton pathway,
which is more specific of the naive samples (Figure S2A and B). Notably, we observed a very
high coverage of MS-identified amino acid variants in this pathway (between 26% and 43%
confirmed by MS (Figure S2B). Here, we showed that proteomics supplements genomics with
protein expression profiles of mutated molecules, thus highlighting key signaling pathways

involved in melanoma progression and resistance.
PDX samples are comparable to matching FFPE tumor samples

In addition to the PDX samples, we performed proteomics of FFPE material from the same
patients. Notably, between 60% and 70% of FFPE proteins were also identified in the PDX
samples (Figure S2C), which supports the use of PDX as a model to study cancer progression.
Approximately 60% of the mutated protein isoforms in the FFPE specimens were also identified
the PDX samples (lowest in 101, highest in 111). Next, we addressed the differences between
samples and sample types of the overall categories immune response, metabolism, signal
transduction and ECM interaction based on iBAQ intensity (log10) (Figure S2D). For immune
response and signal transduction no significant differences between samples and sample types
were observed, however, proteins in both categories for the PDX samples 111 and 129 were
slightly higher compared to the naive samples. Interestingly this was even based on less
identified protein isoforms compared to 110. Protein isoforms involved in metabolism were

significantly higher in the FFPE sample 111 compared to other FFPE samples and in the FFPE



Manuscript 111 118

samples of 110 and 129 the iBAQ intensities for ECM interaction were significantly higher
compared to other samples. The same trend was observed for both categories in the
corresponding PDX. These results show that human proteomic and phosphoproteomic profiles

recapitulate in PDX models.

Proteogenomics detects several unreported mutations in melanoma with high potential to

influence signal transduction

We then compared the naive and treated samples based on the identification and abundance of
shared alternate peptides (Figure 3 and Supplementary Table 5). These MS-identified
mutations were stratified using our PCTi application based on their potential impact on cellular
signal transduction. Among the alternate peptides shared across all, naive-only or treated-only
samples, most of the detected mutations were single amino acid variants and not described
previously in melanoma. However, all the shown alternate peptides in this figure besides the
insertion (p.(149_160)insA_A) on the protein RPL14 were described in other databases like
COSMIC or dbSNP previously. We detected 41 mutated peptides shared between all samples,
including known oncogenic genes like MSH6, DOCK1 or SYNE2. Most of the detected
mutations had a loss or a gain of a (phosphorylatable) S/T/Y amino acid residues, of which only
three had been previously reported in melanoma. Mutated protein isoforms were enriched in
immune response, metabolism and GTPase Rho activation (Figure 3A). Among the 42
alternate peptides shared between naive samples, two showed an insertion of 5 or 11 amino
acids on the proteins OXA1L (p.(478_483)insS_S) and RPL14 (p.(149_160)insA_A),
respectively (Figure 3B). In addition, more than 40% of the alternate peptides had a loss or
gain of S/T/Y amino acid or belonged to protein encoded by known oncogene or tumor
suppressor genes. Several of the mutated peptides shared between the naive samples were
involved in immune related response including the Reactome pathways innate and adaptive
immune system, interleukin signaling and cytokine signaling. Interestingly, 166 alternate
peptides are shared in immunotherapy treated samples and showed an accumulation of
mutations in metabolism, signal transduction and cell cycle, including the oncogenic genes
FN1, AKAP13 and ENO3 (Figure 3C). Among these mutated peptides, two insertion and one
deletion mutations were observed on the proteins IRF2BP2 (p.(93_99)insQ_Q), SAALL1L
(p.(6_11)insP_P) and PHLDA1 (p.(Q190_Q204)del). These results postulate the mutational
landscape of melanoma cells in response to immunotherapy and the accumulation of mutations

in specific pathways due to the treatment.
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Figure 3: Impact of identified alternate peptides for all, naive and immune checkpoint inhibitor treated
samples. MS-identified alternate peptide shared between [A] all patients, [B] naive patients only and [C] immune
checkpoint inhibitor treated patients only. Across all panels, the different tracks indicate for each alternate peptide
the mutation types, the peptide intensity per sample, the predicted impact score, whether the mutation is known or
not in melanoma, whether the peptide is phosphorylated or not, whether the mutation results in loss/gain of S/T/Y
and/or kinase motif, whether the affected proteins are encoded by a known oncogene or tumor suppressor gene
and whether the affected proteins belong to immune system, metabolism, signal transduction and/or ribosome
functional categories.
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Integration of genomics, proteomics and drug database prioritizes actionable mutations

The protein isoforms harboring the 249 identified amino acid variants identified by MS shared
in all, naive-only and treated-only samples were used to generate a protein-protein interaction
network (Figure S3A). The protein-protein interactions were retrieved from BioGrid and the
drug-protein interactions were obtained from DrugBank. While most of the amino acid variants
that originated this network were shared in treated samples only, the majority of identified
proteins were actually shared among all samples. This suggest an accumulation of mutations
rather than a change of proteome in treated samples compare to the naive samples. Notably,
just over ten protein isoforms harbor a mutation with a medium to high impact score, which
highlights their putative role in context of protein phosphorylation-based signal transduction

networks in melanoma.

We then prioritized the mutated proteins in this network through a five-dimensional scatter plot
(Figure S3B). The dimensions of importance for prioritization were the protein abundance, the
number of interactors per protein, the impact score (PCTi), whether the amino acid variant per
protein was identified by MS and whether the protein is druggable. This strategy highlighted a
cluster of 12 proteins with an intermediate impact score and one additional protein with a high
impact (IRF2BP2). They were characterized by a median intensity (logio) of 10.1 and a median
of 6 interactors. Among these, three proteins were druggable, i.e. RPS6KA4, ECHS1 and
ALDH5AL. Furthermore, four proteins harbor a mutation leading to gain of a phosphorylation
site, i.e. PLCG1, MDN1, ALDH5A1 and DOCK1, and most proteins are encoded by known
oncogene or tumor suppressor genes, with the exception of RPL14, MDN1, PDPR, RPS6KA4
and ALDH5AL. These results show how multiple levels of proteogenomic information can be
integrated in order to prioritize and extract proteins that are most likely to rewire signal

transduction network in context of melanoma.
Changed interactome due to gain of a new phosphorylation site on DOCK1

We decided to further investigate one striking mutation that fulfilled the following criteria: 1)
has one of the highest impact scores; 2) belongs to over-represented pathways among the treated
samples; 3) has the potential to influence the modification status of the protein and 4) the
mutation was identified by mass spectrometry. The guanine nucleotide exchange factor (GEF)
protein DOCKZ1 was identified to be mutated in all PDX samples and harbors a mutation from
alanine to threonine at position 1857, resulting in kinase motifs for PKG or CAMII (Figure
4A). The mutation is located in a highly modified region of the protein and is in close proximity
to the PXXP motif, important for the binding of CRK and GRB2. A second gain of a modifiable
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amino acid at position 1792 (A1792T) was detected by genomics at the binding site of NCK2.
Abnormal regulation of DOCK1 is associated with various diseases, including melanoma 44,
DOCKT1 is involved in RAS signaling and thereby regulates the well characterized MAPK and
PIBK-AKT signaling pathways!®. In addition, DOCK1 also regulates cytoskeletal
rearrangements, Rho GTPase signaling and RTK signaling such as VEGF signaling 441443,
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Figure 4: Gain of a new phosphosite on GEF protein DOCKZ1 leads to changed interactome. [A] Schematic
overview of domains, mutations and identified phosphorylation sites on GEF protein DOCKZ1. Numbers indicate
amino acid position of domains and mutation, phosphorylation sites. The known interaction partners are described
under the domain. [B] and [C] Volcano plot of immunoprecipitated pulldowns of DOCK1 in A375 R versus A375
S cells in absence [B] and presence [C] of BRAF inhibitor vemurafenib treatment (2 uM PLX4720). T-test
difference (logz) are plotted against t-test p-value (-logio) (t-test, Benjamini-Hochberg FDR < 0.05, SO = 0.9).
Results are of four independent replicates. [D] Protein-protein interaction network for DOCK1 based on BioGRID.
Mutated genes identified by exome sequencing are circled in black. The node color indicates the protein ratio
between immunoprecipitation of DOCK1 in A375 S and R cells. Predicted kinase are depicted in yellow. Nodes
with grey color are not identified in this study. Known drugs based on DrugBank are depicted in green.

To validate the impact of the mutation on the interactome of DOCK1, we performed
immunoprecipitation of DOCKL1 in drug-sensitive (S) and drug-resistant (R) melanoma cells
using a DOCK1 antibody in absence and presence of BRAF inhibitor (BRAFi) vemurafenib
(Figure 4B and C). While we found DOCK1 mutated in all pulldown experiments, the
phosphorylation on the mutation site showed a higher occupancy in A375 R (64%) compared
to A375 S cells suggesting an enriched phosphorylation status of DOCKZ1 in drug-resistant cells.
Both the alternate peptide and the phosphorylated alternate peptide were identified by MS. The
known interaction partners, ELMO1 and GIT1 were highly enriched in pulldowns of A375 R
cells compared to drug-sensitive cells (Figure 4B). The formation of DOCK1 and ELMO



Manuscript 111 122

complex is crucial to achieve RAC activation, which regulates actin cytoskeletal remodeling,
organization and function 444, The ARF-GTPase-activating protein GIT1 and the RAS-related
protein RALA were significantly enriched in A375 R and A375 S, respectively; both of which
are involved in adhesion, proliferation and cytoskeletal organization. Interestingly, several
known interaction partners of DOCKL1 and signaling proteins were exclusively identified in
either pulldowns, including NRAS, CRK and CRKL for A375 R pulldowns and NFKB,
MAPK3 and GSKB for A375 S pulldowns. In the presence of BRAFi, GIT1 was even stronger
enriched in pulldowns of A375 R compared to A375 S, while the opposite was true for NFKf3
(Figure 4C). Next, we tested whether the significantly regulated and exclusively detected
proteins in the separate pulldown experiments revealed an over-representation of KEGG and
Reactome pathways (Figure S4A and B). Focal adhesion, MAPK and TGF-beta signaling and
regulation of autophagy pathways were enriched in A375 R, whereas cytokine receptor
interaction, MAPK and ErbB signaling and actin cytoskeletal regulation pathways were over-
represented in A375 S cells. Following treatment of cells with BRAFi, some of the over-
representation results changed, for example the cytokine receptor interaction and p53 signaling
pathways were enriched in pulldowns of A375 R and S cells, respectively. Using the BioGrid
protein-protein interaction database, we observed several differences in DOCK1 interactome
(i.e. protein abundance) between pulldowns of A375 R and S cells (Figure 4D). The
interactome also includes approved drugs (based on DrugBank database) to possibly counteract
the DOCK1-dependent activation, notably several drugs are available for interaction partners
SRC and RACL. In addition, we added the putative kinase families that are predicted to bind to
mutated DOCK1 and may phosphorylate the gained modifiable residue. Our results show a
novel mutation on DOCKZ1, leading to gain of a modifiable amino acid, which we confirmed
phosphorylated in A375 melanoma cell line. Our pulldown experiments also suggest that this

mutation influences the interactome of DOCK1.

Discussion

Here, we present the individualized proteogenomic landscape of four melanoma samples of
patients in response to immunotherapy. This study is, to our knowledge, the first integrative
individual proteogenomic analyses of melanoma tumor tissue and matching PDX in response
to immunotherapy. Malignant melanoma is predominantly studied by genomics and
transcriptomics, and more recently by proteomics **°. As the majority of drugs target proteins,

proteomics allows extensive and quantitative surveys of the global proteome in order to select
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targeted treatment and predict drug response in tumor therapy. However, proteomics is not
individualized and publicly available databases do not contain cancer- and sample-specific
mutations. The integration of genomic and proteomic data, called proteogenomics, is a powerful
tool to study the mutational landscape in context of the protein abundance and post-translational
modifications. Several genomics and transcriptomic studies revealed the mutational landscape
and heterogeneity of melanoma cases 144447 A recent quantitative proteomic screen of
melanoma patient’s tumors in response to immunotherapy revealed the link between lipid
metabolism and response to immunotherapy “%. Lobas et al. used a proteogenomic approach to
study eight melanoma cell lines; their analysis allowed discrimination between the specific cell
lines based on their variant peptide profiles **8. Our dataset is generated from a small cohort of
four samples, however 14% of our identified nucleotide variants were not reported previously.
We identified an extensive number of shared as well as sample-specific alternate peptides by
whole exome sequencing and mass spectrometry. The identifications are in the same range or
even better in comparison to other proteogenomic datasets of human cancer tissue 356:362.380,
The detected alternate variant peptides were of high quality and had MaxQuant-derived score
similar to the reference variant peptides (Figure 1 and S1). We also did not observe a change
in intensity or posterior error probability distribution between reference and alternate variant
peptides, which may have been indicative of reduced quality. Several pathways were over-
represented in either naive or immune checkpoint inhibitor treated samples based on
accumulation of mutations (Figure 2). Interestingly, the over-represented pathways in naive
samples were overall similar, whereas they differed between the IC treated samples. For
example, integrin signaling and focal adhesion was observed in both naive samples and
signaling by VEGF in sample 111 and signaling by FGR2/FGR3 in sample 129. In addition,
the ICi treated samples showed over-representation in the PI3K-AKT signaling and GTPase
signaling pathways, highlighting potential drug-treatment options in melanoma. In this study,
we identified several known mechanisms involved in response to immunotherapy including
JAK-STAT and PI3K-AKT signaling, signaling by VEGF and activation of IFN production
91449 'In addition, we showed an accumulation of sample-specific mutations on key proteins of
these specific pathways. (Figure 2 and S2). Several individual markers were identified that can
be used to predict putative drug treatments in specific patients. Based on our result, we can
postulate that additional pathways, such as signaling by MET, FGFR3/FGFR2 signaling and
RUNXS3 regulated transcription pathways are involved in development of resistance. However,

additional work is required to validate these proteogenomic data.
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This study shows that the proteogenomic signatures of patient derived xenografts (PDX)
confirm most findings from melanoma cancer patients and can serve as model to study cancer
mutational landscapes as a source of tumor tissue closely resembling the clinical lesions. PDX
are generated directly from tumor tissue and overcome several limitations over the use of
monolayers of cells (cell lines), which is based on the selective proliferation of clonal cells.
PDXs keep the histological features, genomic signatures and genetic heterogeneity of cells in a
tumor mass. In addition, PDX tumors provide enough material to also perform
phosphoproteomics. However, PDX have limitations that must be considered prior to data
analysis, indeed it can take up to 6 months to generate PDX and samples are usually highly
contaminated with mouse cells (due to sample preparation). In this study, the iBAQ intensities
of mutated protein isoforms involved in metabolism were significantly higher in the patient
with the shortest PSF and OS compared to all other. The same trend was observed in matching
PDX, which highlights the fact that proteogenomic signatures of PDXs recapitulate most of the
findings in human tumor samples. Harel et al. also identified the association between
metabolism and response to immunotherapy in their proteomic study “%. Besides signaling
pathways, the microenvironment plays an important role in melanoma progression and response
to immunotherapy. Intensities of mutated proteins involved in ECM interaction were also
significantly higher in the samples 110 and 129 compared to other human tissue samples

suggesting an involvement of ECM reorganization in cancer cells.

We experimentally validated one example of a gain of a new phosphorylation site on DOCK1
and showed that the phosphorylation status of this mutation site has an impact on the
interactome of DOCK1 in vermurafenib-sensitive and -resistant cells. The GEF protein DOCK1
is mutated in 15% of melanoma patients and highly expressed in RAS-driven cancer types
198445447 "In this study, we identified the mutation from alanine to threonine in all samples
(homozygous), which was also characterized by a high impact possibly rewiring signal
transduction. The reference peptide harboring the not modifiable residue at A1856 was reported
previously in PhosphoSitePlus to be phosphorylated in several studies. This highlights the use
of proteogenomics to refine databases and generate sample-specific databases. Pinto et al.
showed in a SILAC-based quantitative proteomic screen that the phosphorylation site at
position T1857 was significantly up-regulated in interleukin 33 (IL-33)-stimulated compared
to unstimulated RAW264.7 cells. Their study revealed that actin cytoskeletal reorganization
was overrepresented in significantly changing proteins and thus was involved in immune
response **°. Here, we also identified DOCK1 to be highly phosphorylated in drug-resistant

cells compared to sensitive cells and the occupancy for this specific site (T1857) suggest a
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different protein phosphorylation status between phenotypes. In addition, in the pulldown
experiments we identified a distinct interactome of DOCK1 and several key signaling
molecules enriched in either sensitive or resistant cells. For example, ELMO1 was significantly
enriched in A375 R cells and CRK was exclusively identified in pulldowns from A375 R cells.
Both proteins are known to form a complex with DOCK1, thereby recruiting DOCK1 to the
plasma membrane %444, The binding to DOCK1 enhances its GEF activity and leads to RAC
activation and subsequent downstream signaling. Our results suggest a DOCK1 dependent
activation of focal adhesion and MAPK signaling pathways in vermurafenib resistant cells,
whereas cytokine receptor interaction and ErbB signaling pathway are activated in sensitive
cells. Further experiments need to be done to compare reference and mutated version of
DOCKT1 in context of BRAF and checkpoint inhibition to highlight the clinical relevance of this
mutation site in melanoma. Taken together, we postulate that the phosphorylated mutation

changes the interactome of DOCK1.

Conclusion

Individualized proteogenomics allows the detection of sample-specific variants at the genome,
proteome and PTM level. Here, we studied the mutational landscape of four clinical samples in
response to immunotherapy. Our dataset might serve the scientific and melanoma community
as a resource of clinical genomic, proteomic and phosphoproteomic profiles, which is still
sparse in melanoma. Our approach revealed accumulation of mutations in specific pathways in
naive and ICi-treated samples, such as over-representation of PI3K-AKT signaling or activation
of Rho GTPase signaling in treated samples. We also confirmed the loss or gain of several
phosphorylation events on mutation sites that possibly lead to rewiring of cell signal
transduction. We further validated the mutation A1857T on the GEF protein DOCK1 and our
data suggest that this gain of a new phosphorylation site has an impact on the interactome of

the protein.

Materials and Methods

Skin metastasis were collected during surgery and compared to blood. In total, we analyzed
four metastatic and four “control” samples. In addition, primary tissues were injected into mice

to obtain patient-derived xenografts (PDX). The use of human tissue from an internal biobank
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was approved by the local ethical committee (781/2018B02) and experiments were performed

in accordance with the declaration of Helsinki Principles.
Generation of patient-derived xenografts

To generate PDXs, tumor tissue was finely minced using the cross-blade technique, digested in
nevi solution (HBBS (w/o Ca2+ and Mg2+) with 0.05% collagenase, 0.1% hyaluronidase and
0.15% dispase) and filtered through a 100 pm cell strainer. The melanoma cell suspension was
implanted with Matrigel (Corning Life Sciences) subcutaneously in NSG (NOD.Cg-
Prkdcscidll2rgtm1Wijl/SzJ) mice, leading to patient derived xenografts (PDX). Tumor grafts
were harvested when they reached a diameter of 10 to 15 mm, digested as above, resuspended
in Biofreeze medium (Biochrom/Merck) and 1 ml per cryotube of the cell suspension was

frozen for short-term cryoconservation in —80 °C and for long-term storage in liquid nitrogen.
Protein extraction from patient-derived xenografts

Cell lysis of snap-frozen patient-derived xenografts (PDX) was performed with lysis buffer (6
M urea, 2 M thiourea, 10 mM Tris-HCI pH 8.0) supplemented with protease inhibitor (complete
Mini EDTA-free tablets, Roche) and phosphatase inhibitor buffers (5 mM glycerol-2-
phosphate, 5 mM sodium fluoride, and 1 mM sodium orthovanadate). Glass beads
(zirconia/glass beads 0.23 mm, Carl Roth GmbH) were added and cell lysis was performed in
a BeadBug microtube homogenizer (3 cycles, 1 min at full speed, Sigma-Aldrich). Cell extracts
were centrifuged at 13,000 rpm for 20 min and proteins were purified by acetone precipitation

and subjected to tryptic digestion prior LC-MS/MS analysis.
Protein extraction from formalin-fixed paraffin embedded tissue preparation

FFPE tissue were first de-paraffinized by two washes in xylene (5 min, 50°C) followed by three
serial washes in ethanol (100%, 95% to 70%) for 10 min each. Ethanol was removed completely
and sections air-dried. Lysis was carried out in 4% SDS, 50 mM DTT, 100 mM HEPES pH 7.5
supplemented with protease inhibitor at 95°C for 60 min and by sonication for 15 min. Proteins
were purified by acetone precipitation and subjected to tryptic digestion prior LC-MS/MS

analysis.
Sample preparation for MS analysis

Purified protein pellets were dissolved in lysis buffer (6 M urea, 2 M thiourea, 10 mM Tris-HCI
pH 8.0), reduced using 100 mM DTT, and alkylated using 50 mM iodoacetamide followed by
pre-digestion using endopeptidase Lys-C (Lysyl Endopeptidase, Wako Chemicals) for 3 h.
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After diluting the sample to 2 M Urea with 10 mM ammonium bicarbonate, proteins were
digested into peptides using sequencing grade trypsin (1 pg per 100 mg protein, Promega
Corporation) overnight. Peptides were then acidified with 1% TFA and then either purified on
C18 stage tips (as described previously) or purified on Sep-Pak C18 Cartridge (Waters) and
eluted in 80% ACN for high pH reverse phase chromatography.

Immunoprecipitation of DOCK1 in melanoma cell lines

Drug-sensitive (S) and drug-resistant (R) melanoma cells A375 were grown in RPMI-1640
medium containing 100 U/ml penicillin/streptavidin and 10% FBS. A375 R cells were grown
in the presence of 2 UM PLX4720 (vemurafenib-analog, Selleckchem). Cells were seeded to
80% confluence and treated with PLX4720 or DMSO for 3 h. Cell lysis was performed in
pulldown buffer (50 mM Tris-HCI pH 8.0, 300 mM NaCl, 1 mM EDTA, 0.5% Triton X100)
supplemented with protease inhibitors (complete Mini EDTA-free tablets, Roche)and
phosphatase inhibitor buffers (5 mM glycerol-2-phosphate, 5 mM sodium fluoride, and 1 mM
sodium orthovanadate) on ice for 10 min. Cell lysates were precleared for 1 h at 4°C with
washed Pierce Protein G magnetic beads (Thermo Fisher Scientific) using 5 pl per mg lysate.
DOCKT1 antibody (MA5-15010, Thermo Fisher Scientific) was coupled to beads by incubation
at 4°C for 20 min in incubation buffer (50 mM Tris-HCI pH 8.0, 300 mM NaCl, 1 mM EDTA,
0.5% Triton X100). The beads were washed three times with DPBS to remove unbound
peptides. Precleared cell lysates and DOCKZ1 antibody coupled to Pierce Protein G magnetic
beads were incubated for 2 h at 4°C while shaking. Pierce Protein G magnetic beads were used
as control and all pulldowns were performed four times. Beads were washed three times with
incubation buffer and two times with DPBS. Proteins were eluted by incubation at 95°C for 10
min in NuPAGE LDS sample buffer (Thermo Fisher Scientific). Proteins were separated on a
NUuPAGE Bis-Tris 4-12% gradient gel (Thermo Fisher Scientific) and stained with Coomassie
Brilliant Blue solution (Bio-Rad Laboratories). Gel lanes were cut into small pieces and washed
three times with washing buffer (5 mM AmBIC, 50% ACN) to remove Coomassie stain. To
reduce disulfide bonds, 10 MM DTT in 20 mM AmBIC was added and incubated at 56°C for 1
h. After alkylation of the disulfide bonds with IAA (55 mM in 20 mM AmBIC) for 30 min at
RT, gel pieces were washed with washing buffer and dehydrated with 100% ACN and vacuum
centrifugation (10 min). Proteins were digested with trypsin (12.5 ng/ml in 20 mM AmBIC,
Promega Corporation) at 37° overnight. Digested peptides were extracted from gel pieces with
3% TFA in 30% ACN, followed by 0.5% acetic acid in 80% ACN and 100% ACN. All extracts

were combined, concentrated by vacuum centrifugation and purified on C18 StageTips.
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High pH reverse phase chromatography

High pH reverse phase chromatography was conducted using an Ultimate 3000 HPLC (Thermo
Fischer Scientific) equipped with xBridge BEH130 C1g 130A, 3.5 um, 4.6 x 250 mm column
(Waters) as described previously *. In brief, peptides were eluted with an 80 min gradient
generated from solvent A (5 mM NH4OH) and solvent B (5 mM NH4OH, 90% ACN) at pH 10.
Fractions were collected in the first 60 min of the gradient and concatenated into 30 pools
followed by vacuum centrifugation. Peptide pools were resuspended in 500 pl 80% ACN, 10
pg of the pool were concentrated and desalted on StageTips prior LC-MS/MS measurements

for proteome analysis.
Phosphopeptide enrichment

Phosphopeptides were enriched using TiO2 beads (Titansphere, 10 pum, GL Sciences) as
described previously. 1 mg of beads (in 80% ACN, 1% TFA) were added to acidified high pH
fractions and incubated for 30 min in a rotation wheel. Phosphopeptide-bound TiO, beads were
sequentially washed with 30% ACN, 1% TFA, followed by 50% ACN, 1%TFA and 80% ACN,
1% TFA Peptides were eluted with 5% NHsOH into 20% TFA followed by 80% ACN in 1%
FA. The eluate was reduced by vacuum centrifugation, pH was adjusted to < 2.7 with TFA and

peptides were desalted on C18 StageTips.
Liquid chromatography- mass spectrometry

LC-MS/MS runs were performed on EASY-nLC 1200 UHPLC (Thermo Scientific) coupled to
Q Exactive HF and HFX Orbitrap mass spectrometers (Thermo Scientific). The peptides were
separated on 20-cm analytical HPLC-columns (75 pm ID PicoTip fused silica emitter (New
Objective); in-house packed using ReproSil-Pur C18-AQ 1.9-um silica beads (Dr Maisch
GmbH)) using a water-acetonitrile gradient of 60 min and 90 min for
proteomic/immunoprecipitated samples and phosphoproteomic sample fractions, respectively.
The FFPE samples were measured twice with 60 min and 130 min gradient. Gradients were
generated by solvent A (0.1% formic acid) and solvent B (80% ACN in 0.1% acetic acid) with
a flow rate of 200 nl/min at 40°C. Peptides were ionized by nanoelectrospray ionization at 2.3
kV and a capillary temperature of 275°C. For high pH proteomic fractions, FFPE samples or
immunoprecipitated samples, each full spectrum, acquired with 60,000 resolution (automated
control target of 3e6; fill time 25 ms for Q Exactive HF and 20 ms for Q Exactive HFX), was
followed by 12 tandem MS (MS/MS) spectra, where the 12 most abundant multiply charged
ions were selected for MS/MS sequencing with a resolution of 30,000, an automated control
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target of 1e5, an injection time of 45 ms, and collision energy of 27% for Q Exactive HF and
28% for Q Exactive HFX. Phosphopeptide enriched samples, full MS scans were acquired with
a resolution of 60,000 (AGC target 3e6, fill time 25 ms). The seven most abundant multiply
charged ions were selected for MS/MS sequencing with a resolution of 45,000 on Q Exactive
HFX and 60,000 on Q Exactive HF, an AGC target of 1e5 and a fill time of 220 ms.

DNA extraction and sequencing from blood and snap-frozen primary tissue

For sample ID 110 and 129, genomic DNA was extracted from blood and snap-frozen primary
tissue using GeneElute mammalian genomic DNA isolation kit (Sigma-Aldrich) according to
manufactures’ instructions with slight modifications. Human snap-frozen tissue was incubated
in lysis solution C solution at 55°C overnight, whereas blood samples were incubated for 10
min. DNA was purified on GeneElute MiniPrep columns and eluted with nuclease-free water.
For sample ID 101, genomic DNA was isolated by c.ATG Core Facility in Tuebingen using the
QlAamp DNA Mini (QIAGEN) kit as recommended by the manufacturer.

At the c.ATG Core Facility in Tuebingen, the genomic DNA from each sample were assessed
for quantity and quality on Nanodrop spectrophotometer (ThermoFisher Scientific), Qubit
Fluorometer (ThermoFisher Scientific) and Bioanalyzer (Agilent) instruments. The exome
captures and libraries were prepared using Sureselect XT Human All Exon V7 Low Input Kit
(Agilent) with dual indexing according to manufacturer’s instructions. The resulting libraries
were sequenced on a NovaSeq 6000 instrument (lllumina) using S2 FlowCell (200 cycles).

Exome sequencing data for sample 1D 111 was retrieved from DKTK master trial 42,
Exome sequencing data analysis

Raw sequence data were processed using an in-house pipeline developed at the Proteome
Center Tuebingen. The raw reads were initially quality checked using FastQC software 42,
Ilumina adapters and 5°/3” low quality bases were trimmed from reads using Trimmomatic 4%,
Paired-end reads from individual libraries were then aligned to H. sapiens reference genome
(GRCh38) using the BWA aligner #>*. Reads resulting from PCR duplication were marked using
Picard package. Germline variants were called using the GATK HaplotypeCaller workflow,
while the somatic variants were identified using the GATK Mutect2 workflow #¢. Variants
were recalibrated for score and filtered (soft-filter) using GATK. SnpEff software was used to

perform the annotation and functional effect prediction of detected variants 4.

Generation of personalized protein databases for MS analyses
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We then used our in-house application, named PCTi (currently under review), in order to
generate personalized protein sequence databases. Briefly, the transcript nucleotide sequences
were extracted from GRCh38 H. sapiens genome assembly and Ensembl transcript annotation
(via BSgenome and GenomicFeatures packages). These sequences were then in silico translated
(from start to first stop codon) into a reference protein sequences database (Biostrings package).
Each sample called nucleotide variants were injected into the corresponding reference transcript
nucleotide sequences and then in silico translated. The computed information was reported
directly within the alternate FASTA header to facilitate interaction with the rest of PCTi (e.g.
mutation positions, reference ID). The output consists in two FASTA files containing reference
protein sequences and sample-specific alternate protein sequences, which are used as protein
databases for processing of LC-MS/MS data.

Prediction of the detected variants biological impact

We used PCTi application to predict the mutations impact. Here, the focus was on the impact
of amino acid variants on protein phosphorylation-based signal transduction networks in
melanoma. Each reference/alternate protein sequence was annotated based on (1) whether
phosphorylation sites (S/T/Y) were lost and/or gained (IRanges package); (2) loss/gain of
kinase motifs °%; (3) loss/gain of known human phosphorylation sites 3#241°; (4) loss/gain of
known mutation sites in melanoma 37; (5) being encoded by oncogenes or tumour suppressor
genes 344420421. () levenshtein similarity between reference and alternate protein sequences.
Each impact was scored with the application default. A summed score was calculated for each
alternate sequences’ amino acid, and the maximum summed score was reported per mutated
isoform. The mutated protein isoforms were then ranked to allow prioritization for follow up

studies.
Mass spectrometry data analysis

The LC-MS/MS data were searched against PCTi H. sapiens reference (99,354 entries) and
individualized alternate databases (101 = 29,104 entries; 110 = 40,041 entries; 111 = 40,041
entries; 129 = 40,041 entries), as well as UniProt H. sapiens (release 2019/02/13; 95,943
entries) databases and commonly observed contaminants using the Andromeda search engine
integrated into MaxQuant software (version 1.5.2.8) 2%, The PDX samples were also searched
against UniProt M. musculus (release 2019/02/13; 95,943 entries) database.
Carbamidomethylation of cysteine (C) was set as fixed modification and oxidation of
methionine, phosphorylation at serine, threonine or tyrosine were defined as variable

modifications. Trypsin/P was selected as a protease. No more than two missed cleavages were
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allowed. The MS tolerance was set at 4.5 ppm and MS/MS tolerance at 20 ppm for the analysis
using HCD fragmentation method. The false discovery rate (FDR) for peptides and proteins
was set to 1%. The PDX and FFPE samples were quantified using intensity based absolute
quantification (iBAQ). For label-free quantification of interaction studies, a minimum of two

peptides was required.
Statistical analyses and data visualization

Statistical analyses were performed with Perseus software suite (version 1.6.5.0). The
taxonomy for each ENSEMBL protein ID was annotated after filtering of all reverse and
potential contaminants hits. A list of all protein and phosphorylation sites identifications for
each sample are provided in Table 1-4. The impact file generated in PCTi was mapped to the
peptide identification for each PDX in order to stratify the mutations impact (Supplementary
Table 5). For mutated protein isoforms in class | and Il pathway over-representation was
performed. The resources used for annotation of proteins were Gene Ontology (GO), Biological
Processes (GOBP), GO Cellular Compartment (GOCC), GO Molecular Functions (GOMF) and
Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Reactome Pathway database
(Reactome). The fisher exact test (FDR < 0.5) was used to checked for over-represented
categories among mutated protein isoforms and shared variant peptides. A list of all over-

representation results is provided in Supplementary Table 1-4.

Venn diagrams to show the overlap between identified nucleotide variants from WES analysis
and between protein identifications from PDX and FFPE material were performed with the

online tool https://www.stefanjol.nl/venny. Box plot analysis of iBAQ intensities of mutated

protein isoforms were prepared in GraphPad Prism and Excel. Statistical analysis was
performed with two-tailed unpaired t-test in GraphPad Prism. P values < 0.05 were considered
statistically significant, with * for p < 0.05, ** for p < 0.01. We also generated interaction
network within the R programming environment *'’. These networks were generated using
protein-protein (using BioGRID database), drug-target (using DrugBank database) and
predicted kinase-substrate (PCTi results) interactions; e.g. DOCK1 network 3424 The
generated networks were exported (using igraph and RCy3 packages) into Cytoscape for further

customisation 4%,

For proteomic interaction studies, label-free quantification normalization data were used after
log2 transformation. The data were filtered to retain only proteins with valid values in at least
70% of the samples. Following that, two sample Students t-test was performed with Benjamini-
Hochberg-based FDR p-value threshold of 0.05 and SO of 0.9. The following gene annotation


https://www.stefanjol.nl/venny

Manuscript 111 132

were added: GOBP, GOMF, GOCC and KEGG The pathway annotation enrichment was
performed on the fold change with Benjamini-Hochberg FDR p-value < 0.5. A list of all over-

representation results is provided in Supplementary Table 6.
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Figure S1: Proteogenomics integrates mutational landscape of melanoma cells. [S1A] Clinical information of
used samples. The progression-free survival (PFS) and overall survival (OS) was calculated based on start of
therapy and numbers indicate days after therapy start. [S1B] WES sequencing depth for each patient and sample
type. [S1C] MS-measured intensity of identified reference (Ref) and alternate (Alt) peptides for each patient. [S1D]
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Figure S2: Proteogenomics highlights differing mechanisms of alternate protein isoforms between naive and
treated samples. [S2A] Visualization of WES- and MS-identified alternate variants (WES only = light blue, WES
and MS = dark blue) for each patient on the PI3K-AKT signaling pathway (KEGG) and actin cytoskeleton pathway
(KEGGQG). [S2B] Histogram summarizing the content of the regulation of actin cytoskeleton pathway in terms of
number of genes, proteins and identified mutations [S2C] Overlap of identified protein groups and proteins
containing alternate peptides (grey) for each sample. [S2D] Box plot of over-represented categories for each

sample. The MaxQuant iBAQ intensity (log10) is plotted for each identified alternate protein isoform.
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Figure S3: Interactome of proteins identified with alternate variant peptides. [S3A] Protein-protein
interaction network for the MS-identified alternate isoform based on BioGRID database. Mutated genes identified
by exome sequencing are circled in black. The node fill color indicates whether the isoform was identified in all,
naive only, IC treated only or none of the patients. The node edge color indicates whether the mutation was
identified based on MS. The node shape shows which isoforms can be targeted by a drug treatment based on
DrugBank database. The node size represents the predicted impact score (computed through PCTi application).
[S3B] Each protein isoform from the interaction network is plotted on a 5-dimensional scatter plot to allow ranking.
The dimensions represent the MS intensity (x-axis), the number of interactions (y-axis), the predicted impact score
(z-axis), whether the isoforms are drug targets (color-code) and whether the mutation was identified based on MS
(shape-code).
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Figure S4: Gain of a new phosphosite on GEF protein DOCK1 leads to changed interactome. [S4A] and
[S4B] One-dimension annotation enrichment of KEGG and Reactome pathways for pulldown of DOCK1 in A375
S and R cells in absence [S4A] and presence of BRAF-inhibitor vermurafenib [S4B]. The enrichment score
calculated by Fisher exact test were plotted (Benjamini-Hochberg FDR < 0.5).
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4  Discussion

Parts of this chapter were taken from Schmitt M. et al., Quantitative proteomics links the
intermediate filament nestin to resistance to targeted BRAF inhibition in melanoma cells.
Mol Cell Proteomics (2019), Schmitt M. et al., Integration of Individualised
proteogenomics datasets to analyse single amino acid variants in malignant melanoma
(Under revision) and Schmitt M. et al., Individualized proteogenomics reveals mutational

landscape of melanoma patients in response to immunotherapy (In preparation).

The aim of this thesis was to identify proteomic changes and associated mutations in malignant
melanoma in response to targeted and immunotherapy. First, quantitative (phospho)proteomics
analyses of drug-sensitive and -resistant melanoma cells were utilized to identify additional
resistance mechanisms and new molecular targets that can overcome resistance against targeted
therapy. Changes in proteomic profiles revealed the down-regulation of cytoskeletal proteins in
vemurafenib-resistant cells, including the intermediate filament nestin. CRISPR/Cas9 knockout
of the nestin gene was associated with an invasive phenotype and resistance to targeted therapy.
In the second part, an individualized proteogenomics approach was established to analyze the
non-synonymous mutational landscape of two malignant melanoma cell lines in context of
resistance to targeted therapy. The reported data highlighted the mutational profile differences
and commonalities between both cell lines and phenotypes. Validation by interaction studies in
combination with proteomics showed that the interactome of RUNX1 was changed due to a
loss of a known phosphorylation site. Finally, the individualized proteogenomics approach was
applied to characterize human tumor samples in response to immunotherapy. Data integration
allowed the identification of an extensive number of sample-specific variants, among which
several showed a potential to rewire signal transduction. The analysis revealed that variants are
accumulating in specific pathways, for example PI3SK/AKT signaling pathways or GTPase
activation, including key molecules harboring a mutation on a modifiable amino acid. The gain
of a new phosphorylation site on the GEF protein DOCK1 was confirmed to change DOCK1

interactome by proteomic interaction studies.

4.1 Proteomic and proteogenomic approaches to study malignant melanoma

Melanoma accounts for 79% of skin cancer-related deaths in Germany and due to ineffective
treatment options in the late stage melanoma, patients have an overall poor prognosis L. In about

50% of melanoma cases the non-synonymous mutation BRAFY®E (or more rarely
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BRAFV%K) "located within the kinase domain, leads to a hyperactive form of the BRAF kinase
81 Consequently, the mitogen activated-protein kinase (MAPK)-pathway is constitutively
active and becomes the main oncogenic pathway in melanoma 22319, |n 2010, a new promising
class of drugs, the mutant-specific BRAF kinase inhibitors such as vemurafenib (PLX4072) or
dabrafenib, were designed and resulted in inhibition of the MAPK pathway . These drugs
have approximately 50% response rate and result in an average survival benefit of four months
100,101 ' Another drug, cobimetinib, inhibits MEK1/2 kinases and has also been shown to improve
survival of BRAFV®%E_carrier individuals 1°®11°, However, tumors treated with BRAF or MEK
inhibitors rapidly adapt and find ways to escape the treatment by developing acquired
resistance. Such resistance is characterized by a partial or complete initial reduction of the
tumor followed by recurrence of metastases within a period of five to seven months 1°:-1% More
recently, alternative therapeutic strategies involving immune checkpoint inhibitors have been
developed. Ipilimumab, a monoclonal antibody targeting the cytotoxic T-lymphocyte antigen 4
(CTLA-4), was the first therapy to show an improved survival in metastatic melanoma patient,
with 15% response rate “*2. Upon binding to CD80, which is present on surface of antigen
presenting cells, CTLA-4 negatively regulates T cells priming and lead to down-regulation of
anti-tumor immune response. Therefore, inhibition of CTLA-4 by ipilimumab leads to
increased anti-tumor response 3432 Other immune checkpoint inhibitors include
pembrolizumab, nivolumab or atezolizumab, which target either program death-1 receptor (PD-
1) or its ligand (PD-L1), and have been shown to have response rate of up to 30%. These
compounds inhibit the interaction between PD-1 and PD-L1 during the effector stage of the T
cell anti-tumor response, therefore limiting the immune system suppression from PD-1/PD-L1
interaction. While current trials suggest durable responses in patient under immunotherapy,
there is increasing evidence pointing towards existence of innate and acquired resistance to
therapy “34. With the increasing number of kinase inhibitor or acquired resistance mechanisms
reported in the literature, it is now clear that personalized medicine will be critical to effective
patient therapy.

In the last decade, a revolution in the field of genomic techniques has led to the emergence of
high-throughput sequencing technologies, which provide information on DNA/RNA sequence,
gene structure and gene expression. Several studies identified genomic changes after disease
progression in melanoma including secondary mutations, gene fusions, mechanisms of
resistance and predictive biomarkers for disease stages “°°. Berger et al. used a systematic
approach to study cancer-associated mRNA alterations by integrating transcriptomics and

structural-genomic data and identified several novel melanoma gene fusions and novel read
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through transcripts #4. The results demonstrated that point mutations are major drivers of
melanoma progression. In another transcriptomics studies, data from primary samples of stage
I melanoma and patients undergoing immunotherapy revealed a six-class signature to predict
patient’s outcome based on the expression of prognostic biomarkers, such as the transcription
factor JUN %7, The genomic and transcriptomics landscape was analyzed to study resistance
mechanism against treatment even cross-resistance between kinase inhibitors and PD-1 therapy

in metastatic melanoma #*'.

Mass spectrometry based proteomics is experiencing a technological revolution similar to that
of the high-throughput sequencing. The current state-of-the-art proteomics workflows are
capable of routine, comprehensive analysis of proteomes and post-translational modifications
such as phosphorylation. In the first part of this thesis, quantitative proteomics of melanoma
cell lines (A375 S and A375 R) with differing phenotypes of acquired resistance to the
BRAFY®%E inhibitor vemurafenib was performed in order to identify additional resistance
mechanisms and reveal new molecular targets to overcome resistance. This study is, to our
knowledge, one of the largest global (phospho)proteomic analyses assessing the differentially
expressed proteins in drug-sensitive and drug-resistant melanoma cells. Our analysis revealed
that several proteins involved in cytoskeletal organization and signaling were down-regulated
in drug-resistant cells compared to sensitive cells including nestin, vimentin and gelsolin.
Nestin has been reported for its involvement in cancer cell migration, invasion, and metastasis
148,1534%8 - Quendro and colleagues showed in a large scale proteomic study that nestin and
vimentin are both up-regulated in melanoma cells and tissue materials compared to control
melanocytes ***. This was confirmed in the present study in A375 melanoma cells and further
showed that nestin and vimentin are down-regulated in resistant cells compared to sensitive
cells. In addition, phosphorylation analysis demonstrated that key signaling proteins are
phosphorylated in resistant cells including ERK1/2 (T202/Y204) and AKT (S124).

In standard proteomics approaches, peptides and proteins are identified by matching MS/MS
spectra against protein databases derived from public repositories (e.g. UniProt) that are not
“individualized”, i.e. do not contain sequence information specific to the individual patient.
Commonly used protein databases therefore inherently prevent identification of individual non-
synonymous somatic mutations. By combining nucleotide sequencing and MS technologies, it
is possible to simultaneously study and integrate DNA sequence, RNA expression and splicing,
protein isoform abundance and PTMs in a personalized fashion. In the present thesis, two
immortalized human melanoma cell lines, as well as patient derived xenografts (PDX) and

patient tumor materials were used to reconstruct signaling transduction network specific to
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individual samples using their matching genomics, proteomics and PTMs datasets. The
individualized proteogenomics databases were generated with PCTi, an in-house software, and
highlighted a disproportional impact of nucleotide variants on modifiable amino acids.
Hundreds of amino acid variants were identified by high resolution mass spectrometry
including single amino acid variants, InDels and frameshifts. In addition, the loss or gain of
several phosphorylation events due to point mutations could be confirmed by mass
spectrometry. These in turn may lead to rewiring of signal transduction networks in context of
melanoma resistance to BRAFi. Statistical analysis of mutated proteins revealed significant
differences between drug-resistant and drug-sensitive phenotypes and cell lines, such as over-
representation of MAPK and PI3BK/AKT/mTOR signaling in drug-resistant cells and YAP/TAZ
stimulated gene expression in sensitive cells. This dataset is one of the first proteogenomics
datasets in melanoma including genomic and phosphoproteomic data, and can be used as a
resource to identify network-attacking mutations in melanoma. The proteogenomic analyses
resulted in the same range (or higher) as other studies investigating amino acid variants using
custom protein sequence databases *°*%4, For example, Shenykman et al. used a proteogenomic
approach based on RNA sequencing data and identified 544 peptides containing single amino

acid variants specific to a sample 2,

In the third part of the thesis, the proteogenomic approach was further applied to human tumor
material undergoing immunotherapy. This study is the first integrative individual
proteogenomic analysis of melanoma tumor tissue and matching PDX in response to
immunotherapy. Hundreds of sample-specific mutations were identified in human tumor tissue
and patient-derived xenografts by matching exome sequencing data and (phospho)proteomic
data. Most of the detected mutations were not previously reported in melanoma, among which
a few had a high potential to rewire signal transduction. In addition, the proteogenomic
approach identified key differences between naive and immune checkpoint inhibitor treated
samples, such as over-representation of mutated proteins in PI3K/AKT signaling pathway and
metabolism in context of melanoma response to immunotherapy. Harel et al. analyzed large-
scale proteomic screen from 116 melanoma primary tissues and showed that the mitochondrial
lipid metabolism was associated with tumor response to immunotherapy “%. In the present
study, pathways involved in metabolism were also enriched in responders and could be linked
to mutations in MEN1, ECHS1 and PDLIM5. Most of the findings from melanoma cancer
patient could be recapitulated in PDX tumors, highlighting that PDXs can serve as a model to
study mutational landscape in different cancer types. This dataset demonstrates that
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proteogenomics is a powerful tool to study the mode of action of disease-associated mutations
at the genome, proteome and PTM level in a sample-specific fashion.

In both proteogenomic datasets, numerous mutations were identified, which were not reported
previously in melanoma or other publicly available datasets, such as COSMIC or dbSNP.
Therefore, these mutations could not have been identified with a standard shotgun proteomics
workflow and are of fundamental biological interest for melanoma community. The predicted
impact score of these mutations may help to stratify and identify sample-specific mutations for
further investigations and as actionable drug-targets. All three datasets can be used as a resource
to identify key (phospho)proteins and network-attacking mutations in context of kinase

inhibition and immunotherapy in order to improve patient’s survival.

4.2 Resistance mechanisms and biomarkers in melanoma

In this thesis, several known resistance mechanisms including MAPK and PI3K/AKT signaling
were identified in melanoma cell lines, patient derived xenografts and patient tumor materials
in response to kinase inhibitors and immunotherapy. Several key proteins and phosphorylation
sites within these pathways were identified with high confidence, such as EGFR, BRAF, NRAS
and ERK1/2 proteins, as well as phosphorylation on AKT, ERK1/2 and MEK. In addition, in
the proteogenomics dataset, a number of proteins and phosphoproteins were found to be
mutated with the potential to rewire signal transduction. For example, NRAS mutations were
identified in all patient-derived xenografts, while PTEN and CDK4 were found in the drug-
resistant cell lines A375 and SkMel28, respectively. Interestingly, most of the identified
mutations were not previously reported in melanoma and therefore may be of high interest for
further investigations. Taken together, this highlights the good coverage of our datasets and
their utility as a resource for the melanoma community. In addition, an accumulation of
mutations in specific pathways, such as focal adhesion, PI3K/AKT signaling and GTPase
activation in response to BRAFi resistance and immunotherapy were detected in this thesis

suggesting their relevance in both treatment options.

The tumor microenvironment and remodeling of the cytoskeletal organization have also been
reported to play an important role in the development of acquired resistance. In the quantitative
proteomics analysis, the intermediate filament nestin was identified as one of the most down-
regulated proteins in drug-resistant cells. Several studies have been shown that nestin is

involved in cancer cell migration, invasion, and metastasis 43153458 |n addition, the down-
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regulation of nestin in FFPE specimens using immunohistochemistry was confirmed; however,
expression of nestin differed in the immunohistochemistry staining between tumor specimens.
Quantitative proteomics of one pair of pre-and post-treated tumors identified nestin as one of
the most down-regulated proteins. These results highlight the significance of nestin expression
in human tumors. Doxie and colleagues also showed that nestin expression was completely
depleted in human tumors after BRAF and MEK inhibitor therapy. To study the effect of nestin,
a CRISPR/Cas9 approach was used to generate a NES gene knockout in drug-sensitive
melanoma cells. This study provides novel data showing that nestin expression significantly
correlates with cell survival and colony formation upon MAPK signaling pathway inhibitor
treatment. Indeed, cell survival and colony formation ability in knockout cells was increased
following BRAF inhibitor treatment, but also upon inhibition with the MEK inhibitor
cobimetinib. Several studies have suggested that combined therapy with BRAF and MEK
inhibitors are promising to delay MAPK-driven acquired resistance, but may lead to other
resistance mechanisms, for example PISK/AKT/mTOR signaling pathways #*°. Depletion of
nestin may activate these resistance mechanisms and increase cell survival upon mono- or
combined therapy. The proteomic and phosphoproteomic analysis provide evidence that nestin
depletion is associated with signaling through focal adhesion, integrin and PI3K/AKT/mTOR
pathways. Interestingly at the proteome level, ECM interacting proteins, such as Laminin-B or
Filamin-B, the integrins B1 and B4, Proteinkinase C, FAK and other downstream signaling
proteins were significantly up-regulated in the genome edited cells compared to drug sensitive
cells. Furthermore, the phosphoproteome analysis revealed differentially regulated
phosphorylation sites on the key players of the integrin signaling pathway and downstream
proteins. In conclusion, nestin protein levels could be linked not only with an invasive

phenotype, but also with acquired drug resistance in melanoma.

The proteogenomic analysis led to the identification of a number of network-attacking
mutations, most of which were unique to specific cell line or PDX. For example, a non-
synonymous single amino acid variant with the potential to change the protein modification
status was found on the runt-related transcription factor 1 protein (RUNX1) in A375 cell line.
The mutation at position S276L resulted in the knock-out of a known phosphosite on this critical
protein that was previously identified to be involved in cancer development. RUNX1 plays an
important role in cell proliferation, differentiation and apoptosis ¢ and several of its interaction
partners were also mutated in drug-sensitive and drug-resistant cells, including PML, CTBP2
and YAPL. Interactome studies of wild-type and mutated RUNX1 revealed that the interactome

of RUNX1 was altered due the loss of phosphorylation sites. Indeed, several interaction
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partners, such as the transcriptional repressors HDAC1 and Sin3A, were significantly enriched
in RUNX1_wt interactome and depleted in RUNX1_S276L interactome. These results also

suggested a shift in transcriptional activity of mutated RUNX1 compared to wild-type protein.

In addition to nestin, another protein, involved in signaling pathways that alter the
microenvironment of cancer cells, was identified to be mutated in both melanoma cell lines and
patient-derived xenografts. The dedicator of cytokinesis protein 1 (DOCK1) was mutated at
A1857T and led to gain of a new modifiable residue (phosphorylation) that could be confirmed
by high resolution mass spectrometry. DOCK1 is mutated in 15% of melanoma patients and is
involved in integrin signaling through FAK activation, MAPK pathway and cytoskeletal
rearrangement. DOCKZ1 also regulates the activity of RAC and MAPK2, which are key
molecules in resistance mechanisms and among the main drivers of melanogenesis. The results
of the interactome studies in drug-sensitive and drug-resistant melanoma cells suggest that this
mutation has an impact on the interactome of DOCKZ1. Notably, the intermediate filament nestin
was also identified to enriched in the pulldown of DOCKZ1 in drug-resistant melanoma cells.
Both proteins are involved in cytoskeletal reorganization, which is known to play an important

role in cancer progression and development of resistance.

This thesis highlights that proteogenomics provides valuable insights into cancer biology and

how the proteome is regulated by genetic effects.
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5 Conclusions

Malignant melanoma is characterized by mutation in key signaling pathways including MAPK
and PI3K/AKT pathways. Over the last decade several treatments including kinase and immune
checkpoint inhibitors have been developed. However, acquired resistance hampered the
prolongation of progression-free survival and response rates. In this work, mechanisms
underlying resistance were investigated in melanoma cell lines, patient-derived xenografts and
tumor tissue, via exhaustive characterization of mutational landscape, proteome and
phosphoproteome profiling. Results obtained in the three parts of the thesis lead to the following

conclusions:

1. Comprehensive (phospho)proteomics analysis of vemurafenib-sensitive and resistant

melanoma cells

a) Distinct proteome and phosphoproteome changes were observed between BRAF
inhibitor resistant- and sensitive cells

b) Intermediate filament protein nestin was identified as one of the highest down-
regulated proteins in melanoma cells and tumors.

c) CRISPR/Cas9-mediated knockout of nestin gene led to increased cellular proliferation
and colony formation upon BRAF and MEK inhibition

d) Depletion of nestin led to increased invasiveness and metalloproteinases activity
similar to vermurafenib-resistant cells

e) Phosphoproteome analysis revealed that nestin depletion is associated with integrin

and PI3K/AKT/mTOR signaling and also with acquired drug resistance in melanoma

2. Individualized proteogenomic characterization of melanoma cell lines in response to

vemurafenib resistance

a) Integration of genomics and proteomics led to the identification of numerous non-
synonymous variants at the genomic and (phospho)proteomic level

b) Disproportional impact of nucleotide variants on modifiable residues were detected
between sensitive and resistant cell lines

¢) Functional investigation of over-represented pathways of alternate proteins between
phenotypes and cell lines showed differing mechanism linked to BRAFi resistance

d) Several alternate peptides, which are phosphorylated on the mutation site were

identified by mass spectrometry
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e) Rewiring of signal transduction due to the loss of a known phosphorylation site on
RUNX1 protein was confirmed by interactome studies

3. Individualized proteogenomic characterization of human melanoma tumor cells in

response to immunotherapy

a) Distinct mutational landscapes were identified between naive and immune checkpoint
inhibitor treated tumor samples

b) Proteogenomics highlighted accumulation of mutations in specific pathways that are
linked to immunotherapy

c) Proteogenomic profiles of PDXs resembled the main findings in human tumor tissue

d) Actionable mutations with high potential to rewire signal transduction were detected
by integrating genomic, proteomic and drug database data

e) Interactome studies confirmed change in interactome due to gain of new

phosphorylation site on the GEF protein DOCK1
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6  Future perspectives

Late stage malignant melanoma is often treated with selective kinase inhibitors targeting
mutated BRAF or MEK kinases and/or immunotherapy using immune checkpoint inhibitors.
However, after a period of a progression-free disease, most patients develop resistance to the
therapy, which is followed by rapid progression of cancer. Many underlying factors behind
development of resistance to kinase inhibition have been studied by genomics and
transcriptomics and more recently by proteomics. Yet, to better understand cancer biology
underlying resistance, new tools are needed to investigate mutational profiles at the genome,
proteome and PTM level. Likewise, individualized approaches and personalized therapeutic
predictors are of utmost importance. Moreover, the lack of insights into the disease
mechanisms, as well as the complexity of cancer and patient heterogeneity calls for proteomic
and proteogenomic approaches applied in context of personalized medicine and should be the
focus in future investigations. In addition, PTMs are still largely unexplored in context in cancer
resistance and progression and should be studied further due to their transient importance in
cancer. This thesis provides datasets that can be used as a resource to identify key
(phospho)proteins and network-attacking mutations in context of kinase inhibition and
immunotherapy in order to improve patient’s survival, as well the frequency and impacts of
mutations on all levels and provides insights into molecular etiology of melanoma. Further
validation and functional assessment of selected regulated proteins and mutations will provide
insights into the importance of specific mutations for establishment of drug resistant and
signaling pathways. Predicted actionable drug targets should be further validated by drug target
assays in drug-sensitive and drug-resistant cells as well as in cell lines generated from the same
patient tumor tissue. Additionally, further experiments need to be done to compare reference
and mutated version of DOCKZ1 in context of BRAF and checkpoint inhibition to highlight the
clinical relevance of this mutation site in melanoma. Moreover, proteogenomic approaches are
a quite new research area and only a few reports in melanoma translational research have been
utilized. The results of this thesis and other showed that proteogenomics has the potential to
reveal variants that alter protein abundance and modification status linked to the disease and
are of critical importance to determine the feasibility of proteogenomics approaches in
individualized cancer medicine. However, efficient and easy-to use tool for the bioinformatic
analysis and visualization of proteogenomic data must be optimized to become a true prognostic
tool. Only then, proteogenomics will be able to improve the treatment of patients in

personalized manner and may be used routinely in clinical context.



Future perspectives 150




References 151

7

[EEN

10

11

12

13

14

15

16

17

References

Robert Koch, I. Cancer in Germany Cancer in Germany. (2014).

Domingues, B., Lopes, J. M., Soares, P. & Pdpulo, H. Melanoma treatment in review.
ImmunoTargets and therapy 7, 35 (2018).

Gilchrest, B. A., Eller, M. S., Geller, A. C. & Yaar, M. The pathogenesis of melanoma
induced by ultraviolet radiation. N Engl J Med 340, 1341-1348,
d0i:10.1056/NEJM199904293401707 (1999).

Pennello, G., Devesa, S. & Gail, M. Association of surface ultraviolet B radiation levels
with melanoma and nonmelanoma skin cancer in United States blacks. Cancer
Epidemiol Biomarkers Prev 9, 291-297 (2000).

Elwood, J. M. & Jopson, J. Melanoma and sun exposure: an overview of published
studies. Int J Cancer 73, 198-203, doi:10.1002/(sici)1097-
0215(19971009)73:2<198::aid-ijc6>3.0.co;2-r (1997).

Lazovich, D. et al. Indoor tanning and risk of melanoma: a case-control study in a highly
exposed population. Cancer Epidemiol Biomarkers Prev 19, 1557-1568,
doi:10.1158/1055-9965.EPI1-09-1249 (2010).

Archier, E. et al. Carcinogenic risks of psoralen UV-A therapy and narrowband UV-B
therapy in chronic plaque psoriasis: a systematic literature review. J Eur Acad Dermatol
Venereol 26 Suppl 3, 22-31, doi:10.1111/j.1468-3083.2012.04520.x (2012).

Bauer, J. & Garbe, C. Acquired melanocytic nevi as risk factor for melanoma
development. A comprehensive review of epidemiological data. Pigment Cell Res 16,
297-306, d0i:10.1034/j.1600-0749.2003.00047.x (2003).

Bevona, C., Goggins, W., Quinn, T., Fullerton, J. & Tsao, H. Cutaneous melanomas
associated with nevi. Arch Dermatol 139, 1620-1624; discussion 1624,
doi:10.1001/archderm.139.12.1620 (2003).

Goldstein, A. M. & Tucker, M. A. Genetic epidemiology of cutaneous melanoma: a
global perspective. Arch Dermatol 137, 1493-1496, doi:10.1001/archderm.137.11.1493
(2001).

Chang, A. E., Karnell, L. H. & Menck, H. R. The National Cancer Data Base report on
cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past
decade. The American College of Surgeons Commission on Cancer and the American
Cancer Society. Cancer 83, 1664-1678, doi:10.1002/(sici)1097-
0142(19981015)83:8<1664::aid-cncr23>3.0.co;2-g (1998).

Gray-Schopfer, V., Wellbrock, C. & Marais, R. Melanoma biology and new targeted
therapy. Nature 445, 851-857, doi:10.1038/nature05661 (2007).

Tolleson, W. H. Human melanocyte biology, toxicology, and pathology. J Environ Sci
Health C Environ Carcinog Ecotoxicol Rev 23, 105-161,
doi:10.1080/10590500500234970 (2005).

Markova, E., Petrova, N., Razin, S. & Kantidze, O. Transcription factor RUNXL.
Molecular Biology 46, 755-767 (2012).

Dong, L. et al. Melanocyte-stimulating hormone directly enhances UV-Induced DNA
repair in keratinocytes by a xeroderma pigmentosum group A-dependent mechanism.
Cancer Res 70, 3547-3556, d0i:10.1158/0008-5472.CAN-09-4596 (2010).

Brenner, M. & Hearing, V. J. The protective role of melanin against UV damage in
human skin. Photochem Photobiol 84, 539-549, doi:10.1111/j.1751-1097.2007.00226.x
(2008).

Carsberg, C. J. W., H.M.; Friedmann, P.S. Ultraviolet Radiation-Induced
Melanogenesis in Human Melanocytes Effects of Modulating Protein Kinase C. J Cell
Sci 107, 2591-2597 (1994).



References 152

18

19
20
21
22
23
24
25
26

27

28

29

30

31

32

33

34

35

36

37

38

Bonaventure, J., Domingues, M. J. & Larue, L. Cellular and molecular mechanisms
controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma
Res 26, 316-325, doi:10.1111/pcmr.12080 (2013).

Flaherty, K. T., Hodi, F. S. & Fisher, D. E. From genes to drugs: targeted strategies for
melanoma. Nat Rev Cancer 12, 349-361, doi:10.1038/nrc3218 (2012).

Eves, P. C. & Haycock, J. W. Melanocortin signalling mechanisms. Adv Exp Med Biol
681, 19-28, doi:10.1007/978-1-4419-6354-3_2 (2010).

Balch, C. M. et al. An evidence-based staging system for cutaneous melanoma. CA
Cancer J Clin 54, 131-149; quiz 182-134, doi:10.3322/canjclin.54.3.131 (2004).
Balch, C. M. et al. Final version of 2009 AJCC melanoma staging and classification. J
Clin Oncol 27, 6199-6206, doi:10.1200/JC0.2009.23.4799 (2009).

American Cancer, S. Cancer Facts & Figures 2017. (2017).

E., S. J. a. W. http://www.pathophys.org/melanoma/.

Cargnello, M. & Roux, P. P. Activation and function of the MAPKSs and their substrates,
the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75, 50-83,
doi:10.1128/MMBR.00031-10 (2011).

Hubbard, S. R. & Miller, W. T. Receptor tyrosine kinases: mechanisms of activation
and signaling. Curr Opin Cell Biol 19, 117-123, doi:10.1016/j.ceb.2007.02.010 (2007).
Wagner, M. J., Stacey, M. M., Liu, B. A. & Pawson, T. Molecular mechanisms of SH2-
and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring
Harb Perspect Biol 5, a008987, doi:10.1101/cshperspect.a008987 (2013).

Matallanas, D. et al. Raf family kinases: old dogs have learned new tricks. Genes
Cancer 2, 232-260, d0i:10.1177/1947601911407323 (2011).

Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251-263,
doi:10.1016/j.cell.2012.06.024 (2012).

Amaral, T. et al. MAPK pathway in melanoma part I1-secondary and adaptive resistance
mechanisms to  BRAF inhibition. Eur J Cancer 73, 93-101,
doi:10.1016/j.ejca.2016.12.012 (2017).

Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949-954,
doi:10.1038/nature00766 (2002).

Flaherty, K. T. et al. Improved Survival with MEK Inhibition in BRAF-Mutated
Melanoma. New  England Journal of  Medicine 367, 107-114,
doi:10.1056/NEJMo0a1203421 (2012).

Allen, E. M. V. et al. The genetic landscape of clinical resistance to RAF inhibition in
metastatic melnaoma. Cancer Discov. 4, 94-109, doi:10.1158/2159-8290.CD-13-
0617.The (2014).

Long, G. V. et al. Prognostic and clinicopathologic associations of oncogenic BRAF in
metastatic melanoma. J Clin Oncol 29, 1239-1246, doi:10.1200/JC0O.2010.32.4327
(2011).

Brose, M. S. et al. BRAF and RAS mutations in human lung cancer and melanoma.
Cancer Res 62, 6997-7000 (2002).

Chamcheu, J. C. et al. Role and Therapeutic Targeting of the PI3K/Akt/mTOR
Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on
Natural and Synthetic Agents Therapy. Cells 8, doi:10.3390/cells8080803 (2019).
Hemmings, B. A. & Restuccia, D. F. PI3K-PKB/Akt pathway. Cold Spring Harb
Perspect Biol 4, 2011189, doi:10.1101/cshperspect.a011189 (2012).

Luo, J., Manning, B. D. & Cantley, L. C. Targeting the PI3K-Akt pathway in human
cancer: rationale and promise. Cancer Cell 4, 257-262, doi:10.1016/s1535-
6108(03)00248-4 (2003).



http://www.pathophys.org/melanoma/

References 153

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMACL1, dephosphorylates
the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273,
13375-13378, do0i:10.1074/jbc.273.22.13375 (1998).

Hocker, T. & Tsao, H. Ultraviolet radiation and melanoma: a systematic review and
analysis of reported sequence variants. Hum Mutat 28, 578-588,
doi:10.1002/humu.20481 (2007).

Hensin Tsaol, X. Z., Eric Benoit and Frank G Haluska. Identification of
PTEN/MMACL1 alterations in uncultured melanomas and melanoma cell lines.
Oncogene 16, 3397-3402 (1998).

Goel, V. K., Lazar, A. J., Warneke, C. L., Redston, M. S. & Haluska, F. G. Examination
of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest
Dermatol 126, 154-160, doi:10.1038/sj.jid.5700026 (2006).

Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of
AKT1 in cancer. Nature 448, 439-444, doi:10.1038/nature05933 (2007).

Davies, M. A. et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br J
Cancer 99, 1265-1268, doi:10.1038/sj.bjc.6604637 (2008).

Stahl, J. M. et al. Deregulated Akt3 activity promotes development of malignant
melanoma. Cancer Res 64, 7002-7010, doi:10.1158/0008-5472.CAN-04-1399 (2004).

Curtin, J. A., Stark, M. S., Pinkel, D., Hayward, N. K. & Bastian, B. C. PI3-kinase
subunits are infrequent somatic targets in melanoma. J Invest Dermatol 126, 1660-1663,
doi:10.1038/sj.jid.5700311 (2006).

Omholt, K., Krockel, D., Ringborg, U. & Hansson, J. Mutations of PIK3CA are rare in
cutaneous melanoma. Melanoma Res 16, 197-200,
doi:10.1097/01.cmr.0000200488.77970.e3 (2006).

Gibney, G. T. & Smalley, K. S. An unholy alliance: cooperation between BRAF and
NF1 in melanoma development and BRAF inhibitor resistance. Cancer Discov 3, 260-
263, d0i:10.1158/2159-8290.CD-13-0017 (2013).

Maertens, O. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer
Discov 3, 338-349, d0i:10.1158/2159-8290.CD-12-0313 (2013).

Whittaker, S. R. et al. A genome-scale RNA interference screen implicates NF1 loss in
resistance to RAF inhibition. Cancer Discov 3, 350-362, doi:10.1158/2159-8290.CD-
12-0470 (2013).

Nissan, M. H. et al. Loss of NF1 in cutaneous melanoma is associated with RAS
activation and MEK dependence. Cancer Res 74, 2340-2350, doi:10.1158/0008-
5472.CAN-13-2625 (2014).

Krauthammer, M. et al. Exome sequencing identifies recurrent mutations in NF1 and
RASopathy genes in sun-exposed melanomas. Nat Genet 47, 996-1002,
d0i:10.1038/ng.3361 (2015).

Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of
Somatic Mutations in Cancer. Nucleic Acids Res 39, D945-950, doi:10.1093/nar/gkq929
(2011).

Lyons, J. et al. Two G protein oncogenes in human endocrine tumors. Science 249, 655-
659, doi:10.1126/science.2116665 (1990).

Huang, J. L., Urtatiz, O. & Van Raamsdonk, C. D. Oncogenic G Protein GNAQ Induces
Uveal Melanoma and Intravasation in Mice. Cancer Res 75, 3384-3397,
doi:10.1158/0008-5472.CAN-14-3229 (2015).

Van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma
and blue naevi. Nature 457, 599-602, doi:10.1038/nature07586 (2009).

Gastonguay, A. et al. The role of Racl in the regulation of NF-kappaB activity, cell
proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol Ther 13,
647-656, do0i:10.4161/cht.20082 (2012).



References 154

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

Austin, E., Mamalis, A., Ho, D. & Jagdeo, J. Laser and light-based therapy for cutaneous
and soft-tissue metastases of malignant melanoma: a systematic review. Arch Dermatol
Res 309, 229-242, doi:10.1007/s00403-017-1720-9 (2017).

Soengas, M. S. & Lowe, S. W. Apoptosis and melanoma chemoresistance. Oncogene
22, 3138-3151, doi:10.1038/sj.0nc.1206454 (2003).

Li, J. et al. Recent advances in targeted nanoparticles drug delivery to melanoma.
Nanomedicine 11, 769-794, doi:10.1016/j.nan0.2014.11.006 (2015).

Kim, C. et al. Long-term survival in patients with metastatic melanoma treated with
DTIC or temozolomide. Oncologist 15, 765-771, doi:10.1634/theoncologist.2009-0237
(2010).

Boussios, S., Pentheroudakis, G., Katsanos, K. & Pavlidis, N. Systemic treatment-
induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann
Gastroenterol 25, 106-118 (2012).

Jiang, G., Li, R. H., Sun, C., Liu, Y. Q. & Zheng, J. N. Dacarbazine combined targeted
therapy versus dacarbazine alone in patients with malignant melanoma: a meta-analysis.
PLoS One 9, 111920, doi:10.1371/journal.pone.0111920 (2014).

Thaxton, J. E. & Li, Z. To affinity and beyond: harnessing the T cell receptor for cancer
immunotherapy. Hum Vaccin Immunother 10, 3313-3321,
doi:10.4161/21645515.2014.973314 (2014).

Kim, R., Emi, M. & Tanabe, K. Cancer immunoediting from immune surveillance to
immune escape. Immunology 121, 1-14, doi:10.1111/j.1365-2567.2007.02587.x (2007).
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144,
646-674, doi:10.1016/j.cell.2011.02.013 (2011).

Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating
immunity's roles in cancer suppression and promotion. Science 331, 1565-1570,
doi:10.1126/science.1203486 (2011).

Quandt, D., Hoff, H., Rudolph, M., Fillatreau, S. & Brunner-Weinzierl, M. C. A new
role of CTLA-4 on B cells in thymus-dependent immune responses in vivo. J Immunol
179, 7316-7324, doi:10.4049/jimmunol.179.11.7316 (2007).

Allison, J. P. & Krummel, M. F. The Yin and Yang of T cell costimulation. Science
270, 932-933, doi:10.1126/science.270.5238.932 (1995).

Perkins, D. et al. Regulation of CTLA-4 expression during T cell activation. J Immunol
156, 4154-4159 (1996).

Greene, J. L. et al. Covalent dimerization of CD28/CTLA-4 and oligomerization of
CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem 271, 26762-26771,
d0i:10.1074/jbc.271.43.26762 (1996).

Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-
defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210, 1695-
1710, doi:10.1084/jem.20130579 (2013).

Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic
melanoma. N Engl J Med 363, 711-723, doi:10.1056/NEJM0al1003466 (2010).
Good-Jacobson, K. L. et al. PD-1 regulates germinal center B cell survival and the
formation and affinity of long-lived plasma cells. Nat Immunol 11, 535-542,
d0i:10.1038/ni.1877 (2010).

Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in
tolerance and immunity. Annu Rev Immunol 26, 677-704,
doi:10.1146/annurev.immunol.26.021607.090331 (2008).

Raedler, L. A. Opdivo (Nivolumab): Second PD-1 Inhibitor Receives FDA Approval
for Unresectable or Metastatic Melanoma. Am Health Drug Benefits 8, 180-183 (2015).
Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med
369, 122-133, doi:10.1056/NEJM0al1302369 (2013).



References 155

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Wolchok, J. D. et al. Overall Survival with Combined Nivolumab and Ipilimumab in
Advanced Melanoma. N Engl J Med 377, 1345-1356, doi:10.1056/NEJMo0al709684
(2017).

Samlowski, W. E. et al. High frequency of brain metastases after adjuvant therapy for
high-risk melanoma. Cancer Med 6, 2576-2585, doi:10.1002/cam4.1223 (2017).
Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science
348, 69-74, doi:10.1126/science.aaa4971 (2015).

Riaz, N. et al. The role of neoantigens in response to immune checkpoint blockade. Int
Immunol 28, 411-419, doi:10.1093/intimm/dxw019 (2016).

Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune
resistance. Nature 515, 568-571, doi:10.1038/nature13954 (2014).

Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu
Rev Immunol 22, 329-360, doi:10.1146/annurev.immunol.22.012703.104803 (2004).
Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in
metastatic melanoma. Science 350, 207-211, doi:10.1126/science.aad0095 (2015).
Anagnostou, V. et al. Evolution of Neoantigen Landscape during Immune Checkpoint
Blockade in Non-Small Cell Lung Cancer. Cancer Discov 7, 264-276,
doi:10.1158/2159-8290.CD-16-0828 (2017).

Zaretsky, J. M. et al. Mutations Associated with Acquired Resistance to PD-1 Blockade
in Melanoma. N Engl J Med 375, 819-829, doi:10.1056/NEJM0a1604958 (2016).
Zhao, F. et al. Melanoma Lesions Independently Acquire T-cell Resistance during
Metastatic Latency. Cancer Res 76, 4347-4358, doi:10.1158/0008-5472.CAN-16-0008
(2016).

Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic
properties of tumors associated with local immune cytolytic activity. Cell 160, 48-61,
doi:10.1016/j.cell.2014.12.033 (2015).

Roh, W. et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4
and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9,
doi:10.1126/scitransImed.aah3560 (2017).

Homet Moreno, B. et al. Response to Programmed Cell Death-1 Blockade in a Murine
Melanoma Syngeneic Model Requires Costimulation, CD4, and CD8 T Cells. Cancer
Immunol Res 4, 845-857, doi:10.1158/2326-6066.CIR-16-0060 (2016).

Shin, D. S. et al. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations.
Cancer Discov 7, 188-201, doi:10.1158/2159-8290.CD-16-1223 (2017).

Gao, J. et al. Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of
Resistance to  Anti-CTLA-4  Therapy. Cell 167, 397-404 €399,
doi:10.1016/j.cell.2016.08.069 (2016).

Liu, C. et al. BRAF inhibition increases tumor infiltration by T cells and enhances the
antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19, 393-403,
d0i:10.1158/1078-0432.CCR-12-1626 (2013).

Liu, L. et al. The BRAF and MEK Inhibitors Dabrafenib and Trametinib: Effects on
Immune Function and in Combination with Immunomodulatory Antibodies Targeting
PD-1, PD-L1, and CTLA-4. Clin Cancer Res 21, 1639-1651, doi:10.1158/1078-
0432.CCR-14-2339 (2015).

George, S. et al. Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint
Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity 46, 197-204,
do0i:10.1016/j.immuni.2017.02.001 (2017).

Peng, W. et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy.
Cancer Discov 6, 202-216, doi:10.1158/2159-8290.CD-15-0283 (2016).



References 156

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

O'Donnell, J. S., Massi, D., Teng, M. W. L. & Mandala, M. PI3K-AKT-mTOR
inhibition in cancer immunotherapy, redux. Semin Cancer Biol 48, 91-103,
doi:10.1016/j.semcancer.2017.04.015 (2018).

Kaneda, M. M. et al. Corrigendum: PI3Kgamma is a molecular switch that controls
immune suppression. Nature 542, 124, doi:10.1038/nature21026 (2017).

Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in
BRAF-mutant melanoma. Nature 467, 596-599, doi:10.1038/nature09454 (2010).
Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF
V600E mutation. N Eng J Med 364, 2507-2516,
doi:10.1056/NEJM0a1103782.Improved (2011).

Sosman, J. A. etal. Survival in BRAF V600—Mutant Advanced Melanoma Treated with
Vemurafenib. N Eng J Med 366, 707-714, doi:10.1056/NEJMo0al1112302.Survival
(2012).

Shi, H., Hugo, W. & Kong, X. Acquired resistance and clonal evolution in melanoma
during BRAF inhibior therapy. Cancer Discov. 144, 724-732, doi:10.1038/jid.2014.371
(2014).

Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by
tumor genomic profiling. Journal of Clinical Oncology 29, 3085-3096,
d0i:10.1200/JC0.2010.33.2312 (2011).

Manzano, J. L. et al. Resistant mechanisms to BRAF inhibitors in melanoma. Annals of
translational medicine 4 (2016).

Neuzillet, C. et al. MEK in cancer and cancer therapy. Pharmacol Ther 141, 160-171,
doi:10.1016/j.pharmthera.2013.10.001 (2014).

Lugowska, I., Kosela-Paterczyk, H., Kozak, K. & Rutkowski, P. Trametinib: a MEK
inhibitor for management of metastatic melanoma. Onco Targets Ther 8, 2251-2259,
doi:10.2147/0TT.S72951 (2015).

Banks, M., Crowell, K., Proctor, A. & Jensen, B. C. Cardiovascular Effects of the MEK
Inhibitor, Trametinib: A Case Report, Literature Review, and Consideration of
Mechanism. Cardiovasc Toxicol 17, 487-493, doi:10.1007/s12012-017-9425-z (2017).
Ribas, A. et al. Combination of vemurafenib and cobimetinib in patients with advanced
BRAF(V600)-mutated melanoma: a phase 1b study. Lancet Oncol 15, 954-965,
d0i:10.1016/S1470-2045(14)70301-8 (2014).

Larkin, J. et al. Combined Vemurafenib and Cobimetinib in BRAF-Mutated Melanoma.
The New England journal of medicine 371, 1867-1876, doi:10.1056/NEJM0al1408868
(2014).

Ascierto, P. A. et al. Cobimetinib combined with vemurafenib in advanced
BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a
randomised, double-blind, phase 3 trial. Lancet Oncol 17, 1248-1260,
d0i:10.1016/S1470-2045(16)30122-X (2016).

Sun, C. et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in
melanoma. Nature 508, 118-122, doi:10.1038/nature13121 (2014).

Paraiso, K. H. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells
through the suppression of BIM expression. Cancer Res 71, 2750-2760,
d0i:10.1158/0008-5472.CAN-10-2954 (2011).

Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF
dependence in melanomas harboring (V600E)BRAF. Oncogene 31, 446-457,
d0i:10.1038/0nc.2011.250 (2012).

Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF
inhibitors through HGF secretion. Nature 487, 500-504, doi:10.1038/nature11183
(2012).



References 157

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK
or N-RAS upregulation. Nature 468, 973-977, doi:10.1038/nature09626 (2010).
Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor
progression through CRAF. Cell 140, 209-221, doi:10.1016/j.cell.2009.12.040 (2010).
Su, F. et al. Resistance to selective BRAF inhibition can be mediated by modest
upstream pathway activation. Cancer Res 72, 969-978, doi:10.1158/0008-5472.CAN-
11-1875 (2012).

Johnson, D. B. et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis
of the spectrum and frequencies, clinical behaviour, and phenotypic associations of
resistance mechanisms. Eur J Cancer 51, 2792-2799, doi:10.1016/j.ejca.2015.08.022
(2015).

Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of
aberrantly spliced BRAF(V600E). Nature 480, 387-390, doi:10.1038/nature10662
(2011).

Rizos, H. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma:
spectrum and clinical impact. Clin Cancer Res 20, 1965-1977, doi:10.1158/1078-
0432.CCR-13-3122 (2014).

Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase
pathway reactivation. Nature 468, 968-972, doi:10.1038/nature09627 (2010).
Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase
switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer
Cell 18, 683-695, doi:10.1016/j.ccr.2010.11.023 (2010).

Trunzer, K. et al. Pharmacodynamic effects and mechanisms of resistance to
vemurafenib in patients with metastatic melanoma. Journal of Clinical Oncology,
d0i:10.1200/JC0.2012.44.7888 (2013).

Carlino, M. S. et al. Preexisting MEK1P124 mutations diminish response to BRAF
inhibitors in metastatic melanoma patients. Clin Cancer Res 21, 98-105,
doi:10.1158/1078-0432.CCR-14-0759 (2015).

Muller, J. et al. Low MITF/AXL ratio predicts early resistance to multiple targeted
drugs in melanoma. Nat Commun 5, 5712, doi:10.1038/ncomms6712 (2014).

Martz, C. A. et al. Systematic identification of signaling pathways with potential to
confer anticancer drug resistance. Sci Signal 7, ral21, doi:10.1126/scisignal.aaal877
(2014).

Karoulia, Z., Gavathiotis, E. & Poulikakos, P. 1. New perspectives for targeting RAF
kinase in human cancer. Nat Rev Cancer 17, 676-691, doi:10.1038/nrc.2017.79 (2017).
Eroglu, Z. & Ribas, A. Combination therapy with BRAF and MEK inhibitors for
melanoma: latest evidence and place in therapy. Ther Adv Med Oncol 8, 48-56,
d0i:10.1177/1758834015616934 (2016).

Welsh, S. J. & Corrie, P. G. Management of BRAF and MEK inhibitor toxicities in
patients with metastatic melanoma. Ther Adv Med Oncol 7, 122-136,
doi:10.1177/1758834014566428 (2015).

Goetz, E. M., Ghandi, M., Treacy, D. J., Wagle, N. & Garraway, L. A. ERK mutations
confer resistance to mitogen-activated protein kinase pathway inhibitors. Cancer Res
74, 7079-7089, doi:10.1158/0008-5472.CAN-14-2073 (2014).

Moriceau, G. et al. Tunable-combinatorial mechanisms of acquired resistance limit the
efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell
27, 240-256, d0i:10.1016/j.ccell.2014.11.018 (2015).

Kwong, L. N. & Davies, M. A. Navigating the therapeutic complexity of PI3K pathway
inhibition in melanoma. Clin Cancer Res 19, 5310-5319, doi:10.1158/1078-0432.CCR-
13-0142 (2013).



References 158

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

Penna, I. et al. Primary cross-resistance to BRAFV600E-, MEK1/2- and PI3K/mTOR-
specific inhibitors in BRAF-mutant melanoma cells counteracted by dual pathway
blockade. Oncotarget 7, 3947-3965, doi:10.18632/oncotarget.6600 (2016).

Long, G. V. et al. Increased MAPK reactivation in early resistance to
dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat
Commun 5, 5694, doi:10.1038/ncomms6694 (2014).

Rajasagi, M. et al. Systematic identification of personal tumor-specific neoantigens in
chronic lymphocytic leukemia. Blood 124, 453-462, doi:10.1182/blood-2014-04-
567933 (2014).

Dong, L. et al. Clinical Next Generation Sequencing for Precision Medicine in Cancer.
Curr Genomics 16, 253-263, d0i:10.2174/1389202915666150511205313 (2015).
Welinder, C. et al. Correlation of histopathologic characteristics to protein expression
and function in  malignant melanoma. PLoS One 12, e0176167,
doi:10.1371/journal.pone.0176167 (2017).

Bystrom, S. et al. Affinity Proteomics Exploration of Melanoma Identifies Proteins in
Serum with Associations to T-Stage and Recurrence. Transl Oncol 10, 385-395,
doi:10.1016/j.tranon.2017.03.002 (2017).

Klein, W. M. et al. Increased expression of stem cell markers in malignant melanoma.
Mod Pathol 20, 102-107, doi:10.1038/modpathol.3800720 (2007).

Sellheyer, K. & Krahl, D. Spatiotemporal expression pattern of neuroepithelial stem cell
marker nestin suggests a role in dermal homeostasis, neovasculogenesis, and tumor
stroma development: A study on embryonic and adult human skin. Journal of American
Dermatology 63, 93-113, doi:10.1016/j.jaad.2009.07.013 (2009).

Qendro, V. et al. Large-scale proteomic characterization of melanoma expressed
proteins reveals nestin and vimentin as biomarkers that can potentially distinguish
melanoma  subtypes. Journal of proteome research 13, 5031-5040,
d0i:10.1021/pr5006789 (2014).

Neradil, J. & Veselska, R. Nestin as a marker of cancer stem cells. Cancer Sci 106,
doi:10.1111/cas.12691 (2015).

Bernal, A. & Arranz, L. Nestin-expressing progenitor cells: function, identity and
therapeutic implications. Cell Mol Life Sci 75, 2177-2195, doi:10.1007/s00018-018-
2794-7 (2018).

Michalczyk, K. & Ziman, M. Nestin structure and predicted function in cellular
cytoskeletal organisation. Histol Histopathol 20, 665-671, doi:10.14670/HH-20.665
(2005).

Ishiwata, T., Teduka, K. & Yamamoto, T. Neuroepithelial stem cell marker nestin
regulates the migration , invasion and growth of human gliomas. Oncology reports, 91-
99, doi:10.3892/0r.2011.1267 (2011).

Brychtova, S., Fiuraskova, M., Hlobilkova, A., Brychta, T. & Hirnak, J. Nestin
expression in cutaneous melanomas and melanocytic nevi. J Cutan Pathol 34, 370-375,
doi:10.1111/j.1600-0560.2006.00627.x (2007).

Matsuda, Y., Ishiwata, T., Yoshimura, H., Yamahatsu, K. & Minamoto, T. Nestin
phosphorylatin at threonine 315 and 1299 correlates with proliferation and metastasis
of human pancreatic cancer. Cancer Sci 108, 354-361, doi:10.1111/cas.13139 (2016).
Hyder, C. L., Lazaro, G., Pylva, J. W., Qvarnstro, S. M. & Eriksson, J. E. Nestin
regulates prostate cancer cell invasion by influencing the localisation and functions of
FAK and integrins. Journal of cell science 127, 2161-2173, doi:10.1242/jcs.125062
(2014).

Ladstein, R. G., Bachmann, I. M., Straume, O. & Akslen, L. A. Nestin expression is
associated with aggressive cutaneous melanoma of the nodular type. Mod Pathol 27,
396-401, doi:10.1038/modpathol.2013.151 (2014).



References 159

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Ishiwata, T. et al. Nestin in gastrointestinal and other cancers : Effects on cells and
tumor angiogenesis. World J Gastoenterol 17, 409-418, doi:10.3748/wjg.v17.i4.409
(2011).

Piras, F. et al. The stem cell marker nestin predicts poor prognosis in human melanoma
The stem cell marker nestin predicts poor prognosis in human melanoma. Oncology
reports 23, 17-24, doi:10.3892/or (2010).

Akiyama, M., Matsuda, Y., Ishiwata, T., Naito, Z. & Kawana, S. Inhibition of the Stem
Cell Marker Nestin Reduces Tumor Growth and Invasion of Malignant Melanoma.
Journal of investigative Dermatology 133, 1384-1387, doi:10.1038/jid.2012.508
(2013).

Narita, K. et al. Nestin regulates proliferation, migration, invasion and stemness of lung
adenocarcinoma. Int J Oncol 44, 1118-1130, doi:10.3892/ij0.2014.2278 (2014).
Yamahatsu, K., Matsuda, Y., Ishiwata, T., Uchida, E. & Naito, Z. Nestin as a novel
therapeutic target for pancreatic cancer via tumor angiogenesis. Int J Oncol 40, 1345-
1357, doi:10.3892/ij0.2012.1333 (2012).

Lee, C.-W. et al. Nestin depletion induces melanoma matrix metalloproteinases and
invasion. Lab Invest 94, 1382-1395, doi:10.1083/jcb.200504124 (2014).

Otto, F., Lubbert, M. & Stock, M. Upstream and downstream targets of RUNX proteins.
Journal of cellular biochemistry 89, 9-18 (2003).

Levanon, D. & Groner, Y. Structure and regulated expression of mammalian RUNX
genes. Oncogene 23, 4211 (2004).

Westendorf, J. J. & Hiebert, S. W. Mammalian runt-domain proteins and their roles in
hematopoiesis, osteogenesis, and leukemia. Journal of cellular biochemistry 75, 51-58
(1999).

Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-f superfamily
signaling. Current opinion in genetics & development 13, 43-47 (2003).

Goyama, S. & Mulloy, J. C. Molecular pathogenesis of core binding factor leukemia:
current knowledge and future prospects. International journal of hematology 94, 126-
133 (2011).

Bartfeld, D. et al. DNA recognition by the RUNX1 transcription factor is mediated by
an allosteric transition in the RUNT domain and by DNA bending. Structure 10, 1395-
1407 (2002).

Hyde, R. K. et al. Cbfb/Runx1 repression-independent blockage of differentiation and
accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood 115, 1433-1443,
doi:10.1182/blood-2009-06-227413 (2010).

Harada, H. et al. High incidence of somatic mutations in the AML1/RUNX1 gene in
myelodysplastic syndrome and low blast percentage myeloid leukemia with
myelodysplasia. Blood 103, 2316-2324 (2004).

Imai, Y. et al. Mutations of the AML1 gene in myelodysplastic syndrome and their
functional implications in leukemogenesis. Blood 96, 3154-3160 (2000).

Consortium, A. P. G. AACR Project GENIE: Powering Precision Medicine through an
International Consortium. Cancer Discov 7, 818-831, d0i:10.1158/2159-8290.CD-17-
0151 (2017).

Miyoshi, H. et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are
clustered within a limited region of a single gene, AMLL1. Proc Natl Acad Sci U S A 88,
10431-10434, doi:10.1073/pnas.88.23.10431 (1991).

Sun, X. J. et al. A stable transcription factor complex nucleated by oligomeric AML1-
ETO controls leukaemogenesis. Nature 500, 93-97, doi:10.1038/nature12287 (2013).
Chimge, N. & Frenkel, B. The RUNX family in breast cancer: relationships with
estrogen signaling. Oncogene 32, 2121 (2013).



References 160

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

Scheitz, C.J. F., Lee, T. S., McDermitt, D. J. & Tumbar, T. Defining a tissue stem cell-
driven Runx1/Stat3 signalling axis in epithelial cancer. The EMBO journal 31, 4124-
4139 (2012).

Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of
metastasis in primary solid tumors. Nature genetics 33, 49 (2002).

Giricz, O. et al. The RUNX1/IL-34/CSF-1R axis is an autocrinally regulated modulator
of resistance to BRAF-V600E inhibition in melanoma. JCI insight 3 (2018).

Goyama, S., Huang, G., Kurokawa, M. & Mulloy, J. C. Posttranslational modifications
of RUNX1 as potential anticancer targets. Oncogene 34, 3483-3492,
doi:10.1038/onc.2014.305 (2015).

Zhang, L., Fried, F. B., Guo, H. & Friedman, A. D. Cyclin-dependent kinase
phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and
stimulates cell proliferation. Blood 111, 1193-1200 (2008).

Biggs, J. R., Peterson, L. F., Zhang, Y., Kraft, A. S. & Zhang, D.-E. AML1/RUNX1
phosphorylation by cyclin-dependent kinases regulates the degradation of
AML1/RUNX1 by the anaphase-promoting complex. Molecular and cellular biology
26, 7420-7429 (2006).

Tanaka, T. et al. The extracellular signal-regulated kinase pathway phosphorylates
AML1, an acute myeloid leukemia gene product, and potentially regulates its
transactivation ability. Molecular and cellular biology 16, 3967-3979 (1996).

Imai, Y. et al. The corepressor mSin3A regulates phosphorylation-induced activation,
intranuclear location, and stability of AML1. Mol Cell Biol 24, 1033-1043,
d0i:10.1128/mcb.24.3.1033-1043.2004 (2004).

Jin, Y. H. et al. Transforming growth factor-beta stimulates p300-dependent RUNX3
acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem 279,
29409-29417, doi:10.1074/jbc.M313120200 (2004).

Wee, H. J,, Voon, D. C., Bae, S. C. & Ito, Y. PEBP2-beta/CBF-beta-dependent
phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis.
Blood 112, 3777-3787, do0i:10.1182/blood-2008-01-134122 (2008).

Yamaguchi, Y. et al. AML1 is functionally regulated through p300-mediated
acetylation on specific lysine residues. Journal of Biological Chemistry 279, 15630-
15638 (2004).

Lazer, G. & Katzav, S. Guanine nucleotide exchange factors for RhoGTPases: good
therapeutic  targets for cancer therapy? Cell Signal 23, 969-979,
doi:10.1016/j.cellsig.2010.10.022 (2011).

Cote, J. F. & Vuori, K. Identification of an evolutionarily conserved superfamily of
DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci 115,
4901-4913, d0i:10.1242/jcs.00219 (2002).

Cote, J. F. & Vuori, K. In vitro guanine nucleotide exchange activity of DHR-
2/DOCKER/CZH2 domains. Methods Enzymol 406, 41-57, doi:10.1016/S0076-
6879(06)06004-6 (2006).

Kobayashi, S. et al. Membrane recruitment of DOCK180 by binding to PtdIns(3,4,5)P3.
Biochem J 354, 73-78, d0i:10.1042/0264-6021:3540073 (2001).

Nishikimi, A. et al. Sequential regulation of DOCK2 dynamics by two phospholipids
during neutrophil chemotaxis. Science 324, 384-387, doi:10.1126/science.1170179
(2009).

Sanematsu, F. et al. Phosphatidic acid-dependent recruitment and function of the Rac
activator DOCK1 during dorsal ruffle formation. J Biol Chem 288, 8092-8100,
doi:10.1074/jbc.M112.410423 (2013).



References 161

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

Komander, D. et al. An alpha-helical extension of the ELMO1 pleckstrin homology
domain mediates direct interaction to DOCK180 and is critical in Rac signaling. Mol
Biol Cell 19, 4837-4851, doi:10.1091/mbc.E08-04-0345 (2008).

Lu, M. et al. A Steric-inhibition model for regulation of nucleotide exchange via the
Dock180 family of GEFs. Curr Biol 15, 371-377, doi:10.1016/j.cub.2005.01.050
(2005).

Patel, M., Pelletier, A. & Cote, J. F. Opening up on ELMO regulation: New insights
into the control of Rac signaling by the DOCK180/ELMO complex. Small GTPases 2,
268-275, d0i:10.4161/sgtp.2.5.17716 (2011).

Patel, M. et al. An evolutionarily conserved autoinhibitory molecular switch in ELMO
proteins regulates Rac signaling. Curr Biol 20, 2021-2027,
doi:10.1016/j.cub.2010.10.028 (2010).

Makino, Y. et al. EImol inhibits ubiquitylation of Dock180. J Cell Sci 119, 923-932,
doi:10.1242/jcs.02797 (2006).

Feng, H. et al. EGFRvIII stimulates glioma growth and invasion through PKA-
dependent serine phosphorylation of Dock180. Oncogene 33, 2504-2512,
d0i:10.1038/0nc.2013.198 (2014).

Jarzynka, M. J. et al. ELMO1 and Dock180, a bipartite Racl guanine nucleotide
exchange factor, promote human glioma cell invasion. Cancer Res 67, 7203-7211,
doi:10.1158/0008-5472.CAN-07-0473 (2007).

Feng, H. et al. Activation of Racl by Src-dependent phosphorylation of
Dock180(Y1811) mediates PDGFRalpha-stimulated glioma tumorigenesis in mice and
humans. J Clin Invest 121, 4670-4684, doi:10.1172/JCI58559 (2011).

Laurin, M. et al. Rac-specific guanine nucleotide exchange factor DOCKL is a critical
regulator of HER2-mediated breast cancer metastasis. Proc Natl Acad Sci U S A 110,
7434-7439, doi:10.1073/pnas.1213050110 (2013).

Feng, H. et al. Phosphorylation of dedicator of cytokinesis 1 (Dock180) at tyrosine
residue Y722 by Src family kinases mediates EGFRvIII-driven glioblastoma
tumorigenesis. Proc  Natl Acad Sci U S A 109, 3018-3023,
doi:10.1073/pnas.1121457109 (2012).

Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis
gene. Cell 125, 1269-1281, doi:10.1016/j.cell.2006.06.008 (2006).

Tomino, T. et al. DOCKL inhibition suppresses cancer cell invasion and
macropinocytosis induced by self-activating Rac1(P29S) mutation. Biochem Biophys
Res Commun 497, 298-304, doi:10.1016/j.bbrc.2018.02.073 (2018).

Tajiri, H. et al. Targeting Ras-Driven Cancer Cell Survival and Invasion through
Selective Inhibition of DOCK1. Cell Rep 19, 969-980,
doi:10.1016/j.celrep.2017.04.016 (2017).

Watson, I. R. et al. The RAC1 P29S hotspot mutation in melanoma confers resistance
to pharmacological inhibition of RAF. Cancer Res 74, 4845-4852, doi:10.1158/0008-
5472.CAN-14-1232-T (2014).

Vu, H. L., Rosenbaum, S., Purwin, T. J., Davies, M. A. & Aplin, A. E. RAC1 P29S
regulates PD-L1 expression in melanoma. Pigment Cell Melanoma Res 28, 590-598,
doi:10.1111/pcmr.12392 (2015).

Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are
associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575,
doi:10.1046/j.1365-2958.2002.02839.x (2002).

Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive
bacterial immunity. Science 337, 816-821, doi:10.1126/science.1225829 (2012).



References 162

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein
complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl
Acad Sci U S A 109, E2579-2586, doi:10.1073/pnas.1208507109 (2012).

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339,
819-823, doi:10.1126/science.1231143 (2013).

Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471,
doi:10.7554/eLife.00471 (2013).

Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea:
versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297,
doi:10.1146/annurev-genet-110410-132430 (2011).

Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in Genome Editing and Beyond.
Annual Review of Biochemistry 85, 227-264, doi:10.1146/annurev-biochem-060815-
014607 (2016).

Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type
Il CRISPR-Cas immunity systems. RNA Biol 10, 726-737, doi:10.4161/rna.24321
(2013).

Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome
engineering with CRISPR-Cas9. Science 346, 1258096, doi:10.1126/science.1258096
(2014).

Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target
DNA. Cell 156, 935-949, doi:10.1016/j.cell.2014.02.001 (2014).
Rodriguez-Rodriguez, D. R., Ramirez-Solis, R., Garza-Elizondo, M. A., Garza-
Rodriguez, M. L. & Barrera-Saldana, H. A. Genome editing: A perspective on the
application of CRISPR/Cas9 to study human diseases (Review). Int J Mol Med 43,
1559-1574, doi:10.3892/ijmm.2019.4112 (2019).

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome
editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636-646,
d0i:10.1038/nrg2842 (2010).

Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases.
Genetics 186, 757-761, doi:10.1534/genetics.110.120717 (2010).

Joung, J. K. & Sander, J. D. TALENSs: a widely applicable technology for targeted
genome editing. Nat Rev Mol Cell Biol 14, 49-55, doi:10.1038/nrm3486 (2013).

Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nature protocols
8, 2281-2308, d0i:10.1038/nprot.2013.143.Genome (2013).

Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9
for genome engineering. Cell 157, 1262-1278, doi:10.1016/j.cell.2014.05.010 (2014).
Tian, X. et al. CRISPR/Cas9 - An evolving biological tool kit for cancer biology and
oncology. NPJ Precis Oncol 3, 8, doi:10.1038/s41698-019-0080-7 (2019).

Liu, M. et al. Methodologies for Improving HDR Efficiency. Front Genet 9, 691,
doi:10.3389/fgene.2018.00691 (2018).

Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing
homology-directed genome editing by catalytically active and inactive CRISPR-Cas9
using asymmetric donor DNA. Nat Biotechnol 34, 339-344, doi:10.1038/nbt.3481
(2016).

Ferreira da Silva, J. et al. Genome-scale CRISPR screens are efficient in non-
homologous end-joining deficient cells. Sci Rep 9, 15751, doi:10.1038/s41598-019-
52078-9 (2019).

He, X. et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced
homology-dependent and independent DNA repair. Nucleic Acids Res 44, e85,
d0i:10.1093/nar/gkw064 (2016).



References 163

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: a review
of the challenges and approaches. Drug Deliv 25, 1234-1257,
doi:10.1080/10717544.2018.1474964 (2018).

Sharma, A. et al. CRISPR/Cas9-Mediated Fluorescent Tagging of Endogenous Proteins
in Human Pluripotent Stem Cells. Curr Protoc Hum Genet 96, 21 11 21-21 11 20,
doi:10.1002/cphg.52 (2018).

Cebrian-Serrano, A. & Davies, B. CRISPR-Cas orthologues and variants: optimizing
the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 28,
247-261, doi:10.1007/s00335-017-9697-4 (2017).

Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA
specificity. Nature 556, 57-63, doi:10.1038/nature26155 (2018).

Hajiahmadi, Z. et al. Strategies to Increase On-Target and Reduce Off-Target Effects
of the CRISPR/Cas9 System in Plants. Int J Mol Sci 20, doi:10.3390/ijms20153719
(2019).

Shen, B. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal
off-target effects. Nat Methods 11, 399-402, doi:10.1038/nmeth.2857 (2014).
Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR-Cas9
for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17, 5-15,
d0i:10.1038/nrm.2015.2 (2016).

Larson, M. H. et al. CRISPR interference (CRISPRIi) for sequence-specific control of
gene expression. Nat Protoc 8, 2180-2196, doi:10.1038/nprot.2013.132 (2013).

Chen, B., Zou, W., Xu, H., Liang, Y. & Huang, B. Efficient labeling and imaging of
protein-coding genes in living cells using CRISPR-Tag. Nat Commun 9, 5065,
doi:10.1038/s41467-018-07498-y (2018).

Zhan, T., Rindtorff, N., Betge, J., Ebert, M. P. & Boutros, M. CRISPR/Cas9 for cancer
research and therapy. Semin Cancer Biol 55, 106-119,
doi:10.1016/j.semcancer.2018.04.001 (2019).

White, M. K. & Khalili, K. CRISPR/Cas9 and cancer targets: future possibilities and
present challenges. Oncotarget 7, 12305-12317, doi:10.18632/oncotarget.7104 (2016).
Saunderson, E. A. et al. Hit-and-run epigenetic editing prevents senescence entry in
primary breast cells from healthy donors. Nat Commun 8, 1450, doi:10.1038/s41467-
017-01078-2 (2017).

Wang, H. & Sun, W. CRISPR-mediated targeting of HERZ2 inhibits cell proliferation
through a dominant negative mutation. Cancer Lett 385, 137-143,
doi:10.1016/j.canlet.2016.10.033 (2017).

Heckl, D. et al. Generation of mouse models of myeloid malignancy with combinatorial
genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32, 941-946,
d0i:10.1038/nbt.2951 (2014).

Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen
for pairwise genetic interactions. Nat Biotechnol 35, 463-474, doi:10.1038/nbt.3834
(2017).

Bester, A. C. et al. An Integrated Genome-wide CRISPRa Approach to Functionalize
IncRNAs in Drug Resistance. Cell 173, 649-664 €620, doi:10.1016/j.cell.2018.03.052
(2018).

Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and
metastasis. Cell 160, 1246-1260, doi:10.1016/j.cell.2015.02.038 (2015).

Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein
domains. Nat Biotechnol 33, 661-667, doi:10.1038/nbt.3235 (2015).

Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356,
438-442, doi:10.1126/science.aam9321 (2017).



References 164

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280-284,
doi:10.1038/nature24049 (2017).

Chen, J. S. et al. CRISPR-Casl12a target binding unleashes indiscriminate single-
stranded DNase activity. Science 360, 436-439, doi:10.1126/science.aar6245 (2018).
Ayoubi, T. A. & Van De Ven, W. J. Regulation of gene expression by alternative
promoters. FASEB J 10, 453-460 (1996).

Schneider, M. V. & Orchard, S. Omics technologies, data and bioinformatics principles.
Methods Mol Biol 719, 3-30, d0i:10.1007/978-1-61779-027-0_1 (2011).

Vir4g, D. et al. Current Trends in the Analysis of Post-translational Modifications.
Chromatographia 83, 1-10, doi:10.1007/s10337-019-03796-9 (2019).

Larance, M. & Lamond, A. I. Multidimensional proteomics for cell biology. Nat Rev
Mol Cell Biol 16, 269-280, d0i:10.1038/nrm3970 (2015).

Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575-581,
doi:10.1038/nature13302 (2014).

Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 5009,
582-587, doi:10.1038/nature13319 (2014).

Duan, G. & Walther, D. The roles of post-translational modifications in the context of
protein  interaction  networks. PLoS  Comput Biol 11, e1004049,
doi:10.1371/journal.pchi.1004049 (2015).

Minguez, P. et al. Deciphering a global network of functionally associated post-
translational modifications. Mol Syst Biol 8, 599, doi:10.1038/msb.2012.31 (2012).
Beltrao, P., Bork, P., Krogan, N. J. & van Noort, V. Evolution and functional cross-talk
of protein post-translational ~modifications. Mol Syst Biol 9, 714,
d0i:10.1002/msb.201304521 (2013).

Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature
of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-1594,
d0i:10.1016/j.celrep.2014.07.036 (2014).

Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full
phosphorylation  site  occupancy during mitosis. Sci  Signal 3, ra3,
doi:10.1126/scisignal.2000475 (2010).

Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal
integration. Nat Struct Mol Biol 17, 666-672, doi:10.1038/nsmb.1842 (2010).

Allfrey, V. G. & Mirsky, A. E. Structural Modifications of Histones and their Possible
Role in the Regulation of RNA Synthesis. Science 144, 559,
doi:10.1126/science.144.3618.559 (1964).

Pazin, M. J. & Kadonaga, J. T. What's up and down with histone deacetylation and
transcription? Cell 89, 325-328, doi:10.1016/s0092-8674(00)80211-1 (1997).

Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a
proteomics survey. Mol Cell 23, 607-618, doi:10.1016/j.molcel.2006.06.026 (2006).
Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates
major cellular functions. Science 325, 834-840, doi:10.1126/science.1175371 (2009).
Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat
Rev Mol Cell Biol 6, 79-87, doi:10.1038/nrm1552 (2005).

Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular
cell 28, 730-738, doi:10.1016/j.molcel.2007.11.019 (2007).

Minguez, P., Letunic, I., Parca, L. & Bork, P. PTMcode: a database of known and
predicted functional associations between post-translational modifications in proteins.
Nucleic Acids Res 41, D306-311, doi:10.1093/nar/gks1230 (2013).

Swaney, D. L. et al. Global analysis of phosphorylation and ubiquitylation cross-talk in
protein degradation. Nat Methods 10, 676-682, doi:10.1038/nmeth.2519 (2013).



References 165

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

Yao, Q., Li, H,, Liu, B. Q., Huang, X. Y. & Guo, L. SUMOQylation-regulated protein
phosphorylation, evidence from quantitative phosphoproteomics analyses. J Biol Chem
286, 27342-27349, doi:10.1074/jbc.M111.220848 (2011).
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1922/aston-lecture.html. ,
N.o.F.W.A-N.L. M. S.a. . N. M. A.

Finehout, E. J. & Lee, K. H. An introduction to mass spectrometry applications in
biological research. Biochem Mol Biol Educ 32, 93-100,
doi:10.1002/bmb.2004.494032020331 (2004).

Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198-207
(2003).

Pappireddi, N., Martin, L. & Wihr, M. A review on quantitative multiplexed
proteomics. ChemBioChem 20, 1210-1224, doi:10.1002/ (2019).

Starostin, K. V. et al. Identification of Bacillus strains by MALDI TOF MS using
geometric approach. Sci Rep 5, 16989, doi:10.1038/srep16989 (2015).
Mourino-Alvarez, L. et al. MALDI-Imaging Mass Spectrometry: a step forward in the
anatomopathological characterization of stenotic aortic valve tissue. Sci Rep 6, 27106,
doi:10.1038/srep27106 (2016).

Ho, C. S. et al. Electrospray ionisation mass spectrometry: principles and clinical
applications. The Clinical Biochemist Reviews 24, 3 (2003).

Steen, H. & Mann, M. The ABC's (and XYZ's) of peptide sequencing. Nature reviews.
Molecular cell biology 5, 699-711, doi:10.1038/nrm1468 (2004).

Scigelova, M., Hornshaw, M., Giannakopulos, A. & Makarov, A. Fourier transform
mass  spectrometry. Mol Cell Proteomics 10, M111 009431,
do0i:10.1074/mcp.M111.009431 (2011).

Han, X., Aslanian, A. & Yates, J. R., 3rd. Mass spectrometry for proteomics. Curr Opin
Chem Biol 12, 483-490, doi:10.1016/j.cbpa.2008.07.024 (2008).

Scheltema, R. A. et al. The Q Exactive HF, a Benchtop mass spectrometer with a pre-
filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol Cell
Proteomics 13, 3698-3708, doi:10.1074/mcp.M114.043489 (2014).

Schwartz, J. C., Senko, M. W. & Syka, J. E. A two-dimensional quadrupole ion trap
mass spectrometer. J Am Soc Mass Spectrom 13, 659-669, doi:10.1016/S1044-
0305(02)00384-7 (2002).

Second, T. P. et al. Dual-pressure linear ion trap mass spectrometer improving the
analysis of complex protein mixtures. Anal Chem 81, 7757-7765,
doi:10.1021/ac901278y (2009).

Hu, Q. et al. The Orbitrap: a new mass spectrometer. J Mass Spectrom 40, 430-443,
doi:10.1002/jms.856 (2005).

Makarov, A., Denisov, E., Lange, O. & Horning, S. Dynamic range of mass accuracy
in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom 17, 977-982,
d0i:10.1016/j.jasms.2006.03.006 (2006).

Zubarev, R. A. & Makarov, A. Orbitrap mass spectrometry. Anal Chem 85, 5288-5296,
d0i:10.1021/ac4001223 (2013).

Shen, Y., Tolic, N., Purvine, S. O. & Smith, R. D. Improving collision induced
dissociation (CID), high energy collision dissociation (HCD), and electron transfer
dissociation (ETD) fourier transform MS/MS degradome-peptidome identifications
using high accuracy mass information. Journal of proteome research 11, 668-677,
doi:10.1021/pr200597j (2012).

Potel, C. M., Lemeer, S. & Heck, A. J. R. Phosphopeptide Fragmentation and Site
Localization by Mass Spectrometry: An Update. Anal Chem 91, 126-141,
doi:10.1021/acs.analchem.8b04746 (2019).



http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1922/aston-lecture.html

References 166

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

Liu, J. & McLuckey, S. A. Electron Transfer Dissociation: Effects of Cation Charge
State on Product Partitioning in lon/lon Electron Transfer to Multiply Protonated
Polypeptides. Int J Mass Spectrom 330-332, 174-181, doi:10.1016/j.ijms.2012.07.013
(2012).

Perkins, D. N., Pappin, D. J., Creasy, D. M. & Caottrell, J. S. Probability-based protein
identification by searching sequence databases using mass spectrometry data.
Electrophoresis 20, 3551-3567, doi:10.1002/(SICI)1522-
2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 (1999).

Diament, B. J. & Noble, W. S. Faster SEQUEST searching for peptide identification
from tandem mass spectra. Journal of proteome research 10, 3871-3879,
doi:10.1021/pr101196n (2011).

Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized
p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature
Biotechnology 26, 1367-1372, doi:10.1038/nbt.1511 (2008).

Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant
environment. Journal of proteome research 10, 1794-1805, doi:10.1021/pr101065j
(2011).

Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database. J Am Soc
Mass Spectrom 5, 976-989, doi:10.1016/1044-0305(94)80016-2 (1994).

Gillet, L. C., Leitner, A. & Aebersold, R. Mass Spectrometry Applied to Bottom-Up
Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annu Rev Anal
Chem (Palo Alto Calif) 9, 449-472, doi:10.1146/annurev-anchem-071015-041535
(2016).

Burkhart, J. M., Schumbrutzki, C., Wortelkamp, S., Sickmann, A. & Zahedi, R. P.
Systematic and quantitative comparison of digest efficiency and specificity reveals the
impact of trypsin quality on MS-based proteomics. J Proteomics 75, 1454-1462,
d0i:10.1016/j.jprot.2011.11.016 (2012).

Liigand, P., Kaupmees, K. & Kruve, A. Influence of the amino acid composition on the
ionization efficiencies of small peptides. J Mass Spectrom 54, 481-487,
d0i:10.1002/jms.4348 (2019).

Giansanti, P., Tsiatsiani, L., Low, T. Y. & Heck, A. J. Six alternative proteases for mass
spectrometry-based proteomics beyond trypsin. Nat Protoc 11, 993-1006,
d0i:10.1038/nprot.2016.057 (2016).

Gaspari, M. & Cuda, G. Nano LC-MS/MS: a robust setup for proteomic analysis.
Methods Mol Biol 790, 115-126, doi:10.1007/978-1-61779-319-6_9 (2011).

Batth, T. S. & Olsen, J. V. in Phospho-Proteomics: Methods and Protocols (ed Louise
von Stechow) 179-192 (Springer New York, 2016).

Zubarev, R. A. The challenge of the proteome dynamic range and its implications for
in-depth proteomics. Proteomics 13, 723-726, doi:10.1002/pmic.201200451 (2013).
Manadas, B., Mendes, V. M., English, J. & Dunn, M. J. Peptide fractionation in
proteomics approaches. Expert Rev Proteomics 7, 655-663, doi:10.1586/epr.10.46
(2010).

Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment,
pre-fractionation and storage of peptides for proteomics using StageTips. Nature
protocols 2, 1896-1906, doi:10.1038/nprot.2007.261 (2007).

Zhao, Y. & Jensen, O. N. Modification-specific proteomics: strategies for
characterization of post-translational modifications using enrichment techniques.
Proteomics 9, 4632-4641, doi:10.1002/pmic.200900398 (2009).



References 167

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

Rosenfeld, J., Capdevielle, J., Guillemot, J. C. & Ferrara, P. In-gel digestion of proteins
for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal
Biochem 203, 173-179, doi:10.1016/0003-2697(92)90061-b (1992).

Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-
electrospray mass spectrometry. Nature 379, 466-469, doi:10.1038/379466a0 (1996).
Edelmann, M. J. Strong cation exchange chromatography in analysis of
posttranslational modifications: innovations and perspectives. J Biomed Biotechnol
2011, 936508, doi:10.1155/2011/936508 (2011).

Doll, S. & Burlingame, A. L. Mass spectrometry-based detection and assignment of
protein  posttranslational ~ modifications. ACS Chem Biol 10, 63-71,
d0i:10.1021/cb500904b (2015).

Mann, M., Jensen, O. N. . Proteomic analysis of post-translational modifications. Nature
Biotechnology 21, 255-261, doi:10.1038/nbt0303-255 (2003).

Riley, N. M. & Coon, J. J. Phosphoproteomics in the Age of Rapid and Deep Proteome
Profiling. Anal Chem 88, 74-94, doi:10.1021/acs.analchem.5b04123 (2016).

Cho, K. C., Chen, L., Hu, Y., Schnaubelt, M. & Zhang, H. Developing Workflow for
Simultaneous Analyses of Phosphopeptides and Glycopeptides. ACS Chem Biol 14, 58-
66, doi:10.1021/acschembio.8b00902 (2019).

Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry:
deciphering the phosphoproteome. Trends in Biotechnology 20, 261-268,
d0i:10.1016/S0167-7799(02)01944-3 (2002).

Bian, Y. et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine
superbinder. Nat Chem Biol 12, 959-966, doi:10.1038/nchembio.2178 (2016).

Li, Q. R., Ning, Z. B, Tang, J. S., Nie, S. & Zeng, R. Effect of peptide-to-TiO2 beads
ratio on phosphopeptide enrichment selectivity. Journal of proteome research 8, 5375-
5381, d0i:10.1021/pr900659n (2009).

Zarei, M., Sprenger, A., Rackiewicz, M. & Dengjel, J. Fast and easy phosphopeptide
fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth
phosphoproteome analysis. Nat Protoc 11, 37-45, doi:10.1038/nprot.2015.134 (2016).
Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212-
217, doi:10.1126/science.1124619 (2006).

Macek, B., Mann, M. & Olsen, J. V. Global and site-specific quantitative
phosphoproteomics: principles and applications. Annual review of pharmacology and
toxicology 49, 199-221, doi:10.1146/annurev.pharmtox.011008.145606 (2009).

Ong, S. E. & Mann, M. Mass spectrometry-based proteomics turns quantitative. Nat
Chem Biol 1, 252-262, d0i:10.1038/nchembio736 (2005).

Lindemann, C. et al. Strategies in relative and absolute quantitative mass spectrometry
based proteomics. Biol Chem 398, 687-699, doi:10.1515/hsz-2017-0104 (2017).
Nahnsen, S., Bielow, C., Reinert, K. & Kohlbacher, O. Tools for label-free peptide
quantification. Mol Cell Proteomics 12, 549-556, doi:10.1074/mcp.R112.025163
(2013).

Zhou, J. Y. et al. Improved LC-MS/MS spectral counting statistics by recovering low-
scoring spectra matched to confidently identified peptide sequences. Journal of
proteome research 9, 5698-5704, doi:10.1021/pr100508p (2010).

Karpievitch, Y. V., Dabney, A. R. & Smith, R. D. Normalization and missing value
imputation for label-free LC-MS analysis. BMC Bioinformatics 13 Suppl 16, S5,
do0i:10.1186/1471-2105-13-S16-S5 (2012).

Ong, S. E., Blagoev, B. Stable Isotope Labeling by Amino Acids in Cell Culture,
SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular &
Cellular Proteomics, doi:10.1074/ (2002).

Mann, M. Functional and quantitative proteomics using SILAC. Nature 7 (2006).



References 168

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

Zhang, G., Fenyo, D. & Neubert, T. A. Evaluation of the variation in sample preparation
for comparative proteomics using stable isotope labeling by amino acids in cell culture.
Journal of proteome research 8, 1285-1292, doi:10.1021/pr8006107 (2009).

Liu, T., Belov, M. E., Jaitly, N., Qian, W. J. & Smith, R. D. Accurate mass
measurements in proteomics. Chem Rev 107, 3621-3653, doi:10.1021/cr068288j
(2007).

Kirchner, M. & Selbach, M. In vivo quantitative proteome profiling: planning and
evaluation of SILAC experiments. Methods Mol Biol 893, 175-199, doi:10.1007/978-
1-61779-885-6_13 (2012).

Jiang, H. & English, A. M. Quantitative analysis of the yeast proteome by incorporation
of isotopically labeled leucine. Journal of proteome research 1, 345-350,
d0i:10.1021/pr025523f (2002).

de Godoy, L. M. et al. Comprehensive mass-spectrometry-based proteome
quantification of haploid versus diploid yeast. Nature 455, 1251-1254,
doi:10.1038/nature07341 (2008).

Kruger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an
essential factor for red blood «cell function. Cell 134, 353-364,
doi:10.1016/j.cell.2008.05.033 (2008).

Soufi, B. et al. Stable isotope labeling by amino acids in cell culture (SILAC) applied
to quantitative proteomics of Bacillus subtilis. Journal of proteome research 9, 3638-
3646, doi:10.1021/pr100150w (2010).

Bantscheff, M., Lemeer, S., Savitski, M. M. & Kuster, B. Quantitative mass
spectrometry in proteomics: critical review update from 2007 to the present. Analytical
and bioanalytical chemistry 404, 939-965 (2012).

Gyaqi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded
affinity tags. Nat Biotechnol 17, 994-999, d0i:10.1038/13690 (1999).

Karp, N. A. et al. Addressing accuracy and precision issues in iTRAQ quantitation. Mol
Cell Proteomics 9, 1885-1897, doi:10.1074/mcp.M900628-MCP200 (2010).
Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative
analysis of complex protein mixtures by MS/MS. Anal Chem 75, 1895-1904,
d0i:10.1021/ac0262560 (2003).

Shiio, Y. & Aebersold, R. Quantitative proteome analysis using isotope-coded affinity
tags and mass spectrometry. Nature protocols 1, 139 (2006).

Rauniyar, N. & Yates, J. R., 3rd. Isobaric labeling-based relative quantification in
shotgun  proteomics. Journal of proteome research 13, 5293-5309,
d0i:10.1021/pr500880b (2014).

Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. Multiplex
peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4, 484-
494, doi:10.1038/nprot.2009.21 (2009).

Sheynkman, G. M., Shortreed, M. R., Cesnik, A. J. & Smith, L. M. Proteogenomics:
Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize
Human Proteomic Variation. Annu Rev Anal Chem (Palo Alto Calif) 9, 521-545,
doi:10.1146/annurev-anchem-071015-041722 (2016).

Krug, K., Nahnsen, S. & Macek, B. Mass spectrometry at the interface of proteomics
and genomics. Mol Biosyst 7, 284-291, doi:10.1039/cOmb00168f (2011).

Battle, A. et al. Genomic variation. Impact of regulatory variation from RNA to protein.
Science 347, 664-667, doi:10.1126/science.1260793 (2015).

Foss, E. J. et al. Genetic variation shapes protein networks mainly through non-
transcriptional mechanisms. PLoS Biol 9, e1001144, doi:10.1371/journal.pbio.1001144
(2011).



References 169

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

Jaffe, J. D., Berg, H. C. & Church, G. M. Proteogenomic mapping as a complementary
method to  perform  genome  annotation. Proteomics 4,  59-77,
d0i:10.1002/pmic.200300511 (2004).

Brent, M. R. Steady progress and recent breakthroughs in the accuracy of automated
genome annotation. Nat Rev Genet 9, 62-73, doi:10.1038/nrg2220 (2008).

Mann, M., Kulak, N. A., Nagaraj, N. & Cox, J. The coming age of complete, accurate,
and ubiquitous proteomes. Mol Cell 49, 583-590, doi:10.1016/j.molcel.2013.01.029
(2013).

Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional
variation in humans. Nature 501, 506-511, doi:10.1038/nature12531 (2013).

Creixell, P. et al. Kinome-wide Decoding of Network-Attacking Mutations Rewiring
Cancer Signaling. Cell 163, 202-217, doi:10.1016/j.cell.2015.08.056 (2015).

Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA
sequencing. Proc Natl Acad Sci U S A 106, 19096-19101,
d0i:10.1073/pnas.0910672106 (2009).

Hunt, S. E. et al. Ensembl variation resources. Database (Oxford) 2018,
doi:10.1093/database/bay119 (2018).

O'Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status,
taxonomic expansion, and functional annotation. Nucleic Acids Res 44, D733-745,
doi:10.1093/nar/gkv1189 (2016).

UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids
Res 46, 2699, doi:10.1093/nar/gky092 (2018).

Ma, B. & Johnson, R. De novo sequencing and homology searching. Mol Cell
Proteomics 11, 0111 014902, doi:10.1074/mcp.0111.014902 (2012).

Ang, M. Y. et al. Proteogenomics: From next-generation sequencing (NGS) and mass
spectrometry-based proteomics to precision medicine. Clin Chim Acta 498, 38-46,
d0i:10.1016/j.cca.2019.08.010 (2019).

Trapnell, C. & Salzberg, S. L. How to map billions of short reads onto genomes. Nat
Biotechnol 27, 455-457, doi:10.1038/nbt0509-455 (2009).

Nesvizhskii, A. I. A survey of computational methods and error rate estimation
procedures for peptide and protein identification in shotgun proteomics. J Proteomics
73, 2092-2123, doi:10.1016/j.jprot.2010.08.009 (2010).

Krug, K. et al. Deep coverage of the Escherichia coli proteome enables the assessment
of false discovery rates in simple proteogenomic experiments. Mol Cell Proteomics 12,
3420-3430, d0i:10.1074/mcp.M113.029165 (2013).

Zhang, K. et al. A note on the false discovery rate of novel peptides in proteogenomics.
Bioinformatics 31, 3249-3253, doi:10.1093/bioinformatics/btv340 (2015).

Wang, X. & Zhang, B. customProDB: an R package to generate customized protein
databases from RNA-Seq data for proteomics search. Bioinformatics 29, 3235-3237,
doi:10.1093/bioinformatics/btt543 (2013).

Sheynkman, G. M. et al. Using Galaxy-P to leverage RNA-Seq for the discovery of
novel protein variations. BMC Genomics 15, 703, doi:10.1186/1471-2164-15-703
(2014).

Krasnov, G. S. et al. PPLine: An Automated Pipeline for SNP, SAP, and Splice Variant
Detection in the Context of Proteogenomics. Journal of proteome research 14, 3729-
3737, doi:10.1021/acs.jproteome.5b00490 (2015).

Wen, B. et al. PGA: an R/Bioconductor package for identification of novel peptides
using a customized database derived from RNA-Seq. BMC Bioinformatics 17, 244,
doi:10.1186/s12859-016-1133-3 (2016).

Ruggles, K. V. et al. Methods, Tools and Current Perspectives in Proteogenomics. Mol
Cell Proteomics 16, 959-981, doi:10.1074/mcp.MR117.000024 (2017).



References 170

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

Ruggles, K. V. et al. An Analysis of the Sensitivity of Proteogenomic Mapping of
Somatic Mutations and Novel Splicing Events in Cancer. Mol Cell Proteomics 15,
1060-1071, doi:10.1074/mcp.M115.056226 (2016).

Woo, S. et al. Proteogenomic database construction driven from large scale RNA-seq
data. Journal of proteome research 13, 21-28, doi:10.1021/pr400294c (2014).

Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res
29, 308-311, d0i:10.1093/nar/29.1.308 (2001).

Alfaro, J. A., Sinha, A., Kislinger, T. & Boutros, P. C. Onco-proteogenomics: cancer
proteomics joins forces with genomics. Nat Methods 11, 1107-1113,
doi:10.1038/nmeth.3138 (2014).

Rivers, R. C. et al. Linking cancer genome to proteome: NCI's investment into
proteogenomics. Proteomics 14, 2633-2636, doi:10.1002/pmic.201400193 (2014).
Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer.
Nature 513, 382-387, doi:10.1038/nature13438 (2014).

Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast
cancer. Nature 534, 55-62, doi:10.1038/nature18003 (2016).

Woo, S. et al. Proteogenomic strategies for identification of aberrant cancer peptides
using large-scale next-generation sequencing data. Proteomics 14, 2719-2730,
d0i:10.1002/pmic.201400206 (2014).

Alfaro, J. A. et al. Detecting protein variants by mass spectrometry: a comprehensive
study in cancer cell-lines. Genome Med 9, 62, doi:10.1186/s13073-017-0454-9 (2017).
Sun, H. et al. Identification of gene fusions from human lung cancer mass spectrometry
data. BMC Genomics 14 Suppl 8, S5, doi:10.1186/1471-2164-14-S8-S5 (2013).
Reimand, J. & Bader, G. D. Systematic analysis of somatic mutations in
phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol 9, 637,
d0i:10.1038/msh.2012.68 (2013).

Gentile, S. et al. The human ERG1 channel polymorphism, K897T, creates a
phosphorylation site that inhibits channel activity. Proc Natl Acad Sci U S A 105, 14704-
14708, doi:10.1073/pnas.0802250105 (2008).

Creixell, P. et al. Unmasking determinants of specificity in the human kinome. Cell 163,
187-201, d0i:10.1016/j.cell.2015.08.057 (2015).

Ryu, G. M. et al. Genome-wide analysis to predict protein sequence variations that
change phosphorylation sites or their corresponding kinases. Nucleic Acids Res 37,
1297-1307, doi:10.1093/nar/gkn1008 (2009).

Keegan, S., Cortens, J. P., Beavis, R. C. & Fenyo, D. g2pDB: A Database Mapping
Protein Post-Translational Modifications to Genomic Coordinates. Journal of proteome
research 15, 983-990, doi:10.1021/acs.jproteome.5b01018 (2016).

Yang, C. Y. et al. PhosphoPOINT: a comprehensive human kinase interactome and
phospho-protein database. Bioinformatics 24, 114-20,
doi:10.1093/bioinformatics/btn297 (2008).

Zhang, H. et al. Integrated Proteogenomic Characterization of Human High-Grade
Serous Ovarian Cancer. Cell 166, 755-765, do0i:10.1016/j.cell.2016.05.069 (2016).
Nishimura, T. & Nakamura, H. Developments for Personalized Medicine of Lung
Cancer Subtypes: Mass Spectrometry-Based Clinical Proteogenomic Analysis of
Oncogenic Mutations. Adv Exp Med Biol 926, 115-137, doi:10.1007/978-3-319-42316-
6_8 (2016).

Kondo, T. Proteogenomics for the Study of Gastrointestinal Stromal Tumors. Adv Exp
Med Biol 926, 139-151, doi:10.1007/978-3-319-42316-6_9 (2016).

Mardis, E. R. A decade's perspective on DNA sequencing technology. Nature 470, 198-
203, d0i:10.1038/nature09796 (2011).



References 171

376

377

378

379

380

381

382

383

384

385

386

387

388
389

390

391

392

393

Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic
analysis of eleven common cell lines reveals ubiquitous but varying expression of most
proteins. Molecular & cellular proteomics : MCP 11, M111 014050,
doi:10.1074/mcp.M111.014050 (2012).

Mardamshina, M. & Geiger, T. Next-Generation Proteomics and Its Application to
Clinical Breast Cancer Research. Am J Pathol 187, 2175-2184,
doi:10.1016/j.ajpath.2017.07.003 (2017).

Olsen, J. V. & Mann, M. Status of large-scale analysis of post-translational
modifications by mass spectrometry. Molecular & cellular proteomics : MCP 12, 3444-
3452, d0i:10.1074/mcp.0113.034181 (2013).

von Stechow, L., Francavilla, C. & Olsen, J. V. Recent findings and technological
advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 12, 469-
487, doi:10.1586/14789450.2015.1078730 (2015).

Huang, K. L. et al. Proteogenomic integration reveals therapeutic targets in breast
cancer xenografts. Nat Commun 8, 14864, doi:10.1038/ncomms14864 (2017).

Ren, J. et al. PhosSNP for systematic analysis of genetic polymorphisms that influence
protein phosphorylation. Molecular & cellular proteomics : MCP 9, 623-634,
doi:10.1074/mcp.M900273-MCP200 (2010).

Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
Nucleic Acids Res 43, D512-520, doi:10.1093/nar/gkul1267 (2015).

Granger, B. R. et al. Visualization of Metabolic Interaction Networks in Microbial
Communities Using VIisANT 5.0. PLoS Comput Biol 12, 1004875,
doi:10.1371/journal.pchi.1004875 (2016).

Shi, Z., Wang, J. & Zhang, B. NetGestalt: integrating multidimensional omics data over
biological networks. Nature methods 10, 597-598, doi:10.1038/nmeth.2517 (2013).
Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2018 update. Nucleic Acids Res 46, W537-W544,
doi:10.1093/nar/gky379 (2018).

Leitner, A. et al. Chemical cross-linking/mass spectrometry targeting acidic residues in
proteins and protein complexes. Proceedings of the National Academy of Sciences 111,
9455-9460, doi:10.1073/pnas.1320298111 (2014).

Sinnberg, T. et al. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF
Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib. EBioMedicine 8,
132-149, doi:10.1016/j.ebiom.2016.04.037 (2016).

shiny: Web Application Framework for R (2019).

Rossi, S. et al. TNF-alpha and metalloproteases as key players in melanoma cells
aggressiveness. J Exp Clin Cancer Res 37, 326, doi:10.1186/s13046-018-0982-1
(2018).

Kitabayashi, 1., Yokoyama, A., Shimizu, K. & Ohki, M. Interaction and functional
cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell
differentiation. EMBO J 17, 2994-3004, doi:10.1093/emboj/17.11.2994 (1998).

Leong, W. Y. et al. Runx1 Phosphorylation by Src Increases Trans-activation via
Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased
DNA Affinity, and Activated Runx1 Favors Granulopoiesis. J Biol Chem 291, 826-836,
doi:10.1074/jbc.M115.674234 (2016).

Hu, H., Bliss, J. M., Wang, Y. & Colicelli, J. RIN1 is an ABL tyrosine kinase activator
and a regulator of epithelial-cell adhesion and migration. Curr Biol 15, 815-823,
d0i:10.1016/j.cub.2005.03.049 (2005).

Doyotte, A., Mironov, A., McKenzie, E. & Woodman, P. The Brol-related protein HD-
PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body



References 172

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

morphogenesis. Proc Natl Acad Sci U S A 105, 6308-6313,
d0i:10.1073/pnas.0707601105 (2008).

Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies.
Nature methods 11, 1114-1125, doi:10.1038/nmeth.3144 (2014).

Genomes Project, C. et al. An integrated map of genetic variation from 1,092 human
genomes. Nature 491, 56-65, doi:10.1038/nature11632 (2012).

Pfeifer, G. P, You, Y. H. & Besaratinia, A. Mutations induced by ultraviolet light.
Mutat Res 571, 19-31, doi:10.1016/j.mrfmmm.2004.06.057 (2005).

Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring
multidimensional cancer genomics data. Cancer Discov 2, 401-404, doi:10.1158/2159-
8290.CD-12-0095 (2012).

Jayachandran, A. et al. Thrombospondin 1 promotes an aggressive phenotype through
epithelial-to-mesenchymal transition in human melanoma. Oncotarget 5, 5782-5797,
doi:10.18632/oncotarget.2164 (2014).

Liu, B. et al. Genomic landscape and mutational impacts of recurrently mutated genes
in cancers. Mol Genet Genomic Med 6, 910-923, doi:10.1002/mgg3.458 (2018).

Kato, M. et al. Transgenic mouse model for skin malignant melanoma. Oncogene 17,
1885-1888, doi:10.1038/sj.0nc.1202077 (1998).

Kren, N. P., Zagon, I. S. & McLaughlin, P. J. Mutations in the opioid growth factor
receptor in human cancers alter receptor function. Int J Mol Med 36, 289-293,
d0i:10.3892/ijmm.2015.2221 (2015).

Duffy, D. L. et al. Novel pleiotropic risk loci for melanoma and nevus density implicate
multiple biological pathways. Nat Commun 9, 4774, doi:10.1038/s41467-018-06649-5
(2018).

Gumaste, P. V. et al. Skin cancer risk in BRCA1/2 mutation carriers. Br J Dermatol
172, 1498-1506, d0i:10.1111/bjd.13626 (2015).

Felder, M. et al. MUC16 suppresses human and murine innate immune responses.
Gynecol Oncol 152, 618-628, doi:10.1016/j.ygyno.2018.12.023 (2019).

Jonckheere, N. & Van Seuningen, I. Integrative analysis of the cancer genome atlas and
cancer cell lines encyclopedia large-scale genomic databases: MUC4/MUC16/MUC20
signature is associated with poor survival in human carcinomas. J Transl Med 16, 259,
d0i:10.1186/s12967-018-1632-2 (2018).

Riker, A. I. et al. The gene expression profiles of primary and metastatic melanoma
yields a transition point of tumor progression and metastasis. BMC Med Genomics 1,
13, d0i:10.1186/1755-8794-1-13 (2008).

Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29 healthy
human tissues. Mol Syst Biol 15, e8503, doi:10.15252/msb.20188503 (2019).

Wang, X. et al. Protein identification using customized protein sequence databases
derived from RNA-Seq data. Journal of proteome research 11, 1009-1017,
d0i:10.1021/pr200766z (2012).

Amaral, T. et al. The mitogen-activated protein kinase pathway in melanoma part | -
Activation and primary resistance mechanisms to BRAF inhibition. Eur J Cancer 73,
85-92, doi:10.1016/j.ejca.2016.12.010 (2017).

Cohen-Solal, K. A., Kaufman, H. L. & Lasfar, A. Transcription factors as critical
players in melanoma invasiveness, drug resistance, and opportunities for therapeutic
drug development. Pigment Cell Melanoma Res 31, 241-252, doi:10.1111/pcmr.12666
(2018).

Han, S. et al. ERK-mediated phosphorylation regulates SOX10 sumoylation and targets
expression in mutant BRAF melanoma. Nat Commun 9, 28, doi:10.1038/s41467-017-
02354-x (2018).



References 173

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428
429

430

431

432

Lipinska, N. et al. Telomerase and drug resistance in cancer. Cell Mol Life Sci 74, 4121-
4132, doi:10.1007/s00018-017-2573-2 (2017).

Zhang, G. et al. Induction of Telomere Dysfunction Prolongs Disease Control of
Therapy-Resistant Melanoma. Clin Cancer Res 24, 4771-4784, doi:10.1158/1078-
0432.CCR-17-2773 (2018).

Guo, H. & Friedman, A. D. Phosphorylation of RUNX1 by cyclin-dependent kinase
reduces direct interaction with HDAC1 and HDACS3. J Biol Chem 286, 208-215,
doi:10.1074/jbc.M110.149013 (2011).

Schmitt, M. et al. Quantitative proteomics links the intermediate filament nestin to
resistance to targeted BRAF inhibition in melanoma cells. Molecular & cellular
proteomics : MCP, doi:10.1074/mcp.RA119.001302 (2019).

Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the
Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43, 11 10
11-11 10 33, doi:10.1002/0471250953.bi1110s43 (2013).

R: A Language and Environment for Statistical Computing (R Foundation for Statistical
Computing, Vienna, Austria, 2018).

Hu, J. et al. PhosphoNetworks: a database for human phosphorylation networks.
Bioinformatics 30, 141-142, doi:10.1093/bioinformatics/btt627 (2014).

Diella, F. et al. Phospho.ELM: a database of experimentally verified phosphorylation
sites in eukaryotic proteins. BMC Bioinformatics 5, 79, doi:10.1186/1471-2105-5-79
(2004).

Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database
and website. Br J Cancer 91, 355-358, doi:10.1038/sj.bjc.6601894 (2004).

Liu, Y., Sun, J. & Zhao, M. ONGene: A literature-based database for human oncogenes.
J Genet Genomics 44, 119-121, doi:10.1016/j.jgg.2016.12.004 (2017).

Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8,
2281-2308, doi:10.1038/nprot.2013.143 (2013).

Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant
environment. Journal of proteome research 10, 1794-1805, doi:10.1021/pr101065j
(2011).

Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res
47, D529-D541, doi:10.1093/nar/gky1079 (2019).

Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome  Res 13, 2498-2504,
doi:10.1101/gr.1239303 (2003).

Coordinators, N. R. Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res 46, D8-D13, doi:10.1093/nar/gkx1095 (2018).
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019:
improving support for quantification data. Nucleic Acids Res 47, D442-D450,
d0i:10.1093/nar/gky1106 (2019).

Whole-exome sequencing pipeline v. 1.0 (Zenodo, 2020).

Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by
CTLA-4 blockade. Science 271, 1734-1736, doi:10.1126/science.271.5256.1734
(1996).

Hirano, F. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates
cancer therapeutic immunity. Cancer Res 65, 1089-1096 (2005).

Oott, P. A, Hodi, F. S. & Robert, C. CTLA-4 and PD-1/PD-L1 blockade: new
immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin
Cancer Res 19, 5300-5309, do0i:10.1158/1078-0432.CCR-13-0143 (2013).

Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic
melanoma. N Engl J Med 364, 2517-2526, doi:10.1056/NEJMo0al1104621 (2011).



References 174

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

Topalian, S. L. et al. Survival, durable tumor remission, and long-term safety in patients
with advanced melanoma receiving nivolumab. J Clin Oncol 32, 1020-1030,
d0i:10.1200/JC0.2013.53.0105 (2014).

Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune
checkpoint inhibitors. Br J Cancer 118, 9-16, doi:10.1038/bjc.2017.434 (2018).
Jamieson, N. B. & Maker, A. V. Gene-expression profiling to predict responsiveness to
immunotherapy. Cancer Gene Ther 24, 134-140, doi:10.1038/cgt.2016.63 (2017).
Harel, M. et al. Proteomics of Melanoma Response to Immunotherapy Reveals
Mitochondrial Dependence. Cell 179, 236-250 €218, doi:10.1016/j.cell.2019.08.012
(2019).

Kemper, K. et al. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant
melanoma patient and derived xenografts. EMBO molecular medicine 7, €201404914-
€201404914, doi:10.15252/emmm.201404914 (2015).

Creixell, P. et al. Kinome-wide decoding of netwok-attacking mutations rewiring cancer
signaling. Cell 163, 202-217 (2015).

Curtin, J. a. et al. Distinct sets of genetic alterations in melanoma. The New England
journal of medicine 353, 2135-2147, doi:10.1056/NEJM0a050092 (2005).

Roesch, A. Tumor heterogeneity and plasticity as elusive drivers for resistance to
MAPK  pathway inhibition in melanoma. Oncogene 34, 2951-2957,
doi:10.1038/onc.2014.249 (2015).

Laurin, M. & Cote, J. F. Insights into the biological functions of Dock family guanine
nucleotide exchange factors. Genes Dev 28, 533-547, doi:10.1101/gad.236349.113
(2014).

Feng, H. et al. Protein kinase A-dependent phosphorylation of Dock180 at serine
residue 1250 is important for glioma growth and invasion stimulated by platelet derived-
growth factor receptor alpha. Neuro Oncol 17, 832-842, doi:10.1093/neuonc/nou323
(2015).

Valles, A. M., Beuvin, M. & Boyer, B. Activation of Racl by paxillin-Crk-DOCK180
signaling complex is antagonized by Rapl in migrating NBT-1I cells. J Biol Chem 279,
44490-44496, doi:10.1074/jbc.M405144200 (2004).

Toret, C. P., Collins, C. & Nelson, W. J. An EImo-Dock complex locally controls Rho
GTPases and actin remodeling during cadherin-mediated adhesion. J Cell Biol 207, 577-
587, d0i:10.1083/jch.201406135 (2014).

Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma.
N Engl J Med 371, 2189-2199, doi:10.1056/NEJM0al1406498 (2014).

Berger, M. F. et al. Integrative analysis of the melanoma transcriptome. Genome Res
20, 413-427, doi:10.1101/gr.103697.109 (2010).

Hugo, W. et al. Genomic and Transcriptomic Features of Response to Anti-PD-1
Therapy in Metastatic Melanoma. Cell 165, 35-44, doi:10.1016/j.cell.2016.02.065
(2016).

Lobas, A. A. et al. Proteogenomics of Malignant Melanoma Cell Lines: The Effect of
Stringency of Exome Data Filtering on Variant Peptide Identification in Shotgun
Proteomics. Journal of proteome research 17, 1801-1811,
doi:10.1021/acs.jproteome.7b00841 (2018).

Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer
immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin
Oncol 15, 325-340, doi:10.1038/nrclinonc.2018.29 (2018).

Pinto, S. M. et al. Quantitative phosphoproteomic analysis of IL-33-mediated signaling.
Proteomics 15, 532-544, doi:10.1002/pmic.201400303 (2015).

Horak, P. et al. Precision oncology based on omics data: The NCT Heidelberg
experience. Int J Cancer 141, 877-886, doi:10.1002/ijc.30828 (2017).



References 175

452

453

454

455

456

457

458

459

FastQC A Quality Control tool for High Throughput Sequence Data
(http://www.bioinformatics.babraham.ac.uk/projects/fastgc/, 2010).

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for lllumina
sequence data. Bioinformatics 30, 2114-2120, doi:10.1093/bioinformatics/btul70
(2014).

Grozav, A. G. et al. Casein kinase | delta/epsilon phosphorylates topoisomerase Ilalpha
at serine-1106 and modulates DNA cleavage activity. Nucleic acids research 37, 382-
392, doi:10.1093/nar/gkn934 (2009).

Cingolani, P. et al. A program for annotating and predicting the effects of single
nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster
strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92, doi:10.4161/fly.19695 (2012).

Zhang, T., Dutton-Regester, K., Brown, K. M. & Hayward, N. K. The genomic
landscape of cutaneous melanoma. Pigment Cell Melanoma Res 29, 266-283,
doi:10.1111/pcmr.12459 (2016).

Thakur, R. et al. Transcriptomic Analysis Reveals Prognostic Molecular Signatures of
Stage | Melanoma. Clin Cancer Res 25, 7424-7435, doi:10.1158/1078-0432.CCR-18-
3659 (2019).

Matsuda, Y. et al. Nestin is a novel target for suppressing pancreatic cancer cell
migration , invasion and metastasis. Cancer Biology & Therapy 11, 512-523,
doi:10.4161/cbt.11.5.14673 (2011).

Griffin M, D. S., Debra H. Josephs, Silvia Mele, Silvia Crescioli, Heather J. Bax, Giulia
Pellizzari, Matthew D. Wynne, Mano Nakamura, Ricarda M. Hoffmann, Kristina M.
Ilieva, Anthony Cheung, James F. Spicer, Sophie Papa, Katie E. Lacy and Sophia N.
Karagiannis. BRAF inhibitors: resistance and the promise of combination treatments for
melanoma. Oncotarget 8, 78174-75192 (2017).



http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

References 176




Acknowledgements 177

&  Acknowledgements

An dieser Stelle mochte ich mich bei allen Personen, die zum Gelingen der Dissertation

beigetragen haben, bedanken.

Prof. Dr. Boris Macek mdochte ich fur die hervorragende Betreuung, seine stetige
Diskussionsbereitschaft, das in mich gesetzte Vertrauen und das tolle Arbeitsumfeld herzlich

danken.

Mein Dank gilt ebenfalls Prof. Dr. Alfred Nordheim fiir seine Bereitschaft, diese Arbeit zu

betreuen.

Bei meinem TAC Komitee bestehend aus Prof. Dr. Boris Macek, Prof. Dr. Alfred Nordheim
und Prof. Dr. Ana J. Garcia-Saez, sowie dem ganzen IMPRS Team mdchte ich mich recht

herzlich fur die Unterstlitzung, Diskussionsbereitschaft und Betreuung meiner Arbeit bedanken.

Des Weiterem bedanke ich mich herzlich bei Nicolas C. Nalpas fir seine standige Hilfe bei
allen Fragestellungen, sowie Tobias Sinnberg und Heike Niessner von der Hautklink in

Tubingen fir die Hilfe bei klinischen und biologischen Fragen.

Allen gegenwartigen und ehemaligen Mitarbeitern des Proteome Center Tlbingens danke ich
fur das freundliche Arbeitsklima, insbesondere danke ich Uli, Silke, Ana, Johannes, Irina und
Mirita. Fir die motivierenden Worte, die schonen Momente und die Unterstiitzung mdchte ich
mich bei Christoph, Nicolas, Maja, Katharina, Katrin, Phil und Tarigq bedanken. Ihr wurdet von

Arbeitskollegen zu echten Freunden.

Meinen Schwestern Kathrin, Anne und Sophie mit den Kindern Mia, Levi, Zoe und Lian
mochte ich mich von ganzen Herzen fir die moralische Unterstiitzung danken. Ihr habt immer

flir eine Abwechslung gesorgt und mich immer wieder zum Lachen gebracht.

Meinem Freund Julian méchte ich fiir seine stetige Motivation, das Aushalten aller Launen und

seinen Humor in allen Lebenslagen danken.

Mein ganz besonderer Dank gilt meinen Eltern, Jurgen und Gerda, fur ihre unendliche Liebe
und Vertrauen, ihre grofle Unterstiitzung in den vergangenen Jahren. Danke dass ihr mich
immer ermutigt habt meinen eigenen Weg zu gehen. Ohne euch wadre dies nicht mdoglich

gewesen.



Acknowledgements 178




