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Summary 

Melanoma is the most aggressive form of skin cancer, with a rapidly increasing incidence rate. 

Malignant melanoma is characterized by mutations in the mitogen-activated kinase (MAPK) 

pathway, which strongly correlate with poor prognosis of the disease. The kinase BRAF is 

mutated in ~48% of melanoma cases, resulting predominantly in V600E substitution that leads 

to constitutive activation of the BRAF kinase and downstream signaling pathways. Over the 

last decade, several therapeutic treatments for melanoma have been developed with improved 

efficiency and overall survival rates. Targeted inhibition of the mutated BRAF with selective 

inhibitors, such as vemurafenib or dabrafenib and immunotherapy with the immune checkpoint 

antibodies targeting PD-1 and CTLA-4 receptors, results in regression of the disease. However, 

only a minority of patients can benefit from the current therapies and most of them quickly 

develop resistance to the treatment. Prognostic biomarkers, resistance mechanisms and 

mutational profiles of melanoma are mainly studied by genomics and transcriptomics. Although 

only about 2% of the genome codes for proteins, variants in these region of the genome have a 

high potential to rewire signal transduction networks. In addition, the majority of targeted 

cancer therapies do not target the genome, but rather the protein itself. Thus, it is highly 

important to analyze proteins and their patient-specific alterations in context of personalized 

medicine. Mass spectrometry-based proteomics can be used to study protein-specific clinical 

questions and can identify molecular mechanisms of treatment-resistant melanoma. By 

combining personalized genomics and proteomics, in an approach called proteogenomics, it is 

possible to derive patient-specific protein sequence databases – that include patient-specific 

amino acid variants. These in turn can provide deeper and more comprehensive molecular 

characterization of cellular processes that underlie disease progression. Several mechanisms for 

acquired resistance and even cross-resistance in melanoma have been detected, but key 

(phospho)proteins involved in resistance, as well as mutations altering protein modification 

status are still largely elusive. This thesis develops and applies personalized proteogenomics 

workflows to study these mechanisms on the level of individual melanoma cells and patient 

tissues.  

In the first part of this thesis, a SILAC-based quantitative (phospho)proteomics profiling of 

vemurafenib-resistant and -sensitive A375 melanoma cells was performed to gain new insights 

into molecular processes that govern resistance to BRAF inhibitors. Among down-regulated 

proteins in vemurafenib-resistant cell lines were multiple cytoskeletal proteins including the 

intermediate filament nestin. Previous studies showed that nestin is expressed in various types 

of solid tumors and its abundance correlates with malignant phenotype of transformed cells. 
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However, the role of nestin in cancer cells with regard to acquired resistance is still poorly 

understood. CRISPR/Cas9 knockout of the nestin gene showed that the loss of nestin leads to 

increased cellular proliferation and colony formation upon treatment with kinase inhibitors. 

Moreover, nestin depletion is associated with an invasive phenotype and acquired resistance to 

MEK and BRAF inhibitors. Finally, phosphoproteome analysis revealed that nestin depletion 

affects integrin and PI3K/AKT/mTOR pathway signaling similar to resistant cells. In this part, 

proteomic and phosphoproteomic changes have been determined for BRAF inhibitor resistant 

and sensitive cells.  

In the second part of the thesis, an individualized proteogenomics approach was applied to two 

melanoma cell lines, A375 and SkMel28, to analyze non-synonymous mutations and their 

impact on signal transduction networks in context of acquired resistance to kinase inhibitors. 

Integration of genomics and proteomics highlighted the distinct mutational landscape of both 

cell lines and revealed that cancer mutations are accumulating in MAPK and ErbB signaling 

pathways in resistant cells. Several alternate peptides interfering with the modification status 

of proteins with a potential to rewire signal transduction pathways were confirmed by high 

resolution mass spectrometry. Among them was transcription factor RUNX1, previously 

connected with myeloid leukemia and breast cancer. Validation of a loss of a known 

phosphorylation site on RUNX1 using SILAC-based protein interaction studies suggested that 

this mutation has an impact on the interactome of the protein and may alter its transcriptional 

activity. Taken together, this part of the thesis established the individualized proteogenomic 

workflow for analysis of mutational profiles of cancer cell lines and tissues.  

In the third part of the thesis, this individualized proteogenomics approach was applied to four 

clinical melanoma samples in response to immunotherapy. Integration of the matching 

genomics and (phospho)proteomics datasets revealed an extensive number of patient-specific 

variants and disproportional number of shared variants in immune checkpoint inhibitor (ICi)-

treated patient samples compared to untreated (naïve) samples. The proteogenomic signatures 

of human tissues could be recapitulated in patient-derived xenografts, thus allowing 

phosphoproteomics analysis. MS-measurements confirmed mutation-driven modification 

changes of several proteins specific to one sample, most of them were previously not reported 

in melanoma. Statistical analysis revealed differing mechanisms and associated network-

attacking mutations in response to immunotherapy, such as PI3K/AKT signaling or GTPase 

activation in ICi treated samples. The gain of a new phosphorylation site on the GEF protein 

DOCK1 was further investigated by interactome studies and the results showed that this 

mutation has an impact on the interactome of DOCK1. The obtained results have demonstrated 
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that the developed individualized proteogenomic workflow can be efficiently applied to human 

melanoma tissue and patient-derived xenografts in response to immunotherapy.  

Taken together, this thesis presents a new personalized proteogenomics workflow that can be 

routinely applied to numerous types of cancer and other diseases involving patient-specific 

accumulation of mutations in protein-coding genes. Datasets reported in this thesis provide new 

insights into resistance mechanisms and associated mutations with the potential to rewire signal 

transduction networks in malignant melanoma. This work can therefore serve as a basis for 

further improvement of therapeutic treatment of cancer patients.  
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VII 

Zusammenfassung 

Das Melanom ist die aggressivste Form von Hautkrebs mit einer schnell ansteigenden 

Inzidenzrate. Das maligne Melanom ist gekennzeichnet durch Mutationen im Mitogen-

aktivierten Kinaseweg (MAPK), die mit einer schlechten Prognose der Krankheit einhergehen. 

Die Kinase BRAF ist in circa 48% der Melanomfälle mutiert, was vorwiegend zu einer 

Substitution von V600E und zu einer konstitutiven Aktivierung der Kinase BRAF und der 

nachgeschalteten Signalwege führt. In den letzten Jahren wurden mehrere therapeutische 

Behandlungen für Melanome mit verbesserter Effizienz und erhöhter Überlebensrate von 

betroffenen Patienten entwickelt. Eine gezielte Hemmung der mutierten Kinase BRAF mit 

selektiven Inhibitoren wie Vemurafenib oder Dabrafenib und eine Immuntherapie mit den 

Antikörpern gegen die PD-1 und CTLA-4 Rezeptoren führen zu einem Rückgang des 

Krankheitsverlaufes. Allerdings profitiert nur eine Minderheit der Patienten von den derzeitigen 

Therapien, während die meisten dieser Patienten schnell eine Resistenz gegen diese 

Behandlungen entwickeln. Prognostische Biomarker, Resistenzmechanismen und 

Mutationsprofile wurden vor allem in Genom und- Transkriptomstudien analysiert. Obwohl nur 

2% des Genoms für Proteine codieren, haben Mutationen in diesem Bereich des Genoms ein 

hohes Potential Signaltransduktionsnetzwerke zu verändern. Infolgedessen richten sich die 

Mehrzahl der derzeitigen Therapien nicht gegen bestimme Gene, sondern gegen Proteine in 

Krebszellen. Daher ist es sehr wichtig, Proteine und ihre patientenspezifischen Veränderungen 

im Kontext der personalisierten Medizin zu analysieren. Massenspektrometrie-basierte 

Proteomik kann proteinspezifische klinische Fragen beantworten, die weit außerhalb der 

Reichweite der Genomik liegen und molekulare Mechanismen identifizieren, die dem 

metastasierten und behandlunsgresistenten Melanom zugrunde liegen. Durch die Kombination 

von personalisierter Genomik und Proteomik, die als Proteogenomik bezeichnet wird, können 

patientenspezifische Proteinsequenzdatenbank generiert werden, die patientenspezifische 

Aminosäurevarianten enthalten. Diese können wiederum eine tiefere und umfassendere 

molekulare Charakterisierung der zellulären Funktionen ermöglichen, die dem Fortschreiten 

der Krankheit zugrunde liegen. Verschiedene Mechanismen für erworbene Resistenzen, 

darunter sogar Kreuzresistenzen, wurden im Melanom nachgewiesen, aber Schlüsselproteine, 

die daran beteiligt sind, sowie damit verbundene Mutationen, die den Modifikationsstatus 

verändern und daher die Resistenzentwicklung beeinflussen können, sind noch weitgehend 

unerforscht. Diese Arbeit entwickelt und wendet personalisierte Proteogenomikansätze an, um 

diese Mechanismen auf der Ebene einzelner Melanomzellen und Patientengewebes zu 

analysieren. 
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Im ersten Teil dieser Arbeit wurde ein SILAC-basierter quantitativer Ansatz zur Untersuchung 

der Proteomveränderungen von Vemurafenib-resistenten und –sensitiven Melanomzellen 

angewendet, um neue Einblicke in molekulare Prozesse zu erhalten, die die Resistenz steuern. 

Unter den herunterregulierten Proteinen in Vemurafenib-resistenten Zelllinien befanden sich 

mehrere Zytoskelettproteine, einschließlich das Intermediärfilament Nestin. Frühere Studien 

zeigten, dass Nestin in verschiedenen Arten von soliden Tumoren exprimiert wird und seine 

Abundanz mit einem malignen Phänotyp transformierter Zellen korreliert. Allerdings ist die 

Rolle von Nestin in Krebszellen im Hinblick auf die erworbene Resistenz noch nicht 

ausreichend bekannt. CRISPR/Cas9 generierte Knockouts des Nestin-Gens zeigten, dass der 

Verlust von Nestin bei Behandlung mit Kinase-Inhibitoren zu einer erhöhten Zellproliferation 

und Koloniebildung führt. Darüber hinaus korreliert die Expression von Nestin mit einem 

invasiven Phänotyp und einer erworbenen Resistenz gegenüber MEK- und BRAF-Inhibitoren. 

Schließlich ergab die Phosphoproteomanalyse, dass der Knockout von Nestin die 

Signalübertragung durch Integrin und PI3K/AKT/mTOR-Signalwege ähnlich wie bei 

resistenten Zellen beeinflusst. In diesem Teil der Arbeit wurden proteomische und 

phosphoproteomische Veränderungen von BRAF-Inhibitor-resistenten und sensitiven Zellen 

bestimmt.  

Im zweiten Teil der Arbeit wurde ein individualisierter Proteogenomikansatz auf zwei 

Melanomzelllinien (A375 und SkMel28) angewendet, um nicht synonyme Mutationen und 

deren Auswirkungen auf Signaltransduktionsnetzwerke im Zusammenhang mit der erworbenen 

Resistenz gegenüber Kinaseinhibitoren zu analysieren. Die Integration von Genomik- und 

Proteomikdaten hob die unterschiedlichen Mutationsprofile beider Zelllinien hervor und zeigte, 

dass Krebsmutationen in MAPK- und ErbB-Signalwegen in resistenten Zellen akkumulieren. 

Mehrere mutierte Peptide, die den Modifikationsstatus von Proteinen beeinflussen können und 

somit ein hohes Potenzial haben Signaltransduktionswege zu beeinflussen, wurden durch 

hochauflösende Massenspektrometrie bestätigt. Unter diesen befand sich der 

Transkriptionsfaktor RUNX1, der zuvor mit myeloischer Leukämie und Brustkrebs in 

Verbindung gebracht wurde. Die Validierung des Verlustes einer bekannten 

Phosphorylierungsstelle von RUNX1 unter Verwendung von SILAC-basierten 

Proteininteraktionsstudien legte nahe, dass diese Mutation einen Einfluss auf das Interaktom 

von RUNX1 hat und dessen Transkriptionsaktivität verändern kann. Zusammenfassend 

etablierte dieser Teil der Arbeit einen individualisierten Proteogenomikansatz zur Analyse von 

Mutationsprofilen von Krebszelllinien und Geweben.  
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Im dritten Teil der Arbeit wurde dieser individualisierte Proteogenomikansatz auf vier klinische 

Melanomenproben unter Immuntherapie angewendet. Die Integration der Genomik- und 

dazugehörigen Phospho-Proteomikdaten führte zur Identifizierung einer Vielzahl von 

patientenspezifischen Mutationen und einer überproportionalen Anzahl derselben 

Genvarianten in Immun-Checkpoint-Inhibitoren behandelten Proben gegenüber unbehandelten 

Proben. Die in menschlichem Gewebe identifizierten proteogenomischen Signaturen konnten 

in vom Patienten stammenden Xenotransplantaten rekonstruiert werden, wodurch 

Phosphoproteomeanalysen ermöglicht wurden. MS-Messungen bestätigten mutationsbedingte 

Modifikationsveränderungen an mehreren Proteinen, von denen die meisten bisher nicht im 

Melanom bekannt sind. Die statistische Analyse ergab unterschiedliche Mechanismen und 

damit verbundene netzwerkangreifende Mutationen als Reaktion auf eine Immuntherapie, wie 

z.B. PI3K/AKT-Signalisierung oder GTPase-Aktivierung in Immuntherapie-behandelten 

Proben. Der Gewinn einer neuen Phosphorylierungsstelle am GEF-Protein DOCK1 wurde 

durch Interaktomstudien weiter untersucht, und die Ergebnisse zeigten, dass diese Mutation 

einen Einfluss auf das Interaktom von DOCK1 hat. Die erhaltenen Ergebnisse zeigten, dass der 

entwickelte individualisierte proteogenomische Ansatz auf menschliches Melanomgewebe und 

von Patienten stammende Xenotransplantate im Zusammenhang mit Immuntherapie 

angewendet werden kann. 

Zusammenfassend präsentiert diese Arbeit einen personalisierten Proteogenomikansatz, der 

routinemäßig auf weitere Krebsarten und andere Krankheiten angewendet werden kann, bei 

denen patientenspezifische Mutationen in proteinkodierenden Genen akkumulieren. In dieser 

Arbeit beschriebene Datensätze bieten neue Einblicke in Resistenzmechanismen und damit 

verbundene Mutationen mit dem Potenzial Signaltransduktionsnetzwerke bei malignen 

Melanomen zu beeinflussen. Diese Arbeit kann daher als Grundlage für eine weitere 

Verbesserung von therapeutischen Behandlungen von Krebspatienten sein. 
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    Introduction 

1.1    Malignant melanoma 

Melanoma is the 19th most common cancer worldwide, accounting for approximately 232,000 

new cases in Germany in 2012 1. Although malignant melanoma accounts for less than five 

percent of all skin cancer cases it is the most serious form of the disease, causing up to 75% 

skin cancer related deaths. Melanoma predominantly affects Caucasian population of both 

genders, and once it becomes metastatic, the prognosis is very poor 2. Ultraviolet radiation from 

sunlight is one of the main risk factors for the development of melanoma and is directly 

associated with the UV-B spectrum 3,4. It is also related to sun patterns and timing in particular 

intense and intermittent sun exposure. Individuals with a history of sunburn in their childhood 

or adolescence are at highest risk of developing melanoma 5. In addition, UV-A exposure from 

artificial sources have been associated in a number of studies to an increased risk of developing 

melanoma 6,7. Besides environmental risk factors, host factors play an important role including 

family history, genetic susceptibility and the number of acquired melanocytic nevi 8. 

Approximately 7-15% of melanoma cases occur in patients with a family history for melanoma 

and around 25% arises from pre-existing nevus 9,10. Cutaneous melanoma is the most common 

form of melanoma accounting for 90% of all incidences and arises from melanocytes 11. 

Melanocytes, the pigment producing cells can be found in skin, eye, inner ear, and 

leptomeninges 12,13. In skin, melanocytes are located and consistently distributed in the basal 

layer of epidermis and represents the second largest cell population within the skin 14. 

Epidermal melanocyte proliferation and pigment production is stimulated by UV-radiation 

induced DNA damage in the neighboring keratinocytes, which secretes α-melanocyte 

stimulating hormone (αMSH) 15. Binding of αMSH to the melanocortin 1 receptor (MC1R) on 

melanocytes induces the synthesis of the macromolecule melanin. Melanin is transferred to 

adjacent keratinocytes, where it accumulates around the nucleus and building a photo-

protective barrier against UV-radiation 16,17. Melanin production is initiated and regulated by 

the Wnt signaling pathway, c-KIT receptor tyrosine kinase, and downstream transcription 

factors like melanocyte inducing transcription factor (MITF) 18,19. Several studies have shown 

that stimulation of the MC1R receptor dictates differentiation and migration of melanocytes 20. 

Melanoma is caused by uncontrolled growth of melanocytes forming a tumor which can 

become malignant and spread to other organs. Melanoma progression begins from a localized 

lesion undergoing radial growth, then reaching lymph node by undergoing vertical growth and 

finally metastasizing to distant organs via the lymphatic and circulatory systems (Figure 1). In 
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2009, melanoma was classified by Balch et al. into four stages (I-IV) based on the thickness, 

ulceration and metastatic status 21. Localized melanoma is divided into two stages: stage I and 

stage II melanoma. This includes patients with no evidence for distant metastases and low risk 

for metastases and melanoma-specific mortality (stage I) or intermediate risk and melanoma-

specific mortality (stage II). The ten-year survival rate after surgical removal is 95% of stage I 

and 39% of stage II. Regional metastases, stage III melanoma, shows a high in-transit 

metastasis, absence or presence of ulceration of the primary melanoma and metastatic lymph 

nodes. The five-year survival rate for patients with stage III melanoma is 60% in absence of 

ulceration and 36% in presence of ulceration. Contrastingly, patients with distant metastases 

(stage IV) have a poor prognosis with a median survival time of six to nine months and a one-

year survival rate of only 25% 22. The aggressiveness of this cancer type highlights the need for 

improvement of existing therapies 23. 

 

 

Figure 1: Pathological staging of melanoma progression based on Clark model. Progression can start 

from uncontrolled growth of normal melanocytes to form a benign nevus. The benign nevus can proliferate 

to a dysplastic nevus with irregular borders and variable pigmentation. In the radial growth phase, the 

melanocytes proliferate horizontally into the epidermis, followed by vertical proliferation and invasion of 

the basement membrane in the vertical growth phase. Malignant melanocytes spread to distinct areas of the 

body, most of the time first to lymph nodes, then skin, soft tissues, lung and brain. (adapted from Seuradge 

and Wong, 2006 24) 

 

1.1.1    Mutational landscape of melanoma 

Two main pathways are known to be deregulated in melanoma development, the mitogen-

activated protein kinase (MAPK) pathway and phosphatidylinositol-3-kinase (PI3K) pathway 

(Figure 2). In the MAPK pathway, receptor-tyrosine-kinases (RTKs) are activated by a variety 
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of growth factors, i.e. epidermal growth factor (EGF), platelet-derived growth factor (PDGF) 

and nerve growth factor (NGF), as well as G-protein-coupled receptors (GPCRs) and cytokines 

25. Binding of ligands to the receptors activate the tyrosine kinase activity of the cytoplasmic 

domains, which leads to autophosphorylation of several tyrosine residues 26. The 

phosphorylated tyrosine residues form binding sites for Src homology 2 (SH2), Src homology 

3 (SH3) or phosphotyrosine binding (PTB) domain-containing proteins like growth factor 

receptor-bound protein 2 (GRB2) 27. GRB2 binds the guanine nucleotide exchange factor SOS, 

which induces the exchange of guanosine diphosphate (GDP) to guanosine triphosphate (GTP) 

in the G-protein RAS. Activated RAS dissociates from the complex and initiates the 

phosphorylation of the serine/threonine protein kinase RAF 28. Phosphorylation-activated RAF 

kinase can induce downstream signaling by triggering phosphorylation of the 

serine/threonine/tyrosine kinase MEK and leads to the activation of the serine/threonine protein 

kinase ERK 29. ERK phosphorylation induces expression of genes to cell survival, 

differentiation and proliferation.  

 

 

Figure 2: MAPK and PI3K/AKT/mTOR pathway and common mutations and alterations in 

melanoma. (adapted from Amaral et al., 2017 30) 
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The MAPK pathway is frequently mutated in malignant melanoma and other cancer types and 

gained clinical importance due to the high occurrence of RAF- activating mutations 31. Around 

48% of metastatic melanoma patients harbor non-synonymous somatic missense mutations in 

the RAF kinase BRAF (v-raf murine sarcoma viral oncogene homolog B) 29. The predominant 

mutation, accounting for 90% of BRAF mutations, is within the kinase domain and results in 

the substitution of valine to glutamic acid at amino acid 600 (V600E) 31. This mutation can 

result in a 500-fold increased activation of BRAF, and thus leads to a constitutive activation of 

downstream signaling in cancer cells 32,33. In addition, the substitution of valine by lysine 

(V600K) at the same position is observed in 20% of melanoma patients. Another 6% of patients 

have other genotypes including alternative splicing or amplification of BRAF and mutations in 

ARAF 34. Besides RAF alterations, mutations in the upstream regulator RAS (rat sarcoma) 

occur in approximately 18% of melanoma patients including NRAS. The dominant mutations 

are Q61R and Q61K substitutions resulting in inability to hydrolyze GTP to GDP. Activating 

mutations in KRAS or HRAS occur at a very low frequency in melanoma compared to other 

cancer types. BRAF and NRAS alterations are, so far, the most common point mutations 

detected in proto-oncogenes in melanoma and mutations rarely overlap, likely due to redundant 

pathway reactivation 35. This supports the hypothesis that both kinase families are major 

signaling checkpoints in the MAPK pathways promoting malignant progression.  

Besides mutations in the MAPK pathway, oncogenic alterations in the PI3K/ protein kinase B 

(AKT) pathway occur in approximately 50% of melanomas 36. Similar to the MAPK pathway, 

the PI3K/AKT pathway is activated by extracellular ligand binding to RTKs, which causes 

receptor dimerization and autophosphorylation of tyrosine residues in the intracellular domain 

37. P85, the regulatory subunit of PI3K, binds to the receptor via its SH2 domain and recruits 

p110, the catalytic subunit, to the membrane. Both subunits form the activated PI3K enzyme. 

Independently of the receptor, p85 and p110 can be recruited and activated by GRB2 and GTP-

bound RAS, respectively. Activated PI3K phosphorylates phosphatidylinositol to 

phosphatidylinositol (4,5)-biphosphate (PIP2) and subsequently to phosphatidylinositol-

(3,4,5)-triphosphate (PIP3). These phosphorylated lipids are anchored in the plasma membrane 

and activate the serine/threonine kinase AKT through binding of the pleckstrin homology (PH) 

domain. The interaction with PIP3 causes a conformational change of AKT and thus leads to 

the exposure of the phosphorylation sites in the kinase domain and the C-terminal region of the 

protein. Phosphorylated S473 in the C-terminal region of AKT by mechanistic target of 

rapamycin complex (mTORC) or phosphoinositide-dependent kinase 2 (PDK2) stimulates 

AKT activation. Fully activated AKT leads to substrate-specific phosphorylation events in the 
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cytoplasm and the nucleus, where it regulates transcription of genes involved in cell 

proliferation, cell cycle progression and apoptosis, through a variety of downstream proteins 

like glycogen synthase kinase 3-beta (GSK-3β) 38. Phosphatase and tensin homologue (PTEN) 

negatively regulates PI3K/AKT signaling pathway by dephosphorylating phosphatidylinositol 

at the 3’position 39. A variety of alterations and copy number changes within significant 

components of this pathway have been identified and are now the focus of pharmacological 

development. Loss of expression or inactivating mutations of the tumor suppressor PTEN have 

been identified in approximately 20-30% of patients with malignant melanoma 40. PTEN loss 

commonly occur in the presence of BRAF mutations leading to a hyperactivation of 

(PKB)/AKT signaling and activation of MAPK pathway whereby induction of apoptosis is 

abolished 41,42. Other driver mutations are in the PD domain of AKT1 (at position E17), which 

were detected in 1-2% of melanoma cases 43. Interestingly, an analogous mutation on AKT3 

has been identified exclusively in melanoma and leads to increased expression and activation 

of AKT3 44,45. Apart from AKT mutations, 2-6% of melanoma contain a point mutations in 

PIK3CA encoding for the catalytic subunit p110 of PI3K 46,47. This may result in a constitutive 

activation of AKT/mTOR. Mutations in the kinase domain of mTOR occur in approximately 

10.5% of melanoma patients resulting in gain-of function and activation of a mTORC1-

mediated feedback loop within the PI3K pathway. The pathway is also activated by 

amplifications of RTKs like EGFR or c-KIT. Mutations in c-KIT have been identified in 2-8% 

of melanoma cases 48. Several studies have demonstrated a high prevalence of activating 

mutations in the PI3K/AKT pathway highlighting the critical role in melanoma progression.  

In addition to mutations occurring directly within the MAPK and PI3K pathway, other genes 

are mutated in melanoma including NF1 (neurofibromatose type 1) and CDKN2A (cyclin-

dependent kinase inhibitor 2A). NF1, a tumor suppressor gene, is mutated in approximately 10-

15% of patients and is the third most frequently mutated gene in melanoma 49,50. NF1 regulates 

RAS signaling by converting active RAS-guanosine triphosphate (RAS-GTP) to inactive RAS-

guanosine diphosphate (RAS-GDP) 51. Several studies showed that loss-of-function mutations 

diminished inhibition of RAS signaling and thus leads to increased MAPK and PI3K signaling 

49,50,52. Patients harboring NF1 mutations are often frequently mutated in various other genes 

including BRAF and NRAS 48,52. The G-protein signaling proteins GNAQ (guanine nucleotide-

binding protein G(q) alpha subunit) and GNA11 (guanine nucleotide-binding protein alpha 11) 

are altered in 9.5% of mucosal melanoma and up to 90% of uveal melanoma cases 53,54. The 

most common alterations are mutations, amplifications and deletions resulting in an oncogenic 

GTP signaling and hyper proliferation of melanoma cells. Several studies showed that 
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mutations in GNAQ and QNA11 have led to MAPK pathway activation through RAS activation 

and phosphorylation of MEK and ERK 55,56. In addition, the tumor suppressor gene CDKN2A 

is frequently mutated in melanoma patients with loss-of-function mutations or deletions. This 

gene encodes for several proteins including p16(INK4A) and p14(ARF) proteins, who induce 

cell growth and senescence 57. The three-year overall survival rate decreases from 55% in 

patients with wild-type CDKN2A to 24% for patients with mutations in CDKN2A 32. 

 

1.1.2    Standard treatment options for melanoma 

Malignant melanoma is treated by combinations of surgical resection, immunotherapy, 

chemotherapy or targeted therapy. These treatment options are selected depending on the 

features of the tumor including location, stage and genetic profiles. For patients with stage I 

melanoma, surgery is the primary treatment; while, for patients with metastatic melanoma, 

chemotherapy, targeted therapy and immunotherapy are recommended. There are two main 

limitations in melanoma therapy: 1) reduced drug efficiency due to development of resistance 

to immune-, chemo- and targeted therapy 58,59 and 2) numerous side effects, which can lead to 

skin toxicity, associated to immune reactions, and lack of specificity for tumor cells 60. In recent 

years, improved knowledge of the genetic profiles of melanocytes and a better understanding 

of the molecular factors involved in malignant transformation have led to the development and 

approval of several new therapeutic strategies. Chemotherapy using the standard medication 

dacarbazine (DTIC), an alkylating agent approved in 1974 by the U.S. Food and Drug 

Administration (FDA), achieved a complete response of <5% and a five-year survival in 2-6% 

of patients with metastatic melanoma 61. DTIC methylates nucleic acids, which results in DNA 

damage causing growth arrest and cell death. Unfortunately, DTIC shows several 

gastrointestinal side effects including nausea and vomiting, as well as suppression of blood cell 

production in the bone marrow leading to anemia and neutropenia 62. Development of 

chemoresistance and rapid metastasis are one of the main reasons for the low long-term survival 

rate of patients with metastatic melanoma. Chemoresistance is probably caused by resistance 

to drug-induced apoptosis or repair of drug-induced DNA damage 59. Several studies also 

showed that resistant melanoma cells showed a reduced drug uptake, increased drug efflux and 

an intracellular drug inactivation 63. Replacement with other chemotherapy reagents or 

combinations did not improve the overall survival of melanoma patients 61. Therefore, new 

therapeutic treatments have been explored with improved effectiveness against malignant 

melanoma and reduced side effects.  
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1.1.3    Targeted therapy using immune checkpoint and kinase inhibitors 

Over the last decades, the role of the immune system controlling tumor progression has been 

established and new immunotherapeutic targets showed remarkable clinical activity (Figure 3). 

Under normal physiological conditions, T cell antigen receptors (TCR) on lymphocytes respond 

to antigenic peptides presented on the cell surface on major histocompatibility complexes 

(MHCs) type I. The TCR is a disulfide-linked membrane-anchored heterodimeric protein 

complex with highly variable alpha and beta chains, which leads to a diverse repertoire of TCRs 

on T cells 64. Due to infections or cancer, the TCR on T cells recognizes the myriad of possible 

foreign antigens presented in the surface of cells. The TCR recognition of the antigen leads to 

the activation of T cells, clonal selection and an activation of the process of immunity 65. After 

activation and proliferation of T cells, effector T cells (Teffs) releases cytokines like interferon 

gamma (IFN-γ) which leads to the destruction of tumor cell by high cytotoxicity. This complex 

process comprises a constant interplay between inhibitory and stimulatory signals leading to 

the amplification of antigen-specific immune responses to cancer self-antigens while 

preventing autoimmunity. Dysfunctional immune reactions against tumor cells are key events 

in tumorigenesis and tumor progression and may be due to diminished antigen recognition and 

a highly immunorepressive tumor microenvironment 66. Several studies demonstrate that 

impaired antigen recognition can be due to epigenetic and post-transcriptional silencing or 

alterations in the antigen-processing machineries. The tumor microenvironment can be 

influenced by a diverse variety of factors including enrichment of regulatory cells such as Tregs 

or the upregulation of co-inhibitory signals in lymphocytes 67. 

Immunotherapy has recently become a valuable option for melanoma treatment. Anticancer 

immunotherapies could be broadly categorized into two groups: (1) drugs targeting immune 

tolerance via blockade of negative regulatory signals like co-inhibitory checkpoints and (2) 

drugs enhancing endogenous antitumor immune response via stimulation of immunogenic 

pathways. Therapeutic cancer vaccines, exogenous recombinant cytokines and oncolytic 

viruses are also used as immunostimulatory strategies to enhance antitumor immune response. 

Several drugs targeting immune tolerance are now in clinical development, and some were 

approved by the FDA for use in various cancer types. The reagents nivolumab and ipilimumab 

are immune checkpoint antibodies targeting PD-1 (the programmed cell death-1) and CTLA-4 

(cytotoxic T lymphocyte-associated antigen-4) receptors. PD-1 and CTLA-4 are co-inhibitory 

T cell receptors and acts as negative regulatory receptors that block T cell activation and induce 

immune tolerance. The CTLA-4 antibody ipilimumab (approved in 2011 by the FDA) was the 

first agent which showed improved overall survival of melanoma patients. CTLA-4 is mainly 
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expressed on T cells and is a homolog of CD28, a costimulatory receptor on T cells 68. Under 

normal conditions, CTLA-4 is expressed at very low level and is rapidly up-regulated upon 

antigen binding 69,70. Both receptors bind the same ligands, CD80 and CD86 on antigen-

presenting cells, however the binding affinity is much higher for CTLA-4 than CD28 71. The 

binding of CTLA-4 prevents the co-stimulation and activation of T cells. Several studies 

showed that anti-CTLA-4 antibodies also promote depletion of Tregs in the tumor 

microenvironment by expressing high levels of FcγRIV 72. Subsequently, inhibition of CTLA-

4 receptors with therapeutic anti-CTLA4 antibodies demonstrated tumor rejection and 

significant prolongation in patient survival. The overall survival rate was improved to 9.1 

months with higher three-year survival rate of 20.8% compared to placebo 73. However, only a 

minority of patients respond to ipilimumab and most patients display immune-related toxicities.  

 

 

Figure 3: Immunotherapies for cutaneous melanoma treatment. Approved immunotherapy reagents 

are depicted in a white box, trials in a grey box. Ipilimumab, an anti-CTLA-4 antibody, induces antitumor 

immune response by binding to the CTLA-4 receptor, and increases clonal T cell expansion and infiltration. 

The anti-PD-1 antibody nivolumab block the interaction between the PD-1 receptor and the ligands PD-L1 

and PD-L2. (adapted from Domingues et al., 2018 2).  

 

Clinical trials using another checkpoint receptor, anti-PD-1 antibodies reported higher response 

rates and fewer immune side effects compared to CTLA-4. PD-1 is expressed on several 

immune cells including activated T cells, B lymphocytes and natural killer (NK) cells 74,75. 

Expression of PD-1 is induced by binding of its ligands PD-L1 and PD-L2 and by cytokines 

such as interleukin-2. Nivolumab 76 was approved in 2014 by the FDA and blocks the 

interaction between PD-1 and its ligands, which results in antitumor activity and reduces tumor 
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progression. Monotherapy with nivolumab showed a median progression-free survival (PSF) 

of 6.9 months and an improved overall survival compared with monotherapies of ipilimumab 

(median PSF of 2.2 months) in metastatic melanoma patients that are naïve to both reagents 77. 

Combined therapies have been studied and achieved a median PSF of 11.5 months, especially 

in patients with PD-L1 negative tumors. Combinations of chemotherapy with immunotherapy 

also showed increased response rates and an improved median PSF compared to monotherapies 

78. However, no increase in the overall survival of patients could be observed and it was 

associated with severe toxicity 79. Checkpoint inhibitor immunotherapy showed an increased 

progression free survival for melanoma patients, however only a small percentage of patients 

responded to these inhibitors. The complexity and multiplicity of involved mechanisms, 

heterogeneity in the immune response across tumors, the tumor microenvironment and the 

varying tumor immunogenicity affect the response and resistance to immune checkpoint 

blockade. Resistance can be divided into two groups according to the timing of occurrence that 

is primary resistance, for patients never-responding to the treatments, and acquired resistance 

developing following a period of response to the drugs. It can be also classified into intrinsic, 

altered processes due to gene expression, signal transduction, DNA damage and immune 

recognition in cancer cells, and extrinsic due to external T cell activation. The clinical response 

to immune checkpoint inhibitors and acquired resistance is often associated with a high 

mutational load and expression of tumor neoantigens leading to antitumor immunity 80,81. 

Several studies showed that non-synonymous mutations were identified to generate tumor 

neoantigens that drive cytotoxic response against cancer cells 67,82,83. A high mutational and 

neoantigen load was also found to be associated with responses to anti-CTLA-4 treatment in 

patients with metastatic melanoma 84. The loss of neoantigen expression may lead to poor 

immunogenicity and acquired resistance to checkpoint inhibitor blockade 67. A recent study 

demonstrated a loss of seven to 18 putative neoantigens in resistant NSCLC tumors after 

treatment with the checkpoint inhibitors PD-1 and CTLA-4 85. Several other studies showed 

that deficiencies in antigen presentation and down-regulation of MHC class I (MHC-I) play a 

role in immune checkpoint resistance 86-88. Loss-of-function mutations in β2-microtubulin 

leading to loss of expression of MHC-I, thus allowing immune evasion of tumor cells 89,90. 

Besides mutation in β2-microtubulin, loss of JAK/STAT pathway results in acquired resistance 

due to downregulation of MHC-1 91,92. Additionally, classic oncogenic pathways like MAPK 

or PI3K pathways can regulate immune response by influencing the tumor microenvironment. 

Alterations in the MAPK pathway may lead to increased expression of VEGF, a vascular 

endothelial growth factor, and other inhibitory cytokines, thus mediating immune evasion of 
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tumor cells 93,94. Treatment of resistant cells with combination of MAPK inhibitors in mouse 

models resulted in the overcoming of immune checkpoint blockade resistance 94. Constitutive 

activation of PI3K pathway due to loss of PTEN was associated with resistance to PD-1 therapy 

and decreased overall survival of patients with leiomyosarcoma 95,96. Combined therapy against 

PD-1 and PI3K in a mouse model with head and neck squamous carcinoma demonstrated a 

decrease in inhibitory cytokine production and a modification of the tumor microenvironment, 

which ultimately lead to tumor regression 97,98. The combination of different immune 

checkpoint and targeted therapy may improve response to treatments and better patient 

outcomes.  

Melanoma is characterized by mutations in genes of key signaling pathways that result in cell 

proliferation and malignant phenotype. Approximately 70% of patients display one or more of 

these mutations. In the past few years, small molecules inhibitors or antibodies targeting 

mutated proteins focusing on BRAF and MEK have been developed and showed a rapid 

antitumor response and regression of this disease. Targeted inhibition of the mutated BRAF 

protein with the selective inhibitor vemurafenib was approved by the FDA in 2011. 

Vemurafenib reversibly bind to the kinase domain of BRAF competing with adenosine-

triphosphate (ATP) ultimately inhibiting BRAF-induced MEK activation 99. Melanoma patients 

positive for BRAFV600E mutations showed an improved clinical response rate, overall survival 

and progression-free period after treatment with vemurafenib compared to chemotherapy. In 

2013, the FDA approved a second BRAF inhibitor (BRAFi) dabrafenib, which also results in a 

reduction of MAPK pathway signaling 33. These drugs have a response rates of approximately 

50% and result in an average free survival benefit of four months 100,101. However, almost all 

patients rapidly develop resistance to RAF inhibitors after a period of approximately five 

months 100,102,103. Resistance mechanisms to BRAF inhibition is often associated with 

intercellular reactivation of the MAPK pathway including expression of the kinases CRAF and 

COT1 or activating mutations in NRAS, MEK1 or AKT1 (Figure 3). In addition, aberrant 

splicing of BRAF, activation of PI3K via the loss of PTEN and activation of tyrosine kinases 

have been identified in patients with acquired resistance 104. Several studies showed that 

targeting signaling effectors downstream of driver oncogenes are valuable strategy to overcome 

resistance. Trametinib a small-molecule inhibitor of MEK1/2, a downstream target of BRAF, 

was approved by the FDA in 2013 for treatment of BRAF-mutated malignant melanoma 

patients 105. Monotherapies with trametinib showed an increased overall survival of six months 

compared with chemotherapy 106. Trametinib showed activity in patients with NRAS mutations 

in contrast to the BRAF inhibitor vemurafenib. However, patients receiving trametinib suffered 



Introduction   11 

 

 

from severe side effects including heart toxicity 107. Cobimetinib, an oral selective MEK 

inhibitor, is another targeted drug for metastatic melanoma and is often used in combination 

with vemurafenib 108,109. PSF and response rates were prolonged in patients with combined 

therapy compared to vemurafenib alone. However, adverse effects were observed in 

approximately 71% of all patients and melanoma patients pre-treated with BRAFi were less 

responsive to the combined targeted therapy 110.  

Alterations in RTK signaling play an important role in primary resistance to BRAF treatment 

(Figure 4). Overexpression or activation of RTK may results in the activation of several parallel 

signaling pathways and thus lead to resistance. Several studies showed that RTK like EGFR are 

overexpressed in patients resistant to BRAF and MEK therapy 111. PDGFR and IGF-1R are also 

frequently mutated in melanoma cells treated with both inhibitors, leading to the activation of 

PI3K pathway 42. The PI3K pathway was also found to be activated by mutations or deletions 

of PTEN. When treated with BRAFi, patients with mutated PTEN showed a shorter 

progression-free survival compared to patients with wild-type PTEN 112,113. Alterations in NF1 

were identified in BRAF mutated cells resulting in RAS activation and increased RAS 

phosphorylation, thus mediating resistance to BRAF inhibitor but not MEK inhibitor therapy 

48. Hepatocyte growth factor (HGF) secreted by stromal cells activates HGF receptor (MET) 

leading to MAPK and PI3K activation, which translates into primary resistance to BRAF 

inhibition 114. Patients with primary resistance may not benefit from targeted therapy, 

highlighting the need of identifying these patients before starting therapy and developing new 

therapeutic strategies. One of the most studied mutations related to acquired resistance to BRAF 

treatment are alterations in RAS. RAS mutant melanoma cells showed activated CRAF, MEK 

and ERK expression after BRAF inhibition, leading to BRAF/CRAF interaction followed by 

activated MAPK signaling 115,116. Activating mutations in NRAS also lead to significant MAPK 

pathway reactivation after BRAF inhibition 115,117. Secondary resistance to BRAF inhibition is 

also characterized by BRAFV600E alternative splicing and copy number amplifications. Several 

studies demonstrated that approximately 16% of patients with acquired resistance showed 

BRAF splice variants lacking exon 4-8, thus enhancing BRAF dimerization and ERK activation 

118,119. In approximately 12% of these patients BRAF amplifications were detected and could 

be linked to associated resistance 120. Besides BRAF dimerization, BRAF and CRAF 

heterodimerization and ectopic expression of CRAF were also associated with ERK activating 

BRAFi resistance 121. The switching between RAF isoforms as adaptors for MAPK pathway, 

can counteract and overcome BRAF inhibition in melanoma cells 122. Consequently, inhibition 

of all three isoforms may be required to prevent ERK activation for melanoma patients with 
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acquired resistance. Downstream of the driver oncogenes BRAF and NRAS, activating MEK 

mutation (Q56P and E203K) were identified in patients with BRAFi resistance, resulting in a 

shorter PSF and poorer response (33%) compared to patients with MEK wild-type (72%) 123,124. 

In another study, patients acquired resistance was associated with the presence of NRAS and 

MEK mutations, suggesting that mutated cells have a proliferation benefit under selective 

pressure to BRAFi 101. Several RTK proteins, specifically PDGFR, IGFR and EGFR, are 

upstream of the driver oncogenes and their upregulation and overexpression result in activation 

of signaling pathways other than MAPK 115,118. PDGFR and EGFR can be activated by MITF, 

a melanocyte-specific modulator. Loss of MITF inversely correlated with RTKs gain of 

expression in patients with secondary resistance 30,125. Levels of MITF could help to predict 

early resistance to targeted therapy. Independently from MAPK and PI3K pathway signaling, 

Notch1 signaling was identified to be highly up-regulated in cell culture harboring BRAFV600E 

mutation and acquired resistance 126.  

 

 

Figure 4: Mechanisms to targeted therapy resistance in melanoma. Resistance mechanisms are divided 

into primary resistance in green, secondary resistance in orange and adaptive resistance in dark red. (adapted 

from Amaral et al., 2017 30) 
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In order to overcome mechanisms of resistance, combined therapies have been established for 

melanoma treatment. The combined BRAF and MEK inhibition with dabrafenib and trametinib 

was approved by the FDA in 2014 127. Combined therapy showed an improved PFS of 9.4 

months compared to monotherapies with dabrafenib (5.8 months) 128. Several other studies 

confirmed the advantages of combining BRAF and MEK inhibitors using vemurafenib and 

cobimetinib and also demonstrated prolonged overall survival of patients with metastatic 

melanoma 128. Despite the great advantages including delay of acquired monotherapy 

resistance, the combined treatment often leads to serve adverse events and a longer 

hospitalization is needed 129. As in monotherapies, acquired resistance of combined therapies 

have been identified in patients with metastatic melanoma. In a recent study, ERK mutations 

were identified in resistant melanoma cells treated with BRAFi and MEKi, mediating a 

reactivation of the MAPK pathway 130. Interestingly, patients resistant to BRAFi and MEKi 

were not resistant towards ERKi and vice versa. This suggest a new therapeutic strategy, 

whereby switching inhibitors may delay resistance development. Heterodimerization of 

BRAFV600E with either CRAF or MEK were also observed in cells with combined drug 

resistance, leading to MAPK pathway activation 131. Combined targeted therapy of key 

molecules of the MAPK pathway may be insufficient to avoid development of resistance. 

Several groups are currently investigating targeting the oncogenic PI3K pathway with the 

combination of PI3K/AKT inhibitors together with BRAFi and MEKi 132,133. In summary, 

targeted therapy and immunotherapy offer great advantages over conventional chemotherapy 

for melanoma treatment. However, drug resistance hampered the prolongation of progression-

free survival and response rates. Resistance mechanisms and even cross-resistance between 

combined targeted therapy is still not fully understood and need further investigation.  

 

1.1.4    Personalized medicine in melanoma 

Over the last decade, several therapeutic treatments for melanoma have been developed with 

improved efficiency and overall survival rates. Only a minority of patients benefits from the 

current treatment therapies and most of these patients develop resistance 59,82,134. Malignant 

melanoma is known to be highly heterogeneous and characterized by its high frequency of 

somatic mutations compared to other cancer types 135. Some molecular events are more frequent 

in some patients and provide an opportunity to adjust the treatment for individual patients. 

Classical systems are limited by the prediction and prognosis of treatment response and thus 

the development of more effective targeted therapies for each individual are needed. 
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Personalized medicine will hopefully lead to an improvement of preventive measures, early 

diagnosis and the identifications of drug targets and biomarkers. The past decade has seen a 

revolution in the field of nucleotide sequencing, which now allows for routine nucleotide-based 

investigations of tumor samples. Different next generation sequencing (NGS) strategies are 

used in precision medicine allowing for sequencing of just a few hotspots, sequencing of large 

gene panels or even whole genome sequencing (WGS). Smaller panels like hotspot sequencing 

panels or actionable sequencing panels are a collection of frequently mutated genes that are 

either clinically actionable or have diagnostic significance 136. Larger panels focus either one 

the entire region of a target gene or disease-associated regions to screen for risks of inherited 

diseases (germline mutations) as well as to identify tumor driver mutations (somatic mutations). 

Whole exome sequencing (WES) or WGS provide comprehensive tools to study the complete 

coding region (WES), as well as intronic and other non-coding DNA regions (WGS). Only 1-

2% of the genome codes for proteins. In addition, the majority of targeted therapies do not target 

the genome, but rather the protein in cancer cells. Thus, it is highly important to quantify and 

identify proteins through all areas of personalized medicine, including biomarker detection and 

response prediction. Mass-spectrometry based proteomics allows the identification and 

quantification of thousands of proteins in complex samples. Several proteomic studies 

identified proteins that were mis-regulated in melanoma cell lines and patients and some of 

them showed a positive correlation with tumor progression and patient survival rates. For 

example, Welinder et al. reported 288 proteins that showed a positive correlation between 

protein expression and disease outcome for six patients with stage III metastatic melanoma 137. 

Four of these are currently used as melanoma markers including melanoma-associated antigen 

D2 (MAGD2) and melanoma cell adhesion molecule (MUC18). In addition, high levels of 

lactate dehydrogenase and S100 calcium-binding protein B (A100B) were found to be 

correlated with melanoma stage and progression 138. Several biomarkers were identified in 

serum samples of patients with melanoma and were associated with melanoma progression, 

recurrence and survival 138. Diagnostic biomarker identifiably in blood of patients would make 

them clinical relevant for the prediction of responses to both immunotherapy and targeted 

therapy. Personalized medicine incorporates the molecular and the biological aspects of each 

patient’s disease, thus allowing the selection of optimal treatment on the basis of improved 

efficiency, overall survival and reduced adverse events. 
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1.2    Key proteins relevant in this study and their link to melanoma 

1.2.1    Intermediate filament nestin  

Nestin is an intermediate filament VI, a component of the cytoskeleton and was originally 

described as a stem cell marker. It was first identified in neuroepithelial stem cells and other 

progenitor cells during migration and proliferation phases in early embryonic development 

139,140. In adult tissue it is involved in regeneration processes remodeling the cytoskeletal actin 

network 141. The human NES gene is located on chromosome 1 at position 23 and consists of 

four exons, separated by three introns. The protein comprises 1621 amino acids (aa) with a 

highly conserved α-helical rod domain (306 aa) flanked by a small N-terminal head (7 aa) and 

a long C-terminal tail domain (1308 aa) 142 (Figure 5). The rod domain is composed of four α-

helical coils (1A, 1B, 2A and 2B) and is essential for dimerization.  

 

 

 

 

 

Figure 5: Nestin protein structure with functional domains and heterodimer formation with 

vimentin. The nestin protein (1621 Aa) is composed of a N-terminal (N-ter) head domain, an α-helical rod 

domain and a C-terminal (C-ter) tail domain. Heterodimer formation of nestin and its interaction partner 

vimentin through the central rod coiled domain. (adapted from Bernal et al., 2018 143) 

 

Nestin forms heteropolymers with other filaments, mostly vimentin and keratin, mediated by 

the rod domain 144,145 (Figure 5). The formation of heteropolymers plays an important role in 

the organization of the cytoskeletal network and is regulated by PTMs mostly phosphorylation 

143. Phosphorylated nestin triggers the disassembly of other bound cytoskeletal filaments like 

vimentin, keratins and nuclear lamin through the disruption of cross-links 143. The dynamic 

regulations of the cytoskeletal network mediated by nestin and other filament proteins are 
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important in many cellular processes such as cell survival, proliferation and cell motility 144. 

Several studies described the role of nestin in a variety of tumors like pancreatic cancer, prostate 

cancer, glioblastomas, breast cancer and especially in malignant melanomas 146-150. Piras et al. 

showed that nestin was highly expressed in cancer stem cells, which are involved in 

tumorigenesis and malignancy 151. In addition, the expression of nestin correlated with a poor 

prognosis for patients with malignant melanoma. This was also observed with increased 

metastasis, invasion and migration in pancreatic cancer and neurogenic and mesenchymal 

tumors 142,145,150. To counteract theses effects, several studies used shRNA and siRNA to inhibit 

nestin expression in melanoma and liver cancer mouse models and lung adenocarcinoma 152,153. 

The inhibition of nestin resulted in less metastases in the mouse models and showed reduced 

cell proliferation, migration and invasion of cancer cells. In addition, nestin was also described 

to be involved in angiogenesis 154. In endothelial cells of blood vessels, high expression of 

nestin was observed and inhibition of nestin-positive mouse blood vessels led to a decrease in 

blood vessels close to the tumor and consequently to tumor regression 154. Quendro et al. 

identified in a proteomic screen an increased expression of nestin in late stages III and IV of 

metastatic melanoma and a correlation with the aggressiveness of the subtypes, suggesting 

nestin as marker of melanoma staging 141. In cutaneous melanomas of the nodular type, nestin 

expression was observed in 92% of cases and associated with increased tumor thickness, 

ulceration and increased proliferation 149. In addition, nestin expression was also reported to be 

up-regulated in melanoma cell lines and depletion of nestin revealed an activation of matrix 

metalloproteinases suggesting a stronger invasive phenotype of the cancer cells 155. In summary, 

nestin expression indicates a poor prognosis and a low survival rate in many different types of 

cancer 151,152. Nestin over-expression in malignant melanoma could be a potential prognostic 

biomarker for the aggressiveness and invasiveness of the tumor 141,147. 

 

1.2.2    Transcription factor RUNX1 

The transcription factor RUNX1 belongs to the family of the runt related transcription factors 

(RUNX), consisting of the members RUNX1, RUNX2, RUNX3. The RUNX family was 

reported in several key processes like cell proliferation, differentiation, senescence and 

apoptosis 156. All members of the family share an evolutionary conserved runt domain of 128 

aa at the N-terminus mediating DNA binding 157. The three RUNX proteins are encoded on 

different genes and show distinct tissue-specific expression pattern 156. The structures of the 

three RUNX proteins are similar, however, the function differs including roles in neurogenesis, 
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gastric epithelial cell proliferation (RUNX3), osteogenesis (RUNX2) and hematopoiesis 

(RUNX1) 14,158. RUNX1 was originally described in chromosome aberrations related to human 

acute myeloid leukemia. Alternative splicing of the RUNX1 gene leads to eleven isoforms 

expressed in different cell types and development pathways like TGFβ, WNT or NOTCH 

signaling 159. Binding to the core-binding factor subunit beta (CBFB) enhances the 

transcriptional activity and DNA binding of RUNX1 160. DNA binding is mediated by the runt 

domain and leads to a conformational change and a specific spatial reorganization of the amino 

acids that are involved in DNA recognition. RUNX1 recognizes the core sequence 5’-

YGYGGT-3’ in the DNA sequences 161. RUNX1 also mediates CBFB independent functions 

by binding to other transcriptional cofactors and chromatin modifiers like histone deactelylase 

HDAC1 or acetyltransferase p300 162. Binding to transcriptional activators and suppressors 

regulates the transcription of hematopoietic genes especially during differentiation of B cells, 

T cells and myeloid cells. Several studies suggest that disrupted or mutated RUNX1 gene can 

lead to various malignancies of the hematological system like platelet disorder, 

myelomonocytic leukemia (MLL), lymphocytic leukemia (ALL), or acute myeloid leukemia 

(AML) 163,164. RUNX1 was found to be mutated in around 2.04% of all cancer types and so far 

43 mutations are described in the literature 165. In around 20% of adult AML patients therapy-

related myeloid neoplasms and fusion genes through chromosomal aberration were identified 

may influence the protein stability and function 166. The most prominent gene fusion is RUNX1-

ETO resulting from the runt domain of RUNX1 and the four nervy homology regions of 

(NHR1-4) of ETO. The fusion complex enhances the interaction with transcriptional regulators 

leading to self-renewal of hematopoietic stem cells (HSCs) and leukaemogenesis 167. RUNX1 

expression and mutation was not only reported in leukemia, but also in various solid tumors, 

like breast cancer, oesophageal adenocarcinoma and epithelial cancers including skin squamous 

cell carcinomas 168-170. In some cancer types activity of RUNX1 was associated with a strong 

tumor suppression, but oncogenic in others. Recently, RUNX1 was found to be involved in 

resistance mechanisms to BRAFV600E inhibition in malignant melanoma 171. In this study, 

RUNX1 mediated up-regulation of the receptor tyrosine protein kinase CSF1R was identified 

leading to growth and invasion via activation of the ERK and PI3K/AKT pathways. In resistant 

melanoma cell lines, increased expression of CSF1R was observed with concomitant up-

regulation of the CSF1R ligand IL34, which were shown to correlate with tumor progression, 

invasion and acquired resistance to BRAF inhibitors. Thereby, ERK pathway activity stimulates 

RUNX1 to activate transcription of CSF1R and its ligand IL34. Co-expression of both the 

receptor and the ligand causes high oncogenic potential by enabling para- and autocrine 
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activation. RUNX1 is regulated by several regulatory mechanisms including splice variants, 

transcriptional control by two different promoters and post-translational modifications 172. 

Methylation, acetylation and phosphorylation regulate RUNX1 transcriptional activity, 

whereas the interplay between phosphorylation and ubiquitylation regulate the stability of the 

protein. During cell cycle progression, RUNX1 gets phosphorylated by the cyclin dependent 

kinases (CDKs) on S276, S293, T300 and S303 in the M phase of the cycle, which leads to the 

anaphase-promoting complex mediated degradation of RUNX1 173,174. Upon cytokine 

stimulation, RUNX1 can be also activated through phosphorylation by ERK1/2 kinases at 

positions S249, S266 and S276 enhancing the interaction with p300 and transcriptional activity 

175. Phosphorylation of RUNX1 can also disrupt the interaction with the transcriptional 

suppressor SIN3A leading to carcinogenic processes in some types of cancer 176. The interaction 

with SIN3A can be also abolished by PRMT1-mediated arginine methylation resulting in a 

higher activity of RUNX1 177. In leukemia, phosphorylation by the homeodomain-interacting 

protein kinase 2 (HIPK2) was reported 178. Triple-phosphorylation of RUNX1 by HIPK2 on 

S249, T276 and S273 mediates the binding and activation of the histone acetyltransferase p300, 

which results in up-regulation of target gene expression. In turn, p300 acetylates RUNX1 on 

K24 and K43, which enhances its DNA binding capacity and thereby influence the 

transcriptional activity 179. P300-mediated acetylation of RUNX1 can be also stimulated by 

TGFβ signaling. Deregulation of PTMs or mutations may disrupt RUNX1-mediated 

differentiation and direct cells towards cancer fate. 

 

1.2.3    Guanine nucleotide exchange factor DOCK1 

The guanine nucleotide exchange factor (GEF) DOCK1 belongs to the eleven-member family 

DOCK mediating direct GDP/GTP exchange to promote cytoskeletal reorganization in cell 

proliferation, differentiation and migration 180,181. DOCK1 contains two evolutionarily 

conserved domains, the DOCK homology region-1 (DHR-1) and the DHR-2 domain 182. 

DOCK1 interacts with specific members of Rho family such as RAC or Cdc42 but not with the 

Rho protein RhoA. The DHR-1 domain mediates the recruitment of DOCK1 to the membrane 

by direct binding to PIP3 after PI3-kinase activation. Recent investigations suggest that DOCK1 

binds the signaling lipid phosphatidic acid (PA) instead of PIP3 183-185. Sanematsu and 

colleagues showed that PDGF treatment in fibroblasts promotes the DHR-1-dependent and 

PIP3-dependent recruitment of DOCK1 and DOCK5 to the membrane, resulting in RAC1-

dependent peripheral membrane ruffle formation 185. The binding of DOCK1 to PA via the 
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DHR-1 domain is important for the localization of DOCK1 at the membrane, resulting in the 

activation of RAC1 to form dorsal ruffles. Both RAC-dependent membrane ruffles are involved 

in specific biological processes such as cell migration for peripheral ruffles and cell invasion 

linked to dorsal ruffles. DOCK1-mediated cytoskeletal remodeling is also regulated by the 

formation of the complex between DOCK1 and ELMO scaffolding proteins (ELMO1 and 

ELMO2), binding to the N-terminal SH3 domain of the protein 186. The ELMO scaffolds directs 

DOCK1 to distinct areas of the cell including the cell membrane to allow activation of RAC1 

and their downstream signaling pathways. In the basal state, both proteins are in the closed 

confirmation and extracellular stimulation release ELMO autoinhibition followed by activation 

of DOCK1 and optimal RAC activation 187-189. The C-terminus of the DOCK1 GEF protein, 

including a PBR domain and a ‘PXXP’ region, second mediates the interaction with SH3-

containing adaptor proteins, such as CRK and GRB2. DOCK1 activity is regulated by several 

post-translational modifications including phosphorylation, acetylation and ubiquitylation. 

Phosphorylation on Y722, Y1811 or S1250 by SRC and PKA kinases increases its GEF activity 

towards RAC activation, while ubiquitylation of DOCK1 was enhanced after EGF stimulation 

and binding to CRK 190,191. Binding of ELMO1 inhibited the ubiquitylation of DOCK1 and thus 

stabilizing the protein 190. This regulation of GEF activity by PTMs and binding of interaction 

partners might contribute to the distinct activation of RAC at the plasma membrane. Several 

studies described the roles of DOCK1 in a variety of tumors such as glioblastoma, thyroid 

cancer, breast cancer and malignant melanoma 192-194. In glioblastoma, DOCK1 and its complex 

partner ELMO1 were observed to be highly expressed in the invasive areas of the cancer tissue 

sections and could be linked to the PDGFR- induced downstream signaling in glioblastoma cell 

lines 192,193. In addition, they could show that suppression of DOCK1 expression prevents the 

cell migration and activation of downstream targets such as RAC, ERK1/2 and AKT1. 

Activation of PDGFR promotes the phosphorylation of DOCK1 at Y1811 through SRC kinase, 

which leads to the interaction with CRK and BCAR1 followed by activation of RAC and 

downstream targets like AKT and ERK1/2 193. Phosphorylation of DOCK1 at Y722 by SRC 

kinase and S1250 by PKA kinase can also be induced after activation of oncogenic EGFRvIII 

to increase its affinity to RAC and promote GTP load 191,195. Mutations of these different 

phosphorylation sites of DOCK1 prevents growth and invasion of oncogenic RTK 

overexpression in cancer cells. Notably, the overall survival of patients with glioblastoma was 

significantly decreased in tumors with DOCK1Y1811F and PDGFRA mutations 193. In breast 

cancer, high levels of DOCK1 mRNA expression was associated with a poor prognosis for 

patients with either HER2-positive or basal breast cancer, suggesting that DOCK1 is an 
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important downstream effector of HER2 194. Inhibition or knockout of DOCK1 in vivo in breast 

cancer cells showed that DOCK1 expression is essential for the activation of RAC though 

HER2-dependent activation of DOCK1 and thus regulates cancer metastasis and migration 194. 

In human melanoma cells, DOCK1 expression was linked to invasion through complex 

formation with the focal adhesion kinase FAK and CRK 196. This complex formation leads to 

RAC activation and induced JNK activity directly regulating actin cytoskeletal reorganization 

and formation and secretion of matrix-metalloproteases MMPs. In addition, Tomino et al. 

showed that DOCK1 promotes the GDP/GTP exchange of oncogenic RACP29S resulting in 

increased invasion and metastasis in melanoma and breast cancer cells 197. This somatic 

mutation on RAC1 was reported in 9% of sun-exposed malignant melanomas and leads to self-

activation due to increased inherent GDP/GTP exchange 29. In another study, they reported a 

DOCK1-mediated RAC activation in RAS-driven cancer cells promoting cellular invasion and 

macropinocytosis 198. Similar as in RAC mutated cells, inhibition of DOCK1 suppresses cell 

growth and metastasis of RAS-transformed cancer cells in vivo. The RACP29S mutation was 

also reported to be associated with resistance to kinase inhibitors and immunotherapy and could 

serve as a predictive biomarker for therapy resistance in melanoma 199,200. Inhibition of DOCK1 

suppressed the RAC1P29S-induced invasion in cancer cells and might be a potential treatment 

option in melanoma patients associated with RAC mutations 197,198. 

 

1.3    CRISPR/Cas9 system – a new tool for genome editing 

Prokaryotes have developed innate and adaptive immune systems to cope with the constant 

threats of phage infections and plasmid transfer. The adaptive immune system clustered 

regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) genes was 

identified in 40% of bacterial and 90% archaeal genomes 201. The CRISPR immunity is based 

on small fragments of foreign DNA of previous infections (so called spacers) integrated in the 

host cells CRISPR array 202,203. The spacers are of 26-47 base pairs (bp) long and separated by 

short repetitive sequences of 2-48 bp. The CRISPR system has been classified into three classes 

based on the core element content and sequences. Type I and III systems require large 

multisubunit ribonucleoprotein complexes for the silencing of foreign nucleic acids in 

subsequent rounds of infections. In contrast, in the type II system the DNA cleavage of foreign 

viruses and plasmids is mediated by only a single Cas protein bound to a dual RNA molecule. 

The CRISPR/Cas9 system from Streptococcus pyogenes (S. pyogenes) is the most commonly 

used system for genome editing using the well characterized Cas9 endonuclease 204,205 (Figure 
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6). The CRISPR associated (Cas) genes are adjacent to the CRISPR locus. During the 

immunization process, the foreign DNA is cleaved by the Cas complex and the short fragments 

are integrated into the host CRISPR repeat-spacer locus as spacers between CRISPR RNA 

(crRNA) repeats 206,207. In the second stage, the CRISPR array containing acquired spacers is 

transcribed into precursor crRNA and enzymatically processed and cleaved into mature crRNA. 

The crRNA consists a spacer sequence at the 5’end, which is responsible for targeting it to the 

foreign genomic element, as well as the part of the crRNA repeat sequence allowing the 

recognition by the Cas protein. In the type II CRISPR/Cas9 system, hybridization between the 

crRNA repeat sequence and a noncoding trans-activating CRISPR RNA (tracrRNA) is critical 

for the processing of the crRNA and the target-mediated cleavage by Cas9 208. In the third stage 

of the immune response, the crRNA spacer hybridizes with complementary foreign DNA and 

the Cas9 protein mediates the cleavage of the invading genome upon a second infection 206.  

 

 

Figure 6: Different phases of CRISPR/Cas9-mediated immunity in type II system in bacteria. In the 

CRISPR spacer acquisition phase (1), invading foreign DNA is cleaved by the Cas complex into short 

sequences (spacers, colored boxes). These spacers are inserted into the CRISPR locus between short 

palindromic repeat sequences (repeats, black diamonds). In CRISPR expression phase (2), the precursor 

CRISPR RNA (pre-crRNA), and Cas9 proteins are transcribed and subsequently processed. The foreign 

DNA sequence is recognized, in phase 3, by the crRNA-Cas9 complex via complementary base pairing and 

subsequently cleaved by the Cas9 protein. It is essential that the target sequence is in close proximity to a 

protospacer adjacent motif (PAM; red). (adapted from Bhaya et al., 2011 206)  
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The action of CRISPR/Cas9 depends on the assembly of the crRNA and the Cas9 protein to 

interrogate DNA targets. The complex recognizes a sequence-specific PAM motif located in 

close proximity of the crRNA target site in the invading genome 209. This motif is absent in the 

host genome, which protects it from self-cleavage. In the class II CRISPR/Cas9 system, the 

cleavage of the DNA is mediated by the nuclease domain of the Cas9 protein, a HNH domain. 

This domain cleaves the complementary target strand to the gRNA and the RuvC-like nuclease 

domain of the Cas9 protein cleaves the non-target strand 210,211. Cas9 is guided to the DNA by 

the crRNA-tracrRNA duplex, which is unique for the class II system. The nuclease Cas9 from 

S. pyogenes recognizes the PAM motif 5’NGG (N represents any nucleotide) in the foreign 

DNA.  

Recent achievements in genome editing techniques allow the precise manipulation of any gene 

at its genomic locus in a variety of experimental models including cell lines, laboratory animals, 

plants and was even tested human clinical trials 211. The specificity of genome editing is based 

on ‘programmable’ nucleases producing specific double strand breaks (DSBs), which are 

repaired by endogenous cellular repair mechanisms. Zinc-finger nucleases (ZFNs) and 

transcription activator-like (TAL) effector nucleases (TALENs) were the first engineered 

systems 212-214. The DNA-binding domains of transcription factors have been fused with the 

nuclease domain of the restriction enzyme FOKI 211. When targeted to specific site in the 

genome, the nuclease domain of FOKI forms a dimer that activates the nuclease activity 

mediating a DSB near the target site. These systems function through DNA-protein interactions 

and require engineering and cloning of proteins for each target site. The CRISPR/Cas9 system 

is a powerful RNA guided DNA platform, which can be used for high-throughput applications 

(Figure 7). The crRNA-tracrRNA complex can be fused into a chimeric single guide RNA 

(sgRNA), the basis of the flexible genomic engineering toolkit 209,215,216. The sgRNA-Cas9 

complex induces the cleavage of a specific target site adjacent to a PAM sequence. Essentially 

any genomic locus containing a PAM motif can be targeted with a customized sgRNA. 

The DSB created by Cas9 triggers endogenous DNA repair mechanisms, such as non-

homologous end joining (NHEJ) or homology-directed repair (HDR) pathway 218,219 (Figure 7). 

The NHEJ pathway causes random insertions or deletions of nucleotides at the DSB site, so 

called InDel mutations. These may lead to gene knockouts by causing a shift in the target gene 

reading frame, premature stop codons or mutations of a critical region in the encoded protein. 

Error-prone NHEJ is also used for loss of function screening, genomic rearrangements and 

NHEJ-mediated homology independent knockin of genes 220,221. HDR can be exploited to 

generate precise modifications in a defined locus at the DSB site through homologous 
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recombination guided by exogenous donor repair templates. The HDR pathways provides a 

powerful tool for sequence-specific gene editing including gene knockout, gene knockin, 

mutagenesis and gene corrections 222. In addition, it is also often used to introduce a tag or a 

reporter gene to study protein localization or protein-protein interactions 223.  

 

 

Figure 7: CRISPR/Cas9 based gene modification by commonly used delivering methods and DNA 

repair mechanisms. Plasmid containing the mRNA sequence of the Cas9 protein as well as the sgRNA, 

Cas9 mRNA in complex with sgRNA or a ribonucleoprotein (RNP) complex methods can be used. The 

sgRNA (pink) bind to the target site (green) of the genomic DNA via complementary base pairing and the 

Cas9 protein induces a double strand break (DSB) three base pairs upstream of the PAM sequence (red). 

The double strand break can be repaired by two endogenous cellular repair mechanisms. The non-

homologous end joining (NHEJ) pathway results in random insertions or deletions (InDels) of nucleotides. 

The homology-directed repair (HDR) pathway requires a donor template with homologous sites. Thus, 

precise genome editing is enabled by a specific donor sequence. (adapted from Tian et al., 2018 217) 

 

Despite the great potential of CRISPR/Cas9, several limitations and challenges exist and can 

still be improved concerning specificity, efficiency and control. The PAM sequence motif of 

Cas9 limits the availability of genomic targets to an average of one target site per eight bp. 

Several Cas9 protein variants with altered PAM sequences have been developed to improve 

Cas9 specificity and availability of target sites in the human genome 224. For example, xCas9 

recognizes several PAM sequences including 5’NG, 5’GAA and 5’GAT 225. Another challenges 

are possible off-target effects as the 20-bp targeting sequence of the crRNA and the 3-bp PAM 
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sequence may exist elsewhere is the genome. To reduce off-target effects several Cas9 variants 

have been generated to improve Cas9 sensitivity 226. Shen et al. (2014) engineered a Cas9 

protein with an inactive nuclease domain, which functions as a nickase, cleaving only one DNA 

strand 227. This strategy was applied to cancer cell lines and mouse embryos and showed 

reduced off-target effects and improved specificity. In addition, a catalytically deactivated Cas9 

variant (dCas9) was developed and can be used for sequence-specific gene regulation 228. 

Transcriptional activators and repressors can be fused to the dCas9 and this complex can be 

directed to any genomic locus by specific sgRNAs and serve as a RNA-guided DNA-binding 

platform. This technique is termed CRISPR interference (CRISPRi) and widely used to repress 

or activate DNA transcription by blocking RNA polymerase binding, elongation or the binding 

of transcription factors 229. Multiple targeting is also possible and the effects of dCas9 binding 

are reversible. In addition, by tagging dCas9 with an enhanced green fluorescent protein, it can 

be also used as an imaging tool for example for specific sequences or repetitive elements 230. 

 

1.3.1    CRISPR/Cas9-mediated genome engineering in cancer biology 

In the recent years, CRISPR/Cas9 has revolutionized the field of genomic engineering and 

helped to understand and manipulate biology in a variety of studies ranging from basic research 

to clinical applications 231,232. The CRISPR/Cas9 system has been used in several studies to 

investigate rearrangements of the genome in cancers and other diseases. For example, 

chromosomal translocations could be precisely reproduced by joining two chromosomes via 

the NHEJ pathway in lung cancer and acute myeloid leukemia cell lines. This has been even 

further developed to generate cancer mice models by CRISPR/Cas9 to study cancer progression 

and malignancy. In addition, the CRISPR/Cas9 system was also successfully applied to high-

throughput screenings to identify genes essential for cell viability in cancers, which enables the 

identification of potential drug targets. In a breast cancer study, CRISPR/Cas9 was used for the 

diagnosis, treatment and drug resistance research. Using the dCas9 system, the CDKN2A gene 

was identified as a diagnostic marker indicating abnormal cell division in breast cancer cells 

233. In another study, the HER2 gene was targeted by CRISPR/Cas9, revealing a correlation 

between HER2 expression and inhibition of cell growth and attenuated tumorigenicity 234. For 

leukemia models, lentivirus-delivered Cas9-sgRNA systems in primary hematopoietic cells has 

been developed and was used to target inactivated genes including TET2 and RUNX1 to study 

development of myeloid malignancy 235. The targeted studies enhance the development of 

precision cancer medicine and provide a powerful tool to study functional cancer genomics. 
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Acquired resistance to drugs is one of the major challenges in cancer therapy. Resistance in 

leukemia is often mediated by synergistic gene target interactions, which can be identified by 

sgRNA library screenings for combinatorial genes in CRISPR/Cas9 based knockout cell lines 

236. The depletion of these combinatorial genes showed great promise in leukemia cells and may 

allow the development of personalized genotype-based therapies. In precision cancer medicine 

also screens for cancer metastasis-related genes using CRISPR/Cas9 loss of function libraries 

are often used to identify new therapeutic targets and potential biomarkers 237-239. Gene therapy 

by the CRISPR/Cas9 system could be consequently a powerful tool to treat genetic disorders 

in the future. For example, in mice, researchers corrected the CFTR locus which is responsible 

for cystic fibrosis in intestinal stem cells and the mutated β-globin locus in sickle cells disease 

in hematopoietic stem cells by genome editing. The CRISPR/Cas9-based diagnosis panels 

SHERLOCK and DETECTR rely on the Cas13a or Cas12a RNA-guided RNase which 

mediates a non-specific single strand cleavage 240-242. For SHERLOCK; a reporter signal 

released after RNA cleavage is used to detect common driver mutations in cancer like 

BRAFV600E or EGFRL858R in highly sensitive diagnostic approach 242. Recombinase polymerase 

amplifications (RPA) are used in the DETECTR system to amplify micro samples and detect 

infections in cancer like HPV types in lung carcinomas. Promising results from CRISPR/Cas9 

studies have been achieved, however more work is needed to develop a safe and effective tool 

for diagnosing and treating cancers. 

 

1.4    Mass spectrometry based proteomics and proteogenomics 

1.4.1    Proteome and post-translational modifications 

Biological processes are often carried out by proteins and their characterization is of 

fundamental interest in cell and cancer biology. The proteome comprises all expressed proteins 

within a cell, tissue or organism at a given time under defined conditions. The human genome 

consists of approximately 20,000 protein-coding genes, however complexity increases from the 

transcriptional to the translational level due to alternative variants and post-translational 

modifications (PTMs) 243-245 (Figure 8). Not only the complexity of the proteome also the 

abundance, dynamic range and the localization of proteins plays also an important role in 

biological functions 246,247. 
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Figure 8: The increase in complexity from genome to proteome. The genome comprises 20,000 to 

25,000 genes, the proteome is estimated to encompass over 1 million proteins. Transcriptional and mRNA 

level changes increase the size of the transcriptome relative to the genome, and post-translational 

modifications of proteins exponentially increases the complexity of the proteome. (adapted from Virag et 

al., 2019 245)  

 

Proteomics, the large scale study of proteins, is widely used for the analysis of cellular 

compositions under changing conditions. Mass spectrometry (MS)-based proteomics enables 

the global analysis of the protein composition, protein abundance, PTMs state of proteins and 

their dynamic processes in the cell 248. Post-translational modifications of proteins regulate a 

broad variety of biological processes including cell growth, proliferation and apoptosis. Over 

300 PTMs have been identified ranging from small chemical moieties such as acetylation or 

phosphorylation to more complex structures like glycosylation or ubiquitylation 249-251. 

Phosphorylation of proteins is the most prominent PTM and can influence signal transduction 

networks, protein activity, protein-protein interaction and sub-cellular localization 252. Protein 

phosphorylation, mediated by protein kinases, is a reversible process and the removal of 

phosphorylation is performed by protein phosphatases. The human proteome encodes for more 

than 500 protein kinases and roughly 150 protein phosphatases accounting for up to 3.5% of 

the proteome. Most kinases are specific for phosphorylating one residues. Several amino acids 

can be phosphorylated and divided into four groups: (a) O-phosphorylation at serine, threonine 

and tyrosine, (b) N-phosphorylation at arginine, histidine and lysine, (c) S-phosphorylation at 

cysteine and (d) acyl-phosphorylation at aspartic acid and glutamic acid. O-phosphorylation is 

the best studied type of phosphorylation due the chemical stability and compatibility with 

proteomic workflows. The stoichiometry of phosphorylation is generally relatively low at a 

given time point and usually not all copies of a protein are phosphorylated or multiple sites may 

be variably regulated during different processes. Recent phosphorylation studies have revealed 

that the majority of proteins in a mammalian cell are phosphorylated at one or more residues 

253. Many other types of PTM having become more prominent and are now extensively studied 
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by proteomics like acetylation and methylation of non-histone proteins 254. Acetylation on 

lysine residues has been associated for a long time with the regulation of chromatin structures 

and was described in the 1964 for the first time 255,256. In the recent years, several proteomic 

studies identified over 5,000 acetylation sites on over 2,000 proteins localized in the cytoplasm, 

mitochondria and plasma membrane 257,258. In addition to acetylation, ubiquitylation and 

SUMOylation are also lysine modifications and play an important role in protein degradation 

as well as other cellular regulatory functions such as apoptosis and DNA repair 259. Many 

proteins are sequentially modified at multiple residues as one PTM can serve as a positive or 

negative signal for the addition or removal of a second PTM or for the recognition of other 

binding partners that may modify the protein further 260. Bioinformatic tools and databases can 

be used to predict hotspots for different types of PTMs on the same protein and revealed that 

these modifications are often in close proximity to each other, about 15 amino acids apart 261. 

Several proteomic studies obtained evidence about the crosstalk of PTMs in eukaryotic and 

prokaryotic cells including phosphorylation and ubiquitylation during the process of protein 

degradation or SUMOylation and phosphorylation for the activation of kinases like CDKII 

262,263. PTMs and even the crosstalk between PTMs expand the landscape of the proteome and 

functions as a fine-tuning mechanism regulating the function, localization and interaction of 

proteins. 

 

1.4.2    LC-MS/MS instrumentation 

The field of mass spectrometry based proteomics is rising since the last decades due to technical 

investigations. The work of Thomson in 1912 and his student Aston in the next few years led 

to the development of the first mass spectrometer and the detection of isotopes of elements 264. 

Both scientists were awarded with the Nobel prize in 1906 and 1922 for their pioneering work 

in the field of physics and chemistry, respectively. Developments in instrumentation including 

soft ionization techniques, increased sensitivity and resolving power moved mass spectrometry 

from chemistry into the field of biology, where it becomes a powerful tool to study and 

characterize thousands of proteins. Mass spectrometry is the measurement of the mass-to-

charge (m/z) ratio of an ionized molecules 265. Mass spectrometer consist of an ion source that 

converts the analyte of interest from liquid to gas phase, a mass analyzer that separates charged 

ions based on their m/z ratio and a detector that records the numbers of ions at each m/z value 

266. Two soft ionization techniques, called matrix-associated laser desorption ionization 

(MALDI) and electrospray ionization (ESI) are used for many proteomic configurations and 
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the efficiency of ionization can differ by order of magnitudes for different peptides 267. For 

MALDI, the analyte is embedded in a crystallized matrix and will be vaporized and ionized by 

laser impulses, which initiates an energy transfer from the matrix to the molecule 268,269. ESI 

takes place at atmospheric pressure and the analyte molecules are ionized and transferred from 

liquid to gas phase 270 (Figure 9). The analyte is transported through a needle at high electrical 

potential (2-6 kV). An electric field between the end of the needle and the entry capillary of the 

mass spectrometer is applied and the charged analyte will form a Tylor cone and droplets will 

be released. The solvent of the formed droplets will evaporate and the charged analyte enters 

the gas phase (Figure 9). Most of the ions introduced by ESI will be multiply charged in contrast 

to MALDI.  

 

 

Figure 9: Electrospray ionization for biomolecules. An electric field between the end of the needle and 

the entry capillary of the mass spectrometer is applied and the charged droplets will be released. The solvent 

of the formed droplets will evaporate and the charged analyte enters the gas phase. (adapted from Steen and 

Mann, 2004 271) 

 

The charged ions are separated by the mass analyzer in the MS instrument based on their m/z 

ratio. In addition, ions can be also temporarily trapped and even detected in some types of 

analyzers 272. Mass analyzers varying in their resolving power, mass accuracy and sensitivity 

based on their ability to separate ion with similar or near-identical m/z values 273. The resolution 

(R) refers to the ability to separate two narrow mass spectral peaks and the mass accuracy also 

depends on the signal-to-noise ratio for each mass spectral peak 265. A quadrupole mass analyzer 

consist of four parallel round metal rods, connected as opposite pairs 274,275. A direct current 

voltage and a radio frequency are applied to the rods. Under a fixed electric field, ions will 

oscillate between the rods and ions with a narrow window of m/z will have stable trajectories 

through the quadrupole. In contrast, ions with m/z values outside of the m/z window will have 

an unstable path and will collide with the rods. By varying the voltages applied to the 

quadrupole, different m/z ions can be selected and reach the detector. A quadrupole ion trap 

(IT) is also composed of four linear rods in which the ions are trapped in the center of the device 
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and then scanned from the trap to a detector 276. The sequential ejection of trapped ions using 

ramped voltages allows the recording of m/z ratio for a wide mass range. The IT is limited by 

the number of ions trapped in the device, which results in poor resolution and mass accuracy. 

Linear quadrupole ion traps have an increased trapping space and consist of two end cap 

electrodes 276. The end cap electrodes have small holes in their centers that allows ions to either 

enter or exit the trap. Different voltages will trap and eject the ions equally through the sides of 

the trap and the m/z ratio will be recorded. In 1999, a new type of mass analyzer, the Orbitrap 

was invented by Makarov and was used for the first time in proteomics in 2005 by Hu et al.277. 

A Orbitrap consist of a central inner axial electrode, and outer electrode and two end cap 

electrodes 278. Ions are trapped in an electric field, orbit around the central axial electrode and 

oscillate harmonically along its axis with a frequency characteristic for each m/z value 279. This 

introduces an image current in the outer electrodes, which is transformed by Fourier-

transformation into a frequency spectrum and then converted into a mass spectrum. The 

Orbitrap is coupled to a nitrogen-filled C-trap (curved RF-only quadrupole), where ions are 

trapped and pulsed into the Orbitrap by high voltages. The Orbitrap shows a very high mass 

accuracy and high resolution capabilities 273. Different types of mass analyzers can be combined 

within an instrument, called hybrid mass spectrometer 274. It combines the robustness and 

sensitivity of one mass analyzer with the high mass accuracy and resolution of another mass 

analyzer. 

Tandem mass spectrometry (MS/MS) is a key technique to achieve the amino acid sequences 

from peptides (Figure 10). A MS1 spectrum shows intact peptide ions eluting at a given time 

with a specific m/z value and the heights of the signal reflects the numbers of detected ions 267. 

For MS/MS, a precursor peptide with a specific m/z is selected and fragmented to generate 

product ions for detections. The precursor peptides break at the weakest bond, usually the 

peptide bond between amino acids forming b and y ions by colliding with an inert gas 271. The 

resulting fragment ions are analyzed in a MS2 or MS/MS spectrum 267. Several different 

fragmentation methods are utilized in mass spectrometry including collision induced 

dissociation (CID), higher energy collisional dissociation (HCD) and electron transfer 

dissociation (ETD) 280. CID and HCD causes fragmentation primarily at amide bonds by 

collision of the precursor peptide with inert gas molecules. CID is performed in a linear ion trap 

filled with helium, whereas HCD takes place in a separate collision cell. The fragment ions 

produced by HCD are recorded by an Orbitrap. Due to slow-heating, internal fragmentation and 

neutral-losses of H2O, NH3 and labile PTMS are common 281. ETD uses radical anions to 

rapidly transfer electrons with low electron affinity to multiply protonated peptides resulting in 
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a backbone fragmentation with c and z ions 282. The electron transfer is highly efficient and fast 

and is therefore suited for peptides with higher charge state and labile PTMs like 

phosphorylation. Fragment ions containing the N-terminus of the peptide are referred as a,b,c, 

and the fragments containing C-terminus are described as x,y,z ions (Figure 10) 267,271. 

 

 

Figure 10: Peptide fragmentation with shotgun proteomics. Proteins extracted from different types of 

sample are digested into peptides using trypsin, which cleaves peptide bonds at the C terminus of lysine 

(K) and arginine (R) residues. To reduce complexity, the peptides are separated by liquid chromatography 

(LC), which shows the most abundant signal at each retention time and injected into the mass spectrometer. 

At any given time, multiple peptides co-elute at the same time and can be distinguish by their mass to 

charge ratio (m/z). The mass spectrum of the intact peptides is called the MS1 spectrum. The signal 

corresponding to the peptide EIQTAVR is highlighted in blue. The top intensive precursor ions are isolated 

and fragmented by collision with an inert gas. The m/z values of the fragment ions, derived from the blue 

peptide, are recorded in the MS2 spectrum. By convention, peptide fragments containing the N terminus 

are called b ions, whereas fragments with the C terminus are called y ions. (adapted from Pappireddi et al., 

2019 267) 

 

A mass spectrometer can be operated in different acquisition modes including data-dependent 

acquisition (DDA) and data-independent acquisition (DIA). In DDA, the most intensive 

precursor ions are selected for fragmentation and analyzed in the mass spectrometer 267. The 

selected precursors are excluded for a certain time and the MS/MS spectra which are acquired 

will differ from run to run. However, dependent on the sample complexity, more signals are 

available than the instrument chooses for the isolation for fragmentation. The DIA approach 

could help to overcome this problem, MS2 spectra are continuously collected over the entire 

MS1 spectrum, resulting theoretically in a MS and MS/MS spectra for each m/z value. 

However, current instruments are not fast enough and isolation windows are selected to reduce 

the number of MS/MS spectra for each m/z value by still covering the entire m/z range. The 
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resulting MS/MS spectra typically contain fragment ions of multiple precursor ions and thus 

the data is more complex compared to DDA data. The obtained mass from the MS1 and the 

MS/MS spectra are matched against theoretical spectra generated from a predefined database 

283 (Figure 11). The databases are specific for each organism and are usually protein databases 

translated from genomic data, although databases from spectral libraries or mRNA data were 

successfully applied. The databases are generated by in silico protein digestion for the specific 

protease using search engines, such as Mascot 283, Sequest 284 or Andromeda implemented into 

MaxQuant 285,286. The best matches to a known amino acid sequence are scored and reported as 

a peptide identification. Each genetically encoded amino acid except for leucine and isoleucine 

has a different molecular weight, which allows the identification of the amino acid sequence by 

comparing the differences in the m/z values. A final step is the assembly of identified peptides 

into proteins. In order to control the extent of false and positive hits, a decoy database containing 

reverse peptide sequences together with the protein database is used 285,287 (Figure 11). 

Identifications generated from the decoy database can be considered as true negative hits and 

can be used to calculate the false discovery rate (FDR) 288. The FDR threshold is typically 1% 

at the peptide and 5% at the protein level.  

 

 

Figure 11: Data analysis of proteomic data and false discovery rate estimation. The data-dependent 

acquisition (DDA) data is analyzed by matching each acquired spectrum individually against a protein 

sequence database. A decoy database is used to estimate the false positive hits. Only the best scoring 

hit/spectrum is reported as peptide identification. (adapted from Gillet et al., 2016 288) 

 

1.4.3    Discovery proteomics 

Bottom-up or shotgun proteomics is the most widely used approach in MS-based proteomics to 

identify and characterize proteins across a broad dynamic range. This approach involves the 

proteolytic digestion of proteins prior analysis by liquid chromatography coupled to mass 

spectrometry (LC-MS) (Figure 12). In a typical workflow, proteins are extracted from different 

biological samples such as cultured cell or cancer tissues. Proteins are digested into peptides 

using specific proteases like trypsin, which cleaves the peptide bond at the carboxyl terminus 

of arginine (R) and lysine (K) 289. The resulting oligopeptides are of optimal mass range for 
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chromatographic separation and due to the basic amino acid content these peptides can be 

ionized properly in electrospray ionization (ESI) 290. For specific applications or to increase the 

sequence coverage, several other proteases like chymotrypsin, AspN or GluC can be used alone 

or in combinations 291. Proteomic samples often contain a number of buffer components that 

may interfere with the MS/MS analysis, therefore peptides are usually concentrated and 

desalted on reverse-phase C18 columns. The human genome consists of around 20,000 proteins, 

resulting in approximately 106 million possible tryptic peptides 247. To reduce the complexity 

of the analyte entering the mass spectrometer, high pressure liquid chromatography (HPLC) or 

ultra-high liquid chromatography (UHPLC) can be coupled to a mass spectrometer (LC-MS). 

Reverse phase (RP) chromatography is widely preferred for chromatographic separation 292,293. 

The separation is based on the hydrophobicity of peptides determined by the amino acid 

composition. The peptides form hydrophobic interactions to alkyl chains coupled to silica beads 

and are eluted with increasing organic solvent over time. At the beginning of the gradient, 

hydrophilic peptides will elute, whereas hydrophobic peptides will stay longer on the column. 

The stepwise elution of peptides from the column allows also the detection of low abundant 

peptides and the separation of peptides with different hydrophobic properties. Eluting peptides 

are ionized by nano-ESI and thereby positively charged. The reproducibility of retention time 

between different runs is improved with a stabilized column temperature. The extensive co-

elution of peptides is a still a major problem for on-line coupled LC-MS/MS analysis 294. A pre-

fractionation at the protein level or peptide level can be introduced to further reduce sample 

complexity and several techniques have been developed 295,296. Proteins can be separated by 1D 

gel electrophoreses based on the molecular weight of the protein or different chromatography 

methods including off-line RP chromatography, size exclusion chromatography (SEC) or 

strong anion or cation exchange chromatography (SAX, SCX) 293,297. For 1D gel 

electrophoreses, proteins are denatured in SDS and separated in a polyacrylamide matrix based 

on the molecular weight of the protein. Separated proteins can be digested with proteases 

directly in the gel and peptide extraction will be carried out with organic solvents such as 

acetonitrile prior LC-MS analysis 298,299. Using SEC, proteins are separated according to their 

size and this technique is often used in top-down proteomics, the analysis of intact proteins by 

mass spectrometry. SAX and SCX are based on the interaction of positively (SCX) or 

negatively (SAX) charged peptides with opposite charged groups of the stationary phase 295,300. 

The proteins are separated according to their electric charge using a salt or pH gradient. Most 

tryptic peptides carry two positive charges, due to C-terminal R or K residues and N-terminal 
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amines, which is preferred in proteomics analysis. In addition, proteins can be resolved into 

fractions using organelle separation to reduce sample complexity.  

 

 

Figure 12: General workflow of mass spectrometry based proteomics. The proteins are extracted from 

cells or tissues and then enzymatically digested by proteases (trypsin) into peptides. The proteins can be 

multiply modified including phosphorylation (P), methylation (Me) or ubiquitylation (Ub). The complexity 

of the sample can be reduced at the protein and at the peptide level. Proteins can be fractionated by their 

molecular weight, liquid chromatography or immune affinity enrichment. Peptides can be pre-fractionated 

by cation exchange, reverse phase chromatography, and isoelectric focusing. Phosphorylated peptides, can 

be enriched by immobilized metal affinity chromatography (IMAC), titanium dioxide (TiO2) or immune 

affinity enrichment. Each fraction is analyzed by liquid chromatography coupled to a mass spectrometer 

(LC-MS/MS). For fragmentation of precursor ion collision-induced dissociation (CID), higher-energy 

collisional dissociation (HCD) or electron-transfer dissociation (ETD) can be used. (adapted from Doll et 

al., 2015 301) 

 

Proteins or peptides carrying a PTM are generally difficult to analyze by mass spectrometry 

and several strategies for the analysis of PTMs have been developed 297 (Figure 12). 

Phosphorylation introduces a negative charge to the peptides, whereas ESI is generally 

performed in the positive mode. Peptide separation and sample preparation prior MS analysis 

may be insufficient due to the hydrophilic properties of phosphopeptides. The low 

stoichiometry of phosphopeptides compared to non-phosphorylated peptides often results in 

ionic suppression and can be observed in low peaks 302. To overcome these limitations several 

modification-specific enrichment techniques combined with advanced MS/MS methods were 

successfully applied 303,304. The main goal of these approaches is the separation of modified 

peptides from unmodified proteolytic peptides due to the low stoichiometry of the modified 

peptides in a cell. The sensitivity of the technique is based on the yield of the enriched peptides, 
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extent of unmodified peptides contamination, complexity of the sample and the sensitivity of 

the MS/MS system 305. Antibody-based enrichment of modified peptides is widely used method 

for a wide range of modifications including lysine acetylation, arginine methylation and 

tyrosine phosphorylation. It is based on the isolation of modified peptides by immunoaffinity 

purification using a PTM specific antibody 306. In addition, to site-specific antibodies, 

antibodies recognizing a motif like kinase motifs are available. Ionic interaction-based 

enrichment strategies are mostly used for the enrichment of phosphopeptides from complex 

peptides mixtures. Ion metal affinity chromatography (IMAC) is based on the interaction of 

negatively charged phosphopeptides with positively charged ions (mainly Fe3+) coupled to a 

matrix or beads. Peptides are eluted with increasing pH, which change the charge state of the 

peptide. SCX and SAX can be also applied to phosphopeptide enrichment. In the recent years, 

titanium dioxide (TiO2)- based matrix enrichment has been prevalently used to enrich 

phosphopeptides 307,308. The high affinity of TiO2 to negatively charged phospho groups makes 

this method highly efficient and specific for the enrichment of phosphorylated peptides. To 

enrich for mono- and polyphosphorylated peptides, serval methods were combined in a wide 

range of studies and showed great results in sensitivity 293. In addition, modified peptides can 

be also enriched by tagging PTMs by chemical derivation including in vitro chemical labelling 

and in vivo metabolic labelling. Besides the sample preparation also the data analysis including 

the precise localization of PTMs to a specific site can be challenging. 

 

1.4.4    Quantitative proteomics 

Quantification of thousands of proteins by mass spectrometry based proteomics is often used 

to study biological processes. Different techniques can be used to analyze protein-protein 

interactions, protein abundance or post-translational modifications between two or more 

physiological states 309-311. These approaches can be mainly divided into relative quantification, 

the relative amount of a high number of proteins or absolute quantification to determine the 

absolute amount of distinct proteins 312. For both, quantification is either performed without the 

introduction of stable isotopes (label-free) or with chemical or metabolic stable isotope labelling 

(label-based) (Figure 13). The most widely used form of quantitative proteomics is label-free 

and is based on the quantification of MS1 signals of peptides 313. Two strategies can be applied: 

(1) spectral counting or (2) spectrometric signal intensity to measure the protein expression. In 

spectral counting, the number of measured spectra is determined as a proxy of the abundance 

peptide concentration in a sample 314. A high sequence coverage enables the comparison over 
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multiple data samples. MS2 spectra are not used for the quantification, but required for the 

identification of the peptide sequence. Label-free quantification can be used for hundreds or 

thousands of samples and avoids additional costs and sample preparation for labelling or 

tagging of proteins and peptides. Each samples needs to be measured separately and the 

multiple runs results in a reduced throughput. Another limitation is the poor reproducibility 

between samples, which comes from each sample runs separately and variations in the MS1 

and MS2 spectra acquisition. Another problem are missing values, as a significant fraction of 

peptides will not be detected in each samples. Imputation of missing values due to better data 

analysis technique help to overcome this problem 315. The software imputes values by matching 

retention time and m/z values between samples. Improvement of mass spectrometry 

technologies may help to overcome these limitations. Label-based approaches allow the 

multiplexing of samples, which results in high accuracy and precision. Stable isotope labelling 

in cell culture present a pre-harvest labelling methods and is based on the incorporation of stable 

isotopes into proteins during their synthesis in active cells 316,317. Metabolic labelling of proteins 

is often carried out by using arginine and lysine with stable isotopes of 2H, 13C and 15N. 

Methionine, histidine and leucine can also be used for SILAC as well 312. In a typical SILAC 

experiment, cells are either grown in medium with unlabeled arginine/lysine (light) or in 

medium with labelled amino acids (heavy). After incorporation of these amino acids into newly 

synthesized proteins, cells are mixed, proteins are extracted and digested using trypsin protease 

prior LC-MS/MS analysis. The combination of samples in early step of the workflow minimizes 

variances between replicates and results in high reproducibility and accuracy compared to label-

free approaches 318. The tryptic digestion with trypsin results in peptides with C-terminal 

arginine and lysine and ensures a labelling of nearly all peptides. The heavy-labelled peptides 

produce a distinct mass shift in the MS1 spectra compared to its light-labelled counterpart. 

However, the chemical properties of the peptides are nearly identical results in the same 

chromatographically behavior and ionization efficiency 319. The m/z difference between the 

heavy and light peptide will be resolved and the ratio can be calculated, which shows the relative 

changes in protein abundance between the different samples. SILAC has been successfully used 

for mammalian cell culture, yeast, mouse and bacteria 320-324.  
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Figure 13: Overview of labelling techniques used in proteomics approaches. Quantification is either 

performed without the introduction of stable isotopes (label-free) or with chemical or metabolic stable 

isotope labelling (label-based) ate the protein or peptide level. Labels can be also introduced as spiked in 

as synthesized peptides. After labelling, samples can be combined for further sample preparation and 

processing. (adapted from Bantscheff et al., 2012 325) 

 

Post-harvest labelling techniques like isotope-coded affinity tag (ICAT), isobaric tags for 

relative and absolute quantification (iTRAQ) or tandem mass tag (TMT) introduce labels at the 

protein or peptide level after cells have been harvested 326-328. The mass of the isobaric tags is 

all the same and can be distinguished after fragmentation of the precursor ion. ICAT have been 

developed and often used for clinical samples such as tissues of cancer patients, which cannot 

be labelled with SILAC. The ICAT reagents consist of a reactive group (i.e. thiol), a linker 

group and an affinity handle like biotin 329. The reactive group targets cysteine residues of 

peptides, which are labelled with linker consisting of light and heavy labelled stable isotopes. 

The affinity handle is used for the purification of tagged peptides and reduces the complexity 

of peptides mixtures from biological samples. One of the major limitations of ICAT is the 

labelling of only one amino acid, which will come in line with the loss of peptide analysis 

lacking cysteine. Therefore, the isobaric multiplexing tagging reagent iTRAQ has been 

developed and can be used to label up to four or eight different biological samples 

simultaneously 330. The reactive group of iTRAQ targets primary amines at the N-terminus and 

side chain amino groups of peptides. iTRAQ can also be applied to absolute quantification using 
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synthetic peptides with a known sequence and mass. In recent years, isobaric labelling 

techniques were further developed and TMT allows multiplexing of up to eleven samples. 

Similar to iTRAQ, the tag contains a site that fragments in the MS2 spectrum and the mass of 

the reporter ion can be used to distinguish the peptide originated from different samples. 

Isobaric labelling techniques can be only applied to non-living samples and the labelling is 

applied at the peptide level, which does not control for variances introduced in the early step of 

the workflow. In addition, co-elution of multiple peptides is one of the major limitations as all 

peptides carrying the same reporter ion. Another chemical labelling technique at the peptide 

level is dimethyl-labelling 331. Primary amines of lysine residues and N-termini of peptides are 

modified and the comparison is based on the mass difference of the label. Three different 

samples can be studied simultaneously. Quantitative proteomics is a powerful tool study 

dynamic changes of proteins and PTMs between different types of samples and allows insights 

into a variety of biological processes. 

 

1.4.5    Proteogenomics in cancer biology 

Proteogenomics, the combination of genomics and proteomics is a new research field and is 

often use to identify peptides containing mutations, novel protein-coding loci or alternative 

splicing forms 332-335. The term proteogenomics was used for the first time in 2004 by Church 

group, performing a genomic reannotation of mycoplasma pneumonia using proteomic data 336. 

Since then, the field of proteogenomics is emerging based on technical investigations enabling 

high throughput genomics and deep MS-based  proteomics 337,338. In addition to the data 

integration for genome reannotation, proteogenomics was widely used to study multilevel gene 

expression, signaling networks, disease subtypes and clinical prediction of patient’s outcome 

339,340. Most of the proteogenomic workflows involve several main steps (Figure 14). First, 

nucleotide data can be used to encode the sequence of the proteins expressed in a sample and 

this data can be retrieved from the genome, exome, transcriptome or translatome level 332. The 

genome contains sequence information of protein-coding and non-coding regions but also the 

backbone of all protein sequences. Exome sequencing of enriched exonic sequences through 

hybridization capture covers only 1% of the genome that codes for proteins 341. Transcriptome 

represents the output of the gene transcription and translatome comprises the portions of 

transcriptome bound to the ribosome. These different types of sequence data can be used to 

generate a proteogenomic database, which ultimately include possible single amino acid 

variants (SAVs), insertions and deletions (InDels) and splice junctions for each individual 
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sample 332. The NGS data needs be analyzed before by either de novo assembly or alignment 

of genomic sequences to a pre-existing database- such as Ensembl 342, RefSeq 343 or UniProt 

344. De novo assembly is used to build a reference genome from one or multiple sequences of 

these genomes 345. The newly-synthesized and assembled genomes, the protein-coding regions 

and other functional elements within an assembled genome must be identified 346. A majority 

of proteogenomic databases were created by six frame translation of the genome of an 

organism. This includes the prediction of all possible protein-coding sequences expressed in a 

sample under analysis. For the alignment (reads mapping) the re-sequenced organism is mapped 

to a pre-existing reference genome and in silico translated variants are incorporated into a 

protein database 347. This enables the identification of a variety of genomic variants, which are 

absent in the reference genome. These sample-specific variants are of fundamental biological 

interest including novel or unannotated proteins, variants specific for an individual, mutations 

underlying a disease. Similar to proteomics, MS/MS spectra are matched to peptide sequences, 

known as peptide spectrum matches (PSM) 346,348. Peptide sequences obtained from PSM are 

then matched against a customized protein sequence database. By incorporating sample specific 

sequences like SAVs, InDels, alternative splice junctions and novel gene fusions the size of the 

database increases. However, the likelihood of experimentally observing a peptide decreases 

and the matching of more theoretical candidates against experimental MS/MS spectrum will be 

likelihood incorrect 349. To identify high confidence PSMs, a quality spectra and fragmentation 

will be required. In addition, the computational time increases with larger databases and the 

FDR must be controlled at the protein and peptide level. Separate FDR estimation should be 

applied to known and novel peptides 350. For proteogenomic approaches it will always be a 

compromise between completeness of the database, size and a well-controlled FDR. 

A number of bioinformatical tools have been developed for proteogenomic approaches. For 

instance, costumProDB 351, Galaxy-P 352, PPline 353 or PGA 354 software can be used to generate 

customized protein databases from NGS data, including SNVs, InDels ad novel splice junctions 

355. In addition, also specific software are available with a special focus for example on novel 

splice isoforms (QUILTS 356 or SpliceDB 357 software). Not only sample-specific NGS data can 

be incorporated, several public SNV repositories like COSMIC 53 or dbSNP 358 database can be 

used. Besides the database construction tools, visualization of peptides on the genome and 

proteome level have been developed. However, there is a processing need for efficient and easy-

to use tool for the bioinformatic analysis and visualization of proteogenomic data 332. 
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Figure 14: Sequence-centric proteogenomics workflow. Nucleotide data that can be retrieved from the 

genome (whole genome sequencing (WGS)), exome (whole exome sequencing (WXS)), transcriptome 

(RNAseq) level by next generation sequencing (NGS). The sequences need to be assembled into the DNA or 

RNA sequence by either de novo assembly or alignment of genomic sequences to a pre-existing reference 

database. Sample specific alterations are determined and incorporated into customized sequence databases. 

Peptide identifications from corresponding LC-MS/MS runs of the same sample are used to identify sample 

specific sequences and alterations by matching the acquired MS/MS spectra against the spectra derived from 

the customized database. Proteogenomic approaches can be used for genome annotation by mapping of 

peptides to unannotated genome regions; to identify tumor-specific variants on the proteome level as well as 

novel protein splice variants; and detect species-specific peptides in microbial communities. (adapted from 

Ruggles et al., 2015 355) 

 

Cancer and especially melanoma is characterized by an accumulation of mutations such as 

SNVs, InDels, frameshifts or copy number variants (CNVs) rewiring cellular networks 332,340. 

The identifications of cancer specific mutations in cancer proteomics is referred as onco-

proteogenomics and has been studied intensively in the last decade 359. A proteogenomics 

approach and a cancer-specific database allows the detection of variants on the proteome level, 

which has the potential to yield novel insights into cancer biology 355. The proteomic detection 

of mutated proteins can help to identify clinical biomarkers or actionable drug targets 357,359,360. 

Two consortium namely The Clinical Tumor Analysis Consortium (CPTAC) and the Cancer 
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Genome Atlas (TCGA) were launched simultaneously and showed great contribution and effort 

for the field of onco-proteogenomics. Colorectal, breast and ovarian cancer types has been 

studied by CPTAC so far and several proteogenomic studies described the classification of 

cancer subtypes, correlation of copy number alterations with protein expression and the 

identification of mutated proteins and PTMs and associated signaling pathways 360-362. The 

TCGA created a large database containing novel, cancer-specific peptides including splice 

junctions, InDels and substitutions. Using this TCGA database, 524 novel variant peptides in a 

single ovarian cancer sample were identified in 2014 by Woo et al. 363. In a large scale study of 

49 NCI60 cancer cell lines, 7.3 million novel peptides and 4,771 mutations were reported by 

combining dbSNP, COSMIC, UniprotKB and sample-specific genomic and transcriptomic data 

364. In addition to the identification of novel variant peptides, Sun and colleagues identified 

several unique fusion peptides in non-small cell lung cancer (NSCLC) 365. These studies provide 

valuable insights into cancer biology and how the proteome is regulated by genetic effects. The 

repertoire of reported somatic mutations and the cellular responses within a cell will help to 

identify driver and cancer-specific mutations and disturbed signaling networks in precision 

oncology. The altered signaling networks in cancer cells can be studied by an integrative 

proteogenomics analysis of genetic variants and PTMs, which can identify consequences of 

genetic variants on the molecular level 366. It is very likelihood that a change of an amino acid 

residue in a PTM target directly rewiring cellular networks. Approximately 22.2% of all amino 

acids in the human proteome are serine (S), threonine (T), tyrosine (Y) and lysine (K) 344. These 

four amino acids are predominantly modified by phosphorylation at S/T/Y or acetylation and 

ubiquitylation at K. Several studies have been reported that these four amino acids are 

disproportionally affected by missense mutations 366-368. In addition, not only the amino acid 

itself can be affected also the recognition motif in a flanking region of the mutation site for 

corresponding transferase like protein kinases or ligases might be altered 369,370. Yang et al. 

showed that 64 phosphorylation sites potentially change the phenotype compared to 

nonphosphorylated amino acid by using SwissProt and dbSNPs annotated in the NCBI sbSNP 

database 371. In a CPTAC breast cancer study, Mertins and colleagues performed at integrative 

analysis of proteomic and phosphoproteomic study of 105 genomically annotated samples 362. 

This allowed the classification of the breast cancer subtypes on the genome and proteome level 

and the characterization of the somatic cancer genome including the chromosomal loss of 5q. 

In addition, the phosphoproteomic dataset revealed a new G-protein receptor cluster and 

activated kinases specific for breast cancer subtypes, which was not identified by mRNA 

analysis alone. As for the breast cancer study, Zhang et al. identified specific acetylation sites 
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that could be associated with homologous recombination in ovarian cancer 372. These newly 

identified modification sites may help to find the best treatment strategy for each individual 

patient. Proteogenomics is often used to classify cancer subtypes and to identify actionable 

mutated proteins for the best course of treatment for each individual. However, onco-

proteogenomics was also recently applied to study acquired resistance to treatments and drug 

toxicity. In a lung cancer study, several mutations were reported to be linked to the efficiency 

of tyrosine kinase inhibitors and showed a potential to predict patient’s survival rates 373. In 

addition, acquired resistance and driver mechanisms of resistance against tyrosine kinase 

inhibitors were also studied in gastrointestinal stromal tumors using a proteogenomic 

phosphoproteomic approach 374.  

In summary, the application of proteogenomics in clinical research is a powerful tool study the 

mode of action of disease-associated mutations on the genome, proteome and PTM level. The 

mutation can directly or indirectly change PTM sites and several studied showed that this may 

change the protein stability, protein-protein interactions and signal networks. It also highlights 

the value of state of the art MS-based proteomics in the era of precision medicine. In addition, 

proteogenomics will may improve the treatment of patients in personalized manner and may be 

implemented as a routine clinical lab test in the future.  

 

 

 

 

 

 

 

 

 

 

 

 



Introduction   42 

 

 

 



Aims and objectives   43 

 

    Aims and objectives 

Malignant melanoma is characterized by a high frequency of somatic mutations in key signaling 

pathways and development of resistance mechanisms against treatments. The overreaching aim 

of this thesis was to characterize proteomic changes and the mutational landscape of melanoma 

cells in response to kinase inhibitors and immunotherapy. To achieve this, I first compared 

drug-sensitive and drug-resistant melanoma cells in order to gain new insights into the general 

molecular mechanisms underlying resistance to kinase inhibition. I next applied a 

proteogenomic approach to drug-sensitive and -resistant melanoma cell lines in response to 

kinase inhibitors to assess the influence of non-synonymous mutations on signal transduction 

networks. Finally, I applied a proteogenomics approach to melanoma patient tumor material to 

investigate the molecular mechanisms underlying immunotherapy response in individual 

patient samples.  

Specific aims and objectives were: 

1. Comprehensive (phospho)proteomics analysis of vemurafenib-sensitive and resistant 

melanoma cells 

a. Comparison of drug-sensitive and drug-resistant A375 melanoma cells using 

quantitative (phospho)proteomics 

b. Identification of significantly regulated proteins and phosphosites between both 

phenotypes 

c. CRISPR/Cas9-mediated knockout of the interesting candidates identified at the 

proteome level 

d. Functional validation of candidates using cell proliferation, migration and invasion 

assays, as well as proteomic analyses 

 

2. Individualized proteogenomic characterization of melanoma cell lines A375 and SkMel28 

in response to vemurafenib resistance  

a. Identification of mutations at the genome and (phospho)proteome level 

b. Investigation of over-represented pathways due to the accumulation of alternate proteins 

between phenotypes and cell lines 

c. Identification of phosphoproteins harboring mutations with a potential to rewire signal 

transduction 

d. Define significantly regulated proteins and phosphosites between phenotypes 
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e. Validation of mutated protein isoforms by interactome studies 

 

3. Individualized proteogenomic characterization of human melanoma cells in response to 

immunotherapy 

a. Optimization of the protein extraction protocols for patient tissue samples 

b. Identification of patient-specific variants at the genome, proteome and phosphoproteome 

level in the context of immunotherapy 

c. Investigation of pathway over-representation due to accumulation of mutated proteins 

between naïve and immune checkpoint inhibitor treated samples 

d. Comparison of proteogenomic profiles of human patient material and patient-derived 

xenografts generated in NSC mouse 

e. Prioritization of patient-specific mutations with a high impact to rewire signal 

transduction 

f. Validation of mutated protein isoforms by interactome studies 
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    Results 

3.1    Manuscript I 

Schmitt, M., Sinnberg, T., Nalpas, N. C., Maass, A., Schittek, B., Macek, B. 

Quantitative proteomics links the intermediate filament nestin to resistance to targeted BRAF 

inhibition in melanoma cells  

Molecular & Cellular proteomics 18, 1096-1109 
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Table I1: List of all used patient derived melanoma cell lines in this study. ATCC: 

American Type Culture Collection  
 

Name Tissue Morphology Source BRAF mutation 

A375 skin epithelial ATCC (CRL-1619) BRAF V600E 

Mel1617 skin epithelial M. Herlyn 1 BRAF V600E 

451lu skin epithelial M. Herlyn 1 BRAF V600E 

SKMel28 skin polygonal ATCC (HTB-72) BRAF V600E 

SKMel19 skin epithelial C. Garbe 2 BRAF V600E 

1 Herlyn, D. et al. Properties of Human Melanoma Cells Metastatic in Nude Mice. Cancer 

Research 50, 2296-2302 (1990). 

2 Sinnberg, T. et al. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF 

Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib. EBioMedicine 8, 

132-149, doi:10.1016/j.ebiom.2016.04.037 (2016). 

 

Table I2: Top five down-and up-regulated proteins of vermurafenib-resistant and -

sensitive A375 proteome.  
 

Uniprot ID Gene name Protein name 
SILAC ratio 

(log2) 

Intensity 

(log10) 

P02751 FN1 Fibronectin -2.81 10.22 

P48681 NES Nestin -2.71 10.20 

P35625 TIMP3 Metalloproteinase inhibitor 3 -1.92 9.44 

Q13938 CAPS Calcyphosin -1.79 9.58 

P04233 CD74 
HLA class II histocompatibility 

antigen gamma chain 
-1.38 9.96 

A0A0G2JJ56 SPANXB1 
Sperm protein associated with 

nucleus on X chromosome B/F 
2.10 8.29 

Q9GZP8 IMUP 
Immortalization up-regulated 

protein 
2.01 7.69 

P80723 BASP1 Brain acid soluble protein 1 2.00 8.21 

P00533 EGFR Epidermal growth factor receptor 1.65 7.83 

Q52LW3 ARHGAP29 Rho GTPase-activating protein 29 1.34 7.61 
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Table I3: List of FFPE specimens used in this study.  

 

Patient Surgery date Localization Treatment Remarks 

#1 09.11.2011 Abdomen  Immunohistochemistry 

 05.06.2014 
Buttocks (gluteal, 

left) 

Vemurafenib (12 months)/ 

Ipilimumab (3 months) 
Immunohistochemistry 

#2 23.11. 2011 Tight (left)  
Immunohistochemistry 

and proteomics 

 25.02.2013 Lower leg (right) Vemurafenib (3 months) 
Immunohistochemistry 

and proteomics 

 

Table I4: Predicted off-target effects of crRNA guide CCTCGACGGCGCGCCGGTTG 

using Cas-offinder. Chr: chromosome.  
 

crRNA DNA Chr Position Direction mismatch 

CCTCGACGGCGCGCC

GGTTGNGG 

CCTCGACGGCGCGC

CGGTTGCGG 
chr1 1570000 + 0 

CCTCGACGGCGCGCC

GGTTGNGG 

CCcCGACGGCGCGgC

GGTTcCGG 
chr17 7478944 + 3 

CCTCGACGGCGCGCC

GGTTGNGG 

CCcCaACGGCGCGCC

GGcTGTGG 
chr20 62861781 - 3 
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Figure S1: Quantitative proteome and phosphoproteome analysis of human melanoma cells identifies down-

regulation of nestin. [A] Schematic of sample preparation workflow. Vemurafenib resistant A375 (A375 R) and 

A375 sensitive cells (A375 S) were ‘light’ (Lys0/Arg0) and ‘medium’ (Lys4/Arg6) SILAC labelled. After cell 

lysis, crude protein extracts were mixed 1:1, reduced, alkylated and trypsin digested. The resulting peptides 

mixture was fractionated using an off-line HPLC operated with high pH buffers. Fractions were pooled and 

measured directly (proteome) or applied to phosphopeptide enrichment using titanium dioxide (TiO2) prior to 

liquid chromatography mass spectrometry analysis (LC-MS/MS). [B] Volcano plot of vemurafenib-resistant and 

-sensitive A375 proteomes for phosphoproteome. t-test difference of SILAC ratios between A375 R and A375 S 

(log2) are plotted against p-value (-log10) (n=3). Black lines indicate the significance threshold (FDR < 0.01; s0 = 

1). Significantly up- and down-regulated proteins are highlighted in magenta. [C] Identified key molecules and 

phosphorylation sites of the MAPK/ERK and PI3K/AKT signaling pathway. Green: up-regulated in A375 R vs. 

A375 S cells; red: down-regulated in A375 R vs. A375 S cells; grey: identified, but not quantified; arrows: up-

regulated phosphorylation sites in A375 R vs. A375 S. [D] NES expression profile in human patients with 

melanoma metastases in vemurafenib, dabrafenib and dabrafenib plus trametinib treated tumors and pre-treatment 

control tumors (FDR ≤ 0.1). [E] mRNA expression levels of nestin protein in thirty patients with melanoma 

metastases after BRAF inhibitor therapy compared to control tumors. [F] Immunohistochemical staining for nestin 

of melanoma metastases obtained before treatment with a BRAF inhibitor vermurafenib and after resistance 

acquisition for two patients. Nestin levels are shown in red (Fast red substrate). [G] Proteomics of FFPE specimens 

pre-and post-BRAF inhibitor therapy using quantitative proteomics based dimethyl-labelling. Ratios (log2) of post-

BRAF vs. pre-BRAF inhibitor therapy are plotted against intensity (log10) (p-value <0.05). Nestin is highlighted 

in magenta.  

  



Manuscript I  66 

 

 

Figure S2: Nestin expression correlates with invasive properties in melanoma cell lines. [A] Schematic 

overview of the establishment of NES knockout cells using CRISPR/Cas9 genome editing system. Blue: guide 

sequence targeting Exon1 in the genomic sequence of NES; red: protospacer adjacent sequence (PAM) sequence; 

DSB: double strand break. [B] Western blot analysis of A375 S, A375 R and CRISPR/Cas9 genome edited cell 

clones Nes-KO #1-7. [C] Sanger sequencing result of reference DNA (A375 S and R) and CRISPR/Cas9 genome-

edited cell clones Nes-KO #1 - 5. [D] Amino acid sequence of human nestin from Uniprot database. Grey: peptide 

sequences identified by LC-MS/MS. [E] Amino acid sequence of CRISPR/Cas9 genome edited cell clones Nes-

KO #1-5. Grey: peptide sequences identified by LC-MS/MS. Red: truncated amino acid sequence compared to 

A375 S. [F] Western blot analysis of nestin and GAPDH protein in A375 S, A375 R, A375 NonTar and A375 

Nes-KO cells. [G] Sanger sequencing results of reference DNA (A375 S and R) and CRISPR/Cas9 genome-edited 

control cell clones A375 NonTar #1 – 4. 
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Figure S3: Depletion of nestin affects cell proliferation and colony formation upon treatment with signaling 

pathway inhibitors. [A] Western blot analysis of A375 S, A375 NonSil and A375 siRNA against nestin and 

quantification of bands intensities using ImageJ software. Nestin was down-regulated in A375 S cells by 

transfection of a pool of four siRNA oligos (siRNA) against human nestin. Untreated A375 S and NonSilencing 

siRNA (NonSil) treated A375 S cells were included as control. Cells were harvested 48 h post-transfection. [B] 

A375 S, A375 R, A375 NonSil and A375 Nes-Kd were cultured for 24 h, and then treated with PLX4720 at the 

indicated concentrations (0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10 and 20 µM) or DMSO as control, respectively. Cell viability 

was determined by MTS assay 96 h later. Results expressed as % control represent the mean of three biological 

experiments (n=24). Error bar represents standard deviations of three biological replicates [C] Gelatine 

zymography of supernatants of A375 S, A375 R and A375 Nes-KO cell lines treated with DMSO or PLX4720 for 

24 h. Image is a representative of three independent experiments. 
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Figure S4: Quantitative proteomics comparison between nestin knockout and BRAF inhibitor sensitive and 

resistant cell lines. [A] Volcano plot of A375 Nes-KO and A375 R proteomes. t-test difference of SILAC Ratios 

between A375 Nes-KO and A375 R (log2) are plotted against p-value (-log10) (n=3). Black lines indicate the 

significance threshold (FDR < 0.01; s0 = 1). Significantly up- and downregulated proteins are highlighted in 

magenta. [B] Proteome correlation of A375 Nes-KO relative to A375 R in biological replicate 1 and 2. [C] 

Phosphoproteome correlation of A375 Nes-KO relative to A375 R in biological replicate 1 and 2. [D] Over-

representation of selected signaling KEGG pathways of A375 Nes-KO compared to A375 S cells using String 

database analysis. The t-test difference of SILAC ratios between A375 Nes-KO and A375 S (log2) were plotted 

for each pathway (t-test, FDR < 0.1; s0 =1). Enrichment score [%] identified significantly changing proteins 

mapped to the pathway by the total protein count involved in that pathway. Colour of the dots represents the FDR. 

[E] Annotated spectra of phosphorylated peptide LQPQEIpSPPPTANLDR containing a phosphosite at S910 on 

focal adhesion kinase FAK. 
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Abstract 

Analysis of patient-specific single nucleotide variants, genomic insertions, deletions and 

structural variants is a cornerstone of personalised medicine. Although only about 2% of the 

genomic sequence is protein-coding, mutations occurring in these regions have potential to 

influence protein structure and can therefore have severe impact on the aetiology of many 

diseases. Of special interest are mutations that affect modifiable amino acid residues, as protein 

modifications involved in signal transduction networks cannot be analysed by genomics. 

Proteogenomics addresses this impact by analysing proteomes in context of patient- or tissue-

specific non-synonymous single nucleotide variants (nsSNVs), insertions and deletions. Here 

we present a bioinformatics application termed Proteogenomics Characterisation Tools (PCTi) 

that enables straightforward integration of nucleotide variants into protein databases, 

assessment of their potential impact and subsequent visualisation of proteogenomics data. We 

apply PCTi to analyse the non-synonymous mutational landscape of two frequently used 

malignant melanoma cell lines (A375 and SkMel28) in context of resistance to commonly used 

BRAF inhibitor vemurafenib. We detect a disproportional impact of nucleotide variants on 

modifiable residues between sensitive and resistant cell lines. Approximately 35% of protein 

variants in both cell lines interfere with the modification status and potentially influence signal 

transduction networks. MS measurements confirmed mutation-driven modification changes in 

over 50 proteins; among these was the transcription factor RUNX1 mutated on S276L. We 

confirm the loss of the Ser276 phosphorylation site by MS and demonstrate the impact of this 

mutation on the interactome of RUNX1. 

 

Introduction 

The past decade has seen a revolution in high-throughput sequencing technologies, which 

provide information on DNA/RNA sequence, gene structure and expression 375. Mass 

spectrometry (MS)-based proteomics is experiencing a technological revolution similar to that 

of the high-throughput sequencing. The current state-of-the-art “shotgun” proteomics 

workflows are capable of routine, comprehensive analysis of proteomes 247,248,376 and post-

translational modifications (PTMs) such as phosphorylation 310,377-379. However, most of the 

standard proteomics approaches identify peptides and proteins by matching MS/MS spectra 

against protein databases derived from public repositories (e.g. UniProt) that are not 

“individualised”, i.e. do not contain sequence information specific for an individual patient, 
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tissue or cell line. Commonly used protein databases therefore inherently prevent identification 

of individual non-synonymous mutations. Proteogenomics addresses this issue by combining 

nucleotide and protein sequencing information, thus enabling simultaneous study and 

integration of DNA sequence, RNA expression and splicing, protein isoform abundance, as 

well as localisation of protein PTMs in personalised fashion 340,362,380. However, the integration 

of such omics datasets is usually not straightforward and requires advanced computational 

skills. In this context, a number of bioinformatic tools are available to the community for 

proteogenomics approaches. For instance, customised protein sequence databases can be 

generated from NGS data using costumProDB, Galaxy-P, PPline or PGA software 351-354. In 

addition, several tools compare PTM sites with mutations, such as PhosSNP, PTMvar and 

ReKINect 340,381,382. Furthermore, the concurrent visualisation of omics datasets is offered by 

VisANT, NetGestalt and Galaxy softwares 383-385. Currently, there is a need for workflows that 

combine various aspects of a proteogenomics approach in a user-friendly fashion. 

Proteogenomics has a potential to precisely characterise mutation-driven alterations of signal 

transduction pathways during tumourigenesis 386. Accumulation of mutations is one of the 

hallmarks of cancer cells and malignant melanoma is a type of cancer with the highest 

frequency of somatic mutations 135. Recent investigations showed that mutations of signalling 

targets in malignant melanoma are associated with poor clinical outcome, specifically in the 

mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 

pathway that affects abnormal cellular growth 100. The RAS/BRAF/MEK/ERK kinase pathway 

is mutated to an oncogenic form in 30% of all cancers, with non-synonymous somatic missense 

mutations in BRAF up to 50% of cutaneous melanomas 32. The predominant BRAF mutation 

is within the kinase domain with a single nucleotide substitution of valine to glutamic acid at 

amino acid 600 31. This mutation can result in a 500-fold increased, dimerization-independent 

activation of BRAF, and thus leads to a constitutive activation of downstream signalling in 

cancer cells 32,33. Targeted inhibition of the mutated BRAF kinase with selective inhibitors like 

vemurafenib, dabrafenib or encorafenib (BRAFi) results in a reduction of MAPK pathway 

signalling 33. However, almost all patients rapidly develop resistance to BRAFi monotherapy 

after a period of approximately five months 100,102,103. The considerable majority of BRAF 

resistance development is caused by molecular or genetic alterations that lead to MAPK 

pathway reactivation. The identification of multiple cellular mechanisms of resistance has 

greatly improved the understanding of malignancy and clinical outcomes of BRAFV600E 

metastatic melanoma e.g. by the introduction of combined BRAF and MEK inhibition. 

However, mutations that alter the corresponding protein modification status and therefore 



Manuscript II   76 

 

influence resistance, remain largely elusive. In addition, the precise effect of nsSNVs, insertions 

and deletions (InDels) and frameshift mutations at the proteome and PTM level are still largely 

unknown.  

Here we present a new software termed Proteogenomics Characterisation Tools (PCTi), which 

streamlines multiple aspects of a proteogenomics analysis, from generation of custom protein 

sequence databases to visualisation of integrated proteogenomics data. We applied PCTi to 

analyse two immortalised human cell lines commonly used in melanoma research, A375 and 

SkMel28, in their parental as well as in their BRAFi resistant state. PCTi was able to reconstruct 

signal transduction networks specific to individual cell lines and phenotypes using their 

matching genomics and (phospho)proteomics datasets. 

 

Results 

To study the impact of single amino acids variants on signal transduction networks, we selected 

two widely exploited melanoma cells lines harbouring the BRAFV600E mutation, A375 and 

SkMel28. The cell lines were established with two different phenotypes, drug-sensitive (“S” 

phenotype) and drug-resistant (“R” phenotype) against the BRAF inhibitor vemurafenib, as 

described previously 387. Both cell lines were subjected to exome sequencing as well as 

proteomics and phosphoproteomics analysis using high-resolution mass spectrometry (Figure 

S1A). To integrate and analyse genomic and proteomic datasets, we developed the software 

PCTi. This application is coded entirely in the R programming language and provides a user-

friendly graphical interface via the Shiny package 388. The software comprises four independent 

modules, which are used to (1) incorporate non-synonymous nucleotide variants into a protein 

sequence, (2) stratify variants according to their biological impact based on user specification, 

(3) integrate the nucleotide and amino acid variants identification (WES and MS), and (4) 

visualise the analysed proteogenomics datasets (Figure 1). For more details about PCTi please 

refer to Material and Methods section. 

Application of PCTi to BRAFi-sensitive and -resistant melanoma cell lines 

As a proof of principle, we used the PCTi software to characterise two melanoma cell lines, 

A375 and SkMel28, both presenting drug-sensitive (S) and drug-resistant (R) phenotypes to 

BRAF inhibitor vemurafenib. In this context, we performed Whole Exome Sequencing (WES) 

and deep MS-based (phospho)proteomics to get information on the mutational landscape, as 

well as abundance of proteins and phosphorylation sites. Number and type of nucleotide 
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variants detected in the WES analysis was similar between the cell lines and is summarised in 

Figure S1B and C. Each non-synonymous mutation was incorporated using the 

PCTincorporate module into the corresponding protein isoforms, generating several thousand 

additional protein sequences in respective protein databases. Despite this large increase in the 

number of protein isoform sequences, the database search space increased by only 2-3% 

(Figure S1D and E). 

 

 

Figure 1: PCTi application provides a reactive environment for the integration of genomics with proteomics. 

Schematic representation of the PCTi software. The first module of PCTi allows the incorporation of a list of 

mutations stored in a VCF file directly into the corresponding genomic assembly. The resulting FASTA file 

contains protein sequences with non-synonymous mutations and is ready to use for LC-MS/MS data processing. 

The second module calculates the impact of the non-synonymous mutations based on user-specified parameters 

centered on disease type and modification status. The resulting impact scores help the prioritisation of relevant 

mutated proteins. The third module integrates WES and MS by identifying reference and alternate peptides 

resulting from a LC-MS/MS processing. It also determines the reference or alternate peptides, which contain post-

translational modifications. The final module generates images of the proteogenomics integration, such as protein-

based mutation/peptide coverage or proteogenomics-based interaction network. 

 

We then used the PCTimpact module to evaluate the effect of mutated protein residues on 

protein phosphorylation status and on melanoma aetiology. In this context, approximately 35% 

of mutated protein isoforms had a loss or gain of S/T/Y modifiable amino acids and/or kinase-



Manuscript II   78 

 

substrate motifs in both cell lines. Among these, a loss of known phosphorylation sites was 

observed in more than one thousand protein isoforms. In addition, more than 20% of the 

mutated protein residues were previously reported in melanoma samples and/or present on 

protein encoded by known oncogene or tumour suppressor genes. In both cell lines, the impact 

score distribution showed that only a minority of mutated protein isoforms have a medium to 

high impact score (with 0 = no impact; 1 = high impact), for example the point mutations 

G691S on Ret proto-oncogene protein, S276L on RUNX family transcription factor 1 and a 

frameshift mutation V514WfsX139 on FLII actin remodelling protein (Figure S1F and G).The 

individualised databases, discussed above, were used for the processing of deep proteomics and 

phosphoproteomics data from A375 and SkMel28. Each cell line was analysed separately and 

peptides were separated into fractions using high pH reverse phase chromatography. High 

resolution MS identified more than 9,300 protein groups and over 130,000 sequence-unique 

peptides in each cell line (Figure S1H and I). Interestingly, the identified coverage on the 

proteome level was similar, whereas the coverage of identified non-redundant phosphorylation 

sites strongly differed between cell lines (Figure S1H and I). This difference is unlikely caused 

by technical reasons and reflects previously reported differences 389. In both cell lines, most of 

the phosphopeptides were exclusively identified in resistant cells, suggesting high relevance of 

PTMs in resistance to BRAF inhibition.  

BRAFi-sensitive and -resistant SkMel28 cells have distinct mutational landscapes 

We next compared the BRAFi-sensitive versus -resistant phenotypes for A375 and SkMel28 

cell lines on the basis of the WES-identified nucleotide variants. The comparison between A375 

S and R revealed almost identical number of non-synonymous nucleotide variants, as well as a 

very high overlap (94%) of mutations (Figure 2A). Although a similar number of non-

synonymous nucleotide variants was identified in SkMel28, the overlap between S and R 

phenotypes was only 39.7% (Figure 2B). Comparison of the sequencing depth revealed similar 

results across phenotypes and cell lines, with median depth ranging from 90 to 118 reads 

(Figure S2A and B). As the same tools were used for variant calling, the difference in the 

overlap between S and R phenotypes in SkMel28 cells is unlikely to be a technical artefact. 

Variants were then characterised based on the reference to alternate nucleotide variant change, 

which revealed a higher exchange frequency of adenine to guanine (and vice versa), as well as 

cytosine to thymine (and vice versa). These mutations represented approximately 65% of the 

total nucleotide changes and were consistent across phenotypes and cell lines (Figure S2C and 

D).  
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Individualised proteogenomics highlights key differences between BRAFi-sensitive and -

resistant melanoma cell lines 

To address hotspot mutations accumulating in specific pathways, we performed pathway 

enrichment of identified proteins harbouring amino acid variants. For both cell lines, we 

detected multiple alternate peptides and phosphopeptides including peptides harbouring single 

amino acid variants, InDels and frameshift mutations. Most of the identified mutations were 

detected in drug-resistant cells compared to drug-sensitive cells on the proteome and 

phosphoproteome level (Figure 2C and D). Next, we performed pathway enrichment of 

proteins containing alternate peptides and showed significant differences between cell lines and 

their phenotypes (Figure 2E). For both cell lines, MAPK signalling pathway and ErbB 

signalling pathway were over-represented for mutated proteins in drug-resistant cells, whereas 

RHO GTPase cycle was enriched for both drug-sensitive cells. In contrast, transcriptional 

regulation by RUNX1 was only over-represented in A375 R cells which is linked to 

transcriptional misregulation in cancer. Metabolism, HIPPO signalling pathway and lysosome 

were enriched for variant proteins in A375 S cells. The annotation enrichment results for 

SkMel28 S and R showed that most of the pathways were similarly over-represented for both 

phenotypes. In addition, we compared the proteomic and phosphoproteomic differences 

between both drug-sensitive and resistant cells for both cell lines and identified several 

significantly regulated proteins (Figure S2E and F). MS analysis revealed the identification of 

numerous significantly regulated proteins and phosphorylated proteins between cell line sand 

their phenotypes, including key signalling proteins like BRAF, ERK1, AKT. To characterise 

phenotypes between drug-sensitive and drug-resistant cells, we conducted an enrichment 

analysis including Gene Ontology (GO), KEGG pathway, and Reactome analysis in order to 

assess over-represented pathways and biological processes between significantly regulated 

proteins of shared identifications and unique proteins for each phenotype (Figure S2G and H). 

Based on the enrichment results for Reactome, signalling pathways like MAPK were enriched 

in both resistant cell lines and PI3K-AKT-mTOR pathway in A375 R and Wnt signalling in 

SkMel28 R cells, known to be highly activated in resistant melanoma cells. YAP/TAZ-

stimulated gene expression, rRNA processing and nucleosome assembly were identified in both 

sensitive cells. For shared proteins, extracellular matrix organisation was over-represented in 

both sensitive cells and Rho GTPase activation and AURKA activation by TPX2 in A375 R 

cells, whereas signalling by activin, NCAM1 signalling were significantly enriched in SkMel28 

R cells (Figure S2G and H). These findings highlighted the shared properties and differences 
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between melanoma cell lines and showed that alterations can be identified at the peptide and 

phosphopeptide level. 
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Figure 2: Individualised proteogenomics highlights key differences between dug-sensitive and drug-

resistant melanoma cell lines. [A] and [B] Exome sequencing results of A375 [A] and SkMel28 [B], mapped to 

commonly used databases COSMIC and dbSNP and novel mutations identified in this study. Upper panel shows 

venn diagram of the comparison of drug-sensitive (S) and drug-resistant (R) cells. [C] and [D] Identification of 

reference, alternate and novel variants on the proteome and phosphoproteome level of A375 [C] and SkMel28 [D]. 

[E] Radial plot of over-represented pathway of proteins containing identified alternate variant peptides for A375 

(left) and SkMel28 (right). The enrichment score was calculated by Fisher exact test (FDR < 0.1). 

 

Mass spectrometry detects several alternate peptides phosphorylated on the mutation site 

In the MS-based proteomics data, we focused on those mutations affecting the phosphorylation 

status of a protein. We identified 51 and 41 mutated isoforms with a phosphorylation event on 

the mutation site in A375 and SkMel28, respectively (Figure 3A and B). These comprised both 

phosphorylated reference peptides, implying a loss of the phosphorylation site due to the 

mutation, and phosphorylated alternate peptides, involving a gain of phosphorylation site. 

Notably, among the phosphorylated alternate peptides, approximately half were found 

phosphorylated only in the resistant phenotypes. The rest were phosphorylated either only in 

the sensitive phenotype or shared across phenotypes. Several of these mutations were among 

the top impact ranked mutations for each cell line, such as FLII, RUNX1, SCRIB, PPP1CA, 

KLF16, OGFR, RBMX and ANLN (Figure S3A and B). We checked whether these 

phosphorylated reference and alternate peptides contained kinase substrate motifs. While 

several peptides did contain a motif, significantly over-represented were only the ERK1,2 and 

Casein kinase II substrate motifs in A375 R (Table S1).  

We then investigated the potential influence of phosphorylation site gain or loss on the protein-

protein interactome of each cell line. Interestingly, the generated interaction network was highly 

enriched in proteins showing an up-regulation trend in A375 R. Conversely, for the interaction 

network of SkMel28, both phenotypes were equally represented in up-regulated proteins 

(Figure 3C and D). Among the mutated proteins used to generate these interaction networks, 

several had notably more connections, such as PCM1, RUNX1 and DTL for the A375 cell line 

and PPP1CA for SkMel28 (Figure S3C and D). Thus, the gain of a phosphorylation site on 

these proteins could be of importance not only for the affected protein but also for their 

numerous interactors. To characterise the interactome of each phenotype, we performed an 

over-representation analysis against GO functions, KEGG pathways and Reactome pathways 

(Figure S3E and F). The analysis revealed notable differences between phenotypes, with A375 

R characterised by several pathways connected to transcription, mitosis and SUMOylation, 

whereas SkMel28 R was represented by telomerase activation. 



Manuscript II   82 

 

Taken together these results suggest different phosphorylation landscape and possible rewiring 

of signal transduction networks in the resistant and sensitive phenotypes, an observation that 

was consistent across the two cell lines used. 
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Figure 3: Mass spectrometry detects several alternate peptides phosphorylated on the mutation site. [A] and 

[B] The mutated proteins, identified with a phosphopeptide covering the mutation site either as reference or 

alternate, are displayed for A375 [A] and SkMel28 [B]. From the outer to the inner track, the first track represents 

the mutation genomic location in context of its impact score; with the phosphorylated mutation sites located on a 

reference peptide (blue) or on an alternate peptide (red). The second track depicts mutation genomic location for 

the WES dataset, with the colour highlighting whether this mutation was identified only in the sensitive cells, 

resistant or in both. The third and fourth tracks display the same type of information based on identified reference 

and alternate peptides, respectively. Similarly, the identified phosphorylated peptides are represented on the fifth 

and sixth tracks. [C] and [D] The protein-protein interactomes of the confirmed protein with loss/gain of 

phosphorylation sites (as well as their interactors) for A375 [C] and SkMel28 [D]. Only identified proteins are 

displayed and coloured based on up-regulation trend in one or another or both phenotypes. 

 

Key molecules of MAPK pathway harbour different alterations in melanoma cells 

Next, we selected the most commonly altered genes in melanoma and assessed their alterations 

on the exome and protein level as well as their expression and phosphorylation status for both 

cell lines and phenotypes (Figure S3G). Melanomas most frequently harbour alterations in 

BRAF, CDKN2A, NRAS, TP53 and NF1. Several mutations were identified on the exome and 

the proteome level including BRAF and EGFR in the MAPK pathway, and ERBB2 and ROS1 

in the PI3K-AKT-mTOR pathway. Both phenotypes of the cell lines showed differently altered 

genes and proteins identified by our proteogenomics workflow. Mutations in PTEN were only 

identified in A375 R cells; CDK4 was only identified to be altered in SKMel28 S cells and the 

alternate peptide was identified by LC-MS/MS. Protein expression analysis based on label-free 

quantification revealed significant differences between cell lines and phenotypes. For example, 

KMTD2 showed a higher intensity in drug-sensitive A375 S cells compared to A375 R and 

TP53 is up-regulated in SkMel28 R cells compared to SkMel28 S cells. Several of the most 

commonly altered proteins in melanoma were identified to be phosphorylated on known but 

also on new modification sites, demonstrating the power of proteogenomic data integration to 

detect sample-specific changes in protein modifications.  

Loss of a known phosphorylation site on RUNX1 leads to changed interactome and altered 

transcriptional activity 

Among high impact mutations identified with our proteogenomic approach, one was a 

previously reported mutation on transcription factor RUNX1, a key transcription factor 

involved in cell proliferation, differentiation and apoptosis 156. We identified several mutations 

on RUNX1 with a potential to change the modification status of the protein (Figure 4A). One 

of the identified alterations on RUNX1 gene results in a loss of known phosphorylation site at 

S276 to L276 on RUNX1 protein. The reference and alternate peptides were identified with 

high resolution mass spectrometry in both A375 S and R cells (Figure S4A to C). The 

phosphorylation site is located in a highly modified region in close proximity to the 
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transcription activation domain of RUNX1, previously reported to be involved in binding of 

key regulatory proteins, such as P300 390. We therefore hypothesised that this mutation is likely 

to influence the interactome of RUNX1. To study the impact of the loss of a modifiable amino 

acid, we performed immunoprecipitation of Flag-tagged RUNX1_wt and RUNX1_S276L in 

CRISPR/Cas9-mediated RUNX1 knockout (KO) SILAC labelled cells (Figure 4B). The 

interactome analysis by LC-MS/MS revealed that RUNX1 and its core binding factor CBFB 

were significantly enriched in both pulldowns compared to Flag-empty vector (Figure S4D 

and E). Interestingly, histone deacetytranferase HDAC1 was enriched in RUNX1_wt 

interactome and depleted in the RUNX1_S276L interactome (Figure 4B). HDAC1 is a known 

interaction partner of RUNX1 and acts as a transcriptional repressor by removing acetylation 

modification from histone 391. Another protein that significantly differed in the interactome of 

RUNX1 was the protein RAB21, a Ras-related protein. To confirm these findings, we 

performed pulldown assays with synthetic peptides harbouring the amino acid sequence for 

reference, alternate or phosphorylated reference peptides of RUNX1 in A375 cells (Figure 4C). 

As in the interactome study, HDAC1 was significantly depleted in the pulldown of alternate 

peptide versus reference peptide indicating that the interaction between HDAC1 and RUNX1 

is disturbed due to the alteration. In addition, we also identified SIN3A to be significantly 

depleted in alternate peptide pulldown compared to reference pulldown. Similar to HDAC1, 

SIN3A acts a transcriptional repressor and both are forming a corepressor complex with 

RUNX1 which regulates the transcription of hematopoietic genes 176. Besides the 

transcriptional regulators, we also identified several other proteins and known interactions 

partners of RUNX1. RIN1, a RAS and Rab interactor and PTPN23, a tyrosine-protein 

phosphatase, showed the same trend as HDAC1 and SIN3A, both proteins are known to act as 

regulator of RAS-mediated mitogenic activity 392,393. In addition, we compared the alternate 

peptide pulldown to the phosphorylated peptide pulldown and identified several proteins 

involved in the nuclear core complex to be significantly enriched in the phosphopeptide 

pulldown compared to the alternate peptide pulldown (Figure S4F). Enrichment analysis of 

KEGG pathways indicated that proteins identified in alternate peptide pulldown compared to 

reference peptide were enriched in TGFβ signalling pathway, melanogenesis and insulin 

pathway signalling (Figure S4G). These include key molecules like PML, CTBP2 and YAP1. 

GOBP enrichment revealed that the proteins identified in the reference pulldown proteins are 

enriched for catenin import into nucleus and histone deacetylation. Proteins identified in the 

alternate pulldown are also involved in regulation of gene expression and cytokine biosynthetic 

processes. Next, we mapped a list of transcriptionally regulated proteins by RUNX1 from 



Manuscript II   85 

 

BioGrid to our dataset and showed that the moiety of identified proteins is enriched in alternate 

pulldown compared to reference pulldown (Figure S4H). Taken together, we could show that 

the loss of known phosphorylation site has an impact on the interactome of RUNX1 (Figure 

S4I) and postulate that it leads to altered transcriptional activity (Figure 4D). 

 

 

Figure 4: Loss of a known phosphorylation site leads to a changed interactome and altered transcriptional 

activity of RUNX1. [A] Schematic overview of the transcription factors RUNX1 protein. Numbers indicate the 

positions of amino acids residues within the protein. Identified phosphorylation sites are highlighted in blue and 

mutations by our proteogenomic workflow are highlighted in red. Identified peptides by LC-MS/MS are shown in 

the second panel. Phosphorylated peptides are indicated with a blue border, while reference and alternate peptide 

are highlighted in green and red, respectively. [B] Interaction proteomics screen in A375 RUNX1_KO cells stably 

overexpressing FLAG-tagged RUNX1_wt or FLAG-tagged RUNX1_S276L. SILAC protein expression (log2) of 

RUNX1_wt or FLAG-tagged RUNX1_S276L relative to the corresponding control cell line (FLAG tag only). 

RUNX1 and its core binding factor CBFC are marked in black. Significantly up and down regulated proteins are 

highlighted in red. Results represent three replicates per experiment group. [C] Volcano plot of synthetic alternate 

peptide (Syn_Leu) versus synthetic reference peptide (Syn_Ser) pulldowns of A375 cells. Fold change of ratios 

between Syn_Leu and Syn_Ser (log2) are plotted against p-value (-log10) (n=3). Black lines indicate the 

significance threshold based on student t-test (FDR < 0.01; S0=1.2). Significantly up and down regulated proteins 

are highlighted in red. [D] Schematic overview of proposed interaction of RUNX1_wt and RUNX1_S276L with 

main transcriptional regulators. 
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Discussion 

In the current study, we presented a new web application, PCTi, which allows a simple and 

user-friendly proteogenomics analysis in an individualised fashion. Onco-proteogenomics can 

help to identify clinical biomarkers or actionable drug targets 357,359,360. Therefore, as a proof of 

principle we applied our tool to two cell line models of melanoma, a cancer that is well known 

for its high mutation load 135 and the potential for rewiring cellular networks 332,340. Two 

consortia, namely the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The 

Cancer Genome Atlas (TCGA), have greatly contributed to the development of onco-

proteogenomics 360-363. However, proteogenomics studies are still relatively rare and, due to 

their complexity, out of reach of most proteomics (or genomics) laboratories. 

PCTi application provides a reactive environment for proteogenomics analysis 

We hope that PCTi will facilitate proteogenomics projects by providing a simple reactive 

environment to construct tools (e.g. protein databases) and integrate different omics datasets. 

Among the key features of PCTi is a user-friendly interface that can be used as a part of existing 

WES and MS data processing workflows. We have modularised our application so that users 

are free to use all or only part of it (e.g. possible to generate a custom database without pursuing 

with the rest of PCTi). Nevertheless, all modules are designed to work together in order to create 

a homogeneous workflow, leading to interactive visualisations. Importantly, our tool is suitable 

for a broad range of biomedical questions and is not limited to oncology studies as it depends 

on user input (i.e. WES data, MS data, selected impacts). PCTi currently has some restrictions, 

i.e., the variants must be called against H. sapiens genome assembly GRCh38, and MS data 

processed using MaxQuant software suite. We expect these limitations to disappear as the 

application matures. While the application can in principle be used for non-human organisms, 

it was never tested in such context. 

Regarding PCTincorporation module, we decided to incorporate non-synonymous nucleotide 

variants into a reference genome for the creation of custom protein sequences database. While 

this approach is not novel, it has the advantage to preserve the reference assembly used during 

variant calling and to allow creation of a reference protein sequences database (as opposed to 

retrieving it from online sources) 394. We also decided to incorporate variants mapping to the 

same gene locus separately, resulting in separate protein sequence entries (e.g. PCM1 gene 

mutated at position 159, 597 and 691). Among our reasons is the fact that few variants are 

located close enough from each other to be detected by MS (typical tryptic peptide length is 

comprised between 7 and 30 amino acids). Furthermore, variants phasing information are not 
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necessarily available following variant calling, without which it is impossible to predict which 

variants belong to the same allele. In the context of our melanoma cell lines, the nucleotide 

variants incorporation revealed very similar numbers (~10,000 variants) across cell 

lines/phenotypes, the large majority being SNVs (Figure S1A and B), which is consistent with 

previous study 395. We also observed characteristic nucleotide substitutions, whereby two thirds 

of substitutions are comprised of transitions, with the remaining one third being transversions 

(Figure S2A and B). The C to T transition was highly represented and has been reported as a 

result from sun-light exposure, which is highly relevant for skin cancer 396. 

Due to the large number of nucleotide variants identified by WES, representing nearly twice as 

many variant isoforms, we implemented an impact scoring in PCTimpact module to enable 

stratification of variants, e.g. in clinical context. For this purpose, our impact method relies 

almost entirely on user input, and enables pre-definition and prioritisation of an unlimited 

number of impacts (via parameters customisation). With regards to application of PCTimpact 

to melanoma cell lines, we prioritised mutations that have been reported in melanoma patients 

(based on CGDS resource) 397; and those that fall on oncogenes and tumour suppressor genes. 

We also focused on mutations that affect phosphorylation status. Around 14.8% of all amino 

acids in the human proteome are serine, threonine or tyrosine 344, which are predominantly 

modified by phosphorylation. Several studies have reported that these three amino acids are 

disproportionally affected by missense mutations 366,367.  

Here, we predicted the impact of several thousand mutated isoforms, including the impact of 

mutated protein residues in context of loss or gain of S/T/Y in A375 and SkMel28. While these 

may not all be relevant in tumour cells, since not all genes are expressed at any one-time, 

previous studies have shown the deleterious effect of such mutations 340,362,371. Among the 

mutated isoforms with impact score medium to high (Figure S3A and B), two thirds were 

known oncogenes or tumour suppressors genes; and more than 80% had a loss of known 

phosphorylation sites. Interestingly, about 10 nucleotide variants in A375 and SkMel28 were 

known with frequencies ranging from 0.8% to nearly 30% of melanoma samples in CGDS. The 

affected genes were THBS1, ZFHX3, OGFR, RET, SYNE2, BRCA1, MUC16, SELENOP and 

RUNX1; most of which have been shown to be involved in tumour progression and maturation 

or development of drug-resistance in melanoma or other cancer types 398-406. Thus, we believe 

that careful selection of impacts by users (i.e. based on online resources, experiment) can lead 

to meaningful prioritisation of nucleotide variants, as demonstrated here for melanoma. 
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Integration of genomics and proteomics reveals differing mechanisms linked to BRAFi 

resistance in melanoma 

While we detected near identical number of nucleotide variants across cell lines/phenotypes 

(Figure 2A and B), we observed very different overlap between phenotypes. Indeed, A375 S 

and R had very few unique nucleotide variants, as opposed to SkMel28 S and R where nearly 

two thirds of variants were unique to one or the other phenotype. Checking the sequencing 

depth of these samples revealed similar distribution between phenotypes, suggesting that these 

differences may originate from the underlaying biology of these cell lines 389. We identified 

hundreds of amino acid variants by high resolution mass spectrometry, including some that led 

to a change in the modification status of the protein. Our identification results are in the same 

range (or higher) as other studies investigating amino acid variants using custom protein 

sequence databases 352,354,407,408. Over-representation of variant proteins revealed that cancer 

mutations are accumulating in MAPK and PI3K/AKT/mTOR pathways in drug-resistant cell 

lines, whereas YAP/TAZ stimulated gene expression was enriched in sensitive cells. The 

identified enriched pathways are known to be highly activated in melanoma cells with acquired 

resistance 30,119,409. In addition, we report stronger differences in enriched pathways between 

A375 R and S compared to Skmel28 S and R. Thus, we suggest the usage of A375 cell line for 

the study of resistance in melanoma.  

Following integration and visualisation of the different omics data for the variants affecting 

phosphorylation status, we observed a similar trend as described above whereby most mutations 

are shared between A375 R and S, whereas a large number of mutations were unique to 

SkMel28 R or S (Figure 3). Notably, the agreement between omics was good, there was no 

case of variant found unique to a phenotype at the WES level that was found unique to the other 

phenotype at the proteome or phosphoproteome levels (e.g. nucleotide variant unique to A375 

S while alternate peptide found unique to A375 R). Among interesting variant, RUNX1 was 

one of the top impact scoring entries for A375, while a frameshift in PPP1CA was found unique 

to SkMel28 R (Figure S3A and B). Several over-represented pathways highlighted striking 

differences between the sensitive and resistant phenotypes as a result of confirmed loss or gain 

of phosphorylated residues. For example, pathways connected to transcription, mitosis and 

SUMOylation were over-represented in A375 R, these functions when dysregulated have been 

shown to induce drug resistance 410,411. Whereas, SkMel28 R was over-represented in 

telomerase activation pathway, which is also known in context of melanoma resistance as well 

as a potential drug target to overcome such resistance 412,413. 
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Rewiring of signal transduction network due to the loss of a known phosphorylation site 

on RUNX1 

We experimentally validated one striking example of a loss of a known phosphorylation sites 

on RUNX1 and showed that this mutation has an impact on the interactome of RUNX1. The 

transcription factor RUNX1 is mutated in 3.03% of melanoma patients and so far 43 mutations 

are described in the literature for cutaneous melanoma 165. In this study, we also identified 

several mutations that may have an influence on the modification status of the protein and one 

was also confirmed by LC-MS/MS (Figure 4 and S4). The mutation site S276L does not fall 

on a domain on the protein RUNX1 but is located in a highly modified region of the protein 

and thus may influence the transcriptional activation domain. Wee et al. showed in vitro that 

the triple phosphorylation at the sites S249, T273 and S276 are important for the interaction 

with the histone acetyltransferase p300 and thus lead to the regulation of gene transcription via 

chromatin remodelling 178. Here, we could not identify p300 in the interactome studies of 

RUNX1 by immunoprecipitation of overexpressed RUNX1 or synthetic peptide pulldowns. 

Interestingly, we identified the transcriptional activator WWTR1 (TAZ) and KAT7 and the 

corresponding transcriptional repressors HDAC1 and Sin3A to be significantly changing 

between reference and alternate pulldown of RUNX1 (Figure 4B and C). The loss of the 

interaction to HDAC1 by mutating RUNX1 at S48, S303 and S424 to aspartic acid in vitro has 

been also described previously 414. However, we could link it to a different mutation site and 

show that the interaction is associated with the modification status of the protein. The crosstalk 

between acetylation/deacetylation mediated by KAT7 and HDAC1 and 

phosphorylation/dephosphorylation may alter the transcriptional activity by RUNX. We 

postulate that the regulation of transcriptional activity of RUNX1 is p300 independent and may 

suggest a NAMPT dependent regulation through sirtuins, mainly SIRT2. Here, we show the 

enrichment of NAMPT in reference pulldown analysis. Taken together, we postulate that the 

mutation, which influence the modification status of the protein, change the interactome of 

RUNX1 and altered the transcriptional activity of RUNX1.  

 

Conclusions 

Proteogenomics is a powerful tool to study the mode of action of disease-associated mutations 

at the genome, proteome and PTM level. Here, we developed a new software tool, termed PCTi, 

and applied it to study mutational landscape of two melanoma cell lines sensitive and resistant 

to BRAF inhibition. Our approach revealed key differences between BRAFi-sensitive and -
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resistant melanoma cell lines, such as over-representation of MAPK signalling and ErbB 

signalling pathways in resistant phenotypes. We also confirmed the loss or gain of several 

phosphorylation events on mutation sites, that may lead to the rewiring of signal transduction 

network in context of melanoma resistance to BRAFi. We further investigated the mutation 

S276L on the transcription factor RUNX1 and confirmed the loss of the Ser276 phosphorylation 

site by MS. Our results suggest that this mutation has an impact on the interactome of RUNX1 

and may be responsible for change in its transcriptional activity. This dataset can be used as a 

resource to identify network-attacking mutations to improve patient’s survival.  

 

Materials and Methods 

Extended method description can be found in Supplementary Information. 

Cell culture  

The human metastatic BRAFV600E-mutated melanoma cell lines A375 and SKMel28 were used 

in this study. The generation of the cell lines with acquired resistance to vemurafenib analogue 

PLX4720 (Selleckchem) (for simplicity referred to as “vemurafenib” in the Results section) was 

conducted as described previously 387. A375 S/R and SkMel28 S/R cells were grown in RPMI 

medium (Sigma-Aldrich) supplemented with FBS (10%, PAN Biotech) and 

penicillin/streptavidin (100 U/ml, PAN Biotech) at 37°C and 5% CO2.  

SILAC –labelling of cells was performed as described previously 415. 

DNA extraction and Whole Exome Sequencing 

Cells were harvested by centrifugation and DNA was extracted using QIAamp DNA Mini 

(QIAGEN) according to the manufacturers’ instructions. WES libraries were prepared using 

SureSelect Human All Exon (Agilent) according to manufacturers’ instructions. Paired-end 

sequencing was performed on an HiSeq 2500 instrument (Illumina). The WES measurements 

were performed at c.ATG Core Facility in Tuebingen. Raw sequence data were then processed 

using an in-house pipeline developed at the Proteome Centre Tuebingen according to GATK 

best guidelines 416. 

Incorporation of non-synonymous variants into protein databases 

PCTi application is coded entirely in the R programming language 417 and uses Shiny package 

388 for its graphical user interface. The first module, PCTincorporate takes as input a Variant 
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Call Format (VCF) file containing nucleotide variants from one or more samples. The transcript 

nucleotide sequences were extracted from GRCh38 H. sapiens genome assembly and Ensembl 

transcript annotation (via BSgenome and GenomicFeatures packages). These sequences were 

then in silico translated (from start to first stop codon) into a reference protein sequences 

database (Biostrings package). The called variants were injected into each overlapping 

reference transcript nucleotide sequences and then in silico translated. The computed 

information was reported directly within the alternate FASTA header to facilitate interaction 

with the rest of PCTi (e.g. mutation positions, reference ID). The output consists in two FASTA 

files containing reference protein sequences and sample-specific alternate protein sequences, 

which are used as protein databases for processing of LC-MS/MS data. 

Annotation of the biological impact of detected variants 

The FASTA file discussed above is used as the main input to the PCTimpact module, in 

conjunction with several user-defined specifications that define how the mutations impact are 

computed. In the current study, the focus was on the impact of amino acid variants on protein 

phosphorylation-based signal transduction networks in melanoma. PCTimpact module was 

used to annotate each reference/alternate protein sequence based on whether phosphorylation 

sites (S/T/Y) were lost and/or gained (IRanges package). A list of known kinase motifs was 

retrieved from PhosphoNetworks 418 and these motifs were searched along the 

reference/alternate protein sequences. Located kinase motifs were overlapped with mutation 

position to determine loss/gain of the motifs. Known human phosphorylation sites were 

retrieved from PhosphoSitePlus and Phospho.ELM databases 382,419. The mutations affecting 

these sites were annotated as loss/gain of phosphorylation. In a similar fashion, known mutation 

sites in melanoma were obtained from CGDS 397 and overlapped with our mutations. A list of 

oncogenes and tumour suppressor genes was compiled from Cosmic, ONGene, Bushman lab 

and Uniprot 344,420,421. Mutations on these genes were annotated as cancer-relevant. A 

Levenshtein similarity score was calculated between reference and alternate protein sequences 

and mutated sequences with less than 90% similarity to their reference were flagged. Each 

impact was scored with the application default (i.e. no factor was applied to one or another 

impact). A summed score was calculated for each alternate sequences’ amino acid, and the 

maximum summed score was reported for that mutated isoform. Because the score depends on 

the number of impacts tested by the user, we also computed a scaled maximum score (between 

0 and 1), to allow comparison between processings. Following the computation of all impacts, 

each mutated protein isoform is scored and ranked to allow prioritisation for follow up studies 

(tab-separated file as output). 
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Overexpression and immunoprecipitation of RUNX1  

Immunoprecipitation (IP) of overexpressed Flag-tagged RUNX1 in A375 S RUNX1_KO 

SILAC cells was performed with Flag M2 antibody in three biological replicates. RUNX1 gene 

knockout was carried out by CRISPR/Cas9-mediated genome editing according to the 

published protocol 422.  

Pulldown assays with synthetic peptides and on-bead digestion 

Synthetic peptides comprising 17 amino acids and a biotinylated linker in the N-terminus were 

coupled to Pierce streptavidin magnetic beads and synthetic peptide pulldowns in A375 S cells 

were performed in three independent replicates (Supplementary Information).  

Extraction and digestion of proteins 

Cells were harvested with lysis buffer and digested with trypsin essentially as described before 

415.  

High pH reverse phase chromatography 

Prior fractionation, peptides were purified on a Sep-Pak C18 Cartridge (Waters). High pH 

reverse phase chromatography was conducted using off-line Ultimate 3000 high-pressure liquid 

chromatography (HPLC) system (Dionex, Thermo Fischer Scientific) equipped with xBridge 

BEH130 C18 130A, 3.5 µm, 4.6 x 250 mm column (Waters), as described previously 415.  

Phosphopeptide enrichment 

Phosphopeptides were enriched using TiO2 beads (Titansphere, 10 µm, GL Sciences). 1 mg of 

beads (in 80%, 1% TFA) were added to acidified high pH fractions and incubated for 30 min 

in a rotation wheel. Phosphopeptide-bound TiO2 beads were sequentially washed with 30% 

ACN, 1% TFA, followed by 50% ACN, 1%TFA and 80% ACN, 1% TFA Peptides were eluted 

with 5% NH4OH into 20% TFA followed by 80% ACN in 1% FA. The eluate was reduced by 

vacuum centrifugation, pH was adjusted to < 2.7 with TFA and peptides were desalted on C18 

StageTips prior LC-MS/MS measurements.  

Liquid chromatography - mass spectrometry  

Peptides were measured on an EASY-nLC 1200 ultra‐high‐pressure system (Thermo Fisher 

Scientific) coupled to a quadrupole Orbitrap mass spectrometer (Q Exactive HF, Thermo Fisher 

Scientific, USA) via a nanoelectrospray ion source. About 1 μg of peptides was loaded on a 20‐

cm analytical HPLC‐column (75 μm ID PicoTip fused silica emitter (New Objective); in‐house 
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packed using ReproSil‐Pur C18‐AQ 1.9‐μm silica beads (Dr Maisch GmbH)). Peptides were 

eluted using a 90 min gradient for proteomic, phosphoproteomic and synthetic peptide 

pulldown studies and 60 min gradients for RUNX1 interaction studies. Gradient was generated 

by solvent A (0.1% FA) and solvent B (80% ACN in 0.1% TFA) at 40°C and 200 nl/min. 

Column temperature was kept at 40 °C. The mass spectrometer was operated in data‐dependent 

mode, collecting MS spectra in the Orbitrap mass analyzer (60 000 resolution, 300–1650 m/z 

range) with an automatic gain control (AGC) target of 3E6 and a maximum ion injection time 

of 25 ms. For higher-energy collisional dissociation (HCD), the 12 most intensive peptides were 

selected and MS/MS spectra were recorded with a resolution of 30,000 (fill time 45 ms). For 

phosphoproteomic studies, top7 method was used with a resolution of 60,000 for HCD scans 

and maximum fill time of 220 ms. For the analysis of RUNX1 interactome, full MS were 

acquired in the range of 300 - 1750 m/z at a resolution of 60,000 (fill time 20 ms). Twelve most 

abundant precursor ions from a survey scan were selected for HCD fragmentation (fill time 110 

ms) and MS/MS spectra were acquired at a resolution of 30,000 on the Orbitrap analyzer. 

Precursor dynamic exclusion was enabled with a duration of 20 s. Synthetic peptide pulldowns 

were analysed with a top7 method with a resolution of 60,000 and a fill time of 110 ms.  

Mass spectrometry data processing 

The raw data files were processed with the MaxQuant software suite (version 1.6.8.0 and 

1.5.2.8) 285. The Andromeda search engine 423 searched MS/MS data against PCTi H. sapiens 

reference (99,354 entries) and cell line-specific alternate databases (A375 = 29,104 entries; 

SkMel28 = 40,041 entries), as well as UniProt H. sapiens (release 2019/02/13; 95,943 entries) 

database and commonly observed contaminants. Carbamidomethylation of cysteine (C) was set 

as fixed modification and oxidation of methionine, phosphorylation at serine, threonine or 

tyrosine were defined as variable modifications. Trypsin/P was selected as a protease. No more 

than two missed cleavages were allowed. The MS tolerance was set at 4.5 ppm and MS/MS 

tolerance at 20 ppm for the analysis using HCD fragmentation method. The false discovery rate 

(FDR) for peptides and proteins was set to 1%. For label-free quantification of melanoma cell 

lines, a minimum of one peptide was required. For quantification of proteins in the 

immunoprecipitation experiments, the amino acids (Lys4)/(Arg6) and (Lys8)/(Arg10) were 

defined as ‘medium’ and ‘heavy’ labels for the comparison of RUNX1 overexpressed cell lines. 

For all other parameters, the default settings were used. 

Proteogenomics integration 
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The PCTintegrate module was used to integrate WES and MS datasets, specifically to check 

which mutations were identified across datasets. Initially, the reference and alternate protein 

sequences were in silico digested according to laboratory condition; i.e. digestion with trypsin 

and up to two missed cleavages (cleaver package). The overlap of MS-identified peptides with 

in silico digested peptides led to the determination of reference (non-mutated peptide that 

overlap the mutation position on reference protein), alternate (mutated peptide that overlap the 

mutation position on alternate protein) or unspecific (non-mutated peptide that does not overlap 

any mutated positions on reference protein) peptide classification. On the basis of this peptide 

classification, we summarised the peptides identification per mutated isoforms, allowing 

coverage characterisation into reference only, alternate only, reference and alternate or 

unspecific. We finally focused on PTM (as implemented in the MaxQuant processing), which 

here consists in phosphorylation sites. Reference and/or alternate peptides found 

phosphorylated were flagged as such, as well as those were the phosphorylation occurred 

directly on the mutated sites (either on reference or alternate sequences). This coverage 

information is exported within MaxQuant style processing results (tab-separated file as output). 

PCTimage module was used to visualise mutated position along H. sapiens genome in a sample 

specific context (using ggplot and ggbio packages). The module allowed protein isoform 

specific representation, which includes mutation sites, impacts location and MS identification 

coverage. We also generated network of protein-protein (using BioGRID database), drug-target 

(using Uniprot database) and prediction kinase-substrate (PCTimpact results) interactions; e.g. 

RUNX1 network 344,424. The generated networks were exported (using igraph and RCy3 

packages) into Cytoscape for further customisation 425. 

Pathway analysis 

Statistical analyses were performed with Perseus software suite (version 1.6.5.0). The drug-

sensitive and drug-resistant cell lines were compared using label-free quantification, after 

filtering of all reverse and potential contaminant hits. Significance B (p value 0.05) test was 

used for statistical analysis. A list of all protein identifications and phosphorylation site 

identifications are provided in Table S1 and 2. 

For proteomic interaction studies, protein groups were kept for further statistical analysis only 

if quantified in 3 out of 3 replicates. The SILAC ratios of the three independent replicates were 

averaged and an arbitrary cut-off of two-fold change was used to determine significant SILAC 

ratios. The log2 transformed ratios were plotted against intensities (log10). For synthetic 

peptide pulldowns, label-free quantification between three independent replicates was 
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performed and ratios were subjected to t-test analysis, with a permutation-based FDR threshold 

of 0.01 and s0 value of 1.2. A list of known interaction partners and transcriptionally regulated 

targets by RUNX1 were retrieved from BioGrid and mapped to the dataset. A list of all protein 

identifications are provided in Table S3.  

The resources used for annotation of proteins were Gene Ontology (GO), Biological Processes 

(GOBP), GO Cellular Compartment (GOCC), GO Molecular Functions (GOMF) and Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) and Reactome Pathway database (Reactome). 

The fisher exact test (FDR ≤ 0.5) was used to checked for over-represented categories among 

significantly changing proteins (between drug-sensitive and drug-resistant cell lines or between 

reference and alternate pull-down). A list of all over-representation results is provided in Table 

S1, 2 and 3. 
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Data availability 

The PCTi web application is freely available and hosted at https://shiny.pct.uni-

tuebingen.de/pcti/. The high throughput nucleotide sequencing data have been deposited in the 

NCBI Sequence Read Archive 426 with the bioproject accession number PRJNA616103. The 

mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

via the PRIDE 427 partner repository with the dataset identifier PXD018305. The WES 

bioinformatics pipeline is available online 428. Excel files containing the analysed data are 

provided in Supplementary Information. 
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Supplementary Information  

Schmitt, M., Sinnberg, T., Bratl, K., Garbe, C., Macek, B., Nalpas N. C.  

Integration of individualized proteogenomics datasets to analyse single amino acid variants in 

malignant melanoma  

Under revision in Frontiers in Oncology, 2020 

 

Table 1: List of used patient derived melanoma cell lines in this study. ATCC: American Type Culture 

Collection  

Name Tissue Morphology Source BRAF mutation 

A375 skin epithelial ATCC (CRL-1619) BRAF V600E 

SKMel28 skin polygonal ATCC (HTB-72) BRAF V600E 

 

Table 2: List of used synthetic peptides in this study. 

Peptide Sequence 

Runx1_S276 SGSGSPSVHPATPISPGRASGM 

Runx1_L276 SGSGSPSVHPATPILPGRASGM 

Runx1_p276 SGSGSPSVHPATPISPGRASGM 

Runx1_pT273pS276 SGSGSPSVHPATPISPGRASGM 

Kind gift of Prof. Dr. Stefan Stefanovic, University of Tuebingen 

  



Manuscript II   98 

 

 



Manuscript II   99 

 

Figure S1: PCTi application provides a reactive environment for the integration of genomics with 

proteomics. [S1A] Schematic overview of the proteogenomic workflow. Vemurafenib sensitive (S) and resistant 

(R) melanoma cell lines A375 and SkMel28 were used in this study. For exome sequencing, DNA was extracted 

and sequenced on Illumina HiSeq 2000. Variants were called using GATK software. For the proteomic and 

phosphoproteomic workflow, cells were lysed and proteins were digested using trypsin. The resulting peptide 

mixture was fractionated using an off-line RP HPLC operated at high pH. Fractions were pooled and measured 

directly (proteome) or applied to phosphopeptide enrichment using titanium dioxide (TiO2) prior to LC-MS/MS. 

MS raw data was processed with MaxQuant software and analysed by PCTi. [S1B] and [S1C] Number of non-

synonymous nucleotide variants per mutation types identified by WES for A375 [S1B] and SkMel28 [S1C]. [S1D] 

and [S1E] The number of protein sequences per reference or alternate databases for A375 [S1D] and SkMel28 

[S1E], as well as the overlap in search space between databases (up to two missed cleavages). [S1F] and [S1G] 

Mutated isoform count per impact score for A375 [S1F] and SkMel28 [S1G], whereby 0 means no impact and 1 

means high impact. The table displays mutated isoform count for each type of lost/gained impact. [S1H] and [S1I] 

Protein and phosphosite counts identified by MS for A375 [S1H] and SkMel28 [S1I]. 
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Figure S2: Individualised proteogenomics highlights key differences between dug-sensitive and drug-

resistant melanoma cell lines. [S2A] and [S2B] Sequencing depth density of the WES data obtained for A375 

[S2A] and SkMel28 [S2B]. [S2C] and [S2D] Count of nsSNV transitions and transversions for A375 [S2C] and 

SkMel28 [S2D]. [S2E] and [S2F] Scatter plot of A375 R and A375 S [S2E] and SkMel28 R and SkMel28 S [S2F] 

proteomes (filled circles) and phosphoproteome (filled squares). The log2 transformed ratios are plotted against 

intensities (log10). The top significantly regulated proteins and phosphoproteins are highlighted in red. [S2G] and 

[S2H] Over-representation of selected Reactome pathways for A375 [S2G] and SkMel28 [S2H]. The enrichment 

score calculated by Fisher exact test were plotted against the p-value (-log10) (FDR < 0.1). 
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Figure S3: Mass spectrometry detects several alternate peptides phosphorylated on the mutation site. [S3A] 

and [S3B] The highest ranked impact scoring mutations for A375 [S3A] and SkMel28 [S3B] cell lines, including 

the type of mutation. [S3C] and [S3D] The protein-protein interactomes of the confirmed protein with loss/gain of 

phosphorylation sites (as well as their interactors) for A375 [S3C] and SkMel28 [S3D]. Each node is plotted on 

the basis of the maximum interaction weight (number of evidences for an interaction) and the number of 

connections (number of interactors). Nodes are colour coded in red if they represent a target protein used to 

generate the network or in black if they are an interactor. [S3E] and [S3F] Over-representation analysis of the 

interactome of each phenotype based on GO functions, KEGG pathways and Reactome pathways for A375 [S3E] 

and SkMel28 [S3F]. Each node represents a pathway with the colour gradient encoding the number of identified 

proteins in that pathway, while the node size equals the Benjamini-Hochberg adjusted p-value (-log10). [S3G] The 

top twelve mutations for malignant melanoma were selected and mutation status displayed based on exome 

sequencing, proteome and phosphoproteome identification. 
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Figure S4: Loss of a known phosphorylation leads to a changed interactome and altered transcriptional 

activity of RUNX1. [S4A] PSM count for A375 and SkMel28 of identified peptides of RUNX1 to visualise protein 

coverage. [S4B] and [S4C] Deconvoluted MS/MS spectrum of phosphorylated reference [S4B] and alternate [S4C] 

peptide of RUNX1 identified by high resolution mass spectrometry. [S4D] and [S4E] Interaction proteomics 

screen in A375 RUNX1_KO cells stably overexpressing FLAG-tagged RUNX1_wt or FLAG-tagged 

RUNX1_S276L. SILAC protein expression (log2) of RUNX1_wt [S4D] or FLAG-tagged RUNX1_S276L [S4E] 

relative to the corresponding control cell line (FLAG tag only). RUNX1 and its core binding factor CBFC are 

marked in black. Significantly up and down regulated proteins are highlighted in red. Results represent three 

replicates per experiment group. [S4F] Volcano plot of synthetic alternate peptide (Syn_Leu) versus synthetic 

reference phosphopeptide (Syn_pSer) pulldowns of A375 cells. Fold change of ratios between Syn_Leu and 

Syn_pSer (log2) are plotted against p-value (-log10) (n=3). Black lines indicate the significance threshold based 

on student t-test (FDR < 0.01; S0=1.2; n=3). Significantly up and down regulated proteins are highlighted in red. 

[S4G] One-dimension annotation enrichment of KEGG pathways and GOBP for reference (Syn_Ser; green) and 

alternate (Syn_Leu; grey) peptide pulldown. The enrichment score calculated by Fisher exact test were plotted 

against the p-value (-log10) (FDR < 0.1). [S4H] Volcano plot of synthetic alternate peptide (Syn_Leu) versus 

synthetic reference peptide (Syn_Ser) pulldowns of A375 cells. Fold change of ratios between Syn_Leu and 

Syn_Ser (log2) are plotted against p-value (-log10) (n=3) based on student t-test (FDR < 0.01). Transcriptionally 

regulated proteins by RUNX1 based on Reactome annotation are highlighted in blue. [S4I] Protein-protein 

interaction network for RUNX1 based on BioGRID. Mutated genes identified by exome sequencing are circled in 

red. The node colour correlates with the ratio between RUNX1_S276 and RUNX1_wt. Nodes with white colour 

are not identified in this study. Enriched pathways are coloured as indicated. 
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Abstract 

Immune checkpoint inhibitors are used to restore or augment antitumor immune response and 

show great promise in treatment of melanoma and other types of cancers. However, only a 

relatively small percentage of patients are fully responsive to immune checkpoint inhibition, 

mostly due to tumor heterogeneity and primary resistance to therapy. Both of these features are 

largely driven by accumulation of patient-specific mutations, pointing to the need for 

personalized approaches in diagnostics and immunotherapy. Proteogenomics integrates patient-

specific genomic and proteomic data to study cancer development and resistance mechanisms, 

as well as tumor heterogeneity in individual patients. Here, we use a proteogenomic approach 

to characterize the mutational landscape of samples derived from four clinical melanoma 

patients at the genomic, proteomic and phosphoproteomic level. Integration of datasets enabled 

identification and quantification of an extensive number of sample-specific amino acid variants, 

among them many that affect modifiable amino acid residues and were not previously reported 

in melanoma. We detected a disproportional number of alternate peptides between treated and 

untreated (naïve) samples with a high potential to influence signal transduction. Statistical 

analysis revealed accumulation of mutations in specific pathways within immune checkpoint 

inhibitor-treated and naïve samples, including PI3K-AKT and focal adhesion signaling. Several 

variants detected by MS affected the protein phosphorylation status; among them was the 

guanine nucleotide exchange factor DOCK1 that was selected for further validation. This is the 

first proteogenomic study designed to study the mutational landscape of patient-derived 

melanoma tissue samples in response to immunotherapy. 

 

Introduction 

Over the last decades, the role of the immune system controlling tumor progression has been 

established and new immunotherapeutic targets showed remarkable clinical activity. The 

reagents nivolumab and ipilimumab are immune checkpoint antibodies targeting PD-1 (the 

programmed cell death-1) and CTLA-4 (cytotoxic T lymphocyte-antigen-4) receptors 429,430. 

PD-1 and CTLA-4 are co-inhibitory T cell receptors and act as negative regulatory receptors 

that block T cell activation and induce immune tolerance 431,432. Subsequently, blockade of these 

receptors with antibodies demonstrated tumor rejections and a significant prolongation in 

melanoma patient survival 73,433. However, only a minority of patients responded to ipilimumab 

and many patients developed immune-related toxicities. The complexity and multiplicity of 
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involved mechanisms, heterogeneity in the immune response across tumors, the tumor 

microenvironment and the varying tumor immunogenicity play roles in response and resistance 

to immune checkpoint blockade 434. The clinical response to immune checkpoint inhibitors and 

resistance is often associated with a high mutational load and the number of expressed tumor 

neoantigens leading to antitumor immunity 80,81. Several studies showed that deficiencies in 

antigen presentation and down-regulation of MHC class I (MHC-I) play a role in immune 

checkpoint resistance 86-88. Besides mutation in β2-microtubulin, loss of JAK-STAT pathway 

results in acquired resistance due to down-regulation of MHC-1 91,92. Additionally, classic 

oncologic pathways like MAPK, PI3K-AKT or Wnt/β-catenin pathways can regulate immune 

response by influencing the tumor microenvironment. Alterations in the MAPK pathway may 

lead to increased expression of VEGF, a vascular endothelial growth factor, and other inhibitory 

cytokines, thus mediating evasion of tumor cells 93,94. Constitutive activation of PI3K-AKT 

pathway due to loss of PTEN was associated with resistance to PD-1 therapy and decreased 

overall survival of patients with leiomyosarcoma 95,96. The majority of these studies are 

performed at the genomic and transcriptomic level. Transcriptomic signatures of cytosolic 

markers and immune-related genes were associated with clinical response and outcome of 

patients with different therapies 435. Melanoma sub-populations showed a heterogeneity in 

transcriptional processes and CDK4 and CDK6 regulated pathways were linked to resistance 

mechanisms in non-responder cells studied by single cell RNA sequencing. In contrast to 

transcriptomic studies, Harel et al. compared in a quantitative proteomic screen clinical 

melanoma samples treated with either tumor infiltrating lymphocyte (TIL)-based or anti PD-1 

immunotherapy and could show an association between higher lipid metabolism and response 

to immunotherapy 436. Standard proteomics approaches identify peptides and proteins by 

matching MS/MS spectra against protein databases derived from public repositories (e.g. 

UniProt) that are not individualized, i.e. do not contain sequence information specific for the 

individual patient. Commonly used protein databases therefore inherently prevent identification 

of individual non-synonymous mutations. By combining nucleotide sequencing and MS 

technologies, it is possible to simultaneously study and integrate DNA sequence, RNA 

expression and splicing, protein isoform abundance and PTMs in a personalized fashion. 

Genomic alterations due to non-synonymous single nucleotide variants (nsSNVs), insertions or 

deletions (InDels) of nucleotides, frameshifts and alternate splicing variants can alter cellular 

function at the protein level by modulating its abundance, localization and protein-protein 

interaction 437,438. Clinical data have shown that oncogenic targets are aberrantly post-

translationally modified during tumorigenesis and might be relevant as therapeutic targets 31. 
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The most prominent modification is phosphorylation, which is abnormally activated during 

tumorigenesis and may propagate dysregulated signals and cellular functions 439,440. However, 

such alterations affecting the modification level in signaling molecules can be benign and 

insignificant. Here, we propose to use melanoma tissue from human tumors and patient-derived 

xenografts of the same cases in response to immunotherapy to study the mutational landscape 

and reconstruct signaling transduction network specific to individual samples using their 

corresponding genomics, proteomics and PTMs datasets.  

 

Results 

Individualized proteogenomics of melanoma in response to immunotherapy  

In order to identify signatures and cellular mechanisms of immunotherapy response, we 

analyzed matching clinical samples including blood, tumor tissue and patient-derived 

xenografts (PDX) from four patients (Figure 1A and S1A). Two of the analyzed samples were 

naïve (no treatment at time point of sampling) and two patients were treated with immune 

checkpoint inhibitors (ICi) nivolumab and ipilimumab at the time point of surgery (Figure 

S1A). The progression-free survival (PFS) and overall survival (OS) were calculated based on 

the start of therapy and have differed in all samples (Figure S1A). The patient under therapy 

with the ID 111 showed a shorter PFS and OS compared to others. Only one patient presented 

the well characterized BRAFV600E mutation, however all patients showed NRAS mutations 

(G12V, Q61R, A146T, F156L) at different sites, which is the second-most mutated gene in 

melanoma. For proteogenomic analysis, we performed whole exome sequencing (WES) from 

snap-frozen tumor tissue and matching blood samples, allowing detection of germline and 

somatic nucleotide variants (Figure 1A). Using our in-house online tool PCTi, we generated 

individualized protein sequence databases that contain the WES-identified non-synonymous 

variants (Figure 1A). Among all non-synonymous nucleotide variants detected by WES (ca. 

23,000), more than half were unique to one of the four patients, whereas only 15.9% were 

identified in all four samples (Figure 1B). Number and type of nucleotide variants detected by 

WES were similar across all four samples (Figure 1B and C). In this context, the vast majority 

were substitutions, most of which have been previously reported (ca. 85%). The rest of the 

nucleotide variants were classified as frameshifts, deletions and insertions; these also followed 

a similar reporting status as the substitutions (Figure 1C). Next, we compared the WES analysis 

of blood and tissue samples in order to distinguish between germline and somatic nucleotide 

variants (Figure 1D). Here, we observed an approximate 1:10 ratio of somatic to germline 
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nucleotide variants. The non-synonymous mutations were incorporated using the PCTi tool into 

the corresponding protein isoform, thus providing protein sequence databases that are 

individualized for each patient. The tumor tissue was injected into immune-deficient mouse in 

order to generate patient-derived xenografts (Figure 1A). From the PDX material, proteins 

were extracted and separated by high pH reverse chromatography. Peptides were either 

measured immediately by LC-MS/MS or subjected to phosphopeptide enrichment using TiO2 

chromatography. In addition to the PDX material, we also performed proteomics of FFPE 

material of the same patient. The proteomic and phosphoproteomic datasets of each sample 

were processed against the human reference and individualized protein databases, as well as 

the Uniprot mouse database to assess the mouse contamination. Identified peptides were 

divided into three classes based on taxonomic classification: class I contains peptides annotated 

exclusively as human, class II are shared between human and mouse, and class III are annotated 

exclusively as mouse. Nearly all of the proteins and mutations were identified in class I and II 

and used for further analysis (Figure 1E). In total in class I and II, we identified over 9,500 

proteins and 120,000 sequence-specific peptides per sample (Figure 1E, Supplementary 

Table 1 – 4). The phosphoproteomic analyses revealed the identification of over 9,000 

phosphorylation sites for samples 101, 111 and 129, while over 5,000 phosphorylation sites 

were detected for the sample 110 (Figure 1E, Supplementary Table 1-4). Across the different 

clinical samples, between 18% and 28% contained an entry in the sample-specific databases for 

mutated protein isoforms, including single amino acid variants, insertions, deletions and 

frameshifts. Up to 27% of these mutations were detected by high resolution mass spectrometry. 

The samples 110 (12.16%) and 111 (11.86%) showed the highest proportion of mutated 

isoforms compared to the overall identified proteins. In addition, we confirmed the gain of a 

new phosphorylation site for four protein isoforms (PCM1, TANC1, CLDN23, CTNND1) by 

MS by identifying the phosphorylated alternate peptide (Figure 1D). From the 1,687 detected 

reference peptides, several were confirmed by MS to be phosphorylated on the mutation site 

including five protein isoforms showing the phosphorylated reference peptide as well as the 

alternate peptide harboring the non-modifiable residue (HELZ2, LMO7, MIA2, TTN, MDC1, 

PLEC, ZFYVE19, ARGEF40) (Figure 1D). The difference of identified variant peptides 

detected by MS is unlikely due to technical artifacts at the WES level, since the sequencing 

depth was similar across samples; thus allowing for the comparison of mutations across samples 

(Figure S1B). Interestingly, the MaxQuant-derived score and intensity of identified peptides 

were similar between reference and alternate peptides, highlighting the overall good quality of 
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the mutation identifications (Figure S1C and Figure S1D). Together our results highlight the 

importance of individualized approaches in order to investigate patient specific tumors.  

 

 

Figure 1: Proteogenomics integrates mutational landscape of melanoma cells. [A] Schematic overview of the 

proteogenomic workflow. Whole blood and tumor tissue of four patients were used in this study. Metastatic tumor 

tissue was injected into immune-deficient mouse to generate patient-derived xenografts (PDX). For whole exome 

sequencing, DNA was extracted from whole blood and metastatic tissue and sequenced on Illumina sequencing 

instrument. Individualized protein databases and impact files were generated with PCTi online tool. For the 

proteomic workflow, FFPE specimens from the same tissue as well as PDX tissue was used. Cells were lysed and 

proteins were digested using trypsin. The resulting peptide mixture from PDX material was fractionated using an 

off-line RP HPLC operated at high pH. Fractions were pooled and measured directly or applied to phosphopeptide 

enrichment using titanium dioxide (TiO2) prior to LC-MS/MS. MS raw data was processed with MaxQuant 

software and analysed by PCTi. [B] Overlap of non-synonymous nucleotide variants identified by WES of four 

melanoma patients (tumor tissue and blood). [C] Inner donut depicts the type of all non-synonymous nucleotide 

variants identified by WES including substitution, insertions, deletions and frameshifts. Outer donut represents the 

proportion of novel nucleotide variants identified in this study. [D] Overlap of somatic (brown) proportional to all 

identified nucleotide variants (blue) of all samples, as well as overlap with alternate (red) and reference (orange) 

peptides identified by MS and peptides phosphorylated on variant site (green). [E] Identified protein groups and 

phosphorylation sites by MS for each sample. Identified proteins with a mutation entry in the database are depicted 

in grey and identified mutated protein isoforms by MS are shown in black.  
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Proteogenomics highlights accumulation of mutations in specific pathways linked to 

immunotherapy 

To address mutations accumulating in specific pathways, we performed pathway enrichment 

analysis of identified proteins by MS harboring amino acid variants based on KEGG and 

Reactome resources (Figure 2A and B). In both naïve samples, the enriched pathways were 

similar and included ribosome biogenesis, apoptotic cleavage and caspase-mediated cleavage 

of protein and focal adhesion. While the over-representation of JAK-STAT signaling and 

RUNX3 regulated transcription were exclusively identified in the naïve samples 101 and 110, 

respectively (Figure 2A). The enriched pathways for immune checkpoint inhibitor (ICi) treated 

samples differed and only the pathways signaling by GTPase and Type I hemidesmosome 

assembly were identified in both samples. For the sample 111 from the patient with the short 

PSF and OS, VEGF and PI3K-AKT signaling as well as activation of IFN production were 

enriched. Whereas, G-alpha (12/13) signaling events, DAP12 signaling and signaling by MET 

were over-represented in mutated proteins for the sample 129 (Figure 2B). Next, we focused 

on the sample-specific mutations on alternate peptides and phosphopeptide exclusively detected 

in one of the samples (Figure 2C). We identified approximately 125 alternate peptides in the 

samples 101 and 129 and over 300 and 390 alternate peptides in the samples 110 and 111, 

respectively. Notably, several phosphorylated alternate peptides were detected by mass 

spectrometry with a potential to change the modification status of the protein. For the sample 

with ID 111, 35 identified alternate peptides were phosphorylated and six of them showed a 

phosphorylation event on the mutation site. These comprised three reference phosphorylated 

peptides, implying a loss of the phosphorylation site due to the mutation, and phosphorylated 

alternate peptides, involving a gain of a new phosphorylation site. For example, substitutions 

on the protein isoforms ZFYVE19 (S366A) and WNK1 (T1056P) showed a loss of 

phosphorylation sites and the phosphorylation site on the key regulator of abscission step in 

cytokinesis ZFYVE19 is known to get phosphorylated by the kinase NEK3. The gain of a new 

phosphorylation site on CTNND1 (N52S) and CLDND1 (P232S) were confirmed to be 

phosphorylated by mass spectrometry and the PCTi software predicted that the kinases 

p38MAPK and CDK5/GSK3 could act on these new kinase motifs, respectively. Moreover, 

two frameshifts resulting in the loss of known phosphorylation sites and gains of new 

phosphorylation sites were detected on the protein isoform INST1 (p.N773TfsX0) and CASP9 

(p.L151SfsX0), resulting in a changed kinase motif from PLK1 to GSK3 and CAMK2G to 

PKC, respectively. In addition, we performed pathway enrichment of proteins containing 

sample-specific alternate peptides and showed accumulation of mutations in specific pathways 
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(Figure 2D). The pathway positive regulation of MAP kinase activity was enriched in both ICi-

treated samples, whereas cytokine production and regulation of PI3K-AKT signaling were 

over-represented in the sample 111 and FGFR2b ligand binding and activation and Rho GTPase 

cycle in the sample 129. cAMP signaling pathway and EGFR tyrosine kinase inhibitor 

resistance were enriched for sample-specific variants in the sample 110 and cellular senescence 

and immunoregulatory interactions in the PDX101. These findings demonstrating the power of 

proteogenomic data integration to detect sample-specific mutations and their accumulation in 

specific pathways.  
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Figure 2: Proteogenomics highlights differing mechanisms of mutated proteins between naïve and treated 

samples. [A] and [B] Dot plot of over-represented pathway based on proteins containing identified alternate 

peptides for naïve samples 101 and 110 [A] and immune checkpoint inhibitor treated samples 111 and 129 [B]. 

Results are based on Fisher-Exact test (FDR ≤ 0.1). [C] Sample-specific alternate peptides and phosphopeptides 

that are exclusively identified by MS. [D] Dot plot of over-represented pathway based on proteins containing 

sample-specific alternate peptides and phosphopeptides. Results are based on Fisher-Exact test (FDR ≤ 0.1). [E] 

Histogram summarizing the content of the PI3K-AKT signaling pathway in terms of number of genes, proteins 

and identified mutations. 

 

While the PI3K-AKT signaling pathway is known to be activated in melanoma cells in response 

to immunotherapy 96, our analysis shows that other complementary tumorigenesis –related 

pathways including GTPase signaling are also activated in immune checkpoint inhibitor treated 

samples due to specific genomic and proteomic alterations, representing alternative treatment 

opportunities. Visualization of our proteogenomic datasets on the PI3K-AKT signaling 

pathway (KEGG) showed that the vast majority of genes harbor one or more nucleotide variant 

in at least one of the clinical samples (Figure S2A). Interestingly, among these nucleotide 

variants identified by WES, between 13% and 26% of the corresponding amino acid variants 

could be confirmed by MS depending on the clinical samples (lowest in 101, highest in 111, 

Figure 2E). Similar results were observed for the regulation of actin cytoskeleton pathway, 

which is more specific of the naïve samples (Figure S2A and B). Notably, we observed a very 

high coverage of MS-identified amino acid variants in this pathway (between 26% and 43% 

confirmed by MS (Figure S2B). Here, we showed that proteomics supplements genomics with 

protein expression profiles of mutated molecules, thus highlighting key signaling pathways 

involved in melanoma progression and resistance. 

PDX samples are comparable to matching FFPE tumor samples 

In addition to the PDX samples, we performed proteomics of FFPE material from the same 

patients. Notably, between 60% and 70% of FFPE proteins were also identified in the PDX 

samples (Figure S2C), which supports the use of PDX as a model to study cancer progression. 

Approximately 60% of the mutated protein isoforms in the FFPE specimens were also identified 

the PDX samples (lowest in 101, highest in 111). Next, we addressed the differences between 

samples and sample types of the overall categories immune response, metabolism, signal 

transduction and ECM interaction based on iBAQ intensity (log10) (Figure S2D). For immune 

response and signal transduction no significant differences between samples and sample types 

were observed, however, proteins in both categories for the PDX samples 111 and 129 were 

slightly higher compared to the naïve samples. Interestingly this was even based on less 

identified protein isoforms compared to 110. Protein isoforms involved in metabolism were 

significantly higher in the FFPE sample 111 compared to other FFPE samples and in the FFPE 
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samples of 110 and 129 the iBAQ intensities for ECM interaction were significantly higher 

compared to other samples. The same trend was observed for both categories in the 

corresponding PDX. These results show that human proteomic and phosphoproteomic profiles 

recapitulate in PDX models. 

Proteogenomics detects several unreported mutations in melanoma with high potential to 

influence signal transduction 

We then compared the naïve and treated samples based on the identification and abundance of 

shared alternate peptides (Figure 3 and Supplementary Table 5). These MS-identified 

mutations were stratified using our PCTi application based on their potential impact on cellular 

signal transduction. Among the alternate peptides shared across all, naïve-only or treated-only 

samples, most of the detected mutations were single amino acid variants and not described 

previously in melanoma. However, all the shown alternate peptides in this figure besides the 

insertion (p.(149_160)insA_A) on the protein RPL14 were described in other databases like 

COSMIC or dbSNP previously. We detected 41 mutated peptides shared between all samples, 

including known oncogenic genes like MSH6, DOCK1 or SYNE2. Most of the detected 

mutations had a loss or a gain of a (phosphorylatable) S/T/Y amino acid residues, of which only 

three had been previously reported in melanoma. Mutated protein isoforms were enriched in 

immune response, metabolism and GTPase Rho activation (Figure 3A). Among the 42 

alternate peptides shared between naïve samples, two showed an insertion of 5 or 11 amino 

acids on the proteins OXA1L (p.(478_483)insS_S) and RPL14 (p.(149_160)insA_A), 

respectively (Figure 3B). In addition, more than 40% of the alternate peptides had a loss or 

gain of S/T/Y amino acid or belonged to protein encoded by known oncogene or tumor 

suppressor genes. Several of the mutated peptides shared between the naïve samples were 

involved in immune related response including the Reactome pathways innate and adaptive 

immune system, interleukin signaling and cytokine signaling. Interestingly, 166 alternate 

peptides are shared in immunotherapy treated samples and showed an accumulation of 

mutations in metabolism, signal transduction and cell cycle, including the oncogenic genes 

FN1, AKAP13 and ENO3 (Figure 3C). Among these mutated peptides, two insertion and one 

deletion mutations were observed on the proteins IRF2BP2 (p.(93_99)insQ_Q), SAAL1 

(p.(6_11)insP_P) and PHLDA1 (p.(Q190_Q204)del). These results postulate the mutational 

landscape of melanoma cells in response to immunotherapy and the accumulation of mutations 

in specific pathways due to the treatment. 
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Figure 3: Impact of identified alternate peptides for all, naïve and immune checkpoint inhibitor treated 

samples. MS-identified alternate peptide shared between [A] all patients, [B] naïve patients only and [C] immune 

checkpoint inhibitor treated patients only. Across all panels, the different tracks indicate for each alternate peptide 

the mutation types, the peptide intensity per sample, the predicted impact score, whether the mutation is known or 

not in melanoma, whether the peptide is phosphorylated or not, whether the mutation results in loss/gain of S/T/Y 

and/or kinase motif, whether the affected proteins are encoded by a known oncogene or tumor suppressor gene 

and whether the affected proteins belong to immune system, metabolism, signal transduction and/or ribosome 

functional categories.  
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Integration of genomics, proteomics and drug database prioritizes actionable mutations 

The protein isoforms harboring the 249 identified amino acid variants identified by MS shared 

in all, naïve-only and treated-only samples were used to generate a protein-protein interaction 

network (Figure S3A). The protein-protein interactions were retrieved from BioGrid and the 

drug-protein interactions were obtained from DrugBank. While most of the amino acid variants 

that originated this network were shared in treated samples only, the majority of identified 

proteins were actually shared among all samples. This suggest an accumulation of mutations 

rather than a change of proteome in treated samples compare to the naïve samples. Notably, 

just over ten protein isoforms harbor a mutation with a medium to high impact score, which 

highlights their putative role in context of protein phosphorylation-based signal transduction 

networks in melanoma. 

We then prioritized the mutated proteins in this network through a five-dimensional scatter plot 

(Figure S3B). The dimensions of importance for prioritization were the protein abundance, the 

number of interactors per protein, the impact score (PCTi), whether the amino acid variant per 

protein was identified by MS and whether the protein is druggable. This strategy highlighted a 

cluster of 12 proteins with an intermediate impact score and one additional protein with a high 

impact (IRF2BP2). They were characterized by a median intensity (log10) of 10.1 and a median 

of 6 interactors. Among these, three proteins were druggable, i.e. RPS6KA4, ECHS1 and 

ALDH5A1. Furthermore, four proteins harbor a mutation leading to gain of a phosphorylation 

site, i.e. PLCG1, MDN1, ALDH5A1 and DOCK1, and most proteins are encoded by known 

oncogene or tumor suppressor genes, with the exception of RPL14, MDN1, PDPR, RPS6KA4 

and ALDH5A1. These results show how multiple levels of proteogenomic information can be 

integrated in order to prioritize and extract proteins that are most likely to rewire signal 

transduction network in context of melanoma. 

Changed interactome due to gain of a new phosphorylation site on DOCK1  

We decided to further investigate one striking mutation that fulfilled the following criteria: 1) 

has one of the highest impact scores; 2) belongs to over-represented pathways among the treated 

samples; 3) has the potential to influence the modification status of the protein and 4) the 

mutation was identified by mass spectrometry. The guanine nucleotide exchange factor (GEF) 

protein DOCK1 was identified to be mutated in all PDX samples and harbors a mutation from 

alanine to threonine at position 1857, resulting in kinase motifs for PKG or CAMII (Figure 

4A). The mutation is located in a highly modified region of the protein and is in close proximity 

to the PXXP motif, important for the binding of CRK and GRB2. A second gain of a modifiable 
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amino acid at position 1792 (A1792T) was detected by genomics at the binding site of NCK2. 

Abnormal regulation of DOCK1 is associated with various diseases, including melanoma 441. 

DOCK1 is involved in RAS signaling and thereby regulates the well characterized MAPK and 

PI3K-AKT signaling pathways198. In addition, DOCK1 also regulates cytoskeletal 

rearrangements, Rho GTPase signaling and RTK signaling such as VEGF signaling 441-443.  

 

 

Figure 4: Gain of a new phosphosite on GEF protein DOCK1 leads to changed interactome. [A] Schematic 

overview of domains, mutations and identified phosphorylation sites on GEF protein DOCK1. Numbers indicate 

amino acid position of domains and mutation, phosphorylation sites. The known interaction partners are described 

under the domain. [B] and [C] Volcano plot of immunoprecipitated pulldowns of DOCK1 in A375 R versus A375 

S cells in absence [B] and presence [C] of BRAF inhibitor vemurafenib treatment (2 µM PLX4720). T-test 

difference (log2) are plotted against t-test p-value (-log10) (t-test, Benjamini-Hochberg FDR ≤ 0.05, S0 = 0.9). 

Results are of four independent replicates. [D] Protein-protein interaction network for DOCK1 based on BioGRID. 

Mutated genes identified by exome sequencing are circled in black. The node color indicates the protein ratio 

between immunoprecipitation of DOCK1 in A375 S and R cells. Predicted kinase are depicted in yellow. Nodes 

with grey color are not identified in this study. Known drugs based on DrugBank are depicted in green. 

 

To validate the impact of the mutation on the interactome of DOCK1, we performed 

immunoprecipitation of DOCK1 in drug-sensitive (S) and drug-resistant (R) melanoma cells 

using a DOCK1 antibody in absence and presence of BRAF inhibitor (BRAFi) vemurafenib 

(Figure 4B and C). While we found DOCK1 mutated in all pulldown experiments, the 

phosphorylation on the mutation site showed a higher occupancy in A375 R (64%) compared 

to A375 S cells suggesting an enriched phosphorylation status of DOCK1 in drug-resistant cells. 

Both the alternate peptide and the phosphorylated alternate peptide were identified by MS. The 

known interaction partners, ELMO1 and GIT1 were highly enriched in pulldowns of A375 R 

cells compared to drug-sensitive cells (Figure 4B). The formation of DOCK1 and ELMO 
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complex is crucial to achieve RAC activation, which regulates actin cytoskeletal remodeling, 

organization and function 444. The ARF-GTPase-activating protein GIT1 and the RAS-related 

protein RALA were significantly enriched in A375 R and A375 S, respectively; both of which 

are involved in adhesion, proliferation and cytoskeletal organization. Interestingly, several 

known interaction partners of DOCK1 and signaling proteins were exclusively identified in 

either pulldowns, including NRAS, CRK and CRKL for A375 R pulldowns and NFKB, 

MAPK3 and GSKB for A375 S pulldowns. In the presence of BRAFi, GIT1 was even stronger 

enriched in pulldowns of A375 R compared to A375 S, while the opposite was true for NFKβ 

(Figure 4C). Next, we tested whether the significantly regulated and exclusively detected 

proteins in the separate pulldown experiments revealed an over-representation of KEGG and 

Reactome pathways (Figure S4A and B). Focal adhesion, MAPK and TGF-beta signaling and 

regulation of autophagy pathways were enriched in A375 R, whereas cytokine receptor 

interaction, MAPK and ErbB signaling and actin cytoskeletal regulation pathways were over-

represented in A375 S cells. Following treatment of cells with BRAFi, some of the over-

representation results changed, for example the cytokine receptor interaction and p53 signaling 

pathways were enriched in pulldowns of A375 R and S cells, respectively. Using the BioGrid 

protein-protein interaction database, we observed several differences in DOCK1 interactome 

(i.e. protein abundance) between pulldowns of A375 R and S cells (Figure 4D). The 

interactome also includes approved drugs (based on DrugBank database) to possibly counteract 

the DOCK1-dependent activation, notably several drugs are available for interaction partners 

SRC and RAC1. In addition, we added the putative kinase families that are predicted to bind to 

mutated DOCK1 and may phosphorylate the gained modifiable residue. Our results show a 

novel mutation on DOCK1, leading to gain of a modifiable amino acid, which we confirmed 

phosphorylated in A375 melanoma cell line. Our pulldown experiments also suggest that this 

mutation influences the interactome of DOCK1. 

 

Discussion 

Here, we present the individualized proteogenomic landscape of four melanoma samples of 

patients in response to immunotherapy. This study is, to our knowledge, the first integrative 

individual proteogenomic analyses of melanoma tumor tissue and matching PDX in response 

to immunotherapy. Malignant melanoma is predominantly studied by genomics and 

transcriptomics, and more recently by proteomics 445. As the majority of drugs target proteins, 

proteomics allows extensive and quantitative surveys of the global proteome in order to select 
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targeted treatment and predict drug response in tumor therapy. However, proteomics is not 

individualized and publicly available databases do not contain cancer- and sample-specific 

mutations. The integration of genomic and proteomic data, called proteogenomics, is a powerful 

tool to study the mutational landscape in context of the protein abundance and post-translational 

modifications. Several genomics and transcriptomic studies revealed the mutational landscape 

and heterogeneity of melanoma cases 41,446,447. A recent quantitative proteomic screen of 

melanoma patient’s tumors in response to immunotherapy revealed the link between lipid 

metabolism and response to immunotherapy 436. Lobas et al. used a proteogenomic approach to 

study eight melanoma cell lines; their analysis allowed discrimination between the specific cell 

lines based on their variant peptide profiles 448. Our dataset is generated from a small cohort of 

four samples, however 14% of our identified nucleotide variants were not reported previously. 

We identified an extensive number of shared as well as sample-specific alternate peptides by 

whole exome sequencing and mass spectrometry. The identifications are in the same range or 

even better in comparison to other proteogenomic datasets of human cancer tissue 356,362,380. 

The detected alternate variant peptides were of high quality and had MaxQuant-derived score 

similar to the reference variant peptides (Figure 1 and S1). We also did not observe a change 

in intensity or posterior error probability distribution between reference and alternate variant 

peptides, which may have been indicative of reduced quality. Several pathways were over-

represented in either naïve or immune checkpoint inhibitor treated samples based on 

accumulation of mutations (Figure 2). Interestingly, the over-represented pathways in naïve 

samples were overall similar, whereas they differed between the IC treated samples. For 

example, integrin signaling and focal adhesion was observed in both naïve samples and 

signaling by VEGF in sample 111 and signaling by FGR2/FGR3 in sample 129. In addition, 

the ICi treated samples showed over-representation in the PI3K-AKT signaling and GTPase 

signaling pathways, highlighting potential drug-treatment options in melanoma. In this study, 

we identified several known mechanisms involved in response to immunotherapy including 

JAK-STAT and PI3K-AKT signaling, signaling by VEGF and activation of IFN production 

91,449. In addition, we showed an accumulation of sample-specific mutations on key proteins of 

these specific pathways. (Figure 2 and S2). Several individual markers were identified that can 

be used to predict putative drug treatments in specific patients. Based on our result, we can 

postulate that additional pathways, such as signaling by MET, FGFR3/FGFR2 signaling and 

RUNX3 regulated transcription pathways are involved in development of resistance. However, 

additional work is required to validate these proteogenomic data.  
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This study shows that the proteogenomic signatures of patient derived xenografts (PDX) 

confirm most findings from melanoma cancer patients and can serve as model to study cancer 

mutational landscapes as a source of tumor tissue closely resembling the clinical lesions. PDX 

are generated directly from tumor tissue and overcome several limitations over the use of 

monolayers of cells (cell lines), which is based on the selective proliferation of clonal cells. 

PDXs keep the histological features, genomic signatures and genetic heterogeneity of cells in a 

tumor mass. In addition, PDX tumors provide enough material to also perform 

phosphoproteomics. However, PDX have limitations that must be considered prior to data 

analysis, indeed it can take up to 6 months to generate PDX and samples are usually highly 

contaminated with mouse cells (due to sample preparation). In this study, the iBAQ intensities 

of mutated protein isoforms involved in metabolism were significantly higher in the patient 

with the shortest PSF and OS compared to all other. The same trend was observed in matching 

PDX, which highlights the fact that proteogenomic signatures of PDXs recapitulate most of the 

findings in human tumor samples. Harel et al. also identified the association between 

metabolism and response to immunotherapy in their proteomic study 436. Besides signaling 

pathways, the microenvironment plays an important role in melanoma progression and response 

to immunotherapy. Intensities of mutated proteins involved in ECM interaction were also 

significantly higher in the samples 110 and 129 compared to other human tissue samples 

suggesting an involvement of ECM reorganization in cancer cells.  

We experimentally validated one example of a gain of a new phosphorylation site on DOCK1 

and showed that the phosphorylation status of this mutation site has an impact on the 

interactome of DOCK1 in vermurafenib-sensitive and -resistant cells. The GEF protein DOCK1 

is mutated in 15% of melanoma patients and highly expressed in RAS-driven cancer types 

198,445,447. In this study, we identified the mutation from alanine to threonine in all samples 

(homozygous), which was also characterized by a high impact possibly rewiring signal 

transduction. The reference peptide harboring the not modifiable residue at A1856 was reported 

previously in PhosphoSitePlus to be phosphorylated in several studies. This highlights the use 

of proteogenomics to refine databases and generate sample-specific databases. Pinto et al. 

showed in a SILAC-based quantitative proteomic screen that the phosphorylation site at 

position T1857 was significantly up-regulated in interleukin 33 (IL-33)-stimulated compared 

to unstimulated RAW264.7 cells. Their study revealed that actin cytoskeletal reorganization 

was overrepresented in significantly changing proteins and thus was involved in immune 

response 450. Here, we also identified DOCK1 to be highly phosphorylated in drug-resistant 

cells compared to sensitive cells and the occupancy for this specific site (T1857) suggest a 
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different protein phosphorylation status between phenotypes. In addition, in the pulldown 

experiments we identified a distinct interactome of DOCK1 and several key signaling 

molecules enriched in either sensitive or resistant cells. For example, ELMO1 was significantly 

enriched in A375 R cells and CRK was exclusively identified in pulldowns from A375 R cells. 

Both proteins are known to form a complex with DOCK1, thereby recruiting DOCK1 to the 

plasma membrane 190,444. The binding to DOCK1 enhances its GEF activity and leads to RAC 

activation and subsequent downstream signaling. Our results suggest a DOCK1 dependent 

activation of focal adhesion and MAPK signaling pathways in vermurafenib resistant cells, 

whereas cytokine receptor interaction and ErbB signaling pathway are activated in sensitive 

cells. Further experiments need to be done to compare reference and mutated version of 

DOCK1 in context of BRAF and checkpoint inhibition to highlight the clinical relevance of this 

mutation site in melanoma. Taken together, we postulate that the phosphorylated mutation 

changes the interactome of DOCK1.  

 

Conclusion 

Individualized proteogenomics allows the detection of sample-specific variants at the genome, 

proteome and PTM level. Here, we studied the mutational landscape of four clinical samples in 

response to immunotherapy. Our dataset might serve the scientific and melanoma community 

as a resource of clinical genomic, proteomic and phosphoproteomic profiles, which is still 

sparse in melanoma. Our approach revealed accumulation of mutations in specific pathways in 

naïve and ICi-treated samples, such as over-representation of PI3K-AKT signaling or activation 

of Rho GTPase signaling in treated samples. We also confirmed the loss or gain of several 

phosphorylation events on mutation sites that possibly lead to rewiring of cell signal 

transduction. We further validated the mutation A1857T on the GEF protein DOCK1 and our 

data suggest that this gain of a new phosphorylation site has an impact on the interactome of 

the protein.  

 

Materials and Methods  

Skin metastasis were collected during surgery and compared to blood. In total, we analyzed 

four metastatic and four “control” samples. In addition, primary tissues were injected into mice 

to obtain patient-derived xenografts (PDX). The use of human tissue from an internal biobank 
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was approved by the local ethical committee (781/2018BO2) and experiments were performed 

in accordance with the declaration of Helsinki Principles. 

Generation of patient-derived xenografts 

To generate PDXs, tumor tissue was finely minced using the cross-blade technique, digested in 

nevi solution (HBBS (w/o Ca2+ and Mg2+) with 0.05% collagenase, 0.1% hyaluronidase and 

0.15% dispase) and filtered through a 100 µm cell strainer. The melanoma cell suspension was 

implanted with Matrigel (Corning Life Sciences) subcutaneously in NSG (NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ) mice, leading to patient derived xenografts (PDX). Tumor grafts 

were harvested when they reached a diameter of 10 to 15 mm, digested as above, resuspended 

in Biofreeze medium (Biochrom/Merck) and 1 ml per cryotube of the cell suspension was 

frozen for short-term cryoconservation in −80 °C and for long-term storage in liquid nitrogen. 

Protein extraction from patient-derived xenografts  

Cell lysis of snap-frozen patient-derived xenografts (PDX) was performed with lysis buffer (6 

M urea, 2 M thiourea, 10 mM Tris-HCl pH 8.0) supplemented with protease inhibitor (complete 

Mini EDTA-free tablets, Roche) and phosphatase inhibitor buffers (5 mM glycerol-2-

phosphate, 5 mM sodium fluoride, and 1 mM sodium orthovanadate). Glass beads 

(zirconia/glass beads 0.23 mm, Carl Roth GmbH) were added and cell lysis was performed in 

a BeadBug microtube homogenizer (3 cycles, 1 min at full speed, Sigma-Aldrich). Cell extracts 

were centrifuged at 13,000 rpm for 20 min and proteins were purified by acetone precipitation 

and subjected to tryptic digestion prior LC-MS/MS analysis. 

Protein extraction from formalin-fixed paraffin embedded tissue preparation  

FFPE tissue were first de-paraffinized by two washes in xylene (5 min, 50°C) followed by three 

serial washes in ethanol (100%, 95% to 70%) for 10 min each. Ethanol was removed completely 

and sections air-dried. Lysis was carried out in 4% SDS, 50 mM DTT, 100 mM HEPES pH 7.5 

supplemented with protease inhibitor at 95°C for 60 min and by sonication for 15 min. Proteins 

were purified by acetone precipitation and subjected to tryptic digestion prior LC-MS/MS 

analysis.  

Sample preparation for MS analysis  

Purified protein pellets were dissolved in lysis buffer (6 M urea, 2 M thiourea, 10 mM Tris-HCl 

pH 8.0), reduced using 100 mM DTT, and alkylated using 50 mM iodoacetamide followed by 

pre-digestion using endopeptidase Lys-C (Lysyl Endopeptidase, Wako Chemicals) for 3 h. 
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After diluting the sample to 2 M Urea with 10 mM ammonium bicarbonate, proteins were 

digested into peptides using sequencing grade trypsin (1 µg per 100 mg protein, Promega 

Corporation) overnight. Peptides were then acidified with 1% TFA and then either purified on 

C18 stage tips (as described previously) or purified on Sep-Pak C18 Cartridge (Waters) and 

eluted in 80% ACN for high pH reverse phase chromatography.  

Immunoprecipitation of DOCK1 in melanoma cell lines 

Drug-sensitive (S) and drug-resistant (R) melanoma cells A375 were grown in RPMI-1640 

medium containing 100 U/ml penicillin/streptavidin and 10% FBS. A375 R cells were grown 

in the presence of 2 µM PLX4720 (vemurafenib-analog, Selleckchem). Cells were seeded to 

80% confluence and treated with PLX4720 or DMSO for 3 h. Cell lysis was performed in 

pulldown buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 1 mM EDTA, 0.5% Triton X100) 

supplemented with protease inhibitors (complete Mini EDTA-free tablets, Roche)and 

phosphatase inhibitor buffers (5 mM glycerol-2-phosphate, 5 mM sodium fluoride, and 1 mM 

sodium orthovanadate) on ice for 10 min. Cell lysates were precleared for 1 h at 4°C with 

washed Pierce Protein G magnetic beads (Thermo Fisher Scientific) using 5 µl per mg lysate. 

DOCK1 antibody (MA5-15010, Thermo Fisher Scientific) was coupled to beads by incubation 

at 4°C for 20 min in incubation buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 1 mM EDTA, 

0.5% Triton X100). The beads were washed three times with DPBS to remove unbound 

peptides. Precleared cell lysates and DOCK1 antibody coupled to Pierce Protein G magnetic 

beads were incubated for 2 h at 4°C while shaking. Pierce Protein G magnetic beads were used 

as control and all pulldowns were performed four times. Beads were washed three times with 

incubation buffer and two times with DPBS. Proteins were eluted by incubation at 95°C for 10 

min in NuPAGE LDS sample buffer (Thermo Fisher Scientific). Proteins were separated on a 

NuPAGE Bis-Tris 4-12% gradient gel (Thermo Fisher Scientific) and stained with Coomassie 

Brilliant Blue solution (Bio-Rad Laboratories). Gel lanes were cut into small pieces and washed 

three times with washing buffer (5 mM AmBiC, 50% ACN) to remove Coomassie stain. To 

reduce disulfide bonds, 10 mM DTT in 20 mM AmBiC was added and incubated at 56°C for 1 

h. After alkylation of the disulfide bonds with IAA (55 mM in 20 mM AmBiC) for 30 min at 

RT, gel pieces were washed with washing buffer and dehydrated with 100% ACN and vacuum 

centrifugation (10 min). Proteins were digested with trypsin (12.5 ng/ml in 20 mM AmBiC, 

Promega Corporation) at 37° overnight. Digested peptides were extracted from gel pieces with 

3% TFA in 30% ACN, followed by 0.5% acetic acid in 80% ACN and 100% ACN. All extracts 

were combined, concentrated by vacuum centrifugation and purified on C18 StageTips. 
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High pH reverse phase chromatography 

High pH reverse phase chromatography was conducted using an Ultimate 3000 HPLC (Thermo 

Fischer Scientific) equipped with xBridge BEH130 C18 130A, 3.5 µm, 4.6 x 250 mm column 

(Waters) as described previously 415. In brief, peptides were eluted with an 80 min gradient 

generated from solvent A (5 mM NH4OH) and solvent B (5 mM NH4OH, 90% ACN) at pH 10. 

Fractions were collected in the first 60 min of the gradient and concatenated into 30 pools 

followed by vacuum centrifugation. Peptide pools were resuspended in 500 µl 80% ACN, 10 

µg of the pool were concentrated and desalted on StageTips prior LC-MS/MS measurements 

for proteome analysis. 

Phosphopeptide enrichment  

Phosphopeptides were enriched using TiO2 beads (Titansphere, 10 µm, GL Sciences) as 

described previously. 1 mg of beads (in 80% ACN, 1% TFA) were added to acidified high pH 

fractions and incubated for 30 min in a rotation wheel. Phosphopeptide-bound TiO2 beads were 

sequentially washed with 30% ACN, 1% TFA, followed by 50% ACN, 1%TFA and 80% ACN, 

1% TFA Peptides were eluted with 5% NH4OH into 20% TFA followed by 80% ACN in 1% 

FA. The eluate was reduced by vacuum centrifugation, pH was adjusted to < 2.7 with TFA and 

peptides were desalted on C18 StageTips. 

Liquid chromatography- mass spectrometry  

LC-MS/MS runs were performed on EASY-nLC 1200 UHPLC (Thermo Scientific) coupled to 

Q Exactive HF and HFX Orbitrap mass spectrometers (Thermo Scientific). The peptides were 

separated on 20‐cm analytical HPLC‐columns (75 μm ID PicoTip fused silica emitter (New 

Objective); in‐house packed using ReproSil‐Pur C18‐AQ 1.9‐μm silica beads (Dr Maisch 

GmbH)) using a water-acetonitrile gradient of 60 min and 90 min for 

proteomic/immunoprecipitated samples and phosphoproteomic sample fractions, respectively. 

The FFPE samples were measured twice with 60 min and 130 min gradient. Gradients were 

generated by solvent A (0.1% formic acid) and solvent B (80% ACN in 0.1% acetic acid) with 

a flow rate of 200 nl/min at 40°C. Peptides were ionized by nanoelectrospray ionization at 2.3 

kV and a capillary temperature of 275°C. For high pH proteomic fractions, FFPE samples or 

immunoprecipitated samples, each full spectrum, acquired with 60,000 resolution (automated 

control target of 3e6; fill time 25 ms for Q Exactive HF and 20 ms for Q Exactive HFX), was 

followed by 12 tandem MS (MS/MS) spectra, where the 12 most abundant multiply charged 

ions were selected for MS/MS sequencing with a resolution of 30,000, an automated control 
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target of 1e5, an injection time of 45 ms, and collision energy of 27% for Q Exactive HF and 

28% for Q Exactive HFX. Phosphopeptide enriched samples, full MS scans were acquired with 

a resolution of 60,000 (AGC target 3e6, fill time 25 ms). The seven most abundant multiply 

charged ions were selected for MS/MS sequencing with a resolution of 45,000 on Q Exactive 

HFX and 60,000 on Q Exactive HF, an AGC target of 1e5 and a fill time of 220 ms.  

DNA extraction and sequencing from blood and snap-frozen primary tissue 

For sample ID 110 and 129, genomic DNA was extracted from blood and snap-frozen primary 

tissue using GeneElute mammalian genomic DNA isolation kit (Sigma-Aldrich) according to 

manufactures’ instructions with slight modifications. Human snap-frozen tissue was incubated 

in lysis solution C solution at 55°C overnight, whereas blood samples were incubated for 10 

min. DNA was purified on GeneElute MiniPrep columns and eluted with nuclease-free water. 

For sample ID 101, genomic DNA was isolated by c.ATG Core Facility in Tuebingen using the 

QIAamp DNA Mini (QIAGEN) kit as recommended by the manufacturer.  

At the c.ATG Core Facility in Tuebingen, the genomic DNA from each sample were assessed 

for quantity and quality on Nanodrop spectrophotometer (ThermoFisher Scientific), Qubit 

Fluorometer (ThermoFisher Scientific) and Bioanalyzer (Agilent) instruments. The exome 

captures and libraries were prepared using Sureselect XT Human All Exon V7 Low Input kit 

(Agilent) with dual indexing according to manufacturer’s instructions. The resulting libraries 

were sequenced on a NovaSeq 6000 instrument (Illumina) using S2 FlowCell (200 cycles). 

Exome sequencing data for sample ID 111 was retrieved from DKTK master trial 451. 

Exome sequencing data analysis 

Raw sequence data were processed using an in-house pipeline developed at the Proteome 

Center Tuebingen. The raw reads were initially quality checked using FastQC software 452. 

Illumina adapters and 5’/3’ low quality bases were trimmed from reads using Trimmomatic 453. 

Paired-end reads from individual libraries were then aligned to H. sapiens reference genome 

(GRCh38) using the BWA aligner 454. Reads resulting from PCR duplication were marked using 

Picard package. Germline variants were called using the GATK HaplotypeCaller workflow, 

while the somatic variants were identified using the GATK Mutect2 workflow 416. Variants 

were recalibrated for score and filtered (soft-filter) using GATK. SnpEff software was used to 

perform the annotation and functional effect prediction of detected variants 455.  

Generation of personalized protein databases for MS analyses 
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We then used our in-house application, named PCTi (currently under review), in order to 

generate personalized protein sequence databases. Briefly, the transcript nucleotide sequences 

were extracted from GRCh38 H. sapiens genome assembly and Ensembl transcript annotation 

(via BSgenome and GenomicFeatures packages). These sequences were then in silico translated 

(from start to first stop codon) into a reference protein sequences database (Biostrings package). 

Each sample called nucleotide variants were injected into the corresponding reference transcript 

nucleotide sequences and then in silico translated. The computed information was reported 

directly within the alternate FASTA header to facilitate interaction with the rest of PCTi (e.g. 

mutation positions, reference ID). The output consists in two FASTA files containing reference 

protein sequences and sample-specific alternate protein sequences, which are used as protein 

databases for processing of LC-MS/MS data. 

Prediction of the detected variants biological impact 

We used PCTi application to predict the mutations impact. Here, the focus was on the impact 

of amino acid variants on protein phosphorylation-based signal transduction networks in 

melanoma. Each reference/alternate protein sequence was annotated based on (1) whether 

phosphorylation sites (S/T/Y) were lost and/or gained (IRanges package); (2) loss/gain of 

kinase motifs 51; (3) loss/gain of known human phosphorylation sites 382,419; (4) loss/gain of 

known mutation sites in melanoma 397; (5) being encoded by oncogenes or tumour suppressor 

genes 344,420,421; (6) levenshtein similarity between reference and alternate protein sequences. 

Each impact was scored with the application default. A summed score was calculated for each 

alternate sequences’ amino acid, and the maximum summed score was reported per mutated 

isoform. The mutated protein isoforms were then ranked to allow prioritization for follow up 

studies. 

Mass spectrometry data analysis  

The LC-MS/MS data were searched against PCTi H. sapiens reference (99,354 entries) and 

individualized alternate databases (101 = 29,104 entries; 110 = 40,041 entries; 111 = 40,041 

entries; 129 = 40,041 entries), as well as UniProt H. sapiens (release 2019/02/13; 95,943 

entries) databases and commonly observed contaminants using the Andromeda search engine 

integrated into MaxQuant software (version 1.5.2.8) 285. The PDX samples were also searched 

against UniProt M. musculus (release 2019/02/13; 95,943 entries) database. 

Carbamidomethylation of cysteine (C) was set as fixed modification and oxidation of 

methionine, phosphorylation at serine, threonine or tyrosine were defined as variable 

modifications. Trypsin/P was selected as a protease. No more than two missed cleavages were 
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allowed. The MS tolerance was set at 4.5 ppm and MS/MS tolerance at 20 ppm for the analysis 

using HCD fragmentation method. The false discovery rate (FDR) for peptides and proteins 

was set to 1%. The PDX and FFPE samples were quantified using intensity based absolute 

quantification (iBAQ). For label-free quantification of interaction studies, a minimum of two 

peptides was required. 

Statistical analyses and data visualization 

Statistical analyses were performed with Perseus software suite (version 1.6.5.0). The 

taxonomy for each ENSEMBL protein ID was annotated after filtering of all reverse and 

potential contaminants hits. A list of all protein and phosphorylation sites identifications for 

each sample are provided in Table 1-4. The impact file generated in PCTi was mapped to the 

peptide identification for each PDX in order to stratify the mutations impact (Supplementary 

Table 5). For mutated protein isoforms in class I and II pathway over-representation was 

performed. The resources used for annotation of proteins were Gene Ontology (GO), Biological 

Processes (GOBP), GO Cellular Compartment (GOCC), GO Molecular Functions (GOMF) and 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Reactome Pathway database 

(Reactome). The fisher exact test (FDR ≤ 0.5) was used to checked for over-represented 

categories among mutated protein isoforms and shared variant peptides. A list of all over-

representation results is provided in Supplementary Table 1-4.  

Venn diagrams to show the overlap between identified nucleotide variants from WES analysis 

and between protein identifications from PDX and FFPE material were performed with the 

online tool https://www.stefanjol.nl/venny. Box plot analysis of iBAQ intensities of mutated 

protein isoforms were prepared in GraphPad Prism and Excel. Statistical analysis was 

performed with two-tailed unpaired t-test in GraphPad Prism. P values < 0.05 were considered 

statistically significant, with * for p < 0.05, ** for p < 0.01. We also generated interaction 

network within the R programming environment 417. These networks were generated using 

protein-protein (using BioGRID database), drug-target (using DrugBank database) and 

predicted kinase-substrate (PCTi results) interactions; e.g. DOCK1 network 344,424. The 

generated networks were exported (using igraph and RCy3 packages) into Cytoscape for further 

customisation 425. 

For proteomic interaction studies, label-free quantification normalization data were used after 

log2 transformation. The data were filtered to retain only proteins with valid values in at least 

70% of the samples. Following that, two sample Students t-test was performed with Benjamini-

Hochberg-based FDR p-value threshold of 0.05 and S0 of 0.9. The following gene annotation 

https://www.stefanjol.nl/venny
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were added: GOBP, GOMF, GOCC and KEGG The pathway annotation enrichment was 

performed on the fold change with Benjamini-Hochberg FDR p-value < 0.5. A list of all over-

representation results is provided in Supplementary Table 6. 
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Figure S1: Proteogenomics integrates mutational landscape of melanoma cells. [S1A] Clinical information of 

used samples. The progression-free survival (PFS) and overall survival (OS) was calculated based on start of 

therapy and numbers indicate days after therapy start. [S1B] WES sequencing depth for each patient and sample 

type. [S1C] MS-measured intensity of identified reference (Ref) and alternate (Alt) peptides for each patient. [S1D] 

The MaxQuant score of reference (Ref) and alternate (Alt) peptides identified by MS for each sample.  
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Figure S2: Proteogenomics highlights differing mechanisms of alternate protein isoforms between naïve and 

treated samples. [S2A] Visualization of WES- and MS-identified alternate variants (WES only = light blue, WES 

and MS = dark blue) for each patient on the PI3K-AKT signaling pathway (KEGG) and actin cytoskeleton pathway 

(KEGG). [S2B] Histogram summarizing the content of the regulation of actin cytoskeleton pathway in terms of 

number of genes, proteins and identified mutations [S2C] Overlap of identified protein groups and proteins 

containing alternate peptides (grey) for each sample. [S2D] Box plot of over-represented categories for each 

sample. The MaxQuant iBAQ intensity (log10) is plotted for each identified alternate protein isoform.  
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Figure S3: Interactome of proteins identified with alternate variant peptides. [S3A] Protein-protein 

interaction network for the MS-identified alternate isoform based on BioGRID database. Mutated genes identified 

by exome sequencing are circled in black. The node fill color indicates whether the isoform was identified in all, 

naїve only, IC treated only or none of the patients. The node edge color indicates whether the mutation was 

identified based on MS. The node shape shows which isoforms can be targeted by a drug treatment based on 

DrugBank database. The node size represents the predicted impact score (computed through PCTi application). 

[S3B] Each protein isoform from the interaction network is plotted on a 5-dimensional scatter plot to allow ranking. 

The dimensions represent the MS intensity (x-axis), the number of interactions (y-axis), the predicted impact score 

(z-axis), whether the isoforms are drug targets (color-code) and whether the mutation was identified based on MS 

(shape-code). 
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Figure S4: Gain of a new phosphosite on GEF protein DOCK1 leads to changed interactome. [S4A] and 

[S4B] One-dimension annotation enrichment of KEGG and Reactome pathways for pulldown of DOCK1 in A375 

S and R cells in absence [S4A] and presence of BRAF-inhibitor vermurafenib [S4B]. The enrichment score 

calculated by Fisher exact test were plotted (Benjamini-Hochberg FDR < 0.5).  
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    Discussion  

Parts of this chapter were taken from Schmitt M. et al., Quantitative proteomics links the 

intermediate filament nestin to resistance to targeted BRAF inhibition in melanoma cells. 

Mol Cell Proteomics (2019), Schmitt M. et al., Integration of Individualised 

proteogenomics datasets to analyse single amino acid variants in malignant melanoma 

(Under revision) and Schmitt M. et al., Individualized proteogenomics reveals mutational 

landscape of melanoma patients in response to immunotherapy (In preparation). 

The aim of this thesis was to identify proteomic changes and associated mutations in malignant 

melanoma in response to targeted and immunotherapy. First, quantitative (phospho)proteomics 

analyses of drug-sensitive and -resistant melanoma cells were utilized to identify additional 

resistance mechanisms and new molecular targets that can overcome resistance against targeted 

therapy. Changes in proteomic profiles revealed the down-regulation of cytoskeletal proteins in 

vemurafenib-resistant cells, including the intermediate filament nestin. CRISPR/Cas9 knockout 

of the nestin gene was associated with an invasive phenotype and resistance to targeted therapy. 

In the second part, an individualized proteogenomics approach was established to analyze the 

non-synonymous mutational landscape of two malignant melanoma cell lines in context of 

resistance to targeted therapy. The reported data highlighted the mutational profile differences 

and commonalities between both cell lines and phenotypes. Validation by interaction studies in 

combination with proteomics showed that the interactome of RUNX1 was changed due to a 

loss of a known phosphorylation site. Finally, the individualized proteogenomics approach was 

applied to characterize human tumor samples in response to immunotherapy. Data integration 

allowed the identification of an extensive number of sample-specific variants, among which 

several showed a potential to rewire signal transduction. The analysis revealed that variants are 

accumulating in specific pathways, for example PI3K/AKT signaling pathways or GTPase 

activation, including key molecules harboring a mutation on a modifiable amino acid. The gain 

of a new phosphorylation site on the GEF protein DOCK1 was confirmed to change DOCK1 

interactome by proteomic interaction studies.  

 

4.1    Proteomic and proteogenomic approaches to study malignant melanoma  

Melanoma accounts for 79% of skin cancer-related deaths in Germany and due to ineffective 

treatment options in the late stage melanoma, patients have an overall poor prognosis 1. In about 

50% of melanoma cases the non-synonymous mutation BRAFV600E (or more rarely 
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BRAFV600K), located within the kinase domain, leads to a hyperactive form of the BRAF kinase 

31. Consequently, the mitogen activated-protein kinase (MAPK)-pathway is constitutively 

active and becomes the main oncogenic pathway in melanoma 32,33,100. In 2010, a new promising 

class of drugs, the mutant-specific BRAF kinase inhibitors such as vemurafenib (PLX4072) or 

dabrafenib, were designed and resulted in inhibition of the MAPK pathway 99. These drugs 

have approximately 50% response rate and result in an average survival benefit of four months 

100,101. Another drug, cobimetinib, inhibits MEK1/2 kinases and has also been shown to improve 

survival of BRAFV600E-carrier individuals 108,110. However, tumors treated with BRAF or MEK 

inhibitors rapidly adapt and find ways to escape the treatment by developing acquired 

resistance. Such resistance is characterized by a partial or complete initial reduction of the 

tumor followed by recurrence of metastases within a period of five to seven months 101-104. More 

recently, alternative therapeutic strategies involving immune checkpoint inhibitors have been 

developed. Ipilimumab, a monoclonal antibody targeting the cytotoxic T-lymphocyte antigen 4 

(CTLA-4), was the first therapy to show an improved survival in metastatic melanoma patient, 

with 15% response rate 432. Upon binding to CD80, which is present on surface of antigen 

presenting cells, CTLA-4 negatively regulates T cells priming and lead to down-regulation of 

anti-tumor immune response. Therefore, inhibition of CTLA-4 by ipilimumab leads to 

increased anti-tumor response 73,432. Other immune checkpoint inhibitors include 

pembrolizumab, nivolumab or atezolizumab, which target either program death-1 receptor (PD-

1) or its ligand (PD-L1), and have been shown to have response rate of up to 30%. These 

compounds inhibit the interaction between PD-1 and PD-L1 during the effector stage of the T 

cell anti-tumor response, therefore limiting the immune system suppression from PD-1/PD-L1 

interaction. While current trials suggest durable responses in patient under immunotherapy, 

there is increasing evidence pointing towards existence of innate and acquired resistance to 

therapy 434. With the increasing number of kinase inhibitor or acquired resistance mechanisms 

reported in the literature, it is now clear that personalized medicine will be critical to effective 

patient therapy.  

In the last decade, a revolution in the field of genomic techniques has led to the emergence of 

high-throughput sequencing technologies, which provide information on DNA/RNA sequence, 

gene structure and gene expression. Several studies identified genomic changes after disease 

progression in melanoma including secondary mutations, gene fusions, mechanisms of 

resistance and predictive biomarkers for disease stages 456. Berger et al. used a systematic 

approach to study cancer-associated mRNA alterations by integrating transcriptomics and 

structural-genomic data and identified several novel melanoma gene fusions and novel read 
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through transcripts 446. The results demonstrated that point mutations are major drivers of 

melanoma progression. In another transcriptomics studies, data from primary samples of stage 

I melanoma and patients undergoing immunotherapy revealed a six-class signature to predict 

patient’s outcome based on the expression of prognostic biomarkers, such as the transcription 

factor JUN 457. The genomic and transcriptomics landscape was analyzed to study resistance 

mechanism against treatment even cross-resistance between kinase inhibitors and PD-1 therapy 

in metastatic melanoma 447.  

Mass spectrometry based proteomics is experiencing a technological revolution similar to that 

of the high-throughput sequencing. The current state-of-the-art proteomics workflows are 

capable of routine, comprehensive analysis of proteomes and post-translational modifications 

such as phosphorylation. In the first part of this thesis, quantitative proteomics of melanoma 

cell lines (A375 S and A375 R) with differing phenotypes of acquired resistance to the 

BRAFV600E inhibitor vemurafenib was performed in order to identify additional resistance 

mechanisms and reveal new molecular targets to overcome resistance. This study is, to our 

knowledge, one of the largest global (phospho)proteomic analyses assessing the differentially 

expressed proteins in drug-sensitive and drug-resistant melanoma cells. Our analysis revealed 

that several proteins involved in cytoskeletal organization and signaling were down-regulated 

in drug-resistant cells compared to sensitive cells including nestin, vimentin and gelsolin. 

Nestin has been reported for its involvement in cancer cell migration, invasion, and metastasis 

148,153,458. Quendro and colleagues showed in a large scale proteomic study that nestin and 

vimentin are both up-regulated in melanoma cells and tissue materials compared to control 

melanocytes 141. This was confirmed in the present study in A375 melanoma cells and further 

showed that nestin and vimentin are down-regulated in resistant cells compared to sensitive 

cells. In addition, phosphorylation analysis demonstrated that key signaling proteins are 

phosphorylated in resistant cells including ERK1/2 (T202/Y204) and AKT (S124).  

In standard proteomics approaches, peptides and proteins are identified by matching MS/MS 

spectra against protein databases derived from public repositories (e.g. UniProt) that are not 

“individualized”, i.e. do not contain sequence information specific to the individual patient. 

Commonly used protein databases therefore inherently prevent identification of individual non-

synonymous somatic mutations. By combining nucleotide sequencing and MS technologies, it 

is possible to simultaneously study and integrate DNA sequence, RNA expression and splicing, 

protein isoform abundance and PTMs in a personalized fashion. In the present thesis, two 

immortalized human melanoma cell lines, as well as patient derived xenografts (PDX) and 

patient tumor materials were used to reconstruct signaling transduction network specific to 
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individual samples using their matching genomics, proteomics and PTMs datasets. The 

individualized proteogenomics databases were generated with PCTi, an in-house software, and 

highlighted a disproportional impact of nucleotide variants on modifiable amino acids. 

Hundreds of amino acid variants were identified by high resolution mass spectrometry 

including single amino acid variants, InDels and frameshifts. In addition, the loss or gain of 

several phosphorylation events due to point mutations could be confirmed by mass 

spectrometry. These in turn may lead to rewiring of signal transduction networks in context of 

melanoma resistance to BRAFi. Statistical analysis of mutated proteins revealed significant 

differences between drug-resistant and drug-sensitive phenotypes and cell lines, such as over-

representation of MAPK and PI3K/AKT/mTOR signaling in drug-resistant cells and YAP/TAZ 

stimulated gene expression in sensitive cells. This dataset is one of the first proteogenomics 

datasets in melanoma including genomic and phosphoproteomic data, and can be used as a 

resource to identify network-attacking mutations in melanoma. The proteogenomic analyses 

resulted in the same range (or higher) as other studies investigating amino acid variants using 

custom protein sequence databases 351,354. For example, Shenykman et al. used a proteogenomic 

approach based on RNA sequencing data and identified 544 peptides containing single amino 

acid variants specific to a sample 352.  

In the third part of the thesis, the proteogenomic approach was further applied to human tumor 

material undergoing immunotherapy. This study is the first integrative individual 

proteogenomic analysis of melanoma tumor tissue and matching PDX in response to 

immunotherapy. Hundreds of sample-specific mutations were identified in human tumor tissue 

and patient-derived xenografts by matching exome sequencing data and (phospho)proteomic 

data. Most of the detected mutations were not previously reported in melanoma, among which 

a few had a high potential to rewire signal transduction. In addition, the proteogenomic 

approach identified key differences between naïve and immune checkpoint inhibitor treated 

samples, such as over-representation of mutated proteins in PI3K/AKT signaling pathway and 

metabolism in context of melanoma response to immunotherapy. Harel et al. analyzed large-

scale proteomic screen from 116 melanoma primary tissues and showed that the mitochondrial 

lipid metabolism was associated with tumor response to immunotherapy 436. In the present 

study, pathways involved in metabolism were also enriched in responders and could be linked 

to mutations in MEN1, ECHS1 and PDLIM5. Most of the findings from melanoma cancer 

patient could be recapitulated in PDX tumors, highlighting that PDXs can serve as a model to 

study mutational landscape in different cancer types. This dataset demonstrates that 
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proteogenomics is a powerful tool to study the mode of action of disease-associated mutations 

at the genome, proteome and PTM level in a sample-specific fashion. 

In both proteogenomic datasets, numerous mutations were identified, which were not reported 

previously in melanoma or other publicly available datasets, such as COSMIC or dbSNP. 

Therefore, these mutations could not have been identified with a standard shotgun proteomics 

workflow and are of fundamental biological interest for melanoma community. The predicted 

impact score of these mutations may help to stratify and identify sample-specific mutations for 

further investigations and as actionable drug-targets. All three datasets can be used as a resource 

to identify key (phospho)proteins and network-attacking mutations in context of kinase 

inhibition and immunotherapy in order to improve patient’s survival.  

 

4.2    Resistance mechanisms and biomarkers in melanoma 

In this thesis, several known resistance mechanisms including MAPK and PI3K/AKT signaling 

were identified in melanoma cell lines, patient derived xenografts and patient tumor materials 

in response to kinase inhibitors and immunotherapy. Several key proteins and phosphorylation 

sites within these pathways were identified with high confidence, such as EGFR, BRAF, NRAS 

and ERK1/2 proteins, as well as phosphorylation on AKT, ERK1/2 and MEK. In addition, in 

the proteogenomics dataset, a number of proteins and phosphoproteins were found to be 

mutated with the potential to rewire signal transduction. For example, NRAS mutations were 

identified in all patient-derived xenografts, while PTEN and CDK4 were found in the drug-

resistant cell lines A375 and SkMel28, respectively. Interestingly, most of the identified 

mutations were not previously reported in melanoma and therefore may be of high interest for 

further investigations. Taken together, this highlights the good coverage of our datasets and 

their utility as a resource for the melanoma community. In addition, an accumulation of 

mutations in specific pathways, such as focal adhesion, PI3K/AKT signaling and GTPase 

activation in response to BRAFi resistance and immunotherapy were detected in this thesis 

suggesting their relevance in both treatment options.  

The tumor microenvironment and remodeling of the cytoskeletal organization have also been 

reported to play an important role in the development of acquired resistance. In the quantitative 

proteomics analysis, the intermediate filament nestin was identified as one of the most down-

regulated proteins in drug-resistant cells. Several studies have been shown that nestin is 

involved in cancer cell migration, invasion, and metastasis 148,153,458. In addition, the down-
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regulation of nestin in FFPE specimens using immunohistochemistry was confirmed; however, 

expression of nestin differed in the immunohistochemistry staining between tumor specimens. 

Quantitative proteomics of one pair of pre-and post-treated tumors identified nestin as one of 

the most down-regulated proteins. These results highlight the significance of nestin expression 

in human tumors. Doxie and colleagues also showed that nestin expression was completely 

depleted in human tumors after BRAF and MEK inhibitor therapy. To study the effect of nestin, 

a CRISPR/Cas9 approach was used to generate a NES gene knockout in drug-sensitive 

melanoma cells. This study provides novel data showing that nestin expression significantly 

correlates with cell survival and colony formation upon MAPK signaling pathway inhibitor 

treatment. Indeed, cell survival and colony formation ability in knockout cells was increased 

following BRAF inhibitor treatment, but also upon inhibition with the MEK inhibitor 

cobimetinib. Several studies have suggested that combined therapy with BRAF and MEK 

inhibitors are promising to delay MAPK-driven acquired resistance, but may lead to other 

resistance mechanisms, for example PI3K/AKT/mTOR signaling pathways 459. Depletion of 

nestin may activate these resistance mechanisms and increase cell survival upon mono- or 

combined therapy. The proteomic and phosphoproteomic analysis provide evidence that nestin 

depletion is associated with signaling through focal adhesion, integrin and PI3K/AKT/mTOR 

pathways. Interestingly at the proteome level, ECM interacting proteins, such as Laminin-B or 

Filamin-B, the integrins β1 and β4, Proteinkinase C, FAK and other downstream signaling 

proteins were significantly up-regulated in the genome edited cells compared to drug sensitive 

cells. Furthermore, the phosphoproteome analysis revealed differentially regulated 

phosphorylation sites on the key players of the integrin signaling pathway and downstream 

proteins. In conclusion, nestin protein levels could be linked not only with an invasive 

phenotype, but also with acquired drug resistance in melanoma. 

The proteogenomic analysis led to the identification of a number of network-attacking 

mutations, most of which were unique to specific cell line or PDX. For example, a non-

synonymous single amino acid variant with the potential to change the protein modification 

status was found on the runt-related transcription factor 1 protein (RUNX1) in A375 cell line. 

The mutation at position S276L resulted in the knock-out of a known phosphosite on this critical 

protein that was previously identified to be involved in cancer development. RUNX1 plays an 

important role in cell proliferation, differentiation and apoptosis 156 and several of its interaction 

partners were also mutated in drug-sensitive and drug-resistant cells, including PML, CTBP2 

and YAP1. Interactome studies of wild-type and mutated RUNX1 revealed that the interactome 

of RUNX1 was altered due the loss of phosphorylation sites. Indeed, several interaction 
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partners, such as the transcriptional repressors HDAC1 and Sin3A, were significantly enriched 

in RUNX1_wt interactome and depleted in RUNX1_S276L interactome. These results also 

suggested a shift in transcriptional activity of mutated RUNX1 compared to wild-type protein.  

In addition to nestin, another protein, involved in signaling pathways that alter the 

microenvironment of cancer cells, was identified to be mutated in both melanoma cell lines and 

patient-derived xenografts. The dedicator of cytokinesis protein 1 (DOCK1) was mutated at 

A1857T and led to gain of a new modifiable residue (phosphorylation) that could be confirmed 

by high resolution mass spectrometry. DOCK1 is mutated in 15% of melanoma patients and is 

involved in integrin signaling through FAK activation, MAPK pathway and cytoskeletal 

rearrangement. DOCK1 also regulates the activity of RAC and MAPK2, which are key 

molecules in resistance mechanisms and among the main drivers of melanogenesis. The results 

of the interactome studies in drug-sensitive and drug-resistant melanoma cells suggest that this 

mutation has an impact on the interactome of DOCK1. Notably, the intermediate filament nestin 

was also identified to enriched in the pulldown of DOCK1 in drug-resistant melanoma cells. 

Both proteins are involved in cytoskeletal reorganization, which is known to play an important 

role in cancer progression and development of resistance.  

This thesis highlights that proteogenomics provides valuable insights into cancer biology and 

how the proteome is regulated by genetic effects. 
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    Conclusions 

Malignant melanoma is characterized by mutation in key signaling pathways including MAPK 

and PI3K/AKT pathways. Over the last decade several treatments including kinase and immune 

checkpoint inhibitors have been developed. However, acquired resistance hampered the 

prolongation of progression-free survival and response rates. In this work, mechanisms 

underlying resistance were investigated in melanoma cell lines, patient-derived xenografts and 

tumor tissue, via exhaustive characterization of mutational landscape, proteome and 

phosphoproteome profiling. Results obtained in the three parts of the thesis lead to the following 

conclusions: 

 

1. Comprehensive (phospho)proteomics analysis of vemurafenib-sensitive and resistant 

melanoma cells 

a) Distinct proteome and phosphoproteome changes were observed between BRAF 

inhibitor resistant- and sensitive cells  

b) Intermediate filament protein nestin was identified as one of the highest down-

regulated proteins in melanoma cells and tumors.  

c) CRISPR/Cas9-mediated knockout of nestin gene led to increased cellular proliferation 

and colony formation upon BRAF and MEK inhibition  

d) Depletion of nestin led to increased invasiveness and metalloproteinases activity 

similar to vermurafenib-resistant cells  

e) Phosphoproteome analysis revealed that nestin depletion is associated with integrin 

and PI3K/AKT/mTOR signaling and also with acquired drug resistance in melanoma 

 

2. Individualized proteogenomic characterization of melanoma cell lines in response to 

vemurafenib resistance  

a) Integration of genomics and proteomics led to the identification of numerous non-

synonymous variants at the genomic and (phospho)proteomic level 

b) Disproportional impact of nucleotide variants on modifiable residues were detected 

between sensitive and resistant cell lines  

c) Functional investigation of over-represented pathways of alternate proteins between 

phenotypes and cell lines showed differing mechanism linked to BRAFi resistance  

d) Several alternate peptides, which are phosphorylated on the mutation site were 

identified by mass spectrometry  
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e) Rewiring of signal transduction due to the loss of a known phosphorylation site on 

RUNX1 protein was confirmed by interactome studies  

 

3. Individualized proteogenomic characterization of human melanoma tumor cells in 

response to immunotherapy 

a) Distinct mutational landscapes were identified between naïve and immune checkpoint 

inhibitor treated tumor samples  

b) Proteogenomics highlighted accumulation of mutations in specific pathways that are 

linked to immunotherapy 

c) Proteogenomic profiles of PDXs resembled the main findings in human tumor tissue  

d) Actionable mutations with high potential to rewire signal transduction were detected 

by integrating genomic, proteomic and drug database data  

e) Interactome studies confirmed change in interactome due to gain of new 

phosphorylation site on the GEF protein DOCK1  
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    Future perspectives  

Late stage malignant melanoma is often treated with selective kinase inhibitors targeting 

mutated BRAF or MEK kinases and/or immunotherapy using immune checkpoint inhibitors. 

However, after a period of a progression-free disease, most patients develop resistance to the 

therapy, which is followed by rapid progression of cancer. Many underlying factors behind 

development of resistance to kinase inhibition have been studied by genomics and 

transcriptomics and more recently by proteomics. Yet, to better understand cancer biology 

underlying resistance, new tools are needed to investigate mutational profiles at the genome, 

proteome and PTM level. Likewise, individualized approaches and personalized therapeutic 

predictors are of utmost importance. Moreover, the lack of insights into the disease 

mechanisms, as well as the complexity of cancer and patient heterogeneity calls for proteomic 

and proteogenomic approaches applied in context of personalized medicine and should be the 

focus in future investigations. In addition, PTMs are still largely unexplored in context in cancer 

resistance and progression and should be studied further due to their transient importance in 

cancer. This thesis provides datasets that can be used as a resource to identify key 

(phospho)proteins and network-attacking mutations in context of kinase inhibition and 

immunotherapy in order to improve patient’s survival, as well the frequency and impacts of 

mutations on all levels and provides insights into molecular etiology of melanoma. Further 

validation and functional assessment of selected regulated proteins and mutations will provide 

insights into the importance of specific mutations for establishment of drug resistant and 

signaling pathways. Predicted actionable drug targets should be further validated by drug target 

assays in drug-sensitive and drug-resistant cells as well as in cell lines generated from the same 

patient tumor tissue. Additionally, further experiments need to be done to compare reference 

and mutated version of DOCK1 in context of BRAF and checkpoint inhibition to highlight the 

clinical relevance of this mutation site in melanoma. Moreover, proteogenomic approaches are 

a quite new research area and only a few reports in melanoma translational research have been 

utilized. The results of this thesis and other showed that proteogenomics has the potential to 

reveal variants that alter protein abundance and modification status linked to the disease and 

are of critical importance to determine the feasibility of proteogenomics approaches in 

individualized cancer medicine. However, efficient and easy-to use tool for the bioinformatic 

analysis and visualization of proteogenomic data must be optimized to become a true prognostic 

tool. Only then, proteogenomics will be able to improve the treatment of patients in 

personalized manner and may be used routinely in clinical context. 



Future perspectives  150 

 

 



References  151 

 

    References 

1 Robert Koch, I. Cancer in Germany Cancer in Germany.  (2014). 

2 Domingues, B., Lopes, J. M., Soares, P. & Pópulo, H. Melanoma treatment in review. 

ImmunoTargets and therapy 7, 35 (2018). 

3 Gilchrest, B. A., Eller, M. S., Geller, A. C. & Yaar, M. The pathogenesis of melanoma 

induced by ultraviolet radiation. N Engl J Med 340, 1341-1348, 

doi:10.1056/NEJM199904293401707 (1999). 

4 Pennello, G., Devesa, S. & Gail, M. Association of surface ultraviolet B radiation levels 

with melanoma and nonmelanoma skin cancer in United States blacks. Cancer 

Epidemiol Biomarkers Prev 9, 291-297 (2000). 

5 Elwood, J. M. & Jopson, J. Melanoma and sun exposure: an overview of published 

studies. Int J Cancer 73, 198-203, doi:10.1002/(sici)1097-

0215(19971009)73:2<198::aid-ijc6>3.0.co;2-r (1997). 

6 Lazovich, D. et al. Indoor tanning and risk of melanoma: a case-control study in a highly 

exposed population. Cancer Epidemiol Biomarkers Prev 19, 1557-1568, 

doi:10.1158/1055-9965.EPI-09-1249 (2010). 

7 Archier, E. et al. Carcinogenic risks of psoralen UV-A therapy and narrowband UV-B 

therapy in chronic plaque psoriasis: a systematic literature review. J Eur Acad Dermatol 

Venereol 26 Suppl 3, 22-31, doi:10.1111/j.1468-3083.2012.04520.x (2012). 

8 Bauer, J. & Garbe, C. Acquired melanocytic nevi as risk factor for melanoma 

development. A comprehensive review of epidemiological data. Pigment Cell Res 16, 

297-306, doi:10.1034/j.1600-0749.2003.00047.x (2003). 

9 Bevona, C., Goggins, W., Quinn, T., Fullerton, J. & Tsao, H. Cutaneous melanomas 

associated with nevi. Arch Dermatol 139, 1620-1624; discussion 1624, 

doi:10.1001/archderm.139.12.1620 (2003). 

10 Goldstein, A. M. & Tucker, M. A. Genetic epidemiology of cutaneous melanoma: a 

global perspective. Arch Dermatol 137, 1493-1496, doi:10.1001/archderm.137.11.1493 

(2001). 

11 Chang, A. E., Karnell, L. H. & Menck, H. R. The National Cancer Data Base report on 

cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past 

decade. The American College of Surgeons Commission on Cancer and the American 

Cancer Society. Cancer 83, 1664-1678, doi:10.1002/(sici)1097-

0142(19981015)83:8<1664::aid-cncr23>3.0.co;2-g (1998). 

12 Gray-Schopfer, V., Wellbrock, C. & Marais, R. Melanoma biology and new targeted 

therapy. Nature 445, 851-857, doi:10.1038/nature05661 (2007). 

13 Tolleson, W. H. Human melanocyte biology, toxicology, and pathology. J Environ Sci 

Health C Environ Carcinog Ecotoxicol Rev 23, 105-161, 

doi:10.1080/10590500500234970 (2005). 

14 Markova, E., Petrova, N., Razin, S. & Kantidze, O. Transcription factor RUNX1. 

Molecular Biology 46, 755-767 (2012). 

15 Dong, L. et al. Melanocyte-stimulating hormone directly enhances UV-Induced DNA 

repair in keratinocytes by a xeroderma pigmentosum group A-dependent mechanism. 

Cancer Res 70, 3547-3556, doi:10.1158/0008-5472.CAN-09-4596 (2010). 

16 Brenner, M. & Hearing, V. J. The protective role of melanin against UV damage in 

human skin. Photochem Photobiol 84, 539-549, doi:10.1111/j.1751-1097.2007.00226.x 

(2008). 

17 Carsberg, C. J. W., H.M.; Friedmann, P.S. Ultraviolet Radiation-Induced 

Melanogenesis in Human Melanocytes Effects of Modulating Protein Kinase C. J Cell 

Sci 107, 2591-2597 (1994). 



References  152 

 

18 Bonaventure, J., Domingues, M. J. & Larue, L. Cellular and molecular mechanisms 

controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma 

Res 26, 316-325, doi:10.1111/pcmr.12080 (2013). 

19 Flaherty, K. T., Hodi, F. S. & Fisher, D. E. From genes to drugs: targeted strategies for 

melanoma. Nat Rev Cancer 12, 349-361, doi:10.1038/nrc3218 (2012). 

20 Eves, P. C. & Haycock, J. W. Melanocortin signalling mechanisms. Adv Exp Med Biol 

681, 19-28, doi:10.1007/978-1-4419-6354-3_2 (2010). 

21 Balch, C. M. et al. An evidence-based staging system for cutaneous melanoma. CA 

Cancer J Clin 54, 131-149; quiz 182-134, doi:10.3322/canjclin.54.3.131 (2004). 

22 Balch, C. M. et al. Final version of 2009 AJCC melanoma staging and classification. J 

Clin Oncol 27, 6199-6206, doi:10.1200/JCO.2009.23.4799 (2009). 

23 American Cancer, S. Cancer Facts & Figures 2017.  (2017). 

24 E., S. J. a. W. http://www.pathophys.org/melanoma/. 

25 Cargnello, M. & Roux, P. P. Activation and function of the MAPKs and their substrates, 

the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75, 50-83, 

doi:10.1128/MMBR.00031-10 (2011). 

26 Hubbard, S. R. & Miller, W. T. Receptor tyrosine kinases: mechanisms of activation 

and signaling. Curr Opin Cell Biol 19, 117-123, doi:10.1016/j.ceb.2007.02.010 (2007). 

27 Wagner, M. J., Stacey, M. M., Liu, B. A. & Pawson, T. Molecular mechanisms of SH2- 

and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring 

Harb Perspect Biol 5, a008987, doi:10.1101/cshperspect.a008987 (2013). 

28 Matallanas, D. et al. Raf family kinases: old dogs have learned new tricks. Genes 

Cancer 2, 232-260, doi:10.1177/1947601911407323 (2011). 

29 Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251-263, 

doi:10.1016/j.cell.2012.06.024 (2012). 

30 Amaral, T. et al. MAPK pathway in melanoma part II-secondary and adaptive resistance 

mechanisms to BRAF inhibition. Eur J Cancer 73, 93-101, 

doi:10.1016/j.ejca.2016.12.012 (2017). 

31 Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949-954, 

doi:10.1038/nature00766 (2002). 

32 Flaherty, K. T. et al. Improved Survival with MEK Inhibition in BRAF-Mutated 

Melanoma. New England Journal of Medicine 367, 107-114, 

doi:10.1056/NEJMoa1203421 (2012). 

33 Allen, E. M. V. et al. The genetic landscape of clinical resistance to RAF inhibition in 

metastatic melnaoma. Cancer Discov. 4, 94-109, doi:10.1158/2159-8290.CD-13-

0617.The (2014). 

34 Long, G. V. et al. Prognostic and clinicopathologic associations of oncogenic BRAF in 

metastatic melanoma. J Clin Oncol 29, 1239-1246, doi:10.1200/JCO.2010.32.4327 

(2011). 

35 Brose, M. S. et al. BRAF and RAS mutations in human lung cancer and melanoma. 

Cancer Res 62, 6997-7000 (2002). 

36 Chamcheu, J. C. et al. Role and Therapeutic Targeting of the PI3K/Akt/mTOR 

Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on 

Natural and Synthetic Agents Therapy. Cells 8, doi:10.3390/cells8080803 (2019). 

37 Hemmings, B. A. & Restuccia, D. F. PI3K-PKB/Akt pathway. Cold Spring Harb 

Perspect Biol 4, a011189, doi:10.1101/cshperspect.a011189 (2012). 

38 Luo, J., Manning, B. D. & Cantley, L. C. Targeting the PI3K-Akt pathway in human 

cancer: rationale and promise. Cancer Cell 4, 257-262, doi:10.1016/s1535-

6108(03)00248-4 (2003). 

http://www.pathophys.org/melanoma/


References  153 

 

39 Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates 

the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273, 

13375-13378, doi:10.1074/jbc.273.22.13375 (1998). 

40 Hocker, T. & Tsao, H. Ultraviolet radiation and melanoma: a systematic review and 

analysis of reported sequence variants. Hum Mutat 28, 578-588, 

doi:10.1002/humu.20481 (2007). 

41 Hensin Tsao1, X. Z., Eric Benoit and Frank G Haluska. Identification of 

PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. 

Oncogene 16, 3397-3402 (1998). 

42 Goel, V. K., Lazar, A. J., Warneke, C. L., Redston, M. S. & Haluska, F. G. Examination 

of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest 

Dermatol 126, 154-160, doi:10.1038/sj.jid.5700026 (2006). 

43 Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of 

AKT1 in cancer. Nature 448, 439-444, doi:10.1038/nature05933 (2007). 

44 Davies, M. A. et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br J 

Cancer 99, 1265-1268, doi:10.1038/sj.bjc.6604637 (2008). 

45 Stahl, J. M. et al. Deregulated Akt3 activity promotes development of malignant 

melanoma. Cancer Res 64, 7002-7010, doi:10.1158/0008-5472.CAN-04-1399 (2004). 

46 Curtin, J. A., Stark, M. S., Pinkel, D., Hayward, N. K. & Bastian, B. C. PI3-kinase 

subunits are infrequent somatic targets in melanoma. J Invest Dermatol 126, 1660-1663, 

doi:10.1038/sj.jid.5700311 (2006). 

47 Omholt, K., Krockel, D., Ringborg, U. & Hansson, J. Mutations of PIK3CA are rare in 

cutaneous melanoma. Melanoma Res 16, 197-200, 

doi:10.1097/01.cmr.0000200488.77970.e3 (2006). 

48 Gibney, G. T. & Smalley, K. S. An unholy alliance: cooperation between BRAF and 

NF1 in melanoma development and BRAF inhibitor resistance. Cancer Discov 3, 260-

263, doi:10.1158/2159-8290.CD-13-0017 (2013). 

49 Maertens, O. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer 

Discov 3, 338-349, doi:10.1158/2159-8290.CD-12-0313 (2013). 

50 Whittaker, S. R. et al. A genome-scale RNA interference screen implicates NF1 loss in 

resistance to RAF inhibition. Cancer Discov 3, 350-362, doi:10.1158/2159-8290.CD-

12-0470 (2013). 

51 Nissan, M. H. et al. Loss of NF1 in cutaneous melanoma is associated with RAS 

activation and MEK dependence. Cancer Res 74, 2340-2350, doi:10.1158/0008-

5472.CAN-13-2625 (2014). 

52 Krauthammer, M. et al. Exome sequencing identifies recurrent mutations in NF1 and 

RASopathy genes in sun-exposed melanomas. Nat Genet 47, 996-1002, 

doi:10.1038/ng.3361 (2015). 

53 Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of 

Somatic Mutations in Cancer. Nucleic Acids Res 39, D945-950, doi:10.1093/nar/gkq929 

(2011). 

54 Lyons, J. et al. Two G protein oncogenes in human endocrine tumors. Science 249, 655-

659, doi:10.1126/science.2116665 (1990). 

55 Huang, J. L., Urtatiz, O. & Van Raamsdonk, C. D. Oncogenic G Protein GNAQ Induces 

Uveal Melanoma and Intravasation in Mice. Cancer Res 75, 3384-3397, 

doi:10.1158/0008-5472.CAN-14-3229 (2015). 

56 Van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma 

and blue naevi. Nature 457, 599-602, doi:10.1038/nature07586 (2009). 

57 Gastonguay, A. et al. The role of Rac1 in the regulation of NF-kappaB activity, cell 

proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol Ther 13, 

647-656, doi:10.4161/cbt.20082 (2012). 



References  154 

 

58 Austin, E., Mamalis, A., Ho, D. & Jagdeo, J. Laser and light-based therapy for cutaneous 

and soft-tissue metastases of malignant melanoma: a systematic review. Arch Dermatol 

Res 309, 229-242, doi:10.1007/s00403-017-1720-9 (2017). 

59 Soengas, M. S. & Lowe, S. W. Apoptosis and melanoma chemoresistance. Oncogene 

22, 3138-3151, doi:10.1038/sj.onc.1206454 (2003). 

60 Li, J. et al. Recent advances in targeted nanoparticles drug delivery to melanoma. 

Nanomedicine 11, 769-794, doi:10.1016/j.nano.2014.11.006 (2015). 

61 Kim, C. et al. Long-term survival in patients with metastatic melanoma treated with 

DTIC or temozolomide. Oncologist 15, 765-771, doi:10.1634/theoncologist.2009-0237 

(2010). 

62 Boussios, S., Pentheroudakis, G., Katsanos, K. & Pavlidis, N. Systemic treatment-

induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann 

Gastroenterol 25, 106-118 (2012). 

63 Jiang, G., Li, R. H., Sun, C., Liu, Y. Q. & Zheng, J. N. Dacarbazine combined targeted 

therapy versus dacarbazine alone in patients with malignant melanoma: a meta-analysis. 

PLoS One 9, e111920, doi:10.1371/journal.pone.0111920 (2014). 

64 Thaxton, J. E. & Li, Z. To affinity and beyond: harnessing the T cell receptor for cancer 

immunotherapy. Hum Vaccin Immunother 10, 3313-3321, 

doi:10.4161/21645515.2014.973314 (2014). 

65 Kim, R., Emi, M. & Tanabe, K. Cancer immunoediting from immune surveillance to 

immune escape. Immunology 121, 1-14, doi:10.1111/j.1365-2567.2007.02587.x (2007). 

66 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 

646-674, doi:10.1016/j.cell.2011.02.013 (2011). 

67 Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating 

immunity's roles in cancer suppression and promotion. Science 331, 1565-1570, 

doi:10.1126/science.1203486 (2011). 

68 Quandt, D., Hoff, H., Rudolph, M., Fillatreau, S. & Brunner-Weinzierl, M. C. A new 

role of CTLA-4 on B cells in thymus-dependent immune responses in vivo. J Immunol 

179, 7316-7324, doi:10.4049/jimmunol.179.11.7316 (2007). 

69 Allison, J. P. & Krummel, M. F. The Yin and Yang of T cell costimulation. Science 

270, 932-933, doi:10.1126/science.270.5238.932 (1995). 

70 Perkins, D. et al. Regulation of CTLA-4 expression during T cell activation. J Immunol 

156, 4154-4159 (1996). 

71 Greene, J. L. et al. Covalent dimerization of CD28/CTLA-4 and oligomerization of 

CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem 271, 26762-26771, 

doi:10.1074/jbc.271.43.26762 (1996). 

72 Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-

defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210, 1695-

1710, doi:10.1084/jem.20130579 (2013). 

73 Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic 

melanoma. N Engl J Med 363, 711-723, doi:10.1056/NEJMoa1003466 (2010). 

74 Good-Jacobson, K. L. et al. PD-1 regulates germinal center B cell survival and the 

formation and affinity of long-lived plasma cells. Nat Immunol 11, 535-542, 

doi:10.1038/ni.1877 (2010). 

75 Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in 

tolerance and immunity. Annu Rev Immunol 26, 677-704, 

doi:10.1146/annurev.immunol.26.021607.090331 (2008). 

76 Raedler, L. A. Opdivo (Nivolumab): Second PD-1 Inhibitor Receives FDA Approval 

for Unresectable or Metastatic Melanoma. Am Health Drug Benefits 8, 180-183 (2015). 

77 Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 

369, 122-133, doi:10.1056/NEJMoa1302369 (2013). 



References  155 

 

78 Wolchok, J. D. et al. Overall Survival with Combined Nivolumab and Ipilimumab in 

Advanced Melanoma. N Engl J Med 377, 1345-1356, doi:10.1056/NEJMoa1709684 

(2017). 

79 Samlowski, W. E. et al. High frequency of brain metastases after adjuvant therapy for 

high-risk melanoma. Cancer Med 6, 2576-2585, doi:10.1002/cam4.1223 (2017). 

80 Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 

348, 69-74, doi:10.1126/science.aaa4971 (2015). 

81 Riaz, N. et al. The role of neoantigens in response to immune checkpoint blockade. Int 

Immunol 28, 411-419, doi:10.1093/intimm/dxw019 (2016). 

82 Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune 

resistance. Nature 515, 568-571, doi:10.1038/nature13954 (2014). 

83 Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu 

Rev Immunol 22, 329-360, doi:10.1146/annurev.immunol.22.012703.104803 (2004). 

84 Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in 

metastatic melanoma. Science 350, 207-211, doi:10.1126/science.aad0095 (2015). 

85 Anagnostou, V. et al. Evolution of Neoantigen Landscape during Immune Checkpoint 

Blockade in Non-Small Cell Lung Cancer. Cancer Discov 7, 264-276, 

doi:10.1158/2159-8290.CD-16-0828 (2017). 

86 Zaretsky, J. M. et al. Mutations Associated with Acquired Resistance to PD-1 Blockade 

in Melanoma. N Engl J Med 375, 819-829, doi:10.1056/NEJMoa1604958 (2016). 

87 Zhao, F. et al. Melanoma Lesions Independently Acquire T-cell Resistance during 

Metastatic Latency. Cancer Res 76, 4347-4358, doi:10.1158/0008-5472.CAN-16-0008 

(2016). 

88 Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic 

properties of tumors associated with local immune cytolytic activity. Cell 160, 48-61, 

doi:10.1016/j.cell.2014.12.033 (2015). 

89 Roh, W. et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 

and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9, 

doi:10.1126/scitranslmed.aah3560 (2017). 

90 Homet Moreno, B. et al. Response to Programmed Cell Death-1 Blockade in a Murine 

Melanoma Syngeneic Model Requires Costimulation, CD4, and CD8 T Cells. Cancer 

Immunol Res 4, 845-857, doi:10.1158/2326-6066.CIR-16-0060 (2016). 

91 Shin, D. S. et al. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. 

Cancer Discov 7, 188-201, doi:10.1158/2159-8290.CD-16-1223 (2017). 

92 Gao, J. et al. Loss of IFN-gamma Pathway Genes in Tumor Cells as a Mechanism of 

Resistance to Anti-CTLA-4 Therapy. Cell 167, 397-404 e399, 

doi:10.1016/j.cell.2016.08.069 (2016). 

93 Liu, C. et al. BRAF inhibition increases tumor infiltration by T cells and enhances the 

antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19, 393-403, 

doi:10.1158/1078-0432.CCR-12-1626 (2013). 

94 Liu, L. et al. The BRAF and MEK Inhibitors Dabrafenib and Trametinib: Effects on 

Immune Function and in Combination with Immunomodulatory Antibodies Targeting 

PD-1, PD-L1, and CTLA-4. Clin Cancer Res 21, 1639-1651, doi:10.1158/1078-

0432.CCR-14-2339 (2015). 

95 George, S. et al. Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint 

Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity 46, 197-204, 

doi:10.1016/j.immuni.2017.02.001 (2017). 

96 Peng, W. et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. 

Cancer Discov 6, 202-216, doi:10.1158/2159-8290.CD-15-0283 (2016). 



References  156 

 

97 O'Donnell, J. S., Massi, D., Teng, M. W. L. & Mandala, M. PI3K-AKT-mTOR 

inhibition in cancer immunotherapy, redux. Semin Cancer Biol 48, 91-103, 

doi:10.1016/j.semcancer.2017.04.015 (2018). 

98 Kaneda, M. M. et al. Corrigendum: PI3Kgamma is a molecular switch that controls 

immune suppression. Nature 542, 124, doi:10.1038/nature21026 (2017). 

99 Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in 

BRAF-mutant melanoma. Nature 467, 596-599, doi:10.1038/nature09454 (2010). 

100 Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF 

V600E mutation. N Eng J Med 364, 2507-2516, 

doi:10.1056/NEJMoa1103782.Improved (2011). 

101 Sosman, J. A. et al. Survival in BRAF V600–Mutant Advanced Melanoma Treated with 

Vemurafenib. N Eng J Med 366, 707-714, doi:10.1056/NEJMoa1112302.Survival 

(2012). 

102 Shi, H., Hugo, W. & Kong, X. Acquired resistance and clonal evolution in melanoma 

during BRAF inhibior therapy. Cancer Discov. 144, 724-732, doi:10.1038/jid.2014.371 

(2014). 

103 Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by 

tumor genomic profiling. Journal of Clinical Oncology 29, 3085-3096, 

doi:10.1200/JCO.2010.33.2312 (2011). 

104 Manzano, J. L. et al. Resistant mechanisms to BRAF inhibitors in melanoma. Annals of 

translational medicine 4 (2016). 

105 Neuzillet, C. et al. MEK in cancer and cancer therapy. Pharmacol Ther 141, 160-171, 

doi:10.1016/j.pharmthera.2013.10.001 (2014). 

106 Lugowska, I., Kosela-Paterczyk, H., Kozak, K. & Rutkowski, P. Trametinib: a MEK 

inhibitor for management of metastatic melanoma. Onco Targets Ther 8, 2251-2259, 

doi:10.2147/OTT.S72951 (2015). 

107 Banks, M., Crowell, K., Proctor, A. & Jensen, B. C. Cardiovascular Effects of the MEK 

Inhibitor, Trametinib: A Case Report, Literature Review, and Consideration of 

Mechanism. Cardiovasc Toxicol 17, 487-493, doi:10.1007/s12012-017-9425-z (2017). 

108 Ribas, A. et al. Combination of vemurafenib and cobimetinib in patients with advanced 

BRAF(V600)-mutated melanoma: a phase 1b study. Lancet Oncol 15, 954-965, 

doi:10.1016/S1470-2045(14)70301-8 (2014). 

109 Larkin, J. et al. Combined Vemurafenib and Cobimetinib in BRAF-Mutated Melanoma. 

The New England journal of medicine 371, 1867-1876, doi:10.1056/NEJMoa1408868 

(2014). 

110 Ascierto, P. A. et al. Cobimetinib combined with vemurafenib in advanced 

BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a 

randomised, double-blind, phase 3 trial. Lancet Oncol 17, 1248-1260, 

doi:10.1016/S1470-2045(16)30122-X (2016). 

111 Sun, C. et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in 

melanoma. Nature 508, 118-122, doi:10.1038/nature13121 (2014). 

112 Paraiso, K. H. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells 

through the suppression of BIM expression. Cancer Res 71, 2750-2760, 

doi:10.1158/0008-5472.CAN-10-2954 (2011). 

113 Xing, F. et al. Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF 

dependence in melanomas harboring (V600E)BRAF. Oncogene 31, 446-457, 

doi:10.1038/onc.2011.250 (2012). 

114 Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF 

inhibitors through HGF secretion. Nature 487, 500-504, doi:10.1038/nature11183 

(2012). 



References  157 

 

115 Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK 

or N-RAS upregulation. Nature 468, 973-977, doi:10.1038/nature09626 (2010). 

116 Heidorn, S. J. et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor 

progression through CRAF. Cell 140, 209-221, doi:10.1016/j.cell.2009.12.040 (2010). 

117 Su, F. et al. Resistance to selective BRAF inhibition can be mediated by modest 

upstream pathway activation. Cancer Res 72, 969-978, doi:10.1158/0008-5472.CAN-

11-1875 (2012). 

118 Johnson, D. B. et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis 

of the spectrum and frequencies, clinical behaviour, and phenotypic associations of 

resistance mechanisms. Eur J Cancer 51, 2792-2799, doi:10.1016/j.ejca.2015.08.022 

(2015). 

119 Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of 

aberrantly spliced BRAF(V600E). Nature 480, 387-390, doi:10.1038/nature10662 

(2011). 

120 Rizos, H. et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: 

spectrum and clinical impact. Clin Cancer Res 20, 1965-1977, doi:10.1158/1078-

0432.CCR-13-3122 (2014). 

121 Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase 

pathway reactivation. Nature 468, 968-972, doi:10.1038/nature09627 (2010). 

122 Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase 

switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer 

Cell 18, 683-695, doi:10.1016/j.ccr.2010.11.023 (2010). 

123 Trunzer, K. et al. Pharmacodynamic effects and mechanisms of resistance to 

vemurafenib in patients with metastatic melanoma. Journal of Clinical Oncology, 

doi:10.1200/JCO.2012.44.7888 (2013). 

124 Carlino, M. S. et al. Preexisting MEK1P124 mutations diminish response to BRAF 

inhibitors in metastatic melanoma patients. Clin Cancer Res 21, 98-105, 

doi:10.1158/1078-0432.CCR-14-0759 (2015). 

125 Muller, J. et al. Low MITF/AXL ratio predicts early resistance to multiple targeted 

drugs in melanoma. Nat Commun 5, 5712, doi:10.1038/ncomms6712 (2014). 

126 Martz, C. A. et al. Systematic identification of signaling pathways with potential to 

confer anticancer drug resistance. Sci Signal 7, ra121, doi:10.1126/scisignal.aaa1877 

(2014). 

127 Karoulia, Z., Gavathiotis, E. & Poulikakos, P. I. New perspectives for targeting RAF 

kinase in human cancer. Nat Rev Cancer 17, 676-691, doi:10.1038/nrc.2017.79 (2017). 

128 Eroglu, Z. & Ribas, A. Combination therapy with BRAF and MEK inhibitors for 

melanoma: latest evidence and place in therapy. Ther Adv Med Oncol 8, 48-56, 

doi:10.1177/1758834015616934 (2016). 

129 Welsh, S. J. & Corrie, P. G. Management of BRAF and MEK inhibitor toxicities in 

patients with metastatic melanoma. Ther Adv Med Oncol 7, 122-136, 

doi:10.1177/1758834014566428 (2015). 

130 Goetz, E. M., Ghandi, M., Treacy, D. J., Wagle, N. & Garraway, L. A. ERK mutations 

confer resistance to mitogen-activated protein kinase pathway inhibitors. Cancer Res 

74, 7079-7089, doi:10.1158/0008-5472.CAN-14-2073 (2014). 

131 Moriceau, G. et al. Tunable-combinatorial mechanisms of acquired resistance limit the 

efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 

27, 240-256, doi:10.1016/j.ccell.2014.11.018 (2015). 

132 Kwong, L. N. & Davies, M. A. Navigating the therapeutic complexity of PI3K pathway 

inhibition in melanoma. Clin Cancer Res 19, 5310-5319, doi:10.1158/1078-0432.CCR-

13-0142 (2013). 



References  158 

 

133 Penna, I. et al. Primary cross-resistance to BRAFV600E-, MEK1/2- and PI3K/mTOR-

specific inhibitors in BRAF-mutant melanoma cells counteracted by dual pathway 

blockade. Oncotarget 7, 3947-3965, doi:10.18632/oncotarget.6600 (2016). 

134 Long, G. V. et al. Increased MAPK reactivation in early resistance to 

dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma. Nat 

Commun 5, 5694, doi:10.1038/ncomms6694 (2014). 

135 Rajasagi, M. et al. Systematic identification of personal tumor-specific neoantigens in 

chronic lymphocytic leukemia. Blood 124, 453-462, doi:10.1182/blood-2014-04-

567933 (2014). 

136 Dong, L. et al. Clinical Next Generation Sequencing for Precision Medicine in Cancer. 

Curr Genomics 16, 253-263, doi:10.2174/1389202915666150511205313 (2015). 

137 Welinder, C. et al. Correlation of histopathologic characteristics to protein expression 

and function in malignant melanoma. PLoS One 12, e0176167, 

doi:10.1371/journal.pone.0176167 (2017). 

138 Bystrom, S. et al. Affinity Proteomics Exploration of Melanoma Identifies Proteins in 

Serum with Associations to T-Stage and Recurrence. Transl Oncol 10, 385-395, 

doi:10.1016/j.tranon.2017.03.002 (2017). 

139 Klein, W. M. et al. Increased expression of stem cell markers in malignant melanoma. 

Mod Pathol 20, 102-107, doi:10.1038/modpathol.3800720 (2007). 

140 Sellheyer, K. & Krahl, D. Spatiotemporal expression pattern of neuroepithelial stem cell 

marker nestin suggests a role in dermal homeostasis, neovasculogenesis, and tumor 

stroma development: A study on embryonic and adult human skin. Journal of American 

Dermatology 63, 93-113, doi:10.1016/j.jaad.2009.07.013 (2009). 

141 Qendro, V. et al. Large-scale proteomic characterization of melanoma expressed 

proteins reveals nestin and vimentin as biomarkers that can potentially distinguish 

melanoma subtypes. Journal of proteome research 13, 5031-5040, 

doi:10.1021/pr5006789 (2014). 

142 Neradil, J. & Veselska, R. Nestin as a marker of cancer stem cells. Cancer Sci 106, 

doi:10.1111/cas.12691 (2015). 

143 Bernal, A. & Arranz, L. Nestin-expressing progenitor cells: function, identity and 

therapeutic implications. Cell Mol Life Sci 75, 2177-2195, doi:10.1007/s00018-018-

2794-z (2018). 

144 Michalczyk, K. & Ziman, M. Nestin structure and predicted function in cellular 

cytoskeletal organisation. Histol Histopathol 20, 665-671, doi:10.14670/HH-20.665 

(2005). 

145 Ishiwata, T., Teduka, K. & Yamamoto, T. Neuroepithelial stem cell marker nestin 

regulates the migration , invasion and growth of human gliomas. Oncology reports, 91-

99, doi:10.3892/or.2011.1267 (2011). 

146 Brychtova, S., Fiuraskova, M., Hlobilkova, A., Brychta, T. & Hirnak, J. Nestin 

expression in cutaneous melanomas and melanocytic nevi. J Cutan Pathol 34, 370-375, 

doi:10.1111/j.1600-0560.2006.00627.x (2007). 

147 Matsuda, Y., Ishiwata, T., Yoshimura, H., Yamahatsu, K. & Minamoto, T. Nestin 

phosphorylatin at threonine 315 and 1299 correlates with proliferation and metastasis 

of human pancreatic cancer. Cancer Sci 108, 354-361, doi:10.1111/cas.13139 (2016). 

148 Hyder, C. L., Lazaro, G., Pylva, J. W., Qvarnstro, S. M. & Eriksson, J. E. Nestin 

regulates prostate cancer cell invasion by influencing the localisation and functions of 

FAK and integrins. Journal of cell science 127, 2161-2173, doi:10.1242/jcs.125062 

(2014). 

149 Ladstein, R. G., Bachmann, I. M., Straume, O. & Akslen, L. A. Nestin expression is 

associated with aggressive cutaneous melanoma of the nodular type. Mod Pathol 27, 

396-401, doi:10.1038/modpathol.2013.151 (2014). 



References  159 

 

150 Ishiwata, T. et al. Nestin in gastrointestinal and other cancers : Effects on cells and 

tumor angiogenesis. World  J Gastoenterol 17, 409-418, doi:10.3748/wjg.v17.i4.409 

(2011). 

151 Piras, F. et al. The stem cell marker nestin predicts poor prognosis in human melanoma 

The stem cell marker nestin predicts poor prognosis in human melanoma. Oncology 

reports 23, 17-24, doi:10.3892/or (2010). 

152 Akiyama, M., Matsuda, Y., Ishiwata, T., Naito, Z. & Kawana, S. Inhibition of the Stem 

Cell Marker Nestin Reduces Tumor Growth and Invasion of Malignant Melanoma. 

Journal of investigative Dermatology 133, 1384-1387, doi:10.1038/jid.2012.508 

(2013). 

153 Narita, K. et al. Nestin regulates proliferation, migration, invasion and stemness of lung 

adenocarcinoma. Int J Oncol 44, 1118-1130, doi:10.3892/ijo.2014.2278 (2014). 

154 Yamahatsu, K., Matsuda, Y., Ishiwata, T., Uchida, E. & Naito, Z. Nestin as a novel 

therapeutic target for pancreatic cancer via tumor angiogenesis. Int J Oncol 40, 1345-

1357, doi:10.3892/ijo.2012.1333 (2012). 

155 Lee, C.-W. et al. Nestin depletion induces melanoma matrix metalloproteinases and 

invasion. Lab Invest 94, 1382-1395, doi:10.1083/jcb.200504124 (2014). 

156 Otto, F., Lübbert, M. & Stock, M. Upstream and downstream targets of RUNX proteins. 

Journal of cellular biochemistry 89, 9-18 (2003). 

157 Levanon, D. & Groner, Y. Structure and regulated expression of mammalian RUNX 

genes. Oncogene 23, 4211 (2004). 

158 Westendorf, J. J. & Hiebert, S. W. Mammalian runt‐domain proteins and their roles in 

hematopoiesis, osteogenesis, and leukemia. Journal of cellular biochemistry 75, 51-58 

(1999). 

159 Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-β superfamily 

signaling. Current opinion in genetics & development 13, 43-47 (2003). 

160 Goyama, S. & Mulloy, J. C. Molecular pathogenesis of core binding factor leukemia: 

current knowledge and future prospects. International journal of hematology 94, 126-

133 (2011). 

161 Bartfeld, D. et al. DNA recognition by the RUNX1 transcription factor is mediated by 

an allosteric transition in the RUNT domain and by DNA bending. Structure 10, 1395-

1407 (2002). 

162 Hyde, R. K. et al. Cbfb/Runx1 repression-independent blockage of differentiation and 

accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood 115, 1433-1443, 

doi:10.1182/blood-2009-06-227413 (2010). 

163 Harada, H. et al. High incidence of somatic mutations in the AML1/RUNX1 gene in 

myelodysplastic syndrome and low blast percentage myeloid leukemia with 

myelodysplasia. Blood 103, 2316-2324 (2004). 

164 Imai, Y. et al. Mutations of the AML1 gene in myelodysplastic syndrome and their 

functional implications in leukemogenesis. Blood 96, 3154-3160 (2000). 

165 Consortium, A. P. G. AACR Project GENIE: Powering Precision Medicine through an 

International Consortium. Cancer Discov 7, 818-831, doi:10.1158/2159-8290.CD-17-

0151 (2017). 

166 Miyoshi, H. et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are 

clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A 88, 

10431-10434, doi:10.1073/pnas.88.23.10431 (1991). 

167 Sun, X. J. et al. A stable transcription factor complex nucleated by oligomeric AML1-

ETO controls leukaemogenesis. Nature 500, 93-97, doi:10.1038/nature12287 (2013). 

168 Chimge, N. & Frenkel, B. The RUNX family in breast cancer: relationships with 

estrogen signaling. Oncogene 32, 2121 (2013). 



References  160 

 

169 Scheitz, C. J. F., Lee, T. S., McDermitt, D. J. & Tumbar, T. Defining a tissue stem cell‐

driven Runx1/Stat3 signalling axis in epithelial cancer. The EMBO journal 31, 4124-

4139 (2012). 

170 Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of 

metastasis in primary solid tumors. Nature genetics 33, 49 (2002). 

171 Giricz, O. et al. The RUNX1/IL-34/CSF-1R axis is an autocrinally regulated modulator 

of resistance to BRAF-V600E inhibition in melanoma. JCI insight 3 (2018). 

172 Goyama, S., Huang, G., Kurokawa, M. & Mulloy, J. C. Posttranslational modifications 

of RUNX1 as potential anticancer targets. Oncogene 34, 3483-3492, 

doi:10.1038/onc.2014.305 (2015). 

173 Zhang, L., Fried, F. B., Guo, H. & Friedman, A. D. Cyclin-dependent kinase 

phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and 

stimulates cell proliferation. Blood 111, 1193-1200 (2008). 

174 Biggs, J. R., Peterson, L. F., Zhang, Y., Kraft, A. S. & Zhang, D.-E. AML1/RUNX1 

phosphorylation by cyclin-dependent kinases regulates the degradation of 

AML1/RUNX1 by the anaphase-promoting complex. Molecular and cellular biology 

26, 7420-7429 (2006). 

175 Tanaka, T. et al. The extracellular signal-regulated kinase pathway phosphorylates 

AML1, an acute myeloid leukemia gene product, and potentially regulates its 

transactivation ability. Molecular and cellular biology 16, 3967-3979 (1996). 

176 Imai, Y. et al. The corepressor mSin3A regulates phosphorylation-induced activation, 

intranuclear location, and stability of AML1. Mol Cell Biol 24, 1033-1043, 

doi:10.1128/mcb.24.3.1033-1043.2004 (2004). 

177 Jin, Y. H. et al. Transforming growth factor-beta stimulates p300-dependent RUNX3 

acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem 279, 

29409-29417, doi:10.1074/jbc.M313120200 (2004). 

178 Wee, H. J., Voon, D. C., Bae, S. C. & Ito, Y. PEBP2-beta/CBF-beta-dependent 

phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis. 

Blood 112, 3777-3787, doi:10.1182/blood-2008-01-134122 (2008). 

179 Yamaguchi, Y. et al. AML1 is functionally regulated through p300-mediated 

acetylation on specific lysine residues. Journal of Biological Chemistry 279, 15630-

15638 (2004). 

180 Lazer, G. & Katzav, S. Guanine nucleotide exchange factors for RhoGTPases: good 

therapeutic targets for cancer therapy? Cell Signal 23, 969-979, 

doi:10.1016/j.cellsig.2010.10.022 (2011). 

181 Cote, J. F. & Vuori, K. Identification of an evolutionarily conserved superfamily of 

DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci 115, 

4901-4913, doi:10.1242/jcs.00219 (2002). 

182 Cote, J. F. & Vuori, K. In vitro guanine nucleotide exchange activity of DHR-

2/DOCKER/CZH2 domains. Methods Enzymol 406, 41-57, doi:10.1016/S0076-

6879(06)06004-6 (2006). 

183 Kobayashi, S. et al. Membrane recruitment of DOCK180 by binding to PtdIns(3,4,5)P3. 

Biochem J 354, 73-78, doi:10.1042/0264-6021:3540073 (2001). 

184 Nishikimi, A. et al. Sequential regulation of DOCK2 dynamics by two phospholipids 

during neutrophil chemotaxis. Science 324, 384-387, doi:10.1126/science.1170179 

(2009). 

185 Sanematsu, F. et al. Phosphatidic acid-dependent recruitment and function of the Rac 

activator DOCK1 during dorsal ruffle formation. J Biol Chem 288, 8092-8100, 

doi:10.1074/jbc.M112.410423 (2013). 



References  161 

 

186 Komander, D. et al. An alpha-helical extension of the ELMO1 pleckstrin homology 

domain mediates direct interaction to DOCK180 and is critical in Rac signaling. Mol 

Biol Cell 19, 4837-4851, doi:10.1091/mbc.E08-04-0345 (2008). 

187 Lu, M. et al. A Steric-inhibition model for regulation of nucleotide exchange via the 

Dock180 family of GEFs. Curr Biol 15, 371-377, doi:10.1016/j.cub.2005.01.050 

(2005). 

188 Patel, M., Pelletier, A. & Cote, J. F. Opening up on ELMO regulation: New insights 

into the control of Rac signaling by the DOCK180/ELMO complex. Small GTPases 2, 

268-275, doi:10.4161/sgtp.2.5.17716 (2011). 

189 Patel, M. et al. An evolutionarily conserved autoinhibitory molecular switch in ELMO 

proteins regulates Rac signaling. Curr Biol 20, 2021-2027, 

doi:10.1016/j.cub.2010.10.028 (2010). 

190 Makino, Y. et al. Elmo1 inhibits ubiquitylation of Dock180. J Cell Sci 119, 923-932, 

doi:10.1242/jcs.02797 (2006). 

191 Feng, H. et al. EGFRvIII stimulates glioma growth and invasion through PKA-

dependent serine phosphorylation of Dock180. Oncogene 33, 2504-2512, 

doi:10.1038/onc.2013.198 (2014). 

192 Jarzynka, M. J. et al. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide 

exchange factor, promote human glioma cell invasion. Cancer Res 67, 7203-7211, 

doi:10.1158/0008-5472.CAN-07-0473 (2007). 

193 Feng, H. et al. Activation of Rac1 by Src-dependent phosphorylation of 

Dock180(Y1811) mediates PDGFRalpha-stimulated glioma tumorigenesis in mice and 

humans. J Clin Invest 121, 4670-4684, doi:10.1172/JCI58559 (2011). 

194 Laurin, M. et al. Rac-specific guanine nucleotide exchange factor DOCK1 is a critical 

regulator of HER2-mediated breast cancer metastasis. Proc Natl Acad Sci U S A 110, 

7434-7439, doi:10.1073/pnas.1213050110 (2013). 

195 Feng, H. et al. Phosphorylation of dedicator of cytokinesis 1 (Dock180) at tyrosine 

residue Y722 by Src family kinases mediates EGFRvIII-driven glioblastoma 

tumorigenesis. Proc Natl Acad Sci U S A 109, 3018-3023, 

doi:10.1073/pnas.1121457109 (2012). 

196 Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis 

gene. Cell 125, 1269-1281, doi:10.1016/j.cell.2006.06.008 (2006). 

197 Tomino, T. et al. DOCK1 inhibition suppresses cancer cell invasion and 

macropinocytosis induced by self-activating Rac1(P29S) mutation. Biochem Biophys 

Res Commun 497, 298-304, doi:10.1016/j.bbrc.2018.02.073 (2018). 

198 Tajiri, H. et al. Targeting Ras-Driven Cancer Cell Survival and Invasion through 

Selective Inhibition of DOCK1. Cell Rep 19, 969-980, 

doi:10.1016/j.celrep.2017.04.016 (2017). 

199 Watson, I. R. et al. The RAC1 P29S hotspot mutation in melanoma confers resistance 

to pharmacological inhibition of RAF. Cancer Res 74, 4845-4852, doi:10.1158/0008-

5472.CAN-14-1232-T (2014). 

200 Vu, H. L., Rosenbaum, S., Purwin, T. J., Davies, M. A. & Aplin, A. E. RAC1 P29S 

regulates PD-L1 expression in melanoma. Pigment Cell Melanoma Res 28, 590-598, 

doi:10.1111/pcmr.12392 (2015). 

201 Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are 

associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575, 

doi:10.1046/j.1365-2958.2002.02839.x (2002). 

202 Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive 

bacterial immunity. Science 337, 816-821, doi:10.1126/science.1225829 (2012). 



References  162 

 

203 Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein 

complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl 

Acad Sci U S A 109, E2579-2586, doi:10.1073/pnas.1208507109 (2012). 

204 Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 

819-823, doi:10.1126/science.1231143 (2013). 

205 Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471, 

doi:10.7554/eLife.00471 (2013). 

206 Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: 

versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297, 

doi:10.1146/annurev-genet-110410-132430 (2011). 

207 Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in Genome Editing and Beyond. 

Annual Review of Biochemistry 85, 227-264, doi:10.1146/annurev-biochem-060815-

014607 (2016). 

208 Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type 

II CRISPR-Cas immunity systems. RNA Biol 10, 726-737, doi:10.4161/rna.24321 

(2013). 

209 Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome 

engineering with CRISPR-Cas9. Science 346, 1258096, doi:10.1126/science.1258096 

(2014). 

210 Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target 

DNA. Cell 156, 935-949, doi:10.1016/j.cell.2014.02.001 (2014). 

211 Rodriguez-Rodriguez, D. R., Ramirez-Solis, R., Garza-Elizondo, M. A., Garza-

Rodriguez, M. L. & Barrera-Saldana, H. A. Genome editing: A perspective on the 

application of CRISPR/Cas9 to study human diseases (Review). Int J Mol Med 43, 

1559-1574, doi:10.3892/ijmm.2019.4112 (2019). 

212 Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome 

editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636-646, 

doi:10.1038/nrg2842 (2010). 

213 Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. 

Genetics 186, 757-761, doi:10.1534/genetics.110.120717 (2010). 

214 Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted 

genome editing. Nat Rev Mol Cell Biol 14, 49-55, doi:10.1038/nrm3486 (2013). 

215 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nature protocols 

8, 2281-2308, doi:10.1038/nprot.2013.143.Genome (2013). 

216 Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 

for genome engineering. Cell 157, 1262-1278, doi:10.1016/j.cell.2014.05.010 (2014). 

217 Tian, X. et al. CRISPR/Cas9 - An evolving biological tool kit for cancer biology and 

oncology. NPJ Precis Oncol 3, 8, doi:10.1038/s41698-019-0080-7 (2019). 

218 Liu, M. et al. Methodologies for Improving HDR Efficiency. Front Genet 9, 691, 

doi:10.3389/fgene.2018.00691 (2018). 

219 Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing 

homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 

using asymmetric donor DNA. Nat Biotechnol 34, 339-344, doi:10.1038/nbt.3481 

(2016). 

220 Ferreira da Silva, J. et al. Genome-scale CRISPR screens are efficient in non-

homologous end-joining deficient cells. Sci Rep 9, 15751, doi:10.1038/s41598-019-

52078-9 (2019). 

221 He, X. et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced 

homology-dependent and independent DNA repair. Nucleic Acids Res 44, e85, 

doi:10.1093/nar/gkw064 (2016). 



References  163 

 

222 Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: a review 

of the challenges and approaches. Drug Deliv 25, 1234-1257, 

doi:10.1080/10717544.2018.1474964 (2018). 

223 Sharma, A. et al. CRISPR/Cas9-Mediated Fluorescent Tagging of Endogenous Proteins 

in Human Pluripotent Stem Cells. Curr Protoc Hum Genet 96, 21 11 21-21 11 20, 

doi:10.1002/cphg.52 (2018). 

224 Cebrian-Serrano, A. & Davies, B. CRISPR-Cas orthologues and variants: optimizing 

the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 28, 

247-261, doi:10.1007/s00335-017-9697-4 (2017). 

225 Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA 

specificity. Nature 556, 57-63, doi:10.1038/nature26155 (2018). 

226 Hajiahmadi, Z. et al. Strategies to Increase On-Target and Reduce Off-Target Effects 

of the CRISPR/Cas9 System in Plants. Int J Mol Sci 20, doi:10.3390/ijms20153719 

(2019). 

227 Shen, B. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal 

off-target effects. Nat Methods 11, 399-402, doi:10.1038/nmeth.2857 (2014). 

228 Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR-Cas9 

for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17, 5-15, 

doi:10.1038/nrm.2015.2 (2016). 

229 Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of 

gene expression. Nat Protoc 8, 2180-2196, doi:10.1038/nprot.2013.132 (2013). 

230 Chen, B., Zou, W., Xu, H., Liang, Y. & Huang, B. Efficient labeling and imaging of 

protein-coding genes in living cells using CRISPR-Tag. Nat Commun 9, 5065, 

doi:10.1038/s41467-018-07498-y (2018). 

231 Zhan, T., Rindtorff, N., Betge, J., Ebert, M. P. & Boutros, M. CRISPR/Cas9 for cancer 

research and therapy. Semin Cancer Biol 55, 106-119, 

doi:10.1016/j.semcancer.2018.04.001 (2019). 

232 White, M. K. & Khalili, K. CRISPR/Cas9 and cancer targets: future possibilities and 

present challenges. Oncotarget 7, 12305-12317, doi:10.18632/oncotarget.7104 (2016). 

233 Saunderson, E. A. et al. Hit-and-run epigenetic editing prevents senescence entry in 

primary breast cells from healthy donors. Nat Commun 8, 1450, doi:10.1038/s41467-

017-01078-2 (2017). 

234 Wang, H. & Sun, W. CRISPR-mediated targeting of HER2 inhibits cell proliferation 

through a dominant negative mutation. Cancer Lett 385, 137-143, 

doi:10.1016/j.canlet.2016.10.033 (2017). 

235 Heckl, D. et al. Generation of mouse models of myeloid malignancy with combinatorial 

genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32, 941-946, 

doi:10.1038/nbt.2951 (2014). 

236 Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen 

for pairwise genetic interactions. Nat Biotechnol 35, 463-474, doi:10.1038/nbt.3834 

(2017). 

237 Bester, A. C. et al. An Integrated Genome-wide CRISPRa Approach to Functionalize 

lncRNAs in Drug Resistance. Cell 173, 649-664 e620, doi:10.1016/j.cell.2018.03.052 

(2018). 

238 Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and 

metastasis. Cell 160, 1246-1260, doi:10.1016/j.cell.2015.02.038 (2015). 

239 Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein 

domains. Nat Biotechnol 33, 661-667, doi:10.1038/nbt.3235 (2015). 

240 Gootenberg, J. S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 

438-442, doi:10.1126/science.aam9321 (2017). 



References  164 

 

241 Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280-284, 

doi:10.1038/nature24049 (2017). 

242 Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-

stranded DNase activity. Science 360, 436-439, doi:10.1126/science.aar6245 (2018). 

243 Ayoubi, T. A. & Van De Ven, W. J. Regulation of gene expression by alternative 

promoters. FASEB J 10, 453-460 (1996). 

244 Schneider, M. V. & Orchard, S. Omics technologies, data and bioinformatics principles. 

Methods Mol Biol 719, 3-30, doi:10.1007/978-1-61779-027-0_1 (2011). 

245 Virág, D. et al. Current Trends in the Analysis of Post-translational Modifications. 

Chromatographia 83, 1-10, doi:10.1007/s10337-019-03796-9 (2019). 

246 Larance, M. & Lamond, A. I. Multidimensional proteomics for cell biology. Nat Rev 

Mol Cell Biol 16, 269-280, doi:10.1038/nrm3970 (2015). 

247 Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575-581, 

doi:10.1038/nature13302 (2014). 

248 Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 

582-587, doi:10.1038/nature13319 (2014). 

249 Duan, G. & Walther, D. The roles of post-translational modifications in the context of 

protein interaction networks. PLoS Comput Biol 11, e1004049, 

doi:10.1371/journal.pcbi.1004049 (2015). 

250 Minguez, P. et al. Deciphering a global network of functionally associated post-

translational modifications. Mol Syst Biol 8, 599, doi:10.1038/msb.2012.31 (2012). 

251 Beltrao, P., Bork, P., Krogan, N. J. & van Noort, V. Evolution and functional cross-talk 

of protein post-translational modifications. Mol Syst Biol 9, 714, 

doi:10.1002/msb.201304521 (2013). 

252 Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature 

of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-1594, 

doi:10.1016/j.celrep.2014.07.036 (2014). 

253 Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full 

phosphorylation site occupancy during mitosis. Sci Signal 3, ra3, 

doi:10.1126/scisignal.2000475 (2010). 

254 Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal 

integration. Nat Struct Mol Biol 17, 666-672, doi:10.1038/nsmb.1842 (2010). 

255 Allfrey, V. G. & Mirsky, A. E. Structural Modifications of Histones and their Possible 

Role in the Regulation of RNA Synthesis. Science 144, 559, 

doi:10.1126/science.144.3618.559 (1964). 

256 Pazin, M. J. & Kadonaga, J. T. What's up and down with histone deacetylation and 

transcription? Cell 89, 325-328, doi:10.1016/s0092-8674(00)80211-1 (1997). 

257 Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a 

proteomics survey. Mol Cell 23, 607-618, doi:10.1016/j.molcel.2006.06.026 (2006). 

258 Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates 

major cellular functions. Science 325, 834-840, doi:10.1126/science.1175371 (2009). 

259 Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat 

Rev Mol Cell Biol 6, 79-87, doi:10.1038/nrm1552 (2005). 

260 Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular 

cell 28, 730-738, doi:10.1016/j.molcel.2007.11.019 (2007). 

261 Minguez, P., Letunic, I., Parca, L. & Bork, P. PTMcode: a database of known and 

predicted functional associations between post-translational modifications in proteins. 

Nucleic Acids Res 41, D306-311, doi:10.1093/nar/gks1230 (2013). 

262 Swaney, D. L. et al. Global analysis of phosphorylation and ubiquitylation cross-talk in 

protein degradation. Nat Methods 10, 676-682, doi:10.1038/nmeth.2519 (2013). 



References  165 

 

263 Yao, Q., Li, H., Liu, B. Q., Huang, X. Y. & Guo, L. SUMOylation-regulated protein 

phosphorylation, evidence from quantitative phosphoproteomics analyses. J Biol Chem 

286, 27342-27349, doi:10.1074/jbc.M111.220848 (2011). 

264 http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1922/aston-lecture.html. , 

N. o. F. W. A.-N. L. M. S. a. I. N. M. A. 

265 Finehout, E. J. & Lee, K. H. An introduction to mass spectrometry applications in 

biological research. Biochem Mol Biol Educ 32, 93-100, 

doi:10.1002/bmb.2004.494032020331 (2004). 

266 Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198-207 

(2003). 

267 Pappireddi, N., Martin, L. & Wühr, M. A review on quantitative multiplexed 

proteomics. ChemBioChem 20, 1210-1224, doi:10.1002/ (2019). 

268 Starostin, K. V. et al. Identification of Bacillus strains by MALDI TOF MS using 

geometric approach. Sci Rep 5, 16989, doi:10.1038/srep16989 (2015). 

269 Mourino-Alvarez, L. et al. MALDI-Imaging Mass Spectrometry: a step forward in the 

anatomopathological characterization of stenotic aortic valve tissue. Sci Rep 6, 27106, 

doi:10.1038/srep27106 (2016). 

270 Ho, C. S. et al. Electrospray ionisation mass spectrometry: principles and clinical 

applications. The Clinical Biochemist Reviews 24, 3 (2003). 

271 Steen, H. & Mann, M. The ABC's (and XYZ's) of peptide sequencing. Nature reviews. 

Molecular cell biology 5, 699-711, doi:10.1038/nrm1468 (2004). 

272 Scigelova, M., Hornshaw, M., Giannakopulos, A. & Makarov, A. Fourier transform 

mass spectrometry. Mol Cell Proteomics 10, M111 009431, 

doi:10.1074/mcp.M111.009431 (2011). 

273 Han, X., Aslanian, A. & Yates, J. R., 3rd. Mass spectrometry for proteomics. Curr Opin 

Chem Biol 12, 483-490, doi:10.1016/j.cbpa.2008.07.024 (2008). 

274 Scheltema, R. A. et al. The Q Exactive HF, a Benchtop mass spectrometer with a pre-

filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol Cell 

Proteomics 13, 3698-3708, doi:10.1074/mcp.M114.043489 (2014). 

275 Schwartz, J. C., Senko, M. W. & Syka, J. E. A two-dimensional quadrupole ion trap 

mass spectrometer. J Am Soc Mass Spectrom 13, 659-669, doi:10.1016/S1044-

0305(02)00384-7 (2002). 

276 Second, T. P. et al. Dual-pressure linear ion trap mass spectrometer improving the 

analysis of complex protein mixtures. Anal Chem 81, 7757-7765, 

doi:10.1021/ac901278y (2009). 

277 Hu, Q. et al. The Orbitrap: a new mass spectrometer. J Mass Spectrom 40, 430-443, 

doi:10.1002/jms.856 (2005). 

278 Makarov, A., Denisov, E., Lange, O. & Horning, S. Dynamic range of mass accuracy 

in LTQ Orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom 17, 977-982, 

doi:10.1016/j.jasms.2006.03.006 (2006). 

279 Zubarev, R. A. & Makarov, A. Orbitrap mass spectrometry. Anal Chem 85, 5288-5296, 

doi:10.1021/ac4001223 (2013). 

280 Shen, Y., Tolic, N., Purvine, S. O. & Smith, R. D. Improving collision induced 

dissociation (CID), high energy collision dissociation (HCD), and electron transfer 

dissociation (ETD) fourier transform MS/MS degradome-peptidome identifications 

using high accuracy mass information. Journal of proteome research 11, 668-677, 

doi:10.1021/pr200597j (2012). 

281 Potel, C. M., Lemeer, S. & Heck, A. J. R. Phosphopeptide Fragmentation and Site 

Localization by Mass Spectrometry: An Update. Anal Chem 91, 126-141, 

doi:10.1021/acs.analchem.8b04746 (2019). 

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1922/aston-lecture.html


References  166 

 

282 Liu, J. & McLuckey, S. A. Electron Transfer Dissociation: Effects of Cation Charge 

State on Product Partitioning in Ion/Ion Electron Transfer to Multiply Protonated 

Polypeptides. Int J Mass Spectrom 330-332, 174-181, doi:10.1016/j.ijms.2012.07.013 

(2012). 

283 Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein 

identification by searching sequence databases using mass spectrometry data. 

Electrophoresis 20, 3551-3567, doi:10.1002/(SICI)1522-

2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 (1999). 

284 Diament, B. J. & Noble, W. S. Faster SEQUEST searching for peptide identification 

from tandem mass spectra. Journal of proteome research 10, 3871-3879, 

doi:10.1021/pr101196n (2011). 

285 Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized 

p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature 

Biotechnology 26, 1367-1372, doi:10.1038/nbt.1511 (2008). 

286 Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant 

environment. Journal of proteome research 10, 1794-1805, doi:10.1021/pr101065j 

(2011). 

287 Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass 

spectral data of peptides with amino acid sequences in a protein database. J Am Soc 

Mass Spectrom 5, 976-989, doi:10.1016/1044-0305(94)80016-2 (1994). 

288 Gillet, L. C., Leitner, A. & Aebersold, R. Mass Spectrometry Applied to Bottom-Up 

Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annu Rev Anal 

Chem (Palo Alto Calif) 9, 449-472, doi:10.1146/annurev-anchem-071015-041535 

(2016). 

289 Burkhart, J. M., Schumbrutzki, C., Wortelkamp, S., Sickmann, A. & Zahedi, R. P. 

Systematic and quantitative comparison of digest efficiency and specificity reveals the 

impact of trypsin quality on MS-based proteomics. J Proteomics 75, 1454-1462, 

doi:10.1016/j.jprot.2011.11.016 (2012). 

290 Liigand, P., Kaupmees, K. & Kruve, A. Influence of the amino acid composition on the 

ionization efficiencies of small peptides. J Mass Spectrom 54, 481-487, 

doi:10.1002/jms.4348 (2019). 

291 Giansanti, P., Tsiatsiani, L., Low, T. Y. & Heck, A. J. Six alternative proteases for mass 

spectrometry-based proteomics beyond trypsin. Nat Protoc 11, 993-1006, 

doi:10.1038/nprot.2016.057 (2016). 

292 Gaspari, M. & Cuda, G. Nano LC-MS/MS: a robust setup for proteomic analysis. 

Methods Mol Biol 790, 115-126, doi:10.1007/978-1-61779-319-6_9 (2011). 

293 Batth, T. S. & Olsen, J. V. in Phospho-Proteomics: Methods and Protocols   (ed Louise 

von Stechow)  179-192 (Springer New York, 2016). 

294 Zubarev, R. A. The challenge of the proteome dynamic range and its implications for 

in-depth proteomics. Proteomics 13, 723-726, doi:10.1002/pmic.201200451 (2013). 

295 Manadas, B., Mendes, V. M., English, J. & Dunn, M. J. Peptide fractionation in 

proteomics approaches. Expert Rev Proteomics 7, 655-663, doi:10.1586/epr.10.46 

(2010). 

296 Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, 

pre-fractionation and storage of peptides for proteomics using StageTips. Nature 

protocols 2, 1896-1906, doi:10.1038/nprot.2007.261 (2007). 

297 Zhao, Y. & Jensen, O. N. Modification-specific proteomics: strategies for 

characterization of post-translational modifications using enrichment techniques. 

Proteomics 9, 4632-4641, doi:10.1002/pmic.200900398 (2009). 



References  167 

 

298 Rosenfeld, J., Capdevielle, J., Guillemot, J. C. & Ferrara, P. In-gel digestion of proteins 

for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal 

Biochem 203, 173-179, doi:10.1016/0003-2697(92)90061-b (1992). 

299 Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-

electrospray mass spectrometry. Nature 379, 466-469, doi:10.1038/379466a0 (1996). 

300 Edelmann, M. J. Strong cation exchange chromatography in analysis of 

posttranslational modifications: innovations and perspectives. J Biomed Biotechnol 

2011, 936508, doi:10.1155/2011/936508 (2011). 

301 Doll, S. & Burlingame, A. L. Mass spectrometry-based detection and assignment of 

protein posttranslational modifications. ACS Chem Biol 10, 63-71, 

doi:10.1021/cb500904b (2015). 

302 Mann, M., Jensen, O. N. . Proteomic analysis of post-translational modifications. Nature 

Biotechnology 21, 255–261, doi:10.1038/nbt0303-255 (2003). 

303 Riley, N. M. & Coon, J. J. Phosphoproteomics in the Age of Rapid and Deep Proteome 

Profiling. Anal Chem 88, 74-94, doi:10.1021/acs.analchem.5b04123 (2016). 

304 Cho, K. C., Chen, L., Hu, Y., Schnaubelt, M. & Zhang, H. Developing Workflow for 

Simultaneous Analyses of Phosphopeptides and Glycopeptides. ACS Chem Biol 14, 58-

66, doi:10.1021/acschembio.8b00902 (2019). 

305 Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: 

deciphering the phosphoproteome. Trends in Biotechnology 20, 261-268, 

doi:10.1016/S0167-7799(02)01944-3 (2002). 

306 Bian, Y. et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine 

superbinder. Nat Chem Biol 12, 959-966, doi:10.1038/nchembio.2178 (2016). 

307 Li, Q. R., Ning, Z. B., Tang, J. S., Nie, S. & Zeng, R. Effect of peptide-to-TiO2 beads 

ratio on phosphopeptide enrichment selectivity. Journal of proteome research 8, 5375-

5381, doi:10.1021/pr900659n (2009). 

308 Zarei, M., Sprenger, A., Rackiewicz, M. & Dengjel, J. Fast and easy phosphopeptide 

fractionation by combinatorial ERLIC-SCX solid-phase extraction for in-depth 

phosphoproteome analysis. Nat Protoc 11, 37-45, doi:10.1038/nprot.2015.134 (2016). 

309 Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212-

217, doi:10.1126/science.1124619 (2006). 

310 Macek, B., Mann, M. & Olsen, J. V. Global and site-specific quantitative 

phosphoproteomics: principles and applications. Annual review of pharmacology and 

toxicology 49, 199-221, doi:10.1146/annurev.pharmtox.011008.145606 (2009). 

311 Ong, S. E. & Mann, M. Mass spectrometry-based proteomics turns quantitative. Nat 

Chem Biol 1, 252-262, doi:10.1038/nchembio736 (2005). 

312 Lindemann, C. et al. Strategies in relative and absolute quantitative mass spectrometry 

based proteomics. Biol Chem 398, 687-699, doi:10.1515/hsz-2017-0104 (2017). 

313 Nahnsen, S., Bielow, C., Reinert, K. & Kohlbacher, O. Tools for label-free peptide 

quantification. Mol Cell Proteomics 12, 549-556, doi:10.1074/mcp.R112.025163 

(2013). 

314 Zhou, J. Y. et al. Improved LC-MS/MS spectral counting statistics by recovering low-

scoring spectra matched to confidently identified peptide sequences. Journal of 

proteome research 9, 5698-5704, doi:10.1021/pr100508p (2010). 

315 Karpievitch, Y. V., Dabney, A. R. & Smith, R. D. Normalization and missing value 

imputation for label-free LC-MS analysis. BMC Bioinformatics 13 Suppl 16, S5, 

doi:10.1186/1471-2105-13-S16-S5 (2012). 

316 Ong, S. E., Blagoev, B. Stable Isotope Labeling by Amino Acids in Cell Culture, 

SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & 

Cellular Proteomics, doi:10.1074/ (2002). 

317 Mann, M. Functional and quantitative proteomics using SILAC. Nature 7 (2006). 



References  168 

 

318 Zhang, G., Fenyo, D. & Neubert, T. A. Evaluation of the variation in sample preparation 

for comparative proteomics using stable isotope labeling by amino acids in cell culture. 

Journal of proteome research 8, 1285-1292, doi:10.1021/pr8006107 (2009). 

319 Liu, T., Belov, M. E., Jaitly, N., Qian, W. J. & Smith, R. D. Accurate mass 

measurements in proteomics. Chem Rev 107, 3621-3653, doi:10.1021/cr068288j 

(2007). 

320 Kirchner, M. & Selbach, M. In vivo quantitative proteome profiling: planning and 

evaluation of SILAC experiments. Methods Mol Biol 893, 175-199, doi:10.1007/978-

1-61779-885-6_13 (2012). 

321 Jiang, H. & English, A. M. Quantitative analysis of the yeast proteome by incorporation 

of isotopically labeled leucine. Journal of proteome research 1, 345-350, 

doi:10.1021/pr025523f (2002). 

322 de Godoy, L. M. et al. Comprehensive mass-spectrometry-based proteome 

quantification of haploid versus diploid yeast. Nature 455, 1251-1254, 

doi:10.1038/nature07341 (2008). 

323 Kruger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an 

essential factor for red blood cell function. Cell 134, 353-364, 

doi:10.1016/j.cell.2008.05.033 (2008). 

324 Soufi, B. et al. Stable isotope labeling by amino acids in cell culture (SILAC) applied 

to quantitative proteomics of Bacillus subtilis. Journal of proteome research 9, 3638-

3646, doi:10.1021/pr100150w (2010). 

325 Bantscheff, M., Lemeer, S., Savitski, M. M. & Kuster, B. Quantitative mass 

spectrometry in proteomics: critical review update from 2007 to the present. Analytical 

and bioanalytical chemistry 404, 939-965 (2012). 

326 Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded 

affinity tags. Nat Biotechnol 17, 994-999, doi:10.1038/13690 (1999). 

327 Karp, N. A. et al. Addressing accuracy and precision issues in iTRAQ quantitation. Mol 

Cell Proteomics 9, 1885-1897, doi:10.1074/mcp.M900628-MCP200 (2010). 

328 Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative 

analysis of complex protein mixtures by MS/MS. Anal Chem 75, 1895-1904, 

doi:10.1021/ac0262560 (2003). 

329 Shiio, Y. & Aebersold, R. Quantitative proteome analysis using isotope-coded affinity 

tags and mass spectrometry. Nature protocols 1, 139 (2006). 

330 Rauniyar, N. & Yates, J. R., 3rd. Isobaric labeling-based relative quantification in 

shotgun proteomics. Journal of proteome research 13, 5293-5309, 

doi:10.1021/pr500880b (2014). 

331 Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. Multiplex 

peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4, 484-

494, doi:10.1038/nprot.2009.21 (2009). 

332 Sheynkman, G. M., Shortreed, M. R., Cesnik, A. J. & Smith, L. M. Proteogenomics: 

Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize 

Human Proteomic Variation. Annu Rev Anal Chem (Palo Alto Calif) 9, 521-545, 

doi:10.1146/annurev-anchem-071015-041722 (2016). 

333 Krug, K., Nahnsen, S. & Macek, B. Mass spectrometry at the interface of proteomics 

and genomics. Mol Biosyst 7, 284-291, doi:10.1039/c0mb00168f (2011). 

334 Battle, A. et al. Genomic variation. Impact of regulatory variation from RNA to protein. 

Science 347, 664-667, doi:10.1126/science.1260793 (2015). 

335 Foss, E. J. et al. Genetic variation shapes protein networks mainly through non-

transcriptional mechanisms. PLoS Biol 9, e1001144, doi:10.1371/journal.pbio.1001144 

(2011). 



References  169 

 

336 Jaffe, J. D., Berg, H. C. & Church, G. M. Proteogenomic mapping as a complementary 

method to perform genome annotation. Proteomics 4, 59-77, 

doi:10.1002/pmic.200300511 (2004). 

337 Brent, M. R. Steady progress and recent breakthroughs in the accuracy of automated 

genome annotation. Nat Rev Genet 9, 62-73, doi:10.1038/nrg2220 (2008). 

338 Mann, M., Kulak, N. A., Nagaraj, N. & Cox, J. The coming age of complete, accurate, 

and ubiquitous proteomes. Mol Cell 49, 583-590, doi:10.1016/j.molcel.2013.01.029 

(2013). 

339 Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional 

variation in humans. Nature 501, 506-511, doi:10.1038/nature12531 (2013). 

340 Creixell, P. et al. Kinome-wide Decoding of Network-Attacking Mutations Rewiring 

Cancer Signaling. Cell 163, 202-217, doi:10.1016/j.cell.2015.08.056 (2015). 

341 Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA 

sequencing. Proc Natl Acad Sci U S A 106, 19096-19101, 

doi:10.1073/pnas.0910672106 (2009). 

342 Hunt, S. E. et al. Ensembl variation resources. Database (Oxford) 2018, 

doi:10.1093/database/bay119 (2018). 

343 O'Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, 

taxonomic expansion, and functional annotation. Nucleic Acids Res 44, D733-745, 

doi:10.1093/nar/gkv1189 (2016). 

344 UniProt Consortium, T. UniProt: the universal protein knowledgebase. Nucleic Acids 

Res 46, 2699, doi:10.1093/nar/gky092 (2018). 

345 Ma, B. & Johnson, R. De novo sequencing and homology searching. Mol Cell 

Proteomics 11, O111 014902, doi:10.1074/mcp.O111.014902 (2012). 

346 Ang, M. Y. et al. Proteogenomics: From next-generation sequencing (NGS) and mass 

spectrometry-based proteomics to precision medicine. Clin Chim Acta 498, 38-46, 

doi:10.1016/j.cca.2019.08.010 (2019). 

347 Trapnell, C. & Salzberg, S. L. How to map billions of short reads onto genomes. Nat 

Biotechnol 27, 455-457, doi:10.1038/nbt0509-455 (2009). 

348 Nesvizhskii, A. I. A survey of computational methods and error rate estimation 

procedures for peptide and protein identification in shotgun proteomics. J Proteomics 

73, 2092-2123, doi:10.1016/j.jprot.2010.08.009 (2010). 

349 Krug, K. et al. Deep coverage of the Escherichia coli proteome enables the assessment 

of false discovery rates in simple proteogenomic experiments. Mol Cell Proteomics 12, 

3420-3430, doi:10.1074/mcp.M113.029165 (2013). 

350 Zhang, K. et al. A note on the false discovery rate of novel peptides in proteogenomics. 

Bioinformatics 31, 3249-3253, doi:10.1093/bioinformatics/btv340 (2015). 

351 Wang, X. & Zhang, B. customProDB: an R package to generate customized protein 

databases from RNA-Seq data for proteomics search. Bioinformatics 29, 3235-3237, 

doi:10.1093/bioinformatics/btt543 (2013). 

352 Sheynkman, G. M. et al. Using Galaxy-P to leverage RNA-Seq for the discovery of 

novel protein variations. BMC Genomics 15, 703, doi:10.1186/1471-2164-15-703 

(2014). 

353 Krasnov, G. S. et al. PPLine: An Automated Pipeline for SNP, SAP, and Splice Variant 

Detection in the Context of Proteogenomics. Journal of proteome research 14, 3729-

3737, doi:10.1021/acs.jproteome.5b00490 (2015). 

354 Wen, B. et al. PGA: an R/Bioconductor package for identification of novel peptides 

using a customized database derived from RNA-Seq. BMC Bioinformatics 17, 244, 

doi:10.1186/s12859-016-1133-3 (2016). 

355 Ruggles, K. V. et al. Methods, Tools and Current Perspectives in Proteogenomics. Mol 

Cell Proteomics 16, 959-981, doi:10.1074/mcp.MR117.000024 (2017). 



References  170 

 

356 Ruggles, K. V. et al. An Analysis of the Sensitivity of Proteogenomic Mapping of 

Somatic Mutations and Novel Splicing Events in Cancer. Mol Cell Proteomics 15, 

1060-1071, doi:10.1074/mcp.M115.056226 (2016). 

357 Woo, S. et al. Proteogenomic database construction driven from large scale RNA-seq 

data. Journal of proteome research 13, 21-28, doi:10.1021/pr400294c (2014). 

358 Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 

29, 308-311, doi:10.1093/nar/29.1.308 (2001). 

359 Alfaro, J. A., Sinha, A., Kislinger, T. & Boutros, P. C. Onco-proteogenomics: cancer 

proteomics joins forces with genomics. Nat Methods 11, 1107-1113, 

doi:10.1038/nmeth.3138 (2014). 

360 Rivers, R. C. et al. Linking cancer genome to proteome: NCI's investment into 

proteogenomics. Proteomics 14, 2633-2636, doi:10.1002/pmic.201400193 (2014). 

361 Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. 

Nature 513, 382-387, doi:10.1038/nature13438 (2014). 

362 Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast 

cancer. Nature 534, 55-62, doi:10.1038/nature18003 (2016). 

363 Woo, S. et al. Proteogenomic strategies for identification of aberrant cancer peptides 

using large-scale next-generation sequencing data. Proteomics 14, 2719-2730, 

doi:10.1002/pmic.201400206 (2014). 

364 Alfaro, J. A. et al. Detecting protein variants by mass spectrometry: a comprehensive 

study in cancer cell-lines. Genome Med 9, 62, doi:10.1186/s13073-017-0454-9 (2017). 

365 Sun, H. et al. Identification of gene fusions from human lung cancer mass spectrometry 

data. BMC Genomics 14 Suppl 8, S5, doi:10.1186/1471-2164-14-S8-S5 (2013). 

366 Reimand, J. & Bader, G. D. Systematic analysis of somatic mutations in 

phosphorylation signaling predicts novel cancer drivers. Mol Syst Biol 9, 637, 

doi:10.1038/msb.2012.68 (2013). 

367 Gentile, S. et al. The human ERG1 channel polymorphism, K897T, creates a 

phosphorylation site that inhibits channel activity. Proc Natl Acad Sci U S A 105, 14704-

14708, doi:10.1073/pnas.0802250105 (2008). 

368 Creixell, P. et al. Unmasking determinants of specificity in the human kinome. Cell 163, 

187-201, doi:10.1016/j.cell.2015.08.057 (2015). 

369 Ryu, G. M. et al. Genome-wide analysis to predict protein sequence variations that 

change phosphorylation sites or their corresponding kinases. Nucleic Acids Res 37, 

1297-1307, doi:10.1093/nar/gkn1008 (2009). 

370 Keegan, S., Cortens, J. P., Beavis, R. C. & Fenyo, D. g2pDB: A Database Mapping 

Protein Post-Translational Modifications to Genomic Coordinates. Journal of proteome 

research 15, 983-990, doi:10.1021/acs.jproteome.5b01018 (2016). 

371 Yang, C. Y. et al. PhosphoPOINT: a comprehensive human kinase interactome and 

phospho-protein database. Bioinformatics 24, i14-20, 

doi:10.1093/bioinformatics/btn297 (2008). 

372 Zhang, H. et al. Integrated Proteogenomic Characterization of Human High-Grade 

Serous Ovarian Cancer. Cell 166, 755-765, doi:10.1016/j.cell.2016.05.069 (2016). 

373 Nishimura, T. & Nakamura, H. Developments for Personalized Medicine of Lung 

Cancer Subtypes: Mass Spectrometry-Based Clinical Proteogenomic Analysis of 

Oncogenic Mutations. Adv Exp Med Biol 926, 115-137, doi:10.1007/978-3-319-42316-

6_8 (2016). 

374 Kondo, T. Proteogenomics for the Study of Gastrointestinal Stromal Tumors. Adv Exp 

Med Biol 926, 139-151, doi:10.1007/978-3-319-42316-6_9 (2016). 

375 Mardis, E. R. A decade's perspective on DNA sequencing technology. Nature 470, 198-

203, doi:10.1038/nature09796 (2011). 



References  171 

 

376 Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic 

analysis of eleven common cell lines reveals ubiquitous but varying expression of most 

proteins. Molecular & cellular proteomics : MCP 11, M111 014050, 

doi:10.1074/mcp.M111.014050 (2012). 

377 Mardamshina, M. & Geiger, T. Next-Generation Proteomics and Its Application to 

Clinical Breast Cancer Research. Am J Pathol 187, 2175-2184, 

doi:10.1016/j.ajpath.2017.07.003 (2017). 

378 Olsen, J. V. & Mann, M. Status of large-scale analysis of post-translational 

modifications by mass spectrometry. Molecular & cellular proteomics : MCP 12, 3444-

3452, doi:10.1074/mcp.O113.034181 (2013). 

379 von Stechow, L., Francavilla, C. & Olsen, J. V. Recent findings and technological 

advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 12, 469-

487, doi:10.1586/14789450.2015.1078730 (2015). 

380 Huang, K. L. et al. Proteogenomic integration reveals therapeutic targets in breast 

cancer xenografts. Nat Commun 8, 14864, doi:10.1038/ncomms14864 (2017). 

381 Ren, J. et al. PhosSNP for systematic analysis of genetic polymorphisms that influence 

protein phosphorylation. Molecular & cellular proteomics : MCP 9, 623-634, 

doi:10.1074/mcp.M900273-MCP200 (2010). 

382 Hornbeck, P. V. et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. 

Nucleic Acids Res 43, D512-520, doi:10.1093/nar/gku1267 (2015). 

383 Granger, B. R. et al. Visualization of Metabolic Interaction Networks in Microbial 

Communities Using VisANT 5.0. PLoS Comput Biol 12, e1004875, 

doi:10.1371/journal.pcbi.1004875 (2016). 

384 Shi, Z., Wang, J. & Zhang, B. NetGestalt: integrating multidimensional omics data over 

biological networks. Nature methods 10, 597-598, doi:10.1038/nmeth.2517 (2013). 

385 Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative 

biomedical analyses: 2018 update. Nucleic Acids Res 46, W537-W544, 

doi:10.1093/nar/gky379 (2018). 

386 Leitner, A. et al. Chemical cross-linking/mass spectrometry targeting acidic residues in 

proteins and protein complexes. Proceedings of the National Academy of Sciences 111, 

9455-9460, doi:10.1073/pnas.1320298111 (2014). 

387 Sinnberg, T. et al. A Nexus Consisting of Beta-Catenin and Stat3 Attenuates BRAF 

Inhibitor Efficacy and Mediates Acquired Resistance to Vemurafenib. EBioMedicine 8, 

132-149, doi:10.1016/j.ebiom.2016.04.037 (2016). 

388 shiny: Web Application Framework for R (2019). 

389 Rossi, S. et al. TNF-alpha and metalloproteases as key players in melanoma cells 

aggressiveness. J Exp Clin Cancer Res 37, 326, doi:10.1186/s13046-018-0982-1 

(2018). 

390 Kitabayashi, I., Yokoyama, A., Shimizu, K. & Ohki, M. Interaction and functional 

cooperation of the leukemia-associated factors AML1 and p300 in myeloid cell 

differentiation. EMBO J 17, 2994-3004, doi:10.1093/emboj/17.11.2994 (1998). 

391 Leong, W. Y. et al. Runx1 Phosphorylation by Src Increases Trans-activation via 

Augmented Stability, Reduced Histone Deacetylase (HDAC) Binding, and Increased 

DNA Affinity, and Activated Runx1 Favors Granulopoiesis. J Biol Chem 291, 826-836, 

doi:10.1074/jbc.M115.674234 (2016). 

392 Hu, H., Bliss, J. M., Wang, Y. & Colicelli, J. RIN1 is an ABL tyrosine kinase activator 

and a regulator of epithelial-cell adhesion and migration. Curr Biol 15, 815-823, 

doi:10.1016/j.cub.2005.03.049 (2005). 

393 Doyotte, A., Mironov, A., McKenzie, E. & Woodman, P. The Bro1-related protein HD-

PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body 



References  172 

 

morphogenesis. Proc Natl Acad Sci U S A 105, 6308-6313, 

doi:10.1073/pnas.0707601105 (2008). 

394 Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. 

Nature methods 11, 1114-1125, doi:10.1038/nmeth.3144 (2014). 

395 Genomes Project, C. et al. An integrated map of genetic variation from 1,092 human 

genomes. Nature 491, 56-65, doi:10.1038/nature11632 (2012). 

396 Pfeifer, G. P., You, Y. H. & Besaratinia, A. Mutations induced by ultraviolet light. 

Mutat Res 571, 19-31, doi:10.1016/j.mrfmmm.2004.06.057 (2005). 

397 Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring 

multidimensional cancer genomics data. Cancer Discov 2, 401-404, doi:10.1158/2159-

8290.CD-12-0095 (2012). 

398 Jayachandran, A. et al. Thrombospondin 1 promotes an aggressive phenotype through 

epithelial-to-mesenchymal transition in human melanoma. Oncotarget 5, 5782-5797, 

doi:10.18632/oncotarget.2164 (2014). 

399 Liu, B. et al. Genomic landscape and mutational impacts of recurrently mutated genes 

in cancers. Mol Genet Genomic Med 6, 910-923, doi:10.1002/mgg3.458 (2018). 

400 Kato, M. et al. Transgenic mouse model for skin malignant melanoma. Oncogene 17, 

1885-1888, doi:10.1038/sj.onc.1202077 (1998). 

401 Kren, N. P., Zagon, I. S. & McLaughlin, P. J. Mutations in the opioid growth factor 

receptor in human cancers alter receptor function. Int J Mol Med 36, 289-293, 

doi:10.3892/ijmm.2015.2221 (2015). 

402 Duffy, D. L. et al. Novel pleiotropic risk loci for melanoma and nevus density implicate 

multiple biological pathways. Nat Commun 9, 4774, doi:10.1038/s41467-018-06649-5 

(2018). 

403 Gumaste, P. V. et al. Skin cancer risk in BRCA1/2 mutation carriers. Br J Dermatol 

172, 1498-1506, doi:10.1111/bjd.13626 (2015). 

404 Felder, M. et al. MUC16 suppresses human and murine innate immune responses. 

Gynecol Oncol 152, 618-628, doi:10.1016/j.ygyno.2018.12.023 (2019). 

405 Jonckheere, N. & Van Seuningen, I. Integrative analysis of the cancer genome atlas and 

cancer cell lines encyclopedia large-scale genomic databases: MUC4/MUC16/MUC20 

signature is associated with poor survival in human carcinomas. J Transl Med 16, 259, 

doi:10.1186/s12967-018-1632-2 (2018). 

406 Riker, A. I. et al. The gene expression profiles of primary and metastatic melanoma 

yields a transition point of tumor progression and metastasis. BMC Med Genomics 1, 

13, doi:10.1186/1755-8794-1-13 (2008). 

407 Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29 healthy 

human tissues. Mol Syst Biol 15, e8503, doi:10.15252/msb.20188503 (2019). 

408 Wang, X. et al. Protein identification using customized protein sequence databases 

derived from RNA-Seq data. Journal of proteome research 11, 1009-1017, 

doi:10.1021/pr200766z (2012). 

409 Amaral, T. et al. The mitogen-activated protein kinase pathway in melanoma part I - 

Activation and primary resistance mechanisms to BRAF inhibition. Eur J Cancer 73, 

85-92, doi:10.1016/j.ejca.2016.12.010 (2017). 

410 Cohen-Solal, K. A., Kaufman, H. L. & Lasfar, A. Transcription factors as critical 

players in melanoma invasiveness, drug resistance, and opportunities for therapeutic 

drug development. Pigment Cell Melanoma Res 31, 241-252, doi:10.1111/pcmr.12666 

(2018). 

411 Han, S. et al. ERK-mediated phosphorylation regulates SOX10 sumoylation and targets 

expression in mutant BRAF melanoma. Nat Commun 9, 28, doi:10.1038/s41467-017-

02354-x (2018). 



References  173 

 

412 Lipinska, N. et al. Telomerase and drug resistance in cancer. Cell Mol Life Sci 74, 4121-

4132, doi:10.1007/s00018-017-2573-2 (2017). 

413 Zhang, G. et al. Induction of Telomere Dysfunction Prolongs Disease Control of 

Therapy-Resistant Melanoma. Clin Cancer Res 24, 4771-4784, doi:10.1158/1078-

0432.CCR-17-2773 (2018). 

414 Guo, H. & Friedman, A. D. Phosphorylation of RUNX1 by cyclin-dependent kinase 

reduces direct interaction with HDAC1 and HDAC3. J Biol Chem 286, 208-215, 

doi:10.1074/jbc.M110.149013 (2011). 

415 Schmitt, M. et al. Quantitative proteomics links the intermediate filament nestin to 

resistance to targeted BRAF inhibition in melanoma cells. Molecular & cellular 

proteomics : MCP, doi:10.1074/mcp.RA119.001302 (2019). 

416 Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the 

Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43, 11 10 

11-11 10 33, doi:10.1002/0471250953.bi1110s43 (2013). 

417 R: A Language and Environment for Statistical Computing (R Foundation for Statistical 

Computing, Vienna, Austria, 2018). 

418 Hu, J. et al. PhosphoNetworks: a database for human phosphorylation networks. 

Bioinformatics 30, 141-142, doi:10.1093/bioinformatics/btt627 (2014). 

419 Diella, F. et al. Phospho.ELM: a database of experimentally verified phosphorylation 

sites in eukaryotic proteins. BMC Bioinformatics 5, 79, doi:10.1186/1471-2105-5-79 

(2004). 

420 Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database 

and website. Br J Cancer 91, 355-358, doi:10.1038/sj.bjc.6601894 (2004). 

421 Liu, Y., Sun, J. & Zhao, M. ONGene: A literature-based database for human oncogenes. 

J Genet Genomics 44, 119-121, doi:10.1016/j.jgg.2016.12.004 (2017). 

422 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 

2281-2308, doi:10.1038/nprot.2013.143 (2013). 

423 Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant 

environment. Journal of proteome research 10, 1794-1805, doi:10.1021/pr101065j 

(2011). 

424 Oughtred, R. et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res 

47, D529-D541, doi:10.1093/nar/gky1079 (2019). 

425 Shannon, P. et al. Cytoscape: a software environment for integrated models of 

biomolecular interaction networks. Genome Res 13, 2498-2504, 

doi:10.1101/gr.1239303 (2003). 

426 Coordinators, N. R. Database resources of the National Center for Biotechnology 

Information. Nucleic Acids Res 46, D8-D13, doi:10.1093/nar/gkx1095 (2018). 

427 Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: 

improving support for quantification data. Nucleic Acids Res 47, D442-D450, 

doi:10.1093/nar/gky1106 (2019). 

428 Whole-exome sequencing pipeline v. 1.0 (Zenodo, 2020). 

429 Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by 

CTLA-4 blockade. Science 271, 1734-1736, doi:10.1126/science.271.5256.1734 

(1996). 

430 Hirano, F. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates 

cancer therapeutic immunity. Cancer Res 65, 1089-1096 (2005). 

431 Ott, P. A., Hodi, F. S. & Robert, C. CTLA-4 and PD-1/PD-L1 blockade: new 

immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin 

Cancer Res 19, 5300-5309, doi:10.1158/1078-0432.CCR-13-0143 (2013). 

432 Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic 

melanoma. N Engl J Med 364, 2517-2526, doi:10.1056/NEJMoa1104621 (2011). 



References  174 

 

433 Topalian, S. L. et al. Survival, durable tumor remission, and long-term safety in patients 

with advanced melanoma receiving nivolumab. J Clin Oncol 32, 1020-1030, 

doi:10.1200/JCO.2013.53.0105 (2014). 

434 Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune 

checkpoint inhibitors. Br J Cancer 118, 9-16, doi:10.1038/bjc.2017.434 (2018). 

435 Jamieson, N. B. & Maker, A. V. Gene-expression profiling to predict responsiveness to 

immunotherapy. Cancer Gene Ther 24, 134-140, doi:10.1038/cgt.2016.63 (2017). 

436 Harel, M. et al. Proteomics of Melanoma Response to Immunotherapy Reveals 

Mitochondrial Dependence. Cell 179, 236-250 e218, doi:10.1016/j.cell.2019.08.012 

(2019). 

437 Kemper, K. et al. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant 

melanoma patient and derived xenografts. EMBO molecular medicine 7, e201404914-

e201404914, doi:10.15252/emmm.201404914 (2015). 

438 Creixell, P. et al. Kinome-wide decoding of netwok-attacking mutations rewiring cancer 

signaling. Cell 163, 202-217 (2015). 

439 Curtin, J. a. et al. Distinct sets of genetic alterations in melanoma. The New England 

journal of medicine 353, 2135-2147, doi:10.1056/NEJMoa050092 (2005). 

440 Roesch, A. Tumor heterogeneity and plasticity as elusive drivers for resistance to 

MAPK pathway inhibition in melanoma. Oncogene 34, 2951-2957, 

doi:10.1038/onc.2014.249 (2015). 

441 Laurin, M. & Cote, J. F. Insights into the biological functions of Dock family guanine 

nucleotide exchange factors. Genes Dev 28, 533-547, doi:10.1101/gad.236349.113 

(2014). 

442 Feng, H. et al. Protein kinase A-dependent phosphorylation of Dock180 at serine 

residue 1250 is important for glioma growth and invasion stimulated by platelet derived-

growth factor receptor alpha. Neuro Oncol 17, 832-842, doi:10.1093/neuonc/nou323 

(2015). 

443 Valles, A. M., Beuvin, M. & Boyer, B. Activation of Rac1 by paxillin-Crk-DOCK180 

signaling complex is antagonized by Rap1 in migrating NBT-II cells. J Biol Chem 279, 

44490-44496, doi:10.1074/jbc.M405144200 (2004). 

444 Toret, C. P., Collins, C. & Nelson, W. J. An Elmo-Dock complex locally controls Rho 

GTPases and actin remodeling during cadherin-mediated adhesion. J Cell Biol 207, 577-

587, doi:10.1083/jcb.201406135 (2014). 

445 Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. 

N Engl J Med 371, 2189-2199, doi:10.1056/NEJMoa1406498 (2014). 

446 Berger, M. F. et al. Integrative analysis of the melanoma transcriptome. Genome Res 

20, 413-427, doi:10.1101/gr.103697.109 (2010). 

447 Hugo, W. et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 

Therapy in Metastatic Melanoma. Cell 165, 35-44, doi:10.1016/j.cell.2016.02.065 

(2016). 

448 Lobas, A. A. et al. Proteogenomics of Malignant Melanoma Cell Lines: The Effect of 

Stringency of Exome Data Filtering on Variant Peptide Identification in Shotgun 

Proteomics. Journal of proteome research 17, 1801-1811, 

doi:10.1021/acs.jproteome.7b00841 (2018). 

449 Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer 

immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin 

Oncol 15, 325-340, doi:10.1038/nrclinonc.2018.29 (2018). 

450 Pinto, S. M. et al. Quantitative phosphoproteomic analysis of IL-33-mediated signaling. 

Proteomics 15, 532-544, doi:10.1002/pmic.201400303 (2015). 

451 Horak, P. et al. Precision oncology based on omics data: The NCT Heidelberg 

experience. Int J Cancer 141, 877-886, doi:10.1002/ijc.30828 (2017). 



References  175 

 

452 FastQC A Quality Control tool for High Throughput Sequence Data 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, 2010). 

453 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina 

sequence data. Bioinformatics 30, 2114-2120, doi:10.1093/bioinformatics/btu170 

(2014). 

454 Grozav, A. G. et al. Casein kinase I delta/epsilon phosphorylates topoisomerase IIalpha 

at serine-1106 and modulates DNA cleavage activity. Nucleic acids research 37, 382-

392, doi:10.1093/nar/gkn934 (2009). 

455 Cingolani, P. et al. A program for annotating and predicting the effects of single 

nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster 

strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92, doi:10.4161/fly.19695 (2012). 

456 Zhang, T., Dutton-Regester, K., Brown, K. M. & Hayward, N. K. The genomic 

landscape of cutaneous melanoma. Pigment Cell Melanoma Res 29, 266-283, 

doi:10.1111/pcmr.12459 (2016). 

457 Thakur, R. et al. Transcriptomic Analysis Reveals Prognostic Molecular Signatures of 

Stage I Melanoma. Clin Cancer Res 25, 7424-7435, doi:10.1158/1078-0432.CCR-18-

3659 (2019). 

458 Matsuda, Y. et al. Nestin is a novel target for suppressing pancreatic cancer cell 

migration , invasion and metastasis. Cancer Biology & Therapy 11, 512-523, 

doi:10.4161/cbt.11.5.14673 (2011). 

459 Griffin M, D. S., Debra H. Josephs, Silvia Mele, Silvia Crescioli, Heather J. Bax, Giulia 

Pellizzari, Matthew D. Wynne, Mano Nakamura, Ricarda M. Hoffmann, Kristina M. 

Ilieva, Anthony Cheung, James F. Spicer, Sophie Papa, Katie E. Lacy and Sophia N. 

Karagiannis. BRAF inhibitors: resistance and the promise of combination treatments for 

melanoma. Oncotarget 8, 78174-75192 (2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


References  176 

 

 



Acknowledgements  177 

 

    Acknowledgements 

An dieser Stelle möchte ich mich bei allen Personen, die zum Gelingen der Dissertation 

beigetragen haben, bedanken.  

Prof. Dr. Boris Macek möchte ich für die hervorragende Betreuung, seine stetige 

Diskussionsbereitschaft, das in mich gesetzte Vertrauen und das tolle Arbeitsumfeld herzlich 

danken.  

Mein Dank gilt ebenfalls Prof. Dr. Alfred Nordheim für seine Bereitschaft, diese Arbeit zu 

betreuen. 

Bei meinem TAC Komitee bestehend aus Prof. Dr. Boris Macek, Prof. Dr. Alfred Nordheim 

und Prof. Dr. Ana J. Garcia-Saez, sowie dem ganzen IMPRS Team möchte ich mich recht 

herzlich für die Unterstützung, Diskussionsbereitschaft und Betreuung meiner Arbeit bedanken.  

Des Weiterem bedanke ich mich herzlich bei Nicolas C. Nalpas für seine ständige Hilfe bei 

allen Fragestellungen, sowie Tobias Sinnberg und Heike Niessner von der Hautklink in 

Tübingen für die Hilfe bei klinischen und biologischen Fragen.  

Allen gegenwärtigen und ehemaligen Mitarbeitern des Proteome Center Tübingens danke ich 

für das freundliche Arbeitsklima, insbesondere danke ich Uli, Silke, Ana, Johannes, Irina und 

Mirita. Für die motivierenden Worte, die schönen Momente und die Unterstützung möchte ich 

mich bei Christoph, Nicolas, Maja, Katharina, Katrin, Phil und Tariq bedanken. Ihr wurdet von 

Arbeitskollegen zu echten Freunden.  

Meinen Schwestern Kathrin, Anne und Sophie mit den Kindern Mia, Levi, Zoe und Lian 

möchte ich mich von ganzen Herzen für die moralische Unterstützung danken. Ihr habt immer 

für eine Abwechslung gesorgt und mich immer wieder zum Lachen gebracht.  

Meinem Freund Julian möchte ich für seine stetige Motivation, das Aushalten aller Launen und 

seinen Humor in allen Lebenslagen danken.  

Mein ganz besonderer Dank gilt meinen Eltern, Jürgen und Gerda, für ihre unendliche Liebe 

und Vertrauen, ihre große Unterstützung in den vergangenen Jahren. Danke dass ihr mich 

immer ermutigt habt meinen eigenen Weg zu gehen. Ohne euch wäre dies nicht möglich 

gewesen.  

 



Acknowledgements  178 

 

 


