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Abstract 

Previous studies have identified relatively separated regions of the brain that respond 

strongly when participants view images of either faces, bodies or objects. The aim of this 

thesis was to investigate how and where in the brain shared properties of faces, bodies and 

objects are processed. We selected three properties that are shared by faces and bodies, 

shared categories (sex and weight), shared identity and shared orientation (i.e. facing 

direction). We also investigated one property shared by faces and objects, the tendency to 

process a face or object as a whole rather than by its parts, which is known as holistic 

processing. We hypothesized that these shared properties might be encoded separately for 

faces, bodies and objects in the previously defined domain-specific regions, or alternatively 

that they might be encoded in an overlapping or shared code in those or other regions. In all 

of studies in this thesis, we used fMRI to record the brain activity of participants viewing 

images of faces and bodies or objects that showed differences in the shared properties of 

interest. We then investigated the neural responses these stimuli elicited in a variety of 

specifically localized brain regions responsive to faces, bodies or objects, as well as across the 

whole-brain. Our results showed evidence for a mix of overlapping coding, shared coding and 

domain-specific coding, depending on the particular property and the level of abstraction of 

its neural coding. We found we could decode face and body categories, identities and 

orientations from both face- and body-responsive regions showing that these properties are 

encoded in overlapping brain regions. We also found that non-domain specific brain regions 

are involved in holistic face processing. We identified shared coding of orientation and weight 

in the occipital cortex and shared coding of identity in the early visual cortex, right inferior 

occipital cortex, right parahippocampal cortex and right superior parietal cortex, 

demonstrating that a variety of brain regions combine face and body information into a 

common code. In contrast to these findings, we found evidence that high-level visual 

transformations may be predominantly processed in domain-specific regions, as we could 

most consistently decode body categories across image-size and body identity across 

viewpoint from body-responsive regions. In conclusion, this thesis furthers our understanding 

of the neural coding of face, body and object properties and gives new insights into the 

functional organisation of occipitotemporal cortex.  
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1. Synopsis 

One of the most impressive abilities of our visual system is that we can not only 

easily detect whether a scene contains a person, as well as other objects, but we can also 

easily identify specific properties of this person. When we see various images of people we 

can recognise their identity, determine whether they belong to particular categories (e.g. 

whether they are male or female) and ascertain whether their body, or direction of gaze, is 

oriented toward us or not. Our ability to recognize these properties is particularly 

impressive when we consider that there can be a huge variety in the low-level visual 

information present in different images. For example, we can identify the same person in 

different images despite variations of the illumination and viewpoint, or when the body is 

partially occluded. Despite all of these sources of interference, our visual system can 

discriminate even quite subtle properties, for example when we distinguish the identities of 

two individuals that have very similar facial features.   

How does the visual system achieve these impressive abilities? Visual scientists have 

investigated the neural circuits thought to underlie visual processing of people and have 

also attempted to replicate these abilities in computational models. Deep convolutional 

neural networks, computational models inspired by the organisation of the nervous system 

containing multiple layers of nodes that are trained to perform recognition and 

categorization of images using large training datasets, have been shown to be able to 

achieve impressive and human-like object recognition abilities (Krizhevsky, Sutskever, & 

Hinton, 2012; LeCun, Bengio, & Hinton, 2015). However, these models are still limited when 

compared to the human visual system. They lack its flexibility, require large training 

datasets, and small perturbations, which are hardly visible to human observers, have been 

shown to cause large misclassifications of objects by these networks (Szegedy et al., 2014). 

More importantly, we don’t know exactly what computational circuits within these models 

give rise to their recognition abilities. In order to develop better computational models, and 

to understand what goes wrong in humans who have impairments in recognition abilities 

(Behrmann & Avidan, 2005), it is important for us to better understand how visual 

information is processed and represented in the brain, and how these processes allow our 

visual system to robustly recognize features of people (and more generally objects) under a 

variety of visual conditions. 
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1.1. Category-responsive brain regions 

 Light entering the eye first activates the photoreceptors of the retina, and following 

this the neural circuits of the retina begin to process this visual information (Masland, 2012). 

This processed visual information is then sent to the lateral geniculate nucleus, and then 

further on to the primary visual cortex, known as V1. Visual information is further processed 

in V1, where the neurons have been found to respond to specific orientations of bars of 

light (Hubel & Wiesel, 1962). Beyond V1, it is thought that further processing of visual 

information in occipital and temporal cortex underlies our visual abilities to detect and 

process properties of people and objects. Early work investigating neural responses in the 

macaque inferotemporal cortex identified neurons with complex object-related response 

properties, for example, neurons responsive to the shape of a hand (Gross, Roch-Miranda, & 

Bender, 1972).  

 In 1990, the discovery that magnetic resonance imaging could be used to detect 

blood oxygenation level changes related to neural activity (Ogawa, Lee, Nayak, & Glynn, 

1990; Ogawa, Lee, Kay, & Tank, 1990) led to a new method for neuroscientists to investigate 

regional changes in human brain activity (Logothetis, 2002). This method, known as 

functional magnetic resonance imaging (fMRI), made it more feasible for neuroscientists to 

investigate the functional organisation of the healthy human brain, and made it easier to 

test how multiple brain regions respond to many different kinds of stimuli. One influential 

early study using this method identified a region in the fusiform gyrus that responded 

stronger when participants viewed images of faces than when they viewed many other 

kinds of visual stimuli, including objects, scrambled face images, houses and hands 

(Kanwisher, McDermott, & Chun, 1997). This region is commonly referred to as the fusiform 

face area (FFA). By showing that this region responded stronger to faces than to many other 

different kinds of visual stimuli, the authors argued that this provided strong evidence that 

this region is specifically involved in processing faces. Following this finding, subsequent 

fMRI studies identified more regions, in addition to the FFA, that responded strongly to 

faces compared to other kinds of stimuli. These regions include the occipital face area (OFA) 

located in the lateral occipital cortex (Gauthier, Tarr, et al., 2000), the superior temporal 

sulcus (STS) (Halgren et al., 1999; Haxby et al., 1999) and the anterior temporal face area 

(ATFA) (Rajimehr, Young, & Tootell, 2009; Tsao, Moeller, & Freiwald, 2008), as well as many 
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other regions that are hypothesised to be part of a distributed face-responsive network 

(Haxby, Hoffman, & Gobbini, 2000; Ishai, 2008). 

 Beyond faces, fMRI studies have identified brain regions showing strong responses 

to other kinds of specific categories. A region of the lateral and ventral occipital cortex, 

known as the lateral occipital complex (LOC), has been shown to respond higher when 

participants view images of objects compared to when they view a variety of texture or 

visual noise images (Grill-Spector, Kushnir, Edelman, Itzchak, & Malach, 1998; Grill-Spector, 

Kushnir, Hendler, et al., 1998; Malach et al., 1995). Brain regions showing higher responses 

when participants view images of scenes, compared to when they view images of objects or 

faces, have been identified in the parahippocampal cortex (known as the parahippocampal 

place area, PPA) (Epstein & Kanwisher, 1998), the retrosplenial cortex (RSC) (Epstein, 2008) 

and the transverse occipital cortex (TOS, also referred to as occipital place area, OPA) 

(Kamps, Julian, Kubilius, Kanwisher, & Dilks, 2016). A region in the left fusiform gyrus has 

been shown to respond when participants visually process words, known as the visual word 

form area (VWFA) (Cohen et al., 2000; McCandliss, Cohen, & Dehaene, 2003). Two brain 

regions have been identified that are more responsive to headless bodies (where all face 

information is removed) compared  to objects or scenes, known as the extrastriate body 

area (EBA) (Downing, Jiang, Shuman, & Kanwisher, 2001) and the fusiform body area (FBA) 

(Peelen & Downing, 2005). Altogether these studies show that there are many regions 

across a large area of occipitotemporal cortex that respond preferentially to specific visual 

categories. Interestingly, these category-responsive regions show remarkable consistency in 

their locations across different participants (Op de Beeck, Pillet, & Ritchie, 2019).  

1.2. Factors contributing to the overall arrangement of category-responsive regions 

 Several studies have tried to determine whether there is an overarching explanation 

for why we have this particular arrangement of category-responsive brain regions. Several 

factors have been proposed to contribute to the overall spatial organization and selectivity 

of these cortical regions. One key factor that has been proposed is animacy. Strong 

differences between the neural representations of animate and inanimate stimuli have been 

found in the occipitotemporal cortex of both humans and monkeys (Kriegeskorte et al., 

2008). In relation to the previously defined category-responsive regions, this distinction is 

demonstrated in the separation between regions encoding scenes and objects, and those 
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encoding faces and bodies. For example, the scene-responsive PPA and ventral portion of 

the object-responsive LOC (known as pFs) are located medially to the face- and body-

responsive FFA and FBA on the fusiform gyrus. Interestingly, although there are many 

differences in low-level visual features between animate and inanimate stimuli, for example 

differences in spatial frequency, there is evidence that these low-level differences cannot 

fully explain the neural responses to animate and inanimate stimuli. Distinctions in the 

neural responses to animate versus inanimate stimuli have been demonstrated in stimuli 

controlled for low-level visual differences (Bracci & Op de Beeck, 2016). Furthermore, 

category-specific neural responses in occipitotemporal cortex have been shown to be 

elicited by highly abstract representations of these categories. For example, the FFA has 

been shown to respond to line drawings of faces and two-tone ‘Mooney faces’ (Kanwisher, 

Tong, & Nakayama, 1998; Loffler, Yourganov, Wilkinson, & Wilson, 2005; Tong, Nakayama, 

Moscovitch, Weinrib, & Kanwisher, 2000) and similarly the body-responsive EBA and FBA 

have been shown to respond to stick-figure drawings of bodies (Downing et al., 2001; 

Peelen & Downing, 2005). Thus, it seems there is a strong distinction between the neural 

coding of animate and inanimate stimuli that cannot be explained solely by co-occurring 

differences in low-level visual properties.  

 Another factor that has been proposed to contribute to the overall arrangement of 

category-responsive brain regions is the location in the visual field where these different 

categories are predominately processed. Early visual areas have been shown to map visual 

information in a retinotopic organisation (Wandell, Dumoulin, & Brewer, 2007). As different 

kinds of object categories tend to take up smaller (e.g. faces) or larger (e.g. buildings) areas 

of the visual field, this means that different neurons in these early visual regions process 

these different object categories. Furthermore, as we tend to fixate certain objects, such as 

faces (Yarbus, 1967), it has been proposed that small fixated objects would be processed 

more by neurons responding to the centre of the visual field, whereas buildings and scenes 

that cover large portions of the visual field would be more likely to be processed by neurons 

encoding the peripheral visual field (Levy, Hasson, Avidan, Hendler, & Malach, 2001). 

Neuroimaging studies have found evidence for such central-peripheral biases in category-

responsive regions of the occipitotemporal cortex, for example the FFA was found to 

respond more to central than peripheral stimuli, whereas the PPA was found to respond 
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more to peripheral then central stimuli (Hasson, Harel, Levy, & Malach, 2003; Hasson, Levy, 

Behrmann, Hendler, & Malach, 2002; Levy et al., 2001). Other work has demonstrated an 

additional contribution of the real-world size of objects to the neural representations in 

occipitotemporal cortex (Konkle & Oliva, 2012). In this study, the authors found that 

inanimate objects with similar real-world size were represented in nearby clusters of 

occipitotemporal cortex, regardless of the image-sizes of these objects shown during the 

experiment. Furthermore, the authors found that regions responsive to large objects were 

also activated when participants imagined small objects at a large scale (or vice versa), 

demonstrating that this finding seemed to be related to the participants’ perception of the 

size of the object. In combination, these studies demonstrate that the functional 

organisation of occipitotemporal cortex is influenced by objects sizes and their 

corresponding retinal locations in our natural visual environment.  

 Studies have also demonstrated that the neural organisation of occipitotemporal 

cortex is not solely driven by visual features. The most striking example of this is the finding 

that a similar arrangement of category-specific responses is evoked by other sensory 

modalities. For example, tactile recognition of faces and objects has been shown to evoke 

activity in occipitotemporal areas that are also activated during visual recognition of faces 

and objects, and furthermore these regions are also activated during tactile recognition of 

faces and objects in congenitally blind individuals, ruling out that these results could be due 

to visual imagery of the tactile stimuli (Pietrini et al., 2004). Subsequent studies have found 

further evidence for similarities between tactile and visual category-responses in 

occipitotemporal cortex. For both sighted and blind individuals, higher activity has been 

shown in the EBA during haptic identification of hands compared to objects (Kitada et al., 

2014), and activity in the middle temporal gyrus has been shown during haptic recognition 

of facial expressions (Kitada et al., 2013). Furthermore, the VWFA has been shown to be 

activated when congenitally blind participants read via touch using Braille (Reich, Szwed, 

Cohen, & Amedi, 2011). A similar overlap in activation has also been found between visual 

category-responsive regions and auditory category responses in both sighted and blind 

participants. Listening to category-specific words elicits similar distinctions between 

animate and inanimate stimuli (Mahon, Anzellotti, Schwarzbach, Zampini, & Caramazza, 

2009), and PPA has been found to be more active when participants listen to large 
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nonmanipulable object words as compared to small object or animal words (He et al., 2013). 

Furthermore, natural sounds related to faces, bodies, scenes and objects were found to 

elicit a similar arrangement of responses as compared to visual stimuli in ventral temporal 

cortex, for both sighted and blind participants (van den Hurk, Van Baelen, & Op de Beeck, 

2017). In sum, these multisensory studies demonstrate that the arrangement of category-

responsive regions in occipitotemporal cortex is, to some extent, influenced by multisensory 

processing or an innate map, rather than being solely driven by visual experience during 

development.  

1.3. Functional processing within category-responsive regions 

 How does neural activity in the category-responsive brain regions relate to the 

detection and processing of specific properties of these categories? It has been proposed 

that the arrangement of category-responsive brain regions could be somehow necessary or 

optimal for our visual system to solve complex problems, such as recognising specific people 

and objects (Grill-Spector & Weiner, 2014). Furthermore, it has been proposed that the 

reason for the existence of multiple, separated regions responding to the same category 

(e.g. the face-responsive regions in occipital, fusiform, superior temporal and anterior 

temporal cortex) could be because these regions encode representations of different 

properties of that category (Haxby et al., 2000).   

 Early fMRI studies investigating face-responses found evidence for such a functional 

separation between different face-responsive brain regions. In an experiment where 

participants attended to either the identity or gaze direction of faces images, higher activity 

was found in the STS when participants attended to gaze as compared to identity, whereas 

the opposite was true for the fusiform gyrus, where responses were higher when 

participants attended to identity as compared to eye gaze (Hoffman & Haxby, 2000). The 

authors proposed a neural separation between changeable (e.g. facial expression, gaze 

direction) and unchangeable (e.g. identity) aspects of faces (Haxby et al., 2000). This 

proposal corresponded with a model of face perception based on psychological findings that 

also proposed a separation of different aspects of face processing (Bruce & Young, 1986). 

Several subsequent neuroimaging studies found further evidence for this neural distinction 

of face processing. Neural responses to emotion expression (R. J. Harris, Young, & Andrews, 

2012; Srinivasan, Golomb, & Martinez, 2016; Zhang et al., 2016), gaze direction (Carlin & 
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Calder, 2013; Carlin, Calder, Kriegeskorte, Nili, & Rowe, 2011) and facial motion (Schultz & 

Pilz, 2009) have been found in the STS, whereas neural responses to face identity have been 

found in the FFA and anterior temporal face area  (Grill-spector, Knouf, & Kanwisher, 2004; 

Nasr & Tootell, 2012; Rotshtein, Henson, Treves, Driver, & Dolan, 2005). These studies show 

there is considerable evidence for functional differences between the face-responsive 

regions in the STS and fusiform gyrus.  

 Functional differences related to part-based versus configural processing have also 

been proposed between more posterior and more anterior regions with the same category-

responsive preference. The OFA has been found to respond more to face parts than to 

whole faces (Arcurio, Gold, & James, 2012) and to contain a map of face-features 

(Henriksson, Mur, & Kriegeskorte, 2015). Furthermore, one study found that the FFA 

responds to the correct configuration of face parts, but found no evidence for a sensitivity 

to face-part configuration in the OFA (Liu, Harris, & Kanwisher, 2010). For bodies, the EBA 

has been shown to be more sensitive to body parts than the FBA (Taylor, Wiggett, & 

Downing, 2007), and a topographic body-part map has been identified that corresponds 

with the location of the EBA (Orlov, Makin, & Zohary, 2010). For scenes, the PPA and RSC 

have been shown to respond to the correct configuration of scene components (e.g. correct 

positioning of walls relative to the floor), whereas the TOS does not show this distinction, 

despite showing responses to the scene components (Kamps et al., 2016). Altogether, these 

studies suggest that more posterior category-responsive regions, that are closer to the early 

visual cortex, encode local elements of the categories, whereas more anterior category-

responsive regions respond to correct overall configurations of the categories.   

 Several studies have also identified functional differences related to viewpoint-

dependence versus viewpoint-invariance between more posterior and more anterior 

category-responsive regions. For faces, an electrophysiological recording study in macaque 

monkeys identified posterior to anterior differences in the viewpoint-dependence of face 

responses in the macaque face-responsive patches (Freiwald & Tsao, 2010). The authors 

found that responses in the two most posterior face-responsive patches (lateral and middle 

fundus, ML and MF) were viewpoint-dependent, whereas moving anteriorly responses in 

the next patch (anterior lateral, AL) showed mirror-symmetric face responses (where 

neurons responded equally to mirror-symmetric views) and finally responses in the most 
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anterior patch (anterior medial, AM) showed viewpoint-invariant face responses. Thus, this 

study showed a posterior to anterior hierarchy in face-responses from viewpoint-dependent 

to viewpoint-invariant, with mid-level regions showing a partial invariance. Human fMRI 

studies have also found evidence for a similar hierarchy in the human face-responsive 

regions. Viewpoint-invariant face identity responses have been identified in the ATFA and 

FFA (Anzellotti, Fairhall, & Caramazza, 2014; Guntupalli, Wheeler, & Gobbini, 2017), and 

some studies have also found evidence for mirror-symmetric face responses in the FFA and 

STS (Axelrod & Yovel, 2012; Flack, Harris, Young, & Andrews, 2019; Guntupalli et al., 2017; 

Kietzmann, Swisher, König, & Tong, 2012), however this evidence is debated due to 

methodological concerns (Ramírez, 2018; Ramírez, Cichy, Allefeld, & Haynes, 2014). 

Viewpoint-specific face responses have been found in the OFA, FFA and early visual areas 

(Axelrod & Yovel, 2012; Flack et al., 2019; Guntupalli et al., 2017; Ramírez et al., 2014). 

There is some evidence of a similar distinction between viewpoint-dependent and 

viewpoint-independent responses for bodies and objects. For bodies, electrophysiological 

recordings in macaque monkeys found that body-responses in a more posterior body-

responsive patch were more viewpoint-dependent than body responses in a more anterior 

body-responsive patch (Kumar, Popivanov, & Vogels, 2019). For objects and scenes, similar 

neural responses to mirror-reversed objects images were found in be the anterior portion of 

the LOC (pFs) but not in the posterior portion (LO), and similar responses to mirror-reversed 

scene images were found in the PPA, but not in the TOS or RSC (Dilks, Julian, Kubilius, 

Spelke, & Kanwisher, 2011). These results suggest that neurons in the more anterior object 

and scene regions show a tolerance to the image changes induced by mirror-reversal, 

whereas neurons in the more posterior object and scene regions respond to specific 

viewpoints of objects and scenes. In combination, these studies suggest an overall increase 

in viewpoint-invariant responses from posterior to more anterior category-responsive 

regions, which has been proposed to be a general processing principle that allows for 

viewpoint-invariant recognition of people and objects (Freiwald & Tsao, 2010).  

1.4. Are the functional responses in category-responsive regions domain-specific? 

 Many studies assume that neural processing of properties of a particular category 

will occur in the defined regions responsive to this particular category (e.g. coding of face 

properties in face-responsive regions). However, several studies have challenged the 
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hypothesis that category-responsive regions are strictly selective for their preferred 

category. One influential study found that patterns of activity in regions outside of the 

strongly category-responsive regions could be used to identify that category (Haxby et al., 

2001). The authors proposed that representations of faces and objects are distributed in 

overlapping patterns across ventral temporal cortex. Another study found that category-

responsive regions contain patterns of neural activity that could distinguish between 

subordinate groups of a non-preferred category (Op de Beeck, Brants, Baeck, & Wagemans, 

2010). This study provided further evidence that neural responses in category-responsive 

regions are not entirely category-selective.  

 The category-specificity of the FFA for faces has also been challenged. The FFA has 

also been shown to respond to objects of expertise, for example when bird experts view 

images or birds, or car experts view images of cars (Gauthier, Skudlarski, Gore, & Anderson, 

2000; Yaoda Xu, 2005). Furthermore, neural activity in the FFA evoked by novel objects has 

been show to increase when participants are trained to develop expertise with these novel 

objects (Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999). Therefore, the authors 

proposed that rather than being category-selective for faces, the FFA may be involved in 

subordinate-level processing of any class of objects that a person has expertise with.  

 These studies provide strong evidence that neural responses in category-responsive 

regions are not fully domain-specific. Importantly, this suggests that the neural coding of 

functional properties of these categories may be more widespread than was originally 

thought. Furthermore, these findings highlight a problem with the current methodical 

approaches being used to investigate the neural coding of properties associated with these 

categories. In order to boost statistical power, many studies specifically localize category-

responsive regions and then specifically investigate the neural coding of properties 

associated with this category only within these category-responsive regions (e.g. 

investigating face properties in face-responsive regions) and not within a wider variety of 

brain regions. In such studies, regions outside of these category-responsive regions that also 

respond to the property would not be detected. It is possible that this approach could lead 

to biases and missing information about the functional properties of occipitotemporal 

cortex, as responses that are not domain-specific would not be detected.  
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 In this thesis, we aimed to explore the neural coding of face, body and object 

properties both within and outside of the domain-specific regions corresponding to each 

category. This approach allowed us to investigate whether the neural coding of a variety of 

properties was encoded in domain-specific category-responsive regions, or encoded in more 

distributed brain regions. We specifically chose to investigate properties that are shared by 

faces and bodies or faces and objects. The rationale was, that if category-responsive regions 

process only properties of their preferred categories, then we would find neural 

representations of these properties in domain-specific regions (e.g. properties of faces in 

face-responsive regions). In contrast, if the neural coding of functional properties is more 

general, then a shared property should be encoded in an overlapping or shared neural 

representation.  

1.5. The neural coding of properties shared by faces and bodies or objects 

 The overall aim of this thesis was to investigate the neural coding of shared 

properties of faces and bodies or objects. In Chapters 2, 3 and 4, we investigated the neural 

coding of three shared properties of faces and bodies. Faces and bodies are particularly 

suitable for investigating shared properties. As a whole person contains a face and a body, 

there are many properties specific to a particular person that are visible from both their face 

and body. Despite the number of shared properties, neuroimaging studies have identified 

prominent, yet separated brain regions in the occipital and fusiform cortex that respond 

when participants view a face or a body (Peelen & Downing, 2005; Premereur, Taubert, 

Janssen, Vogels, & Vanduffel, 2016; Schwarzlose, Baker, & Kanwisher, 2005). Thus, faces and 

bodies contain many shared properties that can be investigated and well-defined brain 

regions, which can be easily localized in almost all participants, where we can investigate 

the neural coding of these shared properties.  

In Chapters 5 and 6, we investigated the neural processes involved with holistic 

processing of faces and objects. We chose to compare holistic processing of faces and 

objects, rather than faces and bodies, as behavioural studies investigating whether bodies 

are processed holistically have found mixed results (Bauser, Suchan, & Daum, 2011; 

Bonemei, Costantino, Battistel, & Rivolta, 2018; Brandman & Yovel, 2010; A. Harris, Vyas, & 

Reed, 2016; Robbins & Coltheart, 2012a; Willems, Vrancken, Germeys, & Verfaillie, 2014; 

Yovel, Pelc, & Lubetzky, 2010). Thus, it may be that bodies are only weakly processed 
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holistically, or are only processed holistically under certain circumstances. In contrast to 

these mixed findings, behavioural studies have found strong evidence of holistic processing 

of the objects we tested in Chapter 6, moreover evidence of holistic processing of these 

objects was found to be as strong as for faces (Zhao, Bülthoff, & Bülthoff, 2016). Thus, we 

considered that the neural processes involved with holistic processing of these objects 

would be more easily detectable than those involved with holistic processing of bodies and 

additionally would be more suitable to compare to the neural processes involved with 

holistic processing of faces.  

We investigated the neural coding of four different shared properties in the present 

work: shared subcategories, shared identity, shared orientation and holistic processing. As it 

was not possible to investigate all possible shared properties of faces, bodies and objects, 

we selected the subset of shared properties to investigate in this thesis based on three 

criteria. The first criterion was how prominent the property was for faces and bodies or 

objects. We predicted that prominent properties would likely give strong neural responses 

that would be possible for us to detect using fMRI. We determined whether a property was 

prominent or not based on evidence from behavioural studies investigating the detection or 

processing of the particular property. The second criterion was the novelty in researching 

the property. As some properties have been more extensively studied than others, we 

aimed to select properties that have received less focus in order to maximise the 

contribution of this work to the overall understanding of face, body and object processing. 

The third criterion aimed to maximise the variety between the four properties we selected. 

Even though we could only investigate a subset of all the possible shared properties of 

faces, bodies and objects, we aimed to encompass some of the wide variety of kinds of 

shared properties in our selection. In combination, we believed that the properties selected 

with these criteria would show strong neural responses and allow for new insights into the 

neural processes underlying a variety of shared properties of faces, bodies and objects.  

In Chapter 2, we investigated the neural coding of two subcategories shared by faces 

and bodies, sex and weight. We created images of faces and bodies that varied in sex (male 

or female) and weight (higher or lower weight), and validated that these images were 

perceived to belong to these subcategories via a perceptual rating behavioural experiment. 

We then conducted an fMRI study, where we recorded the brain activity of participants 
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viewing these images. Using multivoxel pattern analyses (MVPA), we investigated which 

brain regions contain separable patterns of activity evoked by male and female, and higher 

and lower weight stimuli. In a first set of analyses, we tested whether face subcategories 

would be encoded only in face-responsive brain regions, and body subcategories in body-

responsive brain regions, or if there would be overlap in the regions encoding the face and 

body subcategories. We found we could decode body subcategories from both body- and 

face-responsive brain regions, but image-size invariant decoding was more specific to the 

body-responsive regions. We could decode the weight of faces from the FBA, again 

suggesting some overlap in the regions encoding shared subcategories. In a second set of 

analyses, we tested if any regions contain subcategory representations that could generalise 

across neural activity evoked by faces and bodies. We could decode weight across neural 

activity evoked by faces and bodies in the EBA, suggesting some abstract coding of weight in 

this region. In combination, this study shows that there is an overlap in the neural coding of 

face and body subcategories, as we could decode body subcategories from face-responsive 

regions and face subcategories form body-responsive regions. However, we also found 

evidence that image-size invariant coding may be more domain-specific. In combination, 

these results support a mix of shared and separated neural coding of subcategories, 

depending on the level of abstraction of the neural representation.   

In Chapter 3, we investigated the neural coding of identities shared by the face and 

body. Although, psychological research has shown that we use information from both the 

face and body to identify people (Hahn, O’Toole, & Phillips, 2015; O’Toole et al., 2011; Rice, 

Phillips, Natu, An, & O’Toole, 2013; Rice, Phillips, & O’Toole, 2013; Robbins & Coltheart, 

2012b), there has been little research into how the brain integrates identity information 

from the face and body. In this study, we trained participants to recognize three individuals 

from images of their face and body, and then recorded the participants’ brain activity using 

fMRI as they viewed these images. We then used MVPA to investigate which brain regions 

contain separable patterns of neural activity evoked by the three identities. In a first set of 

analyses, we tested whether face identity and body identity are encoded separately in face- 

and body-responsive regions respectively or not. We found we could decode face identity 

from the face-responsive ATFA and the body-responsive EBA, and we could decode body 

identity from the body-responsive FBA and face-responsive OFA. These results suggest there 
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is a mixed coding of identity information in face- and body-responsive brain regions for both 

faces and bodies. In further analyses, we found we could decode body identity across 

different body viewpoints from the FBA but not consistently from any face-responsive 

regions. This suggests viewpoint-invariant body identity representations may be body-

region specific. In a second set of analyses, we tested if any brain regions contain identity 

representations that could generalize across neural activity evoked by faces and bodies. We 

found we could decode identity in this abstract manner from the early visual cortex, right 

inferior occipital cortex, right parahippocampal cortex and right superior parietal cortex, but 

not from any of our face- or body-responsive ROIs. Altogether, these results show that 

information about both face and body identity is contained in both face- and body-

responsive regions, but higher-level viewpoint-invariant identity representations may be 

domain-specific. Furthermore, abstract identity representations that generalise across face 

and body viewing were found to be encoded in several distributed brain regions outside of 

the commonly defined face- or body-responsive regions.  

In Chapter 4, we investigated the neural coding of orientation directions shared by 

faces and bodies. We see faces and bodies from many different orientations (e.g. facing 

towards us) and the same orientation directions can apply to both faces and bodies. Most 

previous studies have separately investigated the neural coding of face and body 

orientation, therefore it is unknown whether face and body orientations are encoded in a 

shared or separated manner in occipitotemporal cortex. In this study, we recorded the brain 

activity of participants viewing images of faces and bodies from three orientations with 

fMRI. We then used MVPA to investigate which brain regions contained separable patterns 

of activity evoked by the three orientations. We found that the face-responsive OFA and 

body responsive EBA contain neural coding of both face and body orientation, and 

furthermore contained abstract neural coding of orientation that could generalize across 

neural activity evoked by faces and bodies. Furthermore, we found neural responses to face 

orientation, but not body orientation, in the FFA and FBA, suggesting that these fusiform-

gyrus regions encode face-specific orientation information. In sum, these results show an 

abstract encoding of person orientation in the early face- and body-responsive regions of 

the occipital cortex. Furthermore, they also show a later face-specific coding of orientation 
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in the fusiform-gyrus, which interestingly was found in both face- and body-responsive 

fusiform regions.   

 In Chapters 5 & 6, we investigated which brain regions are involved in holistic 

processing of faces and non-expertise objects. Holistic processing refers to the tendency to 

perceive something as an indecomposable whole rather than by its component parts. Many 

behavioural studies have demonstrated that faces are processed holistically (Maurer, Le 

Grand, & Mondloch, 2002; Richler & Gauthier, 2014) and a recent study found strong 

evidence that certain non-expertise objects are also processed holistically (Zhao et al., 

2016). Neuroimaging studies have linked holistic processing of faces and expertise objects to 

neural activity in the FFA (Gauthier & Tarr, 2002; Goffaux, Schiltz, Mur, & Goebel, 2013; Liu 

et al., 2010; Ross et al., 2018; Schiltz, Dricot, Goebel, & Rossion, 2010; Schiltz & Rossion, 

2006; Wong, Palmeri, Rogers, Gore, & Gauthier, 2009), however recent behavioural work 

has found evidence that there may be additional processes involved in holistic processing of 

faces (Curby & Moerel, 2019). So far no studies have investigated which brain regions are 

involved in holistic processing of non-expertise objects. In these studies, we used fMRI to 

record the brain activity of participants performing composite-tasks with faces and non-

expertise objects. We localized a variety of brain regions that we hypothesized could be 

involved in holistic processing, and then investigated the neural responses in these regions 

during the composite-task. In Chapter 5, we found evidence of neural responses related to 

holistic processing of faces in both the face-responsive FFA2 (an anterior component of the 

FFA) as well as in the object-responsive LOC and scene-responsive RSC, PPA and TOS. 

Interestingly we found that the neural responses related to holistic processing in the RSC 

and PPA correlated with participants behavioural responses in the composite-task, 

suggesting a direct relationship between neural activity in these regions and participant’s 

behaviour. In Chapter 6, we did not find any significant neural responses related to holistic 

processing of the non-expertise objects. In combination, these results show that brain 

regions both within the face-responsive network and object- and scene-responsive 

networks are involved in holistic processing of faces. The neural processing involved with 

holistic processing of non-expertise objects are likely either weaker than those for faces (too 

weak for us to detect in this study) or in different brain regions, outside of the regions we 

localized in this study.  
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The shared properties that we investigated in this thesis represent only a small 

subsection of the many properties that are shared to varying degrees between faces, bodies 

and objects. Three examples of shared properties that we did not investigate in this work 

are emotional expression, other shared subcategories beyond those we investigated in 

Chapter 2 and object orientation. Emotional expression can be conveyed by both the face 

and the body, and thus this information could be encoded in a shared manner. Interestingly, 

one previous study has investigated a closely related question of whether any brain regions 

respond to emotional expression in an abstract manner across neural activity evoked by 

dynamic faces, dynamic bodies and voice stimuli (Peelen, Atkinson, & Vuilleumier, 2010). 

The authors found two regions showing this abstract activity one in the medial prefrontal 

cortex and the other in the left superior temporal sulcus. Interestingly, the coordinates of 

this left superior temporal sulcus region are in between the location of the body-responsive 

EBA and face-responsive pSTS, which could suggest a similar role of the intersection of these 

face- and body-responsive regions in shared face and body coding as we find at the 

intersection of the OFA and EBA in Chapter 4 for shared face and body orientation 

information. 

Many subcategories are shared by faces and bodies, and we investigated the neural 

coding of two of these subcategories, sex and weight, in Chapter 2. We selected these two 

subcategories as they are easily definable subcategories that are clearly visible from both 

the body and face. Other examples of shared subcategories include race, age and also more 

abstract attributes such as attractiveness and trustworthiness. Future work will be needed 

to investigate how other kinds of shared subcategories are encoded.    

In Chapter 4 we investigated face and body orientation, but not object orientation. A 

previous study found that both face and object orientation could be decoded from neural 

activity in the object-responsive lateral occipital (LO) area (Ramírez et al., 2014). This region 

is close to the region we find in Chapter 4 that encoded orientation in an abstract manner 

across neural activity evoked by faces and bodies. This suggests that this abstract coding 

could potentially also apply to objects. However, it is also possible that object orientation 

may be encoded differently to face and body orientation, as the view that is defined as the 

front view of an object can be more ambiguous than the front of a face or a body (Yangqing 

Xu & Franconeri, 2012).  
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1.6. General discussion 

The Chapters of this thesis have investigated the neural coding of four different 

shared properties of faces and bodies or objects, namely shared subcategories (sex and 

weight), shared identity and shared orientation for faces and bodies, and holistic processing 

for faces and objects. We tested whether these shared properties were encoded in a 

separated manner in brain regions previously shown to be responsive to faces, bodies and 

objects, or if there would be overlapping or shared coding of these properties. Our results 

show a mixed pattern, with some aspects of the shared properties encoded in a shared or 

overlapping manner, and others aspects encoded in a domain-specific manner.  

 In several of the studies included in this thesis, we found evidence that shared 

properties are encoded in a distributed, overlapping and non-domain specific manner. In 

Chapters 2, 3 and 4, we found we could decode face and body subcategories, identities and 

orientations from both face- and body-responsive brain regions, demonstrating that the 

face- and body-responsive regions do not solely encode visual information related to their 

specific domain preferences. Furthermore in Chapter 5, we found neural responses related 

to holistic processing of faces in object- and scene-responsive brain regions, as well as in the 

face-responsive FFA2, demonstrating an involvement of non-domain specific regions in 

holistic face processing. These findings support a previous theory that neural 

representations of faces and objects are widely distributed and overlapping, rather than 

constrained to particular face- and object-responsive areas of occipitotemporal cortex 

(Haxby et al., 2001), and furthermore extend this theory to the visual processing of human 

bodies.  

 Beyond this overlapping coding, we also found evidence of abstract coding of shared 

properties, where the same pattern of activity was evoked by both faces and bodies. Several 

regions were found to show abstract coding, including a variety of low-level to high-level 

regions. In Chapter 4, we found abstract coding of face and body orientation at the 

intersection of the early face and body processing regions OFA and EBA and in Chapter 2, we 

also found evidence of abstract coding of weight in the EBA. Abstract coding of identity was 

found in both early areas (V1 and right inferior occipital cortex) as well as higher-level 

regions, the right parahippocampal cortex and right superior parietal cortex. These results 

show that multiple regions are involved in combining face and body information in an 
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abstract manner. Furthermore, they demonstrate that this information is shared throughout 

different levels of visual processing, and that the level the information is shared seems to 

depend on the specific property.  

 In contrast to our findings of overlapping and abstract shared coding, we found some 

evidence of domain-specific coding. Interestingly, this domain-specific coding seemed to 

relate to high-level visual transformations of the shared properties. In Chapter 2, we found 

that image-size invariant representations of body subcategories were mostly specific to the 

body-responsive brain regions. Similarly, in Chapter 3 we found viewpoint-invariant body 

identity representations in the body-responsive FBA, but not consistently in any face-

responsive regions. These results suggest that visual transformations such as image-size and 

viewpoint transformations may be computed in primarily in domain-specific brain regions. 

These transformations are quite complex abilities of the human visual system, thus it is 

possible that they require dedicated processing regions, which could be one reason that we 

find prominent face-, body- and object-responsive brain regions in occipitotemporal cortex.  

1.7. Conclusion 

 In this work we investigated the neural coding of a variety of shared properties of 

faces, bodies and objects, and tested whether they are encoded in domain-specific regions, 

or in an overlapping or shared neural code. We found evidence for a mix of overlapping 

coding, shared coding and domain-specific coding, depending on the specific property and 

the level of abstraction of its neural representation. These findings extend our 

understanding of the neural processes involved in the encoding of face, body and object 

properties. Furthermore, they give new insights into the overall functional organisation of 

occipitotemporal cortex.  
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A B S T R A C T

Our visual system can easily categorize objects (e.g. faces vs. bodies) and further differentiate them into sub-
categories (e.g. male vs. female). This ability is particularly important for objects of social significance, such as
human faces and bodies. While many studies have demonstrated category selectivity to faces and bodies in the
brain, how subcategories of faces and bodies are represented remains unclear. Here, we investigated how the
brain encodes two prominent subcategories shared by both faces and bodies, sex and weight, and whether neural
responses to these subcategories rely on low-level visual, high-level visual or semantic similarity. We recorded
brain activity with fMRI while participants viewed faces and bodies that varied in sex, weight, and image size. The
results showed that the sex of bodies can be decoded from both body- and face-responsive brain areas, with the
former exhibiting more consistent size-invariant decoding than the latter. Body weight could also be decoded in
face-responsive areas and in distributed body-responsive areas, and this decoding was also invariant to image size.
The weight of faces could be decoded from the fusiform body area (FBA), and weight could be decoded across face
and body stimuli in the extrastriate body area (EBA) and a distributed body-responsive area. The sex of well-
controlled faces (e.g. excluding hairstyles) could not be decoded from face- or body-responsive regions. These
results demonstrate that both face- and body-responsive brain regions encode information that can distinguish the
sex and weight of bodies. Moreover, the neural patterns corresponding to sex and weight were invariant to image
size and could sometimes generalize across face and body stimuli, suggesting that such subcategorical information
is encoded with a high-level visual or semantic code.

1. Introduction

Our visual system makes use of various aspects of shape information
to categorize objects (e.g. person vs. house) and to further categorize
them into different subcategories (e.g. male vs. female person). This
seemingly effortless ability is actually remarkably non-trivial, as objects
that fit one subcategory can be of a great variability (e.g. both faces and
bodies can belong to the same subcategory male), yet exemplars from
different subcategories can look comparably similar (e.g. male vs. female
faces). In the brain, both monkey neurophysiology and human neuro-
imaging studies indicate that object categorization and subcategorization

processes are primarily implemented in the ventral temporal cortex
(VTC) (Grill-Spector and Weiner, 2014; Gross et al., 1972; Haxby et al.,
2001; Kriegeskorte et al., 2008; Logothetis and Sheinberg, 1996; Tanaka,
1996). While the VTC contains high-level category-selective areas for
objects (Malach et al., 1995), faces (Gauthier et al., 2000; Kanwisher
et al., 1997), bodies (Downing et al., 2001; Peelen and Downing, 2005),
scenes (Epstein and Kanwisher, 1998), and visually presented words
(Cohen et al., 2000), how, and where in the brain, subcategories are
encoded remains to be elucidated. Even less is known about how the
brain represents the same semantic categories that are shared by different
object categories (e.g. sex of faces and sex of bodies).
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Recent studies on face perception suggest that face-responsive brain
areas may contain neural representations of subcategories (e.g. the sex,
race, and identity of faces). Different patterns of neural responses to male
and female faces have been identified in the fusiform face area (FFA) and
other face-responsive regions (Contreras et al., 2013; Freeman et al.,
2010; Kaul et al., 2011). Different patterns of neural responses to faces of
different races have also been identified in the fusiform gyrus and early
visual cortex (Contreras et al., 2013; Ratner et al., 2013). Several studies
have investigated how the brain represents face identities (an extreme
level of subcategorization) and found stimulus-independent representa-
tion of face identities in the anterior temporal face area (ATFA) (Anzel-
lotti et al., 2014; Guntupalli et al., 2016; Kriegeskorte et al., 2007). Other
studies found that the FFA (Anzellotti et al., 2014; Axelrod and Yovel,
2015) and the superior intraparietal sulcus (Jeong and Xu, 2016) also
encode face identity.

It remains unclear exactly which subcategory features drive distinc-
tive patterns of neural responses to different face subcategories, and
whether these subcategories are represented in brain areas beyond those
selective for faces (Haxby et al., 2001). The distinction between visual
and semantic representation has been observed during general object
categorization (Bracci and Op de Beeck, 2016), which may similarly
apply to face and body categorization. For instance, different patterns of
neural responses to male versus female faces could be driven by differ-
ential sensitivity to the visual feature of hairstyle, rather than the
perceived semantic category of biological sex. Similarly, separable neural
responses to faces of different races may be caused by the visual feature of
skin tone, rather than the semantic category of race. Studies finding
different neural responses to bodies of different subcategories in
body-responsive areas may have the same visual/semantic concern.
There is some evidence that the extrastriate body area (EBA) and fusi-
form body area (FBA) contain information about the identity of bodies
(Ewbank et al., 2011) and the FBA and right middle occipital gyrus
contain information about the weight of bodies (Hummel et al., 2013).
However, different neural responses to lower vs. higher weight bodies
might be supported by different sensitivity to the physical image size of
bodies rather than the semantic perception of body weight. In behaviour,
perceived body weight has been found to be processed independently of
physical image size (Sturman et al., 2017).

In this study, we investigated how information about subcategories
shared by faces and bodies is encoded in the face- and body-responsive
brain networks. We chose the same two subcategories of faces and
bodies: sex (male vs. female) andweight (lower vs. higher). We presented
participants with images of faces and bodies varying in sex, weight, and
image size (larger vs. smaller) whilst recording their brain activity using
functional magnetic resonance imaging (fMRI). Inclusion of both face
and body stimuli allowed us to investigate whether the brain encodes
shared semantic subcategories (e.g. male/female) in an abstract manner,
despite dramatic differences in the visual appearance of stimuli (e.g.
faces vs. bodies). We varied image size of stimuli to further test whether
the neural coding of subcategories is more abstract (i.e. image size
invariant) or more bound to visual features (i.e. image size dependent).
Varying image size also helps to clarify whether or not neural processes
in high-level visual areas are modulated by low-level visual features (e.g.
image size) (Andrews and Ewbank, 2004; Sawamura et al., 2005; Yue
et al., 2011).

To investigate how face- and body-responsive brain regions encode
the subcategories of sex and weight, we first trained support vector
machine (SVM) classifiers to discriminate patterns of blood-oxygen-level
dependent (BOLD) activity elicited by each subcategory, and then used
them to predict the subcategories within separate test data. We further
tested if neural responses to different subcategories generalize across
stimuli sizes (e.g. trained with smaller faces, tested on larger faces), and
across face and body stimuli (e.g. trained with faces, tested on bodies).
We performed these multivoxel pattern analyses (MVPA) for both func-
tionally defined face- and body-responsive areas and in whole-brain
searchlight analyses. These analyses allow us to differentiate whether

the neural coding of a subcategory is driven by low-level visual features,
by high-level visual features, or by semantic processing. Specifically, if
neural responses to face and body subcategories were driven by low-level
visual features, they would be dependent on image size. If the neural
responses to these subcategories were driven by high-level visual fea-
tures, they would be independent of the image size, but not necessarily
able to generalize across face and body stimuli. In contrast, if neural
responses were driven by semantic information then they would be able
to generalize across image size and across face and body stimuli.

2. Materials and methods

2.1. Participants

Thirteen participants (7 female, 6 male, 22–32 years old) were
included in the fMRI experiment analyses presented in the results section,
out of fifteen who had originally participated. Due to scanner malfunc-
tion the face-stimuli runs could not be completed in one participant. This
participant was included in the body-related analyses but not the face
ones. Data from two participants were excluded from analyses due to
excessive head movement during scanning. All participants provided
written informed consent prior to the experiment, and the procedures
were approved by the ethics committee of the University Clinic
Tübingen.

2.2. Stimuli

The experimental stimuli were grayscale images of faces and bodies
that varied in biological sex (i.e. male or female) and weight (i.e. higher
weight or lower weight), resulting in four stimulus classes for faces, and
four for bodies. Each class was presented in both a smaller and larger
image size (larger images were twice the height and width of smaller
images) resulting in a total of 16 conditions (Fig. 1A). Each class con-
tained 42 exemplars (e.g. low-weight, male bodies), all of which were
different individuals. The perceived sex and weight of these images were
validated via ratings from independent observers (see sections 2.2.3 and
3.1.1 below).

2.2.1. Face stimuli
Face stimuli were created using 3D face models of the face database of

the Max Planck Institute for Biological Cybernetics (Blanz and Vetter,
1999; Troje and Bülthoff, 1996). To increase the variability of weight of
faces, we intensified the perceived weight of the faces using a 3D
morphable model (Blanz and Vetter, 1999), using the following pro-
cedure. Six observers (5 female, 1 male, 22–27 years old, 1 author), who
did not participate in the fMRI experiment, rated the perceived weight of
311 faces from the database. Based on these ratings we selected all faces
that were above or below one standard deviation from the average
perceived weight, separately for male and female faces. These selected
faces were then morphed together to generate average higher and lower
weight faces separately for male and female faces. The difference be-
tween higher- and lower-weight average morphs was then applied to the
original individual face models, so that for each face we were able to
create higher and lower weight versions of that face. Any stimuli with
artefacts from the morphing procedure were removed.

2.2.2. Body stimuli
Body stimuli were created based on body scans from the CAESAR

dataset (Robinette et al., 2002). We selected bodies with a Body Mass
Index (BMI) between one and two standard deviations above the average
BMI for our higher weight bodies, and between one and two standard
deviations below the average BMI for our lower weight bodies (both
calculated separately for male and female bodies). The selected 264 body
scans were then registered to a 3D body shape and pose model (Loper
et al., 2015). This allowed us to obtain individual body shapes in a
standard A-pose (see Fig. 1A). We modified the texture obtained from the
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original scans in order to remove markers and fill in any missing texture.
In the final body images, the faces were covered with an oval in order to
exclude any face information from the body images.

2.2.3. Ratings of face and body stimuli
To select stimuli that truly differed in perceived weight and sex, we

had six observers (3 female, 3 male, 22–35 years old), who were not
participants in the fMRI experiment, rate the perceived sex and weight,
for both face and body stimuli, on 7-point Likert scales. Based on these
ratings we then selected 42 stimuli for each of the eight conditions (e.g.
low-weight, male bodies) that maximised perceived difference in sex and
weight.

2.2.4. Background stimuli
During the fMRI experiment, face and body images were shown in

front of a randomly generated Gaussian noise background (Fig. 1B), in
order to keep the area of retinal stimulation constant for all stimuli
despite differences in the foreground image shape.

2.2.5. Localizer stimuli
Stimuli for the localizer experiment consisted of grayscale images of

faces, headless bodies, objects and phase-scrambled images. Phase-
scrambled images were created by making a collage containing the
face and headless body images and then generating Fourier-scrambled

images from the collage image.

2.3. fMRI experiment

The study consisted of two fMRI sessions on separate days. On the first
day localizer runs and anatomical data were collected. On the second day
experimental runs were collected. Stimuli were presented via a projector
(resolution 1920� 1080) with Matlab 2013b using the Psychophysics
Toolbox extensions (Brainard, 1997; Kleiner et al., 2007) on a Windows
PC. Participants lay supine in the scanner and viewed a screen positioned
behind their head via a mirror attached to the head coil. The screen was
positioned at a distance of 82 cm, and spanned 28� � 16� of visual angle
in horizontal and vertical directions respectively.

2.3.1. Experimental runs
Participants completed 8 experimental runs where 4 runs contained

face stimuli and 4 runs contained body stimuli. Each run contained 8
conditions of a 2 (Sex: male vs. female) x 2 (Weight: lower vs. higher) x 2
(Image Size: larger vs. smaller) factorial design (Fig. 1A). Conditions
were presented in a carryover counterbalanced blocked design, such that
each condition block was preceded by each condition block once in a run
(Brooks, 2012). This was to avoid biases due to remaining BOLD acti-
vation from a previous condition block (Aguirre, 2007). Stimuli were
presented in front of a centred Gaussian noise background (width 5.1�,

Fig. 1. Experimental stimuli and procedure of the fMRI experiment. (A) Example stimuli for the 16 conditions of the fMRI experiment. Stimuli were shown at a larger
and a smaller image size (larger images were twice the height and width of smaller images). (B) An example block of stimuli in the fMRI experiment. Subjects viewed
the stimuli in 6 s blocks, where each block contained images from one condition. Each image was presented for 900m s with a 100m s blank grayscale screen between
images. Two Gaussian noise only images were shown between blocks, each lasted 900m s followed by a 100m s blank screen.
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height 7.9�). Average stimulus sizes were of the following widths and
heights; larger faces 2.4� � 3.7�; smaller faces 1.2� � 1.8�; larger bodies
4.0� � 6.5�; smaller bodies 2.0� � 3.3�. In each block 6 images were
shown, where each image was shown for 0.9 s followed by a 0.1 s blank
grayscale screen. Two Gaussian noise only images were shown between
blocks, each for 0.9 s followed by a 0.1 s blank grayscale screen. Images in
each block appeared in 6 different positions (horizontally either 0.2� left
or right of the screen centre; vertically either centred, or 0.2� above or
below the screen centre) in a random order.

2.3.1.1. fMRI task. Participants fixated a central fixation cross at all
times and pressed a button whenever a red dot appeared on the fixation
cross. This occurred twice during each block at randomly determined
times at least 2 s apart.

2.3.2. Localizer runs
Participants completed 5 localizer runs, which were collected on a

separate day prior to the experimental runs. In each run participants
viewed blocks of faces, bodies, objects and phase-scrambled images.
Faces, bodies and objects were shown in front of the phase-scrambled
images to match the amount of retinal stimulation in all blocks. In each
block 8 images were shown, with each image being presented for 1.8 s,
and a 0.2 s blank grayscale screen between images. Images were pre-
sented in a carryover counterbalanced sequence (Brooks, 2012). Partic-
ipants performed a one-back matching task on the images, to ensure
balanced attention across conditions. Image repetitions occurred on
average once every 9 s.

2.4. fMRI scan parameters

Images were acquired using a 3T Siemens Prisma scanner with a 64-
channel head coil (Siemens, Erlangen, Germany). Functional T2* echo-
planar images (EPI) were acquired using a sequence with the following
parameters; multiband acceleration factor 2, TR 1.2 s, TE 30 m s, flip
angle 68�, FOV 192 � 192 mm. Volumes consisted of 36 slices, with an
isotropic voxel size of 3 � 3 � 3 mm. The first 8 vol of each run were
discarded to allow for equilibration of the T1 signal. During each session
a gradient echo field map was recorded so that magnetic field in-
homogeneity could be corrected during preprocessing. For each partici-
pant a high-resolution T1-weighted anatomical scan was acquired with
the following parameters; TR 2 s, TE 3.06 m s, FOV 232 � 256 mm, 192
slices, isotropic voxel size of 1 � 1 � 1 mm.

2.5. fMRI data preprocessing

Data was preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/sp
m/). All functional data was realigned, unwarped to correct for inho-
mogenities in the magnetic field and coregistered to the anatomical data.
Localizer data was spatially smoothed with a 6mm Gaussian kernel. For
the whole-brain univariate analyses the data was normalized to MNI
(Montreal Neurological Institute) space and spatially smoothed with a

6mm Gaussian kernel. Multivariate data analyses were performed in
individual subject space on unsmoothed data. For searchlight analyses
the resulting single-subject maps of classification accuracies were
normalized to MNI space, and spatially smoothed with a 6mm Gaussian
kernel.

2.6. Definition of regions of interest

We defined separate face- and body-responsive regions of interest
(ROIs) using data from the localizer runs. The contrast faces> objects
was used to identify the OFA and FFA and the contrast bodies> objects
was used to identify the EBA and FBA (Table 1). As ROI size has been
shown to affect decoding accuracy (Gardumi et al., 2016) we kept ROI
sizes constant by selecting the 100 most active voxels in each region
bilaterally to form the ROI. To achieve this, we initially attempted to
identify each ROI using a threshold of p< 0.05 (FWE corrected). If the
ROI was not identifiable in 100 voxels we attempted to define the ROI
using a lower threshold of t¼ 2. ROIs were defined using localizer data
only, therefore their definition was independent to the main experiment
analyses. The FFA and the FBA are known to partially overlap (Schwar-
zlose et al., 2005). We initially performed analyses in both ROIs without
removing any overlapping voxels (this overlap had a mean of 32% of FFA
voxels and 38% of FBA voxels). In any instances where an analysis was
significant for both FFA and FBA (and therefore significant decoding
could be caused be overlapping voxels) we planned to run additional
analyses removing the overlapping voxels to investigate this possibility.

In addition to the separate ROIs we defined distributed face- and
body-responsive ROIs that contained voxels from several of the isolated
ROIs, as described previously (Hahn and O’Toole, 2017). This allowed us
to investigate whether neural information from distributed brain regions
improves categorical classification of faces and bodies. Distributed
face-responsive ROIs were defined using voxels from OFA, FFA, STS and
ATFA. Distributed body-responsive ROIs were defined using voxels from
EBA and FBA. The 300 and 500 most responsive voxels were selected to
create two sizes of distributed ROIs. We defined 300 voxel ROIs as every
participant had at least 300 face- and body-responsive voxels, thus we
were able to define a distributed face- and body-responsive ROI of this
size in every participant. Most participants also had many more face-and
body-responsive voxels, thus we additionally defined 500 voxel face- and
body-responsive ROIs (in N¼ 10 and N¼ 11 participants respectively) to
see if classifier performance would benefit from information in these
additional voxels.

We used V1 as a control ROI, which was bilaterally localized using
anatomical labels generated using the Freesurfer software package
(Hinds et al., 2009) (https://surfer.nmr.mgh.harvard.edu/). This method
generates V1 ROIs based on the anatomy of the participant, and the
method has been validated to show that there is close agreement between
these anatomical V1 ROIs and V1 defined functionally using retinotopic
mapping. For each participant, we selected the 50 most posterior voxels
(corresponding to the foveal section of V1) from each hemisphere and
combined them to create a 100-voxel V1 ROI.

Table 1
ROI coordinates (in MNI space), ROI volume and number of subjects each ROI was identified in (N). All ROI analyses were done in subject space. ROIs were subsequently
normalized to MNI space in order to show the mean ROI locations. Coordinates show mean x, y and z locations and volume, � standard deviations.

ROI hemisphere x y z Volume (mm3) N

OFA left �34� 6.4 �83� 7.1 �12� 3.4 520� 296.9 13
right 37� 5.9 �80� 7.4 �13� 3.5 945� 356.4 13

FFA left �41� 2.8 �56� 8.8 �19� 3.7 519� 253.4 12
right 43� 3.1 �53� 6.0 �18� 2.6 979� 274.5 13

EBA left �47� 2.8 �77� 3.7 4� 5.0 385� 153.0 12
right 48� 2.6 �70� 3.3 �1� 5.4 1106� 252.1 13

FBA left �42� 2.7 �48� 5.8 �21� 5.0 374� 277.2 11
right 44� 2.9 �49� 4.0 �18� 3.5 994� 272.2 11

V1 left �9� 1.4 �100� 1.8 �3� 4.3 390� 70.8 13
right 12� 3.9 �98� 1.8 0� 3.9 468� 80.2 13
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To investigate if our choice to fix the ROI size at a constant number of
voxels, rather than fixing ROI size at a constant t-contrast threshold had
any impact on our results, we additionally conducted supplemental an-
alyses where ROIs were defined using this alternative method (Supple-
mentary Table S1). Specifically, we defined supplemental versions of our
face- and body-responsive ROIs by selecting all active voxels at a constant
threshold of t¼ 3 rather than a constant number of voxels. A supple-
mental V1 ROI was defined using the same method as the original V1
ROI, except that the 510 most posterior voxels were selected in order to
match the size of this V1 ROI to the average size of the largest separate
ROI (EBA). All results of these supplemental analyses can be found in the
supplemental materials.

2.7. Multivoxel pattern analyses (MVPA)

Data from the main experiment was modelled with General Linear
Models (GLMs) using SPM12. The responses to each block (i.e. trial) were
modelled as separate regressors in the GLM. Classification analyses were
performed using The Decoding Toolbox (Hebart et al., 2015) from the
resulting beta weight images. Input data was feature-scaled using z-score
normalization and outlier values (greater than 2 standard deviations)
were set to 2 or -2. Mean and standard deviation for z-scoring were
estimated using training data and then these values were applied to
testing data to ensure independence of training and testing data. Classi-
fication was performed using a linear support vector machine classifier
(LIBSVM).

We performed three different MVPA analyses (one combining both
image sizes, one across image size, and one across face and body stimuli),
and each was done for separate ROIs, distributed ROIs and in whole-
brain searchlight analyses. Statistical significance for ROI analyses was
assessed using permutation tests with the following procedure. For each
ROI classification analysis the entire analysis was repeated 10,000 times
with condition labels randomly assigned. Thus, we generated a null
distribution of classification accuracies expected by chance and specific
to each analysis. We assessed the significance of our ROI classification
results by testing how often in the null distribution we obtained a mean
decoding performance greater than or equal to the actual mean decoding
performance found in our analysis. We first tested whether this was
significant at the p< 0.05 threshold using a one-sided test (mean
decoding performance in the null distribution must be greater than or
equal to the actual mean decoding performance in less than 500 out of
10,000 tests). We then additionally applied a Bonferroni-correction to
correct p-values for the number of ROIs tested. P-values following Bon-
ferroni correction were limited to a maximum value of one (i.e. if Bon-
ferroni correction caused a p-value to be greater than one, we set its value
to one).

We additionally performed whole-brain searchlight analyses to
investigate if any regions outside of our defined ROIs would be able to
decode sex or weight. Searchlight analyses involved performing each
classification analysis in 4-voxel radius spheres, where each sphere was
centred around each voxel in the brain once, thus producing whole-brain
maps of classification accuracies. To assess the significance of searchlight
data we performed one-sided t-tests in SPM12 using a False Discovery
Rate (FDR) correction to adjust for multiple comparisons.

2.7.1. MVPA analysis 1: classification of sex and weight
Our first set of analyses aimed to determine which brain regions

encode the subcategories sex and weight, separately based on neural
activity induced by viewing faces and bodies of these subcategories. For
classification of sex, the classifier was trained and tested on male versus
female stimuli, regardless of image size and weight. For classification of
weight, the classifier was trained and tested on higher weight versus
lower weight stimuli, regardless of image size and sex. Thus, we maxi-
mised the amount of data for the classifier to make its decision, and
pooled across irrelevant subcategories. This meant also that the classifier
was trained to be invariant to one of the features when distinguishing the

other. We used 3 out of 4 runs as training data for the SVM classifier. We
then used the trained classifier to predict the subcategories of the blocks
in the independent test data from the 4th withheld run. A four-fold cross-
validation procedure was used, such that each run was used once as the
held out test dataset. Final decoding accuracy was determined by aver-
aging over the four cross-validation iterations.

2.7.2. MVPA analysis 2: size-invariant classification of sex and weight
Our second set of analyses aimed to determine which brain regions

encode the subcategories sex and weight in an image-size invariant
manner. To this end, we trained the classifier to decode the subcategory
from neural data evoked by one image size and then tested its ability to
decode this subcategory from neural activity evoked by the other image
size. As previously, 3 out of 4 runs were used as training data for the SVM
classifier and the 4th withheld run was used as test data. However, in this
case the training data only used neural activity data evoked by one image
size, whereas the test data only used neural activity data evoked by
subjects viewing the other image size. A four-fold cross-validation pro-
cedure was again used, such that each run was used once as the held out
test dataset. This was repeated two times, once using the smaller image
size data as training data and the larger image size data as test data, and
vice-versa. The final decoding accuracy was determined by averaging
over the four cross-validation iterations and both image size training and
test set combinations.

2.7.3. MVPA analysis 3: classification of sex and weight across face and
body stimuli

Our third set of analyses investigated which brain regions encode the
subcategories sex and weight across face and body stimuli. To this end,
we trained classifiers to decode each subcategory from neural data
evoked by faces and tested them on neural activity evoked by bodies, and
vice-versa. As face and body stimuli were shown in separate runs (4 runs
each) we trained classifiers on all 4 runs of data evoked by one category
(i.e. face or body stimuli) and tested them on all 4 runs of data evoked by
the other category. The final decoding accuracy was determined by
averaging over the two training and test set combinations.

2.8. Univariate analyses

We also performed univariate analyses to identify brain regions that
are sensitive to the sex, weight, and image size of faces and bodies. In
both separate and distributed ROIs we used t-tests to look for significant
differences in the average BOLD response. P-values were Bonferroni-
corrected for the number of ROIs tested. In addition, whole-brain ana-
lyses were conducted to look for additional brain regions with univariate
activation differences, using a FDR correction to adjust for multiple
comparisons.

2.9. Data and code availability statement

Data cannot be shared as participants were informed that their data
would be stored confidentially, in accordance with the rules of the local
ethics committee. Code is available on request.

3. Results

3.1. Behavioural results

3.1.1. Perceptual differences of face and body stimuli
Our selected face and body stimuli were perceptually different in

terms of perceived sex and weight (Fig. 2). Participants gave significantly
different ratings of sex to male and female faces and bodies (Fig. 2A;
faces: t5¼ 15.2, p¼ 2.3� 10�5; bodies: t5¼ 20.0, p¼ 5.8� 10�6) and
gave a significantly higher weight score for higher-weight stimuli than
lower-weight stimuli (Fig. 2B; faces: t5¼ 7.1, p¼ 8.8� 10�4; bodies:
t5¼ 9.3, p¼ 2.5� 10�4). There were also differences in the rating
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between face and body stimuli. The difference between male and female
ratings was greater for body stimuli as compared to face stimuli (t5¼ 5.3,
p¼ 0.0031; Fig. 2C) and the difference between higher and lower weight
ratings was greater for body stimuli as compared to face stimuli (t5¼ 2.8,
p¼ 0.04; Fig. 2D). Note that during the fMRI experiment, participants
performed a simple task on the fixation cross that was unrelated to the
stimuli.

3.1.2. Attention task during scanning
Participants showed high performance on the attention task during

scanning (mean detection rate of 92% across all conditions). Detection
performance showed no difference between face and body conditions
(t11¼ 0.42, p¼ 0.68), between male and female conditions (t11¼�0.34,
p¼ 0.74), between higher and lower weight conditions (t11¼ 0.02,
p¼ 0.98) or between larger and smaller image size conditions
(t11¼�0.33, p¼ 0.74). There was also no difference in reaction times
between face and body conditions (t11¼�0.36, p¼ 0.71), between male
and female conditions (t11¼ 0.06, p¼ 0.95), between higher and lower
weight conditions (t11¼�0.03, p¼ 0.98) or between larger and smaller
image size conditions (t11¼�0.21, p¼ 0.84). Therefore, any observed
decoding difference between experimental conditions (i.e. faces or
bodies, sex, weight or image size) cannot be attributed to different levels
of attention during scanning.

3.2. Classification of sex and weight

We first tested which brain regions show separable patterns of neural
activity evoked by male and female stimuli or by higher- and lower-
weight stimuli, regardless of image size. We used a leave-one-run-out
cross-validation method, so that for each iteration we trained a linear
support vector machine (SVM) classifier using data from three fMRI runs
and tested the classifier with the data from the one remaining run. We
performed these classification analyses in three types of brain regions; (1)
separate face- and body-responsive regions, (2) distributed face- and
body-responsive regions, and (3) in whole-brain searchlight analyses.
The results are shown in Figs. 3 and 4.

Fig. 2. Perceptual ratings of stimuli in an independent behavioural experiment.
Participants rated how they perceived the biological sex (A) and weight (B) of
face and body stimuli on 7-point scales. Circles indicate the mean rating scores
and error bars show the standard error of the mean. (C) and (D) show the dif-
ference between the mean ratings of sex for the male and female stimuli (C), and
between the mean ratings of weight for the higher and lower weight stimuli (D).
Error bars show the standard error of the mean.

Fig. 3. Classification of sex and weight. Classification results for sex in separate
ROIs (A) and distributed ROIs (B). Classification results for weight in separate
ROIs (C) and distributed ROIs (D). Scatter plots show decoding accuracy for
individual participants, horizontal black lines show group mean decoding ac-
curacies and vertical error bars show the standard error of the mean. * indicates
p < 0.05, ** indicates p< 0.001, Bonferroni-corrected for the number of ROIs
(separate ROIs: N¼ 5; distributed ROIs: N¼ 4). Dotted lines indicate chance-
level decoding performance, 50%.
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3.2.1. Classification using separate ROIs
For body stimuli, classification of sex (Fig. 3A) was significantly

above chance in EBA (53.4%, p< 0.0005), but not FBA (52.0%,
p¼ 0.078). In addition, face-responsive areas OFA (53.2%, p¼ 0.001)
and FFA (52.9%, p¼ 0.0025), as well as V1 (55.7%, p< 0.0005), also
showed higher-than-chance classification of the sex of bodies. Classifi-
cation of body weight (Fig. 3C) was significantly above chance in the EBA
(52.0%, p¼ 0.044), but not the FBA (50.4%, p¼ 1). Again, we found
higher-than chance level classification of body weight in OFA (52.9%,
p¼ 0.0015) and V1 (53.4%, p< 0.0005). These results indicate that the
encoding of body subcategories is not unique to body-responsive regions
as both body- and face-responsive areas encode information about the sex
and weight of bodies. Higher-than-chance decoding performance
observed in V1 suggests that low-level visual features could be used to
distinguish body subcategories.

For face stimuli, none of the separate ROIs was able to classify the sex
of faces at a higher-than-chance level (Fig. 3A): OFA (50.6%, p¼ 1), FFA
(51.3%, p¼ 0.36), EBA (49.9%, p¼ 1), FBA (50.3%, p¼ 1), V1 (52.1%,
p¼ 0.073). Classification of the weight of faces was above chance in FBA
(52.3%, p¼ 0.046) and V1 (52.5%, p¼ 0.017), but not in OFA (52.0%,
p¼ 0.072), FFA (51.2%, p¼ 0.48), or EBA (50.3%, p¼ 1).

To examine whether our results were influenced by the way we
defined ROIs (i.e. using a fixed number of voxels), we performed addi-
tional analyses using ROIs defined at a constant t-contrast threshold
rather than a constant number of voxels. These additional analyses
revealed the same results as reported above (see Supplementary Fig. S1),
with the exception that the classification of the weight of faces was not
significant in the FBA (50.9%, p¼ 0.80).

3.2.2. Classification using distributed ROIs
We further investigated classification of sex and weight in larger,

distributed face- and body-responsive ROIs. These ROIs may show
improved classification performance compared to smaller separated
ROIs, due to increased information available for classification and known
effects of ROI size on classification accuracy (Cox and Savoy, 2003;
Gardumi et al., 2016). We defined ROIs of two different sizes: 300 voxels
and 500 voxels (see Section 2.6 for details). For body stimuli, classifi-
cation of sex (Fig. 3B) was higher than chance in both sizes of
body-responsive ROI (300 voxels: 54.1%, p< 0.0004; 500 voxels: 54.0%,

p< 0.0004), as well as both sizes of face-responsive ROI (300 voxels:
53.7%, p< 0.0004; 500 voxels: 53.4%, p¼ 0.0024). Classification of
body weight (Fig. 3D) was also higher than chance in both sizes of
body-responsive ROI (300 voxels: 52.5%, p¼ 0.012; 500 voxels: 52.5%,
p¼ 0.015), and in the larger face-responsive ROI (500 voxels: 52.3%,
p¼ 0.03).

For face stimuli, no distributed face or body ROIs were able to decode
the sex or weight of faces, even using the large 500-voxel ROIs (which
had themost information available for classification). Specifically, for the
sex of faces the decoding performance was 50.5% (p¼ 1) in the larger
face-responsive ROI and 50.9% (p¼ 0.75) in the larger body-responsive
ROI. For the weight of faces the decoding performance was 51.3%
(p¼ 0.40) in the larger face-responsive ROI and 50.9% (p¼ 0.68) in the
larger body-responsive ROI. It is worth noting that when the distributed
face-responsive ROI was defined at a constant t-contrast threshold rather
than constant number of voxels, we were able to decode the weight of
faces (52.2%, p¼ 0.015; see Supplementary Fig. S1D).

3.2.3. Classification using whole-brain searchlight analysis
To investigate if any other brain regions were sensitive to sex or

weight information of faces and bodies, we performed the same classi-
fication analyses at the whole-brain level using a searchlight analysis.
Fig. 4 shows the brain regions identified in the searchlight analyses with
body stimuli. Higher-than-chance decoding of the sex of body stimuli was
observed in much of occipitotemporal cortex (Fig. 4A) and consistent
with the ROI classification analysis, the regions sensitive to the sex of
bodies overlapped with the peak coordinates of body-responsive rEBA
and rFBA, as well as face-responsive OFA and FFA and V1. Additional
clusters sensitive to the sex of bodies were revealed in parietal (MNI
coordinates: �2, �66, 56) and frontal regions (MNI coordinates: 40, 60,
6; 20, 32, 42; 28, 16, 28). These results show that many regions contain
low-level visual, high-level visual or semantic information that allows a
classifier to distinguish between neural activity evoked by bodies of
different sexes.

Classification of the weight of body stimuli was significantly above
chance in two regions that overlappedwith the mean coordinates of lOFA
and rEBA, as well as a small cluster in the right anterior temporal lobe
(MNI coordinates: 40, �6, 32). For the face stimuli, classification of
weight revealed a cluster in the left early visual cortex (MNI coordinates:
�14, �94, �12). No regions were identified that could decode the sex of
face stimuli.

3.3. Size-invariant classification of sex and weight

To investigate whether neural responses to sex and weight were
invariant to image size, we tested whether patterns of neural activity
evoked by one size of stimuli could be generalized to decode the sex or
weight when participants view stimuli of a different size. Thus, we
trained SVM classifiers to distinguish sex and weight using data obtained
with only one of the two image sizes. We then tested the classifier using
only the data obtained with the other image size. Significant decoding
would suggest that the pattern of neural response to sex or weight was
invariant to image size. Again, we performed the size invariant classifi-
cation analysis using separate ROIs, distributed ROIs, and in searchlight
analyses across the whole brain. The results are shown in Fig. 5.

For classification analysis using the separate ROIs, both body-
responsive ROIs showed higher-than-chance performance when decod-
ing the sex of body stimuli (EBA, 52.7%, p¼ 0.002; FBA, 52.8%,
p¼ 0.003), but face-responsive ROIs OFA (50.9%, p¼ 0.67) and FFA
(51.1%, p¼ 0.47), as well as V1 (50.2%, p¼ 1), did not. Paired-sample t-
tests showed that decoding performance was significantly higher than V1
in EBA (t12¼ 3.2, p¼ 0.0077) but not in FBA (t10¼ 1.6, p¼ 0.15).
Furthermore, classification results using ROIs defined at a constant t-
contrast threshold (Supplementary Fig. S2A) showed significant decod-
ing of the sex of bodies in EBA (53.0%, p¼ 0.0005), OFA (52.2%,
p¼ 0.016) and V1 (52.3%, p¼ 0.0070) but not in FBA (51.1%, p¼ 0.43).

Fig. 4. Results of searchlight analyses for the classification of the sex (A) and
weight (B) of bodies. (A) Regions able to classify the sex of bodies in the
searchlight analysis overlapped with the mean coordinates of the rEBA, OFA,
FFA, rFBA and V1. (B) Regions able to classify the weight of bodies in the
searchlight analysis overlapped with the mean coordinates of the lOFA
and rEBA.
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These results suggest that decoding the sex of body stimuli across image
size is most robust in the EBA.

Size-invariant classification of the weight of bodies was significant in
FFA (52.3%, p¼ 0.013) but not in the body-related ROIs (EBA: 51.4%,
p¼ 0.20; FBA: 49.8%, p¼ 1). A paired t-test showed that the classifica-
tion of body weight in FFA was also significantly higher than in V1
(t12¼ 2.3, p¼ 0.042). Classification results using ROIs defined at a con-
stant t-contrast threshold (Supplementary Fig. S2C) showed significant
decoding of body weight in OFA (52.3%, p¼ 0.013) but not in FFA
(51.2%, p¼ 0.40). This difference may be due to an increase in

information to the larger OFA ROI defined at a contrast t-contrast
threshold, and an increase in noisy information hindering classification
in the FFA ROI. No regions contained size-invariant information about
the sex or weight of face stimuli.

For classification analyses using distributed ROIs, size-invariant
classification of the sex of body stimuli was observed in both sizes of
body-responsive ROI (300 voxels: 52.5%, p¼ 0.0048; 500 voxels: 53.0%,
p¼ 0.0008) but not in face-responsive ROIs (300 voxels: 50.7%, p¼ 0.85;
500 voxels: 50.4%, p¼ 1). Similarly, size-invariant classification of the
weight of bodies was found in both sizes of body-responsive ROI (300
voxels: 52.5%, p¼ 0.0028; 500 voxels: 52.3%, p¼ 0.022), but not in face-
responsive ROIs (300 voxels: 51.4%, p¼ 0.20; 500 voxels: 51.0%,
p¼ 0.62). Neither face- nor body-responsive ROIs could decode the sex or
weight of face stimuli across image size (sex classification, face-
responsive ROI, 500 voxels: 51.4%, p¼ 0.32; sex classification, body-
responsive ROI, 500 voxels: 50.7%, p¼ 0.94; weight classification,
face-responsive ROI, 500 voxels: 51.1%, p¼ 0.57; weight classification,
body-responsive ROI, 500 voxels: 50.9%, p¼ 0.73).

The whole-brain searchlight analyses revealed no significant regions
that could reliably decode the sex or weight of stimuli. This null-result,
despite significant ROI decoding, might be due to the individual vari-
ance in ROI location that would weaken the group searchlight result in
normalized space, combined with the overall weaker signal in the cross-
decoding approach.

3.4. Classification of sex and weight across face and body stimuli

We investigated whether patterns of neural response to sex and
weight would be able to generalize from patterns of activity evoked by
faces to those evoked by bodies and vice-versa. To do this we trained
SVM classifiers to distinguish sex and weight using neural activity data
when participants viewed faces, and then tested the classifier on neural
activity data when participants viewed bodies, and vice-versa. Significant
decoding across face and body stimuli would suggest a semantic repre-
sentation of the subcategory. We performed classification analyses with
separate ROIs, distributed ROIs, and in searchlight analyses across the
whole brain. The results are shown in Fig. 6.

We found significant decoding of weight across face and body stimuli
in the EBA (51.5%, p¼ 0.021) and the 500 voxel body-responsive ROI
(51.7%, p¼ 0.016), but not in any other ROIs (FBA: 50.6%, p¼ 0.89;
OFA: 51.1%, p¼ 0.14; FFA: 49.8%, p¼ 1; V1: 49.4%, p¼ 1; face-
responsive ROI, 500 voxels: 50.6%, p¼ 0.84). Paired-sample t-tests
showed that decoding performance was significantly higher than V1 in
EBA (t12¼ 3.3, p¼ 0.0068) and the 500 voxel body-responsive ROI
(t9¼ 3.1, p¼ 0.012). We additionally compared the classification per-
formance of weight across face and body stimuli using ROIs defined at a
constant t-contrast threshold (Supplementary Fig. S3C). We did not find
significant decoding of weight in EBA (50.4%, p¼ 1) or the distributed
body-responsive ROI (51.1%, p¼ 0.063) as defined using this method.

We were not able to decode sex across face and body stimuli in any of
our separate or distributed ROIs (EBA: 50.0%, p¼ 1; FBA: 50.6%, p¼ 0.9;
OFA: 50.4%, p¼ 0.39; FFA: 49.2%, p¼ 1; V1: 50.0%, p¼ 1; body-
responsive ROI, 500 voxels: 50.1%, p¼ 1; face-responsive ROI, 500
voxels: 49.4%, p¼ 1). This non-significant decoding of sex across face
and body stimuli is probably due to the fact that we were unable to
identify any regions that could decode the sex of faces.

We additionally performed searchlight analyses to investigate if any
other brain regions would be able to decode sex or weight across face and
body stimuli. We did not identify any regions in these analyses.

3.5. Univariate analyses

To investigate whether the sex, weight, and image size of faces or
bodies elicited different overall levels of neural activity, we conducted
both ROI and whole-brain univariate analyses. The results are shown in
Figs. 7–9.

Fig. 5. Size-invariant classification of sex and weight. In this cross-classification
analysis, a SVM classifier was trained on neural activity from subjects viewing
stimuli of one image size and tested on its decoding performance on neural
activity from the subjects viewing a different image size. (A) and (B) show
classification results for sex in separate ROIs (A) and distributed ROIs (B). (C)
and (D) show classification results for weight in separate ROIs (C) and distrib-
uted ROIs (D). Scatter plots show decoding accuracy for individual participants,
horizontal black lines show group mean decoding accuracies and vertical error
bars show the standard error of the mean.* indicates p < 0.05, ** indicates
p< 0.001, Bonferroni-corrected for the number of ROIs (separate ROIs: N¼ 5;
distributed ROIs: N¼ 4). Dotted lines indicate chance-level decoding perfor-
mance, 50%.
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3.5.1. ROI analyses
Firstly, to investigate if there were any differences in mean response

between faces or bodies of different sexes, we performed the contrast
female stimuli minus male stimuli. None of the face- or body-responsive
ROIs showed significant differences between male and female stimuli
(Fig. 7A–B). There was a slight trend for higher activity to male bodies
compared to female bodies in the body responsive regions, EBA
(t12¼�2.6, p¼ 0.12), FBA (t10¼�2.8, p¼ 0.098), 300 voxel body-
responsive ROI (t12¼�2.4, p¼ 0.14) and 500 voxel body-responsive
ROI (t10¼�2.9, p¼ 0.069).

Secondly, we investigated if there were any differences in the mean
response to faces or bodies of different weights, using the contrast higher
weight stimuli minus lower weight stimuli. No significant differences

between higher and lower weight stimuli were identified in any ROI
(Fig. 7C–D). V1 showed a slight trend to higher activity to lower weight
bodies compared to higher weight bodies (t12¼�2.1, p¼ 0.27) and to
lower weight faces compared to higher weight faces (t12¼�2.6,
p¼ 0.12).

Finally, we investigated if there were any differences in the mean
response to faces or bodies of different image sizes (Fig. 8). For face
stimuli, we found significantly higher BOLD activation to larger faces
compared to smaller faces in FFA (t11¼ 8.2, p¼ 2.6� 10�5), FBA
(t9¼ 5.9, p¼ 0.0011), both distributed face-responsive ROIs (300 voxels:
t11¼ 3.8, p¼ 0.012; 500 voxels: t8¼ 3.7, p¼ 0.024) and both distributed
body-responsive ROIs (300 voxels: t11¼ 3.8, p¼ 0.013; 500 voxels:

Fig. 6. Classification of sex and weight across face and body stimuli. In these
cross-classification analyses, SVM classifiers were trained to distinguish sex and
weight from neural activity when participants viewed faces and then subse-
quently tested on neural activity when participants viewed bodies, and vice-
versa. (A) and (B) show classification results for sex in separate ROIs (A) and
distributed ROIs (B). (C) and (D) show classification results for weight in
separate ROIs (C) and distributed ROIs (D). Scatter plots show decoding accu-
racy for individual participants, horizontal black lines show group mean
decoding accuracies and vertical error bars show the standard error of the
mean.* indicates p< 0.05 Bonferroni-corrected for the number of ROIs (separate
ROIs: N¼ 5; distributed ROIs: N¼ 4). Dotted lines indicate chance-level
decoding performance, 50%.

Fig. 7. Mean BOLD differences between the categories sex and weight. (A) and
(B) illustrate mean differences between male and female stimuli for separate (A)
and distributed (B) ROIs. Positive values indicate higher activation by female
stimuli, negative values higher activation by male stimuli. (C) and (D) illustrate
mean differences between higher and lower weight stimuli for separate (C) and
distributed (D) ROIs. Positive values indicate higher activation by higher weight
stimuli, negative values higher activation by lower weight stimuli. None of the
differences were significant in any of the ROIs. Error bars show the standard
error of the mean.
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t9¼ 3.5, p¼ 0.027). Additionally, a slight trend to higher activity to
larger compared to smaller faces was seen in EBA (t11¼ 2.7, p¼ 0.10)
and V1 (t11¼ 2.4, p¼ 0.17). For body stimuli, none of ROIs showed
significant differences between larger and smaller bodies. A trend for
higher activity to larger than smaller bodies was seen in FBA (t10¼ 2.4,
p¼ 0.19), V1 (t12¼ 2.2, p¼ 0.25) and the 500-voxel body-responsive
ROI (t10¼ 2.2, p¼ 0.20).

3.5.2. Whole-brain analyses
To investigate if any other brain regions were sensitive to the sex,

weight, and image size of faces and bodies, we performed the same three
contrasts in whole-brain analyses. We found that the occipitotemporal
cortex showed higher brain activity for larger stimuli than smaller
stimuli, for both faces (Fig. 9A) and bodies (Fig. 9B). For face stimuli the
significant area overlapped with the mean coordinates of the OFA, FFA
and FBA bilaterally. For body stimuli the significant area overlapped with
the mean coordinates of the FBA, rEBA and rFFA. As for the sex and
weight of stimuli, no brain regions showed significant differences be-
tween male and female stimuli or between higher- and lower-weight
stimuli.

4. Discussion

In this study, we investigated how face- and body-responsive brain
regions encode information about the subcategories sex and weight. We
show, for the first time to our knowledge, that subcategorical information
about bodies is encoded in both body- and face-responsive areas in the
brain, and that this information is encoded in a size-invariant manner,
more so for the body-than face-related brain network. Furthermore, we
find evidence that the FBA responds to the weight of faces, and that
weight is encoded in an abstract manner in the EBA and distributed body-
responsive network. These results indicate that subcategories shared by
faces and bodies (e.g. sex) are encoded by different patterns of neural
responses in the brain network related to person perception.

4.1. Neural coding of body subcategories

We found that both face-responsive and body-responsive regions
encoded information about the sex and weight of bodies. For the sex of
bodies, higher-than-chance decoding was observed not only in all body-
responsive ROIs but also in all face-responsive ROIs. For the weight of
bodies, both the distributed body-responsive areas and the largest-size
distributed face-responsive area showed higher-than-chance classifica-
tion of body weight. For the separate ROI analyses, higher-than-chance
decoding of body weight was observed in the EBA as well as the face-
responsive ROIs OFA and FFA. In contrast to the differential multivariate
activity patterns, no ROI showed stronger net activity for one subcate-
gory than another.

Our searchlight results showed that brain regions responding to the
weight of bodies overlapped with those responding to the sex of bodies,
though the latter is more widespread. This result shows similarity to a
recent behavioural finding that judgements of the sex of bodies are in-
dependent of judgements of the weight of bodies but not vice-versa
(Johnstone and Downing, 2017). This coincidence suggests that the
above behavioural difference might be related to how the brain regions
processing these two subcategories overlap. The encoding of body sub-
category information in face-responsive areas indicates that these face
areas are not exclusively involved in face processing (cf. Kanwisher and
Yovel, 2006). These results are in line with previous findings showing
that categorical (e.g. faces and bodies) and subcategorical information is
distributed across occipitotemporal cortex, rather than selective to spe-
cific sub-regions of cortex (Haxby et al., 2001; Huth et al., 2012; Op de
Beeck et al., 2010).

Although both face- and body-responsive brain areas encoded the sex
and weight of bodies, size-invariant body information was more promi-
nent and consistent in the body-responsive areas. When we used data
obtained from one image size to train the classifier and then tested it with
the data obtained from a different image size, we were able to decode the
sex of bodies from EBA, FBA and both distributed body-responsive re-
gions, but not from any face-responsive region. Similarly, the two
distributed body-responsive ROIs, but not face-responsive ROIs, showed
higher-than-chance decoding of body weight in a size-invariant manner.
Although the FFA showed size-invariant decoding of the weight of
bodies, in total less face-responsive ROIs showed size-invariant decoding

Fig. 8. Mean BOLD differences between larger and smaller images. (A) and (B)
illustrate mean differences between larger and smaller image size stimuli for
separate (A) and distributed (B) ROIs. Positive values indicate higher activation
by larger size stimuli, negative values higher activation by smaller size stimuli. *
indicates p < 0.05, ** indicates p< 0.001, Bonferroni-corrected for the number
of ROIs (separate ROIs: N¼ 5; distributed ROIs: N¼ 4). Error bars show the
standard error of the mean.

Fig. 9. Whole-brain results showing univariate activation differences between
larger and smaller image size stimuli. (A) Brain regions showing higher acti-
vation to larger faces compared to smaller faces. These regions overlapped with
the mean coordinates of the OFA, FFA and FBA bilaterally. (B) Brain regions
showing higher activation to larger bodies compared to smaller bodies. These
regions overlapped with the mean coordinates of the FBA, rEBA and rFFA.
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of body subcategories than body-responsive ROIs.
In our first classification analysis we found that V1 was able to decode

the sex of bodies and the weight of bodies and faces, suggesting there
may be some low-level visual information that could be used for classi-
fication in these analyses (where both image-sizes were present in both
the training and test set). In contrast, size-invariant decoding of sex and
weight was not possible in our V1 ROI.

4.2. Neural coding of face subcategories

Wewere able to decode the weight of faces from the FBA, and classify
weight across face and body stimuli in the EBA and distributed body-
responsive network. The decoding of weight across face and body stim-
uli in the EBA and distributed body-responsive network suggests that
these regions may contain a semantic encoding of weight (i.e. not
dependent upon low-level visual features). Although the sex of faces can
be clearly differentiated in perception (as shown by perceptual ratings),
we were unable to decode the sex of faces based on the pattern of neural
activity recorded with fMRI. Previous studies have found mixed results
about whether the sex of faces can be decoded based on the patterns of
neural activity in face-responsive brain areas. Some studies were not able
to decode the sex of faces from the occipitotemporal cortex (Kriegeskorte
et al., 2007) and the FFA (Kanwisher, 2017), whereas others showed that
the sex of faces can be successfully decoded from the FFA or extended
face network (Contreras et al., 2013; Kaul et al., 2011). One factor that
may cause such discrepant results is the stimuli. Our face stimuli were
carefully controlled and lacked external face features (such as hair or
make-up) whereas Contreras et al. (2013) and Kaul et al. (2011) used
photographs of faces varying in hairstyle, make-up, and beards. These
external cues are often diagnostic for the sex of faces and facilitate sex
categorization (Rossion, 2002). Thus, despite clear perceptual differ-
ences shown in the rating task, the sex differences in our face stimuli
might be insufficient to elicit distinct patterns of brain activity that can be
detected and decoded using MVPA. Note that a lack of ability to decode
face subcategories does not necessarily reflect a lack of information about
the subcategories in these regions, it may simply be beyond the resolu-
tion that fMRI MVPA can detect. For instance (Dubois et al., 2015),
compared identity decoding from fMRI recordings with that from single
cell recordings in the anterior temporal cortex of macaques: they found
that identity information decodable from single cells was not decodable
from the fMRI data.

Another factor that might have hindered our ability to decode the sex
of faces was the task. Our attention task (i.e. detecting a red dot) did not
involve any effortful processing of faces, whereas both Contreras et al.
(2013) and Kaul et al. (2011) employed tasks encouraging effortful face
processing (i.e. judgments about the gender or attractiveness of faces).
Given that task-related attention has been shown to affect the neural
representation of faces and semantic categories in natural vision (Çukur
et al., 2013; Dobs et al., 2018; Kaiser et al., 2016), the automatic pro-
cessing of faces in our study may lead to weak responses to the sex of
faces, thereby reducing the possibility of higher-than-chance decoding.
In addition, while sex and weight are two of the most salient dimensions
that differentiate the shape of bodies (Hill et al., 2016), they are probably
not the most important ones for faces (e.g. in comparison with the
identity or emotional expression of faces (Burton et al., 1999; O’Toole
et al., 2011)). In line with this, we found greater differences in perceptual
ratings between male and female stimuli and between higher and lower
weight stimuli for body stimuli than for face stimuli. We note however
that lower rating differences cannot be the only reason for the differences
we see in decoding performance as rating differences of the sex of faces
(for which we do not find significant decoding in any region) are
considerably larger than for the weight of bodies and faces (for which we
find significant decoding in a number of brain regions). Lastly, our
relatively small sample size (N¼ 12 for face stimuli) might also have
impacted our ability to decode the sex of faces. A larger sample size might
be able to improve the decoding of the sex of faces.

4.3. Neural coding of subcategories shared by faces and bodies

Previous studies investigating neural processing of face and body
information have suggested that such information is supported by largely
separated neural networks in occipitotemporal cortex (Peelen and
Downing, 2007; Pitcher et al., 2009). This segregated neural processing
of faces and bodies has been demonstrated with both human and
nonhuman primates (Premereur et al., 2016). For example, neuro-
imaging studies in macaques and humans have shown that responses to
whole-agents (i.e. where the image contains both the face and body) can
be best modelled by a linear combination of responses to faces and bodies
alone, suggesting that there are separate neural populations responsive to
face and body information respectively (Fisher and Freiwald, 2015;
Kaiser et al., 2014). In contrast to this parallel processing hypothesis, we
found that the EBA and distributed body-responsive network could
classify weight across face and body stimuli, suggesting that these regions
encode some shared subcategorical information from faces and bodies in
an abstract manner. This abstract coding may be semantic or based on
high-level visual features (for example concavity vs convexity). Although
sex can also be perceived from both faces and bodies, we were unable to
identify brain regions showing stimuli-independent encoding of sex. In
behaviour, psychological adaptation studies have demonstrated that
perception of gender (Ghuman et al., 2010; Palumbo et al., 2014) can
adapt across face and body stimuli, suggesting an overlapping
representation.

Recent studies have suggested that the anterior temporal lobes may
contain an integrated representation of body and face information. For
example, the right ATFA showed an equivalent level of brain activity to
faces and headless bodies and exhibited significant correlation between
face- and body-elicited neural responses (Harry et al., 2016). Similarly,
the anterior temporal face patch (ATFP) in macaques has been shown to
respondmore strongly to whole-agents than the addition of the responses
to the face and body shown separately, suggesting an integration of face
and body information in this region (Fisher and Freiwald, 2015). Such
integration may help differentiate individuals’ identity, as this area has
been linked to identity representation in humans (Anzellotti et al., 2014;
Guntupalli et al., 2016; Kriegeskorte et al., 2007). However, our results
(from searchlight analyses across image size or across face and body
stimuli) suggest that this identity-sensitive area does not automatically
encode the sex or weight of a person in an abstract manner.

4.4. Effect of low-level stimulus features

We found consistently enhanced neural responses to faces and bodies
when the size of images increased. For both faces and bodies, signifi-
cantly higher brain activity for larger than smaller stimuli was observed
in distributed areas across occipitotemporal cortex, covering face- and
body-responsive ROIs, respectively. For face stimuli, the active area
overlapped with the mean coordinates of face-responsive OFA and FFA,
as well as body-responsive FBA. For body stimuli the overlap was with
the mean coordinates of body-responsive FBA and rEBA, as well as face-
responsive rFFA. Neural responses to faces appeared to be more sensitive
to the stimulus size than those to bodies (see Figs. 8 and 9). The influence
of stimulus size on neural response of high-level visual areas has been
shown for faces (Yue et al., 2011) and general everyday objects (Konkle
and Oliva, 2012), but not, to our knowledge, for human bodies. These
results demonstrate that neural responses to faces and bodies in
high-level visual areas are modulated by low-level stimulus properties,
rather than being size-invariant (cf. Andrews and Ewbank, 2004; Sawa-
mura et al., 2005).

5. Conclusion

Our study provides the first evidence, to our knowledge, that the sex
and weight of human bodies can be decoded from neural activity in the
person-related brain network using MVPA. By demonstrating size-
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invariant decoding of body subcategories in both the body- and face-
responsive brain network, as well as cross-classification of weight
across face and body stimuli, we show that the neural responses to these
subcategories are largely driven by high-level visual or semantic features
rather than by merely low-level visual features. The present study also
offers an alternative approach to repetition suppression for investigating
neural responses to subcategorical body information using fMRI.
Methods like repetition suppression may be biased by top-down effects
(Summerfield et al., 2008). Together, these findings not only offer new
insights into how the brain encodes person-related visual information
like faces and bodies, but also shed light on how shared subcategories
from visually distinctive object categories may be encoded in the human
brain.
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Figure S1. Classification of sex and weight in supplemental ROIs (face- and body-responsive ROIs 

defined at a constant t-contrast threshold, V1 defined as the 510 most posterior V1 voxels). 

Classification results for sex in separate ROIs (A) and distributed ROIs (B). Classification results for 

weight in separate ROIs (C) and distributed ROIs (D) Scatter plots show decoding accuracy for 

individual participants, horizontal black lines show group mean decoding accuracies and vertical error 

bars show the standard error of the mean. * indicates p < 0.05, ** indicates p < 0.001, Bonferroni-

corrected for the number of ROIs (separate ROIs: N = 5; distributed ROIs: N = 2). Dotted lines indicate 

chance-level decoding performance, 50%. 



 

Figure S2. Size-invariant classification of sex and weight in supplemental ROIs (face- and body-

responsive ROIs defined at a constant t-contrast threshold, V1 defined as the 510 most posterior V1 

voxels). (A) and (B) show classification results for sex in separate ROIs (A) and distributed ROIs (B). (C) 

and (D) show classification results for weight in separate ROIs (C) and distributed ROIs (D). Scatter 

plots show decoding accuracy for individual participants, horizontal black lines show group mean 

decoding accuracies and vertical error bars show the standard error of the mean.* indicates p < 0.05, 

** indicates p < 0.001, Bonferroni-corrected for the number of ROIs (separate ROIs: N = 5; distributed 

ROIs: N = 2). Dotted lines indicate chance-level decoding performance, 50%. 



 

Figure S3. Classification of sex and weight across face and body stimuli in supplemental ROIs (face- 

and body-responsive ROIs defined at a constant t-contrast threshold, V1 defined as the 510 most 

posterior V1 voxels). In these cross-classification analyses, SVM classifiers were trained to distinguish 

sex and weight from neural activity when participants viewed faces and then subsequently tested on 

neural activity when participants viewed bodies, and vice-versa. (A) and (B) show classification results 

for sex in separate ROIs (A) and distributed ROIs (B). (C) and (D) show classification results for weight 

in separate ROIs (C) and distributed ROIs (D). Scatter plots show decoding accuracy for individual 

participants, horizontal black lines show group mean decoding accuracies and vertical error bars show 

the standard error of the mean. Dotted lines indicate chance-level decoding performance, 50%. 



 

Figure S4. Mean BOLD differences between the categories sex and weight in supplemental ROIs (face- 

and body-responsive ROIs defined at a constant t-contrast threshold, V1 defined as the 510 most 

posterior V1 voxels). (A) and (B) illustrate mean differences between male and female stimuli for 

separate (A) and distributed (B) ROIs. Positive values indicate higher activation by female stimuli, 

negative values higher activation by male stimuli. (C) and (D) illustrate mean differences between 

higher and lower weight stimuli for separate (C) and distributed (D) ROIs. Positive values indicate 

higher activation by higher weight stimuli, negative values higher activation by lower weight stimuli. 

None of the differences were significant in any of the ROIs. Error bars show the standard error of the 

mean. 



 

Figure S5. Mean BOLD differences between larger and smaller images in supplemental ROIs (face- and 

body-responsive ROIs defined at a constant t-contrast threshold, V1 defined as the 510 most posterior 

V1 voxels). (A) and (B) illustrate mean differences between larger and smaller image size stimuli for 

separate (A) and distributed (B) ROIs. Positive values indicate higher activation by larger size stimuli, 

negative values higher activation by smaller size stimuli. * indicates p < 0.05, ** indicates p < 0.001, 

Bonferroni-corrected for the number of ROIs (separate ROIs: N = 5; distributed ROIs: N = 2). Error bars 

show the standard error of the mean. 

  



Table S1 

ROI coordinates (in MNI space), ROI volume and number of subjects each ROI was identified in (N) for 

supplemental ROIs. Supplemental ROIs OFA, FFA, EBA and FBA were defined at a constant t-contrast 

threshold. Supplemental V1 was defined as the 510 most posterior V1 voxels in each participant. ROI 

analyses were conducted in subject space, and ROIs were normalized to MNI space in order to show 

the mean ROI locations. Coordinates show mean x, y and z locations and volume, ± standard 

deviations.  

 

  

ROI hemisphere x y z Volume (mm3) N 

OFA left -34 ± 5.8 -83 ± 6.5 -13 ± 3.9 1630 ± 806.7 13 

 right 38 ± 5.1 -79 ± 6.5 -13 ± 3.5 1873 ± 930.8 13 

FFA left -41 ± 2.4 -49 ± 7.3 -21 ± 3.2 1595 ± 1106.2 13 

 right 43 ± 3.2 -51 ± 5.8 -19 ± 2.2 2082 ± 495.6 13 

EBA left -45 ± 2.7 -74 ± 4.6 5 ± 4.6 2390 ± 1123.9 13 

 right 49 ± 2.5 -67 ± 3.1 0 ± 4.7 3447 ± 726.7 13 

FBA left -42 ± 2.2 -50 ± 6.4 -21 ± 4.3 967 ± 679.2 12 

 right 44 ± 2.5 -47 ± 5.2 -18 ± 2.9 1404 ± 732.1 13 

V1 left -9 ± 1.0 -89 ± 2.7 -1 ± 2.5 1864 ± 275.9 13 

 right 10 ± 2.1 -86 ± 3.1 2 ± 2.0 2430 ± 356.3 13 



Table S2 

Comparison of results from ROI analyses conducted using ROIs defined at a set voxel size and ROIs 

defined at a constant t-contrast threshold. For each analysis, * indicates that classification was 

significant for both ROI definition methods.  

Analysis  Separate ROIs Distributed ROIs 

  OFA FFA EBA FBA V1 Face-

responsive 

Body-

responsive 

Classification Sex of bodies * * *  * * * 

 Weight of bodies *  *   * * 

 Sex of faces        

 Weight of faces     *   

Size-invariant 

classification 

Sex of bodies   *    * 

Weight of bodies       * 

 Sex of faces        

 Weight of faces        

Classification 

across face/body 

Sex        

Weight        
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Abstract 

Our visual system allows us to recognize the identity of a person across changes in 

viewpoint that substantially change the low level visual information reaching our retina. 

Previous neuroimaging studies have shown that the anterior face-responsive regions may be 

of particular importance for disentangling face identity from face viewpoint. Although it is 

known that we also use information from the body to identify people, much less is known 

about the brain regions involved in disentangling body identity information from body 

viewpoint, or where in the brain identity information from the face and body is combined. 

In this study, we trained participants to recognize three identities, and then recorded their 

brain activity using fMRI while they viewed images of the face and body (shown separately) 

of the three people from different viewpoints. Participants’ task was to respond to the 

identity or viewpoint, allowing us to investigate if there would be differences in neural 

responses depending on whether participants attended to identity or viewpoint. We found 

consistent decoding of body identity across viewpoint in the fusiform body area (FBA), the 

right anterior temporal cortex and the middle frontal gyrus. This finding provides evidence 

of a similar importance of the fusiform and right anterior temporal cortex in disentangling 

identity from viewpoint for bodies as has previously been shown for faces, suggesting this is 

a general function of this area of cortex. In addition, we could decode identity in an abstract 

manner across neural activity evoked by faces and bodies in the early visual cortex, right 

inferior occipital cortex, right parahippocampal cortex and right superior parietal cortex, 

showing that several brain regions respond to person identity in an abstract manner. Lastly, 

we could decode identity more frequently when participants attended to identity, showing 

that participants’ attention to identity enhances its neural representation.  

 

Keywords: identity, face recognition, body recognition, invariance, viewpoint 
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3.1. Introduction 

Our visual system allows us to recognize the identity of a person across changes in 

viewpoint, illumination, position, pose and expression. This is a remarkable ability as these 

changes lead to a great variability in low-level visual information arriving on the retina, yet 

we are able to distinguish between identities that look comparably similar to one another. It 

is not yet fully understood how the brain achieves this.  

Face-responsive brain regions in the fusiform gyrus and anterior temporal cortex are 

thought to be important for our face recognition ability (Haxby, Hoffman, & Gobbini, 2000). 

These regions respond when participants recognize face identities (Grill-Spector, Knouf, & 

Kanwisher, 2004; Hoffman & Haxby, 2000; Nasr & Tootell, 2012) and dysfunction of these 

regions is associated with impairments in face recognition abilities (Barton, 2008; Busigny et 

al., 2014; Hadjikhani & de Gelder, 2002; Jonas et al., 2015). Anterior temporal cortex is 

thought to be of particular importance in encoding high-level face identity representations. 

Patterns of activity in this region can distinguish between different face identities  

(Kriegeskorte, Formisano, Sorger, & Goebel, 2007), and furthermore have been shown to be 

able to generalize across face viewpoint (Anzellotti, Fairhall, & Caramazza, 2014; Freiwald & 

Tsao, 2010; Guntupalli, Wheeler, & Gobbini, 2016), face expression (Nestor, Plaut, & 

Behrmann, 2011) and different halves of the same face (Anzellotti & Caramazza, 2015). 

Several studies have also shown that the fusiform face area (FFA) also responds to changes 

in identity (Andrews & Ewbank, 2004; Gauthier et al., 2000; Loffler, Yourganov, Wilkinson, & 

Wilson, 2005; Rotshtein, Henson, Treves, Driver, & Dolan, 2005; Winston, Henson, Fine-

Goulden, & Dolan, 2004), and that face identity responses in the FFA can generalise across 

viewpoint (Anzellotti et al., 2014; Guntupalli et al., 2016). Some studies have also found 

high-level face identity responses in the occipital face area (OFA) (Anzellotti et al., 2014), the 

superior intraparietal sulcus (Jeong & Xu, 2016) and right inferior frontal cortex (Guntupalli 

et al., 2016).  

Although psychological research has shown that we also use information from the 

body to recognize people (Hahn, O’Toole, & Phillips, 2015; O’Toole et al., 2011; Rice, Phillips, 

Natu, An, & O’Toole, 2013; Rice, Phillips, & O’Toole, 2013; Robbins & Coltheart, 2012), much 

less is known about the brain regions encoding body identity information. There is evidence 
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that the extrastriate and fusiform body areas (EBA and FBA) respond to body identity 

(Ewbank et al., 2011) and that the FBA as well as the inferior and medial frontal gyrus, 

cingulate gyrus, central and post-central sulcus and inferior parietal lobe respond more to 

the bodies of familiar people than to the bodies unfamiliar people (Hodzic, Kaas, Muckli, 

Stirn, & Singer, 2009). However, no study has investigated which regions of the human brain 

contain different patterns of neural activity evoked by different body identities, or 

furthermore which brain regions contain patterns of responses to different body identities 

that can generalize across different viewpoints. In macaques, electrophysiological 

recordings have shown that the macaque body-responsive patches contain body identity 

information that can generalize across viewpoint and pose (Kumar, Popivanov, & Vogels, 

2017). Interestingly, identity decoding accuracy was higher in the more anterior body patch, 

suggesting there may be a similar importance of more anterior temporal regions in encoding 

body identity across viewpoint as has previously been found for faces in more anterior face-

responsive regions. A first aim of the present study was to investigate which brain regions 

encode body identity in a viewpoint-invariant manner in the human brain.  

A second aim of the present study was to investigate where identity information 

from the face and body is combined in the brain. It has been suggested that brain regions 

processing faces and bodies in occipitotemporal cortex are mostly separated, parallel 

networks (Pitcher, Charles, Devlin, Walsh, & Duchaine, 2009; Premereur, Taubert, Janssen, 

Vogels, & Vanduffel, 2016; Schwarzlose, Baker, & Kanwisher, 2005). However, a recent 

neuroimaging study found evidence of integration of face and body information in the EBA 

(Foster et al., 2019). In macaques, the anterior face patches have been shown to respond 

higher to images of a whole person compared to the addition of the responses to the face 

and body shown alone (Fisher & Freiwald, 2015), suggesting that these regions may 

integrate face and body information. A second aim of the present study was to investigate 

which brain regions contain similar patterns of response to a particular identity, regardless 

of whether it is viewed from an image of the face or the body.  

In this study, we trained participants to recognize three identities and then recorded 

their brain activity using fMRI as they viewed images of the face and body of these three 

identities from three different viewpoints. Participants performed two behavioural tasks 

during the experiment, one where they responded to the stimulus identity and the other 
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where they responded to the stimulus viewpoint. This allowed us to investigate if there 

would be differences in participants’ neural responses depending on which feature they 

attended to. First, we used linear support vector machine (SVM) classifiers to investigate 

which brain regions contain patterns of brain activity that could distinguish between the 

three face identities and between the three body identities. Second, we then further tested 

which brain regions contain patterns of brain activity evoked by the face or body identities 

that could generalize across viewpoint (e.g. a classifier was trained to distinguish between 

neural activity evoked by the face identities from two viewpoints and was then tested on 

distinguishing between the neural activity evoked by the face identities from the third 

viewpoint). Third, we tested which brain regions contain patterns of brain activity evoked by 

the identities that could generalize across neural activity evoked by faces and bodies (e.g. a 

classifier was trained to distinguish between neural activity evoked by the face identities 

and was then tested on distinguishing between neural activity evoked by the body 

identities). We performed all of these analyses in face- and body-responsive regions of 

interest (ROIs) as well as in whole-brain searchlight analyses, and performed them 

separately for fMRI data where participants performed the identity and viewpoint 

recognition behavioural tasks. These analyses allowed us to investigate which brain regions 

contain neural responses that can distinguish between the different face or body identities, 

which regions contain face or body identity responses that can generalize across viewpoint 

and which regions contain abstract identity responses that can generalize across neural 

activity evoked by the face and body. Furthermore, performing the analyses separately for 

the two behavioural tasks allowed us to investigate if identity decoding would be enhanced 

when participants’ attended to the stimulus identity as compared to the stimulus viewpoint.  
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3.2. Materials and methods 

This work was conducted using a dataset that was collected as part of a larger study. 

The data we present are novel analyses and results investigating neural and behavioural 

responses to face and body identity.  

3.2.1. Participants  

 20 participants completed the experiment. One participant was excluded from the 

data analyses due to poor performance in the behavioural task (less than 40% correct 

responses in one condition). The remaining 19 participants (13 female, 21-51 years old) 

were included in the behavioural and fMRI analyses presented here. The experimental 

procedure was approved by the local ethics committee of the University Clinic Tübingen, 

and all participants provided written informed consent prior to the start of the experiment.  

3.2.2. Stimuli  

3.2.2.1. Main experiment stimuli 

 Our stimuli (Fig. 1A) consisted of separate face and body images of three identities 

from three viewpoints; 0° (front), 45° and 90° (profile). The three identities were all female, 

to ensure that sex did not differ between the three identities. For each identity, we 

recorded both a 3D face scan with a neutral expression and a 3D body scan in an A-pose. 

The face scans were then aligned to a 3D shape and expression model (Li, Bolkart, Black, Li, 

& Romero, 2017) and the body scans were aligned to a 3D shape and pose model (Loper, 

Mahmood, Romero, Pons-Moll, & Black, 2015). We then generated images of the three 

individuals from the three viewpoints (0°, 45° and 90°). The faces of the body images were 

covered using a grey rectangle in order to remove any face information from the body 

images.  

 For each identity, we also recorded a short video showing the whole body with the 

head fully visible turning between the left and right profile view. This video was used for 

identity learning prior to the fMRI experiment.  
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Figure 1. Experimental stimuli and procedure. (A) Stimuli were face and body images of three female 

identities shown from three viewpoints (0° and 45° shown here). (B) Example block of stimuli shown 

in the fMRI experiment. Participants viewed 6 images from one condition (i.e. face or body, one 

identity, one viewpoint) within a block, which varied in their image size (2 repetitions of 3 image 

sizes, shown in a random order). Participants performed two tasks; they responded immediately 

when they saw an image of the smallest image size, and they responded at the end of the block 

during fixation to indicate which identity or viewpoint was shown in the block (one half of 

experiment identity recognition task, other half viewpoint recognition task).  
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3.2.2.2. Localizer stimuli 

 Stimuli used to localize face- and body-responsive regions of interests were grayscale 

images of faces, headless bodies, objects and phase-scrambled images. The phase-

scrambled images were generated by creating Fourier-scrambled versions of an image 

consisting of a collage of the face and headless body images. 

3.2.3. Experimental procedure  

 The study consisted of a short identity learning session (outside of the MRI scanner) 

followed immediately by the main fMRI session, which consisted of eight runs of the main 

experiment and one run of a localizer experiment.  

3.2.3.1. Identity learning procedure  

Participants were trained to recognise the three stimulus identities from images of 

their face and body. The identity learning session consisted of five repetitions of a learning 

and testing with feedback procedure. During learning, participants viewed a 15 s video of 

each identity (showing their whole body turning between the left and right profile), then 

viewed the face and body images of the identity from the three viewpoints (0°, 45° and 90°), 

until the participant pressed a button to continue. A name was presented above each 

identity, so that participants could learn to associate each identity with its name. Following 

learning, participants completed 54 trials of the testing procedure with feedback. The 54 

trials consisted of three repetitions of the stimulus conditions (face or body, three identities, 

three viewpoints) presented in a random order. In each trial, participants viewed a fixation 

cross for 1 s, then a stimulus image for 1 s, then a grey screen. Participants had up to 6 s to 

respond using a button press to indicate which identity was shown. After making a 

response, participants were given feedback as to whether their response was correct or not. 

At the end of the 54 trials, participants were shown an overall percentage correct score.  

 The identity learning session was presented on a laptop with resolution 1366x768, 

running Windows 10 with Matlab 2014a using the Psychophysics Toolbox extensions 

(Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997).  
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3.2.3.2. Main fMRI experiment procedure  

 Participants lay supine in the MRI scanner and viewed the stimuli on a screen 

positioned 92 cm behind their head, via a mirror attached to the head coil. Each run of the 

main experiment began with an instruction to the participant whether to respond to the 

identity or the viewpoint of the images in this run (4 runs each, see Section 3.2.3.2.1. for the 

task details). Participants viewed the experiment stimuli in a block design, where images 

within a block were from 1 of 18 conditions of a 2 (face or body) x 3 (identity) x 3 

(viewpoint) factorial design. Each run contained 3 repetitions of all 18 conditions presented 

in a random order. The 18 conditions were preceded by and followed by 8 s of fixation.  

 Each block contained 6 images varying in their image size. There were 2 repetitions 

of 3 image sizes presented in a random order. The three image sizes had scale factors of 1, 

1.3 and 1.6 (i.e. the largest image size was 1.6 times the width and height of the smallest 

image size). For face stimuli the mean widths and heights of the 3 image sizes were 4.4° x 

6.4°, 3.6° x 5.2° and 2.8° x 4.0° of visual angle, for body stimuli the mean widths and heights 

of the 3 image sizes were 3.2° x 7.7°, 2.6° x 6.2° and 2.0° x 4.8° of visual angle. Each image 

was shown for 900 ms and a 100 ms blank screen was shown between images. Each block 

was followed by 2 s fixation.   

The experiment was programmed with Matlab 2017a using the Psychophysics 

Toolbox extensions (Brainard, 1997; Kleiner et al., 2007) on Ubuntu 17.10. The experiment 

was presented using a projector with resolution 1920x1080 onto a screen with a width and 

height of 25° x 14° of visual angle.  

3.2.3.2.1. Main fMRI experiment task 

In half of the experiment runs participants were instructed to respond at the end of 

the block during fixation with a button press to indicate which identity was shown in the 

block (ID1, ID2 or ID3). In the other half of the experiment runs participants were instructed 

to respond at the end of the block during fixation to which viewpoint was shown in the 

block (0°, 45° or 90°).  
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In addition, participants were instructed to immediately press a button with their 

thumb whenever they saw an image that was the smallest of the three image sizes. This 

ensured participants kept their attention on the stimuli throughout each block.  

3.2.3.3. fMRI localizer experiment procedure 

Participants completed one run of a localizer experiment which was used to define 

face- and body-responsive brain regions. Participants viewed face, body, object and phase-

scrambled images in a block design. Each block consisted of 8 images, which were each 

shown for 1.8s followed by a 0.2 s blank screen. Blocks were presented in a carryover 

counterbalanced sequence, such that face, body, object and phase scrambled blocks were 

preceded by each other block type an equal number of times (Brooks, 2012). Face, body and 

object images were shown in front of the phase-scrambled images to keep the area of 

retinal stimulation the same for all blocks. Participants performed a one-back matching task 

on the images to keep their attention on the stimuli. Images were repeated on average once 

every 9 s

3.2.4. MRI sequence parameters 

MRI data was acquired with a 3T Siemens Prisma scanner and a 64-channel head coil 

(Siemens, Erlangen, Germany). Functional T2* echoplanar images (EPI) were acquired using 

the following sequence parameters; multiband acceleration factor 2, GRAPPA acceleration 

factor 2, TR 1.84 s, TE 30 ms, flip angle 79°, FOV 192x192 mm. Volumes consisted of 60 

slices and had an isotropic voxel size of 2x2x2 mm. We discarded the first 8 volumes of each 

run to allow for equilibration of the T1 signal. We additionally acquired a high-resolution T1-

weighted anatomical scan for each participant with the following sequence parameters; TR 

2 s, TE 3.06 ms, FOV 232x256 mm, 192 slices, isotropic voxel size of 1x1x1 mm.  

3.2.5. MRI data preprocessing 

We preprocessed our MRI data using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). 

Functional images were slice-time corrected, realigned and coregistered to the anatomical 

image. Functional images from the localizer experiment were additionally smoothed with a 

6 mm Gaussian kernel. ROI and searchlight analyses on functional images from the main 

experiment were conducted on unsmoothed data in subject-space. The resulting searchlight 

http://www.fil.ion.ucl.ac.uk/spm/


Shared Identity  59 
 

classification accuracy maps were then normalised to MNI (Montreal Neurological Institute) 

space, and spatially smoothed with a 6 mm Gaussian kernel. For the whole-brain univariate 

analyses the coregistered data was normalized to MNI space and spatially smoothed with a 

6 mm Gaussian kernel.  

3.2.6. Definition of regions of interest 

 Using fMRI data from the localizer experiment, we defined three face-responsive 

ROIs (the OFA, FFA and ATFA) and two body-responsive ROIs (the EBA and FBA). We first 

attempted to define the face-responsive ROIs using the contrast faces > objects and the 

body-responsive ROIs using the contrast bodies > objects. If we could not define a ROI in a 

participant using this contrast, we then attempted to define the ROI using the contrast faces 

> scrambled images or bodies > scrambled images. We initially used a contrast threshold of 

p < 0.001 (uncorrected) and reduced the threshold to p < 0.01 (uncorrected) if the ROI could 

not be defined with the initial threshold.  

 

Table 1 

Mean MNI coordinates and volume of each ROI, ± standard deviations. N shows the number 

of participants each ROI was identified in.  

ROI hem x y z Volume (mm3) N 

OFA left -35 ± 6.9 -86 ± 5.9 -11 ± 3.6 731 ± 346.5 19 

 right 38 ± 4.1 -81 ± 6.0 -10 ± 3.3 994 ± 382.8 19 

FFA left -40 ± 2.8 -55 ± 5.5 -20 ± 2.8 709 ± 364.3 19 

 right 42 ± 3.3 -52 ± 4.3 -18 ± 2.4 1083 ± 400.9 19 

ATFA left -34 ± 5.5 -11 ± 6.7 -33 ± 6.9 177 ± 120.6 14 

 right 34 ± 5.8 -8 ± 5.5 -37 ± 5.8 335 ± 265.6 18 

EBA left -44 ± 3.7 -78 ± 5.4 3 ± 6.6 896 ± 486.0 19 

 right 49 ± 2.3 -70 ± 2.7 0 ± 4.7 1686 ± 453.0 19 

FBA left -39 ± 4.2 -50 ± 6.5 -20 ± 3.0 703 ± 459.0 18 

 right 40 ± 3.9 -50 ± 5.6 -19 ± 2.4 1148 ± 552.6 19 
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3.2.7. Behavioural analyses 

 In half of the fMRI experiment runs, participants pressed a button to indicate the 

identity of the stimuli shown in each block, and in the other half of the runs they pressed a 

button to indicate the viewpoint of the stimuli shown in each block. We calculated 

participants’ accuracy in identity and viewpoint detection using % correct. We performed 

behavioural analyses to investigate if there were any differences in participants’ ability to 

detect the identity or viewpoint of the stimuli during the fMRI experiment, depending on 

the identity of the stimuli. To do this, we performed one-way repeated-measures ANOVAs 

with three levels (ID1, ID2 and ID3), separately for identity and viewpoint recognition of the 

face and body stimuli. Prior to each ANOVA, we performed a Mauchly’s test of sphericity on 

the data and performed a Greenhouse-Geisser correction in any cases of non-sphericity.  

3.2.8. Univariate fMRI analyses 

 We conducted univariate analyses to investigate if there were any differences in the 

mean BOLD signal evoked by the three stimulus identities. To do this, we used SPM12 to 

model the fMRI data with a GLM. The GLM contained regressors for each of the 

experimental conditions. We then performed one-way repeated-measures ANOVAs with 

three levels (ID1, ID2 and ID3) separately for face and body stimuli, in face- and body-

responsive ROIs and in whole-brain analyses. For ROI analyses, we first performed a 

Mauchly’s test of sphericity on the data and performed a Greenhouse-Geisser correction in 

any cases of non-sphericity. We then assessed significance using a threshold of p < 0.05, 

Bonferroni-corrected for N = 5 ROIs. Following any significant ANOVA results, we performed 

planned follow-up paired t-tests between the three identities to determine between which 

identities there were differences in neural activation. For whole-brain analyses, we assessed 

significance using a threshold of p < 0.05, false discovery rate (FDR) corrected.  

3.2.9. Multivoxel pattern analyses (MVPA) 

 We conducted multivoxel pattern analyses (MVPA) to investigate if there were 

differences in the patterns of neural activity evoked by the three stimulus identities. To do 

this, we used SPM12 to model the fMRI data with a GLM. This GLM contained one regressor 

for each stimulus block. We then performed MVPA analyses on the beta weight images from 

the GLM using The Decoding Toolbox (Hebart, Görgen, & Haynes, 2015). We feature-scaled 



Shared Identity  61 
 

the data using z-score normalisation, where we estimated the mean and standard deviation 

on the training data and applied these values to the test data. Any outlier values (greater 

than 2 standard deviations from the mean) were set to 2 or -2. We performed 3 different 

classification analyses (see Sections 3.2.9.1-3) using a linear SVM classifier (LIBSVM).  

 We performed all classification analyses in face- and body-responsive brain regions 

and in whole-brain searchlight analyses (4-voxel radius). For ROI analyses, significance was 

determined using permutation testing. Each analysis was repeated 10,000 times with the 

condition labels randomly assigned to generate a null distribution of mean classification 

accuracies expected by chance. We assessed significance by comparing how often we 

obtained a mean classification accuracy in the null distribution greater than or equal to the 

actual mean classification accuracy obtained for that ROI. We assessed significance using a 

threshold of p < 0.05, and used a Bonferroni-correction for N = 5 ROIs tested.  

 For searchlight analyses, we performed group analyses using nonparametric 

permutation tests with SnPM13 (http://warwick.ac.uk/snpm). We performed 10,000 

permutations for each analysis and used 6 mm FWHM variance smoothing. We assessed 

significance with a threshold of p < 0.05, FDR corrected.  

3.2.9.1. Identity classification analyses 

 We performed identity classification analyses to investigate which brain regions 

contain different patterns of activity evoked by different identities. We performed these 

analyses separately for neural activity evoked by face and body stimuli, and when 

participants performed the identity and viewpoint recognition tasks. We trained a linear 

SVM classifier to distinguish between patterns of neural activity evoked by the three 

identities using three runs of fMRI data. We then tested the classifier on its ability to predict 

the stimulus identities from neural activity in the fourth run of data. We performed a four-

fold cross-validation procedure, where each run was used as the held out test dataset once, 

and we determined the final decoding accuracy by averaging over the four cross-validation 

iterations.  

3.2.9.2. Viewpoint-invariant identity classification analyses 

 We performed viewpoint-invariant identity classification analyses to investigate 

which brain regions contain patterns of neural activity evoked by the stimulus identities that 

http://warwick.ac.uk/snpm
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can generalize across stimulus viewpoint. As previously, we performed these analyses 

separately for neural activity evoked by face and body stimuli, and when participants 

performed the identity and viewpoint recognition tasks. In these viewpoint-invariant 

analyses, we used three runs of fMRI data to train a linear SVM classifier to distinguish 

between patterns of neural activity evoked by the three identities from two of three 

viewpoints. We then tested the classifier on its ability to predict the stimulus identities from 

neural activity evoked by the third viewpoint in the fourth run of data. Again, we performed 

a four-fold cross-validation procedure (with each run used as the held out test dataset once) 

and also repeated the analysis three times with each viewpoint used as the held out test 

viewpoint once. We determined the final decoding accuracy by averaging over the four 

cross-validation iterations and the three viewpoint training and testing combinations.   

3.2.9.3. Identity classification across face and body stimuli 

 We investigated which regions contain patterns of activity evoked by the stimulus 

identities that can generalize across neural activity evoked by faces and bodies. We 

performed these classification analyses separately for neural activity while participants 

performed the identity and viewpoint recognition tasks. We trained a linear SVM classifier 

to distinguish between patterns of neural activity evoked by the three face identities using 

three runs of fMRI data. We then tested the classifier on its ability to predict the identity of 

the body stimuli in the fourth run of data. We performed a four-fold cross-validation 

procedure (with each run used as the held out test dataset once) and also repeated the 

analysis using neural activity evoked by bodies for training the classifier and neural activity 

evoked by faces for testing it. We determined the final decoding accuracy by averaging over 

the four cross-validation iterations and the two training and test set combinations.  
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3.3. Results 

3.3.1. Behavioural results 

 Participants responded using a button press at the end of each block to indicate the 

identity or viewpoint of the stimuli (half of the dataset for each task). We investigated if 

there were any differences in participants’ identity or viewpoint recognition depending on 

the identity of the stimulus. The results are shown in Figure 2.   

 

 

Figure 2. Recognition of the identity and viewpoint of the three stimulus identities (ID1, ID2 & ID3). 

(A) and (C) show identity recognition accuracy (% correct) for the three stimulus identities from the 

face (A) and body (C) images. (B) and (D) show viewpoint recognition accuracy (% correct) for the 

three stimulus identities from the face (B) and body (D) images. Error bars indicate ±1 SEM. 

 

3.3.1.1. Identity recognition 

 Participants showed high identity recognition performance for both face (96.2 %) 

and body (93.7 %) stimuli. We investigated if there were any differences in our participants’ 

ability to recognise the three identities. One-way repeated measures ANOVAs with three 

levels (ID1, ID2 and ID3) showed that there were no significant differences in participants’ 
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ability to recognise the three identities from the face (F2,36 = 0.53, p = 0.59, ηp
2 = 0.029) or 

body (F2,36 = 1.20, p = 0.31, ηp
2 = 0.063) stimuli. These results show that participants could 

easily recognise all stimuli identities from the face and body.   

3.3.1.2. Viewpoint recognition 

Participants showed high viewpoint recognition performance for both face (94.0 %) 

and body (94.6 %) stimuli. We investigated if there were any differences in participants’ 

viewpoint recognition performance depending on the identity of the stimulus. One-way 

repeated measures ANOVAs with three levels (ID1, ID2 and ID3) showed that there were no 

significant differences in participants’ ability to recognise the viewpoint of the stimuli 

between the three face identities (F2,36 = 2.04, p = 0.14, ηp
2 = 0.10) or between the three 

body identities (F2,36 = 0.18, p = 0.84, ηp
2 = 0.010). These results show that participants could 

recognise the stimulus viewpoint equally well regardless of the stimulus identity.  

3.3.2. Univariate fMRI results 

We investigated whether there were any differences in the mean BOLD activity 

evoked by the three identities. To do this, we performed one-way repeated measures 

ANOVAs with 3 levels (ID1, ID2 and ID3) in face- and body-responsive ROIs and in whole-

brain analyses. The results are shown in Figure 3.  

3.3.2.1. Face identity responses 

We performed one-way repeated measures ANOVAs with 3 levels (ID1, ID2 and ID3) 

to test whether there were any differences in the mean BOLD activity evoked by the three 

face identities. For fMRI data from the identity recognition task, we found no significant 

differences between the mean BOLD activity evoked by the three face identities in any of 

our face- or body-responsive ROIs (Fig. 3A; OFA: F2,36 = 6.53, p = 0.011 uncorrected for 

multiple comparisons and Greenhouse-Geisser corrected for non-sphericity, ηp
2 = 0.27; FFA: 

F2,36 = 3.52, p = 0.040 uncorrected, ηp
2 = 0.16; ATFA: F2,36 = 1.52, p = 0.23 uncorrected, ηp

2 = 

0.078; EBA: F2,36 = 4.51, p = 0.018 uncorrected, ηp
2 = 0.20; FBA: F2,36 = 1.71, p = 0.20 

uncorrected, ηp
2 = 0.087) or in any other region in a whole-brain analysis.  
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Figure 3. Differences in mean BOLD response to the three identities. (A) and (B) show mean BOLD 

responses to the three face identities in face- and body-responsive ROIs during the identity (A) and 

viewpoint (B) recognition task. * indicates p < 0.05. (C) and (D) show mean BOLD responses to the 

three body identities in face- and body-responsive ROIs during the identity (C) and viewpoint (D) 

recognition task. * indicates p < 0.05 (E) and (F) show differences in mean BOLD responses to the 

three body identities in whole-brain analyses (FDR corrected) during the identity (E) and viewpoint 

(F) recognition task. 
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For fMRI data from the viewpoint recognition task (Fig. 3B), we found significant 

differences between the mean BOLD activity evoked by the three face identities in the OFA 

(F2,36 = 10.27, p = 0.0075 Bonferroni corrected and Greenhouse-Geisser corrected for non-

sphericity, ηp
2 = 0.36) but not in any other ROIs (FFA: F2,36 = 2.47, p = 0.12 uncorrected for 

multiple comparisons and Greenhouse-Geisser corrected for non-sphericity, ηp
2 = 0.12; 

ATFA: F2,36 = 0.99, p = 0.38 uncorrected, ηp
2 = 0.052; EBA: F2,36 = 1.55, p = 0.23 uncorrected, 

ηp
2 = 0.079; FBA: F2,36 = 2.70, p = 0.097 uncorrected for multiple comparisons and 

Greenhouse-Geisser corrected for non-sphericity, ηp
2 = 0.13). Follow-up paired t-tests 

showed that in the OFA there was higher activity to ID1 compared to ID2 (M = 0.056, SE = 

0.023, t18 = 2.43, p = 0.026, Cohen’s d = 0.56) and ID3 (M = 0.17, SE = 0.042, t18 = 4.03, p = 

7.78 x 10-4, Cohen’s d = 0.93), and higher activity to ID2 than ID3 (M = 0.11, SE = 0.045, t18 = 

2.50, p = 0.023, Cohen’s d = 0.57). In addition, a whole-brain analysis identified small, 

bilateral clusters in the early visual cortex showing differences in BOLD activity to the three 

face identities during the viewpoint recognition task.  

3.3.2.2. Body identity responses 

We tested whether there were any differences in the mean BOLD activity evoked by 

the three body identities using one-way repeated measures ANOVAs with 3 levels (ID1, ID2 

and ID3). For fMRI data from the identity recognition task (Fig. 3C), we found significant 

differences in the mean BOLD activity evoked by the three body identities in the FBA (F2,36 = 

6.96, p = 0.014 Bonferroni corrected, ηp
2 = 0.28), OFA (F2,36 = 20.76, p = 5.04 x 10-6 

Bonferroni corrected, ηp
2 = 0.54) and FFA (F2,36 = 11.21, p = 8.21 x 10-4 Bonferroni corrected, 

ηp
2 = 0.38), but not in the EBA (F2,36 = 2.02, p = 0.15 uncorrected, ηp

2 = 0.10) or ATFA (F2,36 = 

1.75, p = 0.19 uncorrected, ηp
2 = 0.089). Follow-up paired t-tests in the FBA, OFA and FFA 

showed that in all three ROIs there was higher activity to ID1 compared to ID2 (FBA: M = 

0.14, SE = 0.028, t18 = 5.03, p = 8.75 x 10-5, Cohen’s d = 1.15; OFA: M = 0.29, SE = 0.044, t18 = 

6.56, p = 3.66 x 10-6, Cohen’s d = 1.50; FFA: M = 0.17, SE = 0.030, t18 = 5.67, p = 2.25 x 10-5, 

Cohen’s d = 1.30) and ID3 (FBA: M = 0.11, SE = 0.047, t18 = 2.40, p = 0.027, Cohen’s d = 0.55; 

OFA: M = 0.23, SE = 0.046, t18 = 4.98, p = 9.73 x 10-5, Cohen’s d = 1.14; FFA: M = 0.10, SE = 

0.038, t18 = 2.67, p = 0.016, Cohen’s d = 0.61) but no difference between activity to ID2 and 

ID3 (FBA: M = -0.028, SE = 0.043, t18 = -0.66, p = 0.52, Cohen’s d = -0.15; OFA: M = -0.058, SE 

= 0.051, t18 = -1.13, p = 0.27, Cohen’s d = -0.26; FFA: M = -0.071, SE = 0.041, t18 = -1.74, p = 
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0.098, Cohen’s d = -0.40). We performed a whole-brain analysis to investigate if there were 

any additional regions showing differences in mean BOLD activity to the three body 

identities during the identity recognition task (Fig. 3E). We identified bilateral clusters in the 

early visual cortex, occipitotemporal cortex (overlapping with the locations of the OFA, FFA 

and FBA) and insula cortex, and unilateral clusters in the right inferior parietal cortex, right 

precuneus and right medial superior frontal gyrus.  

For fMRI data from the viewpoint recognition task (Fig. 3D), we found significant 

differences in activity evoked by the three body identities in the OFA (F2,36 = 6.52, p = 0.019 

Bonferroni corrected, ηp
2 = 0.27) and EBA (F2,36 = 6.11, p = 0.026 Bonferroni corrected, ηp

2 = 

0.25), but not in any other ROIs (FBA: F2,36 = 1.88, p = 0.17 uncorrected, ηp
2 = 0.095; FFA: 

F2,36 = 1.43, p = 0.25 uncorrected, ηp
2 = 0.074; ATFA: F2,36 = 2.27, p = 0.12 uncorrected, ηp

2 = 

0.11). Follow-up paired t-tests in the OFA showed there was lower activity to ID2 compared 

to ID1 (M = -0.19, SE = 0.053, t18 = -3.55, p = 0.0023, Cohen’s d = -0.81). Follow-up paired t-

tests in the EBA showed there was higher activity to ID3 compared to ID1 (M = 0.12, SE = 

0.036, t18 = 3.43, p = 0.0030, Cohen’s d = 0.79) and ID2 (M = 0.091, SE = 0.036, t18 = 2.51, p = 

0.022, Cohen’s d = 0.58). We performed a whole-brain analysis to investigate if any other 

regions would show different levels of mean response to the three body identities during 

the viewpoint recognition task (Fig. 3F). We identified bilateral clusters in the early visual 

cortex, middle occipital cortex, fusiform gyrus, superior temporal cortex, superior parietal 

cortex, precuneus, superior frontal cortex and insula cortex.  

3.3.3. Face identity MVPA 

 We investigated which brain regions contain separable patterns of neural responses 

evoked by the three face identities. We performed multivoxel pattern analyses to 

investigate which regions could classify face identity, and classify face identity across 

viewpoint, from patterns of neural activity. We performed all analyses in face- and body-

responsive ROIs and in whole-brain searchlight analyses. The results are shown in Figure 4.  
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Figure 4. Classification and viewpoint-invariant classification of face identity. (A) shows face identity 

classification in face- and body-responsive ROIs. Scatter points show classification accuracies for 

individual participants, error bars show ±1 SEM, * indicates p < 0.05 Bonferroni corrected. (B) shows 

classification of face identity during the identity recognition task in a whole-brain searchlight 

analysis. The scale bar shows –log10(p values) between 1.301 (p = 0.05) and 8 (p = 1 x10-8), FDR 

corrected. (C) shows viewpoint-invariant face identity classification in face- and body-responsive 

ROIs. Scatter points show classification accuracies for individual participants, error bars show ±1 

SEM.  
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3.3.3.1. Face identity classification 

We investigated which regions could classify face identity by training a linear SVM 

classifier to distinguish between patterns of neural activity evoked by the three face 

identities, using three runs of fMRI data. We then tested the classifier on its ability to 

decode face identity from the fourth run. We used a four-fold cross-validation procedure, 

such that each run was used as the held-out test run once. We performed the analysis twice 

separately; once using fMRI data where participants performed the identity recognition 

task, once using fMRI data where participants performed the viewpoint recognition task.  

We first performed a ROI analysis (Fig. 4A) to investigate which face- and body 

responsive ROIs could decode face identity above chance-level (33 ⅓ %). Using fMRI data 

from the identity recognition task, we were able to decode face identity significantly above 

chance from the face-responsive ATFA (35.8 %, p = 0.031 Bonferroni corrected, Cohen’s d = 

0.49) and body-responsive EBA (35.6 %, p = 0.045 Bonferroni corrected, Cohen’s d = 0.56), 

but not from any other face-responsive ROI (OFA: 34.8 %, p = 0.064 uncorrected, Cohen’s d 

= 0.27; FFA: 33.8 %, p = 0.31 uncorrected, Cohen’s d = 0.11) or the FBA (34.1 %, p = 0.20 

uncorrected, Cohen’s d = 0.20). Using fMRI data from the viewpoint recognition task, we 

were not able to decode face identity from the ATFA (32.8 %, p = 0.70 uncorrected, Cohen’s 

d = -0.16), EBA (34.8 %, p = 0.067 uncorrected, Cohen’s d = 0.37) or any other ROI (OFA: 34.6 

%, p = 0.10 uncorrected, Cohen’s d = 0.40; FFA: 33.5 %, p = 0.44 uncorrected, Cohen’s d = 

0.034; FBA: 34.0 %, p = 0.22 uncorrected, Cohen’s d = 0.15).  

Secondly, we performed a whole-brain searchlight analysis to investigate if any other 

brain regions could decode face identity. Using fMRI data from the identity recognition task 

(Fig. 4B) we identified clusters than could decode face identity bilaterally in the early visual 

cortex, inferior occipital cortex, fusiform gyrus, superior parietal cortex, superior temporal 

cortex and parahippocampal gyrus, and unilaterally in the right middle frontal gyrus, right 

anterior cingulum, right medial superior frontal gyrus and left inferior frontal gyrus. We 

could also decode identity in the left motor cortex as participants pressed different buttons 

for each stimulus identity. Using fMRI data from the viewpoint recognition task, we were 

unable to decode face identity from any regions.  
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3.3.3.2. Viewpoint-invariant face identity classification 

 We next investigated which regions could classify face identity across viewpoint. To 

do this, we trained a linear SVM classifier to distinguish between patterns of neural activity 

evoked by the three face identities using two of the three stimulus viewpoints and three 

runs of fMRI data. We then tested the classifier on its ability to decode face identity from 

the third stimulus viewpoint in the fourth run of fMRI data. Again, we used a four-fold cross-

validation with each run used as the test set once and, in addition, we repeated the analysis 

three times using each viewpoint as the left out test viewpoint once. As previously, we 

performed the analysis twice separately using data from the identity and viewpoint 

recognition tasks.   

 We were unable to decode face identity across viewpoint from any of the ROIs we 

tested (Fig. 4C) using fMRI data from the identity recognition task (OFA: 34.3 %, p = 0.17 

uncorrected, Cohen’s d = 0.26; FFA: 33.1 %, p = 0.62 uncorrected, Cohen’s d = -0.066; ATFA: 

33.4 % p = 0.49 uncorrected, Cohen’s d = 0.012; EBA: 35.4 %, p = 0.012 uncorrected, Cohen’s 

d = 0.60; FBA: 32.4 %, p = 0.86 uncorrected, Cohen’s d = -0.40) or the viewpoint recognition 

task (OFA: 31.2 %, p = 0.99 uncorrected, Cohen’s d = -0.77; FFA: 34.5 %, p = 0.11 

uncorrected, Cohen’s d = 0.27; ATFA: 33.6 % p = 0.37 uncorrected, Cohen’s d = 0.083; EBA: 

32.7 %, p = 0.77 uncorrected, Cohen’s d = -0.19; FBA: 33.3 %, p = 0.51 uncorrected, Cohen’s 

d = -0.011).  

 We performed searchlight analyses to investigate if any other brain regions would be 

able to decode face identity across viewpoint. We did not identify any regions in these 

analyses.  

3.3.4. Body identity MVPA 

We investigated which brain regions contain separable patterns of neural responses 

evoked by the three body identities. To do this, we performed multivoxel pattern analyses 

to investigate which regions could classify body identity, and classify body identity across 

viewpoint. We performed these analyses in face- and body-responsive ROIs (Fig. 5) and in 

whole-brain searchlight analyses (Fig. 6). 
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Figure 5. Classification and viewpoint-invariant classification of body identity in face- and body-

responsive ROIs. (A) shows body identity classification, (B) shows viewpoint-invariant body identity 

classification and (C) shows viewpoint-invariant body identity classification for ID2 vs. ID3 only, with 

fMRI data from the identity recognition task. Scatter points show classification accuracies for 

individual participants and error bars show ±1 SEM. ** indicates p < 0.001, * indicates p < 0.05, 

Bonferroni corrected.  
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Figure 6. Classification (A) and viewpoint-invariant classification (B) of body identity in whole-brain 

searchlight analyses. Regions showing significant activity during the identity recognition task are 

shown in red, regions showing significant activity during the viewpoint recognition task are shown in 

blue and regions showing significant activity during both tasks (conjunction) are shown in purple. 

Significant regions were defined using a p < 0.05 FDR correction.  

 

3.3.4.1. Body identity classification 

To investigate which brain regions contain separable patterns of neural activity 

evoked by different body identities, we first trained a linear SVM to distinguish between 

patterns of neural activity evoked by the three body identities, using three runs of fMRI 

data. We then tested the trained classifier on its ability to decode body identity from the 

fourth run. Again, we used a four-fold cross-validation procedure and performed the 

analysis twice separately using fMRI data recorded while participants performed the identity 

and viewpoint recognition tasks.  
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First, we investigated which of our face- and body-responsive ROIs (Fig. 5A) could 

decode body identity above chance-level (33 ⅓ %). Using fMRI data from the identity 

recognition task, we could decode body identity significantly above chance from the body-

responsive FBA (36.4 %, p = 0.0045 Bonferroni corrected, Cohen’s d = 0.76) and face-

responsive OFA (38.5 %, p < 0.0006 Bonferroni corrected, Cohen’s d = 1.18), but not from 

the body-responsive EBA (35.5 %, p = 0.014 uncorrected, Cohen’s d = 0.65) or any other 

ROIs (FFA: 35.3 %, p = 0.018 uncorrected, Cohen’s d = 0.67; ATFA: 32.4 %, p = 0.84 

uncorrected, Cohen’s d = -0.28). Using fMRI data from the viewpoint recognition task, we 

were able to decode body identity from the OFA (40.7 %, p < 0.0006 Bonferroni corrected, 

Cohen’s d = 1.54), but not from any other ROIs (EBA: 34.7 %, p = 0.078 uncorrected, Cohen’s 

d = 0.33; FBA: 33.9 %, p = 0.27 uncorrected, Cohen’s d = 0.19; FFA: 33.9 %, p = 0.28 

uncorrected, Cohen’s d = 0.16; ATFA: 34.7 %, p = 0.069 uncorrected, Cohen’s d = 0.39).  

Second, we performed a whole-brain searchlight analysis to investigate if we could 

decode body identity from any other brain regions (Fig. 6A). We could decode body identity 

from a large area of occipital cortex using fMRI data from both the identity and viewpoint 

recognition tasks. Using fMRI data from the identity recognition task, we could also decode 

body identity from bilateral regions in the fusiform gyrus, superior parietal cortex, inferior 

frontal gyrus and middle frontal gyrus, and unilaterally from the right anterior temporal 

cortex and right insula cortex. We could also decode body identity in the left motor cortex 

as participants pressed different buttons to indicate the stimulus identity. Using fMRI data 

from the viewpoint recognition task, we could also decode body identity from bilateral 

regions in the fusiform gyrus, superior parietal cortex, supramarginal gyrus, cingulum, 

precentral gyrus and the caudate nucleus, and unilaterally from the right superior frontal 

gyrus.  

3.3.4.2. Viewpoint-invariant body identity classification 

 Next, we investigated which brain regions encode body identity in a viewpoint-

invariant manner. To do this, we trained a linear SVM classifier to distinguish between 

patterns of neural activity evoked by the three body identities from two viewpoints, using 

three runs of fMRI data. We then tested the trained classifier on its ability to decode body 

identity from the third viewpoint in the fourth fMRI run. We used a four-fold cross-

validation with each run used as the test set once and we repeated the analysis three times 
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using each viewpoint as the left out test viewpoint once. As previously, we performed the 

analysis twice separately using data from the identity and viewpoint recognition tasks.   

 We first tested which of our face- and body-responsive ROIs could decode body 

identity across viewpoint (Fig. 5B). Using fMRI data from the identity recognition task, we 

could decode body identity across viewpoint significantly above chance-level (33 ⅓ %) in the 

body-responsive FBA (36.2 %, p = 0.0030 Bonferroni corrected, Cohen’s d = 1.06) and face-

responsive OFA (36.4 %, p = 0.0035 Bonferroni corrected, Cohen’s d = 0.59) and FFA (35.6 %, 

p = 0.024 Bonferroni corrected, Cohen’s d = 0.60). We were not able to decode body 

identity across viewpoint from the body-responsive EBA (33.3 %, p = 0.53 uncorrected, 

Cohen’s d = -0.012) or the face-responsive ATFA (33.4 %, p = 0.47 uncorrected, Cohen’s d = 

0.028). Using fMRI data from the viewpoint recognition task, we could decode body identity 

across viewpoint from the OFA (37.1 %, p < 0.0006 Bonferroni corrected, Cohen’s d = 0.76), 

but not from any other ROI (EBA: 34.2 %, p = 0.16 uncorrected, Cohen’s d = 0.22; FBA: 31.9 

%, p = 0.96 uncorrected, Cohen’s d = -0.30; FFA: 34.1 %, p = 0.21 uncorrected, Cohen’s d = 

0.21; ATFA: 33.3 %, p = 0.50 uncorrected, Cohen’s d = 0.00).  

We performed a whole-brain searchlight analysis to investigate if any other brain 

regions could decode body identity across viewpoint (Fig. 6B). From both the identity and 

the viewpoint task data, we could decode body identity across viewpoint from a large 

cluster in occipital cortex (including the early visual cortex). Using fMRI data from the 

identity recognition task, we could additionally decode body identity across viewpoint from 

the middle frontal gyrus, right anterior temporal cortex, right superior parietal cortex, right 

medial superior frontal gyrus, right insula cortex, right rolandic operculum and the left 

motor cortex (due to participants’ button presses). Using fMRI data from the viewpoint 

recognition task, we could additionally decode body identity across viewpoint from the left 

fusiform gyrus, right superior parietal cortex, left caudate nucleus, left cingulum and left 

postcentral gyrus.  

3.3.4.3. Viewpoint-invariant body identity classification: ID2 vs. ID3 

As we found higher BOLD responses to ID1 as compared to ID2 and ID3 in the OFA, 

FFA and FBA during the identity response task (Fig. 3C), it is possible that our ability to 

decode body identity across viewpoint in these regions was the result of this higher BOLD 
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response to ID1. Therefore, we performed a follow-up analysis to test if these regions would 

be able to classify only body identities ID2 and ID3 across viewpoint (Fig. 5C). We performed 

the analysis using the same method as in Section 3.3.4.2, except that we only trained and 

tested the classifiers ability to distinguish between ID2 and ID3. We found we could decode 

body identity across viewpoint significantly above chance (50%) in the body-responsive FBA 

(52.6 %, p = 0.038 Bonferroni corrected, Cohen’s d = 0.54) but not in the face-responsive 

OFA (51.1 %, p = 0.17 uncorrected, Cohen’s d = 0.28) or FFA (51.5 %, 0.097 uncorrected, 

Cohen’s d = 0.32) in this analysis.  

3.3.5. Identity classification across face and body stimuli  

Lastly, we performed multivoxel pattern analyses to investigate if any brain regions 

contain patterns of neural activity evoked by the three stimulus identities that could 

generalize across neural activity evoked by face and body stimuli (Fig. 7). To investigate this, 

we trained a linear SVM classifier to distinguish between patterns of neural activity evoked 

by the three face identities and then tested the classifier on its ability to decode the identity 

from neural activity evoked by the bodies (and vice-versa using the bodies for training the 

classifier and faces for testing it). As previously, we used a four-fold cross-validation method 

and performed the analysis twice separately using fMRI data recorded while participants 

performed the identity and viewpoint recognition tasks. We performed the analyses in face- 

and body-responsive ROIs (Fig. 7A) and in whole-brain searchlight analyses (Fig. 7B).  

We were unable to decode identity across neural activity evoked by faces and bodies 

higher than chance-level (33 ⅓ %) in any of the ROIs we tested (Fig. 7A) using fMRI data 

from the identity recognition task (OFA: 34.2 %, p = 0.18 uncorrected, Cohen’s d = 0.35; FFA: 

34.0 %, p = 0.23 uncorrected, Cohen’s d = 0.20; ATFA: 32.0 %, p = 0.93 uncorrected, Cohen’s 

d = -0.40; EBA: 34.9 %, p = 0.042 uncorrected, Cohen’s d = 0.58; FBA: 33.7 %, p = 0.34 

uncorrected, Cohen’s d = 0.16) or the viewpoint recognition task (OFA: 33.5 %, p = 0.43 

uncorrected, Cohen’s d = 0.051; FFA: 33.1 %, p = 0.58 uncorrected, Cohen’s d = -0.071; 

ATFA: 33.4 %, p = 0.48 uncorrected, Cohen’s d = 0.0086; EBA: 33.7 %, p = 0.33 uncorrected, 

Cohen’s d = 0.11; FBA: 32.0 %, p = 0.93 uncorrected, Cohen’s d = -0.67).  

 We performed whole-brain searchlight analyses to investigate if any other brain 

regions could decode identity across neural activity evoked by faces and bodies. Using fMRI 



Shared Identity  76 
 

data from the identity recognition task (Fig. 7B) we could decode identity from the early 

visual cortex (MNI: 10, -94, 2), a region in the right inferior occipital cortex (MNI: 40, -84, -4) 

overlapping with the mean location of the OFA, the right parahippocampal cortex (MNI: 20, 

-4, -30) and a region in the right superior parietal cortex (MNI: 16, -56, 60). We could also 

decode identity from the left motor cortex due to participants’ button presses. We were not 

able to decode identity from any regions using fMRI data from the viewpoint recognition 

task.  

 

 

Figure 7. Classification of identity across neural activity evoked by faces and bodies. (A) shows 

classification of identity across face and body stimuli in face- and body-responsive ROIs. Scatter 

points show classification accuracies for individual participants and error bars show ±1 SEM. (B) 

shows classification of identity across face and body stimuli during the identity recognition task in a 

whole-brain searchlight analysis. The scale bar shows –log10(p values) between 2 (p = 0.01) and 8 (p = 

1 x10-8), FDR corrected. 
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3.4. Discussion  

In this study, we investigated the neural coding of face and body identity. Consistent 

with previous findings, we found that face identity could be decoded from neural activity in 

several distributed cortical regions (Anzellotti & Caramazza, 2015). We found that body 

identity could also be decoded from neural activity in several distributed cortical regions, 

and furthermore we found consistent decoding of body identity, including across viewpoint, 

from neural activity in the FBA, the right anterior temporal cortex and the middle frontal 

gyrus. We found we could decode identity in an abstract manner, across neural activity 

evoked by faces and bodies, from neural activity in the early visual cortex, right inferior 

occipital cortex, right parahippocampal cortex and right superior parietal cortex. These 

results provided new insights into how the brain encodes information about person identity.   

3.4.1. Neural coding of face identity 

We were able to classify face identity from the face-responsive ATFA and body-

responsive EBA in our ROI analysis, and from regions in the early visual cortex, inferior 

occipital cortex, fusiform gyrus, superior parietal cortex, superior temporal cortex, 

parahippocampal cortex, right middle frontal gyrus, right anterior cingulum, right medial 

superior frontal gyrus and left inferior frontal gyrus in our searchlight analysis. Interestingly, 

we could decode face identity from these regions only when participants attended to the 

identity of the stimuli, not when they attended to the stimulus viewpoint. This suggests that 

face identity decoding in these regions was not based solely on visual features, as these 

were identical in both tasks (see Section 3.4.4 for a discussion of the behavioural task 

differences). Our face identity decoding results show consistence with previous findings 

demonstrating that face identity can be decoded from a number of distributed brain 

regions, including the ATFA, FFA, OFA, superior intraparietal sulcus and right inferior frontal 

cortex (Anzellotti & Caramazza, 2015; Anzellotti et al., 2014; Axelrod & Yovel, 2015; 

Goesaert & Op de Beeck, 2013; Guntupalli et al., 2016; Jeong & Xu, 2016; Kriegeskorte et al., 

2007; Natu et al., 2010; Nestor et al., 2011).  

We were unable to decode face identity across viewpoint from any brain region in 

this study. Electrophysiological recordings in macaque monkeys have shown that neurons in 

the anterior face patches respond to face identity across viewpoint (Freiwald & Tsao, 2010) 
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and human neuroimaging studies have shown that face identity can be decoded across 

viewpoint from human face-responsive regions (Anzellotti et al., 2014; Guntupalli et al., 

2016). However, previous work has demonstrated that in some cases fMRI MVPA can fail to 

decode identity, even when electrophysiological recordings show that viewpoint-invariant 

identity information is present in the underlying neurons (Dubois, de Berker, & Tsao, 2015).  

3.4.2. Neural coding of body identity 

We could decode body identity from the body-responsive FBA and the face-

responsive OFA and FFA in our ROI analyses, and from regions in the occipital cortex, 

fusiform gyrus, right anterior temporal cortex, superior parietal cortex, supramarginal gyrus, 

cingulum, precentral gyrus, caudate nucleus, inferior frontal gyrus, middle frontal gyrus, 

right insula cortex and right superior frontal gyrus in our searchlight analyses. Several of 

these regions have previously been shown to have higher responses when participants view 

the bodies of familiar people as compared to unfamiliar people (Hodzic et al., 2009). We 

could decode body identity from the OFA and occipital cortex regardless of the recognition 

task, suggesting this decoding could be based on differences in visual features between the 

different body identities. In contrast, we could only decode body identity from the right 

anterior temporal cortex, inferior frontal gyrus, middle frontal gyrus and right insula cortex 

when participants attended to identity, suggesting body identity responses in these regions 

are not driven purely by visual features, and that these responses were enhanced by 

participants’ attention to identity (see Section 3.4.4).  

We further investigated which brain regions encode body identity in a viewpoint-

invariant manner. We could decode body identity across viewpoint from neural activity in 

the FBA, OFA and FFA in our ROI analyses, and from neural activity in the occipital cortex, 

middle frontal gyrus, right anterior temporal cortex, right superior parietal cortex, right 

medial superior frontal gyrus, right insula cortex, right rolandic operculum, left caudate 

nucleus, left cingulum and left postcentral gyrus in our searchlight analyses. We could 

decode body identity from the OFA and occipital cortex using fMRI data from both 

recognition tasks, suggesting that this decoding could be driven by visual features that are 

visible across different viewpoints. In contrast, we could decode body identity across 

viewpoint from the FBA, FFA, right anterior temporal cortex, middle frontal gyrus, right 

medial superior frontal gyrus, right insula cortex and right rolandic operculum only when 
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participants attended to identity, suggesting this decoding is driven by more abstract factors 

than visual features. However, we also found differences in the univariate responses to the 

three body identities in the FBA, FFA, right medial superior frontal gyrus and right insula 

cortex, which could have driven our significant decoding results in these regions. We did not 

find differences in the univariate responses to the three body identities in the right anterior 

temporal cortex, middle frontal gyrus or right rolandic operculum, suggesting that these 

responses were driven by differences in the pattern of neural responses only. Furthermore, 

in a follow-up analysis, we found that we could decode body identity across viewpoint in the 

FBA between two identities that showed no difference in their univariate responses in the 

FBA. Thus, altogether we find strongest evidence for neural encoding of body identity in a 

viewpoint-invariant manner in the FBA, the right anterior temporal cortex and the middle 

frontal gyrus, as these regions show consistent decoding of body identity in two analyses 

(body identity decoding and viewpoint-invariant body identity decoding), and these 

responses are not driven by low-level visual features or differences in univariate responses.   

Several previous studies have found viewpoint-invariant face identity responses in 

the anterior temporal cortex (Anzellotti et al., 2014; Freiwald & Tsao, 2010; Guntupalli et al., 

2016). Similarly, classification of body identity across viewpoint and pose was higher in a 

more anterior body patch in macaque temporal cortex than a more posterior body patch 

(Kumar et al., 2017), suggesting disentangling identity from viewpoint may be a general 

function performed by more anterior temporal regions. Our results showing that body 

identity can be decoded across viewpoint in the FBA and right anterior temporal cortex are 

consistent with a homology between the FBA and macaque anterior superior temporal 

sulcus body patch, and suggest that disentangling identity from viewpoint is also a general 

function of the human anterior temporal cortex. Furthermore, our results show a functional 

dissociation between the FBA and the EBA, as we were unable to decode body identity in 

the EBA in any of our analyses. Although a previous study showed body identity responses 

in both EBA and FBA using a repetition-suppression paradigm, the authors also showed 

evidence that feedback connectivity from the FBA to the EBA may have driven the body 

identity repetition suppression in the EBA (Ewbank et al., 2011). This is consistent with our 

finding of body identity encoding in the FBA and not the EBA.  
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3.4.3. Neural coding of identity across face and body 

We could decode identity across neural activity evoked by face and body stimuli in 

the early visual cortex, the right inferior occipital cortex, the right parahippocampal cortex 

and the right superior parietal cortex. This abstract identity decoding was possible when 

participants attended to the stimulus identity, but not when they attended to viewpoint, 

showing that this decoding was not solely based on visual features and was enhanced by 

participants’ attention to identity. Our ability to decode identity across the face and body in 

the early visual cortex suggests there may be feedback of identity information to the early 

visual cortex. Several previous studies have demonstrated there can be such feedback of 

high-level visual information to the early visual cortex (Bannert & Bartels, 2013; Grassi, 

Zaretskaya, & Bartels, 2017; Smith & Muckli, 2010; Williams et al., 2008; Zaretskaya, Anstis, 

& Bartels, 2013). Although we could not decode identity from our OFA ROI, we could 

decode identity from a region in the right inferior occipital cortex overlapping with the 

mean location of the right OFA. A previous study found viewpoint-invariant face identity 

responses in the OFA (Anzellotti et al., 2014), which, in combination with our results 

suggests the OFA contains some abstract identity encoding. We could also decode identity 

in an abstract manner in the right parahippocampal cortex. This region is known to be 

involved in memory and recollection (Eichenbaum, Yonelinas, & Ranganath, 2007), and has 

previously shown to be activated by recollection of contextual associations of faces and 

names (Kirwan & Stark, 2004). Our results suggest that this region also integrates identity 

information from the face and body. Finally, we could also decode identity in an abstract 

manner in the right superior parietal cortex. Consistent with this finding, previous work has 

identified abstract identity coding of faces and cars in the parietal cortex (Jeong & Xu, 2016). 

In combination, these results show consistence with previous brain regions found to 

respond to identity in an abstract manner and provide new insights into where in the brain 

identity information from the face and the body is combined.   

3.4.4. Effect of recognition task 

We could decode face identity and decode identity across face and body stimuli 

when participants attended to identity, but not when they attended to viewpoint. Similarly, 

we could decode body identity from the FBA, right anterior temporal cortex and middle 

frontal gyrus when participants attended to identity, but not when they attended to 
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viewpoint. Previous studies have demonstrated that attention to face identity enhances 

neural face identity responses (Dobs, Schultz, Bülthoff, & Gardner, 2018; Gratton, 

Sreenivasan, Silver, & D’Esposito, 2013). Furthermore, several studies reporting successful 

decoding of face identity used tasks where participants attended to identity (Anzellotti & 

Caramazza, 2015; Anzellotti et al., 2014; Guntupalli et al., 2016; Jeong & Xu, 2016; Nestor et 

al., 2011), whereas some studies reporting unsuccessful face identity decoding used tasks 

unrelated to face recognition (Dubois et al., 2015; Ramírez, Cichy, Allefeld, & Haynes, 2014). 

Our results, in combination with these previous studies, suggest that neural representations 

of face and body identity are enhanced by attention to identity, perhaps due to activation of 

identity-responsive neurons, and that this enhancement may be necessary to be able to 

decode identity from fMRI data.  

3.5. Conclusion 

We show, for the first time to our knowledge, that body identity can be decoded 

across viewpoint from neural activity in the body-responsive FBA, the right anterior 

temporal cortex and the middle frontal gyrus using MVPA. This result provides evidence that 

viewpoint-invariant identity coding may be a general function of more anterior regions of 

the human temporal cortex. Furthermore, we show that identity can be decoded in an 

abstract manner across neural activity evoked by faces and bodies in several regions 

previously associated with abstract identity coding. This provides new insights into the 

neural substrates encoding person identity information.  
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Abstract 

We can easily recognise the orientation of people we see, for example whether their body is 

facing us or turned toward another direction. This ability is important for us to understand 

other people’s actions, social interactions and intentions. Previous neuroimaging studies 

have shown that several brain regions in occipitotemporal cortex have different patterns of 

response when we view faces or bodies of different orientations. However, it is often 

unclear from these studies whether these different patterns of response are driven by an 

abstract encoding of orientation or simply by low-level visual features that correlate with 

different face and body orientations. Furthermore, no study so far has directly compared 

neural responses to face and body orientations in the human brain. In the present study, we 

recorded participants’ brain activity using fMRI while they viewed faces and bodies from 

three different orientations. This allowed us to compare which brain regions process face 

and body orientation and, as faces and bodies vary considerably in their low-level visual 

properties, investigate if any regions encode person orientation in an abstract manner. We 

found that that the occipital face area (OFA) and extrastriate body area (EBA) respond to 

person orientation in an abstract code that generalized across neural activity evoked by 

faces and bodies. Furthermore, we found that the fusiform face area (FFA) and fusiform 

body area (FBA) responded to face orientation but not body orientation, suggesting that 

orientation responses in the fusiform gyrus are face-specific. Our results show that early 

face- and body-responsive regions encode person orientation in a manner abstracted from 

low-level visual features, suggesting that orientation processing is an important function of 

these occipital regions.  

 

Keywords: orientation, viewpoint, body recognition, face recognition, fMRI 
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4.1. Introduction 

 The ability to process the orientation of people we see is important for us to be able 

to understand how other people interact with us and the world around them. For example, 

we know that if a person is oriented towards an object they may intend to interact with it or 

if they are oriented towards us, the viewer, they may want to socially interact with us. 

Humans use information from the face and body to determine a person’s orientation, and in 

addition use information from their eye gaze to determine their direction of attention. 

Psychological research has shown there are interactions between face and body orientation 

information (Moors, Germeys, Pomianowska, & Verfaillie, 2015) and face orientation and 

gaze direction information (Gibson & Pick, 1963; Wollaston, 1824).  

Neuroimaging and electrophysiology studies have investigated which brain regions 

process information about face and body orientation in humans and macaque monkeys. For 

face orientation, human neuroimaging studies have found different patterns of response to 

different face orientations in the face-responsive occipital face area (OFA), fusiform face 

area (FFA) and posterior superior temporal sulcus (pSTS), object-responsive lateral occipital 

(LO) area and early visual cortex (Axelrod & Yovel, 2012; Guntupalli, Wheeler, & Gobbini, 

2016; Kietzmann, Swisher, König, & Tong, 2012; Natu et al., 2010; Ramírez, Cichy, Allefeld, & 

Haynes, 2014). Similarly, for macaque monkeys, neurons in the posterior face-responsive 

patches and the anterior superior temporal sulcus (aSTS) have been shown to respond to 

specific face orientations (Dubois, de Berker, & Tsao, 2015; Freiwald & Tsao, 2010; Perrett et 

al., 1985; Wachsmuth, Oram, & Perrett, 1994). For body orientation, human neuroimaging 

studies have shown that the body-responsive extrastriate body area (EBA) and fusiform 

body area (FBA) are sensitive to body orientation (Chan, Peelen, & Downing, 2004; Ewbank 

et al., 2011; Taylor, Wiggett, & Downing, 2010). In macaques, body orientation can be 

decoded from both the middle and anterior superior temporal sulcus body patches (Kumar, 

Popivanov, & Vogels, 2017) and body orientation responsive neurons have been identified 

in the macaque aSTS (Wachsmuth et al., 1994).  

 These studies demonstrate that many occipitotemporal regions respond to face 

and/or body orientation. However, for many of these studies it is unclear whether the 

neural responses reflect an abstract high-level encoding of orientation direction or 
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responses to low-level visual features that correlate between face or body images of 

different individuals with the same orientation. One study found that some neurons in the 

macaque aSTS respond to orientation direction in an abstract manner (Wachsmuth et al., 

1994). These neurons responded to a particular orientation direction when it was shown 

from both face and body images shown separately, which contain very different low-level 

visual features. However, as the authors only recorded from the aSTS it is not clear if any 

other brain regions would encode orientation in an abstract manner. Furthermore, as most 

studies have investigated orientation responses separately for faces and bodies it is not 

possible to directly compare which brain regions are involved in orientation processing of 

both faces and bodies.  

In this study, we investigated the neural responses to different face and body 

orientations in face- and body-responsive brain regions and across the whole brain in 

searchlight analyses. We recorded participants’ brain activity using fMRI while they viewed 

images of faces and bodies of three people from three different orientations. We then 

trained linear support vector machine (SVM) classifiers to distinguish between patterns of 

neural activity evoked by the three stimulus orientations and used them to predict stimulus 

orientation in a separate set of test data. Firstly, we performed these analyses separately for 

neural activity evoked by faces and bodies in order to directly compare which brain regions 

respond to face and body orientation. Secondly, we trained classifiers on neural activity 

evoked by faces and tested them on neural activity evoked by bodies, and vice-versa, in 

order to investigate which brain regions contain abstract responses to orientation that can 

generalize across neural activity evoked by faces and bodies. Thirdly, we also varied 

participants’ attention during the experiment. In half of the dataset participants were 

instructed to respond to the orientation of the stimuli, and in the other half of the dataset 

the identity of the stimuli. This allowed us to compare if there would be differences in 

participants’ neural responses depending on whether they attended to the stimulus 

orientation or identity.  
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4.2. Materials and methods 

Data analyses presented here were conducted using a dataset that was collected as 

part of a larger study. Here we present novel findings from behavioural and fMRI data 

analyses investigating behavioural and neural responses to face and body orientation.  

4.2.1. Participants  

 20 participants (14 female, 21-51 years old) completed the experiment. All 

participants provided written informed consent prior to the experiment, and the 

experimental procedure was approved by the local ethics committee of the University Clinic 

Tübingen. 

4.2.2. Stimuli  

4.2.2.1. Main experiment stimuli 

The experimental stimuli were images of faces and bodies shown from three 

different orientations, 0° (front), 45° and 90° (profile). Examples of the stimuli are shown in 

Fig. 1A. Face and body stimuli were created using face and body scans of three female 

individuals that were registered to a 3D facial shape and expression model for the face 

stimuli (Li, Bolkart, Black, Li, & Romero, 2017) and a 3D body shape and pose model for the 

body stimuli (Loper, Mahmood, Romero, Pons-moll, & Black, 2015). Body stimuli were 

shown in a standard A-pose (see Fig. 1A) and faces had a neutral expression. Stimuli were 

shown in colour, and for body stimuli a grey rectangle was placed over the face, in order to 

exclude any face information from the body images. During the experiment face and body 

stimuli were shown at three different image sizes. Face stimuli had mean widths and heights 

of 4.4° x 6.4°, 3.6° x 5.2° and 2.8° x 4.0° of visual angle, and body stimuli had mean widths 

and heights of 3.2° x 7.7°, 2.6° x 6.2° and 2.0° x 4.8° of visual angle.  
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Figure 1. Experimental stimuli and example stimulus block. (A) Face and body images were shown 

from three different orientations: 0° (front), 45° and 90° (profile). (B) Stimuli were shown in a block 

design during the experiment, where stimuli within a block were all from one condition (i.e. face or 

body, one orientation, one identity) and varied in their image-size (three different image-sizes, each 

shown twice, presented in a random order). Each block was followed by 2 s fixation.  
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4.2.2.2. Localizer stimuli 

Stimuli for the localizer experiment consisted of grayscale images of faces, headless 

bodies, objects and phase-scrambled images. Phase-scrambled images were Fourier-

scrambled versions of a collage image containing the face and headless body images.  

4.2.3. Experimental design 

Participants lay supine in the MRI scanner and viewed the stimuli on a screen 

positioned 92 cm behind their head, which they viewed via a mirror attached to the head 

coil. The stimuli were presented using a projector (resolution 1920x1080), and the screen 

spanned 25° x 14° of visual angle in horizontal and vertical directions respectively. The 

experiment was programmed on Ubuntu 17.10 with Matlab 2017a using the Psychophysics 

Toolbox extensions (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007).  

4.2.3.1. Main experiment procedure  

 Each participant completed eight fMRI runs, where each run contained 18 conditions 

of a 2 (face or body) x 3 (orientation) x 3 (identity) factorial design. Stimuli were presented 

in a block design (Fig. 1B) where each block contained 6 images that were all from the same 

condition (i.e. face or body, one orientation, one identity). Images within a block were 

shown at three different image-sizes with scale factors of 1, 1.3 and 1.6 (i.e. the largest 

image-size was 1.6 times both the width and height of the smallest image-size). Each block 

contained 2 repetitions of each image-size, shown in a random order. Each image in the 

block was shown for 0.9 s and a 0.1 s blank grey screen followed each image. Following each 

block was a 2 s fixation before the next block began. Each run contained 54 blocks (3 

repetitions per condition), where 18 blocks (one per condition) were presented in a random 

order preceded by and followed by 8 s of fixation.  

4.2.3.2. Main experiment task 

In half of the fMRI runs participants were instructed to respond at the end of each 

block to which orientation (i.e. 0°, 45° or 90°) was presented in the block. In the other half of 

the runs participants were instructed to respond at the end of the block to which identity 

was presented in the block. Participants were trained to recognise the three identities prior 
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to the fMRI experiment. Participants pressed a button with one of three fingers to indicate 

the orientation or identity shown in the block.  

In all runs participants performed an additional attention task to keep their attention 

on the stimuli throughout the block. Participants were instructed to respond by pressing a 

button with their thumb immediately whenever they saw an image of the smallest of the 

three image-sizes.  

4.2.3.3. fMRI localizer experiment procedure 

Participants completed one run of a localizer experiment following the main 

experiment. Data from this localizer was used to define face- and body-responsive regions 

of interest. The localizer consisted of four conditions (faces, bodies, objects and phase-

scrambled images) that were presented in a block design. Faces, bodies and objects were 

shown in front of the phase-scrambled images so that the size of the visual-field stimulation 

was the same for every image. Each block contained 8 images from one condition where 

each image was presented for 1.8 s and was followed by a 0.2 s blank grey screen. 

Conditions were presented in a carryover counterbalanced sequence, so that each condition 

was preceded by each condition an equal number of times (Brooks, 2012).  

During the localizer, participants performed a one-back matching task on the images, 

to ensure they kept their attention on the stimuli. Image repetitions occurred once every 9 

seconds on average.  

4.2.4. Imaging parameters 

Images were acquired using a 3T Siemens Prisma scanner with a 64-channel head 

coil (Siemens, Erlangen, Germany). Functional T2* echoplanar images (EPI) were acquired 

using a sequence with the following parameters; multiband acceleration factor 2, GRAPPA 

acceleration factor 2, TR 1.84 s, TE 30 ms, flip angle 79°, FOV 192x192 mm. Volumes 

consisted of 60 slices, with an isotropic voxel size of 2x2x2 mm. The first 8 volumes of each 

run were discarded to allow for equilibration of the T1 signal. For each participant a high-

resolution T1-weighted anatomical scan was acquired with the following parameters; TR 2 s, 

TE 3.06 ms, FOV 232x256 mm, 192 slices, isotropic voxel size of 1x1x1 mm.  
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4.2.5. MRI data preprocessing 

MRI data was preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). All 

functional images were slice-time corrected, realigned and coregistered to the anatomical 

image. ROI and whole-brain searchlight analyses were conducted on the unsmoothed data 

in subject space. The resulting searchlight maps were normalised to MNI (Montreal 

Neurological Institute) space, and spatially smoothed with a 6 mm Gaussian kernel to allow 

for comparisons across participants. For the whole-brain univariate analyses the data was 

normalized to MNI space and spatially smoothed with a 6 mm Gaussian kernel. Localizer 

data was kept in subject-space and spatially-smoothed with a 6 mm Gaussian kernel.  

4.2.6. Definition of regions of interest 

 We defined face- and body-responsive regions of interests (ROIs) using fMRI data 

from our localizer experiment. We defined four face-responsive ROIs, the occipital face area 

(OFA), the fusiform face area (FFA) the posterior superior temporal sulcus (pSTS) and the 

anterior temporal face area (ATFA) and two body-responsive ROIs, the extrastriate body 

area (EBA) and the fusiform body area (FBA). For each participant, we initially attempted to 

define face-responsive ROIs using the contrast faces > objects and body-responsive ROIs 

using the contrast bodies > objects. If we could not define the ROIs using these contrasts 

then we attempted to define them using the contrasts faces > scrambled images and bodies 

> scrambled images. We first attempted to define ROIs using a threshold of p <0.001 

(uncorrected), and then reduced this threshold to p < 0.01 (uncorrected) if the ROI could not 

be defined using the first threshold.  

 

 

 

 

 

 

 

http://www.fil.ion.ucl.ac.uk/spm/
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Table 1 

Average MNI coordinates and volume of each ROI, ± standard deviations. N indicates the number of 

participants each ROI was identified in. ROI analyses were conducted in subject space and then ROIs 

were subsequently normalised to generate the MNI coordinates.  

 

 

4.2.7. Behavioural analyses 

Participants were instructed to respond with a button press at the end of each block 

to indicate which orientation or identity was presented in the block (one half of blocks 

orientation task, the other half of blocks identity task). We calculated our participants’ 

behavioural performance using accuracy (% correct). To investigate if there were any 

differences in the detection of orientation or identity of stimuli from the three different 

orientations we performed one-way repeated-measures ANOVAs with three levels (0°, 45° 

and 90° stimulus orientation). We corrected for non-sphericity where necessary following a 

Mauchly’s test of sphericity. Following any significant ANOVA results, we performed follow-

ROI hem x y z Volume (mm3) N 

OFA left -35 ± 6.7 -85 ± 5.7 -11 ± 3.5 770 ± 379.9 20 

 right 38 ± 4.0 -81 ± 5.8 -10 ± 3.3 1009 ± 378.6 20 

FFA left -40 ± 2.8 -55 ± 6.1 -20 ± 2.9 771 ± 354.7 20 

 right 43 ± 3.3 -52 ± 4.2 -18 ± 2.4 1073 ± 392.5 20 

pSTS left -50 ± 6.4 -62 ± 8.8 17 ± 10.2 519 ± 541.2 19 

 right 53 ± 5.5 -54 ± 10.0 12 ± 8.9 732 ± 403.1 20 

ATFA left -34 ± 5.4 -12 ± 6.5 -33 ± 6.6 172 ± 117.4 15 

 right 34 ± 5.8 -8 ± 5.5 -37 ± 5.8 335 ± 265.6 18 

EBA left -44 ± 3.7 -78 ± 5.3 3 ± 6.5 900 ± 473.3 20 

 right 49 ± 2.3 -70 ± 3.0 0 ± 4.6 1632 ± 503.2 20 

FBA left -39 ± 4.2 -50 ± 6.3 -20 ± 2.9 680 ± 456.7 19 

 right 41 ± 4.1 -50 ± 5.5 -18 ± 3.0 1105 ± 572.2 20 
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up paired t-tests between all combinations of the three orientation conditions to determine 

exactly which conditions showed differences in behavioural performance.  

4.2.8. Multivoxel pattern analyses (MVPA) 

 We conducted multivoxel pattern analyses (MVPA) to investigate which brain 

regions contain different patterns of activity to faces and bodies of different orientations 

(0°, 45° and 90°). Following preprocessing, fMRI data was modelled with a General Linear 

Model (GLM) using SPM12, where the neural responses to each block were modelled as 

separate regressors in the GLM. MVPA analyses were then performed on the beta weight 

images with The Decoding Toolbox (Hebart, Görgen, & Haynes, 2015) using a linear support 

vector machine classifier (LIBSVM). We performed feature-scaling on the input data using z-

score normalization and set any outlier values (values that were greater than 2 standard 

deviations from the mean) to 2 or -2. We estimated the mean and standard deviation for 

feature-scaling using the training data and then applied these values to the test data.  

 In a first set of analyses, we aimed to determine which brain regions contain 

separable patterns of activity to faces of different orientations and bodies of different 

orientations. Thus, we analysed fMRI data evoked by face and body stimuli separately. We 

analysed fMRI data from the two behavioural tasks separately, thus we used 4 runs of fMRI 

data per analysis. In each analysis, we trained a linear SVM classifier to distinguish between 

neural activity evoked by the three stimulus orientations. We trained the classifier using 

neural activity data evoked by 2 of the 3 stimulus identities and from 3 of the 4 runs of fMRI 

data. We then tested the classifier on its ability to predict the three stimulus orientations 

from neural activity data evoked by the third stimulus identity from the 4th left out run of 

fMRI data. A brain region showing higher than chance decoding performance in this analysis 

would show that the region contains separable patterns of neural activity to the three 

different stimulus orientations, and that these patterns are invariant with respect to the 

identity of the stimulus. We used a 4-fold cross-validation procedure where we repeated 

the analysis 4 times with each run used once as the held out test dataset. We also repeated 

the analysis 3 times with each stimulus identity used as the held out test identity once. The 

final decoding accuracy was determined by averaging over the 4 cross-validation and 3 

stimulus identity combinations.  
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 In a second set of analyses, we aimed to determine which brain regions contain 

separable patterns of neural activity evoked by the three stimulus orientations that could 

generalize across neural activity evoked by face and body stimuli. We again analysed fMRI 

data from the two behavioural tasks separately, and thus used 4 runs of data per analysis. 

We trained a linear SVM classifier to distinguish between neural activity evoked by the three 

stimulus orientations, using neural activity data evoked by face stimuli from 3 of the 4 runs 

of fMRI data. We then tested the classifier on its ability to predict the three stimulus 

orientations from neural activity data evoked by body stimuli from the 4th left out run of 

fMRI data. We again used a 4-fold cross-validation procedure where we repeated the 

analysis 4 times with each run used once as the held out test dataset. In addition, we 

repeated the analysis but using neural activity data evoked by body stimuli as the training 

set and neural activity data evoked by face stimuli as the test dataset. The final decoding 

accuracy was determined by averaging over the 4 cross-validation and the two training and 

test dataset combinations.   

 We conducted all MVPA analyses in ROIs and whole-brain searchlight analyses. For 

ROI analyses we determined statistical significance using permutation testing. For each ROI 

we repeated each analysis 10,000 times with the condition labels assigned in a random 

order, in order to generate a null distribution of classification accuracies that would be 

expected by chance. We assessed significance by comparing how often in this null 

distribution we obtained a mean decoding performance equal to or greater than our actual 

mean decoding performance. We tested for significance using a threshold of p < 0.05, using 

a Bonferroni correction to adjust for multiple comparisons (N = 6 ROIs tested).  

 Whole-brain searchlight analyses were performed in subject-space using 4-voxel 

radius spheres, which were centred around each voxel in the brain once. Thus for each 

participant and each analysis we obtained a whole-brain map of classification accuracies. 

These maps were then normalised to MNI space and smoothed with a 6 mm Gaussian 

kernel to allow for comparisons across participants. We used SnPM13 

(http://warwick.ac.uk/snpm) to assess significance using nonparametric permutation tests 

(Nichols & Holmes, 2001) with 10,000 permutations and 6 mm FWHM variance smoothing. 

We tested for significance using a one-sided t-test with a threshold of p < 0.05, family-wise 

error rate (FWE) corrected for multiple comparisons.  

http://warwick.ac.uk/snpm
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4.2.9. Univariate analyses 

We conducted univariate analyses to investigate if there were brain regions that 

showed different mean overall levels of neural response to faces or bodies of different 

orientations. Following preprocessing, we modelled the fMRI data with a GLM using SPM12, 

where the neural responses to each condition were modelled as separate regressors. We 

performed univariate analyses in ROIs and in whole-brain analyses. We tested for 

differences in the level of neural activity to the three different stimulus orientations using 

one-way repeated measures ANOVAs with three levels (0°, 45° and 90° stimulus 

orientation). For ROI analyses we assessed significance using a threshold of p < 0.05, 

corrected for non-sphericity where necessary following a Mauchly’s test of sphericity, and 

Bonferroni-corrected for multiple comparisons (N = 6). In ROIs showing significant 

differences in the ANOVA analyses, we performed follow up paired t-tests between the 

different stimulus orientations to determine which conditions showed differences in neural 

activation. For whole-brain analyses we assessed significance with a threshold of p < 0.05, 

FWE corrected.  

 



Shared Orientation  99 
 
 

4.3. Results 

4.3.1. Behavioural results 

 We measured participants accuracy in detecting the orientation and identity of 

stimuli of the three different stimulus orientations (0°, 45° and 90°) during the fMRI 

experiment using accuracy (% correct). The results are shown in Figure 2.  

   

 

Figure 2. Accuracy (% correct) in detection of orientation and identity for stimuli from the three 

different orientation conditions. (A) and (C) show participants accuracy in detecting the orientation 

of face (A) and body (C) stimuli. (B) and (D) show participants accuracy in detecting the identity of 

face (B) and body (D) stimuli. Error bars indicate ±1 SEM. * indicates p < 0.05.  

 

4.3.1.1. Orientation detection 

 Participants showed a high accuracy in detecting the orientation of both face and 

body stimuli across all conditions (face stimuli: 93.8 % correct; body stimuli: 94.3 % correct). 

A one-way repeated-measures ANOVA showed there were no differences in orientation 

detection performance between face stimuli of the three different orientations (F2,38 = 0.23, 

p = 0.79, ηp
2 = 0.012). In contrast, a one-way repeated-measures ANOVA showed there were 
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differences in orientation detection between body stimuli of the three different orientations 

(F2,38 = 3.54, p = 0.039, ηp
2 = 0.16). Follow-up paired t-tests showed that detection accuracy 

of 90° bodies was lower than the detection accuracy of both 45° body stimuli (M = -2.9 %,  

SE = 1.31, t19 = -2.2, p = 0.039, Cohen’s d = -0.50) and 0° body stimuli (M = -2.8 %, SE = 1.21, 

t19 = -2.3, p = 0.033, Cohen’s d = -0.54), but there was no difference in detection accuracy 

between 45° and 0° body stimuli (M = 0.1 %, SE = 1.18, t19 = 0.12, p = 0.91, Cohen’s d = 

0.026). We note that detection accuracy was very high for all three body orientations (0°: 

95.1 %, 45°: 95.3 %, 90°: 92.4 %), showing that participants could easily detect all three body 

orientations.  

4.3.1.2. Identity detection 

Participants showed high accuracy in the detection of identity for both face (96.2 %) 

and body (92.5 %) stimuli. One-way repeated-measures ANOVAs showed there were no 

differences in identity detection between stimuli of the three different orientations for both 

face stimuli (F2,38 = 0.68, p = 0.51, ηp
2 = 0.035) and body stimuli (F2,38 = 0.30, p = 0.74, ηp

2 = 

0.016). This shows that participants could detect the stimulus identities equally well 

regardless of the orientation of the stimuli.  

4.3.2. Neural responses to face orientation 

4.3.2.1. Classification analyses 

 We first investigated which brain regions have different patterns of neural activity 

evoked by different face orientations that could generalize across face identity. We trained 

a linear SVM classifier to distinguish between patterns of neural activity evoked by the three 

face orientations of two identities. We then tested the classifier on its ability to decode the 

face orientation of a third identity, using neural activity data in a left out run of data. We 

used a leave one run out cross validation method, and also repeated the analysis with each 

identity used once as the test identity. We performed the analysis in face- and body-

responsive ROIs as well as in searchlight analyses across the whole brain. We conducted the 

analysis twice separately for data where participants responded to the orientation of the 

stimuli (orientation task) and for data where they responded to the identity of the stimuli 

(identity task). The results are shown in Fig. 3A-D.  
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Figure 3. Neural responses to face orientation. (A) and (B) show classification of face orientation 

above chance-level in ROIs. Grey scatter points show classification accuracies for individual 

participants, ** indicates p < 0.001, * indicates p < 0.05, Bonferroni corrected for N = 6 ROIs. (C) and 

(D) show classification of face orientation in whole-brain searchlight analyses. The scale bar shows –

log10(p values) between 1.301 (p = 0.05) and 5 (p = 1 x10-5), FWE corrected. (E) and (F) show 

differences in mean BOLD activation to faces of different orientations in ROIs. * indicates p < 0.05. 
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(G) and (H) show differences in mean BOLD activation to faces of different orientations in a whole-

brain analysis (FWE corrected). All analyses were conducted separately for fMRI data collected while 

participants responded to stimulus orientation (A), (C), (E) and (G) or to stimulus identity (B), (D), (F) 

and (H). 

 

 Classification of face orientation from the orientation task data (Fig. 3A) was 

significantly above chance-level (33 ⅓ %) in the face-responsive OFA (49.3 %, p < 0.0006 

Bonferroni corrected, Cohen’s d = 2.31) and FFA (36.9 %, p < 0.0006 Bonferroni corrected, 

Cohen’s d = 1.05), but not in the pSTS (35.4 %, p = 0.014 uncorrected, Cohen’s d = 0.70) or 

the ATFA (34.4 %, p = 0.12 uncorrected, Cohen’s d = 0.43). Classification of face orientation 

from the orientation task data was also significantly above chance in both body-responsive 

ROIs (EBA: 41.9%, p < 0.0006 Bonferroni corrected, Cohen’s d = 1.42; FBA: 35.5%, p = 0.046 

Bonferroni corrected, Cohen’s d = 0.67). These results were identical for classification of 

face orientation from the identity task data (Fig. 3B). Classification was significantly above 

chance in the face-responsive OFA (52.5 %, p < 0.0006 Bonferroni corrected, Cohen’s d = 

2.05) and FFA (38.2 %, p < 0.0006 Bonferroni corrected, Cohen’s d = 1.06) and the body-

responsive EBA (41.8 %, p < 0.0006 Bonferroni corrected, Cohen’s d = 1.56) and FBA (35.9 %, 

p = 0.020 Bonferroni corrected, Cohen’s d = 0.71), but was not higher than chance in the 

pSTS (33.9 %, p = 0.25 uncorrected, Cohen’s d = 0.19) or ATFA (33.3 %, p = 0.52 uncorrected, 

Cohen’s d = -0.01).  

 We performed whole-brain searchlight analyses to investigate if any other regions 

could classify face orientation (Fig 3C-D). Using fMRI data from both the orientation and 

identity tasks, we found that face orientation could be decoded from a large area of 

occipitotemporal cortex, including face- and body-responsive regions as well as the early 

visual cortex. Consistent with our ROI results, this region included the face-responsive OFA 

and FFA and the body-responsive EBA and FBA. From the orientation task fMRI data we 

could also decode orientation in the left motor cortex as participants’ responded using 

button presses with different fingers to indicate which orientation was shown in the block. 
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4.3.2.2. Univariate analyses 

We investigated if there were differences in the overall level of neural activity to 

faces of different orientations. To do this, we conducted one-way repeated measures 

ANOVAs with 3 levels (0°, 45° and 90°) in our face- and body-responsive ROIs as well as in 

whole-brain analyses. We conducted the analyses separately for fMRI data from the two 

behavioural tasks (orientation and identity tasks). The results are shown in Fig. 3E-H.  

 For fMRI data from the orientation task (Fig. 3E), we found a significant effect of face 

orientation condition in the body-responsive EBA (F2,38 = 67.76, p = 1.76 x 10-12 Bonferroni 

corrected, ηp
2 = 0.78) and the FBA (F2,38 = 10.01, p = 0.0019 Bonferroni corrected, ηp

2 = 

0.35), but no effect in any of the face-responsive ROIs (OFA: F2,38 = 3.45, p = 0.042 

uncorrected, ηp
2 = 0.15; FFA: F2,38 = 1.39, p = 0.26 uncorrected, ηp

2 = 0.068; pSTS: F2,38 = 

0.27, p = 0.76 uncorrected, ηp
2 = 0.014; ATFA: F2,38 = 0.81, p = 0.45 uncorrected, ηp

2 = 0.041). 

Follow-up paired t-tests showed that in the EBA there was higher BOLD activation to 90° 

faces compared to 45° faces (M = 0.24, SE = 0.029, t19 = 8.41, p = 7.97 x 10-8, Cohen’s d = 

1.88) and 0° faces (M = 0.38, SE = 0.035, t19 = 11.01, p = 1.09 x 10-9, Cohen’s d = 2.46), and 

higher BOLD activation to 45° faces compared to 0° faces (M = 0.14, SE = 0.036, t19 = 3.86, p 

= 0.0011, Cohen’s d = 0.86). In the FBA, follow-up paired t-tests showed that BOLD 

activation was lower for 45° faces compared to 0° faces (M = -0.078, SE = 0.035, t19 = -2.26, p 

= 0.036, Cohen’s d = -0.50) and 90° faces (M = -0.15, SE = 0.028, t19 = -5.22, p = 4.90 x 10-5, 

Cohen’s d = -1.17), but there was no difference in BOLD activation between 0° and 90° faces 

(M = -0.070, SE = 0.036, t19 = -1.95, p = 0.066, Cohen’s d = -0.44).  

 For fMRI data from the identity task (Fig. 3F), we found a significant effect of face 

orientation condition in the face-responsive OFA (F2,38 = 9.01, p = 0.0038 Bonferroni 

corrected, ηp
2 = 0.32) and ATFA (F2,38 = 7.77, p = 0.023 Bonferroni corrected and 

Greenhouse-Geisser corrected for non-sphericity, ηp
2 = 0.29), but not in the FFA (F2,38 = 2.02, 

p = 0.15 uncorrected, ηp
2 = 0.096) or pSTS (F2,38 = 0.28, p = 0.76 uncorrected, ηp

2 = 0.015). 

There was also a significant effect of face orientation condition in the body-responsive EBA 

(F2,38 = 41.01, p = 1.79 x 10-6 Bonferroni corrected and Greenhouse-Geisser corrected for 

non-sphericity, ηp
2 = 0.68), but not in the FBA (F2,38 = 5.20, p = 0.010 uncorrected, ηp

2 = 

0.21). Follow-up paired t-tests in the OFA showed that there was lower BOLD activation to 
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45° faces compared to 0° faces (M = -0.21, SE = 0.055, t19 = -3.85, p = 0.0011, Cohen’s d = -

0.86) and 90° faces (M = -0.22, SE = 0.057, t19 = -3.77, p = 0.0013, Cohen’s d = -0.84) but no 

difference between 0° and 90° faces (M = -0.0056, SE = 0.062, t19 = -0.091, p = 0.93, Cohen’s 

d = -0.020). In the ATFA, BOLD activation was higher for 0° faces compared to 45° (M = 0.15, 

SE = 0.047, t19 = 3.16, p = 0.0052, Cohen’s d = 0.71) and 90° (M = 0.13, SE = 0.045, t19 = 2.84, 

p = 0.011, Cohen’s d = 0.63) faces, and no difference in activation between 45° and 90° faces 

(M = -0.020, SE = 0.027, t19 = -0.74, p = 0.47, Cohen’s d = -0.17). Similarly to the fMRI data 

from the orientation task, in the EBA there was higher BOLD activation to 90° faces 

compared to 45° faces (M = 0.22, SE = 0.027, t19 = 8.01, p = 1.66 x10-7, Cohen’s d = 1.79) and 

0° faces (M = 0.31, SE = 0.046, t19 = 6.64, p = 2.39 x10-6, Cohen’s d = 1.48), and higher BOLD 

activation to 45° faces compared to 0° faces (M = 0.089, SE = 0.028, t19 = 3.19, p = 0.0048, 

Cohen’s d = 0.71).  

We performed a whole-brain analysis to see if any other brain regions would show 

differences in mean BOLD activation to faces of different orientations (Fig 3G-H). We 

identified several clusters in the occipital and fusiform cortices, which overlapped with the 

locations of the EBA, OFA and early visual cortex and slightly overlapped with the FFA and 

FBA.  

4.3.3. Neural responses to body orientation 

4.3.3.1. Classification analyses 

 We investigated which brain regions have different patterns of neural activity 

evoked by different body orientations that could generalize across body identity. We trained 

a linear SVM to distinguish between patterns of neural activity evoked by the three body 

orientations, using two body identities for training the classifier. We then tested the trained 

classifier on its ability to classify body orientation from a third identity in a left out run of 

fMRI data. Again, we used a leave one run out cross-validation procedure and also used 

each body identity once as the left out test identity. As previously, we performed the 

analyses in face- and body-responsive ROIs and whole-brain searchlights, and repeated the 

analysis for fMRI data from the two behavioural tasks (orientation and identity tasks). The 

results are shown in Fig. 4A-D.  
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Figure 4. Neural responses to body orientation. (A) and (B) show classification of body orientation 

above chance-level in ROIs. Grey scatter points show classification accuracies for individual 

participants, ** indicates p < 0.001, Bonferroni corrected for N = 6 ROIs. (C) and (D) show 

classification of body orientation in whole-brain searchlight analyses. The scale bar shows –log10(p 

values) between 1.301 (p = 0.05) and 5 (p = 1 x10-5), FWE corrected. (E) and (F) show differences in 

mean BOLD activation to bodies of different orientations in ROIs. * indicates p < 0.05. (G) and (H) 
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show differences in mean BOLD activation to bodies of different orientations in a whole-brain 

analysis (FWE corrected). All analyses were conducted separately for fMRI data collected while 

participants responded to stimulus orientation (A), (C), (E) and (G) or to stimulus identity (B), (D), (F) 

and (H). 

 

 For the orientation task data (Fig. 4A), classification of body orientation was 

significantly above chance-level (33 ⅓ %) in the body-responsive EBA (40.3 %, p < 0.0006 

Bonferroni corrected, Cohen’s d = 1.79) and the face-responsive OFA (43.3 %, p < 0.0006 

Bonferroni corrected, Cohen’s d = 1.17). Classification of body orientation was not 

significantly higher than chance in the body-responsive FBA (34.0 %, p = 0.21 uncorrected, 

Cohen’s d = 0.20) or face-responsive FFA (35.4 %, p = 0.010 uncorrected, Cohen’s d = 0.47), 

pSTS (32.8 %, p = 0.72 uncorrected, Cohen’s d = -0.14) or ATFA (34.5 %, p = 0.086 

uncorrected, Cohen’s d = 0.32). Results were identical for the identity task data (Fig. 4B). 

Classification of body orientation was significantly above chance in the EBA (41.3 %, p < 

0.0006 Bonferroni corrected, Cohen’s d = 1.77) and OFA (42.5 %, p < 0.0006 Bonferroni 

corrected, Cohen’s d = 1.43), but not in any other ROIs we tested (FBA: 35.0 %, p = 0.029 

uncorrected, Cohen’s d = 0.48; FFA: 33.8 %, p = 0.29 uncorrected, Cohen’s d = 0.14; pSTS: 

32.0 %, p = 0.93 uncorrected, Cohen’s d = -0.33; ATFA: 33.1 %, p = 0.63 uncorrected, Cohen’s 

d = -0.10).  

 We performed whole-brain searchlight analyses to investigate if any other regions 

could classify body orientation (Fig 4C-D). We found a large area of occipitotemporal cortex, 

including the early visual cortex, could decode body orientation. For fMRI data from the 

orientation task this region overlapped with the OFA and EBA, and slightly overlapped with 

the FFA and rFBA. For fMRI data from the identity task this region overlapped with the OFA 

and EBA, and slightly overlapped with the FFA. In fMRI data from the orientation task we 

could also decode orientation in the left motor cortex as participants’ responded using 

button presses with different fingers to indicate which orientation was shown in the block.  

4.3.3.2. Univariate analyses 

We investigated if there were differences in the overall level of neural activity to 

bodies of different orientations. We conducted one-way repeated measures ANOVAs with 3 
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levels (0°, 45° and 90°) in both ROI and whole-brain analyses, separately for fMRI data from 

the two behavioural tasks (orientation and identity tasks). The results are shown in Fig. 4E-

H. 

For fMRI data from the orientation task (Fig. 4E), we found significant differences in 

BOLD response to body orientation in the body-responsive EBA (F2,38 = 6.06, p = 0.031 

Bonferroni corrected, ηp
2 = 0.24) and face-responsive OFA (F2,38 = 6.09, p = 0.031 Bonferroni 

corrected, ηp
2 = 0.24), but not in any other ROI (FBA: F2,38 = 2.06, p = 0.14 uncorrected, ηp

2 = 

0.098; FFA: F2,38 = 1.56, p = 0.22 uncorrected, ηp
2 = 0.076; pSTS: F2,38 = 0.35, p = 0.70, ηp

2 = 

0.018; ATFA: F2,38 = 0.30, p = 0.74 uncorrected, ηp
2 = 0.016). Follow-up paired t-tests in the 

EBA showed that this result was driven by higher activity to 90° bodies compared to 0° (M = 

0.14, SE = 0.050, t19 = 2.82, p = 0.011, Cohen’s d = 0.63) and 45° (M = 0.13, SE = 0.044, t19 = 

3.05, p = 0.0065, Cohen’s d = 0.68) bodies, but there was no difference in activation 

between 0° and 45° bodies (M = -0.0078, SE = 0.043, t19 = -0.18, p = 0.86, Cohen’s d = -

0.041). In the OFA, follow up paired t-tests showed there was higher activity to 0° compared 

to 90° bodies (M = 0.18, SE = 0.051, t19 = 3.51, p = 0.0023, Cohen’s d = 0.79), but no 

differences in activation between 0° and 45° bodies (M = 0.085, SE = 0.047, t19 = 1.81, p = 

0.086, Cohen’s d = 0.41) or between 45° and 90° bodies (M = 0.095, SE = 0.056, t19 = 1.69, p 

= 0.11, Cohen’s d = 0.38).   

For fMRI data from the identity task (Fig. 4F), we found significant differences in 

BOLD response to bodies of different orientations in the EBA (F2,38 = 12.5, p = 4.12 x 10-4 

Bonferroni corrected, ηp
2 = 0.40), but not in any other ROIs we tested (FBA: F2,38 = 0.95, p = 

0.40 uncorrected, ηp
2 = 0047; OFA: F2,38 = 4.41, p = 0.019 uncorrected, ηp

2 = 0.19; FFA: F2,38 = 

1.35, p = 0.27 uncorrected, ηp
2 = 0.067; pSTS: F2,38 = 0.77, p = 0.47 uncorrected, ηp

2 = 0.039; 

ATFA: F2,38 = 1.08, p = 0.35 uncorrected, ηp
2 = 0.054). Follow-up paired t-tests in the EBA 

showed that, as for the orientation task fMRI data, there was higher activity to 90° bodies 

compared to 0° (M = 0.21, SE = 0.048, t19 = 4.32, p = 3.70 x 10-4, Cohen’s d = 0.97) and 45° 

(M = 0.22, SE = 0.049, t19 = 4.51, p = 2.41 x 10-4, Cohen’s d = 1.01) bodies, but no difference 

in activation between 0° and 45° bodies (M = 0.016, SE = 0.052, t19 = 0.30, p = 0.76, Cohen’s 

d = 0.068). 



Shared Orientation  108 
 
 

We performed a whole-brain analysis to see if any other brain regions would show 

differences in mean BOLD activation to bodies of different orientations (Fig 4G-H). From 

these analyses we found bilateral clusters in the EVC from fMRI data from both the 

orientation and identity behavioural tasks. In the data from the identity task, we identified 

additional clusters that overlapped with the EBA.  

4.3.4. Classification of orientation across face and body stimuli 

 We investigated whether the patterns of neural activity evoked by stimuli of 

different orientations could abstract across neural activity evoked by face and body stimuli. 

To do this, we trained a linear SVM classifier to distinguish between patterns of neural 

activity evoked by faces of different orientations and then tested this trained classifier on its 

ability to classify the orientation of neural activity evoked by body stimuli (and vice-versa 

using neural activity evoked by body stimuli for training the classifier and neural activity 

evoked by face stimuli for testing it). As previously, we used a leave one run out cross-

validation method to ensure separation of training and testing data. We performed the 

analysis in face- and body-responsive ROIs and whole-brain searchlight analyses, separately 

for fMRI data from the two behavioural tasks (orientation and identity tasks). The results are 

shown in Figure 5.  

For the orientation task data (Fig. 5A), classification of orientation across neural 

activity evoked by face and body stimuli was significantly above chance-level (33 ⅓ %) in the 

OFA (38.6 %, p < 0.0006 Bonferroni corrected, Cohen’s d = 1.23) and the EBA (37.2 %, p < 

0.0006 Bonferroni corrected, Cohen’s d = 1.18), but not in any other face-responsive ROIs 

(FFA: 34.8 %, p = 0.046 uncorrected, Cohen’s d = 0.61; pSTS: 34.8 %, p = 0.053 uncorrected, 

Cohen’s d = 0.61; ATFA: 33.8 %, p = 0.32 uncorrected, Cohen’s d = 0.17) or in the FBA (33.9 

%, p = 0.26 uncorrected, Cohen’s d = 0.26). These results were identical for analyses using 

fMRI data from the identity task (Fig. 5B). Classification was significantly above chance in the 

OFA (37.9 %, p < 0.0006 Bonferroni corrected, Cohen’s d = 1.00) and the EBA (37.7 %, p < 

0.0006 Bonferroni corrected, Cohen’s d = 1.30), but not in the other ROIs tested (FFA: 34.9 

%, p = 0.038 uncorrected, Cohen’s d = 0.48; pSTS: 34.5 %, p = 0.081 uncorrected, Cohen’s d = 

0.38; ATFA: 33.6 %, p = 0.39 uncorrected, Cohen’s d = 0.095; FBA: 34.9 %, p = 0.042 

uncorrected, Cohen’s d = 0.50). 
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Figure 5. Classification of orientation across neural activity evoked by face and body stimuli. (A) and 

(B) show classification of orientation above chance-level in ROIs. Grey scatter points show 

classification accuracies for individual participants, ** indicates p < 0.001, Bonferroni corrected for N 

= 6 ROIs. (C), (D), (E) and (F) show classification of orientation in whole-brain searchlight analyses. 

Scale bars show –log10(p values) between 1.301 (p = 0.05) and 5 (p = 1 x10-5), FWE corrected. (E) and 

(F) show the position of the right hemisphere searchlight clusters compared to the mean locations of 

the EBA (in green) and OFA (in blue). All analyses were conducted separately for fMRI data collected 

while participants responded to stimulus orientation (A), (C) and (E) or to stimulus identity (B), (D) 

and (F). 
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 We performed whole-brain searchlight analyses to investigate if any other regions 

could classify orientation across neural activity evoked by face and body stimuli (Fig 5C-F). 

Consistent with our ROI analyses, we found bilateral regions overlapping with the OFA and 

EBA that were able to decode orientation. Interestingly these regions were located at the 

intersection of the OFA and EBA (see Fig 5E-F). Orientation could also be decoded in the 

right early visual cortex. In fMRI data from the orientation task we could also decode 

orientation in the left motor cortex, due to participants’ button presses in this task.  

 As we found some differences in the mean BOLD responses to faces and bodies of 

different orientations (Fig 3E-F and Fig 4E-F), we performed a control analysis to ensure our 

classification results across neural activity evoked by face and body stimuli were not driven 

by differences in the mean BOLD signal. We repeated these classification analyses using only 

the mean BOLD signal in each ROI, or in each searchlight sphere for training and testing the 

classifier. If differences in mean BOLD activation were driving the classification results, there 

should be identical classification results in these analyses. Results showed that we could not 

decode orientation in any ROI using the mean BOLD activation (Fig S1A-B). Furthermore, 

searchlight results showed a cluster in the right EVC, but not in any other brain region (Fig 

S1C-D). These results suggest that our decoding of orientation in the right EVC may be 

driven by differences in the mean BOLD signal, but we find no evidence that activity in EBA 

or OFA was affected by any differences in the overall mean signal.  
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4.4. Discussion  

In this study, we investigated the neural responses to faces and bodies varying in 

orientation. We show that the OFA, EBA and early visual cortex contain different patterns of 

activity to both faces and bodies of different orientations. Furthermore, orientation 

responses in the OFA and EBA were abstract. In these regions, a classifier trained to 

distinguish patterns of neural activity evoked by face orientations could then decode 

orientation form neural activity evoked by bodies, and vice-versa. We also show that the 

FFA and FBA respond to face orientation but not to body orientation, suggesting that 

orientation responses in these areas are face-specific. These results show that there are 

both similarities and differences in the neural processing of face and body orientation.  

4.4.1. Orientation responses in the OFA and EBA 

 We found that we could consistently decode both face and body orientation from 

the face-responsive OFA and body-responsive EBA. Several studies have shown that the OFA 

responds to face orientation (Axelrod & Yovel, 2012; Flack, Harris, Young, & Andrews, 2019; 

Guntupalli et al., 2016; Kietzmann et al., 2012), but no previous study, to our knowledge, 

has shown that it responds to body orientation. Similarly, previous studies have shown that 

the EBA responds to body orientation (Chan et al., 2004; Ewbank et al., 2011; Taylor et al., 

2010), but no previous study has shown that it responds to face orientation. We also found 

some differences in the univariate activation to both faces and bodies of different 

orientations in the OFA and EBA. In the OFA, we found lower responses to 45° faces 

compared to 0° and 90° faces and higher responses to 0° bodies compared to 90°bodies. In 

the EBA, we found responses progressively increased from 0° to 90° faces and higher 

responses to 90° bodies compared to 0° and 45° bodies, suggesting a preference for profile 

views in the EBA. In sum, these results show that orientation responses in the OFA and EBA 

are not face or body selective.  

 We further investigated if patterns of neural responses to orientation in the OFA and 

EBA could generalize across neural activity evoked by faces and bodies. In both the OFA and 

EBA we found that classifiers trained to distinguish patterns of neural activity evoked by 

different face orientations could later decode patterns of neural activity evoked by body 
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orientations, and vice-versa. Furthermore, our searchlight analyses showed that there was 

strong classification at the intersection of the OFA and EBA (Fig. 5E-F). These results suggest 

that the OFA and EBA contain an abstract high-level encoding of person orientation, as faces 

and bodies vary considerably in their low-level visual features. Interestingly, two recent 

studies have shown that the EBA also responds higher to interacting people as compared to 

non-interacting people (Abassi & Papeo, 2019; Walbrin & Koldewyn, 2019). In addition, a 

region in nearby occipital cortex has been identified that is involved in gaze following 

behaviour (Marquardt, Ramezanpour, Dicke, & Thier, 2017). These findings, in combination 

with our results, suggest that person orientation processing may be an important function 

of this region of occipital cortex. 

4.4.2. Face orientation responses in the FFA, FBA and ATFA 

Consistent with previous studies, we were able to decode face orientation in the FFA 

(Axelrod & Yovel, 2012; Guntupalli et al., 2016; Kietzmann et al., 2012; Ramírez et al., 2014). 

We could also decode face orientation from the body-responsive FBA, however, as this 

region is known to overlap with the FFA (Schwarzlose, Baker, & Kanwisher, 2005), it is 

possible that the overlapping voxels from FFA may have contributed to our face orientation 

classification in the FBA. In contrast to our face orientation results, we were unable to 

decode body orientation from the either the FFA or FBA. This result shows a difference to 

previous work showing a sensitivity to body orientation in the FBA (Ewbank et al., 2011; 

Taylor et al., 2010). This difference may be due to experimental design as the previous 

studies used repetition suppression designs, whereas in this study we used a MVPA 

approach. Interestingly, more body orientation information in the EBA than the FBA mirrors 

a recent finding in macaque monkeys (Kumar et al., 2017). The authors found that middle 

STS body patch contained more body orientation information than the anterior STS body 

patch. Finally, we note that face but not body orientation responses in the fusiform gyrus is 

consistent with a previous finding that orientation responses in FFA are face-specific 

(Ramírez et al., 2014). 

Although we were unable to decode orientation from the ATFA, we found higher 

neural responses to frontal faces compared to 45° or 90° ones in this area. This finding 

shows similarity to work in macaques demonstrating that there are a higher proportion of 
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neurons responding to frontal faces as compared to other orientations in the most anterior 

face-responsive patch (AM) (Dubois et al., 2015; Freiwald & Tsao, 2010). Thus, our result in 

ATFA supports a homology between the human ATFA and macaque AM.  

4.4.3. Superior temporal sulcus (STS) 

The superior temporal sulcus is thought to be involved in processing changeable 

aspects of faces, such as emotional expression and gaze (Haxby, Hoffman, & Gobbini, 2000). 

fMRI studies have found mixed results as to the involvement of this area in representing 

face orientation (Axelrod & Yovel, 2012; Ramírez, 2018; Ramírez et al., 2014). However, 

neurons have been identified in macaque anterior STS that respond to orientation in an 

abstract manner across face and body stimuli (Wachsmuth et al., 1994). In humans, the 

anterior STS has also been shown to respond to gaze direction invariant to head orientation 

(Carlin, Calder, Kriegeskorte, Nili, & Rowe, 2011). We did not find evidence for face or body 

orientation coding in either our pSTS ROI, or any region of the STS in our searchlight 

analyses. However, we note that classification of face orientation and classification of 

orientation across face and body stimuli was close to significance in the pSTS when 

participants were performing the orientation task. This suggests there may be orientation 

information present in the pSTS, which failed to reach the threshold for significance in this 

study. We note that the selective involvement of the STS while participants attended to 

orientation would also be consistent with this region’s known role in gaze processing (Carlin 

& Calder, 2013).  

4.4.4. Similarities and differences across behavioural task 

Participants performed two different behavioural tasks in this study while we 

recorded their brain activity using fMRI. In one half of the dataset participants responded to 

stimulus orientation, whereas in the other half of the dataset they responded to stimulus 

identity. Thus, we were able to investigate if there would be differences in neural coding 

based on whether participants attended to stimulus orientation or identity. Interestingly, we 

found very few differences in our results from this task modulation. In fact, our results 

demonstrate considerable consistency as they largely replicate across the two halves of our 

dataset. One interesting difference is that we found differences in face orientation 

responses in the ATFA only when participants performed the identity task. The ATFA is 
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known to be involved in processing identity (Anzellotti, Fairhall, & Caramazza, 2014; 

Guntupalli et al., 2016; Kriegeskorte, Formisano, Sorger, & Goebel, 2007; Nasr & Tootell, 

2012; Nestor, Plaut, & Behrmann, 2011), thus we hypothesize that face orientation 

response differences in this region may only be identifiable when it is engaged in a task that 

optimally drives its neural responses.   

4.4.5. Conclusion 

We show that a region in the occipital cortex, located at the intersection of the OFA 

and EBA, contains patterns of neural activity evoked by orientation that can generalize 

across neural activity evoked by faces and bodies. As faces and bodies vary considerably in 

their low-level properties, this result suggests that this region responds to person 

orientation in a high-level abstract code. Furthermore, we show that regions in the fusiform 

gyrus (FFA and FBA) respond to face but not body orientation, suggesting that responses to 

face orientation are more distributed than those to body orientation. Our results offer new 

insights into how, and where in the brain, person orientation information is encoded.  
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Figure S1. Classification of orientation across neural activity evoked by face and body stimuli using 

the mean BOLD signal. (A) and (B) show classification of orientation in ROIs. Grey scatter points show 

classification accuracies for individual participants. (C) and (D) show classification of orientation in 

whole-brain searchlight analyses. For (C) the scale bar shows –log10(p values) between 0.6 (p = 0.25) 

and 5 (p = 1 x10-5), FWE corrected. For (D) the scale bar shows –log10(p values) between 1.301 (p = 

0.05) and 5 (p = 1 x10-5), FWE corrected. All analyses were conducted separately for fMRI data 

collected while participants responded to stimulus orientation (A) and (C) or to stimulus identity (B) 

and (D). 
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Abstract 

Holistic processing is the tendency to perceive an object as an indecomposable whole, 

rather than by its parts. Psychological research has shown that faces are processed 

holistically and neuroimaging studies have linked holistic processing of faces to brain activity 

in face-responsive regions of the occipital-temporal cortex. However, as recent studies have 

suggested that other factors, such as Gestalt processing, may be involved in holistic face 

processing, we hypothesized that holistic face processing may not be unique to face-

responsive brain regions. Using fMRI, we recorded the brain activity of human participants 

performing a composite face task. In this task, participants tend to judge same top face 

halves as different when they are aligned with different bottom face halves, as they are 

unable to ignore the irrelevant bottom face half information. We localized specific regions 

of interest defined by their responses to faces, scenes, objects and perceptual grouping, 

allowing us to investigate how activity in these regions changed during the composite face 

task. We found that the lateral occipital complex (LOC), fusiform face area 2 (FFA2) and 

transverse occipital sulcus (TOS) were sensitive to face alignment, suggesting a sensitivity of 

these regions to factors affecting holistic face processing. In addition, we found that the 

retrosplenial cortex (RSC) and the parahippocampal place area (PPA) showed a pattern of 

activity consistent with holistic processing of face identity, and the strength of this effect 

correlated with the strength of the behavioural composite effect measured with reaction 

times. These results suggest that holistic face processing occurs in brain regions involved in 

spatial and object processing, in addition to face-responsive brain regions, and that this 

neural activity directly relates to behavioural measures of holistic face processing.  

 

Keywords: face perception, holistic processing, composite-face effect, fMRI 
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5.1. Introduction 

Faces are perceived as indecomposable wholes, rather than by their separate 

component parts (e.g. eyes, nose, mouth), a phenomenon known as holistic processing 

(Farah et al., 1998; Maurer et al., 2002; Rossion, 2013). Holistic processing of faces has been 

demonstrated in psychological studies showing that people cannot selectively attend to one 

part of a face and ignore the rest of it (Maurer et al., 2002; Richler and Gauthier, 2014). For 

example, if the top-half of one person’s face is aligned with the bottom-halves of two 

different faces (i.e. composite faces), observers have the tendency to perceive the two 

identical top-halves as two different identities, as they are unable to ignore the irrelevant 

bottom-halves of the faces. If the bottom-halves of the faces are misaligned from the top-

halves, observers no longer process face holistically and they perceive the two top-halves to 

be the same. This phenomenon is known as the composite face effect (Hole, 1994; Young et 

al., 1987). 

What neural processes underlie holistic processing of faces? Neuroimaging studies 

have identified neural activity consistent with holistic face processing in face-responsive 

regions of occipitotemporal cortex. Both the face-responsive occipital face area (OFA) and 

fusiform face area (FFA) have been shown to respond more to intact faces than to faces 

with the facial parts scrambled (Brandman and Yovel, 2016; Zhao et al., 2014a). Some 

studies have proposed that the FFA may process faces more holistically than the OFA. One 

study found higher responses to face parts than to whole faces in the OFA (Arcurio et al., 

2012), and another study found that the FFA, but not the OFA, responds stronger when face 

parts are arranged in a normal configuration compared to a scrambled configuration (Liu et 

al., 2010). Behavioural studies have shown that inverted faces are processed less holistically 

than upright faces (Richler et al., 2011b; Rossion and Boremanse, 2008; Tanaka and Farah, 

1993; Young et al., 1987), and correspondingly higher responses to upright as compared to 

inverted faces have been found in the FFA (Goffaux et al., 2013; Yovel and Kanwisher, 2005), 

but see also (Aguirre et al., 1999; Epstein et al., 2006; Grotheer et al., 2014; Haxby et al., 

1999). Other neuroimaging studies have investigated which brain regions respond to the 

change in the perception of a face’s identity when participants view composite faces. These 

studies found that changes in neural activity in the FFA, and in some cases also the OFA, 
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were consistent with changes in the perception of face identity induced by holistic 

processing (Andrews et al., 2010; Goffaux et al., 2013; Schiltz et al., 2010; Schiltz and 

Rossion, 2006). However, other studies found neural responses in the FFA consistent with a 

mixture of both holistic and part-based representations of faces (Harris and Aguirre, 2010, 

2008). In combination, these studies show strong evidence that the FFA is involved in 

holistic face processing.  

Many behavioural studies have demonstrated that holistic processing is not unique 

to faces. In particular, behavioural studies have demonstrated that objects of expertise can 

be processed holistically (Bukach et al., 2010; Diamond and Carey, 1986) and when 

participants are trained to recognise exemplars of novel kinds of objects this training leads 

to holistic processing of these objects (Chua and Gauthier, 2020; Gauthier and Tarr, 1997; 

Wong et al., 2009a). Neuroimaging studies investigating changes in neural processing 

related to expertise have shown that the FFA responds more to expertise objects in experts 

than in novices (Gauthier et al., 2000a; Xu, 2005), and have shown that the strength of these 

neural responses in the FFA correlates with behavioural measures of holistic processing of 

these objects (Gauthier and Tarr, 2002; Wong et al., 2009b). Furthermore, one study 

identified a correlation between the level of expertise and the amount of neural activity 

related to holistic processing of expertise objects in the anterior portion of the FFA, known 

as the FFA2 (Ross et al., 2018). These studies suggest that neural activity in the FFA may be 

involved in holistic processing of expertise objects.  

These behavioural and neuroimaging studies provide strong evidence of a link 

between holistic processing, expertise and neural activity in the FFA. However, recent 

behavioural work suggests that other factors may also contribute to holistic face processing. 

One study demonstrated that non-expertise objects can be processed as holistically as 

faces, and that this may be linked to salient Gestalt information in these objects (Zhao et al., 

2016). Two recent behavioural studies investigated if there is interference between holistic 

processing of faces and these non-expertise objects (Curby et al., 2019; Curby and Moerel, 

2019). Based on their findings the authors proposed that holistic face processing may 

involve two components, an expertise component that overlaps with mechanisms relating 

to holistic processing of expertise objects, and a perceptual component that overlaps with 

holistic processing of non-expertise objects with salient Gestalt information (Curby and 
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Moerel, 2019). An open question is what neural mechanisms might underlie this perceptual, 

Gestalt-related component of holistic face processing.  

 In this study, we investigated if the neural mechanisms supporting holistic face 

processing involve broader brain networks beyond the face-responsive network. Most 

previous studies investigating holistic face processing specifically localized face-responsive 

brain regions, but did not localize other regions related to high-level object processing. 

Although activity in non-localized regions may be revealed using whole-brain analyses, it is 

well-known that activity may be masked due to suboptimal alignment of functional brain 

regions across participants and poor statistical power in these analyses (Saxe et al., 2006; 

Weiner and Grill-Spector, 2013). In the present study, we recorded brain activity using 

functional magnetic resonance imaging (fMRI) as participants performed a composite face 

task (Hole, 1994; Young et al., 1987). In this task, when the top-half of one person’s face is 

aligned with the bottom-halves of two different faces (i.e. composite faces), observers have 

the tendency to perceive the two identical top-halves as two different identities. 

Participants viewed pairs of composite-faces and made same/different judgements as to the 

identity of the top-half of the face.  

We localized a variety of regions of interest (ROIs) that are either face-responsive or 

are sensitive to information that may support holistic processing. For face-responsive ROIs, 

we localized the FFA and the OFA, which have been shown to be related to holistic 

processing of faces in previous studies (Andrews et al., 2010; Goffaux et al., 2013; Harris and 

Aguirre, 2010; Schiltz et al., 2010; Schiltz and Rossion, 2006). We subdivided the FFA into 

FFA1 and FFA2 (two components of the FFA) (Weiner et al., 2016, 2014), as some previous 

work has found evidence of holistic processing only in the FFA2 (Ross et al., 2018). 

Additionally, we localized a more recently defined, higher-level face-responsive brain region, 

the anterior temporal face area (ATFA) (Rajimehr et al., 2009; Tsao et al., 2008). Given that 

FFA has previously shown more consistent evidence of holistic processing than OFA, a 

lower-level region, we considered it possible that an even higher-level face processing 

region, ATFA, may also process faces holistically.  

For ROIs outside of the face-responsive brain network, we first localized ROIs 

responsive to scenes, specifically scene-responsive transverse occipital sulcus (TOS, also 

referred to as occipital place area, OPA), parahippocampal place area (PPA) and 
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retrosplenial cortex (RSC). In the same way as the FFA responds more strongly to whole 

faces than facial parts, both PPA and RSC show higher neural activity for intact scenes than 

for fractured scenes (Kamps et al., 2016), suggesting that these areas are sensitive to 

configuration information. Although TOS is thought to be sensitive to the local elements of 

scenes (e.g. surfaces, furniture) (Kamps et al., 2016), it does contribute to the fine-grained 

perceptual discrimination of very similar scenes (Dilks et al., 2013) and it shows stronger 

activation to a whole scene (e.g. a furnished room) compared to scene components (e.g. 

isolated furniture) (Bettencourt and Xu, 2013). Furthermore, both PPA and TOS/OPA, as well 

as the FFA and the object-responsive lateral occipital complex (LOC), have been shown to 

have stronger responses to holistically processed scene stimuli as compared to control 

stimuli that were matched for low-level factors but not processed holistically (Schindler and 

Bartels, 2016). If configural/relational processing in general contributes to holistic face 

processing then we hypothesized that these scene-responsive areas may also exhibit neural 

activity related to holistic processing.  

Secondly, we localized the object-responsive LOC, allowing us to test whether 

holistic face processing is a general mechanism of high-level visual object processing. 

Thirdly, we localized a region in the superior parietal lobule (SPL) that has been shown to be 

involved in holistic processing of highly controlled bi-stable Gestalt, occlusion and plaid 

stimuli (Grassi et al., 2018, 2016; Zaretskaya et al., 2013), and has also been found to be 

involved in processing of configural face information (Zachariou et al., 2017). As Gestalt 

information has been shown to be important for holistic processing (Zhao et al., 2016; Zhao 

and Bülthoff, 2017), we hypothesized that neural activity in this brain region might be 

involved in holistic processing of faces during the composite-face task.  
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5.2. Materials and methods 

5.2.1. Participants  

 Nineteen participants (13 female, 6 male, 20-39 years old) were included in our fMRI 

data analyses. Data from three additional participants were excluded prior to the fMRI data 

analyses, one due to excessive head movement during scanning, two due to poor 

performance in the behavioural task (less than 65% correct responses on congruent-identity 

trials, where no illusion is present). A power analysis conducted using G*Power3 (Faul et al., 

2007) indicated that a sample size of 19 is required to detect a medium effect size of ηp
2 = 

0.06 at the 0.05 alpha level with 70% power. For correlation analyses, a power analysis 

indicated that a sample size of 19 is required to detect a large effect size (ρ = 0.5) at the 0.05 

alpha level with 60% power. All participants provided written informed consent prior to the 

experiment, and the procedure was approved by the local ethics committee of the 

University Clinic Tübingen.  

5.2.2. Stimuli  

5.2.2.1. Main experiment stimuli 

The experimental stimuli were created using images of 3D face models from the face 

database of the Max Planck Institute for Biological Cybernetics (Blanz and Vetter, 1999; 

Troje and Bülthoff, 1996). We selected the faces of 12 Caucasian individuals (6 females) and 

paired each face once with another face of the same sex to make 12 face pairs. Each face 

was separated into a top and bottom half, and the halves of the pairs were recombined to 

create composite faces, as illustrated by the 8 conditions in Fig. 1A. A horizontal black line 

(0.03° of visual angle) was shown between the top and bottom halves of each face to clearly 

separate the two face halves. During the experiment, face stimuli were displayed with a 

height of 3.9° and width of 3.0° of visual angle. For misaligned stimuli, the bottom half of the 

face was shifted 1.0° of visual angle to the left. Faces were grayscale, and were shown in 

front of a gray background. Stimuli used for the practice trials were created via the same 

method, using additional faces taken from the database.  
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Figure 1. Experimental conditions and trial outline. (A) Experimental conditions. The conditions 

consisted of a 2 x 2 x 2 factorial design, with factors alignment, whether the top and bottom halves 

of the faces were aligned or misaligned, top-same or top-different, whether the top halves of the 

faces were the same or different from each other and congruency, whether the bottom half of face 2 

was congruent with respect to the top half of face 2 or not (e.g. congruent-identity trials are when 

the bottom-half is the same if the top-half is the same and the bottom-half is different if the top-half 

is different). (B) Trial outline. Participants fixated for either 4 or 6 s, then viewed a first face, followed 

by a blank screen and then a second face. Participants then responded during the next fixation 

whether the top-halves of the two faces were the same or different.  

 

 



Holistic Face Processing   128 
 

5.2.2.2. Localizer stimuli 

 The localizer stimuli were grayscale images of faces, objects, scenes and phase-

scrambled scenes (9 exemplars per category). Phase-scrambled scenes were Fourier-

scrambled versions of the scene images.  

5.2.3. Experimental design 

Participants lay supine in the scanner and viewed the stimuli on a screen positioned 

behind their head, via a mirror attached to the head coil. The screen was positioned 82 cm 

from the participant, and spanned 28° x 16° of visual angle in horizontal and vertical 

directions respectively. Stimuli were presented via a projector with resolution 1920x1080. 

The experiment was programmed with Matlab 2013b using the Psychophysics Toolbox 

extensions (Brainard, 1997; Kleiner et al., 2007) on a Windows PC.  

5.2.3.1. Main experiment procedure 

 Participants performed a composite face task while their brain activity was recorded 

using fMRI. On each trial participants viewed two faces and made a judgement whether the 

top-halves of the faces were the same or different. The experimental design consisted of 8 

conditions of a 2 x 2 x 2 factorial design (see Fig. 1A). The factors were alignment (whether 

the bottom halves of the faces were aligned or misaligned with the top halves), congruency, 

(whether the bottom half of the second face was congruent with respect to the top half of 

the second face or not) and top-same/top-different (whether the top halves of the two faces 

were the same or different from each other). Each participant completed 3 runs, where 

each run contained 64 trials (8 repetitions per condition). Conditions were presented in a 

carryover counterbalanced design, such that each condition was preceded by every other 

condition once per run (Brooks, 2012). This was to avoid biases from carryover blood-

oxygen-level dependent (BOLD) activation from a previous condition (Aguirre, 2007).  

The trial procedure is illustrated in Fig. 1B. Participants viewed a central fixation 

cross for 4 s or 6 s (50% of trials each, order randomized). The first face was shown centrally 

on the screen for 1 s, followed by a blank screen (presented for 100 ms), then the second 

face was shown, 1.2° of visual angle offset to the right of the centre of the screen, for 200 

ms. Participants responded using a button press whether they judged the top halves of the 

two faces to be the same of different. They were instructed to ignore the bottom halves of 
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the faces and to respond as quickly and accurately as possible. The fingers participants used 

to respond same/different were counterbalanced across participants.  

 Participants performed practice trials prior to the experiment to familiarise them 

with the task. Each participant performed 8 practice trials outside of the MRI scanner and 8 

practice trials inside the MRI scanner.  

5.2.3.2. Localizer experiment procedure 

Participants completed 2 runs of the localizer experiment, which was used to define 

face-, scene- and object-responsive ROIs. In each run, participants viewed blocks containing 

faces, scenes, objects and phase-scrambled scenes. Faces and objects were shown in front 

of the phase-scrambled scenes to keep the visual field size of the stimuli constant in all 

blocks (scene images were equal in size to the phase-scrambled scenes). Blocks were 

presented in a carryover counterbalanced sequence (Brooks, 2012). In each block 8 images 

were shown, where each image was shown for 1.8 s, followed by a 0.2 s blank, grey screen. 

Participants performed a one-back task on the images (repetitions once every 9 s on 

average) to keep their attention to the stimuli.  

5.2.4. Imaging parameters 

Images were acquired using a 3T Siemens Prisma scanner with a 64-channel head 

coil (Siemens, Erlangen, Germany). Functional T2* echoplanar images (EPI) were acquired 

using a sequence with the following parameters; multiband acceleration factor 2, TR 1.39 s, 

TE 30 ms, flip angle 68°, FOV 192x192 mm. Volumes consisted of 42 slices, with an isotropic 

voxel size of 3x3x3 mm. The first 8 volumes of each run were discarded to allow for 

equilibration of the T1 signal. For each participant a high-resolution T1-weighted anatomical 

scan was acquired with the following parameters; TR 2 s, TE 3.06 ms, FOV 232x256 mm, 192 

slices, isotropic voxel size of 1x1x1 mm.  

5.2.5. fMRI data preprocessing 

fMRI data was preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). 

Functional images were slice-time corrected, realigned and coregistered to the anatomical 

image. The images were then normalized to MNI (Montreal Neurological Institute) space 

and spatially smoothed with a 6 mm full-width at half-maximum Gaussian kernel.   

http://www.fil.ion.ucl.ac.uk/spm/
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5.2.6. Definition of regions of interest 

 Figure 2 illustrates the average locations of our regions of interest (ROIs) and Table 1 

shows the mean MNI coordinates and volumes of each ROI. We defined face-, scene- and 

object-responsive ROIs using data from the localizer runs. Firstly, the contrast faces > 

objects and scenes was used to define the OFA, FFA1, FFA2 and ATFA (Gauthier et al., 

2000b; Kanwisher et al., 1997; Rajimehr et al., 2009; Tsao et al., 2008). We defined the FFA1 

and FFA2 based on functional selectivity and previously described anatomical landmarks 

(Weiner et al., 2016, 2014). Secondly, the contrast scenes > faces and objects was used to 

define the TOS, RSC and PPA (Epstein and Kanwisher, 1998; Grill-Spector, 2003; Maguire, 

2001). Thirdly, the contrast objects > phase-scrambled scenes was used to define the LOC 

(Malach et al., 1995). We defined each ROI individually in each participant, by selecting all 

active voxels falling within spheres (radius 6 mm) centred on the peak of activity in each 

hemisphere. A threshold of p < 0.001 uncorrected was used to define active voxels.  

 We additionally defined SPL and V1, based on anatomical location and higher activity 

during stimulus presentation (including all conditions) compared to the fixation interval 

between trials. This contrast is orthogonal to the activity differences between the conditions 

in this study (Friston et al., 2006). We used a p < 0.05 familywise error rate (FWE) corrected 

threshold to define voxels more active during the stimulus than fixation. SPL was defined by 

selecting all active voxels falling within spheres (radius 6 mm) centred on the peak of activity 

in superior parietal cortex of each hemisphere. The entire V1 was defined first for each 

participant using anatomical labels generated by Freesurfer (Hinds et al., 2009) 

(https://surfer.nmr.mgh.harvard.edu/). To define our final V1 ROI, we selected all posterior 

V1 voxels that were more active when participants viewed the pairs of face stimuli as 

compared to when they fixated and viewed a grey screen. Participants could move their 

eyes when viewing the faces, therefore this V1 ROI reflects the V1 voxels activated for each 

individual participant when viewing the face stimuli.  

https://surfer.nmr.mgh.harvard.edu/
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Figure 2. Locations of ROIs. ROIs include face-responsive OFA (occipital face area), FFA1 (fusiform 

face area 1), FFA2 (fusiform face area 2) and ATFA (anterior temporal face area) shown in orange, 

scene-responsive TOS (transverse occipital sulcus), RSC (retrosplenial cortex) and PPA 

(parahippocampal place area) shown in green, object-responsive LOC (lateral occipital complex) 

shown in purple, parietal SPL (superior parietal lobule) shown in magenta and V1 shown in cyan. 

ROIs were defined individually in volume-space for each participant, for visualisation in this figure 

we show group average ROIs projected onto the inflated cortical surface. We defined group ROIs 

using a relatively low threshold as some information was lost during projection to the cortical 

surface. Thus, voxels were included in each group average ROI if they were part of the ROI in at least 

25% of participants.  
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Table 1. ROI locations and volumes 

Average x, y and z coordinates (in MNI space) and volume of each ROI (± standard deviations). N 

indicates the number of participants each ROI was identified in.  

 

 

 

ROI hem x y z Volume (mm3) N 

OFA left -39 ± 4.6 -81 ± 4.3 -10 ± 4.0 197 ± 42.4 19 

 right 42 ± 4.1 -79 ± 4.3 -10 ± 4.0 208 ± 34.3 19 

FFA1 left -40 ± 4.1 -62 ± 8.8 -17 ± 4.0 202 ± 35.6 18 

 right 42 ± 5.1 -63 ± 6.6 -16 ± 4.1 204 ± 44.8 18 

FFA2 left -41 ± 4.0 -43 ± 10.2 -21 ± 5.3 157 ± 61.4 16 

 right 42 ± 3.4 -44 ± 5.5 -19 ± 3.6 205 ± 36.5 17 

ATFA left -35 ± 5.3 -8 ± 5.2 -34 ± 6.0 86 ± 67.4 14 

 right 34 ± 3.6 -5 ± 4.9 -38 ± 4.8 134 ± 60.7 16 

TOS left -32 ± 5.7 -85 ± 4.9 22 ± 7.0 203 ± 35.5 19 

 right 37 ± 4.1 -80 ± 2.9 21 ± 7.4 213 ± 22.1 19 

RSC left -17 ± 3.2 -59 ± 3.3 14 ± 3.6 184 ± 48.3 18 

 right 19 ± 3.0 -57 ± 4.8 17 ± 4.9 198 ± 54.1 18 

PPA left -26 ± 2.8 -44 ± 3.9 -10 ± 3.4 197 ± 52.9 19 

 right 29 ± 2.6 -45 ± 5.5 -10 ± 3.3 212 ± 19.4 19 

LOC left -43 ± 4.1 -79 ± 4.3 -4 ± 4.6 222 ± 13.6 19 

 right 43 ± 3.8 -80 ± 5.1 -4 ± 6.0 214 ± 25.6 19 

SPL left -26 ± 4.7 -60 ± 6.8 50 ± 6.1 206 ± 49.2 19 

 right 28 ± 4.9 -56 ± 6.7 50 ± 5.9 213 ± 49.8 19 

V1 left -13 ± 3.2 -98 ± 2.7 -7 ± 4.0 911 ± 380.6 19 

 right 13 ± 3.2 -96 ± 1.6 -4 ± 4.1 911 ± 211.5 19 
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5.2.7. Statistical Analyses 

5.2.7.1. Behavioural analyses 

 Participants were instructed to respond whether they judged the top-halves of the 

face pairs to be the same or different. We calculated our participants’ behavioural 

performance with accuracy (% correct) and reaction times. For each behavioural measure 

we first performed a 2 (alignment) x 2 (congruency) x 2 (top-same/top-different) repeated 

measures ANOVA to investigate whether there was a significant three-way interaction 

between the three factors. We then separated the top-same and top-different conditions to 

investigate if we would find behavioural responses consistent with holistic processing. We 

separated the top-same and top-different conditions due to previous evidence that 

evidence of holistic processing is stronger for top-same than top-different conditions 

(Goffaux, 2012; Goffaux et al., 2013). For both top-same and top-different conditions we 

performed 2 (alignment) x 2 (congruency) repeated measures ANOVAs to test for an 

interaction effect between congruency and alignment and/or an effect of congruency. Due 

to holistic processing, we expected to find a difference in behavioural performance between 

the congruent-identity and incongruent-identity conditions that was larger for the aligned 

conditions compared to the misaligned conditions. The rationale is the following. For 

accuracy, a lower performance is expected in aligned incongruent-identity conditions 

compared to aligned congruent-identity conditions, due to participants being unable to 

ignore the irrelevant bottom face half information. This difference should be reduced in the 

misaligned conditions, as here participants are able to ignore this bottom face half 

information. For reaction times, a longer reaction time is expected for aligned incongruent-

identity conditions compared to aligned congruent-identity conditions, due to participants 

taking longer to make their decision for this condition. Again, this difference should be 

reduced in the misaligned conditions as participants are able to ignore the irrelevant bottom 

face half information. In cases where we found significant effects in our ANOVA results, we 

performed follow-up t-tests to confirm that the pattern of behavioural performance 

matched these expectations.  

5.2.7.2. fMRI analyses 

We modelled a GLM for each participant containing regressors for our 8 conditions, 

plus 6 realignment regressors from the motion correction, using SPM12. The 8 condition 
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regressors modelled the activity to each trial of the condition, excluding any trials where the 

participant did not make a task response (i.e. did not press a button to indicate a 

same/different judgment of the faces, on average 1.8% of trials). Responses to each 

condition are reported in % signal change with respect to the baseline of the GLM in each 

ROI. We performed a 2 (alignment) x 2 (congruency) x 2 (top-same/top-different) repeated 

measures ANOVA to investigate whether any brain regions showed a triple interaction 

effect between the 3 factors in neural activity. We then performed further analyses 

investigating specific aspects of composite-face effect.  

We investigated the effect of alignment, as aligned faces are considered to be 

processed more holistically than misaligned ones (Rossion, 2013; Young et al., 1987), 

therefore we considered that regions involved in holistic processing of faces would show 

differences in activity between these conditions. We included only congruent-identity 

conditions in this analysis, as the perception of face identity differs between aligned and 

misaligned incongruent conditions. Therefore differences in neural activation between 

aligned and misaligned incongruent conditions could reflect differences in neural activity 

related to the perception of face identity, rather than related to holistic processing. We 

performed 2 (alignment) x 2 (top-same/top-different) repeated measures ANOVAs and 

investigated if any regions showed an effect of alignment.  

Next, we investigated whether any brain regions would show a difference in neural 

responses between congruent-identity and incongruent-identity conditions that was larger 

for the aligned conditions compared to the misaligned conditions. We predicted that any 

brain regions encoding face identity in a holistic manner would show this pattern of 

responses, due to the integration of top- and bottom-half face information for the aligned 

conditions, but not the misaligned ones. In contrast, we predicted that any brain regions 

encoding face identity in a parts-based manner would respond similarly to aligned and 

misaligned faces, and thus not show an interaction between congruency and alignment. To 

test for this specific pattern of responses, we used 2 (alignment) x 2 (congruency) repeated 

measures ANOVAs to investigate if any brain regions show an interaction between 

congruency and alignment and/or an effect of congruency. We then performed follow-up t-

tests in any regions showing significant effects to investigate if this was due to a difference 

in neural activity between the congruent-identity and incongruent-identity conditions that 
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was larger for the aligned conditions compared to the misaligned conditions. We performed 

this analysis separately for top-same and top-different conditions due to the known 

differences in the strength of holistic processing effects between these conditions (Goffaux, 

2012; Goffaux et al., 2013).  

We performed all fMRI analyses in our ten ROIs as well as in whole-brain analyses. 

For ROI analyses, we corrected for multiple comparisons using a Bonferroni-correction to 

adjust for the number of ROIs tested. For whole-brain analyses, we used a False Discovery 

Rate (FDR) correction to adjust for multiple comparisons. 

5.2.7.3. Analyses linking behaviour and neural activity 

We performed follow-up analyses comparing any effects identified related to holistic 

processing in neural and behavioural responses. We performed Pearson’s correlation 

analyses between accuracy and reaction time results in behaviour, and neural responses in 

ROIs showing significant effects related to holistic processing, in order to assess whether 

there was a link between the strength of these effects for each participant in behavioural 

responses and neural activity. We corrected for multiple comparisons using a Bonferroni-

correction to adjust for the number of ROIs tested. 

5.2.8. Data and code availability statement 

Data cannot be shared as participants were informed that their data would be stored 

confidentially, in accordance with the rules of the local ethics committee. Code is available 

on request.  
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5.3. Results 

5.3.1. Behavioural results 

 We measured participants’ behavioural performance in the composite-face task 

during scanning using accuracy (% correct) and reaction times. For both behavioural 

measures 2 x 2 x 2 repeated-measures ANOVAs showed a significant triple interaction 

between alignment, congruency and top-same/top-different conditions (accuracy: F1,18 = 

24.24, p = 1.1 × 10-4, ηp
2 = 0.57; reaction times: F1,18 = 8.92, p = 0.0079, ηp

2 = 0.33). We 

conducted further behavioural analyses separately for top-same and top-different 

conditions as there are known differences in the behavioural responses to these conditions 

(Goffaux, 2012; Goffaux et al., 2013).  

5.3.1.1. Accuracy and reaction times for top-same conditions  

Accuracy (% correct) and reaction times for the top-same conditions are shown in 

Figure 3. For both measures, 2 (alignment) x 2 (congruency) repeated-measures ANOVAs 

revealed both a significant effect of congruency (accuracy: F1,18 = 23.67, p = 1.2 × 10-4, ηp
2 = 

0.57; reaction times: F1,18 = 15.08, p = 0.0011, ηp
2 = 0.46) and a significant interaction 

between congruency and alignment (accuracy: F1,18 = 32.12, p = 2.2 × 10-5, ηp
2 = 0.64; 

reaction times: F1,18 = 23.44, p = 1.3 × 10-4, ηp
2 = 0.57). Furthermore, paired-sample t-tests 

showed that the congruency effect was significant for the aligned conditions (accuracy: M = 

28.07 %, SE = 5.04 %; t18 = 5.57, p = 2.7 × 10-5, Cohen’s dz = 1.28; reaction times: M = 0.13 s, 

SE = 0.023 s; t18 = 5.51, p = 3.1 × 10-5, Cohen’s dz = 1.26) but not for the misaligned 

conditions (accuracy: M = 1.97 %, SE = 2.07 %; t18 = 0.95, p = 0.35, Cohen’s dz = 0.22; 

reaction times: M = 0.019 s, SE = 0.020 s; t18 = 0.92, p = 0.37, Cohen’s dz = 0.21). These 

results show that there is evidence of holistic processing elicited by the top-same conditions 

in our composite-task.   
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Figure 3. Behavioural performance in the top-same conditions of the composite-face task. (A) shows 

accuracy (% correct) as a function of congruency and alignment and (B) shows reaction times as a 

function of congruency and alignment. (C) and (D) show the interaction effect between congruency 

and alignment (difference between aligned congruent-identity and incongruent-identity conditions, 

minus the difference between misaligned congruent-identity and incongruent-identity conditions) as 

measured with accuracy (C) and reaction times (D). Error bars indicate ±1 SEM. ** indicates p < 

0.001. 

 

5.3.1.2. Accuracy and reaction times for top-different conditions  

Accuracy (% correct) and reaction times for the top-different conditions are shown in 

Figure 4. In contrast to the top-same condition results, 2 (alignment) x 2 (congruency) 

repeated-measures ANOVAs showed no significant effect of congruency (accuracy: F1,18 = 

1.35, p = 0.26, ηp
2 = 0.070; reaction times: F1,18 = 0.25, p = 0.63, ηp

2 = 0.014) or significant 

interaction between congruency and alignment (accuracy: F1,18 = 0.39, p = 0.54, ηp
2 = 0.021; 

reaction times: F1,18 = 1.03, p = 0.32, ηp
2 = 0.054). Thus, in our composite-task the holistic 

processing effect, as expected, seems to be driven by the top-same conditions rather than 

the top-different conditions.  
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Figure 4. Behavioural performance in the top-different conditions of the composite-face task. (A) 

shows accuracy (% correct) as a function of congruency and alignment and (B) shows reaction times 

as a function of congruency and alignment. (C) and (D) show the interaction effect between 

congruency and alignment (difference between aligned congruent-identity and incongruent-identity 

conditions, minus the difference between misaligned congruent-identity and incongruent-identity 

conditions) as measured with accuracy (C) and reaction times (D). Error bars indicate ±1 SEM. 
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5.3.2. fMRI results 

 We first tested whether any brain regions showed a triple interaction between 

alignment, congruency and top-same/top-different conditions. 2 x 2 x 2 repeated measures 

ANOVAs showed a marginal triple interaction in the RSC (F1,17 = 8.66, p = 0.0091, ηp
2 = 0.34) 

which did not survive Bonferroni-correction for N = 10 ROIs. None of the other ROIs tested 

showed a significant triple interaction effect (OFA: F1,18 = 0.55, p = 0.47, ηp
2 = 0.030; FFA1: 

F1,17 = 0.46, p = 0.51, ηp
2 = 0.027; FFA2: F1,16 = 0.25, p = 0.62, ηp

2 = 0.015; ATFA: F1,16 = 2.31, p 

= 0.15, ηp
2 = 0.13; TOS: F1,18 = 0.85, p = 0.37, ηp

2 = 0.045; PPA: F1,18 = 2.63, p = 0.12, ηp
2 = 

0.13; LOC: F1,18 = 0.86, p = 0.37, ηp
2 = 0.046; SPL: F1,18 = 0.41, p = 0.53, ηp

2 = 0.022; V1: F1,18 = 

0.12, p = 0.73, ηp
2 = 0.0065).    

 We further tested for differences between specific contrasts of interest in order to 

investigate different aspects of the composite-face effect. We first investigated which 

regions show differences in neural activity based on how holistically the stimuli is processed 

by comparing neural responses to aligned and misaligned faces. In this analysis we included 

only the congruent-identity conditions (i.e. where top and bottom halves of the face pairs 

are both the same or both different) as in these conditions there is no change in the 

perception of the identity of the face between the aligned and misaligned conditions.  

 Secondly, we investigated which regions show differences in neural activity 

consistent with processing face identity in a holistic manner. To do this, we investigated 

which regions show a larger difference in neural activity between aligned congruent-identity 

and incongruent-identity face pairs than between misaligned congruent-identity and 

incongruent-identity face pairs. We conducted this analysis separately for top-same and 

top-different conditions due to the differences in participants’ behavioural responses during 

the top-same and top-different conditions (see Figures 3-4).  

5.3.2.1. Neural responses to alignment 

 We tested for differences in neural activity between aligned and misaligned 

congruent-identity conditions by investigating which regions showed a main effect of 

alignment in a 2 (alignment) x 2 ( top-same/top-different) repeated measures ANOVA. For 

face-responsive ROIs (Fig. 5A), we found a marginally significant effect of alignment in the 

FFA2 (F1,16 = 6.72, p = 0.020, ηp
2 = 0.30), which did not survive Bonferroni-correction for N = 
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10 ROIs. This marginal effect was driven by higher responses to aligned faces than 

misaligned ones (M = 0.31 %, SE = 0.12 %). We found no difference in responses to aligned 

and misaligned faces in any of the other face-responsive ROIs we tested (OFA: F1,18 = 0.60, p 

= 0.45, ηp
2 = 0.032; FFA1: F1,17 = 0.071, p = 0.79, ηp

2 = 0.0042; ATFA: F1,16 = 2.33, p = 0.15, ηp
2 

= 0.13).  

 

 

Figure 5. Differences in neural responses to aligned and misaligned faces for the congruent-identity 

conditions (i.e. where top and bottom halves of the face pairs were both the same or both different). 

We used the contrast aligned minus misaligned faces to investigate differences in neural activity in 

face-responsive ROIs (A) and in all other ROIs tested (B). Error bars indicate ±1 SEM. * indicates p < 

0.05 Bonferroni-corrected for N = 10 ROIs, + indicates p < 0.05 uncorrected.  
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 We further tested whether other ROIs (scene-responsive, object-responsive, parietal 

and early-visual ROIs) would show differences in neural activity between aligned and 

misaligned faces (Fig. 5B). We found a significant effect of alignment in the LOC (F1,18 = 

12.85, p = 0.0021, ηp
2 = 0.42), which survived Bonferroni-correction for N = 10 ROIs, and a 

marginally significant effect of alignment in the TOS (F1,18 = 6.43, p = 0.021, ηp
2 = 0.26), 

which did not survive Bonferroni-correction for N = 10 ROIs. These effects were driven by 

higher responses to misaligned faces compared to aligned ones (LOC: M = 0.42 %, SE = 0.12 

%; TOS: M = 0.32 %, SE = 0.13 %). None of the other ROIs tested showed significant 

differences in responses between aligned and misaligned faces (RSC: F1,17 = 0.055, p = 0.82, 

ηp
2 = 0.0032; PPA: F1,18 = 0.59, p = 0.45, ηp

2 = 0.032; SPL: F1,18 = 3.14, p = 0.093, ηp
2 = 0.15; 

V1: F1,18 = 0.16, p = 0.70, ηp
2 =  0.0086). We additionally performed a whole-brain analysis to 

investigate if any other regions showed differences in activity between the aligned and 

misaligned congruent-identity conditions. We did not identify any regions in this whole-

brain analysis.  

5.3.2.2. Interaction between congruency and alignment for top-same conditions 

 We tested whether any regions showed a difference in the neural responses to the 

aligned congruent-identity and incongruent-identity conditions that was reduced between 

the misaligned congruent-identity and incongruent-identity conditions. We first tested these 

differences for the top-same conditions, where we also found significant differences in 

participants’ pattern of behavioural responses to these conditions (Section 5.3.1.1.).   

 For the face-responsive brain regions (Fig. 6), 2 (congruency) x 2 (alignment) 

repeated measures ANOVAs showed no significant interaction between congruency and 

alignment (OFA: F1,18 = 3.07, p = 0.097, ηp
2 =  0.15; FFA1: F1,17 = 0.79, p = 0.39, ηp

2 =  0.044; 

FFA2: F1,16 = 0.91, p = 0.35, ηp
2 =  0.054; ATFA: F1,16 = 3.35, p = 0.086, ηp

2 = 0.17) or significant 

effect of congruency (OFA: F1,18 = 0.35, p = 0.56, ηp
2 = 0.019; FFA1: F1,17 = 2.54, p = 0.13, ηp

2 =  

0.13; FFA2: F1,16 = 0.23, p = 0.63, ηp
2 = 0.015; ATFA: F1,16 = 0.40, p = 0.53, ηp

2 = 0.025) in any 

of the face-responsive ROIs tested.  
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Figure 6. Neural responses to the top-same conditions in the face-responsive ROIs. (A) % signal 

change as a function of congruency and alignment. (B) Interaction between congruency and 

alignment with the contrast: (aligned congruent-identity – aligned incongruent-identity) – 

(misaligned congruent-identity – misaligned incongruent-identity). Error bars indicate ±1 SEM. 
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We further tested whether other ROIs, including scene-responsive, object-

responsive, parietal and early-visual ROIs, would show an interaction between congruency 

and alignment or an effect of congruency (Fig. 7). For the scene responsive ROIs, we found a 

significant interaction between congruency and alignment in the RSC (F1,17 = 14.07, p = 

0.0016, ηp
2 = 0.45) and the PPA (F1,18 = 11.58, p = 0.0032, ηp

2 = 0.39), both surviving 

Bonferroni-correction for N = 10 ROIs. We did not find a significant interaction between 

congruency and alignment in the scene-responsive TOS (F1,18 = 1.85, p = 0.19, ηp
2 = 0.093) 

and we did not find a significant effect of congruency in any of the scene-responsive ROIs 

(RSC: F1,17 = 3.55, p = 0.077, ηp
2 = 0.17; PPA: F1,18 = 4.33, p = 0.052, ηp

2 = 0.19; TOS: F1,18 = 

3.98, p = 0.061, ηp
2 = 0.18). We performed follow-up paired t-tests in the RSC and PPA to 

confirm that the interaction effect was due to a larger difference between congruent-

identity and incongruent-identity aligned conditions than between congruent-identity and 

incongruent-identity misaligned conditions, the expected pattern for an effect induced by 

holistic processing. We found a significant effect of congruency for the aligned conditions in 

both RSC (M = 0.32 %, SE = 0.082 %; t17 = 3.91, p = 0.0011, Cohen’s dz = 0.92) and PPA (M = 

0.24 %, SE = 0.061 %; t18 = 3.87, p = 0.0011, Cohen’s dz = 0.89), but not for the misaligned 

conditions in either ROI; RSC (M = -0.058 %, SE = 0.090 %; t17 = -0.64, p = 0.53, Cohen’s dz = -

0.15), PPA (M = -0.018 %, SE = 0.067 %; t18 = -0.27, p = 0.79, Cohen’s dz = -0.063). 

Interestingly, the positive effect direction shows that the effect we identified was due to a 

repetition enhancement effect, i.e. higher activity in aligned congruent-identity conditions 

compared to aligned incongruent-identity conditions (see Section 5.4.2. for a discussion of 

the repetition-effect direction).  

None of the other ROIs we tested showed a significant interaction between 

congruency and alignment (LOC: F1,18 = 2.23, p = 0.15, ηp
2 = 0.11; SPL: F1,18 = 0.095, p = 0.76, 

ηp
2 = 0.0052; V1: F1,18 = 1.09, p = 0.31, ηp

2 = 0.057) or a significant effect of congruency (LOC: 

F1,18 = 1.91, p = 0.18, ηp
2 = 0.096; SPL: F1,18 = 1.42, p = 0.25, ηp

2 = 0.073; V1: F1,18 = 0.52, p = 

0.48, ηp
2 = 0.028). We additionally performed a whole-brain analysis to look if any other 

regions showed an interaction between congruency and alignment or effect of congruency, 

but we did not identify any regions in this analysis.  
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Figure 7. Neural responses to the top-same conditions in the scene-responsive, object-responsive, 

perceptual grouping and early visual ROIs. (A) % signal change as a function of congruency and 

alignment. (B) Interaction between congruency and alignment with the contrast: (aligned congruent-

identity – aligned incongruent-identity) – (misaligned congruent-identity – misaligned incongruent-

identity). Error bars indicate ±1 SEM. * indicates p < 0.05, Bonferroni-corrected for N = 10 ROIs.  
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5.3.2.3. Interaction between congruency and alignment for top-different conditions  

 We tested whether any regions showed an interaction between congruency and 

alignment consistent with holistic processing for the top-different conditions (Fig. 8 & 9). 

The impact of these conditions on the behavioural measurement of holistic processing has 

been debated (Richler and Gauthier, 2013; Rossion, 2013). We aimed to investigate if they 

have an impact on neural activity.  

Consistent with our behavioural results, none of our ROIs showed a significant 

interaction between congruency and alignment (OFA: F1,18 = 5.11 x 10-4, p = 0.98, ηp
2 = 2.8 x 

10-5; FFA1: F1,17 = 0.11, p = 0.74, ηp
2 = 0.0065; FFA2: F1,16 = 0.022, p = 0.88, ηp

2 = 0.0014; 

ATFA: F1,16 = 0.44, p = 0.52, ηp
2 = 0.027; TOS: F1,18 = 0.22, p = 0.65, ηp

2 = 0012; RSC: F1,17 = 

0.79, p = 0.39, ηp
2 = 0.044; PPA: F1,18 = 0.031, p = 0.86, ηp

2 = 0.0017; LOC: F1,18 = 0.089, p = 

0.77, ηp
2 = 0.0049; SPL: F1,18 = 0.51, p = 0.48, ηp

2 = 0.028; V1: F1,18 = 0.065, p = 0.80, ηp
2 = 

0.0036) or a significant effect of congruency (OFA: F1,18 = 2.05, p = 0.17, ηp
2 = 0.10; FFA1: 

F1,17 = 0.11, p = 0.74, ηp
2 = 0.0064; FFA2: F1,16 = 0.18, p = 0.68, ηp

2 = 0.011; ATFA: F1,16 = 4.06, 

p = 0.061, ηp
2 = 0.20; TOS: F1,18 = 0.42, p = 0.52, ηp

2 = 0.023; RSC: F1,17 = 0.44, p = 0.52, ηp
2 = 

0.025; PPA: F1,18 = 0.19, p = 0.67, ηp
2 = 0.010; LOC: F1,18 = 2.77, p = 0.11, ηp

2 = 0.13; SPL: F1,18 

= 0.60, p = 0.45, ηp
2 = 0.032; V1: F1,18 = 0.029, p = 0.87, ηp

2 = 0.0016). We additionally 

performed a whole-brain analysis to investigate if any other regions showed an interaction 

between congruency and alignment or an effect of congruency during the top-different 

conditions. No regions were identified in this analysis.  
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Figure 8. Neural responses to the top-different conditions in the face-responsive ROIs. (A) % signal 

change as a function of congruency and alignment. (B) Interaction between congruency and 

alignment with the contrast: (aligned congruent-identity – aligned incongruent-identity) – 

(misaligned congruent-identity – misaligned incongruent-identity). Error bars indicate ±1 SEM. 
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Figure 9. Neural responses to the top-different conditions in the scene-responsive, object-

responsive, perceptual grouping and early visual ROIs. (A) % signal change as a function of 

congruency and alignment. (B) Interaction between congruency and alignment with the contrast: 

(aligned congruent-identity – aligned incongruent-identity) – (misaligned congruent-identity – 

misaligned incongruent-identity). Error bars indicate ±1 SEM.  

 



Holistic Face Processing   148 
 

5.3.3. Correlation between behaviour and neural activity 

We tested whether there was a correlation between the strength of participants’ 

neural activity and behaviour related to holistic processing. In some cases, the strength of 

reaction time difference scores are known to have poor retest reliability for the same 

subject tested multiple times (Draheim et al., 2019). Therefore, we tested whether 

participants showed a correlation between their interaction effect measured with reaction 

times across the three experimental runs, to ensure that participants showed a consistent 

strength for this effect. We found a strong correlation between participants interaction 

effect measured with reaction times across runs (Run 1 and 2: r = 0.83, p = 1.3 x 10-5; Run 2 

and 3: r = 0.87, p = 9.7 x 10-7; Run 1 and 3: r = 0.59, p = 0.0083), demonstrating that 

participants showed a consistent strength in their interaction effect measured with reaction 

times across the experiment.  

5.3.3.1. Correlation with neural responses to alignment 

We first tested whether the strength of the difference in neural responses to aligned 

versus misaligned congruent faces that we identified in the FFA2, LOC and TOS (Fig. 5) was 

associated with the strength of the interaction effect between alignment and congruency as 

measured behaviourally with accuracy and reaction times (Fig. 3). As illustrated in Fig. 10, 

we found no significant brain-behaviour correlation between the alignment effect in any ROI 

and the behavioural interaction effect (for the top-same conditions) with either response 

accuracy (FFA2: r = 0.12, p = 0.65; LOC: r = 0.016, p = 0.95; TOS: r = 0.088, p = 0.72) or 

reaction times (FFA2: r = 0.13, p = 0.62; LOC: r = 0.24, p = 0.33; TOS: r = 0.22, p = 0.36).  
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Figure 10. Correlation of differences in neural responses to alignment with behavioural measures of 

holistic processing in the top-same conditions. (A), (C) and (E) show the correlation between the 

interaction effect of congruency and alignment measured with response accuracy (% correct) and 

the difference in neural responses to aligned versus misaligned faces in the FFA2 (A), LOC (C) and 

TOS (E). (B), (D) and (F) show the correlation between the interaction effect of congruency and 
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alignment measured with reaction times and the difference in neural responses to aligned versus 

misaligned faces in the FFA2 (B), LOC (D) and TOS (F).  

 

5.3.3.2. Correlation with congruency and alignment interaction 

Secondly, we tested whether the strength of the interaction effect between 

alignment and congruency that we identified in the RSC and PPA (Fig. 8) was associated with 

the strength of the interaction effect between alignment and congruency as measured 

behaviourally with accuracy and reaction times (Fig. 3). As illustrated in Fig. 11, for the 

interaction effect measured with response accuracy, there was no significant brain-

behaviour correlation in either RSC (r = -0.15, p = 0.56) or PPA (r = 0.20, p = 0.40). In 

contrast, for the interaction effect measured with reaction times, we found significant 

correlations between the behavioural holistic processing effect and the neural holistic 

processing effect observed in both RSC (r = 0.61, p = 0.0074) and PPA (r = 0.61, p = 0.0056), 

both surviving Bonferroni-correction for N = 2 ROIs.  

We note that three of our participants showed a low or negative trend in both their 

neural interaction effect in the RSC and PPA and their behavioural interaction effect 

measured with reaction times. Therefore, we investigated if these participants were driving 

the brain-behaviour correlation by investigating the brain-behaviour correlation effect with 

these participants removed. We found a trend in the PPA (r = 0.43, p = 0.098), but no effect 

in the RSC (r = 0.12, p = 0.66). This suggests that our correlation result could be driven to 

some extent by two subgroups of participants, one subgroup that shows an interaction 

effect between alignment and congruency in both their neural responses (in the RSC and 

PPA) and in their reaction times, and a second subgroup that does not show either effect.  

We additionally performed whole brain analyses to investigate if any other brain 

regions showed a correlation between neural activity and behaviour related to holistic 

processing. No regions were identified in these analyses.  
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Figure 11. Correlation of interaction effect of congruency and alignment in the top-same conditions 

measured with neural responses and behavioural measures. (A) and (C) show the correlation 

between the interaction effect of congruency and alignment measured with response accuracy (% 

correct) and neural responses in the RSC (A) and PPA (C). (B) and (D) show the correlation between 

the interaction effect of congruency and alignment measured with reaction times and neural 

responses in the RSC (B) and PPA (D). * indicates p < 0.05, Bonferroni-corrected for N = 2 ROIs. 
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5.4. Discussion  

In this study, we investigated which brain regions show differences in neural 

responses related to holistic processing in the composite-face paradigm. We found 

differences between the neural responses to aligned and misaligned faces in the LOC, TOS 

and FFA2, suggesting that these regions are sensitive to how holistically faces are processed. 

Furthermore, we found that the RSC and PPA showed patterns of neural activation 

consistent with processing of face identity in a holistic manner. The strength of this effect in 

RSC and PPA directly correlated with participants’ reaction times used as a behavioural 

measure of holistic processing. In combination, our results indicate that brain regions 

outside the commonly defined face-responsive network are involved in some aspects of 

holistic processing measured by the composite-face paradigm.  

5.4.1. Neural responses to face alignment 

 In a first set of analyses, we investigated whether any brain regions show differences 

in neural activation between aligned and misaligned faces. We found significant differences 

in neural activation in the LOC, and marginal trends (that did not survive Bonferroni 

correction for N = 10 ROIs) in the TOS and FFA2. Both the LOC and TOS showed higher 

activation to misaligned faces compared to aligned faces, whereas the FFA2 showed higher 

activation to aligned faces compared to misaligned faces. Interestingly, our pattern of 

results shows similarity to the differences in neural activation between upright and inverted 

faces. Several studies have found higher activation to inverted compared to upright faces in 

the LOC (Aguirre et al., 1999; Epstein et al., 2006; Grotheer et al., 2014; Haxby et al., 1999). 

It has been proposed that this could be due to inverted faces being processed similarly to 

objects or due to a recruitment of these regions for more demanding face processing 

(Aguirre et al., 1999; Haxby et al., 1999). Our finding that responses in the LOC are higher to 

misaligned faces compared to aligned faces further demonstrates a sensitivity of the LOC to 

factors affecting holistic processing of faces.  

Higher responses to aligned faces compared to misaligned faces in the FFA2 suggests 

that this region may be involved in processing faces holistically. This result is consistent with 

previous work that has shown that the FFA2 is involved in holistic processing of expertise 

objects (Ross et al., 2018), and with many previous studies that have linked activity in the 
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FFA to holistic processing of faces (Andrews et al., 2010; Goffaux et al., 2013; Schiltz et al., 

2010; Schiltz and Rossion, 2006). Studies investigating neural responses to face inversion in 

the FFA have found mixed results. Some studies found higher responses to upright 

compared to inverted faces in the FFA (Goffaux et al., 2013; Yovel and Kanwisher, 2005), 

whereas some studies have did not find differences in responses (Aguirre et al., 1999; 

Epstein et al., 2006; Grotheer et al., 2014; Haxby et al., 1999). Based on our findings, we 

hypothesize that the different results of these studies could be due to differences in FFA 

localization, as we find a difference in neural responses in the FFA2 but not in the FFA1. The 

similarity between our results in the LOC and FFA2 and the findings for inverted faces 

suggests that misaligned faces may be processed similarly to inverted faces, both of which 

have been demonstrated to be processed less holistically than upright aligned faces in 

behaviour (Young et al., 1987).  

5.4.2. Neural responses to composite-faces 

In a second set of analyses, we investigated which brain regions show a difference in 

neural responses to congruent-identity and incongruent-identity trials of the composite-face 

paradigm that is reduced by misalignment. We predicted that any brain regions encoding 

face identity in a holistic manner would show this pattern of responses, due to an 

interference of the irrelevant bottom-half face information during the aligned conditions, 

but not misaligned conditions. We found neural responses consistent with this pattern in 

the RSC and PPA, two regions that have been shown to be important in spatial navigation, 

scene-processing, memory (Epstein, 2008; Epstein and Kanwisher, 1998; Vann et al., 2009) 

and other functions such as contextual relationships (Bar, 2004; Bar and Aminoff, 2003). We 

hypothesize that the sensitivity of these regions to the change in face identity induced by 

holistic processing in the composite-face paradigm could be related to the failure of 

selective spatial attention to the top-half of the face (due to holistic processing) that leads 

to this perceptual change. Furthermore, we hypothesize that that these regions could be 

recruited in spatially demanding face-tasks, such as the composite-face paradigm.  

Surprisingly, we did not identify any differences in neural responses in the FFA 

related to the interaction between congruency and alignment, in contrast to several 

previous findings (Goffaux et al., 2013; Schiltz et al., 2010; Schiltz and Rossion, 2006). This 

difference in results may be due to differences in experimental factors (e.g. task, stimuli). 
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For example, it is known that repetition effects can sometimes differ across the duration of 

an experiment (Müller et al., 2013), thus it is possible that differences in the number of 

faces used in the stimulus set could lead to differences in ongoing repetition suppression 

effects. Our use of the complete-design version of the composite-face paradigm could be 

another reason we observe different results to the previous studies. We found higher BOLD 

responses when two faces were aligned and congruent (i.e. identical faces) compared to 

when they were aligned and incongruent (i.e. same top-halves, different bottom-halves) and 

this repetition-effect disappeared when the bottom halves of the faces were misaligned. 

Most studies find a repetition-suppression effect when subjects view two identical faces 

compared to when they view two different faces (Grill-Spector et al., 1999), although 

repetition-enhancement was also found in many studies (Segaert et al., 2013). We believe 

the reason we find a repetition-enhancement effect in this study is due to our use of the 

complete-design version of the composite-face paradigm, and the role of expectation in 

fMRI repetition effects. High-level top down influences have been shown to modulate how 

stimulus repetition affects evoked neural activity. For example, the probability of repetitions 

occurring in an experimental run changes the repetition-effect strength (Larsson and Smith, 

2012; Summerfield et al., 2008). In both FFA and PPA the response to faces was reduced 

when subjects had higher expectation of seeing a face, compared to lower expectation of 

seeing a face (Egner et al., 2010) In our experiment, the use of the complete design meant 

that there were more trials where subjects perceived the top-halves of the faces to be 

different compared to trials where they perceived them to be the same (our experimental 

design had equal numbers of top-same and top-different conditions, but the composite-

illusion leads to incongruent-identity aligned top-same stimuli being perceived as different). 

Thus, subjects may expect top-different trials more than top-same ones, leading them to 

have a lower BOLD response when they perceive the faces to be different compared to 

when they perceive them to be the same. Importantly, the repetition-effect pattern was in 

accordance with our expected pattern related to holistic processing (i.e. difference between 

aligned congruent-identity and incongruent-identity conditions, and no difference between 

misaligned congruent-identity and incongruent-identity conditions).  
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5.4.3. Linking holistic processing in neural activity and behaviour 

We found that the strength of the interaction effect between congruency and 

alignment in the RSC and PPA correlated with the behavioural interaction effect between 

congruency and alignment measured with reaction times, but not with accuracy. Could this 

correlation with reaction times reflect differences in time on task or attentional differences 

driving the differences in neural responses in RSC and PPA? We hypothesize that this is 

unlikely as greater time on task or stronger attention would both be likely to lead to higher 

neural activation rather than the lower neural activations we find in RSC and PPA for 

incongruent-identity conditions compared to congruent-identity conditions. Why might we 

find a correlation with reaction times but not with accuracy? It has been suggested that 

reaction times may be particularly important as a composite-effect behavioural measure 

when stimulus presentation times are longer, as in the present study (Rossion, 2013). The 

correlation between holistic processing as measured with reaction times and the holistic 

processing effect measured in RSC and PPA suggests there is a direct link between the brain 

activity we recorded in these areas and the behavioural performance of the participants in 

the composite-task. In a whole-brain analysis, no other brain area was related to holistic 

processing and behavioural measures. Furthermore, we did not identify any significant 

correlation between participants’ behavioural responses and the differences in their neural 

responses to aligned and misaligned faces.  

We separately investigated the neural activity and behavioural responses to the top-

same and top-different conditions in this study. The necessity of incongruent-identity top-

different conditions for measuring holistic face processing with the composite paradigm is 

debated (Richler and Gauthier, 2013; Rossion, 2013). Furthermore, previous work has 

suggested that evidence of holistic face processing is mainly found when the target face part 

being matched is more similar rather than different (Goffaux, 2012; Goffaux et al., 2013). In 

our study, we found differences in neural responses during the top-same but not the top-

different conditions of the composite face paradigm, consistent with these previous 

findings.  
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5.4.4. Holistic processing outside of face-responsive regions 

In both of our fMRI analyses we found neural responses related to holistic processing 

in brain regions outside of the face-responsive network. Previous behavioural studies have 

shown that objects can be processed holistically (Bukach et al., 2010; Diamond and Carey, 

1986; Gauthier and Tarr, 1997; Wong et al., 2009a), and that there is interference between 

holistic processing of objects and faces in behaviour (Curby and Gauthier, 2014; Curby and 

Moerel, 2019; Gauthier et al., 2003) suggesting that there is some overlap in the neural 

mechanisms involved in holistic processing of faces and objects. Our results suggest there 

could be some overlap in neural processing outside of the face-responsive network. 

Furthermore, our results may shed light on why some prosopagnosic individuals have intact 

holistic processing ability (Biotti et al., 2017; Le Grand et al., 2006; Susilo et al., 2010), why 

face recognition ability and strength of holistic processing are not necessarily correlated 

(Konar et al., 2010; Zhao et al., 2014b), but see also (Richler et al., 2011a), and why factors 

affecting face recognition ability (e.g. contrast negation) can leave holistic processing 

unaffected (Hole et al., 1999; Taubert and Alais, 2011). Previous studies have shown that 

face-responsive ATFA and FFA are involved in face recognition (Grill-Spector et al., 2004; 

Nasr and Tootell, 2012), thus if holistic face processing occurs in more disperse high-level 

occipital-temporal regions, it is not surprising that face recognition and holistic face 

processing may in some cases not be linked, as the neural processes involved would not 

completely overlap.  

5.4.5. Conclusion 

We investigated neural responses related to holistic face processing, using the 

composite paradigm in functionally defined brain regions related to face, scene, object and 

Gestalt processing. We identified differences in neural responses to aligned and misaligned 

faces in the LOC, TOS and FFA2, suggesting that these regions are sensitive to holistic 

processing of faces. Furthermore, we found neural activity consistent with processing face 

identity in a holistic manner in the RSC and PPA, and found that the strength of this activity 

correlated with participants’ behaviour in the composite face paradigm. Our results show 

the importance of investigating face processing mechanisms in a wide range of brain 

regions, and suggest that regions both within and outside of the face-responsive brain 

network are involved in holistic face processing.  
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Abstract 

Behavioural studies have demonstrated that faces and objects of expertise are processed 

holistically and have linked this holistic processing to brain activity in occipitotemporal 

cortical regions, in particular the fusiform face area. Recent behavioural work has shown 

that non-expertise objects with salient Gestalt information are also processed holistically. It 

remains unclear which brain areas are involved in holistic processing of these non-expertise 

objects. In this study, participants performed a composite task with non-expertise line 

pattern objects, while we recorded their brain activity with fMRI. These line pattern objects 

have previously been shown to elicit strong evidence of holistic processing in behaviour. We 

defined brain regions of interest based on their responses to objects, scenes, faces and 

perceptual grouping and investigated how activity in these regions related to holistic 

processing in a composite task. Despite our participants showing strong evidence of holistic 

processing in their behavioural responses during the fMRI experiment, we found that 

neither regions shown to process faces holistically (in previous studies and our own work in 

Chapter 5), nor any other brain regions we investigated, showed activity consistent with 

holistic processing. We conclude that different brain regions may underlie holistic 

processing of faces and non-expertise objects, but further work is needed to elucidate which 

brain regions underlie holistic processing of non-expertise objects. 

 

Keywords: holistic processing, composite-face effect, object, expertise 
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6.1. Introduction 

Holistic processing refers to the tendency to perceive an object as an 

indecomposable whole, rather than as a collection of independent parts. Faces are the class 

of objects that has been most consistently demonstrated to be processed holistically. One 

behavioural measure that has been used to demonstrate holistic processing of faces is the 

composite-face paradigm. In this paradigm, when the top-half of one person’s face is 

aligned with the bottom-halves of different faces (i.e. composite faces), observers have the 

tendency to perceive the top-halves of the faces as different identities, as they are unable to 

ignore the bottom halves of the composite faces (Hole, 1994; Young, Hellawell, & Hay, 

1987). Another behavioural measure that has been used to demonstrate evidence of holistic 

processing is the part-whole paradigm. Observers learn to recognise the faces of different 

individuals, and then are tested on their ability to recognise a part of a face (e.g. the nose) 

either alone or in the context of the whole face. Observers tend to show an advantage for 

recognising the face part in the whole face context (Tanaka & Farah, 1993). Interestingly, 

the evidence of holistic processing from both of these paradigms has been shown to be 

significantly reduced when faces are shown in an inverted compared to an upright 

configuration (Tanaka & Farah, 1993; Young et al., 1987), showing that holistic face 

processing is strongest for upright faces.  

 In addition to faces, behavioural studies have shown that expertise in recognising 

objects can also lead to these objects being processed holistically. For example, car experts 

tested with a composite paradigm show a similar inability to ignore the irrelevant bottom 

half of composite car images (Bukach, Phillips, & Gauthier, 2010) and dog experts, but not 

novices, show a deficit when recognising dogs from inverted images compared to upright 

ones (Diamond & Carey, 1986). Furthermore, participants that have been trained in the lab 

to become experts at recognising novel classes of objects (that must be recognised by the 

specific arrangement of their parts) have been shown to develop holistic processing of these 

objects (Gauthier & Tarr, 1997; Wong, Palmeri, & Gauthier, 2009). The authors proposed 

that holistic processing may occur with the development of expertise in individuating 

objects (Wong et al., 2009). However, more recent work has shown that other factors, such 

as Gestalt information may also be involved in holistic processing of objects. Non-expertise 
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line pattern objects, containing salient Gestalt information, were found to be processed as 

holistically as faces in a composite paradigm (Zhao, Bülthoff, & Bülthoff, 2016), and 

weakening the Gestalt information in these line pattern objects led to a decrease in the 

evidence of holistic processing. This finding suggests that other factors beyond expertise in 

individuation may be involved in holistic processing.  

 One way we can better understand holistic processing is by researching the neural 

mechanisms that underlie this process. For faces, several studies have suggested a particular 

importance of the fusiform face area (FFA). FFA responds more to whole faces than to the 

same faces with the facial parts scrambled (Brandman & Yovel, 2016; Liu, Harris, & 

Kanwisher, 2010; Zhao et al., 2014). Furthermore, neural activity in FFA has been shown to 

correspond with holistic processing of composite faces (Andrews, Davies-Thompson, 

Kingstone, & Young, 2010; Goffaux, Schiltz, Mur, & Goebel, 2013; Schiltz, Dricot, Goebel, & 

Rossion, 2010; Schiltz & Rossion, 2006), though it has also been suggested this area contains 

both holistic and part-based representations of faces (Harris & Aguirre, 2008, 2010). A 

similar involvement of the FFA has been shown for processing of expertise objects. FFA has 

been shown to be activated in bird experts viewing bird images, and car experts viewing car 

images (Gauthier, Skudlarski, Gore, & Anderson, 2000; Xu, 2005), and activity in the FFA has 

been found to increase with expertise in recognising novel objects (Gauthier, Tarr, 

Anderson, Skudlarski, & Gore, 1999). Furthermore, evidence of holistic processing of cars in 

the right FFA2 (a subsection of the FFA) has been shown to correlate with the level of car 

expertise (Ross et al., 2018). These studies demonstrate an importance of the FFA in holistic 

processing of faces and objects of expertise. However, it is not yet clear if the FFA is also 

involved in holistic processing of non-expertise objects.  

 In this study, we investigated the neural mechanisms underlying holistic processing 

of non-expertise line pattern objects. We recorded the brain activity of participants using 

functional magnetic resonance imaging (fMRI) as they performed a composite task with line 

pattern objects. This task involved participants viewing pairs of composite line patterns, one 

shown after the other, and making top-same or top-different judgements as to the identity 

of the top-half of the line pattern. This task has previously been shown to elicit evidence of 

holistic processing of these line pattern objects in behaviour (Zhao et al., 2016). We 

investigated two components of the composite paradigm. Firstly, we investigated if there 
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were any overall activation differences between aligned and misaligned line patterns, as 

aligned line patterns are thought to be processed more holistically than misaligned line 

patterns. Secondly, we investigated if any regions showed activity related to the change in 

the perception of the identity of the top-half of the line pattern that is induced by the 

inability of participants to ignore the bottom half of the aligned line patterns.  

 We investigated changes in brain activity during the composite task in a variety of 

brain regions that we hypothesized might be involved in holistic processing of the line 

pattern objects. First, we localized a region in the lateral occipital cortex (LOC) that is known 

to be involved in object processing (Malach et al., 1995) and has been shown to respond to 

local contour elements that are perceptually grouped into a global shape (Altmann, 

Bülthoff, & Kourtzi, 2003). Second, we localized three scene-responsive regions, the 

transverse occipital sulcus (TOS, also known as OPA), the retrosplenial cortex (RSC) and the 

parahippocampal place area (PPA). The PPA and TOS/OPA have been shown to respond to a 

holistically processed scene stimulus compared to a control stimulus matched in low-level 

visual content (Schindler & Bartels, 2016), and the PPA and RSC have been shown to 

respond more to intact scenes as compared to fractured ones (Kamps, Julian, Kubilius, 

Kanwisher, & Dilks, 2016). These studies suggest that these scene-responsive regions are 

involved in holistically grouping objects together into a scene, which we hypothesized could 

also relate to grouping of the local elements of the line pattern objects into a holistic 

representation. Third, we localized regions responsive to faces, the FFA that has previously 

been found to be involved in holistic processing of faces and objects of expertise (Ross et al., 

2018; Schiltz et al., 2010; Schiltz & Rossion, 2006), as well as the occipital face area (OFA) 

and anterior temporal face area (ATFA). Fourth, we localized a region in the superior 

parietal lobe (SPL) that has been shown to be activated during holistic processing of several 

bi-stable Gestalt stimuli (Grassi, Zaretskaya, & Bartels, 2016, 2018; Zaretskaya, Anstis, & 

Bartels, 2013). As Gestalt information has been shown to be important for holistic 

processing of line pattern objects (Zhao et al., 2016), we hypothesized the SPL might be 

involved in holistic processing of these line pattern objects.  
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6.2. Materials and methods 

6.2.1. Participants  

Twenty-two participants (16 female, 20-39 years old) took part in the study. One 

participant was excluded from the fMRI data analyses due to excessive head movement 

during scanning. All participants provided written informed consent prior to their 

participation in the study. The experimental procedure was approved by the ethics 

committee of the University Clinic Tübingen.   

6.2.2. Stimuli  

Our experimental stimuli were created from twelve pairs of line patterns selected 

from a dataset used in a previous study (Zhao et al., 2016). These line pattern stimuli were 

shown to successfully elicit evidence of holistic processing. The twelve line pattern pairs 

were separated into top and bottom halves, and within each pair the top and bottom halves 

of the patterns were recombined (e.g. top half of line pattern A and bottom half of line 

pattern B) to create composite line patterns. Although the top and bottoms halves of each 

pair were different, they could be recombined with no disruption of the line continuity 

between the top and bottom halves. Line pattern stimuli had an average height of 3.7° and 

width of 3.6° of visual angle. We additionally created misaligned line pattern stimuli by 

shifting the bottom halves of the line patterns 1.0° of visual angle to the left. This 

misalignment has previously been shown to disrupt holistic processing (Zhao et al., 2016). 

We showed a horizontal black line (0.03° of visual angle) between the top and bottom 

halves of each line pattern, so that participants could clearly separate the two halves. We 

created eight additional pairs of line pattern stimuli, using the same method, which were 

used for practice trials prior to the main experiment.  

6.2.3. Experimental procedure  

Participants lay supine in the scanner and viewed the stimuli on a screen positioned 

behind their head, via a mirror attached to the head coil. The screen was positioned 82 cm 

from the participant, and spanned 28° x 16° of visual angle in horizontal and vertical 
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directions respectively. Stimuli were presented via a projector with resolution 1920x1080. 

The experiment was programmed with Matlab 2013b using the Psychophysics Toolbox 

extensions (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007) on a Windows PC.  

 

Figure 1. Illustration of the experiment trial procedure. Participants fixated for either 4 or 6 s, then 

viewed a first line pattern, followed by a blank screen and then a second line pattern. Participants 

then responded during the next fixation whether the top-halves of the two line patterns were the 

same or different. (A) illustrates the procedure for the aligned line pattern stimuli, and (B) illustrates 

the procedure for the misaligned line pattern stimuli. 

 

Participants performed a composite task while we recorded their brain activity using 

fMRI. Figure 1 illustrates the trial procedure of the composite task. Participants viewed a 

central fixation cross for 4 s or 6 s (50% of trials each, random order). The first line pattern 

was shown centrally on the screen for 1 s, followed by a blank screen (presented for 100 

ms), then the second line pattern was shown, 1.2° of visual angle offset to the right of the 

centre of the screen, for 200 ms. Participants responded during the next fixation using a 
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button press whether they judged the top halves of the two line patterns to be the same or 

different. They were instructed beforehand to ignore the bottom halves of the line patterns. 

We counterbalanced which fingers participants used to respond top-same/top-different 

across participants.  

The experimental design consisted of 8 conditions of a 2 x 2 x 2 factorial design (see 

Fig. 2). The factors were alignment, whether the bottom halves of the line patterns were 

aligned or misaligned with the top halves, congruency, whether the bottom half of the 

second line pattern was congruent with respect to the top half of the second line pattern or 

not (e.g. congruent trials are when the bottom-half is the same if the top-half is the same 

and the bottom-half is different if the top-half is different) and same/different, whether the 

top halves of the two line patterns were the same or different from each other. Each 

participant completed 3 runs, where each run contained 64 trials (8 repetitions per 

condition). Conditions were presented in a carryover counterbalanced design, such that 

each condition was preceded by every other condition once per run (Brooks, 2012). This was 

to avoid biases from carryover blood-oxygen-level dependent (BOLD) activation from a 

previous condition (Aguirre, 2007).  

 

 

Figure 2. Experimental conditions. The conditions consisted of a 2 x 2 x 2 factorial design, with 

factors alignment, whether the top and bottom halves of the line patterns were aligned or 

misaligned, same or different, whether the top halves of the line patterns were the same or different 

from each other and congruency, whether the bottom half of line pattern 2 was congruent with 

respect to the top half of line pattern 2 or not (e.g. congruent trials are when the bottom-half is the 

same if the top-half is the same and the bottom-half is different if the top-half is different). 
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6.2.4. Localizer stimuli and procedure 

Participants completed 2 runs of a localizer experiment, which we used to define 

object-, scene- and face-responsive ROIs. Participants viewed blocks containing grayscale 

objects, scenes, faces and phase-scrambled scenes. Phase-scrambled scenes were Fourier-

scrambled versions of the original scene images. As the object and face stimuli were smaller 

in size than the scenes and phase-scrambled scenes, we showed the phase-scrambled 

scenes as background images to the objects and faces in order to keep the visual field size of 

the stimuli constant in all blocks. Blocks were presented in a carryover counterbalanced 

sequence (Brooks, 2012). In each block 8 images were shown, where each image was shown 

for 1.8 s, followed by a 0.2 s blank, grey screen. Participants performed a one-back task on 

the images (with repetitions once every 9 s on average) to keep their attention to the 

stimuli.  

6.2.5. Imaging parameters 

Images were acquired using a 3T Siemens Prisma scanner with a 64-channel head 

coil (Siemens, Erlangen, Germany). Functional T2* echoplanar images (EPI) were acquired 

using a sequence with the following parameters; multiband acceleration factor 2, TR 1.39 s, 

TE 30 ms, flip angle 68°, FOV 192x192 mm. Volumes consisted of 42 slices, with an isotropic 

voxel size of 3x3x3 mm. The first 8 volumes of each run were discarded to allow for 

equilibration of the T1 signal. For each participant a high-resolution T1-weighted anatomical 

scan was acquired with the following parameters; TR 2 s, TE 3.06 ms, FOV 232x256 mm, 192 

slices, isotropic voxel size of 1x1x1 mm.  

6.2.6. fMRI data preprocessing 

fMRI data was preprocessed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). 

Functional images were slice-time corrected, realigned and coregistered to the anatomical 

image. The images were then normalized to MNI (Montreal Neurological Institute) space 

and spatially smoothed with a 6 mm full-width at half-maximum Gaussian kernel.   

 

http://www.fil.ion.ucl.ac.uk/spm/
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6.2.7. Definition of regions of interest 

 Table 1 shows the average locations and sizes of our ROIs. We used fMRI data from 

the localizer runs to define object-, scene- and face-responsive ROIs. The object-responsive 

LOC was defined using the contrast objects > phase-scrambled scenes (Malach et al., 1995). 

Scene-responsive ROIs were defined using the contrast scenes > faces, and these ROIs 

included TOS/OPA, RSC and PPA (Epstein & Kanwisher, 1998; Grill-Spector, 2003; Maguire, 

2001). The face-responsive OFA, FFA and ATFA were defined using the contrast faces > 

objects (Gauthier, Tarr, et al., 2000; Kanwisher, McDermott, & Chun, 1997; Rajimehr, Young, 

& Tootell, 2009; Tsao, Moeller, & Freiwald, 2008). For each contrast we selected a threshold 

of p < 0.001 uncorrected to define active voxels. We defined each ROI individually for each 

participant, and selected all active voxels within a sphere (radius 6 mm) centred on the peak 

of activity for each ROI.  

 We defined ROIs SPL and V1 based on their anatomical location for each participant, 

and using the contrast: activity during stimulus presentation > fixation interval between 

trials. This contrast was orthogonal to the activity differences investigated in our results 

(Friston, Rotshtein, Geng, Sterzer, & Henson, 2006). We selected active voxels using a p < 

0.05 familywise error rate (FWE) corrected threshold. To define SPL, we selected all active 

voxels within a sphere (radius 6 mm) centred on the peak of activity in the SPL. To define V1, 

we first defined the entirety of V1 using anatomical labels generated by Freesurfer (Hinds et 

al., 2009) (https://surfer.nmr.mgh.harvard.edu/), and then selected the posterior, foveal 

part of V1 that was activated by the contrast as our V1 ROI.  

 

https://surfer.nmr.mgh.harvard.edu/
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Table 1 

Average MNI coordinates and volume of each ROI (± standard deviations). N indicates the number of 

participants each ROI was identified in.  

 

 

 

ROI hem X y z Volume (mm3) N 

LOC left -42 ± 4.7 -80 ± 5.8 -4 ± 5.1 221 ± 14.1 21 

 right 44 ± 3.8 -80 ± 5.1 -5 ± 5.8 212 ± 27.6 21 

TOS/OPA left -31 ± 5.7 -86 ± 4.3 21 ± 7.5 212 ± 25.2 21 

 right 36 ± 5.4 -82 ± 4.0 20 ± 6.8 219 ± 19.5 21 

RSC left -17 ± 3.2 -59 ± 3.2 14 ± 3.3 183 ± 65.3 20 

 right 20 ± 3.2 -57 ± 4.6 17 ± 4.5 199 ± 53.5 20 

PPA left -28 ± 2.9 -46 ± 4.1 -10 ± 4.2 221 ± 11.9 21 

 right 29 ± 3.2 -46 ± 6.4 -10 ± 3.4 221 ± 16.6 20 

OFA left -38 ± 4.3 -78 ± 7.1 -12 ± 3.2 188 ± 52.4 21 

 right 41 ± 3.4 -77 ± 6.7 -12 ± 5.4 201 ± 50.3 21 

FFA left -41 ± 3.9 -52 ± 5.5 -19 ± 4.1 175 ± 58.5 21 

 right 42 ± 3.1 -50 ± 5.2 -19 ± 3.9 203 ± 37.1 21 

ATFA left -35 ± 5.9 -7 ± 6.8 -35 ± 6.3 78 ± 47.7 11 

 right 34 ± 3.8 -4 ± 3.6 -39 ± 4.4 122 ± 55.8 15 

SPL left -26 ± 4.7 -58 ± 5.0 51 ± 7.2 217 ± 19.6 21 

 right 26 ± 4.1 -56 ± 5.1 51 ± 6.3 219 ± 21.8 21 

V1 left -12 ± 3.1 -98 ± 2.5 -7 ± 4.0 962 ± 319.0 21 

 right 14 ± 3.3 -96 ± 2.0 -5 ± 3.9 979 ± 249.1 21 
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6.2.8. Behavioural analyses 

 We calculated participants’ behavioural responses during the composite task using 

accuracy (% correct) and reaction times. For each behavioural measure we first performed a 

2 (alignment) x 2 (congruency) x 2 (top-same/top-different) repeated measures ANOVA to 

investigate if there was a triple interaction between the three factors. We then performed 

further behavioural analyses separately for top-same and top-different conditions as 

previous studies have shown that evidence of holistic processing is different for these 

conditions (Goffaux, 2012; Goffaux et al., 2013). We performed 2 (alignment) x 2 

(congruency) repeated measures ANOVAs to investigate if there was behavioural evidence 

of holistic processing during the top-same and top-different conditions. For evidence of 

holistic processing we expected to find an effect of congruency and an interaction between 

congruency and alignment, driven by a difference in behavioural responses between 

congruent and incongruent conditions that is greater for the aligned conditions compared to 

the misaligned ones. We confirmed this pattern of results using follow up t-tests. For 

accuracy, we expected a lower accuracy of participants for incongruent aligned conditions 

compared to congruent aligned conditions, driven by participants change in perception of 

the top-half of the line pattern caused by holistic processing. For reaction times, we 

expected participants to respond slower on incongruent aligned conditions compared to 

congruent aligned conditions, due to participants taking longer to make a response decision.  

6.2.9. fMRI analyses 

 We modelled a GLM using SPM12 for each participant, containing regressors for the 

8 conditions and the 6 realignment regressors from the motion correction during 

preprocessing. We excluded any trial where the participant did not make a response to 

indicate a top-same/top-different judgment from the 8 condition regressors. We performed 

all fMRI analyses in our 9 ROIs as well as in whole-brain analyses. ROI analyses were 

Bonferroni-corrected for N = 9 ROIs (p values are shown uncorrected unless stated as 

Bonferroni-corrected) and whole-brain analyses were False Discovery Rate (FDR) corrected. 

We first performed a 2 (alignment) x 2 (congruency) x 2 (top-same/top-different) repeated 

measures ANOVA to investigate if any regions showed a triple interaction between the 
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three factors. We then performed analyses between specific conditions to investigate 

different aspects of the composite effect.  

 First, we investigated if any regions showed differences in neural activity between 

aligned and misaligned congruent conditions. As aligned patterns are thought to be 

processed more holistically than misaligned ones (Zhao et al., 2016), we hypothesized that 

regions involved with holistic processing of these line patterns might show differences in the 

level of activation during these conditions. We included only congruent conditions in these 

analyses, as for incongruent conditions there is a change in the participants’ perception of 

the line pattern in the aligned trials, but not in misaligned trials. Therefore, any differences 

in neural activation between aligned and misaligned incongruent trials could be due to the 

change in perception of the line pattern rather than due to differences in processing of the 

aligned and misaligned trials. We performed a 2 (alignment) x 2 (top-same/top-different) 

repeated measures ANOVA to test whether any regions showed a main effect of alignment.  

 Second, we investigated if any regions showed differences in neural activity related 

to the change in the perception of the top-half of the line pattern. We performed this 

analysis separately for top-same and top-different conditions as previous studies have found 

differences in the strength of evidence of holistic processing for these conditions (Goffaux, 

2012; Goffaux et al., 2013). For top-same and top-different conditions we performed 2 

(alignment) x 2 (congruency) repeated measures ANOVAs to test whether any regions 

showed a main effect of congruency and an interaction between congruency and alignment. 

For evidence of holistic processing, we expected to find a difference in neural responses 

between congruent and incongruent conditions that is greater for the aligned conditions 

compared to the misaligned ones. We performed follow-up t-tests in any significant regions 

to confirm this pattern of responses.  
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6.3. Results  

6.3.1. Behavioural results 

 We measured participants’ behavioural responses to the 8 conditions of the 

composite task using accuracy (% correct) and reaction times. 2 (alignment) x 2 

(congruency) x 2 (top-same/top-different) repeated measures ANOVAs revealed significant 

triple-interactions for both accuracy (F1,20 = 47.69, p = 1.0 × 10-6, ηp
2 = 0.70) and reaction 

times (F1,20 = 10.11, p = 0.0047, ηp
2 = 0.34). We then conducted further analyses separately 

for top-same and top-different conditions to investigate which conditions show differences 

related to holistic processing of the line pattern objects.  

6.3.1.1. Accuracy and reaction times for top-same conditions 

 Figure 3 shows accuracy and reaction times for the top-same conditions of the 

composite task. 2 (alignment) x 2 (congruency) repeated measures ANOVAs revealed both 

significant effects of congruency (accuracy: F1,20 = 56.19, p = 3.1 × 10-7, ηp
2 = 0.74; reaction 

times: F1,20 = 14.12, p = 0.0012, ηp
2 = 0.41) and significant interactions between congruency 

and alignment (accuracy: F1,20 = 58.31, p = 2.4 × 10-7, ηp
2 = 0.74; reaction times: F1,20 = 23.42, 

p = 1.0 × 10-4, ηp
2 = 0.54) for both behavioural measures. Follow-up paired t-tests confirmed 

that the congruency effect was significant for the aligned conditions (accuracy: M = 37.50 %, 

SE = 4.68 %; t20 = 8.01, p = 1.1 × 10-7, Cohen’s dz = 1.75; reaction times: M = 0.17 s, SE = 

0.038 s; t20 = 4.55, p = 1.9 × 10-4, Cohen’s dz = 0.99) but not for the misaligned conditions 

(accuracy: M = 3.37 %, SE = 1.72 %; t20 = 1.97, p = 0.063, Cohen’s dz = 0.43; reaction times: M 

= -0.01 s, SE = 0.014 s; t20 = -0.85, p = 0.40, Cohen’s dz = -0.19). Thus, these behavioural 

results show evidence of holistic processing during the top-same conditions of the 

composite task.  
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Figure 3. Behavioural results for the top-same conditions of the composite task. (A) shows accuracy 

(% correct) as a function of alignment and congruency, and (B) shows reaction times as a function of 

alignment and congruency. (C) and (D) show the interaction effect between alignment and 

congruency for accuracy (C) and reaction times (D). Error bars indicate ±1 SEM. ** indicates p < 

0.001. 

 

6.3.1.2. Accuracy and reaction times for top-different conditions 

 Figure 4 shows accuracy and reaction times for the top-different conditions of the 

composite task. For reaction times, a 2 (alignment) x 2 (congruency) repeated measures 

ANOVA revealed a significant effect of congruency (F1,20 = 4.47, p = 0.047, ηp
2 = 0.18) and 

significant interaction between congruency and alignment (F1,20 = 6.67, p = 0.018, ηp
2 = 

0.25). For accuracy, a 2 (alignment) x 2 (congruency) repeated measures ANOVA revealed a 

significant effect of congruency (F1,20 = 4.42, p = 0.048, ηp
2 = 0.18) but no significant 

interaction between congruency and alignment (F1,20 = 0.36, p = 0.55, ηp
2 = 0.018). Follow-

up paired t-tests investigating the reaction time effects confirmed that the congruency 

effect was significant for the aligned conditions (M = 0.044 s, SE = 0.013 s; t20 = 3.37, p = 

0.0030, Cohen’s dz = 0.74) but not for the misaligned conditions (M = -0.0075 s, SE = 0.013 s; 
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t20 = -0.56, p = 0.58, Cohen’s dz = -0.12). These reaction time results show evidence of 

holistic processing during the top-different conditions of the composite task.  

 

 

Figure 4. Behavioural results for the top-different conditions of the composite task. (A) shows 

accuracy (% correct) as a function of alignment and congruency, and (B) shows reaction times as a 

function of alignment and congruency. (C) and (D) show the interaction effect between alignment 

and congruency for accuracy (C) and reaction times (D). Error bars indicate ±1 SEM. * indicates p < 

0.05. 

 

6.3.2. fMRI results 

 We first tested whether any of our ROIs showed a triple interaction effect between 

alignment, congruency and top-same/top-different conditions using 2 x 2 x 2 repeated 

measures ANOVAs. We did not identify any regions showing a significant triple interaction 

effect in these analyses (LOC: F1,20 = 1.51, p = 0.23, ηp
2 = 0.070; TOS/OPA: F1,20 = 0.020, p = 

0.89, ηp
2 = 0.0010; RSC: F1,19 = 0.23, p = 0.64, ηp

2 = 0.012; PPA: F1,20 = 0.076, p = 0.79, ηp
2 = 

0.0038; OFA: F1,20 = 1.63, p = 0.22, ηp
2 = 0.075; FFA: F1,20 = 0.40, p = 0.54, ηp

2 = 0.019; ATFA: 
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F1,14 = 0.57, p = 0.46, ηp
2 = 0.039; SPL: F1,20 = 4.12, p = 0.056, ηp

2 = 0.017; V1: F1,20 = 0.89, p = 

0.36, ηp
2 = 0.043).  

 Next, we tested for differences between specific conditions in order to investigate 

which regions show neural activity related to specific aspects of the composite task. First, 

we investigated which regions show differences in neural responses to aligned and 

misaligned line pattern objects. Aligned line patterns are thought to be processed more 

holistically than misaligned line patterns, thus we predicted that regions involved in holistic 

processing might show differences in neural activity between these conditions. Second, we 

investigated which regions show differences in neural activity related to the change in the 

perception of the top-half of the line pattern object that is induced by the inability to ignore 

the aligned bottom-half of the line pattern object. Here, we investigated which regions 

show a difference in neural activity between congruent and incongruent conditions that is 

greater for aligned as compared to misaligned line pattern stimuli. We performed these 

analyses separately for top-same and top-different conditions due to the known differences 

in the strength of the behavioural evidence of holistic processing for top-same and top-

different conditions (Goffaux, 2012; Goffaux et al., 2013).  

6.3.2.1. Aligned vs. misaligned conditions 

 We investigated which brain regions show differences in neural responses to aligned 

versus misaligned congruent conditions (Fig. 5). We included only the congruent conditions 

in these analyses as in the incongruent conditions there is also a change in the perception of 

the top-half of the line pattern that differs between aligned and misaligned conditions. We 

performed 2 (alignment) x 2 (top-same/top-different) repeated measures ANOVAs to 

investigate which regions show a main effect of alignment for the congruent conditions. For 

object- and scene-responsive ROIs (Fig. 5A) we did not find a significant effect of alignment 

in any region (LOC: F1,20 = 2.29, p = 0.15, ηp
2 = 0.10; TOS/OPA: F1,20 = 0.065, p = 0.80, ηp

2 = 

0.0032; RSC: F1,19 = 0.13, p = 0.72, ηp
2 = 0.0068; PPA: F1,20 = 2.71, p = 0.12, ηp

2 = 0.12). For all 

other ROIs (Fig. 5B), we found a marginally significant effect of alignment in the SPL (F1,20 = 

5.10, p = 0.035, ηp
2 = 0.20), but this result did not survive Bonferroni-correction for N = 9 

ROIs. We did not find a significant effect of alignment in any of the other ROIs tested (OFA: 

F1,20 = 1.55, p = 0.23, ηp
2 = 0.072; FFA: F1,20 = 2.26, p = 0.15, ηp

2 = 0.10; ATFA: F1,14 = 0.016, p 
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= 0.90, ηp
2 = 0.0011; V1: F1,20 = 0.012, p = 0.91, ηp

2 = 6.1 x 10-4). We performed a whole-brain 

analysis to investigate if any regions outside of our ROIs showed significant differences in 

activation between aligned and misaligned stimuli. We did not identify any regions in this 

analysis.  

 

Figure 5. Differences in neural responses between aligned and misaligned congruent conditions, 

using the contrast aligned – misaligned. (A) shows results for object- and scene-responsive ROIs, (B) 

shows results for face-responsive, perceptual-grouping related and early visual ROIs. Error bars 

indicate ±1 SEM. + indicates p < 0.05 uncorrected. 
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6.3.2.2. Congruency & alignment interaction for top-same conditions 

 We investigated if any brain regions showed a difference in neural activity between 

the congruent and incongruent top-same conditions of the composite task, and whether 

this difference was greater for the aligned conditions compared to the misaligned 

conditions. This pattern of responses would show neural activity consistent with the change 

in the perception of the top-half of the line pattern that is induced by holistic processing.  

 For the object- and scene-responsive ROIs (Fig. 6), 2 (congruency) x 2 (alignment) 

repeated measures ANOVAs did not identify any significant main effects of congruency 

(LOC: F1,20 = 0.059, p = 0.81, ηp
2 = 0.0030; TOS/OPA: F1,20 = 0.12, p = 0.73, ηp

2 = 0.0060; RSC: 

F1,19 = 4.21, p = 0.054, ηp
2 = 0.18; PPA: F1,20 = 0.87, p = 0.36, ηp

2 = 0.042) or significant 

interactions between congruency and alignment (LOC: F1,20 = 0.73, p = 0.40, ηp
2 = 0.035; 

TOS/OPA: F1,20 = 0.054, p = 0.82, ηp
2 = 0.0027; RSC: F1,19 = 3.0 x 10-4, p = 0.99, ηp

2 = 1.6 x 10-5; 

PPA: F1,20 = 0.34, p = 0.57, ηp
2 = 0.017) for the top-same conditions. We next tested whether 

any of our other ROIs would show an effect of congruency or interaction between 

congruency and alignment (Fig. 7). 2 x 2 repeated measures ANOVAs in these ROIs did not 

identify any significant effects of congruency (OFA: F1,20 = 0.040, p = 0.84, ηp
2 = 0.0020; FFA: 

F1,20 = 0.018, p = 0.90, ηp
2 = 8.9 x 10-4; ATFA: F1,14 = 3.92, p = 0.068, ηp

2 = 0.22; SPL: F1,20 = 

2.99, p = 0.099, ηp
2 = 0.13; V1: F1,20 = 0.0053, p = 0.94, ηp

2 = 2.7 x 10-4), or significant 

interactions between congruency and alignment (OFA: F1,20 = 0.44, p = 0.51, ηp
2 = 0.022; 

FFA: F1,20 = 0.66, p = 0.43, ηp
2 = 0.032; ATFA: F1,14 = 2.57, p = 0.13, ηp

2 = 0.16; SPL: F1,20 = 2.85, 

p = 0.11, ηp
2 = 0.12; V1: F1,20 = 0.82, p = 0.38, ηp

2 = 0.040). We performed a whole-brain 

analysis to investigate if any other brain regions would show a significant interaction 

between congruency and alignment in the top-same conditions. We did not identify any 

regions in this analysis.  
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Figure 6. Neural responses to the top-same conditions of the composite task in object- and scene-

responsive ROIs. (A) shows neural responses as a function of alignment and congruency. (B) shows 

the interaction effect between alignment and congruency. Error bars indicate ±1 SEM.  
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Figure 7. Neural responses to the top-same conditions of the composite task in face-responsive, 

perceptual-grouping related and early visual ROIs. (A) shows neural responses as a function of 

alignment and congruency. (B) shows the interaction effect between alignment and congruency. 

Error bars indicate ±1 SEM. 
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6.3.2.3. Congruency & alignment interaction for top-different conditions 

 We investigated if any brain regions showed a difference in neural activity between 

the congruent and incongruent top-different conditions of the composite task, and whether 

this difference was greater for the aligned compared to the misaligned conditions. As 

previously, this pattern of responses would suggest neural responses consistent with the 

change in the perception of the top-half of the line pattern that is induced by holistic 

processing during the aligned incongruent conditions. 

 For object- and scene-responsive ROIs (Fig. 8), 2 (alignment) x 2 (congruency) 

repeated measures ANOVAs did not identify any significant main effects of congruency 

(LOC: F1,20 = 0.58, p = 0.45, ηp
2 = 0.028; TOS/OPA: F1,20 = 0.66, p = 0.43, ηp

2 = 0.032; RSC: F1,19 

= 0.17, p = 0.68, ηp
2 = 0.0089; PPA: F1,20 = 0.084, p = 0.78, ηp

2 = 0.0042) or significant 

interactions between congruency and alignment (LOC: F1,20 = 0.59, p = 0.45, ηp
2 = 0.029; 

TOS/OPA: F1,20 = 0.30, p = 0.59, ηp
2 = 0.015; RSC: F1,19 = 0.079, p = 0.39, ηp

2 = 0.040; PPA: F1,20 

= 0.033, p = 0.86, ηp
2 = 0.0017) for the top-different conditions. We further tested whether 

any of our other ROIs would show an effect of congruency or interaction between 

congruency and alignment for the top-different conditions (Fig. 9). We did not identify any 

regions that showed a significant effect of congruency (OFA: F1,20 = 0.46, p = 0.50, ηp
2 = 

0.023; FFA: F1,20 = 0.37, p = 0.55, ηp
2 = 0.018; ATFA: F1,14 =  0.15, p = 0.70, ηp

2 = 0.011; SPL: 

F1,20 = 0.055, p = 0.82, ηp
2 = 0.0027; V1: F1,20 = 0.60, p = 0.45, ηp

2 = 0.029) or significant 

interaction between congruency and alignment (OFA: F1,20 = 1.40, p = 0.25, ηp
2 = 0.065; FFA: 

F1,20 = 0.012, p = 0.91, ηp
2 = 6.0 x 10-4; ATFA: F1,14 = 0.60, p = 0.45, ηp

2 = 0.04; SPL: F1,20 = 0.30, 

p = 0.59, ηp
2 = 0.015; V1: F1,20 = 0.25, p = 0.62, ηp

2 = 0.012). We performed a whole-brain 

analysis to investigate if any regions outside of our ROIs would show an interaction between 

congruency and alignment for the top-different conditions. We did not identify any regions 

in this analysis.  
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Figure 8. Neural responses to the top-different conditions of the composite task in object- and 

scene-responsive ROIs. (A) shows neural responses as a function of alignment and congruency. (B) 

shows the interaction effect between alignment and congruency. Error bars indicate ±1 SEM.  
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Figure 9. Neural responses to the top-different conditions of the composite task in face-responsive, 

perceptual-grouping related and early visual ROIs. (A) shows neural responses as a function of 

alignment and congruency. (B) shows the interaction effect between alignment and congruency. 

Error bars indicate ±1 SEM. 
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6.4. Discussion 

 In this study, we investigated the neural correlates of holistic processing of non-

expertise line pattern objects. Despite our behavioural results showing strong evidence of 

holistic processing of the line pattern objects, we were unable to identify any regions 

showing significant neural responses related to this holistic processing. Furthermore, as 

previous studies investigating holistic processing of faces using a similar experimental design  

found neural responses related to holistic processing in several brain regions (Schiltz et al., 

2010; our own work in Chapter 5), we hypothesize this null result could be due to 

differences between the neural processes involved in holistic processing of line pattern 

objects and faces. Such differences could involve a weaker neural signal that we could not 

detect using our experimental fMRI design or involvement of other brain regions outside of 

the areas we localised in this study.   

 Recent behavioural studies have also suggested that different mechanisms may 

underlie holistic processing of faces and line pattern objects. One study tested if there is 

interference between the processing of faces and line patterns when they are processed 

concurrently in an paradigm interleaving faces and line patterns (Curby, Huang, & Moerel, 

2019). Using this design, the authors found no evidence of interference, suggesting that 

different mechanisms underlie holistic processing of faces and line patterns. However, 

another study that investigated holistic processing of overlaid faces and line pattern objects 

did find interference between the two stimuli, suggesting there may be similar mechanisms 

involved in processing the two types of stimuli at a perceptual level (Curby & Moerel, 2019). 

The authors concluded from these two studies that early, perceptual mechanisms relating 

to holistic processing may overlap between faces and line patterns, whereas aspects of 

holistic processing related to experience may be specific to faces and objects of expertise. 

This conclusion is further supported by differences in the effect of inversion between faces 

and line pattern objects. Holistic processing is strongly reduced by inversion for faces and 

expertise objects (Gauthier & Tarr, 1997; Tanaka & Farah, 1993; Young et al., 1987), 

whereas inversion does not affect the Gestalt connections of the line pattern objects. In 

Chapter 5, we found that the differences in neural activation between aligned and 

misaligned faces in the LOC and FFA mirror previous findings of neural response differences 
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between upright and inverted faces in these regions (Aguirre, Singh, & DʼEsposito, 1999; 

Epstein, Higgins, Parker, Aguirre, & Cooperman, 2006; Grotheer & Kovacs, 2014; Haxby et 

al., 1999; Yovel & Kanwisher, 2005). In this study, we found no differences between neural 

responses to aligned and misaligned line patterns in these regions, suggesting the neural 

alignment differences in LOC and FFA may be related to expertise.  

 We were unable to identify any regions showing significant neural responses related 

to holistic processing of the line pattern objects in this study. Therefore, we cannot 

conclude whether regions outside of those we localized might be involved, or perhaps if the 

neural responses were present in the regions we localized but too weak to be detected with 

our experimental fMRI paradigm. We identified a non-significant trend for higher responses 

to aligned as compared to misaligned line pattern objects in the SPL, suggesting there could 

be involvement of parietal cortex in holistic processing of the line patterns. A larger sample 

size, or different localization method might be able to uncover an effect in the SPL. It is 

possible that other brain regions that we did not localize might be involved in holistic 

processing of the line patterns. For example, studies investigating neural responses to global 

Gestalt have found responses in several regions of parietal and parietal-occipital cortex, in 

particular at the location of the temporo-parietal junction (Huberle & Karnath, 2012; 

Rennig, Bilalić, Huberle, Karnath, & Himmelbach, 2013; Rennig, Himmelbach, Huberle, & 

Karnath, 2015; Seymour, Karnath, & Himmelbach, 2008). Furthermore damage to these 

regions has been associated with simultanagnosia, a disorder affecting the perception of 

global Gestalt (da Silva, Millington, Bridge, James-Galton, & Plant, 2017). Thus it is possible 

that further work, localizing more regions associated with Gestalt perception might uncover 

the neural correlates of holistic processing of line pattern objects. Furthermore, future work 

could include a larger sample size, and use a block design to increase signal to noise ratio 

(Soares et al., 2016).  

To conclude, in this study we show that despite a strong behavioural holistic 

processing effect for non-expertise line pattern objects, we were unable to identify any 

brain regions showing neural activity consistent with this behavioural effect. Thus, it is 

possible that the brain regions involved in holistic processing of non-expertise objects are 

different to those involved in holistic processing of faces, consistent with recent behavioural 

findings. Future work investigating holistic processing of non-expertise objects may be able 
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to uncover the neural correlates by localizing more regions, using larger sample sizes or 

using block-design fMRI paradigms.  
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