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Zusammenfassung in deutscher
Sprache

Die vorliegende Arbeit befasst sich mit der globalen Linearisierung dynamischer
Systeme mittels Koopmanismus, welcher in der Monographie Operator Theoretic
Aspects of Ergodic Theory von T. Eisner, B. Farkas, M. Haase und R. Nagel
[EFHN15] systematisch verfolgt wird.

Für topologische dynamische Systeme (K; (ϕt)t∈R) hat sich folgender Ansatz be-
währt. Dem kompakten Raum K wird der Banachraum C(K) der stetigen, kom-
plexwertigen Funktionen auf K zugeordnet. Dieser Raum ist sowohl eine kom-
mutative C∗-Algebra mit Einselement als auch ein AM-Banachverband mit Ord-
nungseinheit. Der stetige Fluss (ϕt)t∈R auf K induziert eine C0-Gruppe linearer
Operatoren (Tϕ(t))t∈R auf C(K) mittels

Tϕ(t) f := f ◦ ϕ−t für alle f ∈ C(K), t ∈ R.

Diese sogenannten Koopmanoperatoren sind sowohl Verbands- als auch Algebra-
homomorphismen und der Generator der Gruppe ist eineDerivation auf C(K). Mit
Hilfe dieser Eigenschaften lässt sich eine solcheKoopmangruppe charakterisieren.
Die reiche Struktur derKoopmangruppe ermöglicht es nun, wichtigeEigenschaften
dynamischer Systeme mittels Verbands-, Algebra- und Halbgruppentheorie zu un-
tersuchen. Entscheidend hierbei ist, dass alle wesentlichen Eigenschaften des
dynamischen Systems ihre genaue Entsprechung im Koopmansystem haben.

Die zentrale Frage, mit der sich diese Arbeit auseinandersetzt, ist, welche Li-
nearisierung sinnvoll ist, falls ein dynamisches System mit zusätzlicher Struktur
betrachtet wird. Ein besonders eindrückliches Beispiel ist hierbei ein glattes
dynamisches System (M; (ϕt)t∈R), d.h. ein glatter Fluss auf einer kompakten Rie-
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mannschen Mannigfaltigkeit ohne Rand. Die geometrische Struktur eines solchen
Systems spiegelt sich nicht in der Koopmangruppe auf dem Raum stetiger Funk-
tionen wider. Deshalb ist es hier nötig und auch sinnvoll, das Tangentialbündel
T M der Mannigfaltigkeit und die Familie der Differentiale (dϕt)t∈R des Flusses
miteinzubeziehen. Eine globale Linearisierung wird erzielt, indem der Raum
Γ(M,T M) der stetigen Schnitte des Tangentialbündels mit nachfolgender Dynamik
betrachtet wird. Die sogenannten Pushforwardoperatoren, definiert durch

Tdϕ(t)s := dϕt ◦ s ◦ ϕ−t für alle s ∈ Γ(M,T M), t ∈ R,

bilden eine stark stetige Einparametergruppe (Tdϕ(t))t∈R linearer Operatoren auf
dem C(M)-Banachmodul Γ(M,T M), die Pushforwardgruppe genannt. Dieses
Beispiel wird im Folgenden in einen wesentlich allgemeineren Rahmen gefasst.

Die Arbeit ist in zwei Teile gegliedert. Teil I, welcher aus zwei Kapiteln besteht,
befasst sich mit der abstrakten Charakterisierung dynamischer Banachmoduln und
entspricht im Wesentlichen dem gemeinsam mit Henrik Kreidler verfassten Ar-
tikel [KS20], welcher bei Mathematische Zeitschrift veröffentlicht wurde. Eine
vorläufige Version des Artikels findet sich auch in [Kre19]. Im ersten Kapitel
werden dynamische Banachbündel, für welche die oben erwähnten Differentiale
(dϕt)t∈R auf T M ein Beispiel bilden, in einer sehr allgemeinen Situation definiert.
Hierbei wird zwischen dynamischen Banachbündeln über topologischen dynamis-
chen Systemen und solchen übermessbaren dynamischen Systemen unterschieden.
Überdieswerdenweitere typischeBeispiele untersucht. Kapitel 2 bildet dieGrund-
lage für alle weiteren Resultate der Arbeit. Hier werden dynamische Banachmod-
uln als das operatorentheoretische Pendant zu den Objekten des ersten Kapitels
definiert. Theorem 2.22 und Theorem 2.45 liefern eine Darstellung dynamischer
Banachmoduln als gewichtete Koopmandarstellungen auf entsprechenden Schnitt-
räumen.

Teil II widmet sich einem wichtigen Spezialfall: stetigen Flüssen (ϕt)t∈R auf
kompakten Räumen K und stark stetige Einparameterhalbgruppen (T (t))t>0 auf
Banachräumen Γ(K, E) stetiger Schnitte in Banachbündel E . Die Kapitel 3 bis 5
basieren auf der Zusammenarbeit mit Henrik Kreidler. Kapitel 6 baut auf gemein-
samer Arbeit mit Nikolai Edeko und Henrik Kreidler auf. Im dritten Kapitel
werden die Darstellungsresultate des zweiten Kapitels um Charakterisierungen
gewichteter Koopmanhalbgruppen mittels ihrer Generatoren und ihrer Resolven-
ten ergänzt, siehe Theorem 3.8 und Theorem 3.12. Kapitel 4 untersucht spektrale
Eigenschaften gewichteter Koopmanhalbgruppen auf Γ(K, E) und ihrer Genera-
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toren und stellt einen Bezug zum Spektrum von Koopmangruppen auf C(K) und
deren Generatoren her. Unter gewissen Voraussetzungen an den zugrundeliegen-
den Fluss und das Banachbündel gilt der Spektrale Abbildungssatz für gewichtete
Koopmanhalbgruppen, siehe Theorem 4.13. Die Resultate aus Kapitel 4 finden
ihre Anwendung im darauffolgenden Kapitel. Dort wird das asymptotische Ver-
halten gewichteter Koopmanhalbgruppen untersucht. Als besonders wichtige
Eigenschaft wird exponentielle Dichotomie von Flüssen auf Banachbündeln un-
tersucht und mittels spektraler Eigenschaften der zugehörigen gewichteten Koop-
manhalbgruppe charakterisiert, siehe Theorem 5.8 and Corollary 5.9. Dies führt
auch zu einem Resultat über das sogenannte Sacker-Sell-Spektrum, siehe Corol-
lary 5.11. Im letzten Kapitel schließlich wird das eingangs erwähnte Beispiel glat-
ter dynamischer Systeme (M; (ϕt)t∈R) eingehend untersucht. Der Generator einer
gewichteten Koopmangruppe auf dem Raum stetiger Schnitte des Tangentialbün-
dels T M der Mannigfaltigkeit M ist die additive Störung der Lie-Ableitung durch
einen beschränkten Multiplikationsoperator, siehe Theorem 6.7 und Remark 6.9.
Dadurch lassen sich qualitative Eigenschaften einer beliebigen gewichteten Koop-
mangruppe auf Γ(M,T M) auf die oben definierte Pushforwardgruppe (Tdϕ(t))t∈R
zurückführen, siehe Corollary 6.12, Corollary 6.13 und Corollary 6.14. Zuletzt
wird das qualitative Verhalten glatter Flüsse auf Mannigfaltigkeiten – wie bei-
spielsweise Hyperbolizität – mit Hilfe der Pushforwardgruppe untersucht, siehe
Proposition 6.20 und Proposition 6.21.
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Introduction

It is an old idea, going back to J. von Neumann and B. O. Koopman,1 to assign
to nonlinear dynamics on a (topological or measurable) state space corresponding
linear operators on an observable space, i.e., a vector space of scalar-valued
functions on the state space. This idea lead to the proof of the fundamental mean
and pointwise ergodic theorems by J. von Neumann and G. D. Birkhoff,2 around
1930 and is, now called Koopmanism, the leitmotif for much current research and
important results. A systematic treatment of this operator theoretic approach to
dynamical systems can be found in the monograph Operator Theoretic Aspects of
Ergodic Theory by T. Eisner, B. Farkas, M. Haase, and R. Nagel [EFHN15].

We briefly sketch one of the standard mathematical situations for Koopmanism.
Take a topological dynamical system (K; (ϕt)t∈R),3 i.e., a compact state spaceK and
a continuous flow (ϕt)t∈R on K , frequently originating from a differential equation.
To the compact space K corresponds the Banach space C(K) of all complex-valued
continuous functions on K which even is a commutative unital C∗-algebra and an
AM-Banach lattice with order unit. The flow (ϕt)t∈R then induces a C0-group,
called Koopman group, of linear operators (Tϕ(t))t∈R on C(K) given by

Tϕ(t) f := f ◦ ϕ−t for all f ∈ C(K), t ∈ R.

All these operators are lattice and algebra homomorphisms and the generator of the
group is a derivation on the algebra C(K). These qualities are even characteristic
for Koopman groups, see Theorem 3.1. Moreover, one can recover all information
about the topological dynamical system by investigating the associated Koopman

1cf. [vNe32b] and [Koo31]
2cf. [vNe32a] and [Bir31]
3For the theory of topological dynamical systems we refer to, e.g., [Ell69], [Bro79], [Aus88],

[dVr93], [HoKr18], and [Tao09].
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group and vice versa.4 The theory of Koopman groups has been already developed
systematically in [Nag86], Part B-II, and then extended by many recent results,
see, e.g., [EK20], [Küs20], [Ede20], [Kre19], and [Küh19].

However, inmany situations the dynamical systemhas, in addition to its topological
properties, further structure which is not reflected by the corresponding Koopman
group. In this case, it is not sufficient or adequate to consider observables whose
values at a given state are (complex) numbers. Still, we aim for a C0-semigroup on
a Banach space as a global linearization in order to make tools of linear functional
analysis applicable for the investigation of the dynamical system. The following
simple but typical example illustrates this situation and indicates which kind of
observable space might be suitable.

Consider a smooth dynamical system (M; (ϕt)t∈R),5 i.e., a compact Riemannian
manifold M without boundary and a smooth flow (ϕt)t∈R on M .6 This flow
induces a Koopman group (Tϕ(t))t∈R on the Banach space C(M), which does
not reflect much of the geometric structure of M . To overcome this deficit,
we consider the tangent bundle T M of the manifold and the differential dϕt of
each ϕt . At each point x ∈ M the differential is a bounded linear operator
dϕt(x) ∈ L (Tx M,Tϕt (x)M) which is compatible with the underlying flow via the
chain rule, i.e., dϕt+r(x) = dϕt(ϕr(x))dϕr(x) for all t, r ∈ R. The family of
differentials (dϕt)t∈R is a flow over (ϕt)t∈R on the tangent bundle T M of M . To
obtain a global rather than just a local linearization of (ϕt)t∈R, we pass on to a
group of linear operators on a suitable Banach space still reflecting geometric
information.

To this purpose, take the Banach space Γ(M,T M) of all continuous sections of
T M and define linear operators via

Tdϕ(t)s := dϕt ◦ s ◦ ϕ−t for all s ∈ Γ(M,T M), t ∈ R,

called pushforward of s by ϕt , see [Lee13], p. 183. This yields a strongly continuous
one-parameter group (Tdϕ(t))t∈R of linear operators on the C(M)-Banach module
Γ(M,T M), called pushforward group.

4The category (see [Mac98]) of topological dynamical systems and the category of strongly
continuous group representations as automorphisms of commutative C∗-algebras are equivalent,
see, e.g., Section 1.4 of [Dix77].

5cf. [Sma67], [BP13], [FH19], [Mei07], [Den05], [Ma87], and [Ree80]
6See, e.g., [Lee13], [Lan95], [BP13], [Spi99], and [AMR83] for the theory of differential

geometry.
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The following questions arise:

1. Is the group (Tdϕ(t))t∈R strongly continuous?

2. What is the generator of this group?

3. How can we characterize such groups, their generators, and their resolvents
by algebraic or by order theoretic properties?

4. What do the spectra of these operators look like and how are they related to
the properties of the flow?

5. How can we describe the asymptotic behavior of the group and what are the
conclusions for the behavior of the original dynamical system?

All these questions shall be discussed in this thesis in various contexts and more
general situations.

Starting from a topological dynamical system (K; (ϕt)t∈R) we proceed as follows.
To each point x ∈ K we attach a Banach space Ex obtaining a so-called Banach
bundle E over K . From a Banach bundle we obtain a Banach module over C(K)
as the space of continuous sections Γ(K, E) of the Banach bundle, see [Gie82],
[DG83], [HoKe17], [Cun67], or [AAK92].

On such a Banach bundle, we consider a semiflow (Φt)t>0 over (ϕt)t∈R that is a
family of continuous mappings on E such that each Φt restricted to Ex , x ∈ K ,
is a bounded linear operator Φt(x) := Φt |Ex ∈ L (Ex, Eϕt (x)). Moreover, (Φt)t>0
satisfies for all t, r > 0, x ∈ K the so-called cocycle rule, i.e.,

Φt+r(ϕr(x)) = Φt(ϕr(x))Φr(x). (CR)

This semiflow on E induces a C0-semigroup (TΦ(t))t>0 on the Banach module
Γ(K, E) via

TΦ(t)s := Φt ◦ s ◦ ϕ−t for all s ∈ Γ(K, E), t > 0.

This semigroup is called a weighted Koopman semigroup and will be treated
systematically in the present thesis.

The typical examples of such semigroups on Banach modules are evolution
semigroups corresponding to non-autonomous partial differential equations (see

3



[EN00], Section VI.9) and, as explained above, the pushforward operators acting
on the continuous sections of a tangent bundle of a manifold. In the context of
extensions of topological dynamical systems (see [Ell69], Section 5 or [EK20]) we
obtain a weighted Koopman semigroup that is isomorphic to the Koopman group
corresponding to the extended topological dynamical system, see Example 3.11
(iv).

The thesis is divided into two parts. Part I, which consists of two chapters, covers
a very general case of dynamical systems and semigroup representations, while
Part II is dedicated to the special case of continuous flows on compact spaces and
to one-parameter semigroups.

In Chapter 1, we introduce dynamics on Banach bundles “over” a dynamical
system and proceed as follows. In Section 1.1, we consider topological Banach
bundles E over a locally compact space Ω, see [DG83], Definition 1.1. On such
Banach bundles, we introduce a semiflowΦwhich is compatible with a given flow
ϕ on the underlying space Ω in the sense that the cocycle rule (CR) is satisfied,
see Definition 1.8. Finally, we discuss important examples for such dynamical
Banach bundles (E;Φ), see Example 1.12. Section 1.2 treats the “measurable
case”, that is, semiflows Φ on measurable Banach bundles (see Definition 1.18)
over a measure-preserving dynamical system.7 Again, we end the section with
some interesting examples, see Example 1.19.

Chapter 2 establishes the operator theoretic counterpart of dynamical Banach
bundles—dynamical Banach modules—consisting of a Banach module Γ over a
commutative Banach algebra A and a weighted semigroup representation T on
Γ “over” a group representation T as algebra automorphisms of A, see Defini-
tion 2.12. From the objects presented in the first chapter, we gain such dynamical
Banach modules by turning to a space of sections of E and to a weighted Koopman
representation TΦ, see Proposition 2.14. The main results of this chapter are
representations for such dynamical Banach modules, see Theorem 2.22 and The-
orem 2.45 as weighted Koopman representations on a suitable space of sections.
Analogous to the “non-weighted” Koopmanism, all information about the dynam-
ical Banach bundle correspond to information of the induced weighted Koopman
representation and the other way around.

The presentation of Part I is essentially taken from the article [KS20], published

7cf. [EFHN15] or, e.g., [Gla03]
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inMathematische Zeitschrift. A preliminary version can also be found in [Kre19].

The second part treats strongly continuous one-parameter semigroups of weighted
Koopman operators on the Banach module of continuous sections of a Banach
bundle E over a compact space K , see Definition 3.5. In Chapter 3, we reformulate
the representation theorem of the previous chapter in this setting and add algebraic
and order theoretic characterizations of such weighted Koopman semigroups by
their generators and their resolvents, see Theorem 3.8 and Theorem 3.12.

In the next chapter, we turn to spectral properties ofweightedKoopman semigroups
on Banachmodules of continuous sections. For an aperiodic flow and a continuous
bundle, the spectra of weighted Koopman semigroups and their generators are
directly related to each other by the spectral mapping theorem, see Theorem 4.13.
Afterwards, in Chapter 5, we investigate the asymptotic behavior of weighted
Koopman semigroups and their associated semiflows on Banach bundles. We
apply the results from the previous chapter to give a characterization of exponential
dichotomy and hyperbolicity, see Theorem5.8 andCorollary 5.9, and of the Sacker-
Sell spectrum, see Corollary 5.11.

The last chapter deals with the introductory example of a smooth dynamical system
(M; (ϕt)t∈R). The results from the previous chapters yield additional characteriza-
tions of weighted Koopman groups on spaces of continuous sections of a compact
Riemannian manifold, see Theorem 6.7. In particular, the generator of a weighted
Koopman group on Γ(M,T M) is the additive perturbation of the Lie derivative
by a bounded multiplication operator, see Remark 6.9. Thus, certain properties
of a weighted Koopman group can be reduced to properties of the above intro-
duced pushforward group (Tdϕ(t))t∈R, see Corollary 6.12, Corollary 6.13, and
Corollary 6.14. Finally, the qualitive behavior of smooth flows on mannifolds—
like hyperbolicity—can be investigated by means of the pushforward group, see
Proposition 6.20 and Proposition 6.21.

Chapter 3, 4, and 5 are based on joint work with Henrik Kreidler. Chapter 6 is
based on joint work with Nikolai Edeko and Henrik Kreidler.
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Part I

Representation of semigroups on
Banach modules

7





In this part, we consider so-called Banach bundles over a locally compact or
measure space with their associated Banach modules over a commutative Banach
algebra. In analogy to the Gelfand theorem, see, e.g., Theorem 4.23 of [EFHN15]
or Section 1.4 of [Dix77], we obtain a representation for such Banach modules, see
Proposition 2.26. Again, relevant properties of the Banach bundle translate into
algebraic and lattice-theoretic properties of the associated Banach module. Based
on this result, we will introduce certain dynamics on Banach bundles compatible
with the dynamics on the underlying space as well as dynamical Banach modules.
The main results of Part I are representations of such dynamical Banach modules,
see Theorem 2.22 and Theorem 2.45. First, we recall the basic definitions and
results from the literature, see, e.g., [Gie82], [DG83], [HoKe17], [Cun67], or
[AAK92].

The presentation is essentially taken from the article [KS20], published inMathe-
matische Zeitschrift. A preliminary version can also be found in [Kre19].

In the following all vector spaces are over K ∈ {R,C} and all locally compact
spaces are Hausdorff.
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Chapter 1

Semiflows on Banach bundles

Starting from dynamics ϕ on a locally compact or measure space X , we introduce
appropriate dynamics “over” ϕ, see Definition 1.8 and Definition 1.18, on topolog-
ical or measurable Banach bundles over X , see Definition 1.1 and Definition 1.13.
In the first section we treat the topological case and in the second section we
consider the measurable case.

1.1 Semiflows on topological Banach bundles

In this section, we define dynamics on topological Banach bundles over some fixed
topological dynamical system. We start with the abstract definition of a topological
Banach bundle, see Definition 1.1 of [DG83], see also [HoKe17].

Definition 1.1. Let E be a topological space (total space), Ω a locally compact
space (base space), and pE : E −→ Ω a continuous, open, and surjective mapping
(bundle projection). Then (E,Ω, pE ), denoted by pE : E −→ Ω, is called a
(topological) Banach bundle over Ω if the following properties are satisfied.

(i) For each x ∈ Ω the fiber Ex := p−1
E (x) is a Banach space.
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(ii) The mappings

+ : E ×Ω E −→ E, (u, v) 7→ u + v := u +EpE (v)
v,

· : K × E −→ E, (λ, v) 7→ λ · v := λ ·EpE (v)
v

are continuous where E ×Ω E :=
⋃

x∈Ω Ex × Ex ⊆ E × E is equipped with
the subspace topology.

(iii) The mapping (bundle norm)

‖ · ‖ : E −→ R+, v 7→ ‖v‖EpE (v)

is upper semicontinuous.

(iv) For each x ∈ Ω and each open set W ⊆ E containing the zero 0x ∈ Ex there
exist ε > 0 and an open neighborhood U of x such that

{v ∈ p−1
E (U) | ‖v‖EpE (v)

6 ε} ⊆ W .

If, in addition, the mapping ‖ · ‖ is continuous, then pE : E −→ Ω is called a
continuous Banach bundle. If no confusion arises, we denote a Banach bundle
pE : E −→ Ω by p : E −→ Ω or simply by E .

Remark 1.2. Note that if E is a Banach bundle over a locally compact space Ω,
we obtain a Banach bundle Ẽ over the one-point compactification K := Ω Û∪ {∞}
in a canonical way by taking the space Ẽ := E Û∪ {0}, the canonical mapping
pẼ : Ẽ −→ K , and the topology on Ẽ generated by the topology on E and the sets

U(L, ε) :=
{
v ∈ p−1

Ẽ (Ω \ L)
��� ‖v‖ < ε

}
for compact L ⊆ Ω and ε > 0. In the following we will frequently make use of
this extension.

From Banach bundles we obtain natural vector spaces.

Definition 1.3. A continuous section of a Banach bundle p : E −→ Ω over a
locally compact spaceΩ is a continuousmapping s : Ω −→ E such that p◦s = idΩ.
If for all ε > 0 there exists K ⊆ Ω compact with ‖s(x)‖ 6 ε for all x < K , then
s is called a continuous section vanishing at infinity. The space of all continuous
sections of E is denoted by Γ(Ω, E), while the subspace of all continuous sections
vanishing at infinity is denoted by Γ0(Ω, E).
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Obviously, the space of all continuous sections Γ(Ω, E) endowed with pointwise
addition and pointwise scalar multiplication is a vector space. The subspace
Γ0(K, E) of continuous sections vanishing at infinity equipped with the norm ‖ · ‖
defined by

‖s‖ := sup
x∈Ω
‖s(x)‖, s ∈ Γ0(Ω, E)

is a Banach space. The continuous sections of a Banach bundle determine its
topology. We make this precise by the following lemma.

Lemma 1.4. Let p : E −→ Ω be a Banach bundle over a locally compact space
Ω. For v ∈ E the sets

V(s,U, ε) := {w ∈ p−1(U) | ‖w − s(p(w))‖ < ε},

with s ∈ Γ0(Ω, E) satisfying s(p(v)) = v, U ⊆ Ω an open neighborhood of p(v),
and ε > 0, form a neighborhood base of v in E .

Proof. In the case of a compact base space this follows from Consequences 1.6
(vii) and Theorem 3.2 of [Gie82] – note that by the proof of Proposition 2.2 of
[Gie82] we may confine ourselves to globally defined sections. The general case
can readily be reduced to this by considering Ẽ , cf. Remark 1.2. 2

We now list some important examples of Banach bundles.

Example 1.5. (i) Let Z be any Banach space and Ω a locally compact space.
Then E := Ω × Z is a continuous Banach bundle over Ω, called the trivial
bundle with fiber Z if p : Ω × Z −→ K is the projection onto the first
component and Ω × Z is equipped with the product topology.

(ii) Consider a Riemannian manifold M without boundary. Then the tangent
bundle T M over M equipped with the canonical projection and topology is
a continuous Banach bundle over M , cf. Chapter 3 of [Lee13].

(iii) Let π : L −→ K be a continuous surjection between compact spaces L and
K . For each k ∈ K let Lk := π−1(k) be the associated fiber. We define

E := Û
⋃
k∈K

C(Lk),

p : E −→ K, v ∈ C(Lk) 7→ k
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and endow this with the topology generated by the sets

W(s,U, ε) := {v ∈ p−1(U) | ‖v − s |Lp(v)
‖C(Lp(v)) < ε},

where U ⊆ K is open, s ∈ C(L), and ε > 0. Then E is a Banach bundle over
K and the corresponding space of continuous sections Γ(K, E) is isomorphic
to C(L), see Theorem 4.2 of [Gie82]. Moreover, E is a continuous Banach
bundle if and only if π is open. This construction is used frequently in
topological dynamics, see e.g., page 30 of [Kna67] or Section 5 of [Ell87].
See also [EK20].

We now associate morphisms to these Banach bundles, cf. Section 1 of [DG83].

Definition 1.6. Let Ω be a locally compact space and ϕ : Ω −→ Ω a continuous
mapping. Consider two Banach bundles pE : E −→ Ω and pF : F −→ Ω. A
continuous mapping

Φ : E −→ F

is called (bounded) Banach bundle morphism over ϕ if

(i) pF ◦ Φ = ϕ ◦ pE , i.e., the diagram

E
pE
��

Φ // F
pF
��

Ω
ϕ // Ω

commutes,

(ii) Φ(x) := Φ|Ex ∈ L (Ex, Fϕ(x)) for each x ∈ Ω,

(iii) ‖Φ‖ := supx∈Ω ‖Φ(x)‖L (Ex,Fϕ(x)) < ∞.

Moreover, Φ is isometric if each Φ(x) is an isometry. If ϕ = idΩ, we simply call a
Banach bundle morphism over ϕ a Banach bundle morphism.

Remark 1.7. If Ω = K is compact, then conditions (i) and (ii) of Definition 1.6
already imply (iii), see the proof of Proposition 1.4 of [DG83].

We are interested in dynamical Banach bundles over dynamical systems induced
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by groups. A topological G-dynamical system (Ω; ϕ) is a continuous group action
ϕ : G ×Ω −→ Ω, (g, x) 7→ ϕg(x) = gx

of a locally compact group G on a locally compact space Ω. We call ϕ = (ϕg)g∈G
a (continuous) flow on Ω. For the rest of the section, we fix such a topological G-
dynamical system (Ω; ϕ) and a closed subsemigroup S ⊆ G containing the neutral
element e, i.e., a closed submonoid of G. Important examples of this situation are
G = Z, S = N0 and G = R, S = R+.

Definition 1.8. An S-dynamical Banach bundle over the topologicalG-dynamical
system (Ω; ϕ) is a pair (E;Φ) of a Banach bundle E over Ω and a semigroup
representation1

Φ : S −→ EE, g 7→ Φg,

such that

(i) the mapping
Φg : E −→ E

is a Banach bundle morphism over ϕg for each g ∈ S,

(ii) Φ is jointly continuous, i.e., the mapping
S × E −→ E, (g, v) 7→ Φgv

is continuous,

(iii) Φ is locally bounded, i.e., supg∈K ‖Φg‖ < ∞ for every compact subset
K ⊆ S.

We callΦ = (Φg)g∈S a semiflow over (ϕg)g∈G on E over Ω. If S = G, then we call
Φ = (Φg)g∈G a flow over (ϕg)g∈G on E over Ω.

A morphism from an S-dynamical Banach bundle (E;Φ) over (Ω; ϕ) to an S-
dynamical Banach bundle (F;Ψ) over (Ω; ϕ) is a Banach bundle morphism
Θ : E −→ F such that the diagram

E
Φg

��

Θ // F
Ψg

��
E

Θ
// F

1I.e., Φgh = Φh ◦ Φg for all g, h ∈ S and Φe = IdE for the neutral element e ∈ S. This is also
known as a monoid representation.
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commutes for each g ∈ S.

Remark 1.9. The concept of a dynamical Banach bundle is closely related to the
notion of cocycles and linear skew-product flows, cf. Definition 6.1 of [CL99].
In fact, if (E;Φ) is an S-dynamical Banach bundle over (Ω; ϕ), the operators
Φg(x) := Φg |Ex ∈ L (Ex, Eϕg(x)) for g ∈ S and x ∈ K satisfy the cocycle rule

Φg1g2(x) = Φg1(ϕg2(x)) ◦ Φg2(x)

for all g1, g2 ∈ S and x ∈ Ω.

Remark 1.10. If Ω = K is compact, then—once again—a simple adaptation of
the arguments of the proof of Proposition 1.4 of [DG83] shows that the third
condition in Definition 1.8 is superfluous.

Proposition 1.11. Let Ω = K be compact. Then every semigroup representation
Φ : S −→ EE, g 7→ Φg satisfying conditions (i) and (ii) of Definition 1.8 defines
an S-dynamical Banach bundle over (Ω; ϕ).

Proof. Pick x ∈ L and g ∈ S. Since Φg0x = 0ϕg(x) we find an open neighborhood
U of x, ε > 0, and an open neighborhood V of g such that

Φhu ∈ {w ∈ E | ‖w‖ 6 1}

for every h ∈ V , u ∈ {v ∈ p−1(U) | ‖v‖ 6 ε}. But then ‖Φg |Ey ‖ 6
1
ε for every

g ∈ V and y ∈ U. Compactness yields the claim. 2

Now we consider dynamics on the Banach bundles of Example 1.5.

Example 1.12. (i) Assume that G = R, S = R+, Z is a Banach space, and
E = Ω × Z is the corresponding trivial Banach bundle, cf. Example 1.5 (i).
If {Φt(x) ∈ L (Z) | x ∈ Ω, t > 0} is a strongly continuous exponentially
bounded cocycle in the sense ofDefinition 6.1 of [CL99], then the continuous
linear skew-product flow Φt : Ω × Z −→ Ω × Z given by

Φt(x, v) := (ϕt(x),Φt(x)v)

for x ∈ Ω, v ∈ Z , and t > 0 defines an R+-dynamical Banach bundle (E;Φ)
over (Ω; ϕ). Conversely, each R+-dynamical Banach bundle (E;Φ) defines
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a strongly continuous exponentially bounded cocycle by setting

Φ
t(x)v := pr2(Φt(x, v))

for x ∈ Ω, v ∈ Z , and t > 0, where pr2 : Ω × Z −→ Z is the projection onto
the second component.

In particular, evolution families, see Example 6.5 of [CL99] and Section
IV.9 of [EN00], define R+-dynamical Banach bundles.

(ii) Take G = R, Ω = M a Riemannian manifold without boundary, and
ϕ = (ϕt)t∈R a smooth flow on M , cf. [Lee13], Chapter 9, i.e., (ϕt)t∈R is
a (continuous) flow on M such that the mapping ϕ : R × M −→ M is
smooth, cf. [Lee13], Chapter 3. If the family of differentials (dϕt)t∈R is
locally bounded, then, by the chain rule, (T M; (dϕt)t∈R) is an R-dynamical
Banach bundle over (M; (ϕt)t∈R), cf. [Lee13], Corollary 3.22.

(iii) Assume that Ω = K is compact and π : (L;ψ) −→ (K; ϕ) is an extension
of topological G-dynamical systems, i.e., (L;ψ) and (K; ϕ) are topological
G-dynamical systems and π : L → K a continuous surjection such that the
diagram

L
π
��

ψg // L
π
��

K ϕg
// K

commutes for each g ∈ G. Assume further that E is defined as in Exam-
ple 1.5 (iii). For each g ∈ G consider

Φg : E −→ E, v ∈ C(Lk) 7→ v ◦ ψg−1 ∈ C(Lϕg(k)).

This defines a G-dynamical Banach bundle (E;Φ) over (K; ϕ).

1.2 Semiflows on measurable Banach bundles

In this section, we define Banach bundles over measure spaces as in Section II.4
of [FD88] or Appendix A.3 of [ADR00], see also [Gut93b]. A measure space X is
a triple (ΩX, ΣX, µX) consisting of a set ΩX , a σ-algebra ΣX of subsets of ΩX , and
a positive σ-finite measure µX : ΣX −→ [0,∞]. We also assume that our measure
spaces are complete, i.e., subsets of null sets are measurable.
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Definition 1.13. A (measurable) Banach bundle over a measure space X (base
space) is a triple (E, pE,ME ) where E is a set (total space), pE : E −→ ΩX is
a surjective mapping (bundle projection) such that the fiber Ex := p−1

E (x) is a
Banach space for each x ∈ ΩX , andME is a linear subspace of

SE := {s : ΩX −→ E | pE ◦ s = idΩX }

such that

(i) if f : ΩX −→ K is measurable and s ∈ ME , then f s ∈ ME , where

f s : s −→ E, x 7→ f (x)s(x),

(ii) for each s ∈ ME the mapping

|s | : ΩX −→ R+, x 7→ ‖s(x)‖Ex

is measurable,

(iii) if (sn)n∈N is a sequence in ME converging almost everywhere to s ∈ SE ,
then s ∈ ME .

Elements s ∈ SE are called sections and elements s ∈ ME are called measurable
sections.

The bundle is separable if, in addition,

(iv) there is a sequence (sn)n∈N inME such that lin{sn(x) | n ∈ N} is dense in
Ex for almost every x ∈ ΩX .

If no confusion arises we denote the bundle projection pE simply by p. Further,
we mostly write E for a measurable Banach bundle (E, pE,ME ).

Remark 1.14. Let X be ameasure space and (E, p) a pair of a set E and a surjective
mapping p : E −→ ΩX such that the fiber Ex := p−1(x) is a Banach space for
each x ∈ ΩX . Then by Section II.4.2 of [FD88] every linear subspace ME of
SE satisfying condition (iii) of Definition 1.13 generates a measurable Banach
bundle, i.e., there is a smallest linear subspace M̃E of SE containing ME such
that (E, p, M̃E ) is a measurable Banach bundle. Moreover, M̃E consists precisely
of all almost everywhere limits of sequences in lin{1As | A ∈ ΣX, s ∈ ME }.
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Remark 1.15. In the case of a separable Banach bundle E our vector spaceME
of measurable sections becomes a measurable Banach fibre space in the sense of
[Hey15], Definition VI.1.iii.

We briefly list some examples for measurable Banach bundles and refer to Ap-
pendix A.3 of [ADR00] for additional examples.

Example 1.16. (i) Let X be a measure space and Z a Banach space. Consider
E := ΩX × Z with the projection p onto the first component. The space of
sections SE can be identified with the space of all functions from ΩX to Z .
The set of all strongly measurable functions, see Section 1.3.5 of [HP57],
then defines a subsetME of SE which turns E into a measurable Banach
bundle called the trivial Banach bundle with fiber Z . This coincides with the
measurable Banach bundle generated by the constant sections, see Section
II.5.1 of [FD88].

(ii) Let E be a topological Banach bundle over a locally compact space Ω, µ
be a σ-finite regular Borel measure on Ω, and B(Ω) the Borel σ-algebra
of Ω. Then the space Γ(Ω, E), see Definition 1.3, generates a measurable
Banach bundle Eµ over the completion of the measure space (Ω,B(Ω), µ).
See Section II.15 of [FD88] for a more explicit description of the measurable
sections of a continuous Banach bundle.

Before introducing dynamics on measurable Banach bundles, we first define mor-
phisms of measure spaces. A premorphism ϕ : X −→ Y between measure spaces
X andY is a measurable and measure-preserving mapping ϕ : ΩX −→ ΩY . Setting
ϕ ∼ ψ if ϕ(x) = ψ(x) for almost every x ∈ ΩX defines an equivalence relation on
the set of premorphisms from X to Y . The equivalence classes with respect to this
equivalence relation are the morphisms from X to Y . As usual, given a morphism
we will implicitly choose a representative and denote it by ϕwhen there is no room
for confusion. We define morphisms of measurable Banach bundles in a similar
manner.

Definition 1.17. Let ϕ : X −→ X be a morphism on a measure space X . Consider
Banach bundles (E, pE,ME ) and (F, pF,MF) over X . A premorphism Φ from E
to F over ϕ is a mapping Φ : E −→ F such that
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(i) Φ ◦ME ⊆ MF ◦ ϕ,

(ii) pF ◦ Φ = ϕ ◦ pE almost everywhere,

(iii) Φ|Ex ∈ L (Ex, Fϕ(x)) for almost every x ∈ ΩX ,

(iv) ‖Φ‖ := ess supx∈ΩX
‖Φ|Ex ‖ < ∞.

Again, we want to identify premorphisms which agree up to a null set. Set

Premorϕ(E, F) := {Φ : E −→ F premorphism over ϕ},
Nϕ(E, F) := {Φ ∈ Premorϕ(E, F) | Φ = 0 almost everywhere},

and Morϕ(E, F) := Premorϕ(E, F)/Nϕ(E, F) for measurable Banach bundles E
and F as above.

An equivalence class [Φ] ∈ Morϕ(E, F) is called a morphism of measurable
Banach bundles over ϕ. It is isometric if Φ|Ex is isometric for almost every
x ∈ ΩX . If ϕ = idX , we call a morphism over ϕ simply a morphism of measurable
Banach bundles. As above, wewill implicitly choose representatives ofmorphisms
whenever necessary and denote them with the same symbol.

Now we introduce dynamical measurable Banach bundles. For the rest of this
section let G be a group with neutral element e ∈ G. We call a pair (X; ϕ) a
measure-preserving G-dynamical system if X is a measure space together with a
group homomorphism

ϕ : G −→ Aut(X), g 7→ ϕg,

where Aut(X) is the set of automorphisms of X . We call ϕ = (ϕg)g∈G a flow on X .
For the rest of the section we fix measure-preserving G-dynamical system (X; ϕ)
and a submonoid S ⊆ G, i.e., a subsemigroup containing e ∈ G.

Definition 1.18. An S-dynamical Banach bundle over the measure-preserving G-
dynamical system (X; ϕ) is a pair (E;Φ) of a measurable Banach bundle E over
X and a family Φ = (Φg)g∈S of mappings with Φg : E → E is a morphism over
ϕg for g ∈ S such that

Φg ◦ Φh = Φgh for all g, h ∈ S,
Φe = IdE .
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We callΦ = (Φg)g∈S a semiflow over (ϕg)g∈G on E over X . If S = G, then we call
Φ = (Φg)g∈G a flow over (ϕg)g∈G on E over Ω. If E is separable we call (E;Φ)
separable.

A morphism between measurable Banach bundles (E;Φ) and (F;Ψ) over (X; ϕ)
is a morphism Θ : E −→ F of Banach bundles such that the diagram

E
Φg

��

Θ // F
Ψg

��
E

Θ
// F

commutes for each g ∈ S.

Example 1.19. (i) Let E be the trivial bundlewith fiber Z , see Example 1.16 (i).
Then the S-dynamical Banach bundles correspond to measurable cocycles,
i.e., a mapping

Φ : S × X −→ L (Z), (g, x) 7→ Φg(x)

such that

• Φgh(x) = Φg(ϕh(x))◦Φh(x) for almost every x ∈ X and for all g, h ∈ S,

• Φe(x) = IdZ for almost every x ∈ X ,

• X −→ Z, x 7→ Φg(x)v is strongly measurable for all g ∈ S and v ∈ Z ,

• ess supx∈ΩX
‖Φg(x)‖ < ∞ for every g ∈ S.

(ii) Let (E;Φ) be a topological S-dynamicalBanach bundle over a topologicalG-
dynamical system (Ω; ϕ)withG and S discrete and let µ be aσ-finite regular
Borel measure on Ω. Moreover, let Eµ be the induced measurable Banach
bundle of Example 1.16 (ii). Then (Eµ;Φ) is an S-dynamical measurable
Banach bundle over the measure-preserving G-dynamical system induced
by (Ω; ϕ).
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Chapter 2

Representation of semigroups on
spaces of sections

Our starting point are topological and measure-preserving dynamical systems and
their corresponding Koopman representation, cf. Example 2.13. We show that
any semiflow on a Banach bundle over a dynamical system, cf. Definition 1.8
and Definition 1.18, induces a semigroup representation on a Banach space of
sections, the so-called weighted Koopman representation cf. Example 2.13. This
weighted Koopman representation—playing a central role in the present thesis—
is characterized by additional algebraic and lattice-theoretic properties which we
investigate in the following. For this purpose we recall the concept of Banach
modules, see, e.g., [Gie82], [DG83], [HoKe17], or [Cun67].

Definition 2.1. Let A be a commutative Banach algebra. A Banach space Γ which
is also an A-module is a Banach module over A if the norm is submultiplicative,
i.e., ‖ f s‖ 6 ‖ f ‖‖s‖ for all f ∈ A and s ∈ Γ.

A homomorphism from aBanachmodule Γ over A to a BanachmoduleΛ over A is a
bounded linear operator T ∈ L (Γ,Λ) which is also an A-module homomorphism,
i.e., T( f · s) = f · T s for all f ∈ A, s ∈ Γ. It is isometric if T is an isometry.

In the following we always assume that Banach modules Γ over a commutative
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Banach algebra A are non-degenerate, see [Par08], in the sense that

Γ = lin { f s | f ∈ A, s ∈ Γ}.

Note that if A is a commutative C∗-algebra (if K = C) or its self-adjoint part (if
K = R) and (ei)i∈I is an approximate unit, see Section 1.8 of [Dix77], then this is
the case if and only if limi eis = s for each s ∈ Γ. In particular, if A has a unit,
then the module is unitary.

Here are some Banach modules associated with Banach bundles.

Example 2.2. Let E be a topological Banach bundle over a locally compact space
Ω. Then the space of all continuous sections vanishing at infinity Γ0(Ω, E), see
Definition 1.3, is a Banach module over C0(Ω) if equipped with the operation

C0(Ω) × Γ0(Ω, E) −→ Γ0(Ω, E), ( f , s) 7→ [x 7→ f (x)s(x)]

and the norm ‖ · ‖ defined by ‖s‖ := supx∈Ω ‖s(x)‖ for s ∈ Γ0(Ω, E).

Remark 2.3. Let Ω be a locally compact space and E a Banach bundle over Ω.
If K is the one-point compactification of Ω and Ẽ the extended bundle of E , see
Remark 1.2, then

Γ(K, Ẽ) → Γ0(Ω, E), s 7→ s |Ω

is an isometric isomorphism of Banach spaces. In particular, we can consider
Γ0(Ω, E) as a Banach module over C(K).

Example 2.4. For a measurable Banach bundle E over a measure space X we
define

NE := {s ∈ ME | s = 0 almost everywhere},
Γ

1(X, E) := {s ∈ ME | |s | is integrable} /NE,

Γ
∞(X, E) := {s ∈ ME | |s | is essentially bounded} /NE .

With the natural norms and operations the spaces Γ1(X, E) and Γ∞(X, E) are
Banach modules over L∞(X).

In order to define dynamical Banach modules we introduce first “morphisms over
morphisms”.
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Definition 2.5. Let A be a commutative Banach algebra and T ∈ L (A) an algebra
homomorphism. Moreover, let Γ and Λ be Banach modules over A. Then T ∈
L (Γ,Λ) is a T-homomorphism if

T( f s) = T f · T s for all f ∈ A and s ∈ Γ.

Example 2.6. (i) Let ϕ : Ω −→ Ω be a homeomorphism of a locally compact
space Ω. Then the Koopman operator Tϕ ∈ L (C0(Ω)) defined by

Tϕ f := f ◦ ϕ−1 for f ∈ C0(Ω)

is an algebra automorphism.

A morphismΦ over ϕ between two Banach bundles E and F overΩ induces
a Tϕ-homomorphism TΦ ∈ L (Γ0(Ω, E), Γ0(Ω, F)) by

TΦs := Φ ◦ s ◦ ϕ−1 for s ∈ Γ0(Ω, E),

called the weighted Koopman operator.
(ii) Let ϕ : X −→ X be an automorphism of a measure space X . Then the

Koopman operator Tϕ ∈ L (L∞(X)) defined by

Tϕ f := f ◦ ϕ−1 for f ∈ L∞(X)

is an algebra automorphism.

A morphismΦ over ϕ between two Banach bundles E and F over X induces
a Tϕ-homomorphism TΦ ∈ L (Γ1(X, E), Γ1(X, F)) by

TΦs := Φ ◦ s ◦ ϕ−1 for s ∈ Γ1(X, E),

called the weighted Koopman operator. Similarly, Φ induces an operator
TΦ ∈ L (Γ∞(X, E), Γ∞(X, F)).

Before introducing the concept of dynamical Banach modules we prove a charac-
terization of T-homomorphisms as some sort of “locality preserving operators”.

Definition 2.7. Let A be a commutative Banach algebra and Γ a Banach module
over A. For s ∈ Γ we call the closed ideal

Is := { f ∈ A | f s = 0}

the supporting ideal of s in A.

25



If A = C0(Ω) for some locally compact space Ω, then there is a correspondence
between the concept of supporting ideals and the following notion of support, see
Definition 9.3 of [AAK92].

Definition 2.8. Let Ω be a locally compact space and Γ a Banach module over
C0(Ω). For s ∈ Γ we call

supp(s) := {x ∈ Ω | each f ∈ C0(Ω) with f (x) , 0 satisfies f s , 0} ⊆ Ω

the support of s in Ω.

Lemma 2.9. Let Ω be a locally compact space and Γ a Banach module over
C0(Ω). Then

Is = { f ∈ C0(Ω) | f |supp(s) = 0}

for every s ∈ Γ.

Proof. Let s ∈ Γ. Since Is is a closed ideal in C0(Ω), we find a unique closed
subset M such that f |M = 0 if and only if f ∈ Is. It is clear that supp(s) ⊆ M . On
the other hand, if x ∈ Ω \ supp(s), we find f ∈ C0(Ω) with f (x) , 0 but f s = 0.
Then f |M = 0 which shows x < M . 2

The following is a first characterization of T-homomorphisms extending Theorem
9.5 of [AAK92].

Theorem 2.10. Let ϕ : Ω −→ Ω be a homeomorphism of a locally compact space
Ω and Γ and Λ Banach modules over C0(Ω). For T ∈ L (Γ,Λ) the following
assertions are equivalent.

(a) T is a Tϕ-homomorphism.
(b) TϕIs ⊆ IT s for every s ∈ Γ.
(c) supp(T s) ⊆ ϕ(supp(s)) for each s ∈ Γ.

For the proof we need the following lemma.

Lemma 2.11. Let Ω be a locally compact space and Γ be a Banach module over
C0(Ω) and take K = Ω Û∪ {∞} to be the one-point compactification of Ω. The
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mapping

C(K) × Γ −→ Γ, ( f , s) 7→ ( f − f (∞)1)|Ωs + f (∞)s

turns Γ into a (unitary) Banach module over C(K).

Proof. It is easy to check that the mapping above turns Γ into a unitary module
over C(K). Choose an approximate unit (ei)i∈I for C0(Ω). Now take f ∈ C(K) and
s ∈ Γ and observe that

‖ f s‖ = lim
i
‖( f − f (∞)1)|Ωeis + f (∞)eis‖

= lim
i
‖( f ei)s‖ 6 lim sup

i
‖ei f ‖‖s‖

6 ‖ f ‖‖s‖.

This shows ‖ f s‖ 6 ‖ f ‖‖s‖ and therefore Γ is a Banach module over C(K). 2

Proof (of Theorem 2.10). The equivalence of (b) and (c) is obvious by Tietze’s
theoremwhile the equivalence of (a) and (c) follows fromTheorem 9.5 of [AAK92]
if K = Ω is compact and ϕ = idK 1.

Now take Ω non-compact but still assume ϕ = idΩ. We consider the one-point
compactification K ofΩ and themodule structure of Γ over C(K), see Lemma 2.11.
For s ∈ Γ we denote the support of s with respect to this module structure by
suppK(s). It is easy to see that

supp(s)
K
⊆ suppK(s) ⊆ supp(s) ∪ {∞}.

Let (ei)i∈I be an approximate unit for C0(Ω). Obviously,∞ < suppK(s) if and only
if there is g ∈ C0(Ω) with gs = s. But this is the case if and only if there is i0 ∈ A
with (eig− ei)s = 0, i.e., (eig− ei)|supp(s) = 0 for every i > i0. Therefore, the result
for non-compact Ω can be reduced to the compact case.

Finally let ϕ : Ω −→ Ω be an arbitrary homeomorphism of a locally compact
space Ω. Consider the module ΛTϕ which is the space Λ equipped with the new
operation f ·Tϕ s := Tϕ f · s for f ∈ C0(Ω) and s ∈ Λ. Then T ∈ L (Γ,Λ) is a
Tϕ-homomorphism if and only if T ∈ L (Γ,ΛTϕ ) is a homomorphism of Banach
modules. By the above, this is the case if and only if

{x ∈ Ω | each f ∈ C0(Ω) with f (x) , 0 satisfies Tϕ f · T s , 0} ⊆ supp(s),

1The proof also works in the real case.
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i.e., supp(T s) ⊆ ϕ(supp(s)) for each s ∈ Γ. 2

We now introduce dynamical Banach modules. Fix a pair (A;T ) of a commutative
Banach algebra A and a strongly continuous group representation

T : G −→ L (A), g 7→ Tg

of a locally compact group G as algebra automorphisms of A. Moreover, let S ⊆ G
be a fixed closed submonoid, i.e., a closed subsemigroup containing the neutral
element e ∈ G.

Definition 2.12. An S-dynamical Banach module over (A;T ) is a pair (Γ;T)
consisting of a Banach module Γ over A and a semigroup representation2

T : S −→ L (Γ), g 7→ Tg

such that

(i) T(g) ∈ L (Γ) is a T(g)-homomorphism for each g ∈ S,

(ii) T is strongly continuous, i.e.,

S −→ Γ, g 7→ T (g)s

is continuous for every s ∈ Γ.

We call T = (T (g))g∈S a weighted semigroup representation on Γ over T on A.

A homomorphism from an S-dynamical Banach module (Γ;T) over (A;T ) to an
S-dynamical Banach module (Λ;S) over (A;T ) is a homomorphism V ∈ L (Γ,Λ)
of Banach modules over A such that the diagram

Γ

T(g)
��

V // Λ

S(g)
��

Γ
V
// Λ

commutes for each g ∈ S.

2 I.e., T(gh) = T(g)T (h) for all g, h ∈ S and T(e) = IdΓ for the neutral element e ∈ S.
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Starting with the topological case, we now show that dynamical Banach bundles
induce dynamical Banach modules.

Example 2.13. Consider an S-dynamical Banach bundle (E;Φ) over a topological
G-dynamical system (Ω; ϕ). For each g ∈ G the Koopman operator Tϕ(g) := Tϕg
is an automorphism of C0(Ω), see Example 2.6 (i), and g 7→ Tϕ(g) defines a
representation Tϕ = (Tϕ(g))g∈G of G as operators on C0(Ω), called the Koopman
representation. It is strongly continuous which is probably well-known, but also
a special case of Proposition 2.14 below. By setting TΦ(g) := TΦg for each
g ∈ S, we obtain a Tϕ(g)-homomorphism TΦ(g) ∈ L (Γ0(Ω, E)) for each g ∈ S,
see Example 2.6. We call the semigroup representation TΦ = (TΦ(g))g∈S on the
Banachmodule Γ0(Ω, E) theweighted Koopman representation induced by (E;Φ).

Proposition 2.14. Let (Ω; ϕ) be a topological G-dynamical system, A = C0(Ω)

and T = Tϕ the Koopman representation of (Ω; ϕ).

(i) If (E;Φ) is an S-dynamical Banach bundle over (Ω; ϕ), then the weighted
Koopman representation TΦ defines an S-dynamical Banach module over
(C0(Ω);Tϕ).

(ii) For a morphismΘ : (E;Φ) −→ (F;Ψ) of S-dynamical Banach bundles over
(Ω; ϕ) the operator VΘ ∈ L (Γ0(Ω, E), Γ0(Ω, F)) defined by

VΘs := Θ ◦ s for s ∈ Γ0(Ω, E)

is a homomorphism VΘ ∈ L (Γ0(Ω, E), Γ0(Ω, F)) between the S-dynamical
Banach modules (Γ0(Ω, E);TΦ) and (Γ0(Ω, F);TΨ).

For the proof we need the following lemma.

Lemma 2.15. Consider an S-dynamical Banach bundle (E;Φ) over (Ω; ϕ). Let
K := Ω Û∪ {∞} be the one-point compactification of Ω and Ẽ the extended Banach
bundle of Remark 1.2. Then the following assertions hold.

(i) The extension ϕ̃ of the flow ϕ to K defined by

ϕ̃ : G × K −→ K, (g, x) 7→

{
∞ x = ∞,
ϕg(x) x , ∞,

is continuous.
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(ii) Setting

Φ̃ : S × Ẽ −→ Ẽ, (g, v) 7→

{
0 v ∈ E∞,
Φgv v ∈ E,

defines an S-dynamical Banach bundle (Ẽ; Φ̃) over (K; ϕ̃).

Proof. If g ∈ G and L is a compact subset of Ω, we choose a compact neighbor-
hood V of g and set U := (V−1 · L)c. Then U is cocompact with hy < L for all
h ∈ V and y ∈ U. This shows (i).

Now take ε > 0 and assume that g ∈ S. Since Φ is locally bounded, we find a
δ > 0 with ‖Φh‖ <

1
δ for every h ∈ V ∩ S. For v ∈ E with ‖v‖ < δε, pE (v) ∈ U,

and h ∈ V ∩ S we then have pẼ (Φhv) < L and ‖Φhv‖ < ε, i.e., Φhv ∈ U(L, ε) in
the notation of Remark 1.2. This shows that Φ̃ is jointly continuous. 2

Proof (of Proposition 2.14). We first prove continuity of the weighted Koopman
representation in the case of a compact space Ω = K . Fix s ∈ Γ(K, E) and let
g ∈ S and ε > 0. For x ∈ K the set

V := V(Φg ◦ s ◦ ϕg−1,K, ε) := {v ∈ E | ‖v − Φgs(g−1(p(v)))‖ < ε}

is a neighborhood of Φgs(g−1x). Since the mapping

S × K −→ E, (h, y) 7→ Φhs(y)

is continuous as a composition of the continuous mappings

S × K −→ S × E, (h, y) 7→ (h, s(y)),
S × E −→ E, (h, v) 7→ Φhv,

we find a neighborhood O ⊆ S of g and a neighborhood U ⊆ K of g−1x such that
Φhs(y) ∈ V for every h ∈ O and y ∈ U, i.e.,

‖Φhs(y) − Φgs(g−1hy))‖ < ε.

By compactness of K we thus find a neighborhood W ⊆ S of g with

sup
y∈K
‖Φhs(y) − Φgs(g−1hy))‖ < ε

for all h ∈ W . But then

sup
y∈K
‖Φhs(h−1y) − Φgs(g−1y))‖ = sup

y∈K
‖Φhs(y) − Φgs(g−1hy))‖ < ε
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for each h ∈ W .

The general case of (i) now follows from Lemma 2.15 and Remark 2.3 and part
(ii) is obvious. 2

Example 2.16. Let G carry the discrete topology, (X; ϕ) be a measure-preserving
G-dynamical system, A = L∞(X) andT = Tϕ the inducedKoopman representation
on L∞(X), i.e., Tϕ(g) := Tϕg for every g ∈ G.

Then every S-dynamical Banach bundle (E;Φ) over (X; ϕ) induces a weighted
Koopman representation TΦ on Γ1(X, E) via TΦ(g) := TΦg for g ∈ S which defines
an S-dynamical Banach module over (L∞(X);Tϕ).

Moreover, ifΘ : (E;Φ) −→ (F;Ψ) is a morphism of S-dynamical Banach bundles
over (X; ϕ), then VΘs := Θ ◦ s for s ∈ Γ1(X, E) defines a homomorphism from
(Γ1(X, E);TΦ) to (Γ1(X, F);TΨ).

2.1 AM- and AL-modules

We have seen that topological and measurable Banach bundles induce dynamical
Banach modules and that these assignments are functorial. We now describe the
essential ranges of these functors.

For this we recall a connection between Banach modules and Banach lattices,
observed by Kaijser in Proposition 2.1 of [Kai78] and Abramovich, Arenson, and
Kitover in Lemma 4.6 of [AAK92] in the compact case. We give a new proof for
the locally compact case based on Lemma 1 of [Cun67] and also provide more
details on the lattice structure.

Proposition 2.17. IfΩ is a locally compact space, Γ a Banachmodule overC0(Ω),
and s ∈ Γ, then the submodule Γs := C0(Ω) · s is a Banach lattice with positive
cone C0(Ω)+ · s. Moreover, we obtain the following for f , g ∈ C0(Ω,R) and
h ∈ C0(Ω),

(i) f s 6 gs if and only if f |supp(s) 6 g |supp(s),
(ii) ( f s ∨ gs) = ( f ∨ g)s,

31



(iii) ( f s ∧ gs) = ( f ∧ g)s,
(iv) |hs | = |h|s.

If K = C, then Γs is the complexification of the real Banach lattice C0(Ω,R)s.

Proof. Take f , g ∈ C0(Ω) with |g | 6 | f |. We show that ‖ f s‖ 6 ‖gs‖. Set N :=
g−1({0}) and choose an approximate unit (ei)i∈I for IN := {h ∈ C0(Ω) | h|N = 0}
such that ei has compact support for every i ∈ I. Also define hi ∈ C0(Ω) for i ∈ I
by

hi(x) :=

{
ei(x)

g(x)
f (x), x < N,

0, x ∈ N .

Then |hi(x)| 6 1 for every x ∈ Ω and therefore

‖gs‖ = lim
i
‖eigs‖ = lim

i
‖hi f s‖ 6 lim sup

i
‖hi‖‖ f s‖ 6 ‖ f s‖. (2.1)

We set | f s | := | f |s for f ∈ C0(Ω). By the above we obtain for f , g ∈ C0(Ω)

‖ | f |s − |g |s‖ = ‖| | f | − |g | |s‖ 6 ‖| f − g |s‖ = ‖( f − g)s‖ = ‖ f s − gs‖. (2.2)

This implies that | · | : C0(Ω)s −→ C0(Ω)s has a unique extension to a continuous
map | · | : Γs −→ Γs. The only non-trivial part in showing that this defines a
modulus in the sense of Definition 1.1 of [MW74] is to check that the linear hull of
the image |Γs | = C0(Ω)s is the whole space Γs. However, if r = limn→∞ fns ∈ Γs,
then—using (2.1) and (2.2) as well as the formulas for the positive and negative
parts of functions, see Corollary 1 of Proposition II.1.4 of [Sch74]—it is standard
to check that ((Re fn)+s)n∈N, ((Re fn)−s)n∈N, ((Im fn)+s)n∈N, and ((Im fn)−s)n∈N
are Cauchy sequences and therefore converge in C0(Ω)+s. This implies that r can
be written as a linear combination of elements of C0(Ω)+s. Moreover, this shows
C0(Ω,R)s = C0(Ω)+s − C0(Ω)+s.

By Proposition 1.3 of [MW74], we obtain that C0(Ω)+s is a cone and defines a
partial order on C0(Ω,R)s. Moreover, ‖hs‖ = ‖|hs |‖ for every h ∈ C0(Ω) by (2.1)
and thus ‖r ‖ = ‖|r |‖ for every r ∈ Γs. If r, u ∈ Γs with |r | 6 |u|, we find sequences
( fn)n∈N ∈ C0(Ω) with lim fns = r and (gn)n∈N in C0(Ω)+ with lim gns = |u| − |r |.
But then

‖r ‖ = ‖|r |‖ = lim
n→∞
‖| fn |s‖ 6 lim

n→∞
‖(| fn | + gn)s‖ = ‖|u|‖ = ‖u‖.
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By Corollary 1.4 and Theorem 2.2 of [MW74], Γs is a Banach lattice with positive
cone |Γs | = C0(Ω)s and | · | as its modulus, and, if K = C, that Γs is the com-
plexification of the real Banach lattice C0(Ω,R)s, cf. Section II.11 of [Sch74]. In
particular, (iv) holds and this implies (ii) and (iii) by the usual formulas for vector
lattices, see Corollary 1 of Proposition II.1.4 of [Sch74]. Finally, if f ∈ C0(Ω,R),
then f s > 0 if and only if | f |s = f s, i.e., f − | f | ∈ Is. But by Lemma 2.9 this is
exactly the case when f |supp(s) > 0, showing (i). 2

We use this observation to introduce different types of Banach modules.

2.1.1 AM-modules

Our first type of Banach modules is based on the concept of AM-spaces, see
[Sch74], Section II.7.

Definition 2.18. Let Ω be a locally compact space. A Banach module Γ over
C0(Ω) is an AM-module over C0(Ω) if each submodule Γs = C0(Ω) · s, s ∈ Γ, is
an AM-space.

Remark 2.19. ByProposition 2.17 aBanachmodule overC0(Ω) is anAM-module
over C0(Ω) if and only if

max(‖ f1s‖, ‖ f2s‖) = ‖( f1 ∨ f2)s‖

for all f1, f2 ∈ C0(Ω)+ and s ∈ Γ.

Example 2.20. If E is a topological Banach bundle over a locally compact space
Ω, then Γ0(Ω, E), see Definition 1.3, is an AM-module over C0(Ω).

Remark 2.21. (i) AM-modules are also called locally convex Banach mod-
ules, see Definition 7.10 in [Gie82] or Definition 1.1 of [Par08], see also
[HoKe17]. By Proposition 7.14 of [Gie82] our definition is equivalent in
the unital case, and using an approximate identity, even in the general set-
ting. Our terminology leads to a duality between AM- and AL-modules, see
Proposition 2.33 below.
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(ii) Given a compact space K , each AM-module over C(K) is isometrically
isomorphic to a space of sections Γ(K, E) of some Banach bundle E over
K which is unique up to isometric isomorphy, see Theorems 2.5 and 2.6 of
[DG83]. A similar result holds, and is probably well-known, in the locally
compact case. However, since we did not find a reference for this fact, we
give a proof in Proposition 2.26 below.

We now state and prove our first representation result for dynamical Banach mod-
ules.

Theorem 2.22. Let G be a locally compact group, S ⊆ G be a closed submonoid,
and (Ω; ϕ) a topological G-dynamical system. Then the assignments

(E;Φ) 7→ (Γ0(Ω, E);TΦ)
Θ 7→ VΘ

define an essentially surjective, fully faithful functor from the category of S-
dynamical topological Banach bundles over (Ω; ϕ) to the category of S-dynamical
AM-modules over (C0(Ω);Tϕ).

The proof of Theorem 2.22 starts with the following simple observation.

Lemma 2.23. Let Ω be a locally compact space, ϕ : Ω −→ Ω a homeomorphism,
and pE : E −→ Ω be a Banach bundle over Ω. Then pϕ : Eϕ −→ Ω with Eϕ := E
and pϕ := ϕ−1 ◦ pE is a Banach bundle overΩ which has the following properties.

(i) The identical mapping idE : E −→ Eϕ is a Banach bundle morphism over
ϕ−1.

(ii) If F is a Banach bundle over Ω, then a mapping Φ : F −→ E is a Banach
bundle morphism over ϕ if and only if Φ : F −→ Eϕ is a Banach bundle
morphism over idΩ.

Using these facts, most of the proof of Theorem 2.22 can be reduced to the
non-dynamical case. We first consider single operators.

Lemma 2.24. Let E and F be Banach bundles over a locally compact space Ω.
Moreover, let ϕ : Ω −→ Ω be a homeomorphism and T ∈ L (Γ0(Ω, E), Γ0(Ω, F))
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a Tϕ-module homomorphism. Then there is a unique Banach bundle morphism Φ
over ϕ with T = TΦ. Moreover, ‖Φ‖ = ‖T ‖ and T is an isometry if and only if Φ
is isometric.

Proof. Assume that Ω = K is compact. Consider the bundle Fϕ induced by ϕ,
see Lemma 2.23. The operator V ∈ L (Γ(K, E), Γ(K, Fϕ)) defined by Vs := s ◦ ϕ
is an isometric and surjective Tϕ−1-homorphism. Therefore, the operator VT ∈
L (Γ(K, E), Γ(K, Fϕ)) is a (non-dynamical) homomorphism of Banach modules.
By Theorem 2.6 of [DG83] we thus find a unique bundle morphism Φ : E −→ Fϕ
over idK with

VT s = Φ ◦ s

for each s ∈ Γ(K, E), i.e., Φ : E −→ F is the unique bundle morphism over ϕ with

T s = V−1(Φ ◦ s) = Φ ◦ s ◦ ϕ−1

for every s ∈ Γ(K, E). Moreover, ‖Φ‖ = ‖VT ‖ = ‖T ‖ and Φ is isometric if and
only ifVT is an isometry, i.e., if and only if T is isometric, see Propositions 10.13
and 10.16 of [Gie82].

Now suppose that Ω is non-compact, but locally compact. Let K be the one-point
compactification and ϕ̃ : K −→ K the canonical continuous extension of ϕ. The
canonical mapping

Γ(K, Ẽ) −→ Γ0(Ω, E), s 7→ s |Ω
is an isometric isomorphism of Banach spaces, see Remark 2.3, and therefore T
induces an operator T̃ ∈ L (Γ(K, Ẽ), Γ(K, F̃)). It is easy to check that T̃ is a Tϕ̃-
homomorphism and we can apply the first part to find a unique bundle morphism
Φ̃ : Ẽ −→ Ẽ over ϕ̃ with T(s |Ω) = (Φ̃ ◦ s ◦ ϕ̃−1)|Ω for every s ∈ Γ(K, Ẽ). Since
each Banach bundle morphism of E over ϕ has a unique extension to a Banach
bundle morphism of Ẽ over ϕ̃, see Lemma 2.15, the restriction Φ̃|E is the unique
bundle morphism Φ over ϕ with T s := Φ ◦ s ◦ ϕ−1 for all s ∈ Γ0(Ω, E). The
remaining claims are obvious. 2

Lemma 2.25. Let G be a locally compact group, S ⊆ G be a closed submonoid,
and (Ω; ϕ) a topological G-dynamical system. Moreover, let E be a Banach
bundle over Ω and let T : S −→ L (Γ0(Ω, E)) be a strongly continuous semigroup
representation such that (Γ0(Ω, E);T) is an S-dynamical Banach module over
(C0(Ω);Tϕ). Then there is a unique S-dynamical Banach bundle (E;Φ) over
(Ω; ϕ) such that TΦ = T.
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Proof. We apply Lemma 2.24 to find a unique bundle morphism Φg over ϕg such
that T(g) = TΦg for each g ∈ S. Since T(1) = IdΓ0(Ω,E), we obtain thatΦ(1) = idE .
Moreover, for g1, g2 ∈ S we obtain that Φ̃ := Φg1 ◦Φg2 is a bundle morphism over
ϕg1g2 with

T(g1g2) = T(g1)T (g2) = TΦ(g1)TΦ(g2) = TΦ̃.

By uniqueness of Φg1g2 we therefore obtain

Φg1 ◦ Φg2 = Φ̃ = Φg1g2 .

To conclude the proof we have to show that the mapping

Φ : S −→ EE, g 7→ Φg

is jointly continuous and that Φ is locally bounded. The latter follows since
‖Φ(g)‖ = ‖T (g)‖ for every g ∈ S by Lemma 2.24 and T is locally bounded by
strong continuity and the principle of uniform boundedness.

Now let v ∈ E and g ∈ S. Take s ∈ Γ0(Ω, E) with s(gpE (v)) = Φgv, ε > 0, and an
open neighborhood U of gpE (v). Since Φg is continuous, we find s̃ ∈ Γ0(Ω, E),
δ > 0 and a neighborhood Ṽ of pE (v) such that s̃(pE (v)) = v and

Φg(V(s̃, Ṽ, δ)) ⊆ V(s,U, ε),

see Lemma 1.4. In particular, we obtain g(Ṽ) ⊆ U and ‖Φg s̃(x) − s(gx)‖ < ε for
every x ∈ Ṽ . Since ϕ is continuous, we find a neigborhood V ⊆ Ṽ of pE (v) and a
neighborhood W̃ of g in S such that hy ∈ g(Ṽ) for every y ∈ V and h ∈ W̃ . Finally,
choose a compact neighborhood W ⊆ W̃ of g with

sup
x∈Ω
‖Φh s̃(x) − Φg s̃(g−1hx)‖ = ‖T (h)s̃ − T(g)s̃‖ < ε.

for every h ∈ W . Then M := suph∈W ‖Φh‖ < ∞ and for h ∈ W and u ∈
V(s̃,V, ε

M+1 ), we obtain hpE (u) ∈ U and

‖Φhu − s(hpE (u))‖ 6 ‖Φh‖ · ‖u − s̃(pE (u))‖

+ ‖Φh s̃(pE (u)) − Φg s̃(g−1hpE (u))‖

+ ‖Φg s̃(g−1hpE (u)) − s(hpE (u))‖
< 3ε.

This shows Φhu ∈ V(s,U, 3ε) for each h ∈ W and u ∈ V(s̃,V, ε
M+1 ) and thus Φ is

jointly continuous. 2
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Finally, we look at AM-modules.

Proposition 2.26. Let Ω be a locally compact space and Γ an AM-module over
C0(Ω). Then there is a Banach bundle E overΩ such that Γ0(Ω, E) is isometrically
isomorphic to Γ. Moreover, this bundle is unique up to isometric isomorphy.

Proof. If Ω is compact, the claim holds by Theorem 2.6 of [DG83]. If Ω is
non-compact, we consider Γ as a Banach module over C(K) where K is the one-
point compactification of Ω, see Lemma 2.11. Using a similar argument as in
Lemma 2.11 we see that Γ is then an AM-module over C(K) and we therefore find
a Banach bundle F over K such that Γ(K, F) is isometrically isomorphic to Γ as a
Banach module over C(K). Moreover, by the proof of Theorem 2.6 of [DG83] we
have F∞ � Γ/J∞ with

J∞ = lin{ f s | f ∈ C(K) with f (∞) = 0 and s ∈ Γ}.

Since Γ is non-degenerate, we obtain J∞ = Γ and thus F∞ = {0}. We can therefore
define a Banach bundle E over Ω by setting E := F \ F∞ and pE := pF |E and it
is clear that F = Ẽ . In particular, we obtain an isometric isomorphism of Banach
spaces, see Remark 2.3,

Γ(K, F) −→ Γ0(Ω, E), s 7→ s |Ω

and it is then easy to check that Γ is isometrically isomorphic to Γ0(Ω, E) as
a Banach module over C0(Ω). Uniqueness up to isometric isomorphy follows
directly from Lemma 2.24. 2

Combining Proposition 2.26 with the preceding Lemmas 2.24 and 2.25 leads to
the proof of Theorem 2.22.

Remark 2.27. It is not hard to construct an inverse to the functor of Theorem 2.22.
In fact, if Γ is an AM-module over C0(Ω), then we obtain the fibers Ex of a Banach
bundle E by setting

Jx := lin{ f s | f ∈ C0(Ω) with f (x) = 0 and s ∈ Γ},
Ex := Γ/Jx,

for x ∈ Ω, see Section 2 of [DG83] or Section 7 of [Gie82]. Moreover, if ϕ : Ω −→
Ω is a homeomorphism and T ∈ L (Γ) is a Tϕ-homomorphism, then T Jx ⊆ Jϕ(x)
for every x ∈ Ω and therefore T induces a bounded operator Φx ∈ L (Ex, Eϕ(x)).
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With these constructions one can assign a dynamical Banach bundle to a dynamical
AM-module (Γ;T). We skip the details, cf. Theorem 2.6 of [DG83].

2.1.2 AL-modules

The dual concept of AM-spaces in the theory of Banach lattices are so-called
AL-spaces, see Section II.8 of [Sch74]. Again we make use of this concept to
introduce a certain class of Banach modules.

Definition 2.28. Let Ω be a locally compact space. A Banach module Γ over
C0(Ω) is called an AL-module over C0(Ω) if Γs is an AL-space for each s ∈ Γ.

Remark 2.29. By Proposition 2.17 a Banachmodule over C0(Ω) is an AL-module
over C0(Ω) if and only if

‖ f1s + f2s‖ = ‖ f1s‖ + ‖ f2s‖

for all f1, f2 ∈ C0(Ω)+ and s ∈ Γ.

Note that if X is a measure space, then L∞(X) is isomorphic to C(K) as a Banach
algebra and a Banach lattice for some compact space K . Thus, every Banach
module over L∞(X) can be seen as a Banach module over C(K). In particular, we
may speak of AM- and AL-modules over L∞(X).

Example 2.30. Let E be a measurable Banach bundle over a measure space X .
Then Γ1(X, E), see Example 2.4, is an AL-module over L∞(X).

Remark 2.31. It is tempting to expect that for a measure space X every AL-
module over L∞(X) is already isomorphic to a space Γ1(X, E) for somemeasurable
Banach bundle E over X . However, we will see below that this is not the case, see
Example 2.43.

As in the case of Banach lattices, AM- and AL-modules over C(K) are dual to each
other. To formulate this result we first equip the dual space of a Banach module
with a module structure.
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Definition 2.32. Let K be a compact space and Γ a Banach module over C(K).
Then the dual space Γ′ equipped with the operation ( f · s′)(s) := s′( f · s) for s ∈ Γ,
s′ ∈ Γ′, and f ∈ C(K) is the dual Banach module of Γ over C(K).

It is straightforward to check that the dual Banach module of a Banach module
is in fact a Banach module. We can now make the duality between AM- and
AL-modules precise using the following result due to Cunnigham, see Theorem 5
of [Cun67], though in somewhat different notation.

Proposition 2.33. LetΩ be a locally compact space. For a Banach module Γ over
C0(Ω) the following assertions hold.

(i) Γ is an AM-module if and only if Γ′ is an AL-module.
(ii) Γ is an AL-module if and only if Γ′ is an AM-module.

2.2 Lattice normed modules

2.2.1 U0(Ω)-normed modules

As observed in [Cun67], AM-modules admit an additional lattice theoretic struc-
ture. For a locally compact space Ω, we write

U(Ω) := { f : Ω −→ R | f is upper semicontinuous},
U0(Ω) := { f ∈ U(Ω) | ∀ ε > 0∃K ⊆ Ω compact with | f (x)| 6 ε ∀ x < K},

U0(Ω)+ := { f ∈ U0(Ω) | f > 0},

and introduce the following concept, see Section 6.6 of [HoKe17] for the compact
case.

Definition 2.34. Let Ω be a locally compact space and Γ a Banach module over
C0(Ω). A mapping

| · | : Γ −→ U0(Ω)+

is a U0(Ω)-valued norm if

(i) ‖|s |‖ = ‖s‖,
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(ii) | f s | = | f | · |s |,

(iii) |s1 + s2 | 6 |s1 | + |s2 |,

for all s, s1, s2 ∈ Γ and f ∈ C0(Ω). A Banach module over C0(Ω) together with a
U0(Ω)-valued norm is called a U0(Ω)-normed module.

Example 2.35. Let E be a Banach bundle over a locally compact spaceΩ. Setting
|s |(x) := ‖s(x)‖ for x ∈ Ω and s ∈ Γ0(Ω, E) turns Γ0(Ω, E) into a U0(Ω)-normed
module.

Note that each U0(Ω)-normedmodule is automatically an AM-module over C0(Ω).
The converse also holds and is basically due to Cunningham in the compact case,
see Lemma 3 and Theorem 2 in [Cun67].

Proposition 2.36. LetΩ be a locally compact space. For a Banach module Γ over
C0(Ω) the following are equivalent.

(a) Γ is an AM-module over A.
(b) Γ admits a U0(Ω)-valued norm.

If these assertions hold, then the U0(Ω)-valued norm is unique and given by

|s |(x) = inf{‖ f s‖ | f ∈ C0(Ω)+ with f (x) = 1}

for x ∈ Ω and s ∈ Γ.

Proof. Using Lemma 2.11 and an approximate unit, existence via the desired
formula of the U0(Ω)-valued norm can be reduced to the compact case which is
treated in Lemma 3 and Theorem 2 of [Cun67].

For uniqueness, observe that any U0(Ω)-valued norm | · | : Γ −→ U0(Ω)+ satisfies

|s |(x) 6 inf{‖ f s‖ | f ∈ C0(Ω)+ with f (x) = 1}

for every x ∈ Ω and s ∈ Γ. On the other hand, if x ∈ Ω, s ∈ Γ, and ε > 0, we find
a neighborhood U of x such that |s |(y) 6 |s |(x) + ε for every y ∈ U since |s | is
upper semicontinuous. Thus there is f ∈ C0(Ω)+ with ‖ f ‖ = f (x) = 1 and

‖ f s‖ = sup
y∈Ω

| f s |(y) = sup
y∈Ω

| f (y)| · |s |(y) 6 |s |(x) + ε
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which implies the claim. 2

Remark 2.37. The representing Banach bundles of AM-modules Γ over C0(Ω)

satisfying |s | ∈ C0(Ω) ⊆ U0(Ω) for every s ∈ Γ are precisely the continuous
Banach bundles, see Theorem 15.11 of [Gie82] or pages 47–48 of [DG83] for the
compact case; the locally compact case can easily be reduced to this.

We can now state the main theorem of this subsection which shows that the
algebraic and lattice theoretic structures of U0(Ω)-normed modules are closely
related to each other. Here, we use the notation Tϕ for the map U0(Ω) −→

U0(Ω), f 7→ f ◦ ϕ−1.

Theorem 2.38. Let Ω be a locally compact space, ϕ : Ω −→ Ω a homeomor-
phism, and Γ and Λ U0(Ω)-normed modules. For T ∈ L (Γ,Λ) the following are
equivalent.

(a) T( f s) = Tϕ f · T s for every f ∈ C0(Ω) and s ∈ Γ.
(b) supp(T s) ⊆ ϕ(supp(s)) for every s ∈ Γ.
(c) |T s | 6 ‖T ‖ · Tϕ |s | for every s ∈ Γ.
(d) There is m > 0 such that |T s | 6 m · Tϕ |s | for every s ∈ Γ.

Moreover, if Γ = Γ0(Ω, E) and Λ = Γ0(Ω, F) for Banach bundles E and F over Ω,
then the properties above are also equivalent to the following assertion.

(e) There is a morphism Φ over ϕ with T = TΦ.

If (e) holds, then the morphism Φ in (e) is unique, ‖Φ‖ = ‖T ‖, and Φ is isometric
if and only if T is isometric.

For the proof we need the following lemma connecting the lattice-valued norm
with the concept of support introduced in Definition 2.8.

Lemma 2.39. Let Γ be a U0(Ω)-normed module. Then

supp(s) = supp(|s |) = {x ∈ Ω | |s |(x) , 0}

for each s ∈ Γ.
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Proof. Let x ∈ Ω with |s |(x) , 0 and f ∈ C0(Ω) with f (x) , 0. Then | f s |(x) =
| f |(x)|s |(x) , 0 and therefore ‖ f s‖ , 0.

Conversely, let x ∈ supp(s). Assume there is an open neighborhood U of x such
that |s |(y) = 0 for every y ∈ U. We then find f ∈ C0(Ω) with support in U and
f (x) = 1. But then | f s | = | f | |s | = 0 and therefore f s = 0 which contradicts
x ∈ supp(s). 2

Proof (of Theorem 2.38). The equivalence of (a) and (b) holds by Theorem 2.10.
Now assume that (a) and (b) hold and that there is s ∈ Γ such that |T s | �
‖T ‖ · Tϕ |s |. We then find x ∈ Ω with ‖T ‖ · |s |(x) < |T s |(ϕ(x)). Since |s | is
upper semicontinuous, we find ε > 0 and an open neighborhood V of x such that
‖T ‖ · |s |(z) 6 |T s |(ϕ(x)) − ε for all z ∈ V . Now take a function f ∈ C0(Ω)+ with
support in V such that 0 6 f 6 1 and f (x) = 1. Setting s̃ := f s we obtain

‖T ‖ · ‖ s̃‖ + ε = sup
z∈V
‖T ‖ · f (z) · |s |(z) + ε

6 |T s |(ϕ(x)) = (Tϕ f )(ϕ(x)) · |T s |(ϕ(x)) = |T ( f s)|(ϕ(x))
6 ‖T s̃‖,

which contradicts the definition of ‖T ‖. The implication “(c)⇒ (d)” is obvious
and “(d)⇒ (b)” follows from Lemma 2.39. The rest of the theorem follows from
Lemma 2.24. 2

Remark 2.40. In view of Proposition 2.36 and Theorem 2.38, the assignments of
Theorem 2.22 also define an essentially surjective and fully faithful functor from
the category of dynamical Banach bundles over a topological dynamical system
(Ω; ϕ) to the category having as objects pairs of U0(Ω)-normed modules and
semigroup representations of “dominated operators”, in the sense of Theorem 2.38
(c), and as morphisms operators V ∈ L (Γ,Λ) between U0(Ω)-normed modules
such that there is an m > 0 with |Vs | 6 m · |s | for all s ∈ Γ which are compatible
with the semigroup representations.

2.2.2 L1(X)-normed modules

AL-modules also admit a lattice-valued norm.
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Definition 2.41. Let Ω be a locally compact space and Γ a Banach module over
C0(Ω). A mapping

| · | : Γ −→ C0(Ω)
′
+

is an C0(Ω)
′-valued norm if

(i) ‖|s |‖ = ‖s‖,

(ii) | f s | = | f | · |s |,

(iii) |s1 + s2 | 6 |s1 | + |s2 |,

for all s, s1, s2 ∈ Γ and f ∈ C0(Ω). A Banach module over A together with a
C0(Ω)

′-valued norm is called a C0(Ω)
′-normed module.

Again the main part of the following result is due to Cunningham in the compact
case, see Theorem 4 of [Cun67]. We give a new proof in the general case and also
provide an explicit formula for the lattice-valued norm.

Proposition 2.42. LetΩ be a locally compact space. For a Banach module Γ over
C0(Ω) the following are equivalent.

(a) Γ is an AL-module over C0(Ω).
(b) Γ admits a C0(Ω)

′-valued norm.

If these assertions hold, then the C0(Ω)
′-valued norm is unique and given by

|s |( f ) := ‖ f s‖ for all s ∈ Γ and f ∈ C0(Ω)+.

Proof. It is clear that (b) implies (a) since C0(Ω)
′ is an AL-space, cf. Proposition

9.1 of [Sch74]. If (a) holds, we define |s |( f ) = ‖ f s‖ for all s ∈ Γ and f ∈
C0(Ω)+. For every s ∈ Γ the map |s | : C0(Ω)+ → R>0 is additive and positively
homogeneous and therefore has a unique positive extension |s | ∈ A′ by Lemma
1.3.3 of [MN91], which obviously also holds in the complex case. Now take an
approximate unit (ei)i∈I for C0(Ω). Then

‖s‖ = lim
i
‖eis‖ = lim

i
|s |(ei) = ‖|s |‖.

It is clear that |s1 + s2 | 6 |s1 | + |s2 | for all s1, s2 ∈ Γ. Finally, let f ∈ C0(Ω) and
s ∈ Γ. Then

| f s |(g) = ‖g f s‖ = ‖|g f |s‖ = |s |(| f |g) = (| f | · |s |)(g)
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for every g ∈ C0(Ω)+. This shows | f · s | = | f | · |s |.

To prove uniqueness, let | · | be any C0(Ω)
′-valued norm on Γ and let (ei)i∈I be an

approximate unit for C0(Ω). Then

‖ f s‖ = lim
i
| f s |(ei) = lim

i
|s |( f ei) = |s |( f )

for each s ∈ Γ and f ∈ C0(Ω)+, showing the claim. 2

Given a measure space X , we can consider L∞(X) as a space C(K) for some
compact space K . If Γ is an AL-module over L∞(X), Proposition 2.42 then yields
a lattice-valued norm | · | : Γ −→ L∞(X)′+. On the other hand, if E is a measurable
Banach bundle over X , then the mapping

| · | : Γ1(X, E) −→ L1(X)+, s 7→ ‖s(·)‖

satisfies properties (i) – (iii) of Definition 2.41 and since L1(X) embeds canonically
(as a Banach lattice and as a Banach module over L∞(X)) into L∞(X)′, this already
defines the unique L∞(X)′-valued norm. In particular, an AL-module over L∞(X)
can only be isometrically isomorphic to Γ1(X, E) for some measurable Banach
bundle E over X if the L∞(X)′-valued norm takes values in (the canonical image
of) L1(X). This is not always the case as the following example shows.

Example 2.43. Let X be anymeasure space and consider Γ := L∞(X)′ as a Banach
module over L∞(X). Then Γ is an AL-module over L∞(X) by Proposition 2.33
since L1(X) is an AL-module over L∞(X). The usual modulus | · | : L∞(X)′ →
L∞(X)′ is given by

|s |( f ) = sup{|s(g)| | 0 6 |g | 6 f }

for f ∈ L∞(X)+ and s ∈ L∞(X)′, see Corollary 1 to Proposition II.4.2 of [Sch74].
It is easy to see that

sup{|s(g)| | 0 6 |g | 6 f } = sup{|s(g f )| | 0 6 |g | 6 1} = ‖ f s‖

for f ∈ L∞(X)+ and s ∈ L∞(X)′ and therefore | · | is the unique L∞(X)′-valued
norm. If L1(X) is not finite-dimensional, then L1(X) is not reflexive, see Corollary
2 of Theorem II.9.9 in [Sch74]. By Proposition 8.3 (iii) and (v) of [Sch74] there
are also positive elemnents in L∞(X)′ which are not contained in (the canonical
image of) L1(X), i.e., there is s ∈ Γ with |s | ∈ L∞(X)′ \ L1(X).

44



Definition 2.44. Let X be a measure space. An L∞(X)′-normed module Γ is
called an L1(X)-normed module if |s | ∈ L1(X) for every s ∈ Γ.

We now state and prove our second main result. Here a measure space X is
separable if there is a sequence (An)n∈N of measurable subsets of ΩX such that for
every B ∈ ΣX and every ε > 0 there is an n ∈ N with µX(An∆B) < ε.

Theorem 2.45. Let G be a (discrete) group, S ⊆ G be a submonoid, and (X; ϕ) a
measure preserving G-dynamical system with X separable. Then the assignments

(E;Φ) 7→ (Γ1(X, E);TΦ)
Θ 7→ VΘ

define an essentially surjective, fully faithful functor from the category of S-
dynamical separable measurable Banach bundles over (X; ϕ) to the category
of S-dynamical separable L1(X)-normed modules over (L∞(X);Tϕ).

We start by showing that separable Banach bundles over separable measure spaces
in fact induce separable spaces of sections.

Proposition 2.46. Let E be a separable measurable Banach bundle over a sepa-
rable measure space X . Then Γ1(X, E) is separable.

The proof of the following lemma is based on the proof of Proposition 4.4 of
[FD88], see also Lemma A.3.5 of [ADR00] for a similar result.

Lemma 2.47. Let E be a separable Banach bundle over a measure space X and
(sn)n∈N inME such that lin{sn(x) | n ∈ N} is dense in Ex for almost every x ∈ ΩX .
Then lin{sn | n ∈ N} generates E , i.e., every s ∈ ME is an almost everywhere
limit of a sequence in lin{1Asn | A ∈ ΣX, n ∈ N}.

Proof. By the set {sn | n ∈ N} with its linear hull over Q (if K = R) or Q + iQ
(if K = C), we may assume that {sn(x) | n ∈ N} is dense in Ex for almost every
x ∈ ΩX . Now let s ∈ ME , ε > 0 and set

An := {x ∈ ΩX | ‖s(x) − sn(x)‖ 6 ε} ∈ ΣX
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for every n ∈ N. Then

ΩX \

(⋃
n∈N

An

)
is a nullset. Therefore, ‖s(x) − s̃(x)‖ 6 ε for almost every x ∈ ΩX where

s̃(x) =

{
sn(x) x ∈ An \

⋃n−1
k=1 Ak, n ∈ N,

0 else.

Since s̃ is a measurable section with respect to the Banach bundle generated by
lin{sn | n ∈ N}, see Remark 1.14, this shows the claim. 2

Lemma 2.48. Let E be a separable Banach bundle over a measure space X . Then
there is a sequence (sn)n∈N inME such that

(i) lin{sn(x) | n ∈ N} is dense in Ex for almost every x ∈ ΩX ,
(ii) µX({|sn | , 0}) < ∞ for every n ∈ N,
(iii) |sn | = 1{|sn |,0} almost everywhere for every n ∈ N,

Moreover, for any sequence (sn)n∈N inME with properties (i) and (ii), the set

lin{1Asn | A ∈ ΣX, n ∈ N} ⊆ Γ1(X, E)

is dense in Γ1(X, E).

Proof. Let (sn)n∈N be a sequence inME satisfying (i). Replacing sn by s̃n defined
as

s̃n(x) :=

{
1

‖sn(x)‖
sn(x) sn(x) , 0,

0 sn(x) = 0,

for every n ∈ N we may assume that (i) and (iii) hold. Now pick a sequence
(An)n∈N of measurable subsets of ΩX of finite measure such that

ΩX =
⋃
m∈N

Am.

Then µX({|1Amsn | , 0}) < ∞ for all m, n ∈ N. Replacing (sn)n∈N once again, we
may assume that properties (i) – (iii) are fulfilled.
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Now assume that (sn)n∈N is a sequenceME satisfying (i) and (ii) and let s ∈ ME
with

∫
|s | dµX < ∞. By Lemma 2.47 and Lemma 4.3 of [FD88]we find a sequence

(rn)n∈N in
M := lin{1Asn | A ∈ ΣX, n ∈ N} ⊆ ME

such that limn→∞ rn = s almost everywhere and |rn | 6 |s | almost everywhere for
all n ∈ N. By Lebesgue’s theorem we therefore obtain that the canonical image of
M in Γ1(X, E) is dense in Γ1(X, E). 2

Proof (of Proposition 2.46). Using the separability of X , we pick a sequence
(An)n∈N of measurable subsets of ΩX such that for every B ∈ ΣX and every ε > 0
there is n ∈ N with µX(An∆B) < ε. Moreover, take a sequence (sn)n∈N as in
Lemma 2.48. For each n ∈ N and every A ∈ ΣX we then find an m ∈ N with

‖1Asn − 1Amsn‖ 6 µ(A∆Am) < ε.

This implies that {1Amsn | n,m ∈ N} is total in Γ1(X, E). 2

The following result characterizes weighted Koopman operators induced by mea-
surable dynamical Banach bundles similarly to the topological setting, cf. Theo-
rem 2.38.

Theorem 2.49. Let X be a measure space, ϕ : X −→ X an automorphism, and Γ
and Λ L1(X)-normed modules. For an operator T ∈ L (Γ,Λ) the following are
equivalent.

(a) T( f s) = Tϕ f · T s for all f ∈ L∞(X) and every s ∈ Γ.
(b) |T s | 6 ‖T ‖ · Tϕ |s | for every s ∈ Γ.
(c) There is an m > 0 such that |T s | 6 m · Tϕ |s | for every s ∈ Γ.

Moreover, if Γ = Γ1(X, E) and Λ = Γ1(X, F) for Banach bundles E and F over X
with E separable, then the above are also equivalent to the following assertion.

(d) There is a morphism Φ : E −→ F over ϕ such that T = TΦ.

If (d) holds, then the morphism Φ in (d) is unique,

|Φ| : ΩX −→ [0,∞), x 7→ ‖Φx ‖

defines an element of L∞(X) and
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• sup{|TΦs | | s ∈ Γ∞(X, E) with |s | 6 1} = Tϕ |Φ| ∈ L∞(X),
• ‖Φ‖ = ‖TΦ‖Γ∞(X,E) = ‖TΦ‖Γ1(X,E),

• Φ is an isometry if and only TΦ ∈ L (Γ1(X, E), Γ1(X, F)) is an isometry.

Proof. We write 〈 · , · 〉 for the canonical duality between L1(X) and L∞(X). Now
assume that (a) is valid and take s ∈ Γ. For each f ∈ L∞(X) with f > 0 we obtain

〈|T s |, f 〉 = ‖ fT s‖ = ‖T ((Tϕ−1 f ) · s)‖

6 ‖T ‖ · ‖Tϕ−1 f · s‖ = ‖T ‖ · 〈|s |,Tϕ−1 f 〉 = 〈‖T ‖ · Tϕ |s |, f 〉

since ϕ is measure-preserving. Thus, |T s | 6 ‖T ‖ · Tϕ |s |.

The implication “(b)⇒ (c)” is clear. Now assume that (c) holds. Since X is σ-
finite, we find measurable and pairwise disjoint sets An ∈ ΣX with finite measure
for n ∈ N such that

ΩX =
⋃
n∈N

An.

For fixed n ∈ N consider the submodules
Γn := {s ∈ Γ | 1An |s | = |s | ∈ L∞(X)} ⊆ Γ,
Λn := {s ∈ Λ | 1ϕ(An) |s | = |s | ∈ L∞(X)} ⊆ Λ.

We define ‖s‖∞ := ‖|s |‖L∞(X) for s ∈ Γn and s ∈ Λn, respectively. We show that
this turns Γn and Λn into Banach modules over L∞(X). If (sm)m∈N is a Cauchy
sequence in Γn with respect to the norm ‖ · ‖∞, then it is also a Cauchy sequence
with respect to the norm of Γ. By completeness of Γ there is s ∈ Γ such that
limm→∞ sm = s in Γ. Using that there is a subsequence (smk

)k∈N of (sm)m∈N such
that |smk

− s | → 0 almost everywhere, it follows that s ∈ Γn and limm→∞ sm = s
with respect to ‖ · ‖∞. Thus, Γn—and likewise Λn—is a Banach module over
L∞(X). Moreover, T |Γn ∈ L (Γn,Λn) by (c). Choose a compact space K and
an isomorphism V ∈ L (L∞(X),C(K)) of Banach algebras and lattices. We then
consider Γn andΛn as Banachmodules over C(K) viaV−1 and see that themappings

Γn −→ C(K), s 7→ V |s |,
Λn −→ C(K), s 7→ V |s |

turn Γn and Λn into U(K)-normed modules. Moreover, since every algebra iso-
morphism on C(K) is induced by a homeomorphism on K , we can apply The-
orem 2.38 to the VTϕV−1-homomorphism T |Γn ∈ L (Γn,Λn). This shows that
T( f s) = (Tϕ f ) · T s for all f ∈ L∞(X) and s ∈ Γn.
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Take f ∈ L∞(X) and s ∈ Γ with |s | = 1An |s |. Then s = limm→∞ 1{|s |6m}s in Γ and
therefore

T( f s) = lim
m→∞

T( f 1{|s |6m}s) = lim
m→∞
(Tϕ f ) · T (1{|s |6m}s) = (Tϕ f ) · T s.

Finally, we obtain for arbitrary s ∈ Γ and f ∈ L∞(X)

T ( f s) = lim
N→∞

T

(
f

N∑
n=1

1Ans

)
= lim

N→∞

N∑
n=1
T( f 1Ans)

= lim
N→∞

N∑
n=1

Tϕ f · T1Ans = Tϕ f · T s.

This shows (a).

Now assume that Γ = Γ1(X, E) and Λ = Γ1(X, F) for measurable Banach bundles
E and F over X with E separable. We let Q := Q if K = R and Q := Q + iQ if
K = C. Now take a sequence (sn)n∈N as inME satisfying conidtions (i) – (iii) of
Lemma 2.48 and set

Hx := linQ{sk(x) | k ∈ N}

for every x ∈ ΩX .

Let T be a Tϕ-homomorphism. Choose a representative for ϕ (which we again
denote by ϕ) and a representative rn ∈ MF of T sn ∈ Γ

1(X, F) for each n ∈ N. By
(b) we obtain 






(
N∑

k=1
qkrk

)
(ϕ(x))






 6 ‖T ‖ ·






(

N∑
k=1

qk sk

)
(x)






 (2.3)

for all (q1, ..., qN ) ∈ QN , N ∈ N, and almost every x ∈ ΩX . For almost every
x ∈ ΩX we therefore find a unique Q-linear map Φx : Hx −→ Hϕ(x) such that
Φxsn(x) = (rn)(ϕ(x)) for every n ∈ N. By (2.3) and property (i) of Lemma 2.48
it has a unique extension to a bounded operator Φx ∈ L (Ex, Fx) for almost every
x ∈ ΩX . We set Φx := 0 ∈ L (Ex, Fϕ(x)) for the remaining points x ∈ ΩX and
obtain a mapping

Φ : E −→ F, v 7→ ΦpE (v)v.

SinceΦ◦(1A · sn) = (1ϕ(A) ·rn)◦ϕ almost everywhere for every n ∈ N and every set
A ∈ ΣX , we can apply Lemma 2.47 to see that for each s ∈ ME there is a r ∈ MF
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with Φ ◦ s = r ◦ ϕ almost everywhere. This shows that Φ defines a morphism
of measurable Banach bundles over ϕ and we denote this again by Φ. Moreover,
TΦsn = T sn and, since {1Asn | n ∈ N, A ∈ ΣX } defines a total subset of Γ1(X, E)
by Lemma 2.48, we obtain T = TΦ. Thus (a), (b) and (c) imply (d). The converse
implication is obvious.

Now let Φ : E −→ F be a morphism over ϕ. As usual, we pick a representing
premorphism whenever necessary. Using Lemma 2.48 and standard arguments
we find a sequence (s̃n)n∈N inME such that

• | s̃n | 6 1 almost everywhere for every n ∈ N,

• µX({| s̃n | , 0}) < ∞ for every n ∈ N,

• {s̃n(x) | n ∈ N} is dense in the unit ball BEx of Ex for almost every x ∈ ΩX .

Then
‖Φ|Ex ‖ = sup

n∈N
‖Φ|Ex s̃n(x)‖

for almost every x ∈ ΩX . Thus, ΩX −→ R, x 7→ ‖ΦEx ‖ is measurable and |Φ|
defines an element of L∞(X) of norm ‖Φ‖.

Clearly, |TΦs | 6 Tϕ |Φ| for every s ∈ Γ∞(X, E) with |s | 6 1. On the other hand,

Tϕ |Φ|(x) = ‖Φ|E
ϕ−1(x)
‖ = sup

n∈N
‖Φ|E

ϕ−1(x)
s̃n(ϕ

−1(x))‖ = sup
n∈N
‖(TΦ s̃n)(x)‖

for almost every x ∈ ΩX . This shows

Tϕ |Φ| = sup{|TΦs | | s ∈ Γ∞(X, E) with |s | 6 1}. (2.4)

Moreover,

‖Φ‖ = ess supx∈ΩX
sup
n∈N
‖(TΦ s̃n)(x)‖ = sup

n∈N
ess supx∈ΩX

‖(TΦ s̃n)(x)‖

= sup
n∈N
‖TΦ s̃n‖Γ∞(X,E) 6 ‖TΦ‖Γ∞(X,E),

and ‖TΦ‖Γ∞(X,E) 6 ‖Φ‖ is clear, hence ‖TΦ‖Γ∞(X,E) = ‖Φ‖.

Now pick s ∈ Γ∞(X, E) with |s | 6 1. For every measurable set A ∈ ΣX with finite
measure

1A |TΦs | = |TΦ(T−1
ϕ 1A · s)| 6 ‖TΦ‖Γ1(X,E) · Tϕ |(T

−1
ϕ 1A · s)| 6 ‖TΦ‖Γ1(X,E) · 1A
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by (b). Since X is σ-finite, we obtain ‖Φ‖ 6 ‖TΦ‖Γ1(X,E) by (2.4), and the
inequality ‖TΦ‖Γ1(X,E) 6 ‖Φ‖ is obvious. Therefore,

‖Φ‖ = ‖TΦ‖Γ∞(X,E) = ‖TΦ‖Γ1(X,E)

and, since the difference of premorphisms over ϕ is again a premorphism over ϕ,
this equality also proves the uniqueness of Φ in (d).

If Φ is an isometry, then clearly TΦ ∈ L (Γ1(X, E), Γ1(X, F)) is an isometry.
Assume conversely that TΦ is an isometry. We already know that Φ|Ex is a
contraction for almost every x ∈ ΩX . Assume that there is a set A ∈ ΣX with
positive measure such that Φ|Ex is not an isometry for every x ∈ A. We then find
an n ∈ N and a set B ∈ ΣX with positive measure such that ‖Φ|Ex s̃n(x)‖ < ‖ s̃n(x)‖
for every x ∈ B. This implies

‖TΦ s̃n‖ =

∫
X
‖Φ|Ex s̃n(x)‖ dµX <

∫
X
‖ s̃n(x)‖ dµX = ‖ s̃n‖,

a contradiction. 2

Since we have not employed any continuity assumptions on dynamical measur-
able Banach bundles, we immediately obtain the following consequence of Theo-
rem 2.49.

Corollary 2.50. Let G be a (discrete) group, S ⊆ G be a submonoid, and (X; ϕ) a
measure-preserving G-dynamical system. Moreover let E be a separable Banach
bundle over X and let T : S −→ L (Γ1(X, E)) be a semigroup representation such
that (Γ1(X, E);T) is an S-dynamical Banach module over (L∞(X);Tϕ). Then there
is a unique dynamical Banach bundle (E;Φ) over (X; ϕ) such that TΦ = T.

Finally, we use a result of Gutmann [Gut93b] to represent L1(X)-normed modules.

Proposition 2.51. Let X be a measure space and Γ an L1(X)-normed module.
Then the following assertions hold.

(i) There is a measurable Banach bundle E over X such that Γ1(X, E) is iso-
metrically isomorphic to Γ.
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(ii) If Γ is separable, then there is a separable Banach bundle E over X such
that Γ1(X, E) is isometrically isomorphic to Γ. Moreover, E is unique up to
isometric isomorphy.

Proof. In the real case, 7.1.3 of [Kus00] shows that the space Γ is in particular a
Banach–Kantorovich space over L1(X), see Chapter 2 of [Kus00] for this concept,
and we find a measurable Banach bundle E over X such that Γ is isometrically
isomorphic to Γ1(X, E) as a lattice normed space by Theorem 3.4.8 of [Gut93b]3.
If we start with a complex L1(X)-normed module, the proof of this theorem reveals
that the constructed Banach bundle E is canonically a Banach bundle of complex
Banach spaces and that the isomorphismof Γ and Γ1(X, E) isC-linear, see Theorem
3.3.4 of [Gut93b] and Theorems 2.1.5 and 2.4.2 of [Gut93a]. In any case, we can
apply Theorem 2.49 to see that this isomorphism is an isometric Banach module
isomorphism.

Now assume that Γ and therefore Γ1(X, E) is separable. Let (sn)n∈N be dense in
Γ1(X, E) and choose a representative inME for each sn which we also denote by
sn. We define a newmeasurable Banach bundle by setting Fx := lin{sn(x) | n ∈ N}
for every x ∈ ΩX and

MF := {s ∈ ME | s(x) ∈ Fx for every x ∈ ΩX }.

Then
V : Γ1(X, F) −→ Γ1(X, E), s 7→ s

is an isometric module homomorphism. However, since sn ∈ Γ
1(X, F) for every

n ∈ N, V is in fact an isometric isomorphism. Clearly, F is separable. Uniqueness
up to isometric isomorphy follows immediately from Theorem 2.49. 2

Combining Proposition 2.46, Corollary 2.50, Theorem 2.49, and Proposition 2.51
now readily yields Theorem 2.45.

Remark 2.52. Note that in contrast to the topological setting, the construction of
the representing separable measurable Banach bundle is not canonical and involves
choices.

3Note that the definition of measurable Banach bundles by Gutmann slightly differs from
ours. However, every measurable Banach bundle in the sense of Gutmann canonically defines a
measurable Banach bundle in our sense having the same space Γ1(X, E).
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Part II

One-parameter semigroups of
weighted Koopman operators
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In this part, we investigate an important special case of the objects presented in
Part I: strongly continuous one-parameter semigroups of weighted Koopman oper-
ators on Banach modules of continuous sections, cf. Definition 3.5. We adapt the
results from the previous part and give additional characterizations of weighted
Koopman semigroups, cf. Theorem 3.8 and Theorem 3.12. In Chapter 4 we inves-
tigate the spectrum of weighted Koopman semigroups and of their generators, cf.
Theorem 4.13, which leads to a characterization of hyperbolicity in Chapter 5, cf.
Theorem 5.8. Part II constitutes a mostly self-contained presentation of the topic
and may therefore be read independently of Part I.

Our main references are [EN00] for C0-semigroups, [EFHN15] for Koopman-
ism, and [Gie82], [DG83], [AAK92], and Part I for Banach bundles and Banach
modules.

The results in Chapter 3, 4, and 5 are based on joint work with Henrik Kreidler.
Chapter 6 is based on joint work with Nikolai Edeko and Henrik Kreidler.
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Chapter 3

Weighted Koopman semigroups on
spaces of continuous sections

In Part I we introduced weighted semigroup representations on AM-modules, see
Definition 2.12, and gave several characterizations of such semigroup represen-
tations, cf. Theorem 2.22, Theorem 2.45, and Theorem 2.38. In this chapter,
we turn to the special case of C0-semigroups and include the generator and the
resolvent into the characterization of weighted C0-semigroups, see Theorem 3.8
and Theorem 3.12.

The results in Section 3.3 and 3.4 are joint work with Henrik Kreidler.

3.1 Koopmanism

We start from a compact space K and consider the associated Banach space C(K)
of all scalar-valued continuous functions on K . Pointwise multiplication turns
C(K) into a commutative C∗-algebra with unit.

Conversely, the Gelfand theorem states that for each commutative C∗-algebra A
with unit there exists, up to isomorphy, a unique compact space K such that

A � C(K),
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see, e.g., Theorem 4.23 of [EFHN15] or Section 1.4 of [Dix77].

Furthermore, under the natural pointwise order, C(K) becomes a Banach lattice
and even an AM-space with unit. By Kakutani’s theorem each such space, in
particular, the dual of any AL-space, is isomorphic to some C(K), see Section II.7
and II.9 of [Sch74].

As a consequence of the Gelfand and the Kakutani theorem, all properties of the
topological space K correspond to algebraic and lattice-theoretic properties of
C(K) and vice versa, cf., e.g., [Ede20], Proposition 2.2.

For certain dynamics on K and on C(K) we obtain a similar correspondence. A
topological dynamical system (K; ϕ) is a continuous group action

ϕ : R × K −→ K, (t, x) 7→ ϕt(x) = ϕ(t, x)

of the group R on a compact space K . We call ϕ = (ϕt)t∈R a (continuous) flow on
K . To each topological dynamical system corresponds a C0-group (Tϕ(t))t∈R on
C(K) defined by

Tϕ(t) f = f ◦ ϕ−t for all f ∈ C(K), t ∈ R.

This global linearization (Tϕ(t))t∈R of the flow is called a Koopman group and its
generator is denoted by (δ,D(δ)). This change of perspective enables an elegant
translation of properties of topological dynamics into functional analytic poperties,
see, e.g., [EFHN15], Theorem 16.36. Koopman groups are systematically treated
in, e.g., Part B of [Nag86] or Chapter 16 of [BKR17] and the time discrete case in
Chapter 4 of [EFHN15].

As a basic result we recall that such Koopman groups on C(K) can be characterized
in various ways, cf. Part B-II of [Nag86], Theorem 3.4.

Theorem 3.1. For a C0-group (T(t))t∈R on C(K) with generator (δ,D(δ)) the
following assertions are equivalent.

(i) There is a topological dynamical system (K; (ϕt)t∈R) such that T(t) = Tϕ(t)
for all t ∈ R.

(ii) Each operator T(t) is a ∗-homomorphism with T(t)1 = 1.
(iii) Each operator T(t) is a Markov lattice homomorphism.
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(iv) The generator (δ,D(δ)) is a derivation on C(K), i.e., D(δ) is a subalgebra
of C(K) with 1 ∈ D(δ) such that

δ( f g) = δ f · g + f · δg for all f , g ∈ D(δ).

3.2 Spaces of continuous sections

In the following, we consider Banach bundles E over a compact space K , cf.
Definition 1.1, and Banach modules Γ over the C∗-algebra C(K), cf. Definition 2.1,
as introduced in Part I. In this section, we recall the basic properties of Banach
modules induced by Banach bundles, i.e., spaces Γ(K, E) of continuous sections
of E , see Definition 1.3. Furthermore, we restate a representation theorem from
Part I in the present situation, see Theorem 3.3. For the theory of Banach bundles
and Banach modules we refer to [Gie82], [DG83], [HoKe17], or [Cun67] and Part
I.

Endowing the space of continuous sections Γ(K, E) with the operation

· : C(K) × Γ(K, E) −→ Γ(K, E), ( f , s) 7→ f · s := [x 7→ f (x)s(x)],

the norm ‖ · ‖ defined by

‖s‖ := sup
x∈K
‖s(x)‖, s ∈ Γ(K, E),

and the mapping

| · | : Γ(K, E) −→ U(K)+ := { f : K −→ R | f is upper semicontinuous, f > 0}
s 7→ [x 7→ ‖s(x)‖],

we obtain the following properties.

Proposition 3.2. The space of continuous sections Γ(K, E) is an AM-module,
see Definition 2.18, and a U(K)-normed module over C(K), see Definition 2.34.
Moreover, the following holds.

(i) For each v ∈ E there exists s ∈ Γ(K, E) such that s(p(v)) = v.
(ii) For each v1, v2 ∈ E with v1 , v2 and p(v1) , p(v2) there exists s ∈ Γ(K, E)

such that s(p(v1)) , s(p(v2)).
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(iii) The lattice-valued norm | · | satisfies |s | ∈ C(K) for all s ∈ Γ(K, E) if and
only if E is continuous.

Proof. The structure properties of Γ(K, E) are obvious, cf. Example 2.20 and
Example 2.35 of Part I. Assertion (i) follows by Corollary 2.10 of [Gie82] and
implies (ii). For (iii), see Remark 2.37. 2

In Part I we proved in a more general setting that each AM-module and each
lattice-normed module over C(K) can be represented as a space of continuous
sections, see Proposition 2.26 and Proposition 2.36. We recall this result in this
situation.

Theorem 3.3. For a Banach module Γ over C(K) the following assertions are
equivalent.

(a) Γ is an AM-module over C(K).
(b) Γ is a U(K)-normed module over C(K).
(c) There exists, up to isometric isomorphy, a unique Banach bundle E over K

such that Γ is isometrically isomorphic to Γ(K, E).

If these assertions hold, then the U(K)-valued norm in (b) is unique and given by

|s |(x) = inf{‖ f s‖ | f ∈ C(K)+ with f (x) = 1}

for s ∈ Γ, x ∈ K .

3.3 Algebraic characterization of weighted Koop-
man semigroups

In this section, we show that the dynamics on the “bundle side” corresponds to
the dynamics on the “module side”. On the bundle side we start from a semi-
flow (Φt)t>0 over (ϕt)t∈R on E over K , see Definition 1.8. We then introduce a
corresponding C0-semigroup (TΦ(t))t>0 on the Banach module Γ(K, E) of contin-
uous sections of E over the Koopman group on C(K), see Definition 3.5. The
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main result is an algebraic characterization of this C0-semigroup and an additional
characterization by means of its generator, see Theorem 3.8. Finally, we discuss
typical examples.

We start with the definition of dynamics on the Banach module Γ(K, E) over the
Koopman group (Tϕ(t))t∈R on C(K), cf. Definition 2.12.

Definition 3.4. AC0-semigroup (T (t))>0 on Γ(K, E) is calledweighted semigroup
over (Tϕ(t))t∈R if each operator T(t) is a Tϕ(t)-homomorphism, i.e,

T(t)( f s) = Tϕ(t) f · T (t)s for all s ∈ Γ(K, E), f ∈ C(K), and t > 0.

We now define a C0-semigroup on Γ(K, E) induced by a semiflow over (ϕt)t∈R
on a Banach bundle E over K . To this end, we reformulate Example 2.13 in the
context of C0-semigroups.

Definition 3.5. Let Φ be a Banach bundle morphism over a homeomorphism ϕ
on a Banach bundle E over K . The weighted Koopman operator TΦ on Γ(K, E)
induced by Φ and ϕ is defined by

TΦs := Φ ◦ s ◦ ϕ−1, s ∈ Γ(K, E).

An operator family (TΦ(t))t>0 on Γ(K, E) is called weighted Koopman semigroup
if there is a semiflow (Φt)t>0 over a flow (ϕt)t∈R on E over K such that

TΦ(t)s := Φt ◦ s ◦ ϕ−t, s ∈ Γ(K, E), t > 0.

The following proposition justifies this terminology and states the main properties
of such operator families.

Proposition 3.6. The family (TΦ(t))t>0 of linear operators on Γ(K, E) induced by
a semiflow (Φt)t>0 over (ϕt)t∈R on E over K has the following properties.

(i) (TΦ(t))t>0 is a C0-semigroup on Γ(K, E).
(ii) The operators TΦ(t) are Tϕ(t)-homomorphisms.
(iii) The generator (A,D(A)) of (TΦ(t))t>0 is a δ-derivation on Γ(K, E), i.e.,

D(A) is a D(δ)-submodule of Γ(K, E) and

A( f s) = δ f · s + f · As for all f ∈ D(δ), s ∈ D(A).
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Remark 3.7. Assertion (i) and (ii) of the above proposition are a special case of
Proposition 2.14 and Example 2.6 of Part I. However, we give a direct proof in this
special situation.

Proof. For (i), it suffices to show that

t 7→ TΦ(t)s = Φt ◦ s ◦ ϕ−t

is continuous in 0 for all s ∈ Γ(K, E), see [EN00], Proposition I.5.3. Since the
mappings

R+ × K −→ R+ × K, (t, x) 7→ (t, ϕ−t(x)),
R+ × K −→ R+ × E, (t, x) 7→ (t, s(x)),
R+ × E −→ E, (t, v) 7→ Φtv,

are jointly continuous, their composition

R+ × K −→ E, (t, x) 7→ Φt s(ϕ−t(x)),

is jointly continuous, too. Therefore, and since ‖ · ‖ is upper semicontinuous,

‖Φt ◦ s ◦ ϕ−t − s‖ = sup
x∈K
‖Φt s(ϕ−t(x)) − s(x)‖

tends to zero as t → 0.

For assertion (ii), let f ∈ C(K), s ∈ Γ(K, E). We have

TΦ(t)( f s)(x) = Φt(ϕ−t(x))( f (ϕ−t(x))s(ϕ−t(x))
= f (ϕ−t(x)) · Φt(ϕ−t(x))s(ϕ−t(x))
= (Tϕ(t) f )(x) · (TΦ(t)s)(x)

for all x ∈ K , t > 0.

For (iii), take f ∈ D(δ), s ∈ D(A). Then

TΦ(t)( f s) − f s
t

(ii)
=

Tϕ(t) f − f
t

· TΦ(t)s + f ·
TΦ(t)s − s

t

converges to δ f · s + f · As for t → 0. 2

We recall that a morphism Θ from a semiflow (Φt)t>0 over (ϕt)t∈R on a Banach
bundle E over K to a semiflow (Ψt)t>0 over (ϕt)t∈R on a Banach bundle F over
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K , cf. Definition 1.6, induces a homomorphism VΘ from the weighted Koopman
semigroup (TΦ(t))t>0 on Γ(K, E) to the weighted Koopman semigroup (TΨ(t))t>0
on Γ(K, F), cf. Definition 2.12, via

VΘs := Θ ◦ s for all s ∈ Γ(K, E),

cf. Proposition 2.14.

The “bundle dynamics” and the “module dynamics” correspond to each other.
More precisely, each weighted semigroup over (Tϕ(t))t∈R on Γ(K, E) over C(K)
can be uniquely represented as a weighted Koopman semigroup. We reformulate
Theorem 2.22 for C0-semigroups and give an additional algebraic characterization
via the generator of the semigroup.

Theorem 3.8. For aC0-semigroup (T (t))t>0 on Γ(K, E)with generator (A,D(A))
the following assertions are equivalent.

(a) (T (t))t>0 is a weighted Koopman semigroup on Γ(K, E), i.e., there exists a
unique semiflow (Φt)t>0 over (ϕt)t∈R on E over K such that T(t) = TΦ(t) for
all t > 0.

(b) The operators T(t) are Tϕ(t)-homomorphisms for all t > 0.
(c) The generator (A,D(A)) is a δ-derivation on Γ(K, E), i.e., D(A) is a D(δ)-

submodule of Γ(K, E) and

A( f s) = δ f · s + f · As

for all f ∈ D(δ), s ∈ D(A).

Moreover, if these assertions hold, then the semiflow (Φt)t>0 in (a) is unique,
satisfies ‖TΦ(t)‖ = ‖Φt ‖ for all t > 0, and TΦ(t) is an isometry if and only if Φt is
isometric.

Proof. By Proposition 3.6 (ii) assertion (a) implies (b) and the proof of Proposi-
tion 3.6 (iii) yields the implication “(b)⇒ (c)” .

Assume that (c) holds and take f ∈ D(δ), s ∈ D(A), and t > 0. We define
ξ(r) := T(t − r)(Tϕ(r) f · T (r)s) for r ∈ (0, t). By Lemma B.16 of [EN00] the
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function ξ is differentiable on (0, t) with

ξ′(r) = −T(t − r)A(Tϕ(r) f · T (r)s)
+ T(t − r)(δTϕ(r) f · T (r)s + Tϕ(r) f · AT (r)s)
= 0

for every r ∈ (0, t). Thus, Tϕ(t) fT(t)s = ξ(t) = ξ(0) = T(t)( f s). Since D(δ) is
dense in C(K) and D(A) is dense in Γ(K, E), assertion (b) follows.

For the implication “(b) ⇒ (a)” we refer to Part I, Lemma 2.25. The remaining
assertions of the theorem follow by Lemma 2.24. 2

Remark 3.9. Starting from a weighted semigroup (T (t))t>0 over (Tϕ(t))t∈R on
some AM-module Γ over C(K), see Definition 2.18, we construct the semiflow
(Φt)t>0 over (ϕt)t∈R on some Banach bundle E over K such that

T(t) � TΦ(t) for each t > 0

on Γ � Γ(K, E). Recall that E =
⋃

x∈K Ex with Ex = Γ/Jx and

Jx = lin{ f s | f ∈ C(K) with f (x) = 0 and s ∈ Γ}

as in Remark 2.27 is the, up to isometric isomorphy, unique Banach bundle such
that Γ � Γ(K, E). Then T(t)Jx ⊆ Jϕt (x) for each x ∈ K . For the canonical
quotient map qx : Γ −→ Γ/Jx , each operator T(t) induces a bounded operator
Φt(x) ∈ L (Ex, Eϕt (x)) via

Φt(x)qx(s) := qϕt (x)(T (t)s).

This yields the unique semiflow (Φt)t>0 over (ϕt)t∈R on E overK withT(t) � TΦ(t),
see [DG83], Section 2, [Gie82], Section 7, or Remark 2.27 of Part I.

Remark 3.10. The equivalence “(a) ⇔ (b)” of Theorem 3.8 also holds for a
single operator T ∈ L (Γ(K, E)). Let ϕ : K −→ K be a homeomorphism, then the
following assertions are equivalent.

(a) The operator T is a Tϕ-homomorphism, i.e., T( f s) = Tϕ f · T s for all
f ∈ C(K), s ∈ Γ(K, E).

(b) There is a unique Banach bundle morphism Φ over ϕ, see Definition 1.6,
such that T = TΦ, i.e., T s = Φ ◦ s ◦ ϕ−1 for all s ∈ Γ(K, E),
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cf. Example 2.13 and Lemma 2.24.

Here come four classes of typical examples for the above objects, see also Exam-
ple 1.12.

Example 3.11. (i) We start with the classical case of an invertible, scalar-
valued cocycle (Φt)t∈R over a flow (ϕt)t∈R on a compact space K , i.e., a
family (Φt)t∈R ⊆ C(K) of continuous functions on K such that

Φt+r = (Φt ◦ ϕr) · Φs for all t, r ∈ R,
Φ0(x) = 1 for all x ∈ K

and the mapping
R × K −→ R, (t, x) 7→ Φt(x)

is continuous, see, e.g., [Nag86], Section B.II.3 and the references therein.

Consider the weighted Koopman group (TΦ(t))t∈R on C(K) defined by

TΦ(t) f := Φt · ( f ◦ ϕ−t) for all t ∈ R, f ∈ C(K).

By Proposition 3.8 of Part B.II. of [Nag86] the weighted Koopman group
is a C0-group. It is a group of positive operators if and only if the cocycle
(Φt)t∈R consists of positive functions, see Theorem 3.6 of [AG84] and Part
B.II. of [Nag86], Proposition 3.9.

Such scalar-valued cocycles and the associated weighted Koopman groups
occur in many different situations, cf., for example, disjointness preserving
operators [AH86], Lamperti operators [Are83], orweighted endomorphisms
[Uhl86].

(ii) Consider a topological dynamcial system (K, (ϕt)t∈R), a Banach space Z ,
and the trivial Banach bundle E = K × Z over K , with p the projection
onto the first component. Let (Φt)t>0 be a family of bounded operators
{Φt(x) ∈ L (Z) | x ∈ K, t > 0} such that

(a) the mapping K×R+ −→ Y , (x, t) 7→ Φt(x)v is continuous for all v ∈ Z ,

(b) Φt+r(x) = Φt(ϕr(x))Φr(x) for all t, r > 0 and Φ0(x) = idY for all
x ∈ K .

By the principle of uniform boundedness, (Φt)t>0 is exponentially bounded,
i.e., there exists M > 0 and ω > 0 such that ‖Φt(x)‖ 6 Meωt for all t > 0,
x ∈ K .
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The linear skew-product flow (Φt)t>0 on K × Z associated with (Φt)t∈R,
defined by

R+ × K × Z −→ K × Z, (x, v) 7→ Φt(x, v) := (ϕt(x),Φt(x)v),

is a semiflow over the flow (ϕt)t∈R on K × Z over K , cf. [CL99], Section 6.2.
The family (Φt)t>0 is called cocycle over (ϕt)t∈R. In this situation, there is
a one-to-one correspondence between a cocycle and a linear skew-product
flow.

The cocycle then induces a weighted Koopman semigroup (TΦ(t))t>0 on
Γ(K, E) � C(K, Z)—also called evolution semigroup—via

TΦ(t)s := Φt ◦ s ◦ ϕ−t

for all s ∈ C(K, Z), t > 0, see [CL99], Section 6.2.

As a particular case, we can take K := R Û∪ {∞} and the flow (ϕt)t∈R on K
defined by

ϕt(x) :=
{

x + t, x ∈ R,
∞, x = ∞,

for all t ∈ R. Then, an exponentially bounded evolution family (U(t, r))t>r
on a Banach space Z , see Definition VI.9.1 of [EN00], defines a semiflow
(Φt)t>0 over (ϕt)t∈R on K ×

(
Z Û∪ {0}

)
over K by

Φt(x) :=

{
U(x + t, x), x ∈ R, t > 0,
0, x = ∞, t > 0,

see Remark 1.2 and Lemma 2.15.

The associated evolution semigroup on Γ(K, Z Û∪ {0}) � C0(R, Z) is a
weighted Koopman semigroup, see, e.g., [EN00], Section VI.9, or [Nic97],
Section 1, and Remark 2.3.

For more results on evolution semigroups, their application to non-auto-
nomous abstract Cauchy problems, and further examples we refer to, e.g.,
[Rau94], [BV19], [LS06], or [RRS96].

(iii) Let (ϕt)t∈R be a smooth flow on a compact Riemannian manifold M without
boundary, E = T M the tangent bundle of M , andΦt = dϕt the differential of
ϕt , t ∈ R, see [Lee13], Chapter 3, p. 68. The weighted Koopman operators
Tdϕ(t) on Γ(M,T M) are pushforward operators, see [Lee13], Chapter 8,
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p. 183, for the definition of a pushforward of a vector field. We call the group
(Tdϕ(t))t∈R the pushforward group. In Chapter 6 we investigate pushforward
groups in more detail.

(iv) Finally, we consider a construction from topological dynamics, see, e.g.,
page 30 of [Kna67] or Section 5 of [Ell87] or [EK20]. Let

π : (L; (ψt)t∈R) −→ (K; (ϕt)t∈R)

be an extension of the topological dynamical system (K; (ϕt)t∈R), i.e.,
(L; (ψt)t∈R) is another topological dynamical system and π : L → K a
continuous surjection such that the diagram

L
π
��

ψt // L
π
��

K ϕt
// K

commutes for each t ∈ R. We consider Lx := π−1(x) for each x ∈ K , define

E :=
⋃
x∈K

C(Lx),

p : E −→ K, C(Lx) 3 f 7→ x,

and endow this with the topology generated by the sets

W(s,U, ε) :=
{

f ∈ p−1(U) | ‖ f − s |Lp( f )
‖C(Lp( f )) < ε

}
where U ⊆ K is open, s ∈ C(L), and ε > 0. Then p : E −→ K is a Banach
bundle and the induced Banach module Γ(K, E) is isomorphic to C(L), see
Theorem 4.2 of [Gie82].

For each t ∈ R consider

Φt : E −→ E, C(Lx) 3 f 7→ f ◦ ψ−t ∈ C(Lϕt (x)).

This defines a flow (Φt)t∈R over (ϕt)t∈R. The induced weighted Koopman
group (TΦ(t))t∈R is isomorphic to the Koopman group (Tψ(t))t∈R induced by
the flow (ψt)t∈R on L.
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3.4 Lattice-theoretic characterization of weighted
Koopman semigroups

Inspired by the scalar-valued case, see the paper Resolvent positive operators byW.
Arendt, [Are87], we add order-theoretic characterizations of weighted Koopman
semigroups.

Let (K; (ϕt)t∈R) be a topological dynamical system, (Tϕ(t))t∈R the corresponding
Koopman group on C(K) with generator (δ,D(δ)), and Γ(K, E) the space of con-
tinuous sections of a Banach bundle E over K on which we consider a weighted
Koopman semigroup (TΦ(t))t>0.

We reformulate Theorem 2.38 for aC0-semigroup and give an additional character-
ization via its resolvent analogous to the scalar-valued case, cf. [Are87], Theorem
2.6.

Theorem 3.12. Let (T (t))t>0 be a C0-semigroup on Γ(K, E) with generator
(A,D(A)). If the Banach bundle E over K is continuous, then the following
assertions are equivalent.

(a) (T (t))t>0 is a weighted Koopman semigroup, i.e., there exists a unique
semiflow (Φt)t>0 over (ϕt)t∈R on E over K such that T(t) = TΦ(t) for all
t > 0.

(b) The operators T(t) are Tϕ(t)-homomorphisms for all t > 0.
(c) supp(T (t)s) ⊆ ϕt(supp(s)) for all s ∈ Γ(K, E), t > 0.
(d) |T (t)s | 6 ‖T (t)‖ · Tϕ(t)|s | for all s ∈ Γ(K, E), t > 0.
(e) For each t > 0 there is mt > 0 such that |T (t)s | 6 mt · Tϕ |s | for all

s ∈ Γ(K, E).
(f) There is ω ∈ R and M > 1 such that (ω,∞) ⊆ ρ(A) with

|R(λ,A)ns | 6 M · R(λ − ω, δ)n |s |

for all s ∈ Γ(K, E), λ > ω, and n ∈ N.

Proof. For the first part of the theorem we refer to Theorem 2.38.

It remains to show that for a continuous Banach bundle E over K the assertions
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(a)—(e) are equivalent to (f). For “(d) ⇒ (f)” let M > 1 and ω ∈ R such that
‖T (t)‖ 6 Meωt for all t > 0. By Corollary II.1.11 of [EN00] we obtain

|R(λ,A)ns | 6
1

(n − 1)!

∫ ∞

0
|rn−1e−λrT(r)s | dr

6
1

(n − 1)!

∫ ∞

0
rn−1e−λr ‖T (t)‖Tϕ(r)|s | dr

6
M

(n − 1)!

∫ ∞

0
rn−1e−(λ−ω)rTϕ(r)|s | dr

= M · R(λ − ω, δ)n |s |

for all s ∈ Γ(K, E), t > 0, and n ∈ N.

Conversely, assume that (f) is true. Then, by the Post-Widder inversion formula,
see Part III, Corollary 5.5 of [EN00],

|T (t)s | =
��� lim
n→∞

(n
t

R
(n

t
,A

))n
s
���

6 lim
n→∞

M ·
(n

t
R

(n
t
, δ + ω

))n
|s | = MeωtTϕ(t)|s |

for all t > 0, s ∈ Γ(K, E). 2
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Chapter 4

Spectral theory for weighted
Koopman semigroups

Spectral theory plays a key role for the investigation of the qualitative behavior of
a C0-semigroup on a Banach space. In this chapter, we prove surprising symmetry
properties of the spectrum of weighted Koopman semigroups on Banach modules.
In particular, we obtain a strong spectral mapping theorem (cf. [EN00], Section
IV.3) for such semigroups. We refer to [EN00], Chapter IV, for the spectral theory
for C0-semigroups.

The chapter is organized in the following way. First, we recall results for the
“non-weighted case”, i.e., spectral properties of Koopman groups on scalar-valued
function spaces and spectral properties of their generators, cf. [Sch74], [Der79],
[AG84], [AH86], and [Nag86]. Based on these results we investigate the spectrum
in the “weighted case”, i.e., the spectrum of weighted Koopman semigroups and
their generators. We first consider the time-discrete case and then pass on to the
time-continuous case.

The results in Section 4.2 are joint work with Henrik Kreidler.
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4.1 The non-weighted case

First, we collect properties of the spectrum of a single Koopman operator on the
space of continuous functions C(K) on a compact space K . Then, we consider the
spectrum of a Koopman group and its generator.

4.1.1 Koopman operators

We start from the classical Perron-Frobenius spectral theory for positive operators
as developed in [Sch74] and consider the Koopman operator Tϕ on C(K) induced
by a homeomorphism ϕ on a compact space K . We recall results on the spectrum
of a general Markov lattice homomorphism T on C(K), cf. [Sch74], [AG84], and
[AH86], which we specialize to the Koopman operator Tϕ.

For the spectral radius of a Markov lattice homomorphism T we have r(T) = 1 and
even 1 ∈ σp(T). Hence,

σ(T) ⊆ D := {λ ∈ C | |λ | 6 1}.

The spectrum of T and its point spectrum are cyclic, i.e.,

λ = |λ |γ ∈ σ(T) ⇒ |λ |γk ∈ σ(T), k ∈ Z ,

λ = |λ |γ ∈ σp(T) ⇒ |λ |γk ∈ σp(T), k ∈ Z ,

see Proposition V.4.2 and Theorem V.4.4 of [Sch74]. If T is bijective, then
σ(T) ⊆ T and σ(T) = σap(T).

We specialize these results to the case of a Koopman operator on C(K).

Proposition 4.1. For the Koopman operator Tϕ on C(K) induced by a homeomor-
phism ϕ on K the approximate point spectrum σap(Tϕ) and the point spectrum
σp(Tϕ) are cyclic subsets of T. In other words, they are a union of subgroups of T.
Moreover, σ(Tϕ) = σap(Tϕ).

If Tϕ is topologically ergodic, i.e., fix Tϕ := { f ∈ C(K) | Tϕ f = f } is one-
dimensional, then σp(Tϕ) is even a group, cf. Theorem 4.21 of [EFHN15]. This

72



occurs, e.g., if ϕ is minimal, see [EFHN15], Definition 3.1. See [Küs20] for a
characterization of topological ergodicity.

Using the following “aperiodicity” property of the homeomorphism ϕ on K , we
are able to further describe the spectrum of the Koopman operator Tϕ.

Definition 4.2. We call a point x ∈ K a periodic point of ϕ if there exists n ∈ N
such that ϕn(x) = x. It is called an aperiodic point if ϕn(x) , x for all n ∈ N. We
consider the prime period function ν : K −→ N ∪ {∞} of ϕ defined by

ν(x) :=
{

inf{n ∈ N | ϕn(x) = x}, x periodic,
∞, x aperiodic,

and the set

B(K) := {x ∈ K | ν is bounded in some neighborhood of x}.

The homeomorphism ϕ is called aperiodic if B(K) = ∅. It is called strictly
aperiodic if each x ∈ K is aperiodic. If ν(x) < ∞ for all x ∈ K , then ϕ is called
periodic.

With this property we obtain a more precise description of the spectrum.

Proposition 4.3. For an aperiodic homeomorphism ϕ, we have

σ(Tϕ) = T.

If ϕ is periodic, i.e., ν(x) < ∞ for all x ∈ K , then

σ(Tϕ) =
⋃
x∈K

Γν(x),

where Γn := {z ∈ C | zn = 1} is the group of all n-th roots of unity for n ∈ N.

If ν(x) = n for all x ∈ K and a fixed n ∈ N, then

σ(Tϕ) = Γn.

Proof. The first assertion follows by Lemma 2.6 of [AG84] and by Proposition 4.1.
The second assertion follows by Theorem 2.7 of [AG84] and implies the last
assertion. 2
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4.1.2 Koopman groups

We now collect spectral properties of a Koopman group (Tϕ(t))t∈R on C(K) and its
generator (δ,D(δ)). While the spectrum σ(Tϕ(t)) is described in Proposition 4.1
and Proposition 4.3, the spectrum σ(δ), the approximate point spectrum σap(δ),
and the point spectrum σp(δ) are additive cyclic subsets of C, i.e.,

λ ∈ σ(δ) ⇒ Re λ + ik Im λ ∈ σ(δ), k ∈ Z ,
λ ∈ σap(δ) ⇒ Re λ + ik Im λ ∈ σap(δ), k ∈ Z ,
λ ∈ σp(δ) ⇒ Re λ + ik Im λ ∈ σp(δ), k ∈ Z ,

see Theorem 4.1 of Chapter B.III of [Nag86] or Theorem 3.4 of [Der79]. Since
each Tϕ(t) is bijective, we even have σ(δ) ⊆ iR and σ(δ) = σap(δ).

Proposition 4.4. Let (Tϕ(t))t∈R be a Koopman group on C(K) with generator
(δ,D(δ)). For each t > 0

σ(Tϕ(t)) = σap(Tϕ(t)) ⊆ T

is the union of subgroups of T.

Furthermore,
σ(δ) = σap(δ) ⊆ iR

is the union of additive subgroups of iR.

Proof. The first part follows by Section 3.1.1, the second part follows by Theorem
2.9 of [Der79]. 2

We now define aperiodicity for a flow (ϕt)t∈R on K as in the time-discrete case.

Definition 4.5. We call a point x ∈ K periodic point of a flow (ϕt)t∈R on K if
there exists t > 0 such that ϕt(x) = x. It is called an aperiodic point if ϕt(x) , x
for all t > 0. We consider the prime period function ν : K −→ [0,∞] of (ϕt)t∈R
defined by

ν(x) :=
{

inf{t > 0 | ϕt(x) = x}, x periodic,
∞, x aperiodic,
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and the set

B(K) := {x ∈ K | ν is bounded in some neighborhood of x}.

The flow (ϕt)t∈R is called aperiodic if B(K) = ∅. It is called strictly aperiodic if
each x ∈ K is aperiodic. If ν(x) < ∞ for all x ∈ K , then (ϕt)t∈R is called periodic.

Proposition 4.6. If the flow (ϕt)t∈R is aperiodic, then

σ(Tϕ(t)) = T for all t ∈ R,
σ(δ) = iR.

Proof. See Proposition 4.3 and Theorem 2.12 of [Der79] or Theorem 4.9 of
[Nag86]. 2

Apparently, for a Koopman group associated with an aperiodic flow the spectral
mapping theorem holds, i.e.,

σ(Tϕ(t)) = etσ(δ) for all t ∈ R.

For a periodic flow, at least the following holds.

Proposition 4.7. If 0 < ν(x) < ∞ for all x ∈ K , then the weak spectral mapping
theorem holds, i.e.,

σ(Tϕ(t)) = etσ(δ) for all t ∈ R.

Proof. See Theorem 4.4 of [AG84]. 2

4.2 The weighted case

In this section, we consider the spectrum of a single weighted Koopman operator
on the space of continuous sections Γ(K, E) of a Banach bundle E over K and
then investigate spectral properties of a weighted Koopman semigroup and its
generator.
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4.2.1 Weighted Koopman operators

We consider a Tϕ-homomorphism T on a Banach module Γ(K, E) over C(K), see
Definition 3.4. We show that the spectrum of such an operator has a symmetry
related to the spectrum of Tϕ.

Proposition 4.8. If f ∈ C(K) is an eigenvector of Tϕ with respect to the eigenvalue
λ ∈ C such that | f | is strictly positive, i.e., | f |(x) = | f (x)| > 0 for all x ∈ K , then

λ · σp(T ) ⊆ σp(T ),

λ · σap(T ) ⊆ σap(T ).

In particular, if dim(fix Tϕ) = 1, then

σp(Tϕ) · σp(T ) ⊆ σp(T ),

σp(Tϕ) · σap(T ) ⊆ σap(T ).

Proof. For the first part, take µ ∈ σp(T ) with corresponding eigenvector s ∈
Γ(K, E) and λ ∈ σp(Tϕ) with corresponding eigenvector f ∈ C(K) such that | f | is
strictly positive. Then f · s , 0 and

T( f · s) = Tϕ f · T s = λ f · µs = λµ( f · s),

hence λµ ∈ σp(T ). The second inclusion follows by the same argument.

If fix(Tϕ) is one-dimensional, then for every eigenvalue λ ∈ C ofTϕ the correspond-
ing eigenfunction has constant absolute value, see Theorem 4.21 of
[EFHN15]. Thus, the second part follows. 2

The question remains whether the above inclusion holds for the entire spectrum,
i.e.,

σ(Tϕ) · σ(T ) ⊆ σ(T ).

In particular, if ϕ is aperiodic, one could expect that

T · σ(T ) ⊆ σ(T ). (4.1)

In this case, the spectrum σ(T ) is just the union of annuli centered at the origin.
However, for an arbitrary Tϕ-homomorphism T on the Banach module Γ(K, E) for
a general Banach bundle E this is not true.
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Example 4.9. Let Z be a Banach space andT ∈ L (Z) such thatT ·σ(T ) 1 σ(T ).
We realize the Banach space Z as an AM-module over C(K) for some compact
space K and T as a weighted Koopman operator on Z . For this purpose, we
consider the one-point compactification of the integers K := Z ∪ {∞} and the
following aperiodic homeomorphism on K

ϕ(x) :=
{

x + 1, x ∈ Z,
∞, x = ∞.

The Banach space Z equipped with the following operation

· : C(K) × Z −→ Z, ( f , s) 7→
(

lim
x→∞

f (x)
)
· s

is an AM-module over C(K). Hence, Z has a lattice-valued norm given by

|s |(x) = inf{‖ f s‖ | f ∈ C(K)+ with f (x) = 1}

= inf
{(

lim
z→∞

f (z)
)
‖s‖ | f ∈ C(K)+ with f (x) = 1

}
=

{
0, x ∈ Z,
‖s‖, x = ∞,

for s ∈ Z , see Theorem 3.3. Obviously, | · | is upper semicontinuous, but not con-
tinuous. Consequently, the Banach bundle associated with Z is not continuous,
see Proposition 3.2. The operator T is a Tϕ-homomorphism on the AM-module
Z , where Tϕ is the Koopman operator on C(K) induced by the aperiodic homeo-
morphism ϕ on K .

We construct the unique Banach bundle E over K and the unique Banach bundle
homomorphism Φ over ϕ on E over K such that Z � Γ(K, E) and T � TΦ. To
each x ∈ Z we attach the fiber Ex := {0} and at x = ∞ we attach the Banach space
E∞ := Z . Then, E =

⋃
x∈K Ex is the Banach bundle over K such that Z � Γ(K, E).

Moreover,

Φ(x) :=
{

0, x ∈ Z,
T , x = ∞.

defines the Banach bundle homomorphismΦ over ϕ on E over K such thatT � TΦ.

The following proposition shows which extra assumptions suffice to obtain (4.1).
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Proposition 4.10. Let T be a Tϕ-homomorphism on Γ(K, E) for some Banach
bundle E . Assume that one of the following assumptions holds.

(i) ϕ is aperiodic and E is continuous.
(ii) ϕ is strictly aperiodic.

Then T · σap(T ) ⊆ σap(T ) and T · σ(T ) ⊆ σ(T ). Thus, σ(T ) is invariant under
rotation by complex numbers of modulus one.

Proof. Let µ ∈ C be an approximate eigenvalue with approximate eigenvector
(sn)n∈N in Γ(K, E) and λ ∈ T. Each of the two assumptions (i) and (ii) implies that
we find xn ∈ K with ν(xn) > 2n + 1 and ‖sn(xn)‖ >

1
2 for each n ∈ N, where ν is

the prime period function of ϕ, see Definition 4.5. By Lemma 2.6 of [AG84] we
find fn ∈ C(K) with fn(xn) = ‖ fn‖ = 1 and ‖Tϕ fn − λ fn‖ 6 1

n for each n ∈ N. But
then ‖( fnsn)(xn)‖ >

1
2 for each n ∈ N and

(λµ − T) fnsn = λ fn · µsn − Tϕ fn · T sn

= (λ fn − Tϕ fn) · µsn − Tϕ fn · (µsn − T sn) → 0

for n→∞. Hence, T · σap(T ) ⊆ σap(T ).

Since the boundary ∂σ(T ) is contained in the approximate point spectrumσap(T ),
see Section V.1 of [Sch74], we have T · σ(T ) ⊆ σ(T ). 2

Example 4.11. We consider a scalar-valued weighted Koopman operator T ∈
L (C(K)), i.e., there is a homeomorphism ϕ on a compact space K and a continu-
ous, invertible function Φ : K −→ R+ such that

T f = Φ · f ◦ ϕ for all f ∈ C(K),

cf. Section 2 of [AG84]. If ϕ is aperiodic, then T · σ(T ) ⊆ σ(T ), cf. Remark 2.8
of [AG84].

4.2.2 Weighted Koopman semigroups

We now extend the previous results on the spectrum of a single operator to the
spectrum of a weighted Koopman semigroup (T (t))t>0 on Γ(K, E) with generator
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(A,D(A)). Our goal is to obtain a spectral mapping theorem of the form

σ(T (t)) \ {0} = etσ(A) for every t > 0.

However, the following example, which is a time-continuous version of Exam-
ple 4.9, shows that extra assumptions are needed.

Example 4.12. Let (T (t))t>0 be a C0-semigroup on a Banach space Z such that
the spectrum σ(T (t)), t > 0, is not invariant under rotation. Again, we realize
the Banach space Z as an AM-module over C(K) for some compact space K and
(T (t))t>0 as a weighted Koopman semigroup on Z . To this end, we consider the
one-point compactification of the real numbers K := R ∪ {∞} and the following
aperiodic flow on K

ϕt(x) :=
{

x + t, x ∈ R,
∞, x = ∞.

Analogous to Example 4.9 the Banach space Z can be realized as an AM-module
over C(K) and the Banach bundle associated with Z is not continuous. Each
operator T(t) is a Tϕ(t)-homomorphism on the AM-module Z , where Tϕ(t) is the
Koopman operator induced by the aperiodic flow (ϕt)t∈R.

The construction of the Banach bundle E over K and the semiflow (Φt)t>0 over
(ϕt)t∈R on E such that Z � Γ(K, E) and T(t) � TΦ(t), t > 0 is analogous to the
time-discrete case.

The following condition on the flow (ϕ(t))t∈R on K or the regularity of the Banach
bundle E lead to the following relation between the spectra of weighted Koopman
semigroups and their generators.

Theorem 4.13. Let (T (t))t>0 be a weighted Koopman semigroup on Γ(K, E) with
generator (A,D(A)). Assume that one of the following conditions holds.

(i) (ϕt)t∈R is aperiodic and E has a continuous norm.
(ii) (ϕt)t∈R is strictly aperiodic.

Then the spectral mapping theorem holds, i.e.,

σ(T (t)) \ {0} = etσ(A) for each t > 0.

Moreover, σ(A) = σ(A) + iR and σ(T (t)) = T · σ(T (t)), t > 0.
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Remark 4.14. In the situation of the above theorem, the spectrum of the generator
consists of vertical stripes and the spectrum of each weighted Koopman operator
consists of annuli centered at the origin.

Figure 4.1: Typical spectrum of A Figure 4.2: Typical spectrum of T(t)

For the proof of the theorem we need the following lemma, cf. Lemma 6.31 of
[CL99] in the case of a locally compact metric space.

Lemma 4.15. Let λ be the Lebesgue measure on R and (ϕt)t∈R a flow on K . If
t0 ∈ (0, 1), N ∈ N, and x ∈ K with prime period ν(x) > 5N + 1, then there is a
neighborhood U of x and f ∈ C(K) with 0 6 f 6 1 such that

(i) supp f ⊆ U,
(ii) f (ϕt(x)) = 1 for every t ∈ [− t0

4 ,
t0
4 ],

(iii) f (ϕt(x)) = 0 for every t ∈ [−2N,−t0] ∪ [t0, 2N],
(iv) λ({t ∈ [−N, N] | ϕt(x) ∈ U}) 6 2t0 for every x ∈ K .

Proof. We first prove that there is a compact neighborhood W of x such that

W ∩ ϕt(W) = ∅

for each t ∈ A := {t̃ ∈ R | t0
2 6 |t̃ | 6 5N}.

Suppose that for each compact neighborhood W of x we have x ∈ W ∩ ϕt(W) for
all t ∈ A. Denote the filter of all compact neighborhoods of x by K(x). Since K
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is compact, we have, by the finite intersection property,

∅ ,
⋂

W∈K(x)

W ∩ ϕ(A ×W) ⊆
⋂

W∈K(x)

W = {x}.

Consequently,

x ∈ ϕ ©­«
⋂

W∈K(x)

A ×Wª®¬ = ϕ(A × {x}),
i.e., ϕt(x) = x for some t ∈ A. But then ν(x) 6 5N contradicting the assumption.

Now take W ∈ K(x) such that W ∩ ϕt(W) = ∅. Choose an open neighborhood V
of x such that V ⊆ W . Define

U :=
⋂
|t |6 t0

4

ϕt(V), O :=
⋂
|t |6 t0

4

ϕt(V).

Then, O ⊆ U which implies that there exists a continuous function f ∈ C(K) with
0 6 f 6 1 such that f (x) = 1 for all x ∈ O and f (x) = 0 for all x < U. Since
x ∈ V , we have ϕt(x) ∈ O for all |t | 6 t0

4 . Consequently, f (ϕt(x)) = 1 for every
t ∈ [− t0

4 ,
t0
4 ].

We now show that
U ∩ ϕt(U) = ∅

for each t0 6 |t | 6 2N .

Assume there is some x0 ∈ U and t ∈ R with t0 6 |t | 6 2N such that ϕt(x0) ∈ U.
Then there exist x1, x2 ∈ V and t1, t2 ∈ R with max{|t1 |, |t2 |} 6 t0

4 such that
x0 = ϕt1(x1) and ϕt(x0) = ϕt2(x2). This implies ϕt+t1−t2(x1) = x2 ∈ V . But
t0
2 6 |t | − |t1 | − |t2 | 6 |t+ t1− t2 | 6 2N + t0

2 6 5N which contradictsW ∩ϕt(W) = ∅
for each t ∈ A. Hence U ∩ ϕt(U) = ∅ for each t0 6 |t | 6 2N . Since x ∈ U
assertion (iii) follows.

Finally, we show (iv). Fix x1 ∈ K and consider {ϕt(x1) | t ∈ [−N, N]}. Then
λ({t ∈ [−N, N] | ϕt(x1) ∈ U}) = 0 if {ϕt(x1) | t ∈ [−N, N]} ∩U = ∅. Hence, we
may assume that x ∈ {ϕt(x1) | t ∈ [−N, N]}∩U, i.e., there exists some t1 ∈ Rwith
|t1 | 6 N such that x = ϕt1(x1). Now let r ∈ {t ∈ [−N, N] | ϕt(x1) ∈ U}. Then
|r − t1 | 6 2N and ϕr(x1) = ϕr−t1(x) ∈ U. Since x ∈ U, it follows that |r − t1 | < t0.
Thus, {t ∈ [−N, N] | ϕt(x1) ∈ U} ⊆ (t1 − t0, t1 + t0). 2
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We now prove the above theorem.

Proof (of Theorem 4.13). Since the spectral mapping theorem always holds for
the residual and the point spectrum, see [EN00], Section IV.3, Theorem 3.7,
we only have to show the assertion for the approximate point spectrum. By
the spectral inclusion theorem, see [EN00], Section IV.3, Theorem 3.6, we have
etσap(A) ⊆ σap(T (t)) for all t > 0. By rescaling arguments, it suffices to show
that if 1 ∈ σap(T (1)) then 0 ∈ σap(A). We will show, that 1 ∈ σap(T (1))
even implies iR ⊆ σap(A). Take 1 ∈ σap(T (1)) and choose a corresponding
approximate eigenvector (sn)n∈N. Let further N ∈ N with N > 2 and ε ∈ (0, 1).
Since 1 ∈ σap(T (1)), there exists an s ∈ Γ(K, E) with ‖s‖ = 2 and

‖T ( j)s − s‖ =






 j−1∑
k=0
T(k) · (T (1)s − s)







6

j∑
k=0
‖T (k)‖ · ‖T (1)s − s‖ 6 ε < 1

(4.2)

(4.3)

for j ∈ {0, ..., 2N}. Note that this implies

sup
t∈[0,2N]

‖T (t)s‖ 6 sup
t∈[0,1]

‖T (t)‖ sup
j∈{0,...,2N}

‖T ( j)s‖

6 sup
t∈[0,1]

‖T (t)‖

(
sup

j∈{0,...,2N}
‖T ( j)s − s‖ + ‖s‖

)
6 3 sup

t∈[0,1]
‖T (t)‖ =: M .

Since (T (t))t>0 is strongly continuous, we find t0 ∈ (0, 1) with

‖T (t + N)s − T(N)s‖ 6 ε (4.4)

for each t ∈ (−t0, t0). By either of the two assumptions of the theorem we find
x ∈ K with ‖s(x)‖ > 1 and ν(x) > 5N + 1.

Define γ ∈ C([−N, N]) by

γ(t) :=


N+t
N−1 t ∈ [−N,−1],
1 t ∈ (−1, 1),
N−t
N−1 t ∈ [1, N],
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and f and U as in Lemma 4.15. Now take any h ∈ C(K) with ‖h‖ = 1 and
h(ϕt(x)) = eirt for r ∈ R and t ∈ [−N, N] and set g := Tϕ(−N) f · h. Then, as in
the proof of Proposition 1.8 of [EN00], Section II.1, it follows that

s̃ :=
1
t0

∫ N

−N
γ(t)e−irtT(t + N)(gs) dt ∈ D(A)

with

‖(A − ir)s̃‖ =
1
t0





∫ N

−N
γ′(t)e−irtT(t + N)(gs) dt






6

M
(N − 1)t0

·

∫ N

−N
‖Tϕ(t) f ‖ dt 6

2M
(N − 1)

by Lemma 4.15 (i) and (iv).

On the other hand, we obtain

‖ s̃‖ > ‖ s̃(x)‖ =
1
t0





∫ N

−N
γ(t) f (ϕt(x))T (t + N)s(x) dt






=

1
t0





∫ t0

−t0
f (ϕt(x))T (t + N)s(x) dt






>

1
t0

(



∫ t0

−t0
f (ϕt(x))s(x) dt





 − 2t0 · 2ε
)

=





 1
t0

∫ t0

−t0
f (ϕt(x))s(x) dt





 − 4ε,

where the inequality follows from (4.2) and (4.4). Further,



 1
t0

∫ t0

−t0
f (ϕt(x))s(x) dt





 = ‖s(x)‖ · 1
t0

∫ t0

−t0
f (ϕt(x)) dt >

1
2
.

In conclusion, we found s̃ ∈ D(A) with ‖ s̃‖ > 0 and ‖(A − ir)s̃‖ 6 2M
(N−1) → 0 as

N →∞ for all r ∈ R, i.e., iR ⊆ σap(A). 2

Finally, we give the following examples.

Example 4.16. (i) We consider an invertible, scalar-valued cocycle (Φt)t∈R
over a flow (ϕt)t∈R on a compact space K , see Example 3.11 (i), and
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the induced weighted Koopman group (TΦ(t))t∈R on C(K) with generator
(A,D(A)). If the flow is aperiodic, then the spectral mapping theorem
holds, i.e.,

σ(TΦ(t)) = etσ(A) for every t ∈ R.

Moreover, σ(A) = σ(A) + iR while σ(T (t)) = T · σ(T (t)), t > 0, cf.
Theorem 5.4 of [AG84].

For a periodic flow only the weak spectral mapping theorem holds, i.e.,

σ(TΦ(t)) = etσ(A) for all t ∈ R,

see Theorem 4.4 of [AG84].

(ii) Consider an evolution semigroup (TΦ(t))t>0 on Γ(K, E) � C(K, E) with
generator (A,D(A)), see Example 3.11 (ii). If the underlying flow is
aperiodic, the spectral mapping theorem holds, i.e.,

σ(TΦ(t)) = etσ(A) for every t ∈ R+.

Moreover, σ(A) = σ(A) + iR while σ(T (t)) = T · σ(T (t)), t > 0, see
Theorem 6.30 of [CL99].

In particular, this is true for an evolution semigroup (TΦ(t))t>0 on
Γ(K, Z Û∪ {0}) � C0(R, Z), see Example 3.11 (ii), induced by an expo-
nentially bounded evolution family (U(t, r))t>r on a Banach space Z , see
Theorem VI.9.15 of [EN00].
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Chapter 5

Asymptotics of weighted Koopman
semigroups

In this chapter, we apply the theory of C0-semigroups, see [EN00], in particular,
their spectral theory, to investigate stability concepts for semiflows on Banach
bundles and weighted Koopman semigroups on spaces of continuous sections.

The results in Section 5.2 and Section 5.3 are joint work with Henrik Kreidler.

5.1 Hyperbolicity for C0-semigroups

First, we recall some stability concepts for C0-semigroups. For proofs and exam-
ples we refer to Section V.1 of [EN00], Section V.3 of [EN06], and Chapter III
of [Eis10]. A C0-semigroup (T (t))t>0 on a Banach space Z is called uniformly
exponentially stable if there exists ε > 0 such that

lim
t→∞

eεt ‖T (t)‖ = 0.

Wecharacterize this property via the growth boundω0 and the spectral radii r(T (t))
of the semigroup operators.
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Proposition 5.1. For a C0-semigroup (T (t))t>0 on a Banach space Z with gener-
ator (A,D(A)) the following assertions are equivalent.

(a) (T (t))t>0 is uniformly exponentially stable.
(b) (T (t))t>0 is uniformly stable, i.e.,

lim
t→∞
‖T (t)‖ = 0.

(c) (T (t))t>0 is strongly exponentially stable, i.e., there exists ε > 0 such that

lim
t→∞

eεt ‖T (t)z‖ = 0 for all z ∈ Z .

(d) ω0 < 0.
(e) r(T (t)) < 1 for one/all t > 0.
(f) There exist M > 1 and ω < 0 such that

‖T (t)‖ 6 Meωt for all t > 0.

Moreover, if the growth bound ω0 and the spectral bound s(A) of the generatorA
coincide, then the properties above are also equivalent to

(g) s(A) < 0.

We use this result to obtain a decomposition of a C0-semigroup into a stable and
an unstable part, see Section V.1.c, Definition 1.14 of [EN00].

Definition 5.2. A C0-semigroup (T (t))t>0 on a Banach space Z is hyperbolic if
there exist two closed, (T (t))t>0-invariant Banach subspaces Zs and Zu of Z such
that

Z = Zs ⊕ Zu

and the restricted semigroups (Ts(t))t>0 on Zs and (Tu(t))t>0 on Zu satisfy the
following.

(i) The semigroup (Ts(t))t>0 is uniformly exponentially stable on Zs.

(ii) The semigroup (Tu(t))t>0 extends to a group (Tu(t))t∈R on Zu and the semi-
group (Tu(−t))t>0 is uniformly exponentially stable on Zu.
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The above characterization of exponential stability of a C0-semigroup leads to the
following characterization of hyperbolicity.

Proposition 5.3. For a C0-semigroup (T (t))t>0 on Z the following assertions are
equivalent.

(a) (T (t))t>0 is hyperbolic.
(b) There exists a projection P on Z such that each T(t) commutes with P,
T(t) ker P = ker P, and there are constants M > 1, ε > 0 such that
(i) ‖T (t)z‖ 6 Me−εt ‖z‖ for all t > 0, z ∈ rg P,
(ii) ‖T (t)z‖ > 1

M eεt ‖z‖ for all t > 0, z ∈ ker P.
(c) σ(T (t)) ∩ T = ∅ for one/all t > 0.

Moreover, if the weak spectral mapping theorem (see [EN00], Section IV.3.a) or
the circular spectral mapping theorem (see [EN06], Section V.3, Definition 3.14)
holds, then the properties above are also equivalent to

(d) σ(A) ∩ iR = ∅.

5.2 Direct sum of weighted Koopman semigroups

In order to define hyperbolicity for weighted Koopman semigroups we need the
concepts of direct sums of Banach bundles and Banachmodules, which are covered
in Construction A.6. We now introduce the direct sum of semiflows on Banach
bundles and of weighted Koopman semigroups on spaces of continuous sections.

Construction 5.4. We take two semiflows (Φt)t>0 over (ϕt)t∈R on E over K and
(Ψt)t>0 over (ϕt)t∈R on F over K . Setting

(Φ ⊕ Ψ)t (u, v) := (Φtu,Ψtv) for all t > 0, (u, v) ∈ E ⊕ F,

defines a semiflow ((Φ ⊕ Ψ)t)t>0 over (ϕt)t∈R on E ⊕ F over K .

Two weighted Koopman semigroups (TΦ(t))t>0 on Γ(K, E) and (TΨ(t))t>0 on
Γ(K, F) define a weighted Koopman semigroup on Γ(K, E) ⊕ Γ(K, F) via

(TΦ ⊕ TΨ) (t) := TΦ(t) ⊕ TΨ(t) for all t > 0.
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With the isometric module isomorphism of Proposition A.7 we have

(TΦ(t))t>0 ⊕ (TΨ(t))t>0 � (TΦ⊕Ψ(t))t>0.

Consequently, a (non-trivial) decomposition of a semiflow (Φt)t>0 over (ϕt)t∈R
on E over K yields a (non-trivial) decomposition of the corresponding weighted
Koopman semigroup. In other words, if there are two non-trivial Banach subbun-
dles E1, E2 ⊆ E and two semiflows (Φ1

t )t>0 on E1 and (Φ2
t )t>0 on E2 over (ϕt)t∈R

on K such that
(Φt)t>0 � (Φ

1
t )t>0 ⊕ (Φ

2
t )t>0

on E � E1 ⊕ E2, then Γ(K, E1) and Γ(K, E2) are non-trivial Banach submodules
of Γ(K, E), see Proposition A.8, and

(TΦ(t))t>0 � (TΦ1⊕Φ2(t))t>0

� (TΦ1(t))t>0 ⊕ (TΦ2(t))t>0

on the AM-module
Γ(K, E) � Γ(K, E1 ⊕ E2)

� Γ(K, E1) ⊕ Γ(K, E2).

As the following result shows, the converse is also true.

Proposition 5.5. If there are two non-trivial Banach submodules Γ1, Γ2 ⊆ Γ(K, E)
and two weighted semigroups (T1(t))t>0 on Γ1 and (T2(t))t>0 on Γ2 over (Tϕ(t))t∈R
on C(K) such that

(TΦ(t))t>0 � (T1(t))t>0 ⊕ (T2(t))t>0

on Γ(K, E) � Γ1 ⊕ Γ2, then there are two non-trivial Banach subbundles E1,
E2 ⊆ E and two semiflows (Φ1

t )t>0 on E1 and (Φ2
t )t>0 on E2 over (ϕt)t∈R on K such

that
(Φt)t>0 � (Φ

1
t )t>0 ⊕ (Φ

2
t )t>0 on E � E1 ⊕ E2.

Moreover, ‖T1(t)‖ = ‖Φ1
t ‖ and ‖T2(t)‖ = ‖Φ2

t ‖ for all t > 0.

Proof. By Proposition A.8 there are two non-trivial Banach subbundles E1, E2 ⊆

E such that Γ1 � Γ(K, E1) and Γ2 � Γ(K, E2). We then find by Theorem 3.8
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semiflows (Φ1
t )t>0 on E1 and (Φ2

t )t>0 on E2, which are, up to isometric isomorphy,
unique such that

(T1(t))t>0 � (TΦ1(t))t>0 on Γ1 � Γ(K, E1),

(T2(t))t>0 � (TΦ2(t))t>0 on Γ2 � Γ(K, E2).

We now obtain
(TΦ(t))t>0 � (T1(t))t>0 ⊕ (T2(t))t>0

� (TΦ1(t))t>0 ⊕ (TΦ2(t))t>0

� (TΦ1⊕Φ2(t))t>0

on the AM-module
Γ(K, E) � Γ1 ⊕ Γ2

� Γ(K, E1) ⊕ Γ(K, E2)

� Γ(K, E1 ⊕ E2).

Thus, by uniqueness (up to isometric isomorphy) of the representation of AM-
modules and semiflows, we have E � E1 ⊕ E2 and (Φt)t>0 � (Φ

1
t )t>0 ⊕ (Φ

2
t )t>0.

Finally, ‖T1(t)‖ = ‖Φ1
t ‖ and ‖T2(t)‖ = ‖Φ2

t ‖ for all t > 0 by Theorem 3.8. 2

5.3 Exponential dichotomy and the Sacker-Sell spec-
trum

In this section, we introduce an important property of semiflows onBanach bundles
and of weighted Koopman semigroups on Banach modules that describes their
asymptotic behavior: exponential dichtotomy and hyperbolicity.

Definition 5.6. A weighted Koopman semigroup (TΦ(t))t>0 on a Banach mod-
ule Γ(K, E) has exponential dichotomy (or is hyperbolic) if there are (TΦ(t))t>0-
invariant Banach submodules Γs and Γu of Γ(K, E) such that

Γ(K, E) = Γs ⊕ Γu

and the restricted semigroups (Ts(t))t>0 on Γs and (Tu(t))t>0 on Γu satisfy the
following.

(i) The semigroup (Ts(t))t>0 is uniformly exponentially stable on Γs.
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(ii) Each Tϕ(t)-homomorphism Tu(t) is invertible on Γu and the semigroup
(Tu(−t))t>0 is uniformly exponentially stable on Γu.

We generalize exponential dichotomy of linear skew-product flows, cf. Definition
6.13 of [CL99], to exponential dichotomy of semiflows on Banach bundles.

Definition 5.7. A semiflow (Φt)t>0 on a Banach bundle E has exponential di-
chotomy if there are (Φt)t>0-invariant Banach subbundles Es, Eu such that

E = Es ⊕ Eu

and the restricted semiflows (Φs
t )t>0 on Es and (Φu

t )t>0 on Eu satisfy the following.

(i) The semiflow (Φs
t )t>0 is uniformly exponentially stable on Es, i.e., there are

constants M > 1, ε > 0 such that ‖Φs
t ‖ 6 Me−εt for all t > 0.

(ii) The semiflow (Φu
t )t>0 extends to a flow (Φu

t )t∈R on Eu, see Definition 1.8,
and (Φu

−t)t>0 is uniformly exponentially stable on Eu.

We call Es the stable Banach subbundle and Eu the unstable Banach subbundle of
E under (Φt)t>0 while (Φs

t )t>0 is the stable part and (Φu
t )t>0 is the unstable part

of (Φt)t>0.

Exponential dichotomy of semiflows on Banach bundles can be characterized via
a spectral property of the associated weighted Koopman semigroup.

Theorem 5.8. For a weighted Koopman semigroup (TΦ(t))t>0 on Γ(K, E) the fol-
lowing assertions are equivalent.

(a) (TΦ(t))t>0 has exponential dichotomy.
(b) The associated semiflow (Φt)t>0 on E has exponential dichotomy.
(c) σ(TΦ(t)) ∩ T = ∅ for all/one t > 0.

Proof. Obviously, each weighted Koopman semigroup that admits an exponential
dichotomy is, in particular, a hyperbolicC0-semigroup. Thus, assertion (a) implies
(c), see Proposition 5.3.

To show the converse implication, assume that σ(TΦ(t0)) ∩ T = ∅ for some t0 > 0.
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Then T ⊆ %(TΦ(t0)) and we obtain a decomposition of the spectrum σ(TΦ(t0)) =
K1 Û∪ K2 with

K1 := σ(TΦ(t0)) ∩ {z ∈ C | |z | < 1},
K2 := σ(TΦ(t0)) ∩ {z ∈ C | |z | > 1},

which yields a spectral decomposition, see [EN00], p. 244. Let P be the corre-
sponding spectral projection, Q := Id−P, and Tu(t0) := TΦ(t0)|kerP = TΦ(t0)|rgQ ,
Ts(t0) := TΦ(t0)|rgP the inducedTϕ(t0)-homomorphisms on the (TΦ(t))t>0-invariant
subspaces rgP and kerP = rgQ of Γ(K, E). We have σ(Ts(t0)) = K1, see [EN00],
hence r(Ts(t0)) < 1. By Proposition 5.1 it follows that (Ts(t))t>0 is uniformly ex-
ponentially stable on rgP. Further, σ(Tu(t0)) = K2, which implies that (Tu(t))t>0
extends to a group on rgQ. Moreover, we have r(Tu(−t0)) < 1. Thus, (Tu(−t))t>0
is uniformly exponentially stable on rgQ, see Proposition 5.1. In other words,
(TΦ(t))t>0 is a hyperbolic C0-semigroup on the Banach space Γ(K, E). It remains
to show that the spectral projection P is a module homomorphism.

By definition of a uniformly exponentially stable C0-semigroup, it follows that
there are constants M > 1 and ε > 0 such that for s ∈ Γ(K, E), t > 0

1
M

eεt ‖Qs‖ 6 ‖T (t)Qs‖ = ‖T (t)(Id−P)s‖ 6 ‖T (t)s‖ + Me−εt ‖Ps‖.

Consequently,

{s ∈ Γ(K, E) | T (t)s→ 0 as t →∞} ⊆ PΓ(K, E).

The inclusion “⊇” is also true since (T (t))t∈R is uniformly exponentially stable on
rgP.

Furthermore, ‖T (t) fPs‖ 6 ‖ f ‖‖T (t)Ps‖ for all s ∈ Γ(K, E), f ∈ C(K). This
yields fPs ∈ PΓ(K, E) for all s ∈ Γ(K, E), f ∈ C(K). In addition, since T(t) is
a Tϕ(t)-homomorphism,

‖P fQs‖ = ‖P fT(t)Tu(−t)Qs‖
= ‖T (t)PTϕ(−t) fTu(−t)Qs‖
6 Me−εt ‖PTϕ(−t) fTu(−t)Qs‖
6 Me−εt ‖ f ‖‖Tu(−t)Qs‖

6 M2e−2εt ‖ f ‖‖s‖

for all s ∈ Γ(K, E), f ∈ C(K), and t > 0. Hence, P fQs = 0 for all s ∈ Γ(K, E)
and f ∈ C(K). We conclude

P f s = P f (P + Q)s = P fPs + P fQs = fPs
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for all s ∈ Γ(K, E) and f ∈ C(K), i.e., P is a module homomorphism.

As a consequence, the closed subspaces rgP and kerP are Banach submodules
of Γ(K, E). Hence, the spectral decomposition of the Banach space Γ(K, E) into
ker(P) and rg(P) yields an exponential dichotomy of the weighted Koopman
semigroup, i.e., (c) implies (a).

“(a) ⇒ (b)”: By Proposition 5.5, the decomposition of the weighted Koopman
semigroup yields the desired decomposition of the semiflow into a stable and an
unstable part. Hence, (b) is true.

“(b) ⇒ (a)”: Assume that (Φt)t>0 decomposes into a stable part (Φs
t )t>0 and

an unstable part (Φu
t )t>0. Again, this leads to a decomposition of the weighted

Koopman semigroup, see Section 5.2. Since the norm of a semiflow is equal to
the norm of the corresponding weighted Koopman semigroup by Theorem 3.8,
assertion (a) follows. 2

As a direct consequence of the above theorem, we obtain the following character-
ization of exponential dichotomy.

Corollary 5.9. Let (TΦ(t))t>0 be a weighted Koopman semigroup on Γ(K, E) with
generator (A,D(A)). If one of the assertions of Theorem 4.13 is satisfied, then
the following assertions are equivalent.

(a) (TΦ(t))t>0 has exponential dichotomy.
(b) The associated semiflow (Φt)t>0 on E has exponential dichotomy.
(c) 1 < σ(TΦ(t)) for all/one t > 0.
(d) 0 < σ(A).

The following definition is based on Definition 6.17 of [CL99] and goes back to
R. J. Sacker and G. R. Sell, see [SS74], [SS76a], [SS76b], and [SS78].

Definition 5.10. For a semiflow (Φt)t>0 over (ϕt)t∈R on a Banach bundle E , t > 0,
and λ ∈ R we define the rescaled semiflow by (Φt(x))λ := e−λtΦt(x) for all x ∈ K .
The set

Σ =
{
λ ∈ R | (Φλt )t>0 on E admits an exponential dichotomy

}
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is called the Sacker-Sell spectrum of the semiflow (Φt)t>0.

Using Theorem 5.8, we are able to give an explicit description of the Sacker-Sell
spectrum.

Corollary 5.11. Let (TΦ(t))t>0 be a weighted Koopman semigroup on Γ(K, E)with
generator (A,D(A)). Then

Σ = ln |σ(TΦ(1)) \ {0}|.

Moreover, if one of the assertions of Theorem 4.13 is fulfilled, then

Σ = σ(A) ∩ R.
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Chapter 6

An example from differential
geometry

In this chapter, we specialize the previous theory and investigate weighted Koop-
man groups on the space of continuous sections of the tangent bundle of a compact
smoothmanifold. Furthermore, we obtain additional characterizations of weighted
Koopman groups in this situation.

The results are based on joint work with Nikolai Edeko and Henrik Kreidler.

In the following let (M; (ϕt)t∈R) be a smooth dynamical system, i.e., M is a compact
Riemannian manifold without boundary with smooth structure, see, e.g., [Lee13],
Chapter 13, and (ϕt)t∈R is a smooth flow on M , see, e.g., [Lee13], Chapter 9.

Each smooth flow (ϕt)t∈R on M defines a smooth vector field Vϕ : M → T M by

Vϕ(x) :=
d
dt

����
t=0

ϕt(x), x ∈ M,

see, for instance, [Lee13], Proposition 9.7. On the other hand, to each vector field
corresponds a unique flow on M , see [Lee13], Theorem 9.12.

A flow (ϕt)t∈R induces a C0-group (Tϕ(t))t∈R on C(M) by

Tϕ(t) f = f ◦ ϕ−t, f ∈ C(M), t ∈ R,
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called Koopman group, with generator (δ,D(δ)), see Section 3.1.

Its generator is defined as

δ f = lim
t→0

f ◦ ϕ−t − f
t

for all f ∈ D(δ),

where the limit is taken in the norm in C(M). Recall that the Lie derivative LVϕ f
of a smooth function f with respect to Vϕ is the pointwise limit

LVϕ f (x) = lim
t→0

f (ϕt(x)) − f (x)
t

for all f ∈ C∞(M), x ∈ M,

see [Lan95], Section V, §2., p. 121. The following lemma shows that the pointwise
limit LVϕ f (x) even converges uniformly in x ∈ M and that C∞(M) is a core for
(δ,D(δ)).

Lemma 6.1. For a Koopman group (Tϕ(t))t∈R induced by a smooth flow (ϕt)t∈R
on M the space of smooth functions C∞(M) is a core for its generator (δ,D(δ))
and

δ f = −LVϕ f for all f ∈ C∞(M).

Proof. As a consequence of the mean value theorem we know that the (point-
wise defined) difference quotient converges locally uniformly in local coordinates.
Since M is compact, uniform convergence follows, i.e., δ f = −LVϕ f for all
f ∈ C∞(M).

Moreover, the space C∞(M) is invariant under (Tϕ(t))t∈R and dense in C(M), cf.
[PM82], Poposition 2.7. It follows that C∞(M) is a core for the generator, see
[EN00], Section II.1, Proposition 1.7. 2

The geometric structure of the smooth dynamical systems suggests to consider the
tangent bundle T M and flows (Φt)t∈R over (ϕt)t∈R on T M , see Definition 1.8. For
more results on so-called cocycles and linear-skew product flows we refer to, e.g.,
[Sma67], [JPS87], [Ree80], or [CL99], Section 6.2. We now investigate the cor-
responding weighted Koopman groups (TΦ(t))t∈R on the AM-module Γ(M,T M)
of continuous sections of the tangent bundle T M induced by (Φt)t∈R, see Defini-
tion 3.5. We recall from Section 3.3, Theorem 3.8, that a C0-group (TΦ(t))t∈R on
Γ(M,T M) is a weighted Koopman group if and only if its generator (G,D(G)) is
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a δ-derivation, i.e., the domain D(G) is a D(δ)-submodule of Γ(M,T M) and the
generator satisfies the functional equation

G( f s) = δ f · s + f · Gs for all f ∈ D(δ), s ∈ D(G). (FE)

We now consider an important example of a weighted Koopman group where the
associated flow (Φt)t∈R over (ϕt)t∈R has the following property.

Definition 6.2. A flow (Φt)t∈R over (ϕt)t∈R is called smooth if the mapping

Φ : R × T M → T M, (t, x) 7→ Φt(x)

is smooth.

Lemma 6.3. Take a weighted Koopman group (TΦ(t))t∈R induced by a smooth flow
(Φt)t∈R. Then the space of smooth sections Γ∞(M,T M) is a core for its generator
(G,D(G)) .

Proof. First, we show that Γ∞(M,T M) is contained in D(G), i.e.,

lim
t→0

Φt ◦ s ◦ ϕ−t − s
t

exists in Γ(M,T M) for all s ∈ Γ∞(M,T M). In local coordinatesTΦ(t)s = Φt◦s◦ϕ−t
is just the compositions of smooth mappings on an open subset of Rn (where n is
the dimension of M) which is obviously smooth. Thus, the above limit exists for
all smooth sections of T M .

Further, in local coordinates we know that each continuous vector-valued function
can be approximated by a smooth vector-valued function. Hence, Γ∞(M,T M) is
even norm dense in Γ(M,T M). It remains to show that Γ∞(M,T M) is invariant un-
der (TΦ(t))t∈R. This follows by the smoothness of the flow (Φt)t∈R. Consequently,
Γ∞(M,T M) is a core, see [EN00], Section II.1, Proposition 1.7. 2

Consider the differential dϕt of the smooth mapping ϕt , t ∈ R, as in Example 3.11
(iii). By [Lee13], Proposition 3.21 and Corollary 3.22, it follows that (dϕt)t∈R is
a smooth flow over (ϕt)t∈R. The induced weighted Koopman operators are the
pushforward operators, cf. [Lee13], Chapter 8, p. 183. We call the corresponding
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weighted Koopman group (T (t))t∈R := (Tdϕ(t))t∈R pushforward group and denote
its generator by (A,D(A)) defined as

As = lim
t→0

dϕt ◦ s ◦ ϕ−t − s
t

for all s ∈ D(A),

where the limit is taken in the norm in Γ(M,T M). Recall that the Lie derivative
LVϕ s of a smooth section s with respect to Vϕ is the pointwise limit

LVϕ s(x) = lim
t→0

dϕ−t(ϕt(x))s(ϕt(x)) − s(x)
t

for all s ∈ Γ∞(M,T M), x ∈ M , see [Lee13], p. 228. Again, the pointwise
limit LVϕ s(x) even converges uniformly in x ∈ M and Γ∞(M,T M) is a core for
(A,D(A)).

Lemma 6.4. Consider the pushforward group (T (t))t∈R on Γ(M,T M) with gen-
erator (A,D(A)). The space of smooth sections Γ∞(M,T M) is a core for the
generator with

As = −LVϕ s for all s ∈ Γ∞(M,T M).

Proof. Since (dϕt)t∈R is a smooth flow over (ϕt)t∈R, Lemma 6.3 implies that the
space of smooth sections Γ∞(M,T M) is a core for (A,D(A)). As in the proof of
Lemma 6.1 we consider for s ∈ Γ∞(M,T M), x ∈ M , the limit LVϕ s(x) in local
coordinates. Again, by themean value theorem, local uniform convergence follows
which implies, since M is compact, uniform convergence, i.e., As = −LVϕ s for
all s ∈ Γ∞(M,T M). 2

6.1 The generator of a weighted Koopman group as
a perturbation of the Lie derivative

Starting from the pushforward group (T (t))t∈R on Γ(M,T M), we obtain every
other weighted Koopman group in the following way.

Proposition 6.5. Let (S(t))t∈R be a C0-group on Γ(M,T M). Then the following
assertions are equivalent.

(a) (S(t))t∈R is a weighted Koopman group.
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(b) (S(t))t∈R is a multiplicative perturbation of the pushforward group (T (t))t∈R
by C(M)-module homomorphisms C(t), t ∈ R, see Definition 2.1, i.e., we
have for each t ∈ R

S(t) = C(t)T (t).

Proof. “(b)⇒ (a)”: Let t ∈ R, f ∈ C(M), and s ∈ Γ(M,T M). Then, by definition
of amodule homomorphism, seeDefinition 2.1, and since eachweightedKoopman
operator T(t) is a Tϕ(t)-homomorphism, see Definition 3.4, we have

S(t)( f s) = (C(t)T (t))( f s)
= C(t)(Tϕ f · T (t)s)
= Tϕ f · C(t)T (t)s
= Tϕ f · S(t)s.

Thus, by Theorem 3.8, (S(t))t∈R is a weighted Koopman group.

“(a)⇒ (b)”: Let (S(t))t∈R be a weighted Koopman group and let (Φt)t∈R be the
corresponding flow on T M over (ϕt)t∈R. For each x ∈ M we define a family of
bounded linear operators (Cx

Φ
(t))x∈M on the tangent space Tx M by

Cx
Φ(t) := Φt(ϕ−t(x))dϕ−t(x) ∈ L (Tx M) for all t ∈ R.

Further, we set for all s ∈ Γ(M,T M), x ∈ M , and t ∈ R(
CΦ(t)s

)
(x) := Cx

Φ(t)s(x). (6.1)

This defines a linear bounded operator CΦ(t) on Γ(M,T M) such that for all s ∈
Γ(M,T M), x ∈ M , f ∈ C(M), and t ∈ R

CΦ(t)( f · s)(x) = Φt(ϕ−t(x))dϕ−t f (x)s(x)
= f (x)Φt(ϕ−t(x))dϕ−t s(x)
= ( f · CΦ(t)s) (x)

and (
CΦ(t)T (t)s

)
(x) =

(
Cx
Φ(t)T (t)s

)
(x)

=
(
Cx
Φ(t)dϕt(ϕ−t(x)s

)
(ϕ−t(x))

=
(
Φt(ϕ−t(x))dϕ−t(x)dϕt(ϕ−t(x))s

)
(ϕ−t(x))

= Φt(ϕ−t(x))s(ϕ−t(x))
=

(
S(t)s

)
(x). 2
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From the above defined family of bounded linear operators (CΦ(t))t∈R on Γ(M,T M)
we obtain that the generator of each weighted Koopman group with smooth flow
is the additive perturbation of the generator (A,D(A)) of the pushforward group.

Proposition 6.6. Consider a weighted Koopman group (TΦ(t))t∈R on Γ(M,T M)
with smooth flow (Φt)t∈R over (ϕt)∈R and with generator (G,D(G)). Let (CΦ(t))t∈R
be the family of bounded linear operators on Γ(M,T M) as in (6.1). Then we have
for all s ∈ Γ∞(M,T M)

MΦs :=
d
dt

����
t=0
CΦ(t)s = −As + Gs.

Moreover, MΦ is a bounded multiplication operator, i.e., it is a bounded linear
operator on Γ(M,T M) which satisfies for all s ∈ Γ(M,T M), f ∈ D(δ)

MΦ( f · s) = f · MΦs.

Proof. Let s ∈ Γ∞(M,T M) and x ∈ M . Then(
Φt(ϕ−t(x))dϕ−t(x)

)
s(x) − s(x)

t

=
Φt(ϕ−t(x))

(
dϕ−t(x)s(x) − s(ϕ−t(x)

)
+

(
Φt(ϕ−t(x))s(ϕ−t(x)) − s(x)

)
t

= Φt(ϕ−t(x))dϕ−t(x) ·
s(x) − dϕt(ϕ−t(x))s(ϕ−t(x))

t

+
Φt(ϕ−t(x))s(ϕ−t(x)) − s(x)

t

= Cx
Φ(t) ·

(
−

dϕt(ϕ−t(x))s(ϕ−t(x)) − s(x)
t

)
+
Φt(ϕ−t(x))(s(ϕ−t(x))) − s(x)

t
.

Each operator Cx
Φ
(t) converges to idTxM as t goes to 0. Further, we have for all

s ∈ Γ∞(M,T M) ⊆ D(A) ∩ D(G) and x ∈ M

−As(x) = − lim
t→0

dϕt(ϕ−t(x))s(ϕ−t(x)) − s(x)
t

= LVϕ s(x),

see Lemma 6.4, and

Gs(x) = lim
t→0

Φt(ϕ−t(x))(s(ϕ−t(x))) − s(x)
t

.
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This implies that for all s ∈ Γ∞(M,T M) and x ∈ M

MΦs(x) =
d
dt

����
t=0
CΦ(t)s(x) = −As(x) + Gs(x).

Considering the above limit in local coordinates implies again, by the mean value
theorem and by compactness of M , uniform convergence, i.e.,

MΦs = −As + Gs for all s ∈ Γ∞(M,T M).

Since A and G are generators of weighted Koopman semigroups, we have by the
functional equation (FE) for all s ∈ Γ∞(M,T M), f ∈ D(δ)

MΦ( f s) = −A( f s) + G( f s)
= −(δ f · s + f · As) + (δ f · s + f · Gs)
= fMΦs.

By the Tensor Characterization Lemma, see [Lee13], Lemma 12.24, it follows that
M 3 x 7→ MΦs(x) is smooth for all s ∈ Γ∞(M,T M) and can be extended to the
space of continuous sections Γ(M,T M).

Finally, we show that MΦ is bounded. We consider Mxs := (MΦs)(x) for all
x ∈ M and s ∈ Γ(M,T M). Then mx := ‖Mx ‖ depends smoothly on x. Since M
is compact, supx∈M mx =: m < ∞. Consequently, ‖MΦ‖ = sup‖s‖=1 ‖MΦs‖ =
sup‖s‖=1 supx∈M ‖(Ms)(x)‖ = supx∈M sup‖s‖=1 ‖(Ms)(x)‖ = m < ∞. 2

We summarize the above results in the following theorem.

Theorem 6.7. Let (T (t))t∈R be the pushforward group with generator (A,D(A))
and (S(t))t∈R be aC0-group on Γ(M,T M) with generator (G,D(G)). If the smooth
sections Γ∞(M,T M) are a core for (G,D(G)), then the following assertions are
equivalent.

(a) (S(t))t∈R is a weighted Koopman group.
(b) (S(t))t∈R is a multiplicative perturbation of (T (t))t∈R by C(M)-module ho-

momorphisms C(t), t ∈ R, i.e., we have for each t ∈ R

S(t) = C(t)T (t).
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(c) The generator (G,D(G)) is the additive perturbation of (A,D(A)) by a
bounded multiplication operatorM, i.e.,

G = A +M with D(G) = D(A).

Proof. The equivalence “(a)⇔ (b)” follows by Proposition 6.5.

“(a) ⇒ (c)”: First, we abbreviate Γ := Γ(M,T M). We know that G = A +M
on D := Γ∞(M,T M) by Proposition 6.6. Moreover, asM is bounded, we have
D(A +M) = D(A) ∩ D(M) = D(A). Since D is a core for (G,D(G)) (by
assumption) as well as for (A,D(A)) (by Lemma 6.4) it follows that

{(s,Gs) | s ∈ D(G)}

= {(s,Gs) | s ∈ D}

= {(s, (A +M)s) | s ∈ D}
= {(s, s̃) ∈ Γ × Γ | ∃ (sn, (A +M)sn) → (x, y), (sn)n∈N ⊆ D}
= {(s, s̃ +Ms) ∈ Γ × Γ | ∃ (sn,Asn) → (x, y), (sn)n∈N ⊆ D}
= {(s, (A +M)s) | s ∈ D(A)},

i.e., G = G|D = (A +M)|D = A +M with D(G) = D(A).

“(c)⇒ (a)”: For f ∈ D(δ) and s ∈ D(G) we have
G( f s) = A( f s) +M( f s)

= δ f · s + f · As f · Ms
= δ f · s + f · Gs.

Theorem 3.8 implies that (S(t))t∈R is a weighted Koopman group. 2

Remark 6.8. Each bounded additive perturbation of the generator of a C0-group
generates a C0-group, see [EN00], paragraph II.3.11 and Section III.1, Theorem
1.3. Thus, each additive perturbation of the generator of the pushforward group by
a bounded multiplication operator is the generator of a weighted Koopman group
by Theorem 6.7.

Remark 6.9. The equivalence “(a)⇔ (c)” of the above theorem can be—in view
of Lemma 6.4—formulated in the following way: Each generator of a weighted
Koopman group induced by a smooth flow (Φt)t∈R over (ϕt)∈R is an additive
perturbation of the Lie derivativeLVϕ on Γ∞(M,T M) by a bounded multiplication
operator and each such perturbation yields a weighted Koopman group.
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Example 6.10. Consider for each x ∈ M , t ∈ R, the parallel transport Pt(x)
along ϕt(x) with respect to the Levi-Civita connection ∇, cf. [Spi99], Chapter 6,
p. 238 and 240. Then (Pt)t∈R is a smooth flow over (ϕt)t∈R, cf. [Lee18], Theorem
4.31 and Theorem 4.32. We call the corresponding weighted Koopman group
(P(t))t∈R parallel transport group and denote its generator by (B,D(B)). The
above theorem implies for all s ∈ D(B)

Bs = As +Ms

for a bounded multiplication operator M and the generator (A,D(A)) of the
pushforward group (T (t))t∈R. This can be reformulated to

−As = −Bs +Ms

for all s ∈ D(B). By Lemma 6.4 we have for s ∈ Γ∞(M,T M) that −As = LVϕ s.
Moreover, for all s ∈ Γ∞(M,T M)

LVϕ s = ∇Vϕ s − ∇sVϕ,

cf. [Spi99], Chapter 5, p. 224 and Chapter 6, p. 238. Thus, we have for all
s ∈ Γ∞(M,T M)

−Bs +Ms = −As
= LVϕ s
= ∇Vϕ s − ∇sVϕ.

By Lemma 6.3 the space Γ∞(M,T M) is a core for the generator (B,D(B)) of the
parallel transport group. For all s ∈ Γ∞(M,T M) we have for all x ∈ M

Bs(x) = −∇Vϕ s(x),

see [Spi99], Chapter 6, Proposition 3. Again, using local coordinates and the mean
value theorem, compactness of M yields for all

Bs = −∇Vϕ s.

The bounded multiplication operator M is given by Ms = ∇sVϕ for all s ∈
Γ∞(M,T M).

Remark 6.11. One could also start with the pushforward group (P(t))t∈R on
Γ(M,T M) to obtain every other weighted Koopman group induced by a smooth
flow (Φt)t∈R over (ϕt)∈R. In particular, the additive perturbation of the generator
(B,D(B)) of the pushforward group by a bounded multiplication operatorM also
results in a generator of a weighted Koopman group. The proofs of Proposition 6.6
and Theorem 6.7 can simply be adapted to that situation.
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We now apply semigroup theory to obtain corollaries of Theorem 6.7 which are
useful to compare qualitive properties of a weighted Koopman group (S(t))t∈R on
Γ(M,T M) induced by a smooth flow (Φt)t∈R over (ϕt)∈R and the pushforward group
(T (t))t∈R. In the following take the pushforward group (T (t))t∈R and letM be the
bounded multiplication operator corresponding to (S(t))t∈R as in Theorem 6.7.

Corollary 6.12. For a weighted Koopman group (S(t))t∈R induced by a smooth
flow (Φt)t∈R over (ϕt)∈R the following variation of parameters formula holds

S(t)s = T(t)s +
∫ t

0
T(t − r)MS(r)s dr

for every t ∈ R and s ∈ Γ(M,T M), cf. [EN00], Section III.1, Corollary 1.7.

Corollary 6.13. Each weighted Koopman group (S(t))t∈R induced by a smooth
flow (Φt)t∈R over (ϕt)∈R can be obtained as a so-called Dyson-Phillips series, i.e.,

S(t) =
∞∑

n=0
Sn(t),

where S0(t) := T(t) and for all n ∈ N

Sn+1(t) :=
∫ t

0
T(t − r)MSn(r) dr,

see [EN00], Section III.1, Theorem 1.10.

Corollary 6.14. Let (S(t))t∈R be a weighted Koopman group induced by a smooth
flow (Φt)t∈R over (ϕt)∈R. Then there exists a constant M > 0 such that

‖T (t) − S(t)‖ 6 tM

for all t ∈ [0, 1], see [EN00], Section III.1, Corollary 1.11.

Corollary 6.15. We consider the parallel transport group (P(t))t∈R on Γ(M,T M)
with generator (B,D(B)). For each weighted Koopman group (S(t))t∈R induced
by a smooth flow (Φt)t∈R over (ϕt)∈R there exists a bounded multiplication operator
M on Γ(M,T M) such that the Lie-Trotter product formula holds, i.e.,

S(t)s = lim
n→∞

[
P

( t
n

)
e

t
nM

]n
s, s ∈ Γ(M,T M), t ∈ R,

with uniform convergence for t in compact intervals.
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Proof. By Remark 6.11, the generator (G,D(G)) of (S(t))t∈R is of the form G =
B + M on D(B). Further, the parallel transport Pt , t ∈ R, along the flow
(ϕt)t∈R is an isometry, see [Lee18], Proposition 5.5. Hence, each P(t) satisfies
‖P(t)‖ 6 1, see Theorem 3.8. Moreover, the group (etM)t∈R generated by M
satisfies



etM


 6 et‖M‖ for all t ∈ R. Thus, for all t ∈ R, n ∈ N,



[P ( t

n

)
e

t
nM

]n




 6 


P ( t

n

)


n
·




(e t
nM

)n


 6 et‖M‖ .

Then the claim follows by [EN00], Section III.5, Corollary 5.8. 2

Remark 6.16. For matrices A and B the product formula

eA+B = lim
n→∞

[
e

A
n e

B
n

]n

goes back to Lie and has been extended to unbounded operators by Trotter [Tro59].

Example 6.17. For the above Lie-Trotter product formula in the case of evolution
semigroups induced by evolution families as in Example 3.11(ii), we refer to
[EN00], Section III.5, Example 5.9.

6.2 Hyperbolic flows

In this section, we characterize hyperbolic flows—also known as Anosov flows—
on a compact Riemannian manifold M without boundary via the corresponding
pushforward group on Γ(M,T M). We start with the definition of a hyperbolic
flow, cf. [FH19], Definition 5.1.1.

Definition 6.18. Let (ϕt)t∈R be a smooth flow on M with corresponding vector
field Vϕ. Consider for each x ∈ M the linear span E0(x) := 〈Vϕ(x)〉 := RVϕ(x)
with corresponding Banach subbundle E0 = Û

⋃
x∈M E0(x) ⊆ T M . We call (ϕt)t∈R

hyperbolic or Anosov if there are (dϕt)t∈R-invariant Banach subbundles Es and Eu
of T M such that

T M = Es ⊕ Eu ⊕ E0

and the flow (dϕt)t∈R over (ϕt)t∈R restricted to the Banach bundle E := Es ⊕ Eu
has exponential dichotomy on E with stable Banach subbundle Es and unstable
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Banach subbundle Eu, see Definition 5.7. We call E the hyperbolic Banach bundle
of (ϕt)t∈R.

Remark 6.19. In the situation of the above definition the hyperbolic Banach bun-
dle E of (ϕt)t∈R is, indeed, a Banach bundle, see Construction A.6.

Proposition 6.20. Let (ϕt)t∈R be a smooth flow on M with corresponding push-
forward group (T (t))t∈R on Γ(M,T M). Assume that there exists a decomposition
T M = E ⊕ E0 into (dϕt)t∈R-invariant Banach subbundles E and E0 of T M with
E0 as in Definition 6.18. Then the following assertions are equivalent.

(a) The flow (ϕt)t∈R is hyperbolic, i.e., (dϕt)t∈R restricted to E has exponential
dichotomy.

(b) The pushforward group (T (t))t∈R restricted to Γ(M, E) is hyperbolic.

Proof. The space of sections of E is a Banach submodule of Γ(M,T M), see
Proposition A.4. Since E is (dϕt)t∈R-invariant, the AM-module Γ(M, E) is invari-
ant under the associated pushforward group (T (t))t∈R, see Section 5.2, p. 90. But
then the assertion follows directly by Theorem 5.8. 2

Since the tangent bundle of a smooth manifold is a continuous Banach bundle, see
Example 1.5 (ii), we know by Corollary 5.9 that for a smooth aperiodic flow (ϕt)t∈R
on M the associated pushforward group (T (t))t∈R on Γ(M,T M) has exponential
dichotomy if and only if its generator A is invertible. In the following situation
exponential dichotomy is stable under the “small” additive perturbation of A
by a bounded multiplication operatorM, i.e., exponential dichotomy is a robust
property.

Proposition 6.21. Let G = A +M the generator of a weighted Koopman group
(S(t))t∈R on Γ(M,T M) (cf. Theorem 6.7) such that the corresponding flow (ϕt)t∈R
is aperiodic. If (T (t))t∈R has exponential dichotomy (i.e., A is invertible) and
‖M‖ · ‖A−1‖ < 1, then (S(t))t∈R has exponential dichotomy.

Proof. [Kat80], Chapter IV, Theorem 1.16 implies that G is invertible. Hence,
(S(t))t∈R has exponential dichotomy, see Corollary 5.9. 2
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Remark 6.22. For a similar result for hyperbolic evolution semigroups as in Ex-
ample 3.11 (ii) we refer to [EN00], Section VI.9, Theorem 9.24, [CL96], Theorem
4.3, [LS99], Corollary 2.10, or [Huy07], Theorem 6.1.

The results of the present chapter indicate that there is great potential in this
operator theoretic approach to smooth flows on manifolds.
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Appendix A

Standard constructions for Banach
bundles and Banach modules

In this appendix we briefly recall the definitions and standard constructions for
Banach bundles and Banach modules, cf. [Gie82], [DG83], [FD88], or [AAK92],
which we need for our investigation of hyperbolicity of weighted Koopman semi-
groups in Chapter 5.

A.1 Banach subbundles and Banach submodules

This section is inspired by Section 8 of [Gie82]. We consider a Banach bundle
p : E → K over a compact space K , see Definition 1.1, and the corresponding
AM-module Γ(K, E) over C(K), see Definition 1.3. In this context, we recall the
definition of Banach subbundles and Banach submodules and the correspondence
between them.

Definition A.1. A subspace F ⊆ E is called Banach subbundle if the following
properties are satisfied.

(i) For each x ∈ K the set Fx := p−1(x) ∩ F is a closed subspace of the fiber
Ex = p−1(x).
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(ii) The restriction of the bundle projection p|F : F → K is open.

Proposition A.2. A Banach subbundle F ⊆ E is a Banach bundle over K with the
bundle projection and bundle norm of E restricted to F.

Proof. For the proof, we refer to Proposition 8.2 of [Gie82]. 2

Definition A.3. A closed subspace Γ ⊆ Γ(K, E) is called Banach submodule if Γ
is a submodule of Γ(K, E).

Obviously, each Banach submodule of Γ(K, E) is, again, an AM-module over
C(K). By Theorem 3.3 there exists, up to isometric isomorphy, a unique Banach
bundle F over K such that Γ is isometrically isomorphic to Γ(K, F). This Banach
bundle F can be identified with a Banach subbundle of E over K . The following
proposition describes the correspondence between Banach subbundles and Banach
submodules.

Proposition A.4. The following statements are true.

(i) For each Banach subbundle F ⊆ E over K the induced AM-module Γ(K, F)
over C(K) is a Banach submodule of Γ(K, E).

(ii) Consider the evaluation map ex : Γ → Ex, s 7→ s(x), x ∈ K . For each
Banach submodule Γ ⊆ Γ(K, E) over C(K) the induced Banach bundle
F :=

⋃
x∈K ex(Γ) over K is a Banach subbundle of E .

Moreover, F 7→ Γ(K, F) is a bijection of Banach subbundles and Banach submod-
ules. The inverse is given by Γ 7→

⋃
x∈K ex(Γ).

Proof. Cf. Theorem 8.6 and Remark 8.7 of [Gie82]. 2

We conclude this section with a remark concerning the kernel and the image of a
homomorphism of Banach modules, see Definition 2.1.

Remark A.5. Let T be a homomorphism between two Banach modules Γ(K, E1)

and Γ(K, E2). Then ker T ⊆ Γ(K, E1) and the closure of rg T ⊆ Γ(K, E2) are
Banach submodules.
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A.2 Direct sum of Banach bundles andBanachmod-
ules

We now discuss the direct sum of two Banach bundles E and F over the compact
space K .

Construction A.6. For each x ∈ K we consider the direct sum Ex ⊕ Fx of the
Banach spaces Ex and Fx equipped with the norm ‖(u, v)‖ := max(‖u‖, ‖v‖) for
(u, v) ∈ Ex ⊕ Fx , which induces the product topology of Ex and Fx on Ex ⊕ Fx .
We then endow the direct sum

E ⊕ F :=
⋃
x∈K

Ex ⊕ Fx ⊆ E × F

with the subspace topology induced by the product topology on E × F. Equipped
with the canonical projection, addition, and scalar multiplication, the direct sum
E ⊕ F of two Banach bundles E and F over K is, again, a Banach bundle over K ,
see, e.g., Chapter II, Section 13 of [FD88].

For two AM-modules Γ(K, E) and Γ(K, F) over C(K) we equip the Banach space
direct sum

Γ(K, E) ⊕ Γ(K, F)

with the canonical C(K)-module structure and with the norm

‖(s1, s2)‖ := max(‖s1‖, ‖s2‖)

for s1 ∈ Γ(K, E), s2 ∈ Γ(K, E).

By the following proposition, the direct sum Γ(K, E)⊕Γ(K, F) of twoAM-modules
Γ(K, E) and Γ(K, F) over C(K) is, again, an AM-module over C(K).

Proposition A.7. In the situation above the mapping

Γ(K, E) ⊕ Γ(K, F) −→ Γ(K, E ⊕ F), (s1, s2) 7→ s1 ⊕ s2

with (s1 ⊕ s2)(x) := (s1(x), s2(x)) for s1 ∈ Γ(K, E), s2 ∈ Γ(K, F), and x ∈ K
defines an isometric isomorphism of AM-modules.
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Proof. It is obvious that the mapping is a module isomorphism. We also have

‖s1 ⊕ s2‖ = sup
x∈K
(max(‖s1(x)‖, ‖s2(x)‖)

= max(sup
x∈K
‖s1(x)‖, sup

x∈K
‖s2(x)‖)

= max(‖s1‖, ‖s2‖)

= ‖(s1, s2)‖

for s1 ∈ Γ(K, E), s2 ∈ Γ(K, F). Thus, the mapping is isometric. 2

The results above yield a correspondence between decompositions of Banach
bundles and decompositions of AM-modules.

Proposition A.8. Let Γ(K, E) be an AM-module over C(K) corresponding to the
Banach bundle E over K . Then the following assertions hold.

(i) If there are two non-trivial Banach subbundles E1, E2 ⊆ E such that E �
E1 ⊕ E2, then we have that Γ(K, E1) and Γ(K, E2) are non-trivial Banach
submodules of Γ(K, E) and Γ(K, E) � Γ(K, E1) ⊕ Γ(K, E2).

(ii) If there are two non-trivial Banach submodules Γ1, Γ2 ⊆ Γ(K, E) such that
Γ(K, E) � Γ1 ⊕ Γ2, then there are two non-trivial Banach subbundles E1,
E2 ⊆ E such that E � E1 ⊕ E2 and Γ1 � Γ(K, E1) and Γ2 � Γ(K, E2).

Proof. By Proposition A.4 each Banach submodule corresponds to a Banach sub-
bundle. The assertions then follow by the previous proposition and Theorem 3.3.2
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