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Zusammenfassung in deutscher
Sprache

Die vorliegende Arbeit befasst sich mit der globalen Linearisierung dynamischer
Systeme mittels Koopmanismus, welcher in der Monographie Operator Theoretic
Aspects of Ergodic Theory von T. Eisner, B. Farkas, M. Haase und R. Nagel
[EFHN15] systematisch verfolgt wird.

Fiir topologische dynamische Systeme (K (¢;);cr) hat sich folgender Ansatz be-
wihrt. Dem kompakten Raum K wird der Banachraum C(K) der stetigen, kom-
plexwertigen Funktionen auf K zugeordnet. Dieser Raum ist sowohl eine kom-
mutative C*-Algebra mit Einselement als auch ein AM-Banachverband mit Ord-
nungseinheit. Der stetige Fluss (¢;),er auf K induziert eine Cy-Gruppe linearer
Operatoren (7, (t));er auf C(K) mittels

T,(1)f = fop firalle f € C(K),r €R.

Diese sogenannten Koopmanoperatoren sind sowohl Verbands- als auch Algebra-
homomorphismen und der Generator der Gruppe ist eine Derivation auf C(K). Mit
Hilfe dieser Eigenschaften ldsst sich eine solche Koopmangruppe charakterisieren.
Die reiche Struktur der Koopmangruppe ermoglicht es nun, wichtige Eigenschaften
dynamischer Systeme mittels Verbands-, Algebra- und Halbgruppentheorie zu un-
tersuchen. Entscheidend hierbei ist, dass alle wesentlichen Eigenschaften des
dynamischen Systems ihre genaue Entsprechung im Koopmansystem haben.

Die zentrale Frage, mit der sich diese Arbeit auseinandersetzt, ist, welche Li-
nearisierung sinnvoll ist, falls ein dynamisches System mit zusétzlicher Struktur
betrachtet wird. Ein besonders eindriickliches Beispiel ist hierbei ein glattes
dynamisches System (M; (¢;):er), d.h. ein glatter Fluss auf einer kompakten Rie-



mannschen Mannigfaltigkeit ohne Rand. Die geometrische Struktur eines solchen
Systems spiegelt sich nicht in der Koopmangruppe auf dem Raum stetiger Funk-
tionen wider. Deshalb ist es hier notig und auch sinnvoll, das Tangentialbiindel
TM der Mannigfaltigkeit und die Familie der Differentiale (dg;);cr des Flusses
miteinzubeziehen. Eine globale Linearisierung wird erzielt, indem der Raum
['(M, T M) der stetigen Schnitte des Tangentialbiindels mit nachfolgender Dynamik
betrachtet wird. Die sogenannten Pushforwardoperatoren, definiert durch

Tap(t)s :=dp;0os0¢_; fiiralles e (M, TM),t € R,

bilden eine stark stetige Einparametergruppe (74,(t));er linearer Operatoren auf
dem C(M)-Banachmodul I'(M,TM), die Pushforwardgruppe genannt. Dieses
Beispiel wird im Folgenden in einen wesentlich allgemeineren Rahmen gefasst.

Die Arbeit ist in zwei Teile gegliedert. Teil I, welcher aus zwei Kapiteln besteht,
befasst sich mit der abstrakten Charakterisierung dynamischer Banachmoduln und
entspricht im Wesentlichen dem gemeinsam mit Henrik Kreidler verfassten Ar-
tikel [KS20], welcher bei Mathematische Zeitschrift veroffentlicht wurde. Eine
vorldufige Version des Artikels findet sich auch in [Krel9]. Im ersten Kapitel
werden dynamische Banachbiindel, fiir welche die oben erwidhnten Differentiale
(d¢y)ser auf TM ein Beispiel bilden, in einer sehr allgemeinen Situation definiert.
Hierbei wird zwischen dynamischen Banachbiindeln iiber topologischen dynamis-
chen Systemen und solchen iiber messbaren dynamischen Systemen unterschieden.
Uberdies werden weitere typische Beispiele untersucht. Kapitel 2 bildet die Grund-
lage fiir alle weiteren Resultate der Arbeit. Hier werden dynamische Banachmod-
uln als das operatorentheoretische Pendant zu den Objekten des ersten Kapitels
definiert. Theorem 2.22 und Theorem 2.45 liefern eine Darstellung dynamischer
Banachmoduln als gewichtete Koopmandarstellungen auf entsprechenden Schnitt-
rdumen.

Teil II widmet sich einem wichtigen Spezialfall: stetigen Fliissen (¢;);cr auf
kompakten Rdumen K und stark stetige Einparameterhalbgruppen (7 (¢));>o auf
Banachrdumen I'(K, E) stetiger Schnitte in Banachbiindel E. Die Kapitel 3 bis 5
basieren auf der Zusammenarbeit mit Henrik Kreidler. Kapitel 6 baut auf gemein-
samer Arbeit mit Nikolai Edeko und Henrik Kreidler auf. Im dritten Kapitel
werden die Darstellungsresultate des zweiten Kapitels um Charakterisierungen
gewichteter Koopmanhalbgruppen mittels ihrer Generatoren und ihrer Resolven-
ten ergénzt, sieche Theorem 3.8 und Theorem 3.12. Kapitel 4 untersucht spektrale
Eigenschaften gewichteter Koopmanhalbgruppen auf I'(K, E) und ihrer Genera-
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toren und stellt einen Bezug zum Spektrum von Koopmangruppen auf C(K) und
deren Generatoren her. Unter gewissen Voraussetzungen an den zugrundeliegen-
den Fluss und das Banachbiindel gilt der Spektrale Abbildungssatz fiir gewichtete
Koopmanhalbgruppen, sieche Theorem 4.13. Die Resultate aus Kapitel 4 finden
ihre Anwendung im darauffolgenden Kapitel. Dort wird das asymptotische Ver-
halten gewichteter Koopmanhalbgruppen untersucht. Als besonders wichtige
Eigenschaft wird exponentielle Dichotomie von Fliissen auf Banachbiindeln un-
tersucht und mittels spektraler Eigenschaften der zugehorigen gewichteten Koop-
manhalbgruppe charakterisiert, siche Theorem 5.8 and Corollary 5.9. Dies fiihrt
auch zu einem Resultat iiber das sogenannte Sacker-Sell-Spektrum, siehe Corol-
lary 5.11. Im letzten Kapitel schlieBlich wird das eingangs erwihnte Beispiel glat-
ter dynamischer Systeme (M; (¢;);er) eingehend untersucht. Der Generator einer
gewichteten Koopmangruppe auf dem Raum stetiger Schnitte des Tangentialbiin-
dels TM der Mannigfaltigkeit M ist die additive Storung der Lie-Ableitung durch
einen beschrinkten Multiplikationsoperator, siehe Theorem 6.7 und Remark 6.9.
Dadurch lassen sich qualitative Eigenschaften einer beliebigen gewichteten Koop-
mangruppe auf I'(M, TM) auf die oben definierte Pushforwardgruppe (74,(f)):er
zuriickfiihren, siehe Corollary 6.12, Corollary 6.13 und Corollary 6.14. Zuletzt
wird das qualitative Verhalten glatter Fliisse auf Mannigfaltigkeiten — wie bei-
spielsweise Hyperbolizitdt — mit Hilfe der Pushforwardgruppe untersucht, siehe
Proposition 6.20 und Proposition 6.21.
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Contributions

Part I

The presentation of Part I of the present thesis is essentially taken from the article
[KS20], published in Mathematische Zeitschrift, which is joint work with Henrik
Kreidler. All results of the article were formulated, discussed, and proved in
cooperation. Discussions with Nikolai Edeko, Daniel Hittig, Viktoria Kiihner,
Philipp Kunde, Walther Paravicini, and Marco Peruzzetto inspired us when writing
the article. A preliminary version of the article can also be found in [Kre19].

Part I1

Section 3.3., Section 3.4, Section 4.2, Section 5.2, and Section 5.3 are joint work
with Henrik Kreidler. All results of these sections were formulated, discussed,
and proved in cooperation.

The formulations and proofs of the results of Chapter 6 are based on joint work
with Nikolai Edeko and Henrik Kreidler.

ix






Introduction

It is an old idea, going back to J. von Neumann and B. O. Koopman,! to assign
to nonlinear dynamics on a (topological or measurable) state space corresponding
linear operators on an observable space, i.e., a vector space of scalar-valued
functions on the state space. This idea lead to the proof of the fundamental mean
and pointwise ergodic theorems by J. von Neumann and G. D. Birkhoff,? around
1930 and is, now called Koopmanism, the leitmotif for much current research and
important results. A systematic treatment of this operator theoretic approach to
dynamical systems can be found in the monograph Operator Theoretic Aspects of
Ergodic Theory by T. Eisner, B. Farkas, M. Haase, and R. Nagel [EFHN15].

We briefly sketch one of the standard mathematical situations for Koopmanism.
Take a topological dynamical system (K; (¢;)ier),? i.€., a compact state space K and
a continuous flow (¢;),;ecr on K, frequently originating from a differential equation.
To the compact space K corresponds the Banach space C(K) of all complex-valued
continuous functions on K which even is a commutative unital C*-algebra and an
AM-Banach lattice with order unit. The flow (¢;);cr then induces a Cy-group,
called Koopman group, of linear operators (7,(t));cr on C(K) given by

Ty(t)f = fop-, forall feC(K)teR.

All these operators are lattice and algebra homomorphisms and the generator of the
group is a derivation on the algebra C(K). These qualities are even characteristic
for Koopman groups, see Theorem 3.1. Moreover, one can recover all information
about the topological dynamical system by investigating the associated Koopman

Icf. [vNe32b] and [Koo31]

2cf. [vNe32a] and [Bir31]

3For the theory of topological dynamical systems we refer to, e.g., [ElI69], [Bro79], [Aus88],
[dVr93], [HoKr18], and [Tao09].



group and vice versa.# The theory of Koopman groups has been already developed
systematically in [Nag86], Part B-II, and then extended by many recent results,
see, e.g., [EK20], [Kiis20], [Ede20], [Kre19], and [Kiih19].

However, in many situations the dynamical system has, in addition to its topological
properties, further structure which is not reflected by the corresponding Koopman
group. In this case, it is not sufficient or adequate to consider observables whose
values at a given state are (complex) numbers. Still, we aim for a Cp-semigroup on
a Banach space as a global linearization in order to make tools of linear functional
analysis applicable for the investigation of the dynamical system. The following
simple but typical example illustrates this situation and indicates which kind of
observable space might be suitable.

Consider a smooth dynamical system (M;(¢;)er),> i.€., a compact Riemannian
manifold M without boundary and a smooth flow (¢;);cg on M.¢ This flow
induces a Koopman group (7,(t));cr on the Banach space C(M), which does
not reflect much of the geometric structure of M. To overcome this deficit,
we consider the tangent bundle 7M of the manifold and the differential dg; of
each ¢,. At each point x € M the differential is a bounded linear operator
de;(x) € L(TM, T, M) which is compatible with the underlying flow via the
chain rule, i.e., dg;4,(x) = de(@r(x))de,(x) for all t,r € R. The family of
differentials (de;);cr is a flow over (¢;);cr on the tangent bundle TM of M. To
obtain a global rather than just a local linearization of (¢;);cr, We pass on to a
group of linear operators on a suitable Banach space still reflecting geometric
information.

To this purpose, take the Banach space I'(M, T M) of all continuous sections of
TM and define linear operators via

Tap(t)s :=dp;0os0¢_; foralls e (M, TM),t € R,

called pushforward of s by ¢,, see [Lee13], p. 183. This yields a strongly continuous
one-parameter group (74,(f));er of linear operators on the C(M)-Banach module
['(M,TM), called pushforward group.

4The category (see [Mac98]) of topological dynamical systems and the category of strongly
continuous group representations as automorphisms of commutative C*-algebras are equivalent,
see, e.g., Section 1.4 of [Dix77].

Scf. [Sma67], [BP13], [FH19], [Mei07], [Den05], [Ma87], and [Ree80]

6See, e.g., [Leel3], [Lan95], [BP13], [Spi99], and [AMRS3] for the theory of differential
geometry.



The following questions arise:

1. Is the group (744(1))er strongly continuous?
2. What is the generator of this group?

3. How can we characterize such groups, their generators, and their resolvents
by algebraic or by order theoretic properties?

4. What do the spectra of these operators look like and how are they related to
the properties of the flow?

5. How can we describe the asymptotic behavior of the group and what are the
conclusions for the behavior of the original dynamical system?

All these questions shall be discussed in this thesis in various contexts and more
general situations.

Starting from a topological dynamical system (K; (¢;);er) We proceed as follows.
To each point x € K we attach a Banach space E, obtaining a so-called Banach
bundle E over K. From a Banach bundle we obtain a Banach module over C(K)
as the space of continuous sections I'(K, E) of the Banach bundle, see [Gie82],
[DG83], [HoKel7], [Cun67], or [AAK92].

On such a Banach bundle, we consider a semiflow (®;);0 over (¢;);cr that is a
family of continuous mappings on E such that each ®; restricted to E,, x € K,
is a bounded linear operator ®;(x) := O;|g, € ZL(E,, Ey, (x)). Moreover, (O;):>0
satisfies for all ¢, > 0, x € K the so-called cocycle rule, i.e.,

(Dl+r(90r(x)) = (Dt((pr(x))q)r(x)- (CR)

This semiflow on E induces a Cy-semigroup (7o(t));>0 on the Banach module
I'(K, E) via

TJo(t)s =D,0os50¢_, foralsel(K,E)t>0.

This semigroup is called a weighted Koopman semigroup and will be treated
systematically in the present thesis.

The typical examples of such semigroups on Banach modules are evolution
semigroups corresponding to non-autonomous partial differential equations (see

3



[ENOO], Section VI1.9) and, as explained above, the pushforward operators acting
on the continuous sections of a tangent bundle of a manifold. In the context of
extensions of topological dynamical systems (see [E1169], Section 5 or [EK20]) we
obtain a weighted Koopman semigroup that is isomorphic to the Koopman group
corresponding to the extended topological dynamical system, see Example 3.11

@iv).

The thesis is divided into two parts. Part I, which consists of two chapters, covers
a very general case of dynamical systems and semigroup representations, while
Part II is dedicated to the special case of continuous flows on compact spaces and
to one-parameter semigroups.

In Chapter 1, we introduce dynamics on Banach bundles “over” a dynamical
system and proceed as follows. In Section 1.1, we consider topological Banach
bundles E over a locally compact space €, see [DG83], Definition 1.1. On such
Banach bundles, we introduce a semiflow ® which is compatible with a given flow
¢ on the underlying space Q in the sense that the cocycle rule (CR) is satisfied,
see Definition 1.8. Finally, we discuss important examples for such dynamical
Banach bundles (E; ®), see Example 1.12. Section 1.2 treats the “measurable
case”, that is, semiflows ® on measurable Banach bundles (see Definition 1.18)
over a measure-preserving dynamical system.” Again, we end the section with
some interesting examples, see Example 1.19.

Chapter 2 establishes the operator theoretic counterpart of dynamical Banach
bundles—dynamical Banach modules—consisting of a Banach module T" over a
commutative Banach algebra A and a weighted semigroup representation I on
I' “over” a group representation T as algebra automorphisms of A, see Defini-
tion 2.12. From the objects presented in the first chapter, we gain such dynamical
Banach modules by turning to a space of sections of E and to a weighted Koopman
representation T, see Proposition 2.14. The main results of this chapter are
representations for such dynamical Banach modules, see Theorem 2.22 and The-
orem 2.45 as weighted Koopman representations on a suitable space of sections.
Analogous to the “non-weighted” Koopmanism, all information about the dynam-
ical Banach bundle correspond to information of the induced weighted Koopman
representation and the other way around.

The presentation of Part I is essentially taken from the article [KS20], published

7cf. [EFHNI15] or, e.g., [Gla03]



in Mathematische Zeitschrift. A preliminary version can also be found in [Kre19].

The second part treats strongly continuous one-parameter semigroups of weighted
Koopman operators on the Banach module of continuous sections of a Banach
bundle E over a compact space K, see Definition 3.5. In Chapter 3, we reformulate
the representation theorem of the previous chapter in this setting and add algebraic
and order theoretic characterizations of such weighted Koopman semigroups by
their generators and their resolvents, see Theorem 3.8 and Theorem 3.12.

In the next chapter, we turn to spectral properties of weighted Koopman semigroups
on Banach modules of continuous sections. For an aperiodic flow and a continuous
bundle, the spectra of weighted Koopman semigroups and their generators are
directly related to each other by the spectral mapping theorem, see Theorem 4.13.
Afterwards, in Chapter 5, we investigate the asymptotic behavior of weighted
Koopman semigroups and their associated semiflows on Banach bundles. We
apply the results from the previous chapter to give a characterization of exponential
dichotomy and hyperbolicity, see Theorem 5.8 and Corollary 5.9, and of the Sacker-
Sell spectrum, see Corollary 5.11.

The last chapter deals with the introductory example of a smooth dynamical system
(M; (¢1)ser)- The results from the previous chapters yield additional characteriza-
tions of weighted Koopman groups on spaces of continuous sections of a compact
Riemannian manifold, see Theorem 6.7. In particular, the generator of a weighted
Koopman group on I'(M,TM) is the additive perturbation of the Lie derivative
by a bounded multiplication operator, see Remark 6.9. Thus, certain properties
of a weighted Koopman group can be reduced to properties of the above intro-
duced pushforward group (74,(?));er, see Corollary 6.12, Corollary 6.13, and
Corollary 6.14. Finally, the qualitive behavior of smooth flows on mannifolds—
like hyperbolicity—can be investigated by means of the pushforward group, see
Proposition 6.20 and Proposition 6.21.

Chapter 3, 4, and 5 are based on joint work with Henrik Kreidler. Chapter 6 is
based on joint work with Nikolai Edeko and Henrik Kreidler.






Part 1

Representation of semigroups on
Banach modules






In this part, we consider so-called Banach bundles over a locally compact or
measure space with their associated Banach modules over a commutative Banach
algebra. In analogy to the Gelfand theorem, see, e.g., Theorem 4.23 of [EFHN15]
or Section 1.4 of [Dix77], we obtain a representation for such Banach modules, see
Proposition 2.26. Again, relevant properties of the Banach bundle translate into
algebraic and lattice-theoretic properties of the associated Banach module. Based
on this result, we will introduce certain dynamics on Banach bundles compatible
with the dynamics on the underlying space as well as dynamical Banach modules.
The main results of Part I are representations of such dynamical Banach modules,
see Theorem 2.22 and Theorem 2.45. First, we recall the basic definitions and
results from the literature, see, e.g., [Gie82], [DG83], [HoKel7], [Cun67], or
[AAK92].

The presentation is essentially taken from the article [KS20], published in Mathe-
matische Zeitschrift. A preliminary version can also be found in [Kre19].

In the following all vector spaces are over K € {R,C} and all locally compact
spaces are Hausdorff.
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Chapter 1

Semiflows on Banach bundles

Starting from dynamics ¢ on a locally compact or measure space X, we introduce
appropriate dynamics “over” ¢, see Definition 1.8 and Definition 1.18, on topolog-
ical or measurable Banach bundles over X, see Definition 1.1 and Definition 1.13.
In the first section we treat the topological case and in the second section we
consider the measurable case.

1.1 Semiflows on topological Banach bundles

In this section, we define dynamics on topological Banach bundles over some fixed
topological dynamical system. We start with the abstract definition of a topological
Banach bundle, see Definition 1.1 of [DG83], see also [HoKel7].

Definition 1.1. Let E be a topological space (total space), Q a locally compact
space (base space), and pg: E — € a continuous, open, and surjective mapping
(bundle projection). Then (E,Q, pg), denoted by pg: E — Q, is called a
(topological) Banach bundle over Q) if the following properties are satisfied.

(i) For each x € Q the fiber E, := p'(x) is a Banach space.

11



(ii) The mappings
+:EXqE —E, (wv)—u+v:i=u+g,
- KXxE—E, (/l,v)|—>/l-v:=/l-Ep

g0 V)
gV

are continuous where E Xq E := |J,cq Ex X Ex C E X E is equipped with
the subspace topology.

(iii) The mapping (bundle norm)

-1l E— Ry v vlls,,,

is upper semicontinuous.

(iv) For each x € Q and each open set W C E containing the zero 0, € E, there
exist € > 0 and an open neighborhood U of x such that

(v eps' ) Vllg,, ., <&} S W,

If, in addition, the mapping || - || is continuous, then pg: E — Q is called a
continuous Banach bundle. If no confusion arises, we denote a Banach bundle
pe: E— Qbyp: E— Qorsimply by E.

Remark 1.2. Note that if £ is a Banach bundle over a locally compact space £,
we obtain a Banach bundle £ over the one-point compactification K := Q U {co}
in a canonical way by taking the space E := E U {0}, the canonical mapping
Di: E — K, and the topology on E generated by the topology on E and the sets

U(L &) := {v e p7' @)\ L)) vl < g}

for compact L € Q and € > 0. In the following we will frequently make use of
this extension.

From Banach bundles we obtain natural vector spaces.

Definition 1.3. A continuous section of a Banach bundle p: E — Q over a
locally compact space € is a continuous mapping s: Q — E such that pos = idg.
If for all & > O there exists K C Q compact with ||s(x)|| < & for all x ¢ K, then
s is called a continuous section vanishing at infinity. The space of all continuous
sections of E is denoted by I'(Q, E), while the subspace of all continuous sections
vanishing at infinity is denoted by ['o(€, E).
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Obviously, the space of all continuous sections I'(Q, E) endowed with pointwise
addition and pointwise scalar multiplication is a vector space. The subspace
I'y(K, E) of continuous sections vanishing at infinity equipped with the norm || - ||
defined by
[sll == sup[[s(x)ll, s €To(Q E)
xeQ

is a Banach space. The continuous sections of a Banach bundle determine its
topology. We make this precise by the following lemma.

Lemma 1.4. Let p: E — Q be a Banach bundle over a locally compact space
Q. Forv € E the sets

V(s,U,8) = {w € p"'(U) | llw = s(p(w))l < &},

with s € To(Q, E) satisfying s(p(v)) = v, U C Q an open neighborhood of p(v),
and € > 0, form a neighborhood base of v in E.

Proof. In the case of a compact base space this follows from Consequences 1.6
(vii) and Theorem 3.2 of [Gie82] — note that by the proof of Proposition 2.2 of
[Gie82] we may confine ourselves to globally defined sections. The general case
can readily be reduced to this by considering E, cf. Remark 1.2. O

We now list some important examples of Banach bundles.

Example 1.5. (i) Let Z be any Banach space and Q a locally compact space.
Then E := Q X Z is a continuous Banach bundle over Q, called the trivial
bundle with fiber Z if p: Q X Z — K is the projection onto the first
component and ) X Z is equipped with the product topology.

(ii) Consider a Riemannian manifold M without boundary. Then the tangent
bundle TM over M equipped with the canonical projection and topology is
a continuous Banach bundle over M, cf. Chapter 3 of [Leel3].

(iii) Let 7: L — K be a continuous surjection between compact spaces L and
K. For each k € K let L; := n~'(k) be the associated fiber. We define

=]

keK
p:E— K, veClly)mk
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and endow this with the topology generated by the sets
W(s,U,&) = {v € p~' (U) | IIv = sle, llcir,o) < &)

where U C K isopen, s € C(L), and & > 0. Then E is a Banach bundle over
K and the corresponding space of continuous sections I'(K, E) is isomorphic
to C(L), see Theorem 4.2 of [Gie82]. Moreover, E is a continuous Banach
bundle if and only if 7 is open. This construction is used frequently in
topological dynamics, see e.g., page 30 of [Kna67] or Section 5 of [ElI87].
See also [EK20].

We now associate morphisms to these Banach bundles, cf. Section 1 of [DG83].

Definition 1.6. Let Q be a locally compact space and ¢: Q — Q a continuous
mapping. Consider two Banach bundles pg: E — Q and pr: F — Q. A
continuous mapping

O FE—F

is called (bounded) Banach bundle morphism over ¢ if
(i) pro® = ¢ o pg,i.e., the diagram
E-2-F
PEj PF
Q-0
commutes,
(ii) O(x) := D|g, € ZL(Ey, Fy(x)) foreach x € Q,
(ifi) [|PI] = supeq 1P 2k, 7,00 < -

Moreover, @ is isometric if each ®(x) is an isometry. If ¢ = idg, we simply call a
Banach bundle morphism over ¢ a Banach bundle morphism.

Remark 1.7. If Q = K is compact, then conditions (i) and (ii) of Definition 1.6
already imply (iii), see the proof of Proposition 1.4 of [DG83].

We are interested in dynamical Banach bundles over dynamical systems induced
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by groups. A topological G-dynamical system (Q; ¢) is a continuous group action
p:GXQ—Q (g x) > @gx) = gx

of a locally compact group G on a locally compact space Q. We call ¢ = (¢g)¢cG
a (continuous) flow on Q. For the rest of the section, we fix such a topological G-
dynamical system (Q; ¢) and a closed subsemigroup S C G containing the neutral
element e, i.e., a closed submonoid of G. Important examples of this situation are
G=7Z,S=Nopand G =R, S =R,.

Definition 1.8. An S-dynamical Banach bundle over the topological G-dynamical
system (Q; ) is a pair (E; ®) of a Banach bundle E over Q and a semigroup
representation!
DS — EE, g O,
such that
(i) the mapping
O, E— E
is a Banach bundle morphism over ¢, for each g € S,
(ii) @ is jointly continuous, i.e., the mapping
SXE—E, (gv)— Qv
is continuous,

(iii) @ is locally bounded, i.e., sup,cx [|Dg|| < oo for every compact subset
K cCS.

We call @ = (Dy)qcs a semiflow over (¢q)ge on E over Q. If § = G, then we call
D = (Dg)gec aflow over (@g)ge On E over Q.

A morphism from an S-dynamical Banach bundle (E; ®) over (Q;¢) to an S-
dynamical Banach bundle (F;¥) over (Q;¢) is a Banach bundle morphism
®: E — F such that the diagram

()

E——F
(Dgl e

Te., ®g, = O 0 Oy forall g, h € § and @, = Idg for the neutral element e € S. This is also
known as a monoid representation.
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commutes for each g € S.

Remark 1.9. The concept of a dynamical Banach bundle is closely related to the
notion of cocycles and linear skew-product flows, cf. Definition 6.1 of [CL99].
In fact, if (E;®) is an S-dynamical Banach bundle over (Q;¢), the operators
Dy (x) := Oylg, € Z(Ey, Ep () for g € S and x € K satisfy the cocycle rule

Dy, (x) = Dy, (g, (X)) © Dy, (x)

for all g;, g> € Sand x € Q.

Remark 1.10. If Q = K is compact, then—once again—a simple adaptation of
the arguments of the proof of Proposition 1.4 of [DG83] shows that the third
condition in Definition 1.8 is superfluous.

Proposition 1.11. Let QO = K be compact. Then every semigroup representation
®:S—EEf g D, satisfying conditions (i) and (ii) of Definition 1.8 defines
an S-dynamical Banach bundle over (Q; ¢).

Proof. Pick x € L and g € S. Since @0, = 0y, (x) we find an open neighborhood
U of x, € > 0, and an open neighborhood V of g such that

Oue{wekE||w| <1}

forevery h € V,u € {v € p"'(U) | |lv|l < &}. But then ||®,|g, || < 1 for every
g € Vand y € U. Compactness yields the claim. O

Now we consider dynamics on the Banach bundles of Example 1.5.

Example 1.12. (i) Assume that G = R, § = Ry, Z is a Banach space, and
E = Q x Z is the corresponding trivial Banach bundle, cf. Example 1.5 (i).
If {D'(x) € Z(Z) | x € Qt > 0} is a strongly continuous exponentially
bounded cocycle in the sense of Definition 6.1 of [CL99], then the continuous
linear skew-product flow ®;: Q X Z — Q X Z given by

D,(x,v) := (@i(x), D' (x)v)

forx € Q,v € Z,and ¢t > 0 defines an R, -dynamical Banach bundle (E; @)
over (Q; ¢). Conversely, each R, -dynamical Banach bundle (E; @) defines
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a strongly continuous exponentially bounded cocycle by setting
D' (x)v := pry(@s(x, v))

forx € Q,v e Z,and t > 0, where pr,: Q X Z — Z is the projection onto
the second component.

In particular, evolution families, see Example 6.5 of [CL99] and Section
IV.9 of [ENOO], define R -dynamical Banach bundles.

(ii) Take G = R, Q = M a Riemannian manifold without boundary, and
¢ = (¢r)rer @ smooth flow on M, cf. [Leel3], Chapter 9, i.e., (¢;)er is
a (continuous) flow on M such that the mapping ¢: RX M — M is
smooth, cf. [Leel3], Chapter 3. If the family of differentials (dg;);er is
locally bounded, then, by the chain rule, (TM; (d¢;);cr) is an R-dynamical
Banach bundle over (M (¢;):er), cf. [Leel3], Corollary 3.22.

(iii) Assume that Q = K is compact and 7: (L;¥) — (K; ¢) is an extension
of topological G-dynamical systems, i.e., (L;¥) and (K ¢) are topological
G-dynamical systems and 7 : L — K a continuous surjection such that the

diagram
L L

Ve

_

commutes for each g € G. Assume further that E is defined as in Exam-
ple 1.5 (iii). For each g € G consider

O, E—E, veClg)r—>vo o1 € C(chg(k))-
This defines a G-dynamical Banach bundle (E; @) over (K; ¢).

1.2 Semiflows on measurable Banach bundles

In this section, we define Banach bundles over measure spaces as in Section 11.4
of [FD88] or Appendix A.3 of [ADROO], see also [Gut93b]. A measure space X is
a triple (Qyx, Xy, px) consisting of a set Qy, a o--algebra Xx of subsets of Qy, and
a positive o-finite measure py : Ly — [0, oo]. We also assume that our measure
spaces are complete, i.e., subsets of null sets are measurable.
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Definition 1.13. A (measurable) Banach bundle over a measure space X (base
space) is a triple (E, pg, Mg) where E is a set (total space), pg: E — Qx is
a surjective mapping (bundle projection) such that the fiber E, := pEl (x)is a
Banach space for each x € Qy, and Mg is a linear subspace of

Sg:={s: Qx — E | ppos=idg,}
such that
(i) if f: Qx — K is measurable and s € Mg, then fs € Mg, where

fs:s — E, x> f(x)s(x),

(ii) for each s € Mg the mapping
Is|: Qx — Ry, x> [s(x)]lg,

is measurable,

(iii) if (sp)nen is a sequence in Mg converging almost everywhere to s € Sg,
then s € Mg.

Elements s € Sg are called sections and elements s € Mg are called measurable
sections.

The bundle is separable if, in addition,

(iv) there is a sequence (sy)qen in Mg such that lin{s,(x) | n € N} is dense in
E, for almost every x € Qy.

If no confusion arises we denote the bundle projection pg simply by p. Further,
we mostly write E for a measurable Banach bundle (E, pg, ME).

Remark 1.14. Let X be a measure space and (E, p) a pair of a set E and a surjective
mapping p: E — Qx such that the fiber E, := p~'(x) is a Banach space for
each x € Qx. Then by Section I1.4.2 of [FD88] every linear subspace Mg of
Sk satisfying condition (iii) of Definition 1.13 generates a measurable Banach
bundle, i.e., there is a smallest linear subspace ME of Sg containing Mg such
that (E, p, M £) is a measurable Banach bundle. Moreover, M E consists precisely
of all almost everywhere limits of sequences in lin{l s | A € Xx, s € Mg}.
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Remark 1.15. In the case of a separable Banach bundle E our vector space Mg
of measurable sections becomes a measurable Banach fibre space in the sense of
[Hey15], Definition VI.1.iii.

We briefly list some examples for measurable Banach bundles and refer to Ap-
pendix A.3 of [ADROO] for additional examples.

Example 1.16. (i) Let X be a measure space and Z a Banach space. Consider
E = Qx X Z with the projection p onto the first component. The space of
sections Sg can be identified with the space of all functions from Qyx to Z.
The set of all strongly measurable functions, see Section 1.3.5 of [HP57],
then defines a subset Mg of Sg which turns E into a measurable Banach
bundle called the trivial Banach bundle with fiber Z. This coincides with the
measurable Banach bundle generated by the constant sections, see Section
I1.5.1 of [FD8S].

(ii) Let E be a topological Banach bundle over a locally compact space Q, u
be a o-finite regular Borel measure on Q, and B(Q) the Borel o-algebra
of Q. Then the space I'(Q, E), see Definition 1.3, generates a measurable
Banach bundle E, over the completion of the measure space (Q, B(Q), u).
See Section II.15 of [FD88] for a more explicit description of the measurable
sections of a continuous Banach bundle.

Before introducing dynamics on measurable Banach bundles, we first define mor-
phisms of measure spaces. A premorphism ¢: X — Y between measure spaces
X and Y is a measurable and measure-preserving mapping ¢: Qy — Qy. Setting
@ ~ ¢ if o(x) = Y(x) for almost every x € Qy defines an equivalence relation on
the set of premorphisms from X to Y. The equivalence classes with respect to this
equivalence relation are the morphisms from X to Y. As usual, given a morphism
we will implicitly choose a representative and denote it by ¢ when there is no room
for confusion. We define morphisms of measurable Banach bundles in a similar
manner.

Definition 1.17. Let ¢: X — X be a morphism on a measure space X. Consider
Banach bundles (E, pg, Mg) and (F, pp, M) over X. A premorphism ® from E
to F over ¢ is a mapping ®: E — F such that
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(i) ®oMg C Mpoyp,
(ii) pr o @ = ¢ o pg almost everywhere,
(iii) @|g, € L(Ex, Fy(y)) for almost every x € Qy,

(iv) [[®@[ := esssup,cq, [|P|E,|| < oo.

Again, we want to identify premorphisms which agree up to a null set. Set

Premor,(E, F) := {®: E — F premorphism over ¢},
Ny(E, F) := {® € Premory(E, F) | ® = 0 almost everywhere},

and Mor,(E, F) := Premory(E, F)/ Ny (E, F) for measurable Banach bundles E
and F as above.

An equivalence class [®] € Mor,(E, F) is called a morphism of measurable
Banach bundles over ¢. 1t is isometric if ®|g_ is isometric for almost every
x € Qx. If ¢ = idy, we call a morphism over ¢ simply a morphism of measurable
Banach bundles. As above, we will implicitly choose representatives of morphisms
whenever necessary and denote them with the same symbol.

Now we introduce dynamical measurable Banach bundles. For the rest of this
section let G be a group with neutral element ¢ € G. We call a pair (X;¢) a
measure-preserving G-dynamical system if X is a measure space together with a
group homomorphism

¢: G — Aut(X), g g,

where Aut(X) is the set of automorphisms of X. We call ¢ = (¢g)gecG aflow on X.
For the rest of the section we fix measure-preserving G-dynamical system (X; ¢)
and a submonoid § C G, i.e., a subsemigroup containing e € G.

Definition 1.18. An S-dynamical Banach bundle over the measure-preserving G-
dynamical system (X; ) is a pair (E; ®) of a measurable Banach bundle E over
X and a family ® = (®g)ecs of mappings with @,: E — E is a morphism over
g for g € S such that

O, 0D, =D, forall g, h €S,
O, = Idg.
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We call @ = (Dy)ges a semiflow over (¢q)gec on E over X. If § = G, then we call
D = (Og)eeci a flow over (¢q)gec On E over Q. If E is separable we call (E; @)
separable.

A morphism between measurable Banach bundles (E; ®) and (F; ¥) over (X; ¢)
is a morphism ®: E — F of Banach bundles such that the diagram

E-°.F

D, ¥,

commutes for each g € S.

Example 1.19. (i) Let E be the trivial bundle with fiber Z, see Example 1.16 (i).
Then the S-dynamical Banach bundles correspond to measurable cocycles,
i.e., a mapping

D:SxX— ZL(Z), (gx) Dyx)

such that
* Dyp(x) = Dg(p(x))o®p(x) for almostevery x € X andforallg, h € S,
* ®,(x) = Idz for almost every x € X,
* X — Z, x = ®4(x)v is strongly measurable forall g € Sand v € Z,
* €SSSup,cq, ||Pg(x)|| < oo forevery g € S.

(ii) Let(E;®)be atopological S-dynamical Banach bundle over a topological G-
dynamical system (€2; ¢) with G and S discrete and let u be a o--finite regular
Borel measure on Q. Moreover, let E,, be the induced measurable Banach
bundle of Example 1.16 (ii). Then (E,; ®) is an S-dynamical measurable
Banach bundle over the measure-preserving G-dynamical system induced

by (Q; ).
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Chapter 2

Representation of semigroups on
spaces of sections

Our starting point are topological and measure-preserving dynamical systems and
their corresponding Koopman representation, cf. Example 2.13. We show that
any semiflow on a Banach bundle over a dynamical system, cf. Definition 1.8
and Definition 1.18, induces a semigroup representation on a Banach space of
sections, the so-called weighted Koopman representation cf. Example 2.13. This
weighted Koopman representation—playing a central role in the present thesis—
is characterized by additional algebraic and lattice-theoretic properties which we
investigate in the following. For this purpose we recall the concept of Banach
modules, see, e.g., [Gie82], [DG83], [HoKel7], or [Cun67].

Definition 2.1. Let A be a commutative Banach algebra. A Banach space I" which
is also an A-module is a Banach module over A if the norm is submultiplicative,
ie, |[fsll < |If]llls|| forall f € Aand s € T.

A homomorphism from a Banach module I over A to a Banach module A over Aisa
bounded linear operator 7' € .Z(I', A) which is also an A-module homomorphism,
ie,T(f-s)=f -Tsforall f e A, sel. Itisisometricif T is an isometry.

In the following we always assume that Banach modules I" over a commutative
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Banach algebra A are non-degenerate, see [Par08], in the sense that
[=lin{fs|feAsel}.

Note that if A is a commutative C*-algebra (if K = C) or its self-adjoint part (if
K = R) and (e;);es is an approximate unit, see Section 1.8 of [Dix77], then this is
the case if and only if lim; e;s = s for each s € I'. In particular, if A has a unit,
then the module is unitary.

Here are some Banach modules associated with Banach bundles.

Example 2.2. Let E be a topological Banach bundle over a locally compact space
Q. Then the space of all continuous sections vanishing at infinity I['o(Q, E), see
Definition 1.3, is a Banach module over Cy(Q) if equipped with the operation

Co(Q) XTH(Q E) — Ty(Q E), (f,5)— [x > f(x)s(x)]
and the norm || - || defined by ||s|| := sup,cq ||s(x)|| for s € To(L, E).

Remark 2.3. Let Q be a locally compact space and E a Banach bundle over Q.
If K is the one-point compactification of Q and E the extended bundle of E, see
Remark 1.2, then

I[(K,E) > To(QE), s+ slo

is an isometric isomorphism of Banach spaces. In particular, we can consider
['h(€, E) as a Banach module over C(K).

Example 2.4. For a measurable Banach bundle E over a measure space X we

define
Ng = {s € Mg | s = 0 almost everywhere},

I''(X,E) := {s € Mg | |s| is integrable} /N,
I'(X,E) :={s € Mg | |s| is essentially bounded} /Ng.

With the natural norms and operations the spaces I''(X, E) and T(X, E) are
Banach modules over L*(X).

In order to define dynamical Banach modules we introduce first “morphisms over
morphisms”.
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Definition 2.5. Let A be a commutative Banach algebra and 7' € .Z’(A) an algebra
homomorphism. Moreover, let I' and A be Banach modules over A. Then 7 €
Z(T, A) is a T-homomorphism if

T(fs)=Tf-Ts forall fe Aands €T.

Example 2.6. (i) Let ¢: Q — Q be a homeomorphism of a locally compact

(ii)

space Q. Then the Koopman operator T, € £ (Cy(L2)) defined by

Tof :=fo e ! for f € Co(Q)
is an algebra automorphism.

A morphism @ over ¢ between two Banach bundles E and F over Q2 induces
a Ty-homomorphism 7 € Z(I'h(€, E), ['o(€, F)) by

Tos :=®osop ! forse[H(QE)

called the weighted Koopman operator.

Let ¢: X — X be an automorphism of a measure space X. Then the
Koopman operator T, € £ (L= (X)) defined by

Tof = fog ! for feLY(X)
is an algebra automorphism.

A morphism ® over ¢ between two Banach bundles E and F over X induces
a Ty,-homomorphism 7o € LTYX,E),TY(X, F)) by

Jos :=Doso (,0_1 for s € Fl(X, E),

called the weighted Koopman operator. Similarly, ® induces an operator
To € L(T™(X,E), (X, F)).

Before introducing the concept of dynamical Banach modules we prove a charac-
terization of 7-homomorphisms as some sort of “locality preserving operators”.

Definition 2.7. Let A be a commutative Banach algebra and I" a Banach module
over A. For s € I' we call the closed ideal

I;:={feAlfs=0}

the supporting ideal of s in A.
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If A = Co(Q) for some locally compact space Q, then there is a correspondence
between the concept of supporting ideals and the following notion of support, see
Definition 9.3 of [AAK92].

Definition 2.8. Let Q be a locally compact space and I a Banach module over
Co(Q). For s € T we call

supp(s) := {x € Q | each f € Cy(Q) with f(x) # O satisfies fs # 0} C Q
the support of s in Q.

Lemma 2.9. Let Q be a locally compact space and I" a Banach module over
Co(Q). Then

Iy = {f € CO(Q) | f|supp(s) = O}

for every s € I.

Proof. Let s € I'. Since I; is a closed ideal in Cy(Q2), we find a unique closed
subset M such that f|y; = 0 if and only if f € I. It is clear that supp(s) € M. On
the other hand, if x € Q \ supp(s), we find f € Cy(Q) with f(x) # 0 but fs = 0.
Then f|y = 0 which shows x ¢ M. O

The following is a first characterization of 7-homomorphisms extending Theorem
9.5 of [AAK92].

Theorem 2.10. Let ¢: Q — Q be a homeomorphism of a locally compact space
Q and T and A Banach modules over Co(Q). For T € Z(I,A) the following
assertions are equivalent.

(a) 7 is a T,-homomorphism.
(b) Tyl C Iy for every s € T.
(c) supp(7s) C ¢(supp(s)) for each s € T.

For the proof we need the following lemma.

Lemma 2.11. Let Q be a locally compact space and I" be a Banach module over
Co(Q) and take K = Q U {oo} to be the one-point compactification of Q. The
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mapping
CEK)XxIT — I, (f,5) = (f = fleo)Dlas + f(co)s

turns T into a (unitary) Banach module over C(K).

Proof. It is easy to check that the mapping above turns I" into a unitary module
over C(K). Choose an approximate unit (e;);c; for Co(Q). Now take f € C(K) and
s € I' and observe that

/sl = Hm I(f = feo)Dleis + f(eo)eis]l
= lim[|(fe)s]| < limsup [le; f]ls]l

< I/ 1Hsll-
This shows || fs|| < || f]ll|s]| and therefore I' is a Banach module over C(K). O

Proof (of Theorem 2.10). The equivalence of (b) and (c) is obvious by Tietze’s
theorem while the equivalence of (a) and (c) follows from Theorem 9.5 of [AAK92]
if K = Q is compact and ¢ = idg!.

Now take Q non-compact but still assume ¢ = idg. We consider the one-point
compactification K of Q and the module structure of I" over C(K), see Lemma 2.11.
For s € I' we denote the support of s with respect to this module structure by
suppg(s). It is easy to see that

—K

supp(s) < supp(s) < supp(s) U {eo}.
Let (e;);c; be an approximate unit for Cy(€2). Obviously, co ¢ suppg(s) if and only
if there is g € Co(QQ) with gs = 5. But this is the case if and only if there is iy € A
with (e;g —e;)s = 0, 1.e., (€;g — €;)|supp(s) = O for every i > iy. Therefore, the result
for non-compact € can be reduced to the compact case.

Finally let ¢: Q@ — Q be an arbitrary homeomorphism of a locally compact
space Q). Consider the module Az, which is the space A equipped with the new
operation f -7, s := Ty, f - s for f € Co(Q2) and s € A. Then 7" € Z(I,A) is a
T,~-homomorphism if and only if 7~ € Z(I', A,) is a homomorphism of Banach
modules. By the above, this is the case if and only if

{x € Q| each f € Cy(2) with f(x) # O satisfies T, f - Ts # 0} C supp(s),

I'The proof also works in the real case.
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i.e., supp(7s) € ¢(supp(s)) for each s € I'. O

We now introduce dynamical Banach modules. Fix a pair (A; T) of a commutative
Banach algebra A and a strongly continuous group representation

T:G— Z(A), g—T,

of alocally compact group G as algebra automorphisms of A. Moreover, let S C G
be a fixed closed submonoid, i.e., a closed subsemigroup containing the neutral
element e € G.

Definition 2.12. An S-dynamical Banach module over (A;T) is a pair (I';T)
consisting of a Banach module I" over A and a semigroup representation?

T7T:S—2I), g7,
such that

(1) 7(g) € Z(I') is a T(g)-homomorphism for each g € S,

(ii) 7 is strongly continuous, i.e.,
S—TI, g T(g)s
is continuous for every s € I'.
We call 7= (7(g))ses a weighted semigroup representation on I over T on A.

A homomorphism from an S-dynamical Banach module (I'; 7) over (A;T) to an
S-dynamical Banach module (A; S) over (A;T) is a homomorphism V € Z(I, A)
of Banach modules over A such that the diagram

Vv

Ir—A
r/"(g)l S(g)
r

——A

commutes for each g € S.

2TLe., T7(gh) =T (g)T (h) forall g, h € S and 7 (e) = Idr for the neutral element e € S.
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Starting with the topological case, we now show that dynamical Banach bundles
induce dynamical Banach modules.

Example 2.13. Consider an S-dynamical Banach bundle (E; @) over a topological
G-dynamical system (€2; ¢). For each g € G the Koopman operator Ty(g) := T,
is an automorphism of Cy(£2), see Example 2.6 (i), and g +— T,(g) defines a
representation Ty, = (T,(g))geg of G as operators on Cy(Q2), called the Koopman
representation. It is strongly continuous which is probably well-known, but also
a special case of Proposition 2.14 below. By setting 7o(g) := 7o, for each
g € S, we obtain a T,(g)-homomorphism 75(g) € £ (T'o(2 E)) for each g € S,
see Example 2.6. We call the semigroup representation 7o = (To(g))ges on the
Banach module I'h(Q, E) the weighted Koopman representation induced by (E; @).

Proposition 2.14. Let (QQ; @) be a topological G-dynamical system, A = Cy(Q)
and T = T, the Koopman representation of (Q; ¢).

(i) If (E; ®) is an S-dynamical Banach bundle over (Q; @), then the weighted
Koopman representation T¢ defines an S-dynamical Banach module over
(Co(€2); Ty).

(ii) Foramorphism ®: (E; ®) — (F;¥) of S-dynamical Banach bundles over
(Q; @) the operator Vo € L (To(, E), T'h(, F)) defined by

Vos :i=0Qos fors ely(QLE)

is a homomorphism Vo € L (To(Q, E), To(Q, F)) between the S-dynamical
Banach modules (I'h(, E); To) and (I'o(, F); Tw).

For the proof we need the following lemma.

Lemma 2.15. Consider an S-dynamical Banach bundle (E; ®) over (Q; ¢). Let
K := QU {0} be the one-point compactification of Q and E the extended Banach
bundle of Remark 1.2. Then the following assertions hold.

(i) The extension @ of the flow ¢ to K defined by

¢:GXxK—>K, (gx)— 0 T
()Og(x) xiw,

IS continuous.
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(ii) Serting
0 v € Eg,

®:SxE—E, (gv)—
v v EE,

defines an S-dynamical Banach bundle (E; ®) over (K; ).

Proof. If g € G and L is a compact subset of (2, we choose a compact neighbor-
hood V of g and set U := (V™! - L)°. Then U is cocompact with hy ¢ L for all
h eV andy € U. This shows (i).

Now take £ > 0 and assume that g € S. Since ® is locally bounded, we find a
6 > 0 with ||®y]| < % for every h € VN S. Forv € E with ||v|| < d¢g, pp(v) € U,
and 1 € V. N S we then have pz(®pv) ¢ L and |DOpv]| < g, ie., Opv € U(L, €) in
the notation of Remark 1.2. This shows that @ is jointly continuous. O

Proof (of Proposition 2.14). We first prove continuity of the weighted Koopman
representation in the case of a compact space Q = K. Fix s € I'(K, E) and let
g € Sand € > 0. For x € K the set

Vi=V(@;0s50¢,1,K,e):={veEE]]|v- (Dgs(g_l(p(v)))H < &}
is a neighborhood of (Dgs(g_l x). Since the mapping
SXK—E, (hy)— Ops(y)

is continuous as a composition of the continuous mappings

SXK— SXE, (hy) (hs(y)),
SXE —E, (hv)r Oy,

we find a neighborhood O C S of g and a neighborhood U C K of g~ x such that
®ys(y) e Vioreveryhe Oandy € U, i.e.,

1Dss(y) = Rgs(g™ Ayl < &.

By compactness of K we thus find a neighborhood W C § of g with

sup [[Dps(y) = Des(g™ Ayl < &
yek

for all 4~ € W. But then

sup [|@ps(h~'y) = Dgs(g™ V)| = sup [|@ys(y) = Dgs(g ™ hy))ll < &
yekK yekK
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foreach h e W.

The general case of (i) now follows from Lemma 2.15 and Remark 2.3 and part
(ii) is obvious. O

Example 2.16. Let G carry the discrete topology, (X; ¢) be a measure-preserving
G-dynamical system, A = L*(X)andT = T, the induced Koopman representation
on L¥(X), i.e., Ty(g) := Ty, forevery g € G.

Then every S-dynamical Banach bundle (E; ®) over (X; ¢) induces a weighted
Koopman representation 7o on T'1(X, E) via To(g) := Ty, for g € S which defines
an S-dynamical Banach module over (L*(X); T),).

Moreover, if @: (E; ®) — (F;¥) is a morphism of S-dynamical Banach bundles
over (X; ), then Vgs := @ o s for s € I''(X, E) defines a homomorphism from
(C'(X, E); To) to (T (X, F); Ty).

2.1 AM- and AL-modules

We have seen that topological and measurable Banach bundles induce dynamical
Banach modules and that these assignments are functorial. We now describe the
essential ranges of these functors.

For this we recall a connection between Banach modules and Banach lattices,
observed by Kaijser in Proposition 2.1 of [Kai78] and Abramovich, Arenson, and
Kitover in Lemma 4.6 of [AAK92] in the compact case. We give a new proof for
the locally compact case based on Lemma 1 of [Cun67] and also provide more
details on the lattice structure.

Proposition 2.17. IfQ is a locally compact space, I" a Banach module over Cyo(Q2),
and s € T, then the submodule T's := Cy(Q) - s is a Banach lattice with positive
cone Cy(Q)y - 5. Moreover, we obtain the following for f,g € Cy(Q,R) and
h € Co(Q),

(i) fs < gs ifand only ifflsupp(s) < glsupp(s),
(i) (fsvgs)=(fVg)s
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(iii) (fs Ags)=(fAgs,
@iv) |hs| = |h|s.

If K = C, then T is the complexification of the real Banach lattice Cy(€), R)s.

Proof. Take f, g € Co(Q) with |g| < |f|. We show that || fs]| < ||gs||. Set N :=
2~ 1({0}) and choose an approximate unit (e;);c; for Iy := {h € Co(Q) | h|y = 0}
such that e; has compact support for every i € I. Also define h; € Co(Q2) fori € 1
by

8(x)
j ; N,
hi(x) := () ey X ¢
0, x €N.

Then |h;(x)| < 1 for every x € Q and therefore
llgsll = 1im [lezgs]| = lim [ fs]| < limsup [lAillLfsI] < [lfsll. 2.1
1

We set | fs| := | f]|s for f € Co(2). By the above we obtain for f, g € Co(Q)

£ 1s = lglsll = WA= 1gllsl < Nf = glsll = 1(f = g)sll = 1[5 —gsll.  (2.2)
This implies that | - | : Co(Q)s — Co(Q)s has a unique extension to a continuous
map | - |: Iy — TIs. The only non-trivial part in showing that this defines a

modulus in the sense of Definition 1.1 of [MW74] is to check that the linear hull of
the image |I'y| = Co(€)s is the whole space I's. However, if r = lim,,— f;5 € [y,
then—using (2.1) and (2.2) as well as the formulas for the positive and negative
parts of functions, see Corollary 1 of Proposition II.1.4 of [Sch74]—it is standard
to check that ((Re fi)+$)nen, (Re fu)-5)new, (I fn)+5)new, and ((Im f)-5)nen
are Cauchy sequences and therefore converge in Co(€2),s. This implies that r can
be written as a linear combination of elements of Cy(Q2),s. Moreover, this shows
Co(R)s = Cp(€2)+s — Co(Q)45.

By Proposition 1.3 of [MW74], we obtain that Cy(Q2),s is a cone and defines a
partial order on Co(€2, R)s. Moreover, ||is|| = |||As]||| for every h € Co(Q2) by (2.1)
and thus ||r|| = |||r||| forevery r € T'y. If r,u € T’y with |r| < |ul, we find sequences
(fi)nen € Co(Q) with lim f,,s = r and (g, )nen in Co(Q)+ with lim g, s = |u| — |r|.
But then

7l = 1llrlll = lm [l fulsll < Hm I(Lfal + ga)sll = Nlfael]] = [lee]l.
n—0o0 n—o0o
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By Corollary 1.4 and Theorem 2.2 of [MW74], Iy is a Banach lattice with positive
cone |I5| = Cp(Q)s and | - | as its modulus, and, if K = C, that Iy is the com-
plexification of the real Banach lattice Co(€2, R)s, cf. Section II.11 of [Sch74]. In
particular, (iv) holds and this implies (ii) and (iii) by the usual formulas for vector
lattices, see Corollary 1 of Proposition I1.1.4 of [Sch74]. Finally, if f € Co(2, R),
then fs > 0 if and only if | f|s = fs, i.e., f —|f| € I;. But by Lemma 2.9 this is
exactly the case when flgpp(s) > 0, showing (i). O

We use this observation to introduce different types of Banach modules.

2.1.1 AM-modules

Our first type of Banach modules is based on the concept of AM-spaces, see
[Sch74], Section I1.7.

Definition 2.18. Let Q be a locally compact space. A Banach module I" over
Co(Q) is an AM-module over Cy(QQ) if each submodule I'y = Cy(Q) -5, s € T, is
an AM-space.

Remark 2.19. By Proposition 2.17 a Banach module over Cy(£2) is an AM-module
over Cy(Q) if and only if

max(|| fisll, |l f2s1) = [I(fr v f2)sl

for all fi, f> € Co(Q); and s € T'.

Example 2.20. If E is a topological Banach bundle over a locally compact space
Q, then I'y(€, E), see Definition 1.3, is an AM-module over Cy(Q).

Remark 2.21. (i) AM-modules are also called locally convex Banach mod-
ules, see Definition 7.10 in [Gie82] or Definition 1.1 of [Par0O8], see also
[HoKel7]. By Proposition 7.14 of [Gie82] our definition is equivalent in
the unital case, and using an approximate identity, even in the general set-
ting. Our terminology leads to a duality between AM- and AL-modules, see
Proposition 2.33 below.
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(ii) Given a compact space K, each AM-module over C(K) is isometrically
isomorphic to a space of sections I'(K, E) of some Banach bundle E over
K which is unique up to isometric isomorphy, see Theorems 2.5 and 2.6 of
[DG83]. A similar result holds, and is probably well-known, in the locally
compact case. However, since we did not find a reference for this fact, we
give a proof in Proposition 2.26 below.

We now state and prove our first representation result for dynamical Banach mod-
ules.

Theorem 2.22. Let G be a locally compact group, S C G be a closed submonoid,
and (; @) a topological G-dynamical system. Then the assignments
(E;®) = To(Q E); To)
0 Vg
define an essentially surjective, fully faithful functor from the category of S-

dynamical topological Banach bundles over (Q; @) to the category of S-dynamical
AM-modules over (Co(Q2); Tp).

The proof of Theorem 2.22 starts with the following simple observation.

Lemma 2.23. Let Q be a locally compact space, ¢: QQ — Q a homeomorphism,
and pg: E — Q be a Banach bundle over Q. Then p,: E, — Qwith E, := E
and py = ¢~ o pg is a Banach bundle over Q which has the following properties.

) Thf identical mapping idg: E — E, is a Banach bundle morphism over
[
(ii) If F is a Banach bundle over Q, then a mapping ®: F — E is a Banach

bundle morphism over ¢ if and only if ®: F — E, is a Banach bundle
morphism over idg.

Using these facts, most of the proof of Theorem 2.22 can be reduced to the
non-dynamical case. We first consider single operators.

Lemma 2.24. Let E and F be Banach bundles over a locally compact space Q.
Moreover, let ¢: Q — Q be a homeomorphism and T € L (To(Q, E), TH(Q, F))
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a T,-module homomorphism. Then there is a unique Banach bundle morphism ®
over ¢ with T~ = Tp. Moreover, |®|| = ||T|| and T is an isometry if and only if ®
is isometric.

Proof. Assume that Q = K is compact. Consider the bundle F,, induced by ¢,
see Lemma 2.23. The operator V € Z(I'(K, E),I'(K, F,)) defined by Vs := s 0 ¢
is an isometric and surjective 7, -1-homorphism. Therefore, the operator VI~ €
Z('(K,E),T'(K, F,)) is a (non-dynamical) homomorphism of Banach modules.
By Theorem 2.6 of [DG83] we thus find a unique bundle morphism ®: £ — F,
over idg with

VIs=®os

foreach s € I'(K, E), i.e., ®: E —> F is the unique bundle morphism over ¢ with
Ts=VI!@os)=Posoyp!

for every s € I'(K, E). Moreover, ||®| = ||VT || = ||7|| and @ is isometric if and
only if V7 is an isometry, i.e., if and only if 7~ is isometric, see Propositions 10.13
and 10.16 of [Gie82].

Now suppose that € is non-compact, but locally compact. Let K be the one-point
compactification and ¢: K — K the canonical continuous extension of ¢. The
canonical mapping

I'K,E) — To(LE), s s|o

is an isometric isomorphism of Banach spaces, see Remark 2.3, and therefore 7~
induces an operator 7~ € .Z(I'(K, E), (K, F)). Tt is easy to check that 7 is a T3-
homomorphism and we can apply the first part to find a unique bundle morphism
&: E — E over ¢ with 7(s|q) = (® o s o ¢ 1)|q for every s € I'(K, E). Since
each Banach bundle morphism of E over ¢ has a unique extension to a Banach
bundle morphism of E over @, see Lemma 2.15, the restriction ®|z is the unique
bundle morphism ® over ¢ with 7s := ® o s o0 ¢! for all s € TH(Q, E). The
remaining claims are obvious. O

Lemma 2.25. Let G be a locally compact group, S C G be a closed submonoid,
and (Q; @) a topological G-dynamical system. Moreover, let E be a Banach
bundle over Q and let T: S — L (I'o(Q, E)) be a strongly continuous semigroup
representation such that (Io(, E); T) is an S-dynamical Banach module over
(Co(2);Ty). Then there is a unique S-dynamical Banach bundle (E; ®) over
(Q; ) such that T = 7.

35



Proof. We apply Lemma 2.24 to find a unique bundle morphism ®, over ¢, such
that 7(g) = 7, foreach g € S. Since 7 (1) = Idr, k), we obtain that O(1) = idg.
Moreover, for g1, g> € S we obtain that @ := @, o @, is a bundle morphism over
g, With

T (8182) = T(g1)T (82) = To(81)Ta(82) = Tp-

By uniqueness of @y ,, we therefore obtain
Dy, 0 Dy, = d = Dy g,
To conclude the proof we have to show that the mapping
®:S—EE, g0,

is jointly continuous and that ® is locally bounded. The latter follows since
[|®(g)|l = |7 (g)|| for every g € S by Lemma 2.24 and 7 is locally bounded by
strong continuity and the principle of uniform boundedness.

Now letv € E and g € S. Take s € I'o(Q, E) with s(gpe(v)) = ®,v, & > 0, and an
open neighborhood U of gpp(v). Since @, is continuous, we find § € T'h(, E),
§ > 0 and a neighborhood V of pg(v) such that §(pg(v)) = v and

D, (V(3,V,0)) € V(s,U, &),

see Lemma 1.4. In particular, we obtain g(V) € U and |D,5(x) — s(gx)|| < & for
every x € V. Since ¢ is continuous, we find a neigborhood V C V of pg(v) and a
neighborhood W of g in S such that 1y € g(V) forevery y € V and h € W. Finally,
choose a compact neighborhood W € W of g with

Sup 145(x) = DeF(g™" hx)|| = 1T ()5 - T ()3l < &.
Xe

for every h € W. Then M := sup,cy ||®Pn]| < oo and for h € W and u €
V(3,V, 357), we obtain hpg(u) € U and
1P — s(hpe@))|| < [|Dnll - llu — S(pe(@))ll
+ | ©n3(pE(w)) — ©g3(g ™ hpe(w)

+ | 5(g ™ hpE () — s(hpe ()|
< 3e.

This shows ®,u € V(s,U,3¢) foreach h € W and u € V(3,V, 377) and thus @ is
jointly continuous. O
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Finally, we look at AM-modules.

Proposition 2.26. Let Q be a locally compact space and I an AM-module over
Co(Q). Then there is a Banach bundle E over Q such that I'o(Q, E) is isometrically
isomorphic to I'. Moreover, this bundle is unique up to isometric isomorphy.

Proof. If Q is compact, the claim holds by Theorem 2.6 of [DG83]. If Q is
non-compact, we consider I" as a Banach module over C(K) where K is the one-
point compactification of €2, see Lemma 2.11. Using a similar argument as in
Lemma 2.11 we see that I is then an AM-module over C(K) and we therefore find
a Banach bundle F over K such that ['(K, F) is isometrically isomorphic to I" as a
Banach module over C(K). Moreover, by the proof of Theorem 2.6 of [DG83] we
have F,, = I'/J with

Joo = lin{fs | f € C(K) with f(c0) =0and s € I'}.

Since I is non-degenerate, we obtain Jo, = I" and thus F, = {0}. We can therefore
define a Banach bundle E over Q by setting E := F \ Fy and pg := prlg and it
is clear that F = E. In particular, we obtain an isometric isomorphism of Banach
spaces, see Remark 2.3,

F(K’ F) — FO(Qa E)’ Nl SlQ

and it is then easy to check that I' is isometrically isomorphic to I'h(€, E) as
a Banach module over Cy(Q2). Uniqueness up to isometric isomorphy follows
directly from Lemma 2.24. O

Combining Proposition 2.26 with the preceding Lemmas 2.24 and 2.25 leads to
the proof of Theorem 2.22.

Remark 2.27. Itis not hard to construct an inverse to the functor of Theorem 2.22.
In fact, if I is an AM-module over Cy(Q2), then we obtain the fibers E, of a Banach
bundle E by setting

Je :=1lin{fs | f € Co(Q) with f(x) =0and s € I'},
E.:=T/J

for x € Q, see Section 2 of [DG83] or Section 7 of [Gie82]. Moreover, if ¢: Q —
Q is a homeomorphism and 7~ € .Z(T') is a T;,-homomorphism, then 7" J, C Jy(x)
for every x € Q and therefore 7 induces a bounded operator @, € Z(E,, Ey(y)).
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With these constructions one can assign a dynamical Banach bundle to a dynamical
AM-module (T"; 7). We skip the details, cf. Theorem 2.6 of [DG83].

2.1.2 AL-modules

The dual concept of AM-spaces in the theory of Banach lattices are so-called
AL-spaces, see Section II.8 of [Sch74]. Again we make use of this concept to
introduce a certain class of Banach modules.

Definition 2.28. Let Q be a locally compact space. A Banach module I' over
Co(Q) is called an AL-module over Cy(Q) if I'y is an AL-space for each s € I'.

Remark 2.29. By Proposition 2.17 a Banach module over Cy(2) is an AL-module
over Co(Q) if and only if

I fis + fasll = |lfisll + ([ f2s]l

forall fi, o € Co(Q); and s € T.

Note that if X is a measure space, then L*(X) is isomorphic to C(K) as a Banach
algebra and a Banach lattice for some compact space K. Thus, every Banach
module over L*(X) can be seen as a Banach module over C(K). In particular, we
may speak of AM- and AL-modules over L= (X).

Example 2.30. Let £ be a measurable Banach bundle over a measure space X.
Then (X, E), see Example 2.4, is an AL-module over L*(X).

Remark 2.31. It is tempting to expect that for a measure space X every AL-
module over L*(X) is already isomorphic to a space I'' (X, E) for some measurable
Banach bundle E over X. However, we will see below that this is not the case, see
Example 2.43.

As in the case of Banach lattices, AM- and AL-modules over C(K) are dual to each
other. To formulate this result we first equip the dual space of a Banach module
with a module structure.
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Definition 2.32. Let K be a compact space and I a Banach module over C(K).
Then the dual space I'” equipped with the operation (f - s")(s) := s'(f-s)fors € T,
s’ € I”, and f € C(K) is the dual Banach module of T" over C(K).

It is straightforward to check that the dual Banach module of a Banach module
is in fact a Banach module. We can now make the duality between AM- and
AL-modules precise using the following result due to Cunnigham, see Theorem 5
of [Cun67], though in somewhat different notation.

Proposition 2.33. Let Q be a locally compact space. For a Banach module T" over
Co(Q) the following assertions hold.

(i) T is an AM-module if and only if T is an AL-module.
(ii) T is an AL-module if and only if T is an AM-module.

2.2 Lattice normed modules

2.2.1 Upy(Q)-normed modules

As observed in [Cun67], AM-modules admit an additional lattice theoretic struc-
ture. For a locally compact space €2, we write

UQ) :={f: Q — R | f is upper semicontinuous},
Up(Q):={feUQ) | Ve >03K C Qcompact with |f(x)| < eVx ¢ K},
Up(Q)+ :={f € Uo(Q) | f >0},
and introduce the following concept, see Section 6.6 of [HoKe17] for the compact

case.

Definition 2.34. Let Q be a locally compact space and I" a Banach module over
Co(€2). A mapping
|-]: T — Uo(Q)+

is a Up(Q)-valued norm if
@ sl = lisll,
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@) [fs|=1f1-Isl,

(iii) [s1 + s2| < |s1] + [s2],

for all s, 51,50 € I'and f € Cyp(Q2). A Banach module over Cy(Q) together with a
Uy(Q)-valued norm is called a Uy(Q)-normed module.

Example 2.35. Let E be a Banach bundle over a locally compact space Q. Setting
[s|(x) := ||s(x)|| for x € Q and s € TH(L, E) turns I'x(Q, E) into a Up(Q)-normed
module.

Note that each Uy(Q)-normed module is automatically an AM-module over Cy(Q).
The converse also holds and is basically due to Cunningham in the compact case,
see Lemma 3 and Theorem 2 in [Cun67].

Proposition 2.36. Let Q) be a locally compact space. For a Banach module I over
Co(Q) the following are equivalent.

(a) T is an AM-module over A.
(b) T admits a Uy(Q)-valued norm.

If these assertions hold, then the Uy(Q)-valued norm is unique and given by

|s1(x) = inf{[[fs]| | f € Co(Q)+ with f(x) =1}
Jorx e Qands €T.

Proof. Using Lemma 2.11 and an approximate unit, existence via the desired
formula of the Uy(Q)-valued norm can be reduced to the compact case which is
treated in Lemma 3 and Theorem 2 of [Cun67].

For uniqueness, observe that any Uy(Q)-valued norm | - |: ' — Up(Q); satisfies

|sI(x) < inf{[|fs]l | /€ Co(Q)+ with f(x) =1}

for every x € Q and s € I'. On the other hand, if x € Q, s € ', and £ > 0, we find
a neighborhood U of x such that |s|(y) < |s|(x) + & for every y € U since |s| is
upper semicontinuous. Thus there is f € Co(Q); with || f|| = f(x) = 1 and

1fsll = sup | fs|(y) = sup [f(¥)] - [s](y) < Is](x) + &

yeQ yeQ
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which implies the claim. O

Remark 2.37. The representing Banach bundles of AM-modules I' over Cy(€2)
satisfying |s| € Co(Q) C Up(Q) for every s € I' are precisely the continuous
Banach bundles, see Theorem 15.11 of [Gie82] or pages 4748 of [DG83] for the
compact case; the locally compact case can easily be reduced to this.

We can now state the main theorem of this subsection which shows that the
algebraic and lattice theoretic structures of Uy(Q2)-normed modules are closely
related to each other. Here, we use the notation 7, for the map Up(Q) —

UO(Q)’ f = f o 90_1'

Theorem 2.38. Let Q) be a locally compact space, ¢: Q — Q a homeomor-
phism, and T and A Uy(Q)-normed modules. For T € £ (I, A) the following are
equivalent.

@ T(fs)=Tyf - Ts forevery f € Co(Q) and s € T.

(b) supp(7 s) C p(supp(s)) for every s € T.
©) |Ts| < TNl - Tyls| for every s € T.

(d) There is m > 0 such that |T's| < m - Ty|s| for every s € T..

Moreover, if T = Th\(Q, E) and A = Th(Q, F) for Banach bundles E and F over Q,
then the properties above are also equivalent to the following assertion.

(e) There is a morphism ® over ¢ with T = Tp.
If (e) holds, then the morphism ® in (e) is unique, ||®|| = ||T||, and ® is isometric
if and only if T is isometric.
For the proof we need the following lemma connecting the lattice-valued norm

with the concept of support introduced in Definition 2.8.

Lemma 2.39. Let I" be a Uyg(Q)-normed module. Then

supp(s) = supp(|s|) = {x € Q[ [s[(x) # 0}

for each s € T.
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Proof. Let x € Q with |s|(x) # 0 and f € Co(Q) with f(x) # 0. Then |fs|(x) =
| £1(x)|s](x) # 0 and therefore || fs|| # O.

Conversely, let x € supp(s). Assume there is an open neighborhood U of x such
that |s|(y) = O for every y € U. We then find f € Cy(Q) with support in U and
f(x) = 1. But then |fs| = |f]||s|] = O and therefore fs = 0 which contradicts
x € supp(s). O

Proof (of Theorem 2.38). The equivalence of (a) and (b) holds by Theorem 2.10.
Now assume that (a) and (b) hold and that there is s € I' such that |7 s| £
|71 - Tyls|. We then find x € Q with [[77]| - |s|(x) < |7 s|(¢(x)). Since [s| is
upper semicontinuous, we find £ > 0 and an open neighborhood V of x such that
771 - |s1(z) < |7 s](¢(x)) — € for all z € V. Now take a function f € Cy(Q), with
support in V such that 0 < f < 1 and f(x) = 1. Setting § := fs we obtain

N7 W51 + & = sup 171 f(2) - Isl(z) + &
< T sl(p(x)) = (T f)(@(x) - [T sl(p(x)) = [T (f5)l(¢(x))
< |75,

which contradicts the definition of ||77||. The implication “(c) = (d)” is obvious
and “(d) = (b)” follows from Lemma 2.39. The rest of the theorem follows from
Lemma 2.24. O

Remark 2.40. In view of Proposition 2.36 and Theorem 2.38, the assignments of
Theorem 2.22 also define an essentially surjective and fully faithful functor from
the category of dynamical Banach bundles over a topological dynamical system
(Q; ¢) to the category having as objects pairs of Uy(Q)-normed modules and
semigroup representations of “dominated operators”, in the sense of Theorem 2.38
(c), and as morphisms operators V € Z(I', A) between Uy(Q)-normed modules
such that there is an m > 0 with |Vs| < m - |s| for all s € I" which are compatible
with the semigroup representations.

2.2.2 L!'(X)-normed modules

AL-modules also admit a lattice-valued norm.
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Definition 2.41. Let Q be a locally compact space and I' a Banach module over
Co(€2). A mapping
|- ]: T — Co(Q),

is an Cy(Q) -valued norm if

@ sl = lisll,
@i [fsl=1f1-1sl,
(iii) [s1 + 2| < [s1] + [s2],

for all 5,517,520 € I'and f € Cp(Q2). A Banach module over A together with a
Co(Q)’-valued norm is called a Cy(QQ)'-normed module.

Again the main part of the following result is due to Cunningham in the compact
case, see Theorem 4 of [Cun67]. We give a new proof in the general case and also
provide an explicit formula for the lattice-valued norm.

Proposition 2.42. Let Q be a locally compact space. For a Banach module I over
Co(Q) the following are equivalent.

(a) T is an AL-module over Cy(Q).

(b) T admits a Cy(Q) -valued norm.

If these assertions hold, then the Co(Q) -valued norm is unique and given by
Is|(f) :=||fsl|| forall s € T and f € Co(Q).

Proof. It is clear that (b) implies (a) since Co(€2)’ is an AL-space, cf. Proposition
9.1 of [Sch74]. If (a) holds, we define |s|(f) = ||fs|| forall s € T" and f €
Co(Q),. For every s € T" the map |s|: Co(Q)+ — Ry is additive and positively
homogeneous and therefore has a unique positive extension |s| € A" by Lemma
1.3.3 of [MN91], which obviously also holds in the complex case. Now take an
approximate unit (e;);e; for Co(QQ). Then

sl = lim [le;s]| = lim [s|(e;) = [lIs]ll-

It is clear that |s; + s2| < |s1] + |s2| for all sy, s, € I'. Finally, let f € Cy(Q2) and
s € I'. Then

|fs1(8) = llgfsll = lllg fIsll = IsI(f1g) = (Lf] - [sD(g)
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for every g € Co(Q);. This shows |f - s| = |f] - |s].

To prove uniqueness, let | - | be any Co(Q)’-valued norm on I" and let (¢;);c; be an
approximate unit for Co(€2). Then

/sl =lim|fs|(e;) = lim |s|(fe:) = [s](f)

for each s € I"and f € Cy(Q2),, showing the claim. O

Given a measure space X, we can consider L*(X) as a space C(K) for some
compact space K. If I' is an AL-module over L*°(X), Proposition 2.42 then yields
a lattice-valued norm | - |: I' — L*(X)’,. On the other hand, if E is a measurable
Banach bundle over X, then the mapping

|- THXE) — LX)y, s [Is()]

satisfies properties (i) — (iii) of Definition 2.41 and since L!'(X) embeds canonically
(as a Banach lattice and as a Banach module over L*°(X)) into L*(X)’, this already
defines the unique L*°(X)’-valued norm. In particular, an AL-module over L*(X)
can only be isometrically isomorphic to I''(X, E) for some measurable Banach
bundle E over X if the L*(X)’-valued norm takes values in (the canonical image
of) L'(X). This is not always the case as the following example shows.

Example 2.43. Let X be any measure space and consider I' := L*(X)" as a Banach
module over L*(X). Then I' is an AL-module over L*(X) by Proposition 2.33
since L!(X) is an AL-module over L®(X). The usual modulus | - |: L¥(X) —
L*(X) is given by

|sI1(f) = sup{[s()l [ 0 < g| < f}

for f € L®(X); and s € L*(X)’, see Corollary 1 to Proposition I1.4.2 of [Sch74].
It is easy to see that

sup{ls(g)l | 0 < [g| < f} = sup{|s(¢ /) | 0 < [g| <L} = [ fsl

for f € L™¥(X); and s € L™(X)" and therefore | - | is the unique L™ (X)’-valued
norm. If L'(X) is not finite-dimensional, then L'(X) is not reflexive, see Corollary
2 of Theorem I1.9.9 in [Sch74]. By Proposition 8.3 (iii) and (v) of [Sch74] there
are also positive elemnents in L*(X)” which are not contained in (the canonical
image of) L(X), i.e., there is s € T with |s| € L*(X)" \ L1(X).
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Definition 2.44. Let X be a measure space. An L*(X)'-normed module T is
called an L(X)-normed module if |s| € L'(X) for every s € T..

We now state and prove our second main result. Here a measure space X is
separable if there is a sequence (A, ),en of measurable subsets of Qx such that for
every B € Xx and every € > 0 there is an n € N with ux(A,AB) < &.

Theorem 2.45. Let G be a (discrete) group, S C G be a submonoid, and (X; @) a
measure preserving G-dynamical system with X separable. Then the assignments

(E;®@) — (T'(X,E); To)
O V@

define an essentially surjective, fully faithful functor from the category of S-
dynamical separable measurable Banach bundles over (X; @) to the category
of S-dynamical separable L' (X)-normed modules over (L (X); T, 0)-

We start by showing that separable Banach bundles over separable measure spaces
in fact induce separable spaces of sections.

Proposition 2.46. Let E be a separable measurable Banach bundle over a sepa-
rable measure space X. Then TY(X, E) is separable.

The proof of the following lemma is based on the proof of Proposition 4.4 of
[FD88], see also Lemma A.3.5 of [ADROO] for a similar result.

Lemma 2.47. Let E be a separable Banach bundle over a measure space X and
(Sn)nen in Mg such that lin{s,(x) | n € N} is dense in E, for almost every x € Qx.
Then lin{s, | n € N} generates E, i.e., every s € Mg is an almost everywhere
limit of a sequence inlin{l s, | A € Zx,n € N},

Proof. By the set {s, | n € N} with its linear hull over Q (if K = R) or Q + iQ
(if K = C), we may assume that {s,(x) | n € N} is dense in E, for almost every
x € Qx. Now let s € Mg, € > 0 and set

Ap = {x € Qx [ ls(x) = sa(x)[| < €} € Zx
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for every n € N. Then

Qx \

|

neN

is a nullset. Therefore, ||s(x) — §(x)|| < & for almost every x € Qx where

- sp(x)  x € Ay \ UZ:% Ap,n €N,
S(x) = =
0 else.

Since § is a measurable section with respect to the Banach bundle generated by
lin{s, | n € N}, see Remark 1.14, this shows the claim. O

Lemma 2.48. Let E be a separable Banach bundle over a measure space X. Then
there is a sequence (s )nen in Mg such that

(i) lin{s,(x) | n € N} is dense in E, for almost every x € Qy,
(ii) ux({|sn] # 0}) < oo for everyn € N,

(iii) |sp| = 1y, 120y almost everywhere for every n € N,
Moreover, for any sequence (s,)nen in Mg with properties (i) and (ii), the set
lin{lys, | A€ Zx,n e N} cTH(X, E)
is dense inT'(X, E).

Proof. Let (s,),en be a sequence in Mg satisfying (i). Replacing s, by §,, defined
as

Sa(x) := msn(x) sn(x) # 0,
n : 0 Sn(X) — 0,

for every n € N we may assume that (i) and (iii) hold. Now pick a sequence
(A;)nen of measurable subsets of Qx of finite measure such that

Qy = UAm.

meN

Then ux({|14,,s,| # 0}) < oo for all m,n € N. Replacing (s,),en once again, we
may assume that properties (i) — (iii) are fulfilled.
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Now assume that (s,),cn is a sequence Mg satisfying (i) and (ii) and let s € Mg
with f |s|dux < co. By Lemma 2.47 and Lemma 4.3 of [FD88] we find a sequence

(rn)neN in
M =1lin{llss, | A€ Zx,n e N} C Mg

such that lim,, . 1, = s almost everywhere and |r,,| < |s| almost everywhere for
all n € N. By Lebesgue’s theorem we therefore obtain that the canonical image of
M inT!(X, E) is dense in (X, E). O

Proof (of Proposition 2.46). Using the separability of X, we pick a sequence
(Ap)nen of measurable subsets of Qy such that for every B € Xy and every € > 0
there is n € N with ux(A,AB) < &. Moreover, take a sequence (s,)en as in
Lemma 2.48. For each n € N and every A € Xx we then find an m € N with

1Mas, — lAmSn” < u(AAAy) < &,
This implies that {14, s, | n,m € N} is total in T}(X, E). O

The following result characterizes weighted Koopman operators induced by mea-
surable dynamical Banach bundles similarly to the topological setting, cf. Theo-
rem 2.38.

Theorem 2.49. Let X be a measure space, ¢: X — X an automorphism, and I
and A LY(X)-normed modules. For an operator T € LT, A) the following are
equivalent.

@) T(fs)=Tyf - Tsforall f € L*(X)and every s € T.
) |Ts| < |7 - Tyls| for every s € T..

(c) Thereis an m > 0 such that |Ts| < m - T,|s| for every s € T..

Moreover, if T = TY(X, E) and A = TY(X, F) for Banach bundles E and F over X
with E separable, then the above are also equivalent to the following assertion.

(d) There is a morphism ®: E — F over ¢ such that T = Tp.

If (d) holds, then the morphism ® in (d) is unique,
|@]: Qx — [0,00), x> [[Dy|
defines an element of L*(X) and
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o sup{|Tos| | s € (X, E) with |s| < 1} = T,|®| € L*(X),
o [|[®] = [|[Tollr~x.5) = [ Tollr1(x.E)
o @ is an isometry if and only T € L(TY(X, E), T\ (X, F)) is an isometry.

Proof. We write ( -, - ) for the canonical duality between L' (X) and L*(X). Now
assume that (a) is valid and take s € I". For each f € L*(X) with f > 0 we obtain

AT sl )y = W Tsll = 1T (T-1.£) - 9l
ST NTgmr f = sll = 1T - CIsl Ty f) = NN - Tl sl f)

since ¢ is measure-preserving. Thus, [7Ts| < ||77]| - Tyls].

The implication “(b) = (c)” is clear. Now assume that (c) holds. Since X is o -
finite, we find measurable and pairwise disjoint sets A, € Xx with finite measure
for n € N such that

Qx = JAn

neN
For fixed n € N consider the submodules

Tyi={s €l |1als| = |s| e LX)} €T,
An={s € A| Lya,ls| = |s| € L*(X)} C A.

We define [|s]lco := [||s][lL~(x) for s € T, and s € A, respectively. We show that
this turns I, and A, into Banach modules over L*(X). If (s;;)men is a Cauchy
sequence in I, with respect to the norm || - ||, then it is also a Cauchy sequence
with respect to the norm of I'. By completeness of I' there is s € I" such that
lim;, e = s in I'. Using that there is a subsequence (s, )ken Of (Sm)men such
that |s,,, — s| — 0 almost everywhere, it follows that s € I';, and lim,,—e0 Sy = §
with respect to || - ||. Thus, I';,—and likewise A,—is a Banach module over
L*(X). Moreover, 7 |r, € Z(I'n, Ay) by (c). Choose a compact space K and
an isomorphism V € .Z(L*(X), C(K)) of Banach algebras and lattices. We then
consider I, and A, as Banach modules over C(K) via V~! and see that the mappings

I, — CK) s+ V]s|

A, — C(K), s V]s|
turn I, and A,, into U(K)-normed modules. Moreover, since every algebra iso-
morphism on C(K) is induced by a homeomorphism on K, we can apply The-

orem 2.38 to the VTwV_l—homomorphism TIr, € £y, Ay). This shows that
T(fs)=T,f) - Tsforall f € L(X)and s € T,.
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Take f € L*(X) and s € I" with |s| = 14,|s|. Then s = lim,,—co L{js|<m}s inT" and
therefore

T(fs)= lim T(fs1<mys) = W}i_r}go(Tgof) T (Mgs1<cmys) = Ty f) - Ts.

Finally, we obtain for arbitrary s € I"and f € L*(X)

N N
T(fs)= lim T(fZﬂAns) = lim > 7(f14,5)
n=1 n=1

N
= lim T,f - Tla,s =Tof - Ts.

N—oo
n=1

This shows (a).

Now assume that " = T''(X, E) and A = T''(X, F) for measurable Banach bundles
E and F over X with E separable. We let Q := Qif K = R and Q := Q +iQ if
K = C. Now take a sequence (s,),en as in Mg satisfying conidtions (i) — (iii) of
Lemma 2.48 and set

H, :=ling{sx(x) | k € N}

for every x € Qy.
Let 7~ be a T,,-homomorphism. Choose a representative for ¢ (which we again

denote by ¢) and a representative r,, € My of 7°s, € I''(X, F) for each n € N. By
(b) we obtain

VAR (2.3)

N N
(Z qkrk) (p(x)) (Z qksk) ()
k=1 k=1

for all (q1,....,qn) € OV, N € N, and almost every x € Qy. For almost every
x € Qx we therefore find a unique Q-linear map ®,: H, —> Hy,) such that
D,5,(x) = (ry)(p(x)) for every n € N. By (2.3) and property (i) of Lemma 2.48
it has a unique extension to a bounded operator ®, € Z(E,, F,) for almost every
x € Qx. Weset @, := 0 € ZL(E,, Fy(y)) for the remaining points x € Qx and
obtain a mapping

O E—F, v ®p V.

Since ®o(14-s,) = (Lya)-7n)o ¢ almost everywhere for every n € N and every set
A € Xy, we can apply Lemma 2.47 to see that for each s € Mg thereisar € Mg
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with ® o s = r o ¢ almost everywhere. This shows that @ defines a morphism
of measurable Banach bundles over ¢ and we denote this again by ®. Moreover,
Tosn, = T s, and, since {l4s, | n € N, A € Zx} defines a total subset of I''(X, E)
by Lemma 2.48, we obtain 7 = 7¢. Thus (a), (b) and (c) imply (d). The converse
implication is obvious.

Now let ®: E — F be a morphism over ¢. As usual, we pick a representing
premorphism whenever necessary. Using Lemma 2.48 and standard arguments
we find a sequence (5,),en in Mg such that

* |§,] < 1 almost everywhere for every n € N,

o ux({|3,| #0}) < oo forevery n € N,

* {3n(x) | n € N} is dense in the unit ball Bg, of E, for almost every x € Q.

Then -
|®|g, || = sup [|@]g, 5n ()|

neN

for almost every x € Qx. Thus, Qy — R, x — ||®g || is measurable and |D|
defines an element of L*(X) of norm ||®|].

Clearly, |7os| < T,|®| for every s € I'°(X, E) with |s| < 1. On the other hand,

T |®(x) = [0 _, Il = sup (Dl _, 5:(e™ @) = sup (T3,

neN neN

for almost every x € Qx. This shows
T,|®| = sup{|Tas| | s € (X, E) with |s| < 1}. (2.4)

Moreover,

|@[| = esssup,eq, sup [[(To5,)(x)|| = supesssup,cq, [[(ToS)(x)|l
neN neN

= sup [|[ToSullr=x.e) < [0 llr=(x,E),
neN

and || 7ollr=(x.z) < [[®]] is clear, hence || Tollr=x.£) = [|P]|-

Now pick s € T'°(X, E) with |s| < 1. For every measurable set A € Xy with finite
measure

L4|Tos| = |7&)(T<;11A =9)| < | Tollrx.g) - T¢|(T;11A | < Tollrx ey - 1a
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by (b). Since X is o-finite, we obtain [|®|| < [|Tollrix.g) by (2.4), and the
inequality ||7llri(x,g) < ||P|| is obvious. Therefore,

@] = 1o llr~x.£) = 1T llr1(x.£)

and, since the difference of premorphisms over ¢ is again a premorphism over ¢,
this equality also proves the uniqueness of @ in (d).

If @ is an isometry, then clearly 73 € Z(T''(X,E),T''(X, F)) is an isometry.
Assume conversely that 7p is an isometry. We already know that ®@|g, is a
contraction for almost every x € Qx. Assume that there is a set A € Xx with
positive measure such that @|g_ is not an isometry for every x € A. We then find
ann € N and a set B € Zx with positive measure such that || ®|g_3,(x)|| < ||5.(x)]|
for every x € B. This implies

| To8nll = / IDle, Sn (Ol dpux < / 152COll dpax = (|5 ll,
X X

a contradiction. O

Since we have not employed any continuity assumptions on dynamical measur-
able Banach bundles, we immediately obtain the following consequence of Theo-
rem 2.49.

Corollary 2.50. Let G be a (discrete) group, S C G be a submonoid, and (X; ¢) a
measure-preserving G-dynamical system. Moreover let E be a separable Banach
bundle over X and let T: S — Z(T''(X, E)) be a semigroup representation such
that (TY(X, E); T) is an S-dynamical Banach module over (L®(X); T,). Thenthere
is a unique dynamical Banach bundle (E; ®) over (X; ¢) such that T = 7.

Finally, we use a result of Gutmann [Gut93b] to represent L' (X)-normed modules.

Proposition 2.51. Let X be a measure space and T an LY (X)-normed module.
Then the following assertions hold.

(i) There is a measurable Banach bundle E over X such that T'(X, E) is iso-
metrically isomorphic to T'.

51



(ii) If T is separable, then there is a separable Banach bundle E over X such
that TY(X, E) is isometrically isomorphic to T. Moreover, E is unique up to
isometric isomorphy.

Proof. In the real case, 7.1.3 of [Kus00] shows that the space I is in particular a
Banach—Kantorovich space over L!(X), see Chapter 2 of [Kus00] for this concept,
and we find a measurable Banach bundle E over X such that I' is isometrically
isomorphic to I''(X, E) as a lattice normed space by Theorem 3.4.8 of [Gut93b]3.
If we start with a complex L! (X)-normed module, the proof of this theorem reveals
that the constructed Banach bundle E is canonically a Banach bundle of complex
Banach spaces and that the isomorphism of I" and r! (X, E)is C-linear, see Theorem
3.3.4 of [Gut93b] and Theorems 2.1.5 and 2.4.2 of [Gut93a]. In any case, we can
apply Theorem 2.49 to see that this isomorphism is an isometric Banach module
isomorphism.

Now assume that I' and therefore I''(X, E) is separable. Let (s,)ncx be dense in
I'l(X, E) and choose a representative in Mg for each s, which we also denote by
s,. We define a new measurable Banach bundle by setting F, := lin{s,(x) | n € N}
for every x € Qy and

Mg = {s € Mg | s(x) € F, forevery x € Qx}.

Then
V:TYX,F) > TYX,E), sr>s
is an isometric module homomorphism. However, since s, € r! (X, F) for every

n € N, V is in fact an isometric isomorphism. Clearly, F is separable. Uniqueness
up to isometric isomorphy follows immediately from Theorem 2.49. O

Combining Proposition 2.46, Corollary 2.50, Theorem 2.49, and Proposition 2.51
now readily yields Theorem 2.45.

Remark 2.52. Note that in contrast to the topological setting, the construction of
the representing separable measurable Banach bundle is not canonical and involves
choices.

3Note that the definition of measurable Banach bundles by Gutmann slightly differs from
ours. However, every measurable Banach bundle in the sense of Gutmann canonically defines a
measurable Banach bundle in our sense having the same space I'' (X, E).
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Part 11

One-parameter semigroups of
weighted Koopman operators
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In this part, we investigate an important special case of the objects presented in
Part I: strongly continuous one-parameter semigroups of weighted Koopman oper-
ators on Banach modules of continuous sections, cf. Definition 3.5. We adapt the
results from the previous part and give additional characterizations of weighted
Koopman semigroups, cf. Theorem 3.8 and Theorem 3.12. In Chapter 4 we inves-
tigate the spectrum of weighted Koopman semigroups and of their generators, cf.
Theorem 4.13, which leads to a characterization of hyperbolicity in Chapter 35, cf.
Theorem 5.8. Part II constitutes a mostly self-contained presentation of the topic
and may therefore be read independently of Part I.

Our main references are [ENOO] for Cy-semigroups, [EFHN15] for Koopman-
ism, and [Gie82], [DG83], [AAK92], and Part I for Banach bundles and Banach
modules.

The results in Chapter 3, 4, and 5 are based on joint work with Henrik Kreidler.
Chapter 6 is based on joint work with Nikolai Edeko and Henrik Kreidler.
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Chapter 3

Weighted Koopman semigroups on
spaces of continuous sections

In Part I we introduced weighted semigroup representations on AM-modules, see
Definition 2.12, and gave several characterizations of such semigroup represen-
tations, cf. Theorem 2.22, Theorem 2.45, and Theorem 2.38. In this chapter,
we turn to the special case of Cy-semigroups and include the generator and the
resolvent into the characterization of weighted Cyp-semigroups, see Theorem 3.8
and Theorem 3.12.

The results in Section 3.3 and 3.4 are joint work with Henrik Kreidler.

3.1 Koopmanism

We start from a compact space K and consider the associated Banach space C(K)
of all scalar-valued continuous functions on K. Pointwise multiplication turns
C(K) into a commutative C*-algebra with unit.

Conversely, the Gelfand theorem states that for each commutative C*-algebra A
with unit there exists, up to isomorphy, a unique compact space K such that

A = C(K),
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see, e.g., Theorem 4.23 of [EFHN15] or Section 1.4 of [Dix77].

Furthermore, under the natural pointwise order, C(K) becomes a Banach lattice
and even an AM-space with unit. By Kakutani’s theorem each such space, in
particular, the dual of any AL-space, is isomorphic to some C(K), see Section I1.7
and I1.9 of [Sch74].

As a consequence of the Gelfand and the Kakutani theorem, all properties of the
topological space K correspond to algebraic and lattice-theoretic properties of
C(K) and vice versa, cf., e.g., [Ede20], Proposition 2.2.

For certain dynamics on K and on C(K) we obtain a similar correspondence. A
topological dynamical system (K; ¢) is a continuous group action

¢:RxK— K, (t,x) ¢(x)=e(t,x)

of the group R on a compact space K. We call ¢ = (¢;);cr a (continuous) flow on
K. To each topological dynamical system corresponds a Cop-group (7,(t));ecr on
C(K) defined by

Ty(t)f = fop_, forall feC(K)teR.

This global linearization (7,;(t));cr of the flow is called a Koopman group and its
generator is denoted by (9, D(6)). This change of perspective enables an elegant
translation of properties of topological dynamics into functional analytic poperties,
see, e.g., [EFHN15], Theorem 16.36. Koopman groups are systematically treated
in, e.g., Part B of [Nag86] or Chapter 16 of [BKR17] and the time discrete case in
Chapter 4 of [EFHN15].

As abasic result we recall that such Koopman groups on C(K) can be characterized
in various ways, cf. Part B-II of [Nag86], Theorem 3.4.

Theorem 3.1. For a Cy-group (T(t));ecr on C(K) with generator (5, D(5)) the
following assertions are equivalent.

(i) There is a topological dynamical system (K; (¢;)ier) such that T(t) = Ty(t)
forallt e R.
(ii) Each operator T(t) is a *-homomorphism with T(t)1 = 1.

(iii) Each operator T(t) is a Markov lattice homomorphism.
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(iv) The generator (6, D(9)) is a derivation on C(K), i.e., D(8) is a subalgebra
of C(K) with 1 € D(6) such that

o(fg)=06f-g+ f-06g forall f,g € D(9).

3.2 Spaces of continuous sections

In the following, we consider Banach bundles E over a compact space K, cf.
Definition 1.1, and Banach modules I" over the C*-algebra C(K), cf. Definition 2.1,
as introduced in Part 1. In this section, we recall the basic properties of Banach
modules induced by Banach bundles, i.e., spaces I'(K, E) of continuous sections
of E, see Definition 1.3. Furthermore, we restate a representation theorem from
Part I in the present situation, see Theorem 3.3. For the theory of Banach bundles
and Banach modules we refer to [Gie82], [DG83], [HoKel7], or [Cun67] and Part
L.

Endowing the space of continuous sections ['(K, E') with the operation
< CK)XI(K,E) = (K, E),  (f,s) = f-s:=[x— f(x)s(x)],
the norm || - || defined by

lIsll == sup [[s(x)ll, s € T(K,E)
xek

and the mapping
|-]:T(K,E) — U(K); := {f: K — R | f is upper semicontinuous, f > 0}
s = [x = [[s(oll],

we obtain the following properties.

Proposition 3.2. The space of continuous sections I'(K, E) is an AM-module,
see Definition 2.18, and a U(K)-normed module over C(K), see Definition 2.34.
Moreover, the following holds.

(i) For eachv € E there exists s € I'(K, E) such that s(p(v)) = v.

(ii) For each vy, v, € E with vy # vy and p(vy) # p(vy) there exists s € ['(K, E)
such that s(p(vy)) # s(p(12)).
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(iii) The lattice-valued norm | - | satisfies |s| € C(K) for all s € I'(K, E) if and
only if E is continuous.

Proof. The structure properties of I'(K, E) are obvious, cf. Example 2.20 and
Example 2.35 of Part I. Assertion (i) follows by Corollary 2.10 of [Gie82] and
implies (ii). For (iii), see Remark 2.37. O

In Part I we proved in a more general setting that each AM-module and each
lattice-normed module over C(K) can be represented as a space of continuous
sections, see Proposition 2.26 and Proposition 2.36. We recall this result in this
situation.

Theorem 3.3. For a Banach module T over C(K) the following assertions are
equivalent.

(a) T is an AM-module over C(K).
(b) T is a U(K)-normed module over C(K).

(¢) There exists, up to isometric isomorphy, a unique Banach bundle E over K
such that T is isometrically isomorphic to T'(K, E).

If these assertions hold, then the U(K)-valued norm in (b) is unique and given by
|s|(x) = inf{|| fs]| | f € C(K)+ with f(x) = 1}

forsel, xeK.

3.3 Algebraic characterization of weighted Koop-
man semigroups

In this section, we show that the dynamics on the “bundle side” corresponds to
the dynamics on the “module side”. On the bundle side we start from a semi-
flow (®;);0 over (¢;);cr Oon E over K, see Definition 1.8. We then introduce a
corresponding Cy-semigroup (7o(2));>0 on the Banach module I'(K, E) of contin-
uous sections of E over the Koopman group on C(K), see Definition 3.5. The
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main result is an algebraic characterization of this Cp-semigroup and an additional
characterization by means of its generator, see Theorem 3.8. Finally, we discuss
typical examples.

We start with the definition of dynamics on the Banach module I'(K, E) over the
Koopman group (7,(t));er on C(K), cf. Definition 2.12.

Definition 3.4. A Cy-semigroup (7 (¢))so on I'(K, E) is called weighted semigroup
over (T,(t))ser if each operator 77(¢) is a T,,(t)-homomorphism, i.e,

T @) fs)=Ty(t)f -T(t)s forallse'(K,E),fe€C(K), andt > 0.

We now define a Cy-semigroup on I'(K, E) induced by a semiflow over (¢;);er
on a Banach bundle E over K. To this end, we reformulate Example 2.13 in the
context of Cp-semigroups.

Definition 3.5. Let @ be a Banach bundle morphism over a homeomorphism ¢
on a Banach bundle E over K. The weighted Koopman operator To on I'(K, E)
induced by ® and ¢ is defined by

Tos :=DPosop !, sel(K,E).

An operator family (7¢(?));>0 on I'(K, E) is called weighted Koopman semigroup
if there is a semiflow (®;);> over a flow (¢;);cr on E over K such that

Jo(t)s =D®,0s50¢p,, sel(K,E), t>0.

The following proposition justifies this terminology and states the main properties
of such operator families.

Proposition 3.6. The family (70(t)):>0 of linear operators on I'(K, E) induced by
a semiflow (®;);>0 over (¢;)rer on E over K has the following properties.

(1) (To())s>0 is a Cy-semigroup on I'(K, E).
(ii) The operators To(t) are T,(t)-homomorphisms.

(iii) The generator (A, D(A)) of (To(t))i>0 is a d-derivation on I'(K, E), i.e.,
D(A) is a D(6)-submodule of T'(K, E) and

A(fs)=0f-s+ f-As forall f € D(S),s € D(A).
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Remark 3.7. Assertion (i) and (ii) of the above proposition are a special case of
Proposition 2.14 and Example 2.6 of Part I. However, we give a direct proof in this
special situation.

Proof. For (i), it suffices to show that
t Talt)s = B, 050 ¢

is continuous in O for all s € ['(K, E), see [ENOO], Proposition 1.5.3. Since the

mappings
IR+ X K — I&+ X K7 (t7 x) = (t7 QO_t(X)),

R+ X K — R+ X E7 (t? x) = (t’ S(‘x))’
R, XE —E, (t,v) > O,

are jointly continuous, their composition
R-I— XK — E9 (t9 .X) = (Dls(go—l‘(-x))a
is jointly continuous, too. Therefore, and since || - || is upper semicontinuous,

[®; 05 0@ = sl = sup || D:s(¢-(x)) = s(x)|

xekK

tends to zero as t — 0.

For assertion (ii), let f € C(K), s € ['(K, E). We have

To()(f$)(x) = s (@ (x))(f (@-1(x))s (- (x))
= f(@-1(x)) - D1 (x))s(¢-(x))
= (To(1) /)(x) - (Ta(1)$)(x)

forallx e K, t > 0.

For (iii), take f € D(6), s € D(A). Then

Tq - i) T, - To(t)s —
d)(t)(fts) fs (ii) w(f){ f o) + f - d)(t)ts s
convergestoof - s+ f - As fort — 0. O

We recall that a morphism ® from a semiflow (®;);>0 over (¢;);er on a Banach
bundle E over K to a semiflow (¥;);>0 over (¢;);cr on a Banach bundle F over
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K, cf. Definition 1.6, induces a homomorphism Vg from the weighted Koopman
semigroup (7o(1));>0 on I'(K, E) to the weighted Koopman semigroup (7¢(?));>0
on ['(K, F), cf. Definition 2.12, via

Vos :=@®os foralls e I'(K,E),

cf. Proposition 2.14.

The “bundle dynamics” and the “module dynamics” correspond to each other.
More precisely, each weighted semigroup over (7,(¢));cr on I'(K, E) over C(K)
can be uniquely represented as a weighted Koopman semigroup. We reformulate
Theorem 2.22 for Cy-semigroups and give an additional algebraic characterization
via the generator of the semigroup.

Theorem 3.8. Fora Cy-semigroup (T (t));s0 onT'(K, E) with generator (A, D(A))
the following assertions are equivalent.

(@) (7(1))>0 is a weighted Koopman semigroup on I'(K, E), i.e., there exists a
unique semiflow (®;);>0 over (¢;)ier on E over K such that T (t) = To(t) for
allt > 0.

(b) The operators T (t) are T,(t)-homomorphisms for all t > 0.

(¢) The generator (A, D(A)) is a 6-derivation on I'(K, E), i.e., D(A) is a D(6)-
submodule of T'(K, E) and

A(fs)=0f-s+f-As

forall f € D(6), s € D(A).

Moreover, if these assertions hold, then the semiflow (®;);> in (a) is unique,
satisfies ||To(t)|| = ||D;|| forallt > 0, and To(t) is an isometry if and only if ®; is
isometric.

Proof. By Proposition 3.6 (ii) assertion (a) implies (b) and the proof of Proposi-
tion 3.6 (iii) yields the implication “(b) = (c)” .

Assume that (c) holds and take f € D(5), s € D(A), and t > 0. We define
E(r) =Tt —r)Ty(r)f - T(r)s) for r € (0,¢). By Lemma B.16 of [ENOO] the

63



function ¢ is differentiable on (0, #) with

§'(r) = =T (t = r)ATy(r)f - T(r)s)
+ T (@t =) 0T (r)f - T (r)s + Ty(r)f - AT (r)s)
=0
for every r € (0,1). Thus, Ty (¢)fT (t)s = &£(t) = €(0) = T(¢)(fs). Since D(9) is
dense in C(K) and D(A) is dense in I'(K, E), assertion (b) follows.

For the implication “(b) = (a)” we refer to Part I, Lemma 2.25. The remaining
assertions of the theorem follow by Lemma 2.24. O

Remark 3.9. Starting from a weighted semigroup (77(¢));>0 over (T,(t));er On
some AM-module I" over C(K), see Definition 2.18, we construct the semiflow
(Dy)s>0 over (¢;);er on some Banach bundle E over K such that

T(t) = TJp(t) foreacht >0
onI = I'(K, E). Recall that E = |J,cx Ex with Eyx =T'/J, and

Je =lin{fs | f € C(K) with f(x) =0and s € T’}

as in Remark 2.27 is the, up to isometric isomorphy, unique Banach bundle such
that I' = I'(K, E). Then 7(t)J, € Jg,(x) for each x € K. For the canonical
quotient map g,: I' — I'/Jy, each operator 7 (¢) induces a bounded operator
O,(x) € ZL(E,, Ey, (x)) via

D:(x)qx () 1= Gy, (x)(T (1)5).

This yields the unique semiflow (®;),>o over (¢;);cr on E over K with 7 (¢) = Tp(1),
see [DG83], Section 2, [Gie82], Section 7, or Remark 2.27 of Part 1.

Remark 3.10. The equivalence “(a) < (b)” of Theorem 3.8 also holds for a
single operator 7 € Z(I'(K, E)). Let ¢: K — K be a homeomorphism, then the
following assertions are equivalent.

(a) The operator 7~ is a T,-homomorphism, i.e., 7(fs) = Tof - T s for all
feCK),sel'(K,E).

(b) There is a unique Banach bundle morphism @ over ¢, see Definition 1.6,
such that 7 = Jg,ie., Ts =P oso ¢ ! forall s € I'(K, E),
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cf. Example 2.13 and Lemma 2.24.

Here come four classes of typical examples for the above objects, see also Exam-
ple 1.12.

Example 3.11. (i) We start with the classical case of an invertible, scalar-

(ii)

valued cocycle (®;);cr over a flow (¢;);er On a compact space K, i.e., a
family (®;);cr € C(K) of continuous functions on K such that

DO,y =(D;0¢,) Dy forallt,r €R,

Dy(x) =1 forall x € K

and the mapping
RxK—R, (tx)— D(x)

is continuous, see, e.g., [Nag86], Section B.11.3 and the references therein.

Consider the weighted Koopman group (7¢(?));cr on C(K) defined by
TJo(t)f =@, - (fop_,) forallteR, f e CK).

By Proposition 3.8 of Part B.II. of [Nag86] the weighted Koopman group
is a Cp-group. It is a group of positive operators if and only if the cocycle
(Dy)ser consists of positive functions, see Theorem 3.6 of [AG84] and Part
B.II. of [Nag86], Proposition 3.9.

Such scalar-valued cocycles and the associated weighted Koopman groups
occur in many different situations, cf., for example, disjointness preserving
operators [AH86], Lamperti operators [ Are83], or weighted endomorphisms
[UhI&6].

Consider a topological dynamcial system (K, (¢;);cr), @ Banach space Z,
and the trivial Banach bundle E = K X Z over K, with p the projection
onto the first component. Let (®);>o be a family of bounded operators
{D'(x) e L(Z) | x € K, t > 0} such that

(a) the mapping K XR, — Y, (x, 1) — ®'(x)vis continuous forall v € Z,

(b) O (x) = D'(p,(x))P"(x) for all £, > 0 and ®°(x) = idy for all
x € K.
By the principle of uniform boundedness, (®7),5 is exponentially bounded,

i.e., there exists M > 0 and w > 0 such that ||®'(x)|| < Me*' forall t > 0,
x € K.
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(iii)

The linear skew-product flow (®,);>0 on K X Z associated with (®');er,
defined by

RiXKXZ—KXZ, (x,v) Ox,v) := (gi(x), D' (x)v),

is a semiflow over the flow (¢;);cr on K X Z over K, cf. [CL99], Section 6.2.
The family (@), is called cocycle over (¢;);cr. In this situation, there is
a one-to-one correspondence between a cocycle and a linear skew-product
flow.

The cocycle then induces a weighted Koopman semigroup (7¢(?));>0 on
I'(K, E) = C(K, Z)—also called evolution semigroup—via

To()s = O 050 ¢,

forall s € C(K,Z),t > 0, see [CL99], Section 6.2.

As a particular case, we can take K := R U {co} and the flow (¢;);cr on K
defined by
X +t, x €R,

00, X = 00,

@r(x) = {

for all ¢+ € R. Then, an exponentially bounded evolution family (U(t,r))s>r
on a Banach space Z, see Definition VI.9.1 of [ENO0O], defines a semiflow
(@;)r>0 over (¢;)rer on K X (Z U {0}) over K by

0,

U(x +t x), xeR >0,
(Dt(x)::{() oot

see Remark 1.2 and Lemma 2.15.

The associated evolution semigroup on I'(K,Z U {0}) = Cy(R,Z) is a
weighted Koopman semigroup, see, e.g., [ENOO], Section VI.9, or [Nic97],
Section 1, and Remark 2.3.

For more results on evolution semigroups, their application to non-auto-
nomous abstract Cauchy problems, and further examples we refer to, e.g.,
[Rau94], [BV19], [LS06], or [RRS96].

Let (¢;);er be a smooth flow on a compact Riemannian manifold M without
boundary, E = TM the tangent bundle of M, and ®; = d¢; the differential of
@i, t € R, see [Leel3], Chapter 3, p. 68. The weighted Koopman operators
Tae(t) on I'(M,TM) are pushforward operators, see [Leel3], Chapter 8,
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@iv)

p. 183, for the definition of a pushforward of a vector field. We call the group
(7a¢(t))ser the pushforward group. In Chapter 6 we investigate pushforward
groups in more detail.

Finally, we consider a construction from topological dynamics, see, e.g.,
page 30 of [Kna67] or Section 5 of [EllI87] or [EK20]. Let

m: (L; (W)ier) — (K (¢1)1er)

be an extension of the topological dynamical system (K;(¢;)er), i-€.,
(L; (1 )ier) is another topological dynamical system and 7 : L — K a
continuous surjection such that the diagram

commutes for each ¢ € R. We consider L, := 7~ !(x) for each x € K, define

E:= U C(L,),
xek
p:E— K, C(Ly)> [+ x

and endow this with the topology generated by the sets

Wis, U,e) = {f € p O | If = sli,p e, < &)

where U C K is open, s € C(L), and € > 0. Then p: E — K is a Banach
bundle and the induced Banach module I'(K, E) is isomorphic to C(L), see
Theorem 4.2 of [Gie82].

For each r € R consider

q)[: E — E, C(Lx) B f = f o w_t S C(LQD;(X))'
This defines a flow (®;);cr over (¢;)er. The induced weighted Koopman
group (7o(t))ser is isomorphic to the Koopman group (7 (¢));er induced by
the flow (;);er on L.
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3.4 Lattice-theoretic characterization of weighted
Koopman semigroups

Inspired by the scalar-valued case, see the paper Resolvent positive operators by W.
Arendt, [Are87], we add order-theoretic characterizations of weighted Koopman
semigroups.

Let (K (¢)ier) be a topological dynamical system, (7,(¢));er the corresponding
Koopman group on C(K) with generator (8, D(6)), and I'(K, E) the space of con-
tinuous sections of a Banach bundle E over K on which we consider a weighted
Koopman semigroup (7o(?)):>0-

We reformulate Theorem 2.38 for a Cp-semigroup and give an additional character-
ization via its resolvent analogous to the scalar-valued case, cf. [Are87], Theorem
2.6.

Theorem 3.12. Let (7 (t));>0 be a Cy-semigroup on TU'(K,E) with generator
(A, D(A)). If the Banach bundle E over K is continuous, then the following
assertions are equivalent.

(@) (7(t))=0 is a weighted Koopman semigroup, i.e., there exists a unique
semiflow (®;);=0 over (¢;)ier on E over K such that T (t) = To(t) for all
t>0.

(b) The operators T (t) are T,(t)-homomorphisms for all t > 0.
(c) supp(7(t)s) C ¢/(supp(s)) forall s e T(K,E), t > 0.
@) [T @)s| <T@ - Tp(t)ls| forall s e I'(K, E), t > 0.

(e) For each t > O there is m; > 0 such that |T(t)s| < my - Ty|s| for all
s e I'(K, E).

(f) Thereis w € R and M > 1 such that (w, ) C p(A) with
|R(A, A)'s| < M - R(A — w, 6)"|s]
foralls e T'(K,E), A > w, andn € N,

Proof. For the first part of the theorem we refer to Theorem 2.38.

It remains to show that for a continuous Banach bundle E over K the assertions
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(a)—(e) are equivalent to (f). For “(d) = (f)” let M > 1 and w € R such that
|7 (1)]] < Me“" for all ¢ > 0. By Corollary II.1.11 of [ENOO] we obtain
1

(n—1)!
1

< (n—1)! /0 eI T ONT,(r)ls|dr
M

® n—1_—(1-w)r
< (n—l)!/o r" e Ty(r)|s|dr

=M -R(A-w,0)"|s|

IR(A, A)Y's| < / Ir e (r)s| dr
0

foralls e I'(K,E),t > 0,and n € N.

Conversely, assume that (f) is true. Then, by the Post-Widder inversion formula,
see Part III, Corollary 5.5 of [ENOO],

o= am ()

. n n " wt
< lim M - (;R(;,6+w)) Is| = Me“'T,(1)|s|

n—oo

forallz > 0,5 € I'(K, E). O
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Chapter 4

Spectral theory for weighted
Koopman semigroups

Spectral theory plays a key role for the investigation of the qualitative behavior of
a Cp-semigroup on a Banach space. In this chapter, we prove surprising symmetry
properties of the spectrum of weighted Koopman semigroups on Banach modules.
In particular, we obtain a strong spectral mapping theorem (cf. [ENOO], Section
IV.3) for such semigroups. We refer to [ENOO], Chapter IV, for the spectral theory
for Cp-semigroups.

The chapter is organized in the following way. First, we recall results for the
“non-weighted case”, i.e., spectral properties of Koopman groups on scalar-valued
function spaces and spectral properties of their generators, cf. [Sch74], [Der79],
[AG84], [AH86], and [Nag86]. Based on these results we investigate the spectrum
in the “weighted case”, i.e., the spectrum of weighted Koopman semigroups and
their generators. We first consider the time-discrete case and then pass on to the
time-continuous case.

The results in Section 4.2 are joint work with Henrik Kreidler.
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4.1 The non-weighted case

First, we collect properties of the spectrum of a single Koopman operator on the
space of continuous functions C(K) on a compact space K. Then, we consider the
spectrum of a Koopman group and its generator.

4.1.1 Koopman operators

We start from the classical Perron-Frobenius spectral theory for positive operators
as developed in [Sch74] and consider the Koopman operator T, on C(K) induced
by a homeomorphism ¢ on a compact space K. We recall results on the spectrum
of a general Markov lattice homomorphism 7 on C(K), cf. [Sch74], [AG84], and
[AH86], which we specialize to the Koopman operator 7.

For the spectral radius of a Markov lattice homomorphism 7 we have (7)) = 1 and
even 1 € op(T). Hence,

oT)cD:={1eC||1 <1}
The spectrum of T and its point spectrum are cyclic, i.e.,

A=Alye o) = |y eoc@), kezZ,

A=y € op(T) = |Ay e op(T), keZ,
see Proposition V.4.2 and Theorem V.4.4 of [Sch74]. If T is bijective, then
o(T) € Tand o(T) = oop(T).

We specialize these results to the case of a Koopman operator on C(K).

Proposition 4.1. For the Koopman operator T, on C(K) induced by a homeomor-
phism ¢ on K the approximate point spectrum o,,(T,) and the point spectrum
0p(Ty) are cyclic subsets of T. In other words, they are a union of subgroups of T.
Moreover, o(T,) = ap(Ty).

If T, is topologically ergodic, i.e., fixT, := {f € C(K) | Tof = f} is one-
dimensional, then o,(7,,) is even a group, cf. Theorem 4.21 of [EFHN15]. This
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occurs, e.g., if ¢ is minimal, see [EFHN15], Definition 3.1. See [Kiis20] for a
characterization of topological ergodicity.

Using the following “aperiodicity” property of the homeomorphism ¢ on K, we
are able to further describe the spectrum of the Koopman operator 7.

Definition 4.2. We call a point x € K a periodic point of ¢ if there exists n € N
such that ¢"(x) = x. It is called an aperiodic point if ¢"(x) # x for all n € N. We
consider the prime period function v: K — N U {oo} of ¢ defined by

{ inf{n e N | ¢"(x) = x}, x periodic,
v(x) = .
0, x aperiodic,
and the set
B(K) := {x € K | v is bounded in some neighborhood of x}.

The homeomorphism ¢ is called aperiodic if B(K) = 0. It is called strictly
aperiodic if each x € K is aperiodic. If v(x) < oo for all x € K, then ¢ is called
periodic.

With this property we obtain a more precise description of the spectrum.
Proposition 4.3. For an aperiodic homeomorphism ¢, we have
o(Ty) ="T.

If ¢ is periodic, i.e., v(x) < oo for all x € K, then

O-(Tcp) = U Fv(x),

xekK
where T, := {z € C | 2" = 1} is the group of all n-th roots of unity for n € N.
If v(x) = nforall x € K and a fixed n € N, then

o(Ty) =T,.
Proof. The first assertion follows by Lemma 2.6 of [AG84] and by Proposition 4.1.
The second assertion follows by Theorem 2.7 of [AG84] and implies the last

assertion. 0O
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4.1.2 Koopman groups

We now collect spectral properties of a Koopman group (7,(¢));cr on C(K) and its
generator (6, D(6)). While the spectrum o(7,(t)) is described in Proposition 4.1
and Proposition 4.3, the spectrum o(9), the approximate point spectrum o7,(0),
and the point spectrum o, (6) are additive cyclic subsets of C, i.e.,

Aeoc(d) = Red+iklmAeo(d), keZ,
A €0oyp(0) = Red+ikImA € oyp(6), k€Z,
A €0p(0) = Red+ikImaA € 0p(0), ke€Z,

see Theorem 4.1 of Chapter B.III of [Nag86] or Theorem 3.4 of [Der79]. Since
each T, (¢) is bijective, we even have 07(6) C iR and 0(8) = 04p(9).

Proposition 4.4. Let (T,(t));er be a Koopman group on C(K) with generator
(6, D(6)). Foreacht >0

o (Ty(1)) = oap(Ty(1)) € T
is the union of subgroups of T.

Furthermore,
0(0) = op(0) C iR

is the union of additive subgroups of iR.

Proof. The first part follows by Section 3.1.1, the second part follows by Theorem
2.9 of [Der79]. O

We now define aperiodicity for a flow (¢;);cg on K as in the time-discrete case.

Definition 4.5. We call a point x € K periodic point of a flow (¢;);er on K if
there exists ¢ > 0 such that ¢,;(x) = x. It is called an aperiodic point if ¢,(x) # x
for all t+ > 0. We consider the prime period function v: K — [0, o] of (¢;);er
defined by

inf{t > 0| ¢;(x) = x}, x periodic,
00, x aperiodic,

v(x) := {
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and the set
B(K) := {x € K | v is bounded in some neighborhood of x}.

The flow (¢;):er is called aperiodic it B(K) = 0. It is called strictly aperiodic if
each x € K is aperiodic. If v(x) < oo for all x € K, then (¢;),cr is called periodic.

Proposition 4.6. If the flow (¢;);er is aperiodic, then

o(Ty(t)) =T forallt €R,
o(8) =iR.

Proof. See Proposition 4.3 and Theorem 2.12 of [Der79] or Theorem 4.9 of
[Nag86]. O

Apparently, for a Koopman group associated with an aperiodic flow the spectral
mapping theorem holds, i.e.,

o (Ty(t)) =e'7@  forallr € R.

For a periodic flow, at least the following holds.

Proposition 4.7. If 0 < v(x) < oo for all x € K, then the weak spectral mapping
theorem holds, i.e.,

o (Ty(t)) = €7@ forallt € R,

Proof. See Theorem 4.4 of [AG84]. O

4.2 The weighted case

In this section, we consider the spectrum of a single weighted Koopman operator
on the space of continuous sections I'(K, E) of a Banach bundle E over K and
then investigate spectral properties of a weighted Koopman semigroup and its
generator.
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4.2.1 Weighted Koopman operators

We consider a T,-homomorphism 7~ on a Banach module I'(K,, E) over C(K), see
Definition 3.4. We show that the spectrum of such an operator has a symmetry
related to the spectrum of 7,.

Proposition 4.8. If f € C(K) is an eigenvector of T, with respect to the eigenvalue
A € C such that | f| is strictly positive, i.e., | f|(x) = |f(x)| > O for all x € K, then
A-0p(T) S op(T),

/l * O-ap((]-) g O-ap(r]-).

In particular, if dim(fix T,,) = 1, then
O'p(Tcp) : O'p((r) - O'p(T),
Proof. For the first part, take u € 0,(7) with corresponding eigenvector s €

I'(K, E) and A € 0(Ty,) with corresponding eigenvector f € C(K) such that | f] is
strictly positive. Then f - s # 0 and

T(f+5)=Tof ~Ts=Af - ps = Au(f - ),

hence Au € op(7). The second inclusion follows by the same argument.

If fix(T,) is one-dimensional, then for every eigenvalue A € C of T,, the correspond-
ing eigenfunction has constant absolute value, see Theorem 4.21 of
[EFHN15]. Thus, the second part follows. O

The question remains whether the above inclusion holds for the entire spectrum,
ie.,
o(Ty)-o(T) S a(T).

In particular, if ¢ is aperiodic, one could expect that
T -o(T)C o). 4.1)

In this case, the spectrum o(7") is just the union of annuli centered at the origin.
However, for an arbitrary 7,,-homomorphism 7~ on the Banach module I'(K, E) for
a general Banach bundle E this is not true.
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Example 4.9. Let Z be a Banach spaceand 7 € .Z(Z) suchthatT-o(7) ¢ o (7).
We realize the Banach space Z as an AM-module over C(K) for some compact
space K and 7 as a weighted Koopman operator on Z. For this purpose, we
consider the one-point compactification of the integers K := Z U {co} and the
following aperiodic homeomorphism on K

x+1, X €Z,
00 X = 00,

b

@(x) = {

The Banach space Z equipped with the following operation
CCK)XZ — 7, (fs) (xli_)rrgof(x)) s
is an AM-module over C(K). Hence, Z has a lattice-valued norm given by
|s1(x) = inf{[| fs]| | f € C(K)+ with f(x) =1}
= inf {(Zlirgo f(z)) Isll | £ € C(K); with £(x) = 1}
_ { 0 X €Z,

b
sl x=co,

for s € Z, see Theorem 3.3. Obviously, | - | is upper semicontinuous, but not con-
tinuous. Consequently, the Banach bundle associated with Z is not continuous,
see Proposition 3.2. The operator 7 is a Ty,-homomorphism on the AM-module
Z, where T, is the Koopman operator on C(K) induced by the aperiodic homeo-
morphism ¢ on K.

We construct the unique Banach bundle E over K and the unique Banach bundle
homomorphism ® over ¢ on E over K such that Z = I'(K, E) and 7 = 7¢. To
each x € Z we attach the fiber E, := {0} and at x = co we attach the Banach space
Es :=Z. Then, E = |J,cx E, is the Banach bundle over K such that Z = I'(K, E).

Moreover,
0, X €7,
(D()C) = { (]" ¥ = oo,

defines the Banach bundle homomorphism ® over ¢ on E over K such that 7 = 7.

The following proposition shows which extra assumptions suffice to obtain (4.1).
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Proposition 4.10. Let T be a T,-homomorphism on I'(K, E) for some Banach
bundle E. Assume that one of the following assumptions holds.

(i) ¢ is aperiodic and E is continuous.

(ii) ¢ is strictly aperiodic.

Then T - oap(T) € 0up(T) and T - o(T°) € o(T"). Thus, o(T") is invariant under
rotation by complex numbers of modulus one.

Proof. Let u € C be an approximate eigenvalue with approximate eigenvector
(sp)nen inI'(K, E) and A € T. Each of the two assumptions (i) and (ii) implies that
we find x,, € K with v(x,) > 2n + 1 and ||s,(x,)| > % for each n € N, where v is
the prime period function of ¢, see Definition 4.5. By Lemma 2.6 of [AG84] we
find f, € C(K) with f,(x,) = || full = 1 and || Ty, £, — Afull < % for each n € N. But
then ||(frs,)(xn)|| = % for each n € N and

(A =T ) fuSn = Afn - 1Sy — Tgof;z T sn
= (Afu = Tgofn) *HSp — Tgofn “(us, =T sp) =0

for n — co. Hence, T - 074p(7") S 0ap(7).

Since the boundary do(7") is contained in the approximate point spectrum o,p(7°),
see Section V.1 of [Sch74], we have T - o7(7") C o (7). O

Example 4.11. We consider a scalar-valued weighted Koopman operator 7 €
Z(C(K)), i.e., there is a homeomorphism ¢ on a compact space K and a continu-
ous, invertible function ®: K — R, such that

Tf=®-fop forall fe CK),

cf. Section 2 of [AG84]. If ¢ is aperiodic, then T - o-(7") € o (7), cf. Remark 2.8
of [AG84].

4.2.2 Weighted Koopman semigroups

We now extend the previous results on the spectrum of a single operator to the
spectrum of a weighted Koopman semigroup (77(¢)),>0 on I'(K, E) with generator
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(A, D(A)). Our goal is to obtain a spectral mapping theorem of the form
o(T() \ {0} = forevery r > 0.

However, the following example, which is a time-continuous version of Exam-
ple 4.9, shows that extra assumptions are needed.

Example 4.12. Let (7(7));>0 be a Cp-semigroup on a Banach space Z such that
the spectrum o (7 (t)), t > 0, is not invariant under rotation. Again, we realize
the Banach space Z as an AM-module over C(K) for some compact space K and
(7(2))s=0 as a weighted Koopman semigroup on Z. To this end, we consider the
one-point compactification of the real numbers K := R U {oo} and the following
aperiodic flow on K

X+t x €R,

@r(x) 1= { oo

X = 00,

b

Analogous to Example 4.9 the Banach space Z can be realized as an AM-module
over C(K) and the Banach bundle associated with Z is not continuous. Each
operator 7 () is a T,,(t)-homomorphism on the AM-module Z, where T,(¢) is the
Koopman operator induced by the aperiodic flow (¢;);cr.

The construction of the Banach bundle E over K and the semiflow (®;),;>( over
(¢r)zer on E such that Z = T'(K, E) and 7 (t) = T9(¢), t > 0 is analogous to the
time-discrete case.

The following condition on the flow (¢(f));cr on K or the regularity of the Banach
bundle E lead to the following relation between the spectra of weighted Koopman
semigroups and their generators.

Theorem 4.13. Let (7 (t)):>0 be a weighted Koopman semigroup on I'(K, E) with
generator (A, D(A)). Assume that one of the following conditions holds.

(1) (¢r)rer is aperiodic and E has a continuous norm.

(ii) (¢1)ser is strictly aperiodic.

Then the spectral mapping theorem holds, i.e.,
(T (1)) \ {0} =N foreacht > 0.
Moreover, 0(A) = c(A)+ iR and (T (t)) =T - (7 (¢)), t > O.
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Remark 4.14. In the situation of the above theorem, the spectrum of the generator
consists of vertical stripes and the spectrum of each weighted Koopman operator
consists of annuli centered at the origin.
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Figure 4.1: Typical spectrum of A  Figure 4.2: Typical spectrum of 7 (¢)

For the proof of the theorem we need the following lemma, cf. Lemma 6.31 of
[CL99] in the case of a locally compact metric space.

Lemma 4.15. Let A be the Lebesgue measure on R and (¢;);er a flow on K. If
to € (0,1), N € N, and x € K with prime period v(x) > 5N + 1, then there is a
neighborhood U of x and f € C(K) with 0 < f < 1 such that

(i) suppf € U,

(i) f(i(x)) =1 foreveryt € [-%,%],
(iii) f(¢:(x)) =0 foreveryt € [-2N, —ty] U [0, 2N],
(iv) A({t € [-N,N] | ¢:(x) € U}) < 2ty for every x € K.

Proof. We first prove that there is a compact neighborhood W of x such that
Wne (W) =10
foreachr € A:={fTeR| 2 < |f]| <5N}.

Suppose that for each compact neighborhood W of x we have x € W N ¢,(W) for
all ¢+ € A. Denote the filter of all compact neighborhoods of x by K(x). Since K
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is compact, we have, by the finite intersection property,

0% () wne(Axwyc (] wW={x}.

WeK(x) WeK(x)

Consequently,

x€g ﬂ AXW | = @(A X {x}),
WeK(x)

i.e., ¢;(x) = x for some r € A. But then v(x) < 5N contradicting the assumption.

Now take W € K(x) such that W N ¢,(W) = 0. Choose an open neighborhood V
of x such that V € W. Define

U= (). 0:=()aw.

1 1,
lt|<2 lt]<3

Then, O C U which implies that there exists a continuous function f € C(K) with
0 < f < 1 such that f(x) = 1 forall x € O and f(x) = 0 for all x ¢ U. Since
X € V; wte have ¢;(x) € O for all |t| < %0. Consequently, f(¢;(x)) = 1 for every
te[-73, 7]

We now show that

for each 1) < |t| < 2N.

Assume there is some xg € U and ¢ € R with #yp < |¢| < 2N such that ¢,(xp) € U.
Then there exist x;,x, € V and t1,7» € R with max{|r], ||} < % such that
X0 = ¢n(x1) and @i(x0) = @p,(x2). This implies @41, (x1) = x2 € V. But
%0 < tl=al -] < |t+t -6 < 2N+%° < 5N which contradicts WN ¢, (W) = 0
for each r € A. Hence U N ¢,(U) = 0 for each 1y < |t| < 2N. Since x € U
assertion (iii) follows.

Finally, we show (iv). Fix x; € K and consider {¢;(x;) | t € [-N, N]}. Then
A{t € [-N,N] | ¢i(x1) € U}) = 0if {¢s(x1) | t € [-N,N]} nU = 0. Hence, we
may assume that x € {¢;(x1) | t € [-N, N]}NU, i.e., there exists some #; € R with
|t1] < N such that x = ¢;,(x1). Now letr € {r € [-N,N] | ¢;(x1) € U}. Then
|r —t1] < 2N and ¢,(x1) = ¢,—,(x) € U. Since x € U, it follows that |[r — #1| < to.
Thus, {t € [-N,N] | ¢:(x1) € U} C (] — to, 1 + 1p). |
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We now prove the above theorem.

Proof (of Theorem 4.13). Since the spectral mapping theorem always holds for
the residual and the point spectrum, see [ENOO], Section IV.3, Theorem 3.7,
we only have to show the assertion for the approximate point spectrum. By
the spectral inclusion theorem, see [ENOO], Section IV.3, Theorem 3.6, we have
e'T(A) ¢ oap(7 (1)) for all ¢+ > 0. By rescaling arguments, it suffices to show
that if 1 € 0yp(7(1)) then 0 € oyp(A). We will show, that 1 € oyp(7(1))
even implies iR C op(A). Take 1 € 0yp(7(1)) and choose a corresponding
approximate eigenvector (s,)en. Let further N € N with N > 2 and € € (0, 1).
Since 1 € op(77(1)), there exists an s € I'(K, E) with ||s]| = 2 and

j-1
17G)s = sll = || > T () - (T(1)s = 5) (4.2)
k=0
J
< NT@N-IT (s = sl <& < 1 (4.3)
k=0
for j € {0,...,2N}. Note that this implies
sup [|7(0)sll < sup |[T(DI  sup [T()sll
1€[0.2N] 1€[0,1] je{0....2N}
< sup |7l ( sup  [|7°()s — sl + ||S||)
1€[0,1] j€{0,...2N}
<3 sup |[7(@)| =M.
tel0,1]
Since (7 (t));>0 is strongly continuous, we find 7y € (0, 1) with
|7(t+ N)s—T(N)s|| < e 4.4)

for each t € (—fy,ty). By either of the two assumptions of the theorem we find
x € K with ||s(x)|| > 1 and v(x) > 5N + 1.

Define y € C([-N, N]) by

N re [_N’_1]7

N
y(@) =41 re(=1,1)
Nt e 1, N,

82



and f and U as in Lemma 4.15. Now take any h € C(K) with ||k|| = 1 and
h(¢i(x)) = " forr € Rand ¢ € [-N, N] and set g := T,(~N)f - h. Then, as in
the proof of Proposition 1.8 of [ENO0O], Section II.1, it follows that

1 v .
5= —/ y@®)e T (t + N)(gs)dt € D(A)
Io J_N

with .
1 .
[(A —ir)s|| = - H/ Y (e ™" T (t + N)(gs) dt
0 -N

M N 2M
L ——— T,(t dr <
=i L, o < 5
by Lemma 4.15 (i) and (iv).

On the other hand, we obtain

151> sl = | | z YO LG CNT (€ + N)s(x) ds
|/ F@CNT (@ + Nys(o) de
> H / Flex)s(x) dr —2t0'28)
-l [ F@()s(x) di| - 4e:

where the inequality follows from (4.2) and (4.4). Further,

1
5

%Lz f@i(x))s(x) drf = [Is(x)]| - % L: Flon(x))dr >

In conclusion, we found § € D(A) with ||§]|| > 0 and ||(A — ir)$]| < % — 0Oas
N — oo forall r € R,i.e., iR C oyp(A). O
Finally, we give the following examples.

Example 4.16. (i) We consider an invertible, scalar-valued cocycle (®;);cr
over a flow (¢;);er Oon a compact space K, see Example 3.11 (i), and
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(i)

the induced weighted Koopman group (7¢(?));er on C(K) with generator
(A, D(A)). If the flow is aperiodic, then the spectral mapping theorem
holds, i.e.,

o (To(1)) = 7 forevery t € R.

Moreover, o(A) = o(A) + iR while o(7(¢)) = T - o(7(¢)), t > 0O, cf.
Theorem 5.4 of [AG84].

For a periodic flow only the weak spectral mapping theorem holds, i.e.,

o(To(t)) = e forallt € R,

see Theorem 4.4 of [AG84].

Consider an evolution semigroup (7o(?));>0 on I'(K, E) = C(K, E) with
generator (A, D(A)), see Example 3.11 (ii). If the underlying flow is
aperiodic, the spectral mapping theorem holds, i.e.,

o (To(1) = " forevery t € R,.
Moreover, o(A) = o(A) + iR while o(7(¢)) = T - (7 (¢)), t > 0, see
Theorem 6.30 of [CL99].

In particular, this is true for an evolution semigroup (7¢(?));>0 on
['(K,Z U {0}) = Cy(R, Z), see Example 3.11 (ii), induced by an expo-
nentially bounded evolution family (U(z,r));>, on a Banach space Z, see
Theorem VI.9.15 of [ENOO].
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Chapter 5

Asymptotics of weighted Koopman
semigroups

In this chapter, we apply the theory of Cy-semigroups, see [ENOO], in particular,
their spectral theory, to investigate stability concepts for semiflows on Banach
bundles and weighted Koopman semigroups on spaces of continuous sections.

The results in Section 5.2 and Section 5.3 are joint work with Henrik Kreidler.

5.1 Hyperbolicity for Cy-semigroups

First, we recall some stability concepts for Cp-semigroups. For proofs and exam-
ples we refer to Section V.1 of [ENOO], Section V.3 of [ENO06], and Chapter III
of [Eis10]. A Cp-semigroup (7 (¢));>0 on a Banach space Z is called uniformly
exponentially stable if there exists € > 0 such that

lim &'||7(1)]| = 0.

We characterize this property via the growth bound wg and the spectral radii r(7(¢))
of the semigroup operators.
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Proposition 5.1. For a Cy-semigroup (7 (t));>0 on a Banach space Z with gener-
ator (A, D(A)) the following assertions are equivalent.

(@) (7 ()0 is uniformly exponentially stable.
(b) (7(t))s>0 is uniformly stable, i.e.,
tlim |7 (®)|| = 0.

(c) (7(t))>0 is strongly exponentially stable, i.e., there exists € > 0 such that

[lim e[ 7()z]| =0 forallz € Z.

(d) wo < 0.
(e) r(7(t)) < 1 for one/all t > 0.
(f) There exist M > 1 and w < O such that

|7 ()| < Me*“"  forallt > 0.

Moreover, if the growth bound wq and the spectral bound s(A) of the generator ‘A
coincide, then the properties above are also equivalent to

(g) s(A) <0.

We use this result to obtain a decomposition of a Cp-semigroup into a stable and
an unstable part, see Section V.1.c, Definition 1.14 of [ENOO].

Definition 5.2. A Cy-semigroup (7 (¢));>0 on a Banach space Z is hyperbolic if
there exist two closed, (7 (7));>o-invariant Banach subspaces Z; and Z, of Z such
that

Z=7Z;®7Z,

and the restricted semigroups (75(¢));>0 on Z; and (7,(¢));>0 on Z, satisfy the
following.

(i) The semigroup (75(¢));>0 is uniformly exponentially stable on Z;.

(ii) The semigroup (7,());>0 extends to a group (7,(t));er on Z, and the semi-
group (7,(—t));>0 is uniformly exponentially stable on Z,,.
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The above characterization of exponential stability of a Cyp-semigroup leads to the
following characterization of hyperbolicity.

Proposition 5.3. For a Cy-semigroup (7 (t));>0 on Z the following assertions are
equivalent.
(@) (7(t))r>0 is hyperbolic.

(b) There exists a projection P on Z such that each T (t) commutes with P,
T (t)ker P = ker P, and there are constants M > 1, € > 0 such that

1) 17 (0)zll < Me™#||z|| forall t >0, z € rgP,
(i) |7 ()z|| = %e‘””zll forall t >0, z € ker P.
() a(T(t)NT =0 forone/all t > 0.
Moreover, if the weak spectral mapping theorem (see [ENOO], Section 1V.3.a) or

the circular spectral mapping theorem (see [EN0O6], Section V.3, Definition 3.14)
holds, then the properties above are also equivalent to

(d) o(A)NiR = 0.

5.2 Direct sum of weighted Koopman semigroups

In order to define hyperbolicity for weighted Koopman semigroups we need the
concepts of direct sums of Banach bundles and Banach modules, which are covered
in Construction A.6. We now introduce the direct sum of semiflows on Banach
bundles and of weighted Koopman semigroups on spaces of continuous sections.

Construction 5.4. We take two semiflows (®;);>0 over (¢;);er on E over K and
(W;)r>0 over (¢;);er On F over K. Setting

(P VYY), (u,v) := (O;u,¥,v) forallt >0, (u,v)ec E®F,
defines a semiflow ((© & ¥),),. over (¢;)cr on E & F over K.

Two weighted Koopman semigroups (7o(f));>0 on I'(K, E) and (7¢(t));>0 on
I'(K, F) define a weighted Koopman semigroup on I'(K, E) & I'(K, F) via

(To ® To) (1) := To(t) ® Ty(t) forallt > 0.
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With the isometric module isomorphism of Proposition A.7 we have

(To())>0 ® (T ()10 = (Toew(t))i0-

Consequently, a (non-trivial) decomposition of a semiflow (®;);>0 over (¢;)rer
on E over K yields a (non-trivial) decomposition of the corresponding weighted
Koopman semigroup. In other words, if there are two non-trivial Banach subbun-
dles E, E; C E and two semiflows (®}),50 on Ej and (®?);50 on E; over (¢;)rer
on K such that

(@50 = (D )50 @ (P70

on E = E| ® E», then I'(K, Ey) and I'(K, E;) are non-trivial Banach submodules
of I'(K, E), see Proposition A.8, and

(To())rz0 = (Tpree2(t))i=0
= (Tp1()iz0 ® (Tg2(1))s=0
on the AM-module
I'K,E)=T(K,E| @ E»)
=T'(K,E|))®TI'(K, E»).

As the following result shows, the converse is also true.

Proposition 5.5. [fthere are two non-trivial Banach submodulesT';, T, C T'(K, E)
and two weighted semigroups (71(t))i>0 on I't and (72(t))i>0 on Iz over (Ty(1))ier
on C(K) such that

(To()iz0 = (T1(1)r=0 ® (72(1))r>0

on I'(K,E) = T'| & I'y, then there are two non-trivial Banach subbundles E\,
E> C E and two semiflows (d)t1 )i>0 on Ey and ((Dlz),>o on Ey over (¢1)rer on K such
that

(D)0 = ((Dz] )i>0 @ ((I)zz)t>0 onE = E| & Ej.

Moreover, | Ti(1)l| = || || and | T2(0)|| = |07 || for all t > O.

Proof. By Proposition A.8 there are two non-trivial Banach subbundles E;, E, C
E such that 'y = I'(K, Ey) and [, = I'(K, E;). We then find by Theorem 3.8
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semiflows ((I)ll )i>0 on E and ((I)lz),>0 on Ej, which are, up to isometric isomorphy,
unique such that

(T1()iz0 = (Tp1(1)z0 on '} = I'(K, Ey),
(T2(1)r0 = (Tg2(1))rz0 on Iz = [(K, Ey).
We now obtain
(To())r=0 = (71())r0 ® (72(1))1>0
= (791 ()20 @ (Tp2(1))r=0
= (Tp1002(1))i0

on the AM-module
F(K, E) =T el;

=I'(K,E))®I'(K, E)
=I'(K,E| ® Ey).

Thus, by uniqueness (up to isometric isomorphy) of the representation of AM-
modules and semiflows, we have E = E; @ E; and (®,),50 = (®));>0 ® (P?),50.
Finally, ||77(2)|| = ||®}|| and ||72(2)|| = ||®?|| for all # > 0 by Theorem 3.8. O

5.3 Exponential dichotomy and the Sacker-Sell spec-
trum

In this section, we introduce an important property of semiflows on Banach bundles
and of weighted Koopman semigroups on Banach modules that describes their
asymptotic behavior: exponential dichtotomy and hyperbolicity.

Definition 5.6. A weighted Koopman semigroup (7¢(?));>0 on a Banach mod-
ule I'(K, E) has exponential dichotomy (or is hyperbolic) if there are (7o(t));>0-
invariant Banach submodules I'y and I';, of I'(K, E) such that

I(K.E)=T,®T,

and the restricted semigroups (7(7));>0 on I'y and (7,(¢));>0 on I, satisfy the
following.

(i) The semigroup (75(¢));>0 is uniformly exponentially stable on I';.
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(ii) Each T,(f)-homomorphism 7,(¢) is invertible on I', and the semigroup
(74(=1))s>0 is uniformly exponentially stable on I',,.

We generalize exponential dichotomy of linear skew-product flows, cf. Definition
6.13 of [CL99], to exponential dichotomy of semiflows on Banach bundles.

Definition 5.7. A semiflow (®;);>9 on a Banach bundle E has exponential di-
chotomy if there are (®;);o-invariant Banach subbundles E;, E,, such that

E = Es @ Eu
and the restricted semiflows (®}),>0 on E; and (®¥),> on E,, satisfy the following.

(i) The semiflow (®7);» is uniformly exponentially stable on Ej, i.e., there are
constants M > 1, & > 0 such that ||®7|| < Me™® forall 7 > 0.

(ii) The semiflow (®¥);»0 extends to a flow (P} );er on E,, see Definition 1.8,
and (®“,);>0 is uniformly exponentially stable on E,.

We call E; the stable Banach subbundle and E,, the unstable Banach subbundle of
E under (®;);>0 while (®7);»0 is the stable part and (D)), is the unstable part
of (®;)s>0.

Exponential dichotomy of semiflows on Banach bundles can be characterized via
a spectral property of the associated weighted Koopman semigroup.

Theorem 5.8. For a weighted Koopman semigroup (To(t));>0 on I'(K, E) the fol-
lowing assertions are equivalent.

(@) (To(t))i0 has exponential dichotomy.
(b) The associated semiflow (®;);>0 on E has exponential dichotomy.

(¢) o(70(2)) N'T = 0 for all/one t > 0.

Proof. Obviously, each weighted Koopman semigroup that admits an exponential
dichotomy is, in particular, a hyperbolic Cp-semigroup. Thus, assertion (a) implies
(c), see Proposition 5.3.

To show the converse implication, assume that o (7p(tp)) N'T = @ for some ¢y > 0.

90



Then T C o(79(ty)) and we obtain a decomposition of the spectrum o (7p(ty)) =
K U K, with

Ky :=0(To) N{zeC|lz| <1},

K; = 0(To(to) N{z € C | |z] > 1},
which yields a spectral decomposition, see [EN00O], p. 244. Let £ be the corre-
sponding spectral projection, Q := 1d =P, and 7,(t9) := To(t0)lkerp = To(t0)|rz @
T5(to) := To(to)|re » the induced Ty (fp)-homomorphisms on the (7o(t));»0-invariant
subspaces rg P and ker P = rg Q of I'(K, E). We have o (7(tp)) = K1, see [ENOO],
hence r(7,(t9)) < 1. By Proposition 5.1 it follows that (75(¢));>0 is uniformly ex-
ponentially stable on rg . Further, o (7,(t))) = K3, which implies that (7,(¢));>0
extends to a group on rg Q. Moreover, we have 1(7,(—t9)) < 1. Thus, (7,(=1)):>0
is uniformly exponentially stable on rg Q, see Proposition 5.1. In other words,
(7o(1))s>0 is a hyperbolic Cy-semigroup on the Banach space I'(K, E). It remains
to show that the spectral projection £ is a module homomorphism.

By definition of a uniformly exponentially stable Cp-semigroup, it follows that
there are constants M > 1 and & > O such that for s e I'(K, E), t > 0

1 -
3¢ Qsll < IIT (0@l = 1T ()Ad =P)sll < 1T @O)sll + Me™[[Ps]l.
Consequently,

(s eT(K,E) | T(1)s — Oast — o} C PI(K, E).

The inclusion “2” is also true since (7 (¢));cr is uniformly exponentially stable on
rg .

Furthermore, ||7(2) fPs|| < | fIII|7()Ps|| for all s € ['(K, E), f € C(K). This
yields fPs € PI(K,E) forall s € I'(K, E), f € C(K). In addition, since 7 (¢) is
a Ty(t)-homomorphism,

1P fQsl = [|P fT()7u(-1)Qsl|

= [T (@O)PTp(—1) fTu(—-1)Qsl|

Me || PTy(~1) fTu(~1)Qs||
Me™ || FINlTu(-0)@sl|
MZe=>| £l
forall s € I'(K, E), f € C(K), and t > 0. Hence, P fQs = 0 for all s € ['(K, E)
and f € C(K). We conclude

Prs=PfP+Q)s=PfPs+PfQs = fPs

N NN
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forall s € I'(K, E) and f € C(K), i.e.,  is a module homomorphism.

As a consequence, the closed subspaces rg # and ker # are Banach submodules
of I'(K, E). Hence, the spectral decomposition of the Banach space I'(K, E) into
ker(P) and rg(#) yields an exponential dichotomy of the weighted Koopman
semigroup, i.e., (c) implies (a).

“(a) = (b)”: By Proposition 5.5, the decomposition of the weighted Koopman
semigroup yields the desired decomposition of the semiflow into a stable and an
unstable part. Hence, (b) is true.

“(b) = (a)”: Assume that (¥;);>0 decomposes into a stable part (®7),»o and
an unstable part (®Y);>0. Again, this leads to a decomposition of the weighted
Koopman semigroup, see Section 5.2. Since the norm of a semiflow is equal to
the norm of the corresponding weighted Koopman semigroup by Theorem 3.8,
assertion (a) follows. O

As a direct consequence of the above theorem, we obtain the following character-
ization of exponential dichotomy.

Corollary 5.9. Let (79(t))i=0 be a weighted Koopman semigroup on I'(K, E) with
generator (A, D(A)). If one of the assertions of Theorem 4.13 is satisfied, then
the following assertions are equivalent.

(@) (To(1))r=0 has exponential dichotomy.
(b) The associated semiflow (®;);>0 on E has exponential dichotomy.

(¢) 1 ¢ o(Tp(t)) for all/one t > 0.
(d) 0 ¢ o(A).

The following definition is based on Definition 6.17 of [CL99] and goes back to
R. J. Sacker and G. R. Sell, see [SS74], [SS76a], [SS76b], and [SS78].

Definition 5.10. For a semiflow (®;);>¢ over (¢;);cr on a Banach bundle E, t > 0,
and A € R we define the rescaled semiflow by (®;(x))* := e ¥ ®,(x) forall x € K.
The set

r= {/l eR| (d)f),>0 on E admits an exponential dichotomy}
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is called the Sacker-Sell spectrum of the semiflow (®;);>0.

Using Theorem 5.8, we are able to give an explicit description of the Sacker-Sell
spectrum.

Corollary 5.11. Let (79(t));>0 be a weighted Koopman semigroup onI'(K, E) with
generator (A, D(A)). Then

2 =1In|o(To(1)) \ {0}].
Moreover, if one of the assertions of Theorem 4.13 is fulfilled, then

Y=0(A)NR.
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Chapter 6

An example from differential
geometry

In this chapter, we specialize the previous theory and investigate weighted Koop-
man groups on the space of continuous sections of the tangent bundle of a compact
smooth manifold. Furthermore, we obtain additional characterizations of weighted
Koopman groups in this situation.

The results are based on joint work with Nikolai Edeko and Henrik Kreidler.

In the following let (M; (¢;);cr) be a smooth dynamical system, i.e., M is a compact
Riemannian manifold without boundary with smooth structure, see, e.g., [Leel3],
Chapter 13, and (¢;),er is a smooth flow on M, see, e.g., [Leel3], Chapter 9.

Each smooth flow (¢;);cr on M defines a smooth vector field V¥: M — TM by

V¥(x) = i

” Osoz(x), x €M,

=

see, for instance, [Leel3], Proposition 9.7. On the other hand, to each vector field
corresponds a unique flow on M, see [Leel3], Theorem 9.12.

A flow (¢;)ser induces a Co-group (T,(t));cr on C(M) by
T,t)f = fopy, [feCM), teR,
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called Koopman group, with generator (9, D(6)), see Section 3.1.

Its generator is defined as

of =lim

t—0

M for all f € D(),

where the limit is taken in the norm in C(M). Recall that the Lie derivative Ly f
of a smooth function f with respect to V¥ is the pointwise limit

f("ot(x)t) i) forall f € C®(M), x € M,

Lye f(x) = }1_%

see [Lan95], Section V, §2., p. 121. The following lemma shows that the pointwise
limit Ly« f(x) even converges uniformly in x € M and that C*(M) is a core for
(6, D(9)).

Lemma 6.1. For a Koopman group (T,(t))er induced by a smooth flow (¢;)icr
on M the space of smooth functions C*(M) is a core for its generator (5, D(6))
and

6f ==Lyef forall f e C°(M).

Proof. As a consequence of the mean value theorem we know that the (point-
wise defined) difference quotient converges locally uniformly in local coordinates.
Since M is compact, uniform convergence follows, i.e., f = —Lyef for all
f e C(M).

Moreover, the space C*(M) is invariant under (7,(f));er and dense in C(M), cf.
[PM82], Poposition 2.7. It follows that C*(M) is a core for the generator, see
[ENOO], Section II.1, Proposition 1.7. O

The geometric structure of the smooth dynamical systems suggests to consider the
tangent bundle 7M and flows (®;);cr over (¢;);er on TM, see Definition 1.8. For
more results on so-called cocycles and linear-skew product flows we refer to, e.g.,
[Sma67], [JPS87], [Ree80], or [CL99], Section 6.2. We now investigate the cor-
responding weighted Koopman groups (7¢(t));cr on the AM-module I'(M,TM)
of continuous sections of the tangent bundle 7M induced by (®;),cr, see Defini-
tion 3.5. We recall from Section 3.3, Theorem 3.8, that a Cyp-group (7o(2))ser on
['(M,TM) is a weighted Koopman group if and only if its generator (G, D(G)) is

96



a d-derivation, i.e., the domain D(G) is a D(6)-submodule of I'(M,TM) and the
generator satisfies the functional equation

G(fs)=0f-s+f-Gs forall f e D(),s e DG). (FE)
We now consider an important example of a weighted Koopman group where the
associated flow (®;);cr over (¢;);cr has the following property.
Definition 6.2. A flow (®;);cr over (¢;)cr is called smooth if the mapping
D®:RXTM - TM, (t,x)+— Pi(x)
is smooth.

Lemma 6.3. Take a weighted Koopman group (To(t)):cr induced by a smooth flow
(®y)ier. Then the space of smooth sections T°(M,TM) is a core for its generator

(G.D(G)) -

Proof. First, we show that I'(M,T M) is contained in D(G), i.e.,

Qo509 -5

lim
t—0 t
existsin['(M,TM)forall s € (M, TM). Inlocal coordinates 7o(t)s = ®,050¢_,
is just the compositions of smooth mappings on an open subset of R (where n is
the dimension of M) which is obviously smooth. Thus, the above limit exists for
all smooth sections of TM.

Further, in local coordinates we know that each continuous vector-valued function
can be approximated by a smooth vector-valued function. Hence, I'*(M,TM) is
even norm dense in I'(M, T M). It remains to show that I'°(M, T M) is invariant un-
der (7p(t));er. This follows by the smoothness of the flow (®;),cg. Consequently,
I'™(M,TM) is a core, see [ENOO], Section II.1, Proposition 1.7. O

Consider the differential dg; of the smooth mapping ¢;, t € R, as in Example 3.11
(iii). By [Leel3], Proposition 3.21 and Corollary 3.22, it follows that (d¢;),er is
a smooth flow over (¢;);er. The induced weighted Koopman operators are the
pushforward operators, cf. [Leel3], Chapter 8, p. 183. We call the corresponding
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weighted Koopman group (7(1))sex := (Ta,(t))rex pushforward group and denote
its generator by (A, D(A)) defined as
ﬂs:limd%oso(’o_t_s

t—0

for all s € D(A),

where the limit is taken in the norm in I'(M, TM). Recall that the Lie derivative
Lyes of a smooth section s with respect to V¥ is the pointwise limit

do_(@1(x))s(r(x)) — s(x)
t
for all s € T(M,TM), x € M, see [Leel3], p. 228. Again, the pointwise

limit Ly s(x) even converges uniformly in x € M and I'(M,TM) is a core for
(A, D(A)).

Lyes(x) = lim
t—0

Lemma 6.4. Consider the pushforward group (7 (t));er on I'(M,TM) with gen-
erator (A, D(A)). The space of smooth sections I'°(M,TM) is a core for the

generator with
As =—Lyes foralls e T(M,TM).

Proof. Since (d¢;);cr is a smooth flow over (¢;),cr, Lemma 6.3 implies that the
space of smooth sections I'*(M,TM) is a core for (A, D(A)). As in the proof of
Lemma 6.1 we consider for s € I'*(M,TM), x € M, the limit Ly, s(x) in local
coordinates. Again, by the mean value theorem, local uniform convergence follows
which implies, since M is compact, uniform convergence, i.e., As = —Lyes for
all s € T°(M,TM). O

6.1 The generator of a weighted Koopman group as
a perturbation of the Lie derivative

Starting from the pushforward group (77 (¢));ecr on I'(M,TM), we obtain every
other weighted Koopman group in the following way.

Proposition 6.5. Let (S(t));cr be a Cy-group on T(M,TM). Then the following
assertions are equivalent.

(@) (S(1))ser is a weighted Koopman group.
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(b) (S(t))ser is a multiplicative perturbation of the pushforward group (T (t)):er
by C(M)-module homomorphisms C(t), t € R, see Definition 2.1, i.e., we
have for each t € R

S(t) = C()T (¢).

Proof. “(b) = (a)”: Lett € R, f € C(M),and s € I'(M,TM). Then, by definition
of a module homomorphism, see Definition 2.1, and since each weighted Koopman
operator 7 (t) is a Ty,(¢)-homomorphism, see Definition 3.4, we have

S@)(fs) = (COT )(fs)
= C()(Tyf - T(1)s)
=Tof - C(OT (1)s
=Tof - S(1)s.

Thus, by Theorem 3.8, (S(?))cr is a weighted Koopman group.

“(a) = (b)”: Let (S(7)):er be a weighted Koopman group and let (®;);cr be the
corresponding flow on TM over (¢;);cr. For each x € M we define a family of
bounded linear operators (Cg(#))xem on the tangent space 7, M by

Cy(t) := O(p_(x))de_(x) € L(T M) forallteR.

Further, we set for all s e '(M,TM), x € M,and t € R

(Co(1)s)(x) := CZ(1)s(x). 6.1)

This defines a linear bounded operator Cq(#) on I'(M, TM) such that for all s €
I'(M,TM), x e M, f e C(M),andt € R

Co(D)(f - $)(x) = Di(p—i(x))dep—; f(x)s(x)
= f ()@ (- (x))de_s(x)
= (f - Co(1)s) (x)
and
(Ca(T (1)s)(x) = (Co(1)T (1)s)(x)

= (Co()der(p-1(x)s) (p-r(x))

= ((I),(go_,(x))dga_,(x)dgot(go_,(x))s)(gp_t(x))

= @ (- (x))s(p-s(x))

= (S(1)s)(x). O
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From the above defined family of bounded linear operators (Cep(?));er on I'(M, TM)
we obtain that the generator of each weighted Koopman group with smooth flow
is the additive perturbation of the generator (A, D(A)) of the pushforward group.

Proposition 6.6. Consider a weighted Koopman group (7o(t))ier on I'(M,TM)
with smooth flow (®;);cr over (¢;)cr and with generator (G, D(G)). Let (Cop(t))ier
be the family of bounded linear operators on I'(M,TM) as in (6.1). Then we have
foralls e T°(M, TM)

d
Meops := —| Co(t)s = —As + Gs.
dfl—o

Moreover, Mg is a bounded multiplication operator, i.e., it is a bounded linear
operator on I'(M, T M) which satisfies for all s € T(M,TM), f € D(6)

Mo(f - s) = f - Mos.

Proof. Lets €e '(M,TM) and x € M. Then

(D1p- ()i () s2) = 5(x)
Db (150 = (1) + (@i ()l - 500)
o (o) S d%(sof;(x))sw_t(x»
. Pl (s () = ()
o)) = 5
. Ol - s()
t

Each operator Cy(t) converges to idr,» as t goes to 0. Further, we have for all
seI*(M, TM) C D(A)ND(G)and x e M

~As(x) = - llirré d%(so_t(x))s(;p_t(x)) — s(x)
= l:vws(x),

= Co(0)-

see Lemma 6.4, and

Di(p-1())(s(p—+(x))) — 5(x)

= li
Gs(x) tg% t
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This implies that for all s € (M, TM) and x € M

Mops(x) = % Co(t)s(x) = —As(x) + Gs(x).
=0

Considering the above limit in local coordinates implies again, by the mean value
theorem and by compactness of M, uniform convergence, i.e.,

Mos =-As+Gs foralls e (M, TM).

Since A and G are generators of weighted Koopman semigroups, we have by the
functional equation (FE) for all s € I'(M,TM), f € D(5)

Mao(fs) = -A(fs)+G(fs)
=—0f-s+f -As)+(Of-s+[f-Gs)
= qu)S.
By the Tensor Characterization Lemma, see [Leel3], Lemma 12.24, it follows that

M > x — Mgps(x) is smooth for all s € I'°(M,TM) and can be extended to the
space of continuous sections I'(M,TM).

Finally, we show that Mg is bounded. We consider M,s := (Mgs)(x) for all
x € Mands € I'(M,TM). Then m, := || M,|| depends smoothly on x. Since M
is compact, sup,¢y my =: m < oo. Consequently, |[Mo|l = supjg=; [Mos]l =
SUP|si=1 SUPxenm (M)l = supyeps supyg=; [Ms)(x)[| = m < co. 0

We summarize the above results in the following theorem.

Theorem 6.7. Let (7 (t));cr be the pushforward group with generator (A, D(A))
and (S(t))ser be a Cy-group on T'(M, T M) with generator (G, D(G)). If the smooth
sections T(M,TM) are a core for (G, D(G)), then the following assertions are
equivalent.

(@) (S(%))ser is a weighted Koopman group.

(b) (S())ser is a multiplicative perturbation of (7 (t));er by C(M)-module ho-
momorphisms C(t), t € R, i.e., we have for eacht € R

S(t) = C(t)T (¢).
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(¢c) The generator (G, D(G)) is the additive perturbation of (A, D(A)) by a
bounded multiplication operator M, i.e.,

G=A+M with D(G) = D(A).
Proof. The equivalence “(a) & (b)” follows by Proposition 6.5.

“(a) = (c)”: First, we abbreviate I' := I'(M,TM). We know that G = A + M
on D := I'(M,TM) by Proposition 6.6. Moreover, as M is bounded, we have
D(A + M) = D(A) N D(M) = D(A). Since D is a core for (G, D(G)) (by
assumption) as well as for (A, D(A)) (by Lemma 6.4) it follows that

{(s,G9) | s € D(G)}

={(s,Gs) | s € D}

={(s,(A+ M)s) | s € D}

={(s5,5) e T XTI | (sp, (A + M)sn) = (x,¥), (sp)new € D}
={(s, 5+ Ms) e I XT'| 3(sp, Asn) = (x,y), (Sn)new € D}
={(s, (A + M)s) | s € D(A)},

ie, G =Gp=(A+ M), =A+Muwith D(G) = D(A).

“(c) = (a)”: For f € D(6) and s € D(G) we have
G(fs) = A(fs)+ M(fs)
=0f-s+f -Asf - Ms
=0f-s+ f-Gs.
Theorem 3.8 implies that (S(7));er is a weighted Koopman group. O

Remark 6.8. Each bounded additive perturbation of the generator of a Cy-group
generates a Co-group, see [ENOO], paragraph I1.3.11 and Section III.1, Theorem
1.3. Thus, each additive perturbation of the generator of the pushforward group by
a bounded multiplication operator is the generator of a weighted Koopman group
by Theorem 6.7.

Remark 6.9. The equivalence “(a) < (c)” of the above theorem can be—in view
of Lemma 6.4—formulated in the following way: Each generator of a weighted
Koopman group induced by a smooth flow (®;),cr over (¢;)er is an additive
perturbation of the Lie derivative Ly, on ['*(M, T M) by a bounded multiplication
operator and each such perturbation yields a weighted Koopman group.
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Example 6.10. Consider for each x € M, ¢t € R, the parallel transport P;(x)
along ¢,(x) with respect to the Levi-Civita connection V, cf. [Spi99], Chapter 6,
p- 238 and 240. Then (P;);cr is a smooth flow over (¢;);cr, cf. [Leel8], Theorem
4.31 and Theorem 4.32. We call the corresponding weighted Koopman group
(P(1))ier parallel transport group and denote its generator by (8B, D(8)). The
above theorem implies for all s € D(8B)

Bs = As + Ms

for a bounded multiplication operator M and the generator (A, D(A)) of the
pushforward group (77(¢));er. This can be reformulated to

-As = —-Bs + Ms

for all s € D(8B). By Lemma 6.4 we have for s € (M, TM) that —As = Lyes.
Moreover, for all s € (M, TM)

Lyes = Vyes — V, V¥,

cf. [Spi99], Chapter 5, p. 224 and Chapter 6, p. 238. Thus, we have for all
s € T°(M, TM)
—Bs+ Ms = -As
= st
= sz - VSV"O.
By Lemma 6.3 the space '°(M, TM) is a core for the generator (8, D(8B)) of the
parallel transport group. For all s € (M, T M) we have for all x € M

Bs(x) = =Vyes(x),

see [Spi99], Chapter 6, Proposition 3. Again, using local coordinates and the mean
value theorem, compactness of M yields for all

Bs = —Vyes.

The bounded multiplication operator M is given by Ms = V, V¥ for all s €
(M, TM).

Remark 6.11. One could also start with the pushforward group (P(f));er on
['(M,TM) to obtain every other weighted Koopman group induced by a smooth
flow (®;);cr over (¢;)er. In particular, the additive perturbation of the generator
(8B, D(B)) of the pushforward group by a bounded multiplication operator M also
results in a generator of a weighted Koopman group. The proofs of Proposition 6.6
and Theorem 6.7 can simply be adapted to that situation.
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We now apply semigroup theory to obtain corollaries of Theorem 6.7 which are
useful to compare qualitive properties of a weighted Koopman group (S(¢));cr on
['(M, T M) induced by a smooth flow (®;),cr over (¢;)cr and the pushforward group
(7(1))ser- In the following take the pushforward group (77 (¢));cr and let M be the
bounded multiplication operator corresponding to (S());er as in Theorem 6.7.

Corollary 6.12. For a weighted Koopman group (S(t));er induced by a smooth
Sflow (D;);ecr over (¢;)er the following variation of parameters formula holds

t
S(t)s =T (t)s + / T(t —r)MS(r)sdr
0
foreveryt e Rands € I'(M,TM), cf. [ENOO], Section Ill.1, Corollary 1.7.

Corollary 6.13. Each weighted Koopman group (S(t));er induced by a smooth
Slow (®;);er over (¢;)er can be obtained as a so-called Dyson-Phillips series, i.e.,

S(t) =) Su)
n=0
where Sy(t) := T (t) and for alln e N
t
Sp1(2) = / T(t —r)MS,(r)dr,
0
see [ENOO], Section I11.1, Theorem 1.10.

Corollary 6.14. Let (S(t));er be a weighted Koopman group induced by a smooth
Sflow (®;);er over (¢;)er. Then there exists a constant M > 0 such that

17() = SOl < tM
forallt € [0, 1], see [ENOO], Section Ill.1, Corollary 1.11.

Corollary 6.15. We consider the parallel transport group (P(t))ier on T(M,TM)
with generator (8, D(B)). For each weighted Koopman group (S(t));er induced
by a smooth flow (®;);cr over (¢;)er there exists a bounded multiplication operator
Mon T'(M,TM) such that the Lie-Trotter product formula holds, i.e.,

t t n
S(t)s = lim [P (—) eﬁM] s, sel'(M,TM),teR,
n—o0 n
with uniform convergence for t in compact intervals.
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Proof. By Remark 6.11, the generator (G, D(G)) of (S(t))cr is of the form G =
B + M on D(B). Further, the parallel transport P,, t € R, along the flow
(¢r)er is an isometry, see [Leel8], Proposition 5.5. Hence, each P(t) satisfies
1P| < 1, see Theorem 3.8. Moreover, the group (e'),cr generated by M
satisfies ||e’M|| < el forall t € R. Thus, forallr e R, n € N,

[l7 (e < GO e

Then the claim follows by [ENO0O], Section III.5, Corollary 5.8. O

n
t
Se ”M”.

Remark 6.16. For matrices A and B the product formula

A BN
ed*B = lim [enen]

n—o0o

goes back to Lie and has been extended to unbounded operators by Trotter [Tro59].

Example 6.17. For the above Lie-Trotter product formula in the case of evolution
semigroups induced by evolution families as in Example 3.11(ii), we refer to
[ENOO], Section III.5, Example 5.9.

6.2 Hyperbolic flows

In this section, we characterize hyperbolic flows—also known as Anosov flows—
on a compact Riemannian manifold M without boundary via the corresponding
pushforward group on I'(M,TM). We start with the definition of a hyperbolic
flow, cf. [FH19], Definition 5.1.1.

Definition 6.18. Let (¢;);cr be a smooth flow on M with corresponding vector
field V¥. Consider for each x € M the linear span Ey(x) := (V¥(x)) := RV¥(x)
with corresponding Banach subbundle Ey = |, Eo(x) € TM. We call (¢,)rer
hyperbolic or Anosov if there are (d¢; );cr-invariant Banach subbundles E and E,,
of TM such that

TM = E; ® E, @ E

and the flow (dg;);er over (¢;);er restricted to the Banach bundle E := E; & E,,
has exponential dichotomy on E with stable Banach subbundle E; and unstable
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Banach subbundle E,,, see Definition 5.7. We call E the hyperbolic Banach bundle
of (¢1)rer.

Remark 6.19. In the situation of the above definition the hyperbolic Banach bun-
dle E of (¢;)cr is, indeed, a Banach bundle, see Construction A.6.

Proposition 6.20. Let (¢;);cr be a smooth flow on M with corresponding push-
forward group (T (t));er on U'(M,TM). Assume that there exists a decomposition
TM = E & Ey into (dg,)cr-invariant Banach subbundles E and Ey of TM with
Ey as in Definition 6.18. Then the following assertions are equivalent.

(@) The flow (¢;)ier is hyperbolic, i.e., (dg,)er restricted to E has exponential
dichotomy.

(b) The pushforward group (T (t));er restricted to T'(M, E) is hyperbolic.

Proof. The space of sections of E is a Banach submodule of I'(M,TM), see
Proposition A.4. Since E is (d¢, );er-invariant, the AM-module I'(M, E) is invari-
ant under the associated pushforward group (7 (7)),er, see Section 5.2, p. 90. But
then the assertion follows directly by Theorem 5.8. O

Since the tangent bundle of a smooth manifold is a continuous Banach bundle, see
Example 1.5 (ii), we know by Corollary 5.9 that for a smooth aperiodic flow (¢;);cr
on M the associated pushforward group (7 (¢));cg on I'(M,T M) has exponential
dichotomy if and only if its generator A is invertible. In the following situation
exponential dichotomy is stable under the “small” additive perturbation of A
by a bounded multiplication operator M, i.e., exponential dichotomy is a robust

property.

Proposition 6.21. Let G = A + M the generator of a weighted Koopman group
(S(t))ier on T(M, TM) (cf. Theorem 6.7) such that the corresponding flow (¢;)rer
is aperiodic. If (7 (t))ecr has exponential dichotomy (i.e., A is invertible) and
IMIl - IAY| < 1, then (S(t))ier has exponential dichotomy.

Proof. [Kat80], Chapter IV, Theorem 1.16 implies that G is invertible. Hence,
(S());er has exponential dichotomy, see Corollary 5.9. O
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Remark 6.22. For a similar result for hyperbolic evolution semigroups as in Ex-
ample 3.11 (ii) we refer to [ENOO], Section V1.9, Theorem 9.24, [CL96], Theorem
4.3, [LS99], Corollary 2.10, or [HuyO7], Theorem 6.1.

The results of the present chapter indicate that there is great potential in this
operator theoretic approach to smooth flows on manifolds.
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Appendix A

Standard constructions for Banach
bundles and Banach modules

In this appendix we briefly recall the definitions and standard constructions for
Banach bundles and Banach modules, cf. [Gie82], [DG83], [FD88], or [AAK92],
which we need for our investigation of hyperbolicity of weighted Koopman semi-
groups in Chapter 5.

A.1 Banach subbundles and Banach submodules

This section is inspired by Section 8 of [Gie82]. We consider a Banach bundle
p: E — K over a compact space K, see Definition 1.1, and the corresponding
AM-module I'(K, E) over C(K), see Definition 1.3. In this context, we recall the
definition of Banach subbundles and Banach submodules and the correspondence
between them.

Definition A.1. A subspace F' C E is called Banach subbundle if the following
properties are satisfied.

(i) For each x € K the set F, := p~'(x) N F is a closed subspace of the fiber
E, = p_l(x)'
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(ii) The restriction of the bundle projection pr: F — K is open.

Proposition A.2. A Banach subbundle F C E is a Banach bundle over K with the
bundle projection and bundle norm of E restricted to F.

Proof. For the proof, we refer to Proposition 8.2 of [Gie82]. O

Definition A.3. A closed subspace I' C I'(K, E) is called Banach submodule if T
is a submodule of I'(K, E).

Obviously, each Banach submodule of I'(K, E) is, again, an AM-module over
C(K). By Theorem 3.3 there exists, up to isometric isomorphy, a unique Banach
bundle F over K such that I is isometrically isomorphic to I'(K, F'). This Banach
bundle F can be identified with a Banach subbundle of E over K. The following
proposition describes the correspondence between Banach subbundles and Banach
submodules.

Proposition A.4. The following statements are true.

(i) For each Banach subbundle F C E over K the induced AM-module T'(K, F)
over C(K) is a Banach submodule of T'(K, E).

(ii) Consider the evaluation map e,: I’ — Ey, s — s(x), x € K. For each
Banach submodule T C T(K, E) over C(K) the induced Banach bundle
F := U ex ex(I') over K is a Banach subbundle of E.

Moreover, F — T'(K, F) is a bijection of Banach subbundles and Banach submod-
ules. The inverse is given by I — | .cx €x().

Proof. Cf. Theorem 8.6 and Remark 8.7 of [Gie82]. O

We conclude this section with a remark concerning the kernel and the image of a
homomorphism of Banach modules, see Definition 2.1.

Remark A.5. Let 7 be a homomorphism between two Banach modules I'(K, E1)
and I'(K, E»). Then ker 7~ C I'(K, E}) and the closure of rg 7 C I'(K, E3) are
Banach submodules.
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A.2 Direct sum of Banach bundles and Banach mod-
ules

We now discuss the direct sum of two Banach bundles E and F over the compact
space K.

Construction A.6. For each x € K we consider the direct sum E, & F, of the
Banach spaces E, and F, equipped with the norm ||(u, v)|| := max(]||u]|, ||v]|) for
(u,v) € E; @ F,, which induces the product topology of E, and F, on E, & Fy.
We then endow the direct sum

EGBF::UEXEBFXQEXF
xeK

with the subspace topology induced by the product topology on E X F. Equipped
with the canonical projection, addition, and scalar multiplication, the direct sum
E & F of two Banach bundles E and F over K is, again, a Banach bundle over K,
see, e.g., Chapter II, Section 13 of [FD8S].

For two AM-modules I'(K, E) and I'(K, F) over C(K) we equip the Banach space
direct sum

I'(K,E)®T(K, F)

with the canonical C(K)-module structure and with the norm

llCs1, s2)]I == max({lsy ], [[s2[])
for s; € [(K, E), 51 € (K, E).
By the following proposition, the direct sum I'(K, E)®I'(K, F) of two AM-modules
I'(K, E) and I'(K, F) over C(K) is, again, an AM-module over C(K).
Proposition A.7. In the situation above the mapping
I'K,EYoT'(K,F) —I(K,E®F), (s1,5)H 51®s5

with (s; ® s2)(x) := (s1(x), s2(x)) for s;1 € I'(K,E), s € I'(K,F), and x € K
defines an isometric isomorphism of AM-modules.
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Proof. It is obvious that the mapping is a module isomorphism. We also have

l[s1 @ 52| = sup(max({[s; (x)]l, [[s2(x)1])

xek

= max(sup || s1(x)]], sup [|s2(x)]])
xekK xekK

= max(||s]], |s21])
= |IGs1, s2)l

for 51 € I'(K, E), s» € ['(K, F). Thus, the mapping is isometric. O

The results above yield a correspondence between decompositions of Banach
bundles and decompositions of AM-modules.

Proposition A.8. Let I'(K, E) be an AM-module over C(K) corresponding to the
Banach bundle E over K. Then the following assertions hold.

(i) If there are two non-trivial Banach subbundles E|, E; C E such that E =
E| @ Ej, then we have that T'(K, E\) and T'(K, E») are non-trivial Banach
submodules of (K, E) and T'(K, E) = I'(K, Ey) & I'(K, E).

(ii) If there are two non-trivial Banach submodules T'y, I, C I'(K, E) such that
I'(K,E) = T'| & Iy, then there are two non-trivial Banach subbundles E|,
Ey CE suchthatE = E, ® E; and Ty = T'(K, E)) and I, = T'(K, E>).

Proof. By Proposition A.4 each Banach submodule corresponds to a Banach sub-
bundle. The assertions then follow by the previous proposition and Theorem 3.3.0

112



Bibliography

[AAK92]

[ADROO]

[AG84]

[AH86]

[AMRS3]

[Are83]

[Are87]

[Aus88]
[Bir31]

[BKR17]

[BP13]

Y. A. Abramovich, E. L. Arenson, and A. K. Kitover, Banach C(K)-
Modules and Operators Preserving Disjointness, Longman, 1992.

C. Anantharaman-Delaroche and J. Renault, Amenable Groupoids,
L’Enseignement Mathématique, 2000.

W. Arendt and G. Greiner, The spectral mapping theorem for one-
parameter groups of positive operators on Co(X), Semigroup Forum
30 (1984), 297-330.

W. Arendt and D. R. Hart, The spectrum of quasi-invertible disjoint-
ness preserving operators, J. Funct. Anal. 68 (1986), 149-167.

R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis,
and Applications, Addison-Wesley, 1983.

W. Arendt, Spectral properties of Lamperti operators, Indiana Uni-
versity Mathematics Journal 32 no. 2 (1983), 199-215.

W. Arendt, Resolvent positive operators, Proc. London Math. Soc.
$3-54 no. 2 (1987), 321-349.

J. Auslander, Minimal Flows and their Extensions, Elsevier, 1988.

G. D. Birkhoft, Proof of the ergodic theorem, Proc. Natl. Acad. Sci.
USA 17 no. 12 (1931), 656-660.

A. Bétkai, M. Kramar FijavZ, and A. Rhandi, Positive Operator Semi-
groups, Birkhiduser, 2017.

L. Barreira and Y. B. Pesin, Introduction to Smooth Ergodic Theory,
American Mathematical Society, 2013.

113



[Bro79]

[BV19]

[CL96]

[CL99]

[Cun67]

[Den05]

[Der79]

[DG83]

[Dix77]
[dV193]
[Ede20]

[EFHN15]

[Eis10]

[EK20]

[E1169]

I. U. Bronstein, Extensions of Minimal Transformation Groups, Si-
jthoff & Noordhoff, 1979.

L. Barreira and C. Valls, Hyperbolicity via evolution semigroups on
L?, Qualitative Theory of Dynamical Systems (2019), 1-22.

S.-N. Chow and H. Leiva, Unbounded perturbation of the exponen-
tial dichotomy for evolution equations, J. Differential Equations 129
(1996), 509-531.

C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical
Systems and Differential Equations, American Mathematical Society,
1999.

F. Cunningham, M-structure in Banach spaces, Proc. Camb. Phil. Soc.
63 (1967), 613-629.

M. Denker, Einfiihrung in die Analysis dynamischer Systeme, Springer-
Lehrbuch, Springer, 2005.

R. Derndinger, “Uber das Spektrum positiver Generatoren”. Disser-
tation. Universitat Tiibingen, 1979.

M. J. Dupré and R. M. Gillette, Banach Bundles, Banach Modules
and Automorphisms of C*-Algebras, Longman, 1983.

J. Dixmier, C*-Algebras, North-Holland, 1977.
J. de Vries, Elements of Topological Dynamics, Springer, 1993.

N. Edeko, On equicontinuous factors of flows on locally path-connected
compact spaces, Ergodic Theory Dynam. Systems (2020). To appear.

T. Eisner, B. Farkas, M. Haase, and R. Nagel, Operator Theoretic
Aspects of Ergodic Theory, Springer, 2015.

T. Eisner, Stability of Operators and Operator Semigroups, Birkhiduser,
2010.

N. Edeko and H. Kreidler, Uniform enveloping semigroupoids for
groupoid actions. Preprint. 2020.

R. Ellis, Lectures on Topological Dynamics, Benjamin, 1969.

114



[E1187]

[ENOO]

[ENO6]

[FD88]

[FH19]

[Gie82]

[Gla03]

[Gut93a]

[Gut93b]

[Hey15]

[HoKel7]

[HoKr18]

[HP57]

R. Ellis, Topological Dynamics and Ergodic Theory, Ergodic Theory
Dynam. Systems 7 (1987), 25-47.

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evo-
lution Equations, Springer, 2000.

K.-J. Engel and R. Nagel, A Short Course on Operator Semigroups,
Universitext - Springer-Verlag, Springer, 2006.

J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally
Compact Groups, and Banach *-Algebraic Bundles. Volume 1. Ba-
sic Representation Theory of Groups and Algebras, Academic Press,
1988.

T. Fisher and B. Hasselblatt, Hyperbolic Flows, Zurich Lectures in
Advanced Mathematics, European Mathematical Society, 2019.

G. Gierz, Bundles of Topological Vector Spaces and Their Duality,
Springer, 1982.

E. Glasner, Ergodic Theory via Joinings, American Mathematical
Society, 2003.

A. E. Gutman, Banach bundles in the theory of lattice normed spaces.
I. Continuous Banach bundles, Siberian Adv. Math. 3 (1993), 1-55.

A. E. Gutman, Banach bundles in the theory of lattice normed spaces.
II. Measurable Banach bundles, Siberian Adv. Math. 4 (1993), 8-40.

R. Heymann, “Multiplication Operators on Bochner Spaces and Ba-
nach Fibre Spaces”. Dissertation. Universitét Tiibingen, 2015.

K. H. Hofmann and K. Keimel, “Sheaf theoretical concepts in analy-
sis: Bundles and sheaves of Banach spaces, Banach C(X)-modules”.
Applications of Sheaves. Ed. by M. Fourman, C. Mulvey, and D. Scott.
1977, 415-441.

B. Host and B. Kra, Nilpotent Structures in Ergodic Theory, American
Mathematical Society, 2018.

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups,
Revised. American Mathematical Society, 1957.

115



[Huy07]

[JPS87]

[Kai78]

[Kat80]

[Kna67]

[Koo31]

[Krel9]

[KS20]

[Kus00]

[Kiih19]

[Kiis20]

[Lan95]

[Leel3]

[Leel8]

N. T. Huy, Existence and robustness of exponential dichotomy of
linear skew-product semiflows over semiflows, J. Math. Anal. Appl.
333 (2007), 731-752.

R. A. Johnson, K. J. Palmer, and G. R. Sell, Ergodic properties of
linear dynamical systems, SIAM J. Math. Anal. 18 no. 1 (1987), 1-33.

S. Kaijser, Some representation theorems for Banach lattices, Ark.
Mat. 16 (1978), 179-193.

T. Kato, Perturbation Theory for Linear Operators, 2nd edition.
Vol. 132 of Grundlehren Math. Wiss. Springer, 1980.

A. W. Knapp, Distal functions on groups, Trans. Amer. Math. Soc.
128 (1967), 1-40.

B. O. Koopman, Hamiltonian systems and transformation in Hilbert
space, Proc. Natl. Acad. Sci. USA 17 no. 5 (1931), 315-318.

H. Kreidler, “Contributions to the Koopman Theory of Dynamical
Systems”. Dissertation. Universitét Tiibingen, 2019.

H. Kreidler and S. Siewert, Gelfand-type theorems for dynamical
Banach modules, Math. Z. (2020). por: https://doi.org/10.
1007/s00209-020-02560-2.

A. G. Kusraev, Dominated Operators, Springer, 2000.

V. Kiihner, What can Koopmanism do for attractors in dynamical
systems?, The Journal of Analysis (2019).

K. Kiister, Decompositions of dynamical systems induced by the
Koopman operator, Analysis Mathematica (2020). To appear.

S. Lang, Differential and Riemannian Manifolds, 3rd edition. Springer,
1995.

J. M. Lee, Introduction to Smooth Manifolds, 2nd edition. Springer
Graduate Texts in Mathematics, 2013.

J.M. Lee, Introduction to Riemannian Manifolds, 2nd edition. Springer
Graduate Texts in Mathematics, 2018.

116


https://doi.org/https://doi.org/10.1007/s00209-020-02560-2
https://doi.org/https://doi.org/10.1007/s00209-020-02560-2

[LSO06]

[LS99]

[Ma87]

[Mac98]

[MeiO7]

[MNO1]
[MW74]

[Nag86]

[Nic97]

[ParO8]

[PMS2]

[Rau94]

[Ree80]

[RRS96]

Y. Latushkin and A. Stepin, “Linear skew-product flows and semi-
groups of weighted composition operators”. Vol. 1486. 2006, 98—
111.

Y. Latushkin and R. Schnaubelt, Evolution semigroups, translation al-
gebras, and exponential dichotomy of cocycles, J. Differential Equa-
tions 159 (1999), 321-369.

R. Maié, Ergodic Theory and Differentiable Dynamics, trans. by S.
Levy. Springer, 1987.

S. MacLane, Categories for the Working Mathematician, 2nd edition.
Springer, 1998.

J. Meiss, Differential Dynamical Systems, Society for Industrial and
Applied Mathematics, 2007.

P. Meyer-Nieberg, Banach Lattices, Springer, 1991.

G. Mittelmeyer and M. Wolff, Uber den Absolutbetrag auf komplexen
Vektorverbianden, Math. Z. 137 (1974), 87 -92.

R. Nagel, ed., One-parameter Semigroups of Positive Operators, Sprin-
ger, 1986.

G. Nickel, Evolution semigroups for nonautonomous Cauchy prob-
lems, Abstr. Appl. Anal. 2 (1997), 73-95.

W. Paravicini, A note on Banach Cy(X)-modules, Miinster J. Math. 1
(2008), 267-278.

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems: An
Introduction, Springer, 1982.

R. Rau, Hyperbolic evolution semigroups on vector valued function
spaces, Semigroup Forum 48 (1994), 107-118.

M. Rees, Tangentially distal flows, Isr. J. Math. 35 no. 1-2 (1980), 9—
31.

F. Rébiger, A. Rhandi, and R. Schnaubelt, Perturbation and an abstract

characterization of evolution semigroups, Journal of Mathematical
Analysis and Applications 198 no. 2 (1996), 516-533.

117



[Sch74]

[Sma67]

[Spi99]

[SS74]

[SS76a]

[SS76b]

[SS78]

[Tao09]

[Tro59]

[UhI86]

[vNe32a]

[VNe32b]

H. H. Schaefer, Banach Lattices and Positive Operators, Springer,
1974.

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc.
73 no. 6 (1967), 747-817.

M. Spivak, A Comprehensive Introduction to Differential Geometry,
3rd edition. Vol. 2 of Publish or Perish, Inc., 1999.

R. Sacker and G. Sell, Existence of dichotomies and invariant split-
tings for linear differential systems, I, J. Differential Equations 15n0.3
(1974), 429-458.

R. Sacker and G. Sell, Existence of dichotomies and invariant split-
tings for linear differential systems, II, J. Differential Equations 22 no. 2
(1976), 478-496.

R. Sacker and G. Sell, Existence of dichotomies and invariant split-
tings for linear differential systems, IIl, J. Differential Equations 22
(1976), 497-522.

R. Sacker and G. Sell, A spectral theory for linear differential systems,
J. Differential Equations 27 (1978), 320-358.

T. Tao, Poincaré’s Legacies, Part I, American Mathematical Society,
2009.

H. Trotter, On the product of semi-groups of operators, Proc. Amer.
Math. Soc. 10 (1959), 545-551.

H. Uhlig, The eigenfunctions of compact weighted endomorphisms
of C(X), Proc. Amer. Math. Soc. 98 no. 1 (1986), 89-93.

J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Natl.
Acad. Sci. USA 18 no. 1 (1932), 70-82.

J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik,
Ann. of Math. 33 no. 3 (1932), 587-642.

118



	Zusammenfassung in deutscher Sprache
	Contributions
	Introduction
	I Representation of semigroups on Banach modules
	Semiflows on Banach bundles
	Semiflows on topological Banach bundles
	Semiflows on measurable Banach bundles

	Representation of semigroups on spaces of sections
	AM- and AL-modules
	AM-modules
	AL-modules

	Lattice normed modules
	nnormed modules
	nnormed modules



	II One-parameter semigroups of weighted Koopman operators
	Weighted Koopman semigroups on spaces of continuous sections
	Koopmanism
	Spaces of continuous sections
	Algebraic characterization of weighted Koopman semigroups
	Lattice-theoretic characterization of weighted Koopman semigroups

	Spectral theory for weighted Koopman semigroups
	The non-weighted case
	Koopman operators
	Koopman groups

	The weighted case
	Weighted Koopman operators
	Weighted Koopman semigroups


	Asymptotics of weighted Koopman semigroups
	Hyperbolicity for C0-semigroups
	Direct sum of weighted Koopman semigroups
	Exponential dichotomy and the Sacker-Sell spectrum

	An example from differential geometry
	The generator of a weighted Koopman group as a perturbation of the Lie derivative
	Hyperbolic flows

	Standard constructions for Banach bundles and Banach modules
	Banach subbundles and Banach submodules
	Direct sum of Banach bundles and Banach modules

	Bibliography


