
 

 

Effect of (pp)pGpp on stress responses in 

Staphylococcus aureus  

 

Dissertation 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Eberhard Karls Universität Tübingen 

zur Erlangung des Grades eines  

Doktors der Naturwissenschaften  

(Dr. rer. nat.) 

 

 

 

 

vorgelegt von 

Petra Horvatek 

aus Stuttgart 

  

 

 

 

Tübingen 

2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der 

Eberhard Karls Universität Tübingen. 

 

 

Tag der mündlichen Qualifikation:  15.06.2020 

Dekan: Prof. Dr. Wolfgang Rosenstiel 

1. Berichterstatter: Prof. Dr.Christiane Wolz                                           

2. Berichterstatter: Prof. Dr.Heike Brötz-Oesterhelt 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Erklärung: Hiermit erkläre ich, dass ich diese Arbeit selbst verfasst und keine anderen  

als die angegebenen Quellen und Hilfsmittel benutzt und Stellen, die wörtlich oder inhaltlich 

nach Werken anderer Autoren entnommen sind, als solche gekennzeichnet hab. Eine 

detaillierte Abgrenzung meiner eigenen Leistungen und Beiträge meiner Kooperationspartner 

habe ich in „Erklärung zum Anteil gemeinschaftlicher Arbeit im Rahmen der Dissertation“ 

vorgenommen.  

 

Unterschrift 

Tübingen, den…… 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Meiner Familie und meinen Freunden für die Unterstützung, Geduld, 

Kraft und Liebe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table of contents 
 

1 Summary ................................................................................................................. 1 

2 Zusammenfassung ................................................................................................. 2 

3 List of publications ................................................................................................. 4 

4 Personal contribution to publications .................................................................. 5 

5 Introduction ............................................................................................................. 6 

5.1 The stringent response ....................................................................................... 6 

5.2 General structure of RelA, SpoT and RelA/SpoT homologues (RSH), the small 
alarmone synthetases (SAS) RelP/Q/V and small alarmone hydrolase (SAH) 
RelV…………………………………………………………………………………………7 

5.3 RelA.................................................................................................................... 8 

5.3.1 Hopping model ............................................................................................. 9 

5.3.2 Extendend Hopping model ......................................................................... 11 

5.3.3 The regulatory C-terminal domain .............................................................. 13 

   5.3.3.1 TGS ...................................................................................................... 13 

   5.3.3.2 ACT ...................................................................................................... 13 

   5.3.3.3 The DC domain .................................................................................... 14 

5.4 SpoT ................................................................................................................. 15 

5.5 RelA/SpoT Homologue Enzymes (RSH) .......................................................... 15 

5.6 Function of RSH in firmicutes and Staphylococcus aureus  ............................. 15 

5.7 Function of the small alarmone synthetases RelP and RelQ in firmicutes  ....... 16 

5.8 (pp)pGpp binding targets in firmicutes  ............................................................. 17 

5.9 Effect of (pp)pGpp on the nucleotide pool  ....................................................... 17 

5.10 Role of (pp)pGpp for biofilm, virulence, antibiotic tolerance and persistence in 
pathogenic firmicutes  ............................................................................................ 18 

5.10.1 (pp)pGpp mediated biofilm formation  ...................................................... 18 

   5.10.1.1 (pp)pGpp mediated biofilm formation in E. faecalis  ........................... 19 

   5.10.1.2 (pp)pGpp mediated biofilm formation in S. mutans  ........................... 19 

   5.10.1.3 (pp)pGpp mediated biofilm formation in S. aureus ............................. 20 

5.10.2 (pp)pGpp-mediated virulence  .................................................................. 20 

   5.10.2.1 (pp)pGpp mediated virulence in E. faecalis  ....................................... 21 

   5.10.2.2 (pp)pGpp mediated virulence in Streptococcus spp.  ......................... 21 

   5.10.2.3 (pp)pGpp mediated virulence in S. aureus  ........................................ 22 

 



 

 

5.10.3 How to distinguish between antibiotic tolerance and persistence  ........... 22 

5.10.4 (pp)pGpp-mediated antibiotic tolerance  .................................................. 23 

   5.10.4.1 (pp)pGpp mediated antibiotic tolerance in E. faecalis  ....................... 24 

   5.10.4.2 (pp)pGpp mediated antibiotic tolerance in S. aureus  ........................ 24 

5.10.5 (pp)pGpp-mediated persister formation  .................................................. 27 

   5.10.5.1 (pp)pGpp mediated persister formation in S. aureus  ......................... 28 

5.11 Oxidative stress response in Staphylococcus aureus .................................... 29 

5.11.1 Reactive oxygen species (ROS) .............................................................. 29 

5.11.2 Role of iron regulation in S. aureus  ......................................................... 30 

5.11.3 Role of the peroxide regulon regulator PerR in S. aureus  ....................... 32 

6 Aim of this thesis .................................................................................................. 34 

7 Results ................................................................................................................... 36 

7.1 Manuscript ready for submission  ..................................................................... 36 

7.2 Publication 2  .................................................................................................... 74 

8 Additional Research ............................................................................................. 95 

8.1 RelQ-mediated (pp)pGpp synthesis increased expression of genes involved in 
cell wall biosynthesis and vancomycin tolerance  ................................................... 95 

9 Discussion ............................................................................................................ 98 

9.1 (pp)pGpp reprograms the transcriptome  ......................................................... 98 

9.2 RSH-mediated (pp)pGpp synthesis effects a variety of gene categories ......... 99 

9.3 (pp)pGpp-mediated induction of psms increases ROS  .................................... 99 

9.4 (pp)pGpp influences gene expression of oxidative stress and iron storage 
independent of CodY, PerR, Fur and SarA  ......................................................... 101 

9.5 (pp)pGpp induces psm expression independent of the major regulators CodY, 
PerR, Fur and SarA  ............................................................................................. 103 

9.6 Regulatory mechanisms of (pp)pGpp on transcription of oxidative stress/ iron 
storage genes and psm/agr  ................................................................................. 104 

9.6.1 (pp)pGpp may indirectly activates/inhibits transcription depending on the 
initiation nucleotide on position +1 .................................................................... 104 

9.6.2 (pp)ppGpp might regulate gene expression by riboswitch  ...................... 105 

9.7 RelQ is less active than RelP in vivo  ............................................................. 106 

9.8 RelQ induces genes for cell wall synthesis  .................................................... 106 

9.9 Synthesis of the new alarmone pGpp  ............................................................ 107 

9.10 RSH mainly functions as a (pp)pGpp hydrolase  .......................................... 108 

9.11 (pp)pGpp synthesis is dependent on the C-terminus in S. aureus  .............. 109 



 

 

9.11.1 (pp)pGpp synthesis is dependent on TGS and DC, but not ACT  ........ 110 

   9.11.1.1 The DC domain regulates synthetase activity through oligomerization
 .......................................................................................................................... 110 

   9.11.1.2 TGS regulates synthetase activity by sensing uncharged tRNAs and 
interaction with the ribosome ............................................................................ 111 

   9.11.1.3 ACT does not affect synthetase activity but interacts with the ribosome 
 .......................................................................................................................... 112 

10 Appendix ........................................................................................................... 113 

10.1 Publication 1 ................................................................................................. 113 

11 References  ....................................................................................................... 124 

12 Curriculum vitae  .............................................................................................. 136 

13 Acknowledgements  ......................................................................................... 138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   



Summary 

~1~ 
 

1 Summary 

The stringent response is a conserved regulatory mechanism among a variety of 

bacterial species and is characterized by the synthesis of the alarmones pGpp, ppGpp 

and pppGpp, also collectively called (pp)pGpp. The activating signal of the stringent 

response differs among species and results in a variety of physiological alterations. In 

Staphylococcus aureus three enzymes regulate the intracellular level of (pp)pGpp and 

react to different stress signals. The RelA-SpoT homologue RSH from Staphylococcus 

aureus synthesizes (pp)pGpp in response to amino acid deprivation. In contrast, the 

small alarmone synthetase RelP and RelQ are transcriptionally activated upon cell wall 

stress. In this thesis, I was interested in whether (pp)pGpp synthesis of the three 

enzymes results in similar transcriptional changes independent of their activating 

mechanism. So far, genomic analyses were performed under artificially induced stress 

conditions. However, side effects cannot be excluded. Therefore, I used transcriptional 

induction of a truncated RSH, with an inactive hydrolase (RSH-Syn), RelP and RelQ, 

ensuring results are only (pp)pGpp-mediated. Thereupon, I compared the nucleotide 

pool of directly inducing (pp)pGpp versus stress mimicking conditions. Indeed, 

transcriptional induction resulted in similar changes compared to induced stringent 

response via mupirocin. Typical stringent response related changes of the nucleotide 

pool are characterized by lowering of the GTP-Pool, increased ATP pool and the 

detection of pGpp, ppGpp and pppGpp. These changes were detectable for RSH and 

RelP but minor in RelQ, indicating a limited synthetase activity in vivo. Next, RNA-Seq 

was used to compare global transcriptional changes between RSH and RelQ-mediated 

(pp)pGpp synthesis. Genes involved in iron storage and oxidative stress response are 

highly upregulated in response to RSH-induction. Furthermore, phenol soluble 

modulins (PSMs) α1-4 and β1/2 are upregulated independent of their major regulator 

Agr. (pp)pGpp-dependent expression of ftnA, dps and psms is independent of the 

regulators CodY, PerR, Fur and SarA. Furthermore, (pp)pGpp-mediated expression of 

psms results in increased production of reactive oxygen species (ROS). In conclusion, 

expression of oxidative stress response genes is indispensable for S. aureus to be 

protected of PSM-mediated or exogenous ROS. Hence, in this thesis I identified a new 

link of a (pp)pGpp-dependent regulation of oxidative stress response and PSMs. The 

activation of the stringent response and the concomitant expression of psms and 

related oxidative stress genes, likely contribute to the survival within the phagosome. 
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2 Zusammenfassung 

Die stringente Kontrolle ist ein konservierter regulatorischer Mechanismus, welcher in 

den unterschiedlichsten Bakterien vorkommt und durch die Synthese der Alarmone 

pGpp, ppGpp und pppGpp charakterisiert ist. Diese Alarmone werden 

zusammenfassend (pp)pGpp genannt. Die stringente Kontrolle wird durch 

verschiedene Signale aktiviert und resultiert in unterschiedliche physiologische 

Veränderungen. Das RelA/SpoT Homolog RSH reagiert auf Aminosäuremangel, 

wohingegen die “small alarmone” Synthetasen (SAS) RelP und RelQ aufgrund von 

Zellwandstress transkriptionell aktiviert werden. Trotz unterschiedlicher aktivierender 

exogener Signale, synthetisieren alle drei Synthetasen (pp)pGpp. Das Ziel meiner 

Arbeit bestand darin, die transkriptionellen Konsequenzen nach Induktion der 

einzelnen Enzyme und deren (pp)pGpp-Synthese zu vergleichen und zu bewerten. 

Frühere genomische Analysen wurden unter Stress-induzierenden Bedingungen 

durchgeführt. Solche Stress-induzierende Bedingungen wurden durch Antibiotika wie 

Mupirocin herbeigeführt. Die Verwendung solcher “Stressinduzierer” schließt 

(pp)pGpp-unabhängige Nebeneffekte nicht aus. Aus diesem Grund wurden RelP, 

RelQ und eine kurze Variante des RSHs mit inaktiver Hydrolase verwendet, welche 

mittels Anhydrotetracyclin (ATc) transkriptionell exprimiert wurden. Diese drei 

Konstrukte wurden in einem (pp)pGpp negativen Stamm analysiert. Somit konnten 

folgenden Ergebnisse als rein (pp)pGpp-abhängig interpretiert werden. Zunächst 

wurde der Nukleotidpool zwischen Mupirocin-induzierter und direkter (pp)pGpp-

Synthese verglichen. Zum einen konnte ich nachweisen, dass die transkriptionelle 

Induktion von RSH-Syn, RelP und RelQ zur (pp)pGpp-Synthese führt und zum 

anderen zum Anstieg von ATP und Abfall von GTP. Diese Veränderungen des 

Nukleotidpools sind charakteristisch für die stringente Kontrolle. RelQ wies eine 

geringe (pp)pGpp Synthese auf, was vermutlich auf eine schwache Synthetaseaktivität 

in vivo zurück zu führen ist. Um die (pp)pGpp-abhängigen Folgen, induziert durch RSH 

und RelQ, zu untersuchen, wurde das Transkriptom mittels RNA-Sequenzierung 

analysiert. Die Analyse weist eine auffällige Heraufregulierung von Genen auf, welche 

der oxidativen Stressantwort und Speicherung von Eisen zuzuordnen ist. Darüber 

hinaus werden “phenol soluble modulins” (PSMs) α1-4 und β1/2 unabhängig von ihrem 

Hauptregulator Agr stärker exprimiert. Weiter Analysen zeigen, dass die erhöhte 

Expression von ftnA, dps und psms keine indirekten Effekte der Regulatoren CodY, 

PerR, Fur und SarA ist.  
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Die (pp)pGpp-abhängige Expression von psms führt zu einem messbaren Anstieg von 

“reactive oxygen species” (ROS). Schlussfolgernd führt die Synthese von (pp)pGpp zu 

einem PSM-induzierten Anstieg von endogenen ROS, vor welchem sich 

Staphylococcus aureus durch die simultane Expression von oxidativen Stressgenen 

schützt. Die Aktivierung der stringenten Kontrolle und die damit einhergehende 

Expression von psms und oxidative Stressgenen, tragen mit sehr hoher 

Wahrscheinlichkeit zum Überleben innerhalb des Phagosoms bei.  
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5 Introduction 

5.1 The stringent response 

The stringent response is a conserved regulatory mechanism in different bacteria and 

is characterized by the synthesis of alarmones pGpp, ppGpp and pppGpp, collectively 

called (pp)pGpp. (Battesti & Bouveret, 2006; Cashel & Kalbacher, 1970; B. Das, Pal, 

Bag, & Bhadra, 2009; Geiger et al., 2010; Mechold, Murphy, Brown, & Cashel, 2002). 

(pp)pGpp was described for the first time in 1969 by Michael Cashel who identified two 

“magic spots” in E .coli under amino acid limited conditions (Cashel & Kalbacher, 

1970). (pp)pGpp is synthesized by GTP-pyrophosphatases (RelA, SpoT, RSH, 

RelP/Q/V) via transferring the pyrophosphate group from ATP to either GMP (pGpp), 

GDP (ppGpp) or GTP (pppGpp). The bifunctional RSH and SpoT can reverse this 

reaction and hydrolyze (pp)pGpp by cleaving a pyrophosphate group (Fig1). (pp)pGpp 

is assumed to be synthesized at a basal level during exponential growth in order to 

fine-tune cellular processes. In stationary growth phase nutrient availability is limited 

and (pp)pGpp synthesis is increased (Hauryliuk, Atkinson, Murakami, Tenson, & 

Gerdes, 2015). This results in various physiological changes e.g. inhibition of rRNA 

synthesis, translation, restricted metabolism and activation of genes necessary to 

overcome the stringent conditions (Hauryliuk et al., 2015; Potrykus & Cashel, 2008; 

Steinchen & Bange, 2016; Wolz, Geiger, & Goerke, 2010).  In pathogenic bacteria the 

stringent response triggers gene activation responsible for persister formation, host-

pathogen interactions and virulence (Dalebroux, Svensson, Gaynor, & Swanson, 2010; 

Dalebroux & Swanson, 2012; Hobbs & Boraston, 2019a; Kushwaha, Oyeyemi, & 

Bhavesh, 2019). Bacteria impaired in (pp)pGpp synthesis were shown to be more 

sensitive to antibiotics, produce less biofilm and are attenuated in virulence. These 

features and the fact that the stringent response is a conserved mechanism in many 

pathogenic bacteria makes it attractive as a novel drug target. Several (pp)pGpp 

inhibiting compounds were developed (Syal et al., 2017; Wexselblatt et al., 2012) and 

evaluated (Wexselblatt, Kaspy, Glaser, Katzhendler, & Yavin, 2013)  to inhibit bacterial 

long-term survival.  
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Fig.1 Synthesis and degradation of (pp)pGpp by RSH/RelA/ SpoT and the small 
alarmone synthetases RelP/Q/V. Under stringent conditions the pyrophosphate 
group of ATP is transferred on either GMP, GDP or GTP by RSH, RelA, SpoT or 
RelP/Q/V resulting in pGpp, ppGpp or pppGpp and the by-product AMP. Overcoming 
stringent conditions (pp)pGpp is hydrolyzed by removing the pyrophosphate group via 
RSH or SpoT. 

 

5.2 General structure of RelA, SpoT and RelA/SpoT homologues (RSH), the small 

alarmone synthetases (SAS) RelP/Q/V and small alarmone hydrolase (SAH) RelV 

RSH enzymes are conserved among different species like plants, algae and bacteria 

(Atkinson, Tenson, & Hauryliuk, 2011). “Long” RSH enzymes consist of an enzymatic 

N-terminal domain with a hydrolase and synthetase domain and a regulatory C-

terminus, bearing the TGS, DC and ACT domain. Although all RSH enzymes share 

the same basic structure, they exhibit differences in their function. In 1989 Metzger 

proposed RelA and SpoT evolved from a gene duplication of a RSH-like enzyme 

(Metzger 1989). This gene duplication may explain the different functions and the 

amino acid substitution event as it may have occurred in the hydrolase domain of RelA 

(Atkinson et al., 2011; Mittenhuber, 2001). Beside the “long” RSH, a subset of small 

alarmone synthetase (SAS) and hydrolases (SAH) exist. SAS (RelP/Q/V) and SAH 

(RelH) are shorter than RSH, do not possess a regulatory domain and exhibit one 

enzymatic activity (synthesis or degradation) (Fig.2). 

The following chapter will explain the function of the single domains of RSH more in 

detail as exemplified on the E. coli RelA enzyme.  
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Fig.2 Structural composition of RSH, SpoT, RelA, the small alarmone 
synthetases RelP/Q/V and small alarmone hydrolases RelH.  All three “long” RSH 
enzymes RSH, SpoT and RelA are divided in an enzymatic N-terminus and a 
regulatory C-terminus. The N-terminal domain of RSH and SpoT is bifunctional, 
comprising hydrolase and synthetase activity. In contrast, RelA is a monofunctional 
enzyme with both domains (hydrolase and synthetase) but exhibits only a synthetase 
activity due to an amino acid substitution in the hydrolase domain (indicated with a 
star). The regulatory C-terminus consist of a TGS, ACT and DC domain, which is 
shared by all three “long” RSH-like enzymes. Unlike the “long” RSH, small alarmone 
synthetases or hydrolases do not possess a regulatory domain and consist of only one 
enzymatic activity; either synthetase (RelP/Q/V) or hydrolase (RelH).  

5.3 RelA 

The first enzyme described was RelA and was named after its “relaxed” phenotype in 

E. coli (RelAEc), meaning non-stringent conditions (Cashel & Kalbacher, 1970). RelA 

consists of a monofunctional enzymatic N-terminal domain with a non-functional 

hydrolase and a functional synthetase domain. The defect of the hydrolase probably 

derives from a mutation of the histidine in motif II or aspartate in motif V (Aravind & 

Koonin, 1998). 

RelAEc reacts upon amino acid starvation (Cashel & Kalbacher, 1970) and is located 

at the 70S ribosome under amino acid poor conditions (Haseltine, Block, Gilbert, & 

Weber, 1972). Upon amino acid depletion, uncharged tRNA enters the A-side of the 

ribosome and stalls translation. The location of RelA in the process of sensing amino 

acids is not clear. Two models were postulated namely Hopping model and a 

subsequently extended version of the same.  
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5.3.1 Hopping model 

The hopping model proposes, that RelA is “floating” around in the cytoplasm searching 

for stalled ribosomes (Fig.3)  (Wendrich, Blaha, Wilson, Marahiel, & Nierhaus, 2002). 

This is supported by Brown et al suggesting stalled ribosomes recruit RelA (A. Brown, 

Fernandez, Gordiyenko, & Ramakrishnan, 2016). The C-terminal domain of RelA 

interacts with the ribosome and senses uncharged tRNAs via TGS (Loveland et al., 

2016; Wendrich et al., 2002) resulting in (pp)pGpp synthesis. (pp)pGpp synthesis 

stimulates the release of RelA from the stalled ribosome and RelA consequently “hops” 

to the next stalled ribosome repeating this procedure. Therefore this model proposes 

that the amount of (pp)pGpp is equivalent to the amount of stalled ribosomes 

(Wendrich et al., 2002).  
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Fig.3 Schematic description of the hopping model. (1) Free RelA wait in the 
cytoplasm for stalled ribosomes (Wendrich et al., 2002) to be subsequently recruited 
to the ribosome (A. Brown et al., 2016). (3) Uncharged tRNAs are sensed by the C-
terminal domain (Loveland et al., 2016; Wendrich et al., 2002) via TGS (Loveland et 
al., 2016) and (pp)pGpp is synthesized (Wendrich et al., 2002), (4) which stimulates 
the dissociation of RelA, followed turning off the synthetase. 
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5.3.2 Extended Hopping model 

In contrast to the hopping model, the extended version suggests, that under “relaxed” 

conditions RelA is bound to the ribosome waiting for uncharged tRNAs to be sensed 

(English et al., 2011) and not “floating” around in the cytoplasm (Fig.4). This is 

supported by recent studies suggesting RelA first binds to the unloaded A-site of the 

ribosome followed by the recruitment of uncharged tRNAs (Kudrin et al., 2018; 

Loveland et al., 2016). Consequently, RelA dissociates from the ribosome and 

synthesizes (pp)pGpp. Additionally, uncharged tRNAs can be recognized by free RelA 

floating in the cytoplasm leading to a “semi-open” conformation mediating (pp)pGpp 

synthesis.  This RelA-deacetylated-tRNA-complex can then bind to the A-site of the 

ribosome, leading to an open conformation of RelA and (pp)pGpp synthesis (Arenz et 

al., 2016). This is supported by recent UV-crosslinking studies suggesting RelA 

primarily binds uncharged tRNA followed by binding of the RelA-uncharged-tRNAs 

complex to the A-site of the ribosome, which than results in (pp)pGpp synthesis 

(Winther, Roghanian, & Gerdes, 2018). In contrast to hopping model, the extended 

version suggests intracellular level of (pp)pGpp is equivalent to the number of 

uncharged tRNAs (English et al., 2011).  Nevertheless, the majority of these studies 

suggest, unbound RelA is inactive and (pp)pGpp synthesis is a consequence of RelA 

bound to the ribosome in the presence of uncharged tRNAs at the A-site (Arenz et al., 

2016; A. Brown et al., 2016; Kudrin et al., 2018; Loveland et al., 2016; Wendrich et al., 

2002; Winther et al., 2018). However, within these publications it remains unclear, 

whether RelA first builds a complex with uncharged tRNA which is transported to the 

ribosome (Arenz et al., 2016; Winther et al., 2018), RelA first binds to the stalled 

ribosome followed by the binding of uncharged tRNAs (Kudrin et al., 2018; Loveland 

et al., 2016) or uncharged tRNAs first bind to the A-site of the ribosome recruiting RelA 

(A. Brown et al., 2016; Wendrich et al., 2002). So far, none of the models and 

biochemical analyses could clarify whether RelA is permanently bound to the ribosome 

waiting for uncharged tRNA or “floating” in the cytoplasm waiting to be recruited to the 

ribosome or “fishing” for unloaded tRNAs followed by binding to the A-site of the 

ribosome. The discrepancies presumably result from applying a variety of different 

techniques, such as Cryo-EM (Arenz et al., 2016; A. Brown et al., 2016; Loveland et 

al., 2016), HPLC (Kudrin et al., 2018; Wendrich et al., 2002), enzymatic and binding 

assays (Kudrin et al., 2018; Wendrich et al., 2002) and variations within the 

experimental designs.   
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Since these studies were conducted independently and both hypothesis are confirmed 

to a certain extent, RelA can possibly detect amino acid starvation with more than one 

sensing mechanism. This would be beneficial as it would ensure a rapid response to 

unfavorable conditions. 

 

 

 

 

Fig.4 Schematic representation of the extended hopping model. (1) RelA is bound 
to the A-site of the ribosome waiting to sense (English et al., 2011)  or to recruit (Kudrin 
et al., 2018; Loveland et al., 2016) uncharged tRNA. (2) Uncharged tRNA entering the 
A-site of the ribosomes are sensed by RelA. (3) Consequently, RelA dissociates and 
synthesizes (pp)pGpp. (4) Free RelA can recognize intracellular uncharged tRNA 
leading to a semi-open conformation and subsequent (pp)pGpp synthesis. (5) This 
RelA-deacetylated-tRNA complex is transported to the empty A-site of the ribosome 
yielding in an open-conformation and full (pp)pGpp synthesis (Arenz et al., 2016). 
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5.3.3 The regulatory C-terminal domain 

5.3.3.1 TGS 

All three enzymes RelA, SpoT and RSH share a common regulatory C-terminal domain 

(Fig.2). The C-terminal domain carries two major motifs. The TGS is named by the 

three protein families it was identified in: threonyl-tRNA synthetase, Obg family of 

GTPases and  SpoT (Battesti & Bouveret, 2006). Recent crystal structures could clarify 

which domain of RelAEc senses uncharged tRNA. TGS domain of ribosome-bound 

RelAEc senses uncharged tRNAs. TGS can only bind to the CCA sequence-end of 

deacetylated tRNAs, thereby discriminating between charged or uncharged tRNAs 

(Fig.5) (Arenz et al., 2016; A. Brown et al., 2016; Kudrin et al., 2018; Loveland et al., 

2016). Uncharged tRNA attaches the center of TGS (Fig.5)  (Loveland et al., 2016) (A. 

Brown et al., 2016) to the ribosomal 30S subunit which pushes the synthetase domain 

closer to the spur of the ribosomal 30S subunit (Loveland et al., 2016).  

5.3.3.2 ACT 

The ACT domain (Aspartate kinase, Chorismate mutase, prephenate dehydrogenase 

TyrA) is a domain which appears in many proteins from different organisms like plants 

(Hsieh & Goodman, 2002) and bacteria and are often found to be involved in purine 

and amino acid biosynthesis genes (Chipman & Shaanan, 2001; Hsieh & Goodman, 

2002). It contains a GTP and ATP/GTP binding domain (Jin et al., 2004). Aravind and 

Koonin postulated in 1999 that ACT is a mobile element which integrates in different 

type of proteins resulting in distinct regulation with specific ligands (Aravind & Koonin, 

1998). For example, in mammalian cells the ACT domain of the human phenylalanine 

hydroxylase (PAH) binds phenylalanine (Ge et al., 2018). In E. coli the ACT domain of 

the 3’phosphoglycerate dehydrogenase binds serine which inhibits its catalytic activity 

(Hsieh & Goodman, 2002). Cryo-EM studies demonstrate an interaction of the RelAEc 

ACT domain with the A-site finger of the 23S rRNA and ribosomal protein L16. 

Moreover, the linker region between the TGS and ACT wraps around the acceptor 

stem of tRNAs allowing ACT to bind to the tRNA elbow region (Fig.5). These three 

independent Cryo-EM studies suggest ACT to be the linker between uncharged tRNAs 

and the ribosome in E. coli (Arenz et al., 2016; A. Brown et al., 2016; Loveland et al., 

2016). Recent studies in Rhodobacter capsulatus showed ACT of Rel binds valine and 

isoleucine and probably influences hydrolase activity (Fang & Bauer, 2018).  
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Fig.5: Schematic representation of the interaction of RelA C-terminus with 
deacetylated tRNA based on (Arenz et al., 2016; A. Brown et al., 2016; Loveland et 
al., 2016). The TGS domain senses an uncharged tRNA at CCA-end of the acceptor 
stem. The linker region binds around the tRNA and allows the ACT domain to bind the 
tRNA-elbow region. Furthermore, the ACT domain interacts with A-site finger of the 
23S rRNA and the ribosomal protein L16. 

5.3.3.3 The DC domain 

The DC domain was characterized by three conserved amino acids. Mutational 

analysis in E. coli showed that these conserved amino acids are essential for a 

functional C-Terminus. RelA exists in a homooligomeric state and Cys-612, Asp-637 

and Cys-638 play a crucial role in oligomerization. Mutation of these amino acids 

resulted in increased (pp)pGpp synthesis, indicating RelA forms oligomers in the 

cytoplasm under relaxed conditions and thereby leading to an autoinhibitory state. 

Consequently, stringent conditions lead to the disassociation into active monomers 

and (pp)pGpp synthesis (Avarbock et al., 2005; Gropp, Strausz, Gross, & Glaser, 2001; 

Jain, Saleem-Batcha, & Chatterji, 2007; Yang & Ishiguro, 2001). Furthermore, latest 

Cryo-EM (A. Brown et al., 2016; Loveland et al., 2016) and biochemical analyses 

(Kudrin et al., 2018) identified that these amino acids are part of a zinc finger domain 

(ZFD) and suggest, that the Cys-612 is crucial (A. Brown et al., 2016) for binding of 

RelAEc to the ribosome via the A-site finger (ASF) (Loveland et al., 2016) (A. Brown et 

al., 2016; Kudrin et al., 2018).  
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Binding of the ZFD to the ribosome and uncharged tRNAs results in activation of the 

stringent response (Kudrin et al., 2018). Conclusively, the DC or ZFD domain seems 

to exert two different functions. Under relaxed condition RelA is oligomerized leading 

to a weak synthetase activity, whereas under stringent conditions the DC/ZFD domain 

anchors RelA to stalled ribosomes resulting in (pp)pGpp synthesis, presumably via 

disassociation into active monomers. These data support the idea of the hopping 

model, which suggest RelA is inactive in a ribosome-unbound state as a consequence 

of oligomerization and active in a ribosome-bound state resulting in (pp)pGpp 

synthesis.  

5.4 SpoT 

Besides RelA, gamma-proteobacteria possess a second enzyme, called SpoT. In 

contrast to RelA, SpoT is bifunctional, bearing an N-terminus with a strong hydrolase 

and a weak synthetase activity. Although RelA and SpoT have a very similar structure, 

SpoT responds to different stringent signals like fatty acid starvation (Battesti & 

Bouveret, 2006) and carbon depletion (Metzger,Schreiber et al. 1989), since the TGS 

domain of SpoT senses fatty acid starvation via the acyl carrier protein ACP (Battesti 

& Bouveret, 2006, 2009). 

 

5.5 RelA/SpoT Homologue Enzymes (RSH) 

RSH enzymes are bifunctional enzymes from other bacteria. The nomenclature varies 

among literature and can be often found as RSH or Rel with corresponding 

abbreviations of the organism. In this thesis I prefer RSH, since it describes best what 

it is: a combination of RelA and SpoT.  

RSH enzymes are conserved among gamma- and beta-proteobacteria and react to 

different nutrient limitations resulting in different physiological changes. 

 

5.6 Function of RSH in firmicutes and Staphylococcus aureus 

In firmicutes such as Staphylococcus aureus (S. aureus) only one bifunctional enzyme 

exists which is called RSH (RelA/SpoT homologue). It harbors a functional hydrolase 

and synthetase comparable to SpoT and a regulatory C-terminal domain which senses 

amino acid starvation comparable to RelA. Deleting the C-terminus in Streptococcus 

equisimilis exerted in stronger synthetase and weaker hydrolase activity in vitro 

(Mechold et al., 2002).   
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Crystal structure analysis of the RSH N-terminal enzymatic domain in Streptococcus 

equisimilis revealed two different conformations, which decide whether RSH is in a 

Hydrolase-ON or OFF state. This conformational change is dependent on the binding 

of the unusual ligand ppG2:3’p. GDP is bound to the synthetase domain under both 

conditions. Binding of ppG2:3’p to the hydrolase results in a Hydrolase-

ON/Synthetase-OFF conformation. Contrariwise, unbound ppG2:3’p results in an open 

conformation and a Hydrolase-OFF/Synthetase-ON state (Hogg, Mechold, Malke, 

Cashel, & Hilgenfeld, 2004). Comparable results have been observed for S. aureus 

(Geiger et al., 2010). Under relaxed conditions RSHSau is trapped in a Hydrolase-ON/ 

Synthetase-OFF state (Geiger et al., 2010). At the beginning of this work presented in 

this thesis, it was not clear, how the C-terminus influences the activity of the hydrolase 

and/or the synthetase. 

5.7 Function of the small alarmone synthetases RelP and RelQ in firmicutes 

RSH is not the only enzyme responsible for (pp)pGpp synthesis. In firmicutes, there 

are small alarmone synthetases, RelP and RelQ (B. Das et al., 2009) which only carry 

a synthetase domain and sense a variety of stress signals such as cell wall stress 

(Geiger, Kastle, Gratani, Goerke, & Wolz, 2014) ethanol stress (Pando et al., 2017) 

and fatty acid/ glucose stress (B. Das et al., 2009).  

RelQ from Bacillus subtilis (RelQBs) synthesizes ppGpp more efficiently than pppGpp 

and its activity is based on forming a homotetramer structure. Furthermore, there is a 

stimulation of the catalytic activity of RelQ by pppGpp binding into the cleft of the 

homotetramer thereby enhancing ppGpp synthesis. The physiological function is not 

yet understood (Steinchen et al., 2015). Further investigations demonstrate RelQ from 

Enterococcus faecalis (RelQEfa) activity is inhibited by single stranded mRNA. This 

inhibiting mRNA is defined by a specific sequence and length, presumably GAAGAA 

and a sequence length between 12 and 15 nucleotides (Beljantseva et al., 2017). This 

inhibition is reversible by ppGpp in RelQ. pppGpp and to a lesser extent ppGpp 

binding, leads to disassociation of the RelQ:RNA complex and subsequently the 

activation of RelQ. Under relaxed and stringent conditions RelQ forms homotetramers.  

Presumably, RelQ acts as a sensor to maintain (p)ppGpp homeostasis  (Beljantseva 

et al., 2017). So far, these results are based on biochemical and structural analyses of 

purified RelQ. Functional studies in vivo are missing.   
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In S. aureus, the two small synthetases RelP and RelQ are activated transcriptionally 

after induced cell wall stress by either ampicillin or vancomycin (Geiger et al., 2014). 

In contrast to RelQ, RelP can also be transcriptionally activated after ethanol stress, 

emphasizing its role in also protecting S. aureus from ethanol induced stress (Pando 

et al., 2017). RelPSau also forms tetramers (Manav et al., 2018; Steinchen et al., 2018) 

but, in contrast to RelQ, RelP is inhibited by ppGpp and pppGpp and activated by Zn2+ 

(Manav et al., 2018; Steinchen et al., 2018).  

5.8 (pp)pGpp binding targets in firmicutes 

Over the last years, more and more (pp)pGpp binding targets have been identified.  

Binding of (pp)pGpp results in inhibition of the respective target.  Such (pp)pGpp 

binding targets can be categorized in GTP biosynthesis enzymes (HprT, Gmk) (Kriel 

et al., 2012a; Liu, Bittner, & Wang, 2015), GTPases (RsgA, RbgA, Era, HflX, ObgE 

and Obg) (Buglino, Shen, Hakimian, & Lima, 2002; Corrigan, Bellows, Wood, & 

Gründling, 2016) and inhibition of replication by binding to primase thereby preventing 

binding of RecA, which leads to the stalling of the replication fork (J. D. Wang, Sanders, 

& Grossman, 2007). 

5.9  Effect of (pp)pGpp on the nucleotide pool 

Altering the nucleotide pool is one of the major effects of (pp)pGpp resulting in different 

consequences such as altering gene transcription. (pp)pGpp inhibits enzymes involved 

in GTP synthesis leading to a drop of the intracellular GTP-pool. The sharp decrease 

of the GTP-pool provokes the de-repression of the master regulator CodY, which is 

only present in Gram positive bacteria (Handke, Shivers, & Sonenshein, 2008). CodY 

is a transcriptional repressor and binds to genes containing a CodY-box 

(AATTTTCWGAAAATT) (Brinsmade, 2017). Under high GTP level conditions and on 

abundance of branched chain amino acids, CodY is bound thus preventing RNAP 

binding. Low GTP-pool and amino acid deprivation changes CodY conformation and 

thereby its release from DNA. Subsequently, genes for a variety of functions are 

transcribed (Brinsmade, 2017; Geiger & Wolz, 2014; Handke et al., 2008).  In S.aureus, 

(p)ppGpp is synthesized under stringent conditions consequently leading to the de-

repression of CodY and to the transcription of genes involved in transport and 

metabolism of amino acids and virulence genes like agr (Geiger & Wolz, 2014; Pohl et 

al., 2009).  
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Lowering of the GTP-pool is not sufficient to de-repress CodY and requires additionally 

a low level of the branched chain amino acids (Pohl et al., 2009). Media lacking 

branched chain amino acids showed activation of CodY regulated genes and identified 

isoleucine as the major ligand for CodY besides GTP in S. aureus (Geiger et al., 2010). 

This demonstrates a tight cross talk between the GTP-pool, stringent response and 

the transcriptional repressor CodY. Therefore, experiments should be performed 

additionally in a CodY negative background to exclude an indirect effect due to de-

repression of CodY.  

5.10 Role of (pp)pGpp for biofilm, virulence, antibiotic tolerance and 

persistence in pathogenic firmicutes 

Pathogenic firmicutes are a huge problem in hospitals due to their multiple defense 

mechanism against antibiotics and the innate immune system. One of the major human 

pathogen responsible for hospital acquired infections is Staphylococcus aureus (T. 

Das et al., 2019; Santajit & Indrawattana, 2016; Zhang et al., 2019). The preferred 

habitat of S. aureus is the nasal cavity (Krismer et al., 2014; Pynnonen, Stephenson, 

Schwartz, Hernandez, & Boles, 2011; Sakr, Bregeon, Mege, Rolain, & Blin, 2018). S. 

aureus is challenged by a variety of stress during colonization and infection of the 

human host. Switching niches from the nasal environment to soft tissue and blood-

stream infections (Krismer et al., 2014; Lowy, 1998), is accompanied by a dramatic 

shift in nutrients and oxygen (S. A. Brown, Palmer, & Whiteley, 2008; George et al., 

2019). S. aureus has developed different mechanisms to resist antibiotics and escape 

invasion by the immune system. Within the human host S. aureus has to escape the 

innate immune system. The stringent response supports adaptation by influencing 

virulence, biofilm formation, antibiotic tolerance and manipulating host immune system. 

5.10.1  (pp)pGpp mediated biofilm formation 

Biofilm is defined as a microbial community which is attached to a surface or to other 

cells. Bacteria are coated by extracellular polymeric substances (EPS), which can 

differ in their composition. Biofilms are critical concerning the medical healthcare 

system. They stick to medical devices and catheters and are difficult to eradicate, while 

being responsible for chronic infections and are impervious to antimicrobial peptide 

(Lister & Horswill, 2014; Romling & Balsalobre, 2012). (pp)pGpp mediated biofilm 

formation was demonstrated in different bacterial species like E. faecalis (Berditsch, 
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Lux, Babii, Afonin, & Ulrich, 2016; Chávez de Paz, Lemos, Wickström, & Sedgley, 

2012; Colomer-Winter, Flores-Mireles, Kundra, Hultgren, & Lemos, 2019; Colomer-

Winter, Gaca, Chuang-Smith, Lemos, & Frank, 2018) and Streptococcus mutans 

(Lemos, Brown, & Burne, 2004; Lemos, Nascimento, Lin, Abranches, & Burne, 2008).  

5.10.1.1 (pp)pGpp-mediated biofilm formation in E. faecalis 

In E. faecalis biofilm formation and stability of different (pp)pGpp mutants was followed 

over 72 hours under non-stringent inducing conditions. The (pp)pGpp-deficient relQ 

mutant was capable in developing and sustaining biofilm almost to the same level as 

the parental strain. The (pp)pGpp0 mutant relA/relQ  and the (pp)pGpp-deficient relA 

mutant were impaired in establishing a biofilm and were incapable of sustaining biofilm 

compared to the wild type (WT) (Chávez de Paz et al., 2012). These data show that 

the intracellular basal level of (pp)pGpp is responsible for formation and maintenance 

of biofilm rather than activation of the stringent response. Clinical isolates from an 

immunocompromised leukemia patient were obtained during persistent infection. Each 

antibiotic therapy failed to eradicate the persistent pathogen. Analyzing these clinical 

isolates revealed an amino acid substitutions in the RSH enzymes, which led to 

constitutive (pp)pGpp synthesis, resulting in reduced biofilm. Interestingly, hyperactive 

RSH mutants remained susceptible to daptomycin and linezolid in liquid culture but 

were resistant in biofilm. Curing of the patient succeeded after eradication of the biofilm 

with a ClpP-activator ADEP-4 (Honsa et al., 2017). This is contrast to previous 

observation, which demonstrated (pp)pGpp contributes to biofilm formation. It remains 

unclear which role (pp)pGpp plays in biofilm formation in E. faecalis. 

5.10.1.2 (pp)pGpp-mediated biofilm formation in S. mutans 

Lemos et al (Lemos et al., 2004)were the first who analyzed behavior of biofilm 

formation in dependency of (pp)pGpp in Streptococcus mutans (S. mutans). 

Interruption of RSH with a kanamycin cassette in the enzymatic N-terminal part in two 

different positions resulted in decreased (pp)pGpp synthesis after induction of stringent 

response by serine hydroxamate (SHX). They speculated, the weak (pp)pGpp 

synthesis derives from an unknown (pp)pGpp synthetase. Both RSH mutants exhibited 

reduced biofilm formation. This observation contributed to the assumption, RSH-

mediated (pp)pGpp synthesis is involved in biofilm formation (Lemos et al., 2004). At 

this time point the existence of RelP and RelQ was yet unknown.  
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2007 Lemos et al identified the two small alarmone synthetase RelP and RelQ (Lemos, 

Lin, Nascimento, Abranches, & Burne, 2007) and repeated biofilm studies in a strain 

incapable of synthesizing (pp)pGpp. Further analyses performed in (pp)pGpp0 mutant 

showed no differences in biofilm formation compared to the wild type (Lemos et al., 

2008). These data suggest, (pp)pGpp prevents biofilm formation rather than 

promoting.  

5.10.1.3 (pp)pGpp-mediated biofilm formation in S. aureus 

A rshsyn mutant synthesizes less (pp)pGpp and was incapable of forming a proper 

biofilm compared to the wild type (de la Fuente-Nunez, Reffuveille, Haney, Straus, & 

Hancock, 2014). Furthermore, a cationic synthetic compound IDR1018 showed to 

eradicate biofilm in a variety of clinical relevant Gram positive and negative bacteria, 

including S. aureus. ppGpp was suggested being the target for this compound (de la 

Fuente-Nunez et al., 2014) Subsequently, this assertion was contested by Andresen 

et al, who showed ppGpp was not the target of IDR1018 and not the reason for 

eradication of the biofilm (Andresen, Tenson, & Hauryliuk, 2016). In further 

investigation, several cationic peptide were developed and analyzed. One of these 

compounds was DJK-5, which inhibits (pp)pGpp and eradicates biofilm in 

Pseudomonas putida and other Gram negative bacteria (de la Fuente-Nunez et al., 

2015). Whether this occurs by direct binding to (pp)pGpp or in an indirect manner has 

to be elucidated.  The effect of DJK-5 on biofilm eradication in firmicutes remains to be 

investigated.  At this state of the thesis, no data clearly show a correlation between 

(pp)pGpp and biofilm formation in S. aureus. 

In summary, the role of (pp)pGpp in biofilm formation varies between species. On the 

one hand, the basal (pp)pGpp level seems to be crucial for building and maintaining 

biofilm in E. faecalis (Chávez de Paz et al., 2012), on the other hand high level of or 

no  (pp)pGpp impairs biofilm formation in S. mutans (Lemos et al., 2004; Lemos et al., 

2008)  and E. faecalis (Chávez de Paz et al., 2012; Honsa et al., 2017).  

5.10.2  (pp)pGpp-mediated virulence 

Virulence in general describes the capability of a pathogenic organism to provoke a 

disease within the host. The level of virulence depends on the capability of replication 

within and invading the host, manipulating the host’s immune system and the 

production of toxins (virulence genes). 
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Several publications implicate a link between the stringent response and virulence in 

different organisms. The impact of (pp)pGpp on virulence and infection seems to result 

in the same outcome in many different species. In the following section the 

consequences of (pp)pGpp on virulence will be described more in detail. 

5.10.2.1 (pp)pGpp-mediated virulence in E. faecalis  

In E. faecalis a (pp)pGpp0 mutants was attenuated in virulence in a Galleria mellonella 

(G.mellonella) infection model (Colomer-Winter, Gaca, & Lemos, 2017; Gaca, 

Abranches, Kajfasz, & Lemos, 2012) and showed less survival in mouse-derived 

macrophages in comparison to the WT (Gaca et al., 2012) (Colomer-Winter et al., 

2019). ΔrelAsp mutant, which is a short version of RSH bearing only the N-terminal 

domain, was more virulent compared to the parental strain in G. mellonella model. 

Nearly 100% of ΔrelAsp infected G. mellonella died within 23 hours whereas about 60% 

survived infection with the WT or ΔrelA mutant. The absence of the C-terminus 

assumable leads to a hyper-activation of the synthetase and increase of (pp)pGpp 

synthesis, which may explain the increased virulence (Yan et al., 2009). In an infective 

endocarditis model (pp)pGpp0 mutants failed to colonize porcine heart valve (Colomer-

Winter et al., 2018) . Investigating the behavior of (pp)pGpp on catheter associated 

urinary tract infections (CAUTI) urinary tract of mice were infected with different 

(p)ppGpp-impaired and (pp)pGpp0 mutants immediately after catheter implantation. 

The (pp)ppGpp0 mutant was inefficient in colonizing catheter and were not detectable 

in the kidney.  

5.10.2.2 (pp)pGpp-mediated virulence in Streptococcus spp.  

(pp)pGpp also conducts to virulence in S. pneuomiae. Microarray data indicated a 

RSH-dependent upregulation of the toxin pneumolysine ply. In a mouse infection 

model Δrsh strain was attenuated in virulence and infection. Complementation with 

RSH restored virulence almost to the wild type level (Kazmierczak, Wayne, 

Rechtsteiner, & Winkler, 2009). More intense studies in relation to virulence were 

performed with pathogenic zoonotic strain Streptococcus suis (J. Zhu et al., 2016). 

Adherence, invasion and survival in HEp-2 cells of Δrsh/relQ mutant was up to 10 times 

less compared to the wild type. Furthermore Δrsh/relQ mutant was better phagocytized 

by THP-1. qRT-PCR confirmed, attenuated virulence is a consequence of down 

regulation of many virulence genes.  
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In conclusion, (pp)pGpp contributes to resistance to phagocytosis of macrophages, 

ability to invade and adhere and survival in blood in S. suis. Streptococcus agalctiae 

causes severe infections in new bornes. To elucidate how Streptococcus agalctiae 

(group B Streptococcus GBS) switches lifestyle from a commensal to a blood invading, 

transposon insertion experiments were performed in human blood. Results reveal a 

high insertion rate into the relA genes resulting in impaired (pp)pGpp synthesis. RelA 

mutant produced less hemolysin, which was restorable by complementation or 

induction of the stringent response by SHX in relA mutant or the wild. Activation of the 

stringent response clearly promotes higher virulence in GBS strains in human blood 

(Hooven et al., 2018).   

5.10.2.3 (pp)pGpp-mediated virulence in S. aureus 

In S. aureus RSH is essential for survival after phagocytosis. A relsyn mutant consist of 

a functional hydrolase but an inactive synthetase domain leading to lower (pp)pGpp 

level. In a kidney abscess model of S. aureus a relsyn mutant was less virulent in 

comparison to the WT.  No infection and no neutrophil infiltration were detectable in 

the relsyn mutant, concluding RSH in S. aureus contributes to virulence (Geiger et al., 

2010). The same mutant was shown to form smaller cutaneous skin abscess lesions 

in a mouse infection model (Mansour et al., 2016). This effect directly derives from 

(pp)pGpp. DJK-5 inhibits (pp)pGpp synthesis with a yet unknown mechanism. Co-

injection of DJK-5 and S. aureus resulted in almost no cutaneous abscesses formation, 

clearly indicating (pp)pGpp contributes to higher virulence 

In summary, the level of (pp)pGpp correlates with the level of virulence. Nevertheless, 

the mechanism how (pp)pGpp contributes to virulence is not clear and needs to be 

analyzed more in detail. 

5.10.3 How to distinguish between antibiotic tolerance and persistence 

Distinguishing between antibiotic tolerance and persistence is not simple. Antibiotic 

tolerance is defined as the survival of a bacterial population without changing the MIC 

(minimal inhibitory concentration). The MIC is determined by the lowest antibiotic 

concentration when growth is not anymore detectable. In contrast to resistance, 

antibiotic tolerant bacteria cannot grow but survive in presence to antibiotics and do 

not possess resistance genes which render antibiotic inefficiency or modification of the 

targets. After the removal of antibiotic, resistant cells can regrow.  
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Importantly, tolerance only occurs in bacteria exposed to bactericidal antibiotics and 

not bacteriostatic.  Antibiotic tolerance is phenotypically described with slow growth 

and low metabolic activity. Persistence has basically high similarity to antibiotic 

tolerance. In contrast to antibiotic tolerant cells, only a subpopulation of a bacterial 

culture remain tolerant against antibiotics, which could be also named “heterogeneous 

tolerance”. Similarly, they survive antibiotic treatment without genetically changing and 

alteration of the MIC. To distinguish between tolerance and persistence 

characterization of the minimum duration of killing (MDK) is crucial. MDK is defined by 

the minimal time antibiotics need to kill 99% of a bacterial population. Antibiotic tolerant 

cells are slower and “lineary” killed and exert a higher MDK compared to the 

susceptible strain. Persistent cells exert a higher MDK compared to the susceptible 

strain, too but is characterized by bimodal kill-curve. Initially, a rapid drop of bacterial 

populations can be observed after exposure to antibiotics but MDK is reached much 

later in comparison to the susceptible strain (Balaban et al., 2019; Brauner, Fridman, 

Gefen, & Balaban, 2016). One of this mechanism, which contributes to antibiotic 

tolerance through slow growth is the stringent response.  

5.10.4 (pp)pGpp-mediated antibiotic tolerance 

In many organisms activation of the stringent response leads to an increased tolerance 

against antibiotics with different mode of actions. However, these antibiotics prevent 

cell growth on different levels. The stringent response provides tolerance against 

antibiotics targeting exemplary protein biosynthesis (tetracycline (H. Y. Kim, Go, Lee, 

Oh, & Yoon, 2018) and linezolid (W. Gao et al., 2010)), DNA replication (ciprofloxacin 

(Corrigan, Bellows, Wood, & Gründling, 2016; M. Matsuo, M. Hiramatsu, et al., 2019)) 

and cell wall biosynthesis (vancomycin, ampicillin (Gaca et al., 2013; Geiger et al., 

2014; Katayama et al., 2017; Matsuo, Yamamoto, Hishinuma, & Hiramatsu, 2019; 

Singh et al., 2017), oxacillin (Aedo & Tomasz, 2016; Dordel et al., 2014; C. Kim et al., 

2013; C. K. Kim, Milheirico, de Lencastre, & Tomasz, 2017)). (pp)pGpp leads to 

antibiotic tolerance by a) slowing down metabolism, replication and protein 

biosynthesis and b) activation of genes known to be responsible for increased antibiotic 

tolerance or resistance. In the following section the emergence of antibiotic tolerance 

by (pp)pGpp will be explained on the basis of selected species.  
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5.10.4.1  (pp)pGpp-mediated antibiotic tolerance in E. faecalis  

A correlation between the stringent response and antibiotic tolerance has been 

analyzed in E. faecalis. A Δrsh mutant was more tolerant towards cell wall active 

antibiotic vancomycin in consequence of constitutive (pp)pGpp accumulation due to 

RelQ. This resulted in the conclusion, that low level of (pp)pGpp mediates antibiotic 

tolerance and the typical induction of stringent response is dispensable. This was 

supported by a more efficient killing of ΔrelQ mutant under non stressed condition in 

comparison to the wild type (Abranches et al., 2009). The essentiality of (pp)pGpp to 

survive antibiotics was shown by a (pp)pGpp0 mutant, which was more susceptible to 

ampicillin compared to the WT or mutants with at least one present synthetase (Gaca 

et al., 2013). The mechanism of (pp)pGpp-mediated antibiotic tolerance by slow growth 

was described by Corrigan et al for S. aureus. They showed binding of (pp)pGpp to 

the GTPase RsgA prevented assembly of the 70S ribosome. Unfortunately, the effect 

on antibiotic tolerance through slow growth was not shown for E. faecalis, since only 

binding assays of (pp)pGpp to RsgA and different GTPases were performed  (Corrigan, 

Bellows, Wood, & Gründling, 2016). 

The first clinical relevance of the stringent response in correlation to antibiotic tolerance 

have been recently reported. Clinical isolated vancomycin-resistant E. faecalis (VRE) 

were isolated from an immunocompromised child. Bacteremia persisted for 26 days 

and was incurable by any antibiotic therapy. Sequence analyses revealed an exchange 

of leucine on position 152 to phenylalanine in RSH leading to a constitutive (pp)pGpp 

synthesis and delicate biofilm formation. Hyperactive RSH remained susceptible to 

daptomycin and linezolid in liquid culture but was highly tolerant when cultured in a 

biofilm (Honsa et al., 2017). These data demonstrate, how activation of a mechanism 

such as the stringent response contribute to antibiotic tolerance and exert an emergent 

threat for curing persistent infections in patients. 

5.10.4.2 (pp)pGpp-mediated antibiotic tolerance in S. aureus 

As shown for E. faecalis, RelP and RelQ, but not RSH, have been implicated in 

antibiotic tolerance against cell wall antibiotics such as vancomycin and ampicillin.  

RelQ and RelP are induced on the transcriptional level via VraR/S, wherein RelP 

induction seems to be highly VraR/S dependent leading to antibiotic tolerance (Geiger 

et al., 2014). 
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 The VraR/S is a two-component system and rapidly senses cell wall damage 

(Belcheva & Golemi-Kotra, 2008) to activate the vra operon in a feedback loop. The 

vra operon includes genes which positively affect cell wall assembly by regulating 

synthesis (Kuroda et al., 2003) which in turn leads to antibiotic resistance (McCallum, 

Meier, Heusser, & Berger-Bächi, 2011).  

In subsequent work, the role of the stringent response has been implicated in antibiotic 

tolerance to vancomycin, without explicitly exploring the mechanism.   Vancomycin 

sensitive S. aureus (MSSA) (M. Matsuo, M. Hiramatsu, et al., 2019; Singh et al., 2017) 

FDA209P and vancomycin-intermediate S. aureus (VISA) (Katayama et al., 2017) 

challenged with either vancomycin (Katayama et al., 2017; Singh et al., 2017) or 

ciprofloxacin (M. Matsuo, M. Hiramatsu, et al., 2019) developed slow growing tolerant 

strains. Genetic analyses identified mutations in genes related to an activated stringent 

response (Katayama et al., 2017; M. Matsuo, M. Hiramatsu, et al., 2019; Singh et al., 

2017). Better survival towards vancomycin was provided by mupirocin-induced 

stringent response (Katayama et al., 2017; Singh et al., 2017). However, further 

investigations confirmed and unraveled the mechanism of RelQ-mediated antibiotic 

tolerance. In the highly virulent MRSA strain USA300 a ΔrelQ mutant is sensitive to β-

lactam antibiotics. However, RelQ activation can be bypassed and antibiotic tolerance  

restored by actively inducing the stringent response with mupirocin via RSH.  A relP 

mutant resulted in stronger activation of the relQ promoter which was further enhanced 

by oxacillin-inducing conditions. This leads to a hyperactivation of RelQ and results in 

a positive influence on mecA with increased antibiotic tolerance (Bhawini et al., 2019). 

The slow growing VISA strain L4 (derivate of V6-5) exhibits decreased MIC to 

vancomycin and oxacillin. Two mutations were identified by whole genome 

sequencing. One nonsense mutation was identified in relQ and one in an unknown 

gene, named ehoM. Deletion of relQ in hVISA strain Mu3 did not affect oxacillin MIC 

whereas in contrast ehoM mutation decreased MIC. Complementation of relQ in strain 

L4 restored MIC but not in the ehoM mutant strain Mu3. Furthermore, (pp)pGpp 

synthesis induced by expressing relQ or mupirocin-induced stringent response, 

increased ehoM expression, indicating EhoM contributes to vancomycin tolerance and 

is transcriptionally regulated via RelQ (M. Matsuo, N. Yamamoto, et al., 2019). These 

results identify RelQ as the major responder to cell wall acting antibiotics providing 

antibiotic tolerance through rapid (pp)pGpp synthesis and activation of ehoM (Fig.6) 

(Bhawini et al., 2019; Geiger et al., 2014; M. Matsuo, N. Yamamoto, et al., 2019).  
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Fig.6 Schematic illustration of cell wall stress induced transcriptional activation 
of RelP/Q in S. aureus. 1.) Cell wall damaging antibiotics are sensed by VraS which 
phosphorylates the response regulator VraR. (Belcheva & Golemi-Kotra, 2008) 2.) 
Consequently, RelP and RelQ are activated on a transcriptional level with unknown 
mechanism (Geiger et al., 2014). 3.) (pp)pGpp transcriptionally actives ehoM leading 
to 4.) tolerance towards vancomycin (M. Matsuo, N. Yamamoto, et al., 2019). The 
function of EhoM is yet unknown. 

 

So far, we have pointed out the relevance of RelQ rapidly responding to cell wall 

damaging antibiotics by immediately stalling growth via (pp)pGpp synthesis. As 

described for E. faecalis Corrigan et al (Corrigan, Bellows, Wood, & Grundling, 2016) 

observed (pp)pGpp binds and inhibits RsgA under stringent conditions which prevents 

the formation of matured 70S ribosomes and results in slow growth. Consequently, 

(pp)pGpp-mediated slow growth exhibits higher tolerance against ciprofloxacin and 

penicillin G. This stringent phenotype could be mimicked by a rsgA mutants which 

resulted in antibiotic tolerance, too (Corrigan, Bellows, Wood, & Gründling, 2016).  
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Several studies isolated strains from patients with persistent infection. These infections 

were difficult to treat with appropriate antibiotics.  Genetic analyses of the clinical 

isolates revealed mutations in the RSH enzyme leading to a (pp)pGpp-overproduction 

and constitutively activated stringent response (W. Gao et al., 2010; Mwangi et al., 

2013). Subpopulations of resistant MRSA differed in their resistance to oxacillin. 

Comparing these heterogeneous resistant strains, whole genome sequencing 

identified mutations in genes with different functions. Despite their various function, 

they resulted in activation of the stringent response. Direct activation of the stringent 

response by sub-MIC concentration of mupirocin, resulted in mecA-dependent 

conversion of heterogeneous to homogeneous high oxacillin resistant MRSA strains 

as a consequence of increased PBP2 expression. (Aedo & Tomasz, 2016; Dordel et 

al., 2014; C. Kim et al., 2013; C. K. Kim et al., 2017).  

In summary, antibiotic tolerance seems to be a common consequence of an active 

stringent response in pathogenic firmicutes. 

5.10.5 (pp)pGpp-mediated persister formation 

Bacterial populations have evolved many different strategies to survive lethal damages 

by host’s immune system or exposure to antibiotics. Beside regulation of virulence, the 

development of antibiotic resistance and protection by biofilm formation, persister cells 

have evolved. The persister phenotype in Staphylococci was described for the first 

time in 1944 by Bigger (Bigger, 1944). A population treated with penicillin resulted in 

nearly complete killing, except for a small subpopulation which survived. When these 

survivors were repeatedly treated with penicillin, again more than 99% of the bacteria 

were killed with the exception of a few survivors (Bigger, 1944).  In contrast to resistant 

bacteria, persisters do not grow in presence of antibiotic and stay in a dormancy-like 

state (Defraine, Fauvart, & Michiels, 2018; Harms, Maisonneuve, & Gerdes, 2016). 

There are evidences for persister cells presumably being a consequence of an active 

stringent response because they result in overlapping phenotypes from similar stress 

signals. In both cases nutrient deprivation and exposure to antibiotics lead to cell 

growth arrest and antibiotic tolerance with the possibility to resume growth under more 

favorable conditions (Harms et al., 2016; Hobbs & Boraston, 2019b), but there are also 

fundamental differences. The switch to a persister cell is not necessarily triggered by 

an activating signal but most likely happens randomly by a stochastic mechanism in a 

growing population.  
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This “mixed” population ensures a fitness advantage by being prepared in case of 

nutrient deprivation or antibiotic exposure (Hobbs & Boraston, 2019b). 

So far, a link between the stringent response and persister formation has mainly been 

reported in E. coli (Amato, Orman, & Brynildsen, 2013; Korch, Henderson, & Hill, 2003; 

VandenBerg, Ahn, & Visick, 2016) and are linked to the toxin-antitoxin system (Amato 

et al., 2013; Korch et al., 2003; Tian et al., 2016). In E. coli, RelA is stimulated upon 

amino acid starvation (Cashel & Kalbacher, 1970) and synthesizes (pp)pGpp. A model 

postulated (pp)pGpp inhibits the polyphosphate hydrolase PPX (p)ppGpp which leads 

to the accumulation of polyphosphate. This in turn activates the Lon protease which 

degrades the antitoxin HipB (Germain, Roghanian, Gerdes, & Maisonneuve, 2015; 

Maisonneuve, Castro-Camargo, & Gerdes, 2013). Unfortunately, this results were 

retracted because the observed phenotypes were artifacts due to infection with the 

bacteriophage Φ80. Nevertheless, toxin HipA inactivated the aminoacyl-tRNA-

synthetase GltX by phosphorylation (Germain, Castro-Roa, Zenkin, & Gerdes, 2013) 

provoking activation of the stringent response as consequence of uncharged tRNAs. 

The molecular mechanism linking (pp)pGpp and persister cell formation remains 

elusive.  

5.10.5.1  (pp)pGpp mediated persistence in S. aureus 

As described in chapter 5.10.5 persister formation is tightly linked to the induction of 

the toxin-antitoxin (TA) system in E. coli. Conlon et al investigated the relation of TAs 

and persistence in S. aureus. Deleting the 3 TAs modules (mazEF, axe1-txe1 and 

axe2-txe2) did not result in decreased persister formation. A rshsyn and codY mutant 

also did not show any difference in the amount of persisters. Further experiments 

revealed persister formation occurs by a stochastic mechanism entering the stationary 

phase and by the drop of ATP (Conlon et al., 2016).  

So far, persister formation by (pp)pGpp could not be verified in S. aureus and other 

firmicutes and remains questionable. 

In summary, there is no evidence for (pp)pGpp-mediated persistence in firmicutes. 

While a basal level of (pp)pGpp seems to be necessary for biofilm formation and 

maintenance, virulence and antibiotic tolerance are consequences of induced stringent 

response, which might be a consequence of (pp)pGpp overexpression. This is 

supported by in vivo data of clinical isolates which revealed antibiotic tolerance resulted 
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from mutations in either genes, which activated the stringent response, or mutations 

within RSH leading to a constitutive (pp)pGpp synthesis.   

5.11 Oxidative stress response in Staphylococcus aureus 

5.11.1 Reactive oxygen species (ROS)  

S. aureus has to face different oxygenic conditions. This includes reactive oxygen 

species (ROS). Oxidative stress can occur endogenous and exogenous.  

Endogenous created ROS occurs when oxygen interacts with flavoproteins and is not 

completely reduced while the aerobic respiration and superoxide anions (O2-) are 

formed (Massey et al., 1969). Another ROS producing reaction is the Fenton reaction. 

HO. radicals are formed upon reaction of iron with hydrogen peroxide (H2O2) (Imlay, 

Chin, & Linn, 1988; Kohanski, Dwyer, Hayete, Lawrence, & Collins, 2007). Exogenous 

reactions are reactions which do not occur within the bacteria itself. ROS are formed 

from external e.g. from macrophages and neutrophils. Neutrophils form O2- and H2O2 

to kill evading bacteria. As consequence, essential molecules such as proteins and 

DNA are severely damaged  (Imlay et al., 1988). Superoxide can oxidize cysteine and 

methionine (Gaupp, Ledala, & Somerville, 2012) and damage proteins. O2- (Kohanski 

et al., 2007) and H2O2 can lead to the release of iron from Fe-S containing proteins 

(Jang & Imlay, 2007) leading to inactivation and loss of function (Cosgrove et al., 2007). 

The released positively charged iron can intercalate with the DNA and the Fenton 

generated HO. radicals will presumably react with the DNA leading to mutations within 

the DNA (Keyer & Imlay, 1996). To protect from DNA and protein damage (Keyer & 

Imlay, 1996), bacteria have developed mechanism to protect from ROS-mediated 

damage which will be explained in the following sections. Iron is a limited trace element 

because it appears in an insoluble and for bacteria inaccessible FeIII form (Gaupp et 

al., 2012). Iron is an essential trace element since it is part of a lot of iron containing 

proteins but at the same time a potential threat due to the potential of damaging DNA 

and proteins via the Fenton reaction (Horsburgh, Ingham, & Foster, 2001). 
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5.11.2 Role of iron regulation in S. aureus 

S. aureus has to challenge an iron depleted environment within the human body. 

Bacteria in general need a concentration between 0.4µM and 4µM to ensure a proper 

bacterial growth. These high concentrations are not available in the human body since 

most of the iron is either bound by iron containing proteins or in an insoluble form (P. 

Skaar & Schneewind, 2004). S. aureus has acquired different strategies to access iron 

either through extracting iron out of host heme-protein transferrin by staphyloferrin A 

(Modun, Evans, Joannou, & Williams, 1998) (P. Skaar & Schneewind, 2004) or by 

importing FeIII via siderophores (Beasley & Heinrichs, 2010) which is reduced to soluble 

FeII. Siderophores can also function as iron-storage proteins. On one hand S. aureus 

cannot grow without iron and on the other hand iron is a potential threat due to Fenton 

reaction. S. aureus was killed more efficiently by hydrogen peroxide with increasing 

concentrations of iron (Repine, Fox, Berger, & Harada, 1981). Therefore regulation of 

the intracellular iron must be tightly regulated. Iron homeostasis is regulated by the 

conserved ferric uptake regulator Fur. Under iron rich condition, FeII is usually bound 

to Fur repressing genes containing a FUR-Box (ATAATgATTaTcAttat (Horsburgh, 

Ingham, et al., 2001)) (table 1). At iron-low conditions FeII is not bound to Fur leading 

to de-repression from DNA and genes for iron transport and storage are activated 

(Gaupp et al., 2012; Sheldon & Heinrichs, 2012) (Fig.7B). 
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Table 1: Summery of genes with putative Fur or/and PerR box 

Gene name Fur box PerR box Gene function Reference 

fhuCBD Yes No Putative ferrichrome siderophore 

uptake 

(Horsburgh, Ingham, et al., 

2001) 

fhuD2 Yes No fhuD homologue (Horsburgh, Ingham, et al., 

2001) 

sstABCD Yes No Putative siderophore transporter (Horsburgh, Ingham, et al., 

2001) 

sirABC Yes No Putative siderophore transporter (Horsburgh, Ingham, et al., 

2001) 

feoB1/2 Yes No Putative FeII transporter (Horsburgh, Ingham, et al., 

2001) 

yfiY Yes No Putative FeIII dicitrate transporter (Horsburgh, Ingham, et al., 

2001) 

orf4 Yes No Putative transporter (Horsburgh, Ingham, et al., 

2001) 

ycgT Yes No Putative thioredoxin reductase (Horsburgh, Ingham, et al., 

2001) 

katA No Yes Catalase (Horsburgh, Clements, 

Crossley, Ingham, & Foster, 

2001) 

ahpCF No Yes Alkyl hydroxyperoxide reductase (Horsburgh, Clements, et 

al., 2001) 

mrgA No Yes Ferritin-like dps (Horsburgh, Clements, et 

al., 2001) 

perR No Yes Peroxide regulon regulator (Horsburgh, Clements, et 

al., 2001) 

Fur No Yes Ferric uptake regulator (Horsburgh, Clements, et 

al., 2001) 

ftnA Yes Yes Ferritin (Horsburgh, Clements, et 

al., 2001; Morrissey, 

Cockayne, Brummell, & 

Williams, 2004) 

trxB No Yes Thioredoxin reductase (Horsburgh, Clements, et 

al., 2001) 

Bcp, pdh No Yes Bacterioferritin comigratory protein, 3-

phosphoglycerate dehydrogenase 

(Horsburgh, Clements, et 

al., 2001) 

 

 

 

 



Introduction 

~32~ 
 

5.11.3  Role of the peroxide regulon regulator PerR in S. aureus 

S. aureus possesses different regulators for controlling ROS and iron storage. One of 

the major regulators is PerR (peroxide sensing protein). PerR functions as a 

transcriptional repressor. In manganese rich conditions and low iron, PerR is bound to 

a specific DNA sequence (PerR-box) (AAGTATTATTTATTATTATTA) and 

transcription of PerR regulated genes (katA, ahpC, dps and ftnA) (table 1) (Horsburgh, 

Clements, et al., 2001; Morrissey et al., 2004) cannot occur (Fig.7A).  

Regulation of both, detoxification of oxygen and iron homeostasis has to be balanced. 

In the presence of hydrogen peroxide and iron rich conditions PerR reacts with iron 

leading to the oxidation of histidine residues (Ji et al., 2015) and the release of hydroxyl 

radicals (HO.) and oxidation of iron. PerR cannot bind to the DNA and oxidative stress 

genes can be transcribed (Fig.4A) (Gaupp et al., 2012; Ji et al., 2015; Morrissey et al., 

2004). 

 

Fig.7 PerR and Fur regulation in S. aureus. A) Under iron low and manganese rich 
condition PerR is bound to the PerR box represses transcription of PerR regulated 
genes. In the presence of H2O2 and a high iron level histidine is oxidized leading to the 
de-repression of PerR and transcription of PerR regulated genes. B) Fur is bound to 
the Fur box under iron rich condition thereby repressing transcription of Fur regulated 
genes. Low iron level leads to the de-repression of Fur and transcription of Fur 
regulated genes. 

One of these genes is katA which encodes for catalase. KatA is the major scavenger 

for H2O2 (Horsburgh, Clements, et al., 2001) and converts it to H2O and O2 (Beavers & 

Skaar, 2016; Gaupp et al., 2012; Ji et al., 2015). Possibly it is indirectly regulated by a 

small regulatory RNA (Cosgrove et al., 2007). It was shown, that S. aureus strains with 

a high catalase activity were more virulent and therefore protected of the hydrogen 

peroxide produced by PMNs (Mandell, 1975). 
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The alkyl hydro peroxide reductase ahpC is induced upon hydrogen peroxide stress 

(Cosgrove et al., 2007; Gaupp et al., 2012). In contrast to KatA, AhpC is not only active 

against H2O2, but additionally provides resistance to organic peroxides and 

peroxinitrite (Cosgrove et al., 2007; Hussain, Abdullah, & Amom, 2016).  Although 

AhpC contributes to H2O2 resistance, the activity of AhpC in a katA mutant is weaker. 

Vice versa an ahpC mutant results in increased H2O2 resistance as a consequence of 

increased katA expression (Cosgrove et al., 2007). Moreover, a katA ahpC double 

mutant cannot detoxify H2O2 (Cosgrove et al., 2007). Another protein which can be 

seen as a linker between iron homeostasis and oxidative stress response is MrgA. It 

is a homologue to dps (DNA-binding protein from starved cells) from E. coli and both 

belong to the ferritin super family. MrgA functions as an iron chelator protein and is 

induced upon hydrogen peroxide stress (Morikawa et al., 2006). In a perR mutant mrgA 

is overexpressed leading to a condensed nucleoid independent of H2O2, confirming a 

negative regulation by PerR (Horsburgh, Clements, et al., 2001; Morikawa et al., 2006). 

In summary, H2O2 leads to the de-repression of PerR and the transcription of mrgA 

scavenging iron to protect DNA from toxic Fenton reaction.  There is a tight link 

between the oxidative stress regulation and the iron homeostasis which can be 

additionally demonstrated by ftnA, which is regulated by PerR but also by Fur 

(Morrissey et al., 2004).  
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6 Aim of this thesis 

The stringent response is a conserved mechanism among a variety of bacterial 

species. Its activation is triggered by different nutrient signals leading to the synthesis 

of the alarmones (pp)pGpp. The presence of the three enzymes RSH, RelP and RelQ 

determine and regulate the intracellular (pp)pGpp level in S. aureus. While RSH 

responds to branched-chain amino acid starvation, RelP and RelQ are transcriptionally 

activated by cell wall damage. Interestingly, RSH and RelP/Q react to different stress 

signals, but commonly synthesize (pp)pGpp and result in similar physiological changes 

such as slow growth, reduced metabolism and reprogramming of the transcriptome. 

The physiological consequence of (pp)pGpp synthesis range from survival of nutrient 

depletion, increased virulence and antibiotic tolerance. Therefore, I aimed to decipher 

whether RSH and RelP/Q, in response to different stimuli, leads to significant 

differences in the nucleotide pool and selective regulation of specific genes. So far, 

(pp)pGpp-mediated transcriptional changes were analyzed by actively inducing the 

stringent response by antibiotics, such as mupirocin and serine hydroxamate. 

Nevertheless, these experimental designs do not exclude side-effects which derive 

direct from antibiotics and not from (pp)pGpp. In this thesis, I was interested in the 

downstream effects, which are directly caused by (pp)pGpp to exclude any side-effects 

and the decipherment of differences between RSH and RelP/Q induced (pp)pGpp 

synthesis in vivo and in vitro. Therefore I used ATc-inducible truncated and hydrolase 

mutated RSH, RelP and RelQ which were introduced into a (pp)pGpp0 mutant. This 

method ensured later results are strictly (pp)pGpp-dependent. Distinguishing between 

RSH and RelP/Q effects included (pp)pGpp measurements  in vivo and in vitro and 

investigation of the transcriptome. For this purpose, pGpp, ppGpp and pppGpp pool 

were quantified via HPLC-MS after transcriptional induction or purified RSH, RelP and 

RelQ. To investigate the global effect of (pp)pGpp on  the re-programming of the 

transcriptome, I performed RNA-Seq analyses. Statistical relevant and differential 

regulated genes were used for further approaches such as Northern Blot analyses, 

growth curves, survival assays, ROS measurement and MIC determination. 

Different experiments have been performed in Streptococcus equisimilis in vitro 

indicating, that deletion of the C-terminus results in stronger synthetase activity 

(Mechold et al., 2002) and hydrolase activity is dependent on the state of conformation 

(Hogg et al., 2004).  
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Nevertheless, no in vivo and in vitro data are available for S. aureus. In this thesis, the 

influence of the C-terminus of RSH and the single domains TGS, ACT and DC on the 

synthetase and hydrolase activity were analyzed, using several analytic approaches. 

Therefore, different ATc-inducible full length (“long” RSH) and C-terminal deletion 

(“short” RSH) w/wo hydrolase were expressed in (pp)pGpp0 deletion mutant. The 

impact of the C-terminus on either synthetase or hydrolase was analyzed by growth 

curves analyses and Norther blot under relaxed conditions. The influence of the C-

terminus was also performed in vitro purifying “long” and “short” RSH w/wo hydrolase 

and enzymatic activity evaluated by measuring (pp)pGpp and AMP via HPLC. Next, 

the impact of the single C-terminal domains TGS, ACT and DC were analyzed. 

Therefore, (pp)pGpp0 mutants were complemented with different “long” RSH enzymes, 

harboring a mutation in one of the three domains expression of stringent response 

genes were analyzed via Northern blot and growth analyses.  Finally, we wanted to 

elucidate how TGS, ACT and DC influence synthetase activity via possible interaction 

partners. There RSH enzymes with harboring mutations in TGS, ACT or DC were 

purified and Co-immunoprecipitation was performed.  

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

~36~ 
 

7 Results 

7.1 Manuscript ready for submission 

Unpublished manuscript. This manuscript is ready for submission and can differ from 

published exemplar. 
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activation of stress response genes in Staphylococcus 
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Abstract 

The stringent response is characterized by the synthesis of the messenger molecules 

pppGpp, ppGpp or pGpp (collectively designated (pp)pGpp). The phenotypic 

consequences resulting from (pp)pGpp accumulation vary among species and can be 

mediated by different underlying mechanisms. Most genome-wide analyses were 

performed under stress conditions, which often mask the immediate effects of 

(pp)pGpp mediated regulatory circuits.  
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In Staphylococcus aureus (pp)pGpp can be synthesized via the RelA-SpoT-

homologue (RSHSau) upon amino-acid limitation or via one of the two small (p)ppGpp 

synthetases RelP or RelQ upon cell-wall stress. We used RNA-seq to compare global 

effects in response to transcriptional induction of the synthetase domain of RSH (RSH-

Syn), RelP or RelQ without the need to apply additional stress conditions. Changes in 

the nucleotide pool were similar to induction of the stringent response via mupirocin, 

namely lowering of the GTP pool, increase of the ATP pool and synthesis of pppGpp, 

ppGpp and pGpp. On the transcriptional level, all three enzymes resulted in similar 

changes. However, RelQ was less active compared to RSH-Syn and RelP indicating 

strong restriction of its (pp)pGpp synthesis activity in vivo. Genes involved in iron 

storage (e.g. ftnA, dps), stress response (e.g. lexA, katA, sodA) and the psmα1-4 and 

psmß1-2 operons coding for toxic, phenole soluble modulins (PSMs) are highly up-

regulated upon (pp)pGpp induction. Analyses of ftnA, dps, and psm in different 

regulatory mutants revealed that their (pp)pGpp dependent regulation is independent 

of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled 

from expression of the quorum sensing system Agr, the main known psm activator. 

(pp)Gpp mediated up-regulation of psm is accompanied by increased production of 

endogenous reactive oxygen species (ROS). The expression of central genes of the 

oxygen stress response in turn protects the bacteria from anticipated ROS stress 

derived from PSMs or exogenous sources. Thus, we identified a new link between 

stringent response and oxidative stress in S. aureus which is likely crucial for survival 

upon phagocytosis. 

Significance 

Most bacteria make use of the second messenger (pp)pGpp to reprogram the bacterial 

physiology under nutrient scare conditions. In the human pathogen Staphylococcus 

aureus, (pp)pGpp plays important role in virulence (Geiger et al., 2010), phagosomal 

escape (Geiger et al., 2012) and antibiotic tolerance. Here, we analyzed the immediate 

consequences of (pp)pGpp synthesis upon transcriptional induction of the (pp)pGpp 

producing enzymes RSH, RelP or RelQ. RelQ enzyme showed low activity under the 

tested conditions. (pp)pGpp synthesis via RSH resulted in immediate changes in the 

nucleotide pool and severely impacts transcription of more than thousands genes. A 

newly identified consequence of (pp)pGpp synthesis in S. aureus is the induction of 

ROS inducing toxic phenol-soluble modulins (PSMs) and simultaneous expression of 



Results 

~39~ 
 

the detoxifying system to protect the producer. This mechanism is likely of special 

advantage for the pathogen after phagocytosis by granulocytes.  

Introduction 

The stringent response is characterized by the synthesis of the alarmones pGpp, 

ppGpp and pppGpp, here collectively named (pp)pGpp. (pp)pGpp interferes with many 

cellular processes, including transcription, replication and translation (Potrykus and 

Cashel, 2008; Wolz et al., 2010; Hauryliuk et al., 2015)(Dozot et al., 2006; Gaca, 

Colomer-Winter, & Lemos, 2015; Hobbs & Boraston, 2019b; Irving & Corrigan, 2018; 

Liu et al., 2015; Steinchen & Bange, 2016; Wu & Xie, 2009; M. Zhu, Pan, & Dai, 2019). 

However, the phenotypic consequences resulting from (pp)pGpp accumulation vary 

among species and can be mediated by different underlying mechanisms. Depending 

on the species, the stringent response is crucial for diverse biological processes, 

including differentiation, biofilm formation, antibiotic tolerance, production of secondary 

metabolites or virulence (Dalebroux et al., 2010; Hobbs & Boraston, 2019b). It is now 

clear that there are fundamental differences between the stringent response initially 

characterized in E. coli and the response in Firmicutes (Liu et al., 2015; Wolz et al., 

2010). Differences are seen in the enzymes involved in synthesis and degradation of 

the messengers and in the downstream effects of (pp)pGpp.  

(pp)pGpp is synthesized by long RelA-SpoT-homologs (RSH) or small alarmone 

synthetases (SAS) by transferring pyrophosphate originating from ATP to the 3´ OH 

group of GTP, GDP or GMP. RSH enzymes are present in nearly all bacteria and show 

a conserved molecular architecture composed of a C-terminal sensory domain and an 

N-terminus with distinct (pp)pGpp  hydrolase and synthetase domains (Atkinson et al., 

2011). Firmicutes, such as Staphylococcus aureus possess one bifunctional RSH 

enzyme and one or two SAS enzymes, RelP and RelQ. Of note, bifunctional RSH 

enzymes are also named Rel or RelA. Amino-acid limitation is the only condition known 

resulting in a RSH mediated stringent response phenotype (Geiger et al., 2010). Under 

non-inducing conditions, RSHSau is primarily in a hydrolase-On/synthetaseOff 

conformation even when the C-terminal sensory domain is deleted (Gratani, Horvatek 

et al. 2018). The strong hydrolase activity makes RSH an essential molecule required 

to detoxify (pp)pGpp produced by RelP or RelQ (Geiger et al., 2010).  
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The small SAS enzymes in S. aureus are part of the cell-wall stress regulon and are 

transcriptionally induced e.g. after vancomycin treatment. Thereby, they contribute to 

tolerance towards cell-wall active antibiotics such as ampicillin or vancomycin (Geiger 

et al., 2014). Recently, structural and mechanistic characterization revealed that RelQ 

from Bacillus subtilis and Enterococcus faecalis form tetramers (Beljantseva et al., 

2017; Steinchen et al., 2015). RelQ activity is strongly inhibited through binding of 

single stranded RNA. pppGpp binding leads to disassociation of the RelQ:RNA 

complex and its activation (Beljantseva et al., 2017). In contrast, RelP activity is 

inhibited by both pppGpp and ppGpp, activated by Zn2+ and is insensitive to inhibition 

by RNA (Manav et al., 2018; Steinchen et al., 2018). Thus, although very similar, RelP 

and RelQ seem to full-fill different functions within the cell. One can assume that 

different post-translational regulatory mechanism are in play to fine-tune (pp)pGpp 

synthesis during different growth conditions.  

In S. aureus the stringent response plays important roles in virulence (Geiger et al., 

2010), phagosomal escape (Geiger et al., 2012) and antibiotic tolerance (Corrigan, 

Bellows, Wood, & Grundling, 2016; Dordel et al., 2014; W. Gao et al., 2010; Geiger et 

al., 2014; Hobbs & Boraston, 2019b; Katayama et al., 2017; Miki Matsuo et al., 2019). 

The enzymes HprT and Gmk involved in GTP synthesis, putative GTPases (RsgA, 

RbgA, Era, HflX, and ObgE) and DNA primase were identified as (pp)pGpp target 

proteins (Corrigan, Bellows, Wood, & Grundling, 2016; Kriel et al., 2012a)(Wang et al., 

2007). (pp)pGpp binding results in inhibition of these proteins resulting in lowering of 

the GTP pool, inhibition of the translation apparatus and replication, respectively. 

ppGpp, pppGpp and pGpp might exert different activities. In E. coli for instance, ppGpp 

seems to be more potent than pppGpp with regard to growth rate regulation and 

shutdown of growth-associated processes in the course of the stringent response 

(Mechold, Potrykus, Murphy, Murakami, & Cashel, 2013). Of note, in contrast to E. coli, 

(pp)pGpp from firmicutes does not interfere with RNA polymerase activity (Hauryliuk 

et al., 2015). Instead, in these organisms, (pp)pGpp regulates transcription via an 

indirect mechanism that strongly relies on the lowering of intracellular GTP pool 

(Geiger et al., 2012; Krasny, Tiserova, Jonak, Rejman, & Sanderova, 2008; Kriel et al., 

2012b). A decrease in the GTP level leads to the repression of nucleotide sensitive, 

GTP-initiating promoters, e.g. those of stable RNA genes (Kastle et al., 2015; Krasny 

& Gourse, 2004). Low GTP levels also affect the CodY regulon. The transcription factor 

CodY, when loaded with GTP and branched-chain amino acids, acts mainly as a 
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repressor of many genes involved in amino acid synthesis and virulence (Majerczyk et 

al., 2010; Pohl et al., 2009).  

Global transcriptional effects of (pp)pGpp have been examined previously in several 

Firmicutes such as B. subtilis (Eymann, Homuth, Scharf, & Hecker, 2002), 

Streptococcus pneumoniae (Kazmierczak et al., 2009), Enterococcus faecalis (Gaca 

et al., 2012), Streptococcus mutans (Nascimento, Lemos, Abranches, Lin, & Burne, 

2008) and S. aureus  (Geiger et al., 2012). These studies are based on the comparison 

of wild type and RSH mutants under conditions mimicking amino acid starvation. Of 

note, these stress conditions are accompanied with profound physiological changes, 

which are only in part mediated by (pp)pGpp. For instance amino acid limitation leads 

to stabilization of many transcripts independent of (pp)pGpp (Geiger et al., 

2010)(unpublished observation). Thus, from these analyses it is hard to draw firm 

conclusions on the primary transcriptional changes imposed by (pp)pGpp synthesis. 

Recently, one study tried to circumvent this drawback by transcriptional induction of 

(pp)pGpp synthetase in E. coli gaining major new insights (Sanchez-Vazquez, Dewey, 

Kitten, Ross, & Gourse, 2019).   

Here, we aimed to compare RSH, RelQ and RelP mediated effects on nucleotide pools, 

transcription and functional consequences without imposing nutrient starvation. 

Therefore, the synthetase domain of RSH (RSH-Syn), RelP and RelQ were expressed 

from an anhydrotetracyline (ATc) inducible promoter in a (pp)pGpp0 strain in which the 

enzymatic domains of all three synthetases were deleted. Through RNA-Seq analyses 

we identified new (pp)pGpp regulated genes many of which are involved in oxidative 

stress response, iron storage and synthesis of phenol-soluble modulins (PSMs). Thus, 

(pp)pGpp synthesis contributes to PSM derived ROS production but also to protection 

from these toxic molecules.   

Results 

Changes of the nucleotide pools after transcriptional induction of RSH-Syn and 

RelQ 

We first compared stringent response imposed by mupirocin (tRNA syntethase 

inhibitor) in wild type bacteria and transcriptional induction of (pp)pGpp synthetases in 

a (pp)pGpp0 strain. (pp)pGpp0 carries mutations in all three (pp)pGpp synthesis 
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enzymes (full deletion of rsh, synthetase mutation in relP and relQ) and thus is unable 

to synthesize (pp)pGpp. RelQ or RSH-Syn (N-terminal part of RSH in which the 

hydrolase domain was mutated) were expressed using an ATc inducible expression 

system. Strains were grown to early exponential growth phase and gene expression 

was induced for 30 min. Consistent with previous results (Kastle et al., 2015), treatment 

of the (pp)pGpp0 strain with mupirocin resulted in a significant increase of the GTP 

pool. Induction of the stringent response in the wild type by either mupirocin or 

transcriptional induction of RSH-Syn resulted in similar changes of the nucleotide 

pools: immediate increase of the ATP pool, decrease of the GTP pool and synthesis 

of all three alarmones pppGpp, ppGpp, and pGpp (Fig. 1). After induction of RelQ only 

minor changes of the nucleotide pool were detectable. Thus, the effect on the 

nucleotide pools elicited by RelQ was significantly lower compared to RSH-Syn. 
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Fig.1 Changes in the nucleotide pool after transcriptional induction of RSH-Syn 
or RelQ. Strain HG001 and derivatives were grown to OD600=0.3 and treated for 30 
min with or without 0.125µg/ml mupirocin for HG001 wild type and (pp)pGpp0 mutant 
or 0.1µg/ml ATc for (pp)pGpp0 or (pp)pGpp0/codY mutants with inducible RSH-Syn or 
RelQ. Nucleotide analyses were performed using mass spectrometry (ESI-TOF) in 
negative ion mode. Error bars represent SEM (n=3) from three biological replicates. 
Statistical significance determined by two-way ANOVA with Tukey’s posttest, *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001 
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Impact of (pp)pGpp synthesis on the transcriptome  

We next analyzed the impact of (pp)pGpp synthesis after induction of RSH-Syn or 

RelQ on mRNA abundance. RNA-Seq data revealed that 1449 genes and sRNAs were 

significantly affected by either RSH-Syn (total: 1388, 717 up, 671 down) or RelQ (total: 

352, up: 223, down 129). Most of the RelQ affected genes were also changed in their 

expression in response to RSH-Syn induction (Fig. 2A. Suppl. Table 1). However, 

consistent with the nucleotide measurements (Fig. 1) the effect of RelQ induction was 

less prominent (Supl. Table 1). We compared the data with previous microarray 

analyses after induction of stringent response imposed by amino acid limitation (Geiger 

et al., 2012). Most of the previously identified stringent genes were verified by the RNA-

seq analysis (Fig. 2A). Of note, in the present analysis only genes with at least three 

fold differences and significance level of p< 0.001 are included in the analysis shown 

in Fig. 2 and Supl.Table 1. Therefore, some of the previously detected genes are 

excluded although most of them show the same tendency (see Supl. Table 1). Despite 

the higher stringency in the analysis, the present analysis revealed far more (pp)pGpp 

regulated genes and additionally also sRNAs. Genes were classified in functional 

categories using the SEED annotation (http://pubseed.theseed.org). (pp)pGpp 

induction resulted in down-regulation of many metabolic genes involved in protein, 

RNA and DNA metabolism consistent with previous results that the stringent response 

mainly leads to the shutdown of translation and replication (Geiger et al., 2012) (Fig. 

2B). More than 500 RNAs were significantly upregulated upon RSH-Syn induction 

(Supl. Table 1). Most of them are sRNAs or code for hypothetical proteins with 

unknown function. Amino acid biosynthesis gene clusters were also found up-

regulated. Most of them are part of the CodY regulon and thus likely regulated via 

lowering of the GTP pool. Phage encoded genes were also found up-regulated 

indicating phage inducing conditions. This is in line with the up-regulation of recA and 

lexA. When sorting for genes which are most affected by RSH-Syn induction (Fig. 2C, 

Supl. Table 1), it became evident that many of them were assigned to iron 

acquisition/metabolism (up-regulation of genes involved in iron storage; down-

regulation of genes involved in siderophore biosynthesis and iron transport), stress 

response (dps, sodA, katA ahpC. uspA1/2, asp23, ptpA, msrA2), and virulence (up-

regulation of psmsα/ß, down-regulation of agr). For further analysis we used ftnA, dps, 

agr and psmα as read-out for (pp)pGpp mediated activities under various conditions. 
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Fig.2 Global changes in gene expression upon transcriptional induction of RSH-
Syn or RelQ. A. Number of genes or sRNAs upregulated (yellow) or down-regulated 
(blue) after induction of RSH-Syn or RelQ in comparison to uninduced cultures (< 3 
fold difference, p< 0.001). Previously described stringent genes (Geiger et al., 2012) 
are indicated as RSH-leu/val. B. Genes with significant changes after induction of RSH-
Syn (< 3 fold difference, p< 0.001) according to role categories. C. Heatmap 
representing RSH-Syn dependent up- and down regulated genes assigned to role 
categories iron acquisition metabolism and stress response and agr independent 
upregulation of psms. 
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Comparison of mupirocin induced stringent response and transcriptional RSH-

Syn induction  

We compared expression of the selected genes after induction of stringent response 

via mupirocin with the effect of transcriptional RSH-Syn induction. We verified the 

upregulation of ftnA, dps and psm under both conditions (Fig. 3A). Mupirocin resulted 

also in fntA and dps activation in the (pp)pGpp0 strain, although to a lesser extent, 

indicating additional (pp)pGpp independent effects of mupirocin on expression of these 

genes. (pp)pGpp activating effect on psm expression is clearly not correlated to agr 

expression. Agr is the main know activator required for psms expression (Queck et al., 

2008). However, expression of the agr operon was even lower upon (p)ppGpp 

synthesis (Suppl. Table S1 and Fig. 3A). Consistent with the RNA-seq analysis, 

induction of RelQ showed no (ftnA, dps) or only minor (agrA, psm) effects. 

CodY independent activation of gene expression by RSH-Syn induction  

(pp)pGpp synthesis leads to the lowering of the GTP pool and subsequently to de-

repression of CodY target genes. Indeed, many of the RSH-Syn upregulated genes 

belong to the CodY regulon (Supl. Table 1). However, none of our selected marker 

genes are known to be regulated via CodY. To exclude CodY-dependent regulation, 

we compared their expression in a codY negative mutant. Induction of RSH-Syn or 

RelQ resulted in similar expression pattern in codY positive and negative background 

(Fig. 3B). This shows that (pp)pGpp impact the expression of these genes independent 

of CodY.  
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Fig.3. Correlation of mupirocin induced stringent response and transcriptional 
RSH-Syn of selected CodY independent genes. Strain HG001 and derivatives were 
grown to OD600=0.3 and treated for 30 min with or without 0.125µg/ml mupirocin for 
HG001 wild type and (pp)pGpp0 mutant or 0.1µg/ml ATc for (pp)pGpp0 or 
(pp)pGpp0/codY mutants with inducible Rsh-Syn or RelQ. For Northern analysis RNA 
was hybridized with digoxigenin-labelled probes specific for ftnA, dps, psmα or agrA. 
The 16S rRNA detected in the ethidium bromide-stained gels is indicated as loading 
control in the bottom lane.  

 

RSH-Syn induction influences oxidative stress response and virulence 

independent of PerR, Fur or SarA 

Some of the prominent (pp)pGpp activated genes are known to be under the control 

of other global regulators such as PerR, Fur and SarA (Gaupp et al., 2012). ftnA, dps, 

ahpC and katA (Supl. Table 1) are likely controlled via PerR binding to a conserved 

PerR-binding motif based on the public databases RegPrecise (Novichkov et al., 2013) 

and Aureowiki (Fuchs et al., 2018)). We speculated that (pp)pGpp induction of these 

genes may somehow be mediated via PerR activity. Therefore, we induced RSH-Syn 

in a perR/(pp)pGpp0 background (Fig. 4A). As expected ftnA and dps are both up-

reguated in the perR mutants. Inducing RSH-Syn shows an even higher upregulation 

of ftnA, indicating that (pp)pGpp acts in addition and independent of PerR. For dps the 

perR mutation alone resulted in high expression which was not further increased by 

(pp)pGpp indicating that dps is expressed at its maximum in the perR mutant. PerR 

deletion resulted in slight decrease in psm expression, which was compensated by 
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RSH-Syn induction. Thus, (pp)pGpp affects gene expression also in a perR negative 

background. 

We found that many of the RSH-Syn effected genes are involved in iron-homeostasis 

indicative for iron overload condition (up regulation of ftnA, dps). We asked whether 

the iron-responsive regulator Fur is involved in the regulation of these genes. 

Therefore, we induced RSH-Syn in a fur/(pp)pGpp0 background under low and high 

iron conditions (Fig. 4B). Independent of the availability of iron, ftnA, dps and psm are 

upregulated and agr down-regulated after RSH-Syn induction also in the fur negative 

background.  

SarA was shown to activate transcription of the agr operon (Heinrichs, Bayer, & 

Cheung, 1996; Zielinska et al., 2011) and proposed to be involved in oxidative-stress 

sensing via a single Cys9 residue (Ballal & Manna, 2010; Grosser, Weiss, Shaw, & 

Richardson, 2016; Sun et al., 2012). sarA was found to be significantly up-regulated 

by RSH-Syn (Sup. Table 1). To analyze whether SarA is involved in (pp)pGpp 

regulation we induced RSH-Syn in a sarA/(pp)pGpp0 background (Fig. 4C). ftnA and 

dps expression was not influenced by sarA mutation. agr and psm expression was 

down-regulated in the sarA mutant, consistent with the proposed activation of the agr 

system by SarA (Heinrichs et al., 1996). Inducing RSH-Syn again showed the typical 

induction of ftnA, dps and psm and repression of agr also in the sarA mutant. Of note, 

psm induction was less pronounced in the sarA mutant compared to the sarA positive 

strains.   

All together our results show, that (pp)pGpp regulates the selected genes independent 

of main transcriptional regulators (CodY, PerR, Fur, SarA) known to control the 

expression of some of them.  
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Fig.4 (pp)pGpp dependent transcriptional changes are independent of PerR, Fur 
or SarA. Strain HG001 and derivatives were grown to OD600=0.3 and treated for 30 
min without or with 0.1µg/ml ATc (mutant strains with inducible RSH-Syn). For 
Northern analysis RNA was hybridized with digoxigenin-labelled probes specific for 
ftnA, dps, psmα or agrA. The 16S rRNA detected in the ethidium bromide-stained gels 
is indicated as loading control in the bottom lane. 

Effects of RSH-Syn induction in strain USA300 

So far we concentrated our analysis on the effects of RSH-Syn induction in strain 

HG001. We also constructed a (pp)pGpp0 mutant in strain USA300 and analyzed gene 

expression after RSH-Syn induction (Fig. 5A). As in HG001, induction of RSH-Syn 

resulted in the typical induction of ftnA, dps and psm and down-regulation of agr in 

strain USA300.  

RelP induction is similar to RSH-Syn induction. 

The analyses revealed that induction of RelQ showed only a minor effect on the target 

genes compared to induction of RSH-Syn, although RelQ was highly expressed after 

ATc treatment (Sup. Tabl.1). We analyzed whether this was also true in strain USA300 

and whether induction of the homolog enzyme RelP would be similar to RelQ induction. 

We verified that RelQ induction has only minor effects on marker gene expression  
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(Fig. 5). However, induction of RelP was highly effective resulting in an expression 

pattern comparable to RSH-Syn induction.  

Since we observed a severe difference between RelP and RelQ induction in vivo we 

wondered whether RelP is just a more active enzyme. Therefore, we analyzed 

(pp)pGpp synthesis of recombinant RelP and RelQ in vitro (Fig. 5B). 0.2 µM of RelP or 

RelQ were incubated with ATP and an equal molar mixture of the potential substrates 

GTP, GDP and GMP. RelQ was even more active compared to RelP indicated by 

increased levels of generated AMP. However, RelP preferentially synthesizes pppGpp, 

whereas RelQ preferentially synthesizes ppGpp and pGpp.  

 

 

Fig.5 RelP activity in vitro and in vivo. A. Strain USA300 and derivatives were grown 
until an OD600=0.3 and treated for 30 min without or with 0.1µg/ml ATc (mutant strains 
with inducible RSH-Syn or RelP). For Northern analysis RNA was hybridized with 
digoxigenin-labelled probes specific for ftnA, dps, psmα or agrA. The 16S rRNA 
detected in the ethidium bromide-stained gels is indicated as loading control in the 
bottom lane. B. 0.2µM of purified RelP and RelQ were incubated with 1mM of ATP, 
GMP, GDP and GTP at 37°C for 30min, 1h and 2h.  The products AMP and (pp)pGpp 
were quantified by mass spectrometry.  
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(pp)pGpp is involved in oxidative stress resistance  

PSMs were shown to result in intracellular production of reactive oxygen species 

(ROS) (George et al., 2019). Thus, it is likely that under stringent conditions (pp)pGpp 

mediated PSM synthesis further increases ROS formation. Indeed, the wild type strain 

produces significantly more ROS compared to the (pp)pGpp0 strain (Fig. 6A). Thus, 

one might speculate that PSM mediated ROS production triggers the expression of 

oxidative stress genes detected in the transcriptome analysis. In this case, RSH-Syn 

induction should not result in the induction of these genes under anaerobic conditions, 

where ROS cannot be produced. However, RSH-Syn induction resulted in the same 

transcriptional pattern no matter whether bacteria were grown with or without oxygen 

(Fig. 6B). Thus, (pp)pGpp mediated gene alterations of the selected marker genes are 

not a consequence of ROS generation by PSMs.  

These data indicate that (pp)pGpp simultaneously activates the ROS producing PSMs 

as well as ROS defense systems to prepare the cells to withstand oxidative stress (Fig. 

6C). To verify this hypothesis we challenged wild type and mutants deficient in 

(pp)pGpp synthesis with H202. The (pp)pGpp0 strain was indeed more sensitive 

towards oxidative stress with a minimal inhibitory concentration (MIC) of 3.2 mM H202 

compared to an MIC of 6.4 mM H202 for the wild type. Under these non-induced 

conditions (pp)pGpp might be derived from any of the pppGpp synthetases. Therefore, 

we also analyzed a relPQ mutant and rshsyn mutant in which the synthetase domain of 

RSH was mutated. Both strains showed and intermittent phenotype in which the MIC 

varied between 3.2 and 6.4 mM when biological replicates were analyzed. To follow 

up on these ambiguities we monitored growth after addition of H2O2 (Fig. 6D). There 

was high variation in the lag time between biological replicates. Replicates of the relPQ 

or rshsyn mutant showed a delayed lag phase and some of the replicates could not 

grow. The delay of lag phase was more prominent for the relPQ mutant compared to 

the rshsyn mutant. Nevertheless, none of the (pp)pGpp0 replicates could resume growth 

consistent with the reproducible lowered MIC of this strain indicating that (pp)pGpp 

indeed protects from oxidative stress.  
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Fig.6 Functional link between stringent response and oxidative stress. A. 
Endogenous production of ROS in strain HG001 and derivatives ((pp)pGpp0, psm and 
psm/(pp)pGpp0 mutants). Error bars represent SD from three biological replicates. 
Statistical significance determined by… one-way ANOVA with Dunnett’s posttest *p ≤ 
0.05, **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001. B. Strain HG001 and derivatives were 
grown anaerobically to OD600=0.3 and treated for 30 min without or with 0.1µg/ml ATc 
((pp)pGpp0 mutant with inducible RSH-Syn). For Northern analysis RNA was 
hybridized with digoxigenin-labelled probes specific for ftnA, dps, psmα or agrA. The 
16S rRNA detected in the ethidium bromide-stained gels is indicated as loading control 
in the bottom lane. C. (pp)pGpp results in up-regulation of oxidative stress genes. They 
are beneficial to counteract endogenous (PSMs) or exogenous (e.g. H202) ROS. 
Upregulation of SOS and Phage genes might be a consequence of ROS accumulation 
e.g. by PSMs. Up-regulation of iron storage proteins may be beneficial to protect 
bacteria from ROS generated by the Fenton reaction. D WT, (pp)pGpp0, ΔrelPQ and 
rshsyn mutants were diluted from overnight culture to an OD=0.1 and challenged with 
different H2O2 concentrations and growth was monitored over time.  
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Discussion 

We chose a genetic approach to decipher the functional consequences of (pp)pGpp 

synthesis without the need to apply additional stress conditions. Induction of RSH-Syn 

derived (pp)pGpp synthesis resulted in profound reprogramming of the transcriptional 

response. As expected from previous studies (Geiger et al., 2012; Reiss et al., 2012) 

(pp)pGpp synthesis resulted in a severe down-regulation of translational machinery 

and de-repression of CodY target genes. Many additional (pp)pGpp regulated genes 

and sRNAs were identified which are presumably important for survival of S. aureus 

during starvation conditions. Here we focused mainly on genes which were found to 

be activated upon (pp)pGpp synthesis in a CodY independent manner particularly psm, 

ftnA and dps. The (pp)pGpp dependent activation of these genes occurs independent 

of the prototypic proteinaceous transcriptional regulators PerR, Fur, or SarA as similar 

(pp)pGpp effects were also detectable in regulatory mutants. The regulators are well 

known to be involved in the regulation of the selected genes. However, they need to 

be activated through e.g. oxidative stress and/or iron. (pp)pGpp function as 

complementary, immediate message to react to adverse conditions such as amino acid 

starvation or cell-walls stress. Under these conditions, up-coming oxidative stress 

seems to be anticipated and (pp)pGpp prepares the cells for survival e.g. ROS 

challenges. Indeed a pppGpp0 strain is more sensitive towards H202. Both RSH and 

RelP/RelQ contribute to the protective effect.  

(pp)pGpp leads to psm activation  

One of the most prominent effects of (pp)pGpp synthesis is the up-regulation of psmα 

and psmβ confirming previous microarray analyses (Geiger et al., 2012). PSMs are a 

family of amphipathic, alpha-helical peptides that have multiple roles in staphylococcal 

pathogenesis and contribute a large extent to the pathogenic success of virulent 

staphylococci (Cheung, Joo, Chatterjee, & Otto, 2014; Peschel & Otto, 2013). They 

are cytotoxic, stimulate inflammatory responses and contribute to biofilm 

dissemination. Moreover, (pp)pGpp dependent psm expression within neutrophils was 

shown to be crucial for survival after phagocytosis (Geiger et al., 2012). However, 

PSMs also interact with the producer’s own membrane, promote the release of 

membrane vesicles from the cytoplasmic membrane via an increase of membrane 

fluidity (Schlatterer et al., 2018; X. Wang, Thompson, Weidenmaier, & Lee, 2018), 
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reduce persister formation (Bojer, Lindemose, Vestergaard, & Ingmer, 2018; Xu et al., 

2017) and are involved in self-toxicity via ROS formation (George et al., 2019). 

Interestingly, psm activation was not correlated with activation of the quorum sensing 

Agr system, the main regulator required for psm expression (Queck et al., 2008). Agr 

was even repressed under (pp)pGpp inducing conditions. Previously, analysis of a 

clinical isolate overproducing (pp)pGpp also indicated that (pp)pGpp leads to agr 

inhibition (W. Gao et al., 2010). Thus, (pp)pGpp mediated psm activation is clearly 

uncoupled from agr expression. Recently, the sRNA Teg41 (S131) (Zapf et al., 2019) 

and the transcriptional regulator MgrA (Jiang, Jin, & Sun, 2018) were found to interfere 

with psm expression. However, it is unlikely that they mediate the (pp)pGpp regulatory 

effect because expression of these regulators was not found altered in our RNAseq 

analysis (Supp. Tab. S1). Thus, the molecular mechanism how (pp)pGpp leads to psm 

activation has to be elucidated. psm promoters might be sensitive towards the 

concentration of the initiating nucleoside triphosphate (iNTP). The stringent response 

is accompanied with changes in the ATP/GTP ratios and the identity of the +1 position 

(A or G) dictates the activity of sensitive promoters (Krasny et al., 2008). Various 

sequence combinations determine whether a promoter is iNTP sensitive or not (Sojka 

et al., 2011). Such sequence motifs are hard to predict within the psm promoters. 

However, both psmα and psmß operons start with an A at +1 position (Queck et al., 

2008).    

(pp)pGpp and oxidative stress response  

Genes involved in iron metabolism indicative for iron overload conditions were also 

highly affected by (pp)pGpp. Recently, a similar effect was reported for Vibrio cholera 

(H. Y. Kim et al., 2018). Here the expression of the iron transporter FbpA was 

repressed via (pp)pGpp, resulting in a reduction of intracellular free iron, required for 

the ROS-generating Fenton reaction. This contributed to reduce antibiotic-induced 

oxidative stress and thus tolerance and it is likely that this is also the case in S. aureus. 

Besides interfering with iron metabolism other genes involved in oxidative stress were 

activated by (pp)pGpp. A link between stringent response and oxidative stress 

response was observed in different organisms although the underlying mechanisms 

and outcome might be highly diverse. (pp)pGpp dependent upregulation of superoxide 

dismutase (SOD) was described in B. suis (Hanna et al., 2013), and P. aeruginosa 

(Martins et al., 2018). SOD was shown to be the key factor responsible for (pp)pGpp 
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mediated multidrug tolerance in P. aeruginosa (Martins et al., 2018). Moreover, 

(pp)pGpp deficient strains are often found to be more sensitive towards oxidative stress 

(Holley et al., 2014; Yan et al., 2009),(J. Wang et al., 2016). Also in E. faecalis a 

pppGpp0 mutant is more sensitive to H202.  

In S. aureus the stringent response leads to the activation of ROS inducing toxins and 

simultaneous expression of the detoxifying system to protect the producer. This is likely 

of special advantage for the pathogen once it encounters neutrophils and elevated 

ROS. The PSMs are required to escape from within the cells after phagocytosis 

(Geiger et al., 2012; Surewaard et al., 2013). The upregulation of the oxygen stress 

program will help to protect from endogenous as well as exogenous ROS. 

Comparison of RSH-Syn, RelQ and RelP activity 

We compared the activity or RSH-Syn, RelQ and RelP. Nucleotide profiling as well as 

transcriptional analysis showed that induction of RelQ results in similar nucleotide 

changes than RSH-Syn although to a much lesser extent. RelP in contrast was equally 

active as RSH-Syn. Thus, RelQ activity seems to be restricted in vivo under our growth 

conditions. Comparison of RelP and RelQ from other organisms revealed that RelQ is 

inhibited through RNA binding and auto-activated by (pp)pGpp (Manav et al., 2018; 

Steinchen et al., 2018). We analyzed RelQ activity in an (pp)pGpp background under 

non-stress conditions where RelQ activity is likely restricted via RNA binding and/or 

the missing basal (pp)pGpp provided by other synthetases. Conditions, which would 

relieve this restriction, remain to be determined. Analysis of purified RelP and RelQ 

revealed that both enzymes are equally active. The most striking difference was that 

RelQ can use GMP as substrate to produce pGpp, whereas no pGpp synthesis activity 

was detectable for purified RelP. pGpp synthesis was already described for RelQ from 

E. faecalis (Gaca, Kudrin, et al., 2015) or Corynebacterium glutamicum (Ruwe, 

Kalinowski, & Persicke, 2017). Of note, we also detected RSH dependent pGpp 

synthesis via either mupirocin treatment or RSH-Syn induction in vivo. pGpp was 

shown to exert inhibitory effects similar to ppGpp for e.g. enzymes involved in GTP 

biosynthesis (Gaca, Kudrin, et al., 2015). Former nucleotide analyses in S. aureus 

(Crosse, Greenway, & England, 2000) and other organisms (Pao & Gallant, 1979) 

revealed another molecule, ppGp. pGpp was found to be even more active than 

pppGpp regarding e.g. inhibition of some target proteins but may also exert opposite 



Results 

~56~ 
 

effects (Pao & Dyess, 1981). GTP, pGpp and ppGp are difficult to differentiate due to 

their identical molecular weight and the biological relevance of these molecules remain 

to be elucidated. Nevertheless, the function of the two SAS enzymes often present 

together within one organism indicate that they might full-fill distinct functions. RelQ 

requires post-transcriptional activation and preferentially synthesizes pGpp. The 

different ratio of the alarmones pppGpp, ppGpp and pGpp may contribute to small 

differences in the stringent response out-come (Mechold et al., 2013). However, the 

overall changes on the nucleotide pool and transcriptional changes are largely similar 

between the three (pp)pGpp synthetases of S. aureus.  
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Materials and Methods 

Strains and growth conditions. 

Strains and plasmids are listed in Supl. Table S1.  For strains carrying a resistance 

gene a concentration of 10µg/ml chloramphenicol, 10µg/ml erythromycin or 100µg/ml 

ampicillin was used only for overnight cultures.  S. aureus strains were grown over 

night in chemical defined medium (CDM) (Pohl et al., 2009) and diluted to an optical 

density (OD600) of 0.05 and grown until the early exponential phase OD600 = 0.3 with 

shaking (220rpm, 37°C). Strains carrying a plasmid with an ATc-inducible promoter 

were induced at OD600=0.3 with 0.1µg/ml ATc for 30 min.  

For anaerobic growth the strains were diluted to an OD600 of 0.05 in hungate tubes 

(Chemglass), completely filled with CDM. ATc was applied using a syringe at 

OD600=0.03. For OD measurements, aliquots were drawn with a syringe.  

Generation of (p)ppGpp0 mutant in USA300 JE2 

For the USA300 (p)ppGpp0 mutant (USA300-229-230-263), lysates were prepared 

from  RN4220 strains containing the mutagenesis vectors pCG229, pCG230 and 

pCG263, respectively (Table S3). After transduction into USA300 JE2, mutagenesis 

was performed as previously described (Bae & Schneewind, 2006). To avoid toxic 

accumulation of (p)ppGpp the genes were mutated in the order relP, relQ and finally 

rsh. Mutations were verified by PCR using primers enlisted in Table S4. 

RNA isolation and Northern Blot analysis 

RNA isolation and northern blot analysis were performed as described previously 

(Goerke et al., 2000). Briefly, bacteria were pelleted and resuspended in 1ml TRIzol 

(Thermo Fisher Scientific) and lysed using zirconia/silicia beads (0,1mm diameter) and 

a high speed homogenizer. RNA was isolated following the recommended procedure 

by TRIzol manufacturer. For RNA-Seq analysis RNA from the aqueous phase was 

further purified following the RNA-isolation protocol by Amp Tech ExpressArt® RNA 

ready. Transcripts on the Northern blot were detected by dioxigenin-labeled probes, 

which were generated by a DNA-labelling PCR-Kit (Roche Life Science).  
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Purification of RSH-syn, RelP and RelQ 

Proteins were purified as described in Gratani et al. (Gratani et al., 2018). Briefly, 

plasmids carrying RSH-syn, RelP or RelQ were freshly transformed into E.coli B21 and 

grown for 16 hours at RT in LB supplemented with D(+)-lactose-monohydrate (12.5g/l) 

and 100µg/ml ampicillin.  

Cells were harvested, centrifuged (20 minutes, 3000 x g, 4 °C) and resuspended in 

ice-cold low-KCl buffer A supplemented with 10 μg/ml DNAse and cOmpleteTM 

protease inhibitor cocktail (Roche). Cells were lysed and the lysate was centrifuged 

(50,000 x g, 45 minutes, 4 °C). The clear supernatant was filtered (0.22-μm pore size) 

and loaded onto a 1-ml HisTrap HP column (GE Healthcare Life Sciences) equilibrated 

with high-KCl buffer A. Proteins were purified by an ÄKTA purification system (GE 

Healthcare Life Sciences) and eluted with an imidazole gradient to a final concentration 

of 500 mM.  The eluted fractions were loaded on SDS-PAGE, protein collected and 

concentrated by an Amicon Ultracel-30K ultracentrifugal device. Size exclusion 

columns were pretreated with ice-cold low-KCl SEC buffer and size exclusion was 

performed for further protein purification (HiLoad 16/600 Superdex 200 pg, GE 

Healthcare Life Sciences). Proteins were concentrated and stored at -80°C.  

  

In vivo nucleotide extraction  

Method was adapted from Jüngert et al, 2017 and modified. Briefly, strains were grown 

in CDM ,from an overnight culture and diluted to an OD600 0,05 and grown in CDM until 

an OD600 of 0.3. Strains were split and treated w/wo 0.1µg/ml ATc for 30min at 37°C 

and 220 rpm shaking. 100ml bacterial cultures were harvested and transfered in falcon 

half filled with ice and centrifuged (5min, 5000 x g, 4°C). Supernatant was discarded 

and pellet frozen in liquid nitrogen and stored at -80°C until usage. Samples were thaw 

on ice and resuspended in 2M formic acid and incubated on ice for 30min. 

Resuspended bacteria were lysed by high speed homogenizer using zirconia/silicia 

beads (0,1mm diameter) and kept on ice for 30min. The aqueous phase was collected 

and mixed with 50mM NH4OAc (pH 4.5) and loaded on columns (OASIS Wax cartridge 

3xcc) and centrifuged (5000 x g, 5min, 4°C). Columns were pre-treated first with pure 

methanol and then with 50mM NH4OAc (pH 4.5). Samples were washed first with 

50mM NH4OAc (pH 4.5) followed by a washing step with methanol. Elution was 

performed with a mixture of 20% methanol/70% ddH2O/10% NH4OH (of 30% stock 
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solution). Eluted nucleotides were flash frozen in liquid nitrogen and lyophilized 

overnight (Alpha 1-4 LSC, CHRIST). Lyophilized nucleotides were resuspended in 

ddH2O and analyzed via HPLC-MS. 

In vivo and in vitro analysis of (pp)pGpp via HPLC-MS 

Method was used as previously described in Gratani et al., 2018. Briefly, nucleotides 

were analyzed using ESI-TOF (micrO-TOF II, Bruker) mass spectrometer connected 

to an UltiMate 3000 high-performance liquid chromatography.. 5-microliters of 

standards or samples were injected onto SEQuant ZIC-pHILIC column (Merck, PEEK 

150 x 2.1mm, 5µm). MS analysis was performed in negative-ion mode over the mass 

range from 200 to 1,000 m/z. MS calibration was done by using a sodium formate 

solution as the tune mix. 

Nucleotide standards of AMP (346.06 m/z), ATP (505.99 m/z), GTP (521.98 m/z), 

pGpp (521.98 m/z), ppGpp (601.96 m/z) and pppGpp (681.92 m/z) were diluted from 

xxx to 1 mM and analyzed by HPLC-MS. Extracted ion chromatogram (EIC) spectra of 

all standards were presented in DataAnalysis (Bruker) and the area under the curve 

(AUC) of the respective EICs was calculated in GraphPad Prism 5 (baseline for was 

set to 150). The obtained AUC values of the diluted standards were used to generate 

a calibration curve. For absolute nucleotide quantification, the AUC of the samples was 

plugged into the AUC values of the calibration curve and the concentration of the 

respective nucleotides in the samples was determined. Nucleotide identification was 

verified by matching the retention times and m/z values of detected peaks in the 

samples to the measured nucleotide standards. 

 

Peak separation of pGpp from GTP  

pGpp and GTP have the same exact mass of 522.990, but they can be distinguished 

by different retention times on the ZIC-pHILIC column (x min and y min respectively).  

To separate pGpp from GTP we used an algorithm since Prims 5 (GraphPad) was not 

able to separate the two peaks and calculate two different AUCs. For this reason we 

used an EM algorithm to separate pGpp from GTP. 

Modification on R-Code and EM-Algorithm is based on Goncalo Abecasis’s lecture 

notes on the EM algorithm 

(http://csg.sph.umich.edu/abecasis/class/2006/615.18.pdf,24.03.2019). Before 

http://csg.sph.umich.edu/abecasis/class/2006/615.18.pdf,24.03.2019
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identifying the components, first the baseline had to be subtracted in the R-Code. 

Second, the density was calculated which leads to a normalized intensity with the 

following formula.  i(t) was considered as the intensity and t time.  

 d(𝑡) = 𝑖(𝑡)∑ 𝑖(θ)θ  

 

Identification of the components.  

The issue is to find all parameters of a Gaussian mixture given the data in aggregated 

form and given the number of components. If the goal is to find n components then the 

algorithm returns an estimate of n fractions λ𝑘, and n pairs (μ𝑘, σ𝑘) of parameters for 

the Gaussian components so that 

𝑓(𝑡) = ∑λ𝑘𝑛
𝑘=1 ⋅ ϕμ𝑘,σ𝑘(𝑡) 

where ϕμ𝑘,σ𝑘 is the density of a Gaussian with mean parameter μ𝑘 and parameter of 

standard deviation σ𝑘. In case of a chromatogram, 𝑓(𝑡) is the fitted intensity to the 

data, μ𝑘 and σ𝑘 are the measures of position and width of the kth signal, whereas λ𝑘 is 

the proportion of the kth signal in the chromatogram. Obviously, the condition ∑ λ𝑘𝑛𝑘=1 =1 must hold.As the signals in chromatograms do not always appear as well shaped 

Gaussian bell curves, a chemical component might result in a signal which is best fitted 

by more than one Gaussian component. To separate pGpp from GTP the peaks had 

to be separated in more than two components, so we split the curves in 𝑛 = 15 

components. Indeed, as there is a natural order of the components found by their 

parameter μ𝑘 we had to decide upon a threshold 𝑡𝑐 as a classification rule: All 

components respecting the condition μ𝑘 ≤ 𝑡𝑐 should be classified as belonging to the 

first chemical component whereas the other belong to the second. The relative amount 

of the first chemical component in the mixture is then calculated as and for the second 

we get 𝐼2 = 1 − 𝐼1. 
𝐼1 = ∑ λ𝑘𝑘:μ𝑘≤𝑡𝑐  
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H2O2 killing assay 

Strains were grown over night in CDM. Overnight cultures were diluted in fresh CDM 

to an OD600 of 0.1 and growth followed for 24 hours with different H2O2 concentrations 

with the Infinite M200 Pro microplate reader from Tecan. MIC determination was 

performed according to European Committee on Antimicrobial Susceptibility Testing 

(EUCAST) guidelines using CDM medium.  

ROS measurement 

ROS measurements were performed as described in George et al. (George et al., 

2019). Briefly, bacteria equivalent to an OD600=1 were harvested from overnight 

cultures and resuspended in 100µl DCF (2’,7’-dichlorfluorescin acetate) and incubated 

for 50 minutes Fluorescence was measured using Tecan Infinite 200 PRO at an 

excitation wavelength of 488 nm and emission wavelength of 515 nm. 

RNA-Seq Analysis 

Strains were grown in triplicates to OD600 = 0.3, and splitted into treated (ATc, 0.1 

µg/ml) and untreated control and grown for 30 min. Purified RNA was sent to Vertis 

Biotechnologie AG for RNASequencing based on Illumina Next Seq 500 system. RNA 

was examined by a capillary electrophoresis on a Shimadzu MultiNA microchip 

followed by rRNA depletion using Ribo-Zero rRNA removel Kit from Illumina. RNA was 

converted to cDNA by fragmenting RNA samples by ultrasound and ligating an 

oligonucleotide adapter to the 3’end of the RNA. Using M-MLV reverse transcriptase 

first strand cDNA was created using 3’ adapter as primer. The 5’Illumina TruSeq 

sequencing adapter was ligated to the 3’end of the purified (Agencourt AMPure XP kit) 

cDNA and PCR was performed. Samples were pooled in equimolar amounts and 

fractionated in a size range of 200-500 bp using a preparative agarose gel and Illumina 

sequencing was performed using 75bp reads. RNA-Seq analysis was performed using 

CLC Genomic Workbench (Qiagen). Reads were trimmed (TrueSeq-Antinsense 

Primer AGATCGGAAGAGCACACGTCTGAACTCCAGTCA) and mapped to reference 

genome HG001 (Romby). Differential gene expression was performed comparing 

RSH-Syn or RelQ versus the (pp)pGpp0 mutant. Venn diagrams were performed 

comparing RSH-Syn vs. control and RelQ vs. control. Genes with at least 3-fold 
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difference and a p-value ≥0,001 were defined as differentially regulated compared to 

the untreated control.  
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Table S3: Strains and plasmids 

Strains Description Source/ 

Reference 

E.Coli   

BL21  fhuA2 [lon] ompT gal (λ DE3) [dcm] ΔhsdS λ DE3= λ 
sBamHlo ΔEcoRI-B int:: (lacl::PlacUV5::T7 gene1) i21 
Δnin5, competent for protein expression 

NEB 

S.aureus   

RN4220 Restriction deficient derivate of 8325-4, rK-mK+ (Kreiswirth 
et al., 1983) 

Ne1193 Tnbursa::sarA erm NARSA 

NE99 Tnbursa::fur erm NARSA 

NE665 Tnbursa::perR erm NARSA 

HG001 RN1 derivate, rsbU repaired, tcaR (Pohl et al., 
2009) 

(Herbert et 
al., 2010) 

HG001-
86 

Mutation in the synthetase domain of rel (Geiger et 
al., 2010) 

HG001-
229-230 

Mutation in the synthetase domain of relP and relQ 
(ΔrelPsyn ΔrelQsyn) 

(Geiger et 
al., 2014) 

HG001 
229-230-
263 

Mutation in the synthetase domain of relP ,relQ and 
complete deletion of rel (ΔrelPsyn ΔrelQsyn Δrel) 

(Geiger et 
al., 2014) 

HG001 
fur 

Tnbursa::fur erm This work 

HG001 
229-230-
263 fur 

Mutation in the synthetase domain of relP ,relQ and 
complete deletion of rel (ΔrelPsyn ΔrelQsyn Δrel) 
Tnbursa::fur erm 

This work 

HG001 
perR 

Tnbursa::perR erm This work 
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HG001 
229-230-
263 perR 

Mutation in the synthetase domain of relP ,relQ and 
complete deletion of rel (ΔrelPsyn ΔrelQsyn Δrel) 
Tnbursa::perR erm 

This work 

HG001  
psmα 
psmβ 

psmα1-4::tetM, psmβ1-2::ermC (Geiger et 
al., 2012) 

HG001 
229-230-
263 
psmα 
psmβ 

Mutation in the synthetase domain of relP ,relQ and 
complete deletion of rel (ΔrelPsyn ΔrelQsyn Δrel)  psmα1-

4::tetM, psmβ1-2::ermC 

This work 

USA300 
JE2 

USA300 derivative, cured of all plasmids NARSA 

USA300 
JE2 229-
230-263 

Mutation in the synthetase domain of relP ,relQ and 
complete deletion of rel (ΔrelPsyn ΔrelQsyn Δrel) 

This work  

Plasmids Description Source/ 
Reference 

pET15b Protein expression vector, ampicillin resistance Novagen 

pKOR1 ATc-inducible mutagenisis vector, chloramphenicol 
resistance 

(Bae & 
Schneewind, 
2006) 

pCG248 anhydrotetracyclin (ATc)  inducible vector, 
chloramphenicol resistance 

(Helle et al., 
2011) 

(Schroder, 
Goerke, & 
Wolz, 2013) 

pCG258 relP cloned into pCG248 (Geiger et 
al., 2014) 

pCG259 relQ cloned into pCG248 (Geiger et 
al., 2014) 

pCG327 N-terminal domain of Rel with hydrolase mutated  (Gratani et 
al., 2018) 

pCG229 pKOR1 with integrated, mutated relP (Geiger et 
al., 2014) 
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Table S4: Oligonucleotides 

Purpose and 

Description 
Template Name Sequence 

verification of 
relP synthase 
mutant 

USA300-229-230-
263 

 

relPDIG-for 

relPDIG-rev 

GTCGCACATTCTTTCAGT 

CGTTATTAGGTTTCGTAGAGTT 

verification of 
relQ synthase 
mutant 

USA300-229-230-
263 

 

relQDIGfor2 

relQDIGrev2 

TTCGTAACACTAAAGAAAGTG
G 

GCGTGTAATATTTTTGAGCT 

verification of 
rsh mutant 

USA300-229-230-
263 

 

rel431for 

relLC4rev 

GCGTGGCTTTATCATTGG 

ACTTCAACCATCATTCGG 

Verification of 
perR mutant 

HG001 perR 

HG001 229-230-
263 perR 

perR-for 

TnUpstream 

TGAACTAGAAGAATCAATTGC
ATCA 

CTCGATTCTATTAACAAGGG 

Verification of 
fur mutant 

HG001 fur 

HG001 229-230-
263 fur 

furtnfor 

TnBuster 

GCACGTTTCACACACACCAT 

GCTTTTTCTAAATGTTTTTTAA
GTAAATCAAGTAC 

Verification of 
sarA mutant 

HG001 sarA sarAtnfor 

TnUpstream 

GTTGTTTGCTTCAGTGATTCGT 

CTCGATTCTATTAACAAGGG 

pCG230 pKOR1 with integrated, mutated relQ (Geiger et 
al., 2014) 

pCG263 pKOR1 with integrated, mutated rel (Geiger et 
al., 2014) 

pCG551 N-terminal domain of Rel with hydrolase mutated cloned 
into pET15b 

(Gratani et 
al., 2018) 

pCG121 relP cloned into pET15b (Geiger et 
al., 2014) 

pCG122 relQ cloned into pET15b (Geiger et 
al., 2014) 
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HG001 229-230-
263 sarA  

Verification of 
psmα/β mutant 

HG001 229-230-263 psm 

 
(Geiger et al., 2012) 

Creation of 
dig-labeled 
probe ftnA  

WT HG001 ftnADig-for 

ftnADig-rev 

GAGTACTTTGCAGCACACGC 

CATTGCTGTCATCGCCGATAC 

Creation of 
dig-labeled 
probe dps  

WT HG001 
mrgADig-for 
mrgADig-rev 

 

GCTACACAATTTCCACTGGT 
CATACCTATAAACATATCTTC 

 

Creation of 
dig-labeled 
probe psm/agr 

(Geiger et al., 2012) 
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Fig. S1: Differentiation of GTP and pGpp via mass spectrometry. Separation of 
GTP and pGpp in a nucleotide mix is possible by the retention time. 1mM of purified 
GTP and pGpp were analyzed via mass spectrometry (ESI-TOF). Both nucleotides 
have a m/z of 521.98 but different retention times. GTP has a retention time tR of ≈ 
17.75 min and pGpp a tR ≈ 18.5min. 
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Abstract

The stringent response is characterized by (p)ppGpp synthesis resulting in repression of

translation and reprogramming of the transcriptome. In Staphylococcus aureus, (p)ppGpp is

synthesized by the long RSH (RelA/SpoT homolog) enzyme, RelSau or by one of the two

short synthetases (RelP, RelQ). RSH enzymes are characterized by an N-terminal enzy-

matic domain bearing distinct motifs for (p)ppGpp synthetase or hydrolase activity and a C-

terminal regulatory domain (CTD) containing conserved motifs (TGS, DC and ACT). The

intramolecular switch between synthetase and hydrolase activity of RelSau is crucial for the

adaption of S. aureus to stress (stringent) or non-stress (relaxed) conditions. We elucidated

the role of the CTD in the enzymatic activities of RelSau. Growth pattern, transcriptional anal-

yses and in vitro assays yielded the following results: i) in vivo, under relaxed conditions, as

well as in vitro, the CTD inhibits synthetase activity but is not required for hydrolase activity;

ii) under stringent conditions, the CTD is essential for (p)ppGpp synthesis; iii) RelSau lacking

the CTD exhibits net hydrolase activity when expressed in S. aureus but net (p)ppGpp syn-

thetase activity when expressed in E. coli; iv) the TGS and DCmotifs within the CTD are

required for correct stringent response, whereas the ACTmotif is dispensable, v) Co-immu-

noprecipitation indicated that the CTD interacts with the ribosome, which is largely depen-

dent on the TGSmotif. In conclusion, RelSau primarily exists in a synthetase-OFF/

hydrolase-ON state, the TGSmotif within the CTD is required to activate (p)ppGpp synthe-

sis under stringent conditions.
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Author summary

The stringent response is a general stress response, which allows bacteria to survive nutri-

ent limited conditions and to better tolerate antibiotic treatment. In the human pathogen,

Staphylococcus aureus, the stringent response plays an important role for virulence, phago-

somal escape and antibiotic tolerance. The response is initiated by the synthesis of the

nucleotide derivative (p)ppGpp which in turn leads to growth arrest and reprogramming

of gene expression. However, a rapid and controlled inactivation of these growth inhibi-

tory molecules is equally important for the organism. (p)ppGpp synthesis as well as hydro-

lysis is accomplished by a bi-functional RelA/SpoT homolog, RelSau bearing distinct

synthetase, hydrolase and sensory domains. We elucidated how the C-terminal sensory

domain of RelSau controls the intermolecular switch between hydrolase and synthetase

activities in S. aureus. The switch is crucial for the appropriate response of S. aureus to

adapt to changing environment encountered during infection.

Introduction

Bacteria react to nutrient limitation via a stress response that is characterized by the synthesis

of pyrophosphorylated GTP (pppGpp) or GDP (ppGpp) (previously reviewed in [1,2,3,4,5,

6,7,8,9,10,11]). Synthesis of (p)ppGpp, induced under these stress conditions (stringent condi-

tions), results in many physiological changes, including inhibition of rRNA synthesis, replica-

tion and translation but also activation or repression of various genes. In many pathogenic

bacteria, (p)ppGpp influences virulence, persistence and host interaction (see reviews [9,10]).

(p)ppGpp is synthesized by cytoplasmic enzymes that contain a conserved synthetase

domain. RelA of Escherichia coli was the first such enzyme described and has been shown to

synthesize (p)ppGpp under conditions of amino acid limitation [12]. E. coli and many other

gram-negative bacteria possess an additional enzyme, SpoT, that possesses (p)ppGpp synthe-

tase and hydrolase activities. The (p)ppGpp synthetase activity of SpoT is stimulated by various

conditions, e.g. fatty acid deprivation [13,14]. In Firmicutes, homologous enzymes (Rel) con-

stitute a distinct class of (p)ppGpp synthetases [11,15,16]. RelA, SpoT and Rel enzymes all

belong to RSH (for RelA/SpoT homolog) superfamily [15,17]. Similar to SpoT, the Rel en-

zymes from Firmicutes are bifunctional proteins with (p)ppGpp synthetase and hydrolase

activities; however, similar to RelA, the synthetase activity of these enzymes is stimulated upon

amino acid starvation [18,19]. RSH enzymes share a multi-domain architecture with a C-ter-

minal regulatory domain (CTD) and an N-terminal enzymatic domain (NTD) containing syn-

thetase and hydrolase motifs. The only available crystal structure of an RSH enzyme is that of

the NTD of Rel from Streptococcus equisimilis [20]. The structure indicates two conformations

of the enzyme, corresponding to the reciprocal active states of the enzyme: (p)ppGpp-synthe-

tase-ON/hydrolase-OFF (stringent) and synthetase-OFF/hydrolase-ON (relaxed). It has been

proposed that the CTD is involved in reciprocal regulation of the enzymatic states. The current

model suggests that under non-stringent (relaxed) conditions, the interaction of the CTD with

the NTDmaintains the enzyme in the synthetase-OFF/hydrolase-ON conformation [21,22,23]

The CTD of RelA stimulates (p)ppGpp synthesis in a ribosome-dependent manner when

uncharged tRNA, as a consequence of amino acid limitation, is located in the ribosomal A-site

[24,25]. Interestingly, Rel from S. equisimilis is responsive to amino acid starvation only within

its native genetic background and not when expressed in E. coli [13,21]. Bioinformatic analyses

have revealed the presence of three conserved motifs within the CTDs of RSHs: TGS, ACT and

DC. The TGS motif (named after the presence in ThrRS, GTPases, and SpoT) was shown to be

Rel in S. aureus
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responsible for the interaction of SpoT with the acyl-carrier protein. The ACT motif (named

after three of the allosterically regulated enzymes in which this domain is found: aspartate

kinase, chorismate mutase and TyrA) was proposed to be a conserved regulatory ligand-bind-

ing fold [26,27]. Recently, major insights into the ribosome-RelA structure were provided by

cryo-EM analyses [28,29,30]. The structures revealed that RelA adopts an open conformation

in which the CTD is intertwined around an A-site tRNA within the intersubunit cavity of the

ribosome, and the NTD extends into the solvent. The structures support a model in which

association of monomeric RelA with the ribosome relieves the autoinhibitory effect of the

CTD on the NTD. It was hypothesized that autoinhibition in the unbound state is mediated by

oligomerization of RelA. Oligomerization was previously demonstrated to occur via a con-

served aspartate-cysteine motif (DC) in the CTD [31,32,33]. Interaction of monomeric RelA

with the ribosome and putative RelA oligomerization in the unbound state indicate that the

switching of enzymatic activities occurs via a complex mechanism that has not yet been

elucidated.

In the human pathogen Staphylococcus aureus, the stringent response plays an important

role in virulence [18], phagosomal escape [34] and antibiotic tolerance [35]. In S. aureus, in

addition to RelSau, two enzymes with (p)ppGpp synthetase activity (RelP and RelQ) are pres-

ent. These enzymes form homotetramers that lack the CTD and the hydrolase domain

[36,37,38] and are transcriptionally induced under conditions of cell-wall stress [35]. The basal

(p)ppGpp level produced by these enzymes is controlled by the hydrolase activity of RelSau
[35]. The phenotypic consequences of (p)ppGpp accumulation vary among species and can be

mediated by different mechanisms. In S. aureus, as in other Firmicutes, (p)ppGpp regulates

transcription by an indirect mechanism that strongly relies on the lowering of intracellular

GTP levels [39,40,41]. Low GTP levels lead to de-repression of the CodY regulon. CodY, when

loaded with GTP and branched-chain amino acids, acts as a repressor of a variety of genes,

e.g., genes involved in amino acid synthesis and virulence [41] A decrease in GTP levels could

also lead to the repression of sensitive GTP-initiating promoters (e.g., those of stable RNA

genes) [42,43]. All these studies illustrate the complex role of (p)ppGpp during the bacterial

life cycle. The cellular concentration of (p)ppGpp has to be tightly regulated not only to sup-

port survival under stressed conditions but also to avoid toxicity under relaxed conditions.

The molecular switch between the synthetase and hydrolase activities of RelSau is crucial for

the maintenance of this balance.

Here, we aim to elucidate the role of the CTD in controlling the activity of Rel of the major

human pathogen S. aureus (RelSau) in vivo. We show that the (p)ppGpp synthetase activity is

restricted in S. aureus and that the synthetase is activated only upon interaction of the CTD

with ribosomal partners under stringent conditions. The TGS and DCmotifs within the CTD

are essential for the enzymatic switch to the synthetase-ON state and play a major role in the

interaction between RelSau and the translational apparatus.

Results

CTD-deleted RelSau is in a synthetase-OFF/hydrolase-ON state in its native
S. aureus background

We aimed to analyze the role of the CTD of RelSau in the stringent response in S. aureus. In

RelSau the canonical domains and motifs could be identified through alignment with RelA and

SpoT from E. coli (Fig 1A). We first established a readout system for (p)ppGpp activity. To this

end, we analyzed strain HG001 (wild type) as well as an isogenic mutant of this strain that car-

ries mutations in all three (p)ppGpp enzymes (full deletion of rel, synthetase mutation in relP

and relQ) and thus is unable to synthesize pppGpp (designated (p)ppGpp0) [35]. The mutant
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exhibits no phenotypic difference compared to the wild type when grown in rich medium (Fig

1B). The stringent response can be evoked by mupirocin, an inhibitor of isoleucyl-tRNA syn-

thetase [18,34]. (p)ppGpp synthesis results in higher tolerance towards mupirocin. The (p)

ppGpp0 strain exhibited a typical decline in OD600 when treated with mupirocin (Fig 1C). Fur-

thermore, synthesis of (p)ppGpp results in repression of genes coding for ribosomal proteins

(e.g., rpsL) and de-repression of the CodY target genes (e.g., SAOUHSC_02923, a putative

amino acid transporter) (Fig 1D). Therefore, we used the enhanced mupirocin tolerance and

typical transcription pattern (rpsL down, SAOUHSC_02923 up) as a readout for (p)ppGpp

synthesis in S. aureus. As a first approach, we deleted the CTD of the wild-type RelSau

Fig 1. Experimental set-up for synthetase activity in S. aureus. (A) The molecular architecture of RelSau including conserved and
mutated motifs. S. aureus strains HG001 wild type (WT), (p)ppGpp0 and HG001-531 (rel CTD deleted) were grown in rich medium
to OD600 = 0.3 and split in cultures with and without 0.3 μg/ml mupirocin. Growth was monitored after reaching OD600 = 0.3
without (B) or with mupirocin (C).For Northern analysis (D) RNA was isolated from bacteria 30 minutes after reaching OD600 = 0.3
and hybridized with digoxigenin-labelled probes specific for gene encoding ribosomal protein RpsL and the CodY target gene
SAOUHSC_02923. The 16S rRNA detected in the ethidium bromide-stained gels is indicated as loading control in the bottom lane.

https://doi.org/10.1371/journal.pgen.1007514.g001
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(SAOUHSC_01742) to generate strain HG001-531. In contrast to a full-length rel deletion

(Geiger et al., 2014a), truncation of the CTD had only a slight effect on growth (Fig 1C). It has

been previously shown that RelSau is essential due to its hydrolase function [35]. Thus, the

CTD does not seem to impede the hydrolase activity in vivo. Northern blot analysis revealed

that the CTDmutant was unable to elicit a mupirocin-induced stringent response (Fig 1B).

The transcriptional pattern of the marker genes rpsL and SAOUHSC_02923 as well as the

mupirocin tolerance (Fig 1D) of the CTD mutant were indistinguishable from those of the (p)

ppGpp0 strain. This finding is consistent with the general assumption that the CTD is required

for sensing amino acid deprivation. However, hydrolase activity seems to be hardly effected by

the CTD.

Next, we complemented the (p)ppGpp0 strain with anhydrotetracycline (ATc)-inducible

full-length and truncated rel constructs (Fig 2A) and analyzed the effects under relaxed growth

conditions (exponential growth phase in nutrient-rich medium). As a positive control, we in-

duced relQ expression. RelQ is a small synthetase without a regulatory CTD and thus can acti-

vate the stringent response in a (p)ppGpp0mutant by transcriptional induction alone. This

activation was demonstrated by downregulation of rpsL and upregulation of SAOUHSC_02923

(Fig 2B) and by the immediate growth arrest after relQ induction (Fig 2C).

In contrast to relQ, transcriptional induction of full-length rel showed no effect on the tran-

scription of marker genes or on growth (Fig 2B and 2D). This finding confirms that additional

post-transcriptional activation is required to activate the synthetase activity. Induction of a

construct lacking the CTD also failed to induce the stringent response phenotype (Fig 2B and

2D). At first glance, these results may indicate that under relaxed conditions, the enzymatic

domain of RelSau, with or without the CTD, is tightly held in a synthetase-OFF conformation.

Alternatively, the hydrolase might be hyperactive, so any (p)ppGpp synthesized would be

immediately degraded. To test this hypothesis, we mutated the hydrolase domain in full-length

and CTD-deleted rel constructs. Indeed, both full-length and truncated rel lacking the hydro-

lase domain elicited a stringent response pattern similar to that of the wild type, as indicated

by transcriptional and growth analyses (Fig 2B and 2D). Thus, we presume that there might be

some synthetase activity under relaxed growth conditions. However, due to hydrolase activity,

any (p)ppGpp present is efficiently degraded under these conditions.

CTD of RelSau does not impact hydrolase activity in vivo

To analyze the hydrolase activity of RelSau in vivo, we used a conditional relmutant strain

(HG001-55) [18] in which genomic rel was placed under an IPTG-inducible promoter comple-

mented with different rel constructs (Fig 3A). Without IPTG, the relmutant is unable to grow

(Fig 3B) because it cannot degrade the (p)ppGpp synthesized by RelP and RelQ [35]. We intro-

duced ATc-inducible full-length or truncated rel into the conditional relmutant and moni-

tored growth after ATc induction. As expected, constructs with mutated hydrolase could not

rescue the growth defect of HG001-55 (Fig 3C). However, full-length and CTD-truncated rel,

with intact hydrolase, fully complemented the growth defect of the conditional relmutant.

These results show that the hydrolase was constitutively active, independent of the presence of

the CTD. In summary, the data indicate that under relaxed conditions, the wild-type RelSau
enzyme, with or without sensory domain, is tightly held in the hydrolase-ON state.

Role of the CTD in the enzymatic activity of RelSau in vitro

To confirm the data from the in vivo experiments under relaxed conditions, full-length or

CTD-truncated RelSau proteins (with or without hydrolase domains) were purified and tested

in vitro for enzymatic activities (Fig 4A and 4B). In the synthetase reaction, pyrophosphate is

Rel in S. aureus

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007514 July 9, 2018 5 / 20

https://doi.org/10.1371/journal.pgen.1007514


transferred from ATP to GTP, yielding AMP and pppGpp. The presence of both products was

measured by HPLC-MS. AMP production was detectable with all constructs (Fig 4C); how-

ever, the AMP levels were significantly higher for the constructs that lacked the CTD (Fig 4C),

Fig 2. Influence of the CTD on the synthetase activity in vivo.ATc inducible rel with and without CTD or hydrolase domain
and relQ (A) were expressed in the (p)ppGpp0mutant and compared to WTHG001. The black crosses (A) represent mutations
as indicated in Fig 1A. Strains were grown in rich medium to OD600 = 0.3 and then split in cultures with and without 0.1 μg/ml
ATc. For Northern analysis (B) RNA was isolated from bacteria 30 minutes after reaching OD600 = 0.3 and hybridized with
digoxigenin-labelled probes. The 16S rRNA detected in the ethidium bromide-stained gels is indicated as loading control in the
bottom lane. rpsL and SAOUHSC_02923 are control markers for the induction by (p)ppGpp Growth was monitored after
addition of 0.1 μg/ml ATc. The (p)ppGpp0 was complemented with different plasmids: empty vector (pCG248) and relQ
(pCG259), as controls (C), and different rel constructs (D).

https://doi.org/10.1371/journal.pgen.1007514.g002
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indicating that the CTD negatively interferes with synthetase activity. Interestingly, pppGpp

production was not detected for constructs with intact hydrolase (Fig 4D). However, proteins

with mutated hydrolases synthesized detectable amounts of (p)ppGpp. The enzyme lacking

the CTD showed slightly higher pppGpp synthetase activity than the full-length RelSau sup-

porting the inhibitory effect of the CTD on the synthetase domain. Thus, RelSau exhibits strong

hydrolase activity, which prevents pppGpp accumulation. This finding was confirmed by the

rapid degradation of pppGpp (Fig 4E) and ppGpp (Fig 4F) by full-length and CTD deleted

RelSau. Notably, RelSau preferentially degraded ppGpp over pppGpp. The CTD apparently has

a minor impact on hydrolase activity.

Role of the CTD of RelSau in E. coli

Our analysis of RelSau in its native background seemed to be inconsistent with the results of

previous studies, in which different CTD-deleted enzymes from other organisms were

expressed in E. coli [20,21,44,45]. These studies indicated that RSH enzymes that lack CTDs

are in a synthetase-ON/hydrolase-OFF state. Thus, based on these studies, we also expressed

Fig 3. CTD of RelSau has no impact on hydrolase activity in vivo.The conditional relmutant HG001-55 (inducible by IPTG) was
complemented with ATc inducible rel constructs (A). Strains were grown during preculture in presence of IPTG (0.5 mM) and were
diluted to an initial OD600 = 0.1 and growth monitored over time. As control, strain complemented with empty vector was grown with and
without IPTG to illustrate the essentially of the Rel hydrolase (B). Rel constructs were grown without IPTG but addition of ATc (0.1 μg/ml)
(C).

https://doi.org/10.1371/journal.pgen.1007514.g003
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full-length and CTD-deleted rel in E. coli using an arabinose-inducible promoter. We tested

the capacity of different rel constructs (Fig 5A) to complement the defective phenotype of

MG1655, a relA/spoTmutant, under stringent conditions (Fig 5B and 5C). Full-length and

CTD-deleted RelSau were able to complement the relA/spoTmutation. The complementation

could be attributed to (p)ppGpp synthetase activity: mutation within the synthetase domain

abolished complementation, whereas mutation within the hydrolase domain did not affect the

complementation assay. Thus, in E. coli, CTD-deleted RelSau, similar to other RSH enzymes, is

predominantly in a synthetase-ON/hydrolase-OFF state, whereas in S. aureus, this enzyme is

primarily in a hydrolase-ON state.

Fig 4. Role of the CTD on the enzymatic activity in vitro. 2 μMof purified proteins with and without CTD or hydrolase domain (A) were loaded
on SDS-PAGE, RelSau (85 KDa) and CTD-deleted (48KDa) (B) and used to assay synthetase (C, D) and hydrolase activity (E, F). The black crosses
(A) represent mutations as indicated in Fig 1A. Synthetase activity was determined in the presence of the two substrates ATP and GTP and 2 μM
of enzymes. The reaction products AMP (C) and pppGpp (D) were monitored over time at 37˚C by HPLC-MS. Hydrolase activity was assayed in
the presence of pppGpp (E) or ppGpp (F) and 0.1 μMof enzymes. Decrease of 1 mM of pppGpp or ppGpp was monitored for 120 minutes at
37˚C.

https://doi.org/10.1371/journal.pgen.1007514.g004
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Role of CTDmotifs for sensing in vivo

Within the CTDs of RSHs, several conserved motifs can be identified. The conserved TGS, DC

and ACT motifs of RelSau were predicted based on sequence alignments, and the critical resi-

dues of these motifs were mutated (Fig 1A). Wild-type and CTD-mutated rel were cloned to

be under the control of the native rel promoter and introduced into the (p)ppGpp0 strain (Fig

6A). The stringent response upon mupirocin treatment was analyzed by Northern blotting

and growth analysis (Fig 6B and 6C). A (p)ppGpp0 strain containing the empty vector showed

the typical decrease in OD600 after mupirocin treatment. Induction of full-length rel in the (p)

Fig 5. Role of CTD of RelSau in E. coli. rel from S. aureus with and without CTD, hydrolase or synthetase domain (A) were expressed in
relA/spoTmutant of E. coliMG1655. The black crosses (A) represent mutations as indicated in Fig 1A. As controls WT and relA/spoT
mutant were transformed with empty vector (B and C). Strains were grown under stringent conditions streaked onM9 agar plates (C) or M9
medium for growth analysis (D). Under these conditions the relA/spoTmutant was unable to grow.

https://doi.org/10.1371/journal.pgen.1007514.g005
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ppGpp0 mutant fully complemented the mutant phenotype, whereas the CTD-deleted rel was

unable to do so. Mutation of the ACT motif resulted in slightly impaired complementation.

However, mutation of the TGS or DC motif resulted in complete inactivation of the stringent

response. Expression of these mutated rel genes resulted in a phenotype that was not

Fig 6. Role of CTDmotifs for sensing of RelSau in vivo. (p)ppGpp0mutant was complemented with different rel constructs
expressed from the native promoter (A). The black crosses (A) represent mutations as indicated in Fig 1A. Strains were grown in
rich medium to OD600 = 0.3 and then split in cultures with and without 0.3 μg/ml mupirocin. For Northern analysis (B) RNA was
isolated from cells 30 minutes after reaching OD600 = 0.3 and hybridized with digoxigenin-labeled probes. The 16S rRNA
detected in the ethidium bromide-stained gels is indicated as loading control in the bottom lane. Growth was monitored after
reaching OD600 = 0.3 after which 0.3. μg/ml mupirocin was added (C).

https://doi.org/10.1371/journal.pgen.1007514.g006
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distinguishable from the phenotype of the (p)ppGpp0 strain in terms of growth and gene

expression pattern. Thus, the TGS and DCmotifs are required for stringent response, while

the ACT motif plays only a minor role.

Co-immunoprecipitation (Co-IP) of RelSau

We aimed to analyze the role of the conserved motifs within the CTD for interaction with

cytosolic proteins. Therefore, we performed Co-IP experiments using whole-cell lysates of (p)

ppGpp0 mutants expressing wild-type or mutated (ACT, DC and TGS see Fig 1A) versions of

RelSau. For each pull-down experiment, the wild-type or mutant RelSau was the most abundant

protein detected, with no significant difference observed between wild type and mutant pro-

teins (Data S1 Dataset) and the expression of all proteins was similar as shown byWestern blot

analysis (Blot in S1 Fig). Mainly ribosomal proteins were co-immuno-precipitated with native

RelSau. When RelSau with mutated TGS motif was used as bait significant less proteins were

enriched (Fig 7 first column). Most of these putative TGS interacting proteins were also found

to be effected when RelSau harboring mutations in ACT or DCmotifs were used, although to a

lesser extent. Immuno-precipitated proteins that were strongly influenced by the TGS muta-

tion are ribosomal proteins, proteins associated with RNA degradation and proteins involved

in DNA-related pathways. In summary, the results indicate that all three motifs within the

CTD work together to dock RelSau onto the translational apparatus. The strongest interaction

is mediated by TGS, whereas the ACT motif seems to have a low impact. The TGS motif seems

to mediate also interaction with non-ribosomal proteins.

Discussion

RSH enzymes are major players in the synthesis and hydrolysis of the second messenger (p)

ppGpp. There is still limited information about the molecular switch that regulates the two

activities, both present in long RSH enzymes. Here, we analyzed how the CTD of RelSau influ-

ences the enzymatic activities in vivo. We showed that RelSau exists primarily in a synthetase-

OFF/hydrolase-ON conformation. Only under stringent growth conditions was the switching

to the synthetase-ON conformation detectable, and this switching occurred only when the

CTD possessed intact TGS and DCmotifs.

In S. aureus and probably in other Firmicutes, Rel combines the functions of the two proto-

typic RSH enzymes, RelA and SpoT, from Proteobacteria. The synthetase activity is needed to

elicit a stringent response phenotype, presumably via interaction with ribosomes and

uncharged tRNA, as previously shown for RelA [24,25]. However, similar to SpoT, RelSau also

possesses strong hydrolase activity, which is necessary to counteract the (p)ppGpp production

by the small synthetases RelP and RelQ present in Firmicutes. The equilibrium between these

two activities needs to be tightly regulated in order to attain an appropriate level of (p)ppGpp

based on the growth conditions. So far, potential differences between RelA, SpoT and Rel asso-

ciated with the molecular switch could not be inferred from the sequence or in vitro analyses.

In vivo activities of different RSH enzymes were mainly analyzed by heterologous expression

in E. coli. These analyses indicated that without CTDs, RSH enzymes possess strong synthetase

activity [21,44,45]. Similarly, RelSau, with or without the CTD, can complement an E. coli relA/

spoTmutant, also indicating that (p)ppGpp synthesis can occur with or without the CTD.

However, analysis of the same construct in the native background clearly showed that RelSau
lacking the CTD is tightly held in the hydrolase-ON state, and synthetase activity is detectable

only in constructs that lack the hydrolase. Thus, RelSau, with or without the CTD, exhibits net

(p)ppGpp synthetase activity when expressed in E. coli but net hydrolase activity when

expressed in S. aureus. It would be interesting to see whether enzymes from other organisms

Rel in S. aureus

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007514 July 9, 2018 11 / 20

https://doi.org/10.1371/journal.pgen.1007514


show a similar discrepancy between E. coli and native backgrounds. Our results indicated that

the enzymatic activity of RelSau is influenced by species-specific interactions of the enzymatic

NTD with unknown factors. To date, there is no evidence that the NTD alone interacts with

the ribosome. Thus, other interaction partners or intracellular properties of the NTD should

be elucidated in the future. An alternative possibility is that less (p)ppGpp is needed to comple-

ment the phenotype of a pppGpp mutant in E. coli allowing growth even if RelSau has a weak

synthetase. However, this is not supported by our in vitro results, showing that synthetase

activity is only detectable when the hydrolase is mutated in constructs with or without CTD.

Analysis of full-length or truncated RelSau in vitro largely confirmed the results obtained with

Fig 7. Influence of the CTDmotifs on RelSau interactions. S. aureus (p)ppGpp
0 was complemented with native and

mutated RelSau. Cell lysates were mixed with magnetic beads, coated with RelSau antibodies and enriched proteins
identified by MS. Proteins significantly (t-test difference> 0.05) less abundant using TGS mutated versus native RelSau
as bait are shown in the first column. The effects of the DC or ACTmutation on interaction with these proteins are
shown in the second and third column, respectively.

https://doi.org/10.1371/journal.pgen.1007514.g007
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the in vivo data obtained in S. aureus. The presence of an intact hydrolase abrogates the syn-

thetase activity. Synthesis of pppGpp was detectable only in hydrolase-deficient constructs.

Moreover, we show that the CTD has an inhibitory effect on synthetase activity since truncated

versions of RelSau showed higher accumulation of the reaction products AMP and pppGpp

compared to the full-length enzyme. However, the CTD had only a minor impact on the

strong hydrolase activity of the purified enzymes. Interestingly, RelSau preferentially hydro-

lyzes ppGpp over pppGpp. In vivo, it was shown that RelP and RelQ mainly produce ppGpp

[35], which is toxic at high concentrations and requires efficient hydrolysis. This observation

could explain the preference of RelSau for ppGpp hydrolysis.

The Co-IP results indicate that RelSau interacts with the translation machinery and that the

TGS strongly influence this interaction. This is largely consistent with previous data obtained

for RelA [24,25,28,29,30]. Among the 10 detected interacting ribosomal proteins, L16, S13,

and S12 are homologous to E. coli proteins that have been previously identified to interact with

RelA [28,29,30]. Of note, the TGS motif also seems to hamper the putative interaction of RelSau
with other proteins of the RNA and DNA pathways. Whether such interactions are specific

and involved in the molecular function of RelSau remains to be investigated.

The in vivo analyses combined with the Co-IP results provided some clues regarding the

roles of the different motifs of the CTD of RelSau. Of the three motifs, the TGS motif showed

the strongest effect, and the ACT motif showed the weakest effect, on (p)ppGpp activation and

ribosomal interaction. Thus, the role of the ACT motif remains to be elucidated but seems to

be minor. The TGS motif is clearly required for synthetase activation, most likely interacts

with the ribosome to sense whether or not the tRNA in the A-site is aminoacetylated as shown

for RelA [28,29,30,46]. Similar to the TGS motif, the DCmotif was also found to be required

for synthetase activity and to influence interactions with ribosomal proteins. DC has also been

reported to interact with 23S rRNA ASF [28] which is critical to RelA activation in E. coli [46],

presumably through stabilizing ribosome interaction.

This finding contradicts the simple model in which the DC motif causes oligomerization

and thereby autoinhibition [31,32,33]. This would imply that DCmutation alleviates autoinhi-

bition leading to increased synthase activity. In contrast, our data showed that the DC-mutated

RelSau is held in a synthetase-OFF state. Thus, our data support a model in which the DCmotif

participates in specific activation upon ribosomal contact, and that this interaction is involved

in the intramolecular switch.

Materials andmethods

Strains and growth conditions

Strains and plasmids are listed in the table in S1 Table. For strains carrying resistance genes,

antibiotics (10 μg/ml erythromycin, 5 μg/ml tetracycline, 10 μg/ml chloramphenicol, and

100 μg/ml ampicillin) were used only in precultures. For the conditional mutant HG001-55,

IPTG (final concentration of 0.5 mM) was added only in the preculture. S. aureus strains were

grown in CYPG (10 g/l casamino acids, 10 g/l yeast extract, 5 g/l NaCl, 0.5% glucose and 0.06

M phosphoglycerate) medium [47]. Bacteria from an overnight culture were diluted to an ini-

tial optical density (OD600) of 0.05 in fresh medium and grown with shaking (220 rpm) at

37˚C to the desired growth phase. Expression of cloned proteins was induced in exponential

phase (OD600 = 0.3) with 0.1 μg/ml anhydrotetracycline (ATc) and in stringent conditions by

addition of 0.3 μg/ml mupirocin. E. coli strains were grown in an overnight preculture in LB

medium. Stringent conditions were applied by growing cells in modified M9 medium (33.7

mMNaHPO4, 22 mMKH2PO4, 8.55 mMNaCl, 9.35 mMNH4Cl, 1 mMMgSO4, 0.3 mM

CaCl2, 1 μg/ml thiamine hydrochloride, 0.4% glycerol, 1 mM serine, 1 mMmethionine and 1
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mM glycine) [48]. For growth on solid media, single colonies grown on LB agar were streaked

on M9 agar plates. For growth curve analyses, bacteria were inoculated to the desired OD600

(S. aureus initial OD600 = 0.05; E. coli initial OD600 = 0.1) in a 96-well plate, and growth was

monitored in an Infinite M200 Pro microplate reader (Tecan).

Construction of vectors for expression of full-length and truncated rel

All oligonucleotides are listed in S2 Table. ATc-inducible plasmids, derived from pCG248, were

generated with a restriction enzyme cloning strategy. Amplicons and vector were digested with

EcoRI restriction enzyme. Substitution of the hydrolase domain and the ACT, TGS and DC

mutations were achieved by overlapping PCR. For expression of the rel constructs under the

native promoter, the shuttle vector pCG443 was designed based on pJL77 [49]. pJL77 was

digested with AscI and SphI to remove the previous insert, including the promoter. The rel pro-

moter was amplified from genomic DNA, digested using the same restriction enzymes, and

ligated to generate pCG443. Full-length, truncated and mutated versions of rel were subcloned

from the pCG248 plasmids into AscI-digested pCG443 by Gibson assembly [50].

All inserts were verified by sequencing (4base lab AG advanced molecular analysis), electro-

porated into the restriction-deficient S. aureus strain RN4220, and then transduced into the

final S. aureus strains. All S. aureus strains were tested by PCR for the presence of the correct

plasmid.

For expression in E. coli, different derivatives of rel were cloned into the EcoRI site of

pBAD30 via Gibson assembly using the oligonucleotides listed in Table S2. Resulting vectors

were verified by sequencing and moved to MG1655 E. coli strains (wild type and relA/spoT

mutant) [51,52].

For protein purification, different rel derivatives were subcloned from the pCG248-based

plasmids into BamHI-digested pET15b using Gibson assembly.

Generation of S. aureusmutant strains

The markerless rel CTD-deletion mutant was obtained using the ATc-inducible suicide vector

pBASE6 [34]. Deletion was introduced by overlapping PCR with the primers listed in S2

Table, and the amplicon was cloned into BglII- and SalI-digested pBASE6 by Gibson assembly.

The resulting plasmid was verified by sequencing and electroporated into RN4220, from

which the plasmid was transduced into HG001. Mutagenesis was performed as described pre-

viously [34]. Mutation was verified by PCR.

RNA isolation and Northern blot analysis

RNA isolation and Northern blot analysis were performed as described previously [53]. Briefly,

5 ml of bacteria were collected at the desired time point (30 minutes after induction) and cen-

trifuged. The pellet was resuspended in 1 ml of TRIzol reagent (Thermo Fisher Scientific) with

0.5 ml of zirconia/silica beads (0.1-mm diameter) and lysed using a high-speed homogenizer

(Thermo Fisher Scientific). RNA was isolated following the instructions provided by the TRI-

zol manufacturer. For the detection of specific transcripts on the Northern blot, digoxigenin-

labeled probes were generated using the DIG-labeling PCR Kit as described by the manufac-

turer (Roche Life Science).

Purification of different RelSau constructs

E. coli BL21 (DE3) (New England Biolabs) cells that were freshly transformed with plasmids

carrying full-length rel constructs were grown for 16 hours at room temperature under
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constant shaking (150 rpm) in LB medium supplemented with D(+)-lactose-monohydrate

(12.5 g/l) and ampicillin (100 μg/ml). Cells were harvested (20 minutes, 3000 x g, 4˚C) and

resuspended in ice-cold high-KCl buffer A (20 mMHEPES (pH 7.4), 20 mMNaCl, 20 mM

MgCl2, 1 M KCl, 30% (v/v) glycerol, and 40 mM imidazole) supplemented with 10 μg/ml

DNAse and cOmplete protease inhibitor cocktail (Roche). Cells were lysed by a French press

at 1000 psi. The lysate was centrifuged (50,000 x g, 45 minutes, 4˚C), and the clear supernatant

was filtered (0.22-μm pore size) before being loaded onto a 1-ml HisTrap HP column (GE

Healthcare Life Sciences) equilibrated with high-KCl buffer A. Purification was performed

with an ÄKTA purification system (GE Healthcare Life Sciences), and elution was carried out

with an imidazole gradient to a final concentration of 500 mM. Fractions were analyzed by

SDS-PAGE, and the fractions containing the protein of interest were collected and concen-

trated to 5 ml with an Amicon Ultracel-50K ultracentrifugal device, with a cut-off of 50 kDa

(Merck Millipore). Protein was further purified by size-exclusion chromatography (HiLoad

16/600 Superdex 200 pg, GE Healthcare Life Sciences). The size-exclusion column was previ-

ously equilibrated with ice-cold high-KCl SEC buffer (20 mMHEPES (pH 7.0), 20 mMNaCl,

20 mMMgCl2, 1 M KCl, and 30% (v/v) glycerol). Protein-containing fractions were pooled,

concentrated by ultra-filtration with a 50-kDa cut-off, aliquoted and stored at -80˚C. For puri-

fication of CTD-truncated constructs, the same procedure was followed using different buffers:

low-KCl buffer A (20 mMHEPES (pH 7.4), 200 mMNaCl, 20 mMMgCl2, 20 mM KCl, 30%

(v/v) glycerol, and 40 mM imidazole) for affinity purification and low-KCl SEC buffer (20 mM

HEPES (pH 7.0), 200 mMNaCl, 20 mMMgCl2, 20 mM KCl, and 30% (v/v) glycerol) for size

exclusion. For concentration of truncated RelSau, Amicon Ultracel-30K (Merck Millipore) was

used.

In vitro assay for enzymatic activity and HPLC-MS analysis

Synthetase assays were performed in reaction buffer (20 mMHEPES (pH 7.0), 200 mMNaCl,

20 mMMgCl2, and 20 mM KCl) with 1 mM ATP, 1 mMGTP and 2 μM purified enzyme.

Hydrolase assays were performed in the same reaction buffer with 1 mM ppGpp or 1 mM

pppGpp (both from Jena Biosciences) and 0.1 μM purified enzyme. Assays were performed at

37˚C; aliquots were taken at the indicated times; and the enzyme reactions were stopped by

addition of an equal volume of chloroform. The mixtures were briefly vortexed and centri-

fuged (3 minutes, 11,000 × g). The aqueous phase containing the nucleotides was collected and

stored at -20˚C prior to analysis. Nucleotide analysis was performed using an ESI-TOF mass

spectrometer (micrO-TOF II, Bruker) operated in negative-ion mode and connected to an

UltiMate 3000 high-performance liquid chromatography (HPLC) system (Dionex). 5 μl of

each sample at 10˚C was injected onto the SeQuant ZIC-pHILIC column (Merck, PEEK

150 × 2.1 mm, 5 μm), and the system was run at 30˚C as previously described [43]. The follow-

ing 40-minute gradient program was used at a flow rate of 0.2 ml/min: 5 minutes of 82% buffer

A (CH3CN) and 18% buffer B (100 mM (NH4)2CO3, pH 9.2); 25 minutes of a linear gradient

to 42% buffer A; and finally, 10 minutes of 82% buffer A. The DataAnalysis program (Bruker)

was used to present the nucleotide masses as extracted-ion chromatograms, and the peak areas

were calculated and quantified with Prism 5 (GraphPad). Dilution series of commercially

available nucleotides ppGpp (m/z, 601.95), pppGpp (m/z, 681.92) and AMP (m/z, 346.06)

were used for calibration to quantify the amounts of nucleotides in the reactions.

Co-IP of RelSauwith native S. aureus proteins

To generate RelSau-specific antibodies, 0.5 mg of purified full-length protein was sent to Davids

Biotechnologie GmbH to generate antiserum and affinity-purified IgG. The specificity of the
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IgG was verified byWestern blot analysis (Blot in S1 Fig). For Co-IP, bacteria were grown in

100 ml of CYPG medium to an OD600 of 1 and centrifuged (5,000 μ g, 5 minutes). The pellet

was washed 2 times with PBS and resuspended in 500 μl of cold Co-IP buffer (20 mMHEPES

(pH 7.0), 200 mMNaCl, 20 mMMgCl, 20 mMKCl, 0.5 mMDTT, 0.2% (v/v) Tween 20 and

cOmplete protease inhibitor cocktail). The resuspended pellet was lysed with 0.5 ml of zirco-

nia-silica beads (0.1 mm diameter) using a high-speed homogenizer (two times, 6,500 rpm, 20

s). Lysed cells were centrifuged for 1 hour at 14,000 x g at 4˚C, and the supernatant was ali-

quoted (100 μl) and frozen at -80˚C. Co-IP was performed with Dynabeads (Thermo Fisher

Scientific) following the manufacturer’s instructions with some minor modifications. Briefly,

50 μl of Dynabeads slurry was used for each sample. The storage solution was removed, and

the beads were incubated with 30 μg of Anti-RelSau IgG resuspended in PBS (pH 7.4) with

0.02% Tween 20 for 30 minutes at room temperature under constant rotation. Coated beads

were pelleted using a magnetic rack; the supernatant was removed; and 100 μl of the cell lysates

were added and incubated for 30 minutes at room temperature under constant rotation. After

incubation, the beads were gently washed 3 times with Co-IP buffer using a magnetic rack.

Washing solution was removed, and the beads were resuspended in SDS sample buffer, boiled

at 95˚C for 5 minutes, and run approximately 1 cm into an SDS-PAGE gel. The gel slice was

subsequently analyzed by mass spectrometry.

Quantitative label-free proteomics

Three biological replicates of (p)ppGpp0 complemented with WT and mutant RelSau were ana-

lyzed. Gel slices were digested as described previously [54]. Peptide mixtures were then sepa-

rated on an EasyLC nano-HPLC (Proxeon Biosystems) coupled to an LTQ Orbitrap Elite mass

spectrometer (Thermo Fisher Scientific) as described elsewhere [55] with the following modi-

fications: peptides were eluted with an 87-min segmented gradient of 5–33–90% HPLC solvent

B (80% acetonitrile in 0.5% acetic acid). Each sample was run in triplicate. The acquired MS

spectra were processed with the MaxQuant software package, version 1.5.2.8 [56] with the inte-

grated Andromeda search engine [57] as described previously [55]. Database searches were

performed against a target-decoy S. aureus all-strains database obtained from UniProt, con-

taining 126,225 protein entries and 248 commonly observed contaminants. The label-free

algorithm was enabled, as was the “match between runs” option [58]. Label-free quantification

(LFQ) protein intensities from the MaxQuant data output were used for relative protein quan-

tification. Downstream bioinformatic analysis (ANOVA and two-sample t-tests) was per-

formed using the Perseus software package, version 1.5.0.15. P< 0.05 was considered to be

statistically significant. For the heatmap, among the 4 different proteins, those that showed sig-

nificant differences according to ANOVA were selected (Data in S1 Dataset). For these

selected candidates, the t-test differences, indicating changes in the amount, were calculated

between the protein immunoprecipitated with WT or mutant RelSau and plotted on the

heatmap.

Statistical analysis

The results for the growth and in vitro analyses represent the mean ± SD of at least three bio-

logical replicates. Significance was calculated using Prism 5 by one-way ANOVA with Bonfer-

roni correction.

Supporting information

S1 Fig. Immunoblot showing the expression level of the different RelSau constructs. S.

aureus (p)ppGpp0 complemented with RelSau, wild type and different domain mutants, under
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the native promoter. Strains were grown in rich medium to OD600 = 1 and then harvested. For

Worthern analysis, lysate was obtained and the different RelSau constructs were detected with

anti-Rel specific antibody.

(TIF)

S1 Table. Strains and plasmids.

(DOCX)

S2 Table. Oligonucleotides.

(DOCX)

S1 Dataset. Comparison of Co-immune-precipitation results using RelSau and TGS, ACT

and DCmutated RelSau as bait.

(XLSX)

S1 Protocol. Protocol for Rel-specific Western blot.
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8 Additional research 

8.1 RelQ-mediated (pp)pGpp synthesis increased expression of genes involved 

in cell wall biosynthesis and vancomycin tolerance 

To compare the global effect of (pp)pGpp, transcriptional induced RSH-Syn and RelQ 

were compared applying RNA-Seq. The transcriptome analysis revealed more genes 

were affected by RSH-Syn than by RelQ. Nevertheless, 61 genes were significantly 

affected by RelQ but not by RSH (table 2). Analyzing these genes more in detail 

showed increased expression of amino acids involved in cell wall biosynthesis (dapD, 

dapL, alr2, lysA) (Kullik, Jenni, & Berger-Bachi, 1998).  The glycopeptide antibiotic 

vancomycin targets the di-peptide D-ala-lipid II (Nagarajan, 1991). I hypothesized 

RelQ-mediated increased expression of dapD, dapL and alr2 results in additional cell 

wall stabilization and tolerance to vancomycin. Therefore, wild type and a ΔrelPQ 

mutant were grown in CDM until an OD600=0.3 and challenged with 6µg/ml vancomycin 

and growth was monitored over time. After 14 hours strains slowly started to grow, 

indicating either consumed vancomycin or stabilization of the cell wall. Second 

supplementation of vancomycin did not inhibit growth in the wild type strain and 

resulted in vancomycin tolerance while in contrast the ΔrelPQ mutant grew very slow 

and was less tolerant (Fig.8). These results clearly indicate, that RelQ and maybe RelP 

lead to increased tolerance to vancomycin by stabilizing or repairing the cell wall 

through targeted induction of genes involved in cell wall biosynthesis. 

 

 

Fig.8: RelP/Q mediate tolerance to 
vancomycin. Strains were grown in CDM until 
an OD600=0.3 and challenged (1.) with 6µg/ml 
vancomycin. Second addition of 6µg/ml 
vancomycin occurred after initiated growth (2.). 
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Table 2: Significant up- or down-regulation of RelQ-mediated genes  
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9 Discussion 

Parts of the discussion section have been published in 

Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a 
bifunctional RelA/SpoT homologue from Staphylococcus aureus.  
Gratani FL, Horvatek P, Geiger T, Borisova M, Mayer C, Grin I, Wagner S, 
Steinchen W, Bange G, Velic A, Maček B, Wolz C, PLOS Genetics 2018 July 9, 
14(7): e1007514.https://doi.org/10.1371/journal.pgen.1007514 
 
and can overlap with parts of the discussion from “Increasing the cellular (pp)pGpp 
level is associated with activation of stress response genes in Staphylococcus 
aureus”. Horvatek P, Hanna AMF, Gratani FL, Keinhörster D, Korn N, Mayer-
Borisova M, Mayer C, Rejman D, Mäder U, Wolz C.  

 
 
The stringent response is characterized by the synthesis of the three different 

alarmones pGpp, ppGpp and pppGpp, collectively called (pp)pGpp.  These alarmones 

are synthesized by different RSH and SAS enzymes (RelA, SpoT, RSH, RelP, RelQ 

and RelV).  However, irrespective of different activation, (pp)pGpp synthesis results in 

distinct physiological changes such as slow growth, inhibition of replication and 

transcriptional change. S. aureus possess three enzymes responsible for (pp)pGpp 

synthesis: RSH, RelP and RelQ.  In this work we gained more insights in the 

reprogramming of the transcriptome and the interaction of the stringent response with 

other stress responses. Furthermore we elucidated the role of the C-terminus and its 

influence on the hydrolase and synthetase domain and the necessity for sensing amino 

acid starvation.   

9.1 (pp)pGpp reprograms the transcriptome  

To analyze the transcriptional consequences of (pp)pGpp synthesis I used a genetic  

approaches to induce RSH, RelP and RelQ. I was able to show a functional synthesis 

of (pp)pGpp by RSH, RelP and RelQ under these conditions. (pp)pGpp synthesis 

showed a profound reprogramming of the transcriptome. Nevertheless, the effects 

were more striking for RSH than for RelQ. In the following chapter I will discuss the 

consequences of RSH- and RelQ-mediated (pp)pGpp synthesis.  
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9.2 RSH-mediated (pp)pGpp synthesis effects a variety of gene categories 

In general genes for metabolism and transcription, translation, replication and general 

metabolic pathways were severely down regulated.  Beside inhibition of metabolic 

genes, many CodY-regulated genes increased. These results are in line with Geiger 

et.al (Geiger et al., 2012). I mainly focused on genes which showed a significant up-

regulation in their transcriptional behavior independent of CodY. These were mainly 

genes involved in oxidative stress, iron storage and virulence. 

9.3 (pp)pGpp-mediated induction of psms increases ROS 

One of the most prominent effects was the (pp)pGpp-mediated up-regulation of psmα 

and psmβ. This effect has been observed by former microarray analyses by Geiger 

et.al (Geiger et al., 2012). PSM are amphipathic, alpha-helical peptides which integrate 

into the membrane and form pores independent of a receptor. PSMs are active against 

many different eukaryotic cells with special cytotoxicity to polymorph nuclear 

neutrophils (PMNs) (Cheung et al., 2014; Otto, 2014). Neutrophils are recruited and 

lysed by PMNs, which partially explains high virulence of community acquired MRSA 

strains. Interestingly, expression of psm did not correlate to the activation of Agr, which 

positively regulates psm expression (Queck et al., 2008). Agr expression was opposing 

under (pp)pGpp inducing conditions. This is in line with the analysis of (pp)pGpp 

overproducing clinical isolates which showed (pp)pGpp-dependent agr inhibition (W. 

Gao et al., 2010).  

Another prominent effect was the (pp)pGpp-mediated up-regulation of genes for 

oxidative stress (dps), iron storage (ftnA) and virulence (psm).  We questioned, 

whether the expression of dps/ftnA is a consequence of increased (pp)pGpp-mediated 

psm expression, since PSM contribute to increased ROS (George et al., 2019). We 

compared gene expression by applying Northern blot analyses under aerobic and 

anaerobic conditions to distinguish, whether expression of psm, ftnA and dps is 

mediated by exogenous ROS or (pp)pGpp. If increased expression of ftnA and dps 

was ROS-dependent, no increased expression would have been observed under 

anaerobic conditions. Indeed, expression of psm, ftnA and dps is (pp)pGpp-dependent 

and not a consequence of exogenous ROS formation since increased expression was 

independent of the availability of oxygen.  
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Next, ROS was measured in different psm and (pp)pGpp0 mutants to elucidate whether 

expression of oxidative stress genes is due to (pp)pGpp-mediated PSM expression 

and consequently ROS formation. ROS measurement indicated a decreased ROS 

level in the psm and (pp)pGpp0 mutant. These results demonstrate PSM-mediated 

ROS formation. This is in line with current studies from George et al, who showed 

enhanced psm expression leads to increased ROS (George et al., 2019).   

Neutrophils are the first immune cells which migrate to the source of infection to 

eradicate S. aureus. They phagocytize S. aureus and keep them trapped in the 

phagosome. The availability of nutrients within neutrophils is not clear. We hypothesize 

that stringent response is activated after phagocytosis due to amino acid starvation 

within the phagosome. (pp)pGpp activates PSMs to escape from the phagosome and 

protects itself from ROS by simultaneously expressing oxidative stress genes (Fig.9). 

It has been already shown, (pp)pGpp leads to increased psm expression and is 

necessary for survival after phagocytosis (Geiger et al., 2012). Our results clearly 

indicate activation of PSMs and oxidative stress genes are consequences of (pp)pGpp 

synthesis. A correlation of (pp)pGpp dependent psmα expression was shown by 

Mansour et.al. They approved down- regulation of psmα is a consequence of inhibition 

of (pp)pGpp synthesis by the cationic compound DJK-5 (Mansour et al., 2016).  

 

 

Fig.9 (pp)pGpp-mediated psm 
expression consequently increases 
ROS. This model proposes stringent 
response is activated as a 
consequence of amino acid starvation 
within the phagosome. (pp)pGpp 
synthesis results in increased psm 
expression increasing intracellular 
ROS level. Simultaneously, genes for 
oxidative stress and iron storage are 
stronger expressed to sequester cell 
damaging ROS. 
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9.4  (pp)pGpp influences gene expression of oxidative stress and iron storage 

independent of CodY, PerR, Fur and SarA 

RNA-Seq data revealed up-regulation of ftnA (198 fold), dps (48 fold), sodA (19 fold), 

ahpC (5 fold) and perR (18 fold). All genes are regulated by PerR, in addition ftnA is 

regulated by Fur. Similar observations have been made in mupirocin treated S. aureus 

strain. Mupirocin inhibits the isoleucyl-tRNA synthetase and prevents loading of the 

tRNA with isoleucine thereby mimicking amino acid starvation. Proteins belonging to 

the oxidative stress response (FtnA, AhpC, DPS and KatA) increased after mupirocin 

treatment (Reiss et al., 2012). Increase of SODs in a (pp)pGpp-dependent manner has 

been reported in antibiotic treated P. aeruginosa. SODs were decreased in a 

(pp)pGpp0 mutant, indicating (pp)pGpp is necessary to encounter oxidative stress, 

induced by antibiotic-formed OH radicals (Kohanski et al., 2007). Iron-overload genes 

ftnA and dps were highly expressed after transcriptional induction of RSH-Syn. Iron 

and ROS lead to the Fenton reaction which in turn results in severe protein and DNA 

damage. To avoid the Fenton reaction, ftnA and dps can capture free iron and protect 

cells from lethal damage. In Vibrio cholarea overexpression of (pp)pGpp repressed the 

Fe(III) ABC transporter substrate binding protein FbpA. Consequently, free intracellular 

iron decreases, leading to a reduced interaction of antibiotic-induced ROS thereby 

avoiding a formation of the Fenton reaction (H. Y. Kim et al., 2018).  

We performed Northern Blot analyses expressing RSH-Syn in different CodY, PerR, 

Fur and SarA negative backgrounds to exclude upregulation is mediated by these 

regulators. As read-out genes we used the most abundant genes ftnA and dps. First, 

we were able to show the transcriptional changes observed are an effect of (pp)pGpp 

and not due to CodY de-repression, although we observed up-regulation of ftnA and 

dps was less in the codY/(pp)pGpp0 mutant. Recently, a correlation between (pp)pGpp 

and iron homeostasis have been observed in Enterococcus faecalis (Colomer-Winter 

et al., 2017). Using a chemical defined medium, lacking either iron (Fe) or manganese 

(Mn), resulted in accumulation of (pp)pGpp. A (pp)pGpp0 mutant does not grow 

properly in serum lacking Fe and Mn. Growth was restored to the wild type level by 

supplementing serum with either Fe or Mn. To distinguish between a direct effect of 

(pp)pGpp or an indirect due to de-repression of CodY, a (p)ppGpp0 codY mutant was 

included.  
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The (p)ppGpp0 codY mutant could restore growth in Mn-depleted medium but not Fe. 

This observations indicates, CodY is involved in the regulation of Mn and (pp)pGpp 

most likely in the regulation of Fe. (Colomer-Winter et al., 2017).  

Transcriptional analysis revealed, that genes for iron-overload and oxidative stress 

were strongly activated by (pp)pGpp. This effect is likely independent of PerR, Fur or 

SarA and has not been reported before. Since oxidative stress genes are induced by 

ROS, we speculated, whether gene expression differs under anaerobic conditions. 

However, no difference in expression pattern was observed and (pp)pGpp led to 

activation of oxidative stress genes independent of ROS. To understand the 

physiological aspects of the activation of oxidative stress genes, we challenged the 

WT and a (pp)pGpp0 mutant with different H2O2 concentrations. The (pp)pGpp0 mutant 

was killed in a dose dependent manner whereas the WT was able to survive higher 

H2O2 concentrations. A similar protection of H2O2 by (pp)pGpp has been demonstrated 

in P. aeruginosa, showing better survival of the wild type compared to a (pp)pGpp0 

stain (Khakimova, Ahlgren, Harrison, English, & Nguyen, 2013). Furthermore, 

challenging the wild type with hydrogen peroxide resulted in (pp)pGpp synthesis in S. 

mutans. (Seaton, Ahn, Sagstetter, & Burne, 2011). These results indicate a global 

protective mechanism by (pp)pGpp in response to H2O2. Next, we wanted to elucidate, 

whether RSH, RelP or RelQ contribute to H2O2 protection. Growth analyses revealed, 

that the ΔrelP/Q mutant was less resistant compared to the rshsyn mutant. However, 

some of the ΔrelP/Q mutants were still able to regrow, indicating presumably being 

rescued by RSH or activation of catalase by PerR (Fig.7). These results indicate RelP 

or/and RelQ are mainly, but not exclusively, responsible for H2O2 protection. This is 

supported by Kim et al, who demonstrated (pp)pGpp synthesis by RelP after H2O2 

treatment in S. mutans (J. N. Kim, Ahn, Seaton, Garrett, & Burne, 2012). 

Our RNA-seq data showed a 4-fold increased expression of katA after transcriptional 

induction of RSH-Syn. Since catalase is regulated by PerR, one might assume an 

activation of katA by PerR, if rapid adaption by (pp)pGpp is not possible.  Similarly this 

was shown for H2O2 resistance in P. aeruginosa. A (pp)pGpp0 strain was more killed 

by H2O2 than the WT, exhibited extremely reduced catalase activity and increased 

ROS production. (Khakimova et al., 2013).  

Northern blot analyses need to be performed, to confirm whether H2O2 protection 

occurs via (pp)pGpp-dependent and PerR independent katA expression and 
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decreased ROS. Therefore, expression pattern of katA and perR after transcriptional 

induction of RSH-Syn in a (pp)pGpp0 mutant has to be analyzed. Increased katA and 

decreased perR expression would indicate a PerR-independent and (pp)pGpp-

dependent expression of katA. Beside KatA, PerR autoregulates (Horsburgh, 

Clements, et al., 2001) its own transcription. An increased perR expression after 

(pp)pGpp synthesis would indicate a de-repression of PerR. This in turn would 

implicate, increased katA expression is indirectly regulated by (pp)pGpp due to de-

repression of PerR.  

Taken together, these results suggest a global protection mechanism of (pp)pGpp to 

ROS in S. aureus and other bacterial species. 

9.5 (pp)pGpp induces psm expression independent of the major regulators 

CodY, PerR, Fur and SarA 

Another prominent effect was the increased expression of psms α (up to 48-fold) and 

β (up to 25-fold) and down-regulation of agrA,C and D (up to 6-fold). Agr-independent 

psm expression has been already observed by Geiger et al, who showed induction of 

the stringent response induced by amino acid starvation, increases psmα and β 

expression (Geiger et al., 2012). We investigated the role of psm and agr expression 

after transcriptional induction of RSH-Syn in different codY, perR, fur and sarA 

mutants. Northern blot analyses revealed (pp)pGpp-dependent up-regulation of psm 

and down-regulation of agr is independent of CodY, PerR and Fur. Only in the sarA 

mutant psm expression was abolished, which was partially rescued by RSH-Syn 

induction. It has been already published that SarA positively regulates Agr (Heinrichs 

et al., 1996). Considered under this aspect, down-regulation of psms in the sarA mutant 

was not surprising, since Agr positively regulates psm expression (Queck et al., 2008).  

So far, not many alternative regulation pathways of PSMs have been reported. More 

precisely only one alternative regulator has been identified: MgrA. Jiang et al showed 

MgrA binds to the PSM promoter to inhibit PSM expression (Jiang et al., 2018). 

Whether (pp)pGpp leads to increased PSM expression via the de-repression of MgrA 

remains to be analyzed by Northern Blot analysis in different mgrA mutants expressing 

RSH-Syn. Presumable regulation mechanisms of (pp)pGpp-mediated psm and 

oxidative stress/ iron storage genes, will be discussed in the following chapters. 
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9.6 Regulatory mechanisms of (pp)pGpp on transcription of oxidative stress/ 

iron storage genes and psm/agr  

Two possible regulatory mechanisms can be considered for (pp)pGpp dependent 

alteration of genes such as ftnA, dps and psm. (pp)pGpp could influence gene 

expression by indirectly affecting transcription depended on their initiation nucleotide, 

or by directly leading to a riboswitch.  

9.6.1 (pp)pGpp may indirectly activates/inhibits transcription depending on 

the initiation nucleotide on position +1 

Our results clearly indicate a link between the stringent response and the activation of 

the virulence gene psm and oxidative stress and iron overload genes dps and ftnA. 

Nucleotide measurement in vitro and in vivo resulted in increased ATP and decreased 

GTP level. We therefore speculated, whether activation or inhibition of genes is 

dependent on the initiation nucleotide on position +1 and if this correlates with the 

increase of ATP or decrease of GTP. The promoter regions were identified by Mäder 

et al (Mader et al., 2016) and transcription starts sites from available unpublished RNA-

Seq data.  Our predications suggest an A as an initiation nucleotide for ftnA, dps, ahpC, 

katA and psmβ1/2 and a G for agrA/C/D.  Promoter and initiation nucleotide for psmα1-

4 were hard to identify, nevertheless we also suggest an A on position +1 (Fig.10).  

Indeed, the increased or decreased gene expression correlates with the level of 

intracellular ATP or GTP, except for sodA. This is in line with Krasny et al who 

postulated a gene expression mechanism dependent on the initiation nucleotide on 

position +1.  Higher intracellular ATP level leads to the transcription of genes, which 

initiation nucleotide starts with an A at position +1. Vice versa this is true for genes 

starting with a G as an initiation nucleotide  and increased intracellular GTP 

concentration in Bacillus subtilis (Krasny et al., 2008) and Staphylococcus aureus 

(Kastle et al., 2015). Nevertheless, this assumption needs to be clarified by further 

experiments. The transcriptional pattern of indicated genes needs to be analyzed upon 

increasing concentration of ATP or GTP.  

If the initiation nucleotide is the reason for activation or inhibition, increasing the 

GTP/ATP ratio would lead to enhanced expression of the particular genes. 

Furthermore amino acid substitution changing the A to a G would show decreased or 

no difference in expression after (pp)pGpp synthesis.  
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Fig.10 Predicted initiation nucleotides of oxidative stress, iron overload and virulence 
genes. The -35 region is indicated in green, the -10 in blue and the initiation nucleotide at 
position on in red.  Promoter were identified and adapted by (Mader et al., 2016) and initiation 
nucleotide predicted from unpublished RNA-Seq data.  

 

9.6.2 (pp)ppGpp might regulate gene expression by riboswitch 

Recently, a (pp)pGpp-dependent riboswitch was shown in vitro. Sherlock et al showed 

that ykkC Motif RNA bind ppGpp at the anti-terminator stem and transcription of 

corresponding gene is increased (Sherlock, Sudarsan, & Breaker, 2018). There is 

evidence of a potential riboswitch for psmα by (pp)pGpp. The predicted sequence is 

based on their analyses and indeed preliminary data show similar riboswitch sequence 

for psmα (ACGGAAGGAGUAUAAUAAAAUGCUUAAUCAAUAUACUGAACAU-

CAACCGACAACUUCAAAUAUUAUUAUUUUAUUAUACUCUUUAGGACUCGAAC-

GUUAGUAAAUAUUUACUAAACGCUUUAAGUCCTATTTCTGTTTGAAUGGGACU-

UGUAAACGUCCCAAUAAUAUUGGGACG) with one exception. The cytosine C71 

between P2 and the antiterminator stem is missing. (Sherlock et al., 2018). Riboswitch 

mechanism is unlikely for ftnA, dps, ahpC and sodA, since a similar sequence is 

missing. This may explain an independent activation of psmα by (pp)pGpp. Here we 

suggest a novel regulatory mechanism of PSMα by (pp)pGpp. Further in vivo and in 

vitro experiments have to be performed proving PSMs are directly regulated by 

(pp)pGpp via riboswitch. 

In conclusion, presumably ftnA, dps, ahpC, kata, psmβ1/2 and the Agr system are 

indirectly regulated by (pp)pGpp through the shift of the nucleotide pool leading to their 

activation or inhibition depending on the initiation nucleotide +1.  In contrast, PSMα are 
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likely regulated in a direct manner trough riboswitch mechanism by (pp)pGpp binding 

to the antiterminator stem allowing psmα transcription independent of Agr.  

9.7 RelQ is less active than RelP in vivo  

Nucleotide measurements and Northern blot analysis after transcriptional induction of 

RelQ revealed RelQ is much less active compared to RelP in vivo. Recently 

biochemical structure analyses showed RelQ from B. subtilis (RelQBsu)  and E. faecalis  

(RelQEfa) forms homotetramers (Beljantseva et al., 2017; Steinchen et al., 2015) and 

is inhibited by a single stranded mRNA in Enterococcus faecalis (Beljantseva et al., 

2017). This RelQ:RNA complex dissociates by interacting with pppGpp and to a lesser 

extend ppGpp leading to an activation of RelQ (Beljantseva et al., 2017).We presume 

low activity of RelQ derives from the mRNA:RelQ complex. Overexpressed RelQ is 

mainly trapped in the RelQ:RNA complex. Since RelQ was overexpressed in a 

(pp)pGpp0 background no pppGpp is available for dissolving this complex and RelQ is 

mainly kept in an inactive state. The weak detectable basal ppGpp signal probably 

derived from some RelQ homotetramers, which are not inhibited by mRNA and can 

bind GDP and ATP to synthesize ppGpp. This is in line with Steinchen et al. who 

showed RelQBsu forms homotetramers and synthesizes ppGpp from GDP and ATP in 

vitro (Steinchen et al., 2015; Steinchen et al., 2018). However, this may explain a 

strong activity of RelQ in vitro because inhibiting mRNA is not present in the activity 

assay.  

9.8 RelQ induces genes for cell wall synthesis  

Although transcriptional changes were not as drastic in RelQ as for RSH-Syn, there 

were still some genes which appeared to be specifically regulated by RelQ (Table 2). 

Interestingly, genes for lysine and alanine synthesis (dapD, dapL, lysA) and alr2 

(alanine recemase) (Kullik et al., 1998) are up-regulated. L-lysine and D-alanine are 

part of the peptidoglycan (PG) and wall teichoic acid (WTA) (Rajagopal & Walker, 

2017). The glycopeptide antibiotic vancomycin targets the di-peptide D-ala-lipid II 

complex thereby inhibiting PG synthesis (McGuinness, Malachowa, & DeLeo, 2017; 

Nagarajan, 1991). Ampicillin inhibits the transpeptidase and blocks the connection of 

the penta-glycine peptide bridge between L-lysine and D-alanine leading to an 

unstable PG.   It has been already shown, that RelQ and RelP are transcriptional 

activated upon cell wall stress by the VraR/S system, which is induced by vancomycin 

and ampicillin (Geiger et al., 2014).   
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It is likely, that after vancomycin or ampicillin treatment S. aureus needs a rapid way 

to encounter antibiotic damage. The stringent response is a mechanism known for a 

rapid change of metabolism in general. The VraR/S system activates RelQ leading to 

(pp)pGpp synthesis and presumably activation of these genes, to ensure a quick 

fixation of  broken stem peptide, missing trans-peptidation and to thicken the cell wall. 

It has been reported, a ΔvraRS mutant showed a thinner cell wall compared to the wild 

type (C. Gao et al., 2019). To investigate this hypothesis, I compared a wild type strain 

with a ΔrelPQ mutant challenged with vancomycin. Strain were challenged secondly 

with vancomycin after indicated regrowth. The wild type showed immediate growth, 

indicating stabilization of the cell wall succeeded, leading to vancomycin tolerance. In 

contrast, second addition of vancomycin resulted in slow growth and no tolerance in 

the ΔrelPQ mutant. These results consolidate the hypothesis, that cell wall stress 

activates VraS/R followed by transcriptional activation of RelP/Q  (Geiger et al., 2014). 

This in turn activates genes (dapD, dapL, lysA, alr2) to repair, thicken and/ or prepare 

the cell wall for future damage by antibiotics. Nevertheless, further experiments have 

to be performed, to confirm the hypothesis. Recently, Matsuo et al showed cell wall 

stress activates RelQ which in turns lead to increased expression of ehoM and to 

vancomycin tolerance (M. Matsuo, N. Yamamoto, et al., 2019). Growth and Northern 

blot analyses with combinations of dapD, dapL, lysA or alr2 mutants challenged with 

vancomycin will elucidate whether RelP/Q contribute to tolerance via activation of 

dapD, dapL, lysA, alr2 followed by ehoM activation or vice versa.  

9.9 Synthesis of the new alarmone pGpp 

Here I detected the unusual alarmone pGpp using HPLC which could successfully 

discriminate between GTP and pGpp based on slight differences in retention time. 

pGpp was detected in vitro using purified RelQ and mixture of ATP, GMP, GDP and 

GTP in equal molar ratio as a substrate. Purified RelP was equally active in 

synthesizing ppGpp and pppGpp but detection of pGpp failed.  This is in line with Gaca 

et al. and Ruwe et al, who both detected pGpp synthesis by SAS, presumably RelQ, 

in vitro in Enterococcus faecalis (Gaca, Kudrin, et al., 2015) and Corynebacterium 

glutamicum (Ruwe et al., 2017) . In contrast, in vivo pGpp was detectable only after 

transcriptional induction of RSH-Syn or by inducing stringent response in the wild type 

by mupirocin. Not detected pGpp after RelQ induction in vivo was presumably due to 

RelQ’s inactivity under our conditions. Thus, RSH but also presumably RelQ 
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significantly synthesize pGpp under yet unknown conditions. The function of pGpp 

within the stringent response is largely unknown. Of note, there are some older reports 

of the accumulation of pGpp in E. coli  (Pao & Dyess, 1981; Pao & Gallant, 1979), B. 

subtilis (Nishino, Gallant, Shalit, Palmer, & Wehr, 1979) and S. aureus (Crosse et al., 

2000). Due to technical limitations in separation of GTP, pGpp or ppGp, detection of 

ppGp cannot be excluded. To clearly separate pGpp from ppGp by comparing the 

retention time of purified GTP, pGpp and ppGp by HPLC or treating purified nucleotides 

by alkaline hydrolysis. pGpp is sensitive to alkaline hydrolysis whereas ppGp is not 

(Pao & Gallant, 1979), Nevertheless, considerably a mixture of both nucleotides is 

possible, too (Nishino et al., 1979). 

Previous studies show ppGp inhibits IMP dehydrogenase, adenylosuccinate 

synthetase and phosphoenolpyruvate carboxylase in E. coli (Pao 1981). Not much is 

known about the function of pGpp. In E.faecalis pGpp inhibits GTPases GMK1 and 2 

and in E. coli to a lesser extend rrnB1 P1 promoter (Gaca, Kudrin, et al., 2015). The 

role of pGpp or ppGp in S. aureus remains still unknown and has to be analyzed more 

in detail.  Nevertheless, we demonstrated pGpp synthesis by RSH in vivo for the first 

time.   

9.10 RSH mainly functions as a (pp)pGpp hydrolase 

RSHSau shares a similar structure to other RSH enzymes. It can be separated in two 

major domains. The N-terminus bears a functional hydrolase and synthetase domain, 

while the C-terminus consists of three conserved motifs (TGS, ACT and the DC 

domain). Many studies were performed elucidating the function of the N-terminal 

domain (Hogg et al., 2004; Mechold, Cashel, Steiner, Gentry, & Malke, 1996; Mechold 

et al., 2002).  

These studies do not explain the molecular switch between the two enzymatic activities 

and role of the C-terminus. Previous studies demonstrated the essentiality of the 

hydrolase domain in S. aureus in vivo under relaxed conditions (Geiger et al., 2014). 

A conditional RSH hydrolase mutant (rshcond) is not able to  grow due to constitutive 

(pp)pGpp synthesis by RelQ and RelP (Geiger et al., 2014).  

Complementation of rshcond with full-length or truncated RSH restored growth inhibition 

due to a functional hydrolase, indicating the C-terminus is not essential for hydrolase 

activity.  Incubation of (pp)pGpp with of full-length or truncated RSH in vitro resulted in 

complete (pp)pGpp degradation, indicating a minor role of the C-terminus on hydrolase 
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activity in vitro. This is in line with the results obtained in vivo and demonstrate a strong 

hydrolase and weak synthetase activity under relaxed conditions.  

This is in contrast to recent studies in Rhodobacter capsulatus, which showed ACT, 

which is part of the C-terminus, has an influence on hydrolase activity in vitro and in 

vivo. Mutations in the ACT domain lead to enhanced synthetase activity (Fang & Bauer, 

2018). However, the C-terminus and especially the ACT domain do unlikely influence 

hydrolase activity in S. aureus. We have not observed a stronger synthetase activity in 

RSH C-terminus deletion and ACT mutants, which would have indicated an influence 

on hydrolase activity. 

 

9.11  (pp)pGpp synthesis is dependent on the C-terminus in S. aureus 

In S. aureus RSH combines two enzymatic functions, which can be found in RelA and 

SpoT from Proteobacteria such as E. coli. (pp)pGpp by RSHSau is essential to trigger 

changes in cellular process to overcome amino acid starvation by sensing uncharged 

tRNA at the ribosome, as it has been shown for RelA in E. coli (Haseltine & Block, 

1973; Wendrich et al., 2002). On the other hand RSH shows strong hydrolase activity, 

similar to SpoT. This essential to avoid toxic (pp)pGpp accumulation by RelP and RelQ 

in S. aureus. Therefore, a tight regulation between the two enzymatic activities is 

necessary in order to ensure an appropriate level of (pp)pGpp. Previous studies 

regarding enzymatic activity of different RSH enzyme were performed by expressing 

RSH in E. coli and indicated a strong synthetase activity of RSH enzymes without a C-

terminus (Bag, Das, Dasgupta, & Bhadra, 2014; He et al., 2013; Mechold et al., 2002). 

We expressed different RSH in an E. coli relA/spoT mutant and growth was monitored 

in/on minimal medium/agar plates.  

In line with previous results, RSH w/wo the C-terminus could complement the 

relA/spoT mutant, indicating (pp)pGpp synthesis.  

However, these results were in contrast to our results performed with the same 

constructs in the native background of S. aureus. RSH lacking the C-terminus is kept 

in a hydrolase-ON/synthetase-OFF conformation and synthetase activity could be only 

monitored by mutating the hydrolase domain. These results show two different 

enzymatic activities using the exact same RSH enzyme. It would be interesting, 

whether this discrepancy between E. coli and the native background appears in other 

bacteria, too. This discrepancy likely derives from unknown interaction partners with 

the N-terminus in E. coli. So far, our results indicate a minor role of the C-terminus on 
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hydrolase activity under relaxed condition. Since RSHSau synthesizes (pp)pGpp as a 

reaction to amino acid starvation, we compared growth behavior and transcription of 

stringent response associated genes of the full-length and truncated RSH by mimicking 

stringent condition with mupirocin. RSH without C-terminus was not able to react to 

amino acid starvation, indicating no (pp)pGpp synthesis. This was further supported 

by nucleotide measurement of full-length and truncated RSH in vitro. (pp)pGpp 

synthesis was not detectable in RSH without the C-terminus.  Conclusively, the C-

terminus is indispensable for the molecular switch from hydrolase-ON/synthetase-OFF 

to hydrolase-OFF/synthetase-ON under stringent conditions. 

 

9.11.1  (pp)pGpp synthesis is dependent on TGS and DC, but not ACT 

However, we further wanted to elucidate which domain of the C-terminus is essential 

for a correct activation of the synthetase. Therefore we analyzed different RSH 

enzymes bearing mutations in TGS, DC or ACT and followed growth and transcription 

of stringent response genes under relaxed and stringent condition. All three mutants 

showed normal growth behavior and same transcription as the WT under relaxed 

condition. This led us to the conclusion, that TGS, DC and ACT are not essential and 

do not have an influence on the hydrolase activity under relaxed conditions.  

Under stringent mimicking conditions, the DC and TGS mutants were not able to 

respond to stringent conditions, indicating no (pp)pGpp synthesis.  

 

9.11.1.1 The DC domain regulates synthetase activity through                                                    

oligomerization 

The DC domain harbors three conserved amino acids, which were proposed to be 

responsible for oligomerization of RelA. Mutation of these amino acids led to enhanced 

synthetase activity  due to the disassociation from inactive oligomers into active 

monomers in E. coli (Gropp et al., 2001; Yang & Ishiguro, 2001)  and M. tuberculosis 

(Avarbock et al., 2005; Jain et al., 2007). Mutation of these amino acids in RSHSau did 

not result in activation of the synthetase under relaxed conditions. This would have 

indicated the disassociation of RSH from inactive oligomers into active monomers.  No 

synthetase activity was observed under stringent conditions. We suggest, that the DC 

domain in S. aureus is likely responsible for oligomerization of free RSH for 

autoinhibition under relaxed condition but anchors RSH to stalled ribosomes, which 
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results in (pp)pGpp synthesis, presumably trough disassociation into active monomers. 

This is supported by our Co-IP studies, which show interaction of DC with a variety of 

ribosomal proteins. This is line with studies performed in RelAEc, where Cys-612 is 

important for binding of RelAEc to the ribosome (A. Brown et al., 2016) resulting in 

(pp)pGpp synthesis when bound to stalled ribosome (Kudrin et al., 2018).  

 

9.11.1.2 TGS regulates synthetase activity by sensing uncharged tRNAs and 

interaction with the ribosome 

As already mentioned, no synthetase activity can be detected in a TGS mutant. 

Presumably TGS regulates synthetase activity by sensing uncharged tRNAs and 

interaction with the ribosome as it has been shown for RelAEc. Since no data are 

available for RSHSau, we performed Co-IP to rule out, whether interactions of RSH with 

the ribosome are also indicated. Indeed we have found several ribosomal proteins, 

indicating interaction of RSHSau with the ribosome via TGS, DC and ACT. Here we 

suggest, the C-terminus interacts with the ribosome and sensing of uncharged tRNAs 

occurs via TGS in S. aureus. This is line with different studies, which has been 

performed in E. coli RelA (Arenz et al., 2016; A. Brown et al., 2016; Loveland et al., 

2016). 

Furthermore, our presumptions are supported by recent Cryo-EM studies from E. coli 

RelA C-terminus, which binds to stalled ribosome. TGS binds uncharged tRNA 

(Agirrezabala et al., 2013) (A. Brown et al., 2016) (Loveland et al., 2016) in its center 

thereby sensing amino acid starvation.  

As a consequence, synthetase domain gets closer to the spur of the ribosomal 30S 

subunit and is activated (Arenz et al., 2016; A. Brown et al., 2016; Loveland et al., 

2016) presumably by a conformational change resulting in an open complex and 

maximal catalytic activity of the synthetase (Arenz et al., 2016). There is evidence TGS 

recognizes uncharged tRNA before entering the ribosome (Arenz et al., 2016; 

Kushwaha, Bange, & Bhavesh, 2019) , carrying the tRNA-RSH complex to the 

ribosome.  
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9.11.1.3 ACT does not affect synthetase activity but interacts with the 

ribosome 

We could not detect any difference in growth under stringent conditions for the ACT 

mutant compared to the WT, indicating ACT does not have a regulatory effect on the 

synthetase activity.  

Our Co-IP studies indicated an interaction of ACT with the ribosomal protein L16. This 

is in line with E. coli ACT interacting with the 23S rRNA, ribosomal protein L16 and the 

elbow region of tRNAs (Arenz et al., 2016; A. Brown et al., 2016; Loveland et al., 2016). 

The role of ACT in S. aureus remains still unclear, although studies showed binding of 

the branched chain amino acids valine and isoleucine to the ACT domain in 

Rhodobacter capsulatus (Fang & Bauer, 2018). They additionally performed ITC with 

the C-terminal domain of S. aureus which exhibited leucine binding to the C-terminus. 

Nevertheless, these data do not indicate which domain of the C-terminus binds leucine. 

However, here we suggest TGS is the major sensor for deacetylated tRNAs and 

activator of the synthetase and a minor role of ACT for a correct activation of the 

stringent in S. aureus. ACT assumable acts as an anchor between uncharged tRNA 

and the ribosome (Fig.5).  

In conclusion, this clearly demonstrates synthesis and degradation of (pp)pGpp is a 

tightly regulated system. Under relaxed conditions RSH is in a hydrolase-

ON/synthetase-OFF state. The C-terminus switches the hydrolase off and activates 

the synthetase for a rapid respond to stringent conditions via TGS and DC.  The DC 

domain autoregulates synthetase activity by oligomerization and interacts with the 

ribosome. The necessity of activating the synthetase is regulated by TGS presumably 

via sensing uncharged tRNAs at the ribosome. ACT does not affect any of the two 

enzymatic activities of RSHSau and the function remains still elusive. Presumably, ACT 

has a stabilizing function of the RSH-uncharged-tRNA-ribosome complex. 
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Structural and mechanistic 
divergence of the small (p)ppGpp 
synthetases RelP and RelQ
Wieland Steinchen1, Marian S. Vogt1, Florian Altegoer1, Pietro I. Giammarinaro1,  

Petra Horvatek2, Christiane Wolz2 & Gert Bange1

The nutritional alarmones ppGpp and pppGpp (collectively: (p)ppGpp) are nucleotide-based second 

messengers enabling bacteria to respond to environmental and stress conditions. Several bacterial 

species contain two highly homologous (p)ppGpp synthetases named RelP (SAS2, YwaC) and RelQ 
(SAS1, YjbM). It is established that RelQ forms homotetramers that are subject to positive allosteric 
regulation by pppGpp, but structural and mechanistic insights into RelP lack behind. Here we present a 

structural and mechanistic characterization of RelP. In stark contrast to RelQ, RelP is not allosterically 

regulated by pppGpp and displays a different enzyme kinetic behavior. This discrepancy is evoked by 
different conformational properties of the guanosine-substrate binding site (G-Loop) of both proteins. 
Our study shows how minor structural divergences between close homologues result in new functional 

features during the course of molecular evolution.

Microorganisms are able to cope with a broad variety of environmental challenges such as nutrient limitation, 
antibiotics or changes in abiotic factors like varying pH values or temperatures. To do so, they adapt their metab-
olism at many different dogmatic processes, e.g. replication, transcription, translation and ribosomal biogene-
sis1–3. The ‘stringent response’ (SR) is highly conserved among bacteria4–6 and plant chloroplasts7–9 and although 
historically only referring to the adaptation to nutrient depletion10,11 it has since also been demonstrated to affect 
virulence2,12,13, biofilm formation14, development of cellular heterogeneity15,16. Moreover, in some microorgan-
isms the SR has been suggested to affect persister cell formation17–19. Central to the stringent response are the 
two unusual nucleotides ppGpp and pppGpp (collectively (p)ppGpp or alarmones). Proteins of the RelA/SpoT 
homology (RSH) superfamily20 catalyze the pyrophosphate transfer from ATP onto the 3′-OH group of GDP or 
GTP, yielding ppGpp or pppGpp, respectively.

RSH-type synthetases fall into the two classes of ‘long’ and ‘short’ RSH (Fig. 1a1,20). Long RSH-type syn-
thetases are typically composed of multiple domains and harbor a (p)ppGpp hydrolase followed by a (p)ppGpp 
synthetase domain in their N-terminal part (NTD). Their C-terminal portion (CTD) is highly variable and 
comprises domains involved in the binding of ribosomes and regulation of the opposing activities found within 
the NTD21–24. In contrast, short RSH-type alarmone synthetases only contain a synthetase domain and lack the 
hydrolase domain as well as regulatory domains found within the CTD of long RSH proteins (Fig. 1a). Members 
of this ‘small alarmone synthetase’ (SAS) family fall into the RelQ (also: SAS1) and RelP (also: SAS2) subclasses 
and are found in a wide range of bacteria including Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis 
and Listeria monocytogenes20,25–30. Furthermore, there is evidence for a third class of SAS proteins named RelV 
in Vibrio cholerae31. Noteworthy, SAS proteins typically occur in pairs (RelP and RelQ) in the same organism. 
Nevertheless, despite being highly similar on the amino acid sequence level (Fig. 1a), RelP/RelQ proteins seem 
to exhibit different functional roles as evidenced from disparate transcriptional profiles and their dependence on 
different stress signals25,27,32.

So far, only RelQ from B. subtilis and Enterococcus faecalis have been functionally characterized29,30,33. BsRelQ 
shares the conserved synthetase fold with the long RSH Rel, but in contrast to the monomeric Rel, BsRelQ 
forms highly symmetric homotetramers. Clarification of the catalytic mechanism of BsRelQ showed that the 
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enzyme binds ATP and GDP/GTP in a sequential order with ATP being the first substrate and arranges them in 
a near-attack conformation within the active site to catalyze immediate pyrophosphate transfer. A remarkable 
feature of the BsRelQ homotetramer is the presence of a pronounced cleft in its center providing the binding site 
for two allosteric pppGpp molecules that, when present, elevate the (p)ppGpp synthetase activity of BsRelQ33. Up 
to date, no structural characterization of RelP proteins is available. Also, it is unknown whether the (p)ppGpp 
synthesizing activity of RelP is subject to regulation. Therefore, we set out to provide a structural and biochemical 
comparison of RelP/RelQ proteins that might explain their divergent functional roles in bacteria.

Results
RelP and RelQ share an equal architecture. To better understand RelP at the molecular level, we deter-
mined the crystal structures of RelP homologues from S. aureus (Sa) and B. subtilis (Bs) at 2.25 and 3.3 Å resolu-
tion, respectively (Table S1). Both, SaRelP and BsRelP form highly symmetrical and oval-shaped homotetramers 
with a prominent cleft in their centers highly reminiscent of BsRelQ (Figs 1b and S1a). Helix α1 at the N-terminus 
of each monomer stabilizes the medial sides of the homotetramer interface via hydrogen bonds and salt bridges 
(buried surface area of ~1200 Å2). Helices α5 and α6 at the C-terminus of each monomer establish the lateral 
sides of the homotetramer interface mainly due to polar contacts (buried surface area of ~1200 Å2). The (p)
ppGpp synthetase monomers of SaRelP and BsRelP are highly identical and consist of a mixed β-sheet build by 
five β-strands (β1–β5) that is surrounded by alpha helices (α1–α6, Figs 1c and S1b).

Structural comparison of RelP and RelQ reveals the architecture of the homotetramer as well as each of the 
monomers is highly similar (r.m.s.d. of 1.292 over 138 Cα atoms for the RelP and RelQ monomers). However, 

Figure 1. Structural analysis of RelP. (a) Domain architecture of the (p)ppGpp synthetases BsRel, BsRelQ and 
SaRelP drawn to scale. The inset depicts amino acid similarities between RelP and RelQ proteins from Bacillus 
subtilis (Bs) and Staphylococcus aureus (Sa). (b) Cartoon representation of the crystal structures of the SaRelP 
(this study) and BsRelQ (PDB: 5DEC33) homotetramers. Each monomer (α-δ) is rainbow-colored from its N- 
to its C-terminus. (c) The (p)ppGpp synthetase monomers of SaRelP (left; this study), BsRelQ (middle; PDB: 
5DEC33) and their superimposition (right) coloured in rainbow from N- to C-terminus.
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RelP and RelQ differ in the orientation of helix α2, which appears to be shifted approximately 3 Å towards the 
active site center in RelQ when compared to RelP (Fig. 1c; right panel). Another interesting observation is that the 
loop connecting β3 and β4, which is disordered in the structure of BsRelQ, could be resolved in both structures of 
RelP (Fig. 1c). Taken together, RelP and RelQ share highly conserved ternary and quaternary structures, but also 
reveal subtle differences that might be of functional relevance (see below).

RelP and RelQ differ in their (p)ppGpp synthetase activity. The most distinguished features of 
BsRelQ lie in the apparent positive cooperativity of (p)ppGpp synthesis and its susceptibility to allosteric stimu-
lation of by pppGpp but not ppGpp33. To test whether both features would also be present in RelP, we performed 
an in-depth kinetic analysis. We used the same buffer composition for characterization of SaRelP as previously for 
BsRelQ to ensure maximal comparability. SaRelP was incubated together with 5 mM ATP and varying concentra-
tions of GDP or GTP (Of note: BsRelP exhibited no (p)ppGpp synthetase activity under our assay conditions for 
unclear reasons). SaRelP synthesized ppGpp more efficiently than pppGpp as evidenced from an approximately 
4-fold higher Vmax value (Fig. 2a and b). A similar preference for the product ppGpp was previously observed for 
BsRelQ33 and RelQ from other organisms25,30. However, the Km values for (p)ppGpp synthesis drastically differ 
between both enzymes in that they are significantly lower for SaRelP (i.e. 0.3 ± 0.2 for GDP and 0.1 ± 0.1 for GTP) 
than for BsRelQ (i.e. 1.7 ± 0.1 for GDP and 1.2 ± 0.1 for GTP; Fig. 2b). It also seemed to us that SaRelP monomers 
displays less cooperativity within the tetramer than BsRelQ indicated by Hill coefficients closer to 1 (Fig. 2b).

Amino acid sequence analysis of RelP shows that the amino acid residues required for allosteric binding of 
pppGpp to RelQ are replaced in RelP proteins (Fig. 2c). Indeed, this different set of amino acids found in SaRelP 
seems incapable to coordinate pppGpp in similar fashion as BsRelQ (Fig. S2) strongly suggesting to us that SaRelP 
cannot be allosterically stimulated by the alarmone. In agreement with our structural analysis, no change in the 
enzymatic activity of SaRelP was observed in the absence and the presence of ppGpp or pppGpp (Fig. 2d). Taken 
together, RelQ and RelP do not differ much in their Vmax values of (p)ppGpp synthesis, while significantly differ-
ing in the in Km values. Moreover, RelP is not subject to allosteric stimulation by pppGpp.

ATP-binding to RelP and RelQ is identical. To gain further insights into the disparate enzymatic activ-
ities of RelQ and RelP, we attempted to solve the structure of SaRelP in presence of the non-hydrolysable ATP 
analogue AMPCPP (α,β-methyleneadenosine 5′-triphosphate) and GDP or GTP. However, we could only obtain 
crystals and solve the structure of SaRelP in presence of AMPCPP (Fig. S3a and Table S1). Coordination of 

Figure 2. Enzymatic properties of RelP. (a) Velocity/substrate (v/S) characteristic of SaRelP (solid lines) and 
BsRelQ (dashed lines) for ppGpp (black) and pppGpp (grey). Velocity is given in nmol per minute per nmol 
SaRelP/BsRelQ. The data for BsRelQ have been re-plotted from33 to enable direct comparison of both enzymatic 
activities. Data of one representative experiment are shown. (b) Kinetic parameters of (p)ppGpp synthesis 
by SaRelP and BsRelQ. (c) Amino acid sequence alignment of residues conferring pppGpp binding to the 
allosteric cleft of RelQ and their equivalent positions in RelP proteins from Bacillus subtilis (Bs), Staphylococcus 
aureus (Sa) and Listeria monocytogenes (Lm). Amino acid numberings relate to SaRelP (above) and BsRelQ 
(below). (d) Synthesis of ppGpp (black) and pppGpp (grey) by SaRelP is unaffected by the presence of ppGpp or 
pppGpp. Error bars indicate the SD of three independent replicates.
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AMPCPP within all the four active sites of SaRelP is guided by π-stacking interactions of the adenine base with 
the arginine residues 78 and 112 of SaRelP (Fig. S3b). The ribose moiety of the adenosine is coordinated by 
hydrogen bonding via His190. Interactions with the phosphate moieties of AMPCPP are mainly established 
by lysine and arginine residues residing in β1 and α2 (i.e. Lys80, Lys88 and Arg91) and Ser84 contacting the 
5′ α-phosphate. AMPCPP adopts a kinked conformation that is enforced by a magnesium ion coordinated by 
Asp107 and Glu174 (Fig. S3b). An identical conformation of AMPCPP is observed in the active site of BsRelP 
(Fig. S3c). As all ATP-coordinating and catalytic amino acid residues are strictly conserved among RelP/RelQ 
proteins (Fig. S3d), we suspect a common ATP-binding mode and mode of catalysis.

G-Loop rigidity governs the activity of RelP and RelQ. If binding of ATP to RelP and RelQ is iden-
tical (see above), then the different enzymatic properties of both enzymes should originate from differences in 
binding of GDP/GTP and/or a different susceptibility to allosteric stimulation by pppGpp. As mentioned above, 
our structural analysis of RelP and RelQ indicated a different conformational flexibility of the loop connecting 
strands β3 and β4 (Fig. 1c). This loop contains a conserved tyrosine residue (i.e. Tyr151 in SaRelP and Tyr116 in 
BsRelQ, Fig. 3a) critical to guanosine nucleotide binding in all (p)ppGpp synthetases. Therefore, we decided to 
term the loop connecting β3 and β4 ‘G-Loop’. To our surprise, the different configurations of the G-Loop seem 
to be a common theme among RelP/RelQ proteins. In the apo- and ATP-bound states of BsRelQ, the G-Loop is 
disordered, and could therefore not be modeled in these structures (Fig. 3b). In stark contrast, the G-Loop of 
SaRelP was well-ordered and could be unambiguously modeled in its apo- and ATP-bound structures (Fig. 3c). 
We speculated that the difference in enzymatic activity between RelQ and RelP is founded in the different confor-
mational properties of the G-Loop.

Inspection of the amino acids of the G-Loop reveals the presence of proline in RelP proteins with no corre-
spondent in RelQ (Fig. 3a). We hypothesized that the absence of this proline in RelQ renders the G-Loop less 
rigid, while its presence in RelP results in a well-ordered G-Loop that might easily facilitate GDP/GTP coor-
dination (Fig. 3d). We challenged this notion by introducing proline into the disordered G-Loop of RelQ (i.e. 
BsRelQ-H111P). BsRelQ-H111P produces (p)ppGpp as efficient as SaRelP and the Vmax (i.e. 243 ± 9 and 194 ± 8 
nmol min−1 nmol−1 for ppGpp and pppGpp, respectively), Km (i.e. 0.4 ± 0.2 for GDP and 1.9 ± 0.2 for GTP) 
and Hill-coefficient (i.e. 1.6 ± 0.2 for GDP and 1.0 ± 0.1 for GTP) of BsRelQ-H111P more resemble SaRelP than 
BsRelQ (Fig. 3e and compare to Fig. 2a and b). Moreover and unlike BsRelQ, BsRelQ-H111P is not amenable to 
allosteric stimulation by pppGpp (Fig. 3f). These results demonstrate a strong dependence of RelP/RelQ activity 
on the rigidity of the G-Loop.

Allosteric stimulation of RelQ by pppGpp acts via the G-Loop. Our results indicated that RelP 
proteins synthesize (p)ppGpp more efficiently than RelQ, because RelP can more readily bind the GDP/GTP 
substrate through increased rigidity of the G-Loop. Moreover, pppGpp stimulates the activity of RelQ, while 
it does not for RelP (Figs 2d and 3f). Therefore, we hypothesized that binding of pppGpp to the central cleft of 
RelQ might be translated into an increased (p)ppGpp synthesis via the G-Loop. Superimposition of the crystal 
structures of apo-BsRelQ and pppGpp-bound BsRelQ (PDB: 5DEC and 5DED33, respectively) allowed tracing a 
structurally possible path, which would connect the presence of pppGpp within the allosteric cleft of RelQ with 
the G-loop (Fig. 4). In short, two opposing subunits of the BsRelQ tetramer are involved in coordination of one 
allosteric pppGpp in the central cleft1,33. Coordination of pppGpp leads to a displacement of Phe42, Thr44 and 
Asn148 by ~1–2 Å towards the cleft (Figs 4b; S2). Helix α4 comprising Asn148 follows this movement and rotates 
by approximately 15° in a counterclockwise manner. This movement is relayed onto helix α5 through the hydro-
phobic core between both helices constituted by Phe149 (α4), Leu183 and Met187 (both α5, Fig. 4c). Rotation 
of α5 turns Glu178 towards the G-Loop and enables formation of a salt bridge between Glu178 and Arg117 
(Fig. 4c). Further contacts between α5 and the G-Loop are established between His111/Glu178 and Glu113/
Gln174 (Fig. 4d).

To probe the participation of these amino acids, we replaced them by alanine and measured the (p)ppGpp 
synthesis of the resulting BsRelQ variants in pppGpp-dependent manner (Figs 4e and S4). Variation of His111 
and Glu113 does not affect stimulation of BsRelQ. However, upon replacement of Gln174 and Glu178 the 
pppGpp-stimulatory effect is decreased and completely abolished when Arg117 is replaced (Figs 4e and S4).

Finally, we tested how the allosteric pppGpp affects the enzyme kinetic behaviour of BsRelQ by determining 
the (p)ppGpp synthesis BsRelQ in presence of different concentrations of pppGpp (i.e. 0, 2.5, 10, 25, 100, 250 µM). 
While addition of increasing amounts of pppGpp to BsRelQ does only slightly elevate Vmax of (p)ppGpp synthesis, 
the Km values for the substrates GDP and GTP decrease dramatically (Figs 4f and S5). Also, BsRelQ displays a 
less cooperative behaviour indicated by a loss of the sigmoidal shape of the v/S characteristic when pppGpp is 
present. It therefor appears to us that the apparent cooperativity of BsRelQ rather originates from pppGpp pro-
duced during the enzymatic reaction rather than from a positive cooperativity between the four active sites of 
BsRelQ (compare to Fig. 2a and ref.29). Noteworthy, at the highest concentration of pppGpp tested (i.e. 250 µM), 
the enzyme kinetic behavior of BsRelQ is highly similar to BsRelQ-H111P and SaRelP.

These results show that allosteric binding of pppGpp causes structural rearrangements of BsRelQ that are 
translated into an increased (p)ppGpp synthetase activity via an induced structural rigidity of the G-Loop.

Discussion
Two small alarmone synthetases (i.e. RelP/SAS2 and RelQ/SAS1) are typically found together in members of 
the Firmicutes phylum e.g. B. subtilis, S. aureus or L. monocytogenes20. RelP and RelQ share similarities of ~50 
percent on the amino acid sequence level. Our structural analysis shows that RelP and RelQ possess a highly sim-
ilar (p)ppGpp synthetase domain and both establish highly similar homotetrameric complexes (Fig. 1b and c). 
Nevertheless, both enzymes decisively differ in their ability to produce (p)ppGpp in that RelP is much more active 



www.nature.com/scientificreports/

5SCIENTIFIC REPORTS |  (2018) 8:2195  | DOI:10.1038/s41598-018-20634-4

than RelQ (Fig. 2a). Why is that the case? Our analysis demonstrates that binding of ATP proceeds in identical 
fashion in RelP/RelQ proteins, because both proteins harbor an identical architecture of their ATP-coordination 
site (Fig. S3). However, RelP and RelQ inherently differ in their ability to coordinate the GDP and GTP substrates. 
This is caused by a different structural flexibility of their G-Loops. While the G-loop of RelQ is highly disordered, 
the equivalent region of RelP is highly ordered and can therefore readily coordinate GDP/GTP (Fig. 3). However, 
the activity of RelQ can be enhanced by coordination of pppGpp within the central cleft33. This pppGpp results 
in a rearrangement of helices α4 and α5 at the lateral sides of the RelQ homotetramer and, by establishing a 
salt bridge between Glu178 (α5) and Arg117 (G-Loop) (Fig. 4), results in a more ordered (and active) confor-
mation of the G-Loop. The (p)ppGpp synthetase activity of the so-stimulated RelQ resembles RelP. Notably, 
the Km values obtained for SaRelP (Fig. 2a and b) and allosterically stimulated BsRelQ (Figs S4 and S5) accord 
with the intracellular concentrations of GDP and GTP, estimated as 200–500 µM and 1–5 mM, respectively34,35. 
Under these conditions, both enzymes are highly sensitive to small changes in GDP/GTP levels. Non-stimulated 
BsRelQ, in contrast, appears rather insensitive to changes in GDP/GTP levels because of its high Km values for 
both substrates (Fig. 2a and b). In summary, RelP always appears as a highly active alarmone synthetase, while 

Figure 3. G-loop rigidity dictates the activity of RelP and RelQ. (a) Amino acid sequence alignment of the 
G-Loops found in RelP and RelQ proteins from Bacillus subtilis (Bs), Staphylococcus aureus (Sa) and Listeria 
monocytogenes (Lm). Amino acid numberings relate to SaRelP (above) and BsRelQ (below). (b) Crystal 
structures of the apo- and AMPCPP-bound state of BsRelQ (PDB: 5DEC and 5F2V33, respectively) show a 
disordered G-Loop (dashed line). (c) Crystal structures of the apo- and AMPCPP-bound state of SaRelP (this 
study) show a clearly ordered G-Loop. (d) The presence of Pro146 in SaRelP confers a high rigidity of the 
G-Loop. (e) The v/S characteristic of ppGpp (black) and pppGpp (grey) synthesis of the BsRelQ-H111P variant. 
Velocity is given in nmol per minute per nmol BsRelQ-H111P. Dashed lines indicate the Km and Vmax values. 
Data of one representative experiment are shown. (f) ppGpp synthesis of BsRelQ and its variants in absence (−) 
and presence (+) of pppGpp. Error bars indicate the SD of three independent replicates.
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Figure 4. Allosteric binding of pppGpp to RelQ stabilizes the G-Loop. (a) Superimposition of one half of the 
tetramers of BsRelQ (white, PDB: 5DEC33) and BsRelQ-pppGpp (green, PDB: 5DED33). (b) Coordination 
of pppGpp in the central cleft of BsRelQ by amino acids residing in α1, β1 and α4 results in conformational 
changes (indicated by red arrows). (c) Interaction of Asn148 with pppGpp causes a rotation of α4 that is 
transmitted onto α5 through the hydrophobic core established by Phe149, Leu183 and Met187 from two 
subunits of BsRelQ. Concerted rotation of helices α4 and α5 enables formation of a salt bridge between Glu178 
and Arg117. (d) Interactions between amino acid side chains from α5 and the G-Loop of BsRelQ are only 
established in presence of pppGpp and result in ordering of the G-Loop. (e) ppGpp synthesis by BsRelQ and 
BsRelQ variants in absence (−) and presence (+) of pppGpp. Error bars indicate the SD of three independent 
replicates. (f) The v/S characteristic of ppGpp synthesis by BsRelQ in presence of different amounts of pppGpp. 
The velocity is given in nmol per minute per nmol BsRelQ. The Km values of BsRelQ in absence and presence of 
250 µM pppGpp are indicated by dashed lines. Data of one representative experiment are shown.
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RelQ can switch between a passive state with low and an active (i.e. pppGpp-stimulated) state with high (p)ppGpp 
synthetase activity.

Having elucidated the different properties of RelP and RelQ, we wondered how this divergence might be rel-
evant for the bacterial cell. In our current understanding, RelQ can appear in two passive states. In the apo-state, 
RelQ’s central cleft is unoccupied while in the RNA-bound state a so far uncharacterized RNA29,36 might reside 
in the central cleft (Fig. 5). We suspect that RelQ is predominantly found in either of those passive states in 
nutrient-rich conditions, because the (p)ppGpp hydrolytic activity of Rel should keep (p)ppGpp levels below 
the limit of RelQ stimulation. When the microorganism is suddenly confronted with nutrient limitation, Rel will 
recognize and bind to stalled ribosomes. When doing so, Rel could provide the pppGpp needed to bring RelQ 
into its active (i.e. pppGpp-bound) state by the intricate mechanism involving helical rearrangements and loop 
stabilization (Fig. 5). RelQ would then simply serves as an amplifier of the stress signal given by Rel. Additionally, 
the RNA bound to RelQ would be outcompeted by pppGpp and might result in the transcription of stress genes. 
Unfortunately, it is unclear so far, which genes might be differentially regulated, as the ‘real’ RNA bound by RelQ 
in vivo still remains to be identified29,36. Seemingly, RelQ’s activity is intensively coupled to Rel (Fig. 5). Although 
experimental data for this functional link of Rel and RelQ are missing so far, the outlined scenario would provide 
an elegant way for an instant rise of (p)ppGpp levels dominated by the activity Rel and aided by RelQ.

RelP, in contrast to RelQ, is always a highly active enzyme that possesses all features enabling efficient (p)
ppGpp synthesis, mainly an ordered G-Loop (Fig. 5). RelP should therefore not rely on the signal provided by 
Rel but might rather work independently. The presence of a central cleft within the tetramer of RelP nevertheless 
allows hypothesizing that an unknown factor might regulate the activity of RelP (Fig. 5). Noteworthy, the different 
activities of RelP and RelQ seem to be perfectly matched with their disparate transcriptional profiles. The switch-
able RelQ, predominantly transcribed during logarithmic growth27, can counteract a sudden nutrient limitation 

Figure 5. Mechanistic framework of Rel, RelP and RelQ. Three states of RelQ differing in (p)ppGpp synthetase 
activity are known: apo-RelQ and the RNA-bound RelQ are catalytically passive states, while RelQ bound to the 
alarmone pppGpp is an active (p)ppGpp synthetase. In both passive states, RelQ readily binds ATP (orange). 
However, GTP (blue) is only poorly coordinated, because of the disordered nature of the G-Loop. Binding of 
pppGpp (violet) into the allosteric cleft of RelQ results in a concerted rearrangement of α4 and α5 (yellow) 
that rigidifies the G-Loop, enables tight coordination of GTP and renders RelQ highly active. Such pppGpp 
molecules might originate from Rel’s (p)ppGpp synthetase activity, which is enhanced under conditions of 
amino acid starvation. In such a case, pppGpp might bind into to the unoccupied central cleft of apo-RelQ 
or could competitively replace an RNA molecule from the cleft as shown previously29. The G-Loop of RelP is 
always ordered enforcing the active state of RelP. Whether an RNA or any other unknown effector molecule can 
bind into the central cleft of RelP is not known.
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with the help of the Rel protein. The presence of RelP during logarithmic growth, however, might be detrimental 
for the microorganism. Consequently, RelP transcripts appear only during early stationary phase and in response 
to treatment with antibiotics, ethanol, high salt and acidic or alkalic pH stress conditions25,37,38. Also, RelP has 
been implicated in mediating inactivation of ribosomes by forming translation-inactive ribosome dimers thereby 
providing an elegant and fast shutdown mechanism for the bacterial metabolism32,39. In conclusion, our study 
strengthens the understanding of disparate roles of RelP/RelQ proteins and sets the stage for future investigations 
on this class of (p)ppGpp synthetases.

Materials and Methods
Cloning and mutagenesis. Genes encoding for RelP (ywaC and SA2297, respectively) were amplified 
from B. subtilis PY79 and S. aureus strain Newman genomic DNA by polymerase chain reaction using Phusion 
High-Fidelity DNA polymerase (NEB) according to the manufacturer’s manual. The forward primer for SA2297 
encoded a hexahistidine-tag in frame with the DNA sequence of relP. The forward primer for ywaC encoded a 
strep-tag in frame with the DNA sequence. The resulting PCR fragments were cloned into the pET24d(+) vector 
(Novagen) at the NcoI/XhoI restriction sites. Mutations within RelP were generated by overlapping PCR.

Protein Production and Purification. Escherichia coli BL21 (DE3) (NEB) carrying the plasmids for 
His-tagged proteins were grown in lysogeny broth (LB)-medium supplemented with 50 µg/ml kanamycin and 
12.5 g/l D(+)-lactose-monohydrate for 20 h at 30 °C. Cells were harvested by centrifugation (3500 × g, 20 min, 
4 °C), resuspended in lysis buffer (20 mM of HEPES-Na pH 8.0, 250 mM NaCl, 40 mM imidazole, 20 mM MgCl2, 
20 mM KCl) and lysed by two passages through the M-110L Microfluidizer (Microfluidics). After centrifugation 
(47850 × g, 20 min, 4 °C), the clear supernatant was loaded on a 1-ml HisTrap column (GE Healthcare) equili-
brated with 10 column volumes (CV) lysis buffer. After washing with 10 CV of lysis buffer, the protein was eluted 
with 5 CV elution buffer (lysis buffer containing 500 mM imidazole). The protein was concentrated (Amicon 
Ultracel-10K (Millipore)) and applied to size-exclusion chromatography (SEC) on a HiLoad 26/600 Superdex 
200 pg column (GE Healthcare) equilibrated in SEC buffer (20 mM of HEPES-Na, pH 7.5, 200 mM NaCl 20 mM 
MgCl2, 20 mM KCl). Protein containing fractions were pooled, concentrated (Amicon Ultracel-10K (Millipore)), 
deep-frozen in liquid nitrogen and stored at −80 °C. Protein concentration was determined by a spectrophotom-
eter (NanoDrop Lite, Thermo Scientific).

BsRelP was purified by a similar procedure using a 1-ml StrepTrap column (GE Healthcare). Lysis buffer with-
out imidazole was employed for cell lysis, column equilibration and washing and elution from the column was 
conducted with 5 CV of SEC buffer containing 2.5 mM desthiobiotin.

Preparation of ppGpp and pppGpp. (p)ppGpp was produced essentially as described previously33. In 
brief, 5 µM SAS1 were incubated in SEC buffer together with 10 mM ATP and 10 mM GDP for 30 min at 37 °C to 
produce ppGpp or together with 10 mM ATP and 10 mM GTP for 2 h at 37 °C to produce pppGpp. Afterwards, 
the reaction was mixed with the same volume of chloroform and centrifuged (17300 × g, 5 min, 4 °C). The aque-
ous phase was removed and the organic phase mixed with one volume of double-destilled water and centrifuged 
(17300 × g, 5 min, 4 °C). The combined aqueous phases were subjected to anion-exchange chromatography using 
a ResourceQ. 6-ml column (GE Healthcare) at a flow rate of 6 ml/min and the nucleotides eluted with a gradient 
of NaCl. Fractions containing ppGpp or pppGpp were pooled followed by addition of lithium chloride with a 
concentration of 1 M and four volumes of ethanol. The suspension was then incubated at −20 °C for 20 min and 
centrifuged (5000 × g, 20 min, 4 °C). The resulting pellets were washed with absolute ethanol, dried and stored 
at −20 °C. Quality of the so-prepared alarmones was controlled by HPLC and yielded ppGpp and pppGpp in 
purities of 98% and 95%, respectively.

Kinetic analysis of RelP/RelQ. The enzyme kinetic behavior of RelP and RelQ (compare to Figs 2a, 
3e, 4f and S5), were monitored by HPLC. Reactions were prepared in SEC buffer supplemented with 100 mM 
HEPES-Na pH 7.5 by incubating 0.2 µM protein together with 5 mM ATP and varying concentrations of GDP 
or GTP (i.e. 0.05, 0.1, 0.2, 0.3, 0.5, 1, 3 and 5 mM; 2 and 4 mM were included where necessary). For the analysis 
of pppGpp affecting the kinetic behavior of BsRelQ, pppGpp was also added to the reaction in concentrations 
of 0/2.5/10/25/100/250 µM. Samples were taken after different time points (i.e. 2, 4, 6, 8 and 10 minutes) and 
stopped as follows: two volume parts of chloroform were added to the sample, thoroughly mixed for 15 seconds, 
kept at 95 °C for 15 seconds and flash-frozen in liquid nitrogen. While thawing, the samples were centrifuged 
(17300 × g, 30 min, 4 °C) and the aqueous phase used for analysis. HPLC measurements were conducted on an 
Agilent 1100 Series system (Agilent technologies) equipped with a C18 column (EC 250/4.6 Nucleodur HTec 
3 µM; Macherey-Nagel). Nucleotides were eluted isocratically with a buffer containing 50 mM KH2PO4, 50 mM 
K2HPO4, 10 mM TPAB (tetrapentylammonium bromide) and 20% (v/v) acetonitrile and detected at 260 nm 
wavelength in agreement with standards. Analysis of enzymatic measurements was performed with GraphPad 
Prism version 6.04 for Windows, (GraphPad Software, San Diego, California, USA). The velocity of (p)ppGpp 
synthesis was obtained by linear regression of the amount of AMP quantified after different incubation times. 
Kinetic parameters (Km, Vmax and the Hill coefficient (h) ± standard deviation) were obtained from the fit of the 
v/S characteristic according to the equation v = Vmax Sh/(Km

h + Sh).

Stimulation of RelP/RelQ by (p)ppGpp. In experiments probing the stimulatory effect of (p)ppGpp 
(compare to Figs 2d, 3f, 4e and S4), 0.2 µM RelP/RelQ were incubated together with 5 mM ATP and 0.25 mM 
GDP/GTP in presence or absence of 200 µM (p)ppGpp for 10 minutes at 37 °C. The reactions were stopped and 
analyzed as described above.
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Crystallization and structure determination. Crystallization was carried out at room temperature by 
sitting drop vapor diffusion in SWISSCI MRC 2-well plates (Jena Bioscience) with a reservoir volume of 50 µl 
and the drop containing 0.5 µl of protein and crystallization solution each. Crystals of BsRelP were obtained from 
a 10 mg/ml solution after 1 week from 0.1 M CHES pH 9.5 and 30% (w/v) PEG 3000. Crystals of SaRelP were 
obtained from a 15 mg/ml solution after 1 week in 0.1 M CHES pH 9.5 and 40% (v/v) PEG600. For crystallization 
of SaRelP-AMPCPP, a 15 mg/ml concentrated protein solution was incubated together with 5 mM AMPCPP for 
30 minutes on ice. Crystals of SaRelP-AMPCPP were obtained after 2 days from 0.1 M Tris pH 8.5, 0.2 M lithium 
sulfate and 30% (w/v) PEG4000.

To harvest crystals, 0.5 µl of a cryo-protecting solution containing mother liquor supplemented with 20% (v/v) 
glycerol was added to the drop, crystals looped and flash-frozen in liquid nitrogen. Diffraction data were collected 
at the European Synchrotron Radiation Facility (ESRF) Grenoble, France, at beamlines ID23-1 and ID29 under 
laminar nitrogen flow at 100 K (Oxford Cryostream 700 Series) with a DECTRIS PILATUS 6M detector. Data 
were processed with XDS40 and CCP4-implemented SCALA41. Crystal structures were determined by molecular 
replacement (MR) employing BsRelQ (PDB: 5DEC33) as search model using the CCP4-implemented PHASER41. 
Structures were manually built in COOT42 and refined with PHENIX43. Figures were prepared with PYMOL 
(www.pymol.org).

Accession Codes
Atomic coordinates and structure factors were deposited in the Protein Data Bank (PDB) under 6FGJ 
(apo-SaRelP), 6FGK (apo-BsRelP) and 6FGX (AMPCPP-bound SaRelP).
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