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”Our intelligence is what makes us human, and AI is an extension of that quality.”

Yann LeCun



Abstract

The World Health Organisation (WHO) has described cancer as the second world-
wide cause of death, with Head and Neck Squamous Cell Carcinoma (HNSCC) being
the sixth most frequent form of cancer. Different reasons for treatment failure have
been discovered, and studies of these propose to personalise cancer treatments as the
best strategy to reduce these figures. Radiomics is a relatively new field that uses
medical image analysis as a manner to find promising imaging biomarkers to poten-
tially adapt cancer treatments accordingly. Despite the promising results of different
studies, no reproducibility has been reached across the scientific community, mainly
because of the lack of open and comparable implementations, standardised mathe-
matical definitions of features and imaging pre-processing methods, scan set ups and
feature pre-processing. This thesis aims to implement a robust and reproducible ra-
diomic pipeline for studies of risk identifications in patients to assess the feasibility
to prospectively personalise CRT in the future.

The radiomic pipeline implemented inside the framework of this thesis was validated
in an international collaboration with participation of more than 20 well-recognised
institutions across Europe, the United States and Canada. There was addressed the
problem of reproducibility due to feature extraction algorithms and definitions as well
as imaging pre-processing implementations using a common framework, mathemati-
cal definitions of image features and two proposed phantom data for testing purposes.

This radiomic software was customised for clinical research studies inside the necessi-
ties of the University Hospital Tübingen. First, correlations between the CT-radiomic
signature proposed by Aerts et al. associated to intra-tumour heterogeneity and the
somatic mutation of genes associated to aggressiveness in HNSCC were investigated.
A CT-radiomic approach was used to propose a substitute identifier of patients at
risks of the well-established patient classifier Tumour-to-background ratio (TBR)peak
in HNSCC cancer patients. Finally, a CT-radiomics signature was proposed for fore-
casting tumour regression grades in rectal cancer types with independent validation
cohort for organ-preserving strategies in therapies.

This work concludes that variations in medical imaging pre-processing algorithms
are suggested to be the main source of unrepeatable radiomic studies and bench-
marks are therefore needed, which at the moment of writing this thesis are being
obtained. It also remarks that one of the biggest limitations of radiomics is related
to the number of patients used for studies which requires larger cohorts for generali-
sations of radiomic signature performances for outcome predictions, thus prospective
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studies and larger number of patients are suggested to confirm all findings inside the
framework of this thesis.
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Zusammenfassung

DieWeltgesundheitsorganisation (WHO) bezeichnet Krebs als die zweithäufigste Todesur-
sache weltweit und HNSCC als die sechsthäufigste Krebsart. Es wurde nach den
verschiedensten Gründe für das Versagen einer Krebstherapie gesucht und herausge-
funden, dass die beste Strategie, die Anzahl der Rezidive zu minimieren, eine person-
alisierte Krebstherapie ist. Radiomics ist ein relativ neues Gebiet, das mit Hilfe von
medizinischer Bildanalyse nach Biomarkern sucht, mit deren Hilfe die Krebsbehand-
lung individuell angepasst und optimiert werden kann. Trotz der vielversprechen-
den Ergebnisse verschiedenster Studien über diese Methode, konnte bislang keine
dieser reproduziert werden. Dies liegt unter anderem an dem Fehlen von öffentlichen,
vergleichbaren Implementierungen, an fehlender Standardisierung von mathematis-
chen Merkmalen, an den unterschiedlichsten Vorbearbeitungsverfahren und Vorbear-
beitungsmethoden der Bilder sowie an den meist unbekannten CT-Scan Einstellungen.
Das Ziel dieser Dissertation ist es, eine robuste und reproduzierbare Pipeline in Ra-
diomics zu implementieren, die eine Risikoidentifizierung eines Patientens ermöglicht
und über die Durchführbarkeit einer zukünftigen, personalisierten CRT entscheidet.
Die im Rahmen dieser Dissertation implementierte Radiomic-Pipeline wurde in einer
internationalen Zusammenarbeit unter der Beteiligung von mehr als 20 anerkannten
Institutionen in Europa, den USA und Kanada validiert. Das Problem der Re-
produzierbarkeit aufgrund von Merkmalsextraktionsalogarithmen und -definitionen
wurde besprochen, genauso wie die Implementierung von Bildvorverarbeitungen, die
Verwendung eines gemeinsamen Rahmens von mathematischer Definitionen, gleiche
Bildmerkmalen sowie das Benutzen von zwei Phantomdaten zu Testzwecken.
Diese Software, basierend auf Radiomics, wurde für klinische Forschungsstudien inner-
halb des Universitätsklinikums Tübingen entworfen. Im ersten Teil der Arbeit wurden
Korrelationen zwischen dem von Aerts et al. (2014) vorgeschlagenen CT-Radiomic-
Signature und Intra-Tumor Heterogenitätem bei HNSCC untersucht sowie Korrela-
tionen zwischen der somatischen Mutation von Genen und deren aggresives Zellver-
halten. Eine der CT-Radiomic-Ansätze konnte dafür verwendet werden Risikopa-
tienten des HNSCC zu identifizieren. Dieser Ansatz diente als Ersatz zu dem bere-
its etablierten Tumor-To-Background (TBRpeak) Klassifikationsansatz. Schließlich
wurde eine CT-Radiomics Methode zur Vorhersage der Tumorregressionsrate bei Rek-
talkarzinomkrebs benutzt und in einer unabhängigen Validierungskohorte getestet.
Hierbei wurden organerhaltende Therapien bevorzugt.
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Das Ergebnis der Dissertation ist, dass Variationen der Vorverarbeitungsalgorithmen
für die medizinische Bildgebung die Hauptquelle für nicht reproduzierbare radiomis-
che Untersuchungen sind. Daher sind Richtlinien unerlässlich, die zum Zeitpunkt
der Erstellung dieser Doktorarbeit zeitgleich entwickelt wurden. Es soll auch an
dieser Stellle darauf hingewiesen werden, dass eine der größten Einschränkungen von
Radiomics eine zu geringe Anzahl an Patientendaten ist. Eine zuverlässige Verall-
gemeinerung der Radiomischen Signaturleistung ist daher nur mit einer ausreichend
großen Anzahl an Patientendaten möglich und liefert auch erst dann reproduzier-
bare Ergebnisse. Daher wird für die Bestätigung der Ergebnisse dieser Arbeit, sowie
für zukünftigen Studien an diesem Thema, eine Erhöhung der Patientendatensätze
empfohlen.
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1. Introduction
The World Health Organization (WHO) has described cancer as the second worldwide
cause of death [9]. The standard treatments are surgery, chemotherapy and RT, which
the latter is estimated to profit all cancer patients up to 50% either as a stand-alone
treatment or in combination of other cancer treatments [36]. In brief, RT treatment
takes advantage of the normally slower grow rate of cell reparation mechanism after
exposition to ionising radiation of tumour tissues in comparison with healthy tissues.
The consequences are differences in the cancer cell death rates [10] or in other words
the tumour shrinking. However, even though RT causes bigger damages in tumour
cells, it also produces burdens in healthy tissue. Consequently, fractional RT was
proposed in the 1920s as a remedy to maximise targeted tumour damages with min-
imum effect in healthy tissues [16]. Since then, RT has incorporated advances such
as conformal and intensity or volumetric modulated radiation therapy techniques to
conform radiation field shape adaptations to tumour shapes, photon and heavy ions
therapy to enhance dose depth depositions, minimising skin side effects [85] and three
dimensional (3D) image-based guidance (CT or MRI and PET) for accurate tumour
distinction and location [24].

Nevertheless, many cancer patients still recur either locally or in distant metas-
tases after treatments. This is the fact for instance in HNSCC where the over-
all survival rates ranges between 40% and 50% in advanced stages with follow-
ups up to 60 months [9] after beginning of CRT. Similar results are seen for other
types of tumours. The reasons of these treatment failures are associated to tumour
growth (Epidermal Growth Factor Receptor (EGFR) and Transforming Growth Fac-
tor (TGF) [61]), proliferation (Cyclin D1 [26,155], Ki-67 [32,47,140]), suppression (p53
and p27 [21,25,44]), angiogenesis and hypoxia (Vascular endothelial growth (VEGF),
HIF1α and HIF2α [94, 115]), invasive and metastatic potential (MMP [120]), stem
cells [135], heterogeneity of cancer cells ( [182]), etc. Which with the state-of-the-art
clinical cancer diagnosis (tumour type, stage, location and histology) cannot be de-
scribed. After successfully sequencing the human genome, many research groups have
joined efforts to develop the so-called precision medicine (also known as personalised
medicine) to adapt treatments according to patients characteristics and thus increase
effectiveness [58]. However RT remains difficult to comply with personalised doses
due to a lack in assessing individual tumour characteristics non-invasively. Biological
properties of tumours may be analysed from the tumour tissue, but practitioners tend
to avoid this procedure since it is challenging and highly invasive to patients, which
might yield to additional unnecessary risks. Moreover gene sequencing from tumour

3



1. Introduction

samples remains difficult as it is expensive and cannot reflect the full gene expression
in the whole tumour in a temporal and spatial level. Subsequently, other techniques
have been explored in the recent 30 years to obtain tumour functionality and markers
from tomographic data, which could, in their turn, lead to an early dose adaptation
in CRT treatment, thus preventing recurrence after initial tumour detection in the
applied therapy.

Hypoxia in tumours, which is associated to a feature of low radiation sensitivity
[63] and therefore to poor prognosis for treatment outcome [125], can be assessed
from changes of image intensities in PET scans along with appropriate radio-tracers
[91,183]. This characteristic has been heavily exploited from many researchers to con-
struct hypoxia models or imaging markers to be integrated in RT [137,163]. Nonethe-
less, researchers have faced difficulties associated to PET reliability [73] and lack of
definitive gold standards referring to the period of acquisition of hypoxic information
from images or thresholds at the moment classify hypoxic regions [137, 183], among
others. In spite of the infeasible clinical use, up to date hypoxic models and markers
are still promising approaches for dose painting customisation and dose escalations
for RT [163].

Changes in the tumour micro-environment, chaotic vasculature and abnormal perme-
ability, can also be tracked by MRI either in modalities such as Dynamic Contrast-
Enhanced (DCE) or Diffusion-Weighted (DW). The most promising imaging parame-
ters in these techniques, to predict cancer therapy outcomes, is the pharmacokinetics
modelling of gadolinium passage inside the tumour structure. In DCE-MRI parame-
ters such as transfer constant (Ktrans) and extra-vascular extracellular space volume
fraction (ve) seem to provide prognostic information to therapy outcomes [88]. On the
other hand, In DW-MRI parameters such as Apparent Diffusion Coefficient (ADC)
are more prognostic to CRT [89]. Despite of the advantages that the use of MRI
represents in terms of invasiveness, these parameters lack of validation owe to con-
founding studies [169]. Besides, clinical routine implementations remain challenging
since the need of co-registration between MRI sequences (T1, T2, ADC, etc.) spe-
cially in organs at motion, which generate modelling inaccuracy constrains.

On the other hand, Radiomics, which emulates the so-called "Omics" analysis (e.g.
genomics, proteomics, transcriptomics, etc). It uses an outstanding number of math-
ematical measurements from radiological images, also called features, as inputs [98]
to find significant numbers of imaging signatures that may be prognostic to cancer
treatment outcomes and then those ones are correlated to cancer phenotype expres-
sions [5]. Notwithstanding, it suffers from reproducibility, standardisation and signa-
ture significance comprehension across institutes and research groups [57,68,96,178].
The two former are inherited from problems of imaging science, the latter is, how-
ever, due to a few studies that investigate the biological meaning of features instead of
pre-treatment prognosis power. In recent years, research efforts have been employed
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to find correlations between radiomics signatures with biological or clinical informa-
tion [20, 33, 55], which allow researchers and medical doctors to explain logically the
subtle information of targeted tumours. Nonetheless, the number of studies remain
sparse. The goal of this thesis is to construct a robust and reproducible radiomic
pipeline inside the University Hospital Tübingen (UKT) that allows implementations
or incorporations of comprehensive radiomic studies inside the necessities of radio-
oncological research and assesses the feasibility to use the pipeline as a standalone or
complementary information for CRT treatment customisation.

1.1. Hypothesis

This thesis assumes that tomographic data encodes the biological information of
tumours. Therefore, the hypotheses of this work are divided in three as follows:

1. Computers are able to learn from the tomographic data, consequently correlate
phenotype features with the underlying biology encoded in tumours, which it
should be reproducible independently on the research institute.

2. Radiomics as a technique consists of other imaging markers that should be at
least as good as other heavily investigated and potential imaging markers.

3. Radiomics has the potential to improve CRT either in unnecessary treatment
applications or stratification of the dose required for successful treatment in
cancer patients.

1.2. Description of the Thesis

This thesis is divided in four principal sections, as follows:

1. A compelling discussion of the materials and methods used in this work, such
as a description of radiological images and imaging biomarkers (cf. Chapter 2),
radiomics (cf. Chapter 3) and machine learning in the context of radiomics (cf.
Chapter 4).

2. A collaboration in a common framework reference of radiomics feature defi-
nitions for standardised studies (cf. Chapter 6.1), machine learning methods
for feature selection and models were included inside our pipeline for robust
modelling (cf. Chapter 6).

3. An exploratory study of the correlation of a highly frequent referenced CT-
radiomics signature with cell-pathways mutations in HNSCC (cf. Chapter 8).
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4. An exploratory study to assess outcome prediction power of a constructed CT-
radiomic signature from the significant patients cohort of HNSCC recruited
in the last 10 years in the UKT, wherein part of them were used in studies
for risk stratification according to an imaging marker derived from PET. The
objective is to evaluate whether CT-radiomics could work either as a standalone,
complementary or non-conclusive method for risk evaluation in HNSCC patients
(Chapter 9).

5. A construction of a CT-radiomics signature to forecast tumour regression grades
in rectal carcinoma with fully external validation for improvement of organ-
preserving strategies.
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2. Basics of imaging modalities and
biomarkers for RT

Since the discovery of X-rays by W. Röntgen in 1895, imaging scans have become
a well established guide for treatment planning and adaptations. In more than 100
years, RT has profited from CT, MRI and PET discoveries to obtain either anatomical
and/or functional information of imaged tumours and subsequently adapt treatments
accordingly. This section aims to discuss the physics and imaging formation from the
most common imaging modalities and some imaging markers that have been so far
associated either to poor performance after RT.

2.1. Computed Tomography
CT scans are the most routinely used imaging modality in clinics for diagnosis and RT
treatment planning, because of the prominent trade-off that CT represents in terms
of cost, image resolution, set-up and invasiveness among others. The physics behind
CT is based on X-rays, which are photons striking with energies in the range of a
few keV to 100 keV [165]. When X-rays interact with matter, photons might be ab-
sorbed or/and scattered, resulting in energy attenuation, the responsible phenomena
for these are known as photo-electric, Compton and pair-production effect. Photon
attenuations after matter interaction are the base of forming X-ray images, since the
attenuation coefficient (µ) differs in each body of interaction, µ can be encoded using
the Beer-Lambert equation (cf. equation 2.1). µ (~x) across beam lines are accessible
if X-rays intensities in the source (I0) and detectors (Id) are measured. In principle
µ is associated intrinsically to the atomic number of materials and tissue density.∫

~x∈l
µ (~x) ds = ln

(
I0
Id

)
(2.1)

2.1.1. Data Acquisition

A scheme of data acquisition in CT is shown in figure 2.1. The patient is placed in
the centre between the collimated X-ray beam and detectors (also called iso-centre).
After the X-ray fan beam passes through the patient, attenuation occurs across the
beam line. The residual intensity of the beam is then captured by detectors. The
process is repeated for different angles of rotation in one (or many) cycles. Finally, µ
are recorded computationally for every rotation for purposes of image reconstruction.
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2. Basics of imaging modalities and biomarkers for RT

Figure 2.1.: Scheme of the CT principle in two dimensions. Arrows represent X-rays
from the source through the body and reaching detectors ordered as an
array in different angles. Reprinted from [18] with allowance from Tay-
lor & Francis Group LLC - Books ("Publisher") provided by Copyright
Clearance Center ("CCC")

The grey values obtained are proportional to the attenuation (cf. equation 2.2) and
given in Hounsfield units (HU), named after the CT inventor. For quality assurance,
the value for air corresponds to -1000 HU and 0 HU for water. A typical CT data
posses 12 bit precision from -1000 to 3095 (cf. figure 2.2). Modern CT scanners
require for a single slide around 1000 irradiations in different angles, which requires
several revolutions of the X-ray beam. In the 3D case the beam rotates in spiral form
while the radiographic table is translated smoothly (cf. figure 2.3).

µ∗ =
µ− µwater
µwater

· 100 (2.2)

2.1.2. Image reconstruction

The image reconstruction methods can be divided in two types, either based on
analytic or algebraic solutions. In the former, a continuous model of CT image
is constructed to then derive an analytic solution which finally will be discretised
in order to yield a numerical solution. The latter rather discretises the CT image
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2.1. Computed Tomography

Figure 2.2.: Corresponding µ∗ in HU for different region of interest (ROI) in human
body. Figure taken from presentation of Wolfgang Wein in the lecture
Computer aided medical procedures at TUM.

Figure 2.3.: Siemens CT scan set up, and irradiation direction of the X-ray beam when
patient insertion. Figure taken from presentation of Wolfgang Wein in
the lecture Computer aided medical procedures at TUM.

from the beginning (cf. figure 2.4), where the problem is seen as a large system of
linear equations (cf. equation 2.3) to be solved. Algorithms such as back-projection
or filtered back-projection are commonly used to solve the Radon transform and
obtain the reconstructed image. Since image contrast depends on variations of mean
attenuations along the beam paths, tissues with similar attenuation values will be
barely distinguished as in the case of soft tissues.

Figure 2.4.: Example of image discretisation for algebraic reconstruction. Figure
taken from presentation of Wolfgang Wein in the lecture Computer aided
medical procedures at TUM.
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Figure 2.5.: Parametrization for CT image reconstruction. Reprinted from [112] with
allowance of Springer ("Publisher") provided by Copyright Clearance
Center ("CCC").

N∑
j=i

wijfj = pi or W ~f = ~p (2.3)

The Radon transform

In 1917, the Austrian mathematician Johann Radon proposed a solution to transform
projections (R : f(L)) in one dimension to two dimensional functions (cf. equation
2.4).

R : f(L) =

∫
L

f (~x) d~x (2.4)

The radon transform yields to density distribution reconstruction (f) from line in-
tegrals (R : f(L)) under the correct parametrization. Obviously equation 2.4 is
similar to equation 2.1. In the CT case of the image a correct parametrization is:
(x, y)→ (s, θ) (cf. figure 2.5). Schematically the CT image problem can be seen as in
figure 2.6, where an inverse function is needed to recover initial density distributions
from projections.
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2.1. Computed Tomography

Figure 2.6.: In the left-hand side, the density distribution µ (x, y)is non-zero in the
middle and zero elsewhere for one single rotation. In the right-hand side,
the trace profile of density distribution of the objected after rotations
can be observed, this is called Sinogram. Reprinted from [112] with al-
lowance of Springer ("Publisher") provided by Copyright Clearance Cen-
ter ("CCC").

The Fourier slice theorem

Finding a direct inverse function of the Radon transform is not an easy task, yet
fortunately a relationship between the Radon transform and the Fourier transform
exists, which reduce efforts by only looking for the inverse function of projections in
the Fourier space. In a more formal definition the Fourier slice theorem establishes an
equivalence that exists between Pθ(ω) of the projection pθ(s) and a line in the Fourier
transform F (u, v) of f(x, y) which runs through the origin and form an angle θ with
the u-axis [112]. Figure 2.7 provides a visual idea of the Fourier slice theorem. A
proof of the theorem will be not provided in this thesis since it is out of the scope of
this thesis. However, the reader can refer to chapter 10 in the book of Birkfellner [18]
for the proof.

Direct Fourier inversion or Back-projection

As suggested by the Fourier slice theorem an estimation of f (x, y) by computing
all projections in the Sinogram (Sθ (ω)) to then compute the inverse, is possible (cf.
equation 2.5). Nonetheless this approach is computationally disadvantageous, since
a map from polar coordinates to Cartesian coordinates (Iθ) are required, which due
to irregular sampling for the Fourier space leads to a significant reconstruction errors
for high frequency components of the image in the spatial domain (cf. figure 2.8).

f (x, y) = F−12 ◦
∫
θ

(Iθ ◦ F1 ◦ Pθ) (ω) (2.5)
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2. Basics of imaging modalities and biomarkers for RT

Figure 2.7.: Visualisation of the Fourier slice theorem. Reprinted from [112] with al-
lowance of Springer ("Publisher") provided by Copyright Clearance Cen-
ter ("CCC").

Figure 2.8.: Back-projection problem when no compensation for change in reference
coordinates. Figure taken from presentation of Wolfgang Wein in the
lecture Computer aided medical procedures at TUM.
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2.2. Magnetic Resonance Imaging

Filtered back-projection

In order to compensate for polar sampling in Fourier domain, the inverse function is
weighted by the spatial frequency (ω). This is called Filtering, since only the highest
values of ω do not drop suddenly to zero (cf. equation 2.6).

f (x, y) =

∫
θ

(∫
ω

Sθ(ω)ωe2πiωtdω

)
dθ or f (x, y) =

∫
θ

P̂θ (t) dθ (2.6)

The term P̂θ (t) is the filtering contribution and can be seen as the inverse Fourier
transformation of the projections in the Fourier space ( P̂θ (t) = F−11 ◦ [(F1 ◦ Pθ)ω]).
The choice of a proper filtering term is one of the key problems to speed up recon-
struction algorithms assuring good image quality. The filter term (ω) used so far is
the so-called ramp filter. It only enhances high frequencies.

2.2. Magnetic Resonance Imaging

Since MRI was introduced in 1980, it has gained popularity as another anatomi-
cal imaging modality routinely used in hospitals (cf. figure 2.9). Clinically, MRI is
advantageous for RT in comparison to CT because of its (to certain extend) harmless-
ness to patients. It does not require additional radiation and maintains an excellent
biological image contrast, even better than CT for soft tissues in the human body.
The physics principle of MRI lies in magnetic moment excitation of hydrogen nuclei,
which are bound in the human body in water-based tissues or fat molecules, by a
great magnet which provides variations over time of the external magnetisation field
(also called B-field).The excitation of magnetic moments comes from the intrinsic
quantum property of matter called spin. In absence of external magnetic fields spins
are randomly distributed, here the macroscopic magnetisation of matter is zero (non-
magnetic matter). On contrary when a (strong) external magnetic field is applied,
spins tend to align in the same direction as the external magnetic field which yields
to a macroscopic magnetisation of matter ( ~M). Spins are vectors in 3D, therefore in
the presence of a external magnetic field, precession of the spin vectors of the nuclei
happen in the orthogonal direction of the exerted B-field. This rate of precession
(ω0) is described by the Lamour frequency (cf. equation 2.7), for every nucleus the
inertia to spin precession is different, this is accounted by the gyromagnetic ratio
(γ). For the hydrogen nucleus, the gyromagnetic ratio is equal to 42.6 MHz

T
. The

angle of precession between the direction of the external magnetic field and the spin,
decreases over time until total alignment and initial position restoration occurs when
the B-field is switch-off. The spin precession emits radio frequency (RF) waves which
can be measured. The times when the spin precession recovers equilibrium after the
B-field is switch-off are called relaxation times, which is the main characteristic to
obtain contrast from the different tissues.
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2. Basics of imaging modalities and biomarkers for RT

Figure 2.9.: MRI scanner in clinical use. Reprinted from [112] with allowance
of Springer ("Publisher") provided by Copyright Clearance Center
("CCC").

ω0 = γ ·B0 (2.7)

2.2.1. Data acquisition

In an MRI scanner patients are positioned in the same configuration as in the CT
scanner; The data is acquired by measuring the inductive signal generated with certain
sequences when applied orthogonal magnetic fields are switched-off in sequence. The
idea is to magnetise the patient in the direction of the magnetic field to then apply a
second magnetisation field in the transverse direction so that Mtrans is maximum and
Mlong equals to zero and later turn off the transverse magnetic field, relaxation times
in the transverse plane (called T2) are then measured because of the sensing RF waves
after transverse magnetisation loss of 1/e ≈ 37%, which are characteristic for every
tissue type. Measuring longitudinal relaxation times are also possible from the same
sequence, in this case there is a longitudinal magnetisation gain of the body, the time
to recover the

(
1− 1

e

)
≈ 63% initial magnetisation is called T1 and depends on the

type of tissue (cf. figure 2.10). The density of spins (ρ, also called density of protons)
can be directly measured by applying a direct Fourier transform (FT) of the signal
received (S(t)) (cf. equation 2.8). Further augmentation of contrast can be achieved
by weighting the relaxation times or spin density with different acquisition parameters
(Time echo (TE) or Time repetition (TR)) or addition of contrast media (cf. figure
2.11) which for sake of document extension are not discussed in this document, yet
the reader can refer to the book of Dhawan [37].
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Figure 2.10.: Magnetizations loss after presence of external magnetic field in the trans-
verse (xy) and longitudinal (z) direction. Reprint from [37] with al-
lowance of John Wiley and Sons provided by John Wiley and Sons and
Copyright Clearance Center.

S (t) =

∫ −→
M(r, t)d3r FT−−→ ρ (~r) = ~M0

∫
S (~ω) ei(~ω·~r)d3r (2.8)

2.2.2. Image reconstruction

To reconstruct images from the physics principle of MRI, spatial encoding parameters
such as T1-weighted, T2-weighted and proton density (ρ) are required. For the sake of
simplicity, the axes x, y, z are going to be used, z-axis as the in-slice direction (or the
direction along the patient) and x − y axes as the transverse section or the in-plane
direction. To select the slice to be reconstructed, a linear external magnetisation field
is applied in the z-axis ( ~B = B0 ·~z). As the Lamour frequency depends on the applied
external field (cf. equation 2.7), the spatial encoding of the external field means that
the Lamour frequency is spatially encoded too (cf. figure 2.12). The remaining x
and y directions can be spatially encoded by measuring the Lamour frequency of
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when applying another linear gradient of external magnetic field in their respective
directions (this approach is called frequency encoding). A variation of the method
can be applied, instead of coding frequency for all of the x − y directions, one of
the directions could be spatially encoded by frequency, yet the other in phase (phase
encoding), to do so, the frequency encoding in one of the directions (let us say in
the x axis) is turned-off while the rate of change of the frequency encoding field with
distance (let us assume in the y direction) changes in a defined step-wise, the number
of encoded distances are proportional to the number of steps, for instance to produce
a slice of 256 × 256 pixels, the slope of frequency encoding field should be changed
256 times. To recover the spatial distributions of the parameters measured, as in CT
(cf. chapter 2.1.2), a reconstruction using filtered back-projection is performed for
the frequency encoding signals and for the phase encoding signal, there is no need of
filtered back-projection method.

Figure 2.11.: MRI slice of a brain scan using parameters such as T1-weighted, T2-
weighted and proton density (from left to right respectively) [37].

2.3. Positron Emission Tomography
As opposite to CT and MRI, PET is clinically considered the standard of func-
tional imaging modality, this means that metabolic processes inside the body can
be imaged directly using PET in addition to anatomical observations. It relies on
the β+-decay process of radioactive nuclei (Positron emission), which are chemically
bound to molecules that agglomerate to metabolic processes that the examiner might
be interested in. In PET scans for cancer imaging, the radioactive nucleus 18F is
routinely used due to its long half-life (cf. table 2.1), it is chemically bound to a cho-
sen radiopharmaceutical (cf. table 2.2) such as tumour metabolism. For instance for
fluorodeoxyglucose (FDG), it agglomerates in high presence of anaerobic glycolysis
in tumours. Because of the high accumulation of the radiopharmaceutical molecules
in determined metabolic process in tumours and the emission of positrons by the ra-
dioactive nuclei, imaging can be performed due to the frequent encounters of positrons
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Figure 2.12.: (a)MRI slice selection visualization process. Reprint from [174].

Positron emitting radioactive nuclei Two photon energy [KeV] Half-life time [min]

Fluorine 18F 511 109
Oxygen 15O 511 2
Nitrogen 13N 511 10
Carbon 11C 511 20

Table 2.1.: Common positron emitting radioactive nuclei. Reprinted from [2] with
allowance of John Wiley and Sons provided by John Wiley and Sons and
Copyright Clearance Center.

with electrons which yield to pair productions of photons with energies of 511 keVs
travelling in opposite directions (180 degrees). This effect is exploited for imaging
purposes.

2.3.1. Data acquisition

To acquire data, the patient must be injected with the desired radiophamaceutical.
The time of the scan is adapted to the weight of individuals and the time after injec-
tion. Detectors are placed surrounding the patient in a ring form, where coincident
photons are then absorbed, resulting in a tracked signal (cf. figure 2.13). the path
connecting the two coincident photons is called line of response (LOR). Accounting
for all detector signals located a different angles yield to a sinogram, which is then
exploited for imaging reconstruction.
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Uptake mech-
anism

Tracer Tumours im-
aged

Benefits Limitations

Anaerobic gly-
colysis

18F-FDG NSCLC, Head
and Neck tu-
mours, Oral
Squamous cell
carcinoma,
Gastric cancer

Good corre-
lation with
tumour aggres-
siveness and
prognosis, Eas-
ily reproducible
and broad
availability

Overlap be-
tween uptake in
normoxic and
hypoxia tumour
tissue

Nitroimidazole-
like uptake:
reduction into
RN02 radicals
and RNHOH
compounds in
hypoxic condi-
tions. The cova-
lent binding to
macromolecules.

18F-FMISO Head and
neck tumours,
Locally ad-
vanced HNSCC,
Gliobastoma
multiform,
Breast cancer,
NSCLC, Renal
cell carcinoma

Good availabil-
ity. Broadest
evidence of
value as a hy-
poxia tracer.
Good correla-
tion with im-
munochemestry
and prognosis
in most of the
cases

Lack of cor-
relation in all
tumours. Low
tumour-to-
background
ratio. Variable
reproducibility.

18F-FETNIM
(18F-
fluoroerythroni-
troimidazole)

NSCLC.
Esophageal
cancer

Promising tracer
with possible
correlation
with outcome.
Slightly higher
tumour-to-
background
ratio than
18F-FMISO

Limited evi-
dence compared
to 18F-FMISO.

18F-EF3 (18F-2-
nitroimidazol-
trifluoropropyl
acetamide)

Rats bear-
ing syngeneic
rhabdomyosar-
coma tumours.
Head and neck
tumours.

Promising tracer Very limited
evidence, mostly
preclinical.

18F-FETA (18F-
fluoroetanidazole)

Mice bear-
ing MCF-7,
RIF-1, EMT6,
HT1080/26.6,
and HT1080/1-
3C xenografts

Promising tracer
with better
biodistribution
than 18F-FMISO

Preclinical
evidence

Table 2.2.: Most used radiopharmaceuticals in PET imaging of tumour hypoxia [111].
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Figure 2.13.: Alignment of photon detectors for PET scanners and illustration of the
coincidence detection principle. Reprinted from [147] under the Creative
Commons Attribution 4.0 International License.

2.3.2. Image reconstruction

As in CT (cf. chapter 2.1.2), after obtaining the resulting sinogram, the process of
image reconstruction can be performed by either using analytic or algebraic meth-
ods. Nonetheless, image quality of PET scans in comparison with MRI or CT are of
lower quality, since only the accounted signals come from coincident photons. Modern
systems can measure the time between the detection of the two photons and subse-
quently the determination of the position of the pair-production to some extent (time
of flight PET, [18]), which increase contrast and resolution.

2.4. Imaging biomarkers

After the non-extensive summary of imaging modalities in medicine (cf. Chapter 2), it
is clear that tumour anatomy and function can be tracked, and consequently, tumour
changes. However, how to derive reliable measurements of the underlying biology or
structure in the scanned tumour from imaging modalities (Imaging biomarkers) is not.
The WHO and the new Response Evaluation Criteria in Solid Tumours (RECIST)
categorise tumour response after treatment in four types based on tumour size (com-
plete response, partial response, stable response and progressive disease [77, 157]),
which information can be easily obtained using single or multiple imaging modali-
ties. The reduction in tumour size is explained for the unavailability of tumours to
replicate or proliferate due to the lack of required nutrients and oxygen. Notwith-
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standing, reduction of tumour assessments are intra-observer dependent and therefore
prone to errors, which can be reduced by semi-automatic segmentation of tumours.
Besides, there are many studies which have found that despite tumour reduction in a
few patients, overall survival outcomes remain low (under 10%) [83, 118, 159]. More
complex imaging biomarkers can be derived which in this section they are going to be
divided in static-image-derived and dynamic-image-derived biomarkers. For sake of
document extension only the most heavily researched imaging biomarkers are going
to be discussed.

2.4.1. Static-image-derived biomarkers

As PET scanners are able to image biological mechanisms of tumours, depending
on the tracer, intensity uptakes from images are used to derive (semi) quantitative
imaging biomarkers. For instance, by injection of a FDG tracer when PET scans,
the assessment of the intensity uptake contrast of the static image of a patient, can
be used to follow glucose-transport activity, and consequently the aggressiveness of
the targeted tumour (since cancer cells require more consumption of glucose than a
healthy tissue.). A more pronounced intensity-uptake contrast in the imaged region,
indicates a higher glucose metabolism [84]. To quantify this effect, the standardised
uptake value (SUV) is derived from the intensity-value of the image when uptake
of the injected tracer divided by the average activity in the body of the scanned
patient [4] (cf. figure 2.14), which value is seen as semi-quantitative. The challenges
to use SUV lie on the perfect static image to derive calculations, duration of the
scan, plasma clearance of FDG, reconstruction method, among others that make
SUV difficult to replicate results in other studies [150]. Some investigations have used
SUVmean to only account for average intensity uptake inside the contoured tumour
and others prefer the use of SUVmax (maximum intensity uptake value inside the
tumour) to reduce intra-observer variability [78,106]. Other researchers in their wish
to make their methods reproducible, they use Metabolic tumour volume (MTV)
which instead of using intensity-uptake values, it counts the number of voxels or pixels
where predominant intensity-uptakes are, to then divide it by the total volume of the
tumour. In order to assess volume, an anatomical imaging modality is then used in
combination with PET (either MRI or CT) [28]. There are no agreements in research
about the right approach to segment or extract MTV, the most commonly used
approach is based on absolute or fixed percentage of SUVmax, and gradient or adaptive
segmentation methods [128]. Total lesion glycolysis (TLG) has been introduced
as novelty biomarker to profit from advantages of SUV and MTV. TLG multiplies
SUV and MTV magnitudes, which theoretically it should extract the intensity of the
activity glucose consumption as well as the metabolic activity and subsequently the
total tumour damage [69].
If instead of quantifying glycolysis inside tumours, other tumour metabolism char-

acteristics are wished to image, such as growth or hypoxia, the radiopharmaceutical-
tracer must be changed. For example, as hypoxia tracer, 18F-FMISO is commonly
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Figure 2.14.: (a) baseline 18F-FDG PET/CT scan of a 53-years-old male patient, the
highest contrasts represents the higher glucose consumption regions (b)
co-registered axial PET/CT images where two focal intensity regions can
be observed, the small one corresponds to a periform sinus squamous
cell carcinoma (SUVmean = 7.3 and SUVmax = 9.1), while the largest
one corresponds to a ipsiateral nodal metastasis (SUVmean = 22.9 and
SUVmax = 28.5) (c) fused CT and volumetric PET images that shows
small-size primary tumour (MTV = 1.6 ml) with large node MTV of
13.1 ml. Reprinted from [128].

used (cf. table 2.2), where similar (semi)-quantitative biomarkers can be derived
as in 18F-FDG PET, for instance, TBR which compares SUV inside tumours with
SUV in healthy tissues [117], or Hypoxic volume fraction (HVF) which is simi-
lar to MTV. Some radiopharmaceutical-tracers can be used even to image molecular
pathways, e.g. 64Cu-DOTA-VEGF121, which images VEGF (Tumour angiogenesis) cf.
figure 2.15. All of the explained imaging biomarkers have been proved to have certain
prognosis to treatment outcome in patients, but they still suffer from many challenges,
for instance, they have been observed to change in magnitude during treatment, so
many confounding studies have revealed different optimal time-to-event thresholds, in
order to derive these markers from static images. No agreement has been reached so
far either to use baseline static images or during treatment, and if during treatment,
when to derive these imaging biomarkers [128]. Besides, establishing a threshold to
classify the tumour accordingly is also conflicting, which yields difficulties to compare
across studies [15].

2.4.2. Dynamic-image-derived biomarkers

Some tumour characteristics can be only evaluated on a dynamic-basis. meaning they
are almost impossible to be described using only one single scan. For instance, assess-
ing tumour vasculature requires that at least two images are taken (before and after
contrast agent passage in tumour tissue), such that images are subtracted one another
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Figure 2.15.: Animal 64Cu-DOTA-VEGF121 PET scan, (a) small tumour (arrow)
presents signs of higher VEGF than the larger one (arrow in (b)). ID/g
represents the percentage of injected dose per gram of tissue. Reprinted
from [127] with allowance of Elsevier Science & Technology Journals
provided by Copyright Clearance Center ("CCC")..

resulting in the desired region of interest. The analysis for these types of imaging
biomarkers are more challenging since they demand expertise of image specialists. A
very simple imaging biomarker that can be computed from DCE-CT is the change
of hounsfield units after post injection of the iodinated contrast agent in the tumour,
since this correlates to tumour blood supply and the ability of tumour blood vessels
to concentrate contrast agent (an indicative of tumour angiogenesis). To quantify
difference in HU reduction the tumour perfusion score is proposed as the average
difference of HU (pre and post injection of the contrast agent) during treatment [95]
(cf. figure 2.16). Certainly, a similar imaging biomarker can be derived from DCE-
MRI (ie, Enhancing fraction), however the correlation of the signal produced by
relaxation time T1-weighted with the contrast agent passage (usually gadolinium) is
not linear, which makes quantification more complex than in CT [131]. Studies have
shown correlations between these biomarkers and outcomes of patients during cancer
therapy (cf. figure 2.17).

More complex modelling can be constructed from dynamic images to target biological
process of tumour tissues, that being the case of pharmacokinetic modelling which
has been used to track gadolinium passage inside tumours when administration to
patients from DCE- or DW- (still in exploratory phase [40]) MRI. Brix, Toft, the two
compartments exchange or tissue uptake models are frequently applied to search for
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MRI-based biomarkers such as Ktrans, ve, rate of contrast between plasma and
Extravascular extracellular space (EES) (kep), volume plasma (vp), blood
flow (Fb), plasma flow (Fp), permeability-surface area product (PS), relative
signal intensity at 80 seconds (rSI80), Initial area under concentration-time
curve at 60 seconds (IAUC60), among others. Here the treated patient must be
scanned in a sequence of 1-5 seconds, usually over a period of 10 minutes, to detect
changes in micro-vasculature of the studied tumour from the measured signal (T1 or
T1-weighted, cf. figure 2.18). As expected, such quick imaging acquisitions come
with drawbacks in spatial resolution, hence depending on needs, trade-offs must be
evaluated. Derived parameters from dynamic DCE-MRI have shown better results
in tracking tumour micro-vasculature abnormalities, which can even be used to de-
tect hypoxic tumours [39, 80, 122], than static-image based DCE-MRI [74, 113] with
better reproducibility [49, 49]. The preference of using DCE-MRI over DCE-CT for
dynamics studies is supported by the absence of ionised radiation and superior soft
tissue contrast of MRI in comparison to CT. Nonetheless, these parameters lack of
reference values for interpretation, as well as many of them strongly correlate with
the used imaging protocol or generation process which plays an important role at the
moment of consideration for multi-centre phase II or III trials.

In a similar approach, dynamic PET parameters can be computed by tracking changes
in intensity-uptake values in voxels in a sequence of scans (cf. figure 2.19) for different
tracers. As tracers target different biological processes in tumours, derived parameters
can explain broader tumour mechanisms than in dynamic DCE-MRI. Notwithstand-
ing, lower spatial resolution and longer image reconstruction times than in DCE-MRI
as well as on-site radiopharmaceutical production for imaging, make the modality
less attractive to integrate into clinics. The sequence acquisition is about 10 seconds
between frames in an interval up to 60 minutes after post injection of the desired
tracer. Time activity curves of voxels in the regions of interest are then fitted to ob-
tain quantitative imaging parameters as in dynamic DCE-MRI. Here classical kinetic
modelling is more complex since it assumes co-existence of different compartments
in the same volume (homogeneous oxygen concentration), which contradicts findings
of concentration gradients in tissues [162]. Besides blood input functions are also
challenging to obtain from time activity curves. This problem might be solved with
help of simulation of biological mechanism for production of PET images [172].
Due to the many limitations, lack of standards and significance, up to date of work
publication, none of the discussed imaging bio-markers have been accepted as a sur-
rogate endpoints to treatment.
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2. Basics of imaging modalities and biomarkers for RT

Figure 2.16.: Pelvis CT scan, (a) Average HU in tumour tissue before treatment (38.4
± 5.9) and after contrast media passage (53.9 ±7.8, cf. white arrow).
(b) Average HU in tumour after seven days treatment (36.9 ± 5.6) and
contrast media post injection (48.3 ± 6.9, cf. white arrow) [95].
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2.4. Imaging biomarkers

Figure 2.17.: (A) Enhanced tumour voxels (B) total of tumour voxels (C) discrimi-
nation between stable and progressive tumour disease according to per-
centage of enhanced fractions in different stages of therapy. Reprinted
from [127] with allowance of Elsevier Science & Technology Journals
provided by Copyright Clearance Center ("CCC")
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Figure 2.18.: Work-flow for analysis of phamacokinetics modelling and parameter ac-
quisitions. AIF: Arterial input function, PS: permeability surface, Fp:
plasma flow, vp: plasma volume. Reprinted from [17] with allowance of
Elsevier Science Technology Journals provided by Copyright Clearance
Center ("CCC")
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Figure 2.19.: Sequence of dynamic 18F-FMISO PET scans for one slice in a HNSCC
cancer patient to study changes in uptake in a voxel (black-border circle)
in time. Reprinted from [160].
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3. Radiomics

As discussed in chapter 2, very few quantitative markers can be obtained from static
images with only RECIST as approved endpoints in treatment. In general terms,
medical imaging modalities are used in a qualitative fashion in clinics (diagnosis,
treatment planning, and follow-up and treatment guidance). On the other hand,
despite the multiple possible parameters which can be obtained from dynamic imag-
ing, clinical integration is cumbersome. This is due to the complexity of models,
non-widely accessible medical imaging technologies for many health-care institutions,
costs, as well as problems that come from imaging sciences, such as a lack of pro-
tocol standardisation. In 2012, a paper published by Lambin et al. [98] proposed a
high-throughput number of mathematical parameters that could be obtained from
static images of which many are not obvious to medical doctors. This parameters,
also called features due to their origin in the computer vision field, require high order
statistics and signal filtering analysis of images to be derived. They aim to capture
the underlying biology of tumours from the tomographic data by assuming that the
current state of the medical image modalities already have the power to quantify
information about the pathophysiology of tumours [5,57,97]. In this chapter, a sum-
mary of the radiomic framework will be provided, as well as an explanation of the
most frequently used features in the field.

3.1. The radiomic workflow

The novelty of radiomics is highlighted on the feature extraction process, since a high
number of quantitative image parameters are proposed to characterise ROIs. Here
a ROI is defined as a contoured or segmented proportion of the tomographic data
that is aimed to be studied (e.g. primary tumours, metastatic lesions, lymph nodes
or healthy tissue). Many factors need to be considered at the moment of computa-
tion of the quantitative image parameters, since variations in values from the same
ROI can be obtained due to bias from segmentation algorithms, imaging protocols
and software implementations (intensity discretization, imaging filtering, sampling,
etc.) [42, 68, 181]. The reduction of these sources of variations requires full the dis-
closure of implementations and imaging protocols. The radiomic pipeline consists,
broadly speaking, in four processes: image extraction and pre-processing, feature ex-
traction, feature selection and, finally, model selection, assessment and validation (cf.
figure 3.1).
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After selection of a ROI, the resulting images are mined to obtain high numbers of
hand-crafted features which, generally speaking, can be divided in four family types of
features: intensity histogram, size and shape, texture and features after image filter-
ing. All radiomic studies start with the selection of desired targets to predict, which
can be either clinical endpoints, biological processes in tumours, or survival outcome.
After the full radiomic analysis, these features are expected to provide reports on
tumour phenotype and impact positively the tumour treatment in patients. Here,
a common frame of imaging protocols is necessary to reduce confusing variability,
which is well-known in the field [57, 68, 143, 144, 178] but, nevertheless, still common
in radiomic studies.

Figure 3.1.: Scheme of the radiomics work flow. Reprinted from [97] with allowance of
Nature Publishing Group (Permissions) provided by Copyright Clearance
Center ("CCC").

Here, the exploratory analysis comes from the fact that many of the radiomic features
computed are highly correlated by either intrinsic correlations (mathematical defini-
tions of parameters) or correlations of intra-sample feature variabilities (which do not
add any relevant information). In both cases, redundant features can be reduced by
clustering highly correlated features and either merge them in one single feature per
cluster (for instance by using PCA) or choosing one of the features as representative
inside the clusters.

In the modelling phase, one can identify the feature selection process and model
application methodology itself. The former (probably the most important one [101])
is applied due to the high number of features that still remain after the exploratory
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analysis. Theoretically, the number of hand-crafted features extracted can be unlim-
ited if different filters are applied, but this risks model performance due to over-fitting
since there will be more features than observations (patients). The latter depends on
the resources available and preference of the study. For instance, if there are strong
reasons to assume independence between features, logistic regression models might
be preferred. Model selection affects the performance of features [132]. Therefore,
applications of a variety of models are recommended.

Validation phase or holdout test phase is the final stage before reporting findings
and can be set in an either internal or external cohort that has not been used in the
modelling phase. The validation phase is used to confirm or dismiss findings from the
learning phase. Similar performance metrics must be obtained between the learning
phase and the validation phase, where the reader can observe the quality of the used
methods. The external validation phase is always preferred because real, ’untouched’
validation can be better guaranteed.

3.2. Image feature engineering

As discussed in section 3.1, the novelty of radiomics relies on the proposition of
high-throughput features to characterise regions/volumes of interest from volumet-
ric images. In this section a description of the most used imaging features used in
radiomics will be imparted. These definitions follow the recommendations of the doc-
ument of the international collaboration for standard definitions of image features in
Radiomics which the reader can refer to the manual for more details and mathematical
definitions [184].

3.2.1. Intensity-based features

Intensity-based features are assumed to describe the first order statistical distribution
of values of the analysed volumetric-image. In this category, as volumetric-images are
treated as samples of values, one can measure the centre of the distribution by means
of, for instance, the sample mean, which is described as the average intensity value
inside the ROI. In case of CT, it might provide information of the structure density
value of tumours (cf. section 2.1). median is required by computation and is ordering
the values of the imaging sample from low to high and chooses the value in the middle.
In case that the sample value distribution is even, the average of the two values in
the middle is taken. Measuring the spread of the distribution is also important in the
description of first order statistics. Parameters such as variance refer to a level of
average difference between the mean intensity value and other intensity values inside
the ROI (mean absolute value) to the power of two. Median absolute value
measures the average distance between every value in the image and the median.
Coefficient of variations describes the ratio between the average distance of values
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with respect to the mean and the mean itself of the grey level values of ROI, or, in
other words, it measures dispersion. Range is defined to account for the distance
between the minimum and the maximum grey level. Due to the imperfect delineations
of ROI features such as maximum or minimum grey level are sensitive to outlier
values, hence, the features such as 10th percentile and 90th percentile dismiss
90% of the highest values and compute the maximum in the subset. Likewise, 90th
percentile dismiss 10% of the highest values and compute the maximum intensity
values of the distribution inside the subset. Interquartile range (IQR) is similar
to the range but without extreme values (usually values between 25% and 75% of
the distribution). First order energy is defined as the square sum of grey level
values in the ROI. Quartile coefficient of dispersion is similar to the coefficient
of dispersion, yet more robust since it does not count on outliers (frequently from
25th to 75th percentile of the intensity values in the ROI). Skewness is defined as the
degree of value accumulative tendency before or after the mean of grey level value
distribution (cf. figure 3.2). The excess of kurtosis measures the peakedness or the
distance between the most repeated intensity value and the rest in the distribution
(cf. figure 3.3). Maximum grey level represents the maximum intensity value that
can be found in the ROI. In this sense, maximum grey level can be also computed
as the largest intensity value inside the ROI. Finally, root mean square, or also
called the quadratic mean, is the square average of the intensity values in the sample.
In general terms, these features provide a broad view of the relationship between

values and relative frequency inside the ROI.

3.2.2. Shape-and-size based features

Information from size and shape of the volumetric-image can also be computed by
accounting the delineation masks. Here, two representations might be implemented:
masks consist on a collection of voxels with certain volume or masks represent a sur-
face mesh containing the volume of the ROI. Feature computations using the two
approaches barely differ when masks are sufficiently large (more than 1000 voxels),
yet overestimation occurs otherwise because of the lack of optimal considerations of
the edges in ROI by the first approach. Volume is represented as the count of voxels
belonging to the ROI. Surface Area is the area occupied by the external surface
which contains the ROI. Surface-to-volume ratio as its name suggests this is the
fraction between the surface area and the volume of the ROI, this feature aims to
account differences not only in shape but also size. In this sense many other fea-
tures might be derived and thus correlated, such as compactness 1, compactness
2, spherical disproportion, sphericity, asphericity which aim to measure how
sphere-like is the ROI, derivatives can be obtained such as maximum diameter
(distance between the two most distant vertices). One can change comparisons of
simple geometric forms, for instance instead of enclosing the ROI in a sphere form,
it could be an ellipsoid, then computations of features such as axis lengths, defined
as the longest distances inside the enclosing ellipsoid in 3 directions, major axis
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Figure 3.2.: Skewness visualisation: In the values distribution of the left-hand side
skewness is positive (a higher frequency of values is accumulated before
the mean (x̄)), while in the right-hand side it is negative (a higher fre-
quency of values is accumulated after the mean).

Figure 3.3.: Kurtosis visualisation example: Kurtosis measures the peakedness of a
distribution of values.

length minor axis length least axis length, these parameters help to measure
the elongation and flatness of the ROI, one can also compute fraction of the actual
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volume of the ROI in comparison to the enclosing ellipsoid (volume density in a
enclosing ellipsoid), in the same direction area density in a enclosing ellipsoid.
Measurements of distributions of low or high intensity values inside the volume in the
ROI can be captured with centre of mass shift.

3.2.3. Texture-based features

Texture features belong to the high order descriptive statistic analysis, since they
account for associations of not only single grey level values in the distribution but
their vicinity, these features are assumed to quantify volumetric image structures, in
the medical field image heterogeneity. To count for the vicinity, auxiliary occurrence
matrices speed-up computations of features. Let us consider the case of:

The grey level co-occurrence matrix (GLCM):

The GLCM quantifies repetitions of values across 13 unique directions in case of 3D
in the ROI. If considering only the next neighbour: (1, 0, 0), (0,1,0), (0,0,1), (0,1,1),
(0,1,-1), (1,0,1), (1,0,-1), (1,1,0), (1,-1,0), (1,1,1), (1,1,-1), (1,-1,1) and (1,-1-1), which
yields to 26 connected neighbours. The construction of the GLCM consist of assum-
ing a 3D matrix form, where indexes on every axis (i, j, k) are a sorted discretised
value of the intensity distribution of the ROI, then for a specified direction, every
combination index is filled by the number of repetitions of index combinations in the
specified direction (cf. figure 3.4). A single matrix is obtained if averaging over all
possible directions. Finally using this matrix we can compute features such as: joint
maximum probability which account for the most co-occurrence value in the av-
eraged GLCM [66], joint average which describes the value-weighted sum of joint
probabilities [166], joint variance which computes the variance of the GLCM, joint
entropy which describes the entropy of the GLCM, angular second moment which
is also called uniformity or energy of the GLCM [29], contrast that describes values
of the GLCM yet weighted by the square of differences of discretised values in the im-
age [184], Dissimilarity which essentially is the same as contrast yet weights do not
strongly bias the result since, they are obtained by only the difference of discretised
values, Inverse difference, which as its name suggests, quantifies how homogeneous
the volumetric image is, by reducing values of the GLCM with large differences [29],
normalised inverse difference which normalises inverse difference by the number
of unique values in the image [66], correlation which computes correlations inside
the GLCM, or auto-correlation [156], difference average quantifies dissimilarities
for the diagonal probability or in other words an auxiliary matrix derived GLCM that
counts for differences between discretised values in the voxels [168], difference vari-
ance measures the variance for the diagonal probability [67], difference entropy
computes the statistical entropy of the diagonal probability, measure of informa-
tion correlation which describes the information gain of the GLCM with the values
of the volumetric-image [67].
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(a) Example of pixel values
(discretised)

(b) GLCM in (1, 0) direc-
tion

(c) GLCM in (0, -1) direc-
tion

(d) GLCM in (1, 1) direc-
tion

(e) GLCM in (-1, 1) direc-
tion

(f) GLCM in (-1, 1) direc-
tion

Figure 3.4.: Example of a GLCM construction using first neighbours in an 2D image,
this analysis can be extended to the case of 3D. Reprinted from [184]

The grey level run length matrix (GLRL):

As GLCM only accounts for pairwise discretised neighbours voxel values, another aux-
iliary matrix was introduced by Galloway [50] to account for consecutive discretised
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voxel values in different directions. A run length describes the length of repetitions
of consecutive discretised voxels. An example of a GLRL construction is shown in
figure 3.5. As in GLCM a merged matrix in all possible directions can be obtained to
compute features such as short runs emphasis which its name suggests it sums up
all values inside the GLRL where short runs contribute stronger to the sum, in imag-
ing terms it accounts for micro subvolumes inside the volumetric image, long runs
emphasis which as opposite to short runs lengths, it computes macro sub-volumes
in the volumetric image, low grey level run emphasis which describes length of
volumes accounted by low values in the image. In a similar direction yet emphasis is
in high values in the image is high grey level run emphasis, short run low grey
level emphasis which emphasises low values and micro sub-volumes in the image
or in other words the first quadrant of the GLCM, the second, third and forth quad-
rant can be also emphasised by the short run high grey level emphasis, long
run low grey level emphasis and long run high grey level emphasis respec-
tively [34]. Distribution tendency of the GLCM can also be quantify by grey level
non-uniformity, run length non-uniformity, grey level variance, run length
variance, run entropy [6], run percentage quantify the proportion between the
number of runs and the maximum possible runs, which means that for highly uniform
volumetic images, run percentage is very low.

The grey level size zone matrix (GLSZ):

Regardless of directions or run-lengths, the GLSZ searches for connected voxels in the
volumetric image. Connected voxels means that discretized voxel values are connected
to construct a region if neighbour voxel values of the analysed voxel are the same
regardless of direction or run-lenghts. In 3D the connectedness is evaluated in 26
neighbour voxels (cf. figure 3.6). From the GLSZ, small zone emphasis can be
computed, as its name suggests it weights heavily small size-zones (regions). In the
same direction large zone emphasis can be derived, here the relevance lies on the
large volumetric substructures of the ROI. Low grey level zone emphasis looks for
penalising high discretised voxel values and with the same analysis High grey level
zone emphasis penalises low voxel values in the GLSZ matrix. The GLSZ matrix
can also be divided in four quadrants, the upper-left, upper-right, bottom-left and
bottom-right, where small zone low grey level emphasis, large zone low grey
level emphasis, small zone high grey level emphasis, large zone high grey
level emphasis accounts for the quantity of entries in these quadrants respectively.
As in GLRL tendency distributions across size zones and grey levels can be accounted
by grey level non-uniformity, size zone non-uniformity, grey level variance,
size zone variance, size zone entropy. The fraction of realised zones divided by
the largest number of potential zones can be also derived (Zone percentage), which
as in GLRL the lower the number, the more homogeneous the ROI.
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(a) Example of pixel values
(discretised)

(b) GLRL in (0, 1) direc-
tion

(c) GLRL in (1, 1) direc-
tion

(d) GLRL in (-1, 1) direc-
tion

(e) GLRL in (1, 0) direc-
tion

Figure 3.5.: Example of a GLRL construction in an 2D array of values, this analysis
can be extended to the case of 3D. Reprinted from [184]

The grey level distance zone matrix (GLDZ):

Here, the size-zone, voxel value and location relation is targeted, thus two matrices are
actually computed, the first one as in GLSZ and the second one maps the minimum
number of voxels where the edge of the ROI is reached (cf. figure 3.7b) and from
there the GLDZ computation can be performed (cf. figure 3.7) [158]. This accounts
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(a) Example of pixel values
(discretised)

(b) GLSZ in 8-connected
neighbour voxels for the
2D case.

Figure 3.6.: Example of a GLSZ construction in an 2D array of values, this analysis
can be extended to the case of 3D Reprinted from [184].

for the location of the volumetric substructures in the image. From the GLDZ matrix
features which measure different parts of the matrix can be obtained such as small
distance emphasis, which heavily weights low distances (low j-th indexes) in the
GLDZ, in less abstract terms it emphasises volume substructures that are located
closer to the edge of the ROI, large distance emphasis emphasises for volume
structures that are at the core of the ROI, in an analogue way, low grey level- and
high grey level zone emphasis can be derived from the GLDZ to emphasis in low
and high voxel values. As in the GLSZ, the GLDZ can be constructed to emphasise
different regions (small distance low grey level, small distance high grey level,
large distance low grey level and large distance high grey level emphasis).
Tendency distributions in the GLDZ are accounted by grey level non-uniformity,
zone distance non-uniformity, grey level variance, zone distance variance,
zone distance entropy and finally the fraction between the realised zones and the
maximum number of potential zones (Zone percentage).

The neighbourhood grey tone difference (NGTD):

The NGTD accounts for occurrence distributions inside a defined neighbourhood,
voxel-value probability and sum of the magnitude of differences between voxel-values
and the average voxel value within the neighbourhood [7]. An example of a NGTD
construction can be observed for the case of 2D in figure 3.8, for detailed computations
the reader might refer to the manual of the IBSI collaboration [184]. Here features
such as coarseness provides an indication of the range of change across the ROI
[7], as well as contrast yet here voxel values are also weighted. Penalisation of
small changes in voxel values in neighbouring voxels are captured by busyness.
Complexity measures rapid changes of voxel values weighted by large differences of
them. Finally, strength provides a measure of slow changes of voxel values weighted
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(a) Example of pixel values
(discretised)

(b) Distance map of the
ROI to edge for the 2D
case. (c) GLDZ for the 2D case.

Figure 3.7.: Example of a GLDZ construction in an 2D array of values, this analysis
can be extended to the case of 3D. Reprinted from [184]

by large differences in voxel values.

(a) Example of pixel values
(discretized)

(b) NGTD in 1 pixel
distance and defined
neighbourhood for the
2D case.

Figure 3.8.: Example of a NGTD construction in an 2D array of values, this analysis
can be extended to the case of 3D. Reprinted from [184].
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3.2.4. Filter-based features

Filter-based features are derived when enhancing images either in spatial or frequency
domain. Many filters (such as Laplacian filter, Gabor filter, Wavelets filters) can be
applied to images depending on the pattern of the image to be enhanced and the
domain. For instance in the spatial domain, the Laplacian filter is very useful to
highlight borders within the image (cf. figure 3.9). Here, after the application of the
laplacian filter mask to the image, a new image, where only the borders can be seen,
is generated or in other words the image displays regions where strong changes of
pixel/voxel values appeared. The idea is to analyse or quantify this images using the
features that have been already explained in previous sections.
As all images can be represented in the frequency domain with no loss of information
(via Fourier transform), it is natural to think about pattern variations enhancement
in this domain. Although it is difficult to make associations between the image
in the spatial domain with its frequency domain, some statements can be deduced
from frequency domain representations of the image. For instance frequency values
correspond to changes to pattern variations of the image in the spatial domain (cf.
figure 3.10). For the complete explanation of image filtering, the reader might refer
to the book of Gonzales et al [59].
In the Fourier representation of images, enhancement of low changes of pattern vari-
ations can be acquired by applying a threshold function or mask, this is called low
pass filter. The opposite can also be done (highlighting of extreme changes of pattern
variations) which is called high pass filter. Due to the dimensionality of radiological
images, continuous separations of pattern variations are applied with high and low
pass filters in frequency domain image (cf. figure 3.11). Here quantification of the
yielded images can be obtained by features from intensity and texture categories of
radiomic features.
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Figure 3.9.: Upper-left figure is an original image from the north pole of the moon, the
upper-right is the image obtained after applying a laplacian filter of the
north pole of the moon, the bottom-left image is the image of the north
pole of the moon after applying the laplacian filter but shifted in order
to provide better visualisation and the bottom-right image is the original
image with addition of the laplacian filter image, such that borders can
be highlighted. Reprinted from [59] with allowance of The Institute of
Electrical and Electronics Engineers, Incorporated (IEEE) provided by
Copyright Clearance Center ("CCC").
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Figure 3.10.: Image and Fourier domain representation of the image, x and y are the
coordinates of pixel in spatial domain while u and v in the frequency do-
main. Reprinted from [59] with allowance of The Institute of Electrical
and Electronics Engineers, Incorporated (IEEE) provided by Copyright
Clearance Center ("CCC").
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Figure 3.11.: Image and decomposition of the image in low and high filters subse-
quently. Reprinted from [5] supplementary material with allowance of
Springer Nature provided by CCC.
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4. Machine learning in the context of
radiomics

The number of possible image biomarkers that can be obtained from radiomics are
theoretically infinite, problems appear when this number (feature space) is so large
that the data available becomes sparse to find statistical significance (the so called
curse of dimensionality). Fortunately, in modern days that is not only an issue of ra-
diomics but in many other fields. Mathematicians, statisticians, physicists and com-
puter scientists have developed algorithms and methods to deal with large amounts
of data and obtain profits out of them since the eighties, this field is called Machine
Learning (ML). In this chapter an overview of the most common machine learning
methods will be provided, a complete reference of machine learning is out of the scope
of this thesis, nonetheless the reader might refer to the book of Mohri et al [116].

The general definition of ML is, as its name suggests, to teach machines (computers)
to learn from experienced data to foresee outcomes of new input data. A machine
learning pipeline consists of data mining, which aims to extract data out of the prob-
lem to be solved, data cleaning, which means to process and prepare the data in a
format that can be read by a computer or a programming language, feature selection
or reduction, which intends to select or reduce features to only the relevant ones for
the aimed task, mathematical modelling, which selects the best model and tune it
for prediction tasks and finally validation and/or holdout test, which aims to confirm
predictive power of the chosen mathematical modelling (cf. figure 4.1). Usually in
radiomics the learning data (also called experienced data) is labelled which means
that the outcome target (such as clinical status, stage, recurrence, among others) is
known for every sample. Therefore the pipeline that will be explained refers to the
supervised machine learning scheme. A compelling description of the different ML
stages will be provided in the following sections.

4.1. Feature exploration

One of the problems in radiomics is that many of the proposed features are correlated
by either definition or variability, avoiding these features improves results since they
do not add new information and lead to over-fitting. Implementations of strategies
to deal with correlated features are needed such as PCA, kernel PCA and clustering.
The first step is to measure correlations of features, which can be captured by Pearson
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Figure 4.1.: Supervised machine learning pipeline.

product-moment correlation score (cf. equation 4.1). In short the Pearson score (r) is
a pair-wise measurement of linear dependence between features (x and y). The range
of the Pearson score is between -1, when features are perfectly negative correlated,
and 1, when features are perfectly correlated. The value 0 means no linear correlation.

r =

∑n
i=1 [(xi − µx) (yi − µy)]√∑n

i=1 (xi − µx)2
√∑n

i=1 (yi − µy)2
(4.1)

An assessment for pair-wise monotonic correlation between features can be captured
by the Spearman correlation score (rs, cf. equation 4.2), which tends to be a general-
isation of the Pearson score [1]. Here a ranking (d) is needed to be constructed across
the number of entries (n) from features (Usually from higher to lower values). There
are many approaches to account for pairwise correlations, however as the topic is out
of the scope of this thesis, the reader might refer to the book of Dodge [38].

rs = 1− 6
∑
di

n (n2 − 1)
(4.2)

4.2. Feature reduction algorithms
After assessing pairwise correlations of features, clusters of highly correlated features
can be constructed. The scientist can choose how to proceed with highly correlated
features, one of the most intuitive practices is to choose only one feature inside the
cluster to represent the information captured in it. Notwithstanding, as clustering
features implies an arbitrary correlation threshold to group features, choosing one
feature as representative of the cluster might yield into information loss. Alternatively,
other strategies for feature reduction such as PCA are preferred since it constructs new
features inside clusters with maximum variance (minimum information loss) inside
clusters as representatives, here the trade-off comes from the loss of feature meaning,
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which it can be reduced by choosing a high correlation threshold (usually more than
0.90 and less than -0.90). Feature reduction means to project the original feature
space onto a new feature space and compress data that keep most of the relevant
information.

4.2.1. PCA

PCA is an unsupervised linear transformation method which aims to find directions
of maximum variance inside the original feature space and project them onto a new
feature space with lower or equal dimensions than the original feature space (cf. figure
4.2) [138]. Let us suppose that the original space is composed from a d-dimensional
feature vector x = [x1, x2, ..., xd] with x ∈ Rd, a transformation matrix W is needed
such that the projections z = [z1, z2, ..., zk] = xW , with W ∈ Rd×k and z ∈ Rk

(commonly k � d). As the reader might wonder, features with different scales alter
the variance direction, therefore scaling is required when PCA is applied. Here, the
idea is to find W by means of linear algebra methods of calculating eigenvalues and
vectors, where the largest eigenvalues represents the importance of the feature onto
the composition of the eigenvector.

Figure 4.2.: Let us assume that x1 and x2 are original features, PC1 and PC2 are
orthogonal projections onto the original feature space, PC1 captures the
highest variance direction in the original feature space. Reprinted from
[138] with allowance of Packt Publishing Limited provided by Copyright
Clearance Center ("CCC").
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4.2.2. Kernel PCA

When correlations between features are not linear, PCA fails to project the feature
space into high-variance-lower-dimension feature space. As an alternative, the use of
a kernel to increase dimensionality of feature space into a new feature space where
linear correlations are feasible and then applied PCA is the core of kernel PCA. In
mathematical terms this means to find z = φ(x), where φ : Rd 7→ Rk and k � d. Here
the selection of the function φ derives the so-called kernel, in literature the following
kernels are proposed:

The polynomial kernel:

k
(
xi,xj

)
= φ

(
xi
)T
φ
(
xj
)

=
((
xi
)T (xj)+ θ

)p
(4.3)

Where θ is an arbitrary constant and p is the order of the polynomial.

The hyperbolic tangent kernel:

k
(
xi,xj

)
= tanh

(
η
(
xi
)T (xj)+ θ

)
(4.4)

Here η and theta are arbitrary constants.

The Radial Basis Function (RBF) kernel:

k
(
xi,xj

)
= exp

(
−‖x

i − xj‖2

2σ2

)
(4.5)

After choosing the right kernel for the feature space problem, the usual PCA strategy
can be implemented. For the complete development of the strategy the reader might
refer to the publication of B. Scholkopf et al [151].

4.3. Feature selection algorithms
In the context of radiomics, the course of dimensionality is a latent problem, due to
the amount of inputs (features) extracted from images. Fortunately not all of them
are relevant to the outcome prediction it is targeted, however the choice of the right
subset of inputs to maximise the performance of the selected model plays an even
more important role in radiomics than model selection [101]. Broadly speaking feature
selection algorithms can be classified in three categories, filter-based methods, which
is independent of the classifier, wrapper and embedded methods, which are classifier
dependent. In wrapper methods the utility of the candidate subset of features is
assessed by the error metric of a particular classifier in the training/test (sometimes
also called validation) phase. As the method is based on searching an adequate subset
of features inside the feature space for a particular classifier, it results to high cost
in computation as well as the tendency to be overly specific for the classifier, which
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may yield into lack of generalisation. In embedded methods the feature search is
reduced to only the training phase, which reduces computation costs. Nonetheless,
limitations are still present since the feature subset still relies on the selected classifier.
On the other hand filter methods are constructed over the assessment of the can-
didate feature or subset of features by a heuristic scoring criterion (usually based on
statistical tests, variance or information among others). Filter methods are computa-
tionally efficient and independent of classifiers [23]. The selection of the approach to
follow depends on the number of events/observations and features/inputs, which for
instance for embedded methods are superior for large number of observations, while
wrapper methods become impossible for more than forty features [45] (cf. figure 4.3).
In radiomic studies, the number of features are often rather large with very few data
points (patients), therefore filter methods are frequently the most suitable approach
as a first feature selection algorithm. The determinant element in filter methods is
the heuristic scoring criterion which is translated into a relevance index (ri) with aim
to maximise "relevancy" with minimum redundancy. Here, some of the most used
relevance indexes used in radiomics are presented [132]:

4.3.1. Fisher score

The fisher score aims to select features that maximise separation of values between
class labels (m) and minimise the within class label distance [41]. In other words it
favours features with larger distances between the average label (µd,m) and feature
average (µd) with lower variance within the label (σ2

d,m) as follows:

ri(xd) =

∑
m nm (µd,m − µd)2∑

m nmσ
2
d,m

(4.6)

Here, nm accounts for the number of samples or observations (patients).

4.3.2. T-test score

The T-test score searches for features that could largely separate classes with maxi-
mum stability or low noise (variability across observations) as follows:

ri(xd) =
µ1 −

∑
m=2 µm√∑

m

(
σ2
m

nm

) (4.7)

The reader might notice that m refers to the label class and nm the number of
observations/samples inside the label class. The T-test score provides outstanding
results when the number of samples are low (under 40) with significantly high number
of features [79].
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Figure 4.3.: Summary of the advantages and disadvantages of feature selection ap-
proaches. Reprinted from [146] with allowance of the Oxford University
Press provided by the Copyright Clearance Center ("CCC").

4.3.3. χ2 score

On contrary to the previously defined criterions, the χ2 score is histogram-based of
samples grouped in r feature values across classes.

ri(xd) =
∑
r

∑
m

(nr,m − µr,m)2

µr,m
(4.8)

Here nr,m represents the number of samples that have the r-feature value in the m
class. µr,m is defined as follows:

µr,m =
ni · nm
N

(4.9)
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where nr stands for the number of samples with r-feature value and nm the number
of samples belonging to the m class. N is the total number of samples [132].

4.3.4. Wilcoxon rank test score

The Wilcoxon rank test ranks features according to separations of the median popu-
lation between classes as follows:

ri(xd) = (N − 1)

∑
m nm (µrm − µr)

2∑
m

∑
nm

(rm,nm − µr)2
(4.10)

The rm,nm is the rank value of the sample in class m, µrm stands for the average of
the rank of samples of m class, and µr is the mean rank of all samples [132].

4.3.5. Gini index score

The Gini score is also accounted as a measure of impurity and can be computed as
follows:

ri(xd) = 1−
∑
m

(p(m | xd))2 (4.11)

Where p (m | xd) is derived from the probability of having m given the feature xd.
For smaller gini index score, the subset of features can predict better the classes.

4.3.6. Mutual Information Maximisation

Another impurity measure which comes from information theory of Shannon [153].
As follows:

I (xd | m) =
∑
xd

∑
m

p(m | xd) log

(
p(m | xd)
p(m)p(xd)

)
(4.12)

In other words it measures the amount of entropy loss caused by the introduction of
a xd feature.

4.3.7. Mutual information feature selection

Here the relevancy score (ri) penalises redundant features (xd with xk) and favours
features with mutual correlation to outcome class (m) as proposed by Battiti [11]:

ri(xd) = I (xd | m)− βI (xd | xk) (4.13)

Battiti proved that β = 1 is frequently optimal, yet if β = 1
d
where d is the number of

features, minimises the relevancy-redundancy trade-off as proved by Peng et al [134].
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4.3.8. Joint mutual information

The relevancy score favours features (xd) that in combination with another feature
(xk) can correlate with the outcome classes as follows [108]:

ri(xd) = I (xd, xk | m) (4.14)

4.3.9. Conditional infomax feature selection

The relevancy score, similar to the joint mutual information relevancy score, rewards
features xd that in combination with other subset of features xk inside the feature
space correlate with outcome class m, yet features xd correlate with the outcome
label at the same time. Besides it penalises features that correlates with any other
one inside the feature space as follows [107]:

ri(xd) = I (xd | m)− I (xd | xk) + I (xd, xk | m) (4.15)

For more relevancy scores, the reader might refer to the work of Koller and Sahami [93]
and Yu and Liu [179]. The complete description of wrapper methods, please refer to
Pudil et al [136] and Siedlecky and Sklansky [154]. For embedded methods, please
refer to Duda et al [41] and Guyon et al [64].

4.4. Machine learning models
As a part of the radiomics pipeline, selection of a model that is able to predict
outcomes from a proposed subset of features is a decision of the researcher based
probably in its field of expertise, since ML models come from multiple disciplines
inside computer science, mathematics, neuroscience, physics and biology, the decision
is mostly biased on the knowledge of models and not the suitability of models to
data, which may yield into lack of generalisation in unseen data. A good practice of
machine learning in the context of clinical studies relies on testing features with a
handset of models and perform analysis on them [31]. The ML methods in this work
were implemented inside the binary and multi-label classification tasks (supervised
machine learning) as follows:

4.4.1. k-Nearest neighbours (KNN)

The KNN model is one of the most intuitive models, it does not learn any deci-
sion function from data but it rather clusters new input based on similarity to the
experienced data (cf. figure 4.4). The algorithm can be summarised in:

1. Select the number of neighbour data-points k and a distant metric

2. Find the k-closest data-points to the new data point
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Figure 4.4.: Visualisation of of how new data-points are labelled according to one of
the classes based on majority vote in KNN, x1 and x2 represents the fea-
tures in the hypothetical problem. Reprinted from [138] with allowance
of Packt Publishing Limited provided by Copyright Clearance Center
("CCC").

3. Assign the label to the new data point based on voting of the k-nearest data-
points

The main advantage of a KNN is the adaptability to collection of new data, however
removing samples burdens the performance of the classifier. Besides the complexity
problem of KNN grows linearly as the number of samples increases [46].

4.4.2. Logistic regression (LogR)

Despite of the name this model is very popular among clinical studies to establish
thresholds for decision making (classification). The decision function is the sigmoid
function (cf. equation 4.16) which due to the S shape (cf. figure 4.5), it can be
fitted to separate outcome classes across feature values. Let us assume z as the
net combination of inputs (x) with adjusted weights (W), such that z = WTx =
w0 + w1x1 + w2x2 + ... + wdxd being d the cardinality of x or in other words, the
number of features.

φ(z) =
1

1− e−z
(4.16)
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Figure 4.5.: Sigmoid function visualisation. As z →∞, φ(z)→ 1, when z = 0, φ(z) =
0.5 and if z → −∞, φ(z) = 0. Reprinted from [138] with allowance
of Packt Publishing Limited provided by Copyright Clearance Center
("CCC").

To fit the W according to features and label, a construction of a cost function is
required as follows:

J(W) = C

[∑
i

(
− log

(
φ(zi)

)
+
(
1− yi

)) (
− log

(
1− φ(zi)

))]
+

1

2
‖w‖2 (4.17)

Which accounts for the regularisation error of the logistic regression function in com-
parison to the actual classification labels. Here to find the adequate W, optimisation
of the function J(W) with respect to W is needed. The constant C accounts the
strength of the constraint to the samples. The success of the model depends on the
linear separability of the samples in the feature space with the label classes. For the
detailed deduction of the weights, the reader might refer to the book of Friedman,
Tibshirani and Hastie [45].

4.4.3. Support vector machines (SVM)

The logistic regression algorithm intends to maximise the conditional likelihood of the
training data, whereas the idea behind SVM is to maximise the distance between the
closest data points to the decision boundary (also called support vectors, cf. figure
4.6). In mathematical terms, the equation

wT (xpos − xneg)
‖w‖

=
2

‖w‖
(4.18)
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Figure 4.6.: Selection of an optimal decision boundary inside a training cohort. Here
margins means as the distance between the separating hyper-planes.
Reprinted from [138] with allowance of Packt Publishing Limited pro-
vided by Copyright Clearance Center ("CCC").

is required to be maximised, yet computationally results much easier to minimise
‖w‖2
2

. For full description of the method, the reader might refer to the book of Vapniks
[170]. One of the advantages of this approach with respect to logistic regression is
that SVM is insensitive to outliers since it only accounts for the support vectors and
not the complete training data-points as in logistic regression. However, finding the
best hyper-plane yields in high computational costs or no convergence at all. For
these cases, a relax constant (ζ) was introduced such that:

wTxi ≤ 1 if yi = 1− ζ i

wTxi < −1 if yi = 1 + ζ i
(4.19)

Yielding into a new equation 1
2
‖w‖2 + C (

∑
i ζ

i) to be minimised. The choice of the
constant C adapts the penalty strength for misclassification (cf. figure 4.7 ).
One advantage of the SVM over the logistic regression model is that it can be gen-
eralised for classification problems that are not linearly separable by using the kernel
trick, as mentioned in section 4.2.2, which means to increase the feature space in one
dimension more where the problem can be linearly separable and retrieve the margin
to the original feature space (cf. figure 4.8).

4.4.4. Gaussian Naïve Bayes (GNB)

The Naïve-Bayes classifier, predict probabilities of belonging to class m having fea-
tures X = [x1, x2, ..., xD], based on independent probabilities across the feature space
(cf. equation 4.20). Despite this is not always the case and a rather naive assumption,
it often provides outstanding results.
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Figure 4.7.: Difference in margins for different C in a hypothetical classification prob-
lem. Reprinted from [138] with allowance of Packt Publishing Limited
provided by Copyright Clearance Center ("CCC").

p(m | X) =
D∏
d=1

pd(m | xd) (4.20)

4.4.5. Decision Trees (DT)

The construction of a model based on decision tree relies on the separation of data
based on questions or thresholds across the feature space (cf. figure 4.9). Here the
main component is the measurement of separability due to features in the classes
across samples, for which there are usually three types of impurity measures Entropy,
Gini index and classification error. The entropy is a measure of the disorder of fea-
tures values inside the classes, thus the lower the entropy, the better the separability
of classes according to feature. Mathematically as follow:

E(t) = −
∑
c

p(c | t) log2 p(c | t) (4.21)

p(c | t) is the probability of having the class c inside the a defined t node (ques-
tion/threshold). As in equation 4.11 the Gini index intends to minimise misclassifi-
cation probabilities in t nodes. The classification error is less sensitive to changes as
it is not differentiable (cf. equation 4.22). The decision tree performance using the
different impurity measurements yields to similar results (cf. figure 4.10).

CE(t) = 1− p(c | t) (4.22)

In short the construction of the decision tree algorithm is as follows:
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Figure 4.8.: Margin construction using a RBF kernel for a non-linearly separable hy-
pothetical classification problem. Reprinted from [138] with allowance
of Packt Publishing Limited provided by Copyright Clearance Center
("CCC").
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Figure 4.9.: Example of a construction of a tree according to two feature space X1

and X2. Reprinted from [45] with allowance of Springer Nature provided
by the Copyright Clearance Center.

Figure 4.10.: Impurity measure values for a defined t node [45].
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1. Select an impurity measure

2. Select a feature that minimises the impurity measure according to classes

3. Create a node and select a threshold that minimises the impurity measurement

4. repeat 2 and 3 until desired minimisation of the impurity measure

The deeper the tree, the higher the risk of overshooting the decision function.

4.4.6. Random forest (RF)

The random forest algorithm profits from assembling decision trees that even in case
they do not provide good performances as standalone, the combination of them does.
The reasons are that due to a partial capturing of the complexity of the task by every
built decision tree. The random forest algorithm is described as follows:

1. Choose randomly n samples from the training cohort with replacement

2. From the bootstrap sample construct a decision tree with the best subset fea-
tures that minimises the impurity measurement

3. Repeat 1 and 2 k-times.

4. Predict via majority votes of decision trees

As the decision function comes via majority vote of decision trees, overly complicated
decision trees are balanced by simple decision trees, which it avoids model over-
fitting of course at expenses of computational costs if the number of decision trees
are increased. As we increase the number of DT, the interpretation of the model is
also cumbersome.

4.5. Model selection and tuning
One of the challenges of machine learning is to select a highly predictive model from
a learning/experienced data to correctly predict outcomes in an unseen/"untouched"
new data set for generalisations. To do so, the model should find an optimal solution
between capturing the complexity of the data (variance) and the under fitting (bias)
the model. All machine learning models excel at learning data since they are design
to be able capture the complexity of data. Therefore, assessing the performance of a
model based on a metric error in training data as whole does not provide an excellent
indicative for later performances in unseen/new data sets. Nevertheless, from the
learning cohort an indicative or expected performance metric might be obtained via
statistical methods for re-sampling. Let us start with the choice of an error metric
to assess model performance in classification problems (regression problems were not
implemented in this thesis and therefore are out of the scope of it, the reader might
refer to the book of Friedman et al [45] for further readings):
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4.5.1. Model performance metrics

The most intuitive model performance metric for classification problems is to ac-
count for the number of correct predictions or true positives (TP) plus true negatives
(TN) divided by the total number of observations (N), usually called accuracy or in
mathematical words:

Acc =
TP + TN

N
(4.23)

Notwithstanding, this metric fails to capture real model performance in an unseen
dataset when the label outcomes are imbalanced (one of the classes are repeated more
than the others), as it is very often the case in clinical studies. As an example, let
us assume a cohort of patients with different stages of tumours, the task will be to
stratify advanced from non advanced stages, however one of the classes (let us say
non-advanced) are repeated 75% more than the other one. If a model that predicts
that all patients will have non-advanced stage of tumours, the accuracy will be already
75% for a very uninformative model, which can not predict correctly one of the classes.
Better error metrics for classification are based on the so-called true positive rates
(TPR) and false positive rates (FPR) which are ratios between the number of TP
and total positives (T) predicted by the model and false positives (FP) divided by
the total number of negatives (N) predicted by the classifier, in mathematical terms:

TPR =
TP

T

FPR =
FP

N

(4.24)

In the clinical context and therefore in radiomics, the TPR is much more important
than the FPR. Using these two ratios, error metrics such as precision (PRE), ROC-
AUC and F1 score can be derived as:

PRE =
TP

TP + FP

F1 = 2
PRE × TPR
PRE + TPR

(4.25)

The ROC-AUC score comes from the area under the curve of plotting TPR and
FPR. A perfect classifier would identify 100% (or 1) of TPR for 0% (or 0) of FPR.

Despite all the error metrics explained in this section were discussed under the binary
classification problem assumption, they can be extended to the multi-class problem
via one vs all algorithm [141].

4.5.2. Detection of over- or under-fitting in models

After selection of a model performance metric the next step to follow is to estimate
performances of models. The classic strategy to analyse this is to split the learning
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Figure 4.11.: Holdout workflow for model validation. Reprinted from [138] with al-
lowance of Packt Publishing Limited provided by Copyright Clearance
Center ("CCC").

cohort into a training and validation cohort and confirm performance in a holdout
test cohort (also called the holdout method, cf figure 4.11), if it is performed just
once, no generalisation can be expected since the model performance metric might be
influenced by the way the learning cohort was split. A much more robust approach is
to split the learning cohort in k-arbitrary folds where k-1 folds are used to train and
the k-fold used to test, k times randomly (also called cross validation, cf. figure
4.12).
The cross validation approach is challenging when the imbalanced class problem is
treated. The study of Kohavi et al [92] showed that by using stratified k-cross val-
idation there is a reduction of the variance - bias trade-off. The choice of k-folds
depends on the extension of the dataset, for large dataset is recommended to use
small k-folds since it reduces computational costs with robust performance. On the
other hand, for small datasets, large k-folds estimate better the expected perfor-
mance metric. In literature 10 folds is used as a standard choice. Finally another
very useful approach for estimating performance metrics in independent data is the
bootstrapping method, which in general terms is similar to cross-validation yet with
replacement, this means that for every iteration, the training and test samples are
re-sampled in a way that it might include already used samples in previous iterations.

The selection of the approaches to estimate a model performance metric depends
on the extension of the data set, computer power and preferences of the researcher.
Let us go back to the definition of under- and over-fitting, a model is considered
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Figure 4.12.: 10 cross-validation workflow for model validation, E stands for error
metric average over the different error metric in test fold Ek. Reprinted
from [138] with allowance of Packt Publishing Limited provided by
Copyright Clearance Center ("CCC").

under-fitted (high biased) if the model performance metric in the training and valida-
tion cohort are similar but far away of the desired model performance metric or if the
model performance metric in the test cohort outperforms the model performance in
the learning cohort, this might be because of the simplicity of the model (or limited
number of predictive features). On contrary, a model is considered over-fitted (with
high variance) if the metric performance model in the training and validation cohorts
are very different, with the model performance metric in the training cohort superior
than the validation cohort, this means that the model can capture the complexity of
the data in the training phase but unable to predict similar performance in unseen
data. Learning curves helps to detect those issues by plotting the model performance
metric against a parameter that is considered to produce the issue, for instance num-
ber of samples, number of features, a determined parameter in the model among
others (cf. figure 4.13).

4.5.3. Tuning machine learning models to address
over-/under-fitting

Very few alternatives are available when the problem of over-/under-fitting comes
from the fact that the modelling is performed under few data samples. To maximise
and generalise performance of models the best solution is to increase the number
of observations. This in clinical studies is often very expensive or even infeasible.
Nonetheless, model optimisation parameters can be always performed. This is called
model hyper-parametrization, which means to find the optimal model parameters
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Figure 4.13.: Learning curve for different bias-variance models according to number
of training samples and model performance accuracy. Reprinted from
[138] with allowance of Packt Publishing Limited provided by Copyright
Clearance Center ("CCC").
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that perform the best in training and validation cohorts. In this work, a large set
of hyper-parameters were considered and the best subset of them was found via grid
search (Looping over the whole hyper-parameter space to find the optimal subset of
them).

66



5. Python as Software Development
Language

5.1. Pyhton

Python is an open source oriented object programming language created and designed
by Guido van Rossum. Due to open source it has a vast community of developers who
construct applications in many fields, from Video Games to Scientific computations.
Python is currently used in two versions, the version 2.x and 3.x.

5.1.1. Why Python?

The implementations of this work for image pre-processing and feature extraction were
carried under the programming language Python 3.6. The reasons for the choice of
Python 3.6 over any other open source programming languages, lies on the the trade-
off between stability, readability, simple syntax, extensibility and a big community
of developers that could help to shape codes for better implementation, which allows
easy comparisons. The selection of Python 3.6 over the 2.7 version lies on the fact
that the 2.7 version in the near future will not longer support new packages, which in
terms of software durability inside UKT is a big downside. Python 3.6 has reached
a maturity which allows developers to profit for an extensive amount of scientific
packages to perform multiple studies, from mathematical utilities to imaging analysis
in the framework of this thesis. One of the downsides of Python is related to the
memory allowance, Python as being a dynamic-memory programming language does
not fix memory size allocations for different types of variables (such as integers, floats
and so on.). However with the fast development of computer capacities such problems
have been relegated as a minor issue, which in term of the framework of this work
are easily handled. As the production code for image pre-processing and feature
extraction was implemented in Python 3.6, the model building and prediction phase
was also coded in the same language to reduce latency and track easily issues. ML
libraries for python are relatively new inside the environment in comparison with the
R software and therefore relatively limited. However for purposes of ML modelling
and predictions in the context of radiomics inside the framework of this thesis, libraries
such as Pandas, Scikit-learn and Mlxtend as well as Matplotlib for visualization are
enough for the software production.
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5.1.2. Python libraries inside the framework of the thesis

The number of scientific libraries are very broad. Nonetheless inside this work,
NumPy, Nibabel, SciPy, Scikit-image, PyWavelets, Pandas, Scikit-learn, Mlxtend and
Matplotlib were mainly used.

Numerical Python (NumPy):

NumPy is the highly efficient standard library to handle numeric operations inside
the Python environment. It provides the core multidimensional array object that
are necessary for scientific purposes [27]. NumPy integrates algorithms and data
structures from C/C++ and Fortran that have been developed over the years and are
already known to work time and memory efficiently. The data structure of NumPy
is the object ndarray.

Scientific Python (SciPy):

SciPy is a library that is built on top of NumPy, which in combination with NumPy
allows manipulations of ndarrays for scientific and engineering purposes. The SciPy
library contains mathematical and statistical algorithms that were implemented in
the framework of this thesis, such as Pearson, Kendall and Spearman correlation
coefficient and many other statistical tools.

Nibabel:

Nibabel is a scientific library for Python that translates many medical image formats
to NumPy array objects [22]. DICOM is the standard format for medical images,
but due to data protection affairs Nifti format sometimes it is preferred since it only
provides the imaging data without extra information (fully anonymous).

Scikit-Image:

Scikit-image provides a vast number of algorithms and utilities for imaging processing
in 2D and 3D, such as segmentation, registration, transformation, rendering, object
recognition and so on [167].

PyWavelets:

PyWavelts library for Python allows to transform 3D array objects in the Fourier
space via wavelets functions of preference [173]. In the framework of this thesis it was
implemented to obtain Wavelets-family features.
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Pandas:

Pandas, which name come from panel data, is a scientific library for data analysis in
Python which is built on top of NumPy, SciPy and Matplotlib (for visualisation pur-
poses). The data structure object of pandas is the DataFrame and Series. It gives the
ability to Python to work with spreadsheet-like data for fast loading, manipulation,
visualisation and handling [114].

Scikit-learn:

Scikit-learn is a highly optimised library for Python that provides a vast number of
algorithms and utilities for machine learning purposes [133].

Mlxtend:

The Mlxtend library for Python provides machine learning algorithms and utilities
that were not included in the Scikit-learn library, such as the sequential feature se-
lection algorithm [139].

Matplotlib:

Matplotlib is a highly optimised library for purposes of visualisation in the Python
environment, it posses all the advantages of Matlab and IDL for free [176].
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6. In-house software development for
Radiomics and its validation

Since the genesis of radiomics in 2012 [98], few widely accessible radiomic implemen-
tations have been developed to carry complete radiomic studies. However, they still
lack on validation [168, 181]. Therefore an in-house software development approach
was carried with the aim of integrating a customised radiomic pipeline inside the UKT
radio-oncological research necessities. In this chapter, a description of the radiomic
implementation inside this work will be provided as well as the its performance inside
the IBSI collaboration [184], for the sake of completeness, the reader might refer to
the appendices 12 and 13 for full software disclosure.

6.1. Software validation inside the IBSI collaboration
One of the biggest challenges inside the field of radiomics is to be able to reproduce
findings across institutes and patient data and if not possible, argue why otherwise,
many studies have proved problems of this nature [57, 68, 178], however few collabo-
rations have been achieved to tackle the problem so far. The IBSI were born as an
open collaboration initiative with aim to make radiomics a reproducible science [184]
with participation of more than 20 institutions inside Europe, USA and Canada (cf.
table 6.1). As an open collaboration initiative, the radiomic software developed in
the framework of this thesis also participated in it. Nonetheless, the reach of the IBSI
initiative is limited to common definitions and nomenclature of features and methods
to extract them, the validity of feature stability and machine learning algorithms,
remains for further investigations. In this chapter contributions to the IBSI initiative
will be disclosed for benchmark acquisitions in the customised radiomic software.

IBSI contributors by institution Location
Department of cancer imaging and metabolism,
Moffitt Cancer Center

Tampa (FL), USA

Dana-Farber Cancer Institute, Brigham and
Women’s Hospital, and Harvard Medical School,
Harvard University

Boston (MA), USA

Institute of Information Systems, University of
Applied Sciences Western Switzerland (HES-SO)

Switzerland

Department of medical physics, Memorial Sloan
Kettering Cancer Center

New York (NY), USA
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Department of electrical and computer engineer-
ing, Whiting School of Engineering, Johns Hopkins
University

Baltimore (MD), USA

Russell H. Morgan department of radiology and ra-
diological science, School of medicine, Johns Hop-
kins University

Baltimore (MD), USA

Department of nuclear medicine and molecular
imaging, University of Groningen, University Med-
ical Center Groningen (UMCG)

Groningen, the Netherlands

Department of Radiation Oncology, University
Hospital Zurich, University of Zurich

Zurich, Switzerland

Polo Scienze Oncologiche ed Ematologiche, Is-
tituto di Radiologia, Università Cattolica del
Sacro Cuore, Fondazione Policlinico Universitario
Agostino Gemelli

Rome, Italy

Biomedical Imaging Group, Ecole polytechnique
federale de Lausanne (EPFL)

Lausanne, Switzerland

Laboratory of medical information processing (La-
TIM) - team ACTION (image-guided therapeu-
tic action in oncology), INSERM, UMR 1101, IB-
SAM, UBO, UBL, Brest

France

Imaging technology for radiation therapy group,
the Netherlands Cancer Institute (NKI)

Amsterdam, the Netherlands

Department of Radiation Oncology, Physics Divi-
sion, University of Michigan and Medical Physics
Unit, McGill University

Montréal, Québec, Canada

Division of radiation oncology, MD Anderson Can-
cer Center

Houston (TX), USA

Surgical Planning Laboratory, Brigham and
Women’s Hospital and Harvard Medical School,
Harvard University

Boston (MA), USA

Department of medical image computing, German
Cancer Research Center (DKFZ)

Heidelberg, Germany

Athinoula A. Martinos Center for Biomedical
Imaging, Massachusetts General Hospital (MGH)
and Harvard Medical School, Harvard University

Cambridge (MA), USA

Department of Radiation Oncology (The D-lab),
GROW-School for Oncology and Developmental
Biology, Maastricht University Medical Centre+

Maastricht, The Netherlands

Section for Biomedical Physics, Department of Ra-
diation Oncology, Universitätsklinikum Tübingen,
Eberhard Karls Universität Tübingen

Tübingen, Germany
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Department of Clinical Medicine, University of
Bergen

Bergen, Norway

OncoRay – National Center for Radiation Re-
search in Oncology, Faculty of Medicine and Uni-
versity Hospital Carl Gustav Carus, Technische
Universität Dresden, Helmholtz-Zentrum

Dresden - Rossendorf, Germany

Department of Radiation Physics, University of
Texas MD Anderson Cancer Center

Houston (TX), USA

Institute of Information Systems, University of
Geneva

Geneva, Switzerland

Cardiff School of Engineering, Cardiff University Cardiff, United Kingdom
Imaging technology for radiation therapy group,
the Netherlands Cancer Institute (NKI)

Amsterdam, the Netherlands

Department of radiology, Leiden University Medi-
cal Center (LUMC)

Leiden, the Netherlands

Table 6.1.: List of contributors of the IBSI collaboration by institution and location
[184].

6.1.1. Digital imaging phantom

To preliminary test definitions and algorithms for feature extraction two small digital
numerical arrays were proposed, one of the arrays was proposed as exemplary image
and the second one as a mask to obtain a region of interest. Here, intensity, shape
and texture features were only considered for extractions, due to filter-family features
do no add reproducibility value since they depend on the chosen filter (Imaging pre-
processing step). The phantom characteristics are as follow:

• The voxel size of the array is assumed to be 2× 2× 2 mm

• The number of voxels are 5× 4× 4 (x, y, z)

• The voxels included in the region of interest are given by a mask which is an array
of values, where 1 means that the voxel belongs to the ROI and 0 otherwise, cf.
figure 6.1.

• Some intensities are not included in the phantom. The minimum grey level is 1
whereas 6 is the maximum.

Since, the image representation does not require preprocessing (it can be directly rep-
resented as a NumPy array object), the feature calculations were performed directly
as showed in subsection 6.1.3.
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6.1.2. Radiomic phantom data

A publicly available patient data set was proposed to construct benchmarks for imag-
ing pre-processing methods and radiomic feature extraction (DOI:10.17195/candat.
2016.08.1), inside the cohort of the patient images, PAT1 was used. The images
are stored as a stack of slices of DICOM and NifTI format. A ROI mask of the
Gross tumour volume (GTV) was also provided for calculations. Despite the large
variation of possible configurations inside the framework of IBSI, in this work only
configuration C (features extraction in a 3D approach, merging texture matrix and
64 bins) was considered since the implemented software followed these specifications
and therefore only these results are presented (cf. figure 6.2).

6.1.3. Bechmarks

After more than two years work inside the IBSI collaboration, benchmarks for the
digital phantom were achieved. In the case of the radiomics phantom, although some
consensus have been reached in many of the analysed features, further investigations
remain necessary. Here, benchmarks are presented for the different family features as
well as the results of the software constructed in the frame of this thesis as follows:

Intensity-based statistical features:

feature dig. phantom conf. C Tübingen (dig./ conf.)
mean 2.15 −49± 2.7 (Match, Match)
variance 3.05 (5.06± 0.13) · 104 (Match, Match)
skewness 1.08 −2.14± 0.04 (Match, Match)
kurtosis -0.355 3.53± 0.22 (Match, Match)
median 1 40± 0.3 (Match, Match)
minimum 1 −939± 3 (Match, No match)
10th percentile 1 (−424± 13) (Match, Match)
90th percentile 4 86± 0.1 (Match, Match)
maximum 6 393± 10 (Match, No match)
interquartile range 3 67± 4.7 (Match, Match)
range 5 (1.33± 0.01) · 103 (Match, Match)
mean absolute vari-
ation

1.55 158± 3 (Match, Match)

robust mean abso-
lute deviation

1.11 66.8± 3.4 (Match, Match)

median absolute
deviation

1.15 119± 3 (Match, Match)

coefficient of varia-
tion

0.812 −4.59± 0.28 (Match, Match)
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quartile coefficient
of dispersion

0.6 1.03± 0.46 (Match, Match)

energy 567 (2.44± 0.11) · 109 (Match, Match)
root mean square 2.77 230± 3 (Match, Match)

Table 6.2.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
intensity-based radiomic features. [184].

The radiomic software does not agree with the IBSI collaboration due to the fact that
it does not apply mask re-segmentation accordingly, since it is not always necessary.
Thus, some of the voxels presented as outside the ROI are considered for the software
inside, yielding in disagreements between comparisons.

Intensity histogram features

feature dig. phantom conf. C Tübingen (dig./ conf.)
mean 2.15 −38.5± 0.1 (Match, )
variance 3.05 (81± 2) · 104 (Match, )
skewness 1.08 −2.14± 0.04 (Match, )
kurtosis -0.355 3.52± 0.22 (Match, )
median 1 42 (Match, )
minimum 1 3± 0.15 (Match, )
10th percentile 1 (24.0± 0.6) (Match, )
90th percentile 4 44 (Match, )
maximum 6 56.0± 0.4 (Match, )
mode 1 43 (Match, )
interquartile range 3 3.0± 0.2 (Match, )
range 5 53.0± 0.6 (Match, )
mean absolute vari-
ation

1.55 6.32± 0.13 (Match, )

robust mean abso-
lute deviation

1.11 2.58± 0.13 (Match, )

median absolute
deviation

1.15 4.75± 0.11 (Match, )

coefficient of varia-
tion

0.812 0.234± 0.004 (Match, )

quartile coefficient
of dispersion

0.6 (3.61± 0.26) · 10−2 (Match, )

entropy 1.27 3.73± 0.03 (Match, )
uniformity 0.512 0.139± 0.002 (Match, )
maximum his-
togram gradient

8 (4.76± 0.02) · 103 (Match, )
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maximum gradient
grey level

3 41 (No match, )

minimum his-
togram gradient

-50 (−4.68± 0.05) · 103 (Match, )

minimum gradient
grey level

1 44 (Match, )

Table 6.3.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
Intensity-histogram-based-radiomic features. [184].

Intensity-volume histogram features

feature dig. phantom conf. C Tübingen (dig./ conf.)
volume fraction at
10% intensity

0.324 0.977 (Match, )

volume fraction at
90% intensity

9.46 · 10−2 (1.52± 0.19) · 10−4 (Match, )

intensity at 10%
volume

5 88 (Match, )

intensity at 90%
volume

2 −421± 13 (Match, )

volume fraction
difference between
10% and 90%
intensity

2 0.997 (Match, )

intensity difference
between 10% and
90%

3 510± 13 (Match, )

Area under the
IVH curve

0.32 (0.680± 0.002) (Match, )

Table 6.4.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
Intensity-volume-radiomic features. [184].

Morphological features

Here, surface area and volume was computed in an approximate manner. Therefore
disagreements are present with the IBSI collaboration since they used a mesh gen-
erated approach. In practical terms, there are not differences since great difference
appears when ROIs have less than 1000 voxels, which are rare.
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feature dig. phantom conf. C Tübingen (dig./ conf.)
approximate vol-
ume

592 (3.68± 0.05) · 105 (Match, Partial match)

surface area 388 (3.43± 0.02) · 104 (No match, No match)
surface to volume
ratio

5 88 (No match, No match)

compactness 1 4.11 · 10−2 (3.26± 0.01) · 10−2 (No match, No match)
compactness 2 0.599 (0.378± 0.003) (No match, No match)
spherical dispro-
portion

1.19 1.38 (No match, No match)

sphericity 0.843 (0.723± 0.002) (No match, No match)
asphericity 0.186 0.383± 0.004 (No match, No match)
centre of mass shift 0.672 45.6± 2.6 (Match, Match)
maximum 3d diam-
eter

13.1 125 (No match, No match)

major axis length 11.4 93.3± 0.4 (Match, Partial match)
minor axis length 9.31 82.0± 0.4 (Match, Partial match)
least axis length 8.54 70.9± 0.4 (Match, Partial match)
elongation 0.816 0.879 (Match, Partial match)
flatness 0.749 0.76 (Match, Partial match)
volume density
(AABB)

0.869 0.478± 0.002 (No match, No match)

area density
(AABB)

0.866 0.678± 0.002 (Match, Match)

volume density
(OMBB)

0.869 NS (No match, NA)

Area density
(OMBB)

0.866 NS (Match, NA)

Integrated inten-
sity

1.2 · 103 (−1.80± 0.13) · 107 (Match, Match)

Moran’s I index 3.97 · 10−2 (8.24± 0.01) · 10−2 (Match, )
Geary’s C measure 0.974 0.846 (Match, )

Table 6.5.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
morphological-radiomic features. [184].

3D GLCM, with merging features

feature dig. phantom conf. C Tübingen (dig./ conf.)
joint maximum 0.509 NS (Match, )
joint average 2.15 NS (Match, )
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joint variance 3.13 NS (Match, )
joint entropy 2.57 NS (Match, )
difference average 1.38 NS (Match, )
difference variance 3.21 NS (No match, )
difference entropy 1.64 NS (Match, )
sum average 4.3 NS (Match, )
sum variance 7.41 NS (No match, )
sum entropy 2.11 NS (Match, )
angular second mo-
ment

0.291 NS (Match, )

contrast 5.12 NS (Match, )
dissimilarity 1.38 NS (Match, )
inverse difference 0.688 NS (Match, )
inverse difference
normalised

0.856 NS (Match, )

inverse difference
moment

0.631 NS (Match, )

inverse differ-
ence moment
normalised

0.902 0.994 (Match, )

inverse variance 5.74 · 10−2 NS (Match, )
correlation 0.183 NS (Match, )
autocorrelation 5.19 NS (Match, )
cluster tendency 7.41 276± 7 (Match, )
cluster shade 17.4 NS (Match, )
cluster prominence 147 NS (Match, )
information corre-
lation 1

−2.88 · 10−2 NS (No match, )

information corre-
lation 2

0.269 NS (Match, )

Table 6.6.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
GLCM-radiomic features. [184].

3D GLRL, with merging features

feature dig. phantom conf. C Tübingen (dig./ conf.)
short runs empha-
sis

0.729 NS (Match, )

long runs emphasis 2.76 NS (Match, )
low grey level run
emphasis

0.607 NS (Match, )
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high grey level run
emphasis

9.64 NS (Match, )

short run low grey
level emphasis

0.372 NS (Match, )

short run high grey
level emphasis

8.67 NS (Match, )

long run low grey
level emphasis

2.16 NS (Match, )

long run high grey
level emphasis

15.6 NS (Match, )

grey level non-
uniformity

281 NS (Match, )

grey level non-
uniformity nor-
malised

0.43 NS (Match, )

run percentage 0.68 NS (Match, )
grey level variance 3.48 NS (Match, )
run length variance 0.598 NS (Match, )
run entropy 2.62 NS (Match, )

Table 6.7.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
GLRL-radiomic features. [184].

3D GLSZ features

feature dig. phantom conf. C Tübingen (dig./ conf.)
small zone empha-
sis

0.255 NS (Match, )

large zone emphasis 550 NS (Match, )
low grey level em-
phasis

0.253 NS (Match, )

high grey level em-
phasis

15.6 NS (Match, )

small zone low grey
level emphasis

2.56 · 10−2 NS (Match, )

small zone high
grey level emphasis

2.76 NS (Match, )

large zone low grey
level emphasis

503 NS (Match, )

large zone high grey
level emphasis

1.5 · 103 NS (Match, )
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grey level non-
uniformity

1.4 NS (Match, )

grey level non-
uniformity nor-
malised

0.28 NS (Match, )

zone size non-
uniformity

1 NS (Match, )

zone size non-
uniformity nor-
malised

0.2 NS (Match, )

zone percentage 6.76 · 10−2 NS (Match, )
grey level variance 2.64 NS (Match, )
zone size variance 331 NS (Match, )
zone size entropy 2.32 NS (Match, )

Table 6.8.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
GLSZ-radiomic features. [184].

3D GLDZ features

feature dig. phantom conf. C Tübingen (dig./ conf.)
small distance em-
phasis

1 NS (No match, )

large distance em-
phasis

1 NS (No match, )

low grey level em-
phasis

0.253 NS (Match, )

high grey level em-
phasis

15.6 NS (Match, )

small distance low
grey level emphasis

0.253 NS (No match, )

small distance high
grey level emphasis

15.6 NS (No match, )

large distance low
grey level emphasis

0.253 NS (No match, )

large distance high
grey level emphasis

15.6 NS (No match, )

grey level non-
uniformity

1.4 NS (Match, )

grey level non-
uniformity nor-
malised

0.28 NS (Match, )
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zone distance non-
uniformity

5 NS (No match, )

zone distance
non-uniformity
normalised

1 NS (No match, )

zone percentage 6.76 · 10−2 NS (Match, )
grey level variance 2.64 NS (Match, )
zone distance vari-
ance

0 NS (Match, )

zone distance en-
tropy

1.92 NS (Match, )

Table 6.9.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
GLDZ-radiomic features. [184].

3D NGTD features

feature dig. phantom conf. C Tübingen (dig./ conf.)
coarseness 2.96 · 10−2 NS (Match, )
contrast 0.584 NS (No match, )
busyness 6.54 NS (Match, )
complexity 13.5 NS (No match, )
strength 0.763 NS (Match, )

Table 6.10.: Comparisons between the software constructed for radiomics inside the
framework of this thesis and benchmark of the IBSI collaboration for
GLDZ-radiomic features. [184].
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Figure 6.1.: Digital phantom array visualization. Blue voxels are excluded from the
region of interest. The coordinate system is such that x increases from
left to right, y increases from back to front and z increases from top to
bottom, as is indicated by the axis definition in the top-left. Reprinted
from [184].
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Figure 6.2.: Radiomic phantom configuration characteristics for imaging preprocess-
ing. IH: Intensity histogram; FBS: Fixed bin size; FBN: Fixed bin num-
ber; IVH: Intensity volume histogram; NA: not applicable. Reprinted
from [184].
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7. Radiomics pipeline inside this
thesis

7.1. Imaging pre-processing and feature extraction
For the radiomics analysis, CT images are used without voxel resizing, in order to
avoid inclusion of artificial information that might cause noise at the moment of fea-
ture calculations. Only soft tissue voxels with values between -250 and 120 HU are
considered in order to exclude air, and other non-tissue elements. 64 bins were used
to group voxel values for texture feature calculations.

Features definitions are obtained from the Imaging Biomarker Standardisation Ini-
tiative (IBSI) [184]. For the texture features, we used the grey-level co-occurrence
(GLCM), grey-level run length (GRLM), neighbourhood grey tone difference (NGTDM),
grey-level size zone (GLZSM) and grey-level distance zone (GLDZM) matrix. They
are computed in 3 dimensions regardless of differences between in-plane and in-slice
voxel dimensions. One level undecimated wavelet features are obtained as follows.
Firstly, the original images are filtered using high (H) or low-pass (L) “Coiflet 1”
filter in every image (x, y, z) direction. Different filter combinations resulted in 8
filtered images. Subsequently, intensity and texture features are computed for each
filtered image [60]. In summary, we extract 1150 radiomics features from GTV re-
gions contoured in the planning CT scans. All filtering and feature computations
were implemented in-house in Python 3.6.

7.2. Feature pre-processing
Several of the radiomics features described by the IBSI are highly correlated and
therefore redundant. Hence, in the training phase, we cluster correlated features
(more than 95% correlation in Pearson correlation coefficient), in order to optimise
the feature selection process. To do so, features are first scaled according to the quar-
tile range (interquartile range, IQR), which ranges between the first quartile (25%
quantile) and the third quartile (75% quantile). Then, they are clustered hierar-
chically according to Pearson correlation coefficient [170]. Finally, every cluster is
reduced to one single feature using principal component analysis (PCA) to conserve
the maximum possible variance inside the cluster [81]. Moreover, all features with
variance lower than 0.3 are excluded from the final feature set.
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7.3. Feature selection & model tuning
According to Leger et al. [101] feature selection methods play a more important role
in predicting outcomes than the models themselves. Therefore, a four-step feature
selection method was implemented as follows:

Step 1: The training cohort is randomly subsampled with replacement in a balanced
fashion so that each subsample contains the same number of samples with one label
class (i.e. poor prognosis) as the samples of patients with the other label class (i.e.
good prognosis). This was repeated 100 times, thus creating a set of 100 subsamples.

Step 2: Within each subsample, variable importance was determined using:

• correlation measures (Pearson [14], Kendall [3], Spearman [1]),

• mutual information (mutual information maximisation [134]),

• univariate significance test scores (Fischer, χ2 [76]),

• multivariate forward selection using classification models (decision trees (DT),
k-nearest neighbours (KNN), logistic regression (LogR), random forest (RF),
naïve-Bayes (GNB), support vector machines (SVM) [19]) based on the model
Receiver Operating Characteristic Curve - Area under the curve (ROC-AUC)
score [75].

For all methods above, up to twenty most important features are kept, and the re-
maining features are discarded. These feature subsets are then aggregated across the
different methods to form a final subset of the five most commonly occurring features
for each subsample.

Step 3: The features in the final subset of each of the 100 subsamples are then
aggregated and heuristically ranked using the following scoring:

RS =
na

100

1

µr(σr + 1)

The scoring favours the number of appearances (na) of a feature in the 100 subsets,
and penalises its mean rank µr together with the standard deviation of its rank µr in
the subsets. The five most highly ranked features are subsequently selected.

Step 4: We determine the signature for each of the classifiers using a sequential
forward feature selection method [136]. For this purpose, we perform 5-fold cross-
validation using the training data set. For each classifier, the set of features that
produced the model with the highest average AUC on the validation folds was used
as a signature.

88



7.3. Feature selection & model tuning

After feature selection, model hyperparameters such as the number of neighbours
for KNN are optimised using grid search (cf. Table 7.1) and 5-fold cross validation.
All methods and algorithms are implemented in-house in Python 3.6 using the pack-
ages Pandas, Scikit-learn and mlxtend for machine learning. Figure 7.1 presents a
schematic overview of the algorithmic workflow used in this thesis.
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Extraction of 1150 
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Figure 7.1.: Workflow of the CT radiomics model construction. The first part con-
sists of feature extraction process which after acquisition, the features
requires an exploratory analysis for searching redundancies and subse-
quently, obtain the final set of meta features (cf. section CT radiomics).
Then, the training cohort is subsampled to be integrated in the process
of feature and model selection where features are ranked based on infor-
mation, model performance and significance scores using 100 subsamples
of the training cohort, a heuristic score is then set to choose the best
and most stable features. Finally, the best CT radiomics signatures are
chosen according to ROC-AUC score, then hyperparameters chosen to
improve ROC-AUC in training and tested in the test cohort to prove
findings.
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Model Hyperparameter Hyperparameter
space

Logistic Regression
Penalty ‘L1’, ‘L2’

C 10-3, 10-2, 10-1, 1, 10,
102, 103, 104

Class Weight {0: 0.3}, {0: 0.4}, {0:
0.5}, None

Nearest Neighbours Number of Estimators 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23, 25

Weights Uniform, Distance

Support Vector Machine C 10-3, 10-2, 10-1, 1, 10,
102, 103, 104

Kernel RBF, Polynomial,
Sigmoid

Random Forest

Criterion Gini, Entropy

Number of Estimators 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23, 25

Class Weight {0: 0.3}, {0: 0.4}, {0:
0.5}, None

Max Depth 8, 9, 10, None
Gaussian Naïve Bayes None None

Decision Tree
Criterion Gini, Entropy

Class Weight {0: 0.3}, {0: 0.4}, {0:
0.5}, None

Max Depth 8, 9, 10, None

Table 7.1.: Description of the hyperparameter space used for each Machine Learning
model. In class weight the number 0 represents the negative class (no
recurrence event), as the negative class is less important to predict as the
positive class, low values, meaning prediction importance, were given for
the negative class in the hyper-parametrization.
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with somatic mutations in TP53,
FAT1 and KMT2D in HNSCC
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8. Correlations of the Aerts Sign. with som. mutations

The publication of Aerts et al [5] investigated 440 CT based radiomic features in-
cluding intensity, shape, texture and multiscale wavelet in lung cancer and HNSCC
for prognostic value [5]. After training and validation, the best performing features
of each category were extracted for lung cancer and validated in HNSCC, in a sec-
ond step, the identified CT radiomic signature was correlated with gene expressions
in HNSCC associated to tumour phenotype heterogeneity. An association between
enriched cell-cycling pathways indicating proliferation and increased intra-tumour
heterogeneity features (texture and wavelet feature) has been found.
The impact of such findings implies the potential to determine functional changes and
risk groups of HNSCC patients [164]. On the other hand, the Cancer Genome Atlas
(TCGA) characterised several frequent somatic variants in HNSCC including TP53
(cell cycle control and survival), KMT2D (chromatin modification) and FAT1 (Wnt
/ β-catenin signalling, cell-cell contacts, cell orientation, cell fate) [100, 121]. As a
cross-link to clinical features, variants in TP53 and FAT1 were predominantly found
in human papillomavirus (HPV) negative tumours [121]. In HPV negative patients,
variants in FAT1 were reported to be associated with beneficial outcome in surgically
treated HNSCC patients [87]. In this chapter, we investigated the reproducibility
between FAT1 and other gene-expression mutations of tumour cells found Interna-
tional Cancer Genome Consortium (ICGC) with the radiomic signature of the study
of Aerts et al (2014) [5].
In the aim of reproduce the work of Aerts et al [5] for HNSCC patients, an hypothesis
driven strategy was used, in which the identified CT radiomics signature in the men-
tioned study was explored to find correlations with the genetic aberration expressions
associated to be highly prognostic to categorised heterogeneity in HNSCC types of
tumours of the TCGA [186].

8.1. Patients and diagnostics

Twenty patients with locally advanced HNSCC were recruited for this prospective
biomarker study. All declared their written informed consent and the study was ap-
proved by the local ethics committee (reference number 577/2014BO2). All patients
were treated with definitive radiochemotherapy up to 70 – 77Gy. Human papil-
lomavirus (HPV) association was investigated by immunohistochemical staining for
p16 or PCR-based assays. Clinical data was extracted from the medical reports [186].

8.2. CT-radiomic feature extraction

Based on the report by Aerts et al. (2014) [5], our first tested hypothesis postulated
that cell cycle alterations by somatic mutations (driver gene variants; TP53) might
correspond with the CT-radiomic features associated in the study with poor progno-
sis. As a second hypotheses, we investigated if other frequently mutated driver genes
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8.3. Statistic analysis

correlate with heterogeneity features of the tumour.
Based on our unenhanced planning CT scans (Somatom Sensation Open, Siemens
Healthineers, Erlangen, Germany; slice thickness of 3mm, in-plane pixel size of 1.27mm,
ordered subset expectation maximization (OSEM) 3D (four iterations, eight subsets)
with a 3D Gaussian filtering for imaging reconstruction), we analysed the two corre-
lated radiomic features for measuring intra-tumour heterogeneity that were described
by Aerts et al. (2014) [5], namely “Run Length Nonuniformity” and “wavelet Grey
Level Nonuniformity HLH”. Furthermore, we included “Grey Level Nonuniformity”
(Aerts et al.: Texture Feature 47), as a complementary feature, as the authors also
reported on this feature in the referenced publication. Therefore, in total, three
particular heterogeneity features were investigated and the features were calculated
following the previous report of Aerts et al. [5] for confirmation and standardisation.
The GTV of the primary tumours were delineated for treatment planning by experi-
enced radiation oncologists. These delineations were subsequently used for radiomic
analyses. Due to concerns regarding the influence of dental artefacts [103], we inves-
tigated both, the data of all 20 patients and, as a subgroup, the patients that had
no CT artefacts in the area of interest. Texture features were preprocessed in a 3D
fashion regardless of the in-plane, in-slice length differences and we grouped the in-
tensity values in 64 different bins due to the sparse range of intensity values (between
-250 to 120 Hounsfield units) across the GTV for texture feature acquisition pur-
poses. For wavelet estimations we used the undecimated wavelet filter (coiflet) [62].
If air or bony structures were included in the GTV, the delineations were adapted
and extreme Hounsfield units were excluded for radiomic feature extraction. Thereby,
solely in one patient, the GTV was considerably modified due to massive air and bone
involvement (oropharyngeal HNSCC with infiltration of the maxillary sinus) [186].

8.3. Statistic analysis

For the statistic analyses, we used R and SPSS (IBM Corp., Armonk, NY). The Mann-
Whitney U test and robust linear regression (M-estimator) from MASS R package
(logarithmic scale) were used for calculations. Significance estimations of regression
coefficients were calculated by the robust F-test (Wald test, sfsmisc R package). A
p-value < 0.05 was considered significant [186].

8.4. Correlation analysis

No definitive evident of the Aerts signature was found to indicate tumour heterogene-
ity, that means that low correlation was obtained with variants in TP53 or KMT2D
(data not shown). Nevertheless, a significant association with FAT1 was encountered,
as variants in FAT1 corresponded with reduced expressions of the mentioned CT ra-
diomic features of the primary tumour (Grey Level Nonuniformity: p = 0.019; Fig.
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Age
Median 60 49 - 75
Gender
Male 18 90%
Female 2 10%
HPV Status (n,%)
Positive 5 25%
Negative 14 70%
Unknown 1 5%
Tumour localisation (n, %)
Oral cavity 2 10%
Oropharynx 14 70%
Hypopharynx 4 20%
Smoking History (n, %)
Yes 17 85%
No 3 15%

Table 8.1.: Clinical characteristics of patients.

1 A of the study of Zwirker [186]; Run Length Nonuniformity: p = 0.046; Fig. 1 B
of [186] and wavelet Grey Level Nonuniformity HLH: p = 0.035; Fig. 1 C of [186]).
This association was found in all three selected CT-radiomic features and the obser-
vation remained significant in two features, when patients were excluded, who had
dental artefacts in the area of the primary tumour.The association of somatic mu-
tations in FAT1 and smaller GTVs of the primary tumour was not significant, yet
prognostic (p = 0.059; Fig. 2 A of [186]). However, smaller GTVs of the primary
tumour corresponded with reduced expressions of the investigated radiomic features.
We found an association between FAT1 mutated tumours and reduced heterogene-

ity of the primary tumours according to radiomic features. Reduced heterogeneity
corresponded with smaller primary tumour volumes and in FAT1 mutated tumours, a
trend towards reduced primary tumour volumes was observed, though significance lev-
els were not reached. Postulating FAT1 being a tumour suppressor in HNSCC [100],
inactivating mutations would be expected to cause rather extended volumes. How-
ever, the influence of FAT1 on proliferation in oral squamous cell carcinomas was
described to be rather limited [124]. In this way, other oncogenes and tumour sup-
pressors might have comparably stronger influence on tumour growth and GTV ex-
tent.
As discussed above, inactivating / missense variants of FAT1 might result in reduced
invasiveness, attenuated migration and looser cell-cell contacts. One could speculate
that this translates into less expression of the radiomic features discussed across this
study and smaller tumour volumes as indicated in our cohort, One can also notice
that by definition, the discussed radiomic features are correlated with volume despite
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8.4. Correlation analysis

they do not necessarily mean the same measurement, since definitions on texture fea-
tures refer to counting the number of patterns, whose probability for large volume are
higher, nevertheless small yet highly heterogeneous tumours translate it into more ex-
pression in the investigated radiomic features. As increased heterogeneity correlated
with poor outcome [5] and smaller GTVs [90] are associated with a good prognosis,
our findings might support to a recent publication reporting favourable outcomes of
HPV negative, surgically treated HNSCC patients, if they presented with mutant
FAT1 [87]. Thus, our data suggest a possible interrelation between FAT1 mutations,
reduced heterogeneity and smaller GTVs.
Our study revealed interesting preliminary findings in HNSCC patients. The limita-
tion of our study is the small cohort and resulting limited effect size. Therefore, our
radiogenomic observations remain solely descriptive and need to be confirmed in larger
studies. For validation and prognostic models, bigger prospective cohorts would be
essential. A further limitation is the localisation of the biopsy. We sequenced FFPE
material that was collected at primary diagnosis. The exact localisation within the
primary tumour is therefore not known. In case of intra-tumour genetic heterogene-
ity, some variants might be missed and others overestimated. However, we chose only
the most frequently mutated driver genes for correlations. As these are well in line
with previously reported drivers of HNSCC, these mutations are thought to deter-
mine relevant biological and functional variations that might translate into radiomic
features.
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9. CT rad.: not a surrogate pred. of pat. at risk as iden. by 18F-FMISO PET?

Tumour hypoxia has been shown to be prognostic for poor outcome after CRT
in HNSCC by several studies [110, 175, 180, 183]. However, biological heterogene-
ity as identified by radiomics and others factors have also been linked to poor out-
come after chemoradiation therapy [71,72,177]. Hypoxia can be measured invasively
using probes, or assessed non-invasively using specific radiotracers in PET imag-
ing [161]. In clinical research, the most commonly used hypoxia imaging tracer is
18FFMISO [48,91]. Tumour-to-muscle ratio (TMR) is a simple but very robust met-
ric that is commonly used to derive the hypoxic status from PET data, though other
methods exist as well [73,161,183]. Different studies have shown that TMR assessed
2 to 4 hours after tracer injection enables differentiation between hypoxic and nor-
moxic tumours based on a threshold value (e.g. TMRpeak ≥ 1.4) [91, 110, 117], and
consequently to distinguish patients at increased risk of loco-regional failure (LRF)
at different time points of CRT [110,183].

Radiomics, which is a technique for quantitative analysis of medical images, hypothe-
sises that imaging features capture anatomical or functional tumour heterogeneity in
solid tumours without the need for additional diagnostic interventions such as biop-
sies [98]. Different research teams have shown not only a significant prognostic power
of radiomics features and signatures in the task of patient stratification for LRF in
patients after CRT but also correlations with gene expression in different forms of
cancer [13,86], [5,55,82,104,145,171]. Therefore, some authors hypothesised that CT
radiomics captures tissue heterogeneity caused by tumour hypoxia [5, 56,98,102].

If the hypothesis is true, CT-radiomics should be able to identify similar at-risk
patient subgroups as identified by [18F]FMISO TMR up to certain extend, consid-
ering that poor prognosis after cancer treatments is a confluence of many different
factors. However, this hypothesis might yield to more affordable and eventually less
complicated strategies to adapt medical treatments in tumours, since it would allow
the exchangeability of [18F]FMISO imaging markers and CT-radiomics signatures for
treatment outcome prediction.
The underlying hypothesis for the current study was that an independently trained
CT radiomics model might serve as surrogate for hypoxia PET imaging to stratify
patients into risk groups according to outcome after RCT of HNSCC. Ideally, a CT
radiomics signature might be able to capture similar risk profiles as hypoxia imag-
ing using FMISO PET. To investigate this hypothesis, a CT radiomics model was
first developed based on n=149 HNSCC and subsequently validated with an indepen-
dent, bi-institutional data set of n=47 patients for whom FMISO PET data were also
available to compare the potential of CT radiomics versus FMISO PET imaging for
patient stratification.
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9.1. Data sets

H&N1 H&N2
Number of patients 149 47
Age (mean, range) 62 (39 - 87) 58 (45 - 76)
GTV-CT volume (mean,
range)

61.6(1.4 - 326.7) cm3 62.7 (10.4 - 238.8) cm3

Gender (female/male) 25/124 (16.8%/83.2%) 7/40(14.9%/85.1%)
Number of locoregional
failures

50 (34%) 15(32%)

Median follow-up time
(median, range)

12 (0 - 82) months 17 (1 - 75) months

Distant Metastases 26 (17%) 7 (15%)
T-stage
(Tis/T1/T2/T3/T4)

1/1/17/46/84 0/0/2/19/26

N-stage
(N0/N1/N2a/N2b/N2c/N3)

20/14/46/3/55/11 5/4/7/16/13/2

Radiation dose (mean,
range)

70 (66-72) Gy 71(69 -72) Gy

Chemotherapy
5-FU/MMC 116 (77.8%) 25 (53.2%)
Cisplatin 16 (10.7%) 1 (2.1%)
Cisplatin/5-FU 3 (2.0%) 21 (44.7%)
Other 14 (9.4%) 0

Table 9.1.: Patient population characteristics

9.1. Data sets

The data set consisted of 196 patients in total with HNSCC in advanced stages sched-
uled for definitive CRT who had been recruited in a period of 10 years (from 2005 to
2015) at the University Hospital Tübingen (UHT, n=171) and the University Hospi-
tal Dresden (UHD, n=25). The patient cohort was regrouped into two cohorts: HN1
(n=149 all from UHT), where only native radiotherapy (RT) planning CT data with
delineations of gross tumour volumes (GTV) by an experienced radiation oncologist
was available. For HN2 (n=47), in addition to native planning CT images and GTV
delineations also FMISO PET/CT data were available at baseline before the start of
treatment [175, 183]. At both hospitals, patients were treated with definitive CRT
with a mean radiation dose of 70 Gy, in addition to fluorouracil (5-FU) and mito-
mycin (MMC) or concomitant weekly cisplatin. For further details refer to table 9.1.
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9. CT rad.: not a surrogate pred. of pat. at risk as iden. by 18F-FMISO PET?

9.2. Imaging data

For all patients of subgroup HN1, native planning CT scans were acquired using a
Somatom Sensation Open (Siemens Healthineers, Erlangen, Germany). In subgroup
HN2, patients also received a planning CT. In addition, [18F]FMISO PET/CT scans
were acquired using a Siemens Biograph 16 (UHD, UHT) or a Siemens Biograph
mCT. PET data were reconstructed using OSEM 3D (four iterations, eight subsets)
with a 5-mm 3D Gaussian filtering the [18F]FMISO PET/CT acquisition protocol
consisted of static scans acquired four hours post injection with injected activities of
250 – 444 MBq. For further details see table 9.2. For the subsequent analysis, original
GTV delineations from RT treatment planning were used.

9.3. CT-radiomics signature

In this study we implemented the pipeline described in chapter ?? for feature selection,
where we used HN1 as our training cohort and HN2 as our test cohort. We tested
the models created using the signature obtained in our training cohort (HN1) for
each classifier in the HN2 cohort as (see table ??bsequently the model in our training
phase was used to stratify patients into high and low risk groups at a 0.5 risk threshold
probability.

9.4. FMISO PET/CT Imaging

9.4.1. Tumour-to-muscle ratio extraction

TMRpeak values were extracted from 18F-FMISO PET/CT scans according to:

TMRmax =
SUVmax

SUVmuscle−mean
(9.1)

Peak values of FMISO standardised uptake values in the GTV were determined by
averaging voxels represented in 0.5 cm3 sphere of highest tumour uptake (SUVpeak)
as described in Zips et al [183], Löck et al [110] and Mönnich et al. [117]. The mean
muscle standardised intensity uptake value (SUVmuscle) was obtained from manually
contoured regions of deep neck muscles.

9.4.2. Model validation for TMRpeak

Model validation was performed in HN2 where the TMRpeak was used to classify
tumours into high and low risk groups based on the 1.6 threshold obtained in the
study of Löck et al. [110].
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9.4. FMISO PET/CT Imaging

Modality Scanning
parameters

HN1 HN2

CT

Scanners Siemens Somatom
Sensation Open

Siemens Biograph
(n = 36) Siemens
Biograph mCT (n
= 11)

Slice thickness
[mm]

3 3 (n = 22), 5 (n =
25)

In-plane resolution
[mm]

1.27 1.27 (n = 22), 1.38
(n = 25)

Tube Voltage
[kVP]

120 120

Tube Current [mA] 40 100 (n = 25), 40 (n
= 22)

Reconstruction
Kernel

Convolution kernel
B40S filtered back
projection

Convolution kernel
B40S filtered back
projection

PET

Scanners Siemens Biograph
(n = 36) Siemens
Biograph mCT (n
= 11)

Slice thickness
[mm]

5

In-plane resolution
[mm]

1.38 (n = 25), 2.42
(n = 22)

Administrated
[18F]FMISO
activity [MBq]

250 – 300 (n = 25),
315 – 444 (n = 22)

Reconstruction
kernel

5-mm Gaussian
filter OSEM3D 4
integration 8
subsets

Scan duration time 15-min bed
position (n = 22),
12-min bed
position (n = 25)

Attenuation
correction

Based on CT

Standard Uptake
Value (SUV)
normalisation

Body weight

Table 9.2.: Details of CT and PET imaging data
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F. se-
lection
criteria

Model Num.
meta
fea-
tures

Name of the
associated
features in
clusters

Hyperparam. AUC
HN1

AUC
HN2

RF KNN 2 Size Zone: LZHGLE’, ‘LHH
Minimum Histogramm
Gradient’

number of
neighbors: 25 0.76 ±0.09 0.59

weights:
distance

RF RF 4
Area under IVH curve’,

‘HHH RL: LGLRE’, ‘HHL
Intensity histogram median’,
‘LLH SZ: LZLGLE’

Class weight:
{0: 0.5} 0.75 ±0.07 0.56Criterion:
’Entropy’
Max depth: 10
Number of
estimators: 9

DT RF 3 NGTD: Busyness’, ‘NGTD:

Busyness’, ‘LHL Median’

Bootstrap:
False

0.75 ±0.10 0.59Class weight:
None
Criterion:
‘Gini’
Max depth:
None
Number of
estimators: 10

χ2 KNN 5 ‘HLH Energy’, ‘LLH

Energy’, ‘LLL SZ:
LZHGLE’, ‘LLL SZ: LZE’,
‘LHH SZ: ZS non-uniformity’

number of
neighbors: 23 0.74 ±0.10 0.52

weights:
distance

KNN LR 4 ‘LLL LZE’, ‘HHL Intensity

histogram median’, ‘LLH
Range’, ‘HLH Energy’

C: 1000 0.71 ±0.10 0.53Class weight:
{0: 0.5}

DT LR 3 ‘HHL Intensity histogram

median’, ‘LLL SZ:
LZHGLE’, ‘LHL DZ: ZD
non-uniformity’

C: 1.0 0.70 0.09 0.52Class weight:
None

Table 9.3.: Description of the best performing CT radiomics signatures and models
according to ROC-AUC score in HN1 and HN2, Random Forest (RF),
Decision Trees (DT), k-nearest neighbours (KNN), Logistic Regression
(LR).
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9.5. Model Comparison

9.5. Model Comparison
In order to assess whether the patients at risk classified by the best CT radiomics
signature are similar to the classified patients at risk based on TMRpeak, the following
simple matching score (MS) was used:

MS =
TP + TN

NT

MS measures the ratio between the number of patients that both models predict either
as patients at high risk (TP) or as low risk patients (TN) divided by the total number
of patients (NT) in HN2. If MS equals 1, it means that both modalities predict the
same treatment outcome for a patient, whereas 0 indicates complete disagreement.

9.6. Statistical Analysis
Stratification of patients into risk groups for LRC was assessed using Kaplan-Meier
curves and the log-rank test. All statistical analyses were performed using the lifelines
package implemented in Python 3.6. A p-value < 0.05 was considered as significant.

9.7. Are there correlations?
Following model training in the HN1 cohort, the six best models had AUC-ROC val-
ues ranging between 0.70 ± 0.09 and 0.76 ± 0.09. The best performing CT radiomics
model was a 25-Nearest Neighbours model based on two radiomics meta-features as-
sociated to ‘LLL Size Zone (SZ): Large Zone High Grey Level Emphasis’ and ‘LHH
Minimum histogram gradient’ [184] (cf. table 9.3). However, in the HN2 validation
cohort the AUC-ROC of the models decreased to a range between 0.52 and 0.59 using
a 0.5 threshold for risk classification. Stratification of the validation cohort HN2 into
high and low risk patients failed according to this CT radiomics model, underlined
by a p-value=0.18 in the log-rank test (cf. figure 9.1 (a)).
On the contrary, in the same HN2 cohort, the FMISO/PET TBRpeak imaging marker
resulted in a ROC-AUC score of 0.66 using a threshold of 1.6, as proposed for the
exploratory cohort (n = 25) in the study of Löck et al. 2017 [110]. Likewise, in the
same cohort a better stratification was achieved by TBRpeak using the log-rank test
(p-value=0.02, cf. figure 9.1 (a)). The threshold proposed by Mönnich et al. 2015
(TBRpeak = 1.88) was also used, which yielded a ROC-AUC score of 0.62 similar to
the threshold of Löck et al. 2017. Nevertheless, the stratification of the HN2 cohort
into high and low risk patients failed (p-value = 0.12, log-rank test).

In summary, the CT radiomics model does not perform better than TBRpeak in strat-
ifying the HN2 cohort according to LRF. An accuracy of MS = 55.3% was obtained
between the two models, which suggests that there is a weak correlation between the
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9. CT rad.: not a surrogate pred. of pat. at risk as iden. by 18F-FMISO PET?

CT radiomics signature classification and the risk classification of patients by FMISO
TMRpeak (cf. figure 9.1 b). The CT radiomics features encountered in this study,
are assumed to quantify pattern-variation-values of heterogeneity in a LLL and LHH
frequency filtered tumour in a volumetric image [184]. As an example, in figure 9.2,
an irregular pattern-structure variation is distributed homogeneously across the ROI,
while in figure 3a, the pattern-structure variation in the ROI is rather low, but equally
distributed within the ROI.
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Non informative model
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LR TMRmax 10 9 9 9 5 4 3 2
HR TMRmax 37 20 15 13 10 10 8 2

Figure 9.1.: (a) Kaplan-Maier curves for TMRpeak > 1.6 (p-value=0.02) in comparison
to the best-performing CT radiomics signature using the 0.5 threshold
to stratify patients at risk (p=0.18). (b) Patient classification according
to CT radiomics signature score (x-axis) and TMRpeak (y-axis), yielding
a matching score of 0.553. (c) Receiver Operator Characteristic (ROC)
for predicting recurrence and non-recurrence with both models. CT ra-
diomics signature ROC-AUC = 0.59 and 0.49 using the 0.50 threshold
and for floating thresholds respectively, TMRpeak ROC-AUC = 0.66 and
0.67 in HN2 using 1.6 threshold for floating thresholds respectively at-risk
classification tasks.
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(a) (b)

(c) (d)

Figure 9.2.: Image (a) is a planning CT scan with (b) the [18F]FMISO PET scan
after 4h post injection and their ROIs of a patient who did not recur after
chemo-radiotherapy, Images (c) and (d) are the planning CT scan and the
[18F]FMISO PET scan after 4h post injection and their ROIs respectively
of a patient who had a recurring tumour after chemo-radiotherapy, in the
ROIs of the PET scans, the low risk patient shows lower TBRpeak (1.44)
and CT radiomics signature model probability (0.18) than the high risk
patient (1.96 and 0.54 respectively).
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10. A radiomic appr. for pred. of comp. rem. of organ-pres. therapy in rec. cancer.

Recently, locally advanced rectal carcinoma treatments have achieve great results in
terms of local control rates in phase II (up to 98%) [142]. However those figures are
only achieved with very aggressive therapies in surgery [70, 129], and in chemoradio-
therapy [54,149]. The drawback of such strategies jeopardizes considerably the organs
in the neighbourhood of the colon [12, 30]. The prediction of patients who might be
candidates for less aggressive therapies remains as one of the biggest challenges in the
field of organ-preserving strategy of therapies [51,65,130,148]. Two main approaches
have been addressed, firstly, either the omission or limitation of radiation therapy
based on pretreatment MRI parameters and secondly, the omission or limitation of
surgery after response of chemoradiotherapy.

Radiomics can potentially improve organ-preserving therapies [51], due to correla-
tions of imaging features with the underlying biology in tumours [5, 97, 103], which
could allow better subgroups of therapy responders. Up to date, there are limited
but promising approaches on the field [35,123] for instance Ke Nie et al, achieved and
ROC-AUC of 0.89 for predictions of good responders in a cohort of 48 rectal can-
cer [123]. This study aims to assess prediction performance of good vs bad responders
of radiomics for potential use in organ-preserving therapies by using a significant co-
hort of patients (TUE, n = 136) from the University Hospital Tübingen with fully
independent validation cohort from University Hospital Florence (FLO, n = 76).

10.1. Patients and diagnostics

Consecutive patients treated for histologically-confirmed, locally advanced adenocar-
cinoma of the rectum at the Universities of Tübingen (TUE) and Florence (FLO) in
two subsequent time frames (1/1/07 to 31/12/10 and 1/1/11 to 31/12/17 in TUE
and FLO, respectively) were considered for our analysis. In general, staging included
Gadolinium-enhanced pelvic MR, iodinated contrast-enhanced CT of the chest and
abdomen, and colonoscopy. Clinical stage was defined according to UICC/TNM 7th
edition. After multidisciplinary discussion, all patients with T2-T3, N positive rectal
cancer deemed amenable to undergo a full course of pre-operative radiation-based
treatment followed by curatively-intended surgery could be included in our study. No
tumour upper distance limit from the anal verge was specified. No upper age limit
was defined. Neoadjuvant chemotherapy, unresectable primary tumour (T4), previ-
ous RT to the pelvis or previous surgical manipulation of the rectum were exclusion
criteria. In addition, patients with unrecognisable rectal GTV on the planning CT or
with image artifacts induced by hip prosthesis or rectal stent could not be included.
As per local practice, standard of care for neoadjuvant treatment differed between
the two centres. In TU, 50.4 Gy were delivered in 28 fractions of 1.8 Gy each (5
fractions per week). Radio-sensitizing chemotherapy consisted of 120-hour contin-
uous infusion of 5-fluorouracil during the first and fifth weeks of radiation (daily
dose of 1000 mg/m2 on days 1 through 5 and 29 through 33, respectively). Selected
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10.2. Imaging analysis and protocols

patients received also deep regional hyperthermia, which was administered with a
Sigma Eye or Sigma-60 applicator once or twice weekly for at least 60 minutes to a
target temperature of 40.5◦ Celsius, as previously described [152], [52]. In FL, a total
dose of 45 Gy was delivered with standard fractionation over 5 weeks (25 fractions
of 1.8 Gy per day). Chrono-modulated capecitabine was prescribed for the whole
RT course at a daily dose of 825 mg/m2 BID. After restaging and due time interval
(usually 6 to 10 weeks from the end of CRT), surgery was performed. Abdomino-
perineal resection or rectal anterior resection (RAR) with TME were the procedures
of choice. Pathologic response evaluation was assessed in accordance with Dworak’s
tumor regression grade40 in both institutions. Dworak’s 5-point scale was as follows:
0, 1, 2, 3 and 4 scores were indicative of no regression, predominantly tumor with
significant fibrosis and/or vasculopathy, predominantly fibrosis with scattered tumor
cells, only scattered tumor cells in the space of fibrosis with/without acellular mucin,
and no vital tumor cells detectable, respectively. Capecitabine or 5-fluorouracil (plus
folinic acid) - based, adjuvant chemotherapy was offered to selected patients in case
of unfavourable pathologic findings.

10.2. Imaging analysis and protocols

In terms of CT acquisition, treatment planning and delivery, the following procedures
were performed, according to local standard of practice. A CT scan (Big Bore, Philips
Medical Systems, Cleveland, OH, USA) was acquired at 3 mm slice width for planning
purpose. Most patients were immobilized in the prone position with an ankle-holder.
In order to displace the small bowel loops from the irradiation field, a belly board
device was used. RT was delivered by a linear accelerator (Elekta, Crawley, UK) with
standard 3-field box technique or intensity modulated radiotherapy. In terms of delin-
eation, the same procedures were followed in both institutions. The following organs
at risk (OAR’s) were contoured: femoral heads, bladder, small bowel, penile bulb
and anal canal (if not infiltrated). Typically, the clinical target volume (CTV) con-
sisted of the mesorectum and internal iliac, pre-sacral and obturatory lymph nodes.
For the purpose of this study all primary tumours were manually segmented by two
experienced radiation oncologists (CG and PB) in a blinded fashion. Staging MR
T2-weighted sequences could be used to aid GTV definition.

10.3. CT-radiomics Analysis

The extraction, feature and model selection was performed as explained in 7 using
the models discussed in chapter 4, we used as our training cohort the TUE cohort
and FLO as an independent test cohort. The ROC-AUC metric was implemented as
a metric in order to avoid imbalanced class problems.
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Figure 10.1.: Receiver operator characteristic curves for the learning and validation
cohorts.

10.4. Predictions
A model was identified to have a similar ROC-AUC in the learning cohort (TUE) as
well as in the validation cohort (FLO). The model consisted on an 5-nearest neigh-
bours algorithm with PCA-feature cluster associated to "Range" intensity feature.
In the learning cohort the computed ROC-AUC is about 0.65 ± 0.02 while for the
independent validation cohort (FLO) the performance was 0.63, cf. figure 10.1.
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11. Discussion and outlook

Medical imaging modalities have become the cornerstone technology to diagnose can-
cer status and potentially the cornerstone technology to personalise CRT with low
invasiveness in comparison with other techniques. The plethora of proposed and re-
searched image biomarkers promise better treatment adaptations. Radiomics is a fast
growing research field, that due to the immense studies which provides promising re-
sults in the matter, has become heavily used to find new correlations and predictions
in the context of clinical research. Yet sometimes at expenses of non-standardised
methodology or reproducibility [97]. Under the course of this thesis only two widely-
accessible implementations are available for radiomic studies [168,181]. However, two
problems should be mainly addressed in the implementations:

• Reproducibility of radiomic features

• Robust modelling for outcome predictions

In this thesis a customized radiomic software was implemented for the necessities of
clinical research studies of the Radiation oncology department of the University Hos-
pital Tübingen, with the aim to identify and validate imaging biomarkers related to
heterogeneity and other biological phenotype expressions of aggressiveness of tumours
(cf. chapter 6). The imaging processing and feature extraction part of the software
was validated inside the IBSI international collaboration (more than 20 groups par-
ticipated in it to reach consensus) for reproducibility purposes. Robust modelling
was built on top of state-of-the-art python libraries for machine learning purposes.
Model evaluations were cautiously carried to address problems of over-fitting and
under-fitting from highly correlated features to limitations in the number of samples.

The implementations developed for image preprocessing and feature extraction (cf.
chapter 6) were validated for most of the features proposed by the IBSI international
collaboration. Nonetheless, some features remain not standardised since internal deci-
sions were more convenient for the performed clinical research inside the framework of
this thesis, such as volume and surface area computations, which differs from the IBSI
collaboration and thus features that depend on these parameters. For the research
applications of this thesis, CT images had more than 1000 voxels, hence generations
mesh approaches, which imply more computational implementations, debugging and
testing at no much higher accuracy than voxel counting, were disregarded. Inside the
IBSI collaboration, consensus was reached across institutes for mathematical defini-
tions of features. Nonetheless variability in imaging preprocessing implementations
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were identified as the main source of lack of reproducibility of features computations
inside the collaboration, further optimization work is being performed inside the col-
laboration to establish benchmarks at the time of the writing phase of this thesis and
therefore not definitive results can be obtained. In this thesis was decided to limit
grey levels values in the range of tissue grey levels for CT images, which could be
extended to MRI and PET, no interpolation or down-sampling was applied in spite
of differences in voxel-axis lengths, texture features were computed in 3D fashion,
and neighbourhood was consider for 1 voxel distance vicinity for all texture matrices.
Despite those issues, radiomics studies can be still performed since feature selection
process and ML modelling are influenced by feature variability inside training samples
of patients and performance over test samples of patients, not over an specific mean-
ing of feature value. Intra-institution reproducibility is affected however by the issue,
therefore participation in the initiative should be continued in the future. Inside the
IBSI collaboration no filter image preprocessing is discussed, thus consensus could
not be reached. The selection of a filter is specific for the pattern variations that the
researcher would like to highlight or enhance from images. Nonetheless, as variations
of feature values are mostly originated in the image preprocessing part, filtered image
features lack of reproducibility could also come from this issue. In the research inside
of this work, wavelets features were usually picked by most of the feature selection
algorithms implemented as highly predictive for the required prediction tasks, hence
benchmarks are also needed in this regard at least for the most common image filters.

All clinical research results inside the framework of this thesis should not be seen
as definitive, since much optimization should still be implemented from methodologi-
cal points of views up to number of patients included in cohorts. These optimizations
should be carried out in the future, which due to time limitations these were not im-
plemented. In the following, a summary of conclusions, limitations and study extends
are discussed.

In the first research application of this thesis (cf. chapter 8) correlations between
CT-radiomic features and gene mutation expressions associated to heterogeneity phe-
notype were tested in 20 patients of HNSCC driven by the study of Aerts et al. [5].
Some somatic mutations of FAT1 and tumour volume were correlated with the so
called Aerts-signature for intra-tumour phenotype expression heterogeneity, The fea-
tures inside the Aerts signature are broader than only capturing volume owe to they
compute number of patterns inside the ROI and thus the larger the volume, the larger
the possibility to find more patterns in the ROI. Mutations of TP53 and KMT2D ex-
pressions did not show correlations with the proposed radiomic signature, although it
does not mean that generally there is no correlation with intra-tumour heterogeneity,
as it can be suggested by the study, the effect of TP53 mutations is assumed to be
broader on tumour development than the responsibility of structural heterogeneity
in tumours. This study is aligned to lack of definitive replications from other studies
of correlations of intra-tumour heterogeneity with the Aerts-signature [57, 68], [178],
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these findings requires larger cohorts to validate this exploratory data and should be
performed in the future. The scientific innovation of this work remains in the trial
to confirm correlations between radiomic features with genetic expressions which are
rather sparse in clinical research, despite the advantage of finding positive conclusive
results [186].

As a second research application (cf. chapter 9), the goal was to find a CT-radiomic
signature which could be a substitute identifier of patients at risk of the hypoxia static
18F-FMISO PET imaging biomarker TBRpeak in HNSCC.

Two features, out of 550 radiomics meta-features, along with the KNN model were
identified as the best-performing radiomics signature from the training cohort (HN1).
We assumed them to be associated to phenotypical expressions of heterogeneity in
tumours, since these features are defined to quantify pattern-variations of grey-levels
in medical images [5, 56, 97, 184]. As we had a retrospective data set and therefore
could not access genetic information of the tumours, a direct proof of this assumption
is lacking.
As previously indicated [91,117,183], the results of our study show that pre-treatment
FMISO PET TMRpeak has a significant prognostic power to discriminate between pa-
tients with high and low risk of LRF following CRT. This is aligned to the study of
Zips et al. [183] which found a significant prognostic power of the TMRmedian feature
in the baseline and at the second week after the start of the CRT treatment. The
approach in our study is based on the results of Löck et al. 2017 [110]. A better
discriminative power of the TMRpeak threshold may however be reached in second-
week images after the start of CRT. We did not explore this approach, because we
were limited by the data, as our study was performed retrospectively and we did
not have weekly [18F]FMISO PET and CT scans for all patients. In the case of
CT radiomics, features extracted from imaging during treatment resulted in a higher
prognostic power compared to features from the start of CRT, as shown by Fave et
al. 2016 [43] and Leger et al. 2019 [102]. In the publication of Löck et al. [110],
TMRpeak was not found to be significantly related to LRF for their exploratory co-
hort (n = 25). However, in Mönnich et al. [117] TMRpeak was found significant for
22 out of the HN2 cohort. The two studies [110, 117] showed some methodological
differences. The approach of Löck et al. [110] might be a more robust method be-
cause it used an exploratory cohort for assessing TBRpeak thresholds at different time
points during the course of CRT in addition to an independent validation cohort for
testing. Whereas in the study of Mönnich et al. [117], the derivation of the TMRpeak

threshold consisted of the median-value in the exploratory cohort, which was not
independently validated [185]. The ROC-AUC was lowered from 0.77 in Mönnich
et al. to 0.66 in this study. A possible explanation for these results might be the
lack of standardisation for the determination of SUVmuscle and SUVpeak in 0.5 cm3 of
tumour or muscle tissue, which depends strongly on manual delineation procedures.
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Moreover, the difference in AUC results may be an effect of the increased sample size.

Larger, more heterogeneous solid tumours often develop hypoxia and therefore in-
crease risk of LRF [55, 82, 119, 145]. The hypothesis of this study was that CT
radiomics, which is assumed to quantify heterogeneity in tumours, could be used to
provide a prognostic model that significantly correlates with LRF after CRT and thus
also up to a significant extent with an imaging metric for hypoxia, such as TBRpeak.
However, hypoxia may not be the only cause of LRF. Different factors such as pa-
tient characteristics, tumour biology and also treatment related issues contribute to
the observed outcome which may not be captured by CT radiomics. The weak overlap
in matching predictions between both modalities (55.3 %) might be a consequence
of this. A more robust approach to test our hypothesis would be directly targeting
hypoxia gene expressions, hypoxia imaging biomarkers [109] or FMISO image dis-
tributions via a deep learning architecture such as a Convolutional Neural Network
(CNN) based approach [8,53], instead of targeting loco-regional outcomes of tumours.
However, we could not pursue these approaches because of our small cohort size to
train and test findings.

In this study, model training is performed using LRF data. The binary nature of
the response variable introduces limitations to this study as censored events as well
as the time to recurrence is neglected. Other studies have presented radiomics models
which include time-to-event data [102] and might thus be considered more accurate
in terms of event modelling.
Another possible limitation of our study is the application of wavelet filters in the 3D
image space. Voxel lengths were not interpolated and thus no equal voxel spacing was
used leading to larger voxel dimensions in slice direction compared to in-plane voxel
spacing. This may affect the generation of new filtered images and subsequently the
corresponding feature values. However, interpolation operations might also introduce
additional artefacts to the data. To date, it is unknown to which extend this might
affect the process of feature selection and machine learning modelling.
The chosen CT radiomics signature is based on the best performing signature inside
the training phase. This is not always the safest choice according to Leger S. et al.
2017 [101]. As a result, we tested the 6 best CT radiomics signatures from the train-
ing phase in our validation cohort, where similar results were obtained (cf. table 9.3).
We therefore did not see any impediment to compare simply the best signature from
our training phase with the results obtained for TBRpeak as a matter of consistency.
In this study, no direct correlation between FMISO PET TBRpeak and the best per-
forming CT radiomics model was found. CT radiomics may pick tumour phenotypic
heterogeneity from CT data which might be linked to tumour hypoxia, but indirectly.
However, direct assessment of tumour hypoxia with specific imaging techniques and
radiotracers is suggested to have a more powerful prediction power.

Finally, a radiomic approach was proposed as an organ-preserving strategy for ra-

116



diochemotherapy, modest figures were found in comparison with the study of Nie et
al [123]. Imaging biomarkers are considered as promising features to inform person-
alised therapeutic decisions. However, reports on the use of them for organ-preserving
strategies remain sparse.

Regarding results obtained in this study, better figures were obtained in previous
studies [35,123]. However the success of this study comprehend the size of the cohort
of patients involved as well as the inclusion of a validation cohort from another insti-
tution with a similar but still different imaging set-up, which confirms the need for
standardised imaging protocols across institutions and studies suggested by the IBSI
collaboration [184]. Similar ROC-AUC scores were found in the two cohorts, which
suggests that findings can be replicated at other institutions. The feature (PCA-
range) by definition captures the difference between the maximum and the minimum
grey level of the region of interest, which is an indication of the density distribution
inside the analysed region or in other words the contrast in the region. It seems to
be that the larger the PCA-range, the larger the probability of failure for complete
remission of the tumour.

Our study posses limitations in different aspects, for instance the deep learning (DL)
approach was never used due to lack of understanding of the features that a DL
approach might encounter, which usually tends to be abstract for clinical implemen-
tations. This approach is suggested to be researched in the future. Another possible
limitation is associated to the target used for machine learning purposes, as the target
was aimed to predict good vs poor regression grades (a binary problem), a multi-label
approach might be more suitable for better prediction of clinical status, for instance
a one vs all approach, the approach was not integrated in this study due to time
constrains. Nonetheless, further research in this direction is encouraged.

As CT is used in the clinical routine for diagnosed purposes, the result of this work
might stimulate the research of the use of advanced imaging analysis to spare the
use of aggressive therapies in rectal carcinomas and be used as a strategy for organ-
preserving therapies.

The ML approach used inside the framework of this thesis was performed under
the construction of hand-crafted, yet meaningful, features from medical images and
a classical machine learning pipeline for feature and model selection. More advanced
approaches use deep learning algorithms [99, 105, 126], where the algorithm learns
from images as inputs the features to be accounted for prediction. The choice for
a more traditional radiomic pipeline was based on the fact that some hard treat-
able issues arise from this approach. First, the sizes of the samples inside this work
did not super-passed the order of hundreds of patients (which is far too small for
purposes of implementing deep learning architectures). Besides, as a deep learning
algorithms propose to itself the features or combination of features to be prognostic
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without a direct connection to biological definitions, they are barely interpretable
in their meanings and associations to well established biological process in tumours.
Therefore, the translations of such eventually encountered features seem much harder
for clinical applications. Finally, in order to make the deep learning approach com-
putationally effective, it requires the use of high performance GPU graphic cards for
image analysis (recursive and convolutional neuronal networks), which in the moment
of embarking in the development of this thesis, they were not available. The approach
should anyway be considered for future studies as it broadens the spectrum of imag-
ing biomarkers and up to date of publication, applications to HNSCC patients have
not been performed yet.
Only static radiographic images were used inside the radiomic studies of this thesis,
no dynamic approaches were undertaken, despite interesting clinical research appli-
cations as proposed by Fave et al [43] for tumour treatment responses due to time
limitations and lack of data samples (patients and scans), further investigations on
this direction should also be consider in the future.
This work presents a full implementation of a radiomic software, which were applied
to different clinical studies. This promising results suggest that radiomics can be used
as a either substitute or complementary information for CRT adaptations, however
still further optimizations should be performed to validate findings, such as software
validation, training and test cohort size and longitudinal studies.
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Summary of the Thesis

Part I: Introduction

Chapter 1: Introduction

In chapter 1, motivations and state of the art of the topics treated inside the frame-
work of this thesis are supplied.

Part II: Materials and Mehtods

Chapter 2: Basics of imaging modalities and biomarkers for RT

The chapter 2 followed to explain the basic physics and image reconstruction of CT,
MRI and PET. Besides it shows the origins of the most common imaging markers
from static to dynamic models with their advantages and disadvantages.

Chapter 3: The radiomic hypothesis and image feature engineering

The chapter 3 provided a compelling introduction to the field of radiomics along with
explanations of the most common features for image analysis and how radiomic in-
corporates them to construct relevant imaging biomarkers.

Chapter 4: Machine learning in the context of radiomics

In chapter 4, a brief description of the most common machine learning algorithms for
feature selection and modelling was imparted in regards to radiomics. Moreover, a
short discussion about model validation and tuning and selection in this work is also
supplied.

Chapter 5: Python as a Software Development Language

In chapter 5, a brief description of Python as programming language was provided
as well as a short discussion about the reasons to use it and some comparisons with
other languages were explained.

Part III: Results

Chapter 6: In-house software development for radiomics and its val-
idation

The chapter 6 yielded in an introductory description of the software implementation
and discloses the validation benchmarks of the software inside the international col-
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laboration IBSI.

Chapter 7: Radiomics pipeline inside this thesis
The chapter 7 provided a detailed discussion of the radiomics pipeline used in this
work as well as the hyperparamenter spaces used for every machine learning model
used.

Chapter 8: Correlations of the Aerts signature with somatic muta-
tions in TP53, FAT1 and KMT2D in HNSCC
In chapter 8 summarized an exploratory study to confirm the Aerts signature with
heterogeneity in cell pathways mutations, the results are therefore discussed in an
adaptation form from the publication of [184].

Chapter 9: CT radiomics: A surrogate predictor of patients at risk
as identified by 18F-FMISO hypoxia PET?
In chapter 9, the feasibility to use CT-radiomics as a substitute strategy to classify
patients at risk in comparison to standard hypoxia-based static model was investi-
gated. The results were thus disclosed.

Chapter 10: An approach for prediction of complete remission of
organ-preserving therapy in rectal carcinoma with independent val-
idation)
In chapter 10, the feasibility to use CT-radiomics as a strategy to improve organ-
preserving therapies in rectal carcinomas patients was investigated. The results were
thus disclosed.

Part IV: Discussion and outlook
Chapter 11: Discussion and outlook
Finally, chapter 11 provides a summary of the observations, discussions and scopes
of this work and an outlook to future research.
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12. Software documentation: Image
preprocessing and feature
extraction

In this chapter full disclosure of the radiomic implementations for feature extraction
and image preprocessing are discussed.

12.1. preprocessing.

The preprocessing module provides functions for imaging processing tasks, such as
sampling, grey level quantizations and segmentations.

• adjust_grey_levels(volume, new_min, new_max):
Voxels of a given volume are mapped to a new volume where the voxels are
between a desired new minimum (new_min) and maximum (new_max).

• apply_segmentation_mask(volume, segmentation_mask):
Apply segmentation to a given volume based on a ndarray of ones and zeros
(segmentation_mask), where ones means that the region is inside of the volume
of interest and 0 otherwise.

12.2. read_img_data.py

This module provides functions to read and process medical images in nifti format.
The module preprocessing.py and the built-in library nibabel were used to trans-
late nifti images to a ndarray object from NumPy.

• process_patient_data(folder_path, image_path, seg_path):
reads and transform the desired medical image data located at the address
folder_path/image_path and segmentation mask at the address folder
folder_path/seg_path to an ndarray object. Here relevant information from
the used scan parameter are extracted from the nifti -header to prepare the
data for texture analysis, shape features and filters applications in the original
nifti -image.
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• get_processed_folder(folder_path):
Reads the saved ndarray objects obtained from process_patient_data mod-
ule for feature extraction located at folder_path.

12.3. Stats_features.py
This module provides functions to compute first order statistics features (Intensity-
family) from the loaded ndarray objects. Here the built-in library SciPy was used
for desired statistical operations.

• compute_stats_features(volume):
computes 18 statistical features in a volume based on the definition of IBSI for
Intensity features for radiomics [184].

• get_stats_feature_names():
obtains the names of the 18 statistical features computed from
compute_stats_features.

12.4. Intensity_histogram_features.py
This module contains a series of computational fictions to compute intensity features
based on histogram of grey levels as proposed by the IBSI collaboration [184].

• histo_gen(volume):
generates a histogram based on a defined volume array.

Listing 12.1: Python code for histogram generation of an ndarray object, Inten-
sity_histogram_features.py.

def histo_gen ( volume ) :

# genera t ion o f b in s accord ing to volume
l_bins = np . arange (np . nanmin ( volume ) ,np . nanmax( volume ) + 2)
# resampl ing ndarray to 1−darray
X_d = np . hstack (np . round( volume ) )
# histogram genera t ion
h i s t o = np . histogram (X_d[ np . i snan (X_d) == False ] , b ins = l_bins )
# frequency computat ions
H = h i s t o [ 0 ]
# Number o f v o x e l s
N_v = f loat (np . s i z e ( volume [ np . i snan ( volume ) != True ] ) )
# Number o f grey− l e v e l s
N_g = f loat ( h i s t o [ 1 ] [ − 2 ] )
# Proport ion computat ions
p = np . z e ro s (np . s i z e (H) )
for i in range (np . s i z e (p) ) :
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p [ i ] = H[ i ] / f loat (N_v)

return X_d, H. copy ( ) , N_v, N_g, p

• compute_ih_features(volume):
computes 28 features based on the generated histogram from histo_gen based
on definitions of the IBSI collaboration [184].

• get_ih_feature_names():
obtains the names of the computed 28 features from compute_ih_features.

12.5. Intensity_volume_histogram_features.py
This module delivers utilities to compute intensity volume histograms features defined
in the IBSI manuscript [184].

• IVH_gen(volume):
generates a volume intensity histogram from a given ndarray object (volume)

Listing 12.2: Python code for a volume intensity histogram generation of an ndarray
object, Intensity_volume_histogram_features.py.

def IVH_gen( volume ) :
# Number o f v o x e l s b e l ong ing to the ROI

N_v = f loat (np . s i z e ( volume [ np . i snan ( volume ) != True ] ) )
# i n i t i a l i z e the f requency o f v o x e l s t h a t are under a de f ined

t h r e s h o l d
v = np . array ( [ ] )
# i n i t i a l i z e b in s
gamma = np . array ( [ ] )

X_min = np . nanmin ( volume )
X_max = np . nanmax( volume )

# computes propor t ion o f v o x e l s under the d i f f e r e n t number o f grey
l e v e l s and b ins

I = np . arange ( int (np . nanmin ( volume ) ) , int (np . nanmax( volume ) + 1) )
for i in I :

i f i == np . nanmin ( volume ) :
d e l t a = 0
item = 1

else :
d e l t a = ( volume < i )
de l t a = de l t a . astype ( int )
item = 1 − de l t a .sum( ) /N_v

v = np . append (v , item )
item2 = ( i − X_min) /(X_max − X_min)
gamma = np . append (gamma, item2 )
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return I , v , gamma, N_v

• compute_ivh_features(volume):
computes 7 features based on the generated volume intensity histogram from
IVH_gen based on definitions of the IBSI collaboration [184].

• get_ivh_feature_names():
obtains the names of the computed 7 features from compute_ivh_features.

12.6. Morph_features.py
The module contains functions and utilities to compute shape-family radiomic fea-
tures as proposed by the IBSI collaboration [184]. For mesh generations the module
spatial from the built-in library SciPy is used.

• compute_aabb(X_c):
computes volume and area of an axis-aligned bounding box given a list of mesh
vectors X_c.

Listing 12.3: Python code for computation of axis-aligned bounding box,
Morph_features.py.

def compute_aabb (X_c) :
# Extrac t v e c t o r po in t s from the mesh vec to r
po in t s = X_c
# Construct a convex h u l l from the mesh v e c t o r s and l a r g e s t

d i s t an c e s i n s i d e the convex h u l l
hul l_po ints = po in t s [ ConvexHull ( po in t s ) . v e r t i c e s ]
min_x = np . nanmin ( hu l l_po ints [ : , 0 ] , a x i s=0)
max_x = np . nanmax( hu l l_po ints [ : , 0 ] , a x i s=0)
min_y = np . nanmin ( hu l l_po ints [ : , 1 ] , a x i s=0)
max_y = np . nanmax( hu l l_po ints [ : , 1 ] , a x i s=0)
min_z = np . nanmin ( hu l l_po ints [ : , 2 ] , a x i s=0)
max_z = np . nanmax( hu l l_po ints [ : , 2 ] , a x i s=0)
# Computes volume o f the ax is−a l i gned bounding box
vo l = (max_x − min_x) ∗(max_y − min_y) ∗(max_z−min_z)
# Computes area o f the ax is−a l i gn ed bounding box
area = 2∗(max_x − min_x) ∗(max_y − min_y) + 2∗(max_x − min_x) ∗(max_z
− min_z) + 2∗(max_y − min_y) ∗(max_z − min_z)

return vol , area

• compute_ombb(X_c):
calculates the volume and the area of a oriented minimum bounding box for a
given set of mesh vectors X_c

128



12.6. Morph_features.py

Listing 12.4: Python code for computation of oriented minimum bounding box,
Morph_features.py.

def compute_ombb(X_c) :
po in t s = X_c
pi2 = np . p i /2 .0
# genera t e s v e c t o r s f o r the convex h u l l genera ted from the g iven

mesh v e c t o r s o f the image
hul l_po ints = po in t s [ ConvexHull ( po in t s ) . v e r t i c e s ]
edges = np . z e ro s ( ( len ( hu l l_po ints ) , 3) )
# genera t e s edges f o r the convex h u l l
edges = hul l_po ints [ 1 : ] − hul l_po ints [ : −1 ]
for i in range ( len ( edges ) ) :

edges [ i , : ] = edges [ i , : ] / np . l i n a l g . norm( edges [ i , : ] , a x i s= 0)
# maps convex h u l l edges in t o a or i en t ed bounding box space
the ta s = np . z e ro s ( ( len ( edges ) , 3 ) )
for element in range ( len ( edges ) ) :

the ta s [ element , 0 ] = np . arctan2 ( edges [ element , 1 ] , edges [ element
, 0 ] )

the ta s [ element , 1 ] = np . arctan2 ( edges [ element , 2 ] , edges [ element
, 0 ] )

the ta s [ element , 2 ] = np . arctan2 ( edges [ element , 2 ] , edges [ element
, 1 ] )

the ta s = np . abs ( the ta s ∗90 .0/ pi2 )
vo l = np . z e r o s ( len ( the ta s ) )
sur face_area = np . z e r o s ( len ( the ta s ) )
for item in range ( len ( the ta s ) ) :

R_x = np . array ( [ [ 1 , 0 , 0 ] ,
[ 0 , np . cos ( the ta s [ item , 0 ] ) , −np . s i n ( the ta s [ item

, 0 ] ) ] ,
[ 0 , np . s i n ( the ta s [ item , 0 ] ) , np . cos ( the ta s [ item

, 0 ] ) ] ] )

R_y = np . array ( [ [ np . cos ( the ta s [ item , 1 ] ) , 0 , np . s i n ( the ta s [ item
, 1 ] ) ] ,

[ 0 , 1 , 0 ] ,
[−np . s i n ( the ta s [ item , 1 ] ) ,0 , np . cos ( the ta s [ item

, 1 ] ) ] ] )

R_z = np . array ( [ [ np . cos ( the ta s [ item , 2 ] ) , −np . s i n ( the ta s [ item , 2 ] )
, 0 ] ,

[ np . s i n ( the ta s [ item , 2 ] ) , np . cos ( the ta s [ item , 2 ] )
, 0 ] ,

[ 0 , 0 , 1 ] ] )

r o t a t i o n s = R_x. dot (R_y) . dot (R_z)
rot_points = np . dot ( r o ta t i on s , hu l l_po ints .T)

min_x = np . nanmin ( rot_points [ 0 , : ] , a x i s=0)
max_x = np . nanmax( rot_points [ 0 , : ] , a x i s=0)
min_y = np . nanmin ( rot_points [ 1 , : ] , a x i s=0)
max_y = np . nanmax( rot_points [ 1 , : ] , a x i s=0)
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min_z = np . nanmin ( rot_points [ 2 , : ] , a x i s=0)
max_z = np . nanmax( rot_points [ 2 , : ] , a x i s=0)

# computes volume and sur f a ce area o f the o r i en t ed − minimum
bounding box
vo l [ item ] = (max_x − min_x) ∗(max_y − min_y) ∗(max_z−min_z)
sur face_area [ item ] = 2∗(max_x − min_x) ∗(max_y − min_y) + 2∗(

max_x − min_x) ∗(max_z − min_z) + 2∗(max_y − min_y) ∗(max_z −
min_z)

vol_ombb = np . nanmin ( vo l )
sa_ombb = np . nanmin ( sur face_area )

return vol_ombb , sa_ombb

• apply_pca(X_c):
computes principal components of a given set of mesh vectors X_c

Listing 12.5: Python code for computation of a PCA, Morph_features.py.
def apply_pca (X_c) :

# computes covar iance o f the mesh po in t s
cov = np . cov (X_c)
# computes e igen va l u e s and e igen v e c t o r s o f the covar iance matrix
eva l s , evecs = np . l i n a l g . e i g ( cov )
# so r t s e i gen va l u e s from l a r g e r to sma l l e r
evals_ord = eva l s [ : : − 1 ]
return evals_ord

• morph_matices(volume, vox_vol):
creates matrices that will be utilised for feature computations.

Listing 12.6: Python code for morphological matrix generation, Morph_features.py.
def morph_matices ( volume , vox_vol ) :

# Extrac t ion o f grey l e v e l v a l u e s t ha t b e l ong s to the reg ion o f
i n t e r e s t

X_gl = volume [ np . i snan ( volume ) == False ] . f l a t t e n ( )
# Generation o f component l o c a t i o n s o f the v o x e l s b e l ong ing to the

reg ion o f i n t e r e s t
ix , iy , i z = np . where (np . i snan ( volume ) == False )
i x = ( ix + 0 . 5 ) ∗vox_vol [ 0 ]
i y = ( iy + 0 . 5 ) ∗vox_vol [ 1 ]
i z = ( i z + 0 . 5 ) ∗vox_vol [ 2 ]
# Mesh genera t ion matrix
X_c = np . array ( [ ix , iy , i z ] )
# Ind i v i d ua l v o x e l volume computation
vox_volume = vox_vol [ 0 ] ∗ vox_vol [ 1 ] ∗ vox_vol [ 2 ]
# Matrix genera t ion o f volume en t r i e s
X_v = np . ones (np . shape (X_gl ) ) ∗( vox_volume )

return X_gl , X_c.T, X_v
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• compute_CoM_shift(X_c, X_gl):
acquires centre mas shift from a given mesh vectors array X_c and a matrix
grey level X_gl.

• max_diam_3D(X_c):
calculates the distance between the two furthest apart vectors in the mesh vector
array X_c.

Listing 12.7: Python code for computation of maximum 3D diameter,
Morph_features.py.

def max_diam_3D(X_c) :
v e c t o r s = X_c
# Convex h u l l g enera t ion from the X_c vec to r array
hu l l = ConvexHull ( v e c t o r s )
s e t_ la rge s t_vec to r s = [ ve c t o r s [ hu l l . v e r t i c e s ] ]
# Extrac t s the f u r t h e s t apar t v e c t o r s
item_max = np . amax( se t_larges t_vector s , ax i s = 1)
item_min = np . amin ( se t_larges t_vector s , ax i s = 1)
# Computes the d i s t ance between the f u r t h e s t v e c t o r s
return np . l i n a l g . norm( item_max − item_min )

• Surface_Area(volume, vox_vol): computes approximate surface area of a given
3D-array by counting external voxel faces.

Listing 12.8: Python code for approximate surface area computation,
Morph_features.py.

def Surface_Area ( volume , vox_vol ) :
# I n i t i a l i z e s by copying a temporal volume
vol_temp = volume . copy ( )
# Extrac t s s i z e o f the 3d dimension
dim_k = np . shape ( volume ) [ 2 ]
# maps volume t ha t b e l ong s to the reg ion o f i n t e r e s t s
vol_temp [~np . i snan ( volume ) ] = 1
# i n i t i a l i z e count ing o f v o x e l f a c e s t ha t b e l ong s to outer f ace
s u r f a c e_ s l i c e = np . z e r o s (dim_k + 2)
c_top = 0 ;
c_buttom = 0 ;
for k in range (dim_k) :

c = vol_temp [ : , : , k ]
cx = 0 ;

dim_x ,dim_y = np . shape ( c )

b = np . z e ro s (dim_x) ;
b [ b==0] = np . nan

for i in range (dim_x) :
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for j in range (dim_y) :
i f ~np . i snan ( c [ i , j ] ) and k == 0 :

c_top += 1
e l i f ~np . i snan ( c [ i , j ] ) and k == dim_k−1:

c_buttom += 1
# computes su r f a c e area in the top face o f the reg ion o f

i n t e r e s t
area_top = c_top ∗( vox_vol [ 0 ] ∗ vox_vol [ 1 ] )
# computes su r f a c e area in the buttom face o f the reg ion o f

i n t e r e s t
area_buttom = c_buttom∗( vox_vol [ 0 ] ∗ vox_vol [ 1 ] )

# repea t s proces s f o r s i d e f a c e s o f the reg ion o f i n t e r e s t s
c_comp = c [ 0 , : ] [ : , np . newaxis ]
i f nan_equal (c_comp , b) == True :

c_new = c
else :

c_new = np . concatenate ( ( b . reshape (−1 ,1) , c ) , ax i s=1)

i f nan_equal ( c [ : , dim_y− 1 ] [ : , np . newaxis ] , b ) == True :
c_new = c_new

else :
c_new = np . concatenate ( ( c_new , b . reshape (−1 ,1) ) , ax i s=1)

dim_x_new , dim_y_new = np . shape (c_new)
d = np . z e ro s (dim_y_new)
d [ d==0] = np . nan

i f nan_equal (c_new [ 0 , : ] , d ) == True :
c_new = c_new

else :
c_new = np . concatenate ( ( d . reshape (1 ,−1) ,c_new) , ax i s = 0)

dim_x_new , dim_y_new = np . shape (c_new)
d = np . z e ro s ( ( 1 , dim_y_new) )
d [ d==0] = np . nan

i f nan_equal (c_new [ dim_x_new−1 , : ] , d ) :
c_new = c_new

else :
c_new = np . concatenate ( ( c_new , d . reshape (1 ,−1) ) , ax i s = 0)

# B = np . concatenate (c_new , a x i s=2)
cx = 0
dim_x_new , dim_y_new = np . shape (c_new)

for j in range (dim_y_new) :
for i in range (dim_x_new) :

i f np . i snan (c_new [ i , j ] ) != 1 and np . i snan (c_new [ i , j +1])
== 1 :
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cx += 1
i f np . i snan (c_new [ i , j ] ) !=1 and np . i snan (c_new [ i , j −1])

== 1 :
cx += 1

cy = 0
for j in range (dim_y_new) :

for i in range (dim_x_new) :
i f np . i snan (c_new [ i , j ] ) != 1 and np . i snan (c_new [ i +1, j ] )

== 1 :
cy += 1

i f np . i snan (c_new [ i , j ] ) !=1 and np . i snan (c_new [ i −1, j ] )
== 1 :
cy += 1

borders = cx + cy
su r f a c e_ s l i c e [ k ] = borders ∗vox_vol [ 0 ] ∗ vox_vol [ 2 ]
s u r f a c e_ s l i c e [ dim_k ] = area_top
s u r f a c e_ s l i c e [ dim_k + 1 ] = area_buttom

return s u r f a c e_ s l i c e

• Area_ellip(morph_pca_major, morph_pca_minor, morph_pca_least, n):
obtains area of the minimum enclosing ellipsoid in the 3D-image. Inputs: ma-
jor, minor and least principal component morph_pca_major, morph_pca_minor
and morph_pca_least of the X_c., since the computation needs the Legendre
polynomials the n is set to 10 for high-accuracy.

Listing 12.9: Python code for surface area of a minimum ellipsoid contained in the
X_c matrix, Morph_features.py.

def Area_el l ip (morph_pca_major , morph_pca_minor , morph_pca_least , n ) :
# i n i t i a l i z e s c o e f f i c i e n t s f o r l e g endre po lynomia l s
alpha = np . sq r t (1 − ( (morph_pca_minor∗∗2) /(morph_pca_major∗∗2) ) )
beta = np . sq r t (1 − ( ( morph_pca_least ∗∗2) /(morph_pca_major∗∗2) ) )
nu = np . arange (0 , n )
Amplitude = ( ( alpha ∗beta ) ∗∗nu) /(1−(4∗nu∗∗2) )
va r i a = ( alpha ∗∗2 + beta ∗∗2) /(2∗ alpha ∗beta )
# computes l e g endre po lynomia l s va l u e s
pol = np . z e r o s ( len (nu) )
for i in nu :

po l [ i ] = sp . s p e c i a l . l e g endre ( i ) ( va r i a )

return 4∗np . p i ∗morph_pca_major∗morph_pca_minor∗Amplitude . dot ( po l )

• get_I_moran_index(X_gl, X_c):
computes moran index from a given grey level matrix X_gl and vector matrix
array X_c according to [184].
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• get_C_geary_measure(X_gl, X_c):
computes C geary index from a given grey level matrix X_gl and vector matrix
array X_c according to [184].

• compute_morph_features(volume, vox_vol):
calculates all 24 morphology-family features proposed for the IBSI collaboration
[184].

• get_morph_feature_names():
acquires the name of the features computed in compute_morph_features(volume,
vox_vol)

12.7. GLCM.py
This module contains the utilities necessaries to compute the GLCM matrix (cf.
section 3.2.3).

• compute_GLCM_3D(volume, N_g, direction):
constructs an angular dependent GLCM for a given direction in 3D from an
input volume and a maximal grey level N_g.

Listing 12.10: Python code for generation of an GLCM from a 3d-array object,
GLCM.py.

def compute_GLCM_3D( volume , N_g, d i r e c t i o n ) :

# crea t e gray l e v e l co−occurrence matrix
GLCM = np . z e ro s ( ( int (N_g) , int (N_g) ) )

# ge t volume s i z e
d1 , d2 , d3 = volume . shape [ 0 ] , volume . shape [ 1 ] , volume . shape [ 2 ]

# one o f the 13 3D−d i r e c t i o n s
separat ing_vector = direct ions_3D [ d i r e c t i o n ]

# ca l c u l a t e cooccurrences
for x , y , z in i t e r t o o l s . product ( range ( d1 ) , range ( d2 ) , range ( d3 ) ) :

ne ighbor = np . array ( [ x , y , z ] ) + separat ing_vector
i f ( neighbor >=0) . a l l ( ) and ( neighbor<np . asar ray ( volume . shape ) ) .

a l l ( ) :
i = volume [ x , y , z ]
j = volume [ ne ighbor [ 0 ] , ne ighbor [ 1 ] , ne ighbor [ 2 ] ]

# check f o r miss ing vox e l va l u e s
i f np . i s f i n i t e ( i ) and np . i s f i n i t e ( j ) :

GLCM[ int ( i )−1, int ( j )−1] += 1
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# add cooccurrences o f the in v e r s e d i r e c t i o n
GLCM += np . t ranspose (GLCM)

return GLCM

• get_normalized_GLCM(GLCM):
converts entries of the constructed GLCM to probabilities.

• get_merged_GLCM(GLCM_list):
averages over the whole set of possible GLCMs (i.e GLCM in all directions)
contained in the GLCM_list, the output is a 2d-array object.

12.8. GLCM_features.py
This module provides functions to compute radiomic features from the generated
GLCM as proposed by IBSI collaboration [184].

• get_p_i(GLCM):
obtains row and column marginal probability of the given GLCM

• get_p_i_minus_j(GLCM):
computes diagonal probabilities of the given GLCM

• get_p_i_plus_j(GLCM):
acquires cross-diagonal probabilities of a given GLCM

• compute_GLCM_features(GLCM):
computes all 25 GLCM features defined according to IBSI collaboration [184]

12.9. GLRLM.py
The module contains the basic utilities for GLRL computations. it uses the module
sequences, which includes methods to extract one-dimensional grey level sequences
from a 3D image, in all directions.

• compute_GLRLM_3D(volume, N_g, direction):
builds from a volume and a maximal grey level N_g an angular dependent GLRL
for a given 3D direction. Runs lengths are acquired by computing all se-
quences in the given 3D direction individually, which is done by the function
get_run_lengths(sequence, N_g, max_run_length).

• acquires all run lengths within a one-dimensional sequence and creates the respec-
tive GLRL with size N_g× max_run_length.
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Listing 12.11: Python code for generation of an GLRL from a 3d-array object and
sequences, GLRLM.py.

def get_run_lengths ( sequence , N_g, max_run_length ) :

# matrix o f run l e n g t h s
run_lengths = np . z e ro s ( ( int (N_g) , max_run_length ) )

gray_leve l = sequence [ 0 ]
count = int (1 )
for i in range (1 , len ( sequence ) ) :

# i f grey l e v e l i s f o l l owed by the same grey l e v e l , count up
i f sequence [ i ] == gray_leve l :

count += 1

# i f prev ious grey l e v e l was a v a l i d one , save run l en g t h by
increment ing matrix entry

else :
i f np . i s f i n i t e ( gray_leve l ) :

run_lengths [ int ( gray_leve l )−1, count−1] += 1
gray_leve l = sequence [ i ]
count = 1

# i f l a s t grey l e v e l i s va l i d , save l a s t run l en g t h
i f np . i s f i n i t e ( gray_leve l ) :

run_lengths [ int ( gray_leve l )−1,count−1] += 1

return run_lengths

def compute_GLRLM_3D( volume , N_g, d i r e c t i o n ) :

# maximal run l en g t h a long the g iven d i r e c t i on , determines width o f
GLRLM

N_r = get_max_run_length_3D( volume , d i r e c t i o n )

# crea t e GLRLM
GLRLM = np . z e ro s ( ( int (N_g) , N_r) , dtype=f loat )

# ge t a l l sequences o f gray l e v e l s w i th in the volume , a long the
g iven d i r e c t i o n

i f np . array_equal ( d i r e c t i on , 0) :
seq = sequences . get_x_axis_seqs_3D ( volume )

e l i f np . array_equal ( d i r e c t i on , 1) :
seq = sequences . get_y_axis_seqs_3D ( volume )

e l i f np . array_equal ( d i r e c t i on , 2) :
seq = sequences . get_z_axis_seqs_3D ( volume )

e l i f np . array_equal ( d i r e c t i on , 3) :
seq = sequences . get_in_plane_diag_seqs_3D ( volume , 135 )

e l i f np . array_equal ( d i r e c t i on , 4) :
seq = sequences . get_in_plane_diag_seqs_3D ( volume , 4 5 )

e l i f np . array_equal ( d i r e c t i on , 5) :
seq = sequences . get_in_plane_diag_seqs_3D (np . swapaxes ( volume
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, 1 , 0 ) ,135)
e l i f np . array_equal ( d i r e c t i on , 6) :

seq = sequences . get_in_plane_diag_seqs_3D (np . swapaxes ( volume
, 1 , 0 ) ,45)

e l i f np . array_equal ( d i r e c t i on , 7) :
seq = sequences . get_in_plane_diag_seqs_3D (np . t ranspose ( volume

, ( 2 , 0 , 1 ) ) ,135)
e l i f np . array_equal ( d i r e c t i on , 8) :

seq = sequences . get_in_plane_diag_seqs_3D (np . t ranspose ( volume
, ( 2 , 0 , 1 ) ) ,45)

e l i f np . array_equal ( d i r e c t i on , 9) :
seq = sequences . get_xyz_diag_seqs_3D ( volume )

e l i f np . array_equal ( d i r e c t i on , 10) :
seq = sequences . get_xyz_diag_seqs_3D (np . rot90 ( volume , 2 ) )

e l i f np . array_equal ( d i r e c t i on , 11) :
seq = sequences . get_xyz_diag_seqs_3D (np . rot90 ( volume ) )

e l i f np . array_equal ( d i r e c t i on , 12) :
seq = sequences . get_xyz_diag_seqs_3D (np . rot90 ( volume , 3 ) )

# in s e r t a l l run l e n g t h s in t o GLRLM
for s in seq :

GLRLM += get_run_lengths ( s , N_g, N_r)

return GLRLM

• get_merged_GLRLM(GLRLM_list):
averages all GLRL in all possible directions contained in GRLR_list. The output
is an invariant GLRL

12.10. GLRLM_features.py
The module provides functions to acquire all 16 GLRL features discussed inside the
IBSI collaboration [184].

• compute_GLRLM_features(GLRLM, N_v):
calculates all the 16 GLRLM features and the number of voxel of images N_v.

• combine_GLRLM_features(GLRLM_list, N_v_list):
computes all 16 GLRL features for a list of GLRLMs and average over them

• get_GLRLM_feature_names():
obtain the names of the 16 GLRL features.

12.11. GLSZM.py
The module includes utilities to build a GLSZ. It uses the built-in library Scikit-image,
specifically the measure module to evaluate connectivity in 2D and 3D.

137



12. Software documentation: Image preprocessing and feature extraction

• compute_GLSZM(img, N_g):
assembles a GLSZ of an 3D- or 2D-array object img with a maximal gray level
N_g.

Listing 12.12: Python code for generation of an GLSZ from a 3D- or 2D-array object,
GLSZM.py.

def compute_GLSZM( img , N_g) :

s = img . shape

# maximal zone s i z e in the volume , determines width o f the GLSZM
# di s c r im ina t e s between 2D and 3D inpu t s
max_zone_size = s [ 0 ] ∗ s [ 1 ] ∗ s [ 2 ] i f len ( s )==3 else s [ 0 ] ∗ s [ 1 ]

# crea t e GLSZM
GLSZM = np . z e ro s ( ( int (N_g) , max_zone_size ) , dtype=f loat )

# determine reg ions ( in the sense o f 8−connectedness ) o f v o x e l s
# with the same gray l e v e l

l a b e l s = measure . l a b e l ( img , c onne c t i v i t y=3) i f len ( s )==3 else measure
. l a b e l ( img , c onne c t i v i t y=2)

props = measure . r eg ionprops ( l ab e l s , intens i ty_image=img )
for prop in props :

s i z e = prop . area
gray_leve l = prop . mean_intensity

# ignore reg i ons t ha t are as s i gned to nan
i f np . i s f i n i t e ( gray_leve l ) :

GLSZM[ int ( gray_leve l )−1, int ( s i z e )−1] += 1

return GLSZM

12.12. GLSZM_features.py
The module provides utilities for GLSZ feature computations as proposed by the IBSI
collaboration [184].

• compute_GLSZM_features(GLSZM, N_v):
calculates all 16 GLSZM features for radiomics accounting the number of voxels
that are assigned to valid grey levels N_v.

• combine_GLSZM_features(GLSZM_list, N_v_list):
averages features values obtained from the all the GLSZ GLSZM_list.

• get_GLSZM_feature_names():
obtains the names of the computed features from the function
combine_GLSZM_features
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12.13. GLDZM.py
The module provides functions and utilities to construct the GLDZ. It uses the module
measure from the built-in library Scikit-image for labelling connectivity in 3D.

• compute_GLDZM(img, N_g):
constructs a GLDZ from a 3D NumPy array img with maximum grey level N_g
in the img

Listing 12.13: Python code for generation of an GLDZ from a 3D- or 2D-array object,
GLDZM.py.

def compute_GLDZM( img , N_g) :

s = img . shape

# maximal zone s i z e in the volume , determines width o f the GLDZM
# di s c r im ina t e s between 2D and 3D inpu t s
# crea t e d i s t ance map
D = np . z e ro s ( s , dtype=f loat )

ran = np .min( s )
i f len ( s )==3:

i f ran%2 == 0 :
for i in range ( int ( ran /2) ) :

D[0+ i ,(0+ i ) : ( s [1]− i ) ,(0+ i ) : ( s [2]− i ) ] = 1+i
D[ ( s [0]−1− i ) ,(0+ i ) : ( s [1]− i ) ,(0+ i ) : ( s [2]− i ) ] = 1+i
D[(0+ i ) : ( s [0]− i ) ,0+ i ,(0+ i ) : ( s [2]− i ) ] = 1+i
D[(0+ i ) : ( s [0]− i ) , s [1]−1− i ,(0+ i ) : ( s [2]− i ) ] = 1+i
D[(0+ i ) : ( s [0]− i ) ,(0+ i ) : ( s [1]− i ) , 0+ i ] = 1+i
D[(0+ i ) : ( s [0]− i ) ,(0+ i ) : ( s [1]− i ) , s [2]−1− i ] = 1+i

else :
for i in range ( int ( ran /2) + 1) :

D[0+ i ,(0+ i ) : ( s [1]− i ) ,(0+ i ) : ( s [2]− i ) ] = 1+i
D[ ( s [0]−1− i ) ,(0+ i ) : ( s [1]− i ) ,(0+ i ) : ( s [2]− i ) ] = 1+i
D[(0+ i ) : ( s [0]− i ) ,0+ i ,(0+ i ) : ( s [2]− i ) ] = 1+i
D[(0+ i ) : ( s [0]− i ) , s [1]−1− i ,(0+ i ) : ( s [2]− i ) ] = 1+i
D[(0+ i ) : ( s [0]− i ) ,(0+ i ) : ( s [1]− i ) , 0+ i ] = 1+i
D[(0+ i ) : ( s [0]− i ) ,(0+ i ) : ( s [1]− i ) , s [2]−1− i ] = 1+i

else :
i f ran%2 == 0 :

for i in range ( int ( ran /2) ) :
D[0+ i ,(0+ i ) : ( s [1]− i ) ] = 1+i
D[ ( s [0]−1− i ) , (0+ i ) : ( s [1]− i ) ] = 1+i
D[(0+ i ) : ( s [0]− i ) ,0+ i ] = 1+i
D[(0+ i ) : ( s [0]− i ) , ( s [1]−1− i ) ] = 1+i

else :
for i in range ( int ( ran /2) + 1) :

D[0+ i ,(0+ i ) : ( s [1]− i ) ] = 1+i
D[ ( s [0]−1− i ) , (0+ i ) : ( s [1]− i ) ] = 1+i
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D[(0+ i ) : ( s [0]− i ) ,0+ i ] = 1+i
D[(0+ i ) : ( s [0]− i ) , ( s [1]−1− i ) ] = 1+i

# determine reg ions ( in the sense o f 8−connectedness ) o f v o x e l s
# with the same gray l e v e l

# l a b e l s = measure . l a b e l ( img , ne i ghbor s=8) ;
N_d = np . nanmax(D)
GLDZM = np . z e r o s ( ( int (N_g) , int (N_d) ) , dtype=f loat )
l a b e l s = measure . l a b e l ( img , c onne c t i v i t y=3) i f len ( s )==3 else measure

. l a b e l ( img , c onne c t i v i t y=2)
props = measure . r eg ionprops ( l ab e l s , intens i ty_image=img )
for prop in props :

s i z e = np .min(D[ l a b e l s == prop . l a b e l ] )
gray_leve l = prop . mean_intensity

# ignore reg i ons t ha t are as s i gned to nan
i f np . i s f i n i t e ( gray_leve l ) :

GLDZM[ int ( gray_leve l )−1, int ( s i z e )−1] += 1

return GLDZM

12.14. GLDZM_features.py

• compute_GLDZM_features(GLDZM, N_v):
acquires all 16 feature values proposed for GLDZM accounting for the number of
voxels in the respective image volume that are assigned to valid gray levels [184].

• get_GLDZM_feature_names():
obtains names of the feature values calculated in compute_GLDZM_features.

12.15. NGTDM.py

The module includes functions that allow to construct the NGTD for a 2D and a 3D
array object.

• compute_NGTDM(img, N_g, distance):
assembles the NGTD for a given 2D- or 3D-array array object img, the N_g
input is the max gray level in the volume and determines the height of the
NGTD. The radius of the neighbourhood is accounted by distance.

• get_neighborhood_average_difference_3D(volume, voxel_position, distance):
averages differences between voxel grey level and its neighbourhood at deter-
mined voxel_position with radius distance within the given 3D-array object
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Listing 12.14: Python code for generation of an NGTD from a 3D- object and average
difference computations, NGTDM.py.

def get_neighborhood_average_difference_3D ( volume , voxe l_pos i t ion ,
d i s t ance ) :

w = 0 # to determine the neighborhood s i z e
av = 0 # average gray l e v e l o f ne i ghbor ing v o x e l s

# regard a l l p o s i t i o n s w i th in the de f ined neighborhood and
# cons ider on ly p o s i t i o n s w i th in the volume tha t are not as s i gned to

nan
for k in i t e r t o o l s . product ( range(−di s tance , d i s t anc e+1) , r epeat=3) :

v_array = np . asar ray ( voxe l_pos i t i on )
voxe l = ( v_array [ 0 ] , v_array [ 1 ] , v_array [ 2 ] )
neighbour = ( voxe l [0 ]+k [ 0 ] , voxe l [1 ]+k [ 1 ] , voxe l [2 ]+k [ 2 ] )
nb_array = np . asar ray ( neighbour )
# check i f ne ighbor p o s i t i o n l i e s w i th in volume and i f v o x e l i s

v a l i d
i f ( nb_array >= 0) . a l l ( ) and ( nb_array < np . asar ray ( volume . shape

) ) . a l l ( ) and not (np . array_equal ( nb_array , v_array ) ) and np .
i s f i n i t e ( volume [ neighbour ] ) :
w += 1
av += volume [ neighbour ]

i f w != 0 :
return np . abs ( volume [ voxe l ] − av/w)

else : return 0

def compute_NGTDM( img , N_g, d i s t anc e ) :

N_g = int (N_g)

# for each gray l e v e l : g e t average d i f f e r e n c e s to the r e s p e c t i v e
neighborhood

# d i s c r im ina t e between 3D and 2D inpu t s
i f len ( img . shape )==3:

s_i = [ [ get_neighborhood_average_difference_3D ( img , j , d i s t anc e )
for j in np . t ranspose (np . where ( img == i +1) ) ] for i in range

(N_g) ]
else :

s_i = [ [ get_neighborhood_average_difference_2D ( img , j , d i s t anc e )
for j in np . t ranspose (np . where ( img == i +1) ) ] for i in range

(N_g) ]

# gray l e v e l counts
n_i = [ len ( s_i [ i ] ) for i in range (N_g) ]
# sum up a l l average d i f f e r e n c e s o f the same gray l e v e l
s_i = [ np .sum( s_i [ i ] ) for i in range (N_g) ]
N_v = np .sum( n_i )
# handle s l i c e s where no gray l e v e l s are as s i gned ( due to s p e c i f i c

shapes o f masks )
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i f N_v == 0 :
p_i = [0 for i in range (N_g) ]

else :
# ca l c u l a t e gray l e v e l p r o b a b i l i e s
p_i = [ n_i [ i ] / f loat (N_v) for i in range (N_g) ]

NGTDM = np . z e ro s ( (N_g, 3 ) , dtype=f loat )
NGTDM[ : , 0 ] = n_i
NGTDM[ : , 1 ] = p_i
NGTDM[ : , 2 ] = s_i

return NGTDM

12.16. NGTDM_features.py

The module includes utilities to compute NGTD features as proposed by the IBSI
collaboration [184].

• compute_NGTDM_features(NGTDM):
acquires all 5 features based on the NGTDM 2D-array object.

• get_NGTDM_feature_names():
obtains the name of the 5 features computed in compute_NGTDM_features.

12.17. matrices.py

The module includes the modules GLCM, GLRLM, GLSZM, GLDZM and NGTDM to compute
final texture matrices. It also confirms that only 2D and 3D array objects are being
used as inputs for the construction of matrices.

• all_cooccurrences(img, N_g):
calculates direction-dependent GLCMs for given 3D -array obejct img, averages
them into a single invariant GLCM, which is normalized subsequently to obtain
probability values.

• all_run_lengths(img, N_g):
calculates direction-dependent GLRLMs for 3D -array obejct img and averages
them into a single invariant GLRLM.

• all_size_zones(img, N_g):
computes the GLSZ for a given 3D-array object img.

• all_distance_zones(img, N_g):
computes the GLDZ for a given 3D-array object img.
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• all_neighbourhood_differences(img, N_g, distance):
calculates the NGTDM for given 3D-array object img and neighbourhood radius
distance.

• combined_matrix(matrix_list):
merges all matrices in matrix_list into a single matrix of the same shape by
summing entries over all matrices.

• average_matrix(matrix_list):
merges all matrices in matrix_list into a single matrix of the same shape by
averaging entries over all matrices.

• combined_NGTDM(matrix_list):
merges all NGTDMs in matrix_list into a single NGTDM of the same shape
by summing all entries, and calculating subsequently proportion entries.

12.18. Wavelet_transforms.py
The module includes utilities to transform a 3D-array object into its wavelet repre-
sentation via one-level undecimated wavelet transform as proposed by Aerts et al [5].
The module is supported on the built-in library PyWavelets which module swtn is
used.

• compute_uwt3D(img):
computes Undecimated Wavelet transformed of the given 3D-array object.

Listing 12.15: Python code for generations of a wavelet representation of a 3D- object,
Wavelet_transform.py.

def compute_uwt3D( img ) :
img = img . copy ( )
s = np . shape ( img )
# assures t ha t 3D−array o b j e c t s do not have nan en t r i e s
i f np . nanmin ( img ) > 0 :

img [ np . i snan ( img ) == True ] = 0 .0

# assures t ha t o r i g i n a l input img has a quadra t i c shape , o the rw i s e
computation impo s s i b l e

i f s [0]%2 == 1 :
img_n = img [ : s [ 0 ] − 1 , : , : ]

else :
img_n = img . copy ( )

i f s [1]%2 == 1 :
img_n = img_n [ : , : s [ 1 ] −1 , : ]

i f s [2]%2 == 1 :
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img_n = img_n [ : , : , : s [ 2 ] −1 ]

# computes Wavelets t rans format ion o f input
WT = swtn ( img_n , wavelet=’ c o i f 1 ’ , l e v e l =1)
return WT[ 0 ]

12.19. feature_extraction.py
The module includes methods for feature extraction methods based on the module
matices, Stats_features, Morph_features for extraction of Intensity-, Shape/Morphology-
and Texture- family features.

• compute_3D_texture(volume):
implements the 3D approach. Constructs all texture matrices of the given
volume and extracts all 78 texture features from the resulting matrices.

• compute_3D_int(volume):
extracts or summarize in a matrix-like form output the intensity features.

• compute_3D_morph(volume, vox_vol):
extracts or summarize in a matrix-like form output the shape features.

12.20. computes_CTs.py
The file contains main instructions to run calculations.

• preprocess_data():
generates the instruction to adapt and process data for the build-in libraries
and the python environment.

Listing 12.16: Python code for image data preparation and processing into the Python
environment, compute_CTs.py.

def preprocess_data ( ) :
# ob ta in s d i r e c t o r y f o l d e r where the data i s s t o r ed

d i r s = os . l i s t d i r ( path_to_database )
# loop i n i t i a l i z a t i o n f o r every image o f p a t i e n t s
for d in sorted ( d i r s ) :

path = os . path . j o i n ( path_to_database , d)
i f os . path . i s d i r ( path ) :

name = os . path . basename ( path )
print (name)
# prepare data f o r i n t e n s i t y and shape f e a t u r e a c q u i s i t i o n
data_int = readimg . process_patient_data_for_int ( path ,

rel_path_to_CT_data , rel_path_to_seg_data )
# prepare data f o r t e x t u r e f e a t u r e a c q u i s i t i o n
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data_tex = readimg . process_patient_data_for_tex ( path ,
rel_path_to_CT_data , rel_path_to_seg_data )

# prepare data f o r wave l e t t rans format ion and i n t e n s i t y WT
f ea t u r e a c q u i s i t i o n

data_wt , f i l t e r s = readimg . process_patient_data_for_wt ( path ,
rel_path_to_CT_data , rel_path_to_seg_data )

# prepare data f o r t e x t u r e wave l e t a c q u i s i t i o n
data_wt_tex , f i l t e r s_ t e x = readimg .

process_patient_data_for_wt_tex ( path ,
rel_path_to_CT_data , rel_path_to_seg_data )

# s to r e preproces sed data in a numpy o b j e c t format f o r
f u r t h e r c a l c u l a t i o n s

np . save ( os . path . j o i n ( path_to_processed_folder_tex , name) ,
data_tex [ 0 ] )

np . save ( os . path . j o i n ( path_to_processed_folder_vox_spa , name)
, data_tex [ 1 ] )

np . save ( os . path . j o i n ( path_to_processed_folder_int , name) ,
data_int [ 0 ] )

np . save ( os . path . j o i n ( path_to_processed_folder_int_wt , name) ,
data_wt )

np . save ( os . path . j o i n ( path_to_processed_fo lder_f i l t e r s , name)
, f i l t e r s )

np . save ( os . path . j o i n ( path_to_processed_folder_tex_wt , name) ,
data_wt_tex )

np . save ( os . path . j o i n ( path_to_processed_fo lder_f i l ters_text ,
name) , f i l t e r s_ t e x )

• compute_img_features(data, dim):
generates instructions for first-order-statistic feature computations of all data
images data and preferred dimension approach dim

Listing 12.17: Python code for set of instructions of intensity family feature acquisi-
tion, compute_CTs.py.

def compute_img_features ( data , dim) :
# acqu i r e s i n t e n s i t y f e a t u r e names

feature_names = f_stat . get_stats_feature_names ( )+ f_ih .
get_ih_feature_names ( ) + f_ivh . get_ivh_feature_names ( )
# i n i t i a l i z e a c q u i s i t i o n o f f e a t u r e s va l u e s and pre sen t them in

a matrix− l i k e form
a l l_ f e a t u r e s = np . z e r o s ( ( len ( data ) , len ( feature_names ) ) )

# compute a l l f e a t u r e s f o r each image f i l e
os . chd i r ( path_to_result_folder )
for i in range ( len ( data ) ) :

CT_img = data [ i ]

# d i f f e r s between 2D and 3D
i f dim == 2 :
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f ea ture_va lues = f ea tu r e_ext rac t i on . compute_2D(CT_img)
else :

f ea ture_va lues = f ea tu r e_ext rac t i on . compute_3D_int (CT_img)

a l l_ f e a t u r e s [ i , : ] = feature_va lues

print ( str ( i +1) +’ ␣ f i n i s h e d ’ )

return feature_names , a l l_ f e a t u r e s

• compute_morph_features(data, vox_vol, dim):
generates instructions for shape feature computations of all data images data,
accounting for their voxel size vox_vol and preferred dimension approach dim.

Listing 12.18: Python code for set of instructions of morphology family feature ac-
quisition, compute_CTs.py.

def compute_morph_features ( data , vox_vol , dim) :

feature_names = f_morph . get_morph_feature_names ( )

a l l_ f e a t u r e s = np . z e ro s ( ( len ( data ) , len ( feature_names ) ) )

# compute a l l f e a t u r e s f o r each image f i l e
os . chd i r ( path_to_result_folder )
for i in range ( len ( data ) ) :

CT_img = data [ i ]
vox_vol_item = vox_vol [ i ]

# di s c r im ina t e approach
i f dim == 2 :

f eature_va lues = f ea tu r e_ext rac t i on . compute_2D(CT_img)
else :

f ea ture_va lues = f ea tu r e_ext rac t i on . compute_3D_morph(CT_img,
vox_vol_item )

a l l_ f e a t u r e s [ i , : ] = feature_va lues

print ( str ( i +1) +’ ␣ f i n i s h e d ’ )

return feature_names , a l l_ f e a t u r e s

• compute_texture_features(data, dim):
generates instructions for texture feature computations of all data images data
and preferred dimension approach dim.
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• compute_img_WT_features(img, filters, dim):
generates instructions for wavelet intensity feature computations of all data im-
ages img, accounting for their filter filters and preferred dimension approach
dim.

Listing 12.19: Python code for set of instructions of wavelets intensity family feature
acquisition, compute_CTs.py.

def compute_img_WT_features ( img , f i l t e r s , dim) :

# load processed images o f a l l p a t i e n t s

names = f_stat . get_stats_feature_names ( )+ f_ih . get_ih_feature_names
( ) + f_ivh . get_ivh_feature_names ( )

# 8 due to 8 f i l t e r s HHH, HHL, HLL, LLL, LHL, LHH, HLH, LLH

feature_names = [ ]

for item in f i l t e r s [ 0 ] :
feature_names . append ( [ item + ’ ␣ ’ + x for x in names ] )

feature_names = np . array ( feature_names )
feature_names = feature_names . f l a t t e n ( )

a l l_ f e a t u r e s = np . z e r o s ( ( len ( img ) , len ( feature_names ) ) )
for i in range ( len ( img ) ) :

data = img [ i ]
# Run over the d i f f e r e n t f i l t e r s in the data

f ea ture_va lues = np . array ( [ ] )
for item in range ( len ( data ) ) :

CT_img = data [ item ] . copy ( )

# app ly the s e l e c t e d dimension ana l y s i s approach
i f dim == 2 :

f eature_va lues = np . append ( feature_values ,
f e a tu r e_ext rac t i on . compute_2D(CT_img) )

else :
f ea ture_va lues = np . append ( feature_values ,

f e a tu r e_ext rac t i on . compute_3D_int (CT_img) )

a l l_ f e a t u r e s [ i , : ] = feature_va lues
print ( str ( i +1) +’ ␣ f i n i s h e d ’ )

return feature_names , a l l_ f e a t u r e s
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• compute_text_WT_features(img, filters ,dim):
generates instructions for wavelet texture feature computations of all data im-
ages img, accounting for their filter filters and preferred dimension approach
dim.

• core(): runs the programme and store computations in a pandas DataFrame object
for further analysis of different features.

Listing 12.20: Python code for set of instructions to run the programme, com-
pute_CTs.py.

def core ( ) :
i f prep roce s s :

preprocess_data ( )

# acqu i re f o l d e r f i l e s and pa t i e n t s anonymization name
f i l e s = [ f for f in os . l i s t d i r ( path_to_processed_folder_int ) i f os .

path . i s f i l e ( os . path . j o i n ( path_to_processed_folder_int , f ) ) ]
f i l e s_1 = sorted ( f i l e s )
Pat i ent s = [ f . r ep l a c e ( ’ . npy ’ , ’ ’ ) for f in f i l e s_1 ]

# ge t numpy arrays from pa t i e n t s ( f o r i n t e n s i t y and morphology )
data_no_proc = readimg . get_processed_fo lder (

path_to_processed_folder_int )
# ge t v o x e l s s i z e from pa t i e n t s

vox_vol = readimg . get_processed_fo lder (
path_to_processed_folder_vox_spa )

# ge t numpy arrays from pa t i e n t s ( f o r t e x t u r e )
data_proc = readimg . get_processed_fo lder (

path_to_processed_folder_tex )
# ge t s numpy arrays f o r i n t WT f e a t u r e s

data_wt_no_proc = readimg . get_processed_fo lder (
path_to_processed_folder_int_wt )

# ge t s numpy arrays o f f i l t e r s
f i l t e r s = readimg . get_processed_fo lder (

path_to_proces sed_fo lder_f i l t e r s )
# ge t s numpy array f o r t e x t u r e wt f e a t u r e s

data_tex_wt = readimg . get_processed_fo lder (
path_to_processed_folder_tex_wt )

f i l t e r s_ t e x = readimg . get_processed_fo lder (
path_to_processed_fo lder_f i l t e r s_text )

# Obtain names and va l u e s o f I n t e s i t y f ami l y o f Pa t i en t s
int_names , i n t en s i t y_ f e a tu r e s = compute_img_features ( data_no_proc ,

3)
# Transforms i n t e n s i t y f e a t u r e s and save numpy array o b j e c t o f f e a t u r e s

to a DataSer ies o b j e c t
Frame = pd . DataFrame ( i n t en s i t y_ f e a tu r e s )
Frame . columns = int_names
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Frame . index = Pat i ent s

os . chd i r ( path_to_result_folder )
Frame . to_csv ( ’ Intensity_based_Rad_features . csv ’ )

# Transforms shape f e a t u r e s and save numpy array o b j e c t o f f e a t u r e s to a
DataSer ies o b j e c t
morph_names , morph_features = compute_morph_features ( data_no_proc ,

vox_vol , 3)

Morph_frame = pd . DataFrame ( morph_features )
Morph_frame . columns = morph_names
Morph_frame . index = Pat i ent s

os . chd i r ( path_to_result_folder )
Morph_frame . to_csv ( ’Morph_based_rad_features . csv ’ )

# Transforms t e x t u r e f e a t u r e s and save numpy array o b j e c t o f f e a t u r e s to
a DataSer ies o b j e c t
text_names , t ex t_fea ture s = compute_texture_features ( data_proc , 3)

Text_frame = pd . DataFrame ( t ex t_fea ture s )
Text_frame . columns = text_names
Text_frame . index = Pat i ent s

os . chd i r ( path_to_result_folder )
Text_frame . to_csv ( ’ Texture_based_rad_features . csv ’ )

# Transforms i n t e n s i t y wave l e t s f e a t u r e s and save numpy array o b j e c t o f
f e a t u r e s to a DataSer ies o b j e c t
int_wt_names , int_wt_features = compute_img_WT_features (

data_wt_no_proc , f i l t e r s , 3)

WT_int_frame = pd . DataFrame ( int_wt_features )
WT_int_frame . columns = int_wt_names
WT_int_frame . index = Pat i ent s

os . chd i r ( path_to_result_folder )
WT_int_frame . to_csv ( ’ Wavelets_intensity_based_rad_features . csv ’ )

# Transforms t e x t u r e wave l e t s f e a t u r e s and save numpy array o b j e c t o f
f e a t u r e s to a DataSer ies o b j e c t
text_wt_names , text_wt_features = compute_text_WT_features (

data_tex_wt , f i l t e r s_ t e x , 3)

WT_tex_frame = pd . DataFrame ( text_wt_features )
WT_tex_frame . columns = text_wt_names
WT_tex_frame . index = Pat i ent s

os . chd i r ( path_to_result_folder )
WT_tex_frame . to_csv ( ’Wavelets_texture_based_rad_features . csv ’ )
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12.21. Imaging preprocessing and feature extraction
software summary

As a summary, the figure 12.1 provides the module dependency inside the architecture
of the software for imaging processing and feature extraction.
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Figure 12.1.: Diagram of modules dependency architecture.
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13. Software documentation: Feature
selection and ML models

In this chapter full disclosure of the radiomic implementations for feature selection
and ML modelling are discussed. The implementations follows the theory exposed in
section 4.

13.1. radiomics_functions.py
This module is a class object that provides functions for feature preprocessing tasks,
such as PCA applications and feature correlation assessments. it uses the built-in
library Scikit-learn and Pandas and Numpy.
• f_corr_assestment(self, df, d=1.0):

assesses correlations between features from the DataFrame object input data
df, accounting by the threshold correlation d, which by default is set to 1 or
100% pearson correlation coefficient.

Listing 13.1: Python code for correlation assessment of an DataFrame object, ra-
diomics_functions.py.

def f_corr_assestment ( s e l f , df , d=1.0) :
# ex t r a c t c o r r e l a t i o n matrix from the pandas method .

corrMatr ix = df . co r r ( )
corrMatr ix . l o c [ : , : ] = np . t r i l ( corrMatrix , k=−1)

already_in = set ( )
r e s u l t = [ ]
for c o l in corrMatr ix :

pe r f e c t_cor r = corrMatr ix [ c o l ] [ corrMatr ix [ c o l ] >= d ] . index .
t o l i s t ( )

i f per f e c t_cor r and c o l not in already_in :
already_in . update ( set ( pe r f e c t_cor r ) )
pe r f e c t_cor r . append ( c o l )
r e s u l t . append ( pe r f e c t_cor r )

return r e s u l t

• apply_PCA_in_f(self, X_train, X_test, cluster):
applies the principal component algorithm imported from Scikit-learn to train-
ing (X_train) and test (X_test) DataFrame objects using the highly correlated
feature lists cluster.

153



13. Software documentation: Feature selection and ML models

Listing 13.2: Python code for PCA applications of DataFrame objects, ra-
diomics_functions.py.

def apply_PCA_in_f( s e l f , X_train , X_test , c l u s t e r ) :
# I n i t i a l i z e s t o rage o f pca f e a t u r e s

X_train_pca = np . z e r o s ( ( X_train . shape [ 0 ] , len ( c l u s t e r ) ) )
X_test_pca = np . z e ro s ( ( X_test . shape [ 0 ] , len ( c l u s t e r ) ) )

# I n i t i a l i z e PCA method from s c i k i t l ea rn to combine
c o r r e l a t i n g f e a t u r e to one s i n g l e component

pca = PCA(n_components = 1)

# for each pa t i e n t in ’ data ’ : app ly PCA to each o f the c l u s t e r s
in ’ c l u s t e r e d_ f ea t u r e s ’

for i in range ( len ( c l u s t e r ) ) :
comp1 , comp2 = [ X_train [ c l u s t e r [ i ] ] , X_test [ c l u s t e r [ i ] ] ]
comp1 = pca . f i t_trans fo rm (comp1)
comp2 = pca . trans form (comp2)
X_train_pca [ : , i ] = comp1 [ : , 0 ]
X_test_pca [ : , i ] = comp2 [ : , 0 ]

# Trans la te the numpy o b j e c t to the o r i g i n a l pandas o b j e c t
X_train_pca = pd . DataFrame (X_train_pca )
# Rename f e a t u r e s
names = [ ]
for j in range ( len ( c l u s t e r ) ) :

names . append ( c l u s t e r [ j ] [ −1 ] )
X_train_pca . columns = names

X_test_pca = pd . DataFrame (X_test_pca )
X_test_pca . columns = names

return X_train_pca , X_test_pca

13.2. filter_selection.py

The module contains different utilities for filter feature selection methods (cf. section
4.3). It uses the functions chi2, f_classif and mutual_info_classif from the built-
in module Scikit-learn.feature_selection as well as mutual_info_score from Scikit-
learn.fmetrics and ScyPy.stats.

• pearson_scorer(X, y):
computes pearson correlation coefficient between two ndarrays, X and y.

• kendall_score(X, y):
computes kendall correlation coefficient between two ndarrays, X and y.

• spearman_score(X, y):
computes spearman correlation coefficient between two ndarrays, X and y.
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• mutual_info_feature_selection(X, y):
computes mutual information feature selection relevance coefficient between two
ndarrays, X and y.

Listing 13.3: Python code for computation of mutual information feature selection
coefficient of DataFrame objects, filter_selection.py.

def mutual_info_feature_se lect ion (X, y ) :
# i n i t i a l i z e r e l e vance score per f e a t u r e

P = np . array ( [ ] )
for i in range (X. shape [ 1 ] ) :

temp = 0
for j in range (X. shape [ 1 ] ) :

i f j != i :
# computes mutual in format ion c o e f f i c i e n t across f e a t u r e

space
temp += mutual_info_score (X[ : , [ i ] ] , X[ : , [ j ] ] )

# computes r e l e vance score acco rd ing l y
P = np . append (P, mutual_info_score (X[ : , [ i ] ] , y . reshape (−1 , 1) ) −

temp)
return P

• conditional_mutual_information(X, Y, Z):
calculates conditional mutual information coefficient relevance coefficient be-
tween three ndarrays, X, Y and Z.

Listing 13.4: Python code for computation of conditional mutual information coeffi-
cient of DataFrame objects, filter_selection.py.

def condit ional_mutual_information (X, Y, Z) :
# I n i t i a l i z e score per f e a t u r e

P = np . array ( [ ] )
# i n i t i a l i z e number o f b in s f o r his togram in t a r g e t l a b e l c l a s s e s
n_bins_z = len (np . unique (Z) )
for i in range (X. shape [ 1 ] ) :

I = 0
for j in range (Y. shape [ 1 ] ) :

i f j != i :
n_bins_x = len (Z)
n_bins_y = len (Z)
argument_xyz = np . concatenate ( (X[ : , [ i ] ] , Y[ : , [ j ] ] , Z .

reshape (−1 ,1) ) , ax i s = 1)
argument_xz = np . concatenate ( (X[ : , [ i ] ] , Z . reshape (−1 ,1)

) , ax i s = 1)
argument_yz = np . concatenate ( (Y[ : , [ j ] ] , Z . reshape (−1 ,1)

) , ax i s = 1)
# cons t ruc t c ond i t i ona l j o i n t p r o b a b i l i t y d i s t r i b u t i o n
p_xyz , _ = np . histogramdd ( argument_xyz , b ins = [ n_bins_x

, n_bins_y , n_bins_z ] )
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# cont ruc t c ond i t i ona l p r o b a b i l i t y d i s t r i b u t i o n
p_xz , _, _ = np . histogram2d ( argument_xz [ : , 0 ] ,

argument_xz [ : , 1 ] , b ins = [ n_bins_x , n_bins_z ] )
p_yz , _, _ = np . histogram2d ( argument_yz [ : , 0 ] ,

argument_yz [ : , 1 ] , b ins = [ n_bins_y , n_bins_z ] )
# cons t ruc t p r o b a b i l i t y d i s t r i b u t i o n
p_z , _ = np . histogram (Z , b ins = n_bins_z )
p_xyz = p_xyz/np .sum(p_xyz )
p_xz = p_xz/np .sum(p_xz)
p_yz = p_yz/np .sum(p_yz)
p_z = p_z/np .sum(p_z)
# computes argument o f the equat ion f o r c ond i t i ona l

mutual in format ion c o e f f i c i e n t
p_xy_z = p_z∗p_xyz
log_p_xy_z = p_xyz∗np . log10 (p_xy_z)
temp = p_xz∗p_yz
log_temp = p_xyz∗np . log10 ( temp)
a = log_p_xy_z − log_temp
# computes c o e f f i c i e n t f o r numerical v a l u e s
I += np .sum( a [ np . i s f i n i t e ( a ) ] )

P = np . append (P, I )
return P

• joint_mutual_information(X, y):
calculates the joint mutual information coefficient based on the
conditional_mutual_information function.

• conditional_infomax(X, y):
computes the conditional infomax feature extraction coefficient based on the
conditional_mutual_information and mutual_info_feature_selection func-
tions.

13.3. feature_selection.py
The module compile algorithms to stratify features according to feature selection
approaches. It is built up on top of Scikit-learn functions and utilities.

• select_features_corr(X_train, y_train, feature_names, n_features, \
training_size, n_rounds, stat_test, class_weight = None):
selects features according to chosen filter method (stat_test) with bootstrap-
ping for feature stability, one can select the extend of samples training_size,
the number of resample times n_rounds and the maximum number of features
n_features

Listing 13.5: Python code for selection of features according to relevance indexes of
DataFrame objects, feature_selection.py.
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def s e l e c t_ f ea tu r e s_co r r (X_train , y_train , feature_names , \
n_features , t r a in ing_s i z e , n_rounds , s tat_test , c lass_weight = None ) :

# Chi−square works on ly f o r p o s i t i v e va lues , so e s c a l a t i o n
acco rd ing l y i s needed .

i f s t a t_te s t == chi2 :
s l c = MinMaxScaler ( )
X_train = s l c . f i t_trans fo rm (X_train )

# I n i t i a l i z e f e a t u r e r e l e vance matrix per resample i t e r a t i o n
tota l_se lected_features_per_round = np . empty ( [ n_features , n_rounds ] ,

dtype=’ | S600 ’ )

for j in range ( n_rounds ) :
# Act i va t e s ba lanced or unbalanced l a b l e c l a s s e s f o r b inary

problems
i f ( c lass_weight == ’ balanced ’ ) & ( len ( y_train < 0 . 5 ) > len (

y_train > 0 . 5 ) ) :
X_positive , y_pos i t ive = X_train [ y_train == 1 ] , y_train [

y_train == 1 ]
X_negative , y_negative = s h u f f l e ( X_train [ y_train == 0 ] ,

y_train [ y_train == 0 ] , n_samples = len ( y_pos i t ive ) )
X_train = np . append ( X_positive , X_negative , ax i s=0)
y_train = np . append ( y_posit ive , y_negative )

e l i f ( c lass_weight == ’ balanced ’ ) & ( len ( y_train > 0 . 5 ) > len (
y_train < 0 . 5 ) ) :
X_negative , y_negative = X_train [ y_train == 0 ] , y_train [

y_train == 0 ]
X_positive , y_pos i t ive = s h u f f l e ( X_train [ y_train == 1 ] ,

y_train [ y_train == 1 ] , n_samples = len ( y_negative ) )
X_train = np . append ( X_positive , X_negative , ax i s = 0)
y_train = np . append ( y_posit ive , y_negative )

# resample t r a i n and t e s t data s e t s randomly
X, y = s h u f f l e (X_train , y_train )
# I n i t i a l i z e f e a t u r e s e l e c t i o n o b j e c t accord ing to f i l t e r

f unc t i on and maximum number o f f e a t u r e s a l l owed
f e a t u r e_s e l e c t o r = Gene r i cUn iva r i a t eSe l e c t ( score_func=stat_test ,

mode=’ k_best ’ , param=n_features )
# Chooses the number o f samples to t r a i n
number_of_samples = int (round( t r a i n i ng_s i z e ∗ len ( y ) ) + 1)
X_train_boots , y_train_boots = X[ : number_of_samples ] , y [ :

number_of_samples ]
f e a t u r e_s e l e c t o r . f i t ( X_train_boots , y_train_boots )
# Obtain indexes o f the most important f e a t u r e s accord ing to

f i l t e r f unc t i on
indexes_fs = np . f l i p ud (np . a r g s o r t ( f e a t u r e_s e l e c t o r . scores_ [ : , 0 ] )

)
indexes_fs = indexes_fs [ : n_features ]
# t r a n s l a t e indexes to f e a t u r e names
s e l e c t ed_ f e a tu r e s = np . array ( [ ] )
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for i in indexes_fs :
s e l e c t ed_ f e a tu r e s = np . append ( s e l e c t ed_fea tu r e s ,

feature_names [ i ] )
s c o r e s = np . f l i p ud (np . s o r t ( f e a t u r e_s e l e c t o r . scores_ [ : , 0 ] ) )
s c o r e s = s c o r e s [ : n_features ]
tota l_se lected_features_per_round [ : , j ] = s e l e c t ed_ f e a tu r e s
# Excludes f e a t u r e r e p e t i t i o n in resampl ing i t e r a t i o n

a l l_r e l evan t_f ea tu r e s = np . unique ( tota l_se lected_features_per_round )
# Computes f e a t u r e s t a b i l i t y r e l e vance
f ea ture_re l evance = {}
for item in a l l_r e l evan t_f ea tu r e s :

rank , round_of_appereance = np . where (
tota l_se lected_features_per_round == item )

n_of_appereance_feature = len ( rank )
re l evance_score = n_of_appereance_feature ∗ (1 . 0/ np .mean( rank + np

. ones ( len ( rank ) ) ) ) ∗ ( 1 . 0 / ( np . std ( rank ) + 1 . 0 ) ) /n_rounds
f ea ture_re l evance [ item ] = re l evance_score

# I n i t i a l i s e computation o f most s t a b l e and r e l e v an t f e a t u r e s
r e l evan t_f ea tu r e s = [ ]
for key , va lue in sorted ( f ea ture_re l evance . i tems ( ) , key = lambda k :

( k [ 1 ] , k [ 0 ] ) ) :
key = key . decode ( ’UTF−8 ’ )
r e l evan t_f ea tu r e s . append ( key )

r e l evan t_f ea tu r e s = re l evan t_f ea tu r e s [ : : − 1 ]
return r e l evan t_f ea tu r e s [ : n_features ]

• select_features_model(X_train, y_train, n_features, cv, model, \
model_name):
selects features according to chosen model object (model) and name (model_name)
with cross validation (cv) for feature stability. n_features refers to the maxi-
mum number allowed for features.

Listing 13.6: Python code for selection of features according to model of DataFrame
objects, feature_selection.py.

def se l ect_features_mode l (X_train , y_train , n_features , cv , mode ,
model_name) :

# I n i t i a l i s e s e q u e t i a l forward s e l e c t i o n ins tance
s f s = SFS( es t imator = model , k_features = n_features , forward =

True , f l o a t i n g = False , s c o r i ng = ’ roc_auc ’ , cv= cv )
# f i t the o b j e c t c l a s s to the t r a i n f e a t u r e space and outcome
s f s . f i t ( X_train , y_train )
# re turns f e a t u r e name imporances
return np . array ( s f s . k_feature_names_ )
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13.4. ML_models.py
The module includes methods to optimise models according to desired number of
features and hyper-parameters from models discussed in section 4.4. It uses utilities
from Scikit-learn.model_selection and Mlxtend.feature_selection.

• model_optimization_inputs(model, train_x, train_y, n_features, \str_params,
cv):
obtains combinations of number of features and proposed model hyper-parameters
(str_param) that performs the best in the desired model, using the training fea-
ture space train_x and the training target train_y.

Listing 13.7: Python code for model selection according to model of DataFrame ob-
jects, ML_models.py.

def model_optimization_inputs (model , train_x , train_y , n_features ,
str_param , cv ) :

# Proposed hyper−parameter search accord ing to ML model
param_grid = { ’LR ’ : { ’ estimator__C ’ : 10 .0∗np . arange (−3 ,4 ,1) , ’

est imator__class_weight ’ : [ { 0 : 1 , 1 : 2} , {0 : 1 , 1 : 3} , {0 :
1 , 1 : 4} , {0 : 1 , 1 : 5 } ] , } , ’KNN’ : { ’ estimator__n_neighbors ’ :
np . arange (3 , 27 , 2) } , ’SVM’ : { ’ estimator__C ’ : 10 .0∗np .

arange (−3 ,4 ,1) , ’ est imator__class_weight ’ : [ { 0 : 1 , 1 : 2} ,
{0 : 1 , 1 : 3} , {0 : 1 , 1 : 4} , {0 : 1 , 1 : 5 } ] , } , ’RF ’ : { ’

estimator__n_estimators ’ : np . arange (3 , 11 , 2) , ’
estimator__max_depth ’ : np . arange (5 , 11 ) , ’
est imator__class_weight ’ : [ { 0 : 1 , 1 : 2} , {0 : 1 , 1 : 3} , {0 :
1 , 1 : 4} ] } , ’GNB’ : {} , ’DT’ : { ’ estimator__max_depth ’ :
[ 7 , 8 , 9 , 1 0 ] , ’ est imator__class_weight ’ : [ { 0 : 1 , 1 : 2} ,

{0 : 1 , 1 : 3} , {0 : 1 , 1 : 4} , {0 : 1 , 1 : 5} ]} , }

# I n i t i a l i s e s t o rage o f b e s t performing inpu t s
opt imizat ion_inputs = [ ]

# Grid search cons t ruc t i on o f hyper parameters
g r id = ParameterGrid ( param_grid [ str_param ] )
# I n i t i a l i s e s e q u e t i a l forward s e l e c t i o n ins tance wi th cros s

v a l i d a t i o n and performance metr ic roc−auc
s f s = SFS( es t imator = model , k_features = n_features , forward =

True , f l o a t i n g = False , s c o r i ng = ’ roc_auc ’ , cv= cv )
# I t e r a t e s over p o s s i b l e parameters in the g r i d
for params in g r id :

# Changes model hyperparameters acco rd ing l y
s f s . set_params (∗∗params )
# f i t the o b j e c t c l a s s to the t r a i n f e a t u r e space and

outcome
s f s . f i t ( X_train , y_train )
s c o r e s = s f s . subsets_
new_scores = dict ( )
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for i in range (1 , n_features + 1) :
i = int ( i )
new_scores [ i ] = s c o r e s [ i ]
new_scores [ i ] [ ’ s td_score ’ ] = np . std ( s c o r e s [ i ] [ ’

cv_scores ’ ] )

new_scores = pd . DataFrame ( new_scores )
new_scores = new_scores .T
ordered_new_scores = new_scores . sor t_values ( [ ’ avg_score ’

, ’ s td_score ’ ] , ascending = [ False , True ] )
ext rac t ion_bes t = ordered_new_scores . i l o c [ 0 ]
ext rac t ion_bes t [ ’ parameters ’ ] = params
opt imizat ion_inputs = pd . concat ( [ opt imizat ion_inputs ,

ext rac t ion_best .T] , ax i s = 0)

# re turns f e a t u r e name imporances
return opt imizat ion_inputs

13.5. Rad_analysis_ML.py
The file contains mean instruction to run radiomics ML analysis. As a summary,
figure 13.1 exemplify module dependency inside the architecture of the software for
feature selection and machine learning modelling.
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Figure 13.1.: Diagram of modules dependency architecture for ML purposes.
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