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Summary

Deutsch

In der vorliegenden Arbeit wird eine Theorie fiir abstrakte Operatoren mit
dynamischen Randbedingungen, welche in |Gre87|, [CENNO03|, [Eng03|, |[EF05]
entwickelt wurde, erweitert. Die Hauptidee ist es einen abstrakten Rahmen
einzufithren, um dynamische Randbedingungen zu beschreiben. Dieser Ansatz

erlaubt eine systematische Untersuchung dieser Operatoren.

Die Arbeit ist in zwei Teile unterteilt. Im ersten Teil studieren wir den abstrakten
Rahmen und zeigen, dass er das perfekte Werkzeug ist, um Operatoren mit
dynamischen Randbedingungen zu untersuchen. Im zweiten Teil konzentrieren

wir uns auf konkrete Probleme mit dynamischen Randbedingungen.

Teil I basiert auf gemeinsamen Artikeln mit Klaus Engel und wird zusammenge-

fasst in den [Kapiteln TTLIHITT.7] wiedergegeben.

Unser erster Artikel [BE19] konzentriert sich Operatoren mit dynamischen

Randbedingungen, welche analytische Halbgruppen erzeugen. Es wird gezeigt,
dass unter sinnvollen Annahmen ein Problem mit dynamischen Randbedingungen
in ein inneres und in ein Randproblem, welches durch den Dirichlet-zu-Neumann
Operator beschrieben wird, entkoppelt werden kann. Dies wird verwendet, um
eine Storungstheorie fiir Operatoren mit dynamischen Randbedingungen zu
entwickeln.

Unser zweiter Artikel [BE20a] untersucht, wie abstrakte, homogene und inho-
mogene, elliptische und parabolische Problemen mittels Dirichlet-zu-Neumann
Operatoren und Operatoren mit dynamischen Randbedingungen formuliert wer-
den kénnen. Auflerdem werden Resultate fiir stark-stetige Halbgruppen analog
zum Entkoppelungsresultat fiir analytische Halbgruppen bewiesen.

Unser letztes Manuskript [BE20b] untersucht, welche Eigenschaften bei der
Entkoppelungsprozedur erhalten bleiben. Insbesondere untersuchen wir dies-
beziiglich Positivitat, Stabilitdt und Spektraleigenschaften von Operatoren mit

dynamischen Randbedingungen und Dirichlet-zu-Neumann Operatoren.

Die von mir allein geschriebenen Artikel [Bin19], [Bin20a], [Bin20b] beschéftigen

sich mit konkreten Systemen von parabolischer Differentialgleichungen auf

X
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Réumen stetiger Funktionen auf Mannigfaltigkeiten mit Rand.

Der erste Artikel [Bin20a] befasst sich mit elliptischen Operatoren mit Dirichlet
Randbedingungen auf Mannigfaltigkeiten mit Rand. Es wird gezeigt, dass diese
sektoriell mit optimalem Winkel 5 sind und kompakte Resolventen haben. Dieses
Resultat verallgemeinern die bekannten Resultate fiir beschréinkte Gebiete auf
Mannigfaltigkeiten mit Rand und spielt eine wichtige Rolle in meinen weiteren
Artikeln [Bin19], [Bin20b].

In dem Artikel [Bin20b| werden elliptische Operatoren auf Mannigfaltigkeiten
mit Rand mit dynamischen Randbedingungen mit einem zusétzlichen Driftterm
betrachtet. Unter Verwendung unserer abstrakten Theorie wird gezeigt, dass
auch solche Operatoren kompakte und analytische Halbgruppen mit Winkel 5
erzeugen.

In dem dritten Manuskript [Bin19] werden elliptische Operatoren mit Wentzell
Randbedingungen und Dirichlet-zu-Neumann Operatoren auf Mannigfaltigkeiten
mit Rand betrachtet. Es wird zunéchst gezeigt, dass der Dirichlet-zu-Neumann
Operator eine kompakte und analytische Halbgruppe mit Winkel 5 erzeugt.
Weiter wird dieses Resultat mit der abstrakten Theorie kombiniert, um ein
Generatorresultat fiir elliptische Operatoren mit Wentzell Randbedingungen zu
zeigen. Insbesondere wird bewiesen, dass elliptische Operatoren mit Wentzell
Randbedingungen auf glatten, beschrankten Gebieten kompakte und analytische

Halbgruppen mit optimalen Winkel 5 auf Raumen stetiger Funktionen erzeugen.

In der gemeinsamen Arbeit mit Tom ter Elst [BtE20] wird das Generatorresultat
fiir elliptische Operatoren mit Wentzell Randbedingungen auf Operatoren mit
weniger reguldren Koeffizienten und auf weniger reguléren Gebieten verallge-
meinert. Zusétzlich wird unter diesen schwachen Voraussetzungen ein analoges

Resultat fiir Operatoren auf LP-Rdumen bewiesen.

Das Manuskript mit Jonas Lampart [BL20] befasst sich mit inneren Randbedin-
gungen. Diese Randbedingungen werden in der Quantenmechanik zur Beschrei-
bung von Teilchenerzeugung und -vernichtung verwendet. Fiir diese wird ein
abstrakter Rahmen entwickelt und Selbstadjungiertheit charakterisiert. Weiter

werden Klassifikations- und Konvergenzresultate gezeigt.



Summary

English

In this thesis we extend the theory of abstract operators with dynamic boundary
conditions proposed in |Gre87], [CENNO3|, [Eng03|, [EF05]. The main idea is
to introduce an abstract framework to study dynamic boundary conditions for
partial differential operators. This approach allows a systematic investigation of

these operators.

This thesis is divided into two parts. In the first part we study the abstract
framework systematically and show that it is the perfect tool to examine
operators with dynamic boundary conditions. In the second part we concentrate

on concrete problems with dynamic boundary conditions.

The abstract part is based on articles of Klaus Engel and myself and summarized
in [Sections TTT.THITT.7]

Our first article [BE19] concentrates on analytic semigroups generated by op-
erators with dynamic boundary conditions. It is shown that under sensible
assumptions a problem with dynamic boundary conditions can be decoupled
into a interior problem and a boundary problem for the so called Dirichlet-to-
Neumann operator. Further, this result is used to develop a perturbation theory
for operator with dynamic boundary conditions.

Our second article [BE20a] investigates the relationship between abstract, homo-
geneous and inhomogeneous, elliptic and parabolic problems and Dirichlet-to-
Neumann operators and operators with dynamic boundary conditions. Moreover,
we prove results for strongly continuous semigroups analogous to the decoupling
theorem for analytic semigroups.

Our last manuscript [BE20b] studies which properties can be characterized
by our decoupling procedure. In particular we investigate positivity, stability
and spectral properties of operators with dynamic boundary conditions and of

Dirichlet-to-Neumann operators.

The articles written by myself [Bin19], [Bin20a], [Bin20b| deal with concrete
systems of parabolic differential equations on spaces of continuous functions on
manifolds with boundary.

The first article [Bin20a] is concerned with elliptic operators with Dirichlet
boundary conditions on manifolds with boundary. It shows that these operators
are sectorial of optimal angle 7 and have compact resolvents. This result extends
the known results for bounded domains. It plays a crucial role in later articles
[Bin19|, |[Bin20b].

In the second article [Bin20b]| elliptic operators on manifolds with boundary with

dynamic boundary conditions with an additional drift term at the boundary
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are considered. By applying our abstract theory it is shown that such operators
generate compact and analytic semigroups of angle 7.

In the manuscript [Bin19] elliptic operators with Wentzell boundary conditions
and Dirichlet-to-Neumann operators on manifolds with boundary are considered.
We show generation of a compact and analytic semigroup of angle § by the
Dirichlet-to-Neumann operator. Further, this result is combined with the
abstract theory to obtain a generation result for elliptic operators with Wentzell
boundary conditions. In particular we prove that elliptic operators with Wentzell

boundary conditions generate compact and analytic semigroup of optimal angle

us

5 on spaces of continuous functions on smooth, bounded domains in R".

In the joint work with Tom ter Elst [BtE20] the generation result for elliptic
operators with Wentzell boundary conditions on domains is generalized to less
regular coefficients of the operator and less regular domains. In addition an

analogous result on LP-spaces in proven.

The manuscript with Jonas Lampart [BL20] is concerned with interior boundary
conditions. These boundary conditions are used to describe particle creation
and annihilation in quantum mechanics. An abstract framework is developed
and a self-adjointness theorem is proven. Further classification and convergence

results are obtained.
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I Introduction

In his Cours d’ Analyse in 1821 Augustin-Louis Cauchy posed the following

problem!:

Déterminer la fonction ¢(x) de maniére qu’elle reste continue entre
deux limites réelles quelconques de la variable x, et que 1'on ait pour

toutes les valeurs réelles des variables x et y

oz +y) = p(x)e(y).?
A.-L. Cauchy, [Cau2l, p. 100]

If we restrict ourself to functions ¢: Ry — C the exponential functions
t — exp(ta)

for some a € C satisfy the above functional equation and it turns out that there

3. Moreover the exponential functions are

are no other continuous solutions
continuously differentiable and u(t) = exp(ta)ug is the unique solution of the

differential equation

The same holds if we replace C by an arbitrary Banach space F and a € C by a
bounded linear operator A € L(F). Indeed, the exponential functions defined as

exp(tA) = Z e
k=0 '

!The following motivation is due to [EN0O, Section 1.1]. We refer to [EN0O| for a more
detailed historical introduction to semigroup theory.

2Determine the function ¢(z) in such a way that it remains continuous between two
arbitrary real limits of the variable x, and that, for all real values of the variables x and y, one
has

oz +y) = o@)ey)

3Considering R as a vector space over Q it is possible to find other solutions of this problem.

We refer to [EN00, Comment I.1.5(iii)] and [HamO05].



I Introduction

are the unique solutions of Cauchy’s Banach space valued problem and for
ug € E the function exp(tA)ug is again the unique solution of the initial value

problem

{u(t) = Au(t) fort >0,
u(0) = up.

An interesting class of such problems occurs for differential operators on function
spaces. Unfortunately, these operators are usually unbounded and hence the
exponential function via the power series does not exist. Nevertheless the
correspondence between Cauchy’s problem and the initial value problem remains
true for unbounded operators: For a closed, densely defined operator A: D(A) C

E — FE on a Banach space E every solution of the initial value problem

{a(t) = Au(t) fort >0,
u(0) = wo.

for up € D(A) satisfies Cauchy’s functional equation. So the idea is to use this
functional equation to define a family of bounded linear operators (7'(t)):>0
yielding solutions of the initial value problem. However, besides this algebraic
we also need some continuity property. The continuity of the map Ry —
L(E): t — T(t) with respect to the uniform operator topology on L(E) is too
strong for interesting examples. To find the ,right“ topological condition we
should describe how the solutions u(t) = T'(t)up depend on its initial value
Ug € D(A)

In 1902 Jacques Hadamard?* suggested that initial value problems modelling

physical phenomena® should satisfy the following properties:
(i) a solution exists;
(ii) the solution is unique;
(iii) the solution depends continuously on the initial value.

He called such a problem wellposed. The third property corresponds to continuity
of the maps Ry — L(E): t — T'(t)ug for initial values up € E. This leads to
the theory of strongly continuous operator semigroups mainly established by
Einar Hille [Hil42], [Hil48], [Hil50], [Hil65] and Kosaku Yosida [Yos48], [Yos49],
[Yosb7], [Yos65].

4Had02) p. 49-52.
5This models determinism. For the relationship between semigroups, wellposedness and
determinism we refer to [ENOO, Epilogue].
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Definition. A strongly continuous semigroup (T'(t))s>0 on a Banach space E is

a family of bounded linear operators satisfying
(i) T(s+t) =T(s)T'(t) for s,t > 0;
(ii) 7'(0) = Id;
(iii) Ry — E: ¢+ T(t)z is continuous for all z € E.

In the next part we will see that such semigroups are a perfect tool to investigate

wellposedness of initial value problems.

Abstract Cauchy problems

For a closed, densely defined operator A: D(A) C X — X on a Banach space
X and an initial value ug € X the abstract Cauchy problem associated to A and

ug is the initial value problem

u(t) = Au(t) fort >0,

ACP
( ) {u(O) = uyg.

We call a continuously differentiable function u: Ry — X a (classical) solution
of if u(t) € D(A) for all t > 0 and it satisfies (ACP]). Moreover we call a
continuous function u: Ry — X a mild solution of if [Tu(s)ds € D(A)
for all ¢ > 0 and it fulfils the integral equation

u(t) = ug + A/Otu(s) ds

for all £ > 0. A mild solution is a classical solution if and only if it is continuously
differentiable. The abstract Cauchy problem is called wellposed® if for all
up € D(A) there exists a unique (classical) solution u of which depends
continuously on the initial value g, i. e., uf — wg implies u" () — wu(t) uniformly
on compact intervals [0,¢y]. Moreover it is called mildly wellposed if for all
ug € X there exists a unique mild solution u of . These two definitions
are deeply connected to strongly continuous semigroups as the following theorem
shows (see [ABHN11, Theorem 3.1.12] and [ENO0O, Theorem I1.6.7]).

Theorem. Let A: D(A) C E — E be a closed, densely defined operator on a

Banach space. Then the following statements are equivalent.

50ur definition of wellposedness is not the only possible. For a discussion of wellposedness
we refer to [ENOO, Chapt. II.6] and the references therein.
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(a) the operator A is the generator of a strongly continuous semigroup (T'(t))¢>0
on B.

(b) The abstract Cauchy problem (ACP|) is mildly wellposed.
(¢) The abstract Cauchy problem (ACP)) is wellposed.

Moreover, if one of the assertions holds, the mild solution is given by u(t) =

T(t)up for the initial value ug € E. It is a classical solution if and only if
ug € D(A)

Based on this theorem, strongly continuous semigroups are the perfect tool for
the analysis of abstract and concrete Cauchy problems. Not only for uniqueness
and existence of the solution but also, since the solution is governed by the
semigroup, for their qualitative behaviour. For example, analyticity of the
semigroup (see |[ENOO, Definition 11.4.5]) reflects the analytic dependency of the

solution u from its initial value wug.

Now consider inhomogeneous abstract Cauchy problems. For a closed, densely
defined operator A: D(A) C E — E on a Banach space E, an initial value uy € E
and an inhomogeneity f: [0,7] — E for 7 € (0,00) or 7 = 0o the inhomogeneous

abstract Cauchy problem associated to A, ug and f is the problem

u(t) = Au(t) + f(t) fort e [0,7],

u(0) = up.

(ACPy) {

If f is continuous and integrable, we call a continuously differentiable function
u: [0,7] = E a (classical) solution of if u(t) € D(A) for all t € [0, 7]
and it fulfils . Moreover, if f is integrable, we call a continuous function
u: [0,7] = E a mild solution of if [{u(s)ds € D(A) for all t € [0,7]

and it satisfies the variation of the parameter formula

u(t) :uo—i—A/Otu(s)ds—}—/Otf(s)ds

for all ¢ € [0,7]. Note that a mild solution is unique if it exists. If f is
continuous and integrable, a mild solution is a classical solution if and only
if it is continuously differentiable. If f = 0, the definitions for classical and
mild solutions for the inhomogeneous abstract Cauchy problem coincide with
the corresponding definitions for the abstract Cauchy problem. Again we can
use semigroups to characterize solutions of the inhomogeneous abstract Cauchy
problem (see [ABHN11, Proposition 3.1.16 and Corollary 3.1.17)).
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Theorem. Let A: D(A) C E — E be a closed, densely defined operator on a

Banach space E. Then the following properties are equivalent.

(a) The operator A is the generator of a strongly continuous semigroup
(T'(t))e=0 on E.

(b) For every integrable function f:[0,7] — E and for every initial value

ug € E the problem (ACPy|) has a unique mild solution.

(c) For every integrable g: [0,7] — E, fo € E and every initial value ug €

D(A) the problem (ACPy) for f given by f(t) = fo + fgg(s) ds has a

unique (classical) solution.

Moreover, if one of these assertions holds, the mild solution is given by

u(t) = T(t)uo + /0 Tt 5)f(s) ds
for all t € [0, 7].

Assertion (c) shows that for regular inhomogeneities and good initial values the

solution becomes classic.

The next step is to consider semilinear equations. For a closed, densely defined
operator A: D(A) C E — FE on a Banach space X, an initial value ug € E and
a nonlinearity F': [to, 7] X E — E for tg < 7 € (0,00) or 7 = oo the semilinear

abstract Cauchy problem associated to A, ug and F' is the problem

(SACP ) {ﬂ(t) = Au(t) + F(t,u(t)) fort € [t,7],

u(0) = wo.

If F' is continuous and integrable, we call a continuously differentiable function
u: [to, 7] = E a (classical) solution of if u(t) € D(A) for all ¢ € [to, T]
and it fulfils . Moreover, if F' is integrable, we call a continuous function
u: [to, 7] = X a mild solution of if ftz u(s)ds € D(A) for all t € [tg, 7]

and it satisfies the variation of the parameter formula

t t
w(t) = o+ A [ uls)ds +/ F(s, u(s)) ds
to 0
for all ¢t € [to, 7]. The result for (ACP¢|) implies that a mild solution is unique if
it exists. If F' is continuous and integrable, a mild solution is a classical solution
if and only if it is continuously differentiable. If the semilinearity F' does not

depend on u, these definitions coincide with the corresponding definitions for



I Introduction

the inhomogeneous abstract Cauchy problem. Note that by f(t) = F (¢, u(t))
we can formally write (SACPp|) as (ACP|). Hence, combining the results for

inhomogeneous abstract Cauchy problems with fixed point theorems, we obtain

the following characterization (see [Paz83, Theorem 6.1.2 and Theorem 6.1.5]).

Theorem. Let A: D(A) C E — E be a closed, densely defined operator on a

Banach space E. Then the following statements are equivalent.

(a) The operator A is the generator of a strongly continuous semigroup
(T(t))tzo on E.

(b) For every function F: [0,7] x E — E which is continuous in [0,7] and

uniformly Lipschitz continuous on E and for every initial value ug € E

the problem (SACPF|) has a unique mild solution.

(¢) For every continuously differentiable F: [0,7] x E — E and every initial
value ug € D(A) the problem (sACPE|) has a unique (classical) solution.

Moreover, if one of the assertions holds, the mild solution satisfies
t
u(t) = T(t)uo + / T(t — $)F(s,u(s)) ds
0

for all t € [0, 7].

Assertion (b) can be weakened to locally Lipschitz continuity yielding maximal
mild solutions. For details see [Paz83, Theorem 6.1.4]. There are also other
conditions on F' that imply existence of a unique solution of . In
particular, assuming additional properties of the semigroup only less assumptions
for the semilinearity F' are needed.

For compact semigroups we obtain the following local existence theorem (see
[Paz83, Theorem 6.2.1]).

Theorem. Let A: D(A) C E — E be the generator of a compact, strongly
continuous semigroup (T'(t))t>0 on a Banach space X. For every open subset
U C E and every continuous function F: [0,7) x U — E and for every initial
value ug € U there exists a constant 11 < T such that has a mild
solution u € C([0,71],U) satisfying

u(t) = T(t)uo + /0 Tt — $)F(s,uls)) ds

for all t € [0, 7].

Further, there is a global existence result (see [Paz83, Corollary 6.2.3]).
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Theorem. Let A: D(A) C E — E be the generator of a compact, strongly
continuous semigroup (T'(t))i>0 on a Banach space E. Further, let F': [0,00) X
E — E be a continuous function which maps bounded set from [0,00) X E to

bounded sets of E. Assume one of the following conditions.

(a) There exists a continuous function K: [0,00) — (0,00) such that the
solution u satisfies ||u(t)|| < K(t) for allt > 0.

(b) There exist two locally integrable functions ki: [0,00) — [0,00) and
ka: [0,00) — [0,00) such that

1E (s, 2)|| < Ka(s) - |2l + K2(s)

foralls >0 and z € E.

Then the initial value problem (SACPF|) admits a global mild solution u given as
t
u(t) = T(t)uo +/ T(t — s)F(s, u(s)) ds
0

for allt > 0.

Note that in both theorems we only obtain existence of a solution but no

uniqueness. For analytic semigroups we make an additional assumption on F.

Assumptions (F). Let o € (0,1) and V an open subset of Ry x E,. The
function F:V — E satisfies the assumption (F) if for every pair (t,xz) € V
there exists a neighbourhood W C V and constants L > 0 and 0 < 0 < 1 such
that

1F(t1, 1) = F(t2, 22)|| < Lt — ta]” + [|l21 — 22]a)

for all (t;,z;) € W.
This yields the following local existence theorem (see [Paz83, Theorem 6.3.1]).

Theorem. Let A: D(A) C E — E be the generator of an analytic semigroup
(T'(t))¢>0 on a Banach space E. By rescaling we assume without loss of generality
that the semigroup is bounded and that A is invertible. If F' satisfies assumption
(F'), then for every initial data (to,z9) € V the initial value problem
has a unique local solution u € C([to,T), E) N CY((0,7), E) where T > to depends

on tg and ug ans u is given by

u(t) = T(t)uo + /Ot T(t — 5)F(s,u(s)) ds

for all t > .
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Again we can conclude a global existence result (see [Paz83, Theorem 3.3]).

Theorem. Let A: D(A) C E — E be the generator of an analytic semigroup
(T'(t))e>0 on a Banach space E. By rescaling we assume without loss of gener-
ality that the semigroup is bounded and that A is invertible. Further, assume
that F: [tg,00) X Eo — E satisfies assumption (F). If there is a continuous

nondecreasing real valued function K : [tg,00) — E such that
1F (¢ z)|| < K@)+ [|z]la)

for allt > tg and x € E,, then for every initial value ug € E, the problem

(SACPE|) has a unique solution given as
t
u@):T@W0+/‘T@—sﬂN&u@»ds
0
for allt > tg.

For more details we refer to [Paz83, Section 6.2 & 6.3].

Finally, we come to quasilinear equations, i.e.,

u(t) = A(u(t))u(t) + F(t,u(t)) fort e 0,7],

u(0) = ug

(qACPF) {

for a semilinearity F': [0, 7] x E — E for 7 € (0,00) or 7 = oo and an initial value
ug € F on a Banach space E. In the sequel we assume that the semilinearity F'

is continuous on [0, 7] and Lipschitz continuous on E. We give only a idea how

to solve (qACPpg|) using semigroup theory. The linearisation of (qACPg|) is

{w@:Awmm@+F@mm for ¢ € [0, 7],

for w: [0,7] — E. Defining for fixed u the operator A := A(u) and the
inhomogeneity f(t) := F(t,u(t)) we obtain

w(t) = Aw(t) + f(t) fort € [0,7],

w(0) = up.

(qACP 4-lin) {

Comparing the problems (SACPr|) and (qACP ¢-lin)) we see that (qACP ¢-lin)

admits a unique (mild) solution for uy € E and a unique classical solution for

ug € D(A), hence more regular data yield more regular solutions. This idea
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leads to the definition of trace space associated to A and p. Take

there exists a u € WLP((0,7), E) N LP((0,7), D(A))
with u(0) = z

equipped with the norm

there exists a function
lullwriror),m) . w€ WHP((0,7), E) and
+lAullLieor,e)  w € LP((0,7), D(A))
with u(0) = z

217, (a) = inf

Then I,(A) becomes a Banach space satisfying
D(A) — I,(A) = E.

Of course, existence of a unique solution of (qACP ¢-linl) does not suffice to solve
(qACPg|)). The solution should be as regular as the data. This leads to the

following definition.

Definition. A closed operator A: D(A) C E — E has mazimal LP-regularity if
for every pair (f,ug) € LP((0,7), E) x I,(A) there exists a unique solution of

(qACP ¢-linl) which satisfies

il o.r).2) + 1Aulloo.ry.) < € (I1f ooz + luollz,ca))
for a constant C' = C, > 0.

Maximal LP-regularity for some p € [1,00) implies maximal LP-regularity for
all p € (1,00). For a similar concept using the spaces of Holder-continuous
functions instead of Sobolev spaces we refer to [Lun95]. Note that maximal
regularity is a quite strong condition and implies that A generates a bounded

analytic semigroup of optimal angle § on E. Maximal regularity implies the

existence of the solution operator of (qACP ¢-linl)
Sy: LP((0,7), E) x I, — WHP((0,7), E) x LP((0,7), D(A)),  (f,ug) ~ v.

Denote by R(u) := Syu(F(-,u),up) the right hand side, then the maximal reg-
ularity of A and the Lipschitz continuity of F' implies that R is a contraction
on WHP((0,7), E) x LP((0,7), D(A)) for sufficiently small 7 > 0. Now Banach’s
fixed point theorem yields that the equation R(u) = u has a unique fixed point

and hence (qACPg|) is uniquely solvable.
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The theory of strongly continuous semigroups and its relationship to wellposed-
ness of abstract Cauchy problems as sketched above is well established and can
be found in many excellent textbooks, e.g. [ENOO|, [Paz83|, [Dav80], [Lun95|,
[Ama95| and [ABHN11].

As a concrete application we can rewrite (homogeneous, inhomogeneous, semi-
linear, quasilinear) parabolic initial value problems as (homogeneous, inhomo-
geneous, semilinear, quasilinear) abstract Cauchy problems for an appropriate

operator on an appropriate Banach space and then apply the semigroup theory.

This is the leitmotif of our thesis and we give two concrete examples in the next

sections.

Heat equation with dynamic boundary conditions

For linear parabolic partial differential equation on smooth bounded domains
(or, more general, on compact Riemannian manifolds with boundary) one needs,
beside an initial value, boundary conditions to guarantee uniqueness of the
solution. These boundary conditions can be time-independent (or static) like
Dirichlet, Neumann or Robin boundary conditions or time-dependent (or dy-
namic) as so called Wentzell boundary conditions. All these boundary conditions
appear from different physical phenomena. For time-independent boundary
conditions the functions in the domain of the elliptic operator need to satisfy
the boundary condition. Then the wellposedness of the parabolic initial-value
problem corresponds to the generator property of the operator defined on this

domain. For dynamic boundary conditions the situation is more sophisticated.

As a simple but typical example we consider the heat equation on a smooth
bounded domain Q C R with boundary dQ. On the Banach space X := C(Q)
the heat equation with dynamic (or Wentzell) boundary conditions is modelled

by

u(t) = Au(t) for t > 0,
0

(L1) Qdlaa(t) = —%u(t) for t >0,

on X, where % denotes the normal derivative. Our first goal is to find an oper-
ator A such that (I.1)) becomes the abstract Cauchy problem (ACP) associated
to A.

Consider the Laplace operator A,, = A with maximal domain

10
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D(A,,) = {f eC(): Af e C(ﬁ)}, the trace operator Lf = f|pq and the
normal derivative B := —a%. Now can be rewritten as

u(t) = Apu(t) fort >0,
(12) z(t) = Bu(t) for t >0,
Lu(t) = z(t) for t > 0,

u(0) = up.

Since the trace operator is bounded, we obtain
i(t) = (Lu)(t) = Lu(t) = LAnu(t)
and can be rewritten as

u(t) = Apu(t) for t >0,
(I.3) § LA, u(t) = Bu(t) for t >0,

This initial value problem can be interpreted as an abstract Cauchy problem
(ACP) for the Laplace operator with Wentzell (or dynamic) boundary conditions

(14) ABf:=Af, D(AP):={f € D(A,)ND(B): LA,.f = Bf}.

Now the initial value problem ([.2]) can be seen as a coupled system of two
initial value problems: one for v and one for x. In order to decouple this system
note that every continuous function on € can be decomposed into a continuous

function with zero trace and a harmonic function, i. e.,
(L5) C(02) = Co(Q) ® ker(A).

Hence the initial value problem ([.2)) induces an initial value problem on Cq(Q)7
given by

Here we only have a dynamics on the interior and no dynamic on the boundary.

"The Banach space Co(2) := {f € C(Q): f|an = 0} equipped with the sup-norm.

11
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By the continuity of the trace operator, this can be rewritten as the abstract
Cauchy problem on the Banach space Cy(f2) for the Laplace operator with

Dirichlet and so called pure Wentzell boundary conditions given by
(L7) Agf =Af, D(AQ) ={f € D(An): Lf =0,LA,f = 0}.

Moreover ([.2]) induces an initial value problem on the space of harmonic

functions® given by

This system consists of the time-independent Laplace equation and a dynamic
boundary condition. Hence it has dynamics on the boundary, whereas the
interior is stationary. It corresponds to the Dirichlet-to-Neumann operator N
given by the composition of the harmonic extension operator with the (negative)
normal derivative, i.e., N = BLg, where Ly denotes the extension of a continuous
function from 9 to a harmonic function on €. Roughly speaking, Lg is the

solution operator of the Dirichlet problem and Loz = f is equivalent to
(1.9)

while the Dirichlet-to-Neumann operator translates a Dirichlet boundary condi-

tion into a Neumann boundary condition.

It is well known that AJ from (7)) generates an analytic Cp-semigroup of angle 3

on Co(€2) and hence the initial value problem (I.6|) is wellposed. Moreover Klaus

Engel shows in [Eng03, Theorem 2.1] that the Dirichlet-to-Neumann operator
™

generates an analytic Cp-semigroup of angle § on C(9f2) and therefore the

initial value problem (I.8) is wellposed. These facts imply that A® given in (L.4)
generates an analytic Cp-semigroup of angle 7 and thus ([.2)) is wellposed. This

shows that we recover the coupled system ([.2]) from the uncoupled subsystems

and (I3,

8We call a function f € C(Q) harmonic, if Af = 0. The harmonic functions form a Banach
space with the sup-norm.

12
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Delay differential equations

Phenomena in population dynamics can be modelled by equations where the
evolution of a state x(t) at time ¢ also depends on the history of the system.
To obtain a deterministic dependence of such a system the state must contain
information on the history of the system. To this end we consider the history

segments u(t) of x given by
u(t): [-1,0] =Y, u(t)(s) = z(t + s),

where Y is a suitable Banach space. As initial value we take a function
h:[=1,0] — Y describing the prehistory of the system. Choosing the Ba-
nach space X = C([—1,0],Y) of continuous functions we obtain the delay

differential equation

(1.10) {‘T(t) = Cx(t) + Pu(t) fort >0,
u(0) = h,

on X, where C is an operator on Y and ® € £(X,Y) is the delay operator.
Again we want to find an operator such that ([.10)) becomes an abstract Cauchy

problem of the form (ACP)).

Consider the first derivative A,,f = % f with maximal domain D(A,,) =
CY([~1,0],Y), the trace operator L := dp and B := Céy + ®. Note that
Lu(t) = x(t). Hence ([.10)) can be written as

u(t) = Apu(t) fort >0,
(111) z(t) = Bu(t) for t >0,
Lu(t) = z(t) for t >0,

)

I
> 8

u(0

As above we obtain as an abstract Cauchy problem for the delay operator
d
ABf = WL D(AP) = {f € D(A,) N D(B): LA,.f = Bf}.
Using the decomposition

(I.12) C([-1,0,Y) = Co([-1,0),Y)¥ @ ((1) ® Y),

8The Banach space Co([—1,0),Y) = {f € C([~1,0],Y): f(0) = 0} equipped with the

sup-norm.

13
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we obtain the system on Cy([—1,0),Y") given by

u(t) = %u(t), for t > 0,
(L13) z(t) =0, for t > 0,
Lu(t) = z(t), for t >0,

u(0) = wp.

Again this system has no dynamics on the boundary and can be interpreted
as the abstract Cauchy problem on the Banach space Cy[—1,0) for the first

derivative with Neumann and Dirichlet boundary conditions, i.e.,
AO — i D AO — Cl -1 .ol _ _
of = dsf’ (Ag) = {f € Cy[-1,0): f(0) = f(0) = 0}.

Since Lu(t) = 0, we obtain u(t)(s) = u(t)(0) = x(t) and the initial value

problem ([.13)) becomes

#(t) = Bu(t) = Cz(t) + ®(z(t) ® 1) fort >0,
(I.14) < Lu(t) = x(¢) for t >0,
x(0) = xo

on (1) ® Y 2Y. The bounded perturbation theorem implies that this problem

is wellposed if and only if C' generates a strongly continuous semigroup on Y.

It is standard that A) generates a strongly continuous semigroup on Co[—1,0).
Moreover the delay operator AP generates a strongly continuous semigroup
on C[—1,0] if the operator B generates a strongly continuous semigroup on Y.
Again it is possible to recover solutions of from of the two uncoupled

problems ([[.13) and (I.14)).

An abstract framework for dynamic boundary value
problems

An abstract approach for operators with boundary conditions goes back to
Greiner in [Gre87|, who looked at time independent boundary conditions as

perturbations of the domain of an operator. For dynamic boundary conditions

an abstract framework has been developed by Engel in [Eng03| and [EF05].

We have seen that the equations in ([.1)) and ([.10)) have a similar structure

yielding to analogous results. This indicates that there is a more general

14
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phenomenon leading to these results. Let us analyse the above situation from a

more abstract point of view.

We start from two Banach spaces, the state space X and the boundary space 0X.
In the example of the heat equation the state spaces is C(Q2) and the boundary
spaces is C(0f2), whereas for the delay equation the state space is C([—1,0],Y)

and the boundary space is Y.

Next we need a bounded trace operator L: X — 0X connecting these two Banach
spaces. For the heat equation this is the normal trace operator Lf = f|sq, for

the delay equation it is L = .

Third we have a densely defined mazimal operator A,,: D(A,) C X — X
acting on the state space. Maximal here means maximal domain, i.e. without
boundary conditions. For the heat equation this is the Laplace operator, and

the first derivative for delay equations.

Finally, we need a feedback operator B: D(B) C X — 0X. It models the
(time dependent) boundary condition. For the heat equation it is the normal

derivative, whereas for delay equation it is given by C'dy + .

Using these spaces and operators we formulate an abstract version of the initial

value problems and (I.11)) as

u(t) = Apu(t) fort >0,

z(t) = Bu(t) for t > 0,

Lu(t) = z(t) for t > 0,
)

for u(t) € X. To rewrite this equation as an abstract Cauchy problem,
we implement the conditions Lu(t) = x(t) into the Banach space X =
{(i) EXx0X:Lf= 33} equipped with the norm H(g)” = Ifllx + llzllox-
On this space we consider the operator with dynamic boundary conditions
AB: D(AP) c X — X given by

N _ (Anf
()= ()
(1.16)

D(AP) = {<f> € (D(A,,) N D(B)) x 9X : Lf_x,LAmf_Bf}.

X

Now ([.15) is the abstract Cauchy problem (ACP)) associated to the operator AZ.

15



I Introduction

Since L : X — 0X is bounded, the second line becomes
Bu(t) = @(t) = Lu(t) = Lu(t) = LAnu(t)

for t > 0 and hence the third line can be omitted. This yields the following
initial value problem on X

u(t) = Apu(t) for t >0,
(I17) ¢ LA, u(t) = Bu(t) for t >0,

This is the abstract Cauchy problem for the operator with Wentzell boundary
conditions AP: D(AP) ¢ X — X given by

(1.18) ABf = A,.f, D(AP):={fe D(A,)ND(B): LA,.f = Bf}.

Note that the operator with dynamic boundary conditions (I.16]) and the operator
with Wentzell boundary conditions (I.18)) are similar, i.e.,

AP = 5AP g1
for §: X = X: f = (/).

We now look for an abstract analogue of the decompositions (I.5)) and (I.12).
For this purpose we introduce the abstract Dirichlet operator Ly: 0X — X
given by the solution of the abstract Dirichlet problem, i.e.,

Amf = 07

Loz =f <= {
Lf=x.

Since Ly is the left-inverse of L, the operator LoL € £(X) is a projection onto
ker(A,,) along Xy := ker(L) and we have the decomposition

(I.19) X = Xo @ ker(An).

We also need the boundedness of the Dirichlet operator Ly € £(0X,X). This
assumption is equivalent to the closedness of the maximal operator A,, and
hence is a natural condition. Since Lg is an isomorphism from ker(A4,,) to 0.X,
it follows that

ker(A,,) = 0X.

16
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Now the initial value-boundary problem (.15 induces an initial value problem
on Xy given by

u(t) = Apu(t) for t >0,

z(t)=0 for t >0,
(1.20)

z(t) = Lu(t) =0 fort>0,

u(0) = wo,

describing the interior dynamics of the coupled system. It can be rewritten as
the abstract Cauchy problem of the operator A): D(AY) C Xy — X given by

Adf = Anf, D(A)) ={f € D(A,) N Xo: Anf € Xo}.

On the other hand, we obtain an initial value problem on 90X = ker(A4,,) by

Apu(t) =0 for t > 0,
i(t) = Bu(t) fort>0,
oy | W =B orez
Lu(t) = z(t) for t > 0,
)

describing the boundary dynamics of the system. It can be seen as an elliptic
problem with dynamic boundary conditions since it comes from the elliptic
equation A,,f = 0 and a dynamics on the boundary space. It corresponds to
the abstract Cauchy problem of the Dirichlet-to-Neumann operator N: D(N) C
0X — 0X obtained as the composition of the feedback operator B and the
Dirichlet operator Lg, i.e.,

N =BLy, D(N):={z€dX: Loz € D(B)}.

Let us come back to the initial value problem ([.20) describing the interior
dynamics of the system. Instead of using the decomposition ([.19)) to characterize
the interior dynamic we could also simply assume that there is no dynamics on

the boundary, i.e., #(¢) = 0. This yields the initial value problem

u(t) = Apu(t) for t > 0,

z(t) =0 for ¢t > 0,
(I.22)

x(t) = Lu(t) =0 fort >0,

u(0) = wo,

17
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on X and the operator A°: D(A%) € X — X with pure Wentzell boundary
conditions given by for B = 0. Note that if A° generates a strongly
continuous semigroup on X, we obtain that A8 generates a strongly continuous
semigroup on X since AJ is the restriction of A° to Xj.

Surprisingly the converse is also true. The semigroup (7'(¢)):>0 generated by
A° can be constructed from the semigroup (Tp(t)):>0 generated by A using the
projection Id —LoL from X to Xg. More precisely, we have

T(t) = To(t)(Id —LoL) + LoL.

Moreover there is a third possibility to describe the interior dynamics of the
system. Instead of assuming that there is no dynamics on the boundary, we
assume that the boundary values are equal to zero, i.e., Lu(t) = 0. This can be
seen as an abstract form of the Dirichlet boundary conditions and yields the

problem

u(t) = Apu(t) fort >0,
Lu(t)=0 for t > 0,
u(0) = o,

on X. It corresponds to the abstract Cauchy problem (ACPJ) associated to the
operator Ag: D(Ag) C X — X with Dirichlet boundary conditions given by

Aof = Amf, D(Ag) = D(An) N Xo.

In concrete situation, e.g. for elliptic operators, this operator is quite well
understood. However these results have some weaknesses from the semigroup
generator point of view. Since Xy C X is a closed subset, the operator Ag is not
densely defined and therefore cannot be the generator of a strongly continuous
semigroup. If we instead assume that A is a Hille-Yosida operator (see [EN0O,
Definition II. 3.22]) on X, we obtain that A) and hence A° generate strongly
continuous semigroups on Xy and X, respectively. Indeed A8 is the part (see
[EN00, Section I1.2.3]) of Ap in Xy. However the converse is not true in general

and we need the following definition.

Definition. Consider an operator 7: D(T) C X — X on a Banach space X.
We call T a weak Hille-Yosida operator on X if there exists constants w € R
and M > 1 such that (w,00) C p(T) and

IARNT)|| <M forall A > w.

18
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Note that this condition is the Hille-Yosida condition for n = 1 only. Assuming
that Ay is a weak Hille-Yosida operator on X, it follows that X C Favé% and
Ap = (AJ)_1]x, where we used the concept and notation of extrapolated Favard
spaces from |[ENOO, Section II.5]. As a consequence, the generator property of

A9 implies that Ay is a Hille-Yosida operator on X.
Before discussing the relationship between the problems ([.15) and (I.20]) and

(.21]) we summarize some general assumptions in order to pursue the idea of

decoupling equations with dynamic boundary conditions.

First we need existence and boundedness of the Dirichlet operator Lgy. Further,

the operator Ay must be a weak Hille-Yosida operator on X.

Moreover we have to control the feedback operator B. More precisely, using
the operator B splits into the operators By, By C B given by By: D(By) — 0X
with D(By) = D(B) N Xy and By: D(By) — 0X with D(B;) = D(B) N 0X.
Note that N = BLy = B1Ly and therefore B; is controlled by the Dirichlet-
to-Neumann operator. Hence we assume that By (and so B) is Ap-bounded of
bound 0.

Our question now can be stated as follows: to what extend reflect the subsystems
(1.20) and (I.21) the coupled system ([I.15). We reformulate this in the language
of semigroups: Which properties of AP are reflected by properties of A and N?

In particular we are interested in the following:

Is the operator AP with Wenzell boundary conditions generator of a strongly
continuous semigroup if and only if the operators A} and the Dirichlet-to-

Neumann operator N are?

Is the semigroup generated by the operator A? with Wentzell boundary con-
ditions, given in ([.18]), analytic (of angle )/ compact/ positive if (and only
if) the semigroups generated by the operator AY and the Dirichlet-to-Neumann

operator N are analytic (of angle o)/ compact/ positive?

How is the long time behaviour of the operator with Wentzell boundary condi-
tions AP given by and of the operator A} and the Dirichlet-to-Neumann
operator N related? Is the semigroup generated by AZ stable if and only if the
semigroups generated by AJ and N are?

How is the spectrum, and its fine structure, of the operator A? with Wentzell
boundary conditions, given in ([.18), reflected by the spectra of the operator A§

and the Dirichlet-to-Neumann operator N?

These questions shall be answered in this thesis.
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ITI Objectives

In [EF05] Klaus Engel and Genni Fragnelli introduced an abstract framework
for operators with dynamic boundary conditions and related these operators to
Dirichlet-to-Neumann operators and operators with Dirichlet boundary condi-
tions. At the start of my research Klaus Engel and myself improved this result

to an equivalence. This lead to the article [BE19].

Joachim Escher [Esc94] proved that Dirichlet-to-Neumann operators associated
to elliptic operators with smooth coefficients on smooth domains generate ana-
lytic semigroups on the space of continuous functions without giving information
about the angle of analyticity. On the other hand [Eng03] showed that for the
Laplacian the Dirichlet-to-Neumann operator generates an analytic semigroup of
optimal angle 5 on the space of continuous functions. A deeper understanding
of this problem in obtained in the articles [Binl9|, [Bin20a] and |[Bin20b).

During my master in mathematical physics I learned that operators with interior
boundary conditions satisfy a decomposition similar to operators with dynamic
boundary conditions. Jonas Lampart and myself recognized that this fact allows

an abstract framework for such operators in [BL20).

Motivated by the result of Tom ter Elst and El Maati Ouhabaz [EO19a] about
the optimal angle of analyticity for Dirichlet-to-Neumann operators associated
to elliptic operators with Holder continuous coefficients on C'*-domains, Tom
ter Elst and myself extended my previous results on operators with dynamic

boundary conditions to the case of less regular coefficients and domains. This
leads to the article [BtE20].

Finally, Klaus Engel and myself wanted a better understanding of the equivalence
proven in [BE19]. In particular, we were interested in properties which were
respected by this equivalence. The results for strongly continuous semigroups
leads to |[BE20a], whereas the result concerning positivity, spectral theory and
stability leads to [BE20Db].
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III Discussion of the Results

III.1 An abstract framework for dynamic boundary

value problems

II1.1.1 On spaces with bounded trace operator

We briefly recall the abstract setting from the introduction. It was introduced
in [Nic02|, [Eng03] and [EF05] and later developed in [BEO04], |[NicO4b] and
[BEHO5].

Abstract Setting I11.1.1.1. Consider
(i) two Banach spaces X and 0X
(ii) a densely defined maximal operator A,,: D(4,,) C X — X;
(iii) a bounded trace operator L: X — 0X;
(iv) a feedback operator B: D(B) C X — 0X.

Using these spaces and operators we define the Banach spaces Xy := ker(L)

equipped with || - || x and

2::{<£>€X><8X:Lf:z}

equipped with the norm H (Lff)H = || fllx + |lz]|lax. On this space we consider
the operator A%: D(AP) c X — X with dynamic boundary conditions given
by

()-(
amy N BJ

D(AP) = {<f> € (D(An)ND(B)) x 80X : Lf = x, LAp, f :Bf}.

X
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IIT Discussion of the Results

Moreover we induces the operator A®: D(AP) ¢ X — X with Wentzell bound-

ary conditions given by
(111.2) ABf = A,.f, D(AP)={f e D(A,)ND(B): LA,f = Bf}.

In particular we have for B = 0 the operator A’: D(A%) C X — X with pure
Wentzell boundary conditions. Note that the operator with dynamic boundary
conditions and the operator with Wentzell boundary conditions are similar.
Further we have the operator Ag: D(Ag) C X — X with Dirichlet boundary

conditions given by

(IIL3) Aof = Amf, D(Ao)={f€ D(An): Lf =0}

and its restriction A9 to X, i.e.

(IT1.4) AJf == Anf, D(AD) ={f € D(A,): LA,f = Lf = 0}.

Moreover we define the Dirichlet operator Ly = (Ll|yer(— Am))*l: 0X —
ker(A,,) associated to A € p(Ap) given by

Amf = Af,

(IIL5) Lyw = f < {
Lf=u.

and the Dirichlet-to-Neumann operator Ny: D(N)) C X — 0X associated to
A € p(Ag) by
Nyx == BLyz, D(Ny):={x€0X: Lyz € D(B)}.
Further we have seen that the following assumptions seems to be sensible.
Assumptions I11.1.1.2.
(i) The Dirichlet operator Ly exists and is bounded for some X € p(Ap);

(ii) the operator Ay with Dirichlet boundary conditions is a weak Hille-Yosida

operator on X ;
(iii) the feedback operator B is relatively Ag-bounded of bound 0.

Note that by [AE18, Lemma 3.2], in assumption (i) the existence of the Dirich-
let operator Ly is equivalent to the surjectivity of the trace operator L and

the boundedness is equivalent to the closedness of the maximal operator A,,.
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II1.1 Abstract framework

Moreover, the existence of the Dirichlet operator Ly yields the decompositions
(II1.6) X = X @ ker(A — Ay,) and D(A,,) = D(Ag) ® ker(A — Ay).

I11.1.2 On spaces with unbounded trace operator

Instead of choosing spaces of continuous function to model the problems
and we can also consider spaces of p-integrable functions. This yields
a slightly different setting since the trace operator is not bounded on LP(€2).
However we assume that the trace operator is defined on the domain of the
maximal operator. Hence we obtain the following setting. It was introduced
in [CENNO3] and later used and developed e.g. in [Mug01], [Mug04], [NicO4a],
[NicO4b|, [CENPO5] and [Mugl1].

Abstract Setting IT1.1.2.1. (i) two Banach spaces X and 0X;
(ii) a densely defined maximal operator A,,: D(4,,) C X — X;
(iii) a trace operator L: D(A,,) C X — 0X;

(iv) a feedback operator B: D(B) C X — 0X.

Similar as above we consider the operator AP: D(AP) € X x 0X — X x 0X

with dynamic boundary conditions given by

x Bf )’
(I11.7)
D(AB) = { <f> € (D(A,)ND(B)) x 0X : Lf = 1:} .
x

Here it makes sense to consider the operator with dynamic boundary conditions
on the product space X x 0X, since the trace operator is unbounded and hence
the operator becomes densely defined. We cannot find an analogue of the
operator AP with Wentzell boundary conditions since the trace operator makes
only sense on D(A,,). Again we define the operator Ag: D(4y) C X — X with
Dirichlet boundary conditions by

(IIL8) Aof = Apf, D(A):={f € D(Am): Lf = 0} = ker(L).

Note that here the operator Ay with Dirichlet boundary conditions is densely
defined and its domain is the kernel of the trace operator. Hence we can work

with Ag directly. This makes the theory much easier.
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IIT Discussion of the Results

Moreover we define the Dirichlet operator L) = (L|ker()\,Am))*1 10X — ker(A—
Ay,) associated to A € p(Ag) given by

Amf = Af?

Lyr=f <— {
Lf=u=x.

and the Dirichlet-to-Neumann operator Ny: D(Ny) C X — 0X associated to
A € p(Ag) by

(IIL9) Nyz := BLyz, D(N,):={z € 8X: Lyz € D(B)}.

Again we need some general assumptions. Note that assumption (ii) in
tions I11.1.1.2]is not needed (and does not make sense). This leads to

Assumptions I11.1.2.2. (i) The Dirichlet operator Ly exists and is bounded
for some X € p(Aop);

(ii) the feedback operator B is relatively Ap-bounded of bound 0.

Note that by |[AE18, Lemma 3.2], the existence of the Dirichlet operator L) is
equivalent to the surjectivity of the trace operator L and the boundedness is
equivalent to the closedness of the operator (AL’"). In this sense assumption (i)
replaces the boundedness of the trace operator L and the closedness of the
maximal operator A,, in the other case. Moreover we obtain from the existence

of the Dirichlet operator L) the decomposition
(II1.10) D(Ay,) = D(Ap) @ ker(A — Ayp,).

The decompositions of the whole space X cannot work, since we cannot define

L)L on the Banach space X.

Since the operator Ag with Dirichlet boundary conditions is densely defined and
the operator AP with dynamic boundary conditions is defined on the product
space X x 0X the theory becomes much easier. Most of the results proven for
the case of bounded trace operator hold verbatim (or with easier proofs) for
the case of unbounded trace operator. We will not discuss this in detail and

concentrate on situations with bounded trace operators.
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I11.2 Wellposedness of parabolic problem
II1.2 Wellposedness of abstract parabolic dynamic
boundary value problems
In this section we consider the homogeneous problem with dynamic boundary

conditions ([.15). Recall that it is given by

u(t) = Apu(t), fort >0,
(IIT.11) ¢ Lu(t) = Bu(t), fort >0,

In the sequel we use [Setting II1.1.1.1) and make [Assumptions II1.1.1.2]

1I1.2.1 The homogeneous case

Using the boundedness of the trace operator L we show that can be
rewritten as the abstract Cauchy problem of the operator AP with
Wentzell boundary conditions. More precisely we obtain the following result
(see |BE20al, Theorem 5.1]).

Theorem II1.2.1.1. The following assertions are equivalent.

(a) The homogeneous problem (I11.11)) with dynamic boundary conditions is

wellposed.

(b) The abstract Cauchy problem (ACP)) associated to the operator AP given
in (II1.2]) is wellposed.

(c) The operator AP defined in (IL2) generates a Co-semigroup on X.

This theorem shows that the initial value problem ([II.11f) is characterized by
the operator AP given in (TII.2)).
1I1.2.2 The inhomogeneous case

Next we study the inhomogeneous parabolic problem with dynamic boundary

conditions given by

u(t) = Apu(t) + f(t), fort e |0,7],
(IIT.12) < Lu(t) = Bu(t) +g(t), fort € [0,7],
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IIT Discussion of the Results

for7 € (0,00)or 7 =00, f:[0,7] > Xandg:[0,7] - 0X. Wecallu: Ry — X
a classical solution of (I11.12)) if w : [0,7] — X is continuously differentiable in
X, u(t) € D(A,) N D(B) for all t € [0, 7] and (III.12) holds.

The solvability of (IIL.12) can now be characterized by the solvability of an
inhomogeneous Cauchy problem for the operator A? with generalized Wentzell
boundary conditions (see [BE20a, Theorem 5.2]).

Theorem II1.2.2.1. Letug € X, f € L'(R, X), g € L' (Ry,0X) and assume
that AP generates a Co-semigroup (T(t));>0 on X. Then ([I1.12) has at most
one solution. Moreover, if Lf = g then u: Ry — X defined by

(IIL13) u(t) == T(t)zo + /0 Tt = 5)f(s) ds

is a classical solution of (I11.12)) if it is a classical solution of the inhomogeneous
abstract Cauchy problem (ACPy)) for AP defined in (IIL.2).

This theorem shows that the inhomogeneous initial value problem (|II11.12])
is equivalent to the inhomogeneous abstract Cauchy problem (ACP¢|) of the

operator AP given in (TII.2).

I11.3 Wellposedness of abstract elliptic dynamic
boundary value problems
In this section we concentrate on the elliptic dynamic boundary value problem

(I.21]), but a slightly more general version. In the sequel we use [Setting I11.1.1.1]

For A € C we consider the initial value problem

Apu(t) = Au(t) fort >0,
(ITL.14) { (Lu)'(t) = Bu(t) fort >0,
Lu(0)

o

on 0X. Note that X; := [D(A,,)] is a Banach space. In this section we need

the following assumptions.

Assumptions III.3.0.1. (i) the mazimal operator A,,: D(Ap) C X — X

is closed;
(ii) the trace operator L: X — 0X is surjective;

(iii) the operator B is relatively Ag-bounded;
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I11.3 Wellposedness of elliptic problem

(iv) the operator By == B|x,: D(A;,) N D(B) C X1 — 0X s closed.

Note that the existence of L) implies the conditions (ii), and if L) exists, its

boundedness is equivalent to condition (i).

111.3.1 Homogeneous problems

The coupled problem (|III1.14]) is equivalent to two independent problems, the
Dirichlet problem (II1.5) and the abstract Cauchy problem (ACP)) associated to
the Dirichlet-to-Neumann operator Ny. More precisely we obtain the following

result (see [BE20a, Theorem 4.1]).
Theorem II1.3.1.1. The following statements are equivalent.

(a) The homogeneous problem (I11.14) is (mildly) wellposed (see [BE20a,
Definition 2.2]);

(b) The Dirichlet problem (I1L.5)) admits a unique solution and the abstract
Cauchy problem (ACP)) for Ny is wellposed on 0X;

(¢) The Dirichlet operator Ly exists (and is bounded) and the Dirichlet-to-

Neumann operator Ny generates a strongly continuous semigroup on 0X.

This shows that the elliptic problem with dynamic boundary conditions ([1I.14))
can be decoupled into a stationary Dirichlet problem (IIL.5) and a Cauchy

problem for the Dirichlet-to-Neumann operator Ny.

If we assume the existence of the Dirichlet operator, the following corollary

from [BE20a, Theorem 4.1] characterizes the existence of classical solutions of

(TTT.14).

Corollary II1.3.1.2. Assume that the Dirichlet operator Ly exists (and is

bounded). Then the following assertions are equivalent.

(a) For everyxo € L(D(Ay;,)ND(B)) the homogeneous problem (111.14) admits
a unique classical solution (see [BE20a, Definition 2.1]).

(b) The abstract Cauchy problem (ACP)) for Ny is wellposed on 0X.

(¢c) The Dirichlet-to-Neumann operator Ny generates a strongly continuous

semigroup on 0X.
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IIT Discussion of the Results

111.3.2 Inhomogeneous problems

Having characterized the wellposedness of the homogeneous problem we consider

now the inhomogeneous elliptic problem with dynamic boundary conditions
Apu(t) = du(t) + h(t) for t €0, 7],

(II1.15) < (Lu) (t) = Bu(t) + g(t) for t € [0, 7],
Lu(0)

Zo

on 90X for A€ C, 7 € (0,00) or 7 =00, h: [0,7] = X and g: [0,7] = 0X. The
following statement holds (cf. [BE20a, Theorem 4.2]).

Theorem I11.3.2.1. Let A € p(Ay), xo € 0X, h: [0,7] = X and g: [0,7] —
0X. Moreover, assume that Ny = BLy generates a Cy-semigroup (Sx(t))t>0 on
0X. Then u: R4 — X defined by

(I11.16)
u(t) = LaSi(ao+ RO, A)h(t) + Ly | " Sa(t—9)(g(s) + BRO\, Ag)h(s)) ds

is a classical solution of (II1.15)) if and only if the mild solution

2(t) == Sx()z0 + /0 " Sa(t— 5)h(s) ds

of the inhomogeneous abstract Cauchy problem (ACP)) associated to Ny and
f(t) = g(t) + BR(X\, Ao)h(t) is a classical solution.

We call a continuous function w: [0, 7] — X a mild solution of (III.15) if it sat-
isfies ([11.16]). This implies existence and uniqueness results for inhomogeneous

and semilinear abstract Cauchy problems as discussed in the introduction.

I11.4 Decoupling of dynamic boundary value

problems

In the last sections we have seen that the coupled system is described
by the operator AP with Wentzell boundary conditions given by .

Decoupling this problem, means to show its equivalence to a system consisting
of the two independent Cauchy problems: the interior problem governed by
AY given in on Xy and the elliptic problem with dynamic boundary
conditions governed by the Dirichlet-to-Neumann operator NV given in
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II1.4 Decoupling

on the boundary space 0X. More precisely, we relate properties of the
operator A® on X with properties of the operators AJ on Xg and N on 9X.
Our decoupling approach is based on similarity transformations, perturbation
arguments and the theory of (one-side coupled) operator matrices developed
by Nagel in [Nag89], [Nag90| and Engel in [Eng96|, [Eng97b|, [Eng98], [Eng99).
The state of art can be found in [Eng97a).

111.4.1 Analytic semigroups

We start with the case of analytic semigroups. This approach goes back to
[EF05], where the direction (b) = (a) of the next theorem is proven (see [EF05,
Theorem 3.1]). Note that N, and Ny for u, A € p(Ap) just differ by a bounded
perturbation. Since generation of analytic semigroups is stable under bounded
perturbation we can restrict ourself for simplicity of the representation to the

Dirichlet-to-Neumann operator N = Nj.

In the sequel we will need the following operator.

Notation IT1.4.1.1. The operator Gy : D(Gy) C X — X is defined by

Gof = (Amf — LoB)f, D(Go) = D(Ao) = D(Am) N ker(L).

We make [Assumptions III1.1.1.2] and obtain the following result (see [BE19,
Theorem 3.1]).

Theorem II1.4.1.2. The following statements are equivalent.

(a) The operator AB given by (II1.2) generates an analytic semigroup of angle
a>0on X.

(b) The operator AY and the Dirichlet-to-Neumann operator N generate ana-
lytic semigroups of angle « > 0 on Xg and 0X, respectively.

(c) The operator GY = Go|x, and the Dirichlet-to-Neumann operator N

generate analytic semigroups of angle o > 0 on Xg and 0X, respectively.

This shows that, in the case of analytic semigroups, the problem can
be decomposed into the problems and the interior problem governed
by A§ or G) on Xp. It indicated the following question: Can we replace the
analytic semigroup property by other properties such that an analogous result
holds true?

Our theorem has many variants which use different operators to describe the

interior dynamics. We refer to [BE19] for more details.

31



IIT Discussion of the Results

111.4.2 Strongly continuous semigroups

Unfortunately we cannot prove an analogous result to [Theorem IIT1.4.1.2] for

strongly continuous semigroups in general, since its proof based on perturbation
techniques. Nevertheless there are partial analogues assuming stronger conditions
on the feedback operator B. This can be interpreted in the following way: Since
strongly continuous semigroups regularize less than analytic semigroups, the

perturbation of the domain given by the feedback operator B need to be more
bounded.

Assuming that the abstract Dirichlet operator Lo € L(0X, X) exists, we obtain
by the decomposition X = Xy@ker(A,,). In this section we study the case
where the feedback operator B : D(B) C X — 0X is bounded on one subspace
of this decomposition. This allows us to decouple the generator property of AP
as in the previous subsection without assuming analyticity. Note that IV, and
Ny for p, A € p(Ap) just differ by a bounded perturbation. Since generation of
strongly continuous semigroups is stable under bounded perturbation, we can

restrict ourself to the Dirichlet-to-Neumann operator N = Nj.

Feedback operator bounded on X

First we study the case where B is bounded on Xy. We work in [Setting [11.1.1.1]

and instead of [Assumptions III.1.1.2| we make the following assumptions.

Assumptions I11.4.2.1. (i) The operator Ay with Dirichlet boundary condi-
tions is invertible and hence the abstract Dirichlet operator Lo € L(0X, X)

exists and is bounded.

(ii) The operator Ay with Dirichlet boundary conditions is a weak Hille—Yosida

operator on X.

(iii) The operator By = B|x, is bounded, i.e., there exists M > 0 such that
I1Bfllox < M -[|fllx  for all f € Xo.

Note that the invertibility of Ag in (i) can be replaced by p(Ag) # () by considering
Ag—Afor A e ,O(A()).

If the operator A) and the Dirichlet-to-Neumann operator N generate strongly

continuous semigroups (7'(¢)):>0 and (S(t))e>0, respectively, then it follows from
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II1.4 Decoupling

[Eng99, Lemma 3.2] that for ¢ > 0 the operators R(t) : D(N) C 90X — X given
by

(IIL17) R(t)x = Ap, /OtT(s) “AgtLy - S(t — s)Nxds

are well-defined. Under these assumptions the following holds (see [BE20a,
Theorem 5.4]).

Theorem I11.4.2.2. The following statements are equivalent.

(a) The operator AP defined in (IL.2) generates a strongly continuous semi-
group on X.

(b) (i) The operator A3 and the Dirichlet-to-Neumann operator N generate
strongly continuous semigroups (T (t))e>0 and (S(t))i>0 on Xo and
0X, respectively, and

(ii) There exists to > 0 and M > 0 such that
(ML18) [[R(t)z[x, < M - [|lz]lax

for allt € (0,to] and x € D(N).

(c) (i) The operator G} :== Go|x, and the Dirichlet-to-Neumann operator N
generate strongly continuous semigroups on Xo and 0X, respectively,

and

(ii) There exists to > 0 and M > 0 such that (I11.18)) holds.

The previous result can also be interpreted in the following way: If the operator
R(t) in (LII.17) remains norm bounded for ¢ | 0, then the (coupled) problem
is wellposed if and only if the (independent) Cauchy problems for AJ
on Xg and N on 0X are. Coupled problems with bounded feedback operator
B can be interpreted as an essentially uncoupled system of two equations. A

similar result is shown in [NicO4b, Theorem 3.3.6].

Feedback operator bounded on ker(A4,,)

We now study the case where Blie(a,,) is bounded which, for Ag-bounded B,

is equivalent to the fact that the Dirichlet-to-Neumann operator N becomes

bounded on 0X. We use [Setting [II.1.1.1} Our starting point are the following

hypotheses.

Assumptions II1.4.2.3. (i) The abstract Dirichlet operator Lo € L(0X, X)

exists and is bounded.
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(ii) The operator Ay with Dirichlet boundary conditions is a weak Hille-Yosida

operator on X.

(iii) The operator B is relatively A,,-bounded, i.e., D(A,,) C D(B) and there
exist a,b > 0 such that

[Bfllox <a-[Amflix +b-[Ifllx  forall f € D(Ap).

Note that by the closed graph theorem Lo : 0X — [D(A,)] is bounded, hence
assumption (ii) above implies that N = BLy € £(0X). In this situation the
following holds (see [BE20a, Theorem 5.5]).

Theorem 111.4.2.4. The following statements are equivalent.

(a) The operator AP defined in (TIL2) generates a strongly continuous semi-
group on X.

(b) the operator G8 = Go|x, generates a strongly continuous semigroup on
Xo.

The previous result can be interpreted in the following way: Since the Dirichlet-
to-Neumann operator N is bounded, there is essentially just an interior dynamics.

Hence we only need assumptions on GJ.

111.4.3 Compactness

Having obtained generation properties of the operators A® and Ay and N, we
concentrate on qualitative properties of these semigroups. Note that N, and
Ny for p, A € p(Ap) just differ by a bounded perturbation. Since compactness
of the resolvent is stable under bounded perturbation, we can restrict ourself to

the Dirichlet-to-Neumann operator N = Nj.

Again we work in [Setting TIT.1.1.1] and make [Assumptions TIT.1.1.2]

By [EN00, Theorem I1.4.29] an analytic! semigroup is compact if and only if its
generator has compact resolvent. Hence the following result relates compactness
of the semigroups governed by Ag, N and A in the case of analytic semigroups
(see [BE19, Corollary 3.2]).

Corollary I11.4.3.1. The following statements are equivalent.

(a) The operator AP defined in ([I1.2)) has compact resolvent on X.

'This works for a larger class of semigroups, see [EN0O, Theorem I1.4.29].
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II1.4 Decoupling

(b) the operators Ay and N have compact resolvents on X and 0X , respectively.

For more subtle criteria for compactness of the resolvents of A® and N we refer
to |[BE20b, Corollary 3.9].

111.4.4 Positivity

In this section we consider the positivity of the semigroups generated by AJ, N
and AP and the relationship between them. For this purpose we need to deal
with all Ny for X\ € p(Ap) since positivity of the resolvent is not stable under

arbitrary bounded perturbation.

We work with [Setting III.1.1.1 and make [Assumptions III.1.1.2, Further, we

make the following additional assumptions.

Assumptions I11.4.4.1.
(i) The state space X and the boundary space 0X are Banach lattices.
(ii) The trace operator L: X — 0X is positive.

Now we give a decoupling result for the positivity of the resolvent of AZ (cf.
[BE20b, Theorem 5.10]).

Theorem I11.4.4.2. Assume that Ag and AP are weak Hille-Yosida operators
on X. If Ly is positive for X > w > s(Ag) and Ay have positive resolvent, then

following statements are equivalent.
(a) AP is resolvent positive on X ;
(b) (i) Ny are resolvent positive on 0X for all X > s(Ap);
(i) Bf >0 for all f € D(Ao)+.

The typical applications of our theory are to spaces X = C(K) for a compact

space K. In this situation we obtain a stronger result.

Corollary 1I1.4.4.3. Take the Banach lattice X = C(K) for some compact
space K and 0X = C(0K). Assume that Ay has positive resolvent. Assume
that Ay and AP are weak Hille-Yosida operators on X. If Ly is positive for
A > w > s(Ag) and Ay have positive resolvent, then following statements are

equivalent.

(a) AB generates a strongly continuous semigroup of positive operators on X ;

(b) (i) Ny generate strongly continuous semigroups of positive operators on
0X for all X > s(Ao);
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(ii) Bf >0 for all f € D(Ag)+.

Note that our decoupling result for positivity is imperfect. The positivity of the
resolvents of Ag and N, for all A > s(Ag) imply the positivity of the resolvent
of AB, but conversely the positivity of the resolvent of AZ only implies the
positivity of the resolvents of N) for all A > s(Ap). It is open, if the positivity
of the resolvent of AP also implies the positivity of the resolvent of Ag.

I11.4.5 Maximal regularity

The concept of maximal regularity is related to the solvability of quasi linear
equations as we briefly discussed in the introduction. For this property it is
natural to work in so called unconditional martingale differences (UMD) Banach
spaces (see [ABHN11|, Page 198]). Note that L”(€2) spaces for p € [1,00) are
UMD, while C(€) does not have the UMD property. Since [Setting I11.1.1.1|is tai-

lored towards state spaces of continuous functions it does not make sense to work

with this property. So it is more natural to work in [Setting III.1.2.1| which is tai-

lored to state spaces of p-integrable functions. We assume [Assumptions T11.1.2.2]

and make the following additional assumptions.

Assumptions I11.4.5.1. The state space X and the boundary space 0X are
UMD spaces.

We denote by w(A) the growth bound of A, see [EN00, Definition 1.5.6]. Note that
maximal regularity implies generation of an analytic semigroup and hence by
[ENOO, Corollary IV.3.12] the spectral mapping theorem holds and the spectral
bound equals the growth bound.

Maximal regularity is also stable under our decoupling. More precisely we obtain

the following result.

Proposition I11.4.5.2. Let r € (1,00). The following statements are equiva-

lent.

(a) The operator AP — w(AP) defined in (IL7) has mazimal L"-regularity on
X x 0X.

(b) The operator Ag—w(Ao) has mazimal L -regularity on X and the Dirichlet-

to-Neumann operator N — w(N) has mazimal L"-regularity on 0X.

The proof of (b) = (a) is analogous to the proof of [BtE20, Theorem 4.5 (d)].

The other direction follows from similar arguments.

As mentioned in the introduction, ([11.4.5.2]) leads to the existence of solutions

of quasi linear equations with dynamic boundary conditions on LP-spaces.
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II1.5 Perturbation theory for operators with

dynamic boundary conditions

In the sequel we concentrate on perturbations of analytic semigroups. In

applications the verification of the assumptions of [Theorem II1.4.1.2]is difficult

and cannot be performed directly for many important operators. However,
using perturbation theory we can built complicated operators from simpler ones.
There are two ways to perturb the operator with Wentzell boundary conditions,
defined in : a perturbation on the domain and a perturbation at the
boundary. More precisely let B+ CL: D(B+ CL) C X — 0X be given by

(B+CL)f = Bf +CLf, D(B+CL) = D(B)nD(CL),

where D(CL) :={f: Lf € D(C)} for C: D(C) C 0X — 0X,and P : D(P) C
X — X is a relatively A,,-bounded perturbation. Consider the operator
(A4 P)BFCL . D((A+ P)B+CL) C X — X given by

(A+ P)BYCLf = A, f + Pf,
(I11.19)

D((A+ P)B+CL) = {f € D(A,)ND(B)ND(CL): Lamf +PJ }

=Bf+CLf

In the sequel we use [Setting II1.1.1.1) and make [Assumptions II1.1.1.2]

The following perturbation statement holds for the corresponding Dirichlet
operators (cf. [BE19, Lemma 4.6]).

Lemma III.5.0.1. Let P: D(P) C X — X be a relatively A,,-bounded pertur-
bation. Then for A € p(Ap) N p(Ag + P) the perturbed Dirichlet-to-Neumann
Lfm‘f‘P

operator exists and satisfies

L™ = L4 4 R(\, Ag + P)PLy™ = L™ + R(\, Ag) PLym T
In particular the difference L‘;‘”ﬁp - L‘;‘m is bounded from 0X to [D(Ap)].

Therefore we obtain that L) exists and is bounded for some A € p(Ap) if and
only if for all A € p(Ap). This implies the following perturbation result for
Dirichlet-to-Neumann operators (see [BE19, Proposition 4.7]).

Proposition II1.5.0.2. Let P: D(P) C X — X be a relatively Ay,-bounded
perturbation. Then for X € p(Ag)Np(Ao+P) the perturbed Dirichlet-to-Neumann
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operator Nf’"JrP exists, satisfies D(Nf’") = D(N;\4W+P) and
N 2B — N B L BR(X, Ag+ P)PLA™ = N{™P £ BR(), Ag) PL{m+P
. . Am Am+P
In particular the difference Ny™ — Ny s bounded.

Note that the domain of D(N}) is independent of \ € p(Ay).

Combining this result with [Theorem III.4.1.2|yields the following statements.
For details we refer to [BE19, Section 4], in particular [BE19, Theorem 4.2].

Theorem II1.5.0.3. Let P: D(P) C X — X be relatively A,,-bounded with
Ag-bound 0 and let C: D(C) C 0X — 0X be relatively NB°-bounded of bound

0. Then the following statements are equivalent.

(a) (A+ P)BTCL in ([[T1.19) generates an analytic semigroup of angle a > 0
on X.

(b) AB defined in ([I1.2) generates an analytic semigroup of angle o > 0 on
X.

(c) Ag is sectorial of angle o > 0 on X and NP° generates an analytic

semigroup of angle o > 0 on 0X.

Further, we obtain a perturbation result, where the operator with dynamic
boundary conditions is be perturbed by a generator on the boundary and a
relatively bounded perturbation in the interior. We refer to |[BE19, Theorem
4.3].

Theorem I11.5.0.4. Let P: D(P) C X — X be relatively A,,-bounded with
Ag-bound 0 and let NP0 be relatively C-bounded of bound 0 for some C: D(C) C
0X — 0X. Then the following statements are equivalent.

(a) (A+ P)BTCL jn (IL.19) generates an analytic semigroup of angle a > 0
on X.

(b) ACL generates an analytic semigroup of angle o > 0 on X.

(c) Ag is sectorial of angle « > 0 on X and C' generates an analytic semigroup
of angle o > 0 on 0X.
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II1.6 Spectral theory of operators with dynamic

boundary conditions

The decoupling of the operator A? with Wentzell boundary conditions into the
operator Ag with Dirichlet boundary conditions and the Dirichlet-to-Neumann

operator N respects many spectral properties.

For a closed, linear operator A: D(A) C E — E on a Banach space E one

defines the spectrum and its fine structure by

the resolvent set of A,

A — A is invertible
p(A) =< eC:

with bounded inverse
o(A)=C\ p(A) the spectrum of A,
op(A) = {A € C: A — A is not injective} the point spectrum of A,

or has nonclosed range point spectrum of A,

oa(A) = {)\ eC:

A — A is not injective } the approrimative

dense, nonclosed range

A — A is injective with the continuous
o.(A) =< AeC:
spectrum of A,

A — A is injective with the residual
o-(A) =< A eC:
nonclosed range spectrum of A,
codim(rg(A — A)) the essential
UesS(A) =¢AeC: »
or dim(ker(A — A)) = spectrum of A,

the discrete
04(A) = 0(A) \ 0ess(A)

spectrum of A,'

In the sequel we use [Setting III.1.1.1| and make [Assumptions I1I.1.1.2] Then we
obtain the following result (see [BE20b, Theorem 3.7 & 3.8]).

Theorem II1.6.0.1. Assume that there exists Ao € p(Ag) such that Ny, is a
weak Hille-Yosida operator on 0X and take \ € p(Ag). Then

(i) X € p(AB) if and only if X € p(Ny). Moreover the following resolvent
identity

R(X\, AP) = R(\, Ag) + LAR(\, N\)(BR(\, Ap) + L)

holds.

(ii) X € 0,(AB) if and only if X € o,(Ny). In this case the dimensions of the
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eigenspaces match, i.e. dim(ker(\ — AP)) = dim(ker(A — Ny)).
(iii) A\ € 04(AP) if and only if X € a,(N)).
(iv) X € 0.(AB) if and only if X\ € o(Ny).
(v) X € a,.(AP) if and only if X € 0,.(Ny).
(vi) X € a4(AP) if and only if X € o4(N)).
(vii) A\ € 0ess(AP) if and only if X\ € ess(Ny).

Hence the spectrum and its fine structure of AP is characterized by the Dirichlet-
to-Neumann operators V). This result can be seen as an abstract analogue of
the characteristic equation for the spectral values of delay operators. For more
details we refer to [BE20Db].

The point spectrum of the Dirichlet-to-Neumann operators Ny is strongly
connected to the point spectrum of operators with Robin boundary conditions.
For p € C define the operator Aly: D(A%R) € X — X with Robin boundary

conditions associated to u by
Af=Anf, D(AR) ={fe€ DA, NDB): Bf =pu-Lf}.

Using these operators the following result holds (see [BE20b|, Corollary 3.2]).
Proposition I11.6.0.2. For A € p(Ag) and p € C we have

(i) p € op(Ny) if and only if X € op(Alg);

(ii) dim(ker(u — Ny)) = dim(ker(X — A%)).

Assuming o, (Ny), 0,(A%) C R for X € p(Ap) and p € C we obtain the following
result (cf. [BE20b, Theorem 4.14]).

Theorem II1.6.0.3. Denote by A\,(p) the k-th eigenvalue of Ay, by Ai(c0) the
k-th eigenvalue of Ay and by pn(\) the n-th eigenvalue of Ny.

Assume that the map A\p: R — R: p— A\g(p) is strictly monotone decreasing.
If k € N such that A\i11(00) # Ai(00), the following statements are equivalent.

(a) The n-th eigenvalue py, of the Dirichlet-to-Neumann operator Ny is posi-

tive, 1. e.
fin(A) >0

Jor A € (Ag41(00), Ap(00))-
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(b) The inequality
)\k(OO) < )‘k-‘rn(o)

holds.

This result can be seen as an abstract analogue of Friedlander’s inequality (see
[Fri91]). For details we refer to [BE20b].

II1.7 Asymptotic behaviour of operators with

dynamic boundary conditions

We now focus on the qualitative behaviour of operators with dynamic boundary
conditions. In we already considered regularity and positivity
properties of the corresponding semigroups. Now we investigate the relationship

of the asymptotic behaviour of the semigroups generated by AZ, A3 and N,.

We study this question only in the case of strongly continuous semigroups of pos-
itive operators. We use [Setting III.1.1.1} and [Assumptions II[.1.1.2] Additional
we assume as in [Subsection I11.4.4l

Assumptions 111.7.0.1.
(i) The state space X and the boundary space 0X are Banach lattices.
(ii) The operator trace operator L: X — 0X is positive.

We denote by s(A) the spectral bound of an operator A, see [EN00, Definition
1.1.12]. By [ENOO, Proposition VI.1.14] a strongly continuous semigroups of
positive operators is ezponentially stable (see [ENOO, Definition V.1.5]) if and
only if the spectral bound (see [EN00, Definition I.1.12]) of the generator A
is negative, i.e. s(A) < 0. Hence the following theorem characterizes the
exponential stability of the semigroups associated to A®, A and N (see [BE20b),
Theorem 6.2]).

Theorem II1.7.0.2. Assume that BR(\, Ag) is positive and Ly are positive
operators for large A. Moreover assume that Ag have positive resolvent on X
and that Ny generate positive semigroups on 0X for large \. Further, let AP
generator of a Co-semigroup on X. Then s(Ag) < s(AP) and for k € R we

obtain

s(AB) <k <= s(Ay) < Kk and s(N,) < k.
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Using s(4g) = s(A9), [EN00, Proposition VI.1.14] implies the following (see
[BE20b, Corollary 6.4]).

Corollary II1.7.0.3. Assume that BR(\, Ag) are positive and Ly are positive
operators for large A. Moreover assume that Ay has positive resolvent on X
and that Ny generate positive semigroups on X for large \. Further, let AP
generator of a Co-semigroup on X. Then the semigroup generated by AP is

uniformly exponential stable if and only if the semigroups generated by A and
N are.

I11.8 Examples

II1.8.1 A delay differential operator

In this subsection we apply our approach to operators related to delay differential
equations, see [Hal77], [ENOO, Section VI.6] and [BP05|. To a Banach space Y
we associate the Banach space X := C([—1,0],Y) of all continuous functions on
[—1, 0] with values in Y equipped with the sup-norm. Moreover, we take a delay
operator ® € £(X,Y) and an operator C: D(C) C Y — Y. With this notation
we consider the abstract delay differential operator A : D(A) C X — X given
by

(II1.20) Af = f, D(A):= {f € C'([-1,01,Y) _f(0) € D(C) and }

f10) =Cf(0) + @f

which governs a delay differential equation, see [EN00, Section VI.6] for details.

Generation of semigroups
We study the generation property of the operator A given in ([11.20]).

Choosing X = C([-1,0],Y), 0X =Y, A4, = & with domain D(A,) =
CY([-1,0,Y), L = &y, B = Cdy + ®, we obtain A = AP and the operator
By = Bl|x, = ® is bounded. Note that A generates a strongly continuous
semigroup on Cy([—1,0),Y") and that Ay is a weak Hille-Yosida operator on
C([-1,0],Y). Using the bounded perturbation theorem and |Theorem HI.4.2.2|

we conclude the following result. For details we refer to [BE20a, Theorem 6.1].

Theorem III.8.1.1. The operator A given by (I11.20) generates a strongly
continuous semigroup on C([—1,0],Y) if and only if C generates a strongly

continuous semigroup on Y .
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For a different proof of this result see [EN00O, Theorem VI.6.1].

Since Ay = &, D(Ap) = C§([-1,0],Y) = {f € CL([0,1],Y): f(0) = 0} has
compact resolvent, one obtains the following by bounded perturbation and

[(L'heorem I11.6.0.11

Corollary II1.8.1.2. The operator A given by (I11.20) has compact resolvent
on X = C([-1,0],Y) if and only if the operator C has compact resolvent on'Y .

Spectral theory

Once the wellposedness of delay equations is obtained, we now concentrate on

its spectral properties.

Consider the operator Ay == <& with domain D(Ag) == C}([~1,0],Y). Note

that Ag has empty spectrum and that its resolvent is given by

(I11.21) (R(X, Ao)f)(s) = / " ) f(r)dr =: Hyf(s).

Moreover the abstract Dirichlet operator is
(II1.22) Lyy =¢e\Q®y

where €,(s) := e**. Denote by ®, := ®L) and see that Ny = C + ®,.
leads to the following.

Theorem II1.8.1.3. We obtain

(i) A € p(A) if and only if X € p(C + ®)). Moreover its resolvent can be

expressed as
RN APYf = Hyf + (ex ® R(A, @5))(®H\f + £(0))

for f € C([-1,0],Y).

(ii) X € 0p(A) if and only if A € 0,(C + ®y). In this case the dimensions of
the eigenspaces coincide, i.e. dim(ker(A — A)) = dim(ker(A — C — @,)).

(i) A € 04(A) if and only if X € 5,(C + ®)).
(iv) X € a.(A) if and only if X € 0.(C + ®)).
(v) A€ o.(A) if and only if X € 0,.(C + ®y).
(vi) X € oq(A) if and only if X € 04(C + ).

(vil) X € 0ess(A) if and only if X € 0ess(C + ).
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This result improves [EN00O, Proposition VI.6.7] and [BP05, Proposition 3.19 &
Lemma 3.20]. It can be seen as a generalized characteristic equation for delay
equations. For more details see [BE20b|, Corollary 7.1].

For the uncoupled case, i.e. ® = 0, we obtain the following corollary.
Corollary IT1.8.1.4. Under above assumptions

(i) A€ p(A) if and only if A € p(C). Moreover its resolvent can be expressed
by

R\ APYf = Hyf + (ea ® R(A, C)) £(0)

for f € C([-1,0],Y).

(ii) A € op(A) if and only if X € 0p(C). In this case the dimensions of the
eigenspaces are equal, i.e. dim(ker(A — A)) = dim(ker(A — C)).

(i) A € oq(A) if and only if X € 04(C).
(iv) A € 0.(A) if and only if A € 0.(C).
(v) A € 0(A) if and only if X € 0,(C).
(vi) A € ag(A) if and only if X € 04(C).

(vil) A € 0ess(A) if and only if X € 0.55(C).

Positivity and asymptotic behaviour

Now we study positivity of the semigroup generated by A and use this property

to obtain uniformly exponential stability.

We assume that Y is a Banach lattice, hence X = C([—1,0],Y) is also a Banach

lattice. By (I11.21]) the operator Ay has positive resolvent. Further, by (I11.22))
the Dirichlet operator L) is positive for A € R. Using B|x, = ® and N) = C+®)

we obtain from the positive perturbation theorem and [Corollary I11.4.4.3| this

characterization.

Theorem II1.8.1.5. Assume that the delay operator ® is positive and C gen-
erates a strongly continuous semigroup of positive operators on Y. Then the
operator A given by generates a strongly continuous semigroup of positive
operators on C([—1,0],Y).

For this statements see also [EN0OO, Theorem IV.6.11]. Now applying [Corol

lary II1.7.0.3[ and using s(Ap) < 0 yields the following result.
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Theorem II1.8.1.6. Assume that the delay operator ® is positive and C gen-
erates a strongly continuous semigroup of positive operators on Y. Denote the
semigroup on C([0,1],Y") generated by A by (Ta(t))i>0 and the semigroup on'Y
generated by N by (ITn(t))e>0. Then (Ta(t))e>0 is uniformly exponential stable
on C([-1,0],Y) if and only if (Tn(t))i>0 is on Y.

For this statement see also [EN0O, Corollary IV.6.16].

Wellposedness of delay equations

After studying the semigroup generated by A given in ([11.20]) and its properties,
we now concentrate on the associated Cauchy problem (ACP)).

Assume that C is the generator of a strongly continuous semigroup on the

Banach space Y. By [Theorem TT1.8.1.1] the delay differential operator A given
n (III.20) generates a Cp-semigroup on C([—1,0],Y). Now [Theorem III.2.1.1]|

implies the following result.

Corollary I11.8.1.7. For all ug € D(A) the problem

%u(t,r) = %u(t,r) fort>0, re[-1,0],
%u(t,O) = Cu(t,0) + du(t,-) fort >0,
u(0,7r) = up(r) forr e [-1,0],

with dynamic boundary conditions is wellposed® on C([—1,0],Y). Assume addi-
tionally that the semigroup generated by C' is positive and the delay operator ® is
positive. If the initial value ug is positive, then the solution u(t,-) is positive for
t > 0. Moreover, if the spectral bound s(C) < 0, then sup,¢(_1 ) [u(t,7)|ly = 0
fort — oo for ug € D(A).

Compare this statement to [EN00, Corollary VI.6.3]. Moreover we obtain from

[Theorem IT1.2.2.1] the following corollaries.

Corollary II1.8.1.8. Let f: [0 [ 7] = C([-1,0],Y) and g: [0,7] = Y integrable
functions and f(t) = fo + fo s)ds, g(s) = go + fO g(s)ds such that f(t)(0) =

2Recall from the introduction that a (classical solution) of an abstract Cauchy problem

(ACP) is a continuously differentiable function u: R4 — X such that u(t) € D(A) for all t >0
and (ACP) is fulfilled. Further, recall that (ACP)) is wellposed if for all ug € D(A) there exists

a unique (classical) solution u of (ACP)) which depends continuously on the initial value uo,
i. e., ug — up implies u"(¢t) — u(t) uniformly on compact intervals [0, to].
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g(t) for allt € [0,7]. Then, for all ug € D(A) the problem

gru(tor) = goult,r) + f(t)(r), fort€|0,7], re[-1,0],
%u(t, 0) = Cu(t,0) + Pu(t,-) + g(t), fort e 0,7,
u(0,7) = ug(r) forr € [-1,0],

has a unique solution® on C([—1,0],Y). Assume additionally that the semigroup
generated by C' is positive and the delay operator ® is positive. If the initial data

ug and f are positive, then the solution u(t,-) is positive for t € [0, 7].

Corollary III.8.1.9. Let F: [0,7] x C([-1,0],Y) — C([-1,0],Y) and
G: [0,7] xY — Y be continuously differentiable functions such that
F(t,u(t,))(0) = G(t,u(t,0)). Then, for all ug € D(A) the problem

%u(t,r) = %u(t,r) + F(t,u(t,-))(r) forte0,7], re[-1,0],
Lu(t,0) = Cu(t,0) + du(t, ) + G(t, u(t,0)) forte[0,7],
u(0,7) = ug(r) forr € [-1,0],

admits a unique solution on C([—1,0],Y). Assume additionally that the semi-
group generated by C' is positive and the delay operator ® is positive. If the initial
data ug and F are positive, then the solution u(t,-) is positive for t € [0, T].

Wellposedness of elliptic delay equations

We consider the elliptic problem with dynamic boundary conditions associated to
A given by and assume that C is the generator of a strongly continuous
semigroup on the Banach space Y. Since by the bounded perturbation the
Dirichlet-to-Neumann operator Ny = C' + ® L) generates a Cp-semigroup for all
A € C. We conclude by [Theorem [I1.3.1.1]

Corollary II1.8.1.10. For all A € C and yo € D(C) the problem

Au(t,r) = Lu(t,r) fort>0, re[-1,0],
%u(t, 0) = Cu(t,0) + du(t,-), fort>0,
U(O, O) = Yo

with dynamic boundary conditions is wellposed on Y. Assume additionally that
the semigroup generated by C' is positive and the delay operator ® is positive. If

the initial value ug is positive, then the solution u(t,-) is positive for t > 0.

3Here and in the sequel solution always means classical solution.
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Moreover, [Theorem TIT.3.2.1] implies the following results.

Corollary ITI.8.1.11. Let f: [0,7] — C([~1,0],Y) and §: [0,7] — Y integrable
functions and f(t) == fo+ [y f(s)ds, g(t) = fo+ [g §(s)ds. Then, for all A € C
and yo € D(C) the problem

Au(t,r) = %u(t,r) + f(t)(r), forte0,7], re[-1,0],
Lu(t,0) = Cu(t,0) + du(t, ) + g(t), forte[0,7],
u(07 0) =1%o

admits a unique solution on'Y . Assume additionally that the semigroup generated
by C is positive and the delay operator ® is positive. If the initial data ug and
f, g are positive, then the solution u(t,-) is positive for t € [0, T].

Corollary IIL.8.1.12. Let F: [0,7] x C([-1,0],Y) — C([-1,0],Y) and

G:10,7] XY = Y continuously differentiable functions. Then, for all A € C
and yo € D(C) the problem

Au(t,r) = %u(t,r) + F(t,u(t,-))(r), forte0,7], re[-1,0],
Lu(t,0) = Cu(t,0) + Qu(t, ) + G(t, u(t,0)), forte[0,7],
U(O, 0) =Y0

has a unique solution on Y. Assume additionally that the semigroup generated
by C 1is positive and the delay operator ® is positive. If the initial data ug and
F,G are positive, then the solution u(t,-) is positive for t € [0, T].

111.8.2 Banach space-valued second derivative

Instead of the first derivative with delay boundary conditions we now consider
the second derivative with delay boundary conditions. We associate to an
arbitrary Banach space Y the Banach space X := C([0,1],Y) of all continuous
functions on [0, 1] with values in Y equipped with the sup-norm. Moreover, we
take ® € £(X,Y?) and a weak Hille-Yosida operator (C, D(C)) on the Banach
space Y2 :=Y x Y. We consider the operator A: D(A) C X — X given by

% 2 (ﬁtl)g) € D(C),
(L.23) Af = f", D(A):=qfeC(0,1,Y): .0 oy (-
(f”(l)) =of +C(f(1)>

Generation of semigroups

We start with the investigation of the semigroup property of the operator A

given by ([I1.23).
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Choose X = C([0,1],Y), X = Y2, A, = %, with domain D(4,,) =

dr?
c2([0,1],Y), L = (g‘l’), B =C- (g‘;) + @ leading to A = AP. Moreover,
By = Blx, = ® is bounded and Ay is sectorial of angle 7 on C([0,1],Y).
Now [Theorem III.4.1.2| and [Theorem I11.4.2.2| imply the following result. For

details and generalizations see |[BE19, Example 5.2].

Theorem III.8.2.1. The operator A given by (I11.23) generates a strongly

continuous semigroup on C([0,1],Y) if and only if C does on Y?. Moreover
'3
C([0,1],Y) if and only if the operator C generates an analytic semigroup of

angle a € (0, %] on Y2,

this semigroup can be extended to an analytic semigroup of angle o € (0,%] on

Since Ay = % with domain D(4y) = C3((0,1),Y) = {f €
C2([0,1],Y): £(0) = f(1) = 0} has compact resolvent, one obtains by bounded
perturbation and [Theorem II1.6.0.1] the following result.

Corollary IT1.8.2.2. The operator A given by (I11.23)) has compact resolvent
on C([—1,0],Y?) if and only if the operator C has compact resolvent on Y2.

Spectral theory

Note that Ay has compact resolvent and hence o(Ag) = 0,(Ag) = {—k? - 72: k €
N}. [Theorem 1I11.6.0.1{leads to the following.

Theorem II1.8.2.3. For A € C\ {—k? - 72: k € N} we obtain
(i) XA € p(A) if and only if X € p(C + ®)).

(ii) A € 0p(A) if and only if X € 0,(C + ®y). In this case the dimensions of
the eigenspaces coincide, i.e. dim(ker(A — A)) = dim(ker(A — C — ®y)).

(i) A € 04(A) if and only if X € 5,(C + ®)).
(iv) X € 0c(A) if and only if A € 0.(C + @,).
(v) A€ o.(A) if and only if X € 0,.(C + ®)).
(vi) X € a4(A) if and only if X € o4(C + @y).

(vil) A € 0ess(A) if and only if X € 0¢55(C + y).
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Positivity and asymptotic behaviour

Finally, we study positivity of the semigroup generated by A and use this to

obtain a simple criterion for uniformly exponential stability.

We assume that Y is a Banach lattice. Then X = C([0,1],Y) and Y? =Y x Y
are Banach lattices. By Hopf’s maximum principle (see [GT01, Theorem 3.5])
it follows that the operator Ag has positive resolvent. Further, it follows, by a
direct calculation or the Hopf maximum principle, see [GT01, Theorem 3.5] that
the Dirichlet operator Ly is positive for A > 0. Using B|x, = ® and N) = C+®,

it follows from the positive perturbation theorem and [Corollary I11.4.4.3]

Theorem II1.8.2.4. Assume that the delay operator ® is positive and C gener-
ates a strongly continuous semigroup of positive operators on Y. Then A given
by generates a strongly continuous semigroup of positive operators on
C([0,1],Y).

Now applying [Corollary II1.7.0.3| and using the fact that s(A4g) < 0 yields the

following result.

Theorem II1.8.2.5. Assume that the delay operator ® is positive and C gener-
ates a strongly continuous semigroup of positive operators on C([O, 1], Y). Denote
the semigroup on C([0,1],Y) generated by A by (Ta(t))i>0 and the semigroup on
Y2 generated by N by (Tn(t))i>0. Then (Ta(t))i>o is uniformly exponentially
stable on C([0,1],Y) if and only if (T (t))i>0 is on Y?2.

Wellposedness of parabolic equations with dynamic boundary

conditions

Combining [Theorem TIT.2.1.1] with the results of the previous sections the

following holds for every generator C of a Cy-semigroup on a Banach space Y2
and a boundary functional ® € £(C[0,1],Y),Y?).

Corollary II1.8.2.6. For all ug € D(A) the problem
Lu(t,r) = %u(t,r} fort >0, re[0,1],
) + du(t,:) fort>0,
forr € [0,1],

with dynamic boundary conditions is wellposed on C([0,1],Y). Assume addition-

ally that the semigroup generated by C is analytic, then the solution t — u(t,r)
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is analytic for all v € [0,1] and u(t,-) € C*([0,1],Y) for t > 0. Moreover, if
the semigroup generated by C is positive and the delay operator ® is positive,
then the solution u(t,-) is positive for t > 0 whenever the initial value ug is
positive. Moreover, if s(C) <0, then sup,¢(_1 g [u(t,7)|ly — 0 fort — oo for
up € D(A)

Moreover, [Theorem II1.2.2.1] implies the following corollaries.

Corollary I11.8.2.7. Let f: [0,7] — C([0,1],Y) and §: [0,7] — Y? integrable
functions and f(t) = fo+ [3 f(s)ds, g(t) = go + J3 §(s)ds such that ( Egg ;) =
g(t) for allt € [0,7]. For all ug € D(A) the problem

Su(t,r) = Lult,r) + FO)(r), fort e [0,7], r €[0,1],
é&( ) (ZE >+<I>u ) +g(t), forte0,7],

u(0,7) = uo(r) forr e [0,1],

admits a unique solution on C([—1,0],Y"). Assume the semigroup generated by
C is positive and the delay operator ® is positive. Then the solution u(t,-) to be
positive for t > 0 whenever the initial data ug and f are positive.

Corollary II1.8.2.8. Let F': [0,7] x C([0,1],Y) — C([0,1],Y) and G: [0, 7] x

Y? — Y? continuously differentiable functions such that (?8’283;8)

G (t, (zgz(l);)) Then, for all ug € D(A) the problem

fort e [0,7],

u(0,7r) = ug(r) forr €[0,1],

admits a unique solution on C([0,1],Y). Assume additionally that the semigroup
generated by C is positive and the delay operator ® is positive. Then, if the

initial data ug and F are positive, the solution u(t,-) is positive for t € [0, 7].

Wellposedness of elliptic equations with dynamic boundary

conditions

Finally, we study the elliptic problem with dynamic boundary conditions associ-

ated to A given in ([11.23]).
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Since Ag has compact resolvent, the spectrum of Ag is 0(Ag) = o,(Ag) =
{—k?.72: k € N}. By |BE20a, Lemma 3.2] it follows that L exists if and only
if A € p(Ap) and we write &) = ®L) for A € p(Ap). By the bounded pertur-
bation theorem the Dirichlet-to-Neumann operator Ny = C 4+ ® L, generates

for all A € p(Ap) a strongly continuous semigroup on Y2. So assertions (c)

in [Theorem III.3.1.1] is verified. Hence, the following holds for every gener-

ator C of a Cyp-semigroup on a Banach space Y2 and a boundary functional
® € L(C[0,1],Y),Y?).

Corollary ITL.8.2.9. Let (}%) € D(C). Then the problem

)\u(t’ T) = %u(tﬂﬂ)v fO?" t>0, re [0, 1]7
i <“(75, 1)) =¢ (u(t, 1)) + Qu(t,-), fort>0,

u(0,0) = yo,

U(07 1) = Y1,

with dynamic boundary conditions is wellposed if and only if A € C\{—k*-7%: k €
N}. Assume additionally that the semigroup generated by C' is positive and the
delay operator ® is positive. If the initial value ug is positive, then the solution
u(t,-) is positive for t > 0.

Further, we conclude from [Theorem TI1.3.2.1] the following results.

Corollary II11.8.2.10. Let f: [0,7] — C([=1,0],Y) and §: [0,7] — Y? inte-
grable functions and f(t) = fo + fé f(s)ds, g(t) = go + f(f g(s)ds. Moreover,
let (}°) € D(C). Then the problem

Au(t,r) = %u(i,r) + f(t)(r) fort €[0,7], r €[0,1],
(1) =<(aien) - w0 sricio

U(0,0) = Yo,

U(O, 1) = Y1,

admits a unique solution on C([0,1],Y) if and only if X € C\ {—k?-72: k € N}.
Assume additionally that the semigroup generated by C' is positive and the delay
operator ® is positive. If the initial data vy and f,g are positive, then the
solution u(t,-) is positive for t € [0, 7].

Corollary IT1.8.2.11. Let F': [0,7] x C([0,1],Y) — C([0,1],Y) and G: [0, 7] x

Y? — Y? continuously differentiable functions and (Z(l’) € D(C). Then the
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problem

fort € |0,7],

admits a unique solution on C([0,1],Y) if and only if A € C\ {—k?-72: k € N}.
Assume additionally that the semigroup generated by C is positive and the delay
operator ® is positive. If the initial data uy and F,G are positive, then the

solution u(t,-) is positive for t € [0, 7].

IT1.8.3 Shift-Semigroup on C[—1,0]

In the first subsection of this chapter we studied the first derivative A? C %
for a boundary operator B : D(B) C X — 0X bounded on the first component
of the decomposition X = X @ ker(A,,) but unbounded on the second. Next
we give an example where on the contrary B is unbounded on Xy, but bounded
on ker(A,,). More precisely, we consider the Banach space X = C[—1,0] of all
continuous, complex valued functions equipped with the sup-norm. Then, for
some fixed a € (0,1) we define the operator A: D(A) C X — X by

(II1.24) Af = f', D(A) = {f € Cl[-1,0]: f(0) = /0 fi(r)-(=r)™@ dr}.

-1
Generation of semigroups

We use our abstract theory to establish the wellposedness of the abstract Cauchy
problem (ACP)) associated with A given in ([11.24)).

Choosing X = C[-1,0], 9X = C, 4, = < with domain D(4,,) = C![-1,0],
L= 50 and

0
Bf = / f'(r) - (=r)~*dr, D(B):=W"(0,1)
-1
we obtain A = AP. Moreover, note that the Dirichlet-to-Neumann operator is

zero, but the restriction By := B|x, is unbounded on Xy = Cy[—1,0). In fact,
if we define k(r) = (—r)® for r € [—1,0], then k € Xy \ D(By). Recall that
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AY generates a strongly continuous semigroup on Co[—1,0) and has compact
resolvent. Using the Staffans Weifl perturbation theorem (see [ABE14, Theorem
10]), [Theorem I1I.4.2.4] and |Corollary 111.4.3.1| we conclude the following result.
For details, in particular for the verification that G and AJ differ by a Staffans
Weif} perturbation (see [ABE14, Definition 9]), we refer to [BE20a, Theorem
6.4]. Moreover, by [BE20b|, Corollary 7.11] it follows that the semigroup is not

positive.

Theorem I11.8.3.1. The operator A given by (11.24]) generates a Cy-semigroup
on C[—1,0]. Further, the operator A given by (I11.24)) has compact resolvent on

C[—1,0]. Moreover the semigroup is not positive on C[—1,0].

Spectral theory

Now we consider the spectral theory of the operator A given by (I[11.24]). First
note that Ap has empty spectrum and compact resolvent. Using ([11.22]), a short

calculation shows

0
Nyx = a:/ AN (=) T dr
-1

for A,x € C and we conclude the following result by [heorem II1.6.0.1] For
more details see [BE20b, Corollary 7.10].

Theorem 111.8.3.2. We obtain \ € o(AP) = 0,(AP) if and only if

0
[ e (=r)~@dr = 1. Moreover, all eigenspaces are one-dimensional.
1

Wellposedness of parabolic equations with dynamic boundary

conditions

For our problems with dynamic boundary conditions [['heorem III.2.1.1| yields

the following.
Corollary IT1.8.3.3. Let a € (0,1). Then for all ug € D(A) the problem

Su(t,r) = Lu(t,r) fort >0, re[-1,0],
Lu(t,0) = /0 u'(t,r) - (—r)"dr fort >0,
-1
u(0,7) = up(r) forr e [-1,0],

with dynamic boundary conditions is wellposed on C[—1,0].

Moreover, [Theorem II1.2.2.1] implies the following corollaries about inhomoge-

neous and semilinear problems with dynamic boundary conditions.
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Corollary I11.8.3.4. Let a € (0,1) and f: [0,7] — C([-1,0],Y) and
g: [0,7] — Y integrable functions and f(t) = fo + f(f f(s)ds, g(t) =
go + 3 G(s)ds such that f(t)(0) = g(t) fort € [0,7]. Then for all ug € D(A)
the problem

Su(t,r) = Lut,r) + f()(r), te[0,7], re[-1,0],
0
Lu(t,0) = /_1u’(t,7') (=) dr + g(t), te0,7],
u(0,-) = ugp

admits a unique solution on C[—1,0].

Corollary II1.8.3.5. Let a € (0,1) and F: [0,7] x C[-1,0] — C[-1,0] and
G: [0,7]xC — C continuously differentiable functions such that F'(t,u(t,-))(0) =
G(t,u(t,0)). Then for all ug € D(A) the problem

Su(t,r) = Su(t,r) + F(t,u(t,))(r) forte[0,7], r € [-1,0],

%u(t, 0) = /0 ' (t,r) - (=r)"dr

u(t,0)),
)

fort €]0,7],
+ G(

1
t,
w(0,7) = up(r

forr e [-1,0],

admits a unique solution on C[—1,0].

Wellposedness of elliptic equations with dynamic boundary

conditions

In this section we consider the corresponding elliptic problem with dynamic
boundary conditions. Note that p(Ag) = C and that Ny are bounded for all

A € C, and hence generate compact and analytic semigroups on C. Now, for

the elliptic problem with dynamic boundary conditions [Iheorem [II.3.1.1] yields

the following result.

Corollary I11.8.3.6. Let o € (0,1). Then for all \,z¢ € C the problem

Au(t,r) = Lu(t,r) fort >0, re[-1,0],
0
%u(t, 0) = / u'(t,r) - (—=r)"%dr fort >0,
—1
U(O, O) = X0

with dynamic boundary conditions is wellposed on C[—1,0].
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Furthermore, from [Theorem TI1.3.2.1] we obtain the following corollaries.

Corollary IT1.8.3.7. Let a € (0,1) and f: [0,7] = C[=1,0] and §: [0,7] — C
integrable functions and f(t) == fo+ [3 f(s)ds, g(t) = go + J3 G(s)ds. Then for
all X\, zg € C the problem

Mu(t,r) = Su(t,r) + f(t)(r) forte0,7], re[-1,0],
%u(t,O) = /_01 u'(t,r) - (—r)"%dr +g(t) forte[0,7],
U(O, 0) = X,

with dynamic boundary conditions admits a unique solution on C[—1,0].

Corollary IT1.8.3.8. Let a € (0,1) and F: [0,7] x C[—1,0] — C[-1,0] and
G:[0,7] x C — C continuous functions. Then for all \,zo € C the problem

Au(t,r) = stu(t,r) + F(t,u(t,))(r) forte[0,7], re[-1,0],
0
D (t,0) = /_ G () - (=) dr

1
+ G(t,u(t,0))
u(0,0) = zo,

fort e [0,7],

with dynamic boundary conditions admits a unique solution on C[—1,0].

II1.8.4 Degenerated elliptic second order differential operators
on C([0,1],C")

For n € N consider functions a; € C[0,1] N C(0,1), 1 < i < n, being

strictly positive on (0,1) such that a% € L'0,1]. Let a = diag(ay,...,a,) and

b,c € C([0,1],M,(C)). Moreover, define the maximal operator A,, : D(A,,) C

C([0,1],C™) — C(]0,1],C™) by

Anf =af"+bf +cf,
D(Ay) = {f € C([0,1],C™) N C*((0,1),C™): A,,.f € C([0,1],C™)}

and take B € £(C'([0,1],C"),C?"). Now we define the operator A: D(A) C
X = X by

(I1L.25) Af = Awf, D(A)={f € D(4n): (4790 = BF}.

Such second order differential operators on spaces of functions f : [0,1] — C"

can be used to describe diffusion- and waves on networks. For some recent
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results in the LP-context for operators with generalized Robin-type boundary

conditions we refer to [EK19].

Generation of semigroups

In this subsection we investigate the generation property of the operator A given

by (TII.25).

Choose X = C([0,1],C"), 0X = C?>", Lf = (}[E?;) and A,, and B as above.

[Theorem IIT.4.1.2| and [Corollary II1.4.3.1] yields the following result. For details
see |[BE19, Example 5.1].

Theorem II1.8.4.1. We have D(A,,) C C*([0,1],C") = D(B) and A given by
(L11.25) generates a compact and analytic semigroup of angle 5 on C([0,1],C").

This result generalizes [EF05, Example 4.1]. Now we make a particular choice

for the operator B.

Corollary II1.8.4.2. For M;,N; € Mauxn(C), i = 0,1, the operator
A: D(A) c C([0,1],C") — C([0,1],C™) given by

Af = Amfv

(Am f)(0)

D(A) = { f € D(4y): <(Amf)(1)> = Mof'(0) + My f'(1)

+ Nof(0) + N1f(1)

generates a compact and analytic semigroup of angle 5 on C([0,1],C").

Wellposedness of degenerated parabolic equations with dynamic

boundary conditions

Combining[Theorem III.2.1.1jwith the results of the previous sections we conclude

the following statement.
Corollary II1.8.4.3. For all ug € D(A) the problem

Lu(t,r) = Apult,r) fort>0, r€[0,1]

d (u(t, 0)

dE\ w(t, 1)
u(0,7r) = ug(r) forr €0,1],

) = Bu(t,")  fort>0,
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with dynamic boundary conditions is wellposed on C(]0,1],C™). Further the
solution t — wu(t,r) is analytic for all r € [0,1] and u(t,-) € C*([0,1],C") for
t>0.

Moreover, [Theorem TIT.2.2.1] implies the following corollaries.

Corollary IT1.8.4.4. Let f: [0,7] — C([0,1],C") and §: [0,7] — C?" integrable
functions and f(t) = fo+ [ f(s)ds, g(t) == go + [3 G(s) ds such that (}cggggg) =
g(t) for allt € [0,7]. For all uy € D(A) the problem

Lu(t,r) = Apult,r) + f@)(r) forte [0,7], r €[0,1]

% <ZE?(1);> = Bu(t,-) + g(t) fort € |0,7],
u(0,7r) = ug(r) forr €10,1],

admits a unique solution on C([0,1],C™).

Corollary I11.8.4.5. Let F': [0, 7] x C([0,1],C™) — C([0,1],C™) and G: [0, 7] X
C? — C? continuously differentiable functions such that (?E:ZE?;;E?;) =

G (t, (zg(l)g)) Then, for all ug € D(A) the problem

%u(t, r) = Apu(t,r) + F(t,u(t,-))(r) forte[0,7], r€[0,1],

4 <ZEZ(1)§> = Bu(t,")+ G (t, (Zg: 2;)) fort e [0,7],
u(0,7r) = up(r) forr € [0,1],

admits a unique solution on C(]0,1],C").

Wellposedness of degenerated elliptic equations with dynamic

boundary conditions

Finally, we study the elliptic problem with dynamic boundary conditions associ-
ated to A given in ([[11.25)).

Since Ap has compact resolvent, o(Ag) = 0p(Ap). By [BE20a, Lemma 3.2] it
follows that Ly exists if and only if A € p(Ap). Further, since dim(0X) < oo,
the Dirichlet-to-Neumann operators Ny are bounded and hence generators of

compact and analytic semigroups on C" of angle 7 for all A € p(Ag). So

assertions (c) in [Theorem III.3.1.1|is verified. We conclude the following result.
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Corollary II1.8.4.6. Let xg,x1 € C™. Then the problem
Au(t,r) = Apu(t,r), fort>0, r€[0,1]

i (uEt,O)) = Bu(t,),  fort=0,

u(t, 1)
u(0,0) = xo,
’U,(O, 1) = 1,

with dynamic boundary conditions is wellposed on C([0,1],C") if and only if
A € p(Ao). Further, the solution t — u(t,r), if it exists, is analytic for all
r e [0,1].

Further, we conclude from [Theorem [I1.3.2.1] the following results.

Corollary IT1.8.4.7. Let f: [0,7] — C([0,1],C") and §: [0,7] — C>* integrable
functions and f(t) = fo+ [3 f(s)ds, g(t) = go + [g §(s)ds. Moreover, let
Yo, y1 € C". Then the problem

Au(t,r) = Apu(t,r) + f(t)(r) forte[0,7], r €[0,1]

% (uEt,O)) = Bu(t,-) + g(t), forte[0,7],

admits a unique solution on C([0, 1], C"™) if and only if A € p(Ao).

Corollary I11.8.4.8. Let F': [0, 7] x C(]0,1],C™) — C([0,1],C™) and G: [0, 7] x
C? — C? continuously differentiable functions. Then for all xg,x1 € C™ the

problem

Au(t,r) = Apu(t,r) + F(t,u(t,-))(r) forte|0,7], r€[-1,0],

%u(t, 0) = Bu(t,")+ G (t, (ZE;’(B)) fort €]0,7],
’LL(O, O) = Xo,
u(0,1) = z1,

with dynamic boundary conditions admits a solution on C([0,1],C™) if and only
if A€ p(AQ)
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111.8.5 Elliptic operators with Wentzell boundary conditions on

domains

We consider a uniformly elliptic second-order differential operator with general-
ized Wentzell boundary conditions on C(f2) for a bounded domain Q C R™ with
smooth boundary 9€2. On domains in R™ such operators have first been studied
systematically by Wentzell [Wen59|, Feller [Fel54] and Hintermann |[Hin89]. To

this end, we first take real-valued functions
Ak = Qgj € Coo(ﬁ), a; € Coo(ﬁ)7 ao,bo S Coo(ﬁ), 1< j,/ﬂ <n

satisfying the uniform ellipticity condition

ajp(r) - &&= ||EF forallr € Q, €= (&,...,&,) €R™
7,k=1

and some fixed ¢ > 0. Then we define the maximal operator

A, D(Ay,) C C(Q) — C(Q) in divergence form by

Anf = 0;(D apf) + Y axdef + aof,
(II1.26) =t k=l k=

D(A,,) = {f e M W2P(Q) N C@Q): A f € C(Q)}

p>1
and its (negative) conormal derivative B : D(B) C C(Q2) — C(99) by
Bf = — Z ajijLakf + boLf,
k=1

D(B) = {f € ﬂ Wﬁ’f(ﬂ) NC(Q): Bf € C(@Q)},

p=1

(I11.27)

where L € L(C(2),C(99)), Lf := f|oa denotes the trace operator. We denote
the conormal derivative by g—;. Now one defines the operator A : D(A) C

C(92) — C(Q) with Wentzell boundary conditions by

(II1.28) Af = Anf, D(A):={f € D(A,) N D(B): LA,f = Bf}.

Considering X = C(2), 90X := C(99Q) and A,,, B and L as above, we obtain
A = AB ie. the abstract Wentzell boundary conditions coincide with the usual

Wentzell boundary conditions.

Further, the abstract operator with Dirichlet boundary conditions Ay becomes

59



IIT Discussion of the Results

an elliptic operator with usual Dirichlet boundary conditions, i.e. u|sq = 0. On
domains in R"™ the generator property of differential operators with Dirichlet
boundary conditions is quite well understood. From an operator theoretic point
of view pioneer work was done by Browder [Bro61], Agmon [Agm62| and Stewart

[Ste74]. For a modern collection of the result we refer to [Ama95] and [Lun95].

Moreover, the abstract Dirichlet problem becomes an elliptic partial
differential equation with non-homogeneous Dirichlet boundary conditions and
Ly is the corresponding solution operator. Finally, the Dirichlet-to-Neumann
operator is the classic Dirichlet-to-Neumann operator
0° 0°
N=-2 Lo, D(N)= {tp € C(09): Lop € D (8n>}

see |US90], [LUO1L], [LTU03|, [Tay81] and [Tay96, Appendix 12.C]. It is a pseudo
differential operator of order 1, see [Tay96, Appendix 12.C]. For an application
of Dirichlet-to-Neumann operators in stochastics see e.g. [GV18]. From the
operator-theoretic point of view the Dirichlet-to-Neumann operator is studied
by e.g. Amann and Escher [AE96], Arendt and ter Elst [AE11], [AEKS14] and
[AE17] and ter Elst and Ouhabaz [EO14], [EO19a] and [EO19b|. In particular,
on domains in R™ Escher [Esc94] has shown that such Dirichlet-to-Neumann
operators generate analytic semigroups on the space of continuous functions,
however without specifying the corresponding angle of analyticity. This result
was improved by ter Elst and Ouhabaz [EO19a), Theorem 1.1] to the angle 7
and extended to elliptic differential operators with merely Holder continuous

principal coefficients on C!**-domains.

Generation of semigroups

In this section we are interested in the generation of an analytic semigroup on
C(Q) with the optimal angle of analyticity by the operator A given by (TII.28]).

Arendt et al. |[AMPRO3] proved that the Laplace operator with Wentzell
boundary conditions generates a positive, contractive, strongly continuous
semigroup on C(Q). Engel [Eng03| improves this result by showing that this
semigroup is analytic with angle of analyticity 5. Later Engel and Fragnelli
[EF05] again generalize this result to uniformly elliptic operators, however
without specifying the corresponding angle of analyticity. For related work see
also [CT86|, [CM98|, [FGGRO02a|, [FGGRO2b|, [FGG+03|, |[CENNO3|, [VV03],

[CENPO5|, [FGG+10|, [Warl0] and the references therein.

Using our theory we can improve all these results. At the end of the last
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subsection we have seen how this problem fits into our abstract framework.

First, using [Theorem [I1.5.0.3| we assume without loss of generality a; = 0 for
0 < k < n. Now we verify [Assumptions III.1.1.2| Regularity theory (see |GTO01,
Theorem 9.15]), Rellich’s embedding theorem (see [Ada75, Theorem 6.2, Part
I11]) and Ehrling’s lemma (cf. [RRO04, Theorem 6.99]) imply that B is relatively
Ap-bounded of bound 0. Moreover, from |[GT01, Theorem 9.18] it follows that
for every x € C(0f2) the problem has a unique solution f € D(A,,), and
hence the Dirichlet operator Ly exists. Further, by the maximum principle,
see |GTO1, Theorem 9.1], the solution operator Ly is bounded. By [Lun95,

Corollary 3.1.21.(ii)] that the operator Ay is sectorial of angle § on C(f2) and
has compact resolvent. In particular Ay is a weak Hille-Yosida operator on C().
Moreover in [EO19a, Theorem 1.1] it is shown that the Dirichlet-to-Neumann
operator generates a compact and analytic semigroup of angle 7 on C(0€2). We

conclude by [Theorem [I[.4.1.2] and [Corollary T11.4.3.1}

Theorem II1.8.5.1. The operator A given by (I11.28)) generates a compact and

analytic semigroup on C(Q) of optimal angle 7.

For smooth domains and smooth coefficients without specifying the angle of
analyticity this has been proven in [EF05, Corollary 4.5]. In [BE19, Example
5.4] it is shown that the angle of analyticity does not depend on the lower
order terms. In [BE20a, Example 6.3] the result is proven for merely Lipschitz
continuous principal coefficients and continuous lower order coefficients on C*-
domains. In [BtE20, Theorem 5.1] we generalize this result to merely Holder
continuous principal coefficients. Since the divergence theorem does not work in
this situation, it is difficult to find an maximal operator and we cannot apply

our theory directly. Nevertheless the same arguments work here.

Further, an analogous result holds on LP(£2) x LP(02) for p € (1, 00), see |[BtE20,
Theorem 4.5(c)]. Indeed, in this situation, the operator with dynamic boundary
conditions has maximal L"-regularity for all » € (1,00), as proven in |[BtE20,
Theorem 4.5(d)]. For maximal regularity of the corresponding operator on
LP(2) x LP(09) see also [DPZ08] and [GGGR20|. We refer to [BtE20| for the

precise formulation of the statements.

Positivity and asymptotic behaviour

In [AMPRO3| and [Eng03] it is shown that the semigroup generated by the
Laplacian with Wentzell boundary conditions is positive. In this section we
generalize this result to arbitrary elliptic operators with Wentzell boundary

conditions using our theory.
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Hopf’s maximum principle (cf. |[GT01, Theorem 3.5]) implies that R(\, Ag) and
Ly are positive operators for large \. Further, a small computation shows that
B|p(a,) is a positive operator and from [Esc94] it follows that the Dirichlet-

to-Neumann operators NNy are generators of strongly continuous semigroups

of positive operators on C(9€2). Now |Corollary III.4.4.3| implies the following
result. For details see [BE20b, Corollary 7.14].

Theorem II1.8.5.2. The operator A given by (lIL.28) generates a strongly

continuous semigroup of positive operators on C(Q)

Wellposedness of parabolic equations with dynamic boundary

conditions

[Theorem TIT.8.5.1] and [Theorem III.2.1.1| now give the following.

Corollary II1.8.5.3. For all ug € D(A) the problem

Ou(t,r) = Z J(Z ajr(r)Oku(t T))
=1 fort>0,rcqQ,

+ Z k(r)Oku(t,r) + ao(r) - u(t,r)

k=1
Apu(t, s) =— > aji(s)v(s)Opult,s) + bo(s) - u(t,s) fort>0,s € o,
7,k=1
u(0,7) = up(r) forreQ

with dynamic boundary conditions is well-posed on C(Q). Further, if ug € D(A),
the solution t — u(t,r) is analytic for all v € Q and u(t,-) € C*°(Q)NC(Q). If

the initial value ugy is positive, then the solution u(t,-) is positive for t > 0.

Finally, [Theorem IIT.2.2.1] implies the following corollaries.

Corollary I11.8.5.4. Let f: [0,7] — C(Q) and §: [0,7] — C(9Q) integrable
functions and f(t) = fo+ [ f(s)ds, g(t) = go + [y G(s)ds such that f(t)(r) =
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g(t)(r) for allt € [0,7] and r € ON. For all uy € D(A) the problem

n

Opu(t,r) Z J<Z ajr(r)Opult 7“))

J=1

—I—Zak(r)aku(t,r) forte[0,7],r € Q,
k=1

+ao(r) - ult,r) + f(1)(r)

Jik=1 fort e [0,7],s € 09,
+ bo(s) - u(t, s) + g(t)(s)
w(0,7) = ug(r) forr € Q,

admits a unique solution on C(Q). If the initial data ug and f are positive, then

the solution u(t,-) is positive for t € [0, 7].

Corollary II1.8.5.5. Let F: [0,7] x C(Q) — C(Q) and G: [0,7] x C(0Q) —
C(09) continuously differentiable functions such that F(t,u(t,-))(s) =
G(t,u(t,-))(s) for allt € [0,7] and s € 9. For all uy € D(A) the problem

n

du(t,r) =0 ]<i ajr(r)Opult 7’))

j=1

Z POt r) forte[0,7],r € Q,

ap(r) - u(t,r) + F(t,u(t,-))(r)

Owu(t,s) = — z”: ajr(s)v(s)Opult, s)

Jk=1 fort e [0,7],s € 09,
+bo(s) - u(t,s) + G(t,ult,-))(s)
u(0,7) = uo(r) forr e Q,

admits a unique solution on C(Q). Moreover, if the initial data ug and F are

positive, then the solution u(t,-) is positive for t € [0, 7].

Wellposedness of elliptic equations with dynamic boundary

conditions

Since the operator Ay with Dirichlet boundary conditions has compact resolvent,
by [BE20a, Lemma 3.2] it follows that Ly exists if and only if A € p(Ap).

Moreover, [Proposition [11.5.0.2|implies that V) generates a compact and analytic
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semigroup of angle 7 on C(99) for all A € p(Ap). (Theorem II1.3.1.1 now give

the following.

Corollary II1.8.5.6. For all o € D(N) the problem

Au( => J(Z aji(r)Opult r))
3:1 fort>0,rc€qQ,
+ > ar(r)Opult,r) + ao(r) - u(t,r)
k=1
Oru(t, s) Z ajr(s)vi(s)Opu(t, s) + bo(s) - u(t,s) fort>0,sec 00,
k=1
u(0,s) = zo(s) for s € 082

with dynamic boundary conditions is well-posed on C(Q) if and only if X € p(Ap).
Further, t — u(t,r) is analytic for all v € Q and u(t,-) € C*®(Q). If the initial

value ug s positive, then the solution u(t,-) is positive for t > 0.

Moreover, as a consequence of [[heorem II1.3.2.1] we obtain the following results.

Corollary IIL.8.5.7. Let f: [0,7] — C(Q) and §: [0,7] — C(8Q) integrable
functions and f(t) = fo+ [g f(s)ds, g(t) = go + J3 §(s)ds. For all zy € D(N)
the problem

n

Z ](Z ajr(r)Oku(t 7“))
j=1 —
Zn: )t r) fort € [0,7],7 € Q,

ao(r) - u(t,r) + f(t)(r)

Oru(t,s) = — Z ajr(s)v;(s)Opul(t, s)

j k=1 fort € 0,7],s € 09,
+ bo(s) - u(t, s) + g(t)(s)
u(0,s) = zo(s) for s € 0Q

with dynamic boundary conditions admits a unique solution on C(Q) if and only
if A € p(Ag). Moreover, if the initial data ug and f,g are positive, then the

solution u(t,-) is positive for t € [0, 7].

Corollary II1.8.5.8. Let F': [0,7] x C(©2) — C(Q) and G: [0,7] x C(02) —
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C(09) continuously differentiable functions. For all zo € D(N) the problem

Zaj (Z ajr(r)Opu(t r))

J=1 k=1

~ fort e [0,7],7 € Q,
=+ ag(r)Ogu(t, r)

+ao(r) - u(t,r) + F(t,u(t,-))(r)

Gk=1 fort €10,7],s € 09,
+bo(s) - u(t,s) + G(t,u(t,-))(s)
u(0,8) = zo(s) for s € 0Q

with dynamic boundary conditions admits a unique solution on C(Q) if and only
if X € p(Ag). Moreover, if the initial data ug and F,G are positive, then the

solution u(t,-) is positive for t € [0, 7].

I11.8.6 Elliptic operator with generalized Wentzell boundary

conditions on domains

In this section we study elliptic operators with a generalized Wentzell boundary
conditions. Such operators were studied by Goldstein et. al, see e.g. [FGGR02a,
[FGGRO2Db|, [FGG+03], [FGG+10], [GGP17|] and, using an abstract approach,
in [Eng03], [EF05] and [BE19]. We consider as in the last section a bounded
domain 2 C R"™ with smooth boundary and an uniformly elliptic operator
Am: D(Ap) C C(Q) — C(Q) in divergence form given ([IL.26). Further, we

consider real-valued functions
Cjk = ¢ € CF(0R), ¢; € CF(0Q), ¢ e CP(0N), 1<j,k<n

satisfying the uniform ellipticity condition

S o) &g = |€)* forallr €09, €= (&,....&) ER”
7,k=1
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and some fixed ¢ > 0. We define an operator C' : D(C) C C(0€2) — C(092) in

divergence form on the boundary by

Cx = Z 83(2 Cjkakm) + Z ckakx + cox,
(I11.29) =t k=t =t
D(C) = {x e () W2P(99) N C(09): Cx € C(aQ)}.

p=1

Moreover we define the operator By: D(By) C C(Q2) — C(992) by ([IL.27) and

finally B: D(B) C C(2) — C(092) by
Bf = Bof + CLf, D(B) = {f € D(An) N D(By): Lf € D(C)}.

Now we consider A: D(A) C C(Q) — C(Q) given by

(IIL.30) Af = Apf, D(A) == {f € D(An) N D(B): LAnf = Bof + CLf}.

Generation of semigroups

In this subsection we concentrate to the generation of an analytic semigroup on

C(Q) with optimal angle 5 by A given in (II1.30) and on the wellposedness of
the associated abstract Cauchy problem (ACP)).

Choosing X = C(2), 0X = C(99) and A,,, B and L as above, we obtain
A = AB. Moreover, the operators Ag and Ly are the same as in the last section

and the Dirichlet-to-Neumann operators satisfy

(IIL.31) NP = C + No.

In [Subsection III.8.5( we already have seen that Ay is sectorial of angle § and

has compact resolvent on C(€2) and Ly exists and is bounded. Moreover, since

B|x, = By we conclude from the corresponding result in [Subsection III.8.5|

that B is relatively Ap-bounded of bound 0. Note, that C generates a compact

™

and analytic semigroup with angle § on C(992). From (IIL31]) we conclude
by perturbation (see [EN00O, Theorem III.2.10]) that the Dirichlet-to-Neumann

operator NP generates a compact and analytic semigroup with angle T on

2
C(092). Now [Theorem 111.4.1.2 and [Corollary I11.4.3.1| imply

Theorem II1.8.6.1. The operator A given by (I11.30)) generates a compact and

analytic semigroup with angle 5 on C(£2).
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The special case of this result, where A,, and C are Laplace operators can be
found in [BE19, Example 5.3]. The general case follows from [Bin20b, Theorem
4.6).

Positivity and asymptotic behaviour

In this subsection we concentrate on the positivity and the asymptotic behaviour
of the semigroup generated by ([IL.30)).

We verify the conditions of [Corollary I11.4.4.3] Using the results from the last
section it remains to show that N ){3 generate strongly continuous semigroups of
positive operators on C(9) for sufficient large X. This follows from and
the positive minimum principle (cf. [Nag86, B-II, Theorem 1.6]) using the facts

that N /{3 © and C generate strongly continuous semigroups of positive operators
on C(09) for sufficient large A. Now |Corollary 111.4.4.3| implies

Theorem III1.8.6.2. The operator A given by (I1.30) generates a strongly

continuous semigroup of positive operators on C(ﬁ)

Wellposedness of parabolic equations with dynamic boundary

conditions

Using the results from above, [Theorem III.2.1.1] implies the following.

Corollary II1.8.6.3. For all uy € D(A) the problem

Owu(t,r) = Zn:aj (Z aj(r)Ogu(t T))

<.
Il
-

fort>0,r€cq,
ax(r)Oku(t, ) + ao(r) - u(t,r)

0; (Z cik(s)Oku(t s))

+
M=

3
I

dyu(t, s)

M:

<.
Il
-

+
M=

c(s)Oku(t, s) + co(s) - u(t,s) fort>0,s € 00,

i
I

vj(s)Oku(t, s)

2
T
L

|
M:
IS
<.
=
—~
w
N

u(0,7r) = up(r) forreQ
with dynamic boundary conditions is well-posed on C(Q). Further, t — u(t,r)

is analytic for all r € Q and u(t,-) € C®(Q). If the initial value ug is positive,
then the solution wu(t,-) is positive for t > 0.
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Moreover, we conclude from [Theorem ITI.2.2.T] the following results.

Corollary II1.8.6.4. Let f: [0,7] — C(Q) and §: [0,7] — C(9Q) integrable

functions and f(t) = fo+ fg f(s)ds, g(t) = go + [3 G(s)ds such that f(t)(r) =
g(t)(r) for allt € [0,7] and r € 0. For all ug € D(A) the problem

n

Opu(t,r) = 0; <Z ajk(r)Opu(t 7'))

7j=1
forte[0,7],7 € Q,

+
M= T

ag(r)Ogu(t,r)

_|_

Q =
=
~~ =

r) - ut,r) + f()(r)
83 (Z C]k 8ku t S)

M:

opu(t, s) =

.
Il
—

+
WE

cr(s)Oku(t,s) +co(s) - u(t,s)  fortel0,7],s € 09,

e
Il
—

vj(s)Oku(t, s) + g(t)(s)

|
(]
S
.
oyl
—~
SN—

S
bl
Il
—

u(0,7) = up(r) forreQ

with dynamic boundary conditions admits a unique solution on C(Q). If the

initial data ug and f are positive, then the solution u(t,-) is positive fort € [0, 7].

Corollary I11.8.6.5. Let F: [0,7] x C(Q2) — C(Q) and G: [0,7] x C(02) —
C(092) continuously differentiable functions such that F(t,u(t,-))(s) =
G(t,u(t,-))(s) for allt € [0,7] and s € ON. For all ug € D(A) the problem

Opu(t,r) :z”: J(Za]k ak:UtT))

Jj=1

n (Pt 1) forte[0,7],r € Q,
k

+ao(r) - ult,r) + F(t,u(t,))(r)

opu(t, s) 228](2% ) O u(t s)

J=1

+ cr(8)0pu(t, s) + co(s) - u(t, s
kglk()k( ) cols)ul )fOTtG[O,T],Seaﬂ,

3

forreQ
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admits a unique solution on C(Q). Moreover, if the initial data ug and F are

positive, then the solution u(t,-) is positive for t € [0, T].

Wellposedness of elliptic equations with dynamic boundary

conditions

Now we investigate elliptic differential equations with dynamic boundary con-
ditions with an additional drift term at the boundary. This gives a system of
differential equations, where the equation on the interior is elliptic and the equa-
tion on the boundary is parabolic. Note that such a problem is time dependent,

since the boundary condition is.

Since the operator Ay with Dirichlet boundary conditions has compact resolvent,
by [BE20a, Lemma 3.2] it follows that L) exists if and only if A € p(Ap).

Moreover, |Proposition II1.5.0.2] implies that N generate compact and analytic

semigroups of angle 5 on C(9€2) for all A € p(Ap). [Theorem III.3.1.1| now yields

the following.

Corollary II1.8.6.6. For all zo € D(C) the problem

||
M:

Au(t,r)

8j (Z ajk 8ku t 7“))

<.
Il
—

fort>0,re€qQ,
ak(r)aku(tv T) + CL(](T) : U(t, T)

8j (Z Cjk 8ku t S))

4
NE

B
Il
—

||
M:

Oru(t, s)

<.
Il
=

4
NE

cr(s)Oku(t, s) + co(s) - u(t,s) fort>0,s € 00,

b
Il
—

|
(1=
S
.
o
—~
~—

vj(s)0ku(t, s)

g
E
I
—

u(0,s) =

8
=)
—

w
-

for s € 90

with dynamic boundary conditions is well-posed on C(2) if and only if X € p(Ap).
Further, t — u(t,r) is analytic for all v € Q and u(t,-) € C*(Q). If the initial

value ug s positive, then the solution u(t,-) is positive for t > 0.

Further [Theorem TI1.3.2.7] yields the following corollaries.

Corollary II1.8.6.7. Let f: [0 7] = C(Q) and §: [0,7] — C(0N) integrable
functions and f(t) == fo+ [ f(s)ds, g(t) = go + [s §(s)ds. For all zg € D(C)
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the problem

M:

Au(

8]<Z a]k Bku t r )

1

<.
I

fort€[0,7],r € Q,

M=

+ ax(r)Oku(t,r)

e
Il

—~ =

+

N

0

r)-u(t,r) + f()(r)
Opu(t, s) = Z@(Zcﬂf Okuts>

J=1

+ Zn: cr(s5)0ku(t, s) +co(s) -u(t,s)  fort€0,7],s € 09,
k=1

— Y a(s)vi(s)Oult, s) + g(t)(s)

jik=1
u(0,s) = zo(s) for s € 082

with dynamic boundary conditions admits a unique solution on C(Q) if and only
if X € p(Ag). Moreover, if the initial data ug and f,g are positive, then the
solution u(t,-) is positive for t € [0, 7).

Corollary II1.8.6.8. Let F': [0,7] x C(Q2) — C(Q) and G: [0,7] x C(02) —
C(09) continuously differentiable functions. For all xy € D(C') the problem

Au( :iaj(z%k ak.utr)

+ Z ar(r)Opu(t, ™) + ao(r) - u(t,r) fort e0,7],r €,

3

8tuts :Zaj(zcjk 8kuts)

7=1
+ z’l: ck(8)0kul(t, s) + co(s) - u(t, s) fort €10,7],s € 09,
k=1
B Z a’jk(s)yj(s)aku(t7 S) + G(tv u(t7 ))(S)
k=1
u(0,s) = zo(s) for s € 02

admits a unique solution on C(Q) if and only if X € p(Ag). Moreover, if the
initial data ug and F,G are positive, then the solution u(t,-) is positive for
t €0, 7].
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I11.8.7 Elliptic operator with Wentzell boundary conditions on
manifolds

In this section we generalize [Subsection I11.8.5(to smooth, compact, Riemannian

manifolds (M, g) with smooth boundary OM. To this end, we take real-valued

functions

af = al € C°(M), bjeCo(M), ceCM), deCOM) 1<jk<n,

satisfying the strict ellipticity condition
af (r)g’ (r) Xi(r)Xu(r) > 0

for all co-vectorfields X, X; on M with (X1(r),..., X,(r)) # (0,...,0). Re-
placing the divergence and the gradient by there analogues on Riemannian

manifolds, we define the maximal operator in divergence form by

1
Ay f = 1/]aldivg (aV%f) + (b, V4, f) + cf,
(I11.32) Vil
D(Ap,) = {f €N W2P(M)YNC(M): Anf € C(M)},

p>1

where a = (a?) and b = (b;). As feedback operator we take

Bf = —;:gf—kd-Lf = —g(aV?wf,Vg)—Fd-Lf,
(111.33) ) o
D(B) = {f € ﬂ Wk;’C’(M) NC(M): Bf € C(@M)}

p>1

where Lf = floar denotes the trace operator. Now we define the operator
A: D(A) c C(M) — C(M) by

(I11.34) Af = Anf, D(A):={f€ D(An)ND(B): LAnf = Bf}.

Generation of semigroups

Choosing X = C(M), 0X = C(OM) and A,,, B, L as above the operator A
given by ([I1.34) fits into our abstract framework A = A5,

We induce a (2, 0)-tensorfield on M given by

~kl k il
7" =aig".
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Its inverse g is a (0, 2)-tensorfield on M, which is a Riemannian metric since
a?gjl is strictly elliptic on M. It turns out that the maximal operator A, can

be written as A% plus lower order terms, whereas the feedback operator B is

the (negative) normal derivative —a%g with respect to g. Applying perturbation

theory (see [Theorem III1.5.0.3) it remains to show the result for the Laplace-

Beltrami operator with Wentzell boundary conditions. The verification of

[Assumptions III.1.1.2|is similar as on domains. The sectoriality with optimal

angle 5 and compactness of the resolvent of the operator Ag with Dirichlet
boundary conditions is proven in [Bin20a|. Further, by [Tay96, Appendix 12.C
(C.4)] it follows that

N=\/-A,, +P

where P denotes a pseudo differential operator of order 0. Following the proof
of [Eng03|, Theorem 2.1] we conclude that the Dirichlet-to-Neumann operator
N generates a compact and analytic semigroup of angle 7. For details we refer

to [Binl9]. Now we conclude

Theorem II1.8.7.1. The operator A given by (11.34) generates a compact and
analytic semigroup of angle 5 on C(M).

Wellposedness of parabolic equations with dynamic boundary

conditions

[Theorem [I1.8.7.1) and [Theorem III.2.1.1| now give the following.

Corollary II1.8.7.2. For all ug € D(A) the problem

dult,r) = Jla(r)| divy <’a1(r)‘a(r)Vﬁ/ju(t,r))>

+ (b(r), V4ult,r)) + c(r) - u(t,r)

fort>0,r€ M,

Oru(t, s) = _aang u(t,s) + bo(s) - u(t,s) fort>0,s € OM,
u(0,7r) = up(r) forr e M

with dynamic boundary conditions is well-posed on C(M). Further, t — u(t,r)
is analytic for all v € M and u(t,-) € C®°(M). If the initial value ug is positive,
then the solution u(t,-) is positive for t > 0.

Finally, [Theorem III.2.2.1| implies the following corollaries.

Corollary IT1.8.7.3. Let f: [0,7] — C(M) and §: [0,7] — C(OM) integrable
functions and f(t) = fo+ [ f(s)ds, g(t) = go + [y G(s)ds such that f(t)(r) =
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g(t)(r) for allt € [0,7] and r € ON. For all uy € D(A) the problem

Owu(t,r) = \/]a(r)| div, (M@(r)V%u(t, r)))

+(b(r), Vi u(t,r)
+e(r) - ult,r) + f(#)(r)

Owu(t, s) = e

w(0,7) = ug(r) forre M

forte[0,7],r € M,

u(t,s) +bo(s) - u(t,s) +g(t)(s)  forte|0,7],s € OM,

admits a unique solution on C(M). If the initial data ug and f are positive,

then the solution u(t,-) is positive for t € [0, 7].

Corollary II1.8.7.4. Let F: [0,7] x C(M) — C(M) and G: [0,7] x C(OM) —
C(OM) continuously differentiable functions such that F(t,u(t,-))(s) =

G(t,u(t,-))(s) for all t € [0,7] and s € OM. For all ugp € D(A) the prob-
lem

oattr) = vy Lot Pt

1
Vialr)]
+ (b(r), Viu(t,r))
+er) - ult,r) + F(t,u(t, ))(r)

fort e [0,7],7 € M,

a

Oru(t,s) = —%U(ta 5) +bo(s) - u(t, 5) fort e 0,7],s € OM,
+ G(t, ult,-))(s)
u(0,7) = uo(r) JorreM

admits a unique solution on C(M). Moreover, if the initial data ug and F are

positive, then the solution u(t,-) is positive for t € [0, T].

Wellposedness of elliptic equations with dynamic boundary
conditions

Since the operator Ay with Dirichlet boundary conditions has compact resolvent,
by [BE20a, Lemma 3.2] it follows that L) exists if and only if A € p(Ap).
Moreover, [Proposition I11.5.0.2|implies that N generates a compact and analytic

semigroup of angle § on C(0M) for all A € p(Ap). [Theorem I11.3.1.1{ now give
the following.
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Corollary II1.8.7.5. For all zo € D(N) the problem

\/ i ! S u(t,r
u(t,r) = /|a(r)| div, <|a(r)|a(r)VM (¢, ))> fort > 0.r € 1,
+ (b(r), V4ult,r)) + c(r) - u(t,r)
Opu(t, s) = —;jgu(t, s) +d(s) - u(t,s) fort>0,s € 0M,
u(0, s) = xo(s) for s € OM

with dynamic boundary conditions is well-posed on C(M) if and only if X € p(Ap).
Further, t — u(t,r) is analytic for allr € M and u(t,-) € C(M). If the initial

value ug is positive, then the solution u(t,-) is positive for t > 0.

Moreover, as a consequence of [['heorem [I1.3.2.1] we obtain the following results.

Corollary I11.8.7.6. Let f: [0,7] — C(M) and §: [0,7] — C(OM) integrable
functions and f(t) = fo+ [¢ f(s)ds, g(t) = go + Ji §(s)ds. For all zg € D(N)
the problem

. 1
Au(t,r) = 1/]a(r)| divg <a(r)\

+ (b(r), V4 ult,r))
+c(r) - u(t,r) + f(t)(r)

o) Pyutt)
forte[0,7],7 € M,

Opu(t, s) = —aa:gu(t, s) +d(s) - u(t,s) + g(t)(s) fort e |0,7],s € OM,
u(0,s) = xo(s) for s € OM

with dynamic boundary conditions admits a unique solution on C(M) if and
only if X € p(Ag). Moreover, if the initial data ug and f,g are positive, then the

solution u(t,-) is positive for t € [0, T].

Corollary I11.8.7.7. Let F: [0,7] x C(M) — C(M) and G: [0,7] x C(OM) —
C(OM) continuously differentiable functions. For all xo € D(N) the problem

Au(t,r) = 1/|a(r)| divg <m1(ma(r)V§\4u(t,r))>

+ (b(r), V4ult,r)) + c(r) - u(t,r)
+ F(t,u(t,-))(r)

forte0,7],r € M,

a(l
du(t,s) = —8ngu(t, s) +d(s) - u(t,s) fort>0,s € OM,
+ G(t,u(t,-))(s)
(0, 5) = 2o (s) for s e OM
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with dynamic boundary conditions admits a unique solution on C(M) if and
only if X € p(Ap). Moreover, if the initial data ug and F,G are positive, then
the solution u(t,-) is positive for t € [0, 7].

I11.8.8 Elliptic operator with generalized Wentzell boundary

conditions on manifolds

In this section we generalize [Subsection I11.8.6[to smooth, compact, Riemannian

manifolds (M, g) with smooth boundary M. We consider as in the last section

a smooth, compact, Riemannian manifold M with smooth boundary M and

an uniformly elliptic operator A,,: D(A;,) C C(Q) — C(Q) in divergence form
given (I11.33)). Further, we consider real-valued functions

aji = ag; € CP(OM), Bj € C*(0OM), ~eC¥0OM), 1<jk<n
satisfying the strict ellipticity condition
i (5)g”" (s) X () Xi(s) > 0

for all co-vectorfields X, X; on OM with (X1(s),...,Xn(s)) # (0,...,0). We
define an operator C : D(C) C C(OM) — C(OM) in divergence form on the
boundary by

1
Cz = \/Edivg (\/Wav?\/[il?) + (B, V?M@ + T,

D(C) = {a: e () W2P(0M) 1 C(OM): Cxr € C(aM)},

p>1

(I11.35)

where o = (af) and B = (/). Moreover we define the operator By: D(By) C
C(M) — C(89) by (OL.33)) and finally B: D(B) C C(M) — C(0M) by

Bf = Bof + CLf, D(B):={f € D(Ay)ND(Bo): Lf € D(C)}.
Now we consider A: D(A) ¢ C(M) — C(M) given by

(II1.36) Af := Anf, D(A) = {f € D(Ay)ND(B): LA,.f = Bof + CLf}.

Generation of semigroups

Choosing X = C(Q2), 0X = C(OM) and A,,, B, L as above the operator A given
by (TT1.36) fits into our abstract framework A = A5,
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Using the same arguments as in the last section we can assume without loss of
generality that the maximal operator is the Laplace-Beltrami operator A?M. It
remains to show that the Dirichlet-to-Neumann operator N generates a compact

and analytic semigroup of angle § on C(0M). Note that
(1I11.37) NP =0+ NP, D(NP)=D(C)

and hence by perturbation it is sufficient to prove the statement for C'. Observe
that C is a strictly elliptic operator on a smooth, closed, Riemannian manifold
(M, ).

Considering OM equipped with the new Riemannian metric induced by

g =

o;g"

it turns out that C' can be rewritten as Laplace-Beltrami operator Ag s plus
lower order terms and it follows by perturbation that C' generates a compact
and analytic semigroup of angle § on C(0M). For details see [Bin20a] and

[Bin20b]. Now we conclude

Theorem II1.8.8.1. The operator A defined in ([11.36)) generates a compact

and analytic semigroup of angle 5 on C(M).

Wellposedness of parabolic equations with dynamic boundary

conditions

Using the results from above, [[heorem [II.2.1.1] implies the following.

Corollary II1.8.8.2. For all ug € D(A) the problem

duult,r) = \/la(r)| div, <’a1wa(r)v34u(t,r))>

+ (b(r), V4,ult,r)) + c(r) - u(t,r)

Opu(t, s) = \/|a(s)| divg ( ! a(s)Vi,ul(t, s))

|a(s)]
F{B), Pyt )+ ultys) —
w(0,7) = ug(r) forre M

fort>0,r € M,

fort>0,s € 0M,

u(t, s)

with dynamic boundary conditions is well-posed on C(M). Further, t — u(t,r)
is analytic for all v € M and u(t,-) € C*°(M). If the initial value ug is positive,
then the solution u(t,-) is positive for t > 0.
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Moreover, we conclude from [Theorem ITI.2.2.T] the following results.

Corollary II1.8.8.3. Let f: [0,7] — C(M) and §: [0,7] — C(OM) integrable

functions and f(t) = fo+ [§ f(s)ds, g(t) = go + [y G(s)ds such that f(t)(r) =
g(t)(r) for allt € [0,7] and r € OM. For all ug € D(A) the problem

Dt r) = /la(r)] div, (mlw

+(b(r), Vigu(t,r)
+e(r) - ult,r) + f(£)(r)

)V u(t,r )
forte[0,7],r € M,

Ot ) =l aw, (oot utt )
+ (B(s), Vi u(t, ) +7 - ult,s) fort€[0,7],s € OM,
Dt s) + 9(0)(9)
u(0,7) = uo(r) forre M

with dynamic boundary conditions admits a unique solution on C(M). If the

initial data ug and f are positive, then the solution u(t,-) is positive fort € [0, T].

Corollary II11.8.8.4. Let F': [0,7] x C(M) — C(M) and G: [0, 7] x C(OM) —
C(OM) continuously differentiable functions such that F(t,u(t,-))(s) =

G(t,u(t,-))(s) for all t € [0,7] and s € OM. For all up € D(A) the prob-
lem

duu(t,r) = \/Ja(r)| div, (le

+ (b(r), Viu(t,r))
+c(r) - u(t,r) + F(t,u(t,))(r)

deu(t, s) = y/|a(s)| divg <|a1(5)’a(s)V§wu(t, s))

<ﬂ( ), Viult,s)) + 7 - ult,s) forte[0,7],s € M,

a(r)Viult, 7")))
fort € [0,7],r € M,

u(t, s) + G(t,u(t,-))(s)

nd
u(0,7) = up(r) forre M

admits a unique solution on C(M). Moreover, if the initial data ug and F are

positive, then the solution u(t,-) is positive for t € [0, T].
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Wellposedness of elliptic equations with dynamic boundary

conditions

Since the operator Ay with Dirichlet boundary conditions has compact resolvent,
by [BE20a, Lemma 3.2] it follows that L) exists if and only if A € p(Ap).

Moreover, [Proposition II1.5.0.2] implies that V) generate compact and analytic

semigroups of angle 5 on C(OM) for all A € p(Ap). [Theorem I11.3.1.1) now give

the following.

Corollary II1.8.8.5. For all zo € D(C) the problem

xut,r) = \/Ja(r)| div, <|al(r)|a(r)V?wu(t,r))> -
+(b(r), V4,ult,r)) + c(r) - u(t,r)
drult, s) = \/la(s)| div (ml(s)‘a(s)vgwu(t, s)>
+ (B(s), VI, ult, s)) fort>0,s € OM,
byt s) — ;;u(t, 5)
(0, 5) = wo(s) for s € OM

with dynamic boundary conditions is well-posed on C(M) if and only if X € p(Ap).
Further, t — u(t,r) is analytic for all v € M and u(t,-) € C*°(M). If the initial

value ug is positive, then the solution u(t,-) is positive for t > 0.

Further [Theorem II1.3.2.7] yields the following corollaries.

Corollary IT1.8.8.6. Let f: [0,7] — C(M) and §: [0,7] — C(OM) integrable
functions and f(t) = fo+ [3 f(s)ds, g(t) = go + [3 §(s)ds. For all zy € D(C)
the problem

. 1
Au(t,r) = 1/|a(r)| divg <a(7‘)|

+(b(r), Vi u(t,r)

a(r) Vi u(t, 7“)))
forte[0,7],7 € M,

+c(r) - ult,r) + f(#)(r)
dult, s) = \/la(s)| div <|al(8)|o¢(s)V§7wu(t, 3))
<ﬁ< ), V4ult,s)) +7 - ult,s) fort e[0,7],s € OM,
—ult,s) + 9(t)(s)
u(0, 5) = zo(s) for s € OM
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with dynamic boundary conditions admits a unique solution on C(M) if and
only if X € p(Ag). Moreover, if the initial data ug and f,g are positive, then the

solution u(t,-) is positive for t € [0, 7].

Corollary II1.8.8.7. Let F': [0,7] x C(M) — C(M) and G: [0, 7] x C(OM) —
C(OM) continuously differentiable functions. For all xg € D(C') the problem

Au(t,r) =1/|a(r)| divg (MQ(T)V%JU(@ 7“)))

+ (b(r), Viu(t,r))
+c(r) - u(t,r) + F(t,u(t,))(r)

Oru(t, s) = \/|a(s)| div, <|O[1(S)’a(s)vf]7wu(t, s))

forte[0,7],7 € M,

+ (B(s), Viult,s)) +7 - ult, s) fort €10,7],s € OM,
ALt ) + Gl u(t, ) (s)
u(0,s) = zo(s) for s € OM

admits a unique solution on C(M) if and only if X € p(Ag). Moreover, if ug

and F,G are positive, then the solution u(t,-) is positive for t € [0, T].

I11.8.9 Interior boundary conditions

The concept of interior boundary conditions was introduced and developed by
Teufel and Tumulka, see [TT15], [TT16|, [ST19] [STT19], [DGT+19|, [Tum20]

and [HT20], to describe particle creation and annihilation in quantum dynamics.

For simplicity of the representation we first concentrate on a model of two
particles, where one particle is fixed on the origin of our coordinate system.
In the following we call the particle at the origin the x-particle and the other
the y-particle. Further we assume that the x-particle can emit and absorb the

y-particle.

Take as configuration space

Q = Q1) UQ(0),

where Q) = R3\ {0} is the configuration space of y-particle and Q) = {0}
is the configuration space of the fixed x-particle. Note that we must exclude the
origin in the configuration space of the y-particle, since if it reaches the origin

it collides with the x-particle and will be absorbed. Hence as Hilbert space we
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choose the truncated fock space
A =12(Q) = L*(Qn)) ® L*(Q) = L*(R*) & C.
The maximal Hamiltonian H,,: D(H,,) C J€ — J is given by

Hy (Y1 + o) = —Ady,
(IIL.38)

D(Hp) = {¢1 € L*(Q)): A1 € L*(Qq1))} & C.

The annihilation operator B: D(B) C s — C is defined as

1.
B = o 11_1}1%) Or /S2 r(rw) dw,
(I11.39)

D(B) = {w S 11}3% Or /S2 rp(rw) dw exists}

where (r,w) are the spherical coordinates of R3. Moreover, the trace operator
L: D(H,,) C s — C is the symmetrized evaluation

Ly = —4r - lim | rY(rw) dw,

r—0 /s2
(I11.40)
D(L) = {w € lim | ryY(rw)dw exists} .
r—0 Js2

Now the Hamiltonian Higc: D(Hipc) C S — H is given by
Hipgey == Hpp + 1B,

D(Hipc) == {Y =1 +1o: v € D(Hy,,) N D(B), vy € C: Lp = 1)y},

where I: C — ¢ denotes the embedding to the second component. In [LSTT18|

it is shown that
(I11.41) D(H,,) = D(Hfee) @ ker(A — H,,)

for all A € p(Hpreo), where Hpeo: D(Hiree) = W22(R}) @ C C S — H: )

H.,,v denotes the free Hamiltonian. Moreover, we have

ker(A — H,,) = span(g,) = C,

o~ VIl

4|z

where gy (z) == —
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Note that the interior boundary conditions given above are of Dirichlet type,
since essentially it specifies the value of ¢; at the boundary. Replacing the
evaluation v|sq by Oé%?/) + BYlag = 0 yields interior boundary conditions of
Robin type. More precisely, we obtain the Hamiltonian HI%% with interior
boundary conditions of Robin type (a, ) given by

Hiep = Hoptp + 4T Lap + 61 B,
(I11.42)

D(Hie) = {@D Y1+ 1o wED(Hm)mD(B)y%EC}‘

By + BLY = 1o

For more information about interior boundary conditions we refer to [TT15,
Remark 3.3.5]. In [LSTT18] it is proven that all these operators satisfy (I11.41)).

Using (III.41)) instead of (III.6)) or (III.10) we developed in [BL20|] an abstract

framework which is tailored towards operators with interior boundary conditions.

Abstract Setting II1.8.9.1. Consider
(i) two Hilbert spaces ¢ and 0.¢;
(ii) a densely defined maximal operator H,,: D(H,,) C S —
(iii) a trace operator L: D(H,,) C S — 0
(iv) a boundary operator B: D(B) C S — 05
(v) a identification operator [: 0. — H.

Now an abstract operator H%%: D(Hﬁgg) C A — F with interior boundary

conditions associated to «, 3,7,8 € C is given by

Cw Hyp +~I1Ly + 6By,
D(Hfﬁ%) = {¢ € D(H,,) N D(B), aBy + LY = I*}.

Note that Hﬁgg is symmetric if and only if 7 — ad = 1 and ay € R, 36 € R,
see [BL20, Lemma 3.5]. Moreover let Ay, Ly and N) defined as above.

Consider # = L%(Q), 02 = C and I: C < L*(Q1) ® C: z — 0 + 2 the
inclusion. Moreover, let H,,, B and L as in ([I1.38)), ([I1.39)) and (III.40}). Then

we obtain

Hizow = Hypp + vILyY + 61BY,
D( IBC)—W Yo +Y1: Y1 € D(Hy,) N D(B),aBvY + BLY = o},
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which coincides with ([I1.42)). Further, we obtain Ay = Hee and Ny is the

corresponding Weyl function.

In the sequel we make the following assumptions.
Assumptions IT1.8.9.2. (i) Ag is self-adjoint on F;
(ii) B is relatively Ag-bounded;
(i) 1g((BRO\, 40)))  ker(A — An) for X € p(Ao);

(iv) L((BR(A, A))*) = Id for A € p(Ao).

Self-adjointness

In this subsection we study the self-adjointness of the operator with interior
boundary conditions. Recall that by Stone’s Theorem (see |[EN00, Theorem
I1.3.24]) a densely defined operator A: D(A) C E — E on a Hilbert space E is
self-adjoint if and only if A generates a strongly continuous group of unitary
operators. By |[BL20, Lemma 3.5] the operator Hyjp is symmetric if and only if
7 —ad =1 and ay € R, 36 € R and hence these conditions are necessary for

the self-adjointness of Hﬁg’g

For o, f € C we denote by A, g: D(Anpg) C H — S the abstract operator

with Robin boundary conditions

Aa,ﬁf = Hmfy
(I11.43)

D(An.p) ={f € D(H»n)ND(B): aBf+ Lf =0}.

Now the operator Hﬁ‘g% can be seen as the a perturbed operator of A,z by
two perturbations: one of the domain and one of the action. This fits perfectly
into the theory of abstract boundary value problems, developed in |Gre87|,
[ABE14], [ABE17] and [AE18]. Note that the perturbation of the domain is I'*
and therefore bounded and hence we can use similar arguments as in [Gre87].
Denoting the Dirichlet operator associated to aB + L instead of L by Liy’ﬁ
and the corresponding Dirichlet-to-Neumann operator Ny B (vB + 5L)L§f”3
we obtain the following (see [BL20, Theorem 3.12]).

Theorem II1.8.9.3. Assume that A, g is self-adjoint and let X € p(Aqp) N
p(Ap). Assume also that 1 € p(Lf\“”BI*) N p(Lg’ﬂI*) and

INYPI s relatively (Id L3P I*)*(Ag 5 — ) (Id —LEPT*) bounded, with bound
a; with a < 1 for u € {\, A}, then HI%% is self-adjoint on .
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We point out that the identification operator I allows to compare the Dirichlet-
to-Neumann operator Ny with the operator with Dirichlet boundary conditions.
Hence we do not need the self-adjointness of IVy, since we can use a perturbation
argument.

This theorem above has many variants and generalizations. We refer to [BL20),

Theorem 3.14] and its corollaries.

Quasi-boundary triples

The theory of quasi-boundary triples was developed by Jussi Behrndt, see [BLO7],
[BL12|, [BM14] and [BS19]. The state of art is summarized in [BHS20).

Definition I11.8.9.4. A triple (07, L, B) is called a quasi-boundary triple
for an operator A,,: D(Ay,) C 5 — & if 0 is a Hilbert space and
L,B: D(Ay,) C # — 07 are operators such that

(i) there exists a closed, densely defined operator A such that the closure of
A, is A, = fl*;

(ii) the second Green identity holds

(Anf,9)0 = {f; Amg)w = (Bf, Lg)ow — (Lf; Bg)ax
for all f,g € D(Ap,).
(iii) The map (L, B) : D(Ay,) — 0 x 0 has dense range.

(iv) The restriction Ay := (Ap)|x, to Xo = ker(L) is a self-adjoint operator
on J7.

A quasi-boundary triple is called an ordinary boundary triple if rg(L, B) =
0 x 0. and a generalized boundary triple if L is surjective. A quasi boundary
triple for A* exists if and only if the defect indices n(A) := dim(ker(A* F 7))
of A coincide. If the defect indices of A are finite the quasi-boundary triple
for A is an ordinary boundary triple. Moreover, the operator (L, B): D(A,,) C
H — 0 x 0 is closable and by [BL07, Proposition 2.2] it follows that
ker(L, B) = D(A) holds. By [BL07, Theorem 2.3] it follows that A = A* if
and only if rg(L, B) = 0. x d.#. In this case the restriction A := A*|y, is
self-adjoint and the quasi boundary triple (0.%, L, B) is an ordinary boundary
triple. For each A\ € p(Ap) the definition of a quasi-boundary triple yields the

decomposition

D(A;,) = D(Ap) @ ker(A — Ap,).
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Compare this decomposition of (I11.6)) and (II1.10)). Analogous as above we define
the Dirichlet operator L) = (L|ker()\—Am))71 and the Dirichlet-to-Neumann

operators Ny := BL). In the theory of quasi-boundary triples the Dirichlet
operators are called v-field and the Dirichlet-to-Neumann operators are called
Weyl function. For more details about quasi-boundary triples see |[BLL13]|,
[BDGM18| and [BFK+17].

In comparison to our theory the theory of quasi-boundary triples has two mayor
restrictions. First, it works only on Hilbert spaces, since its starting point is
an abstract variant of Green’s identity and hence a scalar product is necessary.
The second one is that the feedback operator B has to be defined on D(A,,)
which implies that the Dirichlet-to-Neumann operators N, are bounded for all
A € p(Ao).

Consider the operator H,y, : D(ﬁm) C € — I given by
Hyp = Hptp + 1" + I*(B— L)y, D(H,,) == D(Hy)N D(B)

and the minimal operator Hy C H,, with D(Hy) = {¢ € D(H,,)ND(B): L) =
Btp = I'*1p}. In the following we assume that Hy is densely defined. In [BL20,
Theorem 4.7] we show the following result about operators with interior boundary

conditions of the Dirichlet type.

Theorem II1.8.9.5. Let o =0, = 1. Assume that 0 € p(Ag) and 1 € p(Lol*).
Further, assume that INT* is relatively (Id —LoI*)* Ag(Id —LoI*)*-bounded of
bound a < 1. If (1—I*Lo)~! leaves D(N) invariant, then (0¢,(L—1I*),(B—1I*))

is a quasi-boundary triple for H,y,.

We point out that 0 € p(Ap) can be replace by p(Ag) # 0. For details see [BL20
Theorem 4.7].

In order to investigate this problem into more detail, we define the Dirichlet
operator associated to L — I* and H,, by Fy and M = (FZ*FZ)% Further, we
need the associated Dirichlet-to-Neumann operator Sy = (B — I*)F\, D(S)) =
{¢ € 0: F\¢ € D(B)}. Using the classification of quasi-boundary triples,
see |[BM14] Section 3] this result yields a classification result of the self-adjoint
extensions with interior boundary conditions. Let R be a relation on 0.5 and

define the operator Hey as the restriction of H,, to
D(Hw) :={f € D(Hn)ND(B): (L—-1I")f,(B-1I")f) € R}.

The following result classifies all self-adjoint extensions of Hy. For details we
refer to [BL20, Theorem 4.9].
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Theorem II11.8.9.6. Assume there exists A € RN p(HIO]’;C). Then Hy is self-
adjoint on J€ if and only if the relation

MY R —Sy)M!
is self-adjoint and satisfies D(R) C M D(S)).

Convergence

Next we are interested in the convergence of operators H%é with interior
boundary conditions associated to a and 1 for « — 0. Fix vy =1, § = 0, then we
obtain that Hﬁgé are symmetric for all « € R. Moreover, one has the following
result, see [BL20, Theorem 4.11].

Theorem II1.8.9.7. Assume that there exists a \g € R such that A € p(Ap), Ny
are self-adjoint and bounded from above, 1 € p(I*Ly), (Id —I*Ly)~! leaves D(N)
invariant and IN)I* is relatively (Id —LxI*)*(Ag — A\)(Id —LxI*)*-bounded of
bound 0 for all A < Ag. Suppose that Ag is bounded from below. Then the

1 1.
operators H?E}C converge to H?i%c in the norm resolvent sense for o ] 0.

In particular we conclude for I = 0 a convergence result for operators A, g with
Robin boundary conditions to the operator with Dirichlet boundary conditions
in [Setting II1.8.9.1 This result is analogous to [BE20b, Corollary 4.8] in
[Setting II1.1.1.1}
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Operators with Wentzell boundary conditions and the
Dirichlet-to-Neumann operator
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Tiibingen, Germany In this paper we relate the generator property of an operator A with (abstract) general-
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mation Engineering, Computer Science and Dirichlet-to-Neumann operator N acting on a “boundary” space dX . Our approach is
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uous functions. Concrete applications are made to various second order differential
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1 I INTRODUCTION

The generation of analytic semigroups by differential operators with generalized Wentzell boundary conditions on spaces of
continuous functions attracted the interest of many authors, and we refer, e.g., to [2—4,10,11]. For their derivation and physical
interpretation we refer to [12]. The present paper is a continuation and improvement of [4] where we introduced a general abstract
framework to deal with this problem. Before recalling this setting we consider the following typical example in order to explain
the basic ideas and the goal of our approach.

Take a smooth bounded domain Q C R”. Then consider on C(€) the Laplacian A,, with “maximal” domain D(A,,) :=

{ f € C(ﬁ) A fE C(ﬁ) }, where the derivatives are taken in the distributional sense. Finally, let % : D(%) C C(ﬁ) -
C(0€2) be the outer normal derivative, f < 0 and y € C(d2). In this setting we define the Laplacian A C A,, with generalized
Wentzell boundary conditions by requiring

FEDA) 1= Aufla=B-3 71|, (1.1

Our approach decomposes a function f € C(Q) into the (unique) sum f = f;, + & of a function f, vanishing at the boundary
0Q and a harmonic function A having the same trace as f. In other words, if L : C(ﬁ) — C(0Q), Lf := f|,q denotes the trace
operator, then f, € ker L = C,(£2) while h € ker(Am). Since A is uniquely determined by its trace, it can be identified with its
boundary value x := Lh. Hence, every f € C(€) corresponds to a unique pair ({?) € Cy(Q) X C(0Q).

Mathematische Nachrichten. 2018;1-14. www.mn-journal.org © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | 1
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2 ‘I. T‘Q]E BINZ AND ENGEL

To formalize this decomposition we introduce an abstract “Dirichlet operator” L, . C(02) — C (5) To this end we consider
for a given “boundary function” x € C(d2) the Dirichlet problem

{Amf =0 (1.2)

flog = x.

This system admits a unique solution f € C(Q), so by setting Lyx := f we obtain a bounded operator L, € £(C(02), C(Q)).
For f € C(ﬁ) we then have f = f;, + h where f, := (Id —LOL)f and h = Lyx for x := Lf. By (1.1) it then follows (for the

details see Step 1 below in the proof of Theorem 3.1) that A on C(ﬁ) transforms into an operator matrix A on C((£2) X C(0Q)
of the form

PR Am O
A.—<O N>+7> (1.3)

with some appropriate “non-diagonal” domain D(A) C Cy(€2) X C(0L2), see [5,6,14]. Here P denotes an unbounded perturbation
while N :=f - % - L is the so called Dirichlet-to-Neumann operator on C(0€2), see [9], [15, Sec. 12.C]. That is, N x is obtained
by applying the Neumann boundary operator to the solution f of the Dirichlet problem (1.2).

Using perturbation arguments one can show that .4, hence also A, generates an analytic semigroups if and only if the Dirichlet
Laplacian Ay, on C(€2) and the Dirichlet-to-Neumann operator N on C(d€2) do so. This means that we decoupled the operator
A C A, with generalized Wentzell boundary conditions on X := C(ﬁ) into an operator Ay, := Ay with Dirichlet boundary
conditions on X, := C(Q) and the Dirichlet-to-Neumann operator N := f - % - L, on the boundary space 0.X := C(0Q).

Since it is well-known that Ay, generates an analytic semigroup, our main result applied to this example yields that A generates
an analytic semigroup on C(ﬁ) if and only if N generates an analytic semigroup on C(d€2). Since the latter is true, see [3, Sec. 2],
we conclude that A C A, with generalized Wentzell boundary condition (1.1) is the generator of an analytic semigroup. We
mention that our approach also keeps track of the angle of analyticity and, in the above example, gives the optimal angle %

This paper is organized as follows. In Section 2 we introduce our abstract setting and then state in Section 3 our main abstract
generation result, Theorem 3.1. In the following Section 4 we show that the generator property of operators with generalized
Wentzell boundary conditions is invariant under “small” perturbations with respect to the action as well as the domain, cf.
Theorem 4.2 and Theorem 4.3. For these proofs we study in Lemma 4.6 and Proposition 4.7 how the Dirichlet- and Dirichlet-to-
Neumann operator, respectively, behave under relatively bounded perturbations. Finally, in Section 5 we apply our abstract results
to second order differential operators on C([0, 1], C"), the Banach space-valued second-order derivative, a perturbed Laplacian
with generalized Wentzell boundary conditions and uniformly elliptic operators on C(ﬁ) Our notation closely follows the
monograph [7].

2 | THE ABSTRACT SETTING

As in [4, Sec. 2], the starting point of our investigation is the following
Abstract Setting 2.1 Consider

(i) two Banach spaces X and 0X, called state and boundary space, respectively;
(ii) a densely defined maximal operatorA,, : D(Am) cCX - X;
(iii) a boundary (or trace) operator L € L(X,0X);
(iv) afeedback operator B : D(B) C X — 0X.

Using these spaces and operators we define the operator A : D(A®) c X — X with abstract generalized Wentzell boundary
conditions by

AP c A, D(A®):={feD(A,)nD®B): LA,f=Bf}. 2.1)

If B =0 the boundary conditions defined by (2.1) are called pure Wentzell boundary conditions. For an interpretation of
Wentzell- as “dynamic boundary conditions” we refer to [4, Sec. 2]. .
To fit the example from the introduction into this setting it suffices to choose X := C(Q) ,0X :=C(00Q), A, :==A,,Lf =

flsq and B :=ﬁ.%+y-L.
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In the sequel we need the (in general non-densely defined) operator A : D(A0> C X — X defined by

AyCA,. D(Ay) :=D(A,)nker(L).

In the example from the introduction A, is the Dirichlet Laplacian A, on C(Q) with non-dense domain
D(Aq) =D(A,,) NCy(Q).

Assumptions 2.2. (i) The operator A, is a weak Hille—Yosida operator on X, i.e. there exist 4o € R and M > 0 such that
[10,00) C p(Ao) and
|#R (2. 40)| <M forall 2> 4g;

(i1) the operator B is relatively A,-bounded with bound 0, i.e., D(AO) C D(B) and for every € > 0 there exists M, > 0 such
that

IBfllox <€ 1Aofllx + M, - |If|lx forall f € D(A);

(iii) the abstract Dirichlet operator L > = (L|ker( Am))_l 10X — ker (Am) C X exists and is bounded, i.e., forevery x € 0.X
the abstract Dirichlet problem

A,f =0,
Lf =x

admits a unique solution f € D(Am) and Lyx := f defines an operator L, € L(0X, X).

We note that by [13, Lem. 1.2] assumption (iii) is always satisfied if A,, is closed, L : X — 0X is surjective and A is invert-
ible. Moreover, Ly L € L(X) is a projection onto the subspace ker (Am) along X, := ker(L) which induces the decompositions
as topological direct sums

X =X,@®ker(4,) and D(A,)=D(A)) @ker(A,) (22)
with respect to the norm on X and the graph norm on D(Am), respectively.

In the sequel we will need the following operators.

Notation 2.3. Define G,, : D(G,,) C X — X by
G,f =A,f—LyB-(ld-LyL)f, D(G,) :=D(A,).
Then for x€ {1,0,00} we consider the restrictions A, C A, and G, C G,, given by

Ayt D(Ay) c X - X, D(Ay) :={feD(A,) : Lf =0},
A 1 D(A))CcX > X, D(A,) :={feD(A,) : LA,f =0}, (2.3)
Ay : D(Ay) € Xo— Xo. D(Ay) :={fe€D(A,): Lf=0, LA,f =0}

and

Gy : D(Gy) C X = X, D(Gy) := D(A),
G, : D(G))C X - X, D(G,) :={f e€D(G,) : LG, f =0},
Gy : D(Gy) € Xy = Xo, D(Gy) :={fe€D(G,):Lf=0, LG, f =0}

Observe that G, C G = Ay — LyB. Moreover, note that D, for D € {A, G} and € {0, 1,00} is a restriction of D,,. For + =0
this restriction corresponds to abstract Dirichlet boundary conditions and for * = 1 to pure Wentzell boundary conditions on X,
while D, is the part of D as well as of D; in X,. While the operators A, are quite natural, the operators G, are needed for
technical reasons. In fact, by Step 1 of the proof of Theorem 3.1 they are closely related to the first diagonal entry of the operator
matrix A in (1.3). Using perturbation arguments they will be simplified to the corresponding operators A, .
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Finally, we define the abstract Dirichlet-to-Neumann operator N . D(N) C 0X — 0X by

Nx :=BLyx, D(N):={x€0X : Lyx € D(B)}. (2.4)

This operator plays a crucial role in our approach.

3 | THE MAIN RESULT

The following is our main abstract result. In contrast to [4, Thm. 3.1] it proves (besides further generalizations) that (a) <= (b)
and not only that (b) =>(a) in case D = A.

Theorem 3.1. Let D € { A, G}. Then the following statements are equivalent

(a) AP given by (2.1) generates an analytic semigroup of angle a > 0 on X.

(b) D, is sectorial of angle & > 0 on X and the Dirichlet-to-Neumann operator N generates an analytic semigroup of angle
a>0ondX.

(¢) D, and N generate analytic semigroups of angle a > 0 on X and 0X, respectively.
(d) Dy, and N generate analytic semigroups of angle @ > 0 on X, and 0X, respectively.

Proof. By [4, Thm. 3.1] we have that (b) =,(a) for D, = A. Since A, and G, only differ by a relatively bounded perturbation
of bound 0, [7, Lem. I11.2.6] implies that assumption (b) is equivalent for D = A and D = G. This shows that (b) =,(a). The
equivalences (b) <= (c) <= (d) for D = A follow by [4, Lem. 3.3]. Now assume that D = G. Then by [7, Lem. II1.2.5] there
exists A € p(Go). Since L is surjective, [13, Lem. 1.2] implies that the Dirichlet operator for G,, — A exists. As before, [4,
Lem. 3.3] now applied to Gy — 4, G| — A and Gy, — 4 gives the equivalence of (b), (c) and (d) for D = G.

To complete the proof it suffices to verify that (a) =(d) for Dy, = G(y. We proceed in several steps where we put &, :=
Xo X 0X.

Step 1. The operator A% : D(AB) C X — X issimilarto A : D(A) C &, — &, given by

G, —LyN
A:=<B° z\(; ) D(.A):={<£>ED(AO)XD(N):Gof—LONxeXO}.

Proof. The operator

T:X->X, Tf:= <f _LLfOLf>

is bounded and invertible with bounded inverse
T': X - X, T—1<f> = f+ Lyx.
X
We show that A = TABT~!. Using that LL, = Idyx, X, = ker(L), A,,Ly = 0 and D(A,) = D(A,,) n X, € D(B) we have

<£> € D(A) < f € D(A)), x€ D(N) and A,,f — LyBf — LyNx € X,

< feD(Ay), x€ D(N) and LA, f —Bf —Nx=0
<> fe€D(Ay), xe€ D(N) and LA, (f + Lox) = B(f + Lyx)

= T—1<f) eD(A?) = <f> € TD(A®).

X X
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Moreover, for (i) € TD(A®) = D(A) we obtain using that f + Lox € D(A?)
TABT! (i) =TA,(f + Lyx)

_(An(f + Lox) = LoyLA, (f + Lox)
- LA, (f + Lox)

B Bf + Nx

(%)

Step 2. The operator A, : D(.AO) C X, = X, given by

—LyN
Ay 1= (C;O ]\(; > D(Ay) := D(A)

generates an analytic semigroup of angle & > 0 on &Xj,.

Proof. By assumption A® generates an analytic semigroup of angle @ > 0 on X. Hence, by Step 1, .A generates an analytic
semigroup of angle « > 0 on &),. Since B is relatively Ay-bounded with bound zero, a simple computation using the triangle
inequality shows that B := (},{) with domain D(B) := (D(B) N X;)) X 0X is relatively .A-bounded with bound zero. Hence,
by [7, Lem. II1.2.6] also A, = A — B generates an analytic semigroup with angle « > 0 on X},. O

Step 3. There exists Ay € R such that [4y,+00) C p(Gy) N p(Gyy) N p(N) N p(Ap) and

R(A,Gyy) —R(4,Gy)LyNR(4, N)

R, Ag) = < 0 R(4,N)

) for A > Jp. 3.1)

Proof. By assumption A is a weak Hille-Yosida operator. Since A, and G, = A, — LB differ only by a relatively bounded
perturbation of bound 0, by [7, Lem. II1.2.5] also G, is a weak Hille-Yosida operator. In particular, there exists 4, € R such
that [/10, +oo) c p(Gy)n p(AO). Moreover, [7, Prop. IV.2.17] implies p(GO) = P(Goo)-

Next we claim that A — N is injective for A > A. If by contradiction we assume that there exists 0 # x € ker(4 — N), a simple
computation shows that

0# <_R(’1’ ?)LON"> € ker (4 — A)

contradicting the fact 4 € p(.AO). Let now R(/l, AO) = (Rij(/l)) and choose some arbitrary (i) € &,. Then we have

2x2

R(4.A )<g> _ <R11(/1)g+R12(/1)J’> _ <f> = (i-4 )<f> _ <g>
Ny T \Ry (g + Ryp(y)  \x Y\x) " \y
(A= Gy)f+LyNx =g,

< {(A-N)x =y, (3.2)
LG,f = Nx.

For y = 0 it follows (4 — N)x = 0 and hence x = 0. This implies R,;(4) = 0. Moreover, by (3.2) the operator A — N must be
surjective, hence it is invertible with inverse (A — N)™! = Ry, (4) € L£(dX). Again by (3.2) this implies R,;(4) = R(4, Gy).
On the other hand, choosing g = 0 we obtain R,;(4) = —R(A, Gy) Ly N R(4, N) as claimed. O

Step 4. G and N generate analytic semigroups of angle @ > 0 on X and 0.X, respectively.
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Proof. Denote by (To(t)) ;>0 the semigroup generated by .A. Then by [7, Thm. IL.1.10] for 4 € R sufficiently large R(ﬂ, AO)
is given by the Laplace transform (ETO(-))(/{) of (T()(t))t>0. Since L is injective, (3.1) implies that the semigroup generated by

Ay is given by
T

where (T'(#));5 and (S(#)),5o are semigroups on X, and dX generated by G, and N, respectively. Since by assumption
(To(t))[>0 is analytic of angle @ > 0, also the semigroups generated by G, and N are analytic of angle a. |

This completes the proof of Theorem 3.1. |

Since by [7, Thm. 11.4.29] an analytic semigroup is compact if and only if its generator has compact resolvent, the following
result relates compactness of the semigroups generated by A and Dy, N.

Corollary 3.2. Let D € { A, G}. Then A has compact resolvent if and only if Dy and N have compact resolvents on X and 0X,

respectively.

Proof. By Step 1 in the proof of Theorem 3.1, A has compact resolvent if and only if .4 has. Since A and A differ only by the
00

relatively bounded perturbation /3 : = ( M 0) of bound 0, by [7, III-(2.5)] one of the operators A, A, has compact resolvent if and
only if the other has. However, by (3.1) for 4 € p(AO)

R(A, Ay) is compact <= R(4,Gy), R(4,N)and R(A,Gy)LyNR(4,N) =
AR(2,Go)LyR(4, N) = R(A,G) Ly are compact
< R(4,Gy), R(A,N)and R(4,G,) L are compact

< R(A,Gy) =R(4,Gy) - (Id=LyL) + R(4,Gy) L - L, and R(4, N) are compact.

This completes the proof. O

4 | PERTURBATIONS OF OPERATORS WITH GENERALIZED WENTZELL
BOUNDARY CONDITIONS

In many applications the feedback operator B : D(B) C X — 0X which determines the boundary condition in (2.1) splits into
a sum

B=By+CL, D(B)=D(B,)nD(CL) 4.1)

for some C : D(C) C X — dX. For example in (1.1) we could choose B, = f % (which determines the feedback from the
interior of Q to the boundary 0€2) and the multiplication operator C = M, € L(dX) (which governs the “free” evolution on
0Q2). Next we study this situation in more detail where we allow C to be unbounded. For a concrete example see [11, (1.2), (3.3)]
and Subsection 5.3. Moreover, we will introduce a relatively bounded perturbation P of the operator A,,,.

To this end we first have to generalize our notation concerning the Dirichlet- and Dirichlet-to-Neumann operators. For a
closed operator D,, : D(Dm) C X — X let D, C D,, with domain D(DO) = D(Dm) Nker(L) on X. Then by [13, Lem. 1.2]
for A € p(DO) the restriction Llye;—p, ) ! ker(/l - Dm) — 0X is invertible with bounded inverse

D

L

"= (leer(/l—Dm))_] . aX b d ker(A—Dm) Q X,

which we call the abstract Dirichlet operator associated to A and D,,. Note that Lf'” = L([))’”_'l, that is Lf”‘ x = f gives the unique
solution of the abstract Dirichlet problem

Dmf=/1fa
Lf =x.

_— . Ay
If D, = A,, we will simply write L, := L ".
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Next, for a relatively Dj-bounded feedback operator F : D(F) C X — 0X we introduce the associated generalized abstract

F. D(Nf’"’F) C 0X — 9X defined by

Dirichlet-to-Neumann operator N f’”’

F D

NPy = FLDny, D(ND’"’F

1 ) :={xeaX : Lf'”xeD(F)}.

If A = 0 we simply write N Pmf" .= N(?'"’F. If in addition F = B we put NP» := NP

.B A F .

0 andNF:=N0”’ incase D,, = A
A,.B

o

Finally, as before we set N := N
To proceed we need the following domain inclusions where B, : D(B) C X — 0X isrelatively Aj-boundedand C : D(C) C
0X - 0X.

Lemma 4.1. The following assertions hold true.

(i) If C is relatively N Bo_bounded, then D(BO) C D(CL).
(ii) If N 2o is relatively C-bounded, then D(Am) ND(CL) C D(BO).

Proof. (i).Recallthat L : 0X — ker (Am) is bijective with inverse L. Hence, using the first decomposition in (2.2) we conclude
LD(By) =L ((X,@®ker(A,)) nD(B,)) = L(ker(A,)nD(B,)) = L;"(ker(A,,) n D(B,)) € D(N*®) c D(C).

This implies the claim.
(i1). By assumption, we have

LD(CL) C D(C) C D(N%).
This implies
LyLD(CL) € LyD(N*) c D(B).

On the other hand, (1d —LyL)D(A,,) = D(Ay) € D(B,). Summing up this gives the desired inclusion. O

Note that in part (ii) of the previous result we cannot expect the inclusion D(CL) C D(BO) since always X, = ker(L) C
D(CL) holds.

We now return to the decomposition B = B, + CL from (4.1). Let P : D(P) C X — X be arelatively A,,-bounded pertur-
bation with A-bound 0. That is, D(Am) C D(P), there exist a, b > 0 and for every € > 0 a constant M, > 0 such that

IPfll <a-llA,fll+b-NfIl  forall f € D(A,),
IPfIl <& IAofIl + M, - |IfIl forall f € D(Ay) = D(A,) N X,.

Then we consider the operator (A + P)® : D((A + P)®) C X — X given by

(A+P)8% C A, +P,

D((A+ P)®) :

{feD(A,)nD(B))ND(CL): LA, f+Pf=Byf +CLf}. (4.2)

First we assume that C is relatively N5 = B, Lg"'—bounded of bound 0. Note that by the previous lemma part (i) this implies
that D(B) = D(B,) n D(CL) = D(B,).
Theorem 4.2. Let P . D(P) C X — X be relatively A,,-bounded with Ay-bound 0 and let C : D(C) C 0X — 0X be relatively
N Bo-bounded of bound 0. Then for B given by (4.1) the following statements are equivalent.

(a) (A+ P)Bin(4.2) generates an analytic semigroup of angle a > 0 on X.
(b) APo generates an analytic semigroup of angle a > 0 on X.

(¢) A, is sectorial of angle a > 0 on X and N 5o generates an analytic semigroup of angle a > 0 on 0X.



8 &Afgﬁg}l\éﬁ?}%ﬁHE BINZ AND ENGEL
[NACHRICHTEN |

Before giving the proof we state an analogous result where we interchange the roles of N 5o and C. That is, we assume that
N 5o is relatively C-bounded of bound 0. Note that by Lemma 4.1.(ii) this implies that D(Am) N D(B) = D(Am) n D(BO) n
D(CL) = D(A,,) n D(CL).

Theorem 4.3. Let P : D(P) C X — X be relatively A,,-bounded with Ay-bound 0 and let N0 be relatively C-bounded of
bound 0 for some C . D(C) C 0X — 0X. Then for B given by (4.1) the following statements are equivalent.

(a) (A+ P)Bin(4.2) generates an analytic semigroup of angle a > 0 on X.
(b) ACL generates an analytic semigroup of angle a > 0 on X.

(¢) Ag is sectorial of angle a > 0 on X and C generates an analytic semigroup of angle a > 0 on 0X.

To prove the previous two theorems we use a series of auxiliary results. First we show the equivalences of (a) and (b) in case
P=0.

Lemma4.4. Let C : D(C) C 0X — 0X be relatively N Bo-bounded of bound 0. Then the following statements are equivalent.

(a) ABogenerates an analytic semigroup of angle a > 0 on X.

(b) AB generates an analytic semigroup of angle a > 0 on X.
Proof. By Lemma 4.1.(i) the operator
B:=By+CL, D(B)=D(B)

is well-defined. Since D(A,) C X, the operators B and B coincide on D(A). Hence, B is relatively A-bounded if and only
if B is relatively Aj-bounded of bound 0. Moreover, we have

NB=BLy=NP+cC, D(N®)=D(NM).

By [7, Thm. I11.2.10] it then follows that N2 generates an analytic semigroup of angle @ > 0 on d.X if and only if N0 does.
The claim now follows by Theorem 3.1. d

Lemma 4.5. Let NP0 be relatively C-bounded of bound 0 for some C : D(C) C 0X — 0X. Then the following statements are
equivalent.

(a) ACL generates an analytic semigroup of angle a > 0 on X.

(b) AP generates an analytic semigroup of angle a > 0 on X.
Proof. Let
B :=By+CL, D(B)=D(By)nD(CL).

By the same reasoning as in the previous proof we conclude that B is relatively Ay-bounded of bound 0 if and only if By is
relatively Ay-bounded of bound 0. Moreover, by Lemma 4.1.(ii) we have

x € D(N®) < Lyx € D(B)
< Lox € D(B))nD(CLYND(A,,)
< Lyxe D(CL)nD(A,,)
< Lyx € D(CL)
& x e LD(CL)C D).
This implies

N®=BL,=N%+C, D(N®)=D().
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By [7, Thm. I11.2.10] it follows that N & generates an analytic semigroup of angle @ > 0 on X if and only if C does. The claim
then follows by Theorem 3.1. O

Next we study how Dirichlet operators behave under perturbations.

Lemma4.6. Let P . D(P) C X — X be arelatively A,,-bounded perturbation. Then for A € p(AO) n p(AO + P) the Dirichlet
operator Lf”‘JrP € L(0X, X) exists and satisfies

Ly — L9m = R(A, Ay + P)PL}" = R(A, Ay) PL,". 4.3)
Proof. Let [D(A,)] := (D(A,). Il - ||Am) for the graph norm || - [, := - llx + |4, - lx. Then P : [D(A,,)] = X and
Lf”’ 10X - [D(Am)] are bounded, hence PL?"‘ : 0X — X is bounded as well. This implies that
T :=L}" + R(4 Ay + P)PL|" € L(0X, X).

Since
(Ay+P—2)Tx= (A, +P—A)L}"x+ (A, + P~ )R(A, Ay + P)PL" = PL}"x ~ PL"x =0,

we have rg(T") € ker(4 — A,, — P). Moreover, from
rg(R(% Ay + P)PL") € D(Ag+ P) = D(4,) € ker(L)

it follows that LT x = LL?"’x = x. Hence, L| N ) is surjective with right-inverse T'. Since ker(1— A,, — P)N X, C

er (4-4,-P
ker(/l - Ay — P) = {0} we conclude that Ll ;4 _p) is injective as well. This implies that it is invertible with inverse

7 AntP

1 =T and proves the first identity in (4.3). The second one follows by changing the roles of A,, and A,, + P. O

Next we consider perturbations of Dirichlet-to-Neumann operators.

Proposition 4.7. Let P : D(P) C X — X be a relatively A,,-bounded perturbation. Then for A € p(AO) N p(AO + P) the per-

turbed Dirichlet-to-Neumann operator N f'”+P exists, D( Nf’") = D(Nf'"JrP) and the difference N f'” - N f’”+P is bounded.

Proof. Since

Ap+P

re(R(4 4) PL,

) € D(40) € D(B),

by Lemma 4.6 it follows that D(Nf'”) = D(Nf'"+P). Moreover, from (4.3) we conclude
A, AptP A, A, +P A, +P
N,;" =N, = BL," - BL D —BR(A, Ag)PL], € L(0X). O

To conclude the proofs of Theorem 4.2 and Theorem 4.3, we need one further result. It shows that the assertion (a) in both
results is stable under the perturbation P.

Lemma4.8. Let P . D(P) C X — X relatively A,,-bounded with Ay-bound 0. Then the following statements are equivalent.

(a) A® generates an analytic semigroup of angle a > 0 on X.

(b) (A + P)B generates an analytic semigroup of angle a > 0 on X.

Proof. Since A is a weak Hille—Yosida operator and P is relatively Ay-bounded of bound 0, by [7, Lem. II1.2.6] there exists
aAe€p(Ay)np(Ay+ P)and Ay — A, Ay + P — A are again weak Hille-Yosida operators. Since B is relatively A,-bounded

of bound 0 a simple computation shows that it is also relatively (Ay — 4)- and (A, + P — A)-bounded of bound 0. Moreover,
A, +P—4

by Lemma 4.6 the operators Lg”’_’l and L

tions 2.2.

Next we check the conditions in Theorem 3.1. By [7, Lem. II1.2.6] the operator A, — 4 is sectorial of angle « > 0 on X if
and only if A, + P — 4 is. Moreover, by Proposition 4.7, N4n~# generates an analytic semigroup of angle a > 0 if and only if
NAwtP=4 does. Applying Theorem 3.1to Ay — 4, N4n~% and Ay + P — A, N4n*P~4 respectively, the claim follows. O

exist and are bounded. Hence, Aj — 4 and A + P — A both satisfy Assump-
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Proof of Theorem 4.2 and Theorem 4.3. By Lemma 4.8 assertion (a) is independent of P while by Lemma 4.4 and Lemma 4.5,
respectively, for P =0 it is equivalent to (b). Since the equivalence of (b) and (c) follows Theorem 3.1 the proof is
complete. O

S | EXAMPLES

5.1 | Second order differential operators on C([0,1],C")
For n € N consider functions a; € C[0, 1] n Ccl0,1),1<i<n, being strictly positive on (0,1) such that al e L'[0,1]. Let
a :=diag(ay,...,a,) and b,c € C([0, 1], M,,(C)). Moreover, define the maximal operator A,, : D(Am) c C(o,1],C" —
C([0,1],C") by

A, i=af”+bf +cf, D(A,) :={f €C(0,1,C)NC*(0,1),C") : A,f € C(0,1],C"}

and take B € £(C([0, 1],C"), C*").
Corollary 5.1. We have D(A,,) c C'([0,1],C") = D(B) and

nean pw={senia) (H00) )

generates a compact and analytic semigroup of angle % on C([0, 11, C™).
Proof. We consider X := C([0, 1],C") = C[0, 1] x --- X C[0, 1] equipped with the norm || f|l o = /1l + = + /1l 0>
dX :=C?" and define L € £(X,0X) by Lf := (f “”). Then as in [4, Cor. 4.1, Step (iii)] it follows that D(4,,) C D(B),

VAQY;
hence A coincides with the operator A? defined in (2.1). Since

Pf:=bf'+cf, D(P):=C!(0,1],C")

is a relatively A,,-bounded with Ay-bound O (see Step 4 below), we assume by Theorem 4.2 without loss of generality that
b=c=0.
Next we verify Assumptions 2.2 and the hypotheses of Theorem 3.1.

Step 1. The abstract Dirichlet operator L, € L(dX, X) exists.
Proof. We have ker (Am) = {60 “Xgt+E X)L Xp,X) € C”} for
go(s) :=1—=s5 and g(s) :=s, s€][0,1].

A simple calculation then shows that L, := (leer(Am))_l € L(0X, X) is given by

X1 X1 Xnt1
LO : =&y e &1 : . D
X2n Xp X2n

Step 2. The operator Ay on X is sectorial of angle % and has compact resolvent.
Proof. Let A; :=a, - :_22 with domain D(4,) := {g € C[0,1]1nC*(0,1) : g, - g € C[0,1]} for I <i < n. Then
R(A,Ay) = diag(R(4, A)), ..., R(A, A,)).

Since by [4, Cor. 4.1, Step (ii)] all A; are sectorial of angle % and have compact resolvents on C[0, 1], the claim follows. |
Step 3. The maximal operator A,, is densely defined and closed.

Proof. Since C*([0,1],C") C D(A,,), A, is densely defined. By Step 1, Step 2 and [4, Lem. 3.2] it follows that A,, is
closed. O
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Step 4. The feedback operator B is relatively A-bounded of bound 0.

Proof. Since D(B) = C!([0, 1], C") it suffices to show that the first derivative with domain C' ([0, 1], C") is relatively Aq-bounded

withbound 0. Let f € D (AO). Then by [4, Cor. 4.1, Step (iii)] it follows that for all € > 0 there exists a constant C, > 0 such that
”f’Hl,oo <e: ”Alf] “oo +--te- ”Anfn”oo + Cg . ”fl ”oo + et Cg . ”fn“oo

=& [ Aof e +Co I/l o (|

Step 5. The Dirichlet-to-Neumann operator N generates an analytic, compact semigroup of angle % onoX.

Proof. Since the boundary space 0X is finite dimensional, N is bounded. Hence N generates an analytic, compact semigroup
of angle % ondX. O

Now by Step 1-Step 5 all hypotheses of Theorem 3.1 and Corollary 3.2 are satisfied which imply the claim. This completes
the proof of Corollary 5.1. [

Remark 5.2. Corollary 5.1 generalizes [4, Cor. 4.1] to arbitrary n € N.
We give a particular choice for the operator B.
Corollary 5.3. For M;, N; € M,,,.,(C), i =0, 1, the operator

(A,.£)(0)

ACA,, D(A) = {f € D(4,) : ((A N

) = Mof'(O)+M1f'(1)+Nof(0)+N1f(1)}

generates a compact and analytic semigroup of angle % on C([0, 1, C").

We remark that second order differential operators on spaces of functions f : [0, 1] — C” can be used to describe diffusion-
and waves on networks. For some recent results in the L?-context for operators with generalized Robin-type boundary conditions
we refer to [8].

5.2 | Banach space-valued second derivative

We associate to an arbitrary Banach space Y the Banach space X := C([0, 1], Y) of all continuous functions on [0,1] with values
in Y equipped with the sup-norm. Moreover, we take P € E(Cl([O, 11,Y), X)), b e E(X, Y2) and an operator (C, D(C)) on
Y?2. Then the following holds.

Corollary 5.4. The operator C generates an analytic semigroups of angle a € (O, %] on Y2 if and only if the operator
Af i= "+ P,

e recqorry - f(0)> DC’(f”(0)+Pf(0)>=(D C(f(0)>}
“ {fe (11 <f(1) € PO+ pray) =

generates an analytic semigroup of angle a € (0, %] on X.

Proof. We consider 0X := Y2 and define L € L(X,0X)by Lf := (;E?;) Moreover, define

A, :D(A,)SX—>X, A,f:=f"+Pf, D(A,)=CX0,1]Y)

m

and

B:DB)C X —0X, Bf:=®f+CLf, D(B)::{feX:(ﬁ?i)eD(C)}.

Then A coincides with the operator A2 given by (2.1). Since P is a relatively A,,-bounded of A,,-bound 0 and ® € L(X,dX),
by Theorem 4.3 it suffices to verify the Assumptions 2.2 and that A is sectorial of angle a > 0.

Step 1. The abstract Dirichlet operator L, € L(dX, X) exists.
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Proof. Asin Step 1 of the proof of Corollary 5.1 we have ker (Am) = {egyp + €1y : Yo, y1 €Y} for
go(s) :=1—=s5 and g(s):=s, s€][0,1].

Moreover, L := (leer(Am))_l € L(0X, X) is given by

L0<;0>=50'J’0+51'Y1~ U
1

Step 2. The operator A, on X is sectorial of angle %
Proof. This follows as in the proof of [7, Thm. VL.4.1]. O
Step 3. The maximal operator A,, is densely defined and closed.

Proof. Since C2([0, 1,Y) C D(Am), A,, is densely defined. By Step 1, Step 2 and [4, Lem. 3.2] it follows that A, is
closed. |

Step 4. The feedback operator B is relatively Ay-bounded of bound 0.
Proof. For f € D(Ay) C X, we have Bf = @ f. Since @ is bounded, this implies the claim. O

Now by Step 1-Step 4 all hypotheses of Theorem 3.1 are satisfied. This implies the claim and completes the proof of Corol-
lary 5.4. O

5.3 | Perturbations of the Laplacian on C (5) with generalized Wentzell boundary conditions

In this subsection we complement the example from the introduction concerning the Laplacian on C(Q) with generalized
Wentzell boundary conditions, see also [3].

To this end we consider a bounded domain Q C R” with C*®-boundary d€2 and take an operator P € L (C1 (5) ,C (5)) (e.g.a
first-order differential operator). Then we define the perturbed Laplacian A : D(A) C C (5) - C (5) with generalized Wentzell
boundary conditions by Af := A, f + Pf for

FeD(a,)n D<(;in), Floo € DAp)  and

fEeDA & P
(Anf +P1)] = B 3m f+7-f| +a-Acsloa

5.1

cf. also [11, (1.2), (3.3)]. Here f <0, y € C(0R2), ¢ > 0 and Ar : D(Ar) C C(0Q) — C(0€2) denotes the Laplace—Beltrami
operator. In case P = 0, ¢ = 0 this just gives the operator A from the introduction. As we will see below for ¢ > 0 the Laplace—
Beltrami operator will dominate the dynamic on the boundary 0 X. However, in this case essentially the same generation result
holds as for ¢ = 0.

Corollary 5.5. For all g > 0 the operator A C A, + P with domain given in (5.1) generates a compact and analytic semigroup
of angle %

Proof. Without loss of generality we assume that f = —1. To fit the operator A into our setting we define X := C(ﬁ),

0X :=C(0Q)and the trace L € L(X,0X), Lf := f|sq. Then we consider A, := A, : D(A,) C X » X and B; := —% :

D(%) CX —oXasin[3]landputC :=q-Apr+ M, : D(Ap) C0X — 0X and B := B; + CL asin (4.1). Then A coincides
with the operator (A + P)? defined in (4.2).
By [1, Thm. 6.1.3], Ay = A is sectorial of angle % and by [3, (1.9)] and [7, Prop. 11.4.25] has compact resolvent. Moreover,

1
C generates a compact analytic semigroup of angle % Let W :=(—Ar)2. Then by the proof of [3, Thm. 2.1] there exists
a relatively W -bounded perturbation Q : D(Q) C 0X — 90X such that N5 = BOL(?W = —W + Q. This implies that N 5o is
relatively W -bounded and by [16, Thm. 6.10] it follows that N 5o is relatively C-bounded of bound 0. Hence, by Theorem 4.3,

A = (A + P)B generates an analytic semigroup of angle % Compactness of this semigroup follows by Corollary 3.2. |

We remark that Corollary 5.5 confirms the conjecture 6, = % in [11, Sec. 5] for a(x) = Id and constant § < 0.
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5.4 | Uniformly elliptic operators on C (5)

We consider a uniformly elliptic second-order differential operator with generalized Wentzell boundary conditions on C (Q) for
a bounded domain Q C R” with C*®-boundary 0Q. To this end, for 1 < j, k < n we first take real-valued functions

ap = a; €CV(Q). 45,00 €C(Q). by € C(OQ)

satisfying the uniform ellipticity condition

n

Y a0z e forallx €D, £=(E,....E) € R
jk=1

and some fixed ¢ > 0. Then we define the maximal operator A,, : D(4,,) C C(Q) — C(Q) in divergence form by

A, f = Zaj<2ajkakf) + Y a0, f +ayf, D(4,) = {f e (W @nC(Q) : 4,f € C(ﬁ)},
j=1 k=1

k=1 p>1

and the feedback operator B : D(B) C C(ﬁ) — C(0Q) by

B:=- ) a,v;Lo,+b)L, D(B):= {fe war@nc(Q) : Bf eC(dQ)},

loc
Jj.k=1 p>1

where L € E(C(ﬁ), C(0Q)), Lf := flsq denotes the trace operator.

Corollary 5.6. The operator A : D(A) C C(ﬁ) - C(ﬁ) given by

ACA,, DA :={feD(A,)nDB):LA,f=Bf}

m

generates a compact and analytic semigroup on C(Q)

Proof. Let X := C(ﬁ) and dX := C(0Q). Define the maximal operator Am : D(/Im) CX — Xby

A, = i@(i ajk0k>, D(4,,) :=D(4A,)

j=1 k=1

and the feedback operator B, : D(B,) € C(Q) — C(0Q) by

n

By:=- ) auvLo,.  D(By) := D(B).
jk=1

Then by [4, Cor. 4.5] it follows that the operator AP0 : D(/TEO) C X — X with generalized Wentzell boundary conditions
given by

AP c 4, D(AM):={(seD(4,)nD(B) : LA,f = Byf}

generates a compact and analytic semigroup on X. Let Pf := Z;’zl a;0;f +ayf and Cx := byx. Then P is relatively A,,-

bounded with bound 0 and C € L(0X). Since A =(A + P)B°+CL the claim follows from Theorem 4.2. O

Remark 5.7. This result generalizes [4, Cor. 4.5] and via Theorem 3.1 also the main theorem in [9]. Moreover, it shows that the

angle of the analytic semigroup generated by A only depends on the matrix (a J k)an.
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6 | CONCLUSION

Our abstract approach allows to decompose an operator A® with generalized Wentzell boundary conditions (2.1) into an operator
A with (much simpler) abstract Dirichlet boundary conditions (2.3) and the associated abstract Dirichlet-to-Neumann operator
N, cf. (2.4). In particular, we prove under the weak resolvent Assumptions 2.2.(i) on A that

A is sectorial of angle @ > 0, and
< < N generates an analytic semigroup

AB generates an analytic semigroup }
of anglea > 0,

of anglea > 0

cf. Theorem 3.1. This equivalence is new and shows the sharpness of our approach. Moreover, while being very general, our
theory applied to concrete examples (where typically A, is well-understood and sectorial of maximal angle %) gives new or
improves known generation results, see Section 5.
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Strictly elliptic operators with Dirichlet boundary conditions
on spaces of continuous functions on manifolds

TiM BINZ

Abstract. We study strictly elliptic differential operators with Dirichlet boundary conditions on the space
C(M) of continuous functions on a compact Riemannian manifold M with boundary and prove sectoriality
with optimal angle 5

1. Introduction

Our starting point is a smooth compact Riemannian manifold M of dimension n
with smooth boundary d M and Riemannian metric g and the initial value-boundary
problem

Lu@) = laldivg ( avf;lu(t)) + (b, V5 u@®)) + cu(t) fort >0,
u(t)lagy =0 forr > 0,

u(0) = uog.
(IBP)

Here, a is a smooth (1, 1)-tensorfield, » € C(M,R") and ¢ € C(M,R). We are
interested in existence, uniqueness and qualitative behaviour of the solution of this
initial value-boundary problem. To study these properties systematically, the theory
of operator semigroups (cf. [4,11,13,18]) can be used. We choose the Banach space
C(M) and define the differential operator with Dirichlet boundary condition

Ao f = /]aldiv, (ﬂavflf) + (b, V5,u(®)) +cf

with domain

D(Ag) :={ f e (| W>P(M)NCo(M): Agf € C(M)
p=1

Mathematics Subject Classification: 47D06, 34G10, 47E05, 47F05
Keywords: Dirichlet boundary conditions, Analytic semigroup, Riemmanian manifolds.

Published online: 05 November 2019 ) Birkhiuser
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Then, the initial value-boundary problem (IBP) is equivalent to the abstract Cauchy
problem

{ Su(t) = Aou(t) fort > 0,

1(0) = ug (ACP)

in C(M). In this paper, we show that the solution u of the above problems can be
extended analytically in the time variable ¢ to the open complex right half-plane. In
operator theoretic terms this corresponds to the fact that A is sectorial of angle %
Here is our main theorem.

Theorem 1.1. The operator Ay is sectorial of angle % and has compact resolvent on
C(M).

For domains 2 C R”, the generation of analytic semigroups by elliptic operators
with Dirichlet boundary conditions on different spaces is well known. It was first shown
by Browder in [8] for L3(Q), by Agmon in [3] for L7 (£2) (see also [18, Chap. 3.1.1])
and by Stewart in [22] for C(2) (see also [18, Chap. 3.1.5]). By Stewart’s method, one
even gets the angle of analyticity. Later Arendt proved in [5] (see also [1, Chap. III. 6]),
using the Poisson operator, that the angle of the analytic semigroup generated by the
Laplacian on the space C(Q) is 7. However, this method does not work on manifolds
with boundary.

The angle 5 of analyticity of A plays animportant role in the generation of analytic
semigroups by elliptic differential operators with Wentzell boundary conditions on
spaces of continuous functions. Many authors are interested in this topic, and we
refer, e.g. to [9,10,12,14,15]. In this context, one starts from the “maximal” operator
An : D(A,,) € C(M) — C(M) in divergence form, given by

An f = V/)aldivg (\/%av;‘;;f) + (b, V5, f) +cf

with domain

D(Ap):=1{fe[\W"P(M): Ayf € C(M)
p=1

Moreover, using the outer co-normal derivative g—; : D(%) c C(M) - C@OM),
a constant B < 0 and y € C(dM), one defines the differential operator A with
generalized Wentzell boundary conditions by requiring

feD@A) & feD@Ay) and Aufl,, =B -5 f+y-fl,, LD
The main theorem in [6] shows that this operator A can be splitted into the operator Ag
with Dirichlet boundary conditions on C(M) and the Dirichlet-to-Neumann operator
N :=p8- %Lo on C(0M), where Lop = f denotes the unique solution of

Amf = 07
flag = ¢.
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Using Theorem 1.1 and [6, Thm. 3.1 & Cor. 3.2], one obtains the following result.

Corollary 1.2. The operator A with Wentzell boundary conditions generates a com-
pact and analytic semigroup of angle 0 > 0 on C(M) if and only if the Dirichlet-to-
Neumann operator N does so on C(OM).

In an upcoming paper [7], we prove the latter statement with the optimal angle 7
and conclude that elliptic differential operators with Wentzell boundary conditions
generate compact and analytic semigroups of angle 7 on C(M).

This paper is organized as follows.

In Sect. 2, we study the special case where A is the Laplace—Beltrami operator
with Dirichlet boundary conditions. We approximate its resolvents by modifying the
Green’s functions of the Laplace operator on R", study the scaling of the error of the
Laplace—Beltrami operator and prove estimates for the associated Green’s functions.
Finally, one obtains the sectoriality of angle 7 for the Laplace—Beltrami operator with
Dirichlet boundary conditions on C(M).

In Sect. 3, the main result from Sect. 2 is extended to arbitrary strictly elliptic
operators. Introducing a new Riemannian metric, induced by the coefficients of the
second-order part of the elliptic operator, the operator takes a simpler form: Up to
a relatively bounded perturbation of bound 0, it is a Laplace—Beltrami operator for
the new metric. Regularity and perturbation theory yield the main theorem in its full
generality.

In this paper, the following notation is used. For a closed operator T: D(T) C X —
X on a Banach space X, we denote by [ D(T')] the Banach space D(T) equipped with
the graph norm || e |7 := || @ || x + |7 (e)|| x and indicate by < a continuous and by

¢ : o . :
< a compact embedding. Moreover, we use Einstein’s notation of sums, i.e.

n
k. k
XKy .=§ XKy
k=1

for x := (x1,...,x,),y := (b1, ..., Yn). Furthermore, we denote by R, := {r €
R : r > 0} the positive real numbers and by R_ := R\R, the non-positive real
numbers. Besides one defines the sector by Xy := {z € C\{0} : |arg(z)| < #}. Using
the distance function d on M, we denote by Br(x) :={y € M :d(x,y) < R}.

2. Laplace-Beltrami operators with Dirichlet boundary conditions

In this section, we consider the special case where Ag is the Laplace—Beltrami
operator with Dirichlet boundary conditions, i.e.

ASf o= A8 f =divg(VEf) = g 0] f — g" ST, f.

DAY =1 f € ﬂ W2P (M) N Co(M): A% f € C(M) (2.1)
p=1
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on the space C(M) of continuous functions on M. Here,

1
ek = 5g"’ (3igji + 0j8it — 91gij)

denote the Christoffel symbols of the Riemannian metric g.
Proposition 2.1. For all A € C\R_ the operator A — A(g) is injective.

Proof. Considering the equation

{M =A% 2.2)

flam =0,

for f € C(M), one obtains that A — Ag is injective if the only solution of (2.2) is zero.
Since M is compact, the domain D(Aé) 1s contained in Lz(M) and A8 f € L2(M).
Hence, Green’s formula implies

MR = A/ T dvolf =/ AT
Lz(M) M M
dvol, = — /M g(VEf, V&) dvolf, e R_.

Since A € C\R_, the term k||f||%2(M) canbe in R_ only if f = 0. (]

In the next step, we construct Green’s functions such that the associated integral
operators approximate the resolvent of Ay.

To this end, it is necessary to smooth the distance function d on M. We consider a
sufficiently small € > 0 and define

d(x, d(x.
p(x,y) 1=d(x,y)x< (x8 y))+2e (l—x( (xg y))),

where x is a smooth cut-off function with x(s) = 1if s < 1 and x(s) =0if s > 2.
Then, p = d ford(x,y) < e and p € C®((M x M)\{(x,x) : x € M}, R).

Next, we extend the smoothed distance function p on M beyond the boundary
dM. To this end, the set Sy, := {x € M: d(x, dM) < 2¢} is identified via the normal
exponential map with M x [0, 2¢). Considering M U(d M x (—2¢, 0]) and identifying
oM with oM x {0} via x ~ (x, 0), one obtains a smooth manifold M. By Whitney’s
extension theorem (see [21]), the metric g can be extended to a smooth metric g on
M and hence the smoothed distance function p can be extended to a smooth function
pon M x M\{(x,x):x € M}.

For x € S,., we consider the reflected point x* € M \M with

plx, M) = p(x*, dM)

such that the nearest neighbour of x on 9 M and the nearest neighbour of x* on d M
coincide.
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Here and in the following, we denote by n := dim(M) the dimension of the mani-
fold. The kernels are defined by

K (x,y)
\@él (Knp;):x::f(x ) Kg,;(iffgfi’y»)  doe o - e
= Jf; (Kp(lx(j:(xl 2 x (2L Kg;fff;*l’”)), it d(x, 9M) € [e, 2],
el SULEL if d(x,dM) > 2e,
Var' pey 2!

forx € M, y € M and A € C\R_, where K - is the modified Bessel function of
the second kind (cf. Proposition A.1) of order % — 1. Moreover, the associated integral
operators are given by

(Gif)(x) :=/ K (x, y) f(y)dy.
M
We now prove that the integral operators G, satisfy similar estimates as the resol-
vents of a sectorial operator.
Proposition 2.2. Let n > 0. For A € Xy_y, with |\| > 1, the integral operators G,

fulfil

C(m)
Al — 1 f Lo m)

NG fllLoemy < |

forall f € C(M) and C(n) > 0.
Proof. By Lemmas A.2 and A.3, we obtain

G f Il Loo M\ Sze)

n_ Kn_1(C(mA/IAp(x,y))
< C|r|? : sup / 2! o Yo L iz
xeM\Sy I M p(x,y)2
C/
Ol ocan (2.3)

A
for f € C(M). Moreover, Lemmas A.2, A.3 and Corollary A.4 imply
- ( / Ky _((CODV/IMB(x, )

sup — T
p(x,y)2
/ Ki_((CIAp(x*, y)

p(x*, y)3~

I\)\§

dy

G fllLeoes) < C/IA|

xeSe JM

+ sup

xeS, JM

C/
<< x(?) 0 Fllecan (2.4)

dY) Il £l Loem)
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for f € C(M). Furthermore, Lemmas A.2, A.3 and Corollary A.4 yield

G fllLoo(S50\50)

1o Kn_ 1 (Cm/Irp(x, )
< CVIA| sup - dy
X€S:\Se I M p(x,y)2—
o(x, oM
+ sup X(p( ))
x€8:\Se €
=1
K3 (Co)/TRIA(*, y))
sup — T dy )l fllzoe
1
x€S\Ss I M p(x*,y)2
C'(n)
= =5 Mlle=an (2.5)

for f € C(M). Summing up it follows that

IGx fllLeemy = G fllLoom\soe) + G fllLo(s,) + 1Ga fllLoo(s:\S,)

_cm

< | £l Loocm
Al )

for f € C(M) as claimed. U

To show that the kernel K is approximately a Green’s function for A — Ag, we
need the following lemmata.

Lemma 2.3. Letn > 0. For A € X;_, with |A| > 1, we have

oo AB) Vit Kg_lmpn(x, )
V2t p(x,y)2T!
11 (VIMK 2 (CVIMp(x, y)
:5x(y)+(9( [A] T
p(x,y)?
n K%—I(C(n)\/lj‘_bo(x, y))) n e_C(n) MS)
plx, y)2!

forx,y e M.

Proof. Considering

(2.6)
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one obtains

iU (VAK (VA (8 - DKy (Vi)

K/ — —
0 \/En r%_l r%
VR (VK fr> «/_Kﬂ_z(«/_”)
B \/_ 21 23
2_-1)Kn_ x/_
N (3 -1k ; ”) 2.7)
r2
and hence
3=l (AK) (V) VAK,  (VAr)
K//(I’) _ \/X . 2 nl —(n—=2) -1
\/E rf_l r2
n? n K" 1(\/—1’)
+ (Z - 5) patl ) 8
These imply

K"(r) + ”%11(/(;”) K (r)

/R B2 SR Y RN ¢ 1<fr>+<n2 )K (V)

= n + n A
«/271'” ri_l r2 4 2 7+l
( 1 (rz 1) K%—l(ﬁ”) )»Kn_l(\/_r)
" rf'H rf_l

Vi
S S (ArzK%/_l(ﬁr) + oKy (/an)

((5-1) a2 kgmavin ).

Remark that the kernel is rotation symmetric, and hence, the Laplacian is given by
A K (]x]) = 82K(|x|) + n=1j, K (]x]). Using (3.4), we conclude

AxK(x]) = AK(|x]) = =C - 8o (x). (2.9)

Next, we determine the constant C. For sufficient small R > 0 one has by Gauss
Divergence Theorem

C = / C - 8p(x) dvolpy0) = —/ AxK(|x]) — AK (|x]) dvolgg (o)
Br(0) Br(0)

d
— _/ |, 3, K(xD dvol g 1“/ K (|x[) dvolg o)
st Bg(0)
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_ _/ K'(R) dvolg1 +/\/ K (Ix]) dvolg, )
n—1 R BR(O)

= —vol(S" HK'(R)R"™! +A/ K (|x]) dvolgg o) -
Br(0)

Using (2.7), we obtain

2- Kn» (VAR Kn_ AR
- S ol(S"l(f (f) VAKs_5(VAR)

2R7! 2R77!

Q

+( )K" 1 (WAR)

R~ l—I—A/ K (Jx]) dvol gy 0).
Rz Br(0)

Since K, (r) = O(r~%) for small r € R, the second and the fourth term vanishes by
taking the limit R — 0. Since

NI:

lirr%) Ko (r) = 27T ()
r—

and

ﬁl’l

vol(S" HY=pn. —¥—
T (724 1)

the limit of the first term is given by

e ]
HL ~vol(S"™ 1 - lim K» (V/AR) - R2
2§+lﬁ” R—0 2
52
— { " th (\/_R) R?
220 T'(m2+1) R
1

n
= —" lim Kn R) - (R)2
23t T(5+1)rR—0 2 (R - (®)

_ 1 ) n .27—1[‘<ﬁ>
2t T (2 +1) 2

_ 1 2 .2;—1F<z)_1
C 23t (%) 2) 2

where we used in the last line, that the Gamma function satisfies I'(x + 1) = xI"(x).
Similar the limit of the third term is

n Sz
n—1 7—1
(5—1) N VoUE" ) - lim Ky i (VAR) - R
n ! n . i
() e s
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11m Ki_1(R)- (R')2~!

I

NIS [\.)I§ I\JIS

- J—
) F%H)-zﬁ—%(%—o
1) 77

Hence C = 1. Moreover, we have

Il
Nl —
+
NI —

Vi T Ky (W (x, y))
V2r't o plx,y)a !

for x, y € M. Using geodetic normal coordinates, the metric is given by

(Kop)x,y) =

gij(x) = 8ij + O(p(x, y)*).
From Afclx — y|2 = 2n, it follows
AS(p(x, )2 =21+ O(p(x, y)?).
Using
Af(p(x, )% =2Vip(x, 2 + 2p(x, ) ASp(x, y) (2.10)

First, we consider y € B, (x). Since |V p(x, y)| ¢ = L, one obtains

g _ n-
Ay (p(x,y)) =

+ O(p(x, y)).
p(x,y)

Therefore, we obtain

AS(K 0 p)(x. )
= K" (p(x, y)IVEp(x. Yz + K'(p(x. y) A p(x, y)
=K"(p(x, ) + K'(p(x, ) A p(x, y)

1" n—1 / /
= K"(p(x,y) + K'(p(x, )+ O (px, K (pCx, »)I).
p(x,y)

Using (2.9) and Lemma A.2, it follows that

(= AD(K 0 p)(x, y) =8:(y) + O (p(x, WIK (px, )I)
n_ A K2 (C(mA/IMp(x, y))
:5x(y)+0<\/m2 ](\/_ ) n\/n:,()xy
p(x,y)?2
(5= 1) Kz 1((ConVTAp(x, y))>)

p(x, )2

+
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Now let y € Ba,(x)\Bg(x). Since p is smooth on M\ B, (x), we have |V5 p(x, y)|§ <
C and therefore by (2.10)

|K'(p(x, )]
p(x,y)
+ O(p(x, MIK (p(x, ).

|AZ(K 0 p)(x, y)| < CIK" (p(x, y))| + C(n)

Moreover, one obtains by Lemma A.2
Kz (Vap(x, )| < Ky_(C(y/Irle) = O(eCMVIHe)
Ky (VAo )| < 1Ky (Vap@ )| + K3 (Vap(x, y)]

< K5 (CVIMe)] + [K 5 (C(y/1ale)]
— O(e~CONVITe)

K (VAo )| < 1Ky (Vap (e, )+ K51 (Vap(x, )|
+1Ks_3(Vip(x, )l
= K51 (CDV/IrIo)] + K1 _1 (C)y/IAle)]

+ 1K1 _3(CVIAle)|
— O(e—c(n) I)»|8)

for [Aland A € Xz_,. Since p(x, y) > &, it follows
(L — A3(K 0 p)(x, y) = O(e~ CIVIHe)

for |A| > 1.
Finally, we consider y € M\Bz5 (x). Since p is constant on M\BZS (x), it follows
that A% (K o p) = 0 and therefore as before

(L — A3 (K 0 p)(x, y) = O(e-CDVIE)
for |A| > 1. L]

Lemma 2.4. Letn > 0. For A € X5, with |A| > 1, we have

il K (VAB(t, y)

(=AY m 7
V2o P, y)z!
= Jyx(y)
n__ Kﬂ_ C )\1_ *7
+O< Ak 1( n (n)«/ﬁnp(x )
p(x*, y)2

n Kn (C(m)+/IA[p(x*, y))
+ VA —— )
p(x*, y)2
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o [ Ko (CONSTITRG",
+d(x,8m)(\/W2 1 2 1(_(77)@,0(36 )
p(x*’y)2+l

n Kn(C AMo(x*,
Vi 1 (CTATO (™, ¥))

+/W3“(

N e_cmg>

B(x*, y)2
Ky 1 (CopVITAE, )
plx*, y)2~!

forx € S»s and y € M.

Proof. Considering the reflection o : S, — M: x — x* and taking a point on the
boundary p € dM every normal vector is an eigenvector for the eigenvalue —1 for the
differential Do), : T,M — T, M and all tangential vectors on d M eigenvectors with
eigenvalue 1. In particular, Do, is a linear local isometry, i.e. 0*¢g = g for p € IM.
Since o*g — g is smooth, we conclude that

0*g =g+ 0, IM)).
Hence, one obtains Vio*g = V3¢ + O(1) and
Aéh = A8(hoo)= (A 8h)oo
for h(x) := h(x*). Therefore,
A—AHh = (L — AR oo + (A° 8h — Aéh) o 0. (2.11)

Using
ASf =g @ f =T} 0 f)
we obtain
A8 f = A8 fI(x)
n
<C-lg—0%glg) - Y 137 fI(x) +C-|Vg = V(o )], () - IV flg(x).
i,j=1
Since |g —0¥glg(x) = O(d(x,dM)) and |[Vg — V(a*g)lg (x) = O(1), we consider
the derivatives of the kernel. Define K as in (2.6), we obtain
(K op)(x*, y) = K'(p(x*, y)) - 9;p(x*, y)
8,-2,-(1( o) (x*,y) = K"(p(x*, »)) - dp(x*, y) - 9;p(x*, y)
+K'(p(x*, ) - 95p(x*, y).
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Since 9; p(x*, y) = O(1) and (2.7), we obtain

n_ Kn _((C/IAp(x*,y))
vx<1<oﬁ><x*,y):+0< RE 1( 2~ .
p(x*,y)2

n (Kn(CONV/IAD(X*,y))
+VIHT (=

n
Pt y)27!

9

where we used that by Lemma A.2 and the monotonicity of Bessel functions

Ky o(Vap(*, )| < Ky 5(CVIRBGE, ) < Ky (CaD/IMPGE, »)
holds. Similar we obtain from (2.8)

K7 GG v)) = O ( mg_lK;_l(cm)mﬁ(x*,y))
’ plx*, y)2 !

1 Kn (C(/TAp(x*, y))

+VIAl — v
p(x*, y)?2
N |Mg+1Kg+1(C(n)«/Wﬁ(X*,y)))
Dx*, )2 !

Using
05 p(x*, y)* =20;p(x*, y)o;p(x*, y) + 2p(x*, y)9p(x*, y)
and 9;p(x*, y) = O(1) and al?jﬁ(x*, y)? = O(1) one has

0270 (x*, :(’)( )
TR PO, y)

Hence,

n_1Kn_;(C Ao,
812(1{ 0 B)(x*, y) = O HE 1A% 1( (U)\/Tp(x y))
: ﬁ(x*,y)j-i-l

n Kn (C(M/AP(xX*, )

+ VA —— n
px*, y)?2
01 Ko (CONN/TAP (™, y)))
+ Al 2 0
plx*, y)2 !

Finally, we conclude
Vi K (VapGL )
NGZ A IORD k.

n 1 Kn_1(C Alp(x™,
=0(\/W2 1Ky ( _(n)\/ﬁf(x »)
p(x*, y)2

(AT — A%) (x*)
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n Kn (C(mA/IA[p(x*, y))
+ VAP —— T
p(x*,y)?2

dr 8M)< mg—l Kg—1(C(77)«/mﬁ(X*,y))
’ plx*, )zt

K1 (C/TAp(x*, y))
D(x*, )2

yﬂﬂmwﬁﬁﬁﬂw»)

plx*, y)2~!

+ AT
ni 1 K
+ \/W2+1

(2.12)

Now, the claim follows by Lemma 2.3 (for c*g instead of g), using (2.11) and
(2.12). 0

Lemma 2.5. Let n > 0. We obtain

(A — A

Nt <M&MQ>K%w%%@ﬂw>

— —C(m+/Irle
- £12) o ey
27'L’n ﬁ(x*,y)f_l

&

fory € M, x € S»,\Se and for A € Yy with |A| > 1,

Proof. By the product rule an easy calculation yields

ﬁg_lx (,O(x, 8M)> Ky (VAp(x*, y))
V2r" plx*, y)27!

31 5(x*
_ (p(x,aM))(k_Aﬁ) VA ] K’;—l(«/?_»p(;c . )
€ V2r© o eyt

\/En ﬁ(x*,y)i_l

_2ﬁ2;1 <v§X (,o(x, 8M)> v (Kg_l(ﬁﬁ(nx*’y))>>-
Var € p(x*, )2

Using Lemmas 2.3 and 2.4, one obtains for the first term

(A — AY)
)

&

=1 k., = (x*
y (p(x,aM))(k_Aﬁ) Vi Kz-l(ﬁp(nx . Y))
€ V2r' Pt )]

n__ Kﬂ_ C )\_ *’
=(9< FIER HCVIRP(*, ¥))

2

p(x*,y)?

n Kn (C(p)A/IM[p(x*, y))
+ VA —— )
p(x*, y)2
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s 1 Ky (COVIRIAGS, )
+dx oM [ VI .
plx*, y)ztl

n Kn (C()V/TAIp(x*, )

+ VA ——— 7
p(x*,y)2

L i K CoVRpG ,y») Mwm)
plx*, y)27!

Since d(x, dM) € [¢, 2¢] is bounded away from 0, Lemma A.2 yields
Ky _((CD/IAp(x*, y) - Kn_1(Cm+/Irle)

5+1 5+1

p(x*,y)
Since d(x, M) < 2¢ and

Ko(\/|Ae) = O(e V),

one concludes that

n_1 — %
p(x,dM) o [ VA7 K%—l(ﬁp(x ) —C)/The
et NN T 7 =0 (e
X( : >( D ( )

for A € £, with [A| > 1. Since |V§ p|, is bounded on Sp\Se and |ASp|, < % on
S26\ Se, it follows that

8

&

and

Ag( (p(x,aM>))_ ,,(p<x,aM>)|v§p(x,aM)|2
x\ X\ ————— =X

e e g2

)
Ly <,0(x, 8M)> Axp();’ oM) _ o).

Hence, the second term satisfies

n_q P
AE <X (P(x, aM))) NFE: n Kg_l(ﬁp(nx ],y)) o (e—C<’7) M)
€ V2 plxr, y)2

for A € X, with |A| > 1. Since

px*, 2!
() Ky 1 (Va0 ) VI G, )

o (Kg_l(ﬁﬁ(x*, y))) VAR, (VA ) VER(E, )
S\ opempt )

2

p(x*,y)?
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VAK s (VAD(*, y)VED(x*, )
B 25(x*, y) 37!
| VK20, »IVERGT, )
2p(x*, y)2 71
B <n 1) K%—l(ﬁﬁ(X*,y))Vgﬁ(X*,)’)

2
-0 (e—cw) |x|e) ’

p(x*,y)?

we conclude

n_1q .
T (o (1) (S ) e )
b/ p(x*, y)2~

for A € X5, for [A| > 1. Summing up the claim follows. 0

Now, we are prepared to show that K is approximately a Green’s function for
A — AS

Theorem 2.6. The integral operators G satisfy

C(n)
NI Il f 1l oo ()

forh € Tp_pwith|A] > 1,7 >0, and f € C(M).

I = ADGf = fliLeom) <

Proof. For x € M\ Sy, Lemma 2.3 yields

A — ADGAf — fllLeon s,

f 5:(y)f () dy — F(x)
M

< sup
X GM\SQS

1 Ke(CV/IAlp(x, )
cof( s vt [ RO
xeM\ Sy M px,y)2

st [ K31 (CONVIRIp G, y)
+ sup VIA| ]
XEM\SQS M p(’x’ )’) 2

N f o—C IMde)IIfIILOO(M))
M

forA € ¥;_, with|A] > Tand f € C(M). Therefore, by Lemma A.3 it follows that

dy

dy

ca

r—ADHG,f — oo < oo
1( DG f — fllLeem sy =< m||f”L (M)
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forA € ¥, with [A] > 1and f € C(M). For x € S, we obtain by Lemmas 2.3 and
2.4

A — ADGAf — fll=s,)

< sup / (M f(y)dy — f(x)
xeSg |IM
no o Ko (CODVIAp(x, ¥))
+ O sup /|A|* / = T dy
xeS, M p(x,y)2~
1oy Ko ((CODV/IAIp(x, y))
+ sup +/|A| / T dy
xS, M p(x, y)2~
1o Ko (CODVIAP(X™, )
+ sup v/|A| / T dy
XGSg M ﬁ(-X*’ y)i_
n_ Kn_1(Cn/IMp(x*, y))
+ sup v/|A|? lf e T dy
XGSE M E(X*’ y)j_
- Ky 1 (CopVIRIpG*, 1)
+ sup +/|A| / d(x,oM) T, dy
xESe M plx*, y)zt
1 Ky (COp/IAp (™, y))
+ sup /|A| / d(x,oM) — dy
xeS, M p(x*, y)2
1 Ky (CDIAPp(x*, y)
+ sup +/|A| / d(x, M) | dy
X€ES, M ﬁ(X*’ y)j—’—

n / e~ C Wde) ||f||L°°(M)>
M

for f € C(M).Since p(x*, y)only vanishifx, y € M andd(x, dIM) = d(x*, dIM) <
p(x*,y) for x, y near 9M, Lemma A.3 and Corollary A.4 imply

C(n)
N | 1l oo ()

for ||and f € C(M). Moreover, we have for x € S>;\S, by Lemmas 2.3 and 2.5

(A — ADGAf — fllLeo(s,) <

(A — ADGo f — fllLosms.)

f 50 f(y) dy — F(x)
M

< sup
X€8:\Se

n Ko (CpVIAlp(x, )
+o(( /
M

sup +/Ix|2 ;
XE€S2:\Se p(x,y)2 72

1oy Ko ((CONV/Irp(x, y))
+ sup (A / T
xE€S26\Se M p(x,y)2~

dy

dy
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+ / e € '“8dy)||f||Loo<M>>
M
for f € C(M).

Since M is compact, it follows that

—C(mM+/Irle C~‘

e

[, g
M g2tl [A]

for [A| > 1. Hence, as a consequence of Lemma A.3 one obtains

C(n)
NGif — fllLosys.) < ——=IfllLe~wrn
26 \S¢) m (

for ||and f € C(M). Summing up we conclude that

C
10 = AHG,f — Flloan < 2 Fllsan

VIAl
for |A|and f € C(M). O

Finally, we obtain the main theorem by combining the estimates from Proposi-
tion 2.2 and Theorem 2.6.

Theorem 2.7. The operator Ag is sectorial of angle % on C(M).

Proof. For A € X;_, with sufficient large absolute value |A| Lemma 2.6 implies that

C
10— A9G, —1d || < S

VA

hence (A — A8)G), is invertible. Therefore,
ld= (4 = A)G((r = AHG) ™!
and (A — A¥%) is right-invertible with right-inverse
(=A™ =Gl = AHGH ™
Hence, by Proposition 2.1 the operator (A — A¥) is invertible and
(= A9 =G = AHGH) T
In particular, we obtain
A8GL((h = A®)G) ™' f = AGu((h — A$G) ™' f — f e C(M)
for all f € C(M). Moreover G ((A — Ag)G;L)_lf is a solution of

{A;‘;u = Au — f,

ulpy =0
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for A € X;_, with sufficient large absolute value |A|. Since f € C(M) C L?(M) for
every p > 1, elliptic regularity (cf. [16, Thm. 8.12]) implies G, (A — A8)G;)" ! f €
ﬂpzl W2P(M). Therefore G, (A — A8)Gy)"'f € D(Ap) and one concludes
R(A, Ag) = G (L — A8G;) for € X, with sufficient large absolute value
|A|. Thus by Proposition 2.2 it follows that

ca

IROW ADI < Gl - (L — A5YG) 7! < 7

for A € X;_, with sufficient large absolute value |A|. By [1, Thm. 3.7.11] and [1,
Cor. 3.7.17], A(‘; is sectorial of angle 7. 0

3. Strictly elliptic operators with Dirichlet boundary conditions

In this section, we consider strictly elliptic second-order differential operators with
Dirichlet boundary conditions on the space C(M) of the continuous functions for a
smooth, compact, Riemannian manifold (M, g) with smooth boundary d M. To this
end, take real-valued functions

af:a,{ecm(ﬁ), bj,ce C(M), 1<jk<n.

satisfying the strict ellipticity condition
a5 (@)g’" (@) Xi(@)Xi1(q) >0 forallg e M

for all co-vector fields Xy, X; on M with (X1(g), ..., Xn(q)) # (O,...,0) and
define on C(M) the differential operator in divergence form with Dirichlet boundary
conditions as

1
Ao f = /|aldiv (—avg f) + (b, VS, ) +cf
8 M M M
with domain
D(Ag) =1 f e[| WP (M)NCo(M): Aof € C(M) ¢, (3.1)
p=>1
where a = af, la| = det(af) and b = (by, ..., by,).

The key idea is to reduce the strictly elliptic operator on M, equipped by g, to the
Laplace—Beltrami operator on M, corresponding to a new metric 3.
For this purpose, we consider a (2, 0)-tensorfield on M given by

~kl k il
8§ =4a;8 .

Its inverse g is a (0, 2)-tensorfield on M, which is a Riemannian metric since af g/l is

strictly elliptic on M. We denote M with the old metric by M? and with the new metric
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by M? and remark that M® is a smooth, compact, orientable Riemannian manifold

with smooth boundary d M. Since the differentiable structures of M® and M coincide,
the identity

d: M° — &
is a C*°-diffeomorphism. Hence, the spaces
c(M) = c(M®) = c(M*)
coincide. Moreover, [17, Prop. 2.2] implies that the spaces
LP(M) := LP(M®) = LP (M),

WEP (M) := WP (M8) = WhP(M$), (3.2)
forall p > 1and k € Ncoincide. We now denote by Ag the operator defined asin (2.1)
respecting g. Moreover, we denote by Ao the operator given in (3.1) for by = ¢ = 0.

Lemma 3.1. The operator Ag and Ao differ only by a relatively bounded perturbation
of bound 0.

Proof. Consider
Pf = g"bo, f + cf

for f € D(Ap) N D(Ap). Since D(Ay) is contained in ﬂp>1 W2P (M), Morreys
embedding (cf. [2, Chap. V. and Rem. 5.5.2]) and the closed graph theorem imply

[D(Ag)] <> C' (M) — C(M), (3.3)

in particular D(Ap) and D(Ag) coincide. Since P € L(C'(M), C(M)) and it follows
by (3.3) and Ehrling’s Lemma (see [20, Thm. 6.99]) that P is relatively Ag-bounded
with bound 0. L]

Lemma 3.2. The operator Ag equals the Laplace—Beltrami operator A(g) with respect
1o g.

Proof. Using (3.2), we calculate in local coordinates

- 1 .
Aof = —+/]ald; (¢|g| afg”akf>
NIl / la !
_ L . ~ ~kl
= ——9; (V18lg" o f
Nard
for f € D(Ap), since |g| = |a| - |2]. O

Theorem 3.3. The operator Ay is sectorial of angle 5 on C(M).
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Proof. By Theorem 2.7 and Lemma 3.2 it follows that Ao generates an analytic semi-
group of angle % on C(M). Finally, Lemma 3.1 and [11, Thm. III. 2.10] implies the
claim. U

Remark 3.4. This generalizes [18, Cor. 3.1.21.(i1)] to manifolds with boundary.

By Theorem 3.3, the abstract Cauchy problem (ACP) is well posed. This implies
the existence and uniqueness of a continuous solution u of the initial value-boundary
problem (IBP), having an analytic extension in a right half space in the time variable.
Moreover, u(t), Aou(t) € C®(M) N C(M) forall t > 0.

Corollary 3.5. The resolvents R(A, Ag) are compact operators for all . € p(Ap).
Proof. This follows immediately by (3.3) and [11, Prop. II. 4.25]. U

We finish this section with the special case of closed manifolds, i.e. dM = (. Then,
the Dirichlet boundary conditions gets an empty condition. Hence, the operator Ay
becomes

Af = /]aldiv, (ﬁwfg) + (b, V§, f) + cf,

with domain

D(A):={ fe[|W"P(M): Agf € C(M)
p=1

Remark that then d(x, 0M) = d(x, ) = oo and the kernel K; becomes much easier.

Corollary 3.6. If the manifold M is closed, the operator A generates a compact and
analytic semigroup of angle 5 on C(M).

Proof. Since C2(M) c D(A) and C2(M) c C(M) dense, it follows that A is densely
defined. Now Theorem 3.3 and [11, Thm. II1.4.6] imply that A generates an analytic

semigroup of angle 7 on C(M). Finally, the compactness of the semigroup follows
by Corollary 3.5 and [11, Thm. 11.4.29]. U]
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Appendix A. Bessel functions

The solutions of the ordinary differential equation

2d2 d .2 2 34
zﬁf(z)-i—zd—zf(z)—(z +a”) f(z2) (3.4)

for z € C are called modified Bessel functions of order o € R. In particular, we have
the following.

Proposition A.1. The modified Bessel functions of first kind of order a € R are given
by
(§)2k+a

0
Iy(z) = 2
@) kg Tk +at D

forz € C\R_, where T denotes the Gamma function. Moreover, we obtain the modified
Bessel function of second kind of order « € R\Z by
4 . I_o(2) — 1x(2)

Ke@) =5 e

for z € C\R_. If a € Z, there exists a sequence (a,)neNn C R\Z such that o, — «o
and K is the limit

Ky(z) := lim Ky, (2)
n—oo
forz € C\R_.

First, we prove an estimate for the modified Bessel function of second kind.

Lemma A.2. Leta € R and n > 0. Then, there exists a constant C(n) > 0 such that

|Ka(2)| = Ko (C(n)z])
forall 7 € E%—n'

Proof. Since Re(z) > O for all z € E%—n and o € R it follows by [23, p. 181] that

|Ko(2)] =

(0, @]
/ e~20h(D) cosh(at) dr
0

(0. @]
5/ e~ Re(@)cosh(®) ooh (1) dt.
0

Note that z = |z]e'? with || € [0, 7/2 — 1). The monotony of the cosinus implies

Re (2)
|z]

Using the monotony of the exponential function and the positivity of cosh, we conclude

= cos(p) > cos (w/2 —n) = sin(n) =: C(n) > 0.

o0 o0
f e~ Re(@eosh(®) cogh(qr) dr < f e~ C@lzlcosh®) cosh(ar) dr = Ko (C(0)|2])
0 0

forall z € E%—n' ]
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Therefore, we obtain an estimate for the kernel.

Lemma A3. Leta € R, k € [0,00) and A € Ty forn > 0. If k +a < n, we
obtain

Sw]~&mxmwﬂgL”NW§cwxﬁWﬂ
XeEM JM px,y)

for || > 1.

Proof. Remark that
/ Ko (CDA/TAp(x, ) y:f Ko (Cv/TAP(x. )
M p(x, y)k Br(x) p(x, y)k

/ Ky (C /1M p(x, y))
+ k
M\Bg(x) p(x,y)

For the first term, one obtains

f Ko (C(/Alp(x, y)) ~/ Ky (C(U)«/llel)
Bg(x) "

C
p(x, ) = w%
Ka(l2])

=C
. - K,
= CopVIn /O /S N # dvolg,-1 dr

= Al " /OO Ko(r)r" 'k ar.
0

Since

Ko(r) = O0@r™%)

e’
Ka(r) = O(ﬁ)

rn_l_kKa(r) — O(rn—l—k—()é)

for small r € R and

for large r € R4, we have

for small r € R and
rIRR () = (’)(r"_%_ke_r)

for large » € R,. Hence, there exists a constant C < oo such that

w -
/ Ka(r)r”_l_k dr < C
0
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and we conclude that

K,(C A , —n
/ ( (77)\/|_|,2(x y)) dy < C(’?)\/Wk .
Br(x) p(x,y)

If y € M\Bg(x), we have p(x, y) > R and therefore

volg (M\BR(x))

/ Ko (C)A/IAlp(x, y)) Ky (C(m)RA/IA])
X dy X

M\Bg(x) p(x,y) R

¢ ()eCDVIA

<"

A

for |A| since

e—r
Koy =0 (7)

for large r € Ry. U

Replacing x by x* this yields an estimate for the reflected kernel.

Corollary A4. Let o € R, k € [0,00) and A € Xy, for n > 0. Moreover, let
x € S2. If k + o < n, we obtain

Ko (CVAp(x*, y)) k—n
dy < /P
rs R e

for |A| > 1.
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boundary conditions generate analytic semigroups of angle 7 on the space
of continuous functions on a compact manifold with boundary.

Mathematics Subject Classification. 47D06, 34G10, 47E05, 47F05.

Keywords. Wentzell boundary conditions, Dirichlet-to-Neumann
operator, Analytic semigroup, Riemannian manifolds.

1. Introduction. We start from a strictly elliptic differential operator A,, with
domain D(A,,) on the space C(M) of continuous functions on a smooth,
compact, orientable Riemannian manifold (M, g) with smooth boundary OM.
Moreover, let C' be a strictly elliptic differential operator on the boundary, take
g—:g : D(aa—;g) c C(M) — C(OM) to be the outer conormal derivative, and
functions n,y € C(OM) with 7 strictly positive and a constant ¢ > 0. In this
setting, we define the operator A® C A,, with generalized Wentzell boundary
conditions by requiring

feDAP): < feDA,)ND (aayg) , Anfloy

a

ov9

On a bounded domain €2 C R™ with sufficiently smooth boundary 052, Favini,
Goldstein, Goldstein, Obrecht, and Romanelli [8] showed that for A4,, = Agq

and C = Ay the operator AP generates an analytic semigroup of angle
™

5 on C(Q). In a preprint Goldstein, Goldstein, and Pierre [9] generalized

this statement to arbitrary elliptic differential operators of the form A,, f :=
szzl O (a*' 0y f) and Cop = ZZk:l (a0 p).

=q-Cflom—n- 5= +7 flyu (1.1)
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Our main theorem (Theorem 4.6) generalizes these results to arbitrary
strictly elliptic operators A,, and C on smooth, compact, orientable Riemann-
ian manifolds with smooth boundary.

Consider a half-ball B (0) := {z € R": x,, > 0, |z| < 1} C R". With the
restriction g of the metric of R™ to (B} (0), g), we obtain a smooth, compact,
orientable Riemannian manifold B (0) with smooth boundary. It is not the
closure of a domain in R™ since the boundary is only B; (0) = {x € R": z,, =
0,z <1}.

The situation ¢ = 0 on bounded, smooth domains in R" was studied by
Engel and Fragnelli [5] and on smooth, compact, orientable Riemannian man-
ifolds in [3].

For ¢ = 0, the boundary condition is a partial differential equation of first
order whereas for ¢ > 0 it is a partial differential equation of second order.
Using the theory developed in [5] and [2], this yields two different abstract
Dirichlet-to-Neumann operators: In the case ¢ = 0, it is a pseudo differential
operator of first order, in the case ¢ > 0, it is an elliptic differential operator
of second order perturbed by a pseudo differential operator of first order.

The paper is organized as follows. In the second section, we introduce the
abstract setting from [5] and [2] for our problem. In the third section, we
study the special case that A,, is the Laplace-Beltrami operator and B is the
normal derivative. In the last section, we generalize to arbitrary strictly elliptic
operators and their conormal derivatives.

Throughout the whole paper, we use the Einstein notation for sums and
write z;y* shortly for Z?Zl x;y*. Moreover, we denote by < a continuous and

by < a compact embedding.

2. The abstract setting. As in [5, Sect. 2], the basis of our investigation is the
following.

Abstract setting 2.1. Consider

(i) two Banach spaces X and 0X, called state and boundary space, respec-
tively;
(ii) a densely defined mazimal operator A,,: D(A,) C X — X;
(iii) a boundary (or trace) operator L € L(X,0X);
(iv) a feedback operator B: D(B) C X — 0X.

Using these spaces and operators, we define the operator AP : D(AB) C
X — X with abstract generalized Wentzell boundary conditions as

APf.=A,f, D(AP):={f€ D(A,)ND(B): LA, f=Bf}. (2.1)

For an interpretation of Wentzell boundary conditions as “dynamic boundary
conditions”, we refer to [5, Sect. 2].
In the sequel, we need the following operators.

Notation 2.2. The kernel of L is a closed subspace and we consider the restric-
tion Ay C A,, given by

Ay :D(Ag) C X - X, D(Ay):={feD(A,): Lf=0}
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The abstract Dirichlet operator associated with A,, is, if it exists,
Li™ := (Llger(a,)) "t 0X — ker(A,,) € X

ie. Lg‘mgp = f is the unique solution of the abstract Dirichlet problem

Ap f =0,
2.2
{Lf:@ (29

If it is clear which operator A,, is meant, we simply write Lg.
Finally, we introduce the abstract Dirichlet-to- Neumann operator associated
with (A, B), defined by

NAnBy .= BLimp, D((NAB):={pcdX:Lympe D(B)}.

If it is clear which operators A,, and B are meant, we write N = N4=5 and
call it the (abstract) Dirichlet-to-Neumann operator.

3. Laplace-Beltrami operator with generalized Wentzell boundary conditions.
Take now as maximal operator A,,: D(A,,) € C(M) — C( ) the Laplace-

Beltrami operator A}, with domain D(A,,) := {f €M1 W ZP(M)NC(M)
A, f € C(M)}. Moreover, consider another strictly elliptic differential opera-

tor C: D(C) C C(OM) — C(OM) in divergence form on the boundary space.
To this end, take real valued functions

o =a € C*(0M), B;€C(OM), ~e€COM), 1<jk<n,

such that oz? are strictly elliptic, i.e.

a*(9)¢" (9) X1 (q) X1 (q) > 0

J

for all co-vectorfields X, X; on OM with (Xi1(q),...,Xn(q)) # (0,...,0). Let
o= (oz;‘-’)j,kzlw,n denote the 1-1-tensorfield and 5 = (5;)j=1,... n. Moreover, we
denote by |a| the determinate of o and define C: D(C) C C(OM) — C(OM)
by

Cy = +/|a|div, (\/Wavamp) (B, Ve +7 -,

D(C) := {go € ﬂ W2P(OM): Cyp € C(@M)} : (3.1)

p>1

In order to define the feedback operator, we first consider By: D(By) C
C(M) — C(OM) given by

Bof i= —g(aV¥, f,vq), D(Bo) = {feﬂwloc )N C(T >Bofec<aM>}.

p>1
This leads to the feedback operator B: D(B) C C(M) — C(OM) given by

Bf:=q-CLf—n-g(Vf vy),
D(B) :={f € D(A,) N D(By): Lf € D(C)},
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where L: C(M) — C(OM), f + f|an denotes the trace operator and q > 0
and n € C(M) is positive. Using these operators A,, and B, we define the
operator AP with Wentzell boundary conditions on C(M) as in (2.1).

Note that the feedback operator B can be splitted into

B:qCL—F??Bo
The following proof is inspired by [7] and similar to [2, Ex. 5.3].
Lemma 3.1. The operator B is relatively Ag-bounded of bound 0.

Proof. Since D(Ap) C ker(L), the operators B and 7 - By coincide on D(Ay).
Hence it remains to prove the statement for the operator By. By [13, Chap. 5.,
Thm. 1.3] and the closed graph theorem, we obtain

[D(Ap)] — WP(MM).
Rellich’s embedding (see [1, Thm. §3 2.10, Part II1.]) implies
W2P(M) <5 Che (M) <5 CHM)
for p > %, where n denotes the dimension of M. So we obtain
[D(Ao)] <> CL(M) < C(M).

Therefore, by Ehrling’s lemma (cf. [12, Thm. 6.99]), for every £ > 0, there
exists a constant C, > 0 such that

[l ary < ellfllas + Cell fllx
for every f € D(Ap). Since By € L(C*(M),dX), this implies the claim. [
Lemma 3.2. The operator N2m 5o s relatively C-bounded of bound 0.

Proof. Let W := —(AgM)% and remark that by the proof of [3, Thm. 3.8],
there exists a relatively W-bounded perturbation P of bound 0 such that

N&mBo =1y 4 P,

Therefore [11, Thm. 3.8] implies that N2=-5o is relatively A%, -bounded of
bound 0. Using the (uniform) ellipticity of C, there exists a constant A > 0
such that
1A ellcemy < A-ICollcom)
for ¢ € D(C) = D(A%,,). Hence N2m:Bo is relatively C-bounded of bound 0.
O
Now the abstract results of [2] lead to the desired result.

Theorem 3.3. The operator AP with Wentzell boundary conditions associated
to the Laplace-Beltrami operator A, = A, generates a compact and analytic
semigroup of angle 5 on C(M).
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Proof. We verify the assumptions of [2, Thm. 4.3]. Remark that by [3, Lem. 3.6]
and Lemma 3.1 above, the Dirichlet operator Ly € L(C(OM),C(M)) exists
and B is relatively Ag-bounded of bound 0. By multiplicative perturbation,
we assume without loss of generality that ¢ = 1. Now [4, Thm. 1.1] implies
that A is sectorial of angle 7 on C(M) and has compact resolvent. Moreover,
by [4, Cor. 3.6], the operator C generates a compact and analytic semigroup

of angle § on C(OM). Finally, the claim follows by [2, Thm. 4.3]. O
4. Elliptic operators with generalized Wentzell boundary conditions. Con-
sider a strictly elliptic differential operator A,,: D(A,,) C C(M) — C(M)
in divergence form on the boundary space. To this end, let

a¥ =a] € C®(M), b;eC.(M), ceC(M), 1<jk<n,

be real-valued functions, such that a;‘? are strictly elliptic, i.e.

a5(0)g’ (@)X (@) Xi(q) > 0

for all co-vectorfields X, X; on M with (Xi1(q),...,X,(q)) # (0,...,0). Let
a = (a;‘?)j,kzl,_,_,n be the 1-1-tensorfield and b = (b;);=1,...n. Then we define
A, D(Ay) € C(M) — C(M) by

A f = /]aldiv, (ﬁwm) + (b, Vi, f) +c- f,

D(A,,) := {¢ € [\ WiL(M)NC(M): A f € C(M)} . (4.1)

p>1

Note that, since M is compact, every strictly elliptic operator is uniformly
elliptic (and of course vice versa).
We consider a (2,0)-tensorfield on M given by

~kl kil
g =a;9 .

Its inverse g is a (0, 2)-tensorfield on M, which is a Riemannian metric since
af ¢7! is strictly elliptic on M. We denote M with the old metric by M? and

with the new metric by M? and remark that M’ is a smooth, compact, ori-
entable Riemannian manifold with smooth boundary OM. Since the differen-

tiable structures of M?Y and Vil coincide, the identity
Id: M° —s M’
is a C*°-diffeomorphism. Hence the spaces

X = (M) := c(3r’) = C(31%)

and 00X :=C(OM) :=C(OMY) = C(OM7)
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coincide. Moreover, [10, Prop. 2.2] implies that the following spaces coincide
LP(M) := LP(M9) = LP(M?),
WHEP(M) := WHP(MI) = WHP(MY),

Ly, (M) = L, (M?) = L, (M),

WP (M) = WP (M) = WEP(M?),

LP(OM) := LP(OM?Y) = LP(OMY),
WHEP(OM) := WHP(aMI) = WrP(OMY),

LY (OM) =18 (OM9) =L1LF (oM9),
WP (OM) == WP (OM7) = Wik (9M7) (4.2)

A~

for all p > 1 and k € N. Denote by A,, the maximal operator defined in (4.1)
with b; = ¢ = 0 and by C' the operator given in (3.1) for Bj =~ = 0. Moreover,
denote the corresponding feedback operator by B.

Next, we look at the operators A,,, By, and C with respect to the new
metric g.

Lemma 4.1. The operator A, and the Laplace-Beltrami operator Ag/[ coincide
on C(M).

Proof. Using local coordinates, we obtain

- 1 1
A f = ——=+/|a|0; ——alg"o
=V ‘““( Nl kf)

— o, (VElgour) = ALLf

- Vil

for f € D(A,,) = D(A9) since |g| = |a| - |g]. O
Now we compare the maximal operators A,, and A,

Lemma 4.2. The operators A,, and A, differ only by a relatively bounded
perturbation of bound 0.

Proof. Using (4.2), we define
Pyf :=big" o f

for f € D(A,,) N D(/Alm). Since b; € C.(M), there exist compact sets K; :=
supp(b;). Let K := J;._; K; and note that it is a compact set and every b; and
hence P; f vanishes outside of K. We define

(Ap)lwf =A% f
D((Ap)|x) :=={f € C(K) : there exists a function f € D(A,,)
such that f|x = f1.
Morreys embedding ([1, Thm. §3 2.10, Part IIL.]) implies
[D((Am)lx)] < CH(K) = C(K). (4:3)
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Moreover, we obtain

1Py fllery < sup [bi(9)g™ (9)(85)(q)]
qeEM

= sup |bi(q)g" (q)(Or f)(q)]

geEK
< CZ 1Ok ) &l

k=1
and therefore P, € £L(CY(K),C(M)). Hence D(A,,) = D(A,,). By (4.3), we
conclude from Ehrling’s lemma (see [12, Thm. 6.99]) that

1P fllean < Clflxllcr i < ell(Am)lx flxllew
+ellflxllea) + C@)f ko)
<ellAmfllean + CENNcan

for f € D(A,,) and all € > 0. Hence P is relatively A,,-bounded of bound 0.
Finally remark that

Pyf :=c-f, D(P):=C(M)
is bounded and that
Apf=Anf+Pif+Pof

for f € D(A,,). O
Lemma 4.3. The operators By and the negative conormal derivative —% co-
incide.

Proof. Since the Sobolev spaces coincide, we compute in local coordinates
Bof = —gi;¢" al Ok fg"" vm
= —0i;3" 0k f§"" Vi
= —3i 7" Ok 7" Vim
0
= ——f

e

for f € D(B) = D(Z2). O
Define C': D(C) c C(OM) — C(dM) by

G = ]aldivy | ——avi, o], D(C):={p e W*P(dM): Cp € C(OM)},
VAl

where a(q) := a(q)™! - a(q).

Lemma 4.4. The operators C' and C' coincide on C(OM).

Proof. An easy calculation shows

gl _ lgl

&l o’
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~k~lj _ k1]
a7 =og'gr.

Hence we obtain in local coordinates

A

for ¢ € D(C) = D(C). O
Next we compare the operators C' and C.

Lemma 4.5. The operators C' and C differ only by a relatively bounded pertur-
bation of bound 0.

Proof. Denote by
Pg = (8,Vy) +7- ¢ for f € D(P):= C"(OM)

and note that P € L(C'(OM),C(OM)). The Sobolev embeddings and the
closed graph theorem imply

[D(C)] < CHOM) — C(OM).
Finally, the claim follows by Ehrling’s lemma (cf. [12, Thm. 6.99]). O
Now we are prepared to prove our main theorem.

Theorem 4.6. The operator AP with Wentzell boundary conditions generates
a compact and analytic semigroup of angle 3 on C(M).

Proof. Since C' is a strictly elliptic differential operator in divergence form on
C(OM), we obtain by Theorem 3.3 that the Laplace-Beltrami operator with
Wentzell boundary conditions given by

o9
v

generates a compact and analytic semigroup of angle 7 on C(M). Now Lemma 4.1,

(A Dlone = q-Cfloas — o f

Lemma 4.3, and Lemma 4.4 imply that the operator AB generates a compact
and analytic semigroup of angle 7 on C(M). Note that A, and A,, differ
only by a relatively A,,-bounded perturbation of bound 0 by Lemma 4.2. By
Lemma 4.5, one obtains that the perturbation on the boundary is relatively

C-bounded. Now the claim follows from [2, Thm. 4.2]. O

Remark 4.7. Theorem 4.6 generalizes the main theorem in [9] for the case
p = 00.
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Corollary 4.8. The initial-value boundary problem

%u(t, q) = Anu(t,q), t >0, g€ M,
Lo(t,q) = Bu(t,q), t>0, q€dM,
u(t,z) =e(tz), t>0, xecdM,
U(O’ Q) = uO(Q)? qc M,

(
(

)
)

on C(M) is well-posed. Moreover, the solution (Z i ) € C®(M) x C>®(OM)
Uo

uo|ans

by a compact and analytic semigroup, which can be extended to the right half

plane.

for t > 0 depends analytically on the initial value and 1s governed
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1. Introduction

The study of the generator property of operators with
Wentzell boundary conditions and of the Dirichlet-to-
Neumann operator gained the interest of many authors.
Recent developments and related references can be found
in [7], [15], [22]. Starting in [12] we developed an
abstract framework which was refined in [9] allowing
to study these and related questions in a unified and
systematic way. In the present paper we show how our
abstract approach can be adapted to cover also first order
evolution equations with dynamic boundary conditions.

More precisely, our starting point are the following
two problems (P1) and (P2) with dynamic boundary
conditions given by

—Au(t)=f(t) in 2 x [0,400),
at) + 9L(t)=g(t) ondRx[0,+00),  (P1)
u(0)=ug  inofN
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by/4.0/, which permits unrestricted use, provided the original author and
T H E ROYA L SOC I ETY source are credited.
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and
u(t) — Au(t) = f(t) in £2 x [0, 400),

at) + 9L (t) = g(t) on 82 x [0, +00), (P2)
w(0)=uy in

appearing both in [16], where % denotes the outer normal derivative. The aim of this work is to
develop an abstract framework to study the well-posedness of these and other similar problems
in a systematic and unified way. In many cases this allows to "decouple” the original problem and
show its equivalence to a system of two independent simpler problems.

This paper is organized as follows. In Section 2 we set up our abstract framework and
reformulate (P1) and (P2) within this general setting, cf. (iaP1)), (iaP2). Section 3 provides the
preliminaries needed in the sequel, in particular it introduces the abstract Dirichlet operator,
the abstract Dirichet-to-Neumann operator and operators with abstract generalized Wentzell
boundary conditions. After these preparations we characterize in Section 4 the well-posedness
of the homogeneous problem (aP1)) in terms of two independent problems: an abstract Dirichlet
problem (aDP)) and an abstract Cauchy problem (aCP ;, ) for the Dirichlet-to-Neumann operator,
see Theorem 4.3. Moreover, we relate solutions of the inhomogeneous problem (iaP1,) to
the solutions of the inhomogeneous Cauchy problem (iaCPy,) for the Dirichlet-to-Neumann
operator, cf. Theorem 4.4. The following Section 5 is dedicated to the problem (iaP2). First we
show that the homogeneous case (aP2) is equivalent to the abstract Cauchy problem (aCP 45) for
the operator AP with generalized Wentzell boundary conditions, see Theorem 5.1. Moreover, in
Theorem 5.2 we show that, in the inhomogeneous case, the solutions of (iaP2) and (iaCP 4 ) are
closely related. The last two subsections of Section 5 are devoted to the "decoupling” problem,
that is we characterize the well-posedness of (aP2) in terms of the well-posedness of two simpler,
independent Cauchy problems. This is done first in the analytic case and then for boundary
operators B which are bounded on one part of the decomposition X = X @ ker(Am,) of the state
space X. In Section 6 we demonstrate in three examples how versatile our approach is. We show
how it applies to delay-differential equations, to unbounded perturbations of the shift-semigroup
and to (generalizations of) the above problems (P1) and (P2). Finally, in Section 7 we give a short
conclusion and some final remarks on further developments and generalizations.

2. Abstract dynamic boundary value problems

In this section we embed the problems (P1) and (P2) from the introduction into an abstract
framework. Before doing so we emphasize that our setting is tailored towards state spaces of
continuous functions where the trace operator becomes bounded, cf. condition (iii) below. In
Subsection 7.3 we mention related results in spaces of p-integrable functions where this condition
obviously does not hold.

Asin [9, Sect. 2] and [12, Sect. 2] we introduce the following setup.

General Setting 2.1. Consider
(i) two Banach spaces X and 0X, called state and boundary space, respectively;
(ii) a densely defined and closed maximal! operator Am,: D(Am) C X — X;
(iii) a surjective trace operator L € L(X,0X);
(iv) a boundary operator B: D(B) C X — 0X.

Note that due to the closedness of Ay, its domain [D(Am)] := (D(Am), || - || 4,,) equipped with
the graph norm ||z| 4,, := ||z|| + ||Amz|| for x € D(Asx) is a Banach space. Moreover, for every
X € C the kernel ker(A — Ay, ) is a closed subspace of X and of [D (A )] and the restrictions of the
corresponding norms to these kernels are equivalent.

Using the above spaces and operators we can now formulate abstract versions of the problems
(P1) and (P2).

!"maximal" in the sense of "big", e.g., a differential operator without boundary conditions.
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2.1 The homogeneous abstract boundary problem (aP1))
For X € C consider the abstract elliptic problem with dynamic boundary conditions on X given by
Au(t) = Amu(t), t>0,
(Lu)(t) = Bu(t), t>0, (aP1y)
Lu(0) = zo.

Our motivating problem (P1) fits (in the homogeneous case f, g = 0) into this setting if we choose
X :=C(2),0X :=C(002),\=0, A :=A, Lf := f|pp and B:=— 2.
In order to study (aP1)) we introduce some more terminology.

Definition 2.2. A continuous function u: Ry — X is called a

(i) classical solution of (aPly,) if Lu:Ry — 90X is continuously differentiable in 0X, u(t) €
D(Apm) N D(B) forall t > 0 and (aP1)) holds;
(ii) mild solution of (aP1,) if [ u(s) ds € D(B), u(t) € ker(\ — Am), and
t

Lu(t) —x9 = BJ u(s)ds forallt>0.
0

Moreover, we call (aP1y) well-posed if for every xo € 0X it admits a unique mild solution.

To indicate the dependence upon the initial value zo € X, in the sequel we also use the
notation u(-, zg) for solutions of (aP1y). Moreover, we note that from Lemma A.1 it follows that a
classical solution is always a mild solution while the contrary in general does not hold.

2.2 The homogeneous abstract boundary problem (aP2)
Consider the abstract parabolic problem with dynamic boundary conditions on X given by
u(t) = Amu(t), t>0,
Lu(t) = Bu(t), t>0, (aP2)

As before, the homogeneous case (P2) fits into this setting if we choose X := C(£2), 0X := C(912),
Am:=A, Lf:= flpgand B:=—2.
Like above we need some more terminology.

Definition 2.3. A continuous function u: Ry — X is called a
(i) classical solution of (aP2) if u:Ry — X is continuously differentiable in X, u(t) € D(Am) N
D(B) for all t > 0 and (aP2) holds;
(ii) mild solution (aP2) if [} u(s) ds € ker(LAm — B) and
t
u(t) —up = AmJ u(s)ds forallt>0.
0

Moreover, we call (aP2) well-posed if for every ug € X it admits a unique mild solution.

We also use the notation u(-, ug) for solutions of (aP2) in order to indicate the dependence
upon the initial value ug € X. Note that a classical solution is always a mild solution while the
contrary in general does not hold.

3. Preliminaries

In this section we introduce and study some operators needed in the sequel.
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3.1 Operators with abstract Dirichlet boundary conditions and abstract
Dirichlet operators

We define the, in general, non-densely defined, operator Ag: D(Ag) C X — X with abstract
Dirichlet boundary conditions

Ay C Am, D(Ap):=D(Am) Nker(L).
Moreover, for given A € C and x € X we consider the abstract Dirichlet problem

{(A—Amw—o,

(aDPy)
Lf=x.

If for every x € 9X this problem has a unique solution f € ker(A — Am), we can define
the abstract Dirichlet operator Ly : 0X — ker(A — Apm) C X by Lz := f. Since Ay, is closed, also
ker(A — Am) C X is closed and since Ly = (Llyer(x— Am))_l, the closed graph theorem implies
that L € £(0X, X). Conversely, if Llxer(r—4,,) : ker(A — Am) — 0X is invertible with inverse
L), then for every « € 0.X the problem (aDP) is uniquely solvable. Hence, we have the following.

Lemma 3.1. The problem (aDP)) has for every x € 0X a unique solution if and only if the Dirichlet
operator Ly = (L|kcr()\_Am))_1 € L(0X, X) exists.

Now, by [3, Lem.3.1], the following relationship holds between A and (aDP)).

Lemma 3.2. We have A € p(Ao) if and only if

(i) the operator X\ — A : D(Am) — X is surjective, and
(ii) the Dirichlet operator Ly exists.

In particular, if Ay has compact resolvent, then X € p(Ag) if and only if L exists.

Finally, we note that L L € £(X) is a projection onto the subspace ker(A — Ay,) C X along the
space X := ker(L) which induces the decompositions

X =Xo®ker(A— Anm) and D(Am)=D(Ap) ®ker(A — Am). (3.1)

3.2 The Dirichlet-to-Neumann operator

If the Dirichlet operator Ly € L(0X, X) exists, e.g. if A € p(Ag) (use Lemma 3.2), we define the
abstract Dirichlet-to-Neumann operator Ny : D(N) C X — 0X by

Ny:=BL), D(Ny):={x€dX:Lyze D(B)}.

If Lo exists, we simply write NV := Ng = BLg. These operators and the corresponding abstract
Cauchy problems

{ #(t) = Nyz(t), t>0,

(aCP N )

z(0) == g
play a crucial role in our treatment of the problems (aP1y) and (aP2). We recall from [4, Sect. 3.1]
that (aCPy, ) is called (mildly) well-posed if for every xo € 0.X there exists a unique mild solution.
By [4, Thm. 3.1.12] this is equivalent to the fact that N generates a Cp-semigroup on 0.X.
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3.3 Operators with abstract generalized Wentzell boundary conditions

Finally, in order to study the problem (aP2) we need the operator AZ: D(AP) c X — X with
abstract generalized Wentzell boundary conditions given by

AP C Apm, D(AP):={feD(An)ND(B): LAnf=Bf}. (3.2)

If B =0, the boundary conditions defined in (3.2) are called pure Wentzell boundary conditions. This
operator corresponds to the Cauchy problem

{ a(t) = ABu(t), t>0,

CP 45
u(0) = ug. (CPa)

In Theorem 5.1 we will see that the problems (aP2) and (aCP 45) are basically equivalent. In
particular, this gives an interpretation of "Wentzell" as "dynamic boundary conditions". Moreover,
asin [4, Sect. 3.1] we call (aCP 4 5 ) (mildly) well-posed if for every ug € X there exists a unique mild
solution. By [4, Thm. 3.1.12] this is equivalent to the fact that A® generates a Cp-semigroup on X.

4. The problems (aP1,) and (ialP1,)

The main aim of this section is to show that the homogeneous problem (aP1},) is equivalent to
a system of two independent problems: an abstract Dirichlet problem (aDP)) for A — A, and
L and an abstract Cauchy problem (aCPy;, ) for the Dirichlet-to-Neumann operator Ny on 0.X.
Moreover, we give an explicit formula for the solution of (iaP1)) in the inhomogeneous case.

Recall that X :=[D(Anm)] is a Banach space. In addition to the conditions imposed in our
General Setting 2.1, in this section we assume the following.

Assumptions 4.1. Suppose that
(i) B is relatively Ag-bounded, and
(i) B1:=Blx, : D(Am) N D(B) C X1 — 0X is closed.

4.1 The homogeneous case

To show the aforementioned equivalence of (aP1)) on one side and of (aDP,) & (aCP, ) on the
other, we need the following result.

Lemma 4.2. If for A\ € C the homogeneous problem (aP1y) is well-posed, then the abstract Dirichlet
operator Ly € L(0X, X) exists.

Proof. From the well-posedness of (aP1,) it immediately follows that the restriction L|ier(x—4,,)
ker(A — Apm) — 0X is surjective. Now assume that L f =0 for some f € ker(A — Am). Then f €
D(Ap) C D(B) and by assumption there exists a mild solution v = u(-, zo) of (aP1)) for the initial
value Lu(0) = z¢ := Bf. Define the continuous function v : Ry — X by

t
o(t):=f+ JO u(s)ds, t>0.

Then Lv : R4 — 90X is continuously differentiable and v(t) € D(Ap,) N D(B) by the closedness of
Am and Lemma A.1. Moreover, for all ¢ > 0 we have (A — Am)v(t) =0, Lv(0) =0 and

t

Bv(t):Bf—i—BJ

u(s)ds=Bf + Jt Bu(s)ds
0 0

t .
—Bf+ JO (Lu)(s)ds = Bf + Lu(t) — Lu(0)

= Lu(t) = (Lv)(t).
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This shows that v is a classical, hence also a mild solution of (aP1y) for the initial value zo = 0. By
uniqueness, we obtain v = u(-,0) = 0 and therefore 0 = v(0) = f. This proves that L|yc;(x—4,,) is
also injective, hence invertible with inverse L. O

We can now prove the announced equivalence.

Theorem 4.3. The following statements are equivalent.

(a) The homogeneous problem (aP1y) with dynamic boundary conditions is well-posed.

(b) The Dirichlet problem (aDP ) admits a unique solution and the Cauchy problem (aCP y, ) is wellposed.

(c) The Dirichlet operator Ly exists and the Dirichlet-to-Neumann operator Ny = BL) generates a Co-
semigroup on 0X.

Proof. The equivalence of (b) and (c) follows immediately from Lemma 3.1 and [4, Thm. 3.1.12].
To show (a)<= (b) we note that by Lemma 4.2 and Lemma 3.1, respectively, both
assumptions (a) and (b) imply that Ly exists. Now, if u=u(-,zg) is a solution of (aP1}), then
x := Lu is a solution of (aCP , ). Conversely, if = x(-, ©o) is a solution of (aCP;, ), then u := Lz
is a solution of (aP1y). Hence, the problem (aP1,) admits a unique mild solution if and only
if (aCPy,) does. As pointed out in Subsection 3.2, the latter is equivalent to the fact that N
generates a Cp-semigroup on 0.X. This completes the proof. O

4.2 The inhomogeneous case

Having characterized the well-posedness of the homogeneous problem with dynamic boundary
conditions we now study the inhomogeneous case

Mu(t) = Apmu(t) + f(t), t>0,
(Lu)(t) = Bu(t) + g(t),  t>0, (iaP1,)
Lu(0) =xo
for f:Ry - X and g: Ry — 0X.Wecall u: Ry — X aclassical solution of (iaP1)y) if Lu: Ry — 0X
is continuously differentiable in 90X, u(t) € D(Am) N D(B) for all t > 0 and (iaP1}) holds.

As we will see next, the solvability of (iaP1,) can be characterized by the solvability of an
inhomogeneous abstract Cauchy problem for the Dirichlet-to-Neumann operator N).

Theorem 4.4. Let A € p(Ag), zo € X, f e LY (Ry, X) and g € L' (R, dX). Moreover, assume that
Ny = BL) generates a Co-semigroup (Sx(t))¢>0 on 0X. Then u: Ry — X defined by

t
w(t) := LS\ (t)zo + R(X\, Ao) f(t) + L L Sx(t— s)(g(s) + BR(\, Ao)f(s)) ds 4.1)

is a classical solution of (iaP1y) if and only if
t
(1) = Sy ()70 + J S (t — $)h(s) ds “2)
0

is a classical solution of the inhomogeneous abstract Cauchy problem

{ &(t) = Nxz(t) +h(t), t>0, (iaCPy,)

z(0) ==x9

where h € LY (R4, X)) is given by h(t) := g(t) + BR(X, Ao) f(t). In particular, (iaP1y) has at most one
solution which, if it exists, is given by (4.1).
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Proof. Note that u(t) = Lyxz(t) + R(\, Ag) f(t) and z(t) = Lu(t) for all ¢>0. Hence, Lu(-) is
continuously differentiable if and only if z(-) is. Moreover, since D(Ag) C D(B), we have

u(t)e D(Am)ND(B) <= Lyz(t)eD(B) <= z(t) € D(Ny).

Thus, it suffices to show that (iaP1)) holds for u(-) if and only if (iaCPy;, ) holds for z(-). This,
however, is easily verified by a simple and straightforward computation. The last affirmation
follows since by [19, Cor. 4.2.2] the inhomogeneous Cauchy problem (iaCP ;, ) has at most one
solution which, if it exists, is given by (4.2). O

5. The problems (aPP2) and (iaP2)

In this section we show equivalence of the homogeneous problem (aP2) and the abstract Cauchy
problem (aCP 4 ) for the operator AP with abstract generalized Wentzell boundary conditions.
This fact is then used to characterize the well-posedness of the associated inhomogeneous
problem (iaP2). In the remaining two subsections we then "decouple" (aP2) into two independent
simpler abstract Cauchy problems on Xy and 0.X, respectively.

5.1 The homogeneous case

Theorem 5.1. The following assertions are equivalent

(a) The homogeneous problem (aP2) with dynamic boundary conditions is wellposed.
(b) The abstract Cauchy problem (aCP 4 5) is wellposed.
(c) The operator AP defined in (3.2) generates a Co-semigroup on X.

Proof. Since (b) and (c) are equivalent by [4, Thm. 3.1.12], it is sufficient to prove the equivalence
of (a) and (b).
Using that Lu(t) = LAmu(t), problem (aP2) is equivalent to the system

By the definition of AP this is equivalent to (aCP 45) and the claim follows. O

5.2 The inhomogeneous case

We now study the inhomogeneous parabolic problem with dynamic boundary conditions given by

u(t) = Amu(t) + f(t), t>0,
Lu(t) = Bu(t) + g(t), >0, (iaP2)

for f:Ry — X and g: Ry — 0X. We call u: Ry — X a classical solution of (iaP2) if u: R4 — X is
continuously differentiable in X, u(t) € D(Am) N D(B) for all t > 0 and (iaP2) holds.

The solvability of (iaP1)) can be characterized by the solvability of an inhomogeneous Cauchy
problem for the operator AP with generalized Wentzell boundary conditions.

Theorem 5.2. Let ug € X, f € LY(Ry4, X), ge LY (Ry,dX) and assume that AP generates a Co-
semigroup (T'(t))¢>0 on X. Then (iaP2) has at most one solution. Moreover, if Lf = g, then u: Ry — X
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defined by
t

u(t) :=T(t)zo + JO T(t—s)f(s)ds (5.1)

is a classical solution of (iaP2) if it is a classical solution of the inhomogeneous abstract Cauchy problem

{u(t) =ABu)+ f(t), t>0,

(iaCPy5)
u(0) = ug.

Proof. Uniqueness of the solution follows since the difference of two solutions of (iaCP 4z ) solves

the homogeneous problem (aCP 45) for the initial value ugp =0. In case Lf =g the function u

defined in (5.1) gives a solution of (iaCP 4z ). This follows immediately from the fact that u(t) €

D(AB) implies that LA, u(t) = Bu(t) for all £ > 0. O

5.3 Decoupling for analytic semigroups

The problem (aP2) consists of two differential equations where the second one describes, by
means of the boundary operator B: D(B) C X — 90X, an interaction between the state space X
and the boundary space 0X.

The aim of this section is to "decouple” this problem, i.e.,, we show its equivalence to a
system consisting of two independent Cauchy problems: the first one on the space Xy = ker(L)
of functions having zero trace governed by the operator Ay with abstract Dirichlet boundary
conditions. The second one on the boundary space X governed by a Dirichlet-to-Neumann
operator N. Our approach is based on similarity transformations and perturbation arguments
for analytic semigroups. For this reason we need to complement our General Setting 2.1 by some
additional assumptions.

Assumptions 5.3. (i) The operator Ag is a weak Hille-Yosida operator on X, i.e. there exist A\g € R
and M > 0 such that [\g, 00) C p(Ap) and
[AR(X, Ag)|| < M forall X > Xo; (5.2)

(ii) the operator B is relatively Ao-bounded with bound 0, i.e., D(Ao) C D(B) and for every e > 0 there
exists Me > 0 such that

IBfllox <e-llAofllx + Me - |Ifllx forall f € D(Ao);

(iii) the abstract Dirichlet operator Lo € L(0X, X)) exists.

In addition we define the operator Go : D(Gg) C X — X by

Go:=Am — LyB, D(Go) = D(AQ) = D(Am) N ker(L). (5.3)

Theorem 5.4. The following statements are equivalent

(a) AB given by (3.2) generates an analytic semigroup of angle o> 0 on X.

(b) Ag is sectorial of angle oo > 0 on X and the Dirichlet-to-Neumann operator N generates an analytic
semigroup of angle o > 0 on 0X.

(c) Aoo := Aol|x, and the Dirichlet-to-Neumann operator N := BLq generate analytic semigroups of
angle o> 0 on Xo and 0X, respectively.

Moreover, AB has compact resolvent if and only if Ag and N have.

The proof of this result and various generalizations can be found in [9]. Here we only mention
that the following lemma is a the key ingredient, see [9, Thm. 3.1].
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Lemma 5.5. The operator AP : D(AP)c X — X is similar to A: D(A) C Xo x 8X — Xo x 8X
given by

—LgN
A= (CJ‘;" 2 ) . D(A):= {(g) € D(Ag) x D(N): Gof + LoNz € Xo} . (54
Remark 5.6. By Theorem 5.4 it follows that in the analytic case the well-posedness of (aP2) remains
unchanged if Am, is replaced by Apm — X for some A € C. This is in strong contrast to the well-posedness
of (aP1y) where, by Theorem 4.3, we need that the Dirichlet operator Ly exists, i.e., X € p(Aop).

5.4 Decoupling for partially bounded boundary operators 3

If the abstract Dirichlet operator Lo € £L(0X, X) exists, by (3.1) we obtain the decomposition X =
Xo @ ker(Ap) of the state space. In this section we study the case where the boundary operator
B:D(B)C X — 0X is bounded on one summand of this decomposition. This will allow us to
decouple the generator property of AP asin the previous subsection without assuming that the
corresponding semigroup is analytic.

(i) B bounded on X

In order to proceed in the context of our General Setting 2.1 we need the following additional
assumptions.

Assumptions 5.7. (i) The operator Ag is a weak Hille—Yosida operator on X, cf. Assumptions 5.3.(i);
(ii) the operator By := B|x, is bounded, i.e., there exists M > 0 such that

I1Bfllox <M -|[fllx forall f e Xo;

(iii) Ay is invertible and hence the abstract Dirichlet operator Lo € L(0X, X)) exists.

If Ago := Ao|x, and N = BLg generate Cy-semigroups (T'(t));>0 and (S(t))¢>0, respectively,
then from [10, Lem. 3.2] it follows that for ¢ > 0 the operator R(t) : D(N) C 0X — X given by
t

R(t)z := AmJ T(s) - AalLo -S(t—s)Nzds (5.5)
0

is well-defined.

Theorem 5.8. Under the above assumptions the following statements are equivalent.
(a) The operator AP defined in (3.2) generates a Co-semigroup on X, i.e., (aP2) is well-posed.
(b) (i) Ao = Ao|x, and N = BLg generate a Co-semigroups (T'(t))¢>0 and (S(t))¢>0 on Xo and
0X, respectively, and
(ii) there exists tq > 0 and M > 0 such that

IR()zllx <M - ||zllox forall t € (0,t0] and x € D(N). (5.6)

Proof. In a first step assume that B|y, = 0. Then by Lemma 5.5 the operator APB is similar to

Ao (f(l)o §V0N> , D(A):= {(g) € D(Ag) x D(N): Agf + LoNz eXO} (5.7)

and the claim follows from [10, Thm. 3.3]. If B|x, € £(X(,0X), the assertion follows from
Lemma A .4. O

Remark 5.9. The previous result can also be interpreted as follows: If the operator R(t) in (5.5) remains
norm bounded for t |0, then the (coupled) problem (aP2) is well posed if and only if the (independent)
Cauchy problems for Agp on Xo and N on 0X are.
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(i) B bounded on ker(A,,)

We now study the case where By, (4,,) is bounded which, for Ag-bounded B, is equivalent to the
fact that the Dirichlet-to-Neumann operator N = BLg gets bounded on 0X. More precisely, our
starting point are the following additional hypotheses complementing our General Setting 2.1.
For the definition of the operator Gg see (5.3).

Assumptions 5.10. (i) The operator Gg is a weak Hille-Yosida operator on X, cf. Assumptions 5.3.(i);
(ii) the operator B is relatively Apm-bounded, i.e., D(Asm) C D(B) and there exist a, b > 0 such that

[Bfllox <a-|Amfllx +b-[Ifllx forall f € D(Am);

(iii) the abstract Dirichlet operator Lo € L(0X, X) exists.

Note that by the closed graph theorem Lg : X — [D(An)] is bounded, hence assumption (ii)
above implies the boundedness of N = BLg € L(0X).

Theorem 5.11. Under the above assumptions the following statements are equivalent.

(a) The operator AP defined in (3.2) generates a Co-semigroup on X, i.e., (aP2) is well-posed.
(b) Goo := Go|x, = (Ao — LoB)|x, generates a Cy-semigroup on Xo.

Proof. By Lemma 5.5 the operator APB is similar to A defined in (5.4). However, A= (Z + P)lx,
for D(Z):= D(Gp) x 0X where

__[Go 0} (0 —LoN
Z.<B 0>.D(Z)CXHX and 73.(0 N >€£(XO,X).

Since for every € > 0 the matrix Z is similar to

Gog O
:D(Z X—X
<5'B O) (Z)cX =4,

it follows by Assumptions 5.10.(i) and [13, Lem. II.2.5] that Z is a weak Hille-Yosida operator.
Moreover, since every generator is densely defined and the generator property is invariant
under similarity transformations, both assumptions (a) and (b) imply that D(Z) = Xo x 9X = Ap.
Hence, by Lemma A.4 we conclude that AP s a generator on X if and only if Zg:= Z|y, is
a generator on Xy. However, 2 is similar to diag(Goo, 0) : D(Goo) x 0X C Xy — Xy which is a

generator if and only if Gog is. Summing up, this shows the equivalence (a) <= (b). O

6. Examples

In this section we show how our approach can be applied in quite different situations. Here
we concentrate on the homogeneous case and use Theorem 4.3 and Theorem 5.1 to show well-
posedness of the corresponding problems (aP1)) and (aP2) with dynamic boundary conditions.
To this end, we first study the operator A with generalized Wentzell boundary conditions and
then indicate the consequences for the associated problems with dynamic boundary conditions.
More examples can be found in [12, Sect. 4].

6.1 A delay differential operator

In this subsection we apply our approach to operators related to delay differential equations. More
precisely, for a Banach space Y we define the Banach space X := C([—1,0],Y") of all continuous
functions on [—1, 0] with values in Y equipped with the sup-norm. Moreover, we take a delay
operator @ € L(X,Y) and the generator C of a Cy-semigroup (S(t))¢>0 on Y. With this notation
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we consider the abstract delay differential operator A: D(A) C X — X given by

6.1)

Af:=f, D(A):= {f eC'([-1,0],Y) f(0) € D(C) and }

) =CrO) +of

which governs a delay differential equations, see [13, Sect. VI.6] for details. The following result
shows that this equation is well-posed, cf. [13, Thm. V1.6.1 and Cor. V1.6.3].

Theorem 6.1. The operator A given by (6.1) generates a Co-semigroup on X = C([—1,0],Y).

Proof. The operator A fits in our general framework by choosing 0X :=Y, Ay, := % with domain
D(Am) :=C'[~1,0], L:= 8y and B := Cdy + &. Then A = A® where By = B|x, = & is bounded,
i.e., we are in the situation of Subsection 5.4.(i).

First, we verify the Assumptions 5.7. In fact, Ag = d%, D(Ag) ={feCY[-1,0,Y): f(0)=0}
has empty spectrum and its resolvent is given by

0
(RON Ao)f) (r) =J A=) f(s)ds, re|=1,0], AeC.

T

For A > 0 this implies

0
- [(RON Ao)f) ()] sj AN s fIl < ] forallr e [~1,0],

ie., Agp is a weak Hille-Yosida operator. Moreover, for all A € C the Dirichlet operator L) €
L(Y, X) exists and is given by Lyz =¢) - x for z € 9X =Y where ¢, (r) = " for r € [-1,0].

In order to apply Theorem 5.8 we note that Xo = Co([—1,0),Y) consists of all continuous
functions on [—1, 0] vanishing in » = 0 and

Aoof =1, D(Ag)={f € C!(I=1,0,¥): £(0) = £'(0) = 0}

generates the nilpotent left-shift semigroup (7'(t));>0 on Xg, cf. [13, Expl. 11.4.31].

Now assume first that $ =0. Then N = BLo =C and by Theorem 5.8 we conclude that A
generates a Cp-semigroup on X if (5.6) holds for tg = 1. To verify this condition we note that for
1 :=¢p we have (Aglill)(r) =r,r € [—1,0], which implies

r+s) if-1<r<-s,
(T<s>Aalﬂ)<r>={( )

0 if —s<r<0.
Using this we conclude for z € D(N) = D(C), t € (0,t9] = (0,1] and r € [—1, 0]

min{—nr,t}

<E T(s) -AglLo -NS(t— s)xds) (r) :L (r+s) -CS(t—s)zds

and further
(S(t) = S(t+r))z ifre[—t0],
(S(t) — Id)x ifre[-1,-t).

(R(1)(r) = {

This implies (5.6) for # =0. If ¢ € L(X,Y), we obtain N =C + &L, hence by Lemma 5.5 the
operator A on X is similar to A= Gy := (Z + P)|x, on Xy := Xg x 0X . Here we take the operator
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ZonX:=X x 90X and P € L(Xp, X) as

z.— (14(1)0 —lg)c> , D(A) :{(];) € D(Ap) % D(C):Aof—L()C:CGXQ} and

p._(~Lo®  —LoPLo
—\ @ oLy |-

Now for A € p(C) = p(Z) we have

R\ Z) = (R(A(,)Ao) _R(A’Iﬁ())i(gl%(kc))

where
A+ [[R(Y Ao) - Lo - CRA, O)|| < []AR(X, Ao) || - [ Lol - [|AR(A, C) — Id]|

remains bounded for A — +oo since C is a generator. Hence, Z is a weak Hille-Yosida operator
and the assertion follows by Lemma A 4. O

While the operator A given by (6.1) is connected to delay differential equations (see
[13, Sect. VI.6]) it is also related to our problems (aP1ly) and (aP2). Since by the bounded
perturbation theorem the Dirichlet-to-Neumann operator Ny = C + &L generates forall A€ Ca
Co-semigroup, by the above proof the conditions (c) in Theorem 4.3 and Theorem 5.1 are verified.
Hence, the following holds for every generator C of a Cp-semigroup on a Banach space Y and a
boundary functional ¢ € £(C[-1,0],Y),Y).

Corollary 6.2. Forall A € Cand xg €Y the problem
)\u(t,r):d%u(t,r), t>0, re[-1,0]
Lu(t,0) = Cu(t,0) + du(t,), t>0,
1(0,0) = zo

with dynamic boundary conditions is well-posed.

Corollary 6.3. For all ug € X the problem

%u(t,r):d%u(t,r), t>0, re[-1,0]
4 u(t,0) = Cu(t,0) + du(t,), t>0,

(0, ) =ug

with dynamic boundary conditions is well-posed.

6.2 The shift-semigroup on C[—1, 0]

In the previous subsection we studied the first derivative ABC d% for a boundary operator B :
D(B) C X — 0X bounded on the first component of the decomposition X = X¢ @ ker(Ay,) but
unbounded on the second. Next we will give an example where on the contrary B is unbounded
on X but bounded on ker(A). More precisely, we consider the Banach space X := C[—1, 0]
of all continuous, complex valued functions equipped with the sup-norm. Then, for some fixed
a € (0, 1) we define the operator A: D(A) C X — X by

0
Af=f, D(A):—{fecl[—l,o]: f’(O):J_lf'(r)~(—r)_a dr}. (6.2)

Theorem 6.4. The operator A given by (6.2) generates a Co-semigroup on X = C[—1,0].
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Proof. Similarly as in the previous example the operator A fits in our setting if we choose 90X :=C,
Ap = & with domain D(An) :=C'[~1,0], L := & and define B: D(B) C X — dX by

Bf::Jilf/(r)-(—r)_adr for feD(B):=W"'(-1,0). (6.3)

Then A= AB. Moreover, B is relatively Am-bounded and N =0, i.e., we are in the situation of
Subsection 5.4.(ii). We proceed by verifying the remaining Assumptions 5.10.

As in the former example Ag = d%, D(Ag) ={f € C'~1,0]: f(0) =0} has empty spectrum
and is a weak Hille-Yosida operator. Since 0.X = C is finite dimensional, P := —Lq B is relatively
Ap-compact and hence Gy = Ag + P is a weak Hille-Yosida operator by Lemma A.3. Moreover,
L) exists for all A € Cand is given by Lyz =€) -z forz € C.

By Theorem 5.11 it only remains to show that

Goo = (Ag — LoB)|x,

generates a Cp-semigroup on Xo = Cp[—1,0). To prove this assertion we verify that P = —LoB
is a Weiss-Staffans perturbation, cf. [2, Def. 9], of Agg:= Ag|x, generating the nilpotent left-
shift semigroup (T'(t))¢+>0 on Xo. To this end we first choose (here the subscript “ws” indicates
the notation used in [2]) Xws := X0, Zws := D(Ag) = C}[0,1), Uws := dX = C and the operators
Aws = Aoo, Bws :=—Lg, Cws := B. Then by the proof of Lemma A.4 we have X C (Xp)_1,
hence P:=—LgB € l:(Z, (Xo),l).

Now we verify the conditions (i)-(v) of [2, Thm. 10] for p = 1 and a fixed ¢ € (0, 1].

(i) By the reasoning in the first part of the proof of Lemma A.4, see (A 2), it follows that

(R(O, (Aws),l)Bwsx) (r)= (AalLOx) (r)y=r-z, re[-1,0], zeC
and therefore rg(R(0, (Aws)—1) Bws) C D(Ag) = Zws proving (i).
(ii) Let u € L[0, o). Then

(Jto T_1(s)Bwsu(tg — s) dS) (r)= (Am Jt T(to = 5)Ag " Lou(s) ds) )

0 0
4 (min{-rto}
= Jo (r+ s)u(to — s)ds
min{—r,to}
= Jo u(to — s)ds

and hence as needed

to
J T_l(S)Bwsu(tO — S) ds S X() = st.
0

(i) Let 0 < s <tg <1land f € D(Aws) = D(Ago). Since f(0) = 0 integration by parts yields

—S

|CwsT(s)f| = U fl(s+7) (=r) %dr

-1

—S

| semnra [ pean - o e

-1

<(tra | o) sl

=5 [[flloo-
This implies

1—a
ty .

to
JO |CusT(s) | ds < 5 - lloo < 122 - | lloos (64)

i.e., condition (iii) is satisfied.
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(iv) Let t € (0,t0) and u € L'[0, t]. Then by (ii) we have

t min{—r,t}
(J T_1(s)Lou(t — s) ds) (r) :J u(t — s) ds=: fi(r)
0 0
with derivative
roJult4r) ifrel-t,0],
felr) = {0 ifre—1,—t).
Thus

‘cws J; T () Bwsul(t — 5) ds J: Foo () dr Ji wlt 1) - (=)~ dr

t
= J w(r) - (t—7r)"%dr| = (u* ka)(t)
0
for ko € L1[0,1], ka(r) := . Young's inequality then implies
to 1
j CWSJ T_1(s)Bwsu(t — s) ds|dt < ||u* kaﬂLl[O o) < lullt - kol o,z (6.5)
0 0 ’

and hence condition (iv) holds true.
(v) From (6.5) it follows that

tlfa
1 Fto |l < kallLijo,ee) = =5 =0

as to 4 0 and therefore 1 € p(Fy,) for sufficient small ¢y > 0.
Now by [2, Theorem 10] the operator Gop generates a Cp-semigroup on X, hence the proof is
complete. O

Note that for B defined in (6.3) the restriction By := B|x, is unbounded on Xy = Cg[—1,0). In
fact, if we define f(r) := (—r)® for r € [-1,0], then f € X¢ \ D(By).

For our problems with dynamic boundary conditions Theorem 4.3 and Theorem 5.1 now give
the following.

Corollary 6.5. Let o€ (0, 1). Then for all A, xo € C the problem
)\u(7§71“):Ulilru(t,r)7 t>0, re[-1,0],
0
4 u(t,0) :J o' (t,r) - (=) %dr, t>0,
-1
u(0,0) =g

with dynamic boundary conditions is well-posed.

Corollary 6.6. Let o € (0,1). Then for all ug € C[—1, 0] the problem

(0
d _ d
Fu(t,r) = gru(t,r), t>0, re[-1,0],
0
4 u(t,0) :J o (t,r) - (—r)"%dr, t>0,
—1

u(0, ) =ug

with dynamic boundary conditions is well-posed.

6.3 The problems (P1) and (P2) revisited

We consider a uniformly elliptic second-order differential operator with generalized Wentzell
boundary conditions on C({2) for a bounded domain 2 C R™ with Cl’“-boundary 012 for k > 0.
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To this end, we first take real-valued functions
ajk:akjeco’1(9)7 aj GCC(‘Q)v CLOJ)QGC(Q), 1<j,k<n

satisfying the uniform ellipticity condition

n
D ap(r) g =c-|lE)® forallre 2, €= (&1,...,&) ER"
7,k=1

and some fixed c¢> 0. Then we define the maximal operator Ay, : D(Am) C C(£2) = C(2) in
divergence form by

Amf = Za (Z %k@kf) + > ardpf +aof,
j=1 k=1

D(aw)i= {1 e () WE(@) NC(@): Anf €C2)]

p>1

and the boundary operator B : D(B) C C(£2) — C(92) by

Bf:=— Y ajw;Ldf +boLf, D(B): {fe () WP (2) N C(R2): BfeC(BQ)},
J,k=1 p>1

where v = (v1,...,,vy) is the outer normal on 842 and L € E( (2), (8 ), Lf := flogn denotes
the trace operator. Now we define the operator A : D(A) C C(£2) — C(£2) with Wentzell boundary
conditions by

ACAm, D(A):={feD(Am)ND(B): LAnf=Bf}. (6.6)

Theorem 6.7. The operator A given by (6.6) generates a compact and analytic semigroup on C(£2) of
optimal angle 5.
Proof. By [9, Thm. 4.2] we can assume without loss of generality a;, =0 for 0 <k <n.

Let X :=C(£2), 8X :=C(d2) and A, and B as above. Then 4= A", Now we verify the
conditions from Assumptions 5.3. By [17, Cor. 3.1.21.(ii)] the operator Ag is sectorial of angle
Z on C(£2) and has compact resolvent. In particular Ay is a weak Hille-Yosida operator on C(£2).

By [14, Thm. 9.15] and the closed graph theorem we obtain the continuous embedding

[D(Ag)] = WP (£2).
for p > 1. Now Rellich’s embedding theorem (see [1, Thm. 6.2, Part III]) implies
W2P(2) S b (2) — cH(2)
forp > % where "<%" denotes a compact embedding. So we obtain
[D(Ag)] < C'(£2) = C(2).

Therefore, by Ehrling’s lemma (cf. [20, Thm. 6.99]), for every € > 0 there exists a constant C: > 0
such that

1l ay < llFllag + Celfllx

for every f € D(Ap). Since B € L(C(£2), C(812)), this implies that B is relatively Ag-bounded of
bound 0.

By [14, Thm. 9.18], for every = € C(012) the problem (aDP ) has a unique solution f € D(A,),
hence L exists. Further, by the maximum principle, cf. [14, Thm. 9.1], it is bounded.

Moreover, by [22, Thm. 1.1] the Dirichlet-to-Neumann operator N = BLg generates a compact
and analytic semigroup of angle 5 on C(942). Therefore, by Theorem 5.4 it follows that the
operator A with Wentzell boundary conditions given by (6.6) generates a compact and analytic
semigroup of angle 5 on C(£2) as claimed. O
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Since the operator Ag has compact resolvent, by Lemma 3.2 it follows that L exists if and only
if A € p(Ap). Moreover, [9, Prop. 4.7] implies that N generates a compact and analytic semigroup
of angle 5 on C(012) for all A € p(Ag). Theorem 4.3 and Theorem 5.1 now give the following.

Corollary 6.8. For all xg € C(052) the problem

Au(t,r) = Z 0 (Z a;, (1) Ok ult, r)) + Z ag(r)Opu(t,r) +ag(r) - u(t,r) fort>0,r€ 02,
=1 k=1 k=1
Oru(t,s) = — Z aj(s)v;(s)O0pu(t, s) + bo(s)u(t, s) fort>0,s €012,
gok=1
(0, s) = z0(s) for s €002

with dynamic boundary conditions is well-posed if and only if X € p(Ag). In particular (P1) for f,g=01s
wellposed.

Corollary 6.9. For all ug € C(£2) the problem

Oru(t,r) 28 (Z a;(r)Opu(t,r ) + Z ar(r)Opu(t,r) +ao(r) - u(t,r) fort>0,r€ 2,
j=1 k=1

n
Orult,s)=— Y aju(s)v;(s)dpu(t,s) + bo(s)uflt, s) fort>0,s €00,
7,k=1
w(0,7) =ug(r) forre

with dynamic boundary conditions is well-posed. In particular (P2) for f, g =0 is wellposed.

7. Conclusion and Further Remarks

In this paper we set up an abstract general framework to treat problems like (P1) and (P2) in a
systematic and unified way. We showed that in many cases the dynamic boundary conditions
in these problems linking the "interior" and the "boundary" dynamics can be decoupled leading
to two simpler, independent problems. In case of (P1) to a "stationary” Dirichlet problem and a
Cauchy problem for the Dirichlet-to-Neumann operator. For (P2) we obtain two independent
Cauchy problems, one in the "interior" governed by an operator with Dirichlet boundary
conditions and one on the "boundary" for the Dirichlet-to-Neumann operator.

The theory developed above can be elaborated and generalized in various ways. We close this
work by indicating some recent results in this direction.

7.1 Perturbation theory for dynamic boundary conditions

In many applications the boundary operator B : D(B) C X — X which determines the domain
in (3.2) splits into a sum B := By + CL: D(B) C X — 90X where

Bf:=Bof+CLf, D(B):=D(By)ND(CL)

for By: D(Bg) CX —0X, C: D(C)C0X —-0X and D(CL):={f: Lf € D(C)}. In order to
perturb the action of A;, we then take a relatively A;,-bounded operator P: D(P) C X — X and
consider (A + P)Bo+CL . p((A + P)Bo+CLy C X — X given by

(A4 P)BotCL c A, 4+ P, o
D((A+ P)P+CL) .= {f € D(Am) N D(Bo) N D(CL): L(Am + P)f = (Bo + CL)f}.

By combining perturbation theorems for the Dirichlet- and Dirichlet-to-Neumann operators
with Theorem 5.4 one can prove the following results where N Bo .= By Ly, cf. [9, Sect. 4].
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Theorem 7.1. Let P: D(P) C X — X be relatively Ay,-bounded with Ag-bound 0 and let C: D(C') C
X — X be relatively N'B°-bounded of bound 0. Then the following statements are equivalent.

(a) (A + P)Bo+CL given in (7.1) generates an analytic semigroup of angle a >0 on X.

(b) ABo generates an analytic semigroup of angle a > 0 on X.

Theorem 7.2. Let P: D(P)C X — X be relatively Ay,-bounded with Ag-bound 0 and let NP be
relatively C-bounded of bound 0. Then the following statements are equivalent.

(@) (A + P)Bo+CL gjven in (7.1) generates an analytic semigroup of angle o > 0 on X.

(b) AL generates an analytic semigroup of angle o > 0 on X.

7.2 Spectral theory for dynamic boundary conditions

The decoupling of the operator AZ with Wentzell boundary conditions into the operator Ag with
Dirichlet boundary conditions and the Dirichlet-to-Neumann operator N preserves many spectral
properties. For example, denoting by o(A) the spectrum, by o, (A) the point spectrum, by o4 (A)
the approximative point spectrum, by o(A) the residual spectrum, by oc(A) the continuous
spectrum and by oess(A) the essential spectrum of A, the following holds. Here for the definition
of the various parts of the spectrum see, e.g., [3, Sect. A.3].

Theorem 7.3. Assume that Ag and Ny, for some Ao € p(Ag) are weak Hille-Yosida operators. Then for
A € p(Ag) we have

(i) A€ p(AP) ifand only if X € p(Ny). Moreover, in this case
R(A\, AP) = R(\, Ag) + LAR(\, Ny) (BR(\, Ag) + L);

(ii) X € op(AP) ifand only if X € op(Ny). Moreover, in this case dim(A — AP) = dim(\ — Ny);
(iii) A € 04 (AB) if and only if X € 5o (Ny);
(iv) X € or(AB) if and only if X € o (N));

() A€ oc(AP) ifand only if X € o0 (N));
(Vi) A€ ess(AB) ifand only if X € oess(Ny).

This result can be seen as an abstract characteristic equation for the spectral values of AZ. For
the details we refer to [8].

7.3 Dynamic boundary conditions on L”-spaces

The problems (P1) and (P2) from the introduction can also be treated in an abstract framework
adapted towards state spaces of p-integrable functions. The main difference to state spaces of
continuous functions is that the trace operator L becomes unbounded on L. To handle this case
two modifications in our General Setting 2.1 are needed: we have to consider instead of (iii)

(iii") a surjective operator L : D(Apy) C X —0X
and have to require in (i) that
(i) (4"): D(Am) C X = X x 8X is closed and densely defined.
The operator Ag : D(Ap) C X — X with abstract Dirichlet boundary conditions is then defined as

A(] g Am, D(Ao) = ker(L).

Note that, in contrast to our General Setting 2.1, Ap is now densely defined which greatly
simplifies the situation. The abstract Dirichlet and Dirichlet-to-Neumann operators Ly and Ny
can be defined as in Section 2.

In this context results analogous to those in Section 4 and Section 5 hold true if in the latter
the operator A® with abstract Wentzell boundary conditions gets replaced by the operator
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AB: D(AB) C X x 8X — X x dX with dynamic boundary conditions given by
AZ() = (5f). AP ={()): e D(Am) N D(B), Lf ==}

Here the key observation in the study of the operator A® is that it is similar to the operator matrix
A:D(A)C X x 90X — X x 0X defined by

Ao — LoB —LoN
A::(O 0 0

B N ) D(A) := D(Ag) x D(N).

Due to its "diagonal" domain, A can be much easier "decoupled" as the corresponding operator .4
in Lemma 5.5. Summing up, the LP-situation is much simpler to deal with than the one adapted
for spaces of continuous functions we studied in Section 4 and Section 5.

7.4 Dynamic boundary conditions on manifolds with boundary

The example of Subsection 6.3 can be generalized to uniformly elliptic second-order differential
operators on manifolds with boundary. More precisely, consider a compact, smooth, Riemannian
manifold (M™, g) with smooth boundary 0M, embedded in R™ L. Further, consider a uniformly
elliptic second-order differential operators A;, on C(M) and the corresponding conormal
derivative B.

Using Theorem 7.1 and rewriting the operators A;, and B with respect to the Riemannian
metric induced by G = afc gkl the situation becomes much simpler: It is sufficient to consider the
Laplace-Beltrami operator and the normal derivative. Using a deep result of Taylor [21, App.C
(C.4)] it follows similarly as in [11] that the Dirichlet-to-Neumann operator IV generates a compact
and analytic semigroup of optimal angle 5 on C(0M). Furthermore, in [6] it is shown that Ag is
sectorial of angle 5 on C(M). Applying Theorem 5.4 this implies that the operator AB:D(AP) C
C(M) — C(M) given by (3.2) generates a compact and analytic semigroup on C(M) of optimal
angle 7. For the details we refer to [5].

A. Appendix

Below we collect some results which were needed in the main part of this paper. First we recall
that by [4, Prop. 1.1.6] the following holds for X; := [D(Amn)].

Lemma A.1. In addition to the General Setting 2.1, suppose that the Assumptions 4.1 are satisfied. If the
function w: Ry — X is continuous, u(s) € D(B) forall s > 0 and Bu: Ry — 0X is continuous then

t t

vi= J u(s)dse€ D(B) and Bv= J Bu(s) ds.

0 0
Lemma A.2. In the context of the General Setting 2.1, assume that B is relatively Ao-bounded and
that for some X € p(Ag) the Dirichlet-to-Neumann operator Ny = BLy is closed. Then the restriction
By :=B|x, : D(Am) N D(B) C X1 — 0X is closed.

Proof. Without loss of generality assume that Lg exists. Given (fn)peny C X1 N D(B) such that
fn— foin X1 and Bfy, — 29 in X as n — +oo we have to show that fy € D(B) and B fy = zo.
Since B is relatively Ay bounded and (Id — LoL)fn — (Id — LoL) fo € D(Ag) C D(B) in
[D(Ap)] it follows that B(Id — LoL)fn — B(Id — LoL) fo as n— +o0o. Hence, LoLfn € D(B)
for all n € N and BLoLfn — o — B(Id — LoL) fo as n — +oo. Closedness of BLg then implies
LoLfo € D(B) and BLoLfo=z¢ — B(Id — LoL) fo, hence fo € D(B) and B fp = zp. O

Lemma A.3. Let Z be a weak Hille-Yosida operator (see Assumptions 5.3.(i)) on a Banach space X and
let P:D(Z) C X — X be relatively Z-compact. Then also G := Z + P with domain D(G) = D(Z) isa
weak Hille-Yosida operator.
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Proof. Let A € p(Z) and assume without loss of generality that Z is invertible. Then for T :=
PR(X, Z) € L(X) we obtain
A-G=01-Ty) - (A= 2). (A1)

Next we show that ||T§ || = 0as A — +o0. In fact, there exist constants A\g € R and C > 0 such that
|73 < ||[PZ7 |- |ZR(N Z2) - PZ 7Y - || ZR(N, 2)|| < C - || ZR(A\, Z) - PZ™Y|| forall A > Xo.

Now the operator family (ZR(X, Z))x>», C £(X) is bounded and converges pointwise to zero.
Moreover, PZ~! € £(X) is compact, hence by [13, Prop. A.3] we conclude | ZR(\, Z) - PZ || —
0, hence || TZ|| — 0 as A — +oc. In particular, there exists g > Ao such that || T3] < % for A > po
and by (A 1) this implies [pg, +00) C p(G) and

+00 I
R(\G)=R(\Z)- Y T{=R(\Z)- (Id+Ty) > T"
n=0 n=0

Thus, there exists a constant K > 0 such that

[A-ROG)| < ||A- RN Z)[|-(1+ |Th]) - 2< K forall A > po. O

Lemma A.4. Let Z be a weak Hille-Yosida operator (see Assumptions 5.3.(i)) on a Banach space X and

let Xo:=D(Z).If P € L(Xo, X) then Zy := Z|x, is a generator if and only if Go := (Z + P)|x, is.

Proof. Although this result basically follows from [18, Sect. 3], for completeness and since our
situation is slightly different we give a complete proof. To this end we assume without loss of
generality that Z is invertible, otherwise we replace Z by Z — X for some A € p(Z).

We first show that for a weak Hille-Yosida operator Z the closure X of its domain is dense in
(X, - ||-1) where we define ||z||_1 :=||Z " 'z||. Let € X. Then the resolvent equation implies

& = AR\, Z)z||_, = ||RO\ Z)z|| < 2420 0 as A — +oo.

Since AR(X, Z)x € X the claim follows. Hence, the completions (Xo, || -|—-1)" and X_1:=
(X, || - [|l=1)" coincide, and we obtain the continuous inclusions

Xo%X‘—)X,L

Next, Z:D(Z) C Xo — X_1 is an isometry, hence admits a unique bounded extension Z_ :
Xo — X_1. Applying [13, Lem. IV.1.15 & Prop. IV.2.17] we conclude p(Zy) = p(Z) = p(Z_1) and

R(A, Zo) CR(N\, Z) CR(A, Z—1) forAep(Z). (A2)
This implies for z € X
|AZ_AR(A, Z)z|| | = ||ARA, Z)z|| < M - ||z||  for A > Ao.

Summing up, we proved that for a weak Hille-Yosida operator Z on X we have X C F_; where
F_1 denotes the extrapolated Favard space of Zy, cf. [13, Sect. IL.5.b].

To prove the lemma we first assume that Zg is a generator on Xo. Then by [13, Cor. I11.3.6] it
follows that also Go :=(Z_1 + P)|x, = (Z + P)|x, is a generator on X.

For the converse implication we note that by [13, Lem. II1.2.5] also G := Z + P is a weak Hille—
Yosida operator on X. Hence, Zg = (G — P)|x, is a generator by the previous implication applied
to G and the perturbation —P. O
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ANALYTIC SEMIGROUPS GENERATED BY DIRICHLET-TO-NEUMANN
OPERATORS ON MANIFOLDS

TIM BINZ

ABSTRACT. We consider the Dirichlet-to-Neumann operator associated to a strictly elliptic
operator on the space C(OM) of continuous functions on the boundary OM of a compact
manifold M with boundary. We prove that it generates an analytic semigroup of angle 7/2,
generalizing and improving [Esc94] with a new proof. Our result fits with the main result in
[EO19] in the case of domains with smooth boundary. Combined with [EF05, Thm. 3.1] and
[Bin19] this yields that the corresponding strictly elliptic operator with Wentzell boundary
conditions generates a compact and analytic semigroups of angle 7/2 on the space C(M).

1. INTRODUCTION

Differential operators with dynamic boundary conditions on manifolds with boundary describe
a system whose dynamics consisting of two parts: a dynamics on the manifold interacting with
an additional dynamics on the boundary. This leads to differential operators with so called
Wentzell boundary conditions, see [EF05, Sect. 2.

On spaces of continuous functions on domains in R™ such operators have first been studied
systematically by Wentzell [Wen59] and Feller [Fel54]. Later Arendt et al. [AMPRO3] proved
that the Laplace operator with Wentzell boundary conditions generates a positive, contractive
Co-semigroup. Engel [Eng03] improves this by showing that this semigroup is analytic with
angle of analyticity 7/2. Later Engel and Fragnelli [EF05] generalize this result to uniformly
elliptic operators, however without specifying the corresponding angle of analyticity. For
related work see also [CT86], [CM98], [FGGRO2], [CENNO03], [VV03], [CENP05], [FGGT10],
[Warl0] and the references therein. Our interest in this context is the generation of an analytic
semigroup with the optimal angle of analyticity.

As shown in |[EF05] and [BE19] this problem is closely connected to the generation of an
analytic semigroup by the Dirichlet-to-Neumann operator on the boundary space. More pre-
cisely, based on the abstract theory for boundary perturbation problems developed by Greiner
in |Gre87|, it has been shown in [EF05] and in |[BE19| that the coupled dynamics can be
decomposed into two independent parts: a dynamics on the interior and a dynamics on the
boundary. The first one is described by the differential operator on the manifold with Dirich-
let boundary conditions while the second is governed by the associated Dirichlet-to-Neumann
operator.

On domains in R™ the generator property of differential operators with Dirichlet boundary
conditions is quite well understood, see [Ama95] and [Lun95]. On compact Riemannian mani-
folds with boundary it has been shown in [Binl9] that strictly elliptic operators with Dirichlet
boundary conditions are sectorial of angle 7/2 and have compact resolvents on the space of
continuous functions.

Dirichlet-to-Neumann operators have been studied e.g. by [US90], [LUOL], [LTU03] and
[Tay96, App. C|. For the operator-theoretic context see, e.g., the work of Amann and Escher

Date: January 21, 2020.
1991 Mathematics Subject Classification. 47D06, 34G10, 47E05, 47F05.
Key words and phrases. Dirichlet-to-Neumann operator, Wentzell boundary conditions, analytic semigroup,
Riemmanian manifolds.
1
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[AE96] and Arendt and ter Elst [AELL]|, [AEKS14] and [AE17]. In particular, on domains
in R™ Escher [Esc94] has shown that such Dirichlet-to-Neumann operators generate analytic
semigroups on the space of continuous functions, however without specifying the correspond-
ing angle of analyticity. Finally, ter Elst and Ouhabaz [EO19] proved that this angle is 7/2 and
extended the result of Escher [Esc94] to differential operators with less regular coefficients.

In this paper we study such Dirichlet-to-Neumann operators on the space of continuous func-
tions on Riemannian manifolds and show that they generate compact and analytic semigroups
of angle 7/2 on the continuous functions.

We first explain our setting and terminology. Consider a strictly elliptic differential operator
Ap 2 D(Ay,) € C(M) — C(M), as given in (4.3), on the space C(M) of continuous func-
tions on a smooth, compact, orientable Riemannian manifold M with smooth boundary 0M.
Moreover, let % : D(Z) ¢ C(M) — C(OM) be the outer conormal derivative, § > 0 and

ovd

v € C(OM). We consider B := —f- 2. f+~-f|, : D(B) C C(M) — C(0M), as in (4.4),
and define the operator AP f := A,, f with Wentzell boundary conditions by requiring

(1.1) feD(AP) <= feD(An)ND(B)and Apf|,,, = Bf.

For a continuous function ¢ € C(OM) on the boundary the corresponding Dirichlet problem

(1.2) Amf = 07
floar = o,

is uniquely solvable by [GT01, Cor. 9.18]. Moreover, by the maximum principle, see [GT01,
Thm. 9.1, the associated solution operator Ly : C(OM) — C(M) is bounded. Then the
Dirichlet-to- Neumann operator is

a(l
ov9

That is, N is obtained by applying the Neumann boundary operator —/3 % to the solution
f of the Dirichlet problem (1.2).

Our main results are the following.

(1.3) Ny :=-4 - Loy for p € D(N) :={p € C(OM): Loy € D(B)}.

(i) The Dirichlet-to-Neumann operator N in (1.3) generates a compact and analytic semi-
group of angle 7/2 on C(OM);
(ii) the operator AP with Wentzell boundary conditions (1.1) generates a compact and
analytic semigroup of angle 7/2 on C(M).
This extends the results from Escher [Esc94] and Engel-Fragnelli [EF05, Cor. 4.5] to elliptic
operators on compact manifolds with boundaries and gives the maximal angle of analyticity
7/2 in both cases. In the flat case the result for the Dirichlet-to-Neumann operator coincides
with the result of ter Elst-Ouhabaz [EO19] in the smooth case. The techniques here are
different and our proof is independent from theirs.

This paper is organized as follows. In Section 2 below we recall the abstract setting from
[EF05] and [BE19] needed for our approach. Based on [Eng03, Sect. 2|, we study in Section 3
the special case where A,, is the Laplace-Beltrami operator and B the normal derivative.
In Section 4 we then generalize these results to arbitrary strictly elliptic operators and their
conormal derivatives. Moreover, we use this to obtain uniqueness, existence and estimates for
the solutions of the Robin-Problem. Here the main idea is to introduce a new Riemannian
metric induced by the coefficients of the second order part of the elliptic operator. Then the
operator takes a simpler form: Up to a relatively bounded perturbation of bound 0, it coincides
with a Laplace-Beltrami operator for the new metric. Regularity and perturbation theory for
operator semigroups as in |[BE19, Sect. 4] then yield the first part of the main theorem in its
full generality. The second part follows from [EF05, Thm. 3.1] and [Bin19, Thm. 1.1].
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In this paper the following notation is used. For a closed operator T: D(T) C X — X on a
Banach space X we denote by [D(T')] the Banach space D(T") equipped with the graph norm

| e|l7:=|el|lx+|T(e)|x and indicate by < a continuous and by <> a compact embedding.
Moreover, we use Einstein’s notation of sums, i.e.,

n
ory" = Zwkyk
k=1
for x:= (z1,...,2n), ¥ := (Y1, -, Yn)-

ACKNOWLEDGEMENTS

The author wishes to thank Professor Simon Brendle and Professor Klaus-J. Engel for many
helpful suggestions and discussions. Further the author wishes to thank Professor Tom ter
Elst for many helpful comments; in particular for an explanation of Remark 3.10.

2. THE ABSTRACT SETTING

The starting point of our investigation is the abstract setting proposed first in this form
by [Gre87] and successfully used, e.g., in [CENNO3], [CENP05] and [EF05] for the study of
boundary perturbations.

Abstract Setting 2.1. Consider

(i) two Banach spaces X and 0X, called state and boundary space, respectively;
(ii) a densely defined mazimal operator Ay,: D(A,) C X — X
(iii) a boundary (or trace) operator L € L(X,0X);
(iv) a feedback operator B: D(B) C X — 0X.

Using these spaces and operators we define the operator AP : D(AP) ¢ X — X with gener-
alized Wentzell boundary conditions by

(2.1) ABf = Anf, D(AP):={f e D(An)ND(B): LA,f = Bf}.
For our purpose we need some more operators.

Notation 2.2. We denote the (closed) kernel of L by X := ker(L) and consider the restriction
Ag of A, given by

Ay : D(Ap) € X - X, D(Ay) = {f € D(An,) : Lf = 0}.
The abstract Dirichlet operator associated with A,, is, if it exists,
-1
L™ = (Llger(a,y) 0 0X — ker(4,,) C X,

ie., Lémgo = f is equal to the solution of the abstract Dirichlet problem

Anf=0

Lf=¢.
If it is clear which operator A,, is meant, we simply write L.
Moreover for A € C we define the abstract Robin operator associated with (X, Am, B) by

Ry B = ((B = AL)|kex(a,) " 0X — ker(A,) N D(B) C X,
ie., Rf”’ng = f is equal to the solution of the abstract Robin problem

{Amf =0,

(23) Bf — ALf = ¢.

If it is clear which operators A,, and B are meant, we simply write R).
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Furthermore, we introduce the abstract Dirichlet-to-Neumann operator associated with
(A, B) defined by

(2.4) NAmBy .= BLimp, D(NAB) .= {p € dX : Ly € D(B)}.

If it is clear which operators A,, and B are meant, we call N simply the (abstract) Dirichlet-to-
Neumann operator. This Dirichlet-to-Neumann operator is an abstract version of the operators
studied in many places, e.g., [Esc94], [Tay96, Sect. 7.11] and [Tay81, Sect. I1.5.1].

The Dirichlet-to-Neumann and the Robin operator are connected in the following way.

Lemma 2.3. If Ly exists, we have X\ € p(N4mB) if and only if Rf’"’B € L(0X, X) exists. If
one of these conditions is satisfied, we obtain

RfW’B — —L()R()\, NAmyB).
Proof. Assume that R) € £(0X, X) exists. By the definition of N the equation

Ap—=Np =19
for ¢, 1 € 90X is equivalent to
(2.5) ALLyp — BLop =
for ¢, 1 € 9X. This again is equivalent to

—Rx¢p = Log.

Therefore, we have for p,9 € X the equivalence
pp—Ne =19 <= Ry =—Lop.

Since Ry, : 0X — ker(A,,) N D(B) exists and Lg : 0X — ker(4,,) is an isomorphism, there
exists a unique ¢ € D(N) for every ¢» € 0X. Moreover its given by ¢ = —LR) 4 and
therefore the boundedness of the inverse follows from the boundedness of L and R). The
formula for the resolvent of N follows, since L|yer(4,,) is an isomorphism with inverse Lo and
the image of R} is contained in ker(A4,,).

Conversely, we assume that p € p(N). Then (2.5) has a unique solution ¢ € D(N) for every
1 € 0X. Considering f := —Lgp we obtain a unique solution of (2.3) and hence R) exists.
Boundedness follows from Ry = —LoR(u, N). O

3. BOUNDARY PROBLEMS FOR THE LAPLACE-BELTRAMI OPERATOR

In order to obtain a concrete realization of the above abstract objects we consider a smooth,
compact, orientable Riemannian manifold (M, g) with smooth boundary M, where g denotes
the Riemannian metric. Moreover, we take the Banach spaces X := C(M) and 0X = C(OM)
and as the maximal operator the Laplace-Beltrami operator

(3.1) Anf =A% f, D(An) = {f e (Wilk(M)NC(M): Af, f € C(M)}.

p>1

As feedback operator we take the normal derivative

(3.2) Bf :=—g(V4,;f.vg), D(B):= {f € ﬂ W2P(M)NC(M): Bf € C(@M)},
p>1

where V¥, denotes the gradient on M, which in local coordinates is given as
!
(Virf) = g"onf
for f € Nyo1 WLP(M). Moreover, v, is the outer normal on M given in local coordinates by

l kl
Vg =g V.
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Furthermore, we choose L as the trace operator, i.e.,
L: X —0X, f~ flom,

which is bounded with respect to the supremum norm. Later on we will also need the unique
bounded extension of L to W'2(M), denoted by L: W'2(M) — L2(0M), and call it the
(generalized) trace operator.

3.1. The Laplace-Beltrami operator with Robin boundary conditions.

In this setting we consider the Laplace-Beltrami operator with Robin boundary conditions
and prove existence, uniqueness and regularity for the solution of (2.3). Moreover, we show
that this solution satisfies a maximum principle.

For this purpose we need the concept of a weak solution of (2.3). If f € D(A,,) N D(B) is a
solution of (2.3) we obtain by Green’s Identity

/ g(V9,f, V4,6) dvolf, = —/ BfL¢ dvol),, = —/ ALfL¢ dvol),, —/ ¢L¢dvol),,,
M oM oM oM
for all ¢ € WL2(M). This motivates the following definition.
Definition 3.1 (Weak solution of the Robin Problem). We call f € WY2(M) a weak solution
of (2.3) if it satisfies

a(f,¢) == / g(V4, 1. Vi,0) dvold, +/ ALfL dvold,, = —/ ¢Lgdvol),, =: F(¢)

M oM oM

for all ¢ € WL2(M).
Definition 3.2. We call f € D(A,,) N D(B) a strong solution of (2.3) if it satisfies (2.3).

Next we prove the existence of such weak solutions.

Lemma 3.3 (Existence and Uniqueness of the weak solution of the Robin problem). For each
Re(\) > 0 and each o € W7>2(OM) the problem (2.3) has a unique weak solution.

Proof. We consider a and F' as defined above. Obviously a is sesquilinear and F' is linear. By
the Cauchy-Schwarz Inequality we have for f,¢ € WH2(M) that

la(f, &) < IV Fllzan IVEr@livzny + INILfllez@mn Lo llz@oary < Cllfllwrean 6wz,

hence a: WL2(M) x WH2(M) — C is bounded. Next we show that a is coercive. If not, there
exists a sequence (ug)geny C WH2(M) such that

HukH%VLQ(]\/I) >k Re(a(Uk, Uk))
for all £ € N. We consider

v = e WH2(M)
[0 lw.2(ar)
and remark that [[vg|[yw1.2() = 1 and therefore
1

Re(a(vg, vg)) < Z

for all k € N. Since (vg)ren is bounded, by Rellich-Kondrachov (cf. [Heb96, Cor. 3.7]) there
exists a subsequence (vy,)ien converging in L?(M) to v € L2(M). On the other hand we have

IVok 2y < Re(a(vg,, vg,)) <

1

K’
hence (V9,vx, )ien converges to 0 in L2(M). This shows v € WL2(M) and V4,0 = 0. Moreover,
we obtain

IV e any = /M 9i59" 9°° 0vr, Dsvy, dvol, = /M 9" 0pvi, Osvg, dvoliy = [[Vug, llL2(any,
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where Vg, denotes the covariant derivative of vg,. Therefore, (vg, )ien converges in WL2(M)
to v with [|v[lw12(ar) = 1. Moreover, we have

B 1
[ Lo, [[2oar) < Re(\)k;

and therefore

1

W +C|lv— Ukl||wl,2(M) —0
and hence Lv = 0. Since Vo = 0, we conclude v = 0, which contradicts [[v[lw1.2(ar) = 1.
Hence, a is coercive. Since

1E(0)] < llelliz@an I L8llizonry < Cllllwrzians

for all ¢ € WH2(M) we conclude that F: WH2(M) — C is bounded. By the Lax-Milgram
and Fréchet-Riesz theorems it follows that a(f, ¢) = F(¢) for all ¢ € WH2(M) has a unique
solution f € Wh2(M). O

ILvllr2onr) < I1Lv — Loy [lizonry + 1 Lok le2oan <

Next we prove that every weak solution is even a strong solution.

Lemma 3.4 (Regularity of the Robin problem). If ¢ € C(OM), every weak solution of (2.3)
1S a strong solution.

Proof. By [Tay96, Chap. 5., Prop. 1.6] we have f € C2(M) C (\,o; WiZ(M).
Therefore, we obtain by the fundamental lemma of the calculus of variation that A9, f = 0,
in particular A9, f € C(M). Furthermore we have

Bf =ALf+ ¢ € C(OM). O
Moreover we need a maximum principle for the Robin problem.
Lemma 3.5. A solution f € D(A,,) N D(B) C X of (2.3) satisfies the mazimum principle
[Re(M)]- [ fllx < llellox
for all Re(X) > 0 and p € 0X = C(OM).

Proof. We consider a point p € M, where | f| and therefore | f|? assumes its maximum. By the
interior maximum principle (c¢f. [GT01, Thm. 9.1]) it follows that p € OM. Hence, we have

9() (V4,117 (p), vg(p)) > 0.

From
9(T4 1112 v5) = (T3, (/F). vy) = 2Reg((V4,1)F,vg) = 2Re(g((V4,f), ) ])
= —2Re((Bf)f) = —2Re(pf) — 2Re(N)|f[,
we obtain

Re(A)|f*(p) < —Re(p(p)f(0)) < lel(p)If](p)-
Since Re(A) > 0, this implies
[Re(N)] - Iflx = [Re(A)] - [f](p) < ll(p) < [lllox- O
Summing up we obtain the following.

Corollary 3.6 (Existence and Uniqueness of the solution of the Robin problem). For all
Re(A) > 0 and ¢ € C(OM) the problem (2.3) has a unique solution.

Proof. If ¢ € W/22(dM)NC(dM) the claim follows by combining Lemma 3.3 and Lemma 3.4.
For general ¢ € C(M), the claim follows by density of W"/22(dM) N C(OM) c C(OM) and
the maximum principle Lemma 3.5. O
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3.2. Generator property for the Dirichlet-to-Neumann operator.
Now we are able to prove our main result: The Dirichlet-to-Neumann operator generates a
contractive and analytic semigroup of angle 7/2 on 0X = C(OM). To do so we represent the

Dirichlet-to-Neumann operator as a relatively bounded perturbation of —,/ —Ag M-

We first need the existence of the associated Dirichlet operator.

Lemma 3.7. The Dirichlet operator Ly € L(0X, X) exists.

Proof. This follows by [Tay96, Chap. 5. (2.26)], [GT01, Thm. 9.19] and [GT01, Thm 9.1]. O
Next we prove a first generation result for the Dirichlet-to-Neumann operator.

Proposition 3.8. The Dirichlet-to-Neumann operator N defined in (2.4) generates a con-
traction semigroup on 0X.

Proof. By elliptic regularity theory (cf. [Tay96, Chap. 5.5. Ex. 2|), we have the inclusions
LoC*(0M) c C'(M) c D(B).

Since C2(OM) is dense in 0X, N is densely defined. By Lemma 2.3 and Corollary 3.6 it
follows that the resolvent R(A, N) exists for all Re(A) > 0. By the interior maximum principle
Ller(a,,): ker(Am) C X — 0X is an isometry. Therefore, Lemma 2.3 and Lemma 3.5 imply

1
RO N)ellyx <ty lellox
H HdX ‘ Re()\)\
for all Re(A) > 0 and ¢ € 9X. Hence, the claim follows by the Hille-Yosida Theorem (cf.
[EN00, Thm. IL.3.5]). O

Now we prove the main result of this subsection.

Theorem 3.9. The Dirichlet-to-Neumann operator N given by (2.4) for (3.1) and (3.2)
generates an analytic semigroup of angle 7/2 on 0X.

We proceed as in the proof of [Eng03, Thm. 2.1].Let N and W be the closure of N and W,
respectively, in Y := L2(0M). Moreover we need results from the theory of pseudo differential
operators. We use the notation from [Tay81] and denote by OPS*(OM) the pseudo differential
operators of order k € Z on OM.

Step 1. Then the part N|ox coincides with N.

Proof. By Proposition 3.8 the Dirichlet-to-Neumann operator IV is densely defined and A— N,
considered as an operator on Y, has dense range rg(A — N) = 90X C Y for all A > 0. By
Green’s Identity we have

/ g(V?Wf, V?wf) dVOIM + / fA]wf dVOl]w = / g(V%f, I/g)Lf dVOIaM.
M M oM
Hence, for f := Lémgo with ¢ € D(IN) we obtain

0 < / g(vﬁ]wfv v:(/]wf) dVOIM - _/ QONQOdVOIaM
M oM

since A}, f = 0. Hence, N as an operator on Y is dissipative. By the Lumer-Phillips theorem
(see [EN0OO, Thm. 11.3.15]) the closure N of N exists and generates a contraction semigroup
on Y. This implies that on 0X we have

(1-N)C(1—-N)lx,

where 1 — N is surjective and 1 — N is injective on 0.X. This is possible only if the domains
D(1— N) and D(1 — N) coincide, i.e., N|gx = N. O
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Step 2. The operator W := —, /ngM generates an analytic semigroup of angle 7/2 on 0X.

Proof. The Laplace-Beltrami operator A, generates an analytic semigroup of angle 7/2 on
C(OM) = 0X. Hence, the assertion follows by [ABHN11, Thm. 3.8.3]. O

Step 3. The operator W := —/ —AgM satisfies W = Wlax .

Proof. By [Tay81, Chap. 8, Prop. 2.4] the space C*(9M) is a core for W and by [ABHNII,
Prop. 3.8.2| the domain D(AY),,) is a core for W. Hence, C>*(dM) is a core for W and since

C>®(OM) c D(W) we obtain that D(W) is a core for W on Y. This implies that W is indeed
the closure of W in Y. Moreover, we obtain

(1-W) < (1-W)lx,

where 1—W is surjective and 1 —W is injective on 0X. This is possible only if for the domains
we have

D(1-W)=D(1-W),
Le, Wipx = W. O

Step 4. The domain of W can be compactly embedded into the Holder continuous functions,
ie., [D(W)] < C*(M) for all a € (0,1).

Proof. Consider R := (1 + W)~!. Then, by [Tay81, Chap. XIL.1], R € OPS™}(0M) and
since p € X = C(OM) we have by [Tay81, Chap. XI, Thm. 2.5] that Ry € WLHP(OM) for
all p > 1. Hence, D(W) = RC(OM) C W™P(OM). Moreover, by Sobolev embedding (see
[Ada75, Chap. V. and Rem. 5.5.2])

WLP(OM) — C(OM)

for p > n — 1. By the closed graph theorem we obtain
[D(W)] < WHP(OM)

for p > n — 1. Since Rellich’s embedding (see |[Ada75, Thm. 6.2, Part 111.|) implies
WP(OM) < C*(OM)

for p > %, the claim follows. O

Step 5. The difference P:=N-—W € OPS°(OM) is a pseudo differential operator of order
0. Moreover, P considered as an operator on 'Y is bounded.

Proof. This follows from [Tay96, App. C, (C.4)] and [Tay81, Chap. XI, Thm. 2.2|. O

Step 6. The part P := Plco(gary: C*(OM) — C*(OM) is bounded. Moreover, the operator
P considered on 0X is relatively W -bounded with bound 0.

Proof. Form [Tay81, Chap. XI, Thm 2.2] it follows P € £L(C*(0M)). By Step 4 we have
(3.3) [D(W)] <5 C*(OM) < C(OM).

Therefore, by Ehrling’s lemma (cf. [RR04, Thm. 6.99]), for every € > 0 there exists a constant
C: > 0 such that

lellca@nry < ellellw + Cellelloo
for every x € D(W), i.e. P is relatively W-bounded with bound 0. O
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Step 7. (Proof of Theorem 3.9)
Proof. First we note that by Step 5 we have

N=W -P,
and therefore using the Steps 1, 3, 6 it follows that
(3.4) N = Nlox = (W = P)lox 2 Wlpx —P =W — P,

On the other hand, by Steps 2, 6 and [EN0O, Lem. I11.2.6], W — P generates an analytic
semigroup of angle 7/2 on 0X. Moreover, A € p(N) N p(W — P) for X large enough. This
implies equality in (3.4) and hence the claim. O

Remark 3.10. After we finished this paper we have become in mind a different proof of The-
orem 3.9 based on the work of ter Elst and Ouhabaz in [EO14].

First, note that by the remark at the end of [EO14, Sect. 1] all results in [EO14] still be
true on Riemannian manifolds. Applying the same arguments as in the proof of [EO19,
Prop. 2.3|, using [EO14, Thm. 2.6] instead of [EO19, Thm. 2.1|, the Dirichlet-to-Neumann
operator generates a strongly continuous semigroup on C(9M). Using [EO14, Cor. 5. 14| one
obtains in the same way as the proof of [EO19, Prop. 3.3] that the Dirichlet-to-Neumann
operator generates a holomorphic semigroup of angle 7/2 on C(0M). Combining these two
results it follows that the Dirichlet-to-Neumann operator generates an analytic semigroup of
angle 7/2 on C(OM).

Corollary 3.11. The Dirichlet-to-Neumann operator generates a compact semigroup on

C(oM).

Proof. By (3.3) the operator W has compact resolvent. Since the Dirichlet-to-Neumann op-
erator N and W differ only by a relatively bounded perturbation of bound 0, it has com-
pact resolvent by |[EN00, II1.-(2.5)]. Hence the claim follows by Theorem 3.9 and [ENOO,
Thm. 11.4.29]. 0

Remark 3.12. We can insert a strictly positive function 0 < § € C(OM) and consider B :=
B-B. Then by multiplicative perturbation theory (cf. [Hol92, Sect. III.1]) the same generation
result as above holds true.

3.3. The Laplace-Beltrami operator with Wentzell boundary conditions.

In this subsection we study the Laplace-Beltrami operator with Wentzell boundary conditions
and prove that it generates an analytic semigroup of angle 7/2 on X = C(M). To show this,
we verify the assumptions of [BE19, Thm. 3.1].

Lemma 3.13. The feedback operator B is relatively Ag-bounded with bound 0.
Proof. By [Tay96, Chap. 5., Thm. 1.3] and the closed graph theorem we obtain
[D(Ap)] — WP(M).
Rellich’s embedding (see [Ada75, Thm. 6.2, Part III.|) implies
W2P(M) < Ch(M) < CH(M)

for p > %‘(}1, SO we obtain

[D(Ag)] < CH(M) — C(M).

Therefore, by Ehrling’s lemma (cf. [RR04, Thm. 6.99]), for every € > 0 there exists a constant
C. > 0 such that
1fllcrary < ellfllag + Cell fllx

for every f € D(Ay). Since B € £L(CY(M),dX), this implies the claim. O
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Now we prove the generator result for the operator with Wentzell boundary conditions.

Theorem 3.14. The operator AP with Wentzell boundary conditions given by (2.1) for (3.1)
and (3.2) generates a compact and analytic semigroup of angle ©/2 on X = C(M).

Proof. We verify the assumptions from [EF05, Thm. 3.1]. The operator Ay with Dirichlet
boundary conditions is sectorial of angle 7/2 with compact resolvent by [Bin19, Thm. 2.8] and
[Bin19, Cor. 3.4]. Moreover the Dirichlet operator Ly exists by Lemma 3.7 and the feedback
operator B is relatively Ap-bounded of bound 0 by Lemma 3.13. Lastly, the Dirichlet-to-
Neumann operator N generates a compact and analytic semigroup of angle 7/2 on C(OM) by
Theorem 3.9 and Corollary 3.11. Now the claim follows from [EF05, Thm. 3.1]. O

Remark 3.15. As in Remark 3.12 we can insert a strictly positive, continuous function 5 > 0
and the same result as Theorem 3.14 becomes true.

4. STRICTLY ELLIPTIC OPERATORS ON CONTINUOUS FUNCTIONS ON A COMPACT
MANIFOLD WITH BOUNDARY

In this section we consider strictly elliptic second-order differential operators with generalized
Wentzell boundary conditions on X := C(M) for a smooth, compact, orientiable, Riemannian
manifold (M, g) with smooth boundary 0M. To this end, we take real-valued functions

(4.1) af =al € C°(M), bjeC(M), ¢, deC(M) 1<jk<n,

satisfying the strict ellipticity condition
a5 (q)g" (9) Xx(g) X1(q) > 0

for all co-vectorfields Xy, X; on M with (X1(q), ..., Xn(q)) # (0,...,0). Then we define the
maximal operator in divergence form as

lal

(4.2) Anf = /Jaldiv <1aV?Wf> B,V + o,

(4.3) D(A,,) = {f e (YWi(M)nC(): Anf € C(M)}.

p>1

As feedback operator we take

(44) Bf:= —g(aVi,f,vy) +dLf, D(B):= {f e (\Wik(M)NC(M): Bf € C(aM)}.
p>1
Corresponding to L we choose dX := C(dM?Y).

The key idea is to reduce the strictly elliptic operator and the conormal derivative on M,
equipped by g, to the Laplace-Beltrami operator and to the normal derivative on M, endowed
by a new metric g.

For this purpose we consider a (2,0)-tensorfield on M given by

~kl kil
g =a;9 .

Its inverse g is a (0, 2)-tensorfield on M, which is a Riemannian metric since aé?gjl is strictly

elliptic on M. We denote M with the old metric by MY and with the new metric by m
and remark that MY is a smooth, compact, orientable Riemannian manifold with smooth
boundary dM. Since the differentiable structures of MY and MY coincide, the identity

1d: MY —s P
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is a C*°-diffeomorphism. Hence, the spaces

X :=C() =C(’)=c(’) =X
and 90X := C(OM) := C(OMY) = C(OMI) = X
coincide. Moreover, [Heb00, Prop. 2.2| implies that the spaces
LP(M) = LP(MY) = LP(M9),

(45) WEP(M) = WHP(MT) = WhP (M),
LfOC(M) = L?OC(M‘&) = L?OC(M9)7
WEE(M) == WP (M) = WP (M9)

for all p > 1 and k£ € N coincide. We now denote by i4m and B the operators defined as
in Section 3 with respect to g. Moreover we denote A,, the operator defined in (4.3) for
by =c=0.

4.1. The associated Dirichlet-to-Neumann operator and the Robin problem.

In this subsection we study the Dirichlet-to-Neumann operator N Am:B associated with Ay,
and B. First we prove that the generator properties of the Dirichlet-to-Neumann operators
associated with (A,,, B) and (4,,, B) are closely related.

Lemma 4.1. The operators Ay, and A,, differ only by a relatively A,,-bounded perturbation
of bound 0.

Proof. From (4.5) we define

Prf = big"onf
for f € D(Am) N D(A,,). Morreys embedding (cf. [Ada75, Chap. V. and Rem. 5.5.2]) implies
(4.6) [D(A)] < CHM) — C(M).

Since b; € C.(M) we obtain

1P fllory < sup (@)™ (0)(0nf)(q)]
qeEM

= sup |bi(q)g" (a)(Okf)(q)]
qeM

< C'Z 10k flloar
k=1

and therefore P € £(CY(M),C(M)). Hence D(A,,) = D(A,,). By (4.6) we conclude from
Ehrling’s Lemma (see [RR04, Thm. 6.99]) that

1P flloan < Cllifllorany < el Amfllear + el flloan + CENf oo
< 5||Amf||c(ﬁ) + CEf e

for f € D(Am) and all ¢ > 0 and hence P; is relatively A,,-bounded of bound 0. Finally,
remark that

Pyf i=c-f, D(P):=C(M)
is bounded and that
Apf = Anf+Pif + Pof
for f € D(A,,). O
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Lemma 4.2. The operator A, equals to the Laplace-Beltrami operator A,

Proof. We calculate in local coordinates

At = 0y (Vs

Vgl [al
=0 (Vidltour) = ad.g

for f € D(A,) = D(A,), since |g| = |a] - g]- O
Lemma 4.3. The operators B and B differ only by a bounded perturbation.
Proof. Since the Sobolev spaces coincide, we compute in local coordinates
Bf = —gijg" af Ok fg"" vin + AL
= —0i; 7 Ok fg" Vm + bo L f
= —Gi; 3 Ok f GV, + AL f
=Bf+dLf

for f € D(B). Since d- Lf € C(OM) we obtain D(B) = D(B) and B and B differ only by
the bounded perturbation d - L. O

Lemma 4.4. The Dirichlet-to- Neumann operator NAwB gssociated with A,, and B generates

a compact and analytic semigroup of angle o > 0 on 0X if and only if N4 associated with
A, and B does so.

Proof. Let P be the perturbation defined in the proof of Lemma 4.1. By Lemma 4.1 P is
relatively A,,-bounded of bound 0. Moreover, B and B only differ by a bounded perturbation
by Lemma 4.3. Hence, the claim follows by [BE19, Prop. 4.7]. O

Theorem 4.5. The Dirichlet-to-Neumann operator NAmB given by (2.4) for (4.3) and (4.4)
generates a compact and analytic semigroup of angle ©/2 on X = C(OM).

Proof. The claim follows by Theorem 3.9 and Lemma 4.4. U

Remark 4.6. As in Remark 3.12 we can insert a strictly positive, continuous function g8 > 0
and the same result as Theorem 3.9 becomes true.

Remark 4.7. Theorem 4.5 improves and generalizes the main result in [Esc94]. If we consider
M = Q C R" equipped with the euclidean metric g = d, we obtain the maximal angle 7/2 of
analyticity in this case. This is the main result in [EO19] for smooth coefficients.

Now we use Theorem 4.5 to obtain existence and uniqueness for the associated Robin problem
(2.3). Moreover, we obtain a maximum principle for the solutions of these problems.

Corollary 4.8 (Existence, uniqueness and maximum principle for the general Robin problem).
There exists w € R such that for all X € C\ (—oo,w) the problem (2.3) has a unique solution
u € D(A,,) N D(B). This solution satisfies the mazimum principle

A <C|A =C\|L <C =C :
A fu(p)] < CI s [u(p)] = ORI o < Clielax = € e [o(0)
Proof. The existence and uniqueness follows immediately by Theorem 4.5. The first inequal-

ity is the interior maximum principle. The second inequality is a direct consequence from
Lemma 2.3 and Theorem 4.5. O
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4.2. The associated operator AB with Wentzell boundary conditions.

Lemma 4.9. The operator AB generates a compact and analytic semigroup of angle a > 0
on X if and only if AP does.

Proof. As seen in the proof of Lemma 4.4, the operators A,, and A,, differ only by a relatively
Ap-bounded perturbation with bound 0 while B and B differ only by a bounded perturbation.
Therefore, the claim follows by [BE19, Thm. 4.2]. O

Theorem 4.10. The operator AB given by (2.1) for (4.3) and (4.4) generates a compact and
analytic semigroup of angle ©/2 on X = C(M).
Proof. The claim follows by Theorem 3.14 and Lemma 4.9. ]

Remark 4.11. As in Remark 3.12 we can insert a strictly positive, continuous function 8 > 0
and the same result as Theorem 4.10 becomes true.

Remark 4.12. Theorem 4.10 improves and generalizes [EF05, Cor. 4.5]. If we consider M =
) C R"™ equipped with the euclidean metric ¢ = §, we obtain the maximal angle 7/2 of
analyticity.

Corollary 4.13. By Theorem 4.10 the initial boundary problem

shutt.p) = VIaaiv, (o) Pyaten)

+ (b(p), Vi, ult, p)) + c(p)u(t,p) fort>0,pe M,
Lu(t,p) = —Bg(a(p) V4 u(t,p), vy(p)) + d(p)u(t,p)  for t>0,p € M,
u(0,p) = uo(p) forpe M

for a,b,c,d as in (4.1), B > 0 and ug(p) € D(AP) has a unique solution on C(M). This
solution is governed by an analytic semigroup in the right half-plane.

Finally, we consider the elliptic problem
Anf—=Af=h
for f € D(A,;,) N D(B) and h € X = C(M). Then the following holds.

Corollary 4.14. There ezists w € R such that for all A\ € C\ (—oo,w) the problem (4.7) has
a unique solution u € D(Ay,) N D(B). This solution satisfies the mazimum principle

[Almax u(p)| = [M[Jullx < C|h]lx = Cmax |h(p)].
pEM peEM

(4.7)

Proof. This follows immediately by Theorem 4.10. O
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Dynamic boundary conditions for divergence form
operators with Holder coefficients

T. Binz and A.F.M. ter Elst

Abstract

We consider second-order elliptic operators in divergence form with merely Hélder
continuous coefficients on bounded domains € with C'*-boundary I" with Wentzell
boundary conditions of the type Tr Au = fd,u + aTru on I'. Under such weak
assumptions the divergence theorem is not available and we cannot apply the usual
theory. Nevertheless, even for strictly positive bounded measurable 8 we prove max-
imal regularity on L,(Q2) x L,(I') for all p € (1,00), holomorphic semigroup with

angle & for all p € [1,00) and also an holomorphic semigroup with angle 5 on C(2).

MSC: 47D06, 35K08, 34G10, 47B47, 47E05, 47F05

Keywords: Dynamic boundary conditions, Dirichlet-to-Neumann operator, holomorphic
semigroup, maximal regularity, Poisson bounds

1 Introduction

Recently there is a lot of interest in parabolic systems with dynamic (Wentzell) boundary

conditions - g
pn u(t, ) = —Bpu(t,-) on €2,
%Tr u(t,-) = —poult,-) —aTru(t,-) on 0f, (1)
| w(0,-) = up on €.

Here Q C R%is an open, bounded and connected set, B, is a second-order elliptic operator,
a € Ly(R2), the function f: Q — (0,00) is a bounded measurable with essinf § > 0 and
0, is the outward co-normal derivative associated with the operator B,,. The system (1)
can be rewritten on the product space 2 ® 02 in matrix form by

i) =G Gop)=Gaw)o®

1



where
e
60, «
and D(A) C {(v,¢) : Trv = p}. Typical questions are whether A generates a Cp-
semigroup, whether this semigroup is holomorphic and if so, what is the holomorphy angle.
Another question is whether the operator A has maximal L,-regularity for all r € (1, c0).

Operators with Wentzell boundary conditions have been first studied by Wentzell [Ven]
and Feller [Fel]. Hintermann [Hin| studied elliptic operators with dynamic or Wentzell
boundary conditions on C*°-domains and proved generation of strongly continuous semi-
groups. Amann-Escher [AmE] considered C?-domains and operators in divergence form
with uniformly continuous symmetric principal coefficients and S = 1, and proved on
C(Q) and for all p € [1,00) on L,(Q) x L,(0) the generation of a positive contraction
semigroup. Since the operator is self-adjoint on Ly they obtained by interpolation that the
semigroup is holomorphic on L, for all p € (1,00). In [FGGR]| Favini et. al. studied degen-
erate operators of the form div(aV-) with Wentzell boundary conditions on C*-domains
with a € C1(Q) and 8 € C'(99), and proved similar results. The holomorphy on L; has
been proved by Warma [War| for the Laplacian on C°°-domains with 8 € C*(9Q) and he
also proved that the holomorphy angle is equal to 7. In [FGG"2] Favini et. al. extended
these results on L, for all p € [1, 00) to arbitrary uniformly elliptic operators in divergence
form on C'*°-domains with C'* principal coefficients and f € C*°(I") without proving the
optimal angle of holomorphy.

Assuming  merely Lipschitz and 5 measurable, Arendt et. al. showed in [AMPR]
that the Laplacian with Wentzell boundary conditions generates a strongly continuous
semigroup on L, for all p € [1, 00) with holomorphy if p € (1,00). On C(Q) they proved a
Cyp-semigroup if € is of class C?* with £ > 0 and /3 continuous. Moreover, they showed that
the semigroup is ultracontractive. Engel [Eng] proved that the Laplacian with Wentzell
boundary conditions on C(£2) generates a holomorphic Cyp-semigroup with angle 5 if Qis of
class C*°. Engel-Fragnelli [EF] extended this result to arbitrary uniformly elliptic operators
in divergence form with C'*° principal coefficients on C*°-domains and g = 1 without
proving the optimal angle of holomorphy. In [BE2] the authors generalized and proved
that uniformly elliptic operators in divergence form with Lipschitz continuous principal
coefficients on C'!'-domains and 3 = 1 generate holomorphic semigroups of optimal
angle 5. Moreover in [Binl], the same results were proved on smooth, compact, Riemannian
manifolds with smooth boundary.

In [DPZ] Denk, Priiss and Zacher discussed the question of maximal L,-regularity for
uniformly elliptic operators in non-divergence form with continuous principal coefficients
on L,(£2) x L,(092) on C*°-domains with dynamic boundary conditions, with p,r € (1, c0).
Recently, in [GGGR] Goldstein et. al. proved maximal L,-regularity for uniformly elliptic
operators in non-divergence form with continuous principal coefficients on L,(€2) x L,(92)
on C?-domains with generalized Wentzell boundary conditions, with p,r € (1,00). Their

boundary conditions are dynamic boundary conditions but with an additional elliptic



second-order operator on the boundary. For such boundary conditions see also [FGG*2]
and [Bin2].

A major restriction in the above papers is the ability of the divergence theorem in order
to obtain the Gauss—Green formula. For the main results in this paper we assume that €2 is
of class C'*, with x € (0,1) and B,, is a second-order operator in divergence form with real
uniform Holder continuous coefficients plus a real valued bounded measurable potential.
We define the co-normal derivative in a weak Ls-sense. Since the principal coefficients
are in general not Lipschitz continuous, the divergence theorem is not applicable. For
the functions a and g we require that g: 2 — (0,00) is a bounded measurable function
with essinf § > 0 and a € L, (€2). In this setting we shall prove in Section 2 via form
methods as in [AMPR] and [AE1] that —A generates a Cp-semigroup S on Ly (§2) x Ly (0N2)
which is holomorphic with (semi-)angle 7. Moreover, we shall prove in Theorem 4.1 and
Corollary 5.6 that S extends consistently to a Cp-semigroup on L,(€2) x L,(02) for all

3
prove that the generator on L, (€2) x L,(0€2) has maximal L,-regularity for all p,r € (1, c0).

p € [1,00) and that the semigroup is holomorphic with optimal angle Z. In addition we

We also prove that the part of A in {(u,u|r) : u € C(Q2)} generates a Cy-semigroup which
is holomorphic with angle 5. We emphasise that also on C' (Q2) we do not require that 3 is
continuous.

As in [CENN], [Eng], [EF]| and [BE1] we use a similarity transformation to write the
D

v)
0 BN

elliptic operator with Dirichlet boundary conditions and N is the Dirichlet-to-Neumann

transformed image of the operator A as < plus a perturbation, where B is the

operator, under the condition that the operator B? is invertible. We shall show in Corol-
lary 3.8 that —8N generates a Cy-semigroup on Ly(0€2) which extends consistently to

a Cp-semigroup on L,(0€) and the latter semigroup is holomorphic with angle 7 for all

p € [1,00). Moreover, the semigroup extends to a holomorphic Cy-semigroup on C(0f)

%
generated by —BN has Poisson kernel bounds on the right half-plane, using techniques de-
veloped in [EO1], [EO2] and [EO3]. Then Hieber—Priiss [HP] implies that SN has maximal
L,-regularity on L,(092) for all p,r € (1,00). A perturbation result of Kunstmann-Weis

[KW] then gives maximal regularity of the operator A in L,(€2) x L,(992) for all p € (1, c0).

with angle %, see Corollary 3.11. In order to prove this we first show that the semigroup

2 The operator in L-

In this section we introduce almost every notation that we need in this paper and construct
the operator on Ls.
Let © € RY be an open, bounded and connected set with Lipschitz boundary. Write
I' = 092. We provide I" with the (d — 1)-dimensional Hausdorff measure, denoted by o.
For all k,l € {1,...,d} let cg,co: © — R be bounded measurable functions with
¢k = ¢ Further, let a: I' — C be a bounded measurable function and let 5: I' — (0, c0)
be a bounded measurable function such that essinf § > 0. We assume that there exists a



i > 0 such that Re Zz,zﬂ c(x) & & > p|€]? for all 2 € Q and &€ € C% Note that % is a
bounded function. Define the form a: Wh*(Q) x W'#(Q) — C by

d
a(u,v) = Z/ckl (Qku)%vL/couE—i—/%(Tru)mda.
0 Q r

k=1

It is well known that a is a continuous elliptic form. Define

Ly := Ly(Q) x Ly(T)

do
I, 92, = / uf? + / o
Q T

where we recall that o is the (d — 1)-dimensional Hausdorff measure on I'. Note the factor

equipped with the norm

£ in the norm.
Define j: WH(Q) — Ly by
Jj(u) = (u, Tru).
Then j is continuous and has dense range. Moreover, for all § € (0,%) there exists an
w > 0 such that
a(u,u) +w [l (u)lli, € So,

where ¥y = {re” : r € [0,00) and n € [—6,6]}. We define the variational operator A
to be the m-sectorial operator in L, associated with (a,7), see [AE1]. Then —A is the

generator of a Cy-semigroup which is holomorphic in the right half-plane. By definition for
all (u, ), (f,n) € Ly one has that (u,p) € D(A) and A(u, ) = (f,n) if and only if

u e W(Q),
¢ = Tru, and (3)
—d
a(u,v) = / f@—k/nTrv—U for all v € WH2(Q).
) r B

In order to characterise the generator we introduce some more notation. Define the form
b: WH2(Q) x W2(Q) — C by

b(u,v) = zd:/Qckl (8;&)%—#/9001@. (4)

k=1

Further define B: W'#(Q) — D'(Q) by
(Bu, T>D/(Q)XD(Q) = b(u, 7).

We need the notion of a weak co-normal derivative. If uw € W2(Q) and ¢ € Ly(T), then
we say that u € D(0Y) and 0Su = v if Bu € Ly(Q) and

b(u,v)—/ﬂ(Bu)E:/meda

4



for all v € Wh2(Q). It follows from the Stone-Weierstrafl theorem that the function v is
indeed unique. We say that 1) is the (weak) co-normal derivative of u. Note that the
co-normal derivative is independent of ¢ and that D(9S) C W12(Q).

Lemma 2.1. Let (u, ), (f,n) € Ls. Then the following are equivalent.

(1) (u,p) € D(A) and Au,¢) = (f,n).

(i) uwe DY), o=Tru, f=DBuandn=F3u+ aTru.

Proof. The proof is similar to the proof of [AE1] Proposition 4.17.
‘(i)=(ii)’". Choosing v € C°(12) it follows from (3) that Bu = f. Then

/Q(Bu)ﬂ+ /an% = a(u,v) = b(u,v) +/F%(Tru)mda
for all v € W%(Q). Therefore
/and%—/F%(Tru)mda:b(u,v)—/(Bu)E

Q

So u has a co-normal derivative and 0Su = 75— 5Tru.
‘(ii)=-(i)". The proof is similar. O

So D(A) = {(u, Tru) : u € D(9%)}. Lemma 2.1 gives a precise meaning that (¢,z)
(e7" (ug, Trug))(x) satisfies (1) and (2) in the introduction.

The next perturbation result allows to restrict to the case that ¢y > 0. It follows
immediately from Lemma 2.1.

Lemma 2.2. Let A € R and let A* be the operator similar to A, but with co replaced by
co+Alqg. Then D(A*) = D(A) and

Af(u, ) = A(u, ¢) + (\u,0)
for all (u, ) € D(A).

We next describe via a similarity transformation the operator A as an operator in
W2(Q) with Wentzell boundary conditions. This was done in [FGGT1] Theorem 2.1 for
the Laplacian and we adapt the argument given in [AE1] Proposition 4.19.

Proposition 2.3. Define the operator A in the Hilbert space WH2(2) by
D(A) ={u e DY) : Buec W"*(Q) and 305 u = Tr Bu — a Tru}

and Au = Bu. Then —A generates a holomorphic Cy-semigroup on W12(Q).



Proof. Since j is injective, one can transfer the form a on W1?(Q) to a form @ on
J(WH3(Q)) by defining D(a) = j(W3(Q)) and a(j(u),j(v)) = a(u,v) for all u,v €
W2(Q). Then a is a densely defined closed sectorial form in Ly and A is the opera-
tor associated with a. We provide D(a) with the norm ||j(u)||p@ = |lullwi2@) for all
u e W2(Q). Let A be the part of A in D(@). So D(A) = {F € D(@) : AF € D(d)}. Then
—A is the generator of a holomorphic Cy-semigroup in D(d). Define J: W'2(Q) — D(d)
by J(u) = j(u). Then J is an isomorphism, so —J~* A J is the generator of a holomorphic
Cy-semigroup on W12(€2). It remains to show that A = J1 A .J.

Let u € D(A). Then Bu € W2(Q) and 89Su = Tr Bu — a Tru. So j(u) = (u, Tru) €
D(A) and Aj(u) = (Bu, Tr Bu) = j(Bu) € D(a) by Lemma 2.1 (ii)=(i). Hence j(u) €
D(A) and u € D(J™* A J). Moreover, J™' A Ju = Bu = Au.

Conversely, let u € D(J' A.J). Then j(u) € D(@) and Aj(u) € D(a). So u € Wh2(Q)
and by Lemma 2.1 (i)=-(ii) one deduces that Bu € W12(Q) and 89Su = Tr Bu — a Tru.
So u € D(A). O

3 Multiplicative perturbation of the Dirichlet-to-Neu-

mann operator

As an intermediate result, which is of independent interest, we study in this section a
multiplicative perturbation of the Dirichlet-to-Neumann operator.

We adopt the notation and assumptions as in Section 2. Recall that €2 has a Lip-
schitz boundary in Section 2. Define the form bp: W, (Q) x Wy*(Q) — C by bp =
blwgﬁ(ﬂ)xwgvz(m‘ Then bp is a closed sectorial form in Ly(2). Let BY be the operator
associated to bp. Throughout this section we assume in addition that 0 & o(B2).

We frequently need the notion of consistent operators and semigroups. Let X and Y
be two vector spaces. If Ty: D(Ty) — Y and Ty: D(Ty) — Y are two operators with
domains D(Tp) C X and D(T1) C X, then the operators Ty and T are called consistent
if Tox = Thx for all x € D(Ty) N D(Ty). Let Xy and X; be two Banach spaces which are
embedded in a vector space X. Let S and S be semigroups in X, and X;. Then the
semigroups S® and S are called consistent if St(o) and Sfl) are consistent for all ¢ > 0.
For more details we refer to [ER].

Recall that o is the (d — 1)-dimensional Hausdorff measure on I' and the space L,(I) is
with respect to the measure o for all p € [1,00). We also need the Dirichlet-to-Neumann
operator A, on L,(T) for all p € [1,00). Here we use that 0 ¢ o(BY). Let N be the
self-adjoint operator associated with (b, Tr) and let 7 be the semigroup generated by
—N, see [AEKS]| Theorem 4.5. If

(I) ¢y >0or,

(IT)  there exists a k > 0 such that  is of class C'* and the principal coefficients ¢, are
uniformly Holder continuous of order &,



then the semigroup T extends consistently to a semigroup 7 on L,(T) for all p € [1, o0]
and T®) is a Cyp-semigroup if p € [1, 00). This follows from [EO2] Theorem 2.2(b) in Case (1)
and from [EO2] Lemma 8.1 in Case (II). We denote by —N/, the generator of T®. So
Ny = N. In Case (II) the semigroup 7 is holomorphic with angle 7 for all p € [1,00) by
[EO3] Proposition 3.3.

Recall that §: I' — (0,00) is a measurable function with essinf § > 0. We denote by
Mp the multiplication operator with 5 on L,(I).

The following proposition is inspired by [AE1] Proposition 4.10.

Proposition 3.1. Suppose

(I) ¢ >0 or,

(IT)  there exists a k > 0 such that Q is of class C** and the principal coefficients cy are
uniformly Hélder continuous of order k.

Then one has the following.

(a)  The operator Mg N Mg is self-adjoint and lower bounded.

(b)  The semigroup generated by —Mg N Mg extends consistently to a semigroup on L,(T")
for all p € [1,00], which is a Cy-semigroup if p € [1,00) with generator —Mg N, Mg.

(c)  There exist c,w > 0 such that

Z(d—1)(1-1) o
e MM 1y, oy < etTHGT e (5)
for allt >0 and p,q € [1,00] with p < q.

Proof. The proof is in several steps. We first assume prove the proposition in Case (I).
Near the end we prove Case (II) via a perturbation argument.

Step 1 Clearly the operator Mz N Mjp is self-adjoint and lower bounded, which is State-
ment (a). We describe it with form methods. Since ¢q > 0, the form b is %Tr -elliptic (see

[AE1]). Let N denote the operator associated with (b, % Tr). If p € D(K/) and ¢ = N,
then there there exists a u € W12?(Q2) such that %Tru = ¢ and b(u,v) = (7, % Trv) 1y
for all v € W2(Q). Then b(u,v) = (% ¥, Trv),m for all v € WH(Q). So Tru € D(N)
and N'Tru = %w. Hence N ¢ M 3N Mg. The converse inclusion can be proved similarly.
So ./iv/’ = Mg./\/'Mlg.

Step 2 Let C = {p € Ly(T,R) : p < %} We shall prove that C' is invariant under the
semigroup generated by —MgN Mgz. The set C is closed and convex in Ly(I"). Define
P: Ly(T') — C by Pp = %]lp A Regp. Then P is the orthogonal projection onto C. Let
u € Wh2(Q). Define w = 1g A Reu € W2(Q). Then P(% Tru) = %Trw and, moreover,
Reb(u — w,w) = 0. Also b is accretive since ¢y > 0. Here we need the lower bound
for ¢g. Hence C' is invariant under the semigroup generated by —MzN Mz by [AE1]
Proposition 2.9.



Step 3 Let t > 0 and ¢ € Ly(I',R) with ¢ < 1. Then ¢ < ||5||oo % Hence by the above

e tMsN Mg (HBH ¢) € C and e "MsNMsp, < ||| ﬁ < egsﬁlkﬁ So the semigroup generated
by —Mz N Mj extends to a bounded semigroup on Lo (') and ||e=*MsNMs ||, < %

By duality the semigroup generated by —MszN My extends to a bounded semigroup on

Ly(T) and |le tMsNMs ||, < egfitll";ﬁ. By interpolation the semigroup (e=*MsNMs),_ o ex-

tends consistently to a semigroup on L,(I') for all p € [1, 00].

Step 4 This step is inspired by the proof of Theorem 2.6 in [EO1]. First suppose that
d > 3. By a compactness argument the norm on W?(Q) is equivalent to u — (b(u,u) +
15 Tr “||2L2(r))1/2- By Theorem 2.4.2 in [Nec], the trace Tr is a bounded operator from

W2(Q) into Ly(T), where s = %. Hence there exists a ¢ > 0 such that

1
ITrull?, @ < c (b(u,U) + ”E Trulli(r))

for all w € W'2(Q). Let t > 0 and ¢ € Ly(I'). Since e MsNMs, ¢ D(N), there exists a
u € WH2(Q) such that %Tru = e MsNMs 5 and b(u,v) = (Ne‘tMﬁNMﬁgo,%Trv)Lz(p) for
all v € WH2(Q). Choose v = u. Then

_Hl
B

1
< -
~ (essinf 5)?

le”

HTI"UH%S(F)

c 1
< (ess inf B)2 (b(uvu) + HE TTUH%Q(F))

C

= N o tN o —tN —tN (|2
= (e )2 <(N6 @, e P)ryr) + e ngL2(F)>

c 1 5
= (essinf /3)? <E * 1) Iz

So [|leMsNMs || L my p oy < essﬁ,@ ~1/2if t € (0,1]. Since the semigroup is bounded on

L(T") and on Ly(I"), one can extrapolate using [Cou] to obtain a ¢; > 0 such that
le= MM 1 ry oy < a8V

for all t € (0,1]. Then by interpolation the bounds (5) follow.
Next suppose d = 2. Fix s € (2,00). Then it follows from (8) in [EO1] that there exists
a ¢p > 0 such that

< & ol ol
for all ¢ € HY?(T), where § = 2/3 The trace is bounded from W12(Q) into HY/?(T) by
[McL] Theorem 3.37. Hence there exists a ¢3 > 1 such that ||Tr uHH1/2(F) < e (b(u,u) +

”E Tr u||L2(F)> for all w € WH2(Q2). Then

1 s\ (192 .
ITrullz,m) < exes (b(uw) + 115 Trulfue)  ITrulfp

8



for all u € W12(Q). Arguing as above it follows that there exists a ¢4 > 0 such that
le™MsNMa || o py < e +G=3)
for all t € (0, 1]. Then the bounds (5) follow as before by extrapolation and interpolation.

Step 5 Now we consider Case (II), so we do not assume that ¢y > 0. Clearly the
operator Mg N My is self-adjoint and lower bounded. There exists a A > 0 such that
co+ A1q > 1. Let Ny be the Dirichlet-to-Neumann operator obtained with ¢y replaced
by ¢o + A1g. By [EO2| Corollary 5.6 and Proposition 5.5(d) there exists a bounded
self-adjoint operator Q: Ly(I') — Lo(T") such that N' = Ny + @ and, moreover, for all
p € [1,00] the operator () is consistent with a bounded operator from L,(I") into L,(I").
Then Mg N Mz = MgNy Mg + Mg@Q Ms. The operator Mz @ Mg is consistent with a
bounded operator from L,(T") into L,(T") for all p € [1,00]. By standard perturbation
theory the semigroup generated by —MzN Mjs extends consistently to a semigroup on
L,(T) for all p € [1,00]. By [AE2] Proposition 3.1(a) the semigroup (e *MsNMs),_ is again
ultracontractive, with the same ultracontractivity exponent. Then by interpolation the
bounds (5) follow.

Step 6 It remains to identify in both cases the generator of the semigroup consistent with
(e7tMsNMs) o on L,(T). The semigroup is a Co-semigroup if p € [1, 00) and it is continuous
with respect to the weak*-topology if p = co. Let A, denote the generator for all p € [1, oo].
Then (A,)* = Ay for all p € [1, 00|, where p is the dual exponent. Let p € [2,00]. Since
I' has finite measure, it follows that A, C Ay. Let ¢ € D(A,). Then ¢ € D(Ay) N
L,(T') and Ayp = A,p € Ly(T'). Now Ay = Mz N Mg. Hence S € D(N)N Ly(T') and
N(B) =71 Asp € L,(T'). Therefore ¢ € D(N,) and N, (8 p) = N (8 ¢). Consequently
¢ € D(Msg N, Mg) and M N, Mpp = BN, (B¢) = BN (B ) = Mg N Mpp = Asp = App.
So A, C Mg N, M. Similarly Mz N, Mg C A,, so A, = Mg N, Mp.

Finally, in p € [1,2), then A, = (Ay)* = (Msg N,y Mpg)* = Mg N, Mp. O

Now we consider the multiplicative perturbation of N.
Proposition 3.2. Suppose

(I) ¢ >0 or,

(IT)  there exists a k > 0 such that Q is of class C** and the principal coefficients cy are
uniformly Hélder continuous of order k.

Then one has the following.

(a)  The operator —BN generates a holomorphic Cy-semigroup on Lo(I') with angle .

(b)  The semigroup generated by —BN extends consistently to a semigroup on L,(T") for
all p € [1,00], which is a Cy-semigroup if p € [1,00) with generator —BN,.



(c)  There exist c,w > 0 such that

Cd-1)(L-1) o
||€_tﬁN||Lp(r)—>Lq(F) <ct (d=1)(5 q)e t

for allt >0 and p,q € [1,00] with p < q.

Proof. Define E: Ly(I') — Lo(T") by Ep = S¢. Then E is a topological isomorphism.
Consider the operator Mz N Mz in Proposition 3.1. Then N = EMgN MgE~! is
the minus-generator of a holomorphic Cy-semigroup S in Ly(I"). Since also E extends
consistently to an topological isomorphism from L,(I') onto L,(T") for all p € [1,00], all
properties for the operator Mz N Mz in Proposition 3.1 carry over to the operator 32N,
with a different value for the constant c.

Finally replace 3 by +/f3. O

The semigroup generated by —BN is smoothing.
Proposition 3.3. Suppose

(I) ¢ >0 or,

(IT)  there exists a k > 0 such that Q is of class C** and the principal coefficients cy are
uniformly Hélder continuous of order k.

Then one has the following.
(a) Letpe (d—1,00). Then D(N,) c C(T).

(b)  Let p,q € [1,00]| with p < q and % - % < 2. Then D(N,) C Ly(T).
(¢) Letp,q € [1,00] withp < q. Let ¢ € D(N,) and suppose that N, € Ly (T). Then
¢ € Ly(I).

(d)  Ift >0, then e N Ly(T') c C(I).

Proof. ‘(a)’. By [EO2] Theorem 2.2(b) in Case (I) and [EO2| Lemma 8.1 in Case (II) there
are ¢1,w; > 0 such that He‘tN||Loo(p)_>Loo(p) < crett for all t > 0. By [EW] Theorem 5.5
and the remark following it, there exist co,ws > 0 and v € (0,1) such that e~V maps
Ly(T") into C¥(I") and

~ @
le N Lyrysovey < cat™ 7 72 et

for all t > 0. (The exponent —2v can be replaced by —v if d > 3.) Let p € (2,00). Then
by interpolation the operator e=*V is bounded from L,(T') into C*/?(T") with norm

- _(@-1 4v
He tNHLp(F)HC%/p(F) <c3t r t re

for all t > 0, where ¢35 = ¢; + ¢ and w3 = wy + ws. Now choose p = d — 1 + 5v. Then
Ny + (ws+ 1) )7 = / et et emtNe (gt
0
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maps L, (") into C?/?(T"). In particular D(N,) C C*/7(T') c C(T).
‘(b)’. The proof is similar, using the bounds of Proposition 3.2(c).

‘(). If 5 — ¢ < gty then it follows from Statement (b) that ¢ € D(N,) N Ly(T) and

Nyp € Ly(T'). So ¢ € D(N,). Now use induction.
‘(d)’. Choose p = d. Then ultracontractivity and holomorphy on L,(I") give

e~V Ly(T) € e85 L,(T) € D(BN;) = DN}) € C(T)
for all ¢t > 0. ]

For the remainder of this paper we assume Case (II), that is there exists a k > 0 such
that € is of class C'* and the principal coefficients ¢;; are uniformly Holder continuous of
order k.

Let C%}(T") denote the space of Lipschitz continuous functions on I'. It is endowed with
the norm

g\z) —gl\w
loloos = gl +  sup  EELZ9
zwel, z#w |2 — wl

For all g € C%N(TI') we use the notation Lipp(g) = Sup, ,er, sz la=)zolw)| 14 hag been

|z—w]

proved in [EO2] Theorem 7.3 that for all p € (1, 00) there exists a ¢ > 0 such that

I, M]l|z,,r) L, r) < cLipr(g)

for all g € C%Y(T"). These bounds carry over to commutator estimates for the operator SN .

Proposition 3.4. For all p € (1,00) there exists a ¢ > 0 such that

IBN, Mg} ||, r)~L,(r) < cLipr(g)
for all g € C%N(T).
Proof. Let g € C%!(T"). Then
(BN, M) = Mg [N, My].

So |[BNs Myl|lp=p < IBlleo |V, My]|lp—p and the result follows from [EO2] Theorem 7.3.
]

Let Ky and Kpgy denote the Schwartz kernel of N' and SN. Then Kpy(z,w) =
B(z) Kn(z,w) for all z,w € I" with z # w. It follows from [EO2] Proposition 6.5 that there
exists a ¢ > 0 such that

K (2, w)] < —

|2 = wl

for all z,w € I" with z # w. Consequently one has the next bounds.
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Proposition 3.5. There exists a ¢ > 0 such that

for all z,w € T" with z # w.

It follows from Proposition 3.2 that for all z € C with Re z > 0 the operator e **V on
Ly(T") has a kernel K, € Loo(I' x I').

Proposition 3.6. There exist c,w > 0 such that

c t*(d*l) ewt

(1)

| Ky (wy, wy)| <

for allt > 0 and wy,wy € T'.

Proof. This follows as in [EO2] Lemma 8.4 and the argument in Section 4 of [EO1]. For
the latter, see also [EO2] pages 4270-4272. O

Via an iteration argument the bounds can be improved to the right half of the complex
plane.

Theorem 3.7. Let k € (0,1). Let Q C R? be an open, bounded and connected set of class
Clr. Write T = 0Q. For all k,l € {1,...,d} let cjy € C*(,R) and let co: 2 — R be a
bounded measurable function. Suppose that cyy = ¢y for all k,1 € {1,...,d}. Further, let
B: T — (0,00) be a bounded measurable function such that essinf 5 > 0. We assume that
there exists a p > 0 such that Re 2271:1 c(2) & & > p|€)? for all z € Q and € € C. Let
b be the elliptic form as in (4). Suppose that

{u e Wy(Q) : b(u,v) =0 for all v € Wy*(Q)} = {0}. (6)

Let N be the Dirichlet-to-Neumann operator associated with (b, Tr).
Then the operator —BN is the generator of a Cy-semigroup S which is holomorphic
with angle 5. Moreover, S has a kernel K and for all 0 € (0,%) there are c,w > 0 such

that
C lz‘_(d_l) ew‘zl

(1 L oy —wyf wQ')d
2|

| K (wr, wy)| <

for all z € C\ {0} and wy,wy € I with |arg z| < 6.

Proof. This follows from the previous three propositions as in [EO3] Lemma 3.1 and
Theorem 3.2. The condition (6) is equivalent with 0 & o(B2). O

Corollary 3.8. Adopt the notation and assumptions as in Theorem 3.7. For all p € [1,00)
the semigroup (e ""N),so extends consistently to a holomorphic semigroup on L,(T) with
angle 3.
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Corollary 3.9. Adopt the notation and assumptions as in Theorem 3.7. For all p,r €
(1,00) the operator SN, has mazimal L,-regularity on L,(T).

Proof. The operator —BN generates a holomorphic Cp-semigroup on Ly(T") and this semi-
group has a kernel with Poisson bounds by Proposition 3.6. Then the statement follows
from Hieber—Priiss [HP] Theorem 3.1. O

Finally we consider the space C'(I'). In order to obtain optimal results, without any
continuity requirement on 5 we need the concept of sectorial operators and a maximal
operator on L (I).

In general, let A be an operator in a Banach space X and let a € (0,5]. Then we
say that A is sectorial of angle « if for all § € (0, «) there exist M,w > 0 such that

o(A+wl) C Xy and
M
1A+ (w+ X)) < o
for all A € C with —\ & %3.

Define the operator Ny, : D(Noom) — Loo(T) by
D(Noom) ={p € DIN) : Ny € Loo(I')}

and Noow = N|pie,m)- It follows from Proposition 3.3(c) that D(Nem) C Loo(I'). We
consider N, as a non-densely defined operator in L. (T"), provided with the norm topol-
ogy. It is easy to verify that N, is a closed operator. Moreover, Proposition 3.3(a) gives

D(Nwm) C C(I).
Lemma 3.10. Adopt the notation and assumptions as in Theorem 3.7.
(a)  If A€ p(=BN), then X € p(—BNoom) and (BNoom + A 1)1 = (BN + A1) 1)
(b)  The operator SNum is sectorial of angle 5.
(c)  D(Nwom) is dense in C(I).
Proof. ‘(a)’. Easy.
‘(b)’. This follows from the Poisson kernel bounds of Theorem 3.7.
‘(). Let N. be the part of N'in C(T"). Then N, C Nym. Moreover, —N, is the

generator of a holomorphic Cy-semigroup by [EO3] Proposition 3.3. Now let ¢ € C(I').
Then limoe ey = ¢ in C(T). But e e € D(N.) C D(Nip) for all t > 0. O

Recall that we do not require [ to be continuous. By Proposition 3.3(d) the semigroup
(e7tN),2 ¢ leaves the space C(T) invariant.

Corollary 3.11. Adopt the notation and assumptions as in Theorem 3.7. Define T, =
e N\ oy C(T) — O(T) for allt > 0. Then T is a Co-semigroup which is holomorphic
with angle 5.

Proof. This follows from Lemma 3.10(b), Lemma 3.10(c) and [ABHN] Remark 3.7.13. [
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4 The operator in L,

We return to the operator A with dynamical boundary conditions as introduced in Sec-
tion 2. Under the smoothness assumptions as in Case (II) in Section 3 we show that for
all p € (1,00) the operator A is consistent with an operator A, on L, such that —A is
the generator of a Cy-semigroup which is holomorphic on the right half-plane and A, has
maximal L,-regularity for all r € (1, 00).

We extend the definition of ILy. Define

for all p € [1, 00|, with norm

do
1(u, )T, =/|UI”+/M” 5
Q r

and obvious modification if p = oo.
The main theorem of this section is as follows. In Corollary 5.6 we consider the case

p=1.

Theorem 4.1. Let k € (0,1). Let Q C R? be an open, bounded and connected set of class
Ctr. Write T = 0Q. For all k,1 € {1,...,d} let cy € C*(Q,R) and let co: Q — R be
a bounded measurable function. Suppose that cy = cy for all k.1 € {1,...,d}. Further,
let a: ' — C be a bounded measurable function and let f: I' — (0,00) be a bounded
measurable function with essinf 5 > 0. We assume that there exists a pu > 0 such that
Re ZZ,Z:I e () & & > p|€|? for all z € Q and € € C. Let A be the associated variational
operator in Ly as in Section 2. Then for all p € (1,00) the semigroup generated by —A
extends consistently to a Co-semigroup on I, which is holomorphic with angle 5. Moreover,
its generator has maximal L,.-regularity on L, for all r € (1,00).

The proof requires quite some preparation. The main problem to circumvent is that
we cannot apply the divergence theorem since the principal coefficients are not Lipschitz
continuous. Adopt the notation and assumptions as in Theorem 4.1. We use the notation
as in Section 2. As in Section 3 define the form bp: W, (Q) x Wy*(Q) — C by bp =
b|W01,2(Q)XW01,2(Q). Then bp is a closed sectorial form in Ly(Q2). Let BY be the operator
associated to bp. By Lemma 2.2 we may assume that 0 ¢ o(BY). The operator —BY

™

generates a holomorphic Cp-semigroup S@P on L,(2) with angle Z. Moreover, for all

2
(2)D

p € [1,00] the semigroup S extends consistently to a semigroup S®? on L,(Q2) with

angle Z by [Ouh] Theorem 3.1(1). Moreover, S®? is a Cy-semigroup for all p € [1, 00).
We denote by —B]? the generator of S®P.

In addition we need a harmonic lifting (also called harmonic extension). Since 0 ¢
o(BP) one can define v: Tr W12(I') — W12(Q) by v(¢) = u, where u € WH%(Q) is such

that Tru = ¢ and Bu = 0. (So w is B-harmonic.) Then by [EO2]| Proposition 5.5 there
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exists an operator H: L(I') — C(2) N L1(£2) such that

H|TrW1v2(Q) =7
H(L,(T)) C Ly() for all p € [1,00], and
H|r,m): Lp(T') = L,(€) is continuous for all p € [1, oo].
We write v, = H|r,m): Lp(I') = L,(Q) for all p € [1, 00].
There is a remarkable relation between the elliptic operator BIJ? with Dirichlet boundary

conditions, the harmonic lifting v and the (weak) co-normal derivative. We denote by
(v1,...,v4) the outer normal on T

Proposition 4.2. Let p € (d + 2k,00). Then one has the following.

(a) D(BP)c DY) NCH2/7(Q).
(b)  Ifue D(BP), then
ofu = Z Vi (cr Opu) |
k=1
In particular, 9Su € C(T).
(c) v =-07(BY)".
Proof. ‘(a)’. See [EO2] Propositions 5.3 and 4.3.

‘(b)’. See [EO2] Proposition 5.3.
‘(o). If o € Tt W2(Q) and u € L,(9), then

(0,13 1or) = (Y0, ) Ly(0) = — (9,05 (BY) ) pyr)

by [EO2] Lemma 5.4. Since Tr W'2(Q) is dense in Ly(T") one deduces that (¢, 5u)r,mr) =
—(,05 (BY)'u) Ly(ry for all ¢ € Ly(T). Now 95 (BY) 'u € C(T) C L,y(Q). Hence

(W, W)L @)x Ly @) = —(p, 0 (Bf)_llL)Lp,(r)pr(r)
first for all ¢ € Ly(I') and then by density for all ¢ € L,,(I'). The statement follows. [

Proposition 4.2(c) implies that 95'u = —v% B u for allu € D(BP) if p € (d+2k,00). It
is unclear whether this is also valid for all p € (1, 00), in particular if p < 2. We circumvent
this problem by working with the operator 7, Bz? on D(BIP ).

For all p € [1,00) define A,: D(BP) x D(N,) — L, by

p =

i, - (BE +o My BY = My Ny = Ma>

We need a technical lemma.
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Lemma 4.3. Let p € (1,00). Then one has the following.

(a)  The operator &p is consistent with As.

b The operator —A, is the generator of a Cy-semigroup in L, which is holomorphic
P P
with angle 7.

(¢)  Forallr € (1,00) the operator Ap has mazimal L,-regularity on L,.

For the proof of Lemma 4.3 we use an abstract lemma, which is contained in the proof
of [EF] Lemma A 4.

Lemma 4.4. Let A and B be operators in Banach spaces X and Y, respectively. Let
P: D(A) — X and P»: D(A) — Y be relatively A-bounded with A-bound zero. Let
Ps: D(B) — Y be relatively B-bounded with B-bound zero and Q: D(B) — X be a bounded

operator. Define
(A0 (P Q
Ay = <0 B) and P = (Pz Pg) .

Then for all e > 0 there exists an isomorphism S: X XY — X xY such that S Ay S~! = Ay
and SP S~ is relatively Ay-bounded with Ag-bound e.

Proof of Lemma 4.3. Statement (a) is obvious.
‘(b)’. First note that

A (B;l)) 0 > _ (’Yp Mgy B;? = Mg Ny — % Ma) (7)
Co\ooN, —B; BY M,

The operator _Bz? generates a Cyp-semigroup in L,(€2) which is holomorphic with angle

7 and by Corollary 3.8 the operator —(N, generates a Cy-semigroup in Ly(T') which is
holomorphic with angle 7. It follows that

Bz? 0

0 BN,
is the minus-generator of a Cyp-semigroup in I, which is holomorphic with angle 7. We
next show that 7, Bz? is Bf -bounded with relative bound zero.

Let ¢ = (p+1) V(d+3k). It follows as in the proof of [EO2]| Proposition 4.3 that there
are ¢,w > 0 such that Ve 57y € C2%/1(Q) c C(Q) for all u € Ly(€) and

IV ™52 o < ct Bt E et
for all t > 0. Then a Laplace transform together with Proposition 4.2(b) gives
105 (By + A D)™ ull 1,y < (@)Y IC]l IV (BF + A1) ull o
< (o)1 Clla [ 7 e O g o
0

(i 4
= (A= w) ™78 fu ) (8)

16



for all A > w, where ¢; = ¢ (o(I))VI(
follows from Proposition 4.2(c) that

— &), Hence if A > w and u € D(BP), then it
q q

_(i_d
1y By ull oy = 105 ullz, ey < e (= w) ™23 (B + Al - (9)

Next, since —BP generates a Cy-semigroup there are cy,wy; > 0 such that BP + M1 is
invertible and ||BY (BY + M) L, @)=L (0) < ¢ for all A > wy. Then

175 BPull 2oy < ool e my= (@) €2 1(BY + ADull i) = es [[(BY + Aul|p, ) (10)

for all A > wy and u € D(BY), where ¢35 = ¢ ||Voo || Lo (r) =10 (0). There exists a 6 € (0,1)
such that zla = g + 122 Interpolation between (9) and (10) gives

1y By ulz,my < g™ (A= @) I(B) + AD)ull L)

for all w € D(BP) and A > w V w,, where § = (3 — %). Then

v B ullz, ) < ¢ ey (A —w) " | BYull @) + < e5 P XA = w) 7 |Jull,@

for all w € D(BY) and A > w V wy. So v B and hence also §+ BY and ~, Mg~} BY
are BpD -bounded with relative bound zero.

Using (7) it now follows from Lemma 4.4 and a standard perturbation argument that
—Ap is the generator of a Cy-semigroup on L, which is holomorphic with angle 7. This
completes the proof of Statement (b).

Bz? 0
0 BN,

BpD has maximal L,-regularity by [HP] Example B and it is the minus-generator of a

‘(c)’. We use again the perturbation (7). Write AY = . The operator
g p

holomorphic semigroup. So together with Corollaries 3.8 and 3.9 the operator 1&2(,0) has
maximal L,-regularity on L,(2) x L,(I') and it is the minus-generator of a holomorphic
semigroup. It follows from Lemma 4.4 that for all € > 0 there exists an isomorphism
S Ly(Q) x Ly(T) = Ly(Q) x L,(T) such that SAY) §71 = A and S (A, — A) S is
relatively &éo)—bounded with jg\l(,o)—bound e. If € is small enough, then [KW] Corollary 2
implies that

SA,ST'=A0 + S(A, - AD) 5!

has maximal L,-regularity on L,(Q) x L,(I"). But then also Kkp has maximal L,-regularity
first on L,(€2) x L,(I') and then also on L. O

b 7)

is an invertible operator from I, onto L, with inverse

b 7)

17
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We define the operator A, in L, by

I v\ ~ (I —~
A, = "4, ",
0 I 0 I
A reformulation and extension of Theorem 4.1 is the following theorem.

Theorem 4.5. Adopt the notation and assumptions as in Theorem 4.1. Let p € (1,00).
Then one has the following.

(a) A = AQ.
(b)  The operator A, is consistent with As.

(c)  The operator —A,, is the generator of a Cy-semigroup in L, which is holomorphic
with angle 3.

(d)  Forallr € (1,00) the operator A, has mazimal L,-reqularity on L,.

Proof. The proofs of Statements (b), (c) and (d) are obvious.
‘(a)’. Let p € (d+ 2k,00). We first prove that A, C A. Let (u,9) € D(A,). Write

(f,m) = A,(u, ). Then (u — 0, @) € D(l&p) and A&p(u — Y, ) = (f —7mn,n). So

u— e € D(BY), (11)
¢ € D(N), (12)
(B) 4+ Mgy B ) —%9) = 1(BNpp) — (@ @) = f — 1, and (13)
(=B By ) (u =) + BNpp + ap =1, (14)
If follows from (12) that ¢ € D(N3) C Tr W2(Q2). Hence v, = v € WH?(Q). Then (11)

implies that u—yp = u—v,¢ € D(B}) C D(BY) C Wy2(Q). So0 = Tr (u—7yp) = Tru—g
and Tru = . It follows from Proposition 4.2 that (B))™'v € D(9) and 85 (BP)~'v =
—yv for all v € L,(Q2). Since u — v, € D(BY?) by (11) one can choose v = BY (u — )
to deduce that (u — ) € D(9S) and 95 (u — ) = =73 BY (u — 1)
One obtains from (13) and (14) that
By (u—1pp) = % M5 0 (u = %) = 1(BNpp) — (e p) = f —pn  and
BOY (u— ) + BNpp + o =1.
Hence B} (u — yp) = B (u— ) = f. Taking the inner product with 7 € C°(Q) gives

b(u,7) = b(u—vp,7) = (f,T)1,@). So Bu = f. Finally, since ¢ € D(N5) it follows that
v has a co-normal derivative and 9Sv¢ = Nap. Hence u has a co-normal derivative and

77:581/0(“—%90)+ﬁ/\/;atp+a<p:58,,cu+aTru.

Now it follows from Lemma 2.1 (ii)=-(i) that (u,¢) € D(A) and A(u,¢) = (f,n). So
A, CA.
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Finally we shall prove that A = A,. Take p = d + 3x. We denote by G(A,), G(A,)
and G(A) the graphs of the operators A,,, Ay and A.

The operators —A,, and —A, generate consistent semigroups by Statement (b). So
D(A,) is a core for Ay by [ER| Lemma 3.8, that is G(A,) = G(Ay), where the closure is
in Ly x Ly. We just showed that G(A,) C G(A). The operator A is a closed operator, so
the G(A) is closed in Ly x Lo. Hence G(Ay) = G(A,) C G(A). So A is an extension of
A,. Next, both —A, and —A generate a Cy-semigroup. Hence A = A,. This completes

the proof of the theorem and also of Theorem 4.1. O

5 The operator in the space of continuous functions

In Section 4 we proved that the semigroup generated by —A extends consistently to a
Co-semigroup on I, which is holomorphic with angle 7. In this section we aim to prove a
similar result on the space of continuous function which satisfy a trace condition. Define

Xe={(u,9) € C(Q) x C) : ulr = ¢}

Then X, is naturally isomorphic with C'(€2). Let A. be the part of A in X.. The main
theorem of this section is as follows. We emphasise that we do not assume that o or [ are
continuous.

Theorem 5.1. Adopt the notation and assumptions as in Theorem 4.1. Then —A. is the
generator of a Co-semigroup in X. which is holomorphic with angle 7.

The proof requires again some preparation. Throughout the remainder of this section we
adopt the notation and assumptions as in Theorem 4.1 and Section 4. Again by Lemma 2.2
we may assume that 0 & o(BP).

We need a maximal version for BY on L. (Q) similar to N,,. Define the operator
BP . D(B2 ) — L.(Q) by

D(BP )y ={ue D(BY): BPu e L(Q)}

and BY . = BP|ppp ). Then D(BE ) c Cy(Q) by [AE3] Corollary 2.10. We consider
BP as a non-densely defined operator in L. (). Then B2 is a closed operator.

Lemma 5.2.

a)
b)

( If X € p(=B2), then A € p(=BZ,,) and (B, + XI)™* = (BY + AI) "Y1 (-
(
(c)  D(BZ ) is dense in Cy(Q).
(
(

D
ocom

The operator B is sectorial of angle 3.

d) Ifue D(B2,), thenu e DY) and 0Su € C(T).

D

D -bounded with relative BY  -bound zero.

e)  The operator OS is relatively B
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Proof. ‘(a)’. Easy.

‘(b)’. This follows from the Gaussian kernel bounds for the semigroup generated
by —BY.

‘(¢)’. Let BP be the part of BY in Cy(Q2). Then BP C B2 . Moreover, —BP is the
generator of a holomorphic Cy-semigroup by [AE3| Theorem 1.3. Now let u € Cy(€2). Then
limyyo e "2 u = u in Cy(Q). But e 5w € D(BP) c D(BR, ) for all t > 0.

‘(d)’. See Proposition 4.2.

‘(e). Let p=d~+3k. If u e D(BZ, ), then u € Co(Q) N D(BY) C L,(2) N D(BY)
and BYu € Loo(€2) C Ly(€2). Hence u € D(BY). The Gaussian derivative bounds of [EO2]
Theorem 3.1(a) give that there exist ¢,w > 0 such that

IV e o) < et ¢ lull o
forall t > 0 and u € Lo (2). Arguing as in (8) one deduces that there is a ¢ > 0 such that
105 (BE,, + A1) ulley = 105 (BY + A1) M ullor) < ¢ (A= w) 2 Jull 1@
for all u € Lo(2) and A > w. So
105 ullewy < ¢ (A= w) 2 (BL, + ADull Lo
<A =) BLullree ¢ (A= 0) TN lull L@
and the statement follows. ]
By Lemma 5.2(d) we can define Ay : D(B2, ) x D(Noom) = Loo(€) X Loo(T') by

- (Biim — Yoo Mg 0S  —oo M Noom — Yoo Ma>

Ay =
B 819 BNoom + Ma

We consider A, as a non-densely defined closed operator in L. (2) X Lo (T).
Proposition 5.3.

(a)  The operator A is sectorial of angle 5.

(b) Ay CA, forallpe (1,00).

BP 0
Proof. ‘(a)’. By Lemma 5.2(b) and Lemma 3.10(b) the operator ( Y ) is
0 ocom

sectorial of angle 5. Then the statement follows from [EF] Lemma A.4 and Lemma 5.2(e).

‘(b)’. By Lemma 4.3 it suffices to prove the statement for all p € (d + 2k, 00). Let
p € (d+ 2r,00). Then dSu = —~ BPu for all u € D(B)) by Proposition 4.2(c) and the
inclusion follows. O

The domain of A is not dense in Lo () X Loo(I'). We take a suitable restriction. Let
A, be the part of A, in Cy(Q2) x C(T').
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Proposition 5.4.

(a) —A, is the generator of a Co-semigroup in Co(Q) x C(T) which is holomorphic with
angle 3.

A, c ﬁp for all p € (1,00).

A, is the part of Ay in Co() x C(I).

Proof. ‘(a)’. It follows from Lemma 5.2(c) and Lemma 3.10(c) that D(A) is dense in
Co(2) x C(T"). Also the operator A, is sectorial with angle % by Proposition 5.3(a). Now
the statement follows from [ABHN] Remark 3.7.13.

‘(b) and (c)’. This follows from the definition of A, and Proposition 5.3(b). O

Now we are able to proof the main theorem in this section.
Proof of Theorem 5.1. Define v.: C(I') = C(Q) by 7. = Yoolom)- S0 7e(p) is the
I —Ye
classical solution of the Dirichlet problem with boundary data ¢. The operator ( / )
0

is maps X, onto Cy(€2) x C(I'). Therefore Proposition 5.4(c) implies that

I v\ ~ (I —7.
A= ! A, !
0 I 0 I

and the theorem follows from Proposition 5.4(a). O

Since u — (u,u|r) is an isomorphism from C(£2) onto X, one can reformulate Theo-
rem 5.1. Recall once again that we do not require that o and § are continuous.

Theorem 5.5. Adopt the notation and assumptions as in Theorem 4.1. Define the operator

A in C(2) by
D(A) ={ueC(@Q)NDO):Bue CQ) and (Bu)|r = $0u+ aulr a.e. on T}

and Aqu = Bu for all u € D(A,). Then —A, is the generator of a Cy-semigroup in C (L)
which is holomorphic with angle 7.

Using the arguments as in [War| we obtain a Cy-semigroup on L; with optimal angle.
For the convenience of the reader we give a direct proof.

Corollary 5.6. Adopt the notation and assumptions as in Theorem 4.1. The semigroup
generated by —A extends consistently to a Cy-semigroup on Iy which is holomorphic with
angle 7.

Proof. Since the dual a* of a is of the same type as a with « replaced by @, all the above
is also valid for A* instead of A. Let (A*). be the part of A* in X..
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Let z € C with Rez > 0. Let (u, ¢) € Ly and (v,%) € X,.. Then

(e (u, ), (v, )] = |((u, ), e (v, 9))]

= [((y9), A0, )] < (1, @) e e "8

Hence [l (s, @)llk, < e |xx,
to a continuous operator S from L; into L; with norm ||S£1)||]L1H]L1 < [le#Ae x, L x..
It is easy to verify that S st = Sii)w for all z,w € C with Rez > 0 and Rew > 0. Also
for all 6 € (0, 7) there are M,w > 0 such that ||S§1)H]L1_>El < M e¥l#l for all z € ¥y. Hence
2 (SM(u, @), (v,9))L,xL.. is holomorphic on Yg for all (v,¢) € Ly and (u,¢) € Ly,
but then also for all (u,¢) € L. Since the measure on Q @ T is finite and (e™**).exp is

(0, 9) | -

Xe—Xe

2A oxtends

(u, p)||L,- By density the operator e~

continuous it follows that (e™**).cxe is (weakly) continuous for all 6 € (0, %). O
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SPECTRAL THEORY, POSITIVITY AND STABILITY FOR OPERATORS
WITH WENTZELL BOUNDARY CONDITIONS AND THE ASSOCIATED
DIRICHLET-TO-NEUMANN OPERATORS

TIM BINZ! AND KLAUS-JOCHEN ENGEL?

ABsTRACT. We study the rich interplay between various spectral, positivity and stability
properties of an operator AP with generalized Wentzell boundary conditions, the associated
Dirichlet-to-Neumann operators N, and the related operators with abstract Robin boundary
conditions AE , cf. Definition 2.4 below. The results are then illustrated by various examples.

1. INTRODUCTION

The goal of this paper is to study the relations between an operator with abstract Wentzell-
type boundary conditions and the associated Dirichlet-to-Neumann operators. To give a
typical example, cf. Subsection 7.4 for a more general setting, we consider on a bounded

domain ©Q C R™ with smooth boundary 92 the Laplacian Ay C C(Q) — C(Q2) with Wentzell
boundary conditions given by

Aw = Af,

Af € C(9Q), }

D(Aw) = {f € ﬂ Wiet () N C(Q) Af =agf+0bf on 9
— Yon

p=1

Here A denotes the Laplacian with “maximal” domain, i.e., without boundary conditions,

a,b € C(02) where a is strictly positive and % is the outer normal derivative. As we

will see, this operator is closely connected to the associated Dirichlet-to-Neumann Operators
Ny : D(N)y) C C(092) — C(02) which is defined by

0
N)\QO = _ainftp>

where f, is the (unique) solution of the Dirichlet problem

Afy = Ay,
foloa =

and ¢ € D(N,) if and only if f, € D(a%). Further, denote by Ap and Ay the Laplacian
with Dirichlet boundary conditions and the Laplacian with Neumann boundary conditions,

Date: July 22, 2020.
Key words and phrases. Wentzell boundary conditions, Dirichlet-to-Neumann Operator, Spectral Theory.
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2 TIM BINZ AND KLAUS-JOCHEN ENGEL

respectively, i.e

ADf = Afa ANf = Afv

B ) _|AfeC(Q),
D(Ap) = {f € IDIWloZ’(Q) e _ o on asz}’
_|Af e C(Q),
Pyp— 27p
D(A) = {f € Ql Wioc @NCED] 5 0o aﬂ}'

Then their spectra are discrete and satisfy o(Ap) = 0,(Ap) = {0 > AP >\ > ... 5 —0}
and o(Ay) = 0,(Ayx) = {0 = A > A\ > ... - —oo}. By Friedlander’s inequality (cf.
[Fri91]) we have the relation
A < A
for all £ € N. Friedlander’s proof is based on the existence of a positive eigenvalue of the
Dirichlet-to-Neumann operators Ny for all A € (—o0,0) N p(Ap).
Moreover, in [AMPRO03] it is proven that Ay, generates a positive semigroup on C({). Further
in [Esc94] it is shown that N, generate positive semigroups on C(9f2) for large A € p(Ap).
Both results are proven independently but as we will see they are basically equivalent.
The aim of this paper is to reformulate this example within an abstract general framework
and then to formulate and prove the above and various other results relating properties of op-
erators with Dirichlet, Neumann, Robin and Wentzell boundary conditions and the associated
Dirichlet-to-Neumann operators within this setting.
To this end we first introduce the Banach spaces X := C(Q) and X := C(95), both equipped
with the sup-norm. On X we consider the “mazimal” operator A, = A: D(A,,) C X — X.
Then for the trace operator L : X — 0X, Lf := f|oq and the boundary operator B : D(B) C
X = 0X, Bf == a2 f +bLf for f € D(B) := D(Z) we have Ay = AP : D(AB) c X - X
where
ABf .= A,f, D(AP):={fe€ D(A,)ND(B): LA, f = Bf}.
Moreover, if we define Ly : 0X — X by Loy := f,, then
N :=BLy, D(N):={p€dX: Loy € D(B)}.

In this way we succeeded to represent Ay and N within our general setting which we introduce
in the following section.

This paper is organized as follows. In Section 2 we set up our abstract framework and in-
troduce all relevant operators. In Section 3 we study the relationship of spectral properties
between operators with Wentzell boundary conditions and its associated Dirichlet-to-Neumann
operators. Many spectral properties of the operator with Wentzell boundary conditions are re-
flected by its Dirichlet-to-Neumann operator, cf. Theorem 3.7. Moreover, a resolvent formula
for the operator with Wentzell boundary conditions is proven, see Theorem 3.8. The following
Section 4 is dedicated to a deeper analysis of the spectral properties of Dirichlet-to-Neumann
operators. We concentrate on the relationship to the operators with Robin boundary condi-
tions. An abstract version of Friedlander’s inequality is shown, cf. Theorem 4.14. In Section 5
we investigate positivity of the semigroups generated by the operators with Wentzell bound-
ary conditions and its Dirichlet-to-Neumann operators. It turns out that these properties are
deeply related, see Theorem 5.10. In Section 6 we combine our spectral and positivity results
and obtain a stability result for operators with Wentzell boundary conditions, cf. Theorem 6.2.
Finally, in Section 7 we demonstrate the benefits of our approach on some concrete examples.
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2. THE ABSTRACT FRAMEWORK
We start by introducing our general

Abstract Setting 2.1. Consider

(i) two Banach spaces X and 90X called state and boundary space, respectively;
(ii) a densely defined and closed “mazimal” operator A,,: D(A,) C X — X
(iii) an surjective trace operator L: X — 0X,

(iv) a boundary operator B: D(B) C X — 0X.

For our investigations we need to make the following hypotheses which are verified in all
relevant examples, cf. Section 7.

Assumptions 2.2. (i) The operator Ay := Ap|kerr With abstract “Dirichlet” boundary
conditions is a weak Hille—Yosida operator on X, i.e., there exists w € R such that
(w,00) C p(Ap) and
IAR(A, Ag)| < C
for every A > w;
(ii) the operator B is relatively Ag-bounded with bound 0, i.e., D(Ap) C D(B) and for
every € > 0 there exists C. > 0 such that

(2.1) IBfllox <e-[lAofllx 4+ Ce - [If[lx for all f € D(Ag);

(iii) the abstract Dirichlet operator Ly, := (Llker(rg—4,)) = € £(0X, X) exists for some
Ao € p(A())

Remark 2.3. Note that by [Gre87, Lem. 1.3] condition (iii) implies that Ly € £(0X, X) exists
for all A € p(Ay).

Definition 2.4. Using these spaces and operators we define the operator with generalized
Wentzell boundary conditions AP: D(AP) c X — X by

ABf .= A, f, D(AP).={f e D(A,)ND(B): LA, f = Bf}.
Moreover, for A € p(Ap) we introduce the Dirichlet-to-Neumann operator Ny : D(N)) C
0X — 0X by
Ny := BL,, D(N)\) = {<p€8X: L)J,OED(B)}

Finally, for p € C we denote by A% : D(A%) € X — X the operator with abstract Robin
boundary conditions

AL = Apf, D(AY) :={f € D(An) N D(B): Bf = uLf}.

3. SPECTRAL THEORY FOR OPERATORS WITH WENTZELL BOUNDARY CONDITIONS

In the sequel we study the close relation between the point spectra of operators with Robin
boundary conditions and Dirichlet-to-Neumann operators. For elliptic differential operators
this relationship was observed by Arendt and Mazzeo in [AM12]. This section is inspired by
their work.

Proposition 3.1. The Dirichlet-operator Ly maps ker(in — Ny) onto ker(A — A,). Hence,
L: ker(A — A%) — ker(u — N)) is an isomorphism.
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Proof. For ¢ € ker(u — Ny) we obtain
BLxp = Naxp = pLLxp
and hence Ly € ker(A — A’;). Conversely, consider f € ker(A — A%) C ker(A — Ay,). Then
exists ¢ € OX such that Lyp = f. Since f € D(A%) one has
pp =pLf =Bf =BLyxp = Nyp

and hence ¢ € ker(p — Ny). Thus, Ly: ker(pn — Ny) — ker(A — Af) is onto.
The Dirichlet operator Ly: 0X — ker(A— A,,) is an isomorphism, in particular it is injective.
Therefore, Ly: ker(u — Ny) — ker(A — A%) is bijective with inverse Ller(r—an) € £(X,0X)
and hence an isomorphism. O
Corollary 3.2. For X € p(Ap) and p € C we have

(i) peop(Ny) <<= Aeop(Ah);

(ii) dim(ker(p — Ny)) = dim(ker(X — A%)).
From the previous one obtains the following spectral relation between Dirichlet-to-Neumann
operators and Neumann-to-Dirichlet operators.

Corollary 3.3. Let L: D(L) C X — 0X and B: D(B) C X — 0X such that D(A,,) C
D(L),D(B) C X and that the abstract Dirichlet operators Ly, By € L(0X,X) exist. Denote

by NE’L = BL) the Dirichlet-to-Neumann operator with respect to (B, L) and by Nf’B = LB,
the Neumann-to Dirichlet- operator with respect to (L, B). If X € p(Ap) Np(Ap) for n # 0 we
have
B,L L,B
€ ap(NY™) = 5 € op(Ny7).

Proof. Denote by Al C A, the operator with Robin boundary conditions given by
D(AY% ) ={f € D(Ay): Bf = uLf}. Note that Bf = uLf is equivalent to Lf = iBf and

hence A, , = Ag%' Therefore Corollary 3.2 implies

neay(NYF) = Ao (Al )) = Aeoy(A]y) = Yue oy (NP, O
Next we relate the spectra of the Dirichlet-to-Neumann operators N, and the operator
{13 with Wentzell boundary conditions. To this end, we consider the Banach spaces
X :={([)eXx0X:Lf =z} and X := X x 9X. Moreover, we introduce the operators
AB: D(AB) c X — X given by

4B <1‘11§n 8) D(AP) = {() € (D(Am) N D(B)) x X : Lf = 2, LAnf = Bf}

and Ay: D(Ay) C X — X given by

i = (P2 ) (8 ) DO = () € X X D): £ - Las € DA}

for A € p(Ap). Note that AP is similar to A® and that A can be rewritten as
. Id 0\ (A—4g 0 Id —Ly
(3:1) A== <—BR(/\,A0) Id) < 0 A- NA> (0 1 )

Lemma 3.4. We have
[D(A)] — X — X.



SPECTRAL THEORY, POSITIVITY AND STABILITY 5
Proof. From f — Lyz € D(Ap) C ker(L) and LLy = Idsx it follows Lf = x and hence the
first inclusion. The second one follows is obvious. O

The following Lemma is analogous to [CENNO03, Lem. 2.6 & Prop. 4.2]. It is essentially given
in |[EF05, Proof of Thm. 3.1, Step. 3|. For completeness we give the proof here.

Lemma 3.5. For A € p(Ap) we have
A—AF = (A= dy)lg.
Proof. First note that

(/\—AA)(D = )\:;O J\%) <I(§1 —IZA> <£>
A
B

0 0> (f—LA3?>
Ny x

()‘_Am)f
—Bf+ Nyx+ Az — N)x

Moreover, since LLy = Idpx, LxD(Ny) = ker(A—A,,,)ND(B) C D(A»)ND(B) and D(Ap) C
ker(L) we have

(i) € D(fl,\|5c) <— feX,xe D(N,),f— Lz € D(Ap) and

. A— A, 3
o-an(y) = (5, 25 ) e
< feD(A,)ND(B),Lf =z and LA,,f = Bf

= <f> € D(AP). O

x

Lemma 3.6. Let Ao € p(Ag) such that Ny, is a weak Hille-Yosida operator on 0X. Then
there exists a X € p(Ao) N (Ny).

Proof. Since Ny, is a weak Hille-Yosida operator on 0X there exists a w € R such that
[w,00) C p(Ny,) and
C

AN, < —
HR( ) >\0)H = |)\7)\0|

Then
A _N)\ = _NAO - P= (Id_PR()‘7N>\0))()‘ - N/\O)?

where P := (Ao — A\)BR(X, Ag)L),. It remains to show that 1 € p(PR(X, Ny,)). Since L), is
bounded and B is relatively Ag-bounded of bound 0 we obtain

IPR(A, N )| < [A = of - [[BR(A, Ao)| - [[R(A, Ny, )l

C
§C’-<5+)<1
Al
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for sufficient small € > 0 and sufficient large |\|. Hence, the claim follows by using a Neumann
series. g

After these preparations we can compare the spectra of A? and Ny.

Theorem 3.7. Assume, that there exists a Ao € p(Ao) such that Ny, is a weak Hille-Yosida
operator on 0X. Then for A € p(Ay) we have
(i) X € p(AB) if and only if X € p(Ny);
(ii) X € 0,(AB) if and only if A € 0,(Ny). In this case dim(ker(A — AP)) = dim(ker(\ —
N}\));
(iii) \ € 0,(AP) if and only if X € 0,(Ny);
(iv) X € 0.(APB) if and only if X\ € 0.(Ny);
v) X € 0,.(AP) if and only if A € 0,.(Ny);
(vi) A € aq(AB) if and only if \ € o4(Ny);
(Vi) A € 0ess(AB) if and only if \ € 0ess(Ny).

Proof. For the assertion (ii) remark that
APf = \f
implies
LA, f=ALf.

Hence, A € 0,(AP) if and only if A € p(A}) and the eigenspaces coincide. Now the claim
follows by Corollary 3.2.

For assertions (i),(iii)—(v) and (vii) note that the first and the last operator matrix in (3.1)
are invertible. Since A € p(Ap) we obtain that

A € 0u(A) <= ) € 0.(Ny)

for * € {a,c,r,ess, }. By Lemma 3.4 and Lemma 3.6 the operator AP = /A[|3~C satisfies the
assumptions in [AE18, Cor. A.9(vii)|]. Now the claim follows by [AE18, Cor. A.9(vii)].

Finally, assertion (vi) follows from (i) and (vii). O

The previous result shows that the spectrum and its fine structure of AP is characterized
by the Dirichlet-to-Neumann operators Ny. It can be seen as an abstract analogue of the
characteristic equation for the spectral values of delay operators.

Moreover we obtain the following useful resolvent formula.
Theorem 3.8. Let A € p(Ag) N p(Ny). Then X € p(AB) and
(3.2) R(X\, AP) = R(X\, Ag) + LAR(A\, Ny) - (BR(\, Ap) + L).

Proof. From (3.7) it follows that A € p(A®). Denote the right hand side of (3.2) by R()). Since
rg(Ly) C D(Ay,) it follows rg(R(A\)) € D(An). Since D(Ag) C D(B) and rg(LyR()\, Ny)) C
D(B) it follows rg(R(A\)) € D(B). It remains to prove the boundary condition. Note that
LA,,f = Bf is equivalent to L(\ — A,,)f = ALf — Bf. We obtain

L(A— Aw)RONf = Lf
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for f € X. Moreover we have, since D(Ag) C ker(L) and LLy = Idgx
(AL = B)R(\)f = —=BR(\, Ag)f + (AL — B)L\R(\, N)\)(BR(\, Ao) + L) f

= —BR(\ Ao)f + (A= Nx)R(A\, N)\)(BR(X, Ao)+ L) f

=—BR(\ Ag)f + BR(\, Ao)f+ Lf =Lf
for f € X. Hence we obtain LA,,R(\)f = BR(\)f and therefore R(\)f € D(AP). Since
rg(Ly) C ker(A — A,y,) it follows

(A= AP)R(\) = (A — An)R(N) = (A — Ap)R(\, Ag) =1d
and hence the claim. O
The resolvent formula (3.2) implies the following compactness results.
Corollary 3.9. Assume that Ay has compact resolvent and that one of the following assump-
tions is satisfied
(i) Ly is compact for some X € p(Ap);

(ii) Ny has compact resolvent for some A € p(Ao);
(iii) B is relatively Ag-compact and L is compact.

Then

(i) Ap has compact resolvent on X ;
(ii) Ny have compact resolvent on 0X for all X € p(Ap).

Proof. The first claim follows immediately from Theorem 3.8, whereas the second claim follows
from the first one using [BE1S8, Cor. 3.2]. O

4. SPECTRAL THEORY FOR DIRICHLET-TO-NEUMANN OPERATORS

In the last section we have seen that the spectrum of A is deeply connected with the spectra of
the Dirichlet-to-Neumann operators Ny. Unfortunately, it is difficult to compute the spectrum
or its parts of Ny even in case of the point spectrum. For this reason we concentrate in the
following on the location of the point spectrum of Ny.

In Corollary 3.2 we have seen that the point spectra of the Dirichlet-to-Neumann operators
are related to the point spectra of operators with Robin boundary conditions. Next we will
use this fact to locate the point spectra of the Dirichlet-to-Neumann operators Ny.

First we consider the spectral properties of the operators with Robin boundary conditions.
To this end we need the following operator which can be seen as an analogue of the Dirichlet
operator L) for Robin instead of Dirichlet boundary conditions.

Definition 4.1. For A € C we define the abstract Robin operator associated with (A, Ap,, B)
by
Ry = ((B = pD)ler(r-n,) : OX = ker(A — A,) N D(B) C X,
ie., Ry, = f gives the solution of the abstract Robin problem
Amf =M/,
Bf —pLf =

The solution of the Robin problem is deeply connected to the resolvent set of the Dirichlet-
to-Neumann operator.

(4.1)
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Lemma 4.2. If Ly exists, we have p € p(Ny) if and only if Ry, € L(0X,X) exists. If one
of these conditions is satisfied, we obtain

L)\R(:ua N)x) = 7R)\,u-
Proof. Assume that Ry, € £(0X,X) exists. By the definition of Ny the equation

pe — Nxp =1
for ¢, 1 € 0X is equivalent to
(4.2) pLLyp — BLyxp =
for ¢, € 9X. This again is equivalent to

—Ry 0 = Lyp.

Therefore, we have for @,y € X the equivalence

pe —Nyxp =19 <= Ry, =—Lyp.

Since R, : 0X — ker(A—A,,) N D(B) exists and Ly : 90X — ker(A— A,,) is an isomorphism,
there exists a unique ¢ € D(Ny) for every ¢ € 0X. Moreover its given by ¢ = —LR) ,4» and
therefore the boundedness of the inverse follows from the boundedness of L and R ,. The
formula for the resolvent of Ny follows, since Llyer(x—4,,) is an isomorphism with inverse Ly
and the image of R) , is contained in ker(A — A,).

Conversely, we assume that p € p(INy). Then (4.2) has a unique solution ¢ € D(N,) for every
Y € 0X. Considering f := L)y we obtain a unique solution of (4.1) and hence R, , exists.
Boundedness follows from Ry, = —LyR(u, Ny). O

Lemma 4.3. Let A € p(Ag). If po € p(Ny) and p € C we have f € D(AR) if and only if
(Id = (1 — po) Rauo L)f € D(A) and
(4.3) Ay — X = (A% — N)(Id — (1 — po) Ry o L)-

Proof. Suppose f € D(A%), then f € D(A,,) N D(B) and, since rg(Rx ,,) C D(Ay,) N D(B)
we conclude f — (p— po) R o Lf € D(Ay) N D(B). Using (B — poL)R) ;,, = Idgx we obtain
(B = poL)(Id = (g = po) B o L).f = (B = poL) f — (1 — o) (B — po L) R o L f

= (B—poLl)f — (n—po)Lf

— Bf —uLf=0
and therefore (Id —(p — p10)Ra o L) f € D(AR).
Conversely, assume f € D(AY) C D(An) N D(B). Using rg(Ry ,,) C D(An) N D(B) we
conclude that

f=Ad=(p = po)Rruo L) f + B o (1 — o)L € D(Ap) N D(B).
Using (B — poL) Ry iy = Idpx it follows
0= (B = poL)(Id =(p = po) Bxuo L) f = (B — poL) f — (1 — po) (B — poL) R o Lf
= (B—poLl)f = (n—po)Lf = Bf — uLf

and hence f € D(A%). Finally, (4.3) follows from the fact that rg(R» ) C ker(A — A,,). O
Lemma 4.4. Let X € p(Ap). For pg, € p(Ny) is

(Id — (1t — o) Ra o L) ™" = (Id + (11 — po) R L)
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Proof. Using Lemma 4.2, LLy = Idgx and the Resolvent Identity one obtains
(4.4) (Id —(p — po) R o L) (Id + (10 — pro) Ry L)

= Id —(p — po) LaR(po, Nx)L + (1 — pro) LaR(p, Nx) L

— (1 = p0)* LR (pi0, Nx)R(p, Nx) L

= Id —(p — po) Lx <R(uo, Ny) = B(p, Nx) + (1 = po) R(po, Nx) R(p, N/\)>L = 1d.
Since R(puo, Ny) and R(u, Ny) commute, it follows by (4.4) that (Id —(p — po)Ry L) and
(Id+ (p — po) R u L) commute and hence the claim. O
Proposition 4.5. Let A € p(Ao). For ug, 1 € p(Ny) we have

R\, AR = (Id +(p1 — MO)R)\,ML) -R(\, AR)
for X € p(Alg) N p(AR).
Proof. By Lemma 4.4 it follows that the right hand side in (4.3) is invertible for A € p(4A%) N
p(A%L). Using Lemma 4.4 we conclude
R\ Al = (1d —=(p1 — po) R o L) T RO, AR) = (1d +(p1 — pro) Ry L) - R(N, AR
for X € p(AY) N p(A%). O
Corollary 4.6. Let A € p(Ay), then the map
p(Nx) = £(X): p = R(X, A)

18 holomorphic with derivative

d .
@ R(A, A’B) = Ry o LR(A, A%O).
H=Ho
In particular it is continuous in g, i.e.,
(1.5 lim IR0, ) — RO AR)| =0,

Lemma 4.7. For ug € p(Ny) we have
R(X\, A%) = (Id =Ry ,B) - R(\, Ao).
Proof. By Corollary 3.2 we conclude from py & 0,(N)) that A & 0,(A;) and hence XA — A is
injective. For f € X we have
(Id =Ry B)R(X, Ag) f = R(\, Ao)f — RAuBR(\, Ao)f € D(A,,) N D(B).
Using D(Ap) C ker(L) and (B — poL)R) , = Idyx one obtains
(B = pL)(R(X, Ao)f — RxugBR(X, Ag) f) = BR(X, Ao)f — BR(A\, Ag)f =0
and therefore (Id —R) ,B)R(X, Ao) f € D(A%). It follows
(A= AY(Id =Ry, B)R(X, Ao)f = (A — Ap)(Id =Ry, B)R(X, Ao) f
= (A= An)R(A, Ao)f — (A = Am) Ry u BR(A, Ao) f
= (A= An)R\, Ao)f = f.

Thus A — A% is right-invertible (and hence invertible) with (right-)inverse
(Id =Ry . B)R(\, Ay). 0
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Corollary 4.8. If lim,_,« ||R(pt, Ny)|| = 0, the operators Al converges to Ag in the norm
resolvent sense, i.e.
. By _
T [IRO A%) = RO Ao)]| = 0.
Proof. Using Lemma 4.2 and Lemma 4.7 one obtains
[1R(A, Alg) — R(A, Ao)|| = [ BauBR(A, Ao)l
= [[LaR(p, Nx)BR(A, Ao) ||
< LAl - 1R (s N - I BR(X, Ao) I,
which converges to 0 for u — oc. (Il

Corollary 4.9. Let A\ € p(Ap) and lim,_, ||[R(p, Na)|| = 0. Moreover, let pi, o € p(Ny).
Denote by A(p) the k-th eigenvalue of A’y and by Ap(co) the k-th eigenvalue of Ag. Then

lim A (p) = A (o),
K10
lim Mg (p) = Ag(00).
H—00

Proof. This follows from Corollary 4.6 and Corollary 4.8 using [Kat66, Thm. IV. 2.6,
Thm. IV. 2.25 & Thm. IV. 3.5]. ]

Corollary 4.10. Assume that Ay, Ay and N have compact resolvents for all u € C. Denote
by Ai(1) the k-th eigenvalue of A’y and by \g(co) the k-th eigenvalue of Ay. Then

lim Ag(p) = Ae(ko),

K= b0

lim A () = Ar(00).

HU—00
Proof. By Corollary 4.9 it remains to show that for every up € C there exists a A € p(Ayp)
such that po € p(Ny).

Assume that there exists a po € C such that py € p(NVy) for all A € p(Ap). Since N and hence
Ny have compact resolvents it follows pg € o,(Ny) for all A € p(Ag). By Corollary 3.2 we
conclude p(Ag) C op(A%) which contradicts the fact that o,(A%) is discrete, since A% has
compact resolvent. O

Lemma 4.11. Denote the k-th eigenvalue of A%y by A\i(1) and by \ip(oc0) the k-th eigenvalue
of Ag. Assume, that the map A\p: R — R: p— A\p(p) is monotone decreasing and op(Ny) is
discrete for all X € p(Ag). If p1, p2 € R such that A\g(pu1) = M\e(u2) € p(Aop), then py = po.

Proof. Let Ap(p1) = Mp(p2) =: XA € p(Ap) and without loss of generality —oo < p1 < pg < oo.
By monotonicity and continuity of Ag, one obtains that A\g(n) = X for all u € [u1, pe]. By
Corollary 3.2 we conclude that [u1, po] C 0,(Ny). By discreteness of o, (NVy) it follows that

p1 = po. 0
To verify that o,(Ny) is discrete for all A € p(Ap) we make the following expectation.

Lemma 4.12. If Ny has compact resolvent for some A € p(Ap), then o,(Ny) is discrete for
all A € p(Ay).

Proof. For n € p(Ap) we have by [Gre87, Lem. 1.3] that the difference
Ny — Ny = (n—A)BR(n, Ao) L
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is bounded. It follows from [EENOO, Prop. II1.1.12(ii)|] that IV, has compact resolvent for all
n € p(Ap). Now the claim follows by [EN00, Cor. IV.1.19]. O

Proposition 4.13. Denote by \,(11) the k-th eigenvalue of Ay, by \p(00) the k-th eigenvalue
of Ag and by pn(X) the n-th eigenvalue of Ny.

Assume, that the map \i,: R — R: p— A\g(u) is strictly monotone decreasing and continuous.
If k € N such that Agy1(00) # Ag(00), the following statements are equivalent.

(a) the n-th eigenvalue p, of the Dirichlet-to-Neumann operator Ny is positive, i. e.
pn(A) >0
Jor X € (Ap41(00), A(00));
(b) the inequality
/\k(OO> < )\k+n<o)
holds.
Proof. (a) = (b): Assume A\g(00) > Agyn(0). Then there exists Ag1,(0) < A < Ag(00).
Moreover we have

(i) Ak(00) < Ak(p) < N(p) for all p < oo and 1 < k;
(i) N(p) < Aepn(p) < Mgy (0) for all p>0and I > k +n.

Hence A = XN(u) for p; € (0,00) can only satisfied for [ € {k+1,...,k+n — 1}. But
H{k+1,...,k+n—1}| <n and therefore by Corollary 3.2 it follows u,(A) & (0, 00).

(b) = (a): By monotonicity and the inequality Ag(c0) < A1y (0) we obtain
(4.6) Aot (00) < A(00) < App1(00) <A < Ap(00) < Apgn(0) < Ni(0)
forl e {k+1,...,k+n}. Therefore

Ar(00) < A < N(0)

forl € {k+1,...,k+n}. Using continuity and monotonicity of \; there exists a unique m € N
and unique 4., € (0,00) such that

A= N (fm)-
By Corollary 3.2 we conclude fiy,4; € (0,00) Nop(Ny). Since [{m+k+1,... m+k+n} =n
one obtains [(0,00) N o, (Ny)| > n for A € (Ag41(00), Ak(00)). O

Now we are able to formulate the main theorem of this section.

Theorem 4.14. Denote by A\,(1) the k-th eigenvalue of A%, by A\i(co) the k-th eigenvalue
of Ay and by pn(X) the n-th eigenvalue of Ny. Assume that Ay, Ay and N have compact
resolvents. Further, assume that the map A\p: R — R: p+— A\p(p) is monotone decreasing. If
k € N such that A\i1(00) # A\i(00), the following statements are equivalent.

(a) the n-th eigenvalue p, of the Dirichlet-to-Neumann operator Ny is positive, i. e.
pn(A) >0
fOT AE ()‘k-‘rl(oo)a )\k:(oo));
(b) the inequality
Ak(OO> < )\kJrn(O)
holds.
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Proof. We verify the assumptions of Proposition 4.13. From Corollary 4.10 it follows that the
map A;: R — R: p+— A\g(p) is continuous. Moreover, from Lemma 4.11 and Lemma 4.12 the
strict monotonicity follows. Now Proposition 4.13 implies the claim. O

5. POSITIVITY FOR OPERATORS WITH WENTZELL BOUNDARY CONDITIONS

In the sequel we assume that X, X are Banach lattices and that L € £(X,0X) is a positive
operator. Note that the similarity transform between A® and AP is given by

. % f
S.X—>3C.f|—><Lf>,

STh X = X <f)»—>f
x

Since L is positive it follows that S and S~! are positive operators. The following result is
analogous to [CENNO3, Prop. 5.2].

Proposition 5.1. Assume that BR(\, Ag) is positive and there exists a constant w € R such
that Ly are positive operators for A > w. Moreover assume that Ag and Ny have positive
resolvents for all X\ > w. Then AP has positive resolvent for all X > w.

Proof. Since A € p(Ap) N p(Ny) it follows from (3.1) that

R(A,Am:(lﬁ ﬁi) (R(A(’)AO) R(A(,)NA)> (BR(IAd,Ao) 1?1)

Using the assumption it is easy to see that the three operators on the right hand side are
positive. Hence R(A, A)) is positive. Now Lemma 3.5 and [EN00, Prop. IV.2.17] imply the
claim. |

The following corollary is useful in combination with [BE18, Thm.3.1| or [BE20, Thm. 5.3 &
5.4].

Corollary 5.2. Assume there exists a constant w € R such that Ly and BR(\, Ay) are positive
operators for A > w. Moreover assume that Ay and Ny have positive resolvents for all X > w.
Further assume that AP generates a strongly continuous semigroup on X. Then the semigroup
generated by AP is positive.

In the typical situation where X = C(K) for some compact space K we obtain a stronger
version of Proposition 5.1.

Corollary 5.3. Let X = C(K) for some compact space K and 0X = C(0K). Assume
there exists a constant w € R such that Ly and BR(\, Ag) are positive operators for A > w.
Moreover assume that Ay and Ny have positive resolvents for all X\ > w. Then AP generates
a positive strongly continuous semigroup on X.

Note that the positivity of L) for sufficient large A implies the positivity of the L) for all
A > S(Ao).

Lemma 5.4. If Ly is positive for A > w > s(Ag). Then it follows that Ly is positive for all
A > s(Ap). Moreover, the map (s(Ap),00) = L(X,0X): X\ — Ly is monotonic decreasing.
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Proof. For A < w it follows

Ly—L,=w—-ANR(\Ay)L, >0
which implies the claim. O
Similar we obtain the following results about the Dirichlet-to-Neumann operators.

Proposition 5.5. Assume that BR(\, Ag) is positive and Ly is positive for all X > s(Ap).
Let N,, generates a positive semigroup on 0X for n > s(Ag). Then Ny generate positive
semigroups on 0X for allm > X\ > s(Ap).

Proof. Let s(Ag) < A <n. Then
Ny — N, = (71— N BR(\, Ag) L,

and the right hand side is a positive and bounded operator. Hence the claim follows from
[EN00, Cor. IV.1.11]. O

Next we assume that AP is resolvent positive and then study the resulting consequences. To
this end we first need the following lemmas.

Lemma 5.6. We have || BR(\, Ao)|| =0 as A — +oo.

Proof. Let ¢ > 0. Then there exists C. such that (2.1) is satisfied. Using this we obtain for
feX

|BR(X, Ao) f| < e+ [[AoR(N, Ao) f|| + <5< - |I£]]
< (e (C+1)+ ) ||
<2C+1)-e-|If]
if A > s(Ap) is sufficiently large. O

Lemma 5.7. If AB is a weak Hille-Yosida operator, then

(i) [|A- RO\ NA)| <M as X — 400 for some M > 0;
(i) A+ RO\, Ny)x — x as A — +00.

Proof. (i) By Theorem 3.8, for f € X and A > 0 sufficiently large we have
ILRO, AP) £ = [ RO N (BROA, Ao) + L) f]| < =550 - | £]
for a suitable constant K > 0. By choosing f = Loz, x € 0X we obtain
IR(A, Na)z|| — | RO\, Ny) - BR(A, Ag) Loz || < FAZL |1z
which implies
[RO NI < RO NI [BRO, Ao)Lo | + #34

and further

RO, N - (1= || BRO, Ag)Lo||) < ZAEL.
Hence, by Lemma 5.6 there exists M > 0 such that

I+ RO NI < =partacioiizer < M

for A > 0 sufficiently large.
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(ii) We start by observing that by Theorem 3.8 for every x € 0X we have
0+ LA R\ ABYLoz = ALR(\, AB) Loz —
= AR(M\,N)) - (BR(X\, Ag) Loz + z) —
= (AR(X\, N\)z — z) + AR(X\, Ny) - BR(\, Ao) - Loz

as A — +o0o. The claim now follows by (i) and Lemma 5.6.

Using the previous two lemmas we obtain the following.

Proposition 5.8. Assume that AP is a resolvent positive weak Hille- Yosida Operator. If there
exists Ao such that Ly, exists and is positive then N, is resolvent positive for all pn > s(Ap).

Proof. By replacing A,, by A, + p and B by B + pL, AP rescales to AB + i, Ag to Ag + p,
L, to Lo and hence N, = BL, to (B + pL)Lo = BLo+ pt = N + p. Note that this rescaling
of AP and N . by p does not affect resolvent positivity of these operators. Hence, without loss
of generality, we may assume that g = 0.

To prove the claim we use a perturbation argument. More precisely, for v > 0 we consider the
perturbed operators

AV f = Anf+v-LoLf, D(A%):=D(An),

B'f =Bf+v-Lf, D(B") = D(B).
Then
LAY f=B"f <= LA,f+vLL)Lf=Bf+vLf
~— LA, f=Bf
and hence

AV = (AP = AP 4 v LyL.

Since by assumption vLyL > 0, the Neumann expansion of R(\, A”), see [EN0O, ITI-(2.5)],
shows that the perturbed operator A” remains resolvent positive.
Next observe that (AY,)o = (AY,)|x, = Ao and thus B"R(A + v, (A%,)o) = BR(X + v, Ao).
Moreover, a simple computation shows that the Dirichlet operator with respect to AY, is given
b

' LY,, = Lo — AR(A+ v, Ag) Lo.
This implies

NY,,:=B"LY,, = BLY,, +v=Ny— ABR(A+v,Ag)Lo + v.
Now, using Lemma 5.6 we obtain for A sufficiently large and v — +o0
R(A\, No) — R()\, No — ABR(\ + v, AO)LO)
= R(\, Np) — R()\ + v, Nf\’+,/)
(5.1) = R()\,Ng — ABR(A + v, AO)LO) “ABR(A+ v, Ag)Lo - R(A\, Ny) — 0.
From Theorem 3.8 and Lemma 5.6 it therefore follows that
0 < LR(A+v,A") = R(A+v,Ny,,) - (BR(A+v,Ag) + L) = R(\, No)L

as v — +o00. Hence, for A large R(\, Ny) = R(\, No)L - L), > 0 as claimed. O
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Lemma 5.9. If A® and AY are both resolvent positive weak Hille—Yosida operators then
BR(p, Ao) > 0 for all > s(Ap). Moreover, Bf >0 for all f € D(Ap)+.
Proof. By assumption we have
R(\, AB) > 0 and R(p, Ag) > 0
for A > s(AP) and p > s(Ag). Now we obtain by Theorem 3.8 that
0 < NLR(\, AP)R(u, Ag) = N2R(\, Ny ) BR(\, Ag)R(u, Ao)

= AR(A\,N)) - BR(u, Ag) - AR(\, Ap)

=T\ Ry, - S\
for all A > s(AP) and pu > s(Ap). By Lemma 5.7 this gives

T Ry - Saf — Ruf|| < ITaRpll - || (Sxf —1d)f|| + ||(Tx —1d) - R, f|| = 0
ie.,
0<T\-R,-S\— R(p, Ag).

as A — 400 showing the first claim.
To show the second assertion take f € D(Ap)+ and define 0 < f,, := nR(n, Ag)f € D(Ap) C
D(B) for s(Ag) <n € N. Then f, — f in [D(Ap)] and since B|pa,) € £L([D(Ao)],0X) we
conclude by the first part that

0 <nBR(n,Ao)f = Bf, — Bf
as claimed. ]
Summing up the results above we conclude the main theorem of this section.

Theorem 5.10. Assume that Ay and AP are weak Hille-Yosida operators on X. If Ly is
positive for X > w > s(Ag) and Ay have positive resolvent, then following statements are
equivalent.

(a) AP is resolvent positive on X ;
(b) (i) Nx are resolvent positive on 0X for all X > s(Ao);
(ii) Bf >0 for all f € D(Ap)+.

6. STABILITY FOR OPERATORS WITH WENTZELL BOUNDARY CONDITIONS
The following result is analogous to [CENNO3, Lem. 5.3].

Proposition 6.1. Assume that Ay and A% have positive resolvents and that BR(X, Ag) > 0
for X > s(Ap). Moreover assume that Lyx,L > 0 for X\ > s(Ag) and that Ny generates a
compact and positive semigroup on 0X for X > s(Ag). Then the spectral bounds satisfy the
following inequalities

(a) s(Nx) < s(Ny) for s(Ag) <n < A

(b) s(Aq) < 5(A%S) < s(A%) for s(Ag) < v < p.
Proof. By [Gre87, Lem. 1.3] we obtain

Nyx— N, =(n—XNBR(\ Ag)Ly, >0
for s(Ap) < n < A. It follows
R(p, Nx) — R(p, Ny) = R(p, Nx)PR(p, Ny) > 0
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for max{s(Ny),s(Ny)} < n < A This implies s(Ny) < s(INVy).
For A > max{s(Ao) (A%)} A > max{s(A%), s(A%)} we obtain A € p(A%) and by Corol-
lary 3.2, that p & op(Nx) = o(Ny), since R(u,Ny) is compact. Using Lemma 4.2 and

Lemma 4.7 we obtain
R(X\, Ap) < (Id+ LyR(p, N,\)B)R(/\,A’é)
N——————
>0

for X > max{s(Ap),s(A%)} and the first inequality follows. Moreover by Lemma 4.2 and
Proposition 4.5 we conclude

R(\, Af) = (Id = (u — v) LyxR(p, N\) L) R(X, A) < R(A, Ap)
>0 >0

for A > max{s(A%), s(A%)} and the second inequality follows. O

Note that by [EN00, Prop. IV.1.14] for positive semigroups exponential stability is charac-
terized in terms of the spectral bound. We finish this section with the following stability
result.

Theorem 6.2. Assume that BR(\, Ay) is positive and Ly are positive operators for large
A, Moreover assume that Ay have positive resolvent on X and that Ny generate positive
semigroups on 0X for large . Further, let AP generator of a Cy-semigroup on X. Then
5(Ag) < s(AP) and for k € R we obtain

s(AB)y <k <= s(Ay) <k and s(N,) < k.
Proof. Note that by Lemma 5.4 and Proposition 5.5 the Dirichlet operators L) are positive
and N) generate positive semigroups for all A > s(Ap).
From Theorem 3.8 we conclude
0 < R(\ Ap) < R(\, AP)

for all A > max{s(4g),s(A®)}. Now it follows from the proof of [Nag86, Lem. 4.10] that
8<A0) S S(AB).

Let s(AP) < k, then s(4g) < k and by [Nag86, C-III. Thm. 1.1.(b)] x € p(AB) N p(Ap). Now
Theorem 3.7(a) implies xk € p(N,). It follows by Theorem 3.8 that

0 < R(k, AP) = R(k, Ag) + L.R(k, Nx)L + L.R(rx, Nx)BR(k, Ag)
and therefore is L, R(rk, Ny )L positive. We conclude by [Nag86, C-ITI. Thm. 1.1.(b)]
s(LyN.L) < &
Note that L, is the inverse of L from 90X to ker(k — A,,) and L, L, are positive. It follows by
similarity
s$(Nx) = s(LxyNyL) < Kk
Conversely assume s(Ap), s(N.) < k. By Proposition 6.1 it follows
S(Ny) < s(Ng) <k <A

for all A > K > s(Ag) and hence A € p(Ny) N p(Ag). Theorem 3.7(a) implies A € p(AB) for all
© > k. From Proposition 5.1 we obtain that AP is generator a positive semigroup on X and
by [Nag86, C-III. Thm. 1.1.(a)] we have s(AP) € o(AP). We conclude s(AP) < &. O

On spaces of continuous functions we can omit the semigroup conditions for A5,



SPECTRAL THEORY, POSITIVITY AND STABILITY 17

Corollary 6.3. Let X = C(K) for some compact space K and 0X = C(0K). Assume that
BR(\, Ay) is positive and Ly are positive operators for large \. Moreover assume that Ay have

positive resolvent on X and that Ny generate positive semigroups on 0X for large A\. Then
5(Ag) < s(AP) and for k € R we obtain

s(AP) <k <<= s(Ag) < k and s(N,) < k.
Since s(Agp) = s(Ap) we obtain k = 0 the following result by [EN00, Prop. VI.1.14].

Corollary 6.4. Assume that BR(\, Ap) is positive and Ly are positive operators for large X.
Moreover assume that Aoy, Ny for large X and AP generate positive semigroups on Xo, 0X
and X, respectively. The semigroup (Tyz(t))t>0 is uniformly exponential stable on X if and
only if the semigroups (T'a,, (t))e>0 and (Tn(t))e>0 are uniformly exponential stable on Xo and
0X.

7. EXAMPLES
In this section we show how our abstract approach applies in quite different situations.

7.1. A Delay differential operator. In this subsection we apply our approach to operators
related to delay differential equations, see [EN00, Section VI.6]. For a Banach space Y we
define the Banach space X := C([—1,0],Y) of all continuous functions on [—1, 0] with values
in Y equipped with the sup-norm. Moreover, we take a delay operator ® € £(X,Y) and an
operator C: D(C) C Y — Y. With this notation we consider the abstract delay differential
operator A : D(A) C X — X given by

wnar=rl b= {rec Loy R

which governs a delay differential equations, see [EN0O, Section VI.6] for details.

Consider the operator Ay = d% with domain D(Ag) = C}([-1,0],Y). Note that Ay has

empty spectrum and that its resolvent is given by

0
(72) (RO A1) = [ () dr = Hyf(s).
Moreover the abstract Dirichlet operator is
(7.3) Lyr=¢c\®x

where €,(s) == e**. Moreover denote by ®, := ®Lj and see that Ny = C + ®,. Now we
conclude the following result.

Corollary 7.1. We have

(i) XA € p(A) if and only if A € p(C + ®)). Moreover, the resolvent of A can be expressed

as
R(MA)f = Hyf 4 (ex @ R(X, @) (PHAS + f(0))

fOT f € C([_17O]7Y);

(ii) X € op(A) if and only if X € 0,(C + ®)). In this case dim(ker(A — A)) = dim(ker(\ —
C - ®A>)7'

(iii) X € o4(A) if and only if X € 0,(C + ®));

(iv) A € 0.(A) if and only if X € 0.(C + ®));

(v) M€ o.(A) if and only if X € 0,.(C + ®@));



18 TIM BINZ AND KLAUS-JOCHEN ENGEL
(vi) A € 04(A) if and only if X\ € 04(C + ®));
(Vil) A € 0ess(A) if and only if X\ € 0ess(C + ®y).

Proof. Let L := &y, Ay, := 2 with domain D(A,,) := C![~1,0] and B := Cé + @, then we
obtain A = AB. Next we verify Assumptions 2.2. For A > 0 it follows from (7.2)

A-[(R(X, Ao) £) () S/ AN dr - || < | f]] - for all s € [1,0]

s

i.e. Ap is a weak Hille-Yosida operator on C([—1,0],Y). Further, it follows from D(Ay) C
ker(dp) that B|p(ay) = ®|p(a,) is bounded and hence condition (ii). Finally, by (7.3) condi-
tion (iii) is satisfied. Since Ap has empty spectrum the result follows by Theorem 3.7. O

Remark 7.2. This result improves [EN00, Prop. VI.6.7] and [BP05, Prop. 3.19 & Lem. 3.20].
It can be seen as a generalized characteristic equation for delay equations.

In particular for the uncoupled case, i.e. ® = 0, we obtain the following corollary, which shows
that every set can be realized as spectrum of AZ.

Corollary 7.3. We obtain
(i) XA € p(A) if and only if X € p(C). Moreover its resolvent can be expressed by

R(X\,AP)f = Hyf + (e ® R(A,C)) f(0)
for f € C([-1,0],Y).

(ii) A € op(A) if and only if A € 0,(C). In this case dim(ker(A — A)) = dim(ker(A — C));
(iii) A € 04(A) if and only if X € 0,(C);
(iv) X € 0.(A) if and only if X € o.(C);
v) XA € 0.(A) if and only if X € 0,.(C);
(vi) XA € 04(A) if and only if X € 04(C);
(Vil) X € 0ess(A) if and only if X € 0.55(C)

Now we study positivity of the semigroup generated by A and use this property to obtain
uniformly exponential stability. We additionally assume that ¥ and hence X = C([0,1],Y) is
a Banach lattice. As discussed in [KN84] and [EN0O, Sect. IV.6] the representation of B into
® and C' is not unique. Nevertheless there exists a emphasized splitting

B=CL+®,
where ® := B(Id —LoL) € £(X,Y). Now obtain the following result.

Corollary 7.4. Assume that the delay operator ® is positive. Then C generates a strongly
continuous semigroup of positive operators on Y if and only if A given by (7.1) generates a
strongly continuous semigroup of positive operators on C([—1,0],Y).

Proof. By (7.2) the operator Ag has positive resolvent. Further, by (7.3) the Dirichlet operator
Ly is positive for A € R. Using Blx, = ® and Ny = C+®, it follows by positive perturbation
that V) are generators of strongly continuous semigroups of positive operator for all A € R.
Now the claim follows from Corollary 5.3.
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For the converse direction note that Corollary 5.3 implies that N, are generators of positive
semigroups on Y for all A > s(Ap) = —oo. Further, for A — 400 we obtain

[@x] = ®Lxll = [ B(Lx = Lo)|| = [ BR(X, Ao) Lol

~ ~ C
= [[®R(A, Ao) Lol < [|®] - [[R(A, Ao)l| - | Lol < o =0
and therefore 3
Nyx — Cxzx

for z € D(C) = D(N)). Since Ny have positive resolvents C' has and the claim follows. [

This statements improves [EN00, Thm. 1V.6.11] and [KN84, Thm. 3.4]. Note that ® has no
mass in 0. Now applying Theorem 6.2 by using the fact that s(A4p) < 0 yields the following
result.

Corollary 7.5. Assume that the delay operator ® is positive and that C generates a strongly
continuous semigroup of positive operators on Y. Denote the semigroup on C([0,1],Y) gen-
erated by A by (Ta(t))e>o0 and the semigroup on Y generated by N by (Tn(t))e>0. Then
(Ta(t))e=0 is uniformly exponential stable on C([0,1],Y) if and only if (Tn(t))t>0 is on Y.

For this statement see also [EN00, Corollary 1V.6.16].

7.2. Banach space-valued second derivative.

Instead of considering the first derivative with a delay boundary conditions we now consider
the second derivative with a similar boundary conditions. We associate to an arbitrary Banach
space Y the Banach space X = C([0,1],Y) of all continuous functions on [0, 1] with values
in Y equipped with the sup-norm. Moreover, we take ® € £(X,Y?) and a weak Hille-Yosida
operator (€, D(€)) on Y2. We consider the operator A: D(A) C X — X given by

Af =",

et (19) oo () v e ()}

Now one obtains

Corollary 7.6. For A € C\ {—k?-7%: k € N} we obtain
(i) X € p(A) if and only if X € p(C+ ).
(ii) X € op(A) if and only if X € 0,(C+ ®)). In this case dim(ker(A — A)) = dim(ker(\ —
¢ - ‘I))\));
(iii) A € 04(A) if and only if A € 0,(C + @));
(iv) XA € 0.(A) if and only if X\ € 0.(C + @));
(v) A€ o,(A) if and only if X € 0,.(C + ®y);
(vi) XA € aq4(A) if and only if X € 04(C+ D));
(vii) X € 0ess(A) if and only if X € 0e55(C + ).
Proof. We consider L := (g(l’), Ay, = % with domain D(A4,,) := C?[~1,0] and B := Cdy + ®
and obtain A = AB. Next we verify Assumptions 2.2. Asin [EN00O, Thm. IV.4.1] it follows that
Ap is a weak Hille-Yosida operator on C([0,1],Y?). Further, it follows from D(Ag) C ker(L)
that B|p(a,) = ®[p(4,) is bounded and hence condition (ii). An easy calculation shows that

<L0<y0>> (s)=wo-(1—s)+y-s forsel01],

Y1
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i.e. Lo exists and is bounded and hence condition (iii) is fulfilled. Note that Ay has compact
resolvent and o(Ag) = 0,(Ag) = {—k?>-7%: k € N}. Now the claim follows by Theorem 3.7. [

In particular for the uncoupled case, i.e. & = 0, we obtain the following corollary.

Corollary 7.7. We obtain

(1) X € p(A) if and only if X € p(C).
(ii) A€oy if and only if A € 0,(C
(i) X € gq if and only if A € 04(C
i
(

) (A) In this case dim(ker(A — A)) = dim(ker(A — @));
) (4)

(iv) X € 0.(A) if and only if X € 0.(C
; ( % (

)-
);
);
v if and only if A € 0,(C);
(vi) XA € 04(A) if and only if X € 04(C);
(Vil) X € 0ess(A) if and only if X € 0.55(C).

Next, we study positivity of the semigroup generated by A and use this to obtain uniformly ex-
ponential stability. We additionally assume that Y is a Banach lattice. Then X = C([0,1],Y")
and Y? are Banach lattices.

Corollary 7.8. Assume that the delay operator ® is positive and C generates a strongly
continuous semigroup of positive operators on Y2, then A given by (7.4) generales a strongly
continuous semigroup of positive operators on C([O, 1], Y).

Proof. By Hopf maximum principle, see [GT01, Thm. 3.5] the operator Ay has positive resol-
vent. Further, it follows by a direct calculation or the Hopf maximum principle, see [GT01,
Thm. 3.5] that the Dirichlet operator L) is positive for A > 0. From B|x, = ® it follows
BR(\, Ap) are positive for A > 0. By positive perturbation it follows that the Dirichlet-
to-Neumann operators Ny = C + ®) generate strongly continuous semigroups of positive
operators on Y2 for A > 0. Now the claim follows by Corollary 5.3. U

Now applying Theorem 6.2 by using the fact that s(Ag) < 0 yields the following result.

Corollary 7.9. Assume that the delay operator ® is positive and C generates a strongly con-
tinuous semigroup of positive operators on C([0,1],Y). Denote the semigroup on C([0,1],Y)
generated by A by (Ta(t))e>0 and the semigroup on Y? generated by N by (Tn(t))t>0. Then
(Ta(t))e=0 is uniformly exponential stable on C([0,1],Y) if and only if (Tn(t))e=0 is on Y2
7.3. Shift-Semigroup on C[—1,0].

In this section, we consider the Banach space X = C[—1, 0] of all continuous, complex valued

functions equipped with the sup-norm and, for some fixed a € (0,1) the operator A: D(A) C
X — X by

(7.5) Af=f, D(A) = {f e C'[-1,0 / f(r adq«}
It follows
Corollary 7.10. We obtain A € o(AP) = 0,(AB) if and only if 1 = fEl M (=) dr.

Moreover, all eigenspaces are one-dimensional.

Proof. Choosing X = C[-1,0], 0X = C, A, = & with domain D(A,,) = C'[-1,0], L = do
and

Bf = /f )~%dr, D(B):=W"(0,1)
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we obtain A = AP, The verification of Assumptions 2.2 follows as in the proof of Corollary 7.1.
Moreover, note that Ap has empty spectrum and compact resolvent. Using (7.3), a short
calculation shows 0
Nyx = :(:/ AN (=) dr
-1
for A,z € C, in particular N = 0 and N has compact resolvent, and we conclude the claim by
Theorem 3.7. O

Corollary 7.11. The strongly continuous semigroup generated by A given by (7.5) is not
positive on C[—1,0].

Proof. In [BE20, Thm. 6.4] we prove that the operator A given by (7.5) generates a Cp-
semigroup on C[—1,0]. First of all, the spaces X = C|[0,1] and 0X = C are Banach lattices,
by (7.2) the operator Ay has positive resolvent and by (7.3) the Dirichlet operator L) is
positive for A € R. Consider now the function f(r) := —re”. It is contained in f € D(Ap),
but 0
Bf = —/ rle’ - (—r)"*dr <0,

-1
since the integrand is negative. Hence condition (b)(ii) in Theorem 5.10 is violated and the
claim follows by Theorem 5.10. O

7.4. Elliptic Operators with Wentzell boundary conditions. We consider a uniformly

elliptic second-order differential operator with Wentzell boundary conditions on C(2) for a
bounded domain €2 C R™ with smooth boundary 0f€). To this end, we first take real-valued
functions

ajk = agj, aj, ap, bp€C®(Q), 1<jk<n

satisfying the uniform ellipticity condition

n

> aj(r) -GG = |l€? forallr€Q, £=(&,...,&) €R™

J,k=1

and some fixed ¢ > 0. Then we define the maximal operator A,, : D(4,,) C C(Q) — C(Q) in
divergence form by

Anf =0 (Z ajk@cf) + Y ardpf +aof,
k=1

(7.6) =1 k=l
D(Ay,) = {f e W2 (Q) NC(Q): Anf € C(Q)}
p>1

and the boundary operator B : D(B) C C(Q) — C(99) by

Bf == ajvLopf +boLf, D(B):= {f e (Y WEP(Q)NC(Q): Bf € C(@Q)},
Jk=1 p=1

),C(09)), Lf := flaa denotes the trace operator. Now we define the

C C() — C(Q2) with Wentzell boundary conditions by

where L € L(C(Q
operator A : D(A)

(7.7) ACA,, D(A):={feD(An)ND(B): LA,f=Bf}.
We obtain
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Corollary 7.12. The operator A given by (7.7) generates a strongly continuous semigroup of

positive operators on C(2).

Proof. Since the principle coefficients are smooth we can rewrite A,, as a uniformly elliptic
operator in non-divergence form. By Hopf’s maximum principle (cf. [GT01, Thm. 3.5 or
Prob. 3.2]) it follows that Ly is positive for all A > |lag|lcc- Again, by Hopf’s maximum
principle the operator Ag with Dirichlet boundary conditions has positive resolvent on C(£2)
for A > ||ao||oo. In [Esc94| it is shown that the Dirichlet-to-Neumann operators Ny generate
positive semigroups on C(9f2) for large A\ > w It follows by Proposition 5.5 that the Dirichlet-
to-Neumann operators Ny generate positive semigroups on C(9€2) for A > s(Ap). It remains
to show that BR(\, Ao) is positive for large A. To this end, we prove that B’D(AO) is positive,
which clearly implies the assertion. Let f > 0 and f € D(Ap), in particular f(z) = 0 for
x € 0L, then

n

(B (@) ==Y ajr(z)v(z)(0pf) (@) + bo(2) - ()

jk=1
o fle—s-(alz) - v(z))) — flz)
= — 151&)1 =) + bo(x) - f(x)
o S s o) @)
50 S

for all x € 09, where a(x) = (aij(x))nxn denotes the coeflicient matrix. Now Corollary 5.3
yields the claim. O

Further, the spectrum of A can be characterized by

Corollary 7.13. For A € p(Ayp) obtain
Aeo(A)=0p(A) <= A€ a(Ny) =op(Vy).

Proof. By |Esc94] we obtain that N, have compact resolvents for all A € p(Ap). Moreover
by [EF05, Cor. 4.5] it follows that A® has compact resolvent. Now the claim follows from
Theorem 3.7. O

We finish this subsection by considering the special case of the Laplacian and the normal
derivative, i.e. a;i = 0j%, ar = ag = bgp = 0. One concludes

Corollary 7.14. The semigroup generated by A given by (7.7) for a;i, = 0k, ar, = ag = by =0

is not uniformly exponential stable on C(£2).

Proof. Note that A%, have compact resolvents for p € R and from [Eng03, eq. 1.9] and [Esc94]
that Ag and Ny, have compact and positive resolvents for A > 0. Moreover the min-max
principle implies that the eigenvalues of A% are monotone decreasing in p € R. In [Fri9l]
it is shown that Ag(c0) < Ag41(0) for all k& € N. Hence Theorem 4.14 implies that there
exists a positive eigenvalue of N for all A > 0. In particular s(INy) > 0 for all A > 0 and by
Proposition 5.1 for all A > s(A4p). Now the claim follows from Theorem 6.2. O

7.5. Elliptic Operators with generalized Wentzell boundary conditions. B
As in the last section we consider a uniformly elliptic operator in divergence form on C(£2)
but with a different boundary condition. More precisely, let @ C R™ a bounded domain

with smooth boundary 9 and we consider the maximal operator A,,: D(4,,) C C(Q2) —
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C(9) given by (7.6). Moreover consider a uniformly elliptic differential operator C': D(C) C
C(092) — C(09) in divergence form on the boundary space. To this end, take real valued
functions

ckj = cjp, € C(0), ¢j € C(090), c¢oeCON), 1<j,k<n,

such that cj;, are strictly elliptic, i.e.

n

D crls) - Ggw > M- |E]7 forall s €99, £ = (1,...,6) €R”
j.k=1

and some fixed M > 0. We define the operator C: D(C) C C(092) — C(992) by
Oz = Z 9; (Z cjkakx) Z Okt + oz,  D(C) = W2(Q)
7=1

and the feedback operator B: D(B) C C(Q) — C(09) by

0* 0*
Bf=CLf—-—f, DB)=<feDA,)ND|—):LfecW>20Q);,

on on
where L € L(Q(Q) C(09), Lf = flaq denotes the trace operator. We define the operator
A: D(A) C C(Q) — C(Q2) with generalized Wentzell boundary conditions by

(7.8) AC Ay, D(A):={f e D(Ay) N D(B): LAnf = Bf}.

Corollary 7.15. The operator A given by (7.8) generates a strongly continuous semigroup of
positive operators on C(2).

Proof. Note that the maximal operator and the trace operator in this section coincide with
the maximal operator and the trace operator of the last section. Hence, also the associated
Dirichlet operators Ly and the associated operators Ag with Dirichlet boundary conditions
coincide. Further, the feedback operator B restricted to Xy coincides with feedback operator
of the last section. Hence it follows from the proof of Corollary 7.12, that Ly, R(\, Ap)
and BR(\, Ag) are positive operators for A > |lag||co. Therefore, it remains to show that
the Dirichlet-to-Neumann operators Ny generate strongly continuous semigroups of positive
operators on C(9€2) for large X. To this end note that

%

(7.9) NPo=Cp+ N, "¢, D(NP)=D(C).

By [Bin20] it is generator of a strongly continuous semigroup on C(992). By [Nag86, B-II,

Thm. 1.6] a semigroup on C(0N) is positive if and only if its generator satisfies the positive

minimum principle

for all 0 < ¢ € D(A) and x € 99

(P) { o
o(z) = 0 implies (Ap)(xz) >0

_oe
It follows from the proof of Corollary 7.12 that the operators N, °* generate strongly contin-
uous semigroups of positive operators on C(9€2) for A > s(A4p). Now it follows from (7.9) and

_9°
the positive minimum principle (P) that for every 0 < ¢ € D(Ny) = D(C) N D(N, ) with
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(x) = 0 implies

for A > s(A

_9%
(Nap)(x) = (Co)(x) + (N, T p)(x) 20
>0 >0
0). Hence, applying the positive minimum principle (P) again yields that the

Dirichlet-to-Neumann operators IN) generate strongly continuous semigroups of positive op-
erators on C(09). Now the claim follows from Corollary 5.3. O

APPENDIX A. SPECTRAL THEORY

Notation A.1. For a closed, linear operator A: D(A) C EF — E on a Banach space E one
defines the spectrum and its fine structure by

p(A) =

o(A) =
op(A) =

[AE1S]

[AM12]

[AMPRO3]

[BE1S]

[BE20]

[Bin20]

\ec A — A is invertible . l o4
{ e with bounded inverse} the resolvent set of 4,

C\ p(A) the spectrum of A,
{A € C: A — A is not injective} the point spectrum of A,

or has non closed range

A — A is injective with

A — A is not injective o ’
AeC: the approzimative point spectrum of A,
} the continuous spectrum of A,

" dense, non closed range

the residual spectrum of A,
non closed range

>
m
Q

the essential spectrum of A,

{ A — A is injective With}
codim(rg(A — A)) = oo
“or dim(ker(A — A)) = oo
0(A)\ 0ess(A) the discrete spectrum of A.
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AN ABSTRACT FRAMEWORK FOR INTERIOR BOUNDARY
CONDITIONS

TIM BINZ AND JONAS LAMPART

ABsTRACT. In a configuration space whose boundary can be identified with a subset of its
interior, a boundary condition can relate the behaviour of a function on the boundary and
in the interior. Additionally, boundary values can appear as additive perturbations. Such
boundary conditions have recently provided insight into problems form quantum field theory.
We discuss interior boundary conditions in an abstract setting, with a focus on self-adjoint
operators, proving self-adjointness criteria, resolvent formulas, a classification theorem and
a convergence result.

1. INTRODUCTION

Consider a differential operator on a configuration space consisting of a disjoint union of
manifolds with boundary (or corners) of different dimensions,

N
(1.1) M= | | M,.
n=1

If there is a map ¢, : IM,, — M,_1, a boundary condition may relate boundary values of a
function on M, to to the values on M,_1 D 1,(OM,). We call such a boundary condition
an interior boundary condition following Teufel and Tumulka [TT15; TT16; Tum?20]. If, for
example, ¢, is bijective, we may also add boundary value operators, such as f|gaz, o t,;' as
perturbations to the differential operator. This gives rise to a coupled system of equations for
functions f; = f|u;-

A simple example of such a setup is obtained by taking M, = (Ry)" for n = 0,1, i.e.,
M, =Ry, My = {0} = OM;. As a differential operator L on M = My L M; we may take
the (negative) Laplacian on Ry, extended to M by setting Lf|y, = 0. Taking a self-adjoint
boundary condition for the Laplacian gives rise to decoupled equations for fy, fi. However,
one can couple the two functions by a boundary condition such as f{(0) = fo. The operator

(1.2) H(fo, f1) = (f1(0), = f{') = Lf + 1 1(0),
subject to the boundary condition, is then symmetric with respect to the canonical scalar
product on L?(M) = C @ L?(R,) (I denotes the inclusion of the first summand), since

(1.3) ) = Ton0) - | R (@) £ (@) de
0
_ / (@) + Fofs(0) + Fo(0)£4(0)
= /ooo i (@)Pdz + 2Re(Tof1(0)) € R.

Date: July 22, 2020.
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We will work in a more abstract framework, where the configuration space actually plays
no role. We rather consider directly two Hilbert spaces ¢ and 05¢, where the first would
correspond to L?(M) and the second to L?(OM). Consider a densely defined “maximal”
operator L,, on s and two “boundary value operators” A,,, B mapping (a subset of) D(L,,)
to 0.7. This is a standard setup for abstract boundary value problems, see [Gre87|, [ABE14],
[ABE17], [AE18] and dynamical boundary conditions, see [CENNO3|, |[EF05] and [BE19].
Further, on Hilbert spaces, such abstract boundary problems are related to the theory of
quasi boundary triples, see [BL0O7|, [BGN17|, |[BHS20] and Appendix A.2.

In addition to the usual ingredients, we assume that we are given a bounded operator

1:0 — 7.

This operator is the characteristic feature of the interior boundary conditions, since it allows
for the formulation of conditions relating elements of # and 077. Most of the theory we
develop reduces to the usual theory of boundary conditions with the choice I = 0. Non-trivial
examples where such a structure is relevant are hierarchies of boundary value problems. In
this case .77 is a finite or countable direct sum of spaces 57, L,, is an operator on 57, for
each n, A,,, B map 47, to 04¢,, and I : 04, — £, _1 is an isomorphism. On this space
we can consider operators such as H = L, + [ A, subject to boundary conditions, such as
Bf = I*f. Spelling out the equation H f = g on J7,, it reads

(1'4) Ly frn + TAm fas1 = gn,
with the boundary condition
(1.5) Bfy,=I"fn1.

The unknown f, is thus coupled to f,—1 by the boundary condition and to f,4+1 by the
operator I A : 3,11 — 56,.

Formulations of different models from quantum field theory (QFT) in terms of such hier-
archies have been proposed by Landau and Peierls [LP30], Moshinsky and Lopez [MLL91],
Yafaev [Yaf92], Teufel and Tumulka [T'T15; TT16]. There, ., is the kinematical Hilbert
space for n (indistinguishable) particles and possibly some additional particles of a different
type, e.g. n photons and a fixed number of electrons. The spaces with different numbers of
particles are coupled since, in quantum field theory, particle numbers are not conserved. In
this context A,, is closely related to the so-called annihilation operator (or a power thereof),
an unbounded operator that reduces particle-number by one, and the boundary condition in-
corporates the process of particle creation. Similar (finite) hierarchies have also been studied
as models for nuclear reactions [Mos51b; Mos51a; Mos51c; Tho84].

In quantum mechanics, the dynamics of a system are generated by a self-adjoint operator.
However, constructing these and proving self-adjointness for quantum field theoretic models
poses many difficulties. One of these is the problem of ultra-violet singularities that stem from
the distributional nature of the interactions. Interior boundary conditions have proved to be an
effective way of addressing these singularities. They provide an alternative to renormalisation
techniques going back to Nelson [Nel64] and Eckmann [Eck70], with the benefit of giving
a direct description of the domain of self-adjointness [KS16; LSTT18; LS19; Sch18; Sch19].
These ideas were later extended to more singular models by the second author [Lam19a;
Lam19b|. Other aspects of specific models with interior-boundary conditions were investigated
in [TGO05; LN19; ST19].
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These constructions of self-adjoint operators are related to singular number-preserving interac-
tions that can be described by (generalised) boundary conditions and classified in terms of self-
adjoint extensions of certain “minimal” operators (see e.g. [AGHKHS88; CDF+15; BFK+17;
Pos08], and references therein). Such methods were recently applied an abstract form of
interior boundary conditions by Posilicano [Pos20] (see Remark 3.15 for comparison to our
approach).

Our goal in this article is to develop a general theory of interior boundary conditions. In Section
2 we explain the abstract framework. In Section 3 we discuss operators with “Robin type”
boundary conditions of the form aA,, f+ BBf = I* f, their symmetry and self-adjointness. In
Section 4 we consider more general boundary condtions. In particular, we construct a quasi
boundary triple (see Appendix A.2) that allows us to relate operators with different boundary
condtions and classify certain self-adjoint conditions. We also discuss the dependence of the
operators on the paramteters in the boundary condition. In Section 5 we give a non-trivial
example to which our theory can be applied.

2. ABSTRACT FRAMEWORK

In this section we introduce an abstract framework to formulate interior-boundary conditions
and some notational conventions.

Notation 2.1. Let X and Y Banach spaces and T': D(T) C X — Y a densely defined operator.
For \ € p(T'), we denote the resolvent of T' by

(2.1) RI\T):=(\—-T)"' € L(Y, X).

For A € C\ (0,(T) U0, (T)), the algebraic inverse of A —T" is a densely defined operator with
D((A—=T)7') =rg(A —T), for which we use the notation (A —T)~L.

If X and Y are Hilbert spaces, we denote the adjoint of T"by 7% : D(T*) C Y — X.

Moreover let Z another Banach space and S: D(S) C Y — Z a densely defined operator. The
composition ST: D(ST) C X — Z is the (not necessarily densely defined) operator given by

(2.2) (ST)x := S(Tx), D(ST):={zx e D(T): Tx € D(5)}.

Abstract Setting 2.2. As a starting point of our investigation, we assume that we are given
the following objects:

(1) two Hilbert spaces . and 0.¢;

(ii) a “maximal” operator L,: D(L,,) C 5 — 5,
(iii) a trace operator B: D(L,,) C S — 0.,
(iv) a boundary operator A,,: D(A,,) C H — 0;
(v) a bounded “identification” operator I: 0. — .

We then denote by L the restriction of L,, to the kernel of B

(2.3) L := (Lm)|ker(B)
and also
(2.4) A= (An) lker(B)-

We assume these to have the following properties.

Assumptions 2.3. The operators L, A, B satisfy:
(a) L is self-adjoint
(b) the operator A is relatively L-bounded;
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(c) for A€ p(L): 1g ((AR(/\, L))*> C ker(A — L) ;

(d) for A € p(L): B(AR(\, L))* = Idge.
Remark 2.4. Note that Assumption 2.3 (d) implies that (AR(\, L))* is injective and that B
is surjective. Since, in general, rg(T)* = ker(T*), rg(A) C 04 is dense.
Definition 2.5. For A € p(L) we define the abstract Dirichlet operator associated with \ as
(2.5) Gy = (AR(\, L))*.
Moreover we define the abstract Dirichlet-to-Neumann operator associated with A by
(2.6) T\ :=AnGy, D(IT\)={pe€dH: Grp € D(An)}.

Remark 2.6. Note that by Assumption 2.3 (b) the abstract Dirichlet operator is bounded,
G € L(07€,5¢). Further by Assumption 2.3 (c) it satisfies rg(G)) C ker(A — L,,) and by
Assumption 2.3 (d) it is the right-inverse of B. Our definition thus coincides with the common
definition of a Dirichlet operator in the lierature, e.g. [Gre87].

We now collect some simple consequences of our general assumptions that will play an impor-
tant role throughout.
Proposition 2.7. Under Assumption 2.3 we have:

(i) The domain D(Ly,) of the mazimal operator can be decomposed into
(2.7) D(Ly,) = D(L) ®ker(A — Ly,).

The projections are given by GxB: D(Ly,) —  ker(A — L) and
(IdD(Lm)—G)\B) :D(Lm) — D(L)
(ii) The following identity holds
G5~ 1)f = Af

for f € D(L).

(iii) For \,u € p(L) the domains of the Dirichlet-to-Neumann operators coincide,
i. e. D(T\) = D(T,,) (we will thus simply denote this domain by D(T)). Moreover
their difference, given by

T,\ - TM = (/L - /\)AR(/L, L)G,\,
1s bounded.

Proof. (i) Since BG) = Idgr, GAB and (Idp(z,,) —GAB) are projections on D(L,), and
(algebraically) D(Ly,) = rg(GyB) ®rg(Id —GxB). Assumption 2.3 (b) means that the
image satisfies rg(G)\B) C ker()\ L,,). Further, we clearly have

A\B)

(2.8) rg(Idp(z,.) Cker(B) = D(L).
Therefore, using ker(G\B) = rg(IdD(Lm) —G\B) C D(L), we obtain
(2.9) D(Ly,) = rg(ldp(z,,) —GaB) ©18(GAB) € D(L) + ker(A — L) € D(Ly,).

Since A\ € p(L) by assumption, the latter sum is direct and we have

(2.10) D(Ly,) = D(L) ®ker(A — Ly,).
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(ii) The definition of G implies for f € D(L),g € -

(A=L)f,Grg)or = (A= L)f, (AR(X, L))" g).¢
(2.11) = (Af.g)n-
(iii) From resolvent resolvent identity it follows
Gy — G, = A(R(\,L) — R(zi, L)) = (7 — N)AR(\, L)R(7, L).

Using the self-adjointness of L we conclude that

(2.12) Gy —Gu=(u— MR, L) (AR(\, L))" = (1 — N)R(p, L)G).
Since A is relatively L-bounded, the term on the right hand side satisfies

vg(( — N/R(s, L)Gy) € D(L) € D(A)

and the first claim follows. The identity for the difference follows from the definition
of T\, T}, and the boundedness from the fact that A is L-bounded.
O

We now give a construction procedure that leads to operators L,,, B, A,, etc. with the
properties of Setting 2.2. This construction can be applied in many concrete cases, and we
give a simple example below. The logic here is somewhat different than in the definitions, in
that we start with the operators L, A, I and T) (for one, arbitrarily fixed A € p(L)). From
these, we construct L,,, B and A,, as follows.

Construction 2.8. We are given thwo Hilbert spaces 5, 07 and a bounded operator
I: 0# — . Further, we have a self-adjoint operator L: D(L) C s — , a relatively

L-bounded operator A: D(A) — # and a closed operator T: D(T') C 0 — 0. 'To
construct the operators L,,, B and A,, we proceed the following steps:

Step 1. Consider the “minimal” operator Lo: D(Ly) C S — H, defined by
(2.13) Lof = LFf, D(Ly) = D(L) Nker(A) = ker(A).
Step 2. Assume that ker(A) is dense, so the adjoint L is well defined. Let N\ € p(L), and,

since L s self-adjoint, also X € p(L). By Proposition 2.7 (i), the operator Gy given by
Gy := (AR(\ L))* satisfies

(2.14) (A= LGS, o) = (f, GA(N = Lo)p)r = (f, Ap)on =0

for f € J and ¢ € D(Ly) C ker(A). So rg(Gx) C ker(A — L§) and, since X\ € p(L), the
operator

(2.15) Lofi=Lf.  D(Ln) = D(L) & ra(Cy).

is well defined and Assumption 2.3 (c) is satisfied. Note that, since rg(G, — Gy) C D(L)
by (2.12), the right hand side is independent of \.

Step 3. Now we define B: D(Ly,) — 0 as the left-inverse of G, i.e. using the unique
decomposition [ = fo+ Gxe, fo € D(L), ¢ € rg(Gy), we set Bf = B(fo+ Gap) := ¢, which
satisfies Assumption 2.3 (d), and L = (Lm)|er(B)-
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Step 4. Let A € p(L) and T: D(T) C 0 — 0 a fized operator. We define the operator
Am: D(Ap,) C I — 0 by

(2.16) Anf = Afo+ T, D(An) = D(L) @ GyD(T) C D(L).

Hence A = (Am)|ker(B), 50 Am extends A, and Ty = A, Gy =T. The operators T, for jp # X
are then dertemined by Proposition 2.7 (iii).

The following example is essentially the model considered by Moshinsky [Mos51b; Mosbla;
Mosblc| and Yafaev [Yaf92].

Ezample 2.9 (Moshinsky-Yafaev model). Set # = L?(R3) @ C, 9. = C, Iz = (0, 2). Define
on D(L) = H*(R}) @ C

(2.17) L(f,z) = (=Af,0).
Let A: D(L) — 05 be given by A(f, z) = f(0).

Step 1. The operator Lg is the restriction of L to D(Lg) = HZ(R3\ {0}) & C. Note that this
operator is densely defined.

Step 2. The domain of the adjoint is given by

(2.13) D(L) = D(L) & span(gy, 0),

with, for any X\ € p(L) = C\ Ry (taking the branch of the square root with positive real part)
e—V=Alz|

(2.19) g (z) = e

Moreover, we have Gaz = (zgx,0). Hence we set' L, = L§, which acts as L§(f,z) =

(— A§f,0), where —Ay is the adjoint of —Al g2 s\ (o))
Step 3. The operator B, defined as the left-inverse of G, is given by the formula
(2.20) B(f,z) = —4n hH(l) |z| f(x).

T—

Step 4. Since gy is not continuous in x = 0 we cannot define A, as the evaluation at x = 0.
Howewver, the following formula, which extends the evaluation, is well defined on D(Ly,)

(2.21) Ap(f,2) = Anf = }i_r)%&«rﬁ /52 flrw)dw.

This yields the formula for Ty : C — C

(2.22) T\ = AuGh = lim 9, (—6_4:T> - ‘/4?.

With this framework in place, the operators with interior-boundary conditions take the form
(2.23) Hige(f2) = (037 Anf +3Bf)

(2:24) D(Hit) = {(f.2) € D(A)) ® C: adnf + BBf = 2},

with complex numbers «, 3,7,d € C. One easily checks that these operators are symmetric iff
avy,B6 € R and 55 — @d =1 (see also Lemma 3.4). It is also not difficult to show that these

INote that in general the operator Ly is ,too big, in the sense that not all functions in D(Lg) have boundary
values in 07, e.g. if 90¢ = L*(OM).
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symmetric operators are self-adjoint, see [Yaf92]. Note that if instead of our choice of I we
would have taken I = 0, we would have found the “Laplacian with J-potential” [AGHKHSS],
which is a well known example in the theory of singular boundary value problems. We will
use this example throughout the article to illustrate our results.

3. INTERIOR-BOUNDARY CONDITIONS OF ROBIN TYPE

In this section we will discuss a simple family of interior-boundary conditions in which the
boundary operators A,, and B are related to the values in the interior simply by by some
constants, exactly as in Example 2.9 (more general conditions are considered later, in Sec-
tion 4). We then investigate symmetry and self-adjointness of these operators and prove
various formulas for their resolvents.

Here, as always, we work within the framework introduced in Setting 2.2 and Assumption 2.3.

Definition 3.1. Let «, 8,7,0 € C. The operators with interior boundary conditions (abbre-
viated IBCs) of type («, ), denoted Hﬁé@ D(HIBC) C H — JH are defined by

(3-1) IBCf =Ly f +~IAnf +0IBf,

D(H{3l) = {f € D(Lm) N D(An): @A f + BBf = I" f}.

Note that %g is really a family of operators depending on 7, d. However, since the values of

v, ¢ play only a minor role we suppress them in the notation. Note also that, up to a bounded
perturbation, we can always assume that 6 = 0 (if 8 # 0) or v = 0 (for a # 0), since by the
boundary condition (e.g. for 8 # 0)

_ —1 *
5IB|D(H{1B€) =08 (II" —alA )|D(HIBC)
3.1. Symmetry. We start by investigating the elementary properties of Hﬁg’g, in particular
symmetry. For this we will make the following additional assumption for the remainder of the
article.

Assumption 3.2. For all A € p(L), we have T5; C T%. In particular, T) is symmetric on 0.7
for Ae RN p(L).

Note that, since L is self-adjoint by Assumption 2.3 a), A € p(L) implies A € p(L), so the
assumption makes sense. By Proposition 2.7 (iii), if 75, C Ty for one A € p(L), then this
automatically holds for all A € p(L).

With this assumption, it is easy to show an abstract Green’s identity, which essentially gener-
alises integration-by-parts for Laplace-type operators to our abstract setting.

Lemma 3.3. The following identity holds for all f,g € D(Ly,) N D(Ay,)

(Linf,9)or — {f, Lmg)ow = (Bf, Amg)oe — (Anf. Bg)ow-
Proof. Let A\ € p(L) and f,g € D(Ly) N D(A,). Note that A € p(L). Using D(Ly,) =

D(L) @ ker(A — Ly,), rg(Gx) C ker(A — L,,) and Proposition 2.7 (ii) we obtain

(Ln = N2 ) = (L — NY(Ad—G,\B) f, (Id —G5B)g + GxBg) »
— (L= N1 =G\B)f. (ld—G;B)g)r + (L — \)(1d —GrB) f. GxBg)
= (L =N(Id=G\B)f,(Id =GxB)g)» + {(Gx)"(L — N)(Id =GAB) f, Bg)or
= ((L =N{Ad=GAB)f,(1d =GxB)g) » — (A(1d =GAB) f, Bg)or

(3.2) = ((L = NId=GAB)f,(Id =GxB)g) v — (Amf, Bg)ow + (TABf, Bg)ox
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By an analogous calculation we obtain

(3.3)
(fs (L = N)g)sr = ((Id =GrB) f, (L = \)(Id =G5B)g) s — (Bf, Amg)on + (Bf, TxBg)or-

By the symmetry of L and 75 C TY, taking the difference of these two equations proves the
claim. O

With this result we can easily determine when HIO];’C is symmetric. Conditions of this type
where also given in [Tum20, eq. (8)-(10)]. The necessity of these conditions will be further
addressed in the more general framework of Section 4.

@,

Lemma 3.4. The operators Hi5 are symmetric on J if
ay,B6 € R and 6y —ad =1.
Proof. From Lemma 3.3 we conclude

(3.4) (H52 . 9) e — (f Hineg)ow =(Bf, Am@)or — (Amf, Bg)ox
—A{f, TAmG) v — 6{f,IBg) »

for f,g € D(HS2). The IBC aA,,f + BBf = I*f now implies

(3:5)  {IAwf,9)r +0(IBf,9) e — A f, LAmG) e — 0{f, IBg)
=ay(Amf, Amg)on + BY(Amf, Bg)ow + ad(Bf, Amg)onw + BI(Bf, Bf)on
— oY (A f, Amg)ow — BY(BS, Amg)onw — ad{Amf, Bg)ow — B6(Bf, Bf)ow
=(ay — oY) (Amf, Amg)or + (36 — B0)(Bf, Bg)or
+ (By — ad) (Amf, Bg)ow — (87 — ad) (Bf, Amg)on

for f,g € D(HIO‘B%) Combining (3.4) and (3.5) yields

(HSL L, Vo — (f, H5g) o = (@y — a9) (Amf, Amg)on + (B6 — B8)(Bf, Bg)on
(3.6) + (By— ad — 1) (A f, Bg)ow — (87— ad — 1) (Bf, Amg)or,

so clearly Hc is symmetric under the given conditions. (I

Remark 3.5. The results of this section show that (05¢, B, A,,) is a quasi boundary triple for
the restriction (L)|p(a,,) (see Definition A.1).

In this context, the identity (3.2) is called the abstract Green’s identity. By Remark 2.4,
A = (An)|ker(p) has dense range and B is surjective. This implies that (A, B): D(Am) N
D(Ly,) — 0 x 0 has dense range. Finally, L = (L )|ker(p) is a self-adjoint operator on
J€, by hypothesis.

3.2. Self-adjointness. In the framework of quasi boundary triples, the symmetric/self-
adjoint boundary conditions for L,, have been studied extensively [DM91; DM95; BLOT;
BM14; Pos08|. In particular, this applies to the Robin-type conditions aAf + SBf = 0, that

correspond to the choice I = 0 for HI%%
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In this section we study the self-adjointness of Hﬁg[é in relation to these Robin-type operators
and provide formulas for its resolvent. Throughout, we assume that the parameters «, 5,7, 0
satisfy the symmetry condition of Lemma 3.4

(3.7) avy, B6 € R, and By — @b = 1.

We begin by introducing the usual Robin-type operators.

Definition 3.6. For «, f € C we denote by L, g: D(Lo ) C S — J the abstract operator
with Robin boundary conditions

(3'8) La,ﬁf = L, f, D(La,ﬁ) = {f € D(Lm) N D(Am) aA,f+BBf = 0}'

We will study the relationship between L, g and Hloég Expressing properties of Hf’é’fé by
those of L, g is useful, since the latter are better understood. The operator Lg; = L is
usually particularly simple. B

The operators L, g are symmetric if a3 € R (note that is implied by the symmetry conditions

for Hﬁég), which follows from Lemma 3.4 with I = 0 or a simple calculation using Lemma 3.3.
In the Moshinsky-Yafaev model (Example 2.9), the operators L, g correspond to the Lapla-
cian in R? with a é-potential at = 0 and coupling (scattering length) a8~ = aB|p|~2 €
R U {+o0}. The relationship between L, 3 and Hﬁgg will be expressed using the following
operators that generalise Gy.

Definition 3.7. Let A € p(La,g). We define the abstract Dirichlet-operators associated with
a, B and A by

(3.9) G3” = ((vAn +6B)R(\, Lag)) ,  D(GS”) = rg(aT; + B).
Moreover we define the abstract Dirichlet-to-Neumann operator associated with a, 8 and A by
(3.10) T;ﬂ = (vAm + 5B)G§’ﬁ, D(TS’B) = rg(aTy + B).

In order to investigate these operators, we need the following well-known resolvent formula
for Lo g (see e.g. [DM91; DM95; BLOT]).

Lemma 3.8. Let (o, ) # 0 and A € p(L). Then X € p(Lyp) if and only if oI\ + B is
one-to-one and rg(A) C rg(aTy\ + B). In this case the resolvent satisfies

R\ Lag) = (1 — aGy (aTy + )" A) R\ L).

Proof. Since L is self-adjoint, we have A, A € p(L) and we can write f = fo + Gyp with
fo € D(L). The equation (A — Ly g)f = g then takes the form

(A= Lm)f = (A= L)fo =g
(@A + BB) f = adfo + (aT + B)¢ =0.

A solution ¢ to the second equation is clearly unique if and only if ker(aTy + ) = {0}, so
(oT'\ + ) must be one-to-one.

Solving the first equation for fy = R(\,L)g, we see that fy can be any element of D(L),
depending on g. Hence the solution to the system (3.11) exists for every g € . exactly if
rg(A) C rg (a7 + ). Under these hypothesis and using the algebraic inverse

(3.12) (aTy + 5)_1 crg(aTy + B) = D(T)),

(3.11)



10

TIM BINZ AND JONAS LAMPART

we obtain the solution to (3.11) as

(3.13)

fo=R(\L)g, ¢=—a(aly+p)""Af,

which gives the resolvent formula. (Il

Similar to Proposition 2.7 we now obtain the following statements.

Proposition 3.9. For XA € p(Lo3) N p(L):

(i)
(i)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Gg’ﬁ 1s densely defined and bounded;
The operator Ty + 3 has a densely defined inverse

(oT% + B) 7' i rg(aTy + ) — 0

and we have

G37 = Gx (T3 + )7

The image satisfies rg(G?\"B) C ker(\ — Ly,) N D(Ap,);
The following identity holds

a,B _
(0l +BB)GTT =1d o).

The operator Tf’ﬁ 1s densely defined and given by the formula
TP = (45 + 6)(aT5 + B) .

(i) By definition, G?\"’B is (a restriction of) the adjoint of an everywhere-defined

operator. It is thus sufficient to prove that G;ﬂ is densely defined, because this
implies that it is the adjoint of a closable operator, and this is closed and bounded
since it is everywhere defined. The claim will thus follow from (ii).

First note that for a3 € R (which follows from the assumed relations of «, 3,7, ), we
have Lo,3 = Ly 3. With the resolvent formula of Lemma 3.8 we thus have

(YAm + 0B)R(N, La3) =(7Am + 0B) (1 —aG, (aTy + B)”" A) RO\ L)

- <7A — a(yTy +0) (Tx + B) " A) RO\ L).
Now on rg(A)
a(vTx + ) (675 + B) " = Y1y a) + (@6 — 7B) (aTh + B) ",
ey
s0 (3.14) simplifies to

(¥Am + 8B)R(\, La,g) = (6Ty + B) " AR\, L).
This shows that for all ¢ the domain of the adjoint of (o’cT N+ B)fl, which is well
defined since rg(A) C D((aTy + B)fl) is dense by Remark 2.4, we have
* - AN
(YAm + SBYRO\ Lap)) v = Gy ((@Ty +8) ') o

We now need to show that D(G;"’B) =rg(aTy + ) is contained in the domain of this
adjoint and dense. Density is an immediate consequence of Lemma 3.8, since

rg(aT} + )t = ker(aTy + B) = {0}.
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For all ¢ € D(TY), ¢ € rg(aTy + () we have

(3.19) (T3 + B), (aTx + B) ™ Paw = (¥, o

so we clearly have

(3.20) (@ +8)") (aT3 + ) = lpay)
This completes the proof of (ii) and thereby also (i).
(iii) The fact that rg(Ga’ﬁ) C ker(\
(aT5 + B)~! is contained in D(T% ) we also have rg(Ga ) C D(Ap).
(iv) Again using (ii) we find
(A, + BB)G‘;’ﬁ = (@A + BB)G; (a5 + B) ™ = (aT5 + B) (oI5 + B)

Since Ty C T this proves the claim.
(v) This follows immediately from (i) and (ii). O

L,,) is immediate from (ii). Since the range of

We can now go back to investigating the operator Hf]‘g[é The following lemma provides a

parametrisation of D( IB’%) in terms of D(Lg, ), under the condition that Id —Gi"ﬁl* is invert-

ible for some A € p(Lq,g). This is certainly satisfied if L, g is self-adjoint, A,, is infinitesimally
L g-bounded and the imaginary part of A is large enough. It is also usually satisfied if there
is a hierarchical structure of the form that we have in applications to quantum field theory,
see Remark 5.5. In the Moshinsky-Yafaev model (Example 2.9), this is particularly obvious,
since there (G?BI*)2 = 0, so the inverse is simply given by (Id —G?\"ﬂf*)*l =1d +G?\"BI*.
This parametrisation for the case a = 0 appears already in the works [LS19; Lam19a; Sch19;
Sch18], where it plays an important role.

Lemma 3.10. Assume that A\ € p(L) N p(Lapg). If 1 € p(Gi’BI*), we denote F;’B =
R(l,Gf\y”BI*) and the equality

(3.21) D(Hf3é) = (=GP 1*) 7' D(La ) = T3 D(La ).

holds.

Proof. Since both sides are subsets of D(Ly,) N D(A,) it is sufficient to verify the boundary
conditions.

Assume first that f = fo+G5¢ € D( IBC) fo € D(L). Using the interior boundary condition
and Lemma 3.8 we first find

(3.22) I*f = (aTy + B)¢ + Afy € ra(aT; + B) C ra(T} + f).
We thus have f € D(Gi"ﬁl*) and can use Proposition 3.9 (iv) to obtain
(3.23) (adp + BB)1d =GP I) f = (@A + BB)f — (@Am + BB)GSPI* f = ' f —I* f = 0.
Conversely, we assume that n € D(L,g). Since (Id —Gf\y”g I*) is invertible and hence surjective,
there exists an f € D(Gi”gl*) with n = (Id —Gi"ﬁl*)f. Note that
(3.24) f= n — GYPr'f e D(An)ND(B).

~—

N—_——
€D(Am)ND(B)  €D(Am)ND(B)
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It follows from Proposition 3.9 (iv) that
(3.25) (@A + BB)f = (@A + BB)GYP T f = I*f
and hence f € D(HIO]‘B%) 0

The following lemma relates relative bounds of A,,, and T}, using the L-boundedness of A and
the decomposition of Proposition 2.7(i). Recall that by our convention

(3.26) DUTX1*) = {f e # - " f € D(TYP)}.
Lemma 3.11. Assume that \, A € p(Lag) Np(L) and 1 € p(Gi"'BI*). Further, assume that

ITf"BI* is relatively (Id —G51*)*(La,p — A)(Id —Gi"ﬁl*)—bounded of bound a < 1.
Then

i) ITOPT s relatively HP bounded. If a = 0, i e the bound relative to
A IBC
(Id =G5I*)*(Lag—A)(1d —Gi"ﬁI*) is infinitesimal, then the Hﬁé’%—bound is also infin-
itesimal.

(i1) vI Ay, is relatively Hﬁg’g—bounded. If a =0, then the Hﬁa’g—bound s also infinitesimal.
Proof. (1) From the definition of G;"’B we obtain
(3.27) (GLPI*) (N = Layg) = I(GS?) (A = Lag) = yIAm + 0IB.
Using rg(G?\"B) C ker(\ — L,,) and Lemma 3.10 it follows for f € D(Hﬁgg)
(Hi5e = N =(Las = N1 =G ) f +7Anf + 0B
=(1d —GYPT) (Lo — N (1d =G 1) f
(3.28) +(GYPI) (Lag — N(Ad =G I*) f + 7T An f + 01BY.

With (3.27) the last line becomes
(3.29)

(GSP I (Layg — N(Ad =GP IV f + 4T A f + SIBf = ([ An + SIB)GSPI* f = ITP I,
and consequently
(3.30) (Hige, = N f = (1d =G T (Lag — N(1d =G 1) f + 1T T
In particular we obtain that D(Hf'ég) C D(IT;”BI*). Since I € L(0A, ) we
conclude
(3.31) 1T 1 1| < al|(1d =GP T) (Lays — A)(Id =GP 1) ]| + bl £]]
< all[H £l + al ITSP T £+ (b + [ADIIF]

for all f € D(Hﬁgg) Since a < 1, the claim follows by absorbing the HIT)?"'BI*fH—term
on the left hand side.

(ii) The case v = 0 is trivial so let v # 0. By Proposition 3.9(i) we have that GE\Y’B is
bounded and by the proof of Proposition 3.9(i) that (yA;,+JdB)R(\, Lq ) is bounded.
It follows from (3.16) that

(3.32) (@Ty + B) YAR(\, L) = (YAn + 0B)R(\, Lo g).



AN ABSTRACT FRAMEWORK FOR INTERIOR BOUNDARY CONDITIONS 13

Hence Lemma 3.8 implies
(3.33) BR(, La,s) = BR(\.Ly )
= B(Id —aGy(aT\ + B) " *A)R(\, L)
= —a(aTy + B) *AR(\ L)
= —a(yAm +6B)R(\, Lo g)

is bounded. We conclude that yA,, R(\, Ly g) is bounded. In the following we consider
the case 8 # 0. The case 8 = 0 works by the same arguments. By Lemma 3.10 we
obtain, using the Robin boundary condition

(3.34) VA f + 0IBf = I(YAp + 6B)GYP T f + I(y A + 6B)(1d =GP 1) f
= ITOPT f + I(yAm + 0B)(1d =GP 1) f
= ITOP T f + ;IAm(Id G f

for f € D(Hﬁgg) The first term is relatively Hf'gg—bounded by (i). Since A R(X, Lo 5)
is bounded and 1 € p(Gi"BI*), we obtain using (3.30) that

(335)  |[An(Id=GSPI)f|| < a-||(Lays — N)(Ad=GSPT) ]| + b £]
< aC - |(1d ~GYPT) (Layg — (1A ~GS P I4)|| + 0| £
— aC - |[HEGLf|| +aC - [ TTSPT || + b £

for f € D(Hf’g%), where a == |y|71-||[ApR(\, Lag) and C = ||(Id —Gi"ﬁl*)*lH. Using
(i) one concludes

(3.36) InTAmf + SIBFI| < allHgé 1l + bll ]
for f € D(Hﬁg’g), i.e. the operator (y[A,, + 6IB) is relatively Hﬁég—bounded of
bound a :=a-(1+ %) In particular the bound is infinitesimal if the bound a is
infinitesimal. Now the claim follows since by the IBC
1 )
(3.37) ’yIAmf—i-MBf:EAmf—EII*f
and the last term is bounded. (I

Apart from the statement of Lemma 3.11, an important finding is the equation (3.30). It

represents HIO‘B’@ as a perturbation of an operator that is obtained by transforming L, g. This
leads to the main theorem of this section.

Theorem 3.12. Assume that Lo g is self-adjoint and let X € p(Lq ) N p(L). Assume also
that 1 € p(GYPT*) N p(GSPT*) and ITSP I s relatively (1d =G T*)* (Lo — 1) (1d =G T%)
bounded, with bound a < 1 for u € {\, A}, then Hfg[é is self-adjoint.

Moreover, with I’i"ﬁ = R(l,Gi"’BI*), we have

Nep(Lap) Np(HES) <= 1€ p((r‘;ﬁ)*IT;ﬂI*rjﬂR(A, La,ﬁ)
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and the resolvent is then given by

-1

Proof. As L, L, p are self-adjoint, we also have X € p(Lag) N p(L).
Using (3.30) twice, we write

(3.38)
HEY =L (HSE = N + SHSE = X) + Re(N)
=31d =G 1) (Lo — NAA=GYPT) f + L(1d -G T*)* (Layg — NI —GS T f
+ AT T + ITYPI) + Re(N).

Since both Hij(, and the sum of the two expressions involving L, g are symmetric on D(Hﬁg’[é),

so is the last line. Self-adjointness of HIO]‘_%% thus follows from the Kato-Rellich theorem.
To show the resolvent formlula, we take (3.30) and use that A € p(Lq,g) to write

A - Hyl =(1d -Gy (A—Laﬂ— (P 1T 1T 0‘5) (Id -GS 1)
(3.39) —(1d-G¢°r)” (1 — (OO ITP TSP RN, Laﬂ)) (A — Lo g)(1d =GP 17).

Since 1 € p(GO"ﬁI*) Np(GS BI*) and A € p(Lq g), the right hand side is invertible if and only

ifl1e p((Fa ﬁ) IT, B pp ’6R()\ L, ). Assuming this implies the formula as claimed.
O

In Example 2.9, the hypothesis on T ;\)‘ B , are all trivially satisfied, since 0.7 is one-dimensional.
For the applications in [LS19; Lam19a; Sch19; Sch18] proving the relative bound for T) was
the main technical difficulty. For the case a = 0 relevant there, we can formulate the following
corollary. A similar abstract formulation has appeared in [Pos20].

Corollary 3.13. Let A € p(L) N R and assume that 1 € p(G\I*) and IT\I* is relatively
(Id —GAI*)* (L — A\)(Id —GxI*)-bounded of bound a < |B|~2. Then HIO]_%% is self-adjoint for any
v, 0 such that the symmetry conditions are satisfied.

Proof. The symmetry condition 87 — @ = 1 with o = 0 implies that ¥ = S~!. Then
with Proposition 3.9

TYP = (yAm + B)GY = (B Ap + 0)Gr87" = |81 72T + 657",
The claim thus follows from our theorem. |

For ae # 0 we obtain the following corollary, which highlights a key difference, namely that for
«a # 0 the boundary condition may be used to control A,,.

Corollary 3.14. Let A € p(L) NR. If —p € p(aTy) then X € p(Lag), and if additionally
1e p(Gf\y”BI*) then H{5G is self-adjoint.

Proof. By Lemma 3.8, —3 € p(aT)y) implies that A € p(Lag) N R, so Ly g is self-adjoint.
Now assume that 1 € p(Gi’B I*) (note that this holds if A is infinitesimally L-bounded and
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dist(A, o (L)) is large enough by Proposition 3.9 (ii)). Since o) + ) has a bounded inverse,
we have rg(T5 + ) = 04 and

(3.40) aT{P = a(yTy + 8)(aT} + 5)~
= - Id+(Bvy — ad)R(—B, aTy)
= v - Id+R(—=B,aT}).

The operator T/’\)‘ s thus bounded, and the hypothesis of Theorem 3.12 are satisfied. O

Remark 3.15. Posilicano [Pos20| discusses self-adjointness of the operator HS’;C (with 27 =
07¢ and I = 1d), considering T' = T}, (for some fixed zp € C) as a parameter. The resolvent
of Hloélc is constructed by first perturbing L = Lo to obtain L as in Lemma 3.8 and then
obtaining Hloélc as an extension of the restriction of L,, + I A,, to D(L; o) Nker(I* — B), which
is also a restriction of Lj .

In our notation, the formula fo the resolvent reads, with G, = ((I*=B)R(z, L1,))" (c.f. [Pos20,
Thm.3.4])

(3.41) R(\, Hi) =R(\, Lig) — Ga((I* = B)Gy) ' (I* = B)R(), L1)
:(1 —G\((I" = B)Gy) M - B)) (1 - GAT; " A)R(\, L).
The validity of this formula requires somewhat stronger hypothesis than Corollary 3.13, such

as invertibility of Ty, though one can obtain a formula as in Theorem 3.12 by expanding (3.41)
and thereby recover the weeker hypothesis (for a = 0), see [Pos20, Thm.3.10].

4. CLASSIFICATION OF INTERIOR-BOUNDARY CONDITIONS

In this section we will embed the IBC-operators studied in the previous sections into the
extension theory of symmetric operators to obtain general criteria for self-adjointness and a
classification of symmetric and self-adjoint IBCs. To achieve this, we take a family of self-
adjoint IBC-operators that are all extensions of a common symmetric operator and thus all
restrictions of one operator. We then construct a quasi boundary triple for such a “maximal”
operator and thereby obtain conditions for a generalised IBC to be symmetric or self-adjoint.
Consider for 0 # g € R the domain

(4.1) D(Ho) = {f € D(Ly) N D(Ay,): gAf = gBf = I* f} = D(Hp$) N D(HS3).
Clearly we have D(Hy) C D(HIO]‘S?J) if a + 8 = g. Furthermore, we have
(4.2) H iy = Lin + (v + 8)gI 1",

so the actions of all H{/, with (7 + &) = const. agree on D(H) and all of these operators are

symmetric/self-adjoint extensions of Hy := HIOégC| D(Ho)- We consider only the case a + 8 =
1 =~ + 4. More general conditions can be reduced to this case by modifying the operator I,
see Remark 5.7.

Definition 4.1. We define the operator Hy: D(Hy) C H — € by
(4.3) Hof = Lo f +1I"f,  D(Ho) ={f € D(Lm) N D(Am): Amf = Bf = I"f}.
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Lemma 4.2. The operator

(4.4) Hy,, :=L,+II"+I(A, — B), D(H,,) = D(Ly,) N D(A,)

is a restriction of Hp.

Proof. Take f € D(H,,) and g € D(H)p), then by Lemma 3.3

(4.5) (f,Hog)w = (Lmf,9)r — (Bf, Amg)ow + (Amf, Bglow + (II"f,g)
=((Lm+I(Ay, — B)+1I")f,9).

If D(Hy) is dense, this proves that H,, C H as operators. If D(Hy) is not dense, the adjoint
is not a well defined operator, but the equation shows that the graph of H,, is contained in
the adjoint relation to the graph of H,, (see Appendix A.1), so H, C Hj in the sense of
relations. Il

Note that we avoid here the hypothesis that D(Hj) is dense. Even though we expect this to
be the case in relevant examples, it might be quite difficult to verify.

Lemma 4.3. We have the abstract Green’s identity
(4.6) (Hmf, g)or = {f; Hng)ow = (B = I")f, (Am — I7)g)ow — ((Am — I")f, (B — I")g)on
for f,g € D(Hp,).
Proof. Using the formula (3.2) for L,, and (4.4), we find
47 (Hmf 9)e — {f, Hng)ow =(Bf, Amg@)on — (Amf, Bg)ox

+{(Am =B+ I)f,I"g)or — (I"f,(Am — B+ I")g)on

=—A((B-=I")f.I"g)ow + (Bf, Amg)ow — (I" f, Amg)

+ {Anf. I 9o — (Amf. Bg)ow + (I"f. (B — I")g)or,

which yields the formula as claimed. Il

We will obtain a classification of the extensions of Hy by constructing a quasi boundary triple
for H,,. To this end, we define the corresponding abstract Dirichlet operator.

Definition 4.4. Assume the hypothesis of Theorem 3.12 with o« = 0,8 = 1 and let A €
p(HPélc). We define

(4.8) Fy:= ((Am = IR Hyge))',  D(F) = D(T).

Lemma 4.5. Let 1 € p(I*G)) N p(GAI*). Then

(4.9) GA(Id —=GI*)t = 1d —I*G)) G\,

Proof. We have

(4.10) (Id —GAI")G) = G\ — GAI"G\ = GA(Id —I"G)).

Now the claim follows by multiplying with (Id —G,I*)~! from the right hand side and
(Id —I*Gy)~! from the left hand side. O

Proposition 4.6. Assume the of Theorem 3.12 with o = 0,8 = 1 and that (1 — I*G)~!
leaves D(T) invariant. The operator Fy for X € p(HIO]éIC) p(L) satisfies

(i) rg(F)\) C ker(A — Hy,);

(ii) (B —I*)F) = Idpp).
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Proof. We begin by proving that rg(Fy) C D(H,,) and then check properties i), ii). From The-
orem 3.12 we have, denoting I'y := Fg’l = (Id -G I*) 1,
RO\, Hype) =TsR(\, L) (1 — T IT T R(A, L)) 7T
= R\, L) (1 + T3 IT5I* T R(\, L) (1 — TR{ITI*T R(N\, L)) 1) T

(4.11) =I5 R(X, L)% (1 +IT I R(A, Hfélc)> .

Denote ©) = (A, I R(A, L)T})*. We have

(4.12) AnTs RN\ L) = Ay RO\ L) + A G I'TsR(A\, L) = G5 + T5*T5 R(\, L),
whence

(4.13) Ox =T\Gr + TWR(\, L)TEITS.

The first term, ['\G) = Gx(1 — I*G,)~! maps D(T) to D(H,,) since by Lemma 4.5 the
operator (1 — I*Gy)~! leaves D(T) invariant and G maps D(T) to D(A,,). The second
term acts on D(T') as IyR(A, L)['TIT) because Ty C T5. By Lemma 3.10, T\R(A, L)I'{ [ is
a bounded operator from 0.7 to D(HIO]’SIC) C D(Hp,), so ©y maps D(T) to D(Hy,). Since
I* maps D(Hpe) to D(T) and I*T\Gy = ((1 — I*Gy)~' — 1) leaves D(T) invariant, by
hypothesis, we see that 1*0) leaves D(T) invariant. From (4.11) we then see that

(4.14) Fy = 0y + R(\, Hpyo) ITAI*Ox — R(\, Hypo),

and thus rg(Fy) C D(H,,).
For (i) it is now sufficient to prove that rg(F)) C ker(A — Hjj), by Lemma 4.2, which follows
from

(4.15) (Fag, (Ho — Ng)w = (0, Fx (Hyjye — Ngow = —(@, (Am — I')g)owr = 0,

for all ¢ € 9.4, g € D(Hp) C D(Hyp)-
To check (ii), notice that our previous analysis shows that for ¢ € D(T)

(4.16) Fxp=T\Grxp+ f
with f € D(HIUélc) C ker(B — I*). The claim thus follows from Lemma 4.5
(4.17) (B—TI"[\Gr=(1-I"G\) "' = I"G\(1 - I"G)) "' = Idp(7) - O

Theorem 4.7. Assume the hypothesis of Proposition 4.6. Then the triple
(&%ﬂ, (B —I*), (A, — I*))
is a quasi boundary triple for Hy,. Furthermore, 9 := rg(Am — I")|er(B—1+) 18 dense in 072 .

Proof. We have already shown the abstract Green’s identity (Lemma 4.3) and self-adjointness
of Hynlwer(B—1+) = HIO]’;C (Theorem 3.12), so it only remains to prove that rg(B — I*, A, — I*)
is dense in 0 x 0. To see this, first note that rg(B — I*) = D(T) is dense. We can
complete the argument by showing that ¢ is dense, since then the affine space {(A,, — I*)f :
f € D(Hp),(B—1I*)f = ¢} is also dense for all ¢ € rg(B — I*). To check this, it is sufficient
to note that

(4.15) (re(An — 1RO HYG)) = ker(E),

and that F) is injective since it has the left-inverse B — I*, by Proposition 4.6. ([
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We can now use the theory of quasi boundary triples to obtain criteria for self-adjointness as
well as a classification of interior-boundary conditions. We will formulate these in terms of
linear realtion in 077, i.e. linear subspaces of 0.7 @& 05¢. This has the advantage of being
able to deal with somewhat degenerate cases (e.g. where o = 0 or § = 0) without distinction.
We provide the relevant notions for calculating with relations in Appendix A.1.

We denote the Dirichlet-to-Neumann operator with respect to A, — I and B — I* by

Sy = (A — I")F)y,

where F) is defined in Definition 4.4. By Proposition 4.6 S) is well defined on D(S)) = D(T)
(since D(Ay,) C D(Hp,)). Following [BLO7, Prop.2.4, Thm 2.8| we have (see Proposition 5.9
for an application):

Theorem 4.8. Assume the hypothesis of Proposition 4.6. Let R be a linear relation in 07
and define

Hy = Hm‘D(Hm)
D(Hgy) = {f € D(Hp) : (B —I')f,(Am — I")f) € m}.

If R 1s symmetric, then Hy is symmetric.
If moreover there exists A € RN p(HIO]’;C) N p(L) such that the relation R — Sy is one-to-one
and rg(FY) C rg(R — Sy), then Hy is self-adjoint, X € p(Hx) and the resolvent is given by

R\, Hy) = (14 F\(R — S3) YA — I) RO\, Hipe).-
Proof. For (f,g) € R C 0 x 0 and (f*, g*) € R*, then by definition of the adjoint
relation (A.1),

(f,9%onr — (9, fF)ow = 0.

Hence if R C R* the operator Hg is symmetric by Lemma 4.3.

By Proposition 4.6 we can write any f € D(H,,) uniquely as f = fo + Fhe with fy €
D(HIO]’BIC) =ker(B —I*), p € D(T). As in Lemma 3.8, solving (A — Hx)f = g then amounts
to solving

|
A\ —Hypo)fo=g
!

(% (Am = I7) fo + 5,\@) €N,
The first equation and \ € p(HIO]_’%lC) imply
fo = R(\ Hyge)g.
With (A, — I*) fo = F} g, the inclusion is satisfied if and only if
(¢, Fxg) € R— Sy

Since rg(Fy) C rg(?M — Sy), such a ¢ exists and since ’ — S is one-to-one it is unique. Thus
for every g € 0. we can uniquely solve for fy and ¢, so A € p(Hgx). Since

(0, FYg) = (¢, (Am — T")R(X\, Hipo)g) € R — Sy,

we have

((Am — TR\, Hige)g, ) € (= Sy,
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which, sicne ¢ is unique, we write as ¢ = (R — S)) (A — I*)R(), Hfl’glc)g and obtain the
resolvent formula. Since Hg is symmetric and ist resolvent set contains the real number A,
Hy is self-adjoint. O

In order to obtain a classifiation of the self-adjoint restrictions of H,,, which are extensions of
Hy, we need the additional hypothesis that D(Hj) is dense. To formulate this result, define
the non-negative, bounded operator (c.f. Appendix A.2)

(4.19) M := (F}F;)'/?

Applying Theorem A.4 to the boundary triple (09, B — I*, A,, — I*) yields the following
result.

Theorem 4.9 ([BM14, Sect. 3|). Assume the hypothesis of Proposition 4.6, that D(Hy) is
dense and that there exists A € Rﬂp(HIOélc). Let R be a relation in 07 and define Hy as in
Theorem 4.8. Then Hg is self-adjoint if and only if the relation

(4.20) MY R - S\ )M~?
is self-adjoint and satisfies D(R) C M_D(S).

This is a complete classification, since for any self-adjoint operator H with Hy C H C H,,
there is a relation R such that H = Hgy, which is simply given by

(4.21) R={((B-I")f,(A=I")f)|f € D(H)}.

In the Moshinsky-Yafaev model (Example 2.9), 0. = C and one easily checks that Hy is
densely defined with deficiency indices (1,1). The operators Hﬁgg (with a+8=1=~v+9)
are all self-adjoint extensions of Hp. In [Yaf92], these are discussed as extensions of the (not

densely defined!) restriction of L (and Hp) with boundary condtions I*f = 0 = Bf. Our
result clarifies their relation to the usual extension theory for symmetric operators.

4.1. Continuity with respect to the boundary conditions. Using our results on the
family Hﬁ‘é’g, we can now study the continuity with respect boundary parameters. For sim-
plicity we counsider in the sequel the operator HIO‘BE with 6 = 0 and v = 1. Note that these
operators are symmetric for all « € R by Lemma 3.4. We show that the operators HIO‘BE
converge in the norm resolvent sense to HIOélc-

Lemma 4.10. Suppose that there exists a Ao € R such that T closed and I'T\I* is relatively
(Id —=GAI*)*(L—X)(Id =G I*)-bounded of infinitesimal bound for all A\ < Xg. Assume that L is
bounded form below and the hypotheses of Proposition 4.6. Then the operators T\(Id —I*G )1
and Sy differ by a relatively bounded perturbation of bound a < 1 for sufficient negative A < Ag.

Proof. From (4.14) we obtain
(4.22) Sy = AmOy + Ay RO\, Hipo) ITX T Oy — A R(N, Hiyo) I
+ 17O\ + I RO\, Hypo ) ITX 'Oy — I*R(N, Hipo) 1.

Note that the terms beginning with I* are bounded by the same arguments as in the proof of
Proposition 4.6. Lemma 3.11 implies that A, is relatively HIOéIC—bounded with infinitesimal
bound. Since L is bounded from below we have that HIO]’BIC is bounded from below and the
second term becomes sufficient small bound for sufficient large negative A. From the proof of
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Proposition 4.6 it follows that T51*0) is relatively T\-bounded. Hence we obtain that the
second term of (4.22) is relatively T\ bounded of bound 0, whereas the last term is bounded.

Finally, using Lemma 4.5 we obtain

=Th(Id —I*G)) "' + AnTAR(\, L)THITS.

As we have seen in the proof of Proposition 4.6 the operator I'\R(A, L)I'} ] is bounded from

09 to D(HP]’BIC). Since by Lemma 3.11 A,, is relatively HIO]élc—bounded of bound 0 the second
term in (4.23) is relatively Th-bounded with sufficient small bound for negative, sufficient large
A

Since (Id —I*G)) is bounded and invertible and leaves D(T)) invariant the relatively T)-
boundedness implies relatively T)(Id —I*G)y)~'-boundedness. O

Lemma 4.11. Suppose that there exists a Ag € R such that A € p(HIO]_’%lC), T are self-adjoint
on 0 and bounded from above and IT\I* is relatively (Id —G)I*)*(L—M\)(Id —GxI*)-bounded
of infinitesimal bound for oll A < Ag. Assume that L is bounded from below and the hypotheses
of Proposition 4.6 holds. Then for sufficient small |a|, A € p(Hﬁg’lc) and resolvent can be
written as

(4.24) RO\, Hise) = <Id +FAR(=Ya, S3) Y (I FAR(=1/a, 5))) Am> R(\, Hyg)-
k=0

Proof. Since T) is self adjoint and bounded from above there exists a constant w € R such
that || R(p, Th)|| < =] w| for p € p(Ty). By Lemma 4.10 and [ENOO, Lem. III. 2.6] there exists

a constant @ € R that [|[R(u, Sy)| < = w‘
the sum in the right hand side of (4.24) converges. Since

for p > @. It follows that for sufficient small |

(4.25) rg(F)\R(—l/a, S)\)) C FAD(S)\) = F)\{QO € 0 : F)\QD S D(Am)} C D(Lm) N D(Am)

it follows
(4.26) (101 +F\R(=1/a, 5)) Y _(I"FAR(~1/a, Sy)) Am> RO\, Hype) f
k=0

= RO\, Higo)f + FxR(=1/a, 83) Y (I FR(=1/a, Sx))* Am RO\, Hipo) f
k=0
€ D(Ly,) ND(Ap),

for f € J#. Tt remains to check the interior boundary conditions with respect to «. First
note, that S\ = A, F\ — I*F)\ and by Dyson-Phillips series

(4.27) R(—1/a, Sy) i [*F\R(—Va, S3))* = R(—Va, AnFy).
k=0
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Using Proposition 4.6 it follows

[e.9]

(128)  (adw+B-I°) <1d+FAR<—1/a, S0 Y (" FAR(~1/a, SA>>kAm> RO\ Hiso) f
k=0

= @A RO\, Hypo ) f + (aAmFy + 1) R(—1a, A F)) A R(N, Hyy) f
= @A RO\, Hyge) f — aAyn RO Hipo) f =0
for f € . Hence the right hand side of (4.24) maps to D(Hﬁgg) Using Proposition 4.6 we

conclude

(4.29) (A — H3e) (Id +FAR(= o, S3) Y (I FAR(=1/a, 5))) Am> R(\ Hyge) f
k=0

= (A= Ly —IAp) (Id +FAR(= 1o, S3) Y (I FAR(=1/a, 5))) Am> RO\ Hy) f
k=0

= (A= Ly — TAy) RO\ Hipo) f = 1,
and hence the right hand side of (4.24) is right-inverse of A — HIO]‘;C It remains to prove
injectivity of X — Hﬁ;lc Consider f € ker(\ — Hﬁélc), ie
(4.30) AN —Lnf —ITAnf =0,
aAnf+Bf=1"f.

Using the unique decomposition f = fo+ F¢ for fy € D(HIBC) from the first equation follows
using rg(F)) C ker(A — L,,, — I Ay,)

(4.31) (A = Hige)fo = 0.

By A € p(Hﬁélc) we conclude fy = 0. Hence the second equation in (4.30) becomes

(4.32) aApFyxg + BFE\p = I["F)ep.

Using (B — I*)F = Id it follows

(4.33) aApFre = 0.

In (4.27) we have seen that —1/a € p(A F) and therefore we obtain ¢ = 0. All in all it
follows f = fo+ Fohp =0 and \ — HIBC is injective. One concludes A € p( ﬁgé) O

The following theorem is an easy consequence of Lemma 4.11.

Theorem 4.12. Suppose that there exists a Ao € R such that A € p(HIOélc), Ty are self-adjoint
on 0 and bounded from above and IT\I* is relatively (Id —G)I*)*(L—M\)(Id —GxI*)-bounded
of infinitesimal bound for all X\ < \g. Assume that L is bounded from below and the hypotheses
of Proposition 4.6 holds. Then the operators HlaBlc converge to HIOI’;C in the norm resolvent
sense for a | 0.

Proof. By Lemma 3.11 the operator A,, is relatively Hloélc—bounded. Using Lemma 4.11 we
conclude
0,1 1 0,1
(4.34) IR(N, Hige) = RO\ Hige) | < C - [[R(=Ye, S))|| - | Am RN, Hyge )|
<C-lal =0
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for X € p(Hppe) N p(Hise) and the claim is proven. 0

Remark 4.13. Replacing T by its Friedrich extension T )\F shows that in Theorem 4.12 the
conditions T can be weaken to T symmetric and bounded from above or below. See Section 5
for more details. These assumptions can be shown in many concrete examples, see Section 5,
in particular Proposition 5.3 and Lemma 5.8.

5. APPLICATIONS

5.1. A toy quantum-field theory. Here we illustrate our results in a simple model that
displays much of the structure relevant for applications in quantum field theory, without posing
too many technical problems for the verification of key assumptions.

The physical picture behind this example is that of a particle, whose position we denote by
x € R, moving in a one-dimensional space while creating/annihilation “particles”. The latter
can be thought of as elementary excitations of the background medium through which the
first particle moves. We denote their positions by y1,y2,.... Such models play an important
role in condensed matter physics. In the specific case we will consider, the excitations would
not move on their own, although they will display effective dynamics through repeated cre-
ation/annihilation at different positions. This is analogous to the well known Frohlich polaron
model [GW16] to which the arguments of this section should apply with minor modifications.
Another similar model with contact interactions in a three-dimensional space, which leads to
some subtle regularity issues, was treated in |[Lam18].

Take

(5.1) H = é L*(R)® L2, (R") = é L* (R, L2, (R")) := é PR
n=0 n=0 n=0

and 0. = ¢ with I = Id. Let N be the operator given by (Nf) = nf("™ (where f( is
the projection of f € # to (™), with the domain

(5.2) D(N) ={f € # : [Inf"| e € CN)}.

Clearly N, D(N) is self-adjoint. Let = denote the first of the n 4+ 1 arguments of a function
f e ™ then —A, is a self-adjoint operator on the domain

(5.3) D(-A,) = éHQ (R, L2, (R™)) .
n=0

We set L = —A, + N with D(L) = D(—A;) N D(N).
We define A : D(L) N ™ — 9™ := =1 as a symmetrised evaluation operator (A
corresponds to the “annihilation operator” a(z)):

(5.4)
(Af(n)> (337917 L 7yn—1) = \}Hz.f(n)(x7y17 A 7yn)’yj:33 = \/ﬁf(n)($7y17 st 7yn—17x)’

J=1

One can check that A maps D(A) := D(L) to 7 and that ker A is dense. The operator G
for A € C\ Ry is then given by (denoting Y = (y1,...,yn41) and Y as Y without the entry
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Yj)
1 n+1 ) .
(5.5) (6ar ™) (@) = —— j}zjlu — L) "6(x — ) S (@, )
1 n+1 A
= \/ni—i—l ;gnﬂ—/\(ﬂﬁ - Z'Jj)f(n) (ij Y;)a
with the function
— JAle]
(56) gule) = —(u— &) ta= <
2V

where the square root is the branch with Re(y/z) > 0. The operator L,, is now defined on
D(Lu) = D(L) & G(9.7) by

(5.7) Linf = Ly f = Li(fo + Gap) = Lfo + AGrp.

The boundary operator B is defined as the left inverse to G on D(B) = D(Ly,). In view of
the fact that H*(R) ¢ C'(R) and lim,(g),(r) — g,,(—7)) = 1, B is given by the following
local formula

(5.8) Bf")(2,Y) =/ lim ((axf(m) (z+7Y,z) - (axf(”)) (z —1Y, x)) ,

where the limit is taken in 21,
Since g, is continuous we can extend A to rg G\ canonically by using the same formula. This
gives

(5.9) (TA f<n>) (z,Y) = (AmGA f(”)) (z,Y)

f(n z,Y) n (n) .
= n " ‘7Yﬁ *
QW—*—E g +1— )\ )f (y] J l’)

Since g, is bounded, T : A — #™ is a bounded operator. However, since the number
of terms in the sum above is n, this does not give rise to a bounded operator on . We have
the bound

n+1
5.10 Tof ™| pin n)

(5.10) IT5f \y<)_2|\/T|Hf |
so on D(T) = D(N'Y?) we can define T' as an unbounded operator on .. This defines A,,

with domain D(A,,) = D(L) @ G\(D(N'/?)).

(),

5.2. Self-adjointness of Robin-type operators.

The objects constructed above satisfy the hypothesis of our general setting, as explained in
Construction 2.8. The operators with Robin type interior boundary conditions Hyy BC are thus
well defined. The equation Hnégf = g (with the choice 6 = 0, v = 37!, which is symmetric
if aff € R) corresponds to the following hierarchy of boundary value problems

(5.11)

(—Ap + ) f (2, V) + B WVo + 1) (2, Y, 2) = g™ (2,Y) x %y,
a/nf ) (@, Y) 4+ BV ((0ef ™) = (0ot ™)) @ ¥) = O D@, V) @ =y
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where the subscript + indicates that the right/left sided limit z — y,, is taken, as in (5.8), and
™) is symmetric under permutation of 1, . . ., y, which gives implies boundary conditions on
the sets where y; = .

In order to establish self-adjointness of Hﬁgg we need some properties of T). We remark that
non-positivity of T is not generic in any way — in Example 2.9 the operator is non-negative
instead, while in the more involved cases studied in [Tho84; .S19; Lam19b| both the positive
and negative parts are generally unbounded.

Lemma 5.1. For any real A < 0, the operator T is essentially self-adjoint and non-positive.
Moreover, rg(A) Crg(z —Ty) for all z€ C\ R_.

Proof. By the Sobolev embedding theorem A has a natural extension to D(Ll/Q) n2™ >
C(R, Lgym(R”)), which we denote by A. For A < 0, L — X is a positive operator, and we can
then write

(5.12) T ) = Am(AR(N, L))" = — (fl(L _ )\)—1/2> (A(L _ )\)—1/2>*’

so T is symmetric and non-positive.

Since (™ is Ty-invariant, Ty is an infinite direct sum of commuting bounded self-adjoint
operators and thus essentially self-adjoint, since all vectors f € 2 with only finitely many
f(™ =£ 0 are contained in rg(Ty = 7).

Now let f € rg(A),i.e. f = A(L— \)"!g for some g € 7, and z € C\R_ C p(Ty). By the
formula for T}, the operator

(5.13) R(z, Ty\)A(L —\)~'/?

is bounded, since multiplying by its adjoint from the right yields

(5.14) — R(2, T\)T\R(2,T)).

Consequently

(5.15) NY2R(z, T\)A(L — A) ™' = R(2,Ty)A(L — \) YN +1)/2

is also a bounded operator, and this shows that (z — T) 'rg(4) ¢ D(N'/?) = D(T) and
thus rg(A) C rg(z — T)). O

In particular this lemma shows that T C Ty for all A € C\ Ry, as assumed from Section 3
on.

In view of Lemma 3.8, non-positivity of T) together with rg(A) C rg(z — T = implies that
Lqp is self-adjoint with o(Leg) C [0,00) if @f < 0 (and of course for « = 0, 8 # 0).
These operators correspond to repulsive contact interactions between the first particle and
the remaining ones.

In order to make conclusions on Hﬁ‘ég, we need to verify the relevant hypothesis
of Lemma 3.10, Lemma 3.11. The fact that 1 € p(G)\I*) N p(I*G)) is guaranteed by the
following Lemma.

Lemma 5.2. For A € C\ Ry the operator G satisfies the bound

v+ 1 (n)
0 (n+1) S 1/2 1 2Hf H}?ﬂ(n)
2ln+1—AY2Re(vn +1— M)V

In particular for A < 0 we have ||G,|| < 3.

1G]
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1

2,/JulRe(yR)

In view of Corollary 3.14 this yields the following, with boundedness from below being a
consequence of the non-negativity of L, g and the use of Kato-Rellich in the proof.

Proof. Since || gu||r2 = this follows from the triangle inequality. O

Proposition 5.3. Let o3 < 0. For all 5, such that the symmetry condition of Lemma 3.4

a,

is satisfied, Hige is self-adjoint and bounded from below.

Proof. Let A < 0 and T\ be the self-adjoint closure of T). Then by Proposition 3.9 (v), Tf’ﬁ
is a restriction of the bounded operator v + R(—f3,T)), and this implies the relative bounds
required in Theorem 3.12. O

To treat the case o = 0 we also need:

Lemma 5.4. For all A € C\ Ry, the operators GaI*, Ty = (1 — G\ I*)"! and (1 — I*Gy) !
leave D(N) as well as D(N/?) invariant.

Proof. We give the proof only for D(N), the proof for D(N'/?) being essentially the same.
For G I* this is obvious, since

(5.16) NG)\I*:G,\I*(N-FU.

For Ty, this follows by the same logic and Lemma 5.2, since N(G,I*)?* is bounded and

o
Ty =Y (GAI").
k=0
The argument for (1 — I*G,)~! is the same. O

Remark 5.5. The argument of the lemma shows that, in the case of a hierarchy, it is not
necessary that G,I* to be small in norm for I'y to exist and be given by the series. Rather,
it is sufficient that

G)\I*|%ﬂ(n) :%(n) _><%p(n+1)
has a norm that decreases with n, e.g., so that ||GyI*| ,m)||™ is summable.

Proposition 5.6. For a =0, 5 # 0, and 6,y such that the symmetry condition of Lemma 8.4
1s satisfied, Hg’g% is self-adjoint and bounded from below.

Proof. We may pick any 0 > X\ € p(L), and in view of Corollary 3.13 it is sufficient to prove
that IT)I* is infinitesimally (Id —G\I*)*(L — A)(Id —GI*)-bounded .

By (5.10), IT\I* is N'/2-bounded. Because N is L-bounded and the invariance of D(N)
established in Lemma 5.4, N is (Id =G \I*)*(L — \)(Id —G\I*)-bounded. This implies the
required infinitesimal bound by interpolation and proves the claim. U

We see that for o5 < 0 all of the theorems of Section 3 can be applied to this model. For the
case af3 > 0, which corresponds to attractive interactions between the first particle and the
remaining ones (in addition to the interaction induced by creation/annihilation of particles)
this is not obvious and we do not know whether it holds.
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5.3. A pointwise Robin condition. We now discuss the applicability of our classification
results of Section 4 and apply them to an example in which the coefficients a, 8 of the boundary
condition are position-dependent. Such conditions were discussed in [Tum20|, though without
proving self-adjointness.

By Lemma 5.2, (1-1*Gy) " leaves D(T) = D(N'/?) invariant. Hence the hypothesis of Propo-
sition 4.6 and Theorem 4.7 are satisfied and {097, (B — I*), (A, — I*)} is a quasi boundary
triple for

(5.17) H,, =L, +1d+I(A,, — B).
The self-adjoint restrictions of H,, are described in Theorem 4.8 and Theorem 4.9.

A relevant class of boundary condtions are local versions of the boundary condition aAf +
BBf = I*f where «, 8 are functions. Let a, 8 € L (R) with a + f =1 (see also Remark 5.7

below).
The corresponding boundary condition reads
(5.18) a(z) (Am f<n+1>> (z,Y) + B() (B f<”+1>) (2,Y) = f™(z,Y),

forn € Nand (z,Y) € R x R™

Remark 5.7. The condition o« + 8 = 1 is less restrictive than it might seem. Since our
only requirement on I is boundedness, any pair of functions with (o + 8)~! € L can be
accommodated by modifying I. More precisely, set I = (& + 3)~'I, then the condition (5.19)
becomes,

e R S
a(z) + () a(x) +5($)Bf a(z) + B(z)

where the coefficients & := a(a + )7, § := B(a+ 8) ! now satisfy & + 3 = 1.

(5.19) Ay fHD) 4 FO = (7)),

The relation corresponding to (5.19) is
(5.20) Rap = {(af, =BI)f € 0},

where «, 8 are the operators of multiplication by the respective function. To see this, note
that (B — I*) f, (Am — I*") f) € Ry g means that

(5.21) BB—-I"f=—-a(An —I")f <= aApf+BBf =(a+B)I"f.
——
=1d
Recall that self-adjointness of Hy, , is related to the operator

(5.22) Sy = (A — I")F)
with D(Sy) = D(F) = D(T'), which has similar properties as T}.
Lemma 5.8. Let \g := infa(Hﬁ’;C). Then for A < Ao, Sy is non-positive.

Proof. For the form domains we have, similarly to Lemma 3.10 (to prove this, take the closure
0,1 v - .
of D(Hj) in the appropriate norm),

(5.23) D (|Hgol)) = TD(L!?).

Since g, € H'(R), in our example we find TD(L'/?) ¢ D(L'/?). Let A be the extension of A to
D(LY?)N#™ for arbitary n (note that A(L—X)~'/2 is not bounded, but, e.g., N'/?-bounded,
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due to the prefactor \/n in the definition of A). For A < Ao, —R(\, HIO]’;C) = (HIO]’;C —A)7t >0,
so we have

(5.24) Sy= —(A— 1) (Hjo =072 (A= 1) (Hgo - ) 712) " <o,
O

Proposition 5.9. Let o, 5 € L™ with o+ 5 = 1 and assume that there exists § > 0 such that
forallz e R

a(z)f(x) < 0.
Then the operator Hwy, , is self-adjoint.
Proof. We use the criterion of Theorem 4.8, i.e. we prove that R, g — S is invertible on rg FY
for A < A¢ (as above).

Using the properties of a and 3, we see that |a| - |1 —a] > 6, so ™! € L™ and the relation
can be rewritten as

(5.25) Ra,s — Sh ={(ap, =By — Sxap)|ap € D(T)}
={(p,—Ba "o = Sxp)lp € D(T)}.
Let A < A\g as above, and let Sf be the self-adjoint Friedrichs extension of Sy. As Ba~! =
Ba(la|)~? < —d|lal|x2, the operator
(5.26) Ba~l+ 55

is strictly negative, self-adjoint and thus invertible. If Sy = SI" we are finished since then the
relation (5.25) is invertible everywhere.
If Sy # Sf we can conlcude by showing that

(—Ba~t = 8{) ' rg Fy € D(T) = D(N'/?),

since then Sf can again be replaced by Sy. This follows from the representation (5.24) by the
arguments of Lemma 5.1, since boundedness of

(5.27) (Ba™! + SU)THA - I") (Hipe — )72
together with the equality of D(L'/?) and D(\H?]’BICP/Q) implies boundedness of

(5.28) NY2(Ba~t 4+ SE)~LFy. 0

APPENDIX A.

A.1l. Linear relations. Here we briefly recall the relevant notions for linear relations in a
Hilbert space 2. These generalise the corresponding notions for operators with the relation
given by the graph. For a linear relation R in 7 (i.e. a subspace of @ ), the domain,
range, kernel are defined by
D(R) ={p e A3 e A : (p,n) € R}
rg(R) = {p € H|Fp € A : (¢, ) € R}
ker(R) = {p € H|(¢,0) € R}.
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The following operations are defined on the set of linear relations in a Hilbert space 7

R+6 ={(p,E+n)l(p.&) € R, (p,n) € 6}
—R = {(¢, —¥)|(p,?¥) € R}
RS = {(p,n) € H ®H|F € H : (¢,§) € G and(§,n) € R}

R ={(p.n) € H & H|(n,p) € R}.

The adjoint relation is given by

(A1) R = {(p,n) € D AN, E) €R: (0, ) = (M)}

A relation is symmetric if R C R* (as sets) and self-adjoint if R = R*. Clearly an operator
is self-adjoint if and only if its graph is a self-adjoint relation.

A.2. Quasi-boundary triples. In this section we briefly recall the definition of quasi bound-
ary triples. Moreover, we translate results for quasi boundary triples in the language of our
abstract framework.

Definition A.1. A triple (07, B, A) is called a quasi boundary triple for an operator
L: D(L) € A# — A if 0 is a Hilbert space and A, B: D(L) C A — O are opera-
tors such that

(1) the second Green identity holds

forall f,g€ D(L).
(ii) The map (A, B) : D(L) — 0 x 0 has dense range.
1l e restriction L = 5 18 a self-adjoint operator on .
iii) Th iction L :=L ker(B) i 1f-adjoi H

This is equivalent to the definition given in [BL07, Def.2.1] in terms of relations, since by [BLO7,
Thm.2.3| the operator L is always a restriction of (the relation) L for the closed, but not
necessarily densely defined, operator Ly = L|ker 4. In other works, the additional assumption
that D(Lg) is dense is made, but we explicitly avoid this.

By Remark 3.5, (¢, Ay, B) is a quasi boundary triple for L = L|p(a,,)- In Theorem 4.7 we
show that (8.2, (B — I*), (A — I*)) is a quasi boundary triple for Hp,.

A quasi boundary triple is called an ordinary boundary triple if rg(fl, B) = 07 and a
generalized boundary triple if rg(B) = 0.

Note that a quasi boundary triple for L* exists if and only if the defect indices ni(f)) =
dim(ker(L* F4)) of L* coincide. Further, if the defect indices of L are finite the quasi boundary
triple for L is an ordinary boundary triple. Moreover, the operator (A, B): D(L) C ¢ —
DA x DA is closable and by [BLO7, Prop. 2.2] ker(A, B) = D(L) holds. By [BL07, Thm. 2.3|
it follows that L = L* if and only if rg(A, B) = 8.22. In this case the restriction L := i’*|ker(é)

is self-adjoint and the quasi boundary triple (0.2, B, fl) is an ordinary boundary triple.
For each A\ € p(L) the definition of a quasi boundary triple yields the decomposition
(A.2) D(L) = D(L) @ ker(\ — L)

For L = Lin|D(An) B = B the decompositions (A.2) and (2.7) coincide. While we used
the Dirichlet operator GG to obtain this decomposition, here the situation is contrariwise.
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Starting with the decomposition one obtains that the restriction E’\ker()\_i) is injective and

rg(B\ker()\_E)) = rg(B). This yields to the following definition.

Definition A.2. Let (0., B, A) a quasi boundary triple for L c L*. The ~-field correspond-
ing to (0, B, A) is given by

G: p(L) = LA, H): A (Blyrr_iy)
Moreover the Weyl function associated to (0, B, fl) is given by
A= T(\) = AG(N).

We point out that the v-field G()) at A € p(L) equals to the abstract Dirichlet operator G\
by Proposition 2.7 (i). Hence the Weyl function T'(\) at A € p(L) coincide with the abstract
Dirichlet-to-Neumann operator T}.

Remark A.3. In [BLO7] it is shown that for a boundary triple (9.7, B, A)
(A.3) T\ T(N)

for all A € p(L) holds. Further, if (0.%#, B, A) is a generalized (in particular a ordinary)
boundary triple, equality holds, i.e.

(A4) T\)*=T()\)
for all A € p(L).

Note that our approach is contrariwise. We start with Assumption 2.3 and show that
(0, B, Ap) is a quasi boundary triple for Ly|p(a,,)- Whereas in [BLO7] they start with
a quasi boundary triple and see that (A.3) holds.

Consider a Hilbert space H and a closed, densely defined operator U: D(U) C H — H with
p(U) # 0. Replacing U by U — X for A € p(U) we assume without loss of generality that
0 € p(U). Now we define the norm |¢||_1 = ||[U " |lsc and by H_1 := (3, | - ||-1)~ the
completion of H with respect to the || - ||-1-norm. Now H_; equipped with the || - ||-;-norm
is a Banach space and if U is symmetric a Hilbert space. Further, we define 3; by D(U)
equipped with the graph norm. Denote by U—_11 the unique extension of U~! from H_; to I.
We point out that U~ is an isometry from 3; — 3 and U—_11 is an isometry from € — 5 1,
ie.,
UZ} vt
g‘f_l — H — j‘fl.

If U is generator of a strongly continuous semigroup the space 1 is the extrapolation space
of order —1 associated to U (see [EN00, Def. I1.5.4]). We refer to [ENO00, Sect. II.5] for more
details about extrapolation spaces.

Now consider the quasi boundary triple (0.7, A, B) for L. Let G): be the associated family
of abstract Dirichlet operators (the v-field). Assume that & :=rg A|p(z) is dense. Then

(A.5) M = (GIG;)'/?

defines a positive, injective operator on 0. By [BM14, Prop. 2.9] we have that ¥ =rg G} =
rg M. Note that M~': 4 C 0¢ — 0% is an invertible, densely defined, closed operator.
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We set U := M~ and 4, =%, 4_:=%_,. Then the spaces are Hilbert spaces. Denote the
unique extension M_ = (M~1)"}: 4_ — 9% we obtain the isometries

g Mo Ma
Denote by L the closure of L and by B: D(L) — %_ the unique extension of B. Moreover
(A.2) yields the decomposition
(A.6) D(L) = D(L) ® ker(A — L)
for A € p(L) and we denote the projection onto D(L) by «. Define B := M_oB: D(L) — 8.
and A := M 'oAom: D(L) — 9. By [BMI14, Thm. 2.12| (8¢, A, B) is an ordinary
boundary triple for L. This allows to extend the classification of ordinary boundary triples

(see [BM14, Thm. 3.1|) to quasi boundary triples (see [BM14, Thm. 3.4]). For more details
we refer to [BM14, Sect. 3]. See also [DM95].

Theorem A.4 ([BM14, Cor.~3.5]). Let (0,B,A) a quasi boundary triple for L. Assume
that there exists a A € RN p(L). Let R be a relation in 0.7 . Then L|y given by

Ly = H|p(Ly)
D(Ly) = {f € D(L): (Bf, Af) € m}.
1s self-adjoint if and only if the relation
M7'R—TO\)M?
is self-adjoint and satisfies D(R) C M_D(T).
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