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Dekan der Math.-Nat. Fakultät: Prof. Dr. József Fortágh
Dekan der Medizinischen Fakultät: Prof. Dr. Bernd Pichler

1. Berichterstatter: Prof. Dr. Martin A. Giese.
2. Berichterstatter: Prof. Dr. P. Thier

Prüfungskommission: 1.Prof. Dr. Martin A. Giese
2. Prof. Dr. P. Thier
3.Prof. Dr. Martin V. Butz
4.Prof. Dr. Hanspeter A. Mallot



Erklärung / Declaration
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Abstract
To notice, recognize, and ultimately perceive the others’ actions and to discern the in-
tention behind those observed actions is an essential skill for social communications
and improves markedly the chances of survival. Encountering dangerous behavior, for
instance, from a person or an animal requires an immediate and suitable reaction. In
addition, as social creatures, we need to perceive, interpret, and judge correctly the other
individual’s actions as a fundamental skill for our social life. In other words, our survival
and success in adaptive social behavior and nonverbal communication depends heavily
on our ability to thrive in complex social situations. However, it has been shown that
humans spontaneously can decode animacy and social interactions even from strongly
impoverished stimuli and this is a fundamental part of human experience that develops
early in infancy and is shared with other primates.
In addition, it is well established that perceptual and motor representations of actions are
tightly coupled and both share common mechanisms. This coupling between action per-
ception and action execution plays a critical role in action understanding as postulated in
various studies and they are potentially important for our social cognition. This interac-
tion likely is mediated by action-selective neurons in the superior temporal sulcus (STS),
premotor and parietal cortex. STS and TPJ have been identified also as coarse neural
substrate for the processing of social interactions stimuli. Despite this localization, the
underlying exact neural circuits of this processing remain unclear. The aim of this thesis
is to understand the neural mechanisms behind the action perception coupling and to in-
vestigate further how human brain perceive different classes of social interactions.
To achieve this goal, first we introduce a neural model that provides a unifying account
for multiple experiments on the interaction between action execution and action percep-
tion. The model reproduces correctly the interactions between action observation and
execution in several experiments and provides a link towards electrophysiological de-
tailed models of relevant circuits. This model might thus provide a starting point for
the detailed quantitative investigation how motor plans interact with perceptual action
representations at the level of single-cell mechanisms. Second we present a simple neu-
ral model that reproduces some of the key observations in psychophysical experiments
about the perception of animacy and social interactions from stimuli. Even in its simple
form the model proves that animacy and social interaction judgments partly might be
derived by very elementary operations in hierarchical neural vision systems, without a
need of sophisticated or accurate probabilistic inference.
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Synopsis
Action enables us to acquire perceptual information about the environment and to un-
derstand the presented information differently. When we turn around, for instance, our
spatial relations to the surrounding environment will be changed. Hearing a car horn and
a loud noise afterwards, might signal the occurrence of some undesirable events while
we are crossing the street. Touching an object already provides useful information about
its texture, shape, and temperature. Even as simple a task as eating food involves a se-
quence of perceptions and actions woven together by expectations and experience.
Aforementioned examples clearly suggest that perception and action are interdependent
and as it was formulated by Gibson (1966), the perceptual information is used primarily
in the organization of action and can subsequently facilitate the interactions of individual
and the related environment.: ”We must perceive in order to move, but we must also
move in order to perceive”. For example, when we move around, the pattern of optic
flow in the retinal image keeps updating and therefore gives us information about our
current heading direction, while the motion parallax as a monocular depth cue estimate
the relative distances of objects (depth perception) by considering the relative velocities
of objects moving across our field of view.
The main focus of this dissertation is directed in developing neurophysiologically plausi-
ble models which could qualitatively simulate the behavior of the brain in processing and
perceiving actions. Here, it is important to emphasize that this study does not claim that
the whole categories of action types and their perception mechanisms can be modeled by
these novel neural models. However, the ultimate goal of designing these models would
be achieved if these new models can provide a better understanding of action perception
from a different perspective.
In this section, first I attempt to sketch out the action processing mechanisms as far as it
has been known, and the possible underlying neural substrate by briefly reviewing and
summarizing the relevant literature. Since understanding the other agents’ actions is an
integral prerequisite for social interaction, the relation between action perception and ac-
tion execution will be discussed adequately in the next part and then I report the research
on animacy and social interaction perception as one of the most important skill granted
to social creatures. Forth, in line with the focus of this thesis a short review of action
recognition models and their importance will be provided. A brief overview of agent
navigation models will be discussed to complete the relevant literature review section
of this chapter. Finally, I will focus on the novelty of this PhD dissertation and give an
overview of following papers by describing the motivation and goal of each together with
emphasis on importance of their results and contribution of my work.
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1. Action Perception

To notice, recognize, and ultimately perceive the others’ actions and to discern the in-
tention behind those observed actions is an essential skill for social communications
and improves markedly the chances of survival. Encountering dangerous behavior, for
instance, from a person or an animal requires an immediate and suitable reaction. In
addition, as social creatures, we need to perceive, interpret, and judge correctly the other
individual’s actions as a fundamental skill for our social life.
Since the beginning of the third millennium, action observation and recognition have gar-
nered enormous interest and have been one of the core topics in the field of neuroscience
(Rizzolatti et al., 2001, Keysers and Perrett, 2004, Schütz-Bosbach and Prinz, 2007, Key-
sers, 2011, Rizzolatti and Fogassi, 2014, Caggiano et al., 2016, Etzel et al., 2016, Savaki
and Raos, 2019). However, the fundamental neural mechanisms that provide constraints
for underlying computations remains only partially explained, in contrast to the fact that
a wide range of speculative theories in this direction have been proposed to shed light on
understanding how the brain accomplishes this remarkable skill.
Coarsely speaking, action-selective neurons have been found in different number of brain
structures, including premotor, primary motor, and parietal cortex (Rizzolatti et al., 2001,
Puce and Perrett, 2003, Nelissen et al., 2011, Rizzolatti and Fogassi, 2014, Geiger et al.,
2019). In addition, selective activation for biological movement stimuli has been reported
in the ventral lateral occipital cortex and the lingual gyrus at the cuneus border that are
sensitive to motion (Grossman et al., 2000, Servos et al., 2002, Freitag et al., 2008) as
well as non-visual areas including amygdala and cerebellum (Bonda et al., 1996). These
studies suggest that several parts of the brain are engaged to accomplish action recog-
nition. The discussion here, however, is restricted to the cases relevant for the work
presented in this thesis particularly experimental results from action selective regions in
the superior temporal sulcus, parietal as well as premotor cortex.
A deeper understanding of the neural basis of this complex procedure will require knowl-
edge of how single neurons encode action related stimuli. Earlier studies showed that
superior temporal sulcus (STS) of monkey brain (see Figure.1) is particularly sensitive
to the kinematic and dynamical signatures of biological movement and plays a crucial
role to analyze visually others’ actions including walking, arm movement, goal-directed
hand actions and some other biological movements (Bruce et al., 1981, Perrett et al.,
1985a, Oram and Perrett, 1994, Jellema et al., 2000, Vangeneugden et al., 2014). In fact,
Bruce, Desimone, and Gross (1981) reported the very first study that showed response
selectivity of STS to views of walking person. They recorded from single neurons in the
superior temporal polysensory (STP), an area of dorsal bank, and fundus of the anterior
portion of STS. A few years later, Perret and his colleagues who have extensively in-
vestigated the tuning of neurons in STS to observed body actions, also showed response
selectivity of STP to the observation of walkers and concluded that motion direction is
stronger cue driving neural responses than body orientation (Perrett et al., 1985a, Oram
and Perrett, 1994, 1996).
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Figure 1: Subdivision of monkey inferior temporal lobe centered around the superior
temporal sulcus (STS). (a) Lateral view of the cortical surface showing the upper bank,
depth, and lower bank of STS with major visible sulci labeled inferior occipital (IO).
lunate (Lu), intraparietal (IP). central (Ce), lateral (Sylvian) fissure (La), arcuate (Ar),
and principal (Pr). (b) Enlarged drawing of the inferior temporal areas surrounding the
STS. [Adapted from Seltzer and Pandya, 1994.]

The discovery of mirror neurons by neurophysiologists of university of parma (Pelle-
grino et al., 1992, Rizzolatti et al., 1996, Gallese et al., 1996), aroused widespread in-
terest among researchers in the neuroscience community to study action processing and
understanding more elaborately. Mirror neurons, which have been discovered in a sec-
tor of the ventral premotor region F5 (see Figure.2.a) of the macaque monkey by single
cell recordings in the parieto-frontal areas, represent a distinctive class of visuomotor
neurons that discharge both in monkey’s brain when it executes a goal-directed action as
well as when it observes the same or a similar motor act performed by another individual
(Gallese and Goldman, 1998, Rizzolatti et al., 1996, Gallese et al., 1996, Rizzolatti et al.,
2001)(see Figure.2.b). Findings of the seminal work (Pellegrino et al., 1992) indicated
that mirror neurons can retrieve movements not only on the basis of stimulus charac-
teristics, but also on the meaning of the observed goal-directed actions (e.g. placing or
grasping an object).
In a detailed follow up study by (Gallese et al., 1996), researchers recorded 532 neu-
rons in area F5 in the premotor cortex of the macaque monkey and detected that ninety
two of these neurons have mirror properties and were consequently named mirror neu-
rons for the first time. In this study, action-selective responses of mirror neurons for
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Figure 2: Examples of F5 mirror neurons. (a) Lateral view of the monkey brain showing
the location of area F5 highlighted as part of the ventral premotor cortex (AS, arcuate
sulcus; CS, central sulcus; PS, principal sulcus). [Adapted from Caggiano et al., 2012].
(b) Response properties of a mirror neuron. Column in the left shows the experiment
conditions including action execution and action observation by the monkey. The raster
plot and peri-stimulus spike density show the corresponding responses of the same neu-
ron during active goal-directed motor acts of the monkey (e.g., grasping small objects
of different shapes) and the observation of the same acts performed by the experimenter.
[Adapted from Casile et al., 2011.]

different actions such as holding, placing, and grasping an object have been shown while
authors noted that size of the object did not have influence on most of the neurons. This
distinguishes mirror neurons from other motor or sensory neurons whose discharge is
associated either with execution or observation, but not both.
Mirror neurons in human brain have also been widely investigated and challenged in
a vast number of experiments from different perspectives (e.g., Rizzolatti et al., 2001,
Gazzola and Keysers, 2009, Mukamel et al., 2010 ). However, finding individual mirror
neurons in humans is nearly impossible due the fact that electrophysiology is rarely pos-
sible at only specific brain regions. Therefore, the majority of the studies that focus on the
”mirror” properties of the human brain use non-invasive methods including transcranial
magnetic stimulation (TMS), electroencephalography (EEG) functional magnetic reso-
nance imaging (fMRI) and positron emission tomography (PET) to assess the analogous
mechanisms in human (for reviews see Rizzolatti and Sinigaglia, 2010, Molenberghs
et al., 2012, Kilner and Lemon, 2013, Rizzolatti and Sinigaglia, 2016).
Many studies have shown analogous functional properties of the mirror mechanism in hu-

4



Mohammad Hovaidi-Ardestani

man including understanding action, mirroring and understanding emotions, and action
execution and observation and some other controversial ones (e.g., Abdollahi et al., 2013,
Hickok, 2013, Keysers and Gazzola, 2014, Campbell and Cunnington, 2017). However,
some differences between monkeys and humans not only challenged some of these func-
tions but also raised questions even about the existence of a mirror neuron system in hu-
man (e.g. Heyes, 2010). One of this differences is, that brain regions in human that were
implicated in mirror mechanism functioning, not only found in homologous areas, but
also in regions outside those where mirror neurons have been reported in monkeys. This
could be traced back both to the variety of approaches and inherent accuracy problem of
indirect measures applied in mirror systems in human. Nevertheless, action perception
and action execution function of the mirror system is more ubiquitously agreed upon and
the understanding of their processes has profoundly been changed by the discovery of
motor neurons. This ability is important for our non-verbal social communication (for
reviews see Frith and Frith, 2012) and understanding and simulating this function of the
human brain was one of the main motivations behind commencing this PhD work.
From a functional viewpoint, action execution and action perception are closely-related
processes with a candidate neural substrate of mirror neuron system and specifically the
premotor and prefrontal cortex and the STS that is especially sensitive to point-light ani-
mations of biological motion. In addition, several studies discuss also that understanding
of others’ actions is accomplished with the prediction of sensory consequences from
ongoing movements, processed in cerebellum and the posterior parietal cortex (e.g., Mi-
all, 2003; Sokolov et al., 2010; Sokolov et al., 2017). Regardless of the exact neural
substrate for action perception, the evidences commonly show a remarkable overlap be-
tween brain regions recruited during action understanding. Some even claimed that our
ability to interpret the actions of others requires the involvement of our own motor sys-
tem meaning that an action could be understood only if there is a mapping between the
agent’s observed movements and the observer’s motor repertoire (e.g., Rizzolatti et al.,
2001). Obviously, if this was true we could not understand a bird’s fly in the sky since we
cannot map a bird’s wing movements onto our own motor repertoire (Jacob, 2009). In
addition , this mapping hypothesis suggests that the brain represents others’ actions like
one’s own. This has been investigated in some studies and was concluded that motor fa-
cilitation strongly depends on the agent to whom the observed action is attributed which
simply means that motor systems may be involved differently in processing self-action
and actions executed by others, which signifies a role in social cognition (e.g., Schütz-
Bosbach et al., 2006). This paper and some others in which researchers scrutinized also
the neuroimaging data and found the replicated results led to more cautious conclusions
such that activation in the motor system could reflect alternative mechanisms, such as
encoding of the semantic features of actions (e.g., Press et al., 2012).
The employing of the same motor system in action perception is also of particular interest
for the theoretical accounts of this close link between neural activity in the motor-system
during action observation and our ability to execute the same action (e.g., Kilner et al.,
2007; Friston et al., 2011; Donnarumma et al., 2017; Kahl and Kopp, 2018). The central
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principle in all these theoretical models is that the same motor models used during ex-
ecution of action is exploited for the interpretation and inference during observation of
actions.
Although there is an ever-expanding body of literature about action perception and the
role of mirror neurons in brain, many questions yet need to be addressed. A comprehen-
sive knowledge about the connectivity of mirror neurons and their comparative biology
across different species might decode the the true role of mirror neurons and their puta-
tive functional roles as ”The most hyped concept in neuroscience” (Jarrett, 2012). The
focus of the next section is to review briefly the main studies that illustrate more clearly
how the action perception and action execution are linked in the brain.

1.1 Action Perception Cycle
As suggested in the previous section, action and perception are found to be tightly cou-
pled as opposed to the traditional approaches to human information processing that tend
to deal with perception and action planning in isolation. The roots of the concept of this
close entanglement can be traced to 19th century when British and German researchers
independently postulated that, an association between action and sensory consequences
needed to be formed at first and then the ”soul” can trigger the action automatically by
the anticipation of their intended perceptual effects (Gibson, 1852; Herbart, 1852). This,
later called ideomotor principle as a combination of the idea and the motor act and it is
known as the first principle that theorized the link between action and perception. The
aim of this section however, is to review the most recent and relevant studies that focus
on the theories that stress this close link between perception and action and show the
influences of concurrent action on perception and the remarkable impact of perception
on actions.
As it has been shown, an important functional aspect of mirror neurons is the relation be-
tween their visual and motor properties and can be assumed as common neural substrate
for action and perception. The relevant studies commonly discuss that, almost all mirror
neurons show congruence between the visual actions they respond to and the motor re-
sponses they code. These studies have also suggested that action perception and action
execution are intrinsically coupled in the human brain (Rizzolatti and Craighero, 2004,
Rizzolatti and Sinigaglia, 2010, Brucker et al., 2015). In addition, the common coding
theory (Prinz, 1997) as well as the theory of event coding (Hommel et al., 2001), have
also been introduced as a functional version of sharing mechanism of action and percep-
tion with possibility that mirror neurons could be the neural substrate of this bidirectional
link. In addition to these behavioral and neurophysiological studies, computational ac-
counts have also endorsed this tight link between action perception and action execution
in the brain (e.g., Wolpert and Ghahramani, 2000; Wolpert and Kawato, 1998).
Following up on the above mentioned studies, a tight interplay between action and per-
ception is highly expected. Especially based on the common coding theory and mirror
neurons, both processes share a common neural substrate, and contemporary ideomotor
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approaches, the linkage between perception and action originates from shared represen-
tational resources, one can expect that action and perception may induce or interfere with
each. Under the theory of event coding, Müsseler and colleagues in 1997 (Müsseler and
Hommel, 1997) demonstrated, as one of the first studies discussing the effects of action
on perception, an inhibiting influences of concurrent action on perception. They showed
that the identification of a left- or right-pointing arrow is impaired when it was presented
with an arrow as visual stimulus during the preparation and execution of corresponding
key press. Since the congruent executed hand posture and shown pictures induced less
deterioration of perceptual judgments and made the participants ”blind” for this similar
postures, authors concluded that an action can induce blindness.
This interference effects have become the focus of a number of similar investigations
that tried to obtain the effects of action on perception (e.g., Lindemann et al., 2006;
Zwickel et al., 2007; Roussel et al., 2013; Christensen et al., 2011; Thomaschke et al.,
2018). An example that shows how action can compromise perceptual judgments is the
study conducted by Hamilton and colleagues (Hamilton et al., 2004). They examined
the subjects’ perceptual judgments of weight of a box from other people’s action while
they performed different motor tasks. They measured the weight estimation of observers
while lifting actively, holding passively, or maintaining a neutral condition. Subjects un-
derestimated the weight of the box in the video clip when they were lifting a heavy box
vice versa overestimated the weight of box while physically lifting a light box. Another
study that experimented how action impairs or biases perception of related actions has
been shown by (Jacobs and Shiffrar, 2005). They showed that participants as walking
observers demonstrated the poorest sensitivity to walking speed in comparison to con-
currently performing cycling and standing. This results indicated that a clear influence
of related motor activity on action perception.
Besides the discussed impairment of perceptual sensitivity by motor execution, a vari-
ety of studies indicate that motor expertise may afford better understanding of action-
congruent stimuli (e.g., Fagioli et al., 2007; Wykowska and Schubö, 2012; Catmur et al.,
2018). In addition, the facilitation of the body motion perception has been reported in a
number of interesting studies (e.g., Casile and Giese, 2006; Calvo-Merino et al., 2006;
Calvo-Merino et al., 2010; Calmels et al., 2018). For instance, Casile and Giese in 2006,
for the first time, demonstrated a direct and highly selective improvement of the visual
recognition performance for the novel acquired motor programs independent of visual
learning. In this study researchers, using a new experimental paradigm, dissociated vi-
sual and motor learning during the acquisition of new motor patterns. They assessed
the visual recognition of gait patterns from point-light stimuli before and after nonvisual
motor training while subjects were blindfolded and learned based only on verbal and
haptic feedback. Their results proved the direct influence of motor learning on visual
recognition of action even if they have been acquired in the absence of visual learning.
In a more recent study, researchers exploited a novel virtual reality paradigm for the
online control of biological motion stimuli to indicate that execution of motor behavior
influences concurrent visual action observation (Christensen et al., 2011). In this signal-
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detection task, subjects sitting in front of a projection screen had to detect a point-light
arm controlled by their own movements in a scrambled mask. The results demonstrated
that if the concurrent motor execution is temporally synchronous and spatially congru-
ent with corresponding arm movement the biological motion detection is facilitated and
inhibited otherwise. This study showed, for the first time, a range of influences between
visual action recognition and action execution from facilitatory interactions to interfer-
ence.
As discussed earlier, perception and action rely on a ’shared representational system’
as coined by Prinz in 1997. This suggest that not only action execution influences on
perception but also mere observation of an action activates a corresponding motor repre-
sentation in the observer. Therefore, substantial efforts have been made to investigate the
effect of perception on action as well. The interference effect of perception on action has
been investigated in several studies (e.g., Kilner et al., 2003; Bouquet et al., 2007). In
the first investigations into this interference, the variance in the executed movement was
measured as an index of interference to the movement while subjects made arm move-
ments observing another human making the same or qualitatively different arm move-
ments (Kilner et al., 2003). This study demonstrated a significant interference effect on
executed movements in case of incongruent movements.
The coupling of action perception and action execution is also important for our interac-
tions with others. Our survival and success in adaptive social behavior and nonverbal
communication depends heavily on our ability to thrive in complex social situations
(Kennedy and Adolphs, 2012). In the next section we show that our mirror system
namely inferior frontal gyrus (IFG), the inferior parietal lobule (IPL), the medial tem-
poral gyrus (MTG), and the superior temporal sulcus (STS), play a critical role in action
understanding as postulated in various studies and they are potentially important for our
social cognition (Gallese et al., 2004).

1.2 Social Interaction Perception
Seeing and understanding the movements of others lie at the basis of social interaction
perception and it is critical for social life. This requires the ability to perceive not just
individuals and their actions but to accurately interpret conspecifics’ actions and the in-
teractions between them. This crucial cognitive function of human is shared with other
primates as inherently social beings, and have made them very good at interpreting intent
and social behavior from others, i.e., determining the social relationship between agents,
and making predictions about their intentions or mental states.
As it has been mentioned earlier the fundamental computations and neural mechanisms
involved in the perception and processing of social intent have remained relatively un-
explored. Studies that are reviewed in this section are among the most appreciated ones
in this emerging field of study that attempt to show brain regions that are recruited dur-
ing the observation of social interactions. More importantly in this section, we review
quickly how a well-known social interaction judgment experiment demonstrated that
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displaying moving simple 2D shapes can give rise to precepts of animacy and to impute
human characteristics even to geometric figures in nonrandom motion. This seminal
work and its subsequent studies that investigated the cues that can directly invoke the
perception of interaction were the main motivations behind the second part of this PhD
work.
Heider and Simmel in 1944 demonstrated that humans can perceive intent or social in-
teraction from strongly impoverished stimuli. In this seminal work the human partici-
pants were shown a video with simple 2D figures in motion. The participants not only
perceived the objects as alive, but also they attributed different features of social inter-
actions including fighting, following, attacking and etc. (Fig.3). These anthropomorphic
interpretations were spontaneous and highly consistent from one subject to another. The
striking ability of humans that can appreciate the cause-effect relationship of interact-
ing simple geometrical shapes (social interaction perception), and also spontaneously
recognize and appropriately perceive that another entity is an alive agent (animacy per-
ception), have been demonstrated widely in several other seminal works (e.g., Michotte,
1963; Leslie, 1995; Scholl and Tremoulet, 2000; Schlottmann et al., 2006).
It is worth mentioning here that the interesting literature, developed specifically after ini-
tial demonstrations of Michotte and Heider, have referred to this phenomena variously.
Social causality (e.g., Rochat et al., 1997), social meaning (e.g., Tavares et al., 2008),
action understanding (e.g., Baker et al., 2009), soical interaction perception (e.g., Wal-
brin et al., 2018, Isik et al., 2019), goal-directedness (e.g., Csibra, 2008), intentionality
(e.g., Dasser et al., 1989), or perception of animacy (e.g., Leslie, 1995) are the terms that
have been coined more frequently by researchers. Although there are some differences
among these terms and their applications, for the purpose of the discussion in this thesis
we refer to the animacy perception as the ability of recognizing a single living agent and
social interaction perception for the ability to detect and understand other agents’ social
interactions. Before we dive into the discussion of crucial features for both animacy and
social interaction perception, in the following we will see shortly what is known already
as the neural mechanism underlying this precept.
While much is now known about the different brain mechanisms involved in the recog-
nition of objects (e.g., Riesenhuber and Poggio, 2002), scenes (e.g., Nakamura et al.,
2000), bodies (e.g., Aviezer et al., 2012), faces (e.g., Todorov et al., 2008), and emotion
(e.g., Frühholz et al., 2015; Adolphs et al., 2003), the neural circuitry that underlies in-
teraction processing and the fundamental computations and mechanisms involved in the
perception and processing of social intent are less explored. Although it has been fre-
quently shown that a region in the pSTS is sensitive to the presence of social interactions,
it is not the only area in the brain that shows activation in presence of social relevant stim-
uli. Several studies have demonstrated that its the neighboring temporo-parietal junction
(TPJ) as well as bilateral inferior frontal gyrus (IFG), and angular gyrus, particularly in
the right hemisphere can be activated when viewing social interaction stimuli (e.g., Ia-
coboni et al., 2004; Laurie et al., 2011; Dolcos et al., 2012; Molenberghs et al., 2012).
However, converging fMRI evidence suggests that the posterior superior temporal sul-
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Figure 3: Snapshots from the chase scene in the Heider-Simmel video [Heider and Sim-
mel, 1944]. The video shows simple 2D shapes (a large triangle, a small triangle and
a small circle) moving around and having interactions. Observers attributed personal-
ity traits (e.g. shyness, being a bully) and emotions (e.g. frustration, anger) to these
geometric figures

cus (pSTS) in humans is likely candidate and has been described in the literature as the
”hub” of the social brain (e.g., Lahnakoski et al., 2012; Yang et al., 2015; Deen et al.,
2015; Walbrin et al., 2018; Walbrin et al., 2020). Moreover, a recent study in macaques
also demonstrates that STS is a central region in the visual analysis of conspecific social
interactions (Sliwa and Freiwald, 2017). This study discovered a network centered in
the medial and ventrolateral prefrontal cortex that is selective for social interactions and
did not respond to any other stimulus. More importantly, the results of this interesting
study, using whole-brain functional magnetic resonance imaging in macaque monkeys,
revealed that the large parts of shape-selective STS are interaction-selective (i.e. compe-
tition and cooperation) and introduced this as a new dimension of tuning and functional
organization of region of the STS.
One of the most intriguing aspect of Heider and Simmel’s work was the visual display

itself that contains only a few simple moving 2D geometric shapes that do not have fea-
tures of any living agents (e.g., faces, hands, biological motions). This suggested that
motion features together with a few simple visual features of objects (e.g., anteroposte-
rior axis) could be sufficient not only to induce a strong animacy perception but also to
attribute intention characteristics to such moving agents. For the rest of this discussion
and in alignment with the purpose of this thesis, we focus only on researches that at-
tempted to reveal features that characterize social interaction and animacy perception of

10



Mohammad Hovaidi-Ardestani

agents using such simple displays and do not discuss other experiments that have used
more specialized and rich stimuli. This means that high level visual attributes including
facial features (e.g., Johnson, 2000), surface information, and body configuration (e.g.,
Eimas and Quinn, 1994) that are considered relevant for identifying animacy and inten-
tion perception are out of the scope of this work.
The ability to perceive social information given visual motion appears to develop early.
Exploiting such simple stimuli and based upon only the movement patterns of simple ge-
ometrical shapes, a series of developmental studies have revealed that children have the
ability to infer goal-directedness action and further interpret such moving 2D objects as
animate agents (Premack, 1990; Gergely et al., 1995; Csibra et al., 1999; Csibra, 2008;
Csibra and Southgate, 2009). Some studies even demonstrated that children and adults
with Autism Spectrum Disorder (ASD) show no deficit in the ability of animacy per-
ception after they have reached criterion in the training phase (Rutherford et al., 2006;
Vanmarcke et al., 2017). Although studies that have examined goal-directed action per-
ception in children have suggested that this ability is constrained by other factors such as
cultural context (e.g., Green et al., 2016), emotional context (e.g.,Trautmann et al., 2009),
and facial expressions (e.g., Rennels et al., 2017), we can still can claim that motion fea-
tures of the stimuli play an important role for perceptual animacy and social inferences.
Having demonstrated that, researchers attempted to discover further the specific motion
cues that arise such precepts.
Since 1944 and after Heider and Simmel published their seminal work, several researchers
have attempted to reveal which visual cues of motion promote the perception of animacy.
Violations of the conservation energy principle, such as heading and acceleration (e.g.,
Scholl and Tremoulet, 2000), and Newtonian laws of motion (e.g., Kaduk et al., 2013),
together with speed and trajectory direction changes (e.g., Scholl and Tremoulet, 2000;
Szego and Rutherford, 2008; Träuble et al., 2014) are among the minimal kinematic cues
for the emergence of animacy in moving shapes. In addition, some behavioral proper-
ties such as goal-directedness (e.g, Schlottmann and Ray, 2010), being reactive to social
contingencies (e.g., Dittrich and Lea, 1994), and self-propelledness (e.g., Csibra, 2008)
also seem crucial for identifying animate beings. Among all mentioned features, self-
propelled motion (i.e. without the application of an external force), seems to be the
most powerful cues to animcy perception implying the perceptual evidence of a hidden
energy source (e.g., Premack, 1990; Hauser, 1998; Csibra, 2008). It means that if an
object seems to possess a hidden energy source, it is perceived as intentional which is
known in the literature as ”Energy Violation Hypothesis” (e.g., Scholl and Tremoulet,
2000). This hypothesis implies that the perception of animacy highly depends on motion
cues. However, some studies (e.g., Tremoulet and Feldman, 2006) argue that the motion
information can be ambiguous and insufficient for such percept and humans exploit ad-
ditional information for correct identification of animate or inanimate object. Therefore,
the more precise conclusion could be that the contextual information along with the mo-
tion information guides the animacy perception.
Social interaction perception or the ability to infer the intentions of others could be
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achieved solely based on motion patterns which have been regarded as sufficient to trig-
ger a strong impression of intentionality (e.g., Gergely et al., 1995; Csibra et al., 1999;
Scholl and Tremoulet, 2000; Barrett et al., 2005; McAleer and Pollick, 2008). Barrett
et al. in 2005, introducing a novel method for generating six basic categories of inten-
tional motion (see Blythe et al., 1999), analyzed the specific motion cues that allow these
intention-from-motion judgments and examined the accuracy of these judgments across
cultures. To gather a set of naturalistic whole-body motion trajectories reflected the six
categories of social interactions namely chasing, fighting, courting, following, guarding,
and playing, they developed a two-person computer game. Since the instructions on how
to generate each types of intention could bias the players, the experimenters just gave the
label of the intentional motion and asked participants to produce trajectories that closely
matched their intuitive motion schemes. Researchers noticed that judging the intentions
of others based only on motion cues. They also elected several simple cues that could
be computed readily from a motion trajectory and showed how diagnostic they are for
categorizing two-agent social interactions.
The results of this work were replicated by McAleer and Pollick in 2008 and additionally
revealed the advantage for viewing intentional motion from an overhead viewpoint. In
this study, using a novel approach to create animate shapes whose motions are directly
derived from human actions, people were surprisingly better at attributing intentions to
displays shown from an overhead (i.e., 2D stimuli) rather than side view. The results
also confirmed the important predictors namely relative distance, relative and absolute
heading, speed and acceleration of agents as the most informative motion cues in the
understanding and attribution of social intention.

2. Action Recognition Models
Visual recognition of action has been an active research area over the last two decades
in the field of cognitive neuroscience (Rizzolatti et al., 2001; Keysers and Perrett, 2004;
Keysers, 2011; Rizzolatti and Fogassi, 2014; Thompson et al., 2019) as well as other dis-
ciplines namely, computer vision (e.g., Zhu et al., 2017), robotics (for review see Vrigkas
et al., 2015), and even philosophy (e.g., Tsakiris and Haggard, 2005; Jacob, 2009; Sini-
gaglia, 2013). A wide range of applications, including, video surveillance (e.g., Han
et al., 2015), human machine interaction (e.g., Lee and Lee, 2011), video retrieval (e.g.,
Chaquet et al., 2013), and intelligent driving (Meiring and Myburgh, 2015) has attracted
an outstanding interest for this topic. Therefore, a vast number of speculative expla-
nations together with conceptual and computational models for action recognition have
already been discussed and developed.
In the previous sections mirror neurons as the possible neural substrate of action pro-
cessing and understanding together with action perception cycle and its role in social
interaction perception were discussed. Here, in this section we only focus on models
that narrow down the underlying computational mechanisms with explicit mathematical
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Figure 4: Overview of the model (Adopted from Giese and Poggio, 2003) for the recog-
nition of biological body movements with two pathways for the processing of form and
optic flow information. (V: visual cortex, F5: premotor cortex, M(S)T: medial (superior)
temporal cortex, KO: kinetic-occipital area, IT: inferior temporal cortex, EBA: extrastri-
ate body area, FBA: fusiform body area, IPL: inferior parietal lobule).

implementations. Thus, in alignment with the focus of this thesis I review briefly the
dynamic neural field models as well as artificial neural networks from classics to the re-
cent deep learning models (for review of other important models see this comprehensive
review by Giese and Rizzolatti, 2015).
A class of biologically motivated models for action recognition is based on recurrent
neural networks and a theoretical framework of dynamic neural fields (DNFs). DNFs are
tissue level models that describe the spatiotemporal evolution of distributed activation
patterns as the average activity of cortical neurons (Wilson and Cowan, 1973; Amari,
1977; Meijer and Coombes, 2014; Schöner and Spencer, 1966). Since this model of
the recurrently connected space-continuous ensembles of neurons is sometimes mathe-
matically traceable, its emerging neural activity patterns can easily be understood and
for some cases predicted. For instance, the existence of self-sustained neural population
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behavior that has been shown in many areas of higher association cortices (e.g., Miller,
2000) can be explained by the positive reciprocal feedback among neighboring neurons
(Amari, 1977). This persistent behavior also is widely assumed to support a multitude of
related cognitive functions such as working memory, decision making and the learning
of connections between events that are time-separated (Curtis and Lee, 2010). DNFs
have also been employed as building blocks in architectures of models for the distributed
representation of motor programs as well as for the encoding of perceived visual pattern
sequences (e.g., Zhang, 1996; Erlhagen and Schöner, 2002; Giese and Poggio, 2003;
Cisek and Kalaska, 2010). In robotics also researchers modeled the STS, F5 and pre-
frontal cortex exploiting DNFs to account for the interaction between action planing and
movement recognition (e.g., Sousa et al., 2015).
One of the most influential neurophysiologically plausible model of biological move-
ment recognition designed based on DNFs was introduced in 2003 by, Giese and Pog-
gio. In this model the recurrent neural networks with asymmetric lateral connections
were deployed to encode the perceived visual pattern sequences of point light walker
stimuli. The resulting network dynamics suppresses responses to the randomization of
the temporal order of the frames of a movie which leads to the destruction of a biological
movement’s perception. Since the computational mechanisms of this model formed the
basis of the models developed in this thesis, a very short description of this model will
be provided subsequently.
In accordance with the neural tuning properties in the ventral and dorsal stream of visual
processing that are specialized for the analysis of form and motion (optic flow) informa-
tion (Ungerleider and Mishkin, 1982) , the model is divided into two parallel processing
streams consisting of hierarchies of neural feature detectors that mimic properties of
cortical neurons (illustrated in Fig.4). Consistent with the known properties of cortical
neurons in the visual pathway, the complexity of these feature detectors become more
complex and the receptive fields of neurons tend to get larger along with the complexity
of their optimal stimuli. In this hierarchical scheme, translation invariance is achieved by
pooling over afferents tuned to different transformed versions of the same stimulus as it
was sketched originally by (Perrett and Oram, 1993). The maximum pooling technique
is further used to achieve the scale invariance similar to related shape recognition models
(e.g., Riesenhuber and Poggio, 1999 ; Serre et al., 2005).
The form pathway achieves recognition of actions by recognizing sequences of ’snap-
shots’ of body shapes. Neurons on the first level of the form pathway model the simple
cells (Hubel and Wiesel, 1962) in primary visual cortex (V1) responding selectively for
local oriented contours using Gabor filters. Local orientation information is extracted by
neurons on the second hierarchy level that are selective for position- and scale invariant
bar detectors corresponding to complex cells in areas V2 and V4. The third layer con-
tains snapshot neurons that are selective for the particular configurations of the human
body that are characteristic for actions and biological movements. These view-tuned neu-
rons that have been found in inferotemporal cortex (area IT) of monkeys (Logothetis and
Sheinberg, 1996), and STS of monkeys and humans (e.g., Vaina et al., 2001) are mod-
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eled by Gaussian Radial Basis Functions (RBF). The highest level of the form pathway
is formed by motion pattern detectors that temporally integrate and smooth the activity
of all snapshot neurons that represent the same movement pattern. The motion path-
way of the model has the same hierarchical architecture which contributes to achieve the
recognition of biological movements, by analyzing the optic flow pattern. The local mo-
tion detectors corresponding to direction-selective neurons in V1 and motion-selective
neurons in area MT comprise the first level of this hierarchy. The local structure of the
optic-flow fields induced by movement stimuli is evaluated by neurons with larger recep-
tive fields in the second level. Equivalent to the form pathway snapshot neurons that are
trained by RBFs, the optic-flow pattern neurons on the next level are selective for more
complex optic flow patterns that appear at each individual pattern of biological move-
ment. Like the form pathway, the highest level of that hierarchy is comprised of motion
pattern neurons the integrate and smooth temporally the output signals of the optic-flow
pattern neurons. This hierarchical (deep) visual recognition model which was originally
developed as model for V1-MT cortical processing, later extended extended to applica-
tions in computer vision (e.g., Jhuang et al., 2007; Schindler et al., 2008; Abdul-Kreem,
2019).
Artificial systems for action processing have received considerable attention over the
past few decades. The first implemented models for action processing and mirror sys-
tems were indeed based on artificial neural networks. The seminal models (Oztop and
Arbib, 2002; Bonaiuto et al., 2007), represent the circuitry of the action processing net-
work (e.g., F5 mirror system, the STS, and parietal areas such as AIP or IPS [intraparietal
sulcus], or LIP [lateral intraparietal cortex]). This model architecture that was primary
introduced to model visual feedback for grasping of objects (Fagg et al., 1998) and used
a classical training scheme similar to backpropagation, accomplished the recognition of
grips and trajectory prediction. This model that was fully implemented, introduced the
concept of hand state which consists of sequence of locations and grasp shapes of hand in
correspondence to the target object is calculated in STS to provide feedback for visually
directed grasping. Performing a reach action, F5 mirror neurons learn an association of
the sequence of motor signals and the evolving hand state that makes action recognition
possible by evoking F5 activity during action observation. This detailed computational
model that demonstrated the temporal sequence of hand states can then be exploited to
recognize the action inspired many other schemes for this purpose and extended further
the study of the mirror system by introducing and examining the novel hypotheses in the
context of artificial neural networks (e.g., Oztop et al., 2006; Bonaiuto and Arbib, 2010;
Schrodt et al., 2014).
The recent surge of interest in deep learning methods is due to the fact that in recent
years, ”deep learning architectures” or ”convolutional neural networks” have been shown
to outperform previous state-of-the-art techniques in several computer vision problems,
first in object detection (e.g., LeCun et al., 2015; Ouyang et al., 2017), but later also in
motion tracking (e.g., Doulamis and Voulodimos, 2016; Doulamis, 2017), action recog-
nition (e.g., Karpathy et al., 2014; Lin et al., 2016; Tacchetti et al., 2017; Yang et al.,
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2019), and human pose estimation (e.g., Brau and Jiang, 2016; Zhu et al., 2018). In
spite of this great success, there are many nonbiological features of deep (multilayer)
learning such as applied filter kernels, regularization by ”drop out”, or backpropagation
algorithm in current supervised training process that requires massive amounts of labeled
data, and non-local learning for changing the weights. These, and many other details that
are not neurobiologically plausible in architecture of deep learning networks, have made
machine learning researchers and neuroscientists to examine the similarities in the com-
putational properties between deep neural networks and human brain (e.g., Illing et al.,
2016).
Notwithstanding that the increasing interest in neuron-like architectures with local learn-
ing rules motivated by the current advances in neuromorphic hardware, has led to new
elaborate models for biologically plausible variants of deep learning (e.g., Lake et al.,
2017; Tavanaei et al., 2019; for review see also Nawrocki et al., 2016), the degree of the
correlation between the computational properties of the deep neural networks and those
of the human brain remains unclear. Therefore, further review of deep learning methods
for action recognition will not necessarily provide more insights to our understating of
action processing in real cortical neurons. However, some recent comprehensive reviews
of this topic are highly encouraged to be read (e.g., Yao et al., 2019; Serre, 2019).

3. Agent Navigation Models
Although path planing and navigation (see Figure.5) can be sometimes as survival as
chasing prey, humans and other animals select paths leading to their targets effortlessly
through a complex environment. To understand this fundamental ability, a good deal of
research has been carried out to model the behavioral dynamics of locomotion and to
design of artificial behaving autonomous agents. However, aligned with the focus of this
thesis, this section gives only a simplified review of the dynamical systems models of
visually-guided locomotor behavior.
Towards an understanding of the visual control system of the fly, in 1976 Reichardt
and Poggio (Reichardt and Poggio, 1976), provided a quantitative analysis of navigation
model that describes mathematically how a fly steers toward moving targets which they
chase as part of their mating behavior. This was the first study that described the ori-
entation behavior of an autonomous agent using a dynamical system with an attractor
at the direction in which targets lie. However, a detailed navigation behavior cannot be
described based only on target acquisition. To address this problem, Schöner and Dose (
Schöner and Dose, 1992, Schöner et al., 1995) provided a dynamical system framework
that integrates the target acquisition and obstacle avoidance for navigation and explo-
ration of an autonomous agent. This dynamical model consists of a system of differen-
tial equations with attractors and repellers that correspond to goals and obstacles. In this
seminal paper, authors have developed a model that seeks to understand the behavioral
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Figure 5: Path planing and navigation: from the starting point (small circle ), the au-
tonomous agent has to navigate through walls (indicated in black) by avoiding obstacles
towards goal (marked as cross). Dash line indicates the planned path.

dynamics of locomotion and shows the time evolution of behavior as a robot interacts
with its environment. In this dynamical system based approach, the current state of the
system, as well as intended and avoided states, can be expressed as (sets of) points in the
space of behavioral variables, while trajectories of the agent through this space define
the behavior.
Inspired by the approach of this paper (Schöner et al., 1995), a new investigation over
visually-guided locomotion in such a dynamical framework was proposed to compute a
potential field over the robot heading (Fajen et al., 2003). Researchers in this study, de-
veloped a biologically-inspired model deriving from experiments on human walking, to
identify a set of behavioral variables for steering and obstacle avoidance. They ultimately
demonstrated that a successful route selection can be accounted for by the on-line steer-
ing dynamics, without explicit path planning. The main difference between this method
with its preceding ones was to exploit angular acceleration (φ̈ ) rather than angular veloc-
ity (φ̇ ) motivated from measurements of human walking. The resulting model showed
smoother and more efficient route selection with continuous curvatures through a clut-
tered environment. However, this model later was extended (Huang et al., 2006) to use
the angular width of an obstacle instead of its distance, and to accommodate obstacles
of finite width. More importantly the new extended version of the model was able to use
speed control to guarantee that the robot will not collide with an obstacle. This method
was introduced, however, for a single agent to track a moving target while avoiding col-
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lision with moving obstacle, and was not suitable for applications that required multiple
agents. In a new scheme presented by Yan et al. in 2010, an interpotential field, deter-
mined by the relative positions among agents, was introduced to address the problems of
target tracking and obstacle avoidance for multi-agent systems.

4. The Focus of This Thesis
The aim of this thesis is to study, model and hopefully provide an account that explains
how humans understand the actions of other people. First we focused on modeling dy-
namic neural processes underlying the bidirectional link between action perception and
action execution. As it was shown previously action perception and the control of action
execution are intrinsically linked in the human brain. Experiments show that concur-
rent motor execution influences the visual perception of actions and biological motion.
This interaction likely is mediated by action-selective neurons in the STS, premotor and
parietal cortex. We aimed to answer the question how action execution and action per-
ception might be coupled in the brain and how they influence on each other. Therefore,
we developed a model that is based on electrophysiologically plausible mechanisms. It
combines mechanisms from previous models that accounted separately for electrophysi-
ological results from action recognition and the neural encoding of motor programs. We
demonstrated that our model provides a unifying account for multiple experiments on
the interaction between action execution and action perception.
The second part of this PhD work studies and models perception of animacy and so-
cial interaction. As it was shown previously, humans derive spontaneously judgments
about agency and social interactions from strongly impoverished stimuli, as impressively
demonstrated by the seminal work by Heider and Simmel (1944). The neural circuits
that derive such judgments from image sequences are entirely unknown. It has been hy-
pothesized that this visual function is based on high-level cognitive processes, such as
probabilistic reasoning. Taking an alternative approach, we show that such functions can
be accomplished by relatively elementary neural networks that can be implemented by
simple physiologically plausible neural mechanisms, exploiting an appropriately struc-
ture hierarchical (deep) neural model of the visual pathway.
In order to investigate further the fundamental basis of the neural encoding of social in-
tent and semantics the creation of appropriate stimulus sets for humans and monkeys is
unavoidable. Synthesis of such stimuli used in the animacy and social interaction per-
ception studies is a challenging task. The handmade displays like that of the Heider
and Simmels has rich motion features but are not quantizable. Also, the experiments
generally need many displays with varying cues, and it is difficult to mass produce the
handmade displays. The goal of last part of this work is to present a dynamical model that
can generate different classes of social interactions controlling the dynamics of the most
important factors of social interaction perception namely speed and motion direction.
Although still recent studies argue that the usage of artificial displays for the animacy
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perception lack the rich motion features and hence cannot capture the natural looking
motions and interactions, we will show that our generated videos have been validated by
human subjects in a psychophysical experiment. These displays have the advantage that
the motion cues are quantizable and can be controlled precisely with tweaking parame-
ters of the model and more importantly one can generate arbitrary number of videos per
social interaction type.

5. Overview of The Thesis
This thesis is concerned with introducing new physiologically plausible neural models
for the coupling of action perception and execution as well as social interaction percep-
tion as one of the main application of action perception. Following lines provide a brief
overview of the major studies in this PhD work and a summary of presented papers in
the subsequent chapters.
In the first study (Chapter 2: ”Neurodynamical Model for the Coupling of Action Per-
ception and Execution”). In this work we developed a model that is based on neural
representations of different motor actions by mutually coupled neural fields. One field
model represents the perceived action (vision field), and the other one the associated
motor program (motor field). Input stimulus pattern for the vision field is a traveling
input peak that is derived from a previous neural model Giese and Poggio, 2003 which
has been shown to provide a unifying account for a variety of experimentally observed
phenomena in body motion perception. For the implementation, we used only the form-
pathway which analyzes biological movements by recognizing sequences of ’snapshots’
of body shapes. Two pairs of neural fields of this type were then integrated within an
agent that realizes coupled distributed representations of visual and motor patterns. Both
fields are reciprocally coupled by interaction kernels that result in a mutual excitation of
the fields if the traveling solutions are at the same position along the field, and which
induce inhibition if the peak positions strongly differ. As consequence, the motor repre-
sentation enhances the activity in the visual field when the motor peak propagates with
the same speed and phase as the observed visual input. Finally, visual stimuli are recon-
structed through a pathway that provides learning of linear neural net-works that map the
peak neural activity of the motor field at position onto the joint angles (key poses) within
a body-centered frame of reference.
We used the model to reproduce the results of a several experiments that focus on the ac-
tion perception cycle and mirror neurons. Since the model parameters were identical for
all simulations, it thus provides a unifying quantitative account for the experimental. The
model reproduces correctly the interactions between action observation and execution in
several experiments and provides a link towards electrophysiological detailed models of
relevant circuits.
In the second study (Chapter 3: ”Neural model for the visual recognition of animacy and
social interaction”) we extended the focus of the study to understand and show that how
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animacy and social interaction can be perceived in human brain by introducing and de-
veloping a neural model that can classifies different social interaction types based mainly
on motion cues.
Extending classical biologically-inspired models for object and action perception (Riesen-
huber and Poggio, 1999; Giese and Poggio, 2003) by a front-end that exploits deep
learning for the construction of low and mid-level feature detectors, we built a hierar-
chical neural model that reproduces elementary psychophysical results on animacy and
social perception from abstract stimuli. The lower hierarchy levels of the model consist
of position-variant neural feature detectors that extract orientation and intermediately
complex shape features. The next-higher level is formed by shape-selective neurons that
are not completely position-invariant, which extract the 2D positions and orientation of
moving agents. A second pathway extracts the 2D motion of the moving agents. Exploit-
ing a gain-field network, we compute the relative positions of the moving agents. The
top layers of the model combine the mentioned features into more complex high-level
features that represent the speed, smoothness of motion and spatial relationships of the
moving agents. The highest level of the model consists of neurons that have learned to
classify the agency of the motions, and different categories of social interactions.
Based on input video sequences, the model successfully reproduces results of Scholl and
Tremoulet, 2000 on the dependence of perceived animacy on motion parameters, and its
dependence on the alignment of motion and body axis. The model reproduces the fact
that a moving figure that has a body axis, like a rectangle, results in stronger perceived
animacy than a circle if the movement, and that the rating is highest if the body axis is
aligned with the motion than if it is not aligned. In addition, the model correctly classifies
six categories of social interactions that have been frequently tested in the psychophysi-
cal literature (following, fighting, chasing, playing, guarding, and flirting). Using simple
physiologically plausible neural circuits, the model accounts simultaneously for a variety
of effects related to animacy and social interaction perception. Even in its simple form
the model proves that animacy and social interaction judgments partly can be derived by
very elementary operations within a hierarchical neural vision system, without a need
of sophisticated probabilistic inference mechanisms. The model makes precise predic-
tions about the tuning properties of different types of neurons that should be involved in
the visual processing of such stimuli. Such predictions might serve as starting point for
physiological experiments that investigate the correlate of the perceptual processing of
animacy and interaction at the single-cell level.
In the third study (Chapter 4: ”A Generative Model for the Interaction of Two Moving
Agents”), we modeled, using previous human navigation models, the interaction of two
moving agents. Running a psychophysics study, we showed that our model can generate
an arbitrary number of videos for at least twelve distinctive classes of social interaction.
In order to model the interaction of two moving agents we exploited a dynamical systems
approach, which before was used very successfully for the modelling of human naviga-
tion (Fajen et al., 2003). The original approach focuses on mathematical formalization
of reactive control for autonomous robots using differential equations that specify attrac-
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tors and repellors for behavioral variables that control the agent’s heading direction and
speed. These displays have the advantage that the motion cues are quantizable and can
be controlled precisely with tweaking parameters of the model and more importantly one
can generate arbitrary number of videos per social interaction type. This study together
with the previous one provide both a descent training dataset and a recognition model
that might explain the social interaction perception in human brain.
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Abstract. In cortical representations action perception and action exe-
cution are closely linked, as indicated by the presence of mirror neurons.
Experiments show that concurrent action execution and action percep-
tion influence each other. We have developed a physiologically-inspired
neural model that accounts for the neural encoding of perceived actions
and motor plans, and their interactions. The core of the model is a
set of coupled neural fields that represent either perceived actions or
motor programs. We demonstrate that this model reproduces the results
of a variety of quite different experiments investigating the interaction
between action perception and execution. It also predicts the emergence
and stability of synchronized coordinated behavior of two individuals
that observe each other during action execution.

Keywords: Action perception · Motor program · Neural field · Recur-
rent neural network · Mirror neurons

1 Introduction

Perceptual and motor representations of actions are tightly coupled (e.g. [1]).
This is supported by many results from behavioral and functional imaging stud-
ies, and physiologically by the existence of mirror neurons, e.g. in premotor and
parietal cortex [2,3]. Behavioral and functional imaging studies show influences
of motor execution on simultaneous action perception as well as influences in
the opposite direction (e.g. [4–6]). Physiological data provides insights in the
basis of the encoding of actions at the single-cell level [2,7,8]. This has moti-
vated the development of neural models that account for action perception (e.g.
[9,10]) as well as for the neural encoding of motor programs (e.g. [11]). Multi-
ple conceptual models have been proposed that discuss the interaction between
action perception and execution (e.g. [12–14]). Some implemented models have
been proposed for these interactions in the context of robot systems (e.g. [15]).

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part I, LNCS 10613, pp. 19–26, 2017.
https://doi.org/10.1007/978-3-319-68600-4_3
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We describe here a model that is based on electrophysiologically plausible mech-
anisms. It combines mechanisms from previous models that accounted separately
for electrophysiological results from action recognition and the neural encoding
of motor programs [9,16,17]. We demonstrate that our model provides a unify-
ing account for multiple experiments on the interaction between action execution
and action perception. The model might thus provide a starting point for the
detailed quantitative investigation how motor plans interact with perceptual
action representations at the level of single-cell mechanisms.

2 Model Architecture

The architecture of our model is illustrated in Fig. 1. The core of the model is a
set of dynamically coupled neural fields that encode visually perceived actions
and motor programs (Fig. 1B). Each encoded action is represented by a pair
of neural fields, a motor field encoding the associated motor program, and a
vision field that represents the visually perceived action. Within these fields the
evolving action is represented by a stable traveling pulse solution that runs along
the field. The different fields are dynamically coupled in a way that enforces a
synchronization of the traveling peaks between the vision and motor field that
encode the same action. Fields encoding different actions inhibit each other. The
vision fields receive a feed-forward input from a visual pathway that recognizes
shapes from gray-level images (Fig. 1A). The motor fields are read out by a neural
network that models the motor pathway and produces joint angle trajectories
that correspond to the evolving action. These angles are used to animate an
avatar, which is rendered to produce an image sequence or movie that shows
the action (C). The architecture thus models motor execution as well as action
recognition. The following sections describe the individual components of the
model in further detail.

2.1 Neural Vision and Motor Fields

The model assumes that individual actions can be encoded as visual patterns, or
as motor program. Neurally, the patterns are encoded as stable traveling pulse
solutions in dynamic neural fields. For the simulations in this paper these fields
are defined over periodic spaces (x, y ∈ [−π, π]). We assume the encoding of
M different actions (where M was 2 for the simulations). The vision field that
encodes the precept of action m (assuming 1 � m � M) is driven by an input
signal distribution sm(x, t), which is produced by the output neurons of the
visual pathway that are tuned for body postures of the action pattern m. The
temporal evolution of the activation um(x, t) of this visual field is determined
by the neural field equation [18]:

τ∂um(x, t)

∂t
= −um(x, t) − h + wu(x) ∗ F (um(x, t)) + sm(x, t) + cm

u (x, t) (1)

with the nonlinear saturationg threshold function F (u) = d0

(
1 − exp(u2/2d1)

)

for u > 0, and F (u) = 0 otherwise, and h > 0 determining the resting level
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activity. As interaction kernel we chose the asymmetric function: wu(x) =

−a0 + a1(
1+cos(x−a3)

2 )γ with γ > 0. The convolution operator is defined by

f(x) ∗ g(x) =
∫ π

−π
f(x′)g(x − x′)dx′. With this kernel for appropriate choice of

the parameters, a traveling-pulse input signal sm(x, t) induces a traveling pulse
equilibrium solution that moves synchronously with the input. This solution
breaks down if the frames of the input movies appear in inverse or random tem-
poral order [9]. The term cm

u (x, t) summarizes the inputs from the other fields
and is further specified below.

The corresponding motor program is encoded by another neural field without
feed forward input. It is defined by the equation:

τ∂vm(y, t)

∂t
= −vm(y, t) − h + wv(y) ∗ F (vm(y, t)) + cm

v (y, t). (2)

The form of the interaction kernel wv is identical to the one of wu with
slightly different parameters, resulting in stronger recurrent feedback. As con-
sequence, once a local activation is established by a ‘go signal’ a self-stabilizing
traveling peak solution emerges that propagates with constant speed along the
y-dimension [19]. We associate the values of y with the body poses (joint angles)
that emerge during the action, so that the traveling pulse encodes the temporal
evolution of a motor program. The term cm

v (x, t) again specifies inputs from the
other fields.

2.2 Coupling Structure

The cross connections between the vision and motor fields encoding the same
actions were defined by the kernel function:

wuv(x, y) = −b0 + b1

(
1 + cos(x − y)

2

)γ

= wvu(y, x). (3)

This kernel results in a tendency of the activation peaks in both fields to prop-
agate synchronously. The fields encoding different actions are coupled by the
cross-inhibition kernel wI(x, y) = −c0 with c0 > 0. As consequence the dif-
ferent encoded actions compete in the neural representation. Summarizing, the
corresponding interaction terms in Eqs. 1 and 2 are given by the relationships

cm
u (x, t) = wuv(x, y) ∗y F (vm(y, t)) +

∑
m′ �=m

wI(x, y) ∗y (F (um′
(y, t) + F (vm′

(y, t)))

cm
v (x, t) = wvu(x, y) ∗y F (um(y, t)) +

∑
m′ �=m

wI(x, y) ∗y (F (um′
(y, t) + F (vm′

(y, t)))

where the operator ∗y indicates the convolution with respect to the variable y.

2.3 Vision and Motor Pathway

The input module of our model is given by a vision pathway that recognizes
shapes from image sequences (Fig. 1A). This module is taken over form a pre-
vious model without motor pathway (see [9] for details). In brief, the vision
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Fig. 1. Overview of the model architecture. A The form pathway taken over from
a previous neural model [9] drives the input signals for the vision fields from image
sequences. B The core of the model consists of coupled pairs of vision and motor fields
that encode the same action. C Motor pathway that reads out the motor fields and
generates joint angle trajectories, which are used to animate an avatar, which then can
be rendered to produce visual input movies.

pathway consists of a hierarchy of neural shape detectors. The complexity of the
extracted features and the position and scaling invariance increase along the hier-
archy. The highest level of this pathway is composed from radial basis function
(RBF) units that have been trained with snapshots of the learned action movies.
These neurons thus detect instantaneous body shapes in image sequences, where
the underlying neural network is trained in a supervised manner. Dropping for a
moment the index m, assume that the vector z(t) is formed by the activations of
the shape-selective RBF units that encode one particular action pattern at time
t, and that the vector s(t) signifies input signal s(x, t), sampled at a sufficient
number of discrete points along the variable x. We learned a linear mapping of
the form s(t) = Rz(t) between these vectors using sparse regression. Training
data pairs consisted of vectors z(t) of the RBF outputs for equidistantly sam-
pled key frames from the training action movies. Vectors s(t) were derived from
appropriately positioned idealized Gaussian input signals. For learned training
patterns the outputs of this linear network define a moving positive input peak,
while the input signal s(x, t) remains very small for actions that deviate from the
training action. In total, we learned M separate linear mappings from the RBF
outputs of the units encoding the keyframes of action m to the corresponding
input signal distributions sm(x, t).
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The motor pathway computes joint angles from the position of the activa-
tion peak in the motor field along the variable y. This variable parameterizes
the temporal evolution of the action. Dropping again the index m, we learned
by Support Vector Regression a mapping of the position of the activation peaks
ymax(t) = arg maxyv(y, t) onto the joint angles of the corresponding body pos-
tures. The motor fields encoding different actions compete in a winner-takes-all
fashion, and we used only the output of the most activated motor field for the
computation of the joint angles. In order to close the loop between action control
and perception we used the joint angles to animate an avatar, which then was
rendered to produce input movies for the visual pathway.

3 Simulations in Comparison with Experimental Data

We simulated the results of four experiments that studied the interaction between
action perception and execution. In the following, simulation results from the
model are presented side-by-side with the original data, always using the same
model parameters.

(i) Influence of action execution on action perception: In the underly-
ing experiment arm actions were presented as point-light stimuli in noise while
the observers performed the same action in a virtual reality setup. The spatio-
temporal coherence between the executed and the visually observed action was
systematically varied, either by delaying the observed action in time or by rotat-
ing it in the image plane relative to the executed action. (See [6] for further
details.) Fig. 2A shows a recognition index (RI) that measures the facilitation
(RI > 0) or inhibition (RI < 0) of the visual detection by concurrent motor exe-
cution in comparison with a baseline without motor execution. For increasing
spatial (Fig. 2A) as well as temporal (Fig. 2B) incoherence between the executed
and observed actions the facilitation by concurrent motion execution goes over
into an inhibitory interaction. The same behavior is reproduced by our model,
simulating the masked point-light stimulus by a noisy traveling input peak
(Fig. 2 C, D).

(ii) Influence of action perception on action execution: The underly-
ing experiment measured the variability of motor execution when participants
moved their arms periodically in on direction while they saw another person
performing a periodic arm movement in the same or in orthogonal direction [4].
As illustrated in Fig. 3A, compared to a baseline without concurrent visual stim-
ulation, the variability of the motor pattern increases when the visually observed
arm movement is inconsistent (orthogonal) to the executed pattern. The same
increase in variability is obtained from the model (Fig. 3B) (quantified as vari-
ability of the timing of the corresponding activation peak in the motor field).

(iii) Spontaneous coordination in multi-person interaction: A classi-
cal experiment in interactive sensorimotor control [20] shows that two people
that observe each other during the execution of a periodic leg movement tend
spontaneously to synchronize their movements. In addition, the variability of the
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Fig. 2. Influence of concurrent motor execution on the visual detection of action pat-
terns. The experimentally measured Recognition Index (RI) indicates transitions from
facilitation to inhibition of visual detection by concurrent motor execution, when the
temporal coherence (panel A) or the spatial congruence (panel B) of the visual pattern
with the executed patterns are progressively reduced ([6]). Similar RI computed from
the model output shows qualitatively the same behavior (panels C and D).

Fig. 3. Reproduction of experimental effects: A Motor variability of executed actions
increases during observation of incongruent actions [4]. B Timing variability of motor
peak in the model shows similar behavior. C Frequency dependence of standard devi-
ation (SD) of relative phase for the spontaneous synchronization of two agents who
observe each other [20]. D Corresponding model result derived from activity in motor
fields. E Neural trajectories for grasping execution and observation are close to ‘grasp-
ing’ plane, but far away from ‘placing’ plane [8]. F Same behavior is observed for the
neural trajectories computed from the model neurons. (Details see text.)
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relative phase of the synchronized movements is frequency-dependent. Figure 3C
shows the original data for the frequency dependence. In order to simulate this
interactive behavior of two agents, we implemented two separate models and
defined the visual input of either model by the movie that was generated by
the motor output of the other. Like in the experiment, the two simulated agents
spontaneously synchronize. Figure 3D shows that, in addition, the model pre-
dicts correctly frequency dependence of the variability of the relative phase (as
consequence of the selectivity of the neural fields for the propagation speed of
the moving peaks).

(iv) Reproduction of the population dynamics of F5 mirror neurons:
Our last simulation reproduces electrophysiological data from action-selective
(mirror) neurons in area F5 [8]. To generate this data, the responses of 489
mirror neurons, relative to the baseline activity, were combined into a population
activity vector that varies over time. Using principle components analysis, the
dimensionality of the ‘neural state space’ that is spanned up by these vectors was
reduced to three. (Higher-dimensional approximations led to very similar results;
see [8] for details.) In this neural state space the trajectories for the execution
and observation of a first action (‘grasping’) were lying close to the same plane,
while the trajectory for the observation of another action (‘placing’) evolved in
an orthogonal pane. This is quantified in Fig. 3 E, which illustrates the average
distances of the neural trajectories from the planes that fit best the trajectories
for the observation of ‘grasping’ and ‘placing’. A very similar topology of the
neural trajectories emerges for our model, if we concatenate the activities of
all neural field neurons into a population vector and apply the same techniques
for dimension reduction (Fig. 3F). Thus neural trajectories for the perception
and the execution of the same action are close to the same plane, while neural
trajectories for different actions evolve in orthogonal subspaces.

4 Conclusion

The proposed model is consistent with the behavior of action-selective neu-
rons in the superior temporal sulcus and mirror neurons in area F5 of monkeys
([16,17]). It provides a unifying account for a whole spectrum of experiments on
the interaction between action perception and execution. Future work needs to
give up the strict separation of visual and motor fields, potentially exploiting
inhomogeneous neural field models.
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Ottfried-Müller-Str. 25, 72076 Tübingen, Germany
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Abstract. Humans reliably attribute social interpretations and agency
to highly impoverished stimuli, such as interacting geometrical shapes.
While it has been proposed that this capability is based on high-level
cognitive processes, such as probabilistic reasoning, we demonstrate that
it might be accounted for also by rather simple physiologically plausible
neural mechanisms. Our model is a hierarchical neural network archi-
tecture with two pathways that analyze form and motion features. The
highest hierarchy level contains neurons that have learned combinations
of relative position-, motion-, and body-axis features. The model repro-
duces psychophysical results on the dependence of perceived animacy on
motion smoothness and the orientation of the body axis. In addition, the
model correctly classifies six categories of social interactions that have
been frequently tested in the psychophysical literature. For the genera-
tion of training data we propose a novel algorithm that is derived from
dynamic human navigation models, and which allows to generate arbi-
trary numbers of abstract social interaction stimuli by self-organization.

Keywords: Hierarchy · Neural network model · Animacy
Social interaction perception

1 Introduction

Humans spontaneously can decode animacy and social interactions from strongly
impoverished stimuli. A classical study by Heider and Simmel [1] demonstrated
that humans derived very consistently interpretations in terms of social interac-
tions from simple geometrical figures that moved around in the two-dimensional
plain. The figures were interpreted as living agents, to which even personality
traits were attributed. More recent studies have characterized in more detail
which critical features of simple stimuli affect the perception of animacy, that
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V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 168–177, 2018.
https://doi.org/10.1007/978-3-030-01424-7_17



Neural Model for the Visual Recognition of Animacy and Social Interaction 169

is whether the object is perceived as alive [2–4]. Furthermore, detailed studies
have focused on the perception of social interactions between multiple moving
shapes, e.g. focusing on ‘chasing’ or ‘fighting’ [5,6]. Six interaction types have
been used in a number of studies [7–9], McAleer and Pollick [9] showed that
these categories can be reliably classified from stimuli showing moving circular
disks whose movements were derived from real interactions.

Coarse neural substrates of the processing of such stimuli have been iden-
tified in fMRI studies. Animacy has been studied, modulating the movement
parameters of individual moving shapes [10–12], and stimuli similar to the ones
by Heider & Simmel have been frequently used in studies addressing Theory of
Mind [13,14]. In fMRI and monkey studies regions like the superior temporal
sulcus (STS) and human area TPJ were found to be selective for these stimuli
[15–18]. In spite of this localization of relevant cortical areas, the underlying
exact neural circuits of this processing remain entirely unclear. Some theories
have associated the processing of such abstract stimuli with probabilistic reason-
ing [19,20], while others have linked them to lower-level visual processing [6]. So
far no ideas exist how such functions could be accounted for by physiologically
plausible neural circuits.

The goal of this paper is to present a simple neural model that reproduces
some of the key observations in psychophysical experiments about the percep-
tion of animacy and social interactions from simple abstract stimuli. The model
in its present form is simple, but in principle extendable for the processing of
more complex stimuli that require also the processing of shape details or shapes
in clutter. The model is an extension of classical models of the visual process-
ing stream that account for the processing of object shape and actions [21–24].
However, such models never have been applied to account for the perception of
animacy or social interaction. Our attempt to use these types of architectures
is motivated by recent work that showed that models of this type for the recog-
nition of hand actions also account for the perception of causality from simple
stimulus displays that consist of moving disks [25]. This modeling work predicted
also the existence of neurons in macaque cortex that are specifically involved in
the visual perception of causality [26]. Here we show that a model based on
similar principles accounts for the perception of animacy and social interactions.

In the following section, we first describe how we generated a stimulus set for
training of the neural model, devising a generative model for social interaction
stimuli that is based on a dynamical systems approach. We then describe the
architecture of the model. The following section describes the results, followed
by a brief discussion.

2 Stimulus Synthesis

For the training of neural network models a sufficient set of stimuli is required.
The problem is that from the classical psychophysical studies only a rather small
set of stimuli is publicly available. For a meaningful application of learning-based
neural networks approaches thus a sufficiently large training data set with similar
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properties needs to be generated. In our study we used movies showing individual
moving agents, and interaction of 2 agents (chasing, playing, following, flirting,
guarding, fighting) described in psychophisical studies [7–9].

In order to model the interaction of two moving agents we exploited a dynam-
ical systems approach, which before was used very successfully for the modeling
of human navigation [27]. The underlying idea, originally derived from robotics
[28], is to define a dynamical systems or differential equations for the heading
directions φi and the instantaneous propagation speeds vi of the interacting
agents (in our case i = 1, 2). The specified movement is dependent on goal and
obstacle points in the two dimensional plain, where the other agent can also act
as goal or obstacle as well. We modified a model for human steering behavior
during walking [29] to reproduce the movements during social interactions.

The resulting dynamics is given by the following differential equations for
the heading direction:

φ̈i = −bφ̇i − kg(φi − ψg,i)(e
−c1dg,i + c2)

+ ko

Nobst∑

n=1

(φi − ψo,ni)(e
−c3|φi−ψo,ni|)(e−c4do,ni). (1)

The variables ψg,i and dg,i signify the absolute direction of the actual goal point
and the distance of the goal from the agent in the 2D plain. Likewise, ψo,ni and
do,ni signify the absolute direction and distance from obstacle number n from
the agent, where Nobst is the number of relevant obstacles, and where km and
cm signify constants. The forward speed of the agents is specified by the two
stochastic differential equations

τ v̇i = −vi + Fi(dg,i) + kεεi(t), (2)

where εi(t) is Gaussian white noise. The two functions Fi that specify the dis-
tance dependence of the speed dynamics are different for the two agents:

F1(d) =
1

1 + e−c5(d−c6)
− c7e

−kd (3)

F2(d) =
c8

1 + e−c9(d−c10)
− c11e

−kd + c12. (4)

The goal point of the second agent was typically the first agent. The goal
points for the first agent was given by a sequence of fixed positions, which were
randomly generated by uniformly sampling from the 2D plain and rejecting
the samples that were closer than a fixed distance from the last sample. Since
it turned out that the influence of the obstacle terms was rather low for the
speed dynamics, we dropped the obstacle terms from the speed control dynam-
ics. Table 1 provides an overview of the model parameters for the six simulated
behaviors. We generated 50 stimuli for each interaction class. Figure 1 shows
examples paths of the agents for the different behaviors for typical simulations.



Neural Model for the Visual Recognition of Animacy and Social Interaction 171

Table 1. Parameters of simulation algorithm.

Agent 1 Agent 2

kε C5 C6 C7 k kε C8 C9 C10 C11 C12 k

Guarding (Gu) 0 1 5 0 0 0 1 1 3 0 0.5 0

Following (FO) 0 10 7 0 0 0 1 4 4 0 0 0

Fighting (FI) 1 1 3 1 0.1 1 1 1 3 1 0 0.1

Chasing (CH) 0 10 7 0 0 0 1 1 7 0 0 0

Flirting (FL) 0 1 5 0 0 1 0.6 1 2 1 0 0.5

Playing (PL) 0 1 5 0 0 1 1 1 10 0 0.5 0
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Fig. 1. Sample trajectories for 6 different social interactions. Colors indicate the posi-
tions of the two agents (agent 1: blue, agent 2: red). Color saturation indicates time,
the color fading out after long times. (Color figure online)

3 Model Architecture

An overview of the model architecture is shown in Fig. 2. Building on classical
biologically-inspired models for shape and action processing [21,22], the model
comprises a form and a motion pathway, each consisting of a hierarchy of fea-
ture detectors. Presently, these pathways were modelled following these classical
papers, which was sufficient for the tested simple stimuli.

Form Pathway: The form pathway of the simple model implementation here
comprises only three hierarchy layers. The first is composed from (even and
uneven) Gabor filters with 8 different orientations (cf. [22]), whose centers were
placed in a grid of 120 by 120 points across the pixel image. The outputs of
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Fig. 2. Model consisting of a form and a motion pathway. ME signifies a layer of motion
energy detectors, and RPM the relative position map. The top level of the model is
formed by neural detectors for the perceived animacy, and a network that classifies six
different types of interactions. (See text for details.)

this Gabor filter array are pooled by the next layer using a maximum oper-
ation over a grid of 41 by 41 filters, separately for the different orientations,
in order to increase the position-invariance of the representation. The highest
layer of the form pathway is formed by Gaussian radial basis function, which are
trained with the shapes of the agents in different 2D orientations. Opposed to
many other object recognition architectures, these shape-selective neurons have
receptive fields of limited size (about 20% of the width of the image), which is
consistent with neural data from area IT [30]. The outputs of this layer provide
thus information about the identity of the agents, their positions, and their ori-
entation in the image plain. The signal uk(φ, x, y) is the output activity of the
neural detectors detecting shape k at the 2D position (x, y). Summing this signal
over all φ provides a neural activity distribution upk

(x, y) whose peak signals
the position of agent k in the image. This signal is used to compute the velocity
and the relative positions of the moving elements or animate objects. Similarly,
by summing over the positions one obtains a activity distribution uφk

(φ) over
the directions with a peak at φk.vadjust
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Motion Pathway: It analyzes the 2D motion and the relative motion of the
moving agents. As input we use the time-dependent signals upk

(x, y) for each
agent as input to a field of standard motion energy detectors (ME in Fig.
2), resulting in an output that encodes the motion energy in terms of a four-
dimensional neural activity distribution (dropping the index k in the following)
uv(x, y, vx, vy, t), where v = (vx, vy) is the preferred velocity vector of the motion
energy detector. Pooling this output activity distribution over all spatial posi-
tions using a maximum operation, a position-invariant neural representation of
velocity is obtained. From this a neural representation of motion direction is
obtained by pooling this activity distribution over all neurons with the same
(similar) motion direction, resulting in a one-dimensional activity distribution
uθ(θ, t) over the motion direction θ, from which the direction can be easily esti-
mated by computing a population vector1. The same applies to the length of
the velocity vector2 v = |v|. In order to compute also the acceleration of the
agents, we transmit the position-invariant activity distribution uv(vx, vy, t) as
input to another field of motion energy detectors, which computes from this an
energy distribution ua(x, y, ax, ay, t) over the acceleration vectors a = (ax, ay).
By pooling over directions, from this an activity distribution over the length of
these vectors a = |a|) is computed, and again this parameter can be estimated
by a simple population vector. The population estimates of θ, v and a enter the
animacy computation (s.b.).

For analyzing the relative motion of the two agents, following [22], the output
distributions upk

(x, y) of the form pathway are also fed into a gain field network
that computes a representation of the position of the second agent in a coordinate
frame that is centered on the first. Its output is computed as convolution-like
integral of the form upR

(x, y) =
∫

x′,y′ up1
(x′, y′)up2

(x + x′, y + y′) dx′dy′. This
output defines a neural relative position map that represents the position of agent
2 as an activity peak in a coordinate frame that is centered on the first. The inte-
gral is taken over a finite region of shifts |(x, y)| < D, implying that situations
where the agents have a distance substantially larger than D will not produce
an output peak. This makes sense since agents that are too distant do not pro-
duce the percept of a social interaction. The activity distribution upR

(x, y, t) is
again processed by a cascade of two levels of motion energy detectors in order
to compute the relative speed and acceleration of the two agents. Population
estimates of the relative distance dR = |pR|, velocity vR, and the acceleration
aR enter the interaction classifier.

Recognition Level: The highest level of the model consists of a circuit that
derives the perceived animacy of the two agents, and another one that classifies
the perceived interaction class. The neurons detecting instantaneous animacy
(dropping again the index k and time) multiply two input derived from the signal
of both pathways signals B = A1A2. The first signal measures the alignment of

1 A simple estimate of the encoded angle is given by θ̂ = arg
(
(
∑

m exp(iθm)
uθ(θm, t))/(

∑
m uθ(θm, t))

)
, where the θm are the preferred directions of the neurons.

2 Here the estimator is v̂ = arg
(
(
∑

m vmuv(vm, t))/(
∑

m uv(vm, t))
)
, where the vm

are the preferred speeds of the neurons.
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the body axis of the moving agent with its direction of its motion. It is just
given by the scalar product of the activity distributions over the body axis
of the agent uφ(φ) and the motion direction of the agent uθ(θ) in the form
A1 =

∑
n uφ(θn)uθ(θn). The second signal A2 linearly combines information

about the speed, and the magnitude changes and angular changes of speed, which
are given by a and the angular component of a. The linear mixing weights of
the animacy neurons were estimated by fitting the psychophysical results from
[2]. Final animacy responses were computed as time averages over the whole
trajectories.

The second circuit at the top level of the model classifies the different inter-
action types based on the following features: speeds vi and acceleration ai of
the agents, and relative position pR, velocity vR, and acceleration aR of the
agents. These features served as inputs of different classifier models, We tested
a multi-layer perceptron, linear and nonlinear discriminant analysis (see also
[31]), k-nearest neighbor classification, and a linear and a nonlinear support
vector machine.

4 Results

Results on animacy detection are shown in Fig. 3. The model reproduces at least
qualitatively the dependence of animacy ratings on directions and speed changes
[2]. In these experiments an agent shape moved along a straight line and then
suddenly changed speed or direction by different amounts. In addition, the model
reproduces the fact that a moving figure that has a body axis, like a rectangle,
results in stronger perceived animacy than a circle if the movement, and that
the rating is highest if the body axis is aligned with the motion than if it is not
aligned [2].

Table 2. Classification results with
different classifiers (6 interaction
types).

Classifier Accuracy

Linear SVM 99.0%

Gaussian kernel SVM 96.3%

LDA 94.7%

KNN 94.7%

Nonlinear LDA 94.3%

Neural Network 94.0%

Figure 4 shows example results from the
application of the different classifier models
for the 6 interaction behaviors in the study
[9]. The classifiers were trained on movies
generated with the stimulus generation algo-
rithm described in Sect. 2. The linear SVM
classifier achieves 99% correct classifications
on this data set. See Table 2 for the results
with the other classifiers. Most importantly,
the model achieved also 100 % correct clas-
sifications on the example videos from [9],
even though these movies were not used for
training.
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Fig. 3. Simulation results for animacy perception in comparison with experimental
results. (a), (d): Dependence of animacy ratings on size of direction change. (b), (e):
Dependence of animacy rating on size of speed change. (c), (f): Effect of alignment of
body axis with motion direction, compared with moving circle (no body axis).

Fig. 4. Confusion matrices for the best (Linear SVM) and the worst (KNN) classifier;
TP: true positive rate, FN stands for false negative rate. 50 videos per class.

5 Conclusion

Our model accounts by combination of very elementary neural mechanisms for a
number of classical results from animacy and social interaction perception from
abstract figures. To our knowledge this is the first neural model that can account
for such results. Evidently the model is only a proof-of-concept with many short-
comings, a major one being that the accuracy of the form and motion pathway
that provide input to the animacy and interaction detection have to be improved.
Since the model is in principle consistent with deep architectures for form and
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action recognition that can achieve high performance level it seems likely that it
can be extended to the processing of much more challenging stimulus material.
Even in its simple form the model proves that animacy and social interaction
judgements partly might be derived by very elementary operations in hierarchical
neural vision systems, without a need of sophisticated or accurate probabilistic
inference.
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Abstract
Humans reliably attribute social interpretations and agency
to highly impoverished stimuli, such as interacting geometri-
cal shapes. The computational mechanisms underlying this
visual function are unknown and of high interest for numer-
ous technical applications, such as driver-assistance systems
or visual scene analysis. Only few psychological stimulus
sets are available for testing of this visual function, way not
enough for the training of machine vision systems. The auto-
matic generation of such stimulus sets is thus an important
technical problem. We introduce here a novel framework for
the modelling different classes of social interaction between
virtual agents. The algorithm for the simulation of these in-
teractions has been derived from dynamic models of human
navigation. We validate our model in three psychophysical
experiments where participants had to categorize the anima-
tions generated with our model. We were able to isolate 12
interaction classes that were classified consistently by hu-
man participants. The remaining confusions between these
categories were largely explained by the semantic similarity
of the labels used for characterizing the different classes. The
proposed methods provides a basis for the development of
machine vision algorithms and neural models that classify
social interactions from video sequences.
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1 Introduction
In their seminal study [5] Heider and Simmel demonstrated
that humans can reliably decode animacy and social in-
teractions from strongly impoverished stimuli. Specifically,
the participants attributed anthropomorphic qualities to
simple geometrical figures that moved around in the two-
dimensional plane. Moreover, the figures, were interpreted
as animate agents endowed with intentions, emotions, and
even personality traits. This study raises the question abut
the computational mechanisms underlying this visual func-
tion, and its findings were replicated in other studies using
similar videos for both human adults ([8, 9, 12]) and pre-
schoolers as young as 5 years old ([18]). Moreover, recent
studies have characterized in more detail which critical fea-
tures of simple stimuli affect the perception of animacy, that
is whether the object is perceived as alive [21, 22]. Since
Heider and Simmel ([5]), several researchers have tried to
reveal which visual cues of motion promote the perception
of animacy. Violations of the conservation energy princi-
ple, such as heading and acceleration [13], and Newtonian
laws of motion [6], together with speed and trajectory direc-
tion changes [13, 19, 20] are among the minimal kinematic
cues for the emergence of animacy in moving shapes. Later
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studies [3, 13, 22] used more controlled stimuli and system-
atically examined what factors can impact the perception
of goal-directed actions in a decontextualized animation.
These findings provided converging evidence that the per-
ception of human-like interactions relies on some critical
low-level motion cues, such as speed and motion direction.
In order to further investigate the fundamental basis of the
neural encoding of social intent and semantics, the creation
of appropriate stimulus sets for humans and monkeys is
unavoidable. Specifically the development of neural mod-
els for this function, and also the development of computer
vision algorithms requires larger stimulus sets as training
data. The automatic generation of such stimuli to investi-
gate the mechanisms underlying perception of animacy and
social interactions is a challenging task. Handmade anima-
tions like those of Heider and Simmel have rich motion
features but are not amenable to parametric control. Fur-
thermore, more advanced experiments generally rely on the
usage of several figures interacting in different ways. For
this reason, the handmade production of such animations is
generally unfeasible. In this work, we present a dynamical
model that can generate different classes of social interac-
tions controlling the dynamics of the most important factors
of social interaction perception, namely speed and motion
direction. We validate our model with three separate experi-
ments, where we demonstrate that participants are able to
consistently attribute the intended interaction class to ani-
mations generated with our model. Our experiments thus
show that that artificial displays are rich enough to capture
natural looking motions and interactions, unlike what has
been recently claimed [7]. Our displays have the additional
advantage that the motion cues are quantizable and can be
controlled precisely by modulating the model’s parameters;
more importantly our model allows the automatic genera-
tion of arbitrary numbers of videos per social interaction
type.

2 Methods
2.1 The Original Approach
In 1976 Reichardt and Poggio [10], provided a quantitative
analysis of navigation model that describes mathematically
how a fly steers toward moving targets which they chase as
part of their mating behavior. Following this seminal work
that described the orientation behavior of an autonomous
agent using a dynamical system with only an attractor at the
direction in which targets lie, several other studies showed
that a detailed navigation behavior cannot be described based
only on target acquisition. To address this problem, Schöner
and Dose ([14, 15]) provided a dynamical system framework
that integrates the target acquisition and obstacle avoidance
for navigation and exploration of an autonomous agent. In
order to model the interaction of two moving agents we
exploited this dynamical systems approach, which before

Figure 1. Trajectories of three example social interac-
tions. (A) Fighting; (B) Avoiding; (C) Chasing. Colors indi-
cate agent identity; agent 1: blue; agent 2: red. Color sat-
uration indicates time: darker colors indicate recent time
samples.

was used very successfully for the modelling of human navi-
gation. The original approach focuses on mathematical for-
malization of reactive control for autonomous robots using
differential equations that specify attractors and repellors for
behavioral variables that control the agent’s heading direc-
tion and speed [1]. This framework of integration of target
acquisition and obstacle avoidance has been used to imple-
ment navigation successfully in an unknown environment
both for vehicles and robotic arms [11].

2.2 The Generative Model
Here, we derived the original idea and defined a dynamical
systems or differential equations for the heading directions
𝜙𝑖 (𝑡) and the instantaneous propagation speed 𝑣𝑖 (𝑡) of the
interacting agent 𝑖 . The specified movement is dependent
on goal and obstacle points in the two dimensional plane,
where the other agent can also act as goal or obstacle as well.
We modified a model for human steering behaviour during
walking [4] to reproduce the movements during social inter-
actions. The resulting dynamics is governed by the following
differential equations for the heading direction

¥𝜙𝑖 (𝑡) = −𝑏 ¤𝜙𝑖 (𝑡) + 𝑅(𝜙𝑖 (𝑡)) + 𝑆 (𝜙𝑖 (𝑡)) (1)
where

𝑅(𝜙𝑖 (𝑡)) = −𝑘𝑔 (𝜙𝑖 (𝑡) −𝜓
𝑔

𝑖
(𝑡)) (𝑒−𝑐1𝑑

𝑔

𝑖
(𝑡 ) + 𝑐2)

𝑆 (𝜙𝑖 (𝑡)) = 𝑘𝑜
𝑁𝑜𝑏𝑠𝑡∑
𝑛=1

𝑠𝑜𝑛 (𝜙𝑖 (𝑡))
(2)

and

𝑠𝑜𝑛 (𝜙𝑖 (𝑡)) = (𝜙𝑖 (𝑡) −𝜓
𝑜𝑛
𝑖
(𝑡)) (𝑒−𝑐3 |𝜙𝑖 (𝑡 )−𝜓𝑜𝑛

𝑖
(𝑡 ) |) (𝑒−𝑐4𝑑

𝑜𝑛
𝑖

(𝑡 ) )
(3)

The variables𝜓𝑔

𝑖
(𝑡) and 𝑑𝑔

𝑖
(𝑡) represent the instantaneous

goal direction of agent 𝑖 , and the euclidean distance between
the agent and its goal. Likewise,𝜓𝑜𝑛

𝑖
and 𝑑𝑜𝑛

𝑖
represent the in-

stantaneous direction of obstacle𝑛, and its euclidean distance
from the agent. Moreover, 𝑁𝑜𝑏𝑠𝑡 is the number of relevant
obstacles, and 𝑘 𝑗 and 𝑐 𝑗 are constants. The forward speed of
the agents is specified by the following stochastic differential
equation:
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𝜏 ¤𝑣𝑖 (𝑡) = −𝑣𝑖 (𝑡) + 𝐹𝑖 (𝑑𝑔𝑖 (𝑡)) + 𝑘𝜖𝜖𝑖 (𝑡) (4)
where 𝜖𝑖 (𝑡) is Gaussian white noise. The two functions 𝐹𝑖

that specify the distance dependence of the speed dynamics
are different for the two agents. Specifically,

𝐹1 (𝑑) =
1

1 + 𝑒−𝑐5 (𝑑−𝑐6)
− 𝑐7𝑒

−𝑘𝑑 (5)

𝐹2 (𝑑) =
𝑐8

1 + 𝑒−𝑐9 (𝑑−𝑐10)
− 𝑐11𝑒

−𝑘𝑑 + 𝑐12 (6)

To generate the trajectories, we first randomly sample a
series of goal points for agent one from a two-dimensional
uniform distribution over the 2D plane of action.We then use
the instantaneous position of the agent one as goal position
for agent two. Samples that are too close to the current
agent’s position are rejected. Representative trajectories for
three example social interactions are illustrated in Figure 1.
Note that the the speed control dynamics is not influenced
by the presence of obstacles, since their effect does not play
a role in our psychological experiments.

2.3 Model Validation

Figure 2. Histograms of reported labels for three ex-
ample social interactions. True classes: (A) Avoiding, (B)
Fighting.

2.3.1 Subjects. In order to validate our generative model,
we carried out three behavioral experiments. A total of 39
subjects with normal or corrected vision took part in the
experiments: 13 in experiment 1 (9 females, 4 males), ten in
experiment 2 (5 females, 5 males), and 16 in experiment 3 (9
females, 7 males). All participants provided written informed
consent before the experiments. All experiments were in full
compliance with the Declaration of Helsinki. Participants
were naïve regarding the purpose of the study and were
compensated for their participation.

2.3.2 Setup. During the first and the second experiment
participants were seated in a dimly lit room in front of an
LCD monitor (resolution: 1920x1080, refresh rate: 60 Hz).
The computer screen was placed 0.6𝑚 in front of the partici-
pants while their heads were supported by a headstand. Each
experiment started with a short training period during which
the subjects became familiar with the experimental setup.
After the familiarization session, the participants started the
main experiment, which consisted of five blocks of watching
animated videos and labelling them accordingly separated by
five minutes of rest. The animated videos showed two agents
(a blue circle and a red rectangle) moving in a 2D plane. The
trajectories followed by the agents were generated offline
with our model and presented in pseudo-randomized order.
Specifically, we heuristically determined 12 parameter sets,
where each modeled a distinct class of social interaction. we
refer to Figure 6A for a complete list.

2.3.3 Experiment 1. The first experiment was aimed at
assessing whether subjects would perceive the motion of vir-
tual agents generated with our model as a social interaction.
A second goal of this experiment was to identify unequivocal
labels for the interaction classes generated with our model.
To this aim, we asked participants to watch a total of 14
different videos of interaction in 5 variations, each of them
shown at most three times. Participants could choose to skip
the video after the first or second trial in case they were
confident about their interpretation. The total experiment
was preceded by one training block that aimed to familiarize
participants with the task and the stimuli as well as to direct
their focus to the perceptual properties as opposed to the
semantic properties of the stimuli. After watching the videos,
subjects were asked to provide their interpretations either in
a few sentences or ideally by one label. In addition, subjects
were asked to report about the percentage of animacy that
they perceived for each agent, together with the percent-
age of naturalness of the interactions they saw in the video
with respect to the social interactions. The labels that were
most commonly reported by the participants to describe
each video in this experiment were used as ground-truth
interaction labels for the remaining experiments.

2.3.4 Experiment 2. . The second experiment was aimed
at further studying the social interaction classes perceived
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by the participants while watching our animated videos. To
this aim, new subjects were exposed to videos generated
with our model. For this experiment we chose 12 of the
most distinctive classes of interactions from the previous
experiment and showed them to participants in 5 variations
3 times per block. Critically, unlike in experiment 1, after
watching the videos, participants were asked to describe the
videos by choosing up to three labels, among those selected in
experiment 1. Moreover, subjects were also asked to indicate
the perceived animacy of each agent.

Figure 3. Reported Agent Animacy. The results are aver-
age across interactions classes ans subjects

2.3.5 Experiment 3. Our last research questionwaswhether
there are interpretable semantic distinctions among labels.
Some misclassified social interaction classes in the previ-
ous experiment, suggests that either the generated animated
videos are not distinctive enough or these classes semanti-
cally overlap with each other. To validate that this confusion
is due to inherent similarity of these classes, we ran a se-
mantic survey test by new set of participants. Participants in
this experiment did not watch any video but were explained
the definitions of each social interaction class label clearly.
Having provided the definitions to the subjects we asked
them to indicate the level of semantic similarity for each pair
of labels by giving rates ranging from 0 to 10 for dissimilar
labels to the definitive similar ones. This means that subjects
gave rating of 10 for the similarity of each label with itself. In
order to quantify the extent to which subjects perceive label
meaning to be like another, the data from participants were
subjected to multi-dimensional scaling (MDS) ([16, 17]) that
provides a spatial representation of underlying relational
structures contained in similarity data.

3 Results
3.1 Experiment 1
As mentioned above, participants in this experiment were
completely free to either give their own labels or explain
their interpretations from the video that they observed. For

Figure 4. Confusion matrix of the classification task.
Rows represent the true interaction class and columns the
interaction class reported by the participants. TPR: True
Positive Rate (a.k.a. hit rate), FNR: False Negative Rate (a.k.a.
miss rate); PPV: Positive Predictive Value (a.k.a. precision);
FDR: False Discovery Rate

each class of video all the definitions and labels were pooled
together, and the most frequent ones were nominated for the
class label. Figure 2 reports two example histograms of re-
ported labels for the classes Avoiding and Fighting. Avoiding
is described by 3 different semantically related labels while
for the category fighting mostly one label is used. Although,
this was not the case all the time and some classes were
named interchangeably depending on from which perspec-
tive subjects reported their interpretation about the videos.
Also multiple labeling sometimes resulting by characteriz-
ing the action of the one or the other agent. For example,
pushing and pulling were the classes that their labels were
used in both. Besides, some labels (for instance bumping
and pushing) were often also misclassified regardless of the
perspective from which subjects might have observed the
videos. Reported animacy ratings also show that both agents
have been perceived animate due to the fulfilment of be-
havioural cues. Self-propulsion [2], goal directedness [23],
and being reactive to social contingencies [3] as the most
important behavioural cues and direction together with ac-
celeration [21], and speed [19] are the most discussed motion
cues behind the animacy perception. In addition, regardless
of social interaction type, the red rectangle has been always
perceived more animate which is also compatible with the
findings about animacy perception [21].

3.2 Experiment 2
Figure 4 shows the total confusionmatrix of the classification
task of labelling 60 videos per subject (12 classes with 5
variations). As it can be easily observed by the true positive
rate or hit rate (TPR) and false negative rate or miss rate
(FNR), even the worst class achieved 53.4% of TPR which is
considerably higher than the baseline level of 8.3% hit rate for
this multiclass of classification task with 12 different classes.
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Moreover, the most distinctive classes (Avoiding, Meeting,
and Pushing) scored more than 71% of TPR. Nonetheless,
there are obviously some misclassifications namely bumping
and pushing, chasing and fighting, or walking and chasing.
One reason for this misclassification could be the fact that
these labels are semantically and intrinsically similar and
even real videos of these types of social interactions could
be mislabelled.

3.3 Experiment 3
The output from the MDS process is a similarity map that
quantifies the pairwise semantic similarity of labels. Since

Figure 5. Average F1-score and classification accuracy
across blocks. Insets show the fitted linear models together
with estimated parameters and confidence intervals

MDS is inherently spatial, items that were rated as being
highly like one another are close to one another in the fi-
nal output. To the degree that any two items were rated as
dissimilar, the distance between them have been grown and
the similarity matrix in Fig. 6C shows this in more detail.
The positions of the 12 stimuli in a 2D spaces generated by
MDS are depicted in a 2-dimensional MDS map (Fig. 6A) that
shows which classes of interactions are even semantically
close together.
A hierarchical clustering depicted in (Fig. 6B) illustrates how
these labels are allocated to different clusters. This shows
that misclassified classes are even semantically similar and
to some extent we cannot avoid having confusion for these
cluster of labels. It can be observed in (Fig. 6) that the se-
mantic similarity does not justify the whole confusion of
classification task. However, for some cases i.e., Pushing VS
Bumping,WalkingVSMeeting,AvoidingVSDodging, it shows
that the confusion was made mostly because of the semantic
similarities of these classes. Here we do not claim that all
the confusions in the previous task were due to inherent
semantic similarities of the classes, but we want to speculate
that even this reasonable result of classification task (53.4%
TPR of the worst case in 12 classes classification) could have
been better if the classes were more sharply distinct. To sum-
marize, our analysis of semantic similarity shows that in
one hand some of the confusions are due to semantic sim-
ilarities and on the other hand demonstrates that some of
the similarly semantic classes became less confusing after
watching the videos. (e.g., Tug of War VS Pulling, Frightening
VS Avoiding, Fighting VS Pushing, etc). (Fig. 5) shows positive
linear relationships in accuracy and F1 score of confusion
matrix, meaning that after each block of experiment subjects
were more confident in choosing their labels for different
variations of videos.

4 Conclusion
In this work, we introduced a novel framework for the au-
tomatic generation of videos of socially interacting virtual
agents. The interactions are defined by two dimensional tra-
jectories, the heading direction, and the speed of each agent
generated from the the simulation of a dynamical system.
The system is composed of two decoupled differential equa-
tions, which define the agents’ heading directions and speeds.
Moreover, we showed that our model is able to generate as
many as 12 different interaction classes, defined by different
parameter sets. Finally, we validated our model with three
different behavioral experiments, in which participants were
able to consistently identify the intended interaction class.
Our model is thus suitable for the automatic generation of
animations of socially interacting agents, which can be used
for instance in experiments in psychology, neuroscience,
and similar fields to uncover the neural mechanisms of the
perception of social interactions.
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Figure 6. Results of cluster analysis. (A) MDS of semantic labeling (B) Hierarchical clustering of the labels; (C) Matrix of
the distances between labels. The label abbreviations stand for: 1. PLL: Pulling, 2. TW: Tug of War, 3.AV: Avoiding, 4.DO:
Dodging 5.FR: Frightening, 6. BU: Bumping, 7. FI: Fighting, 8. PSH: Pushing, 9. CH: Chasing, 10. FL: Flirting, 11. ME: Meeting,
12. WA: Walking
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