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1. Summary 

Gene therapy has been considered as a viable therapeutic option for life limiting genetic 

diseases (e.g. Cystic Fibrosis (CF) and ß-Thalassemia) lacking conventional therapy. Over the 

last three decades a shift of opinion was observed in the scientific community regarding gene 

therapy, from US Food and Drug Administration (FDA) halting all gene therapy-based trails in 

1996 to approving 9 clinical trials in the last 5 years. A similar trend can be observed for RNA. 

After the discovery of mRNA in 1961 it was kept almost untouched by scientists till the 21st 

century and 2016 saw the first mRNA based clinical trial. Originally, RNA was known for its 

instability and for being immunogenic. RNA can activate immune responses by interacting 

with various pattern recognition receptors (PRRs) like toll-like receptors (TLR3, TLR7 and 

TLR8) and RNA dependent Protein Kinase R (PKR). In recent years around 150 post 

transcriptional chemical modifications of RNA have been reported that allow for a greater 

variety of the 4 basic ribonucleotides. These modifications can influence both intramolecular 

(more stability or flexibility) and intermolecular interactions (with PRRs, less immunogenicity).  

 

Studies conducted during my PhD provide an overview of how mRNAs can be improved for 

gene supplementation or gene correction therapy by introducing chemical modifications and 

sequence optimization. For gene supplementation therapy, cystic fibrosis transmembrane 

conductance regulator (CFTR) mRNA was in vitro transcribed with 2-Thiouridine (s2U), 5-

Methylcytidine (m5C) and N1-Methylpseudouridine (m1Ψ). Chemically modified human CFTR 

mRNA (cmRNAhCFTR) showed significantly higher CFTR protein expression and channel 

functionality in CF bronchial epithelial cell line (CFBE41o-) compared to unmodified hCFTR 

mRNA (mRNAhCFTR) and plasmid DNA expressing hCFTR (pDNAhCFTR). In vivo (Cftr
-/- mouse 

model), cmRNAhCFTR together with Chitosan-coated PLGA (poly-D, L-lactide-co-glycolide 

75:25 (Resomer RG 752H)) nanoparticles (NPs) can drastically improve the lung function. 

Forced expiratory volume (FEV, the most important parameter considered for CF patients to 

determine disease progression) was notably improved by cmRNAhCFTR compared to groups 

treated with pDNAhCFTR and unmodified mRNAhCFTR
 regardless the route of administration 

(intravenous (i.v.) and intratracheal (i.t.)). cmRNAhCFTR also exhibits reduced immune responses 

in ex vivo and in vivo experiments. 

 

The second study investigated mRNA encoding clustered regularly interspaced short 

palindromic repeat (CRISPR) associated protein 9 (Cas9) for gene correction of a common ß-

thalassemia splicing variant HBB
IVS1-110. Cas9 was observed to be the superior programmable 

site-specific endonuclease in comparison to Zinc-finger nucleases (ZFNs) and Transcription 
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activator like effector nucleases (TALENs). Cas9 when delivered in a plasmid form did not 

achieve sufficient amount of double strand breaks to result in significant gene correction by 

homology directed repair (HDR). Chemically modified Cas9 mRNA (cmRNACas9) induced 

higher amount of double stranded breaks and subsequently HDR in K562 (immortalized 

myelogenous leukemia cell line) and bone marrow-derived CD34+ hematopoietic stem cells 

(HSCs).  

 

The final study provided a new angle on increasing efficiency and reducing immunogenicity 

of mRNA by taking advantage of the degeneracy of the genetic code to exchange specific 

nucleotides (especially depleting Uridine in the mRNA transcript) without altering the amino 

acid composition. Sequence engineering of Cas9 mRNA can increase the functionality of 

CRISPR/Cas system (by producing more double strand breaks in HBB gene) in CD34+ HSCs 

compared to non-sequence engineered Cas9 mRNAs. The reduction of immunogenicity was 

achieved by sequence engineering and introduction of 5-methoxyuridine (5moU) further 

decreased the level of measured cytokines.  

 

All the findings during the PhD thesis contributed towards a review article putting the 

outcomes into perspective of the current state of mRNA research. The article signifies the role 

of target specific components like route of administration and carriers of mRNA and how it 

can be formulated together. Finally, the review article reflects the importance of chemical 

modification and sequence engineering as milestones in development of mRNA therapeutics. 
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2. Zusammenfassung 

Die Gentherapie wird als mögliche Therapieoption lebensverkürzender Erkrankungen (wie 

z.B. Cystische Fibrose (CF) oder β-Thalassämie) erwogen, welche bisher als unheilbar gelten. 

In den letzten 30 Jahren hat sich die Meinung über Gentherapie in der wissenschaftlichen 

Gemeinschaft stark gewandelt, vom zeitweiligen Stopp aller gentherapie-basierten klinischen 

Studien durch die US Food and Drug Administration (FDA) bis hin zu 9 erfolgreichen klinischen 

Studien in den letzten 5 Jahren. Ähnliches kann auch zum Thema RNA beobachtet werden: 

nach ihrer Entdeckung im Jahre 1961 galt RNA lange Zeit als zu instabil und zu immunogen 

für therapeutische Anwendungen. In der Tat kann RNA Immunreaktionen durch die 

Aktivierung sog. Pattern Recognition Rezeptoren (PRRs) wie Toll-like Rezeptoren (TLR3, TLR7 

und TLR8) oder Protein Kinase R (PKR) hervorrufen. Hierzu wurden in letzten Jahren etwa 150 

posttranskriptionelle chemische Modifikationen der 4 Basen der RNA beschrieben, die für 

eine höhere Variabilität und Einsatzfähigkeit von RNA sorgen. Diese Modifikationen 

beeinflussen sowohl die Interaktionen innerhalb der RNA (erhöhte Stabilität oder Flexibilität) 

als auch Interaktionen mit anderen Molekülen, wie z.B. PRRs (geringere Immunogenität). Auf 

Grund dieser Weiterentwicklungen konnte im Jahr 2016 die erste mRNA-basierte klinische 

Studie durchgeführt werden.  

 

Die Untersuchungen im Rahmen meiner Doktorarbeit geben einen Überblick über die 

Möglichkeiten wie mRNA für Gensupplementtherapien und Genkorrektur eingesetzt und zu 

diesem Zweck angepasst (mittels chemischer Modifikation und Sequenzoptimierung) werden 

kann. Als Beispiel für Gensupplementtherapie wurde ein mRNA Transkript des Cystic Fibrosis 

Transmembrane Regulator (CFTR) Gens mithilfe von in vitro Transkription erstellt. Zusätzlich 

wurden Transkripte unter Verwendung von 2-Thiouridin (s2U), 5-Methylcytidin (m5C) und N1-

Methylpseudouridin (m1Ψ) chemisch modifiziert. Chemisch modifizierte hCFTR mRNA 

(cmRNAhCFTR) zeigte eine signifikant höhere CFTR Expression und Funktionalität in CF 

Bronchialepithelzellen (CFBE41o-) im Vergleich zu unmodifizierter mRNA (mRNAhCFTR) und 

Plasmid-DNA (pDNAhCFTR). Im in vivo Cftr-/- Mausmodell konnte cmRNAhCFTR in Verbindung mit 

Chitosan-beschichteten poly-D, L-lactide-co-glycolide 75:25 (Resomer RG 752H) (PLGA) 

Nanopartikeln (NPs) eine drastische Verbesserung der Lungenfunktion erzielen. Die 

Einsekundenkapazität (FEV, bei Mäusen 0,1s, einer der wichtigsten 

Lungenfunktionsparameter zur Verlaufskontrolle bei CF Patienten) konnte im Vergleich zu 

mRNAhCFTR und pDNAhCFTR durch cmRNAhCFTR deutlich gesteigert werden. Dabei spielte der 

Administrationsweg (intravenös (i.v.) oder intratracheal (i.t.)) keine Rolle. Wie erwartet konnte 



 9 

außerdem eine Verminderung der Immunantwort bei cmRNAhCFTR in in vivo und ex vivo 

Experimenten beobachtet werden. 

 

In einer zweiten Studie wurden mRNA Transkripte vom Clustered Regularly Interspaced 

Palindromic Repeats (CRISPR) associated Protein 9 (Cas9) untersucht. CRISPR/Cas9 wurde 

hierbei zur Genkorrektur der Spleißvariante HBB
IVS1-110 des β-Globin Gens, welche zur β-

Thalassämie führt, genutzt. Im Vergleich zu anderen sequenzspezifischen Endonukleasen, 

Zink-Finger-Nukleasen (ZFN) und Transcription activator-like effector nucleases (TALENs), 

konnte eine höhere Aktivität bei Cas9 gemessen werden. Auch wenn Cas9 in Form von 

Plasmid-DNA noch keinen ausreichenden Prozentsatz an DNA-Doppelstrangbrüchen 

induzieren konnte, um Genkorrektur durch homologe Rekombination zu ermöglichen, konnte 

eine Reparatur des Gendefekts mithilfe von cmRNACas9
 in K562 Zellen (immortalisierte 

myeloische Leukämie Zelllinie) und CD34+ hämatopoetischen Stammzellen (HSCs) 

nachgewiesen werden. 

 

Der Einfluss von Modifikationen auf die Effizienz von Cas9 mRNA wurde in einer weiteren 

Studie tiefergehend beleuchtet. Unter Zuhilfenahme der Degeneration des genetischen 

Codes wurde eine Sequenzoptimierung und insbesondere eine Verminderung des 

Uridingehaltes innerhalb des Cas9 mRNA Transkriptes vorgenommen ohne dabei die 

Aminosäuresequenz des Proteins zu ändern. Die Sequenzoptimierung der Cas9 mRNA 

konnte die Induktion von DNA-Doppelstrangbrüchen im HBB Gen in CD34+ HSCs im 

Vergleich zur nicht-sequenzoptimierten Form weiter steigern. Außerdem konnte auch die 

Immunogenität der mRNA durch Sequenzoptimierung verringert und durch Verwendung von 

5-Methoxyuridin (5moU) noch weiter minimiert werden.  

Die Ergebnisse dieser Doktorarbeit konnten innerhalb eines Review-Artikels in den 

wissenschaftlichen Kontext eingeordnet werden. Darüber hinaus weist dieser Artikel auf 

weiter zu beachtenden Faktoren, wie Administrationsformen, Eigenschaften von 

Transportmolekülen (NPs) und deren Formulierung hin. Außerdem zeigt der Artikel in diesem 

Zusammenhang die Bedeutung von chemischen Modifikationen und Sequenzoptimierung 

von mRNA als wichtiger Meilenstein in der Entwicklung von mRNA-basierten Therapien auf. 
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3.5. Contribution to the publications in thesis 

Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and 

Reduce Immunogenicity without HPLC purification. 

Prior to performing the experiments, the integrity of the Cas9 mRNA was analysed by 

Bioanalyzer. I collected serum from whole blood transfected with Cas9 mRNA and conducted 

various ex vivo human immunological assays (ELISA). Additionally, the mRNA in nanocarrier 

complex was tested in vivo by intravenous (i.v.) injection in murine model and blood collection 

for immunological study at various time points by me. I further contributed towards data 

analysis, graphical presentation of collected data and writing the paper.  

 

Chemically modified hCFTR mRNAs recuperate lung function in a mouse 

model of cystic fibrosis. 

I designed the outline of the paper, performed experiments, analyzed data, made graphics and 

wrote the manuscript with the help of other authors. In particular, the in vitro experiments 

including the production of cmRNAhCFTR followed by expression analysis of hCFTR protein by 

flow cytometry, Western blot and Immunofluorescence as well as the ex vivo whole blood 

assay to check the immunogenicity of the mRNAs were conducted by me. For the in vivo study, 

I treated the mouse model with cmRNAhCFTR by intratracheal and intravenous administration, 

collected saliva for determination of chloride concentration and measured the lung mechanics 

via FlexiVent with the help of Alexander Dewerth, Ngadhnjim Latifi and Georg R. Schweizer.  

 

Gene correction of HBB mutations in CD34+ hematopoietic stem cells using 

Cas9 mRNA and ssODN donors. 

The in vitro experiment to optimize K562 cell electroporation and compare different 

endonucleases for gene correction were performed together with Ngadhnjim Latifi. I 

contributed towards the meticulous preparation of the manuscript. 

 

Recent developments in mRNA-based protein supplementation therapy to 

target lung diseases. 

I contributed towards the literature research, designing graphics and writing the paper with 

emphasis on post transcriptional mRNA modifications. The paper structure was designed by 

Itishri Sahu, Brian Weidensee, Michael Kormann and me.  
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4. Introduction 

“Victory has 1000 fathers; defeat is an orphan.”-Count Ciano.  

4.1. Gene Therapy 

Forty-seven years ago, in 1972, Theodore Friedmann proposed a prophetic account 

regarding the potential advantages of gene therapy along with the downsides1. But “Gene 

therapy” was coined to separate the term from George Orwell’s proposed dystopia based on 

“human genetic engineering”. The term used by Orwell was influenced by “Genetic 

engineering”, which was first used at the Sixth International congress of Genetics held in 

19322. Gene therapy is by no means a new concept and the early history of gene therapy is a 

combination of missteps, attempt of experiments before the necessary tools were available, 

extravagant dreams of numerous dreamers. Just as the rudimentary flying machine made by 

Wright brothers led to the sophisticated supersonic jets, development of recombinant DNA 

technology by Herbert W. Boyer, Stanley N. Cohen, and Paul Berg opened a whole new 

chapter for curing untreatable conditions3. 

 

4.1.1. Molecular genetics and Gene therapy (Early age) 

Genes can be transferred as nucleic acid (in Pneumococci) was first observed by Avery, 

Macleod and McCarthy. This proves to be a vital point of reference for molecular genetics4. 

Further studies provided evidence of viruses containing the capacity to transmit genes5 and 

becoming an enduring part of cellular genome5,6. Rous sarcoma virus (RSV) can successfully 

transduce cells in culture to reproduce virus, providing the first evidence of viral gene 

mediated cell transduction. Similarly, Simian Virus 40 (SV40)can integrate viral DNA in SV40-

transduced cells7-9. Two more important discoveries, structure of DNA along with its function10 

and central dogma (genetic information flow; DNA to RNA to protein) provided fuel for 

advancement in the area of Gene therapy11. 

 

Arthur Kornberg achieved replication of DNA in a test tube12 which further helped Waclaw 

Szybalski transfer a mammalian gene for the first time13. From the late 1960s and early 1970, 

gene therapy became an important part of the scientific community. This lead Martin Cline of 

the University of California Los Angeles to conduct the first human gene therapy but without 

obtaining approval from any regulatory body. The recombinant DNA advisory committee 

(RAC) was already working with the US Food and Drug Administration (FDA) to regulate gene 

therapy and created a new committee called the Human Gene therapy working group (now 
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known as the Human Gene Therapy Subcommittee (HGTS)) to avoid unregulated gene 

therapy. In 1990, the HGTS approved the first T lymphocyte-directed gene therapy for two 

children with Adenosine deaminase (ADA) mediated severe combined immunodeficiency 

(SCID). The trial was not a success as transduced peripheral blood T cells cannot elevate the 

level of ADA significantly14. In 1993, Hematopoietic Stem cells (HSCs) based gene therapy 

was conducted by CellPro on ADA SCID patients with no significant outcome but this paved 

the way for stem cell therapy15. Stem cell-based gene therapies were conducted in 1999 on 

human immunodeficiency virus (HIV) patients and the study produced valuable insight on 

stem cell therapy but failed to be clinically significant16. 

 

The downsides of gene therapy were exposed when Jesse Gelsinger was reported dead 4 

days after being administered a high dose of Adenoviral vector for the treatment of ornithine 

transcarboxylase (OTC) deficiency17. Stem cell therapy also came under scrutiny when two of 

the ten children treated for X-linked SCID developed leukemia-like conditions18. FDA sent out 

the “March 6 letter” to all the investigator working on gene therapy to implement new scrutiny 

and Europe halted all gene therapy for re-review.  

 

4.1.2. A New age of Gene Therapy 

In 1996, the National Institute of Health (NIH) concluded that based on ongoing gene therapy 

trials, there is a lack of knowledge of the disease, the viral vector, target cells and tissues 

were the source of disappointing results19. But the last 10 years have been monumental for 

gene therapy as a better understanding and improvement of delivery vectors and gene 

expression resulted in significant clinical advancement. Till now, few gene therapies have 

received approval in the US and Europe (Table1) to be used as medicine. 
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Table 1: Approved gene therapies in western world 

Drug name Disease Vector/transgene Approval 

committee 

Year 

Glybera® -Familial lipoprotein lipase 

deficiency 

AAV based EMA 2012 

IMLYGIC® -Lesion in patients with 

melanoma 

Modified herpes simplex 

virus type I 

FDA 2015 

STRIMVELIS® -Adenosine deaminase 

(ADA) deficiency-SCID 

γ-retrovirus EMA 2016 

KYMRIAH® -Non-Hodgkin lymphoma CD-19 directed CAR-T cell FDA 2017 

YESCARTA® -Non-Hodgkin lymphoma 

-Lymphoblastic Leukemia 

CD-19 directed CAR-T cell FDA 2017 

LUXTURNA® -Retinal dystrophy AAV based FDA 2017 

AVXS-101 -Spinal muscular atrophy AAV based FDA 2016 

 

SCAAV2/8-LP1-HFIXCO -Hemophilia B AAV based FDA/EMA 2014/2017 

SPK-9001 

 

-Hemophilia B AAV based FDA/EMA 2016/2017 

AMT-061 -Hemophilia B AAV based FDA/EMA 2017/2017 

SB-FIX -Hemophilia B Zinc finger nuclease-

AAV2/6 

FDA 2017 

European Medicines Agency (EMA) 

US Food and Drug Administration (FDA) 

 

Along with the commercialized gene therapy, there are numerous clinical trials in progress for 

multiple diseases based on T cell, Hematopoietic Stem and Progenitor Cells (HSPCs) and in 

vivo administration (Supplement Table 2). Some of the trials gained FDA or EMA approval 

during different phases of clinical trial for orphan diseases lacking alternative cures.  

 

The advancement of Gene therapy is also based on better understanding of the cellular 

mechanism and establishment of three approach towards gene therapy; A) Gene 

supplementation, B) Gene suppression/inhibition and C) Gene correction (Figure 1).  
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Figure 1: The fundamental approach of Gene therapy 

Gene supplementation therapy restores function without alteration in genomic level. Gene inhibition by RNAi or 

Cas12 can reduce the expression of protein temporally. Gene editing or correction can have long lasting effects 

in stem cells. 

 

Gene supplementation restores normal cellular function without affecting the disease gene by 

providing a functional copy of gene in trans. Functional protein20, in vitro transcribed mRNA 

(IVT mRNA)21,22, and plasmid DNA23 have been studied for gene supplementation therapy and 

proved to be very efficient. Gene suppression or inhibition is used to reduce the expression 

of mutated genes to stop harmful accumulation of a faulty protein by RNA interference 

(example: Huntington’s disease)24 or anti-sense oligonucleotide25. Gene correction provides 

a site-specific correction by DNA double-strand break at the target site (by CRISPR/Cas9, 

ZFN or TALEN) and repair of the target site by homology directed repair (HDR) or Non-

homologous end joining26-28. Progressions in the field of gene therapy has made diseases like 

Cystic fibrosis and ß-Thalassemia perfect candidates to be investigated. 

 

4.2. Cystic Fibrosis (CF) 

CF is an autosomal-recessive disease, with limited therapeutic options available, affecting 

about 80,000 people worldwide29. It is caused by different mutations within the gene encoding 
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for the CF transmembrane and conductance regulator (CFTR). Those mutations result in 

compromised anion secretion and hyper-absorption of sodium ions across epithelia30,31 

(Figure 2). CFTR consists of 27 exons and is located on chromosome 7q31.232. The final 

transcript of CFTR (6.5 kb) has been reported for over 2000 mutations and CF can be 

connected to about 250 mutations33,34. Based on the impact on CFTR gene and protein, all 

the mutations have been categorized in six classes (Figure 2).  

 

Figure 2: Normal CFTR channel function and CFTR mutation classes 

Normal function of CFTR channel and effect of different mutation classes at the physiological level.  

 

4.2.1. CF Therapies 

CF therapy so far based on symptomatic control and consists of antibiotic treatment, 

supplementation of pancreatic enzymes and fat-soluble vitamins35. The symptomatic 

approach was inadequate and targeted therapy based on specific mutation of the CFTR was 

called for. Ivacaftor (Kalydeco®) was announced as a potentiator to increase the open 

possibility of CFTR channel and therefore an exclusive drug for patients with class III 

mutations. Patients with conductance mutation (class IV) also reported to have a beneficial 

effect36,37. Lumacaftor (VX-809) was the second line of potentiator but unfortunately can only 

be used as a combination therapy with ivacaftor (Trade name Orkambi®) for moderate 

improvement in lung function of patients with F508del mutation38. The approach using the 

potentiator is difficult to implement for each class of CFTR mutation and that makes mRNA-

based gene supplementation therapy a viable option for CF patients regardless of the 

mutation.   
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4.3. ß-Thalassemia 

Major adult hemoglobin (HbA) consists of α-globin chain (chromosome 16) and ß-globin chain 

(chromosome 11). Absence of partial or complete α-globin chain or ß-globin chain can result 

in α-Thalassemia or ß-Thalassemia, respectively39. Imbalance in α-globin and ß-globin chain 

determines the severity of disease and can result in erythropoietin overexpression which leads 

to bone marrow proliferation and variety of growth and metabolic abnormalities. Over 200 

mutations in ß-globin gene have been identified to cause disease ranging from no clinical 

symptoms (silent mutations) to complete absence of ß-globin chain synthesis40. 

 

4.3.1. Therapy for ß-Thalassemia 

Red blood cell (RBC) reduction is the main clinical symptom presented by ß-Thalassemia 

patients. Normal clinical therapy of chronic anemia patients is RBC transfusion and can 

heavily impair the quality of life of the patients. Iron overdose in the vital organs of the patients, 

recurring infections, and immune reactions caused by the transfusion can cause morbidity 

and mortality41. Removal of excess iron by iron chelators are in clinical use (Deferoxamine, 

Deferasirox and Deferiprone). However, these can cause adverse effects like nausea, 

abdominal pain, diarrhea, liver dysfunction, kidney dysfunction, neutropenia and 

agranulocytosis. The complications of the current clinical treatment call for gene therapy-

based applications.  

 

4.4. mRNA based therapy 

Recently, in vitro transcribed (IVT) messenger RNA came into focus as substantial efforts have 

been made for engineering mRNA with diverse pharmacokinetic properties26,42. Instability and 

immune response against IVT mRNA were the main issues. To avoid these downsides, 

modification of structural elements such as 5′ Cap, 5′- and 3′- untranslated region (UTR), 

poly(A) tail and the coding region were implemented21,43-46 (Figure 3). 
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Figure 3: IVT mRNA development timeline 

Adapted from Sahu I, Haque A, Weidensee B et al 2019 © Molecular Therapy publishing group. 

Overview of milestones in development of in vitro transcription of mRNA. White boxes: important milestones for 

development of mRNA therapy47. Blue boxes: evolution of different cap structures (Cap 0 and Cap 1)21,48,49. Red, 

green and grey boxes represent development in the area of 5′-UTR, 3′-UTR, poly(A) tail, respectively43,50,51. Yellow 

boxes represent nucleoside modifications and sequence optimizations in development for mRNA-based therapy52-

57. 

4.4.1. Chemical modifications to increase mRNA effectiveness 

RNA can be modified post-transcriptionally and over 150 chemical modifications are listed by 

different studies58. In mRNA, only a small subset of these naturally occurring modifications 

are reported to be capable of reducing innate immune responses and improving 

pharmacokinetic properties21,53,59. The first generation of modified IVT mRNAs contain 5-

Methylcytidine (m5C) or Pseudouridine (Ψ) to reduce innate immune responses and enhance 

translation22,60. TLR3, TLR7, TLR8, and retinoic acid-inducible gene I (RIG-I) activation was 

reduced by m5C, N6-methyladenosine (m6A), 5-Methyluridine (m5U), Ψ-UTP and 2-

Thiouridine (s2U) 21,22,53,61 modified nucleosides. RNA-dependent protein kinase (PKR) which 

mediates immune responses and translation inhibition (by phosphorylating the alpha subunit 

of translation initiation factor 2 (eIF-2α)) can be escaped using Ψ-UTP or m5C modified 

nucleosides62. m5C is explicitly recognized by the mRNA Aly/REF export factor (ALYREF) and 

increases mRNA-binding affinity and associated mRNA export out of the nucleus63. N1-

methylpseudouridine (m1Ψ) is the most used chemical modification in recent studies and 
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showed remarkable expression compared to Ψ substituted mRNA even when delivered by 

different routes in vivo55. m1Ψ initiates a tight binding to RIG-I and blocks RIG-I signaling61,64.  

 

4.4.2. Seqeunce engineering to increase mRNA effectiveness 

Codon optimization or sequence engineering of mRNA uses the flexibility of the genetic code 

to substitute specific nucleosides of a mRNA sequence without altering the resulting amino 

acid composition. Several recent studies have described codon optimization of unmodified 

and Ψ-UTP-modified mRNA through enriching guanosine/cytosine (G/C) can result in 

superior expression56,59.  

 

4.5. Programmable site-specific nucleases 

A new era for whole genome sequencing is paving the way towards revolutionizing basic 

science and personal medicine. Zinc-finger nuclease (ZFNs), transcription activator like 

effector nucleases (TALENs) and clustered regulatory interspaced short palindromic repeats 

(CRISPR) are advancing gene therapy based on the advancement of whole genome 

sequencing. The resourcefulness of ZFNs and TALENs gives the option to customize the DNA 

binding domain to identify practically any sequence65. On the other hand, the CRISPR/Cas 

system is distinct from ZFNs and TALENs as it can target any DNA sequence by CRISPR 

RNA (crRNA) and work as an RNA-guided DNA endonuclease. All the programmable site-

specific nucleases can be conducted by all RNA approach and various studies, including 

those from our lab, have shown that remarkable efficiency can be achieved21,26,27.  

 

4.5.1. Zinc-finger nuclease (ZFNs) 

Zinc finger (ZF) is composed of approximately 30 amino acids with a zinc atom bound to Cys2 

and His2. Klug et al. first described repetitive zinc-binding domains from Xenopus-oocytes66. 

The Cys2-His2 domain is the most common type of DNA binding domain with a conserved bba 

configuration67. The a-helix structure of ZF can naturally contact 3 bp of major grove of DNA, 

however, the DNA recognition was advanced to 9-18 bp by constructing synthetic zinc finger 

protein (ZFP) with highly conserved linker sequences68. The attractive framework of providing 

tailor made sequence specificities by ZFPs was used to create designer nucleases. Two ZF 

proteins, Sp1-QNR and CP-QDR, were fused with the FokI cleavage domain of Sp1-QNF-FN 

and QDR-FN respectively and were termed zinc finger nucleases (ZFNs)69(Figure 4).  
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4.5.2. Transcription activator like effector nucleases (TALENs) 

A recent discovery of TALE DNA binding motif (33-35 amino acids) from Xanthamonas 

bacteria provided an alternative platform for designing programable DNA binding proteins70,71. 

ZF can recognize 3-4 bases but TALE can recognize a single nucleotide by repeat variable 

diresidue (RVD, Amino acid NI recognize A, HD recognize C, NG and HG recognize T and NN 

recognize G or A). TALENs were designed by fusing FokI cleavage domain with TALE motifs 

and have been demonstrated to have similar cutting efficiency like ZFNs with lower 

cytotoxicity26,72(Figure 4). 

 

4.5.3. Clustered regulatory interspaced short palindromic repeats (CRISPR) 

Bacteria and Archaea have adapted a defense mechanism by integrating DNA fragment into 

clustered regularly interspaced short palindromic repeats (CRISPR) to fight against 

reoccurring viral and plasmid DNAs73. In the simplest form of the CRISPR system, CRISPR 

repeats are transcribed into long RNA that are further processed to contain a part of both the 

repeat sequence and a single spacer known as crRNA74-76. CRISPR locus also contain 

sequences to produce transactivating crRNA (tracrRNA). crRNA and tracrRNA complexes can 

associate with Cas9 protein. The tripartile structure can detect specific DNA targets by in 

proximity to a specific short sequence known as Protospacer-adjacent motif (PAM). The Cas9 

protein from Streptococcus pyogenes (most commonly used) contain two nuclease active 

sites and can initiate a double strand break 3 bp upstream of the PAM sequence77(Figure 4). 
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Figure 4: Programmable site-specific nucleases to achieve precise gene editing 

ZFN, TALEN and CRISPR/Cas9 based gene editing. Each of the programmable nuclease is comprised of different 
approach for targeting specific genomic areas and can produce double strand breaks to initiate gene correction 

by NHEJ or HDR.  

4.5.4. Gene editing by programmable site-specific nucleases 

Site specific nucleases possess a powerful system for generating a DNA double strand break. 

The double strand break gives an opportunity for gene editing to modify DNA at a specific 

locus on the basis of repair. Double strand breaks are repaired either by non-homologous 

end joining (NHEJ) or by homology directed repair (HDR). NHEJ occurs more frequently, no 

template is required and closes the break without adding to the DNA sequence78. NHEJ give 

programmable site-specific nucleases the ability to induce indels (insertion or deletion), to 

knockout specific genes by frameshift mutations or premature stop codon. On the contrary, 

HDR is based on homologous recombination. A homologous strand is needed and HDR can 

only occur in  S or G2 phase of the cell cycle79. HDR can repair a single mutation or insert a 

sequence of interest in targeted locus. For this purpose, the repair template can be given with 

non-integrating viral vectors (e.g. Adeno-associated viral vectors) or by using single-stranded 

oligodeoxynucleotides (ssODNs)26,27 (Figure 4).  
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5. Aim of the study 

Recent advancements in understanding the underlying mechanisms of gene therapy, in vitro 

transcribed (IVT) mRNA and CRISPR based correction system pave the way to study 

monogenetic diseases such as cystic fibrosis and ß-Thalassemia. The goal of the study was 

to obtain better insights about using chemical modifications and sequence optimization to 

improve IVT mRNA for efficient, less immunogenic gene therapy. 

 

One of the targets was to produce chemically modified hCFTR mRNA (cmRNAhCFTR) which 

can produce a functional CFTR protein and evade immunological response. Using various in 

vitro, ex vivo and in vivo models of cystic fibrosis, cmRNAhCFTR was tested rigorously and 

compared against wildtype CF models for restoration of functionality without immune 

response. The second target was to improve in vitro transcribed (IVT) Cas9 mRNA to achieve 

a high level of personalized gene-correction therapy for β-thalassemia. The study also 

includes a comparison of established programmable nucleases such as CRISPR/Cas9, 

TALENs, and ZFNs to identify the most promising gene correction approach. The first two 

studies indicated the potential IVT mRNA holds for protein supplementation and as a 

transiently expressed endonuclease for gene correction. This line of thought was extended 

by investigating different chemical modifications and sequence engineering to further 

enhance the usability of IVT mRNA. 

 

6. Results and Discussion 

6.1. Chemically modified hCFTR mRNAs recuperate lung function in 

a cystic fibrosis mouse model (paper 1) 

Though the underlying genetic defect of Cystic Fibrosis has been identified, restoration of 

robust CFTR function in patients suffering from cystic fibrosis remains unfulfilled. Small 

molecule agents (modulator/potentiator) such as Ivacaftor (for G551D mutation) or Orkambi 

(Lumacaftor-Ivacaftor, for F508del mutation) are available to CF patients but are limited to 

specific mutations in the CFTR gene. Unfortunately, Orkambi did not reach the predicted 

expectations for the benefit of patients with F508del mutations, the most common mutation 

among CF patients80. Attempts were made to supplement CFTR in the form of plasmid DNA 

providing promising data in vitro but exhibiting limitations in in vivo application23. In this study, 

cmRNAhCFTR was vigorously tested for mRNA therapy with a focus on restoring in vitro protein 
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expression and in vivo lung function. The unique formulation can be applied both targeted 

(intratracheally) and systemically (i.v.), having a profound effect on the lung function 

parameters.  

 

6.1.1. In vitro functional restoration and detection of CFTR protein in CFBE41o− 

and CFTR null A549 cells 

Cystic Fibrosis Bronchial Epithelium cells (CFBE41o-) are a well-documented cell line as in 

vitro CF model. The cell line was created from the bronchial epithelium of a CF patient 

homozygous for F508del mutation81. CFTR protein quantification by flow cytometry using a 

CFTR specific antibody (596) in CFBE41o- cells exhibits around 5-fold higher protein 

expression for cmRNAhCFTR, compared to unmodified mRNAhCFTR (24 hours). Flow cytometry 

data were substantiated by both Western blot and immunofluorescence analysis. Western 

blot image indicates a glycosylated band (160 kDa) after treatment with cmRNAhCFTR, a 

confirmation of functional CFTR protein. Immunofluorescence analysis also provides clear 

evidence of presence of CFTR protein when compared to untreated CFBE41o- cells. Halide-

sensitive Yellow fluorescent protein-based (YFP) assay in CFTR null A549 and CFBE41o− 

cells also corroborate the findings from flow cytometry and Western blot analyses by showing 

a significant increase in Iodide (I-) influx by functional CFTR channels and quenching of YFP 

48h post transfection.  

 

6.1.2. Ex vivo immune response 

The whole blood assay (WBA, ex vivo) was described by Coch and colleagues to have the 

potential to reflect broad aspects of in vivo cytokines and is used in various pre-clinical 

studies82. IFN-α, TNF-α and IL-8 levels were measured to predict activation of the immune 

system as reaction to RNA. pDNAhCFTR and unmodified mRNAhCFTR showed increased cytokine 

levels whereas cmRNAhCFTR did not show a significant elevation. This experiment provided the 

direction of eliminating unmodified mRNAhCFTR in mouse model as it potentially exhibits 

unnecessary immune responses. pDNAhCFTR (as it had been used in various study to produce 

functional CFTR) and two chemically modified CFTR mRNAs were used for further in vivo lung 

function restoration studies.  

 



 28 

6.1.3. In vivo restoration and detection of CFTR protein in CF knockout mice to 

determine clinical potential of cmRNAhCFTR. 

Gut-corrected CFTR knock out mouse model (based on CFTRtm1Unc/J) is a useful mouse model 

for cystic fibrosis. Due to the promoter specific expression of CFTR in the intestine, the mouse 

model does not die from intestinal obstruction (ileum or large intestine). The mouse model 

does not demonstrate the typical lung phenotype seen in CF patients, however, various 

groups have reported findings such as the acid mucopolysaccharide on the bronchial surface 

by scanning electron microscopy, reduced airway compliance and increased resistance 

typical to CF in comparison to wild type mice83,84. The model is also reported to show similar 

symptoms of CF such as age dependent pulmonary inflammation, death of respiratory 

epithelial cells and severe persistent Pseudomonas aeruginosa infection85. The clinical 

potential of CFTR-encoded cmRNAs were tested in the mouse model by two different routes 

of administration. Intratracheal administration allows for a targeted delivery to the respiratory 

system while intravenous (i.v.) route was chosen for systemic delivery.  

  

To assess the impact of cmRNAhCFTR on lung function, an evaluation of clinically relevant lung 

mechanics was conducted using the FlexiVent® system. A significant difference was observed 

in three important parameters (airway compliance, resistance and FEV0.1) between Cftr−/− and 

healthy wild-type mice. I.t. administration of cmRNAhCFTR improved the compliance 

significantly although relatively less than i.v. administration. Resistance was also improved 

significantly by both i.v. and i.t. administration of cmRNAhCFTR. FEV1 percentage (for mouse or 

small animal FEV0.1) is related to survival and the most important physiological parameter for 

CF patients. %FEV1 has become a significant parameter to check in clinical setup as a 

reduction of more than 30%FEV1 (compared to healthy individuals) can indicate mortality witin 

2 years86. A strong variance amid Cftr-/- controls and mock-treated Cftr-/- mice compared to 

homozygous wild-type mice (Cftr+/+) mice had been perceived in the case of FEV0.1. I.v. 

injection of 40 µg cmRNA
hCFTR

s2U0.25/m5C0.25
 significantly improved the FEV0.1 by 23 percentage 

points. pDNAhCFTR when administered via the i.t. route showed improving parameters of lung 

function measurements including FEV0.1, but in lower levels compared to cmRNAhCFTR. 

Interestingly, it was observed that both i.v. and i.t. administration of cmRNA
hCFTR

s2U0.25/m5C0.25
 

positively compensated most of lung function parameters. 

 

Sweat chloride concentration is a recognized procedure to assess the treatment effects in CF 

patients. Based on this, salivary chloride assay has been described as an analogous method 
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in mice87. In our study, substantial decrease in salivary Chloride (Cl-) content of cmRNAhCFTR 

and pDNAhCFTR treated mice were observed regardless the route of administration, indicating 

a restoration of CFTR in the duct compartment of salivary glands and thus leading to an 

improved Cl- absorption.  

 

Along with the functional parameters, the expression of functional protein and disposition of 

cmRNAhCFTR in mouse lungs was tested by hCFTR ELISA and RT-qPCR. Both methods 

indicated that cmRNA
hCFTR

s2U0.25/m5C0.25
 lead to a higher protein expression and as well as mRNA 

disposition in the lung. The administration route of cmRNA
hCFTR

s2U0.25/m5C0.25
 had little effect on 

the ability to express functional protein. The special role of this chemical modification has to 

be further investigated for improving most of the lung function parameters including its effects 

on kinetics and expression patterns of mRNA.  

 

An extensive in vivo immune assay has been conducted to rule out immune reactions caused 

by either NPs (Chitosan-coated PLGA (poly-D, L-lactide-co-glycolide 75:25 (Resomer RG 

752H)) or the cmRNAhCFTR itself. Positive control (E. coli total mRNA) provided 

immunostimulatory effects in vivo but a response from NPs or the cmRNAhCFTR was not 

detectable at the endpoint analysis which is in line with our previous data26. Systemic delivery 

has also been reported to have no impact on proinflammatory cytokine secretion88. 

 

This study is the first proof of concept for the efficient application of NPs-cmRNAhCFTR in vivo 

to restore lung function in a Cftr-deficient mouse model with undetected immune responses 

in vivo and ex vivo. CFBE41o- cells when transfected with cmRNAhCFTR efficiently produced 

functional protein which can be detected by Western blot, flow cytometry, 

immunofluorescence and YFP assay. cmRNAhCFTR could efficiently restore lung function in 

Cftr-/-mice. In addition, the study produced a comprehensive comparison of two well-known 

mRNA modifications with pDNAhCFTR and of two different delivery routes, demonstrating that 

systemic administration of cmRNAhCFTR targets lung cells more efficiently at lower dosages. 

This study provides a strong base for cmRNAhCFTR transcript supplementation therapy for CF 

patients independent of CFTR mutations. 
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6.2. Gene correction of HBB mutation in CD34+ hematopoietic stem 

cells using Cas9 mRNA (paper 2) 

Studies had been conducted by various groups to target HBB gene using CRISPR/Cas9 

system in HSCs and mostly focused on HBB gene addition or targeting sickle cell disease 

mutations89,90. To best of our knowledge, this study is the first study to target the common ß-

thalassemia splicing variant HBBIVS1-110. The knowledge gathered from our previous study 

about optimization of expression by chemical modification of mRNAs was implemented to 

design a Cas9 mRNA to achieve higher indel induction and correction efficiency. 

 

6.2.1. Comparing ZFNs, TALENs and CRISPR/Cas9 

ZFNs, TALENs and CRISPR/Cas9 were designed to target splicing variant HBBIVS1-110 and 

efficacy was determined by T7 endonuclease-I (T7EI) assay in HEK293 cells. CRISPR/Cas9 

displayed an indel efficiency of approximately 60% in comparison to TALENs with an 

efficiency of about 35-40% and ZFNs reaching not over 10%. Interestingly, CRISPR/Cas9 

yielded similar amounts of indels regardless of the tested concentrations.  

 

6.2.2. Plasmid vs. all-RNA approach of CRISPR/Cas9 

A modified pX330 plasmid (pX330.sg HBBIVS1-110) encoding sgRNA sequence (to guide Cas9 

protein to specific mutation site) and SpCas9 was designed. Several ssODNs (to produce 

homology directed repair, HDR) were designed with homology arms varying in length and 

symmetry around the mutation site. pX330.sg HBBIVS1-110 based CRISPR/Cas9 system in K562 

cells provided a mean indel frequencies of 44±18% for target loci and resulted in around 20% 

HDR. In bone marrow-derived CD34+ hematopoietic stem cells (HSCs) this combination of 

pX330.sg HBBIVS1-110 and ssODNs produced relatively low indel and HDR rates (~30% indel 

and 3% HDR, determined by TIDE analysis). To increase the effectiveness of correction, 

pX330.sg HBBIVS1-110 was substituted with an all-RNA approach. Chemically modified Cas9 

mRNA (cmRNACas9) and sgRNAs were synthesized to increase the protein expression of Cas9 

and induction of indels as reported earlier57,91,92. The all-RNA approach yielded higher indels 

ranging from 65% to 87% and up to 11% HDR in CD34+ HSCs. Absolute quantification of 

NheI tag integration by next generation sequencing (NGS) reached around 8% when 

chemically modified Cas9 mRNA, sgRNA and ssODNs were used. These results indicate the 

potential of RNA-based CRISPR/Cas9 systems for ex vivo gene correction in CD34+ HSCs. 

Furthermore, the flexibility CRISPR/Cas9 is advantageous and yields higher efficiency over 

other site-specific endonucleases like ZFNs and TALENs. Although gene correction of 8% in 
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CD34+ HSCs was achieved a further improvement of HDR could result in translation into 

clinics. 

 

6.3. Uridine depletion and chemical modification increase Cas9 

mRNA activity and reduce immunogenicity without HPLC 

purification (paper 3) 

In both studies concerning cystic fibrosis and ß-thalassemia chemical modifications of IVT 

mRNA helped to increase the efficacy of gene supplementation and gene correction. To 

further optimize IVT mRNA, we investigated three design parameters to improve the activity 

of Cas9 protein. These parameters cover sequence engineering by Uridine depletion, HPLC 

purification and testing of different Cap structures.  

 

6.3.1. Sequence engineering (Uridine Depletion) improve Cas9 activity and 

reduce immunogenicity  

In order to replace particular nucleotides (especially Uridine), the degeneracy of the genetic 

code was utilized. Sequence engineering of the mRNA could be performed without changing 

the amino acid configuration. The Uridine-depleted Cas9 mRNA (with or without chemical 

modifications) yielded higher indel rates (77%-87%) compared to first generation chemically 

modified Cas9 mRNA (approximately 60%). The indel formation by Cas9 Ribonucleoprotein 

(RNP), which is used frequently by various groups for higher indel efficiency, provided 67% 

indel activity at the same target. Chemical modification of sequence engineered Cas9 mRNA 

did not play any significant role in elevating the indel activity. On the contrary, chemical 

modification (5moU and Ψ) played an important role in immune evasion. Uridine depletion 

alone can successfully reduce TNF-α and IL-6 level compared to most of the chemically 

modified Cas9 mRNA. Addition of 5moU and Ψ on the sequence engineered Cas9 mRNA 

lowered the level of TNF-α and IL-6 to a non-detectable level in whole blood assay.  

 

6.3.2. Influence of High-performance liquid chromatography (HPLC) purification 

on Cas9 mRNA 

Uridine depletion in combination with chemical modification could reduce IL-6 and TNF-α 

responses but was not successful in reducing IFN responses (U-depleted wild type and U- 

depleted Ψ Cas9 mRNAs). HPLC purification of mRNA had been reported to reduce dsRNA 

impurities and hence can avoid activation of innate immune sensors (TLRs, PKR, or MDA5)93. 



 32 

HPLC purification effectively reduced IFN responses of U-depleted wild type and U-depleted 

Ψ Cas9 mRNAs. In the context of functionality of Cas9, HPLC purification played no 

significant role with the exception of unmodified Cas9 mRNA (wt).  

 

6.3.3. Capping strategy to influence Cas9 mRNA activity and immunogenicity 

mRNA contains a 5’ capping system which initiates translation by binding with eIF4E and 

eIF4G (eukaryotic translation initiation factors) and reduces deterioration by binding with 

Dcp1, Dcp2 and DcpS (mRNA decapping proteins)94,95. The natural occurring 5’-Cap is a 7-

methylguanosine (m7G) connected by a 5’-to-5’ triphosphate bridge with the first nucleotide 

(Cap 0). A modification of Cap 0, Cap 1, (2′-ribose position of the first cap-proximal nucleotide 

is 2′O-methylated) is used to reduce immune responses as previously reported96,97. Cap 1 

and Cap 0 structures for U-depleted Cas9 mRNA with 5moU modification were compared 

and no significant difference was observed in indel induction or levels of tested cytokine 

expressions.  

 

The testing of diverse modalities of Cas9 mRNA modifications showed a vast difference in 

functionality. Among these, Uridine depletion came up as the promising candidate by 

inducing up to 87% indel rate, a significant accomplishment towards achieving gene 

correction. Unfortunately, both HPLC purification and methylation on the 2′-ribose position 

of the first cap-proximal nucleotide could not increase the indel induction by Cas9. Chemical 

modifications (5moU and Ψ) reduce immune response measured by IL-6, IL-12 and TNF-α. 

Moreover, the combination of chemical modification of Uridine and Uridine depletion taken 

together surpassed the results of 5moU or Ψ alone and can be recommended for further gene 

correction studies.  

 

6.4. Recent Developments in mRNA-Based Protein 

Supplementation Therapy to Target Lung Diseases (paper 4) 

The study focusses on three aspects: respiratory diseases, barriers of the lung for drug 

delivery, and recent advancement in IVT mRNA therapies. Understanding the complexity of 

these aspects is the key towards a clinically relevant protein supplementation therapy for the 

lung. The various cell populations which are associated with different lung diseases play a 

vital role in establishing a therapeutic target. Especially differentiated cells, like ionocytes and 

ATII cells, or stem cells like bronchioalveolar stem cells (BASC) and myoepithelial cells (MEC) 

provide a strong target for mRNA therapy. Based on the selected target, nanocarriers need 
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to be designed with specific properties for delivery to specific cells and resistance against 

defense systems like respiratory mucus and alveolar fluids. The substantial size and charge 

of naked mRNA limits the cellular uptake, but nanocarriers can also here facilitate the 

transport across the cellular membrane. Finally, chemical modifications and sequence 

engineering of the mRNA itself improve the therapeutic ability by reducing immunogenicity 

and increasing protein expression. This study provides a critical overview of how to find a 

formulation considering the aspects of target, delivery and modification of mRNA.  

 

7. Concluding remarks 

mRNA has been sidelined for a long time as an unstable molecule. Recent advancements in 

the field of mRNA bring the true potential of this molecule to light. In three separate studies 

we could show the potential of cmRNA in protein supplementation therapy for cystic fibrosis, 

its potential for gene correction using CRISPR/Cas9 for ß-thalassemia and strategies to 

further customize IVT mRNA technology. I believe that these studies could contribute towards 

the advancement in the field of mRNA therapy and bring it a step further to clinical translation. 
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10. Supplement 

Table 2: Gene therapy-based product development land marks for ex vivo and in vivo therapies 

 

Therapy type Disease Vector/transgene Clinical trials 

Hematopoietic Stem and 

Progenitor Cells (HSPCs) 

 

ß-Thalassemia -Lentivirus (LV) ß-

hemoglobin 

-NCT02453477 

-NCT01639690 

Wiskott-Aldrich syndrome 

(WAS) 

-Lentivirus WAS -NCT01515462 

 

Adenosine deaminase 

deficiency (ADA) 

-Lentivirus ADA -NCT02999984 

Human Immunodeficiency 

virus (HIV) 

-Zinc finger nuclease 

CCR5 electroporated (ex 

vivo) 

-NCT02500849 

Metachromatic 

leukodystrophy 

-Lentivirus Arylsulfatase A 

(ARSA) 

-NCT01560182 

Adrenoleukodystrophy -Lentivirus ABCD1 -NCT03727555 

Sickle cell anemia -Lentivirus anti-sickling ß-

hemoglobin 

-NCT02151526 

-NCT02140554 

-NCT02247843 

T cell Acute /chronic 

Lymphoblastic Leukemia 

(ALL/CLL) 

-UCART19 
-γ-Retrovirus CD19 (CD28) 

CAR-T 

-NCT02746952 

-NCT02348216  

 

Multiple myeloma -γ-Retrovirus BCMA (CD28) 

CAR-T 

-γ-Retrovirus BCMA (4-1BB) 

CAR-T 

-Lentivirus-BCMA CAR-T 

-NCT02215967 

-NCT03070327 

-NCT03090659 

Human Immunodeficiency 

Virus (HIV) 

--Zinc finger nuclease 

CCR5 electroporated (ex 

vivo) 

NCT00842634 

 

In vivo Hemophilia A 

 
 

AAV5-Factor VIII NCTO2576795 

Retinal dystrophy AAV2-RPE65 NCT00643747 

 

Parkinson’s disease AAV2-AADC NCT03562494 

 

Aromatic I-amino acid 

decarboxylase deficiency 

AAV2-AADC NCT02926066 
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Chemically modified hCFTR mRNAs 
recuperate lung function in a mouse 
model of cystic fibrosis
A. K. M. Ashiqul Haque1, Alexander Dewerth1, Justin S. Antony  1,7, Joachim Riethmüller2, 

Georg R. Schweizer  1, Petra Weinmann1, Ngadhnjim Latifi1, Hanzey Yasar3, 

Nicoletta Pedemonte  4, Elvira Sondo4, Brian Weidensee1, Anjali Ralhan5, 

Julie Laval5, Patrick Schlegel1, Christian Seitz1, Brigitta Loretz3, Claus-Michael Lehr3,6, 

Rupert Handgretinger1,7 & Michael S. D. Kormann  1

Gene therapy has always been a promising therapeutic approach for Cystic Fibrosis (CF). However, 
numerous trials using DNA or viral vectors encoding the correct protein resulted in a general low 

efficacy. In the last years, chemically modified messenger RNA (cmRNA) has been proven to be a highly 
potent, pulmonary drug. Consequently, we first explored the expression, function and immunogenicity 
of human (h)CFTR encoded by cmRNAhCFTR in vitro and ex vivo, quantified the expression by flow 
cytometry, determined its function using a YFP based assay and checked the immune response in 
human whole blood. Similarly, we examined the function of cmRNAhCFTR in vivo after intratracheal 

(i.t.) or intravenous (i.v.) injection of the assembled cmRNAhCFTR together with Chitosan-coated PLGA 

(poly-D, L-lactide-co-glycolide 75:25 (Resomer RG 752 H)) nanoparticles (NPs) by FlexiVent. The 
amount of expression of human hCFTR encoded by cmRNAhCFTR was quantified by hCFTR ELISA, and 
cmRNAhCFTR values were assessed by RT-qPCR. Thereby, we observed a significant improvement of lung 
function, especially in regards to FEV0.1, suggesting NP-cmRNAhCFTR as promising therapeutic option for 

CF patients independent of their CFTR genotype.

Cystic fibrosis (CF), the most common life-limiting autosomal-recessive disease in the Caucasian population 
(1/2,500 newborns), affects more than 80,000 people worldwide1. It is caused by different mutations within the 
gene encoding for the CF transmembrane conductance regulator (CFTR). Those mutations result in impaired 
anion secretion and hyper-absorption of sodium ions across epithelia2,3. Chronic lung disease and slow lung 
degradation are the major contributing factors to both mortality and strongly reduced quality of life4,5. With cur-
rently available therapies, the mean survival is between 35 and 45 years6,7. Since the CFTR gene was first cloned 
in 1989, many efforts have been made to deal with the mutations at a cellular and genetic level8,9. Gene therapy 
approaches made it quickly to the clinic aiming to deliver viral CFTR-encoding vectors (such as adenoviruses 
(Ad) or adeno-associated viruses (AAV)) to CF patients10. However, none of the clinical studies and current 
treatments seem to provide sufficient human (h)CFTR expression to prevent the ultimately lethal CF symptoms 
in the respiratory tract of CF patients. Furthermore, repeated administration of viral vectors or DNA may lead to 
the development of unwanted immune reactions, mainly due to viral capsids and vector-encoded proteins10–12.

Newly designed viral vectors circumvent those problems and can be administered repeatedly, but from a 
clinical perspective, the field is still in need of a therapeutic tool that combines efficient expression in lungs and 
other (affected) organs and cells while avoiding immunogenicity and genotoxicity completely13–15. The non-viral 
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CFTR-encoding plasmid–liposome complex pGM169/GL67A has been one of the most promising therapeuti-
cal approach used in clinical trial by Alton’s group. Beside some encouraging results, the trial only managed to 
modestly improve forced expiratory volume in 1 s (FEV1) after repeated administration along with no improve-
ment in patient’s quality of life16,17. Recently, in vitro transcribed (IVT) chemically modified messenger RNA 
(cmRNA) came into focus, which has the potential to combine striking advantages in a single-stranded mole-
cule18,19. Chemically modified mRNA has been tested for repeated administration, without developing immune 
responses or losing efficacy, presenting cmRNAhCFTR complexed with biodegradable chitosan-coated PLGA nan-
oparticles (NPs) as a promising therapeutic for the treatment of CF patients19–21. Versatile delivery options of 
mRNA ensure the unique possibility to utilize NP-cmRNAhCFTR in early infants as well as adults, independent of 
the underlying CFTR mutation. To the best of our knowledge, we provide the first in vivo studies delivering cmR-
NAhCFTR to the lungs of CFTR deficient mice (Cftr−/−) by intravenous (i.v.) and intratracheal (i.t.) administration, 
complexed with NPs. We provide a proof of concept of NP- cmRNAhCFTR mediated, ELISA quantified, hCFTR 
expression in the lungs of Cftr−/− mice, leading to significantly reduced chloride secretion and, more importantly, 
restored criticial lung function parameters, including the most important parameter to evaluate mortality and 
morbidity of CF patients, the forced expiratory volume (FEV) in 1s or 0.1s in small animals, respectively22–24.

Materials and Methods
mRNA production. hCFTR was PCR amplified from pcDNA3.hCFTR with primers adding NheI (Fwd: 
5′-TTAGCTAGATGCAGAGGTCGCCTC-3′) and KpnI (Rev: 5′-GCGGGTACCTATCTTGCATCTCTTCT -3′) 
restriction sites to each end. The PCR product was cloned into a poly(A)-120 containing pVAX (pVAX.A120, 
www.lifetechnologies.com) by sticky-end ligation using the mentioned restriction sites. pVAX.A120 containing 
hCFTR is referred as pDNAhCFTR throughout this study. For control experiments, DsRed reporter protein was 
sub-cloned into pVAX.A120 vector from its original vector pDsRed (www.clontech.com). For in vitro transcrip-
tion (IVT), the plasmids were linearized downstream of the poly(A) tail with XhoI (www.neb.com). IVT reaction 
was carried out using MEGAscript T7 Transcription kit (www.ambion.com) with an anti-reverse CAP analog 
(ARCA) at the 5′ end (www.trilink.com). To produce chemically modified mRNA, the following chemically mod-
ified nucleosides were added to the IVT reaction in the indicated ratios: uridine-tri-phosphate (UTP) and cyti-
dine-tri-phosphate (CTP) were fully replaced by N1-Methylpseudo-UTP and 5-Methyl-CTP, abbreviated to 

cmRNA CFTR
N1 /m5C
h

1 0 1 0Ψ . .
 and partly replaced by the incorporation of 25% 2-Thio-UTP and 25% 5-Methyl-CTP, respec-

tively, abbreviated to 
. .

cmRNA CFTR
s2U /m5C
h

0 25 0 25
 (www.trilink.com). The cmRNAhCFTR and cmRNADsRed were purified 

using the MEGAclear kit (www.ambion.com) and analyzed for size and concentration using an RNA NanoChip 
6000 for Agilent 2100 Bioanalyzer (Supplement, Fig. S1) (ww.agilent.com).

Cell culture and Transfection. CFBE41o− and 16HBE14o- cells (from Gruenert’s lab) were incubated 
at 37 °C in a humidified atmosphere containing 5% CO2 until they reached 80–90% confluency. Cell lines were 
washed with cold, sterile PBS and detached by Trypsin-EDTA. Trypsinization was stopped by adding minimum 
essential medium (MEM; www.thermofisher.com) containing 10% fetal calf serum. Cells were collected and 
spun down at 500 × g for 5 minutes before resuspension in fresh MEM. One day before transfection, 250,000 
cells/well/1 ml were plated in 12-well plates and grown overnight in MEM without antibiotics. At confluence 
of 70–90%, cells were then transfected with 1000 ng (c)mRNAhCFTR or equivalent (in nmol) pDNAhCFTR using 
Lipofectamine 2000 (www.invitrogen.com) following the manufacturer’s instructions and after changing the 
media to the reduced serum media, Opti-MEM (www.thermofisher.com). After 5 hours, the complexes were 
removed by replacement with fresh culture medium. Cells were kept for 24 h and 72 h before further analyses.

Flow cytometry analyses. All flow cytometry analyses were performed using a BD LSR Fortessa X-20 
SORP (www.bdbioscience.com). For detection of hCFTR protein in 16HBE14o- and CFBE41o− cell lines, 
cells were transfected as described above and subsequently prepared for intracellular staining using a Fixation/
Permeabilization Solution Kit as directed in the manufacturer’s instruction (www.bdbioscience.com). As primary 
antibody mouse anti-human hCFTR clone 596 (1:500, kindly provided by the cystic fibrosis foundation thera-
peutics Inc.) has been used. As secondary antibody served Alexa Fluor 488 goat anti-mouse IgG (1:1,000, www.
lifetechnologies.com). At least 20,000 gated cells per tube were counted. Data were analyzed with FlowJo software, 
version 10.

Western blot analysis. Protein isolated from cell lines was separated on Bolt NuPAGE 4–12% Bis-Tris 
Plus gels and a Bolt Mini Gel Tank (all from www.lifetechnologies.com). Immunoblotting for hCFTR was per-
formed by standard procedures according to the manufacturer’s instructions using the XCell II Mini-Cell and 
blot modules (www.lifetechnologies.com). After blocking for 1 h in 5% dry milk at room temperature, primary 
antibody against hCFTR clone 596 (1:500, kindly provided by the cystic fibrosis foundation therapeutics Inc.) or 
anti-GAPDH (1:1000) (www.scbt.com) was incubated overnight, horseradish peroxidase–conjugated secondary 
antibodies (anti-mouse from www.dianova.com) were incubated for 1 h at room temperature. All blots were 
processed by using ECL Prime Western Blot Detection Reagents for 30 min exposure time (www.gelifesciences.
com). Semiquantitative analysis was performed using the ImageJ software and overexposure has been avoided as 
per as digital image and integrity policies.

Immunofluorescence. CFBE41o− and 16HBE14o- were plated on a cell culture insert (0.75 × 106 cells per 
insert) containing a PET membrane (0.4 µm pore size) (www.corning.com) to provide an air-liquid interface. 
Cells were transfected 12 h after plating with 5000 ng cmRNAhCFTR or equivalent (in nmol) pDNAhCFTR using 
Lipofectamine 2000 (www.invitrogen.com) according to manufacturer’s instructions. Membranes were cut out 
from the insert 24 h after transfection, fixed with 4% PFA, blocked with 0.1% BSA and Fc blocker. Blocking was 
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followed by overnight incubation with hCFTR clone 596 (1:250, kindly provided by the cystic fibrosis founda-
tion therapeutics Inc.). As secondary antibody served Alexa Fluor 594 goat anti-mouse IgG (1:250, www.abcam.
com, (ab150116)). Membranes were mounted on a coverslip and images were acquired by Zeiss Confocal Laser 
Scanning Microscope (CLSM) 710 NLO with Zen software.

YFP-based functional assay. CFTR activity following transient transfection of (c)mRNAhCFTR in A549 
and CFBE41o− cells was determined using the halide-sensitive yellow fluorescent protein YFP-H148Q/I152L25. 
CFTR deficient A549 or CFBE14o- cells stably expressing the YFP were plated in 96-well microplates (50,000 
cells/well) in 100 µl of antibiotic-free culture medium and, after 6 h, transfected (in case of CFBE14o- reverse 
transfected) with either plasmids carrying the coding sequence for CFTR or different (c)mRNAhCFTR. For each 
well, 0.25 µg of mRNA or plasmid DNA and 0.25 µl of Lipofectamine 2000 were pre-mixed in 10 µl of Opti-MEM 
(www.invitrogen.com) to generate transfection complexes that were then added to the cells. After 24 hours, the 
complexes were removed by replacement with fresh culture medium. The CFTR functional assay was carried out 
24, 48 or 72 h after transfection. For this purpose, the cells were washed with PBS and incubated for 20–30 min 
with 60 µl PBS containing forskolin (20 µM). After incubation, cells were transferred to a microplate reader 
(FluoStar Galaxy; www.bmg.labtech.com) for CFTR activity determination. The plate reader was equipped with 
high-quality excitation (HQ500/20X: 500 ± 10 nm) and emission (HQ535/30M: 535 ± 15 nm) filters for yellow 
fluorescent protein (www.chroma.com). Each assay consisted of a continuous 14-s fluorescence reading (5 points 
per second) with 2 s before and 12 s after injection of 165 µl of a modified PBS containing 137 mM NaI instead of 
NaCl, resulting in a final 100 mM NaI concentration in the well). To determine iodide (I−) influx rate, the final 
11 s of the data for each well were fitted with an exponential function to extrapolate initial slope. After back-
ground subtraction, cell fluorescence recordings were normalized for the initial average value measured before 
addition of I−. Maximum slopes were converted to rates of variation of intracellular I− concentration (in mM/s) 
using the equation: d[I−]/dt = KI[d(F/F0)]/dt, where KI is the affinity constant of YFP for I−, and F/F0 is the ratio 
of the cell fluorescence at a given time vs. initial fluorescence25.

Whole blood assay. Ethical approval for using whole blood from healthy donor was obtained from Ethics 
Commission University Clinic of Tuebingen, Germany (349/2013BO2) and experiments were conducted in 
accordance with relevant guidelines and regulations. Informed consent form (following WHO guideline) was 
signed by each volunteer (healthy donor) and kept safely by principal investigator for privacy requirement. Blood 
samples from three healthy donors were collected in EDTA collection tubes (www.sarstedt.com). For each treat-
ment group, 2 ml of EDTA-blood was transferred into 12-well plates and treated accordingly. R848 (Resiquimod, 
www.sigmaaldrich.com) was added at a concentration of 1 mg/ml to the respective blood positive controls. cmR-
NAhCFTR and pDNAhCFTR (7 picomol each) were complexed to NPs at a ratio of 1:10. The samples were kept at 
37 °C incubator maintaining 5% CO2. At 6 h and 24 h, 1 ml of whole blood was transferred into microtubes con-
taining serum gel (www.sarstedt.com) and spun down at 10,000 × g for 5 min to obtain serum. Sera were stored 
at −20 °C for further cytokine measurement analyses. Serum was used to conduct IFN-α, TNF-α and IL-8 ELISA 
at manufacturer’s instruction (www.thermofisher.com).

Animal experiments. All animal experiments were approved by Regierungspräsidium Tübingen, 
Baden-Württemberg and carried out according to the guidelines of the German Law for the Protection of Animals 
(File Number: 35/9185.81-2/K3/16). Cftr−/− mice (CFTRtm1Unc) were purchased from Jackson Laboratory (www.
jax.org) at the age of 6 to 8 weeks and were maintained under standardized specific pathogen-free conditions on 
a 12 h light-dark cycle. Food, water as well as nesting material were provided ad libitum. Prior to i.t. spray appli-
cations, mice were anesthetized intraperitoneally (i.p.) with a mixture of medetomidine (0.5 mg/kg), midazolam 
(5 mg/kg) and fentanyl (50 µg/kg). Cftr−/− mice received 40 µg or 80 µg of cmRNAhCFTR or an equivalent amount 
(calculated using nmols) pDNAhCFTR complexed with chitosan-coated PLGA nanoparticles [Chitosan (83% 
deacetylated (Protasan UP CL 113) coated PLGA (poly-D,L-lactide-co-glycolide 75:25 (Resomer RG 752 H)) 
nanoparticles; short: NPs] (Full details of nanoparticles are provided in Supplement Table T1 and Fig. S5) by 
intratracheal (i.t.) spraying (n = 4), and intravenous (i.v.) injection (n = 4–7) into the tail vein. Mock-treated 
control Cftr−/− mice received 40 µg or 80 µg cmRNADsRed complexed to NPs (n = 5) by i.v. or i.t administration, 
respectively, or just 200 µl NPs by both i.v. and i.t. delivery. An antidote with a mixture of naloxone (1.2 mg/kg), 
flumazenil (0.5 mg/kg) and atipamezol (2.5 mg/kg) was used against anesthetizing reagents. For both interven-
tions, NP-cmRNA and NP-pDNA complexes were administered in a total volume of 200 µl, twice at an interval of 
3 days (day 0 and day 3). After 6 days, mice were sacrificed for endpoint analyses. A detailed description of the i.t. 
procedures are explained in previously published study26.

Pulmonary mechanics. Lung function for each group was evaluated using a FlexiVent® equipped with 
FX1 module and NPFE extension and was operated by the flexiWare v7.2 software (www.scireq.com). Prior to 
tracheostomy, mice were anesthetized intraperitoneally as described above. After anesthesia, a 0.5 cm incision 
was performed in rostral to caudal direction. A flap of skin was retracted, the connective tissue was dissected, 
and the trachea was exposed. The trachea was then cannulated between the second and third cartilage ring with 
a blunt-end stub adapter. The mouse was connected to the FlexiVent® system and quasi-sinusoidally ventilated27 
with a tidal volume of 10 ml/kg. A breathing frequency of 150 breaths per min was maintained with an inspiratory 
to expiratory ratio of 2:3.

Airway resistance (Rn), which is dominated by the resistance of the large conducting airways was considered 
in this study when the coefficient of determination of the model fit was ≥0.9. Compliance (Cst) was calculated 
straight from deflating arm of the pressure volume (PV) loops and ramp style pressure-driven maneuver (PVr-P). 
For obtaining FEV0.1 data a NPFE maneuver was performed which results in FV loops and FE-related parameters. 
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The mice lung was inflated by a pressure of +30 cmH2O over 1.2 s and rapidly deflated to a negative pressure of 
−55 cmH2O to generate an imposed negative expiratory pressure gradient.

Salivary assay. Prior to tracheostomy, anesthetized mice were injected with 50 µl of 1 mM acetylcholine 
(ACh) in the cheek to stimulate the production of saliva. The fluid was collected via glass capillaries and a chloride 
assay was performed using the Chloride (Cl−) Assay Kit according to the manufacturer’s protocol (www.sigmaal-
drich.com). Briefly, saliva was diluted at a ratio of 1:100 with water in a total volume of 50 µl and subsequently 
150 µl chloride reagent was added. After 15 min incubation at room temperature in the dark, absorbance was 
measured at 620 nm using an Ensight Multimode plate reader (www.perkinelmer.com).

Enzyme-linked immunosorbent assays (ELISAs). To detect protein levels of hCFTR after i.t. or i.v. 
injection of differently modified cmRNAhCFTR in Cftr−/− mice (CFTRtm1Unc), the lungs were isolated at day 6 
(experimental endpoint), homogenized and lysed in 600 µl RIPA-buffer and 5 µl protease inhibitor cocktail with 
tubes of the Precellys Ceramic Kit 1.4/2.8 mm at 6,500 rpm for 10 s for a total of three cycles, each interrupted by 
a 15 s break in a Precellys Evolution Homogenizer for protein isolation (all from www.peqlab.com). Subsequently, 
supernatants were kept on ice and additionally homogenized 10 times with a 20G needle and incubated for 
20 min (www.bdbioscience.com). Lysates were spun down for 20 min at 13,000 × g and 4 °C. The supernatant 
was collected and stored at −20 °C for further use. Prior to hCFTR ELISA detection, protein concentration was 
measured using the Pierce BCA protein assay kit (www.thermofisher.com). For each sample, an equal amount 
of 15 µg whole protein lysate was used. A human CFTR ELISA kit (www.elabscience.com) was used for hCFTR 
detection according to manufacturer’s instructions.

Real-time RT-PCR. After i.t. or i.v. injection of cmRNAhCFTR the lungs were isolated at day 6 (experimen-
tal endpoint), homogenized and lysed with tubes of the Precellys Ceramic Kit 1.4/2.8 mm at 5,000 rpm for 20 s 
in a Precellys Evolution Homogenizer for subsequent RNA-isolation (all from www.peqlab.com). Reverse tran-
scription of 200 ng RNA was carried out using an iScript cDNA synthesis kit (www.bio-rad.com) and 1:20 dilu-
tion of the cDNA product had been used for further experiment. Detection of mRNAhCFTR was performed by 
SYBR-Green based quantitative Real-time PCR in 15 µl reactions on a ViiA7 (www.lifetechnologies.com). In all 
involved procedures, we strictly followed the MIQE protocols for RealTime experiments28. Pre- and post-reaction 
rooms were strictly separated. Reactions were incubated for 10 min at 95 °C, followed by 40 cycles of 15 s at 95 °C 
and 2 min at 50 °C (annealing and extension), followed by standard melting curve analysis. The following primer 
pairs were used:

hCFTR fwd 5′-GAGATGCTCCTGTCTCCTGG-3′, rev 5′-CCTCTCCCTGCTCAGAATCT-3′; 18S rRNA fwd 
5′-GGGAGCCTGAGAAACGGC-3′, rev 5′-GACTTGCCCTCCAATGGATCC-3′. Differences in mRNA expres-
sion between groups were analyzed by pair-wise fixed reallocation randomization tests with REST 2009 software 
after collection of the data from Viia7.

Immune response in vivo. To assess immune responses to (c)mRNAhCFTR and pDNAhCFTR, C57BL/6 
(Jackson Laboratory (www.jax.org)) mice (n = 4 per group) were treated as described for Cftr−/− mice. As posi-
tive controls a group of mice received two administrations of E. coli mRNA-NPs (20 µg) i.v. or i.t. C57BL/6 mice 
received two injections of 20 µg cmRNAhCFTR complexed to NPs i.v. or i.t. After 6 h, 24 h, and 72 h of second 
injection mice were sacrificed and blood was collected. For cytokine measurement, blood from mice was used 
to obtain serum using a serum separator (www.sarstedt.com) and tested for IFN-α and TNF-α production as 
directed in the manufacturer’s instructions (www.thermofisher.com).

Statistics. All analyses were performed using the Kruskal-Wallis test with GraphPad Prism Version 6 (www.
graphpad.com). Most of the data are represented as mean ± SD; box plot data are represented as a mean ± mini-
mum to maximum values. P ≤ 0.05 was considered statistically significant.

Results
(c)mRNAhCFTR and hCFTR protein quantification in vitro. To evaluate the influence of chemical nucle-
oside modification, we first conducted a set of in vitro analyses to characterize the expression and functionality of 
hCFTR protein. First, we compared the expression profile of plasmid-encoded hCFTR (pDNAhCFTR), unmodified 
hCFTR mRNA (mRNAhCFTR) and two well-defined nucleoside modifications (cmRNA CFTR

s2U /m5C
h

0 25 0 25. .
 and 

cmRNA CFTR
N1 /m5C
h

1 0 1 0Ψ . .
) which have been described to exert state-of-the-art stability/expression in vitro or lung-spe-

cific cell contexts in vivo21,29–31. Flow cytometry analyses 24 h after transfection of human cystic fibrosis bronchial 
epithelial (CFBE41o−) cells with pDNAhCFTR, mRNAhCFTR, 

. .
cmRNA CFTR

s2U /m5C
h

0 25 0 25
 and cmRNA CFTR

N1 /m5C
h

1 0 1 0Ψ . .
, showed 

hCFTR positive cells (marked as black dots) ranging from 15.8% (pDNAhCFTR) to 49.6% ( Ψ . .
cmRNA CFTR

N1 /m5C
h

1 0 1 0
) 

(P ≤ 0.01; Fig. 1A, lower panel). At 24 h, hCFTR positive cells and hCFTR median fluorescence intensities (MFIs, 
marked as columns) of (c)mRNAhCFTR were significantly higher compared to pDNAhCFTR (P ≤ 0.05; Fig. 1A, lower 
panel). At 24 h the total hCFTR expression, defined as median fluorescent intensity (MFI) multiplied by the trans-
fection efficiency, of Ψ . .

cmRNA CFTR
N1 /m5C
h

1 0 1 0
 was significantly higher compared to pDNAhCFTR and mRNAhCFTR 

(P ≤ 0.01; Fig. 1A, upper panel). In contrast, after 72 h (c)mRNAhCFTR expressed significantly lower compared to 
pDNAhCFTR transfected cells, reflected in the percentage of positive cells, MFI and in total hCFTR expression 
(P ≤ 0.05; Fig. 1B).

To confirm and substantiate those findings, we performed Western blot analyses of protein lysates taken from 
transfected CFBE41o- cells at 24 h and 72 h post treatment (Fig. 1C). As a positive control served protein lysate 
from untransfected 16HBE14o- cells, and GAPDH was used to normalize band intensities. At 24 h pDNAhCFTR 
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transfected CFBE41o- cells showed an average of 22.8% of the protein expression compared to hCFTR observed 
in 16HBE14o- cells, which increased 4.1-fold to 94.0% at 72 h (P ≤ 0.05; Fig. 1C). This drastic increase of hCFTR 
expression after pDNA transfection goes well in line with the observations in flow cytometry. As well as the quick 

Figure 1. (c)mRNAhCFTR and pDNAhCFTR mediated expression of hCFTR in vitro (A) Total expression of 
hCFTR (calculated by multiplying positive cells (dots) and MFI (bars)) 24 h after transfection with 1 µg (c)
mRNAhCFTR and equivalent nmols of pDNAhCFTR detected by flow cytometry. (B) Total expression of hCFTR 
72 h after transfection with 1 µg (c)mRNAhCFTR and equivalent nmols of pDNAhCFTR detected by flow cytometry. 
(C) Western Blots, semi-quantifying human CFTR in transfected CFBE41o- cells, normalized to GAPDH and 
put relative to CFTR levels in 16HBE14o- cells. Blot section cropped from different blots are delineated with 
clear dividing lines (black) and full blot of same exposure time (30 mins) are depicted in Supplement Fig. S4. 
All bar graph data are depicted as means ± SDs while box plots data are depicted as the means ± minimum to 
maximum values. *P ≤ 0.05 versus unmodified mRNAhCFTR; §P ≤ 0.05 and §§P ≤ 0.01 vs. pDNAhCFTR.
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onset of hCFTR expression after (c)mRNAhCFTR transfection at 24 h (P ≤ 0.05; Fig. 1C). However, relative to the 
24 h time-point, hCFTR expression after 72 h either remained nearly static (mRNAhCFTR resulted in 33.8% and 
34.7% expression at 24 h and 72 h, respectively), decreased (

. .
cmRNA

CFTR

s2U /m5C

h

0 25 0 25
 resulted in 45% and dropped to 

29.3% hCFTR expression at 24 h and 72 h, respectively) or increased (
Ψ
. .

cmRNA
CFTR

N1 /m5C

h

1 0 1 0
, 46.4% at 24 h and raised 

to 63.3% at 72 h). Ultimately, the expression of hCFTR mRNA in vitro was strongly dependent on its chemical 
modification, with Ψ . .

cmRNA CFTR
N1 /m5C
h

1 0 1 0
 resulting in the most robust hCFTR expression among all (c)mRNA trans-

fections (All the blots are separately provided in Supplement Fig. S4).
All in vitro results are also underlined by the conducted immunofluorescence imaging. All tested samples 

show a higher amount of hCFTR positive cells compared to the negative control (CFBE41o- cells; Fig. 2A). 
Additionally, transfection with unmodified mRNAhCFTR produced a lower amount of hCFTR positive cells com-
pared to both pDNAhCFTR and cmRNAhCFTR with the highest amount of hCFTR positive cells in the samples 
transfected with cmRNA CFTR

N1 /m5C
h

1 0 1 0Ψ . .
 (Fig. 2A). Looking at the fluorescence image itself transfection of pDNAhCFTR 

shows a quite dispersed appearance of hCFTR within the cells compared to cmRNAhCFTR transfection seeming to 
have a higher abundance of hCFTR towards the cell membrane (Fig.  2A, left panel). In general, the 

Figure 2. (c)mRNAhCFTR and pDNAhCFTR mediated expression of hCFTR by immunofluorescence and 
functional hCFTR in vitro and immunogenicity in human whole blood. (A) Detection of hCFTR protein by 
immunofluorescence (after 24 h), percent of hCFTR expression in pDNAhCFTR or (c)mRNAhCFTR transfected 
CFBE41o- cells compare to untransfected CFBE41o- and 16HBE14o- cells. Image J has been used for 
calculating means ± SDs of hCFTR positive cells; (B) Quenching efficacy of pDNAhCFTR or (c)mRNAhCFTR 
transfected CFBE41o- and CFTR null A549 cells relative to un-transfected controls was measured at 24 h, 48 h 
and 72 h post-transfection. *P ≤ 0.05 versus un-transfected controls; (C) 2 ml whole blood, each from three 
different healthy human donors, were incubated with either R848 (1 mg/ml) or 7 pmol pDNAhCFTR or 7 pmol (c)
mRNAhCFTR (providing the same total number of nucleic acid molecules) and NPs at a 1:10 ratio; after 6 h and 
24 h the immune response was determined by ELISA in the sera; The blue area represents the variance of the 
negative controls which are biological replicates. n.d., not detectable and red dotted lines mark the detection 
limit as specified in the respective ELISA kit. All bar graph data are depicted as means ± SDs while box plots 
data are depicted as the means ± minimum to maximum values. *and §P ≤ 0.05 (§§P ≤ 0.01) versus control at 6 h 
and 24 h, respectively.
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Immunofluorescence imaging confirms that transfection with pDNAhCFTR as well as (c)mRNAhCFTR leads to 
increased levels of hCFTR protein within the transfected cells.

hCFTR (c)mRNA functionality test in vitro. For functional analysis of the (c)mRNAhCFTR -encoded 
CFTR channel, we performed a YFP-based functional assay using CFTR null A549 cells or ∆F508 CFBE41o- cells 
which stably express halide-sensitive YFP-H148Q/I152L30. Quenching of the YFP signal induced by hCFTR 
channel-mediated I− influx is reciprocally proportional to hCFTR channel function25,32. Figure 2B shows the 
quenching efficacy after transfection of 250 ng (c)mRNAhCFTR, for three different time points, normalized to 
mock-transfected cells. In pDNAhCFTR transfected cells, the quenching efficacy was significantly higher after 48 h 
and stayed high even after 72 h (P ≤ 0.05), while mRNAhCFTR as well as modified cmRNAhCFTR transfected cells 
revealed a single peak quenching at 48 h (P ≤ 0.05), which was undetectable at 72 h in A549 cells. In CFBE41o- 
cells mRNAhCFTR could not provide any detectable quenching but Ψ . .

cmRNA CFTR
N1 /m5C
h

1 0 1 0
 produced significant 

quenching at all the time points (P ≤ 0.05) and cmRNA CFTR
s2U /m5C
h

0 25 0 25. .
 showed very significant quenching at 48 h 

(P ≤ 0.001), which is in line with expression patterns seen in Fig. 1A,B.

(c)mRNAhCFTR immunogenicity ex vivo by an adapted human whole blood assay. Due to lack 
of a reliable method to detect immune responses that therapeutic mRNAs may trigger in a living organism, we 
focused on an innovative approach to using whole blood from humans. Blood was collected from three healthy 
donors and used fresh to conduct whole blood assays. Interestingly, the negative control groups (blood only and 
NP only) did not raise IFN-α values above the detection limit (Fig. 2C, red dotted lines), while TNF-α and IL-8 
were already measurable in human blood untreated or treated only with NPs. That is the reason why we adapted 
the graphical presentation, using a blue colored area that represents the variance of the negative controls, which 
are biological replicates. The positive control (R848) lead to a strong and significant production of IFN-α (6 h 
and 24 h, respectively; P ≤ 0.05), IL-8 (6 h and 24 h, respectively; P ≤ 0.01) and TNF-α (6 h and 24 h, respectively; 
P ≤ 0.05) (Fig. 2C). All cmRNAhCFTR showed a very similar result in cytokine expression as observed for negative 
controls: the IFN-α levels did not reach the detection limit of the ELISA; IL-8 and TNF-α responses were not 
statistically significant at 6 h and 24 h, respectively (Fig. 2C). Unmodified mRNAhCFTR resulted in a significant 
increase of IFN-α at 6 h and 24 (P ≤ 0.05), only significant increase in IL-8 at 24 hours (P ≤ 0.05) and the TNF-α 
levels were in line with the negative control. While pDNAhCFTR triggered high TNF-α responses at 6 h (P ≤ 0.05), 
significant and detectable IFN-α and IL-8 responses after 6 h and 24 h (P ≤ 0.05). Due to both, significantly lower 
expression of mRNAhCFTR in vitro (Fig. 1) and unwanted higher immune responses of mRNAhCFTR, we focused on 
cmRNAhCFTR and pDNAhCFTR in the following therapeutic studies.

Therapeutic effect of cmRNAhCFTR in vivo in mice after i.t. and i.v. application. All in vivo experi-
ments were performed with nanoparticles if not stated otherwise. Therapeutic potential of cmRNAhCFTR was 
investigated in a mouse model of Cystic Fibrosis. Cftr−/− and Cftr+/+ mice have been used in several experimental 
settings that are explained and color-coded in Fig. 3A. To assess the impact of cmRNAhCFTR on lung function, we 
evaluated clinically relevant parameters using the FlexiVent® lung function measurement system. We observed 
significant differences between Mock controls, Cftr−/− and healthy wild-type mice for all parameters measured 
(P ≤ 0.05; Figs 3 and 4B, P ≤ 0.01; Figs 3 and 4C and P ≤ 0.001 Figs 3 and 4D). I.v. administration of 

cmRNA CFTR
s2U /m5C
h

0 25 0 25. .
 significantly increased the compliance from 0.02 ± 0.01 ml/cmH2O (Cftr−/− mice) to 

0.03 ± 0.01 ml/cmH2O (P ≤ 0.05), reaching equivalent values to those measured in Cftr+/+ mice (Fig. 3B). In con-
trast, the i.v. application of 40 µg 

Ψ
. .

cmRNA
CFTR

N1 /m5C

h

1 0 1 0
 or pDNAhCFTR did not alter compliance significantly. 

Applying 40 µg of cmRNA CFTR
s2U /m5C
h

0 25 0 25. .
 or 

Ψ
. .

cmRNA
CFTR

N1 /m5C

h

1 0 1 0
 i.v. significantly lowered the resistance (P ≤ 0.01 and 

P ≤ 0.05 respectively, Fig. 3C) but pDNAhCFTR did not alter the resistance at a significant level. FEV0.1 (human 
equivalent of FEV1) of Cftr+/+ mice defined as projecting 100% forced expiratory volume is pointedly different 
compared to the FEV0.1 value of Cftr−/− mice of only 66% of the wild-type (P ≤ 0.001). I.v. injection of 40 µg 

cmRNA
CFTR

s2U /m5C

h

0 25 0 25. .
 significantly improved the FEV0.1 by 23 percentage points (P ≤ 0.01) and i.v. injection of 40 µg 

cmRNA
CFTR

N1 /m5C

h

1 0 1 0Ψ
. .

 provided a significant FEV0.1 improvement of 14 percentage points compared to FEV0.1 value 
of untreated Cftr−/− mice (P ≤ 0.05; Fig. 3D). However, i.v. administration of pDNAhCFTR showed no significant 
improvement of FEV0.1. I.v. injected mock cmRNADsRED or nanoparticles alone encouragingly aligned with 
untreated groups in all determined lung function parameters. Taken together, these results demonstrate signifi-
cant lung function improvement in all relevant lung function parameters of Cftr−/− mice intravenously (i.v.) 
treated with cmRNAhCFTR.

In the i.t. treated groups, a substantial improvement in compliance and resistance could be detected when the 

cmRNA CFTR
s2U /m5C
h

0 25 0 25. .
 dose was increased to 80 µg (0.04 ± 0.01 ml/cmH2O and 0.86 ± 0.18 cmH2O.s/ml respec-

tively; P ≤ 0.05; Fig. 4B,C). However, 80 µg of cmRNA CFTR
N1 /m5C
h

1 0 1 0Ψ . .
 i.t. lowered the resistance but did not improve 

the compliance as effectively as 
. .

cmRNA CFTR
s2U /m5C
h

0 25 0 25
 (P ≤ 0.05; Fig. 4B,C). pDNAhCFTR (80 µg) i.t. treated mice also 

produced significant improvements of resistance and compliance (P ≤ 0.05, Fig. 4B,C). In terms of FEV0.1, i.t. 
application of 80 µg 

. .
cmRNA CFTR

s2U /m5C
h

0 25 0 25
 was improved by 19 percentage points and i.t. application of 80 µg 

cmRNA CFTR
N1 /m5C
h

1 0 1 0Ψ . .
 improved the FEV0.1 by 12 percentage points with respect to untreated Cftr−/− mice (P ≤ 0.05, 

Fig. 4D). I.t. administration of pDNAhCFTR showed no significant improvement of FEV0.1. Taken together, these 
results demonstrate significant lung function improvement in all relevant lung function parameters of Cftr−/− 
mice treated intratracheally with cmRNAhCFTR.

A well-established functional test, measuring the mouse saliva chloride concentration33 was conducted to 
complement the functional results observed using FlexiVent. The saliva chloride concentration detected in 
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Cftr−/− mice (4084 ± 236.8 ng/µl) was significantly higher compared to Cftr+/+ mice (748.8 ± 96.9 ng/µl, 
P ≤ 0.001; Fig. 5A,B). The treatment of 

. .
cmRNA CFTR

s2U /m5C
h

0 25 0 25
 i.v. significantly lowered the chloride concentrations 

in the saliva of Cftr−/− mice by more than 52 percentage points (P ≤ 0.01; Fig. 5A) underlining the FlexiVent 
results. However, Ψ . .

cmRNA CFTR
N1 /m5C
h

1 0 1 0
 and pDNAhCFTR treated mice (i.v.) only provided about 20 percentage points 

reduction. The treatment with cmRNA CFTR
s2U /m5C
h

0 25 0 25. .
 i.t. (80 µg) significantly lowered the chloride concentrations in 

the saliva of Cftr−/− mice by 36 percentage points (P ≤ 0.01; Fig. 5B). Ψ . .
cmRNA CFTR

N1 /m5C
h

1 0 1 0
 treated mice (i.t.) 

abridged the chloride concentration not significantly in saliva of Cftr−/− mice but pDNAhCFTR treated Cftr−/− pro-
vided a significant reduction (P ≤ 0.01; Fig. 4B) but not as proficiently as 

. .
cmRNA CFTR

s2U /m5C
h

0 25 0 25
. The mock mRNA 

treated group and just nanoparticle treated group failed to decrease the chloride concentration.

cmRNAhCFTR and hCFTR protein quantification in lungs after application in vivo. All in vivo 
experiments were performed with nanoparticles if not stated otherwise. We tested for the localization of cmR-
NAhCFTR complexed with nanoparticle in the lungs after i.t. or i.v. application via RT-qPCR, quantified the hCFTR 
protein expression with hCFTR ELISA and then evaluated its immunogenicity depending on modification. In 
contrast to the in vitro data, when 40 µg cmRNA CFTR

s2U /m5C
h

0 25 0 25. .
 was i.v. injected into the mice, this resulted in a 

higher accumulation of that mRNA in the lung as compared to 40 µg Ψ . .
cmRNA CFTR

N1 /m5C
h

1 0 1 0
 and pDNAhCFTR 

(P ≤ 0.01, Fig. 6C). More importantly, we wanted to analyze if there is a significant increase in hCFTR protein 
levels in the lungs of treated mice by hCFTR ELISA (Fig. 6B,E). These analyses confirmed that mice treated with 
40 µg 

. .
cmRNA CFTR

s2U /m5C
h

0 25 0 25
 i.v. had a highly significant increase of hCFTR protein in the lungs of treated mice vs. 

control mice (P ≤ 0.01; Fig. 6B). Besides, we tested the effects of an increased amount (80 µg) of cmRNAs and 
pDNAhCFTR with i.t. instillation, cmRNA CFTR

s2U /m5C
h

0 25 0 25. .
 and pDNAhCFTR showed a clear and significant increase of 

hCFTR protein compared to control mice (Fig. 6E) (P ≤ 0.01). All the mock controls used in hCFTR ELISA have 
proven to be not significantly different from the negative control.

cmRNAhCFTR immunogenicity in vivo in mice after i.v. application. All in vivo experiments were per-
formed with nanoparticles if not stated otherwise. First, we applied different compounds such as nanoparticles, 
E. coli extract total RNA (positive control), cmRNAhCFTR and pDNAhCFTR i.v. or i.t. to mice and monitored their 
immune reaction at three different time points. Applying 40 µg cmRNAhCFTR (with any modifications used) or 

Figure 3. In vivo lung function measurements in cmRNAhCFTR and pDNAhCFTR treated Cftr−/− mice by i.v. 
route. All mouse groups utilized in (B–D) are color-coded for their treatment schemes (A), including dosage 
and application routes. (B–D) Precision in vivo lung function measurements covering all relevant outcome 
parameters on in Cftr−/− mice treated twice via i.v. route and measured 72 hours after the 2nd instillment; 
n = 4–7 mice per group. The blue area represents the variance of the negative controls which are biological 
replicates. Data represent the means ± SD on compliance, resistance and Forced Expiratory Volume in 
0.1 seconds (FEV0.1). *P ≤ 0.05; **P ≤ 0.01 and ***P ≤ 0.001 versus untreated Cftr−/− mice.
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pDNAhCFTR i.v. or i.t. did not lead to detectable responses of key cytokines IFN-α or TNF-α (detected by ELISA) 
at all three-time points (Fig. 7A)34,35. Nanoparticles alone (used in all in vivo experiments) showed no immune 
response over the detection limit. However, as expected the positive control (E. coli extract total RNA) i.v. and 
i.t. resulted in a significant increase of IFN-α and TNF-α at 6 h and a trend increase of IFN-α at 24 h, while an 
effect at 72 h was not detectable (Fig. 7A). No immune response had been observed apart from positive control in 
groups treated intratracheally (i.t) (Fig. 7B).

Figure 4. In vivo lung function measurements in cmRNAhCFTR and pDNAhCFTR treated Cftr−/− mice by i.t. 
route. All mouse groups utilized in (B–D) are color-coded for their treatment schemes (A), including dosage 
and application routes. (B–D) Precision in vivo lung function measurements covering all relevant outcome 
parameters on Cftr−/− mice treated twice via i.t route and measured 72 hours after the 2nd instillment; n = 4–7 
mice per group. The blue area represents the variance of the negative controls which are biological replicate. 
Data represent the means ± SD on compliance, resistance and Forced Expiratory Volume in 0.1 seconds 
(FEV0.1). *P ≤ 0.05; **P ≤ 0.01 and ***P ≤ 0.001 versus untreated Cftr−/− mice.

Figure 5. In vivo saliva chloride concentration measurement of cmRNAhCFTR and pDNAhCFTR treated Cftr−/− 
mice by i.v./ i.t. route (A,B) Functional test of reconstituted CFTR channel and reduced chloride concentration 
after i.v. (A) or i.t. (B) treatment of Cftr−/− mice compared to untreated Cftr−/− (black), positive controls 
(violet), and percentages relative to the positive control; n = 4 mice per group; two mock controls were included 
(white); boxes represent the means ± minimum and maximum values. The blue area represents the variance of 
the negative controls which are biological replicates. *P ≤ 0.05; **P ≤ 0.01 versus untreated Cftr−/− mice.
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Figure 6. Expression of hCFTR protein in mouse lungs and delivery of cmRNAhCFTR and pDNAhCFTR in lungs. 
(A,D) All mouse groups, particles and particle combinations depicted in the study plan are color-coded for their 
treatment schemes, including dosage and application routes. (B,E) hCFTR ELISA, detecting specifically human 
CFTR, was performed on lung preparations at day 6 from Cftr−/− mice treated twice via i.v. (B) or i.t. (E) route 
and measured 72 hours after the 2nd instillment (endpoint); the same n = 4–7 mice per group were used. (C,F) 
Relative amounts of differently modified hCFTR mRNAs in the lungs applied i.v. or i.t., then determined by 
RT-quantitative PCR, compared to untreated Cftr−/− mice (*P ≤ 0.05); n = 4–7 mice per group. All bar graph 
data are depicted as means ± SDs while box plots data are depicted as the means ± minimum to maximum 
values. The blue area represents the variance of the negative controls which are biological replicates. *P ≤ 0.05; 
**P ≤ 0.01 and ***P ≤ 0.001 versus untreated Cftr−/− mice.

Figure 7. (c)mRNAhCFTR and pDNAhCFTR mediated immunogenicity in vivo Mice were i.v. or i.t. injected with 
a mix of (c)mRNA and NPs at a 1:10 ratio and ELISAs were performed post-i.v./i.t.-injection at three different 
time points. n.d., not detectable. The red dotted lines in (A,B) mark the detection limit as specified in the 
respective ELISA kit. All bar graph data are depicted as the means ± SD and box plots data are represented as 
the means ± minimum to maximum values.
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Discussion
Although much progress has been achieved since the discovery of the CFTR gene 25 years ago, there is still a sub-
stantial need to restore robust CFTR function in patients suffering from cystic fibrosis8. With the recent approvals 
of the small molecule agents ivacaftor and lumacaftor, science has paved a possible way to overcome the hurdles 
caused by the disease-conferring gene. Those treatments can be more or less effectively applied to patients bearing 
CFTR mutations delF508 (Lumacaftor-ivacaftor/Orkambi) and G551D (ivacaftor)36–39. However, lung function, 
as one of the main outcome parameters probably having the most significant influence on life quality of CF 
patients, is rarely tested in preclinical models. In fact, actual effects of (modern) existing drugs on lung function, 
with forced expiratory volume in one second (FEV1) as a key parameter, are quite low40. Here, by using cmR-
NAhCFTR, we are presenting a proof of concept for a viable and potent therapeutic alternative. We have vigorously 
tested mRNA therapy with focus on in vivo lung function normalization while avoiding any possible, unwanted 
immune responses for a possibility of repeated dosing. The unique formulation utilized can be used both topically 
(intratracheally) and systemically (via i.v. injection), having in both cases a profound effect on normalizing the 
lung function parameters, including compliance, resistance and FEV0.1 of treated Cftr−/− mice to values obtained 
from Cftr+/+ mice.

In vitro, using cmRNAhCFTR, CFTR protein expression in CFBE41o− cells was increased up to 5.5-fold com-
pared to mRNAhCFTR, which is consistent with previous studies obtained by us and others18,31,41. Incorporation 
of naturally occurring chemically modified nucleosides has been shown to suppress inhibitory effects on trans-
lation by avoiding detection by pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) TLR3, 
TLR7, and TLR834,35. Those receptors play a crucial role in the detection, processing, and degradation of mRNA. 
Interestingly, depending on the mRNA modification, kinetics of hCFTR expression varies upon the different 
nucleosides used. In fact, after 72 h we only observe an increased quenching of Yellow fluorescent protein (YFP) 
in YFP assay in CFTR null A549 and CFBE41o− cells by pDNAhCFTR which would corroborate our findings 
from our flow cytometry and western blot analyses in CFBE41o− cells. In contrast there is a significant increase 
in I− influx by functional hCFTR channels and quenching of YFP at 48 h post transfection by cmRNAhCFTR. 
Consequently, we assume that upon different cell lines, kinetics by which the hCFTR protein is expressed varies. 
Earlier studies support our notion that differently modified mRNAs can have an impact on the translational effect 
between distinct cell lines31,35.

To better mimic in vivo human conditions, we performed an ex vivo whole blood assay (WBA) which offers 
a more complex environment to test for immune responses. This assay has already been used in a number of 
preclinical settings, and Coch and colleagues could demonstrate that it has the potential to reflect broad aspects 
of the in vivo cytokine release caused by oligonucleotides42. Indeed, we could show that the small molecule 
Resiquimod (serving as a positive control by activating TLR7 and TLR8) lead to a substantial release of IFN-α, 
TNF-α and IL-8. pDNAhCFTR, as well as unmodified mRNAhCFTR, also showed elevated cytokine levels probably 
due to the activation of innate immune receptors34,35. In contrast, incorporation of modified nucleosides into 
hCFTR mRNA (cmRNAhCFTR) abolished such responses, with no detectable amounts of IFN-α. This is in concert 
with previously published data, demonstrating cmRNA’s limited immune responses, mainly by evading detection 
from receptors such as TLRs, RIG-1, MDA-5 or PKR34,41. Interestingly, even though TNF-α or IL-8 could be 
detected, it rather shows donor-dependency than effects deriving from NPs and/or cmRNAhCFTR with cytokine 
levels being all within the variance of negative controls. Although it mirrors only the blood compartment and 
does not reflect the more complex in vivo situation, the WBA can give a prediction of how cytokines are released 
in the human system in response to systemically applied (c)mRNA prior to clinical testing.

To determine the clinical potential of CFTR-encoded cmRNA we compared not only different modifications 
in vivo but also two different routes of administration. I.t. application has been chosen for this study on the base of 
our previous findings of applying cmRNA i.t. in a surfactant protein-B deficient mouse model leading to signifi-
cantly prolonged survival26. Given the fact that in patients suffering from CF one of the key barriers is the airway 
mucus layer in which inhaled particles are more likely to get trapped and removed, we sought to apply cmRNAh-

CFTR/pDNAhCFTR complexed to NPs by i.v. injection as an alternative administration route. Systemic delivery via 
lipid-modified polymeric nanoparticles have been already shown to target the lungs efficiently43.

To support our notion of improved CFTR activity, we performed extensive lung function measurements using 
state-of-the-art technology to provide detailed in vivo information on different lung function parameters. There 
are doubts about Cftr−/− mice as a proper model for cystic fibrosis as it does not reflect the typical lung phenotype 
seen in CF patients44. However, the reason behind that seems to be in how deeply lungs or other affected organs 
had been investigated. A layer of material can be observed with characteristics of an acid mucopolysaccharide on 
the bronchiolar surface and is also evident in alveoli by using scanning electron microscopy in Cftr−/− mice, 
which is not evident in Cftr+/+ mice45. It has also been reported Cftr−/− mice shows similar effect of CF patients 
like, age-dependent pulmonary inflammation, death of respiratory epithelial cells and high vulnerability to severe 
Pseudomonas aeruginosa infection46. Recent studies could demonstrate reduced airway compliance and increased 
resistance in comparison to wild-type mice47,48. Indeed, we observed significantly higher and lower levels regard-
ing resistance and compliance, respectively, in Cftr−/− controls and mock-treated Cftr−/− mice compared to 
homozygous wild-type mice (Cftr+/+) mice and demonstrated that treatment with cmRNAhCFTR-NPs improved 
compliance and resistance significantly equal to those seen in healthy Cftr+/+ mice. FEV1 percentage (for mouse 
or small animal FEV0.1) is related to survival in CF and a most important physiological parameter for CF patients. 
A previous study demonstrated that patients with a %FEV1 of <30 compared to healthy individuals had a 50% 
chance of mortality within 2 years and hence are regularly examined in clinical setup49. A strong variance amid 
Cftr−/− controls and mock-treated Cftr−/− mice compared to homozygous wild-type mice (Cftr+/+) mice has been 
perceived in the case of FEV0.1. Our study provides a significant improvement of FEV0.1 due to treatment with 
NP-cmRNAhCFTR. Interestingly, NP-pDNAhCFTR when administered via i.t. route improved parameters of lung 
function measurements including FEV0.1, but not as significant as cmRNAhCFTR. We also observed i.v. or i.t. 
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administration of 
. .
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 to positively compensate most of lung function parameters. Overall, we 

could demonstrate that certain protocols, applying cmRNAhCFTR either i.v. or i.t. efficiently restored lung function 
values equal to those of wild-type. Suggesting a more even distribution through arteries and the bronchial circu-
lation by i.v. injection, this route and formulation could lead to a very potent therapy especially for newborns and 
young infants. By providing functional CFTR early in life, the lungs could be protected from irreversible damage. 
Nevertheless, when applied intratracheally, which mimics deep inhalation of a spray or powder formulation (pri-
mary application route in adults), an adjustment in dose and/or formulation (e.g. cmRNA CFTR

s2U /m5C
h

0 25 0 25. .
 increased 

to 80 µg) might easily abrogate any negative effect of the Cftr−/− genetic background on lung function.
Eventually, we determined the impact of cmRNAhCFTR and pDNAhCFTR on another relevant physiological out-

come such as the saliva chloride concentration to evaluate therapeutic effect and complement the lung function 
results. Sweat chloride concentration has become an accepted method as a diagnostic readout to assess treatment 
effects of CF patients50. As an analog, chloride concentration of β-adrenergic stimulated salivary glands of Cftr−/− 
mice can be investigated as it complies with findings in CF patients33. In this study, we could show a substantial 
difference in salivary Cl− content of cmRNAhCFTR and pDNAhCFTR treated mice – both, i.v. and i.t. – compared to 
their untreated counterpart. With end point-analysis, a significant decrease in Cl− to nearly 50% was observed, 
indicating a restoration of CFTR in the duct compartment of salivary glands and thus leading to an improved 
Cl− absorption. Previous studies estimated that a restoration of CFTR activity to 50% could lead to sweat chloride 
levels to near normal levels in CF patients. Given that, it is possible that cmRNAhCFTR treatment has the potential 
to improve CFTR activity to levels that are at least similar to those in patients with a mild CF phenotype51.

In this study, by applying cmRNAhCFTR consecutively, both modifications were successfully delivered to the 
lungs with the i.v. route being more efficient at doses of 40 µg (2 mg/kg body weight) per treatment. Intriguingly, 
in contrast to the results obtained in vitro, 

. .
cmRNA CFTR

s2U /m5C
h

0 25 0 25
 showed a significantly higher CFTR protein 

expression with higher accumulation of hCFTR mRNA in lung cells. Assuming differences of cmRNA-encoded 
transgene expression between distinct cell lines, it is plausible to consider such differences between in vitro versus 
in vivo applications, which is by far more complex. In this respect, the higher amount of cmRNA CFTR

s2U /m5C
h

0 25 0 25. .
 

found in lung cells after i.v. injection, might be due to the fact that its nucleoside composition is more favorable to 
evade PRRs, thus being less degraded. However, regardless of cmRNA kinetics we also observed differences in the 
delivery route of cmRNAhCFTR/pDNAhCFTR -NPs. Our data suggest i.v. injection to be more efficient in delivering 
such complexes to the lung than topical administration. Tests of cmRNAhCFTR -NP’s capacity of mucus penetra-
tion are in planning phase including detection of cmRNAhCFTR and CFTR protein (glycosylated) in a Cftr-deficient 
mouse model especially at the apical side of the bronchial epithelium. The upper airways are lined with mucus 
and mucociliary movements clear foreign particles immediately. In addition, the main barriers in the deeper areas 
are the alveolar lining, scavenger transporters and alveolar macrophages52,53. We, therefore, concluded that the 
original dosing by which cmRNA-NPs were delivered i.t. was not as efficient as using the i.v. route. Indeed, 
increasing the amount by doubling the dose (to 80 µg) for each treatment showed a hCFTR expression close to 
levels seen using the i.v. route.

To exclude immune reactions caused by either NPs or the cmRNAhCFTR itself, we conducted extensive immune 
assay tests in vivo. Except for the positive control (E. coli total mRNA), we could not detect any immunostimu-
latory effect in vivo that could arise from NPs or the cmRNAhCFTR. These results confirm our previous studies in 
which we showed that NPs, as well as modified mRNA, could be administered safely to the lungs without any 
substantial increase in cytokines, or inflammatory-related cells such as macrophages or neutrophils26. Systemic 
delivery has also been reported to have no impact on proinflammatory cytokine secretion29.

Taken together, this study is the first proof of concept of efficient application of NP-cmRNAhCFTR in vivo to 
restore lung function in a Cftr-deficient mouse model. Importantly, we could neither detect immune responses 
in vivo nor in a more defined setting ex vivo. Applying cmRNAhCFTR to Cftr−/− mice could efficiently restore lung 
function close to levels of healthy control mice. In addition, our study compared - apart from two well-known 
mRNA modifications and pDNAhCFTR - also two different delivery routes, demonstrating that systemic admin-
istration of cmRNA targets lung cells more efficiently at lower dosages. This study provides a proof of concept 
for alternative treatment of patients suffering from CF. cmRNAhCFTR transcript supplementation may be broadly 
applicable for most CFTR mutations, not only in adults but already in the postnatal state, thereby protecting the 
lungs from exacerbations from the very beginning of life.
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Abstract

Background: β-Thalassemia is an inherited hematological disorder caused by mutations in the human hemoglobin

beta (HBB) gene that reduce or abrogate β-globin expression. Although lentiviral-mediated expression of β-globin

and autologous transplantation is a promising therapeutic approach, the risk of insertional mutagenesis or low

transgene expression is apparent. However, targeted gene correction of HBB mutations with programmable

nucleases such as CRISPR/Cas9, TALENs, and ZFNs with non-viral repair templates ensures a higher safety profile

and endogenous expression control.

Methods: We have compared three different gene-editing tools (CRISPR/Cas9, TALENs, and ZFNs) for their targeting

efficiency of the HBB gene locus. As a proof of concept, we studied the personalized gene-correction therapy for a

common β-thalassemia splicing variant HBBIVS1–110 using Cas9 mRNA and several optimally designed single-

stranded oligonucleotide (ssODN) donors in K562 and CD34+ hematopoietic stem cells (HSCs).

Results: Our results exhibited that indel frequency of CRISPR/Cas9 was superior to TALENs and ZFNs (P < 0.0001).

Our designed sgRNA targeting the site of HBBIVS1–110 mutation showed indels in both K562 cells (up to 77%) and

CD34+ hematopoietic stem cells—HSCs (up to 87%). The absolute quantification by next-generation sequencing

showed that up to 8% site-specific insertion of the NheI tag was achieved using Cas9 mRNA and a chemically

modified ssODN in CD34+ HSCs.

Conclusion: Our approach provides guidance on non-viral gene correction in CD34+ HSCs using Cas9 mRNA and

chemically modified ssODN. However, further optimization is needed to increase the homology directed repair

(HDR) to attain a real clinical benefit for β-thalassemia.

Keywords: HBB, Beta-thalassemia, Gene correction, CRISPR/Cas9, IVS1–110, Cas9 mRNA

Background

β-Thalassemia (OMIM: 613985) is an inherited

hematological disorder caused by mutations of the hu-

man hemoglobin beta (HBB) gene, leading to deficient

β-globin expression and severe anemia [1]. The current

treatment options include allogeneic bone marrow

transplantation and hematopoietic stem cell (HSC)

transplantation but are limited to histo-compatible

donors. However, gene therapy based on autologous trans-

plantation of a lentiviral-transferred HBB gene to HSCs

resulted in remarkable clinical benefit [2, 3]. Though the

safety and efficacy of lentiviral-based gene therapy is

positive in a treated patient, the transactivation of the

proto-oncogene HMGA2 and more than 3500 unique inte-

gration sites in tested mouse model forewarns the possibil-

ity of insertional mutagenesis [2, 4]. Earlier retroviral gene

therapy studies on other inherited diseases reported the

treatment-related leukemogenesis [5–7], and lentiviral
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therapy resulted in T cell lymphoma in a mouse model of

X-SCID due to random integration into oncogenes [8].

Therefore, the ideal gene therapy with viral vectors must

ensure targeted integration of a therapeutic HBB transgene

in the endogenous locus. Otherwise, personalized gene-cor-

rection therapy with programmable nucleases and non-vi-

ral repair templates such as single-stranded

oligonucleotides (ssODNs) must be employed as it is

less likely to randomly integrate into the genome and

result in a safe and precise gene editing [9]. Though

several studies targeted HBB gene with ZFNs,

TALENs, and CRISPR/Cas9, no study has ever com-

pared all the three gene-editing platforms simultan-

eously. Therefore, in the present study, we compared

these three approaches for their target efficiency in

parallel. Here, we tested the gene correction efficiency

of strategically designed ssODNs as repair templates

to target HBB gene. This is an important measure

while editing the highly proliferating stem cell popula-

tion to avoid clonal selection and thereby triggering

oncogenesis.

Correspondence/findings

First, we designed ZFNs, TALENs, and CRISPR/sgRNA

for targeting the promoter region of the HBB gene

(Additional file 1: Figure S1). The HBB gene-targeting effi-

cacy of designed ZFNs, TALENs, or CRISPR/Cas9 was de-

termined by T7 endonuclease-I (T7EI) assay in HEK293

cells. Interestingly, CRISPR/Cas9 exhibited higher indels

for all three different concentrations (0.5 μg, 1.0 μg, and

1.5 μg) compared to ZFNs and TALENs (Fig. 1a;

Additional file 1: Figure S1). Similar results were observed

earlier for the HBBIVS2–654 mutation where gene-targeting

efficiency of CRISPR/Cas9 was superior to TALENs [10].

Fig. 1 Comparison of three different gene-editing tools at HBB promoter and targeting HBB
IVS1–110 locus. a HEK-293 cells were transfected with

500, 1000, and 1500 ng of expression plasmid of either ZFNs, TALENs, or CRISPR/Cas9 targeting the promoter of the β-globin gene locus. The

indel rate was measured by T7 endonuclease-I (T7EI) assay. Results represent mean values for each concentration, and significant difference was

observed among the tools used (P < 0.0001). b Design of HBBIVS1–110 sgRNA and ssODN donor templates. K562 cells electroporated with pX330.sg

HBB
IVS1–110 plasmid measured for indel rate and HDR. The experiment results from T7EI assay and RFLP assay (c, d) plotted as a bar graph against

utilized ssODNs. c The results of T7EI assay analyzed by 1.5% agarose gel electrophoresis. d The results of RFLP assay measured in Bioanalyzer

using DNA1000 kit (N = 3)
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Therefore, we focused on CRISPR/Cas9 to examine the

gene correction efficiency of non-viral repair templates.

Several studies have targeted the HBB gene using

CRISPR/Cas9 system in HSCs, induced pluripotent stem

cells, and human embryos [11–16]. Most of these studies

were either focused on HBB gene addition or targeting

sickle cell disease mutation. To the best of our knowledge,

this is the first study that attempted to target a common

β-thalassemia splicing variant HBBIVS1–110 (rs35004220),

which leads to an alternative splice site and reduced

β-globin expression with a non-viral strategy [17].

To target the HBBIVS1–110 locus, we designed a sgRNA

and several ssODNs (Fig. 1b; Additional file 1: Figure S1)

with varying lengths of homology arms, symmetrical dif-

ference, and chemical modifications and complimentary

to the strand targeted or not targeted by the guide-RNA

[18]. To evaluate the ability of CRISPR/Cas9 to correct

the HBBIVS1–110 mutation by an exogenous DNA se-

quence, we introduced an NheI-tag (restriction site) into

the ssODNs that can be stably integrated upon successful

homology-directed repair (HDR) (Fig. 1b). We electropo-

rated pX330.sg HBBIVS1–110 plasmid and ssODN donors

harboring NheI-tag using a Neon system into K562 cells

and evaluated the frequency of indels by T7EI assay and

HDR-driven NheI integration by restriction fragment

length polymorphism (RFLP) assay (Figs. 1c/d). Mean

indel frequencies for the targeted loci were 44 ± 18%. We

next determined whether any of the rationally designed

ssODNs could stimulate gene targeting by HDR and

found that most of the tested ssODNs resulted in similar

HDR frequencies with the median of 20% (range 5–31%).

To assess our non-viral correction strategy with bone

marrow-derived CD34+ HSCs, we co-delivered pX330.sg

HBBIVS1–110 plasmid and several ssODNs. Unlike our re-

sults with K562 cells, the indel frequencies in HSCs were

relatively low with a median of 30% (range 0–56%) and

only one ssODN (5TS) exhibited 3% HDR rate in TIDE

analysis (Fig. 2a; Additional file 1: Figure S3.A). We next

sought to determine HDR rate for 5TS-ssODN by a

semi-quantitative single-colony sequencing and found

that 2% (3/172) of clones showed NheI insertions

(Fig. 2b). We observed that pDNA resulted in lower

transfection rate and higher cell death in HSCs (data not

shown). Due to the low indel rate achieved by

pDNA-encoded Cas9, we aimed to increase the efficiency

and viability by using mRNA-encoded Cas9 as others and

ourselves earlier reported the superiority of mRNA over

pDNA [19–21]. In addition, transiently expressed Cas9

mRNA resulted in reduced off-targets compared to

long-term Cas9 expression systems [22]. Therefore, we deliv-

ered Cas9 mRNA and chemically modified sgRNA with four

different ssODNs (chemically modified, 2 PAM-depleted,

5TS) using a 4D-Nucleofector. Genomic analysis with the

T7EI assay resulted in high indels ranging from 65% (mod.

ssODN) to 87% (11 NTS), and the RFLP assay showed up to

11% integration ofNheI tag at theHBBIVS1–110 locus (Fig. 2c).

Our results clearly imply the superiority of Cas9 mRNA over

pDNA (Additional file 1: Figure S3.B). We noticed significant

enrichment of 6-bp insertion (range 2–9%) by NheI integra-

tion at the target locus for tested ssODNs (Fig. 2d;

Additional file 1: Figure S4).

However, the absolute quantification of site-specific

insertion events of the NheI tag at the HBBIVS1–110

locus by next-Generation sequencing showed 8% cor-

rection for modified ssODN (Fig. 2e; Additional file 1:

Figure S5). All the analyses spotted improved gene cor-

rection for chemically modified ssODN in HSCs as re-

ported earlier [23]. No detectable off-target cleavage

was found in six of the in silico predicted off-targets

(Additional file 2: Table S4; Additional file 1: Figure S6)

for the sgRNA-targeted HBBIVS1–110 locus. We found

that CRISPR/Cas9 greatly facilitates targeted genome

modification compared to TALENs and ZFNs, and

introduction of new DNA sequences in HSCs using

Cas9 mRNA and ssODN is feasible without viral vec-

tors. However, correction of 8% in HSCs at ex vivo set-

ting is sub-optimal. Therefore, further improvement on

HDR efficacy and selection of corrected cells is needed

to attain a meaningful gene correction of HBB muta-

tions to treat β-thalassemia and other related genetic

diseases.

Online methods

Design of gene-editing tools

The targeting efficacy at the promoter of the HBB gene

locus (200 bp upstream of the transcription start site) be-

tween three different gene-editing tools (CRSIPR/Cas9,

TALENs, and ZFN) was evaluated (Additional file 1: Figure

S1). The ZFN constructs targeting the promoter were or-

dered from Sigma-Aldrich (http://www.sigmaaldrich.com).

The full amino acid sequences of the ZFN pair are shown

in Additional file 2: Data S1. The targeting TALEN pair was

designed with the help of the online tool ZiFiT Targeter

Version 4.2 (http://zifit.partners.org) and assembled by fast

ligation-based automatable solid-phase high-throughput

(FLASH). Plasmids encoding TALE repeats harboring dif-

ferent repeat variable di-residues (RVDs) with their FLASH

IDs are summarized in Additional file 2: Table S1. The

sgRNAs for promoter (5′-AGCCAGTGCCAGAAGAGCC

A-3′) and HBBIVS1–110 (5-GGGTGGGAAAATAGACCAA

T-3′) were designed using CRISPR design tool. The re-

spective oligo pairs encoding the 20-nt guide sequences are

annealed and ligated into a pX330 vector consisting of a

SpCas9 expression cassette and a U6 promoter driving

the expression of chimeric sgRNA. The chemically

modified sgRNA for HBBIVS1–110 mutation was synthe-

sized by incorporating 2-O-methyl 3′phosphorothioate
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(MS) modification at three terminal nucleotides at both

the 5′ and 3′ ends.

Cell culture and transfection

HEK-293 cells were cultured in DMEM (https://

www.thermofisher.com) supplemented with 10% FBS

and 1% penicillin/streptomycin at 37 °C with 5% CO2. In

HEK-293 cells, pDNA-encoded gene-editing tools

(CRSIPR/Cas9, TALENs, and ZFN) were transfected

using Lipofectamin 3000 at three different concentra-

tions of 0.5, 1, and 1.5 μg. K562 cells were cultured in

RPMI 1640 (https://www.thermofisher.com) supple-

mented with 10% FBS and 1% penicillin/streptomycin at

37 °C with 5% CO2. In K562 cells, 200 ng of

pX330-Chimeric vector targeting HBBIVS1–110 loci was

co-electroporated with 10 pmol of different ssODN

Fig. 2 Gene correction of HBBIVS1–110 in CD34+ HSCs using CRISPR/Cas9 and ssODNs. a CD34+ HSCs co-nucleofected with pX330.sg HBB
IVS1–110

plasmid and 5TS ssODN. Indel frequency was measured by TIDE analysis and 3% of 6 bp insertions were spotted. b Single-colony sequencing

analysis samples showed successful gene insertion of NheI restriction-site tag to the HBB gene by HDR in pX330.sg HBB
IVS1–110/5TS ssODN-treated

sample. c Indel and HDR rate of CD34+ HSCs co-nucleofected with specified ssODN and Cas9 mRNA measured by T7 assay and RFLP assay in

Bioanalyzer using DNA1000 kit. d TIDE analysis exhibited the significant enrichment of 6 bp insertions up to 8%. e The absolute quantification by

next-generation analysis displayed the significant enrichment of 6 bp insertions up to 8% (N = 1)
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using Neon Transfection System (https://www.thermo-

fisher.com). Bone marrow-derived CD34+ HSCs from

healthy donors were cultured in StemSpan™ serum-free

medium II (SFEMII) containing StemSpan™ Cytokine

Cocktail 110 (https://www.stemcell.com). 1 × 105 CD34+

HSCs were electroporated with 1.2 μg pX330 vector tar-

geting HBBIVS1–110 mutation and 100 pmol of specified

ssODN repair template using Lonza© 4D-Nucleofector™

(Program: EO 100). The similar amount of p.Max eGFP

pDNA (1.2 μg) was electroporated as a transfection con-

trol. For Cas9 mRNA experiments, 1 × 105 CD34+ HSCs

were co-electroporated with 5 μg chemically modified

sgRNA, 10 μg Ca9 mRNA vector, and 100 pmol of

specified ssODN repair template using Lonza©

4D-Nucleofector™ (Program: EO 100).

Repair templates

The ssODNs were synthesized by Metabion, Germany

(www.metabion.com). The ssODNs were designed with an

insertion site harboring an NheI recognition site (GCTA

GC). The ssODNs were complimentary to either the

strand targeted or not targeted by the gRNA, asymmetric

or symmetric to the NheI tag. The chemically modified

ssODN for HBBIVS1–110 mutation was synthesized by in-

corporating 2-O-methyl 3′phosphorothioate (MS) modifi-

cation at three terminal nucleotides at both the 5′ and 3′

ends with 72 bp homology arms. The complete details can

be found in Additional file 2: Table S2.

T7 endonuclease assay and RFLP assay

Five days post transfection, genomic DNA was isolated using

Merchery-Nagel NucleoSpin Tissue Kit following the manu-

facturer’s instructions. The promoter region was amplified

using the primer pair Prom-For_5′-GTAGACCACCAGCA

GCCTAA-3′ and Prom-Rev_5′ TGGAGACGCAGGAA

GAGATC-3′, and the region covering HBBIVS1–110 mutation

was amplified using the primer pair IVS1–110-For_

5′-GGGTTTGAAGTCCAACTCCTAA-3′ and 3′UTR-

For_5′-AGAAAACATCAAGCGTCCCATA-3′. The target

regions were amplified using the AmpliTag® Gold 360 Mas-

terMix (https://www.thermofisher.com). The cycling param-

eters for both amplicons were as follows: initial denaturation

at 95 °C for 10 min, followed by 40 cycles of denaturation at

95 °C for 30 s, annealing at 55 °C for 30 s, and elongation at

72 °C for 1 min. PCR products were purified by etha-

nol precipitation, and 1 μg of PCR product was used

for T7 endonuclease assay. Likewise, 1 μg of PCR

product was used for the RFLP assay where ampli-

cons bearing the NheI tag upon successful gene cor-

rection will result in a specific cleavage after the

treatment with the NheI restriction enzyme. The

readout of the T7 endonuclease assay and the RFLP

assay were determined on a 1.5% agarose gel and on

a Bioanalyzer chip using DNA1000 kit. The band

intensities were quantified using ImageJ embedded in

Fiji software (www.fiji.sc).

TIDE analysis and single-colony and next-generation

sequencing

For analyzing allele modification frequencies with non-en-

zymatic assays, we used TIDE (Tracking of Indels by De-

composition) analysis by Sanger-sequencing the purified

PCR products used for T7 assay and examined with the on-

line TIDE software (http://tide.nki.nl.) with the respective

control sample. To precisely measure the events of

site-specific insertion of NheI tag at HBBIVS1–110 loci in

CD34+ HSPCs, we performed two different approaches: (i)

Sanger-based single-colony sequencing and (ii) next-gener-

ation sequencing. For single-colony sequencing, the

HBBIVS1–110 region was PCR amplified from 5TS ssODN

gene-corrected CD34+ HSCs and cloned into pJET1.2 vector

using CloneJET PCR Cloning kit (https://www.thermo-

fisher.com) and transformed into Top10 competent cells

using standard cloning techniques. Closely, 192 (two 96-well

plates) single colonies were processed for Sanger sequencing

with pJET1.2 forward sequencing primer (5′-CGACTCACT

ATAGGGAGAGCGGC-3′) and analyzed for the presence

for NheI recognition site (GCTAGC) using Geneious-R6

software. Three of 192 clones resulted in NheI insertion

(1.5%). In case of next-generation sequencing (NGS), new

primers were designed with the amplicon length of 150 bp

to be sequenced with the Illumina platform (Forward

5′-AGAAACTGGGCATGTGGAGA-3′; Reverse 5′-CCAT

AACAGCATCAGGAGTGG-3′). Further, barcode-tagged

PCR primers were used to multiplex samples (Add-

itional file 2: Table S3), and are adapter ligated, size selected,

and bridge amplified and proceeded with amplicon sequen-

cing in HiSeq 4000 system (http://www.illumina.com). The

standard R-Package was used for NGS analysis where the se-

quencing reads were pre-filtered for low-quality reads and

mapped to the reference sequence using a BWA tool. Fur-

ther, the number of indel-carrying sequence reads was calcu-

lated using SAM tools. The distribution plot was generated

by calculating the size of the indels in sequence and calculat-

ing the median percentage for each indel class.

In vitro transcription (IVT) of Cas9 mRNA

The open reading frame of SpCas9 was PCR amplified from

the pX330 vector and sub-cloned into the pVAX.120 vector

consisting of a T7 promoter and 120 bp length of a poly-A

tail using standard molecular biology techniques. The IVT

reaction was performed in linearized plasmid using T7 RNA

polymerase in MEGAscript T7 kit (https://www.thermo-

fisher.com). All mRNAs were produced with an anti-reverse

CAP analog (ARCA; [m7G(5′)G]) at the 5′ end (https://

www.trilinkbiotech.com/). The IVT-mRNAs were made with

following chemical modifications in the indicated ratios:

100% Pseudo-UTP and 25% s2-thio-UTP/5-methyl-CTP
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(https://www.trilinkbiotech.com/). All IVT mRNAs were

purified using the MEGAclear kit (https://www.thermo-

fisher.com) and quantified with nano-photometer and bioa-

nalyzed for quality using the RNA6000 kit in Agilent 2100

Bioanalyzer (https://www.agilent.com).

Statistics

Kruskal-Wallis or Wilcoxon-Mann-Whitney rank-sum

tests were applied wherever appropriate to analyze the

differences in indel induction among the gene-editing

technologies and comparison between encoded pDNA

Cas9 and Cas9 mRNA using Graphpad Prism v.6.0d

(https://www.graphpad.com).

Additional files

Additional file 1: Figure S1. Strategy for targeting the promoter and

IVS1–110 mutation of the HBB gene. A) The promoter region of HBB gene

targeted with three different gene-editing tools, HBBIVS1–110 targeted with

CRISPR/Cas9. B) The design of three different gene-editing tools at

sequence level. Figure S2 Comparison of three different gene-editing

tools at HBB promoter. The complete raw data of Fig. 1a. Figure S3 Gene

correction of HBBIVS1–110 in CD34+ HSCs using pX330.sg HBB
IVS1–110 and

ssODNs. A) CD34+ HSCs nucleofected with pX330.sg HBB
IVS1–110 plasmid

and ssODNs and measured for indel rate by T7 assay and HDR by TIDE

analysis. Only 5TS resulted 3% HDR rate in TIDE analysis (as in Fig. 2a). B)

Gene-editing capacity of pDNA-encoded Cas9 and mRNA-encoded Cas9

were compared, and superiority of Cas9 mRNA was observed (P < 0.0001).

Figure S4 TIDE analysis-gene correction of HBBIVS1–110 in CD34+ HSCs

using Cas9 mRNA and ssODNs. TIDE analyses of four different ssODNs

resulted in varying levels of 6 bp insertions that rely with the ssODN

design. Modified ssODN resulted up to 8% HDR rate. Figure S5 NGS

analysis-gene correction of HBBIVS1–110 in CD34+ HSCs using Cas9 mRNA

and ssODNs. The absolute quantification of NheI insertion by NGS

analyses for four different ssODNs showed distinct rate of 6 bp insertions

and correlate with ssODN design. Modified ssODN resulted up to 8%

HDR rate. Figure S6 Off-target analysis for the in silico predicted sites.

The indel rate was measured by T7 endonuclease-I (T7EI) assay for six

different off-target sites predicted through in silico (Additional file 2:

Table S4) in K562 cells. We preselected top three hits in intronic and

three hits in an exonic region. (PDF 2219 kb)

Additional file 2 Data S1 The complete amino acid sequences of the

HBB targeting ZFNs. Table S1 TALE FLASH IDs and RVDs targeting the

promoter of HBB gene. Table S2 Details of ssODNs (sequence, symmetry,

and length of homology arms). Table S3 Barcode and sample details of

next-generation sequencing. Table S4 Details of off-target position,

primer details, and indel frequency. (PDF 601 kb)
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The Cas9/guide RNA (Cas9/gRNA) system is commonly used

for genome editing. mRNA expressing Cas9 can induce innate

immune responses, reducing Cas9 expression. First-generation

Cas9mRNAs were modified with pseudouridine and 5-methyl-

cytosine to reduce innate immune responses. We combined

four approaches to produce more active, less immunogenic

second-generation Cas9 mRNAs. First, we developed a novel

co-transcriptional capping method yielding natural Cap 1. Sec-

ond, we screened modified nucleotides in Cas9mRNA to iden-

tify novel modifications that increase Cas9 activity. Third, we

depleted the mRNA of uridines to improve mRNA activity.

Lastly, we tested high-performance liquid chromatography

(HPLC) purification to remove double-stranded RNAs. The ac-

tivity of these mRNAs was tested in cell lines and primary hu-

man CD34+ cells. Cytokines were measured in whole blood and

mice. These approaches yielded more active and less immuno-

genic mRNA. Uridine depletion (UD) most impacted insertion

or deletion (indel) activity. Specifically, 5-methoxyuridine UD

induced indel frequencies as high as 88% (average ± SD =

79% ± 11%) and elicited minimal immune responses without

needing HPLC purification. Our work suggests that uridine-

depleted Cas9 mRNA modified with 5-methoxyuridine

(without HPLC purification) or pseudouridine may be optimal

for the broad use of Cas9 both in vitro and in vivo.

INTRODUCTION
The Cas9/guide RNA (Cas9/gRNA) system, which is derived from the

type II bacterial CRISPR adaptive immune system, is a powerful tool

for manipulating genomes.1–4 The Cas9/gRNA system consists of an

RNA-guided nuclease (Cas9) and a single short gRNA. Upon delivery

of these components to the nucleus of a cell, the guide strand directs

the Cas9 protein to a specific chromosomal location, and Cas9/gRNA

generates site-specific DNA double-strand breaks (DSBs), which are

repaired by endogenous cellular mechanisms. Twomajor genome-ed-

iting events arise from the Cas9/RNA-induced DSBs: (1) a specific site

can be mutated via mutagenic non-homologous end joining (NHEJ)

by creating insertions or deletions (indels) at the site of the break, or

(2) an exogenously introduced donor template can mediate a precise

genomic sequence change via homologous recombination.5

Various methods have been described for delivery of the Cas9 protein

into the nucleus. These include expression of Cas9 protein from a

plasmid6 or viral vectors,7 transfection of recombinant Cas9 protein

complexed to a gRNA (ribonucleoprotein or ribonucleoprotein

[RNP] complex),6,8,9 or expression from a transfected Cas9

mRNA.6 Expression of Cas9 protein from a plasmid or viral vector

may be problematic because it risks integration of the promoter

and/or Cas9 gene cassette at the double-stranded break site, a feature

of all double-stranded DNA vectors, or random integration of the

DNA vector into the genome.10 By way of contrast, Cas9 protein

and mRNA do not pose the risk of Cas9 gene integration, and they

also induce limited off-target effects due to transient expression.5,11,12

Although nanoparticle delivery of Cas9 protein has been reported, the

most common approach to deliver transgenes into cells in vivo in-

volves the use of mRNAs complexed with nanoparticles. This makes

Cas9mRNA an attractive tool for genome editing in hard-to-transfect

cells or tissues.

An ideal Cas9mRNA should mimic a fully processed mRNA and not

activate innate immune pathways. Activation of these receptors in-

duces inflammation, leads to translational inhibition, and causes

mRNA degradation.13–16 Our goal was to design and produce

mRNAs that do not activate, or minimally activate, these RNA-

sensing pathways. Exogenous mRNA can activate innate immunity

pathways when various pattern recognition receptors (PRRs), present
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in both endosomes and the cytosol, recognize pathogen-associated

molecular patterns (PAMPs) associated with exogenous RNA (viral

or transfected RNA). Specifically, Toll-like receptors (TLRs) 7 and

8, which recognize single-stranded RNA (ssRNA),17,18 and TLR3,

which recognizes double-stranded RNA (dsRNA),19must be avoided,

since the activation of TLRs leads to inflammation and the inhibition

of translation.17–20 In addition, cytosolic PRRs to be avoided by Cas9

mRNA include retinoic acid-inducible gene I (RIG-I), melanoma dif-

ferentiation-associated protein 5 (MDA5), protein kinase R (PKR),

and the interferon (IFN)-induced tetratricopeptide repeat (IFIT) pro-

teins. RIG-I recognizes 50 triphosphate (50ppp)21,22 or diphosphate,23

panhandle structures of viral genomic RNA (reviewed in Weber and

Weber24), and uridine-rich sequences.25–28 MDA5 is activated by

binding very long dsRNA,13,29while PKR recognizes dsRNA stretches

of at least 33 nt.30 Lastly, IFITs sense aberrant cap structures.31 There-

fore, Cas9 mRNA must avoid both endosomal TLRs and cytosolic

PRRs to achieve maximal translation and protein activity. In this

study, we tested the ability of cap structure modifications, chemical

modifications, sequence engineering (uridine depletion), and high-

performance liquid chromatography (HPLC) purification to reduce

immune activity and increase Cas9 mRNA activity.

RESULTS
Eukaryotic Cap Structures

Eukaryotic RNAs are capped with a 7-methylguanosine (m7G) con-

nected by a 50-to-50 triphosphate bridge to the first nucleotide. This

structure is referred to as Cap 0. Cap 0 is important for the recruit-

ment of translational initiation factors, and it prevents degradation

of the mRNA. In higher eukaryotes, the 20 ribose position of the first

cap-proximal nucleotide is methylated to form a Cap 1 structure

(m7GpppN20Om N), and, in �50% of transcripts, the second cap-

proximal nucleotide is 20 O-methylated to form Cap 2

(m7GpppN20OmN20Om) (Figure 1A).
32

While the presence of Cap 1 and Cap 2 in eukaryotic RNAs has been

known since the 1980s, the function of these modifications has re-

mained largely unknown. Cytoplasmic viruses frequently possess

mechanisms to acquire a Cap 1 structure (reviewed in Decroly

et al.33 and Hyde et al.34). Many of these viruses are attenuated

when their methyltransferases are inactivated, suggesting that cap

structure may play an important role in self versus non-self-recogni-

tion. Cap 1 methylation has been shown to modulate binding or acti-

vation of innate immune sensors. For example, the binding affinity of

IFIT-1 for Cap 1 and Cap 2 is much weaker than for 50 triphosphate or

Cap 0 RNAs, and IFIT-1 binding to non-20-Omethylated RNAs com-

petes with the translational initiation factor EIF4E to prevent transla-

tion.35,36 Cap 0 and 50-triphosphate bind RIG-I with similar affinities,

while Cap 1 modification abrogates RIG-I signaling.37 Similarly, Cap

1 prevents detection by MDA5.38

Frequently, synthetic mRNAs are co-transcriptionally capped by

including a cap analog in excess in the transcription reaction. The

current state of the art is co-transcriptional capping with anti-reverse

cap analog (ARCA), which is a capped dimer with the chemical struc-

ture shown in Figure 1B. ARCA results in a Cap 0mRNA. ARCA pos-

sesses a 30-O-methyl group on the sugar adjacent to the m7G, which

Figure 1. Eukaryotic Cap Structures and Cap Analogs

(A) Eukaryotic cap structure. Presence of 20-O-methyl groups at R1 and R2 determine if a cap structure is Cap 0, Cap 1, and Cap 2 as indicated. (B) Structure of anti-reverse

cap analog used in standard co-transcriptional capping. (C) Structure of CleanCap AG Cap1 Trimer. (D) Proposed mechanism of CleanCap co-transcriptional initiation in

which the AmG dimer portion of CleanCap docks onto the +1 and +2 template nucleotides. Initiation occurs when CleanCap couples to an NTP occupying the +3 position.
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prevents it from incorporating in the incorrect orientation, although

this is not a naturally found Cap 0 modification. In general, T7 tran-

scripts initiate at the +1-transcript position with guanosine triphos-

phate (GTP) incorporated opposite a +1-template cytosine. The

ARCA cap analog is provided at a 4:1 excess over GTP in the tran-

scription reaction such that, when competing with GTP, ARCA in-

corporates at the +1-transcript position �70% of the time leaving a

Cap 0 structure (Figure 1A). Therefore, �30% of the time ARCA

transcription initiates with GTP to yield an mRNA with a 50 triphos-

phate. Our previously published work utilized an ARCA Cap 0 Cas9

mRNA that was fully substituted with pseudouridine (J) and

5-methylcytidine (5meC).6

Recently, we developed a co-transcriptional capping method called

CleanCap that utilizes an initiating capped trimer instead of

ARCA. Co-transcriptional capping with our CleanCap Cap1 AG

trimer yields a naturally occurring Cap1 structure. In this study,

we tested the ability of our newly developed CleanCap Cap1 AG

trimer to improve Cas9 mRNA activity or reduce its immunoge-

nicity. We utilized T7 RNA polymerase to generate in vitro-tran-

scribed mRNAs. The structure of a CleanCap Cap 1 AG trimer is

shown in Figure 1C. With the CleanCap Cap 1 AG trimer, the +1

and +2 template nucleotides are thymidine and cytosine, respec-

tively (Figure 1D). Our hypothesis is that the CleanCap Cap 1

AG trimer initiates by occupying the +1 and +2 transcript positions

and elongation occurs when the CleanCap trimer couples to the

nucleoside triphosphate (NTP) occupying the +3 position. We

also tested an anti-reverse CleanCap trimers with a 30-O-methyl

group on the sugar of the m7G (30 O-methyl CleanCap AG) to pre-

vent incorporation in the opposite orientation, but we found this to

be unnecessary both in terms of yielding Cap1 structures and for in-

del formation (data not shown). A more extensive discussion of

the CleanCap method will be presented elsewhere. To determine

if we could improve on our previously published ARCA Cap

0 J/5meC mRNA, we used CleanCap to generate a series of Cap

1 mRNAs that contained either wild-type (WT) bases or completely

substituted with one or two modified bases (Table 1).

Chemical Modification of mRNA

Although over 100 post-transcriptional modifications are found in

RNA,39 only a subset are found in mRNAs. These mRNA modifica-

tions include N6-methyladenosine (m6A), inosine, N1-methyladeno-

sine (m1A), J, 5meC, and 5-hydroxymethylcytosine (5hmC).40–42

Such chemical modifications have been shown to reduce innate im-

mune responses and improve mRNA activity.43–45

Karikó et al.43–45 demonstrated that substitution with modified ba-

ses reduced innate immune responses to transfected mRNAs. Based

on this work, many first-generation mRNAs were modified with

5meC and J.46 They showed that chemical modification of

mRNA limited TLR signaling,43 decreased activation of 20-50-oligoa-

denylate synthetase,45 and decreased binding to PKR.44 Durbin

et al.47 showed that RNAs modified with m6A bind RIG-I with

reduced affinity, while J, N1-methylpseudouridine (N1-me-J),

and 5meC RNAs bind RIG-I with high affinity yet fail to activate

RIG-I signaling. Work by Peisley et al.48 also reported reduced

RIG-I filament formation triggered by J, 2-thiouridine (2sU),

or m6A RNAs.

Table 1. List of In Vitro-Transcribed Modified Cas9 Cap 1 mRNAs Made with CleanCap

Abbreviation Full Name Uridine Depleted Cap Form Screen

WT UD wild-type bases yes Cap 1 full

5moU UD 5-methoxy uridine yes Cap 1 full

J UD pseudouridine yes Cap 1 full

WT wild-type bases no Cap 1 full

5moU 5-methoxy uridine no Cap 1 full

J pseudouridine no Cap 1 full

5meC/J 5-methyl cytidine/pseudouridine no Cap 1 full

5meU 5-methyl uridine no Cap 1 full

N1-me-J N1-methyl pseudouridine no Cap 1 full

5meC 5-methyl cytidine no Cap 1 full

5hmC 5-hydroxymethyl cytidine no Cap 1 full

N1-et-J N1-ethyl pseudouridine no Cap 1 initial

me1-J /5meC N1-methyl pseudouridine/5-methyl cytidine no Cap 1 initial

5moC 5-methoxy cytidine no Cap 1 initial

5camU 5-carboxy methyl ester uridine no Cap 1 initial

10% 5meC/2sU 5-methyl cytidine/2-thio uridine no Cap 1 initial

25% 5meC/2sU 5-methyl cytidine/2-thio uridine no Cap 1 initial

ARCA 5meC/J 5-methyl cytidine/pseudouridine no Cap 0 initial
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In addition to reducing innate immune responses, Karikó et al.49,50

also showed that full substitution of mRNA withJ increased activity

in vivo. Pardi et al.51 showed that N1-me-J mRNAs were efficiently

expressed in mice when delivered by a variety of routes. Andries

et al.52 also reported that N1-me-J mRNAs gave higher expression

relative to J-substituted mRNAs in mice.

Previously, we used partial substitution of mRNAs with 2sU and

5meC to express surfactant protein B (SP-B) to rescue SP-B-defective

mice53 and to reduce asthma by expression of Foxp3.54 We have also

used 2sU/5meC-modified mRNAs encoding zinc-finger nucleases

and transcription activator-like effector nucleases (TALENs) in

mouse lung, and we were able to demonstrate gene correction in vivo

at the SP-B locus.55 In this study, we screened modifications such

as J, 5meC, N1-me-J, 2sU, and others (Table 1) to identify modi-

fications that improved Cas9 activity.

Sequence Engineering

In addition to chemical modifications, studies have reported

that sequence-engineered unmodified mRNAs may be superior

to J-modified RNAs in vivo.56,57 Sequence engineering of mRNA

utilizes the degeneracy of the genetic code to substitute specific nucle-

otides of an mRNA sequence or optimize codon utilization without

altering the resulting amino acid composition. Several groups have re-

ported that codon optimization could increase the activity of trans-

fected mRNAs. Karikó et al.50 saw an increase in erythropoietin

(Epo) expression in human dendritic cells upon codon optimization

of both unmodified andJ-modified mRNA. Thess et al.56 sequence-

engineered luciferase and Epo mRNAs by using only the most guano-

sine/cytosine (GC)-rich codons. They found that, while J substitu-

tion improved the activity of non-sequence-engineered luciferase,

J modification decreased the expression of a sequence-engineered

luciferase mRNA relative to an unmodified mRNA in HeLa cells. In

mice, they found that sequence-engineered Epo performed better

than non-sequence-engineered Epo mRNA and that J modification

of the optimized sequence decreased activity.

While designing our study, we found that, in the context of the lucif-

erase open reading frame (ORF), depletion of uridines in the tran-

script using synonymous codons increased the luciferase activity for

unmodified,J, and 5-methoxyuridine (5moU)-modified RNAs (Fig-

ure S1). Based on these preliminary results and on reports by other

groups that sequence engineering could improve mRNA activity,56,57

we uridine-depleted the Cas9 ORF and synthesized 3 additional Cas9

mRNAs containing WT bases, J, or 5moU (Table 1). We selected

these modifications for uridine depletion because work with other

reporter mRNAs had shown improved activities with these modifica-

tions upon uridine depletion (data not shown). We compared the

activity and immune response of these uridine depletion (UD) vari-

ants to the previously published ARCA Cap 0 J/5meC mRNA.

HPLC

dsRNA is produced as an undesired side product during in vitro tran-

scription with T7 RNA polymerase.58,59 This dsRNA could activate

innate immune sensors, including TLRs, PKR, or MDA5. Karikó

et al.60 reported that purification of mRNAs by HPLC reduced the

levels of dsRNA impurities as assessed by a slot blot analysis with a

dsRNA-specific antibody. They found that HPLC-purified J-modi-

fied mRNAs had significantly higher activity in vivo than mRNAs

that had not been HPLC purified.60 In this study, we adapted this

method to HPLC purify a portion of each mRNA listed in Table 1

in order to test if HPLC purification of Cas9 mRNA would reduce

innate immune stimulation or increase indel activity.

Thus, we performed an unbiased investigation of ability of these

different methods to increase Cas9 mRNA activity with minimal im-

mune activation. We found the highest frequency of genome editing

with uridine-depleted 5moU, and these transcripts showed minimal

in vitro and in vivo activation of the innate immune response without

the need for HPLC purification.

Uridine Depletion Improved Cas9 Activity by Indel Formation

Assay

We conducted an initial indel formation screen of the mRNAs listed

in Table 1 in primary CD34+ hematopoietic stem and progenitor cells

(HSPCs) mobilized from peripheral blood. We used primary human

cells for these assays as they are more sensitive to the immunostimu-

latory activity of delivered nucleic acids than cancer cell lines. Cells

were co-transfected with 3 mg Cas9mRNA and 2 mg MS-single-guide

RNA targeting the interleukin-2 receptor subunit gamma (IL2RG)

locus. As a control, we also included Cas9 RNP using 6 mg Cas9 pro-

tein with 3.2 mg guide strand, as we have previously described.6 Indels

were quantitated using TIDE analysis.61 Based on this initial screen,

we narrowed our list to 11 candidate mRNAs (each with and without

HPLC purification; Table 1, lead candidates). We tested the lead can-

didates on CD34+ cells from five different donors.

The uridine-depleted mRNAs (WT UD, WT UD HPLC, 5moU UD,

5moUUDHPLC,JUD, andJUDHPLC) yielded the highest indel

rates (�77%–87%) (Figure 2). This was a major improvement over

our first-generation Cap 0 5meC/J mRNA, which gave 61% indel.

Indel frequencies with the Cas9 RNP complexed to guide were

67%. WT UD and 5moU UD HPLC showed a statistically significant

improvement in indel frequency relative to their non-uridine-

depleted counterparts (p < 0.0001). Among the non-uridine-depleted

sequences, WT HPLC,J, andJ HPLC gave 66%–69% indel forma-

tion. The chemical modifications in combination with UD did not

improve Cas9 mRNA activity. Even among the non-UD samples,

the chemical modifications did not outperform WT HPLC-purified

samples. Chemical modifications among non-UD samples were still

relevant from the perspective of immune response, as discussed

below.

To our surprise, in most cases, HPLC purification did not increase

indel formation significantly. One notable exception was WT, where

HPLC purification improved activity from 40% to 68% (p = 0.028).

To assess the level of dsRNA contamination and depletion of

dsRNA during HPLC, we adapted a previously described dsRNA

www.moleculartherapy.org

Molecular Therapy: Nucleic Acids Vol. 12 September 2018 533



immunoblot with a dsRNA-specific antibody.60 Based on this quali-

tative assay, we estimate that HPLC purification reduced dsRNA

levels by 50%–80%, while uridine depletion reduced dsRNA levels

by approximately 30% (Figure S2). While Karikó et al.60 interpreted

a decrease in blot signal to reflect removal of dsRNA, another alterna-

tive is that heating and denaturation of the mRNA during HPLC

unfolded long double-stranded intramolecular structures within the

purifiedmRNA, resulting in a decrease in slot blot signal.These exper-

iments suggest that uridine depletion of Cas9mRNA can significantly

improve CRISPR gene editing and may then obviate the need for

HPLC purification in CD34+ cells.

Lastly, we tested the influence of the CleanCap, ARCA, and anti-

reverse CleanCap cap structures on the performance of the 5moU

UD mRNA. Notably, there was no significant difference in the indel

activity between the 5moU UD ARCA CleanCap and 30 O-methyl

CleanCap Cas9 mRNA (Figure S3).

IFN Responses in Differentiated THP-1 Cells Transfected with

Unmodified and Modified mRNAs

We next tried to narrow down mRNA variants with improved ac-

tivity that also induced low innate immune responses in the ex vivo

setting. We used an IFN reporter cell line to assess IFN stimulation

upon transfection of the various mRNAs into THP-1 Dual cells.

THP-1 Dual cells are human monocyte stable transfectants, which,

upon IFN stimulation, express a secreted coelenterazine luciferase

(Lucia) driven by the ISG54 (IFN-stimulated gene) minimal pro-

moter and five IFN response elements. The majority of modified

mRNAs did not induce significant IFN responses above the nega-

tive control with or without HPLC purification (Figure 3). Notably,

J-modified mRNAs induced elevated IFN responses both with

and without UD. Apart from J-modified mRNA, WT UD and

5meU that had not been HPLC purified gave significantly elevated

IFN signaling relative to the negative control. In each case, HPLC

purification reduced IFN signaling to background levels. To our

surprise, non-HPLC-purified WT Cas9 did not induce significant

IFN signaling. Among the UD variants, 5moU UD did not

exhibit significant IFN response even without HPLC purification,

and, thus, it appears to be an attractive choice for editing

applications.

IL-12, TNF-a, and IL-6 Measurements in Whole Blood

In addition to ex vivo editing of isolated cells, the Cas9/gRNA sys-

tem can be applied in whole organisms. The activation of the innate

immune response in vivo has been a major barrier to gene therapy

vectors, even inducing a patient death.62 We next sought to assess

immune responses in the more complex environment of whole hu-

man blood and identify mRNA variants that induced lower immune

responses in whole blood. Whole blood obtained from healthy do-

nors was transfected with mRNAs that were complexed with

TransIT delivery reagent. At 6 and 24 hr, serum was isolated and

interleukin (IL)-12 (Figure 4A), tumor necrosis factor alpha

(TNF-a) (Figure 4B), and IL-6 (Figure 4C) were measured by

ELISA.

Most Cas9 mRNA variants did not induce IL-12 secretion. Among

the UD samples, levels of IL-12 were significantly elevated relative

to blood-only controls for WT UD, but not the other variants, at 6

and 24 hr. For the non-UD variants, levels of IL-12 were significantly

elevated relative to 6-hr blood-only control for 5meC at 24 hr. While

some other groups were slightly elevated, they did not reach statistical

significance.

Many Cas9 mRNA variants induced TNF-a secretion. Among the

UD samples, TNF-a levels reached significance at 24 hr only for

WT UD and WT UD purified by HPLC. Among the non-UD sam-

ples, TNF-a levels were significantly elevated at 6 and 24 hr regardless

of HPLC purification for WT, 5moU, N1-me-J, 5meC, 5meC/J,

and 5hmC. But HPLC purification abolished TNF-a induction only

for 5meC/J. Interestingly, 5moU UD did not increase TNF-a even

though the non-UD 5moU increased TNF-a.

Most Cas9 mRNA variants that induced TNF-a secretion also

induced IL-6 secretion (except WT UD). For uridine-depleted se-

quences, IL-6 levels reached significance only for WT UD purified

by HPLC at 24 hr. Among the non-UD samples, IL-6 levels were

significantly elevated at 6 and 24 hr regardless of HPLC purification

for WT, N1-me-J, 5meC, and 5hmC. 5meU increased IL-6 at 6

and 24 hr without HPLC purification but only increased IL-6 after

24 hr when purified by HPLC. For 5meC/J, IL-6 levels were signif-

icantly elevated at 24 hr, but HPLC purification abolished IL-6 induc-

tion. IFN-a was also tested, but it was not measurably induced by any

of the tested mRNAs (data not shown).

Figure 2. Indel Formation in CD34+ HSPCs Nucleofected with Modified

Cas9 mRNAs

CD34+ HSPCs were nucleofected with 3 mg of the indicated Cas9mRNA and 2 mg

IL2RGlocus MS-sgRNA. 6 mg Cas9 RNP complexed to 3.2 mg IL2RGlocus MS-

sgRNA was nucleofected for comparison. ARCA 5meC/J is our previously pub-

lishedCas9mRNA6 and was also included for comparison. Cells were isolated after

4 days, and indel formation was assessed by TIDE analysis. Bars represent mean ±

SEM of at least 5 independent transfections. White and gray bars indicate RNeasy

and HPLC-purified mRNAs, respectively. sgRNA complexed to Cas9 RNP was

included as a control. ***p < 0.0005 and *p < 0.05.
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IL-12, TNF-a, and IL-6 Measurements in Mice

To measure immune responses in mice in vivo, Cas9 mRNAs were

encapsulated in chitosan-coated poly-D,L-lactide-co-glycolide

(PLGA) nanoparticles and injected into the tail vein of mice

(n = 3). At 6 or 24 hr, mice were sacrificed and serum IL-12 (Fig-

ure 5A), TNF-a (Figure 5B), and IL-6 (Figure 5C) were measured

by ELISA. None of the UD samples showed elevated serum IL-12,

TNF-a, or IL-6. Only WT non-HPLC-purified IL-12 and IL-6 levels

were significantly elevated relative to 6-hr blood-only control at

6 hr. Similarly, at 6 hr, TNF-a levels were elevated relative to con-

trol for both WT and WT HPLC, while no other significant changes

were observed.

DISCUSSION
Improvement in Cas9 mRNA Activity by UD

In our current study, we applied four design principles to improve

the activity of our previously published ARCA Cap 0 J/5meC Cas9

mRNA.6 These included exploring sequence engineering, screening

different modified bases, examining the influence of HPLC purifica-

tion, and using a Cap 1 structure. Among these strategies, a combi-

nation of UD with 5moU modification was able to achieve indel

rates as high as 87% in primary CD34+ HSPCs while avoiding

immune responses even in the absence of HPLC purification

(Figure 2).

UD was most effective in increasing Cas9 mRNA activity, but

further chemical modification was necessary to reduce immunoge-

nicity. However, this increase in indels by UD variants only reached

statistical significance for WT UD and 5moU UD HPLC relative

to their non-uridine-depleted counterparts (p < 0.05). We also

tested the off-target activity of 5 moU UD against ARCA

5meC/J at a previously reported off-target site (chromosome

[chr]1: 167730172–167730194).6 The off-target indel activity was

close to the limit of detection, and it was not significantly different

between 5 moU UD (8% ± 1%) and ARCA 5meC/J (5% ± 2%).

Uridine depletion may improve indel levels by increasing protein

expression, reducing immune responses, or a combination of the

two effects. In our studies with luciferase (Figure S1), uridine deple-

tion increased protein expression, but the percent increase was

significantly different between 5moU and J. Consistent with our

results, studies have reported that codon optimization can influence

both expression and mRNA stability.63 More specifically, GC-en-

riched (adenosine/uridine [A/U]-depleted) genes have been re-

ported to exhibit higher steady-state mRNA levels when expressed

using plasmids.64 The study further seemed to suggest that UD

did not affect mRNA degradation rates, and it speculated that

some mRNA-processing pathway(s) may influence mRNA levels.64

It is also possible that uridine depletion could reduce recognition

by TLRs. Interestingly, it has been reported that TLR7 recognizes

uridine stretches.20 Tanji et al.65 also reported that uridine contain-

ing single-stranded RNA degradation products could be sensed by

TLR8. Further studies with a variety of primary sequences may be

necessary to understand the mechanism by which the combination

of mRNA sequence and chemical modifications influences protein

translation in different cell types.

Immunogenicity of UD and non-UD Cas9 mRNA Variants

To test immune responses, we employed two complementary assays,

a whole-blood assay and an in vivo mouse model. The whole-blood

assay appears to be the most sensitive assay for monitoring these re-

sponses. The difference between the whole-blood and in vivo results

may reflect difficulties in measuring systemic cytokines in mice in

response to local delivery to a subset of cells. In these assays, uridine

depletion also decreased most, but not all, immune responses elicited

by WT, 5moU, and J. Specifically, UD reduced TNF-a and IL-6 for

5moU (Figures 4B and 4C). For WT Cas9 mRNA, UD significantly

reduced IL-6 levels in whole-blood assay (Figure 4C) and reduced

TNF- a, IL-6, and IL-12 in the mouse assay (Figure 5). However,

UD was insufficient to reduce IFN responses completely for J and

increased IFN for WT (Figure 3).

Themechanism by which uridine depletion affects immune responses

is unclear. It is possible that sequence engineering could influence

binding to PRRs and thereby minimize the translational inhibitory ef-

fects that are activated through PRRs. It seems possible that PRRs de-

signed to recognize aberrant RNAs might focus on uridine residues,

as this is a major difference between DNA and RNA. For example,

it was reported that triplets of sequential uridines could activate

TLR-7 and cause dendritic cells to release IFN-a.20 Likewise, RIG-I

is reported to recognize uridine-rich sequences.25–28 Further research

will be required to define the precise mechanism by which uridine

depletion improves the activity of some Cas9mRNA variants despite

immune activation.

In the context of nucleofection of CD34+ HSPCs, we show that

Cas9 WT UD can have similar indel formation rates as J and

Figure 3. IFN Response Generated by THP-1 Dual Cells Transfected with

Modified Cas9 mRNAs

THP-1 dual cells were transfected in sextuplicate with 100 ng of the indicated

mRNAs complexed with 1 mL transfection reagent mRNA-In. At 24 hr, Lucia

expression in the media was assayed as a measure of IFN activity. Bars represent

mean ± SEM of three independent assays comprising a total of 18 replicates.

*p < 0.05.
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5moU-modified RNAs (Figure 2). Thus, at least in CD34+ cells, uri-

dine depletion may be sufficient and chemical modification may not

be necessary. By way of contrast, reducing immune responses may

be still important for in vivo applications, since the route of delivery

may be an important determinant of efficacy and innate immune

induction.66 Since electroporation likely bypasses the endosomal

compartment (where RNA-sensing TLRs reside), it remains to be

determined if the same results would be observed with lipid or poly-

mer transfection. A significant body of research supports the idea

that chemical modification of mRNA can improve its activity by

reducing innate immune stimulation in several instances.49–55,60

Indeed, chemical modification of mRNA has been reported to

decrease binding to or activation of TLRs,43 20-50-oligoadenylate

synthetase,45 PKR,44 and RIG-I.47,48 Chemical modifications are

known to change the structure, base pairing, and codon/anti-codon

pairing of mRNAs (reviewed in Harcourt et al.67), and they may

thus make them poor substrates for PRRs. In contrast to the above

reports, several groups have reported that sequence-engineered

mRNAs may not require chemical modification. Thess et al.56 found

Figure 4. Amounts of IL-12, TNF-a, and IL-6 inWhole

Human Blood Transfected with Modified Cas9

mRNAs

To assess immune responses to transfected mRNAs,

whole blood from healthy human volunteers (n = 3) was

transfected with 10 mg mRNA complexed with 10 mL

TransIT (https://www.mirusbio.com/). After 6 or 24 hr of

incubation, sera were isolated and (A) IL-12, (B) TNF-a, or

(C) IL-6 was measured by ELISA. Bars represent mean ±

SEM. *p < 0.05 relative to 6-hr blood-only control.

that, while chemical modification improved the

activity of some sequences, when they used

mostly GC-rich codons, WT mRNAs had the

highest activity. Kaufmann et al.57 found that

when they formulated mRNAs in lipid nano-

particles and delivered them intravenously to

mice, WT and J mRNAs had similar activities

and immune responses. Thus, the need for

chemical modification may depend on the

individual mRNA sequence as well as the

route of administration. Since UD did not

completely inhibit immune responses, we also

explored the combination of UD with chemical

modification.

In our studies, most chemical modifications

reduced IFN responses except for J and 5

meU. This suggests that the chemical modifica-

tion present in many of the Cas9 mRNAs tested

may mask dsRNA recognition. It is also possible

that these modifications are not recognized by

the relevant PRRs. The observation that J did

not reduce IFN stimulation was somewhat surprising based on the

literature.49 Unfortunately, all chemically modified variants, except

J, still induced TNF-a and IL-6 in the absence of UD (Figures 4

and 5). Therefore, we tested the ability of HPLC to reduce the remain-

ing immune responses.

Influence of HPLC Purification on Reducing Immunogenicity of

Cas9 mRNA Variants

HPLC was successful in reducing IFN responses when a combination

of chemical modification and UD did not reduce IFN (WT UD, J

UD,J, and 5meU) (Figure 3). Surprisingly, this reduction in immune

response by HPLC purification only resulted in significant improve-

ment in indel frequencies for non-uridine-depleted WT (Figure 2).

This may reflect that the natural substrate for dsRNA-sensing PRRs

is WT RNA. The reduction of IFN response after HPLC purification

is consistent with literature (Karikó et al.60), especially forJ.60 How-

ever, we also noticed that several chemical modifications (for 5moU

UD, 5moU, 5meC/J, N1-meJ, 5meC, and 5hmC) showed no

IFN response even without HPLC purification. Indeed, on further
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comparison with Karikó et al.,60 we noticed that the influence of

chemical modification on IFN and TNF responses was protein depen-

dent in their study. Thus, our data are broadly consistent with Karikó

et al.60 that HPLC purification reduces IFN responses if they are

present.

In contrast to IFN responses, HPLC was unsuccessful in reducing

TNF-a and IL-6 secretion induced by all variants except 5meC/J,

as measured by the whole-blood assay. This result is inconsistent

with Karikó et al.60 Unlike Karikó et al.,60 our results show that we

were only able to deplete, but not completely rid, our mRNAs of

dsRNA using HPLC purification (Figure S2). Thus, it is also possible

that the remaining dsRNA in the HPLC-purified samples is sufficient

to trigger immune responses that are equivalent to the non-HPLC-

purified RNAs, rendering HPLC purification insufficient to provide

a benefit within the context of CD34+ HSPCs. These results suggest

that a further reduction in dsRNA may be necessary to reduce

IL-12, IL-6, and TNF- a and increase indels.

Figure 5. Amounts of IL-12, TNF-a, and IL-6 in the

Sera of Mice after Intravenous Infusion of Modified

Cas9 mRNAs

To assess immune responses in vivo, 20 mg Cas9 mRNA

encapsulated in chitosan-coated PLGA nanoparticles

was injected intravenously (n = 3) into the tail vein of mice.

After 6 or 24 hr of incubation, sera were isolated and (A)

IL-12, (B) TNF-a, or (C) IL-6 was measured by ELISA.

Blood treated with R-848 serves as a positive control.

Bars represent mean ± SEM. *p < 0.05 relative to 6-hr

blood-only control.

Influence of Capping Strategy Cas9 mRNA

Activity and Immunogenicity

Lastly, the capping strategy did not seem to

impact indel formation (Figure S2). We had hy-

pothesized that the presence of Cap 1 in our

mRNAs may also decrease binding to PRRs

and reduce the need for HPLC purification. It

has been reported that MDA5 does not recog-

nize Cap 1 mRNAs efficiently.38 It remains to

be tested if other dsRNA sensors such as

RIG-I have decreased sensitivities to Cap 1

mRNA. We only compared the Cap 0 and

Cap 1 modifications for the 5moU UD variant

mRNAs, and we did not observe any difference

in indel levels (Figure S3). However, there was a

small but statistically significant increase in

IL-12 production, but not TNF-a or IL-6,

in the whole-blood assay in response to Cap

0 ARCA relative to the Cap 1 CleanCap analogs

(Figure S4). There was no difference in cyto-

kine production in the less sensitive mouse

model system for the Cap 0 or Cap 1 mRNAs

(Figure S5). It is possible a Cap 1 structure

would have provided more benefit for 5moU-modified mRNA in

the absence of UD.

Conclusions

In summary, we have used a variety of approaches in combination to

identify several improved Cas9mRNAs. Among these strategies, uri-

dine depletion resulted in the greatest increase in indel levels (Table 2),

but WT UD samples still elicited innate immune responses. J UD

showed high indel levels and reduced both IL-6 and TNF-a, but

not IFN. IFN induction by J UD was resolved by using HPLC. By

way of contrast, 5moU modification of WT UD Cas9 mRNA main-

tained indel frequencies and reduced all immune responses, even

without HPLC purification. Given that no benefit was seen upon

HPLC purification, HPLC would not be recommended for this modi-

fication, because of the additional cost and the significant loss of yield

upon HPLC purification. Taken together, 5moU UD would be the

preferred candidate for Cas9 mRNA given that it does not require

HPLC purification (Table 2). Future studies may be necessary to
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investigate the influence of sequence engineering and chemical modi-

fication on the in vivo activity of 5moU Cas9 mRNA.

MATERIALS AND METHODS
Transcription Templates and Sequence Optimization

The Cas9 ORF with C-terminal nucleoplasmin nuclear localization

signal (NLS) and hemagglutinin epitope tag was provided by Feng

Zhang. It was cloned into the mRNA expression vector pmRNA,

which contains a T7 RNA polymerase promoter, an unstructured

synthetic 50 UTR, a multiple cloning site, and a 30 UTR that was

derived from the mouse a-globin 30 gene. An N-terminal SV40

NLS was added to generate the vector pmRNA_NLS_Cas9_NLS. A

transcription template was generated by PCR using mRNA for-

ward primer 50-TCGAGCTCGGTACCTAATACGACTCAC-30 and

mRNA reverse primer T(20OMe)T(20OMe)(T)118CTTCCTACTCAG

GCTTTATTCAAAGACCA-30. The poly A tail was encoded in the

template, and the resulting PCR product encoded a 120-nt poly A

tail.The uridine-depleted plasmid pmRNA_UD_NLS_Cas9_NLS

was created by codon optimization of theCas9mRNAORF contained

within pmRNA_NLS_Cas9_NLS plasmid. UD of the Cas9 mRNA

sequence was performed with the “optimize codons” tool in Geneious

version R8.1.8 (https://www.geneious.com).68 A new sequence in

Geneious was created for the Cas9 ORF; this sequence was selected,

and under the tab “annotate and predict,” the “optimize codons”

function was chosen. Parameters were chosen as follows: source of ge-

netic code, standard; target organism, Homo sapiens; target genetic

code, standard; threshold to be rare = 1; and avoid restriction sites,

No. Base content for our standard Cas9 ORF was as follows: 28.6%

A, 27.8% C, 28.1% G, 15.5% U, and 55.8% GC. Base content for

our uridine-depleted Cas9 ORF was as follows: 25.3% A, 30.6% C,

31.5% G, 12.6% U, and 62.1% GC.

In Vitro Transcription of Modified mRNAs

Chemically modified, co-transcriptionally capped Cap 1 Cas9 and

firefly luciferase (FLuc) mRNAs were synthesized by T7 RNA poly-

merase in vitro transcription. All enzymes were purchased from

New England Biolabs (Ipswich, MA). Transcriptions were done in

1� transcription buffer (40 mM Tris, 10 mM dithiothreitol, 2 mM

spermidine, 0.002% Triton X-100, and 27 mM magnesium acetate)

using final concentrations of 8 U/mL T7 RNA polymerase

(M0251L); 0.002 U/mL inorganic pyrophosphatase (M2403L);

1 U/mL murine RNase inhibitor (M0314L); 0.025 mg/mL standard or

uridine-depleted transcription template; 5 mM CleanCap Cap 1 AG

trimer; and 5 mM each of ATP, cytidine triphosphate (CTP) (or

CTP analog), GTP, and uridine triphosphate (UTP) (or UTP analog),

as indicated in Table 1. Transcription reactions were incubated at

37�C for 2 hr and treated with final 0.4 U/mL DNase I (M0303L) in

1� DNase I buffer for 15 min at 37�C. We initially made anti-reverse

CleanCap trimers with a 30-O-methyl group on the sugar of the m7G

to prevent incorporation in the opposite orientation, but we found

this to be unnecessary, as the 30-O-methyl version functioned equiv-

alently to CleanCap with a 30 OH. mRNAs were purified by RNeasy

Maxi (QIAGEN, 75162), phosphatase treated for 1 hr with final

0.25 U/mg Antarctic phosphatase (M0289L) in 1� Antarctic phos-

phatase buffer, and then re-purified by RNeasy. A portion of each

mRNA was purified by HPLC as described by Kariko et al.,60 except

that mRNA was recovered from HPLC fractions by RNeasy purifica-

tion. Purification was carried out on a PRP-H1 column (Hamilton

Company) at 65�C using a gradient of 100 mM triethylammonium

acetate/acetonitrile. Transcription quality was measured by bio-

analyzer analysis (Agilent 2100 Bioanalyzer). mRNA concentrations

were measured by UV spectroscopy and corrected for predicted

extinction coefficient.

dsRNA Slot Blot

Detection of dsRNA was performed by slot blot based on previously

established methods60 adapted for use with a 48-well slot blot vacuum

manifold (GE Whatman, Pittsburgh, PA, 10447941) and SNAP i.d.

2.0 Protein Detection System (EMD Millipore, Burlington, MA,

SNAP2MIDI). In brief, RNA samples (1,000 or 200 ng) were blotted

on a super-charged nytran membrane (GE Amersham, Pittsburgh,

PA, 10416230) pre-wetted in 1� TBST (50 mM Tris-HCL,

138 mM NaCl, 27 mM KCl, and 0.05% Tween-20 [pH 7.5]) by

applying vacuum. The membrane was then transferred to a SNAP

i.d. apparatus and blocked with 30 mL 0.5% w/v nonfat dried milk

in 1� TBST for 1 min prior to the application of vacuum. Blocking

buffer was incubated over the membrane for 1 min before the vacuum

was applied. The membrane was probed with 15 mL 1:1,500 dsRNA-

specific monoclonal antibody (mAb) J2 (English & Scientific Consul-

ting, Hungary) in 0.5% milk for 20 min and washed 4 times with

30 mL 1� TBST. The membrane was incubated for 20 min with

15 mL 1:1,500 horseradish peroxidase (HRP)-conjugated donkey

anti-mouse immunoglobulin G (IgG) (Jackson ImmunoResearch,

West Grove, PA, 715-035-150) in 0.5% milk and washed 4 times

with 1� TBST. The membrane was developed in the dark

with 30 mL enhanced chemiluminescence (ECL) western blotting

Table 2. Summary of Assay Results for Uridine-Depleted Sequences

WT UD WT UD HPLC 5moU UD 5moU UD HPLC J UD J UD HPLC

High indel + + + + + +

Lack of IFN in THP-1 Dual cells – + + + – +

Lack of IL-12 in whole blood – + + + + +

Lack of TNF-a in whole blood – – + + + +

Lack of IL-12 in vivo + + + + + +

Lack of TNF-a in vivo + + + + + +
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detection reagent (GE Amersham, RPN2134) for 5 min before being

imaged on G:BOX Chemi XRQ (Syngene, Frederick, MD) chemilu-

minescent imaging system with accompanying GeneSys (version

[v.]1.5.6) software. Raw light units (RLUs) were measured and back-

ground corrected using densitometry software (GeneSys). For com-

parison of HPLC samples, RLU signals per mRNA were normalized

to matched non-HPLC and reported as a percentage. Similarly, for

comparison of UD samples, RLU signals per mRNA were normalized

to non-UD and reported as a percentage. Percent reduction in dsRNA

signal resulting from HPLC purification or UD was calculated using

the following formula:

% reduction= 100�

�

HPLC intensity

non�HPLC intensity

�

� 100

% reduction= 100�

�

uridine� depleted intensity

WT intensity

�

� 100:

We calculated this for the 200- and 1,000-ng inputs and averaged

these two values.

THP-1 and THP-1 Dual Cell Culture

THP-1 cells (ATCC, TIB-202) and THP-1 Dual cells (InvivoGen, San

Diego, CA, thpd-nfis) were grown in RPMI-1640 medium (ATCC,

30-2001) supplemented with 10% fetal bovine serum (Gibco, Grand

Island, NY, 10437-028), 1 mM sodium pyruvate (Gibco, 11360-

070), 1� MEM non-essential amino acids (Gibco, 11140-050),

100 U/mL penicillin and 100 mg/mL streptomycin (Gibco, 15140-

122), and 100 mg/mL Normocin (InvivoGen, ant-nr-1) at 37�C in

an atmosphere of 5% CO2. THP-1 Dual cells were grown in the pres-

ence of 100 mg/mL zeocin (InvivoGen, ant-zn-1) and 10 mg/mL blas-

ticidin (InvivoGen, ant-bl-1) every other passage to maintain positive

selection of reporters.

Luciferase Assay in Cultured THP-1 Cells

In preparation for THP-1 cell transfections, 2� 105 cells per well were

seeded in a 24-well plate format (Corning Costar, Tewksberry, MA,

3527) and allowed to differentiate in culture for 72 hr using

200 nM phorbol ester 12-O-Tetradecanoylphorbol-13-Acetate (Cell

Signaling Technology, Danvers, MA, 4174). Cells were then trans-

fected with 100 ng in vitro-transcribed, non-HPLC, and HPLC-puri-

fied unmodified or modified FLuc mRNAs complexed with 1 mL

transfection reagent mRNA-In (MTI-GlobalStem, Gaithersburg,

MA, 73741) and Opti-MEM (Gibco, 11058-021) in a total volume

of 50 mL. Complexed mRNAs were briefly vortexed and incubated

for 10 min at room temperature, then added drop-wise to each

well. Modified FLuc mRNAs were transfected in sextuplicate. 24 hr

post-transfection, media were aspirated from each transfected well,

and adhered monolayers were lysed with the ONE-Glo Luciferase

Assay System (Promega, Madison, WI, E6120) to assay for FLuc

activity. Lysates were incubated in the dark for 10 min at room tem-

perature with gentle rocking, then transferred to a white 96-well

microtiter plate (Greiner Bio-One, Monroe, NC, 655073). Luciferase

activity was measured using a GloMax Multi+ Detection System

luminometer (Promega, E8032) with a 0.5-s integration per well.

IFN Response Assay in Cultured THP-1 Cells

THP-1 Dual cells were seeded, differentiated, and transfected as above

except that cells were transfected with 100 ng in vitro-transcribed,

non-HPLC, and HPLC-purified unmodified or modified Cas9

mRNAs. Modified Cas9 mRNAs were transfected in sextuplicate,

and supernatants from each transfected well were assayed for Lucia

activity 24 hr post-transfection. To assay Lucia activity as a measure

of an IFN response, 50 mL media were mixed with 150 mL QUANTI-

Luc coelenterazine luciferase substrate (InvivoGen, rep-qlc) in a white

96-well microplate (Greiner Bio-One, 655073), and luminescence was

measured using a GloMax Multi+ Detection System luminometer

(Promega, E8032) with a 10-s integration per well.

CD34+ HSPC Tissue Culture

CD34+ HSPCs derived from mobilized peripheral blood donated by

male donors were purchased from AllCells (Alemeda, CA). Cells

were thawed according to themanufacturer’s instructions and cultured

at a density of 250,000/mL in a 24-well plate. CD34+ HSPCs were

cultured in StemSpan SFEM II (STEMCELL Technologies, Vancouver,

Canada) supplemented with stem cell factor (100 ng/mL), thrombo-

poietin (100 ng/mL), Flt3-Ligand (100 ng/mL), IL-6 (100 ng/mL),

StemRegenin1 (0.75 mM), and UM171 (STEMCELL Technologies,

35 nM). Cells were cultured at 37�C, 5% CO2, and 5% O2.

Nucleofection of CD34+ HSPCs

Nucleofection was performed 48 hr after cells were thawed. Cell

viability was confirmed to be >80% using trypan blue before nucleo-

fection. Cells were resuspended in 1 M buffer (5 mM KCl,

15 mM MgCl2, 120 mM Na2HPO4/NaH2PO4 [pH7.2], and 50 mM

Manitol) at a density of 5 million cells/mL. As a control, we also

included Cas9 RNP at a Cas9:sgRNAmolar ratio of 1:2.5 as previously

described by Hendel et al.6 Briefly, 6 mg Cas9 protein was incubated

with 3.2 mg IL2RG locus MS-sgRNA6 (ACAACTTCGGTAG

TAATGGT.) for 15 min prior to nucleofection. 3 mg Cas9 mRNA

and 2 mg MS-sgRNA were used for nucleofections.6,69 Cas9 mRNA

and RNP were then mixed with 100,000 CD34+ cells (20 mL of cell

suspension) and transferred to a 16-well nucleofection strip (Lonza,

MD, USA). Each treatment was performed in duplicate. Cells were

nucleofected using DZ100 program in the Lonza 4D nucleofector.

Cells were suspended in 200 mL CD34+ media after nucleofection.

Measurement of Indels

Genomic DNA was obtained using QuickExtract DNA Extraction

Solution (Epicenter, Madison, WI). The mixture was vortexed and

incubated at 65�C for 6 min followed by 100�C for 10 min, a slight

deviation from the manufacturer’s recommendations for more

optimal downstream applications. The target sequence in the

IL2RG locus was amplified using PCR and sequenced. Indels were

measured using TIDE software as previously described.61 Briefly,

the software uses quantitative sequence trace data from control cells

and cells edited using Cas9 RNP or mRNA. The software decomposes

the edited sequence trace into individual components using multi-

variate non-negative linear modeling, and it uses the control sequence

as a template to model indels.

www.moleculartherapy.org
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The following primers were used for PCR amplification of the IL2RG

site: forward, 50-TCACACAGCACATATTTGCCACACCCT-30 and

reverse, 50-TGCCCACATGATTGTAATGGCCAGTGG-30.

Whole-Blood Assay

Blood samples from three different healthy donors was taken and

collected in EDTA collection tubes (Sarstedt, Germany). For each

treatment group, 2 mL EDTA-blood was transferred into 12-well

plates and treated accordingly. 10 mL 1 mg/mL (un-)modified

mRNAs were complexed to 10 mL TransIT (Mirus Bio, Madison,

WI). For a positive control group, blood was treated with the

TLR 7 and 8 agonist R-848 (Resiquimod, Sigma-Aldrich, St. Louis,

MO). Samples were incubated for 6 or 24 hr at 37�C in a humidified

atmosphere containing 5% CO2. At each time point, 1 mL whole

blood was transferred into columns for serum separation (Sarstedt,

41.1378.005) and spun down at 10,000 � g for 5 min to obtain

serum. Sera were stored at �20�C until further cytokine measure-

ment analyses.

Animal Experiments

All animal experiments were approved by the local ethics committee

and carried out according to the guidelines of the German Law for the

Protection of Animals. BALB/cJ mice were purchased from Jackson

Laboratory (Bar Harbor, ME) at an age of 6–8 weeks and were main-

tained under standardized specific-pathogen-free conditions on a

12-hr light-dark cycle. Nesting material was provided and food and

water were provided ad libitum. Prior to injections, mice were

anesthetized intraperitoneally with a mixture of medetomidine

(0.5 mg/kg), midazolam (5 mg/kg), and fentanyl (50 mg/kg). BALB/cJ

mice received 20 mg Cas9 mRNA encapsulated in chitosan-coated

PLGA nanoparticles (Chitosan, 83% deacetylated [Protasan UP CL

113] coated PLGA 75:25 [Resomer RG 752H] nanoparticles [NPs])

by intravenous injection (n = 3) into the tail vein. For both interven-

tions, mRNA-NPs were administered in a total volume of 200 mL. To

assess immune responses after 6 and 24 hr, mice were sacrificed and

blood was collected to obtain serum.

Cytokine Measurement

Blood from mice and human donors was used to obtain serum and

tested for IL-12, IL-6, and TNF-a (human and mice, respectively)

production by ELISA, as directed in the manufacturer’s instructions

(BD Biosciences, San Jose, CA).

Statistics

Data were analyzed using Prism 6 Software (GraphPad, San Diego,

CA) using a 95% confidence interval. For indel measurements, data

were analyzed by one-way ANOVA with a Tukey’s multiple compar-

isons test. For IFN, mouse cytokine, and whole-blood cytokine mea-

surements, an ANOVAwith a Dunnet’s test for multiple comparisons

was used.
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Protein supplementation therapy using in vitro-transcribed

(IVT) mRNA for genetic diseases contains huge potential as a

new class of therapy. From the early ages of synthetic mRNA

discovery, a great number of studies showed the versatile use

of IVT mRNA as a novel approach to supplement faulty or ab-

sent protein and also as a vaccine. Many modifications have

been made to produce high expressions of mRNA causing

less immunogenicity and more stability. Recent advancements

in the in vivo lung delivery of mRNA complexed with various

carriers encouraged the whole mRNA community to tackle

various genetic lung diseases. This review gives a comprehen-

sive overview of cells associated with various lung diseases

and recent advancements in mRNA-based protein replacement

therapy. This review also covers a brief summary of develop-

ments in mRNA modifications and nanocarriers toward clin-

ical translation.

RNA, a fundamental molecule in the eukaryotic and prokaryotic cells

and viruses, came recently into focus for therapeutic approaches:1–3

tRNAs for nonsense mutation correction, RNA aptamers for binding

to a specific target molecule, and RNAi and long noncoding RNAs

(lncRNAs) for gene regulation.4–8 mRNA gives rise to a new therapy

for diseases associated with functional protein loss by supplementing

the protein with a transcript encoding. The first study of in vitro-tran-

scribed (IVT) mRNA in the late 1980s showed that this mRNA can be

directly translated into a functional form immediately after transfec-

tion in vitro and in vivo.9,10 This was shortly followed by a therapeutic

application of mRNA in a temporary reversal of diabetes insipidus,

unraveling its therapeutic potential.11

Therapeutic applications of mRNA are advantageous due to its

unique properties. Cytoplasm being mRNA’s functional site requires

no transportation across the nuclear membrane. Furthermore, due to

the transient nature and biodegradability of mRNA, permanent

adverse effects can potentially be avoided.12 This includes preventing

the permanent manipulation of the genome, making mRNA a prev-

alent molecule for protein supplementation therapy.13–15 Several

aspects of mRNA have to be addressed in order to achieve therapeutic

benefits: potential immunogenicity mediated by innate immune

system reactions (pattern recognition receptor),16–19 degradation of

single-stranded mRNA by nucleases, and its negative charge that

inhibits the passive crossing of the cell membrane. Concerning these

obstacles, solutions such as chemical modifications of nucleosides to

reduce immunogenicity and usage of nanocarriers to facilitate

crossing the cell membrane are emerging. The recent advancements

in the field of nanocarriers suggest the possibility to customize parti-

cles for target organs.20,21

Based on our research interest in lungs, this review focuses on protein

replacement therapy of lung disease, especially monogenetic diseases,

such as cystic fibrosis (CF) and surfactant protein B (SP-B) deficiency,

as well as multifactorial diseases, such as chronic obstructive pulmo-

nary disease (COPD) and asthma. To achieve targeted therapy

options, lung structure and methods to reach specific lung cell popu-

lations are critical. Therefore, this review gives an overview of lung

cell populations and diseases associated with them. Furthermore, a

comprehensive summary of mRNA transcript improvements by

chemical modification of nucleosides or capping and nanocarriers

to target lung cell populations is also featured.

Lung Architecture and Disease Pathology

The lung has a very unique architecture to enable efficient transfer of

oxygen and carbon dioxide required for oxidative metabolism.

Inhaled gases travel through the airway tubes via trachea bronchi

and bronchioles to the alveoli enriched with blood vessels, the

primary site of gas exchange. Inflation and deflation of the lung is a

prerequisite for gas exchange at the alveoli. This process requires mul-

tiple components like the extracellular matrix, smooth muscle cells,

and cartilage for support and flexible collagen and the elastin fiber

network for flexibility during inflation and deflation. Precisely regu-

lated surface fluids, electrolytes, and mechanical activity of secretory
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and ciliated cells determine the mucociliary clearance, whereas on the

other hand the epithelium maintains the barrier function.

The airway epithelium (tracheal and bronchiolar) consists of goblet

cells, brush or tuft cells, ciliated cells, basal cells, neuroendocrine or

neuroepithelial bodies, club cells, lineage-negative epithelial progeni-

tor (LNEP) cells, and the newly identified ionocytes.22,23 The ducts of

submucosal glands consist of goblet cells, serous cells, andmyoepithe-

lial cells. The alveolar epithelium consists primarily of alveolar type I

(ATI) cells (�95%), macrophages, and alveolar type II (ATII) cells,

with close association to capillary endothelial cells of pulmonary

microcirculation.24 The terminal airway ducts and alveoli are

supported by fibroblasts and myofibroblasts producing extensive

elastin-collagen networks, which help with inflation and defla-

tion.25–27 Other important cell populations include stem cells and

immune cells, which help in region-specific regeneration and protec-

tion against pathogens, respectively. Abnormalities of lungmechanics

are observed in various diseases, including CF,28,29 asthma,30,31 idio-

pathic pulmonary fibrosis (IPF),32,33 COPD,34,35 and bronchiolitis

obliterans.34,36 These conditions are detrimental in nature and involve

multiple factors, such as increased resistance of lung tissue due to

fibrosis of the lung; collapsing tubes or thickening of airway walls

due to mucus overproduction; and the loss of ciliary function, result-

ing in airflow obstruction, mucus plugging, chronic infection, and

inflammatory damages. In that process, multiple cell populations un-

dergo remodeling, directly contributing to clinical symptoms.

Broncho-Epithelial Cells and Associated Diseases

Goblet cells, present in the broncho-epithelia and submucosal glands,

produce mucins (MUC5B andMUC5AC), and they are differentiated

from basal and club cells upon various stimuli (toxic substances,

pathogens, particles, and neural and innate immune signals). Goblet

cells are not only helping to establish the innate immune system but

also key players in pulmonary diseases, as described before.37 These

cells produce cytokines and chemokines that recruit and educate

innate immune cells, including dendritic cells (DCs), innate lymphoid

cells, and eosinophils. This contributes to the CD4+ T helper cell 2

(Th2)-mediated immune response typical of asthma.38,39 Hyper-

production of mucus and goblet cell metaplasia are characteristics

of Th2-mediated and non-mediated inflammation (pathogen medi-

ated), which leads to complications in CF, COPD, and IPF.40,41 The

fluids for hydration are regulated by serous cells that line the acinar

region of submucosal glands and are important for the pathology

of CF. The mucins are precisely balanced by fluid, and electrolyte

transport enables rapid secretion and dispersal of mucus onto the

airway surfaces and the movement of the mucus gel up the airway

by ciliary activity. In CF, the secretion of chloride and bicarbonate

is impaired, disrupting mucociliary clearance due to mutations in

CF transmembrane conductance regulator gene (CFTR), which leads

to recurrent airway infections, sinusitis, bronchiectasis, and pulmo-

nary tissue remodeling.42

Brush cells, containing distinctive apical microvilli, are found in mul-

tiple organs, e.g., pancreas, intestine, nose, and trachea. Brush cells are

known to play an important role in activating the innate immune sys-

tem in the intestine43 and nose (Tas2R receptors),44 however, a

similar phenomenon in airway trachea requires testing. Recent

studies in the trachea have indicated their role as chemosensory for

immune surveillance and as respiratory regulators.45 These might

be responsible in transducing signals regulating wheezing and cough-

ing during episodes of asthma. However, further studies are required

to understand their role.46

Ciliated cells are characterized by their multiple apical, motile cilia

composed of structural proteins and motor proteins (dynein)47–49

that regulate the coordinated bidirectional beating critical for particle

and pathogen clearance.50,51 Ciliated cells respond to both physical52

and chemical53 stimulation. Mucociliary clearance can be affected by

ciliary dysfunction, impaired fluid secretion, disruption of epithelial

cell lining, or lack of cough. This impairment can initiate an inflamma-

tory response, damaging the airway epithelium. Disruption in ciliated

cell function results in recurrent and persistent infections, morbidity,

and mortality in chronic pulmonary disorders.54 In COPD, direct

evidence has been provided of suppressed ciliary beating in nasal

epithelium55 with normal mucus production. Cigarette smoking

has been shown to have a detrimental effect on the number and size

of cilia in vitro,56 whereas in vivo a slight increase in ciliary beating

initially followed by significant loss of cilia over prolonged time was

observed.57 Primary ciliary dyskinesia (PCD) resulting from ciliary

dysfunction is caused by recessive mutations in one of multiple

genes involved at different points in cilium structure, assembly, and

function, which include DNAI,58 DNAH(5,59 1160), ARMC4,61

TXNDC3,62 HEATR2,63 HYDIN,64 CDC (39,65 40,66 65,67 103,68

114,69 15170), DNAAF(1,71 2,72 373), RHSP(4A, 9),74 DYX1C1,75

LRRC6,76 ZMYND10,77 CCNO,78 and recently identifiedMCIDAS.79

Club cells are columnar, secretory cells that express high levels of

cytochrome P450-detoxifying enzyme CYP2F, surfactant proteins

(SP-A, SP-B, and SP-D), and innate immune proteins, including de-

fensins, lactoferrin, and secretaglobins (SCGB1A1 and SCGB3A1).80

Upon stimulus or injury, these differentiate into alveolar cells,81,82

goblet cells,38,83,84 or ciliated cells.85 However, in humans, these are

only localized in terminal bronchioles, and they may play a role in

the maintenance of distal bronchioles.86 Club cells being progenitor

cells also plays an important role in the repair mechanism of the

airway epithelium, and, therefore, they are connected to damage re-

sponses in CF, COPD, and IPF.80 Club cells also metabolize chemical

toxins (e.g., naphthalene) to toxic compounds that selectively kill club

cell subsets. SP-A and SP-D (C-type lectins) are responsible for host

defense, enhancing the clearance of various microbial pathogens,

whereas the secretory lipids and proteins (SP-B and SP-C) help in

minimizing surface tension and collapsing forces caused by inhaled

gases when in direct contact with alveolar structures, protecting

peripheral saccules from atelectasis during ventilator cycles.87

Neuroendocrine cells represent less than 1% of the airway epithe-

lium,88 and they are found either isolated or in clusters known as neu-

roepithelial bodies located at precise airway branch points.89 The
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localization aids in their role as airway (environmental) sensors

(acidosis, hypoxia, and hypercarbia),90,91 and clustering is required

for the appropriate innate immune responses.92 The response to a

stimulus is via the release of stored amines (serotonin) and peptides

(calcitonin gene-related peptide [CGRP]).92Hyperplasia is associated

with a wide range of congenital and infantile lung disorders. Though

the underlying cause is unknown, NKX2-1 mutation has been associ-

ated with neuroendocrine hyperplasia of infancy (NEHI).93

Ionocytes (Foxi1+) are the rare cell type of the airway epithelium

recently characterized, in both mice and humans, by two independent

research groups.22,23 These reside at multiple levels of the airway tree,

and they are needed to maintain airway surface physiology, including

mucus viscosity.23 Foxi1 is already known to regulate V-ATPase,

which is important for transport and fluid pH in other cell types in

skin.94,95 Knockout in a mouse model reduced Cftr and Ascl3 expres-

sion, indicating the role of Foxi1 in CFTR regulation.23 Montoro

et al.23 also performed pulse-sequence tracing that indicated the basal

cell lineage, with an increased expression of CFTR.

Basal cells are progenitor cells96–98 that are regulated by NOTCH

signaling to give rise to ciliated cells (NOTCH�), goblet cells

(NOTCH+), and club cells (NOTCH2+).99–102Due to their basal prox-

imity, these cells interact with the columnar epithelium; underlying

mesenchymal cells; basal membrane; neurons; and also lymphocytes,

inflammatory cells, and DCs.103 A loss in tight regulation of basal cell

differentiation can result in inappropriate cell fate determination,

leading to pathological airway remodeling. This includes epithelial

hypoplasia (proliferation failure), basal cell hyperplasia (excessive

proliferation with no differentiation), goblet cell metaplasia or hyper-

plasia instead of ciliated cell generation, and squamous metaplasia

(suprabasal cells) instead of luminal cells. Pathological airway remod-

eling occurs frequently in association with CF, COPD, and chronic

asthma.103 Araya et al.104 in their study showed that hyper-prolifer-

ating basal cells secrete cytokines (interleukin-1b [IL-1b]) that pro-

mote airway wall fibrosis via transforming growth factor b (TGF-b)

signaling in COPD.

Alveolar Cells and Associated Diseases

Alveolar type I cells (ATI) are squamous cells lining the alveolar

compartment involved in gas exchange. These are terminally differ-

entiated cells (lifespan�120 days) that form a barrier to sense micro-

bial products and generate inflammatory responses.105,106 These cells

undergo excessive physical and chemical stresses due to their higher

exposure, and they require constant regulated repair.107,108Adefect in

repair directly and indirectly contributes toward injurious manifesta-

tions of the lung, leading to diseases like acute respiratory distress

syndrome (ARDS) and IPF.109,110 ATII (progenitor of ATI cells)

are cuboidal cells and cover about 7% of the total alveolar surface.

These produce surfactant lipids (phosphatidylcholine) and surfactant

proteins (SP-A to -D). Congenital SP-B deficiency leads to death87,111

soon after birth; however, targeted disruption of SP-C,112 SP-A,113

and SP-D114,115 gene loci does not show detrimental effects. In cases

with acute respiratory distress syndrome, a decrease in the expression

of SP-B is also observed.116,117

Stem Cells of the Airways

To maintain the constant dynamic function of the lung, it is very

crucial that the respiratory epithelium is equipped with fast and

extensive regenerative ability following injury. Airway basal cells

and ATII cells have been known for their role in repair of the

airway epithelium. Recently, studies have identified distinct niches

throughout the lung that can mediate graded and region-specific

responses.118,119 Myoepithelial cells (MECs) and bronchoalveolar

stem cells (BASCs) are a couple of the established stem cells in lungs.

It was well established that the innervated MECs encircle the submu-

cosal glands and mediate mucus secretion in response to neural

inputs, which can activate massive secretory responses after stimula-

tion by irritants and toxins (also reviewed in Boers et al.86 and Yei

et al.120).37,42,121 However, recent work by Lynch et al.122 and Tata

et al.123 have explained the potency of MECs in generating seven

cell types of surface airway epithelium and the submucosal gland

following airway injury. These can be activated via Sox9 or Lef-1 tran-

scriptional signaling, and they can be exploited for regenerative med-

icine. BASCs have been identified as stem cells that co-express both

club cell and ATII cell markers.124 BASCs sorted by flow cytometry

and cultured in vitro showed differentiation, self-renewability, and

response to injury.124–126 Lineage-tracing studies have revealed the

BASC’s ability to give rise to alveolar epithelial cells in vivo127,128

and its contribution to homeostasis and repair, along with club and

ATII cells.127–130

RespiratoryDiseases Targeted byProtein Replacement Therapy

SP-B Deficiency

SP-B deficiency is a rare genetic disease leading to neonatal lethality,

including interstitial lung disease (ILD) and ARDS.131–135 SP-B is

crucial for breathing transition of neonates at birth, and it helps in

reducing surface tension of the alveolus. Dipalmitoylphosphatidyl-

choline (DPPC) is the principal surface tension-reducing component

that combines with hydrophobic SP-B or SP-C peptides to form stable

surfactant film.136 Surfactant supports rapid adsorption and insertion

of phospholipids, reduction in surface tension upon compression,

and rapid re-spreading during expansion. Changes in surfactant

lead to alveolocapillary leakage, alveolar instability, compromised

gas exchange, and respiratory failure. Both SP-B and SP-C peptides

are processed from their pro-peptide forms to their functional

form. Absence of proSP-C processing leads to the accumulation of

misprocessed SP-C, consisting of the mature peptide with an N-ter-

minal extension (relative molecular weight [Mr]�6,000), and to a sig-

nificant decrease in mature SP-C peptide in alveolar surfactant.

ProSP-C processing is also closely related to SP-B expression.87,111,137

The combinatorial effect exacerbates lung function at birth, and

in vivo studies showed respiratory failure in selective loss of SP-B in

adult.138

Natural surfactant replacement, such as Survanta beractant (modified

bovine surfactant 8 mg SP-B/mL) by Abbott Laboratories, Curosurf
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(porcine surfactant 80 mg/mL) by Chiesi, and Infasurf (calf surfac-

tant), are a few of the FDA-approved preventive medications for

infants with ARDS or premature babies at the risk of developing

RDS. Accompanied by physical measures, corticosteroids, or immu-

nosuppressants and repeated lung lavage, surfactant replacements

have shown improvement in the disease condition until lung trans-

plantation.139–144 The potential risks with animal-derived protein

include immunological reactions and transmission of animal-derived

diseases, justifying the need for standardized human-like alterna-

tives.145–147 One alternative involves synthetic mimics that have

shown superior surfactant properties.144,148

Since SP-B deficiency is a monogenetic disorder, it acts as a perfect

model for gene therapy. Both DNA- (virus120 and plasmid149) and

mRNA-150 based gene supplementation have been tested in a condi-

tional SP-B-knockout mouse model, which indicated improvements

in lung function and SP-B expression and a significant increase in

survival. Kormann et al.150 showed for the first time that intratracheal

(i.t.) instillation of modified SP-BmRNA to the lung can restore up to

71% of the wild-type SP-B expression, and the treated conditional

SP-B-knockout mouse model survived until the predetermined end

of the study of 28 days. Presently, the Rudolph team from Ethris holds

a patent for pulmonary delivery of mRNA with polyethylenimine

(PEI) (US patent application 20150126589), and their teaming up

with AstraZeneca and MedImmune could bring the therapy closer

to the reach of patients.151

Asthma

Asthma is a multifactorial disease and can be characterized by airway

obstruction, chest tightness, wheezing, cough, and breathlessness, fol-

lowed by recurrent pneumonia or bronchitis. The initiating event in

asthmatic airway diseases revolves around interactions between DCs

and T cells. DC and T cell interactions favor the generation of Th2,

leading to eosinophilia, mucus hypersecretion, and chronic airway

inflammation.152,153 The overactive Th2 response induces the pro-

duction of cytokines and chemokines, followed by a cascade of

immune-activating events, leading to changes in airway smooth mus-

cle contractility,154 a characteristic of asthma. Studies by Hellings

et al.155 andWilson et al.156 showed that Th17 cells orchestrate airway

inflammation by enhancing neutrophil recruitment to the lung. The

Th2-mediated immune response can be contained via Th1-type cyto-

kines (by Th1 cells), IL-10, and TGF-b (by T regulatory cells [Tregs]),

but the roles of IL-17 and IL-22 (by Th17 cells) are debated.155,157,158

Both circulatory and airway fluids of asthmatic patients indicate

increased IL-17 levels155 and decreased airway Tregs,159 indicating

an imbalance in Th2 regulation.

Corticosteroid treatment is found to suppress the Th2 immune

response via increased Foxp3+ Tregs in asthmatic patients.160 Similar

results were found with exposure to microbes161,162 influencing Treg

expression, modulation of IL-6,163 prostanoids,164 and tumor necrosis

factor (TNF) pathway enhancement.165Mays et al.166 has successfully

demonstrated the protective role of Foxp3 by delivering chemically

modified Foxp3 mRNA into the lung of an asthma mouse model.

Site-specific instillation of chemically modified Foxp3 mRNA can

modulate both Th2 and Th17 responses in an IL-10-dependent

manner.166 Local administration of Foxp3 mRNA can influence the

balance among Treg, Th2, and Th17 responses, and it can reduce

side effects in terms of the anti-tumoral and anti-infective167,168 ef-

fects of Tregs in comparison to systemic delivery.165 Kormann

et al.169 produced a unique insight into Toll-like receptors (TLRs),

as polymorphisms in TLRs 1, 6, and 10 have shown protective effects

on atopic asthma in humans by forming heterodimers with TLR2.

A subsequent study by Zeyer et al.170 demonstrated that Tlr1/2 and

Tlr2/6 mRNA instillation in the lungs of a house dust mite-induced

mouse model of asthma reduced airway resistance by 40%.

CF

CF, caused by mutations in the CFTR gene, is the most common life-

limiting autosomal-recessive disease in the Caucasian population,

and it affects more than 80,000 people worldwide. Around 2,000

mutations have been identified and are categorized into 6 classes,

ranging in severity from no production of functional protein to

decreased synthesis, stability, or function of CFTR protein. CFTR

protein acts as a small conductance ATP and cyclic AMP (cAMP)-

dependent chloride channel, found at the apical side of epithelial

cell lining of most exocrine glands. In the lung epithelium (ionocytes

and ciliated and goblet cells), CFTR ensures the secretion of chloride

ions, resulting in more hydration and regulated mucus clearance in

the airway. A lack of functional CFTR leads to decreased chloride

secretion and increased sodium absorption, resulting in dry and rigid

mucus production by goblet cells.171 An increase in inflammatory

response is also observed, possibly due to the breakdown of elastin

fibers by neutrophil elastase and reduced IL-10.172 The defective

mucus clearance enables further pathogen (Pseudomonas aeruginosa

and Staphylococcus aureus) colonization, repetitive inflammatory

responses that result in irreparable lung damage, and ultimately

cardiac arrest. Defects of the CFTR channel lead to a failure in LPS

recognition, endocytosis of pathogens, and changes in airway fluid

composition. This inactivates beta defensins, causing detrimental

effects on the primary defense in the lung.

A readthrough agent for CFTR class I mutation (Ataluren, PTC

Therapeutics) showed potential benefits in vivo by increasing CFTR

production and function;173 however, it failed phase III clinical trial

due to a lack of efficacy.174 Channel modulators categorized into

potentiators, correctors, and amplifiers have been used for CF treat-

ment. Potentiators (ivacaftor, Kalydeco) can help in gating and con-

duction mutations by increasing the open probability of the CFTR

channels. Correctors (tezacaftor and lumacaftor) improve CFTR traf-

ficking by facilitating the formation of correct 3D protein structure.

Combinations of potentiator and corrector (Orkambi and Symdeko,

Vertex Pharmaceuticals) are commercially available only for patients

with F508del mutation, expanding the modulators also for applica-

tion on class II mutations.175,176 A triple combination of two correc-

tors (VX-659, tezacaftor) and one potentiator (ivacaftor) has also

shown greater potency in pre-clinical trials. PTI-428 (Proteostasis

Therapeutics), an amplifier to increase the amount of CFTR protein,
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is in phase II trial. Eluforsen (QR-010) can bind to defective CFTR

RNA, and it has shown increased CFTR function by nasal potential

difference test in compound heterozygous or homozygous F508del

CF patients.177

Protein replacement therapy with DNA, protein, or mRNA holds a

great potential as a universal therapy for curing the underlying

defect of CF. Initial attempts of in vivo protein transfer via phospho-

lipid liposomes into the apical membrane of nasal epithelia of

CFTR-knockout mice showed limited membrane incorporation by

electron microscopy but improvement of nasal potential difference

(NPD) measurement.178 Similarly, DNA-based vectors (viral and

plasmid) were tested by Alton’s group (pGM169/GL67A), reaching

phase II clinical trials with modest improvement in FEV1 after

repeated administration but no improvement in patient’s quality

of life.179,180 Haque et al.20 have observed a significant improvement

in CFTR protein translation, expression, and function in vitro

(CFBE41o- and 16HBE14o-) and in vivo (CFTR-knockout mice)

by administering chemically modified human CFTR (hCFTR)

mRNAs complexed with chitosan-coated poly(lactic-co-glycolic

acid) (PLGA) nanoparticles. The study also showed a substantial

improvement in FEV0.1 up to 89% of the level of a healthy control

group. Airway compliance and resistance are also significantly

improved by the treatment with chemically modified hCFTR

mRNAs. A significant decrease in chloride concentration (around

50%) was also observed, indicating a restoration of CFTR in the

duct compartment of submucosal glands and thus leading to

improved chloride absorption.20 A separate study from Robinson

et al.181 confirmed nasal application of chemically modified CFTR

mRNA can recover up to 55% of the net chloride efflux character-

istic of healthy mice. Bangel-Ruland et al.182 demonstrate restoration

of cAMP-induced CFTR current following transfection of CFBE41o-

cells with wild-type CFTR-mRNA similar to the values seen in

16HBE14o- control cells. Translate Bio is also working on CFTR-

encoding mRNA (MRT5005) and has entered phase I/II clinical trial

(Table 1). All these studies prove the potential of mRNA as a prom-

ising therapeutic in CF patients, irrespective of their CFTR mutation

status.

COPD and COPD-like Symptoms in a1-Antitrypsin Deficiency

COPD is a progressive and largely irreversible smoking-related dis-

ease characterized by small airway obstruction, emphysema, and

chronic bronchitis. It is mainly attributed to long-term exposure to

tobacco, toxic gases, and particles, activating both innate and adaptive

immune responses. The innate immune defense includes tight

junctions, TLRs of epithelial barrier, macrophages, and alveolar fluid

Table 1. Current Clinical Trials Involving mRNA Delivery

Name Disease Genetic/Protein Target Administration Route Administration Vehicle ClinicalTrials.gov Identifier Phase

Lipo-MERIT melanoma tumor-associated antigens intravenous infusion mRNA-Lipoplex NCT02410733 1

TNBC-MERIT
triple-negative

breast cancer
tumor-associated antigens intravenous infusion mRNA-Lipoplex NCT02316457 1

IVAC mutanome

/warehouse

triple-negative

breast cancer
patient-specific antigens intra-nodal naked NCT02035956 1

mRNA-1851 influenza A Hemagglutinin 7 (H7) protein intramascular injection not disclosed Not disclosed 1

mRNA 1440 influenza A Hemagglutinin 7 (H7) protein intramuscular injection not disclosed not disclosed 1

CV7201 rabies rabies virus glycoprotein intramuscular injection naked NCT02241135 1

CV8102 HIV, rabies, RSV RNA-based adjuvant intramuscular injection naked NCT02238756 1

mRNA MRK-1777 not disclosed vaccine intradermal not disclosed not disclosed 1

mRNA AZD-8601
cardiovascular

diseases
VEGF-A intramuscular injection naked NCT02935712 1

mRNA-1325 Zika viral antigenic protein intramuscular injection lipid nanoparticle NCT03014089 1/2

CV9103 prostate cancer tumor-Specific antigen
autologous dendritic

cell therapy
naked NCT01197625 NCT00831467 1/2

MRT5005 cystic fibrosis CFTR
nebulization to the

respiratory tract
lipid nanoparticle NCT03375047 1/2

AGS-004 HIV vaccine
autologous dendritic

cell therapy
naked NCT01069809, NCT02707900 1/2

AGS-003-LNG
non-small-cell

lung cancer
tumor-specific antigen

autologous dendritic

cell therapy
naked NCT02662634 2

iHIVARNA-01 HIV HIV-target antigen intranodal route naked NCT02888756 2

AGS-003 renal cell carcinoma tumor-specific antigen
autologous dendritic

cell therapy
naked

NCT01482949 NCT00678119

NCT01582672
2/3

Modified from Kaczmarek et al.321
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(secreted by ATII cells of lung). A second line of defense includes

exudation of plasma and circulating effector cells into damaged tissue,

regulated by IL-1, IL-8, and TNF-a. The infiltration of both bronchial

and alveolar tissue with macrophages, B and T lymphocytes, and

eosinophils has been associated with emphysematous destruction.

Both the responses are linked to tissue repair and remodeling that in-

crease mucus content of airway lumen and metaplasia of mucous and

squamous cells. This leads to a thickened wall and narrowed lumen of

conducting airways. Second, emphysema limits air flow by reducing

elastic recoil pressure for exhaling air during forced expiration.183

a1-antitrypsin deficiency (AATD) can cause COPD-associated symp-

toms like emphysematous destruction alongwith innate inflammation

in lung due to an imbalance in protease and antiprotease homeosta-

sis.184 In lungs, AAT has the major physiological function of protect-

ing the healthy but fragile alveolar tissue from proteolytic damage

of neutrophil elastases.185 The AATD is largely associated with

mutations within SERPINA1, resulting in abnormal protein folding,

intracellular retention, and consequently low serum levels.186Howev-

er, multiple other factors also contribute to disease severity, and much

research is being done to obtain a comprehensive picture for enabling

better diagnosis.187–196 Danozol was found to significantly improve

AAT circulating levels197 without eliciting side effects. Another

approach is to inhibit polymerization of AAT by small molecules,198

peptides,199 autophagy-enhancing drugs200,201 (ClinicalTrials.gov:

NCT01379469 Tregretol phase II clinical trial, rapamycin202), and

RNA silencing ofmutant AAT in liver hepatocytes.203–205 Intravenous

(i.v.) augmentation of plasma-derived AAT (Bayer Biologicals, ZLB

Behring, Baxter Healthcare)206,207 is an established method to raise

circulating levels of AAT in blood and bronchoalveolar lavage fluid

(BALF), slowing the progression of lung destruction.208

Various routes of administration and vectors have been tested for

gene delivery of AAT in various animal models (rat, mouse, and

dog), with varying expression efficiency in terms of time and localiza-

tion (reviewed in detail209). However, only AAVrh.10hAAT (Adve-

rum Biotechnologies, ClinicalTrials.gov: NCT02168686) has entered

the phase I/II clinical trial to assess the safety and therapeutic level

expression ofM1-type AAT in the serum and alveolar epithelial lining

fluid.210 Connolly et al.21 have shown successful expression of AAT

with liposome-encapsulated SerpinA1 mRNA in vitro and in vivo

after transfection. In an independent study, Michel et al.211 observed

significant expression of AAT in vitro and ex vivo along with a signif-

icant reduction in elastase activity.

Steps toward Pharmacologically Auspicious mRNA

In recent years substantial efforts have been made for engineering

mRNAwith diverse pharmacokinetic properties (Figure 1). Modifica-

tions of structural elements such as 50 Cap, 50 and 30 UTRs, poly(A)

tail, and the coding region were the main focus.14,212–215

Figure 1. mRNA IVT, Modifications, and Function and Timeline

Overview of milestones in protein supplementation therapy, in vitro transcription, and mRNA modification. White boxes, important milestones for the development of

mRNA therapy;250 blue boxes, evolution of different cap structures;215,220,322 red, green, and gray boxes, 50 UTR, 30 UTR, and poly(A) tail, respectively, the addition

of regulatory elements in the modification of mRNA;14,312,313 yellow boxes, nucleoside modifications and sequence optimizations in the development for mRNA

therapy.215,230,238,240,314,317
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50-Capping for Stability and Immune Evasion

50-capping is vital for the robust translation of mRNA as the natural

7-methylguanosine (m7G/Cap0), and it is connected by a 50-to-50

triphosphate bridge to the first nucleotide. Translation is initiated

by binding to eukaryotic translation initiation factors (eIF4E and

eIF4G), and mRNA deterioration is controlled by binding with

Dcp1, Dcp2, and DcpS (mRNA-decaying enzymes).57,216–218 In

in vitro transcription, m7G possesses the risk of constructing uncap-

ped or inactive IVT mRNA, as the m7G and GTP compete for

incorporation. m7GpppG cap was the first step to circumvent the

restriction of m7G, however, substantial proportions of m7GpppG

analog were incorporated in the reverse direction and thus yielded

substandard translational activity.9,219 Anti-reverse cap analog

(ARCA; m2
7,30-OGpppG) can counteract the reverse integration

and skip degeneration by Dcp2, and, thus, it results in superior

translational efficiency and extended half-life.13,150,220 Study on

viral capping systems reveals that the 20 ribose position of the

first cap-proximal nucleotide is 20O-methylated to form a Cap 1

structure (m7GpppN20Om N), and, in �50% of transcripts, the sec-

ond cap-proximal nucleotide is 20O-methylated to form a Cap 2

(m7GpppN20OmN20Om) structure.221 Cap 1 20O-methylation has

been described to reduce recognition by pattern recognition recep-

tors (e.g., interferon [IFN]-induced protein with tetratricopeptide

repeats-1 and 5 [IFIT1 and IFIT5] and retinoic acid-inducible

gene I [RIG-I]) in comparison to Cap 0.222–224

Modification in UTRs

The poly(A) tail plays an important role in regulating the stability and

translational efficiency (half-life) of mRNA by preventing deadenyla-

tion by poly-specific nucleases.225 Integration of the poly(A) tail

during IVT mRNA synthesis can be conducted by encoding the

poly(A) stretch in the template or by a two-step enzymatic reaction

using recombinant poly(A) polymerase.226 The ideal length of the

poly(A) tail is between 120 and 150 nt, and the 30 end of the poly(A)

tail should not be concealed by additional bases.14,213 50 and 30 UTRs

also play a vital role in the stability and expression of IVT mRNA by

harboring several sequence elements. For example, mRNAs with

adenosine in 50 UTR can form a complex with Lsm1-7 at both the

50 and 30 ends and circularize the transcript to inhibit degradation

by exosome and Dcp1/2.227 Adenine uracil (AU)-rich elements in

the 30 UTR can destabilize the mRNA, and they might provide a

mechanism to limit the duration of protein production.228

Post-transcriptional Modifications

Post-transcriptional chemical modifications of RNA are not uncom-

mon, and over 100 modifications are listed by different studies.229 In

mRNA, only a small subset of these naturally occurring modifications

is reported to be essential for reducing innate immune response and

improvingmRNAexpression and stability.215,230,231N6-methyladeno-

sine (m6A) is one of the most frequent modifications in eukaryotic

mRNA. Insulin-like growth factor 2 (IGF2) mRNA-binding proteins

1, 2, and 3 (IGF2BP1/2/3) preferentially recognize m6A mRNA and

guard the modified mRNA against decay.232 Based on the studies of

Kormann andWarren et al.,233 thefirst generation ofmodifiedmRNAs

containing 5-methylcytidine (m5C) or pseudouridine (J-UTP) re-

duces innate immune responses and enhances translation. TLR3,

TLR7, TLR8, and RIG-I activations were significantly reduced when

mRNA contained modified nucleosides such as m5C, m6A, 5-methyl-

uridine (m5U), J-UTP, and 2-thiouridine (s2U).20,150,230,234 RNA-

dependent protein kinase (PKR) arbitrated the immune response,

and translation inhibition (by phosphorylating the alpha subunit

of translation initiation factor 2 [eIF-2a]) can be escaped using

J-UTP- or m5C-modified nucleosides.235 m5C is explicitly recog-

nized by the mRNA export adaptor ALYREF, and it increases

mRNA-binding affinity and associated mRNA export.236 Activation

of two important components of the innate immune response against

unmodifiedmRNA, the interferon-induced enzymes 20-50-oligoadeny-

late synthetase (OAS) and RNase L, can be limited by J-UTP.237

N1-methylpseudouridine (N1-mJ-UTP) is the most used chemical

modification in recent studies, and it showed remarkable expression

compared to J-UTP-substituted mRNA, even when delivered by

different routes in vivo.238 N1-mJ-UTP induces a tight binding to

RIG-I but failed to activate RIG-I signaling (Figure 2).234,239

Codon Optimization

Codon optimization of mRNA uses the degeneracy of the genetic

code to substitute specific nucleosides of a mRNA sequence without

altering the resulting amino acid composition. Several recent studies

have reported a high expression by codon optimization of unmodified

and J-UTP-modified mRNA through enriching guanosine and/or

cytosine (GC).231,240 Cas9 activity has been reported to produce

significantly higher insertion or deletion (indel) and to be less immu-

nogenic when uridine depletion has been used with 5-methoxyuri-

dine (5moU) modification compared to unmodified and J-UTP-

modified Cas9 mRNA.215 Pharmacologically favorable mRNA that

has undergone modification and sequence optimization still needs

to be transferred in lung using carriers, to circumvent the naturally

occurring barriers the lung possesses.

Reaching the Lung

In vivo delivery of mRNA therapeutics remains one of the biggest

hurdles for mRNA-based therapies in general. Apart from the

fragility of the mRNA molecules and the ubiquitous existence of

RNases, there are twomain obstacles in the delivery of mRNA in vivo:

targeting specific lung cell populations and crossing the cellular

membrane. For solving the latter part, nanocarriers as a delivery sys-

tem have gained increased attention. Therefore, this review focuses

on the benefits and obstacles in the use of mRNA-nanocarrier

complexes.

In terms of transport of mRNA to a specific tissue, the route of admin-

istration plays an important role when discussing the hurdles of

organ-specific mRNA therapy. Focusing on the lung, two main routes

of administration were investigated in the past: i.v. application of

mRNA or mRNA-complexes to reach the lung from the vascular

structures and i.t. delivery of mRNA therapeutics via dry powder

insufflation or high-pressure liquid suspensions using a micro-

sprayer.150,166,241–246
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Intravenous application of RNAs leads to a systemic distribution of

the therapeutic throughout the whole organism.247 This can be

beneficial for certain pulmonary diseases like CF affecting other

organs; on the contrary, only a small percentage of an active agent

reaches the desired location.239 A substantial amount of mRNA is

removed from the bloodstream, especially in the liver and spleen.248

This increases the amount of mRNA needed for reaching effective

dose levels in the lung.20 Another hurdle emerges in the lung itself.

The lung has a capillary system that consists of mostly small and

non-fenestrated capillaries.249 This is very efficient for gas exchange

at the alveoli, but it does not permit a free exchange of larger

molecules out of the blood into the tissue. This phenomenon affects

mRNA therapeutics by reaching cells in close proximity, while

cells farther away from capillaries are harder to reach by i.v. admin-

istration.250 In general, i.v. application of mRNA has the advantage

of circumventing some initial innate defense systems and lung

barriers while fighting with the problems of systemic application

of dispersed distribution and losing the targeted administration to-

ward the lung.

In contrast, i.t. administration of therapeutic substances gives the

advantage of local application of mRNA in the lung and airways.

Figure 2. Processing of IVT mRNA in a Cell

(A) In vitro-transcribed (IVT) mRNA from linearized DNA or PCR-amplified fragment is used to transfect the cell of interest. Step 1: mRNA protection from RNase degradation

and mRNA uptake are facilitated by various carriers. Step 2 of mRNA transport and release inside the cell is still unclear. Different capping modification can increase

translation in step 3 and also protect from degradation. In steps 3 and 4, the translated protein from delivered mRNA gets transferred to various parts of the cell system based

on post-translational modification. For an immunotherapeutic approach, the translated protein needs to get degraded by proteasome to antigen epitopes and delivered to

MHC (major histocompatibility complex) class I located in the endoplasmic reticulum. MHC class I mediates surface presentation of the presented epitope to CD8+ cytotoxic

T cells.320 The T cell further initiates the immune response by relocating the antigen and presenting in to MHC II. (B) IVTmRNA cause inflammatory responses and inhibition of

mRNA replication as triphosphorylated mRNA or double-stranded RNA (dsRNA) can be recognized by Toll-like receptors 3, 7, and 8 (endosomal innate immune receptors),

which can initiate inflammation associated with type 1 interferon (IFN), interleukin-6 and -12, and tumor necrosis factor (TNF).230 Cytoplasmic receptors, protein

kinase R (PKR), retinoic acid-inducible gene I protein (RIG-I), melanoma differentiation-associated protein (MDA5), and 20-50-oligoadenylate synthase (OAS) can detect

triphosphorylated mRNA or dsRNA and stalled translation through eIF2a, RNA degradation by ribonuclease L (RNase L), and inhibition of mRNA replication by IFN.323,324
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Moreover, the alveolar surface area is large and suitable for drug ab-

sorption, and the epithelial barrier is thin,242which could facilitate the

delivery of mRNA to lung cells. While endothelial cells and lung stem

cells are difficult to access, alveolar cells, epithelial cells, and macro-

phages can be targeted by i.t. administration.251A potential therapeu-

tic has to be appropriately formulated to be able to reach deep lung

surfaces. This includes a particle size of 4–7 mm in diameter252 for

targeting the tracheobronchial region and 1–3 mm for targeting the

alveolar region, when preparing a powder for insufflation or nebu-

lizing a liquid (Figure 3).253

To reach deep lung structures and alveoli, mRNA therapeutics still

has to pass the respiratory mucus. In a non-pathological condition,

the thickness of the mucus is between 2 and 5 mm in the bronchi

and 10 and 30 mm in the trachea,254 while in CF asthma and

COPD the mucus layer is reported to be much thicker.255 The gel-

on-brush model of Button et al.256 states that ciliary movement trans-

ports all material out of the lung at a rate of 3.6 mm/min,257 while a

layer of mucins and glycoproteins form a fine mesh preventing large

particles from reaching the periciliary layer and epithelial cells in the

lung.256 The mucus layer, lining epithelial cells from the nose to the

terminal bronchioles, also affects nanocarriers by sterical obstruction

or direct interaction from diffusion to the target cells.251 Different in-

dependent studies showed a correlation between nanocarrier size and

mobility in respiratory mucus. Sanders et al.258 and Dawson et al.259

reported that nanospheres at the size of �100 nm were able to pass

more or less freely through CF sputum compared to nanospheres

larger than 500 nm. Broughton-Head et al.260 detected that CF sputa

of three CF patients contained a mesh with a mean size of 300 ±

106 nm, 578 ± 191 nm, and 711 ± 328 nm, respectively, providing

evidence for the distinct transport parameters of different-sized nano-

spheres. Studies by Stern et al.,261 Kitson et al., 262 and Ferrari et al.263

suggested that not only the retention by the mesh structure in the

CF sputum but also the direct interaction with free DNA present

in CF sputum can reduce the gene transfer of 3ß-[N-(N’,N’-

dimethylaminoethane)-carbamoyl] (DC)-cholesterol (Chol)/1,2-dio-

leoyl-sn-glycero-3-phosphoethanolamine (DOPE)-based lipoplexes

up to 20-fold.

Respiratory mucus is not the only fluid presenting a barrier for the

nanocarrier delivery of mRNA. Also, the alveolar fluid is known to

inhibit cationic lipid nanocarriers, presumably by disintegration of

the lipoplexes by negatively charged lipids in the surfactant.251 In

contrast, PEI and dendrimer polyamidoamine (PAMAM)-based

gene delivery was observed to be resistant to the effects of pulmonary

surfactant in vitro and in vivo.264,265 Moreover, Exosurf (a synthetic

surfactant) has been reported to increase the efficiency of PAMAM-

pDNA complexes in vitro.265

Figure 3. Deposition of Nanoparticles for Delivery in the Lung after Intratracheal or Intravenous Administration

Left: intratracheal instillation requires a particle size of 1–3 mm to reach the alveoli efficiently; particles from 4 to 7 mm are mainly distributed to the upper airways and main

bronchioles, and particles smaller than 1 mm are exhaled again.252,318 Right: inhaled nanoparticles can enter bronchial as well as alveolar epithelium; nanoparticles can enter

lymph and blood circulation to be delivered to secondary organs.319 Intravenous injection can systemically deliver nanoparticles to a limited part of the alveolar epithelium due

to small and non-fenestrated endothelial cells in the capillaries in the lung.250
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To overcome the obstacles presented by both respiratory mucus

and pulmonary surfactant, various approaches have been tested.

Mucolytic agents, which degrade the biopolymer network built up

out of DNA, actin, and mucins, are a focus of many research

groups.258–260,263 Recombinant human DNase (rhDNase) liquifies

CF mucus by cleaving DNA chains in the biopolymer, and it has a

direct effect on the mobility of nanocarriers of CF sputum. It

increased the mobility of 270-nm nanospheres and 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP)/DOPE-based lipoplexes

2.5-fold and 1.4-fold, respectively.258,266 N-Acetylcysteine (NAC), a

clinically used mucolytic agent for asthma, COPD, and CF patients,

reduces the disulfate bonds between mucins and lowers the viscosity

and elasticity of respiratory mucus.267,268 NAC-mediated mucus

clearance of an ex vivo sheep trachea model increased gene transfer

via p-ethyl-dimyristoylphosphadityl choline (EDMPC)-Chol lipo-

plexes and PEI-based polyplexes 20-fold and 10-fold, respectively.

If the nasal epithelium of mice is treated with NAC 30 min before

the administration of EDMPC-Chol lipoplexes, the gene expression

can be increased up to 100-fold.263

An alternative strategy is to coat nanocarriers with biocompatible

hydrophilic but biologically inert polymers251 to shield the nanocar-

riers from respiratory fluids and surfactant. GL67 (genzyme lipid 67)/

DOPE lipoplexes can be coated with polyethylene glycol (PEG), and

they have been reported to circumvent the adverse effects of CF

mucus during gene transfection in vivo.269 Maisel et al.270 reported

that 10–40 kDa PEG-coated nanocarriers can diffuse through the

mucus as a mucoinert particle.

Nanotransporters to Target the Lung

The labile nature of mRNA and immunogenicity are the biggest hur-

dles of mRNA therapeutics. As discussed above, the immunogenicity

has been overcome by chemical modifications; however, the insta-

bility of mRNA under physiological conditions requires additional

action. Electroporation,271 gene gun,272 microinjection,273 and sono-

poration274 have been investigated for mRNA delivery; however,

these are restricted to ex vivomanipulation and ill suited for systemic

delivery. Therefore, suitable mRNA carriers should exhibit the

following functions: protection from RNase degradation, evasion of

direct renal clearance, avoidance of nonspecific interaction, facilita-

tion of mRNA stability, and sufficient mRNA loading and

release.275–277 The physiochemical properties, such as hydrodynamic

diameter, shape, size, surface charge, solubility, flexibility, stability,

formulation, and body composition with regard to route of adminis-

tration, decide the target binding bio-distribution as well as the clear-

ance of the nanocarriers. As many materials used to construct

nanoparticles are toxic or potentially toxic, biocompatibility and

biodegradability become key factors. Since our focus is delivering

mRNA therapeutics to the lung, we cover biomaterials such as lipids,

polymers, and combined formulations that are developed for delivery

to the lung.

Lipid-based nanoparticles (LNPs) or lipoplexes have gained popularity

since the beginning of drug and nucleic acid delivery.9,231,240,278,279

These have the significant advantages of easy synthesis, scalability,

low batch variability, and biocompatibility.280–282 Commercially avail-

able lipoplexes, such as RNAiMAX, Stemfect, and Megafectin, have

been successfully used in transfectingmRNA in vivo.279,283–285Cationic

lipids, such as 1,2-di-O-octadecenyl-3-trimethylammonium-propane

(DOTMA), DOTAP, and zwitterionic DOPE, have been used alone

or in combination, as these readily form complexes with mRNA.

Variants to reduce toxicity and immunogenicity associated with

cationic lipids and with improved efficacy have been developed. Addi-

tionally, the ratio of components substantially affects LNP efficacy.

These include ionizable lipidic systems that can reduce toxicity by pos-

sessing a neutral charge at physiological pH286 and ionizable lipid

nanoparticles consisting of ionizable lipid, cholesterol (hydrophobic),

helper lipid (DOPE or 1,2-distearoyl-sn-glycero-3-phosphocholine

[DSPC]), and PEG lipids. DOPE enhances efficacy by promoting

membrane fusion (cell and endosomal), and PEG lipids prevent retic-

uloendothelial clearance and reduce opsonization by serum proteins.

LNP-mediated mRNA delivery has been extensively used in protein

replacement therapies, vaccines, and cancer immunotherapies.276

Earlier work by Litzinger et al.287 showed that cationic liposomes of

size 2.0 mmare transiently taken up by the lung, followed by rapid dis-

tribution to the liver. Similarly, efficient pulmonary endothelial deliv-

ery of plasmid was achieved with a lipid vector consisting of DOTAP

liposomes, protamine, and oligo deoxynucleotides,288 with minimum

cytotoxicity and release of proinflammatory cytokines. The landmark

clinical trial of CFTR gene therapy with pGM169179 and multiple

other clinical trials with nasal delivery tested lipid nanoparticle

cholest-5-en-3-ol(3b)-,3-[(3-aminopropyl)[4-[(3-aminopropyl)amino]

butyl] carbamate] (GL67A) due to its desirable stability during aero-

solization,289 gene transfer potency,290 and well-characterized safety

parameters.291 The Wendel group292 has shown DOPE liposomes

as potential transfection agents for AAT mRNA, resulting in pro-

longed protein production of AAT in vitro with improved stability

of mRNA in liposomes for up to 80 days, without the loss of transfec-

tion efficacy. Alexion Pharmaceuticals has shown human AAT

expression in both mouse liver and lung upon i.v. injection of

mRNA-ionizable LNP complex after 24 h.21 Both approaches require

further testing on knockout mouse models293 to check its efficiency as

a therapy for AATD.

Lipid-enabled and unlocked nucleomonomer agent-modified RNA

(LUNAR) technology of Arcturus Therapeutics employs biodegrad-

able ionizable lipids (ATX, Arcturus Therapeutics’s proprietary

lipid) that have shown no adverse events, hepatotoxicity, weight

loss, or innate or adaptive immune reactions in response to treat-

ment with repeated dosing of up to 4 months.294 Ramaswamy

et al.294 observed faster translation (within 6 h) and major deposition

of LUNAR-encapsulated mRNA in mouse liver with i.v. injection.

Arcturus holds multiple patents on nanoparticles for RNA delivery

with the potential of lung epithelial delivery via nebulization. Trans-

late Bio holds a patent on multiple lipid nanoparticles with its collab-

orator at Massachusetts Institute of Technology (MIT) and Imperial

College London, and it is the first one to enter clinical trials with

812 Molecular Therapy Vol. 27 No 4 April 2019

www.moleculartherapy.org

Review



LNPs (ClinicalTrials.gov: NCT03375047) for mRNA-based CF ther-

apy. Valera (by Moderna) has reported efficacy of modified hemag-

glutinin mRNA-LNP-formulated vaccines against H7N9 andH10N8

influenza virus (presently at clinical phase I), when immunized

intradermally or intramuscularly in mice, ferrets, and non-human

primates293 (one must note that localization in lungs is not required

for immunization).

Though not as equally advanced as LNPs, polymer-based nanopar-

ticles have shown considerable potential in aiding therapeutics.

Cationic polymers (linear or branched) can enable nucleic acid shut-

tling across membranes by compactly packing them into nanoplexes,

and they can help in cellular uptake via endocytosis.295 PEI is the

vastly studied polymer for gene or oligonucleotide delivery,296,297

however, toxicity due to nondegradability, high molecular weight

(>20 kDa), and its highly branched formulations has limited its

clinical applications.298 The positive charge attributes to interaction

with serum proteins (negatively charged), resulting in their aggrega-

tion and increase in size that causes toxicity, similar to that of cationic

liposomes. Therefore, different groups have tried to modify PEI and

achieve higher transfection with lower toxicity, which includes

reducing size299 (mRNA release), reducing molecular weight,300 or

using additives.301

Poly (L-lysine) (PLL), poly(2-(dimethylamino)ethyl methacrylate)

(p[DMAEMA]), and PLGA are well known polymers, and diblock302

and triblock polymers303 have shown encouraging results for nucleic

acid transfection. As already discussed, mucus acts as a strong barrier,

and mucoadhesive particles can increase the residence time while

bulking up the nanoparticle. PEGylated NPs (diblock copolymer

composed of PLGA and PEG [PLGA-PEG], namely, PLGA-PEGmu-

cous penetrating particle [MPP]) of >200-nm size are known to pene-

trate mucus and CF sputum.304,305 Based on this, Schneider et al.305

and others have shown that MPP (%300 nm in diameter) exhibits

improved particle distribution and lung retention.150 Chitosan (mu-

coadhesive) coating20,306 of PLGA nanoparticles has shown successful

delivery of SP-BmRNA and hCFTRmRNA in mouse models, signif-

icantly improving survival307 and lung function,308 respectively. It is

possible that these enable deeper lung delivery instead of mere epithe-

lial delivery, due to which we could observe the survival of an SP-B-

deficient mouse model309 when corrected with zinc-finger nuclease

(ZFN)mRNA and donor template. In an attempt to develop nanopar-

ticles for pulmonary delivery, Ethris used mRNA complexed with a

polymer scaffold of poly (acrylic acid) of 20 kDa grafted with oligoal-

kylamines, which showed delivery in cranial parts of pig lung upon

nebulization.54 A study about the exact localization of developed

nanoparticles in different lung cell populations would benefit the

scientific society in moving toward disease-specific targeted therapy

for different lung diseases.

Further, combinations of lipids and polymers have been tested as

nanocarriers. These include self-assembling nano-micelles formed

by copolymer consisting of polyamino acid block and PEG

with mRNA at core. Commonly used polyamino blocks include

poly(Nʹ-(N-(2-aminoethyl)-2-aminoethyl) aspartamide (PAsp[DET]),

which has shown protein expression in nasal neurons with

mRNA coding for brain-derived neurotrophic factors (BDNFs).310

The complex also reduced apoptosis when injected with anti-

apoptotic protein B cell lymphoma (Bcl-2) mRNA in a fulminant

hepatitis mouse model.311 The group of Daniel G. Anderson has

developed various nanoparticles to be used in therapeutics,14,312

among which the polymer lipid combination of poly (b-amino

esters) (PBAEs) and PEG has shown greater potential in delivering

mRNA to lung via i.v. injection,313 aiding successful systemic deliv-

ery. Desrosiers et al.314 have developed amine-modified polyester-

based nanocarriers in combination with triblock copolymers, with

specific mRNA delivery to lung. Though degradable and optimized

for serum stability and reduced toxicity, these need to be further

tested for inflammatory reactions before clinical translation. Recent

publication by Patel et al.315 on hyperbranched PBAEs has shown

ease in nebulization and uniform distribution of mRNA in all 5

lobes of lung, with no measured local or systemic toxicity.

To further increase the specificity of nanocarrier-based delivery,

receptor-based technologies have been tested. Arrowhead Pharmaceu-

ticals developed an asialoglycoprotein receptor-targeting nanocarrier

to specifically administer an RNAi molecule (targeted RNAi molecule

[TRiM]) to reduce the accumulation of AAT protein230 for AAT-

related liver diseases. If combined with pulmonary delivery of AAT

mRNA, it can act as a complete therapy for diseases like AATD. A re-

ceptor-based method can also be developed for the lung epithelium,

but specific markers of lung epithelial cells have to be identified to

avoid cross-reactivity with other epithelial cell linings. In another

approach for enhancing translation and reducing the degradation of

mRNA upon entry, a delivery system has been tested that employs

translation initiation factor eIF4E with cationic polyamine. A study

showed that these nanoparticles induced mRNA expression in mouse

lung upon systemic delivery.316 Other nanoparticles developed for

lungs include gelatin nanocarriers crosslinked with genipin, monome-

thoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine

(mPEG-PLGA-PLL) triblock copolymers, MUC-1 aptamer-function-

alized hybrid nanoparticles, drug-loaded liposomes, anionic PAMAM

dendrimers, and a recently developed virus-inspired polymer for

endosomal release (VIPER).215,230,238,240,250,252,317–320 However, as

discussed before, these must be extensively tested for compatibility

with mRNA.

Conclusions

This paper focused on respiratory diseases and associated cell popu-

lations of the lung. To understand the disease pathology and possible

countermeasures, the physiological aspects of various lung cells have

to be determined. This includes the awareness of connections of

epithelial cells with alveolar cells, serous cells (goblet cells), and also

stem and progenitor cells, as lung diseases may originate from a single

defect but can affect the whole lung. Recent developments already

produced major advancements in therapies such as chemical modu-

lators for CF, but they also produced therapy resistance or were only

effective for certain variants of a disease. This makes mRNA-based
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protein supplementation therapy a viable alternative for diseases such

as CF, SP-B deficiency, asthma, IPF, and COPD while offering a treat-

ment independent of the underlying mutational status. Furthermore,

stem cells of the lung can also be a target for mRNA-based CRISPR/

Cas therapies that hold the potential for permanent cures for mono-

genetic lung diseases, such as CF, SP-B deficiency, and AATD.

The therapeutic potential of mRNA for protein supplementation

therapy was widely unrecognized due to its instability for a long

time. Over the last decades, an appreciation of mRNA as the molecule

connecting the world of proteins and DNA is renewing the focus of

research on mRNA.9,20,215 The research focuses on the properties of

RNA to increase or modulate stability and evade immune recognition

as well as delivery of mRNA specifically to the lung and other organs.

The use of naturally occurring nucleoside modifications has dimin-

ished the recognition of mRNA by the innate immune system.230,235

These modifications also help in improving the stability and expres-

sion of mRNA. This is further promoted by modifications like

50-capping and the addition of a poly(A) tail as well as modifications

in the 30 and 50 UTRs. Sequence optimization increases expression

and lowers immunogenicity of mRNA therapeutics. The most opti-

mized RNA still needs to reach the target cell to be expressed into a

protein.

The problem of delivery consists of three main parts: (1) how to find

a suitable route of administration; (2) as mRNA for protein supple-

mentation therapy usually are of substantial size and negatively

charged, they will not cross cellular membranes unfacilitated; and

(3) the composition of mRNA and nanocarriers to maintain the

optimal stability of mRNA nanocarrier complexes. Looking at pro-

tein supplementation therapies for the lungs, i.t. delivery gives the

ability to apply mRNA therapeutics locally and concentrated in

the lungs. To overcome defense barriers like the respiratory mucus

and alveolar fluids as well as the cellular membranes, nanocarriers

developed into a favorable type of vehicle for mRNA. To date,

research indicates that small nanocarriers (�100 nm) together

with a polymer coating and the potential application of a mucolytic

agent can improve the stability of the mRNA nanocarrier complex

and mRNA uptake into the target cell. Nonetheless, the mechanism

of how a nanocarrier facilitates the cellular uptake of mRNA is still

not fully understood.

All in all, the pieces needed for an effective protein supplementation

therapy in the lung are available in various preclinical and clinical

stages. The next task is to find a formulation to bring all of these com-

ponents together—route of administration, carrier, mRNA sequence

and modification—to form a working therapy for patients. The

first clinical trials in the slowly evolving field of protein supplementa-

tion therapy show that the concept is viable (ClinicalTrials.gov:

NCT02935712 and NCT03375047; see also Table 1).
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