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1. Introduction 

1.1 Storage of hereditary material into nucleus  

The presence of a nucleus is the key feature that defines the difference between a eukaryotic 

and prokaryotic cell. The nucleus has two major functions: providing a separate space to store 

the hereditary material—deoxyribonucleic acid (DNA); and serving as one of the principal 

sites for a number of cell activities, such as DNA replication, transcription, repair and 

ribonucleic acid (RNA) processing. Therefore, the nucleus could be considered as the essence 

of the cell. 

The nucleus is one of the most readily detectable organelles. It was first described at the 

beginning of the 19th century. From 1829 to 1832, Robert Brown observed nuclei in plant 

cells (Pederson 2011). In the following ten years, the interest of investigating this organelle 

continuously increased, resulting in the discovery of chromatin by Walther Flemming in 1878. 

Thereby, chromatin was defined as a fraction inside the nucleus, which can be stained by 

aniline dyes. Flemming not only discovered chromatin but also for the first time, observed the 

formation of stained bodies just before cell division (Flemming 1965). In 1885, Carl Rabl 

proposed that chromosomes were organized into distinct nuclear regions. Later in 1909, 

Theodor Boveri introduced the term chromosome territories after observing that the 

interphase chromosomes occupy specifically distinct regions within a nucleus under 

microscopy (Cremer and Cremer 2006a; Cremer and Cremer 2006b). After observing the 

behaviour of chromosomes during mitosis and meiosis, they were proposed as the carriers of 

genetic information in Boveri-Sutton chromosome theory by Edmond Wilson in 1925 

(Cremer and Cremer 2006a; Cremer and Cremer 2006b).  

The fate of chromatin has been fascinating to biologists. During mitosis, chromosomes are 

clearly visible as X-like structures under the microscope (reviewed in (Antonin and Neumann 

2016)). However, during interphase, which is the majority of the cell cycle, chromatin is not 

condensed into chromosomes, such property of chromatin makes it difficult to observe 

directly under the microscope. Studies performed in the 20th century culminated in the 

discovery of the DNA as the genetic carrier and how the genetic information is encoded in its 

linear sequence was revealed (reviewed in (Benham and Mielke 2005)). After that, 

researchers realized that how the genome works — when and which genomic loci would be 

transcribed along with various cellular processes is essential for all living things. Proteins in 
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charge of different cell processes, such as cell cycle facilitation, DNA transcription, 

replication and repair, must be able to access to certain regions of the genome without 

disrupting its integrity. In addition, different cell processes happen at different times and 

recruit diverse genes in different cell types under different environmental conditions, the 

organization of chromatin should be dynamic. The research topic on DNA packaging within 

nuclei was transferred to delve into how chromatin is structurally and physically organized 

inside the three-dimensional (3D) nuclear space. 

1.2 The methodology for exploring 3D chromatin organization 

Over the past two decades, our understanding of chromatin organization within the 3D 

nuclear space has been tremendously advanced because of the rapid development of 

techniques (reviewed in (Ramani et al., 2016; Dekker et al., 2017; Doğan and Liu 2018; 

Fraser et al., 2015)). Two kinds of technologies have been extensively applied: microscopy-

based imaging techniques and Chromatin Conformation Capture (3C) combined with high 

throughput sequencing. Direct visualization and quantification of physical distances between 

genomic loci and their location, and movement in single cells can be achieved with imaging 

tools. On the other hand, the 3C and its derivatives make it possible to acquire an average of 

genome-wide chromatin conformation from a cell population. Therefore, microscopy-based 

imaging technologies and the 3C family methods provide complementary views of 3D 

genome organization, in spite of the several contradictions in certain regions. For example, 

results achieved by the 3C-based technique (Chromosome Conformation Capture Carbon 

Copy) and the imaging-based method (fluorescence in situ hybridization (FISH)) were 

reported to be discordant in PRC1 mutant embryonic stem cells (ESCs) (Williamson et al., 

2014). Illustration for this difference is that the cell-to-cell and time-dependent variations in 

chromatin folding leading to a rather wide distribution of the spatial distance between two loci 

in a cell population. 3C-based methods detect only events where the two loci are in close 

spatial proximity, that is, events present in only a fraction of cell populations; while imaging-

based methods such as FISH can determine the spatial distance between the loci in any cell, 

and when a relatively small number of cells are analyzed, it might detect cells that are not 

overlapped with the part which detected by 3C-based methods. 
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1.2.1 Visualizing chromatin regions of interest  

1.2.1.1 FISH and its variants 

Traditional FISH and its variants are based on the hybridization of sequence-specific 

complementary probes to their targets of interest after a denaturation step. The fluorescently 

labeled genomic regions can then be detected and visualized by using a fluorescence 

microscope. Sensitivity and resolution are the limiting factors in FISH experiment designing. 

Sensitivity depends on the light-gathering ability of the particular microscope, which in turn 

determines the size of a probe that can be detected (in general, the larger probes could 

produce the stronger signals that can be easily detected by the microscope). Then the prober 

size will influence the resolution, which refers to the capacity to distinguish between two loci 

along the length of a chromosome (Huber et al., 2018; Fraser et al., 2015). For example, 

probes of ~40 kilobases (kb) in size could not be used to detect two loci that are within 100 kb 

in linear distance, while probes of ~10 kb could (Fraser et al., 2015; Yu and Ren 2017). 

Additionally, resolution is also dependent on the limit of a physical distance that a microscope 

can resolve. For instance, a light microscope cannot resolve objects that are separated by less 

than ~200-300 nm (Lakadamyali and Cosma 2015). As the compaction state of metaphase 

chromosomes is thousands of times more than interphase chromosomes, which in turn are at 

least ten times more than the naked DNA. The obtained resolution for metaphase 

chromosomes, interphase chromosomes and oligonucleotide arrays is megabases (Mb), 

submegabases, and kb, respectively (Speicher and Carter 2005; Fraser et al., 2015). Thus, 

such difference in compaction states of metaphase chromosomes, interphase chromosomes 

and the naked DNA have to be considered when performing FISH experiments.  

Different variations of FISH have been applied to directly visualize and measure the physical 

distance between DNA segments, the nuclear location of DNA segments within a nucleus, 

and the localization of a DNA segment in relation to the rest of the chromosome, e.g., inside 

or outside of a CT (reviewed in (Fraser et al., 2015)). In the conventional FISH (two-

dimensional (2D)-FISH), cells are fixed in methanol ascetic acid in order to flatten the nuclei 

and thus allow 2D microscopy to acquire images; whereas 3D-FISH refers to FISH pipelines 

using 3D-preserved cells or nuclei in combination with 3D-microscopy and image 

reconstruction (Walter et al., 2006; Giorgetti and Heard 2016).  

In general, FISH assays could be used to detect limited numbers of genomic loci at a time. 

Recently, Shachar and colleagues developed a high-throughput position mapping platform 
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(HIPMap), which is a fully automated FISH-based imaging method for high-throughput, 

quantitative mapping of spatial location of multiple loci in the mammalian cell nucleus 

(Shachar et al., 2015). The development of automated imaging analysis techniques such as 

HIPMap is still on calling to visualize chromatin architecture with high accuracy and high-

throughput in diverse conditions.  

1.2.1.2 Live-cell imaging 

Apart from FISH assays, which are dealing with fixed materials, several more advanced 

fluorescent labeling techniques have been applied to provide dynamics of chromatin with 

minimum perturbation to chromatin itself. When employing these techniques, one can either 

label chromatin-associated proteins such as core histone proteins or the DNA itself. 

Chromatin associated proteins can be tagged with fluorescent proteins, and this is the easiest 

way to visualize chromatin, especially in living cells. For example, the core histone-H2B 

fused with green fluorescent protein (GFP) was employed to track the spatial heterogeneity of 

the global chromatin organization in individual nuclei (Talwar et al., 2013). However, 

potential artifacts, such as the altered function and the re-localization of tagged proteins, 

caused by the overexpression of fusion proteins, might occur. Furthermore, this strategy has 

no capacity to reveal structural details of chromatin regions of interest due to the lack of 

sequence-specific labeling. 

Live-cell imaging of DNA has long been carried out with a fluorescent operator-repressor 

system, which enriches fluorescent proteins at a specific genomic region. In the two 

commonly used systems, Lac operator or Tet operator repeats are incorporated into genomic 

regions of interest, and they are subsequently visualized upon recognition by fluorescently 

labeled Lac repressor or Tet repressor, respectively (Gonzalez-Sandoval et al., 2015; 

Prendergast et al., 2016).  

A recent exciting development in labeling specific genomic loci is the application of modified 

transcription activator-like effectors (TALEs) or CRISPR/dCas9 (deactivated Cas9 without 

endonuclease activity) fused with fluorescent proteins (Hsu et al., 2014; Lakadamyali and 

Cosma 2015; Ren et al., 2017; Ma et al., 2016). While studies have evidenced that TALEs are 

efficient in labeling repetitive sequences (Ren et al., 2017; Fujimoto et al., 2016), 

CRISPR/dCas9 is feasible for labeling non-repetitive sequences (Ma et al., 2016). In the 

CRISPR/dCas9 labelling system, a single fluorescent CRISPR/dCas9 protein is guided by a 

~20 nucleotides RNA sequence to the locus of interest, which is technically challenging to 
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observe. This difficulty has been mitigated recently by a novel design, which incorporates 

tandem tags fused with the CRISPR/dCas9 protein, serving as binding sites of multiple copies 

of fluorescent proteins (Hong et al., 2018). 

Besides visualizing one or several genomic loci at one time, chromatin domains specifically 

localized in a particular nuclear sub-compartment such as the nuclear periphery (NP) were 

tracked with the application of an assay that builds upon the Dam (DNA adenine 

methyltransferase) identification technology (Kind et al., 2013). In this assay, by expressing 

GFP-tagged m6A (adenine-6-methylation)-tracer proteins, DNA segments that have direct 

contact with the nuclear lamina would be adenine methylated and could be visualized with the 

help of fluorescence microscopy. 

In the last decade, several super-resolution microscopy techniques have been developed to 

overcome the diffraction limit, achieving the resolution of light microscopy to length scales as 

small as 10-20 nm. These super-resolution approaches include Saturated Structured 

Illumination Microscopy (SSIM), Stimulated Emission Depletion (STED), Stochastic Optical 

Reconstruction Microscopy (STORM), and (fluorescence) Photoactivation Localization 

Microscopy (PALM/fPALM) (reviewed in (Lakadamyali and Cosma 2015)). 

1.2.2 Inferring 3D chromatin organization  

In addition to methods allowing direct visualizing chromatin regions of interest, the 

employment of novel molecular and genome-wide technologies has also greatly advanced our 

knowledge concerning 3D chromatin organization. In contrast to microscopy-based imaging 

tools used at the single-cell level, high throughput molecular techniques are mostly employed 

to capture an average of chromatin conformation amongst millions of cells. Essentially, the 

vast majority of these molecular tools are derivatives of the 3C technique, which we named as 

“C techniques” collectively. In these methods, chromatin contacts preserved by chemical 

fixative can be converted into chimeric DNA via chromatin fragmentation and re-ligation. 

Subsequently, the abundance of these ligation products can be assessed using quantitative 

polymerase chain reaction (qPCR), DNA microarrays or direct DNA sequencing (Simonis et 

al., 2009; Dostie et al., 2006; Dekker et al., 2002; Lieberman-Aiden et al., 2009). Recently, 

massively-parallel sequencing technologies have been coupled with the C technologies, 

creating useful tools that could map genome-wide chromatin contacts (Fang et al., 2016; 

Fullwood et al., 2009; Hughes et al., 2014; Mumbach et al., 2016; Dryden et al., 2014; Han et 

al., 2018). 
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1.2.2.1 Chromosome Conformation Capture: one to one 

The Chromosome Conformation Capture (3C) method was the first technique to quantify 

contact frequency between two preselected loci in yeast (Dekker et al., 2002). It was 

demonstrated that the interaction frequency of two genomic loci is not solely determined by 

their physical distance along the genome. The first step in 3C method is cross-linking native 

chromatin in vivo using formaldehyde. Hence, genomic regions in spatial proximity are 

covalently linked. After isolation of nuclei, which contain cross-linked chromatin, the 

chromatin is fragmented through restriction enzyme (RE) digestion. Then the chromatin 

fragments in very close proximity are ligated (known as proximity ligation). After reversing 

cross-links by heat treatment in the presence of Proteinase K, the frequency of proximity 

ligation events between genomic segments of interest is determined by qPCR. The resolution 

of 3C technology varies from several kb to several hundred kb and is dependent on the RE 

used for fragmenting chromatin (Fraser et al., 2015). Despite the low-throughput feature of 

3C, it is still widely applied to detect long-range chromatin interactions owing to its ease of 

use. 

1.2.2.2 Circular Chromosome Conformation Capture: one to all 

The Circular Chromosome Conformation Capture (4C) method enables genome-wide 

identification of all genomic regions that interact with a selected region, which is referred to 

as the viewpoint (Splinter et al., 2012; Simonis et al., 2009). Different from 3C, one more 

time RE digestion and ligation are employed after the removal of crosslinking. With the 

primers designed to target this viewpoint, all the ligation outputs that including this viewpoint 

sequence can be amplified and subsequently quantified by high-throughput sequencing. A 

resolution of several kb with a few million sequencing reads could be acquired by 4C 

technique (Yu and Ren 2017). 

1.2.2.3 Chromosome Conformation Capture Carbon Copy: many to many 

The Chromosome Conformation Capture Carbon Copy (5C) method is a high-throughput 

version of 3C containing a ligation-mediated amplification module. It was developed to 

survey interaction frequencies among a pool of preselected chromatin regions (Dostie et al., 

2006). In 5C, a range of primers are designed at the restriction sites of selected genomic 

segments. These primers are pooled with a 3C library to “copy” a large number of different 

ligation products in the 3C library, resulting in a 5C library. This 5C library is proliferated 

with the universal tails contained in the 5C primers and quantified by high-throughput 
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sequencing (Ferraiuolo et al., 2012). The 5C technology can detect interactions for only the 

regions covered by the primer library, but interactions among hundreds of thousands of 

genomic loci can be investigated simultaneously.  

1.2.2.4 Genome-wide Chromosome Conformation Capture: all to all 

Genome-wide Chromosome Conformation Capture (Hi-C) allows for an unbiased survey of 

all potential contacts across the genome using high-throughput sequencing (Belton et al., 2012; 

Lieberman-Aiden et al., 2009). The information of global chromatin interactions produced via 

the Hi-C technology provides a comprehensive view of the 3D genome. In contrast to 3C, 

there are three main modifications. Firstly, overhangs generated by RE digestion are refilled 

with nucleotides, one of which is biotinylated. Secondly, ligated fragments are sheared by 

sonication. Thirdly, fragments with biotin at their ligation junctions are affinity purified by 

the streptavidin-coated beads. The biotin incorporated at the un-ligated ends of the linear 

fragments could be removed with the exonuclease activity of T4 DNA polymerase, making 

sequencing more efficient (Belton et al., 2012). 

To improve the resolution and efficiency of proximity ligations and reduce the background 

noise, researchers have invented several variants of Hi-C (Hsieh et al., 2015; Rao et al., 2015; 

Beagrie et al., 2017; Nagano et al., 2015). In the original Hi-C assays, fragmentation of 

chromatin is generally carried out by RE digestion. Therefore, the resolution of genome 

architecture assessed by conventional Hi-C is restricted to the density of the RE sites on the 

linear genome. Instead of RE, DNase I or micrococcal nuclease can be applied in Hi-C with 

DNase I digestion (DNase Hi-C) or Hi-C with micrococcal nuclease digestion (Micro-C) 

(Hsieh et al., 2015; Ma et al., 2015). In addition, proximity ligation is the critical step of Hi-C. 

Non-specific ligation of the cross-linked DNA in diluted solution resulting from the chance of 

inter-molecular collisions is one of the main sources of bias (technical noise). Researchers 

invented Hi-C with in situ ligation (in situ Hi-C), in which the conventional Hi-C procedure 

was modified in such a way that proximity ligation was done within nuclei (Rao et al., 2014; 

Nagano et al., 2013; Nagano et al., 2015).  

It should be noted that Hi-C and other C technologies capture contacts and estimate an 

average of interaction frequencies in a cell population. On the demanding of the goal to detect 

chromatin contacts in a single cell, single-cell Hi-C was established (Nagano et al., 2013). In 

this protocol, individual nuclei are manually isolated under the microscope after in situ 

proximity ligation, followed by the construction of sequencing libraries of Hi-C DNA 
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obtained from individual nuclei. Application of single-cell Hi-C allows one to infer chromatin 

interactions at a single-cell scale and uncover cell-to-cell variations, as well as to reveal 

dynamics of chromatin organization during cell differentiation and proliferation (Nagano et 

al., 2013; Stevens et al., 2017; Nagano et al., 2017; Du et al., 2017).  

Most recently, a method termed as Genome Architecture Mapping (GAM) that does not 

require any chromatin digestion or ligation steps was invented (Finn and Misteli 2017; 

Beagrie et al., 2017). In the GAM technique, fixed cells embedded in sucrose and frozen are 

cryosectioned into a series of thin nuclear profiles, and the single nuclear profiles are 

harvested by laser microdissection. Subsequently, the DNA contained in each nuclear profile 

is isolated, amplified and sequenced. Genomic regions that are closer to each other in 3D 

nuclear space will be preferentially found in the same nuclear profile. GAM can detect 

clustering of multiple genomic regions, because GAM selects physical proximal genomic 

regions via producing a thin section of the nuclei. By contrast, because of the nature of 

proximity ligation, C-technologies can only determine pairwise interactions. By applying 

GAM, researchers have already revealed that interacting regions identified previously by 

other C-technologies containing clusters of enhancers (“super-enhancers”) and active genes 

(Beagrie et al., 2017).  

Another newly developed method, which is also proximity-ligation-independent, is Split-Pool 

Recognition of Interaction by Tag Extension (SPRITE) (Quinodoz et al., 2018). In the 

SPRITE assay, crosslinks between DNA, RNA, and protein are formed in cells, followed by 

nuclei isolation and chromatin fragmentation. Then interacting molecules within a single 

complex are barcoded using split-and-pool approach, in which the DNA is split into 96 wells, 

tagged and then pooled together. This split-and-pool approach is repeated iteratively to 

generate unique barcodes. Finally, interactions between different genomic regions are 

identified by sequencing and matching reads containing the same barcode to find the so-called 

SPRITE clusters. Since SPRITE does not rely on proximity ligation, which is similar like 

GAM technique, it could be used to identify simultaneous contacts between three or more 

genomic segments within individual cells. Moreover, compared with GAM, SPRITE has the 

capacity to map both RNA and DNA interactions simultaneously (Quinodoz et al., 2018; 

Koch 2018). 
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1.2.2.5 Derivative C-technologies with reduced complexity  

As we all know that Hi-C reveals all possible interactions in the whole genome, extremely 

large data sets and rigorous computational analysis methods are needed to thoroughly map 3D 

chromatin organization. By combining capture of targeted chromatin regions with C-

technologies, researchers designed several strategies to reduce the complexity of chromatin 

interaction networks in sequencing libraries. 

To identify all the possible interactions associated with preselected genomic regions such as 

promoters or enhancers, Capture Hi-C (Capture-C) was designed (Dryden et al., 2014).  In 

Capture-C, a library of Hi-C is subject to do targeted capture by hybridizing to pools of DNA 

or RNA oligos (baits) to enrich all ligation junctions with at least one end of the bait end, 

leading to a preselected pool of the Hi-C library. This preselected Hi-C library is sequenced 

and analyzed to identify spatial contacts concerning these regions.  

Besides, chromatin interaction analysis by pair-end tag sequencing (ChIA-PET) is a method 

which combines chromatin immunoprecipitation (ChIP), proximity ligation and sequencing, 

identifying interactions from a subclass of chromatin regions associated with a specific 

protein (Fullwood et al., 2009). In ChIA-PET, crosslinked chromatin is sonicated and then 

immunoprecipitated with antibodies against the protein of interest. Tethered DNA fragments 

in each of the chromatin-protein complexes are ligated with biotinylated DNA linkers, which 

enable the purification of ligation products. Then, the ligation products are amplified and 

sequenced (Fullwood et al., 2010). Therefore, in principle, a deeper sequencing depth of a 

subset of genomic regions can be achieved by the ChIA-PET method compared to that 

obtained by Hi-C method, offering us opportunities to reveal more structural details of these 

regions. ChIA-PET has been successfully used to probe interaction networks associated with 

RNA polymerase II (Pol II), CCCTC-binding factor, and the estrogen receptor on a genome-

wide scale (summarized in (Fraser et al., 2015)). Most recently, researchers developed another 

two approaches: Proximity Ligation Assisted Chromatin Immunoprecipitation sequencing 

(PLAC-seq) and Hi-C Chromatin Immunoprecipitation (HiChIP), which are similar to ChIA-

PET that are used to enrich long-range chromatin contacts associated with a protein of interest 

(Fang et al., 2016; Mumbach et al., 2016). Unlike ChIA-PET, in which proximity ligation is 

performed after ChIP, in PLAC-seq and HiChIP, proximity ligation is carried out in the 

nucleus prior to chromatin shearing.  
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1.3 The genome in a 3D nucleus 

1.3.1 Global and local levels of chromatin organization 

Overwhelming studies have proven that eukaryotic genomes are organized in hierarchical 

levels in the interphase nucleus (Gibcus and Dekker 2013; Doğan and Liu 2018; Dong et al., 

2018). The first level of packaging is wrapping of the double-strand DNA helix around a 

histone octamer to form nucleosomes, which is similar in all organisms and effectively 

shortens the length of DNA by 7-fold (Heslop-Harrison and Schwarzacher 2011; Fraser et al., 

2015). A nucleosome is composed of a histone octamer with 147 base pairs (bp) of DNA and 

serves as the basal structural unit of chromatin. The histone octamer itself is composed of two 

copies each of H2A, H2B, H3 and H4. The histone 1 binds to the linker DNA between two 

adjacent nucleosomes, generating a 11 nm “beads-on-string” chromatin fiber (Happel and 

Doenecke 2009). The next scale of genome organization is the formation of Topologically 

associated domains (TADs), which in general have a size range of tens to hundreds of kb. At 

a chromosomal scale, large blocks of euchromatin and heterochromatin tend to separate from 

one another, forming A and B compartments, respectively (Lieberman-Aiden et al., 2009). At 

the largest scale, different chromosomes occupy distinct volumes in a nucleus, forming 

chromosome territories (Sexton and Cavalli 2015; Yu and Ren 2017). 

1.3.1.1 Chromosome territories (CTs) 

The concept that each chromosome occupies a particular nuclear space in the interphase 

nucleus was first proposed by Carl Rabl in 1885, and was developed by Theodor Boveri who 

termed these distinct nuclear spaces occupied by chromosomes as CTs for the first time 

(Schubert and Shaw 2011). The existence of CTs was validated in 1980s in human cells when 

specific chromosomes were visualized by chromosome painting (FISH with whole-

chromosome-specific DNA probes) (Manuelidis and Borden 1988). However, the high 

content of dispersed repetitive regions within plant genomes made chromosome painting 

challenging in plants. The first visualization of plant CTs was carried out by using 

interspecific hybrid lines, which carry one or more pairs of alien chromosomes (Schwarzacher 

et al., 1989). In this alternative approach, a probe that labeled the whole chromosome 

sequence of the alien species was used to show the presence of the alien chromosomes. The 

disadvantage of this approach was that the behaviour of an alien chromosome might not be as 

the same as that in the original species. Plant CTs were first visualized in Arabidopsis using 

chromosome paints that were chromosome-specific mixed bacterial artificial chromosome 
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(BAC) FISH probes (Lysak et al., 2001). Although it has not been clearly understood what 

controls the formation of CTs in the interphase nucleus, studies have suggested that several 

factors might be involved, e.g., DNA content, distribution of heterochromatin and repetitive 

regions, and interactions between chromatin and the nuclear envelope (NE) (Schubert and 

Shaw 2011).  

Depending on species and cell type, plant chromosomes can adopt diverse configurations 

(Doğan and Liu 2018; Rodriguez-Granados et al., 2016; Tiang et al., 2012). The most famous 

and probably most widespread type of chromosome organization is the Rabl configuration. In 

the Rabl conformation, chromosomes fold back at their centromere, so that centromeres and 

telomeres are located at opposite poles of the nucleus. It is suggested that the formation of this 

configuration is linked to how chromosomes are orientated in the preceding anaphase, which 

is a time period when chromosomes are separated during mitosis. Chromosomes in plant 

species with large genomes such as wheat, oats, barley and rye, often adopt a Rabl 

conformation in all the interphase cell nuclei across various plant tissues (Cowan et al., 2001; 

Rosa and Shaw 2013). While in rice, Rabl chromosome configuration is observed in xylem 

vessel cell nuclei (Prieto et al., 2004). On the other side, it has been shown by recent Hi-C 

data that the chromosome organization in the rice leaf tissues (cells within which are mainly 

mesophyll cells) does not adopt a Rabl configuration (Liu et al., 2017). Nevertheless, 

interphase chromosomes in other non-plant systems such as Drosophila, Sacharomyces 

pombe and Sacharomyces cerevisae, adopt the Rabl organization; whereas nuclei of generally 

somatic mammalian cells with very large genomes do not show the Rabl configuration 

(Schubert and Shaw 2011). Thereby, genome size is unlikely the determinant for the 

formation of  the Rabl configuration (Santos and Shaw 2004).  

Another well-known chromosome configuration is the Bouquet configuration, although this 

configuration is generally only found (or at least described) during meiosis (Cowan et al., 

2001). In meiotic cells of maize, wheat and rice, telomeres are clustered at a specific spot 

beneath the NE while the remain of the chromosomes disperses throughout the nucleoplasm. 

An early study has indicated that the paring and recombination of homologous chromosomes 

are impaired in mutants that disrupt the Bouquet configuration (Tomita and Cooper 2006). It 

has been proposed that the clustering of telomeres in the Bouquet configuration promotes 

chromosomal pairing, which is crucial for the association of homologous chromosomes 

during meiosis (Cowan et al., 2001; Tomita and Cooper 2006).  
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Interestingly, Arabidopsis interphase chromosomes adopt neither the Rabl nor the Bouquet 

configuration, but display an overall Rosette configuration (Fransz et al., 2002; Tiang et al., 

2012). In the Rosette configuration, the centromeres of all individual chromosomes and their 

flanking pericentromeric heterochromatin are highly condensed to generate distinct, dense 

bodies called chromocenters, which are localized at the NP. Euchromatin loops in Mb-size 

emanate from chromocenters, and thus resulting in a rosette-like structure of Arabidopsis CTs 

(Fransz et al., 2002). Intriguingly, telomeres are generally located in proximity to each other 

in all the three types of chromosome configurations – as in the Rosette configuration 

telomeres were found to cluster around the nucleolus (Fransz et al., 2002; Tiang et al., 2012). 

Different types of chromosome configurations can be found in the same plant species, for 

example, rice chromosomes adopt the Rabl and the non-Rabl configuration in xylem vessel 

cells and mesophyll cells, respectively; and chromosomes exhibit the Bouquet configuration 

during meiotic cells. This suggests a possible correlation between chromosome configuration 

and cell identity. Even for the same cell type, chromosome configurations have been 

demonstrated to be dynamic (van Holde and Zlatanova 1995; Rodriguez-Granados et al., 2016; 

Wang et al., 2015a). For instance, the developmental program of etiolated seedlings shifts 

from skotomorphogenesis to photomorphogenesis upon light perception. This transition leads 

to the formation of highly condensed heterochromatin and the establishment of chromocenters 

(Bourbousse et al., 2015). Another sample is that chromocenters are decondensed under heat 

shock treatment in Arabidopsis (Pecinka et al., 2010; Wang et al., 2015b). Furthermore, in 

rice leaves, the induction of centromere polarization (which is a feature of Rabl configuration) 

in some interphase nuclei by 5-azacytidine (a DNA hypomethylation drug) treatment 

indicates that the methylation state of the chromosome can determine the overall CT 

configuration (Santos et al., 2011). Therefore, the dynamics of chromosome configuration 

might help plants to adapt to ever-changing environmental conditions. 

1.3.1.2 Chromosome compartments  

The exhibition of a plaid pattern after transforming the Hi-C contact matrix to the Pearson 

correlation matrix suggests the presence of two chromatin compartments within CTs 

(Lieberman-Aiden et al., 2009). Chromatin contacts within the same compartment are 

enriched, while chromatin contacts between different compartments are depleted. With 

principal component analysis of the Hi-C data, each chromosome can be segregated into A or 

B compartments, according to the first component. The A Compartments are associated with 
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active chromatin (euchromatin) marks such as a high density of genes, strong transcription 

activities, and enrichment of Histone H3 lysine 36 tri-methylation and DNase I hypersensitive 

sites (Lieberman-Aiden et al., 2009). By contrast, chromatin regions within B compartments 

display heterochromatin features such as a low gene density and repressive epigenetic 

modifications. It was reported that the localization of B compartments was highly correlated 

with late replicating and lamina-associated chromatin domains (Ryba et al., 2010). The spatial 

segregation of A/B compartments in nuclei has been confirmed with multiplexed FISH at 

single-cell level (Wang et al., 2016). Until now, all Hi-C maps have followed this binary 

classification of chromatin regions (reviewed recently in (Yu and Ren 2017)).  

Similar to animals, chromatin compartmentalization in Arabidopsis and many crop species is 

mostly in line with the overall distribution pattern of euchromatin and heterochromatin (Grob 

et al., 2014; Dong et al., 2017; Liu et al., 2017; Wang et al., 2018a; Grob et al., 2013). 

Moreover, it has been shown that the annotated plant A/B compartments can be further 

divided into several sub-compartments, and every individual sub-compartment associates with 

a specific pattern of euchromatic/heterochromatic modifications (Dong et al., 2017). 

Furthermore, similar to that in animals, the annotation of A/B compartment in Arabidopsis 

shows a strong correlation to the DNA replication timing (Ryba et al., 2010; Concia et al., 

2018).  

Both intra- and inter-chromosomal interactions are part of the 3D genome organization 

(reviewed in (Maass et al., 2019)). In the genome of Arabidopsis, multiple genomic loci, 

which are far apart along the linear genome, form Interactive Heterochromatin Island (IHI) or 

KNOT Engaged Element (KEE), in which small patches of heterochromatin are dispersed in 

much bigger euchromatic regions (Feng et al., 2014b; Grob et al., 2014). These IHIs/KEEs 

are marked with histone 3 lysine 9 di-methylation (H3K9me2) modifications and appear to be 

enriched with transposable element (TE)-like repeat regions (Feng et al., 2014b; Grob et al., 

2014). Even though the chromatin state of these IHIs/KEEs display similarities as that of 

pericentromeric regions (PRs), there are no enriched interactions between them. It has been 

revealed by Hi-C data that IHIs/KEEs frequently interact with telomeric and subtelomeric 

regions, and regions on distal euchromatic arms (Feng et al., 2014b). It remains unclear how 

these interactions are established, as some other regions that displayed similar epigenomic 

features do not behave like IHIs/KEEs. Removing most DNA methylation or H3K9me2 

modification results in almost no alteration in interactions between IHIs/KEEs, implying that 



  Introduction 

14 

 

DNA methylation and H3K9me2 are not directly involved in establishing IHIs/KEEs contacts 

(Feng et al., 2014b). Because there is no influence on local gene expression when the 

clustering of IHIs/KEEs is attenuated, it is proposed that the formation of strong chromatin 

contacts among IHIs/KEEs does not impose transcriptional regulation (Zhu et al., 2017). Most 

recently, a study suggested a biological role of this type of 3D genome organization in 

defensing against invasive elements (e.g., transposons) by correlating the transgene silencing 

with the induction of ectopic IHIs/KEEs originated from transgene integration sites (Grob and 

Grossniklaus 2018). Overall, more efforts are required to understand the biological functions 

and molecular fundamentals of these regions.  

1.3.1.3 Chasing TADs in plants 

In the exploration of Hi-C maps, self-associating chromatin domains are detected and are 

referred to as TADs, which is one of the most predominant features of chromosome 

configuration (reviewed in (Yu and Ren 2017)). Each TAD is a relatively isolated local 

packing unit, such that long-range interactions between loci within one TAD are generally 

preferred over those between different TADs. In consequence, the formation of TADs enables 

long-range chromatin contacts with space constraints, granting target specificity of cis-acting 

elements. By using Hi-C, 3D FISH, and super-resolution microscopy to individual cells, 

Szabo and colleagues demonstrated that TADs were not just a reflection of statistical 

frequencies of chromatin interactions, but they were true structural units in the nucleus (Szabo 

et al., 2018). With a number of studies to explore how TADs are formed, it has been 

summarized that two major independent mechanisms are involved. The first one is CTCF 

(CCCTC-binding factor)-cohesin-dependent, in which loop-extrusion is conducted by 

cohesins and is stopped by CTCF proteins. The second one is independent of CTCF and 

cohesin proteins, and it is correlated to the spatial chromatin compartmentalization, which is 

in accordance with epigenomic landscape and transcriptional activity (Schwarzer et al., 2017; 

Dekker et al., 2013; Doğan and Liu 2018). 

Surprisingly, although TADs have been observed in the genome of animals, they could be 

hardly found in the chromosome arms of the Arabidopsis genome (Feng et al., 2014b; Grob et 

al., 2014; Wang et al., 2015a). The absence of conventional insulators such as CTCF proteins 

in plants might be one reason for not observing TADs in Arabidopsis. Another reason for this 

might be technical. Because the input materials for Arabidopsis Hi-C are non-homogeneous, 

unsynchronized nuclei from cells with different types, endopolyploidy levels and cycle stages, 



  Introduction 

15 

 

TADs in one specific type of nuclei could be masked (Doğan and Liu 2018). However, 

thousands of TAD-boundary-like and insulator-like regions have been characterized in 

Arabidopsis with the presence of highly expressed genes and accessible chromatin regions, 

while TAD interior-like regions have a tendency of inactive gene transcription (Feng et al., 

2014b; Wang et al., 2015a). 

Apart from Arabidopsis, Hi-C maps revealed that TADs are widespread structures in many 

crop species, such as rice, foxtail millet, sorghum, tomato, cotton and maize (Dong et al., 

2017; Wang et al., 2017; Liu et al., 2017; Wang et al., 2018a). Similar to those in animals,  

TAD borders in plants also have enrichment of active genes and open chromatin with 

euchromatic histone modifications (Dong et al., 2017; Liu et al., 2017). TADs distribution 

patterns are conserved in mammalian genomes, but this is not the case for plant genomes with 

TADs (Rudan et al., 2015; Dong et al., 2017; Dixon et al., 2012). One possible explanation 

for missing the conservation of TAD pattern in plant species is the lack of CTCF protein, 

which appears to be associated with conserved TAD boundaries in mammals (Dong et al., 

2017). The genome size of a plant species might be another factor that determines whether or 

not a given plant genome displays TADs (Doğan and Liu 2018). For all the plant species 

showing TADs, rice has the smallest genome size (~ 430 Mb), which is almost three times of 

the genome of Arabidopsis thaliana (Doğan and Liu 2018). Especially, TADs identified from 

Hi-C maps in rice are featured with depletion of protein-coding genes and enrichment of 

DNA methylation (Liu et al., 2017). As gene density of a plant species is negatively 

correlated with its genome size, it has been speculated that plants with larger genome size are 

more likely to form TADs (Doğan and Liu 2018). 

1.3.1.4 Chromatin loops 

The contact frequency of two distant chromatin loci caused by random collision on the basis 

of the polymeric nature of chromatin fiber is very low. Nevertheless, the real contact 

frequency of certain chromatin loci is higher than expected, resulting from chromatin fiber 

bending (chromatin loop). By chromatin looping, a gene’s regulatory element can be brought 

into close spatial proximity. The first case study illustrating the involvement of chromatin 

looping in gene transcriptional regulation was about the beta (β)-globin locus in yeast (Carter 

et al., 2002; Tolhuis et al., 2002). Following that, a huge number of studies have demonstrated 

that chromatin looping has a great influence on gene transcription in animals (reviewed in 

(Kadauke and Blobel 2009; Bonev and Cavalli 2016)). 
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In plants, it also has been shown that different types of chromatin loops are involved in 

diverse developmental processes (summarized in (Rodriguez-Granados et al., 2016)). 

Generally, chromatin loops in the plant kingdom can be classified into two types: gene 

looping and enhancer-promoter looping. Gene looping is also called 5’-3’ looping, which is a 

type of intra-chromosomal loop that connects the 5’ end and transcription termination site 

(TTS) of a gene. Besides, many chromatin loops between 5’ end of a gene and the 

corresponding gene body were also found in Arabidopsis according to the analysis of a high-

resolution Hi-C map (Liu et al., 2016). Another kind of chromatin loop allows physical 

contact between enhancers and promoters. Although genes with such kind of looping 

structures are more actively transcribed than those without in Arabidopsis, we could not 

derive a causal relationship between chromatin loops and active transcription. Recent works 

have suggested that long non-coding RNAs, transcription factors (TFs) were involved in the 

regulation of this type of chromatin loops (Rodriguez-Granados et al., 2016). A study 

revealed that a conserved regulatory pathway of floral meristem determination was controlled 

by MADS TF-mediated chromatin loops. In this example, a chromatin loop between the 

transcription start site (TSS) and the 3’-distal region of the TERMINAL FLOWER1 (TFL1) 

gene was disrupted by the binding of MADS box TFs such as SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1), SHORT VEGETATIVE PHASE (SVP), 

AGAMOUS-LIKE 24 (AGL24), and SEPALLATA 4 (SEP4), leading to the reduced 

expression of the TFL1 (Liu et al., 2013). In another example, it was reported that the 

expression of PINOID (PID), an auxin-inducible gene, was repressed in the absence of auxin. 

Along with its repression state, the PID locus interacts with the AUXIN REGULATED 

PROMOTER LOOP (APOLO) locus, establishing a chromatin loop (repressive loop) that can 

be disrupted by auxin. After opening this chromatin loop, Pol II starts to transcribe both PID 

and APOLO. As a negative feedback mechanism, non-coding APOLO transcripts produced by 

Pol II trigger the re-establishment of the repressive loop to down-regulate the expression of 

PID gene (Ariel et al., 2014).  

1.3.2 Chromatin positioning in the nuclear space 

Apart from chromatin packing and organization, an increasing number of studies have proven 

the import function of the spatial localization of chromatin regions on gene transcriptional 

control (reviewed in (van Steensel and Belmont 2017; Doğan and Liu 2018; Buchwalter et al., 

2019)).  
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1.3.2.1 Tethering chromatin in and around nucleolus 

As the largest compartment of the nucleus, the nucleolus has been widely known for its role 

in controlling the expression of ribosomal RNA (rRNA) genes. Nucleoli also have special 

functions on the 3D genome organization in the nuclear space by acting as an anchoring site 

for certain chromatin regions, such as rRNA genes (Németh and Langst 2011). Some of these 

rRNA genes, for example, 45S rRNA genes, are arranged into tandem repeats and then array 

at nucleolus-organizing regions (NORs) (Németh and Langst 2011). The mammalian 

nucleolus is consisting of three functional and structural regions: fibrillar center, dense 

fibrillar component, and granular component. Active rRNA genes are located within the 

fibrillar center and are mainly transcribed by RNA polymerase I (Pol I), whereas inactive 

genes are located outside of the fibrillar center (Németh et al., 2010).  Plant nucleoli are also 

strongly connected with rRNA genes (Pontvianne et al., 2016; Pontvianne et al., 2013; Durut 

et al., 2014). It has been shown that Arabidopsis active rRNA genes are localized within the 

nucleolus, while inactive rRNA genes are excluded (Pontvianne et al., 2013). However, this 

specific localization could be altered with changes in epigenetic states of the rRNA genes. 

Furthermore, Durut and colleagues suggested that the altered expression of some rRNA genes 

was determined by the active or repressed state of the NORs (Durut et al., 2014). Together, 

these results suggest that the spatial localization of rRNA genes with respect to nucleoli is 

corresponding to their transcriptional status. Moreover, it has been reported that the physical 

association between telomeres and nucleoli in Arabidopsis is required to maintain telomere 

(Armstrong et al., 2001; Pontvianne et al., 2016; Fransz et al., 2002). 

Other than rRNA genes, genomic loci associated with nucleoli were identified by genome-

wide approaches in mammals. These chromatin regions are referred to as nucleolus-associated 

domains (NADs) and show enrichment of A/T-rich sequences, low gene density and 

repressed transcriptional activity (van Koningsbruggen et al., 2010; Németh et al., 2010). 

Recently, plant NADs in Arabidopsis are discovered and characterized (Pontvianne et al., 

2016). The authors isolated intact nucleoli from Arabidopsis seedlings using a modified 

fluorescence-activated cell sorting (FACS) method and analyzed the associated DNA. As 

expected, rRNA genes and telomeric regions were enriched. Besides that, plant NADs were 

also found to be enriched with TEs and inactive protein-coding genes. These findings imply 

the involvement of plant nucleoli in transcriptional regulation of not only rRNA genes but 

also other genomic loci. 
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1.3.2.2 Chromatin positioning at the NP 

The NP has been known for a long time serving as a physical barrier, which separates the 

nucleus from the cytoplasm. In interphase nuclei of eukaryotic cells, genomic DNA exhibits 

non-random distribution patterns at the NP. In metazoans, it is well known that the NP 

provides a docking site for chromatin and plays important roles in genome organization and 

transcriptional regulation (Buchwalter et al., 2019; Meier et al., 2017).  

Contacting chromatin with nuclear pore complexes  

The NE is perforated with nuclear pore complexes (NPCs), which function as transport 

channels for molecules between nucleus and cytoplasm. This highly conserved structure is 

constructed with multiple copies of ~30 different nucleoporins (NUPs) (Buchwalter et al., 

2019). These NUPs can be divided into two classes according to their functions. NUPs in the 

first class mainly serve as the structural framework of NPCs and do not participate in nuclear 

transport directly. NUPs in the second class are directly involved in the selective nuclear 

transport because of their unstructured domains that are rich in phenylalanine and glycine (FG 

repeats). In 2010, a proteomic study in Arabidopsis revealed the complete molecular structure 

of plant NPCs (Tamura et al., 2010). Most of the plant NUPs are well conserved, even though 

several NUPs presented in vertebrates have been replaced by plant-specific proteins. For 

instance, NUP136/NUP1, which contains FG repeats, is only found in plants, and it is thought 

to be the functional analog of metazoan NUP153 (Tamura et al., 2010; Tamura and Hara-

Nishimura 2011). 

Although it is assumed that the primary function of NPCs is controlling nucleocytoplasmic 

transport, an increasing number of studies in animals indicate that NPCs are involved in 

regulating chromatin organization and gene expression. In 1985, Blobel proposed a “gene 

gating” hypothesis, in which interactions between active genes and NPCs might promote the 

export of their mRNAs (Blobel 1985). An early study in yeast supported this hypothesis by 

demonstrating that some NUPs associated with active genes and these genes were more 

preferentially localized at the NPCs upon activation (Casolari et al., 2004). Later studies in 

yeast and Drosophila cells also demonstrated that tethering genes to the NPCs facilitated the 

activation of genes in response to stimuli (Hou and Corces 2010; Taddei et al., 2006; Brickner 

and Walter 2004). However, a genome-wide analysis in human HeLa cells argued against the 

“gene gating” model (Brown et al., 2008). It was reported in this study that NPC protein 

NUP93 predominantly associated at the NPC with chromatin domains with enrichment of 
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repressive histone marks (Brown et al., 2008). Another arguing evidence against this model is 

NUP170b, a yeast NPC protein, interacts with chromatin loci and serves as a transcription 

repressor (Van de Vosse et al., 2013).  

Compared with that in animals, functions of plant NUPs regarding spatial chromatin 

organization and gene regulation have been rarely investigated. In a recent report by Smith et 

al., these authors tested the putative function of two Arabidopsis nucleoporins (SEH1 and 

NUP50a) in this regard by using the Lac Operator/Lac Repressor system (Smith et al., 2015). 

Tethering a reporter gene to SEH1 turned out to increase its expression, while anchoring it to 

NUP50a appeared to have a repressive effect (Smith et al., 2015). These results suggested that 

plants had the “gene gating” mechanisms, while not all the plant nucleoporins have this 

function.  

Linking chromatin with the linker of nucleoskeleton and cytoskeleton  

The linker of nucleoskeleton and cytoskeleton (LINC) complexes, another direct connection 

between the nucleoplasm and cytoplasm, was first discovered in Drosophila and 

Caenorhabditis elegans (C. elegans) by screening mutants showing defects in nuclear 

positioning and/or nuclear migration (Meier et al., 2017). The LINC complex is mainly 

composed of Sad1/UNC84 (SUN) homology domain proteins in the inner nuclear membrane 

(INM) and Klarsicht/ANC-1/Syne homology (KASH) domain proteins in the outer nuclear 

membrane (ONM) (hereafter referred as SUN and KASH proteins) (Meier 2016). There are 

transmembrane domains in both types of proteins. The KASH domain of KASH proteins is 

projected into the space between the ONM and INM of the nucleus, where it interacts with the 

SUN domain of SUN proteins (Chang et al., 2015). This kind of interactions make KASH 

proteins could not diffuse into the contiguous endoplasmic reticulum (Chang et al., 2015). 

KASH proteins stretch into cytoplasm, making LINC complexes can interact with different 

cytoskeleton elements and signaling molecules (Chang et al., 2015). Conversely, SUN 

proteins are localized in the INM, allowing LINC complexes to contact lamin proteins, 

chromatin-binding proteins, and other nuclear proteins (Chang et al., 2015). Therefore, the 

LINC complex is a two-membrane adhesive assembly, which makes it possible to transmit 

mechanical force across the NE (Chang et al., 2015). Interactions between the cytoplasmic 

extension of KASH proteins and different cytoskeleton filaments and/or factors enable LINC 

complexes possess diverse functions, such as nuclear movement, maintaining the centrosome-

nucleus connection, nuclear morphology regulation, signal transduction, and moving 
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chromosomes within the nucleus during meiosis (reviewed in (Burke and Roux 2009; Starr 

and Fridolfsson 2010)). 

Recently, researchers have identified plant LINC complexes and their involvements in nuclear 

migration in pollen tubes and male fertility, as well as in nuclear positioning in the root hair 

cells, guard cells, and leaf epidermal cells (reviewed in (Meier et al., 2017)). The 

phylogenetic relationship of different components of plant LINC complex has been analyzed 

in a very recent study (Poulet et al., 2017b). This study shows that some KASH proteins are 

conserved across land plants, while other KASH proteins are angiosperm-specific (Poulet et 

al., 2017b). Compared to the evolution complexity of the KASH proteins, SUN proteins are 

much more conserved, with conservation in land plants for C-terminal SUN proteins and 

conservation throughout the plant kingdom for mid-SUN proteins (Poulet et al., 2017b).  

The role of plant LINC complexes in determining the nuclear morphology was also found in 

plants (Zhou et al., 2015). Potential redundancy among gene families of WPP domain-

interacting proteins (WIPs), WPP domain-interacting tail-anchored proteins (WITs), and SUN 

proteins in regulating nuclear morphology was proposed (Zhou et al., 2015). It was found that 

WIT2, but not WIT1, was crucial for nuclear morphology, and that SUN1 played a more 

important role in this process than SUN2. The observed nuclear morphology changes in the 

wit and sun mutants are independent of CRWODED NUCLEI1 (CRWN1), although nuclei in 

crwn1 mutant become spherical, suggesting that plant nuclear morphology is determined both 

by cytoplasmic forces transferred to the NE and by nucleoplasmic filaments formed beneath 

the NE (Zhou et al., 2015). 

In attempting to assess the regulatory roles of plant LINC complexes in chromatin 

architecture, Poulet and colleagues have developed a 3D imaging method to probe the nuclear 

morphology and chromatin organization in interphase nuclei of Arabidopsis mutants of LINC 

components (Poulet et al., 2017a). It was found that perinuclear localization of chromocenters 

in WT plants was altered in LINC mutants, and the compaction levels of chromocenters were 

changed (Poulet et al., 2017a). Interestingly, the authors also found alleviation of 

transcriptional repression in heterochromatic repeat sequences in several LINC mutants, 

implying that the Arabidopsis NP plays roles in regulating chromatin condensation and gene 

expression (Poulet et al., 2017a). 
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Anchoring chromatin to the nuclear lamina 

The genome is enclosed within the nucleus by the NE. In metazoans, there is a layer of 

meshwork underlies the NE, which is called the nuclear lamina (NL). The interaction network 

of chromatin-NL is a prominent feature of the NP in most cell lines (reviewed in (van 

Steensel and Belmont 2017)). The NL is composed of lamins and lamin-associated 

transmembrane proteins, which corporately maintain mechanical properties of the nuclear 

architecture (Dechat et al., 2008). There are four main lamins in mammalian cells, which can 

be divided into two types: A-type lamins including lamin A and lamin C, and B-type lamins 

including lamin B1 and B2. At least one B-type lamins is present in every cell type, while A-

type lamins are absent in ESCs, and the expression of type-A lamins is low in pluripotent 

cells and increases upon cell differentiation (Pombo and Dillon 2015; Buchwalter et al., 2019). 

Nuclear lamins are necessary for maintaining nuclear shape. Cells with loss-of-function of 

lamins generally exhibit misshapen nuclei (Pombo and Dillon 2015). A modified DNA 

adenine methyltransferase identification (DamID) technology with the fusion of lamin A, B1 

or B2 to Dam has been applied to identify chromatin regions localized at the NL in D. 

melanogaster, C. elegans, and mammalian cells (van Steensel and Belmont 2017). The 

identified NL-associated chromatin regions, named lamina-associated domains (LADs), vary 

in size (0.1-10 Mb) and are strongly enriched with genomic and epigenomic features 

indicative of repressed chromatin (van Steensel and Belmont 2017; Buchwalter et al., 2019). 

There are two types of LADs in various mammalian cell types: constitutive lamina-associated 

domains (cLADs) and facultative lamina-associated domains (fLADs). The sizes and 

positions of cLADs are conserved across different cell lines and even between different 

mammalian species, whereas fLADs are not (Meuleman et al., 2013). 

LADs cover up to one-third of the mammalian genome. In spite of having low gene densities, 

they still contain thousands of genes, most of which are not expressed or expressed at very 

low levels (van Steensel and Belmont 2017). This suggests that chromatin-NL interactions at 

the NP are linked to regulation of gene expression. A growing number of studies have 

investigated the effect of chromatin-NP interactions on gene expression (Pombo and Dillon 

2015; Buchwalter et al., 2019). For example, anchoring a reporter gene to the INM 

downregulates its expression (Reddy et al., 2008). Similarly, reporter genes inserted within 

LADs showed reduced expression levels compared to reporter genes residing in nucleoplasm 

(Akhtar et al., 2013). In addition, deleting the Drosophila B-type lamin, lamDm0, causes 
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detachment of tissue-specific gene clusters from NL and selective transcriptional up-

regulation of these genes (Shevelyov et al., 2009). Moreover, it was shown that repositioning 

genomic regions to the NP in human cells did not always result in gene silencing (Finlan et al., 

2008). This result suggests that perinuclear localization alone is not sufficient for gene 

silencing.  

Furthermore, great efforts have also been put to understand the molecular mechanisms of the 

formation of chromatin-NL interactions. The identification of proteins that promote tethering 

LADs toward the NL has made remarkable progress. Lamin proteins and many lamin-binding 

proteins together constitute the NL (reviewed in (Wilson and Foisner 2010)). Among them, 

lamin proteins are obvious candidates required for the formation of the chromatin-NL 

network at the NP, as they interact with both DNA and chromatin in vitro (Gruenbaum and 

Foisner 2015). In Drosophila, the depletion of the B-type lamin resulted in detachment of 

genes tethered at the NP (Shevelyov et al., 2009). However, elimination of all lamins in 

mouse ESCs has no significant influence on the establishment of genome-wide LADs at the 

NP, reflecting from the determination of genomic interactions with emerin (an INM marker) 

(Amendola and van Steensel 2015). Genetic studies provide a possible explanation that lamin 

A/C and lamin B receptor (LBR) play redundant roles in establishing chromatin-NL 

interactions. A study supported this speculation by showing that heterochromatin was 

localized in the nuclear interior when both LBR and lamin A/C were knocked out in post-

mitotic cells (Solovei et al., 2013). Besides, ectopic expression of LBR in retinal cells, which 

express neither lamin A/C nor LBR, causes the nuclear interior-localized heterochromatin to 

relocate toward the NP (van Steensel and Belmont 2017). In addition to LBR, numerous other 

NE transmembrane proteins (NETs) are docked at the INM. Overexpression or depletion of 

some NETs, such as emerin, can also alter chromatin positioning with respect to the NP 

(Amendola and van Steensel 2015). 

Except for the lamina network, chromatin state in these LADs might also have an impact on 

forming chromatin-NL interactions. It has been reported in several studies that histone H3 

lysine 9 methylation (H3K9me) plays prominent roles in this process. According to genome-

wide studies, the heterochromatic mark, histone H3 lysine 9 di-methylation (H3K9me2), 

tends to be enriched in LADs (Kind et al., 2013). Inactivation of G9A, the primary enzyme 

responsible for depositing H3K9me2 to chromatin, leads to a reduction of LAD-NL contacts, 

indicating the partial role of H3K9me2 in facilitating NL-chromatin interactions (Kind et al., 
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2013). In accordance with these reports, H3K9me2 and histone H3 lysine 9 tri-methylation 

(H3K9me3) have been shown to participate in positioning β-globin locus to the NP (Bian et 

al., 2013). Knockdown of Suv39H1 and Suv39H2, the two H3K9me3 methyltransferases, 

results in partial detaching endogenous mammalian β-globin gene (HBB) , and inhibition of 

G9A leads to incomplete detachment of endogenous locus from the NP (Bian et al., 2013). 

Only depleting all the three H3K9me methyltransferases, Suv39H1, Suv39H2 and G9A, 

completely detaches the endogenous HBB locus and most of an adjacent ~1 Mb LAD from 

the NP (Bian et al., 2013). These results indicate that these three enzymes play redundant 

roles in promoting associations of NL with chromatin. Similarly, in C. elegans, the peripheral 

anchoring of transgene repeats and native chromosomal arms requires H3K9me, as 

eliminating this histone mark leads to the loss of attachment of chromatin from the NP 

(Towbin et al., 2012). 

In C. elegans, CEC-4, a chromodomain-containing protein, was reported to link the H3K9me 

to the NL. CEC-4 was found to be associated with the NE and to interact with mono, di, and 

tri-methylated H3K9 through its chromodomain. Therefore, it was suggested that CEC-4 

could tether heterochromatin to the NL through recognizing methylated H3K9. In addition, 

decreasing genome-wide chromatin-NL contacts in cec-4 was similar with that in the met-2 

set-25 double mutants (Gonzalez-Sandoval et al., 2015). In mammals, a protein named 

PRR14 was found to play similar roles as the C. elegans CEC-4 in tethering LADs to the NP 

(Poleshko et al., 2013). The PRR14 protein possesses two functional domains that are critical 

for anchoring heterochromatin to the NL. One of the two domains can target NL, and the 

other one can bind to heterochromatin protein 1 alpha (HP1α), which is known to bind to 

H3K9me2 or H3K9me3. PRR14-HP1α interactions make PRR14 load onto chromosomes 

immediately after mitosis, whereas later in interphase, Lamin A/C is required for localizing 

PRR14 at the NL (Poleshko et al., 2013). 

Moreover, it has been reported that knockdown of EZH2, a methyltransferase responsible for 

depositing histone H3 lysine 27 tri-methylation (H3K27me3), results in a reduction of 

peripheral association of an exogenous LAD fragment (Harr et al., 2015). This report implies 

that H3K27me3 might also be involved in LADs formation. A study showed that the barrier-

to-autointegration factor (BAF), which interacts with LEM-domain containing proteins that 

are part of the NL, can associate with chromatin at the NP (Kind and van Steensel 2014). 

BAF associates with the same genomic regions as Lamin B1, Lamin B2 and Lamin A, while 
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no detectable alterations in LAD-NL interactions were found when knockdown of BAF, 

suggesting that BAF does not help to tether LADs to the NL during interphase (van Steensel 

and Belmont 2017). Overall, the lamina network, repressive histone mark H3K9me and 

bridging proteins are required for specific positioning of LADs at the NP in metazoans. 

Plant genomes do not encode proteins with sequence similarity to the animal lamins. However, 

a complex protein meshwork attached to the INM has been observed in several plant species, 

indicating the presence of plant lamina (Ciska and Moreno Diaz de la Espina 2014). To date, 

three plant-specific protein families, localized preferentially at the INM have been proposed 

as functional lamin analogs. CRWNs are considered as the first group of candidates for plant 

lamin analogs and are present throughout land plants (reviewed in (Groves et al., 2018)). 

CRWN proteins with long coiled-coil domains belong to the nuclear matrix constituent 

proteins (NMCPs) (Meier et al., 2017). In Arabidopsis, CRWN1-4 genes encode four CRWN 

proteins, which are essential for viability as the quadruple crwn mutant could not be isolated 

(Wang et al., 2013). Among the four CRWN proteins, CRWN1 and CRWN4 are located at 

the INM, while CRWN2 and CRWN3 are mainly localized in the nucleoplasm (Sakamoto and 

Takagi 2013; Wang et al., 2013). The nuclei of plants with mutation at CRWN1 or CRWN4, 

not CRWN2 or CRWN3, exhibit reduced size and increased sphericity (Sakamoto and Takagi 

2013; Dittmer et al., 2007; Wang et al., 2013). However, combining CRWN2 or CRWN4 

mutation with CRWN1 mutation results in a greater nuclear size reduction (Sakamoto and 

Takagi 2013; Wang et al., 2013). In Arabidopsis, the KAKU4 protein, which shows specific 

localization at the INM, is considered as the second class of plant lamin candidates (Goto et 

al., 2014). The KAKU4 protein has a predicted nuclear localization signal (NLS), but no 

typical transmembrane domains (Goto et al., 2014). An evolution analysis of NE proteins in 

unicellular algae and multicellular plants revealed that there was only one KAKU4 homolog 

in every species except for Glycine max and Brassica rapa (Poulet et al., 2017b). It was 

observed that kaku4 mutant plants have spherical and smaller nuclei, which is similar to those 

of crwn1 and crwn4 mutants. At the NP, KAKU4 can physically interact with CRWN1 and its 

homolog CRWN4. Furthermore, KAKU4 and CRWN1 can deform the NE independently of 

each other in a dose-dependent manner. Recently, a novel family of plant nuclear envelope-

associated proteins (NEAPs) in Arabidopsis have been suggested as the third class of plant 

lamin candidates (Pawar et al., 2016). There are four NEAPs (NEAP1-4) in Arabidopsis, with 

NEAP4 being a truncated form of NEAP3. Arabidopsis NEAP1-3 are anchored at the INM 

and interact with each other to form homomers and heteromers. Besides, NEAP proteins also 
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interact with members in the LINC complex. The neap1, neap3 and neap1neap3 mutants 

show increased nuclear volume in pavement cells and decreased number of chromocenters in 

both pavement and guard cells. In addition, both pavement and guard cells in neap3 single 

mutant exhibit a reduced relative heterochromatin fraction. Together, these results suggest 

that NEAPs have functions on maintaining nuclear morphology and organization (Pawar et al., 

2016). 

Aside from being structural proteins that control plant nuclear size and morphology, a number 

of studies in Arabidopsis have suggested that plant lamins play roles in regulating chromatin 

organization and gene expression at the NP (summarized in (Meier et al., 2016; Groves et al., 

2018; Meier et al., 2017)). Firstly, altered chromatin organization has been observed in some 

plant lamin mutants. Variability in chromocenters number and size in crwn nuclei suggests 

that CRWN proteins are required for maintaining the integrity of chromocenters and the 

compaction of heterochromatin (Wang et al., 2013; Poulet et al., 2017a). Changes in nuclear 

organization and reduced heterochromatin fraction have been found in the neap1 neap3 plants 

(Pawar et al., 2016). Secondly, it has been reported that some plant lamins can interact with 

transcription regulators. Interactions between CRWN1 and NAC WITH 

TRANSMEMBRANE MOTIF1-LIKE9 (NTL9), a NAC transcription factor, were reported 

recently (Guo et al., 2017). CRWN1 has also been shown to interact with PWWP 

INTWERACTOR OF POLYCOMBS 1 (POW1), which in turn binds to Polycomb 

Repressive Complex 2 (PRC2) that is responsible for the establishment of H3K27me3 

(Mikulski et al., 2019). NEAPs were found to interact with a basic-leucine zipper domain 

transcription factor (bZIP18). Transient co-expression of bZIP18 and NEAPs leads to the 

detachment of NEAPs from the NP (Pawar et al., 2016). Thirdly, in a very recent study, the 

transcriptome data of different crwn mutants demonstrated that single knockout of CRWN1, 

CRWN2 or CRWN4 gives rise to widespread alterations in their transcript levels, in spite of no 

whole-plant phenotypes (Choi et al., 2019). Knockout of CRWN2 in crwn1 mutant 

exacerbates the transcriptional alterations in crwn1, whereas knockout CRWN1 in crwn4 

mutant alleviates the transcriptional changes in crwn4. The results of the study suggest that 

CRWN1 and CRWN2, which are close paralogs in the same clade, play overlapping functions, 

while CRWN1 and CRWN4, which are categorized into two different clades, partially exhibit 

antagonistic functions. 
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Figure 1. Plant nuclear chromatin organization and key elements involved in nuclear dynamics. 
Individual chromosomes at interphase are organized into discrete CTs. CTs can be further partitioned to distinct 
active (A) and repressive (B) compartments. Chromatin regions, in plants with large genome size, organized into 
the same TAD exhibit increased interactions, whereas their interactions with adjacent regions outside of the 
TAD are rather depleted. Except for Arabidopsis thaliana and Arabidopsis lyrata, TADs are manifested in other 
examined plant species (question mark). Only a limited number of plant chromatin loops that connect regulatory 
elements to their target loci have been reported (summarized in (Liu and Weigel 2015)), and the molecular 
mechanisms of how these plant chromatin loops are formed have not been understood well (question mark). As 
shown in the middle left box, the nucleolus is surrounded by a heterochromatin shell (red dashes), in which, a 
dense chromatin meshwork called NADs (purple lines) is included. Arabidopsis telomeres (green circles), which 
are regions of repetitive nucleotide sequences at ends of individual chromosomes, are localized around and 
within the nucleolus. In Arabidopsis, some rRNA genes on chromosome 2 and chromosome 4 are arranged into 
nucleolus-organizing region 2 (NOR2) and NOR4, respectively. These two NORs occupy alternative subnuclear 
localization with respect to nucleolus depending on their activity state, in which NOR2 is localized outside of 
nucleolus and exhibits very low transcriptional activity; while NOR4 is localized within the nucleolus and is 
actively transcribed. In the top left box, NE-associated proteins that are involved in nuclear dynamics are shown. 
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In the top right box highlights several components of NPC, which were suggested to be involved in regulating 
nuclear shape and gene expression. 

1.4 Aim of the thesis 

Overwhelming LADs studies in animals make us reason whether chromatin positioning at the 

NP in plants is also non-random. However, little is known about the global NP-chromatin 

interaction patterns in plants (Armstrong et al., 2001; Fransz et al., 2002). Although plant 

lamin candidates have been discovered since more than 10 years ago, their relationship with 

perinuclear chromatin remains unclear (reviewed in (Groves et al., 2018; Meier et al., 2017)). 

This thesis represents our efforts in understanding the roles of plant lamins in mediating 

perinuclear chromatin anchoring. The first part of this thesis focuses on the identification and 

characterization of chromatin regions localized at the NP. By conducting a Restriction 

Enzyme Mediated Chromatin Immunoprecipitation (RE-ChIP) assay, we provide a genome-

wide landscape of the NP-chromatin interactions. The second part of this thesis work focuses 

on verifying whether heterochromatin-related factors and plant lamin candidates are involved 

in forming specific perinuclear chromatin anchoring patterns. By conducting dual-color FISH 

experiments on Arabidopsis thaliana 2C nuclei, we demonstrate that plant lamin candidates 

and non-CG DNA methylation are required for specifically positioning chromatin at the NP. 

Further, chromosome painting experiments reveal a global alleviation of spatial chromatin 

positioning patterns in the nuclei of crwn1 and crwn4 mutants. Moreover, our ChIP assays 

reveal that CRWN1 interacts with chromatin directly at the NP.  
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2. Materials and Methods 

2.1 Materials 

2.1.1 Plants 

All Arabidopsis thaliana transfer (T)-DNA insertion lines were ordered from the Nottingham 

Arabidopsis Stock Center (NASC, UK) or received from other labs. T-DNA lines were in 

Columbia-0 (Col-0) background and were established as homozygous lines. All the higher-

order mutants were generated by crossing different T-DNA lines, with exceptions that drm1-2 

drm2-2 was ordered from NASC and suvh4 suvh5 suvh6 was received from F. Berger’s lab 

(Gregor Mendel Institute). The T-DNA lines and their derived higher-order lines are 

summarized in Table 1. The tagging lines generated and used are summarized in Table 2. 

Table 1.  Arabidopsis mutants used in this study 

AGI Gene Mutant (type) Stock Reference 

AT3G10650 NUP1 nup136-1 (nup136) SALK_104728 (Alonso et al., 2003) 

AT1G67230 CRWN1 crwn1-1 (crwn1) SALK_025347 (Alonso et al., 2003) 

AT1G13220 CRWN2 crwn2-1 (crwn2) SALK_076653 (Alonso et al., 2003) 

AT1G68790 CRWN3 crwn3-1 (crwn3) SALK_099283 (Alonso et al., 2003) 

AT5G65770 CRWN4 crwn4-1 (crwn4) SALK_079296 (Alonso et al., 2003) 

AT4G31430 KAKU4 kaku4-2 (kaku4) SALK_076754 (Alonso et al., 2003) 

AT3G05830 NEAP1 neap1-1 (neap1) SAIL_846_B07 McElver et al. 2001 

AT1G09470 NEAP3 neap3-1 (neap3) GABI_221C05 GABI-Kat project 

AT4G19020 CMT2 cmt2-3 (cmt2) SALK_012874 (Alonso et al., 2003) 

AT1G69770 CMT3 cmt3-11 (cmt3) SALK_148381 (Alonso et al., 2003) 

AT5G49160 MET1 met1-3 (met1)  (Saze et al., 2003) 

AT1G67230 
AT5G65770 

CRWN1 
CRWN4 

crwn1-1 crwn4-1  
(crwn1/4) 

SALK_025347 
SALK_079296 

 

AT1G67230 
AT1G13220 

CRWN1 
CRWN2 

crwn1-1 crwn2-1 
(crwn1/2) 

SALK_025347 
SALK_076653 

 

AT5G13960 
AT2G35160 
AT2G22740 

SUVH4 
SUVH5 
SUVH6 

suvh4 suvh5 suvh6 
(suvh4/5/6) 

SALK_041474 
GABI_263C05 
SAIL_1244_F04 

 

AT4G19020 
AT1G69770 

CMT2 
CMT3 

cmt2-3 cmt3-11  

(cmt2/3) 

SALK_012874 
SALK_148381 

 

AT5G15380 
AT5G14620  

DRM1 
DRM2 

drm1-2 drm2-2 

 (drm1/2) 
SALK_031705 
SALK_150863 
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AT4G19020 
AT5G15380 
AT5G14620 

CMT2 
DRM1  
DRM2 

cmt2-3 drm1-2 drm2-2 
(cmt2 drm1/2) 

SALK_012874 
SALK_031705 
SALK_150863 

 

AT1G69770 
AT5G15380 
AT5G14620 

CMT3, 
DRM1, 
DRM2 

cmt3-11 drm1-2 drm2-
2 (cmt3 drm1/2) 

SALK_148381 
SALK_031705 
SALK_150863 

 

Table 2. The tagging lines used in the study 

pNUP1::NUP1:GFP nup136-1 

p35S::CENH3:mcherry pNUP1::NUP1:GFP nup136-1 

pCRWN1::CRWN1:2HA crwn1 

pCRWN4::CRWN4:2HA crwn4 

pCRWN2::CRWN2:2HA crwn1/crwn2 

2.1.2 Bacterial strains 

Table 3. Bacterial strains used in this study 

Species Strain 

Escherichia coli DH5α 

Escherichia coli DB 1.3 

Agrobacterium tumefaciens ASE 

Agrobacterium tumefaciens GV3101 

2.1.3 Media and antibiotics  

The media used in this study were sterilized by autoclaving for 20 minutes (min) at 121oC and 

are listed in Table 4. All buffers were prepared based on (Molecular cloning, 3rd edition, 

Sambrook and Russell). Antibiotics were added to the sterilized medium to achieve final 

concentrations as listed as summarized in Table 5. 

Table 4. Media used in this study 

Media Ingredients (1 liter) Species 

Luria-Bertani broth (LB) medium 
(with or without Agar) 

10 g Tryptone, 5 g Yeast extract, 5 g 
NaCl, pH 7.0 

Escherichia coil 

Yeast Extract Peptone (YEP) 
medium 

 

10 g Peptone, 10 g Yeast extract, 5 g 
NaCl,  pH 7.5 

Agrobacterium 
tumefaciens 

1/2 Murashige-Skoog Medium (1/2 
MS) 

2.2 g MS (Duchefa), 10 g sucrose, 3 g 
Phytagel, pH 5.7 

Arabidopsis thaliana 
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Table 5. Antibiotics used in this study 

Antibiotics  
Stock concentration  

(mg/ml) 
Solvent 

Working concentration 
(µg/ml) 

Kanamycin  50 Water  50 

Spectinomycin  100 Water 100 

Gentamycin  25 Water  25 

Rifampicin  50 Water  50 

Tetracyclin  5 Ethanol (70%, v/v) 5 

Chloramphenicol 25 Ethanol (70%, v/v) 25 

2.1.4 Vectors 

Table 6. Vectors used in this study 

Vector Characteristics  Reference 

 pFK 206 
pSa ori, ori, PNOS, TNOS, TE9, T3 promoter, PT7, Plac, lac operator, 
attB1, attB2, Specr, chlorr, Bastar.  

Gateway-compatible pGREEN-IIS binary destination vector 

(Karlsson et 
al., 2015) 

 pFK 210 
P35S, tE9, PAt2S3, TMAS, ori, pSa ori, attB1, attB2, Specr, chlorr, Bastar. 

Gateway-compatible pGREEN-IIS binary destination vector including a 
35S promoter. 

(Karlsson et 
al., 2015) 

pSoup Helper plasmid  

2.1.5 Agrobaterium tumefaciens contain plasmid-DNA 

To generate stable Arabidopsis tagging lines, we constructed plasmids and transfer them into 

Agrobacterium tumefaciens (Agrobacteria) by electroporation, respectively. All the plasmids 

generated in this study are summarized in Table 7. 

Table 7. Plasmids in Agrobacteria used in this study 

Plasmids Vectors 
Strains of 
Agrobacteria 

Antibiotic resistance 
Plant selection 
marker 

pNUP1::NUP1:GFP pFK206 ASE Specr, kanr, Tetrar,  chlorr Basta 

p35S::CENH3:mcheryy pFK210 ASE Specr, kanr, Tetrar,  chlorr Basta 

pCRWN1::CRWN1:2HA pFK206 ASE Specr, kanr, Tetrar,  chlorr At2S3:mCherry 

pCRWN4::CRWN4:2HA pFK206 ASE Specr, kanr, Tetrar,  chlorr At2S3:mCherry 

pCRWN4::CRWN4:2HA pFK206 GV3101 Specr, gentr, Tetrar,  Rifr At2S3:mCherry 

pCRWN2::CRWN2:2HA pFK206 ASE Specr, kanr, Tetrar,  chlorr At2S3:mCherry 

pCRWN2::CRWN2:2HA pFK206 GV3101 Specr, gentr, Tetrar,  Rifr At2S3:mCherry 
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2.1.6 Enzymes and antibodies 

Restriction enzymes, ligase and DNA modification enzymes were purchased from Thermo 

Fisher Scientific and New England BioLabs. Antibodies were purchased from the companies 

Sigma Aldrich, Invitrogen, Abcam, Santa Cruz and are listed in Table 8.  

Table 8. Antibodies used in this study 

2.1.7 Chemicals, beads and solutions 

All chemicals used in this study are laboratory grade. They were purchased from Sigma-

Aldrich, Carl Roth, Merck, Qiagen, Invitrogen, Duchefa, Fluka, except for specially noted 

ones. Protein A/G magnetic protein beads were purchased from Thermo Fisher Scientific. 

AMPure® XP beads were purchased from Beckman Coulter. All buffers and solutions were 

prepared, if not stated specially, otherwise, with milli-Q water. Sterilization was conducted by 

autoclaving or filter sterilization upon requirements. 

2.1.8 Oligonucleotides 

The oligonucleotides used in this study were synthesized by Eurofins MWG Operon. The 

sequences of these oligonucleotides are listed in Appendix Table 9. 

2.2 Methods 

2.2.1 Plant growth 

2.2.1.1 Growth conditions and treatments 

Arabidopsis seeds were sown on steam-sterilized GS90-soil (Gebr. Patzer GmbH) mixed with 

vermiculite or after surface-sterilization with 70% ethanol (v/v) on sterile 1/2 MS media 

Experiments   Antibody  Host Dilution Company 

RE-ChIP 
 α-GFP rabbit 2.5 µg/sample Abcam 

control IgG rabbit 2.5 µg/sample Santa Cruz 

Western blot  α-HA HRP conjugate rabbit  1:5000 Santa Cruz 

Immunohis-
tostaining 

 
α-HA Alexa Fluor 647 
conjugate 

mouse 1:500 
ThermoFisher 
Scientific 

FISH 

Primary 
antibodies 

α-digoxin mouse 1:500 Sigma Aldrich 

α-dinitrophenyl rabbit 1:500 Sigma Aldrich 

Secondary 
antibodies 

α-mouse Alexa Fluor 488 goat 1:150 Invitrogen 

α-rabbit Alexa Fluor 546 goat 1:150 Invitrogen 
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plates. After stratification of the seeds at 4 oC in the dark for 2 days, the plants were grown in 

long-day (16 light/8h dark) environmental chambers or greenhouse under standard conditions 

(150µmol/cm2s light, 40-60% humidity, 22 oC).  

To examine the effect of H2O2, sodium chloride (NaCl), Ammonium (NH4
+), together with 

Nitrate (NO3
-), and zeocin treatments on Arabidopsis plant growth. After measurement of root 

length of five-day-old seedlings which were grown vertically on 1/2 MS media plates, these 

seedlings were transferred to new media plates supplied with or without one of these 

chemicals, and continued to vertically grow for another five days. The root length of these 

seedlings under normal conditions or treatments was measured again. 

2.2.1.2 Seed surface sterilization 

Sterilization of Arabidopsis seeds was conducted by 70% (v/v) ethanol. Seeds were placed 

into Eppendorf tubes and immersed in 70% (v/v) ethanol. The Eppendorf tubes were laid 

down on a shaker for ~15 min (100 rpm). After incubation, the seeds were rinsed with 

autoclaved milli-Q (ddH2O) water for 3 times and then placed on 1/2 MS square plates (120 

mm x 120 mm). The density is ~25 seeds/line, 4 lines/plate. 

2.2.2 Microbe cultivation 

2.2.2.1 Growth of Escherichia coli 

Escherichia coli (E. coli) strains were cultivated overnight either on LB plates in 37 oC 

incubator or in liquid LB medium in 37 oC shaker at 180 rpm. Appropriate antibiotics were 

added into the medium according to the resistance cassettes of each strain. 

2.2.2.2 Growth of Agrobacteria 

Agrobacteria strains were cultivated either on LB plates in 28 oC incubator or liquid LB 

medium in 28 oC shaker at 180 rpm. Appropriate antibiotics were added into the media on the 

basis of the resistance cassettes carried by strains of Agrobacteria and the containing plasmids.  

2.2.3 Plant methods 

2.2.3.1 Stable transformation of Arabidopsis thaliana 

The stable transformed of Arabidopsis plants were generated according to the floral dip-

method (Clough and Bent 1998). A small volume of pre-culture was prepared from a glycerol 

stock or a fresh plate. Pre-culture was inoculated into 50-200 ml YEP medium with 

appropriate antibiotics selection and grown at 28 oC for about a day. The Agrobacteria cells 
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were pelleted at 3000 g for 10 min at room temperature (RT). After removing the supernatant, 

the bacterial cells were resuspended in fresh 5% sucrose (w/v) solution at a density of ~0.6 

(OD600). After adding 0.02% (v/v) Silwet L-77, young Arabidopsis inflorescences were 

dipped into the bacterial suspension for 30 seconds (sec). Laid the plants sideways in a tray 

and covered the tray with a transparent cover. After 2-day incubation, the plants were 

transferred into the normal growth conditions. Seeds from dipped plants were then screened 

for resistance against phosphinothricin (Basta) or based on mCherry marker on seed coat (red 

fluorescence on seed coat under the fluorescence microscope). 

2.2.3.2 Genotyping analysis of T-DNA insertion lines 

The T-DNA lines used in this study were analyzed for their genotypes. The T-DNA insertion 

lines used for experiments have to be confirmed as homozygous. To distinguish wild-type 

(WT), heterozygous insertion and homozygous insertion, we performed two sets of PCR 

reactions. In the WT-PCR, a pair of primers match two regions flanking the T-DNA insertion 

site and thus amplify the WT allele, while the large size of the T-DNA at the insertion site 

inhibits the amplification in the mutated allele. WT and heterozygous insertion plants 

containing WT allele would get an amplification product. In the second PCR (insertion PCR), 

a T-DNA specific primer (match the left border of T-DNA) and a gene-specific primer are 

used to amplify a product only in plants carrying a T-DNA insertion (heterozygous and 

homozygous insertion plants). Therefore, homozygous insertion plants should exhibit a 

product only in the insertion PCR, WT plants only show a PCR product in the WT-PCR, 

whereas heterozygous plants produce amplicons in both WT-PCR and insertion PCR. Primers 

used for genotyping analysis of T-DNA insertion lines can be found in Appendix Table 9. 

2.2.3.3 Generation of tagging lines 

The NUP1 and CRWN tagging lines used in this study were generated by stably expressing 

native NUP1 or CRWN tagging constructs in their corresponding mutants. The resulting 

vectors were transformed into Agrobacteria by electroporation, respectively. The stable 

expression of the constructs in their corresponding Arabidopsis mutants were conducted by 

using the floral dip method. Offspring were screened based on Basta resistance or selection of 

red fluorescence on seed coat under the fluorescence microscope (mCherry on seed coat). The 

genetic background of the selected lines was further verified by two sets of PCR reactions. In 

the first round of PCR, one pair of primers bind two regions flanking the T-DNA, amplifying 

product from the targeted locus including that in the complementary plasmid but not 
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endogenous locus of the homozygous mutant due to the T-DNA insertion. In the second PCR, 

another pair of primers that can only amplify regions from endogenous locus were used to 

verify the homozygous T-DNA insertion at the endogenous loci. Only tagging lines with 

homozygous mutant background were used to further analyses. Primers used for genotyping 

can be found in Appendix Table 9. 

2.2.3.4 Crossing of Arabidopsis 

To get high-order mutants and analyze the inheritance of mutant phenotypes in the progeny, 

we performed crossing between different Arabidopsis mutants. Arabidopsis are mostly self-

pollinating, and their pollens do not disperse through the air. Therefore, Arabidopsis crossing 

is mainly conducted through manual emasculation of flowers just prior to flower opening, 

followed by hand transfer of pollen from the desired male parent to the stigma of the 

emasculated flower according to the method described in (Weigel and Glazebrook 2006). The 

crossed siliques were harvested by cutting them with scissors and placed them into a 1.5 ml 

Eppendorf tube. 

The seeds were air-dried, and stratified at 4 oC in the dark for 2 days. These plants of F1 

generation were grown in the greenhouse as usual until the plants were big enough for 

genotyping (2.2.3.2). The resulting F2 individuals from self-pollinated F1 plants were used 

for genotyping to get high-order homozygous mutant plants. Seeds from these F2 plants were 

used to do further analysis. 

2.2.4 Molecular biology 

2.2.4.1 Isolation of plasmid from E. coli 

 Plasmid DNA was extracted from 2 ml of overnight E. coli culture using the GeneJET 

MiniPrep Kit (Thermo Scientific) according to manufacturer’s instructions. 

2.2.4.2 Isolation of genomic DNA from plant material 

A small piece of leaf tissue was ground in a 1.5 ml Eppendorf tube with 150 µl extraction 

buffer (200 mM Tris-HCl, pH 9.0; 400 mM LiCl; 25 mM Ethylenediaminetetraacetic acid 

(EDTA); 1% (w/v) sodium dodecyl sulfate (SDS)) by hand or using a homogenizer machine. 

The samples were centrifuge at ≥ 10000 rpm for 5 min. 100 µl of supernatant was transferred 

into a new 1.5 ml tube and mix thoroughly with 100 µl of isopropanol. The mixture was 

centrifuged for 10 min at ≥ 10000 rpm to precipitate genomic DNA. The genomic DNA pellet 
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was washed with 200 µl of 70% (v/v) ethanol and was air-dried at RT. Finally, the DNA 

pellet was dissolved in 30-50 µl ddH2O. 

2.2.4.3 Standard PCR 

In a 10 µl reaction system, 0.5 µl template was added into the mixture (1 µl of 10x Taq 

reaction buffer, 0.2 µl of 10 mM dNTPs, 0.2 µl of 10 µM forward and reverse primer, 0.05 µl 

lab-made Taq polymerase). The reaction was performed in a PCR machine 

(DIVERS/DUTSCHER) with the following program: 94 oC for 4 min; 40 cycles of 94 oC for 

30 sec, 57 oC to 61 oC (determined by primers) for 15 sec, 72 oC for 1 min/kb; followed by 72 
oC for 5 min. 

2.2.4.4 DNA agarose gel electrophoresis 

DNA electrophoresis was performed on a 1% agarose gel in 1x TAE buffer (40 mM Tris-

acetate, pH 8.0; 2 mM EDTA, pH 8.0) at 150-180 V. A 1 kb plus ladder (Thermo Scientific) 

was used as size ladder. Ethidium bromide (Roth) or GelRed (GENAXXON bioscience) 

present in the gel makes the DNA visualized by a UV-Transilluminator (Quantum, Vilber 

Lourmat). 

2.2.4.5 Sequencing 

The constructs and PCR products were sequenced by Eurofins Genomics. 500-750 ng plasmid 

or a certain amount of PCR product (determined by the size of the PCR product) was used as 

a template, and mixed with 2 µl of 10 µM sequencing primer. The results were analyzed using 

SnapGene Viewer software. 

2.2.4.6 Quantitative fluorescent real time PCR 

Quantitative real-time PCR (qPCR) amplifications and measurements were performed with 

the iQ5 Real-Time PCR detection system from Bio-Rad. 0.8 µl of 2 fold diluted ChIP DNA 

was used as the template for qPCR. Amplifications of qPCR were monitored by using MESA 

GREEN qPCR MasterMix plus (Eurogentec) or qPCRBIO Sygreen Mix 

(PCRBIOSYSTEMS). The gene expression data was quantified using the 2 –ΔΔCT method 

(Livak and Schmittgen 2001). The normalization of the expression levels was done using the 

CT values obtained for the TUB2 locus. All quantifications were made in duplicates on ChIP 

DNA samples obtained from two independent experiments. The primers used for qPCR 

analysis are listed in Table 9 (Appendix). 
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2.2.4.7 Digestion of plasmid with restriction endonuclease 

To cleavage the plasmid, which was used as the template for plasmid cloning, PCR products 

were digested with DpnI (New England BioLabs). PCR products were digested in 20 µl 

reaction volume with 1U of DpnI at 37 oC for 1 hour according to manufacturers’ suggestions. 

2.2.4.8 Preparation and calibration of Serapure Beads 

The magnetic SeraMag Speed Beads used to purify DNA fragments from PCR or digestion 

products were prepared in our lab. 1 ml of washed SeraMag Speed Beads were added into a 

sterile 50 ml falcon tube, then 9g of PEG-8000, 25 ml of 5 M NaCl, 500 µl of 1M Tris-HCl 

(pH 8.0), 100 µl of 0.5 M EDTA (pH 8.0) were added slowly into the tube and the solution 

was topped up to 50 mL with ddH2O. 

The prepared SeraMag Speed Beads (lab-made Serapure Beads) were calibrated every two 

months. 2 µl of DNA ladder was mixed with 18 µl of ddH2O and a volume of Serapure Beads 

in a PCR tube and then incubated at RT for 10 min. PCR tubes were placed on a magnet stand 

until the beads were drawn to magnet, the supernatant was removed. The beads were washed 

with 150 µl ethanol (80%, v/v) twice, and air-dried. DNA on the beads was dissolved with a 

volume of 10 mM Tris-HCl (pH 8.0). After removing the beads with magnet, the DNA ladder 

recovered from the beads was compared with the original DNA ladder. 

2.2.4.9 Purification of DNA fragments  

DNA fragments were purified via lab-made Serapure Beads. To collect the DNA fragment 

with expected size from the PCR or digestion products, the products were mixed with equal 

volume of 10 mM Tris-HCl pH 8.0, then a proper volume of the calibrated lab-made Serapure 

Beads was added and mixed thoroughly with a pipettor. The mixture in a PCR tube was 

incubated for 10 min at RT, and then was placed on a magnet stand for 2 min. The beads were 

washed with 150 µl ethanol (80%, v/v) twice and air-dried. Finally, the DNA on the beads 

was dissolved with 10 mM Tris-HCl (pH 8.0).   

2.2.4.10 Gibson Assembly® 

The cloning of DNA fragments into a Gateway-compatible pGREEN-IIS binary destination 

vector was done by Gibson Assembly® (New England BioLabs) according to the 

manufacturer’s instructions. 
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2.2.4.11 Construction of plasmid 

All the constructs used in this study were constructed with an overlapping PCR strategy. For 

pNUP1::NUP1:GFP construct, three fragments of the construct were amplified, respectively. 

One NUP1 genomic fragment, which spanning 600 bp upstream of NUP1 to the NUP1 stop 

codon, was amplified with primers 5’-GTTCGTTAGACTGGTTTAGGT-3’ and 5’-

TTTCTTCCTGGTGGATTTCTT-3’. Another NUP1 genomic fragment spanning the NUP1 

stop codon to 150 bp downstream of NUP1 was amplified with primers 5’-

TTTGGAGAAGAAGGCTTCTCT-3’ and 5’-TAAGAAAAACACATTGTTCAAG-3’. The 

GFP cDNA was amplified with primers 5’-

AAGAAATCCACCAGGAAGAAAGCGGCCGCTGTGAGCAAGGG-3’ and 5’-

CTTGAACAATGTGTTTTTCTTAAGATCCACCAGTATCCTCAC-3’. These PCR 

products were cleaned with lab-made Serapure Beads. Subsequently, these three cleaned PCR 

products were assembled by conducting overlapping PCR and amplified with primers 5’- 

GTTCGTTAGACTGGTTTAGGT-3’ and 5’-TTTGGAGAAGAAGGCTTCTCT-3’. After 

purifying with lab-made Serapure Beads, the final PCR product was cloned into a Gateway-

compatible pGREEN-IIS binary destination vector (pFK206) by Gibson Assembly®(Karlsson 

et al., 2015). Similar like this, to get the mCherry:CENH3 fusion protein, cDNA of mCherry 

was amplified with primers 5’-GTAAAAATCAATGGCCATCATCAAGGAGTT-3’ and 5’-

ACGCGATGCTTGGTTCTCGCACCGCCACCCTTGTACAGCTCGTCCATGC-3’, and the 

genomic fragment of CENH3 (AT1G01370) was amplified with primers 5’-

GCGAGAACCAAGCATCGCGT-3’ and 5’-TCACCATGGTCTGCCTTTTC-3’. These two 

fragments were purified with lab-made Serapure Beads, and then were cloned into a Gateway-

compatible pGREEN-IIS binary destination vector including a 35S promoter (pFK210) by 

Gibson Assembly®(Karlsson et al., 2015). 

Three native CRWN1 tagging constructs were used to generate functional complementary 

lines of crwn1. Each of the three CRWN1 tagging constructs was constructed via performing 

overlapping PCR of two fragments. For pCRWN1::CRWN1:2HA construct, in which a 

tandem HA tag was inserted into CRWN1 at its C terminal. One fragment of the construct 

spanning 1.7 kb upstream of CRWN1 to the CRWN1 stop codon was amplified with primers 

5’- TTACGTTTTATTGTGGTCTTC -3’ and 5’- 

AGGGTATCCAGCATAATCTGGTACGTCGTATGGGTATCCCGTCGTCAAGAAAGTC

CAAA -3’. The other fragment spanning the CRWN1 stop codon to 500 bp downstream of 
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CRWN1 was amplified with primers 5’-

GATTATGCTGGATACCCTTACGACGTACCAGATTACGCTTAGCCCAATCTTTGATC

AGAGA -3’ and 5’- ATAATACTGTCAAGAGTGATG -3’. For pCRWN1::2HA:CRWN1 

construct, in which the tandem HA tag was inserted into CRWN1 at its N terminal. The two 

fragments of the construct were amplified by two pairs of primers: 5’- 

TTACGTTTTATTGTGGTCTTC -3’ in combination with 5’- 

AGGGTATCCAGCATAATCTGGTACGTCGTATGGGTATCCCATCTCTCACAATTCG

CACAG -3’; and 5’- GATTATGCTGGATACCCTTACGACGTACCAGATTACGCT 

TCCACGCCGTTGAAGGTGTGG -3’ in combination with 5’- 

ATAATACTGTCAAGAGTGATG -3’, respectively. For pCRWN1::CRWN1_780:2HA 

construct, which the tandem HA tag was inserted at the 780th amino acid residue of CRWN1. 

The two fragments of this construct were amplified by two pairs of primers: 5’- 

TTACGTTTTATTGTGGTCTTC -3’ coupling with 5’-  

AGGGTATCCAGCATAATCTGGTACGTCGTATGGGTATCCAGCAGTTGGGGATATA

TCCC -3’; and 5’- 

GATTATGCTGGATACCCTTACGACGTACCAGATTACGCTGCTGGCTTAGGATTGC

CAGTT -3’ coupling with 5’- ATAATACTGTCAAGAGTGATG -3’, respectively. The two 

fragments of each construct were first cleaned with lab-made Serapure Beads, following by 

assembly with overlapping PCR, and then amplified with primers 5’- 

TTACGTTTTATTGTGGTCTTC -3’ and 5’- ATAATACTGTCAAGAGTGATG -3’. Then, 

the final PCR products of individual constructs were cloned into pFK206 vectors by Gibson 

Assembly®, respectively. 

The native CRWN4 and CRWN2 tagging constructs were also generated by overlapping PCR 

of two fragments. The two fragments of the pCRWN4::CRWN4_850:2HA construct were 

amplified with primers: 5’- ACTAATCTTTTCTACTAGCTTAAC -3’ in combination with  

5’- 

AGGGTATCCAGCATAATCTGGTACGTCGTATGGGTATCCAGTACATCGTTTTATC

CATGA -3’; and 5’- 

GATTATGCTGGATACCCTTACGACGTACCAGATTACGCTAATCTGATTTTCAAGA

CTTCTCCA -3’ in combination with 5’- GCTACGAGCTACTTCGATGATAC -3’, 

respectively. These two fragments were assembled with overlapping PCR after purification 

with lab-made Serapure Beads and amplified with primers 5’- 
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ACTAATCTTTTCTACTAGCTTAAC -3’ and 5’- GCTACGAGCTACTTCGATGATAC -3’. 

The subsequent PCR product was firstly cleaned by lab-made Serapure Beads and then was 

cloned into the pFK206 vector. For pCRWN2::CRWN2_800:2HA, one fragment of the 

construct was amplified with primers 5’- AAACCCAACTTTGAACGACGA -3’ and 5’- 

AGGGTATCCAGCATAATCTGGTACGTCGTATGGGTATCCTGGAAGGTCATTCAAA

ACTCC -3’. The other fragment of the construct was amplified with primers 5’- 

GATTATGCTGGATACCCTTACGACGTACCAGATTACGCTGGAAGCTCTAATGCAT

CTGACTCT -3’ and 5’- CGAGAGGTCGTTGGGAATCAA -3’. The two fragments were 

purified with lab-made Serapure Beads, followed by assembly with overlapping PCR, and 

amplification with primers 5’- AAACCCAACTTTGAACGACGA -3’ and 5’- 

CGAGAGGTCGTTGGGAATCAA -3’. After cleaning with lab-made Serapure Beads, the 

final PCR product was cloned into the pFK206 vector by Gibson Assembly®. 

2.2.4.12 Preparation and transformation of chemically competent E. coli DH5α cells 

E. coli DH5α was streaked out onto a LB plate and grown overnight in a 37 oC oven. A mono-

colony of E. coli DH5α was grown in 5 ml of LB medium overnight in a 37 oC shaker with 

180 rpm shaking. 20 µl of overnight culture was inoculated into 200 ml LB medium in a 

sterile 1-liter flask and grown in a 37 oC shaker with 180 rpm to the second day until an 

OD600 of ~0.60. The culture was divided into four pre-chilled falcon tubes (50 ml/each) and 

incubated for 10 min on ice. The E. coli DH5α cells were collected at 3000 rpm for 5 min at 4 
oC. Cell pellets in every falcon tube were suspended in 16 ml of buffer I (100 mM RbCl; 50 

mM MnCl2; 30 mM C2H3KO2; 10 mM CaCl2; 1.6 M glycerol) and incubated on ice for 15 

min. Cells of each falcon were re-collected at 3000 rpm for 5 min at 4 oC and resuspended 

with 4 ml buffer II (10 mM MOPS, pH 6.8; 10 mM RbCl; 75 mM CaCl2; 1.6 M glycerol).  

The resuspensions were aliquoted in 100 µl into pre-chilled Eppendorf tubes and immediately 

frozen in liquid nitrogen and stored at -80 oC. 

One aliquot of chemically competent cells was taken from -80 oC and thawed on ice. Plasmid 

or recombination product from Gibson Assembly reaction was added to the aliquot and kept 

on ice for ~5 min. The mixture was heat-shocked at 42 oC for 1 min and immediately put on 

ice for ~5 min. After adding 1 ml LB medium, the mixture was incubated at 37 oC for 1 hour 

on a shaker. Subsequently, the mixture was centrifuged at 3500 rpm for 5 min at RT.  

Followed by removing 1 ml supernatant, and the cell pellet was resuspended with the 
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remaining liquid. The transformed cell resuspension was spread onto a LB medium plate with 

appropriate antibiotics. 

2.2.4.13 Preparation and transformation of electrical competent cells of Agrobacteria 

The agrobacteria strains were spread onto a YEP plate with selective antibiotics and grown at 

28 oC for 2 days. A single colony was picked to inoculate in 5 ml LB liquid medium with 

appropriate antibiotics. The culture was grown overnight at 28 oC and then enlarged with 200 

ml and grown to an OD600 of ~1.0. Next, the culture was equally divided into four pre-

cooled 50 ml falcon tubes and then centrifuged at 4 oC for 10 min at 4,000g. The cell pellet in 

each tube was resuspended with ice-cooled resuspension buffer (10% (v/v) Glycerol; 1 mM 

Hepes, pH 7.0; autoclaved) and centrifuged at 4 oC for 10 min at 4000 G to wash the cells. 

After repeating this washing step once again, the cells in every tube were resuspended in 1 ml 

of resuspension buffer. Next, the resuspensions were aliquoted into 50 µl aliquots. Finally, 

these aliquots were frozen in liquid nitrogen immediately and stored at -80 oC. 

One aliquot of electrical competent Agrobacteria cells was thawed on ice, and then 100-200 

ng target plasmid and 50-100 ng helper plasmid (pSaup) were added. After transferring the 

mixture into a pre-cooled electroporation cuvette, the cells were pulsed once with 2,2000 

voltage for ~ 5 milliseconds (BioRad), the cuvette was put back on ice, and then 1000 µl of 

SOC medium (2% Tryptone; 0.5% Yeast extract; 10 mM NaCl; 2.5 mM KCl; 10 mM MgCl2; 

10 mM MgSO4•7H2O; 10 mM Glucose; adjust pH to 7.0) was added to the cuvette. Cells 

were quickly resuspended by gently pipetting up and down and then transferred into a 1.5 ml 

Eppendorf tube. After incubating the tube in a shaker at 28 oC for 1 hour, the mixture was 

centrifuged at 3000 rpm at RT for 5 min. 950 µl of supernatant was discard and cell pellet was 

resuspended with the remaining SOC medium. The resuspension was plated onto a selective 

YEP plate and incubated in a 28 oC incubator for 2 days. 

2.2.4.14 Western blot analysis 

The total protein used for Western blot analysis was extracted from plant leaf tissue using a 

protein isolation buffer (50 mM Tris-HCl pH 7.5; 0.1% (v/v) Tween 20; 150 mM NaCl; 0.1% 

(v/v) β-mecaptoethanol was added freshly before use). The plant tissue was first homogenized 

in liquid nitrogen and mixed thoroughly with the isolation buffer. Afterwards, the soluble 

proteins were separated from cell debris using centrifugation at 4oC and the supernatant was 

used for western blot analysis. 
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10% sodium dodecyl sulfate polyacrylamide (SDS-PA) gels were used as separating gels 

(with 5% stacking gels) for the discontinuous sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) by using the Laemmli method (Laemmli 1970). The PageRuler 

Prestained Protein Ladder (Thermo Scientific) was used as a protein marker. 

For the western blot analysis, the proteins were transferred after SDS-PAGE onto a Pre-cut 

polyvinylidene difluoride (PVDF) membrane (0.2 µm pore size, Invitrogen) by semi-dry blot 

using the “Standard” protocol for 45 min. The transfer buffer comprised 48 mM Tris-HCl (pH 

7.2), 39 mM Glycine, 0.0375% (w/v) SDS and 20% (v/v) methanol. For immunoblotting, 

unspecific binding sites were blocked by incubating the membrane for 1 hour at RT with 5% 

(w/v) milk powder in 1 x TBST (150 mM NaCl; 10 mM Tris-HCl, pH 7.6; and 0.05% (v/v) 

Tween 20).  After two times washing the membrane with 1 x TBST for 5 min, the membrane 

was incubated with the anti-HA tag antibody conjugated with 1:5000 horseradish Peroxidase 

(HRP) (Santa Cruz) for at least 1 hour at 4 oC. Following by three times washing the 

membrane for 5 min with 1 x TBST, the signals of the HRP were detected by using the 

Western BloT Chemiluminescence Hyper HRP Substrate (TaKaRa) according to the 

manufacturer’s instructions. Finally, the signals were captured and analyzed with 

AmershamTM Imager 600 system (GE Healthcare Life Science). 

2.2.4.15 RE-ChIP sequence library preparation 

Seedlings (10-day-old) were collected and fixed in MC buffer (10 mM Potassium Phosphate, 

pH 7.0; 50 mM Sodium Chloride; 0.1 M sucrose) supplemented with 1% (v/v) formaldehyde 

by performing vacuum infiltration for 15 min at RT two times. The remaining formaldehyde 

was quenched by 0.15 M glycine in MC buffer. After briefly rinse the fixed samples with 

water twice, the fixed tissues were gently dried by blotting them with tissue towels gently. 

Nuclei extracted from 0.5 g fixed materials were used for one round of RE-ChIP sequence 

(RE-ChIP-seq) library preparation. The procedure for this is presented in Figure 2. Nuclei 

isolation was performed according to the protocol described in (Wang et al., 2015a). Nuclei 

were incubated with 150 µl of 0.5% (w/v) SDS at 62 oC for 5 min to permeabilize the nuclear 

membrane, and the remaining SDS was quenched with addition of 75 µl of 10% (v/v) Triton 

X-100. Subsequently, chromatin inside nuclei was digested overnight at 37 oC with 150 U 

DpnII, which was deactivated on the next day morning at 62 oC for 20 min. Next, the treated 

nuclei were collected by centrifuging at 1000 G for 3 min, and resuspended with 1 ml 

sonication buffer (10 mM Potassium Phosphate, pH 7.0; 0.1 Mm NaCl; 0.5% (w/v) Sarkosyl; 
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10 mM EDTA, pH 8.0), and sheared by sonication with a Covaris S220 instrument (set at 20 

dc, 1 i, 200 cpb, 15 sec). The sonicated sample was centrifuged at 14000 rpm for 5 min at 4 
oC, and the supernatant was mixed with 100 µl of 10% (v/v) Triton X-100. Subsequently, the 

sheared chromatin was mixed with equal volume of IP buffer (50 mM Hepes, pH 7.5; 150 

mM NaCl; 5 mM MgCl2; 10 µM ZnSO4; 1% (v/v) Triton X-100; 0.05% (w/v) SDS), and then 

equally divided into two tubes, followed by incubation with anti-GFP antibody (Abcam, ab-

290) and normal rabbit IgG (Santa Cruz, sc-2027), respectively. Following overnight 

incubation at 4 oC with inversion, 10 µl of Protein A/G magnetic beads (Pierce) were added 

and incubated with inversion at 4oC for 2 hours. The beads were collected and then washed at 

4oC as followings: three times with IP buffer, one time with IP buffer containing 500 mM 

NaCl, one time with LiCl buffer (0.25 M LiCl; 1% (v/v) NP-40; 1% (w/v) deoxycholate; 1 

mM EDTA, pH 8.0; 10 mM Tris-HCl, pH 8.0), for 5 min each. Chromatin retained on the 

beads were incubated in 200 µl of elution buffer (50 mM Tris-HCl, pH 8.0; 200 mM NaCl; 1% 

(w/v) SDS; 10 mM EDTA, pH 8.0) at 65 oC for at least 6 hours. After the addition of 

Proteinase K, the mixture was incubated at 37 oC for 1 hour. DNA was extracted with a 

standard phenol-chloroform method. To increase sequence diversity at the ends of DNA, the 

immunoprecipitated DNA was incubated with dsDNA Fragmentase® (NEW ENGLAND 

BIOLABS) at 37oC for 25 min, leading to that the DNA was randomly cut into 100~200 bp 

fragments. The digested DNA was purified with AMPure® XP beads (Beckman Coulter), and 

all the subsequent end repairing, A-tailing, adaptor ligation, library amplification steps were 

performed according to a standard protocol (Illumina). The subsequent libraries were 

sequenced on an Illumina HiSeq 3000 instrument with 2 x 150 bp reads. 

For sequencing analysis, pair-end reads were aligned against the Arabidopsis thaliana 

reference genome (TAIR 10) using Bowtie 2 v2.2.4 (Langmead and Salzberg 2012) with a 

“very sensitive” mapping mode. For each replicate, the mapped reads were analyzed by 

SICER v1.1 (Zang et al., 2009) to call enriched regions (parameters: W = 1000; G = 3000; 

FDR < 0.01). For each type of tissue, regions shared between the two replicates were 

extracted, which were categorized as domains enriched at the NP (or NUP1-enriched 

domains). The annotation of Arabidopsis gene was retrieved from Ensembl Genomes 

(ftp://ftp.ensemblgenomes.org/) (release-24) (Kersey et al., 2016). A gene was claimed as an 

enriched gene if more than 80% of its transcribed region overlapped with NUP1-enriched 

domains.  
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Figure 2. Experiment workflow of RE-ChIP-seq with transgenic Arabidopsis plants expressing 
NUP1:GFP.  
In the zoomed-in sketch shown at the upper right corner, dash lines depict weak/indirect interactions between the 
bait proteins (NUP1:GFP) and chromatin located nearby. 

2.2.4.16 FISH  

The FISH experiment in this study was performed according to (Prieto et al., 2007; Wegel et 

al., 2009) with modifications. For labeling specific genomic regions, selected BACs were 

retrieved from the ABRC stock center. After DNA isolation by employing standard alkaline 

lysis protocol, the identities of BACs were confirmed by PCR. BACs selected for FISH in this 

study were labeled with either digoxigenin-11-dUTP (DIG) or Dintrophenyl-11-dUTP (DNP) 

by nick translation, which were detected with Alexa Fluor 488 (Green) or Alexa Fluor 546 

(Red), respectively. The reactions were incubated for 90 min at 15 oC and subsequently 

stopped by the addition of 1 µl of 0.5 M EDTA (pH 8.0) and heating up to 65 oC for 10 min. 

These individual FISH probes were detected in an electrophoresis gel and the size of every 

probe should be 200-500 bp. The labeled probes were then purified by using lab-made 

Serapure Beads and dissolved in 10 mM Tris-HCl (pH 8.0). Note that these labeled probes 

can be stored in -20 oC for months. 

For each FISH experiment, one green FISH probe (DIG-labeled) and one red FISH probe 

(DNP-labeled) were used, allowing for performing dual color FISH. For probes targeting 

regions shown in Figure 12, the concentration of every labeled BAC was 1 ng/µl in working 
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hybridization solution. For probes used for chromosome painting shown in Figure 17, the 

concentration of each labeled BAC in the working hybridization solution was 0.05 ng/µl. To 

prepare the working hybridization solution of the green and red probes, a certain volume (the 

volume of every probe was determined by the number of the BACs in each probe and the 

probe concentration) of the green and red probe was mixed together and then dried by Speed 

Vacuum pump, followed by dissolving in 5 µl of hybridization buffer (10 ml of hybridization 

buffer containing: 5 ml of deionized formamide; 2 ml of 50% dextran sulfate; 1 ml of 20x 

SSC (3M NaCl; 300 mM Sodium Citrate, pH 7.0), 125 µl of 10 mg/ml salmon testes DNA, 

125 µl of 10% (w/v) SDS, 1750 µl of sterile ddH2O). After transferring the FISH probe work 

solution into a PCR tube, the FISH probe was denatured for 15 min at 95 oC and stored on ice 

until the hybridization.  

Here is the procedure to collect 2C nuclei for FISH (Figure 3). Arabidopsis seedlings (10 days) 

grown on 1/2 MS medium supplied with 1% sucrose were fixed in 1% formaldehyde in PBS 

buffer (3.0 g/L NaCl; 0.24 g/L Potassium Phosphate; 1.42 g/L Disodium Phosphate; 0.2 g/L 

Potassium Chloride; adjust pH to 7.4) for 30 min under vacuum at RT. The seedlings were 

washed three times with sterilized water and then chopped in general purpose buffer (GPB) 

(0.5 mM Spermine •4HCl; 30 mM Sodium Citrate; 20 mM MOPS; 80 mM KCl; 20 mM NaCl; 

adjust pH to 7.0; sterilized by 0.2 µm filter, store at 4 oC). To remove residual cellular debris, 

the nuclei were filtered through a 22~25 µm Miracloth (Merck Millipore) and then filtered 

through a 40 µm cell-stainer. The extracted nuclei were stained with 0.5 µM DAPI to reveal 

their ploidy levels. Subsequently, the DAPI stained nuclei were flow sorted on a MoFlo 

(Modular Flow) XDP model (Beckman Coulter) flow-sorting platform. Around 5000 sorted 

2C nuclei were collected for one hybridization spot (~1 cm2). 

After nuclei sorting, the nuclei were centrifuged for 1000 G at 4 oC for 5 min, and the pellet 

was resuspended with 10 µl of PBS buffer (pH 7.4). Then the nuclei were incubated at 65 oC 

for 30 min, and mixed with 5 µl of 0.1 mg/ml RNase A. The mixture was transferred onto a 

Superfrost Ultra Plus Adhesion Slide (ThermoFisher Scientific) and incubated for 1 hour at 

37 oC in a Thermocycler in humidity chamber (PBS buffer, pH 7.4). At the end of RNase A 

treatment, the nuclei became attached to the glass slide. The slide was washed with PBS 

buffer (pH 7.4) for 5 min at RT and with 0.75% (w/v) NaCl for 3 min at RT. Next, the nuclei 

on the slide were dehydrated in an ethanol gradient, stepping from 30% (containing 0.75% 
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NaCl), to 60% (containing 0.75% (w/v) NaCl), to 80%, to 90%, to 95%, to 100% (two times) 

ethanol (v/v). Then the slide was air-dried at RT for 30 min to 60 min.  

 

 
Figure 3. Procedure of 2C nuclei collection for FISH. 
Scale bars: 5 µm. 

The denatured probes were transferred onto the FISH spot of the slide, and then the spot was 

covered with a plastic coverslip to prevent evaporation. The chromatin regions within nuclei 

on the slide were hybridized with corresponding FISH probes in a Thermocycler in humidity 

chamber (soaking buffer (2x SSC buffer; 50% formamide)) with the programs: 75 oC for 8 

min, 50 oC for 1 min, 37 oC for 16~20 hours. 

After hybridization, the slide was washed at 42 oC as follows: once with soaking buffer, twice 

with 2x SSC buffer, twice with 20% (v/v) formamide in 0.1x SSC buffer, twice with 2x SSC 

buffer, for 5 min each. Then the slide was washed at RT twice with 2x SSC for 5 min, once 

with 4x SSC-Tween (0.2% (v/v) Tween 20 in 4x SSC buffer) for 10 min. Subsequently, the 
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nuclei on the slide were incubated for 10 min at RT in 100 µl of blocking solution (5% bovine 

serum albumin (BSA); 4x SSC-Tween). Then the binding of antibody was performed for 

probe detection. To do this, 100µl of the working solution of first antibodies (1 µl of 

monoclonal anti-digoxin mouse antibody (Sigma) and 1 µl of rabbit anti-dinitrophenyl 

antibody (Sigma) stock solution were diluted in 500 µl of blocking solution and mixed by 

pipetting) was added onto the slide and then incubated for 1 hour at RT. The slide was washed 

twice with 4x SSC-Tween for 5 min at RT. Next, 50-100 µl of working solution of second 

antibodies (1 µl of Alexa Fluor 488 goat anti-mouse antibody (Invitrogen) and 1 µl of Alexa 

Fluor 546 goat anti-rabbit antibody (Invitrogen) were diluted in 150 µl of blocking solution 

and mixed by pipetting). To remove the excess unbound antibodies, the slide was washed in 

4x SSC-Tween for 5 min at RT. Finally, the slide was mounted with 5 µl of SlowFade® 

Diamond Antifade Mountant with DAPI (ThermoFisher Scientific) to stain the DNA and 

protect the FISH signals from the laser. 

2.2.5 Immunohistostaining  

Seedlings of CRWN1:2HA crwn1 were fixed and then embedded in paraffin as described in 

(Liu et al., 2013). Slides with paraffin sections of leaf tissue were dewaxed and rehydrated 

with PBS buffer (pH 7.4). Next, an antigen retrieval step was conducted with Universal HIER 

antigen retrieval reagent (Abcam) according to manufacturers’ instructions. The slides were 

incubated with 1:500 diluted HA Tag Alexa Fluor 647 conjugate (ThermoFisher Scientific). 

After washing, SlowFade® Diamond Antifade Mountant with DAPI (ThermoFisher Scientific) 

was used to mount the slides.  

2.2.6 Microscopy and image processing 

Confocal images of fluorescent proteins (GFP and mCherry) in nuclei were acquired with the 

Leica SP8 AOBS system (Leica, Germany). These images were processed with ImageJ 

software and finally assembled in Photoshop. 

Confocal images of the FISH treated nuclei were acquired with a Zeiss LSM 880 Airyscan 

system (Zeiss, Germany). To measure the distance of selected genomic regions to the NP, a 

single image of a nucleus was captured if it had at least one distinct green and red signal spots 

at the same focal plane. The distance between its estimated barycenter and the edge of DAPI 

signal was recorded as the distance of a signal spot to the NP. For example, see Figure 13. For 

chromosome painting, the data was acquired as z-stack. For each image, ImageJ (Schneider et 
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al., 2012) was used to determine the nuclear boundary according to DAPI signal; while 

signals in green and red channels were extracted from the corresponding image files (Figure 

23). The nuclear part closed to the glass slide was found to become flattened, probably 

because of capillary forces. To reduce possible errors in the distance calculation of this area, 

two images at the bottom of each nucleus were excluded so that our data analyses were only 

applied to a subset of the nuclear space (Figure 23). Because nuclei were landed on slide 

randomly, the distribution of FISH signals along the z-axis is not dependent on distance to the 

nuclear boundary. Therefore, in principle, such data exclusion should have no effect on the 

conclusion concerning signal distribution in the remaining nuclear part.  

Confocal images of immunohistostained tissue sections were acquired with a Zeiss LSM 880 

Airyscan system (Zeiss, Germany). Image processing was done with the ImageJ software. 

2.2.7 Statistical analysis 

Statistical analysis was performed with R software using Mann-Wilcox U test (one-side) for 

data of distance distribution, Wilcoxon signed-ranked tests for data of P0.5 (Figure 23 and 

Figure 24) and Mann-Whitney U test (two-side) for data of nuclear morphology and root 

length. The p values were listed in the corresponding figures. 
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3. Results 

3.1 Identification and characterization of chromatin anchoring at the NP in Arabidopsis 

3.1.1 Non-random chromatin distribution at the NP revealed by RE-ChIP 

The nucleoporin NUP1 (also known as NUP136) has been shown to be localized specifically 

at the NP in Arabidopsis (Tamura et al., 2010). In this study, the NUP1 protein, fused with 

GFP was used to identify chromatin regions interacted with NPC, which might be involved in 

the “gene gating” events that have been reported in yeast and animals (Blobel 1985; 

Strambio-De-Castillia et al., 2010). In line with previously published results, the NUP1:GFP 

fusion protein shows specific localization at the NE (Figure 4A). However, we could not 

identify any chromatin regions enriched by NUP1:GFP when we conducted regular ChIP 

experiment (Figure 4B), although our ChIP-seq libraries had been sequenced more deeply 

than typically needed for Arabidopsis (Appendix Table 10). By comparison, a parallel ChIP 

experiment using an antibody against Pol II was performed on the same materials, exhibited 

expected enrichment of the transcribed genes, excluding possible technical failures in our 

ChIP experiments. This negative result implied that NUP1:GFP did not interact directly with 

chromatin, or did not show such interactions, if they existed, the interactions preserved by 

crosslinking treatment were not effectively preserved in our regular ChIP experiment. To 

enhance the sensitivity of enriching chromatin loosely dangling around NUP1:GFP, a 

modified ChIP protocol was developed in our lab, in which a RE is used to digest chromatin 

and then only mild sonication is applied to break the nuclei and fragmentize chromatin further 

(Figure 2) (see details in Methods). As a RE was used in the protocol, this protocol was called 

RE-mediated ChIP. Compared with a regular ChIP protocol, in which chromatin is sheared 

into small chromatin segments by much stronger sonic waves, higher-order structures are 

disrupted less slightly in the RE-mediated ChIP. In terms of NUP1:GFP ChIP, enrichment of 

the chromatin positioned around the NPC, or the NP would be achieved by the RE-mediated 

ChIP method. 

Two RE-mediated ChIP-seq experiments with different sonication intensities were conducted, 

and the sequence coverage with a 50-kb window setting was used to gain an overview of the 

distribution of sequencing reads. Intriguingly, the RE-mediated ChIP with NUP1:GFP (from 

here termed as NUP1:GFP RE-ChIP-seq) revealed that pericentromeric chromatin regions 

were commonly enriched, whereas chromatin on the distal chromosome arms tended to be 
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depleted (Figure 4C). Furthermore, many interstitial regions on the chromosome arms were 

found to have stronger interact with NUP1:GFP, for example, an interval corresponding to 

2.0-3.0 Mb on chromosome 5 (Figure 4C). In contrast, some chromatin regions closed to PRs 

were not enriched by NUP1:GFP ChIP (e.g., an interval corresponding to 9.8-10.2 on 

chromosome 3) (Figure 4C). It was found that the patterns revealed by NUP1:GFP RE-ChIP-

seq were clearly correlated with sonication strength (Figure 4B). To verify our RE-ChIP 

method, a RE-ChIP-seq experiment with anti-H3K9me2 was carried out, and compared the 

results with those came from a regular ChIP-seq (Stroud et al., 2014). The RE-ChIP with anti-

H3K9me2 clearly captured the heterochromatin in PRs, which were in accordance with the 

previously reported results that the Arabidopsis PRs exhibited heavy H3K9me2 mark (Figure 

5). Notably, enriched chromatin regions captured by the RE-mediated ChIP method were 

found to be overlapped 70%-80% of the regions captured by a regular ChIP method (Figure 

5C), indicating the feasibility of our RE-ChIP method in capturing chromatin regions in plants. 

Consistently, the results of FISH did by our collaborators (Ying-juan Cheng and Jia-Wei 

Wang, University of Chinese Academy of Sciences, Shanghai 200032, People’s Republic of 

China) demonstrated that selected regions showing higher NUP1:GFP RE-ChIP signals were 

localized closer to the NP than those showing depleted contacts with NUP1:GFP. Taken 

together, the NUP1:GFP RE-ChIP experiments suggest that certain chromatin regions on the 

Arabidopsis chromosome arms are preferentially found close to the NP. 

Chromocenters, which consist of the centromeric and pericentromeric regions, have been 

reported to be localized preferentially at the NP (Fransz et al., 2002; Fang and Spector 2005). 

Interestingly, it was found that chromatin in centromeric regions was not enriched in the 

NUP1:GFP RE-ChIP-seq experiments (Figure 4C). One possible speculation accounting for 

this observation was that NPCs (or at least NPCs that contain NUP1) were not equally 

distributed at the NE, such that the density of NPC was lower at places where chromocenters 

are localized. For instance, it has been demonstrated that kinetochore proteins interact with 

Arabidopsis centromeres (Lermontova et al., 2006), suggesting that centromeres might be 

sequestered away from NPCs by these kinetochore proteins. To verify this scenario, a 

transgenic line co-expressing NUP1:GFP and mCherry:CENH3 (It has been demonstrated 

that CENH3 was solely loaded to centromeres (Lermontova et al., 2006)) was generated, and 

the patterns of these two fusion proteins in the nucleus were examined. These two fusion 

proteins showed complementary patterns at the NP, which provided an explanation for the 

observation that centromeric chromatin was not captured by NUP1:GFP RE-ChIP (Figure 4C 
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and Figure 6). Except for centromeric regions, PRs on each individual chromosomes 

exhibited the highest NUP1:GFP RE-ChIP-seq signals (Figure 6B-6F), which was in line with 

the fact that Arabidopsis chromocenters showed preferential localization at the NP (Fransz et 

al., 2002). 

 
Figure 4. Identification of chromatin regions localized at the NP by NUP1:GFP RE-ChIP. 
(A) Localization of the NUP1:GFP protein in a nucleus of Arabidopsis. Scale bar: 2 µm. (B) Normalized 
sequence coverage (50-kb window size) on chromosome 5 from different ChIP experiments. The horizontal bar 
in each plot depicts pericentromeric region, within which centromeric region is highlighted in red. (C) 
NUP1:GFP RE-mediated ChIP-seq signal (50-kb window size), represented as the log2 value of the ratio 
between normalized anti-GFP and IgG coverage, over all five chromosomes. Horizontal bars indicate the 
centromeric/pericentromeric regions, as in (B). RE-ChIP data was analyzed by Dr. Chang Liu. 
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Figure 5. Comparison between RE-ChIP and regular ChIP. 
(A) RE-ChIP-seq signals with anti-H3K9me2 antibodies (Abcam ab1220). The materials used for this 
experiment were 7-day-old WT seedlings. Labels in this figure are the same as in Figure 4C. (B) Distribution of 
enriched chromatin regions on chromosome 1, viewed with the Integrative Genomic Viewer browser (Robinson 
et al., 2011). For the regular ChIP-seq data (Stroud et al., 2014), the enriched regions were identified based on 
the SICER v1.1 program with window size and gap size set as 200 and 400, respectively (Zang et al., 2009). For 
the RE-ChIP, the enriched regions were revealed as described in Methods. The middle and the lower panels 
show zoomed-in areas of enriched pericentromeric heterochromatin. (C) Venn diagram of chromatin regions 
enriched with different ChIP methods. Data of these two kinds of ChIP experiments was analyzed by Dr. Liu. 
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Figure 6. NUP1 and CENH3 display complementary patterns at the NP. 
 (A) Three consecutive z-stack confocal images of root cell nuclei showing NUP1:GFP and mCherry:CENH3 
patterns. The top row shows NUP1:GFP (green) and mCherry:CENH3 (red) signals. The bottom row shows 
pixel intensities of the green florescence image. Arrows depict centromeres. Scale bar, 2 µm. (B to F) 
Distributions of NUP1:GFP RE-ChIP-seq signals (green line) and heterochromatic marks in five Arabidopsis 
thaliana chromosomes. Plots are according to a 50-kb bin setting. For the H3K9me2 (red line) and DNA 
methylation (black line) marks, the average enrichment (y-axis on right) means the percentage of regions 
enriched for the respective epigenetic mark. For all panels, the horizontal bars depict heterochromatic regions, 
within which centromeric regions are highlighted in red. Epigenetic data is from an integrated Arabidopsis 
epigenome (Wang et al., 2015a). Note that the data of DNA methylation and H3K9me2 was analyzed by Dr. Liu. 

3.1.2 Chromatin positioning at the NP shows similar patterns in various tissues 

As it was found that chromatin from the whole-plant seedlings positioning at the NP was not 

random, we next asked to which extent these profiles varied among different plant tissues. To 

investigate this, we explored NUP1:GFP RE-ChIP-seq data generated from four different 

tissues (root, 7-day-leaf, 30-day-leaf and inflorescence) (see Appendix Table 11). It was 
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found that patterns of NUP1:GFP RE-ChIP-seq signal in these tissues were highly 

reproducible between the two biological replicates (Figure 7-9). Interestingly, from the 

chromosomal scale, NUP1:GFP RE-ChIP-seq data acquired from various tissues displayed 

similar patterns (Figure 7-8). A common feature across these four Arabidopsis tissues was 

that the majority of enriched chromatin regions were located close to centromeres (Figure 7-

8). These results imply that even though both the linear genome structure and the tissue 

identity make contributions to how the chromatin is tethered at the NP, the former is the main 

contributor. The difference in NUP1:GFP RE-ChIP-seq signal amplitudes between PRs and 

distal chromosome arms in inflorescence was found to be smaller than that in other tissues 

(Figure 7-8). It should be noted that all kinds of cell types presented in the harvested tissues 

were used to conduct RE-ChIP experiments; therefore, an average of the RE-ChIP-seq signals 

from the mixed cell types was generated. Compared with root and leaf tissues, the lower 

NUP1:GFP RE-ChIP signals near PRs in inflorescence tissue might be due to a dilution effect 

that different chromatin positioning profiles exist in various cells. 
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Figure 7. NUP1:GFP RE-ChIP-seq signals in various tissues. 
Signals of NUP1:GFP RE-ChIP-seq (20-kb window size), represented as the log2 value of the ratio between 
normalized anti-GFP and IgG sequence coverage over all five chromosomes. For each tissue, the solid and 
dotted lines depict two replicates. The data was analyzed by Dr. Chang. 
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Figure 8. Comparison of NUP1-enriched chromatin segments in different tissues. 
Distribution of NUP1-enriched domains across the genome viewed with the Integrative Genomic Viewer 
browser (Robinson et al., 2011).  

 
Figure 9. Comparison of NUP1-enriched genes in the two replicates. 
Venn diagram of enriched genes. For each tissue, the number in middle means shared genes in two replicates. 
The data was analyzed by Dr. Chang Liu. 
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3.1.3 Chromatin positioned at the NP was enriched with repressed domains 

 
Figure 10. Enrichment of heterochromatin and silenced genes at the NP. 
(A) Heterochromatin marks around NUP1-enriched domain borders, shown as a vertical line separating the 
white and gray blocks. For each plot, the area on the right indicates NUP1-enriched domains (although not all 
are larger than 10 kb). Average enrichment means the percentage of regions (calculated from 100-bp windows) 
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enriched for the respective heterochromatin mark. As enrichment of gene bodies is found inward from NUP1-
enriched domain boundaries, for the background, 3000 genes with the same expression distribution profile as 
that of NUP1-enriched genes were picked randomly. For these control genes, we extracted the 20-kb regions 
flanking either their transcription start sites (TST) or their TTS, which were selected randomly. (B) Number of 
TE genes (left panel) and protein-coding genes (right panel) enriched in different tissues. For each column, the 
observed number of genes is significantly different (p<0.001) relative to the permutation-based null distribution 
of the background (generated as described in A). (C) Comparison of gene expression levels, which are from a 
normalized tiling array dataset (Laubinger et al., 2008). The p-values indicate Mann-Whitney U test results. This 
analysis was done by Dr. Chang Liu. 

Next, Dr. Liu helped with the characterization of the NUP1-enriched chromatin domains 

positioned at the NP. Because chromatin in centromeric and pericentromeric regions was 

preferentially captured by NUP1:GFP RE-ChIP, the features associated with centromeric and 

pericentromeric heterochromatin were expected to be enriched. To reduce such positional 

effects, only chromatin located at least 1 Mb from PRs was used for association analyses. In 

summary, in all tissues, heterochromatin marks and TE genes were found to be enriched in 

NUP1-enriched domains compared to the control sets, which were simulated by shifting the 

coordinates of the enriched regions a certain distance upstream or downstream (Figure 10A-

10B). In addition, it was found that the enriched protein-coding genes showed significantly 

lower expression levels, while TE genes enriched at the NP did not exhibit lower expression 

levels than those that were not enriched (Figure 10C). Altogether, these results indicate that 

chromatin domains localized at the NP are generally repressed. 

3.1.4 Positioning of TEs at the NP correlates with different silencing pathways 

The finding of the enrichment of repressed chromatin domains at the NP prompted us to 

further investigate whether it was associated with TE silencing. DNA methylation in the CG, 

CHG, and CHH (H represents any nucleotide except G) sequence contexts has critical 

functions on regulating expression and transposition of TEs. Unlike LADs in animals which 

are not enriched with cytosine methylation (Berman et al., 2011), TEs enriched at the NP 

exhibited higher DNA methylation level in all the three sequence contexts (Figure 11). Next, 

how the corresponding methylation types in these two types of TEs would be affected in 

several DNA methylation mutants was explored. For TEs located either in the nuclear interior 

or at the NP, mutations impairing CG or CHG methylation had similar effects (Figure 11). 

Intriguingly, when comparing patterns of DNA methylation in CHH sequence context, we 

observed that TEs located at the NP lost more DNA methylation in the cmt2 mutant; by 

contrast, TEs not localized at the NP lost more DNA methylation in the drm1/2 double mutant 

(Figure 11). RNA-directed DNA methylation (RdDM) and RdDM-independent are two 
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partially overlapped pathways that are responsible for CHH DNA methylation over TE bodies 

(Zemach et al., 2013; Stroud et al., 2014), but how these two pathways branch to target 

different TEs is still not fully understood (reviewed by (Sigman and Slotkin 2016)). In the 

RdDM pathway, DOMAINS REARRANGED METHYLASE 1 (DRM1) and DRM2 are 

methyltransferases which are required to mediate CHH DNA methylation; whereas in RdDM-

independent pathway, CHROMOMETHYLASE 2 (CMT2) is another methyltransferase 

which is required to catalyze CHH DNA methylation (Zemach et al., 2013; Sigman and 

Slotkin 2016). Our results imply that the spatial localizations of TE are associated with the 

demand on different CHH DNA methylation pathways, in which RdDM-independent 

pathway contributes more to the CHH DNA methylation of TEs positioned at the NP, while 

RdDM-dependent pathway contributes more to the CHH methylation of TEs not localized at 

the NP.  
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Figure 11. Comparison of DNA methylation over TEs. 
Patterns of TE DNA methylation (CG, CHG, CHH) in WT plants and different methylation mutants. The 
grouping of TEs is according to the enrichment results of NUP1:GFP RE-ChIP-seq from 30-day-old leaf tissues. 
The methylation ratio is calculated in 100-bp windows. The signal over every TE is linearly transformed so that 
the boundaries of all TEs are aligned. Note: This data was analyzed by Xiaoli Ma. 
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3.2 Plant lamin-like proteins are required for specific chromatin positioning at the NP 

3.2.1 Compare genomic loci positioning at the NP with FISH 

The non-random chromatin organization at the NP in Arabidopsis has been revealed by our 

NUP1:GFP RE-ChIP experiments. Next, we asked how such spatial chromatin positioning at 

the NP is achieved in plants. To unveil the mechanism, we started from identifying mutant(s), 

which might no more exhibit specific perinuclear chromatin localization patterns in the 

nucleus. In this regard, we sought to compare localizations of chosen genomic loci to the NP 

by conducting comparative FISH analyses.  

The two following criteria were applied to choose genomic regions for FISH experiments and 

the design of the FISH probes: firstly, the signal specificity of all the selected BACs had been 

validated (Pecinka et al., 2004). Secondly, the probed genomic regions must be several Mb 

away from PRs, as chromocenters have been shown localized at the NP (Fransz et al., 2002). 

Totally, five pairs of FISH probes were designed according to our NUP1:GFP RE-ChIP 

signals (Figure 12A, Appendix Table 12). Three pools of FISH probes targeting chromatin 

regions located on chromosome 1 (green 1, green 2, and red1/2), were used as two pairs 

(green 1 vs red1, green 2 vs red2). The other three pairs of FISH probes were targeted to 

chromatin regions located on chromosome 3, 4 and 5, respectively. Probes of each pair were 

labeled differently: those hybridized to genomic loci preferentially enriched by NUP1:GFP 

RE-ChIP were termed “green”, which were detected as green fluorescent signals. On the other 

hand, probes hybridized to genomic regions that were not enriched at the NP were referred as 

“red”, which were detected as red fluorescent signals. Each pool of probes was produced by 

nick translation labeling, and their size was distributed in a size range of 700- 200 bp (Figure 

12B). 

There has been no evidence showed that chromatin positioning at the NP would be affected 

by endoreduplication, although a preferential NP localization of PRs is still observed in nuclei 

with high endopolyploidy levels (Schubert et al., 2012). A comparison study of chromatin 

organization in the Arabidopsis nuclei with lower or higher endopolyploidy levels (4C vs 16C) 

suggested that chromatin would de-condense to a certain extent along with endoreduplication 

(Schubert et al., 2012). Therefore, to eliminate possible misleading or inconsistent FISH 

patterns associated with nuclei with different endopolyploidy levels, only 2C nuclei were 

collected for FISH analyses (see methods). 
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Generally, four FISH signals with two green FISH signals and two red FISH signals were 

detected in every 2C nucleus (Figure 13A). Distance from the estimated barycenter of each 

FISH signal to the NP was measured, and then the distance distributions of green and red 

FISH signals were analyzed and compared. In WT Arabidopsis plants cell nuclei, for all the 

five pairs of probes, the FISH comparison results were in agreement with our NUP1:GFP RE-

ChIP data: the green FISH signals showed shorter distance to the NP than did those red FISH 

signals (Figure 13B). It should be noted that the green signals were not always localized 

closer to the NP. In some nuclei, genomic regions hybridized with the red probes were 

localized closer to the NP than were those chromatin regions targeted by the green probes. 

Such reversed patterns suggest a cell-to-cell variation scenario, which has been shown in 

mammals that LADs were not identical across a cell population (Kind et al., 2013; Kind et al., 

2015). 

 
Figure 12. Design of probes targeting chromatin regions. 
(A) Nine pools of tilling BAC probes (black segments) designed according to the NUP1:GFP RE-ChIP-seq 
signals, which are located on chromosome 1 (chr1), 3, 4 and 5, respectively. Each pool of probes targets a ~300 
kb genomic region. (B) Size distribution of each pool of probes generated by nick translation labeling.  
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Figure 13. Probing chromatin localization with FISH. 
(A) Representative confocal images showing nuclei with the FISH signals. The red contour shows the estimated 
edge of the nucleus. The estimated nuclear edge was defined in ImageJ with the ROI (regions of interest) 
manager according to DAPI signal. Scale bar: 2 µm. (B) Boxplots showing distribution patterns of the distance 
of FISH signals from the NP in 2C nuclei. Green and red dots in boxplots denote the distance data of green and 
red FISH signals, respectively. The number under each boxplot shows the number of the corresponding FISH 
signals. The p value on top in each panel indicates result of one-sided Mann-Whitney U test. 
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The situation, in which most WT cell nuclei showed chromatin regions targeted by green 

FISH probes were closer to the NP, was referred as “differential localization”. The differential 

localization of genomic regions targeted by green and red FISH probes at the NP in WT 

nuclei indicated that these FISH probes could be used to conduct comparative FISH analyses 

on mutants, which potentially lost specific perinuclear chromatin anchoring. Even though all 

the five pairs of FISH probes showed differential localization in WT 2C nuclei, three of them 

were chosen to do further analyses, which targeted chromatin regions located on chromosome 

1 (green 2 vs red2), 3 and 5, respectively (Figure 12A). These three pairs of probes were 

chosen because for each pair of probes, the one hybridized to chromatin regions preferentially 

positioned at the NP was further away from PR compared to the other (Figure 12A). The 

reason that we paid attention to PRs in choosing FISH probes was due to possible position 

effects that passively brought chromatin to the NP. It has been shown that at a chromosomal 

scale, the closer a locus is to the PR the stronger it tends to be localized to the NP (Figure 4C). 

Because PRs have been shown to be localized preferentially at the NP, chromatin regions 

closer to PRs might passively exhibit NP-favored positioning patterns (Armstrong et al., 2001; 

Fransz et al., 2002). Therefore, these three pairs of probes were used to unveil whether or not 

there were changes in perinuclear chromatin anchoring in Arabidopsis mutants, except for 

crwns and kaku4, in which green 1 vs red1 probe pair was also used.  

3.2.2 Plant lamin-like proteins are required for selectively tethering chromatin at the NP  

In various metazoan species, such as C. elegans, Drosophila and mouse, it has been shown 

that lamin proteins are involved in anchoring heterochromatin to the NP (Solovei et al., 2013; 

Mattout et al., 2011; Shevelyov et al., 2009). Thus, we sought to examine whether specific 

chromatin positioning at the NP was influenced when plants lost plant lamin proteins. As 

CRWN proteins are one group of plant lamin candidates, among which CRWN1 and CRWN4 

are localized at the NP (Sakamoto and Takagi 2013; Dittmer et al., 2007; Wang et al., 2013). 

We first tested the FISH signal distribution of the four pairs of FISH probes in crwn1 and 

crwn4 mutants. For all the examined pairs of FISH probes, we found that the differential 

localization patterns of the green and red FISH signals at the NP in WT nuclei were lost in the 

tested crwn mutants (Figure 14). This result implies that CRWN1 and CRWN4 are both 

required for positioning chromatin at the NP. 

As knockout of CRWN1 or CRWN4 locus affected the specific positioning of chromatin 

targeted by the FISH probes, we explored whether knockout CRWN1 and CRWN4 loci 
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simultaneously gave rise to more extensive effect. However, except for FISH probes of green 

1 vs red 1, the distance distribution patterns of other three pairs of FISH probes to the NP in 

crwn1/4 mutant were similar like those in crwn1 and crwn4 mutants (Figure 14). 

	
Figure 14. Analyses of FISH signals in Arabidopsis mutants of lamin-like gene. 
Comparison of the distance of probed genomic regions in chromosome 1 (green 1 vs red 1 (A) and green 2 vs red 
2 (B)), 3 (C), and 5 (D) to the NP in 2C nuclei of crwn mutants. The number under each boxplot shows the 
number of the corresponding FISH signals. Green and red dots in boxplots denote the distance data of green and 



  Results 

65 

 

red FISH signals, respectively. For each pair of comparison (boxplots of the same genotype), the p value on top 
indicates result of one-sided Mann-Whitney U test. 

As it has reported that Arabidopsis mutants with loss-of-function of CRWN1 and/or CRWN4 

genes had smaller and spherical nuclei compared with WT plants (Sakamoto and Takagi 2013; 

Dittmer et al., 2007; Wang et al., 2013), the altered chromatin positioning at the NP in crwn1, 

crwn4 or crwn1/4 mutants might be attributed to changes of nuclear morphology. 

3.2.3 Knocking out of KAKU4 has no influence on specific chromatin positioning at the 

NP 

KAKU4, as the only member of another group of plant lamin candidates in Arabidopsis, is 

localized at the NP, and kaku4 mutant showed smaller and spherical nuclei (Goto et al., 2014). 

In 2C nuclei of kaku4 mutants, we examined the signal distribution patterns of the four pairs 

of FISH probes, which located on chromosome 1, 3 and 5, respectively. For all the tested 

pairs of FISH probes, the differential localizations of green and red FISH signals are similar 

to that in 2C WT nuclei (Figure 15), suggesting that loss-of-function of KAKU4 has no 

influence on specific chromatin positioning at the NP. 
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Figure 15. Analyses of FISH signals in kaku4 mutant. 
Comparison of the distance of probed genomic regions in chromosome 1 (green 1 vs red 1 (A) and green 2 vs red 
2 (B)), 3 (C), and 5 (D) to the NP in 2C nuclei of kaku4 mutants. The number under each boxplot shows the 
number of the corresponding FISH signals. Green and red dots in boxplots denote the distance data of green and 
red FISH signals, respectively. For each pair of comparison (boxplots of the same genotype), the p value on top 
indicates result of one-sided Mann-Whitney U test. 
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3.2.4 Specific chromatin positioning at the NP is not affected in neap mutants 

 
Figure 16. Analyses of FISH signals in neap mutants. 
Comparison of the distance of probed genomic regions in chromosome 1 (green 1 vs red 1 (A) and green 2 vs red 
2 (B)), 3 (C), and 5 (D) to the NP in 2C nuclei of neap mutants. Green and red dots in boxplots denote the 
distance data of green and red FISH signals, respectively. The number under each boxplot shows the number of 
the corresponding FISH signals. For each pair of comparison (boxplots of the same genotype), the p value on top 
indicates result of one-sided Mann-Whitney U test. 

NEAPs are another group of plant candidate lamin proteins in Arabidopsis, among which 

NEAP1, NEAP2 and NEAP3 are located at the INM (Pawar et al., 2016). In addition, the 

alteration in nuclear morphology in neap1, neap3 and neap1/3 mutants suggests that they are 

involved in maintaining nuclear architecture (Pawar et al., 2016). We sought to verify whether 

the specific chromatin positioning in at the NP was impaired in neap1 and neap3 mutants. To 

this end, we inspected the signals of the selected three pairs of FISH probes (located on 

chromosome 1, 3, and 5, respectively) in 2C nuclei of neap1 and neap3 mutants. For all the 

examined genomic loci, we observed differential locations of the red and green probes in the 
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2C nuclei of neap1 and neap3 mutants (Figure 16), suggesting that the specific chromatin 

positioning at the NP is not affected in these two single neap mutants. 

Altogether, our comparative FISH results in plant lamin mutants indicate that the differential 

localization of FISH signals is lost in crwn1, crwn4 single mutant and crwn1/4 double 

mutants, while it is not affected in kaku4, neap1, or neap3 single mutants.  

3.2.5 Knockout CRWN1, CRWN4 or KAKU4 locus decreases the size of nuclei  

Although changes in nuclear morphology in several Arabidopsis lamin protein mutants (e.g., 

crwn1, crwn4 and kaku4) have been characterized, there has been no report showing 

comparisons of nuclear size and shape in the context of having specific endopolyploidy levels. 

As only 2C nuclei were used to do FISH comparative analyses, the morphology of the 2C 

nuclei isolated from WT, crwn1, crwn4, crwn1/4 and kaku4 plants was characterized firstly.  

As expected, size of the 2C nuclei was found to be significantly reduced in all the four plant 

lamin mutants compared with WT 2C nuclei (Figure 17B). This result was in accordance with 

the published data showing reduced nuclei size in crwns and kaku4 mutants (Sakamoto and 

Takagi 2013; Dittmer et al., 2007; Goto et al., 2014; Wang et al., 2013). Surprisingly, we 

found that the differences of 2C nuclei shape among WT, crwn1, crwn4, crwn1/4 and kaku4 

mutants were not significant (Figure 17A and 17C). This result was not consistent with 

previous studies that indicated nuclear shape in crwns and kaku4 mutants was significantly 

altered (Sakamoto and Takagi 2013; Dittmer et al., 2007; Goto et al., 2014; Wang et al., 2013). 

A possible reason for such discrepancy could be attributed to the selection of nuclei of 

different cell types. In this study, most 2C nuclei were those in mesophyll cells (see methods 

and Figure 3). On the contrary, previous reports were mainly based on nuclear morphological 

analyses of nuclei in leaf epidermal cells and trichrome cells (Sakamoto and Takagi 2013; 

Goto et al., 2014). Therefore, in 2C nuclei of crwn1, crwn4 and crwn1/4 mutants, the loss of 

differential localization of FISH signals with respect to the NP was unlikely attributed to the 

alterations of their nuclear morphology. 

Similar to 2C nuclei, 8C nuclei in crwns and kaku4 mutants were also found to become 

smaller (Figure 18B). Moreover, the circularity index of the 8C nuclei of these mutants was 

increased compared with that of WT (Figure 18A and 18C). These results are consistent with 

the former published results that nuclei in crwns and kaku4 became more spherical and 
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smaller (Sakamoto and Takagi 2013; Dittmer et al., 2007; Goto et al., 2014; Wang et al., 

2013). 

 
Figure 17. Characterization of nuclear morphology of Arabidopsis 2C nuclei. 
(A) Images (z-projection) of representative DAPI-stained 2C leaf cell nuclei isolated from WT, crwn1, crwn1/4, 
crwn4 and kaku4 mutants. Cell nuclei were imaged using confocal microscopy with z-stack scanning. Scale bar: 
10 µm. (B) Maximum cross-section area of 2C leaf cell nuclei isolated from WT, crwn1, crwn1/4, crwn4 and 
kaku4 mutants. (C) Circularity index of 2C leaf cell nuclei isolated from WT, crwn1, crwn1/4, crwn4 and kaku4 
mutants. The circularity index was calculated as 4πA/P2, where A and P were the area and perimeter of the 
maximum cross-section of a nucleus retrieved from confocal images, respectively. The number under each 
boxplot shows the number of the examined nuclei. p values indicate Mann-Whitney U test results.  
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Figure 18. Characterization of nuclear morphology of Arabidopsis 8C nuclei. 
(A) Images (z-projection) of representative DAPI-stained 8C leaf cell nuclei isolated from WT, crwn1, crwn1/4, 
crwn4 and kaku4 mutants. Cell nuclei were imaged using confocal microscopy with z-stack scanning. Scale bar: 
10 µm. (B) Maximum cross-section area of 8C leaf cell nuclei isolated from WT, crwn1, crwn1/4, crwn4 and 
kaku4 mutants. (C) Circularity index of 8C leaf cell nuclei isolated from WT, crwn1, crwn1/4, crwn4 and kaku4 
mutants. The circularity index was calculated as 4πA/P2, where A and P were the area and perimeter of the 
maximum cross-section of a nucleus retrieved from confocal images, respectively. The number under each 
boxplot shows the number of the examined nuclei. p values indicate Mann-Whitney U test results. 

3.3 Role of H3K9me in specific chromatin positioning at the NP 

In metazoans, the heterochromatic mark H3K9me is enriched in LADs at the NP (van 

Steensel and Belmont 2017). In nuclei of human and C. elegans, H3K9me is required for 

tethering chromatin at the NP (Towbin et al., 2012; Kind et al., 2013; Bian et al., 2013). In 

Arabidopsis, H3K9me was also found to be enriched in chromatin regions localized at the NP 

(Figure 10A). In Arabidopsis, SU(VAR)3-9 HOMOLOG 4 (SUVH4), SUVH5 and SUVH6 

methyltransferases are responsible for histone H3 lysine di-methylation (H3K9me2) (Ebbs 

and Bender 2006; Jackson et al., 2002), and the suvh4/5/6 triple mutants exhibited extensive 

depletion of H3K9me2 (Stroud et al., 2014). Therefore, FISH comparative analyses were 

applied to the nuclei of suvh4/5/6 triple mutant to explore whether H3K9me2 was involved in 

perinuclear chromatin anchoring. Surprisingly, for all the three pairs of FISH probes, the 

differential distribution of the red and green probes at the NP was detected as that in WT 
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nuclei (Figure 19), suggesting that H3K9me2 was dispensable for chromatin anchoring at the 

NP in plants. 

 
Figure 19. Analyses of FISH signals at in suvh4/5/6. 
Comparison of the distance of probed genomic regions in chromosome 1 (green 2 vs red 2) (A), 3 (B), and 5 (C) 
to the NP in 2C nuclei of suvh4/5/6 mutants. Green and red dots in boxplots denote the distance data of green 
and red FISH signals, respectively. The number under each boxplot shows the number of the corresponding 
FISH signals. For each pair of comparison (boxplots of the same genotype), the p value on top indicates result of 
one-sided Mann-Whitney U test. 

3.4 Role of non-CG methylation in specific chromatin positioning at the NP  

3.4.1 Non-CG methylation contributes to specific chromatin positioning at the NP 

Our NUP1:GFP RE-ChIP results demonstrated that TEs enriched at the NP showed higher 

levels of cytosine methylation compared with TEs not enriched at the NP (Figure 11). 

Moreover, in several methylation mutants, analyses of the corresponding methylation types in 
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the two groups of TEs suggest that CHH DNA methylation of TEs located at the NP tends to 

be more dependent on RdDM-independent pathway, while TEs located in the nuclear interior 

rely more on RdDM (Figure 11). This finding motivated us to evaluate whether CHH DNA 

methylation contributed to positioning chromatin at the NP in plants. In Arabidopsis, DRM1 

and DRM2 are methyltransferases required for CHH DNA methylation in the RdDM pathway; 

in contrast, CMT2 is required in RdDM-independent pathway (Zemach et al., 2013; Stroud et 

al., 2014). Thus, the localization of signals for the selected FISH probes in cmt2 and drm1/2 

mutants was probed. Intriguingly, it was found that the distance distribution profiles of 

different probe pairs were variously affected in the cmt2 mutant (Figure 20). For the FISH 

probe pairs targeting chromatin in chromosome 1 and chromosome 5, the distance 

distributions of green and red probes to the NP were significantly different; but for the FISH 

probe pair targeting chromatin in chromosome 3, the distance distributions of green and red 

probes toward the NP could not be differentiated (Figure 20). On the contrary, for all the three 

selected pairs of probes, the distance of green probes to the NP was shorter than that of green 

probes in drm1/2 mutants (Figure 20), which is same as that in WT plants. 

Next, we asked what would happen to the chromatin localization at the NP if plants lost all 

CHH DNA methylation. For this purpose, genetic crossing was performed to combine 

mutations of CMT2, DRM1 and DRM2. After generating the triple homozygous of cmt2 

drm1/2, we performed FISH comparison experiments using the three chosen probe pairs. It 

turned out that for all the tested FISH probe pairs, the localization distributions of green and 

red probes could not be differentiated in the triple mutant losing all the CHH DNA 

methylation (Figure 20). 

In parallel, the effect of CHG DNA methylation on specific chromatin positioning at the NP 

was also evaluated. It has been reported that the CHG DNA methylation is mainly catalyzed 

through CMT3 methyltransferase in Arabidopsis (Stroud et al., 2014).  In the nuclei of cmt3 

mutant, the differential location patterns of green and red probes of all the three selected 

probe pairs were similar to that in WT nuclei (Figure 20). This FISH comparison results 

indicated that the specific positioning chromatin at the NP was not influenced when plants 

lost CHG DNA methylation. 

At last, we sought to test whether combining CHH and CHG DNA methylation mutations 

would result in alteration in nuclear localization of FISH signals. Accordingly, cmt2 cmt3 

double mutants and cmt3 drm1/2 triple mutants were generated. Intriguingly, in the nuclei of 
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higher-order CHH and CHG DNA methylation mutants (cmt2 cmt3 and cmt3 drm1/2), the 

different localization patterns of green and red probes of all the three chosen FISH probe pairs 

at the NP were lost (Figure 20). Altogether, these results suggest that non-CG DNA 

methylation (CHH and CHG DNA methylation) pathways play redundant roles in tethering 

chromatin at the NP. 

 
Figure 20. Analyses of FISH signals in Arabidopsis mutants losing non-CG methylation. 
Comparison of the distance of probed genomic regions in chromosome 1 (green 2 vs red 2) (A), 3 (B), and 5 (C) 
to the NP in 2C nuclei of mutants losing non-CG methylation. Green and red dots in boxplots denote the distance 
data of green and red FISH signals, respectively. The number under each boxplot shows the number of the 
corresponding FISH signals. For each pair of comparison (boxplots of the same genotype), the p value on top 
indicates result of one-sided Mann-Whitney U test. 
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3.4.2 CG methylation has no effect on chromatin positioning at the NP 

 
Figure 21. Analyses of FISH signals in Arabidopsis mutants losing CG methylation. 
Comparison of the distance of probed genomic regions in chromosome 1 (green 2 vs red 2) (A), 3 (B), and 5 (C) 
to the NP in 2C nuclei of met1 mutant. Green and red dots in boxplots denote the distance data of green and red 
FISH signals, respectively. The number under each boxplot shows the number of the corresponding FISH signals. 
For each pair of comparison (boxplots of the same genotype), the p value on top indicates result of one-sided 
Mann-Whitney U test. 

Next, we questioned whether CG DNA methylation is involved in regulating perinuclear 

chromatin anchoring. In mammalians, DNA methylation mostly occurs at CG sequence 

context, which is maintained by DNA (cytosine-5) methyltransferase 1 (DNMT1); while CG 

DNA methylation in plants is maintained via methyltransferase 1 (MET1), a homolog of 

DNMT1 (Stroud et al., 2013). Thus, the distribution of FISH signals at the NP with the 
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chosen FISH probe pairs were surveyed. Like in WT nuclei, the differential localization 

patterns of green/red FISH probes at the NP in 2C nuclei of met1 mutant were found (Figure 

21). This result suggests that losing CG DNA methylation has no effect on chromatin 

positioning at the NP. 

3.5 crwn mutants lose specific chromatin positioning at a chromosomal scale 

It has been suggested by our FISH experiments with FISH probe pairs located on three 

different chromosomes (chromosome 1, 3, and 5) that CRWN proteins play roles in mediating 

chromatin anchoring at the NP (Figure 14). A chromosome painting (an extended FISH 

approach) experiment with probes targeting almost the entire right arm of chromosome 1 was 

performed to explore how CRWNs regulate chromatin positioning at a chromosomal scale. 

For this purpose, a 10 Mb genomic region was labeled with tiling BACs (Appendix Table 13), 

among which the NUP1-enriched chromatin segments were assigned as green probes and the 

remaining regions as red probes (Figure 22A). As there were so many BACs for each color 

(green or red) of FISH probes, the green probes were produced in two pools, as well the red 

probes (Figure 22B). 

 
Figure 22. Design and labeling of dual-color FISH probes covering a 10 Mb region in 
chromosome 1 according to NUP1 RE-ChIP-seq signals. 
(A) Green and red rectangles depict BACs. Green probes label chromatin regions exhibiting preferential 
localization close to the NP (having higher RE-ChIP signals), by contrast, red probes label chromatin regions 
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showing depleted contacts with NUP1:GFP. (B) Green probes were produced in two pools, as well as red probes. 
The FISH probes were designed by Dr. Chang Liu and labeled by Bo Hu. 

 
Figure 23. Approximation of chromosome painting data. 
 (A) Z-stack confocal image files of a WT 2C nucleus (its z-projection image is shown in Figure 24). The bottom 
row indicates nuclear border of each slice identified from the corresponding DAPI image. (B) Reconstructed 
nucleus. The bottom two slices (slice no. 10 and 11), which are close to the glass slide, are not included for 
further analyses. (C, D) Computing the distance to the NP. (C) Within an optical slice, the distance of a given 
point (red) to the nuclear border. (D) The distances of this point to the nuclear borders in other optical slices are 
calculated as well. At the end, the minimum value is defined as the distance of this point to the NP. (E) 
Processed confocal images showing the distance of each pixel to the NP (top row) and pixels with FISH signal 
(bottom row). (F) Relationship between FISH signal strength and distance to the NP. (G) Comparison of 
cumulative green and red FISH signals as a function of distance to the NP. With a distance cutoff of 0.5 µm, for 
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the analyzed optical slides in this nucleus, 39% and 13% of green and red signal is located at the NP, 
respectively. Bo Hu contributed to the design of the chromosome painting and image processing pipeline. 

 
Figure 24. Deficiency of crwn mutants in specific chromatin positioning at the NP revealed by 
chromosome painting. 
 (A) Representative confocal images of 2C nuclei from WT and mutants. The plots on the right side show 
cumulative chromosome painting signal to indicate the distance to the NP. P0.5 denotes the percentage of FISH 
signals detected within 0.5 µm from the NP. (B)  Comparison of chromosome painting signals (P0.5) in different 
plants. The P0.5 values of green and red probes of every individual nucleus are connected by a blue or red line, 
indicating whether P0.5 (green) is significantly higher or not, respectively. G or R, green and red probes as 
donated in (Figure 22A), respectively. p values indicate results of Wilcoxon signed-rank tests. Bo Hu contributed 
to the design of the chromosome painting and the pipeline of image processing. 
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For every individual nucleus, distance of probe signals to the NP was calculated (Figure 23 

and Figure 24A). We arbitrarily chose P0.5, which was defined as the percentage of FISH 

signals localized within 0.5 µm from the NP, as a cutoff to compare how green and red probes 

might be differentially positioned in each nucleus. In 2C nuclei of WT plants, the P0.5 values 

of the green probes were significantly higher than those of the red probes (Figure 24B). It was 

interesting that a few WT nuclei exhibited an opposite pattern (Figure 24B, right panel). This 

cell-to-cell variation is in line with our former FISH comparative results which implies a 

scenario similar to that in mammals in which LADs are not identical throughout a cell 

population as they are reshuffled upon mitosis (Kind et al., 2013; Kind et al., 2015). Both 

crwn1 and crwn4 nuclei lost differential probe localization patterns to certain extents; while in 

crwn1 nuclei, the localization of green and red probes could be no longer differentiated 

(Figure 24B), implying that these CRWN1 protein is the major CRWN proteins required for 

tethering chromatin at the NP. By contrast, in the kaku4 nuclei, which show similar nuclear 

size and morphology alterations to those of the crwns, the differential localization of green 

and red probes at the NP was not affected, implying that different plant lamin proteins play 

diverse roles in mediating chromatin localization (Figure 24B). 

3.6 Exploration of CRWN1-chromatin interactions  

3.6.1 A native CRWN1 tagging construct can fully rescue crwn1 phenotypes 

Having shown that the functional association of CRWN1 in nuclear peripheral chromatin 

anchoring, we would like to know if CRWN1 interacts with chromatin directly. Thus, we 

sought to generate native CRWN1 tagging lines. To minimize the impact of the fusion of a 

tandem HA tag (2HA) on CRWN1, structural motifs from the amino acid sequence of 

CRWN1 were predicted. As CRWN1 is localized at the INM (Sakamoto and Takagi 2013; 

Dittmer et al., 2007), we analyzed the presence of nuclear import regions in the CRWN1 

protein by a bioinformatics tool (open source software cNLS Mapper). The cNLS Mapper 

result showed that CRWN1 possessed two putative nuclear localization signals (NLSs), 

EMRKRKLESD and NGRKRGRVGSL, starting from positions 612 and 957, respectively 

(Figure 25A). Until now, all the identified plant lamin candidates including CRWNs have 

multiple coiled-coil domains, which can form filamentous dimers and play roles in controlling 

nuclear size, shape, and heterochromatin organization (Pawar et al., 2016; Sakamoto and 

Takagi 2013; Dittmer et al., 2007; Goto et al., 2014; Wang et al., 2013). The positions of 

coiled-coil domains of CRWN1 were predicated using COILS server (with window width 14, 
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21, and 28), which suggested that the coiled-coil regions were located between amino acid 70-

612, and 621-750 (Figure 25B). According to results of cNLS Mapper and sequence 

predication of coiled-coils, a schematic representation of the full-length CRWN1 was 

depicted, with the red color and yellow color labeled the regions where coiled-coil domains 

and NLS were presented, respectively (Figure 25C). Thus, we planned to add the tandem HA 

tag to the unannotated regions (labeled in blue in Figure 25C), by which it was proposed to 

cause minimum structural perturbations to CRWN1 protein. In total, three versions of 

CRWN1:2HA fusion proteins were designed, in which the 2HA was added to the N-terminal, 

the C-terminal, and the 780th amino acid of CRWN1, respectively (Figure 25). A 1.7 kb 

upstream of the CRWN1 locus was defined as the promoter of native CRWN1:2HA constructs. 

In addition, a 0.6 kb fragment of the CRWN1’s downstream was included in these constructs. 

In total, we designed three native CRWN1:2HA constructs: pCRWN1::2HA_CRWN1, 

pCRWN1::CRWN1_2HA, and pCRWN1::CRWN1_780_2HA, which were driven by the same 

promoter region with different HA tag insertion locations (Figure 26A). These three 

constructs were transformed into crwn1 mutants by floral dip.  

 
Figure 25. Predication of structural motifs from the CRWN1 sequence.  
(A) cNLS Mapper result of CRWN1 showing putative NLS sequences with a score equal or more than the 
selected cutoff score 5. Higher scores indicate stronger NLS activities. cNLS Mapper result was predicated by 
the cNLS Mapper server (http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi). (B) Prediction of 
coiled-coil domains from the amino acid sequence of CRWN1 with the COILS server (https://embnet.vital-
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it.ch/software/COILS_form.html). Coiled-coil formation probability is plotted versus the residue number of 
CRWN1. Predictions using window width of 14 (green), 21 (blue) and 28 (red) are shown. Note that no coiled-
coils are predicted in the N-terminal region, the C-terminal region, or the region around 800th amino acid. (C) 
Schematic representation of full-length CRWN1. The predicted coiled-coil regions are in red, NLS regions are in 
yellow, whereas the predicted unstructured regions are in blue. Black arrowheads (in B and C) point to sites 
where the HA tag can be inserted.  

Even though crwn1 nuclei with different endopolyploidy levels showed significant 

differences in nuclear morphology (Figure 17 and Figure 18), only those with higher 

endopolyploidy levels display conspicuous changes in nuclear size and shape. Thus, for the 

ease of comparison, morphology of 8C nuclei from WT, crwn1 and CRWN1 tagging lines was 

examined. The morphology comparison of 8C nuclei between WT, crwn1, and two lines of 

each type of CRWN1 tagging lines indicated that the phenotype of small and spherical nuclei 

in crwn1 could not be rescued at all by pCRWN1::CRWN1:2HA (Figure 26B), but it could be 

partially rescued by pCRWN1::2HA_CRWN1 (Figure 26C). On the other hand, the nuclear 

morphology phenotypes could be fully rescued by pCRWN1::CRWN1_780_2HA (Figure 

26D). Therefore, the pCRWN1::CRWN1_780_2HA crwn1 lines were used to do further 

analyses.  

To ensure that our tagging lines were in the crwn1 homozygous background, genotyping was 

performed with primers CRWN1-seq-F3 and CRWN1-R1, confirming that these tagging lines 

were homozygous background of crwn1 (Figure 27). 

As described in the previous part, FISH comparative experiments indicated that specific 

chromatin positioning at the NP was lost in crwn1 2C nuclei, we asked whether this 

phenotype could be rescued in the pCRWN1::CRWN1_780_2HA crwn1 tagging line, which 

showed full rescue of nuclear morphology phenotypes of crwn1. Thus, FISH comparative 

experiments were subsequently performed to examine the perinuclear distribution of 

green/red probes in this tagging line. The results indicated that the differential distribution 

patterns of green and red probes of the three selected pairs were detected in the 2C nuclei of 

CRWN1:2HA tagging line (Figure 28), suggesting that the loss of specific chromatin 

positioning at the NP in crwn1 could be rescued by the construct 

pCRWN1::CRWN1_780_2HA. In short, the native pCRWN1::CRWN1_780_2HA tagging 

construct can fully rescue crwn1 phenotypes (Figure 26 and Figure 28). 
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Figure 26. A native CRWN1 tagging construct can rescue the nuclear phenotype of crwn1.  
(A) Design of native CRWN1 tagging constructs. The green pentagon represents the 1.7 kb upstream of CRWN1, 
which is used as the promoter of the constructs. In addition, a 0.6 kb downstream (the light grey rectangle) of 
CRWN1 was included in these constructs. The dark gray rectangle represents the full length of CRWN1 locus, the 
light purple rectangle represents the 2HA. In the construct of pCRWN1::CRWN1_2HA, the 2HA is inserted at the 
C-terminal region of CRWN1. In the middle, the 2HA is inserted at the N-terminal of CRWN1 in the 
pCRWN1::2HA_CRWN1 expression construct. For the pCRWN1::CRWN1_780_2HA construct, which is 
displayed at the bottom, the 2HA is placed after the 780th amino residue of the CRWN1 protein. (B) Morphology 
comparison of 8C nuclei of WT, crwn1, two lines of pCRWN1::CRWN1_2HA crwn1 plants. (C) Morphology 
comparison of 8C nuclei of WT, crwn1, two lines of pCRWN1::2HA_CRWN1 crwn1 plants. (D) Morphology 
comparison of 8C nuclei of WT, crwn1, two lines of pCRWN1::CRWN1_780_2HA crwn1 plants. The nuclei in 
(B), (C), and (D) were isolated from the first true leaf of 2-week old seedlings. Scale bares: 20 µm. 
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Figure 27. CRWN1 gene model and genotyping of CRWN1 tagging line.  
(A) Gene model of CRWN1 including the position of the T-DNA insertion, and the definition of 
pCRWN1::CRWN1_780_2HA construct. Exons and introns are indicated by light grey bars wrapped with light 
red lines and black lines, respectively. 5’- and 3’-UTR regions are represented by light grey bars. The T-DNA 
insertion is demonstrated by blue triangle. The grey bars depict the upstream and downstream regions of CRWN1 
locus. The light blue bent-up arrow indicates the ATG of CRWN1. The light purple check mark points to the site 
where the HA tag is inserted. The black arrows point to the start and end points of the 
pCRWN1::CRWN1_780_2HA construct. (B) Genotyping of the CRWN1 tagging line was done with primer pair 
CRWN1-seq-F3 and CRWN1-R1. CRWN1-R1 matches the genomic region where the 2HA is inserted, leading 
to that this primer pair can only amplify the region of the endogenous CRWN1 locus without T-DNA insertion. 

 
Figure 28. Distance distribution of probed genomic regions to the NP in the 2C nuclei of CRWN1 
tagging lines.  
Probes used here are located on chromosome 1 (green2 vs red2), 3, and 5, respectively. Green and red dots in 
boxplots denote the distance data of green and red FISH signals, respectively. pCRWN1::CRWN1:2HA crwn1 
tagging line #21 was used to conduct this FISH comparative analyses. The number under each boxplot shows the 
number of the corresponding FISH signals. For each pair of comparison (boxplots of the same genotype), the p 
value on top indicates result of one-sided Mann-Whitney U test. 
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3.6.2 CRWN1 directly interacts with chromatin at the NP 

Having generated CRWN1:2HA tagging line successfully, the distribution of CRWN1:2HA 

proteins within nuclei was detected. As expected, immunohistostaining result demonstrated 

that CRWN1:2HA proteins were dominantly found at the periphery of nuclei (Figure 29). 

Subsequently, regular ChIP experiment using anti-HA antibody was performed to verify 

direct CRWN1-chromatin interactions. Before conventional ChIP experiment, a western blot 

assay was conducted to probe whether or not the expressed CRWN1:2HA fusion proteins 

could be captured by the anti-HA antibody. The western blot with anti-HA antibody 

successfully detected the CRWN1:2HA protein (Figure 30), indicating that the 2HA in the 

CRWN1:2HA fusion protein is specific to the anti-HA antibody. 

 
Figure 29. Distribution of CRWN1:2HA at the NP. 
Immunohistostaining of a leaf section of pCRWN1::CRWN1_780_2HA crwn1 plant with the anti-HA antibody. 
The immunohistostaining was done by the Dr. Nan Wang in our group. 

 
Figure 30. Expression of CRWN1:2HA in crwn1 leaves.  
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The CRWN1:2HA protein in leaf crude extract was detected by anti-HA antibody. This western blot was done 
by Ezgi Süheyla Karaaslan in our group. 

 
Figure 31. Chromatin regions targeting green FISH probes are enriched by CRWN1:2HA ChIP. 
Three independent qPCRs of DNA captured by CRWN1:2HA ChIP. The ChIP was done by Dr. Nan Wang in 
our group. 

A ChIP experiment using the anti-HA antibody was performed on our CRWN1:2HA tagging 

lines. Before preparing the sequencing library, qPCRs were done to explore whether 

chromatin regions targeted by green FISH probes were enriched in DNA captured by 

CRWN1:2HA ChIP. The results of CRWN1:2HA ChIP qPCR showed enrichment of 

chromatin regions covered by green FISH probes (Figure 31), suggesting that CRWN1 

directly associates with these chromatin regions at the NP. Next, genome-wide patterns of 

CRWN1-chromatin contacts at the NP were analyzed by ChIP-seq, which led to the 

identification of many chromatin domains showing direct contacts with CRWN1 at the NP 

(Figure 32). These regions were named plant lamin-associated domains (PLADs). These 

PLADs largely overlapped with NUP1-enriched chromatin domains that were identified 

previously (Figure 32). 
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Figure 32. Comparison of NP-chromatin interaction patterns revealed from different ChIP 
methods.  
(A) Genome-wide view of NUP1:GFP RE-ChIP and CRWN1:2HA ChIP signals. The plots are in 50-kb 
windows. Grey blocks depict the heterochromatin located at centromeric and pericentromeric regions. (B) A 
representative genomic region from chromosome 1. ChIP-seq and analyses were done by Dr. Liu. 

3.7 Characterization of crwn1 mutants under different treatments  

It has been shown that plant lamin-like proteins (CRWN1 and/or CRWN4) have function on 

regulating chromatin anchoring at the NP, in which CRWN1 is the major determinant (Figure 

14 and Figure 24) and CRWN1 interacts directly with chromatin at the NP (Figure 31 and 

Figure 32). We sought to examine the morphological response of crwn1 mutant under stresses 

to question the possible physiological functions of the CRWN1-chromatin interactions in 

plants. As KAKU4, another plant lamin candidate, is required for maintaining nuclear size 
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and shape but not involving in specific chromatin organization at the NP. kaku4 mutant was 

selected as a control to test whether changes in nuclear morphology played roles in plant 

physiological response to various stress conditions. 

Cells in plants and animals are constantly exposed to a spectrum of mechanical cues, such as 

shear stress, compression, differential tissue rigidity, and strain. Cells adapt to these 

mechanical forces by engaging mechanisms of mechanotransduction (Miroshnikova et al., 

2017). However, the mechanical cues reach far beyond the plasma membrane and the 

cytoskeleton, and are transmitted directly to the nucleus (Miroshnikova et al., 2017). Thus, the 

nucleus needs to have the capacity to sense and respond rapidly to changes in mechanical 

forces. It has been reported that the mechanical stress responses happen at the nuclear lamina-

chromatin interface in animals (summarized in (Miroshnikova et al., 2017)). Therefore, we 

sought to test the morphological response of crwn1 mutant to salt stress, which leads to not 

only ion toxicity but also mechanical stress to the plant root cells (then the mechanical stress 

could be transduced to the nuclei of root cells). 

All cells, whether post-mitotic or proliferating, are frequently challenged by DNA damage 

events, and damage commonly happens irrespective of the underlying sequence. Damage can 

be induced by exogenous agents (e.g., radiation, radiomimetic cancer drugs, or toxins) as well 

as endogenous activities (e.g., free radicals arising from cell metabolism or replication errors) 

(Hauer and Gasser 2017). A recent study has implied that CRWN-family proteins are 

involved in quenching ROS accumulation and show a protective role in DNA from oxidative 

damage (Wang et al., 2018b). 

3.7.1 Morphological response of crwn1 to hydrogen oxide  

Recently, a report showed that crwn double mutants (i.e. crwn1/3, crwn2/3, crwn2/4) over-

accumulated reactive oxygen species (ROS) under normal growth conditions and 0.01% 

genotoxic agent methyl methanesulfonate treatment with more severe DNA damage 

compared with WT plants, suggesting that the CRWN-family proteins have function on 

consuming ROS accumulation and protecting genomic DNA against extreme oxidative 

damage (Wang et al., 2018b). Therefore, the growth of crwn1 mutants in response to various 

concentrations of hydrogen oxide (H2O2) treatments was examined. It was found that for all 

tested genotypes (WT, crwn1, and kaku4), high concentrations of H2O2 (1.0 mM and 5.0 mM 

H2O2) reduced the global growth of all the three genotypes of Arabidopsis plants to a similar 

extent (Figure 33A). In contrast, a slight increase in the global growth was observed when all 
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the three genotypes were grown in plates supplied with a low concentration of H2O2 (0.5 mM 

H2O2), with a little higher increase in vegetative growth of crwn1 compared with WT plants 

(Figure 33). When we compared the root length of WT, crwn1 and kaku4 plants, we observed 

that high concentrations of H2O2 (1.0 mM and 5.0 mM H2O2) suppressed root growth in these 

plants (Figure 33B). Specially, plants exhibited almost no growth after transferring to the 

medium containing 5.0 mM H2O2 (Figure 33). Only under 0.5 mM H2O2 treatment, a slightly 

higher increase in root growth of crwn1 plants was found compared with that of WT plants 

(Figure 33B). Altogether, these results indicate that the loss of CRWN1 almost has no 

additive negative impact on the vegetative growth under high H2O2 treatments, implying that 

CRWN1 does not play a role in inhibiting the consumption of H2O2. 

 
Figure 33. Phenotypes of WT, crwn1 and kaku4 seedlings under H2O2 stress.  
(A) Seedlings of WT, crwn1 and kaku4 under H2O2 stress. WT, crwn1 and kaku4 plants were grown in 1/2 MS 
media plates vertically for 5 days, then were transferred to 1/2 MS medium supplied with or without H2O2 (mock) 
to further grow for another 5 days. The seedlings were photographed after treatments. Scale bars: 1cm. (B) 
Comparison of root length of WT, crwn1and kaku4 under H2O2 stress. The root length was measured before and 
after the treatment. The bottom and upper dot lines marked the root length of the WT plants under normal 
conditions on the fifth and tenth day. Significant analyses were done by Mann-Whitney U test. 

3.7.2 Morphological response of crwn1 to salt stress 

Salinity has a critical effect on crop growth in many parts of arid and semi-arid regions in the 

world. It also has a negative impact on the growth and development of many plant species. 

Plant growth is adversely affected by salinity, which results from ion toxicity because of high 
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concentrations of certain ions, reducing plant’s capacity of water uptake (Park et al., 2016). In 

agriculture, sodium ions are accumulated in the soil during water supplying from irrigation 

systems, even though the low concentration in irrigation water (Park et al., 2016). Therefore, 

we characterized the phenotypes of WT, crwn1 and kaku4 plants under NaCl treatments. As 

expected, high concentrations of NaCl (100 mM and 150 mM NaCl) adversely suppressed the 

growth of whole seedlings including root elongation, while the effects in WT, crwn1 and 

kaku4 plants were at the same level (Figure 34). Thus, knockout of CRWN1 has no additive 

effect on vegetative growth under NaCl treatments compared with WT plants, suggesting that 

CRWN1 has no function on plants’ adaptation to salinity stress caused by NaCl. 

 
Figure 34. Sensitivity of WT, crwn1 and kaku4 seedlings to NaCl.  
(A) Seedlings of WT, crwn1 and kaku4 under NaCl treatments. The growth of plants and the application of 
different concentrations of NaCl to plants were as the same as plants in Figure 33A. Scale bars: 1 cm. (B) 
Comparison of root length of WT, crwn1and kaku4 under NaCl treatments. The root length was measured before 
and after treatment. The bottom and upper dot lines marked the root length of the WT plants under normal 
conditions on the fifth and tenth day. Significant analyses were done by Mann-Whitney U test. 
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3.7.3 Morphological response of crwn1 to inorganic nitrogen 

 
Figure 35. Sensitivity of WT, crwn1 and kaku4 seedlings to NO3

- or NH4
+.  

Comparison of root length of WT, crwn1 and kaku4 under treatments of NO3
- or NH4

+. The growth of plants and 
the application of different concentrations of NO3

- or NH4
+ to plants were as the same as plants in Figure 33A. 

Scale bars: 1 cm. The root length was measured before and after treatment. The bottom and upper dot lines 
marked the root length of the WT plants under normal conditions on the fifth and tenth day. Significant analyses 
were done by Mann-Whitney U test. 

Plant growth is fundamentally dependent on exogenous inorganic nitrogen (N), and intensive 

agriculture is required the usage of N compounds to replenish the natural supply from the soil. 

NH4
+, together with NO3

-, are the two main forms of N available for plants (Sarasketa et al., 

2014). Even though plants have different N source preferences, they depend not only on their 

genetic background but also on various environmental factors, including soil pH, temperature, 

ect. It has been concluded that non-bred plants preferentially take up NH4
+ (Sarasketa et al., 

2014). Additionally, crop species have a preference for absorbing NO3
- nutrition, but in 

conditions of NO3
- deficiency in the soil, plants take up N as NH4

+ (M’rah Helali et al., 2010; 

Sarasketa et al., 2014). However, when only N source was used, NH4
+ toxicity might be 

induced (M’rah Helali et al., 2010). Arabidopsis thaliana is one kind of species which is 
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sensitive to NH4
+ (M’rah Helali et al., 2010; Sarasketa et al., 2014) . In most of the studies 

with regard to NH4
+ toxicity in Arabidopsis, plants fed with NO3

- versus plants fed with a 

combined nutrition of NO3
- supplemented with different concentrations of NH4

+ were 

compared (Sarasketa et al., 2014). While studies focusing on only a sole N source in 

Arabidopsis are scarce (Sarasketa et al., 2014). Based on these studies, concentrations of 

NH4
+ and NO3

- were decided for our nitrogen treatments. Then treatments with different 

concentrations of NH4
+ or NO3

- were applied to WT, crwn1 and kaku4 Arabidopsis plants, 

and the performance of these plants was examined. Interestingly, we did not observe any 

difference between crwn1, kaku4 and WT plants grown in the medium supplied with NH4
+ or 

NO3
- (Figure 35). The concentrations of NH4

+ and NO3
- used in this study were higher than 

the highest sole nitrogen source used in Helali’s study, in which the growth of Arabidopsis 

plants was not affected by 2.5 mM NO3
- treatment but was negatively affected by 2.5 mM 

NH4
+ treatment (M’rah Helali et al., 2010). Nevertheless, these results suggest that CRWN1 

does not function on plant’s response to the NH4
+ or NO3

-. 

3.7.4 Morphological response of crwn1 to zeocin treatment 

As a radiomimetic chemical, zeocin has been widely used as an inducer of DNA double-

strand breaks (DSB) in many studies (Chankova et al., 2007; Adachi et al., 2011; Jia et al., 

2016; Sakamoto et al., 2011). It has been known that the DSB caused by zeocin could lead to 

cell death or result in structural chromosome aberrations and micronuclei (Chankova et al., 

2007). Furthermore, the genome integrity would be threatened by such DSB (Adachi et al., 

2011). Therefore, we attempted to explore whether CRWN1 plays roles in defense 

mechanisms to the DSB caused by zeocin. To this end, the crwn1, kaku4 and WT plants were 

transferred to 1/2 MS medium plates supplied with different concentrations of zeocin after 

growing on normal 1/2 MS medium for five days. When seedlings were transferred to 10 µM 

zeocin plates, the vegetative growth of the whole seedlings was found to be severely arrested 

(Figure 36). To a less extent, exposing to 2 µM of zeocin also adversely affected the growth 

of the WT, crwn1 and kaku4 seedlings (Figure 36). Nonetheless, no difference was observed 

between crwn1, kaku4 and WT plants (Figure 36), indicating that CRWN1 is not involved in 

the defense mechanisms of the stress caused by zeocin. 
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Figure 36. Phenotypes of WT, crwn1 and kaku4 seedlings under zeocin treatments. 
 (A) Seedlings of WT, crwn1 and kaku4 under zeocin treatments. The growth of plants and the application of 
different concentrations of zeocin to plants were as the same as plants in Figure 33A. Scale bars: 1 cm. (B) 
Comparison of root length of WT, crwn1 and kaku4 under zeocin treatments. The root length was measured 
before and after treatment. The bottom and upper dot lines marked the root length of the WT plants under normal 
conditions on the fifth and tenth day. Significant analyses were done by Mann-Whitney U test. 

3.8 Generating functional CRWN2 and CRWN4 tagging lines  

As our ChIP results of CRWN1:2HA show that CRWN1 directly binds to chromatin at the 

NP, we asked whether there were direct interactions between chromatin and other CRWNs. 

Apart from CRWN1, there are three other CRWN proteins (CRWN2, CRWN3 and CRWN4) 

(Sakamoto and Takagi 2013; Wang et al., 2013). Among these three CRWNs, similar like 

CRWN1, CRWN4 is located at the NP (Sakamoto and Takagi 2013; Wang et al., 2013). And 

CRWN2 has the highest sequence similarity with CRWN1 protein (Figure 37). For this 

purpose, a native CRWN4:2HA tagging line and a CRWN2:2HA tagging line were planned to 

generate. Similar to the strategy used for generating CRWN1:2HA fusion proteins, insertion 

sites of the 2HA in the CRWN4 and CRWN2 tagging constructs were based on the prediction 

of structural motifs from their protein sequences (Figure 38 and Figure 42). 
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Figure 37. Blast Hits on CRWN1 protein sequence with the other three CRWN proteins.  
Global alignment of CRWN2, CRWN3 and CRWN4 sequences with CRWN1 sequence. The alignment was 
generated with BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

According to the complementation efficiency of different native CRWN1:2HA constructs, we 

first tried to insert the 2HA at the site of 850th amino acids from the N-terminal of CRWN4 

and at the site of 800th amino acids from the N-terminal of CRWN2, respectively (Figure 38 

and Figure 42). After getting the pCRWN4::CRWN4_850_2HA crwn4 tagging line by floral 

dip, the morphology comparison of 8C nuclei from WT, crwn4, and 

pCRWN4::CRWN4_850_2HA crwn4 plants was done. The nuclear phenotype of small and 

spherical nuclei of crwn4 was fully rescued by the pCRWN4::CRWN4_850_2HA construct 

(Figure 39). Moreover, I observed that the pCRWN2::CRWN2_800_2HA construct rescued 

the whole-plant phenotype of crwn1/2 plants (Figure 43). The genotyping PCR result 

confirmed that pCRWN4::CRWN4_850_2HA crwn4 tagging lines were in homozygous crwn4 

background (Figure 40), and  pCRWN2::CRWN2_800_2HA crwn1/2 tagging lines were in 

homozygous crwn1/2 background (Figure 44). 

The presence of 2HA in pCRWN4::CRWN4_850_2HA crwn4 and 

pCRWN2::CRWN2_800_2HA crwn1/2  tagging lines was confirmed  by western blot with the 

anti-HA antibody (Figure 41 and Figure 45). These rescue lines can be used for analyzing the 

function of CRWN4 and CRWN2 on chromatin binding. 
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Figure 38. Predication of structural motifs from the CRWN4 sequence.  
(A) cNLS Mapper results of CRWN4 (Settings in this Figure were as the same as that in Figure 25A). (B) 
Prediction of coiled-coils from the sequence of CRWN4 with the COILS server (Settings and plotting are as the 
same as that in Figure 25B). Note that no coiled-coil is predicted in the N-terminal region and the region 
between 800th-900th amino acid of CRWN4. (C) Schematic representation of full-length CRWN4. The 
description of the representation of CRWN2 is as the same as that in Figure 25C. 

 

Figure 39. A native CRWN4 tagging construct can rescue the nuclear phenotype of crwn4.  
(A) Design of a native CRWN4 expression construct. The green pentagon represents the 2.0 kb upstream of 
CRWN4 locus which is defined as promoter of the construct. A 0.5 kb downstream (the light grey rectangle) of 
CRWN4 was included in this construct. The dark gray rectangle represents the full length of the genomic 
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CRWN4 locus. The light purple rectangle represents the 2HA tag. In this construct, the 2HA is inserted at the 
850th amino residue of the CRWN4 protein. (B) Morphology comparison of 8C nuclei of WT, crwn4, and two 
lines of pCRWN4::CRWN4_850_2HA crwn4 plants. The nuclei were isolated from a rosette leaf of 4-week old 
plants. 

 
Figure 40. CRWN4 gene model and genotyping of CRWN4 tagging lines.  
(A) Gene model of CRWN4 including the positions of the T-DNA insertion, and the definition of the 
pCRWN4::CRWN4_850_2HA construct. Depictions of the gene model are as the same as described in Figure 27. 
(B) Genotyping of the CRWN4 tagging line was done with primer pair crwn4-1 LP and CRWN4-R1. CRWN4-
R1 matches the endogenous genomic region where the 2HA are inserted. 

 
Figure 41. Expression of CRWN4:2HA in crwn4 leaves.   
The CRWN4:2HA protein in leaf crude extract was detected by the anti-HA antibody. This western blot was 
done by Dr. Nan Wang in our group. 
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Figure 42. Predication of structural motifs from the CRWN2 sequence.  
(A) cNLS Mapper results of CRWN2 (Settings in this Figure were as the same as that in Figure 25A). (B) 
Prediction of coiled-coils from the sequence of CRWN2 with the COILS server (Settings and plotting are as the 
same as that in Figure 25B). Note that no coiled-coil is predicted in the N-terminal region and regions between 
750th-962th and 990th-1050th amino acid of CRWN2. (C) Schematic representation of full-length CRWN2. The 
description of the representation of CRWN2 is as the same as that in Figure 25C. 

 
Figure 43. A native CRWN2 tagging construct can rescue the whole-plant phenotype of crwn1/2.  
(A) Design of a native CRWN2 expression construct with a 2HA tag. The green pentagon represents the 1.7 kb 
upstream of CRWN2 which is defined as the promoter of the construct. A 0.3 kb downstream (the light rectangle) 
of CRWN2 was included in this construct. The dark gray rectangle represents the full length of the genomic 
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CRWN2 locus, the light purple rectangle represents the 2HA tag. In the construct, the 2HA is inserted at the 
region of the 800th amino residue of CRWN2 protein. (B) Phenotype of WT, crwn4, two lines of 
pCRWN2::CRWN2_800_2HA crwn1/2 plants. Plants are grown in greenhouse for three weeks and then 
photographed.  

 
Figure 44. CRWN2 gene model and genotyping of CRWN2 tagging lines. 
(A) Gene model of CRWN2 including the positions of the T-DNA insertion, and the definition the 
pCRWN2::CRWN2_800_2HA construct. Depictions of the gene model are as the same as described in Figure 27. 
(B) Genotyping of the CRWN2 tagging lines was done with primer pair crwn2-1 RP and CRWN2-out-R. 
CRWN2-out-R can only amplify the endogenous CRWN2 allele as it matches the genomic region not included in 
the construct. 

 
Figure 45. Expression of CRWN2:2HA in crwn1/2 leaves.  
The CRWN2:2HA protein in leaf crude extract was detected by the anti-HA antibody. This western blot was 
done by Dr. Nan Wang in our group. 

3.9 Loss of CRWNs increased root hair density in Arabidopsis thaliana  

Single and double crwn mutants have been reported to show changes in whole-plant 

phenotypes, nuclear morphology and chromatin organization (Wang et al., 2018b; Zhou et al., 
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2015; Sakamoto and Takagi 2013; Choi et al., 2019; Dittmer et al., 2007; Wang et al., 2013; 

Poulet et al., 2017a). Nevertheless, there is no report in regard to plant root phenotype of plant 

lamin mutants. Even though both CRWN2 and CRWN3 belong to the same clade as CRWN1 

(Wang et al., 2013), CRWN2 shows the highest sequence similarity with CRWN1 protein 

(Figure 37). Thus, more attention was paid to CRWN2 than CRWN3. In addition, crwn1/2 

double mutant shows more severe growth retardation than crwn1/3 does (Wang et al., 2013). 

Moreover, CRWN4 has been shown to play a role in regulating chromatin organization and 

nuclear architecture (Sakamoto and Takagi 2013; Dittmer et al., 2007; Poulet et al., 2017a). 

Therefore, growth and root phenotype of mutants (single, double and triple) of CRWN1, 

CRWN2 and CRWN4 locus have been examined in this study. 

As expected, no difference in length of plant root was observed between WT, crwn1, crwn2 

and crwn4 plants (Figure 46 A), which was in accordance with the observation of the whole-

plant phenotype (Wang et al., 2013). Changes in the length of root phenotype were 

differentially influenced in different double crwn mutants: crwn1/4 and crwn2/4 plants shows 

similar plant root length as WT plants, while root of crwn1/2 became shorter compared with 

that of WT plants (Figure 46 A). And similar like change in the whole plant, plant root in 

triple crwn mutant — crwn1/2/4 became even more shorter compared to WT plants (Figure 

46 A) (Wang et al., 2013). In addition, I also found higher density of root hairs in crwn1/2 and 

crwn1/2/4 compared with WT plants and other crwn mutants (Figure 46 B). Root hairs in 

crwn1/2/4 were longer than those in other crwn mutants and it seems that in crwn1/2/4, some 

root cells have two root hairs (Figure 46 B). 

Even though I observed higher density of root hairs on crwn1/2 and crwn1/2/4 roots, roots in 

these mutants became shorter than those in WT plants and other crwn mutants (Figure 46). 

Therefore, the increased density of root hairs might be attributed to the shorter or smaller root 

cells in crwn1/2 and crwn1/2/4 mutants. To verify this point, I examined the cell length of 

root cells from different crwn mutants. However, except in crwn1/2/4, root cell length of 

crwn1/2 was similar to that of WT plants and other crwn mutants (Figure 47). Thus, the 

increased root hair density in crwn1/2 and crwn1/2/4 was not due to changes in size of root 

cells in these crwn mutants. 
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Figure 46. Morphology of root hairs of crwn mutants. 
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(A) Global view of roots of crwn mutants. Plants were grown vertically on 1/2 MS medium for 10 days and then 
imaged. (B) Representative images of root hairs from 10-day-old plants grown on 1/2 MS medium. Images were 
captured from the elongation zone of each root. Scale bars: 200 µm. 

 
Figure 47. Comparison of cell length of root cells in crwn mutants. 
Roots of 10-day-old plants were incubated with Calcofluor White to stain cell wall and photographed. Scale bars: 
50 µm. 
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4. Discussion 

Chromatin positioning within the 3D nuclear space, especially at the NP, is non-random and 

crucial for many cellular processes including gene transcription and silencing (Gibcus and 

Dekker 2013; Sigman and Slotkin 2016; Van Bortle and Corces 2012). The discovery of 

LADs, which are featured with transcriptionally repressed chromatin regions, gives rise to the 

extensive studies on the non-random positioning of chromatin at the NP and its biological 

relevance (reviewed in (van Steensel and Belmont 2017)). In animals, it has shown that 

repressive histone mark H3K9 methylation, the lamina network, and many bridging proteins 

that connect chromatin to the lamina are required for positioning chromatin specially at the 

NP (van Steensel and Belmont 2017; Mattout et al., 2015; Harr et al., 2016). Whether or not 

the specific chromatin organization exists in plant is still unclear. If so, how plants achieve 

such comparable chromatin organization at the NP remains largely a mystery. Therefore, this 

thesis focused on these topics and aimed at answering these important questions. 

It is generally little understood chromatin positioning at the NP in plants, except for a 

preferential association of chromocenters with the NE evidenced by cytological studies. The 

main reason for this is plants do not encode proteins sharing sequence similarity with nuclear 

lamin proteins in animals, although a similar meshwork like the animal NL underneath the 

NE has been observed in several plant species (Ciska and Moreno Diaz de la Espina 2014). 

Nevertheless, three types of plant-specific proteins, localized preferentially or exclusively at 

the INM have been listed as candidates of plant lamins over the past few years. In 

Arabidopsis, they are CRWN1-4, which belong to the NMCP family; KAKU4, which 

interacts physically with CRWNs at the NP; and plant NEAPs (reviewed in (Meier et al., 

2017)). Moreover, the role in anchoring chromatin at the NP of the NPC which located at NE 

has also been shown, and components of plant NPC have been systematically identified and 

investigated (Strambio-De-Castillia et al., 2010; Tamura and Hara-Nishimura 2013; Tamura 

et al., 2010). These advances offer opportunities for in-depth studies on whether and how 

chromatin organize specifically at the plant NP. 

4.1 Specific perinuclear positioning of repressed chromatin regions revealed by RE-

ChIP 

As a functional compartment, the NP plays crucial roles in regulating chromatin organization 

within the 3D nuclear space and gene expression (reviewed in (Lemaitre and Bickmore 2015; 
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Arib and Akhtar 2011; Buchwalter et al., 2019)). In general, the NP in animals is a 

transcriptionally repressed compartment enriched for silenced chromatin regions (reviewed in 

(Buchwalter et al., 2019)). Chromatin regions showing preferential localization at the NP can 

be identified by the conventional ChIP method, offered by the protein of interest, which is 

positioned at the NP, interacts directly with chromatin. For example, conventional ChIP 

approach has been applied to animal nuclear lamin A and lamin B, leading to the discovery of 

LADs (Kubben et al., 2012; Pascual-Reguant et al., 2018). Additionally, the DamID approach, 

which utilizes a fusion protein of lamin B1 and a methyltransferase (Dam), has been used to 

identify and characterize chromatin regions interacting with nuclear lamins in individual cells 

(Kind et al., 2013). In this approach, the Dam enzyme produces tracks on chromatin-lamina 

interactions by methylating DNA on the N6-adenine residue. A potential limitation of these 

two methods is that the protein of interest must be in close contact with chromatin. 

Although three types of plant-specific proteins have been identified as plant lamin candidates, 

it remains unknown whether these plant-specific lamin candidate proteins and nuclear 

associated proteins are engaged in direct contacts with chromatin (Parry 2015; Ciska and 

Moreno Diaz de la Espina 2014). Because of such uncertainty, applying the formerly 

mentioned approaches on plants to explore chromatin positioning at the NP might cause 

misleading results. In this study, a RE-ChIP method was developed to identify Arabidopsis 

thaliana chromatin specifically positioned at the NP. By combining RE digestion and a mild 

sonication to fragmentize chromatin, our RE-ChIP alleviates the requirement that proteins of 

interest must have direct contacts with chromatin. In this method, high-order structures in 

nuclei can be largely preserved compared to those in conventional ChIP approach. Therefore, 

even the protein of interest indirectly interacts with chromatin to a certain extent, the RE-

ChIP still permits recovery of chromatin in the proximity of the protein. It should be noted 

that chromatin fragmentation pattern in a RE-ChIP experiment is not random and is relied on 

both the density of restriction-cutting sites and the efficiency of digestion (Wang et al., 2015a). 

Therefore, the RE-ChIP cannot achieve resolution at a nucleosomal scale and is not suitable 

for genome-wide identification of narrow peaks, but it is suitable for studying indirect 

protein-DNA interactions. 

In the RE-ChIP method conducted in this study, a fusion protein, NUP1:GFP, which was 

specialized localized at the NE, was used as a bait in RE-ChIP experiments to capture 

chromatin regions at its proximity. Our NUP1 RE-ChIP-seq results indicate that the 
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peripheral zone of the Arabidopsis nucleus is enriched with intermittent chromatin regions at 

chromosome arms (Figure 4). Chromatin segments adjacent to centromere (located at the PRs) 

from these tissues were more frequently to be found at the NP than those on the distal 

chromosome arms (Figure 4, Figure 7 and Figure 8), supporting the previous finding that 

chromocenters are located at the NP in Arabidopsis (Fransz et al., 2002). Intriguingly, the 

NUP1 RE-ChIP-seq signals from the root tissue, which composed of non-mesophyll cells, 

showed the highest similarity to those from leaves, in which the majority cell type being 

mesophyll cell (Figure 7 and Figure 8). Compared to other tissues, NUP1 RE-ChIP-seq 

signals from inflorescence tissue exhibited a much lower degree of enrichment of chromatin 

at the NP (Figure 7 and Figure 8), which might be caused by a dilution effect due to cell-type 

heterogeneity. In total, the chromatin regions localized at the NP in plants tend to be 

conserved among various tissues. Therefore, the tissue specificity makes a little contribution 

to the distribution of plant genome with respect to the nuclear peripheral zone on the 

chromosomal scale, the substantial contributor is linear genome per se. 

Findings in this study suggest that the plant NP is a functional compartment for docking 

repressed heterochromatin. This is reflected by the finding that these regions show higher 

percentages of TE genes and silenced protein-coding genes (Figure 10). Thus, the biological 

functions of the NP in eukaryotes are highly conserved. An intriguing question is how plants 

achieve such spatial chromatin positioning which could not be revealed by the RE-ChIP 

approach with this engineered bait protein.  

In this study, not all the genes enriched at the NP were found at lower expression levels 

(Figure 10C), which partially could be ascribed to the following reasons. Firstly, both the 

preparation of NUP1 RE-ChIP-seq libraries and analyses of gene expression were performed 

on plant tissues with different cell types; thus, if active transcription and positioning at the NP 

are mutually exclusive, both events might be pull down finally at a gene locus in a mixed cell 

population. Secondly, the NP is not a zone that absolutely inhibits transcription. This idea is 

proved by one study, in which only a subset of a pool of genes were found to be down-

regulated after artificially anchoring the pool of genes to the NP in human cells (Finlan et al., 

2008). Specifically, in Arabidopsis, it has been documented that the repositioning of the 

CHLOROPHYLL A/B BINDING (CAB) PROTEIN locus from the nuclear interior to the NP 

together with its transcriptional activation can be triggered by light stimuli (Feng et al., 

2014a). Thirdly, in the “gene gating” mechanism, positioning a gene at the NP leads to its 
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transcriptional activation because of interactions with nucleoporins (Blobel 1985). One report 

has discussed several potential interactions between transcription regulators (e.g., the TREX2 

complex and SUMO proteases) and NPC (Parry 2015). Although no direct interactions 

between NUP1 and chromatin were detected with a conventional ChIP approach, such 

potential interactions could not be excluded.  

Furthermore, the results presented in this study demonstrate that TEs are selectively tethered 

at the NP, suggesting additional features of this spatial compartment. The different loss of 

CHH DNA methylation on TEs in the RdDM and RdDM-independent mutants implies a 

spatial preference of these two TE-silencing pathways, in which RdDM is under more 

demand in nuclear interior while RdDM-independent is under more demand at the NP (Figure 

11). This finding correlates to observations that many components in small RNA pathways 

are localized around Arabidopsis nucleoli, which are localized in nuclear interior (Li et al., 

2008; Pontes et al., 2013). From a spatial view, results in this study offer insights into how 

these two silencing pathways work together in regulating TE methylation  (Zemach et al., 

2013), as well as how certain components of one pathway cooperate with each other (such as 

one study found a positive feedback loop between Pol IV-dependent small RNA biogenesis 

and DRM2 –dependent CHH DNA methylation (Li et al., 2015)). The possible dynamic 

locations of TEs in mutants of TE-silencing pathways are also an interesting topic for further 

investigations. 

4.2 Specific chromatin positioning at the NP requires plant lamin proteins  

Combining the previous part of the study and extensive studies on LADs in animals, the 

opinion that the NP is a functional compartment enriched with repressed chromatin domains 

and is highly conserved in eukaryotes. The next highly demand question is how these 

chromatin regions are selectively tethering to the plant NP. In animals, lamins and lamin-

associated proteins play critical roles both in regulating nuclear architecture by offering 

mechanical support, and in modulating high-order genome organization and a wide range of 

chromatin activities, which based on selectively tethering chromatin to the NP (reviewed in 

(van Steensel and Belmont 2017)). Unfortunately, to identify counterparts in plants, lacking 

orthologs of lamins and most lamin-associated proteins leads to the strategy ground on a 

protein-sequence similarity search might be of little use compared with forward genetics 

methods (Ciska and Moreno Diaz de la Espina 2014). With intensive efforts in identifying 

and characterizing components of the plant NE, the plant lamina has been established by a set 
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of plant-specific proteins (Tamura et al., 2015). In Arabidopsis, CRWNs, KAKU4 and 

NEAPs have been considered as plant lamina constituents according to their structures of 

protein domain, displayed patterns of sub-nuclear distribution, and phenotypes of nuclear 

architecture showing in their loss-of-function mutants (Pawar et al., 2016; Sakamoto and 

Takagi 2013; Dittmer et al., 2007; Goto et al., 2014). However, it is still unclear whether or 

not they take part in selectively tethering chromatin regions at the NP. It is also a mystery 

whether they have involvement in mediating chromatin activities at the NP. 

To answer these questions (at least partially), dual-color FISH experiments on 2C Arabidopsis 

nuclei were conducted to compare how chromatin-NP interactions differ in various mutants of 

plant lamina. The results imply that plant lamina candidates CRWN1 and CRWN4 show 

involvement in regulating selective chromatin positioning at the NP (Figure 14, Figure 24, 

Figure 48 and Figure 50), which is one of the important functions that metazoan lamins have 

(van Steensel and Belmont 2017). The documented function of CRWNs on regulating 

chromatin organization in previous studies was mainly focused on heterochromatic 

chromocenters (Wang et al., 2013; Poulet et al., 2017a). In this study, it is generalized to the 

genome-wide scale by presenting that CRWN1 and CRWN4 are required to selectively 

anchor genomic regions located on different chromosomes to the NP (Figure 14). Notably, 

like metazoan lamin proteins, CRWN1 shows direct interactions with chromatin regions 

localized at the NP (Figure 29, Figure 31 and Figure 32). Moreover, our chromosome painting 

experiments with probes covering the whole right arm of chromosome 1 (a 10-Mb genomic 

region) demonstrate that this large chromatin region shows increased dispersion in crwn 

mutants, especially in crwn1, compared to WT plants (Figure 24 and Figure 48). This finding 

implies that CRWN proteins might be involved in global genome organization, which can be 

determined by checking genome-wide chromatin interaction patterns with an in situ Hi-C 

approach. Furthermore, whether or not CRWNs are associated with changes in local 

chromatin structure, one can conduct the assay for the transposase-accessible chromatin using 

sequencing. Altogether, although CRWN1 has no sequence similarity with metazoan lamins, 

it could be concluded as a functional equivalent to them. CRWN proteins are found in all 

plant species, and most of the characterized CRWN proteins show localization preference at 

the NP (Ciska et al., 2018; Sakamoto and Takagi 2013; Kimura et al., 2014). We speculate 

that CRWN proteins have evolved across all the plant species to serve as the key factors in 

mediating interactions between chromatin and the plant nuclear lamina. 
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Figure 48. Representative confocal images showing localizations of FISH signal in 2C nuclei of 
WT and crwn1 plants. 
Three pairs of FISH probes are located on chromosome 1 (green 2 vs red 2), 3 and 5 respectively. The red 
contour of every nucleus shows the estimated edge of the nucleus. The estimated nuclear edge was defined in 
ImageJ with the ROI (regions of interest) manager according to DAPI signals. The value of G1 and G2 in every 
image represents the distance of the two green FISH signals to the NP, the value of R1 and R2 represents that of 
the red FISH signals. Scale bar: 2 µm. 
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.  
Figure 49. Representative confocal images of chromosome painting. 
The signal distribution of FISH probes covering all the NUP1-enriched regions in the entire right arm of 
chromosome 1 in 2C nuclei of WT, crwn1, crwn4, and kaku4 plants. Scale bar: 2 µm. 
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Figure 50. Distribution of distances of probed genomic regions to the NP in crwn mutants. 
The genomic regions targeted by FISH probes in chromosome 1 (green 2 vs red 2). The figure is generated from 
distance data of replicate 2 in Figure 14. The p values indicate one-sided Mann-Whitney U test results. 

It should be noted that not all the selected chromatin regions targeted by green FISH probes 

were found to be localized at the NP in WT Arabidopsis nuclei (Figure 50). This is due to 

cell-to-cell variations, which were caused by the following reasons. First, the 2C nuclei used 

in this study were collected from various types of cells, in which the major type of cells are 

mesophyll cells, and guard and phloem cells are also included in. Second, chromatin 

undergoing different processes or at different stages is dynamic, leading to the dynamics of 

the chromatin localizations. 

Interestingly, KAKU4 and NEAPs, which are another two types of plant lamina constituents, 

do not show any function on modulating specific chromatin positioning at the NP (Figure 15 

and Figure 16). This notion is not in agreement with what is found in metazoans. As all the 

three tested animal lamins, lamin B1, B2 and A, show interactions with chromatin at the NP, 

although they belong to two different lamin types (reviewed in (van Steensel and Belmont 
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2017)). In Arabidopsis, loss-of-function mutants of NEAP1 and NEAP3 show decreased 

number of chromocenters and faction of heterochromatin in guard cells, implying their 

function on chromatin organization (Pawar et al., 2016). Moreover, the association of NEAP1 

with chromatin has been suggested via a transcription factor, bZIP18 (Pawar et al., 2016). 

There might be two explanations for not detecting interactions of chromatin-NEAPs in this 

study. First, the majority of cells used in this study are mesophyll cells, the possible 

chromatin-NEAPs interactions existed in guard cells might be masked by results from 

mesophyll cells. Second, plants showing only a single mutation in NEAP1 or NEAP3 is used 

in this study, these two NEAPs might play redundant roles in mediating chromatin positioning 

at the NP.  

In this study, the alterations in morphology of nuclei with the same endopolyploidy level in 

plant lamin mutants suggest a role of plant lamins in regulating nuclear shape (Figure 17 and 

Figure 18). This finding is in agreement with one of the key functions of animal lamin 

proteins in maintaining the nuclear architecture (van Steensel and Belmont 2017). As only 

nuclei with the same endopolyploidy level were compared among different plants, more 

accurate results were achieved. Intriguingly, the shape of 8C nuclei from WT Arabidopsis 

varies considerably (Figure 18A and Figure 18C). This is due to that the examined 8C nuclei 

were isolated from a mixture of different cell types (such as guard cells, mesophyll cells, and 

phloem cells). In general, the nuclei of mesophyll cells are longer than those of guard cells but 

shorter than those of phloem cells. For 2C nuclei, almost all the 2C WT nuclei exhibit 

spherical nuclear shape (Figure 17A and Figure 17C), even though they are from different cell 

types. 

It would be interesting to further clarify how CRWN1 and CRWN4 would interact to 

modulate specific chromatin tethering at the NP in Arabidopsis. The relationship between 

CRWN1 and CRWN4 seems confusing. From the view of the physiological level, the two 

CRWN proteins should be functional redundancy as a result of the growth retardation 

phenotype of crwn1/4 double mutants (Wang et al., 2013). However, from the view of the 

molecular level, the relationship of these two genes seems partially antagonizing. On the basis 

of a recent transcriptomic report of crwn mutants, the number of up-/down-regulated genes in 

crwn1, crwn4 and crwn1/4 mutants was 455/271, 1539/1151, and 395/329, respectively (Choi 

et al., 2019). Therefore, the knockout of CRWN1 can largely suppress global alteration in 

expression of genes in the crwn4 background. Moreover, the relationship becomes even more 
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puzzling because of the discrepancy in nuclear morphological alterations in crwn1, crwn4 and 

crwn1/4 plants (Figure 17 and Figure 18). A range of experiments to compare the difference 

of chromatin-NP interactions from one another among single and high-order crwn mutants 

need to be performed, to elucidate the potential redundant, cooperative, or antagonistic nature 

of these two CRWNs in modulating selective chromatin positioning at the NP. In animals, the 

genome-wide DamID patterns of three different lamin proteins, which belong to two lamin 

types, are similar (reviewed in (van Steensel and Belmont 2017)). Therefore, it would be 

intriguing to evaluate whether or not CRWN4 also interacts with the chromatin at the NP as 

CRWN1 does, if yes, is there any difference between the chromatin regions interacted by 

these two CRWN proteins. As we all know, with the same nuclear localization at the NP, 

CRWN1 and CRWN4 are categorized into two different clades of Arabidopsis CRWN 

proteins (Sakamoto and Takagi 2013; Dittmer et al., 2007; Wang et al., 2013). 

In Arabidopsis, CRWN2 and CRWN3 are categorized into the same clade of CRWN protein 

as CRWN1 (Wang et al., 2013). However, they are distributed in the nuclear interior, not at 

the NP (Sakamoto and Takagi 2013; Dittmer et al., 2007). In addition, knockout of CRWN2 in 

crwn1 contributes to plant growth retardation phenotype, which is not found in crwn1 single 

mutant plants (Wang et al., 2013). It has been reported recently that the number of mis-

regulated genes in crwn1, crwn2 and crwn1/2 is 726, 149 and 3028, respectively (Choi et al., 

2019). Therefore, loss-of-function of CRWN2 can lead to extensive transcriptomic mis-

regulation in the crwn1 background. All these findings suggest that CRWN1 and CRWN2 

have at least overlapping functions. Questions that we are interested are whether these 

overlapping functions are linked to nuclear chromatin organization. In addition, whether or 

not CRWN2 interacts directly with chromatin, and where these interactions occur (in the 

nuclear plasma or at the NP)? 

4.3 Roles of heterochromatin marks on specific chromatin positioning at the NP 

The understanding of the molecular mechanisms by which LADs are brought to the NP in 

animals is still on the way (van Steensel and Belmont 2017). During the process of C. elegans 

embryogenesis, this relies on the repressive mark, H3K9me (Towbin et al., 2012; Gonzalez-

Sandoval et al., 2015; Chen et al., 2014). Nevertheless, in differentiated C. elegans cells, 

regulation of perinuclear chromatin positioning at different developmental stages might be 

mediated by different mechanisms, because tethering LADs at the NP is partially maintained 

in the absence of H3K9me (Towbin et al., 2012). The finding in this study implies that 
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interactions between chromatin and the NP in Arabidopsis seedlings are not influenced when 

plants lose the H3K9me mark (Figure 19). In accordance with this concept, PRs were found 

to be retained at the NP in suvh4/5/6 triple plants that lost H3K9me (Jacob et al., 2009). 

Definitely, the requirement of H3K9me for chromatin-NP interaction might exist in other 

plant tissues and species. 

Even though no further characterization of plant PLADs was conducted, PLADs should be 

enriched with transposons and protein-coding genes with lower expression levels comparing 

to non-PLADs, due to the high overlap between PLADs and NUP1-enriched chromatin 

domains (Figure 10 and Figure 32). Therefore, an enrichment of a variety of heterochromatic 

marks can be expected in PLADs. Moreover, in this study, it has been revealed that the 

positioning of TEs at the NP correlated with different CHH DNA methylation pathways 

(Figure 11). Thus, it would be necessary to perform comparative FISH analyses in mutants 

losing each of these heterochromatic marks to clarify whether or not they are required for 

specific chromatin positioning at the NP. Intriguingly, in high-order Arabidopsis mutants 

combing mutations in CHG and CHH DNA methylation pathways, the chromatin-NP 

interactions were found to be much attenuated (Figure 20). Mutation in the RdDM pathway 

alone, which is part of the CHH DNA methylation mechanisms, appears to be not enough to 

destroy chromatin-NP interactions, because the loss-of-function mutations in DRM1 and 

DRM2 have no influence on the specific perinuclear chromatin localization (Figure 20). 

Whereas, the loss-of-function mutation in CMT2 affects the specific perinuclear positioning 

of chromatin regions located on chromosome 3 (Figure 20), suggesting that RdDM-

independent pathway contributes more than RdDM in perinuclear chromatin anchoring in 

plants. Although it has been documented that CG DNA methylation is the most abundant type 

of DNA methylation, and is present over heterochromatic regions enriched with TEs and 

genic regions (Lister et al., 2008; Cokus et al., 2008), our findings suggest that CG DNA 

methylation is not involved in tethering chromatin at the NP (Figure 21). Based all these 

results, we speculate a mechanism that might involve in Arabidopsis perinuclear chromatin 

localization patterns: the non-CG methylated chromatin regions might be easily read by 

certain factor(s) which need to be identified (perhaps a protein complex containing plant 

lamin proteins, such as CRWN1), which triggers the initial contacts between chromatin and 

the NP. After that, the pre-formed chromatin-NP contacts can be further spread to their 

adjacent genomic loci. 
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4.4 Do CRWN1-chromatin interactions have any biological relevance? 

It is interesting to know whether the loss of specific chromatin-NP interactions can cause any 

biological changes in crwn1 plants. The impacts of global loss of chromatin-NP interactions 

in different metazoan species have been evaluated, showing that it results in a varying extent 

of gene derepression, depending on species and cell types (van Steensel and Belmont 2017). 

In our opinion, attention should be paid to the effects of CRWN1-mediated chromatin-NP 

interactions on transcriptional regulation. Homologs of CRWN1, namely CRWN2 and 

CRWN3, might be important in this regard, because of the throughout localization in the 

nucleoplasm (Bajic et al., 2018; Sakamoto and Takagi 2013; Dittmer et al., 2007). These 

CRWNs might act as backups to maintain chromatin structure and gene expression when an 

originally perinuclear tethered chromatin region detaches from the NP. Our newly prepared 

CRWN2 tagging line might be useful for this purpose (Figure 43). Although phenotypic and 

expression analyses of single and high-order crwn mutants indicate that CRWN proteins play 

redundant roles in regulating heterochromatin organization, the protection of genomic DNA 

against excess oxidation, and salicylic acid (SA) synthesis (Wang et al., 2018b; Guo et al., 

2017; Choi et al., 2019; Wang et al., 2013), in this study, crwn1 does not show any 

phenotypic alterations comparing to WT plants under different stresses (Figure 33, Figure 34, 

Figure 35 and Figure 36). Switching to other model plant species with less CRWN genes, 

such as Marchantia polymorpha, might be useful to answer this question. 

It should be noted that although Arabidopsis CRWN1 or other CRWN locus appear to show 

stable transcriptional activities under biotic and abiotic stress conditions (expression data 

integrated by (Winter et al., 2007)), they might have intensive post-translational modifications 

(PTMs). It has been reported recently that CRWN1 proteins would be degraded quickly via a 

SA signaling mediated pathway upon Pseudomonas syringae pathovar maculicola infection 

(Guo et al., 2017). For the function of CRWN1 on regulating chromatin tethering and CT, it 

can be assumed that when SA signaling pathway becomes highly activated under stress, the 

down-regulation of CRWN1 proteins is also one way to give rise to alterations in chromatin 

organization as part of stress responses. In this study, the SA signaling or other related 

pathways might be activated by stress stimuli, leading to the plants crwn1 single mutant 

appears like WT Arabidopsis plants under stresses. 

Lamin proteins in metazoans tend to be phosphorylated at various sites, which would affect 

how they interact with themselves and other molecules (reviewed in (Machowska et al., 



  Discussion 

112 

 

2015)). According to a database of plant protein phosphorylation (http://dbppt.biocuckoo.org) 

(Cheng et al., 2014), CRWN1 has over 30 identified phosphorylation sites, the majority of 

them are located outside of its coiled-coil rod domain, and CRWN1 has more phosphorylation 

sites than other three Arabidopsis CRWNs. This information suggests that CRWN1 is easier 

to be phosphorylated, which can, in turn, act as a critical way to mediate CRWN1’s activities. 

In addition, many other types of PTMs, such as sumoylation, acetylation, glycosylation, and 

farnesylation, have been described in metazoan lamins (Snider and Omary 2014). Although 

these PTMs have not been documented, they are likely present in CRWNs. The state and/or 

crosslinks of phosphorylation and other PTMs of CRWN1 might be changed in response to 

stresses, which might be another reason that crwn1 mutants do not show phenotypes under 

artificial stresses. 
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5. Summary  

The biochemical environment within the 3D nuclear space is not homogeneous. It has been 

demonstrated in many studies that the transcriptional activity of a gene is linked to its 

positioning inside the nuclear space. The NE not only serves as a physical barrier separating 

the nuclear content from the cytoplasm but also plays crucial roles in mediating the 3D 

organization of genomic DNA. Following the discovery of LADs, which are transcriptionally 

repressed chromatin regions, the non-random chromatin positioning at the NP and its 

biological relevance have been studied intensively in animals. However, it still remains 

unknown in plants that whether comparable chromatin organizations exist or not.  

In this study, RE-ChIP was used to reveal the genome-wide identification of non-random 

organization of chromatin domains positioned at the peripheral zone of Arabidopsis thaliana 

nuclei. The patterns of chromatin regions positioned at NP were similar across different 

tissues. These chromatin domains are enriched with silenced protein-coding genes, TE genes 

and heterochromatic marks, which collectively define a repressed environment at the NP. 

Furthermore, our results suggest a spatial compartment of different DNA methylation 

pathways that regulate TE silencing, where the CHH DNA methylation of TEs localized at 

the NP and in the nuclear interior is preferentially mediated by CMT2 and DRM 

methyltransferases, respectively. 

To elucidate how such chromatin positioning patterns at the NP was achieved in plants, dual-

color FISH experiments were conducted to compare the difference of chromatin-NP 

interactions among various mutants. Our results show that in Arabidopsis thaliana, specific 

chromatin positioning at the NP requires plant lamin proteins CRWN1, CRWN4 and non-CG 

DNA methylation, which are all plant-specific. The result of chromosome painting indicates 

global attenuation of chromatin positioning patterns at the NP in both the crwn1 and crwn4 

mutants. Moreover, ChIP-seq shows that CRWN1 directly interacts with chromatin regions 

localized at the NP. 

In summary, the NP is a functional sub-compartment enriched with heterochromatic domains. 

In addition, CRWN1 is a key component of lamin-chromatin network in plants. It is 

functionally equivalent to animals lamins, which play crucial roles in regulating chromatin 

positioning at the NP. 
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6. Zusammenfassung 

Die biochemische Umgebung innerhalb des 3D Kernraums ist nicht homogen. In vielen 

Studien wurde gezeigt, dass die Transkriptionsaktivität eines Gens mit seiner Positionierung 

im Kernraum zusammenhängt. Das NE nicht nur als physikalische Barriere, die den 

Kerninhalt vom Zytoplasma trennt, sondern spielt auch eine entscheidende Rolle bei der 

Vermittlung der 3D-Organisation genomischer DNA-Regionen. Nach der Entdeckung von 

LADs, die transkriptionell unterdrückte Chromatinregionen darstellen, wurden die nicht 

zufällige Chromatinpositionierung im NP und ihre biologische Relevanz bei Tieren intensiv 

untersucht. In Pflanzen ist jedoch noch nicht bekannt, ob vergleichbare Chromatin-

Organisationen existieren oder nicht.  

In dieser Studie wird unter Verwendung einer Strategie des RE-ChIP, die genomweite 

Identifizierung der nicht zufälligen Domänenorganisation von Chromatin in der peripheren 

Zone von Arabidopsis thaliana-Kernen untersucht. Die Muster der am NP positionierten 

Chromatinregionen waren in verschiedenen Geweben ähnlich.  Diese Chromatindomänen 

sind mit stummgeschaltete proteinkodierende Genen, transposable Element-Genen (TEs) und 

heterochromatische Markierungen angereichert, die zusammen eine verdrängte Umgebung 

definieren. Darüber hinaus deuten unsere Ergebnisse auf ein Kompartiment verschiedener 

DNA-Methylierungswege hin, welche die Stummschaltung von TEs regeln, wobei die CHH-

DNA-Methylierung von am NP und im Kerninneren lokalisierten TEs bevorzugt durch 

CMT2- bzw. DRM-Methyltransferasen vermittelt wird. 

Zur Aufklärung, wie Pflanzen eine solche Chromatinpositionierung am NP erreichen, wurden 

In-situ-Hybridisierungsexperimente mit zweifarbiger Fluoreszenz durchgeführt, um den 

Unterschied der Chromatin-NP-Wechselwirkungen zwischen verschiedenen Mutanten zu 

vergleichen. Unsere Ergebnisse zeigen, dass in Arabidopsis thaliana, die spezifische 

Chromatinpositionierung am NP erfordert pflanzenlaminatartige Proteine CROWDED 

NUCLEI 1 (CRWN1), CRWN4 und nicht-CG DNA Methylierung, die alle pflanzenspezifisch 

sind. Das Chromatin-Malergebnis zeigt eine globale Dämpfung der Chromatin-

Positionierungsmuster am NP bei beiden, sowohl crwn1 als auch crwn4 Mutanten.  Darüber 

hinaus zeigt ChIP-seq, dass CRWN1 direkt mit am NP lokalisierten Chromatinregionen 

interagiert. 
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Zusammenfassend ist der NP ein funktionelles Subkompartiment, das mit 

heterochromatischen Domänen angereichert ist. Darüber hinaus ist CRWN1 eine 

Schlüsselkomponente des Lamin-Chromatin-Netzwerks in Pflanzen. Es ist funktionell 

äquivalent zu Tier-Laminen, die eine entscheidende Rolle bei der Regulierung der Chromatin-

Positionierung im NP spielen. 
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8. Appendix 

Table 9. Oligonucleotides used in this study 
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Table 10. Reads of ChIP-seq and NUP1:GFP RE-ChIP 
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Table 11. Reads of NUP1:GFP RE-ChIP in various tissues 
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Table 12. FISH BACs paired loci to compare ~300 kb genomic regions 
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Table 13. FISH BACs for chromatin painting 
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